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Abstract

The typical assumption made in regression analysis with cross-sectional data is that of
independent observations. However, this assumption can be questionable in some economic
applications where spatial dependence of observations may arise, for example, from local
shocks in an economy, interaction among economic agents and spillovers.

The main focus of this thesis is on regression models under three different models of
spatial dependence. First, a multivariate linear regression model with the disturbances
following the Spatial Autoregressive process is considered. It is shown that the Gaussian
pseudo-maximum likelihood estimate of the regression and the spatial autoregressive pa-
rameters can be root-n-consistent under strong spatial dependence or explosive variances,
given that they are not too strong, without making restrictive assumptions on the parameter
space. To achieve efficiency improvement, adaptive estimation, in the sense of Stein (1956),
is also discussed where the unknown score function is nonparametrically estimated by power
series estimation. A large section is devoted to an extension of power series estimation for
random variables with unbounded supports.

Second, linear and semiparametric partly linear regression models with the disturbances
following a generalized linear process for triangular arrays proposed by Robinson (2011)
are considered. It is shown that instrumental variables estimates of the unknown slope
parameters can be root-n-consistent even under some strong spatial dependence. A sim-
ple nonparametric estimate of the asymptotic variance matrix of the slope parameters is
proposed. An empirical illustration of the estimation technique is also conducted.

Finally, linear regression where the random variables follow a marked point process is
considered. The focus is on a family of random signed measures, constructed from the
marked point process, that are second-order stationary and their spectral properties are dis-
cussed. Asymptotic normality of the least squares estimate of the regression parameters are
derived from the associated random signed measures under mixing assumptions. Nonpara-
metric estimation of the asymptotic variance matrix of the slope parameters is discussed
where an algorithm to obtain a positive definite estimate, with faster rates of convergence

than the traditional ones, is proposed.
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1 Introduction

Modern econometrics can, to some extent, be regarded as a branch of mathematical statis-
tics aimed at providing statistical tools for economic analysis. Traditionally, cross-sectional
data were analysed in microeconomic studies whereas time series data were employed in the
macroeconomic counterpart. However, this distinction is no longer prevailing. There has
been a rather significant movement among macroeconomists to collect and analyse cross-
sectional data in order to understand macroeconomic behaviours. Household expenditure
surveys have played a crucial role in helping macroeconomists understand consumption and
saving behaviours. Surveys of consumer finances have also become popular for empirical
analysis of asset pricing. Investment and R&D data at firm levels have improved macro-
economists’ understanding of investment and R&D decisions, which play a role in short-term
economic fluctuations and are widely accepted as being vital for economic growth. Cross-
sectional data are currently playing key roles in other areas of studies such as unemployment
and credit markets too.

There are many reasons explaining the popularity of cross-sectional data in macroeco-
nomic analysis. Given that most macroeconomic theories are currently based on microeco-
nomic foundations, which focus on decisions of economic agents in an economy, it is vital to
check at the right level, e.g. households or firms, whether such theories are valid. Moreover,
cross-sectional data are particularly useful for policy evaluation such as effects of minimum
wages and monetary policy. If one were to rely on aggregate data, one would have to analyse
only a few data points whereas the micro-level data can give a great deal of information.

The reader may be thinking of panel data and consider them as being different from
the cross-secional one. However, given that most panel data used in economic analysis have
much shorter time span compared with the number of cross-sectional observations, this
type of panel data can be regarded, from the theoretical point of view, as cross-sectional
data with higher dimensions. Hence the theories developed for cross-sectional data will be
applicable to panel data (over a short time span) too. A serious discussion of panel data with
large cross-sectional observations over a long period of time requires a proper theoretical
foundation for spatio-temporal dependence, which is beyond the scope of this thesis.

Independence of observations is traditionally assumed when analysing cross-sectional
data. However, this typical assumption can be questionable. A shutdown of a factory
will affect many households’ income in a given neighbourhood. A natural disaster or a
contagious disease can substantially lead to a reduction of output of a large region of a
country. Spillovers and externalities may carry some impacts of a certain economic shock to
other communities outside the one where the shock takes place. Trade can indirectly induce
interdependence in activities of economic agents. Many economic theories also suggest
dependence of economic variables across space. A change of one player’s strategy can result
in a change of a Nash equilibrium. Risk averse agents will make insurance contracts allowing
them to smooth idiosyncratic shocks and this implies dependence in consumption across
individuals. In this thesis we call dependence across cross-sectional observations, spatial
dependence. This kind of dependence does not necessarily arise from a physical space. It

arise from some other economic spaces where an economic distance may be different from



the physical one.

There are two main strategies in econometric literature aimed at modelling spatial de-
pendence. The first line of research is based on the idea that a family of random variables
exhibiting spatial dependence can be represented as a linear process with independent inno-
vations. The most popular parametric model on this line of research is the Spatial Autore-
gressive (SAR) model. Recently Robinson (2011) proposed a generalized linear process for
a triangular array of random variables and showed that a broad class of spatial processes
can be represented by such a generalized linear process. It should be stressed that the
generalized linear process of Robinson (2011) is a nonparametric model. The advantage of
this modelling strategy is that many well-established results from linear time series can be
extended.

The other line of research is to assume that the data is, to some degree, second-order
stationary. Conley (1999) considered irregularly spaced data in R?. He assumed that the
data is a marked point process where the marks and the ground process are independent.
Moreover, he assumed that the marks are stationary random fields and the ground process
is a hard-core process. The assumption that the ground process is a hard-core process
allows researchers to regard irregularly spaced spatial data on R? as a random field on the
lattice Z¢, where Z? is the Cartesian d-product of the space of integers Z. Even though
Conley (1999) was able to show analytical tractability of his model, his assumptions on the
hard-core process is restrictive and result in computationally intensive calculation.

In this thesis, we investigate both lines of researches. In Chapter 2, we investigate a mul-
tivariate linear regression model with the disturbances following a multivariate SAR model.
The parametric set-up of the SAR model allows us to employ likelihood based inference.
We first consider the Gaussian pseudo-maximum likelihood estimate of the unknowns. We
show that under mild regularity conditions, such estimate can be root-n-consistent. Our
regularity conditions are quite different from the ones in the existing literature. First, we
do not impose excessive restriction on the parameter space. Second, we show and stress
analytical tractability and flexibility of the spectral norm compared with the ||-||; and ||-||
norms commonly employed in the literature. Employing a different technique for proof
of consistency of the estimate, we can avoid row or column normalization. We also allow
the SAR process to exhibit long-range dependence or explosive variances while the existing
literature focuses on short-range dependence and bounded variances. The Gaussian pseudo-
maximum likelihood estimate will lose its efficiency if the innovations of the SAR process are
not normally distributed. This leads us to consider efficiency improvement of the Gaussian
pseudo-maximum likelihood estimate by nonparametrically estimating the unknown score
function of the distribution of the innovations. This "adaptive" estimate of the slope para-
meters of the regression is asymptotically as efficient as the one obtained from the maximum
likelihood estimation when the density function is known. Our nonparametric estimate of
the unknown score functions is a power series nonparametric estimate. In order to allow
the number of approximating functions to increase faster than the ones in the literature, we
employ properties of orthonormal polynomials in our proof. We also extend some results in
power series literature to allow for random variables with unbounded support.

In Chapter 3, we consider linear and partly linear regression models where the distur-



bances follow a generalized linear process in Robinson (2011). Central limit theorems are
developed for instrumental variables estimates of linear and semiparametric partly linear
regression models. We also show that the estimate of the slope parameters in the linear
part of the partly linear model can be root-n-consistent similar to the case for independent
data. We discuss estimation of the variance matrix, including estimates that are robust
to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of finite-sample
performance is included. In an empirical example, the estimates and robust and non-robust
standard errors are computed from Indian regional data, following tests for spatial corre-
lation in disturbances, and nonparametric regression fitting. Some final comments discuss
modifications and extensions.

In Chapter 4, we consider a certain class of a marked point process which can give a good
representation of cross-sectional data exhibiting spatial dependence. This interpretation
offers a nonparametric approach in capturing spatial dependence. Under some assumptions,
a linear functional of the marked point process forms a second-order stationary random
(signed) measure on the state space R? and its spectral properties can be developed. We
then consider a linear regression model from this marked point process. The asymptotic
normality of the least squares estimate of the slope parameters of the model is derived
based on laws of large numbers and central limit theorems for random (signed) measures.
Estimation of spectral density of the random signed measure and the asymptotic variance
matrix of the least squares estimate are discussed. Finally, we propose an algorithm which
can be employed to obtain a positive definite estimate of an unknown positive definite
matrix. Our algorithm can be applied to general estimation of unknown positive definite
matrices. One advantage of this algorithm is that it can achieve faster rates of mean-
square convergence of the estimate compared with other conventional positive semidefinite

estimates commonly employed in the literature.
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2 Likelihood Based Inference on Multivariate Regres-

sion with Spatial Autoregressive Disturbances

2.1 Introduction

In this chapter, we consider a parametric model employed to capture spatial dependence.
The most popular parametric model in econometric literature is the Spatial Autoregressive
(SAR) model introduced by Cliff and Ord (1973) and popularised by Anselin (1988). The
simplest SAR model for a triangular array of random variables {u; ,, 1 <i<n, n>1}1is
of the form .
Uin = Po Z WijnUjn + €, (2.1)
j=1
where p, is the spatial autoregressive parameter, w;; ,, are nonstochastic weights and {e;}
is a sequence of uncorrelated random variables with zero mean and constant variance o3.
For simplicity, the subscript n will be omitted from the presentation. The model in (2.1)

can be re-written in a matrix form as

u=psWu+e, (2.2)
where v = (u1, ..., up), W is the n X n matrix whose (i,j)-th element is W, € =
(¢1, ..., €n) and the prime ’ denotes transposition. The model in (2.2) can be re-written as

Su = (I, — pgW)u =¢,

where S = I, — pyW. If p, takes a value such that S is invertible, then the model implies
that
u=S""e and Var(u) =02 (5'S) " .

Unlike in time series analysis, it may not be obvious for practitioners how the weights
wj; should be chosen. One natural choice of the weights is to rely on "economic" distances
of each pair of observations. In this case, the weights should have inverse relationships
with distances to reflect falling-off dependence as distances increase. However, the row-
normalisation restriction, i.e.

Wij = M’
Zj:l f (dij )
where d;; is a distance between the ¢-th and j-th observations and f is a chosen decreasing
function, is sometimes imposed. This restriction can be a drawback since the model in
(2.1) may lose its economic appeal. Further normalisation may be imposed to make the
matrix W uniformly bounded in both row and column sums to satisfy certain theoretical
assumptions in the existing literature. Moreover, the parameter space of the unknown p,
is usually restricted to ensure that § (p)f1 is uniformly bounded in both row and column
sums for all p in the parameter space, where S (p) = I,, — pW. See, for example, Kelejian
and Prucha (1998) and Lee (2004).

11



Practitioners may find restrictions on both the parameter space of p, and on W too
restrictive. In many applications, practitioners may prefer a symmetric matrix reflecting
distances between economic agents or observations, i.e. w;; = f (d;;), where d;; is the dis-
tance between the i-th and j-th obsevations, as a natural choice of the weighting matrix. In
this case, row or column normalisation will be restrictive. Moreover, when a chosen func-
tion f is known up to an unknown scale, the unknown scale can be absorbed by the spatial
autoregressive parameter p,. This implies that a further restriction commonly imposed on
the parameter space of p, will become restrictive.

In this paper, we also show that the assumptions imposed in the existing literature do
not cover two important scenarios, namely explosive variances of some observations and

long range dependence.

In this paper, we show that these restrictions are unnecessary to obtain a root-n-
consistent estimate of the unknown autoregressive parameter. Instead of considering a
simple univariate SAR model, we consider a multivariate linear regression model with SAR
disturbances. We show that with Gaussian pseudo-maximum likelihood estimation, we can
obtain a root-n-consistent estimate of the unknown parameters under long-range spatial
dependence or explosive variances.

When the innovations ¢; are i.i.d., we also show how to obtain efficiency improvement
over the Gaussian pseudo-maximum likelihood estimate by nonparametrically approximate
the unknown score function of the distribution of the innovations. Our efficient estimate
is based on series approximation of the unknown score function suggested by Beran (1976)
for finite dimensional cases. This estimate is computationally simple and the issue of se-
lecting the trimming parameter can be avoided. In order to nonparametrically estimate
the unknown score function in a general infinite-dimensional space, one has to allow the
number of approximating functions to increase to infinity at an appropriate rate. Newey
(1988) extended Beran’s technique to obtain an adaptive estimate of the slope parameters
of a linear regression model with i.i.d. data but the number of approximating functions has
to go to infinity at a rate that is slower than logarithm of the sample size. Robinson (2005),
considering efficient estimation of time series regression with fractional disturbances, showed
that the condition in Newey (1988) can be relaxed and allow the number of approximating
functions to increase at the rates slightly faster than that in Newey (1988).

In this paper, we show that in order to obtain an efficiency improvement of an estimate of
the slope parameter in a multivariate linear regression with SAR disturbances, the number of
approximating functions can indeed increase with the sample size at a polynomial rate. The
proof relies on results from power series approximation literature. Unlike other papers in the
literature, we show that in order to allow the number of approximating power functions to
grow at the rate that is proportional to a fractional power of the sample size, we do not need
to make a restrictive assumption that the density function of the disturbances must have
bounded support. The result in this chapter should be applicable to other semiparametric
models in econometrics, where the power series approximation is employed to estimate the
nonparametric part of a model.

A simple univariate SAR model and its multivariate extension are discussed in Section

2. We show that the spectral norm can be more flexible than other norms such as the
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maximum column sum and maximum row sum norms commonly employed in the literature.
We also discuss how to relax the condition on uniform boundedness of row and column
sums to possibly allow for long-range dependence or explosive variances. Some further
analytically tractable results can be obtained when W is symmetric. In section 3, we
discuss consistency and asymptotic normality of the Gaussian pseudo-maximum likelihood
estimate of a multivariate linear regression model with multivariate SAR disturbances. In
section 4, we extend some results in nonparametric series approximation to allow for random
variables with unbounded support. Finally, efficiency improvement of the slope parameter
in the multivariate linear regression model is discussed. Proofs and technical lemmas are

left in the Appendices.

2.2 Spatial Autoregressive Model

In this section, we discuss a spectral norm and show its analytical tractability for the
SAR model. First, we introduce some notations. Let A be an n x n matrix and a;; de-
note its (7, j)-th element. Define A (A) and A(A) as the largest and smallest eigenvalues of
A, respectively. Define [|All, = maxi<j<n > iy lail, |4l = maxicicn Y5 |ay], and
|A|l = E(A'A)]lm. Let p(A) = max {|A| : A is an eigenvalue of A} and |A| be the deter-
minant of A. In this chapter, a square matrix A of order n is positive definite (p.d.) if A is
symmetric and for any x € R™ such that z # 0, 2’ Az > 0. Similarly, a square matrix A of

order n is positive semidefinite (p.s.d.) if A is symmetric and 2’ Az > 0 for any z € R".

2.2.1 Univariate Spatial Autoregressive Model

Consider a univariate SAR model in (2.2). As mentioned in the previous section, Var (u) =
o3 (S’ S)_l. The most common assumption in the literature, as in Kelejian and Prucha
(1998) and Lee (2004), is

Assumption Al ”Silnl + ||S*1HOo is bounded uniformly in n.

Since it can be shown that both ||-|[, and [-||, are matrix norms as defined in Horn
(1985), one implication of this condition is that ||[Var (u)|/, + ||[Var (u)

formly in n. Now consider the spectral norm. One advantage of the spectral norm can be

||  is bounded uni-

seen directly from Lemma Al that for any square matrix A, ||A]| = ||A’||. In order to get
an analogous result on a bound for Var (u), by employing the spectral norm, we need to

make the following condition.

Assumption A2 A(S’S) is bounded away from zero uniformly in n.

13



Under Assumption A2, S’S is p.d. and hence X((S’S)ﬂ) = {A(5'S)} . Because
|All = [|A’]| , Assumption A2 is equivalent to the condition that ||S~|| is bounded uniformly
in n. As (5’5)"" is p.d., by Lemma A3, (S’S)ﬂH =\ ((S”S)*l). Therefore, Assumption

A2 is also equivalent to the condition that H (5'8)7" H and ||[Var (u)| are bounded uniformly
in n. As Var (u) is symmetric, by Lemma A3,

[Var (w)|| < [[Var (u)|l, and [[Var (u)]| < [[Var (u)] -
Therefore Assumption Al implies Assumption A2. If variance matrices are of primary

concern, the following theorem shows that the spectral norm is strictly weaker than |||

and |[|-||, norms.

Theorem A Consider any family {A,} of positive definite matrices of order n. (i) ||A,|| <
|Anll; and ||An|| < ||Anll,, - (i) There exists a family {An} such that | A, || are uniformly

bounded in n but | Ay, and ||A,||,, are not.

Even though Assumption A2 is weaker than Assumption Al that is commonly employed
in the literature, it may be too strong. With reference to time series literature, consider
a covariance stationary process {v;}. One possible nonparametric definition for long-range
dependece of {v;} is that

Var <n1/2 th> — 00, asmn — o0. (2.3)

t=1
Let 2 =n~'/2(1, ..., 1)" beavector in R". Sincen™ /237" | v; = 2'v wherev = (vy, ..., v,)’,
it follows that Var (n=Y/237  v,) = 2'Var (v)z, where |[z|| = 1. Since 2'Var (v)z <

[[Var (v)], then |[Var (v)|| — oo, as n — oo given that {v;} has long-range dependence.
Alternatively, suppose {v;} has absolutely continuous spectral distribution and let f be the

density function. It is common to say that {v;} has short memory if
0< f(A) <oo, forall A€ [—m, 7). (2.4)

Note that this definition excludes seasonal long memory. If {v;} has short memory as
defined in (2.4), then one observation in section 5.2 (b) in Grenander and Szego (1984)
implies that ||Var (v)| is bounded uniformly in n. These two results suggest that uniform
boundedness of ||Var (v)|| can be a rather sensible description of time series exhibiting
short-range dependence.

Given these results one may be tempted to say that a SAR process v has long range
dependece if

IVar (u)|| = oo as n — oo. (2.5)

14



It is clear that Assumption A2 does not allow for this possibility. This may be a serious
drawback of Assumption A2 since some spatial data may be subject to long-range depen-
dence. Farifield Smith (1938) mentioned the problem of (2.3) when analysing agricultural
spatial data. However, this definition may be misleading since it is possible that (2.5) holds
when Var (u;) — oo as n — oo for some ¢ but Cov (u;, u;) becomes arbitrarily small suffi-
ciently fast as the distance between the i-th and j-th observations increases. In other words,
condition (2.5) may arise not from long-range dependence but from explosive variances of
some observations. Neverthess, this explosive behaviour of the variances may arise naturally
in some economic applications. With reference to economic geography literature, agglomer-
ation of economic activities in a certain location may be a norm rather than an exception to
benefit from economies of scales. See Fujita, Krugman and Venables (2001) for a reference.
Hence concentration of economic activities may be sources of explosive variances.

As S = I,,—pyW, Lemma A4 implies that ) is an eigenvalue of S if and only if A = 1—pyw
where w is an eigenvalue of W. If p, = 0, then S = I,, and we have a trivial case. Suppose
po # 0, then S is invertible, i.e. A # 0, as long as none of the eigenvalues of W is equal
to 1/py. Non-singularity of S can be regarded as an identification restriction so that each
u; can be written uniquely as a linear combination of €;. It is generally difficult to have
much information about |V ar (u)|| since it depends on the unknown p, and the relationship
between Var (u) and p, may be highly nonlinear. However, if W is symmetric, for example
when economic distances are employed to construct W without row or column normalization,
many analytically tractable results can be obtained.

If W is symmetric, then S and S~! are symmetric. Lemma A5 also implies that
[Var (u)|| = o2 max {(1 — pow) % : w is an eigenvalue of W} . Even though S is assumed
to be non-singular, ||[Var (u)|| can becomes arbitrarily large if at least one of the eigenval-
ues of W gets arbitrarily close to 1/p, as n — oo. The rate at which |Var (u)| becomes
explosive depends on the rate at which one of the eigenvalues of W gets arbitrarily close to
1/pg- In other words, for a given p,, the explosive behaviour of |[Var (u)|| depends on the
characteristic values of the weight matrix W.

Compared with the symmetric case, ||Var (u)| loses its analytical tractability when W
is not symmetric. The complexity of ||V ar (u)|| when W is not symmetric can be illustrated
from the truncated first-order autoregressive model. Let 1 = &1 and x; = pxy_1+e&¢, t > 2,
where {e;} is a white noise process. Then it can be shown that = = (z1, ..., 2,,)" can be
represented as in (2.2) with w;; = §; j11, where ¢;; is the Kronecker’s delta. It follows that
the resulting weight matrix W is a lower shift matrix and is also nilpotent. Hence, every
eigenvalue of W is equal to zero and, by Lemma A4, every eigenvalue of S is equal to unity
regardless of the value of p,. This implies that S is always invertible and every eigenvalue
of S71 is equal to unity regardless of the value of p,. However, when p, = 1, i.e. {x;} is
a truncated random walk process, ||[Var (x)| becomes explosive at a fairly fast rate. This
example illustrates the difficulty in determining the behaviour of ||Var (u)| particularly
when W is not symmetric.

The complexity of ||[Var (u)| when W is not symmetric arises from the result shown in

15



Lemmas Al and A10 in the Appendix that ||V ar (u)| is proportional to
|57 =X (s (s ) zp(57Y)?

Lemma A2 shows that this inequality becomes an equality when W is symmetric. When

W is not symmetric, one can at least conclude that if p (S™1) is explosive, then H(S’ S)~! H

is also explosive. One can only infer that the rate at which H(S’ S )_1‘

becomes explosive

55|

becomes explosive may not be easy to conclude. The truncated random walk process is a

is at least as fast as the rate of p (5*1)2. However, a sharper rate at which

good example showing this complexity.

Define G = WS~!. It will be clear later that G arises naturally from the Gaussian
psuedo-maximum likelihood estimation of the unknown p,. If p; = 0, then G = W. It
follows form the proof of Lemma A6 that if p, # 0,

G=py' (S'-1,). (2.6)

This equality shows that when there is spatial dependence, i.e. p, # 0, the matrix p,G is
essentially the matrix S~'. Recall that u = S~ 'e. It follows that u; = Z?Zl bije; where b;;
is the (4, j)-th element of S~1. Following (2.6), the i-th element of pGe is }°7_, bije; — €.

That is p,Ge is essentially the same as u. Moreover, Lemma A6 indicates that
57— 1 £ oGl = 57 + 1.

Hence |G| ~ |po] " S~ as [|S~!|| — oo, where ‘~’ indicates that the ratio of left and

right sides tends to 1. Note that ||S*1H can get arbitrarily large only if py # 0.

2.2.2 Multivariate Spatial Autoregressive Model

In a multivariate case, we have n observations and g equations. The univariate SAR model

in (2.1) can be generalized to

n
Uit = Pot Zwijtujt tew, i=1, ., n, t=1, .., g, (2.7)
j=1
where the index 7 is associated with the ¢-th observation and the index t is associated with

the ¢-th equation. In a matrix form, this can be written as
U.t = pOtWtu‘t + €., t= 1, ey g, (28)

where u.y = (U1, .oy Unt)'s €4 = (€145 -, €nt) and Wy is the matrix whose (i, j)-th ele-
ment is w;j;. This specification assumes no direct cross-equation effects but cross-equation
dependence arises from dependence structure of (g;1, €2, ..., aig)/. For square matrices
A1, ..., Ay, not necessarily of the same order, define diag (41, ..., A,) as the block-diagonal
matrix whose diagonal blocks are Ay, ..., A,, respectively. Then, the specification in (2.8)
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can be re-written as

u = diag (py W1, .., pogWy)u+e,
where u = (ufl, e ufg)/ and € = (5{1, - dg)/. Define Sy = I,, — po; We, then
Su = ¢,
where S = diag (51, ..., Sy).

Assumption B1 Fort =1, ..., g, Wy are nxn matrices of nonstochastic weights w;;; and

S; are non-singular for all n > 1.
Let 1 be the indicator function.

Assumption B2 Lete;. = (i1, ..., €ig) - (1) B(ei.) = 0 for alli. (ii) B (515;) =30l (i =7j)
for all i, j, where ¥q is p.d..

Under Assumptions B1 and B2,

where S~ = diag (ST, ..., S;1),
Var (e) =3¢ ® I,
where ® is the Kronecker product, and
Var (u) =S (Se® 1) () = {8 (55 @ 1,) S} .
It follows from Lemmas Al and A7 that
[Var ()] < (S0 @ L) |57 = 1ol 7
If (2.5) holds, then it must be the case that

||571H — 00 as N — Q.

Hence HS‘1 H is the source of an explosive behaviour of ||[Var (u)||. Lemma A8 implies that
||S_1H = maxi<i<y HS{ 1“ This simple relationship suggests that the results previously
established for a univariate process can be applicable to a multivariate process. Similarly,
we can define G = diag {G1, ..., G,} where G; = W;S; '. Lemma A8 implies that |G| =

maxi<;<4 ||G¢|| and hence the results for a univariate case can be applied.
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2.3 Multivariate Linear Regression
In this paper we consider a multivariate linear regression model
Yit = x;tﬂo +uit7 1= 1, ey N, t= ]-7 - g,

where y;; are scalar random variables, z;; are R¥-valued random variables, 3, are unknown
vectors in R¥ and the disturbances u;; follow a multivariate SAR process as defined in (2.7).

Then, for each t =1, ..., g, we have

Yt = XeBo + vy,
where y; = (y1¢, -, ynt)', X: = (z14y sy xnt)' and u.y = (u1gy ..., um)/. This can be
written as
y = XﬁO + ’I,L,

where y = (y/y, ..., y_'g)/7 X = (X, . X;)/ and u = (u/y, ..., ufg)/.

Under the assumption that {£;.}, as defined in the previous section, is a sequence of
independent vectors of jointly normally distributed random variables with zero mean and
Var (g;.) = Xo, and the assumption that the regressors x;; and €5 are independent for all
i, j, t and s, and that the distributions of x;; do not depend on Sy, ¥o and pyy, ..., Pog:
the log-likelihood function of y for the maximum likelihood estimation of the unknown

parameters is

n 1 1
(B, 2, p) = —Zllog2m+ log|S(p)' S (p)| - log D@ L,

5 ()8 () (37 9 1) S () u (),
where p = (p1, ..., py)’, Si(p) = In—p,Wi, S(p) = diag (S1(p), .-, Sy (p)), and u(B) =
y— Xp.

If the normality assumption does not hold, we can employ this log-likelihood function

to construct a loss function

1 B 1 < )
Qn(B, %, p) = *@log@ 1!*%;10@& (p)' St (p)] (2.9)

+ﬁu B S (o) (5 @ 1,) S (0)u ().

Let B, S and p be the minimizer of this loss function. Given ¥ and p, the minimizer
~ _ 71 _
B p)={X'S(p) (X' @L)S(p) X} X'S(p) (2 @L)S(p)y.

If we ignore symmetry of ¥, then, applying the relationship that

tr (ABCD) = vec (C) (D ® B')vec(A),
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it follows that

) (p) = arg min %log 2|+ %tv“ {2—1 (Z €. (B, p) &5 (B, p>/> } , (2.10)

SEeRIX9 =1

where

(e1t (B, P) s wey €nt (B, p)) =24 (B, p) =St (p)us (B)

and g;. (8, p) = (€1 (B, p), ..oy €ig (B, p)) . For each i, &;. (E, p) E;. (B, p)l is p.s.d. re-

o~ ~ /
gardless of the values of p. As n increases it is more likely that Y., &;. (ﬂ, p) g (B, ,0)
is p.d. and hence singular. Then we can apply Lemma 3.2.2 in Anderson (2003) to show
that

S0 =23 e (. o)ei (B ) - (211)
=1

Note that there is a typographical error in the statement of Lemma 3.2.2. There should be

"—" in front of Nlog|G|. Moreover, the same Lemma implies that the minimum value of

the objective function in (2.10) is

bl

1 ~
c— 1 ‘2
25 %% (p)
where C' is a constant. Hence

g
b= arpgegéin;g log ‘i(p)’ - Q:Lg;llog |S: (p)" St (p)] -

Now we give a formal statement for the minimisation problem. Following Abadir and
Magnus (2005), for any symmetric matrix A of order g, define the half-vec of A, vech (A), as
the g(g+1)/2 x 1 vector that is obtained from wvec(A) by eliminating all supradiagonal
elements of A. Let 6 = (0/1, 05, 9&)/ where 0; = 5, 03 = vech (2’1) and 03 = p =
(1, o 0,)-

Let

0= arg min@,, (0),
0O

where @, (f) is the right side of (2.9), ©® = ©; x Oy x O3, ©; C RX, ©, c RIlg+1)/2
and ©3 C RY. Since there may be some p € ©g such that S (p) is singular and hence
B (p)' S (p)| = 0, we need to define log (z) = —oo for z = 0. Note that 6 can be interpreted
as a Gaussian psuedo-maximum likelihood estimate as in Lee (2004). The consideration of
¥ ~! rather than ¥ substantially simplifies our proofs. It is important to note that we take
0> = vech (E’l) rather than vec (E’l) to ensure that the asymptotic covariance matrix of
[9\2, where 52 is a sub-vector of § associated with 05, is non-singular. The consideration of
vech (Z_l) implicitly assume that ¥ is symmetric. We can make this assumption without
loss of generality since (2.11) shows that it does not matter whether the assumption of
symmetry is imposed. We also stress the importance of the expression log |St (p)' S (p)|
since it is not generally true that |S; (p)| > 0 but it is always the case that ’St (p)' S, (p)} > 0.

Lee and Yu (2010) considered Gaussian pseudo-maximum likelihood estimation of a panel
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data model that is essentially a multivariate model. However, Lee and Yu (2010) assumed
that ¥ = I,, Wy = W and p, = p for all t =1, ..., g. This assumption essentially simplifies

a multivariate SAR model to a univariate one.

2.3.1 Consistency

To show consistency of 5, we make the following assumptions. Let N be the set of natural

numbers.

Assumption B3 {¢;.} is a sequence of independent RY-valued random variables such that
(i) B (g;.) =0 for all i in N. (ii) B (e;.€;) = Xg for all i in N, where % is a positive definite

matriz. (111) There is a finite constant C' such that

max max Ee}, < C.
1<t<g i>1

Assumption B4 O is a compact set. In addition, © is a subspace of RIOH/2 such that
3 is positive definite for all vech (X) € ©,.

For any positive definite matrix A, let A'/2 be the square root matrix of A. Define
H (05, 65) = (307 @ 1,) (57) S (0) (5" @ L) S (p) S (S @ 1)

By definition, H (62, 03) is positive semidefinite for all 2 € O and all 3 € O3. The
matrix G; defined in the previous section can be written as G = WS~!, where W =
diag {Wh, ..., Wy}

Assumption B5 Let A1, ..., A\yq be eigenvalues of H (62, 03). For any § > 0, there exists
n > 0 such that for some N,

1 &
inf —_— /\1 —lo )\z -1 Z y
I =roll>8 {ng ;( ¢ )} !

for allm > N, where T = (9'2, 0/3)/ € Oy X O3.

Assumption B6 (i) {x;} and {eu} are independent. (ii) Let X* = SX and hence X} =

S X;. Asn — oo,
L[ XY . . 1e%
nig (X*/G/> (Xt GtXt ) —p ( st st |’
s s 21 22
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and

1 XY en) X (XY (5 @L)GXT ) (On On
ng \(X*)' G (S5 @ L) X* (X*) G (55" @L,)GX*) " \Oxn O]’

where O11 s p.d..

Let v;; be the (4,)-th element of the G'G, (z%,)" be the i-th row of X}, (z%")" be the
i-th row of X;* = G4 X} and u}, be the ¢-th element of v, = Giu.+.

Assumption B7 Asn — oo,
ng ng

Z Z“?j =0 (n?)

i=1 j=1

and for any s, t=1, ..., g,

SOSE ( (15)) Cou (it 1) = o).

i=1j=1

SO0 (r (o)) Cov (ui w3) = o(n?).

i=1j=1
Theorem B Under Assumptions B1 and B3-B7, 6 —5 0.

Assumption B4 on ©3 may appear to be quite restrictive. However, (2.11) shows that
without the assumption on positive definiteness of ¥, an unconstrained optimizer for 65
gives S that is always positive semidefinite and usually positive definite in finite samples.
Hence Assumption B4 is not really a practical issue.

Assumption B5 is quite common in multivariate analysis. Consider a function f : RT —
R where f (z) = x—logz—1. We have that f () > 0 for allz > 0 except z = 1 and f (1) = 0.
Hence nig Yo (A —logAi —1)=0ifand only if A\; = 1 for i = 1, ..., n. This is equivalent
to H (02, 03) = I,,. Note that H (6p2, 0o3) = I,. Assumption B5 essentially states that
when 7 is sufficiently different from 7o, H (62, 63) is sufficiently different from H (6g2, o3) -
There is one technical issue with Assumption B5. There may be some p = 03 € O3 such
that S (p) is singular. In this case, there is A; = 0, where J\; is an eigenvalue of H (0, 03),
and hence log \; is not generally well defined. However, we employ the rule stated earlier
that we define log x = —oo if x = 0. It is worth noting that Assumption B5 is for asymptotic
identification of 65 and 63.

Assumption B6 is similar to the one made in Lee (2004). Since we consider a somewhat
different linear model from the one considered in Lee (2004), it turns out that only positive

definiteness of O1; plays a role in asymptotic identification of 6.
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As can be seen in the proof of Theorem B, we can easily avoid considering the term
S (p)~". Therefore we do not need to impose any assumption on O3 so that S (p) is invertible
for any p € O3 as in the literature. With reference to (2.9) any value of p making S (p)
singular cannot be a minimizer of Q,, (f) since we set logz = —oo for = 0. Hence these
values of p will be automatically removed from the "effective" parameter space when doing
an optimization problem.

The most important point to be noted here is that we do not assume any bound on
HS(p)_lH uniformly in ©3 as in the literature. The discussion at the end of Section 2
implies that Assumption B7 allows ||S™!|| and hence ||[Var (u)|| to be explosive but at an
appropriate rate. Since HS’1|| and G depends only on p,, our assumptions are imposed
on the true value p, but not the whole parameter space of p,. As discussed at the end of
Section 2, G is essentially S~!. In a univariate case, since Var (u) = o3 ((S’l)l S’l), in the
presence of spatial dependence, G'G is essentially Var (u) . Hence Assumption B7 allows the
variance matrix of u to be explosive but the rate at which it becomes explosive cannot be too
fast. Moreover, in the presence of spatial dependence, i.e. py, # 0, Gy = p&l (S[1 — In) .
Then

X" =G X} = pgtht — pgtht* and uly, = Gyey = p&lu.t — p&ls.t.

Hence the latter part of Assumption B7 is equivalent to

Z ZE (s (mjt)l) Cov (uis, uj) = o (n2) ,
Z: ZE (x; (x;t)/) Cov (uis, uje) = o(n?).

This is the limit on the joint explosive behaviour of the regressors and disturbances.

2.3.2 Asymptotic Normality

First we introduce notations employed in this part. Fort =1, ..., g, recall that X} is defined
as Sy X;. Let (z},)" be the i-th row of X;. For s, t =1, ..., g, let 0§t and o°' be the (s,t)-th
element of ¥ !and 71, respectively. Similarly, let oy and o4 be the (s,t)-th element of
Yo and ¥, respectively. Define u.; (8) = y.+ — X¢8 and o4t (0) = .5 (ﬁ)/ S, (p)/ St (p)ut (B).
Let X (6) be the square matrix whose (s,t)-th element is o4 (6). For t =1, ..., g, let g,
be the (7, 7)-th element of G;. For any value of p such that S; (p) is non-singular, define
Gt (p) = WiS; ! (p) and G (p) = diag (G1(p), ..., G4 (p)). Following Abadir and Magnus
(2005), for any symmetric matrix A of order n, define the duplication matrix D,, as the
n? x n(n+ 1) /2 matrix such that D,vech(A) = vec(A). Define &, as the Kronecker’s
delta.

The First Derivatives Consider 6 in a neighbourhood of 6y such that S; (p) are non-

singular for t = 1, ..., g. Recall that we impose the assumption that ¥ and X! are sym-
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metric. With reference to Lemmas C1 and C2, the first derivatives are

Q) 1, et
90, ngX Sy (BT @) S (p)uf), (2.12)
for s > t,
0Qn(0) _ 2—0a 2— 6y

dost 29 Ost + 2ng Ost (Q)a (2.13)

and fort =1, ..., g,

8Qn (9) = i i 5 st / /

oy = ngtT‘{Gt (n)} — ng ;0 . (B) Ss (p) Wyt (B), (2.14)

where 03; is the t-th element of 3. Note that (2.13) can be written in a matrix form as

aQn (0) _ 1 / 1 /
a0, —%ngec () + %ngec (X(9)), (2.15)

where D, is the duplication matrix.
It follows from (2.12), (2.15) and (2.14) that

8Qn (00) 1 / —1
Fen00) _ _ 2 (x*Y (27 @ 1,)e,
00, ng (X7) ( 0o @ )5
eher -+ giey
Q. (60) 1, 1
—————~ =——0D b)) —D : . :
20, % yvec (Xo) + 5 ,VeC : ) : ,
€461 €l4€.g

and for t =1, ..., g,

g
M = iiL'I" (Gt) - nig ZU(S)t‘S{sGtE't'
s=1

003, ng
Let
x)

_ 9Qn (0) 0Qy (60)
o = "9E< a0 a6’

Quin Qizn Qisn

= | Qan Qo2n Qosn |,
QBl,n QBQ,TL Q33,TL

X).

1 — *
Qi = g (X" (25 @ I,) X* =, O,

s

where Q;;, = E (78Q§;f0) Lng(;O)
By Assumption B6,

where Oq; is p.d..
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By Lemma C3, each column of 245 ,, is a multiple of

1 IS n
7220 tzx E{En‘ Eiu€iv — UOm))}-
Ny Si= i=1

Lemma C4 implies that the 7-th column of €23, is

1 £ ) g n
st__ut
— Z Z Z Og 09 Z T} Giir B (€it€iuir) -

9 s=1t=1u=1

3

By Lemma C5, each element of €233 ,, is a multiple of

n

ﬁ E E (Eiseitgiusiv - UOstUOuv) .
i=1

Lemma C6 implies that each element of 3 ,, is a multiple of
LS o g )~ Lir(Gy)
fl o . R W ]
n 0 : Giir €is€it&iulir n T ) O0st
u=1 i=1
Finally, by Lemma C7, the (7,t)-th element of Qg3 ,, is

uT st
- § E ) E GiiT iit {E (ELuezTezsezt) O0ur00st — O0usO0Tt — UOUtGOTS}
ng u=1 s=1 i=1

g

1 g g
—tr (GL.Gy) Z Z "o 0usOort + —tr (G,Gy) Z om0 00utoors- (2.16)
u=1 s=1

If E(siucireiscit) = B (ejugjrejseje) for all ¢ # 7, then the first term in (2.16) becomes

1 & ?
(gzgg) Sttt
=1 s=1

where k is the fourth cumulant. Under mild assumptions, it can be shown that all subma-

trices of 2, are convergent in probability. Hence, we make the following assumption.

Assumption C1 Asn — oo, §, —,  where Q is a positive definite matriz.
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The Second Derivatives Now consider the second derivatives of @, (6) . With reference
to Lemmas C8, C9 and C10,

m = nigX’S(p)’ (E7'® L) S5 (p) X,
m _ %D;(E@E)DQ
3;521%55) _ nig z: {0° XS, (p) Weur (B) + 0" X[W[S, (p) us (B)},
a;;%ci)(pf) - nigtr {Gt (p)g} Sst + niga“u,s (B) WiWyu.i (8),
for s > t,
m _nig {X1Ss (p)' St (p) w.e (B) + X1S: (p)' Ss (p) u.s (B) (1= 650)}
m _ _nigu.t (B Wit (p)ut (B),
and for s > t,
m _ _nig {ur (B) WSy (p) 1w (B) 87t + 1.5 (B) Ss (p) Wrttr (8) Grs},

Assumption C2 Fors, t =1, ..., g, lim, ..o n” 1r {G;}, lim, ..o n=ttr {Gf} andlim,,_, o n~ r {G.Gy}

exist.

Assumption C3 Fort=1, ..., g, suppose p — py = 0p (1) as n — oo, then

n"ttr {Gt (ﬁ)Q} —n " 'tr {G7} =0, (1).

Under Assumptions B1, B3-B7, and C2-C3, Lemmas C11-C15, if § — 6 = o, (1), then

_ 0 0 0
‘92@7”(9)% 011 29) D' (8o ®%0)D, E,|=E (2.17)
8989/ p ( g) g ( 0® O) g 2 - = :
0 E, Ey
where
tr (G?) - 0 oo ot tr (GhGL) -+ o0 tr (GLGy)
F{ = lim i + )
e ng 2 gl / 99 /
0 o tr (G) oogrof tr (GLG1) -+ ooge08’tr (G},Gy)

(2.18)
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and B, are gx (g + 1) g/2 matrix whose elements correspond to: for s > t, 82Q,, (6) /0o*'dp,

correspond to
Ors

240 (Go) 678]

— lim ["T’ftr (Gr)bpe —

n—0o0 ng

and 9%Q,, (6) /05" dp, correspond to

— lim |:o—ttt7" (Gt) (5th| .

n—oo | ng

By Assumptions B3 and B6, O1; and X are p.d.. Exercise 11.34 (a) in Abadir and
Magnus (2005) implies that Dj (3¢ ® ¥o) Dy is p.d.. Since the second term in (2.18) is the

limit of
(ng) ™ g (Wit (), o Wog ()] (57" & 1) ding (Wi (5), . Wars 9))

that is p.s.d., Lemma B9 implies that it must be p.s.d.. The assumption lim,,_,oc 7~ tr (G%) >
0 for all t = 1, ..., g, implies that F; is p.d.. To avoid the complication of showing that

E, — B {(29)_1 D}, (Yo ® o) Dg} E} is p.d., so that E is p.d., we make the following

assumption.

Assumption C4 The matriz E defined in (2.17) is positive definite.
Assumption C5 6 is an interior point of ©.

Assumption C6 Let g;;; be the (4,7)-th element of G. As n — oo,

2

Z Zgwt

Il
Q
—~
3

[\
SN—

i=1 Jj=1
_ 1/2
max max |g”t|+ max max |gm| = ofn .
1<t<g1<J<7L 1<t<g1<z<n

Assumption C7 Recall that (x%,) is the i-th row of X;. There exists & > 0 such that (i)

there is a finite constant C such that

445
max maXE\slt| <
1<t<g i>1

(ii) as n — oo,

g n
TN e P =0, (1)

t=1 i=1
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and (ii1)

g n

n! Z Z lgie|”0 = 0(1).

t=1 i=1

Theorem C Under Assumptions B1, B3-B7 and C1-C7, as n — o0,

Vg (0 -00) —a N (0, ETQE™).

Remark Assumption C3 is imposed so that we can avoid making arbitrary assumptions

on W. For a square matrix A, let \; (A) be an eigenvalue of A. It can be shown that
w7l (G () ) = {GE =07t Y (G ()Y — (A (G
i=1

Note that if A is an invertible matrix, then A~ is an eigenvalue of A~1 if and only if X is

an eigenvalue of A. By Lemmas A4 and A6, for p, # 0 and p sufficiently near p,,

Wi

Ai (Ge (D)) = % ((1 fﬁwi)_l — 1) =

1 - pw; ’
where w; are eigenvalues of W. Similarly

Wi

(G = o

The convergence in Assumption C3 depends on the behaviour of w;, particularly on how
many of w; and how fast w; get close to 1/p, as n — oo. Clearly, if HS‘1H is uniformly

bounded as commonly assumed in the literature, it is rather straight forward to show that

Assumption C3 holds. For the case where p, = 0, it is trivial since there is no spatial
dependence.
Remark For a univariate case, it is very simple to show that Assumption C4 holds

under more primitive assumptions. If ¢ = 1, then

On1 0 0
E=]0 1o} —a,,—?tr (@)

0 —%(G) Lir(G?)+ Ler(G'G)
Assuming that lim,, .., n~'r (G'G) > 0, then a necessary and sufficient condition for E to

be p.d. is that
1 1 1 2
ﬁtr (G*) + =tr (G'G) — 2 {ntr (G)} > 0.

n

By Schur’s inequality, ¢r (G?) < tr (G'G), a sufficient condition for this to hold is that
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{niltr (G)}2 <n"lr (GQ) . Note that, the Cauchy’s inequality,

{n~ter (G)}2 =n? <Z >\i> <n! Z A =n"r (G?),

i=1

where ); are eigenvalues of GG. The equality holds if and only if A\ = Ay = --- = A,,.

Remark  Since tr (G}Gy) = 31" >0, g7, Assumption C2 implies that

Zzgi?jt =0(n).
i=1 j=1

This observation makes Assumption C6 analogous to a more familiar assumption in time

series literature that

1/2
n n

n n
2
max max E ii¢| + max max E iit| = O E E y
1<t<g 1<j<n 4 19i 1<t<g 1<i<n 4 193] L L9t
i=1 Jj=1 =1 j=1

Recall again that, in the presence of spatial dependence, G; = patl (5’;1 — In) . Hence G, is
essentially p&l S; ! and elements of G, directly controls the degree of spatial dependence of

u.¢ since Var (u.;) is essentially G,G;. Finally, Assumption C7 is for the Lyapunov condition.

2.4 Nonparametric Series Estimation

Before discussing how to obtain efficiency improvement, we first discuss nonparametric series
estimation. The reason is that in order to obtain an estimate that is adaptive in the
sense of Stein (1956), one needs to nonparametrically estimate the unknown score function.
Our choice of nonparametric series estimation over the kernel estimation is based on the
advantage that no trimming is required.

Consider a nonparametric model
E(yi|z:) =h(z:), i=1, ..., n,

where z; are RY9-valued random variables. The main interest in series estimation literature
is to nonparametrically approximate the unknown function h by a linear combination of
approximating functions p1, ..., pr, h= ZZL:1 cip;. The effectiveness of such approximation
depends on the choices of approximating functions and coefficients ¢;. For a given a family
approximating functions {p;}, the simplest way to choose the coefficients is to perform least
squares regression of y; on p; (z;) . To explicitly illustrate the idea, let

!

P (@) = (p1(2), ..., pL (@)

be a vector of approximating functions. The least squares approximation of h by approxi-
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mating functions py, ..., pr at a point x is

hr (z) = p* () A, (2.19)

where

.= (PP Py, P=p" (1), -, p*(2,)) and y= (y1, - yn) - (2.20)
The main interest in the literature focuses on precision of such approximation with some
families of approximating functions such as trigonometric functions, polynomials and regres-
sion splines, when the number of approximating functions L is allowed to become arbitrarily
large as the sample size n increases. The precision is commonly evaluated from the mean-
square and uniform convergence perspective where the rate of convergence is often of a main
interest.

For clarity of the discussion, we introduce two assumptions.

Assumption D1 {(a:;, yi)'} is an i.4.d. sequence of RE+ valued random variables.

Assumption D2 E {h (a:)z} < 00, where x has the same distribution as x;.

For some semiparametric models including the one to be discussed in this chapter, the

mean-square convergence of the type
~ 2
/ [h (z) — hr (x)] dFx (z) — 0 as L — oo, (2.21)

where F'x is the distribution function of x, is sufficient to show required asymptotic prop-
erties as long as the first-order asymptotic is concerned. Our choice of a family of approx-
imating functions is the polynomial type. Practitioners, particularly those from economic
background, may find this choice of approximating functions natural and intuitive. With
polynomials, the expression in (2.19) can be interpreted as a Taylor approximation of an
unknown function h. Moreover, Newey (1988) showed that a series estimate employing
polynomials arises naturally from GMM estimation.

Let Ny denote the set of nonnegative integers. A multi-index is denoted by A =

(A1, ooy Ag)' € N§ with norm ||A[|; = 329_, [\|. For A € N§ and = = (21, ..., 2,) €RI, a
monomial in variables x1, ..., x4 is a product
A A A

zt =zyt. Tyl

The number [[A||; is the total degree of z*. A polynomial p : R — R in g variables is a

linear combination of monomials
2 : A
p (SL') = CA\T™,
A
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where ¢y € R. The degree of a polynomial is defined as the highest total degree of its
monomials. Denote the collection of polynomials in g variables by I19.

Let fx be the probability density function of z and X be the support of z, i.e. fx (y) >0
for all y € X. Newey (1997) showed that under the assumptions that X is the Euclidean
product of compact intervals on which fx is bounded away from zero, and that h is con-
tinuously differentiable of order s on X (2.21) is O (L/n+ L™2%/9) as n — oco. However,
the assumption on fx is restrictive since his results are not applicable to most well-known
random variables such as the normal, Student’s t, exponential and chi-squared random
variables.

The main objective of this section is to relax Newey (1997)’s distributional assumption
to allow for unbounded X. When X is unbounded, in some circumstances a sharp result
as in Newey (1997) may not be achievable since |h (z)| may become arbitrarily large as ||z||
goes to infinity. As mentioned earlier, in many semiparametric applications, including the
one in this section, the convergence of the type (2.21) without the knowledge of the rate
of convergence is sufficient as long as first-order asymptotic is concerned. Hence, we first
discuss how to obtain (2.21) in a general case and later discuss how to be more precise about
the rate of convergence.

The possibility for (2.21) to hold arises from the following result extended from the
theorem for a univariate case in Freud (1971) that was employed in Newey (1988) and
Robinson (2005, 2010). Let M = M (RY) denote the set of nonnegative Borel measures on

RY having moments of all orders, i.e. if 4 € M, then
/ |2} dp(z) < oo for all A € NJ. (2.22)
R9

Denote the class of square integrable functions with respect to a measure u by L? (i),
ie. f e L*(u) if and only if [p, |f|> du < oo, . Theorem 3.1.18 in Dunkl and Xu (2001)
states that if pu € M satisfies

/ exp (c|lz]|) du(z) < oo, (2.23)
RY

where ||-|| is the Euclidean norm, for some constant ¢ > 0, then the space of polynomial IT9
is dense in L? ().

The distribution of x can generally be an issue for series estimation when polynomials
are employed. First, higher order moments of x may not exist if the distribution of = has fat
tails. Hence, (2.21) is not well defined. In addition, in order to employ the approximation
result from Dunkl and Xu (2001), it is required that the moment of x must exist for all
order. This problem can be overcome by employing polynomials in £ = T (z) rather than
polynomial in 2 where T : R — RY is a one-to-one bounded transformation such that ||£]| is
bounded. When hy, () is replaced by hy, (T (z)), it follows that the mean-square criterion

in (2.21) becomes

/ [h (T71(€)) — hr, (f)]2 dFe (§) = 0as L — o, (2.24)
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where £ = T (z), hi (€) is a polynomial in § and F¢ is the distribution of £. Clearly the
composite function h o T7! is in L? (F¢) and F¢ satisfies (2.22) and (2.23) when |[|£] is
bounded.

Hence we employ approximating functions

where {) (1)} is a sequence of distinct multi-indices. It is crucial to assume that the sequence
{X (D)}, of distinct multi-indices must include all distinct multi-indices. Moreover, it is
assumed that the sequence {\ (1)} is ordered so that ||A (I)[|, = >°7_, [X¢ (1)] is monotonically
increasing.

Another problem arises from the fact that when the regression in (2.20) is employed
to choose the coefficients ¢y for the polynomials, multi-colinearity of the approximating
functions p; (T (z;)) may become an issue for a wide class of distribution, particularly as L —
oo. This is precisely the problem faced by Newey (1988) and Robinson (2005, 2010). Under a
general distributional assumption, Newey (1988) had to assume that Llog (L) /log(n) — 0
as n — o0o. Robinson (2005) relaxed this slow rate of L slightly. This problem of multi-
colinearity is particularly serious for « with high dimensions since one cannot employ many
approximating functions as restricted by the rate of growth of L.

One effective way to get around with the multi-colinearity problem was proposed in
Cox (1988). Cox (1988) pointed out that when polynomials are employed as approximating
functions, h 1, (§) computed from polynomials in £ will be numerically the same as that from
orthonormal polynomials in &, with respect to some weight functions, of order corresponding
to components of A(l). Newey (1997) employed this advantage to show that when the
support X of z is bounded and fx is bounded away from zero on X, the appropriate
orthonormal polynomials which could get rid of multi-colinearity is the Jacobi polynomials
with respect to the uniform weight.

It turns out that a certain class of transformations T' can play a crucial role in allowing
for unbounded X. Before discussing an appropriate class of transformations T, we first

discuss an analogous result to that of Newey (1997).

Assumption D3 There exists a bounded and one-one transformation T : R — RY such
that € = T (x) where the support of € is the Cartesian product of bounded open intervals
MY_, (at, by) on which the probability density function of & is bounded away from zero almost
everywhere, i.e. there is a constant C such that fe (§) > C > 0 for all £ € TI{_; (at, by)

except for £ in a null set, where f¢ is the density function of €.

Assumption D4 Var (y;| x;) is bounded.

Assumption D5 Asn — oo, L3/n — 0.
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Theorem D1 Under Assumptions D1-D5, as n — 00,

/ [h (@) — s (T (@) dFx (2) = 0(1). (2.25)

Let hy = h o T~'. Suppose it is known that h; is continuously differentiable of order v

on the support IIY_; (a¢, bt) of & Suppose further that the following assumption holds.

Assumption D6 It is possible to extend hy : 1I7_, (ar, by) — R to he : IIY_, [ar, b] — R

where hy is also continuously differentiable of order v on II{_, [as, by).

Then we can be more precise regarding the rate of converge.

Theorem D2 Under Assumptions D1-D6, as n — oo,

/ [h () — hy (T (:c))} * APy () = 0, (L/n v L‘2”/9) . (2.26)

Theorem D2 is essentially the same as the first part of Theorem 4 in Newey (1997).
Assumption D6 is the same as Assumption 9 in Newey (1997) so that we do not have to
rely on the approximating result in L? space from Dunkl and Xu (2001). One necessary
condition for Assumption D6 to hold is that A : R9 — R is a continuously differentiable
of order v on RY and that h must be bounded. Then under some conditions, it is possible
to extend hi to satisfy Assumption D6. Hints for sufficient conditions for Assumption D6
may be seen from the discussion of the transformation 7" later in this section. Obviously, T’
must be smooth enough for hy to be smooth. An example of unknown function satisfying
Assumption D6 may arise from applications where it is required to estimate an unknown
distribution function of vectors of random variables such as in the semiparametric index
models.

As Theorems D1 and D2 allow us to extend the result in Newey (1997) to more ap-
plications, we have not shown an existence of a transformation T satisfying Assumption
D3. Actually, this is the most difficult part in this section and is our main contribution. It
should be hinted from Assumption D3 that we only need to show that the required condi-
tion holds except for a null set. However, for simplicity of the proof, we make the following
assumptions.

First, we introduce some notations applicable only for this section. For a function f :
A — B, define f(A) = {f(a) € B:a € A} as the image of A under f. Let X denote the
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support of z and X; denote the support of z;. That is X = {z € RY: fx (z) > 0} and
X ={z; € R: fi (x¢) > 0} where f; is the marginal density function of z;.

Assumption D7 (i) The probability density function fx of x is continuous on X. (ii) X

is the Fuclidean product of unbounded open intervals.

Assumption D7 is applicable for many families of multivariate random variables such as
the normal, Student’s t and exponential families. Lemma D3 (i) also shows that Assumption
D7 (ii) is not too strong an additional condition from Assumption D7 (i). Again for simplicity

of the proof, we restrict a transformation 7" : R9 — RY to be of the form
T(z) = €= (mi(21), -y My (2g)), (2.27)

where z = (21, ..., x4) and m, are functions m; : R — R.

Assumption D8 Functions m; : R — R are (i) strictly increasing; (ii) continuously dif-

ferentiable and

d
T (u) >0 for all u € Xy;

and (iii) for allu € R, |my (u)| < C for some finite constant C.

Note that Assumption D8 (i) can be replaced by a strictly monotonic function. However
if m; are decreasing, then —m; are increasing. Hence, there is no loss of generality. It follows
from Lemma D3 that under Assumptions D7 (i) and D8, for any £ € T (X),

£ (€)= fx (T ) [ [mh (mit (€0)] " (2.28)

t=1

and f¢ is continuous on T (X)), where m; (u) = dmy (u) /du. In order to see the significance
of a right choice of transformations m; and hence T', we restrict our intuitive discussion
to a univariate case. As fx (z) > 0 for all x € R, it follows that lim, . fx (z) = 0 =
lim,_,_o fx (z). To ensure that fe satisfies Assumption D3, one difficulty may arise from
the fact that fx may converge to zero at a very fast rate as in the case of the Gaussian
random variable. With respect to (2.28), the role of the transformation m is to make f¢
to have fatter tails. That is a right choice of a function m has to move enough proportion
of mass of the density fx so that f: have enough mass at the tails in order to satisfy
Assumption D3. It turns out that the following family of transformations will do the job.
In order to avoid making the proof excessively lengthy, we first restrict Assumption D7 to

the following one.
Assumption D9 Assumption D7 holds with X = RY.
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We will later briefly show how to extend the result for X in the form
X = H I,
t=1

where I; can be any combination of I; of the forms (—oo, b), (b, o0) and (—o0, c0) where

b is a finite real number, so that only Assumption D7 (i) holds precisely.

Definition D1 A function m : R — R is in a class & if

S
1+ exp (g (u))’

where g : R — R is a continuously differentiable function such that its derivatives are strictly

m(u) = (2.29)

positive and

lim g(u) =—o0c0 and lim g(u) = oco.

u——0o0 uU— o0

Given the class £, Theorem D3 gives a hint for a proper choice of function g such that

the transformation T satisfies Assumption D3.

Theorem D3 Suppose a transformation T' has the form (2.27) where m; are in the class €

and Assumption D9 holds. Suppose there are functions q; : R — R such that, fort =1, ..., g,

lim Ix (z)

. [x ()
> |
rimrso T exp (g (25)) = 0 aes

ar——oo ITJ_; exp (gs (25

) > Cop, (2.30)

where c1, cor > 0 and can be infinite, for all x_y = (x1, ..., T4_1, Tp11, -y :cg)/ mn
RI~ and forallt =1, ..., g,

Jim [g (2¢) + g (w¢) — log (¢ (z2))] = oo, (2.31)
Jm g (ze) — ¢; (2¢) +log (¢ (z))] = —oo, (2.32)

where g is a function in (2.29). Then the transformation T satisfies Assumption DS3.

Remark Theorem D3 gives sufficient conditions on fx and proper choices of g (u) so
that the transformation 7' will satisfy Assumption D3. The complexity of conditions in
Theorem D3 is mainly designed to turn a multivariate problem into a univariate one. It
is much easier to find a limit of a function with one variable than with several variables.

To appreciate the usefulness of Theorem D3, we consider one example. Suppose x is a
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multivariate normal random variables with zero mean and a p.d. covariance matrix 3. It
follows that

1
fx () = Cexp <2x'21x> , for some finite constant C. (2.33)
If we choose g (u) = u? + u, then ¢’ (u) = 3u? +1 > 0. It can be verified that this choice

of g make m be in the class £. Given fx in (2.33), we can choose ¢; (z;) = —coz?/2 where
co = ||[S71|. It follows that

g
fx (z) > Cexp <; [ ||21||) = Cexp (C; Zx?) :
t=1

Hence for all z € RY,

fx () g xp —Coxs /2)
=C>0.
I19_, exp (¢s (xs)) s:l_Il (—coz2/2)
Therefore, for all t =1, ..., g,
lim Ix (@) lim Ix (@) >C >0,

Ty =0 H —1 exp (¢s (1‘3))’ Ty—00 H —1 exp (gs (v5))

for all z_; € R9~1. Hence condition (2.30) holds. Now for each ¢,

lim[g (20) + ar (20) ~log (¢ ()] = Jim_ [z + 20— eoat/2 ~ o (30 +1)] = oo

Ty —00

and

lim [g(z¢) — q: (z¢) +log (¢’ (z¢))] = lim [xf + a2 + cox?/Q + log (3&0? + 1)] = —o0.

Hence conditions (2.31) and (2.32) hold. Therefore the function

1

___ 2.34
1+ exp (ud +u) (2:34)

m(u) = —
can give the transformation 7" such that Assumption D3 holds for the multivariate normal
distribution. It is easy to see, particularly from (2.30) that if fx has fatter tails than the
multivariate normal distribution, we can apply the same choices of ¢; and g so that all
conditions in Theorem D3 hold. Hence we can state the following result where the proof is

omitted.

Corollary D Suppose x is a random variable such that its support is RY and fx (z) > 0
for all x € RY. Suppose that fx is continuous and its tails approach zero at most as fast
as that of the multivariate normal distribution. Then the transformation constructed from
(2.34) will make Assumption D3 holds.
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Remark If the tails of fx approach zero at a much faster rate than that of the normal
distribution, then a choice of g (u) = exp (u) can be employed. This choice of function g

moves much more mass of f¢ towards the boundary of T'(&X) .

Remark Now we consider other forms of X. As noted earlier, our assumptions and
Lemmas D5, D6 essentially turn a multivariate problem into a univariate one. To avoid
making many repetitive steps as for the proof of Theorem D3, we simply consider x where
x is a real-valued random variable. An extension to multivariate x can be seen from all
Lemmas associated with the proof of Theorem D3. Without loss of generality, suppose it is
known that the support of z is X = (0, oo). For more general cases namely (—oo, b) and
(b, 00), one can always first take a linear transformation to get X =(0, oo). Examples of
x satisfying this assumption are the exponential distribution and other distributions taking
only positive values. It is obvious that the choice of g (u) = u® + u will not make & = m (z)
satisfy Assumption D3 since lim¢_,_; /5 fe (§) = 0 where T'(X) = (=1/2, 0).

Suppose that the right tail of fx decreases to zero at a rate slower than that of the
normal distribution and, for some constant k, the left tail approaches zero at the rate 2* as

x — 0. Then one can choose

g(u) =u",

where k' is the smallest odd number such that &' > min {k + 1, 3}, as a choice for m. Under

regularity conditions as outlined above, it follows that

-1

fe (§) fx (m™1(©) [m/ (m™1 (9))]
_ Ix (z) o i
= o (@) et LT e @)

where x = m~! (¢) . Certainly T (X) = (m (0), 0) and m (0) is the left boundary of T' (X).
The difference between this choice of g and the previous one is that there is a number zg
in R such that ¢’ (xg) = 0. In this case, g = 0. Applying the steps shown for the normal
example, it can be shown that lime_ . fe (§) = oo. Similarly, limg_,,, () fe (§) = oo since
xk,_l/mk — 0 as * — 0. As we have shown that f¢ is continuous and its limits go to
infinity as £ approaches the boundary. Hence it follows that f¢ is bounded away from zero
on it support, i.e. Assumption D3 holds. As a consequence, for X = IIY_, I, where I; are
unbounded open intervals, we can choose the right function m; to match the behaviour of
fx on each I; so that Assumption D3 holds.

Remark In reality, practitioners may not have full knowledge of the support X. One
question we have to discuss is whether the wrong kind of transformation will have any
significant effect on our result. First suppose that X" is R but we employ the transformation
for X =(0, oco) as discussed above. It turns out that this mistake will not have a serious
impact since Assumption D3 still holds. Recall that this type of transformation makes
limg_7(0) fe (§) = oo without changing the limits of fe as £ — —1 and £ — 0. Moreover,
T (X) becomes (—1, T (0))U(T (0), 0). As fe is still continuous on 7' (X') and all boundary
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points are such that their limits approach infinity. Hence, f¢ is bounded away from zero for
every { € T (X). Then we can set f¢ (7' (0)) = 0 but Assumption D3 still holds since it only
requires that f¢ is bounded away from zero almost everywhere.

Now suppose X =1IIY_, [a;, b;], where a;, b are finite numbers and fx is bounded away
from zero for all x in X, i.e. fx satisfies the assumption in Newey (1997). If we employ
a transformation for X = RY as for the case of the multivariate normal distribution, then
this wrong kind of transformation still makes Assumption D3 hold. The reason is that f
will still be bounded away from zero on the new support of the form II{_; [m (at), m (b)].
Similarly, one can argue that the transformation for X of the type (0, co) will not affect
Assumption D3 either. Finally, it is worth noting that if fx behaves in such a way that there
is no transformation 7" such that Assumption D3 holds, then the convergence in Theorem
D1 still holds. The only effect is that the number of approximating functions employed in
the series estimation has to grow very slowly due to the fact that the matrix P’ P employed

in the approximation is near singular. This can be seen from Newey (1988).

2.5 Efficiency Improvement

In section 3, we see that the Gaussian pseudo-maximum likelihood estimate can be root-
n-consistent. If precision of an estimate is a concern, particularly when the sample size is
small, a maximum likelihood estimate can be employed. If the density of the innovations
;. are correctly specified, then, under mild assumptions, a maximum likelihood estimate
will be more efficient than the estimate in the previous section. However, if the density is
misspecified, the maximum likelihood estimate may become inconsistent.

Stone (1975) showed that, for a simple location model with independent and identically
distributed (i.i.d.) data and symmetric distribution, in the absence of a complete knowledge
of the distribution of the data, there exists an estimate that is asymptotically as efficient
as the maximum likelihood estimate when the density function is known. Not knowing the
density function of the data, Stone (1975) constructed his asymptotically efficient estimate
from a nonparametric estimate of the unknown density function. Stone’s estimate is adaptive
in the sense of Stein (1956). That is the unknown location parameter can be estimated as
well asymptotically not knowing the density function as knowing it.

Bickel (1982) and Newey (1988) extended Stone’s result and showed how to obtain an
adaptive estimate of the slope parameter in a linear regression model where the disturbances
are ii.d.. Many authors showed that adaptive estimates can be obtained even without
ii.d. data. For a linear regression model, Steigerwald (1992) considered the case when the
disturbances follow an ARMA process while Robinson (2005) allowed the disturbances to
follow a fractional process. More recently Robinson (2010) considered adaptive estimation
of the slope and the spatial autoregressive parameters in a univariate SAR model.

Now consider a multivariate regression with SAR disturbances. Unlike the specifica-
tion in the previous section, we now make a clear distinction between intercept and slope

parameters. The model becomes

Vit = Tifo +wie, 1=1, .y m, t=1, ..., g, (2.35)
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where .
Uit = Poy Z Wijtljt + Qot + Eit. (2.36)

j=1
It is worth noting that this model is slightly different from the one considered earlier.
The switch from the previous specification is a result of some complexity from the rate of
convergence of the intercepts in the previous model. It is well-known from long memory
time series that the rate of convergence of the intercept is slower than the slope parameters
in the presence of long memory of the disturbances. As mentioned earlier, to allow for
long-range dependence in wu;, the regressors z;; should be interpreted as mean-corrected
random variables. With this new specification, the parameters «g; play a role of location
parameters. We still expect that the result established in the previous section should hold for
this specification too. The reason for treating the intercept and slope parameters separately
is based on the fact that, compared with 3, ao: can be adaptively estimable under relatively
stronger assumptions. See, for example, Bickel (1982). Now we introduce some definitions

and assumptions.

Definition E1 Let [a, b] be a closed interval. A function f : [a, b] — R is absolutely

continuous if for every e > 0 there exists § > 0 such that if
a2 <Y1 <2<y < ol KT <Ym <

and
Z (i — i) <6,
i=1

then

m

ST )~ f (@) <e.

i=1
For a function f: R — R, we say that f is absolutely continuous if for every x € R, there
exists m > 0 such that the restriction of f on the closed interval [—m, m] is absolutely

continuous.

Definition E2 For a function f : R9 — R, define a function f;_, : R — R by

Jo_, (%) = f(21, vy Teo1, Ty, Tig1, e xg)

where _y = (T1, ..., Ty—1, Teq1, -y Lg) € RI. A function f : R9 — R is in the class

AC (R9) if functions fy_, (1) are absolutely continuous almost everywhere (for all x_; €
RIL except x4 in a null set) for t = 1, ..., g. Define Of,_, () /Ox; as a derivative of
fo_, and

of _ (0fa_, Ofs_, !
or  \ Oz * 77 Oz, '
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Fix t and x_;. If f,_, is absolute continuous, then it is differentiable almost everywhere.
Hence the derivative defined in Definition E1 is well-defined almost everywhere. A sufficient
condition for a density f : RY — R to be in the class AC (RY) is that f is continuously
differentiable. Continuous differentiability of f implies that 0f/0e; are continuous for all
t =1, ..., g. Hence f._, are absolutely continuous everywhere for i = 1, ..., g. A weaker
sufficient condition such as a Lipschitz condition can be employed to check for absolute

continuity too. Recall that ;. = (g1, ..., 5ig)/.

Assumption E1 (i) {g;.} is an independent and identically distributed sequence of RY-
valued random variables with the joint density function f. (ii) The function f is in the class
AC (R9) with partial derivative Of /Oe. For e such that f (e) > 0, let

1 ()
fle) 0e

v(e) = -

(iii)
E{¢ (e:)v (1)} = L,

and L is a finite and positive definite matriz.

Define g = (a1, -\ aog)/ and fpy = (ag, Bo, pg)/ . Similarly define o = (g, ..., ag)l, 04 =
(o, 8, p),
git (04) = (yir — 3, 8) — py sz‘jt (yje — 25, 8) — a (2.37)
j=1

and Ei. (94) = (61'1 (94), ceey Eig (04))/ .

Assumption E2 {z;;} and {e;} are independent and the joint distribution function of

{zit} does not depend on 0.

In order to express the likelihood function of the data in a tractable form, we state

one useful result. Consider any random variables X7, ..., X, with the joint probability
density function f. Let T be an R™-valued function such that T' (X1, ..., X,,) =Y, ..., Y,
where Y7, ..., Y, are just a re-arrangement of Xi, ..., X,. It follows that the Jacobian

matrix of T" is a product of elementary matrices. Since these elementary matrices represent
row-switching transformations, the modulus of the Jacobian determinant is unity. Hence

Y1, ..., Y, has the density function

g1, o ) = F (T (Y1, s y)) s (2.38)

where T~ is the inverse of T
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Suppose the joint density function of vec (X) is fx. To discuss possibility of adaptive
estimation, we first consider an arbitrary parametric submodel corresponding to a para-
meterization of the joint density of vec(X) as fx (z, ;) and of ¢;. as f (e, ny), where
fx (@) = fx (z, ngy) and f (e) = f (e, ngs), for some 1y, and nys. It follows from Assump-
tions E1 - E2 and (2.38) that the log-likelihood of the sample is

In (04) = log fx (vec(X), n,) + % > 1og|Si (p) Si(p)| + D log f (ei- (04), my), (2.39)
t=1 i=1

where Sy (p) are defined as in the previous section.

Following Stein (1956), o4 is adaptively estimable if fp4 can be estimated as asymptot-
ically efficient not knowing 7y, and 74, as knowing ny; and 7ny,. A necessary condition for
fo4 to be adaptively estimable is that the information matrix of 6, and (1, 1,)" is block-
diagonal. Under the Gaussian assumption, it can be seen from Theorem C that a necessary
condition for p, to be adaptively estimable is that lim,, .. n~1tr (G¢;) =0 fort =1, ..., g.
Since the required condition does not generally hold, particularly with our assumption that
||S -1 H — 00 as n — 00, it follows that p, is generally not apatively estimable.

It should be noted that condition (3.13) in Robinson (2010) makes the information
matrix of the spatial autoregressive parameter and the variance of the Gaussian innovations
block-diagonal. Hence Stein’s necessary condition for adaptive estimation is satisfied. With
further assumptions, he show how to obtain adaptive estimates for both slope and spatial
autoregressive parameters. However, Robinson’s sufficient conditions for adaptive estimation
are not of our interest since they depends on row normalization and the restriction imposed
on the parameter space of the unknown spatial autoregressive parameter.

As p, is not generally adaptively estimable, for simplicity, we only focus on adaptive
estimation of 3,. Now we discuss adaptive estimation of ,. First, we introduce some
notations. From (2.35), it follows that

vi. = Xi. By + Ui,
where y;. = (vi1, ... yig)', Xi. = (zi1, oy xig)/ and u;. = (i1, ..y uig)'. Define
n n
Tl = T — Poy Yy Wit T (Py) = Tir — Py Y Wigiie, (2.40)
j=1 j=1
* / * * /
Xi~ = (‘r;‘klv sy mfg) ’ Xz (p) = (‘r;kl (p1)7 sy xig (pg)) ’ (241)

and

X(p)=n71 3 X ().

Let A = diag (pl, cny pg) and W;; = diag (wij1, ..., Wije). With this notation, it follows
from (2.37) that

E;. (04) = (yl — Xlﬁ) — AZ W” (yJ — X]ﬁ) — Q. (242)



Suppose the density function of ;. and p, are known. Suppose there are initial estimates
a and E of ap and . Then to avoid non-linear optimization, one can employ the linearized

~

maximum likelihood estimate 8 of 3, of the form

=i (S w2 -x)) (300 e (5 )

i=1 i=1

where n
Fepn! Zw (Ei- (5[7 3, p0)> 0 (gi_ (&, B, ,00))/
i=1

and X = n~! >, X7 Under weak regularity conditions, it can be shown that this
estimate will be efficient in the Cramer-Rao sense.

If we no longer assume that the density function and p, are known, we can estimate p,
as in Section 3 but we have to nonparametrically estimate the unknown score function .
In this chapter, we employ a series estimate developed earlier. Our adaptive estimate of 3,

is

n ’ ! n /
B=p+ (Z Xi @) -X 0] Lu[X:(G) - X @)]) (Z (Xi @) -X" )] b <a-.>> ,

i=1 i=1

~ ~ ~ ~\ ~ ~ ! ~
where £ = n 'S0 0, Bi) 0y, B1), & = e (94), 0, = (a’, 7, 5’) and 9, (5. is a
nonparametric estimate of ¢ (£;.) which will be discussed in details below.

As in the previous section, for any v in RY and a multi-index A (I) in Ng, define

pr(v) =0 and p* (v) = (p1 (v), ..., pr (W)).
Let T be a one-one transformation described in the previous section. Define

- (L) o (T (u)))’.

¢ Ouy T Ouy

Let ¢, (e) be the t—th element of ¢ (e). Then, for t =1, ..., g, our nonparametric estimate
of ¢, (€;.) is
-1

Vo, Ei) =" (T E)) | 0" (T E)) " (T ) > G (2.43)
j=1 j=1

where ¢;. are as described above, and

@L (gi') = (@1L (Ei.), oo @g[, (gi.))/.

Assumption E3 The transformation T is of the form (2.27) where my = --- = mg = m,

the function m is in the class E and the function g is well chosen so that Assumption D3
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holds.

Assumption E4 A function m in the class € is such that

2

5&5”1@0

—+ sup < 00

0
sup %m( u) up

u€eR

Assumption E5 Asn — oo, (i)

. —x\/ —*
n*lz(xgi fX,) c(x; fX,) —, V,
i=1
where V' is a positive definite matriz; (ii)

—-1/2 X _ 1
W s X = o (1)

(iii)
’IZEHX*H ’IZEIIX*II n") ’IZEIIX*II O (n");

(i)

n

nt ZE zn:W”X7 = Op (n<1) 5 nt iE zn:W”X7 = Op (71(2) s
j=1 =1 ||j=1

where (4 < 1/2 and {5 < 1; (v)

n! i i Wijuj.|| = Op (1) and n! Z 2": Wijus.|| =0, (1);
i=1 ||j=1 i=1 ||j=1

(vi)

i=1||j=1 i=1

— * 112 — * (12
DS WX 107 = 0 (n2) n S| WX | IXE I =0, (n12),
j=1

nTY XD WX || = 0p (nfe);
i=1 j=1
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(vii)

DI WX | 1Y Wiy Op (n%2), n" > IS~ Wigug || [X7]* = Oy (n)
i=1 ||j=1 =

Jj=1 i=1||j=1
2

’I’L_1 Z HXZ*H Z Winj. Z Wikuk. = Op (ncﬁ) 5 ’I’L_1 Z HXZ*H Z Wij’LLj. = Op (’I’LC7) .
i=1 Jj=1 k=1 i=1 J=1

Let

Ri = dZCLg Zwijlujl, ceey Zwijgujg , (244)
j=1

i=1

Din =Y EB|X;|* and Dy, = > Ellh(s;) Ril®

i=1 =1

Assumption E6 For a function h : RY — Mg, where M is the set of all real g x g
matrices, let
|2 2
Din =Y X7 and Dap = _ ||k (&) Rl
i=1 i=1

Assume that N
D505 (X2 - X0) hien) Ri= 0, (7)),
i=1

where ¥ < 0.

Assumption E7 The sequence {\(1)},=, includes all distinct multi-indices. The sequence

is ordered so that |\ (1)||; is monotonically increasing.
Assumption E8 Asn — oo, 04— 0oy = O, (n*1/2),

Assumption E9 For k1, ko, (;, i =1, ..., 7, in Assumption E5, and ¥ in Assumption

2l

E6, as n — oo,

L1 + n~— 17,16 + n71/2+max{ml, C3}L5 + n71+max{i<;2, 2§4+2C5}L6 + n71+2(1L

_A'_n*(l*Cz)L + n*1+max{C6» 47}L5 + nﬁL3

iso(l).
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Theorem E Under Assumptions E1-E9,

w2 (B By) —a N (0, V7).

It can be shown that the choice of functions g discussed in the previous section makes
m satisfy Assumption E4. The complication of Assumption E5 arises from our attempt to
accommodate some explosive behaviours of the regressors and disturbances. Recall that

Xr=X; — Ao Z?Zl W;; X ;.. For example, if we assume that as n — oo,

Y X+ Y X =0, (1), (2.45)
i=1 =1
then it follows that n=1 Y " | HZ?:l WinZ-_H = 0, (1) provided that Ay is nonsingular.

Note that if Ag is singular, it follows that at least one component of u;. are actually inde-
pendent, leading to a trivial case. Other terms in Assumptions E5 can be substantially sim-
plified in a similar way if stronger conditions analogous to (2.45) are imposed. Assumption
E6 is the most unique assumption for our model. It involves both the necessary condition
for orthogonality so that 3, can be adaptively estimated, and the strength of spatial depen-
dence. The normalized sum in Assumption E6 is essentially an estimate of the covariance of
X} and h(g;.) R;. By independence of {z;;} and {e;;}, this normalized sum should tend to
zero in probability. The parameter ¥ determines the rate of convergence of this normalized
sum to its population counterpart that is zero. Under some regularity conditions, it can
be shown that under short-range dependence of both X/ and w,., ¥ = —1. Under this and
other stronger assumptions analogous to (2.45), Assumption E9 can be simplified so that it
only requires

L —ooand n 'L >0

as n — oo. The slower rate of increase of L, compared with the ones discussed in the
previous section, arises from the fact that our nonparametric estimate of the score function
relies on integration-by-parts. Differentiation of the approximating polynomial functions is

the source of this slow rate.

2.6 Final Comments

In this chapter we discuss estimation of a multivariate linear regression with spatial au-
toregressive disturbances. We show that the typical assumptions on the degree of spatial
dependence and on the parameter space can be substantially relaxed. We illustrate the
usefulness of the spectral norm over the row or column sum norms in defining an explosive
behaviour of a spatial autoregressive process due to long-range dependence and explosive
variances. This explosive behaviour may be a norm rather than an exception in cross-
sectional data with spatial dependence. We also show that the pseudo-maximum likelihood

estimate can be root-n-consistent in the presence of this explosive behaviour.
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There are many possible extensions to the results established in this chapter. Our
multivariate set-up should be readily applicable to linear panel data models. An extension
to simultaneous equations models may require additional steps to deal with endogeneity
within the models. It is also interesting to allow explosive behaviours of the disturbances in
limited dependent variable models. Another possible extension is to allow spillover effects
from regressors in the model.

Motivated by the success of the Autoregressive Fractionally Integrated Moving Average
(ARFIMA) models in time series analysis, it is very interesting to investigate a possibility of a
modelling strategy that can separate long-range spatial dependence from short-range spatial
dependence. In the ARFIMA models, the memory parameter reflects long-run dynamics of
the process whereas the ARMA parameters capture the short-run dynamics. In the first-
order Autoregressive (AR(1)) model, i.e. Xy = pX;_1 + &4, {X;} is stationary if and only
if |p| < 1 and there is an abrupt change when |p| = 1. This unsmooth behaviour of the
variances and autocovariances is a reason for popularity of the ARFIMA model. However,
in the first-order SAR model considered in this chapter, we show, in case of a symmetric
weighting matrix, that the smoothness of the transition from completely stable variances
and covariances to explosive ones is controlled by the rate at which one of the eigenvalues
of the weighting matrix approaches the inverse of the spatial autoregressive parameter. As
a result, it is not clear whether a modelling strategy that can directly separate short and
long range dependence is needed. Nevertheless, it is important to investigate complexity of
the dependence structure arising from higher-order spatial autoregressive models.

The second half of the chapter is devoted to discussion of efficiency improvement of
the pseudo-maximum likelihood estimate by nonparametric estimates of the unknown score
function of the distribution of the innovations in the model. The nonparametric power series
estimation is employed to estimate the unknown score function. We stress the importance
of a transformation prior to the nonparametric estimation especially when the distribution
of the innovations has unbounded support. It is interesting to see sensitivity and rela-
tive performance of different choices of transformation in finite samples from Monte Carlo

simulations.
Appendix 2.1: Proofs of Theorems
In the proofs, if not specified, C denotes a finite constant.

Proof of Theorem A By Lemma A3, (i) follows. Now consider a family {A,,} such

that all elements are uniformly bounded in n. Let

!/
An — all,n aln ,
A1n Bn

where a11,,, is the (1,1)-th element of A,, a1, € R"~1 is the first column of A,, with ajq ,

removed. Let a;1, be the j-th element of a1,. Suppose the family {aq,} of R l_vectors
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is such that Z;le lajin| form an unbounded sequence but Z;;ll |aj1n|2 form a bounded
sequence. Then ||A,[|; and ||A,|,, are not uniformly bounded in n. Suppose for simplicity
that {B),} is a family of positive definite matrices of order n—1 such that || B, ||, and || B, ||,
are uniformly bounded in n. Note that if A, is positive definite, then so is B,,. As A, is

positive definite,
|A.] =X (A,) = sup 2'A,z.

llzll=1
Let z = (21, x5)" € R™ where 25 € R*~!. Then
|An]l = sup (a11,n2] 4 22107, 22 + 25 B, 12)
llzll=1
< laiinl+2 sup aj,z2+ sup zHB,xo (2.46)
llz2ll=1 llz2][=1

By our assumption |a11,,| is uniformly bounded. As ||B,,||; is uniformly bounded in n, and

B,, is symmetric, Lemma A3 implies that,

sup 5By = || Byl < [|Bnll; -

llzzll=1
Hence the third term in (2.46) is uniformly bounded in n. Finally, Lemma A9 and the
assumption that Z;:ll laj1.n|* are uniformly bounded imply that the second term in (2.46)

is uniformly bounded in n. Thus, ||A,|| is uniformly bounded in n.

Proof of Theorem B First we introduce some notations. Define Ay = diag (P(nfn,
and A = diag (plln, ey pgln) . Consider any p.d. matrix ¥ and 03 € O3. Let 0% be the
(s,t)-th element of ¥~!. Then

n N (X*) G (Ao —A) (BT ®1,) (Ao — A) GX*

= 07N 0" (pos — ps) (o — ) (X3 GLGLXT

t=1

—

s=

Assumption B6 implies that this matrix converges in probability to a finite matrix. Similarly,

it can be shown that, under Assumption B6,

n\(X*)' G (Ao —AN) (1@, X" (X*) G (Ag—A) (2710 1,) (Ag — A) GX*
(2.47)
converges in probability to a finite matrix. Denote its limit by M (02, 03). Since ¥ is p.d.,

(2.47) can be written as n=!AA’ where

1 ( (X (=@ l,) X" (X*) (E'®1,) (Ao — A) GX*

A= (o)X (57201,) (A - A)GX").
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Hence Lemma B9 implies that My (62, 03) is p.s.d.. Define

K

1
M, (85, 03) = (IK IK) M (65, 03) <1K>‘ (2.48)
Then Ms (62, 03) is p.s.d..

Our proof follows a standard procedure to show consistency of an extremum estimate.
The loss function can be re-written as

Qu (6) = —% log|=~! @ fn|—% log !S(p)’S(p)IJr%u(ﬁ)' S(p) (512 L) S (p)u(B).

Therefore

1 1 1
n(00) = ———1log|Z '@ I,| — =—1og|S'S| + —¢' (E5t @ 1,) e.
Qn (00) Tng 128|%0" @ Sng og | |+2ngﬁ( o ®l)e

It follows that

- b b e
= g 8 IH (02, 03)| = 5 (%5 @ 1)<

+% {ut X (By—B)Y S(p) (E @ 1) S (p) {u+ X (By— B))
= s,(0)—1t,(0),

where
0) = ! H (65, 0 ! log |H (65, 6 !
sn(0) = 2ngtr{ (02, 3)}—% og |H (02, 3)|—§
+% (Bo — BY My (B2, 63) (Bo — B).
and
’ _ 1
4, (0) = %U’S(p) (27 © 1) § (o) u = 5, tr {H (62, 63))
+nig (Bo— B) X'S(p) (' © 1) 5 (p)u
o (o= 8 { 2X'S (0) (574 @ 1,) S X — My (02, 02)} (B — )
T B
iiﬂs (201®In)€

By Lemma BO, to prove consistency we need to show that for any § > 0, there exists
1 > 0 such that for some N,

inf s, (0) >mnforalln> N, 2.49
16—601>6 ) =7 - ( )
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and as n — oo

sup |t (0)] 2 0. (2.50)
0cO

Note that Lemma B0 is a slight modification of the standard theorem for consistency of an
extremum estimate.

First we show positivity of s, (0). For any 0, € ©2 and 03 € O3, My (02, 03) is p.s.d.
as outlined above. Therefore for any 6 € ©, (8, — 3)' M (62, 03) (8, — 3) > 0. Recall that
a function f : RT — R where f (z) = z — logxz — 1 is always positive, i.e. f(z) > 0. Our

extension for = 0 also gives f (0) = oo. Since

(ng)™ " {tr [H (02, 03)] —log|H (05, 03)] — ng}
= () 'Y (A —log Ay — 1),

i=1
where \; are eigenvalues of H (03, 03), it follows that

1

1
—tr {H (92, 03)} — %log|H(92, 03)‘ —

>0
2ng -

|~

for all n and 6 € ©. Hence s, (#) > 0 for all n and 0 € ©.
Let 7 = (02, 03) € Oz x O3. Assumption B5 implies that for any 6 > 0, there exists
7 > 0 such that for some N,

inf {1tr{H(927 03)} — ilogIH(Gz, 03)] — 1}
ng

[[T=70l|26 | g
1 &
= inf — Ai —loghi—1)p >
Jr—rolz { ng ;( ¢ )} !

for all n > N. Since this holds true for all 8 € ©4, to show (2.49) it suffices to show that
when 7 = To, i.e. (927 93)I = (902, 903)/

((Bo — B) Mz (Bo2, 003) (By — B)) = .

inf
18—Boll>d

This is indeed the case due to Lemma B7. Hence, (2.49) holds. With compactness of
01, Lemmas B2, B4-B6 imply that (2.50) holds.

Proof of Theorem C Under Assumptions B1, B3-B7, the Gaussian-pseudo max-
imum likelihood estimate is consistent, i.e. 0— 6y = op (1). With Assumptions C4 and C5,

to prove Theorem C, it suffices to show that

Vg2 i) v, ).

Define
0Qy, (0o)

ap = \/HQT’

and a; , = ng%a(f“), i=1, 2, 3. Then Q, = E (ayal,| X). Assumption C1 implies that
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Q, —p Q where Q is p.d.. Hence Q,, will be p.d. with probability approaching 1. For any
A € RE+9(9+1)/249 guch that ||A|| = 1, we need to show that

—1/2

(N2, A) " Na, —a N (0, 1). (2.51)

Suppose A = (X;, A, ;)" where A\; € RE| Ay € R9+D/2 and Az € RY. Then
)\/ RV I /
Gp, = N101,5 + AoG2pn + A303 5.

It follows that

n g g
Marn =—(ng) 233N o\t en, (2.52)

where z7] is the i-th row of X*. Each element of ag, is of the form

n

(4ng) % (2 = 6.1) > (eistir — 0 - (2.53)

i=1

By symmetry of ¥ ! each element of as,y, is of the form

n g n n
(ng)71/2 Zgiit - (ng)71/2 Z a5 Z Zgijteisgjt )
i=1 s=1

i=1 j=1

where g;;; is the (4, j)-th element of G;. This can be rewritten as

n g g
— (ng)~"? Z (Z 00! Giit€isEit — giit> + Z Z T5' GijeCisEit ¢ - (2.54)
=1 s=1

j#i s=1

Since Z‘;’:l oilogst = 1, the expectation of the sum in the parentheses is 0.
Let Fo be the trivial o-field and F; = o (e, ..., €;.) be the o-field generated by
€1,y ., Ei, Where g, = (g1, ..., eig)'. Conditional on X, following (2.52), (2.53) and (2.54),

there exist random variables b;,, such that
(WA T Naw = bin,
i=1

where {b;,, 1 <i <n} is a martingale difference sequence for each n, i.e. conditional on X,
E (bin| Fi—1) = 0. Then, by Theorem 2 of Scott (1973), (2.51) holds if conditional on X, as

n — 00,
n

D B (0] Ficr) —p 1 (2.55)
=1
and for any € > 0,
> EA{62,1(|bin| =€)} —, 0. (2.56)
i=1
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Define
Zim = (VN2 by,

Then, conditional on X, N'Q,\ = B (zlm)2 and a sufficient condition for (2.55) is
> {B (2, Fic1) —E(21,)} = 0, (2.57)
i=1

because, by Assumption C1, \'Q,\ —p NQX > 0. Let

Zin = Zil,n t Zizn + Zi3on,

where 21 5, 2i2n and zs, correspond to (2.52), (2.53) and (2.54), respectively. It is clear
from (2.52) and (2.53) that, conditional on X, E { (zi1n + ZiQ,n)Zl ]-'i,l} =E {(Zzln + Zi21n)2}

for all 7. Hence, conditional on X,

En: {]E ((zzln + ziQ’n)2‘ ]—'Z-,l) —E (zi1,0 + zi2,n)2} —p 0.

i=1
Hence for (2.57) to hold, it suffices to show that, conditional on X,
[E (Zi23,n| }—i—l) - E (Z123n)] —p 0.
=1

?

and
n

Z {E [(zi1,n + zi2,n) 2i3n
i=1
Lemma C16-C18 imply that these conditions hold. Hence (2.55) holds. To show that (2.56)
holds, it suffices to show the Lyapunov condition that, conditional on X, there is § > 0 such
that

E,l] —E [(Zil,n + Zi?,n) ZiS,n}} —p 0.

S Ebial* =, 0. (2.58)
i=1

A sufficient condition for (2.58) is that, conditional on X, there is 6 > 0 such that

n
& &
SUE (lzvial™ + lzaial + 250
=1

2+5) —, 0.

Assumption C7 implies that this is the case for z1; , and z9;,. With reference to the first
part of the proof of Lemma C16, to show that Y | E |z3i7n|2+6 = 0, (1), we only need to
show that 37 B |di|*™ = 0(1), where

dist = Giit (€is€it — Oost) + Eis E Gijt€jt + E GijtEjt
j<i j>i

Then the derivation from (A.24) to (A.26) in Robinson (2008) and Assumptions C6 and C7
imply that Y7, E|di|*T° = 0(1). Hence (2.58) holds.
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Proof of Theorem D1 Our proof is essentially the same as the proofs of Theorems
1 and 4 in Newey (1997). So the repetitive steps will be omitted. Let hy = ho T~1. As
discussed in (2.24), the left side of (2.25) becomes

[m@©-H@] s© de,

where f¢ is the probability density function of &,

hy (€) = p" (€)' (P'P)"" Py,

P=(p* (&), - PP (&) and y= (1, v ya) -

The difference of our proof to that of Theorem 1 in Newey (1997) are from equations (A.2)
and (A.3) of Newey (1997). We proceed as in the proof of Theorem 4 in Newey (1997) by
showing that Assumptions 1 and 2 in Newey (1997) holds and point out that the precise
rate of convergence as indicated by Assumption 3 in Newey (1997) can be replaced by the
approximating result in Dunkl and Xu (2001). The approximating result in Dunkl and Xu
(2001) can replace the precise result from Newey (1997)’s Assumption 3 in equations (A.2)
and (A.3).

First, Assumptions D1 and D4 implies that Assumption 1 in Newey (1997) holds. Note
that Var (y;| x;) = Var (y;| ;) since the o-field generated by z; and &, are the same under
our one-one restriction on 7.

Next, we employ the observation made by Cox (1988), in a univariate case, that Ay (€) is
numerically invariant if we replace p; (£) by orthonormal polynomials with the corresponding
order A (1). In our multivariate case, this replacement is valid since the sequence {A (1)} is

assumed to be ordered. Hence hy, (€) can be written as

~

hy (€) = pt (€)' (PLP.) " Ply,

where

PE(E) = 0 (€)s o PE(E))s Po=(PF(&1)s s PE(ED)
P (€) =z, (€1) - 2,00 (&) 5

1/2
2, (&) = (W> P (M - 1> : (2.59)

by — az by — a;

where Pf\?’ 9 are univariate Jacobi polynomials on [—1, 1] with degree )\; and parameter
(0, 0) (see Abramowitz and Stegun (1964, p. 775 eqn. 22.3.1) and Andrews (1991 eqn.
3.12)). That is to transform univariate polynomials in &, € (as, b;) to orthonormal polyno-
mials with respect to the uniform weight on [a;, b;]. Hence, for & € TIY_, (as, b;) standard
polynomials in £ are replaced by Jacobi polynomials of the same degree that is orthonormal
with respect to the uniform density on ITY_; (=1, 1). The usefulness of this transformation
can be seen from Lemma D2 that A(E [pL (€) pL (€)']) > C for all L > 1. Then we can follow
the proof in Andrews (1991) to verify that other requirements in Assumption 2 of Newey

o1



(1997) hold. Note that the condition L?/n = o (1) is needed to verify that Assumption 2 of
Newey (1997) hold for polynomials. See also the proof of Theorem 4 in Newey (1997) as a
reference.

Finally, we need to replace 3 in Assumption 3 of Newey (1997) by dr, such that
2
[ €)= dypt (€] aFe(©) 0 as Lo, (2.60)

from the result in Dunkl and Xu (2001). Note that since E {hl (5)2} < oo and £ are bounded,
conditions (2.22) and (2.23) of Dunkl and Xu (2001) hold for polynomials in & with respect
to its distribution function. Hence, by Theorem 3.1.18 in Dunkl and Xu (2001), there is a
triangular array {dL eRE:L> 1} such that (2.60) holds for polynomials in £. Since there
is a one-one correspondence between polynomials in ¢ and orthonormal polynomials in &,
there is a triangular array {dr : L > 1} for orthonormal polynomials too. The replacement
should be taken everywhere § appears in the proof of Theorem 1 of Newey (1997) by our
§r where the sup norm should be replaced by the L? norm in the sense of Dunkl and Xu
(2001) and the Markov’s inequality can be applied. Then it follows that the conclusion of
the theorem holds.

Proof of Theorem D2 It has been shown in the proof of Theorem D1 that As-
sumptions 1 and 2 of Newey (1997) holds. To show that Theorem D2 holds, it remains to
show that Assumptions 3 of Newey (1997) holds. Certainly, Assumption D6 is analogous to
Assumption 9 of Newey (1997) implying that Assumption 3 of Newey (1997) holds. Hence,
the result follows directly from the proof of Theorem 4 in Newey (1997).

Proof of Theorem D3 Suppose a transformation T" has the form (2.27) where m;
are in the class £ and Assumption D9 holds, it follows from Lemma D4 that Assumption
D8 holds and under Assumption D9 T (X) = (-1, 0)?. Hence T is bounded. By Lemma
D3, T is one-one and with Assumption D9,

g
_ _ —1
fe(©) = fx (17 @) [T [mi (mi " (€))]
t=1
where f¢ is continuous on T (X) and fe (§) > 0 for all € in T'(X). To show that Theorem
D3 holds, it suffices to show that there is a constant C' > 0 such that f¢ (§) > C for all £ in
T (X). To achieve this, we employ both Lemmas D5 and D6.
First fix t =1, ..., g, and £_, € (—1, 0)?" . Consider

Jm fe©) = i e (07 ©) Tt (m €2)]

. [x ()
= lim @ ———-
wi——o0 II_ym, (xs)

s=1
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where x = T~ (£). By condition (2.30), there are functions ¢, such that

L T R R S

lim _
—1 €xp (s (z5)) =1 my (zs)

Ty—>—00 Hg:lmg (1‘8) o T——00

Since
) = D0 @) (@1

T T exp (g (@)

it follows that )
exp (q¢ (v4)) [1+exp (g (z))]

my (1) exp (g (z¢) — gt (w¢) +log (¢ (24))]

Since g (z;) — —o0 as x4 — —0o0,

lim [1+4exp(g(z))])* = 1.

Ti——00

Under condition (2.32),

lim exp[g(z:) — ¢t (x¢) + log (g’ (z1))] =0,

T——00

and thus

i &P (/qt (xe) _
w00 my (1)

Hence under condition (2.30),

Now consider

Jm fe(€) = lim

i {0 [ owle )

71 exp (s (z4)) my (zs)

Since
! () = S (@) 9 (21)

[1+ exp (g (24))]

it follows that

exp (¢ (21) o exp (g ()
my (xe) T exp(g(w)) g (w
exp [g (2¢) + g1 (v¢) —log (¢ (24))] -

j exP (9: (1))

Hence under conditions (2.30) and (2.31),

. o dx(@)
fltlglo f5 (5) - zfll—1>noo nglm{q (1’5) -

As this result holds for all t =1, ..., g, and {_, € (—1, 0)9_1 , it follows from Lemma
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D6 that for any y in the boundary of 7' (X) = (-1, 0)7,
lim fe (§) = o0.
&~y

Hence, as mentioned earlier that fe is continuous on T' (X)) and f¢ (£) > 0 for all £ in T'(X),
by Lemma D5, there is a constant C' > 0 such that f¢ (§) > C for all £ in T'(X) as required.

Proof of Theorem E Our proof is quite different from those of Newey (1988) and
Robinson (2005, 2010) for a number of reasons. First, we have to work with orthonormal
polynomials. Second, we have to focus on obtaining relatively sharper results. Our proof is
also different from that in Newey (1997) since we do not have an explicit regression form.

First, recall that for v € R? and A (1) € N§,

(V) = O]

is a monomial in vy, ..., vy with total degree ||A(l)||; as described in the previous section.
By (2.43) and Assumption E3, we only have to consider v; € (at, b:), where a; and b,
are finite constants. By Assumption E7, the sequence {A(l)} is ordered. Then for any

v e _, (at, by), there is a non-singular matrix By, of constants such that
ps (v) = Bizp® (v),

where pl (v) is an L x 1 vector of multivariate orthonormal Jocobi polynomials in v on
[—1, 1)¢, with respect to the uniform weight, and with the corresponding order A (I). For

t=1, .., g, since 7% (u) = %pL (T (u)), it follows that

0
Byt (u) = =—Birp™ (T (u)) = —p& (T (u)).
1y (u) Oy 1p” (T (u)) autp* (T (u))
Define 75, (u) = aiutpf (T (u)). Then @tL (€;.) constructed from the standard multivariate
polynomials is numerically the same as when Jacobi orthonormal polynomials are employed.
That is

Vo Ei) =Pl (T(E) pr (T () pi (T(5)) Z w5 )

The advantage of this approach is that it will substantially reduce multi-colinearity of the
approximating functions. Under Assumption E3, Lemma D2 implies that there is a constant
C > 0 such that for all L > 1, A(E [pL (T (¢1.)) pE (T (e1.))']) > C. Hence we can define

—1/2
Bap = {B [py (T (e1.)) p£ (T (e1.))']}
and Bsyj is positive definite for all L. For u, v €e R and t =1, ..., g, let

0
P (v) = Borpy (v) and 72, (u) = Borwly (u) = o—pii, (T (w)). (2.61)
t
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Then, it follows that

-1

bip Gi) = L, ( Zp** ) p (T ;) Z Tt (%a)) :

This step is employed in Newey (1997) to help increase the rate at which L can go to infinity.
One advantage of this step is that

where [, is the identity matrix of order L, without seriously contaminating other terms

since

-1

1Bael® = X (B [pF (T (1)) pE (T (1))]

= (AE[PE (T () pE (T ()]}
< 1/C

uniformly in L. Hence || Bar|| is bounded uniformly in L.

With this expression, define

-1

S = Zp** Dok (T E)) Zw ). (269
Hence
Do Gi) = Gn) ph (T Ei) - (2.64)
Let
Tz = (Fips o Agr) - (2.65)
Then
¥, Ei)=Tr ok (T E). (2.66)

Now we can start the standard procedure as in Newey (1988) and Robinson (2005, 2010).
For v € RY, define

M5 () = o (7 () = (nbas (0) o by (). (267)

Define

Jj=1

R; (B) = diag {Z wijiug (B z Wijgtjg (3 } (2.68)

where u;; (8) = y;¢ — x}tﬁ. By the mean value theorem around 6oq,

PE (T () = b (T (0)) = TIE (2) (@ — o) + X7 () (B = By) + R (B) (5 — )] -
(2.69)
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where g;. = ¢;. (54) for some 4 such that H§4 — 904H < H% — 904H .
Let V =n~' S0, [X2 ()~ X7 ()] £2 [X7 () = X7 (7)]- Then, by (2.66) and (2.69),
N - n _ e ’ L
n?(B=8y) = Vitn Y0 |XE ()~ X ()] Do ph (T ()

i=1

+

e~ VY [X2) - X () Futh () X; <p>] n'/2 (5 6y)

VS [X2 () - X)) Falih (5:) it (@ - ao)

*

A~ n —~ — —~ / ~ _ — ~
R [X;f e (p)} TLI1%, (z:) Rs (B) v (7 — po) -
By Assumption E8, to proof Theorem E, it suffices to show that

w2 X ) - X ()] b () —n 2 (X - X0) i) 0. (B2)
i=1

=1

w23 (X2 X)) —a N O, V). (E.3)
i=1
w3 (X @) - X () Tl (2:) X2 ()~ V = 0, (E4)
=1
w3 (X2 G) - X (7)) Tulth 50) i (B) — 0, (E5)
=1
and .

n Y (X)X (7)) Tultl (52) =, 0. (E6)

Hence Propositions E1 - E6 conclude the proof.

Appendix 2.2: Propositions for Proof of Theorem E

Proposition E1 Asn — oo,

Ly —p L and vV, —p V.

Proof. Fort=1, ..., g, let
Uur (€i) = Vi Pf* (T (ei.)) (2.70)
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where

Yer = B [p (T (e1.)) ¥y (e1.)] (2.71)
Let
Vp (ei) = (Y1 () s Vg (60)) (2.72)
By Lemma E3, as n — o,
E [y (e1) ¢ (e1)] — L. (2.73)

Hence, to show the first part of Proposition 77, it suffices to show that, as n — oo,

L —p By () ¢r ()] (2.74)

Let

I, =n"1 pr* (T (&) pL (T E))
i=1

Then, with reference to (2.63) and (2.64),

Fop =171 (nlzwf*t@)) and 9y Gi) =Tk (TED)). (275)
=1

For s, t =1, ..., g, by definition of pZ, (T (g;.)),
B[, (61.) ¢yp (e1)] = 7oL B [Pf* (T (51~))pf* (T (514))/] Ver = Ve Ve
and, by (2.75),

nt Y b @) du )
i=1

!/
n

n
= :Y';LIL?VitL = n_l Zﬂ-f*s (gj) Iljl n_l Z ﬂ—f*t (gj)
Jj=1 j=1

Hence sufficient conditions for (2.74) are that for s, t =1, ..., g,

nY W E) b B) — Bl (61) ¥y (61)]

i=1
= %LTL%L - WISL%L =0p(1). (2.76)
Fort=1, ..., g, let
n
G =n"" Y wh, (E). (2.77)

j=1
Then the left side of (2.76) is
~1

¢SLIZI¢tL - ”/ISL%L-

Lemma E9 and Assumption E9 imply that (2.76) holds, and thus, as n — oo, L, — £ =
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op (1).
Since

B Y (00X 0) (B ) (%00~ X )
ot 2_: (X200 -X7 () £ (X260) - X7 () (278)
By Lemma A1, the norm of the first term in (2.78) is bounded by
. -] (n z [xz ) - <p>\|2> — 0, (1)
by the previously established result an_d Lemma E6. The second term in (2.78) is
! Z; (x200-X ()~ (x2 -x)] 2] (x2 () - X () — (x5 - X7)]
+nL i: (X2 - X*)' L[(Xt) =X () - (X1 -X7)]
ot Z (X0 -% ) - (x2 -3 2 (x; - )
! ; (x:- X*)/ﬁ (x:-%7) (2.79)
By Cauchy’s inequality, the norm of the first three terms in (2.79) is bounded by
Iz <n Z |(x: 00~ ) - (x: - ) H2>
e (3 -x) - () (S )

= O (1)7

1/2

by Lemmas E5 and E6 (ii). Hence by Assumption E5, ‘A/n —p V as required. m

Proposition E2 As n — oo,
n N n _ e\~
n 2N (X = XD) (e) —n Y (X2 () - X (P) T b (T () = 0, (1).
i=1 i=1

Proof. Let @AZ)L (i) =Tp pL (T (1)) and ¥, (e;.) is defined as (2.66). The left side of the
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lemma is

n / n /

e 1 0 b & NUTCOERTNEN) EXT) SI G b &) R TACS ERTACS

i=1 =1

172 Zn: I:(Xz* P -X (5)) — (XZ* —Y.*)}/;% (i)

i=1

Lemmas E10 - E12 imply that each of these terms are o, (1). Hence the required result
holds. m

Proposition E3 As n — oo,

n

—\/
A (X; —X_) ¥ (ei) —a N (0, V). (2.80)
i=1
— ! —_—k
Proof. Define V,, =n~ 137, (X;f - X,) c (X X ) By Assumption E5, V,, is posi-
tive definite with probability approaching one. For any A in R¥ such that ||| = 1, define

d=d, =n"V2\NV L2 (XZ* - Y*y

To show (2.80), it suffices to show that as n — oo,

n

> e (ei) —a N (0, 1). (2.81)

i=1

Our proof modifies the proof of Theorem 2 in Robinson and Hidalgo (1997). It suffices to
show that (2.81) holds by showing that conditionally on {X;}, (2.81) holds. Let Fy be the
trivial o-field and F; = o (e1., ..., €;.) be the o-field generated by €;., ..., €;.. Conditional
on {X}}, for each n > 1, {cl(e;.),1 <i<n} is a martingale difference sequence, i.e.
E{c (g;.)| Fi—1} = 0. To show (2.81), following Scott (1973), it suffices to show that,

conditional on {X}, as n — oo,

zn:E {6 )| Fia} = 1, (2.82)

and, for all n > 0,
B {ZE{[czw (e’ 1(14e (=0)] > )| {X;}}} —0. (2.83)
i=1

It follows from the way in which ¢; are defined that (2.82) holds. For any ¢ > 0, under
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Assumption E1, the left side of (2.83) is bounded by

B {Z e E [l €I L (1 (1)l > n/9)] } 2 { mx o] > 5
=1 -

= B[ I L eI > 0] S Blal® + B max el > o). (28
Since

> Bl = XV, V2,
=1

1Y B (x-X) (X0 - %)
i=1

Assumption E5 implies that > | E lles]|? = O (1) . Note that

Ely E))® =E{tr [¢ (i) ¥ ()]} = tr {E o (e:.) ¢ (e0) ]} = trL < .

This and the fact that > | E lles]|? = O (1) implies that the term on the right of (2.84) can
be made arbitrarily small by choosing ¢ small enough, so it suffices for (2.83) to show that

maxi<;<y, ||ci|| = op (1) . Since HY*

‘ < maxj<i<n || X}, by Assumption E5

. -1 —1/2 * _
el < [V, (w7 e 12521 ) = 0, (1.

Proposition E4 As n — oo,
n e\~ 3 e
w3 (X2 () - XD (7)) TLllk, (52) X2 (B) = V.
i=1

Proof. It follows directly from Lemmas E13 - E16 that Proposition E4 holds. m

Proposition E5 As n — oo,
nt z": (Xi*- NERE (5))/ TLITE, (8:) Ri (B) =5 0
i=1
Proof. Proceed as in the proof of Proposition E4 to show that
nt Xn: |:(Xz* ER (ﬁ))lfLHf* (&) Ri (B) — (XL* - Y.*)/fLH*L* (€i) Ri:| =0, (1).
i=1

Then Lemma E17 concludes the proposition. =
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Proposition E6 As n — oo,
n . ’
n Y (X; () - X (5)) TLIE, (2.) —, 0.
i=1

Proof. The proof is similar to the proof of Proposition E4 but simpler. m

Appendix 2.3: Technical Lemmas for proofs of Theo-
rems

Lemma A1l For any matriz A, |A’| = ||A]| .

Proof. Let A be an m x n matrix. Exercise 7.25 of Abadir and Magnus (2005) implies that
for A # 0, |M,, — A’A| = X" |\, — AA’|. If A’A only has zero eigenvalues, then AA’
must also have only zero eigenvalues. Otherwise, this equality will lead to a contradiction. In
this case ||A’|| = ||A||. Suppose A’ A has a nonzero eigenvalue. Then this nonzero number is
also an eigenvalue of AA’. Let A;, As be the sets of all nonzero eigenvalues of A’A and AA’,
respectively. If A € Ay, then the above equality implies that A € As. The converse is also
true, and hence A; = Aj. It follows that 0 # [|A]|*> = XN (A’A) = X(AA’) = ||A’||*>. Hence
the required equality holds. m

Lemma A2 Let A be a symmetric matriz. Then X is an eigenvalue of A’ A if and only if

A = w?, where w is an eigenvalue of A.

Proof. Suppose A = w? where w is an eigenvalue of A. Then 0 = |A — wl,||A +wl,| =
|A’A — AI,|. Hence X is an eigenvalue of A’A. Conversely, suppose \ is an eigenvalue of
A’A. Since A’Aisp.s.d., A > 0. Tt follows that 0 = |A’A — A\[,,| = ‘A — VAL, |A+ V)IL,|. That

is either v/\ is an eigenvalue of A or —v/\ is an eigenvalue of A. Hence A = w? where w is

an eigenvalue of A. =

Lemma A3 Let A be a symmetric matriz. Then ||A]| = p(A), and
[AIl <l Ally and [|A] < [[A]l -

Proof. By definition [|A||> = X (A’A) . Since A is symmetric, Lemma A2 implies that there
is an eigenvalue w of A such that w? = X(A’A). However, |w| must be equal to p(A),
otherwise Lemma A2 will implies a contradiction. Hence ||A|| = p(A). As it can be shown

that ||-||; and ||-[|,, are matrix norms as defined in Horn and Johnson (1985). Then by
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Theorem 5.6.9 of Horn and Johnson (1985), ||A|| = p(A) < ||Al|;. Similarly it follows that
[All < [|A]l - =

Lemma A4 Let A be a square matriz of order n, ci, co be constants and B = c11, + c2 A,
where I, is the identity matriz of order n. Then X\ is an eigenvalue of B if and only if

A = c¢1 + cow where w is an eigenvalue of A.

Proof. Suppose A\ = ¢; + cow where w is an eigenvalue of A. It follows that
|B — \,,| = |caA — cowl,| = (e2)" |A — wl,| = 0.

Hence A is an eigenvalue of B. Conversely, suppose that A is an eigenvalue of B. If ¢o = 0,

then it is trivial that A = ¢; 4+ cow where w is an eigenvalue of A. If ¢s # 0, then

)\—Cl
C2

0=|B— M| = |e2A — (A —c1) In| = (c2)" | A — L.

Hence, there is w, an eigenvalue of A, such that w = (A — ¢1) /co. It follows that A = ¢ +cow

where w is an eigenvalue of A as required. =

Lemma A5 If W is symmetric and S = I, — poW s invertible, then
H(S’S)_lH = max {(1 — pow) "%t w is an eigenvalue of W} .

Proof. It follows from Lemma A4 that A is an eigenvalue of S if and only if A =1 — pyw,
where w is an eigenvalue of W. Invertibility of S implies that 1 — pyw # 0 for all eigenvalues
w of W, and that S’S is p.d.. Suppose that W is symmetric. Then S is also symmetric and,
by Lemmas A2 and A3,

s = X9 =

= max {(1 — pow) 2 : w is an eigenvalue of W} .

Lemma A6 Suppose p, # 0. (i) X is an eigenvalue of G = WS~ if and only if X =

po " (w— 1) where w is an eigenvalue of S~'. (i) For any real number py,

[S7H =1 < llpoGll < ||S7H| +1
Proof. From the definition of G, it follows that
I,=88"1'=(I,—pW)S =871~ p,G
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and, given that py # 0,
G=py,' (S7'-1,).

Lemma A4 implies that Lemma A6 (i) holds. As p,G = S~! — I,,, by the property of a
matrix norm,

lpoGIl < [STH + Il = [|S71]| + 1.

Similarly, S~ = I, + p,G and thus

1S7H < 1+ llooGl-

Lemma A7 Let A is a square matriz of order g. (i) X\ is an eigenvalue of A® I, if and only
if X is an eigenvalue of A. (ii) If A is p.d., then A® I, is also p.d., and || A|| = [|[A® I, -

Proof. Consider [(A®I,,) — M| = (A® L) = AN, @ L,)| = (A= M) @ I,,| = |A — M,4|" .
Hence Lemma A7 (i) holds. Now suppose A is p.d., i.e. A is symmetric and its eigenvalues
are all positive. Symmetry of A implies symmetry of A® I,,. Lemma A7 (i) implies that all
eigenvalues of A ® I,, are also positive and hence A ® I,, is p.d.. Moreover, by Lemma A3,
A =A(A) =AXAR L) =|[|AR,|. =

Lemma A8 Let Ay, ..., Ay be n x n matrices and A = diag {A1, ..., Ag}. Then ||A] =

maxi<¢<g || A¢]| -

Proof. Since A’A = diag { A} A1, ..., A;Ag}, |A’A — N, 4| = 11IY_, |A}A; — N,,| . This
implies that A is an eigenvalue of A’A if and only if X is an eigenvalue of A}A; for some

t=1, ..., g. Hence

2 5 12 o 3 / o 2
AN =X (A4) = max X (474) = max 4]

1<t<g

This implies that Lemma A8 holds. m

Lemma A9 For any a € R™,
Va'a=sup{d'z:xzeR" 2’z <1}.

Proof. For a given a, let f () = a’z. Consider a maximization problem Maz f (x) subject
torxeD={xeR":1—2a'x>0}. Since

0? 0?
mf(ﬂf)zo and ——— !
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both f(z) and the constraint 1 — z’x are concave. Moreover, 1 — zjz1 > 0 for z; =
(1/2, 0, ..., 0)’. Then it follows from the Kuhn-Tucker theorem that z* is a solution to the
maximization problem if and only if there is A* € R such that

a—2X2" =0, \X*>0 and A*{l—(m*)'m*}:(}_

Asz* =a (a'a)_1/2 and \* = (a’a/4)1/2 satisfy the sufficient and necessary conditions of
the Kuhn-Tucker theorem, it follows that f (z*) = (a’a)1/2. ]

Lemma A10 Let A be a square matriz. Then X (A’A) > p(A)°.

Proof. Let \; be an eigenvalue of A such that |A\1| = p(A4). Let x; be the corresponding
eigenvector of A;. By symmetry of A’A,
Ry > DAAn_ CamS e,

/ /
T1T1 T1T1

Lemma B0 Let

0 = argminQ,, (),
0co

where © is a compact subset of RP. If (i) 6y € ©, (i1)
Qn (9) - Qn (90) = Sn (9) —tn (9) ,
where s, (0) is nonstochastic, (i) for any € > 0, there exists n > 0 such that for some N,

inf s, (0)>
10—00ll>¢ ) =

for alln > N, and (iv) supycg |tn (0)] 2 0 as n — oo, then
020,

as n — oQ.
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Proof. For any ¢ > 0, let N' = {6 : |0 — 6y|| < ¢} and N® = ©O\N. For n > N,

P{|p-00| 2 ¢} < Phﬁ@ﬂﬂ—Qﬂ%HS@
— P{inf] tn (0)] < 0}
< P{mfsn —sup|t ()|<o}
< ]P’{K}fsn <Z’33|t ()I}
< P{n<supt }

HenceIP’{Hé—QoH 25} —0asn—o00. W

Lemma B1 Let z = (a2}, ..., m’g)/, y=(vi, ..., y;)/ where Tz, y; € R™, t =1, ..., g. Let
ot be the (s,t)-th element of =1, Then

g

! (578 (0) (ST @ L) S(p) STy =D o"al (S71) S (p) Se () 57w, (2:85)
where
(5 S. (p) St (p) 577!
= In—(ps = pos) Gs — (pr = por) Gi + (ps — pos) (pr — por) GGt (2.86)

Proof. The (s, t)-th submatrix of (S’l)/ S(p )/ (E'®1,)S(p) S tiso! (S;l), Ss(p) S¢(p) St
Hence (2.85) follows. Recall that Gy = W;S; *. Then,

St (p) S;t ={Se = (pr — por) We Sit = I = (p, — poy) Gt

and hence (2.86) follows. m

Lemma B2 Let o5 be the (s,t)-th element of Xo. For any family of nonstochastic n X n
matrices {An},>, such that, asn — 00, Y1, D77

element of Ay,

=1 un =0 (n2) , where a;jy, is the (1, j)-th

1 1
EsfSAne.t - ﬁtr (00stAn) =0, (1), s, t=1, ..., g.

Proof. Consider

1 1 1
ﬁE{SAn&t *t’l" O'OstA Zaun Eis€it — UOst nZ;‘éZaianisEﬁ. (287)
i#]
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For the first term in (2.87), by Assumption B3,

1< ’

*E Qiin (Eis€it — O < 24 max max[E + o2 E a?

n 4 - zzn( isCit OSt) = {1<t<g i>1 ( €t Ost “n
i=

Cn—2 i zn:a?jn =o0(1)

i=1j=1

IN

Similarly, the mean square of the second term in (2.87) is

2

E %Z Zaijn&SEjt = % Z Za?an€§SEE?t + Z Zai‘jnaﬁnE (5i85it) E (6.7'55]',3)

i£j i#j i£j
n n n n

< On Y Y A, +Cn Y Y ainagl - (2.88)
i=1j=1 i=1 j=1

The first term in (2.88) is o (1) .By Cauchy’s inequality, the second sum in (2.88) is bounded

1/2 1/2 1/2 1/2

Therefore the second term in (2.88) is 0 (1), and hence n=te/ A,e..—n~tr (costAn) = 0p (1)

asn —oo. i

Lemma B3 Consider any two independent families of R™-valued random variables {xy }, <
and {un}nzp where Bu, = 0 for all n > 1. For each n > 1, let z;, and u;, be the i-th
elements of x,, and u,,, respectively. Asn — oo, if Y i, 2?21 E (zinzjn) Cov (Uin, ujn) =
0 (nfz), then

n~talu, = o, (1).

Proof. By independence of z;, and w;,, and the fact that E(u,) =0,

n n
(! un ZZ (Tinxjn) Cov (Win, Ujn) .

Hence the required result holds. m

Lemma B4 Asn — oo,

L gy (st L
762121293 %uS(p) (E'® 1) S(p)u 5 gtr{H(Gg, 03)} = o, (1) (2.89)
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Proof. Let ogs and ot be the (s,t)-th element of ¥y and 3, respectively. It follows, also

from symmetry, that
tr{H (02, 05)} = tr{(S*l)’S(p)’ (2 @) S (p) S (Do ® In)}

Xg: Tostottr { 71)/ S, (p)' St (p) St_l} .

1t=1

[
M=

S

The difference inside the modulus in (2.89) is
L (Y S () (5 @) S (p)S e — —tr {H (0, 05)}
2ng 2ng 7

= g L S S5 e i {(557) 5,07 57

s=1t=1

where the last equality follows from Lemma B1. For fixed s and ¢, Lemma B1 implies that

n~te, (S’S_l)/ S, (p)' Si(p) Sy tes — n_laosttr{(Ss_l)/ S, (p)' S:(p) S{l}
{nlel e —n M (oostln) } — (ps — pos) {n el Ghey — n” Mt (000 Gl) }
—(p — por) {n e Grely — nT Mt (000 Gy) }

+(ps = Pos) (pr = por) {n "1l GLGrely —nHr (000 GLGy) } -

Assumption B7 and Lemma B2 imply that term in the last curly brackets is o, (1). Let g,
be the (4, j)-th element of G;. Note that

n

SN gk =tr(GiGy) =Y N (GiGy),
i=1 j=1 i=1

where \; (G,G}) are eigenvalues of G}Gy. If all eigenvalues of G;G is bounded uniformly in
n, then 337 3" 1 g%, = O (n) = o(n?). Hence Lemma B2 implies that the other terms
in curly brackets are also o, (1) . If some of the eigenvalues of G}G; approaches infinity as n
increases, then > | \; (G;G;) will be dominated by

ng ng

Z)\ (G1G1)? = tr (G1GGyGy) < 33 v = o

=1 j=1

Hence Lemma B2 implies that the other terms in curly brackets are also o, (1). Hence,
Assumption B7 and Lemma B2 imply that all terms in curly brackets are o, (1). Positive
definiteness of ¥y, compactness of O3 and the required property of ©s in Assumption B4

imply that Lemma B4 holds. m

Lemma B5 Let xy be the k-th column of X. As n — oo,

1
sup —mkS( ) (E7 @ 1,) S (p)u| = o, (1).
TEO2XO3
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Proof. Let 0% be the (s,t)-th element of X~!. Then the term in the absolute sign is
(ng) " (z}) (S*I)/S(p)/ (7' ®1,) S (p) S~'e, where z} is the k-th column of X*. Let
!

! /
z; = (x,’; 1) ) e (2137; g> ) , where z} , are R" random vectors. It follows from Lemma

B1 that

)Y o (wi) (S5 S (0) i (0) S e (2.90)

= {07 @12) e = (0= p0a) {7 (@) Gled} = (0, = po) {7 (21.) Giea

Assumption B7 and Lemma B3 can be employed to show that the terms in curly brackets are
all o, (1) . With reference to (2.90), the property of ©, and compactness of O3 in Assumption
B4 imply that Lemma B5 holds. m

Lemma B6 Asn — oo,

sup

1
—X'S(p) (' ®1,) S (p) X — M (02, 03)
TEO;xO3 || TV

=0y (1).

Proof. Let z} be the k-th column of X* and 0! be the (s,t)-th element of £~!. Proceeding

as in the proof of Lemma B1, it follows that

n X' S(p)’ (E'®1,)S(p) X

= /(S 1) (Z ®In) S( )Sle*
= n‘lZZJ“ (X0)' (Szl)’ss ()’ St (p) S X7

Employing (2.86), it follows that

n (XD (S51) S (o) S () ST XY

= n (XD X7+ (pos — ps) {nTH (XD GLXT Y+ (por — o) {nH (X2) G X[}
+(ps — Pos) (P — por) {n " (X2) GLG X[}

Similarly, it can be shown, under Assumption B6, that, for M (62, 03) defined in (2.48),

g g
2 (02, 03) ZZUStAst,

s=1t=1
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where

st

9 At = Q51 + (pos — po) @35 + (por — p1) Q35 + (ps — Pos) (P — Por)

Then Assumptions B4 and B6 imply that Lemma B6 holds. =

Lemma B7 For any § > 0, there exists n > 0 such that

b (5= Bo) Ma (B, 60s) (5= Bo) = .

Proof. Assumption B6 implies that Ms (6o2, 0o3) is a p.d. matrix Oq1. Then

((B = Bo) M2 (Boz, b03) (B~ By))

[ ﬁo|\>5

. (B = By)" M2 (002, 603) (B — By)
= (m ﬁu\|>5(ﬂ Bo) (6 - BO)) <|B gfu» (B = By) (B = By) >
XA (Q1) > 0.

v

Lemma B8 If a sequence of non-negative random variables {X,,} converges in probability

to a constant c, then ¢ > 0.

Proof. Given the convergence, for any § > 0, lim,,_, P{|X,, — ¢| > §} = 0. Suppose ¢ < 0.
Since X,, > 0 and ¢ < 0, |X,, —¢| > |¢|. Hence P{|X,, — ¢| > |c| /2} = 1 for all n. This

leads to a contradiction if we set § = |¢| /2. Therefore, ¢ > 0. ®

Lemma B9 Let {A,} be a sequence of p.s.d. matrices of order K. If A, —, A, as n — oo,
then A is also p.s.d..

Proof. Clearly A must be symmetric. For any y € R¥ such that ||y|| = 1, v/ A,y —, v/ Ay.
Let t, = 4’ Any. Then {t,} is a sequence of non-negative real numbers and hence Lemma
B8 implies that ¢t = 3’ Ay > 0. Since this hold for any y € RX, A must be p.s.d.. m

Lemma C1 Fort=1, ..., g,

G ()8 (0) (57 9 1) S (p)u () = 23 0w (8) S (o) W ().
T s=1
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Proof. The left side is
>
s=1t=

o Z O'ST"LL

+UUTWYP

o § . s
-2 g o .

g

E o_stu s

1

0
dp,

by symmetry of ¥~!. m

Lemma C2 For p in a

1, ..., g,

Proof. The left side is

(p) St (p)|

an, log |St

Lemma C3 For any u,

Proof. The left side is

W/

T

/

(p)’ St (p) ut (B)

S

(p) Wrttr (8) (1= 67 wr (B) WS, (p) s (B) (1~ 67.)

7207
W) Wyl ur (5)

B8) W.S; (p)

(In = p,Wr) = (In — Pr

§ :O'TSUT

W ’U,T U.s (ﬁ)

(p) Wrur (8),

neighbourhood of p, such that Sy (p) are non-singular for all t =

o Sleog |54 (0)' S (p)] = ~2tr {G1 (p)}

tr{ (S () Su (p)] ™ [=W (L = pWh) = (L = o W) Wi }

{
—or | (5e0)7) W] o s 60 )
—2tr (G4 (p)]-

—tr

Sy (p) (St (,o)_l)/ (W{Si (p) + Se (p) Wi }

1
E { ” (X (2" @ 1) e (¢ly0 — nOous) X} (2.91)
1 g g n
s Z Z Z x:in {E’Lt (Ezugw UOu’u)} .
ng s=1t=1 i=1
1 g
— oS (X Bley (€ ye.0 — NOOus
ng;;(m ) Bl ( 0uv))
1 g g n
— oit Y i Elei (€ 4w — N00w)] s
ng;; 0 - [eat ( ouv)]



where (27,) is the i-th row of X}. Since
n
E [Eit (E{ug-v - nUOuv =E Eit Z Ejugjv - UOuv) =5 [Eit (Eiugiv - UOuv)] )
j=1

(2.91) holds. m

Lemma C4 Fort=1, ..., g,

E { L (x*) (Zotel,)e [29: oyTel Grer —tr (GT)] ‘ X}

ng
1 g ) g n
;g Z Z Z atagT Z zsg”T EltgquiT) (292)
s=1t=1u=1 i=1

Proof. The conditional expectation in (2.92) is

9 g n g
Z Z Z oftal B {Eit [Z oy7el Grer —tr (GT)] } )

1
ng s=1t=1 =1 u=1

Since
g g n n
E {sit Z [o07e! ,Grer — tr (GT)]} = Z oy” Z Zgjk;TE (€it€juchr)
u=1 u=1 j=1k=1
g
= Z 00" Giir B (€it€iusir) ,
u=1
(2.92) follows. m
Lemma C5 Fors, t, u, v=1, ..., g,
1 n
nilE (5{554&5{”5-1;) — NO0stO0uv = E ZE (5i55it5iu5iv - JOstJOuv) .
i=1
Proof. The left side is
1 n n 1 n
E Z Z E (Eisgitgjugjv - UOstUOuv) - g Z E (Eisgitgiugiv - UOstUOuv) .
i=1j=1 i=1
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Lemma C6 Foranys, t, T=1, ..., g,

1
HE {(5 €1 — NOOst Z oyTel GTE.T}
= - Giir & 5135Lt51u5z7—) - ltr (GT) 00st- (293)
O' - n

Proof. The expectation in (2.93) is

n n n

fz mZZZgﬂcTE{ Eis€it — UOst) 5Ju5kr}

i=1 j=1 k=1

- ZU ZgllTE{ Eis€it — UOat) Emgm'}
=1

g
1
E E § uT
- U gnT EZSEZtE’LuE’LT) - Etr (GT) O0st 0o O0our-
=1 u=1

The fact that >.7_, 0470our = 1 implies (2.93). =

Lemma C7 Forr, t=1, ..., g,

9 g
(Z oyToite! Grere Gie. t) — —tr (G E (ZO’ el G &‘T)

u=1 s=1
g n
= Z Z s nggm {E (ciu€ir€isEit) — OourOost — CousOort — OoutTors}
u=1s=1 i=1
g

1 J , 1 4 ,
—|—n—gtr (GL.Gy) Z Z oo 0 ousTort + n—gtr (G.Gy) Z Z om0 00utO0rs-

u=1 s=1 u=1 s=1
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Proof. Employing the fact that Y 7_, 0§00 = 1, the first term of the left side is

1 g g
. Z Z UOTUOt Z Z Z Z gZ]TgkltE E’LquTEkSElt)
nguzlszl =1 j=1k=11=1
1 g 9
= - Z Z O-UT o Z gurgutE (Ezugrrgzsgzt>
ng u=1 s=1 i=1
1 g
+7 Z J() O0ut Z U() J(]stz Z,gu‘rgkkt
u:l i#k
g
+oo Z D067 08 00usT0rt )y D Gisr i
u:l s=1 i#£]
1 g 9
+— Z Z g UStUOutUOTsZ Zglj‘l'gj’bt
ng u=1s=1 i#j
uT st
- Z Z 0g O Z GiiTGiit {E (5zu517€zs€zt) — O00ur00st — O0usO0rt — O'OutO'OTs}
u=1s=1 i=1
g
+itr (Go)tr (Gy) + Ly (G.Gy) Z Z oy o8 o ousTort
ng ng 7 ‘

u=1 s=1

g g
ut _st
—tT (G,Gy) g g 00" 05 ToutOors-
u=1 s=1

The second term is just (ng) " tr (G,) tr (G;). Hence the required result holds. m

Lemma C8 Fort=1, ..., g,

aiX’S () (E' @ 1) S (p)u(B)

= —Z{a”XS ) Wartir (B) + 0™ XLW/S, (p) s (B)}

Proof. Proceed as in the proof of Lemma C1. m

Lemma C9 For values of p, such that S (p) is invertible,

aapt“" (wis ()7 = (Gu(0)?).
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Proof. By the result from Exercise 13.22 (a) in Abadir and Magnus (2005),

ot {WiS1 ()™} duee (5, ()

;pt“’{WtSt(”)l} T T owees () O

=[] (sc0 w7} weem
— [Uec { (st (p) ' WS, (p)l)/H / (In ® I,) vec (W)
= Wi (s ws o))
= tr{Si(p) " WiSi () Wi}
= w{G(’}.

|

Lemma C10

0
- D! Y)=-D! (X®X)D,.
Fween (3 1y e T TR BRI

Proof. Recall that Dyvech (X71) = vec (X7!) . Employing the fact that,

dvec (A7) . 1
T (]~ ((A ) ® A )

it follows that

0 {Djvec(%)} _ d{Djvec ()} 9{vec(x)} 9{vec(E71)}
d{vech (2-1)} d{vec (D)} d{vec(-1)} 0 {vech (1)}
= —D,(X®X)D,.

Lemma C11 If 6 —p 0o, then, as n — oo,
(ng) "' X'S (5)' (2*1 ® In) S (7) X —p O11. (2.94)

Proof. The left side is

> > 7 {ng) ™ X1S, (9 S: (9) X1 (2.95)

s=1t=1
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Employing Lemma B1, Assumption B6 and consistency of p, as n — oo,
(ng)™ (X2) (S51) S (B)' Se (p) ST X7 — Qi
= {(ng) " (X X} = B = po) { () (XD GLXT} = (B = o) { (m9) T (X2) GiX7 |
+ (3. = pos) (3 = o) { (n9) ™ (X2) GLGeXT | = Qi
= o0p(1).

With consistency of i_l, (2.95) converges in probability to > 7_; >°7 , o&'Q5t = Oq1. =

Lemma C12 If 6 —p bo, then, as n — oo,
n ' X.Ss (p) Wiwe (B) = 0, (1) (2.96)

and
W XIS, (B) s (B) = 0, (1). (2.97)

Proof. Employing the fact that S, (p) = S + (po; — p;) Wi, Wi = GiS; and u,y (B) =
u.y — Xy (B — By) , the left side of (2.96) becomes

(X5 {In + (pos — Ps) G} G {er = X7 (B-5o)}
= XY G+ (e — ) {7 (X2 GG}
— [N (XD G XT] (B = Bo) — (pos — Ps) [0 (X2) GLGLXT] (B —Bo) -

Under Assumption B7, Lemma B3 implies that the terms in the curly brackets are o, (1) .
Assumption B6 implies that the terms in the square brackets are O, (1). This with consis-
tency of 6 imply (2.96). Employing this technique, it follows that (2.97) holds. m

Lemma C13 If 0 —p 0o, then, as n — oo,
nIXLS, (7)) S0 (p) s (B) = 0, (1), (2.98)
Proof. Since u.; (8) =u., — X; (8 — By), the left side of (2.98) is
nH(XE) (S7Y) S5 () S (B) St {ew — X (B —Bo)}-
By Lemma B1, this becomes

[ (X2 e} = (B, — o) {n ™ (X2) G} = (B — pod) {n ™" (X2) Guea}
(Ps = Pos) (Br — por) {n ™ (X2) GLGrea} — [0 (X2) X7] (B~ Bo)

(Ps — Pos) [”_1 (X2 G/th*] (B — 50) + (Pt — Pot) [”_1 (X2 GtXt*] (E — 50)
( pOS) (Pr — Pot) [n71 (X:)/ G;GtXt*] (B - 50) .

|
2l
|
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Under Assumption B7, Lemma B3 implies that the terms in the curly brackets are o, (1) . Assumption
B6 implies that the terms in the square brackets are O, (1) . This with consistency of 4 imply
(2.98). m

Lemma C14 If0 —p 0o, then, as n — oo,
ntug (B)/ WWuy (B) — n™togstr (GLGy) = 0, (1) . (2.99)

Proof. Note that u., (B) =u;— X (B — ﬂo) . Applying the fact that W, = G4.S, it follows
that the left side of (2.99) is

{n_l ! G GtE t — n- O'()SttT‘ (G Gt)}
- (B —50) {n (X2 GLGie} — {n el ,GLG: X[} (B — By)
+ (B = Bo) [ (X2) LG X7 (B — Bo) -
With Assumption B7, Lemmas B2 and B3 imply that the terms in the curly brackets are

0p (1) . Assumption B6 implies that the term in the square brackets is O, (1). This with
consistency of 3 imply that (2.99) holds. m

Lemma C15 If 6 —p 0o, then, as n — oo,
n ., (B)/ S (p)/ Wiy (B) —n " Yogstr (Gy) =0, (1).

Proof. The proof is similar to the proofs of Lemmas C12 and C14. m

Lemma C16 As n — oo,

n

Y AE(zhal Fimt) —E(zh,)} =5 0. (2.100)

i=1

Proof. Note that 23, = Y 7_; A3:Cit,n, where

g
_ st -1/2
Citin = — E oy (ng) Giit (€is€it — Oost) + €is E gijt€jt + E Gijt€jt
s=1

g<i j>i

It follows that

n

Z {E (Cgtﬂ’ fi_l) - E (ngt,n)} (2101)

i=1

Q

g n
Z O-bt Slt ng Z zstdisltl -7:1’71) -k (dist,ndislt,n)} )

51:1

Il
-

S
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where

dist = Giit (€is€it — Oost) + Eis E Gijt€jt + E GijtEjt

Jj<i j>i
For simplicity, consider the case when s = s1,
1 n
ng 4 Z {B (| Fimr) — B (di) } (2.102)
_ Ooss ZZgwtn L — O0tt +fng n 8 SEit ng n€jt
i=1 j;él i
2 Z Z Zgzjtgzktéfgtﬁkt (1—0jx)

=1 j<i k<i
= e1n te2n +€e3n.

3 3 O0ss n 2 2 :
Since ey, can be re-written as e ijl ij Gist (sjt — O'Ott) , by Assumption B3,

2
n

E(e1,)” < O max E (2 _UOtt)zn_QZ Zgizjt

1<j<n . et
Jj=1 \t>j

IN

n n 2
on3" (z )
j=1 \i=1

Hence, Assumption C6 implies that ey, = 0, (1). ez, can be re-written as

72291125E 51551t gljtgjt

g 1:i>3

By the Cauchy-Schwarz inequality

2
2 n
E(e3,) < C {1121?<an (e 8“)} n2Y B (e3) | D giingise
Jj=1 i>]
n n
§ C 112?<an ( ) {1r£?<Xn E (e } -2 ; = I; |gwtgkktgz]tgkjt|
n n n
< Cn2 Z Z Z |93t grjt] (91'2# + g]%kt)
i=1 j=1 k=1
n n
< ( 2oz Z Igmt|> max z; |9ijt] Z;g?it
j= i=
n n n
< <1ré1ja<x Z |gk3t|> 11;1?%”; |9ijtl Z;Z;g?jt.
j= i=1 j=

Since Y1, Y0 g7 = tr (G}Gy), Assumption C2 implies that 37 | 37, g7, = O (n).

Hence, by Assumption C6, es, = o, (1) . Finally, similar to the above derivation, following
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(A.22) in Robinson (2008), it can be shown that
2 -2 2
ESETI P S 5 o(1%%) D 3p o8
j= = i=1 j=

Hence by Assumptions C2 and C6, es,, = o, (1) . Therefore (2.102) is o, (1) . Applying the
derivation similar to the one shown above to other terms, it can be shown that (2.101) holds
and for u # ¢,

Z {E (Cit,nciu,n| fi—l) —-E (Cit,nciu,n)} = 0p (1) .
=1

Hence (2.100) holds. m

Lemma C17 Asn — oo,

n

Z [E { Zil,nzi37n| fi—l} -E {Zil,nzil},nH —p 0. (2103)
i=1
Proof. Recall that 21 ,, = — (ng)fl/2 S > st N @t e, and i3 = Y 0_; AstCitn

where c¢;; ,, is defined in the proof of Lemma C16. It suffices to show (2.103) by showing
that for allt =1, ..., g,

Z [E{ zi1nCit.n| Fic1} — E{zi1 nCit.n}] —p 0. (2.104)
i=1

Analogous to the proof in Lemma C16, we have to consider all possible cross-product terms.
However, we will only give one example to demonstrate how to show the rest. To consider

Zi1,nCit,n, it is essentially to consider

—1 7/ %
Zi1z;n = (Ng) " N Zj€it § Giit (Eiuiv — Touv) + Eiu E Giju,n€jv

J#i
Then, conditional on X,
Y {B(ziznl Fi) =B (zasn)} = (9)7 > MaiE(cicin) Y gijusio
i=1 i=1 j<i

n
2(ng)™" DY N B (ciscin) gijutjv-

j=11i>g

Similar to the proof in Lemma C16, by Assumption B3, the mean square of this is bounded
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by

_2 Z Z/\lxzsgljv

j=1 i>7

< Cn? Z Z Z |(Ni2is) (M@ks) Gijoghiol
i=1j=1k=1
n n n 2

< Cn_zzzz |GijvGrjol (|)‘ | + | Mz )
i=1j=1k=1

<

<1I£1]a<x Z |gkﬂ;> 1rgia<x Z ‘gzju| >\1 (tha zs)

By Assumptions B6 and C6, >\, {E (2;

-1) —E(zi130)} =0p(1). m

Lemma C18 Asn — oo,

n

Z [E{ zi2nzisn| Fie1} —EB{ziznzisn}] —p 0

i=1

Proof. Similar to the proof of Lemma C16. =

Lemma D1 Consider functions w : R9 — R and z; : RY — R, i =1, ..., L such that
w(x) >0 for all z € RY and [, 27 (x)w (x) do < oo foralli=1,.., L, where A CRY. Let
Zp (x) = (21 (x), ..., 21, (z))', then I ZL Y Zp (x) w(x) dx is a finite and p.s.d. matriz.

Proof. Let  denote the matrix of interest and w; = [, zi () z; (x) w () dx beits (i, j)-th
element. By Schwarz’s inequality, w;; < oo for all 7, j =1, ..., L. Q is also symmetric. Now

for any y € RY,

L L
y'Qy = Zzyiijij

i=1 j=1
= /ZZylyjzl z)zj (v)w (z) da
i=1 j=1

/[ZWZ r (z) dz > 0.

Hence Qis p.s.d.. =

Lemma D2 Under Assumption D3, there is a constant C' > 0 such thatA(E [pf (€)pL (5)/]) >
C forall L > 1.

79



Proof. Let A = I1{_; (as, by), A = TIJ_, [as, b;] and Ag be the subset of all £ such that
fe (&) > C > 0, where C is a positive integer in Assumption D3. Then AoC A C A and
ANA§ is a null set with respect to the Lebesgue measure. It follows that

E [p" (©)pL (€)] = / o (€)pF (&) de + / L&) pk (€) [fe (6) - €] de
- / CpE (€)p (€)' de + /A P () pF (&) [fe (€) — €] dg2.105)

Since ¢ is bounded, both integrals in (2.105) are finite and Lemma D1 is applicable. Since
f(&) —C >0 for all £ in A it follows from Lemma D1 that the last term in (2.105) is a
p.s.d. matrix. Employing the fact that, for any symmetric matrices A and B, A(A+ B) >
A(A) + A (B), we have

AE [ ©)pF (©)]) 2 A ( /A ot ()" (&) dg)

since the other term is p.s.d.. As pZ(¢), defined in (2.59), is a vector of multivariate

orthonormal polynomials with respect to the uniform weight over II{_; [as, b:],

where I, is the identity matrix of order L (see Abramowitz and Stegun (1964) and Andrews
(1991)). Hence A (E [pf (€)pE (¢)']) > C >0forall L>1. m

Lemma D3 (i) Under Assumption D7 (i), if v, ¢ X;, then x ¢ X for all x such that its
t-th element is x;. (ii) Under Assumption D8, the transformation T in (2.27) is one-one
and continuously differentiable. Let T (X) = {T (z) : « € X} be the support of £, fe be the
probability density of & and m} (u) = d%mt (w). (iii) Under Assumptions D7 (i) and D8, for
any £ €T (X),

g

_ _ —1
fe (©) = fx (17 ©) [T [mi (mi " (€))] (2.106)

t=1
and fe is continuous on T (X). (iv) As fx is positive on X, i.e. fx (x) >0 for allz € X,
then fe (§) >0 for all§ € T (X).

Proof. (i) Suppose x; ¢ Ay, i.e. fi (z:) = 0. Suppose that there is y € X, i.e. fx (y) > 0,
such that its ¢-th element is z;. Under Assumption D7 (i), fx is continuous at y and
hence there is § > 0 such that if |z — y|| < 0, then |fx (z) — fx ()| < fx (y) /2. That is
fx (x) > fx (y) /2 > 0 for all  such that ||z — y|| < 6. This leads to a contradiction since
it follows that f; (z) qu fx (x) de—y > 0, where £y = (21, ...y Ti—1, Tig1, -y Tg)-
Hence = ¢ X for all  whose t-th elernent is xy.

(ii) If T (z) = T (a'), then my (x:) = my (a}) for all t = 1, ..., g. Under Assumption
D8 (i), m; is one-one and hence z; = z} for all ¢, i.e. & = 2’. Thus T is one-one. Under
Assumption D8 (ii), T is also continuously differentiable since all its partial derivatives are

continuously differentiable.
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(iii) Restrict our attention to X, T~! is a function 77! : T(X) — X of the form

T-1() = (ml_1 (&) sy m;l (gg))’. Under Assumption D8 (ii), for all £, € m; (X;),

d
"

-1

mi ' (&) = [my (mi " (€))] >0 (2.107)

and m; ! (&) is continuously differentiable on m; (X;). Therefore T-! is continuously dif-
ferentiable on T (X), and, for any £ € T (X),

e (6) = 1T g mit €0, (2:108)

since the Jacobian matrix of 77! is a diagonal matrix with positive diagonal elements.
(2.106) follows directly from (2.107) and (2.108). Continuity of f¢ follows from continuity
of fx, T-! and dg m;t (&)

(iv) If fx (z) > 0 for all z € X, then (2.106) and the fact that m;} (x;) > 0 for all z; € X}
imply that fe (§) >0forall{ e T(X). m

Lemma D4 Let m be a function in the class € and g’ be the derivative of g. Then (i)
m satisfies Assumption D8 and (i) m (R) = {m (u) : u € R} is an open interval (a, b) =
(_17 O) .

Proof. (i) As ¢’ is continuous and strictly positive, m is continuously differentiable and
dm/du > 0 for all v in R. Hence m is strictly increasing. Moreover,
lim m(u) =—1and lim m(u)=0.
U= =00 u—00
Hence —1 < m (u) < 0 for all w in R. Thus, m satisfies Assumption DS.

(ii) It also follows that b = 0 = sup{m (z) : z € R} and a = —1 = inf {m (z) : z € R}.
Since m is strictly increasing, it follows that a, b ¢ m (R). For any natural number
n, there are x1, < Z2, in R such that m(z1,) — a < 1/n and b — m (z2,) < 1/n.
Since m is strictly increasing, we can select sequences {z1,} and {z2,} so that the first
sequence is decreasing and the second one is increasing. Moreover, lim, . z1, = —00,
limy, 00 T2y, = 00, limy, 0o M (T1,) = @ and lim,, oo m (22,) = b. As m is continuous and

strictly increasing, m ([1n, Z2n]) = [m (21n), M (22,)]. Then

m (R) = m (U'rolo:1 [xln? xz’ﬂ]) = Uzo:lm ([I.ITH x?n])
= U’?LO:I [m (xln)v m(xQn)] = (CL, b) = (—1,0) .
n
Lemma D5 Let A =11_, (as, bi), where ay, by are finite real numbers for allt =1, ..., g.

Suppose f : A — R is continuous on A and f(x) > 0 for all x in A. Suppose there is a
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finite constant C > 0 such that for each y in the boundary of A,

lim f (z) > C,

r—Y
where the limits can be infinite. Then there is a finite constant Cy > 0 such that f (x) > Cy
for all x in A.

Proof. Let B = {z € A: f(x) < C/2}. If B is empty, then f(z) > C/2 for all z, and
thus the conclusion holds. Now suppose that B is non-empty. As A is bounded, B must be
bounded. Our aim is to show that B is also a closed subset of RY. First suppose that B has
no limit points. Then B is closed.

Next, suppose that B has at least one limit point. Let zg be a limit point of B, i.e.
for any ¢ > 0 there is a point z. # zo in B such that ||z. — zg]| < €. As A is an open
subset of RY, it follows that either zg € A or zq is in the boundary of A. Suppose zg
is in the boundary of A. Since lim,_,,, f (z) > C, there is § > 0 such that, for all z in
A, if ||z — o] < 0, then f(z) > C/2. However, for a given ¢ > 0, there is zs in B such
that ||zo — zs]| < 6 and f (z5) < C/2. This leads to a contradiction. Hence xg must be in
A. Since f is continuous on A, it follows that f (xzg) < C/2. Otherwise, there will be a
contradiction. Therefore g € B and B is closed.

Since B is a closed and bounded subset of RY, B is a compact set. Following Weierstrass’s
Theorem in optimization theory, due to continuity of f on B which is also non-empty, there
is a point z* in B such that f (z*) < f (x) for all x in B. As it is assumed that f (z*) > 0,
it follows that f (z) > min{f (z*), C/2} >0forallzin A. =

Lemma D6 Let A =1I{_, (as, by), where ay, by are finite real numbers for allt =1, ..., g. Suppose
f: A—Ris a function, such that for eacht =1, ..., g,

lim f(z) = oo, lin%) f(x) = o0, (2.109)
forallz_y = (z1, ..., Ti—1, Tig1, ... Tg) N M2 (as, bs) xII9_, | (as, bs). Then, for any
y in the boundary of A,

lim f(z) = oo.
Ty

Proof. Fort =1, ..., g, let A; = Hg;ll (as, bs)xIY_, ., (as, bs). Condition (2.109) implies
that for any C' > 0, there is d; > 0 such that if a; < zy < a; + d; or by — 0y < x¢ < by,
then f (z) > C for all z_; in A;. Now let y be a point in the boundary of A, i.e. there is at
least one element of y, say y;, such that y; & (as, b;). For all z in A, if 0 < ||z — y| < ¢,
then 0 < |z; — y¢| < d; and hence f (x) > C for all x_; in A_;, particularly for all z_;
such that ||[z_; — y—¢|| < d;. Thus for any C > 0, there is § > 0 such that for all x in A, if
0 < ||z —y|| <9, then f (x) > C, where y is in the boundary of A. That is lim,_.,, f (z) = oo
for any y in the boundary of A. =
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Lemma E1 For a function h in the class AC (RY) and a vector of random wvariables e

satisfying Assumption D1 such that

E|h(e)|+E‘§eh(e) +E|h(e)y ()| < oo, (2.110)

it follows that

E{agfj)} _E{h(e)v(e)}. (2.111)

Proof. Consider t = 1, ..., g. Let ¢, (e) be the t-element of a vector function v (e). It
follows from (2.110) and Fubini’s theorem that

Al

for all e_; € A C R9~!, where A€, the complement of A, is a null set. Since h and f are in

+ h(e)} f(e) de + /]R |h (€)1, (e)] dey < oo, (2.112)

the class AC (R9), h._, and f._, are absolutely continuous for every e_; € B, where B¢ is
a null set. Consider a fixed e_y € AN B. Hence h._, and f._, are absolutely continuous for
all e_; € AN B and (AN B) is a null subset of RY~!. For each natural number m, h,_,
and f._, are differentiable for all e; € [—-m, m] except in C,, where Cy, is a null set. Hence
he_, and f._, are differentiable for all e; € R except in C' = US°_,C), where C' is a null set.
Let 11—y, 1 (er) = 1 if e € [=m, m] and zero otherwise. It follows from the Integration by

Parts theorem from Chapter 16.F in Jones (2001) that for all natural number m,

/]R (8?)5?)) £ () L, my (e0) dey
= e ) o ) = e ) o ) = [0 (B2 )1y ) e

Letting m — oo, it follows from (2.112), dominated convergence and the fact that h._, and

fe_, are continuous that

/R@ge(fe)) Fe) de = [ nte) (%5?) dey.

for all e_; € AN B where (AN B)“ is a null set. It follows from Fubini’s theorem that

L (58 s de=— [ e () ae

Hence, fort =1, ..., g,

B{ %2~ nw @),

and (2.111) follows. m

Lemma E2 Suppose h: R — R is a function such that E {h (61.)2] < 0. Let
e =B [py, (T (er)) h(er)] and hp(er) = cp pi, (T (e1)),
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where pk, is defined as in the proof of Theorem E. Then

lim E[h(e1.) — hy (e1.)]> = 0.

L—oo

Proof. From (2.62), if follows that

e — {E P5 (T (21)) s (T (1)) } E[ph (T (c1)) h (1)

Hence

¢y, = argmin E [h(e1.) — ¢'pl, (T (51.))]2 . (2.113)
ceRL

Let e =T (e1.), where T is the transformation satisfying Assumption E3. As E [h (51.)2] <
o0, B[k ()]* < oo and

2

E[h(e1) = bz (e1))” E[h(T7 (e) — ¢ pi (e)]

2

= E [hl (6) - C/L p*L* (6)} ;
where h1 = hoT~'. By Assumption E3, there exists a finite constant C such that
Sup,ers | T (w)|]] < C. Let Fg be the distribution function of e. Then conditions (2.22)
and (2.23) hold with respect to Fg. Since elements of the vector pZ, (e) of transformed
orthonormal polynomials and of the vector p” (e) of ordinary polynomials span the same

space, and under Assumption E7, the sequence {\(l)} is ordered, by Theorem 3.1.18 of
Dunkl and Xu (2001), there is a triangular array {dL eRE L > 1} such that

lim E [hy (e) — dppk, (e)]2 = 0.

L—oo

By (2.113), for each L > 1,

E [l (e) — ¢pph, (€)]” < B [h (e) — dipk, ()]

Hence the required result holds. m

Lemma E3 Fors, t=1, ..., g, asn — oo, (i)
B¢y (e1)] = Bl (e1)];
(i)
E [, (1) yp (e1.)] = B (e1.) ¥y (1))

(iii)
lverll =0 (1) and ||B[pE, (e1)]|| =0 (1).

Proof. Fix s, ¢t in {1, ..., g}. Recall that ,; (¢;.) = v, pL (T (e:.)), where v, =
E [pL, (T (1.)) ¥4 (¢1.)] . By Assumption E1, E [wt (51.)2} < 00. Therefore, Lemma E2
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and Assumption E9 imply that B[y, (£1.) — ¢, (c1.)]> = 0(1) as n — oo. Hence, both
Lemma E3 (i) and (ii) are immediate consequences of Proposition 2.7.1 in Brockwell and
Davis (1991).

ASE [ph, (T (e1)) p% (T (e1))] = I,

ez * = 912B [pE (T (1)) P (T (21)) ] s = B [z (21)] = 0 (1),

by Lemma E3 (ii). Hence the first result of (iii) holds. Finally, if we replace ¢, by a constant
function 1, then the second part of (iii) holds. m

Lemma E4 Fort=1, ..., g, as n — o0,

sup [|pf, (T (uw))|| = O (L), sup [|7i, (u)|| = O (L), sup ||z (u)|| = O (L°).
u€eRY u€ERY wERY

where 11, (u) = Du7 Tant (u).

Proof. Let v = T (u). Let p} (v) be the I-th element of the vector pL (v) of the Jacobi
orthonormal polynomial of order ||\ (L), , with respect to the uniform weight as described
in the previous section. It follows from equation (3.14) or (A40) in Andrews (1991) that
there is a finite constant C' such that sup,,cg, [p} (v)| < C1*/2. Hence, with respect to (2.61),

sup [ (T ()| < || Bl sup |p% (T (w)|| = O (L), (2.114)

since || Bz || is uniformly bounded in L.
Now let T'(RY) be the image of R under 7. By the choice of the transformation T" and
by Assumption E4, there is a finite constant C' such that

op; (v) Om (uy)

sup

a%p?‘ (T (u)

u€eR9 u€ERY (%t 8Ut
< sup op; (v) om (uy)
vET(RY) ovy  |uer| Ou
< CP?,

where the last inequality also follow from equation (A.44) in Andrews (1991). Recall that
7k, (u) = Bar, %tpf (T (uw)) . Applying the steps in (2.114), it follows that
sup ||7rf*t (w)|| =0 (L?).

u€eR9

Let 04 be the Kronecker’s delta. Similarly, by equation (A.44) in Andrews (1991) and
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Assumption E4,

62
R s (T (U))‘
2 % * 2
— s 0%p; (v) Om (uy) Om (us) n opf (v) 0 m(us)(sst
weRe | OvsOvy  Ouy Oug Ovg Ou?
>p; (v) ( om (ut) )2 Ip; (v)
< S _— S - 7 + Q
- veil“l(%s) OvsOvy ufue% Ouy vebTu(Iﬂ)&g) vy
< .

9?m (uy)

u €ER

2
ou;

With the definition of II, given in the lemma, it follows that the last required result holds.

Lemma E5 Under Assumption E5 (iii),

nlém[(xjxf)'(x;)(f‘)} = 0(),

n DY EBIX = 0,
=1
g n
—1 * % 2 _
max ' 30D B e T = 0,

t=1 i=1

Proof. The left side of (2.115) is

n~! iE [(X7) X;] - E {(XTK)IXTK} .

(2.115)

(2.116)

(2.117)

By Assumption E5 (iii), the first term is O (1). The norm of the second term is bounded by

2SS EBIEYX] < 0SB X ]

<
i=1 j=1 i=1 j=1
—2 SN * 12 % (12 1/2
< w233 [EIXPE X))
i=1 j=1
< 22y Y [BIXIPE X +1]
=1 j=1
J § ,
= 1+<n-1ZE||X:.2>
=1
= 0(1),

by Assumption E (iii), where the second inequality follows from Schwarz’s inequality.

86



The left side of (2.116) is bounded by
n Y (BIXEP+1) =0,
i=1

by Assumption E5 (iii).
The left side of (2.117) is just trace of the left side of (2.115). Hence, (2.115) implies
that (2.117) holds. m

Lemma E6 Suppose 8 — 3, = O, (n‘l/Q) and p— py = O, (n_l/z) asn — oo. Then (i)

w3 () = 0, (1) (2.118)
(ii) )
Y |[X e -X @) - XX =0 (2.119)
i=1
(iii) )
Y@ -x @ =0, 0 (2.120)
and (i) .
n! Z |R: (B)|| = 0, (1). (2.121)

Proof. By definition of X (p) and X in (2.41),

X; =X — Moy WX,

Jj=1

where Ay = diag {pm, cey pog} . Similarly,
XZ* (p) = XZ'. — AZVVZ‘J‘.XVJ‘.7
j=1

where A = diag {py, ..., pg} . Let A = diag {p,, ..., ﬁg} . (i) Then, by Assumptions E5 (iv)
and ES,

HAO_XH n_lz ZWinj.

i=1 ||j=1

IN

n=t Y IXE (p) — X7l
i=1
= o0,(1).

Hence, with (2.116) in Lemma E5, the left side of (2.118) is bounded by

n=t Y 1K ()~ Xill ATt Y I = 0, (1)
i=1

i=1

87



(ii) The left side of (2.119) is bounded by

u —* — |2
YK () - XiIP 42X (p) - X (2.122)
i=1
The first term in (2.122) is bounded by
2
_ 2 _
28— [ 3 oW, | | =00,
i=1 |[j=1

by Assumption E5 (iv). The second term in (2.122) is bounded by

2

2 [[[A = Ao ”712 ZWinj« =0, (1),
1|[5=1

1=

by Assumption E5 (iv). Hence the required result holds.
(iii) The left side of (2.120) is bounded by

n s 1112 n —p
2 3|5 - )] - xS
i=1 =1

By (2.119), the first term is o, (1). By (2.115), the second term is O, (1) . Hence the required
result holds.
(iv) With (2.68), the (t,?)- element of the diagonal matrix R; (3) is

Ri (B) =Y wijeuje (B) = Y wije [« (Bo — B) + uye] -
j=1 j=1

Hence, by Assumption E5 (iv),

n BB < ClB=Bolln™t D0 | XWXy [+ Cn T YD Wiy,
i=1 i=1 ||j=1 i=1|[j=1
= 0,(1).
|
Lemma E7 Fort=1, ..., g, as n — o0,

H:ﬁtL - ’YtLH =0y <n71/2L5) :
Proof. Fix tin {1, ..., g}. As in Lemma E4, define

0
Hth (u) = w”f*t (u).
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By the mean value theorem around 6gq4,
mh Bi) = why (o) =TI, (52 |(@ = a0) + X5 (8) (B = o) + Ri (B) (5= po)]

where H04 — 004H < H94 — 904‘
E4 and EG6,

g = €. (94) and R; (8) is as defined in (2.68). By Lemmas

Z et (Eir) — **t(az)]H < max sup T3, (w)]| [||5_P0||n_lz"Ri<6)}’

1<t<g
1@ = aoll + || = B[ 2 D 1X: @)
1=1

~ 0, ().

By Lemma E4
n 2 n
n_l Z [Trf*t (si') —E (ﬂ-f*t (81))] = Tl_2 ZE ‘ ﬂ-f*t (61) -k (W*L*t (61‘)) H2
i=1 i=1
< n2Y Bllrh, @)
i=1
_ 2
< ot (gggg sup [l () >
— 0L,
y (2.71) and Lemma E1,
0
Y = B[ (T (1) b 1)) =B |50 ph ()| =B [ )] . 2129)

Hence, with reference to (2.77) and the above result,

‘ bir — Vi

n
,12 Tt (Eir) — **t 12 Tyt (€i.) *L*t(€1))]||
=1

= 0, (n—1/2L5 + n—1/2L3) =0, (n_1/2L5) )

IN

Lemma E8 Asn — oo,
HfL - ILH = Op (n_1/2L3> = 0p (1) .

Proof. The first part of the proof follows the proof of Theorem 1 in Newey (1997). Let
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pi* (T (e:.)) be the I-th element of pL, (T (g;.)) and
n! Zp** ) pL (T (1))

Let &k be the Kronecker’s delta and recall that p;* (v) is the I-th element of pL, (v) and

E [ *L* (T (51))])5* (T (81-))/] = IL' Then
E|Zp - I
S E{t?" (IL —IL)/(IL —IL)}
L L n 2
- E {n > Ipi (T () pi* (T (0)) - M}
k=1£=1L i=
< 0SB (T ) b (T ()
k=1 lzl B
- n*E{Z P (T ))2 S [ (T (1)) }
k=1 =1
< <up I, (T <u>>||) i {E[ L (T (e1)) ph (T (1)) } o (129)

As the expectation in (2.124) is Iy, it follows from Lemma E4 that

E||Z, — 1> =0 (n'L?). (2.125)
Now
|-z| < | 2 Ph (T @) = ok (T ()] p (T 1))
12;0** ) [ph (T i) — pE (T ()]
< 2 sup [|pL, (T l 12\1?** — i (T (1) H] (2.126)

By the mean value theorem in (2.69), the term in the square brackets in (2.126) is bounded
by

sup 112, ()] [na—aonw(ﬂ Bo| ‘IZIIX* N+ 17—l 3 7 B ]

i=1

By Assumption E8, Lemmas E4 and E6, this term is O, (n*1/2L3). Hence, this result,
(2.125) and Assumption E9 imply that

HTL —ILH < HTL —ILH + HIL —ILH = Op (n71/2L3> = 0Op (1)
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Lemma E9 Fort=1, ..., g, asn — o0,
~ — ~l =~ —
1Ver, = verll = Op (” 1/2L5> and ¢5LIL1¢tL —YsrVer = Op (n 1L10) :

Proof. Fix ¢t in {1, ..., g} . With reference to (2.75) and (2.77)

1Yz —vicll = Hfilégm —+¢L ’
< [T - n) b+ 6~
< G = m)lfloe]+ o =] @20

The following result on “fgl" is based on the observation made in Newey (1997). Let
p (A) be the spectral radius of a matrix A as defined in Section 2. Based on the fact that
for a symmetric matrix A, A(A) = inf}; = 2’ Az, it can be shown that for symmetric
matrices A and B, A(A+ B) > A(A) + A (B). Employing this property with the fact that
A(—=A) = —X(A), it follows that for symmetric matrices A and B,

A(4) 2 A(B) = X(A~B) = A(B) - p(A - B).
As A — B is symmetric, Lemma A3 implies that
[A=B||=p(A=B) = A(B)—A(A).

Similarly, it can be shown that ||[A — B|| > A(A)—A(B). Hence |A — B|| > |A(4A) — A (B)].
By Lemma ES,

(3o 5) 360 < [ s
Hence A\ (TL) —1=0,(1) and

Hfng - [A ('fL)]*l —, 1, ie. HTL_IH =0,(1). (2.128)

With Lemmas E3 (iii), E7 and Assumption E9,

Hence Lemmas E3 (iii), E7, E8 and (2.129) imply that

oy O — VL

<)

|+ el = 0, (1) (2:129)

Fer, =izl = Op (n71/2L7).
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Now fix s, t in {1, ..., g}. Since

@JE%L ~YerYer| < ‘(&ESL - 75L) I (gm - ’YtL)‘ + |y It (g)tL - 7tL)’
+ (55L - %L)/fgl%L +7er (fgl - IL) %L‘
< ‘ Bor — Vs ’ HTL_IH Hah - %LH + el “fgl“ Ham - %LH
+ ‘ gsL —VsL ‘ Hfng [Yerll + [Vsr (TEI - IL) VL) o

Lemmas E7 - E8 and (2.128) imply that

~

Sor1r  bur = Varver| = Op (n71LY°)

Lemma E10 As n — oo,

n

—\/
w23 (X = X)) — v (5] = 0p (1),
i=1
Proof. Define z}, as in (2.40) and 7% = n~'>"""  z},. As usual, define 1, as the t-th

element of ¢ and similarly for ¢,;. Then the left side of the lemma becomes

n

n—l/ZZ

=11

M=

(@i = T0) [y (€0) = ther, (e3))]

1

n

_ n71/2z

i=1t

M=

(x5 —T5%) [V (6i) — Uy (80) =B (Y (i) -

1

Therefore, by Assumption E2 and the fact that E[¢, (¢1.)]=0fort =1, ..., g,

n 2

o/ Z (@i — &%) [y (€0) — ¥up (€0) — B (i, (50.))]

i=1

= Bl (e1) = ¢ (e1) = B (¥ (1)) {nl ZE 5 — fv.*tIIQ} :

E

By Lemma E5, the term in the curly brackets is O (1) . Since E (¢, (¢1.)) = 0, by Lemmas
E2 and E3,

Bl (e1) — Yo (1) =B ) < 2{B[ (1) = ¥z (1)) + [B (i (1))}
= o(l).

Hence the required result holds. =
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Lemma E11 Asn — oo,

n

n-1/2 Z (X;f —Y.*)/ [wL (ei) — ¥y (gi‘):| =0, (n—1/2L11/2) .

i=1

Proof. With ¢, (€;.) defined in Proposition E2 and %, as defined in the proof of Lemma
E10, the left side of the lemma is

n-1/2 Z Z Dol (T (i) (Ve — Fer)
i=1 t=1
Z l e Z zt *t) [ f* (T (Ez)) - Epf* (T (51-))}/‘| (’YtL - A,yitL) ’
t=1 i=1

The norm of the second moment of the term in the square brackets is bounded by

n

n 'S E |zl — @ E|ph (T (1) — Bpk, (T (e1)||”
=1
< 2[E|lph (T )] + [[BpL (7 @) -IZEH% ol
= OP(L)7

by Lemmas E3 (iii) and E5 and the fact that

B[p~ (T (e0))||” = tr {B [p% (T (1)) P2 (T (1))} = tr (1) = L.

Hence, this and Lemma E9 imply that the required result holds. m

Lemma E12 As n — oo,

_1/22[()(* 7 -X (7 )) (X* 7)} ¥y (e1) = 0, (1).

Proof. The left side of the lemma is
172 Z (x:)-X () — (- yf‘)}/n {p% (T (e1) — B [p%, (T (e1.))] }
= ' Z (X7 (5) — X7 Tr {pk (T'(e1.)) — B [pE (T (e1))]}

_n—l/QZ [** ?) } T {pk (T (e1)) — B [ph (T (e1)] } (2.130)
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The first term on the right of (2.130) is

n

n 23S [0 (5) — 2] 0L (T (2)) — B [ph (T (1)) Y 7o

i=1 t=1
n

(por — 7¢) [0 '/? Z

g
=1 i=1 \j=

wigezje | [ph (T (e1)) — BpE, (T (21.))] | F{2-131)

The norm of the second moment of the term in the square brackets on the right side of
(2.131) is bounded by

2

¢ = 2
nt ZE Zwijtxjt E pr* (T (1.)) — EpL (T (er)| =0 (nC2L) ,
i=1 ||j=1
by the Assumption E5 (iv) and the step employed in the proof of Lemma E11. From Lemmas

E3 (iii), E9 and Assumption E9, for t =1, ..., g,

Vel < 1¥er = verll + llveell = Op (1) - (2.132)

With (2.131), the first term on the right of (2.130) is O, (n=(17¢2)/2LY/2) = o, (1) by
Assumption E9.

Now consider
P, (/ S° k(T (e0)) ~ B s (T )] }) | (2159
i=1
The norm of the second moment of the term in the parentheses is bounded by

E||p%, (T (e1.) — Bpk, (T (e1))|]° = O (L).

By (2.132),

’fLH = O, (1). Hence the term in (2.133) is O, (L'/2). As in the proof of

—* — |2
Lemma E6 (ii), ‘ X (p)-X. H is bounded by

2

i ([ ) <00,

by Assumptions E5 (iv) and E8. Hence, the second term on the right of (2.130) is O, (n=1/2+¢1 LY/2) =
0p (1) by Assumption E9, and the required result holds. m

Lemma E13 Asn — oo,

nt Y (x: - X*)'fL [BIIE, (1)] X7 —, V.

i=1
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Proof. The left side of the lemma is
_ = *_7*/~ _ « _ 3 _ n ?‘(_7*/ e
-l ; (x:-X7) [FuBnt, 1) - £] (x5 = X7) 407! ; (x0-X) £(x2-X7).

By Assumption E5 (i), it suffices to show that the first term is o, (1). The first term is

g n
DD {FuE [wh (e1)] — Lar} ( T - (k- z.*»') , (2.134)
s=1t=1 i=1

where Ly is the (s,t)-th element of £. By (2.123) in the proof of Lemma E7, the term in
the curly brackets is

(Ver = Ysr) Ve + (Varver — Lst) = 0p (1)

The reason follows from Assumption E9, Lemmas E3 (iii), E9 and the result from the proof
of Proposition E1 that ., v,; —Ls = 0(1) . The term in the parentheses in (2.134) is O, (1)
by Lemma E5. Hence the required result holds. m

Lemma E14 As n — oo,
n N~
w3 (X; = XT) Ty [E, (e1) — BIE, (e1)] X7 =0, (1),
i=1

Proof. The left side is

Z Z {TL1 Z’YgL **t ]E‘Tr**t ( )] (m:s - E*s) (1’:})/} .

s=1t=1

It suffices to show that each term in the curly brackets are o, (1). The term in the curly

brackets is

n
-1 Z 73L 73L ﬂ-f*t ( ) Eﬂ'**t ( )] (x;ka - E*:,) ('Z‘;(t)/
i=1

+7’L_1 Z ’Y/SL [W*L*t (Ei Eﬂ-**t ( )] (xrs - f*s) (x;‘kt)l . (2135)
The norm of the first term in (2.135) is bounded by
O WPz~ 1et | s [feks ()™ Z (@i =720 @3) | = Op (n712L8) = 0, (1),

by Lemmas E4, E9, the steps similar to the proof of Lemma E5, and Assumption E9.

The norm of the second moment of the term in the curly brackets is bounded by

vl sup 1, | - (ZEH i~ ||xn|> O (7 1%) = o (1),
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by Lemmas E3, E4, and Assumption E5 (iii) and E9. Note that, by Assumption E5 (iii)
and the steps in the proof of Lemma E5, it can be shown that the sum in the parentheses
is O (n't"). m

Lemma E15 Asn — oo,
S (Xp - X) T 05 ) — T ()] X2 =0, (1)
i=1

Proof. The left side can written as

Z Z (n_l %L [W*L*t (&) — W*L*t (51)] (x5 —7%) (xft)/> .

s=1t=1

Note that
||:)75L|| < ||58L - ’YSL” + H’YSLH = OP (1) ’

by Lemmas E3 (iii), E9 and Assumption E9. As in the proof of Lemma E7, by the mean

value theorem around 6oy, it suffices to consider

<Sgﬂg |13, (U)||) [Hﬁ = Bol[n ™ > IXT @ gl 17
u€RY i=1

n n
I = aoll ™t > ekl el + 17 = poll ™ D || i (8) | el xm] . (2.136)
i=1 i=1

where HB —ﬁOH < HB—ﬁOH and [|p — poll < |Ip — ppll - By Assumptions E5 and ES8, the
second term in the square brackets in (2.136) is O, (n_1/2) . Employing the steps in the
proof of Lemma E6 (i) and (iv), it can be shown that under Assumption E5 (vi) and ES8,

w Y (12 )+ | s (B) ] Nl il = 0y (m2maxtens o1
i=1

Hence Lemma E4 and Assumption E9 imply that the required result holds. =

Lemma E16 Asn — oo,

DM CADESS ®) Tolth, (2:) X7 (p)—n " Z (xz - X7) Tulth, ) X2 = 0, (1).
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Proof. The left side is
iy (x20)-X @) - (3 -X7)| Fulths ) X2 (7) — X
=1

(32 = X7) Tl ) 1X2 ) - X2

7.

M-

+n 1

i=1

K

Y (X0 6) - X @) - (x5 - X0)] Tolth (2 X (2.137)

M-

i=1

Employing various steps in the proof of Lemma E6, the fact that Hf LH = O, (1), Lemma
E4 and Assumption E9, every term in (2.137) can be shown to be 0, (1). =

Lemma E17 Asn — oo,

Proof. The left side of the lemma is
- —x\/ /= - —x\/
n 'y (X;i - X,) (FL - FL> () Ri+n 'y (X;i - X,) U005 (¢.) Ri. (2.138)
i=1 i=1
As in the proof of Lemma E15, by Assumptions E5 and E9, the The first term in (2.138) is

O, (n=Y/2L8) = 0, (1). By Lemmas E3, E4 and Assumption E5,

2

2 n n
(sgﬂggnnf* <u>|\) 2SS Wi,

i=1 ||j=1

IA

Z HFLH*L* (Ei-)RiHQ
i=1

0 (L°).

Hence Assumptions E6 and E9 imply that the second term in (2.138) is O, (n?L?) = 0, (1).
[
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3 Statistical Inference on Regression with Spatial De-

pendence

3.1 Introduction

The linear regression model, with estimation by ordinary least squares (LS) or instrumental
variables (IV), is still a very popular statistical tool in empirical economic investigation.
Often, however, the linearity seems an arbitrary restriction, while no specific nonlinear-in-
parameters model is supported by economic theory. On the other hand, smoothed non-
parametric regression encounters the curse of dimensionality unless very few explanatory
variables are relevant or a huge sample is available. As a result, semiparametric models,
such as partly linear regression, have been employed. For example, Robinson (1988) pro-
posed estimates of the coefficients of the linear component of a partly linear regression and
showed that they can compete with estimates of purely parametric models by converging at
parametric rate and being asymptotically normal, in the setting of arbitrarily many stochas-
tic explanatory variables in both the parametric and nonparametric parts. He assumed that
observations are independent and identically distributed (i.i.d.). This is often questionable
in economic applications, in particular, spatial dependence may arise from local shocks in an
economy and interaction among economic agents, due for example to spill-overs, competi-
tion and externalities; Conley (1999) discussed in detail sources of spatial dependence, from
both theoretical and empirical perspectives. The setting of the present paper is motivated
by spatial dependence in general, but also covers, as a special case, time dependence, whose
implications have already been widely studied in the parametric regression context, and to
a much more limited extent (e.g. Fan and Li (1999)) in the partly linear context, but on
the other hand our conditions also cover time dependence in panel data or spatio-temporal
data settings.

Spatial dependence can arise in many forms of data, for example (equally-spaced) data
observed on a regular lattice of two or more dimensions, data observed with irregular spacing
on a geographic space, data for which only pairwise "economic distances" are available, and
cross-sectional data that are feared to be dependent but for which no distance measures are
postulated. Asymptotic statistical properties of estimates, such as of LS and IV estimates
of linear regression, and estimates for the partly linear model, have not yet been developed
under conditions that satisfactorily cover these possibilities. In an important class of cases,
unobservable disturbances are i.i.d., and here the asymptotic distribution is expected, under
suitable regularity conditions, to be unaffected, leaving intact rules of large sample inference.
In other cases, disturbances will be mutually independent but conditionally or uncondition-
ally heteroskedastic, where the asymptotic variance matrix is affected, so standard t-tests
and interval estimates are invalidated, and Gauss-Markov efficiency properties (in case of
LS regression estimates), or the achievement of a semiparametric efficiency bound (in case
of Robinson’s (1988) estimates of partly linear regression) are lost. The same is true when,
on the other hand, homoskedasticity in disturbances is retained but independence is lost,
and a fortiori when disturbances are both heteroskedastic and dependent. A desirable

solution would entail correcting for whichever problem is present, using generalized least
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squares (GLS) ideas, as has been frequently done in dealing with heteroskedasticity, and
also with time series dependence, and occasionally even with both problems simultaneously
(see Hidalgo (1992) ). It is relatively easy to see how to construct GLS estimates when de-
pendence can be accurately parametrically modelled, but matters become more complicated
in the more modern approach where disturbance correlation is treated as nonparametric,
and certainly more consideration has to be given to the possible structure of dependence,
reflecting the particular nature of the data, than in simple point estimates which ignore the
problem. Moreover, if we begin from a situation in which correlation between regressors and
disturbances is also feared, leading to use of instrumental variables, efficiency improvements
are still harder to achieve.

In the setting of random design nonparametric regression, Robinson (2011) proposed a
triangular array structure which he justified as a possible representation for a broad class of
spatial configurations, and presented conditions for consistency and asymptotic normality of
Nadarya-Watson estimates. Disturbances were assumed to satisfy a kind of linear process,
possibly allowing also for conditional or unconditional heteroscedasticity, and restrictions
on dependence of regressors were expressed in terms of conditions on joint and marginal
probability density functions, again also permitting some heterogeneity. It was argued that
these kinds of conditions might be suited to a wide range of spatial data.

We employ similar conditions here, in order to establish asymptotic normality of IV (and
thus also LS) estimates of a linear regression (see the following section), and of (density-
weighted IV) estimates of a partly linear model (see Section 3), allowing in both cases for
spatial dependence in regressors and disturbances. Proofs of these results are left to three
appendices, the first presenting the main steps, the second a sequence of propositions, and
the third, technical lemmas. Section 4 discusses estimation of relevant large sample covari-
ance matrices, some of which allow for disturbance heteroscedasticity and/or dependence,
and thus provide robust inference, with the proof of a theorem contained in the fourth ap-
pendix. In an empirical study in Section 6, we develop the regression analysis of Banerjee
and Iyer (2005) of the effect of systems for collecting land revenue instituted during British
rule in India on present-day economic performance, after first finding evidence of spatial
correlation of disturbances and carrying out nonparametric regression fitting. Sections 5
and 6 also include some discussion of the issue of bandwidth choice in partly linear regres-
sion. Section 7 discusses related aspects and possible modifications and extensions of our

methods and theory.

3.2 Linear Regression

Given n observations on the p-dimensional column vector random variable X1;, and scalar

random variable Y;,,, we consider the linear regression
Ytin :Blein+Uin7 1 SZ S?’L, n= 1a27"‘7 (31)

where the p-dimensional column vector 8 is unknown, the prime denotes transposition, and

the U, are unobservable scalar disturbances. It is possible that X7;, includes an intercept.
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For spatial data there is generally no natural ordering, but an arbitrary one is employed in
(3.1). The triangular array formulation, indicated by the n subscript, is used because some
re-ordering may be natural when n increases, as discussed by Robinson (2011), for example
when observation points form a lattice in two or more dimensions. It is also essential when
a variable is believed to be generated by a model such as a spatial autoregression (SAR)
with row-normalized weight matrix. However, to avoid complicated notation we will mostly
suppress reference to the n subscript in what follows, so in particular we write U; = Uy,
X1 = Xiin, Yi = Y, though from time to time we take the opportunity to remind the
reader of the underlying potential dependence on n of various quantities.
Consider the IV estimate B = Bn of 3, given by

R n -1 5
p= (Z XQiX{i> ZX%Yu
=1 =1

assuming we observe also the p-dimensional column vector random variable Xo; = Xs;, and
the inverse exists. As usual X7; and X5; may overlap and Xo; = X5; is possible, when B
becomes LS, but IV estimation is as usual motivated by the fear of correlation between one
or more elements of Xy; and U;, and the hope of orthogonality between X5; and U;, and
correlation between X7; and Xo;

We introduce the following assumptions, where the norm || A of a rectangular matrix A
is defined as the square root of the trace of A’A, and C denotes a generic, finite constant,

independent of n.

Assumption Al (3.1) holds where

o0
Ulezn:szkEka 1 SZSTL, n= 1327"'7 (32)
k=1
where €, k = 1,2,..., are independent scalar random wvariables with zero mean and unit

variance, and the scalar weights b, = b;ky, satisfy

S <C 1<i<n, n=12.. (3.3)
k=1

Assumption A2 Asn — oo,

D B[ Xal* =0 (n),
1=1

Tty X XY -y @,

i=1

where ® is a constant non-singular matriz.
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Assumption A3 Denoting by N the set of positive integers,

lim supE {1 (|ex| > 6)} = 0.
0—00 LeN

We abbreviate the triangular array or sequence {b; = b;,;1 < i <n, n>1} to {b;}.

Assumption A4 {Xy;} and {e;} are independent, and as n — oo,

1 n n (o]
LS 3 S by -, %
where ¥ is positive definite (p.d.) and

n

n~1/2 sup
keN

—, 0. (3.4)

Xo;bik
1

=

Theorem A Under Assumptions A1-A4, as n — oo,

N (B - [3) —a N (0,875

Robinson (2011) gave detailed motivation for using (3.2) and (3.3) to derive central limit
theorems in the presence of spatial correlation and heterogeneity. Most basically, they im-
ply that maxi<;<, E(U?) < C. They also extend the kind of linear process used when the
U; form a stationary time series, and b;; = b;—;. The more general ¢j subscript conveys pos-
sible heterogeneity as well as correlation, and this and the suppressed n subscript on b;; are
required to cover models such as the SAR (which is nonstationary). In the SAR model for
U; the b;; eventually vanish, for all ¢ (bij =0 for j > n), and (3.3) is satisfied under standard
conditions, but it also covers infinite-order dependence, familiar from time series and lattice
autoregressive and autoregressive moving average models. In these, the b;; are absolutely
summable, but (3.3) covers also possible "long memory". However, the extent to which
this is possible depends also on the dependence within {X5;}. As noted in the time series
case by Robinson and Hidalgo (1997), root-n—consistency is only possible if the collective
memory in U; and Xs; is sufficiently weak. In particular if X5; includes an intercept, the
first limit in Assumption A4 (which merely asserts convergence of the covariance matrix of
n~Y23" | Xo;U;) rules out long memory in U;. However if (3.1) is reformulated in terms
of mean-corrected observables long memory in U; might be permitted in a corresponding

central limit theorem for slope parameter estimates based on Assumption A1, c¢f Robinson
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and Hidalgo (1997). Independence of innovations (in Assumption Al) is standardly as-
sumed both in models of SAR type and in lattice extensions of linear time series models;
the martingale difference assumptions of time series models are hard to extend as there is
no natural ordering to our data. Independence of {Xo;} and {g;} is a strong assumption
and would be capable of some relaxation, but at a cost because our decoupling of conditions
on disturbances and explanatory variables, here and even more so with respect to the partly
linear model of the following section, has advantages, as discussed in Robinson (2011). As-
sumption (3.4) is the required version of the asymptotic-negligibility condition to satisfy a
Lindeberg condition. Note that if the U; are uncorrelated, as implied when b;;, = 0 for i # k,

(3.4) reduces to n~2 maxi<;<n || X2l —p 0, which, given the standard Assumption A2, is

implied by the more familiar-looking condition maxi<;<p || Xaill / (Z?:l HX%HZ)I/2 —p 0.
But the same conclusion results also under fairly general dependence in U;. In particular this
is the case if I, |b| < C for all k, as is true if |b;;| < C'|bj—i| where X2 |b;| < o0, to
connect with weakly dependent stationary time series, or under an analogous condition relat-
ing to lattice processes. It is also the case with SAR models under normalization conditions.
However, (3.4) is also true under more general dependence conditions, in particular if Xy; is
uniformly bounded in probability it is only required that sup,cy Z7-; |bir| = 0 (n%>, which
for stationary time series and lattice data would permit long memory in U;,. Assumption

A3 is just a standard uniform integrability requirement, avoiding identity of distribution.

3.3 Partly Linear Regression

Consider now the partly linear regression
YVi=p3'X1+0(Z)+U;, 1<i<n, (3.5)

where to extend the previous definitions Z; = Z;, is a g-dimensional observable column
vector random variable, and € is an unknown, nonparametric, function. As discussed by
Robinson (1988), for identifiability X;; cannot include an intercept and Xi;, Z; cannot
overlap.

We again focus on estimating §. As in Robinson (1988), we employ Nadaraya-Watson
nonparametric regression estimation in estimating a transformed version of (3.5). Letting

k : R — R be an even function, consider a product kernel K : R? — R such that

q
K(z) =[]k (),
t=1
where z; is the t-th element of z. For a positive scalar bandwidth sequence a = a,,, tending

7.7
Kij = Kijn =K <H> :
a

to zero as n — 00, denote
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For a column vector triangular array {A; = A;,,}, define

1 n
@Z(Ai — Aj) Kij,

=1

Af = AF =

1
and with {B; = B;,} also a column vector triangular array, define

Sap = % iA;*B;’.

i=1

Our semiparametric IV estimate of 3 is
2 —1
B = SX2XISX2Y7

assuming existence of the inverse. This is a density-weighted (as in Fan and Li (1999)) IV
version of the estimate of Robinson (1998) For independent and homoskedastic U;, Cham-
berlain (1992) showed that the latter estimate achieves a semiparametric efficiency bound.
However, with spatial dependence in {U;}, this property is lost, and without suitable spatial
dependence structure, GLS-type estimation is ruled out. Because neither the estimate in
Robinson (1988) nor the density-weighted version is efficient, and the former need not in
general be the more efficient of the two, the latter may be preferable since the trimming
in Robinson (1988) can thereby be avoided. However as in that reference, we still need to
sufficiently reduce bias so as to obtain root-n-consistency in the presence of an arbitrarily
high dimension of the vector Z;, and this is achieved by employing a kernel k of suitably
high order, and a corresponding degree of smoothness in the functions to be estimated. To

describe these features we introduce the following definitions.

Definition 3.1 K;, [ > 1, is the class of bounded and even functions k : R — R such that
/ u'k(u)du = 6, i=0,..,1-1,
R

o((1+1) ).

as |u| — oo, where §;; is the Kronecker delta and ¢ > max(l + 1, 2q).

k (u)

Definition 3.2 A function g : R — R is in the class G, a > 0, p > 0 (with respect to
the triangular array {Z;}) if: (i) g is (m — 1)-times partially differentiable, form—1 < pu <
m; (i) for some p > 0,

sup g (y) —9(2) —Q(,2)/ ly — 2" < h(2) for all
yEB(z,p)

where B (z,p) ={y: 0 < |ly — z|]| < p}; @ =0 when m =1; (ii1) Q is a (m — 1)-th degree

homogeneous polynomial in y— z with coefficients the partial derivatives of g at z of orders 1
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through m—1 when m > 1; and (iv) g (z), its partial derivatives of order m—1 and less, and
h(z), have average ath moments (averaged over Z;, 1 < i < n) that are uniformly bounded

for all sufficiently large n.

We introduce the following assumptions.

Assumption B1 Assumption A1 holds with (3.1) replaced by (3.5).

Assumption B2 {¢;} is independent of {Xo;, Z;} and Assumption A3 holds.

Assumption B3 The following probability densities exist and have unbounded support:
fi = fin, the density function of Z;; fij = fijn, the joint density function of Z; and Z;;
fiji = [fijkn, the joint density function of Z;, Z;, and Zi; and fijii = fijkin, the joint density
function of Z;, Z;, Zy and Z.

Assumption B4 Foralln>1and1<i<n,
X =& (Zi) + Vi, t=1,2,
where Vi; = Vi are p-dimensional column vector random variables such that fort = 1,2,
E (V| Z1,....2,) =0
and there exist functions o, : R? x R1 — R such that
E(ViVigl {21, Zn}) = 00 (Zi Z) 75,
where 7 = 1), = B(V/Vi)).

Define

and
VEJU) = VEJUn = E(U:Uj).
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Assumption B5 Asn — oo,

n
n~t Z V2iV1/iﬁ2 —p ¥,

i=1

where U is a constant non-singular matriz and

®) < -
g, s 0=
Z ’YEJI’) = o(n?), Z { 'YEJQ) + ng)’} =o0 (n3/2> , as M — 00.
3,j=1 i,j=1

Introduce the notation

n

ZZZ 2

Lols i1=1 107141 G5 FEUL eyl Fls—1
Also introduce the dependence measures
Fyi(z2521) = fij (21,22) = fi (1) fj (22)
fij (21, 20, 23) — fi (21) fin (22, 23)
(

Fijwa(z1, 22523124) = fijwa (21, 22, 23, 24) — fij (21, 22) fi (23) fi (24) .

Fj.i(22, 23; 21)

Assumption B6 For some ¢ > 0, {Z;} satisfies the following conditions as n — 0o:

(i) denoting B =B, ={z: f(2) >0}, N (2) = {21 : |21 — 2| <},

1 n
sup  sup SRl = o(n?),

21€EB 20N (21) ?(Zl) i
0 (n5/2> ;

ZI ki (22, 28 21)|

L]k

sup sup
z1EB ZQ,ZgEN(Zl) f

(ii)

n
U
sup sup Z P}/Ej )"YU)F'L] k(zla 225 23)‘ = o0 (nz) )
21,22ER? 23€N (21)UN (22) i,5,k
n
sup sup Z VijFijiea (21, 205 233 24) | = 0(”3)’
21,22€RY 23€N (21), z4€N (22) i,5.kl
2 (U (2),.(U)

for vi; =575 vi; ' and the product v;; ;7"
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Assumption B7 For all sufficiently large n, f € G3° for some A\ > 0, and, for distinct
0,5,k L€ [1,n],

lim {max sup f; (z) + maxsup fi; (21, 22)
n— oo i 4,

+maxsup fiji (21, 22, 23) + max sup fijht (21, 22, 23, 24)}
575 ,75R,

< oo,

where the suprema are over all real values of the function arguments.

Introduce a scalar function G(z) such that

ZE{G‘*(ZQ} =0(n), asn — oo.

Assumption B8 Fort=1,2, &, € gﬁ for some > 0 and there exist € > 0 such that for

any z € R?
sup € (2) = & (2 + )|
0<|lull<e [Jull

Assumption B9 0 € G} for some v > 0, and there exist € > 0 such that for any z € R4

wp 1) 0+
0<||ull<e ]

<G(2).

Assumption B10 Fort=1, 2, as n — oo,
/O‘t (z,2)° T (2)dz + /02 (21,22)° F (21) T (22) dz1dzy = O (1),

Blos (Zi, Z;)| = ( 1/2)
| Jnax 02 (Zi, Z)| = O (n/7 ),
and there exist € > 0 and functions Gy (z1,22) such that for any z1, z2 € RY,
,29) — z21+u,z0 +v
sup oy (21, 22) — 0 (21 +u, 22 +v))|

0<||(u,v)||<e ||(’LL,’U)||

S Gt (21722) )

where as n — 0o

/Gt (z,z)?(z)dz—i—/Gt (21,22) f (21) f (22) dz1dze = O (1).
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Assumption B11 Asn — oo,
" —2
n= 2 sup y " {[Vaill £ [bis| —p 0
jeN

and
% Z Z Z bikbjkfffivmvzlj —p Q,

where £ is a constant p.d. matriz.

Assumption B12 For the same A, i, v as in Assumptions B7 - B9, k € Kax(i4m—1,14r—1)
for integers I, m, r such thatl —1 <A<l m—1<pu<m, r—1<v<r.

Assumption B13 For the same A\, p, v as in Assumptions B7 - B9, as n — oo,

a+n12q=1 4 pl/2g6-2a 4 p1/2 (a2“+a2”+a2’\) 0.

Theorem B Under Assumptions B1-B13, as n — oo,

Vi (B=8) —aN (0w 10w "),

To a substantial degree, the assumptions are a mixture or modification of ones in Robin-
son (1988, 2011). In his i.i.d. data setting, Robinson (1988) was able to relax Assumption
B4 to E (V4| Z4, ..., Zn) = 0 as., t = 1,2, but for our potentially spatially dependent set-
ting we have been unable to avoid more structure. Though Assumption B4 does allow for
some conditional heteroscedasticity it is nevertheless strong, especially when p > 1, but we
prefer to avoid milder but more complicated assumptions. Assumption B5 places an upper
bound on the spatial dependence in U; and V5; that covers long memory. Assumption B6,
as in the nonparametric regression setting of Robinson (2011), constitutes an asymptotic

independence assumption on Z;; part (ii) of it also involves the ’y(-[.])and ’yz(-?). It is difficult

i
to check in general, but this is possible at least under Gaussianijty: as noted in Robinson
(2011), a similar (slightly stronger) condition was checked by Castellana and Leadbetter
(1986), in the stationary scalar Gaussian time series case: there exists ¢ > 0 such that for
N () ={z1eR: |2 — 2] < e},
" | Fjgei(22, 235 21)

e S Cn> Y |Cov(Zi, Ziyy)| -

i=1 j=1

sup  sup
21€R 29,23E€N (21)

.3,k
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In this setting at least, Assumption B6 allows {Z;} to have long memory. With respect to
finding alternative sufficient conditions, there is always a difficulty, in either the spatial or
time series contexts, in characterizing useful, coherent, joint, non-Gaussian, densities. To
place matters in further perspective, mixing conditions would provide an alternative to B6,
but though there has been a good deal of discussion of conditions for these with respect
to time series, relatively little seems to be known in a spatial context, especially given the

rather wide range of spatial configurations that we try to allow for.

3.4 Variance Estimation

For statistical inference the limiting covariance matrices in Theorems A and B must be
consistently estimated. To focus particularly on the Theorem A, Assumption A2 gives a

consistent estimate, </I5, of ®. Assuming no correlation in the U;, ¥ can be estimated by
S = S = L3 xx0, 2
1= 1n—£; 2i XUy,
i

where
U = Upn = Y; — B Xui,

s0 31 is a standard heteroscedasticity-robust estimate in the style of Eicker (1967). Assuming

also homoscedasticity we have of course the estimate

~ ~ .1 &
Yo =Xy = 025 Zsz:Xéz',
i=1

where 52 =5 = (n—p) "' Dy U2. Consistency of 53 and 3 follows under mild addi-
tional conditions.

Estimation of ¥ can be considerably more problematic when there is correlation in the
U;. Given a parametric model for U;, such as a SAR or, with lattice data, a lattice exten-
sion of a stationary time series model such as an autoregressive moving average, matters
are relatively straightforward. When U; is not parametrically modelled, lattice data permit
relatively straightforward extension of the heteroscedasticity-and-autocorrelation-consistent
(HAC) variance estimates proposed for time series data, which are essentially smoothed
nonparametric estimates of the spectral density matrix of a stationary process at zero fre-
quency (though the edge-effect must be taken account of). For non-lattice data there is a
fundamental difficulty of autocovariance estimation, for example when data are irregularly-
spaced there are typically insufficient pairs of observations available to reliably estimate
the autocovariance for a given lag using standard formulae. This problem is present with
irregularly-spaced time series data, and the kernel smoothing method suggested there by
Masry (1983), to estimate autocovariances at integer lags, can be extended to two or more
dimensions, with the autocovariance estimates then straightforwardly inserted in a higher-
dimensional HAC formula. This approach is based on stationarity, but as in the time series

case it can doubtless be shown to be consistency-robust to a degree of heterogeneity. As
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an alternative way in which the problem can be transformed to one for a stationary ran-
dom field on a lattice, Conley (1999) modelled locations by a point process, dividing the
sampling region into rectangular cells such that for each cell, there can be at most a single
observation.

On the other hand an estimate which potentially covers both nonparametric dependence

and heterogeneity is of form

~ ~ 1 <& -
23 = ng = E Z XgiXéjUinwij7 (36)
=1 j=1

where the w;; = w;j, form an array of weights, as in Kelejian and Prucha (2007). In their
proof of consistency, they stress SAR-type U;, but the property holds much more generally
under Assumption Al. The quadratic-form estimate (3.6) reduces to a familiar HAC form
if the w;; are of the kernel form w;_; = w;_;, involving a bandwidth, but Kelejian and
Prucha (2007) take w;; = w(d;;/d), where the function w (z) is suitably normalized and
vanishes for « > 1, d;; = d,j» is a known, positive (economic) distance between locations
i and j, and d = d,, > max; ;d;; is regarded as increasing without bound with n. An
alternative choice of w;; is based on knowledge of observed locations s; € R", for dimension
r>1,49=1,..,n. Let s; be a r x 1 vector such that if s;; and s}; are the k-th elements of
s; and s7, so sy is the smallest integer such that s;; > s7,. We can regard s; as discretized

locations on a rectangular grid. Define
w(si — s5,m) = [ [ h{(sir — ) /mu},
k=1

where h is a real-valued function and mj = my, are non-negative integers forming a trun-
cation vector m = (mu,...,;m,). Set wy; = w* (s}, s}) = w(s; — s5,m).

With respect to variance estimation in Theorem B, Assumption B5 supplies a consistent
estimate, @7 of W, while to echo remarks of the previous section, after defining ﬁfz = (/]\{‘m =

~l
Y;* — B X7;, under regularity conditions a consistent estimate of  is
1 n
A A * ! T7x2
Q=01 = Z;XziX% U2,
1=

when the U; are independent, and

n
21

~ ~ ,
* *
Qo= =0 E E X2¢X2¢7
i=1

when they are also homoscedastic, where 62 = 6% = (n —p) ' Dy (/]\if For dependent U;

one can use (cf (3.6))

A A 1 LN * * Trx 7%
Q3 = Q3 = - Z ZX2iX2jU1iU1jwij‘ (3.7)

i=1 j=1

In order to provide some reasonably comprehensible theoretical justification, let us con-
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sider the infeasible estimate

. . 1 n n
Y3 =3, = -~ Z ZX%XéjUinwijv (3.8)
=1 j=1
which becomes ig with U; replaced by Ui, and ﬁg with U;, Xo; replaced by ﬁl*i, X3,
respectively. For any A € RP,

)\'53)\ = 1 Z szvtw (s —t,m),

n
sell tel

where v; = 2?21 N X5,U;1 (s; =t) and 1 is the indicator function. This can be written as

Z w (u, m) ¢y,

u€el*

whereL* ={s—t:se€l, telL},c, :n_lzT(u)vthu,andT(u) ={t:tel, t+uecl},
where we assume that s; € II7_; {1,...,n;} =L for all ¢, where L is the smallest rectangular
grid containing all s;. If h is either the modified Bartlett window or the Parzen window,
then )\lig)\ > 0 (see Robinson, 2007), and hence §~]3 is non-negative definite. We establish

conditions for approximating
Sn=n""Y Y B (X2 XY;) E(UU;)
i=1j=1

by ig.

Assumption C1 The kernel h is a real, even function such that |h(u)| < 1; h(u) =0 if
lu| > 1; and lim,_o (1 — h (w)) / |u|? = hy for some ¢ >0 and 0 < hy < c0.

Assumption C2 Asn — oo,

(i)
myp — 00, np—oo, k=1,..71;
(i)
my

— =0, k=1,...,7;
ng

and there exist 0 < ¢1 < ¢o < 00 such that

T T
C1an SnS@an
k=1 k=1

for sufficiently large n.
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Define

Assumption C3 There exists a family of p X p matrices {G,, : u € Z"} , where Z" is the
r-Cartesian product of the set of integers, such that the absolute value of each element
of Sy (u) is bounded by the corresponding element of G, for all u € L*, n € N, and

ez Dopet Ukl Gy is a finite matriz.

Assumption C4 Let z;; be the t-th element of X;. For allt, s=1,...,p, as n — o0

n

n n n
Z Z Z Z |6 (2:Us, 255U, 2xUg, 20 Up)| = O (n)

-
Il
-
<
Il
-
o~
Il
-
-
-

where K is the cumulant function.

Define
Sitsn (v, u1) = 07t > E(wuenUiUs) B (zagzaU;U1),
u,v,u1
Sotsn (,v,u1) = 0t Y B (wuwaUiUs) B (22 U0,
u,v,u1

where the summation is over all ¢, j, k¥ and [ such that s; —s; = u, s — s = v and

S; — S = Uuz.

Assumption C5 There exist numbers {'yu’v tu,v € Z"} such that
‘Slts,n (u7 v, ’LL1) + SQts,n (’LL, v, U1)| S ’7u1,u1+'u7u

forallt,s =1,..,p and u, v, vy € L*, n €N, and

> Y < v

uEL” vEL"

Theorem C As n — oo, under Assumptions C1, C2 (i) and C3
E (ig - En> =0 (Z mkq> ;
k=1
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and under Assumptions C2, C4 and C5,

Var (55) = 0 ( Hm> .

Sharper results can be obtained if stronger assumptions are imposed. For example, if as
n — 00, Sy, (u) — S (u) for all u, for a well-defined function S (u), the asymptotic bias can
be made more precise. This assumption is similar to the definition of asymptotic stationarity
of irregularly spaced time series in Parzen (1963). The same can be said for the variance if
another type of asymptotic stationarity is introduced (see the proof of Theorem C). Under
such assumptions, the asymptotic mean squared error can be used as a criterion for choosing

a truncation vector, and a data-dependent plug-in procedure then employed.

3.5 Monte Carlo Study of Finite-Sample Performance

We examine first, for the linear regression (8.1) with p = 1, the size of 2-sided t -tests
based on the LS version of B and the estimates il, EAIQ and the second approach to forming
ig described in the previous section.  The locations si,...,s, of the observations were
generated by a random draw from the uniform distribution over [0,4n'/2] x [0,4n'/?].
Given these (and keeping them fixed across replications), the U; were generated as normal

Illjsiisju, for prescribed p;; € (0,1).

variables with mean zero and covariances Cov (U;, U;) = p
Likewise the X; (= X1; = Xa;) were generated as scalar normal variables with mean unity
and covariances Cov (X;, X;) = p@?ﬁsﬂl, for prescribed px € (0,1) (and independently of
the U;). We took 8 =1, (px,py) = (0.2,0.3) and (0.4,0.5), n = 100 and 169, and generated
1000 replications. Table 1 reports empirical sizes of t—tests with nominal sizes a = 0.01,
0.05 and 0.1 using f)l, denoted in the "m” column by H, 52, denoted there by C, and
ig, for various values of m in the truncation vector (m,m), and using the Parzen kernel
for h. There is some over-sizing, which diminishes with increasing n. The over-sizing is
particularly acute with respect to the inappropriate variance estimates C and H, with the
(heteroscedasticity-robust) H doing worse than the classical C. For S5 there is stability
across m  (though when we tried m outside the range used in Table 1 we found greater
sensitivity.
Table 1 about here

Power was investigated in the same setting, against the incorrect null hypothesis that
B8 = 0.8, but with U; ~ NID (0,1), X; ~ NID(1,1). Monte Carlo powers are displayed
in Table 2. The main findings are that choice of variance estimate here makes little
difference, and that power increases quite significantly with the rather modest increase in n.
The experiment was repeated with the incorrect null hypothesis 5 = 0.5, when all powers
were perfect.
Table 2 about here

We now turn to the semiparametric partly linear model (3.5), and use the LS version of B
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This depends on a bandwidth a. In general one expects less sensitivity to bandwidth choice
in semiparametric than in nonparametric estimation. Moreover, the problem with trying
to use a data-dependent bandwidth, especially in a relatively complicated, semiparametric,
situation like this, is not so much the computational effort as that one is then at the mercy of
a mechanical procedure that is itself rather arbitrarily selected. Even in the semiparametric
literature often optimal bandwidths originally devised for purely nonparametric estimation
are used, but clearly their relevance to the semiparametric model is unclear. Alternatively
one can develop some procedure based on the semiparametric model itself. Our view here is
that if the goal is statistical inference based on the central limit theorem, rather than using,
say, minimum-mean-squared error or cross-validation procedures, it is more appropriate to
choose a bandwidth that minimizes the error in the normal approximation. Nishiyama and
Robinson (2000) achieved this for semiparametric averaged derivatives but even that case is
complicated and in the current one, if feasible, it would be more so. Moreover, they assumed
independence of observations, which would clearly be inappropriate here given the paper’s
overall focus. Even weak disturbance correlation would affect this optimal bandwidth
(unlike in the pure nonparametric setting), let alone the strong correlation which we allow
for. Another point to bear in mind is that our asymptotic theory, like the bulk of the
nonparametric and semiparametric literature, assumes a data-free bandwidth. In any case
some experience over the years suggests that unless an "optimal" bandwidth is available and
well-motivated it may be desirable to employ a range of bandwidths, which also allows one
to assess sensitivity, and this was done in the following experiment (though cross-validation
was tried in the empirical study of the following section).

In (3.5) we took p = 1, ¢ = 2 and X; = 1+ Zy; + Zo; + Vi, 0(Z;) = Z3%, + Z3,,
where the Zy;, Zs;, V; were generated as normal variables with mean zero and such that
Cov{X;, X;} = pﬂ;i_sj”, the U; as normal with mean zero and Cov {U;,U;} = pllljs'i_sj”, and
{Z1i}, {Z2:}, {Vi} and {U;} were independent. We again took 8 =1, (px, py) = (0.2,0.3)
and (0.4,0.5), n = 100 and 169, and generated 1000 replications. We employed a = 1.0, 1.2
and 1.4. We used two different kernels k, namely ks (2) = ¢ (2) and ky (2) = (3 — 2%) ¢ (2),
where ¢ is the standard Gaussian density; ko and k4 are respectively second- and fourth-
order kernels, and are thus not of high enough order to satisfy the conditions of Theorem
B, but this strategy was adopted due to the imprecision likely to be caused by a high order
kernel in the relatively modest sample sizes.

There is interest in the effect on bias (BI) and standard deviation (SD) of the point
estimate B of the choice of kernel and bandwidth. The results for ko were as follows.
With (py,py) = (0.2,0.3), BI(SD) was, for a = 1.0, 1.2, 1.4, respectively .0062(.1200),
.0059(.1184), .0057(.1187) when n = 100, and .0047(.0872), .0037(.0852), .0026(.0849) when
n = 169; with (px,py) = (0.4,0.5), BI(SD) was .0052(.1260), .0048(.1259), .0047(.1281)
when n = 100, and .0045(.0909), .0035(.0894), .0024(.0897). The results for k4 were as
follows. With (py,py) = (0.2,0.3), BI(SD) was .0063.(.1245), .0060(.1224), .0059(.1214)
when n = 100, and .0053(.0910), .0045(.0886), .0035(.0872) with n = 169; with (px, pyy) =
(0.4,0.5), BI(SD) was .0052(.1300), .0050(.1291), .0048(.1295) when n = 100, and .0050(.0945),
.0043(.0925), .0033(.0915) when n = 169. Both BI and SD fall with increasing n. There is

no clear pattern discernible from changing (py, py). The fact that ke on average produces
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lower BI than k4 is due to the fact that the same bandwidths were used for both, whereas

k4 demands a larger bandwidth than ky. Nevertheless, ks still produces a lower SD.
Tables 3 and 4 about here

From the same replications t-ratios were computed for each choice of kernel and band-
width, and using ﬁl, denoted by H, ﬁQ, denoted by C, and (Alg, which employed the Parzen
kernel and m in the truncation vectors (m,m). Empirical sizes using ko and k4 are dis-
played in Tables 3 and 4 respectively. There is clearly some sensitivity to choice of a, with
sometimes a monotone change, and sometimes a peak or trough, observed on increasing
it, though the discrepancies do not seem huge. Use of the C or H estimates tends to
produce marked over-sizing when (px, pry) = (0.4,0.5), but the correlation-robust tests are
quite stable across m. Generally, performance deteriorates with greater spatial correlation,
but it also improves with increasing n, and when n = 169 it is surprisingly better than for
the parametric linear model (8.1). Comparing Tables 3 and 4, ko generally fares better
than k4, possibly due to the relative BI and SD behaviour reported above.

Finally Table 5 displays empirical powers, against the incorrect null hypothesis that
B = 0.7, in the previous setting but with U;, V;, Z1;, Zo;,~ NID (0,1). Powers mostly
increase somewhat with a and markedly with n, but tend to be stable across the variance
estimates, with the larger powers for C possibly due to over-sizing. In another experiment

using the incorrect null hypothesis that 5 = 0.5, perfect powers were observed throughout.

Table 5 about here

3.6 Empirical Illustration

The present section develops an empirical analysis of Banerjee and Iyer (2005), which em-
ployed linear regression modelling and estimation to study the influence of different systems
for collecting land revenue in India, instituted during British colonial rule, on present-day
economic performance. In a threefold classification of these systems, in a given area revenue
was collected either through the local landlord, or through the village, or from the individual
cultivator. Banerjee and Iyer (2005) used district-level data, and calculated the proportion
of "non-landlord" areas within a district (in the 1870’s or 1880’s); in some cases this could
not be done accurately and a proportion of 0 or 1 was assigned. This non-landlord propor-
tion, denoted NL, was the explanatory variable of chief interest in Banerjee and Iyer’s (2005)
study: on the basis of economic theory and empirical evidence, agricultural investment and
yields are positively related to NL, and income/wealth inequality are negatively related to
it. Their data on measures of economic performance and productivity, used as dependent
variables, consisted of a panel (annually, over the period 1956 through 1987 and across some
271 districts in 13 major states). As well as carrying out LS regressions (correcting also
for various control variables), because of concerns about endogeneity (non-landlord areas

are inherently more productive), Banerjee and Iyer (2005) also used IV estimation with a
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dummy, which we denote CO, for whether or not a district was conquered between 1820
and 1856 as instrument for NL. Districts are intrinsically of irregular size and shape, and
are thus intrinsically geographically irregularly-spaced, and moreover the lack of data for
some states produces huge spatial gaps, as Figure 1 of Banerjee and Iyer (2005) indicates.
However, they did not explore the possibility of spatial or serial correlation, and employed
standard inference rules based on uncorrelated and homoskedastic disturbances, and nor
did they explore semiparametric modelling.

We consider the possibility of spatial correlation of disturbances, and its affect on in-
ference, as well as the use of partly linear, and also pure nonparametric, regression. To
maintain focus and prevent matters becoming over-complicated, we employ data from only
one year, 1984; incidentally, Banerjee and Iyer’s (2005) model was static, with time-invariant
slope parameters. Employing data from near the end of the period also takes account of the
"Green Revolution" (see e.g. Munshi (2004)), which started in the early 1960s to combat
famine in certain Indian states, and was later extended throughout the country; as Banerjee
and Iyer’s (2005) aim was to study effects of local institutions, later periods in the sample
could provide better regression fits.

We first tested for spatial correlation of the disturbances in some of Banerjee and Iyer’s
(2005) regression models, employing LS and IV residuals in members of the class of tests
proposed by Robinson (2008). These tests include a number of previously-proposed ones
as special cases, and can be designed to have a Lagrange multiplier interpretation with re-
spect to certain spatially correlated alternatives to the null of uncorrelatedness, for example
against a SAR alternative, when the test statistic depends on the chosen spatial weight
matrix or matrices. For certain choices, several members of this class of statistics, including
ones with finite-sample corrections, were computed, for the four regressions with proportion
of irrigated land (IL), fertilizer use (FU), log(yield 15 crops) (L15), and log(rice yield) (LR)
as dependent variable Y. For the most part the tests rejected, suggesting possible spatial
correlation in disturbances (though as always some other source of misspecification could
be the cause). The detailed results can be obtained from the authors on request.

We next carried out some simple Nadaraya-Watson nonparametric regression fits, of each
of the same four Y on NL. Under similar assumptions to ours, Robinson (2011) showed
consistency and asymptotic normality of this estimate. Though his conditions require the
explanatory variable to be continuous, whereas as previously noted NL has a mixed distri-
bution, nevertheless the exercise may be helpful in reflecting nonlinearity and hinting at its
form. Figures 1-4 contain scatter plots for the four dependent variables and nonparametric
regression fits using a Gaussian kernel with bandwidth 0.3. This choice was the smallest
one that did not give very unsmooth curves, and much larger ones appeared to oversmooth,
indeed NL takes values in [0,1]. In any case the purpose of the nonparametric regression is
only exploratory, to hint at possible structure. The Figures suggest in each case a mode, and
possibly a mild secondary one, and thus evidence of nonlinearity, contrary to the modelling
of Banerjee and Iyer (2005).

Figures 1-4 about here

Our parametric and semiparametric regression models included (unlike in Banerjee and

Iyer (2005)) the square (NL2) of NL as a regressor (as well as NL itself), as just suggested by
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the nonparametric fitting. We also replaced two of Banerjee and Iyer’s (2005) explanatory
variables by proxies which may be more appropriate. For their panel data set, mean annual
rainfall was constructed over 1931-1960, but rainfall records from several decades earlier than
1984, the only year which we analyze, may not be relevant, especially for agricultural yields.
We used instead a precipitation variable (PRE) constructed by Mitchell and Jones (2005),
based on a method which they argued offers some improvement over existing ones in the
climatology literature: their dataset included 6 monthly climate elements over a 0.5° grid,
over which variation is small, and we used longitude and latitude of district headquarters to
obtain a weighted average at surrounding grids for 1984, district headquarters tending to be
in areas of high population density which themselves tend to be relatively fertile. Second,
Banerjee and Iyer (2005) included latitude (but not longitude) as an explanatory variable,
but latitude behaves like a linear trend in a time series regression, and thus affects the rate
of convergence of estimates, in a way determined by the scatter of district headquarters.
We replaced latitude by annual temperature (TEM), which varies considerably across India
and is more likely to influence agricultural yields and hence investment decisions. As an
additional modification, we discarded Thanjavur district because it appears to have serious
measurement error: it is the only district having IL exceeding unity, and FU in Thanjavur
was 79.44 in 1981, rose to 301.18 in 1982, and has remained high since, whereas average FU
excluding Thanjavur in 1984 was only 61.15.

IV estimation in the presence of the additional, NL-dependent, regressor NL2, requires
an additional instrument. The one selected, denoted C1, takes the value unity if a district
was acquired between 1820 and 1856, and otherwise its value is determined by the cause of
acquisition: 0.1 for "lapse", 0.3 for "misrule", 0.5 for conques, 0.7 for "grant", and 0.8 for
"ceded". The ordering is based on a likely strategy for security of the British administra-
tion, the higher value for "ceded" to "grant" due to the latter being more common at the
beginning of the British colonisation when landlord land-revenue systems predominated.
C1 can be considered as a finer version of C0, and should likewise be uncorrelated with
omitted districts’ characteristics which determine 1984 investment and productivity; both
are one-off historical events. On the other hand CO and C1 are not highly correlated but
are both highly correlated with NL. We used C0 and C1 as instruments for NL2 and NL
respectively, C1 having relatively higher sample correlation with NL.

In (8.1) we took Y = IL, FU, L15 and LR, as above (n = 164, 164,165 and 165
respectively), with

X; = (1,NL,NL2,DBC,CD,BSD,RSD,ASD,ALT,PRE, TEM)’,

where DBC = date district came under British control, CD=coastal dummy, BSD=black
soil dummy, RSD=red soil dummy, ASD=alluvial soil dummy, and ALT=altitude. We
computed 3 both with X = X; (LS) and with

X, = (1,C1,C0,DBC,CD,BSD,RSD,ASD,ALT ,PRE, TEM)’,

(IV). Standard errors (SEs) were computed using ®, 3 and S5 as described in Sections 5
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and 6, with for m = 2, 4, 6. Next, in (8.5) we took
X, = (NL,NL2,DBC,CD,BSD,RSD,ASD)’, Z = (ALT*,PRE* TEM*)’,

where ALT*, PRE*, TEM* are ALT, PRE, TEM normalized to have sample variances
approximately 1 (in order to better justify use of a scalar bandwidth). This selection keeps
NL, NL2 and DBC in the parametric part, these being the explanatory variables of most
interest, along with the dummies, and puts into the nonparametric part control variables
that can be taken to be continuous. We computed B with Z as above, and both with
X2 = X1 ("partly LS") and

X, = (C1,C0,DBC,CD,BSD,RSD,ASD)’

("partly IV"). For choosing the bandwidth a we tried the partial LS cross-validation pro-
cedure (and an IV modification) of Gao (1988), justified by Gao and Yee (2000), though
this does not quite fit with our density-weighted estimate B (The elements of Z were pre-
viously normalized to have unit sample variance.) Unfortunately this tended to deliver
data-dependent bandwidths that are far too large. There was a tendency for the cross-
validation objective function to first decrease rapidly as a increases, then remain quite flat
over a wide range before increasing. Thus we proceeded in a semi-automatic way, choosing
two relatively small a that lie in the flat region of the cross-validation objective function,
these bandwidths varying across the partly LS and IV estimates and across the same two
kernels, ky and k4, as used in the previous section. SEs were computed using \Tl, ﬁz and
Qg as described in Sections 5 and 6, the latter being implemented in the same way as ig,
and for m = 2, 4, 6; we justify these smallish values by the fact that the data locations
locations of the Indian districts data fit within a 25 17 rectangle, where the units are lati-
tude and longitude. The results are presented in Tables 6-9, for respectively irrigated land
(IL), fertilizer use (FU), log(yield 15 crops) (L15), and log(rice yield) (LR) as dependent
variable, with point estimates in bold-face and SEs reported in parentheses beneath them

(non-robust ones above the three robust ones).

Tables 6-9 about here

Considering first the parametric LS and IV estimates, sometimes marked differences
between them are seen and neither estimate is statistically significant. In Tables 6, 7 and
8 none of the IV estimates on NL and NL2 is significant, but all the LS is significant, and
in Table 9 NL is significant. This outcome also reflects the larger SEs for IV, which were
anticipated. The signs of both LS and IV estimates of coefficients of NL and NL2 are mostly
consistent with the inverted U-shape seen in Figures 1-4. Also in accordance with Banerjee
and Iyer (2005), DBC was nearly always found to have a significantly negative effect; the
exceptions were for the larger m, SEs tending to increase with m, a fairly general feature,
though in most cases the variation did not affect the question of significance. Nor did the
non-robust SEs often differ much from the robust ones. Turning to the semiparametric
estimates, both the LS and IV versions of B tend to be in the same ball-park as LS (but not
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V) E, at least where NL, NL2 and DBC are concerned, though in Table 8, where LS and
IV are relatively close, there is a larger discrepancy for NL and NL2 with semiparametric
IV exceeding in absolute value all the other estimates in case of NL and NL2. Again, using
instruments tends to increase SE. There is some sensitivity to choice of bandwidth a and
kernel k, though seldom enough to affect significance, keeping m fixed. With respect to
kernel choice, k4 does not necessarily produce larger SEs than ks, perhaps because of our
simultaneous variation in bandwidth a. On the whole it could be said that Banerjee and
Iyer’s (2005) fully linear specifications are not contradicted by our results, except of course,
and importantly, where our extra regressor NL is concerned, and the results here do strongly

confirm the pattern found in our nonparametric regression fits.

3.7 Final Comments

We have developed asymptotic properties useful in statistical inference on regression coeffi-
cients in parametric and semiparametric partly linear models, in the context of a potentially
wide range of spatial or spatio-temporal data. Consistent estimation of limiting covariance
matrices is required, and we have also discussed this topic both when the disturbances are
uncorrelated, and when they are spatially correlated. Finite-sample performance has been
investigated in a simulation study, and the methods applied to an Indian regional data-set.

A number of related issues and extensions can be pursued.

1. As mentioned in the Introduction, mixing conditions represent an alternative class
of dependence conditions, to replace our linear process assumption on disturbances
and density-based assumptions on regressors. A recent econometric reference is Jen-
ish and Prucha (2008), who develop the (regular lattice) mixing condition theory of
Bolthausen (1982), establishing asymptotic normality (and laws of large numbers) for
the sample mean of a scalar process observed on a possibly irregular lattice whose
exogenous locations are separated by distances that are bounded away from zero.
Analogous conditions can undoubtedly be developed for our more complicated statis-
tics, dependent on multivariate data (with probably faster convergence of mixing rates
required), and this kind of approach would enable a relaxation of our assumption of
independence between regressors and observables. On the other hand, our conditions
are potentially applicable beyond their irregular lattice context (in particular when
observation locations are not known even approximately), and further discussion of
the advantages and disadvantages of mixing conditions relative to ours can be found
in Robinson (2011). Another kind of condition that has been employed in the spatial
lattice context is based on "FKG inequalities" (see Newman, 1980), but it appears to

be very restrictive.

2. As also mentioned in the Introduction, more efficient estimates than ours may be
available. For example, by comparison with our simple IV estimate, when the number
of available estimates exceeds the number of regressors a two-stage least squares (2SLS)

estimate will be more efficient given disturbances that are both uncorrelated and
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homoscedastic. However, when either or both of these conditions are not met, 2SLS is
not guaranteed to beat even a simple IV estimate. This drawback can be overcome by
suitable GLS or generalized method-of-moment estimates, entailing either a parametric
or nonparametric modelling of disturbance correlation or heteroscedasticity, but this

would require further structure.

3. In the partly linear model (3.5), there may also be interest in estimating the nonpara-

metric function 6(z). A simple estimate is

0(z) = Z (Y —B/Xli) K (Z_hZ’) /ZK <Z_hzi) .

i=1

Under related conditions to ours, 8(z) is likely to share the (simple, normally distrib-
uted) asymptotic properties of the infeasible estimate for which Y; — 8’ X1; is replaced

4. We have focussed on relatively simple models in this paper, but undoubtedly analo-
gous conditions to ours can be employed in establishing, in a similarly general spatial
context, asymptotic properties of estimates in more general parametric models (such
as nonlinear regression and simultaneous equation models) and semiparametric models
(such as those described in Robinson, 1988, Section 7).

Appendix 3.1: Proofs of Theorems A and B

Proof of Theorem A The proof modifies one in Robinson and Hidalgo (1997). Defin-
ing r, =r =n"Y23" | Xo,U;, by Assumption A2 it suffices to show that 7 —4 N (0,9Q).

Now

o0
T:nil/z E Wyek,
k=1

where Wi, = Wiy = Z?Zl Xoibir. By Lemma Al, there is a sequence {N = N, }, increasing

in n without bound, such that r —r(x) = o, (1), where
N
T(N) = n_1/2 Z Wier.
k=1
Let D=D, =n"! Zivd W W/.. From the proof of Lemma Al,
i 5 (s 3 7)o
n— oo b N1

so from Assumption A4, D —, ¥. For any A € RP such that ||A|| =1, let ey = ND—2p(N)
and wr = W, = n~Y2ND"2W,. Then cy = Zszl wgeg, where by Assumption A4
{wgek, 1 <k < N} is a martingale difference sequence for each N > 1. It suffices to show
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that conditional on {Xo;}, 211:[:1 wer 5 N (0,1), which follows from Theorem 2 of Scott
(1973) if, conditional on {X5;}, as n — oo,

N
E (Z wier| g5, j < k> —p 1, (3.9)

k=1
and for all n > 0,

N

E{ZwiE(sil (lwrek| >77)|{X2i})} — 0. (3.10)
k=1

The left side of (3.9) is N'D~# (% SN WkW,;) D=3A =1, s0 (3.9) holds. The left side of

(3.10) is bounded by

N
E{Zwﬁl@ (71 |ek| > 77/(5)} +P <1E}§L<XN|wk > 5)

k=1

< 2 .
< 1§S££NE (eillex| > n/6) + P <1g}€aéxN |wg| > 6) , (3.11)

for § > 0. By Assumption A3, the first term on the right can be made arbitrarily small by

choosing § small enough, so it suffices to show that maxi<r<n |wi| = 0, (1). By Assump-
tions A2, A3 and A4,

max

1
max_|wg| < n /2 HD75
1<k<N

1<k<N

=0,(1).

Z Xoibix
i—1

Proof of Theorem B The proof modifies ones of Robinson (1988), Fan and Li (1999).
We have

B_ ﬁ = S;(ngl (SX29 + SXzU)v

where Sx,¢ involves the array {0; = 0(Z;)}. We show that Sx,x, —, ¥, v/nSx,0 —p 0,
VnSx,u —a N(0,Q). With likewise &,;, = &, (Z;), t = 1,2, we have

Sx,x, = Seye, + Se,vi + Svae, +Svvis Sxa0 = Se,0 + Svee, Sx,u = Se,u + Swu-

Applying the Cauchy inequality, i.e. E|Sap| < (E ||SAA||IE}||SBBH)1/2

, and the proposi-
tions of the following appendix, the proof is completed by noting that Se, ¢, —, 0 (Proposi-
tions B2 and B3), S¢,v; —, 0 (Proposition B4), Sy,¢, —p 0 (Proposition B5), Sy,y, —, ¥
(Proposition B6), v/nSe,9 —, 0 (Propositions Bl and B2), \/nSy,¢ —, 0 (Proposition B7),

VnSe,u —p 0 (Proposition B8) and \/nSy,ur —a N(0,3) (Proposition B9).

Appendix 3.2: Propositions for proofs of Theorems A
and B
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In this and the following appendix, it is frequently the case that a particular result
requires an order bound for several quantities, but because these are often similarly handled
details are not given for all, in order to conserve on space.

Define, for 1 <1i < n,

fz:fz( z naq ZKL]a
J#i

and for a triangular array {4;}, 4; = (naq)_1 Z;;l A;K;j, so that AY = A, f; — A; in the
definition of Syp.

Proposition B1 As n — oo,

E (Spp) =0 (n_1/2) .

Proof. We have

E (Spe) = @ SN N E{(6:—6;) (0 — 0x) Kij K}

i=1 j#i ki

— @ ZE{G—Q } ZE{G—H —0k) Kij Ky}

N

The result follows from Lemmas B1, B2 in the following appendix, and Assumption B13. =

Proposition B2 As n — oo,

B[See, || =0 (n772).

Proof. Similar to that of Proposition B1. =

Proposition B3 Asn — oo,
E [|Se,e, || = o(1)

Proof. Similar to that of Proposition B1, except that the result is weaker because milder

conditions are imposed on §; than on {; or 6. m

Proposition B4 Asn — oo,

Se,vi = 0.
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Proof. The left side is
~ — PU— —
n! Z {f;LVfoL + &V (f7 - fz) - ifSiVu} : (3.12)
i=1

By Proposition B2, Lemmas B4 and B5, and the Cauchy inequality, the contributions from
the last two summands in (3.12) are 0,(1). Due to Assumptions B5, B7 and B10 for ¢ = 1,2,

1 - 2 -2
E|— Vii i | <
(A7) < e

Proposition B2, (3.13) and the Cauchy inequality imply that the contribution from the first

0

sup 7 (2)° / o (22| F(2)dz=0(1).  (3.13)

z€RY

summand in (3.12) is also 0,(1). =

Proposition B5 As n — oo,
S&VQ —p 0.

Proof. Similar to that of Proposition B4. =

Proposition B6 As n — oo,

Svovy —p V.

Proof. The left side is

i=1

Fort=1,2,

*1Z||vn|| f?—nlznmn{ v (-7)+ (-7)h )

Lemma B4, (3.13) and the Cauchy inequality imply that the left side of (3.15) is O, (1).
Hence with Lemma B5 and the Cauchy inequality, the contributions from the last three

summands in (3.14) are 0,(1). The contribution from the first summand in (3.14) is
e =2 o= (s = ;o =)\2
w3 VeV, {fz- +2F, (fi=7.) + (i = T0) }
i=1

The proof is completed by applying Assumption B5, Lemma B4, (3.13) and the Cauchy

inequality. m

Proposition B7 As n — oo,
Svy0 = 0p (nil/Z) :
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Proof. The left side is
fz{vme Fit Vi (fi=T:) = Vit } (3.16)

By Proposition B1, Lemmas B4 and B5, and the Cauchy inequality, the contribution from
the last two summands are o, (n‘l/ 2). The squared norm of the contribution from the first

summand has expectation
—227” (02 (Z:, Z,) 0:2F ) —QZ%] (03 (Zi, 2;) 0;05T:F5) - (3.17)

The first term in (3.17) is bounded by

) n2 i:E (0'2 (Zi, Zz) szff) =0 (n_l) s

i=1

max 7(2
1<i<n|

by repeating the proof of Proposition B1. The second term in (3.17) is

1 - _
g Z %(]2‘)0'2 (Zi, Zj) (0 — 0x) (0 — 01) K Kju.f, f
igk,l
+ Z { ) (05 = 0) Kin K + (0 — 0x) (0 — 0;) Kir Kji + (0 — 0;) (05 — Ox) Kinjk}
1,5,k
<FF02 (2. Z;) ] L 2752)15 {02(2:.2) 0~ 0, K277} (3.18)

Lemma B6 and Assumption B13 imply that the contribution from the first term in square
brackets is

o (n_1a2 4o 1/2g2min(A+1w) 4 n—l/Qa(—Zq> -0 (n_l) .

The remaining contributions to (3.18) can likewise be shown to be o (n™!). =

Proposition B8 As n — oo,
Se,u = 0p (”71/2) :

Proof. Similar to that of Proposition B7. m

Proposition B9 As n — oo,
Tll/ZSVQU —d N (0, Q) .

Proof. The left side is

i=1
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By Lemma B5, the contribution from the last summand is o, (1). The contribution from
the third summand in (3.19) is

n

n~1/2 Z {VinJi +V;U; (fz - ﬁ)} =0y (1),

i=1

by Lemmas B4, B5 and B8 and the Cauchy inequality, and that from the second summand
in (3.19) can similarly be shown to be o, (1). The contribution from the first summand in
(3.19) is

o 1) Y
i=1

The proof is completed by applying Lemmas B4 and B10, and proceeding as in the proof of
Lemma A1l and Theorem A. =

Appendix 3.3 : Technical Lemmas for proofs of Theo-

rems A and B

Lemma A1 There exists an increasing sequence N = N,, such that N — oo as n — o0
and

lim E Hrn — r(N)H2 =0.

n—o0

Proof. By independence of the ey,

1 (o]
I[-I.||7"77"(1\/)||2 I Z IE”VVk”Z
k=N+1
1 o0 n n
= - DD B (X4, Xo;) bikbjn

k=N+1i=1 j=1

o n 2
1
2: 2 Z 12
<n1r£?<xnk ~ bik) {n (E”X?‘H 1)} ’

IN

i=1

The result follows from Assumptions Al, A2 and Lemma C1. =

We repeatedly use the following consequences of Definition 1:

sulé)q |K (u)] +/Hu|| |K(u)|du+/Hu”2 K2 (u)du < oo
ue

sup |K(u)] = O (ac) for all 6 > 0.
lull>6/a

We also introduce the abbreviations

a

(b(Zl’Z?) = 9(21) - 9(22), K(Zl’ZQ) =K (z2 - Zl) .
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Lemma Bl Asn — oo,

n°E Z (0; — 9j)2 Kfj = 0(a®?n"%/%) 4 0 (n~ta®t? + n_la%) .

.3

Proof. The left side is

1 n
3 / ¢(21,29)° K (2’1,2’2)2 Zfij (21, 22) dz1dzo

(2]

IN

1 n
¢(21,22)2K (21722)2 —_— Fj:i (ZQ;Zl)d,ZleQ
n2

+/¢)(21,22)2K (2172:2)2?(21)?(22) ledZQ} . (320)

Let

p(z,au) = ¢ (2,2 + au)’ K2 (u n2ZFJ’ z 4 au; z).
i

The first integral in braces in (3.20) is

aq/ / p(z,au) dudz = a? // p(z,au)dudz+// p(z,au)dudz| ,
Re JRRY Ra J Jq(e) Ra J Ja(e)

where
Ji(e) ={u:flaul| <e}, J2(e) ={u:|[laul = €}.

Let
B={z:f(z) >0}, m(z1,22) = Z| (225 21)]

Note that B¢ x R?, where B is the complement of B, is a null set with respect to the

probability measure of Z;, Z; for all ¢ # j. Then by Assumptions B6 and B9,

/ / (z,au)| dudz
Ra Jl

/ ) 6 (2,2 +au)’ K2 (u)m(z, 2+ au) f(2)dudz

a® [ sup  sup m(z1,22) /G2 dz/HuH K2 (u
21€B 20N (21)

= o0 (azn_1/2> .

IN

IN
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Now

/ / (z,au)| dudz
Ra JQ(E

sup KQ( ) ¢ 21,2’2 Z{fzg 31722)+fz (Zl)fj (22)}d21d22

n2a,q llau|[>e R2q ig
= 0 (a2<_q) ,
because the double integral is
n=? Z{ (6; — 0,)% + (67) +E (63) — 28 (91-)]3(@)} —0(1), (3.21)

by Assumption B9. Hence the first integral in braces in (3.20) is o (a?+?n=1/2) + O(a*).

The second integral in braces in (3.20) is

aq/¢>(z,z+au)2K2 W) T (2) F (= + au) dodu = a? </R /Jl(e)+/Rq []2(6)>. (3.22)

The first integral on the right in (3.22) is bounded by

@ (s ) [ 1 K @au [ &2 )7 ()= = 0(a2).

and the second integral is bounded by

" 2
a”? sup K?(u ZE (67) +2<7112E(91)> =0 (a®79).
i=1

llau||>e

Hence the second integral in (3.20) is O (a?%? + a*) . =

Lemma B2 Asn — oo,
n 3R Z (0, — 97) (91 — Hk) Kinik =0 (n_1/2a2q+2) + O <a< + a2{q+min(y,)\+1)}> .

.5,k

Proof. With the abbreviation s (21, 22, 23) = ¢(21, 22)P(21, 23) K (21, 22) K (21, 23) , the left
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side is
1 n 3
EZ/S(ZIaZ%ZS)fijk (21,22, 23) 1L dz;
1,5,k

1 < 3
= /8(21722,2’3) 3 Zij:i(Z%ZS;Zl)igldzi
ik

I — 3
+ [ s(z1,22,23) =5 >  fi(21) Frej (225 23) L dz;
7’7/3 =1

NN
+/8(zl,22,23) % > {fi(21) £ (z2) £ (23) _7(21)7(22)7(23)}51@"
7,k
SO [ a2 T ) F ) F (o) [ (3.23)

With the further abbreviation p (z,u,v,a) = ¢ (2,2 + au) ¢ (z,z + av) K (u) K (v), the first
integral in (3.23) is

a4

n
p(2,u,v,a) Z Fjki (z + au; z + av; 2) dzdudv
1,5,k

SRV A B ey B B A |
Ra Jl(E) Ra JQ(E) Ra J3(€) Ra J4(€)

n3

where

J1 (E)
J3 (E)

{u,v:flau| <&, flav| <&}, J2(e) ={u,v: faul| <e, [lav]| > e},

{u,v: flau| e, Javl| <}, Ja(e) = {wv: au]] > ¢, [lav] > e}

Let B = {z1 cf(z1) > 0} and m (21, 22,23) = n_?’f(zl)*l Z?Jk | Fjk:i(22, 235 21)|. Then by
Assumption B6 the first integral is bounded by

a2/ sup m(z1,227Z3)G2(z1)/ K (u) K ()] [ul] o]l F (21) dudvdzn
B z2,23€N (21) Ji(e)

< a2<sup supwmmzms)) [ @i ( | ||u|||K<u>du)2

21€B z,23€N
= o0 (a2n71/2) .

By similar reasoning to that in (3.21) in the proof of Lemma B1,

).
Ra JQ(E)

< a7 sup K (v)]sup |K (u)

llav]|>e

/ |6(21,22)8(215 23)| Y {fign (21, 22, 28) + fi (21) fik (22, 23)} iljldzz'

i,5,k

= O(ac).
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The same result holds for ‘azq Joa [, (e

).
Ra J J4(e)

1k Finally

< | SllHP K (u /|¢ 21, 22) (21, 23) |Z{ft]k (21,22, 23) + fi (21) fik (22, 23)} Hdzz
aul|>e
(O
= O(aQC).

The first integral in (3.23) is thus o (a?**2n~1/2) + O(a®) . The second integral in (3.23) is

n—3a2q/ Z,U,V,Q Zf’ Fk] z 4 av; z + au) dudvdz
4,5,k

o S S B e
Ra J Jy(e) Ra J J3(e) Ra J J3(e) Ra J Jy(e)

1 n
EZU@‘(Zl)Fk:j (235 22)| < f (21 Z\FJZ 233 22)|

.3,k

Now

Then proceeding as above, the second integral of (3.23) is o(n~'/2a27+2) + O(a‘). Because

D Az 15 (22) fu (28) = F(21) T (22) (23)}
igok

(o) e ) = S TS o) o) )

.5,k

+ 3 fi(2) £ () {fi (28) + f5 (28)}]

(2]

proceeding as in the last part of the proof of Lemma B1, using Assumption B7, the third
integral of (3.23) is O ("' + n~'a%) . Finally by Assumptions B7, B9 and B12, Lemma
5 of Robinson (1988) implies that the last integral of (3.23) is O (a?{e+min(A+1)}) - u

Lemma B3 Asn — oo,
(i)
n73 zn: E {0’2 (Zl, Zz) (sz — aqﬁ) (sz — aqfi)} =0 (n71/2a2q) + 0 (aC + (L2(q+>\)> N
ij,k
(1)
n=? ZE {02 (Zi, Z;) (Kij — aq?i)2} =0 (a?).

,J

128



Proof. Denoting

g (21522, 23) = 02 (21,21) {K (21,22) — aqf(zl)} {K (21, 23) — aqf(zl)}a

the left side of (i) can be written

1 < 3
EZ/Q(ZUZ%%)J%M (21,22, 23) 1 d2i

N
= 52 9z [fin Grza) - F (o) F (20) T ()]
i,9,k
_,_(71_17)1*_2)/g(z1;22723)?(21)?(@)?(23)ililldzi. (3.24)

Writing L (21; 22, 23) = 02 (21,21) K (21, 22) K (21, 23) , the first integral in (3.24) is

%/L (215 22, 23) Z {fiji (21,22, 23) — [ (21) F (22) [ (23)} ilifldzi
ik
—aq% /02 (21,21) K (21, 23) f (1) Z {fir (z1,23) — f (21) [ (23) } dz1dzs
igok
_aq% /02 (z1,20) K (21,2) F (1) S {fig (21, 22) — F (1) F (22) } dzadzs.(3.25)
ik

The first term is

1 n
-3 | L(21322,23) > |:ij:¢ (22,233 21) + fi (21) Fij (235 22)
.5,k

HU ) fy ) ) = T (0T ()7 G} | T

which, as in Lemma B2, is o (n71/2a2%) 4+ O(a¢) . The last two terms in (3.25) are bounded

in absolute value by

2a4

n2

/02 (21,21)?(2’1)|K(Zl,22)|Z|fij (2’1,2’2)*?(2’1)?(22)|d21d22 )

which, by Assumption B6, can be shown to be o (n_1/2a2q) +0 (a<+q) . Finally by Lemma
4 of Robinson (1988) and Assumption B4, the second integral in (3.24) is O (a?(@*V))
The left side of (ii) is bounded by

n_2/|g(21522722)|Z|Fj:i (22;21)|d21d22+/|g(21;22722)|?(Z1)?(Z2)dZ1dZ2~
,J

To estimate the first integral complete the square and proceed as in Lemma B1. The second
integral is dominated by a?sup, f(z) [ o2 (z,2) K% (u) f (2) dudz = O (a?). m
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Lemma B4 Asn — oo

Nl

n! zn: (Uz? + [Vall® + ||V2¢||2) (f 771-)2 = o, (n* ) ,
=1

Proof. By Assumption B4, the expectation of the last contribution to (3.26)

{ Z% 03 (2:,2) (fi—fi)2}

max
lgign

(3.26)

IA

ZE o9 (Zi, Zs) nizn:
j#i

3 ‘%\

2

—2
n3ZE |02 ZZ,Z ZM'LJ +|U2 (ZZ?ZZ)‘fz
i=1 VED)
where Mij = Kij -

alf.. By Assumption B7 the contribution from the second term in
brackets is O (n*2

) . That from the first term is
C

n3a2¢

C
ZE{@ (Zi, Zi)] My Mi} + — ZqZE{m Ziy Zi)| M%)
N

Lemma B3 and Assumption B13 imply that

E{i;‘éHQ (/. —f,»)z}
= o0 (nil/z) + O (acﬂq + a2 4 nila*q> =o0 (n*1/2> .

The remainder of the proof is very similar. m

Lemma B5 Asn — oo

E (iizﬁ) =o(n7?), B (ii”v“‘f) =o(1)

Proof. The last expectation is

B (; Zl Hmy"’) —o(n17).

1 n n n
n3a21 Z Z Z Vai VoK Ko - n3a2q Z ’y( )E
i=1 j#i k#¢ 4,5,k

Zj, Zy) Kij Kir)

(2)
tBa2 Z%‘j E (02 (Z;,Z;) K;) - (3.27)
3
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Denoting [ (21; 22, 23) = 02 (22, 23) K (21, 22) K (21, 23) , the first term on the right is

1 L 3
8.2 /1(21;22,23) st;k)ijn' (22723;21)£le2‘
75
1

5 2q/ 213 %2, 23 Z’Y fi(=1 Fk:](23722)Hdzz
i,k

+ Qq/l 21322, 23 Z%k {fi (21) f; (22) fi (23) — ?(21)?(@)?(23)}}21161%

1,5,k

n3a2q Zm /l (213 22, 23) lil {F (zi) dzi} . (3.28)

4,7,k

The last term in (3.28) is bounded in absolute value by

1 3
g% ‘/ﬁ)‘ / |02 (22, 23) — 02 (21, 21)[ | K (21, 22) K (21, 23)| 1L {f (zi) dzi}
1,5,k
- 3 _
e Z ygi)’/m (21, 20) K (21,2) K (21, 20)| 1L {7 (2) dz:} (3.29)

1,5,k

Applying the last part of the proof of Lemma B1, Assumptions B7 and B10 imply that the
integral of the first term in (3.29) is O (azq+1 + aC) . Hence by Assumptions B5 and B13,
the first term of (3.29) is o (n"1/2) . The second term in (3.29) is bounded by

n3 Z "ij ‘/|K oz (z,2)| f(2) f (2 + au) f (2 + av) dudvdz

4,4,k
< nz;‘vﬁ)\ (:gﬂgf ) (/K |du) /\02 (z,z)ﬁ(z)dz:o(n’lp)

by Assumptions B5 and B7. For other terms in (3.28), apply the proof of Lemma B2.
Altogether it is found that the first term of (3.27) is o(n=1/2) + O(a$~29).
The second term of (3.27) is bounded by

1 n
) n3a2d ZE |02 (25, 2;) K3
5]

C n
= > {Blo2(Z;,2)) — 02(Zi, Zi)| K}y + Bloa (Zi, Zi) K|} (3.30)
2]

max

V.
1<i<n w

IN

Applying the proof of Lemma B1, (3.30) is O (n‘3/2 - ) + 0 ( o= + n‘1a2<_2‘1) . This

proves the last result. The others can be shown similarly. ®
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Lemma B6 Asn — oo,

1 n o

n3 S VB {02 (Zi, Z)) (0: — 04) (0, — 0) Kin K i, F ;)
i,7,k,l

0(a2+2q + n1/2a§ + n1/2a2{q+min()\+1,u)}).

Proof. Writing u (21, 22, 23, 24) = 02 (21, 22) ¢(21, 23)P(22, 24) K (21, 23) K (22, 24) , the left

side is

_ — i 4
n_3/U(21a22,23724)f(Z1)f(22) > ’YE?)Fij:k:l (21, 225 235 24) 11 dz;

.3,k

+n_3/u(21722733’24)7(21)f(32) ST AP i (21, 22) { i (23) fi (2a) —?(33)?(24)}511612@'

04,k
+ii ) u (21, 22, 23, 24) fij (21, 22) lélf(z)dz (3.31)
n3“k17” 1,22, 23, 24) Jij (1, 22) 1L i i .
i,k

As in Lemma B2, the first integral is o (a2+2‘1) + o(nl/zac). Similarly, the second term in
(3.31) can be shown to be of no greater order. The integral of the last term of (3.31) is

bounded in absolute value by

{Supfij (217 22)} /
21,22 R24q

A P(22, 22) K (22, 24) f (24) dza

_ O(a2{q+min(>\+1,y)})

A ¢(21, 23) K (21, 23) f (23) dzs

09 (21,22) [ (21) [ (22) dz1dzs

by Lemma 4 of Robinson (1988), Assumptions B7 and the Cauchy inequality. Thus the last
term in (3.31) is o(n'/2a2latminA+1LI}H) hy Assumption B5. m

Lemma B7 For distinct i, j,k and [, uniformly in 1 <i,5, k1 <n, n>1,
E{|os (Zk, Z0) KK jifif ;| + |02 (Zi, Zi) KinK i FiF 5| + o2 (Zn, Zi) KinEKjiof i f |

+ |oa (Zj, Z1) Kij K fif 5| + ‘02 (Zj, Zi) KiyKa }
= 0 (aQq) ,

and
- 2
IE3{|02 (Zi, Z;) K} fif 5] + ‘02 (Z;, Z;) K3 i

} =0,

Proof. Writing

Lijkl (21, 223 23, 24) = K (21, 23) K (22, 24) f (21) f (22) fijur (21, 22, 23, 24)
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E|oy (Z, Z1) KiKjifif ]

4
= /\02 (23, 24) lijiwt (21722;23724)\};[16521'

IN

4
/{|02 (23,24) — 02 (21, 22)| + |02 (21, 22)| } |lijiwt (21, 22, 23, 24)| il;lldzi- (3.32)

The second term in (3.32) is bounded by

2
a9 sup fijrl (21,22723,24)/|02 (z1,22)| f (21) f (22) dz1d2o (/ |K(U)|du> .
By Assumption B7, it is uniformly O (aQq) . Writing
p(z1,22,u,v,a) = |og (21 + au, z9 + av) — 02 (21, 22)| | K (u) K (v)],

the first term in (3.32) is

a?? /p (21, 22,u,v,a) f (21) f (22) fijki (21, 22, 21 + au, 22 + av) dzdzadudv

<//Jl<a/2)+//Jg<s/2)+//J3(5/2)+//J4(5/2)>’ (3.33)

where J; (€), i = 1,...,4 are defined as in the proof of Lemma B2. By Assumptions B7 and
B10, the first integral is uniformly O (a) . Since

[] = sw (K@swlk (]a {swF ()7 Blo (2. 2)
J2(e/2) u

llavl>e/2

+sup fi; (21,22)/|02 (21722)|f(Zl)f(Zz)d21d22}7

Assumption B7 and B10 imply that | sz(s) is uniformly O (n!/2a5=29) . Similarly for the

other terms in (3.33). The remaining terms of the lemma can be dealt with similarly. m

Lemma B8 Asn — oo,
En I F. = / E ¥ /2
i=1 Valifi = ( 1 2> Valifi = ( 1 2)

Proof. The expectation of the squared norm of the first sum is

2
1 & - 1 —2
i VKT | < 8 3233V VKK
,j i=1 j#i k#i
U _
n2a2q ZZZ’YEJ )'Ykz)E (02 (Zk, Z1) KK f i f ;) - (3.34)

6, k#i l#£]
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The first term in (3.34) is bounded in absolute value by

Z]v VB lo2 (2, 20) Ky KT

(3.35)

By Lemma B7 the double sum in (3.35) is O (nzaq) and, with Assumption B5, the the triple
sum in (3.35) is o (n5/2a2’1). Hence the first term in (3.34) is O (a=%) + o(n'/?) = o(n). The

second term in (3.34) is bounded in absolute value by

—— < ma
n2a24 | 1<j<n

C n
X ’y;?)’ZE‘ag (Z;,Z fz
,J

U
’YEJ )’Y]gl ’E|U2 ZkaZl) lk’K_]lf fj|

1 n
n2a24 Z
ikl
s

.4,k

+3

1,5,k

%JU)VEk ‘ E|o2 (Zi, Zi) KiKis [ f |

71] 71J)‘E‘02 Z“Z ZQJ?Z?7|

%JU)’Y;(CZL‘E’@ Ziy Zi) Kt Kji f i f ’+Z

+> ‘ng)vﬁ)‘ Elos (Z), Zk) KijKji.f i f 5]
N

By Lemma B7 and Assumption B5, the second term in (3.34) is o (n + n'/2 + n=1/2¢79) =
o(n). This proves the first result. The other can be shown similarly. m

Lemma B9 Asn — oo,

Ezwif%j” (Zi, Z) (Kix — a°F,) (K — a'F ;) T, 7,

1,5,k,l
- & (a2q Lnl2g8 1 n1/2a2<x+q>) ,

Proof. Writing v(z1;20) = K(21,22) — a?f (1) and

w (21, 225 235 24) = 0”7 Z ’Yg)vf] {fijnt (21, 22, 23, 24) = fij (21, 22) f (23) F (z4) }

4,9,k,1

the left side is
—_ _ 4
/ 02 (21, 72) v(z1: 202 2)T (20) T (22) 0 (2, 205250 24) Tl

Z WE?)%] / 2 (21, 22) v(21; 23)v(22; 24) fij (,zl,zg)ilil1 {f () dz} . (3.36)

i,9,k,l
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The first term in (3.36) is

/02 (21, 22) K (21, 23)v(22; 24)w (21722;23;24)?(21)?(22)1,13(1%
—qf / o2 (21, 22) K (22, z4)w (21, 22; 23; 24)f2 (z1) f (22) ililldzi, (3.37)

because

/R2 {fijui (21,22, 23, 24) — [fij (21, 22) f (23) [ (24) } dzgdzg = 0.

A leading term in (3.37) is

/02 (21,22) K (21, 23) K (22, 24) f (21) f (22 Z VDY it (21, 225 233 22)
i,5,k,l
o S DD fy (a1, ) (i 20) i (2a) = () T )} | T (3.39)
i,5,k,l

Similar to the proof of Lemma B2, the integral of the first sum in (3.38) can be shown to
be o (azq + nl/zac) . Proceeding as in the proofs of Lemmas B6 and B3, remaining terms
can be dealt with such that the first term in (3.36) is o (a®? + n'/?a¢) . Proceeding as in the
proof of Lemma B6, the second term in (3.36) is o (nl/QaQ(/\"’q)) by Assumptions B5 and
B7 and Lemma 4 of Robinson (1988). m

Lemma B10 Asn — oo,

Proof. The left side is
_\2_4
EZ’}/“ ry“ Z17Z)(fl fl) f’L

+EZ’72J2)7$J (Zi, Z;) (fz fz) (f] _?J) fi j (3.39)

The first term in (3.39) is bounded by

Ez’z) max ’Y( ! sup Iz ZE = o(n'/?)

max
7 1<i< zE€R4

1<i<n

02 (2,2) (Fi~T.)
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by the proof of Lemma B4 and Assumptions B1, B5 and B7. The second term in (3.39) is

n2a2q ZZZ’W] 'yzg Z’L7Z) Zk)Mjl? 7j

1,5 k#l I#£7

n2aq ZZ%J %J Z“Z) jl??fj

4,5 l#]
n n L,
n2aq ZZ’YU 72] Z“Z) ikfifj
4,j k#i
2) (U) —2—2
t3 EZVZ)%J (Zi, Zj) fi f- (3.40)

By Assumptions B5 and B7, the last term in (3.40) is o (nil/z) . The absolute value of the
second term in (3.40) is bounded by

- ZZ

2 —2—=2
VDV {Blos (2:, 2) KaTiT | + 0B |02 (20 Z) T} (34D)

By Assumptions B7 and B10, the last expectation is uniformly bounded, whereas the first
is bounded by

a?sup fiji (21,22, 23) sup f (2) / loa (21, 29)| f (21) f (22) | K ()| dudzidza

which, by Assumption B7, is uniformly O (a?). Thus by Assumption B5, (3.41) is o(n'/?).
The same conclusion can be drawn for the third term in (3.40). The first term in (3.40) is

), (V) -
nzaqu Z ’71‘7 ,Y'L] ZZ7Z) Z,y” ’7” Zl7Z) f f]
1,5,k,1
(2 U) rird
nzagq Z VP 02 (Zis Z3) (Mg Myi + M My + My Mjy) T, 5.

1,5,k

Lemma B9 and Assumption B13 imply that the first term is o (n). Other terms can likewise
be shown to be o(n). =

Lemma C1 Foralll1 <i<n, n>1, let cijn >0 forall j > 1 and Zjoil cijn < C . Then

for any K < oo, there exists a sequence {N,} increasing in n without bound such that

o0
n® max E cijn — 0 as n — oo.
1<i<n
Jj=Npn+1

Proof. Fix n > 1 and 1 < i < n. There exists M,,, such that Z;’;mﬂ
m > M;y,. Let M,, = maxi<;<p Min. Then for each n > 1, maxi<i<n, Z;’;mﬂ

for all m > M,,. Put N,, = max (N,,_1, M, )+ 1. Then n' maxi<i<n Z;.;NWH Cijn < n-1—

Cijn < n~K=1 for all
—K-1

Cijn <N

Dasn—o00. W
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Appendix 4: Proof of Theorem C

Each element of

E (Zn —ig) = Z Sy (u) {1 —w(u,m)}

u€lL*

is bounded in absolute value by that of

Z Gy {l—w(u,m)}.

uel*

Then proceed as Robinson (2007) and conclude that

E (zn - i?,) o) <kq;m;q y |uk|un> .

ueZ”

The variance of the (¢, s)-th element of Y5 is, by Assumption C4,

n n n

1 n
2 Z Z Z ZE (iU Up) B (2520 U;U) w (s; — s5,m) w (s — s;,m)
i=1j=1k=11=1

n n n n

Z Z Z ZE (xixUsUp) B (s j20,U;Uk) w (s, — sj,m) w (s, — s;,m) + O (nil) .

i=1 j=1k=11=1

1

+—
n2

The first term has modulus

n=2 Z Z w (u,m) w (v, m) Z Strsm (U, v,u1)

uell* velL* uy €L*
S n_l Z Z |U) (u,m)w(v,m)| Z ’Yul,u1+v7u

uel* vel* uy €L*
<Y Y v 3w m)|

w1 EL* vq €EL** uell*

d

< o [Ime Y Y v

k=1 uEL” vEL"

The second term can be handled similarly.
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Table 1

Linear regression (3.1): Empirical sizes of tests with size o

px =02, py =0.3 px =04, py=0.5
n m a=0.01 a=0.05 a=0.10 m a=0.01 a=005 a=0.10
C .021 .058 125 C .037 119 185
H .027 .063 .138 H .049 123 .196
2 .026 .058 125 6 .029 .088 154
100 4 .024 .052 117 8 .029 .085 152
6 .022 .050 115 10 .029 .084 152
8 .023 .052 119 12 .027 .082 153
10 .024 0.56 122 14 .027 .085 151
C .013 .052 .106 C .025 .084 159
H .017 .056 114 H .028 .095 .163
3 .016 .054 .109 6 .023 .069 130
169 6 .013 .050 104 9 .019 .067 121
9 .013 .049 115 12 .019 .066 120
12 .014 .051 118 15 .020 .067 125
15 .016 .061 120 18 .020 .070 131
Table 2
Linear regression (3.1): Empirical powers of tests with 8 = 0.8 and size «
n m a=0.01 a=0.05 a=0.10 n m a=0.01 a=005 a=0.10
C .605 827 1902 C .869 .962 .980
H .620 .838 1902 H 877 .966 .983
2 618 .838 1901 3 .879 .964 .983
4 .628 .838 .897 6 .876 .964 981
100 6 .637 .834 .900 169 9 .881 .963 .982
8 .641 .834 .897 12 .881 .969 .983
10 .641 .837 .900 15 .889 970 .982
12 .655 .841 904 18 .893 971 .982
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Table 3

Partly linear regression (3.5): Empirical sizes of tests with size a using ko

px =02, py =03

a=0.01 a=0.05 a=0.10

n  mj/a 1.0 1.2 14 1.0 1.2 14 1.0 1.2 1.4

C .012 .011 .009 .057 .048 .047 111 .094  .087

H .013 .015 .015 .056 .053 .064 109 .109  .107

2 .015 .014 .014 .0565  .050 .061 109,106 .106

100 4 .013 .016 .015 .0563 .051 .060 107,106 .105
6 .013 .016 .015 .0563  .052 .060 107,110 .102

8 .014 .016 .016 .068 .054 .063 109 .110 .108

12 .014 .015 .018 .061 .059 .067 A14 0 113 119

C .008 .004 .003 .052  .041 .030 106 .090 .081

H .009 .006 .005 .045 .040 .039 .096 .088 .087

3 .009 .006 .005 .045  .043 .040 .094 .088 .085

169 6 .010 .007 .008 .061 .043 .044 .091 .083 .083
9 .012 .011 .009 .051 .046 .044 .087 .083 .084

12 .014 .012 .011 .063 .050 .047 .093 .087 .089

15 .013 .012 .011 .057 .051 .048 103 .095  .090

px =04, py=05
a=0.01 a=0.05 a=0.10

n  m/a 1.0 1.2 14 1.0 1.2 14 1.0 1.2 1.4

C .021 .018 .016 .069 .064 .063 A27 123 117

H .017 .019 .027 .076 .071 .073 133 143 135

6 .014 .014 .024 .066 .065 .070 116,125 119

100 8 013 .014 .022 .069 .068 .072 A17 0124 120
10 014 .017 .024 .070 .067 .077 21 1260 127

12 .016 .020 .026 .076 .077 .081 124 128 128

14 018 .025 .029 .077 .084 .088 A27 0 133 134

C .011 .006 .004 .065 .049 .050 124 .098  .085

H .010 .009 .010 .056 .054 .059 104 .100 .102

6 .010 .007 .009 .0563 .053 .053 .099 .097 .099

169 9 .010 .009 .010 .056  .052 .055 .098 .095 .091
12 .010 .013 .011 .056 .052 .054 .095 .090 .091

15 .015 .016 .012 .056 .055 .053 102 .098  .095

18 .016 .018 .014 .061 .055 .055 109 .109 104
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Table 4

Partly linear regression (3.5): Empirical sizes of tests with size « using k4

px =02, py =03

a=0.01 a=0.05 a=0.10
n  mj/a 14 1.6 1.8 14 1.6 1.8 14 1.6 1.8
C .015 .011 .010 .065 .055 .051 126 .109 101
H .015 .016 .016 .066 .057 .065 JA16 0 .117 113
2 .014 .015 .015 .063 .054 .058 A14 113 112
100 4 .013 .017 .016 .063 .051 .058 A120 114 112
6 .013 .016 .016 .066 .051 .055 113 116 118
8 .013 .016 .018 .067 .058 .060 120 115 117
12 .016 .018 .019 .070 .070 .065 125 120 118
C .015 .009 .005 .060 .050 .037 119 .098  .090
H .011 .010 .007 .051 .044 .042 .097 .097 .099
3 .010 .011 .010 .050 .045 .045 .099 .091 .093
169 6 .014 .013 .010 .065 .047 .049 096 .094 .090
9 014 .014 .012 .0565  .048 .054 102 .091  .088
12 .015 .015 .012 .056 .055 .057 106 .094  .092
15 .017 .015 .012 .057 .056 .057 109 .010 .102
px =04, py=0.5.
a=0.01 a=0.05 a=0.10
n  m/a 14 1.6 1.8 14 1.6 1.8 14 1.6 1.8
C .024 .018 .020 .084 .068 .067 154 138 134
H .017 .020 .020 074  .078 .080 133 145 149
6 .017 .014 .020 .068 .073 .072 1220 133 131
100 8 .015 .013 .020 071 .074 .076 124 132 132
10 .016 .014 .023 .079 .076 .081 131 133 135
12 .020 .018 .024 .081 .078 .082 141 135 139
14 022 .022 .027 .081 .085 .091 146 .140 143
C .016 .010 .008 .074 .058 .054 133 114 .099
H 012 .014 .012 .057 .056 .062 JA11 107 111
6 .011 .012 .010 .055  .052 .056 109 .103 104
169 9 .011 .012 .011 .068 .054 .056 107 .098  .102
12 .011 .013 .015 .064 .057 .059 104 .099 .103
15 .015 .017 .017 .062 .062 .060 109 105 110
18 .016 .018 .018 .063 .065 .063 A17 0 .119 113
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Table 5
Partly linear regression (3.5): Empirical powers of tests

with 8 = 0.7 using ko, k4 at level a.

)
a=0.01 a=0.05 a=0.10
n  mj/a 1.0 12 14 1.0 12 14 1.0 1.2 1.4
C 536 .521 485 760 .744 728 830 .826 .826
H 519 527 535 743 744 744 817 .831 .842
2 515 531 534 739 750 750 817  .834 .846
100 4 511 .b34 .B3T7 741 752 751 .818 .831 .844
6 511 543 541 743 757 761 819 .831 .845
8 521 543 .556 745 757 762 823  .829 .841
12 530 .547  .559 144 754 .T67 827 .835 .844
C 810 .794 .788 2929 929 918 962 960 .958
H 775795 .801 917 923 .928 950 .957 .964
3 778 796 .804 914 .925 927 951 .956 .961
169 6 778 798 .804 916 925  .926 947 956 .963
9 777 807 810 910 920 .927 949 958  .958
12 782  .808 .816 913 922 .929 949 958 .959
15 .790 .815 .823 914 922 927 946 959  .958
k4
a=0.01 a=0.05 a=0.10
n  m/a 14 16 1.8 14 16 1.8 14 16 1.8
C 546 523 .499 753 737 730 .825 .814 .812
H 508 517 .523 723 737 738 797 813 .820
2 503 519 524 723 736 .743 797 812 821
100 4 508 519 523 721 735 740 796 .810 .821
6 501 .518 .535 724 735 743 799  .811 .821
8 508  .529  .538 723742 745 802 .812 .823
12 518  .536  .548 725 743 747 804 .817 .827
C 805 .791 .787 924 925 918 955  .956  .955
H 759 774 791 903 916 .918 943 952 955
3 759 773 793 903 919 .922 945 952 955
169 6 766 774 796 902 916 .923 944 952 953
9 760 779 798 .897 914 922 946 .949 956
12 764 .784 .805 900 913 .921 945 950 .956
15 767 792 .804 902 914 924 943 .951 .956
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Table 6: Y = Proportion of irrigated land (IR)

LS 1\ Partly LS Partly IV
k2 ks kz Kq
a=2 a=25 a=14 a=19 a=17 a=2.2 a=14 a=19
NL 72 .37 .95 .96 .85 .90 .80 .81 .76 .78

(21) (.63) (.18) (.18) (.16) (.17) (41) (.42) (.40) (.41)
m=2  (.23) (.58) (.22) (.22) (.22) (.22) (.43) (.44) (42 (.42
m=4  (.25) (.69) (.24) (.24) (.24) (.24) (.52) (.53) (.51) (.52)
m=6  (27) (73) (25 (.25) (.25) (.25) (.54) (.55) (.53) (.54)

N.2 -71 -29 -91 -92 -8 -8 -70 -69 -71 -70

(19) (61) (17) (17) (.16) (.16) (.41) (.42) (.40) (.41)
m=2  (.20) (.60) (.20) (.20) (.19) (.19) (.45) (.46) (.43) (.44)
m=4  (.23) (.74 (21) (.21) (21) (.21) (.56) (.58) (.53) (.55)
m=6  (.24) (79 (22) (22) (.21) (.21) (.58) (.60) (.54) (.57)

DBCx10°% -1.62 -1.90 -1.53 -1.40 -2.02 -1.77 -1.87 -1.80 -2.07 -1.94
(.66) (.77) (.63) (.64) (.57) (.60) (.70) (.73) (.62) (.67)
m=2 (74 (77) (72) (.73) (.70) (.70) (.68) (.70) (.68) (.68)
m=4 (.85 (.87) (.82) (.84) (.80) (.80) (.77) (.78) (77) (.77
m=6  (.83) (.82) (.80) (.83) (.75) (.75) (.72 (.74) (.70) (.71)

CDx10* .41 .38 -60 -.65 -39 -49 -69 -8 —43 .60
(57 (.72) (.51) (.50) (.54) (.52) (.55) (.55) (.58) (.56)

m=2  (.56) (.63) (.54) (.54) (.51) (.52) (.56) (.58) (.53) (.55)
m=4  (.52) (.58) (.59) (.60) (.55) (.57) (.64) (.67) (.58) (.62)
m=6  (.48) (.53) (.63) (.64) (.57) (.60) (.69) (.72) (.59) (.66)

BSD -.16 -21 -13 -13 -11 -12 -15 -17 -12 -14

(.05) (.07) (.04) (.05) (.04) (.04) (.06) (.06) (.05) (.05)
m=2  (.04) (.06) (.04) (.04) (.03) (.04) (.06) (.06) (.05) (.05)
m=4  (.05) (.09) (.04) (.04) (.04) (.04) (.07) (.08) (.06) (.07)
m=6  (.06) (.10) (.05) (.05) (.04) (.04) (.08) (.09) (.06) (.07)

RSDx10! .14 .25 -.44 -49 -23 -33 -37 -43 -20 -.31
(.48) (.57) (44) (44) (42) (.43) (.46) (.46) (.46) (.45

m=2  (.51) (.60) (.51) (.52) (.47) (.49) (.53) (.54) (.53) (.52)
m=4  (.40) (.55) (.56) (.47) (.42) (.44) (.50) (.50) (.51) (.49)
m=6  (.34) (.51) (.43) (.44) (.40) (.41) (.47) (.48) (.50) (.47)

ASDx10' .62 .54 .8 .79 .84 .8 .75 .71 .82 .78
(.35) (.38) (.35 (.35) (.33) (.34) (.36) (.37) (.34) (.35

m=2  (.35) (.36) (.38) (.38) (.38) (.38) (.37) (.38) (.37) (.37)
m=4  (.37) (.37) (41) (.42) (.39) (.40) (.39) (.40) (.38) (.39)
m=6 (.34 (.34 (.38) (.39) (.36) (.36) (.36) (.37) (.35) (.35

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top
row, and robust ones below computed using truncation vectors (m,m) where m= 2, 4
and 6 respectively; columns under Partial LS and Partial 1V refer to choices of
bandwidth a and kernel (kz, kj).
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Table 7: Y = Fertilizer use (FU)

LS

\Y

Partly LS

kz

kq

a=1.8

a=2.3

a=1.6

a=2.2

a=1.4

Partly IV

ka

a=1.9

a=1.5

Ka

a=2.0

NL

m=2
m=4
m=6

115.90
(42.28)
(36.40)
(40.00)
(42.56)

30.51
(135.11)
(118.17)
(121.92)
(123.52)

115.58
(31.37)
(32.40)
(36.84)
(38.23)

119.07
(32.69)
(33.28)
(37.94)
(39.77)

111.94
(28.48)
(32.63)
(37.17)
(37.91)

114.15
(30.80)
(32.20)
(36.55)
(37.73)

104.47
(75.57)
(74.91)
(82.85)
(84.12)

83.28
(79.25)
(74.19)
(80.17)
(80.50)

117.28
(71.92)
(78.04)
(87.87)
(90.01)

100. 84
(76.32)
(74.43)
(81.98)
(83.10)

NL2

-82.02
(39.57)
(34.80)
(36.28)
(36.53)

32.98
(130.50)
(118.89)
(127.68)
(132.60)

-87.23
(29.66)
(30.59)
(33.09)
(32.42)

-88.74
(30.95)
(31.52)
(34.27)
(34.00)

-86.64
(26.88)
(30.58)
(33.08)
(32.08)

-86.52
(29.09)
(30.37)
(32.77)
(31.94)

-65.05
(73.40)
(78.54)
(87.99)
(89.33)

—42.94
(77.75)
(78.56)
(86.88)
(87.87)

-81.10
(69.32)
(80.64)
(91.52)
(93.42)

~60.93
(74.24)
(78.22)
(87.41)
(88.65)

DBC

-.31
(.14
(.14)
(.17)
(.18)

-.43
(-16)
(.19)
(.24)
(25

—.24
(.11)
(-10)
(.12)
(.12

-.25
(.11)
(-11)
(.13)
(.14)

—21
(.10)
(.10)
(-11)
(.10)

—.24
(-11)
(.10)
(.12
(.12)

-.26
(11
(.11)
(13)
(12)

-.30
(12)
(12
(.15)
(15

-.23
(.10)
(-11)
(.11)
(.10)

-.26
(.11)
(-11)
(13
(.13)

m=2
m=4
m=6

2.84
(11.59)
(16.10)
(17.53)
(18.61)

~1.59

(15.51)
(17.12)
(17.80)
(18.68)

-3.55
(10.43)
(12.13)
(12.93)
(14.10)

-3.89
(10.11)
(12.11)
(13.35)
(14.72)

~6.59
(11.43)
(12.20)
(11.14)
(11.43)

-3.61
(10.59)
(12.18)
(12.70)
(13.74)

-8.55
(11.74)
(12.13)
(11.15)
(11.27)

-7.59

(11.32)
(12.08)
(12.32)
(13.19)

~11.61
(12.35)
(12.58)
(10.02)
(9.10)

-7.87
(11.63)
(12.17)
(11.42)
(11.65)

BSD

m=2
m=4
m=6

-9.26
(9.78)
(9.10)
(9.54)
(9.92)

-22.85
(14.30)
(15.29)
(18.45)
(20.28)

1.24
(7.80)
(8.10)
(8.22)
(8.25)

-1.09
(8.16)
(8.15)
(8.26)
(8.29)

5.64
(7.17)
(8.24)
(8.51)
(8.57)

2.22
(7.65)
(8.13)
(8.26)
(8.30)

-1.07
(9.49)
(12.25)
(13.73)
(14.01)

—6.87
(10.25)
(12.70)
(14.65)
(15.38)

3.32
(8.89)
(12.04)
(13.19)
(13.14)

-1.90
(9.61)
(12.34)
(13.88)
(14.23)

RSD

m=2
m=4
m=6

3.19
(9.76)
(12.00)
(12.68)
(13.55)

5.13
(12.18)
(12.78)
(13.76)
(15.04)

6.23
(8.07)
(10.07)
(11.53)
(12.49)

4.02
(8.24)
(9.87)

(11.24)
(12.15)

11.08
(7.86)
(11.10)
(12.67)
(13.81)

7.24

(8.00)
(10.22)
(11.72)
(12.70)

8.60
(8.95)
(11.85)
(13.85)
(15.27)

6.18
(8.92)
(10.89)
(12.72)
(14.06)

10.91
(9.09)
(13.26)
(15.39)
(16.97)

8.20
(8.91)

(11.67)
(13.66)
(15.07)

ASD

m=2
m=4
m=6

18.72
(7.23)
(8.31)
(8.55)
(8.77)

15.60

(8.03)

(9.26)
(10.30)
(10.77)

23.18
(6.29)
(6.53)
(6.51)
(6.46)

22.55
(6.50)
(7.02)
(7.14)
(7.15)

25.11
(5.97)
(5.76)
(5.50)
(5.45)

23.55
(6.21)
(6.34)
(6.25)
(6.20)

23.15
(6.23)
(6.15)
(6.16)
(6.19)

21.55
(6.60)
(6.90)
(7.26)
(7.43)

24.73
(6.02)
(5.77)
(5.46)
(5.37)

22.98
(6.29)
(6.26)
(6.32)
(6.37)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and
robust ones below computed using truncation vectors (m,m) where m = 2, 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel (k ;, ks).
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Table 8: Y = Log(yield 15 major crops) (L15)

LS v Partly LS Partly IV
ko Ka ko K
a=14 a=19 a=14 a=17 a=14 a=19 a=1l5 a=2.1
NL 171 207 165 154 174 169 229 181 261 2.15
(.35) (L.03) (.30) (.31) (.29) (.30) (.76) (.76) (.76) (.77)
m=2 (.40) (1.02) (.38 (.37) (.40) (.39) (.88) (.82 (.99 (.86)

m=4 (.44 (1.16) (.41) (.40) (.43) (.42) (.99) (.95) (1.02) (.98)
m=6  (.34) (1.19) (.40) (.39) (.40) (.40) (1.03) (1.00) (1.05) (1.03)

NL2  -1.41 -1.66 -1.38 -1.27 -147 -142 -1.96 -147 -2.28 182
(.33) (L00) (.29) (.29) (.27) (.28) (74 (.75 (.73 (.75)
m=2  (.37) (1.02) (.34 (.33) (.35 (.34) (.90) (.85) (.94) (.89)

m=4  (.38) (L17) (.35) (.35 (.36) (.36) (1.02) (1.00) (1.05) (1.02)
m=6  (.37) (L20) (.33) (.32) (.33) (.33) (L07) (1.04) (L.09) (1.07)

DBCx103 -2.65 -3.06 -2.61 -2.73 -2.42 -2.55 -2.95 -3.04 -2.84 -3.01
(1.12) (1.26) (1.04) (1.08) (1.00) (1.03) (1.12) (1.17) (1.09) (1.14)

m=2  (1.11) (L15) (1.10) (111) (1.10) (1.10) (1.10) (1.12) (L.11) (1.11)
m=4  (1.30) (1.33) (1.32) (1.35) (1.29) (1.32) (1.28) (1.14) (1.25) (1.31)
m=6  (1.33) (1.33) (1.38) (1.42) (1.30) (1.36) (1.28) (1.14) (1.20) (1.33)

CDx10! .51 .06 -1.07 -7.73 -161 -1.27 -1.39 -1.03 -1.80 ~1.29
(.95) (1.17) (1.10) (1.01) (1.25) (1.15) (1.18) (1..08) (1.30) (1.14)

m=2  (.92) (1L22) (1.16) (1.05) (1.30) (1.21) (1.34) (1.21) (L.47) (1.30)

m=4 (.95 (1.29) (1.04) (1.01) (1.03) (1.04) (1.25) (1.19) (1.27) (1.24)

m=6  (.95) (1.26) (1.01) (1.01) (.92) (.99) (1L.16) (1.14) (L13) (1.16)

BSDx10-! -1.60 -158 -1.29 -158 -1.01 -1.17 -.97 -1.59 -.54 ~1.16
(.80) (L09) (.75) (.77) (.74 (.74 (.96) (.99) (.94) (.97)

m=2  (.82) (L09) (.85) (.86) (.84) (.85) (1.07) (1.08) (1.08) (1.07)
m=4  (.84) (1.13) (.87) (.88) (.86) (.87) (1.08) (1L.12) (1.05) (1.09)
m=6  (.84) (L14) (.84) (.85 (.83) (.84) (L01) (1.09) (.96) (1.04)

RSDx10* .22 .01 .21 .23 .25 .21 -16 .09 -.36 —.08
(.80) (.93) (.80) (.79) (.82) (.81) (.90) (.85) (.95) (.88)

m=2  (.74) (.85) (.86) (.81) (.96) (.89) (.97) (.88) (1.10) (.93)
m=4  (.70) (.87) (.88) (.82) (100) (.91) (LOl) (.93) (L13) (.97)
m=6  (.68) (.89) (.91) (.84) (L.06) (.95) (L.06) (.98) (1.19) (1.02)

ASDx10"! 2.56 244 245 265 222 237 239 258 224 2.45
((60) (.62) (.62) (.62 (.62) (.62) (.63) (.63) (.64) (.63)

m=2  (.58) (.58) (.68) (.67) (.70) (.69) (.68) (.66) (.70) (.67)
m=4  (55) (.56) (.66) (.68) (.62) (.65 (.64) (.66) (.62 (.65)
m=6  (.50) (51) (.64) (.66) (.59) (.62) (.62) (.65 (.57) (.63)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and
robust ones below computed using truncation vectors (m,m) where m = 2, 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel (kz, K4).
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Table 9: Y = Log(rice yield) (LR)

LS v Partly LS Partly IV
ko Ka ko K
a=15 a=2.0 a=13 a=15 a=09 a=1.3 a=1.3 a=1.6
NL .99 .35 1.25 115 143 138 112 .93 1.14 1.03
((43) (L.28) (.38) (.39) (.37) (.37) (.96) (.96) (.95 (.96)

m=2  (.48) (1.16) (.54) (.51) (.59) (.57) (1.04) (1.02) (1.05) (1.03)
m=4  (.56) (1.37) (.63) (.61) (.68) (.66) (1.19) (1.19) (1.20) (1.21)
m=6  (.57) (1.38) (.63) (.62) (.67) (.65 (1.18) (1.20) (1.20) (1.21)

N.2 -53 .08 -8 -71 -1.07 -101 -.94 -69 -9 .80

(40) (L.24) (.36) (.37) (.35) (.35 (.92) (.93) (.91) (.93)
m=2  (42) (1L22) (.46) (.44) (.50) (.41) (1.09) (1.09) (1.09) (1.10)
m=4  (46) (L44) (51) (.49) (.55) (.53) (L27) (1.29) (L.28) (1.30)
m=6  (.45) (L44) (.49) (.48) (.53) (.51) (L.27) (1.29) (1.29) (1.31)

DBCx10-3 -4.23 -4.08 -3.65 -3.81 -3.21 -3.38 -2.67 -3.01 -2.76 —2.95
(1.39) (1.56) (1.32) (1.34) (1.27) (1.29) (1.36) (1.40) (1.36) (1.39)

m=2  (1.61) (1.69) (1.61) (1..60) (1.62) (1.62) (1.52) (1.47) (L51) (1.48)
m=4  (2.02) (2.18) (2.03) (2.02) (2.01) (2.02) (176) (1.82) (1.76) (1.80)
m=6  (2.21) (2.42) (2.20) (2.20) (2.10) (2.16) (1.75) (1.92) (1.76) (1.88)

CDx10! 133 173 -05 .03 .05 .01 .82 .60 .70 .57
(1.18) (1.46) (1.36) (1.24) (1.66) (1.55) (1.78) (1.53) (1.75) (1.53)

m=2  (1.12) (138) (1.48) (1.29) (1.99) (1.80) (2.23) (1.81) (2.25) (1.95)
m=4  (1.26) (1.52) (1.55) (1.42) (1.82) (1.72) (2.09) (1.80) (2.11) (1.90)
m=6  (1.34) (158) (1.64) (1.56) (1.69) (1.68) (1.95) (1.81) (1.96) (1.86)

BSDx10! -39 -8 .73 .43 112 101 146 105 141 1.19
(199) (1.35) (.95) (.96) (.95) (.95) (1.17) (1.20) (L.17) (1.19)

m=2  (1.08) (1L32) (1.17) (L17) (L17) (1.17) (132) (1.34) (132 (1.33)
m=4  (1.19) (1.51) (1.29) (1.29) (1.28) (1.28) (1.47) (L51) (L.47) (1.50)
m=6  (1.21) (L54) (1.25) (1.33) (1.30) (1.31) (1.43) (1.47) (L.43) (1.54)

RSDx10-! 2.30 260 225 207 261 249 290 2.64 2.89 2.71
(.99) (1.15) (1.01) (.98) (1.07) (L.05) (1.26) (1.15) (1.25) (1.19)

m=2  (.98) (1.11) (1.10) (1.00) (1.33) (1.25) (1.56) (1.30) (1.54) (1.38)
m=4  (.98) (1.20) (1.19) (1.08) (1.48) (1.37) (L.76) (1.45) (L.74) (1.54)
m=6  (1..00) (1.25) (1.25) (1.12) (1.58) (1.45) (1.90) (1.54) (1.88) (1.64)

ASDx10! 248 252 234 257 18 203 193 233 1.93 2.20
(74 (77 (.78 (77) (.80) (.79) (.81) (.80) (.81) (.80)

m=2  (.81) (.83) (L.03) (.99) (1.09) (1.07) (1.08) (1.02) (1.08)  (1.04)
m=4  (.83) (.89) (1.02) (1.01) (1.04) (1.04) (1.03) (1.03) (1.03) (1.03)
m=6 (75 (.83) (.90) (.89) (.90) (.90) (.90) (.92) (.90) (.92)

Slope estimates are in bold; SEs are in parentheses; with non-robust ones in the top row, and
robust ones below computed using truncation vectors (m,m) where m = 2, 4 and 6 respectively;
columns under Partial LS and Partial IV refer to choices of bandwidth a and kernel (k, ks).
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Figures 1-4: Nonparametric regressions

Figure 2
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4 Linear Analysis with Irregularly Spaced Data

4.1 Introduction

In this chapter, we consider linear regressions and some linear analysis with dependent
data. The main focus is on dependence across (economic) space but the same principle
could be applied to dependence through time. However, dependence through time may
need a special treatment since some nice results can be established only when working
through time by exploiting the fact that the real number system is an ordered field. See for
example Robinson (1980). The main problem arising with spatial data is that (economic)
locations are usually irregularly spaced. This makes statistical inference difficult or even
analytically intractable (asymptotically) due to the fact that the covariance structure of the
disturbances are unlikely to have the Toeplitz form. Various models have been proposed to
overcome this difficulty. There seem to be two popular approaches in econometric literature
and both can be regarded as extensions from classical time series analysis.

The most common methodology is to approximate dependence of the data by a linear
process. The Spatial Autoregressive (SAR) model has been a popular parametric model in
econometric literature. More recently Robinson (2011) proposed a generalized linear process
for a triangular array of random variables nesting the SAR model as a special case. Even
though this approach offers a close resemblance to most linear time series models, it often
lacks stationarity and hence asymptotic covariances of some simple statistics may become
intractable.

The other methodology is to maintain some form of stationarity. Conley (1999), for
example, regarded an irregularly spaced data as a random sample of some underlying random
fields on a lattice. There are a few problems related to this particular interpretation. First,
the computation can be an issue. Conley assumed that the locations follow a hard-core point
process, i.e. there are no pairs of locations whose distances are smaller than a particular
positive number. Some computation involves dividing a subset of R? into squares where
there is at most one observation in each square. Consider an analysis of data on factory
plants collected from several districts. Due to regulations, availability of infrastructure or
economies of scale, their locations often cluster on a few small areas rather than scattering
uniformly over the area of interest. In this case, a large proportion of squares will be empty,
and an analysis based on dividing into squares as well as computation from those empty
squares will be very computationally intensive.

Second, the assumption of a hard-core point process may be too strong. It prohibits
locations of the observations from getting arbitrarily close to each other. This drawback
makes the hard-core process inappropriate for many applications. In statistical analysis
of locations, the Poisson process is often a popular choice for modelling town or village
locations that could be useful for data related to applications in political economy or devel-
opment economics. A Poisson cluster point process such as the Neyman-Scott process may
be more suitable for modelling locations of industrial plants in applications related to eco-
nomic geography, trade or innovation and growth. As mentioned above, due to regulations,
infrastructure and, more importantly, economies of scale, economic activities, such as firm

locations, tend to cluster around a few hubs. See Fujita, Krugman and Venables (2001).
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Some underlying processes determining the locations of economic activities such as a cluster
point process may be more appropriate than a hard-core point process.

The model considered in this chapter is very similar to the ones in Brillinger (1972),
(1975) and (1986). There are two main differences. First, to derive asymptotic normality
our proof is based upon mixing assumptions whereas Brillinger’s asymptotic normality was
derived using the method of moments requiring the data to have moments of all orders
that could be too strong for economic data. Second, Brillinger assumed that the sampling
process and the underlying random field are independent. Even though this assumption
is important for a study of an underlying random field, it can be dropped as far as the
unknown slope parameters of a linear regression are concerned.

Section 2 begins with a motivation for interpreting economic data as a realization of a
marked point process and later we will show that many statistics of interest can be regarded
as a random (signed) measure. To avoid making complicated assumptions, we mainly focus
on the implication of second-order stationarity. Following Thornett (1979), there is a unique
measure, we call it a spectral measure, related to a random (signed) measure exhibiting
some kind of second-order stationarity. The relationship is similar to that of a spectral
measure and a covariance function of covariance stationary time series. However, unlike in
time series analysis, the spectral measure associated with a random (signed) measure is not
totally finite. Hence, the standard technique involving inversion of a Fourier transform may
not be sufficient to determine some properties of the spectral measure of the point process.
Also in Section 2 we discuss existence of a continuous spectral density of a random (signed)
measure. In Section 3, we discuss a law of large number and a central limit theorem for
a random (signed) measure. There is one difficulty arising once one moves from time to
space. The region, called the sampling region, from which the data are collected could have
an irregular shape. This problem may be a norm rather than an exception. As a result,
we need to allow the sampling region to have an arbitrary shape. The concept of van Hove
convergence is employed and some discussion on van Hove convergence is provided in the
same section. In Section 4 we discuss asymptotic distribution of the least squares estimate of
a linear regression model. Section 5 is concerned with spectral estimation of the continuous
spectral density of a random signed measure discussed in Section 2. In Section 6, somewhat
unrelated to the other parts of the paper, we discuss how to transform an estimate of an
unknown positive definite (p.d.) matrix into a positive definite estimate such that if the
mean square error (MSE) of the original estimate is O (n™?), where § > 0, then for any
€ > 0, the MSE of the transformed estimate can be o (n_5+€) . This result can be applied to
an estimation of the covariance matrix in Section 4, as well as an estimation problem in other
context such as an estimation of an optimal weighting matrix of the GMM objective function
that is required to be at least positive semidefinite (p.s.d.). This would enable practitioners
to employ smoothing with higher-order kennels, and later obtain a transformed estimate
that is p.d. as well as achieving a rate of convergence, in mean square, arbitrarily closed to

the original one. Proof of Theorems and technical lemmas can be found in the Appendices.
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4.2 Models

Because economic experiments are rare, most economic data is observational. In empirical
work, a practitioner usually has to select a particular span of time or an area, such as district
and country, or both for panel data, to collect data. If variables of interest Z; are observed
at locations s;, then the data is {(s1,Z1), ..., (sn, Zn)} . With regularly spaced time series,
the data can be ordered through time and the locations can be treated as natural numbers
so that the time index can represent the points at which Z; are observed. As a result,
the data can be treated as a sequence of random variables {77, ..., Zy}. When the data
are collected across space, the number observations N and the locations s; can potentially
become random.

Theoretically one can suppose that there is a sequence of random variables {(s;, Z;)}
where s; and Z; are R%valued and RP-valued random variables. If a practitioner chooses to
collect data over an area A, then the observed data is {(s;, Z;) :s; € A}. It is assumed in
this paper that a sampling area A is restricted to belong to the Borel o-field of R¢, denoted
by B (R?) only. If A € B(R?), A is said to be a Borel subset of R%, or simply a Borel set.
In general s; can be generalized to take values in a complete separable metric space but
since the main focus of this paper is on weak stationarity we are only concerned with the
Euclidean space R?.

Suppose that the underlying probability space is (2, F, P).

Assumption A1 There exists an event Fy € F such that P (Fy) = 0 and w ¢ Fy implies
that for any bounded A € B (R?), only a finite number of the elements of {s; (w)} lie in A.

Define -
Ny (A) =4, (A),
i=1

where §, is the Dirac measure, i.e. 0, (A4) = 1 if © € A and zero otherwise. Under
Assumption A1, by Proposition 9.1.X in Daley and Vere-Jones (2008), N, is a point process.
For any bounded B € B (Rd X Rp) define

N(B) =Y 6, z)(B).
=1

Then Assumption Al and the Proposition in Daley and Vere-Jones imply that N is also a
point process. For w ¢ Fj and for any bounded B € B (Rd X R”) , there exists a bounded
A € B(R?) such that B C A x RP, and there are only finite elements of {(s; (w), Z; (w))}
lying in A x RP. As both NV and N, are point processes, N can be regarded as a marked
point process where Z; are the marks and Ny is called the ground process. Thanks to this
result and the weakness of Assumption A1, observational economic data whose locations are
random may be naturally regarded as a marked point process. Before continuing further
discussion it is worth introducing some definitions, related to point processes, less common

in econometric literature. Good sources of reference are Daley and Vere-Jones (2003, 2008)
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4.2.1 Background on Point Processes

Let S be a complete separable metric space (c.s.m.s.) and B(S) be the o-field of its Borel
sets. A Borel measure p on the c.s.m.s. S is boundedly finite if i (4) < oo for every bounded
Borel set A. A boundedly finite integer-valued measure is called a counting measure. Let
Ns be the set of all counting measures; N be the set of all simple counting measures, i.e.
N e N§ if and only if N € Ns and N ({s}) =0 or 1 for all s € S; and N, be the set of
all boundedly finite counting measures defined on the product space B (S x K), where K is
a c.s.m.s. of marks, such that the ground measure Ny defined by N, (A) = N (A x K), for
all A € B(S), is a boundedly finite simple counting measure, i.e. Ny € N§.

A point process N on state space S is a measurable mapping N : Q — Ns. A point
process N is simple when P{N € N§} = 1. A marked point process on S with marks in K is
a point process N on B (S x K) for which P {N € ]\/}{’[X,C} = 1 where its ground process is
Ny (-) = N (- x K) . In general we could regard a marked point process as a point process on
the space § x K as described above or as a sequence of pairs of vectors of random variables
{(si, ki) } where it requires that for any bounded Borel sets A € B (S), with probability one
only a finite number of the element {s;} lie in A, and s; # s; for all i # j.

For any bounded A € B(S), N (A) is a random variable (see Corollary 9.1.IX in Daley
and Vere-Jones (2008)) and define M (A) = E[N (A)]. Since S is a c.s.m.s., there exists a
class of bounded Borel sets generating B (S). Let R; be a ring generated by all bounded
Borel sets. Suppose that M (A) < oo for all A € R;. Then M is finitely additive on
R1 since N is also finitely additive. For any increasing sequence of sets in Ry, {A,}, such
that lim,, A, = A € R4, by monotone convergence lim,,_,o, M (4,) = M (A). Hence M is
countably additive on R; and therefore M can be uniquely extended to a measure on B(S).
We say that the first moment measure of N exists when E [N (A4)] < oo for all bounded Borel
sets A.

Let Ny (A x As) = N (A1) N (A3) for any Borel sets A7 and As. Then Ns (+) can be
extended to a product measure on the product o-field B (S x §). Then it can be shown
that N () is also a point process on S X S. Define My (A) = E [N, (A4)] for a Borel set A
in B(S x §). We say that the second moment measure of N exists when E [Ny (4)] < 0o
for all bounded Borel sets A. Let f : & =R be a Borel measurable function. The integral
S f (s) N (ds) is defined as the Lebesgue integral on a realization-by-realization basis.

From now on, let N (-) be a marked point process on the state space R? x R?, where
d, p € N, the set of natural numbers. For a measurable function f : R? — R and a bounded
Borel set A € B (Rd) , the sum

S fe)= [ FEN@sxd) =Ny (4)

=y AXRP

can be shown to be a well defined random variable. If f is the indicator function of a
bounded Borel subset of R, then Ny (A) is a random variable. For a nonnegative f, we can
approximate it by an increasing sequence of simple functions {f,}. For each n, Ny, (A) is
a random variable, and by Monotone convergence, Ny (A) is a random variable. This can

be extended to a real-valued measurable function f in the usual way.
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4.2.2 Second-Order Stationary Point Processes

In this chapter, we employ the definition of a second-order stationary point process from
Daley and Vere-Jones (2003).

Definition A1 A point process N () on the state space R is second-order stationary if its

second moment measure exists and

(i) for any bounded measurable function f of bounded support,

f(s)M(ds) =p [ [(s)ds, (4.1)
R4 Rd

where nonnegative constant i is the mean density;

(ii) for any bounded measurable function f of bounded support,
/ f(s,t) My (ds x dt) = / f(z,x+u) do My (du), (4.2)
Rd x R4 Rd JR4

where My () is the reduced second moment measure.

If N () is a stationary point process on the state space R? with a second moment measure,
then the conditions in Definition A1 hold. For any subset A of R? and u € R?, define

T, A={a+u:aecA}. (4.3)

If a point process N (-) on R? is second-order stationary with mean density u, then for
any bounded Borel sets A, B and u € R%, B[N (A)] = E[N (T,A)] and E[N (A) N (B)] =
E[N (T,A)N (T,B)].

For a second-order stationary point process, we define the reduced covariance (signed)

measure in the following differential form
Cy (du) = M (du) — p2du.

It can be regarded as the reduced measure of the covariance measure where the covariance
measure is defined in a similar fashion as the second moment measure. In fact, the covariance
measure can be regarded as the second-moment measure of the random signed measure
N (A) = N (A) — pul (A) defined on any Borel set A, where £(-) is the Lebesgue measure.

Definition A2 We say that a measure is translation-bounded if for all h > 0 and € R?
there exists a finite constant Ky, such that, for every ball By, (z) = {y € R?: ||z — y|| < h},

i (B ()] < K,

where ||-|| is the usual Euclidean norm.
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It follows from Proposition 8.2.I in Daley and Vere-Jones (2003) that if NV is a second-
order stationary point process, then there exists a symmetric, translation-bounded measure
FonB (Rd) such that for all ¥ in the Schwartz space, denoted by S (Rd),

0@ Caldn)= | D) F(dy), (44)
where 9 (\) = Jra €99 (u) du and (A, u) = Zle Aiu; is the usual inner product on
R<. Daley and Vere-Jones (2003) call the measure F the spectral measure. Since the Parseval
identity holds for all v € S (Rd), it follows that the translation-bounded measure F' is
uniquely determined. Unlike in time series analysis, the spectral measure is not totally

finite. It is just translation-bounded. Now we state our first result.

Theorem A1l Suppose that a random measure & on the state space R? is second-order

stationary with reduced covariance measure Co such that

J.

where the measures ‘ég‘ = CV';F +é’5, Cv’; and é’g are defined by the Hahn decomposition of

ég‘ (du) < oo,

the signed mesure Cs, then its spectral measure F¢ is absolutely continuous with non-negative

and continuous Radon-Nikodym derivative

feh) = @) / =) G (du) .

Rd

Following Theorem A1, since F¢ is absolutely continuous, its Radon-Nikodym derivative
is unique only almost everywhere. Because f¢ is continuous, it is the only continuous Radon-

Nikodym derivative of F¢. Hence, we call f¢ the spectral density of &.

4.2.3 Wide-Sense Second-Order Stationary Random Signed Measure

In most economic applications we have to deal with random signed measures rather than
random measures. So we adopt the following definition for second-moment stationarity for
a random signed measure from Thornett (1979). Let ¢ denote the Lebesgue measure. For a
sequence of sets {4,,} we say that it is increasing if A,, C A, 41 for all n € N and decreasing if

A, D A, for all n € N. For any complex number W, let W denote its complex conjugate.

Definition A3 A wide-sense second-order stationary random signed measure on R is a
jointly distributed family of real- or complex-valued random variables {W (A): AeB (Rd)}
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satisfying the following conditions, for any bounded A, B € B (Rd) and any sequence of
bounded borel sets {A,},

(i)  BIW (A < oo

(ii)  for some constant p, B{W (A)} = pl (4),

(iii) E {W(TUA)W} —E {W (A)W} for all u € R%;

(iv) W (AUB)=W(A)+ W (B) for disjoint A, B; and

(v) if {A,} is decreasing and lim, o £ (A,) =0, then lim, ., E {W (An)2} =0.

The equality in (iii) is in the mean square sense.

- 2
Let C be the set of all Borel measures F' such that (i) [pa ‘1,4 ()\)‘ F (d\) < oo for all
bounded A € B (R?), where 1 is the indicator function; (ii) if {A,} is a decreasing sequence

~ 2
of bounded Borel sets such that limy, .o £ (A,) = 0, then limy, o [5a ‘1An ()\)) F (d\) = 0.
Thornett (1979) extended Bochner’s theorem by showing the following result.

Proposition A If {W (A)} is wide-sense second-order stationary random signed measure

on R* with = 0, then there is a unique measure Fy in C such that
E {W (AW (B)} :/ Ta(A\)15(\) Fw (d\) for all bounded A, B € B (R%).
Rd

The measure Fyy is called the spectral measure of W.

In order to discuss spectral density of a random signed measure, we restrict ourselves to

a certain class of random signed measures.

Assumption A2 W is a real-valued wide-sense second-order stationary random signed
measure on R¢ such that for any bounded Borel sets A and B, there exists a signed measure
C’g such that

Cov </Rd1“‘(s) W (ds), /RdlB(s) W(ds)) :/W/RdlA(s)lB(s+u) ds Cs (du) .

Theorem A2 Suppose that Assumption A2 holds and

J.

then the spectral measure Fyy of W is absolutely continuous with continuous Radon-Nikodym

6*2] (du) < oo, (4.5)

derivative, called spectral density,

fw () = (2m) / e~ & (du) .

Rd
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Now consider the main object of interest

s;€EA

where {(s;, z;)} is a marked point process. This linear functional of the marked point process
arises naturally in many statistics popular in econometric literature such as the least squares
estimate of a linear regression. In economic applications it may be a sensible assumption to
assume that given the locations {s;} the conditional expectation of marks z; and z; depends
only on s; — s; and conditional covariances vanish to zero as the distances increase. In
addition, it may be sensible to assume that the ground process N, is second-order stationary.

As a result, we make the following assumptions.

Assumption A3 Assumption A1 holds where s; # s; fori # j, and the ground process Ny

is second-order stationary.

Assumption A4 For all i € N, E(z|N,) = 0. In addition, there exists a measurable
function v, such that E (zzj| Ng) = 7, (si —s;) for all i, j € N and v, (0) < oo, where

E(-| Ng) is a conditional expectation given the ground process.

Theorem A3 Under Assumptions A8 and A4, the random signed measure defined by ¢ (A) =
Y os,eazi for any A€ B (Rd) is wide-sense second-order stationary. If

[l ¥ ) < . (1.6)

where My is the reduced second-order moment measure of the ground process, then the

spectral measure Fy of ¢ is absolutely continuous with continuous density

m) ™ [ Oy ) M (),

Condition (4.6) in Theorem A3 is analogous to the one of time series with short memory.

Suppose that z; are RP-valued random variables and
/ [7,s (0] M, (du) <oo, r,s=1, -+, p, (4.7)
Rd
where v, , (u) is the (r, s)-th element of the matrix 7, (u) . Motivated by Theorem A3, we may

regard (27)° Jpa €AMWy (u) M (du) as the spectral density of the RP-valued random

signed measure ¢ = Y 4 2.
:
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4.3 Asymptotic Properties of Random Signed Measures

We consider some asymptotic properties of a sequence of random variables {¢ (A4,)} where
¢ is a random signed measure and {4, } is a sequence of bounded Borel sets. These asymp-
totic properties are also applicable to non-stationary random signed measures. Typically in
statistical literature, asymptotic properties of a random signed measure are restricted to a
certain class of sequences of bounded Borel sets. The main attention in point processes is
on sequences of convex Borel sets. For a given Borel set with Lebesgue measure of unity,
Brillinger (1986) considered a sequence of this particular Borel set scaled by some indices
where the indices go to infinity. One problem facing practitioners is that, in economic ap-
plications, typical assumptions on a sequence of sampling regions mentioned above tend not
to hold. Empirical economists usually select a city or a county to collect data. The concept
of the sampling region going to infinity can be more naturally interpreted as including other
cities or counties in the sample. Therefore, we discuss a weak law of large numbers and a
central limit theorem covering a sequence of arbitrary bounded Borel sets. However we still
impose a weak assumption on the way in which these sampling regions get arbitrarily large.

Our asymptotic results are based on the following concept of strong mixing. First, we
introduce some notation. For any subset A of R?, let § (A) denote the diameter of A, i.e.
d(A) =sup{||t—s| :s, t € A}, where ||-|| denotes the Euclidean norm. For any nonempty
subsets A and B of R, their distance is defined by D (A, B) =inf {||t —s||: s € 4, t € B}.
It should be stressed that D is not a metric. Given a point process or a random signed
measure &, for any F € B (Rd) , let F¢ (E) be the o-field generated by the random variables
& (F) for all Borel sets F contained in E. For any Ey, E» € B (R?), define

(0% (El, EQ) = sup |P(A1A2) - P(Al) P(A2)| . (48)
A1€F:(E1), Ax€Fe(E2)

4.3.1 Weak Law of Large Numbers

Let a = (a1, ---, ag) € R and Il (a) = {zeR":0<z;<a;, i=1, -, d}. Let Z
denote the set of integers and Z? denote the Cartesian product II¢_;Z of Z. The translate
of II(a) by the integral vector ma = (myai, ---, mgagq), where m € Z?, is denoted by
I, = Tnall(a). The family of sets II,,, m € Z<, forms a partition of R%. For a subset
A C R?, define N} (A) as the number of sets II,,, for which ANTI,, # () and N (A) as the
number of II,, such that II,, C A.

Assumption B1 There exist Cy, Cy < oo such that, for B € B(Rd), if £(B) < Ch,
then B |€ (B)| < Cs, otherwise B € (B)| < Col (B).

Assumption B2 There is a € R? such that (i) the family {5 (IL,,) : m € Zd} of random
variables is uniformly integrable; (ii) as n — oo, N (A,) — o0, £(Dy) /€ (A,) — 1, where
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D,, = U{Il,, : I1,,, C A, }; and (iii) letting o (r) = sup « (II;, II;), where the supremum is
taken over all rectangles such that D (II;, II;) > r, lim, o a (1) = 0.

Theorem B1 Under Assumptions A1 and A2, if B{¢(IL,,)} = 0 for all m € Z¢, then as
n— 00, £(A,) " €(Ay) —1 0.

Consider a second-order stationary point process N. Assumption A1l holds for N since
EN (A) = uf (A) for any bounded Borel set A, where p is the mean density of N. Assump-
tion A1 also holds for random signed measures having fixed atomic points, i.e. £(x) # 0
a.s. for some z € R?. From the proof of Theorem Bl, it can be seen that the notion of
strong mixing is not necessary to show the weak law of large numbers. Assumptions on

weak correlation among I, could have been imposed without affecting the conclusion.

4.3.2 Central Limit Theorem

In this chapter, we simply employ the central limit theorem proved in Bulinskii and
Zhurbenko (1976) that can also be found in Zhurbenko (1986). Their proof of the central
limit theorem is based on the Bernstein technique and the following definition of strong

mixing. Define

a* (r, k) =supa(Ey, Es), (4.9)

where the supremum is taken over all Borel sets E; and E5 such that D (Ey, E2) > r and
d(E;) <k, i=1, 2. Assumption B2 and the one in Bulinskii and Zhurbenko (1976) that
is similar to our Assumption B2 can be difficult to verify. For example Assumption B2
requires that there exists a € R? such that {¢ (Il,,)} is uniformly integrable and as n is
sufficiently large the sampling regions A,, are essentially the union of those II,, C A,. In
practice, practitioners may not know the exact value of a and hence may fail to verify that
Assumption B2 holds. To avoid this difficulty, Bulinskii and Zhurbenkon (1976) considered

a sequence of bounded Borel sets that converges to infinity in the sense of van Hove.

4.3.3 van Hove Convergence

Definition B1 A sequence of sets {A,} converges to infinity in the sense of van Hove if

for each a,
lim N, (A,) =00 and lim N, (A4,) /N, (A,) =1,

n—oo n—oo

where N (A) and N, (A) are defined as in the previous sub-section.
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Clearly if {A,,} converges to infinity in the sense of van Hove, the problem mentioned
at the end of the previous subsection is solved. Let A, = (s1n, tin] X -+ X (San, tan] be
a rectangle in R%. A sequence of rectangles {4, } such that lim, .. (tin — Sin) = 00, i =
1, -+, d, converges to infinity in the sense of van Hove. However for a sequence of arbitrary
shapes in R?, it may be much harder to verify if it converges to infinity in the sense of van

Hove. Theorem B2 suggests how to check whether van Hove convergence holds.

For a set A€ B (Rd), let 0A be the boundary of A.

Theorem B2 For anyI1,,, if ANIL,, # 0 andI1,, is not contained in A, then 0ANIL,, # (.

In most applications, the interest may be upon sampling regions that are subsets of
R2. In this case, 04, is the boundary of A, and it is possible to find its length. To
avoid making complicated assumption, we first focus on arbitrary shapes in R% having no
holes. The advantage of this restriction is that 0A,, will be connected. To avoid confusion,
we introduce some definitions that may not be often employed in econometrics. See, for
example, Wilson (2008).

Definition B2 A curve (or path) in a metric space (X, d) is a continuous function -~ :

[a, b] — X, for some real closed interval [a, b].

Definition B3 For a curve v : [a, b] — X on a metric space (X, d), the length of
v, length(y), is defined as
length (y) = sup lp,
P

where lp = >0 d (v (t;), v (tiz1)) and P = {to, t1, -+, tm} is a partition of the interval
[a, b].

Suppose that OA is the image of a closed curve v, a continuous function v : [a, b] — R?
such that vy (a) = 7 (b) . Then the perimeter of JA can be defined as length(7y).

Theorem B3 Given a sequence of bounded Borel subsets {A,} of R?, suppose that for all
n, 0A, are the image of closed curves 7,,, and as n — oo, £(A,) — oo, length(vy,,) — oo,

and length(~,,) = o (¢ (A,)). Then {A,} converges to infinity in the sense of van Hove.
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Now if {A4,} is a sequence of bounded Borel subsets of R? such that there is Ny < oo
such that for all n € N, A,, have at most N; holes, and each hold has finite Lebesgue
measure uniformly over n, then {4, } satisfying the condition in Theorem B3 is still a van
Hove sequence. The condition in Theorem B3 may be relaxed further without affecting the
result, but the proof may have to be on a case-by-case basis. It seems possible to extend
this result to higher dimensions but the proof will be more complicated. It is worth noting
that Lemma 5 is employed in the proof of Theorem B3 and it says that for a given curve
with finite length, we can divide the curve into many sections with any required length.
However, for example, in R? 9A is the surface of A. It is unclear how to divide the surface

into smaller subsets of A with any desired area. Some further conditions may be needed.

4.4 Least Squares Estimation

Suppose that for a given marked point process {(s;, (x;,3;))} on R? x RP*! such that the

marks z; and y; exhibits a linear relationship
yi = Boxi + €4

where the p-dimensional column vector 3, is unknown, the prime denotes transposition, and
the g; are unobserved. Suppose we only observe a realization of the marked point process
when the locations are in a bounded Borel set A. The least squares estimate (LSE) of 5,

constructed from the data is

5= (Z m> Y o

s;€EA s;i€EA

Let z; = x;¢; for all i € N. Define  (A) = ZsieA z; for all bounded Borel sets A.

Assumption C1 Assumption A3 holds for the marked point process {(si, (zi,yi))}. There
exists a measurable function o, such that o, (s;) = E(x;x}| Ng), where the modulus of all
elements of o, (s) are uniformly bounded for s € RY. For any sequence {A,} of bounded
Borel sets such that there exists a sequence of balls contained in A, with radii v, such that,
lim,, o0 7 = 00, £ (An)_1 fAn oy (8) ds — ® where ® is positive definite. In addition, As-
sumption A4 holds for z; where y (s; — s;) denotes B (z;2}| Ny), 7 (0) has bounded elements,
and (4.7) holds and ¥ =[5,y (u) M, (du) is positive definite.

Assumption C2 There ezists 1° = (19, ...,lg)/ € R? such that for some 6; > 0 and some
constant c, I[*I«||g‘(l_[)H2+‘Sl < ¢ for all rectangles T1 whose j-th edges have length l?, j =
1, -+, d. Let £ (A) = X, c g iz} There exists 10 = (199, --- 120)’ € RY such that for
some 02 > 0 and some constant ¢, B¢, , (Hm)|1+§2 < ¢ for all rectangles I1,,, = Typ0011 (1)

where &,., (IT) is the (r,s)-th element of & (I1) .
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Assumption C3 The sequence of bounded Borel subsets {Ay} is increasing and converges
to infinity in the sense of van Hove. Moreover, £ (A,) > c[d (Ay)]" for some 0 < a < d and

some constant ¢, where 0 (Ay,) is the diameter of A,,.

Let o (r, k) be defined as in (4.8) and (4.9), where the the o-field of interest is generated
by the random (signed) measure ¢ (-) and o (r, k) be defined for the o-field generated by

the random (signed) measure & ().

Assumption C4 For some number ¢ and ko,

w 2 2
af (rk) < CTIZ+5 for k> ko, where e > 5—d and w < 2(1ajl5) (2 - 5)
1 1 1
and for k=6 (Il (a)),
lim o} (r, k) =0.

T—00

Theorem C1 Under Assumptions C1-C/,

(A" (5= 80) 4 N (0,071 507),

Assumption C2 requires weak dependence of N, and of {z;} given the ground process Ny.
Let Cy be the reduced covariance (signed) measure of Ny, i.e. Cy (du) = My (du) —m?2¢ (du) .
Sufficient conditions for (4.7) are [p, |7, (u)|du < oo and [pq |7, (u)] ‘ég‘ (du) . Sufficient
conditions for Assumption A3 are that for some finite constant ¢, (i) E(|zzjzx|| Ny) < ¢
for all ¢, j, k € N; and (ii) E [N, (II)]* < ¢ uniformly for all II described in Assumption A3.
Condition (ii) holds if the ground process is third-order stationary.

In this chapter we allow dependence between the marks and the ground process. To
cover the popular model in the statistical literature, we briefly outline how to show as-
ymptotic normality of its LSE of B If the marks and the ground process, assumed to be
independent, arises from a random sampling of a second-order stationary random field, then
the function v, may be regarded as the unconditional covariance function of the random
field {z (s), s€ Rd}. More direct assumptions on weak dependence of the sampling process
N, () and the random field can be given.

Suppose that the strong mixing assumption on dependence of the random field {z (s)}
and maximal correlation mixing assumption on the sampling process are given. Then some
useful result on covariances of random variables generated by the sampling process and
random field can be obtained. Let Ay, As € B(R?) such that 6 (A;), §(A42) < k and
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D (Ay, As) > r. Let V; be a complex random variable measurable with respect to Fn (4;),
where Fy (A;) is the o-field as defined earlier, N is the marked point process {(s;, zi)},
and E |Vi\2+6 < 00. Following Politis and Sherman (2001),

Cov (Vi,V2) = E [Cov™s (V1, V)] + Cov [E (V1| Ny) , E (Va|Ny)] ,

where CovNs denotes covariance conditional on the ground process Ny. Due to independence
of N, and {z(s)}, by Theorem 17.2.2 in Ibragimov and Linnik (1971), Cov™s (V4, V) can
be bounded by a multiple of the strong mixing coefficient of the random field {z (s)}. Then
this inequality remains valid after taking the expectation. Since E (V| N,) is measurable
with respect to the o-field generated by {N, (E) : E C A;}, using the Jensen’s inequality,
Cov [E (V1|Nyg),E (V2| Ng)] can be bounded in absolute value by a multiple of the maximal
correlation mixing coefficient. Then the proof based on the Bernstein’s technique can rely
upon this covariance bound.

It can also be shown that as n — oo, Ny (A,,) /£ (A,) 2 u, where p is the mean intensity
of the ground process. Then it follows that [N, (An)]fl/2 (B - 50) = Op (1) . One may wish
to compare this result with the standard root-n consistency but it should be noted that the
number of observations, Ny (A,,), is now a random variable. Finally, as noted in the last
paragraph of Section 2, 3 may be regarded as the spectral density function of the RP-valued
random signed measure ( at zero frequency. Hence, the asymptotic covariance matrix of B

is analogous to that of stationary time series.

4.5 Spectral Density Estimation

Motivated by the asymptotic covariance of the least square estimate of a linear regression,
we mainly focus on estimating the spectral density function of ¢ as defined in the previous
section. We hope that our results may give some hint on how to consistently estimate spec-
tral density of other wide-sense second-order stationary random signed measures. However
further regularity conditions may be needed. If we consider a random signed measure W,
then the variance of the spectral density estimate may not be defined since an integral with
respect to W is only defined up to a mean square sense.

From now on, we will consider only ¢ as defined in Theorem A3 but z; are now RP-
valued. We also assume that z; are fully observed, if s; € A, to avoid further complexity
from approximating z; by the residuals from the least square estimate. It can be seen
from the proof of Theorem 1 that a periodogram is an asymptotically unbiased estimate of
spectral density. Let da, (A) = fAn e“*5) ¢ (ds) be the finite Fourier transform and define

the periodogram as
1

(2m)" £ (An)

!

I, (N) = da, (A)da, (A).

When the state space is R, Brillinger (1972) showed that, as in stationary time series, the
variance of a periodogram does vanish to zero as the length of the time span where data is
observed goes to infinity.

Rather than employing an averaged periodogram, we instead restrict our attention to
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the following estimate similar to the one employed in Masry (1978)

N 1 — (A, Sk —S;
feN) = —— Do D ey (s - s5) ik,

d
(277) E(B") 5;€Bn s,€By

where B,, is a subset of A,. The reason for using B,, rather than A, is due to the "edge
effect" to be discussed later. The main reason for considering this estimate is that it is
commonly employed in economic applications.

This estimate can be written as

~

fe(N) = d;/ / et (t— s) 2125 N (ds x dzy) N (dt x dzs).
(2m)"€(B,) JB.xR JB, xR
Certainly we need that w must be measurable. A product measure of N can be defined so
that we can proceed as earlier to show that this integral is indeed a well-defined matrix of
random variables.
Also we restrict our discussion on w,, such that
d

wn (u) = l_L.:1 k(uj/mjn),

where the conditions on & are to be given later. We also assume that lim,, ., m;, — 00, j =
1, -, d
For 6 € RY, define
W, (0) = (2m) ™ / 0w, (u) du.

R4

If k£ is continuous and integrable, then
wy (1) = / =i 0N (0) df
Rd
Now fix n and hence B. Then
/ IB (0) Wn (0 - )‘) do
Rd

@m) BT D D e i) (/ O A A CEDY d9>
Rd

SJ'EB sLEB

= 0BT Y] N e T, (55— s5) = fe (M)

SJ'EB sLEB

Therefore positive semidefiniteness depends on the choice of W,, employed. If k is the
modified Bartlett kernel, i.e.

k(u)=1—[u)1(jul <1),
then

2
j= mjnﬁj
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If k is the Parzen kernel, i.e.

k (u) 1—6u®+6ul®, |ul <1/2
2(1—|u))®, 1/2<ul<1,

= 0, [u[=1,

then
d 192 .
wa0) =11 _, — gt lsin (O;min /4| > 0.

inY;

For higher-order kernels, the weight functions W,, (§) may not be nonnegative.

4.5.1 Bias

Similar to the notation in the previous section, let 7, (u) denote the (r, s)-th element of the

matrix v (u) .

Assumption D1 k£ : R — R is an even, Lebesgue integrable function such that k(0) =
1, |k (u)| <1, and for some q > 0,

. 1—k(u)
{5}

where kg is finite and strictly positive.
Assumption D2 Forr, s=1, ---, p, 2?21 Jga Jug [ |y ()| My (du) < oo

Assumption D3 For each n € N, A,, has a subset B, containing R, = H;lzl [@in, bin] s
where lim, o0 (bin — ain) = 00 fori =1, -+, d. Moreover, {B,} is such that for some

constant C,

¢(B\T-uBy) Zd Jus]
_— _—
Y4 (Bn) N ¢ 1 bin Ain

Assumption D4 Forj=1, ---, d, as n — 00, mj, — 00
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Theorem D1 Under Assumptions D1 - D4, as n — oo,
d

@) { £ (V) = B ()} = o+ 0 0 | D2 {myl + (g — ) '} |

1

J

where
d
a1y = kq Z m;r? /d |uj‘q Y (U) M2 (du) )
=1 R

d
asn = O (bjn—a)”

j=1

Robinson (2007) called s, the "edge effect" term. In the proof of Theorem D1, it can

be seen that this term arises from

/ {4 (Bn\T-uBn)
B

t(Bn)
If {B,} is any van Hove sequence, then Lemma 4 only implies that £ (B,) " ¢ (By\T_,B,)

converges to zero. It is unclear how to determine the rate at which ¢ (Bn)_1 L (B \T-By)

} wy, (w) e "Ny (1) My (du) .

’
n

converges to zero. As a result, we suggest using only a subset B, of A, exhibiting the
property in Assumption D3 so that it becomes easier to determine a more precise bias from

the edge effect term.

4.5.2 Variance

To avoid making complicated, despite being relatively weak, assumptions, we simply assume
that the ground point process is 4-th order stationary. For any sets A;, i = 1, --- |k, we
denote its Cartesian product by IT¥_, A;. Now for a point process N on the state space S,
define N* (II*_, 4;) = II’_, N (A;), where A; are Borel sets in S. It follows that N* can
be extended to be a point process on S*. Define My (4) = E {N* (4)}. Again M}, can be
extended to be a measure. If My (A) < oo, for any bounded Borel set A in S¥, then we say
that M, is the k-th moment measure of N. If NV is a point process on R such that its k-th
moment measure exists, and for each j =1, ---, k, bounded Borel subsets 4y, ---, A; of
R?, u € RY,
M; (T A x - x T, Aj) = M; (A1 x -+ X A4;),

then we say that the point process N is k-th order stationary. This is the generalization
of the definition of second-order stationary in Section 2. The definition of higher-order

cumulant measures can be generalized in a similar fashion. The main technical advantage

of the k-th order stationarity is that there exist the reduced k-th order moment measure,
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Mk, and the reduced k-th order cumulant measure, é’k, such that for any bounded function

f of bounded support
kf(sl,--- ,8k) My (dsy X -+ X dsg)
s

/ f(s,s4+ug, - ,8+ug_1) ds Mk(dul X oo X dug-1),
Sk:

and similarly for C} (see Proposition 12.6.I1I in Daley and Vere Jones (2008)).

Assumption D5 The ground process is 4-th order stationary with the mean density p and
such that [ 14 |C; (Hg;lldsi) <00, j=2, 3, 4.

Suppose that kn, (2ir, 2js, 2kr, 21s) is the conditional fourth cumulant of z., zjs, zr

and z;, given the point process Ny.

Assumption D6 Foranyi, j, k, l € N, andr, s=1, --- ,p, there exist functions k,, such
that KNg (Zir, Zjss Zkrs 21s) = Krs (Si, Sj, Sk, S1), Where Ky is bounded on any bound subset of
R4, In addition for allr, s=1, ---, p,

sup / |Krs (T, 2 + w1, ¢ + uo,  + ug)| M, (duy X dug X dug) < oo.
rERE JR34

Assumption D7 Forr, s =1, ---, p, 7,,(0) < co and [p |V, (u)| du < oo, where
Vrs (85 = 5i) = B{ zrizej| Ng}-

Theorem D2 Suppose A, contains R, defined in Assumption D8. Under Assumptions
D4-D7, forr, s=1, -+, p, as n — o0

£(4n) (2m)* var (ﬁs ()\)) N /R w (u)? du { Frr ) fss A +1(A=0) frs ()\)2} . (4.10)

Mn

where my, = 15 myp, w(u) =k (u;) .

As discussed in Robinson (2007), without taking into account the contribution from the
edge effect to the MSE of f,, (\), this modified MSE can be minimized by choosmg m3,

¢l (B )1/(d+2q) for some positive constants ¢;. If, as n — o0, ag, = 0 (Z >
of

then the edge effect is dominated by the standard bias term. Therefore the optlmal ch01ce
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My, that minimizes the MSE of Frs (A) is the same as m7,,. In this case, the MSE vanishes
at the rate /¢ (Bn)fzq/ (d+29)  The usual curse of dimensionality is present in this optimal
rate. If there is a rectangle @, such that it is a subset of A, and ¢(Q,) > C¢(A,) for
some positive constant C, then one can choose B,, = (),, so that the rate at which the MSE

vanishes to zero will not be affected.

4.6 Positive Definite Estimate

In Section 4 we see that the asymptotic covariance matrix of the least squares estimate of
the unknown slope parameter of a linear regression is a function of the spectral density at
zero frequency of the random signed measure ¢ defined by ¢ (A) = >, . 4 zie;. The results
in Section 5 suggest how we can obtain a consistent estimate of the matrix of interest.
Under weak dependence of the marked point process, higher-order kernels can be employed
to reduce the bias and hence to achieve a better rate of convergence in the mean square
sense. As can be seen also from Section 5, the curse of dimensionality affecting the rate of
convergence makes higher-order kernels relatively more attractive. However, higher-order
kernels will generally give an estimate that is not positive semidefinite. This can cause a
problem if such estimate, obtained from higher-order kernels, are employed to construct
Wald statistics.

Another application where the trade-off between positive semidefiniteness of an estimate
and its rate of convergence is prominent is the GMM estimation with dependent data. A
similar estimation problem arises naturally when one has to estimate the optimal weighting
matrix. There the problem is more serious. An estimate of the optimal weighting matrix
that is not positive semidefinite can make the nonlinear optimization more complicated.
Some discussion can be found in Newey and West (1987).

As a result, we will discuss an algorithm which can be employed to convert an estimate
that is not positive semidefinite into a positive definite one. This section is somewhat
independent from the previous sections since the framework we consider is general enough
to cover other estimation problems that are affected by the trade-off described above.

Before continuing the discussion some matrix notations are introduced. As in other
chapters, a square matrix A if said to be positive definite if it is symmetric and 2’ Az > 0 for
any « # 0. For a matrix A, denote its (4, j)-th element by a;;. For a square matrix A denote
the largest and smallest eigenvalues of A by X (A) and A(A), respectively. For any p x p
symmetric matrix A, let A; be the leading principal submatrix of A determined by the first
1 rows and columns. From its definition associated with the quadratic form, it can be easily
shown that a square matrix A of order p is positive definite if and only if A; are positive

definite for all : =1, ..., p.
Algorithm
Suppose that we are given a p x p matrix B. For simplicity of notation, we assume that B

is symmetric. Otherwise, we can take a transformation (B + B’) /2 so that the transformed

matrix is symmetric. Now let ¢ and u be positive numbers. We can modify a symmetric
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matrix B to obtain a new matrix T (B; ¢, u) = E that is positive definite using the following

algorithm.

(i) If b11 > ¢, then set e;; = by;. Otherwise, set eqq = c.

(ii) For any ¢ = 2, ..., p, determine the leading principal submatrix F;_; of E. Let e;_;

be an (i — 1)-vector e;—1 = (e14, -+, 61'_171')/. Foreach j =1, ---, i — 1, if |bj;| < u, set
eji = bj;. Otherwise, set e;; = —u if b;; < 0, and set e;; = w if bj; > 0, where b;; is the
(4,%)-th element of B.

(iif) Set

Ei_1 e
Ei=| :
€i—1  Cii

If b;; > e,’i_lEif_lleifl + ¢, then set e;; = b;;. Otherwise, set ¢; = e;_lE[_lleiA +c.

Unlike proofs of other theorems, the proof of Theorem 6.1 is presented here as it may

help justify our algorithm.

Theorem E1 For any p x p matriz B, the matriz E = T (B;c,u) is positive definite.

Proof. For simplicity of notation, we assume that B is already symmetric. The proof is
based on the necessary and sufficient condition on a positive definite matrix given above
and mathematical induction. Let F =T (B;c,u). It is clear that the first leading principal
submatrix E; is positive definite. Now suppose that for some i = 1,...,p — 1, Ej; is positive
definite. For any non-zero vector € R**1 partition « such that 2 = (2, z3) where z; € R?

and x5 is a real number. Then

/ / / / 2
Bz = xlEixl + To€; X1 + Tax1€; + €541,+125

(.731 + Ei_le,mg)/ E; (.1‘1 + Ei_leimg) + .Z‘% (ei+1,i+1 — e;Ei_le,-) . (411)

If x5 = 0, then z; # 0 and the first term in (4.11) is positive. If xo # 0, 21 can be chosen
so that =1 = —E;leixg. In this case, the necessary and sufficient condition for E;;; to be
positive definite is that e;;1,,41 > egEi_lel-. By our definition of e;11 41, this is indeed the
case. Hence, the required result holds. Note again that F;; is positive definite if and only

: =1
if €it1,i+1 > eiEZ- e;. l

This algorithm does two jobs. First, steps (i) and (iii) ensure that e;; > c and e;41 441 >
e;_HE;leiH +¢ i =2, -+, p, so that the matrix E = T (B;c,u) is positive definite.
Second, step (ii) sets an upper bound u for the absolute values of the off-diagonal elements
of B. In practice, we can set u to be so large that none of the off-diagonal elements of B
will be affected. From the proof of Theorem 6.1, a reason each leading principal submatrix
B;, i=1, ---, p, of B, is not positive definite is that the last inequality of the proof of
Theorem 6.1 does not hold. Recall that positive definiteness of a matrix depends (necessarily
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and sufficiently) on positive definiteness of its leading principal submatrices. As a result, the
algorithm proposed here seems to make a minimum alteration of the original matrix to make
it positive definite. One may argue that rather than requiring b;; > e} E._ 11€i + ¢, we simply
need b; > eE; 1161' without affecting positive definiteness of T (B;c,u). This is indeed
correct but there can be some undesirable consequences. First, if b;; — e} E; ! e; is very small
then the matrix F; is near singularity. This can cause some serious computational problems.
Second, the near singularity of F; can lead to another theoretical consequence that some of
its diagonal elements that is greater than e, E; le; may not have finite second moment. The
latter reason also explains why we impose an upper bound u on the off-diagonal elements.
Rather than choosing fixed values of u and ¢, it is possible to employ sequences {u,} and
{¢n} where as n — o0, u, — oo and ¢, — 0 without a significant impact on the rate of
convergence of T' (B; ¢, u) . Taking ¢, and u,, into account, it is possible to determine a lower

bound for the smallest eigenvalue of T' (B;c,u) .

Theorem E2 For given values of ¢ and u, fori =1, ..., p, let E; be the leading principal
submatriz of E = T (B;c,u). Let ay = ¢ and a; = c(l + (- 1)u2ai__21)71, 1=2, -+, p.
Ifc<1 and u > 1, then

AE)>ai i=1, -+, p.

Theorem 6.2 indicates another advantage of our algorithm. The choices of v and ¢ allow
us to control the condition number of the matrix T'(B; ¢, u). If the actual interest is on the
inverse of T'(B; ¢, u) rather T (B; ¢, u) itself, then, from a computational point of view, ¢
and u can be chosen to avoid the "ill conditioned" problem. Now consider an impact of our

algorithm on the rate of convergence, in the mean square sense, of an original matrix.

Theorem E3 Suppose that Q is an estimate of an unknown matriz Qy whose elements have
the mean square error (MSE) of order O (fy,). Let {c,} and {u,} be sequences of positive

numbers employed in the algorithm mentioned above. Define Q=T SAZ; Cn, Up | and let wo;j,

w;j be the (i,7)-th element of Qo and Q respectively. Suppose that as n — oo, ¢, = o (1) and

u, — co. Then asn — oo, fori, j=1, -+, p,
B (@i — woij)* = O (ulfn) , i # 4,
and

E (@i —woii)> = O(fn), i=1,

2

where az, = ¢, qu and a;, = c;g +2ui Ai—1n, © > 2.
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Now go back to the trade-off problem. Suppose that there are two estimates ﬁl and
QQ whose elements have the MSE of order n=% and n~%2 respectively, where 0 < §; <
d2. It is often the case that the unknown matrix Qg is positive definite, ﬁl is positive
semidefinite but Qg is not positive semidefinite. If it is desirable for an estimate to be at
least positive semidefinite, practitioners may normally choose ﬁl over QQ despite a faster

rate of convergence of Qy. Now if we set ¢, = O ((log n)_1> and u, = O (logn), then for
any € > 0, the MSE of elements of T (ﬁz; Cns Un) is 0 (n=(%279)). Therefore T (ﬁz; Cns un)

is both positive definite and converges faster than ﬁl.

4.7 Final Comments

In this chapter, we propose an interpretation that irregularly-spaced cross-sectional data
can naturally be regarded as a realization of a marked point process. We also show that
linear functionals of a marked point process can be employed to construct a random (signed)
measure appearing in many econometric applications including the least squares estimate of
unknown slope parameters in a linear regression model. Under reasonably weak assumptions,
including the presence of spatial dependence among observations, such a random (signed)
measure is wide-sense second-order stationary and thus has a spectral measure analogous to
a spectral measure of a second-order stationary time series. Based on mixing assumptions,
we develop asymptotic properties of a random (signed) measure which can be applied in
econometric applications. We show the asymptotic normality of the least squares estimate
of regression coefficients and find that its asymptotic variance matrix is the spectral density
at zero frequency of the associated random (signed) measure.

Even though the Toeplitz structure of the variance matrix of spatial observations is lost
when the locations are irregularly spaced, the finding in this chapter shows that there is a
close connection between an analysis of regularly spaced time series and of irregularly spaced
spatial data. The finding suggests that many known spectral analysis of time series should
be applicable to spatial data. For example, it should be possible to perform a nonparametric
test for zero spatial correlation of the observations(the marks) by considering the shape of the
spectral density of the associated random (signed) measure. An analysis of cross spectra
my be useful in investigating interdependence or linkages among various cross-sectional
variables. Moreover, our finding suggests that spatio-temporal dependence can be modelled
in a unified framework via the use of spectral analysis. However, a success of an attempt to
extend known results in spectral analysis of time series to the spatial context would depend
on a success in dealing with the spectral measure of the spatial case that is not totally finite.

Asymptotic properties of a random (signed) measure, which are developed based on
mixing assumptions, should be directly applicable to nonlinear estimation with spatial data.
It should not be difficult to extend our results to GMM estimation. Concerning estimation
of the spectral density of a random (signed) measure, a subset B,, of a sampling region A,

and its required properties are introduced to avoid bias from the edge effect. One possible
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approach to avoid employing a subset B,, and retain efficiency by employing A, is to employ
tapering in spectral density estimation as shown in Robinson (2007).

In the last section, rather independent from the other sections of the chapter, we discuss
estimation of an unknown positive definite matrix. We propose an algorithm which can be
employed to transform an estimate of the unknown matrix into a positive definite estimate.
Despite an arbitrary decrease in the rate of mean square convergence of the estimate, this
algorithm opens an opportunity for higher-order kernels to become more useful in many
econometric applications such as estimation of asymptotic variance matrices or optimal
weighting matrices in GMM estimation. Simulation results showing finite-sample properties
of applications of this algorithm on estimates with higher-order kernels compared with
standard estimates with modified Bartlett or Parzen kernels should be conducted. An
improvement of precision of an estimate based on this algorithm will generate a challenging
problem for both theorists and practitioners. For example, it is known that the weaker
the time or spatial dependence is, the faster the rate of convergence of a spectral density
estimate could be when higher-order kernels are employed. It is therefore crucial to get some
information concerning the degree of time or spatial dependence so that an appropriate
choice of kernel can be chosen. A data-dependent procedure which can reflect the degree
of time or spatial dependence will be crucial to future development of spectral density or

asymptotic variance estimation.

Appendix 4.1: Proof of Theorems
For the rest of this paper, for any subset A, Bof X,let B\A={z € X :x € Band z ¢ A}.
Proof of Theorem A1l By Lemma 2, f¢ is a non-negative and continuous function.

Define G¢ (A) = [, fe () dX for any Borel set A. Then G¢ is a measure that is absolutely
continuous. For any ¢ € S (R%), ¢ () = (21) % [ra e *M)4h (X) dA, by Fubini’s theorem,

Rdw(z) Cy (dz) = /Rd«Z(A){(%)‘d/Rd et G, (dac)} dX
L0 fe ) ax

[ B0 Ge(@n),

Since the Parseval identity (4.4) holds for every ¢ in the Schwartz space, G¢ = F.

Proof of Theorem A2 By Assumption A2,for any bounded A, B € B (Rd)
Cov(W (A), W(B)) = / / 15(s)1a (s +u) Co(du) ds
Rd JRd

= [ ([ st o) Gaan. @)
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By Lemma 3, the integral in the brackets is Lebesgue integrable and continuous in u. More-
over [p. et (Jpal(s)1a(s+u) ds) du = 14 (N 1s (M) . Since the Lebesgue measure
is translation bounded, 14 (\) 1 (M) is Lebesgue integrable (see exercise 8.6.8 in Daley
and Vere-Jones (2003) and employ Schwarz’s inequality). Similar to the proof of Theorem
A1, the Fourier inversion theorem of continuous and Lesbesgue integrable functions can be
employed to show that the right of (4.12) is

T —d efi</\,u>~ = v2 u) — ~ = ' '
2m) /Rd/w 14 (A 15 (N) dX Cy (du) /}RdlA()\)lB()\)fW()\) A\ (4.13)

Proceeding as in the proof of Lemma 2, fy is a non-negative continuous function. It remains
to show that the measure defined by Fy (A) = [, fw (A) dX for any Borel set A, is in C.
First for any bounded Borel set A,

J.

iA(A)‘Z Fwy (d\) = /)1A)\ fw(A) d

{ow swon} [

- 2
since, by (4.5), the function fy is uniformly bounded and [, |14 ()\)‘ d\ < oo as the
Lebesgue measure is translation bounded. It follows from (4.12) and (4.13) that B {W (A)}?

IN

i, ()\)’2 ) < 00

~ 2
Jza ’1,4 ()\)‘ fw (A\) dAX for any bounded Borel set A. Consider a decreasing sequence {4, }
of bounded Borel sets such that lim, . £ (A,) = 0. As the process W is wide-sense second-
order stationary,

lim
n—0o0 Jpd

14 (/\)‘wa (\) dA = lim E{W(A,Lf} —0.

n—oo

Hence Fy € C.

Proof of Theorem A3 Throughout the proof of this theorem, sets A, B and
{A,.} denote bounded Borel sets and a sequence of bounded Borel sets in R?. Using iterated
expectation, Assumption A4 implies that E{¢(A)} = 0 for all A. For any A and B, by
Assumptions A3 and A4,

Cov{C(A),C(B)} E[E{¢(A)C(B)[ Ny}l

{/Rd /Rd 1a(s)1p (t)7. (t—s) Ng(ds) Ny (dt)}

/ / 14 (s)1p (s4u)v, (u) ds My (du) (4.14)
Rd Rd

By Schwarz’s inequality, |, (u)| < 7, (0) for all u € R%. As A is bounded, Var {¢ (A)} <
|7, (0)| M2 (A x A) < oo where My is the second moment measure of N,. Define B — A as
n (4.27), then
Coo{¢(A).CB) = [ (ANT-B)7. () Vo (du) (4.15
B-A
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For any v € R?, it it follows that

Co{¢(TA) CTBY = [ (AT TB) 5. () M ()

[ e anTL B ) i ).
B-A
as T,B —T,A = B — A. Since the Lebesgue measure is translation invariant,

Cov {¢(T,A), ¢ (T,B)} = Cov {¢ (A), ¢ (B)},

for all A, B € B (Rd) and v € R%. By definition of ¢, for disjoint A and B, ¢ (AU B) =
¢ (A) 4+ ¢ (B) a.s. and hence ( is finitely additive in the mean square sense too. Define A’
as in (4.27). Now consider a decreasing sequence such that lim, . £ (A,) = 0. It follows
from (4.15) that for all n € N,

B{C(A)} < 1) [ L, (4, NT-0d,) N ()

< v, (0)] /Rd Las (u) € (A NT_,Ay) Moy (du)
= |7, (0)] Ma (A; x Ay) < oo.

As (A, NT_,A,) < L(A,) — 0as n — oo, it follows from dominated convergence that
lim,, .o B {( (An)Q} = 0. Hence ( is wide-sense second-order stationary.

Let v = max {7,, 0} and v, = —min{y,, 0}. Define v* (A) = [, 71 (u) My (du) and
v=(A) = [,77 (u) My (du) for any Borel set A. By (4.6), v and v~ are finite measures
that are absolutely continuous with respect to the measure My where v and ; are their
Radon-Nikodym derivatives. Then v = v — v~ is a signed measure. For bounded Borel

sets A and B, using Fubini’s theorem,

Cov </Rd1A(5) ¢ (ds), /RdlB(S) C(d8)> = /Rd/RdlA(s)lB(s_Fu),yz(u) dsM2(du)
/Rd /R 1a(s)1p (s+u) dsv(du).

Since vt and v~ are finite measures, [, |v|(du) < oo, where || = vt + v~. Hence, by
Theorem A2, the spectral measure of ( is absolutely continuous with the continuous spectral

density

fe) = @0 [ Oy = a7 [ 00, ) i ().

Proof of Theorem B1 For any finite set B, let | B| be its cardinality. Consider a €
R satisfying Assumption B2. Assumption B2 (ii) implies that lim,, o £ (A,\Dy) /£ (A,) =
0. Since

C(An) T H{E(An) = €(Dn)} = £(Ay) " € (A\Dn),
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Assumption B1 implies that £ (4,) " € (A,)—L (A,) "' €(D,,) —1 0. Let B, = {m : II,,, C A, }.
Then & (Dy,) = ZmeBn ¢ (I1,,) . The remaining part of the proof is just a slight modification
of a standard proof of weak law of large numbers. For any € > 0,

¢ (An)_l f (Dn) =/ (An)_l Z {fl (Hm) - Efl (Hm)}'i'e (An)_l Z {5// (Hm) - Eé‘” (Hm)} )
meB, meB,

(4.16)
whete € (Th) = € () 1 (1€ ()| <8), € () = € (M) 1 (€ ()| > 6) and, by As-
sumption B2 (i), § is chosen so that sup,, ¢z« E|¢" (IL,)| < &€ (I (a)) /2.

Because ¢’ (I1,,,) is F¢ (IL,,,)-measurable, following the proof of Theorem 17.2.1 in Ibrag-

imov and Linnik (1971), it can be shown that, for m # m/,
|Cov{¢ (), & ()} < 46°a (1L, ).

Since o (I, Iy) < a(r) if D (I, I,/) > 7, Assumption B2 (iii) implies that there is
ro < oo such that a (IL,,, /) < &/ (8€ (I1 (a)) 2 52) for all m, m/ such that D (IL,,, II,,/) >
ro. The second moment of the first sum in (4.16) is bounded by

/ (An)72 Z Z ‘COU {5/ (M), € (Hm’)H

m,m’€E€B,

< ((I(a) (Bl

> 46%a (M, M) + Y |Cov {€ (L), & (W) }|| (4.17)

Ein Es,
where
By, = {(mv m/) - m, m’ e By, D(Hma Hm’) > TO}7
Ey = {(m, m'):m, m' € B,, D(I,,, W) <ro}.

The contribution from the first term in (4.17) is bounded by €/2. Moreover, there is
Cry < 00 such that |Es,| < C,,|B,|. Hence the second term in (4.17) is bounded by
((I1(a)) 2 |B,| " 6%C,,. Assumptions B1 (i) and B2 (ii) implies that there is N < oo such
that for all n > N, the second term in (4.17) is less than /2. Thus the first sum in (4.16)
converges to zero in the second mean.

For the second sum in (4.16),

B4 Y {e"<nm>—E§”<Hm>}‘ < e<An>—1{2 ) E|§"<Hm>|}

meB, meB,

< / (An)_l {2 |Bn| S:IZ)dE |§// (Hm)|}
< 2((a)”" sup E |€" (IL,)] < e.

meZd

Hence the second sum in (4.16) converges to zero in the first mean.
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Proof of Theorem B2 It follows that there is a, b € II,,, such that a € A, and b €
A°, where A¢ denote the complement of A. Consider ¢ (t) = ta+ (1 —t) b, where t € [0, 1].
Let C = {c(t):0 <t <1}. By definition of Il,,, it follows that C C II,,,, C N A # () and
C N A¢ # (). For a subset A of a metric space X, let int (A) be the interior of A. If either
a ¢ int (A) or b ¢ int (A°), then either a € A or b € JA. Hence, the required result holds.
It remains to consider the case when a € int (A) and b € int (B).

Let D = {s€[0,1] : ¢(t) € int (A) for all t < s}. Clearly ¢(0) = a € int(A) so that
D # (. In addition there is &1 > 0 such that [0, £1] C D. Similarly ¢(1) = b € int (A°) so
that 1is an upper bound for D and there is €2 > 0 such that ¢ (t) € int (A°) for 1—eo <t < 1.
Then sup D exists and let 6 = sup D. It follows that 0 < § < 1. Clearly ¢ (d) ¢ int (A),
otherwise there is a contradiction. Similarly ¢ (d) ¢ int (A°). Hence c¢(4) € C' C II,,, and
c(9) € 0A.

Proof of Theorem B3 Consider any a = (a1, az)’ € R? such that a; #0, i =1, 2.
Let ap = min{ay, as}. Let By, = {m:II,, Cint(A,)}, Ban = {m:1l,, C A,}, B3, =
{m 1L, N A, # 0}, and By, = {m : II,,, N A,, # 0} , where int (A,,) and A,, are the interior
and closure of A,, respectively. It follows that By, C Bs, C Bs, C By,. Hence |By,| <
|Baal = Ny (Ay) and N (An) = [Bsal < |Baal . Then

N (An) = N; (An) < [Byp\Binl - (4.18)
Since By, \Bin = {m sz € A, and y ¢ int (A,,) for some z, y € Hm} , Bi,\Bin C Bsp
where Bs, = {m : II,,, N A,, # 0} by Assumption B2.

By Lemma 5, the function L, defined there, is continuous. For sufficiently large n, by
the intermediate value theorem, there exists ¢ such that L (t) = ag/2. Take t; to be the
supremum of such ¢. Similarly we can find ¢, such that L (¢.) = rag/2 <length(y,,). As
L is nondecreasing, t, < t,41. If 2length(y,) /ao > [2length (v,,) /ao|, where |-] is the
floor function, set R, = [2length (7,,) /ao] + 1. Then dA, = U%" {y([t,_1, t,])}, where
v ([tr=1, t.]) is the image of v over [t,_1, t,] with length at most ag/2.

Note that in the Euclidean space, any curve joining two endpoints with the mini-
mum length is a straight line segment. It can be shown, by considering every possible
cases, that each ~ ([t,—1, t.]) can be contained within 4 adjacent II,,s, whose union is a
2a1 X 2a9 rectangle. Let Bg, be the union, over r = 1, 2, --- | R,, of all such m. Then
Bsn C By and |Ben| < 4R,,. Let Dy = U{ILy :m € Bip}, Dan = U{Il,, :m € Buy}
and Dg, = U{Il,, : m € Bg,}. Since By, \Bin C Bgn, £(An) < £(Dyyn) < £(Dgn) +

¢(D1y). Hence ((A,) > £(D1y) > €(A,) — 4Rpa1az. Since as n — oo, length(y,,)
0(l(Ay)), £(D1y,) /L (A,) — 1. Hence lim,, oo N (A,,) = co. Since N, (A4,) > ¢ (D1,,) / (a1a2)
and By, \B1s C Ben, (4.18) implies that lim,, ... {NT (4,) — N, (A,)} /N, = 0. Therefore

{A,,} converges to infinity in the sense of van Hove.
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Proof of Theorem C Note that

(A2 (8- 8o) = (aAn)l > x:c> <£<An>”2 > )

8i€AR 8i€AR

Forr=1, ---, p,let o, = E (zfr| Ng) . For any bounded Borel set A, by Assumption C1

and Schwarz’s inequality,

E‘érs (A)‘ < E <Z |xir$is> < ,LL/AO'T (t)l/Z O (t)1/2 dt

s;€EA

wl [ or) at v oo (t) dt UQSOM(A),
(firw ) ([0 a)

where p is the mean density of N,. Hence Assumption Bl holds for each element of &.

For 19 in Assumption C2, take II,, = T},.I1(a) where a = [°°. Assumption C2 im-
plies that the family {¢,, (II,,)} is uniformly integrable. Since «(r) < a* (r, k), where
k=6 (I (a)), Assumption C4 implies that lim, . « (r) = 0. Hence these results and As-
sumption C3 implies that Assumption B2 holds. Thus Theorem B1, Assumption C1 and

IA

Lemma 4 imply that
0(A,) 7 E(A,) =, @ (4.19)

For any A € R? such that ||A|| = 1, define

C)\ (An) = )‘IC (An) =\ Z Zi.

5i€EA,

Assumption C1 implies that EC, (A,) = 0 for all n € N. Let A% = U{Il’, : 11/, C A},
where I/, = T,,11 (a”) and a” = [° in Assumption C2. Since {4, } converges to infinity

in the sense of van Hove, lim,, .o [¢ (49) /¢(A,)] = 1. By Lemma 6, as n — oo,

ar »\A%
PO 6 () = 6 (4D = v {?&)\A Iy (4.20)

Hence

C(An) T2 {C (An) = €5 (AD)} —p 0. (4.21)

Since Lemma 6 and Assumptions C2-C4 imply that all conditions in Bulinskii and
Zhurbenko (1976) are satisfied, it follows that

1/2

O (A7) /Var (¢, (A7) —a N (0,1). (4.22)
Now Lemma 6 and (4.20) and imply that
Var{¢, (4%)} /¢ (A,) — N2 (4.23)

Then (4.22) and (4.23) imply that
14 (An)_1/2 C)\ (A%) —d N (0, )\IE)\) .
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Hence this with (4.19) and (4.21) conclude the proof.

Proof of Theorem D1 Let frs (A) be the (r,s)-th element of fc (A) and similarly
for J/c\( (A).

@m)! [ £re V) B {Fe V]

/Rd TNy () My (du) — /R C(B) " By N Ty By) e, (u) v, (w) Mo (du)

= [ - w@)e M ) Ma(d + [ e, () i (d (424
By, (B1,)°
+ / / {1 - W} Wy, (u) e Ny (u) My (du).

Recall that R/, = TI% | [ain — bin, bin — ain]. Note that for any u € RY, 1p; (u) >
1g, (u) and lim, .o 1g; (u) = 1. For the first term in (4.24), it can be proceeded similar to
Robinson (2007), with the summation sign replaced by the integral sign, to show that the
first term is the (r, s)-th element of oy, + 0 (a14,) .

The modulus of the second term in (4.24) is bounded by

IN

d v
> (b= a0 / s e ()] 3 (d)

=1 (R7,)

[ el 32 )
(B¢

Al

d
= 0 § ]n _a]n

j=1
The modulus of last term in (4.24) is bounded by

d
|u, |

d
|7rs( )‘ M2 du Z J’l_aJ”

j=1

C

B!, w1 bjn — Gjn

Proof of Theorem D2 Let

Nrs (51,52,83,84) = Fps (51, 52,83,54) + Yy (83 — 81) Vs (84 — 82) + 75 (54 — 51) V5, (53 — 82),

e—i()\,sz—sl—54+33)

¢(51782783754) = Wn, (82 —81)wn (84—83)-
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The left side of (4.10) is

1
TA, mn ” ¢ (51,82, 83, 54) Ny (51, 82, 83, 54) My (I ds;) (4.25)
1
+m { . ¢ (51,52,53,54) Vps (52 = 51) Vprs (52 — 53) My (Hg:1d5i) -
\ ¢ (81, S92, 83, 54)77“5 (82 — 51) Yrs (84 — 33) MQ (d51 X ng) M2 (d53 X d84)} .
Bn

Lemma 7 implies that the contribution from &, to the first integral in (4.25) is O (£(By)) .

In differential form, it follows that

My (dzq X -+ X dxy)

= Cy(dzy X -+ X dxg) + My (dzy) Cs (dxe X dxs X dxy)
+M (dzo) Cs (dxy X dzg X dxg) + My (drs) Cs (dry X dxe X drg)
+ M (dzy) Cs (dzy X dxg X dzs) + Cs (dxy X dao) Co (dzs X dxy)
+C5 (dzy x daz) Ca (dxa X dxyg) + Co (dxy X dxy) Co (dze X das3)
+M; (dxy) My (dxo) Co (das x dxg) + My (dzy) My (dzs) Co (dze X dxy)
+M; (dz1) My (dzy) Co (dag X dxs) + My (dxg) My (dzs) Co (dzy X dxy)
+ M (dxo) My (dxy) Co (dxy X das) + My (dxs) My (dxy) Co (dxy X dzg)
+ My (dxy) My (dee) My (dzs) My (dxy) ,

=

—

where C; are the j-th cumulant (signed) measure. Since N, is also 1-st order moment
stationary, M7 (dx) = p dz. The results and proofs from Lemmas 7-10 can be employed to
show that most contribution, from the expansion above, to the first term in (4.25) that is
associated with 7, (s3 — $1) V4, (524 — s2) is O (m; 1) .

The nontrivial contribution is from

M2 (dl‘l X dxg) MQ (d{,CQ X d.’E4)
= Cy(dxy x dxg) Oy (dwy x duy) + p>Cy (dzy x dws) deedry
+ﬂ2dl‘1d$302 (dZEQ X d$4) + ,u4d:r1d:r2dz3dx4.

Therefore Lemma 11 implies that the contribution to the first term in (4.25) from
Vo (53 = 51) Vs (54 — 52) is precisely frr (A) fss (A) [pa w (u)? du.

The same reasoning and the standard step employed for time series can be employed to
show that if A # 0, the contribution from 7, (s4 — 51) V,5 (s3 — s2) is 0. However if A = 0,
then the contribution is f,. (A)> Jpa w (u)® du. Finally the contribution from the terms in
brackets in (4.25) is also O (m;!).

Proof of Theorem E2 For i = 1, A(E1) > ¢ = a1. The remaining part of the

proof employs the well-known result that for any symmetric p x p matrix A4, \(A) =
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SUPgerp: o) =1 T AT and A(A) = inf,cpp.||z|=1 2" Az. Now consider i > 2,

Ei_1 e
E=(" .
€i—1  €ii

For © = (2}, 22) € R? where x5 is a scalar, from the proof of Theorem E1,
_ ’ _ _
x'Eia: = (iEl + Ei}le,-_lxg) Ez’—l (IEl + Eifllei_lmg) + I% (812‘ - 6;_1Ei7116i_1) .

Suppose that @ € R such that ||z|| = 1. If 2o = 0, then ||21]| = 1 and 2’ E;z = 2} E; 131 >
A(E;_1). Now if w3 # 0, then 2/ E;z > 23 (eii — eg_lEiillei,l) since z; can be chosen so
that z; = —E;_llei,lmg. As 1 = —E;_llei,lmg, it follows that, in order to have ||z| =
1, 23 =(1+¢, E Y E e 1) . Hence

. — — -1 _
A (Ez) = min {A (Eifl) s (1 + 6;_1Ei_11Ei_11€i,1) (67;1' - 6;_1Ei_116i,1)} .

The results we have shown so far are independent of our algorithm. Now, under our algo-

. -1 . . .- .
rithm, e;; —e;_;E; je;—1 > c. Since E;_; is positive definite,

/ -1 -1 2
e B B e

IN

Hei71||2X (E;11Ei111) < (Z - 1) u?A (Eiill)
= (Z— 1) U2A(Ei_1)_2.

Hence
_ -1
(1+ el B B ein) (e — € Bibein) > c (1 +(i—1) UQA(EH)_Q) :
Since ¢ < 1 and u > 1, by simple arithmetic,
. 2 92 -1
MNE;i1) > c(1+(z—1)u AEi1) ) .

Hence .
AE) =z (14 G- DwA(E)7?)

Suppose that for ¢ > 2, A(E;_1) > a;—1. Then A (F;) > ¢ (1 +(i—1) u2ai’_21)_1 = a; since
the function f(x) = (1 + cx*2)71, where ¢ > 0, is increasing in * when = > 0. Hence the

required result holds by mathematical induction.

Proof of Theorem E3 Let @;; be the (4, 7)-th element of Q. For i # j

Wij —woij = (@ij —woij) 1 ([@iz] < un) + (un — woiz) 1 (@5 > uy)

+ (—un — OJ()ij) 1 ((,Ad” < —’U,n) .

Clearly
E{(@i; — woiy) 1 (|@i5] < un)}’ <E@ij — woij)® = O (fa) -
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Now
E {(un — woij) 1 @ij > un)}” = (un — woiy)” P{Qij > un} = O (ulfn)

where the last equality follows from the following argument. As lim, .. u, = oo, for

sufficiently large n,

P{lwi;] > un}

IA

P{|@i;] > 2|wosj|} < P{I@i; — woiz| > |woiz |}

woi; |* B @15 — woii|* = O (fa) 1

IN

by Markov’s inequality. The same result can be shown for (—u, —wo;) 1 (@5 < —uy).
Hence, the first required result holds.
The rest of the proof is based on mathematical induction. Now

W11 — wo11 = (011 —wo11) 1 (@11 > ¢n) + (en — wo11) 1 (@11 < ¢p) -
Clearly the second moment of the first term is O (f,,) . By Lemma 13,
E{(cn —wo11) 1 (@11 < )} = (c1n —wo11) B{1L @11 < )} = O (f,).

Then the required result holds for i = 1.
For i > 2, suppose that the mean square error of each of the element of ﬁi_l, the leading

principal submatrix of €, is O (@i—1,nfn). Now
@ii — woii = (@i — woir) 1 (Dis >t +¢n) + (B + cn — woir) 1 (@5 <t + ¢n) (4.26)

where t; = @;716;_11@-,1 and w;_1 = (@01, -, @i,l,i)'. Again the second moment of the
first term is O (f,,) . Recall that Qi,l is positive definite. If w; 1 # 0,

=8B < B PR () < -0 {a (2))

Using the result from Theorem E2, it can be shown by induction that
~ -1 i i
(@)} o).
ti=0 (c_2i71+1u2i71) .

Qi1 Wi
E=1_, N .
Wi—1 Wi

From the proof of Theorem E2, it follows that

Hence

Let

A(E) =min {2 (B) (1480880 (8-S TE0) |

Therefore A (E;) < @;; — t:. Hence @y; < t; + ¢, implies AE;) < cp.

For ¢ = 2, due to the off-diagonal elements, the mean square error of each elements of
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E5is O (u%fn) Hence, by Lemma 13,

E{l (@“<t~l+cn)2} = P{®n<ftvz+cn}
P{A(E;) < cn}

IA

Therefore the second moment of the second term in (4.26) is O (c;,?uS f,) . Thus B (@;; — wOii)z =
O (c%ul fn).

For i > 2, the MSE of each elements of E; is O (a;—1,,, fn). Therefore E {1 (55“ <t + cn)z}
O (a;—1,nfn) by Lemma 13. Hence

—~ 2 _ ot i
E (@ — woi)” =0 (%2 22 aifl,nfn) .

Appendix 4.2: Technical Lemmas for proofs of Theo-
rems

For any subsets A, B of R?, let
B-A={b—a:a€A beB} and A ' =A—-A. (4.27)

Also let 14 be the indicator function such that 14 (s) =1 if 2 € A and 0 otherwise.

Lemma 1 For any subsets A, B of R? and any s, u € R?,
14(s)1p(s+u) =1anr 5 (s)1p_a (u),

where T, A is defined as in (4.3)

Proof. For s and u such that s € A and s + u € B, there exists t € B such that s +u = t.
Hence u =t — s where s € A, t € B, i.e. u € B— A. Since s + u € B, there exists t € B
such that s4+wu = ¢ and thus s =t —u, that is s € T_,, B. Therefore s € ANT_, B. It should
be noted that if u € B — A, then ANT_, B is non-empty. If u € B— A, ie. u=1t— s for
some s € A, te€ B, then s=t¢t—wuthatiss€ Aand s € T_,B.

On the other hand, suppose that s and u are such that s € ANT_, B and u € B — A.
Since u € B— A, ANT_,B is nonempty. Since s € ANT_,B, it follows that s € A and
s+tueB. m

Lemma 2 Suppose that ég 18 a reduced covariance measure such that fRd ég‘ (du) < o0.
Define f () = fRd e~ iu) ¢, (du) for all X € R%. Then f is a real-valued function that is

nonnegative and continuous.
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Proof. Fix any A € R% Let N be the point process whose reduced covariance measure is
C5. Recall that ¢ denotes the Lebesgue measure. For any bounded Borel set A, the variance
of the normalized finite Fourier transform ¢ (A)_l/2 [N N (ds) is

0(4)! /R d /R La(s) La s ) e O Gy (du) ds
(A" /R ) ( /R La(e)la(s+u) ds> e~ Gy (du)

/ Lar (u) {E(ANT oy A) JE(A)} =i ¢, (du), (4.28)

where the last equality follows from Lemma 1. Consider a sequence of bounded Borel sets
{A,} such that for each n, A, is a rectangle L, [a;n, bin]. Suppose that as n — oo,
bin — @iy — 00, i =1, -+, d, then the integral in (4.28) converges to fRd e~ iAu) ¢y (du)
by dominated convergence. Since the last integral is the limit of a sequence of non-negative
real numbers, it is also real and non-negative.

To show continuity of f, it suffices to consider
g(h) = | {cos (A+h, w) = cos (A, w)} |Col (du).
Rd
Consider any sequence {h,,} such that lim, . h, = 0. Since

Jeos (A -+, 1)) = cos (1, )] |G| (d) < 2/R

Cv’g‘ (du) < oo,

R4 da

by dominated convergence, lim,_ . g (h,) = 0. Hence f is continuous. ®

Lemma 3 For any bounded Borel subsets A, B of R, let g (u) = [0 15 (s)1a (s +u) ds.

Then g is continuous and Lebesgue integrable.
Proof. By Fubini’s Theorem,

/Rdg(u) du = /RdlB(s)</Rd1A(5+“) du) ds

0(B)£(A) < co.

Hence g is Lebesgue integrable. For € > 0, by continuity of translation of integrable functions,
see Section D of Chapter 7 in Jones (2001), there exists § > 0 such that, for all v’ € R?, if
lu — || < d, then
/d [1a(s+u)—1a(s+u')|ds <e.
R

For such v/ € R?, since

Ta(s+u)—1a(s+u))* =[1a(s+u)—1a(s+2),

180



by Schwarz’s inequality,

IN

/Rd 1 (8) [1a (5 + 1) — 1a (s + )| ds

([ mer ds)m ([t -1 <s+u'>|2ds)1/2

V20 (B)"2.

lg (u) =g (u)]

IN

Hence g is continuous in u. =

Lemma 4 If an increasing sequence of sets {A,} converges to infinity in the sense of van
Howe, then

(i) there exists a sequence of balls {B,} such that, for each n, B, C A, and their radii
Ty — 00 GS M — 00;

(ii) limy, oo 147 = lga, where A}, = {t; —t2 : t1, t2 € Ayn}; and

(iii) for each u € RY, lim,, o [€ (A, N (An —u)) [ (An)] =1, where Ap—u={t—u:t e A,}.
Proof. (i) Suppose that there is no such a sequence of balls. For each n let B,, be the
biggest ball contained in A,,. Then there exists a finite constant ¢ such that r, < c¢ for
all n. Let a be a vector in R? defined as in the definition of van Hove convergence. Set
a = (4c,...,4c)’. Since A,, converges to infinity in the sense of van Hove, for some large n
there exists a rectangular parallelepiped contained in A, such that the lengths of its edges
are 4c. As a ball with radius 2¢ can be contained in this rectangular parallelepiped, this
leads to a contradiction. Hence the truth of statement (i) is proven.

(ii) For any = € R?, due to part (i), for some sufficiently large N there exists a ball By
contained in Ay with radius ry > ||z||. Let ¢ be the centre of the ball. Then z+cy € By
and therefore = € A’y. This is also the case for all n > N.

(iii) Now fix u € R?. Let A,, (k) be the set of points with distance less than or equal to
h to the boundary of A,,. Clearly A,\A, (2||lu|]) C A, N (A, —u). Choose a € R? that are

associated with van Hove convergence so that a; > 3 ||ul| for all ¢ = 1,...,d, then

U T c 4\, 21lull) € An N (An —u).

m:I1,, CA,

Therefore lim,, o [( (4, N (Ap —u)) /L(A)]=1. =

Lemma 5 Consider a curve v : [a, b = X on a metric space (X, d). Suppose that vy has
a finite length, define a function L : [a, b] — R by L (x) :length(’y[a@]) where i, 41 s the

restriction of v to [a, x]. Then L is continuous on [a, b] and non-decreasing.

Proof. For a < z <y <, let 7|, be the restriction of v to [z,y]. Tt follows that for
a<z<y<z<h,

length ('Y[x,z]) = length (’y[xyy]) + length (W[y,Z]) . (4.29)
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Note that the definition of length is analogous to that of total variation. The proof of the
analogous additive property of total variation can be employed. Hence it follows that L is
non-decreasing since length is, by definition, non-negative.

For any € > 0, there is a partition P = {¢o, t1, -+-, t} such that

m

L(b) — Zd(7 (ti), v (ti—1)) <e/2.

Since +y is continuous on [a, b], it is also uniformly continuous on [a, b]. Hence thereis § > 0
such that whenever |t — s| < d, then d (v (s), v (¥)) <&/2(m + 2). For any = € [a, b), take
91 = min{d, b —z}. By (4.29), for any 0 < h < 41,

L (b) = length ('Ha,z]) + length (’y[zw_,_h]) + length ('Y[x-;—h,b]) .

Notice that if P’ is a refinement of P, i.e. P C P’ then lp: > lp. Let P’ = PU{x, =+ h}.
Then L (b) — lpr < €/2 too. This implies that

length (v[x,ﬁh]) =Y d(y(s), v(1) <e/2

where the summation is over s, t € P’ N[z, « + h]. Using the properties mentioned above,
it follows that

L(x+h) — L (x) =length (’Y[m,m-h]) <e.

Similarly for h < 0 and @ < z < b. Hence L is continuous on [a, b]. ®

Lemma 6 For a sequence of bounded Borel sets { By},
Var (Cy (Bn)) = O (L(Bn))

and if {B,} satisfies Assumption C3, as n — oo,

¢ B1 " Varlen (B~ 3 { [0 i (@) f (430)

Proof. Recall that E[(, (B,)] = 0. Proceeding as in the proof of Theorem A3, it follows
that

¢ (Bn N T—uBn)

Var (€ (Bn)] = £(By) [/\’ { /R Loy () =5 s

v (u) My (du)} )\] . (4.31)
By definition 7 (u) is p.s.d. for all u € R%. By Assumption C1, for all n > 1, the term in the
square brackets in (4.31) is bounded in absolute value by [, Ay (u) A M (du) < oo. Hence
Var[¢(B,)] =0 (£(B,)) as n — 0.

Suppose that Assumption C3 holds for the sequence {B,}. Fix u € R?. From Lemma 4,

the integrand in (4.31) converges to v, (u) as n — oo. As element of the integrand is also
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bounded in absolute value by |v,, (u)|, which is integrable with respect to M, Assumption

C1 and dominated convergence imply (4.30). m

Lemma 7 There exists a finite constant C such that

¢ (81, e ,84) Ryrs (817 e ,84) M4 (H?Zldsj) S c/Y (An) .
A%L

Proof. By Assumption D5, the left side is
/ 14, (2)1a, (z+w)1a, (@ +u2)la, (z+u3) @ (z, 2+ ur, @+ uz, @ + us)
R4d
Krs (T, 2+ u1, @ + ug, . + uz) dz M, (duy x dus X dug) .

Its absolute value is bounded by

sup/ |HTS(x,x+u1,x+u2,x+u3)|M4 (H?Zlduj)/ dx.
R3d

zERd A,

Assumption D6 implies that this is not greater than C/ (B,,) for some finite constant C. m

Lemma 8 Asn — oo,

@ (81,2, 83, 84) Vpp (83 — 81) Vus (84 — 82) C3 (ds2 X dsz X dsg)dsy = O (£(By,)).
B}

Proof. The left-side is
/ 18, (z1) 1B, (22)1p, (v2 +w1) 1B, (T2 + u2) ¢ (z1, T2 + u1, T2, T2 + Uu2)
R4

Yo (T2 — 1) Vg (uz — u1) Cs (duy x dug) daydas.

Hence, by Assumptions D5 and D7, its modulus is bounded by

100 0) [ Lo, (00) o, (2) by (22 = )] dndes |
R2

R2d

6’3’ (du1 X du2)

Yo (W) du = O (¢(By)).

’
n

Lemma 9 Asn — oo,

¢($1, S2, 83, 54) Yor (83 — 81) Vss (54 — 82) Cg (dCCl X d$2) CQ (d.’Eg X d$4) =0 (6 (Bn)) .
By
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Proof. Proceeding as in the proof of the previous lemma, it can be shown that the modulus
of the left side is bounded by

Vos (0){/Rd

5 2
02 (dul)} /]de 1Bn (.’L‘l) 1Bn (LEQ) |’7r7' (LUQ - .’El)‘ dl‘ldl'g =0 (f (Bn)) .

Lemma 10 As n — oo,

u? @ (81,82, 83, 84) Yy (83 — 51) Vo5 (84 — 82) C2 (dzg X dxy) dr1dze = O (£(B,)).
B

Proof. The modulus of the left side is bounded by

Mz/ 1p, w3/ (/ [Yrr $3—9€1)|d$1) </Rd |%s($3+u—$2)|d$2> ‘é2‘(du)d$3
i ([ ee@las) ([ pewla) ([ |eaf@o) e,

Lemma 11 Asn — oo,

1

= S W fene ) [ 0P du

¢ (817 S2, 83, 84) Yo (83 — 81) Vss (84 — 82) M2 (dSl X d83) M2 (dSQ X d84)

where w (u) = Tk (u;) .
Proof. Using Lemma 1, the left side is

1 —1 S2—S81—S8 S
((Bn)my, /R4d 1p, (s1) 1, (52)1p, (s3) 1p, (sq) e "2 ms17sat sy (55 — 57)

W, (84— 83) Vpp (83 — 81) Ves (84 — 52) Mo (ds1 X ds3) Ma (dsy x dsy)

1 —1 Uu—v
= 1By /RM 1,01 .5, (51) 1,013, (52) 13, () 15, (v) e "Ny, (55— 1)
Wy (82— 5140 —u) Y, (W) V., (V) dsydsy My (du) My (dv)

1 . .
= 1By /de 1p, (u)e "My (u) g (v) €Ny (V) w, (W) wy (4 + v — u)

{/d 1B, AT B.OT_, {BuNT— B} (s )ds} 1(B.AT_ By} —{BuNT—_uBn} (U,)dU'MQ (du) Mz (dv)
R

) . 1
= [ @ )1 <v>e1<“>vss<v>{ [ w0 -)
R2d " " Rd My

L(ByNT_yByNT_ By NT— o By)
£(By)

(BT o Bu}—{BunT B} (W) du/} M, (du) Mo (dv) .
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To conclude the result, one can follow standard steps employed in time series which rely on
dominated convergence. The proof of Lemma 4 can be extended to show that, under van
Hove convergence, ¢ (B, N T_,B, NT_w B, NT—y_wByp) /t(B,) — 1. =

Lemma 12 Suppose that By is an unknown p X p matriz and B is an estimate such that

N 2
E (bij — bol-j) =0 (fp) foralli, 7 =1,...,p. Suppose that x is a p-random vector such that

~ 2
lz|* =1 a.s., then B (x’Bm - x’BOm) =0 (fn)-

Proof. Let 2 = (21, ..., ,) . By Schwarz’s inequality,
2
~ 2 p =
E (SC/BJ} - I/Bol’) = E Z Z (b” — bOij) TiZ
i=1 j=1
P p P R
Z > B by — boij ‘bkl - bom‘

j=1k=11=1

fn)-

I
S i

Lemma 13 Suppose that By is an unknown p X p matriz and B is an estimate such that
N 2

E (bij — bol-j) = O(fp) for alli, j =1,....p. Let {c,} be a sequence of positive numbers

such that lim,,_,o ¢, = 0. If By is positive definite, then B {1 (A (§> < cn>} =0 (fn),

where 1 is the indicator function.

Proof. For a random matrix B it is possible to construct a measurable function h such that

h (§> = T where Z is a normalized eigenvector corresponding to A (E) The construction

is based on employing row operations on the matrix B - A (E) I,,, where I, denotes the
identity matrix of order p, to obtain a reduced row-echelon form. By the previous lemma
E (E’EE—&E’BOE)Q = O(fy). Since ¢, — 0 as n — oo, there is N < oo such that ¢, <
A(By) /2 for all n > N. Hence for large enough n, using the fact that z’ByZ > A (By),
f’ﬁf—f’Bof‘ < A(By) /2 implies #B% > #'ByZ — A(Bo) /2 > A(By) /2 > cn. Since

7Bz = A (E), ' B7 — E’BOE‘ < A (Bp) /2 implies A (E) > ¢,. Therefore, for sufficiently
large n, using Markov’s inequality,
{2(B) <en}

5 (3(5) <)
{ 'Bz — % Box‘ > A (By) /2}

(A (By) /2}°E (E’E% - 55’303?)
= 0 (fn) .

|
~

IN
~

IN
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