Developing Complex Information Systems:
The Use of a Geometric Data Structure to Aid
the Specification of a Multi-Media

Information Environment.

A. R. Warman, B.Sc.

A thesis submitted in completion of the requirements for the degree of
Doctor of Philosophy

March 1990

The London School of Economics and Political Science

UMI Number: U047879

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U047879
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

TWESES

F
S/car.!

ée>hn2"

xc3 i0j.60&3.,9

Abstract

Developing Complex Information Systems

The Use of a Geometric Data Structure to Aid the Specification

of a Multimedia Information Environment.

The enormous computing power available today has resulted in the acceptance
of information technology into a wide range of applications, the identification or
creation of numerous problem areas, and the considerable tasks of finding problem
solutions. Using computers for handling the current data manipulation tasks which
characterise modern information processing requires considerably more sophisticated
hardware and software technologies. Yet the development of more ‘enhanced’ packages
frequently requires hundreds of man-years. Similarly, computer hardware design has
become so complicated that only by using existing computers is it possible to develop

newer machines.

The common characteristic of such data manipulation tasks is that much larger
amounts of information in evermore complex arrangements are being handled at greater
speeds. Instead of being ‘concrete’ or ‘black and white’, issues at the higher levels of
information processing can appear blurred - there may be much less precision because
situations, perspectives and circumstances can vary. Most current packages focus on
specific task areas, but the modern information processing environment actually requires
a broader range of functions that cooperate in integrating and relating information

handling activities in a manner far beyond that normally offered.

It would seem that a fresh approach is required to examine all of the constituent
problems. This report describes the research work carried out during such a
consideration, and details the specification and development of a suggested method for

enhancing information systems by specifying a multimedia information environment.

This thesis develops a statement of the perceived problems, using extensive

references to the current state of information system technologies. Examples are given

Abstract

of how some current systems approach the multiple tasks of processing and sharing data
and applications. The discussion then moves to consider further what the underlying
objectives of information handling - and a suitable integration architecture - should
perhaps be, and shows how some current systems do not really meet these aims,
although they incorporate certain of the essential fundamentals that contribute towards

more enhanced information handling.

The discussion provides the basis for the specification and construction of
complete, integrated Information Environment applications. The environments are used
to describe not only the jobs which the user wishes to carry out, but also the

circumstances under which the job is being performed.

The architecture uses a new geometric data structure to facilitate manipulation
of the working data, relationships, and the environment description. The manipulation
is carried out spatially, and this allows the user to work using a geometric
representation of the data components, thus supporting the abstract nature of some

information handling tasks.

ii

Acknowledgements.

I would like to thank all those friends, relatives and colleagues who have
supported and encouraged me throughout the efforts described in this thesis. In
particular I would like to thank my supervisor, Prof. I. O. Angell, for his tremendous
support; not least in watching out for the split infinitives which I seemed to always

include. Above all my thanks and love to Sue, who found time to become my wife.
Funding for this research was initially provided by the Science and Engineering

Research Council. Later assistance was provided by the London School of Economics
and Political Science.

iid

Contents

Abstract: Developing Complex Information Systems

Chapter_1: Information Systems and Enhancement Strategies

1.1: Introduction

1.2: The Problem Domain
1.3: Current Approaches
1.4: Suggested Requirements
1.5: Summary

1.6: Thesis Structure

Chapter 2: Current Systems

2.1: Overview of Current Systems
2.2: Management Systems
2.2.1: Project Management Systems
2.2.2: Resource Management Systems
2.2.3: Software Configuration Management
2.3: Development Systems
2.3.1: Software Engineering
2.3.2: SSADM
23.3: CASE.
23.4: ILPSE.
2.3.5: Analysis and Design Tools
2.3.6: Code Generators and Fourth Generation Languages
2.3.7: ISDOS
2.4: Data Handling Systems
2.4.1: Standard Text Description Systems
24.1.1: TgX
2.4.2: Graphic Presentation Systems
2.5: Idea Processors
2.6: Data Flow Control

2.7: Discussion of Current Systems

iv

13
21
29
29

31
31

33

34
38
40
41
41
44
45
47
47
49
49
50
50
52
52
54
56
58

Chapter 3: Current Research 60

3.1: Overview of Current Research 60
3.2: Multimedia Systems 64

3.2.1: Example Systems 66
3.3: Hypertext 70

3.3.1: Example Systems 74
3.4: Hypermedia 79
3.5: Information Browsing, Presentation and Preparation 82
3.6: Information Structuring 86
3.7: Computer Architectures 90
3.8: Groupware 93
3.9: Summary 95
Chapter 4: Consideration of Current Systems and Related Research 98
4.1: Overview 98
4.2: Introduction 99
4.3: Discussion of Current Systems 100
4.4: Discussion of Current Research 105
4.5: Focused Systems and User Confusion 112
4.6: Conclusion 117

Chapter 5: Requirements for Genuine Information Systems: A Fresh

Consideration 118
5.1: Introduction 118
5.2: Identifying System Components 124
5.2.1: The User and Presentation to the User 124
5.2.2: Control and Report 126
5.2.3: Integration 128
5.2.4: Communication 129
5.2.5: Processing and Computation 131
5.2.6: Data Groups 132
5.2.7: Data Basics 133
5.3: Suggested Requirements 134

5.4: Data and Information, Flow and Control _ 139

Chapter 6: The Information Environment

6.1: Introduction
6.2: The Information Environment

6.3: The Information Document

6.4: Designing an Information Document Architecture

6.5: Summary
6.6: Research Method

Chapter 7: The Information Environment and GENIE-M: Description, Generation

and Control
7.1: Introduction
7.2: Geometrical Data Structures
7.2.1: Philosophy
7.2.2: Physical Description
7.3: GENIE-M Architecture

7.3.1: Modules and the Environment
7.3.2: Tile Transfer and Manipulation
7.3.3: Module Organisation within the Environment

7.4: The User Interface
7.5: Application Examples
7.5.1: Mixed Media Documents

7.5.2: Newspaper Layout Construction
7.5.3: Lecture and Presentation Control and Structure

7.5.4: Prototyping Methodologies
7.6: Problems with the Concept

7.7: Conclusion

7.7.1: Use of GENIE-M on Existing Systems

7.7.2: GENIE-M Users

7.7.3: Future Systems and the GENIE-M Architecture

Chapter 8: Design of the Prototype System

8.1: Introduction - Analysis and Design of the System
8.1.1: The Contribution and Incorporation of Software Engineering

Techniques

8.1.2: Evolutionary Prototyping

vi

141
141
146
151
152
154
155

157
157
160
160
161
164
164
165
165
166
168
169
169
172
174
174
177
178
179
180

182
182

183
185

8.2: The Structural Specification
8.2.1: The Kernel
8.2.2: The Server and User Interface
8.2.2.1: The Application Administrator
8.2.2.2: The Presentation Manager
8.2.2.3: The Event Handler
8.2.2.4: The Sub-Application Manager
8.2.2.5: The Geometric Tile Builder
8.2.2.6: The Tilestore Domains
8.2.2.6.1: The Localised Topological Tilestore
8.2.2.6.2: The Geometrical Tilestore
8.3: Hardware and Software Considerations

8.4: Summary

Chapter 9: Implementation of the Prototype System
9.1: Implementation Details

9.1.1: Implementation Concepts
9.2: Module Communication
9.2.1: GENIE_init();
9.2.2: GENIE_send();
9.2.3: GENIE_recv();
9.2.4: GENIE_recvfrom();
9.2.5: GENIE_stop();
9.3: Module and Tile Architecture
9.3.1: ABORT
9.3.2: DEVICE
9.3.3: GROUP
9.3.3.1: GROUP ADD
9.3.3.2: GROUP DELETE
9.3.3.3: GROUP MOVE
9.3.3.4: GROUP RMOVE
9.3.4: SHOW
9.3.4.1: SHOW DEVICE
9.3.4.2: SHOW GROUP
9.3.4.3: SHOW TILE

vii

187
188
189
189
190
191
191
192
192
193
193
193
198

201
201
202
203
207
208
208
209
210
211
213
213
213
214
214
215
215
215
215
216
216

9.3.4.4: SHOW TREE

9.3.5: TILE

9.3.5.1: TILE CREATE

9.3.5.2: TILE GET
9.3.5.2.1: TILE GET ATTRIBUTE
9.3.5.2.2: TILE GET DATA
9.3.5.2.3: TILE GET POSITION
9.3.5.2.4: TILE GET SIZE

9.3.5.3: TILE IDENTIFY
9.3.5.3.1: TILE IDENTIFY NEXT
9.3.5.3.2: TILE IDENTIFY ROOT

9.3.5.4: TILE MOVE

9.3.5.5: TILE READ

9.3.5.6: TILE RMOVE

9.3.5.7: TILE SELECT

9.3.5.8: TILE SET
9.3.5.8.1: TILE SET ATTRIBUTE
9.3.5.8.2: TILE SET DATA
9.3.5.8.3: TILE SET POSITION
9.3.5.8.4: TILE SET SIZE

9.3.6: TREE

9.4: Coding - the Sun Workstation Development Environment

9.3.6.1: TREE LOAD
9.3.6.2: TREE SAVE

9.5: Tile Space Storage Mechanisms
9.5.1: The ‘matrix’ module
9.6: GENIE-M and Distributed Systems

9.7: Summary

Chapter 10: Conclusions

10.1: Introduction

10.2: Review of the GENIE-M Philosophy
10.3: The Demonstration System

10.4: Successes of the Work

10.5: Limitations of the Current System: Threads for Future Development

viii

216
217
217
217
217
218
220
220
220
221
222
222
222
223
223
224
224
224
225
226
226
226
227
227
229
229
230
232

234
234
235
239
240
243

10.6: Final Thoughts

Appendix
References

Error Codes returned by the Communications Routines

Record of Demonstration Session

ix

245

247
247
267
269

Chapter 1.

Information Systems and Enhancement Strategies:

An Introduction to the Problem.

Section 1.1: Introduction.

The origins of this work derive from the desire to seek a mechanism for
implementing multiple editions of electronic books [Angell 86]. A specific example
was considered suitable for general study, that of a computer-based text-book on
crystallography. Multiple editions of the book would be generated on-line, where each
different edition referred to a different crystal group. The majority of the text in the
book would remain constant, but specific sections would require reconfiguration
according to the space group and symmetries under discussion. In addition, a
longer-term requirement was that multiple users should be able to access the electronic
book(s), across a distributed multi-tasking environment. In order to provide the
necessary capabilities, a totally new kind of electronic document structure was indicated.
Analysis of the necessary design of this structure suggested a promising line of

research, part of which culminated in this thesis.

Rather than generating a highly specific solution to the problem, it was
considered sensible to consider the issues in more detail, such that a generalised
definition might be derived. In particular, a structure technology based on geometry
was sugge.sted (for reasons discussed in section 7.2) as a possible foundation for the
electronic books, but it soon became clear that such a concept had additional
implications of a much wider-ranging nature. It was felt that the use of geometry for
solving problems offers a number of benefits in terms of understanding and representing

the computer-processing problems themselves.

Chapter 1

Extending the geometric concept to more generalised cases represents a
significant line of research. For example, the use of multiple geometric objects
suggested the existence of relationships between them - at first according to the
‘edition’ of the electronic book, but subsequently in terms of the general application.
Furthermore, since the geometrical objects could be viewed as related but independent
objects, the way in which they could be used or accessed could also vary in
correspondence with the application. A major first step was the observation that the
use of a geometric architecture would promote easier definition of the problem and
implementation of the solution. Standardisation on a geometrical foundation underlying
a minimal architecture for computer-based information processing had the result that a

multitude of enhancements were suggested for various applications.

This thesis is a report of the development work carried out for two related
problems. Firstly, the development of a geometric structure to support the
representation - and hence understanding - of problems and subsequent implementation
of appropriate solutions, and secondly the generation of a computer-based architecture
built upon these geometric structures, to be used for testing the contribution of
geometry in implementing the solutions to the problems. At the same time, there is
a parallel requirement for the development of a more formal methodology that can be
used for applying the geometric structure to problem solving, since the provision of a
tool alone would be of restricted value without an understanding of how the tool could
be applied. The aim of the current work has not been to produce a ‘Grand Theory’
but instead to design and implement a minimal, primitive system to be used as the
basis for prototyping further system extension. This in turn would be used as the basis

for further work towards production of a larger, commercial system.

The work clearly required a comprehensive review of existing technology and
techniques of problem representation. Simply patching geometry onto current
application tools would not only be difficult, but also unlikely to result in clear major
benefits. This would be due to the underlying concepts of the present application tools
being founded on non-geometric principles, and so coming into conflict with the
objectives of a geometric architecture. Therefore, the review was to be used in

establishing from first principles the primary objectives of application tools, and their

Chapter 1

characteristic features. These would be used in developing the specification for the
geometric structure, and subsequently the development of an architecture that

implements those features.

Section 1.2: The Problem Domain.

The majority of modern computers have a fundamental feature in common: they
are based on the Von Neumann architectural principle of single-state processing. Only
one task can be in operation within the central processing unit of a single computer at
any one time. There is almost no provision for the support of multiple computational
tasks being shared among more than one machine in a distributed processing
environment. Where such a facility is provided, it is typically by the use of support
peripherals that provide interaction resources for the host machine to call on. The use
of complex programs and fast hardware means that a computer may give the illusion
of doing several jobs at the same time, but in reality this is achieved by swapping the

machine’s ‘attention’ from task to task in rapid succession.

A natural effect of this ‘single-tasking’ approach has been that both users of
computer systems and developers of computer systems tend to work in a step-by-step
fashion - considering each job (or each aspect of the current job) one-at-a-time. Such
an approach has the advantage of simplicity, but the disadvantages of reducing
performance and introducing complexity in fhe jobs to be performed. In particular,
there seems little correspondence between this method of implementing computer-based
information systems, and the practical realities of the problems encountered and

requiring solution ‘in the real world’.

As computers have become more powerful, the ease with which multiple tasks
or applications can be accommodated within the machine has increased through the use
of essentially low-level time-sharing models, and accordingly, the environment in which
the user works has a greater potential to be more productive. An example is in the
ability to run tasks ‘in the background’, for example printing operations; or in the

provision of useful utilities packages such as on-screen clocks or mail arrival flags.

Chapter 1

A comparatively recent innovation for workstations and personal computers is the
graphic ‘desktop’, where users can see a pictorial representation of their jobs, all
supposedly running simultaneously [Smith 82]. A simpler and more common variant
of this is that each of the visible jobs is ‘suspended’, and only actually runs when the

user is actively ‘looking’ at it.

This method of representing the current working state of the machine has proved
very popular because of its initial simplicity for users, and similar facilities are
apparently ‘migrating down’ from small workstations to be implemented on personal
computers, as well migrating up to run on larger and more powerful computer systems.
However, now that multiple activities can be seen to be taking place at any one time,
many users wish to move away from rudimentary problem-solving by isolated ‘hermit-
like’ processing of tasks, and pursue a more natural method of problem-solving, with
the benefits of multiple tasks to communicate and share more information more rapidly.
Such enhanced information handling requires complex system technology that does not
as yet exist. The nearest current approximation is to use separate application tools in
concert. This means that from the technological viewpoint, the user wants the practical
ability to exchange data of varying kinds between the many tasks that can be seen
running on a machine. But the less technological aspects of information handling
involve going more into the higher-level or environmental requirements. In this case,
users have needs going far beyond simple data manipulation; instead it becomes
important to model as much as possible of the complete operational environment, in
order to try and take into account real-world problem-solving circumstances which

should influence the nature of information processing.

Few current systems incorporate environmental aspects into processing tasks,
concentrating instead upon the technological safety of lower-level considerations such
as the already mentioned data exchange between tools. In sales literature, a popular
term for the passing of data in this way is ‘Integration’, but this often turns out to be
an inaccurate exaggeration of the rather simple facilities offered. The low-level
communications provided cannot offer high-level or complex facilities. Accordingly,
weaknesses are generally found in the approaches used by many packages to implement

integration. For example, while the ideal of integration would be to support data and

Chapter 1

environmental exchange, the actual implementation of integration usually offers less
than this, resulting in only a rudimentary sharing or exchange of certain selected data.
Indeed, such integration can in fact lead to additional complexity not only with regard
to the technical issues, but also concerning the people using the systems, who must
function while taking into account the practical, social and political consequences of
their actions. Consequently, integration alone is insufficient to enhance computer

systems to a point where they can better support problem solving.

More advanced objectives for enhancing computer-based information systems
would imply that while the user’s machine or machines may be running several distinct
low-level tasks or programs, they should be able to share and exchange data in a
meaningful fashion which reflect both the problem and its working environment, in
effect requiring that the tasks being performed can be inter-connected and inter-related

in some way, rather than existing and operating in isolation from each other.

Consequently, the tools should work with each other, cooperating in modelling
the problem environment rather than competing in isolated and focused applications.
All too often, the implementation of a computer-based information system gives little
consideration to the actual nature or context of the problem; the continually changing
environment of some application areas - such as most businesses - is typical in
experiencing rapid changes. Avison points out in [Avison 85] that design of systems

may be output driven, and yet:

‘... it is common and not unreasonable for users to require a change in
the outputs even before the new system is operational. But because the
system has been designed from the output backwards, such changes may
necessitate a very large change in the whole system design. This can
cause either a serious delay in the implementation schedule or an

operational system that is unsatisfactory from the start.’

This could have a direct result in the form of increased difficulty in
implementation or even failure of the project, simply because the application

development process does not take into account the circumstances of the operational

Chapter 1

environment. The difficulties increase dramatically if several packages are used which

were not originally intended to cooperate in problem solving.

Furthermore, the manipulation of problem data is a specific job that usually has
to be initiated at the user’s request, and cannot be performed as an automatic
background task. Yet changes in the data may be the result of events occurring
outside the user’s influence, for example real-time events can take place while other
work is being done, and any of these could be relevant to the tasks at hand.
Currently, users cannot be clearly informed of an event, let alone invited to

accommodate it into relevant work.

An example of this might be the preparation of a list of researchers attending
a conference, for which the details are kept on a central database, but where the
documents detailing events and names of those present are kept in a ‘fluid’ state up to
and including the day of the conference. As the database is changed - possibly by
several users - so the documenting system should immediately reorganise the underlying

details appropriately without having to be specifically instructed to do so.

There are many ways in which current application development technology fails
to meet requirements. A summary list of criticisms of typical computer applications

is provided in [Avison 88]:

1) Failure to meet the needs of business. In particular, middle
management and top management are being largely ignored by
computer data processing. Management information ... is being

largely neglected.

2) Another major problem is the inflexibility of the systems that are
being implemented. ... Their designs are similar to those of the
existing system. They are not intended to be adaptive: they are

expected to parallel existing systems.

Chapter 1

3) User dissatisfaction ... is a feature almost inherent in some
computer applications. Frequently they are rejected as soon as
they become operational. The user may agree the design of
outputs with the systems analysts, but it is only when the system

is operational that he sees the repercussions of his decisions.

4) There are problems with the documentation. The orientation of
the documentation ... is towards the technologists and not the

future users of the system.

5) Unusual conditions, commonly known as exception conditions, are
frequently ignored in the computer system and this leads to

incomplete systems.

6) A further problem is the application backlog found in data
processing departments. Some users may have to wait two or
three years before the development process can get under way and
a further year before their system is operational. [There may be
a] temptation ... to offer a ‘quick and dirty’ solution, particularly

if the deadline ... proves to be somewhat optimistic.

7 Poorly designed systems will be difficult to maintain and in many
businesses the maintenance workload is over 75% of total data

processing workload.

Recognising some of these limitations in current systems, developers have tried
to make their products easier to use, by sacrificing functionality in favour of
operational simplicity. For example, in an attempt to provide some sort of assistance
in the planning of which tasks need to be carried out, computer system developers
have provided a facility to associate images with applications or very elementary
concepts. This use of ‘icons’ has been promoted as the perfect solution to the
difficulty of learning and subsequently coordinating the many tasks a user has to carry

out, subject to the icon design meeting a number of criteria [Hakiel 87]:

Chapter 1

1) Appropriateness - where an icon is rated according to how

appropriate it is in relation to the desired function.

2) Comprehension - a measure of how likely it is that appropriate

behaviour would follow interpretation of the icon.

3) Matching - where an icon is evaluated according to how well it

represents a specific function.

For example, a word processing package that is not currently active might be
represented on the screen as a small picture of a typewriter; and similarly, to dispose
of some unwanted data (such as a file), a small picture representing the data can be
moved across the screen to another icon representing a dustbin which will ‘dispose’ of

the data.

In practice, however, the use of icons alone is inadequate, since they are simply
different labels for the original objects - the only potential advantage they have is that
users (and especially inexperienced users) can more quickly associate images with the
corresponding concepts than they can link program names with the same concepts.

Some people feel more ‘comfortable’ with icons rather than text.

This also assumes, however, that the user does not misinterpret the images used
(which can often be very similar if they portray, for example, files of data), and in
some cases the picture selected for the icon may have little obvious relevance or
reference to the intended association. Indeed, there is rarely any consistency between
packages with regard to exactly which icon image should be used to represent a

specific concept - a problem aggravated by issues of copyright'.

1: An example of this concerns the Apple Macintosh computers, where the Apple corporation are
notorious for taking legal action against any firm imitating the Macintosh desktop or its Icons. This
means that - for example - the ‘trash can’ symbol used to depict the means by which data/files can be
removed from the system cannot be copied on other computer systems. The ‘Next’ computer from Next,
Inc. uses a ‘black hole’ icon to represent precisely the same activities as the Macintosh trash can icon.
Next, Inc. is a company set up by Steve Jobs, one of the founders of Apple.

8

Chapter 1

Even at the comparatively low-level of command key sequences, we can find
examples of inconsistencies between packages from the same source, such as the
WordStar word-processors from MicroPro. On the WordStar Professional edition, the
key sequence Control-Q and A is used to invoke the search and replace operation,
whereas in WordStar 2000, the same sequence is used to exit from the current
document, abandoning any changes made during the editing session, with possibly

distressing results.

Until a genuine enhancement, or at the very least, a better integration of
information processing systems is achieved, the current approach for developing
computer-based information systems means that the potential for effective information
handling, and support of the users, is minimal. Although raw data manipulation is well
understood, more advanced issues which are relevant to problem solving, such as
establishing the underlying and relevant data relationships, is more difficult to achieve
than it needs to be. Furthermore, there is not necessarily any increase in inherent
flexibility or power for problem solving even if multiple machines are interconnected.
This is because, except in certain special cases, a computer system will manipulate data
in a context-free fashion - with no real consideration as to what the data represents, or
the unsuspected results that could be obtained from combining the various kinds and
sets of data. Therefore, no assumptions can be made about what the data represents
or how it is to be used. In many cases, the actual context of the data may even be
specifically removed, despite the fact that this could be highly significant to the
problem solving process. There is no generally applicable model which can be used

for supporting distributed computation or support of problems.

A consequence of the current manner of information system implementation is
that the user still has a major amount of work to do in deciding what operations must
be performed in order to achieve the desired result - the computer will provide little
assistance in representing or tackling the problem. Problem solving is therefore not
greatly enhanced by the use of computer technology - at best the more trivial tasks can
be performed more quickly. This is because significant improvement in terms of
successful or efficient solutions can only be attained once the problem is well

understood. Examples of the sort of difficulties which users can encounter are readily

Chapter 1

observed during the common tasks of preparing simple text documents. Although the
computer can assist with mundane tasks such as storage of textual data (and possibly
visual images if the package is sufficiently powerful); the author of the document still
has the tasks of deciding the layout of material, preparing the correct formats for use
with the output device, selection of the fonts to be used at certain points within the
document, page size, line length, and many other jobs. It is true that some of the
more advanced publishing packages used for the preparation of certain ‘Fleet Street’
papers offer some of these facilities [Honeywell 87], but generally, a single user still
has to make the main presentation decisions. For all of these issues, the decisions
must be influenced by the nature of the intended audience - thus requiring an
understanding of the working environment. Some packages will advise the user that -
for example - the attempted operation ‘won’t work’ or ‘won’t fit’?, because the tool
simply is not designed to support it. However, at a higher-level, consideration should
be given to the feasibility of opcratiohs that would be performed in the context of what
may or may not be suitable under the given circumstances, thus taking into account the

environment yet again.

Advanced users should be able to provide detailed requirements if they prefer,
and so the computer would have different work to do according to the newly defined
priorities and objectives; while novice users could use a standard or default description
for the problem, for which the computer needed very little guidance but also offered
reduced flexibility. We can describe a simple example which is representative of these
issues by considering an enhanced form of a ‘document’, which must include data
types other than simple text as standard components, in much the same way that sound
and colour is a (vital) component of television or film ‘documents’ [Hall 87 &
Harke 87]. Some computer-based systems - for example those based on hypertext
concepts - do attempt to extend the document definition in this fashion, but remain

limited for reasons which will be discussed in section 4.4.

In essence, the whole concept of document handling could suddenly become

considerably more enhanced in nature, since the tedious work can - and indeed,

2: Although most users would probably prefer suggestions that will work.

10

Chapter 1

should - be passed over to the machine, while the author or group can concentrate on
the actual - and more important - content and context of the document itself which
forms the value of the exercise. An extended document definition (as suggested by
enhanced information handling architectures like that described in this thesis) would
additionally make provision for automation of some significant parts of the work, such
as incorporating the full effects of any content or context alterations by following

through all the constructed cross-references and inter-dependencies.

A further detail concerns the use of devices. Computer systems are rarely
‘standard’ with regard to their peripheral or central equipment, and indeed any system
that is fixed in such a way would be limited because of its inflexibility. Even those
expansions which are supported are limited to a standardised connection mechanism,
which limits the range of facilities that can be offered via a given peripheral device.
In order to overcome the limitations, a diversity of peripherals are available. However,
this can cause significant difficulties for users trying to ‘install’ packages for the first

time because of the sheer complexity of choosing from the many options.

Assuming that a computer system can be instructed in the nature of the devices
it will be using, there is no reason why information processing should not become far
more context sensitive to both peripherals and environment. This would result in
computer systems with a greater ability to assist in the practical effects of problem
solving by modelling the circumstances according to realistic models of the users

specifications.

At this stage, it would be easy to think that the problem has now been defined,
in that we must establish a consistent architecture for manipulating data and
relationships around and between various applications packages and systems, hardware
or otherwise. However, while this would increase the potential for flexibility of
information handling, on its own it does not immediately improve the underlying
construction of the systems in general, nor does it enhance the range of capabilities
available. Further thought allows us to perceive an enormous expansion facility within
the framework of the stated ideas, offering the promise of significant developments

leading towards more powerful computer-based information systems.

11

Chapter 1

The hardware basis of computer and peripheral technology is advancing at a
very fast rate, and the range of devices which could be inter-connected with the
computer system is extensive and could form a very powerful configuration indeed.
In this category of devices, we can list the various standard computer peripherals, such
as monitor, printer (both impact and laser), keyboard and other input device such as a
mouse and/or light pen; but we can also include devices such as scanners, voice and
sound synthesis devices, telecommunications systems, video cameras, and video
projection units (often used for echoing the display of monitor pictures). We can go
further to include dynamically variable (analogue) devices which monitor or control
real-time circumstances, such as lighting, temperature, sound and volume control
mechanisms, or security devices such as motion detectors. However, by
interconnecting such a range of devices we are introducing the potential for extreme
complexity - some of which may be predicted, but in other cases may suffer from
emergent problems. We are interested as much in studying the failures and limitations
of such interconnection and enhancement, as in trying by experimentation to understand

possible mechanisms for enhancing information processing tasks.

The connection of devices in a meaningful fashion, coupled with a computer’s
ability to carry out real-time updates or alterations to the data and the context of the
data - as described in section 6.1 - would seem to be necessary in order to permit the
construction of a considerably more advanced system. The design of an architecture
suitable for such a proposed system has been listed in section 1.1 as one aspect of this
research, and the work on producing an experimental system to test out these
implementation ideas is described in this report. The overall objectives of this thesis
involve several tasks. We must consider exactly what is meant by an idealised
environment for information processing, why it is useful in problem solving - and
indeed, why it seems to be necessary to enhance problem solving activities. This will
require consideration of how various current systems offer selected components from
such a concept, but do not yet achieve the full implementation of an environment.
Finally, we describe in detail the work carried out in studying an architecture intended
to allow users or group of distributed users to work within and become a part of the
proposed Information Environment. Recognising that multiple users may require

multiple configurations, we have to move away from imposing specific or focused

12

Chapter 1

answers and instead to experiment with developing an architecture that attempts to deal

with the potential problems and conflicts that may be introduced.

Section 1.3: Current Approaches.

A key issue is to consider exactly what is meant by a computer-based system
[Straub 89]. Typically, the result of labours by system developers will be a data
manipulating system that is directed by the user within constraints or ‘guidelines’
determining what can or cannot be done with the package. The actual degree of user
control over the system is a matter which has changed in parallel with the decreasing
cost of improved computer and technology power. With the more capable equipment
of recent times, users now - rightly - expect much more than a simple menu system
to select from a constrained series of options [Wilson 85]. Current information
handling systems are being sought which provide the more demanding applications that
users are operating. Furthermore, the nature of applications is extending such that it
is less of a viable proposition to develop isolated and insular packages. Instead, there
is a real user demand for packages to conform with each other, to cooperate in the

exchange and sharing of information.

The approaches being used to provide cooperation between systems currently
fall into two categories. The first is to take a specific application area - for example,
spreadsheet, database or word processing, and then to decide on how to make the
system import or export the raw data to other popular or ‘standard’ packages, for
example dBase III or WordStar. Typically, the only provision for this sort of activity
is by the use of specific conversion utilities, that are barely integrated with the host

package let alone each other.

The second and only marginally improved approach is to try and create a user
environment that allows several unrelated packages to coexist successfully in the
common environment, on the assumption that by ‘consolidating’ the operating
circumstances, a package can be made to accept data from another package under the

impression that it is in fact coming from another entirely different source. A simple

13

Chapter 1

example of this is found in the ‘pipe’ mechanism’ used in the UNIX* operating system
to ‘build’ connections between separate ‘well-behaved’ processes which have a
consistent mechanism for data input or output [Bourne 83]; while more complex
examples can be found in applications running under a windowing environment, and
which support I/O redirection in order to enable multi-tasking and non-intrusive

coexistence.

However, there is a distinctly separate area of development work which
concentrates on determining at a very high-level each of the tasks that need to be
carried out. In this category of information systems and development methodologies,
we can include various Management Information Systems (MIS), Project Management
Systems (PMS), Resource Management Systems (RMS) and development systems for

software or general projects.

These information systems can be very detailed descriptions of guidelines to
follow, or they may be presented as software running on computers that simply say
what to do and when, but the essence of them all is to identify and isolate the goal
and steps in reaching it, and then to provide control of the sequence of events that
should be followed to achieve successfully a specific goal or goals.

The purpose of such packages varies, but ultimately they are intended to
identify the areas where methodical use of technology or policy will improve or
enhance existing procedures, whether it be the simple construction of a software
package, or the development of a complete company organisation structure. The
problem with this approach is that working with information is rarely an ‘either or’
situation. For any given problem with relevance to the real world, there could be a
range of possible answers, depending on the environment of the issues. Social, moral,
philosophical and political realities all dramatically reduce the number of problems
which can have simple right or wrong, true or false answers. The ideal of the unified

solution cannot exist - every technique produces a variety of possible solutions.

3: Denoted by the ‘|’ symbol.
4: UNIX™ is a trademark of Bell Laboratories.

14

Chapter 1

The division of packages means that it is obvious that there is almost no
overlap between the fields of work. This is a major difficulty that is apparently a
result of the areas being classified as ‘territories’. The users who do the work have
their application packages, while the managers who decide what work is to be done
have their administration and directional packages. Research into the strategic aspects
of information systems must inevitably take this into account. The territoriality seems
to be in keeping with many of the popular organisational procedures, but fails to take
full advantage of the information processing power and potential of computer-based
information systems. Recognising the value of information as a commodity, and the
benefits of enhanced, or at the very least more efficient, information handling, there
must be a significant effort by organisations to move towards using the resources of
the computer for the sharing and exchanging of data, although the degree to which this
can be achieved depends in part upon human nature. [Clark 83] takes an idealistic

view:

‘Management by divisional competition and conflict must give way to

cooperative management as information is shared rather than controlled.’

This straightforward and somewhat utopian observation has so far not been
recognised or put into practice on any large scale, and placing aside the practical
difficulties of incorporating such a philosophy into current information-consuming

organisations, a major reason for rejection was clearly stated in the same article:

“The proliferation of computers increases the impetus for change, but

system incompatibility hinders electronic reorganisation.’
The author then goes further in suggesting that:

“The usefulness of integrated software packages remains limited by

general-purpose designs aimed at large markets.’

This latter statement seems to add a new aspect to the argument. The packages

which are available may not in fact be general-purpose enough, because they are still

15

Chapter 1

based upon a rigid architecture and focused working environment, which specifically
constrains the options which are available to users. Computer-based systems which are
intended for information processing will at best support human-machine and/or
machine-human interaction, whereas the ideal would seem to be human to human
communication. Despite the great deal of effort expended on trying to make
human-computer interaction as transparent as possible, there is still a definite overhead
for using computers to communicate and to process information, and that overhead is
determined by its effect on ease-of-use, performance, and usefulness. Only a few
packages have followed appropriate and considered design strategies, as shown by the
sometimes scattered and/or generalised options which are implemented. This means
that the unspecific options may have subtle and unfortunate implications on each other.
In very specific cases, extensive support tools may be designed and built which go
some way towards promoting a suitable environment for face to face conferencing -
such as the ICL POD. However, the problem with such systems is that they may be
designed in a way that limits reconfiguration beyond the bounds of the original

specification.

Rather than attempting to solve all problems with a single, but enormous,
applications package, it might perhaps be preferable to concentrate on the difficulties
of representing problems. If this is overcome, it may become possible to have any
number of application systems to handle all possible jobs, knowing that they will each
cooperate and contribute to the overall task objectives and their environment(s). A
further advantage would be that this is in accordance with much of the emphasis of
preferred management techniques such as those used in structured programming, where
complex tasks are broken down into smaller and simpler problems. Each atomic
problem is dealt with using a simple tool, and these tools or modules can be grouped
together and invoked as and when necessary, knowing that the interaction between them
is clear, well-defined, consistent and cooperative. However, the end result must be
qualified by pointing out the delicate balance between risk and opportunity. More
flexible systems are prone to complexity because of increased options, while
constrained systems have reduced complexity but are limiting in their options. It is
important not to lose sight of dangers and opportunities being associated with each
other.

16

Chapter 1

The work of this thesis suggests that the complex activities of everyday
information handling cannot be successfully tackled using a single applications package,
but instead require the use of a variety of task-orientated and dedicated tools which are
fully and properly structured, thus providing for overall solutions. The tools are built
upon each other and cooperate together in terms of a problem specification

environment, that must have an enhanced capacity for providing problem descriptions.

Of crucial importance is the recognition that the human user is also a major
environmental component that must be modelled. The user forms the highest level of
information processing, positioned at the apex of the data and processing structures.
If the users cannot work successfully with the system, then again the benefits or value
of the system will be minimal. Therefore, there must be provision for, and inclusion
of, Human and Computer Integration techniques, rather than the more widely promoted
facility for Human/Computer Interaction. This in turn must be worked and tested in
order to move towards the greater goal of using computer technology to support and

enhance human-human interaction.

Ordinary interaction makes little attempt to incorporate user perspectives into the
information processing tasks, assuming simply that the computer-based technology
forms the peak of the presumed sole task of data manipulation, with the users as
overseers and directors. There is even less support for the concept of the working
group, contributing and functioning as a larger entity than the single user. A wide
range of admittedly powerful, but low-level interaction tools (in comparison to the
user’s level of capability) are now available, but they all tend towards the erroneous
assumption that the user must have complete responsibility for directing the integration
and use of data within an application. This may often be valuable to a specific user,
but it should be optional, rather than being imposed and enforced by the application

tools and utilities.

Conversely, by modelling or ‘integrating’ the user as part of the information
processing environment, the most powerful processing components (the user’s mind and
ideas) can be incorporated as part of the problem-solving system model to enable the

provision of a much more cohesive, efficient and complete task execution capability.

17

Chapter 1

But this must be extended further to support many users, supporting system
enhancement on a larger and non-technological scale. Current work is often directed
towards‘one user and one machine as a unit, possibly communicating in simple terms
with each other as simplistic units. Such constraints inevitably limit the possibilities
for work as a dynamic group, because the existing perspective is too focused, assuming

black and white simplicity where facts and results are either true or false.

For computer-based information systems, the problem area is clear: application
packages all too frequently take the form of directed, pseudo-generalised designs which
cannot - by definition - match or be modified to fit precisely the individual needs of
all problems and users. Compounding the error, system designers have focused their
attention almost exclusively on the two fields of the application package and the
administration package, all the while trying to make them general-purpose. Little
allowance has been given to the issues of unpredictability within the environment -
computer systems have a tendency to be ‘special cases’, which cannot be realistically
handled in a generalised manner, nor necessarily dealt with by straightforward
‘patching’. It seems that emphasis should have been placed on studying the problem
environment, and the flow of information within and between the applications and the
administration with a view to the end goal of enhancing problem-solving. In other
words, it means recognising the fact that tasks lead from one to another at all levels,
and further that these tasks can exist at differing conceptual levels, and so should not
necessarily be performed by the same machine or even the same user. In effect, the
focus on ‘the task’ should be widened to incorporate multiple users and indeed the
working medium as being part of the information flow. Currently, the media support
is viewed purely as a channel for input or output, rather than being integral to the

function of the system.

This extension of the working environment model also introduces the issues of
dynamism and feedback, for example concerning the reorganisation of systems both
structurally and conceptually, modelling the environment as it also changes dynamically.
An architecture for information processing must support dynamic reconfiguration, but
permit users to over-ride and direct as appropriate. Current monolithic systems, which

are focused and inherently inflexible, cannot achieve this.

18

Chapter 1

Having recognised a preference for more dynamic systems, the realistic
integration of packages by provision of an underlying architecture offers a stepping
stone to enhancing computer-based information systems. The problem is therefore to
work towards identifying ways in which computer technology can be used for
enhancing the productivity of not just the single user, but also the working group,
where the computer systems and distributed users (at all levels) are considered as vital
contributing components of the team. Problems must be recognised, and solutions
proposed and tentatively experimented with. Instead of concentrating on the technology
itself as the only issue, it becomes important to study the processing components that
seem to occur during information system processing, and thus begin to study how
technology might be used to help in achieving enhanced work - if indeed I.T. needs
to be used at all. For example, rather than merely mechanising the flow of data,
technology should perhaps be used to improve the manner in which data can be

worked - and this influences the nature of the architecture required.

Many sources have attempted to discuss this in detail, but some fail to take the
important step of applying the ideas in a generalised form rather than in specific terms.

For example [Stobie 871:

‘A key idea is that it (the integrated office concept) functions with a
work group by helping the group members interact with each other more
productively. This makes network mail a central feature of the integrated

office.’

The above quote has faults in two areas. In the first case, the latter sentence
of the quote cannot be implied logically from the first, as there is no valid basis for

the conclusion.

In the second case, even if it could be implied logically, the latter sentence
quoted is erroneous because it ignores the full implicatiohs of the first sentence. The
provision of an electronic network mail (email) facility is very important to help with
encouraging the flow of data between users, but is totally insufficient in itself to

provide all the interaction that might be expected for integration, let alone provide an

19

Chapter 1

extensive problem representation facility. Email provision further assumes that the
problem of confusion so often observed within message systems can in some way be

eliminated or minimised.

For straightforward exchange of data or ideas, electronic mail has many
advantages, including speed, accuracy, and reliability. But under certain circumstances
these same factors can become unbalanced and result in passionate exchanges.
Examples of this turbulence can be regularly observed when a ‘public mail message’
is sent to all mail users. Multiple recipients do not necessarily read their mail at the
same time, and so replies and subsequent responses can quickly become
out-of-sequence. They rapidly begin to suffer from a lack of clarity regarding the
initial message that provoked the response. This is an inevitable consequence of the
natural tendency for human communication to deviate from a specific discussion topic
[Wilson 85b & Boyle 85].

Furthermore, the apparent ‘insensitivity’ of electronic mail can be a major
problem. Comments which have a ‘sarcastic’ or ‘humorous’ intent can be interpreted
in entirely the wrong way when read without the benefit of the accompanying
body-language to indicate that the statement should not be taken too seriously. In
conjunction with delivery delays, this leads to the acrimonious and highly aggressive
series of message exchanges known as ‘flaming’ [Kiesler 89]. Such is the difficulty
of email misinterpretation, that a series of symbols have evolved to help portray the

‘emotion’ of the message’:

Happy/Joke 8-)
Sad 8-(

All this leads us to conclude that instead of simply providing more capability
for raw communication, consideration must be given to the circumstances under which
communication is to take place, as it is this which will help deal with the difficulty of

misinterpretation. ~ Ultimately, it is necessary to examine the objectives of

5: To understand the symbols, turn this page clockwise through 90 degrees. The character symbols
resolve themselves into frowning and smiling ‘faces’.

20

Chapter 1

communicating data around and between both the users and the machines working in
the context of the task environment. Specifically, it is important to consider the
mechanics of the communications in the light of identifying what such data movement
is expected to achieve, and this in turn implies a requirement for an architecture that
allows you to detect and hopefully to correct an imbalance. Only by questioning the
purpose of an information handling tool - such as email - will we be able to implement

a more useful facility that is of genuine benefit to the users.

Section 1.4: Suggested Requirements.

There are a number of properties which a more advanced strategy for
information processing ought to have, in order to operate in a more flexible fashion.
The first of these has been briefly mentioned in section 1.3, and concerns the internal
construction and communication methods of the data manipulation. In other words, an
architecture must be developed that supports the manipulation and interaction
requirements by virtue of having been designed for that purpose, rather than taking
existing structures which are then ‘patched’ by forcing changes in order to try and meet
the refined needs. Once such an architectural specification is achieved, a more flexible
system can be built upon it that supports much greater degrees of enhancement between

the applications processes.

The second property involves presentation of the architecture, which requires an
understanding of the natural human preference for working with images or pictures as
descriptions of concepts which actually mean something, rather than with the textual
or static graphic tokens (icons) that attempt (poorly) to portray those same concepts by
simple relabelling. Using an enhanced internal architecture, it should be possible to
support user-controlled dynamic portrayal of images. It is important to recognise the
advantages of customisable dynamic depictions, because they support the idea of
incorporating aspects of relationships into data control and presentation tasks. This
follows because the data that is being worked with can remain consistent, but the

presentation circumstances (which are under the user’s direction) can vary in real-time.

21

Chapter 1

In other words, not only can the data itself be presented in a useful manner
under user control or preference, but also - and just as importantly - the relationships
that exist between the data can also be incorporated, which may be important because
they can change the way in which information is perceived and therefore evaluated.
This seems to be a vital but frequently overlooked component of the way in which data

presentation by computer can influence human thinking.

The depiction of the relationships could be enabled in many ways, but this
thesis considers a first step towards the problem by experimenting with a prototype
implementation of an architecture that uses geometrical and topological presentation
systems, the exact mechanism of which will be dealt with in section 8.2. The adoption
of such a geometrically-based paradigm would ideally encourage the users to explore
the potential for benefits to be derived from studying the relationships that can be
created between data objects, as well as providing facilities for an extended document

architecture.

Such an approach is significantly different from the current emphasis on purely
algebraic interaction, because it is not limited to the ordinary form of relationship
depiction by explicit rules. Instead, relationships can be further supplemented by the
inclusion of representation through geometric attributes. In order to explain this, we
can consider all data as being stored within an unlimited cache area called a data
space. We can then give a new attribute to data, which is its geometrical relationship
to other data existing within the same data space. Having done this, we can now
position associated data within the data space such that some of the relationships
between data can be inferred from the grouping of the data (see Figure 1). In the
diagram, the five blocks of data have no connection depicted in any form, yet
instinctively most readers would group the blocks into two sets, A and B, by virtue of

the proximity of certain of the blocks.

In systems that could enhance representation by use of geometric attributes such
as that just described, a processing component would be responsible for performing the
evaluation of relationships. The process could focus on computational components

within the system, but by extending the concept of the working environment, we can

22

Chapter 1

Data Set A Data Set B

Figure 1: Data Space Modelling Environment.

include other components, such as the users themselves. The users are essential to the
information processing tasks, and so should be recognised as such and be incorporated
into the model. The relationships represented within the data space would be identified
in a context-sensitive manner by the evaluating process. In other words, the geometric
property alone can be interpreted to establish some of the nature of the data
relationships. The interpretation itself may vary, depending on the tools being used to
interpret the relationship itself. This is a valid proposition, because we can observe
everyday examples of it in human users. We understand a data presentation only once
we have learned to recognise how strategies can be used to depict a relationship, and
hence identify which strategy is being used in a specific instance. Consequently, if a
different strategy is used for depiction, then this can easily result in different

interpretations.

Extending the idea of relationship depiction, it is not only the physical
relationship between data that is of importance in establishing the association, but also
the facility for supporting geometrical or topological relationships. In other words, we

are not emphasising the absolute positioning of data as being the sole requirement for

23

Chapter 1

relationship specification, but also the attributes of relative positioning of data as
contributing to the relationship specification through geometry. This enables us to work
within the unlimited (virtual) volume of the data space, thus distributing the data in
both a conceptual sense - within the data space - and also in a physical sense by
relocation of data storage amongst multiple distributed machines. Taking the abstraction
a stage further, we can remove the geometric component to address the relationships
in purely topological terms, thus absolving any physicai (machine) or geometric
dependencies. In effect, we can propose the use of topological mechanisms to represent
relationships explicitly, while geometrical mechanisms could still be used for the

depiction of implicit relationships, which cannot otherwise be described.

Building a data handling system that can associate value with the relationships
between data, using a topological viewpoint, introduces a number of significant
advantages for the construction and operation of information systems. For example,
altering the presentation of data implies only that the presentation technique itself must
be altered, and not necessarily that there must be any modification to the data. No

additional data processing is required, it is simply ‘seen’ differently.

Changing the presentation technique within a topological relationship could be
accommodated by altering the association that exists between one set of presentation
techniques or characteristics, and another set. This could be achieved in turn by
redefining the geometric relationships that are depicted within the model. In effect, the
relation between a data set and presentation system is removed, and a new and different

relation with an alternative presentation system is then established.

A preferred advantage of this would be that the basic data being presented
should not need to undergo drastic conversion or manipulation in order for the
alternative presentation to be performed. Consequently, individual users could be
catered for without requiring such extensive manipulation by the installed system.
Instead, it would only be necessary to use the ‘new presentation technique’, which
would be installed by establishing a new relationship between the original data and the
new presentation system, as well as permitting the establishment of novel

inter-relationships.

Chapter 1

Using the more normal algebraic specification of relationships would require that
a complete new algebraic specification is defined in order for the changes to be
implemented. Such a procedure has the inherent risk of introducing paradoxes or

inconsistencies within the algebraic rules.

A further advantage of the geometrical approach is that connections can be made
between the working concepts or data sets at a high level of visualisation, without
being concerned or restrained by the actual implementation of such connections. This
follows because the relationship depiction matches closely some suggested models of
information handling, where ideas are developed using relationships as well as the data
itself, without necessarily requiring any understanding of how the relationship depiction

is actually carried out.

Inevitably, there are limitations to such an approach. It is almost certain that
there are circumstances which cannot be predicted or modelled in this fashion, and it
is partly to experiment with these that the prototype system is being developed. The
nature of the proposed architecture is inherently complex owing to the potentially large
number of tasks which would be actively processing relationships at any one time, and
also due to the dynamic nature of the multiple paths of communication between those
tasks. Consequently, the architecture would minimally require a host machine which
offers more advanced computer technology, such as that provided by multi-user

workstations.

The last important property for a more advanced information system would seem
to be the requirement for an ability to build up the representation of the working
circumstances as a description of the Information Environment. The nature of this
description could be considered as a form of ‘document’, with each such document
detailing an electronic abstraction of the specific Information Environment. This point
will be considered in section 6.3, but for the moment it is sufficient to note that the
successful construction of such a description depends on the first two properties being

implemented correctly.

25

Chapter 1

At this stage, it may not be apparent why there is the necessity to include
human users as part of the Information Environment. The justification for this
context-sensitivity can be seen by considering a typical application of a computer - for
example, processing information using a spreadsheet. At some stage, the computer user
will wish to produce a hard-copy output of the results obtained from the spreadsheet.
Currently, most application packages have to be ‘installed’ to recognise precisely which
devices - in this instance, the printer - are attached and available for use. Without this
data, the output would be severely restricted in its content or flexibility, assuming that
it is possible to output anything at all. Thus, the efficiency of the computer depends
in part upon the accuracy of its specified configuration at the time of use, and this

configuration must be built up with the help of the human user.

Environment

System

User

Figure 2: Optimised view of System/User Interaction
within the Information Environment.

From this we can deduce that the human user is also part of the configuration
and therefore a vital part of the Information Environment (see Figure 2). Once the user
is modelled as part of the Information Environment, then interaction becomes facilitated

with other users who are also working and represented within the same environment.

26

Chapter 1

A truly multi-tasking and multi-user system is viable, and it becomes possible for all
users to recognise the tasks that other users are performing, and so to monitor, to

contribute and to cooperate for the benefit of all concerned.

Conversely, a user who is not correctly ‘installed’ in the Information
Environment (i.e. one who has not been taught how to use the system, or who is
assumed to be familiar with the more complex options) will not be able to operate
competently or correctly, and can potentially make mistakes leading in the least case

to inefficiencies, or in the worst case to damage of some kind.

The more typical practice of

considering the user as being distinct and
U isolated from the rest of the information
Ser system (see Figure 3) means that any and

all exchanges between user and system

must pass through a single
communications channel, which leads to
significant problems concerning data
supply and data reception for the user.
However, once the users are recognised

as central components within the

information system, it is then much easier

to establish more diversity in the nature

and number of data communication

SYStem channels, a development that suggests

advantages for information handling.

Figure 3: Standard View of User/System Interface. As an example of why the

integration of the user into the system
benefits tasks being run by an application, it is clear that an advanced user will be able
to take shortcuts in running the application, and will not need to use a ‘help’ facility
except on rare occasions. The computer need not provide the help facility except when

specifically requested to. Indeed, advanced users may find it frustrating to continually

27

Chapter 1

have a help prompt on screen, as this can significantly decrease the amount of useful
screen area - the work area - available to them. Conversely, an inexperienced user will
appreciate having an on-line help facility, and may prefer to be guided through every
potential key press - which must inevitably reduce the speed of performing the task
[Heppe 85]. The main danger to be avoided is the all-too-often occurring case of the
on-line help being an exact duplicate of existing pages within the application manuals.

This is rarely of use in itself, as it fails to supply genuinely relevant assistance®.

Yet both types of users are essentially trying to perform the same task, and this
means that the application processes and the system must reflect not only the task
objectives, but also the circumstances in which the task is being performed. This is
done by recognising the user’s level of proficiency, and hence requires incorporation

of the user characteristics into the system’s operation.

Having shown the need for a complete description of the Information
Environment, the problem of representation must now be examined. The concept of
the electronic description is a tentative and exploratory step towards the aim, intended
to allow the incorporation of all relevant components from the Information Environment
(user, data, circumstances, application, and so on) into a single (possibly extensive) unit.
Crucial to the proposed construction of the description is an underlying architecture that
permits description of the various components in a meaningful fashion. However, it
is clear that if the description requires a complex architecture in order to be
implemented, then there must be some way of building up the description of the
working environment and its applications in order to produce the basis of the
application. A ‘generator’ is therefore required which reflects, and is specific to, the
Information Environment that must be modelled to perform the activity. The design
of a suitable architecture and a generator which implements it forms a major component

in this report.

6: For example, the UNIX operating system will normally provide on-line copies of the documentation,
but the actual number of worked examples is small.

28

Chapter 1

Section 1.5: Summary.

There is a clear requirement for an enhancement of existing information
processing systems, and the nature of such systems will remain the subject of on-going
research. This thesis reports on the experimental results from a study of one possible
approach based on geometry, which attempts to develop architectural mechanisms for
enhanced problem representation, and thus offers a greater understanding of the
undoubtedly complex issues and problems which must be managed. The geometrical
concepts described are used to provide the basis of a prototype mechanism for studying
how geometry may contribute to understanding problems, as well as being used for

implementing a solution.

The prototype system itself is not intended to be anything more than a minimal
implementation of the more primitive components. Instead, it is directed at providing
a workable environment within which further development work can be carried out.
This in turn would lead towards development of a more formalised way of thinking,
and the development of a formal methodology to be used for solving problems that

may benefit from geometrical analysis.

Section 1.6: Thesis Structure.

The structure of this thesis is as follows. In chapters 2 and 3, examples of
current systems and current research are described. The examples have been selected
for their direct relevance to the issues that are central to this thesis. The contribution
of the examples is discussed in chapter 4, before moving on to consider in chapter 5
how each of the key attributes may be brought together to aid in specifying an

enhancement to computer-based information systems.

The key attributes must be placed into a context, and this is provided by the
Information Environment concept which is introduced in chapter 6. A suggested
implementation of the Information Environment is given in chapter 7, along with details

of how the system might be used in example applications. Actual implementation

29

Chapter 1

decisions made by the author are described in chapter 8, with reference to the
demonstration system; before detailing the central facilities of the demonstration system
in chapter 9. Chapter 10 summarises the results of the work, and suggests further lines

of research and development that the author considers worthy of consideration.

30

Chapter 2.

Current Systems.

Section 2.1: Overview of Current Systems.

In this chapter, we are interested in considering the nature of current commercial
products, and in identifying the aspects of those systems which are devoted to the
general tasks of information administration, organisation and handling. We study how
appropriate components that are fundamental to the system may be blended together in
order to develop an enhanced information system architecture. This in turn will lead
us to the suggested concept of the Information Environment. As implied in section 1.3,
few current systems appear to be built upon the basis of an information architecture
that could support such a proposal. Part of the advanced nature and suggested benefits
of the Information Environment stems from the objective of structuring all components,
at all levels. Therefore, it is relevant to consider the current systems which function
at many different layers of operation and activity, to show how they have helped in

identifying concepts used in the environment.

The normal sequence of events to be carried out during a complete information
processing job involves a number of stages, starting with an identification of the
primary goals of the job or ‘application’. Next, tasks are defined that must be
completed in order to attain the goals. Finally, the tasks are performed. The first two
stages can be conveniently considered as a single group, as they are largely concerned
with direction or policy in carrying out applications, while the latter stage or group is
concerned with actual implementation of the policy. The first group is therefore that
of the management packages, or activity analysis and management tools. These
organise the specification of the information processing tasks which must be carried out,
and so are used for coordinating the selection and use of the second group systems, the
functional tools. The latter group - also known as application packages - have a clearly

defined set of objectives to achieve.

31

Chapter 2

We will proceed to discuss examples from each of the two groups, and show
that one of the main reasons why the packages within the two groups may not be as
widely used as might be hoped is because they often cooperate poorly, or have weak
connections with the lower level tasks, or require independence from the higher level
aspect of information processing. Thus the general cause of such failure seems to be
due to an inherent inflexibility resulting from limited integration with other systems,
and is suggested as an important obstacle to be overcome before information systems
can make any further advances. However, it must be recognised that failures can also
result from various other issues apart from technical inadequacies or internal design;
for example insufficient or over-complex control mechanisms, or reduced speed, or
increased cost. While important points, these latter cases of speed and cost fall outside

the scope of this research.

As stated, the first group of systems comprises methodologies and packages for
defining and performing information processing tasks that may be loosely categorised
under the term ‘administration purposes’. Such systems are less concerned with the
low level tasks of handling raw data, but instead are intended to help with analysing
and identifying key management strategies at the higher and middle levels of
information processing. Within the higher level of administration, systems such as
project planners or project management tools help in the identification and coordination
of goals. At the lower level of administration, there are packages which help in
specifying the actual tasks performed. These ‘development’ systems build upon the
broad directions identified and organised by project planners, and enlarge upon the
details of the tasks to be carried out. They help construct strategies for ‘filling in the
gaps’ between the start and end of the tasks that must be performed to achieve the
goals. Packages such as resource management or critical path analysis systems help
in improving the efficiency of the information processing tasks, for example by
isolating potential ‘bottlenecks’ which could slow down tasks and thereby affect
productivity. Examples of these sort of packages include Pertmaster Advance from

Abtex in the UK, and Viewpoint 3.0 from Computer Aided Management of California.

The second group of systems tackle specific application areas, with a general

rule that any given package will focus upon basic information processing functions.

32

Chapter 2

A few of the packages in this category seem to be quite extensive, and apparently have
facilities for handling a variety of related or connected applications. As such, they can
appear to be well integrated within themselves. However, it is sometimes the case that
the sub-applications are special cases or re-interpretations of the original tasks. For
example, Lotus 1-2-3' combines spreadsheet, graphic and database facilities. In
practice, the database is implemented by providing functions which can search for and
select from the correct ‘cells’ within a normal spreadsheet, while the graphic
presentation facility is an alternative depiction of data values existing within the

spreadsheet.

We will now consider the types of products that are currently available in the
two groups of administration and application tools, showing how they process
information at the various administrative levels, and culminate in the manipulation and
presentation of data categories for the user. We are particularly interested in the first
group of systems, because they are concerned with more abstract information handling,
especially involving relationships and patterns in information. Accordingly, the systems
incorporate higher-level processing aspects that depend upon information representation
architectures, and it is these that we wish to identify in order to improve on existing

structures.

Section 2.2: Management Systems.

Products in the general category of management systems come in various forms,
for use according to the direction of management objectives. The first and highest
level of objectives is that of overall planning, and is addressed by project management
systems. Below that comes the more detailed concept of the resource management
system, which considers the identification of tasks and resources required for the
implementation of the strategy already established. A new form of this latter system

is the software management system, which will also be detailed.

7: Lotus 1-2-3 is a trademark of Lotus Development Corp.
33

Chapter 2

Section 2.2.1: Project Management Systems.

These systems are designed to organise and coordinate the structural
inter-relationships of project or work tasks in order to achieve a specific objective. The

most important elements are:

1) That a structured approach should be used in the identification of

activities and resources necessary to perform the tasks.

2) That the activities and resource usage should be organised in the
most efficient manner, typically by breaking large problems into

smaller, more workable components.

3) That the progress should be monitored, and the actual usage of

resources recorded.

4) That the progress made should be reviewed, with reallocation of

priorities, tasks and resources as necessary.

Thus, as well as being interested in tasks, the relationships of tasks to each
other are also relevant and important. Current project management systems are
sometimes derived from database programs that have been enhanced in a number of
specific ways. For example, they may be extended to include working-day and
working-week calendars so that tasks can be placed in chronological relation to each
other. During the analysis, each stage of a project has to be broken down into its
component activities, which are in turn divided into tasks. These tasks should ideally
have clear start and end points, used to identify when they begin and terminate.
Concluding a specific activity means achieving a milestone. Scheduling the various
activities and resources in relation to each other using the calendar systems means that
critical tasks are performed in the quickest possible time, or at the lowest cost, with
minimal problems. The end objectives are relevance, accuracy and efficiency.
Analysis is carried out by using a variety of standard tools which work by identifying

tasks and milestones. At each stage, the resources used and the costs of these

34

Chapter 2

components are recorded, and a number of charts in different styles can be constructed
to depict the project as a whole. The two most common fundamental depictions are
the Gantt chart (activity against time) and the Program Evaluation and Review
Technique (PERT) chart, which represents interactions between the tasks. The Gantt
chart is normally depicted as a bar chart showing tasks and their durations, and
frequently the resources which were allocated to those tasks when they occurred. The
PERT chart is particularly popular for implementation in Project Management System
(PMS) software, as the resulting network diagrams are familiar concepts for the

developers to work with.

Examples of PMS packages include ‘Harvard Project Manager 3’ available from
Software Publishing in London, and ‘MicroSoft Project 4’ from MicroSoft Corporation.
The Hoskyns Group has produced a PC based Information Systems management
package called ‘Bridge’, which combines a development methodology with project

planning facilities.

The sort of task to which a PMS may be better suited tends to be concerning
the coordination of a long range or long term group effort, with clearly defined start
and finish points. A simple example of their use might be planning the construction
of a house, while a more complex example is that of constructing a large ship. A
PMS helps by making planning and updating tasks easier than would be possible using
ordinary paper-based systems. In effect, it processes information at a higher level of
abstraction, with minimal reference to the potentially confusing underlying lower level
tasks or data. Using computer technology also means that several different plans can
be produced for varying parameters, so that comparisons may be made. As the project
progresses, the tasks coordinated by the PMS can be updated to reflect the reality of
how long they took, or how much they cost in terms of resources or time. This means
that there is a requirement for a monitoring or a logging/auditing facility to be

implemented.
More generally, a PMS will focus attention on the issues which have a
significant influence on system development, in order to minimise error or inefficiency

in the overall production process. The end result should be a project development

35

Chapter 2

environment that has had good planning, established recognisable progress and
achievement goals, incorporated ample facility for refinement of plans, ensured
coordination and consistency between all tasks within the project, and - imppﬁantly -
can make use of prior project experience and use it to produce new experience, which

can again be applied on later work.

The intrinsic paradox for most project management systems is that they have to
be generalised in order to facilitate the more desirable goal of a less complex but more
complete working environment, but at the same time they need to be specific to the

management goal in order to achieve greater task efficiency and relevance.

Furthermore, providing the system with a suitable mechanism for processing all
the tasks, resources and time components for projects means that the PMS packages
must necessarily be of intricate architecture, yet their actual operation may conversely
require the use of very straightforward control options, which insulate the users from
the internal complexity. No matter how colourful or ‘exciting’ the interface is, it will
often be built upon a rather fixed or inflexible option scheme. Such mechanisms can
result in the users feeling that they have limited control over a nicely presented
package, and as a result management users may be reluctant - or unable - to become
sufficiently familiar with the system to use it to good effect. Certainly, a better
understanding of a package would seem likely to produce more valuable results when
the package is used, and the claim for the value of having a detailed understanding of
tasks has been described as both instinctive and provable through direct observation
during a study of Management Information Systems [Ein-Dor 86], although other

sources, such as [Ackoff 67] are less convinced of this.

The goal of a Management Information System (MIS) is in assisting managers
in their duties by helping with the collection, processing and presentation of
information which is used in management tasks. Accordingly, MIS are contributory to
the objectives of project management systems. The actual value of such systems can
be very difficult to determine, owing to the varied nature of tasks and circumstances
involved. One approach used for measuring value is by the use of tools such as

‘business games’, which are highly complex simulations of management situations,

36

Chapter 2

‘played’ over an extended period. The Ein-Dor study used such a business game
involving an MIS to test several hypotheses concerning the value of such systems, but
in doing so lends itself to a number of important criticisms. Firstly, there is no
discussion of whether the business game used was accidentally or intentionally geared
to reflect the use of an MIS, and secondly, there was no test of the alternative

hypothesis that use of an MIS could actually reduce the likelihood of success.

The general conclusions included the point that a better understanding of MIS
function and applicability (termed ‘familiarity’ in the report) did indeed produce a
significant correlation with success in the studied business game, especially at the

higher levels of management, and made the statement that:

‘greater use by top management of MIS increases the likelihood of

success’.

When considered from a ‘real-world’ viewpoint, this is perhaps rather an
unusual conclusion to reach. Given that the study was carried out some years ago, it
would seem reasonable to suppose that such a positive result would have been rapidly
reflected by increased usage of such products, but this does not seem to have been the
case. It is worth considering whether in fact an MIS system used outside a controlled
and bounded environment is in fact' of any value. Certainly, there is little evidence to
indicate popular use or even acceptance of such systems in the commercial world. The
fact that significant numbers of managers do not use such systems (despite the general
awareness of their availability) could even suggest that managers - who should know

their jobs - may actually be correct not to use them.

Indeed, a survey carried out in 1988 indicated that the percentage of end-users
requiring some form of MIS dropped from 4% in 1987 to 3% in 1988 [PCWeek 88].
Thus not only is the user-base demand for MIS comparatively small when compared
with Information Retrieval/Reporting (23%), Application Development (16%) and
DTP/Word Processing (24%), but it actually dropped in importance over the period of
study.

37

Chapter 2

Work carried out by Ackoff [Ackoff 67] suggests that few of the MIS that have

been put into operation meet their expectations, and:
‘some have been outright failures.’
He believes that these:
‘near- and far-misses could have been avoided if certain false (and
usually implicit) assumptions on which many such systems have been
erected had not been made.’
Accordingly, the concern expressed in 1967 over the value of such systems
appears to remain today, as borne out by quoted survey; consequently their actual

worth must remain an unresolved point for the moment.

Section 2.2.2: Resource Management Systems.

As a contrast to Project Management Systems, Resource Management Systems
(RMS) are rather easier to apply - possibly because they deal with the more ‘concrete’
problems found at the lower levels of information processing. They are concerned with
the organisation of resources in order to achieve the specific task or end goal, once the
tasks or goals have been ascertained by the PMS. Hence RMS form the next stage
down in the managerial process, in that the end goal or task will have been defined,
and correspondingly, the starting point(s) would be clearly recognised. The RMS is
used in organising the execution of the tasks from start to completion, and for
identifying the key points where enhanced efficiency or speed will improve the overall

execution of the task.

The concept of RMS is one that is ultimately relevant to the implementation of
an Information Environment - such as that described by the GENIE-M system proposed
in section 8.2 - because in the larger model of the electronic Information Environment,
there seems to be a requirement for a coordination of resources above and beyond the

standard computer I/O resources. Any computer-based system that implements an

38

Chapter 2

Information Environment will almost certainly have to coordinate the resources to be
used and which have an ‘existence’ within the structure, and therefore the methods of
operation used in an RMS will offer valuable data during the development of important

components in the suggested information system architecture.

A typical RMS for application purposes is based upon the proven concept of
Critical Path Analysis (CPA). All tasks comprise activities and resources, and the aim
of CPA is to optimise the application of activities and resources to meet or improve

upon timing, cost and quality measures.

Breaking down a task into its activities - a process started at the project
management level - means that relationships or ‘dependencies’ between activities can
be identified, although it should be emphasised that the accuracy and value of the
identifications will depend heavily upon the analysis techniques used. The
dependencies can be portrayed as a ‘network’ of activities, which can be made very
complex by the fact that some activities can run concurrently with other activities,

while others operate only on a serial basis.

A critical path is identified for a network such that, if one of the activities on
that path were to be delayed, then the completion of the entire task would also be
delayed. A Resource Management System can help to isolate the key activities on
such a critical path, and so focus effort on improving those activities in some fashion.
Furthermore, an RMS allows modifications to be made to the activities carried out -
for example, by replacing old production tools with newer and faster ones (that might
be more expensive) - and this enables the manager to examine ways in which the task
efficiency may be improved, in the same way that the popular ‘what if’ approach has

helped the growth of spreadsheet packages.

An example of a combined project and resource management system is the
package ‘Pertmaster Advance’ from Pertmaster International of Leicester, for the IBM
PC computer. It is operated by entering the activities, dependencies and resources of
the task, as well as other parameters such as cost and timing constraints. The package

can then produce a number of reports:

39

Chapter 2

1) A standard report that details the earliest and latest start times to

commence each activity.

2) A project and period chart to display overall task duration, and
any critical path found.

3) A resource usage report.

Packages such as this combine tools for deciding upon information handling
policy with the coordination of resources necessary for the information handling itself.
Accordingly, such packages are relevant in establishing the higher-level aspects of a

generalised architecture for an enhanced information system.

Section 2.2.3: Software Configuration Management.

We can now move more towards a consideration of computer system
involvement as a complementary part of a management task, rather than merely as a
planning tool for helping in its specification. This ‘half-way’ house concept involves
the use of the computer to help in organising the execution of the computer tasks
themselves, and good examples of the issues involved are categorised under the name

‘Software Configuration Management’ or SCM [Bersoff 81 & Buckle 82].

This concept concerns the controlling of changes which affect many components
generated during the life cycle of a software product. The number of components can
be very large - especially for complex projects - and so the efficient management of
component evolution is of great importance in order to prevent the project from
becoming at best unwieldy and at worst unmanageable. The configuration management
process would normally be applied throughout the project at all stages from conception
to completion. While there are a number of tools available to help with SCM, the
Department of Trade and Industry STARTS guide [DTI 87] has a list of thirteen
functional requirements that suitable tools would implement, and as yet none of the

available tools meet all the requirements.

40

Chapter 2

Section 2.3: Development Systems.

In general terms, we can define a Development System as being any procedure
or technique which is concerned with the successful construction of a (possibly large)
system. For our purposes in discussing computer-based information systems, we can
further require that the produced system will involve the use of information and
computer technology as major components. The process involves detailed analysis of
the task or tasks to be carried out, and this in turn requires that the problem be broken
down into clearly defined components, as described above in section 2.2. Quality
control is important to ensure that a task specification is being met, and further that

task execution is performed to the required standard.

One of the main ways in which the quality and accuracy can be (theoretically)
improved is by the use of Software Engineering techniques, in conjunction with other
tools such as program generators and ‘Integrated Project Support Environments’
(IPSE’s). In this section, we will examine how these tools fit into the task
environment, but as yet do not always integrate fully with each other or lower level
tools. The purpose of this discussion is directed more towards the end goal of
identifying issues that affect the design and specification of an enhanced information
system architecture, although the consideration itself also helps with the development

of a prototype system.

Section 2.3.1: Software Engineering.

In 1972, Terry Baker wrote a major article discussing the so-called ‘software
crisis’, in which he brought together ideas on structured programming, top-down design
and implementation, the chief programmer, the chief programmer team, and the
documentation librarian [Baker 72]. This article provoked considerable research work
on systems analysis, design and construction, and which has subsequently become
identified as the area of Software Engineering. The topic has various definitions and
meanings depending on the author being read, but generally the emphasis is upon

promoting a discipline for the production of complex (and not-so-complex) software.

41

Chapter 2

Software engineering takes the form of the appropriate use of a variety of
techniques for dealing with software as a product that requires engineering quality
precision. This means developing systems with regard to software specification, design,
implementation, testing and maintenance. Concentrating on specific areas in a
methodical manner should hopefully produce a much better development environment,

and thus begin to ease the difficulties of developing a powerful system.

Despite its age, Software Engineering is still referred to as ‘emergent’ or ‘new’.
This is because although it has undoubted benefits, the techniques are not always
sufficient in themselves to guarantee the successful conclusion of a development
project. For example, there are still significant areas of influence which necessarily
fall outside the software engineer’s control. Such external aspects which are relevant
include training, parallel hardware development, individual module and integration

testing, as well as the very important matter of customer acceptance.

Despite certain limitations, there seems to be general agreement that a
methodical approach to system development is preferable to a haphazard attack on the
problems. Hence there is a very real need to learn from the benefits of Software
Engineering principles, and to apply them in other applications, such as the design of

user interfaces.

Evidence for this is observed in a number of references, including [Tagg 87].
In this reference, the author showed that Software Engineering approaches emphasise
the System as being the object of central concern. But given that the user may be
carrying out a number of tasks within a given environment, it is perhaps more
important to consider the user as being at the centre of a number of systems. As Tagg

points out:
‘[by adding the systems together] into a set of unified facilities for the

end user ... he can use all of the computer services from a single

workstation in a consistent way’.

42

Chapter 2

Most texts on Software Engineering ultimately emphasise the ‘waterfall’” model

for development, which has five basic phases often called the Software Lifecycle:

1) Specification.

2) Design.

3) Implementation.
4) Testing.

5) Maintenance.

Within each of these phases, a number of techniques, systems, methodologies
or frameworks may be available. Some of them address more than one phase - with
a corresponding danger of insufficient attention being given to the detailed or subtle
problems possible at each stage - while other systems provide an in-depth philosophy
for working in specific phases such as testing. Furthermore, many of the techniques
tend to emphasise the earlier stages of the lifecycle. This is because, regardless of how
well a program is structured and coded, it should be the result of the earlier design and
specification phases, and so any errors or inefficiencies incorporated -in those phases
will reappear throughout the whole system. Some authors have carried out work which
suggests that as much as 46% of the entire development effort is expended in the
initial design and specification stages [Boehm 75]. That problems do occur later is
made possible because of the inadequacies and imprecision of ‘natural language’ design
techniques, and may even be inevitable given the dynamic and complex environments

which are typical of large-scale software development activities.

As decisions are made with regard to the design of the software, there is a
certain obligation to justify or prove the reason for each of those decisions. Some
automated methodologies allow for the recording of each of the steps taken during the
design and construction phases, and this data can assist with the evaluation, but again
the difficulty is in the expression of this material [Maddison 83]. Work is being done
in the development of frameworks [Coleman 88] that support the recording of
development ‘history’, at the same time as reducing the danger of flooding the designer
with too much or irrelevant background; and all while avoiding reliance upon specific

Software Engineering methodologies.

43

Chapter 2

The use of such a framework aids the communication and comprehension of
design decisions relating to structure, component functionality, data representation and
choice of (software) component implementations. However, the emphasis is still
primarily upon the software issues, with reduced consideration of the user or hardware
requirements or limitations. Even more notable is the absence from certain systems of
any incorporation of systems behaviour principles, a particularly interesting omission

in view of the possibility of behaviour contributing to the limitations of systems.

Generally, software design methodologies make use of a variety of graphical
notations and regulations concerning the permitted or preferable design representations.
A summary of these techniques appears in [Peters 80], but the existence of a large
number of such techniques is evidenced by a survey in Holland which identified at
least 24 techniques [Blank 83]. Perhaps the most well-known works on this area
include deMarco [deMarco 78] and Gane and Sarson [Gane 79], with other important
techniques including Yourdon’s ‘Structured Design’ [Constantine 79], the Ministry of
Defence ‘Mascot’ [MASCOT 83], and Jackson’s JSP and JSD systems [Jackson 75 and
Jackson 83].

Section 2.3.2: SSADM

One particular method of relevance and importance in Great Britain is the
Government approved standard system, SSADM (Structured Systems Analysis and
Design Method) [NCC 86 & Downs 88]. Its derivation is from the work of Learmouth
and Burchett Management Systems (LBMS), who worked in cooperation with the UK
government’s Central Computer and Telecommunications Agency (CCTA). The
requirement was that the methodology should be self-checking, use tried-and-tested
techniques, be configurable to user needs, and simple to teach. ©The LBMS
methodology was finally accepted in January 1981, and subsequently became a requisite
for all government projects in early 1983. SSADM determines how a systems
development venture can be governed, but with the potential for reconfiguration
according to localised demands. The basic method is to reduce a project down into
phases, which are subdivided into stages. Each stage is further divided into steps,

which have a list of tasks, inputs and outputs.

44

Chapter 2

Section 2.3.3: C.A.S.E.

A logical development of Software Engineering is to use computers themselves
to assist in the coordination and presentation of the (often large) quantities of data
being manipulated. A simplistic but workable definition of Computer Aided Software
Engineering (C.A.S.E.) states that [Sommerville 89]:

‘Computer Aided Software Engineering is the term used to refer to the

support of the software engineer using software tools.’

C.AS.E. is of particular importance when the objective ultimately or partly
requires the production of a computer system. This is because much of the material
will already be present within a computer, whereas most of the tools described in
section 2.3 do not require that the end result of their usage must always be the
production of a computer system, nor do they necessarily require a computer in order
to operate. The specific problems that C.A.S.E. is supposed to target concern the

design and generation of computer software.

As the power and memory capacity of computer hardware has improved, the
complexity of software has similarly increased. Yet the task of software design is one
that has largely remained disorganised, resource intensive and tediously slow. There
have been several well-publicised examples of development projects that have failed to
meet deadlines, including Lotus 1-2-3 version 3, which was finally released
approximately two years behind schedule. The problem is that as the complexity of
the project increases, so the requirements for development tools and good
communication procedures increase. It is to problems of this nature that C.A.S.E. tools
are addressed, but so far with limited success. Although C.A.S.E. tools have helped
in certain specific areas, benefits can be quickly lost through trying to integrate the
results with the remaining issues which are not within the scope of C.A.S.E.
Accordingly, the need for integration is increasingly quoted as a major thrust of
development of such tools, ranging from considering the small scale concerns of
individual stages within the development lifecycle, through to the full scale Integrated
Project Support Environment.

45

Chapter 2

A report on C.A.S.E. technology and its market and current products was issued
by the research group Ovum in 1987 [Ovum 87]. The report defines C.A.S.E. products
as falling into three categories. The first and highest level category is the true
C.AS.E. tool, or the closely-connected concept of the Integrated Project Support
Environment, which is discussed in more detail in section 2.3.3. The second category
or middle level consists of ‘Analyst Workbenches’, which are tools for specific analysis
and design problems. A set of definitions in a data dictionary and an underlying
design database are used in conjunction with presentation software to allow the
developer to experiment with system diagrams. The third and lowest layer category
comprises automatic code generators and Fourth Generation Languages (4GL). These
tools generate most of the code required for an application by building upon some
basic components such as database access modules. The remainder of the code is

constructed out of the specification prepared by a programmer or systems analyst.

The Ovum report pointed out that in general, products developed for use within
the latter two categories tended to be more effective when companies specialising in
the categories collaborated with each other, rather than by attempting to develop
techniques already perfected elsewhere. As an indication of this, the research report
found signs of an increasing move towards integration or cooperation between analysis

tools and design tools.

However, a more recent report on C.A.S.E. tools included in [Grindley 89]
suggests that IT managers remain unconvinced of the value of such tools. Although
they have been presented as the solution to system development retardation, 41% of all
IT managers still have no plans to implement them. Of the 32% of IT managers who
have used them, one in five subsequently rejected C.A.S.E. tools because of poor cost
justification. According to this report, emphasis seems to be moving away from

meeting project deadlines, and more towards integrating IT within corporate strategy.

Currently, the most popular C.A.S.E. tools seem to be Information Engineering

Workbench, from Knowledgeware; Foundation, from Arthur Andersen; Maestro from

46

Chapter 2

Softlab; and Case*, from Oracle®. However, IBM has recently announced its C.A.S.E.
tool, called the IBM Application Development/Cycle. The key components of
AD/Cycle are an integrated set of analysis, design and production tools based around
a single application development control point called the Repository. This enables
groups working on different parts of a development to share and exchange project

information.

Section 2.3.4: I.P.S.E.

Integrated Project Support Environments (IPSE’s) are usually multi-user systems
that are aimed at managing software development projects that require large groups of
analysts and programmers. They are derivatives of the need for an integrated set of
C.AS.E. tools, and seek to control every stage of the system development lifecycle
with a major objective of supporting the development team in all the necessary work.
The support is provided in part by maintaining a database of interdependent objects
such as program modules and related documentation. Programmers are kept aware of

latest versions of code for which their own work has some sort of connection.

Any modifications to documentation (such as changing a single data name)
might normally take a long time and introduce potential problems of consistency. An
IPSE would provide a cross-referencing facility to speed required changes with
complete accuracy. Furthermore, the documentation can be automatically prepared to
conform with the project standards by referencing a standard library which is defined
at the start of a project. An IPSE might also be used for configuring the various
program modules to form a complete application system, and this is a process called

configuration management.

Section 2.3.5: Analysis and Design Tools.

Structured Analysis and Design methodologies typically use diagrams to show

the relationships between the entities of the application, the processes manipulating the

8: It is interesting to note that Case* stands for Computer Aided Systems Engineering.

47

Chapter 2

entities, and the flow of data between the processes. The validity of the resulting data
model is judged by its ability to present the constraints or characteristics of the data
needed. Coordinating the large amount of material produced by such methodologies
requires a lot of effort in order to avoid problems of inaccuracies or inconsistency,
particularly if the methodology is paper-based. Furthermore, it can be tempting to
‘short-cut’ the rules of a methodology, and this is even more tempting if mistakes have

to be corrected later in the project.

However, personal computers allow the use of methodology packages (often
called Workbenches) which replace the paper documentation with screen-and
mouse-based manipulation tools. A difficulty arises with regard to the level of the
workbench, in other words whether it merely offers diagramming tools for the data
model construction, or whether the workbench can actually model all the required
features. Certain facts cannot be represented meaningfully using a diagram, such as

definitions or user responsibility.

‘In order to be effective, ... (a) workbench needs to support both the
diagrams and a background dictionary, or encyclopedia. Furthermore,
there must be tight integration between the two. For example, when an
entity is created using the diagrams, an entry should automatically be
created in the background dictionary ready to be filled in with additional
details - its abbreviated name, its definition, volume figures and so on.
Ideally, the analyst should be able to swap from diagrams to

encyclopedia during dialogue with the computer.’[Pearce 89]

Most workbenches are American in origin. An example is the Excelerator
system’, which includes a graphics facility for developing and updating system

diagrams, and a dictionary for storing and cross-referencing design data.

9: Excelerator is a trademark of Index Technology.

48

Chapter 2

Section 2.3.6: Code Generators and Fourth Generation Languages.

The main difference between automatic code generators and fourth generation
languages (4GL) is that the former produces code for a third generation language which
can be compiled, while the latter produces code which needs to be interpreted and is
often less efficient. Another important difference is that the 4GL tools tend to be
suitable for end-users, while code generators are orientated more towards the

professional developer.

An example of a code generator package is the Application Productivity Systems
Development Centre, which can run under DOS on a PC or on IBM mainframe
computers running MVS or VM. As well as providing code generation facilities, it
supports prototyping and the design of software modules. It includes a facility which
enables the programmer to write code in a high-level language similar to COBOL, and
this can then be automatically translated into genuine COBOL source code for CICS,
IMS, DB2 and VSAM environments on IBM mainframes. Database code and common
functions can be included by use of a macro facility. However, it does not handle the
early stages in the logical design of a project, and so is intended to work with rather

than replace the analysis and design tools.

Section 2.3.7: ISDOS.

The ISDOS system (Information System Design and Optimisation System)
described in [Teichroew 77] was a system intended to aid information system
development by establishing an automation process for taking user requirements
(specified using a Problem Statement Language - PSL) and analysing the statements
(using a Problem Statement Analyser - PSA) in order to produce a set of documents
which includes the system analysts’ formal specification. An optimiser was included
in order to make generated code as efficient as possible. The aim of incorporating all

aspects of systems work into a complete automated package proved over-ambitious.

49

Chapter 2

Section 2.4: Data Handling Systems.

Data Handling Systems are specifically intended to work with particular kinds
of data and produce a specific end result. In the majority of systems, they work
explicitly under the guidance of the end user, who then has a larger amount of work
to do in order to obtain the desired result. For our purposes, we consider two
categories of Data Handling Systems: Standard Text Description systems, and the more
recently defined Graphic Presentation Systems.

Section 2.4.1: Standard Text Description Systems.

In order to provide a greater degree of flexibility, while maintaining a minimal
requirement for learning new systems, standard text description systems (STD’s) work
with a minimal amount of user support, relying instead upon the user being familiar
with the main utilities provided on their system, specifically the text editor. This is
then used to create files which have data and commands interspersed but distinct. This
file is treated just the same as any ordinary file by the user’s system, but once

completed, it can then be processed by the STD.

Typical of these systems are the more dated text processing systems such as the

UNIX based ‘nroff’ or the more widely implemented TgX. Here, no real attempt

is made to provide the user with a friendly presentation - instead, the user is expected
to become familiar with the commands necessary to achieve the desired result. This
has the advantage that each of the programs (editor and formatter) can be made distinct
and so learned separately, but at the same time it reduces any possibility of integration

of operation.

However, in order to give the system more capability, the complexity and range
of commands increases to the point where it becomes difficult for a user to construct
the desired document. It is then necessary to use a front-end package to help with the
construction of the underlying document structure, and this approach has been used to

enable the development of more flexible systems.

50

Chapter 2

These systems include the Office Document Architecture (ODA) which goes to
considerable lengths to define not only the structure of the commands possible within
a conforming document, but also describes the actual structure of the document itself
by providing amongst other things ‘the definition of an abstract document model for
presentation of office documents’ which will ‘facilitate the interchange of office
documents’ [ECMA 85]. ODA further provides for the definition of character and
photographic content, but in order for this to be achieved the actual command and
control information contained within an ODA-conformant document is considerable.
[Brown 89] gives a good summary of ODA as a hierarchical and object-orientated
model, where objects represent components of the document and attributes provide

information about the objects.

A more recent but similar system is the Standard Generalised Markup Language
(SGML). This is an International Standards Organisation (ISO) Draft International
Standard [ISO SGML] for text processing, which is designed to enable authors to
‘mark up’ their documents on the basis of their logical structure rather than their final
appearance. Abstract names, such as section and heading are used rather than specific
formatting commands; since they can then be translated by the appropriate output
device using a driver package that ‘understands’ the construction of an SGML
document. This is clearly of benefit to any system working within an information
environment, since it facilitates data exchange, although with limitations as to the range
of data types which may be incorporated. [Brown 89] points out that, unlike ODA,
SGML is a generic markup language rather than an object-orientated document

description:

“This means that an SGML document, at its simplest, is a string of
characters consisting of the text of the document interspersed with

markup commands to identify the start and end of each logical item.’

By contrast, ODA documents have their structure description separated logically
from the content of the document. With the latter systems, the greater flexibility
naturally improves the potential for better quality documents, but the extra control

information required means that it is entirely possible that the amount of markup

51

Chapter 2

descriptions for the document may actually exceed the quantity of material that forms

the body of the text or diagrams.

Section 2.4.1.1: TgX

The TgX [Knuth 86] system was developed by Professor Donald Knuth to deal
with the problem of handling scientific and mathematical material. The coding scheme
is public property, but its complexity is such that a dedicated package is required to
use it, as an ordinary text editor would not be sufficient. Implementations are available
on a variety of computers, including UNIX and the IBM PC machines. Its advantages
encompass powerful text handling with minimal system requirements, and also
portability across heterogeneous computer systems. As well as formatting equations,

it is possible for authors to design their own fonts.

Section 2.4.2: Graphic Presentation Systems.

The variety of document production systems has helped increase the speed with
which documents can be constructed, as well as greatly improving the possibilities for
their appearance. Many of these documents have a basic objective of providing
information to the reader, perhaps in the form of a company report document.
However, once the document has been prepared, it is a common requirement to be able
to present the material in a summarised form to an audience who can then read the
detail of the actual report at their leisure. The typical circumstance of this would be
the so-called ‘Executive Summary and Presentation’. Accordingly there is a need for
an information environment tool which can manipulate the same set of data in a variety
of fashions, establishing one which is suitable for the specific needs of a given

application.

Undoubtedly, a major factor influencing the success of such a presentation is the
visual impact. Given that much of the data will be stored and prepared beforehand,
and subsequently manipulated, probably using the same machine, it would make sense
to use the preparation machine as a multi-purpose tool for constructing the visual

presentation as well. Furthermore, the process of turning data into a satisfactory visual

52

Chapter 2

depiction would remain under the control of the data originators, and so is less likely

to suffer from inaccuracies that could be introduced through misunderstanding.

Until approximately ten years ago, the only computers that could give reasonable
visual presentation were the larger and more expensive dedicated workstations. The
arrival of the desk top personal computer brought the promise of cheaper alternatives
for graphics which are now being realised. The early personal computers had the
capability to construct monochrome slides by printing graphic information onto
overhead transparencies using a high-quality printer, but the problem of colour depiction
was a major obstacle until the arrival of the cheaper-cost, high-performance graphic
standards such as IBM’s EGA (Enhanced Graphics Adaptor) and the more recent VGA
(Video Graphics Array). These improved displays - and similar technology on other
computers - provide the facility to construct clear and appealing displays which can be

photographed and then projected for an audience.

However, there are few packages which allow for the appropriate configuration
of all possible peripheral devices. This limits the ways in which computer systems can
be configured. In other words, although a computer may be operational in the same
room as a slide projector, a video unit, and a sound reproduction system (voice or
music); there is no straightforward way in which the computer can be connected to all
of the devices at the same time in a sensible and flexible fashion. A number of
packages are directed to using a host computer to control a specific peripheral, such
as an overhead projection system - a good example being the ‘StoryBoard’ program
from IBM®. This allows the user to construct a series of story ‘frames’, which can

then be projected for an audience.

There seems to be a clear requirement for developing systems that can use the
computer host as a controlling mechanism, rather than centralising the processing tasks.
Only then will it be possible to develop more flexible multimedia systems, as these
normally require fast and dedicated processing of the varied media types. As an

example of the problem, some packages provide basic visual presentation facilities

10: Storyboard is a trademark of IBM Corp.

53

Chapter 2

already, such as Lotus 1-2-3. But in most cases the options available for the
construction of the display are severely limited. An alternative would be ‘professional’
style graphic or art packages controlling dedicated graphics processors, 'but many users
do not require the sometimes daunting range of options available in these systems, nor

do they have the time to experiment with the package.

Accordingly, the need seems to be not just for painting or drawing programs,
but instead for packages which understand the various kinds of data that users wish to
present; and which provide a range of tools for constructing a visual presentation using
the data with various peripheral devices. This also means that, for example, when
charting information, a sensible set of defaults should be used in the construction of
the image, and each of the components of the image can be easily identified and
altered according to need and for maximum visual appeal within the context of the

presentation device.

Section 2.5: Idea Processors.

When developing material, it is often recommended to have a working plan of
how the content will be organised for presentation. The three basic components of the
structure are of course Introduction, Main, and Summary/Conclusion, and within this
general organisation, there can be many sub-components, each requiring careful thought
in order to ensure that they fit neatly within the overall plan of the material. The use
of computers for document construction through word-processing helps to speed up the
construction process, but this same increase in speed also implies that the structure of

a document can rapidly change and become confused.

An Idea Processor is simply defined as a package that helps organise blocks of
information - typically text [Hershey 85]. They closely resemble word-processors in
that they will often incorporate text editing facilities, but the emphasis is on the
positioning of material within the structure of the document, rather than upon its visual
appearance or content. Idea Processors tend to come in two basic forms: the indexing

system and the outline organiser. The former work by helping with the management

54

Chapter 2

of large quantities of data which need to be arranged into some sort of structure before
the main document construction begins. Outline organisers, on the other hand, work
in a ‘top-down’ style to represent each of the blocks of information within the
document [Foster 74]. The user should then be able to enter indiscriminate data from
a variety of sources (thoughts, plans, ideas, etc.) which can supposedly be organised

into the hierarchical structure offered by the Processor.

For most systems, there seems to be little consideration given to the way in
which data might need to be modified in order to fit the structure imposed by the Idea
Processor. Often, the ideas must be broken down or rearranged to fit the enforced
hierarchical structure. There are, however, certain categories of data do not fit neatly

into a hierarchical structure of any form, such as images or pictures.

However, once data has been entered into the Idea Processor, it can be reviewed
in a variety of ways. The data blocks can be labelled with titles or headings, and can
be relocated within the document structure to experiment with improvements in the
style. Minimising the amount of information on display, with the aim of reducing
confusion can be done by ‘collapsing’ the various blocks of data to show only their
headings. This means that the structure of the data should be much more easily
determined. Examples of Idea Processors include Brainstorm', ThinkTank, and
PC-Outline®.

More recently, products have been released which combine the structuring
objectives of Idea Processors with more detailed data base concepts and
indexing/cross-referencing facilities to provide much more comprehensive capabilities.
These are called Personal Information Managers (PIM) and are intended to do for
textual material what spreadsheets and databases have done for numbers and
relationships: to allow users to enter, retrieve, analyse and cross-reference potentially

arbitrary pieces of data at will.

11: Brainstorm is a trademark of Caxton.
12: ThinkTank is a trademark of Living Videotext.
13: PC-Outline is a trademark of Brown Bag Software.

55

Chapter 2

A typical design goal of the PIM packages is to help you access data in an
orderly fashion, and further to help identify relationships that might not otherwise be
noticed. Two major PIM products in this category are Grandview", and Agenda®.
The former package is directed slightly more towards an outlining style, while the latter

package is based more upon a database cross-referencing facility.

Section 2.6: Data Flow Control.

In the micro computer world, the main operating systems are DOS, which is
fundamentally a single-user, single-tasking operating system; and the Apple Macintosh
Operating System (although UNIX and OS/2 are also contenders). The latter system
was designed from the outset to incorporate strategies to facilitate data exchange
between applications, and at the launch of the Macintosh computer, a number of tools
were provided that - amongst other things - enabled the user to ‘cut-and-paste’ data

between different packages.

When the Microsoft Corporation announced the “Windows’ graphics environment
for the IBM-compatible PC, the intended strategy was to provide a facility whereby
limited multi-tasking in the PC environment would be enabled, and also to support data
exchange‘ between programs. This is achieved in part by allowing applications running
under the windows system to exchange data in an agreed form, called Dynamic Data
Exchange (DDE) [Schifreen 88]. This is a protocol providing for the exchange of
data between applications running under Windows. It works because Windows is
essentially a message-passing operating system. This means that any event which
occurs within the system - such as a key-press or mouse movement - causes a message
to be generated. This message describes what happened, why, which application was
involved, and various other information. A ‘well-behaved’ application running under
Windows simply reacts to the messages that it receives. Messages can be generated

by other applications, as well as the Windows kernel itself. It is quite permissible for

14: Grandview is a trademark of Symantec.
15: Agenda is a trademark of Lotus Development Corporation.
56

Chapter 2

an application to send itself messages in order to invoke additional functions.
Messages can be sent to other applications, and these messages form the basis of the

DDE concept.

A number of data exchange formats are understood by applications supporting
DDE. Some of these are specific to PC applications, including Lotus 1-2-3, but others

are more general. Amongst the general formats are:

1) Plain ASCII text, with a standard Line-Feed Carriage-Return

sequence to delimit each line.

2) Bit image data in the form of a series of binary information

representing blocks of pixels.

3) A metafile, which is similar to a POSTSCRIPT file in that it consists
of a series of instructions which describe the way the object

should appear.

4) A comma-separated variable format, where each record is
separated by comma, allowing the record to be of variable rather
than fixed length. If the length were to be fixed, then padding

or truncation might be necessary.

The format for interchange of information among remote heterogeneous
components is a much more complex issue. However, there are a number of standards
which are directed towards this problem, including ODA (Office Document
Architecture), which is the ISO standard for a logical document structure used

primarily for information interchange [ISO 84].

57

Chapter 2

Section 2.7: Discussion of Current Systems.

The examples of current systems can be summarised as follows: The
management systems attempt to analyse a problem. The development systems are
aimed at a similar objectivé, but are concerned more with the coordination of resources
used for solving problems, and specifying the use of applications and packages at a
lower level. In effect, they produce a more formal specification of the problem. The
Software Engineering systems - C.A.S.E. tools and L.P.S.E. workbenches - all highlight
the problems of coordinating information handling, even within the specific

environment of software development.

The difficulty is that at most of the stages, any given system works to produce
a specific result, at which point its work may be considered complete. However, in
some cases, the results may be applied to other (possibly lower level) systems, but the
results may not always be sufficient, adequate, or even in the correct form for the
lower level application. In other words, the higher level or administrative systems
produce results that may be of use only within a limited scope. Typical of the
high-level results would be a detailed diagram showing how resources and tasks
inter-relate in order to achieve the desired corporate objectives. Yet the diagrams
cannot be used by other systems outside the original generation package, they must
first be understood by a human user, who then uses the knowledge to instruct the
lower-level systems. In a similar way, the middle-level systems such as the Analysis
and Design packages produce specifications which may well reflect the desired tasks,
and yet only 25 to 30 percent of specifications generated by these systems are actually
used and submitted to the lower level program specifiers or application generators
[Gibson 89]. Thus, despite the apparent advantages of using C.A.S.E. and similar
tools, there would seem to be limitations regarding the actual exportation and

applicability of the results obtained from the higher- and middle-level layers.

The categories of current systems described are important, because they are each
closely involved with providing for the handling of data in some fashion. These
approaches to the manipulation of data leads to two important observations that are

pertinent to the development of an enhanced architecture:

58

Chapter 2

1) It may be necessary to design a better information handling
architecture that offers more supportive and valuable information

processing.

2) That powerful data handling on its own may not be sufficient for
an enhanced information system architecture; there could be
additional requirements for incorporating higher-level ‘abstract’
issues relevant to the processing of data, such as administration,
control; and identification and support for data relationships and
attributes.

Both of these observations form the substance for exploration in section 5.3 of
this thesis, as an exploratory architecture for enhancing information systems - and the
information environment derivative - are discussed. In order to develop an architecture,
it is considered vital to review the work that has been carried out to date, in order to
assess what has been learnt. Without this review, there is a danger that errors or
misconceptions introduced during the development of the other systems may not be

recognised and removed, resulting in less reliable systems of reduced benefit.

59

Chapter 3.

Current Research.

Section 3.1: Overview of Current Research.

The research areas considered here do not necessarily have the primary
background of trying to address the topic of general information systems. However,
in their direction and treatment of subjects, they provide evidence in the form of many
pointers identifying the components contributing to information handling. When
grouped together, the clues suggest reasons why an Information Environment is
desirable and how it might be designed. Further, this leads to the suggested

requirement for a suitable generator package to be specified.

As indicated previously, a major factor in an information system is the vital
contribution of each user as part of the working environment. In order to function
more effectively, the user must be presented with as much data as is minimally desired
for information transfer-to be successfully accomplished, and for adequate - as defined
by the user - interaction to be facilitated. In order to make this feasible, the maximum
possible range of data types and presentation styles must be supportable within the
environment. The presentation styles used must necessarily reflect the data and data
relationships, and since the user directly influences these aspects, the user’s activities

and preferences must be taken into account.

Accordingly, we must examine the general nature of information system
methodologies, before moving on to consider those areas of current research work
which are specifically directed towards the handling of many data types and
relationships, as well as the corresponding variety of methods used for the presentation

of the work: multimedia and hypertext systems.

Multimedia systems address the problems of handling potentially large groups
of data which are formed from a number of varying media types. This objective

60

Chapter 3

introduces significant difficulties, not just for the real-time manipulation of data, but
also regarding the establishment of suitable mechanisms for the communication and

presentation of the data.

By way of contrast, in hypertext systems a structure is already imposed on the
data. Text fragments are embedded in a directed graph with labelled edges and
reference mechanisms are supported, allowing the user to traverse those edges.
hypertext system user-interfaces are built using state-of-the-art technology such as high
resolution graphic displays, sophisticated pointing devices, and Icons for command
options. However, these systems typically lack a database-derived content query

facility. Elementary string search facilities may be supported.

Following these two major research areas, we briefly appraise more general
research components, before looking at the architecture of computer systems with a
view to seeing how the techniques of information handling are currently being

facilitated.

The conclusions gained from considering these research areas will lead to a
better understanding of the derivation of the components of the Information
Environment concept and its benefits to information system users. However, we must
begin by considering the nature of methodologies which may be used for developing

and organising information systems.

Fitzgerald et al [Fitzgerald 85] carried out a survey analysing the features of
contemporary information system methodologies, describing a framework for the
evaluation and comparison of such methodologies, and using it to analyse seven
examples. They considered the background, philosophy, assumptions, scope and skills

required, as well as considering the analysis and design phases of each.

They emphasised that the methodologies were intended for use during the
development of an information system, and consequently focus upon such problems as
delivery failures, poor resource usage or maintainability, and failures to meet overall

objectives. Many methodologies solve large and complex problems by breaking them

61

Chapter 3

down into smaller, more manageable units, which could be tasks, problem areas, or
even simpler but complete information sub-systems. As a result, the methodologies
that Fitzgerald et al considered have a close relationship with the various phases of the
software development cycle. In practice, the analysis performed by the studied
methodologies was directed more towards the early development stages, particularly

those of problem analysis and logical design.

The analysis of the methodologies was broken down into five categories:

1) The scope of the methodology, to establish which system
development phases it dealt with.

2) The objectives and deliverables that would be achieved or
obtained through the use of the methodology.

3) The philosophy underlying the methodology.

4) The explicit and implicit assumptions made by the authors of the

methodology.

5) The hardware and software support (if any) for the methodology.

The Fitzgerald paper concluded that methodologies appear to be enlarging the
scope of activities covered, and that organisations would increasingly use them as a
standard for information system development. While welcoming such a trend, the

authors pointed out that:

‘there is still a long way to go to make it effective. We do not foresee
any one methodology becoming dominant in the immediate future, and
we expect more organisations to take one of the many methodologies

available and tailor it by use to their particular needs and preferences.’

62

Chapter 3

Many of the methodologies made certain assumptions, including the implicit
requirement that information can be modelled, that models used by the methodologies
for their tasks are adequate, and that extrapolation of those models is meaningful and

‘easy’. Fitzgerald et al felt that there was:

‘a need for more empirical studies to examine how methodologies are

used in practice and to determine how effective they are.’

In another paper, Galliers and Land [Galliers 87] consider it important to extend

the viewpoint used to study Information Systems, in order to incorporate:

‘behavioral and organisational considerations’.

This is explained by a wish:

‘to improve the effectiveness of Information System implementation in

organisations and to assess that impact on individuals or organisations.’

Galliers and Land point out that if the research work carried out in ‘the real
world’ has little applicability, then there is no relevance to carrying out the work itself.
Accordingly, the research must take into account the nature of the subject and the
complexity of the real world. These issues are of course fundamental to all kinds of
research, not limited to Information Systems study, but nevertheless they highlight the

importance of using the correct approach in our efforts.

In the research described in this thesis, we are interested in the modelling of
information, such that a model used for a particular information handling activity
should be as effective as possible. In order to understand this, we must examine the
current techniques for simple to complex data handling, before considering the use of

structures for larger-scale modelling of data groups.

63

Chapter 3

Section 3.2: Multimedia Systems.

Where potentially large quantities of possibly widely varying data types are to
be handled as a whole, then there is the requirement for correspondingly complex data
handlers. A typical approach to these issues is categorised under the area of
multimedia Systems. Generally, research involving multimedia systems falls under the
wider category of study into multimedia communications, and is defined [Aceves 85]

as that which:

‘refers to the representation and dissemination of machine processable

information expressed in multiple media.’

This means that with the increasing power of appropriate technology, the
familiar tasks of data collection, processing and distribution have now become
increasingly dependent upon computers. In fact, computers are considered as an
essential tool which must be used for these processing tasks. As Aceves et al point

out, the use of improved computer technology:

‘...will permit user applications that require [simultaneous] processing and
distribution of information in several media, including alphanumeric data,

text, voice, computer graphics, and images.’

In fact, for reasons in section 7.2, it seems reasonable to suggest that this list
should also include less obvious data types, such as environmental and attribute data,

for example temperature or brightness.

Since computer systems are often considered to be a prerequisite for there to
be any hope of achieving successful multimedia document systems, a natural trend of
the current research is towards using the computer system to assist actively in all
aspects of the data collation, manipulation and presentation. This idea has been

proposed in [Negroponte 76], with the suggestion - or caveat - that:

Chapter 3

‘electronic displays (should) adaptively display not only what materials

readers wish to see, but also how they would like it presented.’

The various features of current multimedia information systems can be evaluated
to help with the task of identifying the minimal facilities that must be supported in
order for the multimedia system to be classified as such, and in order for it to offer
the maximum benefit to users. The main requisite features concern the interconnection

of data; support for retrieval, editing and presentation; and maintaining historical

integrity.

The first of these topics concerns the establishing of links between (potentially)
related topics or ideas. Taken in conjunction with the problems of presentation and
‘location depiction’, the associated research area of hypertext systems is identified. A
great deal of importance is attached to the objective of assbciating varying data types,

and further being able to integrate them into a single conceptual document.

Establishing the mechanisms for control and presentation of multimedia data is
work of considerable interest to current researchers at present. A number of systems
have been designed which address this particular issue, taking into account the variety
of peripheral presentation devices that may (or may not!) be attached to the processing
host machine. In certain projects, specific control devices have been developed in
conjunction with work done by human-computer interaction specialists. A good
example of this is the small ‘piano-like’ keyboard used on the NLS/Augment system

described in section 3.3.

If presentation of the data and inter-connections is of clear importance, then the
mechanisms offered for modifying the data and the inter-connections must be at least
as versatile. The need for flexible editing tools is paramount in order to assist with
the rapid but (hopefully) improving status of a multimedia document. As data is
modified either by the user or by external events, so the structure used for organising
or categorising all the data within the multimedia system must also be updated. This
updating process continually poses the threat of a confused resultant data structure.

The matter is complicated by the fact that hierarchically organised tree structures are

65

Chapter 3

unable to represent plainly all the potential data relationships that may be required
during a given information processing task. The user’s editing tools cannot realistically
be permitted to focus exclusively on the single job of data modification, as this makes
no allowance for the effects of alterations upon the potentially complex data
interrelationships, and so data alteration alone is a coarse strategy that inevitably
promotes disorder by overlooking the context of the data. There is a need for the
implications of such modifications upon structure to be incorporated in the editing

tasks - and accordingly recognition of the data context must be facilitated.

The issues of retrieving relevant data from within a storage structure are studied
primarily by research into database concepts, but there is an additional and
wider-ranging research area of information browsing. This topic will be addressed in
more detail in section 3.5, but is concerned in part with incorporating techniques of
accessing the specific data from general data sets. The final problem of historical
integrity is considerable. On the one hand, it is desirable to ensure that a given
document be as up-to-date as possible, yet it is easy to envisage circumstances when
it is desirable or essential to recover previous or even original versions, or to ‘fix’ the
current version of the document so that it cannot be altered. Such requirements

inevitably influence the nature of the control and manipulation mechanisms.

Section 3.2.1: Example Systems.

One project that emphasises the integration of multiple data types into a single
document object is the Diamond Multimedia Document system [Forsdick 82 &
Thomas 85], which is:

‘a computer-based system for creating, editing, transmitting, printing and

managing multimedia documents.’

Diamond works with five basic media types: Text, Graphics, Images, Voice and
Spreadsheets. Each of these exist as ‘objects’ in a Diamond document, and can be
thought of as having a ‘physical presence’ within the document - thus permitting a

variety of editing and manipulative operations [Diamond 85].

Chapter 3

The text and graphic data types are the familiar kinds, while the image, voice
and spreadsheet types require a little more explanation. An image object is a digitised
picture, a voice object is a digitised voice passage encoded by a vocoder, and a
spreadsheet is a conventional tabular array containing numbers, labels, dates and
formulae. When a voice object is to be depicted on a workstation that does not
support a voice object peripheral, a small icon (a loudspeaker) is used to indicate that
a voice object would appear at this point. The document author is able to associate

a small text caption with this icon, that describes the content of the spoken passage.

Despite the general success of the techniques used in the Diamond system, the
developers felt that there was still significant room for further work. Diamond
permitted the construction and exchange of some extremely complicated multimedia

messages, but:

‘...even with this greatly improved means for communication, there is still
an aspect of human communication missing because of the static nature
of documents: When interaction between two or more people over the
contents of a multimedia document must occur, the relatively long time
... needed to send a document and receive a reply impedes progress. It
soon becomes obvious that engaging in a real-time conference over
multimedia objects adds perhaps another important dimension to the

process of communicating.” [Forsdick 85]

In other words, there is a clear requirement that data processing systems being
used for data communication (presentation) must take into account the continually
changing state of the real-world, and furthermore that the changes should be recognised

and incorporated in real-time.

As part of the work towards development of real-time multimedia systems,
attention must be paid towards the problem of storage of the data. A suitable system
must offer flexible document retrieval of potentially very large data groups, and almost
certainly there will be a need for the storage to function within a distributed

environment.

67

Chapter 3

One of the systems to address this area is the Muse filing system [Gibbs 87].
Its objectives include providing basic filing operations, a distributed architecture, very
large storage capacity, support for optical disk technology, content-based document
retrieval and standard encoding of document information. Muse works with the same

five basic data types as described for the Diamond system.

Of particular importance in the construction of Muse is the concept of the
‘document servers’. These are processes which provide basic filing and query
operations on documents - furthermore, servers can be added or removed without
affecting other servers. In order to achieve this capability, certain restrictions were

imposed upon the server’s operation:

‘the storage managed by one document server does not overlap that of
any other server; the storage managed by a particular document server
resides on a single network node (but a node may support more than one
server); and a server itself does not communicate with the other

document servers, so it need not be aware that they exist’.

While making implementation somewhat easier for the Muse system, such
limitations nevertheless have repercussions concerning the final flexibility of the overall
architecture. In order to control the operation of the servers, user requests have to be
communicated by the use of processes called ‘clients’. The clients encode all the
server requests and replies for communication through the server interface. This
interface is in fact the only common ground between server and client - the actual
execution of either the client or the server is of no relevance to the other. The

advantages of this client/server-based architecture are clear:
‘Performance appears to be adequate ... the modular design and the
separation of the clients from servers allow easy experimentation with the

system’.

The Pleiade System [Nanard 87] is intended to be a professional quality

document manipulation system, that interactively manipulates structured documents that

68

Chapter 3

include text, graphics, formulae, tables, and any kind of structured objects defined by
the user. It incorporates an integrated editor/formatter that offers a ‘nearly-WYSIWYG’
display on the screen. The architecture assumes a structured description of the
document, and utilises user-defined logical types to specify the formatting rules. Its
approach is primarily declarative (rule-based), although it uses an ‘iconic language’ and
object-orientated approach to operate directly on the visual entities depicted on the

screen.

The underlying structures for a document consist of three parts. The logical
structure in Pleiade:

‘. is a set of independent trees, one per page area. Logical types
decorate [format] the nodes of the trees. The leaves of the trees are the

elementary components (tokens) of the document.’

This logical structure is used to express how the document components are
hierarchically ordered, and provides the framework on which the formatting rules are
applied. A page structure is used to represent the macroscopic geometrical aspect of
the page. Areas on the page are used as containers into which document data is
poured, similar to that employed by the Interscript system [Ayers 84]. Finally, a
geometric structure is ‘induced’ by the positional rules associated with logical
components, using the box model offered by Knuth [Knuth 79].

The system developers recognise the importance of the underlying document
structure with regard to the system, although they are aware that the abstractions

involved are perhaps more advanced than most users are currently acquainted with:

‘We take up the wager [sic] that abstractions such as structuration,
logical types and declarative approach can be accepted and used
efficiently by common users, as far as they will be presented in a user

friendly way.’

69

Chapter 3

However, they recognise that the Pleiade architecture is such that the structure
used for working with a document is a consequence of the operation of Pleiade, and

does not represent a model of the actual document itself.
Other multimedia systems include MINOS [Christodoulakis 86], which is an

object-orientated system; and CCWS, developed for military command and control
activities [Poggio 85].

Section 3.3: Hypertext.

It is only in the last one or two years that hypertext systems have begun to
offer commercially successful real-world applications, despite the fact that their
conceptual origins date from the very earliest days of computers. Writing in 1945, the
author Vannevar Bush proposed an electronic system called Memex, which would have
resource control over unlimited amounts of data [Bush 45]. The idea was that it
should be able to find any piece of data almost instantly, and further that it should be

able to make connections to any other data item.

It was not until 1965 that Ted Nelson coined the term ‘hypertext’, subsequently

defining it as:

‘a combination of natural language text with the computer’s capacity for
interactive branching, or dynamic display ... of a nonlinear text ... which

cannot be printed conveniently on a conventional page.’ [Nelson 67]

In 1968 Douglas Engelbart [Engelbart 68] demonstrated a graphical workstation
system called NLS (oN Line System). This could change data context both between
documents and through different levels within the same document - thus depicting the
basics of hypertext operation. In order to achieve this functionality, NLS used a
hierarchical structure which allowed reference links to be established between levels

and between files.

70

Chapter 3

If multimedia research is directed towards the handling of varying data types
and their subsequent storage and retrieval, then research into hypertext (also known as
nonlinear text) is perhaps directed towards the representation and development of paths,

links and annotations for the body of data - albeit of limited type.

However, despite the considerable effort being directed at hypertext systems,
there is still a considerable paucity of applications that require and benefit from the use
of hypertext as an information processing architecture. A good overview of hypertext
systems appears in [Smith 88], while another more recent review of hypertext
technology is contained in [Ritchie 89]. Here, the author points out that in fact, the
use of non-linear structures such as that epitomising hypertext documents is not new.

For example:

‘Medical textbooks such as Gray’'s Anatomy (first published in 1858) rely
heavily on cross-references including links between text and diagrams,

text and text, and diagrams and text.’

Hypertext systems are generally very straightforward - a requirement that is
justified by the desire to make the systems easy to use for the non-expert. Typically,
presentations on a screen are closely connected with the internal storage of data or
objects within a database. Links connecting the objects are provided as pointers within
the database itself, and sometimes depicted graphically on the screen to help the user
with control and selection tasks. Hypertext systems have therefore been described as
‘networks’, where nodes store the data, and links exist between the nodes. The
reasoning behind the concept is that not all data which forms information can be
represented or stored in traditional database architectures - for example large-scale text
storage of library material, where cross-referencing (but not word-by-word indexing) is
required. The linkages which can be established and used within a hypertext system
represent the more important aspects of the system, as it is these which facilitate the
nonlinear organisation and retrieval of material. The importance of links within
hypertext is strong evidence of the requirement to provide relationship as well as data

storage within a generalised information processing system.

71

Chapter 3

Many hypertext systems operate with the assumption that the blocks of material
to be displayed on the screen must have a one-to-one correspondence with the data
nodes stored in the internal system. This is perhaps one of the more notable
limitations on the implementation - and more importantly, visualisation - of hypertext
systems. Additionally, there is the possibility that the suggestive emphasis of the word
hypertext might limit the ways in which a user perceives or visualises the possibilities

of working with the application.

The presentation of hypertext appears to have much in common with ordinary
Windowing systems, but the difference is in the relationship with the underlying
database - in fact, there is no requirement for any database in a genuine Windowing
system (perhaps illustrating why the use of windows with hypertext or as a description
of hypertext is misleading). This is because windowing systems have the primary goal
of partitioning and supporting tasks, and are not normally concerned with the data
being manipulated by the tasks. Similarly, existing database architectures on their own
are not really suitable to qualify as hypertext systems, since the latter requires
considerably more from the linking and user-interfacing facilities than is provided in
even the best of database implementation or interrogation architectures: typically the
database linkages will be based on inquiry using specific frames in rigid formats, and
user interaction is provided by rigidly defined text-orientated command lines. The
outline processors described in section 2.5 do not support any form of cross-referencing
between material - although more recent versions are moving towards this feature, and

hence become closer to implementing the hypertext concept.

A list of the main definitive features supported by a hypertext system could be
as follows [Conklin 87]:

1) A database with a network of textual (possibly graphical) nodes,

forming the hyperdocument.
2) Windows on the screen corresponding to nodes within the
database. Names or titles are always displayed, but only a limited

number of nodes (windows) are open at any one time.

72

Chapter 3

3) Standard windowing system operators are permitted, including

repositioning, sizing, and expansion from or reduction to icons.

4) Link icons are portrayed within the open window to show links
to other nodes within the database.

5) Additional nodes and links can be easily created by the user.

This may be to annotate, comment or elaborate.

6) Database interrogation can be by three methods:
a) Following links and opening the corresponding windows
for the located nodes.
b) Searching the network or a subset for a specific string.
c) Navigating the database using a browser that displays the

network in a graphical form.

This latter facility illustrates a major aspect of hypertext usage, in that the
nonlinear nature of the text, coupled with the on-screen representation of nodes, means
that it is surprisingly easy for the user to lose the ‘context’ of where they are within
the network. This problem is aggravated if the context changes as a result of indirect

commands, rather than at the explicit direction of the user.

An example of this might occur during a search operation, where the
appearance of the located item is the result of the user’s command. However, the
actual ‘jump’ of context in order to permit the item to be presented is an implied

side-effect that causes the user to lose track of the stages of context change.

Another example concerns the ‘Doomsday Project’, which combined CD-ROM
technology with a database of facts and figures about the United Kingdom. The
CD-ROM system can be used to depict appropriate images, but it is comparatively
easy to ‘get lost’ within the system, necessitating a back-tracking process to a known

‘meeting point’.

73

Chapter 3

The use of a browser or ‘graphical view finder’ should offer help by the
portrayal of the interconnections in the database, coupled with a display of the exact
route used to reach the current context. These finders could operate using principles
which have been well established by researchers investigating structure editors and
hierarchy editors [Allen 81, Furuta 89, Kimura 86 & Pitman 85].

However, all of the above description has been directed at the implementation
of hypertext systems, and it is important not to neglect the contribution of such
systems as a powerful mechanism for establishing and developing ideas. Traditional
recording mechanisms (such as pen and paper, or conventional text or word processors)
lead to ‘flat’ text.

This means that any exceptions to the linear flow of the idea have to be
indicated with artificial digression signs such as parentheses (like this) or footnotes'.
A hypertext architecture, by contrast, not only provides for but encourages such literary
‘asides’ which are of equal priority and status. The ‘scattered’ nature of data using
networks supported by hypertext is thought by some researchers to be much closer to
the normal human mechanism for associating ideas and concepts, resulting in a much

more realistic and natural way of working.

Section 3.3.1: Example Systems.

A limited form of a hypertext system is that of the BLEND Experimental
Electronic Journal Programme [Maude 85]. This project is less presentation-orientated
than most hypertext systems, and studies the user requirements for electronic journals.
The results are used to develop prototype software that incorporates the newly derived
features. The BLEND program functions through an ordinary computer monitor,
without assuming high-resolution graphics or even mouse control. As such, there are
limitations on both the quantity and range of material available on screen at any one

time.

16: Like this.

74

Chapter 3

Development of the system began with a study of the approaches used by
scientists to evaluate whether papers in journals were considered interesting to read.
Three main techniques were found, all of which were considered inappropriate for

ordinary linear display of text on computer monitors:

1) A filtering process, looking at the Title, Abstract,

Results/Conclusions, References and finally the main text.

2) A preliminary filter of Title and Abstract only, then a decision is

made as to whether the entire article is read.

3) Skimming through the entire article for new ideas without detailed

consideration of content.

With these techniques in mind, the BLEND system was specified which
structures text by splitting it into ‘entries’. These can be of any length, but are
normally restricted to single paragraphs or figures which can be depicted in their
entirety on a single screen page. For any given document being displayed, the reader
is allowed to step forwards or backwards through the text, or to jump to previously

marked or searched-for locations.

These facilities on their own would make BLEND little more than a
text-browsing system. Accordingly, the system has extensions to allow the addition
of comments relating to specific parts of a document. Every entry in a document can
have a comment ‘tied’ to it which may be read upon request. Furthermore, the
comments can be read independently of the paper itself, and in fact accessed in the

same manner as the paper.

Perhaps the most well-known hypertext system is the HyperCard system for the
Apple Macintosh computers. Although it is a commercial product, it remains the focus
of much research and experimentation in related fields. Its fame is primarily the result
of being easily available, since it is ‘bundled’ as standard with all Macintosh

computers. The official description of this package is:

75

Chapter 3

‘HyperCard is a personal tool kit that gives users the power to use,
customise, and create new information using ... text, graphics, video,
music and animation. In addition, it offers an easy-to-use English
language-based scripting language'’ that gives users and opportunity to

write their own programs.’

Furthermore, the official policy from Apple is that HyperCard is intended for
use as system software, and as such it provides services for use within application
software, rather than being a complete turn-key or end-user system in its own right.
In practice, however, HyperCard exhibits many of the basic characteristics of a true
hypertext system, although it has certain limitations which make it less than a ‘pure’

implementation.

The user’s view of HyperCard is that of a collection of cards (342 pixels high,
and 512 pixels wide - the same size as the Macintosh screen), which can be grouped
into a file called a Stack. A single stack can hold theoretically 16 million objects, not
exceeding a total size of 0.5 GBytes. Cards can hold text and/or graphics, and
furthermore information can be shared between cards within the same stack. On a

card, text (up to 30,000 characters) is stored in fields.

Actions can be implemented by the use of ‘button’ fields. Using the Macintosh
mouse to ‘click’ on a button causes a specific event to occur, depending on the
purpose of the button. The cards can also have a common background image (which
is shared between all cards in the stack), or individual images which belong to a single

card only. There are five basic levels of accessing a HyperCard stack:

1) Browsing: A limited set of menus are displayed, searching is

permitted, but data entry or modification is not.

2) Typing: New data can be entered, or existing data altered.

17: This language is called HyperTalk.
76

Chapter 3

3) Painting: Graphic images for cards can be created and edited.

4) Authoring: Buttons and fields can be created and altered.
‘Hot-keys’ can be defined™.

5) Scripting: HyperTalk scripts can be created or edited.

HyperTalk scripts work using events - when one occurs, the appropriate script
is executed. HyperTalk has aspects of a simple object-orientated language. Examples
of events include pressing certain keys, using the mouse, or even recognising the
inactivity of significant idle time. These events therefore cause messages, which search
through script code for the HyperCard objects (stacks, backgrounds, cards, buttons and
fields) until a code section is found that applies to the event. If no code can be
found, then a Macintosh dialogue box appears explaining that the command is not
understood.

Despite its ease of use, there are limitations on HyperCard which reflect its
differences from hypertext systems. For example, HyperCard has restricted database
facilities, with searching confined to short character strings. Perhaps more significant
is the fact that a HyperCard stack abandons the use of true windowing systems and
instead uses the entire screen”. Although it has a superficial similarity with Object-
Orientated systems, HyperCard lacks inheritance for the cards or stacks which are

defined, and the stacks themselves cannot be nested.

A major problem concerns the representation of location within the stack, and
HyperCard does not have any form of Graphical View Finder to help with either visual
portrayal of position (a fundamental requirement for hypertext), or to allow structure
editing (with dynamic updating). Finally, although the HyperTalk scripts allow a

reasonable level of control of the system, it is comparatively easy to identify

18: A Hot-Key is a ‘short-cut’ key sequence that allows a specific task to be invoked, without having
to follow a potentially extensive series of command options.

19: The SuperCard product from Silicon Valley Systems offers an extended form of HyperCard, which
uses true windows on a virtual screen.

71

Chapter 3

specifications which require the use of external commands, which must be implemented

using ordinary programming languages such as Pascal or C.

The Guide system [Brown 86 & Brown 87], developed at the University of
Kent and subsequently marketed by Office Workstations Ltd. of Edinburgh, is a tool
intended to allow readers to display and also tailor on-line electronic documents
according to their own reading needs. The goal was to produce a system that offered
on-line document interaction that complemented paper-based documents. Providing
continuous negative feedback, a simple and flexible user control mechanism, and
supporting a good user interface would mean that the workstation software would help

the reader work with the document.

Guide documents can incorporate glossary buttons. When activated, these cause
a glossary sub-window to appear during the document reading. The sub-window is

used for explaining jargon, for citations to books or people, or for footnotes.

The success of the Apple Macintosh Hypercard system provoked much research
into equivalent systems for the IBM PC machines, but the results so far seem to have
met with only limited success. An example of a hypertext system for the IBM
machines is HyperPAD?, which implements many of the Hypercard facilities, differing
mainly in terminology rather than function. However, HyperPAD does differ from
Hypercard in two important - and related - aspects. Firstly, HyperPAD avoids the
problem of multiple graphics standard on IBM machines by not supporting graphics -

it is text-only; and secondly, HyperPAD has ample facilities for colour usage.

However, despite having the Hypercard system as a form of ‘prototype’ on
which to base the product, the HyperPAD package has a number of functional
limitations which reduce its initial appeal, particularly with regard to its stability and
reliability. As such, it is an example of an information handling system which is
desired by end-users, but which suffers in its application. Accordingly, it is less likely

to be applied in important tasks by the users.

20: HyperPAD is a trademark of Brightbill-Roberts.

78

Chapter 3

Section 3.4: Hypermedia.

Given the recognisable advantages of functionally hypertext architectures, there
is a natural derivative of the concept which extends the systems to include such
additional heterogeneous components as two- and three-dimensional graphics,
spreadsheets, video, sound and animation. In some ways, the hypertext concept is
enhanced by the results of work on multimedia systems, while retaining the hypertext
operation mechanisms. The term hypermedia is used when extending the hypertext
functionality to these extended or hybrid systems. A hypermedia system should be
able to create links within a database including not only text, but also complex
diagrams, photographs, video disks, audio recordings and so on [Yankelovich 85]. In
[Akscyn 88], the authors define hypermedia as being similar to hypertext systems, but
additionally supporting:

‘other kinds of information such as vector graphics, bitmapped images,

sound and animation.’

A number of hypermedia examples exist, including MIT’s Spatial Data-
Management System (SDMS), and the Digital Equipment Corporation’s Interactive
Video Information System (IVIS), which integrates a variety of data types onto the

same display screen.

Intermedia is a systtm under development at Brown University
[Yankelovich 88], and proposes a framework for a set of tools that allow links and
connections between the many possible heterogeneous data types, resulting in a larger
document structure. In order for this to be implemented, there is a clear requirement
for an alteration in the way that documents are perceived by the end-user and/or author.
Furthermore, the heterogeneous data types require a variety of hardware devices beyond
the standard system unit for computation, and keyboard with high-resolution display for
input and output interaction. In practice, supplementary devices are required for the

portrayal of the non-standardised data types such as sound and video.

79

Chapter 3

It is important to emphasise that the Intermedia system is not intended to be an
end-user application so much as a collection of tools grouped into a framework for use
by end-user applications. This distinction is one that has significant implications for
the work described here, and will be referred in section 8.2. For the moment, it is
sufficient to note that Intermedia is in effect providing an architecture for a combined
multimedia/hypertext system. In other words, by providing the infrastructure for data
control and representation, it supports rather than directs the application. However, the
control of the system is still based upon hypertext systems, which deliberately restrict
user options in order to provide a more friendly and less confusing user interface. One
can conclude that in any information processing system, the nature of the architecture
must necessarily influence the potential of that system, and that restrictions on the

architecture will inevitably restrict the processing capability.

The KMS system described in [Akscyn 88] is a distributed hypermedia system.
The authors of this system note that:

‘In shared hypermedia systems, multiple users may simultaneously access
the hypermedia database. Shared systems may be implemented as
distributed systems, in which portions of the database are distributed
across multiple workstations and file server on the network. ... The

database can be as large as available disk space permits.’

During the development of the system, the designers concluded that their

experiences encouraged them to:

‘... practice a design philosophy of voluntary design simplicity, striving

to make do with fewer concepts and mechanisms.’

Future development of hypermedia systems is discussed in the context of the
‘Notecards’ system developed at Xerox PARC [Halasz 88]. By examining the
limitations and strengths of Notecards, the following issues were described as being

important for consideration in the next generation of hypermedia systems:

80

Chapter 3

1)

2)

3)

4)

5)

Search and query in a hypermedia network.
Navigational access is not sufficient for hypermedia, instead
effective access requires query-based access to complement

navigation.

Composites augmenting the basic node and link model.

The two primitives of the node and the link are successful but
insufficient. Halasz states that Notecards suffers from a lack of
a composition mechanism, and the nearest approximation involves
using a ‘filebox concept’ which was intended to provide a

hierarchical organisational structure.

Virtual structures for dealing with changing information.

The hypermedia data model of Notecards is essentially static and
fragmentary. Unless explicitly edited, the network does not alter.
In particular, Halasz points out that a network cannot reconfigure
itself in response to changes in the information it contains. A
virtual structure would support dynamically determined

reorganisation.

Computation in (over) hypermedia networks.

Hypermedia systems do not actively direct the creation or
modification of the network. Accordingly, it may be necessary
to augment a system by inclusion of an active computational

engine for specific applications.

Versioning.

This would allow users to maintain and manipulate a history of
changes to their network. Some systems - such as Intermedia -
do provide aspects of this facility, however; only single copies of
nodes are kept, but alternative versions of the entire web (the

interconnection links) can be constructed.

81

Chapter 3

6) Support for collaborative work.
Notecards is designed as a single-user system, while KMS and

Intermedia support simultaneous multi-user access.

7 Extensibility and tailorability.
The generic nature of hypermedia systems supports a wide variety
of task domains (creating, editing, displaying, storing, retrieving
and interconnecting), but is not especially good at any specific
task. In effect, the systems are useful but not well adapted to
tasks. It would be preferable for users to extend systems with
new functionality or to tailor existing functionality to better match

the exact requirements of the application.

Section 3.5: Information Browsing, Presentation and Preparation.

Given that a suitable architecture can be found for supporting multimedia
manipulation tasks, the next major problems that must be addressed concern data (or
knowledge) exploration in the resulting mixed-media environment. Results of work on
the problems of knowledge exploration comes from such fields as computer-aided
instruction (CAI) [Osin 76] and the nonlinear text or hypertext systems referred to in
section 3.3. Some database systems, such as the MIT Spatial Data Management
System (SDMS), have also adopted a hypertext approach to allow users to wander
among the information in a database. SDMS [Herot 80] provides a user with graphical

querying and presentation of the database, and will be discussed in section 3.6.

Shasha [Shasha 85 & Shasha 86] suggests a fragment theory for retrieval and
knowledge exploration in his data model called NetBook. The knowledge is
represented in the forms of text fragments (including a picture, an experimental
simulation, or a live performance) with relations defined among them, and queries in
a natural language form helps users to access the appropriate fragments. This system
clearly has a requirement for an information architecture that provides a structure for

representing not only the data of either mixed or single types, using concepts that

82

Chapter 3

resemble in some ways the NetBook text fragments, but also the relations between the
fragments. In practice, however, the primarily text-orientated model offers rather

limited control or variety in presentation content, and minimal interaction options.

A complex mass of information can often be more clearly presented with the
appropriate use of colour and dynamic representations which are available on most
examples of graphics and engineering workstation technology. The graphics editing
system developed by Feiner, Nagy, and Van Dam at Brown University [Feiner 82] uses
this approach in preparing and presenting technical manuals. Their system uses colour,
very high resolution graphics, and menu selection to provide flexibility in scanning and
re-presentation of a document. Brown and Sedgewick of Brown University have
demonstrated the ability to see dataflow and control structures of algorithms and
software as they execute in their algorithm simulator and animator, BALSA
[Brown 84]. BALSA uses a dynamic graphic interface as the natural mode of
interaction. All these tools aid software engineers and computer scientists in

understanding and ‘feeling’ the action of software or algorithms.

Another important and relevant research issue concerns systems used for the
preparation of documents. Examples of existing systems that allow for interactive
document editing and formatting operations are Janus [Chamberlin 82] and Andra
[Gutknecht 84], of which Andra provides additional hardcopy capability on a laser
printer. Other document systems like CD-GUIDE [Brown 86bJ* allow for interactive
viewing and storage using a CD-ROM disk.

A renewed interest in text processing research has resulted in new text editors
and document formatters producing integrated programs that format documents
dynamically during the editing session. Examplc\s are described in [Furuta 82a],
[Gutknecht 85], and [Peels 85]. General hierarchy editors for documents, programs,

and graphics are in existence.

21: An extension to the GUIDE Hypertext system described earlier.

83

Chapter 3

Hierarchy editors consist of interactive programs which browse through and
modify, tree-like structures of data. Text-based editors such as Walker’s ‘Document
Editor’ [Walker 81] and PEN [Allen 81] are used specifically for document editing.
Some editors (such as Walker’s) include facilities for cross-referencing to show
inter-structural linking, though these are not explicitly shown in final presentations of
the hierarchical structure. Both cross-linking and topological data organisations can be
derived as natural products of one uniform structure, as seen in other systems such as
ZOG [McCracken 84] and Textnet [Trigg 86].

The design of a user interface management tool to improve human-machine
interactions is also an important concept. A discussion of User Interface Management
Systems (UIMS) is presented by Olsen et. al. in [Olsen 84], and identifies some of the
major problems that UIMS research should be addressing. Other discussions on the
UIMS concept can be found in the papers [Thomas 83], [Enderle 84a] and
[Enderle 84b]. Interesting topics covered include: the interface of the UIMS to the
application and graphics; the structure of a UIMS; and special CAD aspects of UIMS.

Traditional document systems show very little of their internal state to the user.
Developments in screen editors, spreadsheets, and electronic desktops are making use
of powerful graphics on workstations to show as much of the system state as possible
on the computer screen. Examples are Xerox Star [Smith 82], Apple’s Lisa and
Macintosh machines [Ehardt 83], Alis [Applix 84], and Framework [Harrison 84]. A
concise review of the current approaches to the use of windows in screen dialogues by

application systems can be found in [Konsynski 85].

Commercial document environments like Framework by Ashton-Tate and
Symphony by Lotus Development Corporation [Jadrnicek 84], and others, provide
extended capabilities, such as spreadsheets, word processing, database management
systems, graphics, and communication software. Framework provides an ‘outline’
function that allows users to create documents with an outline; entries in the outline,
such as a graph or a spreadsheet item, can be imported from different component
packages. The way these systems integrate different tasks has caused an imbalance in

that each package has grown around the success of one subsection of the task activities

84

Chapter 3

(for example, spreadsheet or word processing), and the others are only half-heartedly

supported.

We have seen that an important aspect of information presentation concerns the
tools used to support the presentation. Extending this further, we must mention the
current research into Graphical User Interfaces (GUI’s). A loose definition of a GUI
is that it is a user interface that operates in a computer’s graphics mode. However,
this can exclude some packages that would otherwise be categorised as GUI's®. The
Microsoft company has become very interested in GUI concepts, not least because it
is a primary developer for the OS/2 Presentation Manager package, which embodies
many of the fundamental GUI concepts. Microsoft has defined a true GUI system as
satisfying six requirements [PCMag 89]:

1) It exploits bit-mapped displays, offering true WYSIWYG screen

representation of printed output.

2) It is a graphically orientated interface that makes extensive use of

icons.

3) It has good screen aesthetics: it looks good and is a pleasure to

work with.
4) It allows direct manipulation of on-screen elements.
5) It embraces the object-action paradigm®.
6) It offers standard, expected elements such as menus, windows and

dialogue controls; in order to provide consistency across

applications.

22: For example, Desqview from Quarterdeck, or the HyperPad product discussed earlier.
23: The user chooses an object first, then selects the action.

85

Chapter 3

The above list is rather subjective, considering its source, and is rather selective
in describing what a GUI is. By including such elements as multiple-application
support, and inter-application communication, we can envisage more accurately the
facilities expected from a GUIL. In theory, a GUI should make applications more
powerful, not least because of the common application interface. However, many
applications are sufficiently complicated that it would be impractical to standardise on

a specific interface orientation.

Despite this, the goals of GUI’s - to save time, to make programs easier to use
and more powerful, and to ease the learning curve - are all important features that are

demanded more frequently from current applications.

Research into GUI’s is being carried out and has resulted in a number of
applications, including NewWave (Hewlett-Packard), Open Look (Sun Microsystems)
and OSF/Motif (Open Software Foundation). NewWave in particular is interesting,
because it runs under another GUI, the simpler Microsoft Windows package. It
incorporates an object-orientated paradigm into its construction to extend the normal
level of GUI capability. As a simple example, by moving a document icon to a
printer icon, the document will be printed without further operator control being

required.

Section 3.6: Information Structuring.

The drawback of existing integrated editor/formatters is that the high-level
structure of the document is not well-represented [Furuta 82b]. Aldus Pagemaker on
the Apple Macintosh is a good example, in that it exhibits cut-and-paste operations in
preparing mixed-media documents, but with no proper support for overall data

structuring.
Hewitt [Hewitt 77] demonstrates the use of ‘actor message passing’ in viewing

control structures, where the actors are purely active objects with no recognition of any

data structures. The OPAL system [Ahlsen 84] has the same focus with the concept

86

Chapter 3

of a ‘packet’ as the principal data and action structuring mechanism. A related area
of research into actors formalism is used in a programming system by Byrd et. al. at
IBM Thomas J. Watson Research Center [Byrd 82].

Taking the concept of information structuring to a more formal level moves us
into the domain of databases, and particularly relational database systems. Notably, the
earlier work of E. F. Codd [Codd 70] in developing a relational theory for data was
to be used as a framework for database systems. His model covered three aspects that
all database management systems have to address, including integrity, manipulation, and

importantly, structure.

Structuring of information is particularly important if the data is being used
within a distributed environment. The structure must necessarily reflect limitations in
the storage mechanism unless the structure is defined in terms of virtual storage - a
concept that is as yet undeveloped. Clearly, centralising the information storage makes
backup and transaction processing more straightforward. Centralising also has the
immediate drawbacks of reducing localised control (implying reduced independence)
and further a dependency that the central information store remains operational at all

times.

Sarin et al have considered the processing of data updates in a database
architecture, particularly in a distributed architecture [Sarin 87]. The problem is to
ensure that data updates which arrive at a site must be saved in a fashion that
preserves mutual consistency, while at the same time allowing for removal of sites that
are excluded for reasons of site crashes or other causes. In effect, the multiple sites
must be able to allow updates at any time, and to reconcile database copies after they

are notified of updates at other sites.

There are examples of information processing systems that have been developed
with minimal concern for the actual storage of the potentially large scale quantities of
varying data types. Mayer [Mayer 85] describes work carried out during the
development of a computer conferencing system, in which emphasis was initially upon

the user viewpoint:

87

Chapter 3

‘... we did not immediately start worrying about file layouts, record
structures and the like. We started thinking about how the user would
view and use the system and then worked backward from there. Of
course, the design process is never quite that simple. We had to go
through several iterations, because something that we’d thought might be
a great idea at the user level turned out to be impossibly complicated to
implement but could be done easily with a small change to the user

interface.’

This strategy of developing first the specification of the system and then using
this to design the architecture - with inevitable requirements for re-design - is one that
was applied for the prototype system described in this thesis. Mayer recognises that
this ideal is more difficult to achieve in practice, but an analysis of the various
information processing strategies is very helpful in deciding upon the primary
requirements for a general information processing architecture. The importance of the

storage architecture is further acknowledged by Mayer:

‘In a system of this sort, the files created by the prototype tend to get
inherited by successive generations of the software. Think how annoyed
users would become if the old conferences became unreadable whenever
a change to the software was made. Thus, the organisation of the
information (storage architecture) in the system can have profound
implications to later development of the software. You can’t just say
(that) with version 4 we’ll go to a totally new file organisation because
then conversion programs will need writing, and some of the imaginable
conversions may not even make sense because certain necessary data was

never stored in the original files.’

As mentioned in section 3.5, Herot has discussed the concept of spatial data
management, describing it as a technique for organising and retrieving information by
positioning it in a Graphical Data Space (GDS) [Herot 80]. In contrast to conventional
database management systems, a spatial data management system (SDMS) presents the

information graphically in a form that encourages browsing and requires less prior

88

Chapter 3

knowledge of the contents and organisation of the database. Herot summarises the
differences between spatial data management and standard database management

systems as follows:

1) Motion through the database is simple and natural. A single
control, the joystick, allows the user to explore the entire database.
Conversely, conventional symbolic query languages require the use

of special syntax and semantics.

2) The database is its own dictionary. Conventional DBMS require
a data dictionary to define the structure of the database. In the
SDMS, the graphical data space is its own description, and rather
than specifying a relation and attribute name, the user traverses

the data space until he reaches the desired information.

3) The presentation of the data encourages browsing. An SDMS
display almost always gives more information that is needed. In
conventional DBMS, every piece of data must be explicitly
requested, and it is difficult to place related data together. An
SDMS allows the database administrator to arrange the

information according to any chosen attributes.

4) The placement of data can convey information. This works in
much the same way that a person can find some needed
information by recalling where the paper is that has the required
information. Examples of this concept in an SDMS include the

arrangement of data according to freshness or priority.

5) Graphics can be used to convey information. The most familiar
forms are histograms and graphs. Representations can also be
used to depict trends that would otherwise be hard to formulate

into symbolic queries.

89

Chapter 3

6) The system can accommodate new data types, such as

photographs.

Section 3.7: Computer Architectures.

In several of the current systems, there has been the implicit requirement for
further devices beyond those available on most workstations. As well as the now
standard workstation combination of keyboard, mouse and high-resolution display, there
is a need for such peripheral devices as sound, video, and graphics drivers. Currently,
computer architecture - particularly that of workstations - makes no provision for such
features as part of the orthodox system paradigm. Accordingly, where such
mechanisms are to be attached, the resulting connection is not optimised for the

architecture, with resulting delays to the operation of the devices.

Such difficulties are especially prevalent when the system is intended for
multi-user application, and large quantities of data must be transmitted at very high
speeds. The extremely high bandwidth required for - say - video signal exchange
precludes all but the highest performance data transmission systems from accomplishing

the desired results.

Much research is directed towards the problems posed by Distributed
Multimedia Information Systems (DMIS) [Aceves 85b], particularly for those
environments where workstations are to be connected using high-speed local area

networks. Such systems have two main requirements:

1) Provision for store-and-forward data interchange (such as
electronic mail), where the interchange is not required on a real-
time basis.

2) Real-time interchange (such as for conferencing), where immediate

response is required.

90

Chapter 3 .

A good summary of the problems and issues can be found in [Ngoh 89], which

concludes amongst other points that standard data transport technologies:

‘do not provide an adequate mechanism (for information interchange

between DMIS workstations)’.

Nor is a broadcast technology sufficient. Although such a system would have
the advantage that only one transmission is required to send data to those hosts
participating in the DMIS, it follows equally that hosts not participating in the DMIS,
or not requiring the transmitted data, have a considerable increase in their workload in
order to identify and filter out the extraneous material. Unfortunately, DMIS tend to
produce large quantities of data that would require broadcasting, so the issue is not one

than can be discarded as being of minimal implication.

With regard to the actual processing of data, there is little doubt that a
multi-tasking architecture is mandatory as the operational paradigm. The more
important question is regarding the nature of the multi-tasking implementation. Current
popular realisations of the concept are based upon the simplistic model of a single
central processing resource allocating units of job time to a series of tasks. As the
number of tasks that must function concurrently rises, so the inadequacies of this
approach become manifest. Furthermore, for a single processing unit to be capable of
executing all the possible jobs that will be required, the processor must be generalised

in its capability - regardless of whether it is based upon CISC* or RISC* technology.

However, if it is accepted that significant numbers of multi-tasking jobs require
only a limited instruction processing capability, and further that the individual tasks
executing under the multi-tasking environment are modest and concise, then the need
for complex processors is reduced. Instead, it is perhaps worth considering the
alternative of a multi-processor computer architecture, with a large pool of elementary

processors for the normal and simplistic tasks that form the ‘bread-and-butter’ of

24: Complex Instruction Set Computer.
25: Reduced Instruction Set Computer.

91

Chapter 3

multi-tasking computation, and a smaller administrator pool of more powerful

processors to coordinate and control the lower level processors.

The problem then arises of how to control the resulting architectural complexity.
As [Randell 86] indicates:

“The task of implementing a large and sophisticated computing system
is often unduly costly and time-consuming, with the resulting system
exhibiting inadequate performance and reliability, because of excessive

system complexity.’

Recognising that a good way to cope with system complexity is through the

principal technique of ‘divide and conquer’, Randell states that:

‘Complexity can be reduced significantly by ensuring that the system is
constructed out of a well-chosen set of largely independent components,
which interact in well-understood ways. However, the task of structuring
a system, i.e. of choosing and defining appropriate components, can be

very difficult.’

The problem is considerable, and one of on-going research; not just in terms of
pure computer architecture, but also with regard to network-based distributed systems.
Randell proposes a system based on a hierarchical approach, with specific research
work implemented on an addition to the UNIX file system structure. The file-naming
scheme within the system is extended up beyond the hosting machine so that the file
systems are further categorised by machine, department, and so on. Naturally this
raises further problems of security, performance and reliability; but these issues fall
outside the scope of the current discussion. Randell’s work emphasises the following

points:
1) The principal system component is an ‘ability’ that: "I have

termed ‘distributedness’, which makes a single set of hitherto

independent systems function as a single coherent system."

92

Chapter 3

2) That the approach taken to provide system abilities is one of

‘simplifying generalisation’

3) That the computer science world has concentrated unduly on the
design of sequential and centralised systems: "This concentration

is perhaps the true Von Neumann bottleneck."

4) The environment of people, procedures, machinery, etc., that a
typical large-scale computing system is intended to fit into, and
contribute to, is itself a distributed system, usually possessing an

enviable degree of flexibility and resilience.

Section 3.8: Groupware.

The purpose of Groupware is to provide both structure and support mechanisms
to aid users in working together. Accordingly, [Tazelaar 88] defines it as either

‘software for a group’ or alternatively ‘computer-supported cooperative work.’

Engelbart et al discuss the groupware concept under the name of Computer
Supported Cooperative Work (CSCW), and define it as dealing with the study and
development of systems that encourage organisational collaboration. They describe
CSCW systems as falling into three categories [Engelbart 88]:

1) Tools for augmenting collaboration and problem solving within a

group geographically co-located in real-time.

2) Real-time tools for collaboration among people who are

geographically distributed.

3) Tools for asynchronous collaboration among teams distributed

geographically.

93

Chapter 3

Engelbart’s system (NLS/Augment) was designed to support members working
in varied disciplines, including software engineers, managers and social scientists. The
underlying architecture was hierarchically structured, with the file structure separated
from its content. Originally, nodes were strictly textual in nature, but later referred to
a ‘property list’ of content nodes of varying types, including other hierarchies. The
goal of developing the system was based on the belief that creating tools for
collaborative knowledge work was essential to the necessary evolution of work groups
in increasingly knowledge-rich societies and for increasing organisational effectiveness.

Until the recent interest in CSCW or groupware systems:

‘... most developers limited their analyses to technical issues and ignored
the social and organisational implications of the introduction of their
tools; such considerations were, however, key to our work.’
{Engelbart 88]

Engelbart et al go on to discuss the value of such systems:

‘There is growing recognition that some of the barriers to acceptance of
fully integrated systems for augmenting groups of knowledge workers
may be more significantly social, not solely technical. The availability
of rapidly evolving new technologies implies the need for concomitant
evolution in the ways in which work is done in local and geographically

distributed groups.’
Going further with regard to the issues of integration, the writers state that:

‘Aspects other than introducing new technological tools into the work
space (e.g. conventions, methods and roles) are at least as important to
the success of any CSCW system. The elegant tools available now and
in the future - superlative graphics, artificial intelligence services, and so
on - only make sense in an integrated workshop of tools in which
information may be exchanged. The tools in such an integrated

workshop need to be conceptually and procedurally consistent.’

94

Chapter 3

In effect, Engelbart et al are agreeing with many other researchers in regarding

a generalising of information processing and handling strategies.

Work by Terry Winograd puts the groupware concept into the perspective of

communication issues:

‘Whenever you convey information, you are embedded in a context that
makes it relevant to getting something done. The meaning of the words
serves as a starting point for interpretation that leads to networks of
interconnected actions. By directly addressing this universal dimension
of human communication, we are beginning to develop groupware that
offers a new simplicity of design and effectiveness of management.’
[Winograd 88]

Section 3.9: Summary.

Much of the work of the researchers described here has focused on diverse
issues. However, from a more general perspective, there are a number of conclusions
that have been reached by each research project that can be applied across a much
wider range of applications, thus having significant effect on the development of an
enhanced information system architecture. Such a structure will require consistent
mechanisms for control and data organisation, as well as the integration of components

other than the basic technological tools.

During the discussion of multimedia systems, a series of five points were raised
which represented definitive characteristics for such systems. We can reiterate the
points as follows:

1) Promotion of connections between ideas and comments.

2) Support for flexible control and presentation.

95

Chapter 3

3) Flexible editing tools.

4) Flexible retrieval, reading, and searching capability.

5) Preservation of historical integrity.

These issues are clearly of relevance, not just to multimedia systems, but to any
system purporting to provide information processing support. Some aspects may be
less important than others in certain circumstances, and vary depending on the focus

of the application system itself.

For example, hypertext systems are particularly concerned with the way in
which the linkage mechanism between the data fragments can be used in a variety of
ways according to the users preferences. The nature of the links is rather simplistic,
but does indicate the value of the property of a relationship existing between items of
data. Furthermore, links hint at the fact that relationships are of different value to
different users - some links are followed, others are not, according to requirements.
Correspondingly, relationships may mean something to certain users, but nothing to

others.

As [Brown 87] suggests:

‘If presentation software simply tries to imitate a paper document on the
workstation screen, we believe that, in spite of future hardware
improvements, readers will continue to prefer paper. The reason is

simple: the imitation will always be inferior to the real thing.’
By way of contrast, a system for on-line documents can offer great advantages
as a result of the facilities for interaction. Multiple windows allow the comparison of

different pieces of information.

Herot’s work gives a large number of clues to the structuring of data within an

information architecture, in such a manner as to offer a number of advantages to the

96

Chapter 3

ways in which the data can be organised, accessed and extended. Taken in conjunction
with Randell’s preference for simplifying generalisation, we are in a position to work

towards the derivation of an enhanced information architecture.

97

Chapter 4.

Consideration of Current Systems and Related Research.

Section 4.1: Overview.

In this chapter, we are interested in considering the implications of the results
of current work on computer-based information systems. The introduction of
potentially powerful generation systems has seen only limited success, despite the fact
that they should in theory produce more capable systems at reduced cost or effort.
Even systems such as C.A.S.E. tools, which incorporate aspects of application purpose

as well as application function, have been less successful than had been hoped.

In part, this may be seen as being a result of pre-occupation with compatibility
while steadfastly refusing to backtrack and consider implications and applications of
lessons learnt. Integration is often promoted as being ‘a good thing’, but in a manner
which implies that a fast car is ‘better’ than a farming tractor because it is more
‘flash’, although the fast car is probably incapable of ploughing fields. In other words,
integration is often viewed as a good idea, because it makes data exchange easier. But
little consideration is given as to why the data exchange is being performed, or the
implications of the exchange. The support for integration is generally at a very
low-level within a system, which means that effects on the higher-level abstract tasks

are poorly planned.

Integration is sometimes viewed as being a prototype mechanism for supporting
computerised lateral thinking. By making provision for cross-connections between
multiple applications and multiple users, it is hoped that good ideas may result. But
using existing analogies as the first design stages is not necessarily a good thing. An
electronic book would be severely curtailed if it could only mimic a paper-based book,

because of the exclusion of potential cross-referencing advantages.

98

Chapter 4

Similarly, attempting to use the human brain as a processing model implies that
we are trying to enable computer systems to imitate human thought processes, which
may not necessarily be a productive approach. Management concepts generally
recognise the potential advantages of assigning groups to certain problems, rather than
individuals. A group or team may be able to draw on individual talents, expertise or
experience in assigning specific sub-tasks or problems, so that the overall efficiency of
the team is improved. However, this relies upon the fundamental assumption that the
team can be organised in a manner conducive towards cooperation and productivity

rather than constraint and inaction.

This means that for problems where multiple tasks can be identified, suitable for
solution by multiple processes, there must be a coordinating mechanism to ensure
successful integration of the activities. The coordinating mechanism itself will be
dependent upon the fundamental understanding of the problems of group organisation.
Thus, simply forming groups of people to solve complex problems does not of itself
guarantee greater productivity or a successful result. Similarly, constructing
computerised systems that attempt to mimic human processing by duplicating specific
processing tasks cannot guarantee any benefits, because there is as yet no real

understanding of the coordination or integration tasks that we perform automatically.

However, the concept of integration does have direct relevance regarding the
arrangement or structuring of data. In order to data to flow, there must be reasoned
organisation to the routing or paths. The implications of this in terms of results and
conceptual re-adjustments must be incorporated: this requires that feedback be modelled
and incorporated. Understanding these issues would appear to be vital if we are to

attempt the construction of systems that support our work.

Section 4.2: Introduction.

We have now considered some examples from the range of current products and
research projects, each of which addresses or uses specific instances of the many tasks

of information organisation and processing. Some of the products described attempt

99

Chapter 4

to provide a generalised package that deals with problems as a whole - other systems
are intended to contribute to the overall solution, but leave the specification and
implementation of that solution to the user or to other packages. Similarly, the
research material discussed tends to address specific issues or cases within larger scale
topics. The projects have normally been very successful in achieving the target goals.
However, the act of establishing a target goal means that an end-point has been
identified, and upon reaching the goal, the work will often be deemed complete and so

is concluded.

In this thesis, we will attempt to go further than the original end-points by
considering in some detail the material conclusions of the various research studies.
Significantly, we will discuss the work from a perspective that is not limited by
focusing on the original study direction. Using this approach, it should be easier to
recognise and evaluate some of the implications of both intended and accidental study
results. This will help with the task of identifying alternative applications and

contributions from the research conclusions.

In this chapter, we will be looking in more detail at those characteristics of
current systems and research which relate to general information administration and
handling. This will enable us to work towards identifying the problems that are the
focus of this research, and subsequently lead to the development of possible solutions.
Consideration of existing products will help to identify not the actual attributes of what
an information system should offer, but instead to evaluate what attributes are actually

desired in the light of the success (or failure) of specific systems.

Section 4.3: Discussion of Current Systems.

A common and key feature of the example systems is that they are all
‘self-interested’. In other words, it is assumed that the system is intended as a
clearly-defined component in a task, and may even attempt to describe the entire
solution for carrying out that task. Such products can be labelled ‘focused application

systems’ as distinct from the more open-ended ‘diverse application systems’. Fourth

100

Chapter 4

Generation Languages (4GLs) and Applications Generators are good examples of
focused systems, although at first sight they might appear to be more ‘cosmopolitan’
in their approach. The purpose of the packages is to attempt to specify as much as
possible of the final program code for an end-user application. Yet in most cases, the
4GL or applications generator never produces more than 80% of the final code, and
even that is produced by working with established modules [Gibson 89]. The
remaining 20% of application code still has to be carefully appraised by a human
system developer - at best to fine-tune its performance, and at worst to re-engineer
from scratch using guidelines issued by the initial generator. Thus such packages could
be viewed as little more than advanced library managers that have analogies in the
object-code handlers of straightforward program linkers. Furthermore, the material
produced by a 4GL or Applications Generator is frequently self-referencing, imposing

limitations on the customisation that can be carried out by developers.

This inflexible approach for system development can also make it very difficult
for the end user - who should in fact be the main focus of interest and support - to
develop a complete system with the required flexibility for the task at hand. Only in
certain special cases will development systems acknowledge the existence of other
packages, a characteristic which is even more prominent for packages from different

software houses.

The exceptions tend to involve recognising the existence of indisputable
standards, such as the Lotus or dBase programs on the IBM compatible machines, and
an acceptance of the standard format used by the data files of those programs.
However, the acknowledgment of such a standard is usually rather ‘grudging’, and
typically takes the form of a data conversion process that is typically one-way. For
example, Ventura Publisher, a powerful Desk-Top Publishing package for the IBM
machines, is perfectly capable of incorporating text or graphic images from ‘external’
packages into the specific document; but once those components have been correctly
integrated within Ventura Publisher, it is not particularly easy to ‘export’ the
components out again as they will have been ‘glued’ together into a larger (and
hopefully better) whole. Other packages will often provide conversion programs that

convert external data to the preferred format. For example, the IBM-based Word

101

Chapter 4

Perfect word processing package provides a multi-purpose conversion program to
convert data files created by other word processors. But the conversion program only

works one way.

An alternative approach is to try and standardise on an agreed format for data,
and this has been the objective of the ODA and SGML document description standards.
Any systems that work using these standards should be able to successfully exchange
documents. However, the origins of these two standards places restrictions on their
suitability for general purpose data exchange, particularly with regard to those
processing tasks which do not necessarily have a meaningful representation as a

document - for example compiling a program.

Moving to consider the issue of development systems such as C.A.S.E., there
is little doubt that the objectives of the concept are earnestly sought after, particularly
in view of the generally recognised backlog in development of software [Akass 89].
The problem is that the current implementations of C.A.S.E. concepts suffer from
over-promotion coupled with a lack of tool standards and integration. According to
Cally Ware [Ware 89]:

‘Too much has been written about how C.A.S.E. will solve all your
software development problems at a stroke. How it is, in short, a
panacea that will automatically compensate for poorly designed systems,
untrained or unmotivated staff, or a lack of real commitment to get

things right, now.’
In order to be of benefit, Ware suggests that it is important to recognise that:

‘C.AS.E. is not simply a collection of tools. It requires a combination

of skills and good management to make it work.’

Amongst other vital factors, Ware includes the following as being essential to
the success of C.A.S.E.:

102

Chapter 4

1) A methodical, structured approach to development is essential; and

must be rigorously enforced.
2) Any software project must be managed.

3) A C.AS.E. tool that will not easily link to other tools (word
processing, desktop publishing, project management, application
generators, mainframe dictionaries, etc.) will only ever be of

restricted usefulness.

The concept of C.A.S.E. is fundamental in depicting an important aspect of
information systems. No matter how good the underlying tools used for processing the
raw data, this can all be wasted if the higher level administration, control and
integration tasks are neglected. C.A.S.E. does not of itself have a direct relevance to
information systems, except that it embodies a high-level administrative function of the

kind that must be present in any information system of value.

Inevitably, however, as a focused application system becomes more detailed, so
the data and control structures become increasingly low-level but complex, with a
corresponding reduction in export capability. If there exists a clear industry standard
(such as Lotus 1-2-3 for spreadsheets on personal computers) then there is concerted
effort on the part of system developers to permit relatively easy accommodation of the
standard as a sub-set of the product capabilities. But for applications which do not
have a notable market leader (for example, the ‘Personal Information Manager’
applications on personal computers, or C.A.S.E. tools on larger systems) then there is
little in the way of consensus in development of standards or even agreement on
exactly what facilities should actually comprise the application. Each developer is
attempting to produce the definitive program or package that will become the standard

in that application.
Nevertheless, the desire for greater cooperation between packages running on

more powerful computers has led to the development of extensive and advanced

architectures such as the PC multi-tasking system Microsoft Windows and its derivative

103

Chapter 4

OS/2 [White 87], as well as the associated Dynamic Data Exchange (DDE) concept
[Schifreen 88]. Any application package which is intended to run successfully ‘within’
Windows must be capable of handling DDE satisfactorily. This enforces a degree of
integration between packages. DDE has a number of defined data exchange formats,

any of which may be used between any two existing Windows applications.

However, the DDE concept only provides for a higher conceptual level of raw
data exchange. This is insufficient to provide for the exchange of information, because
data alone - no matter how detailed or complex - is not a complete definition of true
information. Accordingly, while DDE is to be welcomed for its advance upon existing
systems, it must be acknowledged that there is much work yet to be done to extend

integration beyond mere data exchange.

Thus, current systems based on clearly defined applications (such as
spreadsheets) still bypass the major issue of the integration of information handling
processes. This means that although the raw data can now be exchanged and
processed reasonably well, there is little or no cooperation between the applications
themselves with regard to the data. Typically, at any one moment in time, only a
single application will have ‘exclusive’ rights to a set of data - it will define the
format used for storage of the data, and only that application can be ‘trusted’ to

modify the values in the data set.

The problems of sharing form the subject of considerable research, and this is
particularly true with regard to the sharing of ‘resources’ available on computers -
especially multi-user systems. One approach used is to view the mechanics of resource
access as being similar to data access mechanics. In effect, the representation of
resources can be handled as a form of data type (in much the same way that certain
operating systems® treat all devices as files). Considerable research has gone into the
complex intricacies of resource sharing, but generally with emphasis upon the particular
problem of resource control which is required to prevent the ‘deadlock’ situation,

where two or more applications both seek access to a given resource, but will not yield

26: For example, UNIX.

104

Chapter 4

the rights they currently have on other resources. Thus this research is only of limited
assistance to the problem of data exchange. For multi-user and multi-processing
systems, where our definition of resource can be taken to much higher and more
abstract levels, there is a need for study into the problems of rights of access, ensuring
integrity of the resources, and consideration of what forms of access are considered

valid, as well as when they may be permitted.

Section 4.4: Discussion of Current Research.

More successful aspects of modern application systems can be found in those
technologies that have evolved out of meticulous research”, and which have a more
considered viewpoint for the end-user. Many of the systems go to great lengths to
ensure that the user is given a more coherent presentation of the data - reflecting the
importance of the environment in which the user is working. However, systems based
on - for example - hypertext or multimedia data architectures do not always take to
the ultimate conclusions all the analysis and development ideas which are necessary to

provide the user with a truly enhanced environment in which to work.

In spite of some of the current trends in research emphasis, it is not enough
merely to try and ‘computerise’ existing techniques for data handling, because existing
‘normal’ computer data types® are low-level and limited in their scope. This remains
true even when the manipulation of data types is performed within the context of
‘integrated’ systems. There are strengths and weaknesses to both static print and
dynamic electronic media handling, not least in regard to the tools needed for
performing the tasks necessary for production in each area. Much work has been done
with regard to computerising the data normally held in paper form; the primary
objective being the development of the ‘electronic book’. A major trend of research
in this area [Yankelovich 85] is to identify the strengths and weaknesses of existing

paper-based books, and use them:

27: For example, Hypertext systems (Hypercard), Parallel processing (the INMOS Transputer), and
Object-Orientated systems.

28: Numbers, Characters (or strings), and Logical (boolean) values.

105

Chapter 4

‘to formulate the capabilities that electronic document systems should
have in order to maximise the advantages of the electronic medium and

overcome some of the disadvantages inherent in the print medium.’

In other words, the attributes of paper-based documents (both positive and
negative) are being used as the first specification of the capabilities of the electronic
book. This is sometimes done without questioning the validity of such an approach,
or regarding the possibility that subtle but implicit restrictions could be incorporated
into the elementary design. There is little consideration of the fact that such a strategy
offers little opportunity to introduce the potential improvements facilitated by computer
systems, and which must necessarily be incorporated at an early stage of the system
design. Yankelovich et al point out that the most important property of paper-based
material - such as books - is that the data is static. Once committed to paper, a book
cannot be altered except by reprinting or physically damaging the record; normally,
readers are not able to change or manipulate the contents. In their study, Yankelovich

et al conclude that:

‘the static nature of books is both their biggest asset and their most

serious shortcoming.’

For some reason, this statement is not fully justified, and the only apparent
examples of the disadvantageous nature of static print offered are that it cannot handle
sound or motion, and that it is difficult to create multiple indices. There is minimal
comment on the advantages of static existence, beyond the mention that integrity of
information results in (potential?) historical value, and that providing information
integrity within a system can reduce problems of unreliable hardware. Other
advantages would surely range from the trivial (relatively impervious from damage by
coffee spills) to the significant (legal admissibility), not to mention the simple aesthetic
benefits and convenience of being able to hold a printed page, the ease of scribbling

notes, and the extremely low cost.

Disadvantages of paper documents would primarily emphasise issues relating to

the need for skimming or browsing. Readers often require merely an overview of a

106

Chapter 4

text, or quick and easy access to relevant material in depth but which is not obscured
by irrelevant detail from other topics. Indexing, good structuring and complete tables
of contents help reduce the dilemma, and an abstract is good for an overview - but
each scheme depends upon someone else’s viewpoint, and so remains as merely a patch

for the problems.

However, the advantages of an electronic book were much ea;sier to define,
having been described as early as 1968 [Engelbart 68]. The benefits of using
computers in the construction of electronic books can be seen when they are used for
creating connections, or ‘webs’ between related material. With normal printed text,
ideas which result from the reading should ideally be recorded somewhere, and
typically they are kept as annotations next to the material that induces them, or as

totally separate records which may subsequently be lost.

Yet both of these have the disadvantage of not promoting easy cross-referencing,
nor is it a simple matter to locate such notes at a later date. Consider as a single
example the loss to mathematicians of Fermat’s last theorem®. Many researchers have
stressed the benefits of working with connections between data, and the value of ideas
leading to the derivation of new connections. The clear implication is that material
held by an electronic book would be much more suitable for linking with connections,
because of the potential for flexible organisation of material. It is this concept that

subsequently introduces the idea of hypertext.

Yet the intrusion of enforced structure into the material can also result in less
flexibility for the computer based document, when compared with the paper document.

According to Hansen et al [Hansen 88]:

29: Fermat’s last theorem was a proof of the hypothesis that the diophantine equation:
X"+ y'=2z"

only has integer solutions for n = 2. He noted in the margin of a text that he had found ‘a marvellous
solution to the problem, but do not have space here to record it’. For many years, mathematicians
expended considerable effort in trying to reproduce the proof, but without success. Current thinking is
that Fermat’s proof may have been flawed. The loss to mathematics could therefore be described in
terms of effort rather than result. Equally, however, the effort resulted in the gaining of many other
theorems and a greater understanding of the subject.

107

Chapter 4

‘Several factors can influence the behaviour of users as they read and

write with computers.’

Such factors include page size, legibility and responsiveness. Yet it would seem
that the links and structure of the computer-based document, and the mechanisms used
to follow them, are more significant in channelling the options available to the reader

into a specific but limited set of possibilities at any one time.

Once the webs of connections have been established, it is possible to use the
computers to focus on the connections themselves rather than the data that they
interconnect. This enables an ‘overview’ of the data to be considered, providing a
visualisation of the structure of the data. Beyond the manipulative advantages of
computer-based electronic books themselves, comes the additional and significant
potential for supporting inter-communication between users of the material, whether
they are originators (the authors) or everyday readers. Clearly, this offers much in the
way of enhancement for learning, discussion and general research; but there is also the
issue of information integrity, and this becomes a more significant problem with the
incorporation of the ‘multiple book’ concept. An electronic book could come in a
number of ‘editions’, each of which could be selected or viewed by multiple readers
according to need or preference. Extending the idea, academic (textbook) material
would rarely be considered complete, but instead viewed as offering only a limited
contribution to a potentially massive linkage. In order for this extensive data group to
retain its consistency, revision access must be directed or controlled. Therefore, it
should be possible for the data to have associated attribute records, which - amongst
other things - will describe the various permissions that the reader or reader category
has with regard to that data object. Such attributes would enable a ‘filtering process’

to identify material that can be altered by the reader.

Such a system naturally lends itself well to placing restrictions upon certain
sections of the data (perhaps for security reasons), since unauthorised readers would not
be permitted to retrieve the secured sections of data. This further means that multiple
readers with selective read- and write- permissions can have varying views of the

electronic book - in effect they would have different ‘editions’ of the same book.

108

Chapter 4

However, this same flexibility introduces potential problems with regard to the

organisation of the data, as recognised by Yankelovich et al:

‘as the number of connections and quantity of information increases, so

does the difficulty of generating maps of the entire information web.’

Indeed, it is perfectly possible to envisage circumstances where the resultant data
‘webs’ could be considerably more complex than the data that they refer to, and in an
expanding state following multiple user accesses and manipulations or updates. This
is a major problem that overshadows all current work, and as yet has no

straightforward solution.

In a sense, multimedia systems are the precursor to hypertext systems, even
though hypertext as an idea has been around in one form or another since around 1945
[Bush 45]. The main difference is that multimedia systems are essentially directed
towards the simply specified task of handling potentially large quantities of varying
(multimedia) data types. The actual usage of the system, and indeed, the presentation
of the manipulated data, is either left almost entirely to the user of the system, or

limited to falling within exact constraints imposed by the system developers.

In a similar way, despite the great lengths to which hypertext developers go to
ensure that the presentation of data is easy, natural, and intuitive; there is still the
underlying concept of treating data (normally text) in lumps for presentation ‘a page
at a time’. The justification for this is that if information takes more than a ‘page’ to
present, it probably needs to be broken down further still, into smaller pieces. This is
deemed necessary in order to make it easier to find a way around the data, thus
establishing paths that follow links between the sections of data. As evidence of this
point, it is generally recognised that much hypertext research is addressed towards the
presentation of only a partial component of the hyperverse®, instead of first considering

the relationship between data presentation and the end-user ‘assimilating’ the data.

30: The HyperVerse is the logical extension of Hypertext systems, whereby all Hypertext systems will
merge and handle all data and media types.

109

Chapter 4 -

Additional questions of complexity can rapidly arise within a hypertext system
because of the ease with which jumps across the links can be made. Engelbart
[Engelbart 87] has suggested that in fact, a ‘hypergrammar’ should be developed in
order to constrain the authors from °‘leaping around’. It may be true that human
perception of ‘information’ is ‘spaghetti-like’ in form, yet to minimise user confusion,
the presentation of that information should be as straightforward as possible -
multiple-link possibilities will quickly begin to confuse the presentation by literally
drawing a ‘web’ over the data. These two aspects introduce a paradoxical difficulty:

to represent a complex network of data without using a complex net for exposition.

Furthermore, tools for the formation and use of hypertext systems are still at
a very primitive stage. The ability to search structures, to check links, and to detect
‘stubs’ within links is of great importance, but as yet there is no hint of an emergent
technology for the development of such tools. Despite the widespread use of word-
processing technologies, the strategies for the construction and development of
documents are derived primarily from publishing technologies dating back centuries.
And yet there is already a serious (and impatient) proposal to jump ahead to work on
the hyperverse concept, which will extend the ideas of hypertext to all media types.
Without a better understanding of the principles embodied within hypertext system
creation and access, there is a danger that hyperverse systems may be constructed upon
inconsistent or inadequate foundations. A question that must also be answered as a
matter of urgency concerns the practicality of working with the large systems implied
by a hyperverse architecture. The larger the system, the more likely that there will be
multiple contributing authors importing multiple data types, and this introduces
significant problems conceming the integrity and coherence of the data which is to be

integrated into the resultant document system.

As indicated in section 3.6, many systems are developed using specifications that
arise from examining the characteristics of existing concepts. Although this has the
advantage that much of the basic work stems from familiar circumstances, in that the
objectives are initially definable and tangible; there is nevertheless a contradictory
component deriving from the tendency to implement systems in terms of generally well

understood implementation techniques and characteristics. In other words, if an existing

110

Chapter 4

system has any basic components in common with the desired application, then it is
natural for these elementary units to be incorporated. However, the ease with which
this can be done means that often, these fundamental components are ducted artificially
into structures or circumstances for which they were never intended, and in order to
achieve the modifications, the unit could conceivably be compromised with regard to
its validity and/or accuracy. An example of this could be found in some spreadsheet
systems, which are ‘enhanced’ to include database facilities. The database functions
operate by treating the spreadsheet cells as record fields. However, many spreadsheet
functions are capable of modifying entire groups of cells, and there is the danger that
unless cells are specifically ‘locked’ or ‘protected’, then the data held in those cells
could be altered or modified thus invalidating the database application. The problem
would not arise if the spreadsheet system was not compromised by the database

extensions.

The desire to include features because they seem like a good idea or because
they reflect popular trends can be pervasive. Notably, the current tendency for
poorly-planned evolutionary patching can manifest itself throughout all levels of a
computer system, including that of the operating system or machine architecture. A
good example is found in the IBM compatible personal computer systems, which
require the PC-DOS (or similar) operating system to perform its functions. The actual
operating system itself has undergone a considerable number of changes from its
original (version one) form, which in turn was largely derived from an 8-bit
microprocessor architecture operating system (CP/M*). Consequently, most installations
of ‘super-workstation’ hardware - as typified by current 80386- or 80486-based
machines - still assume and accordingly require an older operating system technology
in order to maintain compatibility with the previous systems. This naturally inhibits

the machine functionality to a worrying degree®. The majority of computer technology

31: CP/M is a trademark of Digital Research, Inc.

32: Tests were carried out and reported in [Powell 89]. An Intel 80386-based machine running a ‘C’
program under PC-DOS took 49 seconds to calculate some results, and 35 seconds to output those results.
The same machine executing the same (re-compiled) ‘C’ program under Xenix (a UNIX implementation
that utilises the 80386 resources to the full) took 16 seconds for the calculations and 4 seconds to output
the results. These figures represent 306% and 875% improvements respectively when the machine
architecture is less constrained by the operating system.

111

Chapter 4

architectures, which are perfectly empowered to support multiple users and execute
multiple tasks, are thus restricted to single-user, single-tasking operation in order to
provide application porting facilitation favoured by implementors, but spurned by end-
users. This is clearly demonstrated in the Microsoft OS/2 operating system, which on
the one hand promotes multi-tasking and a more consistent and considered machine
architecture, yet at the same time seeks to maintain a high degree of compatibility with
the essentially contradictory PC-DOS architecture.

Section 4.5: Focused Systems and User Confusion.

The research into groupware systems has arisen from the need to look into the
communication and sharing issues in more detail. Engelbart’s conclusions
[Engelbart 88] concerning the issues required for successful implementation of

Computer Supported Cooperative Work can be summarised as follows:

1) There should be a common, coordinated set of principles over the
application areas. This particularly applies to the existence of a

common style of communication.

2) Grades of user proficiency should be recognised, as even expert
users will be novices in less frequently used domains. As
proficiency increases, users gain access to richer tool

environments.

3) There should be easier communication between domains, as well
as easier expansion of the domains. It should be possible to
move and communicate information between domains easily, and

now tools should be installed as required.

4) The system should be easily configurable by the user, adding new

tools or extending environments to suit their needs.

112

Chapter 4

5) Support services will be required, for such tasks as design and

administration, training and cataloguing.

6) There must be recognition of standards for information interchange
and ranges of hardware. It should not be necessary to presume
a particular machine or environment. Information exchange and

representation should be possible across system environments.

7 Methodologies will be required to augment the knowledge
workers’ community, as CSCW technology alone contributes only

to the tool system.

8) There must be reconsideration of the roles and organisational
structures within groups, which necessarily have the potential for

change with each introduction of new technology.

As an example of the first point, Engelbart cites the standard user interface for
Apple Macintosh applications, which are consistent in their common method of
interacting. However, the preferences or suitability depend also on circumstance, so
that the HyperCard system on the same machines has a different interaction

mechanism,.

Given the data presentation capability of existing systems, it is clear that the
ideas and technology necessary to handle individual information components already
exist, but in isolation from each other. In order to build more advanced information
systems of the type described in this thesis, it is vital to give consideration to the
integration of the components in accordance with the ideas developed during groupware
research. Amongst other things, this will directly affect the ability of user to control
or ‘navigate’ the process of data adminstration and presentation. In order to increase
the potential of the system, it must be possible to ensure that the components of the
system can be as closely associated (or integrated) as possible, since it is unlikely that
any one system will supply sufficient tools to deal with all eventualities. Associating

the tools will mean that it will not be necessary for any one tool to try and do all the

113

Chapter 4

potential tasks, and instead to concentrate on the specific job that can be done well -
at maximum efficiency and speed. The more integrated a set of system tools are, the
less easy it is for a user to become confused through having to learn a new set of

techniques for using each tool.

Additionally, an extension to the processing model providing integration of
resources means that positive and negative feedback properties present within most
systems can be modelled, reflecting more accurately the actual circumstances of the
tasks. Feedback can be defined in computer terms as the ability of a machine to use
the results of its own performance as self-regulating information and so to adjust itself
as part of an on-going process®. Certain authors go further in stating the importance

of the feedback property, with Weiner:

‘[regarding] it as an essential characteristic of mind and of life.” [Weiner 50]

Going further, he stated that:

‘It is my thesis that the physical functioning of the living individual and
the operation of some of the new communications machines* are
precisely parallel in their analogous attempts to control entropy through
feedback.’

The need for modelling feedback within a system is justified in terms of
accuracy and efficiency of operation, combined with minimising redundancy and danger
of error. Supporting the mind in its tasks of processing real-world data and building
realistic models is a responsibility that must not be limited by the use of restricted

(incomplete) information systems.

Ultimately, the problem resolves to one of determining the control that the user

has during information handling tasks. At present, the control facilities supplied to the

33: Homeostasis.

34: He is referring to the first computers. One of the most famous early American computers, UNIVAC,
was operational at the time.

114

Chapter 4

user are generally hierarchical in nature and limited in their range, usually with regard
to the options available to the user at each stage of a given task. Although a large
number of data handling options may be supplied, the actual manipulation of that data,
the number of ways in which the data may be interpreted, can all be strictly limited.
For example, the way in which a data file is represented varies according to the type
of application which is using the data file. Word Perfect, WordStar and EDLIN all
handle text to a greater or lesser extent. Yet the default storage method for each of
these text processors is different, resulting in a basic incompatibility between files that
are supposed to be of textual form. As a result, although the user is permitted to edit
text information with each of the programs, once editing has occurred with a given
tool, it is not such a simple matter to exchange the results of the editing with one of

the other programs.

This means that control over the data currently remains in the province of the
focused application program. The user is ‘permitted’ to ask the application program
to perform a task. Until such time as applications start to facilitate considered data
exchange and support recognition of the working environment of the data, it will be
impossible to construct true information systems where the control of the system resides
with the user. This statement is supported by Benyon et al [Benyon 87], who pointed
out that:

‘..we feel that there are still several areas of information systems activity

which await adequate modelling.’

Their reasons for stating this dealt with several areas, including the modelling

of the interface between systems and user, where:

‘Defining the data or information which has to flow between systems is
necessary for a successful design, but not sufficient. ... The designer
often has a bewildering range of options along a continuum, all with
different technical requirement and implications for the system’s users.
. In most instances, the interface is determined by the designer’s

stereotype of the user or likely users.’

115

Chapter 4

Such is the limitation on integration of current systems that there is still
hesitancy in recommending the use of products labelled as ‘integrated office systems’.

This is particularly the case for multi-worker environments, and typically the advice is:

‘Unless the study team [evaluating the proposed system] finds a product
that is both excellent today and likely to become even more in the
future, it would probably be well advised to wait until the market
situation clears somewhat. Instead, it can move forward to discrete
services such as electronic mail and add more functionality later.’

[Panko 88]

The reasons for this reluctance are straightforward to identify. As Panko goes

on to point out:

‘[Integrated Office Systems] fail to provide many needed functions ...
lashing IOSs from different vendors together with electronic mail

standards alone may not be satisfactory.’

The systems which do exist are extremely proprietary, typifying the problem of
focused application systems. However, it is not merely the application that will be
focused, but the products themselves will be deliberately distinguished, re-enforcing the

problems of integration. Even in the established application of electronic mail, Panko

states that:

“The existence of a multivendor electronic messaging system environment
should be completely hidden from users if possible. In most multivendor
environments today, it is extremely obvious when a user crosses vendor

boundaries.’

The required direction for integration is to eliminate the boundaries that exist

between applications. Panko concludes that:

116

Chapter 4

‘Second generation integrated office systems will end this artificial
separation by providing integrated access to most or all End-User
computing tools. At first, this integration is likely to be limited to
putting all of these functions under a menu and offering file conversion
among selected tools, and even this limited integration will be valuable.
In the longer term, second-generation integrated office systems should be
able to provide seamless integration by offering a common set of user
interface features, even if the underlying programs are diverse and, when

used in stand-alone mode, offer different use interfaces.’

Paraphrasing, the current state of application development technology is probably
barely adequate for most purposes. Panko’s ideas suggest that what is required is an
operating environment - an architecture - that will support the integration of all the

interacting components, including the user.

Section 4.6: Conclusion.

The integration of applications within systems seems to be accepted as being of
benefit. However, the modelling required for the development of a genuinely useful
information processing support tool requires rather more than flexible consideration of
the construction of data manipulation systems, beyond a direction towards enhancing
communication of data. A more general model for representing data is required, where

its context and environment must also be taken in to account.
This means that consideration must be given to much more than merely

computerising certain techniques. Further thought must be applied to establish more

useful conclusions, and it is this issue that must be addressed next.

117

Chapter 5.

Requirements for Genuine Information Svstems:

A Fresh Consideration.

Section 5.1: Introduction.

A major question that follows from the analysis of current systems is that of
identifying the attributes that computer-based information systems should have. In
other words, what features are minimally required in order that the application can be

categorised as a computerised information system.

This is an issue which many researchers are studying in detail, and accordingly
this research has a different primary goal. We are not attempting a formal
identification or definition of exactly what a computerised information system is.
Instead, we are particularly interested in classifying and supporting the architectural
requirements that any given information system may require. Such an approach falls

between the two more usual strategies of:

1) Identifying or specifying the problem and then providing the tools

for solving it.

2) Providing general purpose tools that can be applied as suitable

utilities for solving any/all problems.

This latter approach often manifests itself in the construction of a prototype
system which can then be used for experimentation. In many cases, the prototype is
extended to become the end product, rather than being discarded in favour of an

improved system that is constructed in the light of results obtained from the original

prototype.

118

Chapter 5

Typically, developers intending to produce some form of information processing
system take as their starting point a study of the existing and more-easily identifiable
attributes of paper-based information system, and use those to build the initial
specification for the electronic system. Such an approach has its merits - such as
simplicity and general awareness, but has the inherent danger of restraining the scope
of the resulting applications, precisely because they may unwittingly incorporate certain
of the limitations imposed by paper-based information handling. Some restrictions can
be quickly identified and eliminated, for example the quantity of information that can
be held on a sheet of paper, or the ease with which information can be updated and
manipulated. However, other weaknesses are not so easily dealt with. Paper-based
systems have no way of representing links that may exist between information on
separate sheets, other than the straightforward but abstract notions of relationship via
adjacency, reference or footnote. In the former case, sheets close (or next) to each
other probably have a closer correlation than sheets further apart - the association

normally being that one sheet follows on after the other when read in sequence®.

Researchers have quickly realised that computer-based systems offer the
potential for many more links, of many more kinds, and with explicit detail as to the
nature of the link. However, ordinary information users are not yet acquainted with
how to use information linkages in this fashion - they are unable to make use of such
linkages because the possibility for such understandable linkages simply does not exist
outside the computer system, it is not an instinctively understood concept. Of course,
it may be possible to learn how to use such facilities®, and as understanding is gained,
so the user would be able to experiment with such linkages, and so the system would
become of greater value. But the learning itself is an abstract example of a focused
application, in that the skills learnt in using any new system which has some unique
features (such as the manner of establishing new kinds of linkages between information
items) may be usable only on that one package. Other systems may offer similar
features, but which are implemented in different fashions, or with a different

philosophy behind them.

35: Although this itself is a result of the limit on the amount of information that can be held on any one
sheet.

36: An issue which the prototype architecture described later is intended to test.

119

Chapter 5

Accordingly, there is reason to conclude that using paper-based technology as
a prototype model for a computer-based system may result in a product which is
digressional or even divergent from the end-goal, because it is inherently focused rather
than diverse. The earlier quote by Negroponte” gave support to the role of the
computer-based system in helping with the presentation of data to the user. But it also
has a more subtle implication concerning the nature of presentation of materials to the
reader. Determining how the reader would like to have materials presented is not a
matter to be taken lightly, as it may directly influence the way in which the data that
is presented can be assimilated and interpreted (or understood) to provide information

value.

A further point concemns flexibility of systems. Having totally flexible systems,
which can be completely controlled by the user, may not necessarily be a good thing.
Indeed, it is easy to envisage circumstance where it could be counter-productive, such
as when end-users are so confused by the number of command options available at
various stages in the package that they subconsciously reject it by refusing to learn or
use the system. The question of whether flexibility is a good thing is an important

one that will be returned to in section 6.1.

For the moment, it is becoming clear that paper-based technology is a clearly
defined and implemented system. It has been rigorously tested and proven, and as
such is a completed system. It has no real prospect of further development, because
although the underlying technology may change or improve (from quill pens through
to fountain pens, pencils and ball-point pens, and currently the ‘state-of-the-art’ laser
printers), the manner in which the technology is used is almost completely unchanged.
To try and extend the system is in effect to simply change (update) the technology, not
the manner of working - and trying such an extension is unlikely to have measurably
beneficial results. Indeed, it is important to consider whether we really want to extend
the system. The next stage would almost certainly be computerised systems, but

following this path may not be desirable in practice.

37: ‘electronic displays (should) adaptively display not only what materials readers wish to see, but also
how they would like it presented.” [Negroponte 76]

120

Chapter 5

An alternative approach is required. With computer technology, we have a tool
which can perform a multitude of tasks according to the instructions we give. The
difficulty therefore is to identify what tasks we wish the computer to perform, and thus
we must identify what we require from an information system. The idea of
computerising paper should now be discarded in favour of a more considered
recognition process. We must move to consider what tasks are actually required during

all the stages of data handling by us, the human users.

Carrying out an examination of the various systems used for handling data will
enable us to identify some of the key components which are involved in performing
the various tasks desired by end users, and for which Information Technology systems
can make a valuable contribution. Many of the systems described in chapters 2 and 3
deal with the components to an extent, but none of them deal with all the components
as a group. This thesis therefore involves in part the development of an architecture

that permits a wide range of application activities.

There is an important proviso to consider when dealing with generalised
information systems, however. There is the possibility that such universal designs
cannot be defined in a machine-independent fashion because of the limitations of
existing hardware architectures. Non-dedicated systems may be constrained by the host
operating system and/or hardware, while dedicated systems may be implicitly focused.
Consideration must therefore be given to the question of whether this implies that the
validity and efficiency of a computer-based information system depends directly upon

the hosting machine or software architecture.

In other words, we must consider the possibility that any computer-based
information system will be directly and intrinsically affected by the technology that
supports it, whether it be hardware or software. If it turns out that this is the case,
that the system is directly influenced by its environment, then we must consider to
what extent is it true that a reconfiguration of the architecture is a vital and mandatory
task that must be performed in order to orientate the information system towards

another application.

121

Chapter 5

Section 5.2: Identifying System Components.

In chapters 2 and 3, we described some examples of commercial and research
systems which have typical components identifying some of the processing tasks that
should be provided in most data handling systems. We can examine the components
to help with the derivation of an interaction diagram that portrays the inter-relationships
of the common tasks that could be carried out during information processing. The
diagram details how these component tasks contribute to the overall system by
specifying how they work and interact with each other. This approach of exploratory
system development using characteristic identification has the advantage over other
approaches in that we are working towards a second generation model of information
system attributes, based on the first generation approximations®. At the same time, we
are attempting to eliminate pre-conceived ideas which may be dependent on
constraining suppositions. Initially, however, we will consider the major system
components as they are currently implemented or viewed, before reviewing how they
can be consolidated as required for the more enhanced information system and later the

information environment.

Of particular interest is to consider the normal working environment of each of
the identified components as depicted in Figure 4. As a top-down sequence is
followed, it is obvious that the components become more technical but lower-level in
their nature. Equally, however, the provision of the component within a specific
application package becomes less probable; instead more of the functions would be
found within the standard operating system resources of the supporting computer
system. This dependency on the hosting architecture will clearly influence the nature
of the component and the nature of its operation within the application. This leads in
turn to the suspicion that an enhanced information system cannot be defined in
completely machine-independent terms. If this is so, then any application or use of an
information system will also have a corresponding optimal implementation of the

system itself. Otherwise, the application will in the least case be inefficient, and in the

38: First generation models for information systems are those which have a clearly defined set of tasks
devoted to the handling of a limited set of data that purports to represent information. Such models are
inevitably focused application systems.

122

Chapter 5

User

|

Control

\

Presentation

Integration

!

Report

Y

Communication

-

Data
Unit

|

Processes

N

Interfaces

Data

Data
Unit

“

Data
Unit

Figure 4: Fundamental components in Information Processing architectures.

123

Chapter 5

worst case will simply not function at all. The process of using an information system
for another task® would therefore imply that a reconfiguration of the system
components must occur - in other words the information system architecture must be
reorganised. Thus the implementation of the architecture would have to be inherently
reconfigurable, almost to the point of amorphous existence. This naturally introduces
enormous difficulties regarding control and data flow, which are specific instances of
classic problems that must be dealt with by operating systems: namely multi-tasking and
sharing of resources without deadlock. The discussion in section 3.7 of the work by

Randell is relevant in this context.

Section 5.2.1: The User and Presentation to the User.

This is the top-most level of the information system, and as such has the most
direct relevance to the end-user. However, for most applications packages, the top-most
level is defined as being exclusively devoted to presentation of data to the user. A
considerable amount of work is being done in the field of Human-Computer Interaction,
and it is at this level that the results obtained are applied. However, for most
applications, an actual recognition of who the user is or what they might require is
casually dismissed, in preference to the ‘standard’ user. In practice, the established
model of a human operator seems to bear as much relevance to the real-world end-user
as regular shoe sizes bear to human feet. Certain customisation may be offered through
changing specific application attributes. The range of variables offered typically fall

into three categories:

1) How much help is wanted, on a scale ranging from minimal up

to maximum.

2) What colour scheme would be preferred, and occasionally how

many lines on the screen.

3) What key-strokes should be used to carry out the ordained tasks.

39: Sometimes called ‘launching’ an application.

124

Chapter 5

In practice, the provision of help is at best a screen-based copy of text that is
already provided within the user manual. Although there are some instances of
packages supporting the idea of truly context-sensitive help facilities, it is inevitable
that such features require significant processing by the application in order to establish
what the difficulty is, or what the user wants help with. As a result, system designers
are somewhat reluctant to devote time and energy to a feature that would - by
definition - reduce the amount of computer resources available for the tasks of the
main application. Certain computer architectures can help by supporting the basic idea
of switching between tasks or sections of code®, but this will often take a noticeable

amount of time and so is deemed unrewarding effort.

Clearly, there is a need for a support mechanism recognising individual
characteristics of multiple users. This concept needs to be incorporated into the
working model of the information architecture, although the degree to which the
incorporation of support is necessary would be influenced by the adaptability of the
users. Aside from the obvious issue of ensuring that the user can actually operate the
system, the user is also the upper-most command level for the entire information
handling process, endowed with considerable decision making skills as well as the
ability to make intuitive selections on the basis of meagre data. Moreover, much
computer-based information handling assumes that only a single user is involved in
giving direction to the processing. As discussed earlier in section 3.8, a few notable
exceptions (under the category of ‘groupware’) attempt to offer working environment
that permits multiple users to cooperate in information handling, although in practice
their functions seem to be directed exclusively to sharing access to a common diary
and provision of electronic mail. Currently, multiple users are unable to work
concurrently with each other except within very specific and restricted circumstances.
In order to achieve a reasonable degree of efficiency, all possible processing
components - including multiple human users - must be modelled or at least
represented within the information architecture so that communication and cooperation
can be supported, and feedback included. This is a point which will be discussed in

section 6.2.

40: Called ‘swapping’ on truly multi-tasking machines such as UNIX computers, or by the use of
‘overlays’ on single-tasking machines such as IBM PC compatible processors.

125

Chapter 5

Section 5.2.2: Control and Report.

At this level of information processing, directional commands are being passed
down to the main application control section, and results or reports are being passed
back up to the user(s). Here, the modularity of application systems means that it is
possible for many packages to isolate clearly the tasks from the main application code,
thus enabling the user interface sections to opérate independently of the underlying
application. Indeed, there are certain examples of packages where this is considered
a bonus*, as the code can be re-used with minimal modification, enabling a ‘similar
look-and-feel’ to be promoted, and so reducing the apparent learning time before the
package can be understood. Equally, the module segregation means that extensions can
be more easily accommodated, for example to allow a mouse to be used (often for

exactly the same tasks as are already performed by the cursor keys).

However, distinguishing between modules and incorporating two distinct and
unidirectional paths between the user and the internal system means that the
information passing along the paths must necessarily be formatted in a variety of
fashions, suitable for passage along the differing communication routes. Thus for the
control component, this will probably entail parsing the user’s instructions into a
known format - defined by the system designers, and often at an early stage of the
design process - that can be accepted by the internal modules, which is a perfectly

reasonable mode of operation.

Nevertheless, when this same technique is applied to data passing from the
internal system to the user presentation components, then there are problems concerning
the need for re-formatting according to the presentation device(s). In effect, this is a
limitation imposed by the design which concerns the range of data representation
styles, as well as introducing the danger of losing data context. This is an issue that
will be addressed in section 6.2.

41: For example, the ‘Turbo’ family of compilers from Borland International, which have very similar
editing environments and control mechanisms.

126

Chapter 5

With regard to the control aspects, there are certain circumstances in which
control should not be as absolute as is commonplace at present. Obvious examples
would include requesting confirmation before a user is permitted to delete large groups
of files, or to re-format a disk that has data on it. The user has absolute freedom to
instruct - thus controlling - the system to perform an erasure. Despite the confirmation
check, users quickly become immune to the request and will reply in the affirmative
automatically. Normally, this gives the desired result, but in the single exception will
result in devastating consequences. The blind obedience of a system in executing a
command must be tempered by interpretation of the command within the circumstance

of the actual event.

Taking an analogy from the motor-car industry, a driver may instruct the
vehicle to stop quickly (by pressing hard on the brake), but to do so may cause the
wheels to lock causing the vehicle to skid (complete loss of control over vehicle). The
solution to this is to have advanced braking features fitted, so that the car can
‘measure’ if a wheel is about to lock, and automatically release the brake pressure a
fraction until the threat of wheel lock is over. In other words, the command to ‘stop
the car’ is obeyed by applying the brakes, but the environment of the command is also
taken into account so that if obeying the command literally could cause additional

problems, then the interpretation of the command can be relaxed slightly.

Control of information processing must be made context-sensitive in all its
aspects”. In the same way as inexperienced users can do a lot of damage through lack
of knowledge, so experienced users can do a lot of damage through overconfidence.
A command affecting data items may directly influence past, present or future work of
other users, and so must be evaluated in the light of this. Obvious examples are
addressed by normal security measures, including the access rights to files (who can

delete, read or write to them), or who has access to resources.

42: As with all things, there are exceptions. The Paris ‘Airbus’ disaster on June 27th, 1988 [Times 88]
was a ‘no-win’ situation for the system: If the aircraft attempted to climb too steeply, it would stall and
crash, so the control system rejected the pilot’s instruction to climb sharply. But by rejecting the
command, the aircraft system prohibited any possibility of avoiding the ensuing crash into nearby woods.
The system behaved correctly, but the pilot was found to be at fault [Times 88b] in ignoring warnings
of being too low.

127

Chapter 5

This inevitably leads on to the matter of reporting the results of commands.
Clearly, the initiator of a command should be advised of the result - whatever it may
be - but there are instances when other users should be notified. The system/security
manager should be alerted if a security transgression has been attempted or completed,
and co-workers should be notified of modifications to any data which they are using

in their work.

Much of the research into Human-Computer Integration is directed at this
particular level of information processing, and the results include such concepts as the
WIMP environment (Windows, Icons, Mouse, Pull-Down menus), and this technology

has been gratefully adopted in other systems, such as hypertext packages.

Section 5.2.3: Integration.

At this level of system operation, data exchange can occur. Specifically, two
distinct forms of integration can be implemented within application packages. Firstly,
control instructions from the user (or, in certain cases, from external events) are
combined with existing status information to identify the appropriate tasks that must be
obeyed, within the context of the environment. Secondly, an integration can be offered
whereby control or result data can be transmitted to or received from external modules,
which exist outside the scope of the application. This latter form of integration is
comparatively primitive but more widely implemented, and where it is offered will
normally support only clearly defined (and often limited) standard systems. Typically,
the implementation is found in either a dedicated and cooperative set of application
tools, or else in some form of distributed system. In each of these cases, it is
important to recognise that the underlying task is to transmit the required data in the
desired form. The selectivity of access to data and the need for appropriate methods
of presentation of results are both issues that are relevant to database systems.
Accordingly, much of the technology that has been developed for supporting such data
organisation and retrieval in information systems has been derived directly from

existing database management system (DBMS) technology.

128

Chapter 5

In this case, however, we are particularly interested in expanding the
implementation of integration to work with all data types, and to retain the benefits of
context sensitivity and relationships between data, wherever this is possible. This
requires that there be some form of manipulation model that can operate with typeless
data, specifically to avoid problems of proprietary architecture in any form.
Unfortunately, typeless data is a rather low-level entity, and can suffer from the
inherent dangers of inadequate specification of context. As a result, this may lead to
data being interpreted in a meaningless or even erroneous fashion. However, as will
be seen in section 7.2, we can deal with this difficulty by the incorporation of
environmental attributes which will be used - in the minimal case - to provide state
associations to the typeless data. The advantage of such an approach is that by
distinguishing between the characteristic attributes of data, of relationships, and of the
environment; we can develop application models that are equipped to support
interpretation of the data in terms of its purpose rather than exclusively on the basis
of what type it possesses. The elimination of any dependency on implied type
definition means not only that we can reduce® the likelihood of producing focused
information systems, but furthermore that we can reduce problems that may be caused
by the system being dependant upon specific host technology architectures. It must be
re-emphasised that we are not excluding the attribute of ‘type-ness’ for a data item,
merely distinguishing clearly between the two. For genuine integration to occur in an
enhanced information processing architecture, it seems necessary firstly to recognise
that there is a distinction between a datum and its attributes, and secondly to provide

a means for communicating the two associated components.

Section 5.2.4: Communication.

Although this component is dealt with as a middle-level component within the
interaction diagram, it has influence over all of the components within the interaction
diagram because it directly affects the movement of data and attributes (as described
in section 5.2.3), and also the flow of control throughout the entire information

processing architecture. In its elemental form, communication is concerned with the

43: Ideally, exclude.

129

Chapter 5

movement of objects between object users, whether they be computers or consumers®.
Considerable expertise and technology exists to handle the material tasks for
fundamental data communication. But including the concepts derived at the higher
levels of the interaction diagram means that the necessary communication techniques
must become more abstract in nature, as they also depend upon the method of

portrayal rather than just the mechanism of transport.

Despite the large quantity of research that is carried out concerning
communication of data within and between computer systems, it is a notable fact that
much of the work is carried out with little regard to the nature of the data itself.
Typically, researchers will refer to packets or ‘lumps’ of data being carried around the
messaging system, and this proves quite sufficient for the advanced implementation of
powerful systems. The actual interpretation of the data is (correctly) conditional upon
the objectives and operations of the initiating and receiving applications. The result of
this is that some extremely powerful mechanisms exists for conveying data, but in
many cases the client applications that use the conveyancing tools are much less
developed or advanced. This has resulted in a slow acceptance of communication
technology, other than at rather low or elementary levels where the applications are
straightforward and unquestionably beneficial®. However, there is little doubt that an
enhanced information processing system must expand upon the fundamental data
communications technologies to support the wider requirements of context, attribute and

relationship communication along with the data itself.

Enhanced systems will inevitably require a portability of data between the
multiple applications within the system, and this is achieved in most cases by having
a standard data representation format. Hypertext systems will implement
communications in only limited ways, as there is in fact rarely any requirement to

share data, only to be able to follow the links that can be established between the data

44: Computer in this context meaning some form of processor - not just technology-based - and consumer
meaning a data source or destination.

45: Data exchange between incompatible machine architectures, message passing across long distances
(inter-machine), and memorandum-based dialogues. This latter example may not necessarily be beneficial,
but is a social rather than technological issue, and so will be not be discussed further here.

130

Chapter 5

items. Indeed, Oren has pointed out in [Oren 88] that such requirements make
CD-ROM an ideal technology for hypertext systems, because:

‘The fact that CD-ROM is static (i.e. it cannot be altered) is a selling
point, because large editable hypertext systems can be difficult to update.
Every time you edit, ... links connected to that node may have to be
changed. Although suitable data structures do this, it can place quite a
computational load on your computer if you are dealing with a database

consisting of hundreds or thousands of nodes.” [Oren 88]

Section 5.2.5: Processing and Computation.

The processing and computational tasks performed by most information handling
tools are characteristic of focused application systems. As described in section 5.2.3,
the constituent data has been stripped of all but the most fundamental (scalar) qualities.
Context has been removed, or at best deferred. The application tool can now proceed
to manipulate in accordance with the direction of its design goal, which is inevitably
focused. Almost without exception, the nature of the activities performed in carrying
out any data processing within an information handling system will reflect the fact that
the information system, and not the user, imposes the pattern and manner of operation.
Thus, the implementation of mechanisms for processing are a result of the nature of
the permitted functions; whereas it would be preferable to have generalised tools for

use across multiple applications and functional environments.

This is clearly demonstrated in so-called integrated systems, where the multiple
tools require the ability to share the data. This can only be done if the data storage
is in a known and agreed format, and this can often impose limitations on the ways
in which it can be accessed or communicated. Consequently, the tools which can be
used for this exchange have to be limited, and so constrain the application. A simple
example of the problem can be seen concerning the use of different operating systems
on otherwise identical machines, which may sometimes disagree on the representation

of apparently standard data types.

131

Chapter 5

For example, a text-file on a UNIX system has the <LF> character (ASCII code
decimal 10) as the delimiter for the end of line, while a similar file on a personal
computer using DOS will store the file with the end of line delimited by the sequence
<CR> and <LF> (ASCII code decimal 13 then 10). This subtle difference can cause
problems if the same data is to be used by separate processing tools, a possibility made
more likely with the introduction of UNIX machines into the PC working

environment*.

In a similar way, the representation of other data types can cause problems, for
example the representation of integer or floating point values. Taking the example of
UNIX again, there are invariably at least three forms of integer available in the C

programming environment, namely SHORT INT, INT, and LONG INT. The only
guarantee about their representation is that SHORT INT can hold a range of integers
that is less than or equal to that of INT, while LONG INT can hold a range of

integers that is larger than or equal to INT.

Non-computational devices are not immune either. The method for representing
a graphic line on an output device can vary dramatically between (say) printers,
raster-scan or vector-scan monitors. Accordingly, appropriate processing to produce the
required graphic line is not simply a task of computing the end-points, but recognising

the output environment.

Section 5.2.6: Data Groups.

The collection of data into groups is a complicated issue, that is further
restricted by the design of the hosting machine and operating system architecture. Files
may be stored in a variety of fashions according to their type, while certain

environments will simply store data in a byte-wise fashion”. Considering the matter

46: In order to help introduce UNIX into the PC market, certain manufacturers offer DOS emulator tools
that run under UNIX. The emulators mimic standard PC with graphics, memory, disks and (normally)
an 8086 processor.

47: Under UNIX, a byte is not so simple a concept. What is the difference between a byte and a
character? Signed and Unsigned? Some systems store characters as short integers, or even full integers.

132

Chapter 5

from a higher level, hypertext systems will normally work with a basic unit of a page
or node, which can actually contain several kinds of data: text, graphics, references,
‘buttons’, etc. The representation of these complex data groups is a major problem for
the portability of information across systems and architectures. Yet this same grouping
ability is desirable because it enables us to work with more complex problems, by
allowing us to categorise and then associate or relate the possible sub-divisions of the
more detailed and higher-level task. By working with a group rather than a single
entity, we can apply a particular technique to a potentially complex object which is
represented in a much simpler working form. This has the advantage that the
otherwise complicating issue of extensive detail is less likely to obscure the approach

used to solve the problem.

Section 5.2.7: Data Basics.

It is very difficult for computer systems to agree on even the simplest concept:
the bit. Bits being transmitted across a communications link can be represented in a
number of forms: sometimes by varying voltages, sometimes by phase changes in the
carrier waveform. Storage on a disk can vary also, with GCR (Group Code Recording)
being completely incompatible with MFM (Modified Frequency Modulation).

Even assuming that it is possible to agree on the storage of bits, other problems
arise concerning what the values represent or even with regard to the order in which
they should appear. Certain microprocessors require data to be stored or accessed in
high-byte/low-byte sequence, while other processors require the opposite sequence. Any
given data value can be interpreted in a variety of ways. A single 8-bit byte can
represent 256 possible combinations - but of what type? Different colours, voltage

levels from an analogue device, speed of transmission, etc.

This confusion over potential meanings results in difficulties for integrated
systems, which must necessarily include some agreed way of determining what data
values represent - attributes must be defined. Unless the attribute mechanism itself is
agreed upon, then data exchange between integrated systems is an impossibility.

Furthermore, the representation of attributes normally occurs at a very low-level, with

133

Chapter 5

close association to the data; while in fact there may be circumstances where a

higher-level attribute concept may be preferable.

Section 35.3: Suggested Requirements.

Having identified the components that appear as tasks within information
processing domains, we must now collect the elements into an integrated architecture
which will represent the structure for a possible second generation information system.
From the interaction diagram of section 5.2, it is clear that there is a path from the
lowest levels of data representation through to the highest level of user presentation and
awareness. Accordingly, it is important to ensure that the data representation chosen
can be used throughout the whole of the interaction model. The data handling itself
would then be built upon the standardised representation. For the inevitable
circumstances where the representation is not adequate, then either the model must be
enhanced or an automatic (transparent) conversion facility must be offered. The former
option is preferable, not least because it promotes the cause of genuine integration of

processing components, although it initially requires more effort to achieve.

As we move down through the interaction diagram, so our understanding of the
components becomes more thorough. Indeed, it can be argued that each of the
components represents historical stages during the development of information
systems - especially those which are computer-based. The problem is that this
promotes an imbalance with regard to the quality and scope of understanding, as well
as an inevitable bias towards lower-level system development on the part of system

designers.

Nevertheless, our objective must involve an attempt to understand in practical
terms what is required in order to support the mind that is processing information.
Furthermore, as discussed in section 6.1, there is no reason to suppose that there should
necessarily be any precise correspondence between the processing within the mind, and
the processing within a computer-based information system. As Roszak has indicated
[Roszak 86]:

134

Chapter 5

‘there is a vital distinction between what machines do when they process
information and what minds do when they think...that distinction needs

to be kept plainly in view.’

In order to understand the goal of our desired information system, we require
a working definition of Information. An uncomplicated explanation was provided by
Roszak [Roszak 86]:

‘information ... is ... discrete little bundles of fact, sometimes useful, sometimes

trivial, and never the substance of thought.’

Such an interpretation, unfortunately, lacks the detail or precision that we require
for developing our working model. However, it does promote clarity, which is to be
desired in preference to complexity or obscurity. Accordingly, for our model, we
define information as being that which is gained by the observer’s interpretation of
data presented within a dynamic environment. The term data refers to the raw material
used in all kinds of computation and inference, whether by man or machine, and
regardless of source or destination. The term observer refers to the end-recipient of
one or more results, or alternatively to the supplier of data. Typically, this will be
the mind of a human user, but it could equally refer to a data storage mechanism. The
environment is a concept which is discussed at length in section 6.2, but taken in
conjunction with the dynamic nature of changing circumstances, is vital to incorporate
feedback within the system. The observer’s interpretation of data is the key to
understanding information in terms of computer-based information systems. data, no
matter how presented, is meaningless until interpreted by an observer. Since the
experience of the observer will directly affect how he or she considers the data
presented, the interpretation will influence the information derived from the data. For
example, most people can interpret pictorial data more easily than numerical tabular
data. Accordingly, we can examine each of the defined components in the light of our

interaction diagram to establish a model of the required information system architecture.

This concept of interpretation seems to be supported by Roszak, although he

gives it a different name of generalisation. He first states as a paramount truth:

135

Chapter 5

‘the mind thinks with ideas, not with information.’
Using this, he suggests that:

“The relationship of ideas to information is ... [called] ... a generalisation.
... Generalisation is the process of creating or seeking for a sensible,
connecting pattern; possibly by enlarging upon a very few facts to
produce a conclusion. After more facts are gathered, the pattern may

fall apart or yield to another, more convincing possibility.’
Elsewhere, he states that:
“The relationship of ideas to facts are that ideas are the integrating patterns.’

The direction of these statements is that in order to function, the mind must
have access to facts. These facts are then grouped, collected and arranged into patterns
which relate the facts. The patterns themselves form ideas, which is what the mind
thinks (works) with. An information system which purports to support the mind in its
thinking (processing) would therefore have to assist the mind in accessing facts, and
subsequently provide the facilities for experimenting with relationships and subsequently

arranging facts into patterns.

Facts, or data, is the collection of raw material worked with. The great
difficulty with data is that understanding what it is can be intuitively obvious, but hard
to formalise. However, in computing terms, we can simply define it as being fixed or
altering values of variable type, suitable for processing. The observer can similarly be

defined as a human user of the information system.

This means that we have two further aspects to work with in order for our
model to become an information system: presentation and the environment. Both of
these issues must therefore be addressed and supported by the architecture of our
system. Indeed, in section 7.2 it was shown that both of these issues can be unified

by modelling the entire environment within a suitable architectural structure.

136

Chapter 5

The issue of presentation of the data to the observer is an important one, as
implied by its relevance to the tasks of interpretation. The problem lies in determining
what form of presentation is the correct (or preferable) manner for a particular set of
data. For some data types, this is a comparatively simple matter: sound can only be
presented in one way, with essentially uncomplicated variables concerning tone, volume

or speed.

If alternative variables are introduced, or permitted variables are forced outside
‘reasonable’ limits, then the result wiﬂ normally be data of zero value, because it
becomes (literally) noise. Equally, sensible lighting or temperature control decisions
fall within the range band of ‘minimal’ through to ‘optimal’, but can eventually be

extended through to ‘too much’ or reduced to ‘too little .

However, certain other data types are not so easily fitted into a uniform
presentation scheme. Numeric data, for example, can be extremely precise, but taken
in quantity can ‘blur’ to the point of becoming a meaningless jumble when perceived
by the observer (hence large tables of numbers are confusing), whereas redrawing the
numeric data in the form of a suitable diagram® should result in a much clearer
display - as long as it is not deliberately constructed to confuse or misguide - although
with reduced precision. It is a recognised fact that visual presentation of data to
humans has a higher priority than almost any other form of data acquisition through
the five senses, not least because of the vastly greater rate of data transfer and
recognition that is possible. Accordingly, visual presentation is by default a primary
component of any computer-based information system. Consider the tasks of depicting
petrol consumption over a period of time to a car owner. There are three forms of

presentation of the data alone:

1) Raw tables of numeric data.
2) Graphical representation only (using patterns to depict the

differences or relationships between the values).

48: Exactly what constitutes ‘too much’, or even ‘none’, will depend on the observer, but there is little
doubt that the observer will intuitively be aware of how much is too much.

49: Deferring the problem of what exactly constitutes ‘suitable’.

137

Chapter 5

3) Labelled graphs, which combine the graphical

representation with context (legend) and sample values.

It is probably agreed that the latter form is the more valuable since it has the
potential for communicating the data in a clearer manner. Thus we have the
requirement for working with not just data, but also the patterns that can be formed
with them, in accordance with the work of Roszak described in this section. Thus we
require an architecture to support pattern/relationship establishment. This same

architecture must go on to offer a suitable presentation mechanism as well.

A significant problem, however, is that because a computer is used as the host
for such an information system, it is relatively easy to offer the same data in a variety
of visual forms (the numeric or graphical presentation referred to in this section), and

so the complexity of this issue is increased.

Equally, however, as a user is trained and gains experience in interpreting data
that is presented, so the quantity of data presented can be increased, and the precision
of the presentation improved. Thus, we must allow for the fact that any given data
item or group could be displayed in a variety of ways, according to the competence of
the user. In effect, we must be able to take some data, and submit it to a range of
potential transformations, determined by the circumstances of the environment which
includes the hosting technology and also the user’s abilities. The actual working
environment is thus instrumental in dealing with the problems of data presentation, and

as such must be taken into account.

Facts grouped into patterns form ideas. Ideas generate information (according

to Roszak). Therefore, given the two options of:

1 Data presentation, and

2) Data and Pattern (relationship) presentation,

the second option will give you more information. Examining that is a purpose of

generating the proposed enhanced information system architecture.

138

Chapter 5

Section 5.4: Data and Information, Flow and Control.

We now have two domains of interest with regard to the development of a
second generation information system model. The first concerns the means of
representation of the complete circumstances of data manipulation, from the initial
stages of acquisition, through the tasks of control and manipulation which are
preparatory to presentation. The second field concerns the inclusion of all the
interaction stages of information handling into the architecture, as concluded from the
studies of existing systemns and research. The derived interaction diagram leads us to
deduce that flow of data in various forms will be mandatory, but that associative with
that data flow will be control and command directives, tailored and influenced by other

operations occurring within the application model of the environment.

Distinguishing between data and information is key to the problem of
implementing an architecture, because as we have seen, information is only partly
defined in terms of data®, and unless the data manipulation is complete and sufficient
in its context, then information cannot be acquired. Too often, existing systems have
confused the problems of data processing with information representation and so have

misconstrued simple data value for system validity.

Furthermore, we must develop in parallel a mechanism for specifying the
control of data manipulation within the architecture. The data must be managed with
respect to its circumstances, and as such the circumstances affect and influence the
data; equally, control implies manipulation and alteration of circumstances or status as

well as affecting data, and so must also be modelled.

The provision for complete (but sensible) user control is essential in order to
reduce the likelihood of the information system architecture becoming focused upon a
single or specific set of application tasks. Extending the focus will bring in many
intricate problems that are associated with any large scale architectures, but to do so

is imperative if fuller integration of all data processing tasks is to be achieved.

50: According to our definition.

139

Chapter 5

Focused application systems impose the pattern or idea (possibly through an imposition
of the operational technique). Conversely, an enhanced information system should let
the user build and work with their own patterns and ideas, thus giving greater

information value.

Accomplishing this will require the derivation of an architecture for modelling
the basics of data and directives with the tools of flow and control, influenced by the
inherent representation of environmental circumstances. The production of this

architecture forms the major thrust of this research.

140

Chapter 6.

The Information Environment:

A Basis for an Enhancement Strategy for Information Systems.

Section 6.1: Introduction.

In previous chapters, we have worked towards establishing the key characteristic
components that would be required for any system purporting to be an information
system. More accurately, those components which seem to be required as a minimum
in order to support an information processing system have been identified. However,
it has been established that it is limiting to group only these components, even in an
integrated fashion, unless some context is applied to the resulting system so that the
scope of its functionality can be increased. In effect, we must move to consider the
extension of information system processing to the greater goal of the Information

Environment.

It is reasonable to suppose that humans store information to build models of
reality so that they can deal with the world. The models will be comprised of
components, such as factual images (basic data), or relationships (such as ‘mother
of ...”). These components are combined to form views of the world. As Roszak has
indicated [Roszak 86]:

‘Information does not create ideas, by itself it does not validate or invalidate

2

them.
But the components must derive from somewhere, as signals arriving from the

environment in which we exist. Thus as the environment changes, so our working

model must inevitably alter as well. As Machlup et al have discussed [Machlup 83]:

141

Chapter 6

‘Experiences may initiate cognitive processes leading to changes in a
person’s knowledge. Thus, new knowledge can be acquired without new

information being received.’

Putting this in context with the work of Roszak, we can interpret this as
meaning that as the mind develops the ideas which model the relationships between
data, so those relationships can be used to generate more data. This is an important
suggestion concerning the behaviour of humans in processing data, and if it can be
accepted as true or at least valid, then we can use the concept in building
computer-moderated systems that will attempt to support some of the processing
activities of the brain. However, in order to accept the concept as tenable, we must
establish whether the use of relationships in generating further data is a defensible
technique. In order to do this, we must experiment upon the generated data to verify
whether it fits as a genuine member of the original pattern from which the relationship
was derived. However, it is difficult to prove that a relationship is valid in all possible

cases, because we may not be able to obtain or test all possible cases.

Furthermore, if our ability to receive the data is limited, then our model of
reality will inevitably remain restricted. It could not be extended through the reception
of additional facts which either support or refute the model. Such a restriction has
significant implications for information-using organisations which assume that in order
to maintain continuation of success, they must continually remain up-to-date with
computer-based information systems technology. Such a view is popular at the present
time, even though it is easy to establish examples where automatically upgrading or
incorporating the latest systems can be detrimental to an organisation. Translating

information as being the essence of perceptual images, Toffler indicates [Toffler 80]:

‘New information reaches us and we are forced to revise our image-file
continuously at a faster and faster rate. Older images based on past
reality must be replaced, for, unless we update them, our actions become
divorced from reality and we become progressively less competent. We

find it impossible to cope.’

142

Chapter 6

A straightforward interpretation of this statement is that to remain competent,
we (and consequently organisations) must have up-to-date information. However, there
are equal risks associated with information overload, where excessive data can either
overwhelm or confuse the recipient. Nevertheless, an implication of the stated need for
accurate information is that in order to progress and develop, a flexible response model
must be developed which can receive the maximum scope of data, and respond
appropriately. Such a strategy would be used by computer-based information systems
to implement a working model of the real world. In effect, the strategy would then
reduce the limitations that currently constrain computer-based information systems.
Thus, if used correctly, the computer can help with information processing, as indicated
by Toffler:

‘Because it can remember and interrelate large numbers of causal forces,
the computer can help us cope with problems, ... sift vast masses of data
to find subtle patterns. ... It can even suggest imaginative solutions to
certain problems by identifying novel or hitherto unnoticed relationships

between people and resources.’

Although this view is somewhat idealistic, it does identify possibly the most
valuable °‘skill’ of the computer, namely its prodigious data storage and scanning
capabilities, although the resulting value would inevitably depend directly upon the

nature of the scanning facility.

However, given the potential for advantages derived from using the fundamental
capabilities, it is suggested that a new computer-based information system model be
achieved by working towards the implementation of an architecture which allows for
the modelling and refinement of the data and relationships, each forming components
that build a model of the information being processed. Certain current systems allow
for representation of individual components, But few offer the ability to construct
anything other than simplistic models from them. Much of this is due to the lack of
ability to construct supplementary relationships and flexible models of the underlying

structure, and this in turn is due to two things:

143

Chapter 6

1) No one processing object can build a sufficiently large model to
complete a description of anything other than the most elementary

information environment or application circumstance.

2) The alternative mechanism of grouping together lesser but
cooperating components to build a more powerful
system-manipulating ‘organism’ is currently restrained through the
current inability to offer suitably powerful cooperation and
communication facilities: in other words the absence of true

interaction between the constituent parts.

From all that has been discussed before in section 5.2 and 5.3, it is clearly vital
to achieve a genuine consolidation of all components that can exist within an
Information System in order to expand the concept into the Information Environment.
The combination must be enhanced beyond the current popular conceptions, in order
to support information feedback within and with respect to all components of the

environment.

In order to improve the operation of computer-based information systems, an
architecture would be required that permits and promotes modelling of the entire
Information Environment. We can view each of the elements portrayed in the
interaction diagram discussed in section 5.2 within the context of general information
processing. The three top-most levels - User/Presentation, Control/Report and
Integration - are clearly relevant to the objectives of the given information processing
application, but should be further refined to include environmental considerations.
Concerning integration, this affects the operation of the tools selected and used for
performing the necessary tasks, primarily with regard to the scope of the tools. The
middle levels responsible for communication and processing are relevant to the tools
themselves, because they control the manner in which the tools operate on the data
which is received and generated. Finally, the lower-levels of data groups and raw
data relate to the materials being worked with during the application activities.
Accordingly, any information processing architecture must incorporate all of these

components as a minimum in order to offer the potential for enhanced functionality.

144

Chapter 6

An associated comparison may be drawn from more generalised systems
research work. Traditional thought has emphasised analysis of the components, often
at the expense of the value of context, whereas the systems approach stresses
[Ramo 69]:

‘a total, rather than fragmentary, look at problems.’

This has lead to a movement towards recognising and incorporating the feedback
relationships among both subsystems and the larger wholes formed by these units
[Toffler 80]. This is clearly urging a move towards a more consolidated way of
looking at problems, an emphasis supported and promoted within many other disciplines
[Lopez 73]:

‘Environmentalists tend to see things quite differently ... Their instinct

is to balance the whole, not to solve a single part.’

There is an inherent danger from attempting to group together smaller
components into a cooperative whole, that of chaos or breakdown resulting from
runaway fluctuations within the system. In any complex system, from molecules in a
liquid to the neurons in a brain or the traffic in a city, the parts of the system are
always undergoing small-scale change, they are in constant flux. When negative
feedback is applied (through user control), the fluctuations are damped out or
suppressed, and the homeostasis or equilibrium is maintained. But if amplifying or
positive feedback is at work, the fluctuations may be magnified so as to threaten the
equilibrium of the entire system. Such fluctuations may arise from changes in
environmental circumstances. However, in the event of breakup of the equilibrium, the
result is often the creation of a new structure at an entirely higher level, called a

dissipative structure [Nicolis 77].

Accordingly, in the proposed information processing environment, a monitoring
process must be built into all contributing components, in order to minimise the
difficulties of destructive fluctuation. Given that an Information Environment model

would be implemented using a truly multi-tasking architecture, then there is justification

145

Chapter 6

in requiring that some system resources should be dedicated to monitoring performance
of the system (breakdowns, fluctuations etc.), as well as to oversee security aspects of
the system. In essence, the system should attempt to maintain a fail-safe operational
state, so that all potential kinds of insufficiency or failure (hardware, software,

communication, integrity, secrecy) could be prevented, or repaired.

Section 6.2: The Information Environment.

It is clear from the discussion in section 6.1 that an Information Environment
is in some way an extension to the concept of the computer-based information system,
but it may not be clear how such an extension may be represented or defined,
particularly in terms of computer technology. We can define an ‘Information
Environment’ to be the representation of the complete set of all components - processes
and variables - that take part in the entry, manipulation or presentation of any data to
any number of users. Constants within the environment effectively define the
application under consideration. Hence the users are modelled as part of the
environment, as are their workstations, their data, the input and output devices, the

co-workers, and so on.

There is no reason why a user should be prevented from achieving any desired
task in precisely the way that he or she wishes, and the key objective of developing
an Information Environment architecture is to provide the required flexibility. By
working with data in groups of known form as the basic units, processing modules
existing within the environment can use data in any way desired. Data intended for
use in a particular application is stored in a ‘global’ form, so that these same stored
items can be examined by any other module within the environment (subject to a
number of possible security considerations), optionally using other modules to perform

conversion or interrogation duties.
By viewing the environment as being responsible and requisite for modelling
and defining the application or task at hand, a number of potential extensions to current

work techniques become possible. These extensions will require changes in current

146

Chapter 6

thinking so that users do not remain restricted. By this, we mean that users must be
educated to think in terms of the Information Environment as a whole, and not be
limited in their conception of what can or cannot be done, simply because - say - a

given I/O device appears not to support the desired facility.

In the proposed development of a second-generation computer-based information
system as the first stage in developing an Information Environment system, we are
trying to break away from some established ideas such as the imposition of purely
algebraic descriptions of data and environment, because it is felt that it is impossible
to describe the dynamic attributes of a complete Information Environment using algebra

alone.

As an example of limitation by focused perception, consider the situation of
users at work with a computer system. When working at a terminal attached to a
remote computer, the use of a dumb terminal operating invisibly as it provides the
ability to work interactively means that the user may fall into the habit of thinking that

the terminal is actually part of the computer.

In other words, the computer and the terminal are merged into one processing
resource sitting in front of the user, even if the machine itself is known to be
elsewhere. Similarly, some people using a small or personal computer tend to associate
the ‘brains’ of the machine with the VDU that sits on top, even though the ‘real’
brain - the system unit - is quite clearly visible underneath®. This
‘anthropomorphising’ of the technology means that some users may misinterpret the
relative worth of the different boxes, both in terms of monetary value as well as

resources offered.

Following from this recognition of perceptual illusions, we can extend the
example. Since most interaction with a computer is via a VDU and keyboard/mouse

combination, there is perhaps a tendency to think of any applications also being limited

51: Cartoons which anthropomorphise computers will typically depict eyes/nose/mouth features on the
screen of a computer system, reinforcing the idea of the monitor as the ‘head’ - and implicitly the
brain - of the equipment.

147

Chapter 6

to only these devices as the primary means of Input and Output, simply because these
are the only interaction mechanisms. This instinctive reaction is further enhanced
because the devices are designed to interact through one (or more) of the five human
senses, and input to humans from any one of these senses (but particularly visual) has

an extremely high priority for the human brain.

Imposing the hardware limitations upon data processing systems also promotes
the traditional form of document which is text- or diagram-based, and considered to be
one large entity. However, there is no real reason why this should be the case, and
for the construction of an enhanced computer-based information system, we propose an
alternative architecture extended to provide increased flexibility. This promotes freer
thought by encouraging interaction with a conceptual ‘Information Document’, which

describes and models the current Information Environment.

An example of this concerns group projects. Any work involving more than
one person becomes a team effort, and for the best results to be achieved, the team
must work effectively. A team leader has the task of overseeing the progress made,
and amalgamating all results obtained, as well as ensuring the compatibility of all of
the results. All of these responsibilities would be aided by the fast and effective
sharing of data and its context, as offered by the model of the Information
Environment. Each co-worker could be viewed as a contributory component of the
model, building and specifying the application on a real-time basis. The use of the
Information Environment means that the application can be examined quickly and easily
by any authorised user at any time, and furthermore can be updated or enhanced

automatically to reflect real-time alterations in circumstances as well as data.

The facility for sharing data becomes an augmented variation on the theme of
electronic mail or a conferencing facility, and would permit discussions between one
~ or more users on various aspects of the application design. But, equally, extending the
same architecture by the inclusion of additional processing components (modules) would
allow experiments to be carried out using duplicate sets of data, possibly with the

assistance of expert system modules to simulate the working of the entire application.

148

Chapter 6

The generation of the Information Document which forms a representation of
an Information Environment is consequently a complex and vital objective towards the
construction of a second-generation information system. Within such an environment,
all possible components of the given application - users, devices and data - must be
specified and portrayed. The distinction between specification and portrayal is that the
specification is typeless in keeping with the ideally typeless nature of the data being
processed; while the portrayal of a component within the environment is
context-sensitive, depending on the nature of the component and the presentation
mechanism. In effect, the portrayal of a component is an instance of an interpretation

being applied to a specification.

The environment is then used to enhance the data components by introducing
the representation of connections or relationships that exist between them. The value
of relationships can be depicted in general terms by a simple example. Stacks of paper
have indeterminate value. But, quite possibly, the topmost sheet of any stack is likely
to be more important than the lower sheets. This could be because it details the nature
or content of the remaining sheets. Thus, regardless of the data content, we have an
identified an attribute derived solely in terms of the relationship between data objects,
and so dependent upon the user’s interpretation of that relationship. The validity of
this can be seen on most office desks. The often seen ‘clutter’ of paperwork rarely has
meaning or sense to an external observer, but to the originator of the mess, it has
pattern and so almost any one item can be located instantly - precisely because

relationships exist as perceived by that user.

Thus components can have relationships or patterns which may be meaningful
only to those who understand or created them. The perception of the relationships can
therefore portray (convey) value that is potentially as important but more abstract than

the concrete data itself.

Finally, we can use the representation of the application environment to form
an abstract model of the application itself. Considering each of the components as a
whole means that we have effectively defined the application that is being processed.

As components are added or removed - regardless of whether they are data, devices or

149

Chapter 6

users - so the application is altered. Sometimes, the alteration would be terminating,
in that the application is halted in its current form. For example, if the user finishes
a word-processing task, then the word-processor can be removed from the workspace.
Nothing has ceased to exist, it is merely removed from the application, and accordingly
the application has been terminated, because the environment has changed. This is a
familiar concept to multi-tasking W.LM.P. environment users, who will habitually

change ‘context’ frequently and easily.

Alternatively, the alteration to an application may be transformative rather than
abortive, as other components are added (possibly in place of existing components).
For example, the user may complete a given word-processing session, and move to
work with a different manuscript. In this instance, the application continues but in a

completely different context.

The provision of a mechanism for modelling an application by the use of the
Information Environment implies that the environment itself can also be modelled.
This apparently recursive statement has a number of useful implications for information
processing, specifically with regard to enhancing computer-based information system
architectures. For example, modelling the behaviour of a computer network can be a
complex task for simulation. But the ideal circumstances for any simulation
experiments would actually be to use the real-world instance. However, any program
which monitors the status of communicating hosts (as opposed to merely monitoring
the passage of messages along the communications medium) must inevitably influence
the behaviour of those hosts, thus altering the measurements taken™. Such intrusions
must be taken into account, but the difficulty is in establishing how it should be done.
By actually including the communicating hosts and monitor program into the
environment, a more representative picture can be derived. The intrusion of the
monitoring program cannot be avoided, but it can be more accurately incorporated into

the performance figures.

52: This is a variation of the classic problem of whether the light always go off inside a refrigerator
when the door is closed. When you open the door to look, it is always on. If you could climb inside
(with suitable warm clothing), perhaps the refrigerator is ‘intelligent’ enough to recognise that you are
inside and so the light must be left on - in effect you would be changing the circumstances of the
measurement.

150

Chapter 6

Section 6.3: The Information Document.

Although applications within the Information Environment will be perfectly able
to produce high-quality documents in the usual sense, the second-generation information
system architecture is conducive towards the production of more advanced ‘Information
Documents’ which have enhancements that considerably improve the presentation and
context of multimedia data. By including environmental data as part of the document
specification, extensions or enhancements in the form of prominent or subtle effects and
emphasis can be readily incorporated. The actual circumstances of the data existence
becomes contributory to the value of the data, and as such must be available for

inclusion whenever the data is being used.

Thus, the entire Information Environment must be modelled by building
collections of data, environmental and processing components into computer-based
Information Documents, which are called IDEA’s (Information Document Electronic
Abstraction). The IDEAs are complete descriptions of all components being modelled
within the application system. This includes the user, devices, data and the working

environment.

This use of global data forms in creating each IDEA means that the IDEA can
be thought of as an information ‘picture’. The topological and geometric relationships
between the data items themselves provide considerable enhancement of the value of
the material being worked with, and it is this amplification of the raw data that will
improve the quality of work that can done using an Information Environment

architecture.
Such IDEA’s are subsets of the concepts embodied in Roszak’s definition of the

‘idea’, which is generated by the mind in forming patterns that relate facts or data
[Roszak 86].

151

Chapter 6

Section 6.4: Designing an Information Document Architecture.

In order to implement the IDEA, we require an architecture for representing the
information ‘pictures’. Earlier work has been described in section 6.2 and leads us to
envisage that the pictures could be built up using smaller and smaller data groups,
which are then used to develop an extended hierarchy for the document specification.
Each group of data can be collected together to form the document as a whole, in
much the same way that words build up into sentences, which are assembled into
paragraphs, and chapters. Attribute information would be associated with the groups
for describing the environment of both the data items and the application as a whole,

thus providing a more complete model of the application.

The resulting specification is clearly complex, and has the requirement for
multiple processing activities, so that a multi-tasking host would be mandatory in order
to support it. As a result, the architecture would also be better suited to a truly
parallel machine architecture. It should not be necessary to assume that a single
machine is running an application or module, and so a given application could run
equally well on several machines, with application tasks allocated appropriately. An
inevitable consequence of such a design is that the architecture is more suitable for the
next generation of machines, where reduced costs enable greater processing power
within a machine. Hence, instead of using software to simulate multi-tasking as on
current technology, the second-generation information system would access multiple

processors sited on multiple hosts, which would run tasks as and when needed.

All processors within the system would have two components: executable code,
and local data. Their operation would be specifically hidden from all other tasks
running on the host or other machines, and this would allow the processors to be
developed and extended indepéndently of each other. Although the isolated tasking
concept is not innovative, the requirement that all tasks operate in terms of typeless
data groups is new, and it is this requirement that provides the flexibility in the
proposed architecture. Subsets of environments would be easily constructed by omitting

those tasks not required for a given application.

152

Chapter 6

In order to support the potential for typeless data processing, the active tasks are
defined as independent execution routines, that need not necessarily carry out their task
in a context dependent fashion. With few exceptions, the tasks would have to operate
only upon the data supplied to them from the recognised grouping mechanism. The
results of their work would, similarly expressed, be submitted as groups, either by

modifying the originally supplied group; or by creating a new group for the purpose.

Specifically, as long as the task is performed in the fashion required of it, there
is no obligation for it to function in a specific way. Consequently, it would be
perfectly acceptable for the tasks to be developed in any desired computer language,

depending only on the builders preference and experience.

In some cases, previously written tools may be preferred, and in this case
special supporting tasks would perform the jobs necessary to make both internal tasks
and the external tool think that their operating environments were as normal. An
extension to this means that a dedicated conversion task might take the data provided
in a group, convert it for use by an external tool, and subsequently convert the tool
output back into the recognised format of groups. The operation of this would lie
within the scope of the enhancement objective, because it would inherently support data

exchange regardless of the generating or processing tasks.

Several tasks identified for use with a system may be grouped together because
they have a common type of application, or for physical reasons such as being located
on a specific machine within the system. For example, device processors that handle
keyboard I/O, light-pen and mouse input or VDU output, could all be grouped together
as user-interaction tasks. Such related tasks are also said to be assembled into a
Group, because there is no requirement to distinguish data from tasks except by
circumstance. Such groups could be specifically sited on a machine which is optimised

for the corresponding jobs - for example a front-end processor.
Given that there could be a number of different components associated with a
given application, but that there is also a desire for a common architecture to be

suitable for the varied tasks, it would be preferable to have the possibility of automatic

153

Chapter 6

reconfiguration within the system. This reconfiguration would in the most simple
situations refer to the incorporation of appropriate devices according to what was
available and/or required for the application. For example, any devices which are
suitable for data presentation must be incorporated into the architecture, not only so
that data can actually be presented, but so that the correct (or optimal) presentation
device is selected. Sound data cannot possibly be presented to the user through a
visual display, but visual data could be presented in a number of ways, depending on
its type. Text data presentation can appear on almost any visual device, whereas
graphic (static or dynamic) data is considerably more restricted in the choice of devices

that may be used for its depiction.

More complex situations or applications would require more extensive
reconfigurations. This would necessitate replacing application modules or task
processors with more suitable or relevant tasks, in order to perform the new application

or to support alternative users.

Section 6.5: Summary.

The work by both Randell and Engelbart referred to in chapter 3 is important
in justifying the extension of computer-based information system architectures to
develop the higher-level abstract concept of the entire Information Environment. The
technology for simple focused system development is well established, but is limited
in its potential. The enhancements can only come with a re-evaluation of exactly what
such systems attempt to model, and we are now finding that the models currently used
may be handicapped through architectural limitations. The reappraised architecture
takes into account recent research into information representation, as well as
incorporating those lessons learnt from the acceptance or rejection of specific
information processing ideas. Unless the ideas currently employed as the basis of

systems are demonstrably useful, their validity must be questioned.

An example can be seen concerning the dominance of the IBM PC architecture

within the personal computer marketplace, which is significant when compared with the

154

Chapter 6

smaller market share of the Apple Macintosh computers. And yet the operating
environment of the Macintosh is generally accepted as being a better one than the
standard PC environment - for certain users or types of application. Accordingly, the
environment - and implicitly the information processing architecture - is being cloned
onto the underlying hardware of the IBM PC, because it is this which is perceived as
the benefit, and not the Macintosh computer itself. Thus the success of the Macintosh
is perhaps not due to the hardware, but in the organisation of the processing

components in providing a ‘better’ working environment.

Accordingly, it is suggested that a reasonable requirement for enhancing future
computer-based information systems is a consistent and cooperative architecture to
support interaction and collaboration between all the contributing components, which
are present at many levels of abstraction from the lowest operating systems functions

to the higher user-constructed directives.

Section 6.6: Research Method.

In section 6.5, it was implied that for ideas to be accepted and utilised, it must
be possible to demonstrate their usefulness. This has a direct implication on the
method chosen for carrying out the research described in this thesis. A formalised
approach that would focus upon development of rigorous statements and definitions was

considered, but it was discarded for two main reasons.

Firstly, it was felt that for a computer-based information system to be widely
accepted, complex definitions and abstract arguments might deter the ordinary user.
Employing formal statements and definitions during design and implementation might
require their use throughout subsequent development or configuration of the system.
Since a desirable attribute of an enhanced computer-based information system is that
it should be understandable and configurable for all users, it would not be beneficial

to require users to have a formal understanding of computer science.

155

Chapter 6

Secondly, the development of formal definitions at any stage of the research
would naturally influence the subsequent work, or at the very least require a significant
amount of review and redesign as new ideas or concepts were established. However,
the very nature of the research was such that the concepts have evolved continuously,

requiring frequent and sometimes far-reaching re-evaluation of accepted conclusions.

Accordingly, it was felt that a prototyping approach to the research would be
more in keeping with the nature of the work, experimenting with ideas by
implementing and evaluating the results. Since a significant aspect of the work has
been to develop a prototype system, then the use of prototyping is consistent with the
research method. In particular, the prototype was at all times considered to be a
‘deliverable’. As various components or concepts were established, they were evaluated
by the author and also a ‘captive audience’ of postgraduate students and colleagues.
In retrospect, this decision had the advantage of enabling rapid incorporation of new
ideas, but the disadvantage that some of the new ideas might not always be based on
sound foundations. Nevertheless, the construction of the prototype system described in
chapters 8 and 9 has enabled the author to study the requirements much more clearly.

The working system can be evaluated and used as a test-bed for future development.

156

Chapter 7.

The Information Environment and GENIE-M:

Description, Generation and Control.

Section 7.1: Introduction.

This chapter considers the description and control of an Information
Environment, and proposes a mechanism for its implementation. The ideal generator
of an Information Environment will allow the construction of environments for a variety
of applications. The environment would then allow the mixing, integration and
interaction with static media types such as text and graphics, as well as dynamic types
such as sound, video, film, text and graphic animation. There would also be provision
for real-world control and feedback through a screen or digital and analogue switches.
The proposed model described in section 8.2 uses a homogeneous geometrical data
structure to represent associated data spatially and discretely. This is the theoretical
basis for the construction of the prototype system. The system architecture that is
proposed encourages the user to organise the sub-application environment in a more

responsive fashion.

The Environment brings together the tasks of accepting data into the system,
manipulating and performing computation upon that data, and presenting the results
obtained. The jobs involved in accepting, manipulating or presenting data range from
simple to complex, and it follows that each job being performed within the environment
must ultimately be considered on an individual basis. For example, the system should
be capable of handling interactive document editing and formatting operations, and
providing hardcopy on any printer, and this can be facilitated using modules and a
uniform data structure. The description of the environment tasks therefore consists of
detailing all jobs or modules. These modules operate by manipulating data using
software tools and object-orientated techniques, and also by interacting with other

modules in the environment.

157

Chapter 7

The flow of data and results between modules takes place within the
Environment using ‘Module Links’. These links should ideally connect across intra-
and inter-machine boundaries, although links between machines would usually be
handled by modules dedicated to supporting communication standards between

machines. Module operation consists of the following three simple stages:

1) Data is presented to the module, with instructions on exactly what

task is required.
2) The module performs the task as efficiently as possible.

3) The results are made available in accordance with the instructions
or design of the module links.

This description means that environment modules can behave in a similar
fashion to the process nodes used in data-flow diagram theory [Yourdon 78] and Petri
Nets [Peterson 77]. In general, modules may only execute when all data and
instructions for manipulating the data and processing the results have been obtained.
Some modules will be purely computational; others take results and prepare them for
presentation, or else accept data into the environment. The proposed modular
architecture, which is derived on principles described in object-orientated programming
methodologies such as those detailed in [Goldberg 83], [Cox 83] and [Cox 84],
supports high-level integration of applications, and allows the task activities to be

performed within a consistent user environment.

The presentation or acceptance of data takes place at the Interaction Boundary
which conceptually exists between the user and the rest of the environment. The
interaction boundary is delimited by a number of Interface Modules, which consist of
software on the system side of the boundary, and (typically) a hardware link on the
other side to a data source/sink such as a database or other machines. A human
observer can therefore be considered to be an interactive data source/sink, thus

conforming with the ideal of being viewed as part of the Environment.

158

Chapter 7

As well as being a passive receiver of data into the environment, the system
can be an active controller by presenting data to the real world across the interaction
boundary. If the data passed through an interface module is considered to be the
digital equivalent of analogue values, then the interface module can become a
controller of a device in the real world, such as a lighting circuit or projection system.
Such control of the real world helps in the presentation of data, and allows the system

user greater flexibility in many applications.

The system has been given the name GENIE-M as an acronym obtained from
the title: ‘Generator of Multimedia Information Environments’. As this full name
suggests, GENIE-M provides an experimental architecture for supporting an Information
Environment that handles many varied types of data (multimedia data), for the purposes
of dynamic presentation and interaction by one or more users. A complete GENIE-M
system is designed to work with data such as text, sound, graphics, video, and so on;
but it would also handle ‘environmental’ data: projection devices, external sensing and

measurement, lighting, temperature control, and other peripherals.

As a result of collecting these various forms together, GENIE-M systems could
depict and manipulate Information Environments by building descriptions in the form
of the IDEAs described in section 6.3. Instead of promoting complex but limited task
of data processing, the GENIE-M concept promotes the broader area of information

handling within the Information Environment.

The GENIE-M architecture is ultimately intended to be a generator of working
Information Environments. This is because all contributing aspects of the Information
Environment under consideration can, and indeed should, be modelled within
GENIE-M. Having provided the tools to model and document the Information
Environment, GENIE-M could then be used to monitor and manipulate any or all
aspects of an application environment through the control of the corresponding

application IDEA.

159

Chapter 7

Section 7.2: Geometrical Data Structures.

Section 7.2.1: Philosophy.

The prototype version of GENIE-M is an experimental data modelling system,
and the key feature to the operation of this concept is the Tile. These tiles will hold
the data which can subsequently be manipulated and displayed. It should be noted that
use of the term ‘displayed’ does not imply a restriction to portrayal in visual terms
only. Indeed, by using the word ‘presented’, we mean that there is movement of some
object from a source to a destination, where the destination may be either terminal -
for example a graphics display device - or transactional - for example another tile
manipulation process. GENIE-M data can be presented visually to the user through
user-controlled windows on the display device. Any given tile can include sound data
(as well as other data types), and this sound - for example, speech - could be
represented in an alternative form if that is required by the presentation device. The
implicit topological and geometrical structures of a GENIE-M document is therefore
apparent, rather than deliberately obscured as in existing systems. This permits more
flexible manipulation of logical document entities, in terms which reflect user
preferences, because the user is allowed to be more aware of the architecture.
Alternative presentation schemes would make it possible to hide the underlying

document architecture, if this is preferred.

The tiles are partly ‘intelligent’ objects, which interact with their neighbouring
tiles depending on their relationship with those tiles. Each of the tiles will behave
according to the relationship it is intended to portray. A tile can examine its relation
with other tiles to establish areas of overlap and intersection. If a number of tiles are
geometrically positioned relatively to a ‘reference’ tile, and this reference tile is altered
or moved in some fashion, then the relative tiles must be able to adjust themselves
appropriately. If one tile is moved to a new location within the tile space, then all the
others must move as well. The tiles can be used for document production by more
than one author. There could be many people working on the material, and such
interaction leads naturally to the use of GENIE-M in multimedia conferencing. The

display device windows will usually be controlled by the user, but could also be

160

Chapter 7

coordinated by the conference manager to ensure that the appropriate material is being

presented and updated correctly.

Section 7.2.2: Physical Description.

All modules in GENIE-M interact with a homogeneous geometrical data
structure, which is composed of the tiles. Within the GENIE-M system, tiles are
subdivided into two forms for processing: topological and geometrical tiles. The
former are tiles that are primarily used for storage of data, and descriptions of the
relationships between tiles. Geometrical tiles, by contrast, hold identical data but
which has been processed or formatted to take into account the geometry of the
presentation mechanisms. In other words, the topological tiles are the internal record
of the data and environment being processed, while the geometrical tiles are the
presentation form of the data and environment. In effect, the geometrical tiles are
those which are enhanced by the use of geometry in their provision, processing and

presentation.

A tile can be envisaged as being rectangular in shape, and of a size that can
vary relatively or absolutely with other tiles. The tiles are positioned in a stack of
two-dimensional planes, called the tile space. Each tile has a tile record which
contains information about that tile, such as type of contents (text, graphics,
spreadsheets, sound, programs, etc), attributes (character fonts, colour schemes,

language used, etc), and most importantly, the relationships with other tiles.

Any kind of data can exist within a tile. Examples of simpler data types would
include text stored as ASCII (or EBCDIC) codes, or graphic images stored as bit-map
or vector codes, or digitised sound. More complex tiles could hold references to
devices, so that - for example - sending data to a printer device tile would effectively
cause output of this data to the printer device. Similarly, a mouse device tile could
hold data describing the current state of the mouse input device, while other tiles could
reference large data bases facilities. GENIE-M data would be formatted prior to being
placed in a display tile ready for presentation to a display device, with the kind of

formatting used dependent on the type of display device. As an example, a tile could

161

Chapter 7

hold digitised sound, such as speech, which cannot be meaningfully ‘seen’ on a printer
or VDU. The speech display data could either be presented (correctly) through a
sound output device, or else a speech icon would be presented to a printer or some

other visual display device.

Tiles can contain three main types of object: raw data, formatted data (for
display), and reference or executable program code. Depending on the primary use to
which they will be put, such tiles are called Data Tiles, Display Tiles, or
Reference/Program Tiles. Reference/Program tiles would not normally be displayed,
display tiles would not normally be used for holding raw data, and data tiles would not
normally be executed. However, tiles can always be handled by modules in the same
way, regardless of their content. Thus tiles are as global and typeless as possible, not

restricted to holding only data.

The data held within a tile can be dynamic. For example, a data tile could
hold a reference to a current share price for use in a financial report. Each time that
the tile is accessed, the latest up-to-date value would be obtained. Under suitable
circumstances, any references to that dynamic tile would cause real-time changes to the
presented results. A reference/program tile could access a data tile holding references
to spreadsheet values, and take the data to produce, say, a pie chart which is
constructed and held in a display tile. Reference/program tiles will often bind closely
to one or more data tiles, although they can also be for general purpose use by the
system.

The geometric positioning of display tiles in the tile space reflects their actual
location within a particular document or application. The position is represented using
the topological relationship between tiles described in the tile record, in a similar
fashion to Knuth’s concept of nested boxes connected by stretchable glue in thé TgX
system [Knuth 83]. Tiles cannot overlap on the same plane and are affected by any
changes in size of neighbouring tiles. For example, a display tile of graphical data
which is located below another display tile of text in the tile space would be placed

accordingly in the document presented on the display device.

162

Chapter 7

Tiles holding text data to be formatted for display must also take into account
the effect of that formatting on related tiles. For example, if a tile is required to
divide its text into a number of columns with a diagram in the centre, then the
formatting must allow for the size and position of the diagram. If the diagram changes
size, then the text layout will probably need to be altered as well. Similarly, tiles that
hold sound data should be able to detect two or more voices ‘speaking’ at once.
Formatting takes place by ‘flying’ through the tile space, examining all those tiles
required for the presentation. A ‘filtering’ process may be carried out at the same
time, to identify required or unnecessary items of data. As each tile is ‘seen’, its
formatted contents are added to the display tile, ready for the end result. In practice,
a number of sub-display tiles may be used to build up the final display tile, so that
small (local) changes to tiles do not require such a major change to the overall

presentation.

Tiles may themselves refer to sub-tiles. If a tile contains text and it is desired
to emphasise certain portions of the text (possibly by italics or underlining), then either
the text could be subdivided into more and smaller tiles, or the tile could have sub-tile
references which hold the emphasised portions of text. Tiles which store animation
material will bind very closely to each other. Although each is an independent unit,
any alteration made to one of the tiles in the group will probably affect other tiles
within the same group. The method by which animation is achieved can vary - the
simplest technique would be to have a number of ‘frames’ stored, one per tile, and the
frames can then be cycled, in a similar fashion to that used in ordinary cinema films.
The frames would be stored in a ‘stacked’ fashion within the tile space, so that by

‘descending’ through the levels of tiles, each frame can be displayed in turn.

The organisation of tiles, and the relationships that are explicitly or implicitly
formed between them, are all referred to by the generic name of a ‘Web’. This
concept has certain similarities with Knuth’s cweb model [Knuth 84], in that it implies
the existence of a structure relating and controlling all the entities within the formation.
However, the GENIE-M concept of the web is a much less formal concept, more

useful for envisaging the geometric modelling of tiles within the tile space.

163

Chapter 7

Section 7.3: GENIE-M Architecture.

Section_7.3.1: Modules and the Environment.

All modules within a GENIE-M environment have the same structure:
executable code, and local data. Their operation is specifically hidden from all other
modules or tasks running on that or other machines, allowing modules to be written
independently of each other. This means that subsets of GENIE-M environments are
easily constructed by omitting those modules not required for a given application. A
further advantage of the modular architecture is that GENIE-M is well suited to
making use of multi-processor computers, as opposed to running on a time-shared basis

on single-processor machines.

One unique module which must be present is the central administrator, or ‘hub’.
This module has the same structure as the other modules, but rather than manipulating
data, supervises the relationships between modules. The hub does not oversee modules,
because each module normally functions independently of any other module. However,
the hub does examine the overall running of the system to ensure that no problems or
deadlocks occur. The hub also has the responsibility of introducing and removing
modules from the environment, and generally serving the needs of all modules present
in the system. The hub maintains a record of which modules are present in the
environment by using its own geometrical data structure. Any modifications to the

environment are reflected by updating this structure®.

Several modules present on a system may perform similar or related tasks.
They may be grouped together because they have a common type of task; or for
physical reasons such as being distributed between one or more other machines in the
system. For example, modules that handle keyboard I/O, light-pen and mouse input or
VDU output, could all be grouped together as user-interaction modules. Such related
modules are said to be grouped together into a Sub-Environment. Just as the main

GENIE-M system has a hub to control the environment, so each sub-environment will

53: In this way, it is possible for the information environment to ‘examine’ itself, by looking at the
stored model of the environment.

164

Chapter 7

have its own Sub-Hub. Since the hub is responsible for activating all modules in its
environment, a bootstrapping technique can be used in initial construction of a

GENIE-M system, and later activations.

Section 7.3.2: Tile Transfer and Manipulation.

Each module within the environment only inputs or outputs data in tiles, so that
a module can work with any kind of data, regardless of what it actually represents.
The exceptions to this are the interface modules which accept raw data for conversion

into a tile format, or present results having extracted them from display tiles.

A tle which contains - for example - bit-map information could readily be
transferred to another module which manipulates the bit-map, without actually knowing
what the data is. In a simple case, the bit-map image would perhaps be ‘reversed’; in
a more complicated case, the image could be ‘skewed’ or ‘slanted’. Tiles can be read
and converted by Intermediary Modules which are used to supply data to programs or

machine processes that would not otherwise understand data tiles.

Section 7.3.3: Module Organisation within the Environment.

The main feature of GENIE-M module organisation is the hierarchy of module
invocation. Initial work in preparing a GENIE-M prototype has suggested that a
typical system will have a large number of fairly small modules performing elementary
tasks. A system which retains modules on a most-recently used basis will allow
frequently used modules to ‘float’ to the top of the priority table, giving faster overall
response. Most modules will connect to only a few other modules, and typically two

connections will provide input, while one or two routes produce output.

The organisation of modules is therefore very important in order that data may
flow as quickly and as efficiently as possible around the environment. The data
communications concept of a ‘packet’ as the primary data and action structuring
mechanism is reflected in a similar message passing technique used by modules for

working with the GENIE-M geometrical data structure. At the ‘centre’ of the

165

Chapter 7

environment will be the hub module, and around it is (conceptually) placed inner
service or core modules. These core modules will tend to perform tasks of an
administrative nature within the environment. Frequently, they will initiate activity
without user interaction. Most sub-environments will be located near to the hub, since
they form a natural division of tasks into related areas - they also follow a similar
organisation to that being considered. Further from the hub, elementary rather than
compound modules or sub-environments will begin to predominate. These perform

tasks of a more operational nature.

Finally, nearer the interaction boundary, the modules will become more machine
dependent in nature with hardware connections and dependencies. The majority of user
interface modules will be located here, because they are closely linked with the

interaction boundary.

Section 7.4: The User Interface.

The users of GENIE-M will need sophisticated software tools for entering and
viewing information. This support is likely to include editors for knowledge networks,
or composition tools for creating useful video or audio sequences and animation. The
GENIE-M infrastructure allows convenient communication with editors and users at

remote sites.

The ‘User’ is a general term used here for both the human user and the display
device being utilised to portray GENIE-M data from a display tile. The display device
is defined to consist of objects such as vocoders for sound reproduction; VDUs for
visual information; keyboards, mice and light-pens for information and command entry,
and so on. The GENIE-M user interface adopts the dynamic representation features
which are facilitated by the tile architecture (as discussed in section 7.2) for circulating
data within GENIE-M system.

At the user interface level, all internal communication tasks are performed in a

manner transparent to the user or users by the interface modules of a particular

166

Chapter 7

application. Each of these modules within the system has a specific and clearly
defined set of tasks to perform in order that GENIE-M data may be edited and
presented as desired. An example is the window administrator module, which is one
of the fundamental components in GENIE-M. This module has a full knowledge of
the devices under its control. For every display window or viewport, the window
administrator will keep an internal record of its structure, current contents,
inter-relationship with other windows, ownership, and other details. This module is
primarily responsible for presenting display tiles on the display device by creating
windows and removing them when not required. It therefore ‘knows’ about the
geometric and implicit topological organisation of data for a specific application, in

order to map accurately the data onto one or more display windows.

Another module of importance is the geometric structure editor, which
manipulates, creates and organises tiles of data in a tile space. It is capable of
grouping tiles into larger structures such as a tile plane. Inter-relationships between
tiles, for example, cross-referencing of data within an application, or even among
applications, are defined in this way. This type of linking, cross-referencing and
ordering of data in some instances resembles that of structure editors [Kimura 86] and
hierarchy editors such as PEN [Allen 81]. Accordingly, the GENIE-M geometric editor
has features that are in common with the hierarchy editor concept. Some editors
include facilities for cross-referencing to show inter-structural linking, though these

cannot be explicitly shown in the hierarchical structure.

However, GENIE-M’s linking capability is implicitly portrayed by the geometric
structure. Using a geometric representation for the relationships of tiles within the tile
space allows us to depict both cross-linkage of data and relative - and hence
topological - data organisation. Both of the cross-linking and topological concepts used
in GENIE-M are the natural and preferred products of one uniform structure, and
reflect similar concepts found in the ZOG [Akscyn 84 & McCracken 84] and Textnet
[Trigg 86] systems.

The geometric structure, when regarded as an abstract data structure, has an

additional advantage in providing an implicit indexing scheme. An indexing scheme

167

Chapter 7

is a technique of organising data for the purpose of accessing it efficiently, and can be
used to assist a human user in the search for certain information. Tile attributes are
inserted using a generic tile template that is accessible via menus available at that stage

of the interaction. Specific tile templates may be maintained for particular applications.

The human user forms the highest level of GENIE-M administration and
control. Tasks performed within GENIE-M are initiated by real-time events. A major
subset of the real-time events is the issuing of commands by one or more users while
directing the tasks performed by the system. Alternative real-time events would
include the continually changing time-of-day, or the current status of peripheral devices.
Human users ‘interact’ with an application via GENIE-M windows, which in turn
associate with relevant display tiles. The means of user interaction are usually locator
devices - a mouse is the most likely choice or a keyboard on a windowing system.
Other means such as a vocoder could be easily introduced into the proposed system.
The windows are used to depict the current state of the system in a manner determined
by the specific application. A monitoring task would depict the multiple processes or
activities being monitored, while information retrieval tasks would depict the requested

data (assuming it could be located).

Section 7.5: Application Examples.

Given the complexity of the concept, it is a good idea to give some examples
of how the system works. The process of understanding the GENIE-M concept is
helped by considering diverse examples of uses to which it can be put. We therefore
elaborate upon the GENIE-M concepts in order to clarify any confusion which may
occur while trying to understand GENIE-M. Following this are some detailed views
of differing applications where GENIE-M would offer a powerful range of abilities in
coping with the given task, as well as providing ample potential for further expansion

in that area.

168

Chapter 7

Section 7.5.1: Mixed Media Documents.

GENIE-M’s philosophy is realised by applying interactive multimedia documents
for presentation, manipulation, storage, and final hard-copy. The geometric data
structure interface allows the human participant to interact with presented data. The
participant selects relevant data by traversing the geometric planes using a locator
device (a mouse, foot-pedal or cursor keys, etc.). The inter-relationships between
different data objects (for example, text or dynamic graphics) within a document are
represented by tiles in a gcofnetric space. The tiles are associated with processes such
as text or graphics editors. At any time, the participant is presented with an accurate
portrayal of the portion of data associated with selected tiles. Data hiding could be
effected using access rights defined on the tile for data security, or by simply ‘hiding’
the tile ‘behind’ other tiles - an action that it facilitated through the use of the

geometrical organisation.

Modification of or addition to the currently presented document is performed by
editing old or inserting new tiles within the geometric space using a geometric editor
at the interaction boundary. The tiles are associated with processes created and
coordinated by the hub. The geometric planes provide a simple mechanism for
generating and organising animated graphics, text or images in a dynamic document

structure or lecture scripts.

Section 7.5.2: Newspaper Layout Construction.

Daily newspapers have many features in common. The majority of the
information and news is printed in black ink on white paper, and so in order to present
the reader with some variety and also to catch the eye, a number of type-sizes, fonts,
styles, and photographs are included. Each of the main news stories has its own block
somewhere on the page, sometimes with a relevant photograph placed at some location
within the block. It is not always the case that such a photo would be in line with the
block of text, and indeed photographs to one side of the text (and so forming an ‘L’

shape block) are common.

169

Chapter 7

Given the somewhat haphazard nature of block layout, it is a difficult job to lay
out the page in a readable and presentable fashion, while fitting in the maximum
amount of information on the page. Furthermore, as news stories are updated or
invalidated, the block could be altered by being increased, or reduced, or removed

altogether.

There has been considerable discussion recently [Honeywell 87] over the use of
high-technology in producing newspapers, because such use would enable the layout
editor to perform the task more effectively and quickly. However, the techniques being
introduced make little attempt to integrate the entire process - if a block is being
manipulated on a VDU, it is unlikely that the contents of the block will be considered,
and if a block is later re-written then the layout process must be repeated again to

ensure that the material still fits.

GENIE-M would allow the concept of newspaper to be broken down into
smaller and smaller logical units: newspaper to pages to blocks to paragraphs to words,
and so on. Each one of these units corresponds to a GENIE-M tile. A high-level tile
(for example, the page tile) would hold references to lower tiles (the blocks on that
page). Block tiles would refer to paragraph tiles holding text, or possibly photographs.
Each one of these tiles would be individually edited by the journalist, directly into the
GENIE-M newspaper database. As the tiles are entered into the system, the section or
feature editors can combine the tiles into tile groups, for example all international news

items would be collected together into a local number of pages.

These tile groups can themselves be built up into groups to build the entire
paper. Each of the tiles is at this stage a topological tile - the layout is comparatively
free, although there will naturally have been specification of paragraphs, emphasised
text or fonts, position of photos relative to the text (for example, between two text
paragraphs, or to one side of a paragraph or another photo). Most importantly, the
entire news item is considered to be one unit, and the author is rarely required to
consider the possibility of splitting the text over a number of pages. If editorial
constraints require that the material must be split, then a tile would be separated down

into two - or more - subtiles.

170

Chapter 7

Once the topological tiles have been entered, the GENIE-M system can begin
automatically formatting the document. It will know from the structure of the tile web
which tiles relate to each other, and so it can build up the geometric tiles knowing the
contents and attributes of a tile, and also its relation to other tiles. In the event of a
tile being too large for the available space, the GENIE-M system can create a new tile
to hold the extra material, and this new tile can then be submitted into the tile web for
another convenient page, along with bi-directional cross-referencing of the form
‘continued on page XX’ and ‘continued from page YY’ (possibly including column

numbers also).

The author of each item ;vill have already specified information such as type
of tile contents, paragraphs, size of font, type-face, and other details. The section or
feature editor will have included further information regarding the relation of items to
each other - for example major news items would be expected to appear above and/or
to the left of minor items. Within these constraints, the GENIE-M system will
construct geometric tiles that reflect the individual layout of blocks, as well as the
combined page layout of all the blocks on that page. The display of these tiles allows
the overall view of the page to be considered, as well as the layout within each of the
blocks. If any one block needs changing, only the relevant tile needs to be altered,
and then the reformatting process to re-construct the relevant geometric tiles can be

repeated.

Time-sensitive material can easily be included - for example many newspapers
carry information on stock prices or exchange rates, and topological tiles can be
entered into the document that describe the layout of the information they carry, as
well as references as to the source of the information, but not the actual information
itself. At any time when any geometric tile is constructed which uses such topological
tiles, the cross-reference is followed and the latest and most up-to-date value is

automatically inserted.
GENIE-M is ideally suited to the high-speed and quickly changing environment
of newspaper publishing. Since all contributors to a paper (in whatever context -

journalist, editor, and others) all have direct access to the relevant portions of the

1

Chapter 7

paper, which can then be combined and manipulated within the same system, the
overall effect is of a much higher production rate, at lower costs to both the publisher
and the reader. Since GENIE-M is context-sensitive to the display device being used,
the material can be formatted appropriately for the device - for example if a publisher
wishes to place selected material into micro-film format, the exact same geometric tile
construction process is followed, but using the micro-film device filter. Each one of
the topological tiles would be stored in the core and later archived into a news file,
and the very nature of the topological tiles makes cross-referencing an easy and trivial

task (albeit on a large scale).

Section 7.5.3: Lecture and Presentation Control and Structure.

Better lectures and seminars have a structure to them. After an initial
introduction to the topic being discussed, the main body of the presentation consists of
a submission of fact, information and views, which may possibly be discussed among
the group. Finally, a summary and conclusion is presented. Throughout, there is often
use of diagrams and pictures to help explain ideas or portray facts more clearly. The
diagrams could be in the form of slides (and overhead projections), films, and (more
recently) television and video. Some presentations may also draw on audio material

from tapes or records.

Given that the material and portrayal of material has a structure, it becomes
apparent that GENIE-M offers a number of useful capabilities in this application. The
entire lecture could be prepared by the lecturer, with each constituent object being

allocated a topological tile.

For example, each section of text in the notes could be allocated its own tile.
The tiles would be displayed to the lecturer in turn (using some form of
head-up-display), who can then present the material - alternatively, if the lecturer is
running behind schedule, it would be an easy matter to skip onto the next section,
knowing that all the cross-referencing of related material will be carried out

appropriately.

172

Chapter 7

Other tiles could be used as ‘channels’ for the input of information from outside
sources. For example, in a large auditorium, televisions may be used to display
camera views of the lecturer or diagrams. A camera could be used to ‘channel’ the
image directly into a GENIE-M tile. The lecturer then has real-time control of this
image around the auditorium, and as each new diagram is to be displayed, can simply
direct the appropriate tile to the televisions. A tile which holds pictorial information
for projection on a large cinema-type screen could have an associated attribute file that
would automatically dim the hall lights while the tile is active; once finished with the
image, the lights could be restored to their normal intensity. Alternatively, the lecturer
could have a ‘control panel’ presented on the display device so that personal control

of the environment can be obtained as and when desired.

The display device for the lecturer’s use would ideally be of the ‘electronic
lectern’ device frequently seen today at major conferences and seminars. This device
has a transparent display screen in front of the speaker, onto which is projected the
text of the speech from a projector undemeath. The angles involved in this
‘head-up-display’ mean that the audience does not see any of the speech notes, and
further the transparency of the screen means that the speaker is not obscured in any
way. A small foot control device could be installed to control the speed of the

presentation of material onto the screen, thus leaving the lecturer’s arms free.

Setting up such a lecturing system would require that the lecturer arrive early
with a technician to connect-up the appropriate apparatus and its control mechanisms.
As each device is identified and a driver incorporated into the GENIE-M system, the

driver can be permanently kept on record for later re-use.

With all the material on hand in this form, the lecturer could display actual
copies of the notes in the form of projections, simply by redirecting tile contents to the
display device. A mobile pointer (possibly driven by a mouse) could be superimposed
on the projected image, in a similar fashion to a multimedia conferencing system.
Finally, having all the material stored in this way would allow hard-copy notes for the

audience to be produced easily and quickly.

173

Chapter 7

The construction of the lecture notes would be made easier by the probable
existence of a large amount of material already in GENIE-M tile format - it would
then be a simple matter of constructing a new lecture web from the information tiles

already stored in the core.

Section 7.5.4: Prototyping Methodologies.

When designing any system or device, it is useful to be able to build and study
a test system or prototype. The prototyping stage allows a more detailed evaluation
to be made of the system at an earlier stage of development, prior to a more detailed
(and probably more expensive) implementation of ‘the real thing’. In the case of data
processing tasks, where information is continually being moved and manipulated in
various ways, it is important that the movement and manipulation is carried out in a
clear and correct fashion. For small models, this may be easy to describe and
implement, but for larger models, the possible types, quantities, sources and

destinations of information easily become impossibly large to wield and test.

GENIE-M offers a structure mechanism that is designed to cope with large
inter-relating and interacting items of information. A web is constructed which shows
the relationship between any number of tiles. If the tiles become items of information,
and the connections are used to represent the flow of this information about the
system, then GENIE-M becomes a powerful prototyping methodology for the design
and implementation of such an information web. Command modules could be created
that will accept this web as input, and either mimic and so portray the flow of

information, or possibly produce statistical results as desired.

Section 7.6: Problems with the Concept.

For a developed version of GENIE-M we would choose to use a menu-driven,
windowed user interface that makes use of the ‘cluttered desktop’ concept of
overlapping windows (examples are Xerox Star, Apple Lisa and Macintosh, etc). Such

a depiction can rapidly become confusing due to the many objects displayed.

174

Chapter 7

However, the user or users currently directing the tasks will be familiar with the steps
taken to reach the current state, and so in effect the multiple objects on the screen -
which relate directly to objects within the tile space - can be considered to be a

‘viewpoint’ from the current perspective into the web.

The mechanism used by the wiridowing interface to associate with the
underlying geometrical model must allow users to transfer information between
windows in more structured manner than that provided in less developed systems. For
example, a user can work on the text for a document in one window, and draw a
figure for the document in another, which can then be transferred to the text window
at any selected position in the document. Furthermore, each user would have
personalised sub-tile-spaces, a set of common tile layers that are distinct from, but
associated with, the common tile layers that all users have access to. In this way,
multiple users can share tiles by placing them in common tile space, while private or

individual information can be located within the local tile space.

A more obvious problem concerning the concept rather than the implementation
pertains to the initial creation of the multimedia document or IDEA. The authors who
have contributed to the material to be displayed clearly have an initial responsibility for
its accuracy, but subsequently, as other authors contribute, or the scope of accessing
the material increases, so the ‘ownership’ of the IDEA may be increased. The problem
of updating the IDEA becomes increasingly difficult, especially with regard to ensuring
integrity of the stored material.

One temporary solution might be to archive permanently the original material
and all subsequent alterations. However, for important or popular IDEA storage, this
would rapidly become unwieldy. In effect, the concept of the IDEA becomes akin to
the ‘customised’ working environment, where each user has their own ‘version’ of the
application. While the potential for multiple and conceivably complex structures is
responsible for posing such problems, to reduce the same potential would in effect be
to limit the flexibility of the system and the architecture. This latter option would

counteract the perceived benefits of flexibility, as discussed in section 5.4.

175

Chapter 7

The actual implementation of the architecture may appear to be a retrograde
step, in that there are certain aspects which redesign existing systems. However, this
is considered vital in order to avoid the problems inherent in ‘patching’ systems: all
too often, attempting to patch an existing system will result in a new system that
remains constrained by the limitations of the original. If the limitations are to be
specifically removed, this would usually require a considerable amount of work; and
would in any event lead to potential conflicts with the original system design. The
less ‘efficient’ approach of identifying the essential aspects of the system before
commencing implementation results in a design architecture which reflects the original

specification much more accurately.

In terms of implementation, however, there are a number of aspects which
appear to be derived from the domain of operating systems, rather than application
systems. For example, certain elements of the data or tile handling, or the use of
drivers for specific presentation devices. [Scott 86] has said that rather than including
device specific code in an application, device drivers accessed through a virtual device
interface (VDI) provide:

‘applications with peripheral independence and system integrators with

a clearer route to completed applications.’

This can be further justified by the realisation that in order to provide a more
enhanced form of integration - as necessitated in any attempt to extend computer-based
information systems - we require that the distinction between operating system and
application system must be made less distinct in order to provide a better representation
of the working environment. [Halasz 88] has pointed out that joining an application
system closer to a support system is likely to produce a more efficient result, although
the actual joining may be more complex than keeping the two systems distinct.
Partitioning tasks between several domains means that interfaces would also have to be
defined, when in fact we are attempting to provide a contiguous model of an

operational environment.

176

Chapter 7

The approach used to envisage the individual application modules is rather
similar to the ‘black box’ concept of current software engineering techniques, whereby
the operation of a component may be safely ignored and will often be specifically
hidden. This may be contrary to existing standards such as Office Document
Architecture (ODA), where an ‘open architecture’ is seen as essential to promoting

standardisation.

However, it is often the case that such standard architectures cannot benefit from
environmentally-specific advantages. Constraining a system so that it must use a given
standard must at the very least reduce the overall performance of the system. By
contrast, using a proprietary architecture means that the system can be optimised for
specific circumstances, and when necessary conversion or environment-support modules

can be applied.

Finally, the actual implementation of the experimental system has made clear the
need for advanced hardware technology, particularly with regard to true multi-tasking
and parallel processing. In order for the proposed system to run at optimum
performance, there is a requirement for advanced host machines that are not as yet

available, although the indications are that such machines may appear before long.

Section 7.7: Conclusion.

GENIE-M is an implementation of an architecture for developing computer-based
information systems. In order to increase its power and capability, it has a number of
language-like and Operating-System-like features, but it is still nevertheless a system
for data processing and editing. GENIE-M’s basic units are tiles. These (and only
these) are what GENIE-M components are expected to handle or manipulate. However,
GENIE-M applications are not required to give consideration to the actual information
that is contained, portrayed-in or referenced by those tiles; except in those situations
where interpretation is mandatory. As a result, tiles can be data of any kind, or
command files, or programs (source or executable), spreadsheets, processes, and so on.

This enables a more generalised approach to be used in system construction. In order

177

Chapter 7

to make the handling of these tiles both easier and more powerful, certain specifications
have been included within GENIE-M such as allowing external execution to be invoked

(for example, remote procedure calls).

GENIE-M is very much suited to a parallel architecture - it has in fact been
designed that way. GENIE-M does not have to assume a single machine running the
system, and so GENIE-M could equally well run on multiple machines (one dedicated
to each task). For example, we envisage the probability of having one machine per

display window as being as likely as one machine running ‘n’ display windows.

The thinking has been in terms of the true next generation of machines,
whereby rather than using software to achieve multi-tasking, in fact the system would
have multi-processors which could run tasks as and when needed. The problem is
getting such parallel-ism working, but the GENIE-M concept is designed for
parallel-ism.

It is realised that GENIE-M might never work efficiently or quickly on a single
machine system - and it was neither intended or expected to. However, subsets of
GENIE-M could run on present systems, in a similar way to hav\ing word-processors
or spreadsheets performing jobs one at a time, depending on which program modules

you have installed on your system.

Section 7.7.1: Use of GENIE-M on Existing Systems.

GENIE-M can be used by existing systems. A possible objection to this might
be that depending on the construction of the existing system, there could be a need for
a considerable amount of work to convert formats and file-types, so that GENIE-M and
the existing system can communicate. However, GENIE-M is intended not only to use
its own general-purpose, multimedia editor, but also to invoke any external system and
supply it with the desired input, and then re-direct the output as required. GENIE-M
would effectively simulate the environment in which the external application would

normally expect to run.

178

Chapter 7

It is possible that the size and complexity of the final system would increase,
but the degree to which this is true will be environment dependent. If there is likely
to be regular use of a non-GENIE-M facility - for example an external
word-processor - then it would be more sensible to remove the unused portions from
GENIE-M. It has been described elsewhere that GENIE-M is constructed from
modules, and if any one of these modules is either not used, or already implemented
as (say) an operating system command or through use of an external program, then it

would be sensible to make use of the ‘host-supplied’ tool.

Conversely, if the intention is to move fully over to a GENIE-M system, then
after an initial conversion phase for formatting information, the older system could be
removed in the same way as redundant modules are removed from GENIE-M. This
would not reduce the overall performance of the system, unless GENIE-M is being
prevented from operating at its full potential, in which case the older application would
slow down the system, rather than GENIE-M being the cause of any bottleneck. If it
is desired to use video, sound, text and graphics all in the same document, then it is
inevitable that formatting will be required, and further that only GENIE-M will be able
to handle the resulting new document. This formatting would normally be one-way
(since a text-only editor could not handle the intricacies of a multimedia document),
although because GENIE-M holds each type of information in separate tiles, it would
be reasonably straightforward to extract the text-only portions of a document and

submit them to a text-only editor.

Section 7.7.2: GENIE-M Users.

Those users who are already using a system which performs some of the tasks
that are supported by GENIE-M will naturally prefer not to have to learn new
techniques and instructions. For GENIE-M to be used in a multi-user environment, it
must offer similar or better performance than their existing system(s). However,
GENIE-M’s module concept makes not only upgrading easy, but the entire environment
can be altered as the user desires. Each module can be individually tailored, so that
whenever a user invokes GENIE-M, the appropriate modules are loaded into the local

workstation for use as normal. These modules can be user-written, in any language,

179

Chapter 7

and could easily be OS or system calls if they are suitable. It must be stressed that
GENIE-M is not a system, but an architecture. The distinction is that using the
architecture and the generating tools allows users to specify, develop and configure

their own personalised systems and applications.

Section 7.7.3: Future Systems and the GENIE-M Architecture.

It is generally recognised that with decreasing costs for more powerful hardware,
the machines of the future will offer greater processing capability, possibly in the form
of multiple-processors within the machine. GENIE-M is organised around such an
architecture, and indeed presents a viable mechanism for organising the multiple-tasking
activities of the machine. The important feature for such machine organisation is the
internal communications to ensure that parallelism is achieved where possible, but that
events do not clash or cause deadlocks of resources. Using the GENIE-M system as
a design approach should allow a software test-bed to be quickly implemented as final

hardware.

The GENIE-M model has the following objectives and advantages over

non-integrated systems:

1) Providing an integrated framework for handling data from diverse

media types in a coherent fashion.

2) Specifying and directing the manipulation of objects and

relationships stored within a geometric data structure.

3) Aiding the user in the processing and presentation of data using

simple structure traversing and editing or formatting techniques.
4) Monitoring and controlling the movement and modification of

objects within an application environment, using access rights

associated with parts or the whole of the object.

180

Chapter 7

5) Ensuring efficient use of the processing powers of different
devices during data preparation and presentation through a

modular architecture.

6) Providing multiple-process message-passing primitives for intra-

and inter-communication between data processing modules.

The model is widely applicable in many areas: a computer conferencing system
where the ordered control of information is important; electronic multimedia documents;
photo-typesetting; distributed and semi-automated lecturing sessions where control of
lecture devices (e.g. lectern, slides, projectors) and lecture notes are to be pre-specified
within the document structure for interactive presentation; newspaper publication

requiring a structured layout of information using current computer technology.

181

Chapter 8.

Design of the Prototype System.

Section 8.1: Introduction - Analysis and Design of the System.

In the first chapter of this thesis, we identified the goal of this research as
being the production of an architecture that will support the development and operation
of a second generation computer-based information system. In order to do this, we
have had to identify in general terms what is actually required from such an
information system, particularly with reference to the human users of such systems.
A working definition of information has been given, and used to define a
computer-based information system as that which enables and supports the

computerised processing of information for human users.

Having established these concepts, it became important to identify the
architectural features that a generalised computer-based information system should have
in order to eliminate many of the current constraints found within the first generation
examples of such systems. Consideration was given to examples of current production
packages, such as management systems, data handling tools, and idea processors; as
well as to the cases of research work that have not necessarily seen commercial
success as yet, such as multimedia systems, hypertext® and information structuring
systems. This enabled us to isolate those features that seem essential ideals or key
aspects of the tools, but which were not always incorporated as part of the end-result

of each of the systems studied™.

54: The Apple HyperCard product being a notable exception to the lack of popular acceptance for
research products, although it remains to be seen whether it proves to be a resounding commercial
success.

55: For example, a graphic user interface is not provided with the HyperPad systems, although this
package implements most other features of a Hypertext system.

182

Chapter 8

In effect, we were able to establish the fundamental features that seem
mandatory for the construction of an enhanced or second-generation computer-based
information system architecture. The features were categorised and grouped together
appropriately, so that an information interaction diagram was produced, thus forming

a pictorial statement of the architectural requirements.

With the architectural requirements defined, the next stage in the development
was to identify a suitable architectural mechanism which would support those
requirements. A uniform and consistent model was required, and the result was called
the GENIE-M generator of computer-based information systems. This provides support
for the concept of the information document, a computer-moderated instance of an
information-processing application, which is modelled using electronic abstractions of
the data, relationships between the data, and the environmental circumstances of data
and the relationships themselves. Chapter 7 discussed the architecture in detail,
showing examples of how such a structure would operate for a variety of cases.
However, while the structure has been identified in its abstract form, the major task
remaining concerns the development of a prototype system to evaluate this architecture.
This done, experiments can be carried out to test and improve the model to the point
where a second-generation information system architecture is firmly established in terms

of current work.

Section 8.1.1: The Contribution and Incorporation of Software Engineering Techniques.

In section 2.3, we examined the concept of development systems, and discussed
the contribution of computers to Software Engineering (C.A.S.E.). Although it was
established that there are limitations to the concept, there are nevertheless many reasons
for following an organised and structured development process for the construction of
the prototype system. Firstly, the requirements for most systems (particularly
commercial applications) change far more rapidly than the corresponding software can
be developed. Secondly, the users who issue the requirements hardly ever know in
advance the functional details that are required from a new system - until it becomes
clear that they are missing. Accordingly, if a system is to gain or retain its value, the

development methodology used for its production and subsequent maintenance has to

183

Chapter 8

be able to respond quickly in accommodating new directions. The application of
software engineering techniques has been intrinsic in supporting the design and

development process of the current project.

However, while recognising that methodologies already exist which enable the
developer to establish a full specification and implementation plan from conception
almost to completion of the finished product; there are alternative approaches which are
not so definitive in their strategy. This is inevitable because there are several instances

of systems which cannot be specified in advance™.

In the absence of a suitable specification, it is difficult to develop a design or
production strategy. However, current thinking in software engineering makes
allowance for systems which cannot be specified in advance, and there are techniques

for the design of such products.

Specifically, the concept of prototyping [Gomaa 83] is used for certain kinds of
system development and design, and seems to be of particular relevance to the research
being carried out in this project. The difficulty is that for many new systems, and
particularly those for which the concepts embodied can be large or complex, it is
almost impossible to make any form of meaningful assessment of validity before the
system is built and put to use. Rephrasing in general terms, the problem is to carry
out evaluation of a complete system, without necessarily expending a great deal of
resources on implementing the complete system in the first instance. As Jones
indicates [Jones 89]:

‘Prototyping offers hope to software developers faced with the complex
problem of having to provide less than prescient users with computerised
support in next to no time. By enabling I.S. staff and users to "grow"
applications, prototyping supports an iterative method of software

development.’

56: For example, Expert Systems or those designed to offer Artificial Intelligence.

184

Chapter 8

Accordingly, the scope of this research was extended to incorporate the
associated issue of evaluating the benefits of a prototyping approach in general terms,
as well as in the specific instance of the implementation of the prototype system. Of

particular interest was the study of the handling of development in two categories:

1) Management of the system development. Each developer (system
internal and graphic front-end) was totally independent, to the
point of working on separate sites with only telephone links to
communicate. Actual meetings were held occasionally, and were
used to provide progress reports and encouragement, as well as

to discuss problems in development.

2) Incorporating changes into the architecture, while recognising that

a major concern is that of quality, not productivity.

Section 8.1.2: Evolutionary Prototyping.

In general terms, prototyping is the adoption of an exploratory form of system
development, where the products are knowingly incomplete, but which can be modified
and augmented as the real requirements or modified specifications are derived. Two
major forms of prototyping can be identified, the first being to modify and improve the
prototype until it reaches the point where it meets the specified requirements - which
may themselves be changing during the development process. The second form of
prototyping is deliberately to build a ‘disposable’ system, which can be jettisoned as
and where necessary. In this form of prototyping, a (possibly expensive) model is
built to identify problems or areas of extended benefit, preparatory to discarding the
prototype completely in preference to a ‘production-quality’ version. As Sommerville
indicates [Sommerville 89], the appeal to patch and improve the prototype in order to
retain it may be strong, primarily in a desire to minimise development time and costs;

but this temptation should be resisted because:

1) Some system characteristics may have been deliberately omitted,

such as security, performance, robustness and reliability.

185

Chapter 8

2) Changes made to the prototype reflecting user needs may not have
been made in a controlled way. Thus the only design
specification which exists is the prototype code - an inadequate

basis for long-term maintenance.

3) Development changes may well degrade the system structure,

making maintenance more and more difficult.

The mechanism of prototyping depends on the nature of the task at hand, and
almost any software tool can be used for certain aspects. For example, any screen
painting package could be used to design the appearance on the screen of the final
product, long before it is finished. More complex tasks generally require more
complex tools, however, and current tools specifically intended for prototyping are
frequently built upon powerful 4GLs and code generators. One of the problems with
this, however, is that while 4GL technology, in particular, is in reasonably widespread
use within information centres, it is still unproven for building the core of strategic
systems. Certainly, 4GL-developed applications consume more resources” than 3GL
equivalents [Gibson 89], and further tie the developers to a proprietary (focused)
system. However, if the prototyping approach is used as intended, to produce a

throw-away model at the end, then the disadvantages are considerably reduced.

In the case of the present research, a considerable amount of thought and
consideration has been applied to establish the architecture, but there are a number of
questions that simply cannot be answered without recourse to an examination of a
working example - does it work as intended, what are its practical limitations, is it
adequately defined, etc. Therefore, a major goal in developing the prototype generator
system is simply in order to help with assessing the validity of the proposed generator
architecture, thus aiding evaluation of how the existence of ideas embodied in a
production system would affect the development of future computer-based information

processing systems.

57: Including processing time.

186

Chapter 8

Section 8.2: The Structural Specification.

In order for the system to function efficiently and quickly, the design of the
architecture must be considered carefully. All items that form part of the working
whole must be defined with a view to avoid the danger of inadvertently incorporating
restrictions. From the system implementation perspective, the architecture which

operates within the environment can be split into three basic sections, as depicted in

Figure 5.

System Environment

User

User Interface

................. R L L

Kernel

Figure 5: Overview of Structural Specification.

The User component represents the user aspect of the interaction diagram
referred to in section 5.2. It delineates the domain of presentation from, and command
submission into, the computer-based domain of the remaining system environment.
The computer-based domain consists of the User-Interface/Server and Kernel domains.
Interaction with the computer-based domain is implemented via a series of interaction
tools, depicted in the diagram by the User Interface block. This section is responsible
for handling all communication between the internal GENIE-M system and the user.

Closely associated with this block - and in many ways indistinguishable from it - is

187

Chapter §

the server domain. This section contains the specific application tools and modules
which are necessary or desirable for the tasks at hand. Higher level administration
tasks are instigated and processed in this domain. This in turn will invoke and utilise
the internal architecture of the system, which is provided by the Kemel facilities. The
kernel is the main storage and access controller, handling many of the filing and
administration tasks, including distribution and transmission of information to remote
GENIE-M hosts and applications. These domains combine to support the fundamental
concepts underlying the GENIE-M system.

Section 8.2.1: The Kernel.

The kernel will supply tiles as requested by the application (via the server).
Updated tiles are returned to the kernel when no longer required, or when a time-out
mechanism indicates that the tile is unlikely to be accessed because it has been left
unused for a considerable amount of time (perhaps one second or so). As the tiles are
updated and altered, the kernel provides a historical or archiving function so that
cross-referencing can be supported. Tiles within the system are always related by a
master web structure that describes the overall organisation of the complete tile space.
Any given application or user will have a localised copy of a web subset, which relates

the tiles stored in the local workspace or ‘Topological Tilestore’.

Tiles and their contents are never actually deleted. Instead, they would be
relocated to increasingly ‘remote’ storage. Thus, a typical sequence would be RAM
chip memory, magnetic disk memory, magnetic tape memory, and possibly optical

disks in the form of write-once, read-many (W.O.R.M.) drives.

The kernel is intended for connection to at least a local area network (L.A.N.),
and possibly further afield. Accordingly, it would be directly responsible for connection
to, and interaction with, other (remote) processing hosts. There is no architectural
requirement for the kernel to be resident on any particular workstation or processor, the
important point is to isolate the kernel activities so that the server and user-interface
domains can be directed towards the more specific tasks required for the portrayal and

manipulation of GENIE-M applications.

188

Chapter 8

Section 8.2.2: The Server and User Interface.

The server and user interface domains represent the main components of a
GENIE-M application. They perform all internal communication tasks in a manner
transparent to the user(s), as well as using the kernel to manipulate and relate tiles in
an organised fashion (see Figure 6). Each of the modules within the domains have a
specific and clearly defined set of tasks to perform, depending on the actual application.
Certain of the modules may perform tasks of an administrative as opposed to
operational nature, in that they are capable of initiating actions - or responding to
external real-time events - without requiring user directives; but the majority of the
modules would only operate when they are given specific tasks to perform from the

user or from higher modules.

I Users and Devices _|

/ \

Presentation Event
Manager Handler

|

Sub-Application Application
Manager Administration

Localised
v Topological

Execute / Tilestore

Known f----f--------- > Geometric
Kemel > .
] Tile
Execute | 4 Builder .| Geometric
Unknown Tilestore

Figure 6: Internal Structure of Server and User Interface Domains.

Section 8.2.2.1: The Application Administrator.

The Application Administrator domain is responsible for receiving user or

real-time event input and converting the commands and initiating circumstances into the

189

Chapter 8

appropriate directives to other modules to achieve the desired result or response. Given
the complex nature of this domain, it is envisaged that it could be constructed using
an intelligent or expert system, in order to be able to serve the users in a more relevant
manner. The parameters of this domain will define precisely the application at hand,
and the execution and responses specified in the construction of the functional
components will determine the method of interaction. In practice, modules within this
domain (along with those in the kernel domain) would be the first to be activated in
order to request initiation of the supplementary support modules. Once activated, and
all /O channels have been constructed, modules in this domain can await user
instructions. These are then interpreted and appropriate directives passed to other
domains within the GENIE-M application architecture.

An application-aware multimedia editor would be mandatory for this domain,

and would perform the actual editing of the contents of topological tiles.

Section 8.2.2.2: The Presentation Manager.

This domain has a clear knowledge of the presentation devices under its control.
For every presentation ‘window’ or ‘viewport’, the manager will have an internal record
of its architecture, current contents, relationship with other viewports, ownership,
priority, and other details. The presentation information is usually supplied from the
Application Administrator, using data from the kernel. Responses from users would
be directed towards the event handling domain modules, since the presentation domain

is responsible purely for implementing directives from within the system.

A primary aspect of the presentation manager tasks will be the presentation of
geometric tiles that have been constructed from the contents of the relevant geometrical
tilestore. The geometric tiles have, in turn, been built up using the configuration and
content data held in the topological tilestore. The geometric tiles are primarily intended
for submission to the user via the presentation manager, and so are available to the
presentation domain in their entirety. The advantage of this approach is that the actual
presentation of data does not reflect the devices used, except at the final stage of

computation.

190

Chapter 8

However, the fact that the geometric tiles have been constructed and exist within
the tile space means that they can themselves be referenced by other tiles using a
linking mechanism similar to that used within hypertext systems. This would be useful
for incorporating copies of the material as references into other electronic documents.
Additionally, minor alterations to the presentation can be made without having to
interrupt or reconfigure the remaining domains within the architecture. Instead, simple
adjustments (such as scrolling or moving display windows on the presentation device)

can be performed locally by the presentation manager.

Section 8.2.2.3: The Event Handler.

This domain handles the introduction of input events into the architecture. For
the prototype system, such events would include keyboard or mouse activity, but for
the generalised system the events would include voice, power-supply monitors, motion
detectors, and any peripheral device that can generate an external interrupt requiring
attention. The event handler domain modules ensure that the events are converted into

a form that can be recognised and acted upon by the application administrator.

Section 8.2.2.4: The Sub-Application Manager.

This domain provides a mechanism by which the architecture of a GENIE-M
application can be extended with new facilities or by incorporating existing tools. If
the current application administrator is supplied with a directive that does not make
sense within the current application, then the command can be passed to the
sub-application manager to determine whether an external tool or module can recognise
and process the directive. For external applications - which do not necessarily know
about the GENIE-M architecture - modules in this domain can simply pass the requisite
data to the external application, and wait for the output results to be obtained. In
effect, the GENIE-M architecture will provide an operating environment for the external

application.

This architectural provision also enables the use of tiles as executable objects,

possibly in the form of programs or command files. Clearly, such a facility presents

191

Chapter 8

potential integrity risks with regard to the system validity, and so would be treated as

external applications.

Section 8.2.2.5: The Geometric Tile Builder.

This domain is responsible for such tasks as storage and tile conversion.
Topological tiles are referenced according to the generated web structure that relates
them. Any request for tile material would be directed through or initiated from the
application administrator, which will instruct modules in this domain to ready the
appropriate topological tile for access. If not available, then a suitable error message

would be generated.

The next stage of tile access requires the conversion of the topological tile
contents into geometrical contents. This conversion process will be extremely
application-specific, and may involve any combination of expert system, device driver

and filter tools.

Section 8.2.2.6: The Tilestore Domains.

The tilestore domains are populated by controlling modules which perform
physical storage and filing tasks, as directed by the Geometric Tile Building modules.
The tilestore domain modules would have responsibility for keeping track of all the tiles
currently in use within the system, as well as incorporating new tiles and disposing
(archiving) outdated or unused tiles. As described in section 7.2, tiles are stored within
a tile space; but for convenience tiles may be stored in different domains within the
tile space, in order to help categorise them according to their type. This has the
additional advantage that manipulation of tiles can be controlled according to
ownership - privately owned tile would be stored in one domain, while publicly
available tiles would be stored in a more accessible domain. The two main tilestore

domains are as follows.

192

Chapter 8

Section 8.2.2.6.1: The Localised Topological Tilestore.

This storage domain holds and provides access to the topological tiles, according
to requests from the Application Administrator. Certain of the topological tiles will be
specific to individual users, while others will be for multiple/general access by many
users. In effect, individual users accessing this tilestore will have their own sub-space
within the tilestore. In order to implement this facility, users would have a Privileged
Access Descriptor (P.A.D.) entry within the administration storage of the tilestore,
which is used to determine the validity of the user’s request. Such a mechanism allows
a single tile to be shared amongst several users, but with only one copy being held
within the entire tilestore; the individual users will have their own P.A.D. in their own

sub-space.

Section 8.2.2.6.2: The Geometrical Tilestore.

Modules within this domain perform very similar tasks to those performed within
the Topological Tilestore domain: the major difference is that there is no need for users
to have their own sub-areas - if the user was not permitted to access a topological tile,
then a corresponding geometrical tile could not have been created. This tilestore holds
the geometric tiles that are the result of formatting the topological tiles, and which will
be manipulated by the presentation system. In practice, tiles within this tilestore can
still be referenced by external tiles that are located within other tilestores, but for

administrative purposes it is convenient to distinguish the tilestores.

Section 8.3: Hardware and Software Considerations.

As discussed in section 7.3, the separation of processing tasks into distinct
components reflects the definition of individual processing modules, rather akin to the
‘processes’ on a multi-tasking computer architecture; an approach made more important
by the inevitable real-time nature of certain data items (e.g. date, time, etc.), and the
fact that many changes could occur concurrently within the information environment.

Accordingly, the development of any second-generation computer-based information

193

Chapter 8

system must reflect the nature of the distinct modules by implementation using a truly

multi-tasking computer system.

The initial development for this research work was carried out in the Computer
Science Department at University College London. The department has an extensive
range of resources, particularly with regard to machines suitable for real-time
multi-tasking®. The main machine is a Pyramid computer, with additional support
provided by VAX 11/750 machines, all running UNIX in a variety of forms. At the
lower end of the computer spectrum, some Sun Workstations (running the SunOS
implementation of UNIX) and several IBM-compatible Olivetti Personal Computers are
available. The range of possible hosts therefore was greatly beneficial with regard to
the development of multi-tasking components of the architecture, as a large number of
experiments could be carried out to evaluate the nature of the multi-tasking and

communications required by the multiple modules of the architecture.

An immediate result established was that the hosting machine architecture is
directly relevant to the performance of multiple process activity. In general, if a
computer is multi-tasking, it will attempt to ‘load’ a number of programs into its
primary memory, and these are formed into active processes which can then be
executed logically according to a given scheduling strategy. The number of processes
which can be loaded at any one time depends on the amount of memory, the size of
the processes, and the nature of the jobs being carried out by each of the processes.
Naturally, evaluation of the behaviour of such systems can only be carried out in
general terms, by taking statistical measurements. However, even without detailed
analysis, it is clear that multiple, small tasks which function only on an occasional basis
(when needed) are very likely to be temporarily ‘swapped out’ from computer’s
memory, resulting in a noticeable performance degradation when they are retrieved from
the swap space [Madnick 83]. Consequently, the only way in which an architecture
such as that proposed - which has many such processes - could operate feasibly is

when each of the modules can be guaranteed to remain in memory for the maximum

58: A major reason for this is that the department has a special interest in computer communications
research.

194

Chapter 8

amount of time, with a high scheduling priority®. Such a property is normally
associated with operating system processes, and those of system manager privileges.
Naturally, this was not possible for the ‘public’ machines within the department, a
problem which was not allayed until a small workstation became available for dedicated

use.

The provision by the Science and Engineering Research Council (S.E.R.C.) of
an LC.L. Perq computer, running a version of UNIX called PNX was extremely helpful.
The machine itself had a high-resolution monochrome monitor that enabled initial
development work on a graphics front-end to the architecture. Unfortunately, however,
the version of UNIX used as the basis of PNX was rather old, and as such had little
in the way of support for communication between multiple processes. As a result, the
early system development work had to be carried out in two separate forms. Modules
that could be tested in a stand-alone fashion and those for use in the graphic front-end
were developed on the Perq, while the kernel modules and options for communications

routines were evaluated using the Pyramid and/or VAX computers.

The initial development work had to be carried out using UNIX (or UNIX-like)
hosts, because these were the only multi-tasking machines readily available. However,
serious consideration was given to alternative architectures for development work,
including using IBM PC hosts for low-end implementations of the architecture, and
alternative operating systems for high-level but UNIX-independent implementation, the
most obvious example being VMS. However, the hosting operating system chosen was
UNIX primarily for convenience in that it was provided across multiple machine
architectures; but also because it clearly had support for the features required in order

to develop the prototype system ready for evaluation.

The decision was later to prove correct following the relocation of the research
project to the site of the Department of Information Systems at the London School of
Economics and Political Science. The department had procured two of the latest Sun

Workstations for the research, which supported not only a superb development

59: Such modules are said to be ‘sticky’, because they remain in the computer’s memory even if they
are not currently running.

195

Chapter 8

environment for both graphics and system architecture work, but also one of the most
recent versions of UNIX with numerous extensions, especially in the area of

inter-process communications (see section 9.2).

Nevertheless, the work carried out using the Perq and Pyramid/VAX machines
was invaluable in the pre-prototype development, as it enabled the study of such
components as module communication when modules were situated on the same or on
different hosts®. Such an approach proved highly successful, in that when the modules
were ported to the Sun environment, no modifications were required for successful
compilation and operation, although the modules have since been ‘fine-tuned’ to take

advantage of Sun-specific features and improve overall performance.

The choice of development language was inevitably limited by those available
on the hosting machines. The one common language was ‘C’, and so this was chosen
for the purposes of primary development. However, with the exception of certain
aspects of module communication - which was closely dependant upon the facilities
available with the UNIX environment - the majority of the prototype code could be
written in any language of choice, as long as it fitted within the general architecture.
In accordance with the module philosophy, as long as any given module could function
using tiles, and communicate with any necessary external modules, then the exact
operation and even nature of the module was completely irrelevant. This relaxation of
constraints upon module development immediately means that the most efficient or
familiar language could be used for any specific module, but one of the inconveniences
would be that it would not be possible to specify a limit on the execution environment
of any module. A module must be able to operate within what would be perceived as

a virtual machine, and so not be required to take into account the available memory

60: Experiments concerning module communication between two heterogenous architecture computers
(Pyramid and VAX) were extremely enlightening. In particular, it was found that the then state-of-the-art
UNIX implementation had certain limitations. Quoting from the documentation [UCL 83]:

‘[Some sections] are an experimental part of the operating system more subject to
change and prone to bugs than other parts.’

In practice, it was found that under certain program conditions, code would be executed that
would literally halt a Pyramid computer. Normally, this should be completely impossible for an ordinary
user applications program. Needless to say, this was an unpopular experiment with other users, and so
not repeated.

196

Chapter 8

or resources. This is one of the reasons why a truly parallel architecture host machine

would be preferable for a production version of the GENIE-M system.

There are certain other considerations, however, particularly with regard to the
presentation of data to the user and the range of devices that can be attached.
Although UNIX hosts are ideally suited to the development of the multi-tasking nature
of the proposed architecture, the hosts are often limited with regard to the range of
presentation options. Specifically, it is true to say that the only standard mechanism
for presenting data from a UNIX machine is through a text-only V.D.U.

Certain limited exceptions do exist (for example, the Sun View windowing
environment), but there is almost no predominant standard for graphic presentation of
data. One possible exception that is gaining support amongst UNIX system developers
concerns the X-Windows interface, which is intended to provide a common graphics
tool-kit for applications programs. An alternative that may prove competitive is the
Adobe toolkit called Display POSTSCRIPT, a screen-based version of the definitive

printer-orientated Page Description Language POSTSCRIPT.

In the absence of a clear choice for display generation, it seemed sensible (and
a beneficial use of the modular architecture of the information system model) to
relocate experimental versions of display modules onto machines or devices other than
the UNIX hosts. Accordingly, consideration was given to developing a prototype
system that could be controlled either directly via the UNIX hosts, or through a simpler
control system running on an independent personal computer that supported
high-resolution graphics. Two forms of direct interaction with the UNIX hosts were
defined:

1) A powerful and detailed graphics environment for user interaction,

in accordance with the ideals specified in chapter 7.
2) An elementary command-based interface that offers a ‘universal’

portability, but which is achieved by omitting graphics

enhancements.

197

Chapter 8

For the second case, the UNIX hosts would be controlled by the commands
entered at the elementary interface, and respond or present results according to the
application configuration. Two configurations were designed. The ﬁ;st was to use the
GENIE-M generator architecture to present data to an output-only graphics device,
called the IKON Pixel Engine, a graphics processor which was successfully connected
to the Sun Workstations using a serial cable and serial device-driver software. This
would allow demonstrations of how a system module generated by GENIE-M could
construct a graphic representation of the data presentation, which could then be

displayed for the user to interpret.

The second configuration required the combining of the second interface with
the personal computer control system - in effect turning the PC into a semi-intelligent®
front-end host. This second configuration was embodied in the development goal of
a simple system which was generated using the prototype system developed by the
author (see Figure 7). An advantage of this configuration is that it would demonstrate
very neatly many of the objectives of the GENIE-M computer-based information
system generator. The vast majority of the complex and multi-task processing jobs
could be carried out on a dedicated host, while the more straightforward and distinct

tasks for data I/O could be carried on a dedicated front-end machine.

Section 8.4: Summary.

In this chapter, we have considered the overall analysis and design of the
GENIE-M generator. An exploratory prototyping approach was used to specify the
system, which was seen to be a sensible approach in the light of the changing
environment being used for the final development. The architecture of the generator
has been discussed in detail, since it is this - rather than the actual implementation -

that is of key importance to the practical research.

61: Semi-intelligent because although the PC would in effect be under the control of the UNIX host with
regard to the display of data, a complex program package would have to be running on the PC to
provide the command processing and result reception/presentation.

198

Chapter 8

Ikon
Laser Dix el
Printer lx.e
Engine
! !
Y Y
Driver Driver
Data
-—| Kernel
Store
Driver Driver

!
v

Sun
Console

<>

PC

Figure 7: Overview of simple system architecture generated by GENIE-M.

199

Chapter 8

The implementation itself is naturally influenced by the development
environment, and where possible the constraints on design that resulted from the
particular environment have been described. In the next chapter, we will consider the
actual implementation of the generator, describing in detail the construction of the

resources within the major generator domains.

200

Chapter 9.

Implementation of the Prototype System.

Section 9.1: Implementation Details.

As discussed in chapter 8, the implementation work was partitioned into two
stages. In the first stage, a set of pre-prototype experiments were carried out, the
results of which were used in determining the course of the second stage: developing
the prototype generator system. The pre-prototype experiments were carried out using
Pyramid and VAX machines at University College London, while prototype
development was carried out primarily using the Sun Workstations at the L.S.E. This
section of the report discusses the implementation details of the prototype system,
taking into account the experimental and design work described in chapter 8. The
implementation work built directly upon that carried out at U.C.L., but where additional

points arise that were unique to the research at U.C.L., these will be identified.

Given the availability of a stable hardware platform in the form of the Sun
Workstations, it was necessary to carry out a thorough evaluation of the extensions to
UNIX that were offered by these machines, in the light of the experimental results
obtained from the Pyramid and VAX machines. The initial implementation of UNIX
offered was SunOS 3.2, with new releases of the operating system progressing during
the development work from SunOS 3.4 to SunOS 4.0. The latter version introduced
a completely new organisation for the file system on the host computer, but this had
minimal effect for the implementation of the prototype system, since the design was as
host-independent as possible. However, the reorganisation proved invaluable in
identifying host architecture dependencies, which were noted so that for a production
system, which would necessarily have to provide for potentially extreme variations in
architecture detail in both hardware and software, the mechanism of storing files and
data could be variable, especially when exchanging and communicating data between

hosts.

201

Chapter 9

The pre-prototype experiments were broken down into two distinct groups. The
first concerned the communication mechanism between multiple independent modules
that need not necessarily be resident on the same host. The second concerned the

development of module architecture for handling the data tiles.

Section 9.1.1: Implementation Concepts.

For the following material, a number of terms are used which have a specific

meaning in the context of this thesis.

A ‘tree’ is considered to be the internal representation of the current application.
It is the internal construct which describes the information environment of an
application, and models the data space within which tiles exist. Changing to a different
application involves installing a different ‘application tree’. In practice, several trees
can exist for an application, and this mechanism is used for partitioning the tile space

into the domains which are described in section 8.2.2.6.

A ‘group’ is a collection of tiles, which would normally be independent of each
other. The use of the group concept allows the information environment to be
manipulated while taking into account the relationships that exist between tiles. The
prototype described in this chapter uses the group mechanism to provide a means of

applying transformations to multiple tiles within a tile space.

The ‘name’ of a tile is simply the label by which it can be uniquely identified
~within the system. Any strategy can be used for naming, and for direct interaction with
the system, a naming policy is used whereby tile names reflect their contents.

Application modules are free to generate and use their own names.

A ‘buffer’ is a storage space used by modules for storing or retrieving blocks
of data. The main buffer of any significance is GENIE buffer, which is used for
the exchange of data between modules. When a message is received, the contents are
placed into a temporary analysis buffer while they are analysed, however this buffer is

not normally available to users or modules.

202

Chapter 9

The concept of the ‘current’ tile, tree or group simply refers to the tile, tree or

group upon which operations will take effect, unless otherwise specified.

Section 9.2: Module Communicétion.

The UNIX Operating System (having been selected for reasons described in
section 8.3) provides a number of mechanisms for communicating data between
processes, with the range of mechanisms being dependent partly on the version of the
Operating System being used. The first and only standard mechanism is that of the
‘pipe’. This is a shared communications link that exists between two processes

spawned from a single parent which carries out the fork system call®. Although the

pipe mechanism is straightforward, and for many problems represents an ideal solution;
it nevertheless has the major snag of requiring that any processes wishing to
communicate via a pipe must share a common ancestor. This is particularly difficult
to achieve if the processes are running on separate host computers. Accordingly, the

pipe mechanism had to be discarded as being too limited in its facilities.

The limitations of pipes are so severe that certain implementations of UNIX
have worked to provide alternatives to pipes. The result has been a number of
alternatives, including the reasonably common concept of the ‘named pipe’, where pipes
can be created and connected using names. However, more divergent implementation
of UNIX have gone further, so that B.S.D. UNIX® offers ‘sockets’, while System V

62: The fork system call works on a running process in much the same was as a ‘copy’ command
works on a stored file - a duplicate of the original is produced. In the case of the fork, any process
which executes such a command causes the generation of an exact duplicate process - called a child -
which inherits (amongst other things) access to all the currently open files and one end of a
communications pipe. The original forking processes continues and is called the parent process.

63: The original UNIX Operating System was developed by Dennis Ritchie and Ken Thompson at AT&T
Bell Laboratories on an unused PDP-11 [Ritchie 74]. It was not viewed as a commercially viable
product, but was available to Universities and academic establishments at minimal costs, although without
support. Development of UNIX continued in particular at the University of California at Berkeley, which
unofficially took over the role of distributing UNIX to other academic establishments. UNIX quickly
became more popular, and as students graduated and entered the commercial world they wanted to take
UNIX with them. AT&T recognised the existence of the commercial market, and so released their own
versions, with the most recent being called System V. The most recent Berkeley Software Distribution
(B.S.D.) version is called 4.4 The differences between the two versions are the main background for

(continued...)

203

Chapter 9

UNIX offers the combined resources of message streams, ‘shared memory’ and

semaphores, as an implementation of the concepts proposed by Dijkstra [Dijkstra 68].

Sockets are analogous to hardware ports on a computer. Any process can
establish (create) one or more sockets within the file system of the hosting machine.
Any other process wishing to communicate with the original process simply ‘connects’
to the socket with a socket of its own, and thus establishes a link down which data can
be communicated. In practice, data is transmitted by considering the socket to be a
variation on the theme of a file handle, so that data can be conveyed by using the

read or write system calls that are often used for ordinary file handling. The

parameters used at the stage of the socket creation determine whether the data
transmission is simplex, half-duplex or full duplex®. An extension to socket
communication is the concept of ‘domains’. Sockets which exist within the UNIX
domain effectively exist on the same UNIX host, thus allowing processes on the same
machine to communicate. Sockets which exist in the Internet domain exist on different
hosts - and so the sockets actually require to have a hardware connection associated

with them - and this enables communication between processes on different hosts®.

The System V paradigm of messages allow independent processes to send
formatted data streams to arbitrary processes. Having established a message mechanism
within the file space, the process can transmit and receive messages that are formatted

according to a user-chosen integer type [Bach 86].

The shared memory communication offered by UNIX System V is a more
complex technique involving much more work on the part of the operating system.
Two processes which require to communicate will effectively specify an area of main

memory to which they both have access. This enables the processes to exchange data

63: (...continued)
the difficulty in developing not just a genuine UNIX standard, but also for such problems of designing
a common graphics or user interface.

64: Simplex: One-way only; Half-duplex: Two-way but not at the same time; Full-duplex: Two-way and
at the same time if desired.

65: Internet domain sockets are still very new forms of software technology, and it was during
experimentation with these that the Pyramid crashes described earlier took place.

204

Chapter 9

by reading or writing from the appropriate areas of the shared memory. A number of
system calls have been implemented to facilitate this form of communication. The
shared memory space cannot overlap any other regions within the virtual space of the
machine, and there is no apparent way in which to use this mechanism between

independent machines.

The semaphore mechanism is a well-understood implementation of Dijkstra’s
work on process rendezvous, allowing them to synchronise their actions. There are
inevitable but recognised and understood difficulties involving semaphores, which
include the possibility of a semaphore locking access to a resource and leaving it
locked either by accident - following a system crash - or erroneously resulting from
poor programming. In practice, the System V semaphore implementation allows the

unattached semaphore information to be discarded in appropriate error situations.

Interestingly, while the SunOS implementation of UNIX is based primarily on
the B.S.D. version, the most recent version follows an agreement with AT&T
Laboratories such that the ‘official’ line of development for UNIX will assume AT&T
software running on Sun workstation hardware. Accordingly, the more recent versions
of SunOS (4.0 and 4.0.3) all support B.S.D. and AT&T extensions - although not

simultaneously.

The implementation of UNIX at U.CL. was the B.S.D. 4.2 version, and
accordingly supported sockets rather than the System V options of messages,
semaphores and shared memory. Consequently, it was the former means of
inter-process communication that was adopted for implementing module communication
in the prototype information system. An additional bonus of the socket technique is
that is builds upon the established mechanism of input and output to ordinary files, and

so should be easier to understand and extend.

One peculiarity that was encountered and has not as yet been resolved concerns
the sequencing of data transmitted through sockets. When a socket is created, a
number of connections can be left outstanding if a connection is already in progress.

As soon as the current connection finishes, the next connection should be automatically

205

Chapter 9

made, and the invoking process released from its ‘blocked’ state. The number of
outstanding connections can be defined when the socket is first created, and currently
ranges from zero to five connections being kept in a blocked state. Within the UNIX
domain for socket creation, certain protocols for the data exchange can be defined, one

of which concerns the sequencing of the data messages®.

For the prototype system, a stream connection mechanism was employed which
consumes rather more machine resources but ensures a reliable and sequenced exchange
of data. However, during the implementation of the module communication on the Sun
Workstations, it was found that for some reason, the messages were arriving out of
their correct order. An additional mechanism was introduced to try and eliminate the
problem, in that a locking file was associated with any given socket. Only if the
serving module was willing to accept a message would the lock file be ‘opened’. Thus
any module wanting to transmit would simply check the status of the lock file rather
than waiting to try and establish a connection with a possibly busy socket. Hence
communication simply could not occur unless the serving module was willing to receive
the data.

Yet the errors in sequencing still occurred. When the number of outstanding
connections was reduced to zero (so that any module wanting to communicate simply
had to wait until the socket was free), the sequencing problem disappeared, although
the elapsed time increased slightly as there were more delays. It is certainly possible
that the problem was caused by errors in the module communication software, but the
actual coding was as correct as possible, and in accordance with text-book examples
such as they existed. One possibility is that modules might still be swapping out of
the execution space while waiting for transmission or reception of data, and the delay
in swapping in or out could possibly be connected with the sequencing errors. The
matter is one that remains unresolved, and would merit closer investigation at a later

date.

66: ‘Stream’ sockets provide sequential, pipe-like data exchange. ‘Datagram’ sockets provide datagram
or packet-like data exchange. Stream sockets model connection-based virtual circuits, two-way byte
streams with no record boundaries. Datagram sockets model datagrams in network communications.
Additional work is required to deal with the problems of messages being lost, duplicated, or arriving
out-of-order.

206

Chapter 9

Given that the communication between modules had now been implemented in
theory, the next problem was to decide on the nature of the messages being passed.
Any module could theoretically receive messages from any other module at any time.
This introduces the possibility of horrendous deadlock problems, but the establishment
of a hierarchical structure to the module communication meant that a form of message
flow could be imposed upon the design. A standard series of transmission primitives
were identified as being the minimum required for module communications. Although
more primitives could be implemented, the number is restricted to the smallest possible
set that maintains full functionality. This was considered important so that optimising
of the commands could be achieved more easily, and in order to reduce the problems
of validation and verification. The actual data itself was readied for transmission by
being placed into a buffer of known size (for the prototype system this is a contiguous
block of 1000 bytes, called GENIE buffer), which can then be communicated to the
required destination. The transmission primitives are described in the remainder of this

section.

Section 9.2.1: GENIE init () ;

This is the initiating primitive for any module that wishes to have access to the
information system communications structure. The only parameter required is the name
by which this module desires to be addressed by other modules within the system. The
jobs performed by the primitive include the establishment of the socket and locking
mechanisms, and initialisation of the module’s communications resources. For
debugging purposes in the prototype version, an automatic log file is also created that
records all data transmission involving the module. In a production version of the
system, this log file would be used as an audit trail for - amongst other things -
security, reliability and reconstruction purposes. The success or failure of this system

call is described using the appropriate return code®.

67: In order to match the UNIX host operating system more closely, the error codes returned are
consistent with the existing UNIX error handling mechanism. Any system call which fails will return
the error code -1, while a successful system call will return the error code 0. If an error has occurred
(resulting in the -1 return), an error identifier will be returned using the external variable GENIE errno.
The complete list of error codes returned by the system appears in the Appendix.

207

Chapter 9

Section 9.2.2: GENIE send() ;

This module will attempt transmission of the data held in the buffer
GENIE buffer to the module named in the parameter of the call. If the desired

destination does not exist, then an error code is returned. In any other case, the
transmission mechanism will wait or ‘block’ until the destination is ready to receive a
message. This is established by continually examining the status of the lock file.
When the lock file is ‘opened’, a connection is made, and the data transmitted. As part
of the process, any transmission is preceded by an announcement that identifies the
name of the sending module. This is required for those serving modules which may

require to be selective with regard to reception of messages.

A major problem concerns the use of the GENIE-M primitives in a distributed
environment. Specifically, there is the probability that modules may be activated on
remote machines, and so some mechanism is required whereby local modules can
access and utilise the functions of remote modules. The implication is that a Remote
Procedure Call (RPC) facility is required, but in practice this may not always be
provided by the host operating system®. A discussion of this particular problem

follows later in section 9.6.

Section 9.2.3: GENIE recv () ;

This module is the main message reception primitive. Its first task is to clear
out the message reception buffer, and then announce that the module is ready to receive
messages. This is achieved by opening the lock file. The module can then wait until
a connection is made from another module (at which point the lock file is closed), and
the reception of a message takes place. The message is placed into the reception buffer

(in the prototype system this is the 1000 byte GENIE buffer block), ready for return

to the invoking module. The lock file is closed throughout these tasks to show that

the module is otherwise engaged, and is not listening for messages.

68: The SunOs implementation does provided RPC facilities, but they were deliberately excluded for the
GENIE-M development.

208

Chapter 9

Finally, the complete message is parsed into its component units. This is
achieved by copying the contents of the buffer into a working store, which can then
be scanned without risking damage to the original contents. The start of any
constituent unit is defined as being the first occurrence of a non-white-space character®
in the buffer since the scan started. As each component location is identified, a pointer
is created that addresses the correct position in the message copy. This task is repeated
until the entire buffer has been parsed. At the end, the complete message remains

unmodified in the GENIE buffer block, but an additional set of pointers (stored in
an array called GENIE parsewords[]) points to the start position of each ‘word’

within the copy of the buffer. In this way, it is much easier for a user module to
decode any message received. In practice, the parsing process is also provided as a

separate primitive (GENIE parse ()) which requires no parameters because it always
operates using the contents of GENIE buffer. This enables user modules to

re-initialise the pointers to the original tokens, or alternatively to load a specific parse

string into GENIE buffer ready for parsing in special circumstances.

At the end of these tasks, the GENIE recv () primitive finishes, and control
passes back to the invoking module. As a final assistance, a special string variable
GENIE from is set to indicate the name of the module that sent the message which
has just been received and parsed. This can be useful in certain circumstances, for
example if the message is a request for data to be supplied, then the serving module

must know where to direct the reply.

Section 9.2.4: GENIE recvfrom() ;

There are many circumstances where a given module requires to be selective in
its reception of messages from other modules. For example, if a module X requests
some data from module Y, the X module is then interested only in receiving a response
from module Y and not from any other module. Accordingly, the

GENIE recvfrom() primitive is offered, which takes as its sole parameter the name

69: Any character other than a space, tab, form-feed or similar position-changing character.

209

Chapter 9

of the module from which a message is sought. This primitive invokes the fundamental

GENIE recv () primitive in order to await a message, and if it arrives from the
specified module (this can be checked by examining the GENIE from variable), then

the receive is carried out exactly as described in section 9.2.3.

However, it is possible that a message might arrive from a module other than
the desired source, and this poses the problem of what to do with the currently
unwanted message. The solution was to implement a dynamic buffer, which invisibly
stores any and all received messages that are not from the desired source. Later, when

a general message is sought by invoking the ordinary GENIE recv () primitive, the

first step is in fact to scan the dynamic buffer to see if some temporarily ignored
messages are outstanding. If so, they are removed from the dynamic buffer, parsed,
and the results returned to the invoking module. If no messages are outstanding in the
buffer, the module can announce its readiness to accept messages once again (by

opening the lock file), and the receive process can continue as normal.

For the implementation of the prototype system, this mechanism works well.
However, it is possible to envisage circumstances where a production system would be
required to react to high-priority messages, for example during a system shutdown.
Accordingly, the message passing scheme should be extended in a variety of ways, such

as those described in section 10.5.

Section 9.2.5: GENIE stop () ;

This primitive is used as the final message handling task for any communicating
module. It will remove all the socket and lock files from the host system, and free all
the unused space from the process, in preparation for process termination. One possible
extension to this primitive may be to make it a one-way invocation, so that to use it
will cause the call to finish without returning to the invoking process™. However, the
experiments carried out using the prototype system have not produced evidence of any

clear advantage to this.

70: In a fashion similar to the UNIX _exit call.

210

Chapter 9

Section 9.3: Module and Tile Architecture.

As indicated in section 7.3, the specification for the information system
architecture required that the contributing modules should be as independent as possible.
The exact operation of the modules was considered to be of little relevance, with the
sole condition that they performed the specified task(s). However, it was preferable
that they should be able to communicate using a common understanding of tiles, so that

the data could remain type-less as far as possible.

In an ideal implementation of a production system, the modules would actually
communicate using tiles rather than messages - specifically by sharing common access
to the tile storage space, but for actual implementation using multiple modules in a
UNIX environment, this would require a move away from the B.S.D. UNIX socket
communication techniques towards the shared memory options of System V UNIX.
Much of the development work for the prototype system had to assume socket-based
communication, and so some re-appraisal of the mechanics of data exchange between
modules had to take place. The common understanding of tiles has been retained for
the prototype, but the preference for actual communication using tiles has had to be
deferred. Instead, tile data is transmitted using messages, so that modules can build
up their own working copies of the tiles as required. Inevitably, this slows down the
data exchange, although it has the advantage that modules processing data need only
access the data and attributes that are relevant to their operation. Additionally, the
logging or audit-trail tasks implemented for debugging purposes in the prototype is
greatly facilitated by the messaging mechanisms. In a production system, the logging

activities would be invaluable for performing system integrity and reconstruction tasks.

However, a significant problem with this form of serial data exchange concerns
the need to ensure that all aspects of the tile content and status storage are maintained
correctly. Specifically, which module has accountability for the ‘current’ version of a
given tile? The solution involved the implementation of a tile administration module,
as originally detailed in the early work on the architecture. This module has the
overall responsibility for maintaining the working copy of the tile space which is

relevant to the current application. Modules which need to access tiles are required to

211

Chapter 9

obtain the relevant tile material by passing a request to the application administrator,
processing the tile contents as necessary, and finally request and update of the tile
space by advising the application administrator of the changes. In practical terms, this
has meant that the prototype system requires that modules obtain a working copy of
a given tile, process it, then send a revised copy back to the administrator for inclusion
as the new version of the tile within the tile space, subject to user privilege

permissions.

The implementation of tile storage within the administrator module has proved
a complex process, as it is immediately obvious that the tile space is necessarily a
dynamic structure. Any given tile can hold a theoretically unlimited quantity of data,
with correspondingly variable number of attributes associated with the data - thus
maintaining the distinction between data and its type. Building a series of functions
into the administration module has been perhaps the most complex task within the
prototype development, as much of the work has necessitated testing to ensure
consistency. It is in this category that the value of software engineering through
prototyping became apparent, by imposing a ordered discipline on the development
process. In many. cases, the use of software engineering techniques has focused upon
the culminating activity of producing working software. However, for this research,
software engineering principles are advocated as being invaluable in the design stages
which underlie the development philosophy. Experimentation was therefore essential
to compare what was provided with what was desired, throughout the construction of
the prototype. Functions had to be incorporated that supported multiple modules, and
in several cases the modules could have similar purpose but contradictory
implementation - for example, modules that presented data through an elementary
text-only display, or complex graphical front-ends that had to be able to direct data to
multiple display ports.

A family of tile and structural processing functions are provided within the
prototype system, which combine to provide mechanisms for inter-module directive
passing. The functions are invoked by messages which are normally constructed by the
application administrator modules, since it is to this domain that users address their

specific command requirements. The general format for a message would be:

212

Chapter 9

COMMAND [SUB-TASK [goal]] [datum [datum [... 11]]

The following commands are some examples of those provided within the

prototype system.

Section 9.3.1: ABORT

This command will be received by modules and treated as the shutdown

instruction. Any module subservient to the current module will first be sent the ABORT

command, before the current module brings its own operations to a halt. This

command is required in order to provide an coherent termination mechanism.

Section 9.3.2: DEVICE

This command requires the following parameters:

DEVICE name type

Any module which provides a service - possibly by controlling or participating
in the administration of a device - can ‘announce’ itself to the remainder of the
architecture (or at the very least, to associated modules in the domain) by using this

command. The name parameter is used to label this module, and is necessary for use
with the GENIE send () command described in section 9.2.2. The type parameter

is for reference purposes, and would describe in very simple terms the general nature
of the module. Common examples which are used within the prototype system are:
DISPLAY used for describing a V.D.U.

INPUT used for describing a general ASCII input device.
OUTPUT used for describing a general ASCII output device.

This list is not exhaustive, and can be extended owing to the design of the architecture.

Section 9.3.3: GROUP

This family of commands is directed towards the manipulation of groups of

topological tiles. The use of these commands facilitates the maintenance of certain of

213

Chapter 9

the geometric relationships that are depicted between tiles, rather than ignoring or
discarding them. In practical terms, they allow the prototype system to apply
commands to multiple entities. Only one group per user can exist at any one time, SO
that for multiple users the number of groups active within the system could be larger.

A number of GROUP commands are provided, as described in the remainder of this

section.

Section 9.3.3.1: GROQUP ADD

This command has the form:

GROUP ADD name

The referenced (named) tile is added to the current group. If no name is given,
then the currently active tile (see TILE SELECT in section 9.3.5.7) is added. If there
is no currently active tile, then no addition can be performed. If this is the first tile
in the group, then the group is initialised to consist only of the identified tile. Tile
reference names are generated either by applications or directly by the user(s)”. Tiles
can only be added once into a group. Any attempt at duplication is simply ignored,

as it has no meaning.

Section 9.3.3.2: GROUP DELETE

This command has the form:

GROUP DELETE

All referenced tiles in the group are removed from the group (but not the tile
space). The function of this command is to remove the relationship of the group, thus

re-instating the independence of each of the tiles within the group.

71: UNIX provides a tmpnam system call for the generation of unique names. A bug in the Sun
implementation means that the generation will cycle after the 17,576th invocation.

214

Chapter 9

Section 9.3.3.3: GROUP MOVE

This command has the form:

GROUP MOVE x y z

All tiles which are members of the current group can be relocated within the
tile space. This command will identify the relocation necessary to move the current

tile (see the TILE SELECT in section 9.3.5.7), and apply the relocation values to all

tiles within the group.

Section 9.3.3.4: GROUP RMOVE

This command has the form:

GROUP RMOVE x y 2

All tiles which have been selected and added to the current group can be
relocated within the tile space. This command will apply the specified relative

relocation values to all tiles within the group.

Section 9.3.4: SHOW

This family of commands is intended purely for debugging purposes. It is
provided as a command directive to examine interactively the current status of various
aspects of the system. The output is directed to the primary output device, ignoring
the normal tile presentation mechanism. Accordingly, the command set should not be

considered part of the standard GENIE-M directives.

Section 9.3.4.1: SHOW DEVICE

This command has two possible forms:
SHOW DEVICE

SHOW DEVICES

The system will output a list of the currently known devices and their type onto

the primary monitor. This provides a facility to ensure that all modules and device

215

Chapter 9

drivers are correctly operational within the system. The list has been constructed
during the initial start-up of the system, and subsequently updated as modules and
devices are introduced or withdrawn from the system. The list is verified by sending
a test message to all modules or drivers supposedly present, which will then respond
in some fashion. The nature of the response can generally be ignored, it is sufficient
that a response was received in order to recognise that the module or device is present

within the system.

Section 9.3.4.2: SHOW GROUP

This command has the form:
SHOW GROUP

This command will cause the system to present a list of the tiles currently

within the active group, if any.

Section 9.3.4.3: SHOW TILE

This command has the form:

SHOW TILE

This command returns the complete set of data, parameters and attributes
associated with the current tile. The data will include name, location and dimension

within the tile space, and current content.

Section 9.3.4.4: SHOW TREE

This command has the form:
SHOW TREE

This command returns the complete set of tiles which comprise the current
application tree. All data, parameters and attributes associated with each of the tiles

within the tree are identified.

216

Chapter 9

Section 9.3.5: TILE

The family of TILE commands is concerned with the direct manipulation of a

specific tile, or some aspect of its circumstances. Certain of the commands are
intended to support interaction with the host operating system, but following the
intentions described in section 7.3 such that individual modules should be independent
from each other, there is no specific provision for display or presentation. These latter
tasks would be invoked according to the application itself, and in effect are accessed

at a higher abstract level than the tile manipulation commands.

Section 9.3.5.1: TILE CREATE

This command has the form:
TILE CREATE name

This command is used to create an empty tile within the tile space. It is added

to the current application tree, using the supplied name, but has undefined content,

location and dimensions. Having been created, the tile is automatically selected as the

current tile for subsequent tile manipulation tasks.

Section 9.3.5.2: TILE GET

This command family is supplied to provide tile interrogation facilities for the

application, and comes in a number of forms.

Section 9.3.5.2.1: TILE GET ATTRIBUTE

This command has the form:
TILE GET ATTRIBUTE name

Tiles can have any number of attributes associated with them, for any purpose
and containing any type of value. This command is used to establish the current value

of the attribute identified by the name parameter. A series of messages will be

returned to the requesting module, in the sequence as specified in Figure 8.

217

Chapter 9

END

Data-Line

Figure 8: Message Sequence for Data transmission between Modules.

If there is no attribute identified by the given name, then the syntax provides
for the return of the message END alone. However, if there is an attribute, then one

or more data messages can be returned, in a similar fashion to that described in section

9.3.5.2.2 under TILE GET DATA and in Figure 9.

Section 9.3.5.2.2: TILE GET DATA

This command comes in the form:
TILE GET DATA

The complete set of data in the currently selected tile is returned to the

requesting module. If there is no current tile, or no data, then only the END message

is returned in accordance with the syntax diagram specified in Figure 8. Clearly, there

is the possibility that the quantity of data to be transmitted will be very large.

For the prototype system, this is dealt with by automatically splitting the data

messages into small packets, which must be reassembled by the receiving module. For

218

Chapter 9

a production version of the system, all participating modules would be able to access
the tile space directly, rather than having to request copies of the tiles, and so the

problem of segmenting the data would not arise.

In order for the receiving module to identify correctly the start and end locations
of the data (and to allow for the possibility for unusual byte values in the data stream),
the transmission of the data packets is such that each message has the form:

DATA ~<data>~

where the contents of the buffer between the ~ characters is assumed to be defined as

bytes rather than as characters, and so may contain any value (see Figure 9). Should

it be necessary to transmit the byte value of the ~ character itself, this can be achieved
by using the sequence ~~ which is decoded as representing the single ~ character by

the receiving module. To assist in the parsing of the received message, the

GENIE_parse () function will ignore the contents of the analysis buffer between

bracketing ~ characters.

— DATA ~ byte -~

'}

Figure 9: Syntax Diagram defining a Data Line.

219

Chapter 9

Section 9.3.5.2.3: TILE GET POSITION

This command comes in the form:

TILE GET POSITION

The location of the currently selected tile is returned to the requesting module
in the form:

DATA X y 2z
where x, y, and z are the location coordinates of the tile within the tile space. The
z parameter refers to the ‘plane’ of the tile, and is useful for representing attributes of
the tile that pertain to the overlap potential of geometric representation. No END

message is returned, since only the single message would be required. In a production
version of the system, this command would refer to locations within a potentially
‘n’-dimensional tile space (according to the application), and so the number of

parameters returned could be variable.

Section 9.3.5.2.4: TILE GET SIZE

This command comes in the form:

TILE GET SIZE

The dimensions of the currently selected tile is returned to the requesting module
in the form:

DATA x y
where x, and y are the linear dimensions of the tile within the tile space. No END

message is returned, since only the single message would be required.

Section 9.3.5.3: TILE IDENTIFY

This command has the form:
TILE IDENTIFY object

This command is used by modules to establish (identify) specific tiles according

to the parameter specified in object. If no tile can be located, or the end of that

search direction is encountered, then an empty result is returned. In all other cases, the

220

Chapter 9

unique identifier (suitable for use by a TILE SELECT command) would be returned

as the sole value. A number of sub-forms of the command are provided.

Section 9.3.5.3.1: TILE IDENTIFY NEXT

This command has the form:
TILE IDENTIFY NEXT type direction
This complex command is used to return the identifier of the tile which most

closely relates to the current tile (identified using TILE SELECT), according to the
relationship specified in the parameters of the command. type is used to select
between INTERSECT, NEAREST or TREE. An intersection is considered to occur if

the two tiles overlap in any way when examined according to their current locations
and dimensions within their respective planes. A near tile is one that is simply closer
within the tile space than any other, in the direction specified. A TREE tile is simply
the next tile that is stored according to the internal architecture of the tile space
representation. This representation is highly implementation-specific, and should not
be considered a standard feature of GENIE-M implementations. It is included
specifically to facilitate debugging of application modules, by enabling a module to
construct a complete list of all tiles within the tile space, regardless of their relative

location within the tile space.

Direction is given in one of three forms: UP, DOWN or PLANE. The upwards

direction is considered to be nearer to the root of the tile space (see
TILE IDENTIFY ROOT), while the downwards direction is considered to be away
from the root. The planar direction searches within the current plane of the tile space
to find any matching tile. Searching for an intersection within the current plane has
no meaning within the current definition of the geometric tile space, and so attempting
to request a planar intersection is simply converted into a request for the nearest tile

in the same plane. Specifying a direction with the TREE type will be ignored.

This command is perhaps the most complex of the function set described in this

section. It is a fundamental command to be used by applications in searching for - and

221

Chapter 9

establishing the nature of - relationships. Use of the TILE IDENTIFY ROOT
command enables applications to re-orientate themselves with respect to the tile space,
and thereafter the relative nature of the tile space may be used to navigate the
application. As tiles are identified and located, they can be modified and relocated

according to the nature of the application.

Section 9.3.5.3.2: TILE IDENTIFY ROOQT

This command has the form:
TILE IDENTIFY ROOT

The identifier for the tile nearest the root of the tile space - or application tree -
is returned to the invoking module. This allows applications to return to the ‘start’ of

the geometric representation.

Section 9.3.5.4: TILE MOVE

This command has the form:
TILE MOVE x y z
The location of the currently selected tile is set to the specified values, where

z is the desired plane. The internal structure of the application tree will be

automatically updated, and an error state produced if the resulting move produces
intersecting tiles within the tile space. For the prototype system, the precise action
taken on the announcement of the error state will depend on the application. Some
applications may ignore the state, while others will take corrective or preventative

action.

Section 9.3.5.5: TILE READ

This command comes in the form:
TILE READ name

This provides a highly simplistic interface between the GENIE-M system and

the host environment. The file identified using name is read into the currently select

222

Chapter 9

tile, without performing any conversion of any kind. In practice, a reference is created
to the original file within the host file system, so that optimum efficiency is maintained.
Only if the tile contents are modified in any way is it necessary to actually incorporate
the file contents into the tile. Since the command can be executed without intervention
from the instructing module, the actual delay to the overall execution time of the
application can be minimised. When the file contents are read in, an uncomplicated
analysis is performed on the contents (assuming simple ASCII content) to establish
some working dimensions for the tile. The algorithm used is similar to that employed

by the UNIX wc™ command and determines maximum values for the linear dimensions
of the tile. These initial values can be modified using the TILE SET SIZE

command, but are useful starting points in most cases.

Section 9.3.5.6: TILE RMOVE

This command comes in the form:

TILE RMOVE X y z

The location of the currently selected tile is moved relative to the tile space,

according to the specified values, where z is change in the desired plane. This
command is functionally very similar to the TILE MOVE command, and further

relevant details can be found under the corresponding description (Section 9.3.5.4).

Section 9.3.5.7: TILE SELECT

This command has the form:

TILE SELECT name

The objective of this command is to provide a facility for selecting tiles within
the tile space. The name of the tile must be unique, but can be in any form. Once

selected, a tile can be manipulated or interrogated without requiring further
identification. In effect, it becomes the default tile for subsequent tile-specific

operations. This command is automatically performed when a tile is first created, to

72: The wc command is intended to ‘word-count’ an input file, producing counts of the number of
lines, words and columns in the input, assuming simple ASCII files.

223

Chapter 9

facilitate the ensuing configuration tasks. If the named tile cannot be located within
the tile space, an error is returned. Until a tile is successfully selected or created, any

following tile-specific commands will return an error.

Section 9.3.5.8: TILE SET

This command family is supplied to provide tile modification, update and
configuration instruction facilities to the application. For convenience, a variation on

the command family is provided in that whenever the sequence TILE SET is used, the
text TILE PUT can also be applied. The command parsing process will automatically

match the appropriate command to the sub-command. The family of commands comes

in a number of forms, described in the remainder of this section.

Section 9.3.5.8.1;: TILE SET ATTRIBUTE

This command comes in the form:

TILE SET ATTRIBUTE name value

Tiles can have any number of attributes associated with them, for any purpose
and containing any kind of value. This command operates on the currently selected

tile, and is used to set the current value of the attribute identified by the name

parameter. If the parameter already exists, its old value is overwritten by the newly

specified value. Attributes can never be deleted, as specifying no value will merely

set the named attribute to the null value. The advantage of this mechanism is that
certain attributes for tiles do not need to specify or represent values, it is sufficient to

note merely that they exist.

Section 9.3.5.8.2: TILE SET DATA

This command comes in the form:
TILE SET DATA

This command announces that the complete set of data in the currently selected

tile is to be updated by the instructing module. If there is no current tile, then an

224

Chapter 9

appropriate error message would be returned before any data can be exchanged.
However, given that a tile is currently selected, and is eligible for updating (according
to access permissions), then the instructing module proceeds to issue a number of DATA
lines terminated by a single END message, as depicted in Figure 8. As with the
TILE GET DATA message, there is the possibility that the set data will be very large.
This is dealt with by automatically splitting the data messages into small packets, which
are automatically reassembled by the receiving module. For a production version of
the system, all participating modules would be able to access the tile space directly,
rather than having to specifically update copies of the tiles, and so the problem of

segmenting the data would not arise.

The same mechanism as described in the TILE GET DATA command is utilised

in order for the receiving module to identify correctly the start and end locations of the
multiple data packets (and to allow for the possibility for unusual byte values in the

data stream).

Section 9.3.5.8.3: TILE SET POSITION

This command comes in the form:

TILE SET POSITION xXx y 2

The location of the currently selected tile is specified by the instructing module
where x, y, and z are the location coordinates of the tile within the tile space. The
z parameter refers to the ‘plane’ of the tile, and is useful for representing attributes of
the tile that pertain to the overlap potential of geometric representation. In a
production version of the system, this command would specify locations within a
potentially ‘n’-dimensional tile space (according to the application), and so the number
of parameters listed could be variable. This command functions in precisely the same

manner as the TILE MOVE command listed in section 9.3.5.4, and is included to

preserve orthogonality in the command set.

225

Chapter 9

Section 9.3.5.8.4: TILE SET SIZE

This command comes in the form:

TILE SET SIZE x y

The dimensions of the currently selected tile is specified by the instructing
module where x, and y are the linear dimensions of the tile within the tile space. This
command is provided for those applications where modules will modify the tile
contents. The modification may result in an adjust to the dimensions of the tiles,
which must be notified to the internal tile administration. Certain commands will cause

a size adjustment to occur automatically - see TILE READ in section 9.3.5.5.

Section 9.3.6: TREE

The TREE family of commands are provided to enable manipulation of the tile
space as a whole. In practical terms, these commands facilitate the management of the
particular application by administering to the electronic abstraction (the L.D.E.A.) in

toto.

For the prototype system, the commands are limited by the assumption that tiles
within the tile space are unlikely to separated into distinct domains. However, as
described in section 7.2, in a production system the tile would be categorised according
to their nature (topological or geometric), as well as according to their accessibility

(private, group, or global access).

Section 9.3.6.1: TREE LOAD

This command comes in the form:

TREE LOAD name

The first task for this command is to ensure that the named electronic
application document exists within the host file system. Having verified its existence,
the original application document can be replaced into the host system (if it has been

updated in any way), before the new application is loaded ready for access. After this

226

Chapter 9

command is completed, the internal application status of the entire system will be

exactly as if the named application had not been interrupted.

Section 9.3.6.2: TREE SAVE

This command has the form:

TREE SAVE name

This command is provided primarily for backup purposes. Normally an
application never needs to be explicitly stored, because any changes to the application
are automatically recorded before a new application can be accessed. However, there
are circumstances where an explicit save may be required. For example, in cases
where system reliability is doubtful, or where a backup using an alternative storage
device is required. The saving process uses a version mechanism which is hidden from

the user, so that no save can erase previous information.

Use of this mechanism naturally leads to a steady increase in the use of the host
file system storage space, and for the prototype system this is dealt with by running
a support program to purge the older copies to an alternative store. For a production
system, the purging mechanism would be incorporated explicitly on the assumption that

a high-capacity tertiary storage device” would be available for automatic archiving.

Section 9.4: Coding - the Sun Workstation Development Environment.

Generally speaking, a development environment consists of an operating system
and a collection of tools provided on a host machine. As far as possible, the
development tools used in the production of the GENIE-M prototype system are
expected to be available as standard on most UNIX machines, but there were two

Sun-specific features that proved of assistance.

73: Such as a dedicated Write-Once-Read-Many (W.O.R.M.) optical disk drive. Current systems already
offer in excess of 1 Gigabyte (1280 MByte formatted) storage capacity.

227

Chapter 9

The first and by far the most important was the multiple window display
provided by SunView. This enables the depiction of multiple UNIX ‘sessions’ on the
same display, as if several terminals were attached and operational. During the
development of communications between modules, the multiple window display was
invaluable in providing debugging data. Normally, modules would not be required to
output any status data, although one standard component was the incorporation of log

files of all transactions through the communications schema.

This mechanism was intended primarily for ‘post-event diagnosis’, and was of
little assistance during the actual execution of modules. The use of multiple windows
meant that, for debugging purposes, a module could be temporarily assigned its own
window, and thus direct status data to the screen. As an example of the benefit of
this, the sequencing problem referred to above (during the discussion of data
communication) was quickly detected by simply echoing received messages onto the

screen.

The second, and less-often used resource was an enhancement of the standard

UNIX debugging tool dbx. The Sun-enhanced program dbxtool provides a useful

way to examine visually problems which arise with sections of code, particularly when

unexpected UNIX core dumps™ have been produced”.

During production of the code, the multiple source programs went through
numerous revisions, partly for error-correction, partly for inclusion of enhancements.
In order to administer the evolution of code, most UNIX hosts provide a Source Code
Control System (S.C.C.S.) This is an extensive set of utility programs that are used
to maintain a record of program (source code) changes, and to support the
reconstruction of any previous version at any time. This is enabled by the production
of ‘deltas’, which are records of the line-by-line differences associated with a given

version of the file. One of the more useful aspects of the S.C.C.S. resource is the

74: A core dump is a ‘snapshot’ of the process status at the exact moment that a fatal error occurred,
and is invaluable in post-mortem debugging.

75: The UNIX operating system can be rather uninformative with regard to fatal program errors. By far
the most common error message encountered is the singularly bland ‘Segmentation fault (core dumped)’.

228

Chapter 9

facility to include comments with each of the revisions, identifying why and how

particular changes were made.

The multiple modules present and requisite for the development of the prototype
GENIE-M generator represented a potentially complex problem with regard to the
multiple compilation tasks. This was aided by the use of the make tool, which takes

instructions from a ‘Makefile’ that guides the construction of multiple and closely

associated programs.

Section 9.5: Tile Space Storage Mechanisms.

In an idealised model of a tile space, which provides storage for tiles used
during the processing tasks within the information environment, data storage should be
based upon random-access techniques. This would permit multiple modules and
processes to access the data in a non-sequential manner, according to the directives
supplied by the user(s) or higher-level application modules. Inevitably, random access
implementations of data storage are affected directly by the operating system, and
indeed it is this aspect that provides the greatest restraint upon the portability of the
internal environmental architecture. The kernel of the tile storage system is responsible
for controlling the actions of processes in their tile manipulation tasks, and consequently
it co-ordinates any accesses to data storage. The .kernel is implemented in the

prototype architecture by a single ‘matrix’ module.

Section 9.5.1: The ‘matrix’ module.

This module has two major functions. Firstly, it is responsible for building a
three-dimensional matrix-like structure to represent the data space - and as such
supports the primary tasks required within the core domain of the architecture. A
three-dimensional tree is constructed (using generalised algorithms which could be easily
extended for use in ‘n’-dimensions), and this tree depicts the various tiles and hooks
into the file system for physical storage of tile data. This allows a given information

document to be described using a tree, and consequently alternative applications can be

229

Chapter 9

accessed by installing new trees. The trees themselves provide tile reference
mechanisms which permit tiles to be shared across multiple applications and many

users.

A disadvantage of this approach is that there is an overhead for the processing
machine in providing support for the tree representation. Ideally, the tile storage could
be more object-orientated, so that access and updating could be performed at a higher

abstract level, rather than requiring the current machine and file-handling dependencies.

The second major task of the matrix module in the prototype system is the
administration and provision of the internal GENIE-M commands. All directives
intended for accessing and controlling given aspects of the application within the
experimental system are directed towards the matrix module using the GENIE send ()
command. The matrix module then identifies the nature of the directive and passes the
instruction to the corresponding module within the system. This activity is performed
automatically. Commands which are not understood by the matrix module can be
offered to all known modules within the application. The modules can then respond
according to whether the command is recognised or not. If the command is recognised,
the matrix module can build a list of where that command should be directed if it is

required in future tasks.

Section 9.6: GENIE-M and Distributed Systems.

At no point does any implementation of GENIE-M require a specific host or
operating system architecture. To do so would be to impose constraints upon a system
that is specifically intended to be generalised. One of the more complicated areas of
GENIE-M concerns the inter-communication between modules on distributed systems.
There is no requirement for any module to be resident on any particular computer
within a given GENIE-M application, and accordingly, it makes sense for modules to
be invoked on computers to which they are better suited. Thus graphic modules might
be closely associated with computers enhanced for Computer Aided Design (C.A.D.)
work, while computationally-intensive modules might require computers with numeric

processor enhancement or floating-point accelerators.

230

Chapter 9

The problem arises that a module may require the services of any other module,
but will not - in the first instance - ‘knoW’ where in the distributed system the module
is to be located. Certain operating systems do offer a form of Remote Procedure Call,
where processes can access resources on other hosts, but such a facility is often highly
host- or operating system specific. With a distributed UNIX implementation of
GENIE-M, there is also the inevitable problem of multiple ‘sessions’ being activated,
such that a single user can be ‘logged-in’ to the same machine, using the same
directory structure, but with each session being completely independent from the other.
Thus, an invocation of a GENIE-M module within one session cannot normally be

accessed by any other session on the same or any other computer.

As a solution, the GENIE_ send () command has been enhanced to allow for

the possibility that communication is required with a module that is not present within
the current session. The parameter for GENIE send () requests that a message be
transmitted to the named module. However, if the module does not appear within the
current work-space, then normally transmission could not be implemented. This can
cause peculiar effects if one user is accessing a high-level module at the root level of
a UNIX machine - thus causing the creation of an access point for the module within
the UNIX file system - yet another user cannot connect to that access point because

it is not considered to be ‘live’ from within the current session.

In order to deal with this problem, GENIE send () has been modified to test

for the presence of the destination module as a live access point within the current
processing session. If no such access point can be located, then the module is deemed
to be inactive. However, rather than simply abandoning the transmission,
GENIE send () will attempt to pass the transmission through a gateway module in
order to access other sessions that may be in progress on remote - or even local -
machines. Two gateway modules are provided, gatein and gateout. The former
module ‘listens’ on a hardware communications port for any data being transmitted
from an external session. The data will have been configured for inter-session
communication, and will be parsed to identify the desired destination module. As

before, a test is carried out to determine whether the requisite module exists and is

231

Chapter 9

active within the current session, and either the message will be rejected or else it will

be successfully forwarded to the desired destination.

The gateout module is automatically addressed if GENIE_send () fails to

locate the desired destination module. This module identifies the destination of the
transmission, to determine where the message should be sent. If no known module

exists, gateout will offer the message to any and all gatein modules active within

any session of the host machines anywhere within the distributed system. If a willing
recipient is located, the destination address is recorded for future use, and the message
forwarded as required. If no recipient is located, the message will be returned to its

sender with the appropriate notification.

The implementation of this mechanism is essential in supporting the use of
GENIE-M within a distributed environment, particularly since the actual provision of
the resource must be as host independent as possible. A number of check mechanisms
have been implemented in order to minimise the danger of an inter-machine loop
situation being created, yet at the same time the activation of this mechanism should
be as transparent as possible in order to facilitate the straightforward nature of the
GENIE-M implementation.

Section 9.7: Summary.

In this chapter, we have considered in some detail the technicalities of how the
GENIE-M prototype was constructed. The prototype system uses the limited set of
commands described in section 9.3 with a high degree of success, and was suitable for
generating a demonstration system which suggests that the concepts upon which
GENIE-M is based have some degree of validity. In particular, the architecture has
been constructed upon the combined principles of minimal complexity with maximum
extendability. Additions to a computer-based information system of this form can be
provided by the simple expedient of incorporating the corresponding module into the
information environment. The command recognition process and message-forwarding

facility detailed in section 9.6 enables the extensions to incorporated rapidly.

232

Chapter 9

Navigation through the system depends in part upon the application being able
to identify the relationships that exist between the tiles. Support for this requirement
is provided by the TILE IDENTIFY family of commands, which can be used by

application modules to build up a complete working record of all tiles (and their

inter-relationships) for any given tile space - and hence for any ‘unfamiliar’ application.

Reference has been made to production versions of the system. This would
entail extending and improving certain aspects of the prototype with regard to storage
capacity and improving the speed of the intercommunication, but in practice this could
be achieved by a process of replacing modules with implementations of higher
functionality. The commands described in section 9.3 are intended primarily for use
by application modules, but they are also suitable for controlling an application by

direct instruction.

233

Chapter 10.

Conclusions.

Section 10.1: Introduction.

This thesis has described the development of an architecture which uses an
innovative geometric concept as a basis for proposing an enhancement for the
development of computer-based information systems. The nature of the enhancement
centres upon the description and construction of extensive manipulation models called
Information Environments. These are computer-based representations of all the key
components which contribute to and participate in a given set of information processing

tasks for particular applications.

The derivation of a specification for the Information Environment concept has
resulted from a wide-ranging examination and reappraisal of many aspects of computer
science; considering in particular two main fields. Firstly, the use of data structures
in the depiction of geometric relationships; and secondly, the construction - or
generation - of application systems using the resulting fundamental components. The
construction of systems which utilise the geometric paradigm should be facilitated, and
the systems themselves should benefit from the additional capabilities that the geometric
representations appear to offer in terms of problem representation and solution

implementation.

In this chapter, we reassess all of the research work in a final analysis. This
is felt to be essential in view of the diversity and number of topics that have fallen
under scrutiny, and it is considered important to recognise the overall contribution of
the independent but related and interactive nature of much of the material. It is also
hoped that this commentary on the work should be of assistance in identifying and

inspiring further avenues of research.

234

Chapter 10

Section 10.2: Review of the GENIE-M Philosophy.

A common problem with many application systems based on existing
architectures and development strategies is that, traditionally, they focus upon very
specific problem areas or tasks. This often has the consequence that only limited
consideration is given to how the tools constructed and supplied within the system
might cooperate in complementing each other and alternative application systems within
the human operating environment. As a result, these focused systems often impose a
set of constraining patterns or ideas on the users, possibly through the imposition of
a set of limited operational techniques. Indeed, the traditional emphasis of data
processing - which emphasises the technology - perhaps indicates that the use of a

computer-based information system itself imposes the pattern and manner of operation.

More recently, systems have been developed with the intention of providing
more consistent and cooperative tools; but these often seem to concede performance
elsewhere, for example in terms of reduced functionality, ease-of-use or expandability.
The underlying model which is used in the construction of the focused systems is
usually derived directly from the application under consideration, and consequently the
opportunity for use or re-use of components from previous work is rather less than

might be desirable [Sommerville 89].

A more generalised approach would seem to be that the system should support
the users in ways that reflect rather than hinder their personal preferences and natural
skills. The tools used for performing the tasks should therefore be more compliant with
the needs and circumstances of the application, and also build on the strengths of other
tools. The recent trends towards more advanced and integrated tasks of greatly varying
nature, such as those that would be performed during multimedia information processing
[McCandless 90], further justifies the move towards comprehensive models of the
working environments. These environment models are envisaged as a means of
enabling a more detailed representation of the diverse components that contribute to
data processing tasks, with the aim of assisting in the advancement of computer-aided

information handling activities.

235

Chapter 10

These requirements for improving computer-based information systems suggest
that provision must be made for alternative approaches in preference to purely
objective-orientated design and development. Specifically, the need for greater
productivity in information processing activities means that techniques must be derived
for more considered overall strategies for the development of tools and systems. A
corollary of this is that greater recognition must be given to the overall circumstances
of the tasks being performed, and consequently the nature of operational environment
is a factor that should be incorporated more precisely within the application

development model.

It is therefore suggested that in order to achieve the desired enhancements to
information systems, design and development strategies should from the beginning have
two major goals: firstly that of strengthening the support for the users in performing
their tasks of work, and in constructing their own patterns and ideas. Secondly, the
underlying architecture should be considerably more portable and generalised in order

to support not only the flexibility of the system but also ease the development process.

Thus, a major emphasis of the research work described here has been the
production of an architecture that permits a wider range of more flexible application
activities. This is achieved by the construction of a totally new computer-based
representation of the information processing environment. The work on GENIE-M has
suggested that using a geometrical representation as a foundation for some of the data
representation and manipulation may provide the necessary computer-moderated support.
Accordingly, the use of geometry may be an appropriate technique to achieve the

higher objective of a more flexible architecture.

The use of a geometric architecture within computer-based information systems
makes provision for the required enhancement by incorporating a diagrammatic aspect
to the data representation and manipulation activities. Rather than imposing a
potentially complex and mathematically intensive set of rules and regulations upon the -
possibly ‘computer-naive’ - users, a pictorial approach is used not only for problem
representation but also for the architecture used to implement the solution. The use of

geometry should therefore be of value in guiding efforts towards the construction,

236

Chapter 10

combination and re-use of appropriate tools for implementing the solution to the
identified tasks. At the same time, it enables the representation of a variety of

additional relationship expressions that might not otherwise be so easily expressed.

Using these concepts, a model of computer-based representation of information
systems was proposed, which has been deliberately extended beyond other existing
models in order to recognise the existence and benefits of multiple users and peripheral

devices within the application environment.

In constructing the GENIE-M prototype, we are trying to provide an
experimental testbed upon which the suggested geometric framework can be evaluated.
This is achieved by constructing actual components, which can then be placed and
configured according to requirement. The internal architecture upon which GENIE-M
functions is intended to provide simplicity and consistency in accessing and
manipulating resources and facilities within the environment, in a manner similar to that
provided by operating systems in relation to the underlying hardware. An internal
processing structure is constructed for the geometric representation which uses an
innovative tile-orientated data concept. The tile mechanism provides an appropriate
means of depicting the enhanced geometry and relational orchestration of the data being

managed.

A unified command mechanism provided by the prototype system results in a
user-understandable instruction set for controlling the operation of the multimedia
environment. The overall simplicity of the architecture which underlies GENIE-M has
been deliberate, and indeed reflects the conclusions reached by the development team
working on the KMS hypermedia system (described in section 3.4). End-users would
be able to tailor their own systems by locally redefining specific application modules

or tiles, knowing that compatibility with the lower levels remains intact.

However, it is recognised that the nature of the concept makes it unsuitable for
immediate implementation or configuration by inexperienced users: in its current
realisation it is not a form of ‘Lego’ kit for information systems. Instead it should be

viewed as a mechanism to aid in establishing an understanding and subsequently

237

Chapter 10

producing a representation or description of problems. It is important to recognise that
for each instance of a new problem, new mechanisms or tools must be generated from
first principles. However, as each mechanism is completed, the underlying architecture
promotes its reuse and reapplicability in alternative circumstances with minimal

reconfiguration.

A major thrust of the author’s work has been the development and
implementation of the innovative internal system structures, but it is obvious that in
order to communicate with the outside world, computer-based information systems
generated from a GENIE-M system would require access to a range of input and output
(control and presentation) devices. The prototype system used in generating the
demonstration system to be described in section 10.3 has an input and output control
mechanism that is primarily text-orientated. The decision was taken by the author to
implement access to the system via a text-based front end in order to concentrate more

effort on the internal mechanisms.

However, the nature of the textual commands (as described in section 9.3) are
the result of design intentions to ensure suitability for use by more powerful graphic
front-end packages. More advanced systems would therefore make use of the enhanced
detail and power provided by the graphical front-end packages, thus utilising the facility
to employ additional applications modules and associated peripheral devices within the

information processing environment.

An important section of the work concerns the software engineering approach
used. A concurrent goal throughout the research was to experiment with the use of
evolutionary prototyping as a technique for development of the concept and the
implementation. This method has actually been promoted by the circumstances of the

development, and as pointed out in [Ince 89], is ‘a useful way to develop software’.

The considerable amount of thought and design work that has gone into the
development of the concepts that GENIE-M embodies appears to be justifiable. Much
of the time was spent looking at current system objectives in order to develop fully an

understanding of what the specific objectives of this research should be, and only then

238

Chapter 10

could a fundamental set of specifications be derived. Some of the results from this
early work have been presented at conferences in order to publicise them and invite
commentary from professional researchers and system developers [Angell 87 &
Warman 87]. The various reactions were very helpful in strengthening otherwise weak

areas, and in identifying points which needed further clarification or development.

Section 10.3: The Demonstration System.

In order to provide a realistic demonstration of the concepts behind the
geometric architecture of GENIE-M, a specific configuration has been constructed to
illustrate the major features of the work. Borrowing from the lecture-support idea
suggested in section 7.5.3, the system is used to construct an application that will be
used for demonstrating itself. A single presenter will be provided with a small control
environment running on a personal computer, which will be used to direct the
proceedings. A script of the presentation will be provided, with key aspects highlighted

and echoed onto large-scale ‘repeating’ displays for the audience.

Graphical information will be presented using two devices, a purely PC-based
display, and a high-quality graphic device. Hard-copy of the relevant notes would also
be provided automatically through an attached printer driver. The consistency of the
underlying architecture will further be depicted in two forms; firstly by the use of
different languages in constructing some of the contributory components, and secondly

by supporting the operation of an external (non-GENIE-M specific) application.

The agenda for the demonstration will consist of an introduction to the
GENIE-M philosophy and architecture, with diagrams to illustrate the tile and tile-space
concepts. The use of drivers within the system will be shown with modest examples

at the relevant stages of the proceedings.
It is planned that by using the system to construct a demonstration of itself, the

feasibility of using geometry to enhance computer-based information systems will be

clearly illustrated. The key feature is the fact that the demonstration will be

239

Chapter 10

constructed upon a completely consistent underlying architecture, such that

reconfiguration is an uncomplicated process.

Section 10.4: Successes of the Work.

It is believed that there are certain application areas in which systems could
benefit from the incorporation of some of the ideas. In research fields especially,
GENIE-M suggests a number of mechanisms which may be of assistance for solving
current problems. The multi-tasking nature of the architecture means that GENIE-M
systems may be of value in the development of future parallel machines architectures,
where multiple processors (rather than simulations of multiple processors by a single
C.P.U. implementing some form of time-sharing mechanism) will be provided physically
within the hardware. Indeed, the design for GENIE-M has recognised from the outset
that implementation on currently available hardware is unlikely to produce fast or
efficient systems. However, the design has been guided by the nature of resources that
will probably be provided with the next generations of hardware. In the meantime,
current implementations enable the design to be evaluated and tested in advance of the

more suitable technology to come.

An example of a simpler software-orientated application that is practical at the
moment would be a notebook, whereby a tile could hold text information, while another
tile could hold graphic information entered via mouse, keyboard or light-pen/stylus.
Any access to one or the other tile would automatically call up the other tile(s), in
order to retain the relationship that is implied. A more complex application is the
lecture support environment, which must take into account a number of apparently
rudimentary objectives in terms of presentation requirements, yet maintain the
application for a number of otherwise incompatible devices. A complete and structured
script would be generated that includes not just textual material, but also graphics,
pictures and other support elements. Each of these components is combined within the
architecture to form single application ‘documents’, which can subsequently be used and

re-used as required.

240

Chapter 10

With reference to more advanced applications, the fields of multimedia and
hypermedia systems would seem to be prime candidates for GENIE-M development.
As discussed in section 3.4, Halasz raises a number of questions concerning hypermedia
systems - with particular reference to the Notecards system, and suggests how they
should perhaps be extended in future versions or generations. These problems include
providing search-and-query facilities, where navigational access alone may be
insufficient; the use of composites to augment the basic model; the use of virtual
structures to support information reorganisation; computation over networks and

distributed collaboration; versioning; and extendability and configurability.

The architecture used in constructing GENIE-M systems, and in particular the
geometric nature of tiles, provides possible solutions to a number of these problems.
For example, concerning composition’, a GENIE-M mechanism allows a given node
to be included in more than one composite. The use of geometry to portray
relationships between objects, as defined within GENIE-M systems, allows any node
(tile) to be perceived (geometrically) either as part of a given composite (IDEA) or by
the concept of the group. Versions of nodes can be introduced by placing more recent
tiles geometrically above (or relatively ‘before’ or in advance of) older versions of the
tile, and as stated previously, GENIE-M does not explicitly enable destruction of a tile,

it merely provides for its relocation to a remote zone within the tile space.

Dynamic reorganisation of the tiles - and correspondingly the incorporation of
changes to information - is supported in two ways: firstly, by using the modules which
manipulate the tile space; and secondly by using the links which can exist explicitly
(references) or implicitly (geometrically) between tiles. Inclusion of external systems
for specific applications is provided using the concept of the external function supported

within a complete environment.

Mechanisms for promoting consistent and coherent movement of data between
multiple cooperating processes have been investigated and implemented. The same

modular architecture which supports these processes is also conducive towards

76: Composition in this context is a way of dealing with groups of objects without necessarily having
to consider their components.

241

Chapter 10

upgrading and improvement by a simple and demonstrable mechanism for module
replacement. The multi-tasking nature of GENIE-M has been referred to in section 7.7
as an example of an application technology suitable for employing advances in parallel
computing hardware. Similarly, the use of higher level modules suggests the possibility
of simulation tools with independent entities that perhaps may not be so cooperative,

while an overseeing module can monitor the activities that ensue.

Having spent much time discussing the system specification, two implementation
development areas were clearly defined. The emphasis of the present research work
has been upon the development of a theoretical basis on which to design system
internals, essential for constructing a prototype system. The goal of developing a true
computer-based multimedia information environment generator naturally suggests the
second major development area, concerning the construction of a very highly developed
graphical front end. However, for the research under discussion at present, such a front
end is a separate entity that requires the focus of an alternative research project. The
primarily text-orientated mechanisms used for controlling the underlying multimedia
manipulations are sufficient for the prototype. The text-based commands are designed
to be used by application modules, of which an important example would be the

graphical front-end.

As stated in section 10.2, the architecture is not suitable for construction or
configuration by inexperienced users. Generating application modules is not necessarily
as simple as fitting together basic components - although the architecture would
eventually be developed to the point where such an approach would be mandatory.
Instead, the present emphasis should be on the construction of applications within the
higher-level of the information environment. Failing to incorporate this philosophy into
the development of applications would be to undermine the conceptual advantages

provided by the architecture.

The development of the architecture has been guided throughout by the desire
to implement a technology for supporting information environments, and this in turn
has meant that much of the work has had to be constructed from first principles. Use

of existing tools may have unintentionally directed the skeleton of the project away

242

Chapter 10

from the generalised goal. For each instance of a problem, its nature has been
categorised prior to an appropriate mechanism being generated. The mechanisms have
included control tools, or device drivers, or higher level concepts such as presentation
models.

The development experiments carried out have been both interesting and
extremely instructive. The author’s knowledge and experience has benefitted
enormously in the many areas studied. The internal mechanisms developed to facilitate
the functioning of GENIE-M have been seen to work, and have enabled the generation

of a demonstration system which may already be of practical value.

The prototype system is helpful in identifying how the geometric mechanism can
be used in analysing certain problems, and in the construction of the information
environments to be used for contributing to tasks. In particular, the prototype has
indicated areas where further research must be carried out. Even without the goal of
generating information environments, the architecture suggests a number of mechanisms
for implementing simpler applications, and in particular those involving multiple,

concurrent processes.

Section 10.5: Limitations of the Current System: Threads for Future Development.

The prototype system represents a form of ‘enabling technology’. The study of
its construction and development is of inestimable value in providing pointers and
guidance for future work. Limitations of the prototype focus more upon its included
capabilities rather than faults in the basic concepts, and in this sense the prototype
remains viable. However, in practical terms there are many ways in which the

prototype could be extended into a more comprehensive ‘production’ system.

For example, the current form of the GENIE-M generator does not provide for
the automatic construction of information systems. Instead it provides a series of tools
(such that the word ‘generate’ is taken to mean provision of service) which can be used

in the construction (generation) of a computer-based information system. Consequently,

243

Chapter 10

the generation has to be performed by an operator familiar with the system. However,
this has the advantage that specific applications can be constructed and tailored to

individual requirements, while maintaining the underlying system concepts.

The communication mechanisms are fully functional, but have room for
improvement. In particular, the problem of multiple asynchronous message passing
needs to be examined in more detail. This is partly to identify any machine- or
operating-system dependencies or difficulties with using UNIX-based inter-process
communications; and partly to improve the overall speed of module
inter-communication. Messages can already pass between several modules concurrently,
but the prototype restricts this so that the flow of messages through the system kemnel
can be controlled to avoid deadlock. As research into ‘deadly embrace’ problems
progresses, so the results can be incorporated into the prototype. Other extensions to
the message passing mechanism could incorporate a priority category, so that imperative

messages such as ‘imminent system failure’ could be dealt with promptly.

The nature of the interconnection assumes reliable connections. A transaction
log has been implemented to record all exchanges, but this is only of interest at present
for debugging purposes. A useful enhancement to the system would incorporate a
restart mechanism which would reconstruct the exact state of the application to the

precise moment when any failure occurred.

Although UNIX provides the host operating system, and the majority of the
prototype implementation was written using ‘C’, the design has been such that there are
few restrictions on the choice of language used to implement similar versions, or to
enhance the existing system. Those restrictions which do exist relate to the
multi-tasking nature of the entire concept, and in particular to the need for suitable
inter-module communications. The provision of fundamental primitives is intended to
minimise the constraints that would otherwise be imposed by host machine, operating
system or language. Deliberately changing machines to study implementation
dependencies would be a very interesting task, but the experiences gained in
implementing the demonstration system suggest that the implementation areas most

likely to cause difficulties during any porting process have been clearly identified.

244

Chapter 10

A clear objective in the future development of GENIE-M is the construction of
a primarily graphics-orientated front-end. In much the same way that certain Graphic
User Interfaces (GUI’s) ‘sit upon’ otherwise complex operating system control
mechanisms, so a graphic front-end for GENIE-M should provide much better
accommodation of individual user requirements. This is because the graphic
representation would be able to associate more closely with the underlying geometry
of the application. Therefore, the key distinction between most GUI technology
implementations and a GENIE-M graphic front-end would be the recognition of the
geometric architecture which forms the basis of GENIE-M.

The GENIE-M work has suggested a mechanism for solving some of the
problems of current strategies for developing computer-based information system. In
particular, it suggests a direction to be taken in providing for multiple users wishing
to perform multiple tasks across a distributed and potentially incompatible architecture.
The work does not in any way represent a complete solution to this problem, but by
providing a consistent control mechanism based upon a new approach to representing
the problem domain, GENIE-M provides a way forward that is generalised and

extendable.

A major issue to be addressed is the construction of a formal methodology
which would be used to identifying those problems suited to representation using
geometry, followed by derivation of the geometrical nature of the solution. Having
been so closely involved with the construction of the internal architecture, the author
is sometimes able to identify appropriate mechanisms on the basis of experience; but
this is clearly lacking in precision. The existence of the GENIE-M prototype system
would enable future research to proceed on the basis that a working system can be used

as an experimental testbed to validate the formal methods.

Section 10.6: Final Thoughts.

There are almost no fields of computer science and computer-based information

system construction that are not in some way associated with the work carried out

245

Chapter 10

during this research - at times it seemed that the work would draw upon all fields of
expertise throughout computer science and computer-based information system
development. The implications of some of the resulting work perhaps suggest that a
more detailed exposition and study may be of value, possibly to investigate whether a

unification mechanism is a viable prospect for future work.

In hindsight, the scope of this work has increased dramatically since its original
conceptions as a mechanism for providing multiple editions of electronic books. Behind
all of the work was a desire to seek consistency and applicability. The primary
objective has been to identify a core which is suitable for use as the basis of an
information architecture, that is expandable and widely applicable. In doing so, the
specification of the core was guided by the preference for a minimal system, without
a large number of procedures. A workable core could be extended in any desirable
manner by use of appropriate procedures which would themselves be suggested by the
nature of the core itself. Consequently, any concepts suggested during the work were
explored in depth and at length, simply to ensure that limitations or restrictions would

be minimal and that the core objectives would remain consistent.

The prototype system has been highly experimental in nature, and was never
intended to be a production system. It forms an experimental test-bed on which ideas
can be evaluated and examined, and so represents an ‘enabling technology’. The focus
has been directed towards recognition, definition, implementation and testing of totally
new principles. The representation of the information environment is a complex task,
that starts with the construction of device drivers to support the first approximation to
the problem. All the drivers have had to be constructed with the requirement for
underlying consistency always in mind. Construction of a production system is
straightforward given the extensible nature of GENIE-M, but would require the effort
of a complete research team for a long term enterprise. Consequently, the prototype
should be viewed as a paradigm to be used as the starting point in the development of

the more advanced system.

246

Appendix.

References.

[Aceves 85] J. J. Garcia Luna Aceves & A. A. Poggio, ‘Computer-Based Multimedia
Communications’, COMPUTER, October 1985.

[Aceves 85b] J. J. Garcia Luna Aceves, ‘Towards Computer-Based Multimedia
Information Systems’, Computer Message Systems 85, ed. R. Uhlig, pp. 61-77,
1985.

[Ackoff 67] R. L. Ackoff, ‘Management Misinformation Systems’, Management Science,
Vol. 14, No. 4, December 1967, pp. B147-B156.

[Ahlsen 84] M. Ahlsen, A. Bjomerstedt, S. Britts, C. Hulten & L. Soderlund, ‘An
Architecture for Object Management in OIS’, ACM Transactions on Office
Information Systems, Vol. 2, No. 3, July 1984.

[Akass 89] C. Akass, News article on Software Development delays, Datalink,
September 1989.

[Akscyn 84] R. Akscyn & D. L. McCracken, ‘The ZOG Approach to Database
Management’, Proc. Trends and Applications Conf: Making Database Work, May
1984.

[Akscyn 87] R. M. Akscyn, D. L. McCracken & E. A. Yoder, ‘KMS: A Distributed
Hypertext System for Sharing Knowledge in Organisations’, Hypertext 87 Papers,
November 13-15, 1987.

[Akscyn 88] R. M. Akscyn, D. L. McCracken & E. A. Yoder, ‘KMS: A Distributed
Hypermedia System for Managing Knowledge in Organisations’, Comms. ACM,
Vol. 31, No. 7, July 1988, pp. 820-835.

247

Appendix

[Allen 81] T. Allen, R. Nix & A. Perlis, ‘PEN: A Hierarchical Document Editor’, Proc.
ACM SIGPLAN/SIGOA Symposium on Text Manipulation, Oregon, Vol. 2, Nos.
1 & 2, June 1981.

[Angell 86] I. O. Angell, Y. P. Low & A. R. Warman, ‘GEODOC: An Overview’,
Internal Note 1906, Department of Computer Science, University of London, 19
February 1986.

[Angell 87] 1. O. Angell, Y. P. Low & A. R. Warman, ‘GENIE-M: A Generator for
Multimedia Information Environments’, British Computer Society Conference:
‘Workstations and Publication Systems’, London, 22-23 October 1986, papers
published by Springer-Verlag 1987. .

[Applix 84] Applix Inc., ‘Alis - A next-generation office software system from Applix:
Application Summary’, 1984.

[Avison 85] D. E. Avison, ‘Information Systems Development: A Data Base Approach’,
Blackwell Scientific Publications, 1985.

[Avison 88] D. E. Avison & G. Fitzgerald, ‘Information Systems Development:
Methodologies, Techniques and Tools’, Blackwell Scientific Publications, 1988.

[Ayers 84] R. M. Ayers, J. T. Horning, & B. W. Lampson, ‘Interscript: A Proposal for
a Standard for the Interchange of Editable Documents’, Xerox Palo Alto

Research Center, California, 1984.

[Bach 86] M. J. Bach, ‘The Design of the UNIX Operating System’, Prentice-Hall,
1986.

[Backer 82] D. Backer & S. Gano, ‘Dynamically Alterable Videodisk Displays’, Proc.
Graphics Interface 82, May 1982.

248

Appendix

[Baker 72] F. T. Baker, ‘Chief programmer team management of production
programming’, IBM Systems Journal, Vol. 11, No. 1

[Barber 83] G. R. Barber, ‘Supporting Organisational Problem Solving with a
Workstation’, ACM Trans. on Office Information Systems, Vol. 1, No. 1,
January 1983, pp. 45-67

[Baskin 80] A. B. Baskin, ‘Logic Nets: Variable-valued Logic plus Semantic Networks’,
International Journal on Policy Analysis and Information Systems, Vol. 4, No.
269, 1980.

[Beeman 87] W. O. Beeman, K. T. Anderson, G. Bader, J. Larkin, A. P. McClard, P.
J. McQuillan & M. Shields, ‘Hypertext and Pluralism: From Lineal to Non-
Lineal Thinking’, Hypertext 87 Papers, November 13-15, 1987.

[Begeman 86] M. L. Begeman, P. Cook, C. Ellis, M. Graf, G. Rein & T. Smith,
‘PROJECT NICK: Meetings Augmentation and Analysis’, Computer-Supported

Cooperative Work 86 Proceedings, December 3-5, 1986.

[Bender 84] W. Bender, ‘Imaging and Interactivity’, Fifteenth Joint Conf. on Image
Technology, November 1984.

[Benyon 87] D. Benyon & S. Skidmore, ‘Towards a Tool Kit for the Systems Analyst’,
The Computer Journal, Vol. 30, No. 1, February 1987.

[Bersoff 81] E. H. Bersoff, V. D. Henderson & S. G. Siegel, ‘Software Configuration
Management’, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Bigelow 87] J. Bigelow & V. Riley, ‘Manipulating Source Code in Dynamic Design’,
Hypertext 87 Papers, November 13-15, 1987.

[Birrel 80] A. D. Birrell & R. M. Needham, ‘A Universal File Server’, IEEE Trans.
Soft. Eng., Vol. SE-6, No. 5, September 1980, pp. 450-453.

249

Appendix

[Blank 83] J. Blank & M. J. Krijger, ‘Software Engineering: Methods and Techniques’,
Wiley Interscience, 1983.

[Boechm 75] B. W. Boehm, ‘The High Cost of Software’, Practical Strategies for
Developing Large Software Systems, ed. E. Horowitz, Addison-Wesley, 1975.

[Bolt 80] R. A. Bolt, ‘Put-that-there: Voice and Gesture at the Graphics Interface’,
Computer Graphics, Vol. 15, No. 3, pp. 262-270, August 1980.

[Bolter 87] J. D. Bolter, ‘Hypertext and Creative Writing’, Hypertext 87 Papers,
November 13-15, 1987.

[Bono 85] P. R. Bono, ‘A Survey of Graphics Standards and their Role in Information
Interchange’, IEEE Computer, October 1985, pp. 63-75.

[Bourne 83] S. R. Bourne, ‘The UNIX System’, Addison-Wesley, 1983.
[Boyle 85] C. D. B. Boyle & M. R. B. Clarke, ‘An Intelligent Mail Filter’, People and
Computers: Designing the Interface, Proc. BCS HCI Conf. 17-20 September

1985, pp. 331-341.

[Brown 84] M. H. Brown & R. Sedgewick, ‘A System for Algorithm Animation’,
Computer Graphics, Vol. 18, No. 3, July 1984.

[Brown 86] P. J. Brown, °‘Interactive Documentation’, Software: Practice and
Experience, pp. 291-299, March 1986.

[Brown 86b] P. J. Brown, ‘Viewing Documents on a Screen’, from ‘CD-ROM: The
New Papyrus’, Lambert and Ropiequet (Eds.), Microsoft Press, 1986.

[Brown 87] P. J. Brown, ‘Turning Ideas into Products: the Guide System’, Hypertext
87 Papers, November 13-15, 1987.

250

Appendix

[Brown 89] H. Brown, ‘Standards for Structured Documents’, Computer Journal, Vol.
32, No. 6, December 1989, pp. 505-514.

[Buckle 82] J. K. Buckle, ‘Software Configuration Management’, Macmillan, London,
1982.

[Bush 45] Vannevar Bush, ‘As We May Think’, Atlantic Monthly No. 176, pg 101-
108, July 1945.

[Bush 67] Vannevar Bush, ‘Memex Revisited’, Science is Not Enough (Vannevar Bush),
pp. 75-101, 1967.

[Butler 88] R. Butler, ‘GIS - Geographic Information Systems - An Introduction’,
Mapping Awareness, Vol. 2, No. 2, May 1988, pp. 31-34.

[Byrd 82] R. J. Byrd, S. E. Smith & S. P de Jong, ‘An Actor-Based Programming
System’, ACM SIGOA Conference on Office Information System, Vol. 3, Nos.
1 & 2, 1982.

[Campbell 87] B. Campbell & J. M. Goodman, ‘HAM: A General Purpose Hypertext
Abstract Machine’, Hypertext 87 Papers, November 13-15, 1987.

[Campbell 88] J. Campbell, ‘The C Programmer’s Guide to Serial Communications’,
Howard Sams & Company, 1988.

[Cashin 73] P. Cashin, M. Robinson & D. Yates, ‘Experience with SCRAPBOOK, a
Non-Formatted Data Base System’, Proc. IFIPS Congress, 1973.

[Chamberlin 82] D. D. Chamberlin, J. C. King, D. R. Slutz, S. J. P. Todd & B. W.

Wade, ‘JANUS: An Interactive Document Formatter based on Declarative Tags’,
IBM Systems Journal, Vol. 21, No. 3, 1982, pp. 250-271.

251

Appendix

[Charney 87] D. Charney, ‘Comprehending Non-Linear Text: The Role of Discourse
Cues and Reading Strategies’, Hypertext 87 Papers, November 13-15, 1987.

[Christodoulakis 86] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa & A. Pathira,
‘Multimedia Document Presentation, Information Extraction, and Document
Formation in MINOS: A Model and a System’, ACM Trans. Office Information
Systems, Vol. 4, No. 4, October 1986, pp. 345-383.

[Clark 83] P. A. Clark, BYTE Magazine, May 1983, McGraw-Hill Inc.

[Codd 70] E. F. Codd, ‘A Relational Model of Data for Large Shared Data Banks’,
Communications of the ACM, June 1970.

[Coleman 88] D. Coleman & R. Gallimore, ‘A Framework for Program Development’,
Computing Techniques, March 1988, pp 36-40.

[Collier 87] G. H. Collier, ‘Thoth-II: Hypertext with Explicit Semantics’, Hypertext 87
Papers, November 13-15, 1987.

[Conklin 87] J. Conklin, ‘Hypertext: An Introduction and Survey’, IEEE Computer,
September 1987, pp. 17-41.

[Constantine 79] L. L. Constantine & E. Yourdon, ‘Structured Design’, Prentice-Hall,
Englewood Cliffs, New Jersey, 1979.

[Cook 80] R. P. Cook, ‘*MOD - A Language for Distributed Programming’, IEEE
Trans. Soft. Eng., Vol. SE-6, No. 6, November 1980, pp. 563-571.

[Corda 86] U. Corda & G. Facchetti, ‘Concept Browser: A System for Interactive
Creation of Dynamic Documentation’, Text Processing and Document
Manipulation: Proceedings of the International Conference, ed. J. C. van Vliet,
Cambridge University Press, 1986.

252

Appendix

[Cox 83] Brad J. Cox, ‘The Object Oriented Pre-Compiler’, SIGPLAN Notices, Vol.
18, No. 1, January 1983.

[Cox 84] Brad J. Cox, ‘Message/Object Programming: An Evolutionary Change in
Programming Technology’, IEEE Software, January 1984.

[Croft 88] W. B. Croft & L. S. Lefkowitz, ‘Using a Planner to Support Office Work’,
Proc. Conf. Office Information Systems, ACM, 1988.

[deMarco 78] T. deMarco, ‘Structured Analysis and System Specification’, Yourdon
Press, 1978.

[Denning 82] P. Denning, ‘Electronic Junk’, Comms. ACM, Vol. 23, 1982, pp. 163-
165.

[Diamond 85] Bolt Beranek & Newman Inc., ‘The Diamond Multimedia Document
System: User’s Reference Guide’, Technical Report 6006, November 1985.

[di Sessa 85] A. di Sessa, ‘A Principled Design for an Integrated Computational
Environment’, Human-Computer Interaction, Vol. 1, No. 1, 1985, pp. 1-47.

[di Sessa 86] A. di Sessa & H. Abelson, ‘Boxer: A Reconstructable Computational
Medium’, Communications of the ACM, Vol. 29, No. 9, Septeinbcr 1986, pp.
859-868.

[Dijkstra 68] E. W. Dijkstra, ‘Cooperating Sequential Processes’, Programming
Languages, Academic Press, New York, 1968.

[Downs 88] E. Downs, P. Clare & I Coe, ‘Structured Systems Analysis and Design
Method: Application and Context’, Prentice Hall International, 1988.

[DTI 87] Department of Trade and Industry, ‘Software Tools for Application to Large
Real Time Systems (STARTS)’, HM.S.O, 1987.

253

Appendix

[ECMA 85] European Computer Manufacturers Association, ‘Office Document
Architecture’, Standard ECMA-101, September 1985.

[Ehardt 83] J. L. Ehardt, ‘Apple’s Lisa: A Personal Office System’, The Seybold Report
on Office Systems, Vol. 6, No. 2, 24 January 1983.

[Ein-Dor 86] P. Ein-Dor & E. Segev, ‘Attitudes, Association and Success of MIS:
Some Empirical results from Research in the Context of a Business Game’,
Computer Journal, Vol. 29, No. 3, June 1986, pp. 212-221.

[Enderle 84a] G. Enderle, ‘The Interface of the UIMS to the Application (Working
Group Report)’, Computer Graphics Forum 3, North Holland, 1984.

[Enderle 84b] G. Enderle, ‘Seecheim Workshop on User Interface Management Systems
(First Report)’, Computer Graphics Forum 3, North Holland 1984.

[Engelbart 68] D. C. Engelbart & W. K. English, ‘A Research Center for Augmenting
Human Intellect’, Proc. FJICC, Vol. 33, No. 1, December 9-11, 1968.

[Engelbart 78] D. C. Engelbart, ‘Toward Integrated Evolutionary Office Automation
Systems’, Proceedings of the International Engineering Management Conference,
October 16-18, 1978.

[Englebart 87] D. C. Engelbart, ‘Hypertext 1987: Conference Proceedings’, Chapel Hill,
N.C., November 1987.

[Engelbart 88] D. C. Engelbart & H. Lehtman, ‘Working Together’, Byte Magazine,
Vol. 13, No. 13, pp. 245-252, December 1988.

[Feiner 81] S. Feiner, S. Nagy & A. van Dam, ‘An Integrated System for Creating and

Presenting Complex Computer-Based Documents’, Computer Graphics, Vol. 15,
No. 3, August 1981, pp. 181-189.

254

Appendix

[Feiner 82] S. Feiner, S. Nagy & A. Van Dam, ‘An Experimental System for Creating
and Presenting Interactive Graphical Documents’, ACM Transactions of Graphics,
Vol. 1, No. 1, January 1982, pp. 59-77.

[Fitzgerald 85] G. Fitzgerald, N. Stokes & J. R. G. Wood, ‘Feature Analysis of
Contemporary Information System Methodologies’, The Computer Journal,
Vol. 28, No. 3, 1985, pp. 223-230.

[Forsdick 82] H. C. Forsdick & R. H. Thomas, ‘The Design of Diamond: A Distributed
Multimedia Document System’, Technical Report 5402, Bolt Beranek & Newman
Inc., October 1982.

[Forsdick 85] H. C. Forsdick, ‘Explorations into Real-Time Multimedia Conferencing’,
Proceeding of the Second International Symposium on Computer Messaging
Systems, Sept. 1985.

[Foster 85] E. Foster, ‘Outliners: A New Way of Thinking’, Personal Computing, May
1985, pg. 74.

[Furuta 82a] R. Furuta, J. Scofield & S. Shaw, ‘Document Formatting Systems: Survey,
Concepts, and Issues’, Computing Surveys, Vol. 14, No. 3, September 1982.

[Furuta 82b] R. Furuta, J. Scofield, & A. Shaw, ‘Document Formatting Systems:
Survey, Concepts and Issues: Document Preparation Systems’, J. Nievergelt, G.
Coray, J.D. Nicoud and A.C. Shaw (Eds.), North-Holland, 1982.

[Furuta 89] R. Furuta, ‘An Object-based Taxonomy for Abstract Structure in Document
Models’, Computer Journal, Vol. 32, No. 6, December 1989, pp. 494-504.

[Gaines 86] B. R. Gaines & M. L. G. Shaw, ‘Foundations of Dialog Engineering: The

Development of Human-Computer Interaction’, Int. J. Man-Machine Studies, Vol.
24, 1986, pp. 101-123.

255

Appendix

[Galliers 87] R. D. Galliers & F. F. Land, ‘Choosing Appropriate Information Systems
Research Methodologies’, Comms. ACM, Vol. 30, No. 11, pp. 900-902.

[Gane 79] C. Gane & T. Sarson, ‘Structured Systems Analysis’, Prentice-Hall, 1979.

[Gibbs 87] S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas & Y. Yeorgaroudakis,
‘Muse: A Multimedia Filing System’, IEEE SOFTWARE, March 1987, pp. 4-15.

[Gibson 89] M. L. Gibson, ‘The CASE Philosophy’, Byte, April 1989, pp. 209-218.

[Goldberg 83] A. Goldberg & D. Robson, ‘Smalltalk-80: The Language and its
Implementation’, Reading, MA: Addison-Wesley, 1983.

[Gomaa 83] H. Gomaa, ‘The Impact of Rapid Prototyping on Specifying User
Requirements’, ACM Software Engineering Notes, Vol. 8, No. 2, pp. 17-28,
1983.

[Grindley 89] The Price Waterhouse 1989/90 Information Technology Survey,
ed. C. P. P. Grindley.

[Gutknecht 84] J. Gutknecht & W. Winiger, ‘Andra: The Document Preparation System
of the Personal Workstation Lilith’, Software - Practice and Experience, Vol. 14,
pp. 73-100 1984.

[Gutknecht 85] J. Gutknecht, ‘Concepts of the Text Editor Lara’, Communications of
the ACM, Vol. 28, No. 9, September 1985.

[Hakiel 87] S. R. Hakiel, ‘Issues in the Design of Icons’, Internal Research Paper,

\

PLessey Telecommunications, 1987.
[Halasz 88] F. G. Halasz, ‘Reflections on Notecards: Seven Issues for the Next

Generation of Hypermedia Systems’, Comms. ACM, Vol. 31, No. 7, July 1988,
pp. 836-852.

256

Appendix

[Hall 87] N. S. Hall, S. Laflin, W. P. Dodd, ‘Integration of Graphic with Text in an
Electronic Journal’, Workstations and Publication Systems, Springer-Verlag, 1987.

[Hansen 88] W. J. Hansen & C. Haas, ‘Reading and Writing with Computers: A
Framework for Explaining Differences in Performance’, Comms. ACM, Vol. 31,
No. 9, September 1988, pp. 1080-1089.

[Harke 87] U. Harke, M. Burger & D. Gall, ‘Embedding Graphics into Documents by
Using a Graphics Editor’, Workstations and Publication Systems, Springer-
Verlag, 1987.

[Harrison 84] B. Harrison, ‘FRAMEWORK: An Introduction’, Ashton-Tate Publications,
1984.

[Henderson 86] D. A. Henderson & S. K. Card, ‘Rooms: The Use of Multiple Virtual
Workspaces to Reduce Space Contention in a Window-Based Graphical User
Interface’, ACM Trans. Graphics, Vol. 5, No. 3, July 1986, pp. 211-243.

[Heppe 85] D. L. Heppe, W. H. Edmondson & R. Spence, ‘Helping Both the Novice
and Advanced User in Menu-Driven Information Retrieval Systems’, People and
Computers: Designing the Interface, Proc. BCS HCI Conf. 17-20 September
1985, pp. 92-101.

[Herot 80] C. F. Herot, ‘Spatial Management of Data’, ACM Transactions on Database
Systems, Vol. 5, No.4, December 1980.

[Hershey 85] W. Hershey, ‘Idea Processors’, Byte, pp 337-350, June 1985.

[Hewitt 77] C. Hewitt, ‘Viewing Control Structures as Patterns of Passing Messages’,
Artificial Intelligence, Vol. 8, 1977.

[Hoare 78] C. A. R. Hoare, ‘Communicating Sequential Processes’, Communications of
the ACM, Vol. 21, No. 8, August 1978, pp. 666-677.

257

Appendix

[Honeywell 87] J. Honeywell, ‘Publication Systems at TODAY’, Workstations and
Publication Systems, Springer-Verlag, 1987.

[Ince 89] D. Ince, ‘The Software Prototype’, .EXE Magazine, Vol. 4, No. 4, September
1989.

[ISO 84] ISO, ‘Information Processing - Text Preparation and Interchange - Text
Structures - Part 2: Office Document Architecture’, ISO/TC 97/SC 18 N 267,

April 1984.

[ISO SGML] ‘Information Processing - Text and Office Systems - Standard Generalised
Markup Language (SGML)’, ISO Draft International Standard, ISO/DIS 8879
TC/97.

[Jackson 75] M. A. Jackson, ‘Principles of Program Design’, Academic Press, London,
1975.

[Jackson 83] M. A. Jackson, ‘System Development’, Prentice-Hall, London, 1983.

[Jadrnicek 84] R. Jadrnicek, ‘SYMPHONY: A Full-Orchestra Version of Lotus 1-2-3’,
BYTE, July 1984

[Jones 89] R. Jones, ‘Prototyping: Roughing it up’, Datalink, 25 September 1989.

[Kiesler 89] S. Kiesler, ‘Are Friends Electric: E-mail behaviour’, PC Business World,
October 1989.

[Kimura 86] G. D. Kimura, ‘A Structure Editor for Abstract Document Objects’, IEEE
Transactions on Software Engineering, Vol. SE-12, No. 3, March 1986.

[Konsynski 85] B. R. Konsynski, A. Greenfield & W. E. Bracker Jr., ‘A View on

Windows: Current Approaches and Neglected Opportunities’, AFIPS Conference
Proceedings, 1985 National Computer Conference, Vol. 54, AFIPS Press 1985.

258

Appendix

[Knuth 79] D. E. Knuth, ‘TgX and METAFONT: A New Direction in Typesetting’,
Digital Press, 1979.

[Knuth 84] D. E. Knuth, ‘Literate Programming’, The Computer Journal, Vol. 27, No.
2, 1984, pp. 97-111.

[Knuth 86] D. E. Knuth, ‘The TgXbook’, Addison-Wesley Publishing, Reading, MA
1986.

[Lopez 73] B. Lopez, writing in ‘Environment Action’, 31 March, 1973.

[Machlup 83] F. Machlup & U. Mansfield, eds., ‘The Study of Information’, Wiley,
1983.

[Maddison 83] R. N. Maddison, ‘Information System Methodologies’, Wiley, London,
1983.

[Madnick 83] S. E. Madnick & J. J. Donovan, ‘Operating Systems’, McGraw-Hill,
9th edition, 1983.

[Malone 87] T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst & M. D. Cohen,
‘Intelligent Information Sharing Systems’, Comms. ACM, Vol. 30, 1987,
pp. 390-402.

[MASCOT 83] ‘The Official Handbook of MASCOT’, RSRE Malverm, 1.983‘

[Maude 85] T. I. Maude & D. J. Pullinger, ‘Software for Reading, Refereeing and
Browsing in the BLEND System’, Computer Journal, Vol. 28, No. 1, February

1985, pp. 1-4.

[Mayer 85] A. J. W. Mayer, ‘Storage Architectures’, Byte Magazine, December 1985,
pp. 221-234,

259

Appendix

[McCandless 90] H. McCandless, ‘Mimic the mind’s eye’, Practical Computing,
February 1990, pp. 38-42.

[McCracken 84] D. L. McCracken & R. M. Akscyn, ‘Experience with the ZOG
Human-Computer Interface System’, International Journal of Man-Machine
Studies, Vol. 21, 1984.

[Nanard 87] J. Nanard, M. Nanard & G. Cottin, ‘Pleiade: A System for Interactive
Manipulation of Structured Documents’, Workstations and Publication Systems,

Springer-Verlag, 1987.

[NCC 86] National Computing Centre, ‘SSADM Manual’, NCC Publications, 1986.

[Negroponte 76] N. Negroponte, ‘An Idiosyncratic Systems Approach to Interactive
Graphics’, ACM/SIGGRAPH Workshop paper, Pittsburgh, Penn., October 14-15,
1976.

[Nelson 67] T. H. Nelson, ‘Getting It Out of Our System’, Information Retrieval: A
Critical Review, editor G. Schechter, Thompson Books, 1967.

[Ngoh 89] L. H. Ngoh & T. P. Hopkins, ‘Transport Protocol Requirements for
Distributed Multimedia Information Systems’, The Computer Journal, Vol. 32,
No. 3, pp. 252-261, June 1989.

[Nicolis 77] G. Nicolis & 1. Prigogine, ‘Self-Organisation in Non-Equilibrium Systems:
From Dissipative Structures to Order through Fluctuations’, Wiley, 1977.

[Olsen 84] D. R. Olsen Jr., W. Buxton, R. Ehrich, D. J. Kasik, J. R. Rhyne & J.
Sibert, ‘A Context for User Interface Management’, IEEE Computer Graphics
and Application, December 1984.

[Oren 88] T. Oren, ‘The CD-ROM Connection’, BYTE Magazine, Vol. 13, No. 13,
December 1988, pp. 315-320.

260

Appendix

[Osin 76] L. Osin, ‘SMITH: How to produce CAI Courses without Programming.’
International Journal of Man-Machine Studies, Vol. 8, 1976.

[Ovum 87] Ovum, ‘Computer Aided Software Engineering: Commercial Strategies’,
1987.

[Panko 88] R. R. Panko, ‘End User Computing: Management, Applications, and
Technology’, Wiley, 1988.

[PCMag 89] ‘Of Mice and Menus’, PC Magazine, October 1989, pp. 44-68.

[PCWeek 88] Report on Information Centre survey by Crwth Computer Coursewares,
PC Week, 4 October 1988, p. 46.

[Pearce 89] A. Pearce, ‘A Model of Analysis’, Systems International, June 1989, pp.
71-74.

[Peels 85] A. J. H. M. Peels et. al.,, ‘Document Architecture and Text Formatting’,
ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

[Peters 80] L. J. Peters, ‘Software Representation and Composition Techniques’,
Proceedings of the IEEE, Vol. 68, No. 9, August 1980, pp 1085-1093.

[Peterson 77] J. L. Peterson, ‘Petri Nets’, Computing Surveys, Vol. 9, No. 3, September
1977.

[Pitman 85] K. M. Pitman, ‘CREF: An Editing Facility for Managing Structured Text’,
A.lL Memo No. 829, M.I.T. A L. Laboratory, Cambridge, Mass., February 1985.

[Poggio 85] A. Poggio, J. J. Garcia Luna Aceves, E. J. Craighill, D. Moran, L. Aguilar,

D. Worthington & J. Hight, ‘CCWS: A Computer-Based Multimedia Information
System’, IEEE Computer, October 1985, pp. 92-103.

261

Appendix

[Powell 89] M. Powell, ‘Power Ahead with a 386°, Computer Weekly, July 20, 1989,
pg. 22.

[Ramo 69] S. Ramo, ‘Cure for Chaos: Fresh Solutions to Social Problems Through the
Systems Approach’, New York, 1969.

[Randell 86] B. Randell, ‘System Design and Structuring’, Computer Journal, Vol. 29,
No. 4, 1986, pp. 300-306.

[Reynolds 85] J. K. Reynolds, J. B. Postel, A. R. Katz, G. G. Finn & A. L. DeSchon,
‘The DARPA Experimental Multimedia Mail System’, IEEE Computer, October
1985, pp. 82-89.

[Rheingold 871 H. Rheingold, ‘Tools for Thought’, New York, 1987.

[Ritchie 74] D. M. Ritchie & K. Thompson, ‘The UNIX Time-Sharing System’,
Communications of the ACM, Vol. 17, No. 7, July 1974, pp. 365-375.

[Ritchie 89] I. Ritchie, ‘HYPERTEXT - Moving Towards Large Volumes’, Computer
Journal, Vol. 32, No. 6, December 1989, pp. 516-523.

[Roszak 86] T. Roszak, ‘The Cult of Information’, Lutterworth Press, 1986.

[Rummens 89] N. Rummens & R. Sucher, ‘Competitive Edge’, Systems International,
March 1989.

[Sakata 85] S. Sakata & T. Ueda, ‘A Distributed Interoffice Mail System’, IEEE
Computer, October 1985, pp. 106-116

[Sarin 85] S. Sarin & 1. Greif, ‘Computer-Based Real-Time Conferencing Systems’,
IEEE COMPUTER, October 1985, pp. 33-45.

262

Appendix

[Sarin 87] S. K. Sarin & N. A. Lynch, ‘Discarding Obsolete Information in a
Replicated Database System’, IEEE Trans. Software Engineering, Vol. SE-13,
No. 1, January 1987, pp. 39-47.

[Scarrott 85] G. G. Scarrott, ‘Information, the Life Blood of Organisations’, Computer
Journal, Vol. 28, No. 3, July 1985, pp. 203-205.

[Schifreen 88] R. Schifreen, ‘Exchanging Data Dynamically’, Personal Computer World,
January 1988, pp. 158-162.

[Scott 86] J. Scott, ‘Drivers Free Users from Device Dependence’, Mini-Micro Systems,
April 15, 1986, pp. 19-27.

[Shasha 85] D. Shasha, ‘NetBook - a Data Model to Support Knowledge Exploration’,
Proceedings of VLDB 85, Stockholm, August 1985.

[Shasha 86] D. Shasha, ‘When Does Non-Linear Text Help?’, Proc. First International
Conf. Expert Database Systems, pp. 109-121, April 1986.

[Shneiderman 87] B. Shneiderman, ‘Designing the User Interface: Strategies for
Effective Human-Computer Interaction’, Addison-Wesley, 1987.

[Smith 82] D. C. Smith, C. Irby, R. Kimball & B. Verplank, ‘Designing the Star User
Interface’, BYTE, April 1982.

[Smith 88] J. B. Smith & S. F. Weiss, ‘Hypertext’, Comms. ACM (Special Issue on
Hypertext), Vol. 31, No. 7, July 1988, pp. 816-819.

[Sommerville 89] 1. Sommerville, ‘Software Engineering, 3rd Ed.’, Addison-Wesley,
1989.

[Stamper 71] R. K. Stamper, ‘Some Ways of Measuring Information’, Computer
Bulletin, December 1971, pp. 432-436.

263

Appendix

[Stamper 85] R. K. Stamper, ‘Information: Mystical Fluid or a Subject for Scientific
Enquiry’, Computer Journal, Vol. 28, No. 3, July 1985, pp. 195-199.

[Stobie 87] 1. Stobie, ‘The Integrated Office: When Technologies Converge’, Practical
Computing, September 1987.

[Straub 89] B. Straub & I. O. Angell, ‘A Question of System’, Working Paper Series
No. 7, Department of Information Systems: London School of Economics, 1989.

[Tagg 87] R. Tagg, ‘Software Engineering from the End User Angle’, Computer
Bulletin, December 1987, pp 12-13.

[Tazelaar 88] J. M. Tazelaar, ‘Groupware in Depth’, Byte Magazine, Vol. 13, No. 13,
pg. 242, December 1988.

[Teichroew 77] D. Teichroew & E. A. Hershey, ‘PSL/PSA: A cpmputer-aided technique
for structured documentation and analysis of information processing systems’,
IEEE Trans. Soft. Eng., Vol. SE-3, No. 1.

[Thoma 85] G. R. Thoma, S. Suthasinekul, F. L. Walker, J. Cookson & M. Rashidian,
‘A Prototype System for the Electronic Storage and Retrieval of Document
Images’, ACM Trans. on Office Information Systems, Vol. 3, No. 3, July 1985,
pp. 279-291.

[Thomas 83] J. J. Thomas (Workshop Chairman), ‘Gfaphical Input Interaction
Technique Workshop Summary’, Computer Graphics, Vol. 17, No. 1, January
1983.

[Thomas 85] R. H. Thomas, H. C. Forsdick, T. R. Crowley, G. G. Robertson, R. W.
Schaaf, R. S. Tomlinson & V. M. Travers, ‘Diamond: A Multimedia Message
System Built Upon a Distributed Architecture’, COMPUTER, October 1985.

[Times 88] The Times, June 27th 1988. First report on Paris Airshow disaster.

264

Appendix

[Times 88b] The Times, June 29th 1988. Preliminary report on Paris Airshow Disaster

lays blame on pilot for ignoring ‘too low’ height warnings.
[Toffler 80] A. Toffler, ‘The Third Wave’, Morrow, 1980.

[Trigg 86] R. H. Trigg & M. Weiser, ‘TEXTNET: A Network-Based Approach to Text
Handling’, ACM Trans. Office Information Systems, Vol. 4. No. 1, January
1986.

[UCL 83] University College London Department of Computer Science, ‘UNIX
Programmer’s Manual, 4th Ed.’, 1983.

[Walker 81] J. H. Walker, ‘The Document Editor: A Support Environment for Preparing
Technical Documents’, Proc. ACM SIGPLAN/SIGOA Symposium on Text
Manipulation, Oregon, Vol. 2, Nos. 1 & 2, June 1981.

[Walker 85] J. H. Walker, ‘The Document Examiner’, SIGGRAPH Video Review,
CHI’85: Human Factors in Computing Systems, 1985.

[Ware 89] C. Ware, ‘A C.A.S.E. in Point’, Datalink, 25 September 1989.

[Warman 87] A. R. Warman, ‘GENIE-M: Applications of Multimedia Information
Environmerits’, ‘ED’87: Electronic Displays and Information Display Systems’,
London, 17-19 November 1987.

[Weiner 50] N. Weiner, ‘The Human Use of Human Beings’, Houghton Mifflin, 1950.

[Weyer 82] S. A. Weyer, ‘The Design of a Dynamic Book for Information Search’,
International Journal of Man-Machine Studies, Vol. 17, 1982.

[Weyer 85] S. A. Weyer & A. H. Borning, ‘A Prototype Electronic Encyclopedia’,
ACM Trans. on Office Information Systems, Vol. 3, No. 1, January 1985, pp.

63-88.

265

Appendix

[White 87] E. White & R. Grehan, ‘OS/2: Microsoft’s New DOS’, Byte Magazine, June
1987, pp. 116-126

[Whybrow 89] M. Whybrow, ‘Substantiate the CASE Mirage’, Infomatics: Software
Tools, pp. 6-10, June 1989.

[Wilson 85] M. D. Wilson, P. J. Barnard & A. MacLean, ‘Analysing the Learning of
Command Sequences in a Menu System’, People and Computers: Designing the
Interface, Proc. BCS HCI Conf. 17-20 September 1985, pp. 63-75.

[Wilson 85b] P. A. Wilson, ‘Mailbox Advances and MMI Needs’, People and
Computers: Designing the Interface, Proc. BCS HCI Conf. 17-20 September
1985, pp. 317-330.

[Winograd 87] T. Winograd, ‘A Language/Action Perspective on the Design of
Cooperative Work’, Human-Computer Interaction, Vol. 3, No. 1, pp. 3-30, 1987.

[Winograd 88] T. Winograd, ‘Where the Action Is’, Byte Magazine, Vol. 13, No. 13,
Pp- 256-268, December 1988.

[Witten 85] 1. H. Witten & B. Bramwell, ‘A System for Interactive Viewing of
Structured Documents’, Comms. ACM, Vol. 28, No. 3, pp. 280-288

[Yankelovich 85] N. Yankelovich, N. Meyrowitz & A. van Dam, ‘Reading and Writing
the Electronic Book’, IEEE COMPUTER, pp. 15-30, October 1985.

[Yankelovich 88] N. Yankelovich, B. J. Haan, N. Meyrowitz & S. M. Drucker,
‘Intermedia: The Concept and the Construction of a Seamless Information
Environment’, IEEE Computer, Vol. 21, No. 1, January 1988, pp. 81-86.

[Yourdon 78] E. Yourdon & L. L. Constantine, ‘Structured Design: Fundamentals of

a Discipline of Computer Program and Systems Design’, New York: Yourdon
Press, 1978.

266

Appendix

Error Codes returned by the Communications Routines.

These codes are described in the form of UNIX-like error numbers, as UNIX
is the host system used for constructing the prototype of the GENIE-M generator. The
actual codes are declared as constants within the source for the GENIE-M
implementation, and may be referenced by any program. The non-sequential values are
a result of attempting to match the error codes to similar returns from standard UNIX

system calls.

All GENIE-M functions and utilities will return a O error code on success, and
a non-zero code if an error occurs. The non-zero code returned does not necessarily
correspond with the actual error, instead the actual error code will be stored in the

global variable GENIE_errno. This variable is not cleared on each successful call,

and so should only be tested after an error has been detected.
0 GNOK Error state 0, no error.

1 GNHOST A host error has occurred. For the UNIX operating system, the

error code will be located in the global access errno variable.

2 GNOENT The requested entity does not exist. May refer to a tile, group,

device or module.

5 GNIO I/O error, typically the result of attempting to give an illegal
instruction to a specific device, for example reading from a screen

display.

7 GN2BIG A parameter has been provided that is too long. This would occur

if the destination of a GENIE_send () is not available in the

current session, and is being referred to external hosts.

267

Appendix

12 GNOMEM

13 GNACCESS

14 GNFAULT

16 GNBUSY

17 GNEXISTS

22 GNINVAL

26 GNOBIJBSY

32 GNSEND

39 GNDEST

58 GNSHUTDN

60 GNTIMOUT

100 GNBADOP

Not enough memory. Caused by a variety of conditions -
normally reflects a problem interacting with the host operating
system.

General permission denied.

Faulty address or name. Could not identify the requested name
or address.

The requested resource is busy.
An entity of that name already exists.
An invalid argument has been encountered in the message.

The requested object (tile, group, device, module) is already in

use.
The send operation has failed. This is probably due to a
communications failure rather than a fault in locating the

destination.

Could not locate the required destination anywhere in the

application system.

Cannot use this command, the system has been shutdown - or is

not yet active.

The requested operation timed out (could not be performed in a

reasonable amount of time).

Instruction would result in illegal state - for example tiles

intersecting within the tile space.

268

Appendix

Script of Demonstration Session.

In keeping with the philosophy of the GENIE-M architecture, each instance of
an electronic document would be tailored to meet the individual requirements of each
reader. Such an objective is not possible with a purely paper-based document, but to
reflect the principles, this section of the appendix includes a record of the script and

diagrams used during the presentation of the demonstration system.

GENIE-M

A presentation
by A. R. Warman

D g Complex
The Use ofa ic Data S to Aid the Spedificath
of a Multi b
This pr Is toi the GENIE-M archi
The primary objeclive is to ilustrate the design and implementation of
the underlying and its applicabibty 1o p
h of based i systems.
GENIE-M

Basic Concepts: Origins in GEODOC

The GENIE-M concepts are derived from earfier work on a project
called GEODOC. This was directed towards an implementation of
electronic books, using geometry as the basis for describing the
consituents of the book. Different versions of the same book would be
quickly generated by modifying the geomevic relaionships between
pages and diagrams.

However, it was observed that geometry could be used for more

general cases than simply relating objects within the book. Extending GENIEM
the & incipl ggesied a wider applicability with regard
to g larger scale ‘Inf fion Envi

269

tnfomalion. Part |

In order lo provide a generalised model. Hwas neoessary lo
produce a working deiniion ol 'kifotmalion'. A oonsideraUe amounl
of work weni inlo oonslructng a suilaUe defrilion, inHuenoed by
Irequenl references lo bolh frigfr-qualily Academic skrdies, as we# as
pracioaf/oommerdal implemenlalions of 'information prooessing’

products

Simple models were oonskuded to esperimenl wilfi suggeslions of
flow information’ was manipUated by users and user support paclrages

“Die primary oonsliluenis were idenlHied, and unoompkealed diagrams

Information, Part Il

Aworking definition of information was suggested as follows:

Both tie user, and the user's interpretation, are aspects which
fall outside the influence of a computer based system Data
manipulation (and also presentation) is dearly an aspect where

computers could be of great help

However, a key point is tocaled in tie use of tie word Environment,

The Envirorment

The environment is considered to be a representation of the
complete dreumstanoes witiin which tie data, the user, and tie user
processes ae deemed to exist and function. As any of these components

change, so the dreumstanoes - and hence environment changes

Itis important to indude the user as cental to tie environmental
model. The nature of the user wit diredly affect tie operation,

operability, and productivity of the Information processing’ tasks.

Tilo* and Altribules, Part I

Implemenlalion of tic geomelric dala ttudure it fadNlaled by Ific
Tile. Tfiis it an otijecf wfich can tiore dala conlenit in mucti tfie tame
way Itial any oltier dala tlrucfuro, objeef at «le could tlore dala.
However, tie pfiytical oonleni t forage it independeni of tfie type of

data Thit enablet acoctt by external entlict lo be more genera*ted

In addition to tfie dala oonleni. two other major data
cfiaracterittct can be depided. Rittly. a tel of attibutet' can be
attodaled with Ifie tic. Thete may be uted lo tiale eigilicity any
allribulet of tie data. The attibutet could depict envtonmenlal
requirementt. oraccets privteget. and of courte an exptdt ttatemeni

of tie type of the data held within tfie tie

User

Control

270

Integration

Appendix

Presentation

Report

Communication

Processes

Communication

Processes

DATA

Data Data
Unit Unit

Interlaces

Data
Unit

Environment

System

Tile

Data within tile.

Tiiee and Attribute*. Part II

The second data aspectis geome*icai relationship that exists
between the tiles. Geometry can be of value in depicting pictoriaHy
certain kinds of information relationships that might be more difficult

Of complex to express in other forms.

EquaNy. tw use of geomeky (or topology) in Mhjskaling some

kiryfs of data characteristics means that unnecessary or excess data can

be removed. Ananalogy can be found in any urtderground transportation

The TMe Space. Part I

The tiles are stored in a virtual storage area called tie Tile

Space. This can be envisaged as consisting of n' planes, upon which

tiles can be positioned.

Any external entity which requires access to tiles can examine the
ttie space to locale not only the desired tile, but also other tAes
which may be related in some way to tic original tile, as described
carlier. The external entities - or modules - are deemed to be
‘viewing’ the tile space, and it is trts facility which builds upon tie

geometic basis

The THe Space. P»t Il

As well as storing data. tWes can store references lo otier
objects which east witiin the environment. Modules wtiich function
within the environment can have existence within the We space by
terming protrusions’ Wes into the Ite space whidi represent tie
spedic module These tiles can be manipulaied in exacty the same
way as any other We. witi Ific additional effect tfiai any operations

affecting tfiem are connected dredy to the parent module.

Simple examples might include a red lime event morkjies such as
clocks, or modules that can react dynamicaiy to changes in tie

environment as modelled witfiin tfie tile space.

Architectural Implementation

A fundamental requirement is ter communication between any and all

components that exist within tie environment. In order to make Ifie
implementation as host independent as possible, communication is

provided by a series of simple primitives tiat are responsible for

translating any local dependencies. The content of tie communication

is also considered to be as fiost"ndependenl as possible, partly to
improve portability, but also to increase tfie ease with which external
modules can be designed and incorporated. Communication between
machines is handled by network-aware’ gateways, which effectively

provide an invisible link across inter machine boundaries.

Appendix

MullpleTles

paw waned upon planes

me Space

Machine Boundary.

Communkstion 00
External Machine

271

Module protrudes”
(nto We space.

TMe Space ImplementaWon

The adminifitration of The We space is handled by a centra*

switch' module, called MATRIX on the prototype system. This modUec
implements the main lic access facMties, as we# as directing and
oonfolling #ie storage and recovery of liles and morWe

representations

The Internal representation of Hies is facilitated by using a data
soudure that implemenis a topological équivalence to the absfract

depiction of the tile space itself

Modites are active entities which can exist and operate within tfie
environment Implementation of #ie modules is by any of tie normal
process construction techniques, witi the sole requrement being a

connection tvou” into the communications mechanism

The representation of tfie module witiin tic tic space - in the

form of a tile protrusion’ * can be implemented eitier witfiin GENIE M
(which would be tie normal case for external a”cations). or within
tie module itself. The latter case is preferable as Hrepresents a

lower degree of coupling tetween modules

External Perspective

The prototype implementation is configured for two Unix worlistations. SUN

two IBM PCs, aslanded printer, and an externW grépfiics presentation

The number of devices is limited only by the number of hardware

communication ports available on tic various machines

Internal Perspective

The oentd tHe space adminstrafion program is located on tfie

larger of tfic two worftstakons, in order to maximisc performance. Tfic

implementation of tie commecnication mechanisms is such tiat peripheral BACKEND
FRONTEND
modules can be situated on any multi tasking machine: altiough in Comms &Gales

practice ticy sfiould be located in a manner tiat reflects performance
requirements

Certain modules are implemented to support external applications:
tiose which are not aware of the existence of GENIES. Examples on the
prototype system are BACKEND and FRONTEND, wNch interface with the two
IBM PCs, and also IKONDRYV wfiich provides device ctiver facilities for

tic yaphics engine

272

Machine Boumdary

Appendix

Internal Module

Protuekm ol
External Appkeakon

tjnk to External

Printer

SUN

External Perspective

Inlemal Perspective

MATRIX
Communicatons

D™

Appendix

The first example of how the GENIE-M architecture m i*t be used is
now in operation, in the form of this presentation system. Comptele

conk-ol is provided from a single oonsole, which supplies directives to

aMcomponents within the current application that Is modelled within A p rese ntati on
the environment.
by A. R. Warman

Context sensitivity dem onsfrates the geometric properties of the
tile space, in that as tiles arc examined (presented), assodded

information can be submitted lo the appropnate mechanism.

Other objects witiin
tie tiie space inluence

Examples. Simulaiion System »>e Kit model.

Since modules can have active protrusions into fre tHe space, arrd
the tWes modules can use these profusions lo examirre the status of
¢ complete environment, it follows that modules can become 'aware' of
the environment. One application of this might be a simiiabon system
Each of the components can be modelled as a (potentially complex)
entity, wtiich is then inserted into the environment being used to model
the simulaled system. Active components can be programmed as modules
which can react in real-time and/or in response to events. Furthermore,

represented

just as some entities being modelled may in some fashion relocate witiin he tie space.

ons

tiemselves (a classic example being an elevalor). so tie prof

into the tWe space can relocate tiemselves geomeficaHy.

TEXT Graphics

Examples: fAdtimedia System

Amultimedia system would be that which manipulates media of varying
types. The prototype system is limited in the available hardware which
could be attached, but the use of demonsfaton devices suggests that
Device Environmental

equally, Kirtier media types could be incorporated into the environment

model by (he implementaion and Inclusion of the appropriate (fiver)
Control Control

ConcKjsion

The objective of this presentation has been to Wlusfale

interactively the fundamental principles of the GENIE-M architecture,

and fejrfier to demonstrate the system itself in operation T" E !

Consfuction of the prototype system has been invaluable in
providing a working testbed upon which ideas can be fied and tested,
as wGHas helping with identifying areas vdiere impiementalion

improvements oould be made

The furtfier (tevelopment of GENIE-M requres many individual
projects to be performed. A primary goal is tfie constructon of a

graphic font-end that wilt interact with the underlying architecture

273

