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Abstract

The thesis concerns semiparametric modelling and forecasting Value-at-Risk models, and the ap-

plications of these in financial data. Two general classes of semiparametric VaR models are pro-

posed, the first method is introduced by defining some effi cient estimators of the risk measures in

a semiparametric GARCH model through moment constraints and a quantile estimator based on

inverting an empirical likelihood weighted distribution. It is found that the new quantile estimator

is uniformly more effi cient than the simple empirical quantile and a quantile estimator based on

normalized residuals. At the same time, the effi ciency gain in error quantile estimation hinges on

the effi ciency of estimators of the variance parameters. We show that the same conclusion applies to

the estimation of conditional Expected Shortfall. The second model proposes a new method to fore-

cast one-period-ahead Value-at-Risk (VaR) in general ARCH(∞) models with possibly heavy-tailed

errors. The proposed method is based on least square estimation for the log-transformed model.

This method imposes weak moment conditions on the errors. The asymptotic distribution also

accounts for the parameter uncertainty in volatility estimation. We test our models against some

conventional VaR forecasting methods, and the results demonstrate that our models are among the

best in forecasting VaR.
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Chapter 1

Introduction

The attention placed on effective risk management in the financial industry has never been greater,

especially after the recent financial crisis. The profit-driven industry is aware of the importance

of measuring and managing risk properly. The Basel Committee (1996) also requires financial

institutions to hold a certain amount of cash against market risk. Value-at-Risk (VaR), as one of

the measures of market risk, becomes widely known when JP morgan introduces Riskmetrics (1996)

and set an industry standard. As a forward looking estimate, VaR is defined as the maximum

potential loss in value of a portfolio of financial instruments with a given confidence level over a

certain horizon. It is an important risk measure as portfolio managers are concerned with large

potential loss in asset returns.

From an econometric point of view, VaR is a quantile of the conditional distribution of portfolio

returns over a certain holding period. VaR forecasts are mostly cast in GARCH type models

because financial time series are characterized by conditional heteroskedasticity and heavy-tailed

distributions. The method proceeds in two steps: the first is to estimate the conditional volatility

and the second is to estimate devolatized residual quantile. This method employs the volatility

estimator as a filter to transform the conditional correlated returns into i.i.d. errors, for which vast

quantile estimators such as empirical quantile or extreme value theory based quantile can be readily

applied. For example, Riskmetrics (1996) employs a GARCH model with normal errors; McNeil and

Frey (2000) propose new VaR forecast methods by combining GARCH models with Extreme Value

Theory (EVT); Engle (2001) illustrates VaR forecasts in GARCH models with empirical quantiles;

Nyström and Skoglund (2004) use GMM-type volatility estimators for the GARCH based VaR

forecasts. See Duffi e and Pan (1997), Engle and Manganelli (2004) and Gourieroux and Jasiak

(2002) for more detailed surveys for VaR forecasts.

6



Consistency and asymptotic normality have been established under various conditions, see Weiss

(1986), Lee and Hansen (1994), Hall and Yao (2003), and Jensen and Rahbek (2006). For the

semiparametric models, references can be found in Engle and Gonzalez-Rivera (1991) , Linton

(1993) and Drost and Klaassen (1997).

In practice, full parametric methods are very popular, but the commonly used normal distribuion

is a flaw, since most of the financial returns have heavy-tails. Fully nonparametric methods,such

as Historical Simulation, are easy to implement, but do not provide precise VaR prediction. Semi-

parametric method, on the other hand, have been found to perform relatively well. The approach

contains a parametric GARCH estimation and a nonparametric standardized residual estimation.

It is accurate and at the same time flexible, because there are a rich class of GARCH family models

to choose and no specific distribution assumption is required. The approach has been proposed in

Pritsker (1997), Hull and White (1998), McNeil and Frey (2000) and Kuestre, Mittnik and Paolella

(2006).

The thesis contributes to the semi- and nonparametric work in VaR modelling. Two general

classes of semiparametric models have been proposed. Moment constraints are often used to iden-

tify and estimate the mean and variance parameters and are however discarded when estimating

error quantiles. In order to prevent this effi ciency loss in quantile estimation,the first approach is

introduced by defining some effi cient estimators of the risk measures in a semiparametric GARCH

model through moment constraints and a quantile estimator based on inverting an empirical likeli-

hood weighted distribution. It is found that the new quantile estimator is uniformly more effi cient

than the simple empirical quantile and a quantile estimator based on normalized residuals. At the

same time, the effi ciency gain in error quantile estimation hinges on the effi ciency of estimators of

the variance parameters. We show that the same conclusion applies to the estimation of conditional

Expected Shortfall.

The second method is a new method to forecast one-period-ahead Value-at-Risk (VaR) in general

ARCH(∞) models with possibly heavy-tailed errors. The proposed method is based on least square

estimation for the log-transformed model. This method imposes weak moment conditions on the

errors. Consequently, it has better prediction performance than commonly used QMLE-based

VaR methods in the presence of non-normal errors. In addition, we characterize the asymptotic

distribution of the proposed VaR forecast, and this distribution accounts for the uncertainty in

volatility estimation.

ARCH/GARCH process is the most popular way to estimate volatility and many surveys have

been done regarding to this topic. Bera and Higgins (1993) have a paper introducing properties,
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estimation and testing of the ARCH process, Bauwens, Laurent and Rombouts (2006) talk about

multivariate GARCH models, Bollerslev (2009) provides an encyclopedic reference and Terasvirta

(2009) summarises univariate GARCH models. However, no one has focused on semi and nonpara-

metric approach of estimating ARCH/GARCH process. Chapter 2 of the thesis fills the needs by

surveying the semi- and nonparametric approaches of ARCH/GARCH estimation. Chapter 3 and

4 propose two different classes of semiparametric approaches of VaR prediction.

Chapter 2 has been published in Journal of Probability and Statistic, Volume 2011, Article ID

906212.
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Chapter 2

Semi- and nonparametric

(G)ARCH Process

2.1 Introduction

The key properties of financial time series appear to be: (a) Marginal distributions have heavy tails

and thin centres (Leptokurtosis); (b) the scale or spread appears to change over time; (c) Return

series appear to be almost uncorrelated over time but to be dependent through higher moments.

See Mandelbrot (1963) and Fama (1965) for some early discussions. The traditional linear models

like the autoregressive moving average class do not capture all these phenomena well. This is the

motivation for using nonlinear models. This chapter is about the nonparametric approach.

2.2 The GARCH Model

Stochastic volatility models are of considerable current interest in empirical finance following the

seminal work of Engle (1982). Perhaps still the most popular version is Bollerslev’s (1986) GARCH(1,1)

model in which the conditional variance σ2
t of a martingale difference sequence yt is

σ2
t = ω + βσ2

t−1 + γy2
t−1, (2.1)

where the ARCH(1) process corresponds to β = 0. This model has been extensively studied and

generalized in various ways, see the review of Bollerslev, Engle, and Nelson (1994). Following

Drost and Nijman (1993), we can give three interpretations to (2.1). The strong form GARCH(1,1)
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process arises when
yt
σt

= εt (2.2)

is i.i.d. with mean zero and variance one, where σ2
t is defined in (2.1). The most common special

case is where εt are also standard normal. The semi-strong form arises when for εt in (2.2)

E(εt |Ft−1 ) = 0 and E(ε2
t − 1 |Ft−1 ) = 0, (2.3)

where Ft−1 is the sigma field generated by the entire past history of the y process. Finally, there

is a weak form in which σ2
t is defined as a projection on a certain subspace, so that the actual

conditional variance may not coincide with (2.1). The properties of the strong GARCH process are

well understood, and under restrictions on the parameters θ = (ω, β, γ) it can be shown to be strictly

positive with probability one, to be weakly and/or strictly stationary, and to be geometrically mixing

and ergodic. The weaknesses of the model are by now well documented, see Tsay (2007) for example.

2.3 The Univariate Model

There are several different ways in which nonparametric components have been introduced into

stochastic volatility models. This work was designed to overcome some of the restrictiveness of the

parametric assumptions in Gaussian strong GARCH models.

2.3.1 Error Density

Estimation of the strong GARCH process usually proceeds by specifying that the error density

εt is standard normal and then maximizing the (conditional on initial values) Gaussian likelihood

function. It has been shown that the resulting estimators are consistent and asymptotically normal

under a variety of conditions. Quansi-Maximum Likelihood Estimation (QMLE) method proposed

in Weiss (1986) and Bollerslev and Wooldridge (1988) shows that the estimators of the parameters

obtained by maximizing a likelihood function constructed under the normality assumption can

still be consistent even if the true density is not normal. In many cases, there is evidence that

the standardized residuals from estimated GARCH models are not normally distributed, especially

for high frequency financial time series. Engle and Gonzalez-Rivera (1991) initiated the study of

semiparametric models in which εt is i.i.d. with some density f that may be non-normal, thus
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suppose that

yt = εtσt

σ2
t = ω + βσ2

t−1 + γy2
t−1,

where εt is i.i.d. with density f of unknown functional form. There is evidence that the density of the

standardized residuals εt = yt/σt is non-Gaussian. One can obtain more effi cient estimates of the

parameters of interest by estimating f nonparametrically. Linton (1993) and Drost and Klaassen

(1997) developed kernel based estimates and establish the semiparametric effi ciency bounds for

estimation of the parameters. In some cases, e.g., if f is symmetric about zero, it is possible to

adaptively estimate some parameters, i.e., one can achieve the same asymptotic effi ciency as if one

knew the error density. In other cases, or for some parameters, it is not possible to adapt, i.e., it is

not possible to estimate as effi ciently as if f were known. These semiparametric models can readily

be applied to deliver value at risk and conditional value at risk measures based on the estimated

density.

2.3.2 Functional form of Volatility Function

Another line of work has been to question the specific functional form of the volatility function, since

estimation is not robust with respect to its specification. The news impact curve is the relationship

between σ2
t and yt−1 = y holding past values σ2

t−1 constant at some level σ
2. This is an important

relationship that describes how new information affects volatility. For the GARCH process, the

news impact curve is

m(y, σ2) = ω + γy2 + βσ2. (2.4)

It is separable in σ2, i.e., ∂m(y, σ2)/∂σ2 does not depend on y, it is an even function of news y,

i.e., m(y, σ2) = m(−y, σ2), and it is a quadratic function of y with minimum at zero. The evenness

property implies that cov(y2
t , yt−j) = 0 for εt with distribution symmetric about zero.

Because of limited liability, we might expect that negative and positive shocks have different

effects on the volatility of stock returns, for example. The evenness of the GARCH process news

impact curve rules out such ‘leverage effects’. Nelson (1991) introduced the Exponential GARCH

model to address this issue. Let ht = log σ2
t and let ht = ω + γ [θεt−1 + δ |εt−1|] + βht−1, where

εt = yt/σt is i.i.d. with mean zero and variance one. This allows asymmetric effect of past

shocks εt−j on current volatility, i.e., the news impact curve is allowed to be asymmetric. For
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example, cov(y2
t , yt−j) 6= 0 even when εt is symmetric about zero. An alternative approach to

allowing asymmetric news impact curve is the Glosten, Jeganathan and Runkle (1994) model σ2
t =

ω + βσ2
t−1 + γy2

t−1 + δy2
t−11(yt−1 < 0).

There are many different parametric approaches to modelling the news impact curve and they

can give quite different answers in the range of perhaps most interest to practitioners. This motivates

a nonparametric approach, because of the greater flexibility in functional form thereby allowed. The

nonparametric ARCH literature apparently begins with Pagan and Schwert (1990) and Pagan and

Hong (1991). They consider the case where σ2
t = σ2(yt−1), where σ(·) is a smooth but unknown

function, and the multilag version σ2
t = σ2(yt−1, yt−2, . . . , yt−d). This allows for a general shape to

the news impact curve and nests all the parametric ARCH processes. Under some general conditions

on σ(·) (for example that σ(·) does not grow at a more than quadratic rate in the tails) the process y

is geometrically strong mixing. Härdle and Tsybakov (1997) applied local linear fit to estimate the

volatility function together with the mean function and derived their joint asymptotic properties.

The multivariate extension is given in Härdle, Tsybakov and Yang (1996). Masry and Tjøstheim

(1995) also estimate nonparametric ARCH models using the Nadaraya-Watson kernel estimator. Lu

and Linton (2006) extended the CLT to processes that are only near epoch dependent. Fan and Yao

(1998) have discussed effi ciency issues in this model, see also Avramidis (2002). Franke, Neumann,

and Stockis (2004) have considered the application of bootstrap for improved inference. In practice,

it is necessary to include many lagged variables in σ2(.) to match the dependence found in financial

data. The problem with this is that nonparametric estimation of a multi-dimension regression

surface suffers from the well-known “curse of dimensionality”: the optimal rate of convergence

decreases with dimensionality d, see Stone (1980). In addition, it is hard to describe, interpret and

understand the estimated regression surface when the dimension is more than two. Furthermore,

even for large d this model greatly restricts the dynamics for the variance process since it effectively

corresponds to an ARCH(d) model, which is known in the parametric case not to capture the

dynamics well. In particular, if the conditional variance is highly persistent, the non-parametric

estimator of the conditional variance will provide a poor approximation, as reported in Perron

(1998). So not only does this model not capture adequately the time series properties of many

datasets, but the statistical properties of the estimators can be poor, and the resulting estimators

hard to interpret.

Additive models offer a flexible but parsimonious alternative to nonparametric models, and have
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been used in many contexts, see Hastie and Tibshirani (1990). Suppose that

σ2
t = cv +

d∑
j=1

σ2
j (yt−j) (2.5)

for some unknown functions σ2
j . The functions σ

2
j are allowed to be of general functional form

but only depend on yt−j . This class of processes nests many parametric ARCH models. Again,

under growth conditions the process y can be shown to be stationary and geometrically mixing.

The functions σ2
j can be estimated by special kernel regression techniques, such as the method

of marginal integration, see Linton and Nielsen (1995) and Tjøstheim and Auestad (1994). The

best achievable rate of convergence for estimates of σ2
j (.) is that of one-dimensional nonparametric

regression, see Stone (1985). Masry and Tjøstheim (1995) developed estimators for a class of time

series models including (2.5). Yang, Härdle, and Nielsen (1999) proposed an alternative nonlinear

ARCH model in which the conditional mean is again additive, but the volatility is multiplicative

σ2
t = cv

∏d
j=1 σ

2
j (yt−j). Kim and Linton (2004) generalized this model to allow for arbitrary [but

known] transformations, i.e., G(σ2
t ) = cv+

∑d
j=1 σ

2
j (yt−j), where G(.) is a known function like log or

level. The typical empirical findings are that the news impact curves have an inverted asymmetric

U-shape.

These models address the curse of dimensionality but they are rather restrictive with respect to

the amount of information allowed to affect volatility, and in particular do not nest the GARCH(1,1)

process. Linton and Mammen (2005) proposed the following model

σ2
t (θ,m) =

∞∑
j=1

ψj(θ)m(yt−j), (2.6)

where θ ∈ Θ ⊂ Rp and m is an unknown but smooth function. The coeffi cients ψj(θ) satisfy at

least ψj(θ) ≥ 0 and
∑∞
j=1 ψj(θ) < ∞ for all θ ∈ Θ. A special case of this model is the Engle and

Ng (1993) PNP model where

σ2
t = βσ2

t−1 +m(yt−j),

where m(.) is a smooth but unknown function. This model nests the simple GARCH(1,1) model

but permits more general functional form: it allows for an asymmetric leverage effect, and as much

dynamics as GARCH(1,1). Estimation methods for these models are based on iterative smoothing.

Linton and Mammen (2005) showed that the news impact curves for daily and weekly S&P500 data

are quite asymmetric with non-quadratic tails and is not minimal at zero but at some positive return.

Below we show their estimator, denoted PNP here, in comparison with a common parametric fit,
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denoted AGARCH.

Figure 1: News impact curve (PNP v.s. AGARCH)

Yang (2006) introduced a semiparametric index model

σ2
t = g

 ∞∑
j=1

νj(yt−j ; θ)

 ,

where νj(y; θ) are known functions for each j satisfying some decay condition and g is smooth but

unknown. This process nests the GARCH(1,1) when g is the identity, but also the quadratic model

considered in Robinson (1991).

Audrino and Bühlmann (2001) proposed their model as σ2
t = Λ(yt−1, σ

2
t−1) for some smooth but

unknown function Λ(.), and includes the PNP model as a special case. They proposed an estimation

algorithm. However, they did not establish the distribution theory of their estimator, and this may

be very diffi cult to establish due to the generality of the model.

2.3.3 Relationship between Mean and Variance

The above discussion has centered on the evolution of volatility itself, whereas one is often very

interested in the mean as well. One might expect that risk and return should be related, Merton

(1973). The GARCH-in-Mean process captures this idea, it is

yt = g(σ2
t ; b) + εtσt,
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for various functional forms of g e.g., linear and log-linear and for some given specification of σ2
t .

Engle, Lilien and Robbins (1987) introduced this model and applied it to the study of the term

Structure. Here, b are parameters to be estimated along with the parameters of the error variance.

Some authors find small but significant effects. Again, the nonparametric approach is well motivated

here on grounds of flexibility. Pagan and Hong (1991) and Pagan and Ullah (1988) considered a

case where the conditional variance is nonparametric (with a finite number of lags) but enters in

the mean equation linearly or log linearly. Linton and Perron (2002) studied the case where g is

nonparametric but σ2
t is parametric, for example GARCH. The estimation algorithm was applied to

stock index return data. Their estimated g function was non-monotonic for daily S&P500 returns.

2.3.4 Long Memory

Another line of work has argued that conventional models involve a dependence structure that does

not fit the data well enough. The GARCH(1,1) process σ2
t = ω + βσ2

t−1 + γy2
t−1 is of the form

σ2
t = c0 +

∞∑
j=1

cjy
2
t−j (2.7)

for constants cj satisfying cj = γβj−1, provided the process is weakly stationary, which requires

γ + β < 1. These coeffi cients decay very rapidly so the actual amount of memory is quite limited.

There is some empirical evidence on the autocorrelation function of y2
t for high frequency returns

data that suggests a slower decay rate than would be implied by these coeffi cients, see Bollerslev

and Mikkelson (1996). Long memory models essentially are of the form (2.7) but with slower decay

rates. For example, suppose that cj = j−θ for some θ > 0. The coeffi cients satisfy
∑∞
j=1 c

2
j < ∞

provided θ > 1/2. Fractional integration (FIGARCH) leads to such an expansion. There is a single

parameter called d that determines the memory properties of the series, and

(1− L)dσ2
t = ω + γσ2

t−1(ε2
t−1 − 1),

where (1 − L)d denotes the fractional differencing operator. When d = 1 we have the standard

IGARCH model. For d 6= 1 we can define the binomial expansion of (1 − L)−d in the form given

above. See Robinson (1991) and Bollerslev and Mikkelson (1996) for models. The evidence for long

memory is often based on sample autocovariances of y2
t , and this may be questionable when only

few moments of yt exist, see Mikosch and Stărică (2002). See Giraitis (2007) for a nice review.
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2.3.5 Locally Stationary Processes

Recently, another criticism of GARCH processes has come to the fore, namely their usual assumption

of stationarity. The IGARCH process (where β + γ = 1) is one type of nonstationary GARCH

model but it has certain undesirable features like the non-existence of the variance. An alternative

approach is to model the coeffi cients of a GARCH process as changing over time, thus

σ2
t = ω(xtT ) + β(xtT )σ2

t−1 + γ(xtT )(yt−1 − µt−1)2,

where ω, β, and γ are smooth but otherwise unknown functions of a variable xtT .When xtT = t/T,

this class of processes is nonstationary but can be viewed as locally stationary along the lines of

Dahlhaus (1997), provided the memory is weak, i.e., β(·) + γ(·) < 1. In this way the unconditional

variance exists, i.e., E[σ2
t ] < ∞, but can change slowly over time as can the memory. Dahlhaus

and Subba Rao (2006) have recently provided a comprehensive theory of such processes and about

inference methods for the ARCH special case. See Spokoiny (2007) for a further review.

Engle and Rangel (2008) propose a special case of this model where the unconditional variance

σ2(t/T ) = ω(t/T )/(1−β(t/T )−γ(t/T )) varies over time but the coeffi cients β(t/T ) and γ(t/T ) are

assumed to be constant. In this way, we can write yt = σ(t/T )g
1/2
t εt, where gt is a unit GARCH(1,1)

process representing "high frequency" volatility, while σ2(t/T ) is the low-frequency unconditional

volatility modelled nonparametrically. Engle and Rangel (2008) also allow for covariates in the low

frequency component of volatility.

2.3.6 Continuous Time

Recently there has been much work on nonparametric estimation of continuous time processes, see

for example Bosq (1998). Given a complete record of transaction or quote prices, it is natural

to model prices in continuous time (e.g., Engle (2000)). This matches with the vast continuous

time financial economic arbitrage-free theory based on a frictionless market. Under the standard

assumptions that the return process does not allow for arbitrage and has a finite instantaneous

mean, the asset price process, as well as smooth transformations thereof, belong to the class of

special semi-martingales, as detailed by Back (1991). Under some conditions, the semiparametric

GARCH processes we reviewed can approximate such continuous time processes as the sampling

interval increases. Work on continuous time is reviewed elsewhere in this volume, so here we just

point out that this methodology can be viewed as nonparametric and as a competitor of the discrete

time models we outlined above.
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2.4 The Multivariate Case

It is important to extend the volatility models to the multivariate framework, as understanding

the comovements of different financial returns is also of great interest. The specification of an

MGARCH model should be flexible enough to represent the dynamics structure of the conditional

variances and covariance matrix and parsimonious enough to deal with the rapid expansion of the

parameters when the dimension increases. Semiparametric and nonparametric methods offer an

alternative way to the parametric estimation by taking the advantage of not imposing a particular

structure on the data. In general we have a vector time series yt ∈ Rn, that satisfies

yt = Σ
1/2
t εt, (2.8)

where εt is a vector of martingale difference sequences satisfying E[εt|Ft−1] = 0 and E[εtε
>
t −

In|Ft−1] = 0, while Σt is a symmetric positive definite matrix. In this case, Σt is the conditional

covariance matrix of yt given its own history. The usual approach here is to specify a parametric

model for Σt and perhaps also the marginal density of εt. There are many parametric models for

Σt, and we just mention two recent developments that are particularly useful for large dimensional

systems. First, the so-called CCC (constant conditional correlation) (Bollerslev (1990)) models

where

Σt = DtRDt,

where Dt is a diagonal matrix with elements σit, where σ2
it follows a univariate parametric GARCH

or other specification, while R is an n by n correlation matrix. The second model generalizes this to

allow R to vary with time albeit in a restricted parametric way, and is thereby called DCC (dynamic

conditional correlation)(Engle (2002)).

2.4.1 Error Density

Hafner and Rombouts (2007) consider a number of semiparametric models where the functional form

of the conditional covariance matrix is parametrically specified while the innovation distribution is

unspecified i.e., εt is i.i.d with density function f : Rn → R, where f is of unknown functional form.

In the most general case, they treat the multivariate extension of the semiparametric model of Engle

and Gonzalez-Rivera (1991). They show that it is not generally possible to adapt, although one

can achieve a semiparametric effi ciency bound for the identified parameters. The semiparametric

estimators are more effi cient than the QMLE if the innovation distribution is non-normal. These
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methods can often deliver effi ciency gains but may not be robust to say dependent or time varying

εt. In practice, the estimated density is quite heavy tailed but close to symmetric for stock returns.

It is also worth mentioning the SNP (SemiNonParametric) method, which was first introduced by

Gallant and Tauchen (1989). The fundamental part of the estimating procedure of the conditional

density of a stationary multivariate time series relies on the Hermite series expansion, associating

with a model selection strategy to determine the appropriate degree of the expansion. The estimator

is consistent under some reasonable regularity conditions.

One major issue with the unrestricted semiparametric model is the curse of dimensionality: as n

increases the best possible rate at which the error density can be estimated gets worse and worse. In

practice, allowing for four or more variables in an unrestricted way is impractical with even enormous

sample sizes. This motivates restricted versions of the general model that embody a compromise

between flexibility of functional form and reasonable small sample properties of estimation methods.

The first class of models is the family of spherically symmetric densities in which

f(x) = g(x>x),

where g : R → R is an unknown but scalar function. This construction avoids the "curse of

dimensionality" problem, and can in principle be applied to very high dimensional systems. This

class of distributions is important in finance, since the CAPM is consistent with returns being jointly

elliptically symmetric (i.e., spherically symmetric after location and scale transformation), Ingersoll

(1984). Hafner and Rombouts (2007) develop estimation methods for parametrically specified Σt

under this assumption.

Another approach is based on copula functions. By Sklar’s theorem, any multivariate distrib-

ution can be modelled by the marginal distribution of each individual series and the dependence

structure between individual series which is captured by copula functions. A copula itself is a mul-

tivariate distribution function with uniform marginals. The joint distribution function of random

variables X and Y defined as FX,Y (x, y) = C(F (x), G(y)). A bivariate distribution function whose

marginals are F (·) and G(·), and C(·) : [0.1]2 → R is the copula function measures the dependency.

Chen and Fan (2006a) proposed a new class of semiparametric copula-based multivariate dy-

namic models, the so-called SCOMDY models, in which case the conditional mean and the con-

ditional variance of a multivariate time series are specified parametrically, while the multivariate

distribution of the standardized innovation are specified semiparametrically as a parametric copula

evaluated at nonparametric marginals. The advantage of this method is a very flexible innovation

18



distribution by estimating the univariate marginal distributions nonparametrically and fitting a

parametric copula and its circumvention of the "curse of dimensionality". An important class of

the SCOMDY models is the semiparametric copula-based multivariate GARCH models, which has

the following set up:

yi,t = σi,tεi,t

σ2
i,t = ωi +

pi∑
j=1

γi,jy
2
i,t−j +

qi∑
j=1

βi,jσ
2
i,t−j ,

where εt = (ε1,t, . . . , εn,t)
> is a sequence of i.i.d. random vectors with zero mean and unit variance.

In this case, the conditional covariance matrix of returns is in the class of the CCC models. The

key feature of the SCOMDY is the semiparametric form taken by the joint distribution function Fε

of εt:

Fε(ε1, . . . ,εn) = C(Fε,1(ε1), . . . , Fε,n(εn); θ0), (2.9)

where C(·) is a parametrized copula function depended on unknown θ ∈ Θ ⊂ Rm, and for i =

1, . . . , n, Fε,i(·) is the marginal distribution function of the innovation which is assumed to be

continuous but otherwise unspecified. Many examples of combinations have been introduced in

the paper, such as { GARCH(1,1),Normal copula} and { GARCH(1,1), Student’s-t copula}. They

also construct simple estimators of the parameters. They establish the large sample properties

of the estimator under a misspecified parametric copula, showing that both of the estimators of

unknown dynamic parameters and the marginal distribution are still consistent while the estimator

of the copula dependence parameter will converge in this case. Chen and Fan (2006b) modelled a

univariate version of this class of semiparametric models, but their two-step estimators are verified

to be ineffi cient and even biased if the time series has strong tail dependence in the simulation study

of Chen, Wu and Yi (2009). The new paper considers the effi cient estimation by using a sieve MLE

method which is first introduced by Chen, Fan and Tsyrennikov (2006).

Embrechts, McNeil and Strumann (2002) was the most influential paper of the early study of

copulas in finance and since then, numerous copula-based models are being introduced and used in

financial applications. The copula-GARCH models of Patton (2006a, 2006b) proposed to make the

parameter of the copula time varying in a dynamic fashion. Jondeau and Rockinger (2006) modelled

daily return series with univariate time-varying skewed Student-t distribution and a Gaussian or
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Student-t copula for the dependence. Panchenko (2006) also considered a semiparametric copula-

based model applied to risk management. Rodriguez (2007) and Okimoto (2007) proposed the

regime-switching copula models for pairs of international stock indices. A recent paper by Chollette,

Heinei and Valdesogo (2008) estimated the multivariate regime switching model of copula as an

extension of the Pelletier (2006) model to non-Gaussian case.

2.4.2 Conditional Covariance Matrix

Hafner, van Dijk and Franses (2005) proposed a semiparametric approach for the conditional co-

variance matrix which allows the conditional variance to be modelled parametrically by using any

choice of univariate GARCH-type models, while the conditional correlation are estimated by non-

parametric methods. The conditional covariance matrix Σt is defined as follows:

Σt = DtRtDt (2.10)

where Dt is parametrically modelled by any choice of univariate GARCH specification, and Rt is

treated nonparametrically as an unknown function of a state variable xt, thus Rt = R(xt) for some

unknown matrix function R(.). The function R(.) is estimated using kernel methods based ont he

rescaled residuals from the initial univariate parametric fits of the GARCH models.

Recently, Hafner and Linton (2009) introduced a multivariate multiplicative volatility model

which can be regarded as the multivariate version of the spline-GARCH model of Engle and Rangel

(2008). A vector time series yt takes the form:

yt = H(t/T )1/2G
1/2
t εt (2.11)

where εt is (at least) a strictly stationary unit conditional variance martingale difference sequence.

The model allows the slowly varying unconditional variance matrix H(·) to be unknown along with

the short run dynamics captured through G(·), which is itself a unit variance multivariate GARCH

process, for example the BEKK model

Gt = I −AA> −BB> +AGt−1A
> +But−1u

>
t−1B

>,

where A,B are parameter matrices and ut = G
1/2
t εt.

Feng (2007) proposes an alternative specification call the local dynamic conditional correla-

tion (LDCC) model, where the total covariance matrix is decomposed into a conditional and an
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unconditional components. The total covariance matrix takes the form:

Σt = DL
t D

C
t RtD

C
t D

L
t ,

where DL
t = diag(σLit), D

C
t = diag(σCit) and Rt = ρijt, (i, j = 1, . . . , n, )and (σLit)

2 are the local

variances, (σCit)
2 are the conditional variances and ρijt denote the dynamic correlations. Specifically,

σLit = σLi (t/T ), while σ2C
it follows a parametric unit GARCH type process. As in parametric DCC

models one first proceeds by estimating the univariate models and then using standardized residuals

to estimate the model for Rt.

2.5 Conclusion

In conclusion, there have been many advances in the application of nonparametric methods to

the study of volatility, and many diffi cult problems have been overcome. These methods have

offered new insights into functional form, dependence, tail thickness, and nonstationarity that

are fundamental to the behaviour of asset returns. They can be used by themselves to estimate

quantities of interest like value at risk. They can also be used as a specification device enabling the

practitioner to see with respect to which features of the data their parametric model is a good fit.
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Chapter 3

Effi cient Estimation of Conditional

Risk Measures in a

Semiparametric GARCH Model

3.1 Introduction

Many popular time series models specify some parametric or nonparametric structure for the con-

ditional mean and variance. Often, these models are completed by a sequence of i.i.d errors εt.1 For

example, many models can be written in the form of T (yt, yt−1, . . . ; θ) = εt, where the parametric

model T (·; θ) is used to remove the temporal dependence structure in yt so that the error εt is i.i.d

with certain distribution F (·). Parameters θ and F (·) together define the model. Often one assumes

moment conditions on εt such as it being mean zero and variance one. These moment constraints

are often used to identify and estimate the mean and variance parameters θ but are however often

discarded when estimating the error distribution or quantile. Knowledge of the conditional distrib-

ution is very important in finance since all financial instruments are more or less pricing or hedging

certain sections of the distribution of underlying assets. For example, mean-variance trade-off in

portfolio management is concerned with the first and second moments; exotic derivatives are traded

for transferring downside risks, which are lower portions of the asset’s distribution. Other prac-

tical usage of conditional distribution estimation includes the risk-neutral density estimation and

Value-at-Risk (VaR) estimation.

1There are some notable exceptions to this including Engle and Manganelli (2004).
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In this chapter, we consider how best to utilize this conditional information to estimate the

distribution F (·), and further the quantiles of εt, so that one can construct an effi cient estimator

for the conditional distribution and hence quantiles of yt+1 given Ft = {yt, yt−1, . . . , y0}. Besides

proposing a VaR estimator, we also introduce Expected Shortfall (ES)

Recently, it has been argued that Value at Risk is not a coherent measure of risk, specifically it

can violate the subadditivity axiom of Artzner et al. (1999). Instead the expected shortfall (ES)

is an alternative risk measure that does satisfy all of their axioms. ES is defined as the expected

return on the portfolio in the worst 100α% of the cases. ES incorporates more information than

VaR because ES gives the average loss in the tail below 100α%. The estimation of unconditional ES

has been considered in Scaillet (2004) and Chen (2008). The recent Basel Committee on Banking

Supervision round III has suggested using expected shortfall in place of value at risk, so this measure

is likely to gain in prominence in the future.

We consider the following popular AR(p)-GARCH(1,1) model

yt =

p∑
j=1

ρjyt−j + h
1/2
t εt (3.1)

ht = ω + βht−1 + γu2
t−1,

where ut = h
1/2
t εt, and {εt} is an i.i.d sequence of innovations with mean zero and variance one and

p is a finite and known integer. We suppose that εt has a density function f(·), which is unknown

apart from the two moment conditions:

∫
xf(x)dx = 0;

∫
x2f(x)dx = 1. (3.2)

These moment conditions are standard in parametric settings and identify ht as the conditional

variance of yt given Ft−1. Furthermore, the error density and all the parameters are jointly identified

in the semiparametric model. In this case, the conditional Value-at-Risk of yt given Ft−1 and the

conditional expected shortfall of yt given Ft−1 are respectively,

ξt(α) =

p∑
j=1

ρjyt−j + h
1/2
t qα

χt(α) = E[yt|yt ≤ ξt(α),Ft−1]

=

p∑
j=1

ρjyt−j + h
1/2
t E[εt|εt ≤ qα]
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=

p∑
j=1

ρjyt−j + h
1/2
t ESα,

where qα is the α-quantile of εt, while ESα = E[εt|εt ≤ qα] is the α-expected shortfall of εt. In the

sequel we assume that p = 0 for simplicity of notation. This is quite a common simplification in

the literature; the main thrust of our results carry over to the more general p case.

Let θ = (ω, β, γ). The goal of this paper is to estimate the parameters (θ, qα, ESα) effi ciently

and plug in these effi cient estimators to obtain the conditional quantile ξ̂n,t = h
1/2
t (θ̂)q̂α and the

conditional expected shortfall χ̂t(α) = h
1/2
t (θ̂)ÊSα.

Since this model involves both finite dimensional parameters θ and infinite dimensional parame-

ter f(·), we call it a semiparametric model. This chapter constructs an effi cient estimator for both

θ and the α′th quantile of f(·), qα, for model (3.1) under moment constraints (3.2). Consequently,

the conditional quantile estimator and conditional expected shortfall estimator are effi cient.

Estimation of GARCH parameters has a long history. However, there are only limited papers

discussing the effi ciency issues involved in estimating semiparametric GARCH models. The first

attempt is due to Engel and Gonzalez-Rivera (1991), who showed partial success in achieving effi -

ciency via Monte Carlo simulations. In their theoretical work, Linton (1993) and Drost and Klaassen

(1997) explained that full adaptive estimation of θ is not possible and showed their effi cient estima-

tors for β via a reparamerization. Ling and McAleer (2003) further considers adaptive estimation

in nonstationary ARMA-GARCH models.

We complement previous work on GARCH models by providing an effi cient estimator for F (·)

and thus the quantile of εt. It is well known that, in the absence of any auxilliary information about

F (·), the empirical distribution function F̂ (x) = n−1
∑n
t=1 1(εt ≤ x) is semiparametrically effi cient.

However, F̂ (x) is no longer effi cient when moment constraints (3.2) are available, see Bickel et al.

(1993). The empirical likelihood (EL) weighted empirical distribution estimator is effi cient with the

existence of auxiliary information in the form of moments restrictions (3.2). The EL method was

initiated by Owen (1990) and extended by Kitamura (1997) to time series. In i.i.d settings, Chen

(1996) discovered second order improvement by empirical likelihood weighted kernel density esti-

mation under moment restrictions. Zhao (1996) showed that there are variance gains by empirical

likelihood weighted M-estimation when moment restrictions are available. Schick and Wefelmeyer

(2002) provide an effi cient estimator for the error distribution in nonlinear autoregressive models.

However, the proposed estimator has the shortcoming that it is not a distribution itself. Müller et

al. (2005) showed that the EL-weighted empirical distribution estimator is effi cient in an autore-

gressive model. In this paper, we use EL weighted distribution estimator to construct estimates
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of VaR and ES in GARCH models. We show that, the resulting quantile and ES estimators for ε

are effi cient. Furthermore, the conditional VaR ξt(α) and ES estimators χt(α) are asymptotically

mixed-normal.

Various quantile estimators have been proposed recently, see Koenker, and Xiao (2009) and

Chen, Koenker, and Xiao (2009). For fully nonparametric estimators, see Chen and Tang (2005) and

Cai and Wang (2008). However, nonparametric estimators are subject to the curse of dimensionality

and thus not widely applicable in practice. Furthermore, these nonparametric quantile estimators

are too flexible to capture the stylized fact that financial returns are conditionally heteroskedastic.

Given that this time-varying volatility is the key feature of financial time series, historical simulation

method would be more advantageous than nonparametric methods in VaR forecasting. In our

semiparametric model, the quantile estimator preserves the property of time-varying volatility and

allows other aspect of conditional distribution unspecified. Model information is fully explored

in the estimation so we gain by providing an effi cient solution to conditional quantile estimation.

Furthermore, the parametric filter (the GARCH model for volatility) bundle the conditioning set

into a one-dimensional volatility so that there is no curse of dimensionality.

To the best of our knowledge, the only paper to address effi cient conditional quantile estimation

is Komunjer and Vuong (2010). However, their model is different from ours: they consider effi cient

conditional quantile estimation without moment constraints (3.2). Ai and Chen (2003) provide a

very general framework for estimation and effi ciency in semiparametric time series models defined

through moment restrictions. No doubt some of our results can be replicated by their methodology

using the sieve method.

We apply our method to simulated data and daily stock return data. We find superior perfor-

mance of our forecasting method over some standard alternatives.

We will discuss effi cient estimation of θ in section 2 and effi cient estimation of qα in section 3.

Once we collect effi cient estimators for these parameters, we can construct the conditional quantile

estimator ξt(α) and ES estimator χt(α) and discuss their asymptotic distribution in section 4. We

present our simulation results and empirical applications in section 5. Section 6 concludes with

further extensions.

3.2 Effi cient estimation of θ

Effi cient estimation for semiparametric GARCH models was initially addressed by Engel and

Gonzalez-Rivera (1991). Their Monte Carlo evidence showed that their estimation of GARCH pa-
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rameters cannot fully capture the potential effi ciency gain. Linton (1993) considered the ARCH(p)

special case of (3.1) with no mean effect and assumed only that the errors were distributed sym-

metrically about zero. In that case, the error density is not jointly identified along with all the

parameters, although the identified subvector is adaptively estimable. Drost and Klaassen (1997)

consider a general case that allowed for different identification conditions. They showed that a

subvector of the parameters can be adaptively estimated while a remaining parameter cannot be.

We rewrite the volatility model to reflect this. Specifically, now let ht = c2 + ac2y2
t−1 + bht−1.

The finite dimensional parameter in this model θ = (c, a, b)> ∈ Θ ⊂ R3 is to be partitioned into two

parts: (c, β>) where β = (a, b)> ∈ B for the reason that only β is adaptively estimable, see Linton

(1993) and Drost and Klaassen (1997). As a result, we can rewrite the volatility as ht(θ) = c2gt(a, b),

where gt(β) = 1 + au2
t−1 + bgt−1(β).

In the sequel we will use the following notations frequently: moment conditions R1(ε) = 1(ε ≤

qα) − α, R2(ε) =
(
ε, ε2 − 1

)>
; the Fisher scale score R3(ε) = 1 + ε f

′(ε)
f(ε) of the error density f ;

derivatives Gt(β) = ∂ log gt(β)/∂β, G(β) = E[Gt(β)], Ht(θ) = ∂ log ht(θ)/∂θ, H(θ) = E[Ht(θ)],

G2(β) = E

[
∂ log gt(β)

∂β

∂ log gt(β)

∂β>

]
; H2(θ) = E

[
∂ log ht(θ)

∂θ

∂ log ht(θ)

∂θ>

]
.

When the argument is evaluated at the true value, we use abbreviation: for example, G = G(β0)

and Ht = Ht(θ0).

The log-likelihood of observations {y1, . . . , yn} (given h0) assuming that f is known is

L(θ) =

n∑
t=1

log f(c−1g
−1/2
t (β)yt) + log c−1g

−1/2
t (β).

Then the score function in the parametric model at time t as

lt(θ) = −1

2

(
1 + εt(θ)

f ′(εt(θ))

f(εt(θ))

)
∂ log ht(θ)

∂θ
.

We now consider the semiparametric model where f is unknown. To see why the parameter θ is

not adaptively estimable, we consider the density function f(x; η) with a shape parameter η ∈ Υ.

It is clear from E[∂lt(θ; η)/∂η] 6= 0 that the estimation of η affects the effi ciency of the estimates

of θ. If we knew the density function f(·) and are interested in estimating β in presence of the

nuisance parameter c, the effi cient score function for β is the vector

l∗1t(β) = −1

2
{Gt(β)−G(β)}R3(εt), (3.3)
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according to the Convolution Theorem 2.2 in Drost and Klaassen (1997). The density function f(·)

is unknown. Drost and Klaassen (1997) showed that introduction of unknown f(·) in presence of

unknown c does not change the effi cient influence function for β.

We make the following assumptions:

Assumptions A

A1. c > 0, a ≥ 0 and b ≥ 0. E[ln{b+ ac2ε2
t}] < 0.

A2. The density function f satisfies the moment restrictions:
∫
xf(x)dx = 0 and

∫
x2f(x)dx = 1;

it has finite fourth moment
∫
x4f(x)dx <∞, and Eε4 − 1− (Eε3)2 6= 0.

A3. The density function f is positive and f ′ is absolutely continuous with

||f ||∞ = sup
x∈R

f(x) <∞, sup
x∈R
|x|f(x) <∞,

∫
|x|f(x)dx <∞.

A4. The density function f has positive and finite Fisher information for scale

0 <

∫
(1 + xf ′(x)/f(x))2f(x)dx <∞.

A5. The density function f for the initial value h01 satisfies that, the likelihood ratio for h01,

ln(h01) = log{fθ̃n/fθn(h01)
Pn→ 0, as n→∞

where the contiguous parameter sequences θ̃n and θn are defined as in Drost and Klaassen

(1997, p199).

Remark. Assumption A.1 ensures the positivity of ht and the strict stationarity of yt. Since

E[ln{b+ac2ε2
t}] ≤ b+ac2− 1, a suffi cient condition for strict stationarity is b+ac2 < 1, see Nelson

(1990). A.2 is introduced to make sure that the variance matrix E[R2(ε)R2(ε)>] is invertible A.3 is

made because we will need some boundedness of f to make a uniform expansion for the empirical

distributions, see section 3. A.4 is typically assumed for effi ciency discussion, see for example,

Linton (1993) and Drost and Klaassen (1997). A.5 is assumed to obtain the uniform LAN theorem

and the Convolution Theorem, as in Drost and Klaassen (1997).

We will suppose that there exists an initial
√
T -consistent estimator of all the parameters, for

example the QMLE. The large sample property of GARCH parameters has been studied in different

context. For example, Lee and Hansen (1994) and Berkes et. al. (2003) for detailed consistency
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discussion of Gaussian QMLE, and Weiss (1986) for OLS. Jensen and Rahbek (2004) considered

the asymptotic theory of QMLE for nonstationary GARCH models. We have the following result

which extends Drost and Klaassen (1997) and Drost, Klaassen, and Werker (1997).

Theorem 1 Suppose that assumptions A hold. Then there exists an effi cient estimator θ̂ that has

the following expansion
√
n(θ̂ − θ0) =

1√
n

n∑
t=1

ψt(θ0) + op(1), (3.4)

ψt(θ0) =

 − 1
2E[l∗1tl

∗>
1t ]−1{Gt −G} 0

c0
4 G
>E[l∗1tl

∗
1t
>]−1{Gt −G} c0

2 (−Eε3, 1)


 R3(εt)

R2(εt)

 .

Consequently,
√
n(θ̂ − θ0) =⇒ N(0,Ωθ),

Ωθ =

 E[l∗1tl
∗>
1t ]−1 − c02 E[l∗1tl

∗>
1t ]−1G

− c02 G
>E[l∗1tl

∗>
1t ]−1 c20

4 {Eε
4 − 1− (Eε3)2 +G>E[l∗1tl

∗>
1t ]−1G}

 .

For technical reasons, the estimator employed in the theorem makes use of sample splitting,

discretization, and trimming in order to facilitate the proof. In practice, none of these devices may

be desirable.

We have found the following estimator scheme works well in practice. Suppose that k(·) is a

symmetric, second-order kernel function with
∫
k(x)dx = 1 and

∫
xk(x)dx = 0, and let h and b be

positive bandwidths that (in the theory will satisfy h→ 0, nh4 →∞, b→ 0, nb4 →∞).

Estimation Algorithm

1. Let θ̂1 = (β̂
>
1 , ĉ1)> be an initial

√
T -consistent estimator, for example the QMLE, and compute

the residuals ε̂1t = yt/h
1/2
t (θ̂1).

2. Update the estimator of β by using the Newton—Raphson method:

β̂ = β̂1 +

[
1

n

∑n

t=1
l̂∗1t(β̂1)l̂∗1t(β̂1)>

]−1
1

n

∑n

t=1
l̂∗1t(β̂1)

l̂∗1t(β̂1) = −1

2

[
Gt(β̂1)− 1

n

∑n

s=1
Gs(β̂1)

]
R̂3(ε̂1t), R̂3(x) = 1 + xf̂ ′(x)/f̂(x)

f̂(x) =
1

nh

∑n

t=1
k

(
ε̂1t − x
h

)
; f̂ ′(x) = − 1

nb2

∑n

t=1
k′
(
ε̂1t − x
b

)
.

28



3. Denote êt = ytg
−1/2
t (β̂) and the effi cient estimator for c is

ĉ =

√
1

n

∑n

t=1
ê2
t −

1

n

∑n
t=1 ê

3
t∑n

t=1 ê
2
t

∑n

t=1
êt.

This procedure can be repeated until some convergence criterion is met, although for most

theoretical purposes, one iteration is suffi cient.

Remark. It can be shown that the simpler estimator c̃ =
√

1
n

∑n
t=1 ê

2
t has an asymptotic

variance c20{Eε4 − 1 + G>E[l∗1tl
∗>
1t ]−1G}/4, which is strictly larger than our effi cient estimator ĉ

unless the error distribution is symmetric, i.e. Eε3 = 0.

3.3 Effi cient estimation of qα and ESα

We now turn to the estimation of the quantities of interest. To motivate our theory, we first discuss

the estimation of qα with the availability of true errors, and then discuss what to do in the case of

estimation errors.

3.3.1 Quantile estimation with true errors available

In this subsection we estimate the quantile by inverting various distribution estimators. Because

the unknown error distribution satisfies condition (3.2), it is desirable to construct distribution

estimators that have this property.

The empirical distribution function F̂ (x) = n−1
∑n
t=1 1(εt ≤ x) is commonly used but it does not

impose these moment constraints. In practice, a common approach is to recenter the errors. There-

fore, we also consider a modified empirical distribution, F̂N (x) = n−1
∑n
t=1 1((εt − µ̂ε)/σ̂ε ≤ x),

where µ̂ε = n−1
∑n
t=1 εt and σ̂

2
ε = n−1

∑n
t=1 ε

2
t − (n−1

∑n
t=1 εt)

2. By construction, this distribution

estimator satisfies the moment constraints (3.2). It is easy to see that the relationship between

F̂ (x) and F̂N (x) is F̂N (x) = F̂ (µ̂ε + xσ̂ε).

In this paper, we consider a new weighted empirical distribution estimator F̂w(x) =
∑n
t=1 ŵt1(εt ≤

x), where the empirical likelihood weights {ŵt} come from the following:

max
{wt}

Πn
t=1wt

s.t.
∑n

t=1
wt = 1;

∑n

t=1
wtεt = 0;

∑n

t=1
wt(ε

2
t − 1) = 0.

By construction, F̂w satisfies the moment restrictions.
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In the absence of the moment constraints, it is easy to see that arg max{wt}{Πn
t=1wt + λ(1 −∑n

t=1 wt)} = 1/n. In this case our weighted empirical distribution estimator is the same as F̂ (x).

Since the unknown distribution is in the family P = {f(x) :
∫
xf(x)dx = 0,

∫
(x2 − 1)f(x)dx =

0}, we expect F̂w(x) to be more effi cient by incorporating these moment constraints, Bickel,

Klaassen, Ritov, and Wellner (1993). Lemma 1 (appendix) which shows the uniform expansion

for the distribution estimators F̂ (x), F̂N (x) and F̂w confirms our conjecture. It is well-known that
√
n(F̂ (x) − F (x)) =⇒ N(0, F (x)(1 − F (x))). The empirical distribution is the most effi cient es-

timator without any auxiliary information about F (·). This is consistent with our result because

wt = 1/n is the solution to the problem of max{wt}{Πn
t=1wt + λ(1−

∑n
t=1 wt)}.

We obtain an asymptotic expansion for F̂N (x) and F̂w(x) in the appendix (Lemma 1) and show

that:

√
n(F̂N (x)− F (x)) =⇒ N(0, F (x)(1− F (x)) + Cx)

√
n(F̂w(x)− F (x)) =⇒ N(0, F (x)(1− F (x))−A>xB−1Ax).

We can see that normalization has introduced some additional error; see Durbin (1973). This

estimation error has been cumulated and is reflected by the additional term Cx in the asymptotic

variance. The sign of Cx function is indeterminate, see the Figure 1 in the appendix. It depends

on the density f(x) and the point to be evaluated. For standard normal distribution and student

distributions, Cx ≤ 0, which means, for these two distributions, F̂N (x) is more effi cient than F̂ (x).

In contrast, for mixed normal distribution and Chi-squared distributions, the effi ciency ranking

depends on the point to be evaluated. On the other hand, weighting the empirical distribution

takes into account the information in (3.2), which is reflected in the term −A>xB−1Ax. This term

can be explained as the projection of 1(ε ≤ x) − F (x) onto R2(ε). The covariance Ax measures

the relevance of moment constraints (3.2) in estimating the distribution function. The information

content that helps in estimating unknown F (x) is weak when Ax is small. In case of Ax = 0, the

moment constraints (3.2) do not have any explanation power at all since 1(ε ≤ x)−F (x) and R2(ε)

is orthogonal. In the appendix we give conditions under which F̂N (x) and F̂ (x) can be as effi cient

as F̂w(x).

We now define our quantile and expected shortfall estimators. For an estimated c.d.f., F̃ , let

q̃α = sup{t : F̃ (t) ≤ α} = F̃−1(α) ; ẼSα =
1

α

∫ q̃α

−∞
xdF̃ (x). (3.5)
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θ̂1 = q̂α, θ̂2 = q̂Nα, θ̂3 = q̂wα, θ̂4 = ÊSα, θ̂5 = ÊSNα, and θ̂6 = ÊSwα be defined from (3.5) using

the F̂ (x), F̂N (x), and F̂w(x) as required. The next theorem presents the asymptotic distribution of

these quantile estimators. Define:

V1 =
α(1− α)

f(qα)2
; V2 =

α(1− α)

f(qα)2
+

Cqα
f(qα)2

; V3 =
α(1− α)

f(qα)2
−
A
>

qαB
−1Aqα

f(qα)2

V4 = α−2var((ε− qα)1(ε ≤ qα)) ; V5 = α−2var((ε− qα)1(ε ≤ qα)− αε− ε2

2

∫ qα

−∞
xf(x)dx))

V6 = α−2var((ε− qα)1(ε ≤ qα) +R>2 (ε)B−1

∫ qα

−∞
Axdx).

Theorem 2 Suppose that assumptions A.1-A.5 hold. The quantile and expected shortfall estima-

tors are asymptotically normal
√
n(θ̂j − θj) =⇒ N (0, Vj)

for j = 1, . . . , 6, where θ1 = θ2 = θ3 = qα and θ4 = θ5 = θ6 = ESα.

Remark. It is clear from the comparison of asymptotic variances that q̂wα, which is based on

inverting empirically weighted distribution estimators, is the most effi cient one. The same conclusion

holds for ES since ES is the aggregation of lower quantiles: ẼSα = 1
α

∫ q̃α
−∞ xdF̃ (x) = 1

α

∫ α
0
q̃αdα.

Remark. For improvement in mean squared effi ciency, one could consider inverting the smoothed

weighted empirical distribution F̂sw(x) =
∑n
t=1 ŵtK(x−εth ) with F̂s(x) = n−1

∑n
t=1K(x−εth ) being

a special case. However, the first order large sample properties will be the same as the unsmoothed

one here. The unsmoothed distribution estimators considered in this paper are free from the com-

plication of bandwidth choice.

3.3.2 Quantile estimation with estimated parameters

We now assume that we don’t know the true parameters θ, and so we don’t observe εt. Instead

we observe the polluted error, εt(θn) = yt/h
1/2
t (θn), where θn is an estimator sequence satisfying

θn − θ0 = Op(n
−1/2). Now we construct an effi cient estimator for residual distribution F (x) and

then invert to get back the quantile estimator qnα = F−1
n (α). We treat a general class of estimators

θn for completeness.

Motivated by the effi ciency gain shown in Lemma 1, we estimate the quantile by inverting the

following distribution function estimator:

̂̂
Fw(x) =

n∑
t=1

̂̂wt1(εt(θn) ≤ x), (3.6)
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where { ̂̂wt} are defined by the solution of the following optimization problem
max
{wt}

Πn
t=1wt

s.t.
∑n

t=1
wt = 1;

∑n

t=1
wtεt(θn) = 0;

∑n

t=1
wt(ε

2
t (θn)− 1) = 0.

For comparison purposes, we also consider the residual empirical distribution estimator ̂̂F (x) =

n−1
∑n
t=1 1(εt(θn) ≤ x) and the standardized empirical distribution ̂̂FN (x) = n−1

∑n
t=1 1((εt(θn)−̂̂µε)/̂̂σε ≤ x), where ̂̂µε = n−1

∑n
t=1 εt(θn) and ̂̂σ2

ε = n−1
∑n
t=1 ε

2
t (θn)− (n−1

∑n
t=1 εt(θn))2.

Suppose that there is an estimator θ̃ that has influence function χt(θ0), i.e.

√
n(θ̃ − θ0) =

1√
n

n∑
t=1

χt(θ0) + op(1). (3.7)

In the appendix (Lemma 2 and Corollary 3) we derive uniform expansion of the distribution esti-

mators ̂̂F (x),
̂̂
FN (x) and ̂̂Fw(x) based on θ̃ and give their asymptotic variances, which depend on

the influence function χt(θ0). We next explore these asymptotic variances for some widely used

estimators (with expansion 3.7). Suppose that

χt(θ0) = Jt(θ0)(ε2
t − 1), (3.8)

where Jt(θ0) ∈ Ft−1, so that χt(θ0) is a martingale difference sequence. Denote J(θ0) = E[Jt(θ0)].

Then the asymptotic variances of the three distribution estimators are respectively:

Ω1,J(x) = F (x)(1− F (x)) +
[E[ε4]− 1]x2f(x)2

4
{H(θ0)

>
J(θ0)}2 + xf(x)H(θ0)

>
J(θ0)a2(x)

Ω2,J(x) = F (x)(1− F (x)) +
[E[ε4]− 1]x2f(x)2

4
{H(θ0)

>
J(θ0)}2 + xf(x)H(θ0)

>
J(θ0)a2(x)

+f(x)2 +
x2f(x)2[E[ε4]− 1]

4
+ xf(x)2E[ε3] + xf(x)a2(x) + 2f(x)a1(x)

+xf(x)2E[ε3]H(θ0)
>
J(θ0) +

x2f(x)2[E[ε4]− 1]

2
H(θ0)

>
J(θ0)

Ω3,J(x) = F (x)(1− F (x))−A>xB−1Ax

+{E[ε4]− 1}
{
xf(x)

2
+

(
0 1

)
B−1Ax

}2

{H(θ0)
>
J(θ0)}2.

In the special case of the least squares estimator,

χt(θ0) = H1(θ0)−1ht(θ0)
∂ht(θ0)

∂θ
(ε2
t − 1),
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whereH1(θ0) = E[∂ht(θ0)
∂θ

∂ht(θ0)

∂θ
> ]. DenoteH3(θ0) = E[ht(θ0)∂ht(θ0)

∂θ ], then Jt(θ0) = H1(θ0)−1H3t(θ0).

In the special case of the Gaussian QMLE,

χt(θ0) = {H2(θ0)}−1 1

ht(θ0)

∂ht(θ0)

∂θ
(ε2
t − 1),

then Jt(θ0) = H2(θ0)−1Ht(θ0). In both cases the asymptotic variance is increased relative to Lemma

1. Since the QMLE residuals εt(θ̃) are obtained under the moment condition n−1
∑n
t=1[Ht(θ̃)(ε

2
t (θ̃)−

1)] = 0 with probability one, the first moment of ̂̂F (x) is
∫
xd
̂̂
F (x) = n−1

∑n
t=1(ε2

t (θ̃) − 1), which

may not be zero with probability one.

We construct quantile estimators by inverting these distribution estimators. Based on the as-

ymptotic expansion of the distribution estimators in the appendix (Lemma 2), we obtain the as-

ymptotic properties of the Value at Risk and Expected shortfall estimators, which is the main

result of the paper. Let ̂̂θ1 = ̂̂qα, ̂̂θ2 = ̂̂qNα, ̂̂θ3 = ̂̂qwα, ̂̂θ4 =
̂̂
ESα,

̂̂
θ5 =

̂̂
ESNα, and

̂̂
θ6 =

̂̂
ESwα

be defined from (3.5) using the estimated c.d.f.s ̂̂F (x),
̂̂
FN (x), and ̂̂Fw(x) as required (and define

correspondingly, θ1 = θ2 = θ3 = qα and θ4 = θ5 = θ6 = ESα.). Define the asymptotic covariance

matrices:

Ω1 = Ωα =
α(1− α)

f(qα)2
+
q2
α

4
[Eε4 − 1− (Eε3)2] +

qα(a2qα − a1qαEε
3)

f(qα)

Ω2 = ΩNα =
α(1− α)

f(qα)2
+

Cqα
f(qα)2

+
3q2
α[Eε4 − 1− (Eε3)2]

4
+
qα(a2qα − a1qαEε

3)

f(qα)

Ω3 = Ωwα =
α(1− α)

f(qα)2
−
A
>

qαB
−1Aqα

f(qα)2
+ [

qα
2

+

(
0 1

)
B−1Aqα

f(qα)
]2[Eε4 − 1− (Eε3)2]

Ω4 = ΩES = α−2var

(
(ε− qα)1(ε ≤ qα)− ε2 − εEε3

2

∫ qα

−∞
xf(x)dx

)
Ω5 = ΩESN = α−2var

(
(ε− qα)1(ε ≤ qα)− ε

∫ qα

−∞
[f(x)− xf(x)

2
Eε3]dx− ε2

∫ qα

−∞
xf(x)dx

)
Ω6 = ΩESW = α−2var

(
(ε− qα)1(ε ≤ qα)− (ε2 − εEε3)

∫ qα

−∞
[
xf(x)

2
+

(
0 1

)
B−1Ax]dx

+R>2 (ε)B−1

∫ qα

−∞
Axdx

)
.

Theorem 3 Suppose that assumptions A.1-A.5 hold. The quantile and expected shortfall estimators

are asymptotically normal:
√
n(
̂̂
θj − θj) =⇒ N(0,Ωj)

for j = 1, . . . , 6.

Remark. For the same reason as given in the discussion about the effi ciency of distribution
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estimators, we can see that ̂̂qwα is more effi cient than ̂̂qα. The same conclusion holds for ES.
Remark. Notice that the asymptotic variances of VaRs and ESs do not contain any functional

form of the heteroskedasticity. This is due to the orthogonality in information between estimators

for the distribution F (x) and variance estimator for β.

Remark. We can compute consistent standard errors by the obvious plug-in method.

3.4 Effi cient estimation of conditional VaR and conditional

expected shortfall

We have discussed the asymptotic property of effi cient estimators θ̂ and ̂̂qwα. They are shown to
be the best among competitors in terms of smallest asymptotic variances. Both are important

ingredients to the conditional quantile estimator ξ̂n,t as ξ̂n,t = h
1/2
t (θ̂)̂̂qwα and the conditional

expected shortfall χ̂n,t = h
1/2
t (θ̂)

̂̂
ESwα. In this section, we will show that these two quantities are

asymptotically mixed normal. Define:

ωξt = ht(θ0)

{
q2
α

4
(G
>

t −G)E[l∗1tl
∗
1t

>
]−1(Gt −G) + Ωwα

}
,

ωχt = ht(θ0)

{
ES2

α

4
H
>

t ΩθHt + ESα
(−Eε3, 1)E

[{
(εt − qα)1(εt ≤ qα) +R>2 (εt)C

}
R2(εt)

]
α

+ ΩESW

}

C =

∫ qα

−∞
[
xf(x)

2
+

(
0 1

)
B−1Ax]dx(Eε3,−1) +

∫ qα

−∞
A>x dxB

−1.

Theorem 4 Suppose assumptions A.1-A.5 hold. The conditional quantile estimator ξ̂n,t and con-

ditional quantile estimator χ̂n,t are asymptotically mixed normal

√
n(ξ̂n,t − ξt) =⇒ MN(0, ωξt)

√
n(χ̂n,t − χt) =⇒ MN(0, ωχt),

where the random positive scalars ωξt and ωχt are independent of the underlying normals.

Remark. From the influence functions of (â, b̂) and ̂̂qwα, we can see that they are asymptotically
orthogonal. This is anticipated as the parameter (a, b) is adaptively estimated with respect to the

error distribution.

Remark. This mixed normal distribution asymptotics is similar to results obtained in Barndorff-

Nielsen and Shephard (2002) for estimation of the quadratic variation of Brownian semimartingales,
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see also Hall and Heyde (1980). It follows that
√
n(ξ̂n,t − ξt)/ω

1/2
ξt =⇒ N(0, 1) and

√
n(ξ̂n,t −

ξt)/ω̂
1/2
ξt =⇒ N(0, 1), where ω̂ξt is a consistent estimator of ωξt. Therefore, one can conduct infer-

ence about ξn,t with the usual confidence intervals.

3.5 Numerical Work

In this section we present some numerical evidence. The first part is Monte-Carlo simulation and

the second is an empirical application.

3.5.1 Simulations

We follow Drost and Klaassen (1997) to simulate several GARCH (1,1) series from the model (1)

with the following parameterizations:

1. (c, a, b) ∈ {(1, 0.3, 0.6), (1, 0.1, 0.8), (1, 0.05, 0.9)};

2. f(x) ∈ {N(0, 1),MN(2,−2), L, t(5), t(7), t(9), χ2
6, χ

2
12}, which are, respectively, referred to the

densities of standardized (mean 0 and variance 1) distributions from Normal, Mixed Normal

with means (2,−2), Laplace, student distributions with degree of freedom 5, 7 and 9 and

chi-squared distribution with 6 and 12 degrees of freedom.

Sample size is set to n = 500, 1000. Simulations are carried out 2500 times. We consider the

performance of the three distribution estimators and their associated quantile and ES estimators

with α being 5% and 1%. We also have the simulation results for small samples n = 25, 50, 100,

and for IGARCH models with a + b = 1. These results are similar to those in this paper and are

available upon request.

The criterion for distribution estimator F̂ (x) is the integrated mean squared error (IMSE)

IMSE =

∫
E[F̂ (x)− F (x)]2dx

and that for quantile and ES estimators (q̂α and ÊSα) is the mean squared error

MSE = E[(q̂α − qα)2];MSE = E[(ÊSα − ESα)2].

First, we consider the case where the true errors are available. The IMSEs of three distribution

function estimators are summarized in Table 1. It is clear form this table that the weighted empirical

distribution estimator F̂w(x) performs the best in all cases. The relative effi ciency of F̂w(x) to the
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unweighted empirical distribution F̂ (x) is very large: it ranged from 50% in case of errors being

Laplacian to 72% in the case of Mixed-normal. Figure 2 visualizes this gain by plotting the overlays

of simulated distribution estimators with 100 replications. The colored region represents the possible

paths of function estimators and it is clear that the magenta area (realizations of F̂w(x)) is has the

smaller width than blue area (realizations of F̂ (x)). In order to compare the quantile estimators

based on inverting these distribution estimators, we compute their average biases and mean squared

errors under different distributional assumptions and in 500 and 1000 sample sizes. The average is

taken over 2500 simulations. It is found that q̂wα performs much better than q̂α in all cases. This

improvement is clearer in the case of α = 0.05 than the case of α = 0.01. This is because the further

to the tail ( when a is smaller), the smaller the covariance between R2(ε) and 1(ε ≤ x)− α.

Next, we compare the distribution estimators when the errors are not observable and we use

estimated errors from QMLE. Since QMLE is consistent in all above error distribution assumptions,

we expect the QMLE residuals will behave close to the true errors, although with some estimation

noises. Table 4-6 list the IMSE for distribution estimators under three different parameterizations.

We find that, there are effi ciency gains by weighting the empirical distribution estimator with

empirical likelihoods. Figure 3 visualizes these gains, which vary across the assumptions of true

error distributions. Table 7-12 compare the performance of residual quantile estimators. The

conclusion is the same: empirical likelihood weighting reduces the variation of quantile estimators.

However, these reductions are not of the same magnitude as in i.i.d case. The reason is because we

use estimated errors in stead of true errors and the added estimation noise affect the performance

of residual based estimators.

Thirdly, we compare different estimators for expected shortfall in the case of iid errors and

GARCH residuals. As seen from table 15-18, the same conclusion holds for ES. For sample size

n=500 and 1000, the proposed estimator does not do very well in the case of a = 0.01, see table

18. This is expected because our effi cient estimator (EL-weighted) involves an additional layer of

numerical optimization, and for such low quantile/ES, the effective sample size is n/100. Therefore

we tabulate the results for large sample n = 10000,which is the table 19(c). It’s clear from table that

our proposed VaR and ES estimators outperform other estimators in terms of smaller MSE.(The

comparison of the estimators for q̂0.01 and ÊS0.01,when the true errors are available and ̂̂q0.01 and̂̂
ES0.01, when the polluted errors are calculated are provided in table 19(a) and 19(b)).

Finally, we consider the case of distribution and quantile estimation based on effi cient residuals:

the estimated errors are residuals from effi cient estimation of parameter θ0. As we notice that the

performance of these estimators does not change much under different parameterization of θ0, we
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only report the results in the case of c = 1, a = 0.05, b = 0.9. Table 13 summarizes the performance

of quantile estimators for q0.01 and q0.05, while table 14 reports the true VaR and ES for distribution

estimators and Figure 4 visualize the effi ciency gains.

Table 1. Integrated Mean Squared Error (×10−3) of Distribution Function Estimators

n = 500 n = 1000

F̂ (x) F̂N (x) F̂w(x) F̂ (x) F̂N (x) F̂w(x)

N 0.3365 0.1199 0.1212 0.1616 0.0580 0.0583

MN 0.3286 0.1412 0.0916 0.1622 0.0687 0.0462

L 0.3313 0.2188 0.1603 0.1692 0.1092 0.0810

t(5) 0.3419 0.2157 0.1635 0.1657 0.1055 0.0797

t(7) 0.3255 0.1594 0.1458 0.1695 0.0791 0.0708

t(9) 0.3336 0.1439 0.1361 0.1664 0.0730 0.0687

χ2
6 0.3308 0.1479 0.1217 0.1692 0.0721 0.0605

χ2
12 0.3297 0.1335 0.1213 0.1692 0.0654 0.0595

Table 2. Comparison of quantile estimators for q0.01 (true errors are available)

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)

q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα

N -2.1 -0.8 3.7 27.1 19.4 22.2 -0.7 -1.1 0.6 14.1 9.9 11.1

MN -1.8 -2.5 -0.5 6.3 5.8 5.6 -1.3 -0.9 -0.4 3.3 3.1 2.9

L -3.7 3.3 17.9 94.3 60.9 68.6 11.9 9.4 11.8 47.8 31.6 31.9

t(5) 25.1 25.3 40.7 102.5 67.5 72.8 8.4 11.4 22.2 50.4 34.1 35.1

t(7) 8.4 10.5 21.1 65.4 45.3 50.9 -1.7 0.1 4.9 34.9 23.1 23.6

t(9) 10.5 9.3 15.4 56.1 36.7 41.8 11.4 8.1 8.9 30.9 20.0 21.3

χ2
6 -3.4 0.4 -1.7 1.7 3.7 1.7 -1.0 0.5 -0.4 0.9 1.8 0.8

χ2
12 -4.6 -3.5 -3.1 4.9 6.0 4.8 -2.8 -0.9 -1.7 2.5 3.1 2.3
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Table 3. Comparison of quantile estimators for q0.05 (true errors are available)

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)

q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα

N -3.6 -1.6 -1.0 8.9 4.2 4.4 -1.2 -0.6 0.1 4.5 2.0 2.0

MN -1.4 0.0 -0.1 2.4 2.0 1.4 -0.8 -1.1 0.0 1.3 1.0 0.7

L 0.8 4.6 7.9 18.2 8.8 8.8 2.6 2.7 4.6 9.4 4.9 4.6

t(5) 0.7 5.0 12.1 13.6 9.0 8.1 -1.4 2.7 4.9 6.9 4.8 3.9

t(7) -2.2 1.3 5.3 12.2 6.3 6.7 0.6 2.9 3.5 6.3 3.3 3.2

t(9) -2.6 0.2 1.9 11.7 6.0 6.0 3.5 2.1 3.1 5.8 2.9 2.8

χ2
6 -1.4 1.3 0.4 1.5 2.1 1.1 -2.3 0.2 -1.0 0.7 1.1 0.6

χ2
12 -1.7 -0.7 1.1 2.8 2.4 1.9 -2.0 -1.2 -0.8 1.4 1.3 1.0
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Table 4. Integrated Mean Squared Error (×10−3), c = 1, a = 0.3, b = 0.6.

n = 500 n = 1000̂̂
F (x)

̂̂
FN (x)

̂̂
Fw(x)

̂̂
F (x)

̂̂
FN (x)

̂̂
Fw(x)

N 0.3018 0.1196 0.1193 0.1498 0.0595 0.0595

MN 0.2954 0.1445 0.0940 0.1508 0.0726 0.0468

L 0.3249 0.2188 0.1699 0.1653 0.1089 0.0848

t(5) 0.3551 0.2069 0.1859 0.1751 0.1031 0.0951

t(7) 0.3211 0.1550 0.1490 0.1631 0.0794 0.0762

t(9) 0.3176 0.1428 0.1389 0.1599 0.0717 0.0703

χ2
6 0.3999 0.1434 0.1548 0.2080 0.0739 0.0808

χ2
12 0.3415 0.1302 0.1333 0.1745 0.0664 0.0678

Table 5. Integrated Mean Squared Error (×10−3), c = 1, a = 0.1, b = 0.8.

n = 500 n = 1000̂̂
F (x)

̂̂
FN (x)

̂̂
Fw(x)

̂̂
F (x)

̂̂
FN (x)

̂̂
Fw(x)

N 0.3023 0.1195 0.1193 0.1499 0.0594 0.0595

MN 0.2960 0.1442 0.0937 0.1511 0.0726 0.0468

L 0.3250 0.2185 0.1700 0.1655 0.1088 0.0848

t(5) 0.3591 0.2067 0.1891 0.1763 0.1029 0.0962

t(7) 0.3222 0.1550 0.1495 0.1635 0.0792 0.0764

t(9) 0.3187 0.1428 0.1396 0.1600 0.0715 0.0702

χ2
6 0.4014 0.1430 0.1547 0.2076 0.0738 0.0807

χ2
12 0.3422 0.1301 0.1335 0.1740 0.0663 0.0672

Table 6. Integrated Mean Squared Error (×10−3), c = 1, a = 0.05, b = 0.9.
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n = 500 n = 1000̂̂
F (x)

̂̂
FN (x)

̂̂
Fw(x)

̂̂
F (x)

̂̂
FN (x)

̂̂
Fw(x)

N 0.3026 0.1193 0.1191 0.1500 0.0594 0.0595

MN 0.2964 0.1440 0.0937 0.1511 0.0727 0.0468

L 0.3255 0.2182 0.1700 0.1656 0.1088 0.0848

t(5) 0.3607 0.2069 0.1902 0.1769 0.1034 0.0968

t(7) 0.3232 0.1557 0.1502 0.1636 0.0791 0.0763

t(9) 0.3187 0.1428 0.1393 0.1602 0.0715 0.0702

χ2
6 0.4021 0.1425 0.1548 0.2079 0.0737 0.0808

χ2
12 0.3432 0.1299 0.1336 0.1741 0.0663 0.0673
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Table 7. Comparison of quantile estimators for q0.01, with c = 1, a = 0.05, b = 0.9

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N -2.6 -5.1 -3.5 21.2 18.6 20.6 -2.5 -4.9 -4.3 10.8 9.6 10.0

MN -2.3 -3.9 -3.8 5.9 6.1 5.8 -0.8 -2.9 -1.8 3.0 3.2 3.0

L 0.8 -3.7 -1.8 61.2 54.0 58.1 3.3 1.2 1.1 35.1 31.0 29.8

t(5) 28.4 23.5 22.5 73.8 65.5 66.8 9.2 9.0 12.1 36.9 33.1 32.5

t(7) 5.5 1.3 1.2 48.9 43.1 45.7 1.4 0.3 -0.3 25.7 22.6 22.2

t(9) 1.0 -0.4 1.8 39.8 34.8 38.9 1.2 -1.2 -1.2 20.2 18.0 18.9

χ2
6 27.3 21.4 25.8 7.0 4.5 5.9 13.5 10.5 13.3 3.4 2.1 2.8

χ2
12 13.9 10.0 13.4 8.7 6.5 7.4 8.5 5.5 7.8 4.1 3.1 3.4
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Table 8. Comparison of quantile estimators for q0.01, with c = 1, a = 0.3, b = 0.6

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N -2.3 -4.3 -2.4 21.5 18.9 20.7 -1.6 -4.0 -3.8 11.0 9.9 10.3

MN -2.4 -3.6 -3.7 5.8 6.1 5.7 -0.2 -2.2 -1.4 3.0 3.3 2.9

L 1.1 -3.1 -0.9 60.7 53.5 57.3 1.7 -0.2 0.4 34.8 30.5 29.7

t(5) 33.7 28.6 28.3 70.5 62.8 67.4 9.0 8.2 11.9 36.3 32.7 32.1

t(7) 4.5 0.8 -0.1 48.2 42.4 44.4 1.8 1.0 1.5 26.0 23.0 23.2

t(9) 2.1 1.5 3.2 40.0 35.1 38.8 0.6 -1.3 -1.9 20.4 18.2 18.8

χ2
6 31.6 25.7 29.8 7.6 5.0 6.3 14.6 11.9 14.1 3.4 2.2 2.8

χ2
12 16.2 12.6 15.8 8.7 6.6 7.5 9.8 7.2 9.1 4.2 3.2 3.5

Table 9. Comparison of quantile estimators for q0.01, with c = 1, a = 0.1, b = 0.8

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N -3.1 -5.5 -3.6 21.4 18.9 20.5 -3.1 -4.0 -2.2 11.2 10.1 10.5

MN -2.5 -4.0 -3.9 5.8 6.0 5.7 -1.5 -3.2 -2.1 2.9 3.2 2.8

L -0.0 -3.8 -0.8 60.8 53.6 58.0 -0.9 -1.2 2.3 37.0 33.1 33.0

t(5) 29.7 25.7 22.1 71.7 64.0 67.4 9.2 9.1 14.0 37.0 33.3 34.4

t(7) 4.3 0.7 -0.1 48.4 42.7 45.4 4.7 3.6 4.9 26.4 23.5 23.3

t(9) 0.7 -0.1 2.3 39.9 35.0 38.4 3.3 1.1 1.2 20.3 18.2 18.7

χ2
6 29.7 23.7 28.5 7.3 4.7 6.1 16.6 13.0 15.5 3.3 2.1 2.7

χ2
12 15.3 11.6 14.8 8.7 6.6 7.6 8.7 5.8 8.0 4.4 3.2 3.6

Table 10. Comparison of quantile estimators for q0.05, with c = 1, a = 0.3, b = 0.6
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n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N 0.3 0.9 2.2 6.2 4.2 4.3 -0.7 -1.6 -0.6 3.0 2.1 2.1

MN 0.6 -1.6 0.1 1.8 2.1 1.5 -0.0 -1.0 -0.2 0.8 1.0 0.7

L 9.3 9.8 13.0 14.1 9.7 9.3 4.0 3.0 4.2 6.8 4.4 4.1

t(5) 19.5 15.9 18.4 12.3 8.6 8.4 8.2 7.1 9.0 6.1 4.5 4.4

t(7) 4.9 5.0 8.2 9.5 6.3 6.3 6.2 5.0 5.7 5.0 3.4 3.4

t(9) 5.5 4.6 6.6 8.4 5.7 5.8 4.5 3.1 4.1 4.6 3.1 3.0

χ2
6 11.7 8.4 10.8 4.4 2.1 2.7 6.7 3.9 5.7 2.2 1.1 1.4

χ2
12 7.0 2.4 5.5 4.7 2.4 2.7 4.1 2.2 3.6 2.3 1.3 1.4

Table 11. Comparison of quantile estimators for q0.05, with c = 1, a = 0.1, b = 0.8

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N 3.8 2.0 3.6 6.1 4.1 4.2 1.2 0.6 1.4 3.1 2.1 2.1

MN -0.0 -1.2 -0.7 1.8 2.1 1.5 -0.4 -1.9 -0.9 0.9 1.1 0.7

L 14.4 11.7 13.9 13.7 9.0 8.7 6.4 6.6 8.2 7.3 4.9 4.6

t(5) 18.9 16.3 18.5 12.1 8.7 8.6 8.8 9.1 10.5 6.6 4.9 4.8

t(7) 6.0 4.9 8.0 9.2 6.3 6.4 4.8 4.2 5.3 4.9 3.3 3.2

t(9) 5.1 4.0 5.7 8.6 5.7 5.8 6.6 4.9 5.4 4.2 2.9 3.0

χ2
6 11.9 7.5 10.8 4.5 2.3 2.8 7.9 4.4 6.6 2.2 1.0 1.3

χ2
12 8.3 5.8 7.6 4.7 2.5 2.9 4.9 2.2 3.9 2.3 1.3 1.4

Table 12. Comparison of quantile estimators for q0.05, with c = 1, a = 0.05, b = 0.9
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n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N 1.2 1.3 3.3 6.1 4.2 4.3 -0.3 -1.4 -0.3 3.0 2.1 2.1

MN 1.0 -1.6 -0.1 1.8 2.0 1.5 0.1 -1.0 -0.5 0.8 1.0 0.7

L 8.9 9.0 12.1 14.1 9.7 9.2 4.1 2.9 4.1 6.9 4.4 4.2

t(5) 16.1 13.2 15.4 12.8 8.8 8.9 8.0 7.0 8.8 6.3 4.6 4.5

t(7) 4.2 3.8 7.1 9.4 6.2 6.2 5.7 4.2 5.5 5.1 3.4 3.4

t(9) 4.5 3.2 5.5 8.5 5.6 5.7 5.1 3.5 4.7 4.6 3.1 3.1

χ2
6 11.2 7.8 10.1 4.5 2.1 2.7 6.0 3.2 5.1 2.2 1.1 1.4

χ2
12 6.7 1.8 4.9 4.8 2.4 2.8 3.7 1.7 3.2 2.4 1.3 1.4

Table 13. Comparison of quantile estimators, with c = 1, a = 0.05, b = 0.9, n = 1000, s = 500

q0.01 q0.05

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα
N -2.5 -4.9 -4.3 10.8 9.6 10.0 -0.3 -1.4 -0.3 3.0 2.1 2.1

MN -0.8 -2.9 -1.8 3.0 3.2 3.0 0.1 -1.0 -0.5 0.8 1.0 0.7

L 3.3 1.2 1.1 35.1 31.0 29.8 4.1 2.9 4.1 6.9 4.4 4.2

t(5) 9.2 9.0 12.1 36.9 33.1 32.5 8.0 7.0 8.8 6.3 4.6 4.5

t(7) 1.4 0.3 -0.3 25.7 22.6 22.2 5.7 4.2 5.5 5.1 3.4 3.4

t(9) 1.2 -1.2 -1.2 20.2 18.0 18.9 5.1 3.5 4.7 4.6 3.1 3.1

χ2
6 13.5 10.5 13.3 3.4 2.1 2.8 6.0 3.2 5.1 2.2 1.1 1.4

χ2
12 8.5 5.5 7.8 4.1 3.1 3.4 3.7 1.7 3.2 2.4 1.3 1.4
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Table 14. True VaRs and Expected Shortfalls for standardized distributions

q0.01 q0.05 ES0.01 ES0.05

N -2.3263 -1.6449 -2.6655 -2.0626

MN -1.8129 -1.4676 -1.977 -1.679

L -2.7662 -1.6282 -3.4734 -2.3352

t(5) -2.6065 -1.5608 -3.4487 -2.2388

t(7) -2.5337 -1.6012 -3.1863 -2.193

t(9) -2.4883 -1.6167 -3.0524 -2.1643

χ2
6 -1.4803 -1.2600 -1.5475 -1.3932

χ2
12 -1.7207 -1.3827 -1.8472 -1.5880

Table 15. Comparison of estimators for ES0.05 (true errors are available)

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)

ÊS ÊSN ÊSw ÊS ÊSN ÊSw ÊS ÊSN ÊSw ÊS ÊSN ÊSw

N 9.7 8.4 4.2 12.3 5.9 6.5 4.4 3.5 1.6 5.9 2.8 3.0

MN 5.1 3.6 2.3 3.0 2.8 2.4 1.7 2.3 1.2 1.5 1.4 1.1

L 17.6 13.9 8.4 38.3 14.3 12.7 6.3 5.6 3.1 20.1 7.8 6.5

t(5) 12.7 8.2 -0.0 45.7 17.3 15.6 3.3 3.1 -3.9 21.8 9.3 7.6

t(7) 9.0 8.9 3.8 29.5 12.5 12.3 5.5 5.0 1.9 14.4 6.0 5.8

t(9) 9.7 5.9 1.4 23.3 10.2 10.4 5.9 5.4 3.4 11.9 5.2 4.9

χ2
6 3.6 2.3 2.7 1.1 2.6 1.1 1.2 -0.3 0.6 0.5 1.3 0.5

χ2
12 5.3 3.7 3.4 2.8 3.0 2.3 2.3 1.6 1.3 1.3 1.5 1.1

Table 16. Comparison of estimators for ES0.01 (true errors are available)
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n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)

ÊS ÊSN ÊSw ÊS ÊSN ÊSw ÊS ÊSN ÊSw ÊS ÊSN ÊSw

N 29.4 29.4 22.4 40.7 32.0 55.7 19.7 19.0 18.7 19.9 15.8 21.4

MN 13.6 14.8 10.3 9.7 9.0 20.2 9.0 9.2 8.8 4.8 4.8 7.2

L 65.3 67.7 64.0 195.3 129.8 166.4 27.2 25.4 18.6 97.8 64.6 70.4

t(5) 69.6 69.1 70.2 331.8 213.1 209.7 20.8 23.6 22.7 180.3 114.6 102.6

t(7) 59.4 59.3 55.2 179.4 123.0 147.3 18.6 22.3 25.4 94.8 64.6 65.5

t(9) 43.0 45.4 44.5 132.8 94.8 119.3 29.5 30.3 27.2 62.6 45.5 51.6

χ2
6 8.9 4.0 7.5 1.4 4.0 9.5 4.6 2.6 5.1 0.7 2.0 2.5

χ2
12 14.6 13.6 15.1 5.6 7.1 15.5 7.1 5.4 6.4 2.7 3.5 4.9

Table 17. Comparison of estimators for ES0.05, with c = 1, a = 0.05, b = 0.9

n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

N 10.1 13.6 11.8 8.3 6.3 6.5 3.3 4.4 3.5 3.9 2.9 3.0

MN 4.0 5.2 5.2 2.3 2.7 2.3 1.4 2.7 1.9 1.1 1.4 1.1

L 8.3 11.6 8.3 20.8 14.5 12.6 5.6 6.5 3.8 10.9 7.7 6.5

t(5) 8.2 9.4 5.6 23.6 16.7 14.5 1.9 3.9 3.3 11.7 8.4 7.2

t(7) 11.2 12.8 8.9 16.8 12.0 11.5 5.7 8.0 7.5 8.2 5.9 5.5

t(9) 9.3 12.3 10.3 14.6 10.3 10.2 3.6 4.2 3.1 7.1 5.1 4.9

χ2
6 -18.9 -14.7 -18.0 5.0 2.7 3.9 -11.9 -9.7 -11.6 2.6 1.4 1.9

χ2
12 -12.2 -6.7 -10.3 5.7 3.3 4.1 -4.1 -2.4 -3.8 2.6 1.6 1.8

Table 18. Comparison of estimators for ES0.01, with c = 1, a = 0.05, b = 0.9
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n = 500 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

N 38.8 41.6 40.9 37.4 34.7 55.4 22.8 25.4 20.4 17.5 16.3 20.5

MN 19.0 20.7 16.8 9.3 9.5 19.7 9.8 11.9 11.7 4.7 4.9 7.2

L 102.6 107.8 101.2 134.9 127.5 144.2 48.7 51.3 49.5 69.0 64.0 67.9

t(5) 91.7 98.4 100.9 219.9 204.3 214.4 51.9 52.6 51.1 115.1 109.2 109.6

t(7) 82.6 87.5 86.4 130.3 122.5 141.9 39.1 40.7 42.5 67.8 63.0 64.5

t(9) 69.5 71.4 65.7 99.7 93.6 115.8 39.4 42.1 43.8 51.3 48.8 53.0

χ2
6 -39.6 -33.5 -38.9 9.3 6.5 15.6 -22.2 -19.1 -20.7 4.2 2.8 5.7

χ2
12 -12.4 -8.4 -13.6 10.2 8.0 19.3 -9.4 -6.3 -7.5 5.0 3.9 6.6

Table 19. Comparison of estimators for q0.01 and ES0.01. (a) when the true errors are available,

n = 1000

n = 1000 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)

q̂α q̂Nα q̂wα q̂α q̂Nα q̂wα ÊS ÊSN ÊSw ÊS ÊSN ÊSw

N -0.7 -1.1 0.6 14.1 9.9 11.1 19.7 19.0 18.7 19.9 15.8 21.4

MN -1.3 -0.9 -0.4 3.3 3.1 2.9 9.0 9.2 8.8 4.8 4.8 7.2

L 11.9 9.4 11.8 47.8 31.6 31.9 27.2 25.4 18.6 97.8 64.6 70.4

t(5) 8.4 11.4 22.2 50.4 34.1 35.1 20.8 23.6 22.7 180.3 114.6 102.6

t(7) -1.7 0.1 4.9 34.9 23.1 23.6 18.6 22.3 25.4 94.8 64.6 65.5

t(9) 11.4 8.1 8.9 30.9 20.0 21.3 29.5 30.3 27.2 62.6 45.5 51.6

χ2
6 -1.0 0.5 -0.4 0.9 1.8 0.8 4.6 2.6 5.1 0.7 2.0 2.5

χ2
12 -2.8 -0.9 -1.7 2.5 3.1 2.3 7.1 5.4 6.4 2.7 3.5 4.9

(b) with c = 1, a = 0.05, b = 0.9, n = 1000
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n = 1000 n = 1000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

N -2.5 -4.9 -4.3 10.8 9.6 10.0 22.8 25.4 20.4 17.5 16.3 20.5

MN -0.8 -2.9 -1.8 3.0 3.2 3.0 9.8 11.9 11.7 4.7 4.9 7.2

L 3.3 1.2 1.1 35.1 31.0 29.8 48.7 51.3 49.5 69.0 64.0 67.9

t(5) 9.2 9.0 12.1 36.9 33.1 32.5 51.9 52.6 51.1 115.1 109.2 109.6

t(7) 1.4 0.3 -0.3 25.7 22.6 22.2 39.1 40.7 42.5 67.8 63.0 64.5

t(9) 1.2 -1.2 -1.2 20.2 18.0 18.9 39.4 42.1 43.8 51.3 48.8 53.0

χ2
6 13.5 10.5 13.3 3.4 2.1 2.8 -22.2 -19.1 -20.7 4.2 2.8 5.7

χ2
12 8.5 5.5 7.8 4.1 3.1 3.4 -9.4 -6.3 -7.5 5.0 3.9 6.6

(c) with c = 1, a = 0.05, b = 0.9, n = 10000

n = 10000 n = 10000

Bias(×10−3) MSE(×10−3) Bias(×10−3) MSE(×10−3)̂̂qα ̂̂qNα ̂̂qwα ̂̂qα ̂̂qNα ̂̂qwα ̂̂
ES

̂̂
ESN

̂̂
ESw

̂̂
ES

̂̂
ESN

̂̂
ESw

N 0.9 0.6 0.8 1.1 1.0 1.0 1.6 1.7 1.4 1.8 1.7 1.7

MN 0.3 0.1 0.2 0.3 0.3 0.3 0.5 0.6 0.4 0.4 0.5 0.4

L 0.0 0.2 0.8 3.8 3.4 3.2 3.6 4.2 4.6 7.2 6.8 6.6

t(5) 1.0 1.3 2.2 4.0 3.5 3.3 4.8 5.0 5.3 12.3 11.7 10.9

t(7) -0.1 -0.2 0.5 2.7 2.5 2.4 4.3 4.4 3.8 7.1 6.7 6.6

t(9) -0.6 -0.4 -0.0 2.2 2.0 2.0 1.6 1.9 1.8 5.1 4.8 4.7

χ2
6 1.4 1.4 1.4 0.3 0.2 0.2 -2.6 -2.3 -2.6 0.3 0.2 0.3

χ2
12 0.5 0.1 0.3 0.4 0.3 0.3 -1.4 -1.2 -1.4 0.5 0.4 0.4

Figure 2 : Effi ciency comparison, "Empirical CDF" v.s. "Normalized CDF"
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Figure 3: Overlay of two estimates using iid errors,"Empirical CDF" v.s. "EL-weighted CDF"
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Figure 4: Overlay of two estimates using GARCH errors,"Empirical CDF" v.s. "EL-weighted

CDF"
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3.6 Empirical Work

Finally, we investigate whether our new proposed conditional VaR and ES method have good fore-

casting ability by comparing them with other conventional methods using both index and company

data.

VaR, summarizing in a single number all the risk of a portfolio, is the most widely used risk

measure in financial industry, even though it violates the subadditivity axiom of Artzner et. al.

(1999) when the tails are super fat and it can not capture the risk of extreme movements on the

tails. A number of alternative risk measures have been proposed to overcome the problem of lack

of subadditivity in the VaR and also provide more information about the tail shape. Expected

shortfall is one of the most popular alternative risk measures whose torch has recently been taken

up by the Basel Committee on Banking Supervision.

3.6.1 Descriptive Statistics

The four datasets that we use are S&P 500(01/01/2000−31/12/2012,CRSP), MSCIworld (01/01/1970−

29/01/2013, Datastream), MSCI Emerging Market (01/01/1988−29/01/2013, Datastream) and Mi-

crosoft Corporate (14/03/1986 − 31/12/2012, CRSP). Table 20 gives the descriptive statistics for

these four datasets, the Ljung-Box test for autocorrelation and the KS test for normality.

Table 20. data summary statistics
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S&P 500 MSCIworld MSCIEM MSFT

Mean 1.5961e-04 2.4420e-04 3.6224e-04 0.0011

Standard deviation 0.0135 0.0087 0.0117 0.0227

Min -0.0900 -0.1036 -0.0999 -0.3012

Max 0.1151 0.0910 0.1007 0.1957

Skewness 0.0364 -0.4591 -0.5726 -0.1171

Kurtosis 10.3762 14.1965 10.7623 13.1984

3.6.2 Backtesting VaR

Violation Ratio

The main purpose of the empirical study is to see how our model performs in forecasting risk. This

can be done by backtesting various VaR and ES methods. Backtesting evaluates VaR forecasts

by checking how a VaR forecast model perform over a certain period of time. The number of the

observations that are used to forecast the risk is called the estimation window, WE and the data

sample over which risk is forecast is called the testing window, WT . In our empirical study, we

choose 1000 observations as our estimation window. (Figure 9,10 and 11). We later use a technique

called violation ratio (VR) to judge the quality of the VaR forecasts. If the actual return on a

particular day exceeds the VaR forecast, we say that the VaR limit is being violated. The VR is

defined by the observed number of violations over the expected number of violations.

V R = (observed no of violation / expected no of violation)

If the VaR forecast of our model is accurate, the violation ratio is expected to be equal to 1.

A useful rule of thumb is that if the VR is between 0.8 and 1.2, the model is considered to be a

good forecast. If VR<0.8 means that the model underestimate risk while if VR>1.2 means that

the model overestimate risk.

Backtesting fundamental models

First of all, we investigate the backtest performance of five fundamental models, including EWMA,MA,

HS,GARCH(1,1), and our model GARCH-ELW with the significance level equals 0.95 and 0.99. The

common assumption of EWMA, MA and GARCH(1,1) is that the standardized residuals are nor-

mally distributed with mean 0 and variance 1. HS is a nonparametric method and the new model
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that we proposed, GARCH-ELW, relax the distribution assumption of the standardized residual.

Model 1 (MA): One of the simplest volatility forecast methods is the moving average (MA)

method, which puts equal weight on all the past observations. The conditional variance process is

ht+1 =
1

WE

WE∑
i=1

u2
t−i+1,

where WE is the length of the estimation window). Hence, the conditional Value-at-Risk of return

given Ft−1 is,

ξt+1(α) =

p∑
j=1

ρjyt+1−j + h
1/2
t+1zα,

where zα = Φ−1(α) is the standard normal quantile. The model is very simple but the equal

weighted assumption is not realistic as a model of volatility.

Model 2 (EWMA): The basic structure of the conditional variance process is a restricted

IGARCH(1,1)

ht+1 = (1− λ)u2
t + λht.

The conditional Value-at-Risk of return series given Ft−1 is

ξt+1(α) =

p∑
j=1

ρjyt+1−j + h
1/2
t+1zα.

An EWMA is similar to MA although the EWMA places relatively more weight on recent obser-

vations than on observation in the distant past. The attractiveness of the RiskMetrics model is

that there is no parameter to be estimated, λ is fixed at 0.94 for daily data and 0.97 for monthly

data and it’s easy to extend to multivariate setting. However, the disadvantage is also that the

parameters are not estimated and the model process collapses to zero eventually.

Model 3 (HS): Historical Simulation is a nonparametric method based on the assumption that

the history will happen again.

Model 4 (GARCH-N(1,1)): Fully parametric methods provide a natural method to compute

VaR. We take GARCH(1,1) for simplicity.

ht+1 = ω + βht + γu2
t
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ξt+1(α) =

p∑
j=1

ρjyt+1−j + h
1/2
t+1zα.

Model 5 (GARCH-ELW): Under the model specification, the conditional variance is mod-

elled by GARCH(1,1) and the conditional quantile is estimated by the empirical likelihood. The

conditional Value-at-Risk of return series given Ft−1 is,

ξt(α) =

p∑
j=1

ρjyt−j + h
1/2
t qα.

The probability of losses exceeding VaR, α, must be specified, with the most common probability

level being 1% and 5%. Test results are in Table 21 and 22, and backtest VaR plot are provided in

Figure 5 and 6 (for S&P 500 data only, others are provided upon request), with α equals 1% and

5% respectively. Overall, the models do much better when we choose 0.95 significant level, which

probably shows that most of the fundamental and simple models are inadequate in forecasting risk in

the extreme tail, such as in the 0.99 significant level case. However, our model is the best candidate

among all in the extreme case. Interestingly, the models represent better forecasting ability on the

individual stock data than on the index data. The worst performance of all the models happen

when using the S&P 500 data.

Table 21: backtesting VaR (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (α = 0.01)

α = 0.01 S&P 500 MSCI world MSCI EM MSFT

MA 2.8647 1.9821 2.0025 1.3546

EWMA 2.3358 1.7585 2.1108 1.3199

HS 1.8510 1.3519 1.1546 1.3025

GARCH-N(1,1) 2.1155 1.5247 1.6598 1.1289

GARCH-EL 1.4103 1.1079 0.7938 0.9726

Table 22: backtesting VaR (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (α = 0.05)

α = 0.05 S&P 500 MSCI world MSCI EM MSFT

MA 1.0489 0.9209 0.9706 0.7016

EWMA 1.2252 1.0632 1.1077 0.8163

HS 1.0930 1.0876 1.0319 1.0247

GARCH-N(1,1) 1.0930 0.9961 1.0211 0.7746

GARCH-ELW 1.0137 0.9473 0.8840 0.9691
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Figure 5: Backtesting VaR (fundamental model, α = 0.01)
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Figure 6: Backtest VaR (fundamental model, α = 0.05)
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Backtesting extended models

In the financial literature, it is often found that positive and negative shocks to returns have different

impact on conditional volatility. Several extensions of the GARCH model aim at accommodating

the asymmetry in the response. These include the GJR-GARCH model of Glosten, Jagannathan

54



and Runkle (1993), EGARCH model of Nelson (1991) and the asymmetric GARCH model of Engle

and Ng (1993), all documenting that large positive and negative unexpected shock lead to an

increase of the conditional volatility, although the negative innovation with the similar magnitude

lead to larger increase.

The GJR model is a GARCH variant that includes leverage terms for modeling asymmetric

volatility clustering. In the GJR formulation, large negative changes are more likely to be clustered

than positive changes.

Hence, we further examine if adding in asymmetric information both in the conditional variance

process and the standardized residual help to improve risk forecasting. The models that we use

in the analysis are GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-GJR-T and

GARCH-GJR-ELW. All the conditional models are GARCH(1,1) and GARCH (1,1)-GJR with

N, T and ELW representing normal, student-t and no specific distribution assumptions of the

innovations. The conditional variance process for GARCH(1,1)-GJR is,

ht+1 = ω + βht + γu2
t + ξI(ut < 0)u2

t

The leverage coeffi cients are applied to negative shocks which give the negative shock more

weight in the conditional variance process than a similar positive shock. Similarly, test results are

provided in Table 23 and 24, while Figure 7 and 8 are graphic plot of the backtesting performance.

We make some further comments on Tables 23 and 24. First of all, the results are similar

as when testing the fundamental models in that the models do better with α = 0.05. Secondly,

the semiparametric methods that we proposed (both the GARCH-ELW and GARCH-GJR-ELW)

seems to be the best models in both cases, although GARCH-N and GARCH-GJR-N are doing

well when we choose a smaller significant level. Furthermore, adding the asymmetric term in

the conditional variance does not have obvious impact on improving forecast. The performance

of GARCH-ELW and GARCH-GJR-ELW are quite similar. Finally, using the normal distributed

standardized residuals normally underestimate risk while the fat-tail student-t distribution generally

overestimate risk, especially in the case when α = 0.01, which is consistent with the conventional

literature.

Table 23: backtesting VaR (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-

GJR-T and GARCH-GJR-ELW) (α = 0.01)
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α = 0.01 S&P 500 MSCI world MSCI EM MSFT

GARCH-N 2.2036 1.5247 1.6598 1.1289

GARCH-T 0.7933 0.6607 0.6855 0.3473

GARCH-ELW 1.6307 1.1079 0.7938 0.9726

GARCH-GJR-N 2.2036 1.4840 1.7319 1.1636

GARCH-GJR-T 0.8814 0.7624 0.6495 0.3994

GARCH-GJR-ELW 1.4544 1.1994 0.9562 0.9552

Table 24: backtesting VaR (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-

GJR-T and GARCH-GJR-ELW) (α = 0.05)

α = 0.05 S&P 500 MSCI world MSCI EM MSFT

GARCH-N 1.0930 0.9961 1.0211 0.7746

GARCH-T 0.8814 0.7298 0.6855 0.4203

GARCH-ELW 1.0137 0.9473 0.8840 0.9691

GARCH-GJR-N 1.1635 1.0510 1.0139 0.7850

GARCH-GJR-T 0.9784 0.7684 0.7252 0.4272

GARCH-GJR-ELW 1.0489 1.0144 0.9165 0.9726

Figure 7:Backtesting VaR (extended model, α = 0.01)
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Figure 8: Backtesting VaR (extended model, α = 0.05)
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3.6.3 Backtesting ES

Average normalized shortfall

It’s harder to backtest the Expected shortfall as we are testing an expectation rather than a quantile.

Fortunately, average normalized shortfall, a methodology which is analogous to the use of violation

ratios for VaR is able to help us backtest ES. The test procedure is sketched below. For days when

VaR is violated, normalized shortfall (NS) is calculated as

NSt =
yt
ESt

,

where ESt is the observed ES on day t. From the definition of ES, the expected yt– given VaR

is violated – is:

E(yt | yt < −V aRt)
ESt

= 1.

The Null hypothesis: average NS (NS)= 1. The test result is reported in Table 27. The average

NS in our model is 0.9895, which is the nearest to 1.

Backtesting fundamental models

We backtest ES by using the methodology provided in the previous paragraph. The backtesting

ES results are showing in Table 25 and 26 and Figure 9 and 10. From the tables, we are confident
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to say that our proposed model is the best in terms of the NS ratio, while the difference between

different models and datasets are not so distinguished as in the case of backtesting VaR.

Table 25:backtesting ES (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (α = 0.01)

α = 0.01 S&P 500 MSCI world MSCI EM MSFT

MA 1.3849 1.5703 1.5571 1.2494

EWMA 1.0730 1.1488 1.2390 1.1917

HS 1.1408 1.1565 1.1639 0.9952

GARCH(1,1) 1.0735 1.1676 1.2798 1.1986

GARCH-ELW 0.9983 1.0703 1.1813 0.9933

Table 26: backtesting ES (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (α = 0.05)

α = 0.05 S&P 500 MSCI world MSCI EM MSFT

MA 1.3949 1.2463 1.5077 1.1947

EWMA 1.1101 1.1364 1.2698 1.1182

HS 1.1622 1.0494 1.1767 1.0280

GARCH(1,1) 1.1182 1.1331 1.2190 1.1012

GARCH-ELW 1.0385 1.0581 1.1034 0.9884

Figure 9: Backtesting ES (fundamental model, α = 0.01)
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Figure 10:Backtesting ES (fundamental model, α = 0.05)
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Backtesting extended models

Similar findings in the extended cases, where we show the backtest ES results in Table 27 and 28

and Figure 11 and 12, that the difference in the ES backtesting regarding to different models and

datasets are not as big as backtesting VaR. All the models have good forecasting ability according

to the above tables so it’s very hard to choose a better one among these models.

Table 27: backtesting ES (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-

GJR-T and GARCH-GJR-ELW) (α = 0.01)

α = 0.01 S&P 500 MSCI world MSCI EM MSFT

GARCH-N 1.0648 1.1676 1.2798 1.1986

GARCH-T 1.0103 1.1008 1.1275 1.0967

GARCH-ELW 0.9827 1.0703 1.1813 0.9933

GARCH-GJR-N 1.0668 1.1393 1.1689 1.1943

GARCH-GJR-T 1.0273 1.0584 1.0986 1.0626

GARCH-GJR-ELW 0.9816 1.0349 1.0965 0.9969

Table 28: backtesting ES (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-

GJR-T and GARCH-GJR-ELW) (α = 0.05)
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α = 0.05 S&P 500 MSCI world MSCI EM MSFT

GARCH-N 1.1182 1.1331 1.2190 1.1012

GARCH-T 0.9902 1.0243 1.0979 0.9913

GARCH-ELW 1.0385 1.0581 1.1034 0.9884

GARCH-GJR-N 1.1083 1.0857 1.1557 1.0988

GARCH-GJR-T 1.0032 1.0036 1.0447 1.0027

GARCH-GJR-ELW 1.0424 1.0252 1.0604 0.9883

Figure 11: Backtesting ES (extended model, α = 0.01)
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Figure 12: Backtesting ES (extended model, α = 0.05)
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3.7 Conclusion and Extension

This paper proposes and investigates new effi cient conditional VaR and ES estimators in a semi-

parametric GARCH model. These proposed estimators for risk measures fully exploit the moment

information which has been previously ignored in constructing innovation distribution estimators.

We show they can achieve large effi ciency improvement and quantify this magnitude in Monte Carlo

simulations. At the same time, we present the asymptotic theory for one period ahead VaR and ES

forecasts. The theory can be used as guidance as to constructing confidence intervals for point risk

measure forecasts.

Even though we consider a simple GARCH(1,1) model in this paper, the effi cient estimation

method for both variance parameters and error quantile can be used for more complicated paramet-

ric volatility models. For example, one could consider GARCH with leverage effects or GARCH in

mean models. Although the effi ciency gain hinges on the effi ciency of volatility estimators in the-

ory, our MonteCarlo experiments show that this impact on effi ciency improvement is quantitatively

small.

Sometimes unconditional Value-at-Risk is also of interest to risk managers. Then the question in

the current GARCH(1,1) context is whether we have effi ciency gains from integrating the conditional

VaR versus unconditional. This question is to be addressed in a separate paper.
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3.8 Appendix

3.8.1 Proofs

Proof of Theorem 1. Given θ and the observations {h0, y1, . . . , yn}, then the log likelihood is

L(θ) =

n∑
t=1

[log f(c−1g
−1/2
t (β)yt) + log c−1g

−1/2
t (β)].

Now we can write the conditional score at time t as

lt(θ) = −(1 + εt(θ)
f ′(εt(θ))

f(εt(θ))
)

( 1
2gt(β)

∂gt(β)
∂β

1
c

)
.

Then, according to Drost and Klaassen (1997), the effi cient score and information matrix for β are

l∗1t(β0) = −1

2
{Gt(β0)−G(β0)}(1 + εt

f ′(εt)

f(εt)
)

E[l∗1t(β0)l∗1t(β0)>] =
E[R3(ε)2]

4
{G2(β0)−G(β0)G(β0)>},

and
√
n(β̂ − β0) =

1√
n

n∑
t=1

E[l∗1t(β0)l∗1t(β0)>]−1l∗1t(β0) + op(1).

Next, as the effi cient estimator for c is ĉ =
√

1
n

∑n
t=1 ê

2
t − 1

n

∑n
t=1 ê

3
t∑n

t=1 ê
2
t

∑n
t=1 êt. Using the delta

method, we can see

êt − et = yt[g
−1/2
t (β̂)− g−1/2

t (β)] = −1

2

et
gt(β0)

∂gt(β0)

∂β>
(β̂ − β0) + op(

1

n
)

ê2
t − e2

t = y2
t [g−1

t (β̂)− g−1
t (β)] = − e2

t

gt(β0)

∂gt(β0)

∂β>
(β̂ − β0) + op(

1

n
),

consequently,

1

n

n∑
t=1

êt −
1

n

n∑
t=1

et = −1

2
E[

et
gt(β0)

∂gt(β0)

∂β>
](β̂ − β0) + op(n

−1/2)

1

n

n∑
t=1

ê2
t −

1

n

n∑
t=1

e2
t = −E[

e2
t

gt(β0)

∂gt(β0)

∂β>
](β̂ − β0) + op(n

−1/2),

as a result, by LLN and Ergodic Theorem,

√
n(ĉ− c0)
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=
√
n(

√
1

n

∑n

t=1
ê2
t −

1

n

∑n
t=1 ê

3
t∑n

t=1 ê
2
t

∑n

t=1
êt −

√
1

n

∑n

t=1
c20ε

2
t +

√
1

n

∑n

t=1
c20ε

2
t − c0)

=
1

2c0
{−c20G>

√
n(β̂ − β0)− c20

Eε3
t

Eε2
t

1√
n

n∑
t=1

εt + c20
1√
n

n∑
t=1

(ε2
t − 1)}+ op(1)

=
c0
2

1√
n

n∑
t=1

{(ε2
t − 1)− εtEε3 −G>E[l∗1tl

∗>
1t ]−1l∗1t}+ op(1).

Since E[(ε2
t − 1)l∗1t] = 0 and E[εtl

∗
1t] = 0, we have

Ωc =
c20
4
{Eε4 − 1− (Eε3)2 +G>E[l∗1tl

∗
1t
>]−1G}.

We can thus conclude that

√
n

(
β̂ − β0

ĉ− c0

)

=
1√
n

n∑
t=1

 − 1
2E[l∗1tl

∗>
1t ]−1{Gt −G} 0

c0
4 G
>E[l∗1tl

∗>
1t ]−1{Gt −G} c0

2 (−Eε3, 1)


 R3(εt)

R2(εt)

+ op(1)

and

Ωθ =

 E[l∗1tl
∗>
1t ]−1 − c02 E[l∗1tl

∗>
1t ]−1G

− c02 G
>E[l∗1tl

∗>
1t ]−1 c20

4 {Eε
4 − 1− (Eε3)2 +G>E[l∗1tl

∗>
1t ]−1G}

 .

Lemma 1. Suppose that assumptions A.2-A.4 hold. Then F̂N (x) and F̂w(x) have the following

expansion:

sup
x∈R

∣∣∣∣∣F̂N (x)− F (x)− 1

n

n∑
t=1

{1(εt ≤ x)− F (x)} − f(x)
1

n

n∑
t=1

εt −
xf(x)

2

1

n

n∑
t=1

(ε2
t − 1)

∣∣∣∣∣ = op(n
−1/2)

sup
x∈R

∣∣∣∣∣F̂w(x)− F (x)− 1

n

n∑
t=1

{1(εt ≤ x)− F (x)}+
1

n

n∑
t=1

A>xB
−1R2(εt)

∣∣∣∣∣ = op(n
−1/2).

Consequently, the process
√
n(F̂N −F ) converges weakly to a zero-mean Gaussian process ZN with

covariance function ΩN and the process
√
n(F̂w − F ) converges weakly to a zero-mean Gaussian

process Zw with covariance function Ωw, where:

ΩN (x, x′) = cov (ZN (x),ZN (x′))

= E

[
[1(ε ≤ x)− F (x) + f(x)ε+

xf(x)

2
(ε2 − 1)]

× [1(ε ≤ x′)− F (x′) + f(x′)ε+
x′f(x′)

2
(ε2 − 1)]

]
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Ωw(x, x′) = cov (Zw(x),Zw(x′))

= E
[
[1(ε ≤ x)− F (x)−A>xB−1R2(ε)][1(ε ≤ x′)− F (x′)−A>x′B−1R2(ε)]

]
.

Where we define the following quantities:

Ax = E[R2(ε)1(ε ≤ x)] ; B = E[R2(ε)R2(ε)>];

Cx = f(x)2

{
E[ε4]− 1

4
x2 + xE[ε3] + 1

}
+ f(x)

{
2E[ε1(ε ≤ x)] + xE[(ε2 − 1)1(ε ≤ x)]

}
,

Proof of Lemma 1. We follow the proof of Theorem 4.1 in Koul and Ling (2006) closely.

Define the empirical process

νn(x, z1, z2) =
1√
n

n∑
t=1

{1(εt ≤ z1 + xz2)− E[1(εt ≤ z1 + xz2)]}.

For any z = (z1, z2) ∈ R2, let |z| = |z1| ∨ |z2|. In R2, we define a pseudo-metric

dc(x, y) = sup
|z|≤c

|F (x(1 + z1) + z2)− F (y(1 + z1) + z2)|1/2, (x, y) ∈ R2, c > 0.

Let N (δ, c) be the cardinality of the minimal δ-net and let

I(c) =

∫ 1

0

{lnN (u, c)}1/2du

According to Theorem 4.1 in Koul and Ling (2006), assumptions imply that I(c) < ∞ for any

c ∈ [0, 1). This combines with Koul and Ossiander (1994) show that the following stochastic

equicontinuity condition holds:

sup
x∈R,|z1|≤Cn−1/2,|z2−1|≤Cn−1/2

|νn(x, z1, z2)− νn(x, 0, 1)| = op(1).

As a result,

νn(x, z1, z2) = νn(x, 0, 1) + νn(x, z1, z2)− νn(x, 0, 1) = νn(x, 0, 1) + op(1).

By LLN, we know that

1

n

n∑
t=1

εt = op(1),

√√√√ 1

n

n∑
t=1

ε2
t − (

1

n

∑n

t=1
εt)2 = op(1).
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Therefore, F̂N (x) can be expanded as, uniformly in x ∈ R,

√
n(F̂N (x)− F (x))

=
1√
n

n∑
t=1

{
1

(
εt − µ̂ε
σ̂ε

≤ x
)
− F (x)

}

=
1√
n

n∑
t=1

{1 (εt ≤ µ̂ε + xσ̂ε)− F (µ̂ε + xσ̂ε)}+
√
n{F (µ̂ε + xσ̂ε)− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ op(1) +
√
n{F (µ̂ε + xσ̂ε)− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ f(x)
1√
n

n∑
t=1

εt +
√
nxf(x)

√√√√ 1

n

n∑
t=1

ε2
t − (µ̂ε)

2 − 1

+ op(1)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ f(x)
1√
n

n∑
t=1

εt +
√
n
xf(x)

2

(
1

n

n∑
t=1

(ε2
t − 1)− (µ̂ε)

2

)
+ op(1)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ f(x)
1√
n

n∑
t=1

εt +
xf(x)

2

1√
n

n∑
t=1

(ε2
t − 1) + op(1).

We know from Owen (2001) that

ŵt =
1

n

1

1 + λ′nR2(εt)
;λn = B−1(

1

n

n∑
t=1

R2(εt)) + op(n
−1/2).

Consequently, uniformly in x ∈ R,

√
n(F̂w(x)− F (x))

=
√
n(

n∑
t=1

ŵt1(εt ≤ x)− 1

n

n∑
t=1

1(εt ≤ x) +
1

n

n∑
t=1

1(εt ≤ x)− F (x))

=
1√
n

n∑
t=1

{[nŵt − 1]1(εt ≤ x)}+
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}

= −λ>n
1√
n

n∑
t=1

{R2(εt)1(εt ≤ x)}+
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ op(n
−1/2)

= − 1√
n

n∑
t=1

R2(εt)
>B−1 1

n

n∑
t=1

{R2(εt)1(εt ≤ x)}+
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ op(n
−1/2)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)} − 1√
n

n∑
t=1

AxB
−1R2(εt) + op(n

−1/2),

where the last equality holds because of ergodic theorem: n−1
n∑
t=1
{R2(εt)1(εt ≤ x)} = Ax + op(1).

Corollary 1. Denote E[ε1(ε ≤ x)] = a1(x) and E[(ε2 − 1)1(ε ≤ x)] = a2(x). F̂ (x) is
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asymptotically less effi cient than F̂w(x), and F̂ (x) achieves the effi ciency bound iff

a1(x) = a2(x) = 0.

F̂N (x) is asymptotically less effi cient than F̂w(x) as Cx ≥ −A>xB−1Ax. F̂N (x) achieves the effi -

ciency bound iff

x =
2(a2(x)− a1(x)E[ε3])

a1(x)(E[ε4]− 1)− a2(x)E[ε3]
; f(x) = − 2a1(x) + xa2(x)

E[ε4]−1
2 x2 + 2xE[ε3] + 2

.

Proof of Corollary 1. Notice that

A>xB
−1Ax =

{E[ε4]− 1}{a1(x)− a2(x) E[ε3]
E[ε4]−1}

2

E[ε4]− 1− E[ε3]2
+

a2
2(x)

E[ε4]− 1
,

and under the moment condition (2), E[ε4]− 1 = Var(ε2) ≥ 0 and

E[ε4]− 1− E[ε3]2 = {E[ε4]− 1}{1− E[ε3]2

E[ε4]− 1
}

= {E[ε4]− 1}{1− corr(ε, ε2)2}

≥ 0

so A>xB
−1Ax ≥ 0 and A

>

xB
−1Ax = 0 ⇔ a1(x) = a2(x) = 0. As for the asymptotical effi ciency

comparison between F̂N (x) and F̂w(x), we have

Cx +A>xB
−1Ax

= f(x)2{E[ε4]− 1

4
x2 + xE[ε3] + 1}+ f(x){2a1(x) + xa2(x)}

+
{E[ε4]− 1}{a1(x)− a2(x) E[ε3]

E[ε4]−1}
2

E[ε4]− 1− E[ε3]2
+

a2
2(x)

E[ε4]− 1

= f(x)2{E[ε4]− 1

4
x2 + xE[ε3] + 1}+ f(x){2a1(x) + xa2(x)}

+
{E[ε4]− 1}a1(x)− 2a1(x)a2(x)E[ε3] + a2

2(x)

E[ε4]− 1− E[ε3]2

= {E[ε4]− 1

4
x2 + xE[ε3] + 1}{f(x) +

2a1(x) + xa2(x)
E[ε4]−1

2 x2 + 2xE[ε3] + 2
}2

+
{x[a1(x)(E[ε4]− 1)− a2(x)E[ε3]] + 2(a1(x)E[ε3]− a2(x))}2

4{E[ε4]− 1− E[ε3]2}{E[ε4]−1
4 x2 + xE[ε3] + 1}

,
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additionally

E[ε4]− 1

4
x2 + xE[ε3] + 1 =

E[ε4]− 1

4
{x+

2E[ε3]

E[ε4]− 1
}2 +

E[ε4]− 1− E[ε3]2

E[ε4]− 1
≥ 0,

so we can conclude Cx ≥ −A>xB−1Ax, and Cx = −A>xB−1Ax if and only if

x =
2(a2(x)− a1(x)E[ε3])

a1(x)(E[ε4]− 1)− a2(x)E[ε3]
; f(x) = − 2a1(x) + xa2(x)

E[ε4]−1
2 x2 + 2xE[ε3] + 2

.

Lemma 2. Suppose assumptions A.1-A.4 hold and there is an estimator θ̃ that has influence

function χt(θ0),then the following expansion for distribution estimators based on θ̃ is

sup
x∈R

∣∣∣∣∣ ̂̂F (x)− F (x)− 1

n

n∑
t=1

{1(εt ≤ x)− F (x)} − xf(x)

2
H(θ0)

> 1

n

n∑
t=1

χt(θ0)

∣∣∣∣∣ = op(n
−1/2)

sup
x∈R

∣∣∣∣∣ ̂̂FN (x)− F (x)− 1

n

n∑
t=1

{1(εt ≤ x)− F (x)} − xf(x)

2
H(θ0)

> 1

n

n∑
t=1

χt(θ0)− f(x)
1

n

n∑
t=1

εt

−xf(x)

2

1

n

n∑
t=1

{ε2
t − 1}

∣∣∣∣∣ = op(n
−1/2)

sup
x∈R

∣∣∣∣∣ ̂̂Fw(x)− F (x)− 1

n

n∑
t=1

{1(εt ≤ x)− F (x)} −
{
xf(x)

2
+ e

ᵀ

2B
−1Ax

}
H(θ0)

> 1

n

n∑
t=1

χt(θ0)

+
1

n

n∑
t=1

A>xB
−1R2(εt)

∣∣∣∣∣ = op(n
−1/2),

where e
ᵀ
2 = (0, 1).

Proof of Lemma 2. By Taylor expansion,

√
ht(θ̃)

ht(θ0)
− 1 =

1

2

∂ log ht(θ)

∂θ
> (θ̃ − θ0)

+
1

4
(θ̃ − θ0)

>
[

1

ht(θ)

∂2ht(θ1)

∂θ∂θ
> − 1

2

∂ log ht(θ1)

∂θ

∂ log ht(θ1)

∂θ
> ](θ̃ − θ0),

where θ1 lies in between θ0 and θ̃. Since θ̃ − θ0 = 1
n

n∑
t=1

χt(θ0) + op(
1√
n

), and

Eθ0 supθ∈Uθ0
||∂ log ht(θ)

∂θ ||2 < ∞,which is due to Example 3.1 in Koul and Ling (2006), we have
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n∑
t=1

(√
ht(θ̃)
ht(θ0) − 1

)2

= op(1). This implies

sup
1≤t≤n

∣∣∣∣∣∣
√

ht(θ̃)

ht(θ0)
− 1

∣∣∣∣∣∣ = op(1).

Using the same empirical process argument as in lemma , Lemma 4.1 in Koul and Ling (2006),

and the fact that it is clear that, uniformly in x ∈ R,

√
n(
̂̂
F (x)− F (x))

=
1√
n

n∑
t=1

{1(εt(θ̃) ≤ x)− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤

√
ht(θ̃)

ht(θ0)
x)− F (

√
ht(θ̃)

ht(θ0)
x) + F (

√
ht(θ̃)

ht(θ0)
x)− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤

√
ht(θ̃)

ht(θ0)
x)− F (

√
ht(θ̃)

ht(θ0)
x)}+

1√
n

n∑
t=1

{F (

√
ht(θ̃)

ht(θ0)
x)− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+
1√
n

n∑
t=1

{F (

√
ht(θ̃)

ht(θ0)
x)− F (x)}+ op(1)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+
1√
n

n∑
t=1

xf(x)

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) + op(1)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+
1

n

n∑
t=1

xf(x)

2ht(θ0)

∂ht(θ0)

∂θ
>

1√
n

n∑
t=1

χt(θ0) + op(1)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+
xf(x)

2
H(θ0)

> 1√
n

n∑
t=1

χt(θ0) + op(1),

where the last equation holds because of the ergodicity theorem limn→∞
1
n

n∑
t=1

∂ log ht(θ0)
∂θ = E[∂ log ht(θ0)

∂θ ].

The next is to show the asymptotic expansion for ̂̂FN (x). Since εt(θ̃) =
√

ht(θ0)

ht(θ̃)
εt, the renor-

malized empirical distribution estimator can be shown, uniformly in x ∈ R:

√
n(
̂̂
FN (x)− F (x))

=
1√
n

n∑
t=1

{1


εt(θ̃)− 1

n

n∑
t=1

εt(θ̃)√
1
n

n∑
t=1

ε2
t (θ̃)− ( 1

n

n∑
t=1

εt(θ̃))2

≤ x

− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤

√
ht(θ̃)

ht(θ0)

1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt +

√
ht(θ̃)

ht(θ0)

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t − (

1

n

n∑
t=1

εt(θ̃))2x)

68



−F (

√
ht(θ̃)

ht(θ0)

1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt +

√
ht(θ̃)

ht(θ0)

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t − (

1

n

n∑
t=1

εt(θ̃))2x)

+F (

√
ht(θ̃)

ht(θ0)

1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt +

√
ht(θ̃)

ht(θ0)

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t − (

1

n

n∑
t=1

εt(θ̃))2x)− F (x)}

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+
1√
n

n∑
t=1

{F (

√
ht(θ̃)

ht(θ0)

1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt

+

√
ht(θ̃)

ht(θ0)

√√√√ 1

n

n∑
t=1

ε2
t (θ̃)− (

1

n

n∑
t=1

εt(θ̃))2x)− F (x)}+ op(1)

where the last equation used empirical process approximation and

Now given that
√
n(θ̃−θ0) = 1√

n

∑n
t=1 χt(θ0)+op(1), we know that

√
1
n

n∑
t=1

ε2
t (θ̃)− ( 1

n

n∑
t=1

εt(θ̃))2

is of the same order as

√
1
n

n∑
t=1

ε2
t (θ̃), which is due to the fact that ( 1

n

n∑
t=1

εt(θ̃))
2 is of higher order

than 1
n

n∑
t=1

ε2
t (θ̃). As a result,

F (

√
ht(θ̃)

ht(θ0)

1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt +

√
ht(θ̃)

ht(θ0)

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
tx)− F (x)

= f(x){

√
ht(θ̃)

ht(θ0)
− 1} 1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt

+f(x)
1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt

+xf(x){

√
ht(θ̃)

ht(θ0)
− 1}

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t

+xf(x){

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t − 1}+Op(

1

n
)

= I1t + I2t + I3t + I4t,

where

I1t = f(x){ 1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)} 1

n

n∑
t=1

[1− 1√
ht(θ0)

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)]εt

I2t = f(x)
1

n

n∑
t=1

[1− 1√
ht(θ0)

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)]εt

I3t = xf(x){ 1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)}

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t
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I4t = xf(x){

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t − 1}.

It is easy to see that

√
ht(θ̃)

ht(θ0)
− 1 =

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) +Op(

1

n
)√

ht(θ0)

ht(θ̃)
− 1 = − 1√

ht(θ0)

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) +Op(

1

n
)

ht(θ0)

ht(θ̃)
− 1 = − 1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) +Op(

1

n
)

so now the four components can be rewritten as:

1√
n

n∑
t=1

I1t

=
1√
n

n∑
t=1

{f(x){ 1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)} 1

n

n∑
t=1

[1− 1√
ht(θ0)

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)]εt}

=
f(x)

2
{ 1

n

n∑
t=1

εt −
1

n

n∑
t=1

1

2h
3/2
t (θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)εt}

1√
n

n∑
t=1

1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)

1√
n

n∑
t=1

I2t = f(x)
1√
n

n∑
t=1

[1− 1√
ht(θ0)

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)]εt

1√
n

n∑
t=1

I3t = xf(x)

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t

1√
n

n∑
t=1

{ 1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)}

1√
n

n∑
t=1

I4t = xf(x)
√
n{

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
t − 1}.

Consequently,

1√
n

n∑
t=1

{F (

√
ht(θ̃)

ht(θ0)

1

n

n∑
t=1

√
ht(θ0)

ht(θ̃)
εt +

√
ht(θ̃)

ht(θ0)

√√√√ 1

n

n∑
t=1

ht(θ0)

ht(θ̃)
ε2
tx)− F (x)}

= f(x)
1√
n

n∑
t=1

[1− 1

2h
3/2
t (θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)]εt + xf(x)

1√
n

n∑
t=1

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)

+
xf(x)

2

1√
n

n∑
t=1

{ε2
t − 1}+ op(1)

= f(x)
1√
n

n∑
t=1

{[1− 1

2h
3/2
t (θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)]εt
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+x
1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) +

x

2
[ε2
t − 1]}+ op(1),

and by CLT and LLN,

√
n(θ̃ − θ0) =

1√
n

n∑
t=1

χt(θ0) + op(1)

1

n

n∑
t=1

1

2h
3/2
t (θ0)

∂ht(θ0)

∂θ
εt = op(1)

we have
1√
n
f(x)

n∑
t=1

{ 1√
ht(θ0)

1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)εt} = op(1).

Therefore, uniformly in x ∈ R,

√
n(
̂̂
FN (x)− F (x))

= n−1/2
n∑
t=1

{1(εt ≤ x)− F (x)}

+f(x)
1√
n

n∑
t=1

{εt + x
1

2ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) +

x

2
[ε2
t − 1]}+ op(1).

Since we know that

̂̂wt =
1

n

1

1 + λ̂
′
nR2(εt(θ̃))

; λ̂n = B−1
n (

1

n

n∑
t=1

R2(εt(θ̃))) + op(n
−1/2)

where Bn = 1
n

n∑
t=1

R2(εt(θ̃))R2(εt(θ̃))
>
. Therefore,

√
n(
̂̂
Fw(x)− F (x))

=
1√
n

n∑
t=1

{n ̂̂wt1(εt(θ̃) ≤ x)− F (x)}

=
1√
n

n∑
t=1

{n ̂̂wt1(εt(θ̃) ≤ x)− 1(εt(θ̃) ≤ x) + 1(εt(θ̃) ≤ x)− F (x)}

=
1√
n

n∑
t=1

{[n ̂̂wt − 1]1(εt(θ̃) ≤ x)}+
1√
n

n∑
t=1

{1(εt(θ̃) ≤ x)− F (x)}

= I5 +
√
n(
̂̂
F (x)− F (x)).

Define ε∗t = εt + εt
2
∂ log ht(θ)

∂θ
> (θ̃ − θ). From the

√
n-consistency of θ̃ and E[ εt2

∂ log ht(θ)

∂θ
> ] = 0, we
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can see that

n∑
t=1

(
εt(θ̃)− εt

)2

=

n∑
t=1

(
εt
2

∂ log ht(θ)

∂θ
> (θ̃ − θ) +Op((θ̃ − θ)2)

)2

= op(1),

which implies that max1≤t≤n |εt(θ̃)− εt| = op(1).

This means residuals εt(θ̃) =
√

ht(θ0)

ht(θ̃)
εt are uniformly close to εt. Therefore for the weightŝ̂wt = 1

n
1

1+λ̂
′
nR2(εt(θ̃))

, define Bn = 1
n

n∑
t=1

R2(εt(θ̃))R2(εt(θ̃))
>
, and we can see

λ̂n = B−1
n (

1

n

n∑
t=1

R2(εt(θ̃))) + op(n
−1/2)

= B−1 1

n

n∑
t=1

[

(
εt

ε2
t − 1

)
− 1

2

(
εt

2ε2
t

)
1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)] + op(n

−1/2)

so

√
nλ̂n = B−1 1√

n

n∑
t=1

[

(
εt

ε2
t − 1

)
− 1

2

(
εt

2ε2
t

)
1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)] + op(1)

= B−1 1√
n

n∑
t=1

R2(εt)−
1

2
B−1 1√

n

n∑
t=1

(
εt

2ε2
t

)
1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0) + op(1).

Hence,

I5 = −
√
nλ̂
>
n

1

n

n∑
t=1

{R2(εt(θ̃))1(εt(θ̃) ≤ x)}

= −{ 1√
n

n∑
t=1

R2(εt)
>
B−1Ax −

1

2

1√
n

n∑
t=1

(
εt 2ε2

t

)
1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)B−1Ax}+ op(1),

where the last equality holds because of ergodic theorem: n−1
n∑
t=1
{R2(εt(θ̃))1(εt(θ̃) ≤ x)} = Ax +

op(1). So, uniformly in x ∈ R,

√
n(
̂̂
Fw(x)− F (x))

=
1√
n

n∑
t=1

{[n ̂̂wt − 1]1(εt(θ̃) ≤ x)}+
1√
n

n∑
t=1

{1(εt(θ̃) ≤ x)− F (x)}

= − 1√
n

n∑
t=1

A>xB
−1R2(εt) +

1

2

1√
n

n∑
t=1

(
εt 2ε2

t

)
1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)B−1Ax

+
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+
xf(x)

2
H(θ0)

> 1√
n

n∑
t=1

χt(θ0) + op(1)

=
1√
n

n∑
t=1

{1(εt ≤ x)− F (x)}+ {xf(x)

2
+ e

ᵀ

2B
−1Ax}H(θ0)

> 1√
n

n∑
t=1

χt(θ0)
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− 1√
n

n∑
t=1

A
>

xB
−1R2(εt) + op(1),

because

1

2

1√
n

n∑
t=1

(
εt 2ε2

t

)
1

ht(θ0)

∂ht(θ0)

∂θ
> (θ̃ − θ0)B−1Ax

=
1

2

1

n

n∑
t=1

(
εt 2ε2

t

)
1

ht(θ0)

∂ht(θ0)

∂θ
>

√
n(θ̃ − θ0)B−1Ax

= e
ᵀ

2B
−1AxH(θ0)

>√
n(θ̃ − θ0) + op(1)

=
a2(x)− a1(x)E[ε3]

E[ε4]− 1− E[ε3]2
H(θ0)

> 1√
n

n∑
t=1

χt(θ0) + op(1).

Proof of Theorem 2. Lemma 1 and the Proposition 1 of Gill (1989) imply the results regarding

VaR. Notice that, for any consistent distribution function estimator F̃ (x) with associated quantile

estimator q̃α = F̃−1(α), the expected shortfall can be expressed as

αẼSα =

∫ q̃α

−∞
xdF̃ (x) = q̃αF̃ (q̃α)−

∫ q̃α

−∞
F̃ (x)dx = αq̃α −

∫ q̃α

−∞
F̃ (x)dx

we can see that

α(ẼSα − ESα)

=

∫ q̃α

−∞
xdF̃ (x)−

∫ qα

−∞
xdF (x)

= αq̃α −
∫ q̃α

−∞
F̃ (x)dx− αqα +

∫ qα

−∞
F (x)dx

=

∫ qα

−∞
(F (x)− F̃ (x))dx+ α(q̃α − qα)−

∫ q̃α

qα

F̃ (x)dx

=

∫ qα

−∞
(F (x)− F̃ (x))dx+ (q̃α − qα)(α− F̃ (q̃α))

=

∫ qα

−∞
(F (x)− F̃ (x))dx+ op(n

−1/2).

As a result:

α(ÊSα − ESα)

=

∫ qα

−∞
(F (x)− F̂ (x))dx+ op(n

−1/2)

=

∫ qα

−∞
F (x)dx− 1

n

n∑
t=1

(qα − εt)1(εt ≤ qα) + op(n
−1/2)
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α(ÊSNα − ESα)

=

∫ qα

−∞
(F (x)− F̂N (x))dx+ op(n

−1/2)

= − 1

n

n∑
t=1

∫ qα

−∞

{
1(εt ≤ x)− F (x) + f(x)εt +

xf(x)

2
(ε2
t − 1)

}
dx+ op(n

−1/2)

= − 1

n

n∑
t=1

{∫ qα

−∞
1(εt ≤ x)dx−

∫ qα

−∞
F (x)dx+ εt

∫ qα

−∞
f(x)dx+ (ε2

t − 1)

∫ qα

−∞

xf(x)

2
dx

}
+ op(n

−1/2)

= − 1

n

n∑
t=1

{
(qα − εt)1(εt ≤ qα)−

∫ qα

−∞
F (x)dx+ αεt +

ε2
t − 1

2

∫ qα

−∞
xf(x)dx

}
+ op(n

−1/2)

α(ÊSwα − ESα)

=

∫ qα

−∞
(F (x)− F̂w(x))dx+ op(n

−1/2)

= − 1

n

n∑
t=1

∫ qα

−∞

{
1(εt ≤ x)− F (x)−A>xB−1R2(εt)

}
dx+ op(n

−1/2)

= − 1

n

n∑
t=1

{∫ qα

−∞
1(εt ≤ x)dx−

∫ qα

−∞
F (x)dx−

∫ qα

−∞
A>xB

−1R2(εt)dx

}
+ op(n

−1/2)

= − 1

n

n∑
t=1

{
(qα − εt)1(εt ≤ qα)−

∫ qα

−∞
F (x)dx−R>2 (εt)B

−1

∫ qα

−∞
Axdx

}
+ op(n

−1/2).

Corollary 3. Suppose that the semiparametric effi cient estimator that has influence function

χt(θ0) = ψt(θ0) is used. Then, the process
√
n(
̂̂
F − F ) converges weakly to a zero-mean Gaussian

process Ẑ with covariance function Ω̂, the process
√
n(
̂̂
FN − F ) converges weakly to a zero-mean

Gaussian process ZN̂ with covariance function ΩN̂ , and the process
√
n(
̂̂
Fw − F ) converges weakly

to a zero-mean Gaussian process Zŵ with covariance function Ωŵ, where:

Ω̂(x, x′) = cov (Ẑ(x), Ẑ(x′))

= E

[
[1(ε ≤ x)− F (x) +

xf(x)

2
(ε2 − 1− εEε3)]

× [1(ε ≤ x′)− F (x′) +
x′f(x′)

2
(ε2 − 1− εEε3)]

]
ΩN̂ (x, x′) = cov

(
ZN̂ (x),ZN̂ (x′)

)
= E

[
[1(ε ≤ x)− F (x) + [f(x)− xf(x)

2
Eε3]ε+ xf(x)(ε2 − 1)]

·[1(ε ≤ x′)− F (x′) + [f(x′)− x′f(x′)

2
Eε3]ε+ x′f(x′)(ε2 − 1)]

]
Ωŵ(x, x′) = cov (Zŵ(x),Zŵ(x′))

= E

[
[1(ε ≤ x)− F (x) + {xf(x)

2
+ e

ᵀ

2B
−1Ax}(ε2 − 1− εEε3)−A>xB−1R2(ε)]
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·[1(ε ≤ x′)− F (x′) + {x
′f(x′)

2
+ e

ᵀ

2B
−1Ax′}(ε2 − 1− εEε3)−A>x′B−1R2(ε)]

]
.

Denote E[ε1(ε ≤ x)] = a1(x) and E[(ε2 − 1)1(ε ≤ x)] = a2(x). The pointwise asymptotic

variances are Ωj(x), where:

Ω1(x) = F (x)(1− F (x)) +
x2f(x)2[Eε4 − 1− (Eε3)2]

4
+ xf(x)(a2(x)− a1(x)Eε3)

Ω2(x) = F (x)(1− F (x)) + Cx +
3x2f(x)2[Eε4 − 1− (Eε3)2]

4
+ xf(x)(a2(x)− a1(x)Eε3)

Ω3(x) = F (x)(1− F (x))−A>xB−1Ax +

{
xf(x)

2
+ e

ᵀ

2B
−1Ax

}2

[Eε4 − 1− (Eε3)2].

It can be shown that Ω1(x)−Ω3(x) = a2
1(x) ≥ 0. As a result, ̂̂Fw(x) is uniformly more effi cient

than ̂̂F (x) and they are equally effi cient at x where E[ε1(ε ≤ x)] = 0. It can also be shown that

Ω2(x) ≥ Ω3(x).

Proof of Corollary 3. Since Ht(θ0) =
(
Gt(θ0)

2/c

)
, we know that

H(θ0)
>

 − 1
2E[l∗1tl

∗>
1t ]−1{Gt −G} 0

c0
4 G

>
E[l∗1tl

∗
1t

>
]−1{Gt −G} c0

2 (−Eε3, 1)


 R3(εt)

R2(εt)

 = ε2
t − 1− εtEε3.

Plug

χt(θ0) =

 − 1
2E[l∗1tl

∗>
1t ]−1{Gt −G} 0

c0
4 G

>
E[l∗1tl

∗>
1t ]−1{Gt −G} c0

2 (−Eε3, 1)


 R3(εt)

R2(εt)


into the expressions in lemma 2 and get, uniformly in x ∈ R,

̂̂
F (x)− F (x) =

1

n

n∑
t=1

{1(εt ≤ x)− F (x) +
xf(x)

2
[ε2
t − 1− εtEε3]}+ op(n

−1/2)

̂̂
FN (x)− F (x) =

1

n

n∑
t=1

{1(εt ≤ x)− F (x) + [f(x)− xf(x)

2
Eε3]εt + xf(x)[ε2

t − 1]}+ op(n
−1/2)

̂̂
Fw(x)− F (x) =

1

n

n∑
t=1

{1(εt ≤ x)− F (x)}+ {xf(x)

2
+ e

ᵀ

2B
−1Ax}[ε2

t − 1− εtEε3]

− 1

n

n∑
t=1

A>xB
−1R2(εt) + op(n

−1/2).

Due to moment constraints (3.2), the following holds:

E[(1 + ε
f ′(ε)

f(ε)
)1(ε ≤ x)] = F (x) +

∫ x

−∞
εdf(ε) = xf(x)

E[ε
f ′(ε)

f(ε)
] =

∫
εdf(ε) = −1

75



E[ε2 f
′(ε)

f(ε)
] =

∫
ε2df(ε) = 0

E[ε3 f
′(ε)

f(ε)
] =

∫
ε3df(ε) = −3.

These equations and CLT show that they have asymptotic variance as follows:

Ω1 = F (x)(1− F (x)) +
x2f(x)2

4
[Eε4 − 1− (Eε3)2] + xf(x)(a2(x)− a1(x)Eε3)

Ω2 = F (x)(1− F (x)) + Cx +
3x2f(x)2[Eε4 − 1− (Eε3)2]

4
+ xf(x)(a2(x)− a1(x)Eε3)

Ω3 = F (x)(1− F (x))−A>xB−1Ax + {xf(x)

2
+ e

ᵀ

2B
−1Ax}2[Eε4 − 1− (Eε3)2].

Proof of Theorem 3. Lemma 2 and the Proposition 1 of Gill (1989) imply above results for

VaR. Similar to the proof of corollary 2, we have

α(
̂̂
ESα − ESα)

=

∫ ̂̂qα
−∞

xd
̂̂
F (x)−

∫ qα

−∞
xdF (x)

=

∫ qα

−∞
(F (x)− ̂̂F (x))dx+ α(̂̂qα − qα)−

∫ ̂̂qα
qα

̂̂
F (x)dx

=

∫ qα

−∞
(F (x)− ̂̂F (x))dx+ α(̂̂qα − qα)− (̂̂qα − qα)

̂̂
F (
̂̂̃
qα)

=

∫ qα

−∞
(F (x)− ̂̂F (x))dx+ op(n

−1/2).

Then the theorem holds because of the following:

∫ qα

−∞
(F (x)− ̂̂F (x))dx

= − 1

n

n∑
t=1

∫ qα

−∞
(1(εt ≤ x)− F (x) +

xf(x)

2
(ε2
t − 1− εtEε3))dx

= − 1

n

n∑
t=1

{
(qα − εt)1(εt ≤ qα)−

∫ qα

−∞
F (x)dx+ (ε2

t − 1− εtEε3)

∫ qα

−∞

xf(x)

2
dx

}
,

∫ qα

−∞
(F (x)− ̂̂FN (x))dx

= − 1

n

n∑
t=1

∫ qα

−∞

{
1(εt ≤ x)− F (x) + [f(x)− xf(x)

2
Eε3]εt + xf(x)(ε2

t − 1)

}
dx
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= − 1

n

n∑
t=1

 (qα − εt)1(εt ≤ qα)−
∫ qα
−∞ F (x)dx+ εt

∫ qα
−∞[f(x)− xf(x)

2 Eε3]dx

+(ε2
t − 1)

∫ qα
−∞ xf(x)dx

 ,

∫ qα

−∞
(F (x)− ̂̂Fw(x))dx

= − 1

n

n∑
t=1

∫ qα

−∞

{
1(εt ≤ x)− F (x) + [

xf(x)

2
+ e

ᵀ

2B
−1Ax](ε2

t − 1− εtEε3)−A>xB−1R2(εt)

}
dx

= − 1

n

n∑
t=1

{
(qα − εt)1(εt ≤ qα)−

∫ qα

−∞
F (x)dx

+(ε2
t − 1− εtEε3)

∫ qα

−∞
[
xf(x)

2
+ e

ᵀ

2B
−1Ax]dx−R>2 (εt)B

−1

∫ qα

−∞
Axdx

}
.

Proof of Theorem 4. Since R1(ε) = 1(ε ≤ qα)− α, R2(ε) = (ε, ε2 − 1)
>
, R3(ε) = 1 + ε f

′(ε)
f(ε) ,

and R(ε) = (R1(ε), R2(ε)
>
, R3(ε))

>
. It is seen that

E[R1(εt)|Ft−1] = E[R2(εt)|Ft−1] = E[R3(εt)|Ft−1] = 0,

which implies that {Zs} is Martingale Difference Series. From Theorem 2, we have

√
n

 θ̂ − θ0̂̂qwα − qα
 =

1√
n

n∑
s=1

Zs + op(1),

Zs = ΨsR(εs)

Ψt =


0 0 − 1

2E[l∗1tl
∗
1t

>
]−1{Gt −G}

0 c0
2 (−Eε3, 1) c0

4 G
>
E[l∗1tl

∗
1t

>
]−1{Gt −G}

−1
f(qα)

A
>
qα
B−1

f(qα) − [ qα2 +

(
0 1

)
B−1Aqα

f(qα) ](−Eε3, 1) 0

 .

Since: E[R1(ε)R2(ε)] = Aqα , E[R1(ε)R3(ε)] = qαf(qα), and E[R2(ε)R3(ε)] =

(
0 −2

)>
, we

have

ΩZ

= E[ΨsR(εs)R(εs)
>

Ψ
>

s ]
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= E[Ψs


α(1− α) A

>

qα qαf(qα)

Aqα B

(
0 −2

)>
qαf(qα)

(
0 −2

)
E[(1 + εf ′/f)2]

Ψ
>

s ]

=


E[l∗1tl

∗
1t

>
]−1 − c02 E[l∗1tl

∗>
1t ]−1G 0

− c02 G
>
E[l∗1tl

∗
1t

>
]−1 c20[Eε4−1−(Eε3)2]+G

>
E[l∗1tl

∗>
1t ]−1G

4

c0[Eε4−1−(Eε3)2][ qα2 +
e
ᵀ
2 B
−1Aqα
f(qα)

]

2

0
c0[Eε4−1−(Eε3)2][ qα2 +

e
ᵀ
2 B
−1Aqα
f(qα)

]

2 Ω̂̂qwα

 .

Due to Taylor expansion,

√
n(ξ̂n,t − ξt)

=
√
n(h

1/2
t (θ̂)̂̂qwα − h1/2

t (θ0)̂̂qwα + h
1/2
t (θ0)̂̂qwα − h1/2

t (θ0)qα)

=
√
n

qα

2h
1/2
t (θ0)

∂h
1/2
t (θ0)

∂θ
> (θ̂ − θ0) + h

1/2
t (θ0)

√
n(̂̂qwα − qα) + op(1)

=
√
n

(
qα

2h
1/2
t (θ0)

∂ht(θ0)

∂θ
> h

1/2
t (θ0)

) θ̂ − θ0̂̂qwα − qα
+ op(1)

=
1√
n

n∑
s=1

W
>

t Zs + op(1),

where Wt =

(
qα

2h
1/2
t (θ0)

∂ht(θ0)

∂θ
> h

1/2
t (θ0)

)>
. Denote Xns = n−1/2W

>

t Zs, it follows that

n∑
s=1

X2
ns = W

>

t

1

n

n∑
s=1

ZsZ
>

s Wt →p W
>

t ΩZWt.

From Martingale Central Limit theorem, we can see that

∑n
s=1Xns√∑n
s=1X

2
ns

=⇒ N(0, 1)

and
√
n(ξ̂n,t − ξt) =⇒ N(0, ωξt), where

ωξt = W
>

t ΩZWt

= ht(θ0){q
2
α

4
(G
>

t −G)E[l∗1tl
∗
1t

>
]−1(Gt −G)

+
α(1− α)−A>qαB

−1Aqα
f(qα)2

+ [qα +
e
ᵀ
2B
−1Aqα

f(qα)
]2[Eε4 − 1− (Eε3)2]}.
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Denote a truncated version of hn+1as

h∗n+1 =
c2

1− b + ac2
m∑
j=1

bj−1y2
n+1−j

where the truncation order is m = log n. As a result, the approximation error is of order op(1):

hn+1 − h∗n+1 = ac2
∞∑

j=m+1

bj−1y2
n+1−j = Op(b

m)

Similarly, we can show that ∂hn+1∂β − ∂h∗n+1
∂β = Op(b

m). Consequently, Wn+1 −W ∗n+1 = Op(b
m).

At the same time, we have the following truncation approximation

1

n

n∑
s=1

Zs =
1√
n

n−m∑
t=1

ΨsR(εs) +

√
m− 1

n

1√
m− 1

n∑
t=n−m+1

ΨsR(εs)

=
1√
n

n−m∑
t=1

ΨsR(εs) + op(1)

As {εs} is iid sequence, we can draw the conclusion that Wn+1 →p W ∗n+1 ⊥ 1√
n

n−m∑
t=1

ΨsR(εs).

The above argument applies to χ̂n,t = h
1/2
t (θ̂)

̂̂
ESwα as:

√
n(χ̂n,t − χt)

=
√
n(h

1/2
t (θ̂)

̂̂
ESwα − h1/2

t (θ0)
̂̂
ESwα + h

1/2
t (θ0)

̂̂
ESwα − h1/2

t (θ0)ESα)

̂̂
ESwα − ESα =

1

n

n∑
t=1

{
1

α
(εt − qα)1(εt ≤ qα) +

1

α

∫ qα

−∞
F (x)dx+

1

α
C>R2(εt)

}
+ op(n

−1/2),

where C =
∫ qα
−∞[xf(x)

2 + e
ᵀ
2B
−1Ax]dx(Eε3,−1) +

∫ qα
−∞A>x dxB

−1. Notice that,

cov(
̂̂
ESwα − ESα, θ̂ − θ0) =

 0

c0(−Eε3,1)
2α E

[{
(εt − qα)1(εt ≤ qα) + C>R2(εt)

}
R2(εt)

]
 ,

so the conclusion regarding χ̂n,t holds.

3.8.2 Second Step Updates by Newton Methods

The consistent estimators of θ (coeffi cient for GARCH process) that we use for the empirical study

is from the first step QMLE. The reason that we do not go further to update them by the Newton-
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Raphson method is because the people in the industry would perfer to work with simpler model

than something that needs to use complex calculations. However, we still sketch the details if the

updated is needed in practice.

In order to make sure the convergence is on the right direction hence provides a better estimator,

the variable step length algorithm is used, which is similar as the BHHH methods. (BHHH is an

acronym of the four originators: Berndt, B. Hall, R. Hall, and Jerry Hausman). The algorithms

are iterative, defininng a sequence of approximatiosn, given by,

β̂k+1 = β̂k + λk

[
1

n

∑n

t=1
l̂∗kt(β̂k)l̂∗kt(β̂k)>

]−1
1

n

∑n

t=1
l̂∗kt(β̂k),

where β̂k is the parameter estimate at step k, and λk is a parameter (called step size) which partly

determines the particular algorithm. For the BHHH algorithm , λk is determined by calculations

within a given iterative step, involving a line-search until a point β̂k+1 is found satisfying certain

criteria. More information will be provided upon request.
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Chapter 4

Semiparametric Value-at-Risk

Forecasts for ARCH(∞) Models

4.1 Introduction

Despite the large empirical literature on the two-stage VaR estimation, there is rather sparse liter-

ature investigating the sampling properties of the proposed procedures. The statistical properties

of the proposed VaR estimator is important because confidence intervals of the conditional VaR are

very useful in setting up prudent capital reserve requirements for banks and conservative trading

limits for traders. Christoffersen and Gonçalves (2005) give the following example to illustrate the

importance of these confidence bands. Suppose a portfolio manager has a point estimate for the

VaR of 13% and is capped with a VaR of up to 15% of current capital. If this is the only information

available, the 13% point forecast indicates the portfolio is safe. Now suppose the manager is given

the confidence band of 10%-16% for the VaR, he may decide to rebalance the portfolio. The major

diffi culty in exploring the large sample theory of two-stage VaR lies in the parameter uncertainty

in volatility estimation. This parameter uncertainty complicates interval estimation of VaR since

VaR estimation is based on the devolatized residuals instead of the true errors.

This chapter proposes a new VaR forecast method that is robust to heavy-tailed errors and

to provide a complete asymptotic theory that acknowledges parameter uncertainty in volatility

estimation. The proposed forecasts methods allow for a wide class of error distributions, including

heavy-tailed ones. The existence of heavy-tailed financial time series is well documented and has

recently received great attention. For example, Mittnik and Rachev (2000) and Rachev (2003)
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show that even after GARCH filtering, some residual time series are still heavy-tailed and far from

normal.1

The existence of heavy-tailed errors poses challenges to volatility estimation. Many volatility

estimators require at least a finite fourth moment.2 For example, Weiss (1986) proves the consis-

tency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) in the linear

ARCH(q) model under fourth order moment assumptions on the ARCH process. Lee and Hansen

(1994) weaken the moment conditions to existence of the fourth moment of the errors for GARCH

processes.3 In the presence of heavy-tailed errors, Hall and Yao (2003) show that the QMLE for

parametric GARCH models suffers from complex limit distributions and slow convergence speed.

The distribution of the subsequent quantile estimator based on the devolatized residuals therefore

possesses unknown properties. This causes additional problems for the VaR estimators.

In the first step of the two-stage VaR forecasts, this paper proposes new volatility estimators

to safeguard against heavy-tailed errors. The proposed volatility estimators employ least squares

methods for log-transformed data. This volatility estimator asks for fewer moment conditions, thus

allowing for a wider range of error distributions than QMLE. The reason is that the transformed er-

rors, log(ε2
t ), have much thinner tails than original errors εt. Additionally, after the transformation,

the regression problem becomes homoskedastic in stead of heteroskedastic.

In the second step, empirical quantile and extreme-value-theory based quantile are investigated.

It is found that the parameter uncertainty changes the asymptotic variance of empirical quantile

estimator.

The chapterr is organized as follows. First we discuss the model and the proposed forecast

method in section 2. Then the asymptotic theory is presented in section 3. Extreme Value Theory

based methods are discussed in section 4. Simulations and empirical studies are provided in section

5 and 6. Section 7 comes the conclusion and the potential extension.

4.2 The model and Value-at-Risk forecasts

This approach addresses Value-at-Risk forecast in a semiparametric multiplicative model

yt = h
1/2
t (β)εt, (4.1)

1See Bollerslev et al. (1992), Nolan (2001), Rachev and Fabozzi (2005) and Tsay (2005) for additional evidence.
2The consistency property holds under weaker moment conditions; it is the asymptotic normality that requires

finite fourth moment. See Berkes and Horvath (2004) for general discussion.
3For more recent volatility estimators, see Härdle and Tsybakov (1997) for nonparametric models and Yang(2006)

for semiparametric models.

82



where {εt} is an i.i.d sequence of errors with unknown density f(·). The conditional scale of yt condi-

tioning on Ft−1 is ht(β), and εt is independent of Ft−1. We assume a general ARCH(∞) parametric

structure for ht

ht(β) = G(c0 +

∞∑
j=1

cj(β)ψ(yt−j , εt−j)), (4.2)

where G(·) and ψ(·) are known functions, while c0 and cj are unknown finite-dimensional parame-

ters. The link function G(·) is positive and invertible. Additionally,

c0 > 0 ; cj(β) > 0, j ≥ 1; sup
β
|cj(β)| ≤ cρj , ρ < 1. (4.3)

The structure (1)-(3) is very flexible and encompasses a wide classes of conditional volatility

models. Examples are as follows4 :

Example 1 GARCH (Engle (1982), Bollerslev (1986)): ht = c+
p∑
i=1

aiy
2
t−i +

q∑
j=1

bjht−j

G(x) = x; c0 = c/(1−
q∑
j=1

bj); cj =

p∑
i=1,i≤j

aiG
j−i(1, 1), G = (

b1 ... bq

Iq−1 ... 0
);ψ(x) = x2

Example 2 linear GARCH (Koenker and Xiao (2009)): ht = c+
p∑
i=1

ai|yt−i|+
q∑
j=1

bjht−j

G(x) = x; c0 = c/(1−
q∑
j=1

bj); cj =

p∑
i=1,i≤j

aiG
j−i(1, 1), G = (

b1 ... bq

Iq−1 ... 0
);ψ(x) = |x|

Example 3 leverage GARCH (Glosten, Jagannathan and Runkle (1993)): ht = c + ay2
t−1[1 +

γ1(yt−1<0)] + bht−1

G(x) = x; c0 = c; cj = abj−1;ψ(x) = x2 + γx21(x<0)

Example 4 GARCH-in-Mean model (Drost and Klaasens(1997)): ht = c + ay2
t−1 + bht−1; εt =

µ+ σξt

G(x) = x; c0 = c/(1− b); cj = abj−1;ψ(x) = x2

Example 5 IGARCH(1,1): ht = c+ (1− b)y2
t−1 + bht−1

G(x) = x; c0 = c/(1− b); cj = (1− b)bj−1;ψ(x) = x2

4Bollerslev(2008) has a comprehensive list of parametric GARCH models.

83



Example 6 Quadratic GARCH (QGARCH) Sentana (1995) ht = c+ ay2
t−1 + bht−1 + φyt−1

G(x) = x; c0 = c/(1− b); cj = bj−1;ψ(x) = ax2 + φx

Example 7 Stable GARCH(SGARCH/NGARCH) Liu and Brorsen(1995) Higgins and Bera(1992)

hδt = c+ ayδt−1 + bhδt−1

G(x) = x1/δ; c0 = c; cj = abj−1;ψ(x) = xδ

Example 8 EGARCH(Nelson 1991). TGARCH(Zakoian 1994). NAGARCH(Engle and Ng(1993)),

FGARCH(Hentschel(1995))

h
λ/2
t − 1

λ
= $ + ah

λ/2
t−1f

v(ε) + b
h
λ/2
t−1 − 1

λ

G(x) = x1/λ; c0 = λ$ + 1; cj = abj−1;ψ(y, ε) = (
y

ε
)λfv(ε)

Our model is similar to the ARCH(∞) model considered in Robinson and Zaffaroni (2005).

Robinson and Zaffaroni (2005) treats general QMLE estimation based on the Gaussian distribu-

tion, which is sensitive to distribution assumptions, especially heavy-tailed errors. Zaffaroni (2009)

studies the Whittle estimation of EGARCH based on log squared returns. Similar log treatment

appears in Kim, Shephard and Chib (1998) and further transformations are available. Weiss (1986)

considered the least squares estimator based on the following

y2
t = ht(β) + εt

εt = ht(β)(ε2
t − 1),

where εt is conditional heteroskedastic. The large sample theory requires the existence of 8th

moment of yt. Bose and Mukherjee (2003) considered a two stage least squares estimator for

GARCH models but their first stage estimator still assumes strong moment conditions.

For all the above parametric GARCH models, the standard estimation method is QMLE, based

on the assumption of normality of ε. Baillie and Bollerslev (1989) uses student− t distribution to

allow for more flexible parametric family of distributions. However, Drost and Klaassen (1997) and

Newey and Steigerwald (1997) argues that QMLE based on nonnormal distributions generally fails

to be consistent if the true distribution is different.

Various parametric GARCH models are proposed to accommodate different regularities found

in financial data. Observe that model (1) is not changed when the unknown parameter β0 and inno-
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vation εt are replaced by β0c and innovation εt/c, respectively, for some positive c. Therefore, scale

normalization is needed to make identification possible. For example, two common normalizations

in volatility estimation literature are E[ε2
t ] = 1 and Median[ε2

t ] = 1.

In this paper we assume E[log(ε2
t )] = 0 for reasons to be explained later in this section. Note that

we can always rewrite model 1 to have errors that satisfy E[log(ε2
t )] = 0: in case E[log(ε2

t )] = K,

model 1 can be rewritten as yt = h
1/2
t (β0) exp(K/2)εt exp(−K/2), where E[log((εt exp(−K/2))2)] =

0. Furthermore, the nuisance parameter K doesn’t affect the estimation of Value-at-Risk since

Q(yn+1|Fn) = h
1/2
n+1(β0)qα = h

1/2
n+1(β0) exp(K/2)qα exp(−K/2).

Given time series sample {yt}nt=1, our forecast target is the parameter h
1/2
n+1(β0)qα. This forecast

is a combination of the volatility forecast h1/2
n+1(β̂) and the error quantile estimation q̂α. Most of

the literature employs QMLE for β̂ but this paper proposes a new estimation method for β0. Given

sample {y0, y1, ...yt}, our Value-at-Risk forecasts proceeds with the following two steps:

(i) From the transformation log y2
t = log ht+log ε2

t , we consider the least square estimation problem

of

β̂ = arg min
β

1

n

n∑
t=1

[log y2
t − log ht(β)]2. (4.4)

(ii) Estimate the unconditional quantile q̂α from the standardized residuals ε̂t = yt/h
1/2
t (β̂) from

the following minimization problem

q̂α = arg min
q

1

n

n∑
t=1

{|̂εt − q|+ (2α− 1)(ε̂t − q)}. (4.5)

(iii) The one-step ahead conditional VaR prediction at time n is

h
1/2
n+1(β̂)q̂α. (4.6)

We can see that this one-period-ahead VaR prediction involves volatility prediction h1/2
n+1(β̂)

and quantile estimation q̂α. The variation from this VaR prediction is from the sampling variation

of β̂ and q̂α. Since we don’t know the true parameters (β0, qα) and use estimators (β̂, q̂α) in the

prediction, this parameter uncertainty is the major source of prediction variation. As a result, we

will study the joint distribution of (β̂, q̂α) in the following section.

The volatility estimator in (2) doesn’t rely on the assumption of a particular error distribution

so it offers robustness to both error distribution misspecification and existence of heavy-tailed

errors. After log transformation, the new model has error term log ε2
t that is homoskedastic; the
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moment condition used for estimation is only E[log ε2
t ]

2 < ∞. In few cases like multiplicative

ARCH(p) models, one can even obtain a closed form solution to (i). In many cases, we have to solve

the nonlinear optimization problem of (i). This objective function is smooth and has continuous

derivatives for most specifications of ht(β). This feature offers a numerical advantage over the LAD

optimization problem, which is common in robust statistics. We postpone our discussion regarding

this moment condition to the next section.

One could instead do nonlinear quantile regression based on the following

min
β,qα

1

n

n∑
t=1

lα(yt − h1/2
t (β)qα), (4.7)

where lα(x) = |x| + (2α − 1)x. However, there are three issues: first, β and qα are not jointly

identifiable; second, the above nonlinear quantile estimation is hard to solve numerically; third, and

more importantly, this one-step estimation method overlooks the moment conditions in (2), thus

is less effi cient. More intuitively, the model specifies the conditional quantile in a way that part of

the finite dimensional parameters β does not vary with quantile level α. In contrast, this one-step

regression does not assume β is constant across all quantile level α.

4.3 Asymptotic theory

Denote θ = (β′, qα)′ and

lt(β) = [log y2
t − log ht(β)]

1

ht(β)

∂ht(β)

∂β
.

Before we show the asymptotic theory for the estimators (β̂, q̂α), we discuss the following assump-

tions. For some r′ > r > 1,

Assumptions B

B1 The process {yt} is strictly stationary and absolute regular with mixing coeffi cients %j such

that
∑∞

j=1
j1/(r−1)%j <∞.

B2 εt is i.i.d with continuously differentiable density f(·), E[log ε2
t ] = 0, E[log ε2

t ]
2r < ∞ and εt

has αth quantile qα <∞.

B3 rank(E[ 1
h2t

∂ht
∂β

∂ht
∂β′ ]) = dim(β)

B4 E[supβ | 1
ht(β)

∂ht(β)
∂β |

2r′ ] < ∞, E supβ | 1
h2t (β)

∂ht(β)
∂β

∂ht(β)
∂β′ |

2r′ < ∞, E supβ | 1
ht(β)

∂2ht(β)
∂β∂β′ |

2r′ <

∞, E[supβ | log ht
ht(β) |

2r′r/(r′−r)] <∞

86



B5 E[supβ |h
1/2
t (β)|] <∞.

For assumption B1 to hold, a suffi cient condition is that the mixing coeffi cients decay exponen-

tially. A variety of time series models have been verified to be geometrically ergodic, which implies

exponentially decaying mixing coeffi cients. For nonlinear homoskedastic autoregressive models, rel-

evant results have been obtained in Bhattacharya and Lee (1995) and Lee (1997). Cline and Pu

(1999), Cline and Pu (2004) and Liebscher (2005) have extended above results for ARCH type of

heteroskedasticity. Recently, Carrasco and Chen (2002), Francq and Zakoïan (2006) and Kristensen

(2007) have shown similar results hold for a large family of GARCH models.

The assumption E[log ε2
t ]

2r < ∞ is considerably weaker than E[ε4
t ] < ∞, which is commonly

assumed for volatility estimation. One suffi cient condition is that the density is bounded on a

compact set containing zero and the tails decay fast enough. To see this, without loss of generality,

we consider the case that density is bounded in ε ∈ [−1, 1] by K, i.e., f(ε) ≤ K. Notice that any

density must decay faster than x−1 at infinity. Suppose that f(ε) = O(ε−a) as ε → ∞ for some

a > 1. As a result, we can see

E[(log(ε2
t ))

2r] =

∫ −1

−∞
[log(ε2)]2rf(ε)dε+

∫ 1

−1

[log(ε2)]2rf(ε)dε+

∫ ∞
1

[log(ε2)]2rf(ε)dε

≤ 2C · |
∫ 0

∞

t2r

2
et/2[e−at/2]dt|+K ·

∫ 1

−1

[log(ε2)]2rdε

< ∞,

where the last inequality holds because
∫ 1

−1
[log(ε2)]2rdε <∞.5

The condition E[(log(ε2
t ))

2] <∞ is satisfied by most commonly used distributions. For example,

stable distributions, t distributions, etc. Table 29 reports that E[(log(ε2
t ))

2] < ∞ can serve as a

legitimate assumption for various t distributions:

Table 29. A comparison of moment conditions

t(1) t(2) t(3) t(4) t(5) t(500)

E[(ε4
t )] ∞ ∞ ∞ ∞ 26 3

E[(log(ε2
t ))

2] 9.89 7.07 6.69 6.58 6.55 6.55

Based on averages of 106 simulated samples from each distribution

For robustness consideration, one could assume instead E[log(ε2
t )|Ft−1] = 0 and E[1{εt≤qα} −

5This is because E[log ε2t ]
2r < ∞ holds for uniformly distributed random variables ε. To see this, consider the

moment generating function(MGF) for log ε2: E[exp{t · [log ε2]}] = E[ε2t], which is finite for all t > −1/2. Therefore
the MGF of log ε2 exists and all moments exist.
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α)|Ft−1] = 0. Our volatility estimation is still valid in this case although the asymptotic variance

of the volatility estimator would be different. The condition E[1{εt≤qα}−α|Ft−1] = 0 is also called

quantile independence assumption, see Manski (1988) and Chaudhuri (1997).

The assumption B4 has been verified by many authors for various GARCH models.

The extra information of i.i.d assumptions on εt can be exploited by constructing a more effi cient

estimator in the following additional steps. Let

f̂(ε) =
1

nh

n∑
t=1

k(
ε− ε̂t
h

),

where the estimated residuals ε̂t = yt/h
1/2
t (β̂). Then let

β̃ = arg min
β

1

n

n∑
t=1

{log f̂(
yt

h
1/2
t (β)

)− log h
1/2
t (β)}.

We do not pursue this here.

The following theorem characterizes the joint distribution of β̂ and q̂α. Let:

Q =

 −E[ 1
h2t

∂ht
∂β

∂ht
∂β′ ] 0

qαf(qα)
2 E[ 1

ht
∂ht
∂β′ ] f(qα)



Ω =

 Ωβ Ωβq

Ω′βq Ωq



Ωβ = E[log ε2
t ]

2 · E[
1

h2
t

∂ht
∂β

∂ht

∂β′
]−1

Ωβq = −E[
1

ht

∂ht
∂β

]E[
1

h2
t

∂ht
∂β

∂ht

∂β′
]−1{qαE[log ε2

t ]
2

2
+
E[log ε2

t (1{εt ≤ qα} − α)]

f(qα)
}

Ωq =
α(1− α)

f2(qα)
+
qαE[log ε2

t (1{εt ≤ qα} − α)]

f(qα)
E[

1

ht

∂ht

∂β′
]E[

1

h2
t

∂ht
∂β

∂ht

∂β′
]−1E[

1

ht

∂ht
∂β

]

+
q2
αE[log ε2

t ]
2

4
E[

1

ht

∂ht

∂β′
]E[

1

h2
t

∂ht
∂β

∂ht

∂β′
]−1E[

1

ht

∂ht
∂β

].

Theorem 5 Suppose that Assumptions B1-5 hold. Then,

√
n(θ̂ − θ0) =

1√
n

n∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
+ op(1)

√
n(θ̂ − θ0)→d N(0,Ω).
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√
n(θ̂ − θ0)→d N(0,Ω).

Instead of considering least square estimation (LSE) as in (2), one can consider least absolute

estimation (LAD) for the log-transformed model. This LAD type estimator has been proposed by

Peng and Yao (2003) and further extended to semi-strong GARCH case by Linton et. al. (2009).

Here, we compare their relative effi ciency by computing the ratio of the two asymptotic variances

RΣ =
ΩβLAD
ΩβLSE

=
1

E[(log(ε2
t ))

2][f(1) + f(−1)]2
.

To make the comparison clearer, we report the value of RΣ for t distributions with various degree

of freedoms:

Table 30. Relative deficiency ratio RΣ = ΩβLAD/ΩβLSE

t(1) t(2) t(3) t(4) t(5) t(500)

0.9979 0.9551 0.8737 0.8246 0.7919 0.6543

From the above table we can see that, for t distributions, the asymptotic variance of LSE is

larger than that of LAD. The heavier the distribution is, the more effi cient LAD is. In general, this

effi ciency comparison depends on the variance of log(ε2
t ) and the error density at ±1. However,

because the objective function in (i) is smooth, while that for LAD is nonsmooth, the LSE method

might have numerical advantage over LAD. Furthermore, in terms of calculating confidence bands

for the proposed volatility estimator or VaR estimator, the variance of the LSE is easier to estimate

than that of LAD, because Ω̂βLAD involves density estimation at ±1.

Let

xn+1 =

(
qα
2

1

h
1/2
n+1

∂hn+1

∂β′
,
√
hn+1

)′
.

Theorem 6 Suppose that Assumptions B1-5 hold. Then,

(x′n+1Ωxn+1)−1/2
√
n(h

1/2
n+1(β̂)q̂α − h1/2

n+1qα)→d N(0, 1).

For example, in GARCH(1,1) models, the one period ahead forecast can be written as hn+1 =

c
1−b + a

∞∑
j=0

bjy2
n−j and

∂hn+1

∂β
=

 1

1− b ,
∞∑
j=0

bjy2
n−j ,

c

(1− b)2
+ a

∞∑
j=0

jbj−1y2
n−j

′
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From theorem 6, we can construct the predictive confidence intervals for VaR. Specifically, we

employ the moment counterparts:

ĥn+1 =
ĉ

1− b̂
+ â

n∑
j=0

b̂jy2
n−j

∂̂hn+1

∂β′
=

 1

1− b̂
,

n∑
j=0

b̂jy2
n−j ,

ĉ

(1− b̂)2
+ â

n∑
j=0

jb̂j−1y2
n−j

′

x̂n+1 =

(
q̂α
2

1

ĥ
1/2
n+1

∂̂hn+1

∂β′
,

√
ĥn+1

)′

Ω̂ =

 Ω̂β Ω̂βq

Ω̂′βq Ω̂q



Ω̂β =
1

n

n∑
t=1

[log ε̂2
t ]

2 · { 1

n

n∑
t=1

1

ĥ2
t

∂ĥt
∂β

∂ĥt

∂β′
}−1

Ω̂βq = − 1

n

n∑
t=1

1

ĥt

∂ĥt
∂β
{ 1

n

n∑
t=1

1

ĥ2
t

∂ĥt
∂β

∂ĥt

∂β′
}−1{ 1

n

n∑
t=1

q̂α[log ε̂2
t ]

2

2
+

1

n

n∑
t=1

log ε̂2
t (1{ε̂t ≤ q̂α} − α)

f̂(q̂α)
}

Ω̂q =
α(1− α)

f̂2(q̂α)
+

1

n

n∑
t=1

q̂α log ε̂2
t (1{ε̂t ≤ q̂α} − α)

f(q̂α)

1

n

n∑
t=1

1

ĥt

∂ĥt

∂β′
{ 1

n

n∑
t=1

1

ĥ2
t

∂ĥt
∂β

∂ĥt

∂β′
}−1 1

n

n∑
t=1

1

ĥt

∂ĥt
∂β

+
1

n

n∑
t=1

q̂2
α[log ε̂2

t ]
2

4

1

n

n∑
t=1

1

ĥt

∂ĥt

∂β′
{ 1

n

n∑
t=1

1

ĥ2
t

∂ĥt
∂β

∂ĥt

∂β′
}−1 1

n

n∑
t=1

1

ĥt

∂ĥt
∂β

.

The confidence interval with level α0 for h
1/2
n+1(β̂)q̂α based on the asymptotic theory above is

Iα0n+1 = (h
1/2
n+1(β̂)q̂α − zα0

√
x̂′n+1Ω̂x̂n+1/T , h

1/2
n+1(β̂)q̂α + zα0

√
x̂′n+1Ω̂x̂n+1/T ),

where zα0 solves Pr(|N(0, 1)| ≤ zα0) = α0.

4.4 Extreme Value Theory

Instead of approximate the error distribution by the empirical distribution of estimated errors as in

(ii), we may employ extreme value theory to estimate the quantile qα. This allows for extrapolation

outside the range covered by the sample.

Suppose that F (·) is a heavy-tailed distribution in the sense that the tail distribution has a

polynomial representation

lim
λ→∞

1− F (λx)

1− F (λ)
= x−γ , x > 0, γ > 0. (4.8)
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Heavy-tails in market return distributions also have some behavioral origins (investor excessive

optimism or pessimism leading to large market moves). Examples of heavy-tailed distributions are

Pareto-like distributions, such as Pareto, Cauchy, Student-t, Burr and Stable distributions with

exponent less than two. For any δ > γ, the expectation E[|X|δ] is infinite. Empirical studies

frequently encounter time series with γ ∈ (3, 5), see for instance Embrechts et al. (1997, Page 330).

This polynomial representation can be reexpressed as 1−F (x) = a(x)x−γ , where limλ→∞
a(λx)
a(λ) = 1.

For simplicity, we assume

F (x) = 1− F (x) = cx−γ . (4.9)

Note that for γ > 0, the choice of the scale a(x) does not make a difference asymptotically.

There are two main methods for extreme values, Block Maxima and Threshold Exceedances.

4.4.1 Block Maxima

The main idea is we can divide the total observations of an i.i.d series into m block of size n, so

then we have m block maxima and the true distribution of these maximas can be approximated

by the Generalized Extreme Value (GEV) Distribution as long as total observation is large enough.

The parameters can be then estimated by the Maximum likelihood. The addition assumption for

this method to work is to require the underlying distribution of the data to be in the domain of

attraction of an extreme value distribution. But the downside of it is the approach is wasteful of

data.

Definition 1 The distribution function of the (standard) GEV distribution is given by:

Fφ(x) =

 exp(−(1 + φx)−1/φ), φ 6= 0

exp(−e−x), φ = 0,

where 1 + φx > 0

A location and scale parameter can be added in as Fφ,µ,σ(x) = Fφ((x− µ)/σ), and µ and σ are

location and scale parameters respectively.

4.4.2 Threshold Exceedances

A more effi cient and practical method to estimate the extreme value is the so called Threshold

Exceedance method. The interest centres to estimate is the tail index γ,which can be done by using

the Generalized Pareto Distribution method (GPD) and the Hill method.
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GPD Method

Definition 2 Excess Distribution over the Threshold: Let {X} be an random variable with distri-

bution function F . The Excess Distribution over the threshold u is defined as

Fu(x) = P (X − u ≤ x | X > u) =
F (x+ u)− F (u)

1− F (u)
.

The excess distribution can be fitted into the Generalized Pareto Distribution (GPD) .

Definition 3 Generalized Pareto Distribution (GPD): The df of the GPD is given by

Gφ,ω(x) =

 1− (1 + φx/ω)−1/φ, φ 6= 0

1− exp(−x/ω), φ = 0,

where φ and ω are shape and scale parameters.

In the heavy-tail case, φ > 0, and Gφ,ω is the ordinary Pareto distribution with φ = 1/γ, where

γ is the tail index as stated above. Solving maximization of log-likelihood function yields a GPD

model Gφ̂,ω̂ for the excess distribution function, and hence we can get the tail index easily. However,

how to choose the threshold u is a real diffi culty and we will illustrate the graphic method in the

later empirical study.

Hill Method

The Hill approach is a well-known method for estimating the tail thickness parameterss of heavy-

tailed distribution. We take one-step further to estimate the EVT based VaR using the estimated

residual {ε̂t} :

1. First, take the transformation ηt = −ε̂t and take the kT largest order statistics {ηT,T−t}kTt=1

from ηT,1 ≤ · · · ≤ ηT,T ; Consider the censored data {1{ηt>ηT,T−kT },max{ηt, ηT,T−kT }}
T
t=1

with the following log-likelihood function

L(γ, c) =

T∑
t=1

[1{ηt>ηT,T−kT }
log(cγη−γ−1

t ) + 1{ηt≤ηT,T−kT }
log(1− cη−γT,T−kT )].

2. The maximum likelihood estimator (γ̂, ĉ) is

γ̂ = { 1

kT

kT∑
t=1

log
ηT,T−t+1

ηT,T−kT
}−1 ; ĉ =

kT
T
ηγ̂T,T−kT
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3. The residual quantile estimator is

q̂α = −(T
α

kT
η−γ̂T,T−kT )−1/γ̂ = −ηT,T−kT (

kT
αT

)
1
kT

∑kT
t=1 log

ηT,T−t+1
ηT,T−kT

4. The conditional VaR estimator is given by

ξ̂α(x) = σ̂(x)q̂α,

where volatility is estimated by the LSE method as defined in the previous section.

Choosing kT encounter the same diffi cult as choosing the threshold parameter in the GPD

methods. We will illustrate the graphic method in the empirical study as well.

EVT Asymptotic Theory

Denote U(x) as the inverse function of 1/(1− F (x)). Suppose there exists a function A(t)→ 0, as

t→∞, such that

lim
t→∞

U(tx)/U(t)− x1/γ

A(t)
= x1/γ x

ρ − 1

ρ

for some ρ < 0 and all x > 0.

Before showing the asymptotic theory for the conditional quantile q̂α, we list out some assump-

tions. Further details can be found in Hill (2013).

Assumptions C

C1 Smoothness and Moments

a. Let {=t}t∈Z be a sequence of σ-field that do not depend on θ and define F := σ(∪t∈Z=t).

xt(θ) lies on a probability measure spaece (Ω,F , P ) and is =t−measurable

b. xt(θ) is stationary, ergodic and thrice continuously differentiable with =t−measurable

stationary and ergodic derivatives gt(θ) and ht(θ).

c. Each ωt(θ) ∈ {xt(θ), gi,t(θ), hi,j,t(θ)} is govened by a non-degenerate distribuion that is

absolutely continuous with respect to Lebesgue measure, with uniformly bounded derivatives:

supθ∈Θ supa∈R ‖(∂/∂θ)P (ωt(θ) ≤ a)‖ < ∞ and supθ∈Θ supa∈R ‖(∂/∂a)P (ωt(θ) ≤ a)‖ < ∞ .

Further E(supθ∈Θ |ωt(θ)|
ι
<∞ for some tiny ι > 0

d. infθ∈Θxt(θ) � δ a.s. for some δ > 0

C2 Regular Variation and Fractile Bound
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a. There exists a neighborhood ℵ0(δ) such that

lim
a→∞

sup
θ∈ℵ0(δ)

∣∣∣∣ aγ(θ)

L(a, θ)
P (xt(θ) > a)− 1

∣∣∣∣ = 0

The tail component L(a, θ) is slowly varying with reaminder in a,uniformly on Θ. More-

over, the tail index γ(θ) is locally bounded inf θ∈ℵ0(δ)γ(θ) � 0 and sup
θ∈ℵ0(δ)

γ(θ) < ∞, and

is twice differentiable with bounded derivatives and a Lipschitz first deriva-

tives‖(∂/∂θ)γ(θ)‖ < ∞,
∥∥(∂/∂θ)2γ(θ)

∥∥ < ∞, and ∥∥∥(∂/∂θ)γ(θ)− (∂/∂θ)γ(θ̃)
∥∥∥ ≤ K

∥∥∥θ − θ̃∥∥∥
for each θ, θ̃ ∈ ℵ0(δ)

b. kT →∞ and kT = o(T/ ln(T )).

C3 Mixing Condition

ℵ0(δ) be the neighborhood of θ0 defined in Assumption 7.a. Then xt(θ) is a β-mixing

for each θ ∈ ℵ0(δ) with summable coeffi cients.

C4 Plug in

The plug-in estimator must be satisfied: there exists a unique point θ0 ∈ Θ such that

k
1/2
T ln(T )(θ̂T − θ0) = op(1)

C5 kT →∞, kT /T → 0,
√
kTA(T/kT )→ 0, 1

A(T/kT )T 1/4
→ 0, log( kTαT )/

√
kT → 0

Define the asymptotic variance

σKT = E(k
1/2
T (γ̂−1 − γ−1)2

where γ̂ = { 1
kT

∑kT
t=1 log

ηT,T−t+1
ηT,T−kT

}−1

Theorem 7 Suppose that Assumptions C1-C5 hold. Then, T →∞, we have

√
kT log((q̂α)/qα)

σKT | log( kTTα )|
→d N(0, 1),

where qα is the real residual quantile, and the other notations are consistent as above.

Remark: A nonparametric estimator of the asymptotic variance was proposed in Hill (2010).

Under regular condition, the estimator is consistent,

σ̂2
KT

σ2
KT

→p 1.
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4.5 Simulations

A small simulation study is used to illustrate the accuracy of our proposed VaR forecasting model

under the heavy-tailed situation. The data are generated by the following process

yt = h
1/2
t εt

ht = c+ ay2
t−1 + bht−1

εt ∼ iidF (x)

where we fix c = 0.02. The distributions we choose in the simulation study are Student-t distribution

and skew-t distribution.

4.5.1 F (x) : Student-t Distribution

For each model, we simulate 200,400 and 800 times. We compute prediction errors: hn+1(β̂)q̂α −

h
1/2
n+1qα for all simulations and note APE as the median of absolute prediction error. In addition,

we compute the bias of estimators for GARCH parameter b. The simulation results with different

parameters are in the following tables:

Table 31: Median of Absolute Prediction Error and Bias of b̂ (a = 0.4, b = 0.5)

APE bias of b̂

v = 444 QMLE Log-LSE Log-LAD QMLE Log-LSE Log-LAD

n=200 0.0395 0.0510 0.0525 -0.0385 -0.0667 -0.0853

n=400 0.0285 0.0359 0.0368 -0.0163 -0.0271 -0.0370

n=800 0.0194 0.0251 0.0257 -0.0083 -0.0138 -0.0162

v = 3

n=200 1.3676 0.8624 0.7820 -0.0171 -0.0072 -0.0666

n=400 1.5326 0.5914 0.6409 -0.0187 -0.0047 -0.0810

n=800 4.2580 0.4131 0.7568 -0.0927 -0.0024 -0.1535

Table 32: Median of Absolute Prediction Error and Bias of b̂ (a = 0.8, b = 0.1)
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APE bias of b̂

v = 444 QMLE Log-LSE Log-LAD QMLE Log-LSE Log-LAD

n=200 0.0267 0.0329 0.0340 -0.0045 0.0247 0.0170

n=400 0.0194 0.0228 0.0233 -0.0072 0.0118 0.0083

n=800 0.0140 0.0165 0.0169 -0.0073 0.0041 0.0039

v = 3

n=200 0.2289 0.1072 0.1123 0.0386 0.0076 0.0067

n=400 0.2272 0.0769 0.0830 0.0658 0.0039 0.0021

n=800 0.2045 0.0452 0.0480 0.0614 0.0011 0.0011

Table 33:Median of Absolute Prediction Error and Bias of b̂ ( a = 0.1, b = 0.8)

APE bias of b̂

v = 444 QMLE Log-LSE Log-LAD QMLE Log-LSE Log-LAD

n=200 0.0481 0.0700 0.0701 -0.1550 -0.3914 -0.4045

n=400 0.0338 0.0483 0.0421 -0.0851 -0.2936 -0.2890

n=800 0.0261 0.0374 0.0372 -0.0239 -0.1766 -0.1834

v = 3

n=200 0.3654 0.3966 0.4186 -0.0609 -0.0792 -0.1056

n=400 0.3068 0.2304 0.2606 -0.0337 -0.0179 -0.0230

n=800 0.2674 0.1480 0.1553 -0.0118 -0.0110 -0.0123

Figure 13: QQ plot of the true student-t (3) distribution by QMLE, log-LSE and log-LAD

methods
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4.5.2 F (x): Skewness-t Distribution (Hansen, 1994)

Table 34: Median of Absolute Prediction Error and Bias of b̂ (a = 0.4, b = 0.5, lambda =

0.7, alpha = 0.05)

APE bias of b̂

v = 15 QMLE Log-LSE Log-LAD QMLE Log-LSE Log-LAD

n=200 0.6304 0.1542 0.9865 -0.0805 0.1272 -0.3030

n=400 0.0351 0.0526 0.0625 0.0833 0.0960 0.0682

n=800 0.0040 0.0210 0.0316 0.0532 -0.0103 0.0405

v = 3

n=200 0.0159 0.0279 0.0386 -0.0150 -0.1804 -0.2823

n=400 0.0103 0.0297 0.0216 0.0607 0.0145 -0.0111

n=800 0.0070 0.0045 0.0037 -0.0445 -0.0682 -0.0919

Table 35: Median of Absolute Prediction Error and Bias of b̂ (a = 0.1, b = 0.8, lambda =

0.7, alpha = 0.05)
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APE bias of b̂

v = 3 QMLE Log-LSE Log-LAD QMLE Log-LSE Log-LAD

n=200 0.0117 0.0057 0.0006 0.0759 0.0527 0.0626

n=400 0.0319 0.0104 0.0046 -0.3167 -0.8000 -0.1606

n=800 0.1512 0.0312 0.0184 -0.1611 -0.1533 -0.0491

v = 15

n=200 0.0399 0.0257 0.0064 -0.1465 -0.1252 -0.1733

n=400 0.0281 0.0613 0.0183 0.0490 -0.5630 0.0791

n=800 0.0085 0.0008 0.0039 -0.0464 -0.0168 -0.0583

Table 36:Median of Absolute Prediction Error and Bias of b̂ (α = 0.8, b = 0.1, lambda =

0.7, alpha = 0.05)

APE bias of b̂

v = 3 QMLE Log-LSE Log-LAD QMLE Log-LSE Log-LAD

n=200 0.0545 0.0008 0.0044 0.2503 0.0171 -0.1000

n=400 0.0077 0.0030 0.0064 -0.0535 0.2118 0.3026

n=800 0.0144 0.0205 0.0173 -0.0749 0.2243 0.1953

v = 15

n=200 0.0279 0.0185 0.0290 0.1042 0.0667 0.0244

n=400 0.0112 0.0354 0.0307 -0.0380 -0.0366 -0.0790

n=800 0.0091 0.0020 0.0032 -0.0862 -0.0511 -0.0635

Figure 14: QQ plot of true skew-t(3,0.7) distribution by QMLE, log-LSE and log-LAD methods
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From the QQ plot of the true t(3) and skew-t(3,0.7) distribution, we can see that the performance

of the three methods are quite similar when the errors are skew-t distributed, while log-LSE and

log-LAD are significant better when the errors follow t distribution.

4.6 Empirical Study

Finally, we investigate whether our new proposed conditional VaR methods have good forecasting

ability by comparing them with other conventional methods using index, individual company and

exchange rate data. The advantage of the model is that it can be used in the situation with potential

heavy-tailed errors. The datasets that we use here are MSCI(Emerging Market), S&P 500, IBM

and GBP/USD exchange rate.

4.6.1 Descriptive Statistics

The four datasets that we use for our study are:

Table 37: Datasets
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datasets period source

MSCI (Emerging Market) 01/01/1988-31/12/2013 Datastream

S&P 500 01/01/1990 —31/12/2013 CRSP

IBM 01/01/2010 —31/12/2013 CRSP

GBP/USD Exchange Rate 01/01/2010 —31/12/2013 Federal Reserve Bank

Following table gives the descriptive statistics for the above datasets, the Ljung-Box test for auto-

correlation and the KS test for normality.

Table 38: Descriptive Statistics of the datasets

MSCI (EM) S&P IBM FX

Mean 0 0.0004 0.0004 0

Standard deviation 0.0116 0.0115 0.0111 0.0053

Min -0.0999 -0.0900 -0.0708 -0.0164

Max 0.1007 0.1151 0.0490 0.0235

Skewness -0.5689 -0.0534 -0.6641 0.1538

Kurtosis 10.8039 11.6135 7.8300 3.4748

In all datasets the Ljung-Box test of returns 20-lags has p-value 0, In all datasets the Ljung-Box test

of squared returns 20 lags has p-value 0, In all datasets, the Kolmogorov-Smirnov test for normality

has p-value 1.

4.6.2 Models

There are totally eight models to be used in our empirical part. Model 1-7 are applying in the com-

parison of the forecasting performance and Model 8 represents the extreme value theory forecasting

method.

Model 1-4 are the fundamental models that we used in the empirical study of last chapter,

naming MA, EWMA, HS, GARCH(1,1).

Model 5 (YLS-our model): Under the model specification, the conditional variance is mod-

elled by GARCH(1,1) and the conditional quantile is estimated by the empirical likelihood. The

conditional Value-at-Risk of return series given Ft−1 is,

ξt(α) =

p∑
j=1

ρjyt−j + h
1/2
t qα.
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The probability of losses exceeding VaR, α, must be specified, with the most common probability

level being 1% and 5%.

Model 6 (NCTPARCH): NCTPARCH denotes the noncentral-t distribution which is pro-

posed by Krause and Paolella (2014). The evolution of the conditional variance is modeled flexibly

by the APARCH model proposed by Ding et al. (1993) and the Value-at-Risk is

ξt+1(α) =

p∑
j=1

ρjyt+1−j + h
1/2
t+1qα.

εα,which represents the standardized error is an i.i.d noncentral-t distribution.

Model 7 (TWMIX): TWMIX is the time varying normal-mixture-GARCH type of models.

The conditional distribution of the standardized error is assumed to be a mixed normal distribution

with zero mean,

εt | Ft−1 ∼MixNormal (λ,µ,σt)

where λ is the vector of the mixing weights, µ is the vector of location coeffi cient and σt is the

vector of scale parameters.

Model 8(YLS-EVT): The extreme value theory VaR proposed in the chapter and the empirical

results will be showing seperately in the next section.

ξt(α) =

p∑
j=1

ρjyt−j + h
1/2
t qα.

where the conditional quantile is estimated by extreme value theory.

4.6.3 Forecasting Performance

In the paper, we use three methods to evaluate the VaR model forecasing ability, including graph

methods, violation ratio method and the White’s reality check test.

VaR Forecasting

The following are the one-day VaR prediction using different data. We use the rolling window

method with a 250 estimation window length and 0.01 significant level.

Figure 15: One day ahead Value-at-Risk prediction using EWMA and MA methods
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Figure 16: One day ahead Value-at-Risk prediction using HS and GARCH(1,1) methods
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Figure 17:One day ahead Value-at-Risk prediction using YLS and NCTPARCH methods
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Figure 18: One day ahead Value-at-Risk prediction using TWMIX method
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By simply observing the graphs, we may think EWMA, GARCH(1,1) and our method (YLS)

have better forecasting ability.

Violation Ratio

We use Violation Ratio, Bernoulli Coverage Test and Independent Test to evaluate the performance

of the VaR forecasting models:
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Table 39: Violation Ratio (MSCI(EM) and S&P)

Model/data MSCI(Emerging Market) S&P 500

Violation Ratio Volatility Violation Ratio Volatility

1.EWMA 2.0974 0.0123 1.8969 0.0132

2.MA 2.3117 0.0097 1.9486 0.0112

3.HS 1.3778 0.0140 1.4140 0.0151

4.GARCH(1,1) 1.8983 0.0129 1.9314 0.0132

5.YLS 1.3472 0.0140 1.3968 0.0128

6.NCTPARCH 0 0.0790 0 0.0765

7.TWMIX 1.7606 0.1673 1.3623 0.2731

Table 40: Bernoulli Coverage Test and Independent Test of MSCI(EM)

Model/data MSCI (EM)

Bernoulli Coverage Test Independent Test

Test Statistics p-value Test Statistics p-value

1.EWMA 60.3845 0.0000 2.7295 0.0985

2.MA Inf 0 33.0133 0.0000

3.HS 8.4264 0.0037 13.4784 0.0002

4.GARCH(1,1) 42.1380 0.0000 0.9942 0.3187

5.YLS 7.1744 0.0074 4.2847 0.0385

6.NCTPARCH 131.2976 0 NaN NaN

7.TVMIX 31.1184 0.0000 0.0003 0.9857

Table 41: Bernoulli Coverage Test and Independent Test of S&P
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Model/data S&P 500

Bernoulli Coverage Test Independent Test

Test Statistics p-value Test Statistics p-value

1.EWMA 37.2988 0.0000 7.5755 0.0059

2.MA 41.2773 0.0000 12.6035 0.0004

3.HS 8.8981 0.0029 7.3055 0.0069

4.GARCH(1,1) 39.9329 0.0000 2.8533 0.0912

5.YLS 8.2093 0.0042 2.2018 0.1378

6.NCTPARCH 116.5638 0 NaN NaN

7.TXMIX 6.9070 0.0086 2.3991 0.1214

We can see from Table 39 that the best model for both MSCI (EM) and S&P data are YLS,

which has a closer violation ratio to the range 0.8-1.2. From table 40 and 41, we can see that

for 0.01 significant level, both of the GARCH(1,1) and YLS pass the Bernoulli Coverage test and

Independent test, while for 0.05 significan level, only GARCH(1,1) pass both tests.

Both of the MSCI(EM) and S&P data have more than 6000 observations , now we closely

examine a shorter period of those datasets and also the IBM and Exchange Rate data which has

a much shorter period. The reason is that we would like to test the methods in a much stable

economics condition. The following are the subperiod of the data that we choose.

Table 42: Subperiod datasets

datasets period source

MSCI (Emerging Market) 01/01/2010 —31/12/2013 Datastream

S&P 500 01/01/2010 —31/12/2013 CRSP

IBM 01/01/2010 —31/12/2013 CRSP

GBP/USD Exchange Rate 01/01/2010 —31/12/2013 Federal Reserve Bank

Table 43: Violation Ratio of a shorter period (MSCI(EM), S&P)
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Model MSCI(EM) (sub) S&P (sub)

Violation Ratio Volatility Violation Ratio Volatility

1.EWMA 1.3889 0.0088 2.2487 0.0103

2.MA 2.0202 0.0057 1.9841 0.0064

3.HS 1.2626 0.0054 0.9259 0.0097

4.GARCH(1,1) 2.0202 0.0085 2.2487 0.0101

5.YLS 1.2626 0.0085 0.9259 0.0113

6.NCTPARCH 0 0.0756 0 0.0754

7.TWMIX 1.3889 0.3056 1.0582 0.0939

Table 44: Violation Ratio of a shorter period (IBM and Exchange Rate)

Model IBM Exchange Rate

Violation Ratio Volatility Violation Ratio Volatility

1.EWMA 1.3245 0.0076 1.0638 0.0021

2.MA 1.8543 0.0028 1.0638 0.0014

3.HS 1.7219 0.0027 1.3298 0.0010

4.GARCH(1,1) 1.5894 0.0066 1.0638 0.0017

5.YLS 1.1921 0.0093 1.1968 0.0010

6.NCTPARCH 0 0.0761 0 0.0002

7.TWMIX 1.5894 0.5209 1.0638 0.0155

Table 45: Bernoulli Coverage Test and Independent Test of MSCI(EM) subperiod

Model/data MSCI (EM) (sub)

Bernoulli Coverage Test Independent Test

Test Statistics p-value Test Statistics p-value

1.EWMA 1.0792 0.2989 0.3103 0.5775

2.MA 6.4259 0.0112 4.3081 0.0379

3.HS 0.5094 0.4754 8.0633 0.0045

4.GARCH(1,1) 6.4259 0.0112 4.3081 0.0379

5.YLS 0.5094 0.4754 8.0633 0.0045

6.NCTPARCH 15.9197 0.0001 NaN NaN

7.TVMIX 1.0792 0.2989 2.1978 0.1382
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Table 46: Bernoulli Coverage Test and Independent Test of S&P 500 subperiod

Model/data S&P 500 (sub)

Bernoulli Coverage Test Independent Test

Test Statistics p-value Test Statistics p-value

1.EWMA 8.7912 0.0030 0.7833 0.3761

2.MA 5.7496 0.0165 1.0861 0.2973

3.HS 0.0430 0.8358 0.1310 0.7174

4.GARCH(1,1) 8.7912 0.0030 0.7833 0.3761

5.YLS 0.0430 0.8358 0.1310 0.7174

6.NCTPARCH 15.1961 0.0001 NaN NaN

7.TWMIX 0.0254 0.8734 0.1714 0.6789

Table 47: Bernoulli Coverage Test and Independent Test of IBM

Model/data IBM

Bernoulli Coverage Test Independent Test

Test Statistics p-value Test Statistics p-value

1.EWMA 0.7288 0.3933 0.2688 0.6041

2.MA 4.4461 0.0350 5.1464 0.0233

3.HS 3.2683 0.0706 5.7255 0.0167

4.GARCH(1,1) 2.2472 0.1339 0.3882 0.5333

5.YLS 0.2650 0.6067 0.2175 0.6410

6.NCTPARCH 15.1760 0.0001 NaN NaN

7.TVMIX 2.2472 0.1339 0.3882 0.5333

Table 48: Bernoulli Coverage Test and Independent Test of Exchange Rate
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model/data Exchange Rate

Bernoulli Coverage Test Independent Test

Test Statistics p-value Test Statistics p-value

1.EWMA 0.0303 0.8618 0.1723 0.6781

2.MA 0.0303 0.8618 0.1723 0.6781

3.HS 0.7486 0.3869 0.2699 0.6034

4.GARCH(1,1) 0.0303 0.8618 0.1723 0.6781

5.YLS 0.2768 0.5988 0.2183 0.6403

6.NCTPARCH 15.1157 0.0001 NaN NaN

7.TWMIX 0.0303 0.8618 0.1723 0.6781

From table 43 and 44, we can see that YLS is the best model in terms of the results of the

violation ratio. The violation ratios of YLS of different data are all within the satisfactory range.

In addition, we also find that exchange rate data is quite indifference to the different methods. All

the methods have a violation ration in the range except the Historical Simulation.

From table 45-48, YLS still performs best for the Bernoulli Coverage Test and Independent Test.

For 5% significant level, YLS pass both test for almost all the data except the Independent Test

for MSCI(EM) subperiod data (with a p-value 0.0045). Seperately, for MSCI(EM) subperiod data,

we can see that EWMA passes both test. For S&P subperiod data, HS is the one who passes both

tests besides YLS. For IBM data, EWMA, GARCH(1,1), YLS and TVMIX all pass the Bernoulli

Coverage Test and Independent Test. For exchange rate data, all of the methods pass both tests

except NCTPARCH.

So we can conclude that YLS is the best methods evaluating by violation ratio criteria.

White’s Reality Check (RC)

When we evaluate a model’s forecasting performance, it is very important to check that the satis-

factory results obtained are due to the model’s actual forecasting ability, not because of chance. As

mentioned in White’s paper (2000), the problem of data snooping may occur when the researchers

use the same dataset more than once for purpose of inference or model selection. He proposes a

simple test called "Reality Check" to identify the issue. Diebold and Mariano (1995) constructs

standard approach to compare the predictive performance of models in pairs. The White’s test

extends the method to a joint test, with the null hypothesis being that the best model is no better

than the benchmark.
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H0 : max
k=1,2,...m

E(f) <= 0

where fk,t = Lt,m−Lt.0, the difference of the loss between the alternative and the benchmark. The

test requires to choose the loss function at the first place and in our paper, we use the following

two loss functions:

1. Mean Square Errors(MSE):

li,t = (xt − V aRj,t)2

2. Absolute Error:

li,t = |xt − V aRj,t|

The following are the results of the reality check. In the analysis, we choose YLS as the bench-

mark and all the other models as the alternatives. We can’t reject the null hypothesis by using

different data and different loss fucntion. The result reassure that the satisfactory forecasting

performance of our model is due to the actual good forecasting ability.

Table 49: White’s Reality Check

data/loss function Mean Square Error Absolute Error

Reality Check p-value Reality Check p-value

MSCI (EM) 0.4900 0.1830

S&P 0.5250 0.2940

MSCI (EM) (sub) 0.5040 0.3910

S&P (sub) 0.5090 0.2700

IBM 0.7350 0.5660

FX 0.7820 0.2980

Extreme Value Theory Value-at-Risk (YLS-EVT)

Events such as market crashes or cases of individual financial distress regularly point out the

potential effects of fat tails in unconditional return distributions. Empirical research in finance aims

at a careful modeling of such extreme events and at the same time provides a basis for financial

risk management.

Estimation of the tail thickness parameter is the subject of a large and active literature. Koedijk,

Schafgans and de Vries (1990), Hols and de Vries (1991) and Wagner and Marsh (2005) showed

109



the advantages of modeling fat-tailed distributions of exchange rate changes. Stock returns are

known to have heavy tails following the work of Osborne (1959), Mandelbrot (1963), Fama(1965,

1976) and Markowitz (1991). The approach begins with choosing an estimator for the tail index

parameter , the most common being the Hill estimator. The appeal of this estimator derives from

its conceptual and computational simplicity.

In practice, the Threshold Exceedance methods are superior to the Block Maxima due to it’s

capacity of using all the data in the extreme in the sense that they exceed a certain high designated

level.

GDP Method First, we need to define the mean excess function.

Definition 4 Mean Excess Function: The mean excess function of an random variable X with

finite mean is:

m(u) = E(X − u | X > u)

where u is the chosen threshold.

Figure 19: Sample Mean Excess Function Plot
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Generally speaking, the mean excess function is linear with a higher threshold ν ≥ u, and this

property can be used as a diagnostic when data follows a GPD model for the excess distribution.A

linear upward trend indicate a GPD model with a positive shape parameter (φ > 0), a linear
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downward trend is a GPD model with negative shape parameter (φ < 0), and a horizontal line

means that the shape parameter is zero (φ < 0, and a exponential excess distribution in this case).

From the Figure 19, we can see that the mean excess function of both datasets are quite ’linear’

over the entire period and the upward trends demonstrate the positive shape parameter (φ > 0) to

both datasets. However, it is not so easy to decide the threshold level from the plots.

Hill Method Figure 20: Hill Plot
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From the Hill plot for all possible values of threshold, we can see that the tail thicknesses (γ) for

the EM data and S&P data are stable at around (2.6,3) and (3,4), suggesting φ,the shape paramete

is (0.33, 0.38) and (0.25, 0.33).Both can be interpreted as the infinite-kurtosis model for the data.

EVT backtesting In order to compare the VaR forecasting performance between EVT-based

quantile models and the normal quantile models, we choose the S&P 500 data from 2007 to 2010,

totally 1008 observations. This period represents the most volatile time during the last financial

crisis. The models that we choose in the study can be decomposed into two parts: the methods

estimating the conditional volatility and the methods modelling the conditional quantile. Here are

the details:
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Table 50:

Model method of conditional volatility method ofconditional quantile

GARCH-Hill GARCH Hill approach

YLS-Hill YLS (the method proposed in the paper) Hill approach

YLS-Normal YLS Normal quantile methods

And here shows the violation ratio of the three models:

Table 51: Backtesting Result (Violation Ratio)

Model α=0.05 α=0.01 α=0.005

Violation Ratio Volatility Violation Ratio Volatility Violation Ratio Volatility

GARCH-Hill 8.3951 0.0043 2.7778 0.0804 0.3086 0.4300

YLS-Hill 8.7963 0.0038 8.7963 0.0325 1.2346 0.1740

YLS-Normal 0.8642 0.0130 1.8519 0.0163 1.8519 0.0198

We can see that YLS-Normal is the best model when the quantile level is 5% and 1%. While

when it goes to more extreme quantile, 0.5% for instance, YLS-Hill is the best methods.

4.7 Conclusion

The paper first proposed an alternative method to estimate GARCH parameters and hence the

Value at Risk. The least square estimation based method imposes weak moment conditions on the

errors and consequently, it has better prediction performance than commonly used QMLE-based

VaR methods in the presence of non-normal errors. An EVT-VaR model is also introduced by

applying the log-transformation in the GARCH estimation and EVT approach in the conditional

quantile model. Asymptotic theory of both methods are provided.

Expected shortfall (ES) is an alternative risk measure and a proper discussion of ES by using

these approaches could be a potential extention.
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4.8 Appendix

4.8.1 Lemmas

Lemma 1 E[[log y2
t − log ht(β)]∂ log ht(β)

∂β ]2r <∞

Proof. Notice that

sup
β
|[log ε2

t + log ht− log ht(β)]
∂ log ht(β)

∂β
|2r ≤ sup

β
|[log ε2

t + log ht− log ht(β)]|2r sup
β
|∂ log ht(β)

∂β
|2r.

Therefore,

E[[log y2
t − log ht(β)]

∂ log ht(β)

∂β
]2r

< E[sup
β
|[log y2

t − log ht(β)]
∂ log ht(β)

∂β
|2r]

= E[sup
β
|[log ε2

t + log ht − log ht(β)]
∂ log ht(β)

∂β
|2r]

= E[sup
β
|(log ε2

t )
∂ log ht(β)

∂β
+ (log

ht
ht(β)

)
∂ log ht(β)

∂β
|2r]

≤ {[E sup
β
| log ε2

t

∂ log ht(β)

∂β
|2r]1/2r + [E sup

β
|∂ log ht(β)

∂β
log

ht
ht(β)

|2r]1/2r}2r

= I1 + I2

the last inequality is due to Minkowski’s Inequality. The rest pof this proof is to show that I1 <∞

and I2 <∞.

Since log ε2
t is independent of

∂ log ht(β)
∂β , it follows that

I1 = {E[sup
β
| log ε2

t

∂ log ht(β)

∂β
|2r]}1/2r

= {E[(log ε2
t )

2r]E[sup
β
|∂ log ht(β)

∂β
|2r]}1/2r <∞

on the other hand, because of Holder’s Inequality,

E[sup
β
|∂ log ht(β)

∂β
log

ht
ht(β)

|2r] ≤ E[sup
β
|∂ log ht(β)

∂β
|2r sup

β
| log

ht
ht(β)

|2r]

≤ {E[sup
β
|∂ log ht(β)

∂β
|2rp]}1/p{E[sup

β
| log

ht
ht(β)

|2rp/(p−1)]}1−1/p

= {E[sup
β
|∂ log ht(β)

∂β
|2r
′
]}r/r

′
{E[sup

β
| log

ht
ht(β)

|2r
′r/(r′−r)]}1−r/r

′

< ∞
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where r′ = rp and p > 1, so

I2 = [E sup
β
|∂ log ht(β)

∂β
log

ht
ht(β)

|2r]1/2r <∞

Lemma 2 E[sup|β−β1|<δ |lt(β)− lt(β1)|2r] ≤ Cδ,C <∞

Proof. First, the derivative is

∂lt(β)

∂β
= [log ε2

t + log
ht

ht(β)
][

1

ht(β)

∂2ht(β)

∂β∂β′
− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
]

− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′

We want to show that

E[sup
β
|∂lt(β)

∂β
|2r] <∞

sup
β
|∂lt(β)

∂β
|2r

= sup
β
|[log ε2

t + log
ht

ht(β)
][

1

ht(β)

∂2ht(β)

∂β∂β′
− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
]− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

≤ sup
β
|[log ε2

t + log
ht

ht(β)
][

1

ht(β)

∂2ht(β)

∂β∂β′
− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
]|2r + sup

β
| 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

≤ sup
β
|[log ε2

t + log
ht

ht(β)
]

1

ht(β)

∂2ht(β)

∂β∂β′
|2r + sup

β
|[log ε2

t + log
ht

ht(β)
]

1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

+ sup
β
| 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

so

E sup
β
|∂lt(β)

∂β
|2r

≤ E sup
β
| log ε2

t

1

ht(β)

∂2ht(β)

∂β∂β′
|2r + E sup

β
| log

ht
ht(β)

1

ht(β)

∂2ht(β)

∂β∂β′
|2r + E sup

β
| log ε2

t

1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

+E sup
β
| log

ht
ht(β)

1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r + E sup

β
| 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

= I3 + I4 + I5 + I6 + I7
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it’s easy to see

I3 = E sup
β
| log ε2

t

1

ht(β)

∂2ht(β)

∂β∂β′
|2r = E| log ε2

t |2rE sup
β
| 1

ht(β)

∂2ht(β)

∂β∂β′
|2r

I5 = E sup
β
| log ε2

t

1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r = E| log ε2

t |2rE sup
β
| 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

I7 = E sup
β
| 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

we can show

I4 = E sup
β
| log

ht
ht(β)

1

ht(β)

∂2ht(β)

∂β∂β′
|2r ≤ E[sup

β
| 1

ht(β)

∂2ht(β)

∂β∂β′
|2r sup

β
| log

ht
ht(β)

|2r]

≤ {E[sup
β
| 1

ht(β)

∂2ht(β)

∂β∂β′
|2rp]}1/p{E[sup

β
| log

ht
ht(β)

|2rp/(p−1)]}1−1/p

= {E[sup
β
| 1

ht(β)

∂2ht(β)

∂β∂β′
|2r
′
]}r/r

′
{E[sup

β
| log

ht
ht(β)

|2r
′r/(r′−r)]}1−r/r

′
<∞

the same applies to

I6 = E sup
β
| log

ht
ht(β)

1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r

≤ {E[sup
β
| 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
|2r
′
]}r/r

′
{E[sup

β
| log

ht
ht(β)

|2r
′r/(r′−r)]}1−r/r

′
<∞

Lemma 3 E[supθ:|θ−θ1|<δ |h
1/2
t (β)qα − h1/2

t (β1)qα1|] ≤ Cδ,C <∞

Proof. First, the derivative of h1/2
t (β)q is

∂h
1/2
t (β)q

∂β
=

q

2h
1/2
t (β)

∂ht(β)

∂β
;
∂h

1/2
t (β)q

∂q
= h

1/2
t (β)

We want to show that

E[sup
θ
|∂h

1/2
t (β)q

∂β
|] <∞;E[sup

θ
|∂h

1/2
t (β)q

∂q
|] <∞

that is

E[sup
θ
| q

2h
1/2
t (β)

∂ht(β)

∂β
|] < ∞

E[sup
θ
|h1/2
t (β)|] < ∞
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4.8.2 Proofs

Proof of Theorem 5:. The proof follows Hansen(2006). We consider the stacked moment

condition

mt(θ) =

(
lt(β)

1{εt(β) ≤ qα} − α

)
So it follows that

mt =

(
log ε2

t
1
ht
∂ht
∂β

1{εt ≤ qα} − α

)
E[lt(β)] = E[log

ht
ht(β)

1

ht(β)

∂ht(β)

∂β
]

∂E[lt(β)]

∂β
= E{log

ht
ht(β)

[
1

ht(β)

∂2ht(β)

∂β∂β′
− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
]− 1

h2
t (β)

∂ht(β)

∂β

∂ht(β)

∂β′
}

and

lt = log ε2
t ·

1

ht

∂ht
∂β

E[ltl
′
t] = E[log ε2

t ]
2 · E[

1

h2
t

∂ht
∂β

∂ht

∂β′
]

lβ =
∂E[lt(β)]

∂β
|β=β0 = −E[

1

h2
t

∂ht
∂β

∂ht

∂β′
]

E[l−1
β ltl

′
tl
−1
β ] = E[log ε2

t ]
2 · {E[

1

h2
t

∂ht
∂β

∂ht

∂β′
]}−1

It has been shown by lemmas 1-4 that

E sup
θ1:|θ−θ1|<δ

|mt(θ)−mt(θ1)|2r ≤ O(1)δ

this and Andrews(1994, theorem 5) ensure that
∫ 1

0

√
H(u,F ,L2r(P ))du <∞, whereH(u,F ,L2r(P ))

denotes the entropy with bracketing with respect to L2r(P ) norm. By Doukhan et al.(1995) and

lemma 1 in Hansen(2006), we know the following weak convergence regarding the score functions:

√
T{mT (θ)−m(θ)} ⇒ S(θ)

where S(θ) is a centered Gaussian process over θ ∈ Θ and ” ⇒ ” means weak convergence of

empirical process mT (·) indexed by θ ∈ Θ.
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In view of Taylor expansion,

0 = m(θ0) = m(θ̂) +Q(θ0 − θ̂) + op(T
−1/2),

where Q = ∂
∂θE[mt(θ0)]. Therefore, we have the following

√
T{θ̂−θ0} = Q−1

√
T{m(θ̂)−mT (θ̂)−[m(θ0)−mT (θ0)]}+Q−1

√
TmT (θ̂)−Q−1

√
TmT (θ0)+op(1),

and we have used the fact that
√
TmT (θ̂) = op(1), and central limit theorem. We know that

first,
√
TmT (θ̂) = op(1) holds trivially; second, by consistency of θ̂ and stochastic equicontinuity of

mT (·), m(θ̂)−mT (θ̂)− [m(θ0)−mT (θ0)] = op(1/
√
T ); thirdly, CLT: −Q−1

√
TmT (θ0)→d N(0,Ωθ).

The proof of stochastic equicontinuity is based on above entropy condition, indicator function is a

IV class defined in (5.3) and theorem 5 of Andrews (1994). In consequence,

√
n(θ̂ − θ0) =

1√
n

n∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
+ op(1).

Proof of Theorem 6. Denote a truncated verion of hn+1as

h∗n+1 = G(c0 +

m∑
j=1

cj(β)ψ(yn+1−j)),

where the reuncation order is m = log n. As a result, the approximation error is of order op(1):

hn+1 − h∗n+1 = G(c0 +

∞∑
j=1

cj(β)ψ(yn+1−j))−G(c0 +

m∑
j=1

cj(β)ψ(yn+1−j))

= g(c0 +

m∑
j=1

cj(β)ψ(yn+1−j))

∞∑
j=m+1

cj(β)ψ(yn+1−j) +Op(||
∞∑

j=m+1

cj(β)ψ(yn+1−j)||2)

= Op(b
m).

Similarly, we can show that ∂hn+1∂β − ∂h∗n+1
∂β = Op(b

m). Consequently, xn+1 − x∗n+1 = Op(b
m).

At the same time, we have the following trancation approximation

1√
n

n∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)

=
1√
n

n−m∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
+

√
m− 1

n

1√
m− 1

n∑
t=n−m+1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
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=
1√
n

n−m∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
+ op(1).

Combining above results, we can say that, conditional on information prior to time n−m,

x∗′n+1

1√
n

n−m∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
→d N(0, x∗′n+1Ωx∗n+1).

Consequently,

(x′n+1Ωxn+1)−1/2
√
n(h

1/2
n+1(β̂)q̂α − h1/2

n+1qα)

= (x′n+1Ωxn+1)−1/2
√
n(h

1/2
n+1(β̂)q̂α − h1/2

n+1(β̂)qα + h
1/2
n+1(β̂)qα − h1/2

n+1qα)

= (x′n+1Ωxn+1)−1/2
√
nh

1/2
n+1(q̂α − qα) + (x′n+1Ωxn+1)−1/2

√
n

1

2h
1/2
n+1

∂hn+1

∂β′
(β̂ − β)qα + op(1)

= (x′n+1Ωxn+1)−1/2x′n+1

√
n

(
β̂ − β
q̂α − qα

)
+ op(1)

= (x∗′n+1Ωx∗n+1)−1/2x∗′n+1

1√
n

n−m∑
t=1

Q−1

( 1
ht
∂ht
∂β log ε2

t

1{εt ≤ qα} − α

)
+ op(1)

→ dN(0, 1).

Proof of Theorem 7. Under Assumption 1-4 in Hill (2013) paper, Hill’s (1975) estimator with

estimated parameters has the following distribution

k
1/2
T (γ̂−1(θ̂T )− γ−1)/σKT →d N(0, 1),

where σKT = E(k
1/2
T (γ̂−1 − γ−1)2 is the MSE.

The residual quantile estimator in our paper is q̂α = −(T α
kT
η−γ̂T,T−kT )−1/γ̂ = −ηT,T−kT ( kTαT )

1
kT

∑kT
t=1 log

ηT,T−t+1
ηT,T−kT .

Hence,

q̂α = −(T
α

kT
η−γ̂T,T−kT )−1/γ̂

log q̂α = (
1

γ̂
) log(T

α

kT
η−γ̂T,T−kT )

=
1

γ̂
(log(

Ta

KT
)− γ̂ log(ηT,T−kT ).

Assume kT →∞, kT /T → 0,
√
kTA(T/kT )→ 0, 1

A(T/kT )T 1/4
→ 0, log( kTαT )/

√
kT → 0 as T →∞,

k
1/2
T (γ̂−1 − γ−1)/σKT →d N(0, 1)
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k
1/2
T (log( TaKT )γ̂−1 − log( TaKT )γ−1)/σKT →d N(0, (log( TaKT ))2)

k
1/2
T {[log( TaKT )γ̂−1−log(ηT,T−kT )]−[log( TaKT )γ−1−log(ηT,T−kT )]}/σKT →d N(− log(ηT,T−kT ), (log( TaKT ))2)

Folllowing the biased reduction results in Gomes and Fegueiredo (2003), Gomes an Pestana

(2005) and Beirland et al. (2006), we obtain the biased corrected Hill Estimator

K
1/2
T (log(q̂α)− log(qα))/σKT →d N(0, (log(

Ta

KT
))2).

Hence, the conditional quantile follows

√
kT log((q̂α)/qα)

σKT | log( kTTα )|
→d N(0, 1).
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