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Abstract

The thesis concerns semiparametric modelling and forecasting Value-at-Risk models, and the ap-
plications of these in financial data. Two general classes of semiparametric VaR models are pro-
posed, the first method is introduced by defining some efficient estimators of the risk measures in
a semiparametric GARCH model through moment constraints and a quantile estimator based on
inverting an empirical likelihood weighted distribution. It is found that the new quantile estimator
is uniformly more efficient than the simple empirical quantile and a quantile estimator based on
normalized residuals. At the same time, the efficiency gain in error quantile estimation hinges on
the efficiency of estimators of the variance parameters. We show that the same conclusion applies to
the estimation of conditional Expected Shortfall. The second model proposes a new method to fore-
cast one-period-ahead Value-at-Risk (VaR) in general ARCH(co) models with possibly heavy-tailed
errors. The proposed method is based on least square estimation for the log-transformed model.
This method imposes weak moment conditions on the errors. The asymptotic distribution also
accounts for the parameter uncertainty in volatility estimation. We test our models against some
conventional VaR forecasting methods, and the results demonstrate that our models are among the

best in forecasting VaR.



Chapter 1

Introduction

The attention placed on effective risk management in the financial industry has never been greater,
especially after the recent financial crisis. The profit-driven industry is aware of the importance
of measuring and managing risk properly. The Basel Committee (1996) also requires financial
institutions to hold a certain amount of cash against market risk. Value-at-Risk (VaR), as one of
the measures of market risk, becomes widely known when JP morgan introduces Riskmetrics (1996)
and set an industry standard. As a forward looking estimate, VaR is defined as the maximum
potential loss in value of a portfolio of financial instruments with a given confidence level over a
certain horizon. It is an important risk measure as portfolio managers are concerned with large
potential loss in asset returns.

From an econometric point of view, VaR is a quantile of the conditional distribution of portfolio
returns over a certain holding period. VaR forecasts are mostly cast in GARCH type models
because financial time series are characterized by conditional heteroskedasticity and heavy-tailed
distributions. The method proceeds in two steps: the first is to estimate the conditional volatility
and the second is to estimate devolatized residual quantile. This method employs the volatility
estimator as a filter to transform the conditional correlated returns into i.i.d. errors, for which vast
quantile estimators such as empirical quantile or extreme value theory based quantile can be readily
applied. For example, Riskmetrics (1996) employs a GARCH model with normal errors; McNeil and
Frey (2000) propose new VaR forecast methods by combining GARCH models with Extreme Value
Theory (EVT); Engle (2001) illustrates VaR forecasts in GARCH models with empirical quantiles;
Nystrom and Skoglund (2004) use GMM-type volatility estimators for the GARCH based VaR
forecasts. See Duffie and Pan (1997), Engle and Manganelli (2004) and Gourieroux and Jasiak

(2002) for more detailed surveys for VaR forecasts.



Consistency and asymptotic normality have been established under various conditions, see Weiss
(1986), Lee and Hansen (1994), Hall and Yao (2003), and Jensen and Rahbek (2006). For the
semiparametric models, references can be found in Engle and Gonzalez-Rivera (1991) , Linton
(1993) and Drost and Klaassen (1997).

In practice, full parametric methods are very popular, but the commonly used normal distribuion
is a flaw, since most of the financial returns have heavy-tails. Fully nonparametric methods,such
as Historical Simulation, are easy to implement, but do not provide precise VaR prediction. Semi-
parametric method, on the other hand, have been found to perform relatively well. The approach
contains a parametric GARCH estimation and a nonparametric standardized residual estimation.
It is accurate and at the same time flexible, because there are a rich class of GARCH family models
to choose and no specific distribution assumption is required. The approach has been proposed in
Pritsker (1997), Hull and White (1998), McNeil and Frey (2000) and Kuestre, Mittnik and Paolella
(2006).

The thesis contributes to the semi- and nonparametric work in VaR modelling. Two general
classes of semiparametric models have been proposed. Moment constraints are often used to iden-
tify and estimate the mean and variance parameters and are however discarded when estimating
error quantiles. In order to prevent this efficiency loss in quantile estimation,the first approach is
introduced by defining some efficient estimators of the risk measures in a semiparametric GARCH
model through moment constraints and a quantile estimator based on inverting an empirical likeli-
hood weighted distribution. It is found that the new quantile estimator is uniformly more efficient
than the simple empirical quantile and a quantile estimator based on normalized residuals. At the
same time, the efficiency gain in error quantile estimation hinges on the efficiency of estimators of
the variance parameters. We show that the same conclusion applies to the estimation of conditional
Expected Shortfall.

The second method is a new method to forecast one-period-ahead Value-at-Risk (VaR) in general
ARCH(00) models with possibly heavy-tailed errors. The proposed method is based on least square
estimation for the log-transformed model. This method imposes weak moment conditions on the
errors. Consequently, it has better prediction performance than commonly used QMLE-based
VaR methods in the presence of non-normal errors. In addition, we characterize the asymptotic
distribution of the proposed VaR forecast, and this distribution accounts for the uncertainty in
volatility estimation.

ARCH/GARCH process is the most popular way to estimate volatility and many surveys have

been done regarding to this topic. Bera and Higgins (1993) have a paper introducing properties,



estimation and testing of the ARCH process, Bauwens, Laurent and Rombouts (2006) talk about
multivariate GARCH models, Bollerslev (2009) provides an encyclopedic reference and Terasvirta
(2009) summarises univariate GARCH models. However, no one has focused on semi and nonpara-
metric approach of estimating ARCH/GARCH process. Chapter 2 of the thesis fills the needs by
surveying the semi- and nonparametric approaches of ARCH/GARCH estimation. Chapter 3 and
4 propose two different classes of semiparametric approaches of VaR, prediction.

Chapter 2 has been published in Journal of Probability and Statistic, Volume 2011, Article ID
906212.



Chapter 2

Semi- and nonparametric

(G)ARCH Process

2.1 Introduction

The key properties of financial time series appear to be: (a) Marginal distributions have heavy tails
and thin centres (Leptokurtosis); (b) the scale or spread appears to change over time; (¢) Return
series appear to be almost uncorrelated over time but to be dependent through higher moments.
See Mandelbrot (1963) and Fama (1965) for some early discussions. The traditional linear models
like the autoregressive moving average class do not capture all these phenomena well. This is the

motivation for using nonlinear models. This chapter is about the nonparametric approach.

2.2 The GARCH Model

Stochastic volatility models are of considerable current interest in empirical finance following the
seminal work of Engle (1982). Perhaps still the most popular version is Bollerslev’s (1986) GARCH(1,1)

model in which the conditional variance o7 of a martingale difference sequence y; is

o7 =w+ o1 + VY1, (2.1)

where the ARCH(1) process corresponds to 5 = 0. This model has been extensively studied and
generalized in various ways, see the review of Bollerslev, Engle, and Nelson (1994). Following

Drost and Nijman (1993), we can give three interpretations to (2.1). The strong form GARCH(1,1)



process arises when

v, (2.2)

gt

is i.i.d. with mean zero and variance one, where o7 is defined in (2.1). The most common special

case is where g; are also standard normal. The semi-strong form arises when for &, in (2.2)

E(et|Fi1) =0and E(e? —1|F_1) =0, (2.3)

where F;_1 is the sigma field generated by the entire past history of the y process. Finally, there
is a weak form in which o? is defined as a projection on a certain subspace, so that the actual
conditional variance may not coincide with (2.1). The properties of the strong GARCH process are
well understood, and under restrictions on the parameters 8 = (w, 8, ) it can be shown to be strictly
positive with probability one, to be weakly and/or strictly stationary, and to be geometrically mixing

and ergodic. The weaknesses of the model are by now well documented, see Tsay (2007) for example.

2.3 The Univariate Model

There are several different ways in which nonparametric components have been introduced into
stochastic volatility models. This work was designed to overcome some of the restrictiveness of the

parametric assumptions in Gaussian strong GARCH models.

2.3.1 Error Density

Estimation of the strong GARCH process usually proceeds by specifying that the error density
g¢ is standard normal and then maximizing the (conditional on initial values) Gaussian likelihood
function. It has been shown that the resulting estimators are consistent and asymptotically normal
under a variety of conditions. Quansi-Maximum Likelihood Estimation (QMLE) method proposed
in Weiss (1986) and Bollerslev and Wooldridge (1988) shows that the estimators of the parameters
obtained by maximizing a likelihood function constructed under the normality assumption can
still be consistent even if the true density is not normal. In many cases, there is evidence that
the standardized residuals from estimated GARCH models are not normally distributed, especially
for high frequency financial time series. Engle and Gonzalez-Rivera (1991) initiated the study of

semiparametric models in which ¢; is i.i.d. with some density f that may be non-normal, thus

10



suppose that

Yt = €10¢

o7 = w+Boi, +wi,

where €; is i.i.d. with density f of unknown functional form. There is evidence that the density of the
standardized residuals €; = y;/0¢ is non-Gaussian. One can obtain more efficient estimates of the
parameters of interest by estimating f nonparametrically. Linton (1993) and Drost and Klaassen
(1997) developed kernel based estimates and establish the semiparametric efficiency bounds for
estimation of the parameters. In some cases, e.g., if f is symmetric about zero, it is possible to
adaptively estimate some parameters, i.e., one can achieve the same asymptotic efficiency as if one
knew the error density. In other cases, or for some parameters, it is not possible to adapt, i.e., it is
not possible to estimate as efficiently as if f were known. These semiparametric models can readily
be applied to deliver value at risk and conditional value at risk measures based on the estimated

density.

2.3.2 Functional form of Volatility Function

Another line of work has been to question the specific functional form of the volatility function, since
estimation is not robust with respect to its specification. The news impact curve is the relationship
between o7 and y;_; = y holding past values o7_; constant at some level o2, This is an important
relationship that describes how new information affects volatility. For the GARCH process, the

news impact curve is

m(y,o?) = w+yy* + Bo’. (2.4)

2 ie., Om(y,0?)/dc? does not depend on y, it is an even function of news v,

It is separable in o
i.e., m(y,0?) = m(—y,0?), and it is a quadratic function of y with minimum at zero. The evenness
property implies that cov(y?, y¢—j) = 0 for &; with distribution symmetric about zero.

Because of limited liability, we might expect that negative and positive shocks have different
effects on the volatility of stock returns, for example. The evenness of the GARCH process news
impact curve rules out such ‘leverage effects’. Nelson (1991) introduced the Exponential GARCH
model to address this issue. Let hy = logo? and let hy = w + v [fe;_1 + 6 |et_1]] + Bhi_1, where

gr = yi/oy is ii.d. with mean zero and variance one. This allows asymmetric effect of past

shocks €;_; on current volatility, i.e., the news impact curve is allowed to be asymmetric. For

11



example, Cov(yf,yt,j) # 0 even when ¢; is symmetric about zero. An alternative approach to
allowing asymmetric news impact curve is the Glosten, Jeganathan and Runkle (1994) model 07 =
w+ Boi_y +yyiy + 0y L(ye—1 < 0).

There are many different parametric approaches to modelling the news impact curve and they
can give quite different answers in the range of perhaps most interest to practitioners. This motivates
a nonparametric approach, because of the greater flexibility in functional form thereby allowed. The
nonparametric ARCH literature apparently begins with Pagan and Schwert (1990) and Pagan and

Hong (1991). They consider the case where 07 = o%(y;_1), where o(+) is a smooth but unknown

function, and the multilag version 0? = 0%(y;_1,¥s_2,--,%:—a). This allows for a general shape to
the news impact curve and nests all the parametric ARCH processes. Under some general conditions
on o(-) (for example that o(-) does not grow at a more than quadratic rate in the tails) the process y
is geometrically strong mixing. Hirdle and Tsybakov (1997) applied local linear fit to estimate the
volatility function together with the mean function and derived their joint asymptotic properties.
The multivariate extension is given in Hirdle, Tsybakov and Yang (1996). Masry and Tjgstheim
(1995) also estimate nonparametric ARCH models using the Nadaraya-Watson kernel estimator. Lu
and Linton (2006) extended the CLT to processes that are only near epoch dependent. Fan and Yao
(1998) have discussed efficiency issues in this model, see also Avramidis (2002). Franke, Neumann,
and Stockis (2004) have considered the application of bootstrap for improved inference. In practice,
it is necessary to include many lagged variables in o2(.) to match the dependence found in financial
data. The problem with this is that nonparametric estimation of a multi-dimension regression
surface suffers from the well-known “curse of dimensionality”: the optimal rate of convergence
decreases with dimensionality d, see Stone (1980). In addition, it is hard to describe, interpret and
understand the estimated regression surface when the dimension is more than two. Furthermore,
even for large d this model greatly restricts the dynamics for the variance process since it effectively
corresponds to an ARCH(d) model, which is known in the parametric case not to capture the
dynamics well. In particular, if the conditional variance is highly persistent, the non-parametric
estimator of the conditional variance will provide a poor approximation, as reported in Perron
(1998). So not only does this model not capture adequately the time series properties of many
datasets, but the statistical properties of the estimators can be poor, and the resulting estimators
hard to interpret.

Additive models offer a flexible but parsimonious alternative to nonparametric models, and have

12



been used in many contexts, see Hastie and Tibshirani (1990). Suppose that

d

of = cot )05 (1)) (2.5)

j=1

for some unknown functions a?. The functions a? are allowed to be of general functional form
but only depend on y;_;. This class of processes nests many parametric ARCH models. Again,
under growth conditions the process y can be shown to be stationary and geometrically mixing.
The functions 0‘3 can be estimated by special kernel regression techniques, such as the method
of marginal integration, see Linton and Nielsen (1995) and Tjgstheim and Auestad (1994). The
best achievable rate of convergence for estimates of 0?(.) is that of one-dimensional nonparametric
regression, see Stone (1985). Masry and Tjgstheim (1995) developed estimators for a class of time
series models including (2.5). Yang, Hérdle, and Nielsen (1999) proposed an alternative nonlinear
ARCH model in which the conditional mean is again additive, but the volatility is multiplicative
ol = ¢, H;l:l 0%(yi—;). Kim and Linton (2004) generalized this model to allow for arbitrary [but
known| transformations, i.e., G(0?) = ¢, —1—2?21 03 (yi—;), where G(.) is a known function like log or
level. The typical empirical findings are that the news impact curves have an inverted asymmetric
U-shape.

These models address the curse of dimensionality but they are rather restrictive with respect to

the amount of information allowed to affect volatility, and in particular do not nest the GARCH(1,1)

process. Linton and Mammen (2005) proposed the following model
(oo}
o (0.m) =Y v (O)m(y—j), (2.6)
j=1

where 6 € © C R? and m is an unknown but smooth function. The coefficients ¢;(¢) satisfy at
least 1;(0) > 0 and 3777 ¢;(f) < oo for all § € ©. A special case of this model is the Engle and
Ng (1993) PNP model where

J% = 50371 + m(yt*j)v

where m(.) is a smooth but unknown function. This model nests the simple GARCH(1,1) model
but permits more general functional form: it allows for an asymmetric leverage effect, and as much
dynamics as GARCH(1,1). Estimation methods for these models are based on iterative smoothing.
Linton and Mammen (2005) showed that the news impact curves for daily and weekly S&P500 data
are quite asymmetric with non-quadratic tails and is not minimal at zero but at some positive return.

Below we show their estimator, denoted PNP here, in comparison with a common parametric fit,

13



denoted AGARCH.
Figure 1: News impact curve (PNP v.s. AGARCH)

News Impact Curves for Weekly S&P500 Data, 1955-2002
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Yang (2006) introduced a semiparametric index model

o
or =g | > vilps:0) |,
j=1

where v;(y; 0) are known functions for each j satisfying some decay condition and g is smooth but
unknown. This process nests the GARCH(1,1) when g is the identity, but also the quadratic model
considered in Robinson (1991).

Audrino and Bithlmann (2001) proposed their model as 07 = A(y;_1,07_;) for some smooth but
unknown function A(.), and includes the PNP model as a special case. They proposed an estimation
algorithm. However, they did not establish the distribution theory of their estimator, and this may

be very difficult to establish due to the generality of the model.

2.3.3 Relationship between Mean and Variance

The above discussion has centered on the evolution of volatility itself, whereas one is often very
interested in the mean as well. One might expect that risk and return should be related, Merton

(1973). The GARCH-in-Mean process captures this idea, it is

Yt = 9(%2;5) + €t0t,

14



for various functional forms of g e.g., linear and log-linear and for some given specification of o2.
Engle, Lilien and Robbins (1987) introduced this model and applied it to the study of the term
Structure. Here, b are parameters to be estimated along with the parameters of the error variance.
Some authors find small but significant effects. Again, the nonparametric approach is well motivated
here on grounds of flexibility. Pagan and Hong (1991) and Pagan and Ullah (1988) considered a
case where the conditional variance is nonparametric (with a finite number of lags) but enters in
the mean equation linearly or log linearly. Linton and Perron (2002) studied the case where g is
nonparametric but o? is parametric, for example GARCH. The estimation algorithm was applied to

stock index return data. Their estimated g function was non-monotonic for daily S&P500 returns.

2.3.4 Long Memory

Another line of work has argued that conventional models involve a dependence structure that does

not fit the data well enough. The GARCH(1,1) process 07 = w + B07_; + yy7_, is of the form

)

02 =co+ Z cjyf_j (2.7)

j=1

for constants c; satisfying ¢; = 'yﬁj ~1 provided the process is weakly stationary, which requires
v+ B < 1. These coefficients decay very rapidly so the actual amount of memory is quite limited.
There is some empirical evidence on the autocorrelation function of y? for high frequency returns
data that suggests a slower decay rate than would be implied by these coefficients, see Bollerslev
and Mikkelson (1996). Long memory models essentially are of the form (2.7) but with slower decay
rates. For example, suppose that c; = j~? for some 6 > 0. The coefficients satisfy Zj’;l c? < o0

provided 6 > 1/2. Fractional integration (FIGARCH) leads to such an expansion. There is a single

parameter called d that determines the memory properties of the series, and
(1—-L)%07 =w+r07 (7, — 1),

where (1 — L)? denotes the fractional differencing operator. When d = 1 we have the standard
IGARCH model. For d # 1 we can define the binomial expansion of (1 — L)~ in the form given
above. See Robinson (1991) and Bollerslev and Mikkelson (1996) for models. The evidence for long
memory is often based on sample autocovariances of y2, and this may be questionable when only

few moments of y; exist, see Mikosch and Stéricd (2002). See Giraitis (2007) for a nice review.
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2.3.5 Locally Stationary Processes

Recently, another criticism of GARCH processes has come to the fore, namely their usual assumption
of stationarity. The IGARCH process (where 8 + v = 1) is one type of nonstationary GARCH
model but it has certain undesirable features like the non-existence of the variance. An alternative

approach is to model the coefficients of a GARCH process as changing over time, thus

o7 = w(zr) + Blzer)oi_y + y(@r) (i1 — pe1)?

where w, 3, and 7 are smooth but otherwise unknown functions of a variable xyr. When ;7 = t/T,
this class of processes is nonstationary but can be viewed as locally stationary along the lines of
Dahlhaus (1997), provided the memory is weak, i.e., 8(:) + () < 1. In this way the unconditional
variance exists, i.e., E[0?] < oo, but can change slowly over time as can the memory. Dahlhaus
and Subba Rao (2006) have recently provided a comprehensive theory of such processes and about
inference methods for the ARCH special case. See Spokoiny (2007) for a further review.

Engle and Rangel (2008) propose a special case of this model where the unconditional variance
a?(t)T) = w(t/T)/(1—B(t/T) —~(t/T)) varies over time but the coefficients 3(t/T) and (t/T) are
assumed to be constant. In this way, we can write y; = U(t/T)gtl/zat, where g, is a unit GARCH(1,1)
process representing "high frequency" volatility, while o2 (¢/T) is the low-frequency unconditional
volatility modelled nonparametrically. Engle and Rangel (2008) also allow for covariates in the low

frequency component of volatility.

2.3.6 Continuous Time

Recently there has been much work on nonparametric estimation of continuous time processes, see
for example Bosq (1998). Given a complete record of transaction or quote prices, it is natural
to model prices in continuous time (e.g., Engle (2000)). This matches with the vast continuous
time financial economic arbitrage-free theory based on a frictionless market. Under the standard
assumptions that the return process does not allow for arbitrage and has a finite instantaneous
mean, the asset price process, as well as smooth transformations thereof, belong to the class of
special semi-martingales, as detailed by Back (1991). Under some conditions, the semiparametric
GARCH processes we reviewed can approximate such continuous time processes as the sampling
interval increases. Work on continuous time is reviewed elsewhere in this volume, so here we just
point out that this methodology can be viewed as nonparametric and as a competitor of the discrete

time models we outlined above.
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2.4 The Multivariate Case

It is important to extend the volatility models to the multivariate framework, as understanding
the comovements of different financial returns is also of great interest. The specification of an
MGARCH model should be flexible enough to represent the dynamics structure of the conditional
variances and covariance matrix and parsimonious enough to deal with the rapid expansion of the
parameters when the dimension increases. Semiparametric and nonparametric methods offer an
alternative way to the parametric estimation by taking the advantage of not imposing a particular

structure on the data. In general we have a vector time series y; € R", that satisfies
1/2
Yt = Et/ Et, (2.8)

where ¢; is a vector of martingale difference sequences satisfying E[e|F;_1] = 0 and Elese] —
I,|F:—1] = 0, while X; is a symmetric positive definite matrix. In this case, 3; is the conditional
covariance matrix of y; given its own history. The usual approach here is to specify a parametric
model for 3; and perhaps also the marginal density of ;. There are many parametric models for
¥¢, and we just mention two recent developments that are particularly useful for large dimensional
systems. First, the so-called CCC (constant conditional correlation) (Bollerslev (1990)) models
where

Et == DtRDt,

where D, is a diagonal matrix with elements o;;, where o, follows a univariate parametric GARCH
or other specification, while R is an n by n correlation matrix. The second model generalizes this to
allow R to vary with time albeit in a restricted parametric way, and is thereby called DCC (dynamic

conditional correlation)(Engle (2002)).

2.4.1 Error Density

Hafner and Rombouts (2007) consider a number of semiparametric models where the functional form
of the conditional covariance matrix is parametrically specified while the innovation distribution is
unspecified i.e., €; is i.i.d with density function f : R™ — R, where f is of unknown functional form.
In the most general case, they treat the multivariate extension of the semiparametric model of Engle
and Gonzalez-Rivera (1991). They show that it is not generally possible to adapt, although one
can achieve a semiparametric efficiency bound for the identified parameters. The semiparametric

estimators are more efficient than the QMLE if the innovation distribution is non-normal. These
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methods can often deliver efficiency gains but may not be robust to say dependent or time varying
;. In practice, the estimated density is quite heavy tailed but close to symmetric for stock returns.

It is also worth mentioning the SNP (SemiNonParametric) method, which was first introduced by
Gallant and Tauchen (1989). The fundamental part of the estimating procedure of the conditional
density of a stationary multivariate time series relies on the Hermite series expansion, associating
with a model selection strategy to determine the appropriate degree of the expansion. The estimator
is consistent under some reasonable regularity conditions.

One major issue with the unrestricted semiparametric model is the curse of dimensionality: as n
increases the best possible rate at which the error density can be estimated gets worse and worse. In
practice, allowing for four or more variables in an unrestricted way is impractical with even enormous
sample sizes. This motivates restricted versions of the general model that embody a compromise
between flexibility of functional form and reasonable small sample properties of estimation methods.

The first class of models is the family of spherically symmetric densities in which

f(@) = g(a"a),

where g : R — R is an unknown but scalar function. This construction avoids the "curse of
dimensionality" problem, and can in principle be applied to very high dimensional systems. This
class of distributions is important in finance, since the CAPM is consistent with returns being jointly
elliptically symmetric (i.e., spherically symmetric after location and scale transformation), Ingersoll
(1984). Hafner and Rombouts (2007) develop estimation methods for parametrically specified %,
under this assumption.

Another approach is based on copula functions. By Sklar’s theorem, any multivariate distrib-
ution can be modelled by the marginal distribution of each individual series and the dependence
structure between individual series which is captured by copula functions. A copula itself is a mul-
tivariate distribution function with uniform marginals. The joint distribution function of random
variables X and Y defined as Fix y(z,y) = C(F(z),G(y)). A bivariate distribution function whose
marginals are F'(-) and G(-), and C(-) : [0.1]> — R is the copula function measures the dependency.

Chen and Fan (2006a) proposed a new class of semiparametric copula-based multivariate dy-
namic models, the so-called SCOMDY models, in which case the conditional mean and the con-
ditional variance of a multivariate time series are specified parametrically, while the multivariate
distribution of the standardized innovation are specified semiparametrically as a parametric copula

evaluated at nonparametric marginals. The advantage of this method is a very flexible innovation
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distribution by estimating the univariate marginal distributions nonparametrically and fitting a
parametric copula and its circumvention of the "curse of dimensionality". An important class of
the SCOMDY models is the semiparametric copula-based multivariate GARCH models, which has

the following set up:

Yix = 0Oit€it
Di qi
2 _ ) 2 2
i = Wit Z VijYii—j T Zﬂi7lj0i,t—j7
=1 j=1
where e, = (€14, .. - ,snyt)—r is a sequence of i.i.d. random vectors with zero mean and unit variance.

In this case, the conditional covariance matrix of returns is in the class of the CCC models. The
key feature of the SCOMDY is the semiparametric form taken by the joint distribution function F.

of &;:

Fs(51> ce ,5n) = C(Fe,l(sl)a ceey Fs,n(en); 00)’ (29)

where C(-) is a parametrized copula function depended on unknown § € © C R™, and for ¢ =
1,...,m, F.;(-) is the marginal distribution function of the innovation which is assumed to be
continuous but otherwise unspecified. Many examples of combinations have been introduced in
the paper, such as { GARCH(1,1),Normal copula} and { GARCH(1,1), Student’s-t copula}. They
also construct simple estimators of the parameters. They establish the large sample properties
of the estimator under a misspecified parametric copula, showing that both of the estimators of
unknown dynamic parameters and the marginal distribution are still consistent while the estimator
of the copula dependence parameter will converge in this case. Chen and Fan (2006b) modelled a
univariate version of this class of semiparametric models, but their two-step estimators are verified
to be inefficient and even biased if the time series has strong tail dependence in the simulation study
of Chen, Wu and Yi (2009). The new paper considers the efficient estimation by using a sieve MLE
method which is first introduced by Chen, Fan and Tsyrennikov (2006).

Embrechts, McNeil and Strumann (2002) was the most influential paper of the early study of
copulas in finance and since then, numerous copula-based models are being introduced and used in
financial applications. The copula-GARCH models of Patton (2006a, 2006b) proposed to make the
parameter of the copula time varying in a dynamic fashion. Jondeau and Rockinger (2006) modelled

daily return series with univariate time-varying skewed Student-t distribution and a Gaussian or
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Student-t copula for the dependence. Panchenko (2006) also considered a semiparametric copula-
based model applied to risk management. Rodriguez (2007) and Okimoto (2007) proposed the
regime-switching copula models for pairs of international stock indices. A recent paper by Chollette,
Heinei and Valdesogo (2008) estimated the multivariate regime switching model of copula as an

extension of the Pelletier (2006) model to non-Gaussian case.

2.4.2 Conditional Covariance Matrix

Hafner, van Dijk and Franses (2005) proposed a semiparametric approach for the conditional co-
variance matrix which allows the conditional variance to be modelled parametrically by using any
choice of univariate GARCH-type models, while the conditional correlation are estimated by non-

parametric methods. The conditional covariance matrix 3; is defined as follows:

Zt = DthDt (210)

where D; is parametrically modelled by any choice of univariate GARCH specification, and R; is
treated nonparametrically as an unknown function of a state variable x;, thus R; = R(x) for some
unknown matrix function R(.). The function R(.) is estimated using kernel methods based ont he
rescaled residuals from the initial univariate parametric fits of the GARCH models.

Recently, Hafner and Linton (2009) introduced a multivariate multiplicative volatility model
which can be regarded as the multivariate version of the spline-GARCH model of Engle and Rangel

(2008). A vector time series y; takes the form:

g = H(t)T)/2GY %, (2.11)

where ¢, is (at least) a strictly stationary unit conditional variance martingale difference sequence.
The model allows the slowly varying unconditional variance matrix H(-) to be unknown along with
the short run dynamics captured through G(-), which is itself a unit variance multivariate GARCH

process, for example the BEKK model

Gy=I—AAT — BB + AG,_1 A" + Bus_yu, BT,

. 1/2
where A, B are parameter matrices and u; = Gt/ E¢.

Feng (2007) proposes an alternative specification call the local dynamic conditional correla-

tion (LDCC) model, where the total covariance matrix is decomposed into a conditional and an
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unconditional components. The total covariance matrix takes the form:

¥, = DEDE R, D D,

where D} = diag(c};), Df = diag(c{;) and Ry = pyj,(i,5 = 1,...,n,)and (0f;)? are the local
variances, (0§;)? are the conditional variances and p;j¢ denote the dynamic correlations. Specifically,
ok = ok(t/T), while 02¢ follows a parametric unit GARCH type process. As in parametric DCC

models one first proceeds by estimating the univariate models and then using standardized residuals

to estimate the model for R;.

2.5 Conclusion

In conclusion, there have been many advances in the application of nonparametric methods to
the study of volatility, and many difficult problems have been overcome. These methods have
offered new insights into functional form, dependence, tail thickness, and nonstationarity that
are fundamental to the behaviour of asset returns. They can be used by themselves to estimate
quantities of interest like value at risk. They can also be used as a specification device enabling the

practitioner to see with respect to which features of the data their parametric model is a good fit.
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Chapter 3

Efficient Estimation of Conditional

Risk Measures 1in a

Semiparametric GARCH Model

3.1 Introduction

Many popular time series models specify some parametric or nonparametric structure for the con-
ditional mean and variance. Often, these models are completed by a sequence of i.i.d errors €;." For
example, many models can be written in the form of 7 (y;,y1—1,...;0) = &, where the parametric
model 7 (-; ) is used to remove the temporal dependence structure in y; so that the error ¢; is i.i.d
with certain distribution F(-). Parameters 6 and F'(-) together define the model. Often one assumes
moment conditions on €, such as it being mean zero and variance one. These moment constraints
are often used to identify and estimate the mean and variance parameters  but are however often
discarded when estimating the error distribution or quantile. Knowledge of the conditional distrib-
ution is very important in finance since all financial instruments are more or less pricing or hedging
certain sections of the distribution of underlying assets. For example, mean-variance trade-off in
portfolio management is concerned with the first and second moments; exotic derivatives are traded
for transferring downside risks, which are lower portions of the asset’s distribution. Other prac-
tical usage of conditional distribution estimation includes the risk-neutral density estimation and

Value-at-Risk (VaR) estimation.

IThere are some notable exceptions to this including Engle and Manganelli (2004).

22



In this chapter, we consider how best to utilize this conditional information to estimate the
distribution F'(-), and further the quantiles of ;, so that one can construct an efficient estimator
for the conditional distribution and hence quantiles of y;1 given F; = {ys, yt—1,-..,Yyo}. Besides
proposing a VaR estimator, we also introduce Expected Shortfall (ES)

Recently, it has been argued that Value at Risk is not a coherent measure of risk, specifically it
can violate the subadditivity axiom of Artzner et al. (1999). Instead the expected shortfall (ES)
is an alternative risk measure that does satisfy all of their axioms. ES is defined as the expected
return on the portfolio in the worst 100a% of the cases. ES incorporates more information than
VaR because ES gives the average loss in the tail below 100a%. The estimation of unconditional ES
has been considered in Scaillet (2004) and Chen (2008). The recent Basel Committee on Banking
Supervision round IIT has suggested using expected shortfall in place of value at risk, so this measure

is likely to gain in prominence in the future.

We consider the following popular AR(p)-GARCH(1,1) model

P
1/2
Y = ijyt—j‘f'ht/ €t (3.1)
j=1
he = w Bheor +yui_y,

where u; = hi / 25t, and {e;} is an i.i.d sequence of innovations with mean zero and variance one and
p is a finite and known integer. We suppose that ¢; has a density function f(-), which is unknown

apart from the two moment conditions:

/xf(z)d:c = 0;/x2f(:c)d1: =1 (3.2)

These moment conditions are standard in parametric settings and identify h; as the conditional
variance of y; given F;_. Furthermore, the error density and all the parameters are jointly identified
in the semiparametric model. In this case, the conditional Value-at-Risk of y; given F;_; and the

conditional expected shortfall of y; given F;_1 are respectively,

p
(0) =" pwi—j + hy g

Jj=1

xi(a) = Elyilye < &), Firi]

p
= N pi—s + P Eledler < qal

Jj=1
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P
- ijyt*j + ht1/2ESaa
=1

where ¢, is the a-quantile of &;, while ES, = Elei|e; < qo] is the a-expected shortfall of &;. In the
sequel we assume that p = 0 for simplicity of notation. This is quite a common simplification in
the literature; the main thrust of our results carry over to the more general p case.

Let 8 = (w, 8,7). The goal of this paper is to estimate the parameters (6, g., ESy) efficiently
and plug in these efficient estimators to obtain the conditional quantile En,t =h, / 2(5)@1 and the
conditional expected shortfall ¥,(c) = h; /2 (@)EEQ

Since this model involves both finite dimensional parameters 6 and infinite dimensional parame-
ter f(), we call it a semiparametric model. This chapter constructs an efficient estimator for both
0 and the o/th quantile of f(-), ¢a, for model (3.1) under moment constraints (3.2). Consequently,
the conditional quantile estimator and conditional expected shortfall estimator are efficient.

Estimation of GARCH parameters has a long history. However, there are only limited papers
discussing the efficiency issues involved in estimating semiparametric GARCH models. The first
attempt is due to Engel and Gonzalez-Rivera (1991), who showed partial success in achieving effi-
ciency via Monte Carlo simulations. In their theoretical work, Linton (1993) and Drost and Klaassen
(1997) explained that full adaptive estimation of § is not possible and showed their efficient estima-
tors for § via a reparamerization. Ling and McAleer (2003) further considers adaptive estimation
in nonstationary ARMA-GARCH models.

We complement previous work on GARCH models by providing an efficient estimator for F(-)
and thus the quantile of ;. It is well known that, in the absence of any auxilliary information about
F(-), the empirical distribution function F(z) = n~"! i 1(e¢ < z) is semiparametrically efficient.
However, F\(x) is no longer efficient when moment constraints (3.2) are available, see Bickel et al.
(1993). The empirical likelihood (EL) weighted empirical distribution estimator is efficient with the
existence of auxiliary information in the form of moments restrictions (3.2). The EL method was
initiated by Owen (1990) and extended by Kitamura (1997) to time series. In i.i.d settings, Chen
(1996) discovered second order improvement by empirical likelihood weighted kernel density esti-
mation under moment restrictions. Zhao (1996) showed that there are variance gains by empirical
likelihood weighted M-estimation when moment restrictions are available. Schick and Wefelmeyer
(2002) provide an efficient estimator for the error distribution in nonlinear autoregressive models.
However, the proposed estimator has the shortcoming that it is not a distribution itself. Miiller et
al. (2005) showed that the EL-weighted empirical distribution estimator is efficient in an autore-

gressive model. In this paper, we use EL weighted distribution estimator to construct estimates
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of VaR and ES in GARCH models. We show that, the resulting quantile and ES estimators for &
are efficient. Furthermore, the conditional VaR &,(a) and ES estimators x,(«) are asymptotically
mixed-normal.

Various quantile estimators have been proposed recently, see Koenker, and Xiao (2009) and
Chen, Koenker, and Xiao (2009). For fully nonparametric estimators, see Chen and Tang (2005) and
Cai and Wang (2008). However, nonparametric estimators are subject to the curse of dimensionality
and thus not widely applicable in practice. Furthermore, these nonparametric quantile estimators
are too flexible to capture the stylized fact that financial returns are conditionally heteroskedastic.
Given that this time-varying volatility is the key feature of financial time series, historical simulation
method would be more advantageous than nonparametric methods in VaR forecasting. In our
semiparametric model, the quantile estimator preserves the property of time-varying volatility and
allows other aspect of conditional distribution unspecified. Model information is fully explored
in the estimation so we gain by providing an efficient solution to conditional quantile estimation.
Furthermore, the parametric filter (the GARCH model for volatility) bundle the conditioning set
into a one-dimensional volatility so that there is no curse of dimensionality.

To the best of our knowledge, the only paper to address efficient conditional quantile estimation
is Komunjer and Vuong (2010). However, their model is different from ours: they consider efficient
conditional quantile estimation without moment constraints (3.2). Ai and Chen (2003) provide a
very general framework for estimation and efficiency in semiparametric time series models defined
through moment restrictions. No doubt some of our results can be replicated by their methodology
using the sieve method.

We apply our method to simulated data and daily stock return data. We find superior perfor-
mance of our forecasting method over some standard alternatives.

We will discuss efficient estimation of 6 in section 2 and efficient estimation of ¢, in section 3.
Once we collect efficient estimators for these parameters, we can construct the conditional quantile
estimator &, («) and ES estimator x,;(«) and discuss their asymptotic distribution in section 4. We
present our simulation results and empirical applications in section 5. Section 6 concludes with

further extensions.

3.2 Efficient estimation of 0

Efficient estimation for semiparametric GARCH models was initially addressed by Engel and

Gonzalez-Rivera (1991). Their Monte Carlo evidence showed that their estimation of GARCH pa-
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rameters cannot fully capture the potential efficiency gain. Linton (1993) considered the ARCH(p)
special case of (3.1) with no mean effect and assumed only that the errors were distributed sym-
metrically about zero. In that case, the error density is not jointly identified along with all the
parameters, although the identified subvector is adaptively estimable. Drost and Klaassen (1997)
consider a general case that allowed for different identification conditions. They showed that a
subvector of the parameters can be adaptively estimated while a remaining parameter cannot be.

We rewrite the volatility model to reflect this. Specifically, now let hy = ¢ + ac®y? | + bhy_1.
The finite dimensional parameter in this model 6 = (c,a,b)T € © C R is to be partitioned into two
parts: (c, BT) where 3 = (a,b) " € B for the reason that only /3 is adaptively estimable, see Linton
(1993) and Drost and Klaassen (1997). As a result, we can rewrite the volatility as h,(0) = c%g;(a, b),
where g;(8) = 1+ aui_; + bgi—1(5).

In the sequel we will use the following notations frequently: moment conditions R;(g) = 1(e <
da) — @, Ra(e) = (g,% — 1)T; the Fisher scale score R3(e) = 1 + eL©) of the error density f;

fe)
derivatives G1(8) = dlog gi(8)/08, G(8) = E[G1(8)], Hy(60) = dlog hi(6)/80, H(9) = E[H,(0)),

0log g:(B) 0log g+(B)

, dlog hy(0) 8log hy(6)
B op" '

o0 0"

Gy(8) = E Hy(0) = E

When the argument is evaluated at the true value, we use abbreviation: for example, G = G(S)
and Ht = Ht(a())

The log-likelihood of observations {yi,...,yn} (given hy) assuming that f is known is

L) = log f(ctg; V2 (B)ye) +logc g, 2(B).
t=1

Then the score function in the parametric model at time ¢ as

1,(0) = _% (1 +€t(9)f’(€t(9))> dlog hy(0)

flee(0)) 90

We now consider the semiparametric model where f is unknown. To see why the parameter 6 is
not adaptively estimable, we consider the density function f(z;7) with a shape parameter n € Y.
It is clear from E[01,(0;7)/0n] # 0 that the estimation of n affects the efficiency of the estimates
of . If we knew the density function f(-) and are interested in estimating [ in presence of the

nuisance parameter ¢, the efficient score function for g is the vector
. 1
5.(B) = *§{Gt(5) — G(B)}Rs(er), (3.3)
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according to the Convolution Theorem 2.2 in Drost and Klaassen (1997). The density function f(-)

is unknown. Drost and Klaassen (1997) showed that introduction of unknown f(-) in presence of

unknown ¢ does not change the efficient influence function for 3.

We make the following assumptions:

ASSUMPTIONS A

Al

A2.

A3.

A4.

A5.

c¢>0,a>0andb>0. E[ln{b+ ac’c?}] < 0.

The density function f satisfies the moment restrictions: [ f(z)dz =0 and [ 2?f(z)dz = 1;

it has finite fourth moment [ 2f(z)dz < oo, and Ee* — 1 — (Ee3)? £ 0.

The density function f is positive and f is absolutely continuous with
[1flloo = sup f(z) < oco,sup |z|f(z) < oo,/|:r|f(x)dx < 00.
z€R z€R
The density function f has positive and finite Fisher information for scale
0< /(1 +af(2)/f(x)f(z)dz < co.
The density function f for the initial value hg; satisfies that, the likelihood ratio for hoq,
Pr
ln(ho1) = log{f; /fs,(ho1) = 0, asn— oo

where the contiguous parameter sequences gn and 0,, are defined as in Drost and Klaassen

(1997, p199).

REMARK. Assumption A.1 ensures the positivity of h; and the strict stationarity of y;. Since

Eln{b+ac?*?}] < b+ac?*—1, a sufficient condition for strict stationarity is b+ ac? < 1, see Nelson

(1990). A.2 is introduced to make sure that the variance matrix E[Ro(c)Ro(c) ] is invertible A.3 is

made because we will need some boundedness of f to make a uniform expansion for the empirical

distributions, see section 3. A.4 is typically assumed for efficiency discussion, see for example,

Linton (1993) and Drost and Klaassen (1997). A.5 is assumed to obtain the uniform LAN theorem

and the Convolution Theorem, as in Drost and Klaassen (1997).

We will suppose that there exists an initial v/7-consistent estimator of all the parameters, for

example the QMLE. The large sample property of GARCH parameters has been studied in different

context. For example, Lee and Hansen (1994) and Berkes et. al. (2003) for detailed consistency
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discussion of Gaussian QMLE, and Weiss (1986) for OLS. Jensen and Rahbek (2004) considered
the asymptotic theory of QMLE for nonstationary GARCH models. We have the following result

which extends Drost and Klaassen (1997) and Drost, Klaassen, and Werker (1997).

Theorem 1 Suppose that assumptions A hold. Then there exists an efficient estimator 0 that has

the following expansion

V(0 — 00) = % S 44 (60) + op(1), (3.4)
t=1

-3 B35 HG —- GY 0 Rs(er)
7/%(90) = .
FETEL ]G -G R(=E 1) |\ Raler)
Consequently,
V(B — 6o) = N(0,0y),
0 B[l 03 7 ~S Bl ]7'G
0 = 2
—SGTEI ] BB 1 - (B2 4 QT B 1] G)

For technical reasons, the estimator employed in the theorem makes use of sample splitting,
discretization, and trimming in order to facilitate the proof. In practice, none of these devices may
be desirable.

We have found the following estimator scheme works well in practice. Suppose that k(-) is a
symmetric, second-order kernel function with [ k(z)dz = 1 and [ zk(z)dz = 0, and let h and b be
positive bandwidths that (in the theory will satisfy h — 0,nh* — 0o, b — 0,nb* — c0).

ESTIMATION ALGORITHM

-~ ~T
1. Let §; = (B, ,¢1) " be an initial v/T-consistent estimator, for example the QMLE, and compute

the residuals €14 = yt/h,}/2 (51)

2. Update the estimator of 8 by using the Newton—Raphson method:
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3. Denote &; = ytg;1/2(B) and the efficient estimator for ¢ is

. Lo o 138 o
c=4/— E er — —== = E ;.
n t=1 " n Z?:1 6t2 t=1

This procedure can be repeated until some convergence criterion is met, although for most
theoretical purposes, one iteration is sufficient.

REMARK. It can be shown that the simpler estimator ¢ = \/%Z?:l €2 has an asymptotic
variance c3{Ee* — 1 + G E[l},15]171G} /4, which is strictly larger than our efficient estimator ¢

unless the error distribution is symmetric, i.e. Ee3 = 0.

3.3 Efficient estimation of ¢, and ES,

We now turn to the estimation of the quantities of interest. To motivate our theory, we first discuss
the estimation of ¢, with the availability of true errors, and then discuss what to do in the case of

estimation errors.

3.3.1 Quantile estimation with true errors available

In this subsection we estimate the quantile by inverting various distribution estimators. Because
the unknown error distribution satisfies condition (3.2), it is desirable to construct distribution
estimators that have this property.

The empirical distribution function F(z) = n~? >or_; 1(e¢ < x) is commonly used but it does not
impose these moment constraints. In practice, a common approach is to recenter the errors. There-
fore, we also consider a modified empirical distribution, Fy(z) = n~! S (e — po)/oe < @),
where i, =n ' Y7 erand 52 = n~ ' 31 €2 — (n~ 1.1, &)%. By construction, this distribution
estimator satisfies the moment constraints (3.2). It is easy to see that the relationship between
F(z) and Fy(z) is Fx(z) = F(li, + 25.).

In this paper, we consider a new weighted empirical distribution estimator F,, () =D Wl <

x), where the empirical likelihood weights {w;} come from the following:

max I} wy

wy }
s.t En wy = 1'En wE—O'E " wi(e? —1) =0
s =1 t  — ) =1 tet — Yy =1 t\<ct - Y

By construction, ﬁw satisfies the moment restrictions.
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In the absence of the moment constraints, it is easy to see that argmaxg,, j}{II}=;w; + A(1 —
>or_,we)} = 1/n. In this case our weighted empirical distribution estimator is the same as F(x).
Since the unknown distribution is in the family P = {f(z) : [z f(z)dz = 0, [(2? — 1) f(z)dz =
0}, we expect F\w(m) to be more efficient by incorporating these moment constraints, Bickel,
Klaassen, Ritov, and Wellner (1993). Lemma 1 (appendix) which shows the uniform expansion
for the distribution estimators F\(:r), ﬁN(x) and Fl, confirms our conjecture. It is well-known that
\/ﬁ(l:"\(x) — F(z)) = N(0,F(x)(1 — F(x))). The empirical distribution is the most efficient es-
timator without any auxiliary information about F'(-). This is consistent with our result because
wy = 1/n is the solution to the problem of max,,} {II{_;w, + A(1 — >, wy)}.

We obtain an asymptotic expansion for Fy (z) and ﬁw(:r) in the appendix (Lemma 1) and show

that:

Vi(Ey(2) = F(x)) — N(0,F(2)(1— F(z))+Cy)

() — F(z)) = N(0,F(z)(1—F(z))— Al B14,).

2
S

We can see that normalization has introduced some additional error; see Durbin (1973). This
estimation error has been cumulated and is reflected by the additional term C, in the asymptotic
variance. The sign of C, function is indeterminate, see the Figure 1 in the appendix. It depends
on the density f(z) and the point to be evaluated. For standard normal distribution and student
distributions, C, < 0, which means, for these two distributions, Fy (z) is more efficient than F/(z).
In contrast, for mixed normal distribution and Chi-squared distributions, the efficiency ranking
depends on the point to be evaluated. On the other hand, weighting the empirical distribution
takes into account the information in (3.2), which is reflected in the term —A] B~1A,. This term
can be explained as the projection of 1(¢ < z) — F(z) onto Rs(¢). The covariance A, measures
the relevance of moment constraints (3.2) in estimating the distribution function. The information
content that helps in estimating unknown F(z) is weak when A, is small. In case of A, = 0, the
moment constraints (3.2) do not have any explanation power at all since 1(e < z) — F(x) and Ra(¢)
is orthogonal. In the appendix we give conditions under which F' N (x) and F (x) can be as efficient
as F, (z).

We now define our quantile and expected shortfall estimators. For an estimated c.d.f., F , let

Go=sup{t: F(t) <a}=F'(a) ; ES,= 1 /qa zdF (). (3.5)

— 00

30



b\l = E]\aab\Z = (?ng:s = qu&,§4 = E’ga,& = E’ENQ, and 56 = nga be defined from (3.5) using
the F (z), F '~ (z), and F, (z) as required. The next theorem presents the asymptotic distribution of

these quantile estimators. Define:

_al-a) o all-a), G o, _o(l-a) 4,B7'4,
L [ N (8 B [ R VN R TN
2 fda
Vi = avar((e —qa)1(e < qa)) ;3 Vs=a *var((e — qu)l(e < qo) — ac — % /q xf(x)dz))
Vs = a *var((e — ¢a)1(e < qu) + Ry (€)B71 /qu Agzdz).

Theorem 2  Suppose that assumptions A.1-A.5 hold. The quantile and expected shortfall estima-

tors are asymptotically normal

V(@) —6;) = N (0,V;)
forj=1,...,6, where 1 =03 =05 = q, and 0, = 05 = 0g = ES,,.

REMARK. It is clear from the comparison of asymptotic variances that ¢, which is based on
inverting empirically weighted distribution estimators, is the most efficient one. The same conclusion
. . . . . To 1 o =~ 1 ¢~
holds for ES since ES is the aggregation of lower quantiles: ES, = = f_oo zdF(r) = - fo Goda.

REMARK. For improvement in mean squared efficiency, one could consider inverting the smoothed

weighted empirical distribution Fi,(z) = Y21, W K (£554) with Fy(z)=n"'Y0, K(%5%t) being
a special case. However, the first order large sample properties will be the same as the unsmoothed
one here. The unsmoothed distribution estimators considered in this paper are free from the com-

plication of bandwidth choice.

3.3.2 Quantile estimation with estimated parameters

We now assume that we don’t know the true parameters 6, and so we don’t observe ;. Instead
we observe the polluted error, £4(6,,) = yt/htl/2(9n), where 6,, is an estimator sequence satisfying
0, — 00 = O,(n"'/2). Now we construct an efficient estimator for residual distribution F(z) and
then invert to get back the quantile estimator g,, = F, ' (a). We treat a general class of estimators
0., for completeness.

Motivated by the efficiency gain shown in Lemma 1, we estimate the quantile by inverting the

following distribution function estimator:

Fu(@) =Y @ (=(00) < ), (3.6)
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where {@t} are defined by the solution of the following optimization problem

max IT7"_ ;w;
{we}

s.t. thl wy = 1 thl wier(0n) = 0; thl wy(2(60,) — 1) = 0.

For comparison purposes, we also consider the residual empirical distribution estimator ﬁ(w) =
n~t Y " 1(e4(,) < x) and the standardized empirical distribution Fn(z)=n"! S L((ee(0,) —
~ ~ ~ ~2
fi.)/0- < x), where fi, = n~"' Z?:l et(0n) and o, =n~" Z?:l 7 (0n) — (n~" Z;L:]. e1(0n))*.

Suppose that there is an estimator 0 that has influence function X¢(00), i.e.

Vi = 00) = == 3" xul00) + 0y(1). (3.7)

In the appendix (Lemma 2 and Corollary 3) we derive uniform expansion of the distribution esti-
mators F (z), F ~(z) and Fy, () based on 6§ and give their asymptotic variances, which depend on
the influence function x,(6p). We next explore these asymptotic variances for some widely used

estimators (with expansion 3.7). Suppose that
Xt(60) = Ji(6o) (s — 1), (3.8)

where J¢(0p) € Fi—1, so that x,(0p) is a martingale difference sequence. Denote J(0y) = E[J:(0o)].

Then the asymptotic variances of the three distribution estimators are respectively:

[Ee] — 1]a?f (2)*

Q@) = Flo)1-F@)+ i {H(05)" J(60)Y + 2 (€)H(80) T (Bo)az(x)

0 se) = F@)1-F) + EEEIO G0 s00))2 4 @) H00) T00)as(a)
e+ 2T (x)Q[f =Y @B 1 e @)ar(a) + 2f () (2)
(@B H (B0 I(09) + L (”3)2[5 == 00)" 100)

Q35(x) = F(z)(1-F(z)) - A B A,

2
xf(x
B -1 {J;” i ( 01 ) B—lAm} {H(80) T(00)}*.
In the special case of the least squares estimator,

i (00) = H(00) hu(00) 0 (),
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where Hi(0p) = E[24570 8430)). Denote Hz(00) = Elhi(60) %557°2], then Jy(89) = Hi(60) ™" Ha:(60)-

In the special case of the Gaussian QMLE,

1 0he(bo), o
he(60) aeo (ei = 1),

X:+(00) = {Ha(00)} !

then J;(6p) = Ha(09) " H;(6p). In both cases the asymptotic variance is increased relative to Lemma

1. Since the QMLE residuals £¢(0) are obtained under the moment condition n=* "7 [H;(0) (7 0)—
1)] = 0 with probability one, the first moment of ﬁ(:lc) is fxd?(x) = n 1Y (2(0) — 1), which
may not be zero with probability one.

We construct quantile estimators by inverting these distribution estimators. Based on the as-
ymptotic expansion of the distribution estimators in the appendix (Lemma 2), we obtain the as-
ymptotic properties of the Value at Risk and Expected shortfall estimators, which is the main
result of the paper. Let 51 = 50”52 = éNa@ @m@ = ?Sa,gg, = E\ENQ, and 56 = E\Ewa

be defined from (3.5) using the estimated c.d.f.s ﬁ(m), ﬁN(x), and ﬁw(x) as required (and define

correspondingly, 61 = 03 = 03 = q, and 04 = 65 = 0g = ES,.). Define the asymptotic covariance

matrices:
_a(l-oa) ﬁ 4 4 sv21 , da(a2q, — a1q, E€?)
M = Qu= o) +5 [Ee* —1— (Ee”)?] + Flao)
Q0 = O — a(l —a) Cy., 3¢2[Eet — 1 — (Ee®)?]  qalagg, — aiq, Be®)
S (PN R (PR i 7o)
T -1 0 1 BilAqa
0o — Qwa:a(l—a)_Aan Ag, 9o ( ) 241 _ 3\2
: Far?  f@r? 2t fay )R
2 _ 3 (o
O = s —a (- e < a0 - S0 [ af@an )

da

Q5 = Qpsy =a var <(5—qa)1(aSqa)—e/qa[f(g;)_xf(z)ngi]dz_sz/

N ) @ f(:z:)dx)

Qs = Qpsw =a var ((5 — qo)1(e < qa) — (€2 — cEEY) /qa [mf2(”3) + ( 0 1 ) B~'A,)dx

qo
+R, (e)B71 Am:) )

— 00

Theorem 3 Suppose that assumptions A.1-A.5 hold. The quantile and expected shortfall estimators

are asymptotically normal:

~
=~

\/E(OJ — Qj) — N(O, QJ)
forj=1,...,6.
REMARK. For the same reason as given in the discussion about the efficiency of distribution
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estimators, we can see that am is more efficient than 5(1 The same conclusion holds for ES.

REMARK. Notice that the asymptotic variances of VaRs and ESs do not contain any functional
form of the heteroskedasticity. This is due to the orthogonality in information between estimators
for the distribution F(z) and variance estimator for 3.

REMARK. We can compute consistent standard errors by the obvious plug-in method.

3.4 Efficient estimation of conditional VaR and conditional
expected shortfall

We have discussed the asymptotic property of efficient estimators 6 and ;]'lwa. They are shown to

be the best among competitors in terms of smallest asymptotic variances. Both are important

ingredients to the conditional quantile estimator En,t as En,t = hi/ 2(5)51”& and the conditional
expected shortfall X,, , = htl / 2(5)@?,”@ In this section, we will show that these two quantities are

asymptotically mixed normal. Define:

q(2x T —— —1
wer = he(o) ¢ (G = G) B[yl |7 (Ge = G) + Qua

E52 T _E371E - al < 1 +RT C R
th_ht(%){ S oo, + s, P DE [{ q><sta_q> 3 (1)C} 2<at>]+QESW}
qa Qo
C=/ [%@S)Jr ( 0 1 )B‘lAz]dx(Es3,—1)+ AldzB'.

Theorem 4 Suppose assumptions A.1-A.5 hold. The conditional quantile estimator /f\n,t and con-

ditional quantile estimator X, , are asymptotically mized normal

~

\/ﬁ(fmt —&) = MN(0,wg)

\/ﬁ(?n,t - Xt) = MN(vaxt)a

where the random positive scalars we: and wy: are independent of the underlying normals.

REMARK. From the influence functions of (a, B) and a\wa, we can see that they are asymptotically
orthogonal. This is anticipated as the parameter (a,b) is adaptively estimated with respect to the
error distribution.

REMARK. This mixed normal distribution asymptotics is similar to results obtained in Barndorff-

Nielsen and Shephard (2002) for estimation of the quadratic variation of Brownian semimartingales,
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see also Hall and Heyde (1980). It follows that \/ﬁ(/f\nt - §t)/wét/2 = N(0,1) and \/E(Znt -

&) /@ét/ > — N(0,1), where Wer is a consistent estimator of we;. Therefore, one can conduct infer-

ence about £, , with the usual confidence intervals.

3.5 Numerical Work

In this section we present some numerical evidence. The first part is Monte-Carlo simulation and

the second is an empirical application.

3.5.1 Simulations

We follow Drost and Klaassen (1997) to simulate several GARCH (1,1) series from the model (1)

with the following parameterizations:
1. (¢,a,b) € {(1,0.3,0.6),(1,0.1,0.8), (1,0.05,0.9) };

2. f(z) € {N(0,1), MN(2,-2), L, t(5),t(7),t(9), X2, X35}, which are, respectively, referred to the
densities of standardized (mean 0 and variance 1) distributions from Normal, Mixed Normal
with means (2,—2), Laplace, student distributions with degree of freedom 5, 7 and 9 and

chi-squared distribution with 6 and 12 degrees of freedom.

Sample size is set to n = 500, 1000. Simulations are carried out 2500 times. We consider the
performance of the three distribution estimators and their associated quantile and ES estimators
with « being 5% and 1%. We also have the simulation results for small samples n = 25, 50, 100,
and for IGARCH models with a + b = 1. These results are similar to those in this paper and are
available upon request.

The criterion for distribution estimator F(z) is the integrated mean squared error (IMSE)
IMSE = /E[ﬁ(x) — F(2)]%dx
and that for quantile and ES estimators (g, and E‘ga) is the mean squared error
MSE = E|(Go — 4a)°; MSE = B[(ESa — ESa)?].

First, we consider the case where the true errors are available. The IMSEs of three distribution
function estimators are summarized in Table 1. It is clear form this table that the weighted empirical

distribution estimator F,,(z) performs the best in all cases. The relative efficiency of F,(z) to the
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unweighted empirical distribution F (x) is very large: it ranged from 50% in case of errors being
Laplacian to 72% in the case of Mixed-normal. Figure 2 visualizes this gain by plotting the overlays
of simulated distribution estimators with 100 replications. The colored region represents the possible
paths of function estimators and it is clear that the magenta area (realizations of F\w(m)) is has the
smaller width than blue area (realizations of F\(x)) In order to compare the quantile estimators
based on inverting these distribution estimators, we compute their average biases and mean squared
errors under different distributional assumptions and in 500 and 1000 sample sizes. The average is
taken over 2500 simulations. It is found that Gy, performs much better than g, in all cases. This
improvement is clearer in the case of & = 0.05 than the case of @ = 0.01. This is because the further
to the tail ( when a is smaller), the smaller the covariance between Rz(¢) and 1(e < x) — a.

Next, we compare the distribution estimators when the errors are not observable and we use
estimated errors from QMLE. Since QMLE is consistent in all above error distribution assumptions,
we expect the QMLE residuals will behave close to the true errors, although with some estimation
noises. Table 4-6 list the IMSE for distribution estimators under three different parameterizations.
We find that, there are efficiency gains by weighting the empirical distribution estimator with
empirical likelihoods. Figure 3 visualizes these gains, which vary across the assumptions of true
error distributions. Table 7-12 compare the performance of residual quantile estimators. The
conclusion is the same: empirical likelihood weighting reduces the variation of quantile estimators.
However, these reductions are not of the same magnitude as in i.i.d case. The reason is because we
use estimated errors in stead of true errors and the added estimation noise affect the performance
of residual based estimators.

Thirdly, we compare different estimators for expected shortfall in the case of iid errors and
GARCH residuals. As seen from table 15-18, the same conclusion holds for ES. For sample size
n=>500 and 1000, the proposed estimator does not do very well in the case of a = 0.01, see table
18. This is expected because our efficient estimator (EL-weighted) involves an additional layer of
numerical optimization, and for such low quantile/ES, the effective sample size is n/100. Therefore
we tabulate the results for large sample n = 10000,which is the table 19(c). It’s clear from table that
our proposed VaR and ES estimators outperform other estimators in terms of smaller MSE.(The
comparison of the estimators for gg.0; and Ego.ohwhen the true errors are available and 50.01 and
E’/:Som, when the polluted errors are calculated are provided in table 19(a) and 19(b)).

Finally, we consider the case of distribution and quantile estimation based on efficient residuals:
the estimated errors are residuals from efficient estimation of parameter 6y. As we notice that the

performance of these estimators does not change much under different parameterization of 6y, we
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only report the results in the case of ¢ = 1,a = 0.05,b = 0.9. Table 13 summarizes the performance
of quantile estimators for gg.91 and qg.o5, while table 14 reports the true VaR and ES for distribution
estimators and Figure 4 visualize the efficiency gains.

Table 1. Integrated Mean Squared Error (x1073) of Distribution Function Estimators

n = 500 n = 1000

F(z)  Fy(z) Fu(z) | F(z) Fy(z) Fu(o)

N 0.3365 0.1199 0.1212 | 0.1616 0.0580 0.0583
MN | 0.3286 0.1412 0.0916 | 0.1622 0.0687 0.0462
L 0.3313 0.2188 0.1603 | 0.1692 0.1092 0.0810
t(5) | 0.3419 0.2157 0.1635 | 0.1657 0.1055 0.0797
t(7) | 0.3255 0.1594 0.1458 | 0.1695 0.0791 0.0708
t(9) | 0.3336 0.1439 0.1361 | 0.1664 0.0730 0.0687
X2 0.3308 0.1479 0.1217 | 0.1692 0.0721 0.0605
X3, | 0.3297 0.1335 0.1213 | 0.1692 0.0654 0.0595

Table 2. Comparison of quantile estimators for go.g1 (true errors are available)

n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)
Z]\a Z]\N « Z]\woz []\a (/]\N [eY Z]\wa Z]\a (/I\N « Z]\woz Z]\a Z]\N « Z]\wa

N -21(-08 | 37 | 271 | 194|222 | -0.7 | -1.1 | 0.6 | 14.1 | 9.9 | 11.1
MN | -1.8 | -2.5 | -0.5 6.3 5.8 | 56 | -1.3 | -09 | -04 | 33 | 3.1 | 29
L 3.7 33 | 179 ] 943 | 609|686 | 11.9 | 94 | 11.8 | 47.8 | 31.6 | 31.9
t(5) | 25.1 | 25.3 | 40.7 | 102.5 | 67.5 | 72.8 | 84 | 11.4 | 22.2 | 50.4 | 34.1 | 35.1
t(7) | 84 | 105 | 21.1 | 654 | 453|509 | -1.7 | 0.1 | 4.9 | 349 | 23.1 | 23.6
t(9) | 105 | 9.3 | 154 | 56.1 | 36.7 | 41.8 | 11.4 | 81 | 89 | 30.9 | 20.0 | 21.3
X2 | 34| 04 | -1.7 1.7 3.7 | 17 |-10| 05 |-041] 09 | 1.8 | 0.8

X3, | -4.6 | -35 | -3.1 4.9 6.0 | 48 | -28 | -09 | -1.7 | 2.5 | 3.1 2.3
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Table 3. Comparison of quantile estimators for go.o5 (true errors are available)

n = 500 n = 1000

Bias(x1073) MSE(x1073) Bias(x1073) | MSE(x1073)
do | @vo | Qwa | @a | ANa | Qwa | Go | @Na | Qwa | o | ANa | Gua

N |36|-16|-1.0| 89 | 42 | 44 [-12]-06 | 0.1 [ 45| 2.0 | 2.0
MN |-14] 00 | -01] 24 | 20 | 14 |-08|-1.1] 00 | 1.3] 1.0 | 0.7
L | 08|46 | 79 |182| 88 | 88 |26 | 27 | 4.6 | 94| 49 | 4.6
¢(5) | 0.7 | 5.0 | 121|136 | 9.0 | 81 |-1.4| 27 | 49 [ 69| 48 | 3.9
t7) | 22| 13 | 53 | 122] 63 | 6.7 | 06 | 29 | 35 [ 63| 3.3 | 3.2
t9) [-26] 02 | 1.9 | 11.7] 6.0 | 6.0 | 35 | 21 | 3.1 | 58| 29 | 2.8
2 |-14| 13|04 | 15|21 |11 [-23|02|-1.0/07| 11|06
X% |-17]-07] 11| 28 |24 |19 |-20]-12|-08|14| 1.3 | 10
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Table 4. Integrated Mean Squared Error (x1073), ¢ = 1,a = 0.3,b = 0.6.

n = 500 n = 1000

F@) | Fx@) | Fu@) | F@) | Fx(@) | Ful@)

N 0.3018 | 0.1196 | 0.1193 | 0.1498 | 0.0595 | 0.0595
MN | 0.2954 | 0.1445 | 0.0940 | 0.1508 | 0.0726 | 0.0468
L 0.3249 | 0.2188 | 0.1699 | 0.1653 | 0.1089 | 0.0848
t(5) | 0.3551 | 0.2069 | 0.1859 | 0.1751 | 0.1031 | 0.0951
t(7) | 0.3211 | 0.1550 | 0.1490 | 0.1631 | 0.0794 | 0.0762
t(9) | 0.3176 | 0.1428 | 0.1389 | 0.1599 | 0.0717 | 0.0703
X2 0.3999 | 0.1434 | 0.1548 | 0.2080 | 0.0739 | 0.0808

X3, | 0.3415 | 0.1302 | 0.1333 | 0.1745 | 0.0664 | 0.0678

Table 5. Integrated Mean Squared Error (x1073), ¢ =1,a = 0.1,b = 0.8.

n = 500 n = 1000

Fo) | Fx@) | Fu@) | F2) | Fx(z) | Ful)

N 0.3023 | 0.1195 | 0.1193 | 0.1499 | 0.0594 | 0.0595
MN | 0.2960 | 0.1442 | 0.0937 | 0.1511 | 0.0726 | 0.0468
L 0.3250 | 0.2185 | 0.1700 | 0.1655 | 0.1088 | 0.0848
t(5) | 0.3591 | 0.2067 | 0.1891 | 0.1763 | 0.1029 | 0.0962
t(7) | 0.3222 | 0.1550 | 0.1495 | 0.1635 | 0.0792 | 0.0764
t(9) | 0.3187 | 0.1428 | 0.1396 | 0.1600 | 0.0715 | 0.0702
X2 0.4014 | 0.1430 | 0.1547 | 0.2076 | 0.0738 | 0.0807

X3 0.3422 | 0.1301 | 0.1335 | 0.1740 | 0.0663 | 0.0672

Table 6. Integrated Mean Squared Error (x1073), ¢ = 1,a = 0.05,b = 0.9.
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n = 500 n = 1000

Fa) | Px(@) | Ful@) | F@) | Fa(@) | Ful@)
N 0.3026 | 0.1193 | 0.1191 | 0.1500 | 0.0594 | 0.0595
MN | 0.2964 | 0.1440 | 0.0937 | 0.1511 | 0.0727 | 0.0468
L 0.3255 | 0.2182 | 0.1700 | 0.1656 | 0.1088 | 0.0848
t(5) 0.3607 | 0.2069 | 0.1902 | 0.1769 | 0.1034 | 0.0968
t(7) 0.3232 | 0.1557 | 0.1502 | 0.1636 | 0.0791 | 0.0763
t(9) 0.3187 | 0.1428 | 0.1393 | 0.1602 | 0.0715 | 0.0702
X% 0.4021 | 0.1425 | 0.1548 | 0.2079 | 0.0737 | 0.0808
X%z 0.3432 | 0.1299 | 0.1336 | 0.1741 | 0.0663 | 0.0673
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Table 7. Comparison of quantile estimators for gg 91, with ¢ =1,a = 0.05,b = 0.9

n = 500 n = 1000

Bias(x1073) MSE(x1073) Bias(x1072) MSE(x1073)

To | Qv | Qe | @0 | Ova | Qoo | G0 | Gva | Gwa | Ga | @va | Gwa
N | 26| -51]-35]21.2|186|20.6 | -2.5 | -4.9 | -4.3 | 10.8 | 9.6 | 10.0
MN | -23|-39|-38 |59 |61 |58 |-08|-29|-18|30]| 32/ 30
L | 08 |-37|-18|61.2 540|581 | 33 | 1.2 | 1.1 |35.1 | 31.0 | 29.8
t(5) | 28.4 | 23.5 | 22.5 | 73.8 | 65.5 | 66.8 | 9.2 | 9.0 | 12.1 | 36.9 | 33.1 | 32.5
t7) | 55 | 1.3 | 1.2 | 48.9 | 43.1 | 457 | 1.4 | 0.3 | -0.3 | 25.7 | 22.6 | 22.2
t9) | 1.0 | -0.4 | 1.8 | 39.8 (348|389 | 1.2 | -1.2 | -1.2 | 20.2 | 18.0 | 18.9
X2 | 273 (214|258 70 | 45 | 59 |135]105 | 133 | 3.4 | 2.1 | 238
X2, | 139100134 | 87 | 65 | 74 | 85 | 55 | 7.8 | 41 | 3.1 | 34
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Table 8. Comparison of quantile estimators for ¢g.g1, with c =1, =0.3,6 = 0.6

n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1072) MSE(x1073)

To | Qv | Qe | @0 | Ova | Qoo | G0 | Gva | Gwa | Ga | @va | Gwa
N | 23|-43|-24 215|189 207 |-1.6 | -4.0 | -3.8 | 11.0 | 9.9 | 10.3
MN | -24|-36|-37|58 | 61|57 |-02|-22|-14|30]| 33|29
L | 1.1 |-31|-09]607 535|573 1.7 | -0.2 | 0.4 | 348|305 | 29.7
t(5) | 33.7 | 28.6 | 28.3 | 70.5 | 62.8 | 67.4 | 9.0 | 82 | 11.9 | 36.3 | 32.7 | 32.1
t(7) | 45 | 0.8 | -0.1 | 48.2 | 424 | 444 | 1.8 | 1.0 | 1.5 | 26.0 | 23.0 | 23.2
t(9) | 21 | 1.5 | 3.2 | 40.0 | 35.1 | 38.8 | 0.6 | -1.3 | -1.9 | 20.4 | 18.2 | 18.8
X2 | 31.6[25.7(298 | 7.6 | 5.0 | 6.3 | 14.6 | 11.9 | 141 | 3.4 | 2.2 | 2.8
X2, | 162126158 | 87 | 6.6 | 7.5 | 98 | 7.2 | 91 | 42 | 32 | 3.5

Table 9. Comparison of quantile estimators for ¢g.91, with ¢ =1,a =0.1,06 = 0.8

n = 500 n = 1000
Bias(x1073) MSE(x107%) Bias(x1073) MSE(x1073)

To | Gva | Qwa | o | GNa | Qwa | Qo | Ova | Gua | Qo | @va | Qwa
N | -31|-55|-36|21.4]189|205|-31|-40 | -22 | 11.2 | 10.1 | 10.5
MN | -25|-40|-39 | 58 | 6.0 | 57 | -1.5 | -32|-21 ] 29 | 32 | 28
L |-00]-38]|-08]608]|536]|580]-09]-1.2| 23 [37.0]331]33.0
t(5) | 29.7 | 25.7 | 22.1 | 71.7 | 64.0 | 67.4 | 9.2 | 9.1 | 14.0 | 37.0 | 33.3 | 34.4
t(7) | 4.3 | 0.7 | 0.1 | 484 | 42.7 | 454 | 4.7 | 3.6 | 4.9 | 26.4 | 23.5 | 23.3
£9) | 0.7 | 01| 23 | 399|350 384 33 | 1.1 | 1.2 | 203182 | 187
X2 | 297237285 | 7.3 | 47 | 6.1 |16.6 | 13.0 [ 155 | 3.3 | 21 | 27
Y%, | 153|116 | 148 | 87 | 6.6 | 7.6 | 87 | 58 | 80 | 44 | 32 | 3.6

Table 10. Comparison of quantile estimators for gg.g5, with ¢ =1,a = 0.3,b = 0.6
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n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)
To | Tva | Gwa | @o | Gva | Gwa | Ga | Gva | Gua | Go | dva | Gua
N | 03|09 | 22|62 42|43 |-07|-1.6|-06{3.0] 21 | 2.1
MN | 06 |-1.6| 01 | 1.8 | 21 | 1.5 | -0.0| -1.0 | -0.2 | 0.8 | 1.0 | 0.7
L | 93|98 |13.0|141| 97 | 93 | 40 | 3.0 | 42 | 68| 44 | 4.1
t(5) | 19.5 | 159 | 184 | 12.3 | 86 | 84 | 82 | 7.1 | 9.0 | 6.1 | 45 | 4.4
t(7) | 49 | 5.0 | 82 | 95 | 63 | 63 | 6.2 | 5.0 | 57 | 50| 3.4 | 34
t(9) | 5.5 | 46 | 66 | 84 | 5.7 | 58 | 45 | 3.1 | 41 |46 | 3.1 | 3.0
X2 | 11.7| 84 | 108 | 44 | 21 | 2.7 | 6.7 | 39 | 5.7 [ 22| 1.1 | 14
X3y | 70 | 24 | 55 | 47 | 24 | 27 | 41 | 22 [ 36 [23] 1.3 | 14

Table 11. Comparison of quantile estimators for qg.g5, with ¢ =1, = 0.1, = 0.8

n = 500 n = 1000

Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)

Qo | xo | Qwo | @o | v | Gwo | @a | @Na | Gwo | o | Gva | dwo
N 38 | 20|36 | 61 | 41 (42|12 |06 | 14 |31 ] 21 | 2.1
MN | -00|-12|-07] 1.8 | 21 | 1.5 |-04]-19 |-09 |09 | 1.1 | 0.7
L 144 | 11.7 | 139 | 13.7| 9.0 | 87 | 64 | 6.6 | 82 |73 | 49 | 4.6
t(b) | 189|163 | 185 | 12.1 | 87 | 86 | 88 | 9.1 | 105 | 6.6 | 4.9 | 4.8
t(7) | 6.0 | 49 | 80 | 92 | 63 | 6.4 | 4.8 | 42 | 53 |49 | 33 | 3.2
t(9) | 5.1 | 40 | 5.7 | 86 | 57 | 5.8 | 6.6 | 49 | 54 |42 ] 29 | 3.0
Xz | 119 | 75 | 108 | 45 | 23 | 28 | 7.9 | 44 | 6.6 [ 22| 1.0 | 1.3
X%, | 83 | 5.8 | 7.6 | 47 | 25 | 29 | 49 | 22 | 39 [ 23| 1.3 | 14

Table 12. Comparison of quantile estimators for qg.05, with ¢ = 1,a = 0.05,6 = 0.9
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n = 500 n = 1000

Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)

~ ~ ~ ~ ~ o~ o~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~

o AN awoz Ao a\Noc awa o dNa Qo o aNoz a\wa

N 1.2 1.3 | 33 | 6.1 42 | 43 |-03|-14|-03 30| 2.1 | 21
MN | 10 |-16|-01}| 18 | 20 | 1.5 | 0.1 | -1.0 | -05| 0.8 | 1.0 | 0.7
89 | 9.0 | 12.1 | 141 | 9.7 | 92 | 41 | 29 | 41 |69 | 44 | 4.2
16.1 | 13.2 | 154 | 128 | 88 | 89 | 80 | 70 | 88 | 6.3 | 4.6 | 4.5
42 | 38 | 7.1 94 | 6.2 | 62 | b7 | 42 | 55 | 51| 34 | 34
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N /N
© 9 «» =
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45 | 32 | 55 | 85 | 56 | 5.7 | 5.1 | 3.5 | 47 |46 | 3.1 | 3.1
Xz | 11.2 | 7.8 | 10.1 | 45 | 2.1 | 27 | 60 | 3.2 | 5.1 [22] 1.1 | 14
X1o 6.7 | 1.8 | 49 | 48 | 24 | 28 | 3.7 | 1.7 | 32 | 24| 13 | 14

Table 13. Comparison of quantile estimators, with ¢ = 1,a = 0.05,b = 0.9, n = 1000, s = 500

qo.01 q0.05

Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)

~ ~ ~ ~

~
~ ~ ~ ~

o AN E]\wa da E]\Noz E]\wa o dNa Qwo o z]\Noz Z]\wa

~

N -25 1 -49|-431]108] 96 | 100 |-03|-14 |-03 |30 21 | 2.1
MN | -08 |-29|-18 | 30| 32| 30| 01]-10]|-05]08]| 1.0 | 0.7
3.3 | 1.2 1.1 | 351310298 | 41 | 29 | 41 | 69| 44 | 4.2
92 | 90 | 121 | 369 | 331|325 | 80 | 70 | 88 |63 | 46 | 4.5
-0.3 | 25.7 | 226 | 222 | 5.7 | 42 | 55 | 51| 34 | 34

~+~ &
e N e
o 9 « ™
L 3«

—

I

o

3%

1.2 | -1.2 | -1.2 | 20.2 | 18.0 | 189 | 5.1 | 3.5 | 47 | 46| 3.1 | 3.1

[ V)

2 |135[105|133| 34 | 21 | 28 | 60 | 3.2 | 51 (22| 1.1 | 14
x% | 85 | 55 | 7.8 | 41 | 31 | 34 [ 37| 1.7 |32 |24 13| 14
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Table 14. True VaRs and Expected Shortfalls for standardized distributions

0.01 90.05 ESoo1 | ESo.05
N -2.3263 | -1.6449 | -2.6655 | -2.0626
MN | -1.8129 | -1.4676 | -1.977 | -1.679
L -2.7662 | -1.6282 | -3.4734 | -2.3352
t(5) | -2.6065 | -1.5608 | -3.4487 | -2.2388
t(7) | -2.5337 | -1.6012 | -3.1863 | -2.193
t(9) | -2.4883 | -1.6167 | -3.0524 | -2.1643
X2 -1.4803 | -1.2600 | -1.5475 | -1.3932
X3y | -1.7207 | -1.3827 | -1.8472 | -1.5880

Table 15. Comparison of estimators for ESp g5 (true errors are available)

n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)

ES | ESy | ES, | ES | ESy | ES, | ES | ESy | ES,, | ES | ESy | ES,

N 9.7 8.4 4.2 12.3 5.9 6.5 4.4 3.5 1.6 5.9 2.8 3.0
MN | 5.1 3.6 2.3 3.0 2.8 2.4 1.7 2.3 1.2 1.5 14 1.1
L 17.6 | 13.9 8.4 383 | 143 12.7 | 6.3 5.6 3.1 20.1 7.8 6.5
t(5) | 12.7 | 8.2 -0.0 | 45.7 | 173 | 156 | 3.3 3.1 -39 | 21.8| 93 7.6
t(7) | 9.0 8.9 3.8 | 295 | 125 | 123 | 5.5 5.0 19 | 144 | 6.0 5.8
t(9) 9.7 5.9 1.4 | 233 | 10.2 10.4 | 5.9 5.4 3.4 11.9 5.2 4.9
X2 3.6 2.3 2.7 1.1 2.6 1.1 1.2 | -0.3 0.6 0.5 1.3 0.5
X3 5.3 3.7 3.4 2.8 3.0 2.3 2.3 1.6 1.3 1.3 1.5 1.1

Table 16. Comparison of estimators for ESy 1 (true errors are available)
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n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)
ES | ESy | ES, | ES | ESy | ES, | ES | ESy | ES,, | ES | ESy | ES,
N 294 | 29.4 | 224 | 40.7 32.0 55.7 | 19.7 | 19.0 18.7 19.9 15.8 214
MN | 13.6 | 14.8 10.3 9.7 9.0 20.2 9.0 9.2 8.8 4.8 4.8 7.2
L |653| 67.7 | 64.0 | 195.3 | 129.8 | 166.4 | 27.2 | 254 | 18.6 | 97.8 | 64.6 | 70.4
t(5) | 69.6 | 69.1 | 70.2 | 331.8 | 213.1 | 209.7 | 20.8 | 23.6 | 22.7 | 180.3 | 114.6 | 102.6
t(7) | 59.4 | 59.3 | 55.2 | 179.4 | 123.0 | 147.3 | 18.6 | 22.3 | 254 | 94.8 | 64.6 | 65.5
t(9) | 43.0 | 454 | 445 | 132.8 | 94.8 | 119.3 | 29.5 | 30.3 | 27.2 | 62.6 | 45.5 | 51.6
X2 8.9 4.0 7.5 1.4 4.0 9.5 4.6 2.6 5.1 0.7 2.0 2.5
X3, | 14.6 | 13.6 | 15.1 5.6 7.1 155 | 7.1 5.4 6.4 2.7 3.5 4.9
Table 17. Comparison of estimators for ESy g5, with ¢ = 1,a = 0.05,6 = 0.9
n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)
ES | BSy | BS, | BS | ESx | ES, | BS | ESy | ES, | ES | ESy | B3,
N 10.1 | 13.6 | 11.8 | 8.3 6.3 6.5 3.3 44 3.5 3.9 2.9 3.0
MN | 4.0 5.2 5.2 | 2.3 2.7 2.3 1.4 2.7 1.9 1.1 1.4 1.1
L 8.3 11.6 | 83 | 208 | 145 | 126 | 5.6 6.5 38 | 109 | 7.7 6.5
t(5) | 8.2 9.4 5.6 | 236 | 16.7 | 145 | 1.9 3.9 33 | 11.7 | 84 7.2
t(7) | 11.2 | 12.8 | 89 | 168 | 12.0 | 11.5 | 5.7 8.0 75 | 82 5.9 5.5
t(9) | 9.3 12.3 | 103 | 14.6 | 10.3 | 10.2 | 3.6 4.2 3.1 7.1 5.1 4.9
X2 | -18.9 | -14.7 | -18.0 | 5.0 2.7 39 | -11.9 | -9.7 | -11.6 | 2.6 1.4 1.9
X3, | -122 | -6.7 |-10.3 | 5.7 3.3 41 | 41 | -24 | -38 | 26 1.6 1.8

Table 18. Comparison of estimators for E.Sg g1, with ¢ =1,a = 0.05,6 = 0.9
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n = 500 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)

ES | BSy | BS, | BS | BSy | BS, | ES | ESy | ES, | ES | ESy | 8,
N | 388 | 41.6 | 409 | 374 | 347 | 554 | 228 | 254 | 204 | 175 | 16.3 | 20.5
MN | 190 | 207 | 16.8 | 93 | 95 | 197 | 98 | 11.9 | 11.7 | 47 | 49 | 7.2
L | 1026 | 107.8 | 101.2 | 134.9 | 127.5 | 144.2 | 48.7 | 51.3 | 49.5 | 69.0 | 64.0 | 67.9
t(5) | 91.7 | 98.4 | 100.9 | 219.9 | 204.3 | 214.4 | 51.9 | 52.6 | 51.1 | 115.1 | 109.2 | 109.6
t(7) | 82.6 | 87.5 | 86.4 | 130.3 | 122.5 | 141.9 | 39.1 | 40.7 | 42.5 | 67.8 | 63.0 | 64.5
t9) | 69.5 | 71.4 | 65.7 | 99.7 | 93.6 | 115.8 | 39.4 | 42.1 | 43.8 | 51.3 | 48.8 | 53.0
X2 | -39.6 | -33.5 | -38.9 | 93 | 65 | 156 |-222|-19.1 | -20.7 | 42 | 28 | 5.7
X3 | -124 | -84 | -136 | 102 | 80 | 193 | 94 | 63 | -75 | 50 | 3.9 | 6.6

Table 19. Comparison of estimators for gg.g1 and FSp 1. (a) when the true errors are available,

n = 1000
n = 1000 n = 1000

Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)

Go | GV | Gua | Go | GNa | Gua | BS | ESy | ESy | ES | ESy | ES,
N |-07|-1.1| 06 |141] 99 | 11.1 | 19.7 | 19.0 | 187 | 19.9 | 158 | 21.4
MN | -1.3{-09|-04| 33| 31]29 ] 90| 92 | 88 | 48 4.8 7.2
L |11.9| 94 | 11.8 | 47.8 | 31.6 | 31.9 | 27.2 | 254 | 186 | 97.8 | 64.6 | 70.4
t(5) | 84 | 114|222 |504 | 341 | 351|208 | 23.6 | 22.7 | 180.3 | 114.6 | 102.6
t(7) | -1.7 | 0.1 | 4.9 | 349|231 236|186 | 223 | 25.4 | 94.8 | 64.6 | 65.5
t(9) | 11.4 | 81 | 89 |30.9]20.0 | 21.3|29.5| 30.3 | 27.2 | 62.6 | 455 | 51.6
X2 | -1.0| 05 | -04| 09 | 1.8 | 08 | 46 | 26 | 51 | 0.7 2.0 2.5
X3 | 28| -09 |-1.7| 25 | 31 | 23 | 71| 54 | 64 | 27 3.5 4.9

(b) with ¢ = 1,a = 0.05,b = 0.9, n = 1000
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n = 1000 n = 1000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073%)
@0 | Gva | @ue | @ | ve | Gue | BS | BSy | ES, | ES | BSy | S,
N | -25|-49 | -43|108| 9.6 | 10.0 | 22.8 | 254 | 204 | 175 | 16.3 | 20.5
MN | -08 | -29 | -1.8 | 30 | 32 | 30 | 98 | 11.9 | 11.7 | 47 | 49 | 7.2
L | 33|12 ] 1.1 |351]31.0|29.8| 48.7 | 51.3 | 49.5 | 69.0 | 64.0 | 67.9
t(5) | 92 | 9.0 | 12.1 | 36.9 | 33.1 | 32.5 | 51.9 | 52.6 | 51.1 | 115.1 | 109.2 | 109.6
t(7) | 1.4 | 0.3 | -0.3 | 25.7 | 22.6 | 22.2 | 39.1 | 40.7 | 42.5 | 67.8 | 63.0 | 64.5
t9) | 1.2 | -12 | -1.2 | 20.2 | 18.0 | 18.9 | 39.4 | 42.1 | 43.8 | 51.3 | 48.8 | 53.0
xe [ 135105 133 | 34 | 2.1 | 2.8 | -222|-19.1 | -20.7 | 42 | 28 | 57
X3 | 85 | 55 | 78 | 41 | 31 | 34 | 94| 63 | -75 | 50 | 39 | 66
(¢) with ¢ = 1,a = 0.05,b = 0.9, = 10000
n = 10000 n = 10000
Bias(x1073) MSE(x1073) Bias(x1073) MSE(x1073)
@ |Gva | Guo | Go | Gva | Gue | BS | ESy | BS, | BS | ESy | BS,
N [09]06 |08 [11] 10|10 |16 | 1.7 | 14 | 1.8 | 1.7 | 1.7
MN | 03] 01]02|03[03]03|05| 06 | 04 |04 05 | 04
L | 00| 02|08 [38]|34]32)|36]| 42 | 46 | 72| 68 | 6.6
t(5) | 1.0 | 1.3 | 22 40| 35 | 33 | 48 | 50 | 53 | 123 | 11.7 | 10.9
t(7) |-01]-021] 05 |27 25 |24 | 43| 44 | 38 | 71 | 67 | 66
t(9) | -06|-04|-00[22| 20 |20 | 16| 1.9 | 1.8 | 51 | 48 | 47
X2 | 14| 14 | 14 [03] 02|02 |-26| -23 | -26 | 03 | 0.2 | 0.3
X3 | 0501|0304 03]03][-14]-12|-141] 05| 04 | 04

Figure 2 : Efficiency comparison, "Empirical CDF" v.s. "Normalized CDF"
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Finally, we investigate whether our new proposed conditional VaR and ES method have good fore-

casting ability by comparing them with other conventional methods using both index and company

data.

VaR, summarizing in a single number all the risk of a portfolio, is the most widely used risk

measure in financial industry, even though it violates the subadditivity axiom of Artzner et. al.

(1999) when the tails are super fat and it can not capture the risk of extreme movements on the

tails. A number of alternative risk measures have been proposed to overcome the problem of lack

of subadditivity in the VaR and also provide more information about the tail shape. Expected

shortfall is one of the most popular alternative risk measures whose torch has recently been taken

up by the Basel Committee on Banking Supervision.

3.6.1 Descriptive Statistics

The four datasets that we use are S&P 500(01/01/2000—31/12/2012,CRSP), MSCIworld (01/01/1970—

29/01/2013, Datastream), MSCI Emerging Market (01/01/1988—29/01/2013, Datastream) and Mi-

crosoft Corporate (14/03/1986 — 31/12/2012, CRSP). Table 20 gives the descriptive statistics for

these four datasets, the Ljung-Box test for autocorrelation and the KS test for normality.

Table 20. data summary statistics
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S&P 500 | MSCIworld | MSCIEM | MSFT
Mean 1.5961e-04 | 2.4420e-04 3.6224e-04 | 0.0011
Standard deviation | 0.0135 0.0087 0.0117 0.0227
Min -0.0900 -0.1036 -0.0999 -0.3012
Max 0.1151 0.0910 0.1007 0.1957
Skewness 0.0364 -0.4591 -0.5726 -0.1171
Kurtosis 10.3762 14.1965 10.7623 13.1984

3.6.2 Backtesting VaR
Violation Ratio

The main purpose of the empirical study is to see how our model performs in forecasting risk. This
can be done by backtesting various VaR and ES methods. Backtesting evaluates VaR forecasts
by checking how a VaR forecast model perform over a certain period of time. The number of the
observations that are used to forecast the risk is called the estimation window, Wg and the data
sample over which risk is forecast is called the testing window, Wp. In our empirical study, we
choose 1000 observations as our estimation window. (Figure 9,10 and 11). We later use a technique
called violation ratio (VR) to judge the quality of the VaR forecasts. If the actual return on a
particular day exceeds the VaR forecast, we say that the VaR limit is being violated. The VR is

defined by the observed number of violations over the expected number of violations.

V R = (observed no of violation | expected no of violation)

If the VaR forecast of our model is accurate, the violation ratio is expected to be equal to 1.
A useful rule of thumb is that if the VR is between 0.8 and 1.2, the model is considered to be a
good forecast. If VR<0.8 means that the model underestimate risk while if VR>1.2 means that

the model overestimate risk.

Backtesting fundamental models

First of all, we investigate the backtest performance of five fundamental models, including EWMA MA,
HS,GARCH(1,1), and our model GARCH-ELW with the significance level equals 0.95 and 0.99. The
common assumption of EWMA, MA and GARCH(1,1) is that the standardized residuals are nor-

mally distributed with mean 0 and variance 1. HS is a nonparametric method and the new model
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that we proposed, GARCH-ELW, relax the distribution assumption of the standardized residual.
Model 1 (MA): One of the simplest volatility forecast methods is the moving average (MA)

method, which puts equal weight on all the past observations. The conditional variance process is

1 &z
hit1 = —— E ufﬂ'ﬂa
Wg
i=1

where W is the length of the estimation window). Hence, the conditional Value-at-Risk of return

given F;_1 is,

P
1/2
§ipa(a) = ijytJrlfj + htilzom
i=1

where z, = ®7!(a) is the standard normal quantile. The model is very simple but the equal
weighted assumption is not realistic as a model of volatility.

Model 2 (EWMA): The basic structure of the conditional variance process is a restricted
IGARCH(1,1)

hivi = (1 — A)u? + \hy.

The conditional Value-at-Risk of return series given F;_1 is

P
1/2
ft+1(04) = ijytJrlfj + htilzow
Jj=1

An EWMA is similar to MA although the EWMA places relatively more weight on recent obser-
vations than on observation in the distant past. The attractiveness of the RiskMetrics model is
that there is no parameter to be estimated, X is fixed at 0.94 for daily data and 0.97 for monthly
data and it’s easy to extend to multivariate setting. However, the disadvantage is also that the
parameters are not estimated and the model process collapses to zero eventually.

Model 3 (HS): Historical Simulation is a nonparametric method based on the assumption that
the history will happen again.

Model 4 (GARCH-N(1,1)): Fully parametric methods provide a natural method to compute
VaR. We take GARCH(1,1) for simplicity.

hiy1 =w + Bhy + ’yuf
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p
1/2
§a(a) = ijytJrlfj + htilza.
j=1

Model 5 (GARCH-ELW): Under the model specification, the conditional variance is mod-
elled by GARCH(1,1) and the conditional quantile is estimated by the empirical likelihood. The

conditional Value-at-Risk of return series given F;_1 is,

p
@) = pjyi—i + 1 qa.

j=1

The probability of losses exceeding VaR, a, must be specified, with the most common probability
level being 1% and 5%. Test results are in Table 21 and 22, and backtest VaR plot are provided in
Figure 5 and 6 (for S&P 500 data only, others are provided upon request), with « equals 1% and
5% respectively. Overall, the models do much better when we choose 0.95 significant level, which
probably shows that most of the fundamental and simple models are inadequate in forecasting risk in
the extreme tail, such as in the 0.99 significant level case. However, our model is the best candidate
among all in the extreme case. Interestingly, the models represent better forecasting ability on the
individual stock data than on the index data. The worst performance of all the models happen
when using the S&P 500 data.

Table 21: backtesting VaR (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (« = 0.01)

a=0.01 S&P 500 | MSCI world | MSCI EM | MSFT
MA 2.8647 1.9821 2.0025 1.3546
EWMA 2.3358 1.7585 2.1108 1.3199
HS 1.8510 1.3519 1.1546 1.3025
GARCH-N(1,1) | 2.1155 1.5247 1.6598 1.1289
GARCH-EL 1.4103 1.1079 0.7938 0.9726

Table 22: backtesting VaR (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (= 0.05)

a=0.05 S&P 500 | MSCI world | MSCI EM | MSFT
MA 1.0489 0.9209 0.9706 0.7016
EWMA 1.2252 1.0632 1.1077 0.8163
HS 1.0930 1.0876 1.0319 1.0247
GARCH-N(1,1) | 1.0930 0.9961 1.0211 0.7746
GARCH-ELW 1.0137 0.9473 0.8840 0.9691
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Figure 5: Backtesting VaR (fundamental model, & = 0.01)
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Figure 6: Backtest VaR (fundamental model, o = 0.05)
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Backtesting extended models

In the financial literature, it is often found that positive and negative shocks to returns have different
impact on conditional volatility. Several extensions of the GARCH model aim at accommodating

the asymmetry in the response. These include the GJR-GARCH model of Glosten, Jagannathan
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and Runkle (1993), EGARCH model of Nelson (1991) and the asymmetric GARCH model of Engle
and Ng (1993), all documenting that large positive and negative unexpected shock lead to an
increase of the conditional volatility, although the negative innovation with the similar magnitude
lead to larger increase.

The GJR model is a GARCH variant that includes leverage terms for modeling asymmetric
volatility clustering. In the GJR formulation, large negative changes are more likely to be clustered
than positive changes.

Hence, we further examine if adding in asymmetric information both in the conditional variance
process and the standardized residual help to improve risk forecasting. The models that we use
in the analysis are GARCH-N, GARCH-T,GARCH-ELW ,GARCH-GJR-N, GARCH-GJR-T and
GARCH-GJR-ELW. All the conditional models are GARCH(1,1) and GARCH (1,1)-GJR with
N, T and ELW representing normal, student-t and no specific distribution assumptions of the

innovations. The conditional variance process for GARCH(1,1)-GJR is,

ht+1 =w + ﬁht + ’}/U? + f[(ut < O)U?

The leverage coefficients are applied to negative shocks which give the negative shock more
weight in the conditional variance process than a similar positive shock. Similarly, test results are
provided in Table 23 and 24, while Figure 7 and 8 are graphic plot of the backtesting performance.

We make some further comments on Tables 23 and 24. First of all, the results are similar
as when testing the fundamental models in that the models do better with o = 0.05. Secondly,
the semiparametric methods that we proposed (both the GARCH-ELW and GARCH-GJR-ELW)
seems to be the best models in both cases, although GARCH-N and GARCH-GJR-N are doing
well when we choose a smaller significant level. Furthermore, adding the asymmetric term in
the conditional variance does not have obvious impact on improving forecast. The performance
of GARCH-ELW and GARCH-GJR-ELW are quite similar. Finally, using the normal distributed
standardized residuals normally underestimate risk while the fat-tail student-t distribution generally
overestimate risk, especially in the case when o = 0.01, which is consistent with the conventional
literature.

Table 23: backtesting VaR (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-
GJR-T and GARCH-GJR-ELW) (a = 0.01)
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a=0.01 S&P 500 | MSCI world | MSCI EM | MSFT
GARCH-N 2.2036 1.5247 1.6598 1.1289
GARCH-T 0.7933 0.6607 0.6855 0.3473
GARCH-ELW 1.6307 1.1079 0.7938 0.9726
GARCH-GJR-N 2.2036 1.4840 1.7319 1.1636
GARCH-GJR-T 0.8814 0.7624 0.6495 0.3994
GARCH-GJR-ELW | 1.4544 1.1994 0.9562 0.9552

Table 24: backtesting VaR (GARCH-N, GARCH-T,GARCH-ELW ,GARCH-GJR-N, GARCH-

GJR-T and GARCH-GJR-ELW) (o = 0.05)

o =0.05 S&P 500 | MSCI world | MSCI EM | MSFT
GARCH-N 1.0930 0.9961 1.0211 0.7746
GARCH-T 0.8814 0.7298 0.6855 0.4203
GARCH-ELW 1.0137 0.9473 0.8840 0.9691
GARCH-GJR-N 1.1635 1.0510 1.0139 0.7850
GARCH-GJR-T 0.9784 0.7684 0.7252 0.4272
GARCH-GJR-ELW | 1.0489 1.0144 0.9165 0.9726

Figure 7:Backtesting VaR (extended model, o = 0.01)

backtest VaR (S&P 500 data,extended model,alpha=0.01)
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Figure 8: Backtesting VaR (extended model, o = 0.05)
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backtest VaR (S&P 500 data,extended model,alpha=0.05)
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3.6.3 Backtesting ES
Average normalized shortfall

It’s harder to backtest the Expected shortfall as we are testing an expectation rather than a quantile.
Fortunately, average normalized shortfall, a methodology which is analogous to the use of violation
ratios for VaR is able to help us backtest ES. The test procedure is sketched below. For days when

VaR is violated, normalized shortfall (N.S) is calculated as
Yt
NS; = ==
t ESt )

where ES; is the observed ES on day t. From the definition of ES, the expected y;— given VaR

is violated — is:

E(ye | ye < =VaRy)

=1
ES;

The Null hypothesis: average NS (NS)= 1. The test result is reported in Table 27. The average

NS in our model is 0.9895, which is the nearest to 1.

Backtesting fundamental models

We backtest ES by using the methodology provided in the previous paragraph. The backtesting

ES results are showing in Table 25 and 26 and Figure 9 and 10. From the tables, we are confident
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to say that our proposed model is the best in terms of the NS ratio, while the difference between

different models and datasets are not so distinguished as in the case of backtesting VaR.

Table 25:backtesting ES (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (a = 0.01)

a=0.01 S&P 500 | MSCI world | MSCI EM | MSFT
MA 1.3849 1.5703 1.5571 1.2494
EWMA 1.0730 1.1488 1.2390 1.1917
HS 1.1408 1.1565 1.1639 0.9952
GARCH(1,1) 1.0735 1.1676 1.2798 1.1986
GARCH-ELW | 0.9983 1.0703 1.1813 0.9933

Table 26: backtesting ES (MA, EWMA, HS, GARCH(1,1) and GARCH-ELW) (a = 0.05)

Figure 9: Backtesting ES (fundamental model, o = 0.01)

ES

Figure 10:Backtesting ES (fundamental model, o = 0.05)

o =0.05 S&P 500 | MSCI world | MSCI EM | MSFT
MA 1.3949 1.2463 1.5077 1.1947
EWMA 1.1101 1.1364 1.2698 1.1182
HS 1.1622 1.0494 1.1767 1.0280
GARCH(1,1) 1.1182 1.1331 1.2190 1.1012
GARCH-ELW | 1.0385 1.0581 1.1034 0.9884

backtest ES (S&P 500 data,fundamental model,alpha=0.01)
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backtest ES (S&P 500 data,fundamental model,alpha=0.05)
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Backtesting extended models

Similar findings in the extended cases, where we show the backtest ES results in Table 27 and 28
and Figure 11 and 12, that the difference in the ES backtesting regarding to different models and
datasets are not as big as backtesting VaR. All the models have good forecasting ability according
to the above tables so it’s very hard to choose a better one among these models.

Table 27: backtesting ES (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-
GJR-T and GARCH-GJR-ELW) (a = 0.01)

a=0.01 S&P 500 | MSCI world | MSCI EM | MSFT
GARCH-N 1.0648 1.1676 1.2798 1.1986
GARCH-T 1.0103 1.1008 1.1275 1.0967
GARCH-ELW 0.9827 1.0703 1.1813 0.9933
GARCH-GJR-N 1.0668 1.1393 1.1689 1.1943
GARCH-GJR-T 1.0273 1.0584 1.0986 1.0626
GARCH-GJR-ELW | 0.9816 1.0349 1.0965 0.9969

Table 28: backtesting ES (GARCH-N, GARCH-T,GARCH-ELW,GARCH-GJR-N, GARCH-
GJR-T and GARCH-GJR-ELW) (o = 0.05)
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a = 0.05 S&P 500 | MSCI world | MSCI EM | MSFT
GARCH-N 1.1182 1.1331 1.2190 1.1012
GARCH-T 0.9902 1.0243 1.0979 0.9913
GARCH-ELW 1.0385 1.0581 1.1034 0.9884
GARCH-GJR-N 1.1083 1.0857 1.1557 1.0988
GARCH-GJR-T 1.0032 1.0036 1.0447 1.0027
GARCH-GJR-ELW | 1.0424 1.0252 1.0604 0.9883

Figure 11: Backtesting ES (extended model, o = 0.01)

backtest ES (S&P 500 data,extended model,alpha=0.01)
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Figure 12: Backtesting ES (extended model, o = 0.05)
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backtest ES (S&P 500 data,extended model,alpha=0.05)
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3.7 Conclusion and Extension

This paper proposes and investigates new efficient conditional VaR and ES estimators in a semi-
parametric GARCH model. These proposed estimators for risk measures fully exploit the moment
information which has been previously ignored in constructing innovation distribution estimators.
We show they can achieve large efficiency improvement and quantify this magnitude in Monte Carlo
simulations. At the same time, we present the asymptotic theory for one period ahead VaR and ES
forecasts. The theory can be used as guidance as to constructing confidence intervals for point risk
measure forecasts.

Even though we consider a simple GARCH(1,1) model in this paper, the efficient estimation
method for both variance parameters and error quantile can be used for more complicated paramet-
ric volatility models. For example, one could consider GARCH with leverage effects or GARCH in
mean models. Although the efficiency gain hinges on the efficiency of volatility estimators in the-
ory, our MonteCarlo experiments show that this impact on efficiency improvement is quantitatively
small.

Sometimes unconditional Value-at-Risk is also of interest to risk managers. Then the question in
the current GARCH(1,1) context is whether we have efficiency gains from integrating the conditional

VaR versus unconditional. This question is to be addressed in a separate paper.
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3.8 Appendix

3.8.1 Proofs

Proof of Theorem 1. Given € and the observations {ho,y1,...,yn}, then the log likelihood is
£(0) = log f(c g, " (B)yr) +log e g, ().

t=1

Now we can write the conditional score at time ¢ as

! 1 99:(B)
lt(e)—(1+st(0)f(5t(('9)))<29t(6) B >

1
c

Then, according to Drost and Klaassen (1997), the efficient score and information matrix for 3 are

GuB0) = ~5{Gil80) - GaHL+ e 2 )
R
BB = B 6,8, — o0,
and
V(B = By) = fZEZTt Bo)l5e(Bo) 17115 (Bo) + 0p(1).
Next, as the efficient estimator for ¢ is ¢ = \/ Zt 1€ —% ? ?ﬁ ? 1 €. Using the delta

method, we can see

Bmer = ular B o 0] = —5 S G ) 4 o,()
Bt = Rl ) a0 =~ P G o)
consequently,
iZA‘iZ = 3B PG~ o)+ 0y
i_A;Zj = Bl OG- g 1 o)

as a result, by LLN and Ergodic Theorem,

V(€ — c)
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1570 . ¢
— 2 t=1 t 2
= \/ Ztl nZtl —1 t—\/ Zt lcoft \/ Ztl oEt—CO)
T B} 1
= G f(ﬁ /80 0E2 ZEt‘i’CO\/»Z }+0p )
507 2 = 1)~ B’ — GBI i} +op(1)
Since E[(e? —1)I7,] = 0 and E[g,l},] = 0, we have

2
Q. = %O{Ee‘* —1— (B’ + G E[If1}, ]G

We can thus conclude that

CcC—C
_ 1 Z —3 B3] HG - GY 0 RBye) | | O
- = P
i\ 2GTE[ ] THG - Gy @(-E<,) Ra(sy)
and
B[yl -2 Bl 7E

Qg = R
~9GTEI 1T BB 1 - (B + GBI 1'G)

LEMMA 1. Suppose that assumptions A.2-A.4 hold. Then Fy(z) and F,(z) have the following

expansion:
Sup Fy() - F(z) - %Z{l(st <) - F(z)} - f(@% ; 711; — o,(n~1/?)
sup |Fo(e) = F(z) - 2 Z{l et < @) - F(o)} + ;;A: B = oy l2)

Consequently, the process \/ﬁ(ﬁN — F) converges weakly to a zero-mean Gaussian process Zy with
covariance function Qn and the process \/ﬁ(ﬁw — F) converges weakly to a zero-mean Gaussian

process Z,, with covariance function §,,, where:

Qn(z,2") = cov(Zn(z), Zn(2"))

= Bl <a) - F@) + f@e+ T )

< [Ue <o) - F@) + fa)e + 2L @2 -y
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Qu(z,2') = cov(Zy(x), Zu(x"))

= E|[l(e<2)—F(z)— A B 'Ro(e)][l(e < 2') — F(z') — AL, B~ ' Ry(e)]] -

Where we define the following quantities:

A, = E[Ry(e)1(e <x)] ; B=E[Ra(e)Ra(e)");
Cy = Fa)? {E[Ej‘lz? 4 B[] + 1} + () {2E[l(e < )] + 2E[(c? - )1(e < 2)]},

Proof of Lemma 1. We follow the proof of Theorem 4.1 in Koul and Ling (2006) closely.

Define the empirical process
1 n
vn(z,21,22) = NG Z{l(st <z +xz2) — E[l(ey < 21 + x22)]}.
"=
For any z = (21, 22) € R?, let |2| = |21| V |22]. In R?, we define a pseudo-metric
de(z,y) = sup |F(z(1+ 2z1) + 22) — F(y(1 + 21) + 22)|Y2, (z,y) € R?, ¢ > 0.
|z|<c

Let N (8, ¢) be the cardinality of the minimal d-net and let

I(c):/O {In N (u, ¢)}/2du

According to Theorem 4.1 in Koul and Ling (2006), assumptions imply that Z(c) < oo for any
¢ € [0,1). This combines with Koul and Ossiander (1994) show that the following stochastic

equicontinuity condition holds:

sup |Vn(x721722) _Vn($7071)| :Op(]-)'
ZER,|z1|<Cn~1/2,|25—1|<Cn~1/2

As a result,

Vn(l'v 21, 32) = I/n(l‘,o, 1) + Vn(fL‘, 21, 22) - I/n(l‘, 0, 1) = Vn(ma 0, 1) + Op(l)'

By LLN, we know that

1 — 1 1 «—=n
_ — - 2 (Z 2
DILELICNFPIE SO DL AL
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Therefore, F v(z) can be expanded as, uniformly in z € R,

= =S Ml < 9) ~ F@)} +0p1) + VA{F (@, + 252)  F())
= =D €0 - FE) 4+ fe) = Y e+ Vel @) (Ji ef—(ﬁm—l) +0y(1)
t=1 t=1 t=1
1 < 1 < of(z) (1<, 5 JU
= Z{l(gt <) - Fz)} + f(@fn th +vn 5 <n Z(Q 1) — (k) > +0p(1)
= e <) - F@) + )= et S 1) 40,0

We know from Owen (2001) that

1 1
W= ——— = Ay =
nl+ )\HRQ(Et)

Consequently, uniformly in z € R,

~

Vn(Fu(z) - F(x))

= V() _ wl(e < x) - % (e < 2) + %Z 1(gy < x) — F(x))
= % Z{[n@t —11(e; <)} + in Z{l(st <) - F(x)}
= N é{&(am(at <o)+ - g{ua < 2) — F(@)} + opn7?)

= —% 2;32(&)TB—1;L é{P@(Etﬂ(ft <z)}+ % é{l(gt <) = F(2)} + o,(n/?)

1 n 1 n
= — E {1(es <z) — F(z)} — — AxBflRQ( 0 +0p(n71/2)7
NP \/ﬁ; ¢

where the last equality holds because of ergodic theorem: n=! Y {Ra(g:)1(er < 2)} = A, + 0,(1).
=1
[

COROLLARY 1. Denote Elel(c < z)] = a1(z) and E[(e2 — D1(e < )] = ax(z). F(z) is
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asymptotically less efficient than ﬁw(x), and 13(:10) achieves the efficiency bound iff

ﬁN(x) is asymptotically less efficient than 1/5“,(3:) as C, > —A]B71A,. ﬁN(x) achieves the effi-

ciency bound iff

oo 2Maa(@) — ar(@) E7]) . fla) = 2a1( ) + was(x)
a1(z)(E[eY] — 1) — az(z)E[3] 7 Bl ] Lu2 4 22 E[e3) +

Proof of Corollary 1. Notice that

{Ele") - 1}{a(z) — az() 5 i ad)
Ele4] —1— E[32 TER -1

AlB1A, =

and under the moment condition (2), E[g*] — 1 = Var(¢?) > 0 and

E[63]2
Ele4] - 1}
= {E[" — 1}{1 — corr(e, £%)?}

Bl —1- B2 = (B - 1}{1 -

> 0

so Al B7'A, > 0 and A;B_lAw =0 < a1(z) = az(x) = 0. As for the asymptotical efficiency

comparison between Fy(z) and F,(z), we have

C.+ Al B4,

4 _
= S Bl 1) 4 £ (201 (@) + w0s(a))

4}Ekﬂ—1ﬂmﬁw—ax@§%%ﬂ2+ a(x)
B[z — 1 - E[3]2 Ele1] - 1
BT L 4 0Bl 1} + f(@){201(2) + 2as(2))

{E[e"] — 1}a1 (2) — 201 (2)an () E[e”] + aj(x)
Ele*] —1— E[e3)?

+

Ele*]

= (e e () 4 ) 2

2

Bl y2 4 20 Ee3) + 2}

%ﬁﬂm@MEkﬂ—D—aﬂ@E[H+2MN)Ek]—@(DP
A B[4 - 1 - E[e3]2H{ 2] a2 4+ 2 B[e3) + 1}
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additionally

E[a‘j — 1x2 b Bl 41 = Elet] - 1{x n 2E[e3) ElgY] - 1- E[e*)?

1 it e e

so we can conclude C,, > —A] B~'A,, and C, = —A] B~1A, if and only if

. 2(az(z) — a1 (z)E[e%]) ) = 2a1(x) + zas(x)
a1(z)(E[e*] = 1) — az(z) E[e3] %3@ + 2¢E[e3] 4 2

LEMMA 2. Suppose assumptions A.1-A.4 hold and there is an estimator 6 that has influence

function x;(0o),then the following expansion for distribution estimators based on 0 is

s F(e) - 1) = 5 32016002 ) = £} = )3 ) = oyt )
i‘éﬁ %N(I') — F(x) — %Z{l(st <z)—F(z)} - %@)H(QO)T%ZM(@O) %Z
LS -1 =yt
iggﬁ (@) _*Z{l et <) — F(z)} - {fo(a:)+ B 1A} S (b0
+ Al B™'Ry(e1)| = 0p(n~Y/?)
=1

where ey = (0,1).

Proof of Lemma 2. By Taylor expansion,

hi(0) _ 10loghy(6) ~
ht(eo) 1 = 9 a0T (9 00)

1~ T 1 0%h(01) 10loghy(61) Ologhi(61), ~
+Z(9_90) [ht(a) 8989T _5 o0 897' ](0_90)7

where 6, lies in between 6 and 6. Since 6 — 6y = 1 Z X¢(0o) + op(f) and
Ey, supgey,, ||MH2 < oo,which is due to Example 3.1 in Koul and Ling (2006), we have
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" _ 2
3 ( ]Zt((eeo)) _ 1> = 0p(1). This implies

@) || _
ht(a()) - ‘ - Op(l)'

sup
1<t<n

Using the same empirical process argument as in lemma , Lemma 4.1 in Koul and Ling (2006),

and the fact that it is clear that, uniformly in z € R,

R
_ Ii i et ﬁ@m)}
_ ﬁi{l(atﬁ\/;eo)”‘” h;(“’)) WZ{F\/@ )~ F(a)}
_ ;ﬁ:l{l(gtgx) Z{ \/: — F(@)}+0,(1)
_ \}ﬁti;{l(stgx) WZ ( 6}; ©0) G _ 95) 4 0,(1)
_ \}ﬁg{u&gx)ﬂ@w Zn:%t((e)) ae(T IZ (60) + 0, (1)
- \}ﬁi{l(st<x)—F(x)}+xf( ) H(60) T\Fth (6o) + 0p(1),

where the last equation holds because of the ergodicity theorem lim,, o, - Z mog ht (B0) — E{%{;(%)]
ht (90)

The next is to show the asymptotic expansion for ﬁ ~(z). Since 5,:(0) =V @
t

¢, the renor-

malized empirical distribution estimator can be shown, uniformly in z € R:

LS e2@0) — (2 Y e(0))?

t=1 t=1

L hi(0) 1~ [ he(Bo) he(0) 1T~ i(bo) 5 I~ = 2,
- \/ﬁ;{l(“\/ht(e())n;\/j@gﬁ\/ht(e())JnE @ G 25O

jﬁz{l\/ )
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) i S e o s et~ G )
oL [l }Z’f(g?)\ T2 (S ey - )
_ % ti}{l(et < 2) - F(z)} + in :l{F( }Z‘fgo)) % ;1 }Zt((eg)) &
,Z@J i;}%@ - gst(é»?x) ~ F(@)} +0,(1)

where the last equation used empirical process approximation and
Now given that \/n(d—6) = \F i1 x4(00)+0p(1), we know that \/

S|
NE
™
o~
—~
e
=
~—
-
w0
o
=
=
=
a3
=
[¢]
=
e}
=
o
[¢]
=

is of the same order as |+ 3 &7 (6), which is due to the fact that (
=1

n

than 1 3~ &2 (6). As a result,

1 ht 00 1 - ht(eo) 2 o T
Gy ht 00 E \/ ht 90 i\ 5; @ ) F@
@) 1SS [he60)
— IO R Y Z @)
ht
Z
o) ’“ ),
+xf(2){ *t 1 ht(e) ef — 1} + Op(~
= Ty + Iog + I3p + Lug,
where
B 1 aht(e(] 1 - 1 5ht(90)
Ilt f( ) th(eo) a - 0 }nle \/TOth (0 90)]
b = @30 1(90) ) @ - bl
- L hi(fo) = 1. hu(bo)
I3 f( ){2ht(90) 20" (0 )} n; ht(Aé) €t
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L = T gy 0+ O
’:t(%’))—l _ —\/}11700%190 aht(‘%)(e ) +0p()
s0 now the four components can be rewritten as
- = é{f(w){%tlwo) Pl G- b0} é“ - J%%i@w Pl G - o))
- 0y t—itznz%i,é(e )algg(f‘))w_eo)at}lné - )
L _1 _ f(:c)ln;u m%t}@o)a’gﬁ“(e—eonq
Vlﬁgj - i»_ }Zt(%)gglfé@htl(eo)a]ga(f@“’“’“”
;ﬁ;f NG ig’:fg)))s%—l}

Consequently,

n l n ht l n ht ) N
z; \/ n;V ht(0o) \n; ha( ) - P2)}

_ $L" 1 t(0)~_ . i” 8ht(0)~_
= f()ﬁ;[l e oo 0t al@ ﬁ;m %)

z{ — 1} +0,(1
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. 1 Oh(o)
2ht(60) 06"

(6 60) + 517 — 11} + 0,(1),

and by CLT and LLN,

VAl =00 = =3 xl00) +op()

n

1 1 Ohi(0o)
— g = op(1)
0y W

we have

1 8ht(90)

(6 — Oo)es} = 0p(1).

Z{\/ 00 th

Therefore, uniformly in =z € R,

Vil(Fy(2) — F(z))
= n 2> {i(er <3) - F(2)}

1 « 1 Oh(0o) ~ T
@) 7 ;{mx%t(%) g0~ 00) + 3lel = 1} +0,(1).

Since we know that

N 1 1 R ~ 1 n - _
By = ———————— A = B (= Y Raler(0))) + 0p(n1/?)
14+ X, Ra(e:(0)) "=

where B, = * Xn: Ry(=4(0 ))Rg(at(ﬁ)) . Therefore,

t=1

~
N

Vn(F,(z) — F(z))
= % Z{nl%tl(st(g) <z)-F(x)}

= Z{nwt (e0(0) < z) —1(24(0) < z) + 1(24(A) < z) — F(z)}

= % Z{[n@t —1]1(4(0) < )} + % > {1(ee() < ) — F(x)}
— I+ va(F(2) - F(a)).

Define ef = ¢, + & 61068397’“@(9 — 6). From the \/n-consistency of  and E[% al%ht(e)] =0, we
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can see that

S (2@ =) =y (320G ) +0,( - 0)?))2 — oy(1),

which implies that max;<i<n |€ (0) — 4] = op(1).

This means residuals (5) = };’5((950)) ¢; are uniformly close to €;. Therefore for the weights
Wy = %m, define B, = = Z Ry(e4(0 )Rg(st(e)) , and we can see
~ I ~ B
A= B Y Ralei(0) +op(n V)
t=1
_ 1 " Et 1 Et 1 8ht(90) ~ _
= B7'- — 0—0 1/2
n;[(ez—l) 2(2et>ht<a> pp7 0~ BollFop(n )
SO
~ .1 n £t 1 &t 1 aht(eo) n
Ay = B! - 0—0 1
vr ntzzl[<ef—1) 2<25%> he(0o) 96" ( ol + o (1)
L1 1,1 &K e 1 0hi(bo)
= B! - Bl — ! 0—0 1
52 () — B E ) (263) R go” Ot o)
Hence,
~T1 n
I = —Vak, ~ > {Ra(e(0))1(e(0) < )}
t=1
1 < = 1 8ht( 0)
= — Ro(e lA—f— < 2 ) 0—00)B 1A} +o 1),
{\/ﬁtzzl 2( t) Z €t 5t t(eo) (99 ( 0) } P( )

n

where the last equality holds because of ergodic theorem: n=1 S {Ra(g,(0))1(e,(d) < z)} = A, +

op(1). So, uniformly in z € R,

B L 1 - 1 0hy(Bo) ~ .
- fZATB et 2\/52(& 25?)/%(00) o0 000

IA
&
|
—

"‘% i;{l(ft

+ ey B A H(60) Zn:
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because

t=1

11 & 1 Ohi(6o) ~ .
- 2 —

2 \/ﬁ pan ( Et 2€t ) ht(eo) aa'r (0 00)B Ax
11 1 0h(0) ~~ .
- 2 —

2n2< e 262 ) ROORETN V(0 —60)B~ A,

ey BT A, H(0) v/n(0 — 0o) + 0p(1)

as(x) — a1 (x)E[e? T n
EQ[(E% 1 E 2;[5[3]2]}[(90) % ;Xt(eo) + op(1).

Proof of Theorem 2. Lemma 1 and the Proposition 1 of Gill (1989) imply the results regarding

VaR. Notice that, for any consistent distribution function estimator 13(33) with associated quantile

estimator ¢, = F’l(a), the expected shortfall can be expressed as

oFS, = [ " edF(x) = 1P () - /

we can see that

As a result:

Ga _ da
F(z)dx = ag, — / F(z)dx

— 00 — 00 — 00

a(ES, — ES.)

_ [ q:o 2dF(z) — [ q; 2dF(z)

= oy — _qa F(z)dz — ags + /_% F(z)dx
= /_% (F(x) — ﬁ(x))dm + a(Qa — Ga) — " ﬁ(m)dm

_ / " (Fle) - F@))de + G — q0)(a — F(3.)

— 00

- / " (F(e) - F(e))ds + op(n112).

—0o0

a(ES, — ES,)
/:ZQ (F(x) = F(z))dz + 0,(n"/?)
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a(ESya — ES.)

_ /q" (F(x) — Fy(2))dz + op(n~1/?)

— 00

_% g/_q; {1(5t <z)—F(z)+ f(z)e, + fo(:c) (e2 — 1)} dz + o,(n"1/?)

1 n o da e o
- -1 {/ e <o)ds - [ Fe)zre [ fedar e -1 | wa(@dm} -
t=1 —o0 —00 o o
1 da 2] [de
T n {(qa —e)l(er < qa) — F(z)dz + ag; + 5 / :Ef(a:)dm} + 0,(n"1/?)
t=1 —oo -

= /_q“ (F(z) — Fy(x))da + op(n~"/?)
1[4 - -
= 2> [ {1 2 9) - F@) - ATB Rale)} do oy (n )
_ _iz{/_q“ (e < x)dx—/_qa F(m)daz—/_qa AIB_le(at)dx} +op(n~1/?)

do

|
|
SRS
[
—N
—
)
Q
I
L)
-
S—
—
—
L)
-
AN
=
Q
~—
|

qf)t
F(z)dz — Ry (¢,)B™* / Amdx} + 0,(n"1?).
— o0

— 00

]

COROLLARY 3. Suppose that the semiparametric efficient estimator that has influence function
X:(00) = ¥,(00) is used. Then, the process \/ﬁ(; — F) converges weakly to a zero-mean Gaussian
process Z with covariance function §X the process \/ﬁ(ﬁ N — F) converges weakly to a zero-mean
Gaussian process Zg with covariance function Qg, and the process \/ﬁ(;‘\w — F) converges weakly

to a zero-mean Gaussian process Zg with covariance function Qg, where:

Nz, 2') = cov(ZHz), ZH'))

= E [[1(5 <) - F(z)+ %@)(52 —1—¢E&%)]
x [l(e <) — F(a') + %(& -1- 5Es3)]}
Qg(z,a) = cov(Zg(2), Z5(a"))
- B [[1(5 < @)~ Fl2) + [f(z) - "””ff) Ee’le + af (z)(e* — 1)]

@E?]a + 2’ f(2')(e? — 1)]}

Qaz(z,2")

I
o
Q
<

—
N
BN
&
N
g)
g\
=

Y p el BT A (2 — 1 — cE%) — AT B Ry(e)]
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o' f(z')
2

(e <a') = F(a') +{ + ey B A (2 — 1 —eEe®) — AL BT Ry(e)]] .
Denote E[el(e < z)] = a1(x) and E[(e? — 1)1(¢ < z)] = az(x). The pointwise asymptotic

variances are Q;(x), where:

PIPEE LBV | p ) an(e) - o) )

322 f(x)?[Ee* — 1 — (Ee?)?]
4

(r) = F)(1-F(z)+

My(x) = Fo)(1-Fz)+C + +af(z)(az(z) - ai(z) Ee’)

Q3(7)

F(z)(1— F(z)) — Al B™'A, + {fo(”““) + e;B—le} [EBe* — 1 — (E<)?).

It can be shown that Q(z) — Q3(z) = a?(z) > 0. As a result, ﬁw(x) is uniformly more efficient
than F(z) and they are equally efficient at 2 where E[el(e < #)] = 0. It can also be shown that

Proof of Corollary 3. Since H:(6y) = (GE(/HC“)), we know that

T —Lipp -G, — G 0 Rs(e )
H(00) 2T [1t 1t]T { L } 3(et) :sf—lfstEsd.
aG B3, TG — G} @(~E3,1) Ro(sy)
Plug
2u(60) _%E[lﬂq;]_l{Gt -G} 0 R3(eyt)
t\vo) =
aG B, 5 G — G} @ (~Ee 1) Ra(er)

into the expressions in lemma 2 and get, uniformly in = € R,

F@)-Fl) = 236 <0 - @)+ L0 -1 - B 4o,
t=1
Fa() = F@) = ~3 e <2) - F@) + 1)~ DD Bk, 4@ — 1)+ o0p(n72)
t=1
Fule)— Fz) = % zn:{uet < z)— F(z)} + {xfz(“"”) b e BTIAY R — 1 — e, B

1 n
—— > ATBT Ry(e) + 0, (n 712,
t=1

Due to moment constraints (3.2), the following holds:

E[(1+ sj;l((;) e < z)]=F(z)+ /; edf (e) = xf(z)
flie), _ _
kS = /5df(5) S

(0]



2 f'(e), _ 2 _
s - /5df(a)—0
E[53J}I((§))] - / 3df(e) = —3.

These equations and CLT show that they have asymptotic variance as follows:

Q = Fla)(1-F(z)+° ff) [Be' — 1 — (B2*)?) + af(2)(az(x) — ar (z) B<?)
Q, — F(az)(l B F(.’L‘)) Lo, 3$2f($)2[E544— 1-— (E€3)2] + xf(x)(ag(ac) _ al(x)EE?’)
Q3 = F(a)(1-F(x)) ~AIB 4, + {”“"fQ(x) + ey BTN A (Bt — 1 - (B,

[
Proof of Theorem 3. Lemma 2 and the Proposition 1 of Gill (1989) imply above results for

VaR. Similar to the proof of corollary 2, we have

p—

(ES, — ES,)
— / " P (@) / " pdF(z)

= [" @ - Fepts + G- - [ Fads

= " (@) - F@)de + 0l — )~ G - 0 F @)

= / (F(x) — ?(x))d:p + 0,(n"1/?).

Then the theorem holds because of the following:

/Qa (F(x) — }A?(a:))dﬂc

— 00

*% i/q (et <) — F(z) + fo(x) (62 =1 — &, Ee®))dx

n

- i - [7 row e 1) [7 T ad,

n oo 2

[ Fw) - Fyanas

~ iy {1@ <)~ F(@)+ (@) - DD B, 4 npay(er - 1)} du
t=1

o
— 00
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1n | (0 —e)l(er < qa) — [*2, F(a)da + & [*°_[f(z) — 22 Ed]da

"= —I—Et—lffzomfxdm

/q (F(z) - Flc))dz

—= Z/ { e < (z) + [%(z) + ey BT AL (€2 — 1 — g, Ee®) — AIBlRQ(st)} dx

da

= Z{ o — Et) Etﬁqa)*/ F(z)dx

— 00

qo qa
+(e? —1— atEa3)/ [%@) + ey B7LA,|dx — R;(gt)B—l/ Awdm} .

Proof of Theorem 4. Since R;(¢) = 1(¢ < qo) — @, Ra(e) = (5,62 — 1)T, R3(e) =1+ el

and R(e) = (R1(e), Rz(é‘)T,Rg,(E))T. It is seen that
E[Ry(e0)|Fi1] = E[Ra(e1)|Fia] = E[R3(e1)[Fra] = 0

which implies that {Z,} is Martingale Difference Series. From Theorem 2, we have

6 — 0o 1
vn| =—=> Zi+0p(1)
a\wa o \/ﬁszl
Zs = W.R(es)
0 0 —1E[5,05, 17 HG - G
v, — 0 9 (—Ee% 1) @G By )7HG - G}

T

(1 2) o

Since: E[R1(e)R2(e)] = Aq,, E[R1(e)R3(¢)] = ¢af(ga), and E[R2(e)Rs(e)]

have

Qg

= E[V,R(ss)R(ss) ¥, ]
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a(l —a) A;a o f(qa)

T
T

= E[v, A B (o —2> v, ]
o (a) (o —2> E(1+ef'/f)?

k| 1— Ci * Ik 11—
Bl 177 Bl ]7'G 0

P T 4 3\2 -
—9G Bl 1! cflEe* —1—(B)?1+G E[111[17'G colBe’ —1—(Be™)|[% + 27 57
2 191t 4

colBet 1 (Be?)?)[ 5 4 25 Aaa
C0 — 11— - s w—
0 5 2 faa) O~

Due to Taylor expansion,

\/E(En,t - gt)

= Vil 0)ua — 1 (00)@wa + Bt (00)Twa — hi’*(00)da)

do 3]1}/2(90) 7 1/2 =
= \/Eth/z(@ ) 807 (0 - '90) =+ hf, (00)\/ﬁ(qwa - Q(J/) + Op(l)
t 0

60
_ \/ﬁ< go  Ohi(00) h1/2(00)) R

2ht%(60) 06" t =
’ Qwa — do

I &~ 7
= %ZWt Zs + 0p(1),
s=1

T

where W; = ( th/q;(eo) %@)) hi/Q(GO) > . Denote X,,s = 71’1/21/VtT Zs, it follows that

n 1 n
SN =W S 22 W T W, QW
s=1

s=1

From Martingale Central Limit theorem, we can see that

n an
DY SR TINN N(0,1)

V Z?:l X7215

and /(€ , — &) = N(0,wg;), where

Wer = WtTQZWt
2
th T B E T
= hu(00){7 (G = OEL, 171G = G)
04(1*04)*14; B'A,, e3B™ Agy 1001 4 312
+ o + [ + 2222 [Fe* — 1 — (Ee)?]}.
f(aa)? . f(4a) F (=)
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Denote a truncated version of h,,41as

2 m
C .
P = 7 + 0" 2V
=1

where the truncation order is m = logn. As a result, the approximation error is of order o,(1):

o
Png1 —hy iy = ac? Z Yy = Op(0™)
j=m+1

Similarly, we can show that %Lﬁ“ - aha"B“ = O,(b™). Consequently, Wy, 1 — Wy | = O,(b™).

At the same time, we have the following truncation approximation

n

fZZ foIngs mTZl\/T% Y WR()

—m-+1

n—m

_ % 3" UR(e) + 0,(1)
t=1

As {e,} is iid sequence, we can draw the conclusion that Wy, =P W), | L —= Z U R(es).

The above argument applies to xn ;= h1/2( )ESwa as:

V(X = X¢)
= (b2 (0)FS e — h2(00)FS e + 2 (06)ESwe — h/2(00)ESe)

— 1 n

— 1 1 [ 1
ESwa —ESa == {a(st — o) 1(er < o) + */ F(z)dz + aCTRQ(st)} +op(n~?),

n (0%
t=1 o0

where C = [ [21) 4 o} B=1 A, |dx(Ee?, —1) + [*_AldzB~'. Notice that,

(ESuwe — ES, 8 — 00) 0
cov wa ayV —Ug) = 3 )
%E [{(et — ga)1(et < qa) + CT Ra(er) } Ra(ey)]

so the conclusion regarding ¥, ; holds.

3.8.2 Second Step Updates by Newton Methods

The consistent estimators of 6 (coefficient for GARCH process) that we use for the empirical study

is from the first step QMLE. The reason that we do not go further to update them by the Newton-
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Raphson method is because the people in the industry would perfer to work with simpler model
than something that needs to use complex calculations. However, we still sketch the details if the
updated is needed in practice.

In order to make sure the convergence is on the right direction hence provides a better estimator,
the variable step length algorithm is used, which is similar as the BHHH methods. (BHHH is an
acronym of the four originators: Berndt, B. Hall, R. Hall, and Jerry Hausman). The algorithms

are iterative, defininng a sequence of approximatiosn, given by,

~ ~ 1 noo s N ST -1 1 noo~ o~

A A S S ACAIAE N IED S AEN!
where Bk is the parameter estimate at step k, and Ay is a parameter (called step size) which partly
determines the particular algorithm. For the BHHH algorithm , \; is determined by calculations

within a given iterative step, involving a line-search until a point Bk 11 is found satisfying certain

criteria. More information will be provided upon request.
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Chapter 4

Semiparametric Value-at-Risk

Forecasts for ARCH(oco) Models

4.1 Introduction

Despite the large empirical literature on the two-stage VaR estimation, there is rather sparse liter-
ature investigating the sampling properties of the proposed procedures. The statistical properties
of the proposed VaR estimator is important because confidence intervals of the conditional VaR are
very useful in setting up prudent capital reserve requirements for banks and conservative trading
limits for traders. Christoffersen and Gongalves (2005) give the following example to illustrate the
importance of these confidence bands. Suppose a portfolio manager has a point estimate for the
VaR of 13% and is capped with a VaR of up to 15% of current capital. If this is the only information
available, the 13% point forecast indicates the portfolio is safe. Now suppose the manager is given
the confidence band of 10%-16% for the VaR, he may decide to rebalance the portfolio. The major
difficulty in exploring the large sample theory of two-stage VaR lies in the parameter uncertainty
in volatility estimation. This parameter uncertainty complicates interval estimation of VaR since
VaR estimation is based on the devolatized residuals instead of the true errors.

This chapter proposes a new VaR forecast method that is robust to heavy-tailed errors and
to provide a complete asymptotic theory that acknowledges parameter uncertainty in volatility
estimation. The proposed forecasts methods allow for a wide class of error distributions, including
heavy-tailed ones. The existence of heavy-tailed financial time series is well documented and has

recently received great attention. For example, Mittnik and Rachev (2000) and Rachev (2003)
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show that even after GARCH filtering, some residual time series are still heavy-tailed and far from
normal.!

The existence of heavy-tailed errors poses challenges to volatility estimation. Many volatility
estimators require at least a finite fourth moment.? For example, Weiss (1986) proves the consis-
tency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) in the linear
ARCH(q) model under fourth order moment assumptions on the ARCH process. Lee and Hansen
(1994) weaken the moment conditions to existence of the fourth moment of the errors for GARCH
processes.® In the presence of heavy-tailed errors, Hall and Yao (2003) show that the QMLE for
parametric GARCH models suffers from complex limit distributions and slow convergence speed.
The distribution of the subsequent quantile estimator based on the devolatized residuals therefore
possesses unknown properties. This causes additional problems for the VaR estimators.

In the first step of the two-stage VaR forecasts, this paper proposes new volatility estimators
to safeguard against heavy-tailed errors. The proposed volatility estimators employ least squares
methods for log-transformed data. This volatility estimator asks for fewer moment conditions, thus
allowing for a wider range of error distributions than QMLE. The reason is that the transformed er-
rors, log(¢?), have much thinner tails than original errors €;. Additionally, after the transformation,
the regression problem becomes homoskedastic in stead of heteroskedastic.

In the second step, empirical quantile and extreme-value-theory based quantile are investigated.
It is found that the parameter uncertainty changes the asymptotic variance of empirical quantile
estimator.

The chapterr is organized as follows. First we discuss the model and the proposed forecast
method in section 2. Then the asymptotic theory is presented in section 3. Extreme Value Theory
based methods are discussed in section 4. Simulations and empirical studies are provided in section

5 and 6. Section 7 comes the conclusion and the potential extension.

4.2 The model and Value-at-Risk forecasts

This approach addresses Value-at-Risk forecast in a semiparametric multiplicative model

Yt = hi/Q(ﬁ)Et, (4.1)

1See Bollerslev et al. (1992), Nolan (2001), Rachev and Fabozzi (2005) and Tsay (2005) for additional evidence.

2The consistency property holds under weaker moment conditions; it is the asymptotic normality that requires
finite fourth moment. See Berkes and Horvath (2004) for general discussion.

3For more recent volatility estimators, see Hirdle and Tsybakov (1997) for nonparametric models and Yang(2006)
for semiparametric models.
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where {&;} is an i.i.d sequence of errors with unknown density f(-). The conditional scale of y; condi-
tioning on F;_1 is h¢(8), and ¢, is independent of F;_;. We assume a general ARCH(00) parametric

structure for h;

hi(B) = G(co + Z i (B (Ye—jr€t—35)), (4.2)
j=1

where G(-) and (-) are known functions, while ¢y and ¢; are unknown finite-dimensional parame-

ters. The link function G(-) is positive and invertible. Additionally,
co>0;¢i(B) >0, j>1; sup|c;j(B)| < el p < 1. (4.3)
B

The structure (1)-(3) is very flexible and encompasses a wide classes of conditional volatility

models. Examples are as follows*:
P q
Example 1 GARCH (Engle (1982), Bollerslev (1986)): hy = c+ Y. a;y?_;+ > bjhi—;
i=1 j=1

q

G(z) =z500 = ¢/(1 — ij);cj = Z a;G77(1,1),G = (

=1 i=1,i<j Iy—w ... 0

by .. b

p q
Example 2 linear GARCH (Koenker and Xiao (2009)): hy = c+ > ailyi—i| + Y bjhi—;
i=1 j=1

P y by ... b
Gla)=wzco=c/(L=) byicy= > a7 (1,1),G = ( 1)) = |a|
j=1 i=1,i<j Iy ... 0

Example 3 leverage GARCH (Glosten, Jagannathan and Runkle (1993)): hy = ¢ + ay? ;[1 +

Y1y, <0y] + bhi—1
G(z) =z;c0 =¢;¢5 = abl~lp(x) = 2 + 'yle(m<0)

Example 4 GARCH-in-Mean model (Drost and Klaasens(1997)): hy = ¢ + ay? | + bhy_1;6; =

p+ o,
G(x) = z;c0 = ¢/(1 = b);¢cj = abl 1 9(x) = 22

Example 5 IGARCH(1,1): hy = c+ (1 —b)y? | + bhy_;

G(z) =x5c0 =¢/(1 —b);¢c; = (1 — b)bjfl;w(x) = z?

4Bollerslev(2008) has a comprehensive list of parametric GARCH models.
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Example 6 Quadratic GARCH (QGARCH) Sentana (1995) hy = ¢+ ay? | + bhy_1 + ¢ys_1
G(x) = w5¢0 = ¢/(1 = b);¢; = V10 (w) = az® + g

Example 7 Stable GARCH(SGARCH/NGARCH) Liu and Brorsen(1995) Higgins and Bera(1992)
he = c+ay_y +bhi_

G(z) = 2% co = c;¢; = abl "L p(x) = °

Example 8 EGARCH(Nelson 1991). TGARCH(Zakoian 1994). NAGARCH(Engle and Ng(1993)),
FGARCH(Hentschel(1995))

B2 pM2 4
S X :w—i—ah?_mlf”(s)—i—bit*l)\

G(z) = N ep = dw + Licj = abt?l " Lip(y,e) = (g)’\f”(a)

Our model is similar to the ARCH(co) model considered in Robinson and Zaffaroni (2005).
Robinson and Zaffaroni (2005) treats general QMLE estimation based on the Gaussian distribu-
tion, which is sensitive to distribution assumptions, especially heavy-tailed errors. Zaffaroni (2009)
studies the Whittle estimation of EGARCH based on log squared returns. Similar log treatment
appears in Kim, Shephard and Chib (1998) and further transformations are available. Weiss (1986)

considered the least squares estimator based on the following

i = h(B)+e

€& = ht(ﬁ)(gtz - 1)7

where €; is conditional heteroskedastic. The large sample theory requires the existence of 8th
moment of y;. Bose and Mukherjee (2003) considered a two stage least squares estimator for
GARCH models but their first stage estimator still assumes strong moment conditions.

For all the above parametric GARCH models, the standard estimation method is QMLE, based
on the assumption of normality of €. Baillie and Bollerslev (1989) uses student — t distribution to
allow for more flexible parametric family of distributions. However, Drost and Klaassen (1997) and
Newey and Steigerwald (1997) argues that QMLE based on nonnormal distributions generally fails
to be consistent if the true distribution is different.

Various parametric GARCH models are proposed to accommodate different regularities found

in financial data. Observe that model (1) is not changed when the unknown parameter §, and inno-
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vation &; are replaced by 8¢ and innovation e; /¢, respectively, for some positive c¢. Therefore, scale
normalization is needed to make identification possible. For example, two common normalizations
in volatility estimation literature are E[e?] = 1 and Median[e?] = 1.

In this paper we assume E[log(¢?)] = 0 for reasons to be explained later in this section. Note that
we can always rewrite model 1 to have errors that satisfy E[log(c?)] = 0: in case E[log(¢?)] = K,
model 1 can be rewritten as y; = htl/Q(ﬂO) exp(K/2)e; exp(—K/2), where E[log((g; exp(—K/2))?)] =
0. Furthermore, the nuisance parameter K doesn’t affect the estimation of Value-at-Risk since
Quns11Fn) = W2 (Bo)aa = ha/2i (Bo) exp(K /2)ga exp(— K /2).

Given time series sample {y; }}, our forecast target is the parameter h,ll/fl (B9)qa- This forecast
is a combination of the volatility forecast h:/fl(g) and the error quantile estimation q,. Most of

the literature employs QMLE for B but this paper proposes a new estimation method for 8. Given

sample {yo,y1, ...y}, our Value-at-Risk forecasts proceeds with the following two steps:

(i) From the transformation logy? = log h;+log e?, we consider the least square estimation problem

of

n

~

5 = argmin 3 llogy? — log hu(9)]. (4.4)

t=1

ii) Estimate the unconditional quantile ¢, from the standardized residuals ; = y; h/?(B) from
t

the following minimization problem
1 n
(o = arg min — Z{rs} —ql+ 2a—-1)E —q)}- (4.5)
¢ n =
(iii) The one-step ahead conditional VaR prediction at time n is
1/2 /Sy
hn{i-l(ﬁ)qa- (46)
We can see that this one-period-ahead VaR prediction involves volatility prediction h:/fl (B)
and quantile estimation g,. The variation from this VaR prediction is from the sampling variation
ofB and ¢,. Since we don’t know the true parameters (5, q,) and use estimators (E,Zja) in the
prediction, this parameter uncertainty is the major source of prediction variation. As a result, we
will study the joint distribution of (B, Jo) in the following section.
The volatility estimator in (2) doesn’t rely on the assumption of a particular error distribution

so it offers robustness to both error distribution misspecification and existence of heavy-tailed

errors. After log transformation, the new model has error term loge? that is homoskedastic; the
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2 < o0o. In few cases like multiplicative

moment condition used for estimation is only El[loge?]
ARCH(p) models, one can even obtain a closed form solution to (i). In many cases, we have to solve
the nonlinear optimization problem of (i). This objective function is smooth and has continuous
derivatives for most specifications of h:(5). This feature offers a numerical advantage over the LAD
optimization problem, which is common in robust statistics. We postpone our discussion regarding

this moment condition to the next section.

One could instead do nonlinear quantile regression based on the following

B/
gl;nle ye — hi’*(8)aa), (4.7)
where [, (z) = |z| + (2a — 1)z. However, there are three issues: first, § and g, are not jointly

identifiable; second, the above nonlinear quantile estimation is hard to solve numerically; third, and
more importantly, this one-step estimation method overlooks the moment conditions in (2), thus
is less efficient. More intuitively, the model specifies the conditional quantile in a way that part of
the finite dimensional parameters 5 does not vary with quantile level «. In contrast, this one-step

regression does not assume [ is constant across all quantile level «.

4.3 Asymptotic theory

Denote 0 = (f', )" and
1 Oh(B)

Before we show the asymptotic theory for the estimators (B, Qo ), we discuss the following assump-
tions. For some 1’ > r > 1,

AssuMPTIONS B

B1 The process {y;} is strictly stationary and absolute regular with mizing coefficients 0, such

thatz g/ (= 1Q-<oo,

B2 ¢, is i.i.d with continuously differentiable density f(-), E[loge?] = 0, E[loge?]*" < oo and &

has ath quantile g, < oco.

B3 rank(B|5; 9 91]) = dim(B)

ol / Ohy(B) B} / 8%h
B4 E[supg |ht%ﬁ) 3éﬁ)|2T] < o0, E'supg ‘h?tﬁ) géﬁ) 555(/6)|2T < 00, Esupg |ht}ﬁ 86%6[3)'% <

|27‘/7‘/(7‘/—T‘)]

o0, E[supg | log hth(tﬁ) <00
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B5 Elsupg [, ()] < oc.

For assumption B1 to hold, a sufficient condition is that the mixing coefficients decay exponen-
tially. A variety of time series models have been verified to be geometrically ergodic, which implies
exponentially decaying mixing coefficients. For nonlinear homoskedastic autoregressive models, rel-
evant results have been obtained in Bhattacharya and Lee (1995) and Lee (1997). Cline and Pu
(1999), Cline and Pu (2004) and Liebscher (2005) have extended above results for ARCH type of
heteroskedasticity. Recently, Carrasco and Chen (2002), Francq and Zakotan (2006) and Kristensen
(2007) have shown similar results hold for a large family of GARCH models.

The assumption E[loge?]?" < oo is considerably weaker than Ele}] < oo, which is commonly
assumed for volatility estimation. One sufficient condition is that the density is bounded on a
compact set containing zero and the tails decay fast enough. To see this, without loss of generality,
we consider the case that density is bounded in € € [-1,1] by K, i.e., f(¢) < K. Notice that any

density must decay faster than x~! at infinity. Suppose that f(e) = O(¢7%) as ¢ — oo for some

a > 1. As a result, we can see

—1 1 o0
E[(log(2))"] / log(2)]2" f(2)de + / log(e2)]2" f(e)d= + / log(c2)]%" f(e)de

2C - \/ et _“t/2}dt\+K/ [log(e*)]*"de

IA

where the last inequality holds because f [log(£?)]*"de < 00.?
The condition E[(log(¢7))?] < oo is satisfied by most commonly used distributions. For example,
stable distributions, t distributions, etc. Table 29 reports that E[(log(c?))?] < oo can serve as a

legitimate assumption for various ¢ distributions:

Table 29. A comparison of moment conditions

1) | t2) | 3) | t@) | t(5) | t(500)

E[(e})] 00 00 00 00 26 3
El(log(¢2))?] | 9.89 | 7.07 | 6.69 | 6.58 | 6.55 | 6.55

Based on averages of 108 simulated samples from each distribution

For robustness consideration, one could assume instead Ellog(e)|Fi—1] = 0 and E[l{., <4} —

This is because E[loge?]?" < oo holds for uniformly distributed random variables €. To see this, consider the
moment generating function(MGF) for loge?: Elexp{t-[loge?]}] = E[e2!], which is finite for all ¢ > —1/2. Therefore

the MGF of loge? exists and all moments exist.
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a)|Fi—1] = 0. Our volatility estimation is still valid in this case although the asymptotic variance
of the volatility estimator would be different. The condition E[l., <41 —@|F;—1] = 0 is also called
quantile independence assumption, see Manski (1988) and Chaudhuri (1997).

The assumption B4 has been verified by many authors for various GARCH models.

The extra information of i.i.d assumptions on ¢; can be exploited by constructing a more efficient

estimator in the following additional steps. Let

n

A 1 —
:72 6 Et

where the estimated residuals & = y; /h; /2 (B). Then let

B: arg min —
B n

(ﬁmwmmWw}

We do not pursue this here.

The following theorem characterizes the joint distribution of B and q,. Let:

| ElmGsal 0
Qan(Qa)E[hl gfﬁls] f(qa)
a_ | % Qs
Q’ﬁq Qg
1 Ohy Ohy,_
Qs = E[logef]2~E[ﬁa—Btan] '
t
B 1 Ohyy . 1 Ohy Ohy,_y quE[loge?])?>  Elloge?(1{e; < qo} — )]
Qg = — [h*t%] [E%ag’] { 5 + Flge) }
a(l—a)  gqaEloge?(1{e; < qo} —a)] . 1 Ohy 1 Ohy Ohyy_q .. 1 Ohy
0, = + pl= g 2 il
R 1PN F(a0) o Pz s o5 Plhy 5]
+q3E[IOg5?}2 [iaht} [i%%]fl [i%]
4 hof 'R ag o h 0"

Theorem 5 Suppose that Assumptions B1-5 hold. Then,
1 0h
¥ log e;
0 —0o) g 1
Vi@ o f Z (1{& <o} — oz) o)
V(@ — 0y) =% N(0,9).
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V(= 0y) =% N(0,9).

Instead of considering least square estimation (LSE) as in (2), one can consider least absolute
estimation (LAD) for the log-transformed model. This LAD type estimator has been proposed by
Peng and Yao (2003) and further extended to semi-strong GARCH case by Linton et. al. (2009).

Here, we compare their relative efficiency by computing the ratio of the two asymptotic variances

Ry = Q/BLAD _ 1

Qg El(og(ed))?f (1) + f(=DJ*

To make the comparison clearer, we report the value of Ry for ¢ distributions with various degree

of freedoms:

Table 30. Relative deficiency ratio Rz = Qg, ,, /s, .5
t(1) t(2) t(3) t(4) t(5) | t(500)

0.9979 | 0.9551 | 0.8737 | 0.8246 | 0.7919 | 0.6543

From the above table we can see that, for ¢ distributions, the asymptotic variance of LSE is
larger than that of LAD. The heavier the distribution is, the more efficient LAD is. In general, this
efficiency comparison depends on the variance of log(e?) and the error density at +1. However,
because the objective function in (i) is smooth, while that for LAD is nonsmooth, the LSE method
might have numerical advantage over LAD. Furthermore, in terms of calculating confidence bands
for the proposed volatility estimator or VaR estimator, the variance of the LSE is easier to estimate
than that of LAD, because ﬁg .ap involves density estimation at &1.

Let

op

Theorem 6 Suppose that Assumptions B1-5 hold. Then,

/
q 1 0h 1
Tn+1 = (;hug "T 'V hn+1> .
n+1

1/2 /Sy~ 1/2
(@1 Q1) 22 (B)d — hifP1da) =2 N(0,1).

For example, in GARCH(1,1) models, the one period ahead forecast can be written as h,; =

oo .
55 +a Y byl and
§=0

ahn+1 1
86 = b Zb]yn ]7 +(IZ]Z)J yn—]

7=0 7=0
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From theorem 6, we can construct the predictive confidence intervals for VaR. Specifically, we

employ the moment counterparts:

~ e JRaS
hpny1 = ,\—i—aijyEFj
1-b =
/
8h7l+1 1 " i 2 E —~ " F |
= T bj n—7j ~ +CL bJ n—
— /
~ /q\a 1 athrl T
Tnt+1 = (2?11/_51 33 ) hn+1
6 — Qs Qg
Qz, O
A 1 - ~212 1 - 1 87% 8ht 1
Qg = -— loge = —
B nt:1[ g t] {n;h% 8/6 65/
~ T~ 10k 1= 1 0hOhy, | 1= Gullog]? 1 = log2(1{8 < o} — @)
Qg = —-3 =1 Ly Goloss | 1 “
” ni= h, 08 {” < 12 9B 0p' G Z 2 n ; f(4a) J
~ a(l — a) Gulog€2(1{&, < o} —a) 1 1 Ohy " 1 Ohy Ohy 11 1 Ohy
Q = =
! f2(a\oc) Z f(qa) tzl he aﬁ/{n Z h2 8ﬁ 8/8/} Z ht 8ﬁ
1y ai[log??]z 1 0hy (1~ 1 0hy Ohyy 41~ 1 Oy
_|_7 _ - -
n; 4 ;htaﬁ’{nzm 8686’} ;ht 0B

The confidence interval with level «q for h,ll/fl (B)qAa based on the asymptotic theory above is

1/2 /Sy~ ~ N~ 1/2 /Dy~ ~ N~
129, = (he/2 (B)da — 2ao\/ Tyt W nst /T, b2 (B + 2o\ By B /T),

where zq, solves Pr(|N(0,1)| < z4,) = ap.

4.4 Extreme Value Theory

Instead of approximate the error distribution by the empirical distribution of estimated errors as in
(ii), we may employ extreme value theory to estimate the quantile g,. This allows for extrapolation
outside the range covered by the sample.

Suppose that F(-) is a heavy-tailed distribution in the sense that the tail distribution has a

polynomial representation
—F(\
lim (\z)

— L=z 0 0. 4.8
A—o00 17F(>\) e =0y> ( )
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Heavy-tails in market return distributions also have some behavioral origins (investor excessive
optimism or pessimism leading to large market moves). Examples of heavy-tailed distributions are
Pareto-like distributions, such as Pareto, Cauchy, Student-t, Burr and Stable distributions with
exponent less than two. For any § > «, the expectation E[|X|°] is infinite. Empirical studies
frequently encounter time series with v € (3, 5), see for instance Embrechts et al. (1997, Page 330).

This polynomial representation can be reexpressed as 1 — F'(z) = a(z)z~7, where limy_, aa(()‘;)) =1.

For simplicity, we assume

F(z)=1-F(z) =cz 7. (4.9)

Note that for v > 0, the choice of the scale a(x) does not make a difference asymptotically.

There are two main methods for extreme values, Block Maxima and Threshold Exceedances.

4.4.1 Block Maxima

The main idea is we can divide the total observations of an i.i.d series into m block of size n, so
then we have m block maxima and the true distribution of these maximas can be approximated
by the Generalized Extreme Value (GEV) Distribution as long as total observation is large enough.
The parameters can be then estimated by the Maximum likelihood. The addition assumption for
this method to work is to require the underlying distribution of the data to be in the domain of
attraction of an extreme value distribution. But the downside of it is the approach is wasteful of

data.

Definition 1 The distribution function of the (standard) GEV distribution is given by:

exp(—(1+¢z) 1), ¢ #0

eXp(ieiz)v ¢ = 07

Fy(z) =

where 1+ ¢x > 0

A location and scale parameter can be added in as Fy , o (2) = Fy((x — p)/0), and p and o are

location and scale parameters respectively.

4.4.2 Threshold Exceedances

A more efficient and practical method to estimate the extreme value is the so called Threshold
Exceedance method. The interest centres to estimate is the tail index ~v,which can be done by using

the Generalized Pareto Distribution method (GPD) and the Hill method.
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GPD Method

Definition 2 Excess Distribution over the Threshold: Let {X} be an random variable with distri-

bution function F. The Excess Distribution over the threshold u is defined as

F(z+u) — F(u)
1— F(u)

Fuz)=PX-—u<z|X>u)=

The excess distribution can be fitted into the Generalized Pareto Distribution (GPD) .

Definition 3 Generalized Pareto Distribution (GPD): The df of the GPD is given by

1= (1+¢z/w)™¢, ¢ #0
1- eXp(*LL’/UJ), ¢ =0,

Gow(T) =

where ¢ and w are shape and scale parameters.

In the heavy-tail case, ¢ > 0, and G4, is the ordinary Pareto distribution with ¢ = 1/-, where
~ is the tail index as stated above. Solving maximization of log-likelihood function yields a GPD
model G&,a for the excess distribution function, and hence we can get the tail index easily. However,
how to choose the threshold u is a real difficulty and we will illustrate the graphic method in the

later empirical study.

Hill Method

The Hill approach is a well-known method for estimating the tail thickness parameterss of heavy-
tailed distribution. We take one-step further to estimate the EVT based VaR using the estimated

residual {€;} :

1. First, take the transformation n, = —&, and take the kp largest order statistics {nT,Tft}fil
from npy < -+ < npp; Consider the censored data {1{m>nT,T7kT}vmax{ntvnT,TfkT}}?:l

with the following log-likelihood function
T
—~—1 —
= Z[I{TH>77T,T—1¢T} log(c’ynt ? ) + l{ntSWT,T—kT} 1Og(1 - CUT}*kT)].
t=1

2. The maximum likelihood estimator (7,¢) is

~ T,T— t+1 ~ T 7
= k E . c= Y
— 77TT kT
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3. The residual quantile estimator is

N, T—t+1
T, T—kp

kr

_UT,TfkT(aT

~ o 5 _1/5 T log
Qo = _(TEHT}—kT) 17 = =

1
)T

4. The conditional VaR estimator is given by
£0(x) = 0(x)qa;

where volatility is estimated by the LSE method as defined in the previous section.

Choosing kr encounter the same difficult as choosing the threshold parameter in the GPD

methods. We will illustrate the graphic method in the empirical study as well.

EVT Asymptotic Theory

Denote U(x) as the inverse function of 1/(1 — F(z)). Suppose there exists a function A(t) — 0, as

t — oo, such that
Ultz)/U(t) — z'/7 xl/,yacp—l
t—o00 A(t) p

for some p < 0 and all z > 0.
Before showing the asymptotic theory for the conditional quantile g, we list out some assump-
tions. Further details can be found in Hill (2013).

AssumMmpTIONS C

C1 Smoothness and Moments

a. Let {S¢},., be a sequence of o-field that do not depend on 6 and define F:= o(Uicz3¢).

x+(0) lies on a probability measure spaece (€, F, P) and is $;—measurable

b. x4(f) is stationary, ergodic and thrice continuously differentiable with & —measurable

stationary and ergodic derivatives g;(6) and h;(0).

c. Bach wi(0) € {x¢(0),9:+(0), h; ()} is govened by a non-degenerate distribuion that is

absolutely continuous with respect to Lebesgue measure, with uniformly bounded derivatives:

SuPgee SWPqer [|(0/00) P(wi(f) < a)|| < oo and suppeg supger [[(9/0a) P(w:(f) < a)|| < oo .

Further E(supgcg |wi ()| < oo for some tiny ¢ > 0

d. infpcoxt(0) > § a.s. for some § > 0

C2 Regular Variation and Fractile Bound
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a. There exists a neighborhood Ro(8) such that

a(0)
L(a,0)

lim sup
a—00 0eRy (6)

P(z:(0) > a) — 1‘ =0

The tail component L(a,0) is slowly varying with reaminder in a,uniformly on ©. More-
over, the tail index y(0) is locally bounded infgex,(s5)v(0) = 0 and supgexo(é)q/(Q) < o0, and
is twice differentiable with bounded derivatives and a Lipschitz first deriva-
tives||(9/00)(0)|| < o0, [[(9/00)24(8)|| < oo, and H(@/@@)’y(@) - (6/89)7(5)” < KH@-@H
for each 0,0 € Ry (6)

b. kr — oo and kr = o(T/In(T)).

C3 Mixing Condition
Ro(8) be the neighborhood of 6° defined in Assumption 7.a. Then x(6) is a S-mixing

for each 6 € Ng(d) with summable coefficients.

C4 Plug in
The plug-in estimator must be satisfied: there exists a unique point 0° € © such that

ki > n(T) (01 — 6°) = 0,(1)

C5 kr — 00,kr /T — 0,Vkr A(T/kr) — 0, 5eprpyprs — 0,log(£2)/\/kr — 0

Define the asymptotic variance
1/2 ~m _
oxr = B(k?(3" —471)?

=~ 1 kr N, T—t+17—1
where v = {=— log =2
~ {kT Zt:1 g PP }

Theorem 7 Suppose that Assumptions C1-C5 hold. Then, T — oo, we have

Vkr10g((Ga)/qa)

oxr|log(%))|

-4 N(0,1),

where q,, s the real residual quantile, and the other notations are consistent as above.
REMARK: A nonparametric estimator of the asymptotic variance was proposed in Hill (2010).
Under regular condition, the estimator is consistent,
~2

9KT _pq
o2 '
KT
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4.5 Simulations

A small simulation study is used to illustrate the accuracy of our proposed VaR forecasting model

under the heavy-tailed situation. The data are generated by the following process

Yt = hi/2€t
he = c+ay;_y +bhi

g~ iidF(l,)

where we fix ¢ = 0.02. The distributions we choose in the simulation study are Student-t distribution

and skew-t distribution.

4.5.1 F(x): Student-t Distribution

o~

For each model, we simulate 200,400 and 800 times. We compute prediction errors: h,11(8)qa —
h:/fl% for all simulations and note APE as the median of absolute prediction error. In addition,
we compute the bias of estimators for GARCH parameter b. The simulation results with different
parameters are in the following tables:

Table 31: Median of Absolute Prediction Error and Bias of b (a=0.4,b=0.5)

APE bias of b
v =444 QMLE | Log-LSE | Log-LAD | QMLE | Log-LSE | Log-LAD
n=200 | 0.0395 | 0.0510 0.0525 -0.0385 | -0.0667 -0.0853
n=400 | 0.0285 | 0.0359 0.0368 -0.0163 | -0.0271 -0.0370
n=800 | 0.0194 | 0.0251 0.0257 -0.0083 | -0.0138 -0.0162
v=23

n=200 | 1.3676 | 0.8624 0.7820 -0.0171 | -0.0072 | -0.0666
n=400 | 1.5326 | 0.5914 0.6409 -0.0187 | -0.0047 | -0.0810
n=800 | 4.2580 | 0.4131 0.7568 -0.0927 | -0.0024 | -0.1535

Table 32: Median of Absolute Prediction Error and Bias of b (a=0.8,b=0.1)
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APE bias of b

v =444 QMLE | Log-LSE | Log-LAD | QMLE | Log-LSE | Log-LAD

n=200 | 0.0267 | 0.0329 0.0340 -0.0045 | 0.0247 0.0170

n=400 | 0.0194 | 0.0228 0.0233 -0.0072 | 0.0118 0.0083

n=800 | 0.0140 | 0.0165 0.0169 -0.0073 | 0.0041 0.0039
v=3

n=200 | 0.2289 | 0.1072 0.1123 0.0386 0.0076 0.0067
n=400 | 0.2272 | 0.0769 0.0830 0.0658 0.0039 0.0021
n=800 | 0.2045 | 0.0452 0.0480 0.0614 0.0011 0.0011

Table 33:Median of Absolute Prediction Error and Bias of b (a=0.1,6=0.8)

APE bias of b
v =444 QMLE | Log-LSE | Log-LAD | QMLE | Log-LSE | Log-LAD
n=200 | 0.0481 | 0.0700 0.0701 -0.1550 | -0.3914 -0.4045
n=400 | 0.0338 | 0.0483 0.0421 -0.0851 | -0.2936 -0.2890
n=800 | 0.0261 | 0.0374 0.0372 -0.0239 | -0.1766 -0.1834
v=3
n=200 | 0.3654 | 0.3966 0.4186 -0.0609 | -0.0792 -0.1056
n=400 | 0.3068 | 0.2304 | 0.2606 -0.0337 | -0.0179 | -0.0230
n=800 | 0.2674 | 0.1480 0.1553 -0.0118 | -0.0110 | -0.0123

Figure 13: QQ plot of the true student-t (3) distribution by QMLE, log-LSE and log-LAD

methods
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4.5.2 F(z): Skewness-t Distribution (Hansen, 1994)

Table 34: Median of Absolute Prediction Error and Bias of b (a =

0.7, alpha = 0.05)

0.4,b = 0.5,lambda

APE bias of b
v=15 QMLE | Log-LSE | Log-LAD | QMLE Log-LSE | Log-LAD
n=200 | 0.6304 0.1542 | 0.9865 -0.0805 0.1272 -0.3030
n=400 | 0.0351 | 0.0526 0.0625 0.0833 0.0960 0.0682
n=800 | 0.0040 | 0.0210 0.0316 0.0532 -0.0103 | 0.0405
v=3
n=200 | 0.0159 | 0.0279 0.0386 -0.0150 | -0.1804 -0.2823
n=400 | 0.0103 | 0.0297 0.0216 0.0607 0.0145 -0.0111
n=800 | 0.0070 0.0045 | 0.0037 -0.0445 | -0.0682 -0.0919

Table 35: Median of Absolute Prediction Error and Bias of b (a = 0.1,b = 0.8,lambda =

0.7, alpha = 0.05)
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APE bias of b

=3 QMLE | Log-LSE | Log-LAD | QMLE | Log-LSE | Log-LAD
n=200 | 0.0117 | 0.0057 0.0006 0.0759 0.0527 | 0.0626
n=400 | 0.0319 | 0.0104 0.0046 -0.3167 | -0.8000 -0.1606
n=800 | 0.1512 | 0.0312 0.0184 | -0.1611 | -0.1533 -0.0491
=15

n=200 | 0.0399 | 0.0257 0.0064 -0.1465 -0.1252 | -0.1733
n=400 | 0.0281 | 0.0613 0.0183 0.0490 | -0.5630 0.0791
n=800 | 0.0085 | 0.0008 | 0.0039 -0.0464 | -0.0168 | -0.0583

0.7, alpha = 0.05)

Table 36:Median of Absolute Prediction Error and Bias of b (a = 0.8,b = 0.1,lambda

APE bias of b
=3 QMLE Log-LSE | Log-LAD | QMLE | Log-LSE | Log-LAD
n=200 | 0.0545 0.0008 | 0.0044 0.2503 0.0171 -0.1000
n=400 | 0.0077 0.0030 | 0.0064 -0.0535 | 0.2118 0.3026
n=800 | 0.0144 | 0.0205 0.0173 -0.0749 | 0.2243 0.1953
=15
n=200 | 0.0279 0.0185 | 0.0290 0.1042 0.0667 0.0244
n=400 | 0.0112 | 0.0354 0.0307 -0.0380 | -0.0366 | -0.0790
n=800 | 0.0091 0.0020 | 0.0032 -0.0862 | -0.0511 | -0.0635
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From the QQ plot of the true t(3) and skew-t(3,0.7) distribution, we can see that the performance

of the three methods are quite similar when the errors are skew-t distributed, while log-LSE and

log-LAD are significant better when the errors follow t distribution.

4.6 Empirical Study

Finally, we investigate whether our new proposed conditional VaR methods have good forecasting
ability by comparing them with other conventional methods using index, individual company and
exchange rate data. The advantage of the model is that it can be used in the situation with potential

heavy-tailed errors. The datasets that we use here are MSCI(Emerging Market), S&P 500, IBM

and GBP/USD exchange rate.

4.6.1 Descriptive Statistics

The four datasets that we use for our study are:

Table 37: Datasets
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datasets period source

MSCI (Emerging Market) | 01/01/1988-31/12/2013 Datastream

S&P 500 01/01/1990 — 31/12/2013 | CRSP

IBM 01/01/2010 — 31/12/2013 | CRSP

GBP/USD Exchange Rate | 01/01/2010 — 31/12/2013 | Federal Reserve Bank

Following table gives the descriptive statistics for the above datasets, the Ljung-Box test for auto-
correlation and the KS test for normality.

Table 38: Descriptive Statistics of the datasets

MSCI (EM) | S&P IBM FX
Mean 0 0.0004 | 0.0004 | O
Standard deviation | 0.0116 0.0115 | 0.0111 | 0.0053
Min -0.0999 -0.0900 | -0.0708 | -0.0164
Max 0.1007 0.1151 | 0.0490 | 0.0235
Skewness -0.5689 -0.0534 | -0.6641 | 0.1538
Kurtosis 10.8039 11.6135 | 7.8300 | 3.4748

In all datasets the Ljung-Box test of returns 20-lags has p-value 0, In all datasets the Ljung-Box test
of squared returns 20 lags has p-value 0, In all datasets, the Kolmogorov-Smirnov test for normality

has p-value 1.

4.6.2 Models

There are totally eight models to be used in our empirical part. Model 1-7 are applying in the com-
parison of the forecasting performance and Model 8 represents the extreme value theory forecasting
method.

Model 1-4 are the fundamental models that we used in the empirical study of last chapter,
naming MA, EWMA, HS, GARCH(1,1).

Model 5 (YLS-our model): Under the model specification, the conditional variance is mod-
elled by GARCH(1,1) and the conditional quantile is estimated by the empirical likelihood. The

conditional Value-at-Risk of return series given F;_1 is,

p
§i(a) = ijytfj +h?qa.

j=1
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The probability of losses exceeding VaR, a, must be specified, with the most common probability
level being 1% and 5%.

Model 6 (NCTPARCH): NCTPARCH denotes the noncentral-t distribution which is pro-
posed by Krause and Paolella (2014). The evolution of the conditional variance is modeled flexibly

by the APARCH model proposed by Ding et al. (1993) and the Value-at-Risk is

p
1/2
ft+1(a) = § PiYt+1—5 + htJ/d(Iw
j=1

€q,which represents the standardized error is an i.i.d noncentral-t distribution.
Model 7 (TWMIX): TWMIX is the time varying normal-mixture-GARCH type of models.
The conditional distribution of the standardized error is assumed to be a mixed normal distribution

with zero mean,

€ | Fio1 ~ MixNormal (A, p, o)

where A is the vector of the mixing weights, p is the vector of location coefficient and o is the
vector of scale parameters.
Model 8(YLS-EVT): The extreme value theory VaR proposed in the chapter and the empirical

results will be showing seperately in the next section.

P
§ila) = ijyt—j + hz/2Qa-

J=1

where the conditional quantile is estimated by extreme value theory.
4.6.3 Forecasting Performance
In the paper, we use three methods to evaluate the VaR model forecasing ability, including graph
methods, violation ratio method and the White’s reality check test.

VaR Forecasting

The following are the one-day VaR prediction using different data. We use the rolling window
method with a 250 estimation window length and 0.01 significant level.

Figure 15: One day ahead Value-at-Risk prediction using EWMA and MA methods

101



EWMA, alpha=0.01

VaR

0.15

0.1

0.05

VaR

Figure 16: One day ahead Value-at-Risk prediction using HS and GARCH(1,1) methods
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Figure 17:One day ahead Value-at-Risk prediction using YLS and NCTPARCH methods
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Figure 18: One day ahead Value-at-Risk prediction using TWMIX method
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By simply observing the graphs, we may think EWMA, GARCH(1,1) and our method (YLS)

have better forecasting ability.

Violation Ratio

We use Violation Ratio, Bernoulli Coverage Test and Independent Test to evaluate the performance

of the VaR forecasting models:
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Table 39: Violation Ratio (MSCI(EM) and S&P)

Model/data MSCI(Emerging Market) S&P 500
Violation Ratio | Volatility | Violation Ratio | Volatility

1. EWMA 2.0974 0.0123 1.8969 0.0132
2.MA 2.3117 0.0097 1.9486 0.0112
3.HS 1.3778 0.0140 1.4140 0.0151
4.GARCH(1,1) 1.8983 0.0129 1.9314 0.0132
5.YLS 1.3472 0.0140 1.3968 0.0128
6.NCTPARCH 0 0.0790 0 0.0765
7. TWMIX 1.7606 0.1673 1.3623 0.2731

Table 40: Bernoulli Coverage Test and Independent Test of MSCI(EM)

Model/data MSCI (EM)

Bernoulli Coverage Test | Independent Test

Test Statistics | p-value | Test Statistics | p-value
1. EWMA 60.3845 0.0000 | 2.7295 0.0985
2.MA Inf 0 33.0133 0.0000
3.HS 8.4264 0.0037 | 13.4784 0.0002
4.GARCH(1,1) | 42.1380 0.0000 | 0.9942 0.3187
5.YLS 7.1744 0.0074 | 4.2847 0.0385
6.NCTPARCH | 131.2976 0 NaN NaN
7. TVMIX 31.1184 0.0000 | 0.0003 0.9857

Table 41: Bernoulli Coverage Test and Independent Test of S&P
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Model/data S&P 500

Bernoulli Coverage Test | Independent Test

Test Statistics | p-value | Test Statistics | p-value
1. EWMA 37.2988 0.0000 | 7.5755 0.0059
2.MA 41.2773 0.0000 | 12.6035 0.0004
3.HS 8.8981 0.0029 | 7.3055 0.0069
4.GARCH(1,1) | 39.9329 0.0000 | 2.8533 0.0912
5.YLS 8.2093 0.0042 | 2.2018 0.1378
6.NCTPARCH | 116.5638 0 NaN NaN
7. TXMIX 6.9070 0.0086 | 2.3991 0.1214

We can see from Table 39 that the best model for both MSCI (EM) and S&P data are YLS,
which has a closer violation ratio to the range 0.8-1.2. From table 40 and 41, we can see that
for 0.01 significant level, both of the GARCH(1,1) and YLS pass the Bernoulli Coverage test and
Independent test, while for 0.05 significan level, only GARCH(1,1) pass both tests.

Both of the MSCI(EM) and S&P data have more than 6000 observations , now we closely
examine a shorter period of those datasets and also the IBM and Exchange Rate data which has
a much shorter period. The reason is that we would like to test the methods in a much stable
economics condition. The following are the subperiod of the data that we choose.

Table 42: Subperiod datasets

datasets period source

MSCI (Emerging Market) | 01/01/2010 — 31/12/2013 | Datastream

S&P 500 01/01/2010 — 31/12/2013 | CRSP

IBM 01/01/2010 — 31/12/2013 | CRSP

GBP/USD Exchange Rate | 01/01/2010 — 31/12/2013 | Federal Reserve Bank

Table 43: Violation Ratio of a shorter period (MSCI(EM), S&P)
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Model MSCI(EM) (sub) S&P (sub)
Violation Ratio | Volatility | Violation Ratio | Volatility

1.EWMA 1.3889 0.0088 2.2487 0.0103
2.MA 2.0202 0.0057 1.9841 0.0064
3.HS 1.2626 0.0054 0.9259 0.0097
4.GARCH(1,1) | 2.0202 0.0085 2.2487 0.0101
5.YLS 1.2626 0.0085 0.9259 0.0113
6.NCTPARCH | 0 0.0756 0 0.0754
7. TWMIX 1.3889 0.3056 1.0582 0.0939

Table 44: Violation Ratio of a shorter period (IBM and Exchange Rate)

Model IBM Exchange Rate
Violation Ratio | Volatility Violation Ratio | Volatility

1. EWMA 1.3245 0.0076 1.0638 0.0021
2.MA 1.8543 0.0028 1.0638 0.0014
3.HS 1.7219 0.0027 1.3298 0.0010
4.GARCH(1,1) | 1.5894 0.0066 1.0638 0.0017
5.YLS 1.1921 0.0093 1.1968 0.0010
6.NCTPARCH | 0 0.0761 0 0.0002
7. TWMIX 1.5894 0.5209 1.0638 0.0155

Table 45: Bernoulli Coverage Test and Independent Test of MSCI(EM) subperiod

Model/data MSCI (EM) (sub)

Bernoulli Coverage Test Independent Test

Test Statistics | p-value Test Statistics | p-value
1.EWMA 1.0792 0.2989 | 0.3103 0.5775
2.MA 6.4259 0.0112 4.3081 0.0379
3.HS 0.5094 0.4754 | 8.0633 0.0045
4.GARCH(1,1) | 6.4259 0.0112 4.3081 0.0379
5.YLS 0.5094 0.4754 | 8.0633 0.0045
6.NCTPARCH | 15.9197 0.0001 NaN NaN
7. TVMIX 1.0792 0.2989 2.1978 0.1382
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Table 46: Bernoulli Coverage Test and Independent Test of S&P 500 subperiod

Model/data S&P 500 (sub)

Bernoulli Coverage Test | Independent Test

Test Statistics | p-value | Test Statistics | p-value
1.LEWMA 8.7912 0.0030 | 0.7833 0.3761
2.MA 5.7496 0.0165 | 1.0861 0.2973
3.HS 0.0430 0.8358 | 0.1310 0.7174
4.GARCH(1,1) | 8.7912 0.0030 | 0.7833 0.3761
5.YLS 0.0430 0.8358 | 0.1310 0.7174
6.NCTPARCH | 15.1961 0.0001 NaN NaN
7. TWMIX 0.0254 0.8734 | 0.1714 0.6789

Table 47: Bernoulli Coverage Test and Independent Test of IBM

Model/data IBM

Bernoulli Coverage Test | Independent Test

Test Statistics | p-value | Test Statistics | p-value
1. EWMA 0.7288 0.3933 | 0.2688 0.6041
2.MA 4.4461 0.0350 | 5.1464 0.0233
3.HS 3.2683 0.0706 | 5.7255 0.0167
4.GARCH(1,1) | 2.2472 0.1339 | 0.3882 0.5333
5.YLS 0.2650 0.6067 | 0.2175 0.6410
6.NCTPARCH | 15.1760 0.0001 | NaN NaN
7.TVMIX 2.2472 0.1339 | 0.3882 0.5333

Table 48: Bernoulli Coverage Test and Independent Test of Exchange Rate
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model/data Exchange Rate

Bernoulli Coverage Test | Independent Test

Test Statistics | p-value | Test Statistics | p-value
1.EWMA 0.0303 0.8618 | 0.1723 0.6781
2.MA 0.0303 0.8618 | 0.1723 0.6781
3.HS 0.7486 0.3869 | 0.2699 0.6034
4.GARCH(1,1) | 0.0303 0.8618 | 0.1723 0.6781
5.YLS 0.2768 0.5988 | 0.2183 0.6403
6.NCTPARCH | 15.1157 0.0001 NaN NaN
7. TWMIX 0.0303 0.8618 | 0.1723 0.6781

From table 43 and 44, we can see that YLS is the best model in terms of the results of the
violation ratio. The violation ratios of YLS of different data are all within the satisfactory range.
In addition, we also find that exchange rate data is quite indifference to the different methods. All
the methods have a violation ration in the range except the Historical Simulation.

From table 45-48, YLS still performs best for the Bernoulli Coverage Test and Independent Test.
For 5% significant level, YLS pass both test for almost all the data except the Independent Test
for MSCI(EM) subperiod data (with a p-value 0.0045). Seperately, for MSCI(EM) subperiod data,
we can see that EWMA passes both test. For S&P subperiod data, HS is the one who passes both
tests besides YLS. For IBM data, EWMA, GARCH(1,1), YLS and TVMIX all pass the Bernoulli
Coverage Test and Independent Test. For exchange rate data, all of the methods pass both tests
except NCTPARCH.

So we can conclude that YLS is the best methods evaluating by violation ratio criteria.

White’s Reality Check (RC)

When we evaluate a model’s forecasting performance, it is very important to check that the satis-
factory results obtained are due to the model’s actual forecasting ability, not because of chance. As
mentioned in White’s paper (2000), the problem of data snooping may occur when the researchers
use the same dataset more than once for purpose of inference or model selection. He proposes a
simple test called "Reality Check” to identify the issue. Diebold and Mariano (1995) constructs
standard approach to compare the predictive performance of models in pairs. The White’s test
extends the method to a joint test, with the null hypothesis being that the best model is no better

than the benchmark.
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Hy: max E(f)<=0

k=1,2,...m

where fi+ = Lt m — L+.o, the difference of the loss between the alternative and the benchmark. The
test requires to choose the loss function at the first place and in our paper, we use the following
two loss functions:
1. Mean Square Errors(MSE):
liv = (z¢ — VaR;;)?

2. Absolute Error:

li,t = |:]3t — VaRj,t|

The following are the results of the reality check. In the analysis, we choose YLS as the bench-
mark and all the other models as the alternatives. We can’t reject the null hypothesis by using
different data and different loss fucntion. The result reassure that the satisfactory forecasting
performance of our model is due to the actual good forecasting ability.

Table 49: White’s Reality Check

data/loss function | Mean Square Error Absolute Error
Reality Check p-value | Reality Check p-value
MSCI (EM) 0.4900 0.1830
S&P 0.5250 0.2940
MSCI (EM) (sub) | 0.5040 0.3910
S&P (sub) 0.5090 0.2700
IBM 0.7350 0.5660
FX 0.7820 0.2980

Extreme Value Theory Value-at-Risk (YLS-EVT)

Events such as market crashes or cases of individual financial distress regularly point out the
potential effects of fat tails in unconditional return distributions. Empirical research in finance aims
at a careful modeling of such extreme events and at the same time provides a basis for financial
risk management.

Estimation of the tail thickness parameter is the subject of a large and active literature. Koedijk,

Schafgans and de Vries (1990), Hols and de Vries (1991) and Wagner and Marsh (2005) showed
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the advantages of modeling fat-tailed distributions of exchange rate changes. Stock returns are
known to have heavy tails following the work of Osborne (1959), Mandelbrot (1963), Fama(1965,
1976) and Markowitz (1991). The approach begins with choosing an estimator for the tail index
parameter , the most common being the Hill estimator. The appeal of this estimator derives from
its conceptual and computational simplicity.

In practice, the Threshold Exceedance methods are superior to the Block Maxima due to it’s
capacity of using all the data in the extreme in the sense that they exceed a certain high designated

level.

GDP Method First, we need to define the mean excess function.

Definition 4 Mean FEzcess Function: The mean excess function of an random variable X with
finite mean is:

m(u) =E(X —u| X > u)
where u is the chosen threshold.

Figure 19: Sample Mean Excess Function Plot
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Generally speaking, the mean excess function is linear with a higher threshold v > u, and this
property can be used as a diagnostic when data follows a GPD model for the excess distribution.A

linear upward trend indicate a GPD model with a positive shape parameter (¢ > 0), a linear
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downward trend is a GPD model with negative shape parameter (¢ < 0), and a horizontal line
means that the shape parameter is zero (¢ < 0, and a exponential excess distribution in this case).

From the Figure 19, we can see that the mean excess function of both datasets are quite ’linear’
over the entire period and the upward trends demonstrate the positive shape parameter (¢ > 0) to

both datasets. However, it is not so easy to decide the threshold level from the plots.

Hill Method Figure 20: Hill Plot
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From the Hill plot for all possible values of threshold, we can see that the tail thicknesses () for
the EM data and S&P data are stable at around (2.6,3) and (3,4), suggesting ¢,the shape paramete

is (0.33, 0.38) and (0.25, 0.33).Both can be interpreted as the infinite-kurtosis model for the data.

EVT backtesting In order to compare the VaR forecasting performance between EVT-based
quantile models and the normal quantile models, we choose the S&P 500 data from 2007 to 2010,
totally 1008 observations. This period represents the most volatile time during the last financial
crisis. The models that we choose in the study can be decomposed into two parts: the methods
estimating the conditional volatility and the methods modelling the conditional quantile. Here are

the details:

111



Table 50:

Model method of conditional volatility method ofconditional quantile
GARCH-Hill | GARCH Hill approach

YLS-Hill YLS (the method proposed in the paper) | Hill approach

YLS-Normal | YLS Normal quantile methods

And here shows the violation ratio of the three models:

Table 51: Backtesting Result (Violation Ratio)

Model a=0.05 a=0.01 a=0.005
Violation Ratio | Volatility | Violation Ratio | Volatility | Violation Ratio | Volatility
GARCH-Hill | 8.3951 0.0043 2.7778 0.0804 0.3086 0.4300
YLS-Hill 8.7963 0.0038 8.7963 0.0325 1.2346 0.1740
YLS-Normal | 0.8642 0.0130 1.8519 0.0163 1.8519 0.0198

We can see that YLS-Normal is the best model when the quantile level is 5% and 1%. While

when it goes to more extreme quantile, 0.5% for instance, YLS-Hill is the best methods.

4.7 Conclusion

The paper first proposed an alternative method to estimate GARCH parameters and hence the

Value at Risk. The least square estimation based method imposes weak moment conditions on the

errors and consequently, it has better prediction performance than commonly used QMLE-based

VaR methods in the presence of non-normal errors. An EVT-VaR model is also introduced by

applying the log-transformation in the GARCH estimation and EVT approach in the conditional

quantile model. Asymptotic theory of both methods are provided.

Expected shortfall (ES) is an alternative risk measure and a proper discussion of ES by using

these approaches could be a potential extention.
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4.8 Appendix

4.8.1 Lemmas

Lemma 1 E[[logy? — log ht(ﬁ)]m%aifg(ﬁ)]w < oo
Proof. Notice that

alog ht( ) |2r

sup |[log sf +log hy —log h(B)]|————= 5
B B

Therefore,

M]%'
op
alog ht( ) |2r]
op
= E[s%p |log &7 + log hy — log hy ()] ——=——

0log h:(B)

E[logy; — log h«(B)]

< E [Sl;p logy; — log h(B)] —=-——

dlog hy(B)
B
hy

Olog hy (ﬂ)

]

+ (log )

= F [s%p |(log e7) ——% -~

B)] B

810g ht( )

he(B)

dlog hy(B) 1

]

< sup [[log sf +log hy —log he ()]
B

hy

‘27"

< {[Esup|loge? |>"11/%" 4 [Esup |
B B

a8
= L+

B

% 1u(B)

]

sup | —————=
B

dlog hi(B)
op

|2r

1/2r}2r

the last inequality is due to Minkowski’s Inequality. The rest pof this proof is to show that I < co
y y

and Ir, < oo.

Since loge? is independent of alogaizt(ﬁ), it follows that
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on the other hand, because of Holder’s Inequality,
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where 7’ = rp and p > 1, so
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it’s easy to see
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4.8.2 Proofs

Proof of Theorem 5:.  The proof follows Hansen(2006). We consider the stacked moment

me(6) = (1{st(ﬁ)lt(§ﬂ;a} - 0‘>

condition

So it follows that
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It has been shown by lemmas 1-4 that

E  sup  |my(0) - mt(91)|2T <O0(1)é
01:0—61|<6

this and Andrews(1994, theorem 5) ensure that fol VH(u, F, Lop(P))du < 0o, where H(u, F, Lo, (P))
denotes the entropy with bracketing with respect to Lo, (P) norm. By Doukhan et al.(1995) and

lemma 1 in Hansen(2006), we know the following weak convergence regarding the score functions:

VT {mr(6) —m(9)} = S(9)

”

where S(0) is a centered Gaussian process over # € © and ” = ” means weak convergence of

empirical process mr(+) indexed by 6 € ©.
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In view of Taylor expansion,

=m(bp) = ( )+ Q0 — ) +0,(T1/?),

where Q = 89 E[m¢(6p)]. Therefore, we have the following
VI{0—00} = QYT {m(0) =mr (8) — [m(00) ~r (00))} + Q' VTir (0) ~ Q™ VTTr (60) +0p(1),

and we have used the fact that vTmyp () = o0p(1), and central limit theorem. We know that
first, vVTmr (5) = 0,(1) holds trivially; second, by consistency of 0 and stochastic equicontinuity of
miir(-), m(0) —7r (8) — [m(0) —Tr(00)] = 0,(1/V/T); thirdly, CLT: —Q~'VTTr(8) — N(0, Q).
The proof of stochastic equicontinuity is based on above entropy condition, indicator function is a

IV class defined in (5.3) and theorem 5 of Andrews (1994). In consequence,
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1{515 S qa}’ -«

Proof of Theorem 6. Denote a truncated verion of h,4ias
i1 = Gleo+ Y ¢ (B)¢(Ynt1-)),

where the reuncation order is m = logn. As a result, the approximation error is of order o,(1):
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= gleo+ > ciB)(ynr1-3) D BV Gns1-) + Oplll D ¢i(B)(ynr1-)I°)
j=1 j=m+1 j=m+1
— 0,6m.
Similarly, we can show that 8%"5“ - a%’%ﬂ = O,(b™). Consequently, z,, 41 — x}, 1 = Op(b™).

At the same time, we have the following trancation approximation
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Combining above results, we can say that, conditional on information prior to time n — m,
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Proof of Theorem 7. Under Assumption 1-4 in Hill (2013) paper, Hill’'s (1975) estimator with
estimated parameters has the following distribution
1/2~-15 -1 d
kp (v (0r) =7 )/okr =% N(0,1),

where o g = E(k%,/z(ﬁ*l —~71)% is the MSE.

N R NT,T—t+1
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logga = (§)log(Tk*77TZr—kT)

Ta
(log(— % ) =V log(Nr 1y
T

=2 =

Assume kp — o0, kr /T — 0,/ kr A(T/kr) — 0 — 0, log( E)/VEkr — 0asT — oo,

1
) A(T [kr) T3
k2@ =y fokr =4 N(0,1)
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1/2 a \o— a — a
iy (Qog(F2)7 " — log(F2)71) /s —* N(0, (log(£2))?)
1/2 a \>— a — a
ey *{[log(F2)7™" —log (0771, )]~ [log(£2 )y~ —log (. r— o, )1}/ o ke = N(=10g(nr. 17— 1,0 ), (l08(F2))?)
Folllowing the biased reduction results in Gomes and Fegueiredo (2003), Gomes an Pestana

(2005) and Beirland et al. (2006), we obtain the biased corrected Hill Estimator

K}/ (108(d) ~ 10g(au) forcr 4 N (0. (og( 1))

Hence, the conditional quantile follows

VEkr10g((Ga)/40)

oxr|log(4L )]

—4 N(0,1).
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