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Abstract

Using a two-sector model of production with potentially different capital shares
in each sector, I show that the evolution of the skill premium from 1970 to 2005
is consistent with skill-neutrality and even a mild unskill-bias of technological
change for plausible values of capital shares. The main channel of adjustment to
changes in labor supply is instead via the reallocation of capital. New investment
occurs predominantly in the skilled sector, to the detriment of the unskilled sector
of the economy. This result is shown both theoretically in a simple model and in
a quantitative exercise using data on the US economy.

Repeating the exercise with industry level data for the US reveals that there
has indeed been skill-biased technological change in a number of industries (such
as Business Activities and Health), while others have experienced skill neutral
and unskill-biased technological change (e.g. Agriculture). This difference in
results across industries is largely due to very different capital shares.

Finally, I look at the impact of the increasing importance of information and
communication technology (ICT) on the production function and the skill pre-
mium in each industry. I estimate a translog price function with skilled and un-
skilled labor, ICT capital and non-ICT capital as factors of production and find
that most industries exhibit ICT capital-skill complementarity. For most indus-
tries, technological progress has led to an increased use of both types of capital,
but the results on skill-biased technological change are as mixed as in chapter
two. ICT has affected the skill premium negatively in nearly two thirds of the

industries studied.



Introduction

The evolution of the skill premium in the US is a well documented fact. The
premium that a skilled worker can earn relative to an unskilled one has grown
by more than 20 % in the period from 1970 to 2005. At the same time, however,
the supply of skilled workers relative to unskilled workers has also increased,
making the rise in the skill premium a bit of a puzzle. Remarkably, the rise in
relative supply and relative wage has occurred in nearly all industries, though to
differing degrees.

The solution to this puzzle is often attributed to skill-biased technological
change (SBTC), technological progress that has enhanced the productivity of skilled
labor more than the productivity of unskilled labor. One possible manifestation
of this progress in technology is the rise in information and communication tech-
nologies (ICT).

In three essays, I check this solution to the puzzle against the data. First, I
simulate a fairly standard model of SBTC, but allow for an additional channel
of adjustment to changes in labor supply: the reallocation of capital investment
from the unskilled to the skilled sector. I find that there are plausible parameter
values for which this channel is strong enough to explain the evolution of the skill
premium without resorting to SBTC.

For the second essay, I look at twenty-two US industries separately. Ten of
these industries exhibit SBTC, twelve do not. Aggregating results to the sectoral
level, the primary sector clearly has not seen SBTC, whereas the manufacturing

and services sectors have, to varying degrees. For the most part, developments
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across industries have not been uniform, but for the subsample from 1990 on-
wards most of them have experienced some SBTC. As this is the period in which
ICT, in the form of computers, has come to be widely used, the next logical step
is to investigate the relationship between ICT and the skill premium.

Therefore, in the third essay, I estimate a translog production function, sep-
arately for each of twenty industries, to determine the role ICT capital plays in
the production function and in the evolution of the skill premium. I find that ICT
capital and skilled labor are complementary inputs in production for the major-
ity of industries. In most industries, technological progress has led to more use
of capital, both ICT and non-ICT, and to labor saving. The overall effect of ICT
capital on the skill premium is negative in fourteen of the twenty industries.

Taken together, my results suggest that the increase in the skill premium in
most industries and in the economy as a whole is only partly due to SBTC, if at
all. Shifts in capital investment, and mostly non-ICT capital investment at that,

also seem to be important.
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Chapter 1

The Skill-Bias of Technological
Change and the Evolution of the
Skill Premium in the US Since 1970

1.1 Introduction

From 1970 to 2005, the premium that a college educated worker can earn rela-
tive to a worker without a college degree has risen by more than 20% in the US,
even though the relative supply of college educated labor has also increased dur-
ing that time. This is commonly attributed to skill-biased technological change
(SBTC). I show that this rise in the skill premium! could also be the result of cap-
ital reallocation following the increase in the relative supply of skilled labor that
can be observed in the data. Technological change would be close to neutral in
that case, or biased towards the unskilled if anything.

Usually the line of reasoning to explain SBTC is as follows: the skill premium,
i.e. the relative price of college educated labor, has increased at the same time
as the relative supply of skilled labor. This is only possible if relative demand

for skilled labor has increased more than supply. The demand increase is then

I The terms “skill premium” and “college wage premium” are used interchangeably here. Both
refer to the relative price of college educated labor.
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attributed to technological progress that favors skilled workers - i.e. SBTC.

By allowing for different capital shares in the skilled and unskilled sector
of production, I open up an additional channel through which the demand for
skilled labor can adjust to the observed increase in supply. If the initial level of
capital in the skilled sector is low and the capital share of the skilled sector is
higher than that of the unskilled sector, a large reallocation of capital is triggered
by the increase in the relative supply of skilled labor, leading to an increase in pay-
ment to skilled labor relative to unskilled labor.? If the capital shares are different
enough, it is even possible that there is so much capital reallocation that techno-
logical progress must favor unskilled workers to explain the skill premium.

This mechanism is, in brief, the driver behind the main result of this paper. I
simulate a two-sector model like the one in Caselli (1999), focusing on the effect
of an increase of the relative supply of skilled labor on the evolution of the skill
premium. The effects of changes to the skill premium on the decision to become
skilled are not considered here, nor is the origin of the increase in relative supply.
With this model I answer the following: Given the relative supply of skilled labor
observed in the data, how must skilled and unskilled capital and skilled and
unskilled production efficiency have evolved to yield the skill premium we see
in the data? I find that if the difference between skilled and unskilled capital
shares is large, unskilled production efficiency must have grown at least as fast
as skilled production efficiency for the model to be consistent with the wage and
skill supply data. This would suggest that there was no ongoing SBTC in the
period under study.

The analysis cannot capture one-off technology shocks that may have oc-
curred prior to 1970, however. Thus, if changes in the skill premium and the skill
supply since 1970 are consequences of a single technology shock before 1970 that
affects skilled production efficiency more than unskilled production efficiency,

the shock would not be picked up. The conclusion would still be that SBTC has

2Caselli (1999) points out that a fall in the wages of low-skilled workers, which also leads to
an increase in the skill premium, can be explained by a fall in the capital they use.
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played a small role at most in the changes to the skill premium.

That SBTC might not be the best explanation for the increase in the skill pre-
mium has been pointed out before, e.g. by Card and DiNardo (2002), who show
that SBTC fails along several dimensions of the distribution of wages. Beaudry
and Green (2002) show empirically that capital can play an important role. Still,
the majority of previous work attributes the increase in the skill premium to
SBTC. In empirical, mostly labor oriented, studies (e.g. Goldin and Katz (2007),
Autor, Katz, and Kearney (2008), among others, Katz and Autor (1999) provide
an overview), the change in labor demand is usually represented by a time trend
that does not distinguish between changes in technology and changes in the allo-
cation of capital. These shifts of labor demand can explain much of the evolution
of the skill premium. While the shifts are usually attributed to SBTC, it is equally
plausible to interpret them as an increase in skilled capital relative to unskilled
capital.

In theoretical models capital is included explicitly, but either differentiated
along a different dimension than “use by skill level” (e.g. equipment and struc-
tures as in Krusell, Ohanian, Rios-Rull, and Violante (2000) and Greenwood, Her-
cowitz, and Krusell (1997), among others) or assuming identical production func-
tions for all sectors (Caselli (1999), Galor and Moav (2000), Acemoglu (2002a), and
others). While the latter is a common assumption, it is not a priori certain that it
should hold in this case. The sectors of production in my model are differenti-
ated with regard to the skill level of the workforce. It is thus plausible to assume
that the capital and labor intensities are different in these sectors. Dropping the
assumption of equal capital shares across sectors can lead to very different impli-
cations with respect to SBTC.

There are other explanations for the evolution of the skill premium: it could be
due to a decrease in the minimum wage, which affects mostly low-skilled work-
ers and hence increases the premium (Fortin and Lemieux (1997), and more re-

cently Barany (2011)), or to a decline in workers covered by unions, which in-
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creases the spread of wages paid (again, Fortin and Lemieux (1997), also men-
tioned in Gottschalk (1997)). One problem with the deunionization and mini-
mum wage explanations, though, is that the majority of the increase in the skill
premium is due to increases in wage inequality in the upper part of the wage
distribution (i.e. comparing the 90th wage decile to the 50th), while these expla-
nations mainly affect the lower end of the distribution (i.e. comparing the 50th
decile to the 10th; Acemoglu (2002b), Acemoglu and Autor (2010)). Barany (2011)
shows that a decrease in the minimum wage can have knock-on effects on the
upper part of the distribution, too, but the overall effect she finds is not large
enough to be the primary explanation.

Another possible explanation is an increase in trade openness, which leads
low-skilled production to move to other countries, reducing domestic demand
for low skilled workers (Johnson (1997), Topel (1997)). This explanation, while
appealing, cannot explain the timing of the increase (Acemoglu (2002b)) and the
overall effect is very small, as the US is not open enough to allow for a larger
effect. Burstein and Vogel (2010) find that international trade and multinational
production together explain about 1/9th of the change in the skill premium.

Finally, the complementarity of skilled labor and capital (most famously
Krusell, Ohanian, Rios-Rull, and Violante (2000)) is given as an explanation.
While Krusell, Ohanian, Rios-Rull, and Violante (2000) claim it can account for
virtually all of the change in the skill premium, Ruiz-Arranz (2003) finds that
when allowing for the possibility of skill-biased technological change, capital-
skill complementarity explains at most 40% of these changes. While my results
show that skill-biased technological change is not necessarily present, doubts on

the importance of capital-skill complementarity remain.

3The relevant measure of openness here is the share of imports in total GDP. Production that
has moved to other countries should raise imports, as the goods that were produced domestically
previously now have to be imported. The share of US imports in total GDP was 10.6% on average
over the period studied. While it rose from 5.4% in 1970 to 16.1% in 2005, this is still very low
compared to the EU27’s share of imports from outside the EU27 (excluding all intra-EU trade),
which was 32.5% on average between 1995 and 2005. (US data from the BEA, EU27 data from
Eurostat)
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Due to the assumption of different capital shares and the inclusion of an irre-
versibility constraint on capital investment, the model presented in section 1.2 is
too complex to allow the derivation of a closed form expression for the equilib-
rium path of skilled and unskilled capital. I will therefore show my main result
mathematically in a simplified version of the model in section 1.3 and then show
quantitatively that this result can also hold for the full model, even when match-
ing the model’s parameters to the US economy. Section 1.4 gives details of the
procedure and the derivation of these parameters, and the main results and ro-
bustness checks are presented in section 1.5. Section 1.6 concludes. Details on the

algorithm are relegated to the appendix.

1.2 The Model

1.2.1 Production Function

There are two types of production, skilled and unskilled, that are perfect sub-
stitutes in producing the final good. Each type of production is Cobb-Douglass.

Final output is given by:
1— _
Y= AgKE LY P+ AK] LY (1.2.1)

where s and u denote variables pertaining to skilled and unskilled production
respectively, K is capital used in each type of production and L is hours worked.
B is the skilled capital share, y the unskilled one. A is a measure of production
efficiency4, and the relative growth rates of skilled and unskilled production ef-
ficiency determine the bias of technological change. This model nests the case of
equal capital shares, but does not assume equality. In section 1.5 I look at the con-
sequences of relaxing the assumption of perfect substitutability between skilled

and unskilled production.

“Note that the A are not TFP: an increase in one of them would not lead to a parallel shift
outwards of the production possibilities frontier.
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Skilled production today includes pharmaceuticals and telecommunications
equipment, where new production processes and very sensitive materials are
handled by highly skilled workers. Examples of unskilled production are the
textile and apparel industries, or food industries. Workers with college degrees
are unlikely to be found on the floor of a meatpacking plant.

The production function can be normalized to output per hour worked
P Akl (1= )Y (1.2.2)

with ¢ € (0,1) the fraction of hours worked by skilled workers, for which there
is readily available data. In principle ¢ = 0 (only unskilled workers) and ¢ = 1
(only skilled workers) are possible, but as it is very unlikely that these extremes
ever occur in reality, I ignore them. Lower case letters are the per-hour-worked

equivalents to the elements of the final output production function.

1.2.2 Returns to Factors

The factors of production are paid their marginal products, so skilled wages are

wer = (1 B)Asskl o, P (1.2.3)
and the return to skilled capital is
rop = BAskE Tgp P (1.2.4)
and similarly for unskilled wages and return to capital. The skill premium is
given by

Wst _ 1_,8As,tkiﬁ,t QDt_ﬁ
Wit L=y Aurk), (1—@1)77

(1.2.5)

Wages are increasing in both production efficiency and capital. An increase in the

Y

skill premium then requires that As,tkf, ; grows faster than Au,fku,t/

even more so

17



as ¢ is increasing, too, which depresses the skill premium.

1.2.3 Irreversibility of Capital

The final good can be used for consumption or transformed into either type of
capital without cost. Once it has been transformed into one type of capital how-
ever, it cannot be changed into the other type, i.e. investment in either type of
capital is irreversible. Capital depreciates at a rate §;,j = s, u, that may or may
not be the same for both types of capital. The constraints can thus be written as
ki > (1 —65)ks and ki, > (1 — 3, )ky.

There are two reasons for including this constraint: it strengthens the cen-
tral result of this paper, and it is realistic. The main mechanism I propose as
an alternative to skill biased technological change works via a shift of new in-
vestment from unskilled capital to skilled capital as a consequence of an increase
in the share of skilled hours worked. If the level of unskilled capital is higher
than is optimal, there can be no reallocation of the existing unskilled capital to
the skilled sector, only a reallocation of new investment. This slows down the

shift of capital to the skilled sector. As the increase in the skill premium requires

Y
u,ts

As,tkg ; growing faster than A,k ,, this brake on the growth of skilled capital
means that skilled production efficiency must have grown faster than it would if
there were no irreversibility constraint. Hence, the constraints bias the results to-
wards concluding that there has been SBTC. If the results show an unskill bias of
technological change nonetheless, this result is more robust as one important and
realistic obstruction to the adjustment channel I propose is already accounted for.

The realism of irreversible investment has been observed before. Bertola
(1998) notes that the market for used capital is thin or non-existent in most cases,
as the capital used for a certain type of production is of no value outside of this
production. As the two types of production in my model are very different, it is

plausible that the capital used in one type of production is of no value in the other

type. This also implies that a skilled worker cannot learn how to use unskilled
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capital and vice versa. Caballero (1999) provides empirical evidence on accumu-
lation of capital that suggests the presence of an irreversibility constraint. In a
simulated RBC model, Coleman (1997) shows that introducing an irreversibility
constraint yields changes in the interest rate that better match the data than a
model without this constraint.

The constraint imposed is a very generic form of irreversibility, it simply pro-
vides a lower bound on the units of capital available in any given period. Similar
constraints have been used by Dixit (1995), Coleman (1997) and Bertola (1998).

There are other types of irreversibility, such as the vintage capital models used
by Jovanovic (1998) and Jovanovic and Yatsenko (2012), and the putty-clay mod-
els based on Johansen (1959). Both types assume that new investment can be
made in any type of capital, but once the investment is made, the installed capital
is fixed in the sense that there is no technological progress that could improve
existing capital. In vintage capital models, investment in new capital will always
be in the latest vintage. An additional feature of putty-clay models is that the
production function of each unit of installed capital becomes Leontieff, i.e. the
amount of labor that can work with each unit of this capital is fixed. Putty-clay
models were revived by Kehoe and Atkeson (1999) and Gilchrist and Williams
(2000), who find that these models yield better predictions of the behavior of
output and employment following a shock than the neoclassical model (without
irreversibility).

These ways of modeling irreversibility are not useful for the purposes of this
paper, however. As Bliss (1968) points out, technological progress in these models
is fully embedded in new capital. This is counterproductive when trying to iso-
late the path of technological progress from aggregate data. It is also not wholly
realistic, as innovation can take the form of an improvement of existing capital
(an easy example would be a free software upgrade). This could not be captured
via putty-clay and vintage models of capital. For the same reason, the assump-

tion of an ex-post Leontieff production function for installed capital is unrealistic.
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Innovations to existing capital can lead to changes in the units of labor required
(again, software upgrades are a useful example: an improved version of the same
software may mean work can now be done more efficiently by one person that

was previously done by two).

1.2.4 Households

There is a mass one of identical households, each with a measure one of members
who share all risks and income. Each household member inelastically provides
one unit of labor. Households’ per-period utility function is logarithmic and they
discount the future with factor p. I check the robustness of my results to the choice
of utility function later on.

A share ¢; of members of each household is skilled each period. At the begin-
ning of each period, unskilled members of the household can choose to become
skilled®, then production occurs, incomes are earned, and investment decisions
for the following period are taken. Each investor decides on their investment
taking everyone else’s decision on investment and the relative supply of skills as
given.

The decision to become skilled or remain unskilled is not modeled explicitly,
as I am not interested in the reasons determining skill acquisition, but only need
to know the resulting relative skill supply. I can observe this relative skill supply
in the data. Any explicit model of skill acquisition decisions would need to match
this data and thus not affect the main results of this paper, therefore I simply use

the data directly and treat labor supply as given.

5Only unskilled household members take this decision, as an education generally cannot be
undone. This does not matter here, as the share of skilled labor is monotonously increasing over
the period of interest. If this were not the case, each household member would need to have a
finite lifespan and be replaced by a new, unskilled, member who could then decide not to become
skilled.
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1.2.5 Equilibrium

Households maximize lifetime utility subject to the resource constraint and the
irreversibility constraints on investment. The model is in discrete time, each unit

of time corresponding to a year.®

MAX (kb U = ;)Ptlﬂ(q) (1.2.6)

st cr kg1 Fhyr1 < Yelkse kut) + (1 —0s)kst + (1 —0u)kur VE>0
kj,t+1 > (1 — 5])k],t Vt>0, jEsu
kj,t+1 >0 vVt > —1, ] €Ss,u

kso, kuo given

Households know their future paths of labor supply and the evolution of produc-
tion efficiency, there is no uncertainty in the model.

In equilibrium, the following first order conditions must hold:

1 1
— iy =p——(1 =8 +rj 1) + Pt 1 (1 — 6 127
o Hijt pCt+1( j ],t+l) P,”],Hl( ]) ( )

where j = s, u and p;; is the Lagrange multiplier on the irreversibility constraint
for capital of type j at time .
As long as the irreversibility constraint is not binding, the rates of return on

both types of capital are equal and determine consumption growth.

Ct+1

o = 0(Fspr1 —0s +1) = p(rypq1 —6u +1) (1.2.8)

Whenever the constraint becomes binding for one type of capital, consump-
tion growth is determined by the rate of return to that type of capital for which

the constraint is not binding.

To improve readability, the index denoting households is suppressed.
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1.2.6 Balanced Growth Path

Let g be the growth rate of output on the balanced growth path, and let gs and g,

be the BGP growth rates of As and A,, respectively.

Proposition 1. If § = ﬁg‘s = ﬁg‘u, 0 < @ < 1is constant and the irreversibility
constraint is not binding, then there exists a Balanced Growth Path on which y, c, ks and

k. grow at constant rates.

Proof. The proof proceeds in three steps: first, I use the Euler equation to establish
the relationship between the production efficiency and capital growth rates of
each type of production. Next, I derive the growth rate of total output and finally
I show that for the economy to be on the BGP the above equality has to hold.

Starting from the Euler equation
1+ gc = p(BAKE 9" P +1-5)) = p(y Akl (1 — )" +1-6,), (129

I'look at the change in the growth rate of consumption g. from one period to the
next, keeping in mind that Js, 6, p are constants, and that ¢ is also constant on

the BGP:

1+gl _ PAKE QP15 ALK (- @) T +1- 4,

= 5 — (1.2.10)
L+8  BAK @l P+1-06, Ak (1—9@)l=7+1-4,

BGP requires that %i—gé =1,s0(1.2.10) leads to

BAUKL g1 = BAKET g1 P (1.2.11)
and further to
T4+gs = (14g)" P (1.2.12)
The same process yields

1+ gu=(1+gu)' " (1.2.13)
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The growth rate of total output is simply

Y’ (1 +gys)Ys + (1 +gyu)Yu
BV 1 = . [N
y 78 YAy, (12.14)
The growth rate of skilled output in turn is
T+ gys = (1485) (14 8ks)P = 1+ g, (1.2.15)

making use of (1.2.12) in the second equality, and similarly for the growth rate of
unskilled output, making use of (1.2.13).

Next, using the fact that on the BGP 11’% = 1 together with (1.2.15) and the
equivalent equation for unskilled output and capital, it can be shown that g;s =
Qky- Plugging this result back into (1.2.14) yields 1+ 3 = 1+ g = 1+ Sk
Using (1.2.12) and (1.2.13) and approximating by taking logs yields the conditions

stated. O]

Note that the condition is an approximation only in the discrete case. It holds
exactly in continuous time. This result, excepting the irreversibility constraint, is
also used in Caselli and Coleman (2001).

The condition of a constant share of skilled hours worked must always hold
on a balanced growth path. If ¢ were growing at a constant rate on the balanced
growth path, as ¢ — 1, w, — oo, providing an incentive for some individuals
to remain unskilled and thus stopping the growth in skilled hours worked. This
would be inconsistent with a constant growth rate. For the same reason, ¢ cannot
be growing at a negative constant rate on the balanced growth path.

As there will always be an incentive for someone to become skilled if ¢ goes to
zero and to remain unskilled if ¢ approaches one, the corner cases of only skilled
and only unskilled labor can only occur as a consequence of a discrete jump. Such
a jump is extremely unlikely to occur.

The irreversibility constraint on investment cannot be binding on the balanced

growth path. If the constraint were binding on investment in unskilled capital,
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for example, k, would decrease at rate J,,. This would raise the rate of return on
unskilled capital, r,. At some point, r, > r; would be reached, at which point
investment in k, is worthwhile again. Thus, a binding irreversibility constraint
on investment in unskilled capital cannot be part of a balanced growth path. Fol-
lowing the same reasoning on ks leads to the conclusion that the irreversibility
constraint cannot be binding for skilled capital on the balanced growth path ei-
ther. A binding irreversibility constraint on both types of capital at the same time
would lead to a decline in total capital and is equivalent to a binding irreversibil-
ity constraint in a one sector economy. Sargent (1980) and Olson (1989) show that
this is not possible on the BGP.

In order to assess local stability of the BGP consider, without loss of generality,
a one time shock to k;. A negative shock will cause the level of skilled capital to
fall below its BGP level. This leads to an increase of r; relative to r,, leading to
more investment in ks and thus a growth rate of skilled capital above the BGP
growth rate. Eventually, the difference between the rates of return disappears
and the two types of capital grow at constant rates again. If there is a positive
shock, ks will rise above its BGP level. r; falls below r, and investment in kg
slows or even ceases altogether if the irreversibility constraint becomes binding.
This will continue until the rates of return equalize and both types of capital grow

at constant rates again.

1.3 An Illustration of the Central Mechanism

To illustrate the channel through which a higher share of skilled labor can lead to
an increase in the skill premium, I use a simplified version of the model to show
the main result analytically: An increase in the skill premium can be consistent
with an increase in relative labor supply even absent any bias in technological

change.
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1.3.1 The Simplified Model

The economy is now a one period, two sector economy, with one sector skilled
and the other one unskilled. There is no irreversibility constraint and no intertem-
poral problem. An endowment of total capital K is given exogenously, as are the
levels of production efficiency. The only decision to be taken in this economy
is how to allocate this endowment of total capital between skilled and unskilled
capital.

Of particular interest is a comparative statics analysis of what happens to the
equilibrium skill premium when there is an infinitesimal change in the relative

supply of skilled labor, i.e. if ¢ increases.

1.3.2 The Main Result

Let % be the initial equilibrium share of skilled capital in the economy.
Proposition 2. Iff B > v and ¢ > k:(ﬁ—z(pk) or B < yand ¢ < k:(ﬁ’kw, then
()

d(¢)

> 0.

Proof. First, find the total differential of the skill premium with respect to skilled

labor share. This differential will be greater than zero iff

B L dk B B
(Bt + vk, 1)d—qf > B t+y(1—g) ! (1.3.1)

Finding the total differential of skilled capital with respect to the skilled labor

share and plugging into the inequality above yields

Bl—k'(1—) ' +7(1-B)k 97" > Bl =1k o +7(1- Bk (1—9) 7.
(13.2)

This can be simplified further to
BA-—1('1—9) " —kle™) > y(1- B (1—) 7' —k'9™") (13.3)

25



which is true whenever the conditions stated in the proposition hold. O

The first set of conditions states that it is possible to observe an increase in the
skill premium following an increase in the relative supply of skilled labor, if the
skilled sector is more capital intensive but its equilibrium share of capital is lower
than its share of labor. This suggests that the increase in the skill premium with an
increase in the relative supply of skilled labor is more likely if the skilled sector is
small initially, where the indicator of sector size is the share of capital in the sector
relative to total capital in the economy. As capital is used more intensively in the
skilled sector (which is what the first condition tells us), a lower level of capital
can produce a lot of output. When the availability of the other input increases,
however, it becomes desirable to substantially increase capital as well.

The second set of conditions reverses the inequality signs and the intuition
behind it: now, if the less capital intensive sector (the skilled sector now) sees an
increase in labor, the large share of skilled capital in total capital increases further.
This is because the more labor intensive sector now gets more of the production
factor it uses more intensively anyway, making it optimal to also give it more of

the less-intensively used factor.
(%)
d(p)
ex ante thus automatically leads to the conclusion that skill demand must have

Note that if B = 7, > 0 is impossible. Assuming equal capital shares

increased due to SBTC.

1.3.3 Relationship to Specific Factors Model

The simple model described here is a version of the specific factors model well-
known in the trade literature (see Jones (1971)). Here, the specific factors are
skilled and unskilled labor, and capital is the common factor.

Note that having B > 7 means that production in the skilled sector is more
capital intensive than in the unskilled sector. One result for specific factor models
is that if the amount available of the factor specific to a sector increases, this leads

to a more than one-for-one increase in the common factor used in this sector in
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equilibrium. In my version this result means that an increase in the amount of
skilled labor leads to a more than one-for-one increase in skilled capital in equi-
librium, as each additional worker will be able to use capital more efficiently than
in the other sector, providing higher returns to the owner of capital. By analogous
reasoning, if the amount of unskilled labor decreases, this leads to a more than
one-for-one decrease in unskilled capital. If the initial equilibrium level of skilled
capital is low enough, the reallocation of capital will be so large as to overcome

the downward pressure on the skill premium due to the increase in skilled labor.

1.4 The Quantitative Exercise

The full dynamic model cannot be solved analytically. This section describes the

quantitative exercise, the data series used, and the choice of parameters.

1.4.1 The Idea

I perform a growth accounting exercise that allows me to back out the unobserv-
able paths of skilled and unskilled capital and skilled and unskilled production
efficiency from the observed paths of skilled and unskilled wages and skilled and
unskilled labor supply. Finding capital in this way is a departure from standard
growth accounting, where capital is taken from national accounts data. Here,
capital is determined endogenously for three reasons. First, while it is easy to
separate skilled and unskilled labor in the data, the distinction is much less clear
for capital. Is all capital used in a sector dominated by skilled labor automatically
skilled capital? Or only a constant fraction? What exactly is the difference be-
tween skilled and unskilled capital? Letting the model determine the allocation
of capital circumvents these issues. Second, capital data in the national accounts
is imperfectly adjusted for quality changes and hence technological progress. Us-
ing these data might lead to an understatement of the increase in production

efficiency. Third, capital data in the national accounts is aggregated under the
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assumption of reversible investment. This assumption is violated whenever the
irreversibility constraint on investment is binding for one type of capital. Ignor-
ing this violation introduces a bias into the sectoral capital data.”

The optimization problem in 2.6 can be solved either by Lagrangian or by
value function iteration. The former is more useful in illustrating the formal equi-
librium and hence was used in section two. Value function iteration on the other
hand is easier to implement quantitatively, especially when dealing with the ad-
ditional irreversibility constraints on investment. The results are the same using
either method.

The exercise starts with an initial guess on a sequence for As and A,. With

this guess I can recursively solve

V (ks ky, As, Ay) = max {In(c) + pV'(k, k;,, Al, A}) } (1.4.1)

ks ki,

S.t. k; Z (1 - 55)](5, k;/l Z (1 - 5u)ku

with ¢ = y(ks, ku, As, Au, @) + (1 — ds)ks + (1 — 6, )ky — ki, — ki, and ¢ as taken
from the data as described below. This yields optimal paths for ks and k, which
are then combined with the sequences for A; and A, guessed previously and ¢
as taken from the data to derive the wage sequences ws and w, that are implied
by the model. These sequences of wages are then compared to the actual wage
data. If the sum of squared differences between the wages in the model and in
the data is above a critical value, the sequences of ks and k; and the data on
ws P

wages and ¢ are used to update the guess for A; and A, via A; = A=pIF. and

—o0)Y . . . . .
A, = ©ull=9)T " With this new guess, the value function iteration starts over.

(I=7)ky ~

This process is repeated until the sum of squared differences between model-
generated wages and wage data falls below the critical value.

In order to run this exercise, I need data series for ¢, ws and w,,, and parameter

"More specifically, this bias is introduced through the aggregation weights. One assumption in
the construction of these weights is that returns to assets are equal within an industry. If the irre-
versibility constraint is binding on one asset in that industry, this assumption is violated, leading
to the wrong weights and hence the wrong number for aggregated capital.
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values for B, v, 65, 64, and p. Their derivation is described in the next section.

More detail on the algorithm can be found in the appendix.

1.4.2 The Data

The data used in this paper is either directly taken or derived from the EU KLEMS
dataset (EUKLEMS (2008), also see Timmer, O’Mahony, and van Ark (2007)) on
the US economy. The dataset builds on Jorgenson, Ho, and Stiroh (2003)’s work
in growth accounting and collects data on, among other things, wages, different

types of capital and output by industry.?

1.4.2.1 Labor Supply and Wages: ¢, ws, and w;,

Labor market data by skill is available in three categories in the dataset: high-
skilled (college graduate and above), medium-skilled (high school graduate and
some college) and low-skilled (did not complete high school). As the model re-
quires two types of skill, one third of the medium-skilled values in labor compen-
sation and hours worked data are added to the corresponding high-skill values to
yield the skilled variables and two-thirds of the medium-skilled values are added
to the low-skill values to deliver unskilled variables. This is to reflect the fact that
someone who dropped out of college just before graduation will have consider-
ably more education than someone who left after the first term, even though both
are classified as medium-skilled. Using one third and two thirds to separate them
yields a skill premium that is close to what others have found.

The share of skilled hours worked ¢ is simply hours worked by skilled work-

ers divided by hours worked by all workers, and similarly for unskilled labor.

8Most empirical studies of the skill premium use data from the Current Population Survey
(CPS). In contrast to the EU KLEMS dataset, CPS does not have data on output. As I need output
data to construct some of my parameters, the EU KLEMS dataset is preferable for me. Further-
more, the labor market data in EU KLEMS are derived from the CPS, so the results would be very
similar using CPS. For the US, there are two sets of data in EU KLEMS: one based on the old SIC
industry classification and extrapolated to 2005, and one focusing on capital, based on the new
NAICS classification, extrapolated backwards. Detailed labor data are only included in the SIC
version, which I use for most data. I use the NAICS data only for the derivation of depreciation
rates.
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Figure 1.1 Comparing the Share of Skilled Hours Worked from EU KLEMS Data
and from Autor, Katz, and Kearney (2008)
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Skilled hourly wages are derived by multiplying the skilled workers’ share in la-
bor compensation with total labor compensation and dividing the total by skilled
hours worked (share of skilled hours worked times total hours worked).? The
analogous procedure is used for unskilled hourly wages.

Figure 1.1 compares the share of skilled hours worked according to my deriva-
tion and using the data from Autor, Katz, and Kearney (2008). The series move
in parallel, and Autor, Katz, and Kearney (2008)’s share of skilled hours worked
is slightly lower throughout. As a robustness check I run the simulation with the
Autor, Katz, and Kearney (2008) values and find that there is virtually no differ-
ence in the results.

Figure 1.2 shows the log of the skill premium my procedure yields and com-
pares it to the log of the skill premium used in Autor, Katz, and Kearney (2008),
both normalized to one in 1970. Similarly to the skill share in hours, my data se-

ries is below Autor, Katz, and Kearney (2008)’s series, and they move in parallel

9The data series by name and formulas used are: H_HS+1/3 H.MS for high skilled hours
worked, 2/3 H.MS+H_LS for low skilled hours worked, and (L?Plzﬁssill //;éﬁﬁ;;/ﬁ}f A%\,AP for the
skilled hourly wage.
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Figure 1.2 Comparing the Log Wage Premium from EU KLEMS Data and from
Autor, Katz, and Kearney (2008)
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for most of the period under consideration.

Labor compensation may also include non-wage payments to the worker and
other benefits, so it is not a perfect measure from which to derive wages. This
may go some way towards explaining the remaining difference from Autor, Katz,
and Kearney (2008)’s series. Eckstein and Nagypal (2004) find however that la-
bor compensation data and wage data move largely parallel. In any case, as the
present study is an accounting exercise at heart, total labor compensation is the

more appropriate measure.

1.4.2.2 Initial Values for Skilled and Unskilled Capital and the Production

Efficiencies

The initial levels of skilled and unskilled production efficiencies are normalized
to one. In order to find model-consistent initial values I have to either assume
equal production efficiencies in the first period or equal rates of return on capi-

tal, implying a non-binding irreversibility constraint. The first alternative is less
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restrictivel®.

To start the iteration, I need to specify a first guess for the full sequence of
skilled and unskilled production efficiency. The initial guess sets the first period’s
skilled and unskilled production efficiency equal to one. For all further periods
it is simply assumed that both types of production become more efficient at the
same constant rate, the long run growth rate.

The initial values for skilled and unskilled capital are obtained from the equa-
tions for the skilled and unskilled wage respectively. The values for capital
are the only unknowns in the wage equations wsg = (1 — ,B)Aslokf/ 0®Po P and
Wy = (1= 7)Auok; o(1 = 90)~7, 50 ks and k;, 9 can be found by simply solving

for them.

1.4.2.3 Capital Shares: g and y

As the model has two sectors, skilled and unskilled, I classify the industries in
the dataset into skilled and unskilled. To that end, I rank all industries at the
highest-digit level for which data are available!! by the average of the share of
high-skilled (in the three-skill-level definition) hours worked in 1970 and 2005.
Over the period studied, the share of high-skilled labor has increased in all in-
dustries, sometimes substantially. This trend has been observed first by Berman,
Bound, and Griliches (1994) for manufacturing industries from 1979 to 1989. Au-
tor, Levy, and Murnane (2003) and Spitz-Oener (2006) (for Germany) show that
this trend is not due to a change in the type of jobs available, but to an increase
in skill requirements for the same job. They attribute the increased skill require-
ments to SBTC. As this increase has been observed across all industries, the fact
that it might be due to SBTC should not bias my results. One further indication

that this method of finding capital shares should not introduce a bias is that using

10Assuming equal rates of return in the first period results in skill neutral to unskill-biased
technological change for a wider range of values for the capital shares. Normalizing production
efficiencies thus also is the more conservative assumption.

11£ T only have data for the one-digit industry, I use that; if there is data for three-digit industries
I throw out the one-digit aggregation of these industries
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either the 1970 high-skill shares or the 2005 shares would not change the ranking
substantially.

All industries with an average share of hours worked by high-skilled labor
of 20% or higher are considered part of the “skilled” sector, the rest forms the
“unskilled” sector. Appendix 3 shows the industries” ranking and their average
high-skill share of labor, along with the 1970 and 2005 shares. The cutoff of 20%
ensures that there are roughly the same number of industries in the skilled and
unskilled sector.

I start by calculating the labor share, i.e. the ratio of labor compensation and
value added in a sector (1 — ; = %ff), for each industry every five years. Then I
take the unweighted average of each industry over time (also given in Appendix
3) and then the average over all industries classified as skilled or unskilled respec-
tively, weighted by their average value added. The skilled and unskilled capital
shares are then derived as one minus the labor shares.

The resulting capital shares are B = 0.39 for skilled production and = 0.29
for unskilled production, meaning the skilled sector is more capital intensive than
the unskilled sector. As the values for the capital shares are sensitive to the defi-
nition of sectors and the cutoffs chosen, I check the robustness of the simulation

results to different values of g and 7.

1.4.2.4 Depreciation Rates: J; and J,

EU KLEMS breaks down the data on capital stock into eight types of capital: In-
formation Technology, Software, Communication Technology, Transport Capital, Other
Machinery, Other Construction, Residential Structures, and Other Capital. Each type
of capital has its own depreciation rate that is constant across industries. Differ-
ences in depreciation rates between industries thus arise from differences in the
composition of their capital stocks. To find each industry’s depreciation rates at
one point in time, I take the average of the different depreciation rates, weighted

by the corresponding capital type’s share in the industry’s capital stock.
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As capital stock data are not available at the same level of detail as labor and
output data, the level of capital stocks must be imputed for some industries. In
these cases, [ assume that a three-digit industry’s share of capital in the one digit-
capital stock is the same as the three-digit industry’s share in value added.

Once I have each industry’s depreciation rate for every five years, I follow the
same sector division and averaging procedure as for capital shares. The resulting
depreciation rates are J; = 0.091 for skilled capital and J, = 0.079 for unskilled

capital.

1.5 Quantitative Results and Robustness Checks

1.5.1 Main Results

The main parameter specification uses the values derived in section 1.4.2 and pre-
sented in table 1.1. The long run growth rate, which is needed for the algorithm, is
set to ¢ = 0.025 to correspond to the historic average US growth rate. The results
are not sensitive to this choice, however. Some more technical parameters need
to be specified for the algorithm. These are given in table 1.5 in the appendix. The
robustness of results to different parameter specifications will be discussed later.

The simulation results for production efficiency growth and capital are shown
in Figures 1.3 and 1.4 respectively. Both production efficiency growth rates are
very high until about 1980 and considerably lower after that, consistent with the
productivity slowdown observed by others (see for example Nordhaus (2005)).
Until 1980 the growth rate for unskilled production efficiency is above the one for
skilled production efficiency, after 1980 the growth rates are much closer. Skilled

production efficiency grows 0.27 percentage points slower on average than un-

Table 1.1: Main Parameter Specification

Parameter f 0% s oy 0

Value 0.39 029 0.091 0.079 0.95
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Figure 1.3 Simulation Results on Growth Rates of Skilled and Unskilled Labor
Efficiency

DS T T T T T T

Skilled Labor Efficiency
0.25 - — — — Unskilled Labor Efficiency | ]

02

0.15

0.1

0.05

Labar Efficiency Growth Rates

005 1 1 1 1 1 1
1970 1975 1930 1985 1390 1995 2000 2005

Year

Figure 1.4 Simulation Results on Evolution of Skilled and Unskilled Capital per
Hour Worked
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skilled production efficiency, though the difference is 0.53 percentage points in
the first fifteen years and only 0.04 percentage points after 1985.

SBTC is said to be present if the growth of relative skilled production effi-
ciency leads to an increase in the relative marginal product of skilled labor (see,
eg, Caselli and Coleman (2001)), in which case the skill premium is increasing in
2—;. For this ratio to increase, skilled production efficiency needs to grow faster
than unskilled production efficiency. The higher growth rate for unskilled pro-
duction efficiency here suggests then that there is unskill-biased technological
change if anything, though given the differences are small throughout, consider-
ing technological change as skill-neutral is more appropriate. This result can be
attributed to the combination of different capital shares in the two sectors and
very low initial levels of skilled capital. Part of the difference pre- and post-
1985 stems from a period between 1974 and 1982 in which the skill premium was
actually decreasing. In that time period, higher unskilled production efficiency
growth would be predicted by most models.

Both types of capital increase over the 35 years under consideration. Skilled
capital stays roughly constant in the early 1970s, grows very rapidly in the early
1980s and continues growing at a slightly lower rate. The average growth rate
for skilled capital is 8.84%. Unskilled capital decreases for the first few years
as the irreversibility constraint is binding. After that, unskilled capital grows
consistently. Overall, the average yearly growth rate for unskilled capital is 5.6%.

The reasons for slow capital growth in the 1970s can only be speculated on. It
could simply be a consequence of low economic growth following the oil shocks.
I could also be due to the 1970s being the early period of a new general purpose
technology (GPT, see, e.g. Aghion, Howitt, and Violante (2002)). This nascent
technology could have led to deferred investment, to be able to take advantage
of the new technology once it is better developed.

These results illustrate the additional adjustment mechanism present in the

model: the increase in skilled labor supply induces a shift of investment from
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unskilled to skilled capital. The magnitude of this shift depends on the relative

size of the capital shares in the two sectors.

1.5.2 Robustness Checks

The skill premium can be explained in absence of SBTC for plausible values of
the capital shares. This is need not be true universally, however. The overarching
question in this section is: If the wages and skill supply observed in the data were
generated by an economy not governed by the parameters used in section 1.5.1,
but by different ones, would the implications of these other parameters for SBTC
be the same? A number of robustness checks in this section show how the values

of capital shares matter, while other parameters are less important.

1.5.2.1 Different Capital Shares

There are two margins along which different capital shares might have an impact:
changes to the levels of  and 7y and changes to the difference between the two
capital shares.

Table 1.2 provides a summary of the results using a wide array of values for
B and <. The first two columns give the values for capital shares in the skilled
and unskilled sector and the third gives the difference between the two capital
shares. The fourth column shows the average difference between the skilled and
unskilled production efficiency growth rates over the whole sample period, and
the last two columns give the average difference for the two sub-periods from
1970 — 1985 and 1985 — 2005. The first row shows the values for the preferred
specification discussed in the previous section.

Looking at the difference in growth rates for the whole period, two observa-
tions are striking. First, SBTC is observed for  — ¢ < 0.08, and the skill bias is
larger the smaller the difference between the capital shares. Second, the degree
of skill-bias is decreasing in the skilled capital share, even holding the difference

between capital shares constant. The difference between skilled and unskilled
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Table 1.2: Results for Different Values of g and y

B v B—7 & —8u 8s — 8u 8s — Qu

1970-2005 1970-1985 1985-2005
039 029 0.1 20.0027  -0.0053  -0.0004
042 032 0.1 -0.0035  -0.0069 -0.007
036 026 0.1 -0.0018  -0.0039  -0.0001
044 032 0.12 -0.0066 -0.0121 -0.0021
040 028 0.12  -0.0055  -0.0099  -0.0017
039 030 009 -0.0014  -0.0032 0.0002
038 029 0.09 -0.0011 -0.0028 0.0003
039 031 008 -0.0001 -0.0011 0.0008
0.38 030 0.08  0.0001 -0.0008 0.0009
037 031 006  0.0030 0.0040 0.0022
042 038 004  0.0046 0.0065 0.0030
040 036 0.04  0.0050 0.0072 0.0031
038 034 004  0.0054 0.0079 0.0033
036 032 004  0.0059 0.0087 0.0035
034 034 0 0.0014 0.0177 0.0061
032 036 -0.04  0.0169 0.0267 0.0087
0.29 039 -0.1 0.0252 0.0401 0.0127

capital shares determines the direction of the bias, the level of B the degree, as
can be seen from looking at the results for § — ¢ = 0.1 and  — v = 0.04 with dif-
ferent values for B. The positive value for the growth rate differential for = 0.29
and 7y = 0.39 shows that the results are not symmetric in the capital shares. The
turning point is at § — v = 0.08, where the bias is very close to zero.

The results differ markedly across the two sub-periods under consideration
as well. The difference in growth rates is consistently closer to zero in the sec-
ond part of the sample. This is a bit puzzling in some cases, as the decline in the
skill premium in the early part of the sample would suggest a stronger unskilled
production efficiency growth rate and thus a narrowing of the difference. Two
possible explanations come to mind. The first is that the capital investment chan-
nel works in the opposite direction there, too, and the second that these values
for the capital shares are less likely to be correct.

The presence and degree of SBTC thus depends both on the level of the capital
shares and the difference between them: the higher  and the larger the difference

between  and 7, the smaller is the degree of SBTC. This is consistent with the ad-
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ditional mechanism I propose, as the degree of capital reallocation will be larger
for larger differences between the capital shares. As the previous sections have

shown, values for which SBTC plays no role can be derived plausibly.

1.5.2.2 Different Depreciation Rates

For my main specification, the depreciation rates for the two types of capital are
different. It is possible that the initially binding constraint is due to this differ-
ence, and it is likewise possible that the higher production efficiency growth rate
in the unskilled sector is due to the irreversibility constraint being binding early
on. I therefore check how results change when the depreciation rates are equal
in both sectors. Ex ante I would expect largely the same result as before. The
main channel from which my result derives is the reallocation of capital invest-
ment, with different depreciation rates and the irreversibility constraint as possi-
ble blockages of this channel. Including these blockages in the model strengthens
the main result, as two important potential obstructions are already accounted
for. As the blockages do not narrow the main channel enough to qualitatively
affect the results, removing either one or both of them should not alter the main
result, though the precise values might be different.

This turns out to be true, as the production efficiency growth rates with equal
depreciations rates track the ones from my preferred specification. Only in the
earlier years is the skilled growth rate larger than in the main specification. This
is true whether I assume that both depreciation rates are equal to the skilled rate
or the unskilled rate, the results are nearly identical (—0.0032 for the higher rate,
—0.0033 for the lower one).

I also check results for a larger difference between the depreciation rates (65 =
0.12 compared to J, = 0.06) to see if results are sensitive to an understatement
of the difference in depreciation rates. The growth rate differential in this case
is —0.0002, suggesting that a very large difference in depreciation rates might

change results.
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Finally, I also consider much smaller depreciation rates, Js = 0.039 and
0y = 0.033. These are the values of the skilled and unskilled depreciation rates
as calculated for 1970. The depreciation rates are increasing over time, as they
form the weighted average of the depreciation rates of skilled and unskilled cap-
ital used at each period. Over time, the types of capital with higher depreciation
rates increase, which leads to an overstatement of the depreciation rate for the
early periods. This matters, as depreciation rates determine the irreversibility
constraint, which is binding for several periods early on in the baseline scenario.
With these lower depreciation rates, I can test whether the binding constraint is
an artifact of taking the average depreciation rate. It turns out that with the lower
rates, the irreversibility constraint binds for one period only. The difference in
the growth rate of skilled and unskilled labor efficiency stays negative (—0.0039).

The main results are not affected.

1.5.2.3 Equal Depreciation Rates and Capital Shares

A further check is whether the results change if I assume equal capital shares and
equal depreciation rates in both sectors. This is the standard assumption in the
SBTC literature, and I would therefore expect the same result as in that literature,
namely that skilled production efficiency grows faster than unskilled production
efficiency.

In this case, with § = ¢ = 0.34, skilled production efficiency indeed grows
faster than unskilled production efficiency on average, with a difference of 1.07
percentage points. This indicates that with the assumption of equal capital shares

intact, the conclusion that SBTC drove the increase in the skill premium is valid.

1.5.2.4 Leaving Out the Irreversibility Constraint

Ignoring the irreversibility constraint should lead to a faster decrease in unskilled
capital and hence to a higher growth rate for unskilled production efficiency. This

is exactly what I observe. Without the constraint, unskilled capital drops rapidly.
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As this has knock-on effect on skilled capital, the overall result changes little. The
growth rate of unskilled production efficiency is larger than the skilled growth

rate, with a difference of 0.0027.

1.5.2.5 Alternative Utility Function

So far, I have assumed that individuals have logarithmic utility, mostly because I
am interested in the capital reallocation process between sectors and less in peo-
ple’s overall investment decision. Log utility is convenient, as changes in the
interest rate do not affect the consumption allocation over time.

As consumption allocation, via the budget constraint, has effects on invest-
ment decisions, it is prudent to check that the results do not depend on the choice

of utility function. Therefore, I also look at the results from using a CRRA utility

711
T—=7

grows faster by 0.1 percentage points. The difference here is smaller in value, but

function u(c) =

, with 7 = 2. On average, unskilled production efficiency

points in the same direction.

1.5.2.6 Alternative Data Derivation

I also test a different way of constructing the data for skilled and unskilled wages
and shares in hours worked. Choosing as a cutoff at least 30% highly skilled
workers in 2005 yields a wage premium and total skilled labor with the same
movements as in the data used above, but with slightly different absolute values.
This time, I take the initial values for skilled and unskilled capital directly from
the data. The caveats as to the appropriateness of the capital data remain.

In this version of data derivation, I leave out Real Estate Activities. It would
classify as skilled given the cutoff I use, but is the sector with the largest change
in labor composition. To avoid the results swinging on the choice I make for this
sector, I prefer to leave it out altogether.

The capital shares in this case are slightly different: § = 0.3 and v = 0.29,

closer together than in my main specification. Nonetheless, the qualitative re-
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sults remain the same: skilled capital increases fourfold, unskilled capital does
not quite double and skilled production efficiency grows slower than unskilled
production efficiency in more than half the periods. The average difference in
the growth rates is very small with unskilled production efficiency growing 0.3

percentage points faster.

1.5.2.7 A Different Production Function

The assumption of perfect substitutability of both types of production is fairly
restrictive, and it is not a priori obvious why it is a reasonable assumption to
make. Indeed, generalizing the production function to a CES function would
open another channel of adjustment to changes in labor supply via the change in
the relative price of the two kinds of output.

A more general production function would be

R[|=

Y = [n(AkE 9" P)* + (1= ) (Aukd (1 — @)1~ 7)"] (15.1)

where ¢ = L is the elasticity of substitution between skilled and unskilled

production and & € (—oo,1). Setting « = 1 yields the perfect substitutability
case.

The relative growth rate of labor efficiencies then is

s 8;(5/5 ws,t+1/wu,t+1 L Prr1\1 148 1— @1 1-1—o
2 = 2k @ )@ (—1 ) T, (1.5.2)
Su g Wst/ Wyt Pt 4

It is decreasing in the absolute value of a. Skilled production efficiency grows
faster relative to unskilled production efficiency the poorer the substitutability
between the two sectors of production: With decreasing « the weight given to
growth in the wage premium and growth in relative labor supply increases,
whereas the weight given to the relative capital growth rates stays the same.
As both wage premium and relative labor supply increase over the sample, a

smaller « suggests a higher growth rate of skilled production efficiency relative
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Table 1.3: Simulation results for different values of «

b 7 median g—z

1 NA 098419
091 0474  1.0065
08 048 1.0559
073 0484 11154

0.576  0.49 1.2303

to the growth rate of unskilled production efficiency. Changing « changes the
capital growth rates, too, as lower a leads to higher growth rates of skilled capital
relative to unskilled capital, but this effect seems to not be strong enough to keep
the relative labor efficiency growth rates the same. A good and reliable estimate
of « is therefore very important to check the validity of the perfect substitution
assumption and the robustness of the central results.

To further illustrate the importance of having the correct &, I report simulation
results for different values of & below. To be able to run the simulation, I also
need a value for the dispersion parameter 77, which depends on relative prices, «
and the ratio of skilled and unskilled value added: 5—; = % (%)“’1. Using the
specification from the previous subsection, rather than my main specification,
means I have data on relative prices and the ratio of skilled and unskilled value
added. The value for 7 is not constant over time, so I simply use the average.

Table 1.3 shows the median relative production efficiency growth rates for
different values of a.!2 A ratio greater than one suggests skilled production effi-
ciency grows faster, a ratio less than one suggests unskilled production efficiency
does. This is a rule of thumb only, however, since it is possible for the median
ratio of growth rates to be greater than one (suggesting skilled production effi-
ciency grows faster), while the difference of the averages of the growth rates is
negative (suggesting unskilled production efficiency grows faster).

As can be seen from table 1.3, the choice of « is crucial for the results on pro-

12For this production function I cannot derive the growth rates separately. Growth rates here

are gs = %%(%)W%)‘ﬁ and g, = %%(%)7(%)_7. To calculate the growth rates I would
need the growth rates of skilled and unskilled prices. The model can only determine relative

prices, hence I only show the ratio of the growth rates.
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duction efficiency growth rates and hence for the decision of whether there is
skill-biased technological change or not. The smaller &, the larger the relative
growth rate of skilled production efficiency needed to be consistent with the wage
and labor data. For any « = 0.91 or smaller, the results suggest SBTC, any value
above that threshold suggest unskilled production efficiency grew faster.

Simply using a value for the elasticity of substitution between skilled and un-
skilled labor from the range that the labor literature considers most likely (be-
tween ¢ = 1.5 and 0 = 2, see e.g. Acemoglu (2002a), Autor, Katz, and Kearney
(2008), corresponding to a between  and 3) is not an option. I need the elastic-
ity of substitution between skilled and unskilled production, whose exact rela-
tionship with the elasticity of substitution between skilled and unskilled labor is
not straightforward to determine. In fact, for any value of a the simulation re-
sults would be consistent with the labor literature consensus: the standard way
of finding ¢ is from a regression of the wage premium on the relative supply of
skilled and unskilled labor and a time trend, log(5,>) = p + %log(f—z) +dt+e. In
the simulation, I take both Z]’—Z and f—i from the data, so that no matter which « I
choose and no matter the simulation results, the estimated ¢ remains the same.
There is a one-to-one relationship between the elasticity of substitution between
skilled and unskilled labor and the elasticity of skilled and unskilled production
only if B = <. If the capital shares are not equal, as is the case in my parameter
specification, « cannot be determined algebraically from standard values of ¢.

Instead, I try to estimate « from the expression for the log wage premium

log (%) =c + aplog(ks) — aylog(kus)+ (1.5.3)

Wyt

(a(1 - B) — Dloglgr) — (a(1—7) — log(1 - ¢1) + €

% is the hourly wage premium at time f and €; is an i.i.d. normally

where
distributed error term.

I use the data as derived in the previous section, as relative price data is read-
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Table 1.4: Estimation results for «

Trend No Trend

Constant -1.299*** -1.568***
(0.1903) (0.0633)
o 0.576* 1.007***
(0.2880) (0.0374)
Trend 0.400
(0.2652)

*indicates | significance  at10%
**indicates | significance  at5%
***indicates | significance = at 1%

ily available for that derivation and will be needed later. The values for 8 and
7 are thus the same as for the simulation in the previous section (8 = 0.3 and
v = 0.29). To find «, I estimate two versions of the model: one as given in equa-
tion 1.5.3 and one with a time trend, to capture other time variant effects on the
wage premium (e.g. technological progress). Model selection criteria disagree on
whether the model with or without trend is better. The results of the OLS estima-
tion are shown in table 1.4. The point estimate for « in the model without trend
is 1.007 and highly significant, suggesting that the perfect substitutes case is real-
istic!3. Including a positive time trend reduces this point estimate to a = 0.576,4
though it is only significant at the 10% level, and a Wald coefficient test cannot
reject the null hypothesis that a« = 1.

The estimation without trend does not reveal a long-running trend in the
residuals, and the coefficient on the trend parameter is not significant at any con-
ventional level. This suggests that there is no need for the trend parameter, and
the assumption of perfect substitutability, « = 1, is warranted.

There is, however, a problem in the estimation. The production efficiencies
are part of the error term, and the model suggests that the production efficiencies
depend on capital. Thus, the errors correlate with one of my exogenous variables,

muddying the estimation result. AsIdo not have a good solution to this problem,

13Constraining the estimation to ensure & < 1 would lead to a point estimate of = 1, as this is
the closest permissible value to the unconstrained optimum.

14This value of a suggests an elasticity of substitution between skilled and unskilled production
of 2.35, somewhat above the consensus in the labor literature of between ¢ = 1.5 and o = 2.
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Figure 1.5 Price of Skilled Output Relative to Unskilled Output, normalized to
one in 1995, Source: EUKLEMS (2008)
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I can only acknowledge its presence, and caution to not place too much reliance
on the estimation results.

As an alternative, I also try to find the right « by matching the model’s rela-
tive prices to the relative prices for goods produced by the skilled and unskilled
sector found in the data. For all « < 1, the model results in steadily decreasing
relative prices, while the relative price data shown in figure 1.5 indicate that the
relative price in 2004 was only slightly lower than in 1970, with movement in both
directions in between. Given these divergent results on prices, the assumption of
perfect substitutability seems reasonable, as the constant relative prices it implies
are closer to observed data than the prices implied by equation 1.5.1.

As this section shows, relaxing the assumption of perfect substitutability of
production can have considerable effects on my main result. However, deriving
a value for the elasticity of substitution between skilled and unskilled production,
both via direct estimation and via matching of data on relative prices, suggests
that « = 1 is a reasonable choice, and the assumption of perfect substitutability

thus warranted.
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1.6 Conclusions

Dropping the common assumption of equal capital shares, I show that the in-
crease of the skill premium between 1970 and 2005, despite the concurrent in-
crease of the relative supply of skilled labor, can be explained by a reallocation
of capital and neutral to unskill-biased technological change. This is a departure
from most of the literature on the topic, yet my result is not inconsistent when
compared to other work. If I impose the condition of equal capital shares I get
the standard result of SBTC as an explanation of the change in the skill premium.
This suggests that a more frequent departure from this simplifying and admit-
tedly very convenient assumption might be advisable.

The results depend crucially on the capital shares of the two sectors, especially
on their relative sizes. These vary depending on the definition of sectors and
the kind of averaging procedure chosen. They can also be very different when
considering different periods of time. Two issues for further research are to find
the “best” way of deriving capital shares, and the consequences of allowing these
shares to vary over time.

Of course, this paper leaves many more questions unanswered. I have noth-
ing to say on the origins of the increase in the supply of skilled labor. It is possible,
indeed likely, that there is some feedback mechanism involved, by which changes
in capital allocation and technology lead to changes in education decisions, which
in turn lead to changes in capital allocation, and so on. Nor do I claim to know
what drives skilled and unskilled production efficiency. There may be factors
completely unrelated to technology that caused a higher efficiency of unskilled
production, but my model has no way of distinguishing these from genuine im-

provements in efficiency.
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1.7 Appendix

1.7.1 Notes on the Algorithm

As there is very little previous numerical work involving irreversibility con-
straints (one notable exception being Coleman (1997)), the algorithm is devel-
oped from scratch. There are two parts to it: a value function iteration for given
production efficiencies and an update mechanism for the guess of the production
efficiencies.

Value function iteration with irreversibility constraint, given production efficiencies

At its core is a finite horizon value function iteration that incorporates an irre-
versibility constraint. I am interested in a period of T = 35 years, corresponding
to the period from 1970 to 2005. The terminal value is the steady state value
towards which the economy converges, given that all values grow at their BGP
rates from the final period of interest onwards. Between the last period of interest
and the terminal value are m periods at which the production efficiencies grow
at their BGP rates and relative labor supply stays constant. m is chosen large
enough so that the choice of terminal value does not affect the results in the pe-
riod of interest, a method known as tatonnement. An assumption implicit in this
method is that the model converges to a steady state (see Judd (1998)), hence it
is important to ascertain theoretically that a steady state indeed exists and that
the model converges to it, to be able to trust the results. My model converges to
a balanced growth path with both production efficiency growth rates uniquely
determined by the overall growth rate of the economy, and the capital shares p
and 1.

Each value function iteration takes as given the (T + m x 2)-matrix of skilled
and unskilled production efficiencies. Using a vector of n values for unskilled
capital, I derive the corresponding values for ks for which rates of return to capital
are equalized each period. I use these values for skilled and unskilled capital to

derive the optimal choice of next period’s capital, given each ks-k,, combination
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possible in the current period.

As the irreversibility constraint might be binding somewhere along the op-
timal path, running the value function iteration under the binding constraint is
also necessary. For this, a separate grid is introduced for next period’s values of
unskilled capital under the binding constraint. Then the value function iteration
is used to find the optimal choice of next period’s skilled capital, given that the
irreversibility constraint on unskilled capital is binding.

Given the initial values for ks and k,, it is straightforward to pick the opti-
mal paths for both types of capital for 35 periods. If the unconstrained optimal
choice violates the irreversibility constraint, the optimal value will be that from
the constrained choices.

Updating the guess for production efficiency

With the optimal paths for the two types of capital and the values of produc-
tion efficiency, I calculate skilled and unskilled wages as implied by the model.
The next step calculates the difference between these wages and the actual wages
as given in the data. If the sum of squared errors implied by this difference is
above the convergence criterion specified, the efficiency matrix is updated. The
new matrix will be a weighted average of the old matrix used to derive the latest
optimal paths for capital and the values for skilled and unskilled production effi-
ciency that would yield the wages from the data, given the paths for capital. The
weights on the old and new efficiencies, A and 1 — A, are chosen such that conver-
gence is as smooth as possible, as giving too much weight to the new solution can
lead to overshooting the true solution and slow down convergence (Judd (1998)).
Some values of A may also send the algorithm into an infinite loop that repeats
the same few guesses over and over. If this happens, A is decreased or increased
to escape the loop.

With the new efficiency matrix, the value function iteration described above
starts again until the sum of squared errors of the model’s wages compared to

actual wages is below a critical value. Note that as there is no uncertainty what-
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soever in the model, it is possible in principle to arrive at the exact solution, pro-
vided the grid on capital is infinitely fine. This would, however, come at a large
cost in computing time.

Effects of changing the initial guess of production efficiency, years to terminal value,
or steady state growth rates

As mentioned in section 1.4.2, the initial guess for production efficiency is cho-
sen to be one in the first period and grow at a certain constant rate afterwards. I
also run the program for a variety of other growth rates, equal for both produc-
tion efficiencies and different, constant and changing. The first period production
efficiency however stays the same throughout.

Changing the initial growth rate for production efficiency does not affect re-
sults. This is true whether the same growth rate is used for all periods or the
growth rate varies for blocks of time. As an example, changing the growth rate
for the initial guess from 0.025 to 0.08 for five periods yields the same final pro-
duction efficiency growth rates as the uniform growth rate for the initial guess.

The choice of m, years until terminal value, depends on the number of grid
points chosen. The finer the grid, the larger m needs to be for the results to be
unaffected by the exact choice of terminal value. Increasing the number of years
between the last period of interest and the terminal value beyond the point where
results are constant will only lead to increased computing times. Of course, it is
important to check that the number of years is large enough in the first place.

The parameter g is the steady state growth rate to which the economy con-
verges eventually. It does not appear in the period of interest, but is needed
to provide a terminal value for the value function iteration. It also pins down,
together with B and 7y, the growth rates of skilled and unskilled production effi-
ciency after T. I assume that in the long run the economy will converge to its past
long run growth rate of 2.5%.

As this is only an assumption, it is very desirable that the results do not de-

pend on the exact choice of this value. Decreasing the steady state growth rate
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Table 1.5: Preferred Parameter Specification, Part 2

Parameter T n m g A Convergence criterion

Value 35 1500 100 0.025 0.09 10 xe~®

by one percentage point, increases both production efficiency growth rates in the
last ten periods by less than one percent (not percentage point), while earlier peri-
ods are not affected. Since most of the larger differences between the production
efficiency growth rates occur before 1990, the main results do not depend on the
choice of steady state growth rate.

Table 1.5 shows the parameter values used for the algorithm. A gives the
weights of the new and old values of production efficiencies for the updated
guess and the next value function iteration. Finally, the convergence criterion de-
termines how small the sum of squared differences between the model’s wages

and wage data must be for the program to stop updating.

1.7.2 Derivation of Capital Shares

The following table shows the skill classification of industries. Each industry is
classifies as skilled if the average of its 1970 and its 2005 share of hours worked

by high skilled labor is at least 20%, and classified as unskilled otherwise.
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Table 1.6: Skilled Industries

Industry Skill ~ Skill ~ Skill Capital
Share Share Share Share
avg. 1970 2005 avg.
Education 63.56 58.79 68.33 0.22
Research and development 56.20 4042 7198  0.18
Legal, technical, advertising 51.13 41.56 60.70 0.08
Computer, related activities 5048 3529 65.67 @ 0.36
Chemicals ex pharma 46.95 31.76 62.14 0.50
Office, accounting, computing | 40.75 21.00 60.49  0.25
Activities of membership org | 38.29 3540 41.17  0.06
Insurance, pension funding 3263 2120 44.05 0.20
Telecommunication eq. 3249 1212 5286 044
Radio and television receivers | 31.52 12.14 50.90 0.25
Health and social work 30.18 22.13 38.23 0.16
Financial intermediation 30.10 15.74 44.46 0.51
Publishing 2962 996 4928 0.26
Aircraft and spacecraft 29.18 14.61 4374  0.08
Electronic valves and tubes 29.17 10.58 47.77 0.27
Other instruments 29.11 1538 4284 0.16
Scientific instruments 28.64 1520 42.09 0.15
Media activities 28.46 1293 43.98 0.22
Pharmaceuticals 27.50 18.42 36.58 0.47
Real estate activities 2721 17.09 37.33 0.90
Other air transport 2406 1191 36.22 0.23
Coke, petroleum, nuclear fuel | 23.84 15.62 32.06 0.63
Other business activities 23.74 17.37 30.12 0.32
Post and telecoms 22,77 7.39 38.15 0.54
Public administration 21.71 1218 31.24 0.32
Crude petroleum, natural gas | 21.17 14.61 2772  0.77
Other electrical machinery 20.52 1059 3044  0.25
Wholesale, commission trade | 20.28 12.02 28.53 0.26
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Table 1.7: Unskilled Industries

Industry Skill ~ Skill ~ Skill Capital
Share Share Share Share
avg. 1970 2005 avg.
Renting of machinery and eq. | 19.36 843 3029  0.79
Other water transport 1888 6.81 3096  0.30
Electricity supply 1875 813 2938  0.68
Gas supply 1812 848 2776  0.66
Other recreational activities 1794 581 30.06 0.26
Tobacco 17.82 7.01 28.64 0.61
Printing and reproduction 16.64 1256 20.72  0.24
Machinery 15.67 687 2447 024
Supporting transport act 15.65 10.29 21.01 0.37
Mining of metal ores 1543 6.23 24.63 0.47
Motor vehicles and trailers 1412 6.14 22.09 0.34
Retail trade household goods | 13.70 7.10 2029  0.16
Railroad and transport eq. 13.56 4.62 2249 045
Pulp and paper 12.17 5.82 18.52 0.35
Building, repairing of ships 11.82 694 16.69 0.15
Manufacturing nec 11.77 584 1771  0.26
Food and beverages 11.66 587 1745 0.39
Insulated wire 11.26 641 16.11 0.48
Basic metals 11.26 641 16.11 0.31
Other non-metallic mineral 10.60 5.34 15.85 0.26
Rubber and plastics 1043 5.00 1587  0.22
Fabricated metal 10.12 6.54 13.71 0.27
Agriculture 9.80 3.10 16.50 0.53
Other service activities 950 197 17.02 0.11
Sewage and sanitation 945 027 18.62 0.62
Wearing apparel, fur 9.12 2.89 15.36 0.18
Hotels, restaurants 8.58 401 13.15 0.22
Other mining, quarrying 836 655 1016  0.50
Sale of motor vehicles, fuel 8.14 487 11.41 -0.08
Construction 7.48 3.74 11.23 0.14
Forestry 748 070 1427 0.64
Fishing 748  0.70 14.27 0.45
Textiles 704 246 11.61 0.25
Other inland transport 679 275 1082  0.30
Wood and cork 6.63 4.01 9.24 0.30
Mining of coal, lignite; peat 6.32 312 952 0.48
Leather and footwear 631 3.75 8.88 0.29
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Chapter 2

Industry Differences in the Skill-Bias

of Technological Change

2.1 Introduction

In the previous chapter Ilook at the skill bias of technological change in the aggre-
gate US economy over the 35 years from 1970 to 2005 and find that technological
change has largely been skill neutral. This could either be the result of uniform
effects of technological change across all parts of the economy, or the averaging
out of very different developments. Adapting the model from chapter one, I re-
peat the exercise at the industry level for 24 US industries in the same period and
find that the latter is the case.

This result is not surprising given that the changes in the skill premium, i.e.
the ratio of skilled to unskilled hourly wage, vary across industries as well, as
figure 2.1 shows. The skill premium increased in all industries in the sample in
the period under consideration, apart from Health and Social Work, Agriculture and
Fishing, and Mining and Quarrying, but the degree of change ranges from a 5%
increase in Real Estate Activities to a rise of more than 40% in Other Business Ac-

tivities'. Other industries with strong growth of the skill premium are Financial

I This is probably due to the industry being the catch-all for service industries that do not fit in
any other category. Thus it includes activities as diverse as legal services and business consulting
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Figure 2.1 Skill Premium by Industry, 1970-2005
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Intermediation, Rubber and Plastics, and Textiles and Leather. The reasons for the in-
crease in the skill premium are likely different across industries as well. In some
of them the increase is probably due to increased investment in capital predomi-
nantly used by skilled labor, in others to skill-biased technological change.

The increase in the skill premium is observed despite the relative decline in
unskilled hours worked, as can be seen from the evolution of the ratio of skilled
to unskilled labor in figure 2.2.2 The share of hours worked by skilled labor has
increased in all industries. The increase varies from 35% in Other Business Activi-
ties and 40% in Health and Social Work to more than 100% in Agriculture and Fishing,
Textiles and Leather and Manufacturing not elsewhere classified (nec). These three in-

dustries have very low shares of skilled labor initially, so that even after doubling

at the highly skilled end and call centers and cleaning services at the lower skilled end.

2Skilled and unskilled labor are defined as in the previous chapter: skilled labor is a composite
of hours worked by people with a college degree and one third of hours worked by people with
at least some college education, unskilled labor is the remaining hours worked. Skilled wages are
derived as labor compensation to people with a college degree plus one third of labor compen-
sation to people with some college education divided by skilled hours worked. Unskilled wages
are the remaining labor compensation divided by unskilled hours worked. Data are again taken
from the EUKLEMS (2008) dataset.
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Figure 2.2 Share of Skilled Hours Worked by Industry, 1970-2005
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this share, they are still comparatively low-skilled sectors. Health and Social Work
is a special case among the industries studied, as it combines a drop in the skill
premium with a large rise in skilled labor - different from what is observed in all
other industries. One would not expect a role for technology in explaining the
skill premium, although it turns out that skilled production efficiency increased
substantially.

Looking beyond the economy as a whole, and seeing whether all industries
that make up this economy developed in parallel or there were large differences
is interesting in itself, as it explores the origins of the result in chapter one. It is
also useful to know when designing a policy to offset some potential negative
effects of biased growth of production efficiencies. A policy that wanted to boost
unskilled wages, e.g. by encouraging investment in unskilled capital, would re-
quire more resources in Textiles and Leather, where skilled production efficiency
outgrows unskilled production efficiency, than in Wood and Cork, where the pro-

duction efficiency growth rates also work to decrease the skill premium by raising
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unskilled wages. Furthermore, looking at whether there is a systematic differ-
ence between one group of similar industries and another (say manufacturing
and services) or whether the difference is random could be helpful when looking
for the source of the biases: if similar industries show similar biases, production
efficiency biases are more likely due to a common characteristic of these indus-
tries; if the biases follow no obvious pattern, the causes of bias need to be found
elsewhere. Unfortunately, the latter seems to be the case.

The analysis is very similar to chapter one, but there are some new issues to re-
solve for this chapter. One issue involves finding a plausible method of deriving
the share of skilled and unskilled production in value added from existing data.
This is a prerequisite for finding skilled and unskilled capital shares, which turn
out to vary considerably across industries. The simulation algorithm remains un-
changed, though there is a conceptual difference between the first chapter model
of the whole economy and the industry model in this chapter. This difference
requires some additional assumptions to keep the model tractable.

There are a number of studies on productivity growth by industry, but to
my knowledge none that try to differentiate production efficiency effects by skill
level. Nordhaus (2005), for example, finds that productivity growth was largest
in Finance and Computers and electronic products, but only the latter exhibits skill-
biased technological change in my analysis. Nordhaus distinguishes neither la-
bor nor productivity by skill level. He also uses a different industry classification,
so that his results and mine are not comparable for all industries. Jorgenson, Ho,
and Stiroh (2003) look at productivity growth by industry. Their dataset pro-
vides the basis for the EUKLEMS (2008) dataset (see also Timmer, O’Mahony,
and van Ark (2007)) I use in this paper. Differentiating labor by skill, they find
that productivity growth is largest in Electronic components and Computers and of-
fice equipment, but they do not try to distinguish different types of labor efficiency
either. Wolff (2002) includes different measures of skill in his study of productiv-

ity growth in 44 industries. He uses the industry data in a regression analysis,
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however, and thus has nothing to say on individual industries or labor efficiency
by skill level.

To derive my results, I proceed as follows: section 2.2 describes the changes to
the model of chapter one that are necessary to adapt it to a multi-sector environ-
ment. In section 2.3, I explain how I obtain the data and parameters I need, again
focusing on changes from chapter one. The main results and some robustness

checks are described in section 2.4, and section 2.5 concludes.

2.2 The Model

This section briefly recapitulates the model from chapter one (which is an exten-
sion of the model in Caselli (1999)), and explains the changes necessary to be able

to look at industries within an economy separately.

2.2.1 Production and Factor Payments

Each industry produces one good using two types of production: skilled and
unskilled. Each type of production uses a Cobb-Douglass technology and the two
technologies are perfect substitutes. There is perfect competition in each industry,
so that the factors of production are paid their marginal products. Industry i’s

production function per hour worked at time ¢ is
1 = AakPion P Ak (1 — i)' 221
Vit = Asit sit @i T Auit uzt( q)zt) (2.2.1)

Note that the capital shares § and -y can be different for each industry.

This production function is used for reasons of feasibility and consistency
with chapter one. There may be more realistic production functions, e.g. one that
does not assume perfect substitutability between skilled and unskilled produc-
tion, or one that has both types of labor in both skilled and unskilled production:

blsz21 Ll byi—by;

sit 's,sit ~'u,sit

LA KL i (2.2.2)

uit ~'s,uit "'u,uit

Yir = AgiK
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The results from chapter one suggest that perfect substitutability between both
types of production is not too strong an assumption. Equation 2.2.2 is more real-
istic at the industry level, as any type of production tends to involve both types
of labor to some degree. It is, however, impossible to separate skilled labor in
skilled production from skilled labor in unskilled production in the data, so that
the quantitative exercise of this paper is not feasible with the production function
represented in 2.2.2.

The economy’s total output is the sum of all n industries” output:
n
Y=Y Y.
i=1

Factor payments in industry i then are
Wsit = (1 - ,Bi)Asitkfiitgoi;ﬁi (2.2.3)

and

roit = BiAsikly oy P (2.2.4)

sit

for the skilled sector in industry i. Factor payments for the unskilled sector are

obtained analogously.

2.2.2 Consumption

As in chapter one, there is a measure one of identical households, with measure
one of members who share all risks and incomes. Households consume the ag-
gregate consumption good C = Yi' ; ¢;, where n is the number of industries in
the economy and c; the units of output of industry i used for consumption. The

consumer’s utility function is logarithmic:

u(C) =10g(C) = log(éci). (2.2.5)

Assuming this form of aggregation across goods allows me to keep all prices
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normalized to one and to compare results with those in chapter one. It is a strong
assumption, so I also consider aggregation of consumption via a CES aggregator
as a robustness check. Using the CES aggregator, however, requires strong and
unrealistic assumptions with respect to the future development of relative prices,
which is why I keep the perfect substitutability aggregation as the main model.

One unit of labor is supplied inelastically. Each worker assigns a value
Li(wj, x;) to working in industry i, based on the wage w; to be earned in that
industry and a vector x; of other, non-wage, characteristics that may govern the
worker’s preferences for a particular industry.

The vector x; is necessary for two reasons: In an overview of sociological re-
search on various parameters that determine an individual’s choice of occupation
and change of occupation, Levine (1976) shows that there are factors other than
wage that matter for this decision (e.g. personal interest and family expectations,
among others). Additionally, including this vector is a crude, but effective, way of
explaining wage differentials across industries in equilibrium. These differences
can be observed in the data, and they are not consistent with industry choice
based purely on wages earned each period, as wages equalize across industries in
that case. Prohibiting industry mobility would result in wage differentials across
industries, but this is not realistic either. Kambourov and Manovskii (2008) show
that between 1968 and 1997 on average 10% of workers moved from one one-digit
industry to another every year.

At the beginning of each period ¢, before production begins, workers decide
in which industry to work that period®, choosing the industry with the highest
value of L; attached and taking everyone else’s choice as given. This results in a
certain number of hours worked by skilled and unskilled labor in each industry.
Normalizing by total hours worked in each industry yields ¢;; and 1 — ¢;;, the
share of skilled and unskilled hours worked in industry i in period ¢.

Explicitly specifying a functional form for L; is not necessary, as I observe the

3The full sequence of events: skill acquisition by the unskilled, then industry choice, then
production occurs and finally the investment decision.
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outcome of this decision process for each period in the data. Taking this shortcut
will not affect the main results, as the exact specification of L; would need to be
calibrated to match this data. Additionally, the decision on the choice of indus-
try takes place before production begins each period, so L; does not affect the

equations used to back out As and Ay, other than via ¢; .

2.2.3 Wage Differentials Across Industries

As mentioned in the previous section, in a basic model of endogenous labor
choice between industries, workers would keep moving to the industry paying
the highest wage until wages are equalized across industries. This is not what
we observe in the data, however. Industry wage differentials have been very per-
sistent over time and across countries, as has been noted in the literature (e.g.
Krueger and Summers (1986), Krueger and Summers (1988), Blanchflower, Os-
wald, and Sanfey (1996), Thaler (1989)).

There are various possible explanations for why there are wage differentials
across industries (all of them possible elements of the vector x;), most of them
rooted in the question of why people do not move to another industry to equalize
wages. A number of explanations are consistent with perfect competition in the
labor market, some more explanations are not*. While I am agnostic as to which
is the “correct” explanation, I need to consider the impact on my variables of
interest, as these explanations affect the As and A, I am interested in differently.

My main results are determined by looking at the difference in average
growth rates of skilled and unskilled production efficiency. The results are there-
fore affected if the explanation for the wage differentials has effects on skilled
and unskilled production efficiency that are non-constant and not growing at the

same rate for both types of workers over time.

4The assumption of perfect competition ensures that workers are paid their marginal product,
thus providing a convenient mathematical relationship between wages and the production in-
puts. If the assumption of perfect competition does not hold and wages paid are above workers’
marginal products, the results on growth rate differentials of this paper still go through, as long
as both types of wages surpass marginal products to a similar degree.
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The explanation requiring least discussion is that there are exogenous barri-
ers to mobility across industries. These would not affect A; and A, at all. It is,
however, hard to think of any barriers that affect a large share of the labor force.
There are barriers to entry into certain professions, e.g. a law degree and the bar
exam for lawyers, but this is not true for most industries.

Another explanation concerns unobserved differences in ability, which would
be reflected in the backed out values of A. If the effect is increasing (constant)
over time for skilled labor, but constant (decreasing) for unskilled labor, or vice
versa, this is a problem. Krueger and Summers (1986) show that industry differ-
entials are the same for different types of workers, though, i.e. an industry A that
pays highly skilled workers more than industry B also pays more to low skilled
workers than industry B. Effects from unobserved ability, if they exist, thus go
in the same direction for both types of labor and do not affect the sign of the
growth rate differential. For skilled and unskilled wages by industry in my data,
the rank correlation is 0.85 or higher, depending on which wage I look at: the
average wage over time, 1970 wages, or 2005 wages. This suggests that if the
wage differentials exist due to unobserved differences in ability between workers
in different industries, this applies to both types of workers similarly.

Yet another explanation is that people include variables in their labor supply
decision that are unrelated to money, e.g. the location of the job, the reputation of
the industry, overall working conditions, flexibility of hours, etc. This would not
change the values of A, as they are similar to exogenous barriers and thus do not
directly affect production.

Krueger and Summers (1986) argue that the reason for wage differentials
across industries is neither unobserved ability nor differences in non-financial job
characteristics, as neither explanation can match all features of the data (see also
Krueger and Summers (1988)). They conclude that the wage differentials across
industries are due to some form of rent sharing, most likely from considerations

of fairness, between firm and worker. The high rank correlation between differ-
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ent types of workers again suggests that this is industry specific, but not specific
to a type of labor.

This explanation, however, is not consistent with the assumption of perfect
competition and labor being paid its marginal product. Under my model, which
assumes the wage data are the results of profit maximization, wage determination
via rent sharing will lead to an overstatement of As and A,. Crucially, both terms
will be overstated to the same extent, as rent sharing seems to depend on industry,
not on the type of labor. Therefore I can still answer the central question - do we

observe SBTC or not - for each industry.”

2.24 Equilibrium

As I am working with yearly data in the quantitative exercise, the model is set up
in discrete time. The irreversibility constraint discussed in chapter one is main-
tained here, too. It is even more likely to hold for specific industries than for the
economy as a whole, irrespective of whether the firm owns the capital or rents
it every period: as most capital is specific to each industry, a leasing company
could not cross-lease to other industries. Therefore, the constraint would only

shift from the producing to the leasing company.

One could argue that rent sharing has a stronger effect on skilled wages than on unskilled
wages, as skilled workers have better outside options, but in that case we should observe stronger
wage differentials for skilled workers than for unskilled workers, which Krueger and Summers
(1986) disprove. If this were true, then As would be overstated by more than A,, and the dif-
ference in production efficiency growth rates my model finds would be the upper bound of the
actual growth rate differential: if the result shows no SBTC, this would be true; if the result for
an industry shows SBTC, this result would be subject to the caveat that the actual difference in
growth rates might be smaller. Overall, this would make SBTC as an explanation of the wage
developments in individual industries less likely.
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Each household solves
(2.2.6)
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i=1
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s

I
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1
i€ (1,n)

kjity1 > (1= 9ji)

ksiOrkuiO given Vi

where 7 is the number of industries in the economy, and C;; the amount of the
aggregate consumption good consumed at time t from the proceeds of industry

i
Solving the optimization problem yields the following set of optimality con-

ditions:
Vi, j, t (2.2.7)

1 1
PC—I(VﬁtH +1—6ji) + pHjitr1 = C + (1 =81 pjie
where j = s,u, i denotes industry, and the y are the Lagrange multipliers on the

irreversibility constraints. Whenever the irreversibility constraint is not binding,

Cin
C = Py +1=35) (228)

must hold. Equation 2.2.8 implies that the rate of return on either type of capital

less depreciation must be equal across all industries.
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2.3 The Quantitative Exercise

The quantitative exercise is analogous to the one in chapter one. The detailed
description of the exercise can be found in section 1.4.1, more detail on the algo-
rithm is in the appendix of chapter one. The model in section 2.2 is constructed
to work the same way. This requires one additional assumption: each industry
is small enough that a change in C; does not noticeably affect C;, j # i. With this
assumption, finding the optimal use for the income from one industry does not
affect all other industries. This is a rather strong assumption given the limited
number of industries, but it is necessary to make the model tractable.

There are, however, some differences with regard to the derivation of data
and parameters which I explain in this section. In particular, it is not possible
to separate the skilled and unskilled portions of value added within each industry
in the data. Depreciation rates and capital shares therefore need to be handled

differently.

2.3.1 Data Source and Industry Choice

I'look at the data for twenty-four US industries. Table 2.1 shows the industries
covered and gives the EUKLEMS (2008) industry code (for a more detailed de-
scription of the data used see chapter one, the description of the whole dataset is
in Timmer, O’Mahony, and van Ark (2007)). The main criterion for choosing these
industries is the availability of data. If more disaggregated industry data is avail-
able, but very similar across subgroups, I choose the more aggregated industry.
Industries that are by their nature not profit maximizing are dropped (e.g., Public

Administration or Education).
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Table 2.1: List of Industries Covered and the Main Parameters

Industry SIC o B 0% X

Agriculture and Fishing AtB 0.07 057 047 0.36
Mining and Quarrying C 0.042 0.73 0.68 0.44
Food and Tobacco 15t16 0.079 0.42 0.34 0.40
Textiles and Leather 17t19 0.08 0.27 0.21 0.33
Wood and Cork 20 0.087 0.34 0.26 0.31
Paper and Publishing 21t22 0.096 0.37 0.26 0.48
Chemicals 24 0.087 053 047 0.58
Rubber and Plastics 25 0.095 0.29 0.20 0.39
Non-Metallic Minerals 26 0.088 0.38 0.26 0.37
Metal Products 27128 0.082 0.36 0.29 0.37
Machinery nec 29 0.097 0.21 0.27 0.42
Electrical & Optical Eq. 30t33 0.095 0.27 0.23 0.55
Transport Equipment 34t35 0.097 0.22 0.19 0.48
Manufacture nec 36t37 0.089 0.29 0.23 0.38
Electricity and Gas E 0.045 0.71 0.66 0.48
Construction F 0.13 030 0.12 0.34
Trade G 0.086 0.26 0.17 0.46
Hotels and Restaurants H 0.064 034 0.27 0.35
Transport and Storage 60t63 0.069 0.42 0.31 0.39
Post and Telecommunications 64 0.073 0.58 0.51 0.53
Financial Intermediation J 0.125 0.44 0.33 0.63
Real Estate Activities 70 0.013 090 0.90 0.59
Other Business Activities 71t74 0.151 0.30 0.26 0.69
Health and Social Work N 0.064 0.16 0.19 0.68

The first two columns show industries covered and the industry codes

as used in EUKLEMS (2008).

The third column shows each industry’s depreciation rate of capital.
Columns four and five show skilled () and unskilled () capital shares.
x is the share of skilled value added in total value added in each industry.
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2.3.2 Construction of Parameters
2.3.2.1 Initial Values for Production Efficiency and Capital

As in chapter one, I assume that the initial value for both skilled and unskilled
production efficiency is equal to one. This amounts to a normalization of the level
of production efficiency across all industries to be the same in 1970. Skilled and

unskilled capital are then derived from the wage and employment data for the

i

1 1
first period: ky; = (fﬁ%i)ﬁi @;and k,; = (1w“§ )7 (1= ;).

2.3.2.2 Wages and Share of Skilled Labor: w;, w,;, and ¢;

Skilled and unskilled wages are derived from the shares of labor compensation
paid to skilled and unskilled labor, divided by the number of hours worked by
skilled and unskilled labor in that industry. As in chapter one, to reduce the
three skill levels in the dataset to the two skill levels I need, I add one third of
the hours worked by medium skilled labor and of medium skilled labor com-
pensation to the values for high skilled, and the rest to the values of low skilled
hours worked and labor compensation. The share of skilled labor ¢; is the share
of hours worked by skilled labor in industry i in total hours worked in that in-

dustry.

2.3.2.3 Depreciation Rates: J;

For the depreciation rates, I assume they are equal for skilled and unskilled cap-
ital. This is necessary as I cannot subdivide the industry data further to differen-
tiate capital according to skill and calculate the respective rates. In chapter one it
turned out that assuming equal depreciation rates did not qualitatively alter the
results, so losing this source of differentiation should not affect the main results

here either. The depreciation rate used for each industry is given in table 2.1.
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2.3.2.4 Capital Shares: 3; and 7;

To derive skilled and unskilled capital shares, B; and 7y; respectively, I need data
on skilled and unskilled labor compensation (LABg; and LAB,;;) and skilled and
unskilled value added (Y;; and Y;;;). Labor compensation by skill level is avail-
able in the data, but there is no direct information on skilled and unskilled value
added within each industry. The share of skilled value added in total value added
in industry i is x, such that Y; = xY;; + (1 — x)Y);;. x turns out to be equal to the

share of skilled labor compensation in total labor compensation:

Proposition 3. If Y; is produced using a constant returns to scale production function

and % #+ %, the share of skilled value added in total value added is either x = % or

X = #stuhﬂ the share of skilled labor compensation in total labor compensation.

Proof. As

w;L;+r;K;
L =1, forj=s,u,
¥j

wsLs + 1rsKs + wy Ly +71,Ky 1 wsLs n rsKs n wy Ly, n ruKy

== . 2.3.1
Y 2( Ys Ys Yy, Yy ) 23.1)

Provided that w{,—sLs + % (and thus automatically that wg‘,—f” # %), equation

2.3.1 implies “lsttuly — 1(wls 4 tuly
uLy
—X

Vs ).6 Equation 2.3.1 can be rewritten as

lwsLs _ wsks _ wyLy

s s = 2 % ( where x is the share of skilled value added, and

with some algebra transformed into a quadratic equation:

2 — = 232
( ~ Y )x=—(3 v Ty )x + y =0 (2.3.2)
Solving out this quadratic yields x = #@juu orx = 3. O

For each industry, I calculate x each period and take the unweighted average
over time. With this average x, I calculate skilled and unskilled value added, Y;

and Yj,.

®To show this is the case, note that for z # 0, (3 + z)(wsLS + w”L“) + (3 - z)(% +
rlﬁ/Kll) — wsLs +rsKs‘;wuLu+ruKu 1mphes (wsL‘: + wuLu + rsK‘: + ruKu ) +Z(wsLs + wuLu rsKs ruKu) —

Yll YS Yll
wsLstKﬂ(w“L“”“K“ Unless w;LS + wi’/l‘” — —”‘YKS — ”yK“ =0, whlch is the case if wSLS = —%{f“, z#0
leads to a contradiction and the equation above must hold.
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Next, I calculate skilled and unskilled labor shares for each period as 1 — p =
w;—fs and 1 — vy = wg‘/—i“" These shares are not constant over time, as the model
requires, so I take the average of the first and last period values, and subtract
these results from one to obtain the capital shares for each industry.” These capital
shares are given in table 2.1.

I prefer the average of the first and last period to the overall average, as the
former better reflects large changes in the shares over time. The average over all
periods cannot distinguish between a series of shares that has been fairly constant
over time from one that has, for example, tripled over time at a decreasing rate
of change. The average over all periods thus disguises large differences between
the series and ignores valuable information that is better captured by using the
average of first and last period only.

As an example, consider figure 2.3, which shows skilled and unskilled labor
shares for Chemicals over time. The average labor share over all periods is 0.53 for
skilled labor and 0.51 for unskilled labor. Clearly, the series are not as similar as
the simple averages suggest.3

The capital shares derived in this manner are biased if the industry’s true pro-
duction function is represented by 2.2.2, as part of the labor share is captured in
the capital share for one type of production and part of the capital share is cap-
tured in the labor share for the other type of production. The bias on  and v
individually is less important than effect of the bias on the difference between the
two, though, as we know from chapter one that g; — g, is decreasing in f — y and
hence that the larger the difference between B and v, the less likely is the exis-
tence of SBTC. The size and direction of the bias depends on L; ,;; and L, ;;, the
hours of skilled labor worked in unskilled production and the hours of unskilled

labor worked in skilled production. More precisely, the bias in the skilled capital

“In principle, this method is also valid for deriving capital shares in chapter one. This would
yield B = 0.39 and y = 0.33, resulting in a growth rate differential of 0.0025.

8Note that even though in the average of first and last period the condition that % # %
is violated, the method for finding x is still valid, as the condition is not violated in any period in
the calculation.

69



Figure 2.3 Labor Share in Chemical Industry Over Time
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where by and c; are the capital shares in 2.2.2. Note that the biases of  and 1,
when they exist, always are of opposite signs. The bias in the difference between

the capital shares can then be expressed as
1
bh—aa=p—7+ W(wsLs,uit — wyLysit) (2.3.5)

with Y;; total value added of industry i at time ¢ and x still the share of skilled
production value added in total value added.

There are three possible scenarios:

o wyL, st = wsLs,: In this case the bias is zero, and the observed capital

shares are the same as the true capital shares.
o wyL,s > wsLg,: In this case, c; > <y and by < B and thus by — 1 <
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B — . As the observed difference in capital shares is larger than the true
difference, the observed results on the difference in growth rates between
skilled and unskilled production efficiency understate the true results and

SBTC is more likely than the results suggest.

o wyL, s < wsLg i Inthis case, ¢c; < yand by > fand thusb; —c; > B — 1.
The observed difference is smaller than the true difference and the observed

results overstate the existence of SBTC.

AsIdonot know L, ;s and L, 4, I cannot determine with any certainty which
of the three scenarios holds. One could argue that it is likely that more unskilled
labor is needed in skilled production than vice versa and conclude that SBTC
is understated. However, the higher skilled wage may outweigh the possibly

greater numbers of L, ;; and thus SBTC may be overstated instead.

2.4 Results

2.4.1 Main Results

In this section I present the results of the simulation for all industries except two:
for Electricity and Gas and Real Estate Activities the algorithm does not converge. I
discuss possible reasons for non-convergence at the end of the section.

For four more industries (Food and Tobacco, Machinery nec, Post and Telecommu-
nications, Mining and Quarrying) I stop the simulation at a higher value for the
convergence criterion as it enters an infinite loop at very small values of the error
criterion. This can in principle be remedied by further tightening the grid over
which the code is run, but at a very large time cost. Testing the impact of different
convergence criteria in other industries, I find that for any criterion smaller than
0.1 the results are identical to those using the standard criterion of 1e~>, and for
0.1 differences are only observed at the sixth decimal. The criterion used for these

four industries should therefore not affect the results.
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24.1.1 Converging Industries

Table 2.2 shows the difference in the average growth rates of skilled and unskilled
production efficiencies. A positive value for the difference suggests that there has
been SBTC in this industry, as the wage premium in these cases increases with an
increase in the ratio of 1‘2—2.

Of the 22 industries for which I have results, the difference in the average
growth rate is positive for ten. There has been SBTC in Textiles and Leather, Rubber
and Plastics, Machinery nec, Electrical and Optical Equipment, Transport Equipment,
Manufacture nec, Construction, Trade, and Other Business Activities. The difference
in average growth rates is largest for Health and Social Work, which is a particularly
interesting case: the growth rates of production efficiencies affect the skill pre-
mium positively, yet the skill premium actually declined over the period studied.
This is due to much higher growth in unskilled than in skilled capital, in addition
to the increase in skilled hours worked relative to unskilled hours worked.

All other industries exhibit a negative average difference between skilled and
unskilled production efficiency, indicating that technological change was unskill-
biased there. The difference in growth rates is less than one percentage point for
all UBTC-industries and all but two SBTC industries (the difference is 1.7 percent-
age points for Machinery nec, 1.0 percentage points for Other Business Activities),
and Health and Social Work (2.1 percentage points).

The irreversibility constraint is binding for at least one period and at least
one type of capital for all but five industries. These five industries (Agriculture
and Fishing, Mining and Quarrying, Chemicals, Post and Telecommunications, and
Hotels and Restaurants) all show unskill bias. For four industries, the irreversibility
constraint is only binding for unskilled capital, for two only on skilled capital.
For the remaining eleven industries, the constraint is binding on both types of
capital at some point, though not necessarily at the same time. Although one
would expect that a binding irreversibility constraint on unskilled capital makes

skill bias of technology more likely, three of the four industries exhibit unskill
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bias nonetheless. The constraint is only binding for five periods or less, though.
For the one industry exhibiting skill bias, Textiles and Leather, the constraint is
binding for fifteen periods. The irreversibility constraint is binding on skilled
capital for one period in Wood and Cork (slight unskill bias) and for four periods
in Health and Social Work (strong skill bias). Of the remaining industries, three
show unskill bias and eight skill bias, though no clear pattern emerges that would
allow conclusions if and how the binding constraint might affect the results on
skill bias.

Aggregating these industry results to the level of the three main sectors of
the economy (using unweighted averages) reveals that there has been UBTC in
the primary sector (unweighted average of the differences between growth rates
—0.007), and indicates SBTC for the secondary (0.002) and tertiary (0.004) sectors.
Taking the weighted averages instead, with the average value added in each in-
dustry as the weights, yields a growth rate differential of —0.007 in the primary
sector, 0.002 in the secondary sector, and 0.006 in services’. The average for the
economy as a whole is 0.004, which would suggest SBTC in the economy as a

whole.

2.4.1.2 Discussing Non-Convergence

For two industries, Electricity and Gas and Real Estate Activities, the algorithm does
not converge. This is due to problems with the interval for the grid values for K,
and the fact that capital shares are very high for these industries. Although this is
a purely technical problem, explaining why some results are not available merits
this brief discussion.

High capital shares lead to high initial values for unskilled capital K,o. The
grid values for K, i.e. the interval of values over which the value function iter-

ation is run, is determined by the initial value of unskilled capital. The smallest

9This much larger weighted average is entirely due to the large growth differential of Health
and Social Work. The weighted average for the services sector excluding Health is 0.004, for the
whole economy it is 0.003
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Table 2.2: Growth Rate Differentials

Industry Difference in average growth rates

full sample 1980-2005 1990-2005
Agriculture and Fishing -0.008 -0.007 -0.006
Mining and Quarrying -0.006 -0.001 0.004
Food and Tobacco -0.004 -0.002 0.001
Textiles and Leather 0.005 0.008 0.007
Wood and Cork -0.002 0.0002 0.001
Paper and Publishing -0.009 -0.008 -0.004
Chemicals -0.003 -0.001 0.002
Rubber and Plastics 0.007 0.002 0.003
Non-Metallic Minerals -0.001 -0.005 -0.0002
Metal Products -0.004 -0.002 0.001
Machinery nec 0.017 0.011 0.012
Electrical & Optical Eq. 0.008 0.013 0.013
Transport Equipment 0.006 0.005 0.008
Manufacture nec 0.002 0.003 0.001
Electricity and Gas nc nc nc
Construction 0.005 0.004 0.007
Trade 0.006 0.006 0.004
Hotels and Restaurants -0.001 -0.0004 0.003
Transport and Storage -0.002 -0.003 -0.001
Post and Telecommunications -0.002 -0.001 0.001
Financial Intermediation -0.004 -0.006 0.0001
Real Estate Activities nc nc nc
Other Business Activities 0.010 0.006 0.005
Health and Social Work 0.021 0.013 0.011

The numbers are the difference of the average skilled and unskilled
production efficiency growth rates.
n.c. denotes non-convergence in that industry.
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value of the interval is a fraction a of Ko, the largest value is a multiple b.

If b is too small, the path of capital reaches the upper bound of the interval. If
a is too large or the step size in the interval is not small enough, even the smallest
possible choice of capital will lead to a negative level of consumption. In that
case, the negative consumption value is replaced with a marginally positive one.
But if all consumption values are the same marginally positive value, the level
of capital that maximizes the value function is always the upper end point of the
interval. In neither case will the path of capital be the optimal path.

In principle, this problem can be solved by increasing b, decreasing a and
decreasing the step size of the interval. In practice, increasing the number of grid

points enough to solve this problem makes the algorithm too time-consuming.

2.4.2 Robustness Checks

In theory, equation 2.2.8 provides an ideal check for whether the simulation re-
sults are credible or not. If the rates of return on capital are equal across indus-
tries, the results are consistent with the model and the code can be expected to
deliver useful results. Rates of return on capital would only be exactly equal,
however, if the simulated model were continuous in capital. I necessarily work
with a discrete approximation, which means that the rates of return in two dif-
ferent industries can be different to some degree. How much difference still is
consistent with equation 2.2.8 depends on the values for production efficiency,
capital shares, and on ¢, but also on the step size for the nodes of capital in the
two industries. As step size is determined by the initial level of capital, the differ-
ence may become quite large and still not contradict equation 2.2.8.1% Equation
2.2.8 holds between skilled and unskilled capital within the same industry by

construction, as long as the irreversibility constraint is not binding.

19For example, for Paper and Publishing the step size is 0.266, while for Wood and Cork it is 0.057.
The maximum difference consistent with equal rates of return is difficult to determine, but as-
suming all other variables are equal, a difference in the rates of return of these two industries of
0.16 would still be consistent with equation 2.2.8. Differences in production efficiency or capital
shares could either increase or decrease this maximum consistent difference, depending on actual
values.
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2.4.2.1 Different Time Periods

The skill premium fell in the 1970s for most industries, and only started rising
from 1980 onwards. This behavior in the skill premium suggests a negative dif-
ference between skilled and unskilled production efficiency growth for the first
decade of the period under study. To check whether the results are driven by
the behavior of the wage premium in the 1970s, I also compute the differentials
starting from 1980. The results are also presented in table 2.2.

Comparing results for the full sample with those starting in 1980, the sign
changes for one industry only: Wood and Cork exhibits UBTC when looking at
the full sample, but seems to have experienced SBTC after 1980. For all other
industries the direction of the bias remains the same, only the magnitudes differ.
The results therefore are not driven by the behavior of the skill premium in the
early years.

Finally, I also look at the production efficiency growth rates starting from 1990.
Computers and the internet only started to be widely used in the 1990s, and they
are thought to favor skilled labor. If the difference in growth rates turns positive
for that period, this could be seen as an indication that information and com-
munication technology (ICT) indeed had a positive effect on skilled production
efficiency in these industries.

For the period 1990-2005, the difference between skilled and unskilled pro-
duction efficiency is negative for only four industries: Agriculture, Paper and Pub-
lishing, Non-Metallic Mineral Products, and Transport and Storage. For all others, the
difference is now positive. This may be an indication of the ICT revolution affect-
ing skilled labor more than unskilled labor. Chapter three will explore the link

between the skill premium and ICT capital in different industries in more detail.

2.4.2.2 CES Aggregator for Consumption

As the assumption of perfect substitutability of consumption goods produced in

different industries is rather strong, I repeat the exercise for Paper and Publishing
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and Transport Equipment using a CES aggregator for consumption. To give an
idea of the effect on the results it is not necessary to repeat the exercise for all
industries, instead I choose two industries for which results are very different in
the main version of the model.

Consumption goods produced in each industry are aggregated via C =
(L o )zx where « is the elasticity of substitution between two goods. The same
aggregator is used for capital goods (as in Arkolakis, Costinot, and Rodriguez-
Clare (2012), among others). With this consumption aggregator, output prices are
no longer equal to one for all industries at all points in time and need to be taken

into account in the simulation.

Households now solve

maxy r, U=Y_p'n(C) (2.4.1)
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where P is the aggregate price level and p;; is the price of output in industry i at

time t. Whenever the irreversibility constraint is not binding,

p(Frin +1-05) = p(Priia +1 - 6u) (242)

must hold. As the depreciation rates for skilled and unskilled capital are equal

for each industry, the condition simplifies further to

Tsit+1 = Tuit+1 (2.4.3)
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I do not need a at any point in the simulation, so the question of finding an
appropriate value does not arise. The price level data are taken from EUKLEMS
(2008), using value added prices of the economy as a whole for P and of the
relevant industries for p;. For the post-sample period I assume that the price
ratio stays constant at the level of 2005. Some assumption on the evolution of
relative prices after the end of the sample data is necessary, even though finding
reasonable predictions for relative prices over many periods is impossible. This
is one of the reasons why I prefer the assumption of perfect substitutability of
consumption for the main specification.

The results are virtually identical to my baseline case: for Paper and Publishing
the growth rate differential between skilled and unskilled production efficiency is
—0.010 with the CES aggregator, compared to —0.009 with the baseline. For Trans-
port Equipment the values are 0.006 for CES and 0.006 for the baseline. Assuming
that consumption goods produced in different industries are perfect substitutes

therefore seems to not be an overly restrictive assumption.

2.5 Conclusions

The purpose of this chapter is to investigate what lies beneath the results of the
previous chapter, especially as there has been some variability in the evolution
of wages and the skill composition of the labor force in different industries from
1970 to 2005.

The results suggest that technological progress has varied across industries,
and that the result in chapter one is the result of averaging different developments
in each industry. There are results for 22 industries, and less than half of these
show skill biased technological change (SBTC). For the rest, unskilled production
efficiency growth exceeded that of skilled production efficiency.

Differentiating by sector reveals that industries in the tertiary sector, services,

are more likely to exhibit SBTC than the other sectors of the economy. There
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are, however, several industries in the services sector that do not exhibit SBTC
(among them, somewhat against expectations, Financial Intermediation and Post
and Telecommunications), and several manufacturing industries that do, so that
the sector by itself is not a useful characteristic in determining the underlying
causes of SBTC. Finding the common elements in the SBTC industries remains a
question for future research.

Looking at the growth rates of production efficiency at shorter time horizons
indicates that SBTC might have played a larger role after 1990. This may help
in explaining the intuitive appeal of the SBTC hypothesis - it cannot explain the
whole of the rise in the skill premium, but it might explain part of it in more
recent years, which are fresher in people’s memory. As the rise of information
and communications technology also falls in the period after 1990, there might

be some connection between ICT and SBTC.
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Chapter 3

Information and Communication
Technology and the Skill Premium in

Different US Industries

3.1 Introduction

3.1.1 Motivation

One area where technological change has been very visible over the past forty
years, and especially since the 1990s, is information and communication technol-
ogy (ICT). Computers in particular have changed the way people work and the
way firms organize their workforce (see Autor, Levy, and Murnane (2000)). In
this chapter, I investigate the role of ICT capital in the production function and in
the evolution of the skill premium in different US industries.

Following Jorgenson (1986) and Ruiz-Arranz (2003), I estimate a translog price
function with four factors of production and a technology parameter for each in-
dustry. There are two ways in which ICT capital is of interest: one is the pattern of
substitutability and complementarity of ICT capital with other factors of produc-
tion. The first question therefore is which industries exhibit ICT capital-skill com-

plementarity as defined by Griliches (1969). Autor, Katz, and Krueger (1997) find
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that more computer-intensive industries increase the use of skilled labor faster,
indicating the presence of ICT capital-skill complementarity. My estimation re-
sults confirm this for most industries. Not all industries exhibit ICT capital-skill
complementarity, however. There are skilled jobs that become unnecessary with
increased use of ICT in some industries, so some variation is to be expected.

To illustrate the two possible effects of an increase in ICT capital, look at
graphic designers in Paper and Publishing and at stock brokers in Financial Inter-
mediation. The work of graphic designers, though requiring higher education,
can largely be done by personal computers, reducing the number of graphic de-
signers needed. In this case, ICT capital and skilled labor are substitutes. Stock
brokers on the other hand use computers to make more trades, and the decision
on each of these trades must be made by a broker (high frequency trading algo-
rithms notwithstanding). Here it is more likely that more brokers are hired to be
able to carry out even more transactions, making skilled labor and ICT capital
complements.

The second matter of interest is the “ICT effect” on the skill premium, i.e. the
question whether ICT capital has contributed to the increase in the skill premium
in the period studied. The use of ICT capital requires a certain level of education,
especially in the early stages of the technology. Krueger (1993) finds that workers
using computers earn higher wages, and that skilled workers are more likely to
use ICT. In that case an increase in the use of ICT should lead to an increase in the
skill premium. DiNardo and Pischke (1997) dispute this connection, however.
They find that other office items not particularly associated with highly skilled
labor (e.g. pencils) correlate with wages similarly to computers, suggesting that
there is no causal relationship between computers and higher wages. This is an
argument against any effect of ICT on the skill premium. I find that for most in-
dustries increasing ICT capital depresses the skill premium. This is a somewhat
unexpected result, for which I offer a possible explanation related to the comple-

mentarity between ICT capital and skilled labor and the substitutability of ICT
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capital and unskilled labor.

Apart from looking at ICT, I also investigate the patterns of factor use and fac-
tor saving in the biases of technology, concepts introduced by Binswanger (1974)
and Jorgenson and Fraumeni (1983). Finally, I look at the overall effect of technol-
ogy on the skill premium as implied by this model as a crude robustness check of

the results from chapter two.

3.1.2 Discussion of Relevant Literature

There is a vast literature on estimating production functions, the elasticities of
substitution between factors, and factor biases of technological change. An
overview of the foundations and a large number of studies is given in Jorgenson
(1986). There are a number of studies looking at data at the industry level, but
to the best of my knowledge none that separate labor into skilled and unskilled
labor. Authors looking at different types of labor separately tend to consider the
economy as a whole, or several countries together.

One well known example of the second group of authors is Krusell, Oha-
nian, Rios-Rull, and Violante (2000), who estimate a CES production function
with skilled and unskilled labor and two types of capital (equipment and struc-
tures) as inputs. They assume that the elasticities of substitution between skilled
and unskilled labor and between equipment capital and unskilled labor are equal,
and that the elasticity of substitution between equipment capital and skilled la-
bor is different. If the latter elasticity is larger than the former ones, the produc-
tion function exhibits capital-skill complementarity. Their main finding is that
the changes in the skill premium for their period of study (1963 - 1992) can be
explained by changes in factor inputs alone, without needing to resort to skill-
biased technological change as an explanation. From their estimation they find
evidence of equipment capital-skill complementarity. Separating the change in
the skill premium into three distinct effects, they find that the “complementarity

effect” has raised the skill premium by 60% over the time horizon studied, while
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the “quantity effect” of labor supply has decreased the skill premium by 40%.
The “technology effect” is essentially zero.

Technological progress enters the Krusell, Ohanian, Rios-Rull, and Violante
(2000) model in three ways. The first effect is via a TFP parameter that affects all
factor prices equally and thus does not affect the skill premium. Second, techno-
logical progress affects the production of equipment capital and leads to declin-
ing relative prices of equipment capital relative to structures. This price decline
affects the growth rate of equipment capital, and this growth rate in turn deter-
mines the “complementarity effect”. Thus, there is some effect of technology on
the skill premium even in their results. This effect of technological progress in
their model via relative prices cannot be quantified separately in their results.
Third, technological progress determines skilled and unskilled labor efficiencies
in their model. As these efficiencies are unknown, they are modeled as stochastic
processes. The assumption is that each type of labor efficiency follows a random
walk with a constant and without a time trend. Skill-biased technological change
would be present if there were a time trend in these processes and the coefficient
on a time trend component for skilled labor efficiency were larger than the coef-
ficient on the time trend for unskilled labor efficiency. By assuming ex ante that
both of these coefficients are zero, they assume away the possibility of skill-biased
technological change in their results. !

Ruiz-Arranz (2003) disputes the findings in Krusell, Ohanian, Rios-Rull, and
Violante (2000). She extends a model developed by Christensen, Jorgenson, and
Lau (1973) (and described in detail in Jorgenson (1986)) to investigate the rela-
tive contributions of technological bias and ICT capital-skill complementarity to
the evolution of the skill premium of the overall US economy. She estimates two

2

versions of a translog production function <: one version with skilled and un-

skilled labor and IT and non-IT capital as inputs, the other splits capital further

IThey analyze a different set of assumptions, too, where they allow for different time trends.
However, in that version, they assume all elasticities of substitution are equal and thus rule out
the entire “complementarity effect” ex-ante.

2Strictly speaking, the dual of a translog production function.
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into IT capital, non-IT equipment capital and structures. Using the translog pro-
duction function imposes no ex-ante restrictions on the elasticities of substitution.
Krusell, Ohanian, Rios-Rull, and Violante (2000) discuss the translog function, but
decide against it because it comes at a high cost in terms of degrees of freedom in
the estimation when the sample is small. This is a valid point, as the procedure
in Krusell et al involves estimating 7 parameters on 29 observations, leaving 22
degrees of freedom, while the smaller Ruiz-Arranz (2003) model requires the es-
timation of 15 parameters on 35 observations for 19 degrees of freedom. Thus,
using the translog production function limits the power of statistical tests that
go beyond simple significance tests, while not using the translog function limits
the information to be gained from estimation as the ex-ante restrictions on the
elasticities of substitution between the factor inputs may hide information on the
actual shape of these elasticities if they were unrestricted. Ruiz-Arranz also ex-
plicitly allows for different effects of technology on the production functions by
introducing interaction terms between technology and the factors of production
(as developed by Binswanger (1974)) and develops a framework to separate the
effects on the growth of the skill premium from technological progress from the
effects of capital-skill complementarity.

She finds that there is IT capital-skill complementarity both in the four- and
the five-input model, but that non-IT equipment is a substitute for skilled labor,
a result confirmed by Michaels, Natraj, and Van Reenen (2013) for a sample of
25 countries. IT capital-skill complementarity is stronger during the early part
of the sample, during which there was only little increase in the skill premium.
In both models there is a large negative effect of the relative increase of skilled
labor supply (80% and 73% respectively) on the skill premium, a smaller positive
“complementarity effect” from the changes in capital inputs (41% and 31%) and
a large positive effect from technological progress and its effect on all four inputs
to production (58% and 61%). This contrasts with the conclusion of Krusell, Oha-

nian, Rios-Rull, and Violante (2000) that all of the change in the skill premium
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can be explained by observable factors.

The results of chapter one of this thesis are very different compared to both
Krusell and Ruiz Arranz at first sight, but this does not invalidate the motiva-
tion and results of Ruiz-Arranz (2003). The production function in chapter one
is more restrictive and the capital inputs into production are separated along dif-
ferent lines, namely simply by which type of labor uses this capital - skilled or
unskilled labor. This production function is the most general production func-
tion possible that allows me to tractably derive the paths of skilled and unskilled
labor within the model. It is also in keeping with the theoretical model which
motivates chapter one. The central result is that on average, unskilled factor pro-
ductivity has increased slightly faster than skilled factor productivity, suggesting
that there has not been skill-biased technological change. Skilled (unskilled) fac-
tor production in the model of chapter one combines the effects of technological
progress on skilled (unskilled) labor and skilled (unskilled) capital. There is no
direct capital equivalent in Ruiz-Arranz (2003) work, but if one uses IT capital as
a crude proxy for skilled capital and non-IT capital as a very crude proxy for un-
skilled capital, the effects of “skilled factor productivity” in Ruiz-Arranz (2003)
are smaller (13%) than the effects of “unskilled factor productivity” (45%), lead-
ing to a similar conclusion as in chapter one.

The innovation of this present chapter is to apply the more flexible method-
ology developed in Ruiz-Arranz (2003) for the first time to industry level data in
the US. The application to industry data requires a different sample period, as
the data are only available from 1970 onwards. Thus, I look at industry level data
from 1970 to 2005, while Ruiz-Arranz (2003) studies the US economy as a whole
from 1965 to 1999. The instruments used to mitigate the endogeneity bias in the
estimation are also different. Finally, the focus in Ruiz-Arranz (2003) and in this
chapter is distinct: the primary focus in Ruiz-Arranz (2003) is specifically on the
effect of ICT capital-skill complementarity on the skill premium, whereas I am

interested in the role of ICT capital in all aspects of the production function of
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different industries.

Two more examples of studies also estimating production functions for coun-
tries as a whole are Duffy, Papageorgiou, and Perez-Sebastian (2004) and Berndt
and Morrison (1979). The former estimate CES production functions for a panel
of countries and find capital-skill complementarity only when defining a very
low threshold for skilled labor. They suggest that technology bias is likely a more
important factor. The second study looks at the effect of an increase in energy
prices on the wages of white and blue collar workers. Estimating a translog cost
function for the manufacturing sector for 1947-1971, they find that blue collar
workers’ wage share would increase with energy prices, while the wages of white
collar workers decrease. They do not consider technology at all, however.

Binswanger (1974) also employs the translog cost function in his estimations,
looking at pooled data from 39 US states at different time periods, only consider-
ing labor as a whole. This study is the first to explicitly look at the biases of tech-
nological change and shows that, at least for short enough time periods, a linear
trend is a good approximation to technological change. Jorgenson and Fraumeni
(1983) use a translog price function with a linear trend for technology to look
at the biases of technology and find distinct patterns of factor using and factor
saving biases of technology across industries. They look at different industries,
but do not differentiate labor by skill level. The linear approximation of technol-
ogy still is commonly used, with the exception of Jin and Jorgenson (2010), who
consider technological change a latent variable in the estimation process and use
Kalman filter techniques to back it out. They look at US industries, but do not
divide labor into several types.

The rest of this chapter is organized as follows: section 3.2 describes the pro-
duction function to be estimated, including its properties, and the metrics of in-
terest to determine technological bias and ICT capital-skill complementarity. Sec-
tion 3.3 then explains the estimation strategy and section 3.4 the data used. The

results are presented in section 3.5, section 3.6 concludes.
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3.2 The Translog Price Function

This section closely follows Jorgenson (1986) and Ruiz-Arranz (2003).

3.2.1 Translog Function and Value Shares

There is perfect competition in factor markets, so that factors are paid their
marginal products, and also in the goods market, so that producers set their
profit-maximizing price. The production function is a translog function, which is
also the second order Taylor approximation to any neoclassical production func-
tion and hence nests many possible production functions. Rather than looking at
the production function and marginal products directly, I use its dual, the price

function3:

1 1
In(P) = ao + aln(p) + at + Eln(p)’Appln(p) + In(p) apit + Etz (3.2.1)

where P is the output price, p an (n x 1) vector of input prices and ¢ the level of
technology, modeled as a linear time trend.

App is an (n x n) matrix describing substitution patterns between inputs and
apt is an (n x 1) vector measuring factor bias in technological change. Finally, a),
is an (n x 1) vector of each factor’s value share of the output price in the base
year, and 7 is the number of factors used in production.

As the price function is homogeneous of degree one, the values in the (n x 1)
vector of value shares of each factor in the output price, v, are simply the partial

derivatives of the price function with respect to input prices:

_ dln(P)

v dln(p)

=ap+ Appln(p) + apt. (3.2.2)

All price series are normalized to be one in the base year (so their log is equal to

zero), and technology is normalized to zero in the same year, hence v = ), in the

3Samuelson (1953-1954) is responsible for pointing out duality and Christensen, Jorgenson,
and Lau (1973) are the first to apply it to the translog production and price function.
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base year.

3.2.2 Restrictions from Producer Theory

To ensure that the estimated price functions represent neoclassical production
functions, the following five restrictions on the coefficients must hold. The im-
plementation of these restrictions in the estimation will be explained in section

3.3.

Product exhaustion

Under perfect competition, all value created in production is given as payment
to the factors of production. If this is the case, the value shares must sum to one.
This implies (x’pi = 1 (as they also have to sum to one in the base year, when

v = ap), Ajpi = 0 (i.e. each column in Ay, must sum to zero) and a;ti = 0 (the

technological biases must sum to zero).

Symmetry

The matrix of substitution patterns must be symmetric, i.e. Ap, = Aj,,. The ele-
ments a;; of the matrix are the share elasticities between i and j. These elasticities
are defined as 4;; = %é;j = % = aj;. This restriction therefore requires that
the share elasticity between i and j is the same as the share elasticity between j

and 1.

Homogeneity

Taken together, product exhaustion and symmetry imply homogeneity: As the
price function is homogeneous of degree one in input prices, by the Euler Theo-
rem its first partial derivatives - the value shares- must be homogeneous of degree
zero in input prices. This implies that A,,i = 0, i.e. that each row in Ay, must

sum to zero.
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Nonnegativity

The value shares must always be nonnegative: v = ay, + A,ln(p) + apt > 0.

Concavity

The price function is concave. This requires that the Hessian matrix H, i.e. the
matrix of second partial derivatives of the price function with respect to the factor

prices is negative semi-definite (1’ Hu < 0 for any vector u).

3.2.3 Elasticities of Substitution, ICT Effect and Technological
Bias
3.2.3.1 Complementarity of Skilled Labor and ICT Capital

The matrix Ay, contains the so-called share elasticities. They describe how the
value share of input p changes when the price of input q changes. A positive
matrix element a,, suggests an increase in p’s value share, a negative a,; means
p’s value share decreases with an increase in the price of 4. Complementarity or
substitutability of factors is commonly determined using the Allen-Uzawa partial

elasticities of substitution (see, e.g. Griliches (1969), Ruiz-Arranz (2003) also uses

these):
ajx + v;v
o kT Tk Lk 323
ik . j# (3.2.3)
and )
ajj + 0y — 0j .
ojj = U; Vj. (3.24)
j

If 0y is greater than zero, j and k are substitutes, if it is negative they are comple-
ments. The Allen-Uzawa partial elasticities of substitution have the double advan-
tage over other elasticities of substitution that they are symmetric (see Blackorby
and Russell (1989)) and make determining the existence of ICT capital-skill com-
plementarity easier (see again Griliches (1969)): relative ICT capital-skill comple-

mentarity is observed if 05; < 0y;.
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3.2.3.2 Technological Bias and ICT Effect

There are two aspects of technology that are of interest in this model. The first
one is whether technology is input saving or input using. This is determined by
the vector a,;. As can be seen from % = dpt, Ajt determines how the value share
of factor j changes with an increase in the level of technology t. A positive value
of a;; leads to an increase in the value share, so technology is using input j. A
negative value leads to a decreasing value share with an increase in ¢, hence tech-
nology is saving input j.

Even though the aj; are referred to as the biases of technological change, just
looking at their sign is not enough to determine if there has indeed been skill
biased technological change. SBTC requires that {* increases as technology in-
creases. In the previous two chapters this is the case when the average growth
rate of skilled labor efficiency is greater than the average growth rate of unskilled
labor efficiency. In this chapter, stating the same condition is slightly more in-
volved.

The starting point for deriving the relationship is v; = @, where g; is the
quantity employed of factor j and Y is nominal output of the industry. Taking the
derivative with respect to technology (which is equivalent to taking the derivative

with respect to time) and manipulating equations yields:

Sp1 — 8&p2 = &q1(B11 — Ba1) + gq2(B12 — B22) + §43(B13 — B2s)

1
(Ba1 — B11)ays

B14 — B —
+ 844(B14 24)+01

1

1 1
+ — (B — Bi1p)agt + —(Bos — Bi)ass + —(Boa — Bia)aay,
02 U3 U4

(3.2.5)

where g,; is the rate of change of the price of factor j and g;; is the rate of
change of the quantity of factor j. Bj is the j, k-th element of the matrix B, defined

by B = (AAp, — 1 )~!, where A is a diagonal matrix of the inverse of the value
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shares. The derivation of 3.2.5 is relegated to the appendix.

The last four elements of 3.2.5 determine the overall effect of technology on the
difference in factor prices. Substitute ws for p1 and w,, for p2, and these last four
terms determine the existence of SBTC: if the sum of these four terms is greater
than zero, the industry exhibits SBTC, if the sum is less than zero, it does not.

Equation 3.2.5 is also the basis for determining the overall effect of ICT capital
on the skill premium. Replacing p3 with the rate of return on ICT capital, r;, and
g3 with ICT capital, K;, the ICT effect is determined by gx.(B13 — B23) + %(Bzg —
Bi3)aj;. It is the combination of the effect of ICT capital growth and of the technol-
ogy bias of ICT capital. If it is larger than zero, the ICT effect has contributed to

the rise in the skill premium; if it is negative, it has depressed the skill premium.

3.3 Estimation Procedure

This section again closely follows Jorgenson (1986) and Ruiz-Arranz (2003), as I
use the same estimation procedure. I use Three Stage Least Squares estimation
on systems of equations, taking into account the coefficient restrictions implied
by producer theory. The procedure is described in detail to allow for the easier

replication of results, as Ruiz-Arranz (2003) is unpublished.

3.3.1 Equations Estimated and Strategy

Each industry uses four factors in the production of its output: skilled and un-
skilled labor, ICT capital and non-ICT capital. For each industry, there is the price
function and three value share equations: the shares of skilled and unskilled
wages and of the return to ICT capital (though it does not matter which share
equation is dropped). Including the fourth value share, of the return to non-ICT
capital in this case, would lead to overidentification.

I estimate systems of four equations separately for each industry. This is

preferable to estimating a large system including all industries, despite the loss
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of information in the errors, for two reasons: firstly, if the model is misspecified
for one industry, the results for all other industries would be biased as well. Esti-
mating a small system of four equations separately for each industry loses some
information contained in the variance-covariance matrix of the large system’s er-
ror, but there is no contagion to other industries if one industry is misspecified.
Secondly, the variance-covariance matrix of the large system is near singular and
hence not properly invertible.

Of the restrictions imposed by producer theory discussed in section 3.2.2,
three can be implemented directly in the estimation as simple coefficient restric-

tions: product exhaustion, homogeneity, and symmetry.
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The system of equations estimated for each industry j then is:

In(P;) = ag + as In(ws;) + ay In(wyj) + a;In(rij)
+ (1 —as — ay — o) In(rpj) +art
+ %QSS (ln(wsj))2 + %auu (ln(wuj))2 + %ﬂii (ln(rij))z
+ %(ass Gy + 4 + 205y + 206 + 2a,;) (In(rg)) )
+ asy In(wsj) In(wy;) + (—ass — asu — as;) In(wg;) In(r,)
+ agi In(ws;) In(rij) + (—asy — uy — ay;) In(wy;) In(ry)
+ ayi In(wy;) In(ri;) + (—as — ay; — ai;) In(ri;) In(ry)
+ as In(wg;) £+ aye In(wy;) £+ ag In(rij) t
+ (—ast — aut — ai) In(ryj) t + ag 2+ €1j
Usj = &s + ass [n(wg;) + asy, In(wy;) + as; In(r;;)
+ (—ass — asy — agi) In(1j) + ast t + €
Ouj =ty + sy 11 (wsj) + ayy In(wyj) + ay; In(ry))
+ (= sy — Ay — ayi) In(ryj) + aur t + €3;
vij = & + agi In(ws j) + ay; In(wy ;) + ai; In(r; ;)

+ (—asi — ayi — a;;) In(ryj) +airt + €4

(3.3.1)

The output price in each industry is determined by the prices paid to factors,

3.4.2, where I also discuss the industries I study.

but the reverse is also true: the output price level in each industry influences
the prices paid to factors. Hence there is an endogeneity problem, which I solve
by instrumenting the factor prices of the industry I am interested in with the
factor prices of other industries. As I estimate 15 independent coefficients in the
first equation of the system, I need at least 15 instruments for the estimator to be

identified. The choice of industries used as instruments is explained in section

In order to estimate a system of equations with instruments, I use the Three
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Stage Least Squares (3SLS) estimation originally developed by Zellner and Theil
(1962). The first stage in this procedure is to regress the endogenous explanatory
variables on the instruments and calculate the fitted values from this regression
for each equation in the system. Next, the dependent variables are regressed on
these fitted values. The residuals from this second regression are used to obtain
an estimate of the variance-covariance matrix that is needed as a weighting ma-
trix in the final stage. This yields a consistent variance-covariance matrix estimate
and consistent and asymptotically efficient coefficient estimates.

The estimator is:
Assrs = (Z(E T X(X'X)T'XNZ) 1 Z(2 T 0 X(X'X) T X )y (33.2)

where Z is the matrix of explanatory variables, X is the matrix of instruments, y
is the vector of dependent variables and X is the estimated variance covariance
matrix. A typical element 0j; of the variance-covariance matrix 3. is determined
by:

O = ((yj — Zi¥j2ses) Wk — ZiFrosts)) /N (3.3.3)

where N is the number of observations, which is equal for all series in my
estimation, and ;g1 s is the estimated coefficient from the regression of the de-
pendent variable on the fitted values obtained in the first step of the estimation

procedure.

3.3.2 Imposing Concavity

Concavity of the production function requires that the Hessian H (with Hy, =

oP?
dp;opy

that u'Hu < 0 for all vectors u). This cannot be imposed as a linear restriction

Vj # kand Hj; = 3%) of the price function is negative semi-definite (i.e.
]

in the estimation procedure, but must be tested and if necessary imposed after-
wards. This may be done using the Cholesky decomposition due to Lau (1978)

and also presented in Jorgenson (1986).
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H is not observed directly, however, as I am not estimating the price function
directly. Instead, I estimate the log of the price function, which yields a different

Hessian H (with H ik = aln(;n;;nka] # kand H;; = aa(zll”—];)jz, where j,k = s,u,i,n).
a(lnP)

i 2
The two Hessians are related however: W = aj = —vjv + %_aggpk and
i

is a (4 x 1) vector of value shares and V a (4 x 4) diagonal matrix that has the
value shares on the diagonal, 3 is a scalar representing the inverse of the output
price and 77 is a (4 x 4) diagonal matrix of input prices. If H is to be negative
semi-definite, A,, + vv' — V must be negative semi-definite, too.

This expression can be decomposed via A,, + v0' — V = TDT’, where*

0o 0 0 O 1 0 0 0

0 6 0 O A 1 0 0
Do 2 T 21

0 0 & 0 Aag Am 10

0 0 0 o4 Agr Ay Az 1

The individual elements of D and T can then be represented as follows:

51 = ass+ 02— v

A1 = (Gsu+0s04)/01
6y = auy +03— vy — 61A3,

As1 = (ag +vs0;) /61

Azz = (ayi +ou0; — 61A21A31)/ 62 (33.4)
0 = ajj+ 07 —v;— 1A — A,

Ay = (asn +0s0)/ 51

A = (aun + 040y — 1A A41)/ 02

Az = (asn +0;on — 61A31A41 — S2Az2A42) /83

04 = apn+ U% — U4 — 51/\4211 - ‘52)‘4212 - 53)\23

4This and the following discussion generalize to 1 factors, but since I am only interested in
n = 4,1 limit the discussion to this case.
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App + oo’ —Vis negative semi-definite if (5]- < 0 Vj. The other constraints
must still hold (product exhaustion, symmetry, and homogeneity), which implies

the following restrictions:

1+A0+ A3 +Ayg =
1+ Az +Agp = (3.35)
1+ Mz =

5y =

o o o o

For each industry, concavity is tested by calculating é; through J4 for each pe-
riod. If they are all non-positive, the estimation results fulfill the concavity con-
dition; if at least one of the J; is positive in at least one period they do not. In that
case, the estimated parameters need to be adjusted accordingly. The restrictions
in 3.3.5 serve as a useful additional check on the estimation results.

Using A,y + vv' — V to ensure concavity will only deliver local concavity, as
vv' — V is always negative semi-definite and thus “forgives” a matrix A that de-
viates somewhat from negative semi-definiteness. When concavity is imposed on
App +vv' — V, the Hessian is negative semi-definite for all observed values, and
thus the production function is concave for all observed values. It does not mean,
however, that the production function is concave at all possible values. To ensure
this, concavity would need to be imposed on A.

The nonnegativity constraint is checked by calculating the fitted values of the
estimation equations once concavity is ensured. As the «; are determined by the
value share of j in the base year, and the elements of A,, need to fulfill the con-
cavity restriction, nonnegativity needs to be imposed by restricting the values of
aj if necessary. The aj;, j being the factor whose nonnegativity constraint is vio-
lated, is raised until the value shares are all positive. Product exhaustion implies
that the other ay;, where k # j, are automatically affected, too, even if their value
shares are always positive.

An exception to this procedure is when the only violation of nonnegativity
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occurs for the value shares of IT capital. As v; is very close to zero in the data for
some industry, it can show up negative in the fitted values without actually being

significantly different from zero. If these are the only violations, I leave a;; as it is.

3.4 Data

3.4.1 Deriving Variables for Estimation

As in the previous chapters, I use the EUKLEMS (2008) dataset as it provides
internally consistent labor and capital data as well as data on value added and
prices by industry. The limiting factor in the level of disaggregation I use is the
capital data, which is available for most industries at the one or two digit level in
the EU KLEMS industry classification.

For each industry, I need a number of variables to estimate the system: output
prices, skilled and unskilled wages (ws and w,,), the returns to ICT and non-ICT
capital (r; and r,,), and the value shares of the factors. For the prices I use the price
index for value added for each industry. The index’s base year is 1995, which I
also choose as base year of the estimation (i.e. 1995 is the year when technology
equals zero). Both wage series and both capital returns series are normalized to
be one in 1995 as well. Descriptive statistics of these variables across all industries
are given in table 3.1.

Skilled and unskilled wages are derived from the shares of labor compensa-
tion paid to skilled and unskilled labor, divided by the number of hours worked.
As in chapters one and two, to reduce the three skill levels in the dataset to the
two skill levels I need, I add one third of the medium skilled hours worked and
labor compensation to the high skilled, and the rest to low skilled.

Deriving the returns to ICT and non-ICT capital, I divide capital compensation
paid to ICT and non-ICT capital by the units of ICT and non-ICT capital service
respectively. The capital services series in turn are the volume indices for ICT

and non-ICT capital, with base year 1995, multiplied by the real stock of capital
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Table 3.1: Descriptive Statistics of Variables, Across all Industries Studied

mean median std. dewv.
vs 02864 0.2920 0.1048
v, 03737 0.4018 0.1486
v; 0.0210 0.0152 0.0186
v, 03169 0.2482 0.1884
ws 07683  0.7437 0.3890
wy, 07993  0.8093 0.3605
r;  2.0109 1.2556 1.7921
rn 07925 0.7631 0.3816
vs: value share of skilled labor
v, value share of unskilled labor
v;: value share of ICT capital
vy,: value share of non-ICT capital
ws: skilled wage
wy: unskilled wage
r;: return to ICT capital
ty: return to non-ICT capital

in 1995.°

To find the value shares, I divide total payment to skilled labor (i.e. hourly
wage times hours worked, or simply labor compensation paid to skilled labor),
unskilled labor, ICT capital, and non-ICT capital by the value added of the in-
dustry. The four value shares need to sum to one in each industry and for each
period, and, with the exception of five industries, they do in my data. The ex-
ceptions are Metal Products, Machinery nec, Electrical & Optical Equipment, Trade,
and Other Business Activities. For these five industries, the labor and capital com-
pensation data in the dataset do not sum to value added in the industry, so their
value shares cannot sum to one. As I estimate industries separately, I leave these

five industries in the sample, though their results should be treated with caution.

°An assumption implicit in the dataset’s construction of the capital services series is that ser-
vices are proportional to the capital stock with the factor of proportionality equal to one (See
Timmer, O’'Mahony, and van Ark (2007), Jorgenson, Ho, and Stiroh (2003)). Hence, the services
series can be multiplied with capital stock series without further adjustment.
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3.4.2 Industry Wage and Rate of Return on Capital Differences

It is not usually discussed in the literature on production function estimation by
industry, but where the differences in wages across industries come from and
how this affects estimation results are pertinent questions for this analysis, too.
As one key assumption of the estimation procedure is that there is perfect com-
petition in both the goods and the factor markets, the effects of a deviation from
this assumption on the results merit some thought. The extent of the differences
in the data can be seen in figure 3.1, which shows the minimum, median and
maximum value of the return of each factor across industries each period.

In chapter two, various reasons for industry wage differentials have been
discussed. The most likely reason, at least according to Krueger and Summers
(1986), is rent sharing between firms and workers, due to considerations of fair-
ness: a “fair wage” above the marginal product of labor is negotiated between
firm and workers, that also redistributes some of the rent accruing to the own-
ers of capital towards labor. The rent of capital is thus shared between labor and
the owners of capital. Rent sharing affects both types of labor in one industry in
the same direction, which can also be seen from the very similar patterns in the
panels on ws and w,, of figure 3.1.

For the estimation this would mean that the regressors ws and w, are larger
than they would be if wages were perfectly competitive, at least for the higher
wage industries where rent sharing is more likely to have occurred. As all fac-
tor prices are normalized to be one in the base year, and their logarithms used,
the differences across industries are compressed somewhat. This should help in
attenuating any bias in the results that would arise from the “overstated” wage
series.

This rent sharing across workers would also directly affect the return to capi-
tal, as a larger share of the pie given to labor leaves a smaller share than expected
under perfectly competitive factor markets for capital. This in itself, however,

does not explain the difference in the rates of return of the two types of capital
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Figure 3.1 Maximum (solid red), Median (dotted green) and Minimum (dashed
blue) Value of Each Factor in Each Period (normalized to one in 1995).

Ws wu
2 2
/
18 18
16 / 16 /
14 // 14 /Av/_ .
12 = 12 e
3 —f .7 : (:,-:.\A'__,n-
__,-Af-/-"'o' = ‘_/__/\,-'—"
08 == B 08— = ...~ T >
e _/ _‘.-:" 06 _/T ..... ‘-'/
: _ S e 04 ."'/ - =
04— — e .=
..... o 0.2 T
02 Tota e
Bl e o o e e e L S oo e A et
L L L I S U - S A . I I s
B DD P E P PP F S $P g g* 4P 5P P B PP PP PSS
,3@@@.@,{a@@@@\q.9"’,3@,@,‘0»01&? R N W R AT N TR T A AP
ri rn
10 T 3
iAW i /
: 15
AT i
6 T
5 i \\ 15 =
4 = /'/ \’V\/ """""" i
3 \ I M KT A i -
E \N-...\ i e preanet - i e,
‘-,....,“““' g T Ll T s
S —— ——— S R — O‘.‘-......_..
e o
L S R S . N S . L g
TS\ L L . S S S I S . & §° g 5P g g P PP TP S
,3\9.@@,\w.{a@@@@,@.@@@@m@pm@@ AR S B - - A N Sl

within one industry. A couple of potential reasons exist: Firstly, it is possible that
investment in capital is lower than it would optimally be due to a lack of quali-
tied workers who can use the new capital (along the lines of the model developed
in Greenwood and Yorukoglu (1997)). Secondly, there could be some form of ir-
reversibility constraint, like the one used in chapter two, that prevents capital
from reallocating and equalizing returns. Independent of the cause of the differ-
ences, the same reasoning applies for the effect of these differences as for wages:
the normalization of returns and the utilization of their logarithms should help
in limiting the biases introduced by the violation of the assumption of perfect
competition.

If any of the other reasons discussed in chapter two (e.g. barriers to entry,
unobserved skill differences, compensating differentials) are true, their effects
would be captured in the constant or the coefficient on technology, t. Neither

of these is relevant for my results.
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3.4.3 Choice of Industries and Instruments

The first limiting factor in choosing the industries to study is the availability of
data on capital. This data is available for 32 industries at the one- and two-digit
level. If more disaggregated industry data is available, but very similar among
the subgroups, I choose the more aggregated industry. This is the case for Trade,
which encompasses Sale, Maintenance and Repair of Motor Vehicles, Wholesale and
Commission Trade, and Retail Trade.

6 are

The components of the category Community, Social and Personal Services
excluded altogether, as their primary motive is not (or at least not for a sizable
share of them) profit maximization, but the public provision of services. Coke,
Refined Petroleum Products and Nuclear Fuel is excluded due to its extreme vari-
ation in output price, which suggests other factors besides input prices may be
important in the determination of this industry’s output prices.

As the estimation tries to explain the evolution of an industry’s output prices
as a function of the industry’s input prices, industries in which prices are reg-
ulated are excluded as well. The standard model does not apply to them (see
Jorgenson (1986)). This involves three industries: Electricity and Gas, Transport
and Storage, and Post and Telecommunications. In all three industries, prices were
regulated at least in the first part of the sample, and though deregulation started
in the 1980s (and even 1970s in case of Air Transport, a subcategory of Transport
and Storage) it was a drawn out process lasting until the mid 1990s (see Winston
(1998)). The sample for these industries would therefore be less than ten periods
long, too little to estimate 15 parameters.

These industries” input prices are, however, highly correlated with the input
prices of all other industries: for normalized skilled wages, the correlation is be-
tween 0.91 and 0.99, for normalized unskilled wages between 0.87 and 0.99. The
interval of correlations for returns to non-ICT capital is 0.64 to 0.98. For returns

to ICT capital, correlations are high and positive for Electricity and Transport and

6These components are Public Administration and Defense, Education, Health and Social Work, and
Other Community, Social, and Personal Services.
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Storage, and negative with large absolute values for Post and Telecommunications.”

Given these strong correlations with other industries” input prices, I use them as
instruments to solve the endogeneity problem.®

The exclusion restriction requires that instruments do not explain the depen-
dent variable beyond their effect through the independent variables. The wages
and rates of return to capital paid in the instrument industry B thus should not
directly affect output prices in the industry I estimate, A. The only way industry
B’s input prices can affect industry A’s output price, is if industry B’s output is
used in the production process of industry A. If this is the case, the factor prices
of industry A reflect the output price of industry B, but there should not be a
separate effect of industry B’s input prices on industry A’s output price.

A more indirect effect of industry B’s input prices on industry A’s output price
could work via demand for industry A’s output: if, for some reason intrinsic to
that industry, wages in industry B increase, this might lead to an increase in de-
mand for industry A’s output (as an example: an increase in wages in Electricity
and Gas could lead to increase in demand for clothing, i.e. the output of Textiles
and Leather) and thus to a new, higher, equilibrium price for that output. How-
ever, there is only a small fraction of workers employed in the instrument indus-
tries (on average 13% of hours worked and 14% of labor compensation is due to
these industries), and demand for any industry’s output comes from individuals
working in all industries, so an increase in demand by this fraction should have
a marginal effect on equilibrium prices at best.

In principle, the exogeneity of instruments could be tested via the Hausman
test, provided there are more instruments than are strictly necessary for identifi-

cation. The test compares the results of two estimations: one using all instruments

"The latter industry has, almost by definition, always been a large user of ICT capital, as this
category also includes communication technology. While virtually all other industries have seen
their rates of return to ICT capital fall over time, the opposite has happened for telecommunica-
tions. One outlier in the strongly negative correlations is with Real Estate Activities, where it is
—0.14 only.

8To have a large enough number of instruments for the price equation, I also use the factor
prices for Health and Social Work there.
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that delivers A, and the other exluding a subset of instruments yielding A. Under
the null hypothesis, the estimation results are equal (i.e. A = A), which is taken
to mean that the instruments that have been excluded in the estimation of "are ex-
ogenous. This requires that the instruments that are not excluded are exogenous.

The test statistic is a Wald-type statistic with a x?-distribution asymptotically:

W = (A — A)[cov(A) — cov(A)] (A - A) (3.4.1)

where cov(e) is the variance-covariance matrix of the respective coefficent esti-
mations.

While I have enough instruments to perform the test, the number of observa-
tions in my estimation is very small. The Hausman test distribution, and that of
Wald-type tests more generally, is known asymptotically only, so the results ob-
tained in very small samples can be poor. This has been shown by e.g. Burnside
and Eichenbaum (1994), who generate data from two models, then estimate these
models using GMM and perform Wald-type tests on their results. They find that
in small samples of 100 observations , the null hypothesis is rejected when the
results were, in fact, correct up to 80% of the time.

Dhrymes (1994) reaches a similar conclusion. He generates data from two
separate four-equation models and performs 3SLS-estimation, very similar to the
estimation problem in this chapter. With the results, he performs Hausman iden-
tification tests. At a sample size of 100 observations, the Hausman test accepts
the null hypothesis wrongly 54% of the time for one model and 39% of the time
for the other model. These percentages drop to 22% and 1.4% respectively when
the sample size is increased to 500 observations.

The poor performance of the Wald-type tests discussed in Burnside and
Eichenbaum (1994) and of the Hausman test discussed in Dhrymes (1994) sug-
gest that the results I would obtain from my sample would be unreliable, as my
sample is less than half as large at 36 observations. There is, however, a good

theoretical argument for why the instruments I propose to use are exogenous,
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and given their high correlation with the regressors, the instruments are strong.
Therefore, I use these instruments. Besides, there are no plausible alternatives.

All in all, I am left with 20 industries. These are listed in table 3.2.

3.5 Results

3.5.1 Main Results

The main results are derived from the estimation of systems of four equations,
separately for each industry for the period 1970 - 2005. The estimation results of
all industries are presented in tables 3.5 to 3.8 in the appendix.

The nonnegativity constraint is not violated for the fitted values of the value
shares of skilled and unskilled wages and for non-ICT capital. The fitted value
for the ICT capital value share is negative for at least some periods for most in-
dustries. This is due to the very low value shares for ICT capital in the data, and
there is some correlation between the number of periods for which the estimated
value share is negative and the value share in the data is less than 0.01. The num-
ber of periods for which the nonnegativity constraint on the ICT capital share is
violated is also given in tables 3.5 to 3.8.

Concavity needs to be imposed for all industries except Wood and Cork, for
which the estimates fulfill local concavity already. For nine industries the adjust-
ments leave the share elasticities within the 95% confidence interval around the
point estimates, suggesting that the concavity constraint is not binding for them.
For the rest the adjustments need to be larger, the concavity constraint binds.

These industries are marked with an asterisk in the results table in the appendix.

3.5.1.1 Elasticities of Substitution Between Two Factors

Table 3.2 shows the unweighted average across time of the elasticities of substi-

tution between factors.
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ICT capital-skill complementarity requires that oy;, the Allen elasticity of substi-
tution between skilled labor and ICT capital, is smaller than c,;, the Allen elasticity
of substitution between unskilled labor and ICT capital. Technically, this condition
means that skilled labor is relatively more complementary to ICT capital than un-
skilled labor, as both elasticities can be positive and thus substitutes.

The Allen elasticity between skilled labor and ICT capital is negative for most
industries, indicating that these factors are indeed complements. There are seven
exceptions: Agriculture and Fishing, Textiles and Leather, Paper and Publishing, Rub-
ber and Plastics, Non-metallic Minerals, Hotels and Restaurants, and Real Estate Activ-
ities. These industries, apart from Textiles and Leather, are also the industries not
exhibiting ICT capital-skill complementarity. For all other industries, oy; < 0y
holds. Unskilled labor and ICT capital are substitutes for all but three industries:
Agriculture and Fishing, Non-metallic Minerals, and Hotels and Restaurants.

The Allen elasticities between skilled and unskilled labor are usually positive,
indicating the two types of labor are substitutes. Non-metallic Minerals, Financial
Intermediation, and Other Business Activities are the exceptions, skilled and un-
skilled labor are complements there. Non-ICT capital and skilled labor generally
are also substitutes, apart from Agriculture and Fishing, Construction, and Hotels
and Restaurants, where they are complements. Non-ICT capital and unskilled la-
bor are substitutes for all industries, without exception. For the elasticities of ICT
and non-ICT capital results are mixed. They are complements in seven indus-
tries, all of them manufacturing or closely related industries: Food and Tobacco,
Textiles and Leather, Wood and Cork, Rubber and Plastics, Metal Products, Manufac-
ture nec, and Construction. The two types of capital are substitutes for the thirteen
remaining industries.

The own-price elasticities are all negative, both on average and in each period.
This provides a quick sanity check for the estimation results. Agriculture and Fish-
ing exhibits very large absolute values of the elasticities whenever ICT capital is

involved. This is due to the near-zero levels of ICT value shares in the early part
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of the sample, and very small levels later on. As the Allen elasticities require di-
vision by the value shares, their value blows up for very small value shares. This
will be a problem for all other results on Agriculture and Fishing, so the interpre-
tation of the technology effects later on should be treated with caution for this
industry.

Summing up, there seems to be no obvious pattern to the substitutability and
complementarity of factors. The Allen elasticities suggest varying degrees of dif-
ferences across production functions for most industries and thus different us-
age of the factors of production. The pattern of substitutes and complements of
Agriculture and Fishing and Hotels and Restaurants differ from the pattern of other
industries along several dimensions. The other industries are somewhat more
similar, with the following observations standing out: ICT and non-ICT capital
can be complements in manufacturing industries, but apparently not in the ser-
vices sector; most of the industries exhibit ICT capital-skill complementarity; in

general, capital substitutes for labor.

3.5.1.2 Input Saving and Input Using Technology

The factor biases of technology indicate whether the use of an input factor in-
creases (factor using) or decreases (factor saving) with technological progress.
There are fourteen possible combinations of factor biases: 24 less the options “all
factor using” and “all factor saving”, as the four biases must sum to zero. Of the
fourteen possible combinations of biases, eight occur among the industries stud-
ied. They are presented in table 3.3, along with the industries exhibiting these
patterns of bias.

In six industries, technological change is skilled labor using (Agriculture and
Fishing, Textiles and Leather, Wood and Cork, Transport Equipment, Hotels and Restau-
rants, and Real Estate Activities), in five industries it is unskilled labor using (Min-
ing and Quarrying, Food and Tobacco, Wood and Cork, Real Estate Activities, and Other

Business Activities). For capital, sixteen industries show a bias towards using ICT
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Table 3.2: Average Elasticities of Substitution (excluding own elasticities)

Industry O Oui Osu Oin Osn Tun
Agriculture 692.16 —203.31 1.62 91.51 —0.01 0.19
Mining and Quarrying —23.53 2192 0.96 5.81 056 0.30
Food Products —6.04 11.22 0.18 —2.67 0.72 042
Textiles 0.75 2.61 0.28 —4.67 0.69 0.58
Wood and Cork —31.47  20.88 4.54 —4.95 0.86 0.10
Paper and Publishing 0.67 0.23 0.42 2.10 040 143
Chemical Products —18.20 6.04 0.28 17.99 1.00 0.52
Rubber and Plastics 1.85 1.19 0.06 —1.79 1.15 0.26
Non-Metallic Minerals 2.30 —0.26 —0.16 4.02 1.31 194
Metal Products —4.35 7.69 0.33 —4.77 0.13 0.88
Machinery nec —0.75 1.12 0.11 2.29 1.01  0.06
Electrical & Optical Eq. —-1.97 3.07 1.11 2.20 154 0.73
Transport Equipment —4.13 3.60 1.09 7.89 0.09 0.52
Manufacturing nec —5.21 4.60 120 022 038 0.03
Construction —75.21  79.53 1.88 —102.35 —158 2.16
Trade —0.10 1.51 1.00 0.53 210 251
Hotels and Restaurants 0.59 —4.81 0.56 22,72  —-0.27 1.21
Financial Intermediation  —1.08 4.35 —0.45 0.76 1.06 249
Real Estate Activities 29.08 5.63 0.08 1.66 0.22 0.18
Other Business Activities —0.46 0.39 —-0.36 1259 0.75 279
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capital, and fifteen industries towards using non-ICT capital.

Three combinations of biases are observed in one industry each: for Chemicals
technological progress uses non-ICT capital and saves all other factors; technol-
ogy in Other Business Activities uses unskilled labor and ICT capital and saves
skilled labor and non-ICT capital, while technology in Hotels and Restaurants has
the exactly opposite effect. Seven industries (Paper and Publishing, Rubber and
Plastics, Metal Products, Electrical and Optical Equipment, Manufacture nec, Trade,
and Financial Intermediation) share the same combination of biases - saving both
types of labor and using both types of capital.

Of the remaining industries, technology in Wood and Cork and Real Estate Ac-
tivities is using both types of labor and saving both types of capital; technology
in Food and Tobacco and Mining and Quarrying is saving skilled labor and using all
other factors. In Agriculture and Fishing, Textiles and Leather, and Transport Equip-
ment technology has been unskilled labor saving and using the other three fac-
tors. Finally, technology has been using ICT capital and saving all other factors
for Non-metallic Minerals, Machinery nec, and Construction.

There are thus substantial differences in how technological progress affects
the production process in different industries. Broadly speaking, technology has
increased the use of capital and reduced the use of at least one type of labor in

most industries.

3.5.1.3 ICT Effect

The ICT effect for each industry is shown in the second column of table 3.4. Note
that the order of magnitude of the effects is not comparable to the results in chap-
ters one and two, as the effects here are derived from an estimation of elasticities.

The growth of ICT capital and the technological bias associated with it affect
the skill premium negatively in fourteen of the twenty industries studied. Only in
six industries, namely Agriculture and Fishing, Wood and Cork, Paper and Publishing,

Chemicals, Non-metallic Minerals, and Hotels and Restaurants, is the skill premium
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Table 3.3: Effect of Technological Progress on Input Use and Saving across Indus-

tries

Effect of technological

Industries exhibiting

progress on inputs this pattern

Skilled labor saving Chemicals

Unskilled labor saving

ICT capital saving

Non-ICT capital using

Skilled labor saving Non-metallic Minerals
Unskilled labor saving  Machinery nec

ICT capital using Construction

Non-ICT capital saving

Skilled labor saving Metal Products, Manufacture nec
Unskilled labor saving  Paper and Publishing, Trade
ICT capital using Rubber and Plastics, Financial Intermediation
Non-ICT capital using  Electrical & Optical Equipment
Skilled labor saving Other Business Activities
Unskilled labor using

ICT capital using

Non-ICT capital saving

Skilled labor saving Food and Tobacco
Unskilled labor using ~ Mining and Quarrying

ICT capital using

Non-ICT capital using

Skilled labor using Hotels and Restaurants
Unskilled labor saving

ICT capital saving

Non-ICT capital using

Skilled labor using Wood and Cork

Unskilled labor using ~ Real Estate Activities

ICT capital saving

Non-ICT capital saving

Skilled labor using Textiles and Leather
Unskilled labor saving  Transport Equipment

ICT capital using Agriculture and Fishing

Non-ICT capital using
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pushed up by the ICT effect.

This result is somewhat unexpected. Looking for commonalities among the
industries that exhibit the negative ICT effect and differences from those with a
positive effect, it turns out that twelve of the fourteen industries with a negative
ICT effect’ (and none of those with a positive ICT effect) are ICT capital using and
exhibit ICT capital-skill complementarity, both relative (i.e. 0;; < ;,;) and apart
from Textiles and Leather also absolute (i.e. 05; < 0).

One possible explanation that then comes to mind is that the increase in ICT
capital use as a result of technological progress has led to a decrease in the rate of
return to ICT capital (which can be observed in the data). ICT capital-skill com-
plementarity suggests this leads to an increase in the value share of skilled labor.
If this increase in the value shares follows from a large increase in the amount of
skilled labor used, this would reduce the wage paid to skilled labor. This expla-
nation is supported by the fact that the share of hours worked by skilled labor
has increased over time in all industries.

By a similar mechanism it is also possible that the increased use of ICT capital
leads to a decrease in the skill premium via an increase in unskilled wages. As
ICT capital and unskilled labor are substitutes, the decrease in the rate of return
to ICT capital is associated with a decrease in the value share of unskilled labor.
If this decrease is due to the fall in unskilled hours worked, it is possible that
unskilled wages rise. This mechanism would suggest that in some industries
some unskilled labor is replaced with ICT capital, presumably leaving ICT-savvy
unskilled labor in place, who could then command a higher wage (consistent

with Krueger (1993)’s findings).

3.5.1.4 Evidence on the Skill Bias of Technological Change

Finally, table 3.4 shows the results on the existence of skill bias of technological

change (SBTC). SBTC is present when the technology effect is positive for an in-

9The exceptions are Rubber and Plastics and Real Estate Activities.
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Table 3.4: ICT Effect and Technology Bias

Industry ICT effect Technology effect Same sign
as chapter 2
Agriculture and Fishing 0.6107 6.0678 no
Mining and Quarrying -0.5994 -3.0517 yes
Food and Tobacco -0.7943 -2.9852 yes
Textiles and Leather -0.7052 1.2614 yes
Wood and Cork 0.3653 0.3112 no
Paper and Publishing 0.0355 -1.7554 yes
Chemicals 0.9499 -2.8592 yes
Rubber and Plastics -0.1783 2.1229 yes
Non-metallic Minerals 0.4207 0.5569 no
Metal Products -2.3764 -5.4247 yes
Machinery nec -1.1265 -3.0823 no
Electrical & Optical Eq. -0.3917 0.6176 yes
Transport Equipment -0.0223 0.6117 yes
Manufacture nec -0.8019 -0.5576 no
Construction -0.5211 -0.6828 no
Trade -0.0856 0.2794 yes
Hotels and Restaurants 0.0203 2.2838 no
Financial Intermediation =~ -1.4826 -2.4792 yes
Real Estate Activities -0.3154 2.7857 NA
Other Business Activities  -0.4182 -8.5615 no
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dustry, indicating that an increase in technology pushes up the skill premium.

Ten of the twenty industries studied exhibit SBTC, though the results on Agri-
culture and Fishing should again be treated with caution. The remaining nine are:
Textiles and Leather, Wood and Cork, Rubber and Plastics, Metal Products, Electrical
and Optical Equipment, Transport Equipment, Trade, Hotels and Restaurants, and Real
Estate Activities. For the remaining industries, the effect of technology on the skill
premium is negative.

This again confirms that the developments in the economy as a whole are the
averaging out of very different effects across industries. The instruments I use
in the 3SLS estimation are not suitable for estimating the model for the economy
as a whole, as they do not solve the endogeneity problem for that case: input
prices from the four sectors used as instruments likely have some impact on the
output price of the economy as a whole. But at the same time, the economy wide
price level has some bearing on the input prices as well, especially as I only have
yearly data and no information on whether the different series were observed
at the same time of the year. Therefore, I cannot directly compare results from
chapter one and from estimating this model.

It is, however, possible to compare this chapter’s results with those from chap-
ter two, with one caveat. In chapter two, skilled and unskilled capital are derived
from the simulation and the level of technology embodied in both types is con-
stant over time. In this chapter, I use data for ICT and non-ICT capital, which is
imperfectly adjusted (if at all) for embodied technological change. It is therefore
possible that some effects of technology in chapter two are attributed to either
type of capital here.

The last column in table 3.4 indicates whether the technology effect in this
chapter and the difference in the skilled and unskilled labor efficiency growth rate
of chapter two go in the same direction. A comparison is possible for nineteen of
the twenty industries, as there is no result for Real Estate Activities in chapter two.

Overall, the effect of technology on the skill premium goes in the same direction
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in the results from the two chapters in eleven industries. For eight industries, the
results are opposite, one of them being Agriculture and Fishing. Of the other results
that differ, Wood and Cork, Metal Products, and Hotels and Restaurants show SBTC
in this chapter, but not in chapter two, while the reverse is true for Machinery nec,
Manufacture nec, Construction, and Other Business Activities.

For four of these industries, the difference in skilled and unskilled labor effi-
ciency growth rates in chapter two is very small, and the technology bias in this
chapter is also relatively small for Wood and Cork, Metal Products and Manufac-
ture nec. This suggests that technology in these industries is largely neutral and
depending on the methodology used shows up as a small positive or a small neg-
ative bias. For Construction the bias in this chapter is also quite small. The results
on Machinery nec and Other Business Activities are a bit puzzling: in chapter two,
these two industries have some of the largest positive growth rate differentials;
in chapter three they have the largest negative technology effect. However, these
two are among the five industries mentioned above where the value shares of
the input factors do not sum to one, so their results must be treated with some

caution.

3.5.2 Accounting for Possible Measurement Error for ICT Capi-

tal

Capital is difficult to measure correctly, especially if it is new and subject to rapid
changes in quality, as is the case with ICT capital. I therefore also consider drop-
ping the returns to ICT capital from the list of instruments and replacing them
with different ones to check whether measurement error of ICT capital is a prob-
lem for my results.

As instruments I use the previous year’s year-on-year returns to the stocks
of General Electric, Hewlett Packard and IBM. The data are taken from Yahoo!

Finance and are adjusted for stock splits and dividend payments!®. The choice of

0The series can be found via http://finance.yahoo.com/q/hp?s=GE for General Elec-
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companies is driven by two criteria: they need to be involved in the production of
ICT capital goods and they need to have been listed on the stock exchange since
at least 1969. This leaves only a very limited number of stocks.

The exclusion restriction is the following: as there is perfect competition in all
industries, output prices are fully determined by prices of inputs in production.
As the shares are not used in production, they should not affect output prices
directly. At the same time, the previous period’s return to stocks depends on
the companies’ earnings, which in turn depends on how many ICT capital goods
they sell. The amount of ICT capital goods bought in turn affects the return to
ICT capital.

The correlation between these instruments and the return to ICT capital is
low, indicating that the instruments’ relevance is limited. Nonetheless, as there
is some correlation and exogeneity is plausible, results should be affected if these
instruments are used and measurement error of ICT capital is indeed a problem.
As the estimation results do not change when using these instruments instead of
the returns to ICT capital, I conclude that errors in measuring the return to ICT

capital are not a concern for the results.

3.6 Conclusion

The intention of this paper is to investigate the role of ICT in the production tech-
nologies of different industries, as well as to estimate the effect of ICT capital on
the skill premium. The elasticities of substitution suggest broadly similar produc-
tion functions for most industries, with few differences between manufacturing
and services industries. The conclusion on ICT capital-skill complementarity is
mixed, with fourteen out of twenty industries showing signs of it. This suggests
that ICT capital is not used uniformly across all industries.

The ICT effect on the skill premium is negative for fourteen of twenty indus-

tric, http://finance.yahoo.com/q/hp?s=HPQ+Historical+Prices for Hewlett Packard, and
http://finance.yahoo.com/q/hp?s=IBM for IBM.
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tries. This might be a consequence of complementarity between skilled labor and
ICT capital and substitutability between unskilled labor and ICT capital. More
work is needed to establish whether this is indeed the channel through which the
ICT effect works.

The negative ICT effect is likely linked to the technology bias associated with
ICT capital: technological progress turns out to increase the use of both types
of capital for most industries. In contrast, it is mostly labor saving, though the
differences in the patterns of bias across industries are substantial.

For half the industries studied, the results indicate the presence of SBTC,
which further supports the conclusion from chapter two that the evolution of
the whole economy is the average of very varied developments across industries.
Comparing the results by industry with those of chapter two, the indication on
the presence of SBTC coincides more often than not, and in the industries for
which it is different, the results are close to zero in both chapters.

Two main avenues for further work come to mind. The first is to find different,
and more precise, ways of specifying technological progress instead of using a
linear time trend. A possible alternative is the Kalman filter procedure developed
in Jin and Jorgenson (2010).

The second is to think about the wider implications of these results: Deriv-
ing the aggregate production function for the whole economy from the various
industry production functions requires that the production functions are identi-
cal across industries. If they are not identical, there is no aggregate production
function, which these results seem to suggest. Exploring this implication in more

depth seems worthwhile, but would go too far in this chapter.
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3.7 Appendix

3.7.1 Deriving the Relationship Between the Skill Premium and

the Technology Biases

As explained in section 3.2, the starting point for the derivation, which is similar
to that of equation (15) in Ruiz-Arranz (2003), is the definition of the value share
that is used in its derivation from the data: v; = @ Solving out for the price of
factor j yields p; = % Taking logs and differentiating with respect to time leads
to gpj = 8y + §vj — &4j- The growth rate of the value share is determined by

8oj = o = - (418p1 + 42i8p2 + 13i8p3 + A4jgpa + jt)- (3.7.1)

] ]

Taking all four sectors together, the growth rate of inputs can be rewritten in

matrix form:

gl 2,1—1 0 0 0 gl a1y gy gq1
1
2 0 = 0 0 2 ar Y 2
Sp2| _ v 1 (App 8p n t)+8 |8
g3 0 0 5 O 8p3 azt gy £43
8| |0 0 0 01_4_ Spa| | Aat] 8y | |8g4]
or in more compact form,
Solving out for the g, yields
(VxApp —1)gp =8 — V* At — gy (3.7.3)
and then
gp=(VxApy— 1)1 (gg— V= Ar — gy). (3.7.4)

116



Defining B = (V % Ay, — I)~! and subtracting the second row of g, from the

first row leads to

Sp1 — &p2 = §q1(B11 — Ba1) + €q2(B12 — B22) + g43(B13 — B23) + §4a(B1a — Bog)

1 1

+ —(Ba1 — B11)ayt + — (B — Byp)ay;
01 (%]
1 1

+ —(Bas — Bi3)azt + —(Bog — Bia)ay,
U3 U4

(3.7.5)

3.7.2 Estimation Results After Imposing Concavity
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Table 3.5: Estimation Results by Industry After Imposing Concavity Constraint,
Standard Errors in Parentheses

Agriculture Mining and Food and Textiles Wood
and Fishing* Quarrying Tobacco and Leather* and Cork
ag 0.0104 0.1725 0.0307 -0.0692 -0.1030
(0.0260) (0.0368) (0.0113) (0.0144) (0.0287)
s 0.2242 0.1590 0.2318 0.3004 0.2336
(0.0052) (0.0070) (0.0037) (0.0031) (0.0075)
Ky 0.2841 0.1789 0.2735 0.4516 0.4161
(0.0055) (0.0085) (0.0041) (0.0028) (0.0088)
o 0.0079 0.0211 0.0108 0.0176 0.0041
(0.0028) (0.0082) (0.0018) (0.0014) (0.0050)
Xy 0.4839 0.6410 0.4839 0.2304 0.3461
(0.0101) (0.0191) (0.0041) (0.0036) (0.0125)
o -1.4473 -0.8503 -0.5442 -1.1859 0.0696
(0.1435) (0.2060) (0.0622) (0.0795) (0.1588)
Ass 0.0271 0.0653 0.1093 0.1060 -0.2945
(0.0341) (0.0291) (0.0635) (0.0531) (0.1165)
Ayy 0.1200 0.0507 0.1021 0.1279 -0.2772
(0.0400) (0.0342) (0.0535) (0.0523) (0.1140)
aji -0.0230 -0.0310 -0.0140 0.0029 -0.0150
(0.0079) (0.0184) (0.0043) (0.0050) (0.0137)
Ann 0.1885 0.0990 0.1131 0.0709 0.1475
(0.0352) (0.0582) (0.0180) (0.0240) (0.0476)
Asy 0.0274 -0.0010 -0.0690 -0.0906 0.3409
(0.0349) (0.0305) (0.0574) (0.0516) (0.1138)
Asi 0.0288 -0.0238 -0.0170 -0.0005 -0.0379
(0.0096) (0.0114) (0.0079) (0.0097) (0.0158)
Asn -0.0833 -0.0405 -0.0233 -0.0148 -0.0085
(0.0168) (0.0213) (0.0115) (0.0169) (0.0259)
Ay -0.0240 0.0318 0.0439 0.0082 0.0641
(0.0112) (0.0125) (0.0076) (0.0089) (0.0169)
Aun -0.1234 -0.0815 -0.0770 -0.0455 -0.1278
(0.0176) (0.0258) (0.0124) (0.0135) (0.0296)
Ain 0.0182 0.0230 -0.0129 -0.0106 -0.0112
(0.0087) (0.0242) (0.0077) (0.0079) (0.0196)
st 0.2438 -0.1098 -0.0731 0.0826 0.0682
(0.0328) (0.0544) (0.0506) (0.0622) (0.0845)
Ayt -0.3967 0.0224 0.0316 -0.2281 0.0289
(0.0379) (0.0587) (0.0478) (0.0578) (0.0888)
ajt 0.0342 0.0342 0.0215 0.1156 -0.0471
(0.0244) (0.0836) (0.0224) (0.0251) (0.0646)
Ant 0.1187 0.0531 0.0200 0.0300 -0.0500
(0.0388) (0.1036) (0.0415) (0.0344) (0.0933)
At 0.9536 -2.8969 0.0992 0.1185 1.0586
(0.3306) (0.5196) (0.1627) (0.1977) (0.4068)
v; <0 22 17 11 19 3
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Table 3.6: Estimation Results (cont’d)

Paperand Chemicals Rubber and Non-Metallic =~ Metal

Publishing* Plastics* Minerals*  Products*
ag -0.1176 -0.0277 -0.0086 0.0139 -0.0079
(0.0104) (0.0154) (0.0095) (0.0110) (0.0129)
Qs 0.4000 0.2945 0.3437 0.2836 0.2744
(0.0052) (0.0031) (0.0033) (0.0031) (0.0024)
Xy 0.3015 0.1537 0.4157 0.4110 0.4039
(0.0051) (0.0028) (0.0028) (0.0028) (0.0024)
o 0.0394 0.0308 0.0168 0.0203 0.0203
(0.0013) (0.0019) (0.0008) (0.0015) (0.0011)
Xy 0.2591 0.5210 0.2239 0.2851 0.3014
(0.0023) (0.0037) (0.0038) (0.0032) (0.0030)
Kt -0.1501 -0.4002 -1.3909 -1.0024 -1.2382
(0.0557) (0.0857) (0.0521) (0.0585) (0.0681)
Ass 0.1231 0.1003 0.1162 0.1183 0.1501
(0.0708) (0.0418) (0.0459) (0.1294) (0.0872)
Ay 0.0357 0.0730 0.2011 0.0421 0.0629
(0.0705) (0.0357) (0.0545) (0.1365) (0.0781)
aji 0.0021 -0.0343 0.0027 -0.0035 -0.0045
(0.0052) (0.0147) (0.0028) (0.0060) (0.0048)
Ann 0.0069 -0.0349 0.0703 -0.1298 0.0872
(0.0177) (0.0426) (0.0210) (0.0092) (0.0210)
Asy -0.0699 -0.0418 -0.1285 -0.1397 -0.0781
(0.0676) (0.0364) (0.0493) (0.1326) (0.0819)
g -0.0017 -0.0591 0.0027 0.0028 -0.0120
(0.0110) (0.0194) (0.0055) (0.0127) (0.0091)
Asn -0.0516 0.0007 0.0096 0.0186 -0.0600
(0.0228) (0.0330) (0.0154) (0.0122) (0.0179)
Ay -0.0055 0.0140 0.0010 -0.0065 0.0294
(0.0095) (0.0149) (0.0057) (0.0134) (0.0089)
Aun 0.0396 -0.0452 -0.0736 0.1040 -0.0142
(0.0214) (0.0234) (0.0119) (0.0120) (0.0178)
Ain 0.0051 0.0794 -0.0064 0.0073 -0.0130
(0.0070) (0.0239) (0.0043) (0.0057) (0.0085)
Ast -0.2788 -0.2689 -0.0633 -0.0344 -0.1563
(0.0629) (0.0938) (0.0294) (0.0563) (0.0482)
Ayt -0.0118 -0.1033 -0.1707 -0.0813 -0.0293
(0.0530) (0.0752) (0.0289) (0.0588) (0.0471)
a;t 0.2817 -0.0378 0.0975 0.1223 0.1075
(0.0263) (0.0702) (0.0149) (0.0290) (0.0243)
Ant 0.0089 0.4100 0.1365 -0.0066 0.0781
(0.0354) (0.1141) (0.0250) (0.0285) (0.0432)
At 0.2552 -1.0744 -0.0772 -0.9213 -1.6757
(0.1383) (0.2742) (0.1337) (0.1499) (0.1637)
v; <0 19 17 18 20 18
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Table 3.7: Estimation Results (cont’d)

Machinery Electrical & Transport Manufacture Construction*

nec* Optical Eq. Equipment nec*
ag 0.0617 -0.1070 -0.0697 -0.0301 -0.0171
(0.0171) (0.0182) (0.0176) (0.0116) (0.0135)
s 0.3621 0.4100 0.4147 0.3238 0.3359
(0.0039) (0.0075) (0.0032) (0.0032) (0.0041)
Xy 0.3945 0.2578 0.3625 0.4193 0.5338
(0.0051) (0.0068) (0.0035) (0.0029) (0.0044)
; 0.0489 0.0594 0.0164 0.0175 0.0070
(0.0020) (0.0023) (0.0017) (0.0008) (0.0021)
Xy 0.1945 0.2729 0.2064 0.2394 0.1233
(0.0052) (0.0069) (0.0047) (0.0025) (0.0051)
o -0.6439 -4.3966 -0.9696 -0.8906 0.7801
(0.0932) (0.1002) (0.0962) (0.0623) (0.0748)
Ass 0.1439 -0.0282 0.0683 0.0298 -0.0235
(0.0580) (0.0946) (0.0467) (0.0683) (0.1592)
Ay 0.1968 -0.0161 0.0139 0.0611 -0.2884
(0.0598) (0.0758) (0.0372) (0.0576) (0.1536)
ajj 0.0092 0.0026 -0.0085 0.0005 -0.0163
(0.0048) (0.0109) (0.0062) (0.0031) (0.0075)
Ann 0.0656 -0.0314 0.0888 0.1467 0.0270
(0.0202) (0.0259) (0.0153) (0.0172) (0.0241)
Asy -0.1224 0.0139 0.0130 0.0252 0.1445
(0.0579) (0.0836) (0.0403) (0.0617) (0.1558)
Asi -0.0220 -0.0294 -0.0163 -0.0158 -0.0279
(0.0089) (0.0230) (0.0127) (0.0092) (0.0171)
Asn 0.0004 0.0438 -0.0649 -0.0392 -0.0931
(0.0149) (0.0324) (0.0103) (0.0186) (0.0214)
Ay 0.0022 0.0207 0.0109 0.0182 0.0610
(0.0098) (0.0206) (0.0115) (0.0085) (0.0170)
Aun -0.0766 -0.0184 -0.0378 -0.1046 0.0829
(0.0181) (0.0272) (0.0106) (0.0164) (0.0226)
Ain 0.0105 0.0061 0.0139 -0.0029 -0.0169
(0.0074) (0.0132) (0.0058) (0.0047) (0.0103)
st -0.1073 -0.0488 0.0957 -0.0372 -0.0511
(0.0491) (0.0933) (0.0701) (0.0469) (0.1106)
Aut -0.0055 -0.3381 -0.1856 -0.0901 -0.0304
(0.0556) (0.0839) (0.0613) (0.0433) (0.1100)
ajt 0.1232 0.1159 0.0069 0.0815 0.0873
(0.0251) (0.0417) (0.0324) (0.0145) (0.0391)
At -0.0104 0.2710 0.0830 0.0458 -0.0057
(0.0445) (0.0516) (0.0289) (0.0227) (0.0592)
at -1.4644 -1.8580 -1.4134 -0.9609 0.2774
(0.2345) (0.2434) (0.2383) (0.1517) (0.2143)
v; <0 0 1 8 16 22
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Table 3.8: Estimation Results (cont’d)

Trade Hotels and Financial Real Estate Other Business
Restaurants®* Intermediation Activities Activities®*
ap -0.0300 0.0388 -0.0522 0.0006 0.0253
(0.0075) (0.0108) (0.0071) (0.0058) (0.0068)
K 0.4056 0.2990 0.3657 0.0728 0.5405
(0.0037) (0.0025) (0.0028) (0.0015) (0.0034)
Ny 0.3978 0.4688 0.1708 0.0381 0.1948
(0.0037) (0.0024) (0.0033) (0.0009) (0.0035)
o; 0.0610 0.0190 0.0537 0.0198 0.0599
(0.0019) (0.0011) (0.0014) (0.0016) (0.0030)
Xy 0.1357 0.2133 0.4098 0.8692 0.2048
(0.0036) (0.0032) (0.0021) (0.0020) (0.0049)
oy -0.6504 0.1547 -0.5855 -0.0900 0.1628
(0.0420) (0.0582) (0.0391) (0.0325) (0.0358)
Ass -0.0823 0.1280 0.1179 0.0205 0.1775
(0.1189) (0.0682) (0.0652) (0.0115) (0.0428)
Auu -0.1504 0.0596 -0.0317 0.0285 0.0993
(0.0883) (0.0575) (0.0684) (0.0101) (0.0498)
aj -0.0027 -0.0061 0.0019 -0.0312 -0.0292
(0.0067) (0.0066) (0.0052) (0.0078) (0.0151)
Ann -0.2402 0.0196 -0.1165 0.0597 -0.0856
(0.0230) (0.0189) (0.0229) (0.0156) (0.0351)
Agy -0.0006 -0.0605 -0.1029 -0.0021 -0.1409
(0.1015) (0.0619) (0.0649) (0.0098) (0.0428)
agj -0.0072 -0.0006 -0.0226 0.0204 -0.0210
(0.0133) (0.0134) (0.0076) (0.0058) (0.0158)
Agn 0.0901 -0.0669 0.0075 -0.0389 -0.0156
(0.0251) (0.0208) (0.0203) (0.0090) (0.0214)
a,; 0.0053 -0.0198 0.0232 0.0026 -0.0047
(0.0123) (0.0126) (0.0091) (0.0041) (0.0168)
Aun 0.1456 0.0207 0.1114 -0.0290 0.0463
(0.0225) (0.0192) (0.0223) (0.0061) (0.0195)
ajy 0.0045 0.0266 -0.0024 0.0082 0.0549
(0.0108) (0.0101) (0.0074) (0.0092) (0.0165)
At -0.0330 0.1687 -0.1767 0.1208 -0.0520
(0.0898) (0.0760) (0.0558) (0.0178) (0.0807)
Ayt -0.2658 -0.2407 -0.0989 0.0076 0.2383
(0.0811) (0.0724) (0.0631) (0.0116) (0.0832)
aj 0.1562 -0.0039 0.1414 -0.0328 0.0411
(0.0310) (0.0349) (0.0265) (0.0227) (0.0714)
Apt 0.1426 0.0759 0.1342 -0.0956 -0.2274
(0.0464) (0.0528) (0.0435) (0.0253) (0.0715)
At 0.5822 -1.3135 0.2289 0.1684 -0.5396
(0.1242) (0.1614) (0.1165) (0.0818) (0.1792)
v; <0 7 0 8 11 8

121



Bibliography

ACEMOGLU, D. (2002a): “Directed Technical Change,” Review of Economic Studies,

69(4), 781-809.

(2002b): “Technical Change, Inequality, and the Labor Market,” Journal of

Economic Literature, 40(1), 7-72.

ACEMOGLU, D., AND D. AUTOR (2010): “Skills, Tasks and Technologies: Implica-
tions for Employment and Earnings,” NBER Working Papers 16082, National

Bureau of Economic Research, Inc.

AGHION, P., P. HOWITT, AND G. L. VIOLANTE (2002): “General Purpose Tech-

nology and Wage Inequality,” Journal of Economic Growth, 7(4), 315-45.

ARKOLAKIS, C., A. COSTINOT, AND A. RODRIGUEZ-CLARE (2012): “New Trade

Models, Same Old Gains?,” American Economic Review, 102(1), 94-130.

AUTOR, D., L. KATZ, AND A. KRUEGER (1997): “Computing Inequality: Have
Computers Changed the Labor Market?,” Working Papers 756, Princeton Uni-

versity, Department of Economics, Industrial Relations Section.

AUTOR, D., F. LEVY, AND R. MURNANE (2003): “The Skill Content of Recent

Technological Change: An Empirical Exploration,” Proceedings, (Nov).

AUTOR, D. H., L. F. KATZ, AND M. S. KEARNEY (2008): “Trends in U.S. Wage
Inequality: Revising the Revisionists,” The Review of Economics and Statistics,

90(2), 300-323.

122



AUTOR, D. H., F. LEVY, AND R. MURNANE (2000): “Upstairs, Downstairs:
Computer-Skill Complementarity and Computer-Labor Substitution on Two
Floors of a Large Bank,” NBER Working Papers 7890, National Bureau of Eco-

nomic Research, Inc.

BARANY, Z. (2011): “The Minimum Wage and Inequality - The Effects of Educa-

tion and Technology,” Unpublished phd thesis.

BEAUDRY, P., AND D. A. GREEN (2002): “Changes in U.S. Wages 1976-2000: On-
going Skill Bias or Major Technological Change?,” NBER Working Papers 8787,

National Bureau of Economic Research, Inc.

BERMAN, E., ]. BOUND, AND Z. GRILICHES (1994): “Changes in the Demand for

Skilled Labor within U.S. Manufacturing: Evidence from the Annual Survey of
Manufactures,” The Quarterly Journal of Economics, 109(2), 367-97.

BERNDT, E. R., AND C. J. MORRISON (1979): “Income Redistribution and Em-

ployment Effects of Rising Energy Prices,” Resources and Energy, 2, 131-150.
BERTOLA, G. (1998): “Irreversible investment,” Research in Economics, 52(1), 3-37.

BINSWANGER, H. P. (1974): “The Measurement of Technical Change Biases with

Many Factors of Production,” American Economic Review, 64(6), 964-76.

BLACKORBY, C., AND R. R. RUSSELL (1989): “Will the Real Elasticity of Substi-
tution Please Stand Up? (A Comparison of the Allen/Uzawa and Morishima

Elasticities),” American Economic Review, 79(4), 882—-88.

BLANCHFLOWER, D. G., A. J. OSWALD, AND P. SANFEY (1996): “Wages, Profits,

and Rent-Sharing,” The Quarterly Journal of Economics, 111(1), 227-51.
BLIss, C. (1968): “On Putty-Clay,” The Review of Economic Studies, 35(2), 105-132.

BURNSIDE, C., AND M. EICHENBAUM (1994): “Small Sample Properties of Gen-
eralized Method of Moments Based Wald Tests,” NBER Technical Working Pa-

pers 0155, National Bureau of Economic Research, Inc.

123



BURSTEIN, A., AND J. VOGEL (2010): “Globalization, Technology, and the Skill

Premium: A Quantitative Analysis,” Working Paper 1.

CABALLERO, R. J. (1999): “Aggregate investment,” in Handbook of Macroeco-
nomics, ed. by J. B. Taylor, and M. Woodford, vol. 1 of Handbook of Macroeco-

nomics, chap. 12, pp. 813-862. Elsevier.

CARD, D., aND J. E. DINARDO (2002): “Skill-Biased Technological Change and
Rising Wage Inequality: Some Problems and Puzzles,” Journal of Labor Eco-

nomics, 20(4), 733-783.

CASELLI, F. (1999): “Technological Revolutions,” American Economic Review,

89(1), 78-102.

CASELLI, F., AND W. J. COLEMAN (2001): “The U.S. Structural Transformation

and Regional Convergence: A Reinterpretation,” Journal of Political Economy,

109(3), 584-616.

CHRISTENSEN, L. R., D. W. JORGENSON, AND L. J. LAU (1973): “Transcendental
Logarithmic Production Frontiers,” The Review of Economics and Statistics, 55(1),

28-45.

COLEMAN, W. J. (1997): “Behavior Of Interest Rates In A General Equilib-
rium Multisector Model With Irreversible Investment,” Macroeconomic Dynam-

ics, 1(01), 206-227.

DHRYMES, P. J. (1994): “Specification tests in simultaneous equations systems,”

Journal of Econometrics, 64, 45-76.

DINARDO, J. E., AND J.-S. PISCHKE (1997): “The Returns to Computer Use Re-

visited: Have Pencils Changed the Wage Structure Too?,” The Quarterly Journal
of Economics, 112(1), 291-303.

DIXIT, A. (1995): “Irreversible investment with uncertainty and scale economies,”

Journal of Economic Dynamics and Control, 19(1-2), 327-350.

124



DUFFY, J., C. PAPAGEORGIOU, AND F. PEREZ-SEBASTIAN (2004): “Capital-Skill
Complementarity? Evidence from a Panel of Countries,” The Review of Eco-

nomics and Statistics, 86(1), 327-344.

ECKSTEIN, Z., AND E. NAGYPAL (2004): “The Evolution of US Earnings Inequal-

ity,” Federal Reserve Bank of Minneapolis Quarterly Review, 28(2), 10-29.
EUKLEMS (2008): “Database,” .

FORTIN, N. M., AND T. LEMIEUX (1997): “Institutional Changes and Rising Wage

Inequality: Is There a Linkage?,” Journal of Economic Perspectives, 11(2), 75-96.

GALOR, O., aAND O. MOAV (2000): “Ability-Biased Technological Transition,
Wage Inequality, And Economic Growth,” The Quarterly Journal of Economics,
115(2), 469-497.

GILCHRIST, S., AND J. C. WILLIAMS (2000): “Putty-Clay and Investment: A Busi-

ness Cycle Analysis,” Journal of Political Economy, 108(5), 928-960.

GOLDIN, C., anD L. F. KATZ (2007): “The Race between Education and Tech-
nology: The Evolution of U.S. Educational Wage Differentials, 1890 to 2005,”

NBER Working Papers 12984, National Bureau of Economic Research, Inc.

GOTTSCHALK, P. (1997): “Inequality, Income Growth, and Mobility: The Basic

Facts,” Journal of Economic Perspectives, 11(2), 21-40.

GREENWOOD, J., Z. HERCOWITZ, AND P. KRUSELL (1997): “Long-Run Implica-

tions of Investment-Specific Technological Change,” American Economic Review,

87(3), 342-62.

GREENWOOD, J., AND M. YORUKOGLU (1997): “1974,” Carnegie-Rochester Confer-

ence Series on Public Policy, 46(1), 49-95.

GRILICHES, Z. (1969): “Capital-Skill Complementarity,” The Review of Economics
and Statistics, 51(4), 465-68.

125



JIN, H., AND D. W. JORGENSON (2010): “Econometric Modeling of Technical

Change,” Journal of Econometrics, 157(2), 205-219.

JOHANSEN, L. (1959): “Substitution versus Fixed Production Coefficients in the

Theory of Economic Growth: A Synthesis,” Econometrica, 27(2), 157-176.

JOHNSON, G. E. (1997): “Changes in Earnings Inequality: The Role of Demand
Shifts,” Journal of Economic Perspectives, 11(2), 41-54.

JONES, R. W. (1971): “A Three-Factor model in Theory, Trade and History,” in
Trade, Balance of Payments and Growth, ed. by J. B. et al. North Holland.

JORGENSON, D., aND B. FRAUMENI (1983): “Relative Prices and Technical
Change,” in Quantitative Studies on Production and Prices, ed. by W. E. et al, pp.
241-269. Physica-Verlag.

JORGENSON, D., M. HO, anD K. STIROH (2003): “Growth of US Industries and
Investments in Information Technology and Higher Education,” Economic Sys-

tems Research, 15(3), 279-325.

JORGENSON, D. W. (1986): “Econometric Methods for Modeling Producer Be-

havior,” in Handbook of Econometrics, ed. by Z. Griliches, and M. D. Intriligator,
vol. 3 of Handbook of Econometrics, chap. 31, pp. 1841-1915. Elsevier.

JOVANOVIC, B. (1998): “Vintage Capital and Inequality,” Review of Economic Dy-

namics, 1(2), 497-530.

JOVANOVIC, B., AND Y. YATSENKO (2012): “Investment in vintage capital,” Jour-

nal of Economic Theory, 147(2), 551-569.

JupD, K. L. (1998): Numerical Methods in Economics, no. 0262100711 in MIT Press
Books. The MIT Press.

KAMBOUROYV, G., AND I. MANOVSKII (2008): “Rising Occupational And Industry
Mobility In The United States: 1968-97,” International Economic Review, 49(1),
41-79.

126



Katz, L. F,, AND D. H. AUTOR (1999): “Changes in the Wage Structure and
Earnings Inequality,” in Handbook of Labor Economics, ed. by O. Ashenfelter, and
D. Card, vol. 3 of Handbook of Labor Economics, chap. 26, pp. 1463-1555. Elsevier.

KEHOE, P. J., AND A. ATKESON (1999): “Models of Energy Use: Putty-Putty ver-
sus Putty-Clay,” American Economic Review, 89(4), 1028-1043.

KRUEGER, A. B. (1993): “How Computers Have Changed the Wage Structure:
Evidence from Microdata, 1984-1989,” The Quarterly Journal of Economics, 108(1),
33-60.

KRUEGER, A. B., AND L. H. SUMMERS (1986): “Reflections on the Inter-Industry
Wage Structure,” NBER Working Papers 1968, National Bureau of Economic

Research, Inc.

KRUEGER, A. B., AND L. H. SUMMERS (1988): “Efficiency Wages and the Inter-

industry Wage Structure,” Econometrica, 56(2), 259-93.

KRUSELL, P., L. E. OHANIAN, J.-V. R10s-RULL, aAND G. L. VIOLANTE (2000):
“Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis,”

Econometrica, 68(5), 1029-1054.

LAU, L. J. (1978): “Testing and Imposing Monoticity, Convexity and Quasi-
Convexity Constraints,” in Production Economics: A Dual Approach to Theory and
Applications, ed. by M. Fuss, and D. McFadden, vol. 1, pp. 409-453. North Hol-
land.

LEVINE, A. (1976): “Educational and Occupational Choice: A Synthesis of Liter-
ature from Sociology and Psychology,” Journal of Consumer Research, 2(4), 276
289.

MICHAELS, G., A. NATRAJ, AND J. VAN REENEN (2013): “Has ICT Polarized
Skill Demand? Evidence from Eleven Countries over 25 Years,” The Review of

Economics and Statistics, (forthcoming).

127



NORDHAUS, W. (2005): “The Sources of the Productivity Rebound and the Manu-
facturing Employment Puzzle,” NBER Working Papers 11354, National Bureau

of Economic Research, Inc.

OLSON, L. J. (1989): “Stochastic Growth with Irreversible Investment,” Journal of

Economic Theory, 47(1), 101-129.

RUIZ-ARRANZ, M. (2003): “Wage Inequality in the US: Capital-Skill Comple-
mentarity Vs. Skill-Biased Technological Change,” Harvard mimeo, Harvard

University.

SAMUELSON, P. A. (1953-1954): “Prices of Factors and Goods in General Equilib-

rium,” Review of Economic Studies, 21(1), 1-20.

SARGENT, T. J. (1980): “&quot;Tobin’s q&quot; and the rate of investment in

general equilibrium,” Carnegie-Rochester Conference Series on Public Policy, 12(1),

107-154.

SPITZ-OENER, A. (2006): “Technical Change, Job Tasks, and Rising Educational
Demands: Looking outside the Wage Structure,” Journal of Labor Economics,

24(2), 235-270.

THALER, R. H. (1989): “Anomalies: Interindustry Wage Differentials,” Journal of
Economic Perspectives, 3(2), 181-193.

TIMMER, M. P.,, M. O'MAHONY, AND B. VAN ARK (2007): “EU KLEMS Growth
and Productivity Accounts: An Overview,” International Productivity Monitor,

14, 71-85.

TorEL, R. H. (1997): “Factor Proportions and Relative Wages: The Supply-Side

Determinants of Wage Inequality,” Journal of Economic Perspectives, 11(2), 55-74.

WINSTON, C. (1998): “U.S. Industry Adjustment to Economic Deregulation,”

Journal of Economic Perspectives, 12(3), 89-110.

128



WOLFF, E. N. (2002): “Productivity, Computerization, and Skill Change,” Nyu

mimeo, New York University.

ZELLNER, A., AND H. THEIL (1962): “Three-Stage Least Squares: Simultaneous

Estimation of Simultaneous Equations,” Econometrica, 30(1), 54-78.

129



