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Abstract

The typical assumption made in regression analysis with cross-sectional data is that of

independent observations. However, this assumption can be questionable in some economic

applications where spatial dependence of observations may arise, for example, from local

shocks in an economy, interaction among economic agents and spillovers.

The main focus of this thesis is on regression models under three di¤erent models of

spatial dependence. First, a multivariate linear regression model with the disturbances

following the Spatial Autoregressive process is considered. It is shown that the Gaussian

pseudo-maximum likelihood estimate of the regression and the spatial autoregressive pa-

rameters can be root-n-consistent under strong spatial dependence or explosive variances,

given that they are not too strong, without making restrictive assumptions on the parameter

space. To achieve e¢ ciency improvement, adaptive estimation, in the sense of Stein (1956),

is also discussed where the unknown score function is nonparametrically estimated by power

series estimation. A large section is devoted to an extension of power series estimation for

random variables with unbounded supports.

Second, linear and semiparametric partly linear regression models with the disturbances

following a generalized linear process for triangular arrays proposed by Robinson (2011)

are considered. It is shown that instrumental variables estimates of the unknown slope

parameters can be root-n-consistent even under some strong spatial dependence. A sim-

ple nonparametric estimate of the asymptotic variance matrix of the slope parameters is

proposed. An empirical illustration of the estimation technique is also conducted.

Finally, linear regression where the random variables follow a marked point process is

considered. The focus is on a family of random signed measures, constructed from the

marked point process, that are second-order stationary and their spectral properties are dis-

cussed. Asymptotic normality of the least squares estimate of the regression parameters are

derived from the associated random signed measures under mixing assumptions. Nonpara-

metric estimation of the asymptotic variance matrix of the slope parameters is discussed

where an algorithm to obtain a positive de�nite estimate, with faster rates of convergence

than the traditional ones, is proposed.
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1 Introduction

Modern econometrics can, to some extent, be regarded as a branch of mathematical statis-

tics aimed at providing statistical tools for economic analysis. Traditionally, cross-sectional

data were analysed in microeconomic studies whereas time series data were employed in the

macroeconomic counterpart. However, this distinction is no longer prevailing. There has

been a rather signi�cant movement among macroeconomists to collect and analyse cross-

sectional data in order to understand macroeconomic behaviours. Household expenditure

surveys have played a crucial role in helping macroeconomists understand consumption and

saving behaviours. Surveys of consumer �nances have also become popular for empirical

analysis of asset pricing. Investment and R&D data at �rm levels have improved macro-

economists�understanding of investment and R&D decisions, which play a role in short-term

economic �uctuations and are widely accepted as being vital for economic growth. Cross-

sectional data are currently playing key roles in other areas of studies such as unemployment

and credit markets too.

There are many reasons explaining the popularity of cross-sectional data in macroeco-

nomic analysis. Given that most macroeconomic theories are currently based on microeco-

nomic foundations, which focus on decisions of economic agents in an economy, it is vital to

check at the right level, e.g. households or �rms, whether such theories are valid. Moreover,

cross-sectional data are particularly useful for policy evaluation such as e¤ects of minimum

wages and monetary policy. If one were to rely on aggregate data, one would have to analyse

only a few data points whereas the micro-level data can give a great deal of information.

The reader may be thinking of panel data and consider them as being di¤erent from

the cross-secional one. However, given that most panel data used in economic analysis have

much shorter time span compared with the number of cross-sectional observations, this

type of panel data can be regarded, from the theoretical point of view, as cross-sectional

data with higher dimensions. Hence the theories developed for cross-sectional data will be

applicable to panel data (over a short time span) too. A serious discussion of panel data with

large cross-sectional observations over a long period of time requires a proper theoretical

foundation for spatio-temporal dependence, which is beyond the scope of this thesis.

Independence of observations is traditionally assumed when analysing cross-sectional

data. However, this typical assumption can be questionable. A shutdown of a factory

will a¤ect many households� income in a given neighbourhood. A natural disaster or a

contagious disease can substantially lead to a reduction of output of a large region of a

country. Spillovers and externalities may carry some impacts of a certain economic shock to

other communities outside the one where the shock takes place. Trade can indirectly induce

interdependence in activities of economic agents. Many economic theories also suggest

dependence of economic variables across space. A change of one player�s strategy can result

in a change of a Nash equilibrium. Risk averse agents will make insurance contracts allowing

them to smooth idiosyncratic shocks and this implies dependence in consumption across

individuals. In this thesis we call dependence across cross-sectional observations, spatial

dependence. This kind of dependence does not necessarily arise from a physical space. It

arise from some other economic spaces where an economic distance may be di¤erent from
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the physical one.

There are two main strategies in econometric literature aimed at modelling spatial de-

pendence. The �rst line of research is based on the idea that a family of random variables

exhibiting spatial dependence can be represented as a linear process with independent inno-

vations. The most popular parametric model on this line of research is the Spatial Autore-

gressive (SAR) model. Recently Robinson (2011) proposed a generalized linear process for

a triangular array of random variables and showed that a broad class of spatial processes

can be represented by such a generalized linear process. It should be stressed that the

generalized linear process of Robinson (2011) is a nonparametric model. The advantage of

this modelling strategy is that many well-established results from linear time series can be

extended.

The other line of research is to assume that the data is, to some degree, second-order

stationary. Conley (1999) considered irregularly spaced data in R2. He assumed that the
data is a marked point process where the marks and the ground process are independent.

Moreover, he assumed that the marks are stationary random �elds and the ground process

is a hard-core process. The assumption that the ground process is a hard-core process

allows researchers to regard irregularly spaced spatial data on R2 as a random �eld on the

lattice Zd, where Zd is the Cartesian d-product of the space of integers Z. Even though
Conley (1999) was able to show analytical tractability of his model, his assumptions on the

hard-core process is restrictive and result in computationally intensive calculation.

In this thesis, we investigate both lines of researches. In Chapter 2, we investigate a mul-

tivariate linear regression model with the disturbances following a multivariate SAR model.

The parametric set-up of the SAR model allows us to employ likelihood based inference.

We �rst consider the Gaussian pseudo-maximum likelihood estimate of the unknowns. We

show that under mild regularity conditions, such estimate can be root-n-consistent. Our

regularity conditions are quite di¤erent from the ones in the existing literature. First, we

do not impose excessive restriction on the parameter space. Second, we show and stress

analytical tractability and �exibility of the spectral norm compared with the k�k1 and k�k1
norms commonly employed in the literature. Employing a di¤erent technique for proof

of consistency of the estimate, we can avoid row or column normalization. We also allow

the SAR process to exhibit long-range dependence or explosive variances while the existing

literature focuses on short-range dependence and bounded variances. The Gaussian pseudo-

maximum likelihood estimate will lose its e¢ ciency if the innovations of the SAR process are

not normally distributed. This leads us to consider e¢ ciency improvement of the Gaussian

pseudo-maximum likelihood estimate by nonparametrically estimating the unknown score

function of the distribution of the innovations. This "adaptive" estimate of the slope para-

meters of the regression is asymptotically as e¢ cient as the one obtained from the maximum

likelihood estimation when the density function is known. Our nonparametric estimate of

the unknown score functions is a power series nonparametric estimate. In order to allow

the number of approximating functions to increase faster than the ones in the literature, we

employ properties of orthonormal polynomials in our proof. We also extend some results in

power series literature to allow for random variables with unbounded support.

In Chapter 3, we consider linear and partly linear regression models where the distur-

9



bances follow a generalized linear process in Robinson (2011). Central limit theorems are

developed for instrumental variables estimates of linear and semiparametric partly linear

regression models. We also show that the estimate of the slope parameters in the linear

part of the partly linear model can be root-n-consistent similar to the case for independent

data. We discuss estimation of the variance matrix, including estimates that are robust

to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of �nite-sample

performance is included. In an empirical example, the estimates and robust and non-robust

standard errors are computed from Indian regional data, following tests for spatial corre-

lation in disturbances, and nonparametric regression �tting. Some �nal comments discuss

modi�cations and extensions.

In Chapter 4, we consider a certain class of a marked point process which can give a good

representation of cross-sectional data exhibiting spatial dependence. This interpretation

o¤ers a nonparametric approach in capturing spatial dependence. Under some assumptions,

a linear functional of the marked point process forms a second-order stationary random

(signed) measure on the state space Rd and its spectral properties can be developed. We
then consider a linear regression model from this marked point process. The asymptotic

normality of the least squares estimate of the slope parameters of the model is derived

based on laws of large numbers and central limit theorems for random (signed) measures.

Estimation of spectral density of the random signed measure and the asymptotic variance

matrix of the least squares estimate are discussed. Finally, we propose an algorithm which

can be employed to obtain a positive de�nite estimate of an unknown positive de�nite

matrix. Our algorithm can be applied to general estimation of unknown positive de�nite

matrices. One advantage of this algorithm is that it can achieve faster rates of mean-

square convergence of the estimate compared with other conventional positive semide�nite

estimates commonly employed in the literature.
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2 Likelihood Based Inference on Multivariate Regres-

sion with Spatial Autoregressive Disturbances

2.1 Introduction

In this chapter, we consider a parametric model employed to capture spatial dependence.

The most popular parametric model in econometric literature is the Spatial Autoregressive

(SAR) model introduced by Cli¤ and Ord (1973) and popularised by Anselin (1988). The

simplest SAR model for a triangular array of random variables fui;n; 1 � i � n; n � 1g is
of the form

ui;n = �0

nX
j=1

wij;nuj;n + "i; (2.1)

where �0 is the spatial autoregressive parameter, wij;n are nonstochastic weights and f"ig
is a sequence of uncorrelated random variables with zero mean and constant variance �20.

For simplicity, the subscript n will be omitted from the presentation. The model in (2.1)

can be re-written in a matrix form as

u = �0Wu+ "; (2.2)

where u = (u1; :::; un)
0
; W is the n � n matrix whose (i; j)-th element is wij ; " =

("1; :::; "n)
0 and the prime 0 denotes transposition. The model in (2.2) can be re-written as

Su = (In � �0W )u = ";

where S = In � �0W . If �0 takes a value such that S is invertible, then the model implies

that

u = S�1" and V ar (u) = �20 (S
0S)

�1
:

Unlike in time series analysis, it may not be obvious for practitioners how the weights

wij should be chosen. One natural choice of the weights is to rely on "economic" distances

of each pair of observations. In this case, the weights should have inverse relationships

with distances to re�ect falling-o¤ dependence as distances increase. However, the row-

normalisation restriction, i.e.

wij =
f (dij)Pn
j=1 f (dij)

;

where dij is a distance between the i-th and j-th observations and f is a chosen decreasing

function, is sometimes imposed. This restriction can be a drawback since the model in

(2.1) may lose its economic appeal. Further normalisation may be imposed to make the

matrix W uniformly bounded in both row and column sums to satisfy certain theoretical

assumptions in the existing literature. Moreover, the parameter space of the unknown �0
is usually restricted to ensure that S (�)�1 is uniformly bounded in both row and column

sums for all � in the parameter space, where S (�) = In � �W . See, for example, Kelejian

and Prucha (1998) and Lee (2004).
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Practitioners may �nd restrictions on both the parameter space of �0 and on W too

restrictive. In many applications, practitioners may prefer a symmetric matrix re�ecting

distances between economic agents or observations, i.e. wij = f (dij), where dij is the dis-

tance between the i-th and j-th obsevations, as a natural choice of the weighting matrix. In

this case, row or column normalisation will be restrictive. Moreover, when a chosen func-

tion f is known up to an unknown scale, the unknown scale can be absorbed by the spatial

autoregressive parameter �0. This implies that a further restriction commonly imposed on

the parameter space of �0 will become restrictive.

In this paper, we also show that the assumptions imposed in the existing literature do

not cover two important scenarios, namely explosive variances of some observations and

long range dependence.

In this paper, we show that these restrictions are unnecessary to obtain a root-n-

consistent estimate of the unknown autoregressive parameter. Instead of considering a

simple univariate SAR model, we consider a multivariate linear regression model with SAR

disturbances. We show that with Gaussian pseudo-maximum likelihood estimation, we can

obtain a root-n-consistent estimate of the unknown parameters under long-range spatial

dependence or explosive variances.

When the innovations "i are i.i.d., we also show how to obtain e¢ ciency improvement

over the Gaussian pseudo-maximum likelihood estimate by nonparametrically approximate

the unknown score function of the distribution of the innovations. Our e¢ cient estimate

is based on series approximation of the unknown score function suggested by Beran (1976)

for �nite dimensional cases. This estimate is computationally simple and the issue of se-

lecting the trimming parameter can be avoided. In order to nonparametrically estimate

the unknown score function in a general in�nite-dimensional space, one has to allow the

number of approximating functions to increase to in�nity at an appropriate rate. Newey

(1988) extended Beran�s technique to obtain an adaptive estimate of the slope parameters

of a linear regression model with i.i.d. data but the number of approximating functions has

to go to in�nity at a rate that is slower than logarithm of the sample size. Robinson (2005),

considering e¢ cient estimation of time series regression with fractional disturbances, showed

that the condition in Newey (1988) can be relaxed and allow the number of approximating

functions to increase at the rates slightly faster than that in Newey (1988).

In this paper, we show that in order to obtain an e¢ ciency improvement of an estimate of

the slope parameter in a multivariate linear regression with SAR disturbances, the number of

approximating functions can indeed increase with the sample size at a polynomial rate. The

proof relies on results from power series approximation literature. Unlike other papers in the

literature, we show that in order to allow the number of approximating power functions to

grow at the rate that is proportional to a fractional power of the sample size, we do not need

to make a restrictive assumption that the density function of the disturbances must have

bounded support. The result in this chapter should be applicable to other semiparametric

models in econometrics, where the power series approximation is employed to estimate the

nonparametric part of a model.

A simple univariate SAR model and its multivariate extension are discussed in Section

2. We show that the spectral norm can be more �exible than other norms such as the

12



maximum column sum and maximum row sum norms commonly employed in the literature.

We also discuss how to relax the condition on uniform boundedness of row and column

sums to possibly allow for long-range dependence or explosive variances. Some further

analytically tractable results can be obtained when W is symmetric. In section 3, we

discuss consistency and asymptotic normality of the Gaussian pseudo-maximum likelihood

estimate of a multivariate linear regression model with multivariate SAR disturbances. In

section 4, we extend some results in nonparametric series approximation to allow for random

variables with unbounded support. Finally, e¢ ciency improvement of the slope parameter

in the multivariate linear regression model is discussed. Proofs and technical lemmas are

left in the Appendices.

2.2 Spatial Autoregressive Model

In this section, we discuss a spectral norm and show its analytical tractability for the

SAR model. First, we introduce some notations. Let A be an n � n matrix and aij de-

note its (i; j)-th element. De�ne � (A) and �(A) as the largest and smallest eigenvalues of

A; respectively. De�ne kAk1 = max1�j�n
Pn

i=1 jaij j ; kAk1 = max1�i�n
Pn

j=1 jaij j ; and
kAk =

�
� (A0A)

�1=2
: Let � (A) = max fj�j : � is an eigenvalue of Ag and jAj be the deter-

minant of A: In this chapter, a square matrix A of order n is positive de�nite (p.d.) if A is

symmetric and for any x 2 Rn such that x 6= 0; x0Ax > 0. Similarly, a square matrix A of
order n is positive semide�nite (p.s.d.) if A is symmetric and x0Ax � 0 for any x 2 Rn:

2.2.1 Univariate Spatial Autoregressive Model

Consider a univariate SAR model in (2.2). As mentioned in the previous section, V ar (u) =

�20 (S
0S)

�1
: The most common assumption in the literature, as in Kelejian and Prucha

(1998) and Lee (2004), is

Assumption A1


S�1



1
+


S�1

1 is bounded uniformly in n.

Since it can be shown that both k�k1 and k�k1 are matrix norms as de�ned in Horn

(1985), one implication of this condition is that kV ar (u)k1 + kV ar (u)k1 is bounded uni-

formly in n: Now consider the spectral norm. One advantage of the spectral norm can be

seen directly from Lemma A1 that for any square matrix A; kAk = kA0k : In order to get
an analogous result on a bound for V ar (u), by employing the spectral norm, we need to

make the following condition.

Assumption A2 �(S0S) is bounded away from zero uniformly in n.

13



Under Assumption A2, S0S is p.d. and hence �
�
(S0S)

�1
�
= f� (S0S)g�1 : Because

kAk = kA0k ; Assumption A2 is equivalent to the condition that


S�1

 is bounded uniformly

in n: As (S0S)�1 is p.d., by Lemma A3,



(S0S)�1


 = �

�
(S0S)

�1
�
. Therefore, Assumption

A2 is also equivalent to the condition that



(S0S)�1


 and kV ar (u)k are bounded uniformly

in n: As V ar (u) is symmetric, by Lemma A3,

kV ar (u)k � kV ar (u)k1 and kV ar (u)k � kV ar (u)k1 :

Therefore Assumption A1 implies Assumption A2. If variance matrices are of primary

concern, the following theorem shows that the spectral norm is strictly weaker than k�k1
and k�k1 norms.

Theorem A Consider any family fAng of positive de�nite matrices of order n: (i) kAnk �
kAnk1 and kAnk � kAnk1 : (ii) There exists a family fAng such that kAnk are uniformly
bounded in n but kAnk1 and kAnk1 are not.

Even though Assumption A2 is weaker than Assumption A1 that is commonly employed

in the literature, it may be too strong. With reference to time series literature, consider

a covariance stationary process fvtg : One possible nonparametric de�nition for long-range
dependece of fvtg is that

V ar

 
n�1=2

nX
t=1

vt

!
!1; as n!1: (2.3)

Let z = n�1=2 (1; :::; 1)
0 be a vector in Rn: Since n�1=2

Pn
t=1 vt = z0v where v = (v1; :::; vn)

0
;

it follows that V ar
�
n�1=2

Pn
t=1 vt

�
= z0V ar (v) z; where kzk = 1: Since z0V ar (v) z �

kV ar (v)k, then kV ar (v)k ! 1; as n ! 1 given that fvtg has long-range dependence.
Alternatively, suppose fvtg has absolutely continuous spectral distribution and let f be the
density function. It is common to say that fvtg has short memory if

0 < f (�) <1; for all � 2 [��; �) : (2.4)

Note that this de�nition excludes seasonal long memory. If fvtg has short memory as
de�ned in (2.4), then one observation in section 5.2 (b) in Grenander and Szego (1984)

implies that kV ar (v)k is bounded uniformly in n: These two results suggest that uniform
boundedness of kV ar (v)k can be a rather sensible description of time series exhibiting
short-range dependence.

Given these results one may be tempted to say that a SAR process u has long range

dependece if

kV ar (u)k ! 1 as n!1: (2.5)

14



It is clear that Assumption A2 does not allow for this possibility. This may be a serious

drawback of Assumption A2 since some spatial data may be subject to long-range depen-

dence. Fari�eld Smith (1938) mentioned the problem of (2.3) when analysing agricultural

spatial data. However, this de�nition may be misleading since it is possible that (2.5) holds

when V ar (ui)!1 as n!1 for some i but Cov (ui; uj) becomes arbitrarily small su¢ -

ciently fast as the distance between the i-th and j-th observations increases. In other words,

condition (2.5) may arise not from long-range dependence but from explosive variances of

some observations. Neverthess, this explosive behaviour of the variances may arise naturally

in some economic applications. With reference to economic geography literature, agglomer-

ation of economic activities in a certain location may be a norm rather than an exception to

bene�t from economies of scales. See Fujita, Krugman and Venables (2001) for a reference.

Hence concentration of economic activities may be sources of explosive variances.

As S = In��0W , Lemma A4 implies that � is an eigenvalue of S if and only if � = 1��0!
where ! is an eigenvalue of W: If �0 = 0, then S = In and we have a trivial case. Suppose

�0 6= 0, then S is invertible, i.e. � 6= 0; as long as none of the eigenvalues of W is equal

to 1=�0: Non-singularity of S can be regarded as an identi�cation restriction so that each

ui can be written uniquely as a linear combination of "j : It is generally di¢ cult to have

much information about kV ar (u)k since it depends on the unknown �0 and the relationship
between V ar (u) and �0 may be highly nonlinear. However, if W is symmetric, for example

when economic distances are employed to constructW without row or column normalization,

many analytically tractable results can be obtained.

If W is symmetric, then S and S�1 are symmetric. Lemma A5 also implies that

kV ar (u)k = �20max
n
(1� �0!)

�2
: ! is an eigenvalue of W

o
: Even though S is assumed

to be non-singular, kV ar (u)k can becomes arbitrarily large if at least one of the eigenval-
ues of W gets arbitrarily close to 1=�0 as n ! 1: The rate at which kV ar (u)k becomes
explosive depends on the rate at which one of the eigenvalues of W gets arbitrarily close to

1=�0: In other words, for a given �0; the explosive behaviour of kV ar (u)k depends on the
characteristic values of the weight matrix W:

Compared with the symmetric case, kV ar (u)k loses its analytical tractability when W
is not symmetric. The complexity of kV ar (u)k when W is not symmetric can be illustrated

from the truncated �rst-order autoregressive model. Let x1 = "1 and xt = �xt�1+"t; t � 2;
where f"tg is a white noise process. Then it can be shown that x = (x1; :::; xn)

0 can be

represented as in (2.2) with wij = �i;j+1, where �ij is the Kronecker�s delta. It follows that

the resulting weight matrix W is a lower shift matrix and is also nilpotent. Hence, every

eigenvalue of W is equal to zero and, by Lemma A4, every eigenvalue of S is equal to unity

regardless of the value of �0: This implies that S is always invertible and every eigenvalue

of S�1 is equal to unity regardless of the value of �0: However, when �0 = 1; i.e. fxtg is
a truncated random walk process, kV ar (x)k becomes explosive at a fairly fast rate. This
example illustrates the di¢ culty in determining the behaviour of kV ar (u)k particularly
when W is not symmetric.

The complexity of kV ar (u)k when W is not symmetric arises from the result shown in
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Lemmas A1 and A10 in the Appendix that kV ar (u)k is proportional to


(S0S)�1


 = �
�
S�1

�
S�1

�0� � �
�
S�1

�2
:

Lemma A2 shows that this inequality becomes an equality when W is symmetric. When

W is not symmetric, one can at least conclude that if �
�
S�1

�
is explosive, then




(S0S)�1



is also explosive. One can only infer that the rate at which




(S0S)�1


 becomes explosive
is at least as fast as the rate of �

�
S�1

�2
. However, a sharper rate at which




(S0S)�1



becomes explosive may not be easy to conclude. The truncated random walk process is a

good example showing this complexity.

De�ne G = WS�1. It will be clear later that G arises naturally from the Gaussian

psuedo-maximum likelihood estimation of the unknown �0: If �0 = 0, then G = W . It

follows form the proof of Lemma A6 that if �0 6= 0;

G = ��10
�
S�1 � In

�
: (2.6)

This equality shows that when there is spatial dependence, i.e. �0 6= 0; the matrix �0G is

essentially the matrix S�1: Recall that u = S�1". It follows that ui =
Pn

j=1 bij"j where bij
is the (i; j)-th element of S�1: Following (2.6), the i-th element of �0G" is

Pn
j=1 bij"j � "i:

That is �0G" is essentially the same as u. Moreover, Lemma A6 indicates that

S�1

� 1 � k�0Gk = 

S�1

+ 1:
Hence kGk � j�0j

�1 

S�1

 as 

S�1

 ! 1, where ���indicates that the ratio of left and
right sides tends to 1: Note that



S�1

 can get arbitrarily large only if �0 6= 0:
2.2.2 Multivariate Spatial Autoregressive Model

In a multivariate case, we have n observations and g equations. The univariate SAR model

in (2.1) can be generalized to

uit = �0t

nX
j=1

wijtujt + "it; i = 1; :::; n; t = 1; :::; g; (2.7)

where the index i is associated with the i-th observation and the index t is associated with

the t-th equation. In a matrix form, this can be written as

u�t = �0tWtu�t + "�t; t = 1; :::; g; (2.8)

where u�t = (u1t; :::; unt)
0, "�t = ("1t; :::; "nt)

0 and Wt is the matrix whose (i; j)-th ele-

ment is wijt: This speci�cation assumes no direct cross-equation e¤ects but cross-equation

dependence arises from dependence structure of ("i1; "i2; :::; "ig)
0
: For square matrices

A1; :::; An; not necessarily of the same order, de�ne diag (A1; :::; An) as the block-diagonal

matrix whose diagonal blocks are A1; :::; An; respectively. Then, the speci�cation in (2.8)
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can be re-written as

u = diag
�
�01W1; :::; �0gWg

�
u+ ";

where u =
�
u0�1; :::; u

0
�g
�0
and " =

�
"0�1; :::; "

0
�g
�0
: De�ne St = In � �0tWt, then

Su = ";

where S = diag (S1; :::; Sg) :

Assumption B1 For t = 1; :::; g; Wt are n�n matrices of nonstochastic weights wijt and
St are non-singular for all n � 1:

Let 1 be the indicator function.

Assumption B2 Let "i� = ("i1; :::; "ig)
0
: (i) E ("i�) = 0 for all i: (ii) E

�
"i�"

0
j�
�
= �01 (i = j)

for all i; j; where �0 is p.d..

Under Assumptions B1 and B2,

u = S�1";

where S�1 = diag
�
S�11 ; :::; S�1g

�
;

V ar (") = �0 
 In;

where 
 is the Kronecker product, and

V ar (u) = S�1 (�0 
 In)
�
S�1

�0
=
�
S0
�
��10 
 In

�
S
	�1

:

It follows from Lemmas A1 and A7 that

kV ar (u)k � k(�0 
 In)k


S�1

2 = k�0k

S�1

2 :

If (2.5) holds, then it must be the case that



S�1

!1 as n!1:

Hence


S�1

 is the source of an explosive behaviour of kV ar (u)k. Lemma A8 implies that

S�1

 = max1�t�g



S�1t 

. This simple relationship suggests that the results previously
established for a univariate process can be applicable to a multivariate process. Similarly,

we can de�ne G = diag fG1; :::; Ggg where Gt = WtS
�1
t : Lemma A8 implies that kGk =

max1�t�g kGtk and hence the results for a univariate case can be applied.
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2.3 Multivariate Linear Regression

In this paper we consider a multivariate linear regression model

yit = x0it�0 + uit; i = 1; :::; n; t = 1; :::; g;

where yit are scalar random variables, xit are RK-valued random variables, �0 are unknown

vectors in RK and the disturbances uit follow a multivariate SAR process as de�ned in (2.7).
Then, for each t = 1; :::; g; we have

y�t = Xt�0 + u�t;

where y�t = (y1t; :::; ynt)
0, Xt = (x1t; :::; xnt)

0 and u�t = (u1t; :::; unt)
0
: This can be

written as

y = X�0 + u;

where y =
�
y0�1; :::; y

0
�g
�0
; X =

�
X 0
1; :::; X

0
g

�0
and u =

�
u0�1; :::; u

0
�g
�0
:

Under the assumption that f"i�g ; as de�ned in the previous section, is a sequence of
independent vectors of jointly normally distributed random variables with zero mean and

V ar ("i�) = �0, and the assumption that the regressors xit and "js are independent for all

i; j; t and s; and that the distributions of xit do not depend on �0; �0 and �01; :::; �0g;

the log-likelihood function of y for the maximum likelihood estimation of the unknown

parameters is

ln (�; �; �) = �ng
2
log 2� +

1

2
log
��S (�)0 S (�)��� 1

2
log j�
 Inj

�1
2
u0 (�)S0 (�)

�
��1 
 In

�
S (�)u (�) ;

where � =
�
�1; :::; �g

�0
; St (�) = In� �tWt; S (�) = diag (S1 (�) ; :::; Sg (�)) ; and u (�) =

y �X�:
If the normality assumption does not hold, we can employ this log-likelihood function

to construct a loss function

Qn (�; �; �) = � 1

2g
log
����1��� 1

2ng

gX
t=1

log
��St (�)0 St (�)�� (2.9)

+
1

2ng
u (�)

0
S (�)

0 �
��1 
 In

�
S (�)u (�) :

Let b�; b� and b� be the minimizer of this loss function. Given � and �, the minimizer
b� (�; �) = �X 0S (�)

0 �
��1 
 In

�
S (�)X

	�1
X 0S (�)

0 �
��1 
 In

�
S (�) y:

If we ignore symmetry of �, then, applying the relationship that

tr (ABCD) = vec (C)
0
(D 
B0) vec (A0) ;
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it follows that

b� (�) = argmin
�2Rg�g

1

2g
log j�j+ 1

2ng
tr

(
��1

 
nX
i=1

"i�

�b�; �� "i� �b�; ��0!) ; (2.10)

where

("1t (�; �) ; :::; "nt (�; �))
0
= "�t (�; �) = St (�)ut (�)

and "i� (�; �) = ("i1 (�; �) ; :::; "ig (�; �))
0
: For each i; "i�

�b�; �� "i� �b�; ��0 is p.s.d. re-
gardless of the values of �. As n increases it is more likely that

Pn
i=1 "i�

�b�; �� "i� �b�; ��0
is p.d. and hence singular. Then we can apply Lemma 3.2.2 in Anderson (2003) to show

that b� (�) = 1

n

nX
i=1

"i�

�b�; �� "i� �b�; ��0 : (2.11)

Note that there is a typographical error in the statement of Lemma 3.2.2. There should be

"�" in front of N log jGj. Moreover, the same Lemma implies that the minimum value of

the objective function in (2.10) is

C � 1

2g
log
���b� (�)��� ;

where C is a constant. Hence

b� = argmin
�2Rg

1

2g
log
���b� (�)���� 1

2ng

gX
t=1

log
��St (�)0 St (�)�� :

Now we give a formal statement for the minimisation problem. Following Abadir and

Magnus (2005), for any symmetric matrix A of order g, de�ne the half-vec of A, vech (A) ; as

the g (g + 1) =2 � 1 vector that is obtained from vec (A) by eliminating all supradiagonal

elements of A: Let � =
�
�01; �

0
2; �

0
3

�0
where �1 = �; �2 = vech

�
��1

�
and �3 = � =�

�1; :::; �g
�0
:

Let b� = argmin
�2�

Qn (�) ;

where Qn (�) is the right side of (2.9), � = �1 � �2 � �3, �1 � RK ; �2 � Rg(g+1)=2

and �3 � Rg: Since there may be some � 2 �3 such that S (�) is singular and hence��S (�)0 S (�)�� = 0, we need to de�ne log (x) = �1 for x = 0: Note that b� can be interpreted
as a Gaussian psuedo-maximum likelihood estimate as in Lee (2004). The consideration of

��1 rather than � substantially simpli�es our proofs. It is important to note that we take

�2 = vech
�
��1

�
rather than vec

�
��1

�
to ensure that the asymptotic covariance matrix ofb�2; where b�2 is a sub-vector of b� associated with �2; is non-singular. The consideration of

vech
�
��1

�
implicitly assume that � is symmetric. We can make this assumption without

loss of generality since (2.11) shows that it does not matter whether the assumption of

symmetry is imposed. We also stress the importance of the expression log
��St (�)0 St (�)��

since it is not generally true that jSt (�)j � 0 but it is always the case that
��St (�)0 St (�)�� � 0:

Lee and Yu (2010) considered Gaussian pseudo-maximum likelihood estimation of a panel
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data model that is essentially a multivariate model. However, Lee and Yu (2010) assumed

that � = Ig; Wt =W and �t = � for all t = 1; :::; g: This assumption essentially simpli�es

a multivariate SAR model to a univariate one.

2.3.1 Consistency

To show consistency of b�; we make the following assumptions. Let N be the set of natural
numbers.

Assumption B3 f"i�g is a sequence of independent Rg-valued random variables such that

(i) E ("i�) = 0 for all i in N: (ii) E ("i�"0i�) = �0 for all i in N; where �0 is a positive de�nite
matrix. (iii) There is a �nite constant C such that

max
1�t�g

max
i�1

E"4it � C:

Assumption B4 � is a compact set. In addition, �2 is a subspace of Rg(g+1)=2 such that
� is positive de�nite for all vech (�) 2 �2:

For any positive de�nite matrix A, let A1=2 be the square root matrix of A: De�ne

H (�2; �3) =
�
�
1=2
0 
 In

� �
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1

�
�
1=2
0 
 In

�
:

By de�nition, H (�2; �3) is positive semide�nite for all �2 2 �2 and all �3 2 �3: The

matrix Gt de�ned in the previous section can be written as G = WS�1; where W =

diag fW1; :::; Wgg.

Assumption B5 Let �1; :::; �ng be eigenvalues of H (�2; �3) : For any � > 0, there exists
� > 0 such that for some N;

inf
k���0k��

(
1

ng

ngX
i=1

(�i � log �i � 1)
)
� �;

for all n � N; where � =
�
�02; �

0
3

�0 2 �2 ��3:

Assumption B6 (i) fxitg and f"itg are independent. (ii) Let X� = SX and hence X�
t =

StXt: As n!1;

1

ng

 
X�0
s

X�0
s G

0
s

!�
X�
t GtX

�
t

�
!p

 
Qst11 Qst12

Qst21 Qst22

!
;
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and

1

ng

 
(X�)

0 �
��10 
 In

�
X� (X�)

0 �
��10 
 In

�
GX�

(X�)
0
G0
�
��10 
 In

�
X� (X�)

0
G0
�
��10 
 In

�
GX�

!
!p

 
O11 O12

O21 O22

!
;

where O11 is p.d..

Let vij be the (i; j)-th element of the G0G, (x�it)
0 be the i-th row of X�

t , (x
��
it )

0 be the

i-th row of X��
t = GtX

�
t and u

�
it be the t-th element of u

�
�t = Gtu�t:

Assumption B7 As n!1;
ngX
i=1

ngX
j=1

v2ij = o
�
n2
�

and for any s; t = 1; :::; g;

nX
i=1

nX
j=1

E
�
x�is
�
x�jt
�0�

Cov
�
u�is; u

�
jt

�
= o

�
n2
�
;

nX
i=1

nX
j=1

E
�
x��is

�
x��jt
�0�

Cov
�
u�is; u

�
jt

�
= o

�
n2
�
:

Theorem B Under Assumptions B1 and B3-B7, b� !p �0:

Assumption B4 on �2 may appear to be quite restrictive. However, (2.11) shows that

without the assumption on positive de�niteness of �, an unconstrained optimizer for �2
gives b� that is always positive semide�nite and usually positive de�nite in �nite samples.
Hence Assumption B4 is not really a practical issue.

Assumption B5 is quite common in multivariate analysis. Consider a function f : R+ !
R where f (x) = x�log x�1:We have that f (x) > 0 for all x > 0 except x = 1 and f (1) = 0:
Hence 1

ng

Png
i=1 (�i � log �i � 1) = 0 if and only if �i = 1 for i = 1; :::; n. This is equivalent

to H (�2; �3) = In. Note that H (�02; �03) = In: Assumption B5 essentially states that

when � is su¢ ciently di¤erent from �0, H (�2; �3) is su¢ ciently di¤erent from H (�02; �03) :

There is one technical issue with Assumption B5. There may be some � = �3 2 �3 such
that S (�) is singular. In this case, there is �i = 0; where �i is an eigenvalue of H (�2; �3),

and hence log �i is not generally well de�ned. However, we employ the rule stated earlier

that we de�ne log x = �1 if x = 0: It is worth noting that Assumption B5 is for asymptotic

identi�cation of �2 and �3:

Assumption B6 is similar to the one made in Lee (2004). Since we consider a somewhat

di¤erent linear model from the one considered in Lee (2004), it turns out that only positive

de�niteness of O11 plays a role in asymptotic identi�cation of �1:
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As can be seen in the proof of Theorem B, we can easily avoid considering the term

S (�)
�1. Therefore we do not need to impose any assumption on �3 so that S (�) is invertible

for any � 2 �3 as in the literature. With reference to (2.9) any value of � making S (�)
singular cannot be a minimizer of Qn (�) since we set log x = �1 for x = 0: Hence these

values of � will be automatically removed from the "e¤ective" parameter space when doing

an optimization problem.

The most important point to be noted here is that we do not assume any bound on


S (�)�1


 uniformly in �3 as in the literature. The discussion at the end of Section 2

implies that Assumption B7 allows


S�1

 and hence kV ar (u)k to be explosive but at an

appropriate rate. Since


S�1

 and G depends only on �0, our assumptions are imposed

on the true value �0 but not the whole parameter space of �0: As discussed at the end of

Section 2, G is essentially S�1. In a univariate case, since V ar (u) = �20

��
S�1

�0
S�1

�
, in the

presence of spatial dependence, G0G is essentially V ar (u) : Hence Assumption B7 allows the

variance matrix of u to be explosive but the rate at which it becomes explosive cannot be too

fast. Moreover, in the presence of spatial dependence, i.e. �0t 6= 0, Gt = ��10t
�
S�1t � In

�
:

Then

X��
t = GtX

�
t = ��10t Xt � ��10t X�

t and u
�
�t = Gt"�t = ��10t u�t � ��10t "�t:

Hence the latter part of Assumption B7 is equivalent to

nX
i=1

nX
j=1

E
�
xis (xjt)

0�
Cov (uis; ujt) = o

�
n2
�
;

nX
i=1

nX
j=1

E
�
x�is
�
x�jt
�0�

Cov (uis; ujt) = o
�
n2
�
:

This is the limit on the joint explosive behaviour of the regressors and disturbances.

2.3.2 Asymptotic Normality

First we introduce notations employed in this part. For t = 1; :::; g; recall that X�
t is de�ned

as StXt. Let (x�it)
0 be the i-th row of X�

t : For s; t = 1; :::; g; let �
st
0 and �

st be the (s; t)-th

element of ��10 and ��1, respectively. Similarly, let �0st and �st be the (s; t)-th element of

�0 and �, respectively. De�ne u�t (�) = y�t�Xt� and �st (�) = u�s (�)
0
Ss (�)

0
St (�)u�t (�) :

Let � (�) be the square matrix whose (s; t)-th element is �st (�) : For t = 1; :::; g; let gijt
be the (i; j)-th element of Gt: For any value of � such that St (�) is non-singular, de�ne

Gt (�) = WtS
�1
t (�) and G (�) = diag (G1 (�) ; :::; Gg (�)) : Following Abadir and Magnus

(2005), for any symmetric matrix A of order n; de�ne the duplication matrix Dn as the

n2 � n (n+ 1) =2 matrix such that Dnvech (A) = vec (A) : De�ne �st as the Kronecker�s

delta.

The First Derivatives Consider � in a neighbourhood of �0 such that St (�) are non-

singular for t = 1; :::; g: Recall that we impose the assumption that � and ��1 are sym-
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metric. With reference to Lemmas C1 and C2, the �rst derivatives are

@Qn (�)

@�1
= � 1

ng
X 0S (�)

0 �
��1 
 In

�
S (�)u (�) ; (2.12)

for s � t;
@Qn (�)

@�st
= �2� �st

2g
�st +

2� �st
2ng

�st (�) ; (2.13)

and for t = 1; :::; g;

@Qn (�)

@�3t
=
1

ng
tr fGt (�)g �

1

ng

gX
s=1

�stu�s (�)
0
Ss (�)

0
Wtu�t (�) ; (2.14)

where �3t is the t-th element of �3: Note that (2.13) can be written in a matrix form as

@Qn (�)

@�2
= � 1

2g
D0
gvec (�) +

1

2ng
D0
gvec (� (�)) ; (2.15)

where Dg is the duplication matrix.

It follows from (2.12), (2.15) and (2.14) that

@Qn (�0)

@�1
= � 1

ng
(X�)

0 �
��10 
 In

�
";

@Qn (�0)

@�2
= � 1

2g
D0
gvec (�0) +

1

2ng
D0
gvec

0BB@
"0�1"�1 � � � "0�1"�g
...

. . .
...

"0�g"�1 � � � "0�g"�g

1CCA ;

and for t = 1; :::; g;

@Qn (�0)

@�3t
=
1

ng
tr (Gt)�

1

ng

gX
s=1

�st0 "
0
�sGt"�t:

Let


n = ngE
�
@Qn (�0)

@�

@Qn (�0)

@�0

����X�

=

0B@
11;n 
12;n 
13;n


21;n 
22;n 
23;n


31;n 
32;n 
33;n

1CA ;

where 
ij;n = E
�
@Qn(�0)
@�i

@Qn(�0)
@�0j

���X� :
By Assumption B6,


11;n =
1

ng
(X�)

0 �
��10 
 In

�
X� !p O11;

where O11 is p.d..
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By Lemma C3, each column of 
12;n is a multiple of

1

ng

gX
s=1

gX
t=1

�st0

nX
i=1

x�isE f"it ("iu"iv � �0uv)g :

Lemma C4 implies that the � -th column of 
13;n is

1

ng

gX
s=1

gX
t=1

gX
u=1

�st0 �
u�
0

nX
i=1

x�isgii�E ("it"iu"i� ) :

By Lemma C5, each element of 
22;n is a multiple of

1

n

nX
i=1

E ("is"it"iu"iv � �0st�0uv) :

Lemma C6 implies that each element of 
23;n is a multiple of

1

n

gX
u=1

�u�0

nX
i=1

gii�E ("is"it"iu"i� )�
1

n
tr (G� )�0st:

Finally, by Lemma C7, the (� ; t)-th element of 
33;n is

1

ng

gX
u=1

gX
s=1

�u�0 �st0

nX
i=1

gii�giit fE ("iu"i�"is"it)� �0u��0st � �0us�0�t � �0ut�0�sg

+
1

ng
tr (G0�Gt)

gX
u=1

gX
s=1

�u�0 �st0 �0us�0�t +
1

ng
tr (G�Gt)

gX
u=1

gX
s=1

�u�0 �st0 �0ut�0�s: (2.16)

If E ("iu"i�"is"it) = E ("ju"j�"js"jt) for all i 6= j, then the �rst term in (2.16) becomes 
1

ng

nX
i=1

gii�giit

!
gX

u=1

gX
s=1

�u�0 �st0 � (u; � ; s; t) ;

where � is the fourth cumulant. Under mild assumptions, it can be shown that all subma-

trices of 
n are convergent in probability. Hence, we make the following assumption.

Assumption C1 As n!1; 
n !p 
 where 
 is a positive de�nite matrix.
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The Second Derivatives Now consider the second derivatives of Qn (�) :With reference

to Lemmas C8, C9 and C10,

@2Qn (�)

@�1@�
0
1

=
1

ng
X 0S (�)

0 �
��1 
 In

�
S (�)X;
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ng
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2
o
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0
W 0
sWtu�t (�) ;

for s � t;
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0
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and for s > t;
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= � 1
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�
u�� (�)

0
W 0
�St (�)u�t (�) ��t + u�s (�)

0
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0
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;

Assumption C2 For s; t = 1; :::; g; limn!1 n�1tr fGtg ; limn!1 n�1tr
�
G2t
	
and limn!1 n�1tr fG0sGtg

exist.

Assumption C3 For t = 1; :::; g; suppose �� �0 = op (1) as n!1; then

n�1tr
n
Gt (�)

2
o
� n�1tr

�
G2t
	
= op (1) :

Under Assumptions B1, B3-B7, and C2-C3, Lemmas C11-C15, if � � �0 = op (1), then
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(2.18)
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and E2 are g�(g + 1) g=2matrix whose elements correspond to: for s > t; @2Qn
�
�
�
=@�st@��

correspond to

� lim
n!1

�
��t
ng

tr (G� ) ��t �
��s
ng

tr (G� ) ��s

�
and @2Qn

�
�
�
=@�tt@�� correspond to

� lim
n!1

�
�tt
ng

tr (Gt) ��t

�
:

By Assumptions B3 and B6, O11 and �0 are p.d.. Exercise 11.34 (a) in Abadir and

Magnus (2005) implies that D0
g (�0 
 �0)Dg is p.d.. Since the second term in (2.18) is the

limit of

(ng)
�1 �

diag
�
W1u�1

�
�
�
; :::; Wgu�g

�
�
�	�0 �

�
�1 
 In

�
diag

�
W1u�1

�
�
�
; :::; Wgu�g

�
�
�	

that is p.s.d., Lemma B9 implies that it must be p.s.d.. The assumption limn!1 n�1tr
�
G2t
�
>

0 for all t = 1; :::; g, implies that E1 is p.d.. To avoid the complication of showing that

E1 � E2

n
(2g)

�1
D0
g (�0 
 �0)Dg

o�1
E02 is p.d., so that E is p.d., we make the following

assumption.

Assumption C4 The matrix E de�ned in (2.17) is positive de�nite.

Assumption C5 �0 is an interior point of �:

Assumption C6 Let gijt be the (i; j)-th element of Gt: As n!1;

nX
i=1

0@ nX
j=1

g2ijt

1A2

= o
�
n2
�
;

max
1�t�g

max
1�j�n

nX
i=1

jgijtj+ max
1�t�g

max
1�i�n

nX
j=1

jgijtj = o
�
n1=2

�
:

Assumption C7 Recall that (x�it)
0 is the i-th row of X�

t : There exists � > 0 such that (i)

there is a �nite constant C such that

max
1�t�g

max
i�1

E j"itj4+� � C;

(ii) as n!1;

n�1
gX
t=1

nX
i=1

kx�itk
2+�

= Op (1) ;
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and (iii)

n�1
gX
t=1

nX
i=1

jgiitj2+� = O (1) :

Theorem C Under Assumptions B1, B3-B7 and C1-C7, as n!1;

p
ng
�b� � �0�!d N

�
0; E�1
E�1

�
:

Remark Assumption C3 is imposed so that we can avoid making arbitrary assumptions

on W: For a square matrix A, let �i (A) be an eigenvalue of A: It can be shown that

n�1tr
n
Gt (�)

2
o
� n�1tr

�
G2t
	
= n�1

nX
i=1

f�i (Gt (�))g2 � f�i (Gt)g2 :

Note that if A is an invertible matrix, then ��1 is an eigenvalue of A�1 if and only if � is

an eigenvalue of A: By Lemmas A4 and A6, for �0 6= 0 and � su¢ ciently near �0;

�i (Gt (�)) =
1

�

�
(1� �!i)�1 � 1

�
=

!i
1� �!i

;

where !i are eigenvalues of W . Similarly

�i (Gt) =
!i

1� �0!i
:

The convergence in Assumption C3 depends on the behaviour of !i, particularly on how

many of !i and how fast !i get close to 1=�0 as n ! 1: Clearly, if


S�1

 is uniformly

bounded as commonly assumed in the literature, it is rather straight forward to show that

Assumption C3 holds. For the case where �0 = 0, it is trivial since there is no spatial

dependence.

Remark For a univariate case, it is very simple to show that Assumption C4 holds

under more primitive assumptions. If g = 1, then

E =

0BB@
O11 0 0

0 1
2�

4
0 ��20

n tr (G)

0 ��20
n tr (G)

1
n tr

�
G2
�
+ 1

n tr (G
0G)

1CCA :

Assuming that limn!1 n�1tr (G0G) > 0, then a necessary and su¢ cient condition for E to

be p.d. is that
1

n
tr
�
G2
�
+
1

n
tr (G0G)� 2

�
1

n
tr (G)

�2
> 0:

By Schur�s inequality, tr
�
G2
�
� tr (G0G) ; a su¢ cient condition for this to hold is that
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�
n�1tr (G)

	2
< n�1tr

�
G2
�
: Note that, the Cauchy�s inequality,

�
n�1tr (G)

	2
= n�2

 
nX
i=1

�i

!2
� n�1

nX
i=1

�2i = n�1tr
�
G2
�
;

where �i are eigenvalues of G: The equality holds if and only if �1 = �2 = � � � = �n:

Remark Since tr (G0tGt) =
Pn

i=1

Pn
j=1 g

2
ijt, Assumption C2 implies that

nX
i=1

nX
j=1

g2ijt = O (n) :

This observation makes Assumption C6 analogous to a more familiar assumption in time

series literature that

max
1�t�g

max
1�j�n

nX
i=1

jgijtj+ max
1�t�g

max
1�i�n

nX
j=1

jgijtj = o

0B@
0@ nX
i=1

nX
j=1

g2ijt

1A1=2
1CA :

Recall again that, in the presence of spatial dependence, Gt = ��10t
�
S�1t � In

�
: Hence Gt is

essentially ��10t S
�1
t and elements of Gt directly controls the degree of spatial dependence of

u�t since V ar (u�t) is essentially G0tGt: Finally, Assumption C7 is for the Lyapunov condition.

2.4 Nonparametric Series Estimation

Before discussing how to obtain e¢ ciency improvement, we �rst discuss nonparametric series

estimation. The reason is that in order to obtain an estimate that is adaptive in the

sense of Stein (1956), one needs to nonparametrically estimate the unknown score function.

Our choice of nonparametric series estimation over the kernel estimation is based on the

advantage that no trimming is required.

Consider a nonparametric model

E (yijxi) = h (xi) ; i = 1; :::; n;

where xi are Rg-valued random variables. The main interest in series estimation literature

is to nonparametrically approximate the unknown function h by a linear combination of

approximating functions p1; :::; pL; bh =PL
l=1 clpl: The e¤ectiveness of such approximation

depends on the choices of approximating functions and coe¢ cients cl: For a given a family

approximating functions fplg, the simplest way to choose the coe¢ cients is to perform least

squares regression of yi on pl (xi) : To explicitly illustrate the idea, let

pL (x) = (p1 (x) ; :::; pL (x))
0

be a vector of approximating functions. The least squares approximation of h by approxi-
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mating functions p1; :::; pL at a point x is

bhL (x) = pL (x)
0 b
L; (2.19)

where

b
L = (P 0P )�1 P 0y; P =
�
pL (x1) ; :::; p

L (xn)
�0

and y = (y1; :::; yn)
0
: (2.20)

The main interest in the literature focuses on precision of such approximation with some

families of approximating functions such as trigonometric functions, polynomials and regres-

sion splines, when the number of approximating functions L is allowed to become arbitrarily

large as the sample size n increases. The precision is commonly evaluated from the mean-

square and uniform convergence perspective where the rate of convergence is often of a main

interest.

For clarity of the discussion, we introduce two assumptions.

Assumption D1
�
(x0i; yi)

0	 is an i.i.d. sequence of RK+1-valued random variables.

Assumption D2 E
n
h (x)

2
o
<1; where x has the same distribution as xi:

For some semiparametric models including the one to be discussed in this chapter, the

mean-square convergence of the typeZ h
h (x)� bhL (x)i2 dFX (x)! 0 as L!1; (2.21)

where FX is the distribution function of x; is su¢ cient to show required asymptotic prop-

erties as long as the �rst-order asymptotic is concerned. Our choice of a family of approx-

imating functions is the polynomial type. Practitioners, particularly those from economic

background, may �nd this choice of approximating functions natural and intuitive. With

polynomials, the expression in (2.19) can be interpreted as a Taylor approximation of an

unknown function h. Moreover, Newey (1988) showed that a series estimate employing

polynomials arises naturally from GMM estimation.

Let N0 denote the set of nonnegative integers. A multi-index is denoted by � =

(�1; :::; �g)
0 2 Ng0 with norm k�k1 =

Pg
t=1 j�tj : For � 2 N

g
0 and x = (x1; :::; xg)

0 2 Rg, a
monomial in variables x1; :::; xg is a product

x� = x�11 ::: x
�g
g :

The number k�k1 is the total degree of x�: A polynomial p : Rg ! R in g variables is a
linear combination of monomials

p (x) =
X
�

c�x
�;
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where c� 2 R. The degree of a polynomial is de�ned as the highest total degree of its
monomials. Denote the collection of polynomials in g variables by �g:

Let fX be the probability density function of x and X be the support of x, i.e. fX (y) > 0
for all y 2 X . Newey (1997) showed that under the assumptions that X is the Euclidean

product of compact intervals on which fX is bounded away from zero, and that h is con-

tinuously di¤erentiable of order s on X (2.21) is O
�
L=n+ L�2s=g

�
as n ! 1: However,

the assumption on fX is restrictive since his results are not applicable to most well-known

random variables such as the normal, Student�s t, exponential and chi-squared random

variables.

The main objective of this section is to relax Newey (1997)�s distributional assumption

to allow for unbounded X . When X is unbounded, in some circumstances a sharp result

as in Newey (1997) may not be achievable since jh (x)j may become arbitrarily large as kxk
goes to in�nity. As mentioned earlier, in many semiparametric applications, including the

one in this section, the convergence of the type (2.21) without the knowledge of the rate

of convergence is su¢ cient as long as �rst-order asymptotic is concerned. Hence, we �rst

discuss how to obtain (2.21) in a general case and later discuss how to be more precise about

the rate of convergence.

The possibility for (2.21) to hold arises from the following result extended from the

theorem for a univariate case in Freud (1971) that was employed in Newey (1988) and

Robinson (2005, 2010). LetM =M (Rg) denote the set of nonnegative Borel measures on
Rg having moments of all orders, i.e. if � 2M, thenZ

Rg

��x��� d� (x) <1 for all � 2 Ng0: (2.22)

Denote the class of square integrable functions with respect to a measure � by L2 (�) ;

i.e. f 2 L2 (�) if and only if
R
Rg jf j

2
d� < 1, : Theorem 3.1.18 in Dunkl and Xu (2001)

states that if � 2M satis�es Z
Rg
exp (c kxk) d� (x) <1; (2.23)

where k�k is the Euclidean norm, for some constant c > 0; then the space of polynomial �g

is dense in L2 (�) :

The distribution of x can generally be an issue for series estimation when polynomials

are employed. First, higher order moments of x may not exist if the distribution of x has fat

tails. Hence, (2.21) is not well de�ned. In addition, in order to employ the approximation

result from Dunkl and Xu (2001), it is required that the moment of x must exist for all

order. This problem can be overcome by employing polynomials in � = T (x) rather than

polynomial in x where T : Rg ! Rg is a one-to-one bounded transformation such that k�k is
bounded. When bhL (x) is replaced by bhL (T (x)) ; it follows that the mean-square criterion
in (2.21) becomes Z h

h
�
T�1 (�)

�
� bhL (�)i2 dF� (�)! 0 as L!1; (2.24)
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where � = T (x), bhL (�) is a polynomial in � and F� is the distribution of �: Clearly the
composite function h � T�1 is in L2 (F�) and F� satis�es (2.22) and (2.23) when k�k is
bounded.

Hence we employ approximating functions

pl (T (x)) = T (x)
�(l)

;

where f� (l)g is a sequence of distinct multi-indices. It is crucial to assume that the sequence
f� (l)g1l=1 of distinct multi-indices must include all distinct multi-indices. Moreover, it is
assumed that the sequence f� (l)g is ordered so that k� (l)k1 =

Pg
t=1 j�t (l)j is monotonically

increasing.

Another problem arises from the fact that when the regression in (2.20) is employed

to choose the coe¢ cients c� for the polynomials, multi-colinearity of the approximating

functions pl (T (xi))may become an issue for a wide class of distribution, particularly as L!
1. This is precisely the problem faced by Newey (1988) and Robinson (2005, 2010). Under a
general distributional assumption, Newey (1988) had to assume that L log (L) = log (n)! 0

as n ! 1: Robinson (2005) relaxed this slow rate of L slightly. This problem of multi-

colinearity is particularly serious for x with high dimensions since one cannot employ many

approximating functions as restricted by the rate of growth of L.

One e¤ective way to get around with the multi-colinearity problem was proposed in

Cox (1988). Cox (1988) pointed out that when polynomials are employed as approximating

functions, bhL (�) computed from polynomials in � will be numerically the same as that from
orthonormal polynomials in �, with respect to some weight functions, of order corresponding

to components of � (l) : Newey (1997) employed this advantage to show that when the

support X of x is bounded and fX is bounded away from zero on X , the appropriate

orthonormal polynomials which could get rid of multi-colinearity is the Jacobi polynomials

with respect to the uniform weight.

It turns out that a certain class of transformations T can play a crucial role in allowing

for unbounded X . Before discussing an appropriate class of transformations T; we �rst
discuss an analogous result to that of Newey (1997).

Assumption D3 There exists a bounded and one-one transformation T : Rg ! Rg such
that � = T (x) where the support of � is the Cartesian product of bounded open intervals

�gt=1 (at; bt) on which the probability density function of � is bounded away from zero almost

everywhere, i.e. there is a constant C such that f� (�) � C > 0 for all � 2 �gt=1 (at; bt)
except for � in a null set, where f� is the density function of �:

Assumption D4 V ar (yijxi) is bounded.

Assumption D5 As n!1; L3=n! 0:
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Theorem D1 Under Assumptions D1-D5, as n!1;Z h
h (x)� bhL (T (x))i2 dFX (x) = o (1) : (2.25)

Let h1 = h � T�1: Suppose it is known that h1 is continuously di¤erentiable of order v
on the support �gt=1 (at; bt) of �. Suppose further that the following assumption holds.

Assumption D6 It is possible to extend h1 : �
g
t=1 (at; bt) ! R to h2 : �gt=1 [at; bt] ! R

where h2 is also continuously di¤erentiable of order v on �
g
t=1 [at; bt].

Then we can be more precise regarding the rate of converge.

Theorem D2 Under Assumptions D1-D6, as n!1;Z h
h (x)� bhL (T (x))i2 dFX (x) = Op

�
L=n+ L�2v=g

�
: (2.26)

Theorem D2 is essentially the same as the �rst part of Theorem 4 in Newey (1997).

Assumption D6 is the same as Assumption 9 in Newey (1997) so that we do not have to

rely on the approximating result in L2 space from Dunkl and Xu (2001). One necessary

condition for Assumption D6 to hold is that h : Rg ! R is a continuously di¤erentiable

of order v on Rg and that h must be bounded. Then under some conditions, it is possible
to extend h1 to satisfy Assumption D6. Hints for su¢ cient conditions for Assumption D6

may be seen from the discussion of the transformation T later in this section. Obviously, T

must be smooth enough for h2 to be smooth. An example of unknown function satisfying

Assumption D6 may arise from applications where it is required to estimate an unknown

distribution function of vectors of random variables such as in the semiparametric index

models.

As Theorems D1 and D2 allow us to extend the result in Newey (1997) to more ap-

plications, we have not shown an existence of a transformation T satisfying Assumption

D3. Actually, this is the most di¢ cult part in this section and is our main contribution. It

should be hinted from Assumption D3 that we only need to show that the required condi-

tion holds except for a null set. However, for simplicity of the proof, we make the following

assumptions.

First, we introduce some notations applicable only for this section. For a function f :

A ! B, de�ne f (A) = ff (a) 2 B : a 2 Ag as the image of A under f . Let X denote the
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support of x and Xt denote the support of xt. That is X = fx 2 Rg : fX (x) > 0g and
Xt = fxt 2 R : ft (xt) > 0g where ft is the marginal density function of xt:

Assumption D7 (i) The probability density function fX of x is continuous on X . (ii) X
is the Euclidean product of unbounded open intervals.

Assumption D7 is applicable for many families of multivariate random variables such as

the normal, Student�s t and exponential families. Lemma D3 (i) also shows that Assumption

D7 (ii) is not too strong an additional condition from Assumption D7 (i). Again for simplicity

of the proof, we restrict a transformation T : Rg ! Rg to be of the form

T (x) = � = (m1 (x1) ; :::; mg (xg))
0
; (2.27)

where x = (x1; :::; xg) and mt are functions mt : R! R.

Assumption D8 Functions mt : R! R are (i) strictly increasing; (ii) continuously dif-

ferentiable and
d

du
mt (u) > 0 for all u 2 Xt;

and (iii) for all u 2 R, jmt (u)j � C for some �nite constant C.

Note that Assumption D8 (i) can be replaced by a strictly monotonic function. However

ifmt are decreasing, then �mt are increasing. Hence, there is no loss of generality. It follows

from Lemma D3 that under Assumptions D7 (i) and D8, for any � 2 T (X ) ;

f� (�) = fX
�
T�1 (�)

� gY
t=1

�
m0
t

�
m�1
t (�t)

���1
; (2.28)

and f� is continuous on T (X ) ; where m0
t (u) = dmt (u) =du: In order to see the signi�cance

of a right choice of transformations mt and hence T , we restrict our intuitive discussion

to a univariate case. As fX (x) > 0 for all x 2 R, it follows that limx!1 fX (x) = 0 =

limx!�1 fX (x) : To ensure that f� satis�es Assumption D3, one di¢ culty may arise from

the fact that fX may converge to zero at a very fast rate as in the case of the Gaussian

random variable. With respect to (2.28), the role of the transformation m is to make f�
to have fatter tails. That is a right choice of a function m has to move enough proportion

of mass of the density fX so that f� have enough mass at the tails in order to satisfy

Assumption D3. It turns out that the following family of transformations will do the job.

In order to avoid making the proof excessively lengthy, we �rst restrict Assumption D7 to

the following one.

Assumption D9 Assumption D7 holds with X = Rg:
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We will later brie�y show how to extend the result for X in the form

X =
nY
t=1

It;

where It can be any combination of It of the forms (�1; b) ; (b; 1) and (�1; 1) where
b is a �nite real number, so that only Assumption D7 (i) holds precisely.

De�nition D1 A function m : R! R is in a class E if

m (u) = � 1

1 + exp (g (u))
; (2.29)

where g : R! R is a continuously di¤erentiable function such that its derivatives are strictly
positive and

lim
u!�1

g (u) = �1 and lim
u!1

g (u) =1:

Given the class E , Theorem D3 gives a hint for a proper choice of function g such that

the transformation T satis�es Assumption D3.

Theorem D3 Suppose a transformation T has the form (2.27) where mt are in the class E
and Assumption D9 holds. Suppose there are functions qt : R! R such that, for t = 1; :::; g;

lim
xt!1

fX (x)

�gs=1 exp (qs (xs))
� c1t; lim

xt!�1

fX (x)

�gs=1 exp (qs (xs))
� c2t; (2.30)

where c1t; c2t > 0 and can be in�nite, for all x�t = (x1; :::; xt�1; xt+1; :::; xg)
0 in

Rg�1; and for all t = 1; :::; g;

lim
xt!1

[g (xt) + qt (xt)� log (g0 (xt))] = 1 ; (2.31)

lim
xt!�1

[g (xt)� qt (xt) + log (g0 (xt))] = �1; (2.32)

where g is a function in (2.29). Then the transformation T satis�es Assumption D3.

Remark Theorem D3 gives su¢ cient conditions on fX and proper choices of g (u) so

that the transformation T will satisfy Assumption D3. The complexity of conditions in

Theorem D3 is mainly designed to turn a multivariate problem into a univariate one. It

is much easier to �nd a limit of a function with one variable than with several variables.

To appreciate the usefulness of Theorem D3, we consider one example. Suppose x is a
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multivariate normal random variables with zero mean and a p.d. covariance matrix �: It

follows that

fX (x) = C exp

�
�1
2
x0��1x

�
; for some �nite constant C: (2.33)

If we choose g (u) = u3 + u, then g0 (u) = 3u2 + 1 > 0. It can be veri�ed that this choice

of g make m be in the class E . Given fX in (2.33), we can choose qt (xt) = �c0x2t=2 where
c0 =



��1

 : It follows that
fX (x) � C exp

�
�1
2
kxk2



��1

� = C exp

 
�c0
2

gX
t=1

x2t

!
:

Hence for all x 2 Rg;

fX (x)

�gs=1 exp (qs (xs))
� C

gY
s=1

exp
�
�c0x2s=2

�
exp (�c0x2s=2)

= C > 0:

Therefore, for all t = 1; :::; g;

lim
xt!�1

fX (x)

�gs=1 exp (qs (xs))
; lim
xt!1

fX (x)

�gs=1 exp (qs (xs))
� C > 0;

for all x�t 2 Rg�1: Hence condition (2.30) holds. Now for each t;

lim
xt!1

[g (xt) + qt (xt)� log (g0 (xt))] = lim
xt!1

�
x3t + xt � c0x2t=2� log

�
3x2t + 1

��
=1

and

lim
xt!�1

[g (xt)� qt (xt) + log (g0 (xt))] = lim
xt!�1

�
x3t + xt + c0x

2
t=2 + log

�
3x2t + 1

��
= �1:

Hence conditions (2.31) and (2.32) hold. Therefore the function

m (u) = � 1

1 + exp (u3 + u)
(2.34)

can give the transformation T such that Assumption D3 holds for the multivariate normal

distribution. It is easy to see, particularly from (2.30) that if fX has fatter tails than the

multivariate normal distribution, we can apply the same choices of qt and g so that all

conditions in Theorem D3 hold. Hence we can state the following result where the proof is

omitted.

Corollary D Suppose x is a random variable such that its support is Rg and fX (x) > 0

for all x 2 Rg. Suppose that fX is continuous and its tails approach zero at most as fast

as that of the multivariate normal distribution. Then the transformation constructed from

(2.34) will make Assumption D3 holds.
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Remark If the tails of fX approach zero at a much faster rate than that of the normal

distribution, then a choice of g (u) = exp (u) can be employed. This choice of function g

moves much more mass of f� towards the boundary of T (X ) :

Remark Now we consider other forms of X . As noted earlier, our assumptions and
Lemmas D5, D6 essentially turn a multivariate problem into a univariate one. To avoid

making many repetitive steps as for the proof of Theorem D3, we simply consider x where

x is a real-valued random variable. An extension to multivariate x can be seen from all

Lemmas associated with the proof of Theorem D3. Without loss of generality, suppose it is

known that the support of x is X =(0; 1) : For more general cases namely (�1; b) and
(b; 1), one can always �rst take a linear transformation to get X =(0; 1) : Examples of
x satisfying this assumption are the exponential distribution and other distributions taking

only positive values. It is obvious that the choice of g (u) = u3 + u will not make � = m (x)

satisfy Assumption D3 since lim�!�1=2 f� (�) = 0 where T (X ) = (�1=2; 0) :
Suppose that the right tail of fX decreases to zero at a rate slower than that of the

normal distribution and, for some constant k; the left tail approaches zero at the rate xk as

x! 0. Then one can choose

g (u) = uk
0
;

where k0 is the smallest odd number such that k0 > min fk + 1; 3g ; as a choice form. Under
regularity conditions as outlined above, it follows that

f� (�) = fX
�
m�1 (�)

� �
m0 �m�1 (�)

���1
=

fX (x)

exp (g (x)) k0xk0�1
[1 + exp (g (x))]

2
;

where x = m�1 (�) : Certainly T (X ) = (m (0) ; 0) and m (0) is the left boundary of T (X ).
The di¤erence between this choice of g and the previous one is that there is a number x0
in R such that g0 (x0) = 0: In this case, x0 = 0. Applying the steps shown for the normal
example, it can be shown that lim�!0 f� (�) = 1: Similarly, lim�!m(0) f� (�) = 1 since

xk
0�1=xk ! 0 as x ! 0: As we have shown that f� is continuous and its limits go to

in�nity as � approaches the boundary. Hence it follows that f� is bounded away from zero

on it support, i.e. Assumption D3 holds. As a consequence, for X = �gt=1It where It are

unbounded open intervals, we can choose the right function mt to match the behaviour of

fX on each It so that Assumption D3 holds.

Remark In reality, practitioners may not have full knowledge of the support X . One
question we have to discuss is whether the wrong kind of transformation will have any

signi�cant e¤ect on our result. First suppose that X is R but we employ the transformation
for X =(0; 1) as discussed above. It turns out that this mistake will not have a serious
impact since Assumption D3 still holds. Recall that this type of transformation makes

lim�!T (0) f� (�) = 1 without changing the limits of f� as � ! �1 and � ! 0: Moreover,

T (X ) becomes (�1; T (0))[ (T (0) ; 0) : As f� is still continuous on T (X ) and all boundary
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points are such that their limits approach in�nity. Hence, f� is bounded away from zero for

every � 2 T (X ) : Then we can set f� (T (0)) = 0 but Assumption D3 still holds since it only
requires that f� is bounded away from zero almost everywhere.

Now suppose X = �gt=1 [at; bt], where at; bt are �nite numbers and fX is bounded away

from zero for all x in X , i.e. fX satis�es the assumption in Newey (1997). If we employ

a transformation for X = Rg as for the case of the multivariate normal distribution, then
this wrong kind of transformation still makes Assumption D3 hold. The reason is that f�
will still be bounded away from zero on the new support of the form �gt=1 [m (at) ; m (bt)] :

Similarly, one can argue that the transformation for X of the type (0; 1) will not a¤ect
Assumption D3 either. Finally, it is worth noting that if fX behaves in such a way that there

is no transformation T such that Assumption D3 holds, then the convergence in Theorem

D1 still holds. The only e¤ect is that the number of approximating functions employed in

the series estimation has to grow very slowly due to the fact that the matrix P 0P employed

in the approximation is near singular. This can be seen from Newey (1988).

2.5 E¢ ciency Improvement

In section 3, we see that the Gaussian pseudo-maximum likelihood estimate can be root-

n-consistent. If precision of an estimate is a concern, particularly when the sample size is

small, a maximum likelihood estimate can be employed. If the density of the innovations

"i� are correctly speci�ed, then, under mild assumptions, a maximum likelihood estimate

will be more e¢ cient than the estimate in the previous section. However, if the density is

misspeci�ed, the maximum likelihood estimate may become inconsistent.

Stone (1975) showed that, for a simple location model with independent and identically

distributed (i.i.d.) data and symmetric distribution, in the absence of a complete knowledge

of the distribution of the data, there exists an estimate that is asymptotically as e¢ cient

as the maximum likelihood estimate when the density function is known. Not knowing the

density function of the data, Stone (1975) constructed his asymptotically e¢ cient estimate

from a nonparametric estimate of the unknown density function. Stone�s estimate is adaptive

in the sense of Stein (1956). That is the unknown location parameter can be estimated as

well asymptotically not knowing the density function as knowing it.

Bickel (1982) and Newey (1988) extended Stone�s result and showed how to obtain an

adaptive estimate of the slope parameter in a linear regression model where the disturbances

are i.i.d.. Many authors showed that adaptive estimates can be obtained even without

i.i.d. data. For a linear regression model, Steigerwald (1992) considered the case when the

disturbances follow an ARMA process while Robinson (2005) allowed the disturbances to

follow a fractional process. More recently Robinson (2010) considered adaptive estimation

of the slope and the spatial autoregressive parameters in a univariate SAR model.

Now consider a multivariate regression with SAR disturbances. Unlike the speci�ca-

tion in the previous section, we now make a clear distinction between intercept and slope

parameters. The model becomes

yit = x0it�0 + uit; i = 1; :::; n; t = 1; :::; g; (2.35)
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where

uit = �0t

nX
j=1

wijtujt + �0t + "it: (2.36)

It is worth noting that this model is slightly di¤erent from the one considered earlier.

The switch from the previous speci�cation is a result of some complexity from the rate of

convergence of the intercepts in the previous model. It is well-known from long memory

time series that the rate of convergence of the intercept is slower than the slope parameters

in the presence of long memory of the disturbances. As mentioned earlier, to allow for

long-range dependence in uit, the regressors xit should be interpreted as mean-corrected

random variables. With this new speci�cation, the parameters �0t play a role of location

parameters. We still expect that the result established in the previous section should hold for

this speci�cation too. The reason for treating the intercept and slope parameters separately

is based on the fact that, compared with �0; �0t can be adaptively estimable under relatively

stronger assumptions. See, for example, Bickel (1982). Now we introduce some de�nitions

and assumptions.

De�nition E1 Let [a; b] be a closed interval. A function f : [a; b] ! R is absolutely

continuous if for every " > 0 there exists � > 0 such that if

a � x1 < y1 � x2 < y2 � ::: � xm < ym � b

and
mX
i=1

(yi � xi) < �;

then
mX
i=1

jf (yi)� f (xi)j < ":

For a function f : R! R, we say that f is absolutely continuous if for every x 2 R, there
exists m > 0 such that the restriction of f on the closed interval [�m; m] is absolutely
continuous.

De�nition E2 For a function f : Rg ! R; de�ne a function fx�t : R! R by

fx�t (xt) = f (x1; :::; xt�1; xt; xt+1; :::; xg)

where x�t = (x1; :::; xt�1; xt+1; :::; xg) 2 Rg: A function f : Rg ! R is in the class

AC (Rg) if functions fx�t (xt) are absolutely continuous almost everywhere (for all x�t 2
Rg�1 except x�t in a null set) for t = 1; :::; g: De�ne @fx�t (xt) =@xt as a derivative of

fx�t and
@f

@x
=

�
@fx�1
@x1

; :::;
@fx�g
@xg

�0
:
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Fix t and x�t: If fx�t is absolute continuous, then it is di¤erentiable almost everywhere.

Hence the derivative de�ned in De�nition E1 is well-de�ned almost everywhere. A su¢ cient

condition for a density f : Rg ! R to be in the class AC (Rg) is that f is continuously
di¤erentiable. Continuous di¤erentiability of f implies that @f=@ei are continuous for all

i = 1; :::; g: Hence fe�i are absolutely continuous everywhere for i = 1; :::; g. A weaker

su¢ cient condition such as a Lipschitz condition can be employed to check for absolute

continuity too. Recall that "i� = ("i1; :::; "ig)
0
:

Assumption E1 (i) f"i�g is an independent and identically distributed sequence of Rg-
valued random variables with the joint density function f: (ii) The function f is in the class

AC (Rg) with partial derivative @f=@e: For e such that f (e) > 0; let

 (e) = � 1

f (e)

@f (e)

@e
:

(iii)

E
�
 ("i�) ("i�)

0	
= L;

and L is a �nite and positive de�nite matrix.

De�ne �0 = (�01; :::; �0g)
0 and �04 =

�
�00; �

0
0; �

0
0

�0
: Similarly de�ne � = (�1; :::; �g)

0
; �4 =�

�0; �0; �0
�0
;

"it (�4) = (yit � x0it�)� �t
nX
j=1

wijt
�
yjt � x0jt�

�
� �t (2.37)

and "i� (�4) = ("i1 (�4) ; :::; "ig (�4))
0
:

Assumption E2 fxitg and f"itg are independent and the joint distribution function of
fxitg does not depend on �4:

In order to express the likelihood function of the data in a tractable form, we state

one useful result. Consider any random variables X1; :::; Xn with the joint probability

density function f: Let T be an Rn-valued function such that T (X1; :::; Xn) = Y1; :::; Yn

where Y1; :::; Yn are just a re-arrangement of X1; :::; Xn: It follows that the Jacobian

matrix of T is a product of elementary matrices. Since these elementary matrices represent

row-switching transformations, the modulus of the Jacobian determinant is unity. Hence

Y1; :::; Yn has the density function

g (y1; :::; yn) = f
�
T�1 (y1; :::; yn)

�
; (2.38)

where T�1 is the inverse of T:
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Suppose the joint density function of vec (X) is fX : To discuss possibility of adaptive

estimation, we �rst consider an arbitrary parametric submodel corresponding to a para-

meterization of the joint density of vec (X) as fX (x; �1) and of "i� as f (e; �2), where

fX (x) = fX (x; �01) and f (e) = f (e; �02) ; for some �01 and �02: It follows from Assump-

tions E1 - E2 and (2.38) that the log-likelihood of the sample is

ln (�4) = log fX (vec (X) ; �1) +
1

2

gX
t=1

log
��St (�)0 St (�)��+ nX

i=1

log f ("i� (�4) ; �2) ; (2.39)

where St (�) are de�ned as in the previous section.

Following Stein (1956), �04 is adaptively estimable if �04 can be estimated as asymptot-

ically e¢ cient not knowing �01 and �02 as knowing �01 and �02: A necessary condition for

�04 to be adaptively estimable is that the information matrix of �4 and (�1; �2)
0 is block-

diagonal. Under the Gaussian assumption, it can be seen from Theorem C that a necessary

condition for �0 to be adaptively estimable is that limn!1 n�1tr (Gt) = 0 for t = 1; :::; g:

Since the required condition does not generally hold, particularly with our assumption that

S�1

!1 as n!1; it follows that �0 is generally not apatively estimable.
It should be noted that condition (3.13) in Robinson (2010) makes the information

matrix of the spatial autoregressive parameter and the variance of the Gaussian innovations

block-diagonal. Hence Stein�s necessary condition for adaptive estimation is satis�ed. With

further assumptions, he show how to obtain adaptive estimates for both slope and spatial

autoregressive parameters. However, Robinson�s su¢ cient conditions for adaptive estimation

are not of our interest since they depends on row normalization and the restriction imposed

on the parameter space of the unknown spatial autoregressive parameter.

As �0 is not generally adaptively estimable, for simplicity, we only focus on adaptive

estimation of �0: Now we discuss adaptive estimation of �0. First, we introduce some

notations. From (2.35), it follows that

yi� = Xi��0 + ui�;

where yi� = (yi1; :::; yig)
0
; Xi� = (xi1; :::; xig)

0 and ui� = (ui1; :::; uig)
0
: De�ne

x�it = xit � �0t
nX
j=1

wijtxjt; x�it (�t) = xit � �t
nX
j=1

wijtxjt; (2.40)

X�
i� =

�
x�i1; :::; x

�
ig

�0
; X�

i� (�) =
�
x�i1 (�1) ; :::; x

�
ig

�
�g
��0

; (2.41)

and

X
�
� (�) = n�1

nX
i=1

X�
i� (�) :

Let � = diag
�
�1; :::; �g

�
and Wij = diag (wij1; :::; wijg) : With this notation, it follows

from (2.37) that

"i� (�4) = (yi� �Xi��)� �
nX
j=1

Wij (yj� �Xj��)� �: (2.42)

40



Suppose the density function of "i� and �0 are known. Suppose there are initial estimatese� and e� of �0 and �0. Then to avoid non-linear optimization, one can employ the linearized
maximum likelihood estimate b� of �0 of the form
b� = e� + nX

i=1

�
X�
i� �X

�
�

�0 bL�X�
i� �X

�
�

�!�1 nX
i=1

�
X�
i� �X

�
�

�0
 
�
"i�

�e�; e�; �0��
!
;

where bL = n�1
nX
i=1

 
�
"i�

�e�; e�; �0�� �"i� �e�; e�; �0��0
and X

�
� = n�1

Pn
i=1X

�
i�. Under weak regularity conditions, it can be shown that this

estimate will be e¢ cient in the Cramer-Rao sense.

If we no longer assume that the density function and �0 are known, we can estimate �0
as in Section 3 but we have to nonparametrically estimate the unknown score function  .

In this chapter, we employ a series estimate developed earlier. Our adaptive estimate of �0
is

b� = e�+ nX
i=1

h
X�
i� (e�)�X�

� (e�)i0 bLL hX�
i� (e�)�X�

� (e�)i
!�1 nX

i=1

h
X�
i� (e�)�X�

� (e�)i0 b L (e"i�)
!
;

where bL = n�1
Pn

i=1
b L (e"i�) b L (e"i�)0, e"i� = "i�

�e�4�, e�4 = �e�0; e�0; e�0�0 and b L (e"i�) is a
nonparametric estimate of  (e"i�) which will be discussed in details below.
As in the previous section, for any v in Rg and a multi-index � (l) in Ng0, de�ne

pl (v) = v�(l) and pL (v) = (p1 (v) ; :::; pL (v))
0
:

Let T be a one-one transformation described in the previous section. De�ne

�Lt (u) =

�
@p1 (T (u))

@ut
; :::;

@pL (T (u))

@ut

�0
:

Let  t (e) be the t�th element of  (e) : Then, for t = 1; :::; g; our nonparametric estimate
of  t ("i�) is

b tL (e"i�) = pL (T (e"i�))0
0@ nX
j=1

pL (T (e"j�)) pL (T (e"j�))0
1A�10@ nX

j=1

�Lt (e"j�)
1A ; (2.43)

where e"i� are as described above, and
b L (e"i�) = �b 1L (e"i�) ; :::; b gL (e"i�)�0 :

Assumption E3 The transformation T is of the form (2.27) where m1 = � � � = mg = m,

the function m is in the class E and the function g is well chosen so that Assumption D3
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holds.

Assumption E4 A function m in the class E is such that

sup
u2R

���� @@um (u)
����+ sup

u2R

���� @2@u2m (u)
���� <1

Assumption E5 As n!1; (i)

n�1
nX
i=1

�
X�
i� �X

�
�

�0
L
�
X�
i� �X

�
�

�
!p V;

where V is a positive de�nite matrix; (ii)

n�1=2 max
1�i�n

kX�
i�k = op (1) ;

(iii)

n�1
nX
i=1

E kX�
i�k

2
= O (1) ; n�1

nX
i=1

E kX�
i�k

3
= O (n�1) ; n�1

nX
i=1

E kX�
i�k

4
= O (n�2) ;

(iv)

n�1
nX
i=1

E








nX
j=1

WijXj�







 = Op
�
n�1
�
, n�1

nX
i=1

E








nX
j=1

WijXj�








2

= Op
�
n�2
�
;

where �1 < 1=2 and �2 < 1; (v)

n�1
nX
i=1








nX
j=1

Wijuj�







 = Op (1) and n�1
nX
i=1








nX
j=1

Wijuj�








2

= Op (1) ;

(vi)

n�1
nX
i=1








nX
j=1

WijXj�







 kX�
i�k

2
= op

�
n1=2

�
; n�1

nX
i=1








nX
j=1

WijXj�







 kX�
i�k

2
= op

�
n1=2

�
;

n�1
nX
i=1

kX�
i�k








nX
j=1

WijXj�







 = Op
�
n�4
�
;
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(vii)

n�1
nX
i=1








nX
j=1

WijXj�















nX
j=1

Wijuj�







 = Op
�
n�5
�
; n�1

nX
i=1








nX
j=1

Wijuj�







 kX�
i�k

2
= Op

�
n�3
�
;

n�1
nX
i=1

kX�
i k








nX
j=1

WijXj�














nX
k=1

Wikuk�






 = Op
�
n�6
�
; n�1

nX
i=1

kX�
i�k








nX
j=1

Wijuj�








2

= Op
�
n�7
�
:

Let

Ri = diag

8<:
nX
j=1

wij1uj1; :::;
nX
j=1

wijgujg

9=; ; (2.44)

D1n =
nX
i=1

E kX�
i�k

2 and D2n =
nX
i=1

E kh ("i)Rik2

Assumption E6 For a function h : Rg ! Mg, where Mg is the set of all real g � g

matrices, let

D1n =
nX
i=1

kX�
i�k

2 and D2n =
nX
i=1

kh ("i)Rik2 :

Assume that

D�1=21n D�1=22n

nX
i=1

�
X�
i� �X

�
�

�0
h ("i�)Ri = Op

�
n#
�
;

where # < 0:

Assumption E7 The sequence f� (l)g1l=1 includes all distinct multi-indices. The sequence
is ordered so that k� (l)k1 is monotonically increasing.

Assumption E8 As n!1; e�4 � �04 = Op
�
n�1=2

�
.

Assumption E9 For �1; �2; �i; i = 1; :::; 7; in Assumption E5, and # in Assumption

E6, as n!1;

L�1 + n�1L16 + n�1=2+maxf�1; �3gL5 + n�1+maxf�2; 2�4+2�5gL6 + n�1+2�1L

+n�(1��2)L+ n�1+maxf�6; �7gL5 + n#L3

is o (1) :
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Theorem E Under Assumptions E1-E9,

n�1=2
�b� � �0�!d N

�
0; V �1

�
:

It can be shown that the choice of functions g discussed in the previous section makes

m satisfy Assumption E4. The complication of Assumption E5 arises from our attempt to

accommodate some explosive behaviours of the regressors and disturbances. Recall that

X�
i� = Xi� � �0

Pn
j=1WijXj�: For example, if we assume that as n!1;

n�1
nX
i=1

kXi�k+ n�1
nX
i=1

kX�
i�k = Op (1) ; (2.45)

then it follows that n�1
Pn

i=1




Pn
j=1WijXi�




 = Op (1) provided that �0 is nonsingular.

Note that if �0 is singular, it follows that at least one component of ui� are actually inde-

pendent, leading to a trivial case. Other terms in Assumptions E5 can be substantially sim-

pli�ed in a similar way if stronger conditions analogous to (2.45) are imposed. Assumption

E6 is the most unique assumption for our model. It involves both the necessary condition

for orthogonality so that �0 can be adaptively estimated, and the strength of spatial depen-

dence. The normalized sum in Assumption E6 is essentially an estimate of the covariance of

X�
i� and h ("i�)Ri: By independence of fxitg and f"itg ; this normalized sum should tend to

zero in probability. The parameter # determines the rate of convergence of this normalized

sum to its population counterpart that is zero. Under some regularity conditions, it can

be shown that under short-range dependence of both X�
i� and ui�; # = �1. Under this and

other stronger assumptions analogous to (2.45), Assumption E9 can be simpli�ed so that it

only requires

L!1 and n�1L16 ! 0

as n ! 1: The slower rate of increase of L, compared with the ones discussed in the
previous section, arises from the fact that our nonparametric estimate of the score function

relies on integration-by-parts. Di¤erentiation of the approximating polynomial functions is

the source of this slow rate.

2.6 Final Comments

In this chapter we discuss estimation of a multivariate linear regression with spatial au-

toregressive disturbances. We show that the typical assumptions on the degree of spatial

dependence and on the parameter space can be substantially relaxed. We illustrate the

usefulness of the spectral norm over the row or column sum norms in de�ning an explosive

behaviour of a spatial autoregressive process due to long-range dependence and explosive

variances. This explosive behaviour may be a norm rather than an exception in cross-

sectional data with spatial dependence. We also show that the pseudo-maximum likelihood

estimate can be root-n-consistent in the presence of this explosive behaviour.
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There are many possible extensions to the results established in this chapter. Our

multivariate set-up should be readily applicable to linear panel data models. An extension

to simultaneous equations models may require additional steps to deal with endogeneity

within the models. It is also interesting to allow explosive behaviours of the disturbances in

limited dependent variable models. Another possible extension is to allow spillover e¤ects

from regressors in the model.

Motivated by the success of the Autoregressive Fractionally Integrated Moving Average

(ARFIMA) models in time series analysis, it is very interesting to investigate a possibility of a

modelling strategy that can separate long-range spatial dependence from short-range spatial

dependence. In the ARFIMA models, the memory parameter re�ects long-run dynamics of

the process whereas the ARMA parameters capture the short-run dynamics. In the �rst-

order Autoregressive (AR(1)) model, i.e. Xt = �Xt�1 + "t; fXtg is stationary if and only
if j�j < 1 and there is an abrupt change when j�j = 1: This unsmooth behaviour of the

variances and autocovariances is a reason for popularity of the ARFIMA model. However,

in the �rst-order SAR model considered in this chapter, we show, in case of a symmetric

weighting matrix, that the smoothness of the transition from completely stable variances

and covariances to explosive ones is controlled by the rate at which one of the eigenvalues

of the weighting matrix approaches the inverse of the spatial autoregressive parameter. As

a result, it is not clear whether a modelling strategy that can directly separate short and

long range dependence is needed. Nevertheless, it is important to investigate complexity of

the dependence structure arising from higher-order spatial autoregressive models.

The second half of the chapter is devoted to discussion of e¢ ciency improvement of

the pseudo-maximum likelihood estimate by nonparametric estimates of the unknown score

function of the distribution of the innovations in the model. The nonparametric power series

estimation is employed to estimate the unknown score function. We stress the importance

of a transformation prior to the nonparametric estimation especially when the distribution

of the innovations has unbounded support. It is interesting to see sensitivity and rela-

tive performance of di¤erent choices of transformation in �nite samples from Monte Carlo

simulations.

Appendix 2.1: Proofs of Theorems

In the proofs, if not speci�ed, C denotes a �nite constant.

Proof of Theorem A By Lemma A3, (i) follows. Now consider a family fAng such
that all elements are uniformly bounded in n. Let

An =

 
a11;n a01n

a1n Bn

!
;

where a11;n is the (1; 1)-th element of An; a1n 2 Rn�1 is the �rst column of An with a11;n
removed. Let aj1;n be the j-th element of a1n: Suppose the family fa1ng of Rn�1-vectors
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is such that
Pn�1

j=1 jaj1nj form an unbounded sequence but
Pn�1

j=1 jaj1nj
2 form a bounded

sequence. Then kAnk1 and kAnk1 are not uniformly bounded in n. Suppose for simplicity

that fBng is a family of positive de�nite matrices of order n�1 such that kBnk1 and kBnk1
are uniformly bounded in n. Note that if An is positive de�nite, then so is Bn: As An is

positive de�nite,

kAnk = � (An) = sup
kxk=1

x0Anx:

Let x = (x1; x02)
0 2 Rn where x2 2 Rn�1: Then

kAnk = sup
kxk=1

�
a11;nx

2
1 + 2x1a

0
1nx2 + x

0
2Bnx2

�
� ja11;nj+ 2 sup

kx2k=1
a01nx2 + sup

kx2k=1
x02Bnx2 (2.46)

By our assumption ja11;nj is uniformly bounded. As kBnk1 is uniformly bounded in n, and
Bn is symmetric, Lemma A3 implies that,

sup
kx2k=1

x02Bnx2 = kBnk � kBnk1 :

Hence the third term in (2.46) is uniformly bounded in n: Finally, Lemma A9 and the

assumption that
Pn�1

j=1 jaj1;nj
2 are uniformly bounded imply that the second term in (2.46)

is uniformly bounded in n. Thus, kAnk is uniformly bounded in n:

Proof of Theorem B First we introduce some notations. De�ne �0 = diag
�
�01In; :::; �0gIn

�
and � = diag

�
�1In; :::; �gIn

�
: Consider any p.d. matrix � and �3 2 �3. Let �st be the

(s; t)-th element of ��1. Then

n�1 (X�)
0
G0 (�0 � �)0

�
��1 
 In

�
(�0 � �)GX�

= n�1
gX
s=1

gX
t=1

�st (�0s � �s) (�0t � �t) (X�
s )
0
G0sGtX

�
t :

Assumption B6 implies that this matrix converges in probability to a �nite matrix. Similarly,

it can be shown that, under Assumption B6,

1

n

 
(X�)

0 �
��1 
 In

�
X� (X�)

0 �
��1 
 In

�
(�0 � �)GX�

(X�)
0
G0 (�0 � �)0

�
��1 
 In

�
X� (X�)

0
G0 (�0 � �)0

�
��1 
 In

�
(�0 � �)GX�

!
(2.47)

converges in probability to a �nite matrix. Denote its limit by M1 (�2; �3) : Since � is p.d.,

(2.47) can be written as n�1AA0 where

A0 =
��
��1=2 
 In

�
X� �

��1=2 
 In
�
(�0 � �)GX�

�
:
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Hence Lemma B9 implies that M1 (�2; �3) is p.s.d.. De�ne

M2 (�2; �3) =
�
IK IK

�
M1 (�2; �3)

 
IK

IK

!
: (2.48)

Then M2 (�2; �3) is p.s.d..

Our proof follows a standard procedure to show consistency of an extremum estimate.

The loss function can be re-written as

Qn (�) = �
1

2ng
log
����1 
 In��� 1

2ng
log
��S (�)0 S (�)��+ 1

2ng
u (�)

0
S (�)

0 �
��1 
 In

�
S (�)u (�) :

Therefore

Qn (�0) = �
1

2ng
log
����10 
 In

��� 1

2ng
log jS0Sj+ 1

2ng
"0
�
��10 
 In

�
":

It follows that

Qn (�)�Qn (�0)

= � 1

2ng
log jH (�2; �3)j �

1

2ng
"0
�
��10 
 In

�
"

+
1

2ng
fu+X (�0 � �)g

0
S (�)

0 �
��1 
 In

�
S (�) fu+X (�0 � �)g

= sn (�)� tn (�) ;

where

sn (�) =
1

2ng
tr fH (�2; �3)g �

1

2ng
log jH (�2; �3)j �

1

2

+
1

2g
(�0 � �)

0
M2 (�2; �3) (�0 � �) ;

and

�tn (�) =
1

2ng
u0S (�)

0 �
��1 
 In

�
S (�)u� 1

2ng
tr fH (�2; �3)g

+
1

ng
(�0 � �)

0
X 0S (�)

0 �
��1 
 In

�
S (�)u

+
1

2g
(�0 � �)

0
�
1

n
X 0S (�)

0 �
��1 
 In

�
S (�)X �M2 (�2; �3)

�
(�0 � �)

+
1

2
� 1

2ng
"0
�
��10 
 In

�
":

By Lemma B0, to prove consistency we need to show that for any � > 0; there exists

� > 0 such that for some N;

inf
k���0k��

sn (�) � � for all n � N; (2.49)
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and as n!1
sup
�2�

jtn (�)j
p! 0: (2.50)

Note that Lemma B0 is a slight modi�cation of the standard theorem for consistency of an

extremum estimate.

First we show positivity of sn (�). For any �2 2 �2 and �3 2 �3, M2 (�2; �3) is p.s.d.

as outlined above. Therefore for any � 2 �; (�0 � �)
0
M2 (�2; �3) (�0 � �) � 0: Recall that

a function f : R+ ! R where f (x) = x � log x � 1 is always positive, i.e. f (x) � 0. Our
extension for x = 0 also gives f (0) =1: Since

(ng)
�1 ftr [H (�2; �3)]� log jH (�2; �3)j � ngg

= (ng)
�1

ngX
i=1

(�i � log �i � 1) ;

where �i are eigenvalues of H (�2; �3) ; it follows that

1

2ng
tr fH (�2; �3)g �

1

2ng
log jH (�2; �3)j �

1

2
� 0

for all n and � 2 �: Hence sn (�) � 0 for all n and � 2 �.
Let � = (�2; �3) 2 �2 � �3: Assumption B5 implies that for any � > 0; there exists

� > 0 such that for some N;

inf
k���0k��

�
1

ng
tr fH (�2; �3)g �

1

ng
log jH (�2; �3)j � 1

�
= inf

k���0k��

(
1

ng

ngX
i=1

(�i � log �i � 1)
)
� �

for all n � N: Since this holds true for all � 2 �1, to show (2.49) it su¢ ces to show that
when � = �0, i.e. (�2; �3)

0
= (�02; �03)

0

inf
k���0k��

�
(�0 � �)

0
M2 (�02; �03) (�0 � �)

�
� �:

This is indeed the case due to Lemma B7. Hence, (2.49) holds. With compactness of

�1; Lemmas B2, B4-B6 imply that (2.50) holds.

Proof of Theorem C Under Assumptions B1, B3-B7, the Gaussian-pseudo max-

imum likelihood estimate is consistent, i.e. b� � �0 = op (1). With Assumptions C4 and C5,

to prove Theorem C, it su¢ ces to show that

p
ng
@Qn (�0)

@�
!d N (0; 
) :

De�ne

an =
p
ng
@Qn (�0)

@�
;

and ai;n =
p
ng @Qn(�0)

@�i
; i = 1; 2; 3: Then 
n = E (ana0njX) : Assumption C1 implies that
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n !p 
 where 
 is p.d.. Hence 
n will be p.d. with probability approaching 1: For any

� 2 RK+g(g+1)=2+g such that k�k = 1; we need to show that

�
�0
n�

��1=2
�0an !d N (0; 1) : (2.51)

Suppose � =
�
�01; �

0
2; �

0
3

�0
where �1 2 RK ; �2 2 Rg(g+1)=2 and �3 2 Rg: Then

�0an = �01a1;n + �
0
2a2;n + �

0
3a3;n:

It follows that

�01a1;n = � (ng)
�1=2

nX
i=1

gX
s=1

gX
t=1

�st0 �
0
1x
�
is"it; (2.52)

where x�0is is the i-th row of X
�
s : Each element of a2;n is of the form

(4ng)
�1=2

(2� �st)
nX
i=1

�
"is"it � �st0

�
: (2.53)

By symmetry of ��10 ; each element of a3;n is of the form

(ng)
�1=2

nX
i=1

giit � (ng)�1=2
gX
s=1

�st0

0@ nX
i=1

nX
j=1

gijt"is"jt

1A ;

where gijt is the (i; j)-th element of Gt. This can be rewritten as

� (ng)�1=2
nX
i=1

8<:
 

gX
s=1

�st0 giit"is"it � giit

!
+
X
j 6=i

gX
s=1

�st0 gijt"is"jt

9=; : (2.54)

Since
Pg

s=1 �
st
0 �0st = 1; the expectation of the sum in the parentheses is 0.

Let F0 be the trivial �-�eld and Fi = � ("1�; :::; "i�) be the �-�eld generated by

"1�; :::; "i�; where "i� = ("i1; :::; "ig)
0
: Conditional on X; following (2.52), (2.53) and (2.54),

there exist random variables bin such that

�
�0
n�

��1=2
�0an =

nX
i=1

bin;

where fbin; 1 � i � ng is a martingale di¤erence sequence for each n; i.e. conditional on X;
E (binj Fi�1) = 0: Then, by Theorem 2 of Scott (1973), (2.51) holds if conditional on X; as

n!1;
nX
i=1

E
�
b2in
��Fi�1�!p 1 (2.55)

and for any " > 0;
nX
i=1

E
�
b2in1 (jbinj � ")

	
!p 0: (2.56)
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De�ne

zi;n =
�
�0
n�

�1=2
bin:

Then, conditional on X; �0
n� =
Pn

i=1 E (zi;n)
2 and a su¢ cient condition for (2.55) is

nX
i=1

�
E
�
z2i;n
��Fi�1�� E �z2i;n�	!p 0; (2.57)

because, by Assumption C1, �0
n�!p �
0
� > 0: Let

zi;n = zi1;n + zi2;n + zi3;n;

where zi1;n; zi2;n and zi3;n correspond to (2.52), (2.53) and (2.54), respectively. It is clear

from (2.52) and (2.53) that, conditional onX; E
n
(zi1;n + zi2;n)

2
���Fi�1o = En(zi1;n + zi2;n)2o

for all i. Hence, conditional on X;

nX
i=1

n
E
�
(zi1;n + zi2;n)

2
���Fi�1�� E (zi1;n + zi2;n)2o!p 0:

Hence for (2.57) to hold, it su¢ ces to show that, conditional on X;

nX
i=1

�
E
�
z2i3;n

��Fi�1�� E �z2i3;n��!p 0:

and
nX
i=1

fE [ (zi1;n + zi2;n) zi3;nj Fi�1]� E [(zi1;n + zi2;n) zi3;n]g !p 0:

Lemma C16-C18 imply that these conditions hold. Hence (2.55) holds. To show that (2.56)

holds, it su¢ ces to show the Lyapunov condition that, conditional on X; there is � > 0 such

that
nX
i=1

E jbi;nj2+� !p 0: (2.58)

A su¢ cient condition for (2.58) is that, conditional on X; there is � > 0 such that

nX
i=1

E
�
jz1i;nj2+� + jz2i;nj2+� + jz3i;nj2+�

�
!p 0:

Assumption C7 implies that this is the case for z1i;n and z2i;n: With reference to the �rst

part of the proof of Lemma C16, to show that
Pn

i=1 E jz3i;nj
2+�

= op (1) ; we only need to

show that
Pn

i=1 E jdistj
2+�

= o (1) ; where

dist = giit ("is"it � �0st) + "is

0@X
j<i

gijt"jt +
X
j>i

gijt"jt

1A :

Then the derivation from (A.24) to (A.26) in Robinson (2008) and Assumptions C6 and C7

imply that
Pn

i=1 E jdistj
2+�

= o (1) : Hence (2.58) holds.
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Proof of Theorem D1 Our proof is essentially the same as the proofs of Theorems

1 and 4 in Newey (1997). So the repetitive steps will be omitted. Let h1 = h � T�1. As
discussed in (2.24), the left side of (2.25) becomesZ h

h1 (�)� bhL (�)i2 f� (�) d (�) ;

where f� is the probability density function of �;

bhL (�) = pL (�)
0
(P 0P )

�1
P 0y;

P =
�
pL (�1) ; :::; p

L (�n)
�0

and y = (y1; :::; yn)
0
:

The di¤erence of our proof to that of Theorem 1 in Newey (1997) are from equations (A.2)

and (A.3) of Newey (1997). We proceed as in the proof of Theorem 4 in Newey (1997) by

showing that Assumptions 1 and 2 in Newey (1997) holds and point out that the precise

rate of convergence as indicated by Assumption 3 in Newey (1997) can be replaced by the

approximating result in Dunkl and Xu (2001). The approximating result in Dunkl and Xu

(2001) can replace the precise result from Newey (1997)�s Assumption 3 in equations (A.2)

and (A.3).

First, Assumptions D1 and D4 implies that Assumption 1 in Newey (1997) holds. Note

that V ar (yijxi) = V ar (yij �i) since the �-�eld generated by xi and �i are the same under
our one-one restriction on T .

Next, we employ the observation made by Cox (1988), in a univariate case, that bhL (�) is
numerically invariant if we replace pl (�) by orthonormal polynomials with the corresponding

order � (l) : In our multivariate case, this replacement is valid since the sequence f� (l)g is
assumed to be ordered. Hence bhL (�) can be written as

bhL (�) = pL� (�)
0
(P 0�P�)

�1
P 0�y;

where

pL� (�) = (p
�
1 (�) ; :::; p

�
L (�))

0
; P� =

�
pL� (�1) ; :::; p

L
� (�n)

�0
;

p�l (�) = z�1(l) (�1) ::: z�g(�)
�
�g
�
;

z�t (�t) =

�
2�t + 1

bt � at

�1=2
P
(0; 0)
�t

�
2 (�t � at)
bt � at

� 1
�
; (2.59)

where P (0; 0)�t
are univariate Jacobi polynomials on [�1; 1] with degree �l and parameter

(0; 0) (see Abramowitz and Stegun (1964, p. 775 eqn. 22.3.1) and Andrews (1991 eqn.

3.12)). That is to transform univariate polynomials in �t 2 (at; bt) to orthonormal polyno-
mials with respect to the uniform weight on [at; bt] : Hence, for � 2 �gt=1 (at; bt) standard
polynomials in � are replaced by Jacobi polynomials of the same degree that is orthonormal

with respect to the uniform density on �gt=1 (�1; 1) : The usefulness of this transformation
can be seen from Lemma D2 that �

�
E
�
pL� (�) p

L
� (�)

0�� � C for all L � 1: Then we can follow
the proof in Andrews (1991) to verify that other requirements in Assumption 2 of Newey
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(1997) hold. Note that the condition L3=n = o (1) is needed to verify that Assumption 2 of

Newey (1997) hold for polynomials. See also the proof of Theorem 4 in Newey (1997) as a

reference.

Finally, we need to replace �K in Assumption 3 of Newey (1997) by dL such thatZ �
h1 (�)� d0LpL� (�)

�2
dF� (�)! 0 as L!1; (2.60)

from the result in Dunkl and Xu (2001). Note that since E
h
h1 (�)

2
i
<1 and � are bounded,

conditions (2.22) and (2.23) of Dunkl and Xu (2001) hold for polynomials in � with respect

to its distribution function. Hence, by Theorem 3.1.18 in Dunkl and Xu (2001), there is a

triangular array
�
dL 2 RL : L � 1

	
such that (2.60) holds for polynomials in �. Since there

is a one-one correspondence between polynomials in � and orthonormal polynomials in �;

there is a triangular array fdL : L � 1g for orthonormal polynomials too. The replacement
should be taken everywhere � appears in the proof of Theorem 1 of Newey (1997) by our

�L where the sup norm should be replaced by the L2 norm in the sense of Dunkl and Xu

(2001) and the Markov�s inequality can be applied. Then it follows that the conclusion of

the theorem holds.

Proof of Theorem D2 It has been shown in the proof of Theorem D1 that As-

sumptions 1 and 2 of Newey (1997) holds. To show that Theorem D2 holds, it remains to

show that Assumptions 3 of Newey (1997) holds. Certainly, Assumption D6 is analogous to

Assumption 9 of Newey (1997) implying that Assumption 3 of Newey (1997) holds. Hence,

the result follows directly from the proof of Theorem 4 in Newey (1997).

Proof of Theorem D3 Suppose a transformation T has the form (2.27) where mt

are in the class E and Assumption D9 holds, it follows from Lemma D4 that Assumption

D8 holds and under Assumption D9 T (X ) = (�1; 0)g. Hence T is bounded. By Lemma

D3, T is one-one and with Assumption D9,

f� (�) = fX
�
T�1 (�)

� gY
t=1

�
m0
t

�
m�1
t (�t)

���1
;

where f� is continuous on T (X ) and f� (�) > 0 for all � in T (X ) : To show that Theorem
D3 holds, it su¢ ces to show that there is a constant C > 0 such that f� (�) � C for all � in

T (X ) : To achieve this, we employ both Lemmas D5 and D6.
First �x t = 1; :::; g; and ��t 2 (�1; 0)

g�1
: Consider

lim
�t!�1

f� (�) = lim
�t!�1

fX
�
T�1 (�)

� gY
s=1

�
m0
s

�
m�1
s (�s)

���1
= lim

xt!�1

fX (x)

�gs=1m
0
s (xs)

;
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where x = T�1 (�) : By condition (2.30), there are functions qs such that

lim
xt!�1

fX (x)

�gs=1m
0
s (xs)

= lim
x!�1

�
fX (x)

�gs=1 exp (qs (xs))

�
�gs=1

exp (qs (xs))

m0
s (xs)

��
:

Since

m0
t (xt) =

exp (g (xt)) g
0 (xt)

[1 + exp (g (xt))]
2 ;

it follows that
exp (qt (xt))

m0
t (xt)

=
[1 + exp (g (xt))]

2

exp [g (xt)� qt (xt) + log (g0 (xt))]
:

Since g (xt)! �1 as xt ! �1;

lim
xt!�1

[1 + exp (g (xt))]
2
= 1:

Under condition (2.32),

lim
x!�1

exp [g (xt)� qt (xt) + log (g0 (xt))] = 0;

and thus

lim
xt!�1

exp (qt (xt))

m0
t (xt)

=1:

Hence under condition (2.30),

lim
�t!�1

f� (�) = lim
xt!�1

fX (x)

�gs=1m
0
s (xs)

=1:

Now consider

lim
�t!0

f� (�) = lim
xt!1

fX (x)

�gs=1m
0
s (xs)

= lim
x!1

�
fX (x)

�gs=1 exp (qs (xs))

�
�gs=1

exp (qs (xs))

m0
s (xs)

��
Since

m0
t (xt) =

exp (g (xt)) g
0 (xt)

[1 + exp (g (xt))]
2 > 0;

it follows that

exp (qt (xt))

m0
t (xt)

� exp (g (xt))
2

exp (g (xt)) g0 (xt)
exp (qt (xt))

= exp [g (xt) + qt (xt)� log (g0 (xt))] :

Hence under conditions (2.30) and (2.31),

lim
�t!0

f� (�) = lim
xt!1

fX (x)

�gs=1m
0
s (xs)

=1:

As this result holds for all t = 1; :::; g; and ��t 2 (�1; 0)
g�1

; it follows from Lemma
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D6 that for any y in the boundary of T (X ) = (�1; 0)g ;

lim
�!y

f� (�) =1:

Hence, as mentioned earlier that f� is continuous on T (X ) and f� (�) > 0 for all � in T (X ),
by Lemma D5, there is a constant C > 0 such that f� (�) � C for all � in T (X ) as required.

Proof of Theorem E Our proof is quite di¤erent from those of Newey (1988) and

Robinson (2005, 2010) for a number of reasons. First, we have to work with orthonormal

polynomials. Second, we have to focus on obtaining relatively sharper results. Our proof is

also di¤erent from that in Newey (1997) since we do not have an explicit regression form.

First, recall that for v 2 Rg and � (l) 2 Ng0;

pl (v) = v�(l)

is a monomial in v1; :::; vg with total degree k� (l)k1 as described in the previous section.
By (2.43) and Assumption E3, we only have to consider vt 2 (at; bt), where at and bt

are �nite constants. By Assumption E7, the sequence f� (l)g is ordered. Then for any
v 2 �gt=1 (at; bt) ; there is a non-singular matrix B1L of constants such that

pL� (v) = B1Lp
L (v) ;

where pL� (v) is an L � 1 vector of multivariate orthonormal Jocobi polynomials in v on
[�1; 1]g ; with respect to the uniform weight, and with the corresponding order � (l). For

t = 1; :::; g; since �Lt (u) =
@
@ut

pL (T (u)), it follows that

B1L�
L
t (u) =

@

@ut
B1Lp

L (T (u)) =
@

@ut
pL� (T (u)) :

De�ne �L�t (u) =
@
@ut

pL� (T (u)). Then b tL (e"i�) constructed from the standard multivariate

polynomials is numerically the same as when Jacobi orthonormal polynomials are employed.

That is

b tL (e"i�) = pL� (T (e"i�))0
0@ nX
j=1

pL� (T (e"j�)) pL� (T (e"j�))0
1A�10@ nX

j=1

�L�t (e"j�)
1A :

The advantage of this approach is that it will substantially reduce multi-colinearity of the

approximating functions. Under Assumption E3, Lemma D2 implies that there is a constant

C > 0 such that for all L � 1; �
�
E
�
pL� (T ("1�)) p

L
� (T ("1�))

0�� � C: Hence we can de�ne

B2L =
�
E
�
pL� (T ("1�)) p

L
� (T ("1�))

0�	�1=2
and B2L is positive de�nite for all L: For u; v 2 Rg and t = 1; :::; g; let

pL�� (v) = B2Lp
L
� (v) and �L��t (u) = B2L�

L
�t (u) =

@

@ut
pL�� (T (u)) : (2.61)
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Then, it follows that

b tL (e"i�) = pL�� (T (e"i�))0
0@ nX
j=1

pL�� (T (e"j�)) pL�� (T (e"j�))0
1A�10@ nX

j=1

�L��t (e"j�)
1A :

This step is employed in Newey (1997) to help increase the rate at which L can go to in�nity.

One advantage of this step is that

E
�
pL�� (T ("1�)) p

L
�� (T ("1�))

0�
= IL; (2.62)

where IL is the identity matrix of order L; without seriously contaminating other terms

since

kB2Lk2 = �
�
E
�
pL� (T ("1�)) p

L
� (T ("1�))

0��1�
=

�
�
�
E
�
pL� (T ("1�)) p

L
� (T ("1�))

0��	�1
� 1=C

uniformly in L. Hence kB2Lk is bounded uniformly in L.
With this expression, de�ne

e
tL =
0@ nX
j=1

pL�� (T (e"j�)) pL�� (T (e"j�))0
1A�10@ nX

j=1

�L��t (e"j�)
1A : (2.63)

Hence b tL (e"i�) = (e
tL)0 pL�� (T (e"i�)) : (2.64)

Let e�L = �e
1L; :::; e
gL�0 : (2.65)

Then b L (e"i�) = e�L pL�� (T (e"i�)) : (2.66)

Now we can start the standard procedure as in Newey (1988) and Robinson (2005, 2010).

For u 2 Rg; de�ne

�L�� (u) =
@

@u0
pL�� (T (u)) =

�
�L��1 (u) ; :::; �

L
��g (u)

�
: (2.67)

De�ne

Ri (�) = diag

8<:
nX
j=1

wij1uj1 (�) ; :::;
nX
j=1

wijgujg (�)

9=; ; (2.68)

where ujt (�) = yjt � x0jt�: By the mean value theorem around �04;

pL�� (T (e"i�)) = pL�� (T ("i�))��L�� ("i�)
h
(e�� �0) +X�

i� (�)
�e� � �0�+Ri ��� (e�� �0)i ;

(2.69)
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where "i� = "i�
�
�4
�
for some �4 such that



�4 � �04

 < 


e�4 � �04


 :
Let bVn = n�1

Pn
i=1

h
X�
i� (e�)�X�

� (e�)i0 bLL hX�
i� (e�)�X�

� (e�)i. Then, by (2.66) and (2.69),
n1=2

�b� � �0� = bV �1n n�1=2
nX
i=1

h
X�
i� (e�)�X�

� (e�)i0 e�L pL�� (T ("i�))
+

"
IK � bV �1n n�1

nX
i=1

h
X�
i� (e�)�X�

� (e�)i0 e�L�L�� ("i�)X�
i� (�)

#
n1=2

�e� � �0�
�bV �1n n�1

nX
i=1

h
X�
i� (e�)�X�

� (e�)i0 e�L�L�� ("i�)pn (e�� �0)
�bV �1n n�1

nX
i=1

h
X�
i� (e�)�X�

� (e�)i0 e�L�L�� ("i�)Ri ���pn (e�� �0) :
By Assumption E8, to proof Theorem E, it su¢ ces to show that

bVn !p V; (E.1)

n�1=2
nX
i=1

h
X�
i� (e�)�X�

� (e�)i0 e�L pL�� (T ("i�))� n�1=2 nX
i=1

�
X�
i� �X

�
�

�0
 ("i�)!p 0: (E.2)

n�1=2
nX
i=1

�
X�
i� �X

�
�

�0
 ("i�)!d N (0; V ) : (E.3)

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)X�
i� (�)� V !p 0; (E.4)

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)Ri ���!p 0; (E.5)

and

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)!p 0; (E.6)

Hence Propositions E1 - E6 conclude the proof.

Appendix 2.2: Propositions for Proof of Theorem E

Proposition E1 As n!1,

bLL !p L and bVn !p V:

Proof. For t = 1; :::; g; let

 tL ("i�) = 
0tL p
L
�� (T ("i�)) ; (2.70)
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where


tL = E
�
pL�� (T ("1�)) t ("1�)

�
(2.71)

Let

 L ("i�) =
�
 1L ("i�) ; :::;  gL ("i�)

�0
: (2.72)

By Lemma E3, as n!1;
E
�
 L ("1�) L ("1�)

0�! L: (2.73)

Hence, to show the �rst part of Proposition ??, it su¢ ces to show that, as n!1;

bLL !p E
�
 L ("i�) L ("i�)

0�
: (2.74)

Let eIL = n�1
nX
i=1

pL�� (T (e"i�)) pL�� (T (e"i�))0
Then, with reference to (2.63) and (2.64),

e
tL = eI�1L
 
n�1

nX
i=1

�L��t (e"i�)
!

and b tL (e"i�) = e
0tLpL�� (T (e"i�)) : (2.75)

For s; t = 1; :::; g; by de�nition of pL�� (T ("i�)) ;

E [ sL ("1�) tL ("1�)] = 
0sLE
�
pL�� (T ("1�)) p

L
�� (T ("1�))

0�

tL = 
0sL
tL;

and, by (2.75),

n�1
nX
i=1

b sL (e"i�) b tL (e"i�)
= e
0sLeILe
tL =

0@n�1 nX
j=1

�L��s (e"j�)
1A0 eI�1L

0@n�1 nX
j=1

�L��t (e"j�)
1A :

Hence su¢ cient conditions for (2.74) are that for s; t = 1; :::; g;

n�1
nX
i=1

b sL (e"i�) b tL (e"i�)� E [ sL ("1�) tL ("1�)]
= e
0sLeILe
tL � 
0sL
tL = op (1) : (2.76)

For t = 1; :::; g; let e�tL = n�1
nX
j=1

�L��t (e"j�) : (2.77)

Then the left side of (2.76) is e�0sLeI�1L e�tL � 
0sL
tL:
Lemma E9 and Assumption E9 imply that (2.76) holds, and thus, as n ! 1; bLL � L =
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op (1) :

Since

bVn = n�1
nX
i=1

�
X�
i� (�)�X

�
� (�)

�0 � bLL � L��X�
i� (�)�X

�
� (�)

�
+n�1

nX
i=1

�
X�
i� (�)�X

�
� (�)

�0
L
�
X�
i� (�)�X

�
� (�)

�
: (2.78)

By Lemma A1, the norm of the �rst term in (2.78) is bounded by




 bLL � L


 n�1 nX
i=1




X�
i� (�)�X

�
� (�)




2! = op (1)

by the previously established result and Lemma E6. The second term in (2.78) is

n�1
nX
i=1

h�
X�
i� (�)�X

�
� (�)

�
�
�
X�
i� �X

�
�

�i0
L
h�
X�
i� (�)�X

�
� (�)

�
�
�
X�
i� �X

�
�

�i
+n�1

nX
i=1

�
X�
i� �X

�
�

�0
L
h�
X�
i� (�)�X

�
� (�)

�
�
�
X�
i� �X

�
�

�i
+n�1

nX
i=1

h�
X�
i� (�)�X

�
� (�)

�
�
�
X�
i� �X

�
�

�i0
L
�
X�
i� �X

�
�

�
+n�1

nX
i=1

�
X�
i� �X

�
�

�0
L
�
X�
i� �X

�
�

�
(2.79)

By Cauchy�s inequality, the norm of the �rst three terms in (2.79) is bounded by

kLk
 
n�1

nX
i=1




�X�
i� (�)�X

�
� (�)

�
�
�
X�
i� �X

�
�

�


2!

+ kLk
 
n�1

nX
i=1




�X�
i� (�)�X

�
� (�)

�
�
�
X�
i� �X

�
�

�


2!1=2 n�1 nX
i=1




X�
i� �X

�
�




2!1=2
= op (1) ;

by Lemmas E5 and E6 (ii). Hence by Assumption E5, bVn !p V as required.

Proposition E2 As n!1;

n�1=2
nX
i=1

�
X�
i� �X

�
�

�0
 ("i�)� n�1=2

nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L pL�� (T ("i�)) = op (1) :

Proof. Let b L ("i�) = e�L pL�� (T ("i�)) and  L ("i�) is de�ned as (2.66): The left side of the
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lemma is

+n�1=2
nX
i=1

�
X�
i� �X

�
�

�0
[ ("i�)�  L ("i�)] + n�1=2

nX
i=1

�
X�
i� �X

�
�

�0 h
 L ("i�)� b L ("i�)i

�n�1=2
nX
i=1

h�
X�
i� (e�)�X�

� (e�)�� �X�
i� �X

�
�

�i0 b L ("i�) :
Lemmas E10 - E12 imply that each of these terms are op (1). Hence the required result

holds.

Proposition E3 As n!1;

n�1=2
nX
i=1

�
X�
i� �X

�
�

�0
 ("i�)!d N (0; V ) : (2.80)

Proof. De�ne Vn = n�1
Pn

i=1

�
X�
i� �X

�
�

�0
L
�
X�
i� �X

�
�

�
. By Assumption E5, Vn is posi-

tive de�nite with probability approaching one. For any � in RK such that k�k = 1; de�ne

c0i = c0in = n�1=2�0V �1=2n

�
X�
i� �X

�
�

�0
:

To show (2.80), it su¢ ces to show that as n!1;

nX
i=1

c0i ("i�)!d N (0; 1) : (2.81)

Our proof modi�es the proof of Theorem 2 in Robinson and Hidalgo (1997). It su¢ ces to

show that (2.81) holds by showing that conditionally on fX�
i�g, (2.81) holds. Let F0 be the

trivial �-�eld and Fi = � ("1�; :::; "i�) be the �-�eld generated by "1�; :::; "i�: Conditional

on fX�
i�g, for each n � 1; fc0i ("i�) ; 1 � i � ng is a martingale di¤erence sequence, i.e.

E fc0i ("i�)j Fi�1g = 0: To show (2.81), following Scott (1973), it su¢ ces to show that,

conditional on fX�
i�g ; as n!1;

nX
i=1

E
n
[c0i ("i�)]

2
���Fi�1o!p 1; (2.82)

and, for all � > 0;

E

(
nX
i=1

E
n
[c0i ("i)]

2
1 (jc0i ("i)j > �)

��� fX�
i�g
o)

! 0: (2.83)

It follows from the way in which ci are de�ned that (2.82) holds. For any � > 0; under
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Assumption E1, the left side of (2.83) is bounded by

E

(
nX
i=1

kcik2 E
h
k ("1�)k2 1 (k ("1�)k > �=�)

i)
+ P

�
max
1�i�n

kcik > �

�

= E
h
k ("1�)k2 1 (k ("1�)k > �=�)

i nX
i=1

E kcik2 + P
�
max
1�i�n

kcik > �

�
: (2.84)

Since
nX
i=1

E kcik2 = �0V �1=2n

"
n�1

nX
i=1

E
�
X�
i� �X

�
�

�0 �
X�
i� �X

�
�

�#
V �1=2n �;

Assumption E5 implies that
Pn

i=1 E kcik
2
= O (1) : Note that

E k ("1�)k2 = E
�
tr
�
 ("i�)

0
 ("i�)

�	
= tr

�
E
�
 ("i�) ("i�)

0�	
= trL <1.

This and the fact that
Pn

i=1 E kcik
2
= O (1) implies that the term on the right of (2.84) can

be made arbitrarily small by choosing � small enough, so it su¢ ces for (2.83) to show that

max1�i�n kcik = op (1) : Since



X�

�




 � max1�i�n kX�
i�k, by Assumption E5

max
1�i�n

kcik �


V �1n



�n�1=2 max
1�i�n

k2X�
i�k
�
= op (1) :

Proposition E4 As n!1;

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)X�
i� (�)!p V:

Proof. It follows directly from Lemmas E13 - E16 that Proposition E4 holds.

Proposition E5 As n!1;

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)Ri ���!p 0

Proof. Proceed as in the proof of Proposition E4 to show that

n�1
nX
i=1

��
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)Ri ���� �X�
i� �X

�
�

�0 e�L�L�� ("i�)Ri� = op (1) :

Then Lemma E17 concludes the proposition.
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Proposition E6 As n!1;

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)!p 0:

Proof. The proof is similar to the proof of Proposition E4 but simpler.

Appendix 2.3: Technical Lemmas for proofs of Theo-
rems

Lemma A1 For any matrix A, kA0k = kAk :

Proof. Let A be an m�n matrix. Exercise 7.25 of Abadir and Magnus (2005) implies that
for � 6= 0; j�In �A0Aj = �n�m j�Im �AA0j : If A0A only has zero eigenvalues, then AA0

must also have only zero eigenvalues. Otherwise, this equality will lead to a contradiction. In

this case kA0k = kAk : Suppose A0A has a nonzero eigenvalue. Then this nonzero number is
also an eigenvalue of AA0: Let A1; A2 be the sets of all nonzero eigenvalues of A0A and AA0,
respectively. If � 2 A1, then the above equality implies that � 2 A2: The converse is also
true, and hence A1 = A2: It follows that 0 6= kAk2 = � (A0A) = � (AA0) = kA0k2 : Hence
the required equality holds.

Lemma A2 Let A be a symmetric matrix. Then � is an eigenvalue of A0A if and only if

� = !2; where ! is an eigenvalue of A.

Proof. Suppose � = !2 where ! is an eigenvalue of A. Then 0 = jA� !Inj jA+ !Inj =
jA0A� �Inj. Hence � is an eigenvalue of A0A: Conversely, suppose � is an eigenvalue of
A0A: SinceA0A is p.s.d., � � 0. It follows that 0 = jA0A� �Inj =

���A�p�In��� ���A+p�In��� : That
is either

p
� is an eigenvalue of A or �

p
� is an eigenvalue of A. Hence � = !2 where ! is

an eigenvalue of A:

Lemma A3 Let A be a symmetric matrix. Then kAk = � (A), and

kAk � kAk1 and kAk � kAk1 :

Proof. By de�nition kAk2 = � (A0A) : Since A is symmetric, Lemma A2 implies that there

is an eigenvalue ! of A such that !2 = � (A0A) : However, j!j must be equal to � (A),
otherwise Lemma A2 will implies a contradiction. Hence kAk = � (A) : As it can be shown

that k�k1 and k�k1 are matrix norms as de�ned in Horn and Johnson (1985). Then by
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Theorem 5.6.9 of Horn and Johnson (1985), kAk = � (A) � kAk1. Similarly it follows that
kAk � kAk1 :

Lemma A4 Let A be a square matrix of order n; c1; c2 be constants and B = c1In+ c2A,

where In is the identity matrix of order n: Then � is an eigenvalue of B if and only if

� = c1 + c2! where ! is an eigenvalue of A.

Proof. Suppose � = c1 + c2! where ! is an eigenvalue of A. It follows that

jB � �Inj = jc2A� c2!Inj = (c2)n jA� !Inj = 0:

Hence � is an eigenvalue of B. Conversely, suppose that � is an eigenvalue of B. If c2 = 0,

then it is trivial that � = c1 + c2! where ! is an eigenvalue of A. If c2 6= 0, then

0 = jB � �Inj = jc2A� (�� c1) Inj = (c2)n
����A� �� c1

c2
In

���� :
Hence, there is !, an eigenvalue of A; such that ! = (�� c1) =c2. It follows that � = c1+c2!

where ! is an eigenvalue of A as required.

Lemma A5 If W is symmetric and S = In � �0W is invertible, then


(S0S)�1


 = maxn(1� �0!)�2 : ! is an eigenvalue of Wo :
Proof. It follows from Lemma A4 that � is an eigenvalue of S if and only if � = 1 � �0!,

where ! is an eigenvalue of W: Invertibility of S implies that 1� �0! 6= 0 for all eigenvalues
! of W , and that S0S is p.d.. Suppose that W is symmetric. Then S is also symmetric and,

by Lemmas A2 and A3,


(S0S)�1


 = �
n
(S0S)

�1
o
= f� (S0S)g�1

= max
n
(1� �0!)

�2
: ! is an eigenvalue of W

o
:

Lemma A6 Suppose �0 6= 0: (i) � is an eigenvalue of G = WS�1 if and only if � =

��10 (! � 1) where ! is an eigenvalue of S�1: (ii) For any real number �0;

S�1

� 1 � k�0Gk � 

S�1

+ 1
Proof. From the de�nition of G; it follows that

In = SS�1 = (In � �0W )S�1 = S�1 � �0G
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and, given that �0 6= 0;
G = ��10

�
S�1 � In

�
:

Lemma A4 implies that Lemma A6 (i) holds. As �0G = S�1 � In, by the property of a

matrix norm,

k�0Gk �


S�1

+ kInk = 

S�1

+ 1:

Similarly, S�1 = In + �0G and thus



S�1

 � 1 + k�0Gk :

Lemma A7 Let A is a square matrix of order g. (i) � is an eigenvalue of A
In if and only
if � is an eigenvalue of A: (ii) If A is p.d., then A
 In is also p.d., and kAk = kA
 Ink :

Proof. Consider j(A
 In)� �Ingj = j(A
 In)� � (Ig 
 In)j = j(A� �Ig)
 Inj = jA� �Igjn :
Hence Lemma A7 (i) holds. Now suppose A is p.d., i.e. A is symmetric and its eigenvalues

are all positive. Symmetry of A implies symmetry of A
 In: Lemma A7 (i) implies that all
eigenvalues of A
 In are also positive and hence A
 In is p.d.. Moreover, by Lemma A3,

kAk = � (A) = � (A
 In) = kA
 Ink :

Lemma A8 Let A1; :::; Ag be n � n matrices and A = diag fA1; :::; Agg : Then kAk =
max1�t�g kAtk :

Proof. Since A0A = diag
�
A01A1; :::; A

0
gAg

	
; jA0A� �Ingj = �gt=1 jA0tAt � �Inj : This

implies that � is an eigenvalue of A0A if and only if � is an eigenvalue of A0tAt for some

t = 1; :::; g: Hence

kAk2 = � (A0A) = max
1�t�g

� (A0tAt) = max
1�t�g

kAtk2 :

This implies that Lemma A8 holds.

Lemma A9 For any a 2 Rn;

p
a0a = sup fa0x : x 2 Rn; x0x � 1g :

Proof. For a given a; let f (x) = a0x: Consider a maximization problem Max f (x) subject

to x 2 D = fx 2 Rn : 1� x0x � 0g : Since

@2

@x@x0
f (x) = 0 and

@2

@x@x0
(1� x0x) = �2In;
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both f (x) and the constraint 1 � x0x are concave. Moreover, 1 � x01x1 > 0 for x1 =

(1=2; 0; :::; 0)
0. Then it follows from the Kuhn-Tucker theorem that x� is a solution to the

maximization problem if and only if there is �� 2 R such that

a� 2��x� = 0; �� � 0 and ��
�
1� (x�)0 x�

	
= 0:

As x� = a (a0a)
�1=2 and �� = (a0a=4)

1=2 satisfy the su¢ cient and necessary conditions of

the Kuhn-Tucker theorem, it follows that f (x�) = (a0a)1=2 :

Lemma A10 Let A be a square matrix. Then � (A0A) � � (A)
2.

Proof. Let �1 be an eigenvalue of A such that j�1j = � (A) : Let x1 be the corresponding

eigenvector of �1. By symmetry of A0A;

� (A0A) � x01A
0Ax1

x01x1
=
(�1x1)

0
�1x1

x01x1
= �21 = � (A)

2
:

Lemma B0 Let
�̂ = argmin

�2�
Qn (�) ;

where � is a compact subset of Rp. If (i) �0 2 �; (ii)

Qn (�)�Qn (�0) = sn (�)� tn (�) ;

where sn (�) is nonstochastic, (iii) for any " > 0; there exists � > 0 such that for some N;

inf
k���0k�"

sn (�) � �

for all n � N; and (iv) sup�2� jtn (�)j
p! 0 as n!1, then

�̂
p! �0

as n!1:
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Proof. For any " > 0; let N = f� : k� � �0k < "g and N c = �nN . For n � N;

P
n


�̂ � �0


 � "

o
� P

n
inf
N c
[Qn (�)�Qn (�0)] � 0

o
= P

n
inf
N c
[sn (�)� tn (�)] � 0

o
� P

�
inf
N c

sn (�)� sup
N c

jtn (�)j � 0
�

� P
�
inf
N c

sn (�) � sup
�2�

jtn (�)j
�

� P
�
� � sup

�2�
jtn (�)j

�
:

Hence P
n


�̂ � �0


 � "

o
! 0 as n!1:

Lemma B1 Let x =
�
x01; :::; x

0
g

�0
; y =

�
y01; :::; y

0
g

�0
where xt; yt 2 Rn; t = 1; :::; g: Let

�st be the (s; t)-th element of ��1. Then

x0
�
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1y =

gX
s=1

gX
t=1

�stx0s
�
S�1s

�0
Ss (�)

0
St (�)S

�1
t yt; (2.85)

where

�
S�1s

�0
Ss (�)

0
St (�)S

�1
t

= In � (�s � �0s)G0s � (�t � �0t)Gt + (�s � �0s) (�t � �0t)G0sGt: (2.86)

Proof. The (s; t)-th submatrix of
�
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1 is �st

�
S�1s

�0
Ss (�)

0
St (�)S

�1
t :

Hence (2.85) follows. Recall that Gt =WtS
�1
t : Then,

St (�)S
�1
t = fSt � (�t � �0t)WtgS�1t = In � (�t � �0t)Gt;

and hence (2.86) follows.

Lemma B2 Let �0st be the (s; t)-th element of �0: For any family of nonstochastic n� n

matrices fAngn�1 such that, as n!1;
Pn

i=1

Pn
j=1 a

2
ijn = o

�
n2
�
; where aijn is the (i; j)-th

element of An;

1

n
"0�sAn"�t �

1

n
tr (�0stAn) = op (1) ; s; t = 1; :::; g:

Proof. Consider

1

n
"0�sAn"�t �

1

n
tr (�0stAn) =

1

n

nX
i=1

aiin ("is"it � �0st) +
1

n

XX
i 6=j

aijn"is"jt: (2.87)
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For the �rst term in (2.87), by Assumption B3,

E

"
1

n

nX
i=1

aiin ("is"it � �0st)
#2

� 2

�
max
1�t�g

max
i�1

E
�
"4it
�
+ �20st

�
1

n2

nX
i=1

a2iin

� Cn�2
nX
i=1

nX
j=1

a2ijn = o (1) :

Similarly, the mean square of the second term in (2.87) is

E

0@ 1
n

XX
i 6=j

aijn"is"jt

1A2

=
1

n2

8<:XX
i 6=j

a2ijnE"
2
isE"

2
jt +

XX
i 6=j

aijnajinE ("is"it)E ("js"jt)

9=;
� Cn�2

nX
i=1

nX
j=1

a2ijn + Cn
�2

nX
i=1

nX
j=1

jaijnajinj : (2.88)

The �rst term in (2.88) is o (1) :By Cauchy�s inequality, the second sum in (2.88) is bounded

by

nX
i=1

0@ nX
j=1

a2ijn

1A1=20@ nX
j=1

a2jin

1A1=2

�

0@ nX
i=1

nX
j=1

a2ijn

1A1=20@ nX
i=1

nX
j=1

a2jin

1A1=2

= o
�
n2
�
:

Therefore the second term in (2.88) is o (1) ; and hence n�1"0�sAn"�t�n�1tr (�0stAn) = op (1)

as n!1:

Lemma B3 Consider any two independent families of Rn-valued random variables fxngn�1
and fungn�1, where Eun = 0 for all n � 1. For each n � 1, let xin and uin be the i-th

elements of xn and un, respectively. As n!1; if
Pn

i=1

Pn
j=1 E (xinxjn)Cov (uin; ujn) =

o
�
n�2

�
, then

n�1x0nun = op (1) :

Proof. By independence of xin and uin; and the fact that E (un) = 0;

E (x0nun)
2
=

nX
i=1

nX
j=1

E (xinxjn)Cov (uin; ujn) :

Hence the required result holds.

Lemma B4 As n!1;

sup
�2�2��3

���� 12ngu0S (�)0 ���1 
 In�S (�)u� 1

2ng
tr fH (�2; �3)g

���� = op (1) (2.89)

:
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Proof. Let �0st and �st be the (s; t)-th element of �0 and �, respectively. It follows, also
from symmetry, that

tr fH (�2; �3)g = tr
n�
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1 (�0 
 In)

o
=

gX
s=1

gX
t=1

�0st�
sttr

n�
S�1s

�0
Ss (�)

0
St (�)S

�1
t

o
:

The di¤erence inside the modulus in (2.89) is

1

2ng
"0
�
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1"� 1

2ng
tr fH (�2; �3)g

=
1

2ng

gX
s=1

gX
t=1

�st
h
"0�s
�
S�1s

�0
Ss (�)

0
St (�)S

�1
t "�t � �0sttr

n�
S�1s

�0
Ss (�)

0
St (�)S

�1
t

oi
;

where the last equality follows from Lemma B1. For �xed s and t; Lemma B1 implies that

n�1"0�s
�
S�1s

�0
Ss (�)

0
St (�)S

�1
t "�t � n�1�0sttr

n�
S�1s

�0
Ss (�)

0
St (�)S

�1
t

o
=

�
n�1"0�s"�t � n�1tr (�0stIn)

	
� (�s � �0s)

�
n�1"0�sG

0
s"�t � n�1tr (�0stG0s)

	
� (�t � �0t)

�
n�1"0�sGt"

0
�t � n�1tr (�0stGt)

	
+(�s � �0s) (�t � �0t)

�
n�1"0�sG

0
sGt"

0
�t � n�1tr (�0stG0sGt)

	
:

Assumption B7 and Lemma B2 imply that term in the last curly brackets is op (1). Let gijt
be the (i; j)-th element of Gt: Note that

nX
i=1

nX
j=1

g2ijt = tr (G0tGt) =
nX
i=1

�i (G
0
tGt) ;

where �i (G0tGt) are eigenvalues of G
0
tGt: If all eigenvalues of G

0
tGt is bounded uniformly in

n, then
Pn

i=1

Pn
j=1 g

2
ijt = O (n) = o

�
n2
�
. Hence Lemma B2 implies that the other terms

in curly brackets are also op (1) : If some of the eigenvalues of G0tGt approaches in�nity as n

increases, then
Pn

i=1 �i (G
0
tGt) will be dominated by

nX
i=1

�i (G
0
tGt)

2
= tr (G0tGtG

0
tGt) �

ngX
i=1

ngX
j=1

v2ij = o
�
n2
�
:

Hence Lemma B2 implies that the other terms in curly brackets are also op (1) : Hence,

Assumption B7 and Lemma B2 imply that all terms in curly brackets are op (1) : Positive

de�niteness of �0, compactness of �3 and the required property of �2 in Assumption B4

imply that Lemma B4 holds.

Lemma B5 Let xk be the k-th column of X: As n!1;

sup
�2�2��3

���� 1ngx0kS (�)0 ���1 
 In�S (�)u
���� = op (1) :
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Proof. Let �st be the (s; t)-th element of ��1: Then the term in the absolute sign is

(ng)
�1
(x�k)

0 �
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1", where x�k is the k-th column of X

�: Let

x�k =

��
x�k;1

�0
; :::;

�
x�k;g

�0�0
, where x�k;t are Rn random vectors: It follows from Lemma

B1 that

(ng)
�1
(x�k)

0 �
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1"

= (ng)
�1

gX
s=1

gX
t=1

�st
�
x�k;s

�0 �
S�1s

�0
Ss (�)

0
St (�)S

�1
t "�t: (2.90)

Lemma B1 implies that

n�1
�
x�k;s

�0 �
S�1s

�0
Ss (�)

0
St (�)S

�1
t "�t

=
n
n�1

�
x�k;s

�0
"�t

o
� (�s � �0s)

n
n�1

�
x�k;s

�0
G0s"�t

o
� (�t � �0t)

n
n�1

�
x�k;s

�0
Gt"�t

o
+(�s � �0s) (�t � �0t)

n
n�1

�
x�k;s

�0
G0sGt"�t

o
:

Assumption B7 and Lemma B3 can be employed to show that the terms in curly brackets are

all op (1) :With reference to (2.90), the property of �2 and compactness of �3 in Assumption

B4 imply that Lemma B5 holds.

Lemma B6 As n!1;

sup
�2�2��3





 1nX 0S (�)
0 �
��1 
 In

�
S (�)X �M2 (�2; �3)





 = op (1) :

Proof. Let x�k be the k-th column of X
� and �st be the (s; t)-th element of ��1: Proceeding

as in the proof of Lemma B1, it follows that

n�1X 0S (�)
0 �
��1 
 In

�
S (�)X

= n�1 (X�)
0 �
S�1

�0
S (�)

0 �
��1 
 In

�
S (�)S�1X�

= n�1
gX
s=1

gX
t=1

�st (X�
s )
0 �
S�1s

�0
Ss (�)

0
St (�)S

�1
t X�

t :

Employing (2.86), it follows that

n�1 (X�
s )
0 �
S�1s

�0
Ss (�)

0
St (�)S

�1
t X�

t

= n�1 (X�
s )
0
X�
t + (�0s � �s)

�
n�1 (X�

s )
0
G0sX

�
t

	
+ (�0t � �t)

�
n�1 (X�

s )
0
GtX

�
t

	
+(�s � �0s) (�t � �0t)

�
n�1 (X�

s )
0
G0sGtX

�
t

	
:

Similarly, it can be shown, under Assumption B6, that, for M2 (�2; �3) de�ned in (2.48),

M2 (�2; �3) =

gX
s=1

gX
t=1

�stAst;
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where

g�1Ast = Qst11 + (�0s � �s)Qst21 + (�0t � �t)Qst12 + (�s � �0s) (�t � �0t)Qst22:

Then Assumptions B4 and B6 imply that Lemma B6 holds.

Lemma B7 For any � > 0; there exists � > 0 such that

inf
k���0k��

(� � �0)
0
M2 (�02; �03) (� � �0) � �:

Proof. Assumption B6 implies that M2 (�02; �03) is a p.d. matrix O11: Then

inf
k���0k��

�
(� � �0)

0
M2 (�02; �03) (� � �0)

�
�

�
inf

k���0k��
(� � �0)

0
(� � �0)

��
inf

k���0k��

(� � �0)
0
M2 (�02; �03) (� � �0)

(� � �0)
0
(� � �0)

�
� �2� (
11) > 0:

Lemma B8 If a sequence of non-negative random variables fXng converges in probability
to a constant c, then c � 0:

Proof. Given the convergence, for any � > 0; limn!1 P fjXn � cj > �g = 0: Suppose c < 0.
Since Xn � 0 and c < 0; jXn � cj � jcj : Hence P fjXn � cj > jcj =2g = 1 for all n: This

leads to a contradiction if we set � = jcj =2: Therefore, c � 0:

Lemma B9 Let fAng be a sequence of p.s.d. matrices of order K: If An !p A; as n!1,
then A is also p.s.d..

Proof. Clearly A must be symmetric. For any y 2 RK such that kyk = 1; y0Any !p y
0Ay:

Let tn = y0Any. Then ftng is a sequence of non-negative real numbers and hence Lemma
B8 implies that t = y0Ay � 0. Since this hold for any y 2 RK ; A must be p.s.d..

Lemma C1 For � = 1; :::; g;

@

@��
u (�)

0
S (�)

0 �
��1 
 In

�
S (�)u (�) = �2

gX
s=1

�s�u�s (�)
0
Ss (�)

0
W�u�� (�) :
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Proof. The left side is

@

@��

gX
s=1

gX
t=1

�stu�s (�)
0
Ss (�)

0
St (�)u�t (�)

= �
gX
s=1

�s�u�s (�)
0
Ss (�)

0
W�u�� (�) (1� �s� )�

gX
s=1

��su�� (�)
0
W 0
�Ss (�)u�s (�) (1� ��s)

+���u�� (�)
0 ��W 0

� (In � ��W� )� (In � ��W� )
0
W�

�
u�� (�)

= �
gX
s=1

�s�u�s (�)
0
Ss (�)

0
W�u�� (�)�

gX
s=1

��su�� (�)
0
W 0
�Ss (�)u�s (�)

= �2
gX
s=1

�s�u�s (�)
0
Ss (�)

0
W�u�� (�) ;

by symmetry of ��1:

Lemma C2 For � in a neighbourhood of �0 such that St (�) are non-singular for all t =
1; :::; g;

@

@�t

gX
s=1

log
��Ss (�)0 Ss (�)�� = �2tr fGt (�)g :

Proof. The left side is

@

@�t
log
��St (�)0 St (�)�� = tr

n�
St (�)

0
St (�)

��1 ��W 0
t (In � �tWt)� (In � �tWt)

0
Wt

�o
= �tr

�
St (�)

�1
�
St (�)

�1
�0 �

W 0
tSt (�) + St (�)

0
Wt

��
= �tr

��
St (�)

�1
�0
W 0
t

�
� tr

h
St (�)

�1
Wt

i
= �2tr [Gt (�)] :

Lemma C3 For any u; v = 1; :::; g;

E
�
1

ng
(X�)

0 �
��10 
 In

�
" ("0�u"�v � n�0uv)

����X� (2.91)

=
1

ng

gX
s=1

gX
t=1

�st0

nX
i=1

x�isE f"it ("iu"iv � �0uv)g :

Proof. The left side is

1

ng

gX
s=1

gX
t=1

�st0 (X
�
s )
0 E ["�t ("0�u"�v � n�0uv)]

=
1

ng

gX
s=1

gX
t=1

�st0

nX
i=1

x�isE ["it ("0�u"�v � n�0uv)] ;
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where (x�is)
0 is the i-th row of X�

s : Since

E ["it ("0�u"�v � n�0uv)] = E

24"it nX
j=1

("ju"jv � �0uv)

35 = E ["it ("iu"iv � �0uv)] ;
(2.91) holds.

Lemma C4 For � = 1; :::; g;

E

(
1

ng
(X�)

0 �
��10 
 In

�
"

"
gX

u=1

�u�0 "0�uG�"�� � tr (G� )
#�����X

)

=
1

ng

gX
s=1

gX
t=1

gX
u=1

�st0 �
u�
0

nX
i=1

x�isgii�E ("it"iu"i� ) (2.92)

Proof. The conditional expectation in (2.92) is

1

ng

gX
s=1

gX
t=1

nX
i=1

�st0 x
�
isE

(
"it

"
gX

u=1

�u�0 "0�uG�"�� � tr (G� )
#)

:

Since

E

(
"it

gX
u=1

[�u�0 "0�uG�"�� � tr (G� )]
)

=

gX
u=1

�u�0

nX
j=1

nX
k=1

gjk�E ("it"ju"k� )

=

gX
u=1

�u�0 gii�E ("it"iu"i� ) ;

(2.92) follows.

Lemma C5 For s; t; u; v = 1; :::; g;

n�1E ("0�s"�t"0�u"�v)� n�0st�0uv =
1

n

nX
i=1

E ("is"it"iu"iv � �0st�0uv) :

Proof. The left side is

1

n

nX
i=1

nX
j=1

E ("is"it"ju"jv � �0st�0uv) =
1

n

nX
i=1

E ("is"it"iu"iv � �0st�0uv) :
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Lemma C6 For any s; t; � = 1; :::; g;

1

n
E

(
("0�s"�t � n�0st)

gX
u=1

�u�0 "0�uG�"��

)

=
1

n

gX
u=1

�u�0

nX
i=1

gii�E ("is"it"iu"i� )�
1

n
tr (G� )�0st: (2.93)

Proof. The expectation in (2.93) is

1

n

gX
u=1

�u�0

nX
i=1

nX
j=1

nX
k=1

gjk�E f("is"it � �0st) "ju"k�g

=
1

n

gX
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1

n
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gX
u=1

�u�0 �0u� :

The fact that
Pg

u=1 �
u�
0 �0u� = 1 implies (2.93).

Lemma C7 For � ; t = 1; :::; g;
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+
1
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s=1
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1
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72



Proof. Employing the fact that
Pg

s=1 �
st
0 �0st = 1; the �rst term of the left side is

1
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gX
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gX
u=1

gX
s=1

�u�0 �st0
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+
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tr (G� ) tr (Gt) +

1
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+
1
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tr (G�Gt)
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gX
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�u�0 �st0 �0ut�0�s:

The second term is just (ng)�1 tr (G� ) tr (Gt) : Hence the required result holds.

Lemma C8 For � = 1; :::; g;

@

@��
X 0S (�)

0 �
��1 
 In

�
S (�)u (�)

= �
gX
s=1

�
�s�X 0

sSs (�)
0
W�u�� (�) + �

�sX 0
�W

0
�Ss (�)u�s (�)

	
:

Proof. Proceed as in the proof of Lemma C1.

Lemma C9 For values of �t such that St (�) is invertible,

@

@�t
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n
WtSt (�)
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o
= tr

�
Gt (�)

2
�
:
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Proof. By the result from Exercise 13.22 (a) in Abadir and Magnus (2005),

@

@�t
tr
n
WtSt (�)

�1
o

=
@tr

n
WtSt (�)

�1
o

@vec (St (�))
0

@vec (St (�))

@�t

=

�
vec

��
St (�)

�1
WtSt (�)

�1
�0��0

vec (Wt)

=

�
vec

��
St (�)

�1
WtSt (�)

�1
�0��0

(In 
 In) vec (Wt)

= tr

�
W 0
t

�
St (�)

�1
WtSt (�)

�1
�0�

= tr
n
St (�)

�1
WtSt (�)

�1
Wt

o
= tr

n
Gt (�)

2
o
:

Lemma C10
@

@ fvech (��1)g0
D0
gvec (�) = �D0

g (�
 �)Dg:

Proof. Recall that Dgvech
�
��1

�
= vec

�
��1

�
: Employing the fact that,

@vec
�
A�1

�
@ [vec (A)]

0 = �
��
A�1

�0 
A�1� ;
it follows that

@
�
D0
gvec (�)

	
@ fvech (��1)g0

=
@
�
D0
gvec (�)

	
@ fvec (�)g0

@ fvec (�)g
@ fvec (��1)g0

@
�
vec

�
��1

�	
@ fvech (��1)g0

= �D0
g (�
 �)Dg:

Lemma C11 If � !p �0; then, as n!1;

(ng)
�1
X 0S (�)

0
�
�
�1 
 In

�
S (�)X !p O11: (2.94)

Proof. The left side is

gX
s=1

gX
t=1

�st
n
(ng)

�1
X 0
sSs (�)

0
St (�)Xt

o
: (2.95)
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Employing Lemma B1, Assumption B6 and consistency of �; as n!1;

(ng)
�1
(X�

s )
0 �
S�1s

�0
Ss (�)

0
St (�)S

�1
t X�

t �Qst11
=

n
(ng)

�1
(X�

s )
0
X�
t

o
� (�s � �0s)

n
(ng)

�1
(X�

s )
0
G0sX

�
t

o
� (�t � �0t)

n
(ng)

�1
(X�

s )
0
GtX

�
t

o
+(�s � �0s) (�t � �0t)

n
(ng)

�1
(X�

s )
0
G0sGtX

�
t

o
�Qst11

= op (1) :

With consistency of �
�1
; (2.95) converges in probability to

Pg
s=1

Pg
t=1 �

st
0 Q

st
11 = O11:

Lemma C12 If � !p �0; then, as n!1;

n�1X 0
sSs (�)

0
Wtu�t

�
�
�
= op (1) (2.96)

and

n�1X 0
tW

0
tSs (�)u�s

�
�
�
= op (1) : (2.97)

Proof. Employing the fact that St (�) = St + (�0t � �t)Wt; Wt = GtSt and u�t
�
�
�
=

u�t �Xt

�
� � �0

�
; the left side of (2.96) becomes

n�1 (X�
s )
0 fIn + (�0s � �s)G0sgGt

�
"�t �X�

t

�
� � �0

�	
=

�
n�1 (X�

s )
0
Gt"�t

	
+ (�0s � �s)

�
n�1 (X�

s )
0
G0sGt"�t

	
�
�
n�1 (X�

s )
0
GtX

�
t

� �
� � �0

�
� (�0s � �s)

�
n�1 (X�

s )
0
G0sGtX

�
t

� �
� � �0

�
:

Under Assumption B7, Lemma B3 implies that the terms in the curly brackets are op (1) :

Assumption B6 implies that the terms in the square brackets are Op (1) : This with consis-

tency of � imply (2.96). Employing this technique, it follows that (2.97) holds.

Lemma C13 If � !p �0; then, as n!1;

n�1X 0
sSs (�)

0
St (�)u�t

�
�
�
= op (1) : (2.98)

Proof. Since u�t
�
�
�
= u�t �Xt

�
� � �0

�
; the left side of (2.98) is

n�1 (X�
s )
0 �
S�1s

�0
Ss (�)

0
St (�)S

�1
t

�
"�t �X�

t

�
� � �0

�	
:

By Lemma B1, this becomes

�
n�1 (X�

s )
0
"�t
	
� (�s � �0s)

�
n�1 (X�

s )
0
G0s"�t

	
� (�t � �0t)

�
n�1 (X�

s )
0
Gt"�t

	
+(�s � �0s) (�t � �0t)

�
n�1 (X�

s )
0
G0sGt"�t

	
�
�
n�1 (X�

s )
0
X�
t

� �
� � �0

�
+(�s � �0s)

�
n�1 (X�

s )
0
G0sX

�
t

� �
� � �0

�
+ (�t � �0t)

�
n�1 (X�

s )
0
GtX

�
t

� �
� � �0

�
� (�s � �0s) (�t � �0t)

�
n�1 (X�

s )
0
G0sGtX

�
t

� �
� � �0

�
:
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Under Assumption B7, Lemma B3 implies that the terms in the curly brackets are op (1) :Assumption

B6 implies that the terms in the square brackets are Op (1) : This with consistency of � imply

(2.98).

Lemma C14 If � !p �0; then, as n!1;

n�1u�s
�
�
�0
W 0
sWtu�t

�
�
�
� n�1�0sttr (G0sGt) = op (1) : (2.99)

Proof. Note that u�t
�
�
�
= u�t�Xt

�
� � �0

�
: Applying the fact that Wt = GtSt; it follows

that the left side of (2.99) is

�
n�1"0�sG

0
sGt"�t � n�1�0sttr (G0sGt)

	
�
�
� � �0

�0 �
n�1 (X�

s )
0
G0sGt"�t

	
�
�
n�1"0�sG

0
sGtX

�
t

	 �
� � �0

�
+
�
� � �0

�0 �
n�1 (X�

s )
0
G0sGtX

�
t

� �
� � �0

�
:

With Assumption B7, Lemmas B2 and B3 imply that the terms in the curly brackets are

op (1) : Assumption B6 implies that the term in the square brackets is Op (1) : This with

consistency of � imply that (2.99) holds.

Lemma C15 If � !p �0; then, as n!1;

n�1u�s
�
�
�0
Ss (�)

0
Wtu�t

�
�
�
� n�1�0sttr (Gt) = op (1) :

Proof. The proof is similar to the proofs of Lemmas C12 and C14.

Lemma C16 As n!1;

nX
i=1

�
E
�
z2i3;n

��Fi�1�� E �z2i3;n�	!p 0: (2.100)

Proof. Note that zi3;n =
Pg

t=1 �3tcit;n; where

cit;n = �
gX
s=1

�st0 (ng)
�1=2

8<:giit ("is"it � �0st) + "is
0@X
j<i

gijt"jt +
X
j>i

gijt"jt

1A9=; :

It follows that

nX
i=1

�
E
�
c2it;n

��Fi�1�� E �c2it;n�	 (2.101)

=

gX
s=1

gX
s1=1

�st0 �
s1t
0 (ng)

�1
"

nX
i=1

fE (distdis1tj Fi�1)� E (dist;ndis1t;n)g
#
;
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where

dist = giit ("is"it � �0st) + "is

0@X
j<i

gijt"jt +
X
j>i

gijt"jt

1A :

For simplicity, consider the case when s = s1;

1

ng

nX
i=1

�
E
�
d2ist
��Fi�1�� E �d2ist�	 (2.102)

=
�0ss
ng

nX
i=1

X
j 6=i

g2ijt;n
�
"2jt � �0tt

�
+
2

ng

nX
i=1

giit;nE
�
"2is"it

�X
j 6=i

gijt;n"jt

+
�0ss
ng

nX
i=1

X
j<i

X
k<i

gijtgikt"jt"kt (1� �jk)

= e1n + e2n + e3n:

Since e1n can be re-written as �0ss
ng

Pn
j=1

P
i>j g

2
ijt

�
"2jt � �0tt

�
; by Assumption B3,

E (e1n)2 � C max
1�j�n

E
�
"2jt � �0tt

�2
n�2

nX
j=1

0@X
i>j

g2ijt

1A2

� Cn�2
nX
j=1

 
nX
i=1

g2ijt

!2
:

Hence, Assumption C6 implies that e1n = op (1) : e2n can be re-written as

2

ng

nX
j=1

X
i>j

giitE
�
"2is"it

�
gijt"jt:

By the Cauchy-Schwarz inequality

E
�
e22n
�
� C

�
max
1�i�n

E
�
"2is"it

��2
n�2

nX
j=1

E
�
"2jt
�0@X

i>j

giitgijt

1A2

� C max
1�i�n

E
�
"4is
��

max
1�i�n

E
�
"2it
��2

n�2
nX
i=1

nX
j=1

nX
k=1

jgiitgkktgijtgkjtj

� Cn�2
nX
i=1

nX
j=1

nX
k=1

jgijtgkjtj
�
g2iit + g

2
kkt

�

� Cn�2

 
max
1�j�n

nX
k=1

jgkjtj
!0@ max

1�i�n

nX
j=1

jgijtj

1A nX
i=1

g2iit

� Cn�2

 
max
1�j�n

nX
k=1

jgkjtj
!0@ max

1�i�n

nX
j=1

jgijtj

1A nX
i=1

nX
j=1

g2ijt:

Since
Pn

i=1

Pn
j=1 g

2
ijt = tr (G0tGt), Assumption C2 implies that

Pn
i=1

Pn
j=1 g

2
ijt = O (n) :

Hence, by Assumption C6, e2n = op (1) : Finally, similar to the above derivation, following
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(A.22) in Robinson (2008), it can be shown that

E
�
e23n
�
� Cn�2

0@ max
1�i�n

nX
j=1

jgijtj

1A max
1�j�n

nX
i=1

jgijtj
!

nX
i=1

nX
j=1

g2ijt:

Hence by Assumptions C2 and C6, e3n = op (1) : Therefore (2.102) is op (1) : Applying the

derivation similar to the one shown above to other terms, it can be shown that (2.101) holds

and for u 6= t;
nX
i=1

fE (cit;nciu;nj Fi�1)� E (cit;nciu;n)g = op (1) :

Hence (2.100) holds.

Lemma C17 As n!1;

nX
i=1

[E fzi1;nzi3;nj Fi�1g � E fzi1;nzi3;ng]!p 0: (2.103)

Proof. Recall that z1;n = � (ng)�1=2
Pg

s=1

Pg
t=1 �

st
0 �

0
1x
�
is"it; and zi3;n =

Pg
t=1 �3tcit;n

where cit;n is de�ned in the proof of Lemma C16. It su¢ ces to show (2.103) by showing

that for all t = 1; :::; g;

nX
i=1

[E fzi1;ncit;nj Fi�1g � E fzi1;ncit;ng]!p 0: (2.104)

Analogous to the proof in Lemma C16, we have to consider all possible cross-product terms.

However, we will only give one example to demonstrate how to show the rest. To consider

zi1;ncit;n, it is essentially to consider

zi13;n = (ng)
�1
�01x

�
is"it

8<:giit ("iu"iv � �0uv) + "iuX
j 6=i

gijv;n"jv

9=; :

Then, conditional on X;

nX
i=1

fE (zi13;nj Fi�1)� E (zi13;n)g = (ng)
�1

nX
i=1

�01x
�
isE ("it"iu)

X
j<i

gijv"jv

= 2 (ng)
�1

nX
j=1

X
i>j

�01x
�
isE ("it"iu) gijv"jv:

Similar to the proof in Lemma C16, by Assumption B3, the mean square of this is bounded
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by

Cn�2
nX
j=1

0@X
i>j

�01x
�
isgijv

1A2

� Cn�2
nX
i=1

nX
j=1

nX
k=1

����01x�is� ��01x�ks� gijvgkjv��
� Cn�2

nX
i=1

nX
j=1

nX
k=1

jgijvgkjvj
����01x�is��2 + ���01x�ks��2�

� Cn�2

 
max
1�j�n

nX
k=1

jgkjvj
!0@ max

1�i�n

nX
j=1

jgijvj

1A�01

 
nX
i=1

x�isx
�0
is

!
�1:

By Assumptions B6 and C6,
Pn

i=1 fE (zi13;nj Fi�1)� E (zi13;n)g = op (1) :

Lemma C18 As n!1;

nX
i=1

[E fzi2;nzi3;nj Fi�1g � E fzi2;nzi3;ng]!p 0:

Proof. Similar to the proof of Lemma C16.

Lemma D1 Consider functions w : Rg ! R and zi : Rg ! R; i = 1; :::; L such that

w (x) � 0 for all x 2 Rg and
R
A z

2
i (x)w (x) dx <1 for all i = 1; :::; L, where A � Rg: Let

ZL (x) = (z1 (x) ; :::; zL (x))
0, then

R
A ZL (x)ZL (x)

0
w (x) dx is a �nite and p.s.d. matrix.

Proof. Let 
 denote the matrix of interest and !ij =
R
A zi (x) zj (x)w (x) dx be its (i; j)-th

element. By Schwarz�s inequality, !ij <1 for all i; j = 1; :::; L: 
 is also symmetric. Now

for any y 2 Rg;

y0
y =
LX
i=1

LX
j=1

yiyj!ij

=

Z
A

LX
i=1

LX
j=1

yiyjzi (x) zj (x)w (x) dx

=

Z
A

"
LX
i=1

yizi (x)

#2
w (x) dx � 0:

Hence 
 is p.s.d..

Lemma D2 Under Assumption D3, there is a constant C > 0 such that �
�
E
�
pL� (�) p

L
� (�)

0�� �
C for all L � 1:
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Proof. Let A = �gt=1 (at; bt), A = �gt=1 [at; bt] and A0 be the subset of all � such that
f� (�) � C > 0, where C is a positive integer in Assumption D3. Then A0� A � A and

A\Ac0 is a null set with respect to the Lebesgue measure. It follows that

E
�
pL� (�) p

L
� (�)

0�
=

Z
A
CpL� (�) p

L
� (�)

0
d� +

Z
A
pL� (�) p

L
� (�)

0
[f� (�)� C] d�

=

Z
A
CpL� (�) p

L
� (�)

0
d� +

Z
A0

pL� (�) p
L
� (�)

0
[f� (�)� C] d�:(2.105)

Since � is bounded, both integrals in (2.105) are �nite and Lemma D1 is applicable. Since

f (�) � C � 0 for all � in A0 it follows from Lemma D1 that the last term in (2.105) is a

p.s.d. matrix. Employing the fact that, for any symmetric matrices A and B; � (A+B) �
� (A) + � (B) ; we have

�
�
E
�
pL� (�) p

L
� (�)

0�� � �

�Z
A
CpL� (�) p

L
� (�)

0
d�

�
since the other term is p.s.d.. As pL� (�), de�ned in (2.59), is a vector of multivariate

orthonormal polynomials with respect to the uniform weight over �gt=1 [at; bt] ;Z
A
CpL� (�) p

L
� (�)

0
d� = CIL;

where IL is the identity matrix of order L (see Abramowitz and Stegun (1964) and Andrews

(1991)). Hence �
�
E
�
pL� (�) p

L
� (�)

0�� � C > 0 for all L � 1:

Lemma D3 (i) Under Assumption D7 (i), if xt =2 Xt, then x =2 X for all x such that its

t-th element is xt: (ii) Under Assumption D8, the transformation T in (2.27) is one-one

and continuously di¤erentiable. Let T (X ) = fT (x) : x 2 Xg be the support of �; f� be the

probability density of � and m0
t (u) =

d
dumt (u) : (iii) Under Assumptions D7 (i) and D8, for

any � 2 T (X ) ;

f� (�) = fX
�
T�1 (�)

� gY
t=1

�
m0
t

�
m�1
t (�t)

���1
; (2.106)

and f� is continuous on T (X ). (iv) As fX is positive on X , i.e. fX (x) > 0 for all x 2 X ,
then f� (�) > 0 for all � 2 T (X ) :

Proof. (i) Suppose xt =2 Xt, i.e. ft (xt) = 0. Suppose that there is y 2 X ; i.e. fX (y) > 0;
such that its t-th element is xt. Under Assumption D7 (i), fX is continuous at y and

hence there is � > 0 such that if kx� yk < �, then jfX (x)� fX (y)j < fX (y) =2. That is

fX (x) > fX (y) =2 > 0 for all x such that kx� yk < �: This leads to a contradiction since

it follows that ft (xt) =
R
Rg�1 fX (x) dx�t > 0, where x�t = (x1; :::; xt�1; xt+1; :::; xg) :

Hence x =2 X for all x whose t-th element is xt:

(ii) If T (x) = T (x0), then mt (xt) = mt (x
0
t) for all t = 1; :::; g: Under Assumption

D8 (i), mt is one-one and hence xt = x0t for all t; i.e. x = x0. Thus T is one-one. Under

Assumption D8 (ii), T is also continuously di¤erentiable since all its partial derivatives are

continuously di¤erentiable.
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(iii) Restrict our attention to X , T�1 is a function T�1 : T (X ) ! X of the form

T�1 (�) =
�
m�1
1 (�1) ; :::; m

�1
g

�
�g
��0

: Under Assumption D8 (ii), for all �t 2 mt (Xt) ;

d

d�t
m�1
t (�t) =

�
m0
t

�
m�1
t (�t)

���1
> 0 (2.107)

and m�1
t (�t) is continuously di¤erentiable on mt (Xt) : Therefore T�1 is continuously dif-

ferentiable on T (X ) ; and, for any � 2 T (X ) ;

f� (�) = fX
�
T�1 (�)

� gY
t=1

d

d�t
m�1
t (�t) ; (2.108)

since the Jacobian matrix of T�1 is a diagonal matrix with positive diagonal elements.

(2.106) follows directly from (2.107) and (2.108). Continuity of f� follows from continuity

of fX ; T�1 and d
d�t
m�1
t (�t) :

(iv) If fX (x) > 0 for all x 2 X , then (2.106) and the fact that m0
t (xt) > 0 for all xt 2 Xt

imply that f� (�) > 0 for all � 2 T (X ) :

Lemma D4 Let m be a function in the class E and g0 be the derivative of g. Then (i)
m satis�es Assumption D8 and (ii) m (R) = fm (u) : u 2 Rg is an open interval (a; b) =
(�1; 0) :

Proof. (i) As g0 is continuous and strictly positive, m is continuously di¤erentiable and

dm=du > 0 for all u in R. Hence m is strictly increasing. Moreover,

lim
u!�1

m (u) = �1 and lim
u!1

m (u) = 0:

Hence �1 < m (u) < 0 for all u in R. Thus, m satis�es Assumption D8.

(ii) It also follows that b = 0 = sup fm (x) : x 2 Rg and a = �1 = inf fm (x) : x 2 Rg.
Since m is strictly increasing, it follows that a; b =2 m (R) : For any natural number
n; there are x1n < x2n in R such that m (x1n) � a < 1=n and b � m (x2n) < 1=n:

Since m is strictly increasing, we can select sequences fx1ng and fx2ng so that the �rst
sequence is decreasing and the second one is increasing. Moreover, limn!1 x1n = �1;
limn!1 x2n = 1; limn!1m (x1n) = a and limn!1m (x2n) = b: As m is continuous and

strictly increasing, m ([x1n; x2n]) = [m (x1n) ; m (x2n)] : Then

m (R) = m ([1n=1 [x1n; x2n]) = [1n=1m ([x1n; x2n])

= [1n=1 [m (x1n) ; m (x2n)] = (a; b) = (�1; 0) :

Lemma D5 Let A = �gt=1 (at; bt) ; where at; bt are �nite real numbers for all t = 1; :::; g:
Suppose f : A ! R is continuous on A and f (x) > 0 for all x in A. Suppose there is a
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�nite constant C > 0 such that for each y in the boundary of A,

lim
x!y

f (x) � C;

where the limits can be in�nite. Then there is a �nite constant C1 > 0 such that f (x) � C1

for all x in A:

Proof. Let B = fx 2 A : f (x) � C=2g : If B is empty, then f (x) > C=2 for all x; and

thus the conclusion holds. Now suppose that B is non-empty. As A is bounded, B must be

bounded. Our aim is to show that B is also a closed subset of Rg: First suppose that B has

no limit points. Then B is closed.

Next, suppose that B has at least one limit point. Let x0 be a limit point of B, i.e.

for any " > 0 there is a point x" 6= x0 in B such that kx" � x0k < ": As A is an open

subset of Rg; it follows that either x0 2 A or x0 is in the boundary of A. Suppose x0
is in the boundary of A. Since limx!x0 f (x) � C; there is � > 0 such that, for all x in

A; if kx� x0k < �, then f (x) > C=2: However, for a given � > 0, there is x� in B such

that kx0 � x�k < � and f (x�) � C=2: This leads to a contradiction. Hence x0 must be in

A. Since f is continuous on A, it follows that f (x0) � C=2. Otherwise, there will be a

contradiction. Therefore x0 2 B and B is closed.

Since B is a closed and bounded subset of Rg, B is a compact set. Following Weierstrass�s
Theorem in optimization theory, due to continuity of f on B which is also non-empty; there

is a point x� in B such that f (x�) � f (x) for all x in B: As it is assumed that f (x�) > 0,

it follows that f (x) � min ff (x�) ; C=2g > 0 for all x in A:

Lemma D6 Let A = �gt=1 (at; bt) ; where at; bt are �nite real numbers for all t = 1; :::; g: Suppose
f : A ! R is a function, such that for each t = 1; :::; g;

lim
xt!at

f (x) =1; lim
xt!bt

f (x) =1; (2.109)

for all x�t = (x1; :::; xt�1; xt+1; :::; xg) in �
t�1
s=1 (as; bs)��

g
s=t+1 (as; bs). Then, for any

y in the boundary of A;
lim
x!y

f (x) =1:

Proof. For t = 1; :::; g; let At = �t�1s=1 (as; bs)��
g
s=t+1 (as; bs). Condition (2.109) implies

that for any C > 0, there is �t > 0 such that if at < xt < at + �t or bt � �t < xt < bt,

then f (x) > C for all x�t in At: Now let y be a point in the boundary of A; i.e. there is at
least one element of y, say yt, such that yt =2 (at; bt) : For all x in A, if 0 < kx� yk < �t,

then 0 < jxt � ytj < �t and hence f (x) > C for all x�t in A�t; particularly for all x�t
such that kx�t � y�tk < �t: Thus for any C > 0, there is � > 0 such that for all x in A, if
0 < kx� yk < �, then f (x) > C, where y is in the boundary of A: That is limx!y f (x) =1
for any y in the boundary of A.
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Lemma E1 For a function h in the class AC (Rg) and a vector of random variables e

satisfying Assumption D1 such that

E jh (e)j+ E
���� @@eh (e)

����+ E jh (e) (e)j <1; (2.110)

it follows that

E
�
@h (e)

@e

�
= E fh (e) (e)g : (2.111)

Proof. Consider t = 1; :::; g: Let  t (e) be the t-element of a vector function  (e) : It

follows from (2.110) and Fubini�s theorem thatZ
R

�����@h (e)@et

����+ jh (e)j� f (e) det + Z
R
jh (e) t (e)j det <1; (2.112)

for all e�t 2 A � Rg�1; where Ac; the complement of A; is a null set. Since h and f are in
the class AC (Rg), he�t and fe�t are absolutely continuous for every e�t 2 B, where Bc is
a null set. Consider a �xed e�t 2 A\B: Hence he�t and fe�t are absolutely continuous for
all e�t 2 A \ B and (A \B)c is a null subset of Rg�1. For each natural number m; he�t
and fe�t are di¤erentiable for all et 2 [�m; m] except in Cm where Cm is a null set. Hence
he�t and fe�t are di¤erentiable for all et 2 R except in C = [1m=1Cm where C is a null set.

Let 1[�m; m] (et) = 1 if et 2 [�m; m] and zero otherwise. It follows from the Integration by

Parts theorem from Chapter 16.F in Jones (2001) that for all natural number m;Z
R

�
@h (e)

@et

�
f (e)1[�m; m] (et) det

= he�t (m) fe�t (m)� he�t (�m) fe�t (�m)�
Z
R
h (e)

�
@f (e)

@et

�
1[�m; m] (et) det :

Letting m!1; it follows from (2.112), dominated convergence and the fact that he�t and

fe�t are continuous thatZ
R

�
@h (e)

@et

�
f (e) det = �

Z
R
h (e)

�
@f (e)

@et

�
det:

for all e�t 2 A \B where (A \B)c is a null set. It follows from Fubini�s theorem thatZ
Rg

�
@h (e)

@et

�
f (e) de = �

Z
Rg
h (e)

�
@f (e)

@et

�
de:

Hence, for t = 1; :::; g;

E
�
@h (e)

@et

�
= E fh (e) t (e)g ;

and (2.111) follows.

Lemma E2 Suppose h : Rg ! R is a function such that E
h
h ("1�)

2
i
<1. Let

cL = E
�
pL�� (T ("1�))h ("1�)

�
and hL ("1�) = c0L pL�� (T ("1�)) ;
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where pL�� is de�ned as in the proof of Theorem E. Then

lim
L!1

E [h ("1�)� hL ("1�)]2 = 0:

Proof. From (2.62), if follows that

cL =

�
E
�
pL�� (T ("1�)) p

L
�� (T ("1�))

0���1 E �pL�� (T ("1�))h ("1�)� :
Hence

cL = argmin
c2RL

E
�
h ("1�)� c0pL�� (T ("1�))

�2
: (2.113)

Let e = T ("1�) ; where T is the transformation satisfying Assumption E3. As E
h
h ("1�)

2
i
<

1; E [h1 (e)]2 <1 and

E [h ("1�)� hL ("1�)]2 = E
�
h
�
T�1 (e)

�
� c0L pL�� (e)

�2
= E

�
h1 (e)� c0L pL�� (e)

�2
;

where h1 = h � T�1. By Assumption E3, there exists a �nite constant C such that

supu2Rg kT (u)k < C: Let FE be the distribution function of e. Then conditions (2.22)

and (2.23) hold with respect to FE : Since elements of the vector pL�� (e) of transformed

orthonormal polynomials and of the vector pL (e) of ordinary polynomials span the same

space, and under Assumption E7, the sequence f� (l)g is ordered, by Theorem 3.1.18 of

Dunkl and Xu (2001), there is a triangular array
�
dL 2 RL; L � 1

	
such that

lim
L!1

E
�
h1 (e)� d0LpL�� (e)

�2
= 0:

By (2.113), for each L � 1;

E
�
h1 (e)� c0LpL�� (e)

�2 � E �h1 (e)� d0LpL�� (e)�2 :
Hence the required result holds.

Lemma E3 For s; t = 1; :::; g; as n!1; (i)

E [ tL ("1�)]! E [ t ("1�)] ;

(ii)

E [ sL ("1�) tL ("1�)]! E [ s ("1�) t ("1�)] ;

(iii)

k
tLk = O (1) and


E �pL�� ("1�)�

 = O (1) :

Proof. Fix s; t in f1; :::; gg : Recall that  tL ("i�) = 
0tL pL�� (T ("i�)) ; where 
tL =

E
�
pL�� (T ("1�)) t ("1�)

�
: By Assumption E1, E

h
 t ("1�)

2
i
< 1. Therefore, Lemma E2
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and Assumption E9 imply that E [ t ("1�)�  tL ("1�)]
2
= o (1) as n ! 1: Hence, both

Lemma E3 (i) and (ii) are immediate consequences of Proposition 2.7.1 in Brockwell and

Davis (1991).

As E
�
pL�� (T ("1�)) p

L
�� (T ("1�))

0�
= IL;

k
tLk
2
= 
0tLE

�
pL�� (T ("1�)) p

L
�� (T ("1�))

0�

tL = E

h
 tL ("1�)

2
i
= O (1) ;

by Lemma E3 (ii). Hence the �rst result of (iii) holds. Finally, if we replace  t by a constant

function 1, then the second part of (iii) holds.

Lemma E4 For t = 1; :::; g; as n!1;

sup
u2Rg



pL�� (T (u))

 = O (L) ; sup
u2Rg



�L��t (u)

 = O
�
L3
�
; sup
u2Rg



�L2t (u)

 = O
�
L5
�
;

where �L2t (u) =
@
@u=�

L
��t (u) :

Proof. Let v = T (u). Let p�l (v) be the l-th element of the vector p
L
� (v) of the Jacobi

orthonormal polynomial of order k� (L)k1 ; with respect to the uniform weight as described

in the previous section. It follows from equation (3.14) or (A40) in Andrews (1991) that

there is a �nite constant C such that supu2Rg jp�l (v)j � Cl1=2. Hence, with respect to (2.61),

sup
u2Rg



pL�� (T (u))

 � kB2Lk sup
u2Rg



pL� (T (u))

 = O (L) ; (2.114)

since kB2Lk is uniformly bounded in L:
Now let T (Rg) be the image of R under T . By the choice of the transformation T and

by Assumption E4, there is a �nite constant C such that

sup
u2Rg

���� @@ut p�l (T (u))
���� = sup

u2Rg

����@p�l (v)@vt

@m (ut)

@ut

����
� sup

v2T (Rg)

����@p�l (v)@vt

���� sup
ut2R

����@m (ut)@ut

����
� Cl5=2;

where the last inequality also follow from equation (A.44) in Andrews (1991). Recall that

�L��t (u) = B2L
@
@ut

pL� (T (u)) : Applying the steps in (2.114), it follows that

sup
u2Rg



�L��t (u)

 = O
�
L3
�
:

Let �st be the Kronecker�s delta. Similarly, by equation (A.44) in Andrews (1991) and
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Assumption E4,

sup
u2Rg

���� @2

@us@ut
p�l (T (u))

����
= sup

u2Rg

����@2p�l (v)@vs@vt

@m (ut)

@ut

@m (us)

@us
+
@p�l (v)

@vs

@2m (us)

@u2s
�st

����
� sup

v2T (Rg)

����@2p�l (v)@vs@vt

���� � sup
ut2R

����@m (ut)@ut

�����2 + sup
v2T (Rg)

����@p�l (v)@vt

���� sup
ut2R

����@2m (ut)@u2t

����
� Cl9=2:

With the de�nition of �L2t given in the lemma, it follows that the last required result holds.

Lemma E5 Under Assumption E5 (iii),

n�1
nX
i=1

E
��
X�
i� �X

�
�

�0 �
X�
i� �X

�
�

��
= O (1) ; (2.115)

n�1
nX
i=1

E kX�
i�k = O (1) ; (2.116)

max
1�t�g

n�1
gX
t=1

nX
i=1

E kx�it � x��tk
2
= O (1) : (2.117)

Proof. The left side of (2.115) is

n�1
nX
i=1

E
�
(X�

i�)
0
X�
i�
�
� E

��
X
�
�

�0
X
�
�

�
:

By Assumption E5 (iii), the �rst term is O (1) : The norm of the second term is bounded by

n�2
nX
i=1

nX
j=1

E


(X�

i�)
0
X�
j�


 � n�2

nX
i=1

nX
j=1

E
�
kX�

i�k


X�

j�


�

� n�2
nX
i=1

nX
j=1

h
E kX�

i�k
2 E


X�

j�


2i1=2

� n�2
nX
i=1

nX
j=1

h
E kX�

i�k
2 E


X�

j�


2 + 1i

= 1 +

 
n�1

nX
i=1

E kX�
i�k

2

!2
= O (1) ;

by Assumption E (iii), where the second inequality follows from Schwarz�s inequality.
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The left side of (2.116) is bounded by

n�1
nX
i=1

�
E kX�

i�k
2
+ 1
�
= O (1) ;

by Assumption E5 (iii).

The left side of (2.117) is just trace of the left side of (2.115). Hence, (2.115) implies

that (2.117) holds.

Lemma E6 Suppose � � �0 = Op
�
n�1=2

�
and �� �0 = Op

�
n�1=2

�
as n!1: Then (i)

n�1
nX
i=1

kX�
i� (�)k = Op (1) ; (2.118)

(ii)

n�1
nX
i=1




hX�
i� (�)�X

�
� (�)

i
�
h
X�
i� �X

�
�

i


2 = op (1) ; (2.119)

(iii)

n�1
nX
i=1




X�
i� (�)�X

�
� (�)




2 = Op (1) ; (2.120)

and (iv)

n�1
nX
i=1



Ri ���

 = Op (1) : (2.121)

Proof. By de�nition of X�
i� (�) and X

�
i� in (2.41),

X�
i� = Xi� � �0

nX
j=1

WijXj�;

where �0 = diag
�
�01; :::; �0g

	
: Similarly,

X�
i� (�) = Xi� � �

nX
j=1

WijXj�;

where � = diag
�
�1; :::; �g

	
: Let � = diag

�
�1; :::; �g

	
: (i) Then, by Assumptions E5 (iv)

and E8,

n�1
nX
i=1

kX�
i� (�)�X�

i�k �


�0 � �



0@n�1 nX
i=1








nX
j=1

WijXj�








1A

= op (1) :

Hence, with (2.116) in Lemma E5, the left side of (2.118) is bounded by

n�1
nX
i=1

kX�
i� (�)�X�

i�k+ n�1
nX
i=1

kX�
i�k = Op (1) :
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(ii) The left side of (2.119) is bounded by

2n�1
nX
i=1

kX�
i� (�)�X�

i�k
2
+ 2




X�
� (�)�X

�
�




2 : (2.122)

The �rst term in (2.122) is bounded by

2


�� �0

2

0B@n�1 nX
i=1








nX
j=1

WijXj�








2
1CA = op (1) ;

by Assumption E5 (iv). The second term in (2.122) is bounded by

2

24

�� �0


0@n�1 nX

i=1








nX
j=1

WijXj�








1A352 = op (1) ;

by Assumption E5 (iv). Hence the required result holds.

(iii) The left side of (2.120) is bounded by

2n�1
nX
i=1




hX�
i� (�)�X

�
� (�)

i
�
h
X�
i� �X

�
�

i


2 + 2n�1 nX
i=1




X�
i� �X

�
�




2 :
By (2.119), the �rst term is op (1). By (2.115), the second term is Op (1) : Hence the required

result holds.

(iv) With (2.68), the (t; t)- element of the diagonal matrix Ri
�
�
�
is

Ri
�
�
�
=

nX
j=1

wijtujt
�
�
�
=

nX
j=1

wijt
�
x0jt
�
�0 � �

�
+ ujt

�
:

Hence, by Assumption E5 (iv),

n�1
nX
i=1



Ri ���

 � C


� � �0

n�1 nX

i=1








nX
j=1

WijXj�







+ Cn�1
nX
i=1








nX
j=1

Wijuj�








= Op (1) :

Lemma E7 For t = 1; :::; g; as n!1;


e�tL � 
tL


 = Op

�
n�1=2L5

�
:

Proof. Fix t in f1; :::; gg : As in Lemma E4, de�ne

�L2t (u) =
@

@u0
�L��t (u) :
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By the mean value theorem around �04;

�L��t (e"i�) = �L��t ("i�)��L2t ("i�)
h
(e�� �0) +X�

i� (�)
�e� � �0�+Ri ��� (e�� �0)i ;

where


�4 � �04

 < 


e�4 � �04


, "i� = "i�

�
�4
�
and Ri (�) is as de�ned in (2.68). By Lemmas

E4 and E6,

n�1







nX
i=1

�
�L��t (e"i�)� �L��t ("i�)�






 � max
1�t�g

sup
u2Rg



�L2t (u)


"
ke�� �0kn�1 nX

i=1



Ri ���


+ ke�� �0k+ 


e� � �0


n�1 nX

1=1

kX�
i� (�)k

#
= Op

�
n�1=2L5

�
:

By Lemma E4

E






n�1
nX
i=1

�
�L��t ("i�)� E

�
�L��t ("1�)

��





2

= n�2
nX
i=1

E


�L��t ("i�)� E ��L��t ("1�)�

2

� n�2
nX
i=1

E


�L��t ("1�)

2

� n�1
�
max
1�t�g

sup
u2Rg



�L��t (u)

2�
= O

�
n�1L6

�
:

By (2.71) and Lemma E1,


tL = E
�
pL�� (T ("1�)) t ("1�)

�
= E

�
@

@"1t
pL�� (T ("1�))

�
= E

�
�L��t ("1�)

�
: (2.123)

Hence, with reference to (2.77) and the above result,


e�tL � 
tL



�






n�1
nX
i=1

�
�L��t (e"i�)� �L��t ("i�)�






+





n�1

nX
i=1

�
�L��t ("i�)� E

�
�L��t ("1�)

��





= Op

�
n�1=2L5 + n�1=2L3

�
= Op

�
n�1=2L5

�
:

Lemma E8 As n!1; 


eIL � IL


 = Op

�
n�1=2L3

�
= op (1) ::

Proof. The �rst part of the proof follows the proof of Theorem 1 in Newey (1997). Let
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p��l (T ("i�)) be the l-th element of p
L
�� (T ("i�)) and

IL = n�1
nX
i=1

pL�� (T ("i�)) p
L
�� (T ("i�))

0
:

Let �kl be the Kronecker�s delta and recall that p��l (v) is the l-th element of p
L
�� (v) and

E
�
pL�� (T ("1�)) p

L
�� (T ("1�))

0�
= IL: Then

E kIL � ILk2

� E
�
tr (IL � IL)0 (IL � IL)

	
= E

LX
k=1

LX
l=1

(
n�1

nX
i=1

[p��k (T ("i�)) p
��
l (T ("i�))� �kl]

)2

� n�1
LX
k=1

LX
l=1

E
n
[p��k (T ("1�))]

2
[p��l (T ("1�))]

2
o

= n�1E

(
LX
k=1

[p��k (T ("1�))]
2

LX
l=1

[p��l (T ("1�))]
2

)

� n�1
�
sup
u2Rg



pL�� (T (u))

�2 tr�E�pL�� (T ("1�)) pL�� (T ("1�))0�� : (2.124)

As the expectation in (2.124) is IL, it follows from Lemma E4 that

E kIL � ILk2 = O
�
n�1L3

�
: (2.125)

Now




eIL � IL


 �





n�1

nX
i=1

�
pL�� (T (e"i�))� pL�� (T ("i�))� pL�� (T (e"i�))0







+






n�1
nX
i=1

pL�� (T ("i�))
�
pL�� (T (e"i�))� pL�� (T ("i�))�0







� 2 sup

u2Rg



pL�� (T (u))


"
n�1

nX
i=1



pL�� (T (e"i�))� pL�� (T ("i�))


#
: (2.126)

By the mean value theorem in (2.69), the term in the square brackets in (2.126) is bounded

by

sup
u2Rg



�L�� (u)


"
ke�� �0k+ 


e� � �0


n�1 nX

i=1

kX�
i� (�)k+ ke�� �0kn�1 nX

i=1



Ri ���

# :
By Assumption E8, Lemmas E4 and E6, this term is Op

�
n�1=2L3

�
: Hence, this result,

(2.125) and Assumption E9 imply that


eIL � IL


 � 


eIL � IL


+ kIL � ILk = Op

�
n�1=2L3

�
= op (1) :
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Lemma E9 For t = 1; :::; g; as n!1;

ke
tL � 
tLk = Op

�
n�1=2L5

�
and e�0sLeI�1L e�tL � 
0sL
tL = Op

�
n�1L10

�
:

Proof. Fix t in f1; :::; gg : With reference to (2.75) and (2.77)

ke
tL � 
iLk =



eI�1L e�tL � 
tL




�



�eI�1L � IL

� e�tL


+ 


e�tL � 
tL



�




eI�1L 





�eIL � IL�





e�tL


+ 


e�tL � 
tL


 : (2.127)

The following result on



eI�1L 


 is based on the observation made in Newey (1997). Let

� (A) be the spectral radius of a matrix A as de�ned in Section 2. Based on the fact that

for a symmetric matrix A; � (A) = infkxk=1 x
0Ax, it can be shown that for symmetric

matrices A and B; � (A+B) � � (A) + � (B). Employing this property with the fact that

� (�A) = �� (A) ; it follows that for symmetric matrices A and B;

� (A) � � (B)� � (A�B) � � (B)� � (A�B) :

As A�B is symmetric, Lemma A3 implies that

kA�Bk = � (A�B) � � (B)� � (A) :

Similarly, it can be shown that kA�Bk � � (A)�� (B) : Hence kA�Bk � j� (A)� � (B)j :
By Lemma E8, �����eIL�� 1��� = �����eIL�� � (IL)��� � 


eIL � IL


 = op (1) :

Hence �
�eIL�� 1 = op (1) and




eI�1L 


 = h��eIL�i�1 !p 1; i.e.



eI�1L 


 = Op (1) : (2.128)

With Lemmas E3 (iii), E7 and Assumption E9,


e�tL


 � 


e�tL � 
tL


+ k
tLk = Op (1) (2.129)

Hence Lemmas E3 (iii), E7, E8 and (2.129) imply that

ke
tL � 
iLk = Op

�
n�1=2L5

�
:
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Now �x s; t in f1; :::; gg : Since���e�0sLeI�1L e�tL � 
0sL
tL��� �
����e�sL � 
sL� eI�1L �e�tL � 
tL����+ ���
0sLeI�1L �e�tL � 
tL����
+

�����e�sL � 
sL�0 eI�1L 
tL

����+ ���
0sL �eI�1L � IL
�

tL

���
�




e�sL � 
sL





eI�1L 





e�tL � 
tL


+ k
sLk


eI�1L 





e�tL � 
tL



+



e�sL � 
sL





eI�1L 


 k
tLk+ ���
0sL �eI�1L � IL

�

tL

��� ;
Lemmas E7 - E8 and (2.128) imply that���e�0sLeI�1L e�tL � 
0sL
tL��� = Op

�
n�1L10

�
:

Lemma E10 As n!1;

n�1=2
nX
i=1

�
X�
i� �X

�
�

�0
[ ("i�)�  L ("i�)] = op (1) :

Proof. De�ne x�it as in (2.40) and x��t = n�1
Pn

i=1 x
�
it: As usual, de�ne  t as the t-th

element of  and similarly for  tL: Then the left side of the lemma becomes

n�1=2
nX
i=1

gX
t=1

(x�it � x��t) [ t ("i�)�  tL ("i�)]

= n�1=2
nX
i=1

gX
t=1

(x�it � x��t) [ t ("i�)�  tL ("i�)� E ( tL ("i�))] :

Therefore, by Assumption E2 and the fact that E [ t ("1�)] = 0 for t = 1; :::; g;

E






n�1=2
nX
i=1

(x�it � x��t) [ t ("i�)�  tL ("i�)� E ( tL ("i�))]






2

= E [ t ("1�)�  tL ("1�)� E ( tL ("1�))]
2

(
n�1

nX
i=1

E kx�it � x��tk
2

)
:

By Lemma E5, the term in the curly brackets is O (1) : Since E ( t ("1�)) = 0; by Lemmas
E2 and E3,

E [ t ("1�)�  tL ("1�)� E ( tL ("1�))]
2 � 2

n
E [ t ("1�)�  tL ("1�)]

2
+ [E ( tL ("1�))]

2
o

= o (1) :

Hence the required result holds.
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Lemma E11 As n!1;

n�1=2
nX
i=1

�
X�
i� �X

�
�

�0 h
 L ("i�)� b L ("i�)i = Op

�
n�1=2L11=2

�
:

Proof. With b L ("i�) de�ned in Proposition E2 and x��t as de�ned in the proof of Lemma
E10, the left side of the lemma is

n�1=2
nX
i=1

gX
t=1

(x�it � x��t) pL�� (T ("i�))
0
(
tL � e
tL)

=

gX
t=1

"
n�1=2

nX
i=1

(x�it � x��t)
�
pL�� (T ("i�))� EpL�� (T ("1�))

�0#
(
tL � e
tL) :

The norm of the second moment of the term in the square brackets is bounded by

n�1
nX
i=1

E kx�it � x��tk
2 E


pL�� (T ("1�))� EpL�� (T ("1�))

2

� 2
h
E


pL�� (T ("1�))

2 + 

EpL�� (T ("1�))

2in�1 nX

i=1

E kx�it � x��tk
2

= Op (L) ;

by Lemmas E3 (iii) and E5 and the fact that

E


pL�� (T ("1�))

2 = tr

�
E
�
pL�� (T ("1�)) p

L
�� (T ("1�))

0�	
= tr (IL) = L:

Hence, this and Lemma E9 imply that the required result holds.

Lemma E12 As n!1;

n�1=2
nX
i=1

h�
X�
i� (e�)�X�

� (e�)�� �X�
i� �X

�
�

�i0 b L ("i�) = op (1) :

Proof. The left side of the lemma is

n�1=2
nX
i=1

h�
X�
i� (e�)�X�

� (e�)�� �X�
i� �X

�
�

�i0 e�L �pL�� (T ("i�))� E �pL�� (T ("1�))�	
= n�1=2

nX
i=1

[X�
i� (e�)�X�

i�]
0 e�L �pL�� (T ("i�))� E �pL�� (T ("1�))�	

�n�1=2
nX
i=1

h
X
�
� (e�)�X�

�

i0 e�L �pL�� (T ("i�))� E �pL�� (T ("1�))�	 (2.130)
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The �rst term on the right of (2.130) is

n�1=2
nX
i=1

gX
t=1

[x�it (e�)� x�it]�pL�� (T ("i�))� E �pL�� (T ("1�))�	0 e
tL
=

gX
t=1

(�0t � e�t)
24n�1=2 nX

i=1

0@ nX
j=1

wijtxjt

1A�pL�� (T ("i�))� EpL�� (T ("1�))�0
35e
tL:(2.131)

The norm of the second moment of the term in the square brackets on the right side of

(2.131) is bounded by0B@n�1 nX
i=1

E








nX
j=1

wijtxjt








2
1CAE

pL�� (T ("1�))� EpL�� (T ("1�))

2 = O

�
n�2L

�
;

by the Assumption E5 (iv) and the step employed in the proof of Lemma E11. From Lemmas

E3 (iii), E9 and Assumption E9, for t = 1; :::; g;

ke
tLk � ke
tL � 
tLk+ k
tLk = Op (1) : (2.132)

With (2.131), the �rst term on the right of (2.130) is Op
�
n�(1��2)=2L1=2

�
= op (1) by

Assumption E9.

Now consider

e�L n�1=2 nX
i=1

�
pL�� (T ("i�))� E

�
pL�� (T ("1�))

�	!
: (2.133)

The norm of the second moment of the term in the parentheses is bounded by

E


pL�� (T ("1�))� EpL�� (T ("1�))

2 = O (L) :

By (2.132);



e�L


 = Op (1) : Hence the term in (2.133) is Op

�
L1=2

�
: As in the proof of

Lemma E6 (ii),



X�

� (e�)�X�
�




2 is bounded by



e�� �0


2

0@n�1 nX
i=1








nX
j=1

WijXj�








1A2

= Op
�
n�1+2�1

�
;

by Assumptions E5 (iv) and E8. Hence, the second term on the right of (2.130) isOp
�
n�1=2+�1L1=2

�
=

op (1) by Assumption E9, and the required result holds.

Lemma E13 As n!1;

n�1
nX
i=1

�
X�
i� �X

�
�

�0 e�L �E�L�� ("1�)�X�
i� !p V:
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Proof. The left side of the lemma is

n�1
nX
i=1

�
X�
i� �X

�
�

�0 he�LE�L�� ("1�)� Li �X�
i� �X

�
�

�
+ n�1

nX
i=1

�
X�
i� �X

�
�

�0
L
�
X�
i� �X

�
�

�
:

By Assumption E5 (i), it su¢ ces to show that the �rst term is op (1) : The �rst term is

gX
s=1

gX
t=1

�e
0sLE ��L��t ("1�)�� Lst	
 
n�1

nX
i=1

(x�is � x��s) (x�it � x��t)
0
!
; (2.134)

where Lst is the (s; t)-th element of L. By (2.123) in the proof of Lemma E7, the term in

the curly brackets is

(e
sL � 
sL)0 
tL + (
0sL
tL � Lst) = op (1) :

The reason follows from Assumption E9, Lemmas E3 (iii), E9 and the result from the proof

of Proposition E1 that 
0sL
tL�Lst = o (1) : The term in the parentheses in (2.134) is Op (1)

by Lemma E5. Hence the required result holds.

Lemma E14 As n!1;

n�1
nX
i=1

�
X�
i� �X

�
�

�0 e�L ��L�� ("i�)� E�L�� ("1�)�X�
i� = op (1) :

Proof. The left side is

gX
s=1

gX
t=1

(
n�1

nX
i=1

e
0sL ��L��t ("i�)� E�L��t ("1�)� (x�is � x��s) (x�it)0
)
:

It su¢ ces to show that each term in the curly brackets are op (1) : The term in the curly

brackets is

n�1
nX
i=1

(e
sL � 
sL)0 ��L��t ("i�)� E�L��t ("1�)� (x�is � x��s) (x�it)0
+n�1

nX
i=1


0sL
�
�L��t ("i�)� E�L��t ("1�)

�
(x�is � x��s) (x�it)

0
: (2.135)

The norm of the �rst term in (2.135) is bounded by

C ke
sL � 
sLk sup
u2Rg



�L��t (u)

n�1 nX
i=1



(x�is � x��s) (x�it)0

 = Op

�
n�1=2L8

�
= op (1) ;

by Lemmas E4, E9, the steps similar to the proof of Lemma E5, and Assumption E9.

The norm of the second moment of the term in the curly brackets is bounded by

k
sLk
2

�
sup
u2Rg



�L��t (u)

2�n�2
 

nX
i=1

E k(x�is � x��s)k
2 kx�itk

2

!
= O

�
n�1+�L6

�
= o (1) ;
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by Lemmas E3, E4, and Assumption E5 (iii) and E9. Note that, by Assumption E5 (iii)

and the steps in the proof of Lemma E5, it can be shown that the sum in the parentheses

is O
�
n1+�

�
:

Lemma E15 As n!1;

n�1
nX
i=1

�
X�
i� �X

�
�

�0 e�L ��L�� ("i�)��L�� ("i�)�X�
i� = op (1) :

Proof. The left side can written as

gX
s=1

gX
t=1

 
n�1

nX
i=1

e
0sL ��L��t ("i�)� �L��t ("i�)� (x�is � x��s) (x�it)0
!
:

Note that

ke
sLk � ke
sL � 
sLk+ k
sLk = Op (1) ;

by Lemmas E3 (iii), E9 and Assumption E9. As in the proof of Lemma E7, by the mean

value theorem around �04; it su¢ ces to consider�
sup
u2Rg



�L2t (u)

�
"

� � �0

n�1 nX

i=1

kX�
i� (��)k kx�isk kx�itk

k�� �0kn�1
nX
i=1

kx�isk kx�itk+ k�� �0kn�1
nX
i=1




Ri ����


 kx�isk kx�itk
#
; (2.136)

where



�� � �0


 < 


e� � �0


 and k��� �0k < ke�� �0k : By Assumptions E5 and E8, the

second term in the square brackets in (2.136) is Op
�
n�1=2

�
: Employing the steps in the

proof of Lemma E6 (i) and (iv), it can be shown that under Assumption E5 (vi) and E8,

n�1
nX
i=1

h
kX�

i� (��)k+



Ri ����


i kx�isk kx�itk = Op

�
n�1=2+maxf�1; �3g

�
:

Hence Lemma E4 and Assumption E9 imply that the required result holds.

Lemma E16 As n!1;

n�1
nX
i=1

�
X�
i� (e�)�X�

� (e�)�0 e�L�L�� ("i�)X�
i� (�)�n�1

nX
i=1

�
X�
i� �X

�
�

�0 e�L�L�� ("i�)X�
i� = op (1) :
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Proof. The left side is

n�1
nX
i=1

h�
X�
i� (e�)�X�

� (e�)�� �X�
i� �X

�
�

�i0 e�L�L�� ("i�) [X�
i� (�)�X�

i�]

+n�1
nX
i=1

�
X�
i� �X

�
�

�0 e�L�L�� ("i�) [X�
i� (�)�X�

i�]

+n�1
nX
i=1

h�
X�
i� (e�)�X�

� (e�)�� �X�
i� �X

�
�

�i0 e�L�L�� ("i�)X�
i�: (2.137)

Employing various steps in the proof of Lemma E6, the fact that



e�L


 = Op (1), Lemma

E4 and Assumption E9, every term in (2.137) can be shown to be op (1) :

Lemma E17 As n!1;

n�1
nX
i=1

�
X�
i� �X

�
�

�0 e�L�L�� ("i�)Ri = op (1) :

Proof. The left side of the lemma is

n�1
nX
i=1

�
X�
i� �X

�
�

�0 �e�L � �L��L�� ("i�)Ri + n�1 nX
i=1

�
X�
i� �X

�
�

�0
�L�

L
�� ("i�)Ri: (2.138)

As in the proof of Lemma E15, by Assumptions E5 and E9, the The �rst term in (2.138) is

Op
�
n�1=2L8

�
= op (1) : By Lemmas E3, E4 and Assumption E5,

nX
i=1



�L�L�� ("i�)Ri

2 �
�
sup
u2Rg



�L�� (u)

�2 k�Lk2 nX
i=1








nX
j=1

Wijuj�








2

= O
�
L6
�
:

Hence Assumptions E6 and E9 imply that the second term in (2.138) is Op
�
n#L3

�
= op (1) :
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3 Statistical Inference on Regression with Spatial De-

pendence

3.1 Introduction

The linear regression model, with estimation by ordinary least squares (LS) or instrumental

variables (IV), is still a very popular statistical tool in empirical economic investigation.

Often, however, the linearity seems an arbitrary restriction, while no speci�c nonlinear-in-

parameters model is supported by economic theory. On the other hand, smoothed non-

parametric regression encounters the curse of dimensionality unless very few explanatory

variables are relevant or a huge sample is available. As a result, semiparametric models,

such as partly linear regression, have been employed. For example, Robinson (1988) pro-

posed estimates of the coe¢ cients of the linear component of a partly linear regression and

showed that they can compete with estimates of purely parametric models by converging at

parametric rate and being asymptotically normal, in the setting of arbitrarily many stochas-

tic explanatory variables in both the parametric and nonparametric parts. He assumed that

observations are independent and identically distributed (i.i.d.). This is often questionable

in economic applications, in particular, spatial dependence may arise from local shocks in an

economy and interaction among economic agents, due for example to spill-overs, competi-

tion and externalities; Conley (1999) discussed in detail sources of spatial dependence, from

both theoretical and empirical perspectives. The setting of the present paper is motivated

by spatial dependence in general, but also covers, as a special case, time dependence, whose

implications have already been widely studied in the parametric regression context, and to

a much more limited extent (e.g. Fan and Li (1999)) in the partly linear context, but on

the other hand our conditions also cover time dependence in panel data or spatio-temporal

data settings.

Spatial dependence can arise in many forms of data, for example (equally-spaced) data

observed on a regular lattice of two or more dimensions, data observed with irregular spacing

on a geographic space, data for which only pairwise "economic distances" are available, and

cross-sectional data that are feared to be dependent but for which no distance measures are

postulated. Asymptotic statistical properties of estimates, such as of LS and IV estimates

of linear regression, and estimates for the partly linear model, have not yet been developed

under conditions that satisfactorily cover these possibilities. In an important class of cases,

unobservable disturbances are i.i.d., and here the asymptotic distribution is expected, under

suitable regularity conditions, to be una¤ected, leaving intact rules of large sample inference.

In other cases, disturbances will be mutually independent but conditionally or uncondition-

ally heteroskedastic, where the asymptotic variance matrix is a¤ected, so standard t-tests

and interval estimates are invalidated, and Gauss-Markov e¢ ciency properties (in case of

LS regression estimates), or the achievement of a semiparametric e¢ ciency bound (in case

of Robinson�s (1988) estimates of partly linear regression) are lost. The same is true when,

on the other hand, homoskedasticity in disturbances is retained but independence is lost,

and a fortiori when disturbances are both heteroskedastic and dependent. A desirable

solution would entail correcting for whichever problem is present, using generalized least
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squares (GLS) ideas, as has been frequently done in dealing with heteroskedasticity, and

also with time series dependence, and occasionally even with both problems simultaneously

(see Hidalgo (1992) ). It is relatively easy to see how to construct GLS estimates when de-

pendence can be accurately parametrically modelled, but matters become more complicated

in the more modern approach where disturbance correlation is treated as nonparametric,

and certainly more consideration has to be given to the possible structure of dependence,

re�ecting the particular nature of the data, than in simple point estimates which ignore the

problem. Moreover, if we begin from a situation in which correlation between regressors and

disturbances is also feared, leading to use of instrumental variables, e¢ ciency improvements

are still harder to achieve.

In the setting of random design nonparametric regression, Robinson (2011) proposed a

triangular array structure which he justi�ed as a possible representation for a broad class of

spatial con�gurations, and presented conditions for consistency and asymptotic normality of

Nadarya-Watson estimates. Disturbances were assumed to satisfy a kind of linear process,

possibly allowing also for conditional or unconditional heteroscedasticity, and restrictions

on dependence of regressors were expressed in terms of conditions on joint and marginal

probability density functions, again also permitting some heterogeneity. It was argued that

these kinds of conditions might be suited to a wide range of spatial data.

We employ similar conditions here, in order to establish asymptotic normality of IV (and

thus also LS) estimates of a linear regression (see the following section), and of (density-

weighted IV) estimates of a partly linear model (see Section 3), allowing in both cases for

spatial dependence in regressors and disturbances. Proofs of these results are left to three

appendices, the �rst presenting the main steps, the second a sequence of propositions, and

the third, technical lemmas. Section 4 discusses estimation of relevant large sample covari-

ance matrices, some of which allow for disturbance heteroscedasticity and/or dependence,

and thus provide robust inference, with the proof of a theorem contained in the fourth ap-

pendix. In an empirical study in Section 6, we develop the regression analysis of Banerjee

and Iyer (2005) of the e¤ect of systems for collecting land revenue instituted during British

rule in India on present-day economic performance, after �rst �nding evidence of spatial

correlation of disturbances and carrying out nonparametric regression �tting. Sections 5

and 6 also include some discussion of the issue of bandwidth choice in partly linear regres-

sion. Section 7 discusses related aspects and possible modi�cations and extensions of our

methods and theory.

3.2 Linear Regression

Given n observations on the p-dimensional column vector random variable X1in and scalar

random variable Yin; we consider the linear regression

Yin = �0X1in + Uin; 1 � i � n; n = 1; 2; :::; (3.1)

where the p-dimensional column vector � is unknown, the prime denotes transposition, and

the Uin are unobservable scalar disturbances. It is possible that X1in includes an intercept.
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For spatial data there is generally no natural ordering, but an arbitrary one is employed in

(3.1). The triangular array formulation, indicated by the n subscript, is used because some

re-ordering may be natural when n increases, as discussed by Robinson (2011), for example

when observation points form a lattice in two or more dimensions. It is also essential when

a variable is believed to be generated by a model such as a spatial autoregression (SAR)

with row-normalized weight matrix. However, to avoid complicated notation we will mostly

suppress reference to the n subscript in what follows, so in particular we write Ui = Uin;

X1i = X1in, Yi = Yin; though from time to time we take the opportunity to remind the

reader of the underlying potential dependence on n of various quantities.

Consider the IV estimate ~� = ~�n of �; given by

~� =

 
nX
i=1

X2iX
0
1i

!�1 nX
i=1

X2iYi;

assuming we observe also the p-dimensional column vector random variable X2i = X2in and

the inverse exists. As usual X1i and X2i may overlap and X2i = X1i is possible, when ~�

becomes LS, but IV estimation is as usual motivated by the fear of correlation between one

or more elements of X1i and Ui; and the hope of orthogonality between X2i and Ui; and

correlation between X1i and X2i .

We introduce the following assumptions, where the norm kAk of a rectangular matrix A
is de�ned as the square root of the trace of A0A; and C denotes a generic, �nite constant,

independent of n.

Assumption A1 (3.1) holds where

Ui = Uin =

1X
k=1

bik"k; 1 � i � n; n = 1; 2; :::; (3.2)

where "k; k = 1; 2; :::; are independent scalar random variables with zero mean and unit

variance, and the scalar weights bik = bikn satisfy

1X
k=1

b2ik � C; 1 � i � n; n = 1; 2; :::: (3.3)

Assumption A2 As n!1;

nX
i=1

E kX2ik2 = O (n) ;

n�1
nX
i=1

X2iX
0
1i !p �;

where � is a constant non-singular matrix.
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Assumption A3 Denoting by N the set of positive integers,

lim
�!1

sup
k2N

E
�
"2k1 (j"kj > �)

	
= 0:

We abbreviate the triangular array or sequence fbi = bin; 1 � i � n; n � 1g to fbig :

Assumption A4 fX2ig and f"ig are independent, and as n!1;

1

n

nX
i=1

nX
j=1

1X
k=1

bikbjkX2iX
0
2j !p �;

where � is positive de�nite (p.d.) and

n�1=2 sup
k2N







nX
i=1

X2ibik






!p 0: (3.4)

Theorem A Under Assumptions A1-A4, as n!1;

p
n
�
~� � �

�
!d N

�
0;��1���10

�
:

Robinson (2011) gave detailed motivation for using (3.2) and (3.3) to derive central limit

theorems in the presence of spatial correlation and heterogeneity. Most basically, they im-

ply that max1�i�nE(U2i ) � C: They also extend the kind of linear process used when the

Ui form a stationary time series, and bij = bi�j : The more general ij subscript conveys pos-

sible heterogeneity as well as correlation, and this and the suppressed n subscript on bij are

required to cover models such as the SAR (which is nonstationary). In the SAR model for

Ui the bij eventually vanish, for all i (bij = 0 for j > n); and (3.3) is satis�ed under standard

conditions, but it also covers in�nite-order dependence, familiar from time series and lattice

autoregressive and autoregressive moving average models. In these, the bij are absolutely

summable, but (3.3) covers also possible "long memory". However, the extent to which

this is possible depends also on the dependence within fX2ig : As noted in the time series
case by Robinson and Hidalgo (1997), root-n�consistency is only possible if the collective
memory in Ui and X2i is su¢ ciently weak. In particular if X2i includes an intercept, the

�rst limit in Assumption A4 (which merely asserts convergence of the covariance matrix of

n�1=2
Pn

i=1X2iUi) rules out long memory in Ui: However if (3.1) is reformulated in terms

of mean-corrected observables long memory in Ui might be permitted in a corresponding

central limit theorem for slope parameter estimates based on Assumption A1, cf Robinson
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and Hidalgo (1997). Independence of innovations (in Assumption A1) is standardly as-

sumed both in models of SAR type and in lattice extensions of linear time series models;

the martingale di¤erence assumptions of time series models are hard to extend as there is

no natural ordering to our data. Independence of fX2ig and f"ig is a strong assumption
and would be capable of some relaxation, but at a cost because our decoupling of conditions

on disturbances and explanatory variables, here and even more so with respect to the partly

linear model of the following section, has advantages, as discussed in Robinson (2011). As-

sumption (3.4) is the required version of the asymptotic-negligibility condition to satisfy a

Lindeberg condition. Note that if the Ui are uncorrelated, as implied when bik = 0 for i 6= k,

(3.4) reduces to n�
1
2 max1�i�n kX2ik !p 0, which, given the standard Assumption A2, is

implied by the more familiar-looking condition max1�i�n kX2ik =
�
�ni=1 kX2ik2

�1=2
!p 0:

But the same conclusion results also under fairly general dependence in Ui. In particular this

is the case if �ni=1 jbikj � C for all k; as is true if jbikj � C jbi�kj where �1i=�1 jbij <1, to
connect with weakly dependent stationary time series, or under an analogous condition relat-

ing to lattice processes. It is also the case with SAR models under normalization conditions.

However, (3.4) is also true under more general dependence conditions, in particular if X2i is

uniformly bounded in probability it is only required that supk2N �
n
i=1 jbikj = o

�
n
1
2

�
, which

for stationary time series and lattice data would permit long memory in Uin. Assumption

A3 is just a standard uniform integrability requirement, avoiding identity of distribution.

3.3 Partly Linear Regression

Consider now the partly linear regression

Yi = �0X1i + � (Zi) + Ui; 1 � i � n; (3.5)

where to extend the previous de�nitions Zi = Zin is a q-dimensional observable column

vector random variable; and � is an unknown, nonparametric, function. As discussed by

Robinson (1988), for identi�ability X1i cannot include an intercept and X1i; Zi cannot

overlap.

We again focus on estimating �: As in Robinson (1988), we employ Nadaraya-Watson

nonparametric regression estimation in estimating a transformed version of (3.5). Letting

k : R! R be an even function, consider a product kernel K : Rq ! R such that

K (z) =

qY
t=1

k (zt) ;

where zt is the t-th element of z: For a positive scalar bandwidth sequence a = an; tending

to zero as n!1; denote
Kij = Kijn = K

�
Zj � Zi

a

�
:
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For a column vector triangular array fAi = Aing ; de�ne

A�i = A�in =
1

naq

nX
j=1

(Ai �Aj)Kij ;

and with fBi = Bing also a column vector triangular array, de�ne

SAB =
1

n

nX
i=1

A�iB
�0
i :

Our semiparametric IV estimate of � is

�̂ = S�1X2X1
SX2Y ;

assuming existence of the inverse. This is a density-weighted (as in Fan and Li (1999)) IV

version of the estimate of Robinson (1998) For independent and homoskedastic Ui; Cham-

berlain (1992) showed that the latter estimate achieves a semiparametric e¢ ciency bound.

However, with spatial dependence in fUig, this property is lost, and without suitable spatial
dependence structure, GLS-type estimation is ruled out. Because neither the estimate in

Robinson (1988) nor the density-weighted version is e¢ cient, and the former need not in

general be the more e¢ cient of the two, the latter may be preferable since the trimming

in Robinson (1988) can thereby be avoided. However as in that reference, we still need to

su¢ ciently reduce bias so as to obtain root-n-consistency in the presence of an arbitrarily

high dimension of the vector Zi, and this is achieved by employing a kernel k of suitably

high order, and a corresponding degree of smoothness in the functions to be estimated. To

describe these features we introduce the following de�nitions.

De�nition 3.1 Kl; l � 1; is the class of bounded and even functions k : R! R such thatZ
R
uik (u) du = �i0; i = 0; :::; l � 1;

k (u) = O

��
1 + juj�

��1�
;

as juj ! 1; where �ij is the Kronecker delta and � > max(l + 1; 2q):

De�nition 3.2 A function g : Rq ! R is in the class G�� ; � > 0; � > 0 (with respect to

the triangular array fZig) if: (i) g is (m� 1)-times partially di¤erentiable, for m�1 � � �
m; (ii) for some � > 0;

sup
y2B(z;�)

jg (y)� g (z)�Q (y; z)j = ky � zk� � h (z) for all z;

where B (z; �) = fy : 0 < ky � zk < �g ; Q = 0 when m = 1; (iii) Q is a (m� 1)-th degree
homogeneous polynomial in y�z with coe¢ cients the partial derivatives of g at z of orders 1
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through m�1 when m > 1; and (iv) g (z), its partial derivatives of order m�1 and less, and
h (z), have average �th moments (averaged over Zi; 1 � i � n) that are uniformly bounded

for all su¢ ciently large n.

We introduce the following assumptions.

Assumption B1 Assumption A1 holds with (3.1) replaced by (3.5).

Assumption B2 f"ig is independent of fX2i; Zig and Assumption A3 holds.

Assumption B3 The following probability densities exist and have unbounded support:
fi = fin, the density function of Zi; fij = fijn; the joint density function of Zi and Zj;

fijk = fijkn; the joint density function of Zi; Zj ; and Zk; and fijkl = fijkln , the joint density

function of Zi; Zj ; Zk and Zl:

Assumption B4 For all n � 1 and 1 � i � n;

Xti = �t (Zi) + Vti; t = 1; 2;

where Vti = Vtin are p-dimensional column vector random variables such that for t = 1; 2;

E (VtijZ1; :::; Zn) = 0

and there exist functions �t : Rq �Rq ! R such that

E (V 0tiVtj j fZ1; :::; Zng) = �t (Zi; Zj) 

(t)
ij ;

where 
(t)ij = 

(t)
ijn = E (V 0tiVtj).

De�ne

f(z) = fn(z) =
1

n

nX
i=1

fi(z); fi = f(Zi);

and



(U)
ij = 


(U)
ijn = E (UiUj) :
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Assumption B5 As n!1;

n�1
nX
i=1

V2iV
0
1ifi

2 !p 	;

where 	 is a constant non-singular matrix and

max
1�i; j�n

���
(t)ij ��� � C; t = 1; 2;

nX
i;j=1

���
(1)ij ��� = o(n2);
nX

i;j=1

n���
(2)ij ���+ ���
(U)ij

���o = o
�
n3=2

�
; as n!1:

Introduce the notation

nX
i1;:::;is

=

nX
i1=1

nX
i2 6=i1

� � �
nX

is 6=i1;:::;is 6=is�1

:

Also introduce the dependence measures

Fj:i(z2; z1) = fij (z1; z2)� fi (z1) fj (z2) ;

Fjk:i(z2; z3; z1) = fijk (z1; z2; z3)� fi (z1) fjk (z2; z3) ;

Fij:k:l(z1; z2; z3; z4) = fijkl (z1; z2; z3; z4)� fij (z1; z2) fk (z3) fl (z4) :

Assumption B6 For some " > 0; fZig satis�es the following conditions as n!1:

(i) denoting B = Bn =
�
z : f (z) > 0

	
; N (z) = fz1 : kz1 � zk < "g ;

sup
z12B

sup
z22N (z1)

8<: 1

f (z1)

nX
i;j

jFj:i(z2; z1)j

9=; = o
�
n3=2

�
;

sup
z12B

sup
z2;z32N (z1)

8<: 1

f (z1)

nX
i;j;k

jFjk:i(z2; z3; z1)j

9=; = o
�
n5=2

�
;

(ii)

sup
z1;z22Rq

sup
z32N (z1)[N (z2)

nX
i;j;k

���
(U)ij 

(2)
ij Fij:k(z1; z2; z3)

��� = o
�
n2
�
;

sup
z1;z22Rq

sup
z32N (z1); z42N (z2)

������
nX

i;j;k;l


ijFij:k:l(z1; z2; z3; z4)

������ = o
�
n3
�
;

for 
ij = 

(2)
ij ; 


(U)
ij and the product 
(2)ij 


(U)
ij :
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Assumption B7 For all su¢ ciently large n; f 2 G1� for some � > 0; and, for distinct

i; j; k; l 2 [1; n] ;

lim
n!1

�
max
i
sup fi (z) + max

i;j
sup fij (z1; z2)

+max
i;j;k

sup fijk (z1; z2; z3) + max
i;j;k;l

sup fijkl (z1; z2; z3; z4)

�
< 1;

where the suprema are over all real values of the function arguments.

Introduce a scalar function G(z) such that

nX
i=1

E
�
G4 (Zi)

	
= O (n) ; as n!1:

Assumption B8 For t = 1; 2; �t 2 G4� for some � > 0 and there exist " > 0 such that for
any z 2 Rq

sup
0<kuk<"

j�t (z)� �t (z + u)j
kuk � G (z) :

Assumption B9 � 2 G4� for some � > 0; and there exist " > 0 such that for any z 2 Rq

sup
0<kuk<"

j� (z)� � (z + u)j
kuk � G (z) :

Assumption B10 For t = 1; 2; as n!1;Z
�t (z; z)

2
f (z) dz +

Z
�2 (z1; z2)

2
f (z1) f (z2) dz1dz2 = O (1) ;

max
1�i; j�n

E j�2 (Zi; Zj)j = O
�
n1=2

�
;

and there exist " > 0 and functions Gt (z1; z2) such that for any z1; z2 2 Rq;

sup
0<k(u;v)k<"

j�t (z1; z2)� �t (z1 + u; z2 + v)j
k(u; v)k � Gt (z1; z2) ;

where as n!1Z
Gt (z; z) f (z) dz +

Z
Gt (z1; z2) f (z1) f (z2) dz1dz2 = O (1) :
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Assumption B11 As n!1;

n�1=2 sup
j2N

nX
i=1

kV2ik f
2

i jbij j !p 0

and
1

n

nX
i=1

nX
j=1

1X
k=1

bikbjkf
2

i f
2

jV2iV
0
2j !p 
;

where 
 is a constant p.d. matrix.

Assumption B12 For the same �; �; � as in Assumptions B7 - B9, k 2 Kmax(l+m�1;l+r�1)
for integers l; m; r such that l � 1 < � � l; m� 1 < � � m; r � 1 < � � r:

Assumption B13 For the same �; �; � as in Assumptions B7 - B9, as n!1;

a+ n�1=2a�q + n1=2a��2q + n1=2
�
a2� + a2� + a2�

�
! 0:

Theorem B Under Assumptions B1-B13, as n!1;

p
n
�
�̂ � �

�
!d N

�
0;	�1
	�10

�
:

To a substantial degree, the assumptions are a mixture or modi�cation of ones in Robin-

son (1988, 2011). In his i.i.d. data setting, Robinson (1988) was able to relax Assumption

B4 to E (VtijZ1; :::; Zn) = 0 a.s., t = 1; 2; but for our potentially spatially dependent set-

ting we have been unable to avoid more structure. Though Assumption B4 does allow for

some conditional heteroscedasticity it is nevertheless strong, especially when p > 1; but we

prefer to avoid milder but more complicated assumptions. Assumption B5 places an upper

bound on the spatial dependence in Ui and V2i that covers long memory. Assumption B6,

as in the nonparametric regression setting of Robinson (2011), constitutes an asymptotic

independence assumption on Zi; part (ii) of it also involves the 

(U)
ij and 


(2)
ij . It is di¢ cult

to check in general, but this is possible at least under Gaussianity: as noted in Robinson

(2011), a similar (slightly stronger) condition was checked by Castellana and Leadbetter

(1986), in the stationary scalar Gaussian time series case: there exists " > 0 such that for

N (z) = fz1 2 R : jz � z1j < "g ;

sup
z12R

sup
z2;z32N (z1)

nX
i;j;k

����Fjk:i(z2; z3; z1)f (z1)

���� � Cn
nX
i=1

nX
j=1

jCov(Zi; Zi+j)j :
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In this setting at least, Assumption B6 allows fZig to have long memory. With respect to
�nding alternative su¢ cient conditions, there is always a di¢ culty, in either the spatial or

time series contexts, in characterizing useful, coherent, joint, non-Gaussian, densities. To

place matters in further perspective, mixing conditions would provide an alternative to B6,

but though there has been a good deal of discussion of conditions for these with respect

to time series, relatively little seems to be known in a spatial context, especially given the

rather wide range of spatial con�gurations that we try to allow for.

3.4 Variance Estimation

For statistical inference the limiting covariance matrices in Theorems A and B must be

consistently estimated. To focus particularly on the Theorem A, Assumption A2 gives a

consistent estimate, b�; of �: Assuming no correlation in the Ui; � can be estimated by
b�1 = b�1n = 1

n

nX
i=1

X2iX
0
2i
eU2i ;

where eUi = eUin = Yi � ~�
0
X1i;

so b�1 is a standard heteroscedasticity-robust estimate in the style of Eicker (1967). Assuming
also homoscedasticity we have of course the estimate

b�2 = b�2n = e�2 1
n

nX
i=1

X2iX
0
2i;

where e�2n = e�2 = (n� p)�1Pn
i=1

eU2i : Consistency of b�1 and b�2 follows under mild addi-
tional conditions.

Estimation of � can be considerably more problematic when there is correlation in the

Ui: Given a parametric model for Ui; such as a SAR or, with lattice data, a lattice exten-

sion of a stationary time series model such as an autoregressive moving average, matters

are relatively straightforward. When Ui is not parametrically modelled, lattice data permit

relatively straightforward extension of the heteroscedasticity-and-autocorrelation-consistent

(HAC) variance estimates proposed for time series data, which are essentially smoothed

nonparametric estimates of the spectral density matrix of a stationary process at zero fre-

quency (though the edge-e¤ect must be taken account of). For non-lattice data there is a

fundamental di¢ culty of autocovariance estimation, for example when data are irregularly-

spaced there are typically insu¢ cient pairs of observations available to reliably estimate

the autocovariance for a given lag using standard formulae. This problem is present with

irregularly-spaced time series data, and the kernel smoothing method suggested there by

Masry (1983), to estimate autocovariances at integer lags, can be extended to two or more

dimensions, with the autocovariance estimates then straightforwardly inserted in a higher-

dimensional HAC formula. This approach is based on stationarity, but as in the time series

case it can doubtless be shown to be consistency-robust to a degree of heterogeneity. As
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an alternative way in which the problem can be transformed to one for a stationary ran-

dom �eld on a lattice, Conley (1999) modelled locations by a point process, dividing the

sampling region into rectangular cells such that for each cell, there can be at most a single

observation.

On the other hand an estimate which potentially covers both nonparametric dependence

and heterogeneity is of form

b�3 = b�3n = 1

n

nX
i=1

nX
j=1

X2iX
0
2j
~Ui ~Ujwij ; (3.6)

where the wij = wijn form an array of weights, as in Kelejian and Prucha (2007). In their

proof of consistency, they stress SAR-type Ui; but the property holds much more generally

under Assumption A1. The quadratic-form estimate (3.6) reduces to a familiar HAC form

if the wij are of the kernel form wi�j = wi�j;n; involving a bandwidth, but Kelejian and

Prucha (2007) take wij = w (dij=d) ; where the function w (x) is suitably normalized and

vanishes for x > 1; dij = dijn is a known, positive (economic) distance between locations

i and j; and d = dn � maxi;j dij is regarded as increasing without bound with n: An

alternative choice of wij is based on knowledge of observed locations s�i 2 Rr; for dimension
r � 1; i = 1; :::; n: Let si be a r � 1 vector such that if sik and s�ik are the k-th elements of
si and s�i ; so sik is the smallest integer such that sik � s�ik: We can regard si as discretized

locations on a rectangular grid. De�ne

w (si � sj ;m) =
rY

k=1

h f(sik � sjk) =mkg ;

where h is a real-valued function and mk = mkn are non-negative integers forming a trun-

cation vector m = (m1,...,mr): Set wij = w�
�
s�i ; s

�
j

�
= w (si � sj ;m) :

With respect to variance estimation in Theorem B, Assumption B5 supplies a consistent

estimate, b	; of 	; while to echo remarks of the previous section, after de�ning bU�1i = bU�1in =
Y �i � �̂

0
X�
1i; under regularity conditions a consistent estimate of 
 is

b
1 = b
1n = 1

n

nX
i=1

X�
2iX

�0
2i
bU�21i ;

when the Ui are independent, and

b
2 = b
2n = b�2 1
n

nX
i=1

X�
2iX

�0
2i ;

when they are also homoscedastic, where b�2n = b�2 = (n� p)�1Pn
i=1

bU�21i : For dependent Ui
one can use (cf (3.6))

b
3 = b
3n = 1

n

nX
i=1

nX
j=1

X�
2iX

�0
2j
bU�1i bU�1jwij : (3.7)

In order to provide some reasonably comprehensible theoretical justi�cation, let us con-
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sider the infeasible estimate

e�3 = e�3n = 1

n

nX
i=1

nX
j=1

X2iX
0
2jUiUjwij ; (3.8)

which becomes b�3 with Ui replaced by ~Ui; and b
3 with Ui; X2i replaced by bU�1i; X�
2i

respectively. For any � 2 Rp;

�0e�3� = 1

n

X
s2L

X
t2L

vsvtw (s� t;m) ;

where vt =
Pn

i=1 �
0X2iUi1 (si = t) and 1 is the indicator function. This can be written asX

u2L�
w (u;m) cu;

where L� = fs� t : s 2 L; t 2 Lg ; cu = n�1
P

�(u) vtvt+u; and � (u) = ft : t 2 L; t+ u 2 Lg ;
where we assume that si 2 �rj=1 f1; :::; njg = L for all i; where L is the smallest rectangular
grid containing all si: If h is either the modi�ed Bartlett window or the Parzen window,

then �0e�3� � 0 (see Robinson, 2007), and hence e�3 is non-negative de�nite. We establish
conditions for approximating

�n = n�1
nX
i=1

nX
j=1

E
�
X2iX

0
2j

�
E (UiUj)

by e�3:

Assumption C1 The kernel h is a real, even function such that jh (u)j � 1; h (u) = 0 if
juj > 1; and limu!0 (1� h (u)) = jujq = hq for some q > 0 and 0 < hq <1:

Assumption C2 As n!1;

(i)

mk !1; nk !1; k = 1; :::; r;

(ii)
mk

nk
! 0; k = 1; :::; r;

and there exist 0 < c1 < c2 <1 such that

c1

rY
k=1

nk � n � c2

rY
k=1

nk

for su¢ ciently large n:
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De�ne

Sn (u) =
1

n

nX
i=1

nX
j=1

E
�
X2iX

0
2j

�
E (UiUj)1 (si � sj = u) :

Assumption C3 There exists a family of p � p matrices fGu : u 2 Zrg ; where Zr is the
r-Cartesian product of the set of integers, such that the absolute value of each element

of Sn (u) is bounded by the corresponding element of Gu; for all u 2 L�; n 2 N, andP
u2Zr

Pr
k=1 jukj

q
Gu is a �nite matrix.

Assumption C4 Let xti be the t-th element of Xi: For all t; s = 1; :::; p; as n!1

nX
i=1

nX
j=1

nX
k=1

nX
l=1

j� (xtiUi; xsjUj ; xtkUk; xslUl)j = O (n) ;

where � is the cumulant function.

De�ne

S1ts;n (u; v; u1) = n�1
X
u;v;u1

E (xtixtkUiUk)E (xsjxslUjUl) ;

S2ts;n (u; v; u1) = n�1
X
u;v;u1

E (xtixskUiUk)E (xtjxrlUjUl) ;

where the summation is over all i; j; k and l such that si � sj = u; sk � sl = v and

si � sk = u1:

Assumption C5 There exist numbers
�

u;v : u; v 2 Zr

	
such that

jS1ts;n (u; v; u1) + S2ts;n (u; v; u1)j � 
u1;u1+v�u

for all t; s = 1; :::; p and u; v; u1 2 L�; n 2 N, andX
u2Zr

X
v2Zr


u;v <1:

Theorem C As n!1; under Assumptions C1, C2 (i) and C3

E
�e�3 � �n� = O

 
rX

k=1

m�q
k

!
;
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and under Assumptions C2, C4 and C5,

V ar
�e�3� = O

 
n�1

rY
k=1

mk

!
:

Sharper results can be obtained if stronger assumptions are imposed. For example, if as

n!1; Sn (u)! S (u) for all u, for a well-de�ned function S (u) ; the asymptotic bias can

be made more precise. This assumption is similar to the de�nition of asymptotic stationarity

of irregularly spaced time series in Parzen (1963). The same can be said for the variance if

another type of asymptotic stationarity is introduced (see the proof of Theorem C). Under

such assumptions, the asymptotic mean squared error can be used as a criterion for choosing

a truncation vector, and a data-dependent plug-in procedure then employed.

3.5 Monte Carlo Study of Finite-Sample Performance

We examine �rst, for the linear regression (3.1) with p = 1, the size of 2-sided t -tests

based on the LS version of e� and the estimates b�1; b�2 and the second approach to formingb�3 described in the previous section. The locations s1; :::; sn of the observations were

generated by a random draw from the uniform distribution over
�
0; 4n1=2

�
�
�
0; 4n1=2

�
:

Given these (and keeping them �xed across replications), the Ui were generated as normal

variables with mean zero and covariances Cov (Ui; Uj) = �
ksi�sjk
U ; for prescribed �U 2 (0; 1):

Likewise the Xi (= X1i = X2i) were generated as scalar normal variables with mean unity

and covariances Cov (Xi; Xj) = �
ksi�sjk
X ; for prescribed �X 2 (0; 1) (and independently of

the Ui):We took � = 1; (�X ; �U ) = (0:2; 0:3) and (0:4; 0:5) ; n = 100 and 169; and generated

1000 replications: Table 1 reports empirical sizes of t�tests with nominal sizes � = 0:01;

0:05 and 0:1 using b�1; denoted in the "m" column by H, e�2, denoted there by C, ande�3; for various values of m in the truncation vector (m;m) ; and using the Parzen kernel

for h. There is some over-sizing, which diminishes with increasing n: The over-sizing is

particularly acute with respect to the inappropriate variance estimates C and H, with the

(heteroscedasticity-robust) H doing worse than the classical C. For e�3 there is stability
across m (though when we tried m outside the range used in Table 1 we found greater

sensitivity.

Table 1 about here

Power was investigated in the same setting, against the incorrect null hypothesis that

� = 0:8; but with Ui � NID (0; 1) ; Xi � NID (1; 1) : Monte Carlo powers are displayed

in Table 2. The main �ndings are that choice of variance estimate here makes little

di¤erence, and that power increases quite signi�cantly with the rather modest increase in n:

The experiment was repeated with the incorrect null hypothesis � = 0:5; when all powers

were perfect.

Table 2 about here

We now turn to the semiparametric partly linear model (3.5), and use the LS version of b�:
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This depends on a bandwidth a: In general one expects less sensitivity to bandwidth choice

in semiparametric than in nonparametric estimation. Moreover, the problem with trying

to use a data-dependent bandwidth, especially in a relatively complicated, semiparametric,

situation like this, is not so much the computational e¤ort as that one is then at the mercy of

a mechanical procedure that is itself rather arbitrarily selected. Even in the semiparametric

literature often optimal bandwidths originally devised for purely nonparametric estimation

are used, but clearly their relevance to the semiparametric model is unclear. Alternatively

one can develop some procedure based on the semiparametric model itself. Our view here is

that if the goal is statistical inference based on the central limit theorem, rather than using,

say, minimum-mean-squared error or cross-validation procedures, it is more appropriate to

choose a bandwidth that minimizes the error in the normal approximation. Nishiyama and

Robinson (2000) achieved this for semiparametric averaged derivatives but even that case is

complicated and in the current one, if feasible, it would be more so. Moreover, they assumed

independence of observations, which would clearly be inappropriate here given the paper�s

overall focus. Even weak disturbance correlation would a¤ect this optimal bandwidth

(unlike in the pure nonparametric setting), let alone the strong correlation which we allow

for. Another point to bear in mind is that our asymptotic theory, like the bulk of the

nonparametric and semiparametric literature, assumes a data-free bandwidth. In any case

some experience over the years suggests that unless an "optimal" bandwidth is available and

well-motivated it may be desirable to employ a range of bandwidths, which also allows one

to assess sensitivity, and this was done in the following experiment (though cross-validation

was tried in the empirical study of the following section).

In (3.5) we took p = 1; q = 2 and Xi = 1 + Z1i + Z2i + Vi; �(Zi) = Z21i + Z22i;

where the Z1i; Z2i; Vi were generated as normal variables with mean zero and such that

Cov fXi; Xjg = �
ksi�sjk
X , the Ui as normal with mean zero and Cov fUi; Ujg = �

ksi�sjk
U ; and

fZ1ig ; fZ2ig ; fVig and fUig were independent. We again took � = 1; (�X ; �U ) = (0:2; 0:3)
and (0:4; 0:5) ; n = 100 and 169; and generated 1000 replications. We employed a = 1:0; 1:2

and 1:4: We used two di¤erent kernels k; namely k2 (z) = � (z) and k4 (z) =
�
3� z2

�
� (z),

where � is the standard Gaussian density; k2 and k4 are respectively second- and fourth-

order kernels, and are thus not of high enough order to satisfy the conditions of Theorem

B, but this strategy was adopted due to the imprecision likely to be caused by a high order

kernel in the relatively modest sample sizes.

There is interest in the e¤ect on bias (BI) and standard deviation (SD) of the point

estimate b� of the choice of kernel and bandwidth. The results for k2 were as follows.

With (�X ; �U ) = (0:2; 0:3) ; BI(SD) was, for a = 1:0; 1:2; 1:4; respectively .0062(.1200),

.0059(.1184), .0057(.1187) when n = 100, and .0047(.0872), .0037(.0852), .0026(.0849) when

n = 169; with (�X ; �U ) = (0:4; 0:5) ; BI(SD) was .0052(.1260), .0048(.1259), .0047(.1281)

when n = 100, and .0045(.0909), .0035(.0894), .0024(.0897). The results for k4 were as

follows. With (�X ; �U ) = (0:2; 0:3) ; BI(SD) was .0063.(.1245), .0060(.1224), .0059(.1214)

when n = 100, and .0053(.0910), .0045(.0886), .0035(.0872) with n = 169; with (�X ; �U ) =

(0:4; 0:5) ; BI(SD) was .0052(.1300), .0050(.1291), .0048(.1295) when n = 100, and .0050(.0945),

.0043(.0925), .0033(.0915) when n = 169: Both BI and SD fall with increasing n: There is

no clear pattern discernible from changing (�X ; �U ) : The fact that k2 on average produces
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lower BI than k4 is due to the fact that the same bandwidths were used for both, whereas

k4 demands a larger bandwidth than k2: Nevertheless, k2 still produces a lower SD.

Tables 3 and 4 about here

From the same replications t-ratios were computed for each choice of kernel and band-

width, and using b
1; denoted by H, b
2, denoted by C, and b
3; which employed the Parzen
kernel and m in the truncation vectors (m;m) : Empirical sizes using k2 and k4 are dis-

played in Tables 3 and 4 respectively. There is clearly some sensitivity to choice of a; with

sometimes a monotone change, and sometimes a peak or trough, observed on increasing

it, though the discrepancies do not seem huge. Use of the C or H estimates tends to

produce marked over-sizing when (�X ; �U ) = (0:4; 0:5) ; but the correlation-robust tests are

quite stable across m: Generally, performance deteriorates with greater spatial correlation,

but it also improves with increasing n; and when n = 169 it is surprisingly better than for

the parametric linear model (3.1). Comparing Tables 3 and 4, k2 generally fares better

than k4; possibly due to the relative BI and SD behaviour reported above.

Finally Table 5 displays empirical powers, against the incorrect null hypothesis that

� = 0:7; in the previous setting but with Ui; Vi; Z1i; Z2i;� NID (0; 1) : Powers mostly

increase somewhat with a and markedly with n; but tend to be stable across the variance

estimates, with the larger powers for C possibly due to over-sizing. In another experiment

using the incorrect null hypothesis that � = 0:5; perfect powers were observed throughout.

Table 5 about here

3.6 Empirical Illustration

The present section develops an empirical analysis of Banerjee and Iyer (2005), which em-

ployed linear regression modelling and estimation to study the in�uence of di¤erent systems

for collecting land revenue in India, instituted during British colonial rule, on present-day

economic performance. In a threefold classi�cation of these systems, in a given area revenue

was collected either through the local landlord, or through the village, or from the individual

cultivator. Banerjee and Iyer (2005) used district-level data, and calculated the proportion

of "non-landlord" areas within a district (in the 1870�s or 1880�s); in some cases this could

not be done accurately and a proportion of 0 or 1 was assigned. This non-landlord propor-

tion, denoted NL, was the explanatory variable of chief interest in Banerjee and Iyer�s (2005)

study: on the basis of economic theory and empirical evidence, agricultural investment and

yields are positively related to NL, and income/wealth inequality are negatively related to

it. Their data on measures of economic performance and productivity, used as dependent

variables, consisted of a panel (annually, over the period 1956 through 1987 and across some

271 districts in 13 major states). As well as carrying out LS regressions (correcting also

for various control variables), because of concerns about endogeneity (non-landlord areas

are inherently more productive), Banerjee and Iyer (2005) also used IV estimation with a
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dummy, which we denote C0, for whether or not a district was conquered between 1820

and 1856 as instrument for NL. Districts are intrinsically of irregular size and shape, and

are thus intrinsically geographically irregularly-spaced, and moreover the lack of data for

some states produces huge spatial gaps, as Figure 1 of Banerjee and Iyer (2005) indicates.

However, they did not explore the possibility of spatial or serial correlation, and employed

standard inference rules based on uncorrelated and homoskedastic disturbances, and nor

did they explore semiparametric modelling.

We consider the possibility of spatial correlation of disturbances, and its a¤ect on in-

ference, as well as the use of partly linear, and also pure nonparametric, regression. To

maintain focus and prevent matters becoming over-complicated, we employ data from only

one year, 1984; incidentally, Banerjee and Iyer�s (2005) model was static, with time-invariant

slope parameters. Employing data from near the end of the period also takes account of the

"Green Revolution" (see e.g. Munshi (2004)), which started in the early 1960s to combat

famine in certain Indian states, and was later extended throughout the country; as Banerjee

and Iyer�s (2005) aim was to study e¤ects of local institutions, later periods in the sample

could provide better regression �ts.

We �rst tested for spatial correlation of the disturbances in some of Banerjee and Iyer�s

(2005) regression models, employing LS and IV residuals in members of the class of tests

proposed by Robinson (2008). These tests include a number of previously-proposed ones

as special cases, and can be designed to have a Lagrange multiplier interpretation with re-

spect to certain spatially correlated alternatives to the null of uncorrelatedness, for example

against a SAR alternative, when the test statistic depends on the chosen spatial weight

matrix or matrices. For certain choices, several members of this class of statistics, including

ones with �nite-sample corrections, were computed, for the four regressions with proportion

of irrigated land (IL), fertilizer use (FU), log(yield 15 crops) (L15), and log(rice yield) (LR)

as dependent variable Y . For the most part the tests rejected, suggesting possible spatial

correlation in disturbances (though as always some other source of misspeci�cation could

be the cause). The detailed results can be obtained from the authors on request.

We next carried out some simple Nadaraya-Watson nonparametric regression �ts, of each

of the same four Y on NL. Under similar assumptions to ours, Robinson (2011) showed

consistency and asymptotic normality of this estimate. Though his conditions require the

explanatory variable to be continuous, whereas as previously noted NL has a mixed distri-

bution, nevertheless the exercise may be helpful in re�ecting nonlinearity and hinting at its

form. Figures 1-4 contain scatter plots for the four dependent variables and nonparametric

regression �ts using a Gaussian kernel with bandwidth 0:3. This choice was the smallest

one that did not give very unsmooth curves, and much larger ones appeared to oversmooth,

indeed NL takes values in [0,1]. In any case the purpose of the nonparametric regression is

only exploratory, to hint at possible structure. The Figures suggest in each case a mode, and

possibly a mild secondary one, and thus evidence of nonlinearity, contrary to the modelling

of Banerjee and Iyer (2005).

Figures 1-4 about here

Our parametric and semiparametric regression models included (unlike in Banerjee and

Iyer (2005)) the square (NL2) of NL as a regressor (as well as NL itself), as just suggested by
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the nonparametric �tting. We also replaced two of Banerjee and Iyer�s (2005) explanatory

variables by proxies which may be more appropriate. For their panel data set, mean annual

rainfall was constructed over 1931-1960, but rainfall records from several decades earlier than

1984, the only year which we analyze, may not be relevant, especially for agricultural yields.

We used instead a precipitation variable (PRE) constructed by Mitchell and Jones (2005),

based on a method which they argued o¤ers some improvement over existing ones in the

climatology literature: their dataset included 6 monthly climate elements over a 0:5 � grid,

over which variation is small, and we used longitude and latitude of district headquarters to

obtain a weighted average at surrounding grids for 1984, district headquarters tending to be

in areas of high population density which themselves tend to be relatively fertile. Second,

Banerjee and Iyer (2005) included latitude (but not longitude) as an explanatory variable,

but latitude behaves like a linear trend in a time series regression, and thus a¤ects the rate

of convergence of estimates, in a way determined by the scatter of district headquarters.

We replaced latitude by annual temperature (TEM), which varies considerably across India

and is more likely to in�uence agricultural yields and hence investment decisions. As an

additional modi�cation, we discarded Thanjavur district because it appears to have serious

measurement error: it is the only district having IL exceeding unity, and FU in Thanjavur

was 79.44 in 1981, rose to 301.18 in 1982, and has remained high since, whereas average FU

excluding Thanjavur in 1984 was only 61.15.

IV estimation in the presence of the additional, NL-dependent, regressor NL2, requires

an additional instrument. The one selected, denoted C1, takes the value unity if a district

was acquired between 1820 and 1856, and otherwise its value is determined by the cause of

acquisition: 0:1 for "lapse", 0:3 for "misrule", 0:5 for conques, 0:7 for "grant", and 0:8 for

"ceded". The ordering is based on a likely strategy for security of the British administra-

tion, the higher value for "ceded" to "grant" due to the latter being more common at the

beginning of the British colonisation when landlord land-revenue systems predominated.

C1 can be considered as a �ner version of C0, and should likewise be uncorrelated with

omitted districts�characteristics which determine 1984 investment and productivity; both

are one-o¤ historical events. On the other hand C0 and C1 are not highly correlated but

are both highly correlated with NL. We used C0 and C1 as instruments for NL2 and NL

respectively, C1 having relatively higher sample correlation with NL.

In (3.1) we took Y = IL, FU, L15 and LR, as above (n = 164; 164; 165 and 165

respectively), with

X1 = (1;NL,NL2,DBC,CD,BSD,RSD,ASD,ALT,PRE,TEM)0;

where DBC = date district came under British control, CD=coastal dummy, BSD=black

soil dummy, RSD=red soil dummy, ASD=alluvial soil dummy, and ALT=altitude. We

computed e� both with X2 = X1 (LS) and with

X2 = (1;C1,C0,DBC,CD,BSD,RSD,ASD,ALT,PRE,TEM)0;

(IV). Standard errors (SEs) were computed using b�; b�2 and b�3 as described in Sections 5
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and 6, with for m = 2; 4; 6: Next, in (3.5) we took

X1 = (NL,NL2,DBC,CD,BSD,RSD,ASD)0; Z = (ALT
�,PRE�,TEM�)

0
;

where ALT�, PRE�, TEM� are ALT, PRE, TEM normalized to have sample variances

approximately 1 (in order to better justify use of a scalar bandwidth). This selection keeps

NL, NL2 and DBC in the parametric part, these being the explanatory variables of most

interest, along with the dummies, and puts into the nonparametric part control variables

that can be taken to be continuous. We computed b� with Z as above, and both with

X2 = X1 ("partly LS") and

X2 = (C1,C0,DBC,CD,BSD,RSD,ASD)0

("partly IV"). For choosing the bandwidth a we tried the partial LS cross-validation pro-

cedure (and an IV modi�cation) of Gao (1988), justi�ed by Gao and Yee (2000), though

this does not quite �t with our density-weighted estimate b�: (The elements of Z were pre-
viously normalized to have unit sample variance.) Unfortunately this tended to deliver

data-dependent bandwidths that are far too large. There was a tendency for the cross-

validation objective function to �rst decrease rapidly as a increases, then remain quite �at

over a wide range before increasing. Thus we proceeded in a semi-automatic way, choosing

two relatively small a that lie in the �at region of the cross-validation objective function,

these bandwidths varying across the partly LS and IV estimates and across the same two

kernels, k2 and k4; as used in the previous section. SEs were computed using b	; b
2 andb
3 as described in Sections 5 and 6, the latter being implemented in the same way as b�3;
and for m = 2; 4; 6; we justify these smallish values by the fact that the data locations

locations of the Indian districts data �t within a 25 17 rectangle, where the units are lati-

tude and longitude. The results are presented in Tables 6-9, for respectively irrigated land

(IL), fertilizer use (FU), log(yield 15 crops) (L15), and log(rice yield) (LR) as dependent

variable, with point estimates in bold-face and SEs reported in parentheses beneath them

(non-robust ones above the three robust ones).

Tables 6-9 about here

Considering �rst the parametric LS and IV estimates, sometimes marked di¤erences

between them are seen and neither estimate is statistically signi�cant. In Tables 6, 7 and

8 none of the IV estimates on NL and NL2 is signi�cant, but all the LS is signi�cant, and

in Table 9 NL is signi�cant. This outcome also re�ects the larger SEs for IV, which were

anticipated. The signs of both LS and IV estimates of coe¢ cients of NL and NL2 are mostly

consistent with the inverted U-shape seen in Figures 1-4. Also in accordance with Banerjee

and Iyer (2005), DBC was nearly always found to have a signi�cantly negative e¤ect; the

exceptions were for the larger m; SEs tending to increase with m; a fairly general feature,

though in most cases the variation did not a¤ect the question of signi�cance. Nor did the

non-robust SEs often di¤er much from the robust ones. Turning to the semiparametric

estimates, both the LS and IV versions of b� tend to be in the same ball-park as LS (but not
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IV) e�; at least where NL, NL2 and DBC are concerned, though in Table 8, where LS and
IV are relatively close, there is a larger discrepancy for NL and NL2 with semiparametric

IV exceeding in absolute value all the other estimates in case of NL and NL2. Again, using

instruments tends to increase SE. There is some sensitivity to choice of bandwidth a and

kernel k; though seldom enough to a¤ect signi�cance, keeping m �xed. With respect to

kernel choice, k4 does not necessarily produce larger SEs than k2; perhaps because of our

simultaneous variation in bandwidth a: On the whole it could be said that Banerjee and

Iyer�s (2005) fully linear speci�cations are not contradicted by our results, except of course,

and importantly, where our extra regressor NL is concerned, and the results here do strongly

con�rm the pattern found in our nonparametric regression �ts.

3.7 Final Comments

We have developed asymptotic properties useful in statistical inference on regression coe¢ -

cients in parametric and semiparametric partly linear models, in the context of a potentially

wide range of spatial or spatio-temporal data. Consistent estimation of limiting covariance

matrices is required, and we have also discussed this topic both when the disturbances are

uncorrelated, and when they are spatially correlated. Finite-sample performance has been

investigated in a simulation study, and the methods applied to an Indian regional data-set.

A number of related issues and extensions can be pursued.

1. As mentioned in the Introduction, mixing conditions represent an alternative class

of dependence conditions, to replace our linear process assumption on disturbances

and density-based assumptions on regressors. A recent econometric reference is Jen-

ish and Prucha (2008), who develop the (regular lattice) mixing condition theory of

Bolthausen (1982), establishing asymptotic normality (and laws of large numbers) for

the sample mean of a scalar process observed on a possibly irregular lattice whose

exogenous locations are separated by distances that are bounded away from zero.

Analogous conditions can undoubtedly be developed for our more complicated statis-

tics, dependent on multivariate data (with probably faster convergence of mixing rates

required), and this kind of approach would enable a relaxation of our assumption of

independence between regressors and observables. On the other hand, our conditions

are potentially applicable beyond their irregular lattice context (in particular when

observation locations are not known even approximately), and further discussion of

the advantages and disadvantages of mixing conditions relative to ours can be found

in Robinson (2011). Another kind of condition that has been employed in the spatial

lattice context is based on "FKG inequalities" (see Newman, 1980), but it appears to

be very restrictive.

2. As also mentioned in the Introduction, more e¢ cient estimates than ours may be

available. For example, by comparison with our simple IV estimate, when the number

of available estimates exceeds the number of regressors a two-stage least squares (2SLS)

estimate will be more e¢ cient given disturbances that are both uncorrelated and
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homoscedastic. However, when either or both of these conditions are not met, 2SLS is

not guaranteed to beat even a simple IV estimate. This drawback can be overcome by

suitable GLS or generalized method-of-moment estimates, entailing either a parametric

or nonparametric modelling of disturbance correlation or heteroscedasticity, but this

would require further structure.

3. In the partly linear model (3.5), there may also be interest in estimating the nonpara-

metric function �(z). A simple estimate is

�̂(z) =
nX
i=1

�
Yi � �̂

0
X1i

�
K

�
z � Zi
h

�
=

nX
i=1

K

�
z � Zi
h

�
:

Under related conditions to ours, �̂(z) is likely to share the (simple, normally distrib-

uted) asymptotic properties of the infeasible estimate for which Yi��0X1i is replaced

by �(Zi) + Ui.

4. We have focussed on relatively simple models in this paper, but undoubtedly analo-

gous conditions to ours can be employed in establishing, in a similarly general spatial

context, asymptotic properties of estimates in more general parametric models (such

as nonlinear regression and simultaneous equation models) and semiparametric models

(such as those described in Robinson, 1988, Section 7).

Appendix 3.1: Proofs of Theorems A and B

Proof of Theorem A The proof modi�es one in Robinson and Hidalgo (1997). De�n-

ing rn = r = n�1=2
Pn

i=1X2iUi; by Assumption A2 it su¢ ces to show that r !d N (0;
) :

Now

r = n�1=2
1X
k=1

Wk"k;

whereWk =WkN =
Pn

i=1X2ibik: By Lemma A1, there is a sequence fN = Nng ; increasing
in n without bound, such that r � r(N) = op (1) ; where

r(N) = n�1=2
NX
k=1

Wk"k:

Let D = Dn = n�1
PN

k=1WkW
0
k. From the proof of Lemma A1,

lim
n!1

E

 
n�1

1X
k=N+1

kWkk2
!
= 0;

so from Assumption A4, D !p �. For any � 2 Rp such that k�k = 1; let cN = �0D� 1
2 r(N)

and wk = wkn = n�1=2�0D� 1
2Wk. Then cN =

PN
k=1 wk"k; where by Assumption A4

fwk"k; 1 � k � Ng is a martingale di¤erence sequence for each N � 1. It su¢ ces to show
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that conditional on fX2ig ;
PN

k=1 wk"k
d! N (0; 1) ; which follows from Theorem 2 of Scott

(1973) if, conditional on fX2ig ; as n!1;

E

 
NX
k=1

w2k"
2
k

�� "j ; j < k

!
!p 1; (3.9)

and for all � > 0;

E

(
NX
k=1

w2kE
�
"2k1 (jwk"kj > �)

�� fX2ig
�)

! 0: (3.10)

The left side of (3.9) is �0D� 1
2

�
1
n

PN
k=1WkW

0
k

�
D� 1

2� = 1; so (3.9) holds. The left side of

(3.10) is bounded by

E

(
NX
k=1

w2kE
�
"2k1 j"kj > �=�

�)
+ P

�
max
1�k�N

jwkj > �

�
� sup

1�k�N
E
�
"2k1 j"kj > �=�

�
+ P

�
max
1�k�N

jwkj > �

�
; (3.11)

for � > 0: By Assumption A3, the �rst term on the right can be made arbitrarily small by

choosing � small enough, so it su¢ ces to show that max1�k�N jwkj = op (1) : By Assump-

tions A2, A3 and A4,

max
1�k�N

jwkj � n�1=2



D� 1

2




 max
1�k�N







nX
i=1

X2ibik






 = op (1) :

Proof of Theorem B The proof modi�es ones of Robinson (1988), Fan and Li (1999).

We have

�̂ � � = S�1X2X1
(SX2� + SX2U ) ;

where SX2� involves the array f�i = � (Zi)g : We show that SX2X1
!p 	;

p
nSX2� !p 0;p

nSX2U !d N(0;
): With likewise �ti = �t (Zi) ; t = 1; 2; we have

SX2X1
= S�2�1 + S�2V1 + SV2�1 + SV2V1 ; SX2� = S�2� + SV2�; SX2U = S�2U + SV2U :

Applying the Cauchy inequality, i.e. E kSABk � (E kSAAkE kSBBk)1=2 ; and the proposi-
tions of the following appendix; the proof is completed by noting that S�2�1 !p 0 (Proposi-

tions B2 and B3), S�2V1 !p 0 (Proposition B4), SV2�1 !p 0 (Proposition B5), SV2V1 !p 	

(Proposition B6),
p
nS�2� !p 0 (Propositions B1 and B2),

p
nSV2� !p 0 (Proposition B7),p

nS�2U !p 0 (Proposition B8) and
p
nSV2U !d N(0;�) (Proposition B9).

Appendix 3.2: Propositions for proofs of Theorems A

and B
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In this and the following appendix, it is frequently the case that a particular result

requires an order bound for several quantities, but because these are often similarly handled

details are not given for all, in order to conserve on space.

De�ne, for 1 � i � n;

f̂i = f̂i(Zi) = (na
q)
�1

nX
j 6=i

Kij ;

and for a triangular array fAig, Ai = (naq)�1
Pn

j 6=iAjKij ; so that A�i = Aif̂i � Ai in the

de�nition of SAB :

Proposition B1 As n!1;
E (S��) = o

�
n�1=2

�
:

Proof. We have

E (S��) =
1

n3a2q

nX
i=1

nX
j 6=i

nX
k 6=i

E f(�i � �j) (�i � �k)KijKikg

=
1

n3a2q

24 nX
i;j

E
n
(�i � �j)2K2

ij

o
+

nX
i;j;k

E f(�i � �j) (�i � �k)KijKikg

35 :
The result follows from Lemmas B1, B2 in the following appendix, and Assumption B13.

Proposition B2 As n!1;

E


S�2�2

 = o

�
n�1=2

�
:

Proof. Similar to that of Proposition B1.

Proposition B3 As n!1;
E


S�1�1

 = o (1) :

Proof. Similar to that of Proposition B1, except that the result is weaker because milder
conditions are imposed on �1 than on �2 or �:

Proposition B4 As n!1;
S�2V1 !p 0:
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Proof. The left side is

n�1
nX
i=1

n
��2iV

0
1ifi + �

�
2iV

0
1i

�
f̂i � fi

�
� ��2iV

0
1i

o
: (3.12)

By Proposition B2, Lemmas B4 and B5, and the Cauchy inequality, the contributions from

the last two summands in (3.12) are op(1). Due to Assumptions B5, B7 and B10 for t = 1; 2;

E

 
1

n

nX
i=1

kVtik2 fi
2

!
� max

1�i�n

���
(t)ii ��� sup
z2Rq

f (z)
2
Z
j�t (z; z)j f (z) dz = O (1) : (3.13)

Proposition B2, (3.13) and the Cauchy inequality imply that the contribution from the �rst

summand in (3.12) is also op(1).

Proposition B5 As n!1;
S�1V2 !p 0:

Proof. Similar to that of Proposition B4.

Proposition B6 As n!1;
SV2V1 !p 	:

Proof. The left side is

n�1
nX
i=1

�
V2iV

0
1if̂

2
i � V2iV

0
1if̂i � V 2iV 01if̂i + V 2iV

0
1i

�
: (3.14)

For t = 1; 2;

n�1
nX
i=1

kVtik2 f̂2i = n�1
nX
i=1

kVtik2
�
f
2

i + 2f i

�
f̂i � f i

�
+
�
f̂i � f i

�2�
: (3.15)

Lemma B4, (3.13) and the Cauchy inequality imply that the left side of (3.15) is Op (1).

Hence with Lemma B5 and the Cauchy inequality, the contributions from the last three

summands in (3.14) are op(1). The contribution from the �rst summand in (3.14) is

n�1
nX
i=1

V2iV
0
1i

�
f
2

i + 2f i

�
f̂i � f i

�
+
�
f̂i � f i

�2�
:

The proof is completed by applying Assumption B5, Lemma B4, (3.13) and the Cauchy

inequality.

Proposition B7 As n!1;
SV2� = op

�
n�1=2

�
:
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Proof. The left side is

1

n

nX
i=1

n
V2i�

�
i f i + V2i�

�
i

�
f̂i � f i

�
� V 2i��i

o
: (3.16)

By Proposition B1, Lemmas B4 and B5, and the Cauchy inequality, the contribution from

the last two summands are op
�
n�1=2

�
. The squared norm of the contribution from the �rst

summand has expectation

n�2
nX
i=1



(2)
ii E

�
�2 (Zi; Zi) �

�2
i f

2

i

�
+ n�2

nX
i;j



(2)
ij E

�
�2 (Zi; Zj) �

�
i �
�
jfifj

�
: (3.17)

The �rst term in (3.17) is bounded by

max
1�i�n

���
(2)ii ���n�2 nX
i=1

E
�
�2 (Zi; Zi) �

�2
i f

2

i

�
= o

�
n�1

�
;

by repeating the proof of Proposition B1. The second term in (3.17) is

1

n4a2q
E

24 nX
i;j;k;l



(2)
ij �2 (Zi; Zj) (�i � �k) (�j � �l)KikKjlf ifj

+

nX
i;j;k

�
(�i � �k) (�j � �k)KikKjk + (�i � �k) (�j � �i)KikKji + (�i � �j) (�j � �k)KijKjk

�

�f ifj�2 (Zi; Zj)
�
� 1

n4a2q

nX
i;j



(2)
ij E

n
�2 (Zi; Zj) (�i � �j)2K2

ijf ifj

o
: (3.18)

Lemma B6 and Assumption B13 imply that the contribution from the �rst term in square

brackets is

o
�
n�1a2 + n�1=2a2min(�+1;�) + n�1=2a��2q

�
= o

�
n�1

�
:

The remaining contributions to (3.18) can likewise be shown to be o
�
n�1

�
.

Proposition B8 As n!1;
S�2U = op

�
n�1=2

�
:

Proof. Similar to that of Proposition B7.

Proposition B9 As n!1;

n1=2SV2U !d N (0;
) :

Proof. The left side is

n�1=2
nX
i=1

�
V2iUif̂

2
i � V2iU if̂i � V 2iUif̂i + V 2iU i

�
: (3.19)
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By Lemma B5, the contribution from the last summand is op (1) : The contribution from

the third summand in (3.19) is

n�1=2
nX
i=1

n
V 2iUif i + ViUi

�
f̂i � f i

�o
= op (1) ;

by Lemmas B4, B5 and B8 and the Cauchy inequality, and that from the second summand

in (3.19) can similarly be shown to be op (1). The contribution from the �rst summand in

(3.19) is

n�1=2
nX
i=1

V2iUi

�
f
2

i + 2f i

�
f̂i � f i

�
+
�
f̂i � f i

�2�
:

The proof is completed by applying Lemmas B4 and B10, and proceeding as in the proof of

Lemma A1 and Theorem A.

Appendix 3.3 : Technical Lemmas for proofs of Theo-

rems A and B

Lemma A1 There exists an increasing sequence N = Nn such that N ! 1 as n ! 1
and

lim
n!1

E


rn � r(N)

2 = 0:

Proof. By independence of the "k;

E


r � r(N)

2 =

1

n

1X
k=N+1

E kWkk2

=
1

n

1X
k=N+1

nX
i=1

nX
j=1

E (X 0
2iX2j) bikbjk

�
 
n max
1�i�n

1X
k=N+1

b2ik

!(
1

n

nX
i=1

�
E kX2ik2 + 1

�)2
:

The result follows from Assumptions A1, A2 and Lemma C1:

We repeatedly use the following consequences of De�nition 1:

sup
u2Rq

jK (u)j+
Z
kuk jK (u)j du+

Z
kuk2K2 (u) du < 1;

sup
kuk��=a

jK (u)j = O
�
a�
�
for all � > 0:

We also introduce the abbreviations

�(z1; z2) = � (z1)� � (z2) ; K (z1;z2) = K

�
z2 � z1
a

�
:
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Lemma B1 As n!1;

n�3E

8<:
nX
i;j

(�i � �j)2K2
ij

9=; = o(aq+2n�3=2) +O
�
n�1aq+2 + n�1a2�

�
:

Proof. The left side is

1

n3

Z
�(z1; z2)

2K (z1;z2)
2

nX
i;j

fij (z1; z2) dz1dz2

� 1

n

8<:
Z
�(z1; z2)

2K (z1;z2)
2 1

n2

nX
i;j

Fj:i (z2; z1) dz1dz2

+

Z
�(z1; z2)

2K (z1;z2)
2
f (z1) f (z2) dz1dz2

�
: (3.20)

Let

p (z; au) = � (z; z + au)
2
K2 (u)

1

n2

nX
i;j

Fj:i (z + au; z) :

The �rst integral in braces in (3.20) is

aq
Z
Rq

Z
Rq
p (z; au) dudz = aq

"Z
Rq

Z
J1(")

p (z; au) dudz +

Z
Rq

Z
J2(")

p (z; au) dudz

#
;

where

J1 (") = fu : kauk < "g ; J2 (") = fu : kauk � "g :

Let

B =
�
z : f (z) > 0

	
; m (z1; z2) = n�2f (z1)

�1
nX
i;j

jFj:i (z2; z1)j :

Note that BC � Rq, where BC is the complement of B; is a null set with respect to the

probability measure of Zi; Zj for all i 6= j: Then by Assumptions B6 and B9,Z
Rq

Z
J1(")

jp (z; au)j dudz

�
Z
B

Z
J1(")

� (z; z + au)
2
K2 (u)m (z; z + au) f (z) dudz

� a2

 
sup
z12B

sup
z22N (z1)

m (z1; z2)

!Z
G2 (z) f (z) dz

Z
kuk2K2 (u) du

= o
�
a2n�1=2

�
:
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Now Z
Rq

Z
J2(")

jp (z; au)j dudz

� 1

n2aq
sup

kauk�"
K2 (u)

Z
R2q

�(z1; z2)
2

nX
i;j

ffij (z1; z2) + fi (z1) fj (z2)g dz1dz2

= O
�
a2��q

�
;

because the double integral is

n�2
nX
i;j

n
E (�i � �j)2 + E

�
�2i
�
+ E

�
�2j
�
� 2E (�i)E (�j)

o
= O (1) ; (3.21)

by Assumption B9. Hence the �rst integral in braces in (3.20) is o
�
aq+2n�1=2) +O(a2�

�
:

The second integral in braces in (3.20) is

aq
Z
� (z; z + au)

2
K2 (u) f (z) f (z + au) dzdu = aq

 Z
Rq

Z
J1(")

+

Z
Rq

Z
J2(")

!
: (3.22)

The �rst integral on the right in (3.22) is bounded by

a2
�
sup
z2Rq

f (z)

�Z
kuk2K2 (u) du

Z
G2 (z) f (z) dz = O

�
a2
�
;

and the second integral is bounded by

a�q sup
kauk�"

K2 (u)

24 2
n

nX
i=1

E
�
�2i
�
+ 2

 
1

n

nX
i=1

E (�i)

!235 = O
�
a2��q

�
:

Hence the second integral in (3.20) is O
�
aq+2 + a2�

�
:

Lemma B2 As n!1;

n�3E

8<:
nX
i;j;k

(�i � �j) (�i � �k)KijKik

9=; = o
�
n�1=2a2q+2

�
+O

�
a� + a2fq+min(�;�+1)g

�
:

Proof. With the abbreviation s (z1; z2; z3) = �(z1; z2)�(z1; z3)K (z1; z2)K (z1; z3) ; the left
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side is

1

n3

nX
i;j;k

Z
s (z1; z2; z3) fijk (z1;z2; z3)

3

�
i=1
dzi

=

Z
s (z1; z2; z3)

1

n3

nX
i;j;k

Fjk:i(z2; z3; z1)
3

�
i=1
dzi

+

Z
s (z1; z2; z3)

1

n3

nX
i;j;k

fi (z1)Fk:j (z2; z3)
3

�
i=1
dzi

+

Z
s (z1; z2; z3)

1

n3

nX
i;j;k

�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	 3

�
i=1
dzi

+
(n� 1) (n� 2)

n2

Z
s (z1; z2; z3) f (z1) f (z2) f (z3)

3

�
i=1
dzi: (3.23)

With the further abbreviation p (z; u; v; a) = � (z; z + au)� (z; z + av)K (u)K (v) ; the �rst

integral in (3.23) is

a2q

n3

Z
p (z; u; v; a)

nX
i;j;k

Fjk:i (z + au; z + av; z) dzdudv

= a2q

 Z
Rq

Z
J1(")

+

Z
Rq

Z
J2(")

+

Z
Rq

Z
J3(")

+

Z
Rq

Z
J4(")

!
;

where

J1 (") = fu; v : kauk < "; kavk < "g ; J2 (") = fu; v : kauk < "; kavk � "g ;

J3 (") = fu; v : kauk � "; kavk < "g ; J4 (") = fu; v : kauk � "; kavk � "g :

Let B =
�
z1 : f (z1) > 0

	
and m (z1; z2; z3) = n�3f (z1)

�1Pn
i;j;k jFjk:i(z2; z3; z1)j. Then by

Assumption B6 the �rst integral is bounded by

a2
Z
B

sup
z2;z32N (z1)

m (z1; z2; z3)G
2 (z1)

Z
J1(")

jK (u)K (v)j kuk kvk f (z1) dudvdz1

� a2

 
sup
z12B

sup
z2;z32N (z1)

m (z1; z2; z3)

!Z
G2 (z1) f (z1) dz1

�Z
kuk jK (u)j du

�2
= o

�
a2n�1=2

�
:

By similar reasoning to that in (3.21) in the proof of Lemma B1,�����a2q
Z
Rq

Z
J2(")

�����
� n�3 sup

kavk�"
jK (v)j sup

u
jK (u)jZ

j�(z1; z2)�(z1; z3)j
nX
i;j;k

ffijk (z1; z2; z3) + fi (z1) fjk (z2; z3)g
3

�
i=1
dzi

= O
�
a�
�
:
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The same result holds for
���a2q RRq RJ3(")��� : Finally�����a2q

Z
Rq

Z
J4(")

�����
� n�3 sup

kauk�"
K (u)

2
Z
j�(z1; z2)�(z1; z3)j

nX
i;j;k

ffijk (z1; z2; z3) + fi (z1) fjk (z2; z3)g
3

�
i=1
dzi

= O
�
a2�
�
:

The �rst integral in (3.23) is thus o
�
a2q+2n�1=2) +O(a�

�
: The second integral in (3.23) is

n�3a2q
Z
p (z; u; v; a)

nX
i;j;k

fi (z)Fk:j (z + av; z + au) dudvdz

= a2q

"Z
Rq

Z
J1(")

+

Z
Rq

Z
J2(")

+

Z
Rq

Z
J3(")

+

Z
Rq

Z
J4(")

#
:

Now
1

n

nX
i;j;k

jfi (z1)Fk:j (z3; z2)j � f (z1)
nX
i;j

jFj:i (z3; z2)j :

Then proceeding as above, the second integral of (3.23) is o(n�1=2a2q+2) +O(a�): Because

nX
i;j;k

�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	

=
3n� 2
n2

nX
i;j;k

fi (z1) fj (z2) fk (z3)�
(n� 1) (n� 2)

n2

24 nX
i=1

nX
j=1

fi (z1) fi (z2) fj (z3)

+

nX
i;j

fi (z1) fj (z2) ffi (z3) + fj (z3)g

35 ;
proceeding as in the last part of the proof of Lemma B1, using Assumption B7, the third

integral of (3.23) is O
�
n�1a2q+2 + n�1a�

�
: Finally by Assumptions B7, B9 and B12, Lemma

5 of Robinson (1988) implies that the last integral of (3.23) is O
�
a2fq+min(�;�+1)g

�
:

Lemma B3 As n!1;

(i)

n�3
nX
i;j;k

E
�
�2 (Zi; Zi)

�
Kij � aqf i

� �
Kik � aqf i

�	
= o

�
n�1=2a2q

�
+O

�
a� + a2(q+�)

�
;

(ii)

n�2
nX
i;j

E
n
�2 (Zi; Zi)

�
Kij � aqf i

�2o
= O (aq) :
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Proof. Denoting

g (z1; z2; z3) = �2 (z1; z1)
�
K (z1; z2)� aqf (z1)

	�
K (z1; z3)� aqf (z1)

	
;

the left side of (i) can be written

1

n3

nX
i;j;k

Z
g (z1; z2; z3) fijk (z1; z2; z3)

3

�
i=1
dzi

=
1

n3

nX
i;j;k

Z
g (z1; z2; z3)

�
fijk (z1; z2; z3)� f (z1) f (z2) f (z3)

� 3

�
i=1
dzi

+
(n� 1) (n� 2)

n2

Z
g (z1; z2; z3) f (z1) f (z2) f (z3)

3

�
i=1
dzi: (3.24)

Writing L (z1; z2; z3) = �2 (z1; z1)K (z1; z2)K (z1; z3) ; the �rst integral in (3.24) is

1

n3

Z
L (z1; z2; z3)

nX
i;j;k

�
fijk (z1; z2; z3)� f (z1) f (z2) f (z3)

	 3

�
i=1
dzi

�aq 1
n3

Z
�2 (z1; z1)K (z1; z3) f (z1)

nX
i;j;k

�
fik (z1; z3)� f (z1) f (z3)

	
dz1dz3

�aq 1
n3

Z
�2 (z1; z1)K (z1; z2) f (z1)

nX
i;j;k

�
fij (z1; z2)� f (z1) f (z2)

	
dz1dz2:(3.25)

The �rst term is

1

n3

Z
L (z1; z2; z3)

nX
i;j;k

�
Fjk:i (z2; z3; z1) + fi (z1)Fk:j (z3; z2)

+
�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	� 3

�
i=1
dzi;

which, as in Lemma B2, is o
�
n�1=2a2q) +O(a�

�
: The last two terms in (3.25) are bounded

in absolute value by

2aq

n2

8<:
Z
�2 (z1; z1) f (z1) jK (z1; z2)j

nX
i;j

��fij (z1; z2)� f (z1) f (z2)�� dz1dz2
9=; ;

which, by Assumption B6, can be shown to be o
�
n�1=2a2q

�
+O

�
a�+q

�
: Finally by Lemma

4 of Robinson (1988) and Assumption B4, the second integral in (3.24) is O
�
a2(q+�)

�
:

The left side of (ii) is bounded by

n�2
Z
jg (z1; z2; z2)j

nX
i;j

jFj:i (z2; z1)j dz1dz2 +
Z
jg (z1; z2; z2)j f (z1) f (z2) dz1dz2:

To estimate the �rst integral complete the square and proceed as in Lemma B1. The second

integral is dominated by aq supz f(z)
R
�2 (z; z)K

2 (u) f (z) dudz = O (aq) :
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Lemma B4 As n!1;

n�1
nX
i=1

�
U2i + kV1ik

2
+ kV2ik2

��
f̂i � f i

�2
= op

�
n�

1
2

�
: (3.26)

Proof. By Assumption B4, the expectation of the last contribution to (3.26) is

E

(
1

n

nX
i=1



(2)
ii �2 (Zi; Zi)

�
f̂i � f i

�2)

� max
1�i�n

���
(2)ii ��� 1n
nX
i=1

E

��������2 (Zi; Zi)
0@ 1

naq

nX
j 6=i

Mij �
f i
n

1A2
�������

� C

n3

nX
i=1

E

8><>:j�2 (Zi; Zi)j
0@ 1

aq

nX
j 6=i

Mij

1A2

+ j�2 (Zi; Zi)j f
2

i

9>=>; :

where Mij = Kij � aqf i: By Assumption B7 the contribution from the second term in

brackets is O
�
n�2

�
: That from the �rst term is

C

n3a2q

nX
i;j;k

E fj�2 (Zi; Zi)jMijMikg+
C

n3a2q

nX
i;j

E
�
j�2 (Zi; Zi)jMij

2
	
:

Lemma B3 and Assumption B13 imply that

E

(
1

n

nX
i=1

kV2ik2
�
f̂i � f i

�2)
= o

�
n�1=2

�
+O

�
a��2q + a2(�+1) + n�1a�q

�
= o

�
n�1=2

�
:

The remainder of the proof is very similar.

Lemma B5 As n!1;

E

 
1

n

nX
i=1

U
2

i

!
= o

�
n�1=2

�
; E

 
1

n

nX
i=1



V 1i

2! = o (1) ; E

 
1

n

nX
i=1



V 2i

2! = o
�
n�1=2

�
:

Proof. The last expectation is

E

0@ 1

n3a2q

nX
i=1

nX
j 6=i

nX
k 6=i

V 02jV2kKijKik

1A =
1

n3a2q

nX
i;j;k



(2)
jk E (�2 (Zj ; Zk)KijKik)

+
1

n3a2q

X
i;j



(2)
jj E

�
�2 (Zj ; Zj)K

2
ij

�
: (3.27)
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Denoting l (z1; z2; z3) = �2 (z2; z3)K (z1; z2)K (z1; z3) ; the �rst term on the right is

1

n3a2q

Z
l (z1; z2; z3)

nX
i;j;k



(2)
jk Fjk:i (z2; z3; z1)

3

�
i=1
dzi

+
1

n3a2q

Z
l (z1; z2; z3)

nX
i;j;k



(2)
jk fi (z1)Fk:j(z3; z2)

3

�
i=1
dzi

+
1

n3a2q

Z
l (z1; z2; z3)

nX
i;j;k



(2)
jk

�
fi (z1) fj (z2) fk (z3)� f (z1) f (z2) f (z3)

	 3

�
i=1
dzi

+
1

n3a2q

nX
i;j;k



(2)
jk

Z
l (z1; z2; z3)

3

�
i=1

�
f (zi) dzi

	
: (3.28)

The last term in (3.28) is bounded in absolute value by

1

n3a2q

nX
i;j;k

���
(2)jk ��� Z j�2 (z2; z3)� �2 (z1; z1)j jK (z1; z2)K (z1; z3)j
3

�
i=1

�
f (zi) dzi

	
+

1

n3a2q

nX
i;j;k

���
(2)jk ��� Z j�2 (z1; z1)K (z1; z2)K (z1; z3)j
3

�
i=1

�
f (zi) dzi

	
: (3.29)

Applying the last part of the proof of Lemma B1, Assumptions B7 and B10 imply that the

integral of the �rst term in (3.29) is O
�
a2q+1 + a�

�
: Hence by Assumptions B5 and B13,

the �rst term of (3.29) is o
�
n�1=2

�
: The second term in (3.29) is bounded by

1

n3

nX
i;j;k

���
(2)jk ��� Z jK (u)K (v)j j�2 (z; z)j f (z) f (z + au) f (z + av) dudvdz

� 1

n2

nX
i;j

���
(2)jk ��� � sup
z2Rq

f (z)

�2�Z
jK (u)j du

�2 Z
j�2 (z; z)j f (z) dz = o

�
n�1=2

�
by Assumptions B5 and B7. For other terms in (3.28), apply the proof of Lemma B2.

Altogether it is found that the �rst term of (3.27) is o(n�1=2) +O(a��2q):

The second term of (3.27) is bounded by

max
1�i�n

���
(2)ii ��� 1

n3a2q

nX
i;j

E
���2 (Zj ; Zj)K2

ij

��
� C

n3a2q

nX
i;j

�
E j�2 (Zj ; Zj)� �2 (Zi; Zi)jK2

ij + E
���2 (Zi; Zi)K2

ij

��	 : (3.30)

Applying the proof of Lemma B1, (3.30) is O
�
n�3=2a�q

�
+O

�
n�1a�q + n�1a2��2q

�
: This

proves the last result. The others can be shown similarly.
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Lemma B6 As n!1;

1

n3

nX
i;j;k;l



(2)
ij E

�
�2 (Zi; Zj) (�i � �k) (�j � �l)KikKjlf if j

	
= o(a2+2q + n1=2a� + n1=2a2fq+min(�+1;�)g):

Proof. Writing u (z1; z2; z3; z4) = �2 (z1; z2)�(z1; z3)�(z2; z4)K (z1; z3)K (z2; z4) ; the left

side is

n�3
Z
u (z1; z2; z3; z4) f (z1) f (z2)

nX
i;j;k;l



(2)
ij Fij:k:l (z1; z2; z3; z4)

4

�
i=1
dzi

+n�3
Z
u (z1; z2; z3; z4) f (z1) f (z2)

nX
i;j;k;l



(2)
ij fij (z1; z2)

�
fk (z3) fl (z4)� f (z3) f (z4)

	 4

�
i=1
dzi

+
1

n3

nX
i;j;k;l



(2)
ij

Z
u (z1; z2; z3; z4) fij (z1; z2)

�
4

�
i=1
f (zi) dzi

�
: (3.31)

As in Lemma B2, the �rst integral is o
�
a2+2q) + o(n1=2a�

�
. Similarly, the second term in

(3.31) can be shown to be of no greater order. The integral of the last term of (3.31) is

bounded in absolute value by�
sup
z1;z2

fij (z1; z2)

�Z
R2q

����Z
Rq
�(z1; z3)K (z1; z3) f (z3) dz3

��������Z
Rq
�(z2; z4)K (z2; z4) f (z4) dz4

�����2 (z1; z2) f (z1) f (z2) dz1dz2
= O(a2fq+min(�+1;�)g)

by Lemma 4 of Robinson (1988), Assumptions B7 and the Cauchy inequality. Thus the last

term in (3.31) is o(n1=2a2fq+min(�+1;�)g) by Assumption B5.

Lemma B7 For distinct i; j; k and l; uniformly in 1 � i; j; k; l � n; n � 1;

E
����2 (Zk; Zl)KikKjlf if j

��+ ���2 (Zi; Zk)KikKijf if j
��+ ���2 (Zk; Zk)KikKjkf if j

��
+
���2 (Zj ; Zk)KijKjkf if j

��+ ����2 (Zj ; Zk)KijKikf
2

i

���o
= O

�
a2q
�
;

and

E
n���2 (Zi; Zj)K2

ijf if j
��+ ����2 (Zj ; Zj)K2

ijf
2

i

���o = O (aq) :

Proof. Writing

lij:kl (z1; z2; z3; z4) = K (z1; z3)K (z2; z4) f (z1) f (z2) fijkl (z1; z2; z3; z4) ;
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E
���2 (Zk; Zl)KikKjlf if j

��
=

Z
j�2 (z3; z4) lij:kl (z1; z2; z3; z4)j

4

�
i=1
dzi

�
Z
fj�2 (z3; z4)� �2 (z1; z2)j+ j�2 (z1; z2)jg jlij:kl (z1; z2; z3; z4)j

4

�
i=1
dzi: (3.32)

The second term in (3.32) is bounded by

a2q sup fijkl (z1; z2; z3; z4)

Z
j�2 (z1; z2)j f (z1) f (z2) dz1dz2

�Z
jK (u)j du

�2
:

By Assumption B7, it is uniformly O
�
a2q
�
: Writing

p (z1; z2; u; v; a) = j�2 (z1 + au; z2 + av)� �2 (z1; z2)j jK (u)K (v)j ;

the �rst term in (3.32) is

a2q
Z
p (z1; z2; u; v; a) f (z1) f (z2) fijkl (z1; z2; z1 + au; z2 + av) dz1dz2dudv

=

 Z Z
J1("=2)

+

Z Z
J2("=2)

+

Z Z
J3("=2)

+

Z Z
J4("=2)

!
; (3.33)

where Ji (") ; i = 1; :::; 4 are de�ned as in the proof of Lemma B2. By Assumptions B7 and

B10, the �rst integral is uniformly O (a) : SinceZ Z
J2("=2)

� sup
kavk�"=2

jK (v)j sup
u
jK (u)j a�2q

n
sup f (z)

2 E j�2 (Zi; Zj)j

+sup fij (z1; z2)

Z
j�2 (z1; z2)j f (z1) f (z2) dz1dz2

�
;

Assumption B7 and B10 imply that
R R

J2(")
is uniformly O

�
n1=2a��2q

�
: Similarly for the

other terms in (3.33). The remaining terms of the lemma can be dealt with similarly.

Lemma B8 As n!1;

nX
i=1

V 2iUif i = op

�
n1=2

�
;

nX
i=1

V2iU if i = op

�
n1=2

�
:

Proof. The expectation of the squared norm of the �rst sum is

E







 1

naq

nX
i;j

UiV2jKijf i








2

� 1

n2a2q
max
1�i�n



(U)
ii E

0@ nX
i=1

nX
j 6=i

nX
k 6=i

V 02jV2kKijKikf
2

i

1A
+

1

n2a2q

nX
i;j

nX
k 6=i

nX
l 6=j



(U)
ij 


(2)
kl E

�
�2 (Zk; Zl)KikKjlf if j

�
: (3.34)
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The �rst term in (3.34) is bounded in absolute value by

C

n2a2q

8<: max
1�j�n

���
(2)jj ��� nX
i;j

E
����2 (Zj ; Zj)K2

ijf
2

i

���+ nX
i;j;k

���
(2)jk ���E ����2 (Zj ; Zk)KijKikf
2

i

���
9=; :

(3.35)

By Lemma B7 the double sum in (3.35) is O
�
n2aq

�
and, with Assumption B5, the the triple

sum in (3.35) is o
�
n5=2a2q

�
. Hence the �rst term in (3.34) is O (a�q) + o(n1=2) = o(n): The

second term in (3.34) is bounded in absolute value by

1

n2a2q

8<:
nX

i;j;k;l

���
(U)ij 

(2)
kl

���E ���2 (Zk; Zl)KikKjlf if j
��

+
nX
i;j;k

���
(U)ij 

(2)
ik

���E ���2 (Zi; Zk)KikKijf if j
��

+

nX
i;j;k

���
(U)ij 

(2)
kk

���E ���2 (Zk; Zk)KikKjkf if j
��+ nX

i;j

���
(U)ij 

(2)
ij

���E ���2 (Zi; Zj)K2
ijf if j

��
+

nX
i;j;k

���
(U)ij 

(2)
jk

���E ���2 (Zj ; Zk)KijKjkf if j
��9=; :

By Lemma B7 and Assumption B5, the second term in (3.34) is o
�
n+ n1=2 + n�1=2a�q

�
=

o(n): This proves the �rst result. The other can be shown similarly.

Lemma B9 As n!1;

1

n3
E

nX
i;j;k;l



(2)
ij 


(U)
ij �2 (Zi; Zj)

�
Kik � aqf i

� �
Kjl � aqf j

�
f if j

= o
�
a2q + n1=2a� + n1=2a2(�+q)

�
:

Proof. Writing v(z1; z2) = K(z1; z2)� aqf (z1) and

w (z1; z2; z3; z4) = n�3
nX

i;j;k;l



(2)
ij 


(U)
ij

�
fijkl (z1; z2; z3; z4)� fij (z1; z2) f (z3) f (z4)

	
;

the left side isZ
�2 (z1; z2) v(z1; z3)v(z2; z4)f (z1) f (z2)w (z1; z2; z3; z4)

4

�
i=1
dzi

+
1

n3

nX
i;j;k;l



(2)
ij 


(U)
ij

Z
�2 (z1; z2) v(z1; z3)v(z2; z4)fij (z1; z2)

4

�
i=1

�
f (zi) dzi

	
: (3.36)
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The �rst term in (3.36) isZ
�2 (z1; z2)K(z1; z3)v(z2; z4)w (z1; z2; z3; z4) f (z1) f (z2)

4

�
i=1
dzi

�aq
Z
�2 (z1; z2)K(z2; z4)w (z1; z2; z3; z4) f

2
(z1) f (z2)

4

�
i=1
dzi; (3.37)

because Z
R2q

�
fijkl (z1; z2; z3; z4)� fij (z1; z2) f (z3) f (z4)

	
dz3dz4 � 0:

A leading term in (3.37) is

Z
�2 (z1; z2)K (z1; z3)K (z2; z4) f (z1) f (z2)

24 1
n3

nX
i;j;k;l



(2)
ij 


(U)
ij Fij:k:l (z1; z2; z3; z4)

+
1

n3

nX
i;j;k;l



(2)
ij 


(U)
ij fij (z1; z2)

�
fk (z3) fl (z4)� f (z3) f (z4)

	35 4

�
i=1
dzi: (3.38)

Similar to the proof of Lemma B2, the integral of the �rst sum in (3.38) can be shown to

be o
�
a2q + n1=2a�

�
: Proceeding as in the proofs of Lemmas B6 and B3, remaining terms

can be dealt with such that the �rst term in (3.36) is o
�
a2q + n1=2a�

�
: Proceeding as in the

proof of Lemma B6, the second term in (3.36) is o
�
n1=2a2(�+q)

�
by Assumptions B5 and

B7 and Lemma 4 of Robinson (1988).

Lemma B10 As n!1;

E







nX
i=1

V2iUi

�
f̂i � f i

�
f i







2

= o (n) :

Proof. The left side is

E
nX
i=1



(2)
ii 


(U)
ii �2 (Zi; Zi)

�
f̂i � f i

�2
f
2

i

+E
nX
i;j



(2)
ij 


(U)
ij �2 (Zi; Zj)

�
f̂i � f i

��
f̂j � f j

�
f if j : (3.39)

The �rst term in (3.39) is bounded by

max
1�i�n

���
(2)ii ��� max
1�i�n



(U)
ii sup

z2Rq
f (z)

2
nX
i=1

E
�����2 (Zi; Zi)�f̂i � f i�2���� = o(n1=2)
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by the proof of Lemma B4 and Assumptions B1, B5 and B7. The second term in (3.39) is

1

n2a2q
E

nX
i;j

nX
k 6=i

nX
l 6=j



(2)
ij 


(U)
ij �2 (Zi; Zj)MikMjlf if j

� 1

n2aq
E

nX
i;j

nX
l 6=j



(2)
ij 


(U)
ij �2 (Zi; Zj)Mjlf

2

i f j

� 1

n2aq
E

nX
i;j

nX
k 6=i



(2)
ij 


(U)
ij �2 (Zi; Zj)Mikf if

2

j

+
1

n2
E

nX
i;j



(2)
ij 


(U)
ij �2 (Zi; Zj) f

2

i f
2

j : (3.40)

By Assumptions B5 and B7, the last term in (3.40) is o
�
n�1=2

�
: The absolute value of the

second term in (3.40) is bounded by

1

n2aq

nX
i;j

nX
l 6=j

���
(2)ij 
(U)ij

��� nE ����2 (Zi; Zj)Kjlf
2

i f j

���+ aqE ����2 (Zi; Zj) f2i f2j ���o : (3.41)

By Assumptions B7 and B10, the last expectation is uniformly bounded, whereas the �rst

is bounded by

aq sup fijl (z1; z2; z3) sup f (z)

Z
j�2 (z1; z2)j f (z1) f (z2) jK (u)j dudz1dz2

which, by Assumption B7, is uniformly O (aq) : Thus by Assumption B5, (3.41) is o(n1=2).

The same conclusion can be drawn for the third term in (3.40). The �rst term in (3.40) is

1

n2a2q
E

nX
i;j;k;l



(2)
ij 


(U)
ij �2 (Zi; Zj)MikMjlf if j +

1

n2a2q
E

nX
i;j



(2)
ij 


(U)
ij �2 (Zi; Zj)MijMjif if j

+
1

n2a2q
E

nX
i;j;k



(2)
ij 


(U)
ij �2 (Zi; Zj) (MikMji +MikMjk +MijMjk) f if j :

Lemma B9 and Assumption B13 imply that the �rst term is o (n). Other terms can likewise

be shown to be o(n).

Lemma C1 For all 1 � i � n; n � 1; let cijn � 0 for all j � 1 and
P1

j=1 cijn < C . Then

for any K <1; there exists a sequence fNng increasing in n without bound such that

nK max
1�i�n

1X
j=Nn+1

cijn ! 0 as n!1:

Proof. Fix n � 1 and 1 � i � n: There exists Min such that
P1

j=m+1 cijn < n�K�1 for all

m �Min: LetMn = max1�i�nMin. Then for each n � 1; max1�i�n
P1

j=m+1 cijn < n�K�1

for all m �Mn: Put Nn = max (Nn�1;Mn)+1: Then nK max1�i�n
P1

j=Nn+1
cijn < n�1 !

0 as n!1:
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Appendix 4: Proof of Theorem C

Each element of

E
�
�n � e�3� = X

u2L�
Sn (u) f1� w (u;m)g

is bounded in absolute value by that ofX
u2L�

Gu f1� w (u;m)g :

Then proceed as Robinson (2007) and conclude that

E
�
�n � e�3� = O

 
kq

rX
k=1

m�q
k

X
u2Zr

jukjq Gu

!
:

The variance of the (t; s)-th element of e�3 is, by Assumption C4,
1

n2

nX
i=1

nX
j=1

nX
k=1

nX
l=1

E (xtixtkUiUk)E (xsjxslUjUl)w (si � sj ;m)w (sk � sl;m)

+
1

n2

nX
i=1

nX
j=1

nX
k=1

nX
l=1

E (xtixslUiUl)E (xsjxtkUjUk)w (si � sj ;m)w (sk � sl;m) +O
�
n�1

�
:

The �rst term has modulus�����n�2 X
u2L�

X
v2L�

w (u;m)w (v;m)
X
u12L�

S1rs;n (u; v; u1)

�����
� n�1

X
u2L�

X
v2L�

jw (u;m)w (v;m)j
X
u12L�


u1;u1+v�u

� n�1
X
u12L�

X
v12L��


u1;u1�v1

X
u2L�

jw (u;m)j

� cn�1
dY
k=1

mk

X
u2Zr

X
v2Zr


u;v:

The second term can be handled similarly.
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Table 1

Linear regression (3.1): Empirical sizes of tests with size �

�X = 0:2; �U = 0:3 �X = 0:4; �U = 0:5

n m � = 0:01 � = 0:05 � = 0:10 m � = 0:01 � = 0:05 � = 0:10

C :021 :058 :125 C :037 :119 :185

H :027 :063 :138 H :049 :123 :196

2 :026 :058 :125 6 :029 :088 :154

100 4 :024 :052 :117 8 :029 :085 :152

6 :022 :050 :115 10 :029 :084 :152

8 :023 :052 :119 12 :027 :082 :153

10 :024 0:56 :122 14 :027 :085 :151

C :013 :052 :106 C :025 :084 :159

H :017 :056 :114 H :028 :095 :163

3 :016 :054 :109 6 :023 :069 :130

169 6 :013 :050 :104 9 :019 :067 :121

9 :013 :049 :115 12 :019 :066 :120

12 :014 :051 :118 15 :020 :067 :125

15 :016 :061 :120 18 :020 :070 :131

Table 2

Linear regression (3.1): Empirical powers of tests with � = 0:8 and size �

n m � = 0:01 � = 0:05 � = 0:10 n m � = 0:01 � = 0:05 � = 0:10

C :605 :827 :902 C :869 :962 :980

H :620 :838 :902 H :877 :966 :983

2 :618 :838 :901 3 :879 :964 :983

4 :628 :838 :897 6 :876 :964 :981

100 6 :637 :834 :900 169 9 :881 :963 :982

8 :641 :834 :897 12 :881 :969 :983

10 :641 :837 :900 15 :889 :970 :982

12 :655 :841 :904 18 :893 :971 :982
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Table 3

Partly linear regression (3.5): Empirical sizes of tests with size � using k2

�X = 0:2; �U = 0:3

� = 0:01 � = 0:05 � = 0:10

n m=a 1:0 1:2 1:4 1:0 1:2 1:4 1:0 1:2 1:4

C :012 :011 :009 :057 :048 :047 :111 :094 :087

H :013 :015 :015 :056 :053 :064 :109 :109 :107

2 :015 :014 :014 :055 :050 :061 :109 :106 :106

100 4 :013 :016 :015 :053 :051 :060 :107 :106 :105

6 :013 :016 :015 :053 :052 :060 :107 :110 :102

8 :014 :016 :016 :058 :054 :063 :109 :110 :108

12 :014 :015 :018 :061 :059 :067 :114 :113 :119

C :008 :004 :003 :052 :041 :030 :106 :090 :081

H :009 :006 :005 :045 :040 :039 :096 :088 :087

3 :009 :006 :005 :045 :043 :040 :094 :088 :085

169 6 :010 :007 :008 :051 :043 :044 :091 :083 :083

9 :012 :011 :009 :051 :046 :044 :087 :083 :084

12 :014 :012 :011 :053 :050 :047 :093 :087 :089

15 :013 :012 :011 :057 :051 :048 :103 :095 :090

�X = 0:4; �U = 0:5

� = 0:01 � = 0:05 � = 0:10

n m=a 1:0 1:2 1:4 1:0 1:2 1:4 1:0 1:2 1:4

C :021 :018 :016 :069 :064 :063 :127 :123 :117

H :017 :019 :027 :076 :071 :073 :133 :143 :135

6 :014 :014 :024 :066 :065 :070 :116 :125 :119

100 8 :013 :014 :022 :069 :068 :072 :117 :124 :120

10 :014 :017 :024 :070 :067 :077 :121 :126 :127

12 :016 :020 :026 :076 :077 :081 :124 :128 :128

14 :018 :025 :029 :077 :084 :088 :127 :133 :134

C :011 :006 :004 :065 :049 :050 :124 :098 :085

H :010 :009 :010 :056 :054 :059 :104 :100 :102

6 :010 :007 :009 :053 :053 :053 :099 :097 :099

169 9 :010 :009 :010 :056 :052 :055 :098 :095 :091

12 :010 :013 :011 :056 :052 :054 :095 :090 :091

15 :015 :016 :012 :056 :055 :053 :102 :098 :095

18 :016 :018 :014 :061 :055 :055 :109 :109 :104
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Table 4

Partly linear regression (3.5): Empirical sizes of tests with size � using k4

�X = 0:2; �U = 0:3

� = 0:01 � = 0:05 � = 0:10

n m=a 1:4 1:6 1:8 1:4 1:6 1:8 1:4 1:6 1:8

C :015 :011 :010 :065 :055 :051 :126 :109 :101

H :015 :016 :016 :066 :057 :065 :116 :117 :113

2 :014 :015 :015 :063 :054 :058 :114 :113 :112

100 4 :013 :017 :016 :063 :051 :058 :112 :114 :112

6 :013 :016 :016 :066 :051 :055 :113 :116 :118

8 :013 :016 :018 :067 :058 :060 :120 :115 :117

12 :016 :018 :019 :070 :070 :065 :125 :120 :118

C :015 :009 :005 :060 :050 :037 :119 :098 :090

H :011 :010 :007 :051 :044 :042 :097 :097 :099

3 :010 :011 :010 :050 :045 :045 :099 :091 :093

169 6 :014 :013 :010 :055 :047 :049 :096 :094 :090

9 :014 :014 :012 :055 :048 :054 :102 :091 :088

12 :015 :015 :012 :056 :055 :057 :106 :094 :092

15 :017 :015 :012 :057 :056 :057 :109 :010 :102

�X = 0:4; �U = 0:5:

� = 0:01 � = 0:05 � = 0:10

n m=a 1:4 1:6 1:8 1:4 1:6 1:8 1:4 1:6 1:8

C :024 :018 :020 :084 :068 :067 :154 :138 :134

H :017 :020 :020 :074 :078 :080 :133 :145 :149

6 :017 :014 :020 :068 :073 :072 :122 :133 :131

100 8 :015 :013 :020 :071 :074 :076 :124 :132 :132

10 :016 :014 :023 :079 :076 :081 :131 :133 :135

12 :020 :018 :024 :081 :078 :082 :141 :135 :139

14 :022 :022 :027 :081 :085 :091 :146 :140 :143

C :016 :010 :008 :074 :058 :054 :133 :114 :099

H :012 :014 :012 :057 :056 :062 :111 :107 :111

6 :011 :012 :010 :055 :052 :056 :109 :103 :104

169 9 :011 :012 :011 :058 :054 :056 :107 :098 :102

12 :011 :013 :015 :064 :057 :059 :104 :099 :103

15 :015 :017 :017 :062 :062 :060 :109 :105 :110

18 :016 :018 :018 :063 :065 :063 :117 :119 :113
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Table 5

Partly linear regression (3.5): Empirical powers of tests

with � = 0:7 using k2, k4 at level �:

k2

� = 0:01 � = 0:05 � = 0:10

n m=a 1:0 1:2 1:4 1:0 1:2 1:4 1:0 1:2 1:4

C :536 :521 :485 :760 :744 :728 :830 :826 :826

H :519 :527 :535 :743 :744 :744 :817 :831 :842

2 :515 :531 :534 :739 :750 :750 :817 :834 :846

100 4 :511 :534 :537 :741 :752 :751 :818 :831 :844

6 :511 :543 :541 :743 :757 :761 :819 :831 :845

8 :521 :543 :556 :745 :757 :762 :823 :829 :841

12 :530 :547 :559 :744 :754 :767 :827 :835 :844

C :810 :794 :788 :929 :929 :918 :962 :960 :958

H :775 :795 :801 :917 :923 :928 :950 :957 :964

3 :778 :796 :804 :914 :925 :927 :951 :956 :961

169 6 :778 :798 :804 :916 :925 :926 :947 :956 :963

9 :777 :807 :810 :910 :920 :927 :949 :958 :958

12 :782 :808 :816 :913 :922 :929 :949 :958 :959

15 :790 :815 :823 :914 :922 :927 :946 :959 :958

k4

� = 0:01 � = 0:05 � = 0:10

n m=a 1:4 1:6 1:8 1:4 1:6 1:8 1:4 1:6 1:8

C :546 :523 :499 :753 :737 :730 :825 :814 :812

H :508 :517 :523 :723 :737 :738 :797 :813 :820

2 :503 :519 :524 :723 :736 :743 :797 :812 :821

100 4 :508 :519 :523 :721 :735 :740 :796 :810 :821

6 :501 :518 :535 :724 :735 :743 :799 :811 :821

8 :508 :529 :538 :723 :742 :745 :802 :812 :823

12 :518 :536 :548 :725 :743 :747 :804 :817 :827

C :805 :791 :787 :924 :925 :918 :955 :956 :955

H :759 :774 :791 :903 :916 :918 :943 :952 :955

3 :759 :773 :793 :903 :919 :922 :945 :952 :955

169 6 :766 :774 :796 :902 :916 :923 :944 :952 :953

9 :760 :779 :798 :897 :914 :922 :946 :949 :956

12 :764 :784 :805 :900 :913 :921 :945 :950 :956

15 :767 :792 :804 :902 :914 :924 :943 :951 :956
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Table 6: Y = Proportion of irrigated land (IR)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=2 a=2.5 a=1.4 a=1.9 a=1.7 a=2.2 a=1.4 a=1.9
NL . 72 . 37 . 95 .96 . 85 . 90 . 80 . 81 . 76 .78

Ý. 21Þ Ý. 63Þ Ý. 18Þ Ý. 18Þ Ý. 16Þ Ý. 17Þ Ý. 41Þ Ý. 42Þ Ý. 40Þ Ý. 41Þ
m=2 Ý. 23Þ Ý. 58Þ Ý. 22Þ Ý. 22Þ Ý. 22Þ Ý. 22Þ Ý. 43Þ Ý. 44Þ Ý. 42Þ Ý. 42Þ
m=4 Ý. 25Þ Ý. 69Þ Ý. 24Þ Ý. 24Þ Ý. 24Þ Ý. 24Þ Ý. 52Þ Ý. 53Þ Ý. 51Þ Ý. 52Þ
m=6 Ý. 27Þ Ý. 73Þ Ý. 25Þ Ý. 25Þ Ý. 25Þ Ý. 25Þ Ý. 54Þ Ý. 55Þ Ý. 53Þ Ý. 54Þ
NL2 ?.71 ?. 29 ?. 91 ?. 92 ?. 83 ?.87 ?.70 ?. 69 ?. 71 ?. 70

Ý. 19Þ Ý. 61Þ Ý. 17Þ Ý. 17Þ Ý. 16Þ Ý. 16Þ Ý. 41Þ Ý. 42Þ Ý. 40Þ Ý. 41Þ
m=2 Ý. 20Þ Ý. 60Þ Ý. 20Þ Ý. 20Þ Ý. 19Þ Ý. 19Þ Ý. 45Þ Ý. 46Þ Ý. 43Þ Ý. 44Þ
m=4 Ý. 23Þ Ý. 74Þ Ý. 21Þ Ý. 21Þ Ý. 21Þ Ý. 21Þ Ý. 56Þ Ý. 58Þ Ý. 53Þ Ý. 55Þ
m=6 Ý. 24Þ Ý. 79Þ Ý. 22Þ Ý. 22Þ Ý. 21Þ Ý. 21Þ Ý. 58Þ Ý. 60Þ Ý. 54Þ Ý. 57Þ

DBC×10?3 ?1.62 ?1. 90 ?1.53 ?1. 40 ?2.02 ?1.77 ?1. 87 ?1. 80 ?2. 07 ?1. 94
Ý. 66Þ Ý. 77Þ Ý. 63Þ Ý. 64Þ Ý. 57Þ Ý. 60Þ Ý. 70Þ Ý. 73Þ Ý. 62Þ Ý. 67Þ

m=2 Ý. 74Þ Ý. 77Þ Ý. 72Þ Ý. 73Þ Ý. 70Þ Ý. 70Þ Ý. 68Þ Ý. 70Þ Ý. 68Þ Ý. 68Þ
m=4 Ý. 85Þ Ý. 87Þ Ý. 82Þ Ý. 84Þ Ý. 80Þ Ý. 80Þ Ý. 77Þ Ý. 78Þ Ý. 77Þ Ý. 77Þ
m=6 Ý. 83Þ Ý. 82Þ Ý. 80Þ Ý. 83Þ Ý. 75Þ Ý. 75Þ Ý. 72Þ Ý. 74Þ Ý. 70Þ Ý. 71Þ

CD×10?1 . 41 . 38 ?. 60 ?. 65 ?. 39 ?.49 ?.69 ?. 80 ?. 43 ?. 60
Ý. 57Þ Ý. 72Þ Ý. 51Þ Ý. 50Þ Ý. 54Þ Ý. 52Þ Ý. 55Þ Ý. 55Þ Ý. 58Þ Ý. 56Þ

m=2 Ý. 56Þ Ý. 63Þ Ý. 54Þ Ý. 54Þ Ý. 51Þ Ý. 52Þ Ý. 56Þ Ý. 58Þ Ý. 53Þ Ý. 55Þ
m=4 Ý. 52Þ Ý. 58Þ Ý. 59Þ Ý. 60Þ Ý. 55Þ Ý. 57Þ Ý. 64Þ Ý. 67Þ Ý. 58Þ Ý. 62Þ
m=6 Ý. 48Þ Ý. 53Þ Ý. 63Þ Ý. 64Þ Ý. 57Þ Ý. 60Þ Ý. 69Þ Ý. 72Þ Ý. 59Þ Ý. 66Þ
BSD ?.16 ?. 21 ?. 13 ?. 13 ?. 11 ?.12 ?.15 ?. 17 ?. 12 ?. 14

Ý. 05Þ Ý. 07Þ Ý. 04Þ Ý. 05Þ Ý. 04Þ Ý. 04Þ Ý. 06Þ Ý. 06Þ Ý. 05Þ Ý. 05Þ
m=2 Ý. 04Þ Ý. 06Þ Ý. 04Þ Ý. 04Þ Ý. 03Þ Ý. 04Þ Ý. 06Þ Ý. 06Þ Ý. 05Þ Ý. 05Þ
m=4 Ý. 05Þ Ý. 09Þ Ý. 04Þ Ý. 04Þ Ý. 04Þ Ý. 04Þ Ý. 07Þ Ý. 08Þ Ý. 06Þ Ý. 07Þ
m=6 Ý. 06Þ Ý. 10Þ Ý. 05Þ Ý. 05Þ Ý. 04Þ Ý. 04Þ Ý. 08Þ Ý. 09Þ Ý. 06Þ Ý. 07Þ

RSD×10?1 . 14 . 25 ?. 44 ?. 49 ?. 23 ?.33 ?.37 ?. 43 ?. 20 ?. 31
Ý. 48Þ Ý. 57Þ Ý. 44Þ Ý. 44Þ Ý. 42Þ Ý. 43Þ Ý. 46Þ Ý. 46Þ Ý. 46Þ Ý. 45Þ

m=2 Ý. 51Þ Ý. 60Þ Ý. 51Þ Ý. 52Þ Ý. 47Þ Ý. 49Þ Ý. 53Þ Ý. 54Þ Ý. 53Þ Ý. 52Þ
m=4 Ý. 40Þ Ý. 55Þ Ý. 56Þ Ý. 47Þ Ý. 42Þ Ý. 44Þ Ý. 50Þ Ý. 50Þ Ý. 51Þ Ý. 49Þ
m=6 Ý. 34Þ Ý. 51Þ Ý. 43Þ Ý. 44Þ Ý. 40Þ Ý. 41Þ Ý. 47Þ Ý. 48Þ Ý. 50Þ Ý. 47Þ

ASD×10?1 . 62 . 54 . 81 .79 . 84 . 83 . 75 . 71 . 82 .78
Ý. 35Þ Ý. 38Þ Ý. 35Þ Ý. 35Þ Ý. 33Þ Ý. 34Þ Ý. 36Þ Ý. 37Þ Ý. 34Þ Ý. 35Þ

m=2 Ý. 35Þ Ý. 36Þ Ý. 38Þ Ý. 38Þ Ý. 38Þ Ý. 38Þ Ý. 37Þ Ý. 38Þ Ý. 37Þ Ý. 37Þ
m=4 Ý. 37Þ Ý. 37Þ Ý. 41Þ Ý. 42Þ Ý. 39Þ Ý. 40Þ Ý. 39Þ Ý. 40Þ Ý. 38Þ Ý. 39Þ
m=6 Ý. 34Þ Ý. 34Þ Ý. 38Þ Ý. 39Þ Ý. 36Þ Ý. 36Þ Ý. 36Þ Ý. 37Þ Ý. 35Þ Ý. 35Þ

Slope estimates are in bold; SEs are in parentheses; with non­robust ones in the top
row, and robust ones below computed using truncation vectors Ým, mÞ where m = 2, 4
and 6 respectively; columns under Partial LS and Partial IV refer to choices of
bandwidth a and kernel Ýk2 , k4 Þ.
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Table 7: Y = Fertilizer use (FU)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=1.8 a=2.3 a=1.6 a=2.2 a=1.4 a=1.9 a=1.5 a=2.0
NL 115.90 30.51 115.58 119.07 111.94 114.15 104.47 88. 28 117. 28 100.84

Ý42.28Þ Ý135. 11Þ Ý31.37Þ Ý32.69Þ Ý28.48Þ Ý30.80Þ Ý75.57Þ Ý79.25Þ Ý71.92Þ Ý76.32Þ
m=2 Ý36.40Þ Ý118. 17Þ Ý32.40Þ Ý33.28Þ Ý32.63Þ Ý32.20Þ Ý74.91Þ Ý74.19Þ Ý78.04Þ Ý74.43Þ
m=4 Ý40.00Þ Ý121. 92Þ Ý36.84Þ Ý37.94Þ Ý37.17Þ Ý36.55Þ Ý82.85Þ Ý80.17Þ Ý87.87Þ Ý81.98Þ
m=6 Ý42.56Þ Ý123. 52Þ Ý38.23Þ Ý39.77Þ Ý37.91Þ Ý37.73Þ Ý84.12Þ Ý80.50Þ Ý90.01Þ Ý83.10Þ
NL2 ?82.02 32.98 ?87.23 ?88.74 ?86.64 ?86.52 ?65.05 ?42.94 ?81. 10 ?60.93

Ý39.57Þ Ý130. 50Þ Ý29.66Þ Ý30.95Þ Ý26.88Þ Ý29.09Þ Ý73.40Þ Ý77.75Þ Ý69.32Þ Ý74.24Þ
m=2 Ý34.80Þ Ý118. 89Þ Ý30.59Þ Ý31.52Þ Ý30.58Þ Ý30.37Þ Ý78.54Þ Ý78.56Þ Ý80.64Þ Ý78.22Þ
m=4 Ý36.28Þ Ý127. 68Þ Ý33.09Þ Ý34.27Þ Ý33.08Þ Ý32.77Þ Ý87.99Þ Ý86.88Þ Ý91.52Þ Ý87.41Þ
m=6 Ý36.53Þ Ý132. 60Þ Ý32.42Þ Ý34.00Þ Ý32.08Þ Ý31.94Þ Ý89.33Þ Ý87.87Þ Ý93.42Þ Ý88.65Þ
DBC ?. 31 ?. 43 ?. 24 ?. 25 ?. 21 ?. 24 ?. 26 ?.30 ?.23 ?. 26

Ý. 14Þ Ý. 16Þ Ý. 11Þ Ý. 11Þ Ý. 10Þ Ý. 11Þ Ý. 11Þ Ý. 12Þ Ý. 10Þ Ý. 11Þ
m=2 Ý. 14Þ Ý. 19Þ Ý. 10Þ Ý. 11Þ Ý. 10Þ Ý. 10Þ Ý. 11Þ Ý. 12Þ Ý. 11Þ Ý. 11Þ
m=4 Ý. 17Þ Ý. 24Þ Ý. 12Þ Ý. 13Þ Ý. 11Þ Ý. 12Þ Ý. 13Þ Ý. 15Þ Ý. 11Þ Ý. 13Þ
m=6 Ý. 18Þ Ý. 25Þ Ý. 12Þ Ý. 14Þ Ý. 10Þ Ý. 12Þ Ý. 12Þ Ý. 15Þ Ý. 10Þ Ý. 13Þ
CD 2. 84 ?1.59 ?3.55 ?3.89 ?6.59 ?3. 61 ?8. 55 ?7. 59 ?11. 61 ?7. 87

Ý11.59Þ Ý15.51Þ Ý10.43Þ Ý10.11Þ Ý11.43Þ Ý10.59Þ Ý11.74Þ Ý11.32Þ Ý12.35Þ Ý11.63Þ
m=2 Ý16.10Þ Ý17.12Þ Ý12.13Þ Ý12.11Þ Ý12.20Þ Ý12.18Þ Ý12.13Þ Ý12.08Þ Ý12.58Þ Ý12.17Þ
m=4 Ý17.53Þ Ý17.80Þ Ý12.93Þ Ý13.35Þ Ý11.14Þ Ý12.70Þ Ý11.15Þ Ý12.32Þ Ý10.02Þ Ý11.42Þ
m=6 Ý18.61Þ Ý18.68Þ Ý14.10Þ Ý14.72Þ Ý11.43Þ Ý13.74Þ Ý11.27Þ Ý13.19Þ Ý9. 10Þ Ý11.65Þ
BSD ?9. 26 ?22.85 1. 24 ?1.09 5. 64 2. 22 ?1. 07 ?6. 87 3.32 ?1. 90

Ý9. 78Þ Ý14.30Þ Ý7. 80Þ Ý8. 16Þ Ý7. 17Þ Ý7. 65Þ Ý9. 49Þ Ý10.25Þ Ý8. 89Þ Ý9. 61Þ
m=2 Ý9. 10Þ Ý15.29Þ Ý8. 10Þ Ý8. 15Þ Ý8. 24Þ Ý8. 13Þ Ý12.25Þ Ý12.70Þ Ý12.04Þ Ý12.34Þ
m=4 Ý9. 54Þ Ý18.45Þ Ý8. 22Þ Ý8. 26Þ Ý8. 51Þ Ý8. 26Þ Ý13.73Þ Ý14.65Þ Ý13.19Þ Ý13.88Þ
m=6 Ý9. 92Þ Ý20.28Þ Ý8. 25Þ Ý8. 29Þ Ý8. 57Þ Ý8. 30Þ Ý14.01Þ Ý15.38Þ Ý13.14Þ Ý14.23Þ
RSD 3. 19 5. 13 6. 23 4. 02 11.08 7. 24 8. 60 6.18 10. 91 8. 20

Ý9. 76Þ Ý12.18Þ Ý8. 07Þ Ý8. 24Þ Ý7. 86Þ Ý8. 00Þ Ý8. 95Þ Ý8. 92Þ Ý9. 09Þ Ý8. 91Þ
m=2 Ý12.00Þ Ý12.78Þ Ý10.07Þ Ý9. 87Þ Ý11.10Þ Ý10.22Þ Ý11.85Þ Ý10.89Þ Ý13.26Þ Ý11.67Þ
m=4 Ý12.68Þ Ý13.76Þ Ý11.53Þ Ý11.24Þ Ý12.67Þ Ý11.72Þ Ý13.85Þ Ý12.72Þ Ý15.39Þ Ý13.66Þ
m=6 Ý13.55Þ Ý15.04Þ Ý12.49Þ Ý12.15Þ Ý13.81Þ Ý12.70Þ Ý15.27Þ Ý14.06Þ Ý16.97Þ Ý15.07Þ
ASD 18. 72 15.60 23.18 22.55 25.11 23. 55 23. 15 21. 55 24. 73 22. 98

Ý7. 23Þ Ý8. 03Þ Ý6. 29Þ Ý6. 50Þ Ý5. 97Þ Ý6. 21Þ Ý6. 23Þ Ý6. 60Þ Ý6. 02Þ Ý6. 29Þ
m=2 Ý8. 31Þ Ý9. 26Þ Ý6. 53Þ Ý7. 02Þ Ý5. 76Þ Ý6. 34Þ Ý6. 15Þ Ý6. 90Þ Ý5. 77Þ Ý6. 26Þ
m=4 Ý8. 55Þ Ý10.30Þ Ý6. 51Þ Ý7. 14Þ Ý5. 50Þ Ý6. 25Þ Ý6. 16Þ Ý7. 26Þ Ý5. 46Þ Ý6. 32Þ
m=6 Ý8. 77Þ Ý10.77Þ Ý6. 46Þ Ý7. 15Þ Ý5. 45Þ Ý6. 20Þ Ý6. 19Þ Ý7. 43Þ Ý5. 37Þ Ý6. 37Þ

Slope estimates are in bold; SEs are in parentheses; with non­robust ones in the top row, and
robust ones below computed using truncation vectors Ým, mÞ where m = 2, 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel Ýk 2 , k4 Þ.
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Table 8: Y = Log(yield 15 major crops) (L15)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=1.4 a=1.9 a=1.4 a=1.7 a=1.4 a=1.9 a=1.5 a=2.1
NL 1.71 2.07 1.65 1.54 1.74 1.69 2.29 1. 81 2. 61 2. 15

Ý. 35Þ Ý1.03Þ Ý. 30Þ Ý. 31Þ Ý. 29Þ Ý. 30Þ Ý. 76Þ Ý. 76Þ Ý. 76Þ Ý. 77Þ
m=2 Ý. 40Þ Ý1.02Þ Ý. 38Þ Ý. 37Þ Ý. 40Þ Ý. 39Þ Ý. 88Þ Ý. 82Þ Ý. 94Þ Ý. 86Þ
m=4 Ý. 44Þ Ý1.16Þ Ý. 41Þ Ý. 40Þ Ý. 43Þ Ý. 42Þ Ý. 99Þ Ý. 95Þ Ý1.02Þ Ý. 98Þ
m=6 Ý. 34Þ Ý1.19Þ Ý. 40Þ Ý. 39Þ Ý. 40Þ Ý. 40Þ Ý1.03Þ Ý1.00Þ Ý1.05Þ Ý1.03Þ
NL2 ?1. 41 ?1. 66 ?1. 38 ?1. 27 ?1.47 ?1.42 ?1.96 ?1.47 ?2.28 ?1.82

Ý. 33Þ Ý1.00Þ Ý. 29Þ Ý. 29Þ Ý. 27Þ Ý. 28Þ Ý. 74Þ Ý. 75Þ Ý. 73Þ Ý. 75Þ
m=2 Ý. 37Þ Ý1.02Þ Ý. 34Þ Ý. 33Þ Ý. 35Þ Ý. 34Þ Ý. 90Þ Ý. 85Þ Ý. 94Þ Ý. 89Þ
m=4 Ý. 38Þ Ý1.17Þ Ý. 35Þ Ý. 35Þ Ý. 36Þ Ý. 36Þ Ý1.02Þ Ý1.00Þ Ý1.05Þ Ý1.02Þ
m=6 Ý. 37Þ Ý1.20Þ Ý. 33Þ Ý. 32Þ Ý. 33Þ Ý. 33Þ Ý1.07Þ Ý1.04Þ Ý1.09Þ Ý1.07Þ

DBC×10 ?3 ?2. 65 ?3. 06 ?2. 61 ?2. 73 ?2.42 ?2.55 ?2.95 ?3.04 ?2.84 ?3.01
Ý1.12Þ Ý1.26Þ Ý1.04Þ Ý1.08Þ Ý1.00Þ Ý1.03Þ Ý1.12Þ Ý1.17Þ Ý1.09Þ Ý1.14Þ

m=2 Ý1.11Þ Ý1.15Þ Ý1.10Þ Ý1.11Þ Ý1.10Þ Ý1.10Þ Ý1.10Þ Ý1.12Þ Ý1.11Þ Ý1.11Þ
m=4 Ý1.30Þ Ý1.33Þ Ý1.32Þ Ý1.35Þ Ý1.29Þ Ý1.32Þ Ý1.28Þ Ý1.14Þ Ý1.25Þ Ý1.31Þ
m=6 Ý1.33Þ Ý1.33Þ Ý1.38Þ Ý1.42Þ Ý1.30Þ Ý1.36Þ Ý1.28Þ Ý1.14Þ Ý1.20Þ Ý1.33Þ

CD×10 ?1 .51 .06 ?1. 07 ?7. 73 ?1.61 ?1.27 ?1.39 ?1.03 ?1.80 ?1.29
Ý. 95Þ Ý1.17Þ Ý1.10Þ Ý1.01Þ Ý1.25Þ Ý1.15Þ Ý1.18Þ Ý1.08Þ Ý1.30Þ Ý1.14Þ

m=2 Ý. 92Þ Ý1.22Þ Ý1.16Þ Ý1.05Þ Ý1.30Þ Ý1.21Þ Ý1.34Þ Ý1.21Þ Ý1.47Þ Ý1.30Þ
m=4 Ý. 95Þ Ý1.29Þ Ý1.04Þ Ý1.01Þ Ý1.03Þ Ý1.04Þ Ý1.25Þ Ý1.19Þ Ý1.27Þ Ý1.24Þ
m=6 Ý. 95Þ Ý1.26Þ Ý1.01Þ Ý1.01Þ Ý. 92Þ Ý. 99Þ Ý1.16Þ Ý1.14Þ Ý1.13Þ Ý1.16Þ

BSD×10 ?1 ?1. 60 ?1. 58 ?1. 29 ?1. 58 ?1.01 ?1.17 ?.97 ?1.59 ?. 54 ?1.16
Ý. 80Þ Ý1.09Þ Ý. 75Þ Ý. 77Þ Ý. 74Þ Ý. 74Þ Ý. 96Þ Ý. 99Þ Ý. 94Þ Ý. 97Þ

m=2 Ý. 82Þ Ý1.09Þ Ý. 85Þ Ý. 86Þ Ý. 84Þ Ý. 85Þ Ý1.07Þ Ý1.08Þ Ý1.08Þ Ý1.07Þ
m=4 Ý. 84Þ Ý1.13Þ Ý. 87Þ Ý. 88Þ Ý. 86Þ Ý. 87Þ Ý1.08Þ Ý1.12Þ Ý1.05Þ Ý1.09Þ
m=6 Ý. 84Þ Ý1.14Þ Ý. 84Þ Ý. 85Þ Ý. 83Þ Ý. 84Þ Ý1.01Þ Ý1.09Þ Ý. 96Þ Ý1.04Þ

RSD×10 ?1 .22 .01 . 21 . 23 . 25 . 21 ?.16 . 09 ?. 36 ?. 08
Ý. 80Þ Ý. 93Þ Ý. 80Þ Ý. 79Þ Ý. 82Þ Ý. 81Þ Ý. 90Þ Ý. 85Þ Ý. 95Þ Ý. 88Þ

m=2 Ý. 74Þ Ý. 85Þ Ý. 86Þ Ý. 81Þ Ý. 96Þ Ý. 89Þ Ý. 97Þ Ý. 88Þ Ý1.10Þ Ý. 93Þ
m=4 Ý. 70Þ Ý. 87Þ Ý. 88Þ Ý. 82Þ Ý1.00Þ Ý. 91Þ Ý1.01Þ Ý. 93Þ Ý1.13Þ Ý. 97Þ
m=6 Ý. 68Þ Ý. 89Þ Ý. 91Þ Ý. 84Þ Ý1.06Þ Ý. 95Þ Ý1.06Þ Ý. 98Þ Ý1.19Þ Ý1.02Þ

ASD×10 ?1 2.56 2.44 2.45 2.65 2.22 2.37 2.39 2. 58 2. 24 2. 45
Ý. 60Þ Ý. 62Þ Ý. 62Þ Ý. 62Þ Ý. 62Þ Ý. 62Þ Ý. 63Þ Ý. 63Þ Ý. 64Þ Ý. 63Þ

m=2 Ý. 58Þ Ý. 58Þ Ý. 68Þ Ý. 67Þ Ý. 70Þ Ý. 69Þ Ý. 68Þ Ý. 66Þ Ý. 70Þ Ý. 67Þ
m=4 Ý. 55Þ Ý. 56Þ Ý. 66Þ Ý. 68Þ Ý. 62Þ Ý. 65Þ Ý. 64Þ Ý. 66Þ Ý. 62Þ Ý. 65Þ
m=6 Ý. 50Þ Ý. 51Þ Ý. 64Þ Ý. 66Þ Ý. 59Þ Ý. 62Þ Ý. 62Þ Ý. 65Þ Ý. 57Þ Ý. 63Þ

Slope estimates are in bold; SEs are in parentheses; with non­robust ones in the top row, and
robust ones below computed using truncation vectors Ým, mÞ where m = 2, 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel Ýk 2 , k4 Þ.
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Table 9: Y = Log(rice yield) (LR)

LS IV Partly LS Partly IV
k2 k4 k2 k4

a=1.5 a=2.0 a=1.3 a=1.5 a=0.9 a=1.3 a=1.3 a=1.6
NL .99 .35 1.25 1.15 1.43 1.38 1.12 . 93 1. 14 1. 03

Ý. 43Þ Ý1.28Þ Ý. 38Þ Ý. 39Þ Ý. 37Þ Ý. 37Þ Ý. 96Þ Ý. 96Þ Ý. 95Þ Ý. 96Þ
m=2 Ý. 48Þ Ý1.16Þ Ý. 54Þ Ý. 51Þ Ý. 59Þ Ý. 57Þ Ý1.04Þ Ý1.02Þ Ý1.05Þ Ý1.03Þ
m=4 Ý. 56Þ Ý1.37Þ Ý. 63Þ Ý. 61Þ Ý. 68Þ Ý. 66Þ Ý1.19Þ Ý1.19Þ Ý1.20Þ Ý1.21Þ
m=6 Ý. 57Þ Ý1.38Þ Ý. 63Þ Ý. 62Þ Ý. 67Þ Ý. 65Þ Ý1.18Þ Ý1.20Þ Ý1.20Þ Ý1.21Þ
NL2 ?.53 .08 ?.85 ?.71 ?1.07 ?1.01 ?.94 ?. 69 ?. 96 ?. 80

Ý. 40Þ Ý1.24Þ Ý. 36Þ Ý. 37Þ Ý. 35Þ Ý. 35Þ Ý. 92Þ Ý. 93Þ Ý. 91Þ Ý. 93Þ
m=2 Ý. 42Þ Ý1.22Þ Ý. 46Þ Ý. 44Þ Ý. 50Þ Ý. 41Þ Ý1.09Þ Ý1.09Þ Ý1.09Þ Ý1.10Þ
m=4 Ý. 46Þ Ý1.44Þ Ý. 51Þ Ý. 49Þ Ý. 55Þ Ý. 53Þ Ý1.27Þ Ý1.29Þ Ý1.28Þ Ý1.30Þ
m=6 Ý. 45Þ Ý1.44Þ Ý. 49Þ Ý. 48Þ Ý. 53Þ Ý. 51Þ Ý1.27Þ Ý1.29Þ Ý1.29Þ Ý1.31Þ

DBC×10 ?3 ?4. 23 ?4. 08 ?3. 65 ?3. 81 ?3.21 ?3.38 ?2.67 ?3.01 ?2.76 ?2.95
Ý1.39Þ Ý1.56Þ Ý1.32Þ Ý1.34Þ Ý1.27Þ Ý1.29Þ Ý1.36Þ Ý1.40Þ Ý1.36Þ Ý1.39Þ

m=2 Ý1.61Þ Ý1.69Þ Ý1.61Þ Ý1.60Þ Ý1.62Þ Ý1.62Þ Ý1.52Þ Ý1.47Þ Ý1.51Þ Ý1.48Þ
m=4 Ý2.02Þ Ý2.18Þ Ý2.03Þ Ý2.02Þ Ý2.01Þ Ý2.02Þ Ý1.76Þ Ý1.82Þ Ý1.76Þ Ý1.80Þ
m=6 Ý2.21Þ Ý2.42Þ Ý2.20Þ Ý2.20Þ Ý2.10Þ Ý2.16Þ Ý1.75Þ Ý1.92Þ Ý1.76Þ Ý1.88Þ

CD×10 ?1 1.33 1.73 ?.05 . 03 . 05 . 01 . 82 . 60 . 70 . 57
Ý1.18Þ Ý1.46Þ Ý1.36Þ Ý1.24Þ Ý1.66Þ Ý1.55Þ Ý1.78Þ Ý1.53Þ Ý1.75Þ Ý1.53Þ

m=2 Ý1.12Þ Ý1.38Þ Ý1.48Þ Ý1.29Þ Ý1.99Þ Ý1.80Þ Ý2.23Þ Ý1.81Þ Ý2.25Þ Ý1.95Þ
m=4 Ý1.26Þ Ý1.52Þ Ý1.55Þ Ý1.42Þ Ý1.82Þ Ý1.72Þ Ý2.09Þ Ý1.80Þ Ý2.11Þ Ý1.90Þ
m=6 Ý1.34Þ Ý1.58Þ Ý1.64Þ Ý1.56Þ Ý1.69Þ Ý1.68Þ Ý1.95Þ Ý1.81Þ Ý1.96Þ Ý1.86Þ

BSD×10 ?1 ?.39 ?.80 . 73 . 43 1.12 1.01 1.46 1. 05 1. 41 1. 19
Ý. 99Þ Ý1.35Þ Ý. 95Þ Ý. 96Þ Ý. 95Þ Ý. 95Þ Ý1.17Þ Ý1.20Þ Ý1.17Þ Ý1.19Þ

m=2 Ý1.08Þ Ý1.32Þ Ý1.17Þ Ý1.17Þ Ý1.17Þ Ý1.17Þ Ý1.32Þ Ý1.34Þ Ý1.32Þ Ý1.33Þ
m=4 Ý1.19Þ Ý1.51Þ Ý1.29Þ Ý1.29Þ Ý1.28Þ Ý1.28Þ Ý1.47Þ Ý1.51Þ Ý1.47Þ Ý1.50Þ
m=6 Ý1.21Þ Ý1.54Þ Ý1.25Þ Ý1.33Þ Ý1.30Þ Ý1.31Þ Ý1.43Þ Ý1.47Þ Ý1.43Þ Ý1.54Þ

RSD×10 ?1 2.30 2.60 2.25 2.07 2.61 2.49 2.90 2. 64 2. 89 2. 71
Ý. 99Þ Ý1.15Þ Ý1.01Þ Ý. 98Þ Ý1.07Þ Ý1.05Þ Ý1.26Þ Ý1.15Þ Ý1.25Þ Ý1.19Þ

m=2 Ý. 98Þ Ý1.11Þ Ý1.10Þ Ý1.00Þ Ý1.33Þ Ý1.25Þ Ý1.56Þ Ý1.30Þ Ý1.54Þ Ý1.38Þ
m=4 Ý. 98Þ Ý1.20Þ Ý1.19Þ Ý1.08Þ Ý1.48Þ Ý1.37Þ Ý1.76Þ Ý1.45Þ Ý1.74Þ Ý1.54Þ
m=6 Ý1.00Þ Ý1.25Þ Ý1.25Þ Ý1.12Þ Ý1.58Þ Ý1.45Þ Ý1.90Þ Ý1.54Þ Ý1.88Þ Ý1.64Þ

ASD×10 ?1 2.48 2.52 2.34 2.57 1.86 2.03 1.93 2. 33 1. 93 2. 20
Ý. 74Þ Ý. 77Þ Ý. 78Þ Ý. 77Þ Ý. 80Þ Ý. 79Þ Ý. 81Þ Ý. 80Þ Ý. 81Þ Ý. 80Þ

m=2 Ý. 81Þ Ý. 83Þ Ý1.03Þ Ý. 99Þ Ý1.09Þ Ý1.07Þ Ý1.08Þ Ý1.02Þ Ý1.08Þ Ý1.04Þ
m=4 Ý. 83Þ Ý. 89Þ Ý1.02Þ Ý1.01Þ Ý1.04Þ Ý1.04Þ Ý1.03Þ Ý1.03Þ Ý1.03Þ Ý1.03Þ
m=6 Ý. 75Þ Ý. 83Þ Ý. 90Þ Ý. 89Þ Ý. 90Þ Ý. 90Þ Ý. 90Þ Ý. 92Þ Ý. 90Þ Ý. 92Þ

Slope estimates are in bold; SEs are in parentheses; with non­robust ones in the top row, and
robust ones below computed using truncation vectors Ým, mÞ where m = 2, 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel Ýk 2 , k4 Þ.
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Figures 1-4: Nonparametric regressions
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4 Linear Analysis with Irregularly Spaced Data

4.1 Introduction

In this chapter, we consider linear regressions and some linear analysis with dependent

data. The main focus is on dependence across (economic) space but the same principle

could be applied to dependence through time. However, dependence through time may

need a special treatment since some nice results can be established only when working

through time by exploiting the fact that the real number system is an ordered �eld. See for

example Robinson (1980). The main problem arising with spatial data is that (economic)

locations are usually irregularly spaced. This makes statistical inference di¢ cult or even

analytically intractable (asymptotically) due to the fact that the covariance structure of the

disturbances are unlikely to have the Toeplitz form. Various models have been proposed to

overcome this di¢ culty. There seem to be two popular approaches in econometric literature

and both can be regarded as extensions from classical time series analysis.

The most common methodology is to approximate dependence of the data by a linear

process. The Spatial Autoregressive (SAR) model has been a popular parametric model in

econometric literature. More recently Robinson (2011) proposed a generalized linear process

for a triangular array of random variables nesting the SAR model as a special case. Even

though this approach o¤ers a close resemblance to most linear time series models, it often

lacks stationarity and hence asymptotic covariances of some simple statistics may become

intractable.

The other methodology is to maintain some form of stationarity. Conley (1999), for

example, regarded an irregularly spaced data as a random sample of some underlying random

�elds on a lattice. There are a few problems related to this particular interpretation. First,

the computation can be an issue. Conley assumed that the locations follow a hard-core point

process, i.e. there are no pairs of locations whose distances are smaller than a particular

positive number. Some computation involves dividing a subset of R2 into squares where
there is at most one observation in each square. Consider an analysis of data on factory

plants collected from several districts. Due to regulations, availability of infrastructure or

economies of scale, their locations often cluster on a few small areas rather than scattering

uniformly over the area of interest. In this case, a large proportion of squares will be empty,

and an analysis based on dividing into squares as well as computation from those empty

squares will be very computationally intensive.

Second, the assumption of a hard-core point process may be too strong. It prohibits

locations of the observations from getting arbitrarily close to each other. This drawback

makes the hard-core process inappropriate for many applications. In statistical analysis

of locations, the Poisson process is often a popular choice for modelling town or village

locations that could be useful for data related to applications in political economy or devel-

opment economics. A Poisson cluster point process such as the Neyman-Scott process may

be more suitable for modelling locations of industrial plants in applications related to eco-

nomic geography, trade or innovation and growth. As mentioned above, due to regulations,

infrastructure and, more importantly, economies of scale, economic activities, such as �rm

locations, tend to cluster around a few hubs. See Fujita, Krugman and Venables (2001).
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Some underlying processes determining the locations of economic activities such as a cluster

point process may be more appropriate than a hard-core point process.

The model considered in this chapter is very similar to the ones in Brillinger (1972),

(1975) and (1986). There are two main di¤erences. First, to derive asymptotic normality

our proof is based upon mixing assumptions whereas Brillinger�s asymptotic normality was

derived using the method of moments requiring the data to have moments of all orders

that could be too strong for economic data. Second, Brillinger assumed that the sampling

process and the underlying random �eld are independent. Even though this assumption

is important for a study of an underlying random �eld, it can be dropped as far as the

unknown slope parameters of a linear regression are concerned.

Section 2 begins with a motivation for interpreting economic data as a realization of a

marked point process and later we will show that many statistics of interest can be regarded

as a random (signed) measure. To avoid making complicated assumptions, we mainly focus

on the implication of second-order stationarity. Following Thornett (1979), there is a unique

measure, we call it a spectral measure, related to a random (signed) measure exhibiting

some kind of second-order stationarity. The relationship is similar to that of a spectral

measure and a covariance function of covariance stationary time series. However, unlike in

time series analysis, the spectral measure associated with a random (signed) measure is not

totally �nite. Hence, the standard technique involving inversion of a Fourier transform may

not be su¢ cient to determine some properties of the spectral measure of the point process.

Also in Section 2 we discuss existence of a continuous spectral density of a random (signed)

measure. In Section 3, we discuss a law of large number and a central limit theorem for

a random (signed) measure. There is one di¢ culty arising once one moves from time to

space. The region, called the sampling region, from which the data are collected could have

an irregular shape. This problem may be a norm rather than an exception. As a result,

we need to allow the sampling region to have an arbitrary shape. The concept of van Hove

convergence is employed and some discussion on van Hove convergence is provided in the

same section. In Section 4 we discuss asymptotic distribution of the least squares estimate of

a linear regression model. Section 5 is concerned with spectral estimation of the continuous

spectral density of a random signed measure discussed in Section 2. In Section 6, somewhat

unrelated to the other parts of the paper, we discuss how to transform an estimate of an

unknown positive de�nite (p.d.) matrix into a positive de�nite estimate such that if the

mean square error (MSE) of the original estimate is O
�
n��

�
; where � > 0, then for any

" > 0; the MSE of the transformed estimate can be o
�
n��+"

�
: This result can be applied to

an estimation of the covariance matrix in Section 4, as well as an estimation problem in other

context such as an estimation of an optimal weighting matrix of the GMM objective function

that is required to be at least positive semide�nite (p.s.d.). This would enable practitioners

to employ smoothing with higher-order kennels, and later obtain a transformed estimate

that is p.d. as well as achieving a rate of convergence, in mean square, arbitrarily closed to

the original one. Proof of Theorems and technical lemmas can be found in the Appendices.
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4.2 Models

Because economic experiments are rare, most economic data is observational. In empirical

work, a practitioner usually has to select a particular span of time or an area, such as district

and country, or both for panel data, to collect data. If variables of interest Zi are observed

at locations si, then the data is f(s1; Z1) ; :::; (sN ; ZN )g : With regularly spaced time series,
the data can be ordered through time and the locations can be treated as natural numbers

so that the time index can represent the points at which Zi are observed. As a result,

the data can be treated as a sequence of random variables fZ1; :::; ZNg : When the data
are collected across space, the number observations N and the locations si can potentially

become random.

Theoretically one can suppose that there is a sequence of random variables f(si; Zi)g
where si and Zi are Rd-valued and Rp-valued random variables. If a practitioner chooses to

collect data over an area A, then the observed data is f(si; Zi) : si 2 Ag : It is assumed in
this paper that a sampling area A is restricted to belong to the Borel �-�eld of Rd, denoted
by B

�
Rd
�
only. If A 2 B

�
Rd
�
, A is said to be a Borel subset of Rd, or simply a Borel set.

In general si can be generalized to take values in a complete separable metric space but

since the main focus of this paper is on weak stationarity we are only concerned with the

Euclidean space Rd:
Suppose that the underlying probability space is (
; F ; P).

Assumption A1 There exists an event F0 2 F such that P (F0) = 0 and ! =2 F0 implies

that for any bounded A 2 B
�
Rd
�
; only a �nite number of the elements of fsi (!)g lie in A.

De�ne

Ng (A) =
1X
i=1

�si (A) ;

where �x is the Dirac measure, i.e. �x (A) = 1 if x 2 A and zero otherwise. Under

Assumption A1, by Proposition 9.1.X in Daley and Vere-Jones (2008), Ng is a point process.

For any bounded B 2 B
�
Rd � Rp

�
de�ne

N (B) =
1X
i=1

�(si; Zi) (B) :

Then Assumption A1 and the Proposition in Daley and Vere-Jones imply that N is also a

point process. For ! =2 F0 and for any bounded B 2 B
�
Rd � Rp

�
; there exists a bounded

A 2 B
�
Rd
�
such that B � A� Rp; and there are only �nite elements of f(si (!) ; Zi (!))g

lying in A � Rp: As both N and Ng are point processes, N can be regarded as a marked

point process where Zi are the marks and Ng is called the ground process. Thanks to this

result and the weakness of Assumption A1, observational economic data whose locations are

random may be naturally regarded as a marked point process. Before continuing further

discussion it is worth introducing some de�nitions, related to point processes, less common

in econometric literature. Good sources of reference are Daley and Vere-Jones (2003, 2008)
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4.2.1 Background on Point Processes

Let S be a complete separable metric space (c.s.m.s.) and B (S) be the �-�eld of its Borel
sets. A Borel measure � on the c.s.m.s. S is boundedly �nite if � (A) <1 for every bounded

Borel set A: A boundedly �nite integer-valued measure is called a counting measure. Let

NS be the set of all counting measures; N �
S be the set of all simple counting measures, i.e.

N 2 N �
S if and only if N 2 NS and N (fsg) = 0 or 1 for all s 2 S; and N g

S�K be the set of

all boundedly �nite counting measures de�ned on the product space B (S � K), where K is
a c.s.m.s. of marks, such that the ground measure Ng de�ned by Ng (A) � N (A�K), for
all A 2 B (S), is a boundedly �nite simple counting measure, i.e. Ng 2 N �

S :

A point process N on state space S is a measurable mapping N : 
 ! NS : A point

process N is simple when P fN 2 N �
Sg = 1: A marked point process on S with marks in K is

a point process N on B (S � K) for which P
�
N 2 N g

N�K
	
= 1 where its ground process is

Ng (�) � N (� � K) : In general we could regard a marked point process as a point process on
the space S � K as described above or as a sequence of pairs of vectors of random variables

f(si; �i)g where it requires that for any bounded Borel sets A 2 B (S), with probability one
only a �nite number of the element fsig lie in A, and si 6= sj for all i 6= j:

For any bounded A 2 B (S) ; N (A) is a random variable (see Corollary 9.1.IX in Daley

and Vere-Jones (2008)) and de�ne M (A) = E [N (A)] : Since S is a c.s.m.s., there exists a
class of bounded Borel sets generating B (S). Let R1 be a ring generated by all bounded

Borel sets. Suppose that M (A) < 1 for all A 2 R1: Then M is �nitely additive on

R1 since N is also �nitely additive. For any increasing sequence of sets in R1; fAng ; such
that limnAn = A 2 R1; by monotone convergence limn!1M (An) = M (A) : Hence M is

countably additive on R1 and thereforeM can be uniquely extended to a measure on B (S) :
We say that the �rst moment measure of N exists when E [N (A)] <1 for all bounded Borel

sets A.

Let N2 (A1 �A2) = N (A1)N (A2) for any Borel sets A1 and A2: Then N2 (�) can be
extended to a product measure on the product �-�eld B (S � S) : Then it can be shown
that N2 (�) is also a point process on S � S: De�ne M2 (A) = E [N2 (A)] for a Borel set A
in B (S � S). We say that the second moment measure of N exists when E [N2 (A)] < 1
for all bounded Borel sets A. Let f : S !R be a Borel measurable function. The integralR
X f (s)N (ds) is de�ned as the Lebesgue integral on a realization-by-realization basis.

From now on, let N (�) be a marked point process on the state space Rd � Rp, where
d; p 2 N, the set of natural numbers. For a measurable function f : Rp ! R and a bounded
Borel set A 2 B

�
Rd
�
; the sum

X
si2A

f (zi) =

Z
A�Rp

f (z)N (ds� dz) = Nf (A)

can be shown to be a well de�ned random variable. If f is the indicator function of a

bounded Borel subset of Rp, then Nf (A) is a random variable. For a nonnegative f , we can
approximate it by an increasing sequence of simple functions ffng. For each n; Nfn (A) is
a random variable, and by Monotone convergence, Nf (A) is a random variable. This can

be extended to a real-valued measurable function f in the usual way.
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4.2.2 Second-Order Stationary Point Processes

In this chapter, we employ the de�nition of a second-order stationary point process from

Daley and Vere-Jones (2003).

De�nition A1 A point process N (�) on the state space Rd is second-order stationary if its
second moment measure exists and

(i) for any bounded measurable function f of bounded support,Z
Rd
f (s)M (ds) = �

Z
Rd
f (s) ds; (4.1)

where nonnegative constant � is the mean density;

(ii) for any bounded measurable function f of bounded support,Z
Rd�Rd

f (s; t)M2 (ds� dt) =
Z
Rd

Z
Rd
f (x; x+ u) dx �M2 (du) ; (4.2)

where �M2 (�) is the reduced second moment measure.

IfN (�) is a stationary point process on the state space Rd with a second moment measure,
then the conditions in De�nition A1 hold. For any subset A of Rd and u 2 Rd; de�ne

TuA = fa+ u : a 2 Ag : (4.3)

If a point process N (�) on Rd is second-order stationary with mean density �, then for
any bounded Borel sets A; B and u 2 Rd; E [N (A)] = E [N (TuA)] and E [N (A)N (B)] =
E [N (TuA)N (TuB)] :
For a second-order stationary point process, we de�ne the reduced covariance (signed)

measure in the following di¤erential form

�C2 (du) = �M2 (du)� �2du:

It can be regarded as the reduced measure of the covariance measure where the covariance

measure is de�ned in a similar fashion as the second moment measure. In fact, the covariance

measure can be regarded as the second-moment measure of the random signed measureeN (A) = N (A)� �` (A) de�ned on any Borel set A, where ` (�) is the Lebesgue measure.

De�nition A2 We say that a measure is translation-bounded if for all h > 0 and x 2 Rd

there exists a �nite constant Kh such that, for every ball Bh (x) =
�
y 2 Rd : kx� yk < h

	
,

j� (Bh (x))j � Kh;

where k�k is the usual Euclidean norm.
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It follows from Proposition 8.2.I in Daley and Vere-Jones (2003) that if N is a second-

order stationary point process, then there exists a symmetric, translation-bounded measure

F on B
�
Rd
�
such that for all  in the Schwartz space, denoted by S

�
Rd
�
,Z

Rd
 (x) �C2 (dx) =

Z
Rd
e (�) F (d�) ; (4.4)

where e (�) = R
Rd e

ih�;ui (u) du and h�; ui =
Pd

i=1 �iui is the usual inner product on

Rd: Daley and Vere-Jones (2003) call the measure F the spectral measure. Since the Parseval
identity holds for all  2 S

�
Rd
�
, it follows that the translation-bounded measure F is

uniquely determined. Unlike in time series analysis, the spectral measure is not totally

�nite. It is just translation-bounded. Now we state our �rst result.

Theorem A1 Suppose that a random measure � on the state space Rd is second-order
stationary with reduced covariance measure �C2 such thatZ

Rd

��� �C2��� (du) <1,
where the measures

��� �C2��� = �C+2 +
�C�2 ;

�C+2 and �C
�
2 are de�ned by the Hahn decomposition of

the signed mesure �C2; then its spectral measure F� is absolutely continuous with non-negative

and continuous Radon-Nikodym derivative

f� (�) = (2�)
�d
Z
Rd
e�ih�;ui �C2 (du) :

Following Theorem A1, since F� is absolutely continuous, its Radon-Nikodym derivative

is unique only almost everywhere. Because f� is continuous, it is the only continuous Radon-

Nikodym derivative of F�. Hence, we call f� the spectral density of �:

4.2.3 Wide-Sense Second-Order Stationary Random Signed Measure

In most economic applications we have to deal with random signed measures rather than

random measures. So we adopt the following de�nition for second-moment stationarity for

a random signed measure from Thornett (1979). Let ` denote the Lebesgue measure. For a

sequence of sets fAng we say that it is increasing if An � An+1 for all n 2 N and decreasing if
An � An+1 for all n 2 N. For any complex number W , let W denote its complex conjugate.

De�nition A3 A wide-sense second-order stationary random signed measure on Rd is a
jointly distributed family of real- or complex-valued random variables

�
W (A) : A 2 B

�
Rd
�	
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satisfying the following conditions, for any bounded A; B 2 B
�
Rd
�
and any sequence of

bounded borel sets fAng ;

(i) E jW (A)j2 <1;
(ii) for some constant �; E fW (A)g = �` (A) ;

(iii) E
n
W (TuA)W (TuB)

o
= E

n
W (A)W (B)

o
for all u 2 Rd;

(iv) W (A [B) =W (A) +W (B) for disjoint A; B; and

(v) if fAng is decreasing and limn!1 ` (An) = 0, then limn!1 E
n
W (An)

2
o
= 0:

The equality in (iii) is in the mean square sense.

Let C be the set of all Borel measures F such that (i)
R
Rd

���e1A (�)���2 F (d�) < 1 for all

bounded A 2 B
�
Rd
�
; where 1 is the indicator function; (ii) if fAng is a decreasing sequence

of bounded Borel sets such that limn!1 ` (An) = 0, then limn!1
R
Rd

���e1An (�)
���2 F (d�) = 0:

Thornett (1979) extended Bochner�s theorem by showing the following result.

Proposition A If fW (A)g is wide-sense second-order stationary random signed measure

on Rd with � = 0, then there is a unique measure FW in C such that

E
n
W (A)W (B)

o
=

Z
Rd
e1A (�) e1B (�) FW (d�) for all bounded A; B 2 B

�
Rd
�
:

The measure FW is called the spectral measure of W .

In order to discuss spectral density of a random signed measure, we restrict ourselves to

a certain class of random signed measures.

Assumption A2 W is a real-valued wide-sense second-order stationary random signed

measure on Rd such that for any bounded Borel sets A and B; there exists a signed measure
�C2 such that

Cov

�Z
Rd
1A (s) W (ds) ;

Z
Rd
1B (s) W (ds)

�
=

Z
Rd

Z
Rd
1A (s)1B (s+ u) ds �C2 (du) :

Theorem A2 Suppose that Assumption A2 holds andZ
Rd

��� �C2��� (du) <1, (4.5)

then the spectral measure FW ofW is absolutely continuous with continuous Radon-Nikodym

derivative, called spectral density,

fW (�) = (2�)
�d
Z
Rd
e�ih�;ui �C2 (du) :
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Now consider the main object of interest

� (A) =
X
si2A

zi;

where f(si; zi)g is a marked point process. This linear functional of the marked point process
arises naturally in many statistics popular in econometric literature such as the least squares

estimate of a linear regression. In economic applications it may be a sensible assumption to

assume that given the locations fsig the conditional expectation of marks zi and zj depends
only on si � sj and conditional covariances vanish to zero as the distances increase. In

addition, it may be sensible to assume that the ground process Ng is second-order stationary.

As a result, we make the following assumptions.

Assumption A3 Assumption A1 holds where si 6= sj for i 6= j; and the ground process Ng
is second-order stationary.

Assumption A4 For all i 2 N; E (zijNg) = 0: In addition, there exists a measurable

function 
z such that E (zizj jNg) = 
z (si � sj) for all i; j 2 N and 
z (0) < 1; where
E ( �jNg) is a conditional expectation given the ground process.

Theorem A3 Under Assumptions A3 and A4, the random signed measure de�ned by � (A) =P
si2A zi for any A 2 B

�
Rd
�
is wide-sense second-order stationary. IfZ

Rd
j
z (u)j �M2 (du) <1; (4.6)

where �M2 is the reduced second-order moment measure of the ground process, then the

spectral measure F� of � is absolutely continuous with continuous density

(2�)
�d
Z
Rd
e�ih�;ui
z (u) �M2 (du) :

Condition (4.6) in Theorem A3 is analogous to the one of time series with short memory.

Suppose that zi are Rp-valued random variables andZ
Rd
j
rs (u)j �M2 (du) <1; r; s = 1; � � � ; p; (4.7)

where 
rs (u) is the (r; s)-th element of the matrix 
z (u) :Motivated by Theorem A3, we may

regard (2�)�d
R
Rd e

�ih�;ui
z (u) �M2 (du) as the spectral density of the Rp-valued random
signed measure � =

P
si2A zi:
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4.3 Asymptotic Properties of Random Signed Measures

We consider some asymptotic properties of a sequence of random variables f� (An)g where
� is a random signed measure and fAng is a sequence of bounded Borel sets. These asymp-
totic properties are also applicable to non-stationary random signed measures. Typically in

statistical literature, asymptotic properties of a random signed measure are restricted to a

certain class of sequences of bounded Borel sets. The main attention in point processes is

on sequences of convex Borel sets. For a given Borel set with Lebesgue measure of unity,

Brillinger (1986) considered a sequence of this particular Borel set scaled by some indices

where the indices go to in�nity. One problem facing practitioners is that, in economic ap-

plications, typical assumptions on a sequence of sampling regions mentioned above tend not

to hold. Empirical economists usually select a city or a county to collect data. The concept

of the sampling region going to in�nity can be more naturally interpreted as including other

cities or counties in the sample. Therefore, we discuss a weak law of large numbers and a

central limit theorem covering a sequence of arbitrary bounded Borel sets. However we still

impose a weak assumption on the way in which these sampling regions get arbitrarily large.

Our asymptotic results are based on the following concept of strong mixing. First, we

introduce some notation. For any subset A of Rd; let � (A) denote the diameter of A, i.e.
� (A) = sup fkt� sk : s; t 2 Ag ; where k�k denotes the Euclidean norm. For any nonempty
subsets A and B of Rd; their distance is de�ned by D (A; B) = inf fkt� sk : s 2 A; t 2 Bg :
It should be stressed that D is not a metric. Given a point process or a random signed

measure �; for any E 2 B
�
Rd
�
; let F� (E) be the �-�eld generated by the random variables

� (F ) for all Borel sets F contained in E. For any E1; E2 2 B
�
Rd
�
; de�ne

� (E1; E2) = sup
A12F�(E1); A22F�(E2)

jP (A1A2)� P (A1)P (A2)j : (4.8)

4.3.1 Weak Law of Large Numbers

Let a = (a1; � � � ; ad)0 2 Rd and �(a) =
�
x 2 Rd : 0 < xi � ai; i = 1; � � � ; d

	
: Let Z

denote the set of integers and Zd denote the Cartesian product �di=1Z of Z: The translate
of �(a) by the integral vector ma = (m1a1; � � � ; mdad) ; where m 2 Zd; is denoted by
�m = Tma�(a) : The family of sets �m; m 2 Zd; forms a partition of Rd: For a subset
A � Rd; de�ne N+

a (A) as the number of sets �m for which A\�m 6= ; and N�
a (A) as the

number of �m such that �m � A:

Assumption B1 There exist C1; C2 < 1 such that, for B 2 B
�
Rd
�
; if ` (B) < C1;

then E j� (B)j � C2; otherwise E j� (B)j � C2` (B) :

Assumption B2 There is a 2 Rd such that (i) the family
�
� (�m) : m 2 Zd

	
of random

variables is uniformly integrable; (ii) as n!1; N�
a (An)!1; ` (Dn) =` (An)! 1, where
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Dn = [f�m : �m � Ang ; and (iii) letting � (r) = sup� (�i; �j) ; where the supremum is

taken over all rectangles such that D (�i; �j) � r, limr!1 � (r) = 0:

Theorem B1 Under Assumptions A1 and A2, if E f� (�m)g = 0 for all m 2 Zd, then as
n!1; ` (An)�1 � (An)!1 0:

Consider a second-order stationary point process N . Assumption A1 holds for N since

EN (A) = �` (A) for any bounded Borel set A; where � is the mean density of N . Assump-

tion A1 also holds for random signed measures having �xed atomic points, i.e. � (x) 6= 0

a.s. for some x 2 Rd: From the proof of Theorem B1, it can be seen that the notion of

strong mixing is not necessary to show the weak law of large numbers. Assumptions on

weak correlation among �m could have been imposed without a¤ecting the conclusion.

4.3.2 Central Limit Theorem

In this chapter, we simply employ the central limit theorem proved in Bulinskii and

Zhurbenko (1976) that can also be found in Zhurbenko (1986). Their proof of the central

limit theorem is based on the Bernstein technique and the following de�nition of strong

mixing. De�ne

�� (r; k) = sup� (E1; E2) ; (4.9)

where the supremum is taken over all Borel sets E1 and E2 such that D (E1; E2) � r and

� (Ei) � k; i = 1; 2: Assumption B2 and the one in Bulinskii and Zhurbenko (1976) that

is similar to our Assumption B2 can be di¢ cult to verify. For example Assumption B2

requires that there exists a 2 Rd such that f� (�m)g is uniformly integrable and as n is
su¢ ciently large the sampling regions An are essentially the union of those �m � An. In

practice, practitioners may not know the exact value of a and hence may fail to verify that

Assumption B2 holds. To avoid this di¢ culty, Bulinskii and Zhurbenkon (1976) considered

a sequence of bounded Borel sets that converges to in�nity in the sense of van Hove.

4.3.3 van Hove Convergence

De�nition B1 A sequence of sets fAng converges to in�nity in the sense of van Hove if
for each a;

lim
n!1

N�
a (An) =1 and lim

n!1
N�
a (An) =N

+
a (An) = 1;

where N+
a (A) and N

�
a (A) are de�ned as in the previous sub-section.
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Clearly if fAng converges to in�nity in the sense of van Hove, the problem mentioned

at the end of the previous subsection is solved. Let An = (s1n; t1n] � � � � � (sdn; tdn] be
a rectangle in Rd: A sequence of rectangles fAng such that limn!1 (tin � sin) = 1; i =
1; � � � ; d, converges to in�nity in the sense of van Hove. However for a sequence of arbitrary
shapes in Rd, it may be much harder to verify if it converges to in�nity in the sense of van
Hove. Theorem B2 suggests how to check whether van Hove convergence holds.

For a set A 2 B
�
Rd
�
, let @A be the boundary of A:

Theorem B2 For any �m; if A\�m 6= ; and �m is not contained in A, then @A\�m 6= ;.

In most applications, the interest may be upon sampling regions that are subsets of

R2. In this case, @An is the boundary of An and it is possible to �nd its length. To

avoid making complicated assumption, we �rst focus on arbitrary shapes in Rd having no
holes. The advantage of this restriction is that @An will be connected. To avoid confusion,

we introduce some de�nitions that may not be often employed in econometrics. See, for

example, Wilson (2008).

De�nition B2 A curve (or path) in a metric space (X; d) is a continuous function 
 :

[a; b]! X; for some real closed interval [a; b] :

De�nition B3 For a curve 
 : [a; b] ! X on a metric space (X; d), the length of


; length(
) ; is de�ned as

length (
) = sup
P

lP ;

where lP =
Pm

i=1 d (
 (ti) ; 
 (ti�1)) and P = ft0; t1; � � � ; tmg is a partition of the interval
[a; b] :

Suppose that @A is the image of a closed curve 
, a continuous function 
 : [a; b]! R2

such that 
 (a) = 
 (b) : Then the perimeter of @A can be de�ned as length(
).

Theorem B3 Given a sequence of bounded Borel subsets fAng of R2; suppose that for all
n, @An are the image of closed curves 
n, and as n ! 1; ` (An) ! 1; length(
n) ! 1;
and length(
n) = o (` (An)) : Then fAng converges to in�nity in the sense of van Hove.
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Now if fAng is a sequence of bounded Borel subsets of R2 such that there is N1 < 1
such that for all n 2 N; An have at most N1 holes, and each hold has �nite Lebesgue
measure uniformly over n, then fAng satisfying the condition in Theorem B3 is still a van

Hove sequence. The condition in Theorem B3 may be relaxed further without a¤ecting the

result, but the proof may have to be on a case-by-case basis. It seems possible to extend

this result to higher dimensions but the proof will be more complicated. It is worth noting

that Lemma 5 is employed in the proof of Theorem B3 and it says that for a given curve

with �nite length, we can divide the curve into many sections with any required length.

However, for example, in R3 @A is the surface of A. It is unclear how to divide the surface
into smaller subsets of A with any desired area. Some further conditions may be needed.

4.4 Least Squares Estimation

Suppose that for a given marked point process f(si; (xi; yi))g on Rd � Rp+1 such that the
marks xi and yi exhibits a linear relationship

yi = �00xi + "i;

where the p-dimensional column vector �0 is unknown, the prime denotes transposition, and

the "i are unobserved. Suppose we only observe a realization of the marked point process

when the locations are in a bounded Borel set A: The least squares estimate (LSE) of �0
constructed from the data is

�̂ =

 X
si2A

xix
0
i

!�1 X
si2A

xiyi:

Let zi = xi"i for all i 2 N. De�ne � (A) =
P

si2A zi for all bounded Borel sets A:

Assumption C1 Assumption A3 holds for the marked point process f(si; (xi; yi))g. There
exists a measurable function �x such that �x (si) = E (xix0ijNg), where the modulus of all
elements of �x (s) are uniformly bounded for s 2 Rd: For any sequence fAng of bounded
Borel sets such that there exists a sequence of balls contained in An with radii rn such that,

limn!1 rn =1; ` (An)�1
R
An

�x (s) ds! � where � is positive de�nite. In addition, As-

sumption A4 holds for zi where 
 (sj � si) denotes E
�
ziz

0
j

��Ng�, 
 (0) has bounded elements,
and (4.7) holds and � =

R
Rd 
 (u)

�M2 (du) is positive de�nite.

Assumption C2 There exists l0 =
�
l01; :::; l

0
d

�0 2 Rd such that for some �1 > 0 and some

constant c; E k� (�)k2+�1 � c for all rectangles � whose j-th edges have length l0j ; j =

1; � � � ; d: Let � (A) =
P

si2A xix
0
i: There exists l

00 =
�
l001 ; � � � ; l00d

�0 2 Rd such that for
some �2 > 0 and some constant c; E j�rs (�m)j

1+�2 � c for all rectangles �m = Tml00�
�
l00
�
;

where �rs (�) is the (r; s)-th element of � (�) :
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Assumption C3 The sequence of bounded Borel subsets fAng is increasing and converges
to in�nity in the sense of van Hove. Moreover, ` (An) � c [� (An)]

a for some 0 � a � d and

some constant c, where � (An) is the diameter of An.

Let ��1 (r; k) be de�ned as in (4.8) and (4.9), where the the �-�eld of interest is generated

by the random (signed) measure � (�) and ��2 (r; k) be de�ned for the �-�eld generated by
the random (signed) measure � (�) :

Assumption C4 For some number c and k0;

��1 (r; k) � c
kw

rd+"
for k > k0; where " >

2d

�1
and w <

a�1
2 (1 + �1)

�
"

d
� 2

�1

�
and for k = � (� (a)) ;

lim
r!1

��2 (r; k) = 0:

Theorem C1 Under Assumptions C1-C4,

[` (An)]
1=2
�
�̂ � �0

�
d! N

�
0;��1���1

�
:

Assumption C2 requires weak dependence of Ng and of fzig given the ground process Ng.
Let �C2 be the reduced covariance (signed) measure of Ng, i.e. �C2 (du) = �M2 (du)�m2` (du) :

Su¢ cient conditions for (4.7) are
R
Rd j
z (u)j du < 1 and

R
Rd j
z (u)j

��� �C2��� (du) : Su¢ cient
conditions for Assumption A3 are that for some �nite constant c; (i) E ( jzizjzkjjNg) < c

for all i; j; k 2 N; and (ii) E [Ng (�)]3 < c uniformly for all � described in Assumption A3.

Condition (ii) holds if the ground process is third-order stationary.

In this chapter we allow dependence between the marks and the ground process. To

cover the popular model in the statistical literature, we brie�y outline how to show as-

ymptotic normality of its LSE of b�. If the marks and the ground process, assumed to be
independent, arises from a random sampling of a second-order stationary random �eld, then

the function 
z may be regarded as the unconditional covariance function of the random

�eld
�
z (s) ; s 2 Rd

	
. More direct assumptions on weak dependence of the sampling process

Ng (�) and the random �eld can be given.

Suppose that the strong mixing assumption on dependence of the random �eld fz (s)g
and maximal correlation mixing assumption on the sampling process are given. Then some

useful result on covariances of random variables generated by the sampling process and

random �eld can be obtained. Let A1; A2 2 B
�
Rd
�
such that � (A1) ; � (A2) � k and
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D (A1; A2) � r: Let Vi be a complex random variable measurable with respect to FN (Ai),
where FN (Ai) is the �-�eld as de�ned earlier, N is the marked point process f(si; zi)g,
and E jVij2+� <1. Following Politis and Sherman (2001),

Cov (V1; V2) = E
�
CovNg (V1; V2)

�
+ Cov [E (V1jNg) ;E (V2jNg)] ;

where CovNg denotes covariance conditional on the ground processNg. Due to independence

of Ng and fz (s)g ; by Theorem 17.2.2 in Ibragimov and Linnik (1971), CovNg (V1; V2) can

be bounded by a multiple of the strong mixing coe¢ cient of the random �eld fz (s)g. Then
this inequality remains valid after taking the expectation. Since E (VijNg) is measurable
with respect to the �-�eld generated by fNg (E) : E � Aig, using the Jensen�s inequality,
Cov [E (V1jNg) ;E (V2jNg)] can be bounded in absolute value by a multiple of the maximal
correlation mixing coe¢ cient. Then the proof based on the Bernstein�s technique can rely

upon this covariance bound.

It can also be shown that as n!1; Ng (An) =` (An)
p! �; where � is the mean intensity

of the ground process. Then it follows that [Ng (An)]
�1=2

�b� � �0� = Op (1) : One may wish

to compare this result with the standard root-n consistency but it should be noted that the

number of observations, Ng (An), is now a random variable. Finally, as noted in the last

paragraph of Section 2, � may be regarded as the spectral density function of the Rp-valued
random signed measure � at zero frequency. Hence, the asymptotic covariance matrix of b�
is analogous to that of stationary time series.

4.5 Spectral Density Estimation

Motivated by the asymptotic covariance of the least square estimate of a linear regression,

we mainly focus on estimating the spectral density function of � as de�ned in the previous

section. We hope that our results may give some hint on how to consistently estimate spec-

tral density of other wide-sense second-order stationary random signed measures. However

further regularity conditions may be needed. If we consider a random signed measure W;

then the variance of the spectral density estimate may not be de�ned since an integral with

respect to W is only de�ned up to a mean square sense.

From now on, we will consider only � as de�ned in Theorem A3 but zi are now Rp-
valued. We also assume that zi are fully observed, if si 2 A; to avoid further complexity

from approximating zi by the residuals from the least square estimate. It can be seen

from the proof of Theorem 1 that a periodogram is an asymptotically unbiased estimate of

spectral density. Let dAn
(�) =

R
An

eih�;si � (ds) be the �nite Fourier transform and de�ne

the periodogram as

IAn
(�) =

1

(2�)
d
` (An)

dAn (�) dAn (�)
0
:

When the state space is R; Brillinger (1972) showed that, as in stationary time series, the
variance of a periodogram does vanish to zero as the length of the time span where data is

observed goes to in�nity.

Rather than employing an averaged periodogram, we instead restrict our attention to
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the following estimate similar to the one employed in Masry (1978)

bf� (�) = 1

(2�)
d
` (Bn)

X
sj2Bn

X
sk2Bn

e�ih�;sk�sjiwn (sk � sj) zjz0k;

where Bn is a subset of An: The reason for using Bn rather than An is due to the "edge

e¤ect" to be discussed later. The main reason for considering this estimate is that it is

commonly employed in economic applications.

This estimate can be written as

bf� (�) = 1

(2�)
d
` (Bn)

Z
Bn�R

Z
Bn�R

e�ih�;t�siwn (t� s) z1z02 N (ds� dz1) N (dt� dz2) :

Certainly we need that w must be measurable. A product measure of N can be de�ned so

that we can proceed as earlier to show that this integral is indeed a well-de�ned matrix of

random variables.

Also we restrict our discussion on wn such that

wn (u) =
Yd

j=1
k (uj=mjn) ;

where the conditions on k are to be given later. We also assume that limn!1mjn !1; j =
1; � � � ; d:
For � 2 Rd; de�ne

Wn (�) = (2�)
�d
Z
Rd
eih�;uiwn (u) du:

If k is continuous and integrable, then

wn (u) =

Z
Rd
e�ih�;uiWn (�) d�

Now �x n and hence B. ThenZ
Rd
IB (�)Wn (� � �) d�

= (2�)
�d
` (B)

�1 X
sj2B

X
sk2B

zjz
0
ke
�ih�;sk�sji

�Z
Rd
e�ih���;sk�sjiWn (� � �) d�

�
= (2�)

�d
` (B)

�1 X
sj2B

X
sk2B

zjz
0
ke
�ih�;sk�sjiwn (sk � sj) = bf� (�) :

Therefore positive semide�niteness depends on the choice of Wn employed. If k is the

modi�ed Bartlett kernel, i.e.

k (u) = (1� juj) 1 (juj � 1) ;

then

Wn (�) = (2�)
�dYd

j=1
2

 
1� cos (�jmjn)

mjn�
2
j

!
� 0:
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If k is the Parzen kernel, i.e.

k (u) = 1� 6u2 + 6 juj3 ; juj � 1=2;

= 2 (1� juj)3 ; 1=2 < juj � 1;

= 0; juj � 1;

then

Wn (�) =
Yd

j=1

"
192

m3
jn�

4
j

fsin (�jmjn=4)g4
#
� 0:

For higher-order kernels, the weight functions Wn (�) may not be nonnegative.

4.5.1 Bias

Similar to the notation in the previous section, let 
rs (u) denote the (r; s)-th element of the

matrix 
 (u) :

Assumption D1 k : R! R is an even, Lebesgue integrable function such that k (0) =

1; jk (u)j � 1; and for some q > 0;

lim
u!0

�
1� k (u)
jujq

�
= kq;

where kq is �nite and strictly positive.

Assumption D2 For r; s = 1; � � � ; p;
Pd

j=1

R
Rd juj j

maxfq;1g j
rs (u)j �M2 (du) <1:

Assumption D3 For each n 2 N; An has a subset Bn containing Rn = �di=1 [ain; bin] ;

where limn!1 (bin � ain) = 1 for i = 1; � � � ; d: Moreover, fBng is such that for some
constant C;

` (BnnT�uBn)
` (Bn)

� C
dX
i=1

juij
bin � ain

:

Assumption D4 For j = 1; � � � ; d; as n!1; mjn !1
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Theorem D1 Under Assumptions D1 - D4, as n!1;

(2�)
d
n
f� (�)� E bf� (�)o = �1n + �2n + o

0@ dX
j=1

n
m�q
jn + (bjn � ajn)

�1
o1A ;

where

�1n = kq

dX
j=1

m�q
jn

Z
Rd
juj jq 
 (u) �M2 (du) ;

�2n = O

0@ dX
j=1

(bjn � ajn)�1
1A :

Robinson (2007) called �2n the "edge e¤ect" term. In the proof of Theorem D1, it can

be seen that this term arises fromZ
B0
n

�
` (BnnT�uBn)

` (Bn)

�
wn (u) e

�ih�;ui
 (u) �M2 (du) :

If fBng is any van Hove sequence, then Lemma 4 only implies that ` (Bn)�1 ` (BnnT�uBn)
converges to zero. It is unclear how to determine the rate at which ` (Bn)

�1
` (BnnT�uBn)

converges to zero. As a result, we suggest using only a subset Bn of An exhibiting the

property in Assumption D3 so that it becomes easier to determine a more precise bias from

the edge e¤ect term.

4.5.2 Variance

To avoid making complicated, despite being relatively weak, assumptions, we simply assume

that the ground point process is 4-th order stationary. For any sets Ai; i = 1; � � � ; k, we
denote its Cartesian product by �ki=1Ai: Now for a point process N on the state space S,
de�ne Nk

�
�ki=1Ai

�
= �ki=1N (Ai), where Ai are Borel sets in S: It follows that Nk can

be extended to be a point process on Sk: De�ne Mk (A) = E
�
Nk (A)

	
: Again Mk can be

extended to be a measure. If Mk (A) <1; for any bounded Borel set A in Sk; then we say
that Mk is the k-th moment measure of N: If N is a point process on Rd such that its k-th
moment measure exists, and for each j = 1; � � � ; k; bounded Borel subsets A1; � � � ; Aj of
Rd; u 2 Rd;

Mj (TuA1 � � � � � TuAj) =Mj (A1 � � � � �Aj) ;

then we say that the point process N is k-th order stationary. This is the generalization

of the de�nition of second-order stationary in Section 2. The de�nition of higher-order

cumulant measures can be generalized in a similar fashion. The main technical advantage

of the k-th order stationarity is that there exist the reduced k-th order moment measure,
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�Mk; and the reduced k-th order cumulant measure, �Ck; such that for any bounded function

f of bounded supportZ
Sk
f (s1; � � � ; sk) Mk (ds1 � � � � � dsk)

=

Z
Sk
f (s; s+ u1; � � � ; s+ uk�1) ds �Mk (du1 � � � � � duk�1) ;

and similarly for �Ck (see Proposition 12.6.III in Daley and Vere Jones (2008)).

Assumption D5 The ground process is 4-th order stationary with the mean density � and
such that

R
R(j�1)d

��� �Cj��� ��j�1i=1dsi

�
<1; j = 2; 3; 4:

Suppose that �Ng
(zir; zjs; zkr; zls) is the conditional fourth cumulant of zir; zjs; zkr

and zls given the point process Ng:

Assumption D6 For any i; j; k; l 2 N; and r; s = 1; � � � ; p; there exist functions �rs such
that �Ng

(zir; zjs; zkr; zls) = �rs (si; sj ; sk; sl), where �rs is bounded on any bound subset of

R4d: In addition for all r; s = 1; � � � ; p;

sup
x2Rd

Z
R3d
j�rs (x; x+ u1; x+ u2; x+ u3)j �M4 (du1 � du2 � du3) <1:

Assumption D7 For r; s = 1; � � � ; p; 
rr (0) < 1 and
R
Rd j
rs (u)j du < 1; where


rs (sj � si) = E fzrizsj jNgg.

Theorem D2 Suppose An contains Rn de�ned in Assumption D3. Under Assumptions
D4-D7, for r; s = 1; � � � ; p; as n!1

` (An)

mn
(2�)

2d
var

� bfrs (�)�! Z
Rd
w (u)

2
du
n
frr (�) fss (�) + 1 (� = 0) frs (�)

2
o
; (4.10)

where mn = �
d
j=1mjn; w (u) = �

d
i=1k (ui) :

As discussed in Robinson (2007), without taking into account the contribution from the

edge e¤ect to the MSE of bfrs (�), this modi�ed MSE can be minimized by choosing m�
jn =

cj` (Bn)
1=(d+2q) for some positive constants cj . If, as n ! 1; �2n = o

�Pd
j=1

�
m�
jn

��q�
,

then the edge e¤ect is dominated by the standard bias term. Therefore the optimal choice of
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mjn that minimizes the MSE of bfrs (�) is the same as m�
jn. In this case, the MSE vanishes

at the rate ` (Bn)
�2q=(d+2q). The usual curse of dimensionality is present in this optimal

rate. If there is a rectangle Qn such that it is a subset of An and ` (Qn) � C` (An) for

some positive constant C, then one can choose Bn = Qn so that the rate at which the MSE

vanishes to zero will not be a¤ected.

4.6 Positive De�nite Estimate

In Section 4 we see that the asymptotic covariance matrix of the least squares estimate of

the unknown slope parameter of a linear regression is a function of the spectral density at

zero frequency of the random signed measure � de�ned by � (A) =
P

si2A xi"i: The results

in Section 5 suggest how we can obtain a consistent estimate of the matrix of interest.

Under weak dependence of the marked point process, higher-order kernels can be employed

to reduce the bias and hence to achieve a better rate of convergence in the mean square

sense. As can be seen also from Section 5, the curse of dimensionality a¤ecting the rate of

convergence makes higher-order kernels relatively more attractive. However, higher-order

kernels will generally give an estimate that is not positive semide�nite. This can cause a

problem if such estimate, obtained from higher-order kernels, are employed to construct

Wald statistics.

Another application where the trade-o¤ between positive semide�niteness of an estimate

and its rate of convergence is prominent is the GMM estimation with dependent data. A

similar estimation problem arises naturally when one has to estimate the optimal weighting

matrix. There the problem is more serious. An estimate of the optimal weighting matrix

that is not positive semide�nite can make the nonlinear optimization more complicated.

Some discussion can be found in Newey and West (1987).

As a result, we will discuss an algorithm which can be employed to convert an estimate

that is not positive semide�nite into a positive de�nite one. This section is somewhat

independent from the previous sections since the framework we consider is general enough

to cover other estimation problems that are a¤ected by the trade-o¤ described above.

Before continuing the discussion some matrix notations are introduced. As in other

chapters, a square matrix A if said to be positive de�nite if it is symmetric and x0Ax > 0 for

any x 6= 0. For a matrix A, denote its (i; j)-th element by aij . For a square matrix A denote
the largest and smallest eigenvalues of A by � (A) and �(A) ; respectively: For any p � p

symmetric matrix A, let Ai be the leading principal submatrix of A determined by the �rst

i rows and columns. From its de�nition associated with the quadratic form, it can be easily

shown that a square matrix A of order p is positive de�nite if and only if Ai are positive

de�nite for all i = 1; :::; p:

Algorithm

Suppose that we are given a p�p matrix B. For simplicity of notation, we assume that B
is symmetric. Otherwise, we can take a transformation (B +B0) =2 so that the transformed

matrix is symmetric. Now let c and u be positive numbers. We can modify a symmetric
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matrix B to obtain a new matrix T (B; c; u) = E that is positive de�nite using the following

algorithm.

(i) If b11 � c; then set e11 = b11. Otherwise, set e11 = c:

(ii) For any i = 2; :::; p; determine the leading principal submatrix Ei�1 of E. Let ei�1
be an (i� 1)-vector ei�1 = (e1i; � � � ; ei�1;i)0 : For each j = 1; � � � ; i � 1; if jbjij � u; set

eji = bji. Otherwise, set eji = �u if bji < 0; and set eji = u if bji > 0; where bji is the

(j; i)-th element of B:

(iii) Set

Ei =

 
Ei�1 ei�1

e0i�1 eii

!
:

If bii � e0i�1E
�1
i�1ei�1 + c, then set eii = bii: Otherwise, set eii = e0i�1E

�1
i�1ei�1 + c:

Unlike proofs of other theorems, the proof of Theorem 6.1 is presented here as it may

help justify our algorithm.

Theorem E1 For any p� p matrix B; the matrix E = T (B; c; u) is positive de�nite.

Proof. For simplicity of notation, we assume that B is already symmetric. The proof is

based on the necessary and su¢ cient condition on a positive de�nite matrix given above

and mathematical induction. Let E = T (B; c; u) : It is clear that the �rst leading principal

submatrix E1 is positive de�nite. Now suppose that for some i = 1; :::; p� 1; Ei is positive
de�nite. For any non-zero vector x 2 Ri+1; partition x such that x = (x01; x2)

0 where x1 2 Ri

and x2 is a real number. Then

x0Ei+1x = x01Eix1 + x2e
0
ix1 + x2x

0
1ei + ei+1;i+1x

2
2

=
�
x1 + E

�1
i eix2

�0
Ei
�
x1 + E

�1
i eix2

�
+ x22

�
ei+1;i+1 � e0iE�1i ei

�
: (4.11)

If x2 = 0, then x1 6= 0 and the �rst term in (4.11) is positive. If x2 6= 0, x1 can be chosen
so that x1 = �E�1i eix2: In this case, the necessary and su¢ cient condition for Ei+1 to be

positive de�nite is that ei+1;i+1 > e0iE
�1
i ei: By our de�nition of ei+1;i+1; this is indeed the

case. Hence, the required result holds. Note again that Ei+1 is positive de�nite if and only

if ei+1;i+1 > e0iE
�1
i ei:

This algorithm does two jobs. First, steps (i) and (iii) ensure that e11 � c and ei+1;i+1 �
e0i+1E

�1
i ei+1 + c; i = 2; � � � ; p; so that the matrix E = T (B; c; u) is positive de�nite.

Second, step (ii) sets an upper bound u for the absolute values of the o¤-diagonal elements

of B. In practice, we can set u to be so large that none of the o¤-diagonal elements of B

will be a¤ected. From the proof of Theorem 6.1, a reason each leading principal submatrix

Bi; i = 1; � � � ; p; of B; is not positive de�nite is that the last inequality of the proof of
Theorem 6.1 does not hold. Recall that positive de�niteness of a matrix depends (necessarily
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and su¢ ciently) on positive de�niteness of its leading principal submatrices. As a result, the

algorithm proposed here seems to make a minimum alteration of the original matrix to make

it positive de�nite. One may argue that rather than requiring bii � e0iE
�1
i�1ei+ c, we simply

need bii > e0iE
�1
i�1ei without a¤ecting positive de�niteness of T (B; c; u). This is indeed

correct but there can be some undesirable consequences. First, if bii�e0iE�1i�1ei is very small
then the matrix Ei is near singularity. This can cause some serious computational problems.

Second, the near singularity of Ei can lead to another theoretical consequence that some of

its diagonal elements that is greater than e0iE
�1
i ei may not have �nite second moment. The

latter reason also explains why we impose an upper bound u on the o¤-diagonal elements.

Rather than choosing �xed values of u and c, it is possible to employ sequences fung and
fcng where as n ! 1; un ! 1 and cn ! 0 without a signi�cant impact on the rate of

convergence of T (B; c; u) : Taking cn and un into account, it is possible to determine a lower

bound for the smallest eigenvalue of T (B; c; u) :

Theorem E2 For given values of c and u; for i = 1; :::; p; let Ei be the leading principal
submatrix of E = T (B; c; u). Let a1 = c and ai = c

�
1 + (i� 1)u2a�2i�1

��1
, i = 2; � � � ; p:

If c � 1 and u � 1; then
� (Ei) � ai; i = 1; � � � ; p:

Theorem 6.2 indicates another advantage of our algorithm. The choices of u and c allow

us to control the condition number of the matrix T (B; c; u) : If the actual interest is on the

inverse of T (B; c; u) rather T (B; c; u) itself, then, from a computational point of view, c

and u can be chosen to avoid the "ill conditioned" problem. Now consider an impact of our

algorithm on the rate of convergence, in the mean square sense, of an original matrix.

Theorem E3 Suppose that b
 is an estimate of an unknown matrix 
0 whose elements have
the mean square error (MSE) of order O (fn) : Let fcng and fung be sequences of positive
numbers employed in the algorithm mentioned above. De�ne ~
 = T

�b
; cn; un� and let !0ij ;e!ij be the (i; j)-th element of 
0 and ~
 respectively: Suppose that as n!1; cn = o (1) and

un !1: Then as n!1; for i; j = 1; � � � ; p;

E (e!ij � !0ij)2 = O
�
u2nfn

�
; i 6= j;

and

E (e!ii � !0ii)2 = O (fn) ; i = 1;

= O (ainfn) ; i � 2;

where a2n = c�2n u6n and ain = c�2
i+2

n u2
i

n ai�1n; i > 2:
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Now go back to the trade-o¤ problem. Suppose that there are two estimates b
1 andb
2 whose elements have the MSE of order n��1 and n��2 respectively, where 0 < �1 <

�2. It is often the case that the unknown matrix 
0 is positive de�nite, b
1 is positive
semide�nite but b
2 is not positive semide�nite. If it is desirable for an estimate to be at
least positive semide�nite, practitioners may normally choose b
1 over b
2 despite a faster
rate of convergence of b
2. Now if we set cn = O

�
(log n)

�1
�
and un = O (log n), then for

any " > 0; the MSE of elements of T
�b
2; cn; un� is o �n�(�2�")�. Therefore T �b
2; cn; un�

is both positive de�nite and converges faster than b
1.

4.7 Final Comments

In this chapter, we propose an interpretation that irregularly-spaced cross-sectional data

can naturally be regarded as a realization of a marked point process. We also show that

linear functionals of a marked point process can be employed to construct a random (signed)

measure appearing in many econometric applications including the least squares estimate of

unknown slope parameters in a linear regression model. Under reasonably weak assumptions,

including the presence of spatial dependence among observations, such a random (signed)

measure is wide-sense second-order stationary and thus has a spectral measure analogous to

a spectral measure of a second-order stationary time series. Based on mixing assumptions,

we develop asymptotic properties of a random (signed) measure which can be applied in

econometric applications. We show the asymptotic normality of the least squares estimate

of regression coe¢ cients and �nd that its asymptotic variance matrix is the spectral density

at zero frequency of the associated random (signed) measure.

Even though the Toeplitz structure of the variance matrix of spatial observations is lost

when the locations are irregularly spaced, the �nding in this chapter shows that there is a

close connection between an analysis of regularly spaced time series and of irregularly spaced

spatial data. The �nding suggests that many known spectral analysis of time series should

be applicable to spatial data. For example, it should be possible to perform a nonparametric

test for zero spatial correlation of the observations(the marks) by considering the shape of the

spectral density of the associated random (signed) measure. An analysis of cross spectra

my be useful in investigating interdependence or linkages among various cross-sectional

variables. Moreover, our �nding suggests that spatio-temporal dependence can be modelled

in a uni�ed framework via the use of spectral analysis. However, a success of an attempt to

extend known results in spectral analysis of time series to the spatial context would depend

on a success in dealing with the spectral measure of the spatial case that is not totally �nite.

Asymptotic properties of a random (signed) measure, which are developed based on

mixing assumptions, should be directly applicable to nonlinear estimation with spatial data.

It should not be di¢ cult to extend our results to GMM estimation. Concerning estimation

of the spectral density of a random (signed) measure, a subset Bn of a sampling region An
and its required properties are introduced to avoid bias from the edge e¤ect. One possible
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approach to avoid employing a subset Bn and retain e¢ ciency by employing An is to employ

tapering in spectral density estimation as shown in Robinson (2007).

In the last section, rather independent from the other sections of the chapter, we discuss

estimation of an unknown positive de�nite matrix. We propose an algorithm which can be

employed to transform an estimate of the unknown matrix into a positive de�nite estimate.

Despite an arbitrary decrease in the rate of mean square convergence of the estimate, this

algorithm opens an opportunity for higher-order kernels to become more useful in many

econometric applications such as estimation of asymptotic variance matrices or optimal

weighting matrices in GMM estimation. Simulation results showing �nite-sample properties

of applications of this algorithm on estimates with higher-order kernels compared with

standard estimates with modi�ed Bartlett or Parzen kernels should be conducted. An

improvement of precision of an estimate based on this algorithm will generate a challenging

problem for both theorists and practitioners. For example, it is known that the weaker

the time or spatial dependence is, the faster the rate of convergence of a spectral density

estimate could be when higher-order kernels are employed. It is therefore crucial to get some

information concerning the degree of time or spatial dependence so that an appropriate

choice of kernel can be chosen. A data-dependent procedure which can re�ect the degree

of time or spatial dependence will be crucial to future development of spectral density or

asymptotic variance estimation.

Appendix 4.1: Proof of Theorems

For the rest of this paper, for any subsetA; B ofX, letBnA = fx 2 X : x 2 B and x =2 Ag :

Proof of Theorem A1 By Lemma 2, f� is a non-negative and continuous function.

De�ne G� (A) =
R
A
f� (�) d� for any Borel set A. Then G� is a measure that is absolutely

continuous. For any  2 S
�
Rd
�
,  (x) = (2�)�d

R
Rd e

�ih�;xie (�) d�, by Fubini�s theorem,Z
Rd
 (x) �C2 (dx) =

Z
Rd
e (�)�(2�)�d Z

Rd
e�ih�;xi �C2 (dx)

�
d�

=

Z
Rd
e (�) f� (�) d�

=

Z
Rd
e (�) G� (d�) :

Since the Parseval identity (4.4) holds for every  in the Schwartz space, G� = F�.

Proof of Theorem A2 By Assumption A2,for any bounded A; B 2 B
�
Rd
�

Cov (W (A) ; W (B)) =

Z
Rd

Z
Rd
1B (s)1A (s+ u) �C2 (du) ds

=

Z
Rd

�Z
Rd
1B (s)1A (s+ u) ds

�
�C2 (du) : (4.12)
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By Lemma 3, the integral in the brackets is Lebesgue integrable and continuous in u. More-

over
R
Rd e

ih�;ui �R
Rd 1B (s)1A (s+ u) ds

�
du = e1A (�) e1B (�) : Since the Lebesgue measure

is translation bounded, e1A (�) e1B (�) is Lebesgue integrable (see exercise 8.6.8 in Daley
and Vere-Jones (2003) and employ Schwarz�s inequality). Similar to the proof of Theorem

A1, the Fourier inversion theorem of continuous and Lesbesgue integrable functions can be

employed to show that the right of (4.12) is

(2�)
�d
Z
Rd

Z
Rd
e�ih�;uie1A (�) e1B (�) d� �C2 (du) =

Z
Rd
e1A (�) e1B (�) fW (�) d�: (4.13)

Proceeding as in the proof of Lemma 2, fW is a non-negative continuous function. It remains

to show that the measure de�ned by FW (A) =
R
A
fW (�) d� for any Borel set A, is in C.

First for any bounded Borel set A;Z
Rd

���e1A (�)���2 FW (d�) =

Z
Rd

���e1A (�)���2 fW (�) d�

�
�
sup
�2Rd

fW (�)

�Z
Rd

���e1A (�)���2 d� <1

since, by (4.5), the function fW is uniformly bounded and
R
Rd

���e1A (�)���2 d� < 1 as the

Lebesgue measure is translation bounded. It follows from (4.12) and (4.13) that E fW (A)g2 =R
Rd

���e1A (�)���2 fW (�) d� for any bounded Borel set A. Consider a decreasing sequence fAng
of bounded Borel sets such that limn!1 ` (An) = 0: As the process W is wide-sense second-

order stationary,

lim
n!1

Z
Rd

���e1An (�)
���2 fW (�) d� = lim

n!1
E
n
W (An)

2
o
= 0:

Hence FW 2 C.

Proof of Theorem A3 Throughout the proof of this theorem, sets A; B and

fAng denote bounded Borel sets and a sequence of bounded Borel sets in Rd: Using iterated
expectation, Assumption A4 implies that E f� (A)g = 0 for all A. For any A and B, by

Assumptions A3 and A4,

Cov f� (A) ; � (B)g = E [E f� (A) � (B)jNgg]

= E
�Z

Rd

Z
Rd
1A (s) 1B (t) 
z (t� s) Ng (ds)Ng (dt)

�
=

Z
Rd

Z
Rd
1A (s) 1B (s+ u) 
z (u) ds �M2 (du) (4.14)

By Schwarz�s inequality, j
z (u)j � 
z (0) for all u 2 Rd. As A is bounded, V ar f� (A)g �
j
z (0)jM2 (A�A) <1 where M2 is the second moment measure of Ng. De�ne B � A as

in (4.27), then

Cov f� (A) ; � (B)g =
Z
B�A

` (A \ T�uB) 
z (u) �M2 (du) (4.15)
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For any v 2 Rd; it it follows that

Cov f� (TvA) ; � (TvB)g =

Z
TvB�TvA

` (TvA \ T�uTvB) 
z (u) �M2 (du)

=

Z
B�A

` fTv (A \ T�uB)g 
z (u) �M2 (du) ;

as TvB � TvA = B �A: Since the Lebesgue measure is translation invariant,

Cov f� (TvA) ; � (TvB)g = Cov f� (A) ; � (B)g ;

for all A; B 2 B
�
Rd
�
and v 2 Rd. By de�nition of �; for disjoint A and B; � (A [B) =

� (A) + � (B) a.s. and hence � is �nitely additive in the mean square sense too. De�ne A0

as in (4.27). Now consider a decreasing sequence such that limn!1 ` (An) = 0: It follows

from (4.15) that for all n 2 N;

E
n
� (An)

2
o

� j
z (0)j
Z
Rd
1A0

n
(u) ` (An \ T�uAn) �M2 (du)

� j
z (0)j
Z
Rd
1A0

1
(u) ` (A1 \ T�uA1) �M2 (du)

= j
z (0)jM2 (A1 �A1) <1:

As ` (An \ T�uAn) � ` (An) ! 0 as n ! 1; it follows from dominated convergence that

limn!1 E
n
� (An)

2
o
= 0: Hence � is wide-sense second-order stationary.

Let 
+z = max f
z; 0g and 
�z = �min f
z; 0g : De�ne �+ (A) =
R
A

+z (u) �M2 (du) and

�� (A) =
R
A

�z (u) �M2 (du) for any Borel set A. By (4.6), �+ and �� are �nite measures

that are absolutely continuous with respect to the measure �M2 where 
+z and 

�
z are their

Radon-Nikodym derivatives. Then � = �+ � �� is a signed measure. For bounded Borel

sets A and B, using Fubini�s theorem,

Cov

�Z
Rd
1A (s) � (ds) ;

Z
Rd
1B (s) � (ds)

�
=

Z
Rd

Z
Rd
1A (s)1B (s+ u) 
z (u) ds �M2 (du)

=

Z
Rd

Z
Rd
1A (s)1B (s+ u) ds � (du) :

Since �+ and �� are �nite measures,
R
Rd j�j (du) < 1; where j�j = �+ + ��: Hence, by

Theorem A2, the spectral measure of � is absolutely continuous with the continuous spectral

density

f� (�) = (2�)
�d
Z
Rd
e�ih�;ui � (du) = (2�)

�d
Z
Rd
e�ih�;ui
z (u) �M2 (du) :

Proof of Theorem B1 For any �nite set B, let jBj be its cardinality. Consider a 2
Rd satisfying Assumption B2. Assumption B2 (ii) implies that limn!1 ` (AnnDn) =` (An) =

0: Since

` (An)
�1 f� (An)� � (Dn)g = ` (An)

�1
� (AnnDn) ;
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Assumption B1 implies that ` (An)
�1
� (An)�` (An)�1 � (Dn)!1 0: LetBn = fm : �m � Ang :

Then � (Dn) =
P

m2Bn
� (�m) : The remaining part of the proof is just a slight modi�cation

of a standard proof of weak law of large numbers. For any " > 0;

` (An)
�1
� (Dn) = ` (An)

�1 X
m2Bn

�
�0 (�m)� E�0 (�m)

	
+` (An)

�1 X
m2Bn

�
�00 (�m)� E�00 (�m)

	
;

(4.16)

where �0 (�m) = � (�m) 1 (j� (�m)j � �) ; �00 (�m) = � (�m) 1 (j� (�m)j > �) and, by As-

sumption B2 (i), � is chosen so that supm2Zd E
���00 (�m)�� < "` (� (a)) =2:

Because �0 (�m) is F� (�m)-measurable, following the proof of Theorem 17.2.1 in Ibrag-

imov and Linnik (1971), it can be shown that, for m 6= m0;

��Cov ��0 (�m) ; �0 (�m0)
	�� � 4�2� (�m; �m0) :

Since � (�m; �m0) � � (r) if D (�m; �m0) � r; Assumption B2 (iii) implies that there is

r0 <1 such that � (�m; �m0) < "=
�
8` (� (a))

�2
�2
�
for allm; m0 such thatD (�m; �m0) �

r0: The second moment of the �rst sum in (4.16) is bounded by

` (An)
�2 XX

m;m02Bn

��Cov ��0 (�m) ; �0 (�m0)
	��

� ` (� (a))
�2 jBnj�2

"X
E1n

4�2� (�m; �m0) +
X
E2n

��Cov ��0 (�m) ; �0 (�m0)
	��# ;(4.17)

where

E1n = f(m; m0) : m; m0 2 Bn; D (�m; �m0) � r0g ;

E2n = f(m; m0) : m; m0 2 Bn; D (�m; �m0) < r0g :

The contribution from the �rst term in (4.17) is bounded by "=2. Moreover, there is

Cr0 < 1 such that jE2nj < Cr0 jBnj : Hence the second term in (4.17) is bounded by

` (� (a))
�2 jBnj�1 �2Cr0 . Assumptions B1 (i) and B2 (ii) implies that there is N <1 such

that for all n > N; the second term in (4.17) is less than "=2: Thus the �rst sum in (4.16)

converges to zero in the second mean.

For the second sum in (4.16),

E

�����` (An)�1 X
m2Bn

�
�00 (�m)� E�00 (�m)

	����� � ` (An)
�1
(
2
X
m2Bn

E
���00 (�m)��)

� ` (An)
�1
�
2 jBnj sup

m2Zd
E
���00 (�m)���

� 2` (� (a))
�1

sup
m2Zd

E
���00 (�m)�� < ":

Hence the second sum in (4.16) converges to zero in the �rst mean.

172



Proof of Theorem B2 It follows that there is a; b 2 �m such that a 2 A, and b 2
Ac; where Ac denote the complement of A: Consider c (t) = ta+ (1� t) b, where t 2 [0; 1] :
Let C = fc (t) : 0 � t � 1g : By de�nition of �m; it follows that C � �m; C \ A 6= ; and
C \ Ac 6= ;: For a subset A of a metric space X; let int (A) be the interior of A: If either

a =2 int (A) or b =2 int (Ac), then either a 2 @A or b 2 @A: Hence, the required result holds.
It remains to consider the case when a 2 int (A) and b 2 int (B) :
Let D = fs 2 [0; 1] : c (t) 2 int (A) for all t � sg : Clearly c (0) = a 2 int (A) so that

D 6= ;: In addition there is "1 > 0 such that [0; "1] � D. Similarly c (1) = b 2 int (Ac) so
that 1 is an upper bound forD and there is "2 > 0 such that c (t) 2 int (Ac) for 1�"2 � t � 1:
Then supD exists and let � = supD: It follows that 0 < � < 1: Clearly c (�) =2 int (A),

otherwise there is a contradiction. Similarly c (�) =2 int (Ac). Hence c (�) 2 C � �m and

c (�) 2 @A:

Proof of Theorem B3 Consider any a = (a1; a2)
0 2 R2 such that ai 6= 0; i = 1; 2:

Let a0 = min fa1; a2g : Let B1n = fm : �m � int (An)g ; B2n = fm : �m � Ang ; B3n =
fm : �m \An 6= ;g ; and B4n =

�
m : �m \An 6= ;

	
; where int (An) and An are the interior

and closure of An respectively: It follows that B1n � B2n � B3n � B4n. Hence jB1nj �
jB2nj = N�

a (An) and N
+
a (An) = jB3nj � jB4nj : Then

N+
a (An)�N�

a (An) � jB4nnB1nj : (4.18)

Since B4nnB1n =
�
m : x 2 An and y =2 int (An) for some x; y 2 �m

	
; B4nnB1n � B5n

where B5n = fm : �m \ @An 6= ;g by Assumption B2.
By Lemma 5, the function L, de�ned there, is continuous. For su¢ ciently large n; by

the intermediate value theorem, there exists t such that L (t) = a0=2: Take t1 to be the

supremum of such t. Similarly we can �nd tr such that L (tr) = ra0=2 �length(
n) : As
L is nondecreasing, tr � tr+1: If 2length(
n) =a0 > b2length (
n) =a0c, where b�c is the
�oor function, set Rn = b2length (
n) =a0c + 1: Then @An = [Rn

r=1 f
 ([tr�1; tr])g, where

 ([tr�1; tr]) is the image of 
 over [tr�1; tr] with length at most a0=2:

Note that in the Euclidean space, any curve joining two endpoints with the mini-

mum length is a straight line segment. It can be shown, by considering every possible

cases, that each 
 ([tr�1; tr]) can be contained within 4 adjacent �ms; whose union is a

2a1 � 2a2 rectangle. Let B6n be the union, over r = 1; 2; � � � ; Rn; of all such m. Then
B5n � B6n and jB6nj � 4Rn: Let D1n = [f�m : m 2 B1ng ; D4n = [f�m : m 2 B4ng ;
and D6n = [f�m : m 2 B6ng : Since B4nnB1n � B6n; ` (An) � ` (D4n) � ` (D6n) +

` (D1n) : Hence ` (An) � ` (D1n) � ` (An) � 4Rna1a2: Since as n ! 1; length(
n) =
o (` (An)) ; ` (D1n) =` (An)! 1. Hence limn!1N�

a (An) =1. SinceN+
a (An) � ` (D1n) = (a1a2)

and B4nnB1n � B6n; (4.18) implies that limn!1 fN+ (An)�N�
a (An)g =N+

a = 0: Therefore

fAng converges to in�nity in the sense of van Hove.
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Proof of Theorem C Note that

[` (An)]
1=2
�
�̂ � �0

�
=

 
` (An)

�1 X
si2An

xix
0
i

!�1 
` (An)

�1=2 X
si2An

zi

!
:

For r = 1; � � � ; p; let �r = E
�
x2ir
��Ng� : For any bounded Borel set A; by Assumption C1

and Schwarz�s inequality,

E j�rs (A)j � E

 X
si2A

jxirxisj
!
� �

Z
A

�r (t)
1=2

�s (t)
1=2

dt

� �

�Z
A

�r (t) dt

�1=2�Z
A

�s (t) dt

�1=2
� C�` (A) ;

where � is the mean density of Ng: Hence Assumption B1 holds for each element of �.

For l00 in Assumption C2, take �m = Tma�(a) where a = l00: Assumption C2 im-

plies that the family f�rs (�m)g is uniformly integrable. Since � (r) � �� (r; k) ; where

k = � (� (a)) ; Assumption C4 implies that limr!1 � (r) = 0. Hence these results and As-

sumption C3 implies that Assumption B2 holds. Thus Theorem B1, Assumption C1 and

Lemma 4 imply that

` (An)
�1
� (An)!p �: (4.19)

For any � 2 Rp such that k�k = 1; de�ne

�� (An) = �0� (An) = �0
X
si2An

zi:

Assumption C1 implies that E�� (An) = 0 for all n 2 N. Let A0n = [f�00m : �00m � Ang ;
where �00m = Tma0�(a

00) and a00 = l0 in Assumption C2. Since fAng converges to in�nity
in the sense of van Hove, limn!1

�
`
�
A0n
�
=` (An)

�
= 1: By Lemma 6, as n!1;

1

` (An)
E
�
�� (An)� ��

�
A0n
��2

=
V ar

�
��
�
AnnA0n

�	
` (An)

! 0: (4.20)

Hence

` (An)
�1=2 �

�� (An)� ��
�
A0n
�	
!p 0: (4.21)

Since Lemma 6 and Assumptions C2-C4 imply that all conditions in Bulinskii and

Zhurbenko (1976) are satis�ed, it follows that

��
�
A0n
�
=V ar

�
��
�
A0n
��1=2 !d N (0; 1) : (4.22)

Now Lemma 6 and (4.20) and imply that

V ar
�
��
�
A0n
�	
=` (An)! �0��: (4.23)

Then (4.22) and (4.23) imply that

` (An)
�1=2

��
�
A0n
�
!d N

�
0; �0��

�
:
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Hence this with (4.19) and (4.21) conclude the proof.

Proof of Theorem D1 Let frs (�) be the (r; s)-th element of f� (�) and similarly

for bf� (�) :
(2�)

d
h
frs (�)� E

n bfrs (�)oi
=

Z
Rd
e�ih�;ui
rs (u) �M2 (du)�

Z
Rd
` (Bn)

�1
` (Bn \ T�uBn) e�ih�;uiwn (u) 
rs (u) �M2 (du)

=

Z
B0
n

f1� wn (u)g e�ih�;ui
rs (u) �M2 (du) +

Z
(B0

n)
c

e�ih�;ui
rs (u) �M2 (du) (4.24)

+

Z
B0
n

�
1� ` (Bn \ T�uBn)

` (Bn)

�
wn (u) e

�ih�;ui
rs (u) �M2 (du) :

Recall that R0n = �di=1 [ain � bin; bin � ain] : Note that for any u 2 Rd; 1B0
n
(u) �

1R0
n
(u) and limn!1 1R0

n
(u) = 1: For the �rst term in (4.24), it can be proceeded similar to

Robinson (2007), with the summation sign replaced by the integral sign, to show that the

�rst term is the (r; s)-th element of �1n + o (�1n) :

The modulus of the second term in (4.24) is bounded by

Z
(R0

n)
c

j
rs (u)j �M2 (du) �
dX
j=1

(bjn � ajn)�1
Z
(R0

n)
c

juj j j
rs (u)j �M2 (du)

= o

0@ dX
j=1

(bjn � ajn)�1
1A :

The modulus of last term in (4.24) is bounded by

C

Z
B0
n

dX
j=1

juj j
bjn � ajn

j
rs (u)j �M2 (du) = O

0@ dX
j=1

(bjn � ajn)�1
1A :

Proof of Theorem D2 Let

�rs (s1; s2; s3; s4) = �rs (s1; s2; s3; s4) + 
rr (s3 � s1) 
ss (s4 � s2) + 
rs (s4 � s1) 
sr (s3 � s2) ;

� (s1; s2; s3; s4) = e�ih�;s2�s1�s4+s3iwn (s2 � s1)wn (s4 � s3) :
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The left side of (4.10) is

1

` (An)mn

Z
B4
n

� (s1; s2; s3; s4) �rs (s1; s2; s3; s4)M4

�
�di=1dsi

�
(4.25)

+
1

` (An)mn

(Z
B4
n

� (s1; s2; s3; s4) 
rs (s2 � s1) 
rs (s4 � s3)M4

�
�di=1dsi

�
�

Z
B4
n

� (s1; s2; s3; s4) 
rs (s2 � s1) 
rs (s4 � s3)M2 (ds1 � ds2)M2 (ds3 � ds4)
)
:

Lemma 7 implies that the contribution from �rs to the �rst integral in (4.25) is O (` (Bn)) :

In di¤erential form, it follows that

M4 (dx1 � � � � � dx4)

= C4 (dx1 � � � � � dx4) +M1 (dx1)C3 (dx2 � dx3 � dx4)

+M1 (dx2)C3 (dx1 � dx3 � dx4) +M1 (dx3)C3 (dx1 � dx2 � dx4)

+M1 (dx4)C3 (dx1 � dx2 � dx3) + C2 (dx1 � dx2)C2 (dx3 � dx4)

+C2 (dx1 � dx3)C2 (dx2 � dx4) + C2 (dx1 � dx4)C2 (dx2 � dx3)

+M1 (dx1)M1 (dx2)C2 (dx3 � dx4) +M1 (dx1)M1 (dx3)C2 (dx2 � dx4)

+M1 (dx1)M1 (dx4)C2 (dx2 � dx3) +M1 (dx2)M1 (dx3)C2 (dx1 � dx4)

+M1 (dx2)M1 (dx4)C2 (dx1 � dx3) +M1 (dx3)M1 (dx4)C2 (dx1 � dx2)

+M1 (dx1)M1 (dx2)M1 (dx3)M1 (dx4) ;

where Cj are the j-th cumulant (signed) measure. Since Ng is also 1-st order moment

stationary, M1 (dx) = � dx: The results and proofs from Lemmas 7-10 can be employed to

show that most contribution, from the expansion above, to the �rst term in (4.25) that is

associated with 
rr (s3 � s1) 
ss (s4 � s2) is O
�
m�1
n

�
:

The nontrivial contribution is from

M2 (dx1 � dx3)M2 (dx2 � dx4)

= C2 (dx1 � dx3)C2 (dx2 � dx4) + �2C2 (dx1 � dx3) dx2dx4
+�2dx1dx3C2 (dx2 � dx4) + �4dx1dx2dx3dx4:

Therefore Lemma 11 implies that the contribution to the �rst term in (4.25) from


rr (s3 � s1) 
ss (s4 � s2) is precisely frr (�) fss (�)
R
Rd w (u)

2
du:

The same reasoning and the standard step employed for time series can be employed to

show that if � 6= 0; the contribution from 
rs (s4 � s1) 
rs (s3 � s2) is 0: However if � = 0;
then the contribution is frs (�)

2 R
Rd w (u)

2
du: Finally the contribution from the terms in

brackets in (4.25) is also O
�
m�1
n

�
:

Proof of Theorem E2 For i = 1; � (E1) � c = a1: The remaining part of the

proof employs the well-known result that for any symmetric p � p matrix A, � (A) =
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supx2Rp:kxk=1 x
0Ax and �(A) = infx2Rp:kxk=1 x0Ax: Now consider i � 2;

Ei =

 
Ei�1 ei�1

e0i�1 eii

!
:

For x = (x01; x2) 2 Ri where x2 is a scalar, from the proof of Theorem E1,

x0Eix =
�
x1 + E

�1
i�1ei�1x2

�0
Ei�1

�
x1 + E

�1
i�1ei�1x2

�
+ x22

�
eii � e0i�1E�1i�1ei�1

�
:

Suppose that x 2 Ri such that kxk = 1: If x2 = 0, then kx1k = 1 and x0Eix = x01Ei�1x1 �
� (Ei�1). Now if x2 6= 0, then x0Eix � x22

�
eii � e0i�1E�1i�1ei�1

�
since x1 can be chosen so

that x1 = �E�1i�1ei�1x2: As x1 = �E�1i�1ei�1x2; it follows that, in order to have kxk =
1; x22 =

�
1 + e0i�1E

�1
i�1E

�1
i�1ei�1

��1
: Hence

� (Ei) = min
n
� (Ei�1) ;

�
1 + e0i�1E

�1
i�1E

�1
i�1ei�1

��1 �
eii � e0i�1E�1i�1ei�1

�o
:

The results we have shown so far are independent of our algorithm. Now, under our algo-

rithm, eii � e0i�1E�1i�1ei�1 � c. Since Ei�1 is positive de�nite,

e0i�1E
�1
i�1E

�1
i�1ei�1 � kei�1k2 �

�
E�1i�1E

�1
i�1
�
� (i� 1)u2�

�
E�1i�1

�2
= (i� 1)u2� (Ei�1)�2 :

Hence

�
1 + e0i�1E

�1
i�1E

�1
i�1ei�1

��1 �
eii � e0i�1E�1i�1ei�1

�
� c

�
1 + (i� 1)u2� (Ei�1)�2

��1
:

Since c � 1 and u � 1; by simple arithmetic,

� (Ei�1) � c
�
1 + (i� 1)u2� (Ei�1)�2

��1
:

Hence

� (Ei) � c
�
1 + (i� 1)u2� (Ei�1)�2

��1
:

Suppose that for i � 2; � (Ei�1) � ai�1. Then � (Ei) � c
�
1 + (i� 1)u2a�2i�1

��1
= ai since

the function f (x) =
�
1 + cx�2

��1
, where c > 0; is increasing in x when x > 0: Hence the

required result holds by mathematical induction.

Proof of Theorem E3 Let b!ij be the (i; j)-th element of b
: For i 6= j

e!ij � !0ij = (b!ij � !0ij)1 (jb!ij j � un) + (un � !0ij)1 (b!ij > un)

+ (�un � !0ij)1 (b!ij < �un) :
Clearly

E f(b!ij � !0ij)1 (jb!ij j � un)g2 � E (b!ij � !0ij)2 = O (fn) :
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Now

E f(un � !0ij)1 (b!ij > un)g2 = (un � !0ij)2 P fb!ij > ung = O
�
u2nfn

�
;

where the last equality follows from the following argument. As limn!1 un = 1; for
su¢ ciently large n;

P fjb!ij j > ung � P fjb!ij j > 2 j!0ij jg � P fjb!ij � !0ij j > j!0ij jg
� j!0ij j2 E jb!ij � !0ij j2 = O (fn) ;

by Markov�s inequality. The same result can be shown for (�un � !0ij)1 (b!ij < �un) :
Hence, the �rst required result holds.

The rest of the proof is based on mathematical induction. Now

e!11 � !011 = (b!11 � !011)1 (b!11 � cn) + (cn � !011)1 (b!11 < cn) :

Clearly the second moment of the �rst term is O (fn) : By Lemma 13,

E f(cn � !011)1 (b!11 < cn)g2 = (c1n � !011)2 E f1 (b!11 < cn)g = O (fn) :

Then the required result holds for i = 1:

For i � 2; suppose that the mean square error of each of the element of e
i�1; the leading
principal submatrix of e
, is O (ai�1;nfn) : Now

e!ii � !0ii = (b!ii � !0ii)1 �b!ii � eti + cn�+ �eti + cn � !0ii�1 �b!ii < eti + cn� (4.26)

where eti = e!0i�1e
�1i�1e!i�1 and e!i�1 = (e!1i; � � � ; e!i�1;i)0 : Again the second moment of the
�rst term is O (fn) : Recall that e
i�1 is positive de�nite. If e!i�1 6= 0;

eti = e!0i�1e
�1i�1e!i�1 � ke!i�1k2 ��e
�1i�1� � (i� 1)u2n n��e
i�1�o�1 :
Using the result from Theorem E2, it can be shown by induction thatn

�
�e
i�o�1 = O

�
c�2

i+1
n u2

i�2
n

�
:

Hence eti = O
�
c�2

i�1+1
n u2

i�1

n

�
:

Let

Ei =

 e
i�1 e!i�1e!0i�1 b!ii
!
:

From the proof of Theorem E2, it follows that

� (Ei) = min

�
�
�e
i�1� ; �1 + e!0i�1e
�1i�1e
�1i�1e!i�1��1 �b!ii � e!0i�1e
�1i�1e!i�1�� :

Therefore � (Ei) � b!ii � eti: Hence b!ii < eti + cn implies � (Ei) < cn:

For i = 2; due to the o¤-diagonal elements, the mean square error of each elements of
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E2 is O
�
u2nfn

�
. Hence, by Lemma 13,

E
n
1
�b!ii < eti + cn�2o = P

�b!ii < eti + cn	
� P f� (Ei) < cng

= O
�
u2nfn

�
:

Therefore the second moment of the second term in (4.26) isO
�
c�2n u6nfn

�
: Thus E (e!ii � !0ii)2 =

O
�
c�2n u6nfn

�
.

For i > 2; the MSE of each elements of Ei isO (ai�1;nfn). Therefore E
n
1
�b!ii < eti + cn�2o =

O (ai�1;nfn) by Lemma 13. Hence

E (e!ii � !0ii)2 = O
�
c�2

i+2
n u2

i

n ai�1;nfn

�
:

Appendix 4.2: Technical Lemmas for proofs of Theo-
rems

For any subsets A; B of Rd; let

B �A = fb� a : a 2 A; b 2 Bg and A0 = A�A: (4.27)

Also let 1A be the indicator function such that 1A (s) = 1 if x 2 A and 0 otherwise.

Lemma 1 For any subsets A; B of Rd and any s; u 2 Rd;

1A (s)1B (s+ u) = 1A\T�uB (s)1B�A (u) ;

where TuA is de�ned as in (4.3)

Proof. For s and u such that s 2 A and s+ u 2 B; there exists t 2 B such that s+ u = t.

Hence u = t � s where s 2 A; t 2 B, i.e. u 2 B � A: Since s + u 2 B, there exists t 2 B
such that s+u = t and thus s = t�u, that is s 2 T�uB: Therefore s 2 A\T�uB: It should
be noted that if u 2 B � A, then A \ T�uB is non-empty. If u 2 B � A; i.e. u = t � s for

some s 2 A; t 2 B, then s = t� u that is s 2 A and s 2 T�uB:
On the other hand, suppose that s and u are such that s 2 A \ T�uB and u 2 B � A:

Since u 2 B � A; A \ T�uB is nonempty. Since s 2 A \ T�uB; it follows that s 2 A and

s+ u 2 B.

Lemma 2 Suppose that �C2 is a reduced covariance measure such that
R
Rd

��� �C2��� (du) < 1.
De�ne f (�) =

R
Rd e

�ih�;ui �C2 (du) for all � 2 Rd. Then f is a real-valued function that is
nonnegative and continuous.
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Proof. Fix any � 2 Rd: Let N be the point process whose reduced covariance measure is
�C2. Recall that ` denotes the Lebesgue measure. For any bounded Borel set A; the variance

of the normalized �nite Fourier transform ` (A)
�1=2 R

A
eih�;si N (ds) is

` (A)
�1
Z
Rd

Z
Rd
1A (s) 1A (s+ u) e

�ih�;ui �C2 (du) ds

= ` (A)
�1
Z
Rd

�Z
Rd
1A (s) 1A (s+ u) ds

�
e�ih�;ui �C2 (du)

=

Z
Rd
1A0 (u) f` (A \ T�uA) =` (A)g e�ih�;ui �C2 (du) ; (4.28)

where the last equality follows from Lemma 1: Consider a sequence of bounded Borel sets

fAng such that for each n; An is a rectangle �di=1 [ain; bin] : Suppose that as n ! 1;
bin � ain ! 1; i = 1; � � � ; d; then the integral in (4.28) converges to

R
Rd e

�ih�;ui �C2 (du)

by dominated convergence. Since the last integral is the limit of a sequence of non-negative

real numbers, it is also real and non-negative.

To show continuity of f , it su¢ ces to consider

g (h) =

Z
Rd
fcos (h�+ h; ui)� cos (h�; ui)g

��� �C2��� (du) :
Consider any sequence fhng such that limn!1 hn = 0: SinceZ

Rd
jcos (h�+ hn; ui)� cos (h�; ui)j

��� �C2��� (du) � 2Z
Rd

��� �C2��� (du) <1;
by dominated convergence, limn!1 g (hn) = 0. Hence f is continuous.

Lemma 3 For any bounded Borel subsets A; B of Rd; let g (u) =
R
Rd 1B (s)1A (s+ u) ds:

Then g is continuous and Lebesgue integrable.

Proof. By Fubini�s Theorem,Z
Rd
g (u) du =

Z
Rd
1B (s)

�Z
Rd
1A (s+ u) du

�
ds

= ` (B) ` (A) <1:

Hence g is Lebesgue integrable. For " > 0; by continuity of translation of integrable functions,

see Section D of Chapter 7 in Jones (2001); there exists � > 0 such that, for all u0 2 Rd; if
ku� u0k < �; then Z

Rd
j1A (s+ u)� 1A (s+ u0)j ds < ":

For such u0 2 Rd; since

j1A (s+ u)� 1A (s+ u0)j2 = j1A (s+ u)� 1A (s+ u0)j ;
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by Schwarz�s inequality,

jg (u)� g (u0)j �
Z
Rd
1B (s) j1A (s+ u)� 1A (s+ u0)j ds

�
�Z

Rd
1B (s)

2
ds

�1=2�Z
Rd
j1A (s+ u)� 1A (s+ u0)j2 ds

�1=2
= "1=2` (B)

1=2
:

Hence g is continuous in u:

Lemma 4 If an increasing sequence of sets fAng converges to in�nity in the sense of van
Hove, then

(i) there exists a sequence of balls fBng such that, for each n; Bn � An and their radii

rn !1 as n!1;
(ii) limn!1 1A0

n
= 1Rd ; where A0n = ft1 � t2 : t1; t2 2 Ang; and

(iii) for each u 2 Rd; limn!1 [` (An \ (An � u)) =` (An)] = 1, where An�u = ft� u : t 2 Ang :
Proof. (i) Suppose that there is no such a sequence of balls. For each n let Bn be the
biggest ball contained in An. Then there exists a �nite constant c such that rn � c for

all n: Let a be a vector in Rd de�ned as in the de�nition of van Hove convergence. Set
a = (4c; :::; 4c)

0. Since An converges to in�nity in the sense of van Hove, for some large n

there exists a rectangular parallelepiped contained in An such that the lengths of its edges

are 4c. As a ball with radius 2c can be contained in this rectangular parallelepiped, this

leads to a contradiction. Hence the truth of statement (i) is proven.

(ii) For any x 2 Rd; due to part (i), for some su¢ ciently large N there exists a ball BN
contained in AN with radius rN > kxk. Let cN be the centre of the ball. Then x+ cN 2 BN
and therefore x 2 A0N : This is also the case for all n � N:

(iii) Now �x u 2 Rd: Let An (h) be the set of points with distance less than or equal to
h to the boundary of An. Clearly AnnAn (2 kuk) � An \ (An � u). Choose a 2 Rd that are
associated with van Hove convergence so that ai � 3 kuk for all i = 1; :::; d; then[

m:�m�An

�m � AnnAn (2 kuk) � An \ (An � u) :

Therefore limn!1 [` (An \ (An � u)) =` (An)] = 1.

Lemma 5 Consider a curve 
 : [a; b]! X on a metric space (X; d). Suppose that 
 has

a �nite length, de�ne a function L : [a; b]! R by L (x) =length
�

[a;x]

�
where 
[a;x] is the

restriction of 
 to [a; x] : Then L is continuous on [a; b] and non-decreasing.

Proof. For a � x � y � b; let 
[x;y] be the restriction of 
 to [x; y] : It follows that for

a � x � y � z � b;

length
�

[x;z]

�
= length

�

[x;y]

�
+ length

�

[y;z]

�
: (4.29)
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Note that the de�nition of length is analogous to that of total variation. The proof of the

analogous additive property of total variation can be employed. Hence it follows that L is

non-decreasing since length is, by de�nition, non-negative.

For any " > 0, there is a partition P = ft0; t1; � � � ; tmg such that

L (b)�
mX
i=1

d (
 (ti) ; 
 (ti�1)) < "=2:

Since 
 is continuous on [a; b], it is also uniformly continuous on [a; b] : Hence there is � > 0

such that whenever jt� sj < �; then d (
 (s) ; 
 (t)) < "=2 (m+ 2). For any x 2 [a; b), take
�1 = min f�; b� xg. By (4.29), for any 0 < h < �1;

L (b) = length
�

[a;x]

�
+ length

�

[x;x+h]

�
+ length

�

[x+h;b]

�
:

Notice that if P 0 is a re�nement of P; i.e. P � P 0, then lP 0 � lP : Let P 0 = P [ fx; x+ hg.
Then L (b)� lP 0 < "=2 too. This implies that

length
�

[x;x+h]

�
�

00X
d (
 (s) ; 
 (t)) < "=2;

where the summation is over s; t 2 P 0 \ [x; x+ h] : Using the properties mentioned above,
it follows that

L (x+ h)� L (x) = length
�

[x;x+h]

�
< ":

Similarly for h < 0 and a < x � b: Hence L is continuous on [a; b] :

Lemma 6 For a sequence of bounded Borel sets fBng ;

V ar (�� (Bn)) = O (` (Bn)) ;

and if fBng satis�es Assumption C3, as n!1;

[` (Bn)]
�1
V ar [�� (Bn)]! �0

�Z
Rd

 (u) �M2 (du)

�
�: (4.30)

Proof. Recall that E [�� (Bn)] = 0: Proceeding as in the proof of Theorem A3, it follows

that

V ar [�� (Bn)] = ` (Bn)

�
�0
�Z

Rd
1B0

n
(u)

` (Bn \ T�uBn)
` (Bn)


 (u) �M2 (du)

�
�

�
: (4.31)

By de�nition 
 (u) is p.s.d. for all u 2 Rd: By Assumption C1, for all n � 1; the term in the

square brackets in (4.31) is bounded in absolute value by
R
Rd �

0
 (u)� �M2 (du) <1: Hence
V ar [� (Bn)] = O (` (Bn)) as n!1:
Suppose that Assumption C3 holds for the sequence fBng. Fix u 2 Rd: From Lemma 4,

the integrand in (4.31) converges to 
z (u) as n ! 1: As element of the integrand is also

182



bounded in absolute value by j
rs (u)j, which is integrable with respect to �M2, Assumption

C1 and dominated convergence imply (4.30).

Lemma 7 There exists a �nite constant C such that�����
Z
A4
n

� (s1; � � � ; s4)�rs (s1; � � � ; s4)M4

�
�4j=1dsj

������ � C` (An) :

Proof. By Assumption D5, the left side isZ
R4d
1An

(x)1An
(x+ u1)1An

(x+ u2)1An
(x+ u3)� (x; x+ u1; x+ u2; x+ u3)

�rs (x; x+ u1; x+ u2; x+ u3) dx �M4 (du1 � du2 � du3) :

Its absolute value is bounded by

sup
x2Rd

Z
R3d
j�rs (x; x+ u1; x+ u2; x+ u3)j �M4

�
�3j=1duj

� Z
An

dx:

Assumption D6 implies that this is not greater than C` (Bn) for some �nite constant C:

Lemma 8 As n!1;Z
B4
n

� (s1; s2; s3; s4) 
rr (s3 � s1) 
ss (s4 � s2)C3 (ds2 � ds3 � ds4) ds1 = O (` (Bn)) :

Proof. The left-side isZ
R4d
1Bn

(x1)1Bn
(x2)1Bn

(x2 + u1)1Bn
(x2 + u2)� (x1; x2 + u1; x2; x2 + u2)


rr (x2 � x1) 
ss (u2 � u1) �C3 (du1 � du2) dx1dx2:

Hence, by Assumptions D5 and D7, its modulus is bounded by


ss (0)

Z
R2d
1Bn

(x1)1Bn
(x2) j
rr (x2 � x1)j dx1dx2

Z
R2d

��� �C3��� (du1 � du2)
� C` (An)

Z
B0
n

` (Bn \ T�uBn)
` (Bn)

j
rr (u)j du = O (` (Bn)) :

Lemma 9 As n!1;Z
B4
n

� (s1; s2; s3; s4) 
rr (s3 � s1) 
ss (s4 � s2)C2 (dx1 � dx2)C2 (dx3 � dx4) = O (` (Bn)) :

183



Proof. Proceeding as in the proof of the previous lemma, it can be shown that the modulus
of the left side is bounded by


ss (0)

�Z
Rd

��� �C2��� (du1)�2 Z
R2d
1Bn

(x1)1Bn
(x2) j
rr (x2 � x1)j dx1dx2 = O (` (Bn)) :

Lemma 10 As n!1;

�2
Z
B4
n

� (s1; s2; s3; s4) 
rr (s3 � s1) 
ss (s4 � s2)C2 (dx3 � dx4) dx1dx2 = O (` (Bn)) :

Proof. The modulus of the left side is bounded by

�2
Z
Rd
1Bn

(x3)

Z
Rd

�Z
Rd
j
rr (x3 � x1)j dx1

��Z
Rd
j
ss (x3 + u� x2)j dx2

� ��� �C2��� (du) dx3
= �2

�Z
Rd
j
rr (x)j dx

��Z
Rd
j
ss (x)j dx

��Z
Rd

��� �C2��� (du)� ` (Bn) :

Lemma 11 As n!1;

1

` (Bn)mn

Z
B4
n

� (s1; s2; s3; s4) 
rr (s3 � s1) 
ss (s4 � s2)M2 (ds1 � ds3)M2 (ds2 � ds4)

! f�;rr (�) f�;ss (�)

Z
Rd
w (u)

2
du;

where w (u) = �di=1k (ui) :

Proof. Using Lemma 1, the left side is

1

` (Bn)mn

Z
R4d
1Bn (s1)1Bn (s2)1Bn (s3)1Bn (s4) e

�ih�;s2�s1�s4+s3iwn (s2 � s1)

wn (s4 � s3) 
rr (s3 � s1) 
ss (s4 � s2)M2 (ds1 � ds3)M2 (ds2 � ds4)

=
1

` (Bn)mn

Z
R4d
1Bn\T�uBn

(s1)1Bn\T�vBn
(s2)1B0

n
(u)1B0

n
(v) e�ih�;u�viwn (s2 � s1)

wn (s2 � s1 + v � u) 
rr (u) 
ss (v) ds1ds2 �M2 (du) �M2 (dv)

=
1

` (Bn)mn

Z
R3d
1B0

n
(u) e�ih�;ui
rr (u)1B0

n
(v) eih�;vi
ss (v)wn (u

0)wn (u
0 + v � u)�Z

Rd
1Bn\T�uBn\T�u0fBn\T�vBng (s) ds

�
1fBn\T�vBng�fBn\T�uBng (u

0) du0 �M2 (du) �M2 (dv)

=

Z
R2d
1B0

n
(u) e�ih�;ui
rr (u)1B0

n
(v) eih�;vi
ss (v)

�Z
Rd

1

mn
wn (u

0)wn (u
0 + v � u)

` (Bn \ T�uBn \ T�u0Bn \ T�v�u0Bn)
` (Bn)

1fBn\T�vBng�fBn\T�uBng (u
0) du0

�
�M2 (du) �M2 (dv) :
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To conclude the result, one can follow standard steps employed in time series which rely on

dominated convergence. The proof of Lemma 4 can be extended to show that, under van

Hove convergence, ` (Bn \ T�uBn \ T�u0Bn \ T�v�u0Bn) =` (Bn)! 1:

Lemma 12 Suppose that B0 is an unknown p � p matrix and bB is an estimate such that

E
�bbij � b0ij�2 = O (fn) for all i; j = 1; :::; p: Suppose that x is a p-random vector such that

kxk2 = 1 a.s., then E
�
x0 bBx� x0B0x�2 = O (fn) :

Proof. Let x = (x1; :::; xp)
0
: By Schwarz�s inequality,

E
�
x0 bBx� x0B0x�2 = E

8<:
pX
i=1

pX
j=1

�bbij � b0ij�xixj
9=;
2

�
pX
i=1

pX
j=1

pX
k=1

pX
l=1

E
���bbij � b0ij��� ���bbkl � b0kl���

= O (fn) :

Lemma 13 Suppose that B0 is an unknown p � p matrix and bB is an estimate such that

E
�bbij � b0ij�2 = O (fn) for all i; j = 1; :::; p: Let fcng be a sequence of positive numbers

such that limn!1 cn = 0: If B0 is positive de�nite, then E
n
1
�
�
� bB� < cn

�o
= O (fn) ;

where 1 is the indicator function.

Proof. For a random matrix bB it is possible to construct a measurable function h such that
h
� bB� = bx where bx is a normalized eigenvector corresponding to �� bB�. The construction
is based on employing row operations on the matrix bB � �

� bB� Ip; where Ip denotes the
identity matrix of order p; to obtain a reduced row-echelon form. By the previous lemma

E
�bx0 bBbx� bx0B0bx�2 = O (fn) : Since cn ! 0 as n ! 1, there is N < 1 such that cn <

� (B0) =2 for all n � N . Hence for large enough n; using the fact that bx0B0bx � � (B0) ;���bx0 bBbx� bx0B0bx��� � � (B0) =2 implies bx0 bBbx � bx0B0bx � � (B0) =2 � � (B0) =2 � cn: Sincebx0 bBbx = �
� bB�, ���bx0 bBbx� bx0B0bx��� � � (B0) =2 implies �

� bB� � cn: Therefore, for su¢ ciently

large n; using Markov�s inequality,

E
���1��� bB� < cn

���� = P
n
�
� bB� < cn

o
� P

n���bx0 bBbx� bx0B0bx��� > � (B0) =2
o

� f� (B0) =2g2 E
�bx0 bBbx� bx0B0bx�2

= O (fn) :
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