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Abstract

This thesis contains three essays on market microstructure.

Chapter 1 studies how endogenous information acquisition affects financial mar-

kets by modelling potentially informed traders who optimally acquire variable infor-

mation at increasing cost. Prices affect the informed trading by providing incentives

for acquiring information. Endogenous information acquisition explains the stylised

facts that informed trading and transaction volume spike after informational events

and fall over time. My model also tells a cautionary tale for interpreting measures

of informed trading. Three common empirical proxies derived under the exogenous

assumption (spreads, Easley O’Hara’s PIN and blockholder interest) do not agree

with each other in my setup.

Chapter 2 develops a more general framework with endogenous information ac-

quisition which I use to examine the behaviour of an optimal monopolistic market

maker. Unlike a competitive market maker, he sets prices to increase information

revelation which is valuable to him. I characterise market information structure by

whether narrower or wider spreads increase the information revealed by trades. An

optimal monopolistic market maker may behave differently from the standard ex-

ogenous information benchmark. He may set narrower spreads in early periods. On

average, spreads may widen over time. The different results arise from the interaction

of a monopolistic market maker with endogenous information acquisition.

Chapter 3 studies the impact of confidential treatment requests made by institu-

tional investors to the Securities and Exchange Commission (SEC) to delay disclosure

of their holdings. The SEC requires the manager to present a coherent on-going trad-

ing program in his request for confidential treatment. If granted, he is restricted to

trade in a manner consistent with his reported forecast in the subsequent period.

Under the restriction, the manager earns higher expected profits by applying for con-
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fidential treatment only if his probability of success exceeds a threshold. The model

predicts that the price impact of a disclosed trade due to a confidential treatment

request denial is greater than that of a disclosed trade where there is no request.
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Chapter 1

Endogenous Information

Acquisition with Sequential Trade

1.1 Introduction

The theoretical market microstructure literature generally assumes that some subset

of traders in financial markets are exogenously informed: they know the true value

of the asset before arriving in the market. While some authors1 have considered

endogenous information acquisition, the empirical literature on informed trading is

still based on the exogenous assumption. For example, Dennis and Weston (2001)

identify four commonly used measures2 to capture informed trading all of which are

derived from structural models with exogenously informed traders.

However, investors such as mutual funds, hedge funds and investment banks,

clearly rely on costly research to inform their trading decisions. There is also growing

evidence to suggest that traders need to exert effort to learn about the effect of news

1Starting with Grossman and Stiglitz (1980), see Section 1.2 for a more comprehensive review
21) bid-ask spread based on Glosten and Milgrom (1985), Glosten and Harris (1988) and Amihud

and Mendelson (1985); 2) adverse selection component of spread based on Huang and Stoll (1997); 3)
price impact of trade based on Kyle (1985), Foster and Viswanathan (1993) and Hasbrouck (1991);
and 4) probability of informed trading based on Easley et al. (1996).
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on asset values3. To capture this feature, Peng (2005)4 considers traders who allocate

their limited attention between different sources of risk.

I take a more classical approach by modelling endogenously informed traders who

can acquire costly information. My model can explain various stylized features of in-

traday markets which exogenous models cannot. My results also suggest caution when

interpreting empirical measures based on the exogenous information assumption.

Building on the sequential trade framework of Glosten and Milgrom (1985), I

replace exogenously informed traders with ‘potentially informed’ ones. These new

traders choose how much information to acquire as a function of expected speculative

profits from trading, which depend on posted prices. They learn the true value of the

asset with a higher probability if they acquire more information and submit a trade

only if they successfully learn it, doing nothing otherwise. This setup is different

from the approach of Grossman and Stiglitz (1980) who only consider acquiring a

fixed amount of information at a fixed cost.

In this chapter, I study a competitive market maker which corresponds well to

many different financial markets. Under a general specification for information acqui-

sition, I derive conditions for the existence of interior prices. Unlike with exogenous

information, prices and beliefs do not always converge to the true value in the steady

state. If the cost function is discontinuous, potentially informed traders eventually

stop acquiring information. Trades stop revealing information and market partici-

pants then stop updating beliefs, an event I call ‘information stoppage’.

I then study a special case with a quadratic information acquisition cost function

which lets me characterise costs with a single parameter and solve for prices in closed

form. This setup generates three main results5.

3E.g. Hong et al. (2007), Hou and Moskowitz (2005) and Corwin and Coughenour (2008)
4Also Peng and Xiong (2006) and VanNieuwerburgh and Veldkamp (2010)
5Although these results quantitatively depend on the quadratic specification, the qualitative

features would obtain under other cost functions.
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First, my model can capture dynamics for informed trading and transaction vol-

ume which exogenous models cannot. At an intraday level, real markets exhibit higher

volume and more informed trading after an informational event. An event is a shock

which causes market prices to deviate from their true value. After an event, poten-

tially informed traders can make speculative profits if they learn the true value of the

asset. Therefore they acquire more information and trade more. Another stylized fact

is that informed trading and volume fall over time. In my model, as prices converge to

the true value, there are lower speculative profits to incentivise potentially informed

traders. Therefore they acquire less information and trade less. These dynamics are

driven by endogenous information acquisition. Exogenous models assume informed

trading and volume are constant throughout the day.

Empirically, there is also significant variation in informed trading and volume

between different days. In my model, this corresponds to variations in the size of

shocks. Large shocks lead to large price deviations which give potentially informed

traders more incentive to acquire information and trade. In exogenous models, prices

never affect the behaviour of informed traders. To capture the effect, authors intro-

duce ad hoc variations in the arrival rate of informed traders. For example, Easley

and O’Hara (1992) assume event days when volume and informed trading is high,

and non event days when they are low. This yields two regimes but also requires

the strong assumption that the market maker is uncertain about whether an event

has occurred6. My model can explain greater variation without the need for event

uncertainty.

Second, I find deviations in three common proxies for informed trading: bid ask

spreads, Easley et al. (1996)’s PIN and the proportion of hedge fund or block holder

interest. In the competitive framework, prices are set as the expected asset value

6Easley et al. (2008) suggest a GARCH process for the arrival of informed traders. Easley et al.
(2012) scale arrival rate by volume.
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conditional on a trade so spreads reveal the amount of updating after a trade. Easley

et al. (1996)’s PIN is a structural estimator for the probability of an informed trade.

Finally, hedge funds or block holders can be considered informed so their participation

is an indicator of informative trading. With exogenous information arrival, the three

measures always agree. When there are more informed traders, the probability of

an informed trade is high, trades reveal more information and spreads are always

wider. However, the three proxies do not always agree with endogenous information

acquisition.

In my model, spreads and the probability of an informed trade may diverge with

respect to an increase in the proportion of potentially informed traders in the market.

As there are more potentially informed traders, they individually acquire less infor-

mation because there are lower informational rents available from noise traders. At

some point, increasing their proportion actually leads to a fall in aggregate informa-

tion acquisition. My result is also in contrast to Grossman-Stilgitz in which traders

can only acquire a fixed quantity of information. They find that more potentially

informed traders always leas to a higher probability of informed trade.

On the other hand, spreads are monotonically increasing in the proportion of

potentially informed traders as in the standard case. Spreads are determined by the

ratio of informed to noise trades. While informed trades fall, noise trades are also

falling. Thus, spreads can be wide while the probability of an informed trade is low.

Trades can be very informative but occur infrequently.

The three proxies suffer from different deficiencies and should not be used inter-

changeably. Spreads do not capture the frequency of trading which is an important

component of information. The PIN estimator tries to address this but with en-

dogenous information acquisition, it is misspecified. Finally, proxies for potentially

informed traders are dangerous because the probability of an informed trade is not

monotonic in the proportion of the potentially informed.

13



My third main result is that in numerical simulations, prices converge more slowly

to the true value under endogenous information acquisition compared to the exoge-

nous case. It takes longer for information to enter the market because informed

trading falls over time. As expected, the convergence rate is decreasing in the in-

formation acquisition cost and increasing in the proportion of potentially informed

traders.

The rest of this chapter proceeds as follows: In Section 1.2, I present some related

literature. In Section 1.3, I introduce the model with a general cost distribution

and show some comparative statics. In Section 1.4, I develop the model with a

uniform cost distribution, derive comparative statics and numerical dynamic results.

In Section 1.5, I discuss a new structural estimator. In Section 1.6, I conclude. Proofs

are in the Appendix.

1.2 Related Literature

1.2.1 Exogenous Information Acquisition

Amongst the standard exogenous information acquisition literature, my model is most

closely related to Glosten and Milgrom (1985). I share their defining features: se-

quential trade, a unit of asset traded each period,a competitive market maker and

price inelastic noise traders drawn from a continuum of two types of traders. This is

the exogenous information benchmark against which I set my results.

Another basis for comparison is Easley and O’Hara (1992),the theoretical foun-

dation for Easley et al. (1996)’s PIN measure, one of the most widely used empirical

estimators for informed trading. They augment the sequential framework of Glosten-

Milgrom with a continuous time arrival process for traders to yield a mixed model

which can be estimated using maximum likelihood from transactions data. PIN is of
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interest because it is widely used in the empirical literature as a measure for informed

trading. The similarity of their setup to mine means that my results also affect their

measure.

1.2.2 Endogenous Information Acquisition

The benchmark for endogenous information models is Grossman and Stiglitz (1980).

The defining feature of their model is that traders can choose to observe a signal about

the return of the risky asset at a constant cost, either becoming informed or staying

uninformed. In equilibrium, both traders have the same expected utility. When more

traders become informed, the price system becomes more informative and reveals

more information to uninformed traders. My model preserves much of the intuition

from Grossman-Stiglitz within a sequential trade framework. A drawback of their

setup is that traders are homogenous and receive the same signal at a fixed cost.

Verrecchia (1982) considers heterogenous traders who can acquire variable infor-

mation whose quality is increasing in its cost. In this setup, prices perform an extra

role in aggregating heterogenous information. The information acquisition decision

of a trader depends on how much information is revealed through prices in equilib-

rium. My model also features a transmission mechanism from prices to the amount

of information acquired although it operates through ex ante expected profits instead

of information revelation.

Litvinova and Hui (2003) add variable cost and precision to Grossman-Stiglitz.

They find that some of the original results fail to hold with a different form of endoge-

nous information acquisition. Traders exert less effort to acquire information when

more of them do so. Thus, the equilibrium price system is not necessarily more infor-

mative when more traders acquire information. I also find this feature in my model.

Furthermore, they find that more traders may acquire information even if the cost
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of acquiring information increases and equilibria do not always exist. They conclude

that endogenous information acquisition should be taken seriously in the context of

asymmetric information models.

Ko and Huang (2007) focus on overconfident traders who face variable information

acquisition costs in a Grossman (1976) setup. They find that overconfidence generally

improves market efficiency by driving prices closer to true values. While behavioural

agents are their main concern, their results rely crucially on the form of endogenous

information acquisition. In contrast, Garcia et al. (2007) look at overconfidence with

traders who pay fixed costs for information. They reach the opposite conclusion that

overconfidence has no effect on market efficiency and prices. These contrasting find-

ings underline the importance of how we model endogenous information acquisition.

My model is also related to Peng (2005) and Peng and Xiong (2006) in which

traders have capacity constraints on their ability to process information and face

multiple sources of uncertainty. In equilibrium, they endogenously allocate their ca-

pacity to learn about these different sources to minimize wealth uncertainty and make

intertemporal consumption decisions. This mechanism captures a similar intuition to

my model in which rational agents choose the amount of information to acquire at

variable cost.

Other notable contributions include Admati and Pfleiderer (1986, 1987, 1988) and

Veldkamp (2006). In their series of papers, Admati and Pfleiderer introduce a market

for information which is parallel to the standard asset market. They study how prices

are set and how traders behave in both marekts. Veldkamp (2006) develops a compet-

itive information production sector that supplies information at an endogenous price.

She models information as a non rivalrous good with a novel production technology

which increases its output and lowers price following an increase in demand. This

setup generates media frenzies and price herding.
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1.3 General Information Acquisition Cost Func-

tion

1.3.1 Model Description

This section takes the discrete time Glosten-Milgrom trading framework and replaces

exogenously informed traders with potentially informed ones who face costly infor-

mation acquisition. They optimally choose how much information to acquire as a

function of their expected profits which depend on prior beliefs and posted ask and

bid prices.

There is one traded asset with value v̂ which takes two possible terminal values

V and 0 where V > 0. A unit of the asset is traded every period. At time t the

market maker and potentially informed traders have the same prior belief that v̂ = 0

with probability µt, and v̂ = V with probability 1 − µt. The markets contains three

agents: the market maker, the potentially informed trader, and the noise trader. The

market maker is risk neutral and competitive. He posts ask and bid prices {at, bt}

from P ⊂ R+ which contains the possible values of v̂.

A trader is drawn to trade each period from a continuum of traders. A proportion

λ of them is potentially informed while the remaining proportion 1 − λ are noise

traders. Noise traders do not maximise profits and trade for exogenous reasons.

They submit trades qt randomly, either a buy, qt = +1, or a sell, qt = −1, with equal

probability 1
2
.

Potentially informed traders are constrained in their actions to be either buyers

or sellers with equal probability 1
2
. Buyers can only choose to submit a buy trade or

no trade, but not a sell, and similarly sellers can only choose to submit a sell trade or

no trade, but not a buy. This assumption is nonstandard but does not qualitatively

affect any of my results. I also relax it in Chapter 2. I use it here for analytical
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simplicity because it yields closed form solutions for ask and bid prices.

Like the standard informed trader, potentially informed traders trade for specu-

lative profits. However they learn the true value of the asset v̂ with some probability

given by the information arrival functions, Xa,t(at) for buyers and Xb,t(bt) for sellers,

defined over prices at ≥ bt and beliefs µt ∈ [0, 1] at time t. The functions are separate

for buyers and sellers because buyers only care about the ask price at, and sellers

the bid price bt. When potentially informed traders can do both there is only one

information arrival function and it depends on both prices.

Xa,t and Xb,t capture how prices affect the amount of information potentially in-

formed traders acquire. I restrict them to be consistent with this intuition. Xa,t is

weakly decreasing in the ask price at because expected profits decrease in at so po-

tentially informed traders acquire less information. Similarly, Xb is weakly increasing

in the bid price bt. This specification nests the standard Glosten-Milgrom version of

exogenously informed traders. My model is equivalent to theirs when Xa,t and Xb,t

are unity for all prices and beliefs.

Section 1.4 develops a microfoundation for the information arrival functions Xa,t

and Xb,t. In that setup, potentially informed traders see posted prices, at and bt, and

choose how much information to acquire at increasing quadratic cost. Xa,t and Xb,t

describe the solutions for the optimal amount of information that potentially informed

traders acquire. They are also consistent with other interpretations. For example,

potentially informed traders may have private reservation values or be exogenously

price elastic. In this chapter, I maintain the information acquisition story although

my results in this section only require the weak restrictions described above.

The introduction of potentially informed traders creates a transmission channel

from prices to the amount of information traders acquire which drives most of my

later results. It is intuitively similar to the information acquisition equilibrating

mechanism in Grossman-Stiglitz. In their model, a proportion of traders chooses to
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become informed while the rest remain uninformed depending on the fixed information

acquisition cost. In mine, the proportion of uninformed traders is fixed but the

increasing information acquisition cost determines how much information potentially

informed traders acquire. My specification incorporates this information acquisition

decision into Glosten-Milgrom in a tractable way which can be used to investigate

multiperiod dynamics.

The timeline for each period t is as follows: 1) the market maker posts ask and bid

prices {at, bt} based on prior beliefs µt; 2) a trader is drawn from the continuum of

traders with unit mass, potentially informed buyers with probability 1
2
λ, potentially

informed sellers with probability 1
2
λ, or noise traders with probability 1 − λ; 3) the

trader submits a unit trade, either a sell, a buy or no trade, qt ∈ {−1, 0, 1}; 4) the

market maker completes the trade and forms posterior beliefs µt+1(qt) by Bayes’ rule.

1.3.2 Solving the Model

The market maker solves for zero profit ask and bid prices taking into account the best

response of potentially informed traders. Let BV,t(at) be the conditional probability

that a trader submits a buy order if v̂ = V and B0,t(at) if v̂ = 0:

BV,t(at) =
1

2
λXa,t(at) +

1

2
(1− λ) (1.1)

B0,t(at) =
1

2
(1− λ) (1.2)

Here I assume that potentially informed buyers always submit a buy order if

they learn the true asset value is high, v̂ = V . This is optimal as long as at < V .

Furthermore, they do not trade if v̂ = 0. The assumption is equivalent to enforcing

that the market is always ‘open’.

Definition 1.1. The market is open (closed) at time t on the ask side if it allows
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(excludes) profitable informed trade: at < θ2 (at ≥ θ2). The market is open (closed)

at time t on the bid side if it allows (excludes) profitable informed trade: bt > θt

(bt ≤ θ1). The market is open if it is open on at least one side.

This definition only depends on the participation of informed traders. Noise

traders continue to trade even in a ‘closed’ market. Under a competitive market

maker, markets are always open because with price inelastic noise traders, the only

way to obtain the zero profit condition is to trade with informed traders. Thus the

‘open’ assumption holds.

Analogously, let SV,t(bt) be the conditional probability that a trader submits a sell

order if v̂ = V and S0,t(bt) if v̂ = 0:

SV,t(bt) =
1

2
(1− λ) (1.3)

S0,t(bt) =
1

2
λXb,t(bt) +

1

2
(1− λ) (1.4)

The probability that a buy order is submitted in period t is:

µtB0,t(at) + (1− µt)BV,t(at) (1.5)

and the probability that a sell order is submitted in period t is:

µtS0,t(bt) + (1− µt)SV,t(bt) (1.6)

As in Glosten-Milgrom, and shown in Proposition 2.2 for a more general setup,

under the zero profit condition, the market maker sets the ask price act as the expected

20



value of the asset conditional on a buy order qt = +1 and beliefs µt:

act = E[v|qt = +1]

=
(1− µt)BV,t(at)V

µtB0,t(at) + (1− µt)BV,t(at)

=
(1− µt)[λXa,t(at) + 1− λ]V

(1− µt)λXa,t(at) + 1− λ
(1.7)

Analogously, he sets the bid price bct as the expected value of the asset conditional on

a sell order qt = −1 and µt:

bct = E[v|qt = −1]

=
(1− µt)SV,t(bt)V

µtS0,t(bt) + (1− µt)SV,t(bt)

=
(1− µt)(1− λ)V

µtλXb,t(bt) + 1− λ
(1.8)

The market maker completes the trade qt and forms his posterior belief µt+1(qt)

using Bayes’ rule. His belief after a buy trade is:

µt+1(+1) ≡ pr(v = 0 | qt = −1, at)

=
µtB0,t(at)

µtB0,t(at) + (1− µt)BV,t(at)

=
µt(1− λ)

(1− µt)λXa,t(at) + 1− λ
(1.9)

After a sell trade, it is:

µt+1(−1) ≡ pr(v = 0 | qt = +1, bt)

=
µtS0,t(bt)

µtS0,t(bt) + (1− µt)SV,t(bt)

=
(1− µt)(λXb,t(bt) + 1− λ)

µtλXb,t(bt) + 1− λ
(1.10)
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Proposition 1.1. Zero profit ask and bid prices (act , b
c
t) exist in the range [0, V ] if

the information arrival functions Xa,t(at) and Xb,t(bt) are continuous over at ∈ [0, V ]

and bt ∈ [0, V ] respectively.

The continuity of the information arrival functions Xa,t(at) and Xb,t(bt) is suffi-

cient to obtain a single crossing property which ensures the existence of prices. The

most obvious violation is if potentially informed traders face a fixed cost of informa-

tion acquisition. Depending on prices, either all potentially informed traders acquire

information or none do. Zero profit prices do not exist in general. However, if they

do not, the market maker can still open the market by making positive profits.

1.3.3 Prices, Convergence and Information Stoppage

This subsection presents some static features and convergence results from my gen-

eral setup. I find a new feature I call ‘information stoppage’ which may arise with

endogenous information acquisition.

Proposition 1.2. If zero profit ask price and bid prices (act , b
c
t) exist, they are mono-

tonically decreasing in the prior belief µt. at and bt tend to the true value v̂ as µt

tends to certainty, i.e. µt = 1 or 0.

Proposition 1.2 gives the standard result that zero profit prices act and bct are

a monotonic function of beliefs and converge to the true value as beliefs tend to

certainty. The mid point of prices is the expected value of the asset conditional on

beliefs at time t.

Corollary 1.1. If zero profit ask and bid prices (act , b
c
t) exist and potentially informed

buyers and sellers acquire information with strictly positive probability, i.e. Xa,t(at) ≥

0 and Xb,t(bt) ≥ 0 for all beliefs µt, then act and bct converge to the true value in the

steady state.
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Corollary 1.1 obtains the standard convergence result. If zero profit prices exist

and potentially informed traders always acquire some information, then trades always

reveal information. The market maker can update beliefs after every trade. Over time,

in expectation, beliefs update correctly and prices converge to the true value. Prices

always converge with exogenous information acquisition. However, with endogenous

information acquisition, an information stoppage can occur. The information arrival

functions, Xa,t and Xb,t, for potentially informed traders can be 0 and trades stop

revealing information.

Definition 1.2. An ‘information stoppage’ occurs if the market is ‘open’ and the

probability that a trader submits an informed trade is 0.

Corollary 1.2. If an information stoppage occurs in any period, prices do not con-

verge to the true value in the steady state.

If an information stoppage occurs, the market maker stops updating beliefs be-

cause he knows that potentially informed traders stop acquiring information. Both

prices at and bt are constant until the final period T once a stoppage occurs. By

Definition 1.1, the market can still be open because prices are in the interior of pos-

sible asset values (0, V ). An informed trader could make a profitable trade if he were

drawn into the market but potentially informed traders have no incentive to acquire

that information.

An information stoppage in my model is similar to the no trade result of Grossman-

Stiglitz. In their model, if the information acquisition cost is too high, no traders

acquire information and thus there is no trade. In mine, potentially informed traders

may choose to acquire no information for a similar reason. However, unlike in their

model, noise traders continue to trade and the market remains open. Also, an infor-

mation stoppage can occur in any period so a market may start off informative but

enter an information stoppage later.
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It would be difficult to identify information stoppages empirically because I would

need to compare the fundamental value of the asset to a steady state price, neither

of which are observable. This model best relates to high frequency markets in which

informational events occur frequently and prices do not reach a steady state. However,

markets do exhibit periods of low transaction volume with trades having a low price

impact which are consistent with an information stoppage.

1.3.4 Relative to Exogenous Information Acquisition

This subsection compares prices, information revelation and transaction volume of a

market with endogenous information acquisition to the Glosten-Milgrom benchmark

with exogenous information acquisition.

Proposition 1.3. The zero profit spread in a market with potentially informed traders

is weakly narrower than in a market with the same proportion of exogenously informed

traders.

The competitive market maker sets zero profit prices by balancing expected prof-

its from noise traders with losses to informed traders. In my model, only a fraction

of potentially informed traders acquire information and trade while exogenously in-

formed traders always trade. To meet the zero profit condition, the market maker

sets narrower spreads than the exogenous case. Narrower spreads reduce profits from

noise traders and increase the participation of potentially informed traders.

With a competitive market makers, spreads measure the information revealed by

trades because they are proportional to the change in beliefs conditional on that trade

occurring. By the zero profit condition, prices can be written as:

act = (1− µt+1(+1))V (1.11)

bct = (1− µt+1(−1))V (1.12)
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Since spreads are narrower, trades reveal less information in a market with potentially

informed traders compared to one with the same proportion of exogenously informed

traders.

Corollary 1.3. Equilibrium expected transaction volume in a market with potentially

informed traders is weakly lower than in a market with the same proportion of exoge-

nously informed traders.

With exogenous information acquisition, expected transaction volume is fixed and

constant. In my case, potentially informed traders choose how much information

to acquire and thus, how often they trade. Since they acquire information with

probability weakly less than 1, expected transaction volume must be lower than with

exogenous information acquisition. However, a more important feature model of my

model is that transaction volume evolves dynamically. I expand on this in the next

section.

1.4 Quadratic Information Acquisition Function

This section develops a specific microfoundation for the information arrival function of

potentially informed traders Xa,t(at) and Xb,t(bt). Potentially informed traders choose

how much information to acquire at increasing quadratic cost. This setup lets me

characterise information acquisition costs with a single parameter and solve for closed

form solutions for prices. I then examine the impact of information acquisition cost,

beliefs and potentially informed traders on prices, information revealed by trades,

expected transaction volume and the behaviour of potentially informed traders.
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1.4.1 Setup

The potentially informed trader can learn the true value of the asset v̂ with proba-

bility ω by paying the cost 1
2
Cω2, where C is a positive parameter which scales the

cost of information acquisition. As risk neutral, profit maximising agents, they opti-

mally choose the amount of information ω∗ to acquire. Before acquiring information,

they have the same prior beliefs as the market maker. A potentially informed buyer

acquires the optimal amount of information ω∗a,t by solving:

max
ωa,t

(1− µt)ωa,t(V − at)−
1

2
Cω2

a,t (1.13)

A potentially informed seller acquires ω∗b,t by solving:

max
ωb,t

µtωb,tbt −
1

2
Cω2

b,t (1.14)

The solutions determine the information arrival functions Xa,t(at) and Xb,t(bt) for

potentially informed buyers and sellers:

ω∗a,t = Xa,t(at) =
1

C
(1− µ)(V − at) (1.15)

ω∗b,t = Xb,t(bt) =
1

C
µbt (1.16)

After a potentially informed trader acquires information, there is a random draw

to determine if he learns the true value. A seller submits a sell trade qt = −1 if he

learns that the true value is low, v̂ = 0, and no trade otherwise. Similarly, a buyer

submits a buy trade qt = +1 if he learns that the true value is high, v̂ = V , and no

trade otherwise. From the market maker’s perspective, a potentially informed trader
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submits a trade qt with probabilities:

qt =


−1 with probability 1

2C
µ2bt

+1 with probability 1
2C

(1− µ)2(V − at)

0 with probability 1− 1
2C
µ2b− 1

2C
(1− µ)2(V − at)

The market maker knows the potentially informed traders’ best response functions

and sets competitive prices accordingly. The assumption that potentially informed

traders are either buyers and sellers means that the zero profit conditions for the ask

and bid prices can be solved separately.

Proposition 1.4. If C ≥ 1
4
V , a competitive market maker posts unique ask and bid

prices, act and bct , given by:

act = V − (1− λ)C

2λ(1− µt)2

[√
1 +

4µt(1− µt)2λV

(1− λ)C
− 1

]
(1.17)

bct =
(1− λ)C

2λµt2

[√
1 +

4µ2
t (1− µt)λV
(1− λ)C

− 1

]
(1.18)

Proposition 1.4 requires the restriction that the cost of information acquisition C

is sufficiently large relative to the maximum value of the asset V . This restriction

implies that buyers and sellers acquire information with probabilities weakly less than

1 across the ranges of prior beliefs µt and proportions of potentially informed traders

λ and thus prices always take the form in the proposition. If the restriction is relaxed,

C < 1
4
V , then prices may imply a probability of information acquisition greater than

1. Prices still exist but they are solved like the exogenous case when traders receive

information with probability 1. I restrict C since I am interested in cases when

potentially informed traders do not acquire full information.

27



1.4.2 Spreads

This subsection derives comparative statics for the effect of information acquisition

cost C and proportion of potentially informed traders λ on spreads. In any given

market, these are fixed exogenous variable, so these statics are for comparisons be-

tween different markets with other variables held constant, in particular, prior beliefs

µt. While µt evolves endogenously over time, for now I take them as exogenous.

Proposition 1.5. The competitive ask price act is monotonically decreasing, while the

bid price bct is monotonically increasing, in the information acquisition cost C. act and

bct tend to the conditional expected asset value (1− µt)V as C tends to infinity.

By Proposition 1.5, spreads are decreasing in the information acquisition cost C.

When C increases, information costs more so, for any set of posted prices, potentially

informed traders acquire less. Under the zero profit condition, the market maker

sets narrower spreads to give potentially informed traders more incentive to acquire

information while reducing expected profits from noise traders.

As the cost of information acquisition C grows to infinity, potentially informed

traders stop acquiring information and the model collapses to one without informed

traders. Prices are set at the unconditional expected value of the asset. Proposition

1.4 imposes a lower bound for C: C ≥ 1
4
V . If I relax the restriction, as C tends to 0,

prices converge those from standard Glosten-Milgrom with no information acquisition

costs in which potentially informed agents acquire full information.

As described previously, spreads are proportional to how beliefs are updated and

thus measure the information revealed by trades. Therefore, following spreads, trades

reveal less information as the information cost C rises, in agreement with Grossman-

Stiglitz. In their model, a proportion of traders pay the cost to become informed while

the rest remain uninformed. When the cost increases, fewer traders become informed

so trades are less informative. The information revealed by trades is directly related
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to the proportion of informed traders. While the intuition is similar, the transmission

mechanism in my model is different. The proportion of potentially informed traders

is exogenously fixed but trades reveal less information because each trader acquires

less information. Thus there is not necessarily a monotonic relationship between the

proportion of potentially informed traders and the information revealed by trades.

The information acquisition cost C also affects the expected profits of traders

differently in my model compared to Grossman-Stiglitz. In their case, all traders,

informed or uninformed, make the same expected profits in equilibrium. A rise in

information acquisition cost lowers profits to all traders equally. In my case, similar

to Glosten-Milgrom, potentially informed traders make positive expected profits and

noise traders make expected losses. Increasing C lowers expected profits to potentially

informed traders but also lowers expected losses to noise traders through narrower

spreads.

Grossman-Stiglitz has been tested empirically by comparing the performance of

passive index mutual funds, as a proxy for uninformed traders, to actively-managed

funds, as a proxy for informed traders. Their model predicts that the two should per-

form similarly. In general, the literature studying mutual fund performance, such as

Wermers (2000), Kosowski et al. (2006) and Banegas et al. (2012), find that actively-

managed funds out perform the index. While evidence against Grossman-Stiglitz, it

is consistent with the form of information acquisition in my model.

Proposition 1.6. The competitive ask price act is monotonically increasing, while

the bid price bct is monotonically decreasing, in the proportion of potentially informed

traders λ. act and bct tend to the conditional expected asset value (1− µt)V as λ tends

to 0. They tend to the V and 0 respectively as λ tends to 1.

By Proposition 1.6, equilibrium spreads are monotonically increasing in the pro-

portion of potentially informed traders λ. This result is analogous to Glosten-
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Milgrom’s result that spreads are increasing in the proportion of informed traders

and is driven by the zero profit condition of a competitive market maker. When

there are more potentially informed traders, the market maker sets wider spreads to

decrease expected losses to them and increase expected profits from noise traders.

When there are no potentially informed traders, only noise traders, both prices are

the unconditional expected value of the asset. No information is revealed by trades

and there is no learning. When there are only potentially informed traders, the

market maker sets the maximum spread and the standard no trade result obtains.

The market maker closes the market because all trades are with informed traders

which entail expected losses.

My model predicts the same relationship between the proportion of potentially

informed traders λ and the spread as Glosten-Milgrom. However, the empirical sup-

port for this prediction is mixed. For example, Dennis and Weston (2001) find that

the size of the spread is negatively related to the amount of institutional ownership,

a proxy for informed traders while Heflin and Shaw (2000) find the opposite for block

owners.

While many empirical studies use the spread as a measure for information based

trading, it also includes other components such as the cost of market making and

order processing costs. My model suggests another reason why it might be a poor

measure. In standard Glosten-Milgrom, the arrival rate of informed traders is fixed.

In my case, potentially informed traders enter at different rates depending on how

much information they acquire. This yields another measure for information based

trading: the probability of informed trade. The two are not equivalent because a

trade may cause a large revision in beliefs but happen with low probability. The

spread does not capture this dimension of how information enters the market. In the

next subsection, I characterise when the two measures deviate.
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1.4.3 Probability of an Informed Trade and Expected Trans-

action Volume

I define the probability of an informed trade Kt(at, bt) as the unconditional probability

that a potentially informed trader, buyer or seller, is drawn into the market and

submits an informed trade. It is the sum of the probability of an informed buy trade

Gt(at) and an informed sell trade Ht(bt) which are given by:

Gt(at) =
1

2
λ(1− µt)Xa,t(at) =

1

2C
λ(1− µ)2(V − at) (1.19)

Ht(bt) =
1

2
λµtXb,t(bt) =

1

2C
λµ2bt (1.20)

The probability of informed trade Kt(at, bt) is empirically relevant because it is

analogous to the widely used PIN measure proposed by Easley et al. (1996). PIN is the

probability of an informed trade estimated from a structural model with exogenously

informed traders. Kt(at, bt) and PIN are the same if in a market with exogenously

informed traders but they can differ once I introduce endogenously informed traders.

Proposition 1.7. In equilibrium, the probability of an informed trade Kt(a
c
t , b

c
t) is at

its maximum when beliefs µt are weakest, i.e. µt = 1
2
. Kt(a

c
t , b

c
t) tends to 0 as beliefs

tend to certainty, i.e. µt = 1 or 0.

By Proposition 1.7, the probability of an informed trade Kt(a
c
t , b

c
t) responds intu-

itively to beliefs µt: it is largest when beliefs are weakest, µt = 1
2
, tending to zero as

beliefs tend to certainty, µt = 0 or 1. When beliefs are weak, prices are far from their

true value. An informed trade yields large speculative profits so potentially informed

traders acquire the most information. As beliefs get stronger, prices move toward the

true value. Expected profits from trading fall so potentially informed traders acquire

less information.

Figure 1.1 shows this result graphically for some choice of model parameters V =
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Figure 1.1: Probabilities of an informed: (a) buy trade Gt(a
c
t); (b) sell trade Ht(b

c
t);

or (c) trade of either type Kt(a
c
t , b

c
t); against prior beliefs µt and the proportion of

potentially informed traders λ for model parameters V = 10 and C = 5.
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10 and C = 5. Figure 1.1(c) plots the probability of an informed trade Kt(a
c
t , b

c
t)

against beliefs µt and proportion of potentially informed traders λ. For now, I am

interested in µt so fix some proportion of λ and look across Kt(a
c
t , b

c
t). The graph is

a hump, symmetric about µt = 1
2
. Note that the value of Kt(a

c
t , b

c
t) also depends on

λ but across any λ, the shape is the same.

Figures 1.1(a) and 1.1(b) plot the probabilities of an informed buy trade Gt(a
c
t)

and sell trade Ht(b
c
t) against µt and λ. Unlike the aggregate probability Kt(a

c
t , b

c
t),

they are not symmetric about µt = 1
2
. One of the advantages of separating potentially

informed buyers and sellers is that I can see their different responses to µt. Figure

1.1(a) corresponds to buyers. Gt(a
c
t) is skewed towards µt = 1. Potentially informed

buyers acquire more information when beliefs tend towards the low asset value because

they can make higher profits if they learn that the true value is high. The opposite

applies for sellers.

Proposition 1.7 also has implications for the dynamic behaviour of information

acquisition. In expectation, beliefs µt converge to certainty about the true value over

time. If the market starts with uninformative first period beliefs, µ1 = 1
2
, then in

expectation, µt monotonically increases or decreases to 0 or 1 over time. Therefore,

the expected probability of an informed trade Kt(a
c
t , b

c
t) also decreases monotonically

over time. With exogenously informed traders, it is constant. Note that while the

expected paths of µt and Kt(a
c
t , b

c
t) are monotonic, they need not be for any given

realisation. µt may fluctuate over time and thus Kt(a
c
t , b

c
t) may rise and fall.

Corollary 1.4. Expected transaction volume Et[|qt|] is at its maximum when beliefs

µt are weakest, i.e. µt = 1
2
. Et[|qt|] tends to 1 − λ as beliefs tend to certainty, i.e.

µt = 1 or 0.

Expected transaction volume Et[|qt|] follows the probability of informed trades

Kt(a
c
t , b

c
t) in response to changes in prior beliefs µt. In my setup, Et[|qt|] only de-
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pends on the participation of potentially informed traders since noise traders always

trade. When potentially informed traders acquire less information, they trade less.

Again, Corollary 1.4 also determines the dynamic behaviour of Et[|qt|]. Starting from

an uninformative µ1, in expectation, Et[|qt|] falls over time, in contrast to Glosten-

Milgrom.

The dynamic features of the probability of informed trade Kt(a
c
t , b

c
t) and expected

transaction volume Et[|qt|] with endogenous information acquisition is more empir-

ically appealing than the standard models with exogenously informed traders. A

cursory look at high frequency trading data reveals periods of high volume and high

participation by institutional traders, often considered informed, which tend to occur

after informational events and fall over time. These stylised features are absent from

Glosten-Milgrom.

Easley and O’Hara (1992) introduce uncertainty about whether an informational

event occurs at the beginning of each trading day. Informed traders only enter the

market if it does. This partially accounts for different levels of expected trading

volume and informed participation. Easley et al. (1996) then estimate this structural

specification. However, this model only allows two trading intensity regimes which

last for a whole day. In my model, trading intensity evolves endogenously over time,

even within the same day. This seems closer to the stylised features described above.

Furthermore, I do not need another dimension of uncertainty. The market maker

knows an informational event has occurred. The dynamics are driven by potentially

informed traders acquiring different amounts of information over time.

Proposition 1.8. In equilibrium, the probability of an informed trade Kt(a
c
t , b

c
t) is

monotonically decreasing in the information acquisition cost C.

By Proposition 1.5, spreads are decreasing in the information acquisition cost C.

By Proposition 1.8, the probability of an informed trade Kt(a
c
t , b

c
t) responds similarly.

34



Thus, the market is less informative under both measures as C increases.

Corollary 1.5. Expected transaction volume Et[|qt|] is monotonically decreasing in

the information acquisition cost C.

A higher information cost C leads to lower expected transaction volumes. Like in

Corollary 1.4, expected transaction volume Et[|qt|] follows the probability of informed

trade Kt(a
c
t , b

c
t). This also agrees with Grossman-Stiglitz. Together with Proposition

1.5, Proposition 1.8 and Corollary 1.5 describe all the effects of C in my model.

Fang and Peress (2009) offer some empirical support for Corollary 1.5. They find

that media coverage affects the returns of some subset of stocks. If I can interpret

media coverage as a proxy for information acquisition costs, because it captures the

availability of public information information, then this is in line with my predictions.

Proposition 1.8 offers another testable prediction between information costs and

the probability of an informed trade. Ideally I would estimate the probability of

an informed trade from a model with endogenous information acquisition and then

compare it between assets with different information acquisition costs.

Proposition 1.9. The probabilities of an informed buy trade Gc
t and sell trade Hc

t

have their maximum at λ̃Gt = Zt+1
2Zt+1

and λ̃Ht = Yt+1
2Yt+1

where Zt ≡ (1− µt)
√

1
C
µtV and

Yt ≡ µt

√
1
C

(1− µt)V . Gc
t and Hc

t tend to 0 as the proportion of potentially informed

traders λ tends to 0 or 1.

By Proposition 1.9, the probability of an informed trade Kt(a
c
t , b

c
t) is not monoton-

ically increasing in the proportion of potentially informed traders λ. It is decreasing

in λ for λ ≥ max{Zt+1
2+z1

, Yt+1
2Yt+1

} where Zt ≡ (1−µt)
√

1
C
µtV and Yt ≡ µt

√
1
C

(1− µt)V .

In this range, increasing the proportion of potentially informed traders leads to less

frequent informed trades.

To see this result graphically, return to Figure 1.1(c) which plots the probability of

an informed trade Kt(a
c
t , b

c
t). Fix some prior belief µt and look across the proportion of
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potentially informed traders λ. For µt = 1
2
, Kt(a

c
t , b

c
t) increases with λ until it reaches

its maximum at λ̃Kt = Wt+1
2Wt+1

where Wt ≡ 1
2

√
1

2C
V . Kt(a

c
t , b

c
t) then falls rapidly to 0

as λ tends to 1. Note that the maximum λ̃Kt occurs at larger values as beliefs are

more certain, i.e. µt closer to 0 or 1.

Proposition 1.10. The probabilities that a potentially informed buyer or seller is

informed, Xa,t(a
c
t) and Xb,t(b

c
t), are monotonically decreasing in the proportion of

potentially informed traders λ. Xa,t(a
c
t) and Xb,t(b

c
t) tend to 1

C
µt(1− µt)V as λ tends

to 0. They tend to 0 as λ tends to 1.

Recall that the probability that a potentially informed buyer or seller is informed,

Xa,t(a
c
t) and Xb,t(b

c
t) is given by the amount of they choose to acquire. It starts at

1
C
µt(1 − µt)V and decreases monotonically to 0 with the proportion of potentially

informed traders λ. The maximum probability is always weakly less than 1 because

of the restriction that C ≥ 1
4
V . By Proposition 1.10, increasing λ means each trader

acquires less information. However, by Proposition 1.9, the probability of an informed

trade Kt(a
c
t , b

c
t) is not monotonic in λ. To understand the two results, see that λ has

two effects on Kt(a
c
t , b

c
t): it 1) increases the number of traders who can choose to

acquire information; and 2) decreases the amount of information acquired by each

trader.

For low λ, the first effect dominates. An increase in λ outweighs the decrease

in the information they acquire individually, as measured by Xa,t(a
c
t) or Xb,t(b

c
t).

Thus the probability of an informed trade Kt(a
c
t , b

c
t) increases. There are sufficiently

many noise traders yielding expected profits to the market maker to offset losses from

more potentially informed trades. However, for λ larger than λ̃t, the second effect

dominates and the relationship reverses. As λ continues to increase, Kt(a
c
t , b

c
t) begins

to decrease. The market fills with potentially informed traders and the market maker

earns lower profits from noise traders so it can support less information acquisition. In
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the limit, there are no more noise traders and thus no more profits to offer potentially

informed traders. Potentially informed traders stop acquiring information.

A large body of empirical literature studies the effect of institutional or block own-

ership on asset prices and information revelation. For example, Boehmer and Kelly

(2009) look at institutional holdings and informational efficiency of prices, measured

by deviations from a random walk. There are various theoretical reasons to examine

institutional holdings but the asymmetric information literature, to which my model

belongs, interprets them as informed traders. This implies that assets with larger

institutional holdings should be more informative. If instead institutions are poten-

tially informed and endogenously acquire costly information, Proposition 1.10 yields

conditions when higher institutional holdings leads to less informative markets, as

measured by the probability of informed trade. This result might help reconcile the

mixed evidence on institutional ownership. It also cautions against using institutional

holdings as proxies for informed trading.

Corollary 1.6. The probability of an informed trade Kt(a
c
t , b

c
t) is decreasing, while

the spread is increasing, in the proportion of potentially informed traders λ for λ ≥

max{Xt+1
2X+1

, Yt+1
2Yt+1

} where Xt ≡ (1− µt)
√

1
C
µtV and Yt ≡ µt

√
1
C

(1− µt)V .

Corollary 1.6 describes the exact conditions when spreads and the probability of

an informed trade Kt(a
c
t , b

c
t) deviate from each other. As noted previously, they need

not comove and here I show that they respond differently to changing the proportion

of potentially informed traders λ. For λ beyond a certain threshold, increasing it

further means that trades cause a larger revisions in belief but occurs less frequently.

The empirical literature uses both spreads and the probability of an informed

trade as measures for information revelation. Standard theoretical models suggest

they can be used interchangeably. I show when they cannot under the quadratic cost

function. While this result is not general to all cost functions, I can show it arises for
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at least some subset of cost functions.

To better understand the divergence, recall that competitive prices, given by Equa-

tions (1.17) and (1.18), are set as the expected value of the asset conditional on a

trade. They are proportional to the ratio of expected informed trades to total trades,

both informed and noise. Total expected trades or expected transaction volume, de-

noted Et[qt = +1] for buys, Et[qt = −1] for sells, and Et[|qt|] for all trades, are given

by:

Et [qt = +1] = (1− µt)Gt(a
c
t) +

1

2
(1− λ) (1.21)

Et [qt = −1] = µtHt(b
c
t) +

1

2
(1− λ) (1.22)

Et [|qt|] = Et [qt = +1] + Et [qt = −1]

= (1− µt)Gt(a
c
t) + µtHt(b

c
t) + 1− λ (1.23)

In Glosten-Milgrom, the only determinant of spreads is the proportion of informed

traders because total expected transaction volume Et[|qt|] is constant. In my model,

Et[|qt|] is endogenous.

Corollary 1.7. Total expected transaction volume Et[|qt|] is decreasing, while spreads

are increasing in the proportion of potentially informed traders λ if λ ≥ max{ Zt+1
2Z+1

, Yt+1
2Yt+1

}

where Zt ≡ (1− µt)
√

1
C
µtV and Yt ≡ µt

√
1
C

(1− µt)V .

By Corollary 1.7, when the probability of an informed trade Kt(a
c
t , b

c
t) is decreas-

ing, expected transaction volume Et[|qt|] is also decreasing in λ. This drives the de-

viation between spreads and Kt(a
c
t , b

c
t) from Corollary 1.6. Although informed trades

occur less frequently, they make up a larger proportion of total trades.

Corollary 1.7 also predicts that, like Kt(a
c
t , b

c
t), Et[|qt|] is not monotonic in λ. In

contrast, Et[|qt|] is constant in Glosten-Milgrom. Easley and O’Hara (1992) has two

regimes for Et[|qt|] but more informed traders still implies higher Et[|qt|].
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Again the empirical support for the relationship between institutional holdings

and transaction volume is mixed. The difficulty for these studies is the endogeneity

of holdings. Institutional traders prefer liquid stocks which have higher expected

transaction volumes. These stocks then have more institutional investors so it is

difficult to determine causality.

1.4.4 Numerical Simulations

This subsection presents some numerical simulations to give a handle on how quickly

the market learns when there is endogenous information acquisition and the expected

paths of variables such as information revealed by a trade, the probability of an

informed trade and expected transaction volume.

Consider a convergence criteria given by some constant k ∈ [0, 1
2
]. The criterion is

met when the absolute difference between the posterior belief of the value of the asset

and the true value of the asset is smaller than k: |Et[v̂]− v| < k. I define convergence

speed as the inverse of the unconditional expected number of trading periods needed

to meet that criterion. For any set of market parameters, every k is associated with

some convergence speed. I say a market ‘always converges faster’ than another if and

only if its convergence speed is weakly greater for all choices of k.

Although I derive analytical results for spreads and the probability of an informed

trade, it is harder to pin down convergence speed because it depends on both these

variables which are not monotonically related. Furthermore, previous dynamic results

appeal to fact that on average, beliefs approach the true value over time. However,

convergence speed depends crucially on the exact path of those beliefs, as illustrated

in the following example.

Consider two markets with potentially informed traders and some information

acquisition cost function. Let it be cheaper to acquire information in market A than
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market B so trades in A reveal more information for any belief µt. In market A, let

the first trade be very informative but the second trade a lot less so. This is possible

because informativeness depends on the information acquisition cost function. Imag-

ine a cost function with a steep step, like a fixed cost (a discontinuous step violates

the assumption for existence of prices by Proposition 1.1). Over the flat part of the

cost function, potentially informed traders acquire a lot of information but beyond

the step, they acquire much less. Thus the first trade can be very informative while

the second is not.

In contrast, in market B, let the first trade be less informative than in market

A but the second trade more informative. Consider a market in which it is slightly

more expensive to acquire information. For any µt, trades in market B are slightly

less informative than trades in market A. Starting from the same µ1, beliefs are

updated less after the first trade. If the updated µ2 does not exceed the step in the

cost function after which potentially informed traders acquire less information, the

second trade in market B can be more informative relative to market A. Thus, the

market maker learns more after two trades in market B than market A despite trades

revealing less information in market B for any given µt.

I simulate trading in markets with the quadratic cost function under different

parameters over 150 periods for 20,000 price paths. I set the high asset value at

V = 10, the true value of the asset as high, v̂ = V , and the starting belief as

uninformative, µ1 = 1
2
. Figure 1.2 plots the mean and standard deviation of the

conditional expected asset value in each period. They represent the expected path

at time 0, before any trades, of the mean and standard deviation of the asset value,

conditional on the true value of the asset being high. In Figures 1.2(a) and (b), I fix the

proportion of potentially informed traders at λ = 0.8 and plot paths for information

acquisition costs C = {0, 2, 5, 5, 10}. C = 0 corresponds to a market with exogenously

informed traders. In Figures 1.2(b) and (c), I fix the cost at C = 2.5 and plot paths
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for λ = {0.2, 0.4, 0.6, 0.8}.

In both cases, markets behave as expected. In Figure 1.2(a), the mean expected

asset value approaches the true value fastest in the exogenous information acquisition

case. Convergence speed is then decreasing in the cost of information acquisition

C. In Figure 2(c), convergence speed is increasing in the proportion of potentially

informed traders λ. Looking at standard deviations in Figures 1.2(b) and 1.2(d),

markets with lower convergence speeds also coincide with higher standard deviations.

The initial peak is an artifact of the discrete time setup which artificially restricts

the maximum deviation in early periods. After that peak is reached, the standard

deviation of expected values falls over time. Standard deviations are persistently

higher in markets with lower convergence speed, even after many periods. While the

treatment here is cursory, a full numerical survey would support the conclusions that

convergence speed is decreasing C and λ.

Next, I study the dynamic behaviour of potentially informed traders. Using the

same parameters from before (V = 10, v̂ = V , µ1 = 1
2
) and fixing λ = 0.8, Figure 1.3

plots mean variables for different information acquisition costs C = {0, 2, 5, 5, 10}.

Again, these represent the expected paths at time 0 for these variables, conditional

on the true asset value being high. Figures 1.3(a), (b) and (c) refer to buyers. Figure

1.3(a) plots the difference between the ask price at and the conditional expected

asset value Et[v̂t]. This is the change in conditional expectations after a buy trade

and represents the amount of information revealed by the trade. Figure 1.3(b) plots

the probability that any buyer becomes informed, Gt(a
∗
t ). Figure 1.3(c) plots the

probability that a buy trade is submitted or the expected transaction volume from

buyers Et[qt = +1]. Figures 1.3(d), (e) and (f) plot the same variables for sellers.

Figures 1.3(a) and (b) plot the amount of information revealed by buy and sell

trades. All paths fall over time as the expected value of the asset approaches the

true value since there is less information to be learned. The paths are not symmetric
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Figure 1.2: Unconditional at time 0 (a) mean and (b) standard deviation of the condi-
tional expected asset value for each period across acquisition costs C = {0, 2, 5, 5, 10}
holding λ = 0.8. Unconditional at time 0 (c) mean and (d) standard deviation of each
period conditional expected asset value across λ = {0.2, 0.4, 0.6, 0.8} holding C = 2.5.
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Figure 1.3: Across different information acquisition costs C = {0, 2, 5, 5, 10}. Abso-
lute difference between conditional expected asset value Et[v̂t] and (a) ask price at;
and (b) bid price bt. Probability that trader is informed: (c) buyer, Gt(a

∗
t ); or (d)

seller, Ht(b
∗
t ). Probability that trade is submitted: (e) buy, Et[qt = +1]; or (f) sell,

Et[qt = −1].
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between buys and sells. In this case, sell trades reveal more information than buys

because they provide counter evidence to the prevailing belief that the asset value is

high. As expected, information revealed in early periods is decreasing in the infor-

mation acquisition cost C. In early periods, it falls fastest when C is low. In later

periods, trades are actually more informative in markets with a higher C because

beliefs are still weak.

Figures 1.3(c) and (d) plot amount of information acquired by buyers, Gt(a
∗
t ), and

sellers, Ht(b
∗
t ). The big difference is between markets with no information acquisition

cost, C = 0, and those with positive C. Exogenously informed traders, correspond-

ing to C = 0, always acquire information at a constant rate. However, potentially

informed traders acquire less information over time. As the expected asset value con-

verges on the true value, there is less incentive for potentially informed traders to

acquire information so all the plots fall over time. In early periods, potentially in-

formed traders acquire less information in markets with higher C. Again this reverses

in later periods when there is more acquisition despite higher C because of the slower

rate of convergence in these markets.

Figures 1.3(e) and (f) plot the expected volume of buys, E[qt = +1], and sells,

E[qt = −1]. The market with exogenously informed traders, C = 0, is unique because

informed traders always trade. When the asset value is high, all informed buyers

submit buy orders. In Figure 1.3(e), as beliefs converge to certainty of the high

value, E[qt = +1] increases until all buyers trade, while in Figure 1.3(f), E[qt = −1]

decreases until only noise traders remain. In contrast, expected transaction volume

always falls over time with potentially informed traders. As beliefs converge towards

certainty, potentially informed traders acquire less information information and trade

less. Again, in early periods, there is higher expected transaction volume in markets

with higher information acquisition cost C which can reverse in later periods. For

example, in Figure 1.3(e) the paths of E[qt = −1] for C = 5 is higher than for C = 2.5
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after t = 20. In the first case, potentially informed sellers still acquire information

because beliefs are still weak.

1.5 A New Structural Estimator

The main empirical implication of my model is that the standard proxies used in the

literature do not accurately capture informed trading. In particular, the widely used

Easley-O’Hara PIN measure may be misspecified. Fortunately, I can offer a potential

alternative.

My original discrete time setup does not lend itself well to empirical estimation.

However, following Easley et al. (1996), I can augment it with continuous time Possion

arrival processes for traders. The resulting mixed model has a likelihood function

which can then be estimated in the same way as PIN. An advantage of my setup is

that it nests PIN as a special case when potentially informed traders are not price

sensitive and so always acquire information.

Unfortunately, the data requirement for estimating my model is not as straight-

forward as PIN which only requires the count of buys and sells over each day. With

endogenous information acquisition, I would also need the time series of ask and bid

quotes, and the prices and times at which trades occur. Furthermore, I would need

to impose some structure on the information acquisition cost function. Ideally, it

would only take a single parameter, to minimise the dimensionality of the estimation

problem. The quadratic cost function might be a suitable candidate.

1.6 Conclusion

This chapter makes three main contributions. First, I offer an intuitive, general exten-

sion to Glosten-Milgrom to account for endogenous information acquisition. I model
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potentially informed traders who face information acquisition costs. They optimally

choose how much information to acquire as a function of expected speculative profits.

Crucially, their decision depends on posted prices.

Second, my model captures empirical features of real markets which are unex-

plained in the exogenous information benchmark. An increase in informed trading

and transaction volume after a known informational event is driven by higher specula-

tive profits which give potentially informed traders incentives to acquire information.

Traders react to different sized shocks so more disruptive events lead to higher activ-

ity. The subsequent fall in activity over time occurs because there is less incentive to

acquire information as the market learns the true value of the asset.

Third, my model suggests that the empirical proxies used in the literature do not

accurately capture informed trading. With endogenous information acquisition, three

commonly used proxies (bid ask spreads, proportion of trader types and PIN) do not

always agree in cross sectional comparisons. I characterise situations when the spread

is wide, there are many potentially informed traders in the market but the probability

of an informed trade is low.

The framework I develop lends itself readily to deriving a new structural estimator

which can capture the effect of prices on endogenous information acquisition. I intend

to pursue this in future work.

46



1.7 Bibliography

Admati, A. R. and P. Pfleiderer (1986). A monopolistic market for information.

Journal of Economic Theory 39, 400–438.

Admati, A. R. and P. Pfleiderer (1987). Viable allocations of information in financial

markets. Journal of Economic Theory 43, 76–115.

Admati, A. R. and P. Pfleiderer (1988). A theory of intraday patterns: Volume and

price variability. Review of Financial Studies 1, 3–40.

Amihud, Y. and H. Mendelson (1985). Dealership markets: Market making with

inventory. Journal of Financial Economics 8, 31–53.

Banegas, A., B. Gillen, A. Timmerman, and R. Wermers (2012). The cross-section of

conditional mutual fund performance in european stock markets. Working paper.

Boehmer, E. and E. K. Kelly (2009). Institutional investors and the informational

efficiency of prices. Review of Financial Studies 22, 3563–3594.

Corwin, S. A. and J. F. Coughenour (2008). Limited attention and the allocation of

effort in securities trading. Journal of Finance 63(6), 3031–3067.

Dennis, P. and J. Weston (2001). Who’s informed? an analysis of stock ownership

and informed trading. University of Virginia and Rice University.

Easley, D., M. M. L. de Prado, and M. O’Hara (2012). Flow toxicity and liquidity in

a high frequency world. Review of Financial Studies 25, 1457–1493.

Easley, D., R. F. Engle, M. O’Hara, and L. Wu (2008). Time-varying arrival rates of

informed and uninformed trades. Journal of Financial Econometrics 6(2), 171–207.

Easley, D., N. M. Kiefer, M. O’Hara, and J. Paperman (1996). Liquidity, information,

and infrequently traded stocks. Journal of Finance 51, 1405–1436.

47



Easley, D. and M. O’Hara (1992). Time and the process of security price adjustment.

Journal of Finance 47, 2, 577–605.

Fang, L. and J. Peress (2009). Media coverage and the cross-section of stock returns.

Journal of Finance 64(5), 2023–2052.

Foster, F. D. and S. Viswanathan (1993). Variations in trading volume, return volatil-

ity, and trading costs: Evidence on recent price formation models. Journal of

Finance 48, 187–211.

Garcia, D., F. Sangiorgi, and B. Urosevic (2007). Overconfidence and market effi-

ciency with heterogenous agents. Economic Theory 30, 313–336.

Glosten, L. and P. Milgrom (1985). Bid, ask and transaction prices in a specialist

market with heterogeneously informed traders. Journal of Financial Economics 14,

71–100.

Glosten, L. R. and L. E. Harris (1988). Estimating the components of the bid/ask

spread. Journal of Financial Economics 21, 123–42.

Grossman, S. (1976). On the efficiency of competitive stock markets where trades

have diverse information. Journal of Finance 31, 573–585.

Grossman, S. and J. Stiglitz (1980). On the impossibility of informationally efficient

markets. American Economic Review 70, 393–408.

Hasbrouck, J. (1991). Measuring the information content of stock trades. Journal of

Finance 46 (1), 179–206.

Heflin, F. and K. W. Shaw (2000). Blockholder ownership and market liquidity.

Journal of Financial and Quantitative Analysis 35(4), 621–633.

48



Hong, H., W. Torous, and R. Valkanov (2007). Do industries lead the stock market?

Journal of Financial Economics 83(2), 367–396.

Hou, K. and T. Moskowitz (2005). Market frictions, price delay, and the cross-section

of expected returns. Review of Financial Studies 18, 981–1020.

Huang, R. and H. Stoll (1997). The components of the bid-ask spread: a general

approach. Review of Financial Studies 10, 995–1034.

Ko, K. J. and Z. J. Huang (2007). Arrogance can be a virtue: Overconfidence,

information acquisition, and market efficiency. Journal of Financial Economics 84,

529–560.

Kosowski, R., A. Timmerman, R. Wermers, and H. White (2006). Can mutual fund

”stars” really pick stocks? new evidence from a bootstrap analysis. Journal of

Finance 61(6), 2551–2595.

Kyle, A. (1985). Continuous auctions and insider trading. Econometrica 53 (6),

1315–1335.

Litvinova, J. and O.-Y. Hui (2003). Endogenous information acquisition: A revisit of

the grossman-stiglitz model. working paper.

Peng, L. (2005). Learning with information capacity constraints. Journal of Financial

and Quantitative Analysis 40, 307–329.

Peng, L. and W. Xiong (2006). Investor attention, overconfidence and category learn-

ing. Journal of Financial Economics 80, 563–602.

VanNieuwerburgh, S. and L. Veldkamp (2010). Information acquisition and portfolio

under-diversification. Review of Economic Studes 77(2), 779–805.

49



Veldkamp, L. L. (2006). Information markets and the comovement of asset prices.

Review of Economic Studies 73, 3, 823–845.

Verrecchia, R. E. (1982). Information acquisition in a noisy rational expectations

economy. Econometrica 50, 1415–1430.

Wermers, R. (2000). Mutual fund performance: An empirical decomposition into

stock-picking, talent, style, transaction costs, and expenses. Journal of Finance 55,

1655–1695.

1.8 Appendix

I suppress the time subscript in all proofs. I only present proofs for the ask side. The

bid side follows analogously. As shorthand, Zc refers to any function Z(a, b) which

takes arguments (ac, bc).

Proof of Proposition 1.1. Let Z(a) = (1−µ)BV (a)V
µtB0(a)+(1−µ)BV (a)

so that the equilibrium ask

price is given by ac = Z(ac) from Equation (1.7). Z(a) is given by:

Z(a) =
(1− µ)(λXa(a) + (1− λ))V

(1− µ)λXa(a) + (1− λ)

Let Xa be a continuous, monotonic, increasing in a and bounded [0, 1]. Therefore the

numerator of Z is continuous. The denominator of Z is also continuous and bounded

[0, 1] under the same conditions. Therefore Z is also continuous. Taking the first

derivative of Z with respect to a yields:

∂Z

∂a
=
µ(1− µ)λ(1− λ)V

(µλXa + 1− λ)2

∂Xa

∂a

∂Xa
∂a
≥ 0 by earlier assumption. Now I need to show that Z : R → [0, V ]. The lower
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bound of Z is at Xa = 0: Z = (1 − µ)V : R → [0, V ] when µ ∈ [0, 1]. The upper

bound of Z is at F = 1: Z = (1−µ)V
1−µλ : R → [0, V ] when µ ∈ [0, 1] and λ ∈ [0, 1].

Therefore the function Y = Z(a) must cross Y = a once in the range [0, V ] and the

solution to Equation (1.7) must exist in the range [0, V ]. For uniqueness, I need to

rule out the only other alternative: a continuum of solutions. It is easy to see there

are no parameter values such that a = Z(a) ∀ a. a = Z(a) occurs at a single crossing.

Proof of Proposition 1.2. From Equation (1.7), differentiate ac implicitly with respect

to µ to obtain:

∂ac

∂µ
=
−V (1− λ)(1− λ(1−Xc

a + µ(1− µ)(∂X
c
a

∂µ
+ ∂ac

∂µ
∂Xc

a

∂ac
)))

(1− λ(1− (1− µ)Xc
t ))

2

Rearrange and see that ∂ac

∂µ
≤ 0 when µ ∈ [0, 1], λ ∈ [0, 1], Xc

a ∈ [0, 1], ∂Xc
a

∂µ
≤ 0,

∂Xc
a

∂ac
≤ 0 and ac ≤ V .

Substituting into Equation (1.7), ac(µ = 0) = V and ac(µ = 1) = 0.

Proof of Proposition 1.3. Exogenously informed traders have Xa = 1 always. Equi-

librium ask price in this market is given by:

āc =
(1− µ)V

µ(1− λ) + 1− µ

Compare with ac from Equation (1.7). Let Z = 1− λ(1− g). Z ≤ 1 when λ ∈ [0, 1]

and Xc
a : R → [0, 1]. Then āc = (1−µ)V

µ(1−λ)+1−µ = (1−µ)V X
µ(1−λ)X+(1−µ)X

≥ (1−µ)V X
µ(1−λ)+(1−µ)X

= ac

when Z ≤ 1.

Proof of Proposition 1.4. From Equation (1.7) the competitive market maker sets the
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ask price as the expected value of the asset conditional on a buy occuring:

a =
(1− µ)[λ 1

C
((1− µ)(V − a)) + 1− λ]V

(1− µ)λ 1
C

(1− µ)(V − a) + 1− λ

The expression is quadratic in a and the two roots are given by:

a = V ± (1− λ)C

2λ(1− µ)2

[√
1 +

4µ(1− µ)2λV

(1− λ)C
− 1

]

To obtain a unique solution, one of the roots is ruled out. Under the parameter

restrictions, p ∈ [0, 1], λ ∈ [0, 1], V > 0 and C > 0, the expressions
√

1 + 4µ(1−µ)2λV
(1−λ)C

−1

and (1−λ)C
2λ(1−µt)2 are both larger than 0 so the first root is larger than V . This is ruled

out because the potentially informed trader would always make a loss trading at this

price, regardless of the true value.

The remaining root ac has to satisfy two other restrictions: 1) it implies an in-

formation arrival probability, Xa(a
c), which is bounded [0, 1], and 2) it is bounded

[0, V ]. For the first part, substitute the root into the expression for Xa:

Xa(a
c) =

(1− λ)

2λ(1− µ)

[√
1 +

4µ(1− µ)2λV

(1− λ)C
− 1

]

Under the same parameter assumptions, Xa(a
c) ≥ 0. It also needs to be shown that

Xa(a
c) ≤ 1. Taking partial derivatives, it can be shown that ∂Xa(ac)

∂λ
< 0. Since λ

is bounded [0, 1], arg max
λ

Xa(a
c) = 0. By l’Hopital’s rule, lim

λ→0
X(ac) = 1

C
µ(1− µ)V .

The maximum value this can take is V
4C

given arg max
µ

1
C
µ(1 − µ)V = 1

2
. To satisfy

Xa(a
c) ≤ 1 requires the restriction C > 1

4
V . This completes the first part.

For the second part, it remains to be shown that ac ≥ 0. ac < 0 is ruled out because

the potentially informed trader would always make a profit trading at this price,

regardless of the true value. Taking partial derivatives, ∂ac

∂λ
> 0 under the parameter
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restrictions above. Since λ is bounded [0, 1], arg min
λ

ac = 0. By l’Hopital’s rule,

lim
λ→0

ac = (1− µ)V . The minimum value this can take is 0 given arg min
µ

(1− µ)V = 1

for µ ∈ [0, 1]. Therefore, ac is the unique root to Equation (1.7).

Proof of Proposition 1.5. Take the derivative of ac from Equation (1.17) with respect

to C and simplify to obtain:

∂ac

∂C
= − 1− λ

2(1− µ)2λ

 1 + 2
(1−λ)C

(1− µ)2µλV√
1 + 4

(1−λ)C
(1− µ)2µλV

− 1


Let Z = 2

(1−λ)C
(1 − µ)2µλV . Z ≥ 0 when µ ∈ [0, 1], λ ∈ [0, 1] and V > 0. Then

1+ 2
(1−λ)C

(1−µ)2µλV = 1+Z and
√

1 + 4
(1−λ)C

(1− µ)2µλV =
√

1 + 2Z. Comparing

these two expressions in Z, 1 + Z ≥
√

1 + 2Z. Therefore 1+Z√
1+2Z

> 1. 1−λ
2(1−µ)2λ

≥ 0

when λ ∈ [0, 1]. Therefore ∂ac

∂C
≤ 0.

Take the expression for ac from Equation (1.17). Let Y (C) = 4µ(1−µ)2λV
(1−λ)C

. The

expression
√

1 + 4µ(1−µ)2λV
(1−λ)C

can be written as (1 + Y )
1
2 . Using a Taylor expansion:

(1 + Y )
1
2 − 1 ≈ (1 + 1

2
Y − 1

8
Y 2 + ...) − 1 ≈ 1

2
Y − 1

8
Y 2 + .... Also the expression

(1−λ)C
2λ(1−µ)2

can be written as 2
Y
µV . Using this expression with the Taylor expansion, ac

can be written as: ac ≈ V − 2
Y
µV (1

2
Y − 1

8
Y 2 + ...) ≈ V −µV +O(Y ). lim

C→∞
Y (C) = 0.

Therefore ac ≈ (1− µ)V .

Proof of Proposition 1.6. Take the derivative of ac from Equation (1.17) with respect

to λ and simplify to obtain:

∂ac

∂λ
=

C

2(1− µ)2λ2

 1 + 2
(1−λ)C

(1− µ)2µλV√
1 + 4

(1−λ)C
(1− µ)2µλV

− 1


1+ 2

(1−λ)C (1−µ)2µλV√
1+ 4

(1−λ)C (1−µ)2µλV
≥ 0 as shown in the Proof of Proposition 1.5. Also, C

2(1−µ)2λ2
≥ 0

when µ ∈ [0, 1], λ ∈ [0, 1] and C > 0. Therefore ∂ac

∂λ
≥ 0.
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Use L’Hopital’s rule to evaluate ac from Equation (1.17) as λ → 0. Let X(λ) =

(1−λ)C
[√

1 + 4µ(1−µ)2λV
(1−λ)C

− 1
]

and Y (λ) = 2(1−µ)2λ. Then ∂X(0)
∂λ

= −2µ(1−µ)2V

and ∂Y (0)
∂λ

= 2(1 − µ)2. Therefore lim
λ→0

X(λ)
Y (λ)

= −µV and so lim
λ→0

ac = (1 − µ)V . From

Equation (1.17) ac(λ = 1) = V .

Proof of Proposition 1.7. To find the maximum of K with respect to µ, solve the first

order condition ∂Kc

∂µ
= 0. Taking the derivative of Kc:

∂Kc

∂µ
=
λV

2C

 (1− µ)(1− 3µ)√
1 + 4µ(1−µ)2λV

(1−λ)C

+
µ(2− 3µ)√

1 + 4µ2(1−µ)λV
(1−λ)C


The first order condition is satisfied when µ = 1

2
.

From Equation (1.19), Gc(µ = 1) = 0 and Gc(µ = 0) = 0. Similarly for Hc(µ)

from Equation (1.20). Combining them obtains the results for Kc(µ).

Proof of Proposition 1.8. Take the derivative of Gc from Equation (1.19) with respect

to C and simplify to obtain:

∂Gc

∂C
= − µ(1− µ)2λV

2C2
√

1 + 4
(1−λ)C

µ(1− µ)2λV

µ(1−µ)2λV ≥ 0 and 1+ 4
(1−λ)C

µ(1−µ)2λV ≥ 0 when µ ∈ [0, 1], λ ∈ [0, 1] and V > 0.

Therefore ∂Gc

∂C
≤ 0.

Proof of Proposition 1.9. Take the derivative of Gc from Equation (1.19) with respect

to λ and solve for the first order condition ∂Gc

∂λ
= 0. Following some tedious algebra,

the two roots to the first order condition are given by: (1−µ)(1−2λ)
√

1
C
µV +1−λ = 0

and (1 − µ)(1 − 2λ)
√

1
C
µV − 1 + p = 0. These roots are λ = Z+1

2Z+1
and λ = Z−1

2Z−1

where Z = (1 − µ)
√

1
C
µV . Z ≥ 0 when λ ∈ [0, 1], V ≥ 0 and C ≥ 0. The second

root is ruled out because it implies λ > 1. Therefore, arg max
λ

Gc = Z+1
2Z+1

.
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Substituting into Equation (1.19), Gc(λ = 0) = 0 and Gc(λ = 1) = 0.

Proof of Proposition 1.10. Take the derivative of Xc
a with respect to λ and simplify

to obtain:

∂Xc
a

∂λ
= − 1

2(1− µ)λ2

 1 + 2
(1−λ)C

(1− µ)2µλV√
1 + 4

(1−λ)C
µ2(1− µ)λV

− 1


1+ 2

(1−λ)C (1−µ)2µλV√
1+ 4

(1−λ)C (1−µ)2µλV
≥ 1 as shown in the Proof of Proposition 1.5. 2(1−µ)λ2 ≥ 0 when

µ ∈ [0, 1], λ ∈ [0, 1]. Therefore ∂Xc
a

∂λ
≤ 0.

Use L’Hopital’s rule to evaluateXc
a(λ) as λ→ 0. Let Z(λ) = (1−λ)

(√
1 + 4µ(1−µ)2λV

(1−λ)C
− 1
)

and Y (λ) = 2(1 − µ)λ. Then ∂Z(0)
∂λ

= 2
C

(1 − µ)2µV and ∂Y (0)
∂λ

= 2(1 − µ). Therefore

lim
λ→0

Xc
a(λ) = 1

C
(1−µ)µV . Substituting into the expression for Xc

a, X
c
a(λ = 1) = 0.
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Chapter 2

Endogenous Information

Acquisition and A Monopolistic

Market Maker

2.1 Introduction

This chapter examines the impact of endogenous information acquisition by traders

on a market with a monopolistic market maker. While the competitive assumption of

the previous chapter may apply for the majority of financial markets, there are cases

when market makers may have some monopoly power. For example Madhavan and

Sofianos (1998) find evidence for it among NYSE specialists and Massa and Simonov

(2009) in the Italian interdealer bond market. 1

1Madhavan and Sofianos (1998) look at specialist dealers who are designated as market makers
on the NYSE. They find that specialist participation is lower in block trades compared to non block
trades, consistent with a market maker doing small trades to acquire information. They also find
that participation is higher when bid ask spreads are wide and when previous price movements have
been significant, consistent with experimentation. Massa and Simonov (2009) identify individual
traders in the Italian interdealer bond market and directly track their behaviour to estimate the
beliefs of each trader about how informed the other traders are. They find two types of behaviour:
‘hiding’ in which they exploit their private information by trading with someone who they believe
has less information than them; and ‘experimenting’ in which they try to learn by trading with
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The monopolistic case is also of theoretical interest because it introduces a new

intertemporal tradeoff to the market maker. He values information and can influence

the information revealed by trades through prices. Therefore, he has the incentive to

induce more revelation in early periods which he can exploit in later periods. However,

inducing information revelation is costly as it entails trading with informed traders.

This is the main insight of Leach and Madhavan (1993) who study the benchmark

model with exogenous information acquisition.

I start with the discrete time framework of Glosten and Milgrom (1985) and incor-

porate price elastic noise traders and a monopolistic market maker from Leach and

Madhavan (1993). My innovation is the introduction of potentially informed traders

who optimally choose how much information to acquire at variable cost. Similar to

Chapter 1, they acquire different amounts of information depending on expected prof-

its from speculative trading which is a function of the prices posted by the market

maker.

With my setup, market information structure becomes crucial in determining how

prices affect information revelation. Prices now enter both the information acquisition

decision of potentially informed traders and the demand of price elastic noise traders.

Potentially informed traders consider ex ante expected profits conditional on prior be-

liefs before acquiring information. A narrower spread increases their expected profits

so they acquire more information and trade more frequently. A larger proportion of

trades are informed so they reveal more information to the market maker.

Prices also affect price elastic noise traders whose participation depend on their

expected losses from trading. A narrower spread lowers expected losses so they trade

more frequently. A larger proportion of trades are uninformed so they reveal less

information. In the standard case with exogenous information acquisition, this is the

only way that prices can affect the information revealed by trades. With endogenous

someone who they believe has more information.
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information acquisition, there are two channels which operate in opposite directions.

I characterise market information structure by the effect which dominates. If ‘in-

formation acquisition dominates’, narrower spreads increase the information revealed

by trades because prices affect potentially informed traders more than noise traders.

If ‘noise dominates’, wider spreads increase the information revealed by trades. This

setup generates two main results.

First, if ‘information acquisition dominates’, a monopolistic market maker sets

narrower spreads in early periods, which are decreasing in the total number of trading

periods. He may even set narrower spreads than a competitive market maker, thereby

making a loss. In contrast, with exogenously informed traders, he always sets wider

spreads in early periods, which are increasing in the total number of trading periods.

My result is driven by the new endogenously informed traders. When spreads are

narrow, they are incentivised to acquire more information and if this effect dominates,

the market maker sets narrower spreads.

If ‘noise dominates’, the result is reversed and spreads behave as in the bench-

mark. While narrower spreads increase information acquisition, they also increase

noise trader participation. If noise traders are more price sensitive than potentially

informed traders, the market maker can increases informativeness of trades by effec-

tively crowding out noise traders with wider spreads. Exogenous information acqui-

sition is a special case this market information structure.

Second, spreads may widen over time on average. In the standard case, spreads

always narrow over time on average. This result is driven by the interaction of en-

dogenous information acquisition, which determines how prices affect the information

revealed by trades, with a monopolistic market maker, who has an intertemporal trade

off between information revelation and short term profits. Trades reveal information

and the market maker updates beliefs every period. Starting with an uninformative

prior, beliefs grow monotonically more certain on average. With exogenous informa-
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tion, this implies that spreads become monotonically narrower on average. In my

setup, if information acquisition dominates, they may grow monotonically wider on

average.

The rest of this chapter proceeds as follows: In Section 2.2, I present some related

literature. In Section 2.3, I introduce the model, explain the setup, define market

maker objective functions and characterise market information structure. In Section

2.4, I provide a motivating example. In Section 2.5, I show general results for the

effect of market structure on bid ask spreads, volumes, and price dynamics over time.

I also document information stoppage, the steady state and market failure. In Section

2.6, I conclude. Proofs are in the Appendix.

2.2 Related Literature

See Section 1.2 for a review of related market microstructure literature and endoge-

nous information acquisition. This section presents work specifically looking at mo-

nopolistic market makers.

Leach and Madhavan (1993) is the closest paper to mine in structure. They ex-

amine price discovery under various market makers in a Glosten-Milgrom framework

with elastic noise traders. They show that an optimal monopolistic market maker

has an incentive to ‘experiment’ by setting prices which make trades more informa-

tive. They set wider spreads in earlier periods to crowd out elastic noise traders and

increase the relative proportion of informed trades. They also find conditions under

which having different market makers lead to more robust markets. They present

some empirical results to support price experimentation. I generalise their framework

so that traders are endogenously informed.

Glosten (1989) is one of the first to analyse the monopolistic market maker. In

contrast to Glosten-Milgrom, trades are not restricted to unit amounts and the market
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maker posts a price schedule over different quantities of the traded asset. They find

that if there are not enough noise traders in the market, a competitive market maker

is unable to set zero profit prices across all quantities and thus the market breaks

down. In contrast, the monopolistic market maker maximises expected profits across

quantities so he can subsidise losses from trading in some quantities with profits in

others. In some cases, he provides liquidity when a competitive market maker cannot

do so. This mechanism is similar to the one in my model except that in my case, the

market maker substitutes profits across time instead of quantities.

In general, multi period models with monopolistic market makers are analytically

difficult to solve. Das and Magdon-Ismail (2009) approximate beliefs within Glosten-

Milgrom by a Gaussian distribution and then solve for the optimal sequential market

making algorithm. They find that an optimal monopolistic market maker can provide

more liquidity than a perfectly competitive market maker in periods of extreme un-

certainty because he is willing to absorb initial losses in order to learn a new valuation

rapidly and extract higher profits later. Again, I find a similar intuition.

Madrigal and Scheinkman (1997) considers a market in which traders have private

and heterogenous information. The market maker is large and acts strategically

because he understands that prices affect first, the information he learns from the

order flow, and second, the information he reveals back to other traders. This setup

yields a discontinuity in equilibrium prices which Madrigal and Scheinkman interpret

as a price crash.

So far market makers have inferred information from anonymous trades. Gammill

(1990) lets the market maker learn the identity of traders. He makes small trades

with informed traders to extract information and large trades with noise traders to

maximise expected profits. This theoretical model finds support in the results of

Massa and Simonov (2009) from the Italian interdealer bond market.
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2.3 Model

2.3.1 Setup

My model extends Leach-Madhavan by introducing an arrival function to describe

potentially informed traders who are sensitive to prices. The basic setup is a Glosten-

Milgrom sequential trade model in which noise traders are price elastic. There is one

risky asset with stochastic termination value θ̃ which takes one of two values, θ1 and

θ2, where θ2 > θ1. A unit of the asset may be traded each period. There are T trading

periods after which the termination value is realised. The market maker posts ask and

bid prices, at and bt, at the beginning of each period t = 1, ..., T . A trader is drawn

at random from a continuum of traders so there is zero probability of the same trader

appearing twice. A proportion λ of the population consists of potentially informed

traders and 1− λ consists of noise traders.

There are three types of agent in this model: the market maker, noise traders and

potentially informed traders. The market maker is risk neutral and chooses prices

pt = (at, bt) from P ⊂ R+ which contains the possible values of θ̃. At the beginning

of each period t = 1, ..., T he has prior belief µt that the true value of the asset is low,

θ̃ = θ1, and belief 1 − µt that the true value is high, θ̃ = θ2. He is obliged to trade

against any order submitted by a trader.

The noise trader trades for reasons other than speculative profit. In Glosten-

Milgrom, noise traders are price inelastic and submit orders randomly. Leach and

Madhavan make noise traders price elastic which is essential for the existence of

interior prices because it disciplines a monopolistic market maker. In the standard

case, he can set maximum spreads, at which informed traders do not participate,

and only trade with price inelastic noise traders. Such a market is always closed.

However, if noise traders are price elastic, it may be optimal to set interior prices.
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When a noise trader is drawn into the market, he receives a private reservation

value drawn from some distribution with cumulative density function F (r) where

the average
∫
r dF (r) is in (θ1, θ2). He then submits an order qt which takes values

{−1, 1, 0} for a sell, buy or no trade. He submits a sell order if the bid price is higher

than his reservation value, a buy order if the ask price is lower than his reservation

value, and no trade otherwise:

qt =


−1 if bt > r

+1 if at < r

0 otherwise

These occur with probabilities:

qt =


−1 with probability F (bt)

+1 with probability 1− F (at)

0 with probability F (at)− F (bt)

Like the standard informed trader, potentially informed traders trade for specula-

tive profits. Instead of always knowing the true value of the asset θ̃, he learns it with

some probability given by the information arrival function X(at, bt, µt) defined over

prices at ≥ bt and beliefs µt ∈ [0, 1]. The information arrival function X captures

the impact of prices on the information acquisition decision of potentially informed

traders. They choose an optimal amount of information to acquire depending on

expected profits and cost. Section 2.4 develops a motivating example with a full mi-

crofoundation for X. In the example, potentially informed traders face a quadratic

cost to acquire information of increasing precision. They choose the optimal amount

of information to acquire depending on posted prices. Chapter 1 presents an al-
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ternative model in which potentially informed traders receive a private information

acquisition cost. Then, only some proportion of potentially informed traders acquire

information as a function of prices.

For now, I stipulate restrictions to make the information arrival function X con-

sistent with my intuition. X represents a probability so it must be bounded [0, 1]̇. For

the potentially informed trader, expected profits from selling the asset increases with

the bid price bt so potentially informed traders acquire more information. Therefore,

X should be weakly increasing in bt:
∂X
∂bt
≥ 0 ∀ at, bt, µt. Conversely, expected profits

from buying the asset decrease with the ask price so potentially informed traders ac-

quire less information. X should be weakly decreasing in at:
∂X
∂at

< 0 ∀ at, bt, µt. Note

that X is not actually stochastic and merely describes information arrival. Neverthe-

less, for simplicity I refer to X as if it is the information arrival process.

These restrictions on the information arrival function X are also consistent with

other interpretations. For example, potentially informed traders might have private

draws of reservation values, like noise traders, corresponding to different realisations

of a noisy signal. Under some restrictions, this setup could be made to satisfy the

restrictions I describe here. My results would still obtain. However, my intent is to

model endogenous information and I will use this interpretation for the rest of the

chapter. Note that my general specification nests Leach-Madhavan with exogenously

informed traders. The two are equivalent when X(at, bt, µt) = 1 for all prices and

beliefs.

If the potentially informed trader is drawn and learns the true value of the asset

via the information arrival function X, he submits a sell order if the bid price is higher

than the true value, a buy order if the ask price is lower than the true value, and no

trade otherwise. If he does not learn the true value, he does not trade. He submits a
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trade:

qt =


−1 if bt > θ̃

+1 if at < θ̃

0 otherwise

Now I assume that the market maker sets interior prices pt ∈ (θ1, θ2) which implies

that potentially informed traders who learn the true value of the asset always trade.

I concentrate on this as the leading case for simplicity of notation. At this point, I

define when a market is considered ‘open’ or ‘closed’.

Definition 2.1. The market is open (closed) at time t on the ask side if it allows

(excludes) profitable informed trade: at < θ2 (at ≥ θ2). The market is open (closed)

at time t on the bid side if it allows (excludes) profitable informed trade: bt > θt

(bt ≤ θ1). The market is open if it is open on at least one side.

This definition refers only to the participation of informed traders. Noise traders

continue to trade even in a ‘closed’ market. The previous assumption that the market

maker sets interior prices prices is equivalent to solving a price setting problem under

the constraint that the market is open. In general, the market maker can set prices

such that: 1) the market is closed on the buy side, at ≤ θ1; 2) the market is closed

on the sell side, bt ≥ θ2; or 3) both of the above. For the unconstrained solution, I

need to consider the market maker’s objective function in all the constrained cases

and choose the optimum.

From the market maker’s point of view, a potentially informed trader submits a
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trade qt:

qt =


−1 with probability µtX(at, bt, µt)

+1 with probability (1− µt)X(at, bt, µt)

0 with probability 1−X(at, bt, µt)

The timeline is as follows: first, the market maker with prior belief µt posts ask and

bid prices, at and bt. Second, a trader is drawn from the continuum of traders who are

potentially informed traders with probability λ or noise traders with probability 1−λ.

Third, the drawn trader submits an order qt based on his objective function. If the

trader is potentially informed, he learns the true value of the asset with probability

X(at, bt, µt) and submits an order qt to maximise profits. If the trader is a noise

trader, he draws a private reservation value r from a cumulative density function

F (r) and submits an order qt depending on his reservation value. Finally, the market

maker fills the order and updates his beliefs given by µt+1 ≡ pr(θ̃ = θ1 | qt, at, bt).

The common knowledge of all market participants includes the information arrival

function X, the best reply functions of potentially informed traders, the distribution

of traders and the history of prices and trades up to time t. These are used to form

prior beliefs µt. After the market maker completes a trade qt, he forms posterior

beliefs µt+1(qt) using Bayes’ rule. After a sell, the posterior belief µt+1(−1) is:

µt+1 (−1) ≡ pr
(
θ̃ = θ1 | qt = −1, at, bt

)
=
µt [λX(at, bt, µt) + (1− λ)F (bt)]

µtλX(at, bt, µt) + (1− λ)F (bt)
(2.1)
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After a buy, it is:

µt+1(+1) ≡ pr
(
θ̃ = θ1 | qt = +1, at, bt

)
=

µt(1− λ)(1− F (at))

(1− λ)(1− F (at)) + (1− µt)λX(at, bt, µt)
(2.2)

And after no trade:

µt+1(0) ≡ pr
(
θ̃ = θ1 | qt = 0, at, bt

)
= µt (2.3)

Now I define a measure for how much the market learns from a trade. Let the

‘informativeness’ of a trade, denoted Nt(qt|at, bt, µt), be the change in prior belief µt

after a trade qt conditional on that prior and a set of posted prices: Nt(qt|at, bt, µt) =

|µt+1(qt)− µt|. A trade is more informative if it leads to a larger revision of the prior.

A buy always leads to a downward revision, µt+1(+1) ≤ µt, while a sell always leads

to an upward revision, µt+1(−1) ≥ µt.

2.3.2 Market Maker Objective Functions

Following Leach and Madhavan, I consider three types of market maker: an optimal

monopolistic, a myopic monopolistic, and a competitive market maker. Price discov-

ery under each market maker is determined by their respective objective functions.

In all cases, the market maker’s one period expected profit is given by:

π(at, bt;µt) = λX(at, bt, µt) [µt(θ1 − bt) + (1− µ)(at − θ2)]

+ (1− λ) [F (bt)(θ2 − bt) + (1− F (at))(at − θ2)] (2.4)

An optimal monopolistic market maker maximises profits from trading over every
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period up to time T . This is not a static problem because the market maker can

influence the information revealed by trades. His belief in later periods depends

on the prices he posted earlier. He may forgo some profits from earlier periods to

increase information revelation and increase expected profits in later periods. His

maximisation yields total expected profits given by:

V ∗n (µ1) = sup
{at,bt}

E

[
T∑

t=T−n+1

π(at, bt;µt)

]
(2.5)

for n remaining trading rounds. The choice variables are at and bt which are history

dependent. The prior belief µt evolves by Bayes’ rule as described previously. The

expectation is taken over all random variables. Current period prices are set to extract

information optimally. Equation (2.5) can be written in its Bellman form:

V ∗T (µ1) = sup
{a1,b1}

{
π(a1, b1;µ1) + E

[
V ∗T−1(µ2(q̃))

]}
(2.6)

with terminal condition

V ∗1 (µT ) = sup
{aT ,bT }

{π(aT , bT ;µT )} (2.7)

The function V ∗n (µ1) is the stochastic dynamic programming problem for the market

maker with n periods left to trade before θ̃ is revealed. The state variable is the prior

belief about the true value of the asset µt, the control variables are the ask and bid

prices, at and bt, and the transition equation is Bayes’ rule.

Proposition 2.1. For µt ∈ (0, 1) the optimal monopolist’s value function V ∗T−1(µ) is

convex and nonnegative.

Nonnegativity is obvious because the market maker can post prices at which no

trade would occur. Convexity of the value function is the key property for later
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results. By the Law of Iterated Expectations, the expected posterior belief under any

set of prices must be the prior belief: E[µt+1|µt] = µt. Together with convexity of

the value function, it implies that future information is valuable. For any given prior

belief, the market maker expects to be better off in the next period after learning

from another trade. Therefore, in non terminal periods, a monopolist market maker

never closes the market (by setting at ≥ θ2 and bt ≤ θ1) as trading weakly reveals

more information. In non terminal periods, prices which close the market are weakly

dominated by those which open it (at < θ2 and bt > θ1).

Definition 2.2. An optimal monopolistic market maker’s first period price choice

p∗1 = (a∗1, b
∗
1) ∈ P is the solution to the Bellman equation, Equation (2.6).

An optimal monopolist market maker recognises that learning is endogenous to

the prices he posts. He has the incentive to set prices to encourage learning because

he trades over multiple periods. Unlike a competitive market maker, he is not con-

strained in his ability to set prices. Leach Madhavan call this ‘active learning’ through

‘experimentation’. In contrast, a competitive market maker only learns passively.

Definition 2.3. A myopic monopolist’s first period price choice pm1 = (am1 , b
m
1 ) ∈ P

is the solution to:

maxπ(a1, b1;µ1)

A myopic market maker is only concerned with maximising one period profits and

does not consider the impact of prices on information revealed by trades. The term

may suggest a behavioural story in which the market maker does not recognise the

full extent of his actions. However, it is also consistent with a rational market maker

facing constraints. Perhaps he only has limited monopoly power because competitors

may enter in the next period.
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Definition 2.4. A competitive first period price choice pc1 = (ac1, b
c
1) ∈ P satisfies:

(ac1, b
c
1) = inf{a− b ∈ P : π(a, b) ≥ 0}

In contrast to a monopolist, a competitive market maker cannot trade at all

possible prices. Instead, imagine multiple market makers involved in a Bertrand

price setting game in which other traders only submit orders at the narrowest spread.

Competitive equilibrium prices minimize expected profits subject to nonnegativity.

Proposition 2.2. In equilibrium, competitive ask and bid prices are given by:

act = E
[
θ̃ |qt = +1, act , b

c
t ;µt

]
bct = E

[
θ̃ |qt = −1, act , b

c
t ;µt

]

where act ≥ bct .

Like Glosten-Milgrom, competitive prices are ex post regret free. The posted

ask price is the expected value of the asset conditional on the next trade being a

buy while the bid is the expected value conditional on the next trade being a sell.

Competition drives expected profits in every period to zero so there is no incentive

for the market maker to induce learning. Information still enters the market passively

because potentially informed traders acquire information before trading but the value

of information does not affect price setting.

2.3.3 Information and Market Structure

There are two transmission channels from prices to the informativeness of trades: the

‘information acquisition’ and ‘noise’ channels. I differentiate ‘market structure’ by

whether wider or narrower spreads increase informativeness. Consider the effect of
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prices on the informativeness of a sell trade Nt(qt = −1|at, bt, µt).

First, the ‘information acquisition’ channel captures the impact of prices on the

amount of information acquired by potentially informed traders. Consider the pos-

terior belief after a sell trade µt+1(−1) given by Equation (2.1). Both ask and bid

prices, at and bt, enter the information arrival function X(at, bt, µt). Thus, I further

distinguish between a ‘direct’ and ‘indirect’ information acquisition channel. The

‘direct information acquisition’ channel affects a sell trade through the bid price bt.

It has a direct effect because it raises profits from selling the asset when its true

value is low. Thus potentially informed traders acquire more information when bt is

high, (recall that X(a, b, µt) is increasing in bt). This channel makes a sell trade more

informative with higher bt. With the assumption of separate buyers and sellers, this

is the only channel which operates because sellers can only trade at bt.

The ‘indirect information acquisition’ channel affects a sell trade through the ask

price at. While it has no impact on profits from selling the asset, it does affect profits

from buying the asset when its value is high. Thus, lowering the ask price raises profits

and potentially informed traders acquire more information (recall that the informa-

tion arrival function X(at, bt, µ) is decreasing in at). This is the ‘direct information

acquisition’ channel of at on a buy trade. However, it also has an indirect effect on

a sell trade because when potentially informed traders acquire more information in

expectation of the high asset value, they are also more likely to discover that the true

value is low.

Second, the ‘noise’ channel captures the impact of prices on the participation of

noise traders. Returning to the expression for the posterior belief after a sell trade

µt+1(−1) in Equation (2.1), the bid price bt also enters the density function of noise

trader reservation values F (bt). Raising bt increases the probability that a noise trader

has a reservation value below bt, the criteria to submit a sell order, F (bt) is increasing

in bt. Thus, raising bt decreases the proportion of uninformed sell trades in the market
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and makes a sell trade more informative. The lower bid price crowds out noise traders

so a larger proportion of trades are informed.

The two channels operate symmetrically on the informativeness of a buy trade

Nt(qt = +1|at, bt, µt). First, the direct information acquisition channel makes the

informativeness of a buy trade decreasing in the ask price at and the indirect channel

makes it increasing in the bid price bt. Second, the noise channel makes it increasing

in at.

Finally, I characterise market structure by how spreads affect the informativeness

of trades. The first market structure is characterised by narrower spreads increasing

the informativeness of trades. The information acquisition channel makes narrower

spreads increase the informativeness of both buy and sell trades. The noise channel

does the opposite, decreasing the informativeness of trades. The aggregate impact

on informativeness depends on which channel dominates. When the first effect to be

stronger, I get the definition of a market structure in which ‘information acquisition

dominates informativeness’.

Definition 2.5. ‘Information acquisition dominates informativeness’ if ∂µt+1(−1)
∂bt

−
∂µt+1(−1)

∂at
> 0 and ∂µt+1(+1)

∂at
− ∂µt+1(+1)

∂bt
> 0 ∀ µt ∈ [0, 1], at > bt.

The first inequality refers to the informativeness a sell trade. The term ∂µt+1(−1)
∂bt

captures both the direct information acquisition and noise channels of the bid price

bt on a sell trade. The information acquisition channel acts to make it positive

while the noise channel, negative, so the net sign depends on the relative sizes of the

two channels. The other term ∂µt+1(−1)
∂at

captures the indirect information acquisition

channel of the ask price at on a sell trade. This term is always negative. In aggregate,

I want narrower spreads to increase informativeness of a sell trade, which is equivalent

to increasing the posterior after a sell µt+1(−1). Hence the inequality: ∂µt+1(−1)
∂bt

−
∂µt+1(−1)

∂at
> 0. The second inequality captures the analogous effect of prices on the
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informativeness of a buy trade.

The second market structure is characterised by wider spreads increasing the

informativeness of trades. Now, the noise channel is stronger than the information

acquisition channel, which yields the definition of a market structure in which ‘noise

dominates informativeness’.

Definition 2.6. ‘Noise dominates informativeness’ if ∂µt+1(−1)
∂bt

− ∂µt+1(−1)
∂at

< 0 and

∂µt+1(+1)
∂at

− ∂µt+1(+1)
∂bt

< 0 ∀ µt ∈ [0, 1], at > bt.

The inequalities are reversed relative to the first market structure. The noise

channel must be sufficiently large to overcome both the direct and indirect informa-

tion acquisition channels. This market information structure nests Leach-Madhavan

which corresponds to an information arrival function X(a, b, µ) of unity. Then, poten-

tially informed traders always receive the true value of the asset and trade, regardless

of prices or beliefs. The information acquisition channels do not operate so prices only

affect the informativeness of trades through the noise channel. Under my characterisa-

tion, noise dominates informativeness and wider spreads increase the informativeness

of trades.

Lemma 2.1. If X and F are differentiable, information acquisition dominates in-

formativeness if F (bt)(
∂X
∂bt
− ∂X

∂at
)−X(at, bt, µt)

∂F
∂bt

> 0, and (1 − F (at))(
∂X
∂bt
− ∂X

∂at
) −

X(at, bt, µt)
∂F
∂at

> 0, ∀ µt ∈ [0, 1], at > bt.

Lemma 2.2. If X and F are differentiable, noise dominates informativeness if

F (bt)(
∂X
∂bt
− ∂X

∂at
)−X(at, bt, µt)

∂F
∂bt

< 0 and (1−F (at))(
∂X
∂bt
− ∂X

∂at
)−X(at, bt, µt)

∂F
∂at

< 0, ∀

µt ∈ [0, 1], at > bt.

The inequalities in Lemmas 2.1 and 2.2 can be separated into the two transmission

channels. The first inequality in both Lemmas refer to the informativeness of a sell

trade. The term F (bt)(
∂X
∂bt
− ∂X

∂at
) captures the information acquisition channel. It
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can be further separated into two parts: F (bt)
∂X
∂bt
− F (bt)

∂X
∂at

. F (bt)
∂X
∂bt

captures the

direct information acquisition channel of the bid price bt and F (bt)
∂X
∂at

, the indirect

information acquisition channel of the ask price at.
∂X
∂bt

is always positive while ∂X
∂at

is

always negative so the combined term shows the two channels working in the same

direction. The level of bt enters through F (bt) so the information acquisition channel

is stronger when there is greater noise trader participation. Only bt appears because

it has a direct effect on the profitability of a sell trade while at has no affect on sells.

The term X(at, bt, µt)
∂F
∂bt

captures the noise channel. ∂F
∂bt

is always positive so the

noise channel always operates counter to the two information acquisition channel.

The level of information arrival enters through X(at, bt, µt) so the noise channel is

stronger when more potentially informed traders acquire information. Again, the

second equalities in the Lemmas refer to the informativeness of a buy trade.

This characterisation of market structure is not exhaustive. I concentrate on

market structures which are consistent across all prior beliefs µt ∈ [0, 1] and prices

at > bt. In general, it is possible for one channel to dominate informativeness for some

range of prior beliefs and prices while the other dominates for a different range. Such

markets exhibit changing informational regimes and prices do not have a consistent

effect on the informativeness of trades.

2.4 Motivating Examples

This section describes two motivating examples: one for endogenous information ac-

quisition and the other for the benchmark with exogenous information acquisition.

The first example follows the quadratic information acquisition cost function de-

scribed in Chapter 1. These examples are of interest for three reasons. First, the

endogenous information acquisition example provides a microfoundation for the in-

formation arrival process of potentially informed traders X(at, bt, µt). Second, I can
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analytically solve the examples for equilibrium prices under my three market maker

types for a single period with a straightforward extension to many periods. Finally,

they are useful for illustrating the more general results.

For now I only solve the one period version so I drop the time subscript from

variables. I consider multiple periods later. The asset θ̃ now takes values {θ1 = 0,

θ2 = H} where H > 0. The setup follows the general model with one alteration:

traders are either buyers or sellers with equal probability. They receive their type

when they are drawn into the market and can only trade according to type. This

assumption is made for tractability and does not affect any qualitative results. Then

I specify forms for: 1) the density of noise trader reservation value F ; and 2) the

information arrival process of potentially informed traders X(a, b, µ).

First, noise trader reservation value is uniformly distributed between θ and θ where

θ< 0 and θ > H. These bounds mean that noise traders trade even when prices are

beyond those at which informed traders stop trading. The uniform distribution of

reservation values is equivalent to a linear, downward sloping demand curve for noise

buyers facing ask price a, which can be written as F (b) = α− βa. Analogously, it is

equivalent to a linear, upward sloping supply curve for noise sellers facing bid price

b, which can be written as F (a) = α − β(H − b). I choose the parameters α and β

so that probabilities lie within [0, 1]. An additional restriction, α = 1
2
(βV + 1), is

required for the demand and supply functions to correspond to a uniform distribution

of reservation values. For tractability, I solve the model using this formulation instead

of the cumulative density function directly.

Second, I provide a microfoundation for endogenous information acquisition. The

information arrival process of potentially informed traders X arises from the optimal

behaviour of potentially informed traders who face an information acquisition cost

which is increasing in the precision of the signal they can acquire. To learn the true

value of the asset with probability ω, they must pay the cost 1
2
Cω2, where C is a
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positive parameter. As risk neutral, profit maximising agents, they optimally choose

the amount of information to acquire, denoted ω∗. Before acquiring information,

they know as much as the market maker, which includes the history of past prices

and trades, and so have the same prior beliefs. There is a random draw in which

they learn the true value of the asset with probability ω∗. If they learn the true value

of the asset they submit a corresponding trade. If not, they have no informational

advantage and do not trade. The amount of information acquired by a potentially

informed trader is given by ωp, where p is the price the trader cares about. For a

buyer it is the ask price a and for a seller, the bid price b. The objective function for

a potentially informed buyer is:

(1− µ)ωa(H − a)− 1

2
Cω2

a (2.8)

For a potentially informed seller, it is:

µωbb−
1

2
Cω2

b (2.9)

Potentially informed traders acquire the optimal amount of information given by:

ω∗a =
1

C
(1− µ)(H − a) (2.10)

ω∗b =
1

C
µb (2.11)

If a potentially informed seller learns the true value of the asset, he submits a sell

trade q = −1. If a potentially informed buyer learns the true value of the asset, he

submits a buy trade q = +1. Otherwise he does not trade. From the market maker’s
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perspective, a potentially informed trader submits a trade q with probabilities:

q =


−1 with probability 1

2C
µ2b

+1 with probability 1
2C

(1− µ)2(H − a)

0 with probability 1− 1
2C
µ2b− 1

2C
(1− µ)2(H − a)

In the general framework, these probabilities are equivalent to defining a separate

information arrival function for buyers and sellers. The new functions would take

values Xa(a, µ) = 1
2C

(1− µ)(H − a) for buyers and Xb(b, µ) = 1
C
µb for sellers.

This setup captures the stylised feature that the amount of information acquired

by buyers is decreasing in the ask price and the amount acquired by sellers is increasing

in the bid price. Potentially informed traders make speculative profits from the

difference between the true value of the asset and the price at which he can buy or

sell. He acquires more information when greater profits are available. It motivates

the restrictions I impose on the information arrival function of potentially informed

traders X in Section 2.4.

The aggregate impact of spreads on the informativeness of trades depends on the

transmission channel which dominates. It is easy to show that information acquisition

dominates informativeness for this example under the parameter constraint α > βV .

This case is my first motivating example.

Now I describe a version with exogenous information acquisition. Noise traders re-

main the same as the first example but now potentially informed traders always learn

the true value of the asset, similar to Leach-Madhavan. Prices and prior beliefs have

no impact on the informativeness of trades. From the market maker’s perspective, a

potentially informed seller submits a sell trade with probability µt and a potentially

informed buyer submits a buy trade with probability 1 − µt because exogenously

informed traders always trade when the market is open. Prices do not affect the
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information acquired by traders so there is no information acquisition channel. This

market structure satisfies the definition that crowding out dominates informativeness.

This case is my second motivating example.

It is easiest to see the shape of price schedules graphically. The price schedule

refers to the function of equilibrium ask and bid prices, {a, b}, set by a specific

market maker for every possible prior belief. I choose some parameters for which the

market is open (H = 10, λ = 0.5, β = 1
11

, α = 1
2
(βH + 1) = 21

22
) and plot price

schedules of myopic and competitive market makers, denoted {am, bm} and {ac, bc}

(see Appendix for details of solving for prices). Figure 2.1(a) shows the benchmark

example of exogenous information acquisition and Figure 2.1(b) shows the case with

endogenous information acquisition. Solid lines correspond to prices set by the myopic

monopolistic market maker {am, bm} and dotted lines to those set by a competitive

market maker {ac, bc}. The upper of each pair of lines is a and the lower is b. Recall

that µ is the prior belief that the true value of the asset is low so all prices are

decreasing in µ.

I define a measure for the strength of a prior as |µ− 1
2
| . This captures how close a

prior belief is to either of the extremes. The weakest prior is µ = 1
2

when the market

is most uncertain about the asset value, assigning each value equal probability. The

strongest priors are µ = 0 and µ = 1, when the true asset value is known to be low

or high with certainty. I use the terms ‘stronger towards’ to denote the direction of

the prior belief.

Now, I concentrate on the ask price as prior belief µ decreases from 1 to 0. The

same intuition applies symmetrically with the bid price as µ goes from 0 to 1. I start

with ask prices set by the competitive market maker ac, denoted by dotted lines in

Figure 2.1. At a glance, they behave similarly in both markets. Going from µ = 1

to 0.5, or weakening the prior belief, ac increases linearly. There is a linear trade

off between the participation of potentially informed traders, capturing the amount
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Figure 2.1: Ask and bid prices set by competitive, {ac, bc}, and myopic monopolis-
tic, {am, bm}, market makers under: (a) exogenous information acquisition; and (b)
endogenous information acquisition.

of information acquired, and the participation of noise traders, capturing the price

elasticity of their demand. As µ continues to decrease from 0.5 to 0, strengthening

the prior belief towards the high asset value, the linear relationship breaks down. ac

increases more slowly in Figure 2.1(b) under endogenous information acquisition than

in Figure 2.1(a) under exogenous information acquisition . As µ becomes stronger,

ac approaches the true value of the asset, potentially informed traders earn lower

expected profits and thus acquire less information. To maintain the zero profit condi-

tion, the market maker must set a lower ac to incentivise potentially informed traders.

This channel does not exist in the exogenous information acquisition example.

Next, I look at the prices set by a myopic monopolistic market maker {am, bm},

denoted by solid lines in Figure 2.1. In one period, this is equivalent to optimal

monopolistic prices. The spread is considerably wider than under competition in

both markets. A monopolistic market maker maximises profits and wider spreads

yield higher expected profits from trades with noise traders and lower expected losses

from trades with informed traders. However, he does not set the maximum spread

because noise traders are price elastic and their participation falls as the spread
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widens. Again, I consider the ask price am as prior belief µ decreases from 1 to

0. In Figure 2.1(a), with exogenous information acquisition, am increases linearly

until it reaches the high asset value H, at about µ = 0.4, after which it is constant.

After that point, the market maker closes the market to potentially informed buyers

and only trades with noise traders. In contrast, in Figure 2.1(b), with endogenous

information acquisition, the rate of increase falls and the ask price only reaches H at

about µ = 0.1.

The difference between the two examples is due to the price sensitivity of infor-

mation acquisition by potentially informed traders. Exogenously informed traders

always trade if the ask price am is below the true value. When the prior belief µ

is strong towards the high asset value, the market maker has a high expectation

that an informed trader submits a buy trade. He wants to make the least expected

losses when trading with these informed traders so he sets a high am. This price also

reduces the participation of noise traders but the effect on informed traders has a

greater impact on the market maker’s expected profits. However, endogenously in-

formed traders respond to wider spreads. They make lower profits from trading with

wider spreads so they acquire less information and trade less. For a given spread,

the market maker expects fewer informed trades under endogenous information ac-

quisition and can therefore set narrower spreads to increase the participation of noise

traders.

These examples motivate the two market characterisations from Section 2.3. The

first example with endogenous information acquisition satisfies the conditions for

information acquisition dominating informativeness from Definition (2.5). The second

example with exogenous information acquisition satisfies the conditions for crowding

out dominating informativeness from Definition (2.6). I refer to them by these general

characterisations in later sections.
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2.5 Market Microstructure

2.5.1 Prices and Volumes

The main result in this section is that endogenous information acquisition affects how

an optimal monopolistic market maker sets prices. He sets narrower spreads than

the myopic monopolist when information acquisition dominates informativeness, and

wider spreads when noise dominates informativeness. The inverse relation holds for

expected transactions volume. My model nests Leach-Madhavan as a special case of

the second market information structure. In the following propositions, the market

maker sets prices in the first of T trading periods. I suppress the subscript for t = 1

for clarity.

Proposition 2.3. If markets are open under both competitive and monopolistic mar-

ket makers and information acquisition dominates informativeness, then spreads are

narrower under an optimal monopolist than under a myopic monopolist. They are

also narrower under a competitive market maker than under a myopic monopolist.

Specifically: b∗ ≥ bm, bc ≥ bmand a∗ ≤ am, ac ≤ am.

Proposition 2.4. If markets are open under both competitive and monopolistic mar-

ket makers and noise dominates informativeness, then spreads are wider under an

optimal monopolist than under a myopic monopolist, which are wider than under a

competitive market maker. Specifically: bc ≥ bm ≥ b∗ and ac ≤ am ≤ a∗.

The relationship between prices set by a myopic monopolistic market maker and

those set by a competitive one is the same in both markets. A myopic monopolistic

market maker never sets narrower spreads than a competitive one because by defini-

tion, he makes negative expected profits by doing so. However, the prices set by an

optimal monopolistic market maker relative to a myopic one depend on the market
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information structure. If information acquisition dominates informativeness, an opti-

mal monopolist market maker facing multiple trading periods sets narrower spreads

while if noise dominates informativeness, he sets wider spreads.

The intuition for this price setting result is that an optimal monopolist market

maker who trades over multiple periods has the incentive to increase informativeness

of trades in the early periods because stronger beliefs yield higher expected profits

in later periods. By Proposition 2.1, the monopolist market maker’s value function

is convex in the prior belief µ so increasing the change of that prior, increases the

expected profit of the market maker. The next insight is that how the market maker

can change prices to increase the informativeness of trades depends on the market

information structure.

Propositions 2.3 and 2.4 describe the price setting of different market makers

within a market. However, I cannot use them to compare prices between markets

because my characterisation of market structure is insufficient to determine price

levels. It only describes how price changes affect the informativeness of trades. In

general, price levels are determined by the exact relationship between the information

arrival function of potentially informed traders X and the density function of noise

trader reservation values F .

I turn to my motivating examples to illustrate these results. Figure 2.2 plots first

period prices {a, b} and expected profits E[π] against prior belief µ with four market

maker types (competitive, myopic, optimal two period and optimal three period)

under my two market information structures.

Figures 2.2(a) and (c) plot the benchmark case in which crowding out dominates

informativeness. In Figure 2.2(a), the spread set by an optimal monopolistic market

maker is increasing in the number of trading periods. Also, both monopolistic spreads

are wider than the competitive one. In turn, the expected first period profits of an

optimal monopolistic market maker shown in Figure 2(c) are decreasing in the number
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Figure 2.2: Ask and bid prices {a, b} set by different market makers when: (a) crowd-
ing out dominates informativeness; and (b) information acquisition dominates infor-
mativeness. Expected first period profits E[π] earned by different market makers
under: (c) crowding out dominates informativeness; and (d) information acquisition
dominates informativeness. a∗(T ) denotes the first period ask price under an optimal
monopolistic market maker operating over T periods and so on. Also, am = a∗(1).
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of trading periods. He takes lower first period profits to increase the informativeness

of trades when there are more future periods to exploit that information.

Figures 2.2(b) and (c) plot the case in which information acquisition dominates

informativeness. Figure 2.2(b) contrasts with the benchmark in Figure 2.2(a). Now

the spread set by an optimal monopolistic market maker is decreasing in the num-

ber of trading periods. Note that both monopolists still set wider spreads than a

competitive market maker. While this holds in this example, in general the optimal

monopolistic market maker can set spreads which are narrower than the competitive

one with this market structure. Next, although spreads behave differently, expected

first period profits of an optimal monopolistic market maker shown in Figure 2(d)

are still decreasing in the number of trading periods. Again, more informative trades

come at the expense of first period profits.

Corollary 2.1. If markets are open and information acquisition dominates informa-

tiveness, the first period spreads set by an optimal monopolistic market maker are

weakly decreasing in the number of trading periods T .

Corollary 2.2. If markets are open and noise dominates informativeness, first period

spreads set by an optimal monopolistic market maker are weakly increasing in the

number of trading periods T .

Increasing the number of trading periods increases the incentive for the market

maker to increase informativeness in early periods because by Proposition 2.1, the

market maker has a convex value function. Then the market maker affects prices

through spreads depending on the market information structure as described by

Propositions 2.3 and 2.4.

Corollary 2.3. If markets are open with both competitive and monopolistic market

makers and information acquisition dominates informativeness, then expected trans-

action volume is higher under an optimal monopolist than under a myopic monopolist,
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and it is higher under a competitive market maker than under a myopic monopolist,

specifically: E[|q∗|] ≥ E[|qm|] and E[|qc|] ≥ E[|qm|].

Corollary 2.4. If markets are open with both competitive and monopolistic market

makers and noise dominates informativeness, then expected transaction volume is

lower under an optimal monopolist than under a myopic monopolist, which is lower

than under a competitive market maker, specifically: E[|q∗|] ≤ E[|qm|] ≤ E[|qc|].

The relationship between transaction volume and informativeness of trades is not

always the intuitive one. By Corollary 2.3, when information acquisition dominates

informativeness, higher transaction volume corresponds to more informative trades.

However, by Corollary 2.4, when noise dominates informativeness, the opposite holds

and lower transaction volume corresponds to more informative trades. With exoge-

nous information acquisition, Leach and Madhavan find only the second case.

Corollary 2.4 for the general model with elastic noise traders and a monopolis-

tic market maker shares the intuition of Corollary 1.3 for the model with inelastic

noise traders and a competitive market maker. By Corollary 1.3, for some range

of the proportion of potentially informed traders λ, lower expected transaction vol-

ume E[|q|] coincides with more informative trades. The two results are driven by

the participation of potentially informed traders relative to noise traders. Under the

conditions given by the corollaries, trades are more informative despite there being

fewer expected trades because a larger proportion of them are informed.

Returning to my motivating examples, Figure 2.3 plots expected transaction vol-

umes E[|q|] against prior belief µ in my examples using the same parameters as before.

Figure 2.3(a) plots expected transaction volumes under the price schedules from Fig-

ure 2.2(a), when crowding out dominates informativeness. The optimal monopolistic

market maker’s expected transaction volume E[|q∗|] is decreasing in the number of

his trading periods T . Similarly, Figure 2.3(b) corresponds to Figure 2.2(b), when
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Figure 2.3: Expected transaction volumes E[|q|] facing different market makers
when: (a) crowding out dominates informativeness; and (b) information acquisi-
tion dominates informativeness. E[|q∗(T )|] denotes the expected transaction vol-
ume under an optimal monopolistic market maker operating over T periods. Also
E[|qm|] = E[|q∗(1)|].

information acquisition dominates informativeness. Now, E[|q∗|] is increasing in T .

In both examples, there is higher expected transaction volume under a competitive

market maker E[|qc|] because he sets narrower spreads. However, it does not hold

in general. In a market where information acquisition dominates informativeness,

E[|q∗|] can be larger than E[|qc|].

Comparing between the two market structures, any given market maker type faces

higher expected transaction volume when crowding out dominates informativeness.

This relationship is not general to market structure type. There happens to be a di-

rect relationship between the motivating examples because the proportion of traders

are the same in both of them while potentially informed traders are either exoge-

nously or endogenously informed. Since exogenously informed traders always trade

but potentially informed traders only trade if they successfully acquire information,

there must be higher transaction volume in the first case.
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2.5.2 Dynamics of Prices

In Glosten-Milgrom, spreads always narrow after a trade which strengthens beliefs

and widen after a trade which weakens them. I find conditions under which spreads

can behave in the opposite direction, widening after a trade which strengthens beliefs

and narrowing after a trade which weakens them.

The price schedule is the function of equilibrium ask and bid prices {at, bt} set

by a market maker at time t for every possible prior belief µt. Price schedules are

characterised by whether for a given time t, spreads are symmetric and monotonically

narrowing or widening in the strength of beliefs, |µt− 1
2
|. I concentrate on the standard

case the price schedules imply spreads which narrow in the strength of beliefs although

in general, they need not be. The following results refer to the evolution of spreads

over time, from time t to t+ 1.

Corollary 2.5. If information acquisition dominates informativeness, optimal mo-

nopolistic spreads widen after a trade which strengthens beliefs, i.e. µt + 1 closer to 0

or 1. If crowding out dominates informativeness, optimal monopolistic spreads may

narrow after a trade which weakens beliefs, i.e. µt + 1 closer to 1
2
.

Although Corollaries 2.1 and 2.2 describe the relationship between first period

spreads and the total number of trading periods, this does not translate into the

dynamic behaviour of spreads because beliefs evolve endogenously between periods.

By Corollary 2.5, spreads may behave counterintuitively, widening after a trade which

strengthens beliefs, or narrowing after a trade which weakens them.

Figure 2.4 shows an example of each case. It plots the spreads at − bt for periods

t = 1 and t = 2 across beliefs µt. In Figure 2.4(a), information acquisition dominates

informativeness so spreads at t = 1, drawn with a solid line, are narrower than at

t = 2, drawn with a broken line, across beliefs µt. Consider an uninformative prior

belief in period 1, µ1 = 0.5 and a sell trade which strengthens beliefs in period 2 to
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Figure 2.4: Dynamic behaviour of spread at − bt after a trade which (a) strength-
ens beliefs when information acquisition dominates informativeness; and (b) weakens
beliefs when noise dominates informativeness.

µ2 = 0.65. In this example, the spread in period 2 is wider than in period 1.

In Figure 2.4(b), noise dominates informativeness so spreads at t = 1, solid line,

are wider than at t = 2, broken line, across beliefs µt. Now consider a prior belief in

period 1 at µ1 = 0.65 and a buy trade which weakens beliefs in period 2 to µ2 = 0.5.

In this example, the spread in period 2 is narrower than in period 1. Note that

neither of these outcomes are necessary. For example, in Figure 2.4(a), a larger µ2

could mean a narrower spread in period 2.

The counterintuitive spread dynamics are driven by the interaction of an op-

timal monopolistic market maker and market information structure. The optimal

monopolistic market maker sets price schedules which change over time and the mar-

ket information structure determines the direction of the change. The evolution of

spreads then depends on relative effects of the change in beliefs after a trade and the

difference in optimal spreads between each period.

While the examples above apply to realised trades over two periods, the results

also apply to expected trades over multiple periods. Starting from an uninformed

prior µ1 = 1
2
, expected beliefs grow monotonically stronger over time. If each period’s
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price schedule implies sufficiently wider spreads each period, it is possible for expected

spreads to widen every period from t = 1 to T .

2.5.3 Information Stoppage and the Steady State

I find a new phenomenon which I call ‘information stoppage’ in markets with endoge-

nous information acquisition. It occurs when potentially informed traders choose to

stop acquiring information while the market remains open. Unlike in exogenous in-

formation acquisition models, such as Glosten-Milgrom and Leach-Madhavan, prices

do not always converge to the true value in the steady state.

Definition 2.7. An ‘information stoppage’ occurs when a market is open and the

probability of an informed trade arriving is 0.

Potentially informed traders learn the true value of the asset through their in-

formation arrival function X. This function is bounded [0, 1] so it is possible for it

to be 0 for some range of its arguments (at, bt, µt). If the prior belief µt happens to

fall in that range, the market maker can set prices {at, bt} such that potentially in-

formed traders do not acquire information and do not trade. Then only noise traders

participate.

Corollary 2.6. If an information stoppage occurs in any period, the informativeness

of all subsequent trades is zero.

Corollary 2.6 follows from Definition 2.7 and the Bayes’ rule for updating beliefs

given in Equations 2.1 and 2.2. If an information stoppage occurs, all market partici-

pants know that potentially trades stop acquiring information. Trades stop revealing

any information. The market maker does not update beliefs or change prices. Both

are constant until the final period T and thus make up the steady state. By Definition

2.1 the market can still be open because prices are in the interior range of possible
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asset values (θ1, θ2). If a speculative trader who knows the true value of the asset,

he could make a profitable trade. However, during an information stoppage, traders

choose not to acquire information.

An information stoppage cannot arise with standard exogenously informed traders

because they are informed regardless of prices or beliefs. Potentially informed traders

endogenously choose to acquire information and can optimally choose not to. In the

standard case, prices always converge to the true value in the steady state. In mine,

this is not generally true. By Corollary 2.6, prices stop changing after an information

stoppage. Those prices make up the steady state and may diverge permanently from

the true value.

The possibility of information stoppages is entirely due to endogenous information

acquisition. They can occur in either of my market structure categories and under any

market maker type. A competitive market maker who sets prices under the zero profit

condition may encounter it by chance. A monopolistic market maker may choose to

induce an information stoppage because it removes potentially informed traders from

the market. If they have a weak demand for information, an information stoppage

means they can just trade with noise traders.

To illustrate information stoppage, my first motivating example with endogenous

information acquisition needs a slight addition. The original version does not exhibit

this feature because expected profits from speculative trades are always positive when

the market is open and the cost potentially informed traders pay starts at 0 so they

always acquire some amount of information. Therefore, I introduce a new fixed cost

of information acquisition D in addition to the variable cost from before. This is a

one period case so again I suppress time subscripts t. The objective function of a

potentially informed buyer becomes:

(1− µ)ωa(H − a)− 1

2
Cω2

a −D (2.12)
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and a seller becomes:

µωbb−
1

2
Cω2

b −D (2.13)

A potentially informed trader acquires the optimal amount of information given

by: ω∗a = 1
C

(1 − µ)(H − a) for buyers and ω∗b = 1
C
µb for sellers, as before. However,

now they also check their expected profit net of information acquisition cost and only

acquire information if it is positive. Otherwise, they do not acquire information or

trade. Figure 2.5 presents this example together with the originals for comparison. I

set parameter D = 0.005 for the new case and D = 0 refers to the first two. The other

parameters are as before. Figure 2.5(a) plots the price schedules {a, b} in the different

market structures. Figures 2.5(b) and (c) plot expected probabilities of information

arrival of potentially informed buyers, given by Xa, and sellers, given by Xb.

Now, I look in detail at potentially informed buyers and ask prices set by a mo-

nopolistic market maker a∗. Wide dotted lines represent the benchmark market with

fixed cost 0 while solid lines represent the market with fixed cost D = 0.005. In

Figure 2.5(c), the expected probability of information acquisition by potentially in-

formed buyers Xa are the same for prior beliefs µ = 0.24 to 1, regardless of the fixed

cost. However, for µ = 0 to 0.24, the myopic monopolistic market maker induces

potentially informed buyers to stop acquiring information in the market with fixed

cost D but not in the market with fixed cost 0. The corresponding prices in Figure

2.5(a) show that both markets remain open. Thus there is an information stoppage

on the buy side for this range of beliefs. A small price deviation is sufficient to cause

the information stoppage when compared to the market without a fixed cost. Note

that in this range, only a partial stoppage occurs because it is confined to potentially

informed buyers while sellers continue to acquire information. Buy trades become un-

informative but the market maker continues to update beliefs following a sell trade.

The behaviour of sellers and bid prices follow analogously.
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Figure 2.5: (a) Ask and bid prices {a, b}; (b) expected probability of information
acquisition by potentially informed sellers Xa; and (c) expected probability of infor-
mation acquisition by potentially informed buyers Xb; across markets with different
fixed costs and competitive and myopic monopolistic market maker types. ac(D)
denotes the ask price under a competitive market maker in a market with fixed cost
D = 0.005. E[Xc

b (0)] denotes the expected probability of information arrival by po-
tentially informed sellers under a competitive market maker in a market with fixed
cost 0 and so on.
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Although this example does not display a full information stoppage when all po-

tentially informed traders stop acquiring information, I can obtain a weaker version

of Corollary 2.6: the steady state ask price cannot exceed the one at which a partial

buy side stoppage occurs and vice versa for the steady state bid price. The partial

stoppage in my example is an artifact of separating buyers and sellers. In the general

model, potentially informed traders can both buy and sell so an information stoppage

affects both sides simultaneously.

2.5.4 Market Failure

One of Leach and Madhavan’s main objectives is to compare the robustness of markets

under a monopolistic versus a competitive market maker. Their robustness results

extend to my model because they are not affected by the introduction of potentially

informed traders. Leach and Madhavan find that with F concentrated in [θ1, θ2], if the

market is open under a competitive market maker, it is also open under a monopolistic

one. Furthermore, there are cases when a competitive market maker fails to open a

market but an optimal monopolistic one does, so monopolistic markets are more

robust. This result is driven by the multiperiod considerations of the monopolistic

market maker. If F is not concentrated in [θ1, θ2], the opposite result obtains that

competitive market makers are more robust than monopolistic ones. A monopolistic

market maker may set price outside the range (θ1, θ2) to close the market and take

advantage of noise traders whose reservation values lie there.

2.6 Conclusion

This chapter makes two main contributions. First, I develop a general multiperiod

framework for endogenous information acquisition by potentially informed traders

who can acquire information at variable cost. Crucially, prices now enter the deci-
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sion making of potentially informed traders. Thus, they affect the informativeness of

trades through two transmission channels: information acquisition and noise trading.

The first channel captures the effect of prices on ex ante expected profits of poten-

tially informed traders and thus the amount of information they acquire. The second

captures the participation of price elastic noise traders. I characterise markets by

the channel which dominates informativeness. If information acquisition dominates,

informativeness of trades decrease with spreads while if crowding out dominates, it

increases with spreads.

Second, I use my model to analyse the behaviour of a monopolistic market maker.

I find that his price setting behaviour depends on the market information structure,

setting narrower spreads if the information acquisition channel dominates. In con-

trast, with exogenous information acquisition, an optimal monopolistic market maker

sets wider spreads. I show this is a special case of a market where crowding out domi-

nates informativeness. Transaction volume and price dynamics also depend on market

structure and may operate counter to the standard intuition. If information acquisi-

tion dominates informativeness, the informativeness of trades increases with expected

transaction volume. Furthermore, spreads may widen over time on average.

My results suggest that endogenous information acquisition has a significant effect

on market outcomes. If it is indeed a feature of real markets, neglecting it in empirical

studies may be detrimental to their results.
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2.8 Appendix

2.8.1 Proofs

Proof of Proposition 2.1. To establish nonnegativity, I use the fact that the market

maker can post prices outside of the interval [θ1, θ2] in all periods and earn zero

expected profits. This sets the lower bound on the value function for all beliefs µ. To

establish convexity, consider a µ′ ∈ [µ, µ′′] for µ, µ′′ ∈ [0, 1] and µ′′ ≥ µ. I can then

write:

µ′ = φµ+ (1− φ)µ′′

where

φ = (µ′′ = µ′)/(µ′′ − µ)

Starting from the prior µ′, suppose there is a set of prices that could induce a posterior

of µ with probability φ and µ′′ with probability 1− φ. This is more informative than

prices that do not change the posterior because it could lead to a revision in beliefs.

Since the market maker cannot be worse off on average by learning the outcome from

these prices, it must be that:

φV ∗T−1(µ) + (1− φ)V ∗T−1(µ′′) ≥ V ∗T−1(µ′)

which is the requirement for convexity.

Proof of Proposition 2.2. By Bayes’ rule:

E
[
θ̃ |q = +1; a, b

]
=

λX(a, b)(1− µ)θ2 + (1− λ)(1− F (a))Eµ[θ̃]

λX(a, b)(1− µ) + (1− λ)(1− F (a))

E
[
θ̃ |q = −1; a, b

]
=

λX(a, b)µθ1 + (1− λ)F (b)Eµ[θ̃]

λX(a, b)µ+ (1− λ)F (b)
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Solve for (1−λ)(1−F (a))Eµ[θ̃] and (1−λ)F (b)Eµ[θ̃], substitute into Equation (2.4)

and rearrange to obtain:

π(a, b) =
(
a− E

[
θ̃ |q = +1; a, b

])
[λX(a, b)(1− µ) + (1− λ)(1− F (a))] +(

E
[
θ̃ |q = −1; a, b

]
− b
)

[λX(a, b)µ+ (1− λ)F (b)]

Since Pr(q = +1) = λX(a, b)(1−µ)+(1−λ)(1−F (a)) and Pr(q = −1) = λX(a, b)µ+

(1− λ)F (b), the the market maker’s profit in Equation (2.4) can be written as:

π(a, b) = Pr(q = +1)
(
a− E

[
θ̃ |q = +1; a, b

])
+Pr(q = −1)

(
E
[
θ̃ |q = −1; a, b

]
− b
)

and the result follows immediately.

Proof of Proposition 2.3. This proof closely follows the one for Proposition 3 in Leach

and Madhavan. First I show that ac < am with all market structures. Suppose the

opposite, ac > am. By definition of ac, the expected profits of am must be negative,

which contradicts the definition of am.

The next results hinge on the impact of prices on beliefs with different market

structures. I begin with the case when information acquisition dominates informa-

tiveness. Then, by Definition 2.5, ∂µ2(−1)
∂b

> 0 and ∂µ2(+1)
∂a

> 0 for all µ ∈ [0, 1] when

markets are open. Now suppose that am is the unique solution to the myopic monop-

olistic market maker’s problem and that am < a∗. By the definition of am, it must be

that π(am, b, µ) > π(a∗, b, µ). Since µ2 is increasing in a, the expected value functions

yield:

E
[
V ∗T−1(µ2(am, b, q̃(am)))

]
≥ E

[
V ∗T−1(µ2(a∗, b, q̃(a∗)))

]
However, this relation contradicts the definition of a∗. Therefore, if information

acquisition dominates informativeness, then ac ≤ am and a∗ ≤ am. The bid side is
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analogous and spread implications follow immediately.

Proof of Proposition 2.4. When crowding out dominates informativeness, by Defini-

tion 2.6, ∂µ2(−1)
∂b

< 0 and ∂µ2(+1)
∂a

< 0 for all µ ∈ [0, 1] when markets are open. Fix a

b and suppose that ac > a∗. Then µ2(+1, a∗) ≥ µ2(+1, ac) while µ2(−1) is the same

for either a. From Proposition 2.1, convexity of the value function implies:

E
[
V ∗T−1(µ2(ac, b, q̃(ac)))

]
≥ E

[
V ∗T−1(µ2(a∗, b, q̃(a∗)))

]
for any b. To satisfy the definition of a∗, it must also be that 0 ≤ π(ac, b, µ) ≤

π(a∗, b, µ). But this means that a∗ is lower than ac and yields non negative profits,

contradicting the definition that ac is the lowest ask price yielding non negative profits.

Therefore, it must be that a∗ ≥ ac.

Now suppose that am is the unique solution to the myopic monopolistic market

maker’s problem and that am > a∗. By the definition of am, π(am, b, µ) > π(a∗, b, µ).

Since µ2 is decreasing in a the expected value functions yield:

E
[
V ∗T−1(µ2(am, b, q̃(am)))

]
≥ E

[
V ∗T−1(µ2(a∗, b, q̃(a∗)))

]
However this relation contradicts the definition of a∗. Therefore, if crowding out

dominates informativeness, then ac ≤ am ≤ a∗. The bid side is analogous and spread

implications follow immediately.

2.8.2 Motivating Examples

I solve analytically for equilibrium prices in my motivating example with endogenous

information acquisition under a myopic market maker. The assumption of separate

buyers and sellers means I can consider his objective function for ask and bid prices

independently. I concentrate on the ask price. The linear demand function of noise
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buyers is α − βa and the optimal amount of information acquisition by potentially

informed buyers is ω∗a = 1
C

(1−µ)(V −a). I define BV (a) as the conditional probability

of a buy order occurring when v = V and B0(a), when v = 0. Then I have:

BV (a) =
1

2C
λ(1− µ)(V − a) +

1

2
(1− λ)(α− βa)

B0(a) =
1

2
(1− λ)(α− βa)

The market maker sets the ask price a to maximise expected profits from trade, given

prior belief µ:

max
a
µBV (a)(a− V ) + (1− µ)B0a

The unique solution is:

am =
1
C
µ2λV + (1− λ)(α + µβV )

1
C
µ2λ+ 2β(1− λ)

Similarly, for the bid price:

bm =
µ(1− λ)βV − (1− λ)(α− βV )

1
C

(1− µ)2λ+ 2β(1− λ)

Since this is an interior solution, I need to check that the demand and supply functions

of noise traders, and the optimal amount of information acquisition by potentially

informed traders are both within [0, 1] when choosing parameters α, β, λ, V and C.

If these bounds are exceeded, the solution is a boundary case.

For a myopic market maker with exogenous information acquisition, I follow the

same steps except that informed traders always acquire information. This yields
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prices:

am =
µλ+ 2(1− λ)(α + µβV )

4(1− µ)β

bm =
2(1− λ)((1 + µ)βV − α)− (1− µ)λ

4(1− µ)β

Again, I need to check that the demand and supply functions of noise traders are

within [0, 1] when choosing parameters α, β, λ and V . If these bounds are exceeded,

the solution is a boundary case.
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Chapter 3

Confidential Treatment Requests

3.1 Introduction

Regular mandatory disclosure of holdings by institutional investors allows fund in-

vestors to better evaluate the performance of the funds and help them in their asset

allocation and diversification decision. However, it also has its drawbacks1. Specif-

ically, other market participants may copy the trades of the investment managers

and thus free-ride on the latter’s research expertise. Frank et al. (2004), and Wang

and Varbeek (2010) use the term copycat funds to describe these investors2. The

mimicking trades of these copycats would make it more expensive for the investment

managers if they decide to acquire more shares in subsequent quarters. This may have

negative consequences on informational efficiency of markets if mandatory disclosure

reduces the information acquisition efforts of institutional investors. To balance the

1See Wermers (2001) on a discussion of how more frequent mandatory disclosure of mutual funds
could potentially reduce their profits.

2Frank et al. (2004) provide empirical evidence that after expenses, copycat funds earned sta-
tistically indistinguishable and possibly higher returns. They argue that if investors buy actively
managed funds to obtain high net-of-expenses returns, then copycat funds could potentially erode
their market share by offering comparable returns net of expenses. Wang and Varbeek (2010) show
that the relative success of copycat funds have improved after 2004, when the SEC increased the
mandatory disclosure frequency to quarterly from semi-annual previously.
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competing interests, a provision in Section 13(f) allows them to seek confidential

treatment for some of their holdings. If approved by the SEC, these holdings will be

disclosed at a later date, usually up to one year.

We show that confidential treatment requests impacts the trading strategy and

expected profits of institutional investors and the price informativeness of disclosed

trades. In this model, we examine the trading strategy of an informed investment

manager when he applies for confidential treatment. We assume that the manager

seeks confidential treatment on his initial trade to better exploit his private informa-

tion on the asset over two trading periods3. The manager trades in the first period and

applies for confidential treatment on this trade. The SEC decides whether to approve

this request before the manager trades in the second period. The model most similar

to ours is Huddart et al. (2001). Their model is an extension of Kyle (1985) with

mandatory disclosure of trades. A perfectly informed risk-neutral insider’s trades in-

clude a random noise component to disguise the information-based component of the

trades when they are publicly disclosed. This diminishes the market maker’s ability

to draw inferences on the insider’s information from his disclosed trades. The insider

therefore does not surrender his entire informational advantage after his first trade is

disclosed. The authors term this ‘trading strategy dissimulation’. Other theoretical

papers with variations of this dissimulation strategy include Zhang (2004), Zhang

(2008), Huang (2008) and Buffa (2010).

In our model, it follows that the manager cannot report the true fair value to the

SEC and use Huddart et al. (2001)’s dissimulation strategy at the same time. Accord-

ing to current SEC regulatory guidelines on confidential treatment requests, the fund

manager needs to detail a specific on-going investment program in his application.

The trade that he wants to delay disclosure therefore needs to be coherent with the

3There are other possible motives for confidential treatment requests, which are beyond the
scope of this chapter. They include manipulation (see Fishman and Hagerty (1995), and John and
Narayanan (1997)) and window-dressing (see Musto (1997), and Meier and Schaumburg (2006)).
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investment objective he reports to the SEC. For example, suppose the initial price of

the asset before he made his first trade is 10 and he reports the true fair value of 30 to

the SEC, his first trade needs to be a buy for the investment program to be coherent.

Adding a dissimulation noise term in the first trade may result in a sell instead of a

buy. This would result in the SEC rejecting the application.

We find that the equilibrium strategy of the manager is to dissimulate his reported

estimate of the fair value to the SEC. Back to the above example, it means that

he reports to the SEC a noisy signal that is a sum of the true fair value and a

random normally distributed noise term. This random noise term is proportional to

the unconditional variance of the fair value. Given this reported noisy signal, the

manager has an estimate of the fair value, using the projection theorem of normal

random variables. In the event that confidential treatment is denied, the random

noise term prevents the market-maker from perfectly inferring the true fair value.

Similar to Huddart et al. (2001), no invertible trading strategy can be part of a Nash

equilibrium if the manager does not add noise to the true fair value. Suppose the

manager reports the true fair value to the SEC. The market-maker will set a perfectly

elastic price in the event that the application is rejected and the manager’s trade is

disclosed. The manager thus would have an incentive to deviate from reporting the

true fair value, and make infinite trading profits in the second period if his application

is rejected.

Besides the initial trade, we also assume that the manager’s subsequent trade

is coherent with the reported estimate of the fair value of the asset, in the event

confidential treatment is granted. Let us suppose that the manager knows that the

true fair value is 20, the estimate he reported to the SEC is 30 and the price in the

first round of trading is 25. The manager is committed to buy in the second period if

he is granted confidential treatment, even though he is expected to make a loss if he

does so. We assume that non-compliance of the reported investment program would
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result in punitive costs in the form of rejections in future applications by the SEC.

We believe that this assumption is reasonable as the second trade is also observable

by the SEC. In addition, Agarwal et al. (2011) provide empirical evidence that past

confidential treatment denial rates is the single most important predictor of future

denial rates. Therefore it is important for managers to have a good filing track record

as it would affect the probability of success in future applications.

Although the granting of confidential treatment prevents the market-maker from

inferring the manager’s signal from his trade, the commitment to the reported invest-

ment program to the SEC reduces his expected profits. This is because the manager

would not be able to fully exploit his knowledge of the true fair value in the event his

application for confidential treatment is granted. We find that if the probability of

application success is below a certain threshold, the expected profits of the manager

is lower than in a scenario where he always discloses his trades, as in Huddart et al.

(2001).

To our knowledge, this is the first theoretical model that examines the impact of

confidential treatment requests on the trading strategies by informed traders. The

empirical literature is also relatively new as databases of institutional holdings like

Thomson Reuters Ownership Data generally do not include data on confidential hold-

ings. Agarwal et al. (2011), and Aragon et al. (2011) are two empirical studies that ex-

amine confidential treatment filings. Compared to other investment managers, hedge

funds are the most aggressive applicants for confidential treatment of their trades.

Both papers document that confidential holdings exhibit superior performance. The

first paper also finds a significant positive market reaction after the involuntary disclo-

sure of hedge funds’ holdings due to quick rejections of confidential treatment requests

by the SEC. The authors conclude that the rejections force the revelation of informa-

tion that has not been reflected in the stock prices, and this may disrupt the funds’

stock acquisition strategies. Their findings support the assumption in our model that
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confidential treatment applications are primarily for protecting private information.

This is in contrast to Cao (2011) who finds evidence that investment firms with poor

past trading performance use confidential treatment to hide the liquidation of stocks

in their portfolio that have performed poorly. Our model assumes that the manager

does not have such window-dressing motives.

The rest of this chapter is structured as follows. Section 3.2 discusses the SEC

regulatory guidelines on confidential treatment requests. Section 3.3 describes the

model under 2 different scenarios. In the first scenario, the SEC restricts the man-

ager’s second period trade such that it is consistent with his reported forecast, in

the event confidential treatment is granted. We believe that this scenario is the best

depiction of current SEC regulations. We also examine the case where there is no

restriction on the manager’s second period trade. Comparative statics is discussed in

Section 3.4, where we compare the model against a two-period Huddart et al. (2001)

and a two-period Kyle (1985) model. Section 3.5 concludes.

3.2 SEC Regulatory Guidelines on Confidential Treat-

ment Requests

Section 13(f) of the Securities Exchange Act of 1934 requires investment managers

(who manage more than US$100 million in assets) to publicly disclose their portfolio

holdings within 45 days after the end of every quarter. Section 13(f) was enacted

by Congress in 1975 to allow the public to have access to the information regarding

the purchase, sale and holdings of securities by institutional investors. However, the

mandatory disclosure of holdings before an ongoing investment program is complete

would be detrimental to the interests of the institutional investor and its fund in-

vestors. To balance these competing interests, the SEC allows institutional investors
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to apply for confidential treatment.

Generally, confidential treatment requests are granted if the investment manager

can demonstrate that confidential treatment is in the public interest or for the pro-

tection of the investors. According to the SEC 4, there are several key criteria that

the manager needs to fulfill for his confidential treatment request to be successful.

Firstly, the manager needs to detail a specific investment program. He needs to pro-

vide the SEC information regarding the program’s ultimate objective and describe

the measures taken during that quarter toward effectuating the program. He also

needs to provide information on the trades that are made in that quarter to support

the existence of the program. Secondly, the investment program must be an on-going

one that continues through the date of the filing. Thirdly, the manager must show

that the disclosure of the fund’s holdings would reveal the investment strategy to the

public. Lastly, he must demonstrate that failure to grant confidential treatment to the

holdings would harm the fund’s performance. This would include lost profit opportu-

nities due to mimicking strategies of other copycat investors as well as front-running

activities by other market participants. If the manager’s application is unsuccessful,

he is required to disclose the holdings within 6 business days.

We attempt to explicitly model the above guidelines. We assume that an informed

investment manager details a “a specific investment program” by submitting to the

SEC his signal of the fair value of the asset. This signal can be interpreted as a target

price for the manager. The manager also needs to submit a trade that he has already

made in the previous quarter which is consistent with the target price. In the event

he is granted confidential treatment, he has to continue trading in the subsequent

period in a manner that is consistent with the original target price. This is because

the investment program is an “on-going” one.

4See http://www.sec.gov/divisions/investment/guidance/13fpt2.htm for a description of the ap-
plication process for confidential treatment. These rules were introduced in 1998 to prevent invest-
ment managers to use confidential treatment requests as a tool to manipulate the market.
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The SEC application guidelines for confidential treatment requests imply that the

trades are typically large trades5 that have huge price impact and are done over more

than one quarter. The SEC receives about 60 such requests every quarter. A recent

example is Berkshire Hathaway’s (Warren Buffett’s investment holding company)

purchase of a 5.5 stake in IBM worth US$10 billion in 20116. The SEC allowed the

company to defer disclosure of the IBM trades by a quarter. Without confidential

treatment being granted, it is likely that the purchase would be more costly.

It is noted that the granting of confidential treatment by the SEC is not a guar-

anteed event. In their sample of confidential treatment requests from 1999 to 2007,

Agarwal et al. (2011) report that 17.4 were denied by the SEC. Even applications

by well-known investors like Warren Buffett’s Berkshire Hathaway have previously

been rejected7, with a 72.3 rejection rate from 65 applications. The distribution of

rejection rates shows considerable variation across managers.

3.3 Model

3.3.1 Set-up

This Kyle (1985)-type model employs a setting similar to the two-period model in

Huddart et al. (2001). There are two trading periods indexed by n ∈ {1, 2}. The

discount rate is normalised to zero for simplicity. There is one risky asset in the

market with a liquidation value of v, where v ∼ N (P0,Σ0). v is realised after the

second trading period. There are liquidity traders who summit exogenously generated

orders un in each trading period, where un ∼ N (0, σ2
u). We assume that u1, u2 and

5In Agarwal et al. (2011)’s sample, the average confidential holding represents 1.25
of all the shares outstanding by the issuer compared to the average of 0.68
for disclosed holdings.

6http://dealbook.nytimes.com/2011/11/14/one-secret-buffett-gets-to-keep/
7See http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aNd pTpcmBwA &re-

fer=news index
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v are all mutually independent.

A risk-neutral informed investment manager observes v perfectly before trading

commences. He decides to apply for confidential treatment for his first period trade

before making the trade. He trades x1 in the first period and declares to the SEC that

he has a signal θ of the asset value. Let D denote the event in which the first period

trade is disclosed (application is unsuccessful) and N denote the event in which the

trade is not disclosed (application is successful)8. The application for confidential

treatment is successful with a probability of α. The manager trades xN2 (xD2 ) in the

second period if the application is successful (unsuccessful).

There exists a competitive risk neutral market maker who sets prices. He cannot

distinguish the trades of the manager from the other uninformed orders of the liquidity

traders. He only observes the aggregate order flow yn in each period and sets the

price to be equal to the posterior expectation of v. The price is therefore semi-

strong efficient and the market-maker makes zero expected profits due to Bertrand

competition with potential rival market-makers. In the event that the manager’s first

period trade is disclosed, the market-maker updates his expectation of v to P ∗1 from

the first period price P1 before trading commences in the second period. Conversely,

if there is no disclosure, the market-maker infers that confidential treatment has been

granted.

If the manager decides to apply for confidential treatment, we show that an equi-

librium exists where he declares to the SEC that he has a signal θ, where θ = v + η,

η ∼ N
(
0, σ2

η

)
, and η is distributed independently of v and un. η is the noise term

that the manager adds to v when he applies for confidential treatment. Given θ, his

reported forecast of v is v′. According to the projection theorem of normal random

8Similar to Huddart et al. (2001), since trading occurs only once for every reporting period, the
disclosure of holdings is equivalent to the disclosure of trades.
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variables,

v′ = P0 +
Σ0

Σ0 + σ2
η

(θ − P0) (3.1)

As mentioned earlier, to stand any chance of getting SEC approval for confidential

treatment, the manager needs to report a coherent on-going trading program. This

means that his first period trade x1 must be consistent with v′. If his application

is successful, his second period trade also needs to be consistent with v′ and not

v. Using backward induction, this means that the manager chooses xN2 to maximise

his expected second period profits E (π2) as if his signal is v′ instead of v. His

maximisation problem is

xN2 ∈ arg max
xN2

E (π2|v′) (3.2)

Referring to the numerical example described in the introduction, we have P0 = 10,

P1 = 25, v = 20 and v′ = 30. The manager is committed to buy in the second period

(since v′ > P1) even though he would make an expected loss in this trade (since

v < P1). If the application is rejected, the informed trader is forced to disclose

his first period trade before trading commences in the second period. However, the

informed trader is now free to make use of his knowledge of v in his second period

trade xD2 as his trading strategy is now not bounded by the confidential treatment

request. In contrast to (3.2), the maximisation problem is now

xD2 ∈ arg max
xD2

E (π2|v) (3.3)

We define ΣN
1 and ΣD

1 as the amount of private information that the manager can

exploit in the second period of trading, in the event that confidential treatment is

granted and not granted respectively
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ΣN
1 = var (v′|y1) = var (v′ − P1) (3.4)

ΣD
1 = var (v|x1) = var (v − v′) (3.5)

Figure 3.1: Timeline of events of confidential treatment request

Figure 3.1 shows the timeline of the model.

3.3.2 SEC restricts the manager’s second period trade after

confidential treatment is granted

Proposition 3.1. If the investment manager applies for confidential treatment and

the SEC restricts his second period trade in the event confidential treatment is granted,

a subgame perfect linear equilibrium exists in which

1. The manager submits his noisy signal θ to the SEC whereby

θ = v + η, η ∼ N
(
0, σ2

η

)
σ2
η = hΣ0

where 0 ≤ h ≤ 1 is the only real positive root of the following equation, such that

λ1 > 0, λD2 > 0, λN2 > 0(
(1− α)2 − h

)√
(1− α)2 + h− α (1− α)2

√
h = 0
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2. The manager’s trading strategies and expected profits are of the linear form

x1 = β1 (v′ − P0)

β1 = σu√
Σ0

√
h(1+h)

(1−α)
λ1 =

√
Σ0

σu

(1−α)

((1−α)2+h)

√
h

1+h

xD2 = βD2 (v − v′) ΣD
1 = h

1+h
Σ0

xN2 = βN2 (v′ − P1) ΣN
1 = (1−α)2

(1+h)((1−α)2+h)
Σ0

βD2 = σu√
ΣD1

λD2 =

√
ΣD1

2σu

βN2 = σu√
ΣN1

λN2 =

√
ΣN1

2σu

E (π1) = β1(1−λ1β1)Σ0

1+h

E
(
πN2
)

=
σu
√

ΣN1
2

E
(
πD2
)

=
σu
√

ΣD1
2

3. The market-maker’s pricing rule is of the linear form

P1 = P0 + λ1y1

P ∗1 = v′

PD
2 = v′ + λD2 y

D
2

PN
2 = P1 + λN2 y

N
2

Proof: See Appendix

The main intuition of the proof is as follows. After computing xN2 and xD2 , by

backward induction, we derive the total expected profits in both periods and then

take the first order condition with respect to x1. The first order condition equation

will be in terms of v − P0 and x1. Following from Huddart et al. (2001), for the

mixed strategy θ = v + η, η ∼ N
(
0, σ2

η

)
to hold in equilibrium, the manager must

be different across all values of x1, as x1 is a function of θ. The coefficients of v − P0

and x1 must therefore be zero, resulting in two simultaneous equations. The other

parameters can then be solved.

The variance of the noise σ2
η that the manager adds to the forecast he submits

to the SEC is directly proportional to the unconditional variance of the fair value

Σ0. In the event that confidential treatment is granted, the second period trade
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xN2 = βN2 (v′ − P1) is a linear function of v′, in spite of the manager knowing that

the true fair value is v. On the other hand, if the confidential treatment request is

denied, the manager’s second period trade is xD2 = βD2 (v − v′) as the manager is now

free to make use of his knowledge of v.

The market-maker is able to infer v′ perfectly from x1 because x1 is a linear

function of v′−P0. He updates his expectation of v to P ∗1 = v′ from P1 before trading

commences in the second period.

3.3.3 SEC does not restrict the manager’s second period

trade

In the next proposition, we will examine the manager’s equilibrium trading strategy

if the SEC does not restrict his second period trade when confidential treatment is

granted. The manager is free to use his knowledge of v in his second period trade.

We add an upper hat to the endogenous parameters in this equilibrium to distinguish

them from those in Proposition 3.1. Therefore in contrast to (3.2), the manager’s

maximisation problem in the second period when confidential treatment is granted is

x̂N2 ∈ arg max
x̂N2

E (π̂2|v) (3.6)

Proposition 3.2. If the investment manager applies for confidential treatment and

the SEC does not restrict his second period trade, a subgame perfect linear equilibrium

exists in which

1. The manager submits his noisy forecast θ̂ to the SEC whereby

θ̂ = v + η̂, η̂ ∼ N
(
0, σ̂2

η

)
σ̂2
η = gΣ0

where 0 ≤ g ≤ 1 is the only real positive root of the following equation, such that

λ̂1 > 0, λ̂D2 > 0, λ̂N2 > 0
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α
√

g
g+1
− (1− α)

(
g2/3 (1− α)−4/3 − 1

)√ g2/3

1+g
(1−α)2/3+1

g−1/3(1−α)2/3+1
= 0

2. The manager’s trading strategies and expected profits are of the linear form

x̂1 = β̂1 (v̂′ − P0)

β̂1 = σu√
Σ0

(
1−α√
g

)1/3√
1 + g λ̂1 =

√
Σ0(1−α)

σu
(

1−α√
g

)1/3
(g1/3(1−α)1/3+1−α)

√
1+g

x̂D2 = β̂D2 (v − v̂′) Σ̂D
1 = g

1+g
Σ0

x̂N2 = β̂N2

(
v − P̂1

)
Σ̂N

1 =
g

1+g

(
1−α√
g

)2/3
+1(

1−α√
g

)2/3
+1

Σ0

β̂D2 = σu√
Σ̂D1

λ̂D2 =

√
Σ̂D1

2σu

β̂N2 = σu√
Σ̂N1

λ̂N2 =

√
Σ̂N1

2σu

E (π̂1) =
β̂1(1−λ̂1β̂1)Σ0

1+g

E
(
π̂N2
)

=
σu
√

Σ̂N1
2

E
(
π̂D2
)

=
σu
√

Σ̂D1
2

3. The market-maker’s pricing rule is of the linear form

P̂1 = P0 + λ̂1ŷ1

P̂ ∗1 = v̂′

P̂D
2 = v̂′ + λ̂D2 ŷ

D
2

P̂N
2 = P̂1 + λ̂N2 ŷ

N
2

Proof: See Appendix

Since the manager is free to use his knowledge of v, his second period trade given

confidential treatment is x̂N2 = β̂N2

(
v − P̂1

)
instead of β̂N2

(
v′ − P̂1

)
. Similar to the

result in Proposition 3.1, the variance of the noise σ̂2
η that the manager adds to the

forecast he submits to the SEC is also directly proportional to the unconditional

variance of the fair value Σ0.

Corollary 3.1. Under both scenarios in Propositions 3.1 and 3.2, a) if α = 0, the

equilibrium is equivalent to a two-period Huddart et al. (2001) model; b) if α = 1, the

equilibrium is equivalent to a two-period Kyle (1985) model.

If α = 0, the manager has no chance of getting confidential treatment. Therefore
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he always discloses his first period trade and this is equivalent to a two-period Huddart

et. al (2001) model. The manager adds η to v when he reports his signal to the

SEC, where σ2
η = Σ0. The manager’s first period of trade has the same amount of

dissimulation as in a two-period Huddart et al. (2001) model9. Similarly, if α = 1,

the manager is always successful in getting confidential treatment. His first period

trade is x1 = β1 (v − P0) and he reports θ = v to the SEC. His second period is

x2 = βN2 (v − P1) as this is consistent with his reported signal v to the SEC. This

scenario is thus equivalent to a two-period Kyle (1985) model.

3.4 Comparative Statics

In this section, we will focus on analysing the parameters in Proposition 3.1 and 3.2.

We first compare the total expected profits against those that the manager is expected

to receive if he always discloses his initial trade.

3.4.1 Manager’s Profits

Proposition 3.3. Compared with the expected profits where the manager always dis-

closes his initial trade (as in Huddart et al. (2001)), a) if the SEC restricts the

second period trade in the event confidential treatment is granted, the manager’s ex-

pected profits will be lower if 0 ≤ α ≤ α∗, where α∗ ≈ 0.361; b) if the SEC does not

restrict the second period trade, the manager’s expected profits will be always higher

for 0 ≤ α ≤ 1

Proof: See Appendix

9The first period trade in a two-period Huddart et al. (2001) model is x1 = β1 (v − P0) + z1,

where z1 is the dissimulation term that has a variance of
σ2
u

2 . In Proposition 3.1, the first period

trade can be expressed as x1 = β1Σ0

Σ0+σ2
η

(v − P0) + β1Σ0

Σ0+σ2
η
η. It follows that if σ2

η = Σ0, the equilibrium

in Proposition 3.1 is equivalent to Huddart et al. (2001)’s. The same applies for Proposition 3.2 too.
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Figure 3.2: Total expected profits of manager under the 2 different assumptions

Fig 3.2 shows the total expected profits (over the two periods) of the manager when

he applies for confidential treatment, under the scenarios in Propositions 3.1 and 3.2.

The total expected profits under the two-period Huddart et al. (2001) equilibrium

is σu

√
Σ0

2
, while those of a two-period Kyle (1985)10 is approximately 0.878σu

√
Σ0.

As discussed in Corollary 3.1, the equilibrium under both scenarios is equivalent to

a two-period Huddart et al. (2001) model if α = 0, and a two-period Kyle (1985)

model if α = 1. For all values of α between 0 and 1, the total expected profits in

the equilibrium with no second period trade restriction is higher than σu

√
Σ0

2
. On

the other hand, in the equilibrium with the second period trade restriction, the total

expected profits are lower than σu

√
Σ0

2
for 0 ≤ α ≤ α∗.

10See Huddart et al. (2001). The paper’s Proposition 2 shows the expected profits of a two-period
Huddart et al. (2001) dissimulation equilibrium, while Proposition 1 shows the expected profits in a

two-period Kyle (1985) model. Note that there is a typo in Proposition 1: E (π1) =

√
2K(K−1)

4K−1 σu
√

Σ0

instead of E (π1) = 2K(K−1)

(4K−1)2
σu
√

Σ0.
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Figure 3.3: Comparison of expected profits with tTwo-period Huddart et al. (2001)
model

To understand why the manager might have lower expected profits if he applies for

confidential treatment in the scenario in Proposition 3.1, let us examine the expected

profits in both periods separately. Figure 3.3 shows the comparison of the expected

profits of the manager in the scenarios of Proposition 3.1 and 3.2 against those of a

two-period Huddart et al. (2001) model, where the insider always discloses his first

trade. In their model, the informed insider earns the same expected profits σu
2

√
Σ0

2

in both periods. In our model under both scenarios, the manager always earns higher

expected profits in the first period, i.e. E (π1) ≥ σu
2

√
Σ0

2
and E (π̂1) ≥ σu

2

√
Σ0

2
.

This is because both σ2
η and σ̂2

η are less than Σ0, implying that the manager is more

aggressive in exploiting his information in the first period. In the second period, in

the event that confidential treatment is denied, the disclosure of the first period trade

results in both E
(
πD2
)

and E
(
π̂D2
)

to be lower than σu
2

√
Σ0

2
. This is because the

market-maker updates the price to reflect the information contained in the disclosed

trade, reducing the information advantage that the manager can exploit in the second

period.

The comparison results diverge in the event that confidential treatment is granted.

We find that E
(
π̂N2
)
≥ σu

2

√
Σ0

2
for all values of α between 0 and 1, while E

(
πN2
)
≤

σu
2

√
Σ0

2
for 0 ≤ α ≤ 0.485. Under the scenario in Proposition 3.1, the manager is only

able to trade based on his knowledge of v′ instead of v. His information advantage in
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Figure 3.4: Expected profits of manager in the 2 trading periods under the assumption
that the SEC restricts the second period trade if confidential treatment request is
successful

the second period is therefore reduced with this restriction. The reduction in expected

profits in E
(
πN2
)

causes E (π2) ≤ σu
2

√
Σ0

2
for 0 ≤ α ≤ 0.854. Figure 3.4 shows the

breakdown in the expected profits of the manager in Proposition 3.1 graphically.

As discussed earlier, ΣD
1 and ΣN

1 measure the amount of private information that

the manager can exploit in the second period of trading. These parameters are related

to the second period expected profits since E
(
πD2
)

=
σu
√

ΣD1
2

and E
(
πN2
)

=
σu
√

ΣN1
2

.

It appears that ΣN
1 should always be greater than ΣD

1 since disclosing the first period

trade will result in a loss in the information advantage of the manager. However, if

confidential treatment is not granted, the manager can make use of his knowledge of

v, while if it is granted, he can only exploit his knowledge of v′. Figure 3.5 shows the

relationship between ΣD
1 , ΣN

1 and E (Σ1) = αΣN
1 + (1− α) ΣD

1 with α. Interestingly,

we find that ΣD
1 > ΣN

1 for 0 ≤ α ≤ 0.209. In contrast, in the scenario where the SEC
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does not restrict the manager’s second period trade, we find that Σ̂D
1 < Σ̂N

1 for all

values of α between 0 and 1. This is shown in Figure 3.5.

Figure 3.5: Information advantage of manager in the 2nd period under the assumption
that the SEC restricts the second period trade if confidential treatment request is
successful

3.4.2 Noise Added to Reported Forecast to the SEC

Corollary 3.2. a) Under both scenarios in Propositions 3.1 and 3.2, the manager

adds less noise to his reported forecast to the SEC as α increases. b) The manager

adds less noise in the equilibrium in Proposition 3.1 compared to that in Proposition

3.2.

Figure 3.7 shows the relationship between α and the noise that the manager adds

to the forecast that he submits to the SEC. As α increases, the manager adds less

noise to the forecast, i.e. both
dσ2
η

dα
and

dσ̂2
η

dα
are negative. This is because adding more
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Figure 3.6: Information advantage of manager in the 2nd period under the assumption
that the SEC does not restrict the second period trade

noise in the forecast would be more beneficial to the manager ex-post, in the event

that his application is rejected. If α = 1, the equilibrium is a two-period Kyle (1985)

model where there is no noise (the manager reports the true fair value of v to the

SEC), while if α = 0, the equilibrium is a two-period Huddart et al. (2001) model

where the noise term is Σ0 . In addition, we note that σ2
η ≤ σ̂2

η for all values of α

between 0 and 1. Adding more noise to the forecast would result in a v′ that varies

more from the true fair value v. If the SEC forces the manager to trade based on the

reported v′ in the event that confidential treatment is granted, the manager would

forgo substantial trading profits if he adds too much noise in his application in the

first period. The restriction on the second period trade therefore forces the manager

to be more truthful in the forecast that he submits to the SEC.
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Figure 3.7: Noise added to the forecast by manager in his confidential treatment
request under the 2 different assumptions

3.4.3 Price Impact of Disclosed Trade

Upon facing a rejection of the confidential treatment request, the manager needs to

disclose his first period trade. The market-maker updates the price from P1 to P ∗1 = v′

before trading commences in the second period. The price impact of the disclosed

trade is

E

(
v′ − P1

x1

)
=

1

β1

− λ1 (3.7)

The first period trade x1 thus has a price impact of λ1 on P1 and another price impact

of 1
β1
−λ1 when it is disclosed. Following from Proposition 2 in Huddart et al. (2001),

if the manager does not apply for confidential treatment, the corresponding price

impact of the disclosed trade is 1
2σu

√
Σ0

2
.
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Figure 3.8: Price impact if manager’s trade is disclosed due to unsuccessful confiden-
tial treatment request under the 2 different assumptions

Figure 3.8 depicts the positive relationship between the price impact of the dis-

closed trade and α. The price impact due to a confidential treatment request denial

is greater than that of a voluntarily disclosed trade (where α = 0). If managers with

a better market reputation of uncovering the fair value of stocks like Warren Buffett

are assigned a higher α, then it follows that their disclosed trades due to confidential

treatment denials will result in a larger price impact. In addition, we note that the

price impact under the scenario where the SEC restricts the second period trade is

greater than the price impact under the scenario where there are no restrictions, i.e.

1
β1
−λ1 ≥ 1

β̂1
− λ̂1. This follows from Figure 3.7, as the manager adds less noise under

the first scenario and therefore the disclosed trade is more informative.

Agarwal et al. (2011) document a significant positive market reaction associated

with involuntary disclosure of positions due to relatively quick confidential treatment
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denials11 by the SEC. The authors attribute the market reaction as evidence support-

ing the private information motive of confidential treatment requests. The results of

our model imply that the market reaction would be greater for managers with higher

α.

3.4.4 Liquidity

We next examine the welfare implications of liquidity traders if the manager applies

for confidential treatment. Compared to the case where the manager always dis-

closes his initial trade, confidential treatment implies greater information asymmetry

between the manager and the market maker. We would expect greater transaction

costs for liquidity traders as market depth decreases. Figure 3.9 depicts the relation-

ship between α and the market-maker’s liquidity parameters in Proposition 3.1. In

the two-period Huddart et al. (2001) model, λ1 = λ2 = 1
2σu

√
Σ0

2
. Since the liquidity

parameters in the second period λN2 and λD2 are different and liquidity traders by

definition cannot choose when they can trade, we compute the expected value of the

liquidity parameter in the second period: E (λ2) = αλN2 + (1− α)λD2 . It can be seen

that λ1 ≥ 1
2σu

√
Σ0

2
for all values of α, while that is not true for E (λ2). However the

average liquidity parameter λ1+E(λ2)
2

over the two periods is greater than 1
2σu

√
Σ0

2
for

α ≥ α∗ . We therefore conclude that liquidity traders are worse off if the investment

manager applies for confidential treatment. We also arrive at the same conclusion

when there is no restriction in the second period trade by the SEC, as shown in Figure

3.10. In this scenario, even E
(
λ̂2

)
is greater than 1

2σu

√
Σ0

2
.

11They classify these quick denials as filings that are denied within 45-180 days after the quarter-
end portfolio date.
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Figure 3.9: Liquidity parameter under the assumption that the SEC restricts the
second period trade if confidential treatment request is successful

3.4.5 Potential Policy Change

Under current SEC policy, the manager needs to make the initial trade before he

submits his confidential treatment request, to prove that the trade is part of an

ongoing trading program. As discussed earlier, the manager faces the risk that the

application is rejected and the trade is disclosed. A potential policy change that

increases the manager’s welfare would be for him to apply for confidential treatment

and the SEC making the decision on the request before trading commences. Similar to

the scenario in Proposition 3.2 where there is no restriction on the manager’s second

period trade, he would always apply for confidential treatment. The manager would

be in a two-period Kyle (1985) equilibrium with probability α, and Huddart et. al

(2001) equilibrium with probability 1−α. The manager’s profit functions under both

scenarios in Propositions 3.1 and 3.2 are convex in α (see Figure 3.2 for 0 ≤ α ≤ 1.
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Figure 3.10: Liquidity parameter under the assumption that the SEC does not restrict
the second period trade

This is because in the event of a successful application, he does not forgo any expected

profits by adding noise in the initial trade, unlike the earlier scenarios. Therefore the

manager would be better off with this change in policy. Correspondingly, expected

liquidity falls and noise traders are worse off.

3.5 Conclusion

Our primary contribution is a theoretical model which describes market microstruc-

ture with confidential treatment requests of trades by investment managers. These

trades are typically large ones that have huge price impact and are done over more

than one quarter. The key feature we capture is that the SEC requires the manager to

present a coherent on-going trading program in his application for confidential treat-
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ment. In the event his confidential treatment request is granted, he has to trade in

a manner consistent with his reported forecast in the subsequent period. We assume

that failure to do so would result in future rejections by the SEC and model this as an

exogenous restriction in the manager’s second period trade. Analogous to Huddart

et al. (2001)’s dissimulation trading strategy, in equilibrium, the manager adds noise

to the forecast that he reports to the SEC.

Our model explains various stylized facts described in the empirical literature.

Although all investors can apply for confidential treatment, not everybody does. Fur-

thermore, when they do apply, they are not always successful. Our model predicts

that with the SEC restriction in the second period, managers only earn higher ex-

pected profits if their probability of successful application is higher than a certain

threshold. If there is no such restriction, expected profits would always be higher.

This is consistent with managers having heterogeneous probabilities of success. For

instance, funds that employ quantitative and statistical arbitrage trading strategies

involving multiple assets may find it more difficult to convince the SEC that disclo-

sure would reveal the trading strategy to the public and harm its performance12. This

is because the SEC will only grant confidential treatment on a position-by-position

basis. In addition, Agarwal et al. (2011) report that hedge funds with higher past re-

jection rates are more likely to be rejected again in future applications which supports

the assertion that the probability of success is a fund characteristic.

Aragon et al. (2011) and Agarwal et al. (2011) both find confidential holdings

of hedge funds yield superior performance. In our model, trading after a successful

application has higher expected profits whenever managers find it ex ante optimal to

apply. Agarwal et al. (2011) further report a significant positive market reaction after

12See http://sec.gov/rules/other/34-52134.pdf. It is a rejection letter issued by the SEC on Two
Sigma Investments LLC confidential treatment request in 2005. The fund uses trading strategies
based on statistical models. In another case, D.E. Shaw & Company, a large quant-oriented hedge
fund manager filed for confidential treatment for its entire second quarter portfolio in 2007. Their
request was rejected and they were forced to disclose their whole portfolio valued at US$79 billion.
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the involuntary disclosure of hedge funds’ trades following rejections of confidential

treatment requests. We also find that in our model. The noise that the manager

adds to the first period trade successfully obscures some of his private information

which can be exploited in the second period. However, a failed application reveals

this information and prices react accordingly.

Finally, we examine the impact of confidential treatment provisions on market

liquidity and the welfare of liquidity traders. We find that market depth is lower

when the manager applies for confidential treatment. Liquidity traders will be worse

off.
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3.7 Appendix

Proof of Proposition 3.1. If the application is not successful, his first period trade

will be disclosed. The market-maker observes x1 and is able to infer v′ perfectly. The

price of asset will be adjusted to v′ before the second round of trading commences.

Assume that

xD2 = βD2 (v − v′) (3.8)

PD
2 = v′ + λD2 y

D
2

If the application is successful, his first period trade will not be disclosed. Assume

that

xN2 = βN2 (v′ − P1) (3.9)

PN
2 = P1 + λN2 y

N
2
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The model is solved by backward induction. Let us first analyse the scenario in

which the application is not successful and the informed trader is forced to disclose

his first period trade. The informed trader maximises second period profits

E
[(
v − PD

2

)
xD2 |v

]
= E

[(
v − v′ − λD2 xD2

)
xD2
]

Taking first order condition with respect to xD2 results in the following equations

xD2 =
1

2λD2
(v − v′)

βD2 =
1

2λD2
(3.10)

E
[
πD2 (v′, v)

]
=

1

4λD2
(v − v′)2

In the event that the application is successful, the informed trader has to choose

xN2 that is coherent with v′. This means that xN2 is chosen such that it maximises

second period profits as if the informed trader has a signal v′.

E
[(
v − PN

2

)
xN2 |v′

]
= E

[(
v′ − P1 − λN2 xN2

)
xN2
]

Taking first order condition with respect to xN2

xN2 =
1

2λN2
(v′ − P1)

βN2 =
1

2λN2
(3.11)

Since the informed trader knows v instead of v′, the expected profits in the second
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period when confidential treatment is granted is

E
[
πN2 (P1, v

′) |v
]

= E
[(
v − PN

2

)
xN2 |v

]
=

1

2λN2

(
v − v′

2
− P1

2

)
(v′ − P1)

Stepping back to the first period, the total expected profits in both periods is

E
[
(v − P1)x1 + (1− α) πD2 (v′, v) + απN2 (P1, v

′) |v
]

= E

 (v−P 0 − λ1x1)x1 + 1−α
4λD2

(
v − P0 − x1

β1

)2

+ α
2λN2

(
v − P0− x1

2β1
− λ1x1

2

)(
x1
β1
− λ1x1

)


Taking first order condition with respect to x1

(v−P 0)

(
1− 1− α

2λD2 β1

+
α

2λN2

(
1

β1

− λ1

))
+x1

(
−2λ1 +

1− α
2λD2 β

2
1

− α

2λN2

(
1

β2
1

− λ2
1

))
= 0

The second-order condition is

−2λ1 +
1− α
2λD2 β

2
1

− α

2λN2

(
1

β2
1

− λ2
1

)
≤ 0

Following from Huddart et al. (2001), for the mixed strategy θ = v + η, η ∼

N
(
0, σ2

η

)
to hold in equilibrium, the manager must be indifferent across all values of

x1, as x1 is a function of θ. We seek positive values of λ1, λD2 and λN2 such that

1− 1− α
2λD2 β1

+
α

2λN2

(
1

β1

− λ1

)
= 0

and

−2λ1 +
1− α
2λD2 β

2
1

− α

2λN2

(
1

β2
1

− λ2
1

)
= 0

Re-arranging terms,

β1 =
1

λ1

− 1− α
2λD2

(3.12)
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and

β1 =
2λN2 − αλ1

λ1 (4λN2 − αλ1)
(3.13)

Using the projection theorem of normal random variables on y1, yN2 and yD2 , we

obtain

λ1 =

β1Σ2
0

Σ0+σ2
η

β2
1Σ2

0

Σ0+σ2
η

+ σ2
u

(3.14)

ΣD
1 =

σ2
η

Σ0 + σ2
η

Σ0 (3.15)

ΣN
1 =

Σ2
0

Σ0 + σ2
η

−

(
β1Σ2

0

Σ0+σ2
η

)2

β2
1Σ2

0

Σ0+σ2
η

+ σ2
u

(3.16)

λD2 =
βD2 ΣD

1

βD
2

2 ΣD
1 + σ2

u

(3.17)

λN2 =
βN2 ΣN

1

βN
2

2 ΣN
1 + σ2

u

(3.18)

(3.10) and (3.17) imply

βD2 =
σu√
ΣD

1

(3.19)

λD2 =

√
ΣD

1

2σu
(3.20)

while (3.11) and (3.18) imply

βN2 =
σu√
ΣN

1

(3.21)

λN2 =

√
ΣN

1

2σu
(3.22)

Substituting (3.14), (3.15) and (3.20) into (3.12) gives us
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β1 =
σuση

(1− α) Σ0

√
Σ0 + σ2

η

Σ0

(3.23)

λ1 =
(1− α) Σ0ση

σu
(
σ2
η + (1− α)2 Σ0

)√ Σ0

Σ0 + σ2
η

(3.24)

Substituting (3.16), (3.22), (3.23) and (3.24) into (3.13) results in the following

equation for σ2
η

(
(1− α)2 − h

)√
h+ (1− α)2 − α (1− α)2

√
h = 0 (3.25)

where σ2
η = hΣ0

Expected profits in first period

E (π1) = E [(v − P1)x1|v]

= E [(v − P0 − λ1β1 (v′ − P0)) β1 (v′ − P0)]

= β1(1−λ1β1)Σ0

1+h

Expected profits in second period with successful application

E
(
πN2
)

= E
[(
v − PN

2

)
xN2 |v

]
= E

[(
v − v′ + 1

2
(v′ − P1)

)
βN2 (v′ − P1)

]
=

βN2 ΣN1
2

Expected profits in second period with unsuccessful application

E
(
πD2
)

= E
[(
v − PD

2

)
xD2 |v

]
= E

[
1
2
βD2 (v − v′)2]

=
βD2 ΣD1

2
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Proof of Proposition 3.2. If the manager’s second period trade is not enforced by the

SEC in the event he is granted confidential treatment, he is free to use v instead of

v̂′. Therefore we have

x̂N2 = β̂N2

(
v − P̂1

)
(3.26)

E
[
π̂N2

(
P̂1, v

)
|v
]

= E
[(
v − P̂N

2

)
x̂N2 |v

]
=

1

4λ̂N2

(
v − P̂1

)2

Similar to the proof in Proposition 3.1, we obtain

β̂N2 =
1

2λ̂N2
(3.27)

x̂D2 = β̂D2 (v − v̂′) (3.28)

β̂D2 =
1

2λ̂D2
(3.29)

Stepping back to the first period, the total expected profits in both periods is

E
[(
v − P̂1

)
x̂1 + (1− α) π̂D2 (v̂′, v) + απ̂N2

(
P̂1, v

)
|v
]

= E

[(
v−P 0 − λ̂1x̂1

)
x̂1 + 1−α

4λ̂D2

(
v − P0 − x̂1

β̂1

)2

+ α

4λ̂N2

(
v − P0−λ̂1x̂1

)2
]

Taking first order condition with respect to x1

(v−P 0)

(
1− 1− α

2λ̂D2 β̂1

−αλ̂1

2λ̂N2

)
+ x̂1

(
−2λ̂1 +

1− α
2λ̂D2 β̂

2
1

+
αλ̂2

1

2λ̂N2

)
= 0

The second-order condition is

−2λ̂1 +
1− α
2λ̂D2 β̂

2
1

+
αλ̂2

1

2λ̂N2
≤ 0

For the mixed strategy θ = v + η, η ∼ N
(
0, σ̂2

η

)
to hold in equilibrium, the
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manager must be different across all values of x̂1, as x̂1 is a function of θ. We seek

positive values of λ̂1, λ̂D2 and λ̂N2 such that

1− 1− α
2λ̂D2 β̂1

−αλ̂1

2λ̂N2
= 0

and

−2λ̂1 +
1− α
2λ̂D2 β̂

2
1

+
αλ̂2

1

2λ̂N2
= 0

Re-arranging terms

β̂1 =
2λ̂N2 − αλ̂1

λ̂1

(
4λ̂N2 − αλ̂1

) (3.30)

λ̂1 =
1− α

β̂1

(
2λ̂D2 β̂1 + 1− α

) (3.31)

Using the projection theorem of normal random variables on ŷ1 , ŷN2 and ŷD2 , we

obtain

λ̂1 =

β̂1Σ2
0

Σ0+σ̂2
η

β̂2
1Σ2

0

Σ0+σ̂2
η

+ σ2
u

(3.32)

Σ̂D
1 =

σ̂2
η

Σ0 + σ̂2
η

Σ0 (3.33)

Σ̂N
1 = Σ0−

(
β̂1Σ2

0

Σ0+σ̂2
η

)2

β̂2
1Σ2

0

Σ0+σ̂2
η

+ σ̂2
u

(3.34)

λ̂D2 =
β̂D2 Σ̂D

1

β̂D
2

2 Σ̂D
1 + σ2

u

(3.35)

λ̂N2 =
β̂N2 Σ̂N

1

β̂N
2

2 Σ̂N
1 + σ2

u

(3.36)

(3.29) and (3.35) imply

β̂D2 =
σu√
Σ̂D

1

(3.37)
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λ̂D2 =

√
Σ̂D

1

2σu
(3.38)

while (3.27) and (3.36) imply

β̂N2 =
σu√
Σ̂N

1

(3.39)

λ̂N2 =

√
Σ̂N

1

2σu
(3.40)

Substituting (3.32), (3.33) and (3.38) into (3.31) gives us

β̂1 = σu

(
1− α
Σ0σ̂η

)1/3
√

Σ0 + σ̂2
η

Σ0

(3.41)

λ̂1 =
1− α

σu

(
1−α
Σ0σ̂η

)1/3
(
σ̂η

(
1−α
Σ0σ̂η

)1/3

+ 1− α
)√ Σ0

Σ0 + σ̂2
η

(3.42)

Substituting (3.34), (3.40), (3.41) and (3.42) into (3.30) results in the following

equation for σ̂2
η

α

√
g

g + 1
− (1− α)

(
g2/3 (1− α)−4/3 − 1

)√√√√ g2/3

1+g
(1− α)2/3 + 1

g−1/3 (1− α)2/3 + 1
= 0 (3.43)

where σ̂2
η = gΣ0

Expected profits in first period

E (π̂1) = E
[(
v − P̂1

)
x̂1|v

]
= E

[(
v − P0 − λ̂1β̂1 (v̂′ − P0)

)
β̂1 (v̂′ − P0)

]
=

β̂1(1−λ̂1β̂1)Σ0

1+g
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Expected profits in second period with successful application

E
(
π̂N2
)

= E
[(
v − P̂N

2

)
x̂N2 |v

]
= E

[
1
2
β̂N2

(
v − P̂1

)2
]

=
β̂N2 Σ̂N1

2

Expected profits in second period with unsuccessful application

E
(
π̂D2
)

= E
[(
v − P̂D

2

)
x̂D2 |v

]
= E

[
1
2
β̂D2 (v − v̂′)2

]
=

β̂D2 Σ̂D1
2

Proof of Proposition 3.3. If the SEC constraints the manager’s second period trade,

the manager’s total profits is lower than those obtained from a trading strategy of

disclosure as in Huddart et al. (2001) if

E (π1) + αE
(
πN2
)

+ (1− α)E
(
πD2
)
≤σu

√
Σ0

2
(3.44)

From the plot of the expected profit function in Figure 3.2, there is a threshold value

of α which we will call α∗, below which total expected profits from application are

lower than with disclosure. α∗ satisfies the equality

E (π1) + αE
(
πN2
)

+ (1− α)E
(
πD2
)

=σu

√
Σ0

2
(3.45)

Substituting the profit functions in Proposition 3.1 into (3.45)

1− α√
1 + h

 2
√
h

h+ (1− α)2 +
α√

h+ (1− α)2
+
√
h

−√2=0 (3.46)
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Notice that the exogenous parameters σu and Σ0 are not present in (3.46). From

(3.46) and (3.25), we obtain numerically to 3 decimal places:

α∗ ≈ 0.361

On the other hand, if the SEC does not restrict his second period trade, we find

that

E (π̂1) + αE
(
π̂N2
)

+ (1− α)E
(
π̂D2
)
≥σu

√
Σ0

2
(3.47)

This means the manager’s expected profits will always be higher than in the Huddart

et al. (2001) case.

136


