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Abstract

Much cross-sectional data in econometrics is blighted by dependence across units. A
solution to this problem is the use of spatial models that allow for an explicit form of
dependence across space. This thesis studies problems related to spatial models with
increasingly many parameters. A large proportion of the thesis concentrates on Spatial
Autoregressive (SAR) models with increasing dimension. Such models are frequently
used to model spatial correlation, especially in settings where the data are irregularly
spaced.

Chapter 1 provides an introduction and background material for the thesis. Chap-
ter 2 develops consistency and asymptotic normality of least squares and instrumental
variables (IV) estimates for the parameters of a higher-order spatial autoregressive
(SAR) model with regressors. The order of the SAR model and the number of re-
gressors are allowed to approach infinity with sample size, and the permissible rate of
growth of the dimension of the parameter space relative to sample size is studied.

An alternative to least squares or IV is to use the Gaussian pseudo maximum
likelihood estimate (PMLE), studied in Chapter 3. However, this is plagued by finite-
sample problems due to the implicit definition of the estimate, these being exacerbated
by the increasing dimension of the parameter space. A computationally simple Newton-
type step is used to obtain estimates with the same asymptotic properties as those of
the PMLE.

Chapters 4 and 5 of the thesis deal with spatial models on an equally spaced, d-
dimensional lattice. We study the covariance structure of stationary random fields
defined on d-dimensional lattices in detail and use the analysis to extend many re-
sults from time series. Our main theorem concerns autoregressive spectral density
estimation. Stationary random fields on a regularly spaced lattice have an infinite
autoregressive representation if they are also purely non-deterministic. We use trun-
cated versions of the AR representation to estimate the spectral density and establish

uniform consistency of the proposed spectral density estimate.
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1 Introduction

In this chapter we provide the necessary background to evaluate the contribution
of this thesis to the spatial econometrics and spatial statistics literature. Section
1.1 summarizes the key properties of spatial data and discusses solutions for issues
that arise in the analysis of such data. Section 1.2 introduces spatial autoregressions
for irregularly-spaced data, while Section 1.3 does the same for data on a regularly-
spaced lattice. These sections also provide motivation for the analysis of higher-order
autoregressions. Section 1.4 summarizes the literature on models with increasingly
many parameters, while Section 1.5 outlines the contribution of this thesis to the
literature. Finally, Section 1.6 introduces some notation and definitions that will be

used throughout the thesis.

1.1 Issues in the analysis of spatial data

Correlation in cross-sectional data poses considerable challenges to econometricians
and statisticians, complicating both modelling and statistical inference. In economet-
rics, a substantial literature collectively known as Spatial Econometrics has analysed
the problems caused by correlation between observations at different points in space.
This goes back as far as the early work by Moran (1950), and key waypoints in the
journey of the literature have been the contributions by Cliff and Ord (1973) and
Cressie (1993). Survey articles outlining recent developments in spatial econometrics
include Robinson (2008) and Anselin (2010). A feature of the spatial econometrics
literature is its focus on spatial data recorded at irregularly-spaced points. This is
reflective of typical datasets available in economic applications. Due to the irregu-
larity of the spacing and the ambiguity about the process generating the locations
of observations, fairly strong assumptions are necessary to capture spatial correlation
parsimoniously. In this thesis, we will concentrate on a class of assumptions that give
rise to an ‘autoregressive’ model.

On the other hand, much of the spatial statistics literature has focused on data
recorded on a regularly-spaced d-dimensional lattice, where d > 1. Typically the
distance between observations is fixed within dimensions, but may vary between di-
mensions. This structure may lead the reader to anticipate the potential extension of
asymptotic theory for time series. This is complicated by the fact that while the variate
of a time series is influenced only by past values, for spatial processes the dependence
extends in all directions. In a seminal contribution Whittle (1954) showed that, in gen-
eral, multilateral models on lattices have a unilateral moving average representation
on a ‘half-plane’; thereby extending the familiar Wold decomposition for time series.

There are limits to the use of such a representation if interest is in the coefficients in
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the original multilateral model, as the coefficients in the unilateral representation may
not have a closed-form expression in terms of the original ones even with seemingly
simple multilateral models. However, as we show in Chapters 4 and 5, such unilateral
representations can be extremely useful if our interest lies in prediction and spectral
density estimation. Another complication is the bias in covariance estimates due to the
‘edge-effect’, noted by Guyon (1982) who proposed an incorrectly centred version of
the covariance estimates to eliminate this effect. The edge-effect worsens with increas-
ing d. Solutions to the edge-effect are also explored in Dahlhaus and Kiinsch (1987)
and Robinson and Vidal Sanz (2006).

1.2 Spatial autoregressions for irregularly-spaced data

The reader may wonder if the theory of irregularly-spaced time series can be extended
to the case of irregularly-spaced spatial data, just as we discussed the extension of
the theory of regularly-spaced time series to many dimensions above. Robinson (1977)
showed that some cases of irregularly-spaced time series can be described by an un-
derlying continuous time process where spacing is generated by a point process. When
the continuous time process is a first-order stochastic differential equation with con-
stant coefficients and driven by white noise, consistent and asymptotically normal
estimates of the unknown parameters can be obtained from an approximated Gaus-
sian log-likelihood. This can be extended to situations when the data are recorded
at irregularly-spaced geographical locations, but even then leads to complications in
estimation and inference.

Besides such complications, ‘space’ in economic applications need not refer to geo-
graphic space. In fact the notion of economic distance encompasses many more possi-
bilities (e.g. differences in income of economic agents), of which geographic distance is
but one, and this notion of distance determines the spatial correlation between obser-
vations. In spatial econometrics, the economic distance between two economic agents
(also called units) 7 and j is defined as the distance between two vectors of characteris-
tics v; and v;. Note that we identified units with their location. This distance may be
defined in a number of ways, without any geographical interpretation (see e.g. Conley
and Ligon (2002), Conley and Dupor (2003)). If there is no geographical interpretation
of the distance, any hope of extending the theory of irregularly-spaced time series is
extinguished.

Instead, a commonly used framework for describing such data is the spatial autore-
gressive model, introduced by Cliff and Ord (1973, 1981). Given a sample of size n, the
problem of irregular-spacing and location is circumvented by the introduction of an
n X n spatial weights matrix, denoted W,,, which is chosen by the practitioner accord-

ing to the particularities of the problem under consideration. Typically, the elements
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wjjn of Wy, are inversely related to some measure of economic distance. This distance
need not be geographic distance, as discussed above. The w;;, may be binary, for
instance taking the value 1 when two units are contiguous according to some definition
of contiguity, and 0 otherwise. The SAR model can also be combined with explanatory
variables to give rise to the mixed regressive SAR (MRSAR) specification, and multiple
weight matrices may be included to cover spatial correlation arising from a variety of
sources or from higher orders of spatial contiguity. A caveat is that adding more weight
matrices can lead to circularity in dependence (see Blommestein (1985)), so care must
be taken to guard against such redundancies to avoid identification problems.

For an n x 1 vector of observations ¥,, an n X k matrix of regressors X,, and n x n
weight matrices Wy, i = 1,...,p, it is assumed that there exist scalars A1, Aa,..., A,
and a k x 1 vector 3 such that

p
Un =Y _ AiWinyn + XnB+ Uy (1.2.1)

=1

where U,, is an n x 1 vector of disturbances. In this thesis we will refer to the MRSAR
model as simply SAR and the SAR model without regressors as the pure SAR.

Typically diagonal elements of W, are normalised to zero (see Assumption 2 and
its discussion below). Another normalisation that weight matrices are frequently sub-
jected to is row-normalisation, which ensures that each row of the normalised W,
sums to 1. In this case, taking p = 1 for illustrative purposes, the (i, 7)-th element of
Wi, is

dijn
Wiin = =7 1.2.2

where d;;,, is some measure of distance between observations at locations i and j.
This provides motivation for allowing the w;;, to depend on n, even if the d;;, do
not, implying that the g, should be treated as triangular arrays as reflected in the
subscripting with n. Kelejian and Prucha (2010) observed that if the weight matrices
are subjected to a normalisation that is a function of sample size, the autoregressive
parameters corresponding to the normalised weight matrices in the transformed model
are dependent on n even if the original ones were not. It is clear that row-normalisation
is an example of such a normalisation. The regressor matrix X, may also contain
spatial lags, and so it is attractive to allow both the autoregressive and regression
parameters to vary with n. It is possible that d;;, # dj;, so that spatial interactions
are allowed to be asymmetric. See e.g. Arbia (2006) for a recent review of spatial
autoregressions.

Several estimation methods have been considered for (1.2.1), the theory being gen-
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erally presented for p = 1 i.e. the model
Yn = AWyyn + X0 + Up. (1.2.3)

The presence of spatially lagged ¥, on the right side causes endogeneity problems,
leading to ordinary least squares (OLS) estimation being summarily dismissed in much
of the early spatial econometrics literature. However Lee (2002) showed that under
additional conditions on the w;j, OLS estimation can be consistent and asymptotically
efficient. In particular, let h, be a sequence that is bounded away from zero uniformly
in n, and let primes indicate transposition. Lee (2002) proved that the OLS estimate
of (A, )" in (1.2.3) is consistent if h,, — oo and the wjj,, are defined as in (1.2.2) with
the d;;,, satisfying
c< 2 h—1 dih,n7
ho,

where ¢ is a generic, arbitrarily small but positive constant that is independent of n.
If additionally n? /hn — 0 as n — oo, then the OLS estimates are also asymptotically
normal.

The instrumental variables (IV) estimate of Kelejian and Prucha (1998) is n-
consistent (and also applicable to a version of (1.2.1) that allows for spatially corre-
lated disturbances) under less restrictive conditions than the least squares estimate,
since the introduction of A, is not required, but is not efficient. On the other hand,
it is computationally simpler than the generalized method of moments (GMM) esti-
mate of Kelejian and Prucha (1999) and the (Gaussian) pseudo maximum likelihood
estimate (PMLE) studied by Lee (2004), these being implicitly defined. The latter
is obtained by maximising a Gaussian likelihood even when the disturbances are not
actually Gaussian. If Gaussianity obtains, then the PMLE becomes the Maximum
Likelihood Estimate (MLE) and is efficient in the Cramér-Rao sense. In fact, the
asymptotic variance of the OLS estimates coincides with that of the MLE. Robinson
(2010) developed asymptotic theory for efficient estimation of a semiparametric version
of (1.2.1). Lee (2003) has also provided the optimal instruments for the IV estimator
of Kelejian and Prucha (1998). For general, but fixed p, Lee and Liu (2010) justify an
efficient GMM estimate.

The regressors X, play a key role in estimation, with IV and OLS estimation possi-
ble only in their presence. The presence of even one non-intercept regressor can identify
the spatial component of the model, as the regressor creates the correct deflation in
the OLS and IV estimates. Without this deflation the deviation of the estimate from
the true value converges to a non-degenerate distribution. As a result, the pure SAR
model

p
i=1



1. Introduction 14

cannot be estimated using a closed-form estimate in general. One implication of this
observation is that IV and OLS estimates cannot be used to test the null hypothesis
B=0in (1.2.1).

In Chapters 2 and 3, the spatial lag order p in (1.2.1) and the number of regressors
k are allowed to increase slowly with n, as opposed to being fixed. This has attractions
in that it allows for a richer model with increasing data. However, we now demonstrate
by means of an example that such an asymptotic regime can arise quite naturally from
applications.

A specification for the weight matrix that is frequently used for illustrative and
simulation purposes is that used in Case (1991, 1992). In her scenario data are recorded
in r districts, each of which contains m farmers, implying n = mr. It is assumed that
farmers within each district impact each other equally and that there is inter-district

independence between farmers so that we have

Win = diag |0, ..., B, oo, 0f . (1.2.4)
~—
ithdiagonal block

with .
where [, is the m-dimensional vector of ones (1,...,1)" and I,,, the m-dimensional
identity matrix.

With such a natural partitioning of the data, it is likely that the SAR parameters
are unequal across districts. The true values may vary according to the properties of
districts e.g. geographic or demographic differences to mention just two. Consider the
model .

Un =Y _ AiWintn + X8+ Un, (1.2.6)
i=1
contrasted with currently available theory, discussed above, that typically considers
the specification (1.2.1) with p =1 and

Wy, = diag [Bp, ..., Bn] . (1.2.7)

If we allow n — oo with both m — oo and r — oo then the number of \;s increase
with n at rate r so that it is quite natural to consider an ‘increasing-order’ version of
(1.2.1) where p — 0o as n — oo. In fact, as we demonstrate in Chapter 2, applications
may even imply that both p — 0o and k — oo as n — oco. As a result we introduce

such a model and study various problems related to it in Chapters 2 and 3.



1. Introduction 15

1.3 Spatial autoregressions for regularly-spaced lattice data

As mentioned before, the extension of time-series theory to even regularly-spaced lat-
tices is not straightforward. We present a summary of the problems using examples
from Whittle (1954). We first illustrate dependence from many directions by means
of a simple bilateral model in one dimension (d = 1), and demonstrate that this can
be converted into a unilateral model. Denoting observations by x; and errors by ¢, a

simple bilateral autoregression in one dimension is
Tt = QT¢—1 + ﬁ.%'H_l + €. (131)

The estimation of this model by minimizing over a and § the usual least squares

objective function

U(a, B) = Z (2t — a1 — ﬂ$t+1)2

t
leads to nonsensical results. This is due to the omission of the Jacobean of the trans-

formation from €; to x4, which is not unity for (1.3.1). The correct objective function
is in fact k(«, B)U (v, 3) with

1 27
logk(avﬁ) — _2_/ IOg (ae’bw —1 + ﬁe_u’-’) (ae—lw -1 + ﬁezw) dw.
™ Jo
Evaluating the integral yields the objective function

{1 + (1 - 4045)% }_2 Z (21 — axy_y — Brir)?. (1.3.2)

t

In fact (1.3.1) can be given a unilateral representation which generates the same au-
tocorrelation function. Let a and b~! be the roots of the polynomial o — z + 322 and

define A and B by comparing coefficients in
(z—a)(z—b) = 2* + Az + B. (1.3.3)
Then the AR(2) process
xt+ Axi—1 + Brio = €

generates the same autocorrelations as (1.3.1). Transformation to A and B reveals

that (1.3.2) is proportional to

Z (.’L’t + Axt_l + B$t+1)2 .
t

Thus we have replaced (1.3.1) with a unilateral model, the parameters of which can be

estimated by least-squares and used to solve for estimates of av and 3 via the relation
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(1.3.3).

In contrast, matters are substantially more complicated in two dimensions. To
illustrate this we first explain what is meant by a unilateral model in two dimensions.
Suppose that x4 is an observable variate with each subscript being integral and denot-
ing location in the respective dimension, and ez be the unobservable error. We call an
autoregression of the variate x4 unilateral if it can be expressed as an autoregression
of xg on xgy, and Ty, with u > ¢, v > s and w unrestricted (also see Wiener (1949)).
In the lattice of Figure 1.1, this means that the observation at the cross be must ex-
pressible in terms of of the observations at the black dots. The diagram motivates the
use of the term ‘half-plane’. Such a representation ensures a Jacobean that does not
depend on the parameters, and implies that the parameters of the unilateral scheme
are estimable by least-squares. The idea is easily extended to d > 2. We also illustrate
the case of ‘quarter-plane’ dependence, a special case of half-plane dependence, by the
region bounded by the dashed lines.

The definition of a half-plane or quarter-plane is clearly not unique but we will
adopt the description of the previous paragraph and Figure 1.1 as convention (without

loss of generality) in this thesis.

o o o I. [ J [ J [ J
I
|
o o o :. [ ] [ J [ J
|
I
o o o | ® ° ° °
I
I___|
a] a] o % | @ [ [
o o o o ) ) o
o o [m] o ) ° o
o o o o ° ° )

Figure 1.1: Half-plane and quarter-plane representations of two-dimensional lattice
processes

Unfortunately the recovery of the parameters of the original scheme is not as
straightforward as with the bilateral, d = 1 model (1.3.1). Indeed, it may even be
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impossible. The seemingly straightforward bilateral, d = 2 model
Tot = (Tt + To—1t + Tspp1 + T p—1) + €st

has a unilateral representation with coefficients that are expressible in no simpler form
than elliptical integrals, hence yielding no closed-form. Matters are complicated further
because unilateral representations of finite autoregressions may be infinite. Indeed, the

finite autoregression

(1+ Bzst = B (Tsg1t + Tspr1 + Ts 1) + €st

has an infinite unilateral representation given by

o
Tot = 285441 — BPas o — BPosi1m1 + B (1 — 57) Zﬁjxsﬂ,t—j + ey, (1.3.4)
=0

where €., is a white noise error term. Whittle (1954) proposes an approximation to
the Gaussian likelihood, now called the Whittle likelihood, that permits estimation of
the parameters in multilateral models.

On the other hand, the unilateral representation is extremely useful if our interest
is in prediction purposes, or in spectral density estimation. The spectral density of the
process x5 may estimated through least-squares estimation of the unilateral autore-
gressive representation. Autoregressive spectral estimation is well-established in time
series, with roots in the contribution of Mann and Wald (1943). The advantages of
autoregressive spectral estimation for time series were listed in Parzen (1969). These
are enumerated in Chapter 5. The work of Akaike (1969) and Kromer (1970) estab-
lished the techniques for this approach to estimating the spectrum with time series
data. For spatial processes, this has been studied in a vast signal processing litera-
ture. Tjostheim (1981) considers an autoregression defined unilaterally on a quarter
plane and finds some evidence that autoregressive spectral estimation is superior to
conventional spectral analysis methods. McClellan (1982) reviews seven different types
of spectral estimates, the autoregressive estimator being one of them. Wester, Tum-
mala, and Therrien (1990) propose iterative techniques to optimise computation of
autoregressive estimates in both the half-plane and quarter-plane case.

However, both the time series and spatial literature mentioned in the preceding
paragraph has assumes that the true model is a finite unilateral autoregression and it

is rare that such an assumption can be justified, especially in view of representations
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such as (1.3.4). While it may be argued that truncated versions of (1.3.4) such as

k

2 2 2 j
Top = 2BTs 441 — B xspro — Bxsp101 + 6 (1= 57) Z (P xgi14—j + €y
=0

need to be employed in practice, it is desirable to let £k — oo as the sample size increases
to overcome the bias caused by using a finite autoregression. Even for time series,
finite autoregressions may not capture the data generating process (DGP) and, for the
regularly-spaced time series case, Berk (1974) provides results on the consistency and
asymptotic normality of spectral density estimates with the order of the autoregression
allowed to diverge with sample size. This approach has added appeal because any
stationary, purely non-deterministic (in the linear prediction sense) time series has an
infinite moving-average representation which, under invertibility conditions, yields an
infinite autoregressive representation.

In Chapters 4 and 5, we extend Berk’s consistency result to lattice processes.
While we have already discussed that any multilateral process has a (possibly infinite)
unilateral representation, Helson and Lowdenslager (1958, 1961) showed that even
more generally all stationary, purely non-deterministic (in the linear prediction sense)
spatial processes have a half-plane, infinite, moving-average representation. Again
under invertibility conditions we can use this to write down an infinite autoregressive
half-plane representation that is estimable by least-squares. As a result, there is strong
motivation for an extension of the result of Berk (1974). We have seen that even for
processes that already have a multilateral representation, the corresponding unilateral
scheme may be infinite. This provides even greater reason to study the estimation of
unilateral spatial autoregressions with diverging order in all dimensions. Extension is
not straightforward, with complications arising due to the structure of the covariance

matrix and the edge-effect.

1.4 Increasingly many parameters

While the preceding sections have demonstrated that the need for theory on models
with increasingly many parameters arises quite naturally, this section summarises some
of the key contributions in the general increasing parameter literature. This has been
concentrated mostly in the statistical journals, even though the econometric implica-
tions are immediate. One of the earliest references to increasingly many parameters is
Neyman and Scott (1948) who document the problem of incidental parameters poten-
tially rendering maximum likelihood estimates inconsistent. In the regression context,

the analysis of models with increasing dimension may be traced to Huber (1973). He
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considers the multiple regression model
y=XpB+e (1.4.1)

when the dimension of 3 is allowed to diverge with sample size. Let x; denote the i-th
column of X’ and y; the i-th element of the n-dimensional vector y. The M-estimate

of 3, denoted (s, is the vector that solves

> @it (i — i) =0,
=1

where ¢ : R — R is a given function. The least squares estimate is a particular case
with ¢ (x) = z. The asymptotic properties of [y are then studied. This problem is
considered further in Yohai and Maronna (1979) and Ringland (1983). The former

showed that if the dimension of 3 is p, with p — oo, then p?/n — 0 is sufficient for

183 — Bl == 0, (1.4.2)

where we employ Euclidean norm (see Section 1.6), and p% /n — 0 is sufficient for
d (B — B) —5 N(0,1), (1.4.3)

where a is some appropriately bounded vector in RP. Portnoy (1984, 1985) improves
the conditions for (1.4.2) and (1.4.3) to plogp/n — 0 and (p logp)% /n respectively.

We have already mentioned the contribution of Berk (1974) to the time series
increasing parameter literature. He proves that for an autoregression of order k with
k — oo as n — 00, least-squares estimates of autoregression coefficients are consistent
and asymptotically normal in the sense of (1.4.2) and (1.4.3) if k?/n — 0 and the
resulting spectral density estimate is consistent and asymptotically normal if &3/n —
0. Robinson (1979) establishes similar conditions for truncated approximations to
systems with infinite distributed lags, but allows these conditions to vary with the
strength of the assumptions on existence of moments for the errors. In Robinson
(2003) simultaneous equation models with increasingly many equations are considered,
which is equivalent to studying increasingly many coefficients on the endogenous and
exogenous variables. It is shown that if the number of exogenous variables, m, is
allowed to increase with n, then m?/n — 0 is sufficient for asymptotic normality of
instrumental variable (IV) estimates of the parameters of a single equation nested in
a system with increasingly many equations.

Another econometric example where the problem of increasingly many parameters
arises is the panel data fixed-effects model, a spatial version of which is considered
in Chapter 2. While we do not dwell on this in detail at this juncture, it should be
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mentioned that for such models Moreira (2009) has suggested a method based on using
group actions and invariants (see also Eaton (1989)) to construct an objective function
that is a function of a parameter of fixed dimension. The disadvantage of this approach
is that the incidental parameters are treated purely as nuisance parameters and not
actually estimated. In contexts such as the setting of Case (1991, 1992) discussed
in Section 1.2, the incidental parameters are actually of interest and indeed tests of

equality between them can be extremely useful in applied work.

1.5 Contributions of this thesis

This thesis makes several contributions. We list these by chapter. In Chapter 2, con-
sistency and asymptotic normality of IV and OLS estimates in a SAR model with
increasing autoregressive order and increasingly many regressors is considered. Per-
missible rates of growth of the parameter space relative to sample size are derived. This
is more complicated than the model (1.4.1), due to the presence of spatially lagged
Yn. In addition an empirical example illustrates a prescription for applied work: if the
model design implies heterogeneity in spatial units then the spatial parameters should
also reflect this.

Chapter 3 studies pseudo maximum likelihood estimates for the model considered
in Chapter 2. The problem is challenging as it involves an implicitly defined estimate
of a parameter of increasing dimension. A Monte Carlo study reveals that even the
MLE suffers from finite-sample identification problems. Motivated by this, we also
propose closed-form estimates obtained from a Newton-type step commencing from
the IV and OLS estimates of Chapter 2. These are shown to have the same asymptotic
distribution as the PMLE and their finite-sample properties are studied in a Monte
Carlo experiment.

Chapters 4 and 5 concentrate on autoregressions defined on a regularly-spaced d-
dimensional lattice. In particularly we focus on half-plane representations, which can
be estimated by least-squares. Unlike in the time-series, unilateral representations of
stationary processes do not yield a Toeplitz covariance matrix. Chapter 4 demonstrates
that for spatial processes the covariance matrix may be nested inside a matrix which
is block-Toeplitz with Toeplitz-blocks with d — 1 levels of nesting. This contribution is
important because the resulting analysis of eigenvalues can result in the kind of neat,
unified asymptotic theory for spatial processes that Hannan (1973) derived for time
series. This theory was derived by approaching the problem from the spectral domain.
Indeed, in stationary time series the covariance matrix turns out to be approximately
diagonalizable by a unitary matrix due to its Toeplitz structure, hence the favourable
outcome of an elegant theory. Given that unilateral representations also result in a

parameter-free Jacobean term there seems to be some scope for analogous results for
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spatial processes.

In Chapter 5 of this thesis, we exploit the structure derived in Chapter 4 to propose
an autoregressive spectral density estimate for a stationary lattice process and prove
that this is uniformly consistent under conditions that restrict the rate of growth of
the autoregressive order in all dimensions. This is an important result due to the
advantages of autoregressive spectral estimation listed in Section 1.3, and also because

of the problems caused by the edge-effect in kernel-based spectral density estimation.
1.6 Some notation and definitions

We introduce some notation and definitions. These will be used throughout the thesis.

1. 1(-) denotes the indicator function i.e.

1 ifx e A;

WEA):{ 0 ifad A

2. For a generic p x p matrix A with real eigenvalues, the largest and smallest

eigenvalues are denoted 7(A) and 7(A) respectively.

3. ||| denotes spectral norm i.e. for a generic real p x ¢ matrix B,

D=

1B = {n(B'B)}*.
For vectors b we define Euclidean norm as (b’ b)%, so that spectral norm and

Euclidean norm coincide for vectors.

4. For a generic real p x ¢ matrix B = [b;;] we define

q
IBllg = max > by
7j=1

and
p
IBlle = max > byl
-]_17"'7q i:l

which are the maximum absolute row-sum and column-sum norms respectively. If
some Wi, is row-normalized as in Section 1.2, then this implies that |W;, | =1

if also W, has non-negative elements.

5. ||| » denotes the Frobenius norm i.e. i.e. for a generic real p x ¢ matrix B

=

b2.

)
1

1Bllr =

q
=1 j=
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6. Throughout the thesis, C' will denote a generic, arbitrarily large and positive con-
stant that is independent of sample size, while ¢ will denote a generic, arbitrarily

small and positive constant that is independent of sample size.

7. Consistency: In this thesis, consistency of a parameter of increasing dimension
is taken to mean consistency in Euclidean norm i.e. by the statement “0° is a

consistent estimate of 7 we mean
16° — 6] -2 0.

Similarly, if we say that a matrix B of increasing dimensions can be consistently

estimated by B¢ we mean that

|B¢ — B|| 2> 0.
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2 IV and OLS estimation of higher-
order SAR models

2.1 Introduction

In this chapter a version of (1.2.1) is considered where p, k — oo asn — oo. This allows
for more flexible modelling, in accordance with the idea that more parameters may be
estimated as we increase the sample size, and explicitly permits asymptotic regimes
prevalent in applied situations, as we illustrate later. Increasingly many parameters
have been extensively studied in multiple regression, for instance by Huber (1973) and
in a series of papers by Portnoy (1984, 1985). Berk (1974) and Robinson (2003) also
studied problems with increasingly many parameters in time series autoregressions
and simultaneous equations systems respectively. This literature has been discussed
in Chapter 1.

In the next section, we introduce and discuss our model and also introduce some ba-
sic assumptions. Conditions and theorems for the consistency and asymptotic normal-
ity of least squares and instrumental variable (IV) estimates are presented in Section
2.3. In Section 2.4, we consider applications while Section 2.5 provides an empirical
example. The proofs of the theorems and the sequences of lemmas that they rely on

are left to appendices.

2.2 Model and basic assumptions

Given the existence of vectors A,y = (A1n,. .. ,)\pnn)/ and Bny = (Bin,--- Bron)s

!/

where ' indicates transposition, we wish to model the n x 1 observable vector y, =

(Y1n, - - - »Ynn)' by the specification

Pn

i=1
with p, — oo as n — oo, X, an n X k,, matrix of constants with k, — oo as n — oo
and U, = (u1,...,uy) a vector of unobservable disturbances. We may rewrite (2.2.1)

as
Snyn = XnBn) + Un (2.2.2)

where Sy, = I, — 320" X\inWin or equivalently y, = Ro\(ny + Xpnfn) + Un with R, =
WinYns .-, Wp.nyn). Note that in contrast to (1.2.1), in (2.2.1) we also allow the
individual A,y and S, elements to vary with n as discussed in the previous section.

The model (2.2.1) cannot be considered a particular case of the models considered

in the statistical literature surveyed in Chapter 1, due to the generation of y, by a SAR
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model. Although Portnoy (1984, 1985) allowed his model to have stochastic regressors,
these were not generated using a spatial process. In fact, in some sufficient conditions
they were taken to be i.i.d.

Recently there has also been some interest in the estimation of spatial weight matri-
ces, as opposed to assuming that they are exogenously chosen, see e.g. Bhattacharjee
and Jensen-Butler (2013). A potential extension of the model considered in this chap-
ter is to spatial weight matrix estimation, where each unit is influenced by a number of
neighbours that increases slowly with sample size. In this case the quantities of interest
are the elements of the weight matrices themselves, but these may be treated as linearly
occurring parameters using suitable decompositions of the weight matrix/matrices, or
a partitioning of the spatial domain.

We now introduce some basic assumptions.

Assumption 1. U, = (u1,...,u,)" has iid elements with zero mean and finite variance

o2,

Assumption 2. For i = 1,...,py,, the elements of W, are uniformly & (1/h,,), where
h, is some positive sequence which may be bounded or divergent. If it is bounded,
then it must also be bounded away from 0. The diagonal elements of each Wj;, are

zero. We additionally assume that n/h, — oo as n — oo.

Different h;, sequences for each of the W;,, may be used. However for least squares
estimation, even for fixed p, Lee (2002) demonstrated that consistency requires diver-
gence so that min;—; . p, hiy — 00 must be assumed and Assumption 2 entails no loss
of generality. He also provides a detailed discussion of this assumption. In IV estima-
tion, any mixture of bounded and divergent h;, sequences may be employed. However
boundedness away from zero is crucial as even consistency of the error variance esti-
mate based on IV residuals may fail if this does not hold. Indeed, an interpretation of
hy, is that it is the number of neighbours of a unit and it is rather odd to allow this to
go to zero as the sample size increases. The diagonal elements being zero implies that

a unit is not regarded as its own neighbour.
Assumption 3. S, is non-singular for sufficiently large n.

This assumption ensures that (2.2.2) has a solution for y,. If the W}, happen to
be block diagonal with a single non-zero block such that ||[Wj,|, <1fori=1,...,d,
then we prove in Appendix 2.D that a sufficient condition for S, to be non-singular is
that |A\in| <1 fori=1,...,d. Such a situation is discussed in Section 2.4.1.
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Assumption 4. ||S,; |Winllp and ||Wiy||o are uniformly bounded in n

Hlas 152 e |

and ¢ for all e =1, ..., p, and sufficiently large n.

This assumption has its provenance in Kelejian and Prucha (1998). The parts
pertaining to S, ! ensure that the spatial correlation is curtailed to a manageable
degree because the covariance matrix of y,, is 025, 1S/, The assumptions on the W,
are satisfied trivially if one unit is assumed to be a ‘neighbour’ of only a finite number
of other units, and is also satisfied if a unit is a neighbour of infinitely many units as
long as the w;;, decline fast enough. The latter is natural if the w;;, are decreasing

functions of some measure of distance between units.

Assumption 5. The elements of X,, are constants and are uniformly bounded in n, in

absolute value, for all sufficiently large n.

The assumption of non-stochastic regressors has been fairly standard in the the-
oretical spatial econometrics literature dealing with OLS estimation and the PMLE,
see e.g. Lee (2002) and Lee (2004). In Kelejian and Prucha (1999) all expectations
are to be read as conditional on the realisations of the explanatory variables, and so
the regressors are treated as fixed in their theory. Assumption 5 is certainly strong,
but we opt for it as the main purpose of this chapter is to study the implications of
the increasing order of the SAR model. A similar discussion applies to Assumption 6

in the next section.

2.3 Consistency and asymptotic normality
2.3.1 1V estimation

Because of the endogeneity of the Winyn, ¢ = 1,...,py, IV estimation has been em-
ployed for estimation of SAR models. Let Z, be an nxr, matrix of instruments, with

T > pp for all n and introduce

Assumption 6. The elements of Z,, are constants and are uniformly bounded in absolute

value.

For the model (1.2.1) with p = 1, Kelejian and Prucha (1998) noted that W,E (y,,)

can be written as an infinite linear combination of the columns of the matrices

X, WX, W2X, ...,

assuming the existence of a convergent power (Neumann) series for (I,, — AW,) "

The existence of such a series is guaranteed if |AW, || < 1. It was suggested that the
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instrument matrix be constructed from linearly independent subsets of the columns of
X, W X0, W2Xo, .., WX,

where in principle ¢ — 0o as n — oo but ¢ = 2 was regarded as sufficient from Monte
Carlo experiments. Our theory allows the number of instruments to increase with
sample size and provides a new result for the case when p,, is fixed while r,, is allowed

to diverge with n. For the specification (2.2.1), we will have
Pn -1
i=1

S8 Pn k
= > < /\me> XnBn)s (2.3.1)
1

k=0 \1i=

assuming that the power series is well-defined, so that instruments may be constructed

as subsets of the linearly independent columns of
X Win X, Wi X, oo, Wan X, Wa, X, oo, Wpn X, Wi X, (2.3.2)

Columns of X, pre-multiplied by cross-products of the W, may also be employed in
view of (2.3.1). Of course, other choices of instruments from outside the model are
available to the practitioner depending on the problem under consideration.

We now provide sufficient conditions for the power series in (2.3.1) to be well-

defined. A sufficient condition is

Pn
D XinWinl|| < 1, (2.3.3)
i=1

for which either

Pn
(1o, o) [ oW <1 (2.3

1=

or ,
<i1,.T;?,§n21 Hm”“) Z; [Ain| <1 (2.3.5)

1=

suffices. When the W, take the form (1.2.4), then > 2", W;, = W, as given in (1.2.7).
By, as defined in (1.2.5) has one eigenvalue equal to 1 and also —1/(m — 1) as an
eigenvalue with multiplicity m — 1. Hence |[Wy,|| = [[Winl|| = [|Bwl| =1,i=1,...,pn,
and g max |Ain| < 1 is sufficient for the power series to be valid, by (2.3.4). See

also Proposition 2.7 in Appendix 2.D for an equivalent result. The condition from

(2.3.5) is much stronger in this setting, requiring that Y 2" |Xi,| < 1.
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Denoting 0,y = <)\’(n), ﬂén)>, define the IV estimate of 0, as

Oy = Qu K3 T e, (2.3.6)
with
), = R IR,
where
S 1 A N 1 A 1 A
Kn = " [anXn]v kn = " Yn, Jn = " [vaXn] .
n sz n X7’1 n X7’1

This implies that

~ ~

On) — Oy = Qn ' K, T, s

where
/
Zn

X U,.

1
an = —
n

Since (2.2.2) and Assumption 3 imply that y, = S, ' X8, + S, U, we can write
R, = A, + B,, where

Ap = (Glan/@(n)v SRR Gpnan/B(n))a By, = (Ganna SR GpnnUn)y
and Gy, = Wy, Syt for i =1,...,p,. Also define

Z/

n

X5

_ 1| A
A0 X, Qu = Koy Ko = | 4

1
K, =— [An, Xn].
n

Note that J, and L,, are symmetric matrices.

Introduce the following assumptions.

Assumption 7. lim 7(J,) < oo and lim (K K,) > 0.

n—0oo n—oo

Assumption 8. lim n(J,) > 0 and lim (K] K,) < oo.
n—oo

n—oo

These are asymptotic non-multicollinearity and finiteness conditions, which can to

some extent be checked as we discuss in the next sub-section.

Lemma 2.1. Under Assumptions 7 and 8 respectively

(i) lim 7(Qn) > 0.

n—od

(i4) Tm 7(Qn) < oo,
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For just-identified (i.e. IV) estimation, we have p, = r,, implying that K, and K,
are square matrices so that é(n) = K;ll%n and Q! = K, 1 J, K/ 1.

Theorem 2.1. Let Assumptions 1-7 hold. Suppose also that

1,1, 1 palrath)

— 0 as n — oo. 2.3.7

Then
H Oy = O

Condition (2.3.7) details the restrictions on the rate of growth of the number of

‘ _?.0.

instruments and regressors, and implies a restriction on the rate of growth of the
parameter space because p, < r,. Slightly weakened conditions yield the same result

for the just identified case p,, = ry,.

Corollary 2.2. Suppose p, = ry,. Let Assumptions 1-6 hold. Suppose also that

lim n(K; Ky,) >0

and
i+i+w—>0asn—>oo.. (2.3.8)
Pn kn n
Then
Oy = Oy || =0

The error variance may be estimated using the natural estimate

6%, = % (yn — (R, Xn) é(n))' (yn — (R, Xn) é(n)) . (2.3.9)

Assumption 9. lim 7(L,) < oo.
n—oo

Theorem 2.2. Let Assumptions 1-7 and 9 hold. Suppose also that

1 1 1 n + kn) (rn + kn
10 (k) ()

Dn Tn knp, n

— 0 as n — oo. (2.3.10)

Then
P 9

92
A similar theorem hold in the just identified case p,, = 7, but we omit the statement
for brevity. Here the requirement that h,, be bounded away from zero if it is bounded

is crucial (see (2.B.8)), with consistency possibly failing otherwise. We can also record
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a central limit theorem for finitely many arbitrary linear combinations of é(n) — 0w

under stronger conditions which restrict the growth of p,, and r, relative to n further.

Theorem 2.3. Let Assumptions 1-9 hold. Suppose also that

1 1 1 o (12 +k2) Ky (7 + ki
RS SO S ) Fon (0 + Kin)

— 0 as n — oo. (2.3.11)
Pn kno o n n

Then, for any sX(pn + kn) matriz of constants V,, with full row-rank,

1
n2

(pn + kn)%

2
A d . g 1
v, (e(n) - e(n)) N <0,n15130 PR w;) ,
where the asymptotic covariance matrixz exists, and is positive definite, by Lemma 2.1.
It may be consistently estimated by
)

I(n) N
n n

Corollary 2.3. Suppose p, = r,. Let Assumptions 1-6, 8 and 9 hold. Suppose also
that
lim n(K/K,) >0

n—oo
and 3 2
1 1
_+_+&+M—>Oa5n—>oo, (2.3.12)
P kn n n

Then, for any sX(pn + kn) matriz of constants V,, with full row-rank,

1 2
n2 ~ d . o
— 7, (0(n) — 9(n)) — N (0, h_)m
(pn+kn)2 n—00 P, + Kp

\IangljnK;;lq/;> ,

where the asymptotic covariance matrix exists, and is positive definite, by Assumptions
7 and 8. It may be consistently estimated by

~2

0§ kg
U, K, I, KN
Pn + kn

Note that in Theorem 2.3 the condition p,r2/n — 0 implies p,k2/n — 0 as long
as ky, = O (ry) i.e. the number of instruments and regressors increase at the same
rate. In particular if r,, is fixed (implying that p,, is fixed), k, = & (r,,) is not satisfied
unless k,, is also fixed. Similarly r,k,/n — 0 implies k2 /n — 0 if k, = O (ry,).

The n2 / (pn + k‘n)%-norming is needed to ensure a finite asymptotic covariance ma-
trix, and implies a slower than n rate of convergence due to the increasing parameter

space dimension, while conditions (2.3.11) and (2.3.12) restrict the growth of the pa-
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rameter space. Indeed, if only n%-norming was employed the rows of ¥,, would have
to be assumed to have uniformly bounded norm which implies a similar normalisa-
tion as these rows have increasing dimension. The norming can change if the rows of
¥,, contain many zero elements, indeed the number of non-zero elements can even be
allowed to increase at a rate slower than the rate of increase of the parameters. In
particular, Theorem 2.3 may be easily rewritten if the interest is in obtaining a central
limit theorem for a fixed number of the parameters rather than an increasing number.
Suppose without loss of generality that we are interested in, say, the first [ elements
of 0,). In this case we take W, to be the 1 X (p,, + ky) row vector with all elements

after the [-th entry equal to zero. We then recover a n%—consistency result.
Corollary 2.4.
(i) Let Assumptions 1-9 hold. Suppose also that (2.3.11) holds. Then

o G =), - (0" (i ), ")

where <é(n) — Q(n)>l denotes the first | elements of é(n) — O(n) while the top-left
[ x 1 block of (limy, o Qn)_1 is denoted (limy— o0 Qn)l_l. The existence of the

limit is guaranteed by Lemma 2.1.

(ii) Suppose p, = ry. Let Assumptions 1-6, 8 and 9 hold. Suppose also that

lim 7(K,K,) >0

n—oo

and (2.8.12) hold. Then
o (B = 000), 5 (007 | (lim 160) i (Jim 1) ).

where [(lim,HOo Kn)f1 limy, 00 Jp, (limy,— 00 K;L)_IL denotes the top-left | x | block of

(limy,— 00 Kn)f1 limy, 00 Jp, (limy, 00 K;L)_l. The asymptotic covariance matrices are
estimated as in Theorem 2.3. The existence of the limit is guaranteed by Assumptions
7 and 8.

Corollary 2.4 indicates that the definition of simple t-statistics do not change from
the fixed-dimension model (1.2.1) to (2.2.1).

2.3.2 Least squares estimation

Define the OLS estimate of 6, as

Oy = Ly 1, (2.3.13)
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where

. 1| R . 1| R

L,=— " 1R, X, I, == K

n n X;l [ ny n]> n n X,;L Yn
SO

On) = Om) = L wn,
with
1| R

Analogous to the IV case, we also have an asymptotic non-multicollinearity condition

given by

lim n(Ly,) > 0.

n—oo

Assumption 10. 1i

This can be checked under more primitive conditions. For instance, if X, con-
tains a column of ones (i.e. the model (2.2.1) has an intercept) and there exists a
row-normalised W, with equal off-diagonal elements (such as (1.2.4) defined below)
then W;,y, is asymptotically collinear with the intercept. In this case Assumption
10 fails, and in fact so does lim (K, K,) > 0. This problem is discussed further

n—oo

in Kelejian and Prucha (2002). A necessary condition for both Assumption 10 and
lim Q(K;Kn) > 0 to hold is that, for all i = 1,...,p,, W;, are linearly independent

n—

oo
for sufficiently large n, failing which some of the \;, are not identified. It is clear
that identification of the A;, is particularly transparent when the W, have a single

non-zero block structure, a situation that will be discussed in detail in Section 2.4.

Theorem 2.4. Let Assumptions 1-5 and 10 hold. Suppose also that

11 nk2 (pn + ki, n
L1 ekt be) Pn g (2.3.14)

Dn kn n I,

Then
H On) — Oy

‘ 0.

Lee (2002) demonstrated consistency of least-squares parameter estimates for the
model (1.2.1), for p = 1, when h,, — oco. This condition ensures that the endogeneity
problem discussed above vanishes asymptotically. Our condition (2.3.14) is suitably
strengthened to also account for the increasing p,, and k,. To obtain a central limit

theorem, we additionally assume

Assumption 11. E (uf) <Cfori=1,...,n.
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While finite fourth order moments are not required for consistency, they are needed
to prove asymptotic normality. The details are in Appendix 2.D, but briefly this is

because
B/

n

Un
0

- — (1)

under both second and fourth order moments, but if only second order moments are
employed then the stochastic order of the last displayed expression is such that no
normalisation factor is available to ensure a non-degenerate asymptotic distribution.

We first introduce the error variance estimate

6%, = % (yn — (Rn, Xn) é(n))/ (yn — (R, X») é(n)) . (2.3.15)

Theorem 2.5. Let Assumptions 1-5 and 9-11 hold. Suppose also that

1 1 k2 k
_+_+W+p_n_>()a5n_>oo‘ (2,3,16)

DPn kp, n I

Then

~2 p 2

Theorem 2.6. Let Assumptions 1-5 and 9-11 hold. Suppose also that

Sl

1,1 ik patke)  oap

p k: - T 0 as n — oo. (2.3.17)

Then, for any sX(pn + kn) matriz of constants V,, with full row-rank,

2

1
n2 ~ d .

" (=8 ) - (0. i
(pn + k) P+

\ynLglxlf;) .

N

n

The asymptotic covariance matrixz exists, and is positive definite, by Assumptions 9
and 10. It may be estimated consistently using
~2

) g f-ly
pnthk, 0

Corollary 2.5. Let Assumptions 1-5 and 9-11 hold. Suppose also that (2.3.17) holds.

Then
ni (é(n) . 9(”)>z 4N <0, o> ( lim Ln)1> ,

n—00 l

where <6~?(n) — 9(")>l denotes the first l elements of é(n) —0(n) while the top-left Ix1 block

of (limy— 00 Ln)_1 is denoted (limy, oo Ln)l_1 and the asymptotic covariance matrix is

estimated as in Theorem 2.6. The existence of the asymptotic covariance matriz is
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guaranteed by Assumptions 9 and 10.

2.4 Applications

SAR models have found widespread application in many situations where cross-sectional
dependence has to be modelled for units observed with irregular spacing. A general
attitude adopted by modellers is that the more data we have, the more parameters
we can hope to estimate with reasonable precision. The asymptotic theory presented
above takes this into consideration. While the allowance for the number of parameters
to increase as n — oo can be rather theoretical we show in this section that there at
least two classes of SAR models where the need for such theory arises naturally. We
also present an illustration of when this type of theory may be relevant, even though

the model does not give rise to increasingly many parameters by its very design.

2.4.1 Farmer-district type models

The setting of Case (1991, 1992) was discussed in Chapter 1 as a natural motivator for
the work in this chapter. From an applied point of view a parsimonious model may
be quite desirable, and so some districts can be allowed to have the same A;s on the
basis of some homogeneity which will vary with application. There are other reasons
to allow for a slower increase of \;s than with r. For instance consider the condition
p3 /n — 0 (we keep k,, fixed for simplicity). In this setting this translates into requiring
that 72/m — 0. For finite samples an approximation to this would be that the ratio
r2/m be small, but this may not be reasonable if, say, 7 = 10 and m = 100. It would
be natural then to allow a slower increase of the parameter space than r, and attempts
can be made to combine \;s to reduce the ratio 72/m. Combinations can be made

according to geography, demographics or other criteria based on the context.

2.4.2 Panel data SAR models with fixed effects

Consider a balanced spatial panel data set with N observations in each of T" individual
panels, so that the sample size is n = NT'. Let y; v be the N x 1 vector of observations
on the dependent variable for the ¢-th panel, where ¢ may correspond to a time period
or a more general spatial unit like a school, village or district. Also let X; y and Fly
be N x ki and N x ky matrices of regressors respectively. X; y contains panel-varying
regressors while Fiy does not. Let Wiy, i = 1,...,p, be a set of spatial weight matrices

and consider the model

p
yen = Inag + XenB+ Fnye+ Y ANiWinyen + Uy, t=1,...,T (2.4.1)
=1
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where U; v is the NV x 1 vector of disturbances for each panel, which we take to be
formed of iid components. The oy, t = 1,...,T, are scalar parameters that control
for fixed effects with respect to panels, the A;, i = 1,...,p, are scalar spatial au-
toregressive parameters and ( is a k; X 1 panel-invariant parameter vector. On the
other hand ~; is a ko X 1 parameter vector that varies over panels. For this rea-
son, the variables in Fyn may be thought of as controlli/ng for ‘quasi’ ﬁxed—effects/.
Denote y, = (yll,m . ,yépm) , Xp = (Xi,nv . ,X}7n> , Uy = (U{,n’ e UIT,n) ,
a=(a,...,ar) and vy = (71,...,77)". We can then stack (2.4.1) to obtain

P
yn =1 @In)a+ XnB+ (Ir @ Fy)y+ Y Xi (It @ Win) yn + Un. (2.4.2)

i=1
This model is an extension of that considered in Kelejian, Prucha, and Yuzefovich
(2006), and was employed by Yuzefovich (2003). The latter is used as the basis for
the empirical example we consider below. The former noted that the above model is
again subject to asymptotic multicollinearity between the ‘constant’ and spatial lags
if any of the W;x have equal elements. We allow both 7' — oo and N — oo for our
asymptotic theory, while they only allowed the latter. This implies that the number
of regression parameters in (2.4.2) increases asymptotically. Not only this, since the
It ® W;n are block diagonal it would be natural to fear that spatial autoregressive
parameters differ for each panel, or at least among subsets of the panels. To illustrate,
suppose for the moment that p = 1. Allowing a separate spatial parameter for each

panel implies the model

T
yn = (Ir @ In)a+ XnfB+ (Ir @ Fn) v+ Y AWy + Un (2.4.3)
i=1
where
Wi = diag |0,. .., Wy ,...,0
~~

ithdiagonal block

The model (2.4.3) has ki + T'(k2 + 1) regression parameters and 7" spatial parameters,

making it fit naturally into the asymptotic regime discussed in Section 2.3. As in

3

Section 2.4.1 a point of concern may be that conditions such as p3 ki diverging slower
than n (needed for asymptotic normality of least squares estimation in Section 2.3.2)

translate here into requiring that

TG
~ 0as N,T — oc. (2.4.4)
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In finite samples we would like the above ratio to be somewhat small, but this may be
impossible to achieve. For even 7' = 2, T% = 64 which may not be small compared to N.
A solution is to use a smaller number of spatial parameters in (2.4.3), thereby allowing
the number of spatial parameters to increase more slowly with 7. For example, if ¢
represents monthly observations we may allow the spatial parameters to change on a
quarterly basis so that we have T'/4 spatial parameters, assuming that 7" is divisible

by 4 for simplicity. Then we would need

6
256 N

—0as N,T — o0

as opposed to (2.4.4). The last two displayed conditions are asymptotically the same

but in finite samples it is more likely that the last displayed ratio is small.

2.4.3 Another illustration

In Kolympiris, Kalaitzandonakes, and Miller (2011), the authors attempt to explain
the level of venture capital funding (provided by venture capital firms (VCFs)) for
dedicated biotechnology firms (DBFs) with a SAR model. In particular, the hypothe-
ses are that the level of VC funding for a DBF increases with the number of VCF's
located in close proximity to the DBF and with the number of other DBFs located in
close proximity to the DBF. To model this, specification (1.2.1) is employed, with the
dependent variable being defined as the natural logarithm of the amount invested by
VCFs in each of the n = 816 observed DBFs. The spatial weight matrices are defined
using a binary neighbourhood criterion and then row-normalised. In particular, three
weight matrices are employed (i.e. p = 3) with each based on a 3 sequential 10-mile
rings from the origin DBF. The set of DBFs situated less than 10 miles from the origin
DBEF are considered one set of neighbours, those situated 10.1-20 miles from the origin
form the second set and the third set of neighbours is defined in the obvious way. Their
model also has £ = 21, including an intercept term. The asymptotic multicollinear-
ity problem caused by an intercept that was discussed after Assumption 10 does not
arise here because the weight matrices have unequal off diagonal elements in general.
Because the number of neighbours may be taken to increase with sample size, least
squares is used to estimate the model. The results indicate that that only the first
spatial lag of y,, corresponding to those DBFs situated less than 10 miles from the
origin DBF, is significant. Our theory is relevant here, since if data on more DBF's
were to become available it would be attractive to reduce the radius of the rings used
in defining neighbours. As discussed earlier, more parsimonious specifications such
as the original may still be attractive to the practitioner but various models can be

employed and relevant statistical tests run to arrive at a more informed choice.
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2.5 Empirical example: A spatial approach to estimating contagion

The purpose of this section is to provide a practical example where the theory we have
presented may be useful, and the new approach that we have suggested may lead to
different conclusions from the empirical evidence on hand. It is, however, not intended
to be a detailed econometric study of the problem. Yuzefovich (2003) carries out a
study of ‘contagion’ of financial crises using (2.4.2), improving upon the treatment of
Herndndez and Valdés (2001). He studies the aftermath of three financial crises viz.
the Asian, Russian and Brazilian crises of July 1997, August 1998 and January 1999.
The idea is to identify channels of contagion using weekly stock market returns as the
dependent variable. In particular, it is proposed that the stock market return of a
country in a given week is determined by a set of fixed effects, exogenous variables
(common shocks) and also a weighted average of returns of other countries in the same
time period.

Four kinds of spatial weight matrices are employed, so that we have p = 4 in
(2.4.2). Each reflects a different channel of contagion. The first weight matrix reflects
how country 7 is connected to country j through bilateral trade, measured by exports
from country 4 to country j. It is row-normalised, so denoting exports from country

to country j as Exports;; we have

yTrade _ Ezxports;;
>on_y Exports;p’

%)

The second channel of contagion is financial links, measured by competition for funds
from a common lender. The common lenders are defined as the three financial centres

given by the set C' = {Europe, Japan, US}. Define

min {bj,Cy bi,C}

d¢ =2
E ijrbi

where b; ¢ is the debt of country i to common lender C and b; = )~ b; ¢, i.e. the total

foreign debt of country i. The financial links matrix is defined as

Fm__

- o
Zh 1 dzh
The third weight matrix is a similarity in risk matrix, defined as

Sim _ eXp (_|xl _:Uj|)
TSN exp (—|ai — an)

where x; is a measure of the credit rating for country i. Finally, the fourth spatial

w;

weight matrix is a row-normalized neighbourhood matrix. Countries are divided into
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five regions: Europe, South and South-East Asia, Latin America, Middle East and
North Africa, and Sub-Saharan Africa (see Table 2.3 for a list of countries by region).
The neighbourhood matrix is defined as

WNbd _ 0
i N
’ 2 _h=10ih
where ¢;; takes the value 1 when country 7 and country j belong to the same region, and
0 otherwise. Yuzefovich (2003) demonstrates that all the weight matrices are absolutely
bounded in row and column sums. The diagonal elements are also normalised to zero.

The common shocks are of two types: those propagated through trade linkages (in

Fy) and those through financial linkages (in X n). Suppose that

FN = (fh"'?fN),: Xt,N = (xt,la"th,N),'

Then the common shocks used are

P Exports; purope Exports; japan Exports;us
! GDP; ’ GDP; " GDP,
. = bi,Europe bi,Japan bLUS
ti GDP; YEurope,ts GDP, YJapan,ts GD_PZ Yus.t

where Ezports; ¢ and b; ¢ are the exports from country ¢ to financial centre C' while
Yot is the weekly stock market return in financial centre C' at time ¢. Yuzefovich
(2003) suggests that the z;; may be endogenous but a Hausman test conducted by him
indicates otherwise and we treat them as exogenous, as he does in his final specification.

The model estimated is therefore

yn = (Ir®@Iny)a+X,f+{Ir @ Fn)y+ X\ <IT ® WTrade) Yn
+ o (It @ WE™) gy, + A3 (Ir @ WO™) y,,
W (IT ® WNbd> Yn + Un (2.5.1)
with k1 = ko = 3.

We will restrict ourselves to the Russian crisis in this analysis, and concentrate
on the spatial autoregressive parameters. We consider a 12 week period starting in
July 1998 as our sampling period. Yuzefovich (2003) found that only the spatial lag
corresponding to the financial links matrix is statistically significant (at the 5% level)
and we arrive at the same conclusion when replicating his results (see Table 2.1). There
is some quantitative difference because data for 2 out of the 52 countries he used was
unavailable. It is also possible that he used different stock market indices as compared

to us, since these were not specified by him.



2. IV and OLS estimation of higher-order SAR models 38

)\1 )\2 )\3 >\4

0.2386  -0.0562 0.2779  1.2365"
(0.1925) (0.1174) (0.1631) (0.2137)

Table 2.1: Summary of estimates of coefficients corresponding to weighting matrices
in specification (2.5.1)

Standard errors are reported in parentheses, starred estimates in bold are significant at 5% level

We now allow for different spatial parameters for different phases of the sampling
period, as indicated in Section 2.4.2. In particular, we split the sampling period into
three four-week periods, henceforth referred to as months. For the insignificant spatial
lags, we find that the lags remain insignificant in each month even after allowing for
different spatial parameters. As a result, we estimate the model with different spatial
parameters for each month corresponding only to the significant financial links matrix.

Specifically, the model estimated is:

Yn = (IT &K ZN)Oé +Xn,3+ ([T ®FN)")/—|— A1 (IT ® WTT‘ade) Un
3
+ Z /\jg (IT ® Wij) Un + A3 (IT ® WSim) Yn
j=1
+ M (oW y, + U, (2.5.2)

where

WlF’Ln — dzag [WFin,WFin,WFin,WFin,O, B ,0]

and WQF " and W3F n are defined analogously using the 5th-8th and 9th-12th diagonal

blocks respectively. IV estimation is used, with the linearly independent columns of
X, Ip @ WX, Ip @ W™ X Ip @ WYX, Ip @ W™ X, 5 =1,2,3
and

IT ® Fy, (IT (= Wdee> (IT X FN) , ([T &® WSim) (IT () FN) ,

(IT ® WNbd) (Ir ® Fy), (Ir @ WF™) (Ir ® Fn) ,j = 1,2,3

being used as instruments, so that r, from Section 2.3.1 may also be taken as 7'/4
here. Table 2.2 reports the estimates of the spatial autoregressive parameters. These
indicate that Ao and A3 are significant at the 5% level, while Ags is not. This would
indicate that contagion through financial links occurs immediately after the onset of a

crisis, followed by a lull, and then another period of contagion. This could be due to
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A A12 A22 A32 A3 A4

02327 1.0541* 0.4714 1.4938* -0.0236  0.2767
(0.1827) (0.4182) (0.4394) (0.2508) (0.1162) (0.1576)

Table 2.2: Summary of estimates of coefficients corresponding to weighting matrices
in specification (2.5.2)

Standard errors are reported in parentheses, starred estimates in bold are significant at 5% level

the fact that immediately after a crisis, country ¢ immediately increases its borrowing
from a financial centre but this stabilises after a few weeks. However some domestic
businesses hit hard by the crisis may only start to feel financial hardship some time
after the initial shock and create a second wave of demand for borrowing. A t-test was

also conducted for the null hypothesis
Ho : M2 = Ag2

which failed to reject the null returning a test statistic value of 0.9358, indicating that
both ‘waves’ seem to have equal impact on stock market returns through the financial

channel.

Remark In another piece of research, not published in this thesis, we consider the

problem of testing increasingly many linear restrictions on the parameters 6,y =

()\’(n),ﬁén))/ of (2.2.1). Such a problem is natural not only because of the increasing-
parameter definition of the model, but also because the increasing autoregressive order
can arise from a partitioning of the data (see Chapter 2). In the latter case, Chapter 2
prescribes an approach that takes into account heterogeneity between the clusters by
recommending that the autoregressive parameters be allowed to vary across clusters.
On the other hand, practitioners have a preference for a parsimonious model where

possible. As a result there is great interest in testing null hypotheses of the type
Ho . )\1 = )\2 == ... = )‘pn' (253)

Bearing in mind that p,, increases with n, a more meaningful way of writing the above

null hypothesis would be
Pn

Ho: ) (hi—X)?=0. (2.5.4)
ij=1
1<j

We focus on Lagrange Multiplier (LM) tests. This principle is particularly attractive

when testing such hypotheses because it requires only an estimation of the model under

the null hypothesis. This may even reduce the model to a finite-dimensional one, as
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is the case if the null hypothesis is as in (2.5.3) and k,, is fixed. When testing a fixed
number of restrictions, say ¢, the LM test statistic has an asymptotic XZ distribution

under mild regularity conditions. However, it is well known that

Xo—q 4

L N(0,1)

as ¢ — 0o. We will use this result as our motivation to propose standardized LM statis-

tics and establish their asymptotic normality. Results of this type indicate that critical
values from a standard Normal distribution may be employed to conduct inference on
the parameters of (2.2.1). From a practitioners point of view, this is an attractive
result because critical values from both the chi-squared and Normal distributions can
be used to carry out inference. This adds another layer to the diagnostic procedures
available to the practitioner. The results can also be viewed as an analogue to familiar
statistical results, where either the ¢ distribution or the Normal distribution can be
used to obtain critical values for t-tests, but these get arbitrarily close asymptotically.

The idea of using a standardised version of the LM test dates back to at least
De Jong and Bierens (1994), who used a similar idea for testing increasingly many
conditional moment restrictions. They employed a proof using a central limit theorem
of Hall (1984) for degenerate U-statistics, owing to the i.i.d. nature of their data. The
regularity implied by i.i.d. data does not obtain in our setting, however, and we use
direct martingale central limit theorem arguments to establish the limiting distribution
of our test statistics.

It should be mentioned that there are other ways to construct test statistics for
testing the equality of the );, but the LM approach allows us to accommodate general
linear restrictions and delivers standard asymptotics. Motivated by the extreme-value
literature, given some consistent and asymptotically normal estimates A{ of \;, a lead-

ing candidate for a test statistic to test (2.5.4) is

sup |[Af|— inf  |AF]. (2.5.5)
i=1,..pn i=1,...,pn

Rejection of the null hypothesis can be based on large values of (2.5.5), but this statistic
suffers from major disadvantages as opposed to the LM approach. First, the LM
approach does not require the estimation of the unrestricted model so only a model
of fixed dimension needs to be estimated. Secondly, the asymptotic distribution of
(2.5.5) is extremely hard to derive and will be non-standard, leading to complications
in terms of obtaining critical values. As a result, we feel that LM tests are very useful

and easy to handle in this context.
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Europe South and Latin America Middle East and Sub-Saharan
South-East Asia North Africa Africa

Bulgaria Australia Argentina Egypt Mauritius

Croatia China Brazil Israel South Africa

Cyprus India Chile Jordan Zimbabwe

Czech Republic Indonesia Colombia Kuwait Kenya

Estonia Malaysia Ecuador Lebanon Nigeria

Greece New Zealand Mexico Morocco

Hungary Pakistan Peru Saudi Arabia

Iceland Philippines Venezuela Tunisia

Latvia Singapore

Lithuania South Korea

Malta Sri Lanka

Poland Thailand

Portugal

Romania

Russia

Slovakia

Slovenia

Turkey

Ukraine

Table 2.3: List of countries and region classification for Section 2.5
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2.A Matrix norm inequalities and notation

There are several inequalities relating the matrix norms used in this thesis. First
[Al < [|All 7

where. This inequality relating the spectral and Frobenius norms is used repeatedly
without explicit reference to the Frobenius norm.

Another useful inequality that relates the spectral norm to the maximum row and

A</ llAllR [Alle- (2.A.1)

This allows us to conclude that a matrix that is uniformly bounded in row and column

column sum norms is

sums is also uniformly bounded in spectral norm. Finally the spectral, maximum
row-sum and maximum column-sum norms are all sub-multiplicative.

We also denote a, = pp + kn, by = 7 + kn, ¢ = puk2 + kn and 7, = n%/aé to
conserve space.

2.B Proofs of results in Section 2.3

Proof of Lemma 2.1.

(i) By definition

n(Qn) =n (K, J,'K,) = min K, J, Kz,

[[en]l=1

while for a a,, x 1 vector x,, satisfying ||z,| =1

'K! J1K

ez ()

x, K| Knxn

so that (K K,)
_ — n
w;K;LJn 1Knxn > (Jn 1) x;lKT’lKnxn > # > c,
n

for large n by Assumption 7, where ¢ denotes a positive but arbitrarily small real
number that does not depend on n. Then the result follows because the calcu-
lations above indicate that minimization of 2/, K! J-'K,, over x, is bounded

away from zero for large n and, therefore, so is the limit inferior.

(ii) Similar.
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Proof of Theorem 2.1. Write

Oy = Oy = (@' = Q") Ko an + Q1 K
= Q0 (- Q) QLT+ @0t (B - K )
+ Qn KLy an
= Q' (Qn - Qn> (é(n) - 9(n)) +Q," (Kn - Kn>/ I
+ QKT . (2.B.1)

By elementary norm inequalities

| @0 = @ul| < || = 5a | 11741 (|| B — 70| + 20500 (2.B.2)
~ 2
where E H K, — K,||" is bounded by
o? o / / o? o 2 > 2 DPnbn
EZZ ’PmGjnGjnpin| < ﬁz ||pm|| Z HGjnH <C n
i=1 j=1 i=1 j=1

by Assumptions 5 and 6 and Lemma 2.C1, denoting by p;, the i — th column of
(Zp, Xpn). We conclude that

1 1
. §b§
| & - K| = 0, | P22 (2.B.3)
n2
by Markov’s inequality. Then
11 11
~ b 2b2 2b2
Qn— Q|| = 6, [ max { Bnon PR2R S ) _ g (P22 (2.B.4)
n2 n2

by Assumption (8) because || J, || = (n (Jn))f1 and || K, || =7 (K, K],). Likewise

E|ga|® = E

2
2 n
o b
=Xl =0 (%),
=

where a,, is the i —th row of (Z,,, X,,), since the elements of a/, are uniformly bounded

n
1
- 5 AinUj
n -

=1

by Assumptions 5 and 6. By Markov’s inequality

%
b,
lgnll =0 | — ] - (2.B.5)

n2
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Upon taking norms of (2.B.1) and rearranging we get

(1 Nz | @n — @

1@, A
Q0 | I || T gl

i a0

(2.B.6)

using the submultiplicative property of the spectral norm. By (2.B.4) the first factor
on the LHS above converges in probability to one by (2.3.7) and Lemma 2.1 (7), and

because
pnbn _ PnTtn + pnkn

n n
This also ensures that the first factor in the first term on the RHS of (2.B.6) is bounded,

as well as the third factor by Assumption 8. The second and fourth factors have orders

1
given in (2.B.3) and (2.B.5) respectively, implying that the first term is &, < "b">.

n

IE

I\Jh—t (SO

The order of the second term on the RHS is determined similarly to be &, (b
that

1 1 1
) pibn bi b2
H(n) - Q(n) = ﬁp max n y T = ﬁp 1 (2.B.7)
n2 n2
This is negligible by Assumption 2.3.7. The proof of Corollary 2.2 is similar. O
Proof of Theorem 2.2. Write
1 A / A
A2
1 2 /4 | Rl
= U= (9m) — b)) v |

+% (% - 9(n>)/ f;z

= %UJLUn -2 (é(n) — G(n))/wn + (é(n) — G(n))/ﬁn <é(n) — 9(71)) .

By the Khinchin Law of Large Numbers, we have 1U}U,, = 62+ 0,(1). Also by (2.B.7)
and (2.B.16) the modulus of the second term above is bounded by

(B, Xon] (% - 9<n>)

1111
bici pnbi

)
nzhn

Hé(”) — ) H |wn|| = O, | max
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while the third term has modulus bounded by

‘ (ém) - 9(n>>/ Ly (% - 9<n>) ‘

+ ‘ (% - 9<n>), (ﬁn - Ln) (ém) - 9<n>) ‘

2

Ln_Ln

IN

12l + || By = o

H Oy = O

1 1
using (2.B.7), (2.B.20) and Assumption 9. Thus, noting that ’;L"Tb" and Likngibn ape
n n2
. v2b2
dominated by 2222 under (2.3.10), we have

n2h,

R (2.B.8)

which is negligible by (2.3.10) and because h,, is bounded away from zero, noting that

bney <C <pnrnkr21 +pnk2>

n? n?
O
Proof of Theorem 2.3. Let o be any s x 1 vector of constants and write
70 U (O = 0y ) = 70000 Q5" (Qn = Qn) () — b))
+ Tno/‘langl (Kn — Kn)/ Jn_lqn
+ 1V, QL K] T g (2.B.9)

We first show that first term on the RHS of (2.B.9) is negligible in probability. It has
modulus bounded by

1
Pab
— ﬁp nln
2

9

ol 1] || 6y = O

l@2t ] || @n - @n

n

from (2.B.4), (2.B.7) and Assumption 8. This is negligible by (2.3.11) because, by
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elementary inequalities,

paby, <c <pn7“i +pnki> .
n n

Similarly the second term on the right side of (2.B.9) is bounded in absolute value by

1

2b
||:ﬁ pnn

1
n2

7ol 19l || @

so we have to prove asymptotic normality only for the third term on the RHS of (2.B.9).

Now

O O [ Z o0,Q, Ky T, i

TLQGn =1

has mean zero and variance

—Z (U, Q. K J )%
Nan 1=

Thus consider

nd' ¥, Q. K! J g, "
= Cinll,
" E Z m Y
J{Z(O‘/\PnQ IKIJ am) }
i=1

where , Lo 1t
oU,Q KL T iy,

J{i(a’\lan 'K T ain)? }2

=1

Cin =

-

We now verify the Lindeberg condition for c¢;,u;. We have

2 n
ZE{ (Cins)?1(|cinug| > € } < max E{ u?l [ u? > 6—2 Zcfn

1<i<n max c;
1<i<n "
Note that assuming 2nd moments for the u; ensures that u? are uniformly integrable

since they are iid. Therefore it is sufficient to show that max 2, —0as n — oo, as the
<i<n
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last factor on the RHS of the above displayed inequality equals 1/02. Consider

(', Q K} T, ay,)?

n
o? Z(alanrle?/l'];lain)Q
i=1

max cfn = max
1<i<n 1<i<n

1 —11l12 2 2
@z T | 1¥nal” max - fla|
n

02y (" 0nQy K Ty ag,)
i=1

IN

The denominator of (2.B.10) equals o2 times

m-in

n
U Q KT a0, 0, K@y o
=1

n
> [|w0]*n (Q#K;ng Zama;nJ;lKnQ;I)
=1

= || Wal® n(Q KL KaQy)
= n|[Wal” n(Q:")
> ne||@,al

(2.B.10)

for sufficiently large n by Lemma 2.1 (4), noting that >_"" | a;pal, = nJ,, so (2.B.10)
is 0 (Qnﬂ) by Assumptions 5 and 6, which is negligible by (2.3.7). The Lindeberg

condition is then satisfied. The proof of the consistency of the covariance matrix

estimate is omitted, while the proof of Corollary 2.3 is similar.

Proof of Theorem 2.4. We can write

é(n) =0y = (ﬁ;l — L,_Ll> wy, + L wy,

It is clear that

1| A 1| B
< ||— ", — " U
|wn|| < n X;z n n 0 n
Now
B 1| A ’ o (Cn
n| x' Unll = <E>’
n

O]

(2.B.11)

(2.B.12)

(2.B.13)

as in Section 2.1 since the elements of A,, are uniformly & (k) (Lemma 2.C5). Under
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Assumption 11, the square of the second term on the RHS of (2.B.12) has expectation

pn
— Z]E (ULGI,U (2.B.14)

which, using the proof of Lemma 2.C4 and denoting Eu} = p14, equals 2?21 A, where

Pn n
_ M4 2 _ Pn
Am = 5 Zgjj,m—ﬁ<n_h%>

i=1 j=1
4 Pn n D
n
Am = n2 ZZZQJJ inGkk,in = O <h_2>
i=1 j=1 k=1 n
4 Pn n J
A?m = n2 Z Z Zgjk inGkj,in = =0 <h_n>
=1 j=1k=1
4 Pn n
M= 535 =0 (),
i=1 j=1 k=1
by Lemma 2.C2, where g5, denotes the (r, s)-th element of Gj,. Hence
, 1
1| B, pn
— U, || =0, — 2.B.15
so that ) )
i DR
|lwn| = O, max | —, — (2.B.16)
nz hn
However, under Assumption 1 we have
, 1
1| B 1 2
= T U|| < = B, O Ul = 6, | 23 (2.B.17)
n| 0 n h2

by calculations used for bounding the first term on the RHS of (2.B.19) and so

1
CQ
wn| = 6, max [ 2 2
nz h

(2.B.18)

S| Swl=
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Also
. 1 / 1| A
Ln - Ln = - 77 [Rran] - " [Aann]
n ! n | X/
1 n A;,
1 !
- " n7Xn - AnaXn
F o] | (Bl = A0 Xa)
1 n A;,
+ ; ( / - X, > [A’IMXR]
1| B! 1| A B’
= - " [Bn7 O] + - " [Bna 0] + - " [An, Xn]
n| 0 X, 0
so we have
. 1 2 A
Ln—LnH < 2By, 012 + £ " 1B, 0 2.B.19
| <~ H|+n‘ o | B0 (2.B.19)

The first term in the last displayed expression expectation bounded by

1 n  Pn 9 1 Pn n
E Z Z E (eg,nGjnUn) = E Z E UT/LG]n €i7n€§’nG;nUn
i=1 j=1 j=1 =1
o2 &

< —Ztr (GinGl) <CZ—”,

using Lemmas 2.C2 and 2.C3. For the second term in (2.B.19) note that

1 A/ o / ! /
| x [B,,0]|| < —ZZh GinUnU}, Gy hin,
=1 j=1

where hy, is the @ — th column of (A,, X,,). Then by Lemma 2.C5, Assumption 5 and

Lemma 2.C1 we have

an  Pn an Pn
ZZZhI G U U/G/ - zzzh/ GI G, zn
i=1 j=1 =1 j=1
2 an
< 2Z\|hmu ZnGmn?
< Cpnk Gnp

n
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so that

11
~ 2]{: CL2
HLn—LnHZﬁP max { 2r Prlnln

) 1
hn n2

(2.B.20)

Note that the bound derived above required only second order moments for the u; and

using fourth order moments (Assumption 11) will not improve the bound because

1 B/ 2 1 Pn  DPn 5
! /
—E " | [B,,0] §§ZZE(UnGmeUn)
i=1 j=1

which is & (%) in exactly the same way as we bounded (2.B.14) since the elements

of G}, Gjn are O (%) uniformly in 4,7 and n by Lemma 2.C3.

Upon taking norms of (2.B.11) and rearranging we get

(1= lzz )

using the submultiplicative property of the spectral norm. By (2.B.20) the first factor

Lo = Lo|[) 10y — Oy || < |12 || [ (2.B.21)

on the LHS above converges in probability to one by (2.3.14) and Assumption 10,
the last being useful since ||L;'|| = (n(L,))~'. Again, the first factor on the RHS of
(2.B.21) is bounded by Assumption 10 for sufficiently large n and so we have

11

H Gy — 0 o cn P (2.B.22)

- = max | —, — B.
(n) (n) r n% ) hn
by (2.B.16) under Assumptions 1 and 11 but

11
i cho Pa

HG(n) - H(n) = ﬁp max \ —y, —r (2.B.23)
n2 p2

by (2.B.18) under Assumption 1 only. These are negligible by (2.3.14). O

Proof of Theorem 2.5. As in the IV case, we write

62, = %U;Un —2 (0 - e(n))' wn + (O - e(n))' Lo (B = 1) -
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From (2.B.22) and (2.B.16) the second term has modulus bounded by

H Oy — Oy || lwal
53 53
» { Mmax T » § Mmax T
32
Cn Pn PnCn
- 0 En Pn PnCn
p | max nz n%hn
while the modulus of the third term is bounded by
~ / ~ ~
‘ (9<n) - 9<n>) (Ln - Ln) (9(n> - 9<n>) ‘
~ / ~
+ ‘ (9<n> - 9<n>) L <9<n> - 9<n>) ’
- 2 4 - 2
< H H(n) — 0(n) Ly, —Ly| + H e(n) - e(n) HLnH
3.3 33
Cn Pn DPnCn Dn knpha
= 0, | max —,h%,n% - O, | max h_n’ n%n
3.2
Cn Pn PnCn
-+ ﬁp max n y h_%7 n%—hn
32
Cn Pn PnCn
= ﬁp max E, h—%, E y
using (2.B.22), (2.B.20) and Assumption 9. We conclude that
11
52 _g2— a Cn Pn DPAcCh (2B24)
O'(n) o = P max n7h%’n%hn .D.
This is negligible by (2.3.16). O
Proof of Theorem 2.6. First, with o any s x 1 vector, write
Tna/\I/n <0~(n) — 0(n)> = TnO/\I/n (E;l — Lgl) W,
+ 7V, L w,. (2.B.25)

We first show that first term on the RHS of (2.B.25) is negligible in probability. This
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term has modulus bounded by 7,, times

ol 1%all || 25 wn

Lot | £ L

= Nl 1l || ny = Oy | 121 || £ = 20| -
: y o
The second factor on the RHS is & (a%), the third is 0, <max{‘il, h—”}) by
n?2 "

(2.B.22), the fourth is bounded for sufficiently large n by Assumption 10 and the

1
2
n

1
. 2
fifth is @, ( max { 2o Pakuda
P hy? ny

the RHS of (2.B.25) is the order of the last displayed expression times 7,,, which is

by (2.B.20). The total order of the first term on

1 1 1 1 1 3
o, <max {p’% sz i , p,;::% , p"IZZGQ , ”igﬁ }), all of which are negligible by (2.3.17) be-
cause
pnk?zancn C <pik1% +p121k?1> pg:,cn < Cpfzkr% ’I’L_p% _ nQﬁ&
n - n B Y P 4 ht n
Paknn  _ Pokn+poka _ po <1ﬁ N pn_kfz>
h2 h2 h2 \ n n )’

The second term on the RHS of (2.B.25) is

B/

n

0

A

1 1
T/ U L wy, = 7,0/, L= Up + 70U, L1~ U.. (2.B.26)
n n

/

n
!/
n

The modulus of the second term on the RHS of (2.B.26) is bounded by 7, times

BI
lleel| 1] || 2t | !

Un (2.B.27)

1
n

1
The second factor on the RHS above is & <aﬁ>, the third is bounded for sufficiently

1
2

large n by Assumption 10, and the fourth is &, (%) by (2.B.15). Therefore (2.B.27)

n

11
is 0, <p2a’%> and so the modulus of the second term on the RHS of (2.B.26) is

Sol— >

0, <n§ 7;—n> . Under (2.3.17) this is negligible in probability and so we need to compute

only the asymptotic distribution of the first term in (2.B.26). Now

n
_ 1 _
Tno/\I!nLnltn: T E o/\IfnLnltmui
n2as i=1
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has mean zero and variance

2 n
g _
- § (U Ly in)?,
Nan

where t/ is the i — th row of (A, X,,). Thus consider

— n
na'V, L, 1t,
T — E finuia
2 .
=1

o {i(a’\lfnL;Itm)Q}

i=1

where
O/\I/nL:L 1 tin

.
n 3
o {Z(a’\PnL;Itm)g}

i=1

fin =

We now verify the Lindeberg condition for f;,u;. We have

1<i<n max f;
nax fin

n 2 n

€
S E{(finti)*1(|fints] > €} < max EQ il | uf > —— | > f7,
i=1 =1

Note that assuming 4th moments for the u; ensures that uf are uniformly integrable.

Therefore it is sufficient to show that nax f2—0 as n — o0, as the last factor on the
<i<n

RHS of the above displayed inequality eq_uals 1/0?. Consider

A, L_lt- 2
max f;, = max (@ WLy tin)
1<i<n "™ 1<i<n n e
02y (U, L, i)
i=1
—~1112 2 2
12 7 1o * max ([t
< . == (2.B.28)
o2y (U, L, )"
i=1

For the denominator of (2.B.28), note that

n n
S (@, ) = UL b, L W
=1 =1
n || Whal® (L))" 2 ne || wal,

v

using Assumption 9. Thus (2.B.28) is & (%) by Assumptions 5, 9 and Lemma 2.C5.
This is negligible by (2.3.17) and therefore the Lindeberg condition is satisfied. The

proof of the consistency of the covariance matrix estimate is omitted. O
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2.C Technical lemmas

Lemma 2.C1. Let Assumptions 8 and 4 hold. Then,
1. ||Ginllg and |Gl are uniformly bounded for all i =1,...,p, and n > 1.
2. ||Ginl| is uniformly bounded for all it =1,...,p, and n > 1.

Proof. 1. For any i =1,...,pn,

”Gin”R: ||S;1Wz HS IHRH‘/VWHR<C

nllp <

where the last inequality follows from Assumption 4. The claim for the maximum
column-sum norm follows similarly.
2. Follows using (2.A.1). O

Lemma 2.C2. Let Assumptions 2, 8 and 4 hold. Then, for all i = 1,...,py,, the

elements of Gy, are uniformly € (%) as n — oo.

Proof. Denote by w/,

7,in

the j-th row of Wj,. Then the (j, k)-th element of Gy, is given

by w] mS’n €k,n, Where ey, ,, is the n-dimensional vector with unity in the k-th position

and zeros elsewhere. Then

| WiinSa ern| = [whinSi ernlle < Nwhinllo 192" o llexnlle
1
- (&)
where the last inequality follows from Assumptions 2 and 4. O

Lemma 2.C3. Let Assumptions 2, 8 and 4 hold. Then, for all i = 1,... p,, the
elements of a product consisting of any finite number of the G;, or their transposes are

uniformly O (%) as n — oo. In particular G}, G;n and G, G, have elements that

are O (%) uniformly ini,7 =1,...,p, as n — 00.
Proof. Similar to proof of Lemma 2.C2. O

Lemma 2.C4. Suppose that v, is a n X 1 random wvector with i.i.d. elements v;y,
with zero mean and finite fourth moment. Let D,, be a n X n non-random matriz with

elements d;j,,. Denote vy = Evfn and 9% = Evfn. Then
var (v), Dyvy) = (va — 39%) Z du o+ 04 [tr(D, D) + tr (D2)] .

Proof. See Lee (2004). O



2. IV and OLS estimation of higher-order SAR models 55

Lemma 2.C5. Let Assumptions 3-5 hold. Then the elements of A, are uniformly

O(ky).

Proof. Let g; ;, be the i —th row of Gj,. Then a typical (4, j) — th element of A, is
g;annﬁ. Now gl’-Janﬁ < ‘ gg’jn n | XnBllg = O(kn) since |G|l is uniformly
bounded by Lemma (2.C1) and by Assumption 5. O

Lemma 2.C6. Let Assumptions 2, 3 and 4 hold. Then, for all i = 1,...,py,, the
elements of Cyy, are uniformly O (%)

Proof. Follows trivially from Lemma 2.C2. O

2.D Proofs of sundry claims

Proposition 2.7. A sufficient condition for invertibility of Sn(A(n)) when [[Win|[z <1
for each © = 1,...,p, and have a single non-zero diagonal block structure is that

[Ain| <1 for each i =1,...,py.

Proof. Let each W, have a single non-zero diagonal block of dimension g x ¢. Since
Sn(/\(n)) is block-diagonal, invertibility can be proved by showing that each block is
invertible. Let Bj, denote the i*" block in Wj,, i.e. this is the only non-zero block in
Win. Then Sy, (An)) = In — diag(MnBins - s ApnBpn)-

By the normalization of diagonal elements of each W, in Assumption 2, the diag-
onal elements of Sy, (\,)) are 1. Consider the it" block in S, (\). Then

Z |)\in||wrs,in| Z ‘)\in”wlm,in| <1

SFET m#£l

if A2 < 1, by row-normalization. The claim follows from Horn and Johnson (1985),
page 381, Corollary 6.4.11 (b)). O

Proposition 2.8. An analogous result to Theorem 2.6 is not possible with only As-

sumption 1 holding true (i.e. without fourth moments).

Proof. We demonstrate this keeping k, fixed for simplicity. Note that in this case
an/Dns Cn/Pn — 1 as n — oo. If only Assumption 1 holds then (2.B.23) implies that
the bound for the first term on the RHS of (2.B.25) worsens from

3 3 4 3
2 .2 =2
Vi n Pn N2Dn

p | MAXY T T

n2 n n

to

3 3 4 3

2 2 E

Vi Pn Pn N2Pp

p|AXY —1, 7T 3

2 2 2

"% hi  hi
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Even if suitable conditions are assumed to ensure that these are negligible, the bound
1

for the second term on the RHS of (2.B.26) also worsens to &, (né%) For this to
be negligible it is required that n3* — 0 as n — oo which is impossigfe as this equals
pn%, which is the the product of two divergent sequences. Hence the nz / Pé—norming
is not appropriate. Suppose then that we norm by n‘p/Pé, where 0 < ¢ < 1/2. Now

1
the bound for the second term on the RHS of (2.B.26) becomes &, (n“"@), where
2

n

1 1 1
2 5 2
oPn _ N2 Dn
T T T
2 2 2
hi  ha ™

Since the first factor on the RHS above diverges, a necessary condition for the term
to be negligible is that the second factor must converge to zero. But if the latter is

assumed the first term on the RHS of (2.B.26) converges to zero in probability as it is

1
0, ( pi ) using (2.B.13), implying a degenerate distribution. O

T
n2 %
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3 Pseudo maximum likelihood es-
timation of higher-order SAR

models

3.1 Introduction

Maximum likelihood estimation has long been considered appropriate for (1.2.1), start-
ing with the work of Cliff and Ord (1973). We concentrate on Gaussian pseudo-
maximum likelihood estimation (PMLE), where a Gaussian likelihood is employed but
Gaussianity is not actually assumed. In particular, this means that the parameters of
interest must be identifiable from the first two moments of y,,.

Define the Gaussian log-likelihood function as
2 1
Qn (G(H), 0'2) = log (271'0’2)—5 log |Sn (/\(n)) H—Wy;LSn ()‘(n)) MnSn ()‘(n)) Yns (3.1.1)

where M, = I, — X,, (X X,,)"' X/,. Lee (2004) studies the asymptotic properties of
the PMLE for the model (1.2.1) in detail, for the case p = 1. A well-known drawback
of using the PMLE method is the considerable computational cost due to the inversion
of an n X n matrix in the computation of the Jacobean term log |S,, ()\(n)) |. While
this problem can be somewhat alleviated (see e.g. Pace and Barry (1997)) by taking
advantage of sparsity in S, ()\(n)), the computational burden is still high due to the
estimate being implicitly defined.

In this chapter we first analyse the properties of the PMLE when p > 1 by means of
theoretical results describing conditions for the consistency of the PMLE (Section 3.2).
This is done for both SAR and pure SAR models. In a Monte Carlo study in Section
3.3 we find that there are problems with using this estimate due to identification
problems in even reasonable sample sizes. The theoretical results are compared to the
results in Chapter 2 to attempt to explain this behaviour. In Section 3.4 we propose
a one Newton-type step approximation to the Gaussian PMLE, starting from initially
consistent estimators such as the IV or OLS ones considered in Chapter 2. This has the
advantage of providing a closed-form estimate with the same asymptotic properties as
the PMLE. Finite sample properties of such estimates are examined in a Monte Carlo
study.

We do not consider the Spatial Moving Average (SMA) or the Spatial ARMA
models in this chapter. However, the exploration of PML estimation for these models
is a natural step from the results of this chapter. For a discussion of the definition and
estimation of the SMA model, see Haining (1978). Yao and Brockwell (2006) present
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theory for the estimation of a spatial ARMA model, but they consider processes defined
on a regularly-spaced lattice.

In this chapter, it important to distinguish between true and admissible parameters,
so we denote the true parameters with a 0 subscript. A notational convention for
evaluation of objects at the true parameters is also introduced. In general this is of the
form A(dyp) = A for any matrix or vector A and any true parameter dy. For instance,
Gin ()\(n)) now indicates evaluation at an admissible A(,) whereas G, is the result
of evaluation at the true parameter Ag). In addition we suppress reference to n for

individual parameters to simplify notation.

3.2 Pseudo ML estimation of Higher-Order SAR Models

In this section sufficient conditions are provided for consistency of of estimates based on
the minimization of (3.1.1). We first analyse models with regressors, and then consider
Pure SAR models. Of course, for the former IV and OLS estimates are available but
we provide conditions for the consistency of the PMLE to compare these to those of
Theorems 2.1 and 2.4.

3.2.1 Mixed-Regressive SAR Models

In the case of the model (2.2.1), we will work with the concentrated likelihood obtained
by concentrating out f,) and o?. This has advantages in terms of not only reduc-
tion in computational burden, but also analytical ease. From a technical standpoint,
concentrating out these parameters enables us to avoid compactness assumptions on
their parameter spaces, these being standard requirements for definitions of implicitly

defined estimates. Concentrating out 3(,) and o? yields

By M) = (X X0) " X380 (Aw)) ¥ (3.2.1)
1
iy Q) = ~nSi Aw) MaSn (Aw) 9, (3.2.2)

The concentrated log-likelihood function (of A,) is

1
9 (Amy) = 10867, (Aw) + ~1og [T (Am)) T (M) (3.2.3)

where T, ()\(n)) =51 ()\(n)). The PMLE of A, is defined as

n

/\(n) = arg min Q; ()‘(n)) . (3.2.4)
)\(.,L)EA"

The PMLESs of ) and o? are defined as B(n) (;\(n)) and &(Qn) (X(n)) respectively.
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Assumption 12. A, is a compact subset of the p,-fold Cartesian product of the open
interval (—1,1). In particular it is assumed that there exist real numbers k; and ko
such that k1 < \; < ko, foralli=1,...,p,, and with —1 < k1 < ko < 1.

Assumption 13. Ag(n) € Ay, for all sufficiently large n.

Assumptions 12 and 13 are standard for proving the consistency of implicity defined
estimates. Assuming that each \;, i =1,...,p,, lies in a closed interval inside (-1,1) is
sufficient to ensure compactness of the parameter space, by the Heine-Borel Theorem
and Tychonoff’s Theorem (see e.g. Munkres (2000)). Also define

and

so that
0, = o3 T, T},

Define Pj/;,, to be the p, X p, matrix with (i, j)-th element tr (ngGm) Also write

fn for the p, x 1 vector with i-th element trG;, and introduce

Assumption 14.
.1 1
nh_)néo Eﬂng’z,nf” < 1. (3.2.5)

By the proof of Lemma 3.1 in the appendix,

! p—1
1— lim L”Lfn >
n—oo n
is always satisfied since it is proportional to a sum of squares. We assume that this
limit is strictly bounded below by zero. This can be checked in the case p, = 1. Indeed,

in this case (3.2.5) becomes

1 tr’G,

The matrix trace Cauchy-Schwarz inequality (see e.g. Liu and Neudecker (1995))
implies that
tr2G, < tr (GnGy) trl, = ntr (GLGY,) (3.2.7)

with equality if and only if
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for some scalar ¢. But if (3.2.8) holds then W,, S, ! = w1, implying that

Y

Wo =10

I,

which is a contradiction unless 1) = 0 because the diagonal elements of W, are nor-
malised to 0 (see Assumption 2). As a result, there cannot exist a natural number ng
such that (3.2.7) holds with equality, implying that 1 — %J(’"GQ% > ¢ whence (3.2.6)
follows.

Assumption 15. The limits
Pn

1
nlggo - ; trGyp,
and
1 Pn  Pn
lim — > tr (GG
n—oo
i=1 j=1

exist and are finite.

Lemma 3.1. Suppose that Assumptions 14 and 15 hold. Then, for all sufficiently
large n,
c <oy (Am) <C,

where ¢ and C are positive constants that do not depend on n or Agy,).

We now introduce assumptions needed for the identification of A

Assumption 16. The limit
1 Pn Pn DPn DPn
i 13255550 a6t

i=1 j=1 k=1 I=1

exists and is finite.

Also, note that Assumption 10 implies that
1 Pn  Pn
Jim D b Mybjn > 0 (3.2.9)

i=1 j=1

because, using the partitioned matrix inversion formula, Assumption 10 implies that

1
lim —ax) Al M, Az, > 0, for z,, # 0,

n—oo N
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so that choosing x,, = [, (the p,-dimensional vector of ones) yields (3.2.9). Defining

N

_ _1
Hy (Aw) = O (Am):90) ©nOn* (A3 07)

and writing
1 1
r(Am) = ~trHn (Am) = —~1og [Hn (Am)) [ =1,
we introduce

Assumption 17. For any § > 0,

lim inf 7 (Any) > 0.
n=00 {{|An)=Ao(m)[[>0}NAn
We can write
1 n
r(Aw) =~ (0 —logm 1), (3.2.10)
=1

where 7; are eigenvalues of H, (/\(n)). Because H, ()\(n)) is positive definite, the n;,
i =1,...,n, are positive, and for all 7, the i-th summand in (3.2.10) is non-negative,
and positive n; # 1. Since 7; = 1 for all n only when O, ()\(n);ag) = O,, so that
Assumption 17 is an identification condition related to the uniqueness of the covariance
matrix of y,. Lee (2004) employs a similar assumption in his asymptotic theory but
expressed in a somewhat different way.

Also, we have

1
Q;, =log o(,) + —log [T T, [, (3.2.11)
where
) . y%S;LMnSnyn . U{anUn
Tn) = n - n
-1
U U ()
n n n
if k,,/n — 0 as n — oo because
/ 2
A
n n)’
by Assumptions 1 and 5. Thus (3.2.11) becomes
c 2 1 / A 1 A
Qs =logoj + - log | T, T}, | + oy (1) = - log [©,] + o7 (1), (3.2.12)

where the oz’,\(l) signifies a uniform order in A,y € Ay,.
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Theorem 3.1. Suppose that Assumptions 1-5, and 10-17 hold together with

11 pik?
__|___|_p”—1"—>()asn—>oo. (3.2.13)
DPn kn nz

Then
16n) = Bomy|| = -

The conditions of the theorem can be compared to those of Theorem 2.1 and 2.4.
The requirement of finite fourth order moments is not imposed for consistency of the
IV and OLS estimator, where second moments suffice. Fourth moments were assumed
to exist to establish asymptotic normality of the OLS estimate, but we had mentioned
that these were not required for the consistency result. On the other hand, the only
restriction imposed on h,, here is that it be bounded away from zero uniformly in n .

The restrictions on the rate of growth of p, and k,, are stronger in Theorem 3.1,
as compared to Theorems 2.1 and 2.4 where, with k, fixed for illustrative purposes, it
sufficed that p, = o (n%> compared to p, = o (ni> in this case. This is not surprising

due to the implicitly defined nature of the estimate.

3.2.2 Pure SAR Models

We now consider the SAR model without regressors, given by

Pn

Un = AinWintn + Un. (3.2.14)
=1

The Gaussian pseudo-likelihood function is now

2 1
QA (A, 0%) = log (210*) = —log S (Aw)| + —58150 (Aw) Sn (Aw)) s (3:2.15)

while concentrating out o2 yields

1
5o (M) = ~¥aSn (Aw) Sn (Aw)) ¥ (3.2.16)

implying that the concentrated likelihood is
c <2, 1
Define the PMLE of A(,) as

(n) n
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Note that now the PMLE of 2 is 6'(27’5 <5\1(7n)).

Theorem 3.2. Suppose that Assumptions 1-4, 11-15 and 17 hold together with

L
— + — — 0 asn — oo. (3.2.19)
Pn nz

Then

2.0.

|36 = o0

Theorem 3.2 may be viewed as a particular case of Theorem 3.1 with k, = 0. The

conditions of the theorem are amended accordingly.

3.3 Finite-sample performance of PMLE

In this section we study the finite-sample properties of the Pseudo ML estimates defined
above. We focus on the spatial scenario of Case (1991, 1992), described in Chapter 1.

The model considered is the biparametric mixed-regressive SAR
Yn = MWinyn + XeWonyn + X8+ Un,

with U,~N(0,021,), so that the estimates are in fact MLE. The weighting matrices
are given as in (1.2.4). The regressors are generated from a uniform distribution on
(0,1) and then kept fixed to reflect the non-stochastic nature of Assumption 5. We
generate data from Ay = 0.70 and Ay = 0.80, with two regressors included and 8 =1,
Bo = 0.50. In addition, we set 02 = 1. We experiment with m = 50, 150, 300. Note
here that we are simply considering (1.2.6) with » = 2, so that n = 100, 300, 600.
There are 500 replications for each case. Tables 3.1-3.3 present the results of our
experiment.

We first discuss the results in Table 3.1, which reports the empirical mean and bias
for each parameter estimate. The estimates of A\; and Ao are very poor, and exhibit
high (negative) bias. The estimates of 31, B2 are rather good. However, as we increase
m, we see that the estimates of Ay and Ay become somewhat better for the former
but exhibit no improvement for the latter. In particular, it is interesting to note that
increasing m does not significantly improve the estimates of the spatial parameters at
least up to m = 150. Indeed Lee (2004) showed that the MLE is inconsistent under if r
is fixed while m diverges, while simulations conducted by Hillier and Martellosio (2013)
illustrate that the estimate is centred around the true value with a non-degenerate
distribution. Results of this type have counterparts in the spatial statistics literature,
where asymptotics when observations become dense in a bounded region is called ‘infill-
asymptotics’. Asymptotics under such conditions can lead to inconsistent estimation

of parameters of interest and non-standard limiting behaviour of the estimates, see
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o 25 75 150
r Mean Bias Mean Bias Mean Bias
2 M 0.3226 -0.3774 0.3182 -0.3818 0.4730 -0.2270
Ao 0.4708 -0.3292 0.4786 -0.3214 0.4565 -0.3435
01 0.9924 -0.0076 1.0004 0.0004 1.0024 0.0024
B 0.4982 -0.0018 0.5002  0.0002 0.4981 -0.0019

Table 3.1: Monte Carlo Mean and Bias of ML Estimates é(n).

25 75 150

+[3

~ ~ A~ ~

r On) ) ) ) On) On)
2 A -0.0090 -0.3774  -0.0046 -0.3818  0.0003 -0.2270
Ay -0.0041 -0.3292  -0.0019 -0.3214  0.0005 -0.3435
8 -0.0096 -0.0076  -0.0025 0.0004  -0.0026 0.0024
B -0.0033 -0.0018  0.0012 0.0002  -0.0044 -0.0019

Table 3.2: Monte Carlo Bias of IV and ML estimates é(n) and 9(n)

e.g. Lahiri (1996). On the other hand, the block-diagonality of the model implies that
the number of observations available to estimate A\; and Ao increases one-to-one with
m. We carried out further experiments with larger m which revealed better estimates
of the autoregressive parameters (see also discussion of Figure 3.3 below), but we do
not report these as our interest lies in comparing the properties of the MLE to those
of the IV and one-step estimates in smallish samples, besides the fact that under such
circumstances estimates are not consistent in view of the discussion above.

In fact, there seem to be some identifiability problems when m is not very large
relative to r in (1.2.6), even though both need to increase to avoid a problem with infill-
asymptotics. The likelihood-surface has a distinct ridge, rather than a peak, leading
to poor estimates for the spatial parameters. This problem and the improvements by
increasing m for fixed r are illustrated in Figures 3.1-3.3. Figure 3.1 has m = 50, and
clearly shows the ridge that causes the identifiability problems. Figure 3.2 has m = 150
and shows a rather better defined peak, with the situation improving further in Figure
3.3 where m = 300. The figures should only be interpreted in terms of the parameters
being centred around the true values under fixed r asymptotics, and therefore do not
indicate that the estimates are consistent.

These concerns indicate that Pseudo ML estimates are not reliable for higher-order
SAR models even when p = 2 in (1.2.1). It is clear that from the above discussion

that estimates improve very slowly, and so it can be anticipated that the problems
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o 25 75 150
MSE(0,)) MSE(0y)) MSE(0(,))
2 M 0.0360 0.0089 0.0088
A9 0.0162 0.0046 0.0021
61 14.1809 12.6237 10.8006
0Ba 15.3910 15.0110 11.4652

Table 3.3: Monte Carlo Relative MSE of IV and ML estimates,
MSE (b)) /MSE (0

m 25 75 150
Var(é<n)) Var(é(n)) Var(é<n))
r Var(é<n)) Var(é(n)) Var(é<n))
2 M\ 0.0518 0.0126 0.0112
Ao 0.0222 0.0063 0.0029
061 14.2650 12.6224 10.8325
0o 15.3951 15.0109 11.4770

Table 3.4: Monte Carlo Relative Variance of IV and ML estimates,
Var <é(n)) /VCLT' (é(n))

intensify with higher values of r. Indeed for higher-lag orders matters are even worse,
with estimates bordering on the disastrous. Further simulations for » =4 and r = 6
(with m chosen to deliver ratios of 25, 75 and 150 for m/r in each case) confirmed this,
and the results are too poor to report. In addition, the experiments proved to be very
expensive computationally even on very high-specification computers. Optimization
routines even failed to converge in many replications. It is worth mentioning here
that identification problems are more severe the closer the spatial parameters used to
generate the data are to zero. Large negative biases are common, and estimates are
generally volatile.

As alluded to earlier, it can be argued that that the computational burden can be
lessened by taking advantage of sparsity in the weight matrices and, therefore, in the
matrix to be inverted S, ()\(n)). This will help to ease the computational cost, but will
not alleviate the identification issues in reasonably sized finite-samples that have been
discussed above. If extremely large data sets are available, as may be the case in the
analysis of spatial data, sparse matrix routines can be employed and the identification
properties will also improve. However, if there is not enough sparsity this solution may

not be practical and even if there is enough sparsity explicitly defined estimates will
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perform better.
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Figure 3.1: Sample Log-Likelihood Surface, r = 2, m = 50, with A\; = 0.70, A2 = 0.80.

As a result, it is natural to study alternatives to the PMLE, where available, and
compare their asymptotic and finite-sample properties to those of the PMLE. This is
especially crucial in applied work, as the reliability of Pseudo ML estimates has been
put in some doubt by the findings of this section. The Monte Carlo study in Lee (2004)
was carried out for the case p = 1 only, and these concerns were not flagged as a result.
We conclude that it is desirable to use a closed-form estimator if one is available, as is
the case with the mixed-regressive SAR model. For the pure SAR model, there is no
alternative at present to the PMLE or another implicitly-defined estimate such as the
GMM estimate of Kelejian and Prucha (1999).

Our theoretical results had also indicated that estimating higher-order models using
the PMLE would incur a bias that vanishes at a slower rate than the bias in the IV
and OLS estimators. As discussed after Theorem 3.1, this is due the fact that now
the restrictions placed on the rate of growth of the parameter space are much more
stringent. It is natural that this be reflected in poor finite-sample performance, as the
ratio pit /n declines much slower than p2 /n. In addition, the consistency of the PMLE
requires the additional identification conditions given in Assumptions 15-17, and these
will also have an impact on finite sample identification.

In Tables 3.2-3.4, we compare the IV estimate to the MLE. We omit a comparison
with the OLS estimate as the results are similar and summarising these would entail
unnecessary repetition. Table 3.2 compares the bias in the IV estimate and the MLE.

It is clear that the IV estimate has far superior properties with respect to the spatial
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Figure 3.2: Sample Log-Likelihood Surface, r = 2, m = 150, with \; = 0.70, A2 = 0.80.
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Figure 3.3: Sample Log-Likelihood Surface, r = 2, m = 300, with A\; = 0.70, Ay = 0.80.
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autoregressive parameters A\; and Ay in this regard. The MLE does a better job with
the regression coefficients 31 and J2, but the overall performance of the IV is much
better as the IV estimates for the regression coefficients are more acceptable than the
ML estimates of the autoregression coefficients.

In Tables 3.3 and 3.4 we report relative mean-squared error (MSE) and variance
respectively. The conclusions are similar to the bias analysis. Indeed while it looks like
the MLE outperforms the IV comfortably for the regression coefficients it should be
noted that the much more dramatic advantage of the IV over the MLE for the spatial
parameters more than compensates for this. For instance, with m/r = 25, we have
that MSE for 31 and (2 are, respectively, 14 and 15 times those of the MLE for IV.
However, MSE for A\ and Ay are, respectively, nearly 28 and 62 times those of the IV
for MLE. Similar conclusions hold for the variance. Moreover, as m/r increases the
IV estimate improves for both the autoregression and regression coefficients in both
variance and MSE comparisons.

In the next two sections, we propose closed-form estimates with the same asymp-
totic properties as the PMLE and examine their finite-sample performance in compar-

ison to the estimates considered in this section.

3.4 Approximations to Gaussian PMLE

Pseudo ML estimation involves a highly non-linear optimization problem and is com-
putationally costly. The previous section also indicates substantive concerns about the
performance of the PMLE in finite samples. Given na / (pn + kn)%—consistent prelimi-
nary estimates as in Section 2.3, we can consider a one Newton-step approximation to
the Gaussian PMLE. This has the advantage of providing a closed-form estimate with
the asymptotic properties of the PMLE.

Denote

1
ty = — Uy, 3.4.1
. (3:4.1)

and
%trCln — T},OZU;LCInUn

%tTCQn - %Ur/LCQnUn
nog
b = ‘ : : (3.4.2)

1 1 !
ﬁtGCnn - F,gUnCpnnUn
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where Cy, = Gy, + GY,,. Then

0, 2

while the Hessian at any admissible point in the parameter space is

%Pji,n(/\(n)) + #R%Rn #R%X'n

5 a o (3.4.4)

2. X! R, 2. X! X,

no? no?

where  Pjin(An)) is the p, X p, matrix with (i,j)-th element given by
tr (Gjn()\(n))G ()\( ))) So

2 Pjin + = QR’ R, %%R%Xn
— . (3.4.5)
n%gX;LRn n%‘gx,gxn

0? n (eo(n) > 08)
0000’

In Section 2.3, we stated that &(271) and &(2”) are consistent estimates of 03. For
subsequent theorems the stochastic orders needed are in terms of p,, ry, kn, by and n

as opposed to simply o,(1). However we restrict reference to these orders to appendices.

Define the ‘one-step’ estimates 6( ) and 9( ) by the following equations

5(n) = Oy — ﬁ—lén, (3.4.6)
Oy = O — Hy & (3.4.7)
where
Q60 970,57,
" 8060’  n 8989’ ’
" ae roen 86 '

Robinson (2010) considered estimates of the type defined above, in a more general
setting where the error distribution is of unknown or perhaps known parametric form.
From a practical point of view, more iterations may be desirable and could also have
implications for higher-order efficiency. It should be noted that the estimates (3.4.6)

and (3.4.7) incur additional bias in finite samples relative to the preliminary estimate.
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Indeed by the mean value theorem (3.4.6) implies that

j Fr—1
On) = Oom) = [Ipn+kn H,'H } (9( >—00(n)) — ',
= 9( ) — o) — H 'H, <é(n) —bo(n ) 1§n (3.4.8)
where #a (5 . |
_ n\Y(n)> 9 (n)
" 2000
and H e(n (90 ’9 (n) , with each row of the Hessian matrix evaluated

at possibly dlfferent G(n). The latter point is a technical comment that we take as given
in the remainder of the thesis whenever a mean-value theorem is applied to vector of

values. The last two terms on the right of (3.4.8) have norm bounded by

(3.4.9)

(n) — Oo(n)

and
|

‘ 1€l (3.4.10)

respectively. In the appendix we prove that Hﬁ; 1 H and Hﬁ; | are uniformly bounded

as n — oo under extra conditions, while the third factor in (3 4.9) and the second
factor in (3.4.10) are O, (ré /né> and O, <max {pn /n2 hn,pn /n2 }) respectively.
Thus the bias will decline with n under suitable conditions on the rates of p, and ry,
but represents an additional bias as opposed to é(n).

The computation of tr (Gm ()\(n))) can be quite expensive, due to the inversion of
the n X n matrix .S, ()\(n)). However, in the setting of Section 2.4.1 this expression is

extremely easy to compute because
Sn (Aw)) = diag [In, — MnBum, I — Xon B, - - - Iy = Ap,un B

so that
Gin () = diag [0, oo B (Iy — NinBp) ™ o] (3.4.11)
and

m\in,

(m— 1 +)\zn) (1 — >\m)

(o ) = (B = )} -

From (3.4.11) it is also obvious that Gy, ()\(n)) Gin (/\(n)) = 0 for j # i. This reduces
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Pjin(An)) to a diagonal matrix with i-th diagonal element

(m — 14 Xin)* (1 = Ain)?*

tr (Gm ()\(n))Q) -

Theorem 3.3. Consider any sx(py, + ky) matriz of constants V,, with full row-rank.

(i) Let Assumptions 1-7 and 9-11 hold along with

3
1 1 1 pdkt | parn | Dikn

4y 4y 0 3.4.12
pn+7“n+k‘n+ P, +hn—> as n — oo ( )
and
7“2/6'2 1"3 ]{22
= 4+ "+ ———(ry, + kp) bounded as n — oo. (3.4.13)
noonp, 51
panz
Then
nz ; o2
— 7, (9(n) - eo(n)) AN <0, lim 0 \anglxp;> \
(pn + kn)§ n—=00 D, n

where the asymptotic covariance matrix exists, and is positive definite, by As-

sumptions 9 and 10.

(11) Let Assumptions 1-5 and 9-11 hold. For ~y € [3/2,00), suppose also that

5 1
piks (p% + k:n> ikE

— 4+ — 4.14
R T (419
and
1
kinz
S5 bounded as n — oo. (3.4.15)
hn

Further, if v € [3/2,9/4), also assume that

P2 ES=83 s bounded as n — co. (3.4.16)
Then
n% o~ d . U% —1.,/
— Wy () — o) — N (0, Jim. D0, L)
(pn + kn) 2 Pn n

where the asymptotic covariance matriz exists, and is positive definite, by As-

sumptions 9 and 10.

The asymptotic covariance matriz may be consistently estimated as in Theorem 2.6.
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Corollary 3.2. Suppose p, = ry,. Let the conditions of Theorem 3.3 (i) hold but with
Assumption 7 weakened to
li Q(K;Kn) >0

only. Also assume that

+———0asn— oo (3.4.17)

1L paky | pik
DPn kn n hn
and
—; bounded as n — oo.
n
Then

L A 2

2 N

——ﬁ——Twn@my—%mO-iﬁN(mlml % WMQH%),
(pn + kn)? noe Pt F

where the asymptotic covariance matrix exists, and is positive definite, by Assumptions

9 and 10.

From Theorem 3.3 (i7), it is clear that the while the same distributional result
is obtained as in Theorem 2.6 weaker conditions are imposed on the relative rates
of h, and ns. For fixed pn and k,, the asymptotic normality result relies only on
n%/hf’l — 0 as n — oo since 3 — 5/2y — 3 as v — oo. This is a weaker requirement
as compared to Lee (2002), who assumed nz /hn — 0 as n — oo. The reason for this
favourable outcome is the cancellation of higher order terms when using the one-step

approximation. The key difference is in the rates

1
1| B, P2
- Ul =c. [ 22
n 0 " F hn
and
1
p2
lnll = 0, | 22 |,
n2h3

the latter being sharper since n/h, — 0o as n — oc.

If k,, is fixed while p,, diverges, the condition (3.4.16) is guaranteed for v > 3/2,
since this implies 5 — 4y < 0. However, if p,, is fixed and k, diverges then we must
have v > 9/4 for (3.4.16) to hold.

If A, is bounded as n — oo, a more complicated analysis is required, because the
information equality does not hold asymptotically. Denote p; = E (uﬁ) for natural

numbers [, and introduce, with 4,j = 1,..., pp, the p, X p, matrix Qy», with (¢, j)-th
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element

iy & (14— 30) &
— Z Crr,inbr,annQOn + 1 Z CrrinCrr jn (3418)
nog noy =

and the k, X p, matrix )5, with i-th column

243

== Corin®en (3.4.19)
-

where cpqin is the (p,q)-th element of Cip, bjn = GjnXyfBo) with t-th element by jy,
(j=1,...,ppand t =1,...,n) and xp, is the p-th column of X,,. Define

Don Vg,
0, = . (3.4.20)
Q)\g,n 0
Then )
E (&n6h) = — (250 + Q) (3.4.21)
where

2 (P + Pyin + Z40An) 754X,
=, =E(H,) = : (3.4.22)
no7 XnAn o7 X Xon

Theorem 3.4. Consider any sX(py, + kn) matriz of constants V,, with full row-rank.
Let the conditions of Theorem 2.1 (i) hold. Suppose that hy, is bounded away from zero

and that there is a real number § > 0 such that

E|u|*™ < C (3.4.23)
fori=1,...,n. In addition, assume that
lim 7 (25," +E,'Q,E,") > 0and lim 5 (Z,) > 0. (3.4.24)
n (o) n—oo

Suppose also that the rate conditions from Theorem 2.1 (i) are strengthened to

3
oy R (R R R ) e
(pn n)
——F—+ -

o T - %+1—>Oasn—>oo.
n(pn+kn)

(3.4.25)
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Then
n% N d 02
Pn n)? n n

where the asymptotic covariance matriz exists, and is positive definite, by (3.4.24).

Robinson (2010) studied the estimate defined in (3.4.7) as a particular case and
derived, for p, = 1, the same result as in Theorem 3.3 (i7). His requirement that
hy, — o0 is weaker than our condition, but we do not impose symmetry of the weighting
matrix nor do we assume a symmetric distribution for the errors as he did. In the
setting of Section 2.4.1 the weight matrix is symmetric by construction, so his results
are more incisive. He also conducted a Monte Carlo experiment in the configuration
of Section 2.4.1 and indicated a substantive concern with 0~(n), namely that the trace
terms in the score vector over-correct the bias in preliminary OLS estimate.

In view of the poor finite sample properties of the PMLE (see Section 3.3 above)
we do not prove the asymptotic distribution of the PMLE, but we assume that under

suitable conditions it may be shown that

1 2
— U, (B — b)) = N <0, lim Lk\an;lq/;)
(pn + kn)Q n—00 Pn n
or
n2 a o2
U, Oy — Opp)) — N (0, lim —2—T, (22 +=,1Q,=! m;)
(pn‘f‘kn)% B = boco) ( S ( )

according as h,, is divergent or bounded. This conjecture is reasonable due to the
definition of the asymptotic covariance matrix in the standard central limit theorem
for implicitly defined estimates.

Versions of Theorems 3.3 and 3.4 for a finite-dimensional subset of parameters can
also be stated as in Sections 2.3.1 and 2.3.2 but we omit these to avoid repetition.

The rate conditions can be relaxed if the G, are such that
GinGjn =0 and G, G, =0 for i # j

as is the case when, for example, (1.2.4) and (1.2.5) are employed. This is because the
only non-zero contributions in certain double-sums will now come from the diagonal
terms. We illustrate the implications with k,, fixed for simplicity. In this case the rate
condition (3.4.12) reduces to

DPn
+——0asn—
Dn Tn n n
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and (3.4.13) to
2

n bounded as n — oo,
n
while (3.4.17) becomes
2
R N (NN}
Pn n hn
Similarly (3.4.14) reduces to
2 g
1ok e
Pn n hy
and (3.4.15) to
ns
W is bounded as n — oo
n

with v € [1, 00).

We can also have different h;, for each Wj,, some bounded and some divergent.
For those h;, which diverge at a sufficiently fast rate, the corresponding elements of
¢, are negligible and so the asymptotic covariance matrix will simplify. To illustrate,
suppose that hi, diverges while the remaining h;, are bounded and bounded away
from zero. Then the n2-normed first element of ¢y, is negligible and we have that

1 1
——E—TW¢52——E—TwnGﬁ—%M>+%@
(pn + kn)? (pn, + kn)?2 o
with ¢; differing from ¢,, only in having zero as its first element. The asymptotic

covariance matrix becomes

2
: UO —=x—1 —¥—1 —x—1 /
Pt By o (P EE)
where
Qi)\,n Qiﬁ,n
QF =

n
Qsn 0
with 3, ,, and Q;ﬂn differing from €y, and 3, in having zeros in their first row
and column and first column respectively and = also being a simplified version of =,
due to the fact that tr (G},,Gin) and tr (G}, G1y,) are O (n/hyy,) for i =1,...,py,.

3.5 Finite-sample performance of one-step estimates

The behaviour of the one-step estimate é(n) in finite samples was examined in a Monte
Carlo study. The spatial weight matrices W, given by (1.2.4) and (1.2.5) were em-
ployed. The number of regressors was kept fixed at k, = 2 for simplicity, and we

experimented with three values of r: 2, 4 and 6. For each value of r three different
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25 75 300

+[3

r On) On) ) ) On) On)

2 A -0.0090 -0.0701  -0.0046 -0.0269  0.0015 -0.0047
Ay -0.0041 -0.0427  -0.0019 -0.0168  0.0000 -0.0043
8 -0.0096 0.1097  -0.0025 0.0433  -0.0013 0.0122
By -0.0033 0.1284 0.0012  0.0491  -0.0049 0.0087

4 N -0.0071  -0.0433 -0.0038 -0.0160 -0.0001 -0.0032
A2 -0.0022 -0.0251 -0.0019 -0.0004 -0.0005 -0.0025
A3 -0.0126 -0.0727 -0.0060 -0.0262 -0.0021  -0.0073
Vi -0.0040 -0.0286 -0.0017 -0.0006 -0.0005 -0.0026
51 -0.0054 0.0652 -0.0006  0.0260 0.0014  0.0080
B2 0.0023  0.0840 0.0057 0.0312 0.0003 0.0071

6 A\ -0.0035 -0.0181 -0.0009 -0.0059 -0.0004 -0.0017
A2 -0.0018 -0.0114 -0.0005 -0.0039 -0.0003 -0.0012
A3 -0.0082 -0.0328 -0.0016 -0.0100 -0.0007 -0.0028
A4 -0.0029 -0.0126 -0.0011  -0.0045 0.0000 -0.0008
A5 -0.0087 -0.0205 0.0008 -0.0030 0.0003 -0.0006
A6 -0.0069 -0.0412 -0.0012 -0.0134 -0.0007 -0.0037
51 -0.0032  0.0258 0.0019  0.0116 0.0000  0.0024
B2 0.0024  0.0289 -0.0016  0.0083 0.0002  0.0026

Table 3.5: Monte Carlo Bias of IV and Newton-step estimates é(n) and é(n),
X, ~U(0,1) and U,, ~ N(0,1)

values of m were chosen to return three values for the ratio m/r: 25, 75 and 300.
The reason behind using the same ratios as opposed to the same sample sizes was to
check if finite sample properties improve comparably for all values of r with increasing
sample size. The explanatory variables in X,, were generated from two distributions:
a uniform distribution on (0, 1) and a uniform distribution on (0, 5). These were then
kept fixed throughout to adhere to the non-stochastic aspect of Assumption 5. We
experimented only with é(n) since é(n) has already been studied by Robinson (2010).
The u; were generated as iid draws from a standard normal (o2 = 1) distribution,
and instruments were constructed as in (2.3.2) using only first-order spatial lags of
the regressors. y, was generated using (1.2.6) in each of the 1000 replications. We
chose Bg1 = 1 and Bz = 0.5 and the following values for the spatial autoregressive

parameters:

r = 2; /\01 = 0.7; /\02 =0.8
r = 4; )\01 = 0.7; /\02 = 0.8; )\03 = 0.5; )\04 =0.8
r = 6; )\01 = 0.7; /\02 = 0.8; )\03 = 0.5; )\04 = 0.8; )\05 = 0.4; )\06 =03
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25 75 300

+[3

~

~ ~

r On) On) ) ) On) On)
2 A -0.0014 -0.0044  0.0002 -0.0007  0.0004 0.0002
XAy -0.0001 -0.0020  0.0002 -0.0004  0.0000 0.0000
8 00021 0.0087  -0.0003 0.0019  -0.0002 0.0002
By -0.0024 0.0035  -0.0016 0.0006  -0.0009 -0.0004

4 N 0.0002 -0.0011 -0.0001 -0.0007 0.0001  0.0000
A2 0.0002 -0.0007 0.0000 -0.0002 0.0000  0.0000
A3 0.0002 -0.0022 0.0000 -0.0008 0.0000 -0.0002
Vi 0.0000 -0.0010 0.0000 -0.0002 0.0000  0.0000
51 -0.0014 0.0017 0.0000 0.0011 -0.0007 -0.0004
B2 -0.0004 0.0028 -0.0004 0.0006 0.0004  0.0006

6 A\ 0.0000 -0.0005 -0.0001  -0.0003 -0.0001 -0.0001
A2 -0.0001  -0.0006 -0.0002 -0.0003 0.0000  0.0000
A3 -0.0006 -0.0017 0.0000 -0.0002 0.0000  0.0000
A4 0.0001  -0.0002 -0.0002 -0.0003 0.0000  0.0000
A5 -0.0003 -0.0007 -0.0003 -0.0005 0.0000  0.0000
A6 -0.0001 -0.0016 0.0000 -0.0005 -0.0001  -0.0002
51 -0.0002  0.0010 0.0005  0.0008 0.0001  0.0002
B2 -0.0002  0.0010 -0.0003  0.0000 0.0000  0.0000

Table 3.6: Monte Carlo Bias of IV and Newton-step estimates é(n) and é(n),
X, ~U(0,5) and U,, ~ N(0,1)

We report Monte Carlo bias, relative mean squared error (MSE) and relative variance

for the estimates é(n) and é(n). Tables 3.5 and 3.6 tabulate the biases for each element
of é(n) and é(n) for three possible values of the ratio m/r and the three choices of

r. In Table 3.5, the bias of é(n) is clearly greater (in absolute value) than that of
é(n) in each of the cases, reflecting the presence of the additional bias term that was
observed in (3.4.8). While this bias declines with increasing n so does the bias in é(n)
and the former dominates. In Table 3.6, the extra variation in the regressors implies
that the additional bias observed in (3.4.8) declines faster with n, as the bias terms are
functions of (X! X,)”". As a result, many of the biases of é(n) in the last column of
Table 3.6 are less than or equal (to four decimal places) to the biases of é(n) reported
in the second from last column.

Table 3.7 reports relative MSE when the regressors are generated from U(0,1), a
distribution with variance equal to 1/12. We compute, for all combinations of m/r
and r, the element-wise ratio M SFE (é(n)) /MSE (é(n)) é(n) beats é(n) in just 3 out
of 54 places. On the other hand, Table 3.8 reports relative MSE when the regressors
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are generated from U(0,5). This distribution has variance equal to 25/12. The table
indicates that é(n) beats é(n) in 15 out of 54 places, including an efficiency improvement
for all four parameters in the r = 2, m/r = 300 case.

Tables 3.9 and 3.10 report relative variance analogously, computing the element-
wise ratio Var (é(n))/Var (é(n)). In Table 3.9 é(n) beats 9(n) in 28 out of the 30
places for r = 2, 4, but only for the two regression coefficients for » = 6. However the

ratios are much closer to 1 than in Table 3.7 even when é(n) does not beat é(n). These

results are as expected due to to the greater bias of é(n). The improvement in relative
variance is also not monotone in m/r (equivalently the sample size n), with Table 3.9
indicating higher ratios for smaller sample sizes for several parameter estimates for
r = 2, 4. In Table 3.10 we observe that é(n) beats é(n) in all 30 out of the 30 places
for r = 2, 4, but again only for the two regression coefficients for r = 6. However,
the ratios are extremely close to unity for » = 6 and m/r = 75,300. Although the
variances of the two estimators seem to be approaching each other, Table 3.6 indicates
that the one-step estimator ultimately outperforms the IV estimator as far as bias is
concerned. This explains the improvement in relative MSE for the one-step estimator
that was reported in Table 3.8 and discussed above.

Convergence of the iterations was typically fast. The results displayed correspond
to a single iteration but further iteration (up to six were carried out) did not lead to
any serious change in the results. Single iteration convergence was almost exact for
the larger sample sizes. X

Tables 3.11 and 3.12 compare bias and MSE for the one-step estimate é(n) with
the ML estimate discussed in Section 3.3, for r = 2. The conclusions are similar to
those in that section. The MLE outperforms the one-step estimate for the regression
coefficients but is much worse for the autoregression parameters. The one-step estimate
improves faster with increasing m/r.

For practitioners, this chapter prescribes that closed-form estimates be used wher-
ever possible. If IV estimation is used, then a one-step approximation to the PMLE
will tend to be more efficient for smaller values of r and larger values of m, while

efficiency gains for small samples will be greater if the regressors have high variability.
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o 25 75 300
MSE(0,) MSE(0(,,)) MSE(0(,))
r T x N T N T N
MSE (0 ) MSE (0 MSE (0,

2 M 0.7649 0.8993 1.0014
A2 0.7914 0.9041 0.9818
51 0.9674 1.0030 1.0027
B2 0.9505 0.9900 1.0124
4 X 0.7302 0.8579 0.9744
A2 0.7687 0.8702 0.9666
A3 0.7176 0.8559 0.9540
A4 0.7282 0.8764 0.9609
51 0.9333 0.9648 0.9837
B2 0.8859 0.9363 0.9891

6 A\ 0.8536 0.9466 0.9828
A2 0.8569 0.9500 0.9812
A3 0.8442 0.9462 0.9823
VI 0.8427 0.9358 0.9886
As 0.8683 0.9658 0.9920
A6 0.8605 0.9489 0.9844
B 0.9669 0.9754 0.9965
B2 0.9509 0.9922 0.9950

Table 3.7: Monte Carlo Relative MSE of IV and one-step estimates,

MSE (é(n)) /MSE (9(n)), X, ~ U(0,1) and Uy, ~ N(0,1)
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o 25 75 300
MSE(0,) MSE(0(,,)) MSE(0(,))
r T x N T N T N
MSE (0 ) MSE (0 MSE (0,

2 M 0.9769 0.9998 1.0046
A2 0.9903 1.0019 1.0005
51 0.9953 1.0002 1.0005
B2 1.0059 1.0041 1.0027
4 M 0.9921 0.9922 1.0011
A2 0.9940 0.9977 1.0004
A3 0.9910 0.9960 0.9988
A4 0.9863 0.9983 0.9995
51 1.0035 0.9980 1.0036
B2 0.9973 1.0008 0.9975

6 A\ 0.9947 0.9964 0.9981
A2 0.9904 0.9927 1.0005
A3 0.9888 0.9987 0.9994
A4 0.9981 0.9930 0.9997
As 0.9942 0.9976 0.9999
A6 0.9932 0.9978 0.9988
B 0.9986 0.9972 0.9991
B2 0.9988 1.0007 0.9998

Table 3.8: Monte Carlo Relative MSE of IV and one-step estimates,

MSE (é(n)) /MSE (9(n)), X, ~ U(0,5) and Uy, ~ N(0,1)
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o 25 75 300
, Var(dn) Var () Var ()
Var(é(n>) Var(é(n)) Var(é(n)>

2 N 0.9830 1.0535 1.0199
A2 1.0159 1.0491 1.0212
01 1.0674 1.0497 1.0162
0o 1.0692 1.0496 1.0177
4 N\ 0.9979 1.0108 1.0038
A2 1.0292 1.0091 1.0035
A3 1.0136 1.0099 1.0041
A 1.0071 1.0050 1.0051
01 1.0813 1.0357 1.0089
B2 1.0972 1.0342 1.0090
6 A\ 0.9700 0.9938 0.9980
A2 0.9676 0.9914 0.9985
A3 0.9704 0.9927 0.9982
A4 0.9718 0.9925 0.9982
A5 0.8979 0.9684 0.9924
A6 0.9680 0.9926 0.9983
51 1.0136 1.0046 1.0015
0o 1.0103 1.0065 1.0012

Table 3.9: Monte Carlo Relative Variance of IV and one-step estimates,

Var <é(n))/Var (e(n)), X, ~ U(0,1) and Uy, ~ N(0,1)
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o 25 75 300
, Var(0)) Var(0,,)) Var(0))
Var (é(n>) Var (é(n)> Var (é(n)>
2 A 1.0080 1.0031 1.0007
A2 1.0091 1.0037 1.0007
51 1.0084 1.0025 1.0005
65 1.0073 1.0028 1.0007
4 A\ 1.0011 1.0004 1.0001
A2 1.0024 1.0007 1.0002
A3 1.0019 1.0006 1.0001
A4 1.0011 1.0008 1.0001
51 1.0043 1.0014 1.0003
B 1.0039 1.0014 1.0003
6 A\ 0.9987 0.9997 0.9999
A2 0.9990 0.9997 0.9999
A3 0.9985 0.9997 0.9999
A4 0.9994 0.9997 0.9999
A5 0.9957 0.9988 0.9997
A6 0.9992 0.9997 0.9999
51 1.0006 1.0003 1.0000
65 1.0006 1.0001 1.0000

Table 3.10: Monte Carlo Relative Variance of IV and one-step estimates,

Var <é(n))/Var (e(n)), X, ~ U(0,5) and Uy, ~ N(0,1)
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+[3

25 75 150

r On) On) On) On) On) On)

2 A\ -0.0701 -0.3774  -0.0269 -0.3818  -0.0113 -0.2270
Ny -0.0426 -0.3292  -0.0168 -0.3214  -0.0072 -0.3435
B 01097 -0.0076  0.0432 0.0004  0.0210  0.0024
B, 01284 -0.0018  0.0490 0.0002 0.0216  -0.0019

Table 3.11: Monte Carlo Bias of one-step and ML estimates, é(n) and é(n),
X, ~U(0,1) and U,, ~ N(0,1)

m 25 75 150
MSE (0 ) MSE (0 ) MSE (0 )
i MSE(6()) MSE(b(n) MSE(b(r))
2 X\ 0.0471 0.0099 0.0090
A2 0.0205 0.0051 0.0022
51 14.6594 12.5855 10.7357
B 16.1920 15.1626 11.3499

Table 3.12: Monte Carlo Relative MSE of one-step and ML estimates,

MSE (8(n)) /MSE (6(s)), X ~ U(0,1) and Uy ~ N(0,1)
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3.A Proofs of theorems

Proof of Theorem 3.1. We can write
llog|® | = llog‘H (A )‘ —|—llog‘@ (A ‘02)‘
n n n n (n) n n (n)>» %0
Then

1 1
9 (M) = = logdiy (Awy) + —10g[Tn (Aw) Ty (Aw)| = —10g O] + 55(1)

1 1
+ Etan ()\(n)) -1- - log ’@n (A3 03)’ + 0;,\(1). (3.A.1)
Now
1 / 1 2
~log [T (Am)) T (Am)) | = ~ 108 |On (A3 o) |
1 _
= —log|T (Aw) T (Aw) On" (A3 90) |
= — logoi ()‘(n)) ,
and

trH,, ()‘(n)) = tr (@n@;l ()\(n)v Ug))

2
90 <
= tr (1,1,S;, (Am)) Sn (A
Z0) ( (M) Sn (Aw))
= n, (3.A.2)
so that (3.A.1) becomes
Q5 (A\wy) — Q5 =108 57,y (M) —logan (Aw)) +7 (Am)) + o (1). (3.A.3)

Using the approximation log a — logb ~ (a — b)/b, we can replace

10g 5,y (Am)) = log ar (Am))

by

/~
Q¢
z

2) ) =02 (A) ) /02 () -

As a result,

A dn (A\in
2 (Awy) — 5 Zi Cew) (i) (3.A.4)
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where

Pn  Pn

n (M) Z Z (Aoi = Ai) (Ao = A7) Uiy My +7 (Any) (3.A.5)
=1 j=1

and dy, (M) = 20 din (An)) + o) (1) with

din (Am)) = —Z Xoi — Ai) by MU, (3.A.6)
Pn  Pn
dan (M) = —ZZ Xoi — Mi) (Noj — Aj) by M, G U, (3.A.7)
=1 j=1
U' Uy
d3n (A(n)) = n —08 (3.A.8)
1 Pn
din (M) = gUﬁ( (/\Oi—/\z‘)Cm> Un
=1
0_2 Pn
- ;Otr( (AOi_Ai)Cin> (3.A.9)
=1
1 Pn  Pn
dsn (A\m)) = EU;L > oi = A) (Moj = A) GG | Un
i=1 j=1
0_(2) Pn  Pn
_ -0 _ /
Dt ;;()\OZ Ai) (Noj — \j) Gl G (3.A.10)
U' X, (X, X\ " XU,
don (M) = —— ( - ) ” (3.A.11)
2 (& Dy (X X\ T
din (\w) = Uy > (= o) Gi X, - X |U, (3.A.12)
=1
1 on X/ X\ 7!
dsn Mm) = —5Un (Z(/\i—)\Oi)Gén> (Xn< - ) Xé)
=1
Pn
X (Z ()\1 - )\Oi) Gm> Un. (3A13)
=1

By Lemma 3.1 and a standard kind of argument for proving the consistency (in norm)

of implicitly defined estimates, it suffices to show that

sup |din (Am))| = 0p(1), i=1,...,8, (3.A.14)
A(n) EAR
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and, for all (5>\(n> >0

lim inf cn (Amy) > 0. (3.A.15)
e {H/\m)*%m) [[>62 }”An

To prove (3.A.14), first consider dyj, ()\(n)). We first establish pointwise convergence

to 0, for any A(,) € Ay din ()\(n)) has mean zero and variance

Pn  Pn

ZZ Xoi — Ai) (Noj — Aj) bl Myubin,
=1 j=1
Pn  Pn

ngjwmeMMu

i=1 j=1

IN

3
cPaks (3.A.16)

n

IN

because
1
binll < |Ginll || XnBogm)|| < Cnzkn

by Lemma 2.C2 and Assumptions 5 and 12 and also because by Assumptions 5 and 9

we have .
Il < Il + 2 1R | (F252) ) = o)
As a result, \
din (M) = O, }% (3.A.17)
n

which is negligible by (3.2.13). Uniform convergence follows from an equicontinuity
argument. Consider a neighbourhood N of any Al such that N C A,. Then

< dln (A(n)) - dln ()\?n)> ‘an )b/ M U
up =
A(m) €N 2 >\(n)e/\f n
Pn 1
e D70 = M) (A = Ay) b Mub
2 i
= (UNUn) sup § = . (3.A.18)
n An)EN n

Now EU},U,/n = o}, whereas the expression in braces is bounded by a constant times

Pn

>y = n)?

i=1
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by the Cauchy-Schwarz and Holder inequalities and Assumption 16. This can be made
arbitrarily small uniformly on A by choosing N small enough. By compactness of A,
any open over has a finite subcover and the proof that di, ()\(n)) = 0,(1) uniformly in

A(n) is completed. Similarly it may be shown that

2k2
don (A\w)) = O, (p"1”> (3.A.19)
n2
dgn (Awy) = o) (1) (3.A.20)
Pn
dan (M) = @( - 1) (3.A.21)
n2hz
p2
dsn Am)) = Op | =1 (3.A.22)
n2h?
kn
den (M) = Oy (F) (3.A.23)
nkn
don (A\w) = O, (p - ) (3.A.24)
2kn
dsn ) = Oy (p"n ) (3.A.25)
(3.A.26)

which are all negligible by (3.2.13). Uniform equicontinuity arguments will follow as
for (3.A.18). The proof of (3.A.15) follows from Assumptions 10 and 17. Indeed, the

former, using the partitioned matrix inversion formula, implies that

1
lim —az) Al M, Az, > 0, for z,, # 0,

n—oo N
so that choosing z, = A(,;) — Ag() implies
Pn  Pn

. . 1
nh_)rglo inf o Z Z (Noi — Ai) ()‘Oj - )‘j) b;‘nMnbjn >0,
{||A(n>*/\o<n> [[>0x,, }”An i=1 j=1

for any d), (> 0since Ay, = (bin,- .., bp,n). The consistency of 5\(”) is then established.

The conclusion that
180y M) = Bogwy || = 0

follows from the (3.2.1). O

Proof of Theorem 3.3. (i) For any sx1 vector «, we can use (3.4.8) to write

A~

T,/ W, (§(n) — 90(11)) = Tno/\Ilnﬁ;l (ﬁn — ﬁn> (G(n) — Ho(n))
— Tna'\I’nﬁglfn, (3.A.27)
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1
recalling that 7, = nz /an. The first term on RHS above has modulus bounded
by

)

ol 1%l | 25 | || 20 = | [ By = G0

1
where the second factor in norms is & (a%), the third is bounded for

sufficiently large n by Lemma 3.B11, by Lemma 3.B9 the fourth is

113 1 1

k2b2c2 p2k2b2  pnk2b . 3

O, | max § Brfndnfn Pajudn Pninn and the fifth is 0, by
n2hn, n2

by (2.B.7). We conclude that the first term on the RHS of (3.A.27) is

1 3 3
ﬁp max pnk%bnc'r% ’ p72z ?an , pnk%b%
n nzh,, n

which is negligible by (3.4.12) and (3.4.13) because

P, (phr gl
n? - n2 ’
Paknby o (PaTakatpaky
nhZ  — nh2 ’
Prkaby o (Parakn + Pakn
n2 - n2

where

3,.21.6 31.4 272 3,274 312 ,.21.2 2314 314 .3
pnrnkn _ pnkn rnkn pnrnkn _ pnkn Tnkn pnrnkn _ pnkn n

n? n n ' nh? h2 n ' n? n npn,

So we only need to find the asymptotic distribution of —7,a’ \I’nlﬁln_ 1¢,. We can

write
/ rr—1 2 / rr—1 / r—1
—Tn @ U Hy &y = =1 U Hy ity — 70 U Hy o . (3.A.28)
99
Then

N

Pn 2
1 1

E|l¢nl* < ZE(EtrcmWUgchn)
i=1 0

Pn 1
= Zvar <—U,’LCmUn> =0 (p_n> ,
. n nhy,
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by Lemmas 2.C4 and 2.C2 so that

1

2
loull = 0, [ 27 |- (3.A.29)

1
nzhz

Therefore the second term on the right of (3.A.28) has modulus bounded by 7,

times

ol Il || leall (3.4.30)

1
where the second factor is &' | ap |, the third is bounded for sufficiently large

1 11
n by Lemma 3.B11 and the last is 0, < 71”%1>. Thus (3.A.30) is O, <p’§a’%1>
n2h2 n2h2

1
2

and the second term on the right of (3.A.28) is &, (p—’;> which is negligible by
h

(3.4.12). Then the asymptotic distribution required is that of

3

92 R
?Tna’wnﬂgltn = Yin+ 0/ Up Ly 'ty (3.A.31)
0 i=1
where
2 ! r—1 ( 13 —1
Tin = —ma VA, (Hn - Hn> H ',
0
2 _ o
Yo, = ;Tna’ﬁ/n:nl (H,—Z2,)H, L,
0

o2

2 -1
11|90~
T3, = TnO/\I’nLnl —O:n — L, | =2, tn-
2 2
We will demonstrate that [Y,| = 0,(1), ¢ = 1,2, 3. First we observe that

2 o
T1al < S5l 1] || 25
0

e~

| H ] Hnll

1
where the second factor in norms is &' | a2 |, the third and fifth are bounded for

sufficiently large n by Lemma 3.B11, the fourth is
1173 1
o, (max {pnk%bg e pakibi , AL }) from the proof of Lemma 3.B9 and the

n LA n
n2hy,

S hol—

with the last bound having been derived in (2.B.13). Then

last is O, (C

e
Nl

1 3 11 1
k2b2ec 2212 2 E2b,,c2
|T1n|:ﬁp max PnRy0nCn PnK,0nChp Pnk;,0nCn

) l M )
n n2h, n
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which is negligible by (3.4.12) and (3.4.13) because

Pakinbnch  _ C(ﬁirnkiwik%)

n2 n2
Pakinbncn C(z)irnkﬁw%ki)
nh2 - nh2 ’
and
3 3
parnky _ pikn pika rakn  pakh  paknpika kD

3 3
Patnky _ phkq pRky rak  puky  pakn piky K

2 1.4 1.2
while &%’3& has been dealt with earlier. Next

2
Conl < —5 ol 1@l [|E 1 Hn = Zall [1Z27] 1£al
0

1
where the second factor in norms is & (a%) , the third and fifth are bounded for

sufficiently large n by Lemma 3.B11, the fourth is 0, (p"in) by Lemma 3.B10

n2

SINE

and the last is 0, <C ) as above. Then

e
Nl

n2
which is negligible by (3.4.12) because
n n

-

Similarly |Y3,| = 0, <p’;li’%> by Lemma 3.B10, which is negligible by (3.4.12)
because ) 312

pncn pn n

= Cn

Then we only need to find the asymptotic distribution of the last term term
in (3.A.31), but this is precisely what we derived in the proof of Theorem 2.6.
Replicating those leads to the theorem.



3. Pseudo maximum likelihood estimation of higher-order SAR models 91

(ii) In view of Lemmas 3.B10, 3.B12 and 3.B13, the theorem is proved exactly like
Theorem 3.3 (), except for different orders of magnitudes of various expressions.
In this case two of the orders will be different from the analogous ones considered
in the the proof of Theorem 3.3 (7). Indeed, the analogue of the bound for the
first term in (3.A.27) is

3 1 701 1 1
21.2 .2 21.2 1,4 2 2 2
1 piknci PRk pacn pokjcn ch o pa
0, | n2 max - Tz o T max § —7; 5=
nzhy, n pih? n nz in
= ﬁp (maX {7Tln7 T2n,5 T3ny Tdn, Thn, 7T6n}) 5
where
9,9 1 73
_ p%knc’fl o pnknc"% péCé
T1in 1 y T2n = nz T3n ER
Nzl n nihg
3 5 L 91
Pk cr n2pik;, nipnca
Tqn = y Mon — 13 y TTen = 5
Now 31.4 .2 51.8
2 pnkncn < Cpnkn
MTin = h2 = h2
nhy nny

which is negligible under (3.4.14) and (3.4.16) as we may write

5 7.8 315 (. p2v/3\ 2
pnkn _ pnkn pnkn p5/2—27k;3—4w/3
nh2 n hn, " "

where 5/2 — 2y < 0 since v > 3/2 and % — 4—;— <0ify > %. If the latter condition
does not hold then we need to employ the extra condition (3.4.16). Secondly

5k6
m, < o
n

7/3“//3 4
- C {pnhn } p751—4'yk,2—8'y/3
n

which is negligible under (3.4.14) and (3.4.16) since 6 — 8y/3 < 0 if v > 9/4 and
5 — 4~ < 0 always, while if v > 9/4 then (3.4.16) delivers convergence to zero.

Third, we have
P’k _ o Pukn Puky

4
s, < C =
3n =" nhS n  hS
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which is negligible by (3.4.14). Fourth

51.10
Pokn,
n2

Ty < C

which is negligible by (3.4.14). Fifth,

12, 2
5 mn2

2 n2p7’bkn

Tn <O\ 73
n

This is negligible under (3.4.14) and (3.4.15) since

5
1 2 2J ﬂ 1
n2piks [ phkid kinz
3 3—-5/2v°
hy hn, he /2y

Finally
n%pf’k ?
T < C {h_g”} :
which is negligible under (3.4.14) and (3.4.15) since

5 5
1 27\ o Zy\ v 1
= 2 G G G =
”2132]% _ p;ylknd pzknd kpmnz 1
15 Iom

2

p3=5/2 k:§ hiﬁs/zy'
where 2 — 5/2v > 0 as 7 > 3/2. The analogue of the bound for Ty, is

3 1 71
o (nt) 6, [ mas piknch Pakn pich Pokncn
P 1

1

2

Cnp,

T T2 01 3 ﬁp
nzh, n o pih n

i
p (max {m1n, Tan, T3n, Tan}) ,

which was shown to be negligible under the assumed conditions. All other bounds

remain unchanged and will be also be negligible under under (3.4.14), (3.4.15)
and (3.4.16) as in the proof of Theorem 3.3 (7).

O
Proof of Theorem 3.4. Proceeding as in the proof of Theorem 3.3 (i), we can write

Tna,\lin (é(n) - 90(71)) Tno/‘lfnﬁn_l (I:In — ﬁn) <é(n) — 90(77,))

0, (ﬁ,;l _ 5;1) £ — T U= lE, . (3.A.32)

As in the proof of Theorem 3.3 (i), the first term on the RHS above is negligible by

92
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(3.4.25). Lemma 3.B11 (for bounded h,,) indicates that the second term on the RHS
of (3.A.32) is bounded in modulus by a constant times

o [ 2ll (leall + 16l (| B — H

+|1H, — )

(3.A.33)
which is

1 1 11 3 1
2 2 212 .2 21212 2
1 Cn Pn pnknbncn pnknbn pnknbn
Op | n2 max ¢ —, — p max ,
37 1,3 n
n nap?

1 ) n )
nzh,

by (2.B.13), (3.A.29) and Lemmas 3.B9 and 3.B10 (i). This is negligible by (3.4.25).
Thus we need to establish the asymptotic distribution of

which has zero mean and variance
U, (22,1 +2,10,5, 1) v
Hence we consider the asymptotic normality of
—n3IdU,EE,
L T (3.A.35)
{ana' ¥, (2571 + 271Q,501) ¥ha)?
where « is any s x 1 vector of constants. It is convenient to write
1
6o = {and' ¥, (25,1 + 2,1Q,5,1) ¥ a}>
for the denominator of (3.A.35). Then
1 1 1
> ad || Vol {n (25, +Z, 1021 12 > cal |90 (3.A.36)

by (3.4.24). The numerator of (3.A.35) can be written as

1 1
0
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where
pn
D, = Z(O/\I]nCn) C]na
j=1
Pn ) an )
mn = Y (V) GinXubopy + Y (0" UnCl) X(G—pu)ms
j=1 j=pn+1

with Cﬂl and x;,, denoting the j-th columns of = Land X,, respectively. We also denote
by dijn and m;, the (4, j)-th and i-th elements of D,, and m,, respectively.
Using (3.A.37), we can write (3.A.35) as — > 1" | Zin, with
1

2
5 1 (ul2 — 0'(2)) dii,n + T U; Z ujdij,n + 2—1mi’nui (3.A.38)
Uonign O'OTL§§n

Zin =

so that {z;, : 1 <i<mn,n=1,2,...} forms a triangular array of martingale differences
with respect to the filtration formed by the o-field generated by {u;;j < ¢}. Theorem
2 of Scott (1973) is applicable if

ZE {221 (2in > €)} — 0, Ve >0 (3.A.39)
i=1
> E (27, | ug g <i) - 1. (3.A.40)
i=1

To show (3.A.39) we can check the sufficient Lyapunov condition
n )
> Elzn[*"> — 0. (3.A.41)
i=1

The ¢, inequality, (3.4.23), (3.A.36) and Markov’s inequality indicate that (3.A.41)

holds if, as n — oo, E (Z?:l E \zm]2+%> — 0. The latter is bounded by a constant

times

2+5
n n n
s .- s
D il D E>_udijn D Iminl*
= =1 |j<i =
=i = _ - —. (3.A42)
T | 2] U T [ Y (I U T A
The first term in (3.A.42) is bounded by
2+3
max [dijn|"" 2
: (3.A.43)

B 57
nian 1| Whal*t2
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while the third term is bounded by

5
max [m; > 2
1

(3.A.44)

i .
nian ol

By the Burkholder, von Bahr/Esseen and elementary ¢,-norm inequalities, the second

term in (3.A.42) is bounded by a constant times

1+2

E 2
In;@x dij,n

j<t

é .
niant i ||‘1’§La||2+%

(3.A.45)

Now, recalling that e; ,, is the n-dimensional vector with unity in the i-th position and

zeros elsewhere, we can write

n
2 : 2 2 .

dij,n - ei,nDnehn
j=1

< Dl
2
p’ﬂ .
j=1
2 ) 2 9
< 032 (maxlCyall) (max]|l}) 1950l
< Cl= e [ wal?
_ PRl
{n(E}
< Cp2||wal?, (3.A.46)

using Lemma 2.C6 and (3.4.24). Also, we can use (3.A.46) to bound

2

n
diin| < | D din | < COpal|¥hall. (3.A.47)
j=1
We also note that, for each ¢ =1,...,n,
1
n 2 n
Soa, | <Y ldijnl < Dallg < Cpa[[¥ha, (3.A.48)
j=1 j=1

by Lemma 2.C1. Now (3.A.47) and (3.A.46) imply that (3.A.43) and (3.A.45) are both
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+
7 < Lo ) This is negligible by (3.4.25).

Next, writing b; ;, and x;;, for the i-th elements of Gannﬁo(n) and X, respec-

tively, we have

Pn Qn
minl <D G bignl + Y [0/ Unll] [ijn] < Chn (o + 1) |[Vhe . (3.A.49)
Jj=1 Jj=pn+1

249 248
using Assumptions 5, (3.4.24) and Lemma 2.C5. Then (3.A.44) is & (%i)
4
which is negligible by (3.4.25). Hence (3.A.41) is proved.

n4ap
We now show (3.A.40). First note that we can write

STE (22, | uj, i <) —1=4(fin + fon + fn) (3.A.50)
i=1
with
1

fin = %Z Z dijndif nUjUL, (3.A.51)

Yok <
JFk

fn = — nggzzd”” u? — o?) (3.A.52)
v <t

fan = ol TK?LZ UOmln+M3dzzn Z:dzjnuy (3A53)
[ j<i

fin has zero mean and variance bounded by 1/n%s} times

C Z |dij,ndik,ndhj,ndhk’,n|
h7 i? j? k
Jk <ih

C Z \dijindikn| (dijn + digen)
higk

C (maxz ’dlk,n> (maxz |dZ],n|) Z dz] n
k

= C||Dull% IDully
< C||wLal npt, (3.A.54)

IN

IA

by (3.A.46) and (3.A.48). (3.A.36) and (3.A.54), together with Markov’s inequality,
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imply that fi, = 0, <—71’L>, which is negligible by (3.4.25).

n2ap
Next, fa, has zero mean and variance bounded by 1/n%¢} times

CZ Z dzgn hjn < Czdwn hjn

i,h j<i,h i,h,j

= czdwnde
< C (mjaxzh:d%j,n> [N

< C H\I/;zoszlnpr, (3.A.55)

by (3.A.46). (3.A.36) and (3.A.55), together with Markov’s inequality, imply that
fon = O, <—L> which is negligible by (3.4.25).

n2an
Finally f3,, has zero mean and variance bounded by 1/n%¢} times

C’Z oM + padiin) Zdwn < C(maxm —i—maxdin) 1D, 15
J<t

IN

C maxml nt made” o | 1Dl

IN

Cllwhall® (k2 +1) npy, (3.A.56)

by (3.A.46) and (3.A.49). (3.A.36) and (3.A.56), together with Markov’s inequality,
imply that f3, = 0, <pg{k" >, which is negligible by (3.4.25). O

n2an

3.B Proofs of lemmas

Proof of Lemma 3.1. We can write

2
90

72 (Am) = 22 {n =2 (A = Aogm) " fo + (wy = Aom) Prrin Ay = Ao }

(3.B.1)

n

The minimizers )O\(n) — Ao(n) of (3.B.1) satisfy the first-order condition

fn = Pjiin (5\(n) - A0(n)> )

implying that the minimized value of o2 ()\(n)) is

op (1 — n jnlnfn) )
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which is bounded away from 0 uniformly in n and A(,) by Assumption 14. To show

o2 (A(ny) is bounded above uniformly in n and A(,), note that (3.B.1) is bounded above

by

Dn Pn  Pn
S uGn >3t (GhGin)
o3 +C ¢:1n + = -

by Assumption 12. The last displayed expression is uniformly bounded by Assumption
15. ]

Lemma 3.B1. Let Assumptions 8 and 4 hold. Then HSgl ()\(n)) HR and
HSgl (/\(n)) HC are uniformly bounded in a closed neighbourhood of Ag(y)-

Proof.

Pn -1 Pn -1
St (Awy) = <In - Z)\iWin> = <Sn = (- )\Oi)Win)
i=1

=1
P -1
= St (In =) (- )\OZ-)Gm> :
=1

To admit a Neumann series expansion for the last displayed expression we need
Pn

Z()\Z — )\Oi)Gin < 1.
=1 R
We have
Pn Pn
> (A = 20i)Gim < ) A= Xail [1Ginll
i=1 R i=1
Pn
< max ||Ginllg > 1A = Aol
B i=1

Pn
< O A= il
=1

where the last displayed inequality above is obtained through Lemma 2.C1. Let k; be

a positive real number such that k; < % and define the set

pn
B (Mow)) = {)‘(n) € R Z| Ai — Aol < k1}-

i=1

Such a choice is possible due to denseness of the parameter space.
Pn

> (A = 20i)Gin

i=1

Then <1 VAyn €B ()‘O(n))' So the series expansion is valid

R
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and for A,y € B (/\o(n)) we have

Pn -1 00 Pn k
<In =) (i )\oi)Gm> =) {Z()\z - )\Oi)Gin} :
i=1

=1 k=0

We use the triangle inequality and the submultiplicative property of the matrix norm

Pn -1
I g to bound (In > (- )\Oi)Gm> by
i=1 R
00 Pn k
Z Z )\ - )\Uz)Gin
k=0 1li= R
00 Pn k
< Z{ max HGmIR} {Zw - AM}
k=0 Lo i=1
<

= Z {OZ I\ — Aoil }k

k=0 i=1
1

l—CZ\)\ Aol

where the last sum is valid as the summands are less than 1 in absolute value by

)

construction of B (>\O(n))' Finally, using the above and Assumption 4, we have

Pn -1
15 o)l < 150, (In—Zw—AO»Gm)
=1 R
< © <c

Pn

1—6’12|)\ — Aoil

for any A\,) € B ()\O(n)), with the last bound following since the denominator is
bounded away from zero uniformly in n by choice of B ()\O(n)), whence the result
follows if we take a closed subset of B (Ao(n)), denoted B° ()‘O(n)>' The claim for

column sums follows similarly. O
Corollary 3.B2. Under the conditions of Lemma 3.B1, we have

1. For each i = 1,...,pn, HGm()\(n))HR and HGm(A(n))HC are uniformly bounded
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2. For each i = 1,...,pn, the elements of Gin(An)) are uniformly O (%) in
B¢ (/\o(n)) if also Assumption 2 holds.

Proof. 1. Follows by Lemma 3.B1 together with Assumption 4.
2. Follows by Lemma 3.B1 together with Assumption 2 in exactly the same way as we

proved Lemma 2.C2 O

Lemma 3.B3. Under the conditions of Corollary 3.B2 (2), we have
n .
tr (Gin()‘(n))Gjn()‘(n))Gkn(A(n))) =0 (h—> V An) € B¢ (AO(n)) and for any 1,7,k =

1,....,pn.

Proof. Consider A,y € B¢ ()\O(n)).
A typical (I, m)-th element of Gm(A(n))G] ()\(n))Gkn()‘(n)) is
91.inGin( A1) Gin(A(n))€m,n which is bounded in absolute value by

90 ll 1Gin ) [l |Grn ) || o lem,nll

This is uniformly &' (1/hy,) since the elements of Gi,(A(,)) have that uniform order,
and Gjn(An)), Grn(A@n)) are uniformly bounded in column sums (Corollary 3.B2).
The result now follows by the definition of trace. O

Lemma 3.B4. Suppose Assumptions 3-5 hold. Then || A}, A, || = O (npnk?).

Proof. Al A, has (i, j)-th element (GinXnB0) (GjnXnBo)-
Then by Cauchy-Schwarz inequality and Lemma 2.C5

Pn  Pn

Z Z ‘(GannﬁO), (GJanBO) ‘2

i=1 j=1

Pn  Pn

S G XuBol G Xnfoll* = 0 (n?p3KL)

i=1 j=1

IN

4% Al

IN

O
Lemma 3.B5. Suppose Assumptions 1-5 hold. Then || B, Ay|| = || A, Byl = O, (n%pnkn)

Proof. B, Ay has (i,5)-th element (GinUp) (GjnXnB0). Then

Pn  Pn
E|BAu* < YN E[(Ginln) (GjnXnbo)|”
i=1 j=1
Pn  Pn
i=1 j=1
Pn Pn
< g Y 1Ginl® Y 1GinXnboll* < Crppks,

i=1 j=1
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using elementary spectral norm inequalities, Assumption 1 and Lemmas 2.C1 and
2.C5. Using the Markov inequality and noting that the spectral norm is invariant

under matrix transposition, the lemma is proved. ]

Lemma 3.B6. Suppose that Assumptions 1-4 hold. Then ||B;,By,| = 0, (%)

Proof. Using elementary spectral norm inequalities, Assumption 1 and Lemma 2.C1,

we have

n  Pn
E|B,Bu| < E|LBul® <> Y E(ef,Gnln)’
i=1 j=1

nPn

g UOZtT G G, <Ch

as calculated while bounding the first term on RHS of 2.B.19, whence the lemma
follows from Markov’s inequality. Note once again that with finite fourth moments

this bound will not improve. ]
Lemma 3.B7. Suppose that Assumptions 3-5 hold. Then || X]A,|| = ||ALX,| =

0 (npnk2>

Proof. X, Ay has (i, j)-th element z; , G jn X, B0, where z; , is the i-th row of Xj,. Then
| X! A, ||* is bounded by

kn  DPn

Z Z }332 nGannBO < Z ”xz n” Z ||GannﬂO” (n2pnk2) )

i=1 j=1

using Cauchy-Schwarz inequality, Assumption 5 and Lemma 2.C5. The lemma is

proved noting that the spectral norm is invariant under matrix transposition. O
Lemma 3.B8. Suppose Assumptions 1-5 hold. Then || X] By || = || B, Xy| = 0, <népéké>
Proof. X, By, has (i,j)-th element z; ,G,,Uy,. Then
kn  Pn kn  Dn
E||X,Ba|* <3SN Ela],GinlUn® = DN E {,GinUnUsGlin}

=1 j=1 =1 j=1

Pn
2> 1Gnl? < Crpoky

using elementary spectral norm inequalities, Assumptions 1, 5 and Lemma 2.C1. The

lemma is proved noting that the spectral norm is invariant under matrix transposition.

O]
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Lemma 3.B9. Suppose Assumptions 1-5 hold together with (2.3.7). Then

1 3 1
A L 3.2 571212 2
HHn—HnH = ﬁp (max{pnk bn cn ) nlfnbn7pnknbn}) .
n n2h, n

Proof. By the triangle inequality

By the triangle inequality again, is bounded by

HPJ“’L )‘(n)) Pjin

1
= LR R+ 2| X0 R + X0 ) - (3.B.2)

U(n) g,

2
+ —
n

The first term in (3.B.2) is bounded by

b ,) 3
{ZZ < tT ]n 5‘ Gm(j‘(n))) - %tr(G]nGm)> } (3B3)

=1 j=1

By the mean value theorem,

2 N A 2 2= /.
—t(Gin(Am))Gin(Aw)) = —tr(GjnGin) + — Cp ()‘(n) - Ao(n)) ,

Eij,n = (tr (zmn) yeestr (zijn,pn)> ;

where

with

Zz‘jn,k = Gin (i(n)> Ghn <§(”)) Gijn (i(”))

+ G (X)) Gin (X)) Gin (A

< Ao = Ao
5 [an (= 200)] <

2
by Cauchy-Schwarz inequality, where the first factor in norms on the RHS is & <an—2>

n

and Hj(”) — Ao(n) . Therefore the summands in (3.B.3) are

2

)

= 2«
Cij,n )‘(n) - )‘O(n)
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by Lemma 3.B3. For the second term,

2 by,
=a (%)

by (2.B.7). So we conclude that the summands in (3.B.3) are &, <M> and therefore

|6y = o

2
nh?

3 1
(3.B.3) is 0, <p3 bi > and it follows that so is the first term in (3.B.2).

T
n2hy,
By (2.B.8), S
1 1 2.2 §b§ b
- — —5| = 0, | max n , p? LR , (3.B.4)
06y %0 n p3h, N

which handles the second factor in the second term in (3.B.2). We shall now bound
the terms inside the parentheses in the second term in (3.B.2). For the first term note
that by the definition of R,, and the triangle inequality, ||R] R,|| is bounded by

] 2 Al BBl = 0, ({2 b, 5 )

n
) hn

= 0, (npnki) (3.B.5)

by Lemmas 3.B4, 3.B5 and 3.B6.

For the second term inside the parentheses we have

I < 4] + 10| = 0 (e { ik ot }) = 0, (ot ).

(3.B.6)
using Lemmas 3.B7 and 3.B8.
By Assumption 5, the third term inside the parentheses is
1, X0 || < 1Xall® < 1 Xnllg | Xnlle = €(nky) (3.B.7)

From (3.B.3), (3.B.4), (3.B.5), (3.B.6) and (3.B.7), we conclude that (3.B.2) is

S nolw
S hol—

b
hn

o

<p
P
n

[N

3 1 1 1 1 1
§b§ bECE §b§ b
= O, p?n + 0, | max nn’prlbn’_n pnk%
n2h, n nazp, N
s 11 31 )
_ 0, | max pnknb%cr%’ p%fnb%? Prk; by _
n nzh, n
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Then S 1
Hﬁ _H H — 0. | max prk2bica pikibz phk2b,
n n - 7r )

1 )
n n2h, n

Similarly, it may be shown that || H, - H, || has the same order, whence the lemma

follows.
O

Let
& <sz‘7n + Pyrip + ;%A%An) 2, AL X,

no’%

o7 XnAn oz X5 X
with Pjr; ,, the p, x p, matrix with (4, j)-th element tr (G;nGm>
Lemma 3.B10. Suppose that Assumptions 1-5 hold. Then

(i) ||Hy — Zn| = O, (%) if also Assumption 11 holds,
n2

=o(i)

2
(id) || Ln - F=n

Proof.
(i) H, — =, is
2 (ULSA;LBn + 2 ByAn + 5 ByBn — Pj,m) 2 BI'X,
n%‘gngn 0
which has norm bounded by

2 (2 2 1
( 14,8 + 2 X0, + L1138 - agpj,i,n\o . (3.B.8)

— | =
) n

By Lemmas 3.B5 and 3.B8 the first two terms inside parentheses above are at

most 0, (%) The last term in parentheses in (3.B.8) has squared expectation

botnded by
1 Pn  Pn 9
— > Y E(UG)GinlUn — aitr (G, Gin))
i=1 j=1

— 2
Pn
= B2 Y (U163, Guti) = 7 ().
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by Lemmas 2.C3 and 2.C4. This implies that the last term in parentheses
in (3.B.8) is ﬁp< f”%>. Therefore |H, — Z,| = 0, (max{%, B, }):

n2hg n2  pap2
O, (p "If") since h,, is bounded away from zero.
n2

—%21 (Pjin + Pjrin) 0

0 0
which has squared norm bounded by a constant times

Pn  Pn

% Z Z t’l“2 (C]nGm) . (3.B.9)

i=1 j=1

Now tr (CjnGin) = tr <GjnGm + G;nGin>, which is & (%) from Lemma 2.C3.
Then (3.B.9) is & (B%L> which implies the result.

h3
O
Lemma 3.B11. Under Assumptions 1-5 and 10, 11 along with
37.4 b
1 1 1 k 2k
— = — Dol Poln PR s — 00 (3.B.10)
Pn Tn kn n n hn,
and
1212
L bounded as n — oo, (3.B.11)
n

the following inequalities are satisfied:

2 —1
plim || 7| < Cptim || 17| < € pim |15 < 0% (li_m Q<Ln)) <c

n—oo n—oo

If h,, does not diverge, the above result becomes
. -1
plim || 71| < Cplim || 17 || < © ( lim Q(En)> <c,
n—oo

if also lim n(=Z,) > 0.

n—oo

Proof. We first observe that:

ol IR e R e
< || |- N
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Therefore
L

A similar argument yields

) <
LH | (1= 1 = Zall |200]) < 11220

—_ O'2 _ 0'2 _
=t (1- 2 SR

The result now follows from the last three expressions above, by taking probability

and

3
oL

limits of the expressions starting from the last displayed expression and using Lemmas
3.B9 and 3.B10 together with (3.B.10), (3.B.11) and Assumption 10. An analogous
a3 .

result clearly holds for ‘

Lemma 3.B12. Suppose that Assumptions 1-5, 10, 11 and condition (2.3.14) hold.
Then
|

Proof. In this case we need to bound

3 7 1

2 2 2 1.2
-0 pnk Cn pnk p%k Cn pncn
= P max n N h2 5 3
7 ne hn nzh%

2
2|y Gin) — P
211
e [ L R PN N R A R 57

Everything follows as in the IV case except now have the different orders

11

2.2
-9 Cn Pn PnCn

2
O—(n)_o-():ﬁp max 7h_%’—n%hn
and
1 1
5 cn pn
H Oy — Oon) || = Op | maxq —, .
nz2 Nn

from (2.B.24) and (2.B.22) respectively. The first term in (3.B.12) is then

Swl=
Sl

2
c n

b, h2’

C

=

b
nih

ﬁp max

S
ol | Sl
LN SN

3
Swolw



3. Pseudo maximum likelihood estimation of higher-order SAR models 107

while the second is

3 1
2 212 2122
O, | max
P a TR2 0 1
n n n2hn

O]

We may then argue in a similar way that the Hessian evaluated at the OLS estimate
differs from its value at an intermediate point in norm by the same. We skip the details

because they replicate those for the proof of Lemma 3.B9 above.

Lemma 3.B13. Under Assumptions 1-5 and 10, 11 along with

L1 pikn  pobn

— 0 as n — o0, (3.B.13)

the following inequalities hold:

2 -1
mmHEngmmH&f”ghmHgfﬂg%(h_g@w> <c.
oo

n—oo n

Proof. Similar to proof of Lemma 3.B11.
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4 Results for covariances of au-
toregressive random fields de-
fined on regularly-spaced lat-

tices

4.1 Introduction

In this chapter we present some results on the covariance structure of random fields
defined on a d-dimensional regularly-spaced lattice, with d > 1. Section 4.2 derives
bounds for absolute moments of partial sums of spatial processes defined on regularly-
spaced lattices. Section 4.3 demonstrates that when the spatial process is stationary
and has a half-plane representation the covariance structure satisfies a generalisation
of the Toeplitz property familiar from the theory of stationary time series. Section 4.4
provides an upper bound on the number of unique autocovariances that occur in the
covariance matrix of stationary and unilateral processes. These results are crucial for
proving the claims in Chapter 5 and also provide scope for further extension of time
series theory.

Denote by Z the set of integers. We consider processes indexed by elements of Z¢,
which are denoted by a multiple index e.g. t = (t1,...,tq) with t; € Z, j =1,...,d.

Define the rectangular lattice
£:{t€Zd:—nLi <t <ny,i=1, ...,d},

where ny,,nr,, > 0fori=1,...,d.

Lattice data has been the subject of a rich literature in statistics (see references
in Chapter 1 and below). In fact there is some scope for the extension of methods for
lattice data, such as those outlined in this chapter and the next, to stationary spatial
processes observed on a continuum. For a continuous time bandlimited process (d = 1)
uniform sampling (i.e. sampling at regular intervals) can be employed and the spectral
density of the sampled process used to recover the spectrum of the original process.
This approach is not possible without bandlimiting, leading to inconsistent estimates
of the spectral density. If the original process is not bandlimited, irregular sampling
is preferred, an example of irregular sampling being Poisson sampling. A reference for
these issues is Srivastava and Sengupta (2010). In a similar way lattice data may be

viewed as sampled data from continuous space process.
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4.2 Bounds for w-th absolute moments of partial sums, w € (1, 2]

In this section, bounds are derived for the w-th absolute moment of partial sums of
the realizations of random fields defined on a lattice, with w € (1,2]. We first impose
certain conditions to reduce the class of processes under consideration to one that
arises in many applications, and then obtain the bounds. The result in this section
extends Lemma 1 of Robinson (1978) from time series to lattice processes. Consider a

zero-mean lattice process {(; : t € £} defined by

G= Y ... > & teg

slezd s91€Z4

where s = (sl, ... ,sq). This definition covers situations where certain statistics of
spatial processes may be expressible in terms of products of sums of random variables.

Assume that this process satisfies the following conditions:

Assumption 18. &g are mean-zero and independent over t.

Assumption 19. For some w € (1, 2] there exist positive constants
{Uk:s iseZt1<k< q}, {a; : t € £}, such that

El&st|” < ng'ay’, (4.2.1)
where ns = [J{_; ns+ and

d s <o, 1<k<q. (4.2.2)
s€Z4

Assumption 18 can be relaxed to an appropriate lattice martingale type condition
and indeed, lattice martingales have been introduced in Cairoli and Walsh (1975),
Tjostheim (1983) and Kallianpur and Mandrekar (1983). However, extensions to lattice
martingales require an assumption of the existence of an ordering in the lattice. We
prefer to avoid such assumptions for the moment, and in any case this can be rather
arbitrary.

Before we can introduce our result, we need to establish some more notation and
illustrate it with examples. Write N = (Ny,...,Ng), 0 < N; < ng, + ny, for i =
1,...,d, and define

/
SN=Y_ G,
t(N)

where Z;( ) runs over ¢ satisfying —nr, < t; < N;—nr,. There are Hle N; summands
in this sum. Also write M = (M, ..., My), M; possibly negative, with |M;| < N;, and
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define

Sun= Y "G,

t(|M],N)

where ZQ’U M|, Tuns over ¢ satisfying

_nLi<ti§Ni_’Mi’_nLi; if M; <0,
M; —np, <t; < N; —ng,; if M; >0,

indicating that there are []%_, (V; — |M;]) summands in this sum.

If M; > 0 for each i = 1,...,d then, unlike in time series, Syyny # Sy — Sys. In the
d-dimensional lattice case we may write Syyy = Sy — Sy, n with Sy = Z:(MW)Q,
Z:(M,N) running over ¢ satisfying —ny, < t; < N; with at least one 7 = 1,...,d for
which t; < M; —nr,. There are H?Zl N; — H?:1 (N; — M;) summands in this sum.

For d = 2, Sy consists of the sum of observations at those points in the intersection
of points to the north-east of (—nr, + 1, —nr, + 1) and to the south-west of (N7, Na).
S is visualised similarly. Sysn consists of the sum of observations at those points in
the intersection of points to the north-east of (—nr, + My + 1, —ny, + My + 1) and to
the south-west of (Ny, Na2). Figure 4.1 illustrates these definitions for d = 2; ny, =
nr, = 0; ny, = ny, = 6; (N1,N2) = (4,4) and (M1, M3) = (2,2). Observations
summed in Sy are those recorded at points within the solid-bordered boxed area. For
Swm, Sy;n and Syn the points of observation are in the solid-bordered circular area,
dashed polygonal area and dotted circular area respectively.

An alternative way of writing Z:f,(\M|,N) 18 > 44 ares, Where
LN = {tEZd:—nLi <t <N;—np,i=1, ...,d}.

Now define b,y = 0 if N = (Ny,...,Ng), N; > 0 for i = 1,...,d with at least
one N; = 0, and b,y = Z;(N)a%“ if N = (Ny,...,Ng), N; > 0 fori=1,...,d

Similarly define by y = 0 if N — [M| = (Ny — [M], ..., Ny — [My|), N; — | M;] > 0 for
i =1,...,d with at least one N; — [M;| = 0, and by = Yf(pr pyat’ it N — [ M| =
(N1 — |My|,...,Ng— |Mygl|), N; — |M;| >0 fori=1,...,d. We are now in a position

to prove the main result of this section.

Lemma 4.1. Let Assumptions 18 and 19 hold. Then
E|Sun|" < C buun. (4.2.3)

Note that we did not impose stationarity of (;, nor did we use any half-plane

representation for ;. In view of this Lemma 4.1 is quite general.
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Figure 4.1: Illustration of Sy, Sw,Syy and Sywn for the case d = 2

nr, =nr, = 0; ny, =ny, = 6; (N1, Na) = (4,4) and (M, M) = (2,2).

4.3 Covariance structure of stationary lattice processes with autore-
gressive half-plane representation

In this section we generalize the Toeplitz property of covariance matrices for stationary
time series with finite autoregressive representations to stationary spatial processes
with finite half-plane or quarter-plane representations.

As in Tjgstheim (1983) we define the half-space used in our representation as
S = {teZd:tl S0t =0, > 0; o3 b = =1y, zo,td>0}. (4.3.1)

We will also write O for the d-dimensional zero vector.
For non-negative integers pr,,, pu,, ¢ = 1,...,d, we now introduce compact notation
for an AR (pr,,pu,;---pL,, pu,) model. First, in view of the half-plane representation

we can a priori set, say, pr, = 0. Now define
S[_pLapU] = {t € Zd P —PL; <t < pu;, i = 17 . 7d} N Sf?}-u (432)

which is the truncated set of dependence ‘lags’. Consider a process {x; : t € £}. Then
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we assume the existence of real numbers dg, s € S [—pr, py], such that

re= Y dewiste, tel (4.3.3)
s€S[—prL.,pu]

with ¢; a white-noise error term.
Denote p; = pr, +pu,, i = 1,...,d, with p; = py, since pr, = 0 in by our definition
of half plane, and also write p = (pr,,-..,PL,, Pty --->PU,)- Let h(p) denote the total

number of autoregressive parameters in (4.3.3). Then

d—1 d
b(p) =pu, + Y [ i+ 1Dpu,, (4.3.4)

j=11i=j+1

which generalizes the formulae given in Tjgstheim (1983).

Assuming that the process x; is stationary, we can define the autocovariances
v(k) = Exyxeyy, k € 74,

It is necessary to introduce an ordering of the elements of Z? in order to write the
objects of interest in matrical and vectorial form. Such an ordering can be carried out
in many ways and as long as a consistent ordering is followed it should not matter which
particular ordering is used. From a practical point of view however, certain orderings
may be more beneficial in that they allow us to get a clearer picture of the structure
of the covariance matrix for a truncated process on a half-plane. A clear picture of
the structure will also help us in the proofs of our results in Chapter 5. We consider
the cases d = 2 and d = 3, and then discuss the situation for general d. We also
illustrate the relevant quarter-plane situations first and then build on this treatment
to explain the differences in the half-plane case, the latter being more complicated due

to negative entries in the indices. The definitions are recursive in nature.

4.3.1 d=2

This case is discussed quite extensively in the signal-processing literature for instance
in Tjgstheim (1981) and Wester et al. (1990). Examples abound of two-dimensional
processes, for instance with spatio-temporal data as also data with no temporal com-
ponent. Examples of the latter include agricultural and horticultural data of the type
used by Whittle (1954). These data were recorded on an equally-spaced grid set on a

wheat field and a rectangular lattice of 1000 orange trees respectively.
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Quarter-plane representations

Consider a quarter-plane representation. In this case pr, = 0. For each [ =0, ..., py,,
define @Ll(l)(p) to be the (py, + 1) x 1 vector with typical i-th element given by (I, 1),
1=0,...,py,. To illustrate,

v (1,0)
) 11
e —| 7Y

7(l>pU2)

Now, define 1(?) (p) to be the nested vector of dimension (pg, + 1) x (pr, + 1) and
i-th sub-vector given by &gl)(p), i=0,...,py,. So we have

15{)1; (p)
(1
Jop) = | :(p)

()
wpUl (p)

Finally denote by ¥ (p) the (py, + 1) (pr, +1) — 1 x 1 vector got by removing the

first element of () (p). This is now an h(p)-dimensional vector of covariances.

For each | = 0,...,py,, define \i!l(l)(p) to be the (py, +1) x (py, + 1) Toeplitz ma-
trix with typical (7, j)-th element given by ~(l,i — j), i,7 = 0,...,py,. To illustrate,

'7(l70) /7(la_1) """ 7(lv_pU2)
‘1151)(1)) _ ~ (l, 1) ~ (l7 0) ooy, —p:UQ +1)
7(l7pU2> fyuapUQ - 1) """ Y (170)

Now, define ¥(?)(p) to be the block-Toeplitz matrix of (block) dimension (py, + 1) and
(i,7)-th block given by \I/Z(-l_)j(p), i,7=0,...,pu,. So we have

e W) O
5(1) i () 1

\11(2) (p) _ \Ill (p) \:[10 . (p) ...... _pU1+1(p)
i), (1) \@;21,1@) ...... ¥V (p)

Denote by ¥®)(p) the (py, +1) (pr, +1) — 1 x (py, + 1) (py, + 1) — 1 matrix formed
by deleting the first row and first column of ¥(?)(p). Then the dimension of ¥(3)(p) is
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h(p) x b(p).

Half-plane representations

Consider now the half-plane situation, where we have pr, > 0 . Here, we have similar
definitions with the indices running over different ranges. For each [ = 0,...,py,,

define 1[1;1)(])) to be the (p2 + 1) x 1 vector with typical i-th element given by ~y(l,1%),

i = —DLy,---,PUy- S0 We have
v (L, —pL,)
iy = | T
v (L pus)

Define 1(?)(p) to be the (pz + 1) x (py, + 1)-dimensional nested vector with i-th sub-
vector given by 1[12-(1) (p),i=0,...,py,. ¥ (p) has dimension (py, + 1) (p2 4+ 1) x 1 with
(pv, +1) (p2+1) = h(p) + pr, + 1. Therefore, unlike in the quarter-plane situation,
we will now denote by ¥ (p) the h(p) x 1 vector formed by deleting the first pr, + 1
elements of 92 (p).

For each 1 = 0,...,py,, define \ifl(l)(p) to be the (p2 +1) x (p2 + 1) Toeplitz matrix
with typical (i, j)-th element given by ~(I,i — j), 4,5 = 0,...,ps. Now, define ¥ (p)
to be the block-Toeplitz matrix of (block) dimension (py, + 1) X (py, + 1) and (i, j)-th

(1)

block given by W;’:(p), i,j =0,...,py,. So we have

) e v (o)
i (1) i) 1)
v vy (p) ...,

\il(Q) (p) _ 1 (p) 0 . (p) —pU1+1(p)
Ui, (0) Ty, 1) 5 (p)

¥ (p) has dimension (py, + 1) (p2 +1) X (pr, + 1) (p2 + 1) and

(pvy +1) (p2 +1) = b(p) +pr, + 1.

Again, unlike in the quadrant situation, we will denote by W) (p) the h(p) x h(p)
matrix formed by deleting the first pz, + 1 rows and columns of ¥(?)(p).

4.3.2 d=3

Three-dimensional lattice data are frequently encountered in physical sciences, but are
not restricted to this field. For instance, two-dimensional agricultural data observed

over a period of time constitutes a three-dimensional lattice dataset.
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Quarter-plane representations

In this case we have pr, = pr, = 0. We build the definitions analogously to the d = 2
case. For 1 =0,...,py, and m = 0,...,py,, define 1[31(17,1(]9) to be the (py, +1) x 1
vector with typical i-th element given by (I, m,%), i =0, ..., py,, that is

v (l,m,0)
~ la 71
i (p) = ! m )
’y(lvmvag)

Defining 1@(3) (p) to be the (py, +1) x (py, + 1)-dimensional nested vector with i-th
sub-vector given by 1[12(1”)1(19), i=0,...,py,, we get

Finally, define ©/(®)(p) to be the twice nested vector of dimension H?:1 (pu, +1) and
i-th block given by igg)(p), i,7=0,...,pu,, yielding

P (p) =
i) ()

Denote by 13 (p) the H?Zl (pu;, + 1) — 1-dimensional vector formed by deleting the
first element of 1)) (p). Then the dimension of () (p) is h(p) x h(p).

We now define the matrices. For [ = 0,...,py, and m = 0,...,py,, define \ill(ln)l(p)

to be the (py, + 1) X (pu, + 1) Toeplitz matrix with typical (4, j)-th element given by
y(l,m,i—j), 4,7 =0,...,py,, so that

v (I, m,0) v(l,m,—1) ... v (L, m, —pu,)
() B v (l,m,1) v(l,m,0)  ...... v (l,m, —pu, + 1)

vy(l,m,puy) y(,mypy, —1) ... v (I,m,0)
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Now, define NS (p) to be the block-Toeplitz with Topelitz blocks matrix of (block)

dimension (py, + 1) and (i, 7)-th block given by \Ilz(l_)j’m(p), i,7 =0,...,py,. So we

have £ (1) e £ (1)
\Ifo7m(p) \Ii_l’m(p) ...... \Iiprl m(D)
+(1) 2(1) £ (1)
\1]7(7%) (p) _ v ,m(p) O,m(p) """ \Il—plerl,m(p)
Ui m(p) W) ) B, (p)

Finally, define ¥®)(p) to be the (thrice) block-Toeplitz matrix of (block) dimension
(pv, + 1) X (pu, + 1) and (4, j)-th block given by @gz)j(p), i,7=20,...,pu,. So we have

) 8w 0% ()
i, (2) i, (2) i, (2)
v Us(p) ..., \VJ

B3 (p) = i () 0 (p) oo, +1(P)
U () U (p) e ¥ (p)

Now denote by ¥®)(p) the [[>_, (py, + 1) — 1-dimensional matrix formed by deleting
the first row and first column of W(®) (p). Then the dimension of ¥®) is h(p) x h(p).
Half-plane representations

Now pr, > 0 or/and pr, > 0. For I = 0,...,py, and m = —pr,,...,pu,, define
1%(2(]9) to be the (p3+1) x 1 vector with typical i-th element given by ~(I,m,1),
it = —DLy,...,PUs. This gives

Y (l) m, _pLg)
o ’.Y(l?ma —PL + 1)
i (p) = .
Y (la mapUg)

Now, define 1@(3) (p) to be the (p3 + 1) X (py, + 1)-dimensional nested vector with i-th
sub-vector given by 1[12(1”)1(])), i=20,...,py,. So we have

Dy m(p)

Finally, write ¢ (p) for the H;-Q;l (p; + 1)-dimensional nested vector with i-th sub-
vector given by 1L§2) (p), i = —PLyy---,PU,, , Where by definition of half-plane pr, =0,
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7(2)
}é_)pLQ (p)
1[}(3)(1’)) _ ¢_pL2+1(p)
i) (p)

3 (p) has dimension [[>_, (p; + 1) and also [[°_, (pi + 1) = b(p)+prs +pr, (03 + 1)+
1. Therefore, unlike in the quarter-plane situation, we will now denote by ®)(p) the

h(p) x 1 vector formed by the following procedure:
1. Delete each of the 1;(()17)71(]?), M= —PLyy---,—1.
2. Delete the first pr, + 1 elements from 1[)((]2) (p).

The total elements then deleted are pr, (ps + 1)+pr, +1 in number, and the dimension
of 3 (p) follows.

For the matrices, we again proceed similarly. For [ = 0,...,py, and m = —ppr,, ..., pu,,
define ‘i/z(ln)@ (p) to be the (ps3 + 1) x (p3 + 1) Toeplitz matrix with typical (i, j)-th element
given by v(I,m,i — j), i,j = —pLs,---,PU,s. To illustrate, \i/l(ln)l(p) is

’7(l7m70> fY(lam:_l) 7(lvma _p3)
7(l7m) 1) 7(l7m70) fyaama _p3+1)
7(l7m7p3) 7(l7m7p3_1) 7(l7m70)

Defining NS (p) to be the block-Toeplitz with Toeplitz blocks matrix of (block) di-

mension (py, + 1) and (i, j)-th block given by \Ifgi)jym(p), i,7=0,...,py,, we get

2R (O N () RO v )
i, (1) i, (1) i (1
v (p) Uy (p) ...

\I/S?L) (p) _ 7'm,(p) O,m(p) —PU1+1,m(p)
U n(p) Wh) (D) o U, (1)

Lastly, define W(®)(p) to be the (thrice) block-Toeplitz matrix of (block) dimension
(p2 +1) x (p2 +1) and (7, 5)-th block given by @(2)-(]9), 0,] = —PLys---, DUy SO WE

i—J
have £ () £ (@) @)
\II? )(p \I/(_§ 1) \I(JSPQ (p)
(2 (2 (2
¥ (p) = B (p) v, | p) .. - \Iffp#l(p)
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Now denote by ¥®)(p) the Hle (pu, + 1) — 1-dimensional matrix formed by deleting
those rows and columns of ¥(®)(p) corresponding to the elements of ¢(®) (p) deleted
earlier. For instance, if the i-th element of ¥)(®) (p) was deleted then we delete the i-th
row and i-column of W) (p). We repeat this for each deleted element of ¥ (p). Then
the dimension of ¥®)(p) is h(p) x h(p).

4.3.3 (General d
Quarter-plane representations

In this case we have pr, =pr, = ... =pr, =0. For [; =0,...,py,, i =1,...,d — 1,
define @Z;l(ll) 1,_,(p) to be the (py, +1) x 1 vector with typical i-th element given by
’Y(lla s 7ld*17i)7 i = 07 <5 PU,- Then

’y(ll, .. .,ld_l,O)
(1) v, la-1,1)

v (- la—1,puy)

Next, for [; =0,...,py,, i =2,...,d — 1 define QLZ(Q) N2 to be the nested vector of
(nested) dimension (pU1 + 1) and i-th sub-vector given by wl 12 ., (P)i=0,....pu,.

So we have N
1/’0 12, 1y, (P)
) (p)
2 Lyl
wl(Z,) Sla— 1(): 2 :dl
7 (1)
’ll)pUl 7127"~7ld—1 (p)
Proceeding in this manner, for l4_1 =0,...,py, , we define wld 1)( ) to be the Lested

vector of (nested) dimension (pU o+ 1) x 1 and ¢-th sub-vector given by zp )(p),

lld 1

1=0,...,pu, ,, yielding

P52 ()
) 9152 ()
P (p) = e
1&('“). (p)
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Finally, define 1/() (p) to be the nested vector of (nested) dimension (py, + 1) and i-th
sub-vector given by &Ed_l)(p), i,j=0,...,pu, ,. This implies that
7(d—1
o)
7(d—1
- 1 (p)
P (p) = .

I )
Now denote by ¥(¥(p) the ngl (pu, + 1) — 1-dimensional vector formed by deleting
the first element of ¢(? (p). Then the dimension of ¥(¥(p) is h(p) x 1

Coming to the matrices, for l; =0,...,py,, i =1,...,d — 1, we define \i}l(113---,ld_1(p) to
be the (py, + 1)-dimensional Toeplitz matrix with typical (7, j)-th element given by
y(l,. .. la=1,i—7), 4,5 =0,...,py,. This means that \i'l(117)...7ld_1(p) equals

’7([1,...,ld_1,0) ’y(ll,...,ld_l,—l) ’}/(ll,...,ld_l,—pUd)
7(117“‘7ld—171) 7(117"‘7ld—170) /y(llw"vld—l)_pUd—’_]-)
fy(lla"‘)ld—lapUd) ’Y(l17~~-7ld—17pUd_1) /Y(l17"'7ld—170)

Next, for I; =0,...,py,, i = 2,...,d — 1 define ‘ill(f) ld—1<p) to be the block Toeplitz
with Toeplitz blocks matrix of (nested) dimension (pr, + 1) and (7, j)-th block given
by \IIZ( )j .. ld_1(p)’ i,7=20,...,py,. So we have

- (1 1
\?(E]il}’m’ldl (p) ((%127'”’1'11 (p) e v (p()l()I)JU1 Aoy la—q (p)
\11(2) ( ) — \Illvl%---»ld—l (p) 0,l2,....lg—1 (p) . \If(d) (p)—PUl-H,lg,...,ld_l (p)
loydy 1 \P) = ' ' :
(1 ‘(1
\II;U)I 7l2,--.,ld_1 (p) \111(7[21 _17l27.--,ld_1 (p) . (() l) - 7ld_1 (p)

Proceeding as above, for [;_1 =0, ...,py, , we define \ill(j:ll)(p) to be the nested block-
Toeplitz matrix of (block) dimension (py, , + 1) % (pu,_, + 1) and (i, j)-th block given
by gld-2 (p), 4,7 =0,...,pu,_,, so that

i—Jld—1
x (d—2) x (d—2) < (d—2)
\Ijo,zml (p) v a1 () o \Il*pUd_Q,ldq (p)
i (d—2) Bd=2) i (d—2)
< (d 1) N \Illuldfl (p) Yy da—1 (p) T \I}—PUd_Q-HJdA (p)
v (p) = . ) )
-2 -2 ' (d-2)
\IlpUd_Qdel (p) \ijUd_Qflefl ) - \PO,ldq (p)
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The last step consists of defining ¥(?(p) to be the block-Toeplitz matrix of (block)
dimension (py, , +1) x (pu, , +1) and (4,j)-th block given by q;gi;l)(p)7 ij =
0,...,pu, ,- This yields the general form

< (d— < (d— < (d—
V) V) vl ()
£ (d-1) £ (d-1) £ (d-1)
e
d— x (d— < (d—
m%ﬁk@ w%i}ﬁm ...... i (p)

for the covariance matrix. Now denote by ¥(%(p) the H?Zl (pu, + 1) — 1-dimensional
matrix formed by deleting the first row and first column of ¥(@) (p). Clearly the di-
mension of ¥(9(p) is h(p) x h(p).

Half-plane representations

Now pr, > 0 for some ¢ = 1,...,d. For l; = —pr,,...,pu,, i =1,...,d = 1; pr, =0,
define %(11) ld—l(p) to be the (pg+ 1) x 1 vector with typical i-th element given by
v, ..., lg-1,1), ¢ = —pry,...,pu,. Next, for l; = —pr,,...,pv;,, @ = 2,...,d — 1
define 1@22) 1, ,(p) to be the nested vector of (nested) dimension (py, + 1) and i-th
sub-vector given by 1/)1 12 gy (p),i=0,...,py,. Proceeding in this manner, for [;_; =
—PLy_ys---,PU,_, We define @fdil)(p) to be the nested vector of (nested) dimension
(pa—2 + 1) x 1 and i-th sub-vector given by 1/)2 1 1( )y @ = —PLy o,---,PU,_,- Finally,
define (9 (p) to be the nested vector of (nested) dimension (pg + 1) and i-th sub-vector
. Sd=1), .
given by v, (p), i =—pr, ys---,PU,_,- SO we have
7,(d=1)
Vpr, , (P)
7,(d—1)
DD (p) = w_pLd—1+1(p)

D 13( )

Now (@ (p) has dimension Hle (pi +1) x 1 where we note that pr, = 0, so that

[T (i +1) = 0(p) + pry +Pro, pa+ 1)+ +pL, (3 +1) .. (pa+ 1)+ 1.
Define 9(?(p) as the h(p) x 1 vector formed using the following procedure:

(1) Delete each of the 1/3(()71l)27._.,ld_1(p), lo = —pry,...,—land l; = —pr,,...,0U,,
i=3,....d—1.
(2) Delete each of the w(()Ql)S’ g (P I3 = —prg,...,—1and l; = —pr,,...,pU;,

i=4,...,d—1.
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7 (d—2)

(d — 2) Delete each of the w(() Ly )y la1=—pr, ..., —L

(d — 1) Delete the first pr,, + 1 elements of &éd_l)(p).

The total elements thus deleted are

pr, (p3+1)...(pa+1)+...+pr, , (pPa+1)+pr, +1

in number, and the dimension of ¥(?) (p) follows. By construction ¥(? (p) has elements

7(8)7 ses [_pL)pU]~
We now define the matrices. For [y =0,...,py, and l; = —pr,,...,pv;, ¢ = 2,...,d—1,
define ¥V 1, (p) to be the (pg + 1)-dimensional Toeplitz matrix with typical (i, j)-th

lyeesla—1
element given by v(I1,...,l4g—1,i—75), 4, = —pL,, - .-, PU,- Next, for l; = —pr,,...,pu,,
1 = 2,...,d — 1 define i ld_l(p) to be the block Toeplitz with Toeplitz blocks

l27--'7
matrix of (nested) dimension (py, + 1) and (i, j)-th block given by \ilgl_)j’l%m,ld_l(p),

i,j = 0,...,py,. Proceeding in this manner, for lg_1 = —pr, ,,...,pv, , We define
\ill(jjll)(p) to be the nested block-Toeplitz matrix of (block) dimension (pg_o + 1) X
(pg—2 + 1) and (i,7)-th block given by \ilgiﬁi_l(p), 0, = —PLy 9r---1PU, 5. SO We
have
< (d—2) < (d—2) < (d-2)
\?(()(}{ldé)l () \Ilv_(;’ld{)l () e vq{d_pz‘i)‘z’ld‘l ()
\If(d_l)( ) = lIll,ldq (p) \IJO,ldﬂ (p) T \P_pd—2+17ld71 (p)
Iy, \P)= . . .
x (d—2) * (d—2) x (d—2)
\ijd—Zvld—l (p) \I]pd—Z_lvld—l ) - lIlOald—l (p)

Finally, define ¥(9) (p) to be the block-Toeplitz matrix of (block) dimension (pg_; + 1) x

(pa—1 + 1) and (i, j)-th block given by \ifgi;l)(p), i,j = —DLy_4+---,PU,_,- S0 in this

case we obtain the general form of the covariance matrix as

@éd—1§<p> @?;13@» ...... q(,w;%nl(p)

=~ (d—1 = (d—1 = (d—1

B (p) = U (p) Yy | () ... Cpaia1(P)
WD) v ) T (p)

Now denote by ¥(4(p) the matrix formed by deleting those rows and columns of
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(@ (p) corresponding to the elements deleted from (9 (p) above. Then the dimension
of W (p) is h(p) x H(p).

4.4 Counting covariances in stationary and unilateral lattice autore-
gressive models

Autoregressive models on d-dimensional lattices can generate covariance matrices of
the form ¥(4(p) which differ from those in the time series case in the number of
unique covariances amongst their elements. Consider a stationary time series z; with

an AR(k) representation

k
=) a4 + e (4.4.1)
j=1
Then we have
7 (0) 7 (1) v (k —
oW (k) = v (1) 7 (0) v (k —2)
yk—=1) v(k—-2) ... ~(0)

which is a Toeplitz matrix with k£ unique autocovariances, which is also the dimension
of the matrix. On the other hand, consider a 2-dimensional lattice process x; with an
AR(0,1;1,1) representation. In this case

7(0,0) v(=1,0) ~(=1,2) ~(-1,1)
7(0,0)  ~(0,2)  ~(0,1)
7(0,0)  ~(0,-1)

7(0,0)

v (0,1;1,1) =

which is a 4 x 4 matrix with 6 unique covariances. While the above may suggest
that the number of unique covariances in such matrices is H;-izl (p; + 1), this is in fact
incorrect as the following example shows. A 2-dimensional lattice process x; with an
AR(0,2;1,1) representation has ¥(2)(0,1;2,1) given by

7(0,0) v (=1,0) 7(=2,0) ~v(-1,2) ~v(-2,2) ~(-1,1) ~(-2,1)
7(0,0) ~v(=1,0) ~(0,2) ~v(=1,2) ~(0,1) ~(=1,1)
7(0,0)  ~v(1,2)  ~v(0,2) ~(L,1) (0,1

7(0,0)  ~v(=1,0) ~v(0,-1) ~v(=1,-1) |,
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which is a 7 x 7 matrix with 11 unique covariances, and the latter obviously does not
equal (p1 + 1) X (p2 + 1) = 9. This indicates the need for a formula which enables us
to calculate the number of unique covariances for a lattice autoregressive model. We

will provide an upper bound for the number of unique covariances in VG (p).

Proposition 4.1. Suppose that {z;t € £} is a stationary random field with the uni-

lateral representation (4.3.3). Then the number of unique covariances in W@ (p) does

not exceed
d—1 d d
Cp)=1+> 271> I w2 [ s (4.4.2)
=1 #(=0) . _ 1 k=1
l
= 0y
where Z sums over all the possible ways in which the vector (p1,pa,. .. ,pd)/ can
#(1=0)
d
have | entries equal to 0 and the product H multiplies over k such that the | zero
k=1
o Ofi
entries of (p1,pa,...,pa) are excluded.

The proof follows by a counting argument. Also, it is clear from the formulae
(4.3.4) and (4.4.2) that

h(p) < €(p), (4.4.3)

for all d.
We now illustrate the formula with examples. For d = 1 with p; = k (an AR(k)

specification) we have

70 @) .. (k)
v(k) v(k=2) ... ~(0)

and the formula (4.4.2) delivers a bound that holds with equality.

For d = 2 the formula indicates a maximum of
1+2°(py +p2) +2'p1p2 = 1+ p1 + p2 + 2p1p2 (4.4.4)

unique covariances, delivering bounds of 8 and 13 for the AR(0, 1;1, 1) and AR(0,2;1,1)

models respectively, while for d = 3 there are at most

14+ 2% (p1 + p2 + p3) + 2" (p1p2 + p1ps + paps) + 2%p1paps (4.4.5)
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unique covariances. If equal truncation lengths are chosen in each dimension, so that
pu, = pr, = p foreach ¢ =1,...,d, we have p; = p and p; = 2p for i« = 2,...,d. Then
the formulae (4.4.4) and (4.4.5) become

1+2°x3p+22p? =1+ 3p+ 4p? (4.4.6)

and
1+2% x 5p4 2! x 10p? + 22 x 4p3 = 1 + 5p + 20p* + 16p3 (4.4.7)

respectively.
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4.A Proof of Lemma 4.1

Proof. First note that

Sun= Y ’ YooY e

t(|M|,N) stezd s1ezZ4

which may be rewritten as

Sun = Z Z isll/w 1/“’ Z ’ (£St/77151)

stezd  s1eZd t(|M|,N)

whence from Hoélder’s inequality

w—1 w

1Sun|” < | D ms Somat > Y, Z

seZd stezd s2ez s1eZ4 t(|M|,N)

is bounded by

Similarly ’Zszezd e quezd Zt(lMl,N)H Est

w—1 w

PIEY D SN-SD DD DD

seZd s2ezd s3€zZ4  s9€Z4 t(|M|,N)

After ¢ applications of Holder’s inequality and using (4.2.2) we obtain

w

Sunl“<c S L il S Tl (4.A.1)

slezd  siezd t(|M],N)

Also, from von Bahr and Esseen (1965) and (4.2.1)

c 37 el

t(|M[,N) t(|M],N)

"
Cny Y ap

t(|M],N)

&
(]
@:
IN

IN

Taking expectations of (4.A.1) and applying the above and (4.2.2) we conclude

ElSun" < C Y ...> ns Z

slezd s1€Z4 t(|M|,N)
<oy’

t(|M|,N)
= Cbyun,
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establishing the lemma. O
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5 Consistent autoregressive spec-
tral density estimation for sta-

tionary lattice processes

5.1 Introduction

This chapter extends the consistency result of Berk (1974) to spatial processes on a
lattice. The approach involves fitting an autoregression with the autoregressive order
permitted to diverge with sample size. A key ingredient of the proof involves the

property that, for a stationary time series z; with an AR(k) representation

k
T = Zajxt_j + €, (5.1.1)
j=1

the covariance matrix is Toeplitz. This property allows autoregressive order k to grow
with sample size N while satisfying k* = o(N). Failure to utilise the Toeplitz property
will entail a requirement of k* = o(IV).

Because the Toeplitz property is so vital to obtain the sharpest possible bounds,
the analysis in Chapter 4 plays a crucial role in this chapter. The nested-block Toeplitz
structure of the covariance matrix derived therein allows us to derive bounds analogous
to the time series case, albeit with one key difference.

In Chapter 1, we discussed the literature on autoregressive spectral density esti-
mation for time series and lattice processes. Some advantages of the autoregressive
approach were highlighted in Parzen (1969), pertaining to cross-spectrum estimation
multiple time series. These advantages are also relevant here and we enumerate them

below.

1. We avoid a debate about the choice of window for smoothed periodogram esti-

mates. How

2. The truncation point can be chosen on the basis that the time series passes a

goodness of fit test.

3. If the time series obeys a finite autoregressive scheme (truncation point chosen as
above) the the autoregressive estimate has a much smaller bias than the smoothed

periodogram estimate.

4. Autoregressive estimates are easily updated for additional observations.

A criticism of the first point is that the burden of choosing the autoregressive order

lies on the the practitioner, and this may not be too different from choosing a window.
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It has been noted that that autoregressive spectral estimation is also better at esti-
mating peaked spectra, as compared to weighted /windowed periodogram estimation,
see e.g. Ensor and Newton (1988). For lattice processes another advantage presents it-
self, connected with the edge-effect. This effect indicates a bias in covariance estimates
that matters when d = 2 and worsens with increasing d. While this effect is negligible
when d = 1, this is not the case when d > 1. Although we discuss this in detail in
Section 5.3, we state some key points here. Guyon (1982) suggested an incorrectly
centred version of the covariance estimates which eliminates the bias (asymptotically),
but his device was criticised by Dahlhaus and Kiinsch (1987) as it could give rise to
possible negative spectral density estimates when using kernel based spectral density
estimation. The latter suggested tapering the covariance estimates, but introduced
ambiguity arising from the choice of an appropriate taper. Robinson and Vidal Sanz
(2006) suggest another approach, but again there is an element of ambiguity due to
the practitioner having to make a choice of a function.

On the other hand, autoregressive spectral estimation delivers a guaranteed non-
negative estimate even when using the device of Guyon (1982) to correct for the edge-
effect. This eliminates the need to choose a taper, but the practitioner still has to
choose the autoregressive lag-order. This can be achieved by generalisations of various
time series information criteria, see e.g. Tjgstheim (1981) for a generalisation of the
Final Prediction Error (FPE) criterion of Akaike (1970) and the Bayesian Information
Criterion (BIC) of Schwarz (1978).

As was observed first by Whittle (1954), estimation of the parameters of multilat-
eral autoregressive processes by least squares leads to inconsistency. This is due to the
presence in the likelihood function of a Jacobean term which depends on the parameters
to be estimated and therefore may not be ignored. A representation on a ‘half-plane’
will allow us to use least squares estimation. From Helson and Lowdenslager (1958,
1961) we know that a stationary process x; has a moving average representation on a
half-plane as long as the log of the spectral density is integrable (i.e. the process is
purely non-deterministic in the linear prediction sense). Under conditions that allow us
to invert this moving average representation to obtain an autoregressive representation
on a half-space, we may truncate the order of the autoregression in each dimension and
investigate how fast the parameter space may increase relative to sample size while
still yielding consistent estimates for the autoregressive parameters. These consistent
estimates can then be used to construct a consistent estimate of the spectral density.

Section 5.2 provides the basic setup and assumptions of the problem. Section
5.3 provides a sequence of lemmas related to the covariances and covariance estimates
used in this chapter, and proposes an estimate for the autoregression coefficients. Since
we introduce covariance estimates in this section it is also natural to include a small

discussion of the edge effect. Section 5.4 contains theorems recording conditions for
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consistency of autoregression coefficient estimates, and introduces the proposed spec-

tral density estimate and provides conditions under which it is uniformly consistent.

5.2 Truncated approximation of unilateral autoregressive processes

Let ¢ be a multiple index (t1,...,tq) with ¢t; € Z where Z is the set of integers.
Consider a stationary zero-mean random field {:ct it e Zd} with spectral density f(\),
A€ T4 1T = (—m,7n]. Suppose that the z; are observed on the rectangular lattice
L={t:—ng, <t;<ny,i=1, ...,d}, ny,,nr, >0,i=1,...,d. Defining n; = nr, +
ny, +1, the total number of observations are Hle n;, which we denote N. Also denote
n=(ny,ng,...,ng).

As in Chapter 4 we define the half-space used in our representation as ST9 consisting
of those t € Z% satisfying t; > 0; t1 = 0,80 > 0; t] =to = 0,83 > 0; ---; t; = -+ =
tg—1 =0,tg > 0. We will also write O for the d-dimensional zero vector.

Suppose that the process {z; : t € £} satisfies

ze= Y beers, > |bs] <00, bo#0 (5.2.1)

s€ES7T U0 sESTT U0

with ¢; a spatial white noise. This is a linear process-like condition, and as mentioned
the existence of such a white noise is guaranteed by the log integrability of the spectral

density. The spectral density can be written as

2

= | Y b, e (5.2.2)

SESTT U0

Assuming that |) 52900 bsei’\ls‘ is bounded and bounded away from zero, this process

is invertible and admits the AR representation

Ty = Z dsxi_s + €, Z |ds| < 0. (5.2.3)

SESTY SESTS

We truncate in each dimension and, for pr, > 0,py, > 0, ¢ =1,...,d, concentrate on
an AR (pr,,pu;-..;pL,,pu,). BEach pr,,pu,, i =1,...,d is treated as a function of N
and our asymptotic theory consists of finding functions pr, = pr,(N), pu, = pu,(N),
i =1,...,d such that we can consistently approximate the infinite representation with
the truncated one. For notational convenience, explicit reference to the dependence of

the orders on N is suppressed as is the dependence of the total parameter space on
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the sample size. Consider the following truncated approximation to (5.2.3)

Ty = Z dszi_s + €, t€Z%, (5.2.4)
s€S[—pr,pv]

where S [—pr, py] was defined in (4.3.2). As noted in Chapter 4, in view of the half-
space representation we can a priori set, say, pr, = 0. We approximate the true model
(5.2.3) by the truncated model (5.2.4).
Denote p; = pr, + pu,, @ = 1,...,d, with p; = py, since pr, = 0 by our definition
of half-plane, and also write p = (pr,,...,pPL,,PUL,---,PU,)- Again, let h(p) denote
the total number of AR parameters to be estimated. We should mention that the
practitioner may prefer to choose only one truncation length for each dimension. In
this case pr, = py, = p, ¢ = 1,...,d, and the formula (4.3.4) indicates that h(p) =
p(1+(d—1)2p+1)).

For z = (21,. .., zq) with complex-valued elements and s = (sq, ..., sq) with integer-

d 2% Define the multidimensional

valued elements, introduce the notation z° = szl ;

polynomials

B(z) = Z bsz®

sES’ﬁUO
D(z) = 1- ) d"
sESTS

These are called polynomials even though they may involve negative powers. Strictly
speaking, they are rational functions unless we have a quarter-plane representation
for x; (see Rosenblatt (1985), p. 228), which ensures that all the entries of s are
non-negative. However, we follow the precedent of Robinson and Vidal Sanz (2006) in

using this terminology. We now introduce the following assumptions

Assumption 20. {z; : t € £} is a weakly stationary random field with spectral density
f(X) satistying

/ log f(A\)dA > —o0.
I

Assumption 20 guarantees that the representation (5.2.1) holds, see e.g. Helson and
Lowdenslager (1958), Korezlioglu and Loubaton (1986). This is simply a generalisation
of the result that every stationary time series that is purely non-deterministic in the
linear prediction sense (captured by the log of the spectral density being integrable)
has an infinite moving-average representation. We now proceed on the basis of this

representation.
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Assumption 21. The ¢ are i.i.d. with mean zero and variance o2 and, for some v €
(1,2], Elel* < C forall t € £.

Again martingale assumptions can replace the i.i.d. imposition, but we choose
to avoid these. Expressing the moment condition in terms of the number v delivers
conditions restricting the rate of growth of the parameter space relative to sample size

that become more stringent with v — 1.

Assumption 22. 2565103_ |ds| < 0.
Assumption 23. D(z) # 0 for |z| =1,i=1,...,d.

Assumption 24. B(z) is bounded away from zero for |z;| =1,i=1,...,d.

By Wiener’s Lemma (see e.g. Rudin (1973) p. 266), Assumptions 22 and 23 imply
that ) . %00 |bs| < co. Together with Assumption 24 this implies that the spectral
density f(\) is bounded and bounded away from 0 i.e. there exist real numbers m, M

satisfying 0 < m < M < oo, such that
m < f(\) < M. (5.2.5)

This indicates that these assumptions in fact imply a regularity condition on the spec-
tral density. Wiener’s Lemma is a generalisation to d dimensions of the original Lemma
Ile given on Wiener (1932), p. 14 and used for the proof of the celebrated Tauberian
Theorem of Wiener. A discussion of the Tauberian theorem in a general setting may
be found in Rudin (1962), Ch. 7.

We can also regard the ds as coefficients in the Laurent series of the holomorphic
function D(z) about 0. Minakshisundaram and Szész (1947) show that Assumption
22 may be replaced by a Holder condition on D(z) of order 7 with 7 > d/2. Sufficient
conditions on the modulus of continuity are available in Konovalov (1979) and Golubov

(1985) which imply the condition given in Minakshisundaram and Szdsz (1947).

5.3 Preliminary results on covariances and covariance estimates

We state in this section some lemmas that will be needed for the proofs in the next
section. Many of these are generalisations to spatial processes of the lemmas in the
section titled ‘Six Lemmas’ in Robinson (1979), except that they are proved here in

an autoregression context as opposed to a regression context as in the original paper.
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Lemma 5.1. Suppose ZseSﬁuo |bs| < co. Then
> (k)] < oo
kezd

The following lemma is simply a particular case of Lemma 4.1.

Lemma 5.2. For such n; and k; that satisfy n; > |k;| fori=1,...,d, let

Skn = d . ’k‘ | Z Hut’ Up = Z Z grs,tu tek, (531)

Hz 1 (ni t(|k|,n) reZd seZd

with the &5 satisfying Assumption 18. For some w' € (1,2], suppose there exist
My N2r, T E€ 74, such that

E&s” < Inuemzsl™ Y Injel <00, j=1,2, (5.3.2)
reZd

for all r,s € Z% and t € £. Then

’

1—w
E|Ska|" < (H — ki) ) . (5.3.3)

=1

U

Lemma 5.3. Suppose that A = [a;j]i j=1,..n 15 an nxn matriz and A= [@ilij=1, .. .n+k
is an (n + k) x (n + k) matriz formed by adding k additional rows and columns to A.
Then

Al < |[4]| - (5.3.4)

In view of the stationarity of x;, define the autocovariances as
v(k) = Exixypp, k € 79,

and introduce the covariance estimates

1 "
y(k) = Ttttk
" |1<:|>kZ "

where it is assumed that n; > |k;| > 0 for i = 1,...,d and the sum Z;’(|k|7n) is defined
analogously to Section 4.2 with respect to n and k.
The estimates 4(k) incorporate the device for edge-effect correction suggested by

Guyon (1982). Consider instead the estimates

14
~ E Tt Lttk-

N
t(|k[,n)
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Then for fixed k, as the n; — oo, the bias of (k) for v(k) is of order 3%, L. The

i=1 T,
inequality between arithmetic and geometric means indicates that

d
1
E — >dn~
— Ny
=1

-

with equality implying that the n; all increase at the same, n%, rate. This inequality
implies that the bias of 4(k) is of order no less than n~a. It is clear that this worsens

with increasing d, but for d = 1 gives the usual ‘parametric’ rate of bias. Guyon (1982)

N -
{Hle (e — ) } i

to rectify this problem, and the last displayed expression is exactly what we define as
(k).

Denote by (@ (p) (@ (p)) the h(p) x 1 vector (h(p) x h(p) matrix) constructed in
exactly the same way as 1@ (p) (¥(@(p)) but using 4(k) in place of y(k). Also denote

suggested the use of

by d(p) the h(p) x 1 vector formed in exactly the same way as 1/(?)(p) but using dj, in
instead of v(k). By construction the elements of d(p) are ds, s € S [—pr, pr]. We then
identify

d(p) = 0D (p) "D (p), (5.3.5)

assuming that (5.2.3) is the true model.

For n; and p; satisfying n; > p;, define the least squares estimate of d(p) by the
h(p) x 1 vector
d(p) = T (p) 1D (p). (5.3.6)

Also write

and
3(p) = ' (p) — ' (p).

The lemmas that follow provide orders of magnitude related to moments of the

difference between covariance estimates and true covariances.

Lemma 5.4. Under Assumptions 20-23,

d 1-v
Ey(k) —~(k)|* < C (H (ni — “%‘D) : (5.3.7)
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Lemma 5.5. Under Assumptions 20-23,

d 1-v
Eé@)]” <Ch(p (H ) ,

where §(p) is defined as in (4.3.4).

Lemma 5.6. Under Assumptions 20-23,

E&

E|AQ)|° < C e(p)’
'L:l

where €(p) is defined as in Proposition 4.1.

We are now in a position to state a lemma and a corollary that will, in view of

(5.3.5), allow us to identify the true autoregressive parameter d(p).

Lemma 5.7. Let p be any eigenvalue of U(d) (p). Then, under Assumptions 20 and
22-24,
(2m)4m < p < (2m)IM.

We note that this lemma is a generalization of the statement on Grenander and
Szego (1984), p. 64.

Corollary 5.8. Under Assumptions 20 and 22-24,

ot <

5.4 Uniform consistency of fp()\)

The first theorem in this section establishes conditions under which J(p) is a consistent

estimate of the true autoregressive parameters d(p).

Theorem 5.1. Let Assumptions 20-24 hold and also assume that €(p) is chosen as a
function of N such that

1 ¢
(i) —+#_>1—>0asN—>oo,
¢p) N
and
(ii) Z |di| — 0as N — oo.

teSTI\S[—prL.pUl

Then

d(p) — d(p)H 5 0.
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Condition (ii) says that the dependence from ‘distant’ lags must decline sufficiently
fast. It is not restrictive in view of Assumption 22. In fact, from the Cauchy Conver-
gence Criterion of real analysis a series ) | a,, of positive terms (with scalar subscript
n) converges if and only if

n
r}liLHm Z aj — 0.
j=r
This is just the version of condition (ii) for d = 1. For multiple-series (i.e. series
indexed by vectors), such results do not seem to be available but it seems that an
extension may be rather natural.

It is important to note that this extension to d > 1 differs from the case d = 1 in
one important sense. In the case d = 1 condition (i) applies to the dimension of the
parameter space, because this dimension equals the number of unique covariances in
(@ (p). Now this is clearly not the case due to (4.4.3).

We now prove the consistency of the estimate of the error variance based on the
least squares estimate considered above, under the same conditions as in Theorem 5.1.

Define the error variance estimate as

2

&2(19) R L Z ! Tr — Z Czs(p)ﬁUt—s

[Timq (ni — ’ki|)t(|k\,n) s€S[—pr.pu]

Theorem 5.2. Let Assumptions 20-24 hold and also assume that €(p) is chosen as a
function of N such that

1 ¢
(i) —+ (£>1—>OasN—>oo,
¢p) N
and
(ii) Z |di| — 0as N — oc.

teSP\S[—prL,pul
Then

*(p) > o

We now introduce spectral density estimates. First, for A € II, the spectral density

of z; under (5.2.4) is given by
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and we estimate this using

f) = Al
(27T)d 1—- ZsES[pr,pU] ds(p)eZS/A

Theorem 5.3. Let Assumptions 20-24 hold and also assume that €(p) and bh(p) are

chosen as functions of N such that

and

(ii) f)(p)% Z |di| — 0as N — oco.
teSTI\S[=pr.pu]

Then
foX) = f(V)| 0.

sup
Aell

The conditions we imposed for this theorem were stronger than those for earlier
results in two ways. First, the condition restricting the rate of growth of the parameter
space relative to sample size is stronger than the one imposed for Theorems 5.1 and
5.2. For example, if v = 2 then condition (i) in those theorems required €(p)/N/2 — 0
whereas condition (i) in Theorem 5.3 requires €(p)h(p)'/2/N*/? — 0. Note that for
d = 1 the latter reduces to the condition established by Berk (1974), which is, in
fact, a particular case of the condition in Robinson (1979). The second aspect of
difference is the requirement in condition (ii) that the dependence on ‘distant’ lags
decline sufficiently fast to overcome norming by h(p)%.

An aspect in which Theorem 5.3 differs from the consistency result in Berk (1974)
is that it is a uniform consistency result. Uniform consistency is possible in the time
series case under the same conditions as Theorem 1 of Berk (1974), although this is not
stated in that paper. Bhansali (1980) records the uniform consistency under identical

conditions in his Theorem 3.1.
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5.A Proofs of theorems

Proof of Theorem 5.1: We have

~ ~

dp) —dp) = ¥Dp)7 ($ D) - D (p)d(p) )

= ()7 (8(p) — A@)p) + @ (p) — VD (p)d(p))

so that the norm of the LHS above is bounded by

[#@@ ] (6@ + 1@ @)+ [P @@de) - o Dw)]|) . Ga)
Now
e e M L
< (¥ 2w 18w+ 1) [[e@m) |,

v 97| (1= @@ 1ami) < v D@

Using Markov’s inequality and Lemma 5.6 it follows that ||A(p)| - 0 if

i=1 i=1

. L d ‘ 1—v

which is true by (i). Thus from Corollary 5.8

‘ii(d)(p)_lH < lim dH\IJ(d)(p)_lH < 0.

Nprlvali’oovz 1,...d N7pLi7pUl,—>OO,’L'=].,...7

Now we deal with the factor in parentheses in (5.A.1). By Lemma 5.5, Markov’s in-
. . P
equality and (i), ||0(p)| — O.

For the second term, we have ||A(p)|| <= 0 and also

2

ld(p)l| = Yoo < > < D] ds] < oo,

s€S[—pr,pu] s€S[—pr,pu] SESTY

by Lemma 5.1. Thus the second term converges to zero in probability. Finally, for the
third term note that by (5.2.1) implies that

Eﬁtﬂl‘t_k = Z bSEEth_k_s = 0, ke Si’i, te »8,

s€S577U0
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because k + s = 0 is not possible due to our definition of half-plane (4.3.1).

indicates that

y(k) = Exyzip = Y dpy(t—k), k €S53,
tess

so [|U@ (p)d(p) — v @ (p)|” is

> Yo dalt—s)—7(s)

s€S[-pr,pu] \t€S[-prL.pUl

- ¥ Yo dalt—s) = D dinlt—s)

seS[—pr,pu] \t€S[-prL,pU] teSL

2
= Z Z diy(t — s)

s€S[—pr,pu] \t€ST\S[—prL.pU]

= ) Y. 4 > Alt—s)

s€S[—pr,pu] \t€ST\S[-prL.pU] teSTI\S[—prL.pUl
N S DR > @
s€S[—pr,pul t€STI\S[—pL.pU] teSTI\S[—prL.pUl
< C YA > d
seZd te S \S[—prL.pU]

= C > a2,

teSPL\S[=prL.pU]

using Lemma 5.1.
Thus

138

This

|[vOwdm) - Ow| <o | Y @) s Y

teSTS\S[—pr.pul teSTS\S[—pr.pu]

which converges to zero as N — oo due to (ii), completing the proof. Note that we

have also shown that

-0 (2).

by Markov’s inequality.

(5.A.2)

O]
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Proof of Theorem 5.2: Write

1 n
7(0) = zy.
II (ni — m-wm%ﬂ

Using standard algebraic manipulation and the definition of least squares we may write

62(p) — o2 as

2

! S e Y dpa ] -0

d
Hi:l (ni — ’ki‘)t(\k\,n) s€S[—prL.,pu]

— (dp) — ) M)~ A/ D) + 3 dir(e).

tesps

Since d(p)'9D (p) = > seS[—prpu] s7(8), we can write

Pp) —0* = (3(0) ~(0) ~ (dp) — d(p)) ¥V (p) — d(p)' (p)

() —dw)) A+ X ).

t€SS\S[—pL,pul

The first term on the RHS converges to 0 in probability by Lemma 5.4 and Markov’s
inequality. The second —— 0 by Theorem 5.1 and Lemma 5.1. The third term —— 0
by Lemma 5.5, (i) and Assumption 22. The fourth term 250 by Theorem 5.1, Lemma
5.5 and (i). For the fifth term, convergence to zero follows by (ii) and Lemma 5.1. [

Proof of Theorem 5.3: Write

D\ =1- > dy(p)e?,

seS[—pr,pv]

and

Dpy(\)=1— Z dy(p)e*™.

seS[—pL,pv]
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Then we have

foN) = f(N) = - ’2 . (5.A.3)

0.2
Because D,(\) = IOy by (5.2.5) we have
¢ < Dy(\) <C, (5.A.4)
uniformly in A € II.
. 2
On the other hand D,(\) = @0y % that
sup DP(A)’ < sup | D,(A) — Dp(A)‘ +sup | Dy(N)] (5.A.5)
Aell Aell Aell
and
. ~ > .
inf |D,(N)| > inf [D,(N)]+ int {~|Dy(3) — D, (V)] }
= inf |[D,())] —Sup‘Dp \) —Dp()\)‘. (5.A.6)
A€l Aell

We also have, using the Cauchy-Schwarz inequality,

DN =D < Y | —df [+ Y

s€S[—pL.pu] s€STI\S[—pL,pU]

%
( 3 (ds(p)ds)Q) ( 3 eiS’A)Z)
s€S[—prL,pul seS[—pr,pu]
+ Z ‘ds|

5575 \S[—pL.pu]

d<p>d<p>(( > 1) D DA
ses

N

IN

Nl=

<
[~pr.pU] s€S7S\S[—pL.pU]
= b [dw) —dw)|+ > 1. (5.A.7)

s€SP9\S[—pL.pU]

Utilizing the stronger conditions (¢) and (ii), we conclude from (5.A.2) that

i =) - o, (S22 ).

b(p)2
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implying that (5.A.7) is negligible. We have then shown that

sup |D,(\) — Dp(\)| 2= 0. (5.A.8)
A€ll

Using (5.A.4), (5.A.5) and (5.A.6) together with (5.A.8) implies that
c<D,(\) <C, (5.A.9)

uniformly in A € II, with probability approaching 1 as n — oco.
By the identity a? — b* = (a — b)? + 2b(a — b), we obtain

“f?p(A))z—Dp(A)!? < (ﬁp()\)—Dp()\))2+2]Dp(/\)]‘f)p()\)—Dp()\) . (5.A.10)

where the RHS converges to 0 in probability uniformly in A by (5.A.8) and (5.A.9) so
that

~ 2
sup ‘Dp()\)’ — D,V 2 0. (5.A.11)
Aell
Because (5.A.3) implies that
~ 2
o [DyN)| = Dy | + DN 2(p) — o

Fo0) = F)| < :
27 DN [ Dy(3)

the theorem now follows by (5.A.4), (5.A.9), (5.A.11) and Theorem 5.2. O

5.B Proofs of lemmas

Proof of Lemma 5.1:
YD)l < 2 > k)
kezd keSpguo

= 2 Z ’E$t$t+k’

keSS U0

< 207 > bl DD fberkl < o0

SESPIUO keSS U0
[

Proof of Lemma 5.2: The result follows from Lemma 4.1 taking N =n, M =k, ¢ =2
and a; = 1 for all ¢t € £. O

Proof of Lemma 5.3: We may assume without loss of generality that the rows and

columns have been added at the bottom and end of A respectively. Because ||Al|; =
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max;—1,.n 2?21 la;;| and HAHR =MaX;—1__ n+k Z?if |a;;|, we have

n

1Alg = D layl,

Jj=1
n+k

il = S
j=1

for some ! =1,...,nand m = 1,...,n+ k. We proceed by contradiction. Suppose
that
n n+k
> al > > famg!
j=1 j=1

adding Z?is +11@5| to both sides of which yields

n n+k n n+k
Slasl+ 3 lagl> Y lomsl+ 3 . 55.1)
j=1 j=n+1 j=1 j=n+1
The RHS of the above is greater than or equal to Z;”if |Gmj|. This indicates that
n n+k _
> lagl+ Y layl > HAHR’
j=1 j=n+1

which is a contradiction since HAH is by definition the maximum absolute row sum
R

of A. O

Proof of 5.4: For (k) — v(k) to be of the form of Si, in Lemma 5.2, we define
grs,t = bpbr g (624 _02)7 s =1 —k; = bbse ret_g_s,8 # r — k. Then the Srs,t
are clearly zero-mean. They are independent because the ¢; are. Therefore, they sat-

isfy Assumption 18.

By the ¢,-inequality, Cauchy-Schwarz inequality and Assumption 21,
E ’frs,t|v < 2 ’brbrfkr) (E ’Q—r’QU + 0,21)) <C ’brbrfk’v ,s=1—F,
1
Blgrodl” < [obsl” (Bles P Blers/)* <C orbyl” s £ 7k,

verifying that (5.3.2) holds since the b, are absolutely summable. The result follows

immediately from Lemma 5.2. O
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Proof of Lemma 5.5:

Ells@l" < E Y ) =)l

s€S[-pL,pv]

< bt Y ERs) =)

s€S[—pr.pv]

d 1—v
< Chpt D ( (ni—lsm)
seS[—pr,py] \i=1

1—v

d
< Chp) (H (n; —pn) ,
=1

using Holder’s inequality and Lemma 5.4. O

Proof of Lemma 5.6: Write

Ap) = #9 — 50,
where ¥4 is constructed in the obvious way using estimated covariances. First, since
A(p) is symmetric, ||A(p)|| is its greatest eigenvalue. Using Perron’s theorem (Grad-

shteyn and Ryzhik (1994), p. 1155, Eq. 15.816), we have

1AM =71(Ap)

IA

1AM
< [|A@)| g (5B.2)

by Lemma 5.3. We will now bound the absolute row-sums of A(p) uniformly over all

rows. Consider a typical row of A(p). This consists of

Y —lde—loy. . la—jJa) —v (=l la—lay. .. la— Ja) 5 Ja=0,...,pq,

for some l1,...,14, ; = 0,...,p; and all Iy,...,lz_1, §; = 0,...,p;. It follows that a

typical absolute row sum is

_  bd
Z Z "3/ (ll _l_17l2 _Z_27"-7ld_jd) _7(l1 _l_1>l2 _l_2,...,ld —jd)‘ (5.B.3)
d—1 j4=0

with id_l running over l,...,l4_1, ; = 0,...,p;. Since the summands are absolute
values of the elements of a row of a Toeplitz matrix (by construction), (5.B.3) is
bounded by

_ Pa
22 Z {'?(ll_l_l,b—l_g,...,k‘d) _’Y(ll—l_l,lz—l_Q,...,k‘d)’

d—1kg=—pq
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which in turn is bounded by

2 Y k) -,

unique covariances
there being €(p) terms in the sum by Proposition 4.1. This bound is clearly uniform
over all possible rows. So using Hoélder’s inequality and Lemma 5.4

v

E|Ap)|, < 4E > (k) = (k)]

unique covariances

< 8e' Y. ERlk) -k

unique covariances
< cep)'t ) H — k)"

unique covariances 1=1

d
< cep) ] (- :

=1
Then the result follows from the above and (5.B.2). O

Proof of Lemma 5.7: Consider real numbers &, s € S [—pr, pul, Zses[_pbm] 2=1

The eigenvalues of W(®) (p) are determined through the generalized Toeplitz form

Iy (890 = Y erl- R

JkeSl—pr.pul

the sum running over j,k € S [—pr,py] by construction of W(®(p). Since y(j — k) =
S €072 £(A)dA, we have

Ty [\P(d)(p)] — Z /ei(j—k)lkf()\)d)\ E]gk‘
jkeS[—pr.pu] "1
- 3 eI AT A (NN €58,
Jk€S[~prL,pU]
— / Z ZJI/\§] Z @7ik/)\€k f()\)dA
j€S[-pL.pUl keS[—pL.pv]
= / Z ij'*gj Z e A, F(A)dA
Jj€S[=pL,pU] keS[—pr,pu]

2

_ /H S | Fa

Jje€S[—pL,pU]
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2 2
€ m/ &l dA, M/ idA
JES] PL;PU] JGS[ PvaU]
= m/ Yoo & dx, M/ Yoo & dA
j€Sl—pr,pu] j€S[=pr,pu]

= [(2%) m, (27T)dM:| .
0

Proof of Corollary 5.8: 1f H‘If(d) (p)_lH exists, it is the reciprocal of the smallest eigen-
value, say u, of U(@) (p). Using Lemma 5.7 we get

v @) =t < em i <
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