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Abstract

The aim of this thesis is to outline a new approach to the Limit Order Book’s
(LOB) modelling. This is accomplished starting from the existing literature and
then proposing several models with different features and complexity levels, the
aim being to compute some quantities of interest.

Chapter 1 is an introduction to the LOB. It explains what this object is, why
we want to model it and what has been done so far in literature. We also outline
the general ideas behind this work.

Chapter 2 is focused on the avalanche approach: orders in the LOB accumulate
on some levels and get executed when the price process crosses such values. This
idea, as it will be explained, belongs to my supervisor Dr Rheinlander. This model
uses the theory related to the local time of a Brownian motion.

Chapter 3 defines a model introducing a Poisson process for incoming orders
and cancellations. The framework outlined in this way is used to calculate quanti-
ties of interest: a simulation technique is described and a refinement of the model
is also presented, in order to be consistent with empirical behaviours observed in
the markets.

Finally, in Chapter 4, the local time approach is once again taken into consi-
derations and two models are proposed using downcrossings and excursions. It is
also shown how to link the two frameworks.
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Chapter 1

Introduction

1.1 The Limit Order Book

Most financial markets are organised as pure electronic Limit Order Books (LOB).
In this chapter we describe this entity and outline why it is studied and what this
thesis intends to add.

The LOB is the collection of all orders placed but not yet executed: e.g. the
current price of a stock is £100 and a trader wants to sell her shares at £105. She
will place an order in the LOB and, as soon as the price reaches level £105, the
shares will be sold.

More precisely, a LOB can be described by what follows:

• a limit order is an ex-ante commitment made at time t to trade a certain
security up to a given amount at a specified price;

• orders accumulate in the LOB and are removed if cancelled or if traded
against an incoming market order;

• traders’ orders are handled sequentially: price-priority first and then time-
priority;

• in order to make any inference from an order submission, it is essential to
condition on the state the trader faces: the massive state space of the LOB
dynamics makes modelling very complex.

Traders have two main reasons to trade, often at the same time. On one hand,
they can have a view on the fundamental value of the asset. On the other hand,
they may have to trade by a deadline, i.e. there could be portfolio reasons.

Agents optimally choose between two type of orders.

1. Limit orders : these feature a better price but have execution uncertainty.
They could be also picked off if, after a news announcement for instance,
someone executes against them before they can be cancelled.

1



2 CHAPTER 1. INTRODUCTION

2. Market orders : the execution is guaranteed but at a worse price.

Studying the LOB turns out to be very interesting since it can give an idea
of what the investors’ expectations are for an asset. In fact, for instance, if the
limit price is chosen to be very close to the current stock price, then the investor
is impatient (since there is a high probability of having the order executed soon).
Furthermore, it is an effective tool to study liquidity risk.

We conclude the description of the LOB presenting an example. The following
figure shows what happens when a market buy order for 1000 shares is placed:

Book at Book at
Price time t ∆t time t+ ∆t

59 1000 . . . 1000
58 1500 . . . 1500
57 2000 Ask -1000 1000 Ask
56 -1200 Bid . . . -1200 Bid
55 -1000 . . . -1000
54 -800 . . . -800

Since there are 2000 shares at the best ask quote, after the execution the best
ask level hasn’t changed. Next, we show what happens if a market buy order for
2500 shares is placed:

Book at Book at
Price time t ∆t time t+ ∆t

59 1000 . . . 1000
58 1500 -500 1000 Ask
57 2000 Ask -2000
56 -1200 Bid . . . -1200 Bid
55 -1000 . . . -1000
54 -800 . . . -800

In this case, 2000 shares will be bought at level 57 and the remaining ones at
58, moving the best ask one tick higher. In the next table, we show what happens
when a limit buy order for 1500 shares at price 57:

Book at Book at
Price time t ∆t time t+ ∆t

59 1000 . . . 1000
58 1000 Ask . . . 1000 Ask
57 -1500 -1500 Bid
56 -1200 Bid . . . -1200
55 -1000 . . . -1000
54 -800 . . . -800
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Thanks to this additional limit buy order, the best bid quote moves from 56 to
57. Finally, we can see in a graph how the LOB evolves in time:

1.2 Existing literature and motivation

There exist two main types of research related to the order books: a first line in
financial Economics and a second one in Physics. The former uses econometric
models for a static order process, while the latter consists of artificial models, fully
dynamic since the order process is affected by the changes in prices.

One of the first economic models was developed by Cohen et al. in [7] by
allowing limit orders at two given prices (the best quotes). Using this framework
and applying queueing theory, they managed to compute some relevant quantities
like the average volume of stored limit orders, the expected time to execution and
the relation between probability of execution and cancellation. Domowitz and
Wang in [13] introduced arbitrary order placement and cancellation processes and
multiple price levels. The distributions of the bid-ask spread, of the transaction
prices and of the waiting times can be derived but since the processes they used are
time-stationary, they don’t respond to changes in the best bid or ask. Bollerslev
et al. in [2] provide an empirical test of this model, showing a good prediction for
the distribution of the spread but it cannot predict the price diffusion from which
errors in the estimation of spread and of stored supply and demand arise. Finally,
Rosu in [23] presents a model of the order book where strategic and informed
traders can choose between limit and market orders, i.e. between execution price
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and waiting costs. He shows that in equilibrium the best quotes depend only on
the numbers of buy and sell orders in the book.

The Physics literature addresses also the dynamic issues, since the order place-
ment process reacts in response to changes in price. Initially Bak et al. in [1] and
then Eliezer and Kogan in [15] and Tang in [24], presented limit prices of orders
placed at fixed distance from the mid-point and then they are randomly shuffled
until transactions occur. Maslov in [20] builds a model where traders don’t use
any particular strategy, but they exhibit a purely random order placement. This
leads to anomalous behaviours both for the price diffusion and for the stored limit
orders, which either go to zero or grow without bound, unless we assume equal
probabilities for limit and market orders placement. This issue can be overcome
if a Poisson order cancellation is introduced, as it is shown by Challet and Stinch-
combe in [6].

In more recent years, many studies were produced on the empirical observa-
tion of the order books, in order to understand their statistical properties. Most
importantly, Bouchaud et al. in [4] and [5] explain several important features of
the order books. Firstly, the incoming limit order prices follow a power-law dis-
tribution around the current price with a diverging mean. Then they investigate
the shape of the average order book and the typical life time of an order (until
cancellation or execution) as a function of the distance from the best price. More-
over, they study the price impact function, finding a logarithmic dependence of
the price response on the volume. Another interesting empirical study is provided
by Eisler et al. in [14]: they focus on the first passage time of the order book prices
needed to observe a given price change, the time to fill for executed limit orders
and the time to cancel. They show that all these quantities decay asymptotically
as power laws.

Some stochastic models for the LOB are given by Cont et al. in [10]. They
initially present a model able to capture the short-term dynamics of the limit order
book, while keeping it analytically tractable. They also study the probability of
some relevant quantities (conditional on the state of the order book) such as an
increase in the mid-price and execution of an order at the bid before the ask quote
moves. Then in [9] Cont et al. show that the price impact of order book events
is mainly driven by the order flow imbalance, between supply and demand at the
best quotes. Finally in [8], Cont and Lallard use a stochastic model where orders
arrivals are described as a Markovian queueing system, providing again effective
results on several quantities of interest.

At the market microstructure level, the notion of asset price is ambiguous but
very important in order for participants to choose their strategies. Delattre et al.
in [12] study this problem, proposing a notion of efficient price. They consider as
driving factor the imbalance of the LOB, i.e. the difference between the available
volumes at the best quotes. This is assumed to be a deterministic function (order
flow response function) of the distance between the best quotes and the efficient
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price. Such function is then estimated in a non parametric way and the efficient
price is derived from it.

Lorenz and Osterrieder in [19] and Osterrieder in [21] present a stochastic model
for the order book where a reference price process sweeps the LOB as it diffuses.
Since there is no need to model market order flow, this model is quite tractable
and provides the very first step for this thesis, as it will be explained in more detail
in the following chapters.

The aim of this work is to present a new approach to the order book modelling,
starting from the idea of having a reference price process, which we call virtual in
what follows, that diffuses independently of the limit order flow and determines
orders executions. We therefore propose several models with different features
and complexity levels, the aim being to compute some quantities of interest and to
provide an additional point of view in the existing literature of the LOB modelling,
believing that this framework can be used as a tool to expand the research in this
field.

1.3 Notation

In the next chapters the following notation will be used, unless otherwise specified.

• (Ω,F ,F, P ) is a filtered probability space, where F is a filtration (Ft)0≤t≤T .

• E[X] is the expectation of a random variable X (measurable with respect to
(Ω,F)) computed with the probability measure P .

• S = (St)0≤t≤T refers to a stochastic process with values in R, adapted with
respect to (Ω,F ,F, P ).

• B = (Bt)0≤t≤T is a Brownian motion with respect to (Ω,F ,F, P ).

• Lα = (Lαt )0≤t≤T refers to the local time of the Brownian motion at level
α ∈ R. A complete description of local times can be found, for instance, in
[22], Chapter VI.

• M = (Mt)0≤t≤T is the running maximum of the Brownian motion: Mt =
sup0≤s≤tBs.

• T = (Tx)x≥0 is the process of first passage times at levels x ≥ 0 for the
Brownian motion. Note that T is a subordinator.

• IA(x) is the indicator function of a set A. IA(x) = 1 if x ∈ A and IA(x) = 0
if x ∈ Ac.
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Chapter 2

The avalanche approach

In this chapter we present a first approach to the LOB modelling aimed at introduc-
ing the main framework of this thesis. We use a virtual price process determining
executions in the LOB and focus on the first issues arising from this initial step
of our modelling. In particular, we will see how the study of the evolution of the
number of orders in the LOB can be addressed using what is called avalanche ap-
proach: this method allows to compute some quantities analytically, but it requires
several simplifications, given the high complexity of the state space.

2.1 Introduction

The first question we want to answer is: how many orders are in the LOB at a
given time? A simple initial model is the following. Let S = (St)0≤t≤T be the stock
(mid-) price process and assume that orders are placed at random times (Ti)i≥1

at level STi ± µ (we have to consider both buy and sell orders). For instance, we
could assume that times Ti’s are relative to a Poisson process and µ is Gamma
distributed: however, this would already represent a model very difficult to study.

Let us consider a simpler setting. Let S be a process (which will be studied
more in depth in the following chapters) defined by St = σBt, where σ > 0. Hence,
S can be seen as a log-price process. Let us also assume that µ is constant and the
order volume is 1. We will study only the sell side since the same considerations
hold for the buy side. We also introduce a deterministic sequence of order times,
i.e. we work in business time.

From now on, we call S the virtual price process. This element is what distin-
guishes the present work from most of the literature concerning market microstruc-
ture. The idea is very similar to what is outlined in by Osterrieder in [21] and by
Lorenz and Osterrieder in [19].

Another key feature in this first description is the assumption that the number
of orders placed up to time t at a limit price x is Lαt where α = (x− µ)/σ.

Therefore, all orders at a given level are executed when the virtual price process

7



8 CHAPTER 2. THE AVALANCHE APPROACH

crosses it. LetXt denote the number of executed orders in [0, t] (on one side, say the
sell side). Then, using the occupation times formula ([22], Chapter VI, Corollary
1.6), we have

Xt+ε −Xt ≈
∫ Mt,t+ε−µ

mt,t+ε−µ
Lat da =

∫ t

0

I[mt,t+ε−µ,Mt,t+ε−µ](σBu) du (2.1)

where mt,t+ε and Mt,t+ε are the minimum and maximum of σB between time t
and t+ ε. This approximation doesn’t take into consideration the orders executed
before time t and the ones placed in [t, t+ε]. Therefore, since even a very simplified
model faces some complex problems in its early stages, in what follows we study
the problem from another point of view: the avalanches.

2.2 Study of avalanches

The number of orders in the LOB evolves with avalanches. In other words, limit
orders may accumulate on some levels and when the price process crosses those
values, we will see a sudden decrease of the number of orders in the LOB. In the
next graph we show a possible realisation of the evolution of the number of orders
in the LOB, where the avalanche dynamics are more clear.
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Fix ε > 0. We call ε-avalanche an avalanche such that the time length between
two consecutive executions is always less than ε. Let us then define two related
quantities that we are going to study for the first avalanche.

• The avalanche length (of an ε-avalanche) is the difference between the last
and the first limit prices of executed orders.

• The avalanche size (of an ε-avalanche) is the number of executed orders
during the entire length.

In this section we start from the idea of Dr Rheinlander, who pioneered the
avalanche approach in market microstructure. He set out the main roots of this
method and developed the study of the distributions of avalanche length and size.
On my own, I then deepened the analysis of the sojourn problem.

2.2.1 Probability of avalanche length

We defined the length of the first ε-avalanche to be the number of order levels that
get executed between the first order execution and the last order execution such
that there is no new execution during the next ε-interval. Assume that the first
order is executed at level x > 0 at time Tx/σ. Let δ > 0:

P (Avalanche Length > δ) =

= P (M has no level stretch > ε in [Tx/σ, T(x+δ)/σ]) +Rε

= P (T has no jumps with size > ε in [x/σ, (x+ δ)/σ]) +Rε

where Rε is an error term. Define the counting process

N ε
y = #{ jumps of T with size > ε up to y}

which is a Poisson process with intensity λε > 0. Therefore,

P (T has no jumps with size > ε in [x/σ, (x+ δ)/σ]) = P (N ε
δ/σ = 0) = e−λεδ/σ

where, thanks to Lévy-measure ν of T , we have

λε = E

[ ∑
0<y≤1

I{∆Ty>ε}

]
=

∫ ∞
ε

ν(dy) =

∫ ∞
ε

dy√
2πy3

=

√
2

πε
.

We can actually prove that the error term Rε is negative and converges to 0 as
ε→ 0+. In fact, if the avalanche length is greater than δ then M has definitely no
level stretch greater than ε in [Tx/σ, T(x+δ)/σ], but the vice-versa is not always true
(intuitively, this happens if B increases “slowly” so that M has no level stretch
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greater than ε but at the same time it doesn’t touch the previously placed orders).
Hence,

P (Avalanche Length > δ) ≤ P (M has no level stretch > ε in [Tx/σ, T(x+δ)/σ])

which shows that Rε ≤ 0. Moreover, we have already calculated the right-hand
side of this inequality:

exp

{
−
√

2

πε

δ

σ

}
which is infinitesimal as ε→ 0+. Therefore,

lim
ε→0+

P (Avalanche Length > δ)−Rε = 0

which proves, together with Rε ≤ 0, that Rε is infinitesimal as ε→ 0+.

2.2.2 Probability of avalanche size

Let us assume once again that the first ε-avalanche begins with an execution at
limit price x and ends at price y. Then the number Y of executed orders during
its length can be modelled by the following integral:

Y =

∫ Ty/σ

0

∫ y

x

L
a−µ
σ

t da dt. (2.2)

For the time being, let us replace the stopping time Ty/σ with a constant time
horizon T . In this case, using the occupation times formula just like we did in
(2.1), formula (2.2) becomes

Y =

∫ T

0

∫ y

x

L
a−µ
σ

t da dt = σ

∫ T

0

∫ t

0

I[x−µ
σ
, y−µ
σ

](Bu) du dt. (2.3)

We can therefore study the distribution of Y . Fix z ∈ R+:

P (Y ≤ z) =

= P

(
Time spent by B in

[
x− µ
σ

,
y − µ
σ

]
before T is ≤

√
2z

σ

)

= P

(∫ T

0

I[x−µσ , y−µ
σ ](Bu) du ≤

√
2z

σ

)
. (2.4)

Hence, in the end, studying the law of Y actually means solving an occupation
time problem, also known as sojourn problem, to which we dedicate Appendix A.
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More specifically, in Appendix A we study the distribution of the following
random variable: ∫ t

0

I[b,c](Bu) du

where t is a positive constant and 0 6 b < c 6 +∞. In other words, we want to
study the law of the time spent by a Brownian motion starting at 0 in a specified
interval [b, c] within the time horizon t. The case b = 0 and c = +∞ is a well
known result obtained by P. Lévy, the so-called arc-sine law, and well explained,
for instance, in [18]. Another remarkable result in this direction was achieved by
G. Fusai in [16], where the characteristic function of such an occupation time is
calculated. Finally, it is important to highlight that this distribution has been
found with more than one method and the result can be found in [3], p. 166,
formula 1.7.4.

In Appendix A, M. Kac’s method (outlined in [17]) is used, since it is one of
the first classical approaches in literature to this kind of problems. Our goal is
to find the distribution for 0 < b < c < +∞. We show how to find a double
Laplace transform used in Kac’s method and a further step for future research
in this direction would be to invert it analytically in order to find the sojourn
distribution.

2.3 Conclusions

In this chapter we presented the avalanche approach as a first step towards a
stochastic modelling of the LOB. Given the huge state space, it is clear how com-
plex such modelling can be even with such a simple approach. In any case, we
managed to compute some quantities relevant for this framework: the distributions
of avalanche length and size

Finally, we believe this setting can lead to some interesting developments, how-
ever in the next chapters we will focus our attention on articulated models still
involving the idea of a virtual price process.
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Chapter 3

Some developed models

In this chapter we outline a complete stochastic model for the LOB: similarly to
the previous chapter, the main idea is a virtual price process sweeping the orders
accumulated in the book at the best quotes. The dynamics of the limit orders and
cancellations are explained in detail. Market orders are slightly more complex and,
therefore, are treated according to two approaches: initially a numerical one and
then an analytical one, matching the first passage time distribution to empirical
data. Finally, we show different results related to several quantities of interest. In
fact, this is the main model developed in this thesis, as it is at the same time quite
adaptable to empirical data but also mathematically treatable.

3.1 Introduction

Let us consider one liquid stock and the relative LOB. This model is made up
of a fixed price grid {k τ}k∈Z, where τ > 0 is the tick size. Since prices can be
negative, they may be thought of as log-prices without loss of generality. At time
0, the best ask price is τ while the best bid is −τ . Moreover, as already proposed
in the existing literature (see Cont and De Lallard in [8]), we consider an initial
full book: i.e. each quote (except from price 0) has one order.

The spread is defined as the difference between the best quotes: “best ask −
best bid”. From the previous description it is clear that at time 0 the spread is
equal to 2 τ . Just like in [8], in this model the spread is assumed to be (tight
and) constant. This is a meaningful approximation because such a behaviour can
be observed in empirical studies ([8], [9]). In addition, when the liquidity at one
quote is consumed, an order between the best quotes is placed by a trader to get
time priority or by a market maker (if there is one) to provide liquidity. In the
following table, we give an intuitive idea of what happens in case of an upward
movement of the best quotes.

13
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Book at Book at
Price time t ∆t time t+ ∆t

61 2 . . . 2
60 7 . . . 7
59 5 . . . 5 Ask
58 1 Ask -1 0
57 0 . . . -1 Bid
56 -8 Bid . . . -8
55 -9 . . . -9
54 -3 . . . -3

A market order is placed at quote 58: since all liquidity at such quote is consumed,
the best ask moves upwards and an additional limit buy order is placed at quote
57, making the best bid move one tick upwards as well..

This model features only three types of order book events : limit orders, can-
cellations and market orders and their dynamics are explained in the rest of the
chapter.

3.2 Limit orders and cancellations

Limit orders are placed in correspondence of the jumps of a Poisson process with
intensity λ > 0: the drawback is that the choice of a memory-less process is not
realistic, but this is just a starting point that can be improved (e.g. via a time-
varying intensity). Every time the process has a jump, an order is placed in the
book. More precisely, let us call {Ti}i≥1 the sequence of stopping times associated
with the Poisson process. The inter-arrival time is exponentially distributed with
parameter λ:

Ti+1 − Ti ∼ Exp(λ).

At each time Ti, firstly it is chosen on which side of the book the order is placed.
Ask side and bid side are equally likely: the order can be placed on one of the
two sides with probability 1/2. Once the side is picked, the order is placed µ ticks
away from the current mid-price, where µ is a random variable defined by

P [µ = j] =
k

j1+α
, j = 1, . . . , 100.

Here, α > 0 and k is a normalizing constant given by

k =

[
100∑
i=1

i−(1+α)

]−1

.

This power-law is justified by several empirical studies: for instance, Bouchaud et
al. in [4] and [5], and Cont et al. in [9] and [10]. Limiting the possible values
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of µ to {1, . . . , 100} ticks is considered in the literature as well (see Bouchaud et
al. in [4]). The value 100 is arbitrarily chosen and observed for a stock in [4]. In
our model all orders are of unit volumes: this feature can be improved (with iid
variables modelling orders’ volumes, for instance) or, as it is done by Cont et al.
in [8] and [10], we can think of the unit volume as the average of actual orders’
volumes.

Cancellations are modelled in the same way, considering an independent Pois-
son process with intensity γ > 0. The corresponding sequence of stopping times is
{T ci }i≥1. At every time T ci an order is placed (with equal probability for each side
of the book) at µc ticks away from the mid-price, where

P [µc = j] =
kc

j1+β
, j = 1, . . . , 100.

Again, we have β > 0 and

kc =

[
100∑
i=1

i−(1+β)

]−1

.

If the chosen quote has only one order, then no cancellation happens: this is a
technical condition imposed to keep the full-book structure.

Market orders are more complex and the next section is devoted to their dy-
namics: this aspect is what makes the model deeply different from most of the
previous literature, while its main ideas are in line with the models presented by
Osterrieder in [21] and by Osterrieder and Lorenz in [19].

3.3 Market orders

3.3.1 First approach

Let us introduce the virtual price process S, like in the previous chapter. This
stochastic process is given by:

St = σ Bt, t ≥ 0, (3.1)

where σ > 0. Now the idea is that the market order that consumes all liquidity at
one quote (hence provoking a price change) is placed when S hits one of the two
barriers represented by the best quotes. In the following graph, we can observe a
possible path:
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This model looks quite simple but, nonetheless, it is a good starting point, both
because it shows a realistic behaviour anyway and because it is mathematically
tractable. It will also be improved, introducing a time-varying volatility parameter
σt.

3.3.2 Numerical simulations

In order to investigate this setting, numerical simulations are essential. Moreover,
execution dynamics can be explained more precisely starting from an approxima-
tion of S. This is needed in order to control the number of quotes hit on each
single time step by the Brownian motion. A total freedom would make the model
very hard to be studied, hence, we switch to a discrete setting.

Let us consider a sequence of iid random variables {ξj}j≥1 such that

E[ξ1] = 0 and V ar[ξ1] = s2

where 0 < s2 <∞. Define with Z the partial sums

Z0 = 0, Zk =
k∑
j=1

ξj, k ≥ 1.

From Z we can build a continuous linear interpolation Y in the following way:

Yt = Zbtc + (t− btc)ξbtc+1, t ∈ R+,
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where btc indicates the largest integer smaller than t (i.e. the integer part). Prop-
erly scaling the process Y (in space and time):

X
(n)
t =

1

s
√
n
Yn t, t ∈ R+,

for n ∈ N, we obtain the so-called Donsker’s theorem.

Theorem 1 Using the objects just introduced, we have

(X
(n)
t1 , . . . , X

(n)
tk

)
d−−−→

n→∞
(Bt1 , . . . , Btk)

for all k ∈ N and (t1, . . . , tk) ∈ Rk, where the convergence is in distribution.

In our model we choose s = 1 and the sequence {ξj}j≥1 such that

P [ξ1 = 1] = P [ξ = −1] =
1

2
.

Therefore, once we fix an integer value for n high enough, we can approximate the
noise process with the random walk provided by Donsker’s theorem:

St = σ Bt ≈ σX
(n)
t =

σ√
n
Yn t.

Let us now see step by step what happens when the virtual price process hits
a barrier. Firstly, note that for times t of the form t = k/n, k ∈ N, we have

X
(n)
t =

1√
n
Yk =

1√
n
Zk =

1√
n

k∑
j=1

ξj.

Hence, a possible way to proceed is the following. If we take one day as time unit,
then the time increment in our model (i.e. the time step used in simulations) can
be taken as h = 1/n. Therefore, one day is made up of n time increments each of
length h. The status of the virtual price process is checked every second, i.e. after
each increment of length h. This means that, in order to see a price change, we
have to add one realisation ξj to the random walk and check if the approximated
virtual price process has crossed one of the barriers. Hence, we have

St
after time h−−−−−−−−−→ St+h

σX
(n)
k/n

after time h−−−−−−−−−→ σX
(n)
(k+1)/n

σ√
n

k∑
j=1

ξj
after time h−−−−−−−−−→ σ√

n

k+1∑
j=1

ξj.
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Note that we check only at every second and not between the seconds: this
shouldn’t be considered a drawback of the model because the possible increment
of the random walk, σ/

√
n, is very small (if n is chosen to be high enough, as we

do).
Let us assume that the buy market order that consumes all liquidity at the

best ask is placed at time t = k/n = k h (in what follows a superscript “new” will
indicate the value of the quantity after the execution at the same time t). For sell
market orders the dynamics are exactly the same. If the current best ask quote is
pA(t), then

σ√
n

k∑
j=1

ξj ≥ pA(t).

This means that all orders at pA(t) are executed and the mid-price will move
up by one tick. This is accomplished through the following updates

pnewA (t) = pA(t) + τ

pnewB (t) = pB(t) + τ.

where pB(t) and pnewB (t) are the best bid quotes before and after the transaction
at time t. The new volume vnewA (t) at the best ask quote will become the volume
at pnewA (t). Then, in order to keep the spread constant and equal to 2 τ , a new buy
limit order is placed at the quote pnewB (t) (where the last execution just happened)
and this makes the new volume at the best bid vnewB (t) = 1.

Finally, it is important to understand why the choice of a discrete random
walk is necessary, especially for simulations. Dealing with the Brownian motion,
the increment after each time step h is normally distributed and can theoretically
take values in all R. Hence, it is useful to have control on the Brownian shock’s
size. With Donsker’s theorem approximation, we can limit the increment of the
approximated virtual price process and impose that at every step at most one
barrier is hit. Therefore, we just need that each increment (in absolute value) is
smaller than or equal to the tick size:

σ√
n
≤ τ,

which implies that n has to be chosen such that

n ≥
(σ
τ

)2

.

3.3.3 Probability of executions

Using this setting, we have studied the probability of executions through simula-
tions. This quantity is defined as the ratio between number of trades and number
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of orders in the book. The results show a shape very similar to what was found in
Istanbul Stock Exchange with the following parameters choice:

σ = 50

λ = 0.6

α = 0.6

γ = 0.01

β = 50.

A high value for σ let us observe many trades. The choices for λ and γ make
cancellations much less frequent than limit orders. The value for α is the one
found by Bouchaud et al. in [4]. When a cancellation happens, big β results in
a high probability of choosing a quote close to the mid-price: this is meaningful
because usually limit orders far away from the mid-price are placed by patient
investor, unlike those close to the mid-price. The following plot was done with
1000 simulations over a period of 100 days.

The following graph is what has been observed by M. Valenzuela (LSE) and
I. Zer (LSE) for a very liquid stock, GARAN, on the Istanbul Stock Exchange,
averaging over all working days in July 2008.
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A further step should be to study the same quantity, but focusing on orders
placed at a fixed displacement from the mid-price. This would answer the question:
if at time 0 an order is placed at a distance of µ ticks away from the best quote,
what is the probability of it being executed? This is a valuable piece of information
for a trader: if such value is high, then it is very likely that many informed agents
are operating in the market and she could adjust her aggressiveness in placing
orders. The following plot shows what happens with numerical simulations using
different displacements.
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3.3.4 A refinement

It has been observed that the actual first passage time distribution of transaction
prices is quite different from the one implied by the model described so far. This
is highlighted in particular by Eisler et al. in [14]. The well known distribution of
the first passage time for a Brownian motion at a given barrier has density

hBM(t) =
∆√
2π

t−3/2 exp

(
∆2

2t

)
(where ∆ is the barrier’s distance at time 0), which is asymptotically proportional
to t−3/2 for long times. Eisler et al. in [14] show that this behaviour is realistic
for long times, while for short times hBM is very different from what is observed.
Therefore they fit the actual density in the following way:

h(t) =
C t−θ

1 + [t/F (∆)]−θ+θ′
(3.2)

where C is a normalising constant, F is a function of the barrier ∆ only and θ and
θ′ are two given constants. Normalisation conditions also require that 1 < θ < 2
and θ′ < 1. The three parameters F , θ and θ′ can be estimated from observed
data. Moreover, from the shape of h, we can see that for t � F (∆) we have
h(t) ∝ t−θ

′
, while for t � F (∆) we have h(t) ∝ t−θ. As mentioned before, it is

actually found in [14] that θ has values close to 3/2 for five different stocks and
for different values of ∆.
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In what has been presented so far, we firstly defined the virtual price process as
a Brownian motion, which has hBM as corresponding density for the first passage
time. Now, we proceed the other way around: we take h as density of the first
passage time of a new virtual price process, which can be created using a result by
Davis and Pistorius in [11]. Before applying their theorem, let us properly define
the new problem.

Inverse first-passage time problems

Given a probability distribution H on R+ and a family Y of càdlàg stochastic
processes Y = {Yt}t≥0 starting from 0, the inverse first passage time problem to
zero (IFTP) is to find a Y ∈ Y such that the first-passage time T Y0 of Y below
zero,

T Y0 := inf{t ≥ 0 : Yt < 0},
follows the distribution H. Let us restrict ourselves to a family Y of Gaussian pro-
cesses. Let W be a standard Wiener process on the previously defined probability
space (Ω,F , P ) and let A be a random variable independent of W . Consider the
set of linear Gaussian processes Y of the form

Yt = A+

∫ t

0

ν σ2
s ds+

∫ t

0

σs dWs, t ≥ 0,

where σ : R+ → R is a function such that

It :=

∫ t

0

σ2
s ds <∞, t ≥ 0.

Note that Y is equal in law to the time-changed Brownian motion {X(It), t ≥ 0}
where

Xt = A+ ν t+Wt, t ≥ 0.

From now on, by Px we denote the measure P conditioned on Y0 = x. Let us

also recall the form of the first-passage time distribution K
(ν)
a (t) = Pa(T

X
0 ≤ t) to

a constant level for a Brownian motion with drift ν. Under Pa the stopping time
TX0 has Laplace transform given by

Ea[e
−qTX0 ] = exp

(
−|a|

[
ν +

√
ν2 + 2q

])
,

while the density k
(ν)
a (t) is given by

k(ν)
a (t) =

|a|√
2πt3

exp

(
−(a+ νt)2

2t

)
.

For any distribution H with density h, a solution to the IFTP can be found by
suitably choosing the form of the volatility function σ:
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Theorem 2 Let H be a cumulative distribution function on R+∪{∞} with H(0) =
0 that is continuous on R+ with density h. Fix a > 0 and ν satisfying

ν ≤ − 1

2a
log(H(∞)), (3.3)

and define σs for s ≥ 0 by

σ2
s =

{
0 , 0 ≤ s ≤ s0 := inf{s : H(s) > 0}

h(s)

k
(ν)
a

(
(K

(ν)
a )−1(H(s))

) , s0 < s <∞ , (3.4)

where (K
(ν)
a )−1 denotes the right-continuous inverse of K

(ν)
a . Then it holds that

T Y0 ∼ H, that is,
Pa(T

Y
0 ≤ t) = H(t), t ∈ R+.

See [11] for a proof of this theorem.

A new virtual price process

We can now use the result outlined in Theorem (2) in our setting. Let us start
from the distribution h in (3.2) of the first-passage time found by Eisler et al. in
[14]. We can then build the volatility process σ via formula (3.4):

σ2
s =

{
0 , s = 0

h(s)

k
(ν)
a

(
(K

(ν)
a )−1(H(s))

) , s > 0 . (3.5)

Note that condition (3.3) becomes

ν ≤ − 1

2a
log(H(∞)) = 0

since H(∞) = 1, letting us choose ν = 0. Therefore, our new virtual price process
can be given by:

Yt =

∫ t

0

σs dWs, t ≥ 0. (3.6)

In fact, we can easily see that, thanks to Theorem (2), the probability density
function of the first passage time of Y defined in (3.6) at a given barrier is exactly
h from formula (3.2): fix a quote in the price grid ∆ and define (with a slight
change of notation)

T Y∆ = inf{t ≥ 0 : Yt > ∆}.
Then, from Theorem (2), we obtain, for t ≥ 0, the distribution of the first passage
time for this newly defined virtual price process:

P
(
T Y∆ ≤ t

)
=

∫ t

0

h(s) ds =

∫ t

0

C s−λF

1 + [s/TF (∆)]−λF+λ′F
ds. (3.7)
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3.4 Quantities of interest

This refined model, whose virtual price process is defined in (3.6), allows us to
study some important quantities in addition to the first passage time’s distribution
calculated in (3.7). These quantities are useful in order to understand the LOB’s
dynamics and to choose trading strategies.

Let us start from some distributions introduced by Cont et al. in [10] and [8],
where they were studied via queueing theory. Define TA and TB as the stopping
times when all liquidity is consumed for the first time at the best ask and at the
best bid, respectively. Hence, in our model, recalling that τ stands for the tick
size,

TA = inf{t ≥ 0 : Yt > τ}
TB = inf{t ≥ 0 : Yt < −τ}

Notice that, thanks to the definition of this model and the Markov property of the
virtual price process, it doesn’t matter whether we start at time 0 or at another
time, as long as we know the initial state of the book. Moreover, most of the results
shown in this section are a straightforward consequence of the (already explained)
identity in law between Yt and WIt .

1. The probability of having a price increase before a price decrease is simply

P (TA < TB) =
1

2
.

This is due to the symmetry of increments for the virtual price process.

2. We can then derive the distribution of the duration before the first mid-price
move: for t > 0, we have

P (TA ∧ TB ≥ t) = P (TA ≥ t, TB ≥ t) = P (TWτ ≥ It, T
W
−τ ≥ It)

= P (TWτ ∧ TW−τ ≥ It) =

∫ ∞
It

f1(s) ds

where we defined

TWτ = inf{t ≥ 0 : Wt > τ}
TW−τ = inf{t ≥ 0 : Wt < −τ}

and f1 is a well known result (see [18]):

f1(t) = τ

√
2

πt

∞∑
n=−∞

(4n+ 1) exp

{
−(4n+ 1)2 τ 2

2 t

}
.
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Therefore, we can write down explicitly the expression of the pdf for the distribu-
tion of the duration before the first mid-price move:

P (TA ∧ TB ∈ dt) = f1(It)σ
2
t dt.

3. Let us now assume that we place a sell limit order at the best ask quote. We
can calculate the distribution of getting the order executed before the mid-price
moves down. A similar result holds for the bid side.

P (TA < TB, TA ≤ t) = P (TWτ < TW−τ , T
W
τ ≤ It), t ≥ 0

since I(TA) ∼ TWτ and I(TB) ∼ TW−τ . Hence, the density function becomes

P (TA < TB, TA ∈ dt) = f2(It)σ
2
t dt

where, again from [18], we know that f2(t) = (2t)−1f1(t). Moreover, in order
to further justify this fact, we could refer to the assumption in [14] according to
which the time between the price reaching the quote and the agent’s execution is
negligible. This is meaningful if the agent we are considering simply waits for his
order to get executed and doesn’t cancel it (while all other agents, seen as a whole,
can cancel their orders).

Other important quantities were studied by Cont et al. in [8] and [10]. These
are mostly conditional distributions of some random variables given the shape of
the book. For instance, the probability of making the spread (execution of two
orders placed one at the best ask and one at the best bid) before the mid-price
moves.

3.5 Conclusions

In this chapter we presented the main stochastic model for the LOB analysed in
this thesis: we assumed a constant spread, limit orders and cancellations driven
by a Poisson process and a power law and a full book structure. We considered
a virtual price process given initially by a Brownian motion. Then, we managed
to find a virtual price process matching the empirical density of the first passage
time. This entire framework allowed us to compute several quantities of interest.
However, there is room for future research: for instance, the main problem with this
framework is to find a balance between the discrete and the continuous settings.
In fact, the former allows a very nice description of partial executions but results
in very difficult formulae. On the other hand, the latter gives easier ways for
calculations but makes very difficult the modelling of partial executions. This
issue is partially addressed in the next chapter.
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Chapter 4

The local time approach

The modelling approach presented in this chapter involves again a virtual price
process determining orders executions. Unlike the previous models, however, the
LOB dynamics are now determined by downcrossings and executions. These as-
pects are more complex and harder to be analytically treated, but they are included
in this thesis because they represent a different approach to this type of stochastic
modelling of the LOB and could lead to more significant developments for future
research.

4.1 Modelling via downcrossings

Let us partially resume the models described in previous chapters, introducing
new dynamics for limit orders: from now on, the model outlined in this section
will be referred to as “Model-1”. As in section 3.1, consider a fixed grid for prices
{kτ}k∈Z, where τ > 0 is the tick size. We assume that at time 0 all levels have
one order except for level 0, in particular: levels in the grid greater than 0 have
one sell limit order, levels smaller than 0 have one buy limit order, while level 0 is
empty. Hence, at time 0, the best quotes are τ and −τ .

In this model the bid-ask spread is kept constant and equal to 2τ . Moreover,
to determine limit orders, let us introduce a virtual price process {St}t≥0 defined
as

St = σ Bt,

where σ > 0. The idea underlying the generation of limit orders is that they are
placed according to how long the process S is close to level 0. The goal is to
have continuos order arrivals (hence, a macroscopic point of view) and to link this
heuristic notion to the local time of a Brownian motion. Let us start from the
more intuitive scenario in which orders arrive discretely.

27
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Fix ε > 0. Define, for n ∈ N and t > 0,

τ0 ≡ 0

σn := inf{s ≥ τn−1 : |Bs| = ε/σ}
τn := inf{s ≥ σn : |Bs| = 0}

Dt(ε/σ) := sup{n ∈ N : τn ≤ t}.

Dt(ε/σ) represents the number of downcrossings of |S| from level ε to level 0
before time t. Model-1 assumes that orders can only be placed at the best quotes
and the number of orders arrived by time t is Dt(ε/σ). Moreover, we assume
that the only volume size available is ε/σ. Hence, for all times t before the first
mid-price change, the volume of orders placed at the best quotes is

V ε
A(t) = V ε

B(t) = 1 +
ε

σ
Dt(ε/σ),

where V ε
A and V ε

B describe the ask and bid sides respectively. When ε ↓ 0 the order
size becomes smaller and smaller but, at the same time, more and more orders
arrive since more and more downcrossings are considered.

Intuitively, the virtual price process before the first mid-price change lies be-
tween the best quotes and limit orders are placed according to how much time
it spends close to the actual mid-price (this is the idea behind the definition of
local times). In fact, for a fixed ε > 0, when |S| touches 0 an order is placed if
that is a downcrossing. In the limit ε ↓ 0, orders are placed at all hitting times,
with a smaller and smaller size to avoid volume explosion. Therefore, we can use
a well-established result for local times (see for instance [22], Chapter XII) and
state that for all t > 0

lim
ε↓0

ε

σ
Dt(ε/σ) = L0

t a.s.

In order to analyse executions and cancellations, Model-1 splits into total and
partial executions that are discussed in the following subsections.

4.1.1 Total executions

The first and most basic way to model executions is assuming that all orders placed
at one of the best quotes are executed when the virtual price process S hits one
of the two barriers τ or −τ . This happens either at time Tτ/σ or at time T−τ/σ.

Assume that S hits τ first: then the new best ask becomes 2τ while the new
best bid is 0 and the new volumes are both one. In fact, in order to keep the
spread equal to 2τ , a new buy limit order is placed right after the execution at
level 0 (as we explained in section 3.1). This is meaningful because it implies
that a buy market order makes the mid-price move upwards. In addition, the new
limit order may be placed to get time priority. Note that at level −τ we still have
1 + ε

σ
DTτ (ε/σ) orders in the discrete setting or 1 + L0

Tτ
in the continuous one.
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4.1.2 Partial executions

In order to make Model-1 more realistic, we have to allow for partial executions.
This is very important to compute relevant quantities needed in practice. In this
new setting, when S hits level τ or −τ , not all orders are executed but just some
of them. The idea here is to have reflexive barriers at the best quotes and market
orders (just like cancellations) are placed in the same way we used for limit orders.

To understand these dynamics, let us initially consider the discrete setting. Fix
ε > 0: the number of buy market orders and cancellations (since there is actually
no difference for our present purposes) in the ask side is given by the downcrossings
of |τ − St| from level ε to level 0. So we can just repeat what we have previously
done and define, for the ask side,

τA0 ≡ 0

σAn := inf{s ≥ τAn−1 : |τ/σ −Bs| = ε/σ}
τAn := inf{s ≥ σAn : |τ/σ −Bs| = 0}

DA
t (ε/σ) := sup{n ∈ N : τAn ≤ t}.

Therefore, for all times t before the first change in the mid-price, the number of
orders at the best ask is

V ε
A(t) =

[
1 +

ε

σ
Dt(ε/σ)− ε

σ
DA
t (ε/σ)

]+

where we assume that for fixed ε > 0 the volume of market orders or cancellations
can only be ε/σ. The extension to the continuous case relies on the result (see
[22], Chapter XII)

lim
ε↓0

ε

σ
DA
t (ε/σ) = L

τ/σ
t a.s.

for all t > 0. Hence, when ε ↓ 0, for all times t before the first change in the
mid-price, the number of orders at the best ask is

VA(t) =
[
1 + L0

t − L
τ/σ
t

]+

.

Similarly, for the bid side, we have

τB0 ≡ 0

σBn := inf{s ≥ τBn−1 : |τ/σ +Bs| = ε/σ}
τBn := inf{s ≥ σBn : |τ/σ +Bs| = 0}

DB
t (ε/σ) := sup{n ∈ N : τBn ≤ t}

and, for all times t before the first change in the mid-price, the number of orders
at the best bid is

V ε
B(t) =

[
1 +

ε

σ
Dt(ε/σ)− ε

σ
DB
t (ε/σ)

]+
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where we assume again that for fixed ε > 0 the volume of market orders or can-
cellations can only be ε/σ. We can then use the following result for the extension
to the continuous case:

lim
ε↓0

ε

σ
DB
t (ε/σ) = L

−τ/σ
t a.s.

for all t > 0. So, taking the limit ε ↓ 0, for all times t before the first change in
the mid-price, the number of orders at the best bid is

VB(t) =
[
1 + L0

t − L
−τ/σ
t

]+

.

It is important to notice that the first change in the mid-price happens when
either V ε

A or V ε
B hit 0 in the discrete scenario or when either VA or VB hit 0 in the

continuous scenario.

4.2 Modelling via excursions

Another possible way to model the order book is described in this section. This
framework is equal to Model-1 for the price grid, the spread and the starting shape
and we will refer to it as “Model-2”.

Consider two stochastic processes: the usual virtual price S1, that lives between
the quotes, to determine market orders and cancellations. Then we will use an
additional process S2, called auxiliary, that regulates limit orders. More precisely,
for t > 0,

S1
t = σ1B

1
t

S2
t = σ2B

2
t

where σ1 and σ2 are positive constants, while B1 and B2 are independent Brownian
motions.

Let us now consider limit orders in the discrete case and fix ε > 0. Unlike
Model-1, in Model-2 the only order size allowed is√

πε

2σ2

.

The number of orders placed is instead related to the excursion processes and
this is the main reason why we have to use two Brownian motions. In Appendix
B a brief overview of the topic is given, but refer to [22], Chapter XII for a more
detailed explanation. In what follows we use the notation introduced in Appendix
B.

In our framework, i.e. Model-2, the number of orders arrived up to time t
before the first price move, is given by ηt(ε/σ2) (i.e. the number of excursions with
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duration bigger than ε). Hence, for the discrete case, the volume of limit orders
placed at the best quotes is

V ε
A(t) = V ε

B(t) = 1 +

√
πε

2σ2

ηt(ε/σ2)

where η is here related to B2. With these assumptions, the convergence to the
continuous setting is easily given by the following result:

lim
ε↓0

√
πε

2
ηt(ε) = L0

t a.s.

where L0
t is the local time of B2 at level 0. So, as ε ↓ 0 the number of limit orders

placed at the best quotes is

VA(t) = VB(t) = 1 + L0
t .

The interesting part of this approximation in the discrete case is that, as it is
observed in Appendix B,

ηt(ε/σ) = N
ε/σ2
L0
t

=
∑
s≤t

I[ε/σ2,∞[(R(es))

which is a Poisson process (evaluated at a local time) and this gives an immediate
intuitive interpretation of this quantity. Moreover, we can explicitly calculate the
intensity of this Poisson process using the characteristic measure of the Poisson
point process R(es). Namely, we have that the intensity is

n̄(]ε/σ2,∞[) =

(
2σ2

πε

)1/2

.

Note that as ε decreases, the intensity increases and this is the behaviour we would
expect from Model-2.

Similarly to what was done for Model-1, we can define market orders and
cancellations in two ways that are discussed in what follows.

4.2.1 Total executions

The framework to model executions and cancellations is built exactly in same way
developed in Model-1. Here we use S1 as virtual price process and repeat what we
observed in Subsection 4.1.1.

4.2.2 Partial executions

Again, for partial executions in Model-2 we have analogous considerations to those
made in Subsection 4.1.2 using S1 as virtual price process, but this time with
excursions instead of downcrossings.
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4.3 Quantities of interest

Given the previous definitions of Model-1 and Model-2, we can compute some of
the quantities already studied in Section 3.4. Here we simply state the problems
without solving all of them in depth, as they would require a much wider analysis,
beyond the effort of this work.

Actually, if we consider Model-2 in these problems, nothing really changes. We
just have to rewrite the same considerations done for Model-1 with the proper
processes S1 and S2 and with η instead of D. Hence, we will only study Model-1
in what follows.

4.3.1 Duration of price moves

Let us start with the conditional distribution of the duration between price moves,
given the shape of the book. For simplicity, consider the known shape we have at
time 0.

Assume Model-1 under total executions: then the stopping time of the first
price move is given by T = Tτ/σ ∨ T−τ/σ and, therefore, its distribution is, for
u > 0

P [T > u] = P [Tτ/σ > u, T−τ/σ > u] = 2P [Tτ/σ > u]

which is a well-known quantity. It is the same both for the discrete and the
continuous cases.

If we allow for partial executions in Model-1, we need to define some more
objects. In the discrete setting, for a fixed ε > 0, set

TA,ε := inf{t ≥ 0 : V ε
A(t) = 0}

= inf

{
t ≥ 0 :

(
1 +

ε

σ

[
Dt(ε/σ)−DA

t (ε/σ)
])+

= 0

}
TB,ε := inf{t ≥ 0 : V ε

B(t) = 0}

= inf

{
t ≥ 0 :

(
1 +

ε

σ

[
Dt(ε/σ)−DB

t (ε/σ)
])+

= 0

}
T ε := TA,ε ∨ TB,ε.

We are therefore interested in the distribution of T ε which seems to be quite
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difficult to study. The generalisation to the continuous scenario is straightforward:

TA := inf{t ≥ 0 : VA(t) = 0}

= inf

{
t ≥ 0 :

(
1 + L0

t − L
τ/σ
t

)+

= 0

}
TB := inf{t ≥ 0 : VB(t) = 0}

= inf

{
t ≥ 0 :

(
1 + L0

t − L
−τ/σ
t

)+

= 0

}
T := TA ∨ TB.

4.3.2 Mid-price increase

The conditional probability of a mid-price increase given the shape of the book is
investigated in this section. In Model-1 with total executions, this quantity doesn’t
depend on the shape of the book and can be written, both for the discrete and
continuous cases, as

P [mid-price increase] = P [Tτ/σ < T−τ/σ ]

=
τ

σ
√

2π

∫ ∞
0

t−3/2

∞∑
n=−∞

(4n+ 1) exp

{
−(4n+ 1)2τ 2

2tσ2

}
dt,

(4.1)

where the last equality follows from a well-established result (see [18], Chapter II).
If we allow for partial executions, then, recalling the notation previously intro-

duced, we have
P [mid-price increase] = P [TA,ε < TB,ε ]

in the discrete scenario. In the limit ε ↓ 0:

P [mid-price increase] = P [TA < TB ].

These last two quantities can be computed like in formula (4.1).

4.3.3 Order execution before mid-price moves

The conditional probability of executing an order placed at the best quote before
the mid-price moves, given the shape of the book, is very easy to write for Model-1
with total executions. In fact, thanks to the framework of that model, we can write
such probability as

P [Tτ/σ < T−τ/σ ],

in the case of a sell limit order for instance (see formula (4.1) for the computation).
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If we allow for partial executions, things are a bit more complex. The idea
is that we assume that at time 0 we have volume a at the best ask and volume
b at the best bid. Then we place a sell limit order of volume x at the best ask
(analogous considerations can be done for the bid side): we want to compute the
probability that our order gets executed before the mid-price moves. Define

TA,εa,x := inf
{
t ≥ 0 : a+ x ≤ ε

σ
DA
t (ε/σ)

}
TA,εa+x := inf

{
t ≥ 0 :

(
a+ x+

ε

σ

[
Dt(ε/σ)−DA

t (ε/σ)
])+

= 0

}
TB,εb := inf

{
t ≥ 0 :

(
b+

ε

σ

[
Dt(ε/σ)−DB

t (ε/σ)
])+

= 0

}
T εa,b,x := TA,εa+x ∨ T

B,ε
b .

The interpretation of these objects is the following. TA,εa,x is the time in which our

order gets executed. TA,εa+x is the first time when the orders volume at the best ask

is 0 starting with a + x orders. TB,εb is the first time when the orders volume at
the best bid is 0 starting with b orders. So T εa,b,x is simply the time in which the
mid-price moves. Hence, the required quantity can be written as

P
[
TA,εa,x < T εa,b,x

]
.

In the continuous scenario, we just have to define the analogous quantities

TAa,x := inf
{
t ≥ 0 : a+ x ≤ L

τ/σ
t

}
TAa+x := inf

{
t ≥ 0 :

(
a+ x+ L0

t − L
τ/σ
t

)+

= 0

}
TBb := inf

{
t ≥ 0 :

(
b+ L0

t − L
−τ/σ
t

)+

= 0

}
Ta,b,x := TAa+x ∨ TBb .

that have analogous interpretations. Finally, the probability to be studied is

P
[
TAa,x < Ta,b,x

]
.

4.4 Linking the models

In this section we show how Model-1 and Model-2 can be linked. In fact, we know
the limiting behaviour of D and η and used it in the analysis of the continuous
case. On the other hand, in the discrete scenario, we can approximate D using η:
this would introduce the idea of a Poisson process in Model-1, which can become
useful for future research.
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For ε small enough we can write this approximation:

ε

σ
Dt(ε/σ) ≈

√
πε

2σ
ηt(ε/σ) =

√
πε

2σ
N
ε/σ

L0
t

and therefore

Dt(ε/σ) ≈
√
πσ

2ε
N
ε/σ

L0
t
.

This means that, for ε small enough, D can be approximated by a scaled Poisson
process with intensity (

2σ

πε

)1/2

evaluated at the local time.
Similarly, the other quantities DA and DB can be approximated by the same

scaled Poisson process (with the same intensity) evaluated at the local time at
different levels

DA
t (ε/σ) ≈

√
πσ

2ε
N
ε/σ

L
τ/σ
t

DB
t (ε/σ) ≈

√
πσ

2ε
N
ε/σ

L
−τ/σ
t

.

4.5 Conclusions

In this chapter we presented a more complex model compared to the previous
ones, as it involves deep mathematical objects: downcrossings and excursions of
a Brownian motion. Even if, given the scope of this work, we didn’t have the
resources to accurately study the quantities of interest, it is important to include
the models of this chapter. In fact, they provide the future research with interesting
tools to study partial and total executions using the theory of local times.
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Chapter 5

Conclusions

This thesis aims at outlining a new approach to the study of market microstructure,
based on a virtual price process that determines the orders’ dynamics. Several
models with different features and complexity levels are presented in order to
compute some quantities of interest and to provide an additional point of view in
the existing literature of the LOB modelling.

In Chapter 1 we presented the avalanche approach, where orders in the LOB
accumulate on some levels and get executed when the virtual price process crosses
such values. This framework involved the theory of the local time of a Brownian
motion and allowed us to compute some relevant distributions.

In Chapter 2 we outline the main stochastic model for the LOB analysed in this
thesis, using also a Poisson process for incoming orders and cancellations. This
framework features a constant bid-ask spread, limit orders and cancellations driven
by a Poisson process and a power law and a full book structure. We also managed
to match the empirical density of the first passage time of the price process at a
given barrier.

In Chapter 3, two more complex models are proposed using downcrossings and
excursions of a Brownian motion. They provide useful tools to study partial and
total executions in these frameworks.

The models described in this work can be studied more widely in many direc-
tions. Sell and buy orders should be allowed to arrive at different times. What
happens after the first execution could be investigated, together with volatility
and autocorrelations of prices. Moreover, the possibility of placing limit orders
not only at the best quotes but also at different price levels should be considered.

In addition to the quantities already presented, the probability of making the
spread could be studied, i.e. the probability of executing two orders, one at the
ask and one at the bid, before the mid-price moves. Finally, also the long-term
behaviour and the optimal strategies represent interesting areas for development.

Finally, it is important to stress once more that this work intends to be an
overview of possible new ways to model the LOB with the tools provided by the

37
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stochastic analysis. Given the scope of this thesis, we could not study in depth all
possible issues of this complex and articulated subject. However, this work could
represent an interesting first step for a prolific future research in the modelling of
market microstructure.



Appendices

39





Appendix A

The sojourn problem

A.1 Kac’s method

In this section we present an overview of one of M. Kac’s results in [17]. The
calculation of distribution functions σ, defined as

σ(a, t) = P

(∫ t

0

V (Bτ ) dτ < a

)
, (A.1)

for a ∈ [0, t] and a function V : R→ R, can be reduced to solving an appropriate
differential equation. Let us restrict to the case

0 6 V (x) 6M ∀x ∈ R

for a positive constant M . For n ∈ N, define the functions Qn : R× R+ → R+ as
follows

Q0(x, t) =
1√
2πt

e−
x2

2t (A.2)

Qn+1(x, t) =

∫ t

0

∫ +∞

−∞

e
−(x−ξ)2
2(t−τ)√

2π(t− τ)
V (ξ)Qn(ξ, τ) dξ dτ . (A.3)

It can be checked that

µn = E

[(∫ t

0

V (Bτ ) dτ

)n]
= n!

∫ +∞

−∞
Qn(x, t) dx

and

0 6 Qn(x, t) 6
Mn

n!
tnQ0(x, t) .

Let now

Q(x, t, u) =
+∞∑
n=0

(−1)nunQn(x, t) (A.4)
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for u ∈ R. The series converges for all x and u in R and t 6= 0 and moreover

|Q(x, t, u)| < euMtQ0(x, t) .

Due to (A.2) and (A.3), we have

Q(x, t, u) +
u√
2π

∫ t

0

∫ +∞

−∞

e
−(x−ξ)2
2(t−τ)

√
t− τ

V (ξ)Q(ξ, τ, u) dξ dτ = Q0(x, t) . (A.5)

It is clear that

E
[
e−u

∫ t
0 V (Bτ ) dτ

]
=

∫ +∞

−∞
Q(x, t, u) dx ,

and since V is positive it follows that Q(x, t, u) is a decreasing function of u. In
particular,

Q(x, t, u) 6 Q0(x, t)

and thus the Laplace transform

Ψ(x, s, u) =

∫ +∞

0

e−stQ(x, t, u) dt , (A.6)

where s > 0, exists.
If we take the Laplace transform on both sides of equation (A.5), we obtain

Ψ(x, s, u) +
u√
2s

∫ +∞

−∞
e−
√

2s|x−ξ| V (ξ) Ψ(ξ, s, u) dξ =
e−
√

2s|x|
√

2s
. (A.7)

The integral equation (A.7) is equivalent to the differential equation (where deriva-
tives are taken with respect to x)

1

2
Ψ′′ − [s+ uV (x)]Ψ = 0 (A.8)

and the conditions

Ψ→ 0 as x→ ±∞ (A.9)

Ψ′ continuous except at x = 0

Ψ′(0−)−Ψ′(0+) = 2 .

This is the procedure outlined by M. Kac for calculating distributions of type
(A.1). Let us apply it to the case

V (x) = I[0,+∞](x) .
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We obtain

Ψ(x) =

√
2√

s+ u+
√
s
e
√

2s x x < 0 (A.10)

Ψ(x) =

√
2√

s+ u+
√
s
e−
√

2(s+u)x x > 0 (A.11)

Thus,

1√
s(s+ u)

=

∫ +∞

−∞
Ψ(x, s, u) dx =

∫ +∞

−∞

∫ +∞

0

e−stQ(x, t, u) dt dx

=

∫ +∞

0

e−st
∫ +∞

0

e−ua daσ(a, t) dt .

Inverting with respect to s and u we obtain

σ(a, t) =
2

π
arcsin

√
a

t
.

The good part of this peculiar case is that we can invert analytically the double
Laplace transform.

A.2 Application of Kac’s method

Let us consider the function V = I[b,c], where 0 < b < c < +∞, and use Kac’s
method in Appendix A to find the distribution σ. Solving the ODE (A.8) and ap-
plying condition (A.9), we get, after a quick study of the characteristic polynomial,
(only the dependence on x is explicit)

Ψ(x) =


C1 e

αx if x < 0

C2 e
αx + C3e

−αx if x ∈ [0, b)

C4 e
βx + C5e

−βx if x ∈ [b, c]

C6 e
−αx if x > c

(A.12)

where α =
√

2s, β =
√

2(s+ u) and for some unknown constants Ci, i = 1, . . . , 6.
In order to calculate these constants we should apply the conditions already out-
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lined:

Ψ(0−) = Ψ(0+) (A.13)

Ψ′(0−)−Ψ′(0+) = 2 (A.14)

lim
x→b+

Ψ(x) = lim
x→b−

Ψ(x) (A.15)

lim
x→c+

Ψ(x) = lim
x→c−

Ψ(x) (A.16)

lim
x→b+

Ψ′(x) = lim
x→b−

Ψ′(x) (A.17)

lim
x→c+

Ψ′(x) = lim
x→c−

Ψ′(x) . (A.18)

In particular, note that condition (A.13) is imposed thanks to the continuity of Ψ
in 0: this is ensured by its definition, i.e. by (A.2), (A.3), (A.4) and (A.6). Hence,
we have six equations for six unknowns. Conditions (A.13) - (A.18) lead to the
following system of equations for Ci’s:

C1 − C2 − C3 = 0 (A.19)

C1 − C2 + C3 =
2

α
(A.20)

C2 e
αb + C3 e

−αb − C4 e
βb − C5 e

−βb = 0 (A.21)

C2 αe
αb − C3 αe

−αb − C4 βe
βb + C5 βe

−βb = 0 (A.22)

C4 e
βc + C5 e

−βc − C6 e
−αc = 0 (A.23)

C4 βe
βc − C5 βe

−βc + C6 αe
−αc = 0 . (A.24)

Subtract (A.19) from (A.20) to obtain

C3 =
1

α
(A.25)

C1 − C2 =
1

α
. (A.26)

Substitute (A.25) and (A.26) in (A.21):

C1 =
1

α
(1− e−2αb) + e(β−α)bC4 + e−(α+β)bC5. (A.27)

Hence:

C2 = − 1

α
e−2αb + e(β−α)bC4 + e−(α+β)bC5. (A.28)

Now substitute (A.25) and (A.28) in (A.22). This gives

C4 =
2

α− β
e−(α+β)b − α + β

α− β
e−2βbC5. (A.29)
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Replacing (A.29) in (A.23), we get

C5 =
e−αcC6 − 2

α−βe
−(α+β)b+βc

e−βc − α+β
α−β e

−2βb+βc
(A.30)

Now insert (A.30) in (A.29) to find

C4 =
2

α− β
e−(α+β)b −

e−αcC6 − 2
α−βe

−(α+β)b+βc

α−β
α+β

e2βb−βc − eβc
. (A.31)

Finally, in order to find an explicit expression for C6, substitute (A.30) and (A.31)
in (A.24). After some easy calculations, we obtain

C6 =
4β

β − α
e−(α+β)b+(α+β)c q(q2 − 1)

(q2 + 2q + 2)[(α− β)q − (α + β)]
(A.32)

where

q =
α− β
α + β

e2βb−2βc. (A.33)

Formulas (A.25), (A.27), (A.28), (A.30), (A.31) and (A.32) together with (A.12)
give us the solution Ψ of the integral equation (A.7) in the case V = I[b,c], where
0 < b < c < +∞.

Let us check if these results are consistent with the arcsine law. In other
words, we need to prove that if the interval [b, c] covers R+, i.e. if b → 0+ and
c→ +∞, then the solution Ψ just found converges to (A.10) and (A.11). In terms
of equations, we have to show that

lim
b→0+,c→∞

C1 =
2

α + β
=

√
2√

s+ u+
√
s

lim
b→0+,c→∞

C4 = 0

lim
b→0+,c→∞

C5 =
2

α + β
=

√
2√

s+ u+
√
s
.

Now, it is easy to check that

lim
b→0+,c→∞

q = 0.

Therefore

lim
b→0+,c→∞

C6 = 0.
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Using (A.30) we can also see that

lim
b→0+,c→∞

C5 =
2

α + β

It is then easy to show that

lim
b→0+,c→∞

C4 = 0 lim
b→0+,c→∞

C2 = − 1

α
+

2

α + β

and finally

lim
b→0+,c→∞

C1 =
2

α + β
.



Appendix B

Excursions of a Brownian motion

Consider the canonical version of a Brownian motion: denote by W the Wiener
space, by P the Wiener measure and by F the Borel σ-field of W completed with
respect to P . For w ∈ W , set

R(w) = inf{t > 0 : w(t) = 0}

and call U the set of the functions w ∈ W such that 0 < R(w) <∞ and w(t) = 0
for every t ≥ R(w). The point δ is the function identically equal to zero. Set
Uδ = U ∪ {δ}, U as the σ-algebra generated by the coordinate mappings and
Uδ = U ∨ {δ}. Define also

τt(w) = inf{s > 0 : Ls > t}

where L is the local time of w at level 0.
The excursion process is the process e = (es, s > 0) defined on (W,F , P ) with

values in (Uδ,Uδ) by

1. if τs(w)− τs−(w) > 0, then es(w) is the map

r 7−→ I[r≤τs(w)−τs−(w)] Bτs−(w)+r(w);

2. if τs(w)− τs−(w) = 0, then es(w) = δ .

It is well known (see [22]) that e is a σ-discrete point process. It is actually
an (Fτt)-Poisson point process (PPP). Moreover, R(es(w)) is a PPP on R+ with
characteristic measure n̄ given by n̄(]x,∞[) = (2/πx)1/2.

Now, for a fixed ε > 0, let us call ηt(ε) the number of excursions with duration
bigger than ε (i.e. R(es) ≥ ε) which end at a time s ≤ t. If N is the counting
measure associated with the PPP R(es), then it is easy to see that ηt(ε) = N ε

Lt
,

where N ε
u = N

[ε,∞[
u .
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[4] Bouchaud, J.P.; Mezard, M. and Potters, M. (June 2002) Statistical Properties
of Stock Order Books: Empirical Results and Models. Science and Finance.
Capital Fund Management.

[5] Bouchaud, J.P. and Potters, M. (2003) More Statistical Properties of Order
Books and Price Impact. Physica A, 324, 133.

[6] Challet, D. and Stinchcombe, R. (2001). Analyzing and Modelling 1+1d Mar-
kets. Physica A 300, 285.

[7] Cohen, K.J.; Conroy, R.M. and Maier, S.F. (1985). Order Flow and the Quality
of the Market: Market Making and the Changing Structure of the Securities
Industry. Lexington Books, Lexington, MA.

[8] Cont, R. and De Lallard, A. (2012) Price Dynamics in a Marko-
vian Limit Order Market . Working paper series. Available at SSRN:
http://ssrn.com/abstract=1735338.

[9] Cont, R.; Kukanov, A. and Stoikov, S. (2012) The Price Impact of Order
Book Events. Journal of Financial Econometrics (2013). Available at SSRN:
http://ssrn.com/abstract=1712822.

[10] Cont, R.; Stoikov, S. and Talreja, R. (2008) A Stochastic Model for Order
Book Dynamics. Operations Research, Volume 58, 549-563.

49



50 BIBLIOGRAPHY

[11] Davis, M. and Pistorius, M. (2010) Quantification of Counterparty
Risk Via Bessel Bridges. Working paper series. Available at SSRN:
http://ssrn.com/abstract=1722604.

[12] Delattre, S.; Robert, C.Y. and Rosenbaum, M. (2013) Estimating the Efficient
Price from the Order Flow: a Brownian Cox Process Approach. Stochastic
Processes and Their Applications, 123 (7), 2603-2619.

[13] Domowitz, I. and Wang, J. (1994). Auctions as Algorithms. J. Econ. Dynamics
Control 18 , 29.

[14] Eisler, Z.; Kertész, J.; Lillo, F. and Mantegna, R. (2008) Diffusive Behaviour
and the Modeling of Characteristic Times in Limit Order Executions. Quanti-
tative Finance, Volume 9, Issue 5, 547-563.

[15] Eliezer, D. and Kogan, I. (1998). Scaling Laws for the Market Microstructure
of the Interdealer Broker Markets. Preprint cond.mat/9808240.

[16] Fusai, G. (2000). Corridor Options and Arc-Sine Law. Annals of Applied
Probability, 10(2), May 2000, 634-63.

[17] Kac, M. (1951). On Some Connections Between Probability Theory and Differ-
ential and Integral Equations. Proc. Second Berkeley Symp. on Math. Statist.
and Prob. (Univ. of Calif. Press), 189-215.

[18] Karatzas, I. and Shreve, S.E. (1998). Brownian Motion and Stochastic Calcu-
lus. Second Edition. Springer, New York.

[19] Lorenz, J. and Osterrieder, J. (2009). Simulation of a Limit Order Driven
Market. Journal of Trading, 4(1), 23-30.

[20] Maslov, S. (2000). Simple Model of a Limit Order Driven Market. Physica A
278, 571.

[21] Osterrieder, J. (2007). Arbitrage, the Limit Order Book and Market Mi-
crostructure Aspects in Financial Market Models. Ph.D. Thesis, ETH Zurich.
DISS. ETH Nr.17121.

[22] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion.
Third Edition. Springer, Berlin.

[23] Rosu, I. (2008). A Dynamic Model of the Limit Order Book. Review of Finan-
cial Studies, Vol. 22, pp. 4601-4641, 2009.

[24] Tang, L.H. and Tian, G.S. (1999). Reaction-Diffusion-Branching Models of
Stock Price Fluctuations. Physica A 264, 543.


