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Abstract

This paper considers estimation of parameters for high-dimensional time series with the

presence of many nuisance parameters. In particular we are interested in data consisting

of p time series of length n, with p to be as large or even larger than n. Here we consider

the composite-likelihood estimation and the profile quasi-likelihood estimation. The

asymptotic properties of these methodologies are investigated. Simulations are used to

illustrate our both of these methods and explore the performance of these methods.

Key words: composite likelihood, nuisance parameter, profile likelihood, quasi-likelihood,

root-n convergence, time series.
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Chapter 1

Introduction

1.1 Introduction

Rapid developments in technology in this information age has led to data collection in an

unprecedentedly large scale. This brings a new opportunity with challenge to statistics.

The availability of large data sets enable statisticians to look into complex structures

using sophisticated models. In this paper we consider a class of models in which the

number of parameters of interest is finite while the number of nuisance parameters is

large or excessively large in relation to the sample size. Those models arise in various

statistical applications. For example, in a longitudinal model with a large number of

sites the primary interest lies in a small number of parameters representing the common

effects while the individual levels of different sites are treated as nuisance parameters. For

a large panel of time series data, one is often interested in a few common factors which

drives the dynamics of all the component series and treats the parameters representing

each idiosyncratic components as nuisance parameters. In the attempts to model the

volatilities of large number of financial securities, it is often to assume that the dynamic

volatilities are controlled by a small number of parameters in the presence of large

number of nuisance parameters representing marginal covariance matrices.

In this paper we consider two methods to obtain the estimators of a fixed number of pa-

rameters of interest in presence of a large number of nuisance parameters. The methods

concerned are the maximum profile quasi-likelihood estimation (MPQLE) and the maxi-

mum composite quasi-likelihood estimation (MCQLE). With an initial estimator for the

nuisance parameter vector, the MPQLE maximises a profile quasi-likelihood function to

obtain the estimation. This is in line with more conventional approach. By plugging in

an initial estimator for the nuisance parameters, we avoid a maximisation problem with

1



Chapter 1. Introduction 2

a large number of variables. However it is intuitively clear that the quality of the initial

estimator impacts on the ultimate outcome of the procedure.

Another method to be considered is the composite likelihood, the name coined by Lind-

say (1988). See also a recent survey Varin et al. (2011). A composite likelihood is

a function derived by multiplying a collection of, typically two- or there-dimensional,

marginal density functions. In our context, each low dimensional density function only

depends on a small number of nuisance parameters, hence can be easily profiled. The

resulting composite profile likelihood function depends on those parameters of interest

only, can be solved to obtain the estimator without running into high-dimensional opti-

misation problems. Because the marginal densities are multiplied together, ignoring the

original distribution structure, the MCQLE can be viewed as derived from a (seriously)

misspecified model.

The major contribution of this paper is the establishment of the asymptotic properties for

both the MCQLE and the MPQLE under the condition which is relevant to the settings

concerned. The conventional asymptotic theory is typically under the assumption that

the sample size goes to infinity while everything else remains fixed. For our setting,

the number of nuisance parameters is of a comparable magnitude of the sample size.

Hence it is more pertinent to consider the asymptotics when both the sample size and

the number of nuisance parameters go to infinity together. Though bearing a similar

banner, our theory is different from large literature on the theory for the so-called ‘large

p and small n’ regression problem; see, among the others, Zou (2006), Fan and Lv (2008),

Huang et al (2008), Zhang and Huang (2008), Bickel et al (2009) and Zhang (2009).

The name of ‘composite likelihood’ was introduced by Lindsay (1988), although the

idea of using ‘submodels’ or ‘marginal models’ had appeared before. As the full like-

lihood with complex models are often computationally infeasible, The composite like-

lihood methods have been used in different regression with dependent errors (Eicher

1967), problems including modelling spatial processes (Besag 1974), case control studies

(Liang 1987), inference for nonlinear dynamic models (Gallant and White 1988), cor-

related binary data (Kuk and Nott 2000), grouped data (deLeon 2005), longitudinal

studies (Molenberghs and Verbeke 2005), multivariate volatility modeling (Engle et al.

2008), bioinformatice (Larribe and Fearnhead 2011). The asymptotic theory under the

assumption that only sample size tends to infinity has been studies by, for example,

Cox (1961), Eicher (1967), White (1982), Gallant and White (1988), and Cox and Reid

(2004). To our knowledge, no results have been derived under our setting when both the

sample size and the number of nuisance parameters go to infinity together. For more

comprehensive survey in the composite likelihood methodology, we refer to the first issue

Statistica Sinica (2011) vol.21 which contains a collection of the papers on this topic.
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The rest of the paper is organised as follows. Section 2 deals with the MCQLE and

section 3 is on MPQLE. In each of those two sections, we outline the method and

state the asymptotic normality results. Both the methods are illustrated in simulation

reported in section 4. All technical proofs are given in section 5.



Chapter 2

Methodology

2.1 Composite-likelihood estimation

Let {X1, · · · ,Xn} be p × 1 observations from a stationary process with the underlying

distribution depending on parameter (θ,ω) ∈ Θ×Ω ⊂ Rd+q, where θ is a d×1 parameter

of interest, and ω is a q× 1 nuisance parameter. Our goal is to estimate θ. We consider

now a maximum composite quasi-likelihood estimation method for θ. We will show that

such an estimator is asymptotically normal with the standard root-n convergence rate

as n, q →∞ together while d is fixed, and p may also diverge to infinity.

Let Xt1, · · · ,Xtr be r subvectors of Xt. The lengths of those r subvectors may be

different from each other, and some of those subvectors may share common components

from Xt. With the observations Xtj , t = 1, · · · , n, the log marginal quasi-likelihood

function is defined as

lj(θ,ωj) =

n∑
t=1

log fj(Xtj ;θ,ωj),

which depends on the parameter of interest θ, and a subset of nuisance parameter

denoted by ωj . Let

ω̃j(θ) = arg max
ωj

lj(θ,ωj). (2.1.1)

We define a composite quasi-likelihood function for θ as

l(θ) =
r∑
j=1

lj
(
θ, ω̃j(θ)

)
. (2.1.2)

The maximum composite quasi-likelihood estimator (MCQLE) for θ is defined as

θ̂ = arg max
θ

l(θ). (2.1.3)

4



Chapter 2. Methodology 5

We assume that r = r(q)→∞ as q →∞, while all the lengths of Xtj and ωj are fixed.

One implicit condition for the MCQLE defined in (2.1.3) being reasonable is that the

nuisance parameters ω1, · · · ,ωr are distinct from each other such that the maximisation

(2.1.1) may be carried out independently for each j without confounding constraints from

each other. This is a rather strong requirement, and may only be facilitated by selecting

subvectors Xt1, · · · ,Xtr in a restrictive manner. It is very likely there may be a heavy

loss of information if we adhere to this requirement in practice. One alternative is to

adopt the so-called ‘variation-free’ condition imposed by Engle, Hendry and Richard

(1983), which ignores the links among different ωj and treats ω1, · · · ,ωr as different

and unconnected nuisance parameters. See also Engle, Shephard and Sheppard (2008).

Of course there will be some efficiency loss in estimation of θ resulted from neglecting

the links among different ωj . The trade-off is that we will be able to reduce an extra

high-dimensional optimisation problem to many low-dimensional problems, which is the

essential motivation of using composite-likelihood approach. Note that this variation-

free condition also implies that θ̂ is the global maximiser in the sense that

(θ̂, ω̂1, · · · , ω̂r) = arg max
θ,ω1,··· ,ωr

r∑
j=1

lj(θ,ωj),

where we treat ω1, · · · ,ωr as different and independent parameters. In the rest of this

section, we always adopt this assumption.

Let β = (θ′,ω′1, · · · ,ω′r)′, and l(β) =
∑r

j=1 lj(θ,ωj). In practice we take β̂ = (θ̂
′
, ω̂′1, · · · , ω̂

′
r)
′

as a solution of the likelihood equation

l̇(β̂) ≡ ∂

∂β
l(β)

∣∣∣
β=β̂

= 0. (2.1.4)

Let

βo ≡ (θ′o,ω
′
1o, · · · ,ω′ro)′ = arg max

θ,ω1,··· ,ωr
E{

r∑
j=1

log fj(Xtj ;θ,ωj)} (2.1.5)

be the true value of the parameter, which is assumed to be an inner point of the param-

eter space. Put

atj(θ,ωj) =
∂

∂θ
log fj(Xtj ;θ,ωj), btj(θ,ωj) =

∂

∂ωj
log fj(Xtj ;θ,ωj),

Atj(θ,ωj) =
∂2

∂θ∂θ′
log fj(Xtj ;θ,ωj), Btj(θ,ωj) =

∂2

∂θ∂ω′j
log fj(Xtj ;θ,ωj),

Ctj(θ,ωj) =
∂2

∂ωj∂ω′j
log fj(Xtj ;θ,ωj).
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We simply write atj = atj(βo,ωjo), and btj ,Atj ,Btj and Ctj in the same manner. Put

M1 = −


∑r

j=1EAtj EBt1 · · · EBtr

EB′t1 ECt1

...
. . .

EB′tr ECtr

 , (2.1.6)

M2 = −


1
r

∑r
j=1EAtj

1√
r
EBt1 · · · 1√

r
EBtr

1√
r
EB′t1 ECt1

...
. . .

1√
r
EB′tr ECtr

 , (2.1.7)

and the elements at the blank places in the above matrices are 0.

We introduce some regularity conditions first.

A1 {Xt} satisfies the mixing condition stated in C3 in the Appendix.

A2 fj are smooth enough such that all the required derivatives exist and are continuous

and integrable whenever necessary.

A3 Denote by ξtj any component of atj , and ηtj any component of btj . For ν > 2 given

in A1 above, it holds that

lim
r→∞

E
{∣∣1
r

r∑
j=1

ξtj
∣∣ν} <∞, (2.1.8)

lim
r→∞

1

r

r∑
j=1

[E(η2tj) + {E(|ηtj |ν)}2/ν ] <∞. (2.1.9)

By Hlder’s inequality this is equivalent to

lim
r→∞

1

r

r∑
j=1

[E(|ηtj |ν)2/ν ] <∞. (2.1.10)

A4 Denote by ηtj any element of Atj − E(Atj), Btj − E(Btj) or Ctj − E(Ctj). Then

(2.1.9) holds.

A5 The matrix M1 is positive-definite. Furthermore all the eigenvalues of the matrix

M2 are bounded above from ∞ and below from 0, as r →∞.

A6 There exists a constant c1 > 0 and positive functions λj(·) such that | ∂3

∂β`∂βi∂βk
log fj(xj ;θ,ωj)| ≤

λj(xj) for any ||θ−θo|| ≤ c1 and ||ωj−ωjo|| ≤ c1. Furthermore limr→∞ sup1≤j≤r E{λj(Xtj)} <
∞,, and (2.1.9) holds with with ηtj = λj(Xtj)− E{λj(Xtj)}.
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A7 (2.1.9) holds with ηtj being any component of ζtj ≡ atj − E(B1j)(EC1j)
−1btj .

Furthermore the limits of the convariance

Wk = limr→∞
1
r2

(∑r
j=1 ζ1j ,

∑r
j=1 ζk+1,j

)
, k = 0, 1, · · · , n. Exists

Remark 1. (i) Note that M1 = −E
{

∂2

∂β∂β′
∑r

j=1 log fj(Xtj ;θ,ωj)
}

. The condition

that M1 > 0 in A5 implies that βo, defined in (2.1.5), is an isolated maximiser. It

also implies that M2 is positive-definite as M2 = ΛM1Λ, where Λ is an appropriate

full-ranked diagonal matrix.

(ii) If X1, · · · ,Xn are independent observations, conditions A3, A4 and A6 may be

reduced to those with ν = 2 only.

2.1.1 Theorem 1

Theorem 1. Let conditions A1 – A6 hold. Then there exists a solution of the likelihood

equation (2.1.4) for which

m
{
||θ̂ − θo||2 +

1

r

r∑
j=1

||ω̂j − ωjo||2
} P−→ 0

for any m→∞, r/m→ 0 and r2m/n→ 0.

Remark 2. The convergence rates in Theorem 1 are not optimal; see, for example, The-

orem 2 below which indicates that the convergence rate for θ̂ is root-n. The important

message here is the difference in the convergence rates between θ̂ and {ω̂j , j = 1, · · · , r}.
As r →∞ together with n, the rate for the uniform convergence of ω̂1, · · · , ω̂r is slower.

It also imposes some restrictions on the number of parameters which can be consistently

estimated, although the implied rates such as r = o(n1/3) is presumably too restrictive.

In region of the true parameter if there is a unique solution then this would be the true

min.

2.1.2 Theorem 2

Theorem 2. Let conditions A1 – A7 hold, matrices E(C1j), j = 1, · · · , r, be invertible,

and the limit of M2, defined in (2.1.7), exist (as r → ∞). Furthermore, let r/n → 0.

For any consistent solution of the likelihood equation (2.1.4) in the sense that

||θ̂ − θo||2 +
r∑
j=1

||ω̂j − ωjo||2
P−→ 0, (2.1.11)
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it holds that
√
n(θ̂ − θ)

D−→ N
(

0, L−1
(
W0 + 2

∞∑
k=1

Wk

)
L−1

)
,

where Wk are defined in A7, and L = limr→∞ r
−1∑r

j=1{E(A1j)−E(B1j)(EC1j)
−1E(B′1j)}.

Remark 3. (i) The consistence condition (2.1.10) is weaker than that identified in

Theorem 1, as m/r →∞.

(ii) The limit which defines the matrix L exists. This is implied by the existence of the

limit of M2.

2.2 Profile quasi-likelihood estimation

We consider now the asymptotic properties of a qMLE for θ, obtained based on a

reasonable initial estimator for the nuisance parameter ω. We will show that the qMLE

is asymptotically normal with the standard root-n convergence rate in spite that the

number of nuisance parameters q goes to ∞.

We use a log quasi-likelihood function

l(θ, ω) =

n∑
t=1

log f(Xt; θ, ω), (2.2.12)

where f is a density function defined on Rp. With an initial estimator ω̂ for the nuisance

parameter ω, a profile quasi-likelihood function for θ is defined as

l(θ) =
n∑
t=1

log f(Xt; θ, ω̂),

and the maximum profile quasi-likelihood estimator (MPQLE) is defined as

θ̃ = arg max
θ

l(θ) = arg max
θ

n∑
t=1

log f(Xt; θ, ω̂).

Let (θo,ωo) = arg maxθ,ω E{log f(Xt;θ,ω)} be the true parameter values. Since l̇(θ̃) =

0, it follows a Taylor expansion that

√
n(θ̃ − θo) = −

{ 1

nm
l̈(θ?)

}−1 1

m
√
n
l̇(θo), (2.2.13)

where θ? is between θ̃ and θo, and m is a normalised constant depending on q.
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We introduce the regularity conditions first. Let

l̇(θ) =
∂l(θ)

∂θ
, l̈(θ) =

∂2l(θ)

∂θ∂θ′
, a(x;θ,ω) =

∂

∂θ
log f(x;θ,ω),

B(x;θ,ω) =
∂2

∂θ∂θ′
log f(x;θ,ω), C(x;θ,ω) =

∂2

∂θ∂ω′
log f(x;θ,ω),

and D(θ,ω) = E{C(Xt;θ,ω)}.

B1 The initial estimator ω̂ = (ω̂1, · · · , ω̂q)′ is asymptotically linear in the sense that

for each 1 ≤ j ≤ q, ω̂j − ωjo = 1
n

∑n
t=1 gj(Xt) + oP (n−1/2), where E{gj(Xt)} = 0,

Var{gj(Xt)} ≤ c < ∞, and c > 0 is a constant independent of j. Furthermore

||ω̂ − ωo||2 = OP (q/n), and q/n→ 0.

B2 f(x;θ,ω) is smooth such that all the required partial derivatives exists and are

continuous. Denoted by aj the j-th component of a. There exists a positive

number c1 and a positive function λ1(·)

such that∣∣∣u′∂2aj(x;θo,ω)

∂ω∂ω′
u
∣∣∣ ≤ λ1(x)||u||2 for any ||ω−ωo|| ≤ c1, u ∈ Rq and 1 ≤ j ≤ q,

and E{λ1(Xt)} is bounded (as q →∞). Furthermore q/(m
√
n)→ 0.

B3 {Xt} satisfies condition C1 in the Appendix, and

ψn(Xt,Xs) = {C(Xt;θo,ωo)g(Xs) + C(Xs;θo,ωo)g(Xt)}/m

satisfies condition C2.

B4 For some γ > 2 and γ > δ′ given in C1, limq→∞E{||a(Xt;θo,ωo)+2D(θo,ωo)g(Xt)||γ}/mγ <

∞. Furthermore

Σj ≡ lim
q→∞

1

m2
Cov{a(X1;θo,ωo)+2D(θo,ωo)g(X1), a(X1+j ;θo,ωo)+2D(θo,ωo)g(X1+j)}

exists for all j ≥ 0.

B5 Let bij(x;θ,ω) be the (i, j)-th element of B(x;θ,ω). There exist a positive number

c2 and a positive function λ2(·) such that || ∂∂θ bij(x;θ,ω)|| + || ∂∂ω bij(x;θ,ω)|| ≤
λ2(x) for any ||θ − θo|| ≤ c2, ||ω − ωo|| ≤ c2 and 1 ≤ i, j ≤ d, the limit of

E{bij(Xt;θo,ωo)}/m exists, and both E{λ2(Xt;θo,ωo)
ν}/mν and E{bij(Xt; θo,ωo)

ν}/mν

are bounded (as q →∞), where ν > 2 is given as in C3. Furthermore, θ̃
P−→ θ0.
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2.2.1 Theorem 3

Theorem 3. Under conditions B1-B5,
√
n(θ̃−θo) is asymptotically normal with mean 0

and covariance matrix M−1(Σ0+2
∑∞

j=1 Σj)M
−1, where M = limq→∞E{B(Xt;θo,ωo)}/m >

0, and Σj is defined in B4.



Chapter 3

Numerical Properties

3.1 Example 1

One-way error component model for panel data (Baltagi 2005, Chapter 2). Let

Ytj = µ+ X′tjβ + µj + εtj , t = 1, · · · , n; j = 1, · · · , r.

In the above model Ytj is the observation on the j-th individual at the time t, Xtj is the

k×1 observation on k explanatory variables, µj denotes the individual-specific effect, εtj

are i.i.d. noise with mean 0 and variance σ2. To make the parameters identifiable, we

assume that
∑

j µj = 0. Suppose that we are interested in the effect of the explanatory

variables on individuals. Therefore we would like to estimate β and µ, treating µ1, · · · , µr
as nuisance parameters. We consider the case that r is large in relation to n while k is

fixed.

The conventional approach is to treat µj i.i.d. from an unknown distribution. Then the

MCQLE may be viewed as a conditional inference on µj . It is interesting to compare

the two approaches.

As an example, Ytj could be a country’s GDP. Xtj are explanatory variables for each

country j at year t such as population, literacy rate, unemployment rate etc. We are

interested in the parameters µ and β for the linear regression Ytj = µ + X′tjβ. The

time-invariant µj accounts for any idiosyncratic domestic productivity. An example of

µj could be the amount the j-th country’s GDP is boosted by the timber which its

sub-tropical climate produces, assuming sustainable cutting and re-planting of trees this

constant boost is time-invariant and specific to this country. We are not interested in

such country specific factors and treat it as a nuisance parameter.

11
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We will conduct a Monte Carlo simulation with 1000 repetitions. Newton Raphson

algorithm will be used to solve the likelihood equations for this and all subsequent

examples. First we generate β as random numbers from U(−1, 1). Next we generate

µj ∼ N (0, 1), we then construct µ = 1
r

∑r
j=1(µj). We transform µj → µj−µ so that the

condition
∑

j µj = 0 is satisfied. We then generate Xtj where each element is a random

number from N (0, 1), let X̄j = 1
n

∑n
t=1(Xtj). We will transform Xtj → Xtj− X̄j so that

the new Xtj satisfy the condition 1
n

∑n
t=1(Xtj) = 0. Finally we generate the dependent

variable Ytj = µ+ X′tjβ + µj + εtj by adding the i.i.d noise εtj ∼ N (0, 1).

We wish to minimise the log likelihood function of the form

l(µ,β, µ̂) = −1

2

∑
j

∑
t

(Ytj − µ−X ′tjβ − µj)2,

FOR MCQLE we will use 2 different approaches. First we pick all subsets (Xti,Xtj) for

1 ≤ i 6= j ≤ r. The number of subsets is r(r− 1)/2 and will grow rapidly as r increases,

which is computationally costly. Our second approach we will pick consecutive subsets

of (Xti,Xtj) with 1 ≤ i ≤ r − 1, andj = i+ 1.

For MPQLE we’ll need to find an initial estimator µ̂j .

1

n

n∑
t=1

(Ytj) = µ+
1

n

n∑
t=1

(X ′tjβ) + µj +
1

n

n∑
t=1

(εtj),

Since we constructed Xtj such that 1
n

∑n
t=1(Xtj) = 0 and εtj ∼ N (0, 1) we have:

1

n

n∑
t=1

(Ytj) = µ+ µj ,

µ =
1

n

1

r

n∑
t=1

r∑
j=1

(Ytj),

µ̂j =
1

n

n∑
t=1

(Ytj)−
1

n

1

r

n∑
t=1

r∑
j=1

(Ytj),
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Table 1: The root mean square error of the methods over 1000 replications. n is the

number of observation, and r the number of nuisance parameters.

The results above illustrate the nice ”blessings of dimensionality”. As r increases the

number of nuisance parameteres µj also increases, however the additional ”information”

available improves our estimates for µ and β. As n the number of observations increase

we see improvements in our estimators as we would expect. The main hinderance to the

accuracy of our estimator would come from an increase in k, the number of explanatory

variables.

The performance of MPQLE and MCQLE is very similar at all n and r, it is important

to remember that the performance of MPQLE depends heavily on the quality of the

initial estimator, for this example our initial estimator is very good.

The quality of estimators from MCQLE and MCQLE consecutive are very close across all

n and r, however the computational cost of MCQLE is very high compared to MCQLE

consecutive. MCQLE is far more time efficient in practice.
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3.2 Example 2

Scalar BEKK model (Engle, Shephard and Sheppard 2008). Let us consider p×1 return

series Xt defined by

Xt = H
1/2
t εt, εt ∼i.i.d. (0, Ip), (3.2.1)

Ht = (1− α− β)Σ + αXt−1X
′
t−1 + βHt−1, (3.2.2)

where α, β > 0 are dynamic parameters, α + β < 1, Σ ≡ (σij) > 0 is the unconditional

covariance matrix of Xt. Note that the model admits a strictly stationary solution.

Our interest is to estimate the dynamic parameters α and β while σij play the role of

nuisance parameters. It may be shown that (3.2.2) admits the solution

Ht =
1− α− β

1− β
Σ + α

∞∑
j=1

βj−1Xt−jX
′
t−j . (3.2.3)

Assuming εt ∼ N(0, Ip), the log-likelihood function is of the form

l(α, β,Σ) = −1

2

∑
t

(log |Ht|+ X′tH
−1
t Xt),

which involves both the inverse and the determinant of p× p matrices Ht.

For MCQLE, we may consider two options: using all binary pairs (Xti, Xtj) for all

1 ≤ i 6= j ≤ p, or using only the consecutive pairs (Xti, Xt,i+1) for i = 1, · · · , p− 1. For

MPQLE, we use the initial estimator

Σ̂ =
1

n

n∑
t=1

(Xt − X̄)(Xt − X̄)′,

where X̄ = n−1
∑

t Xt.

First we generate a random unconditional covariance matrix σ, steps are made to ensure

it is positive semi-definite. We explicitly choose true values of α and β in the region

of the empirical values of α and β when using the BEKK model on equity indices such

as DAX30, FTSE100, S&P500, in a similar fashion to Engle, Shephard and Sheppard

2008.

(α, β) = (0.1, 0.8), (0.05, 0.93), (0.02, 0.97) and p = 5, 10, 50, 100, n = 2000.

Then we will generate Xt and Ht stepwise. During our estimation we use the constraint

that 0 < α, β and α+ β < 1. We will do 500 repetitions in our simulation.
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For MCQLE, we may consider two options: using all binary pairs (Xti, Xtj) for all

1 ≤ i 6= j ≤ p; we call this MCQLEA, or using only the consecutive pairs (Xti, Xt,i+1)

for i = 1, · · · , p−1 we call this MCQLEB. For MPQLE, we use the MLE of the covariance

matrix as the initial estimator for Σ̂. Since we use the sample covariance matrix as an

initial estimator the conditions for theorem 2 is met.

Σ̂ =
1

n

n∑
t=1

(Xt − X̄)(Xt − X̄)′,

where X̄ = n−1
∑

t Xt.
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Table 2: Root mean square error of the methods over 500 replications. Where the

number of observation n is fixed at 1000, and different values are taken for the number

of nuisance parameters p. 3 Sub-tables with different true values for the parameters we

wish to estimate.

From the table above we can see for both MCQLEA and MCQLEB we gain performance

with the increase of dimensionality in p, however for MPQLE when p increases and gets

closer to the size of n the quality of estimators starts to get worse. We will further

investigate the impact on all 3 approaches when the size of p is large compared to n

with another simulation shown below.

MCQLEB does not perform as well as MCQLEA when the dimension p of Xt is small,

but in the cases where p is large there are no significant differences in performance.

However the number of subset pairings of MCQLEA is p(p− 1)/2 while MCQLEB only

have p−1 pairs. The huge increase of computational cost of MCQLEA is not justified for

reasonably large p. In some situations, for example indices derivatives trading, a decision

or price quotation could be extremely time sensitive, it may be worth investigating

what impact reducing the number of pairings even further could have. We saw similar

results in example 1 in terms of the computational cost benefits of not choosing subsets

efficiently and not excessively.
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Table 3: We perform 500 replications where each sub-table has a fixed number of nui-

sance parameters p, with the number of observations T ranging from 100 to 1000.

We perform further simulations to cross examine how the estimation methods compare

with each other when p is large in relation to n. We will perform 500 replications

for each simulation. We use the values α = 0.03 and β = 0.95, p = 10, 50, 100 and

t = 100, 200, 500, 1000

The results above show that the increase in n improves our estimators for all 3 approaches

as we would expect, since more information from an increase of observations would yield

better estimates. For the same n both MCQLE approaches give better estimators as p

increases. For MPQLE this is not the case and the increased p has a heavy negative

impact on the quality of estimators.
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Proofs

We use the same notation as in chapter 2.

4.1 Proof of Theorem 1

The basic idea in the proof of Theorem 1 is the same as that of Theorem 6.5.1 of

Lehmann and Casella (1998), although it becomes technically much more involved in

order to handle the increasing number of parameters as n→∞.

Let

Qδ =
{

(θ,ω1, · · · ,ωr)
∣∣ ||θ − θo||2 +

1

r

r∑
j=1

||ωj − ωjo||2 = δ2/m
}
.

We will show that for any δ > 0 fixed, l(β) < l(βo), for all β ∈ Qδ, with probability

converging to 1. Therefore with probability arbitrarily close to 1 l(β) attains a local

maximum in the interior of Qm for all sufficiently large n. Let β̂ be the local maximum

closest to β0. By the above argument, β̂ must lie in the interior of Qδ for any δ > 0.

This entails the required assertion.

To establish the needed fact concerning the behaviour of l(β) on Qδ, we evoke a Taylor

expansion:

1

nr
{l(β)− l(βo)} =

1

nr
(β − βo)′ l̇(βo) +

1

2nr
(β − βo)′ l̈(βo)(β − βo)

+
1

6nr

∑
`,i,k

(β` − β`o)(βi − βio)(βk − βko)
∂3

∂β`∂βi∂βk
l(β?) ≡ S1 + S2 + S3,(4.1.1)

where β? lies between β and βo.

18
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For β ∈ Qδ, write θ − θo = δ√
m
γ and ωj − ωjo = δ

√
r
mγj . Then all the elements of γ

and γj are between −1 and 1. Furthermore,

S1 =
δγ ′

n
√
m

n∑
t=1

1

r

r∑
j=1

atj +
δ
√
r

n
√
m

n∑
t=1

1

r

r∑
j=1

γ ′jbtj . (4.1.2)

Let ξtj denote any component of atj . Since E(
∑

j atj) = 0, it holds for any ε > 0 that

P
(√m
n

n∑
t=1

∣∣1
r

r∑
j=1

ξtj
∣∣ > ε

)
≤ m

nε2
{

Var(ζtr) + 2

n−1∑
t=1

(1− t

n
)Cov(ζ1r, ζ1+t,r)

}
≤ m

nε2
{

Var(ζtr) + 2E(|ζtr|ν)2/ν
∞∑
t=1

α(t)1−2/ν
}
→ 0.(4.1.3)

where ζtr = r−1
∑

1≤j≤r ξtj . The last inequality follows from Proposition 2.5 of Fan and

Yao (2003); see also conditions A1 and A3. Hence the first sum on the RHS of (4.1.2)

is of the order oP (m−1), and the convergence is uniform for γ in any compact subset of

Rd.

To estimate the second term on the RHS of (4.1.2), let dj denotes the length of btj ≡
(btj1, · · · , btjdj )′. Then max1≤j≤r dj are bounded (as r →∞). Note

sup
{γj}

∣∣ n∑
t=1

r∑
j=1

γ ′jbtj
∣∣ = sup

{γj}

∣∣ r∑
j=1

γ ′j

n∑
t=1

btj
∣∣ ≤ r∑

j=1

dj∑
i=1

∣∣ n∑
t=1

btji
∣∣.

Hence

P
{

sup
{γj}

√
rm

n

∣∣ n∑
t=1

1

r

r∑
j=1

γ ′jbtj
∣∣ > ε

}
≤ P

{√rm
n

r∑
j=1

dj∑
i=1

∣∣ n∑
t=1

btji
∣∣ > εr

}
≤

r∑
j=1

P
{√rm

n

dj∑
i=1

∣∣ n∑
t=1

btji
∣∣ > ε} ≤

r∑
j=1

dj∑
i=1

P
{√rm

n

∣∣ n∑
t=1

btji
∣∣ > ε/dj}

≤ rm(maxj dj)
2

nε2

r∑
j=1

dj∑
i=1

{Var(btji) + 2(E|btji|ν)2/ν
∞∑
t=1

α(t)1−2/ν} → 0, (4.1.4)

as r2m/n → 0 and condition A3 stands. The last inequality in the above expression

follows the same argument as for (4.1.3). This shows that the second sum on the RHS

of (4.1.2) is also oP (m−1). Therefore S1 = oP (m−1), and the convergence is uniform for

β ∈ Qδ.
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To calculate S2, we first note that similar to (4.1.4), condition A4 implies that

1

nr

n∑
t=1

r∑
j=1

(θ − θo)′Atj(θ − θo)−
1

r

r∑
j=1

(θ − θo)′E(A1j)(θ − θo)

=
1

n

n∑
t=1

1

r

r∑
j=1

(θ − θo)′(Atj − EAtj)(θ − θo) = oP (m−1),

1

nr

n∑
t=1

r∑
j=1

(θ − θo)′Btj(ωj − ωtj)−
1

r

r∑
j=1

(θ − θo)′E(B1j)(ωj − ωtj) = oP (m−1),

1

nr

n∑
t=1

r∑
j=1

(ωj − ωtj)′Ctj(ωj − ωtj)−
1

r

r∑
j=1

(ωj − ωtj)′E(C1j)(ωj − ωtj) = oP (m−1).

Furthermore, all the convergences above are uniform for β ∈ Qδ, as the sizes of all

the matrices on the LHS of in the above expressions are fixed, and the the uniform

convergence may be established in the same manner as in (4.1.4). Now

S2 =
1

2nr

n∑
t=1

r∑
j=1

{(θ − θo)′Atj(θ − θo) + 2(θ − θo)′Btj(ωj − ωjo) + (ωj − ωjo)′Ctj(ωj − ωjo)}

=
1 + oP (1)

2r

r∑
j=1

{(θ − θo)′EAtj(θ − θo) + 2(θ − θo)′EBtj(ωj − ωjo) + (ωj − ωjo)′ECtj(ωj − ωjo)}

= − 1

2r
(β − βo)′M1(β − βo){1 + oP (1)} = − 1

2
β′rM2βr{1 + oP (1)},

where M1, M2 are defined in (2.1.6) and (2.1.7), and

βr = ((θ − θo)′, (ω1 − ω1o)
′/
√
r, · · · , (ωr − ωro)′/

√
r)′.

For β ∈ Qδ, ||βr||2 = δ2/m. Since all the eigenvalues of M2 are bounded between 0 and

∞ (see condition A5), β′rM2βr = 2c||βr||2 = 2cδ2/m, where c > 0 is a constant. Hence

S2 = −cδ2/m{1 + oP (1)} uniformly for all β ∈ Qδ.
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Finally we deal with S3. Note that ∂2

∂ωi∂ω′j
l(β) = 0 for any i 6= j. Similar to the above,

it may be proved using condition A6 that

|S3| ≤
1 + oP (1)

6r

( ∣∣∑
`,i,k

(θ` − θ`o)(θi − θio)(θk − θko)
∣∣ r∑
j=1

E{λj(Xtj)}

+
∣∣∑
i,k

(θi − θio)(θk − θko)
∣∣ r∑
j=1

∣∣∑
`

(ωj` − ωj`o)
∣∣E{λj(Xtj)}

+
∣∣∑
k

(θk − θko)
∣∣ r∑
j=1

∣∣∑
`,i

(ωj` − ωj`o)(ωji − ωjio)
∣∣E{λj(Xtj)}

+

r∑
j=1

∣∣∑
`,i,k

(ωj` − ωj`o)(ωji − ωjio)(ωjk − ωjko)
∣∣E{λj(Xtj)}

)
≡ (S31 + S32 + S33 + S34){1 + oP (1)}.

Note that E{λj(Xtj)} is bounded by a constant for 1 ≤ j ≤ r, |θi − θio| ≤ δ/
√
m and

|ωjk−ωjko| ≤ δ
√
r/m for all β ∈ Qδ, and all the lengths of ωj are bounded. It is easy to

see S31 = O(m−3/2) = o(m−1) and S32 = O(m−3/2r1/2) = o(m−1). On the other hand,

S33 ≤ c2
r
√
m

r∑
j=1

∣∣∑
`,i

(ωj` − ωj`o)(ωji − ωjio)
∣∣ =

c2
r
√
m

r∑
j=1

∣∣∑
i

(ωji − ωjio)
∣∣2

≤ c3
r
√
m

r∑
j=1

||ωj − ωjo||2 ≤
c3

m3/2
= o(m−1),

S34 ≤
c4√
mr

r∑
j=1

∣∣∑
i

(ωji − ωjio)
∣∣2 ≤ c5r

1/2

m3/2
= o(m−1).

This concludes that S3 = oP (m−1).

Combining the above asymptotic approximations for S1, S2 and S3 together, we have

shown that uniformly for β ∈ Qδ

1

nr
{l(β)− l(βo)} = −c δ2/m+ oP (m−1),

where c > 0 is a constant. This completes the proof.

4.2 Proof of Theorem 2

Since l̇(β̂) = 0, it follows from a simple Taylor expansion that

β̂ − βo = −{l̈(β?)}−1 l̇(βo), (4.2.5)
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where l̈ = ∂2l
∂β∂β′

, and β? lies on the line between β̂ and βo. Note

l̈(β) =
n∑
t=1


∑r

j=1 Atj(θ,ωj) Btj(θ,ω1) · · · Btr(θ,ωr)

Bt1(θ,ω1)
′ Ct1(θ,ω1)

...
. . .

Btr(θ,ωr)
′ Ctr(θ,ωr)

 ,

where the entries at the blank places are all 0. We partition the above matrix into

2× 2 blocks with
∑

t

∑
j Atj(θ,ωj) as the (1, 1)-th block. By inverting this partitioned

matrix, the first d components of (4.2.5) may now be expressed as

√
n(θ̂ − θo)

= −
{ 1

nr

r∑
j=1

( n∑
t=1

Atj(θ
?,ω?j )−

n∑
t=1

Btj(θ
?,ω?j )

{ n∑
t=1

Ctj(θ
?,ω?j )

}−1 n∑
t=1

Btj(θ
?,ω?j )

′
)}−1

× 1√
n r

r∑
j=1

( n∑
t=1

atj −
n∑
t=1

Btj(θ
?,ω?j )

{ n∑
t=1

Ctj(θ
?,ω?j )

}−1 n∑
t=1

btj

)
. (4.2.6)

For any matrix B, denote by |B|a the sum of the absolute values of all the elements of

B. Note that all the sizes of the matrices Atj , Btj and Ctj are bounded. It follows from

condition A6 that

max
1≤j≤r

∣∣ 1
n

n∑
t=1

Atj(θ
?,ω?j )− E(A1j)

∣∣
a

(4.2.7)

≤ max
1≤j≤r

1

n

∣∣ n∑
t=1

{Atj(θ
?,ω?j )−Atj}

∣∣
a

+ max
1≤j≤r

∣∣ 1
n

n∑
t=1

Atj − E(A1j)
∣∣
a

≤ {|θ? − θo|a + max
1≤j≤r

|ω?j − ωjo|a} max
1≤j≤r

1

n

n∑
t=1

λj(Xtj) + max
1≤j≤r

∣∣ 1
n

n∑
t=1

Atj − E(A1j)
∣∣
a
.

For any ε > 0,

P
{

max
1≤j≤r

∣∣ 1
n

n∑
t=1

Atj − E(A1j)
∣∣
a
> ε
}
≤

r∑
j=1

P
{∣∣ 1
n

n∑
t=1

Atj − E(A1j)
∣∣
a
> ε
}

(4.2.8)

≤ c

n

∑
ηtj

r∑
j=1

[
Var(ηtj) + 2{E(|ηtj |ν)}2/ν

∞∑
k=1

α(k)1−2/ν
]
→ 0.

The limit above is guaranteed by condition A4 and the fact that r/n→ 0. In the above

expression, ηtj denotes a generic element of Atj , and the sum
∑

ηtj
is taken over all the

elements of Atj . The last inequality follows the same argument as in (4.1.3). In the
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same way we may show that maxj | 1n
∑n

t=1[λj(Xtj)−E{λj(Xtj)}]|
P−→ 0, and therefore

max
1≤j≤r

1

n

n∑
t=1

λj(Xtj) = OP (1). (4.2.9)

Now we show that

max
1≤j≤r

|ω?j − ωjo|a
P−→ 0. (4.2.10)

It follows from (2.1.10) that for any ε > 0, it holds for all sufficiently large n that

P
{ r∑
j=1

||ω̂j − ωjo||2 ≤ ε2/k20
}
> 1− ε,

where k0 is the maximum length of the vectors ω1, · · · ,ωr, which is fixed. Since ω?j lies

between ω̂j and ωjo, |ω?j − ωjo|a ≤ |ω̂j − ωjo|a. Hence

P{max
1≤j≤r

|ω?j − ωjo|a ≤ ε} ≥ P{max
1≤j≤r

|ω̂j − ωjo|a ≤ ε}

≥ P
{ r∑
j=1

||ω̂j − ωjo||2 ≤ ε2/k20
}
> 1− ε.

Therefore (4.2.10) holds. Combining (4.2.7) – (4.2.10), we conclude

max
1≤j≤r

∣∣ 1
n

n∑
t=1

Atj(θ
?,ω?j )− E(A1j)

∣∣
a

P−→ 0. (4.2.11)

It may be established in the same manner that

max
1≤j≤r

∣∣ 1
n

n∑
t=1

Btj(θ
?,ω?j )−E(B1j)

∣∣
a

P−→ 0, max
1≤j≤r

∣∣ 1
n

n∑
t=1

Ctj(θ
?,ω?j )−E(C1j)

∣∣
a

P−→ 0,

which implies that

max
1≤j≤r

∣∣∣ 1
n

n∑
t=1

Btj(θ
?,ω?j ){

n∑
t=1

Ctj(θ
?,ω?j )}−1

n∑
t=1

Btj(θ
?,ω?j )

′−E(B1j)(EC1j)
−1E(B′1j)

∣∣∣
a

P−→ 0.

Combining this with (4.2.11), we obtain that

1

nr

r∑
j=1

( n∑
t=1

Atj(θ
?,ω?j )−

n∑
t=1

Btj(θ
?,ω?j )

{ n∑
t=1

Ctj(θ
?,ω?j )

}−1 n∑
t=1

Btj(θ
?,ω?j )

′
)

=
1

r

r∑
j=1

{E(A1j)− E(B1j)(EC1j)
−1E(B′1j)}+ oP (1)→ L.
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Using the similar arguments, we may show that

1√
n r

r∑
j=1

n∑
t=1

Btj(θ
?,ω?j )

{ n∑
t=1

Ctj(θ
?,ω?j )

}−1 n∑
t=1

btj−
1√
n r

r∑
j=1

E(B1j)(EC1j)
−1

n∑
t=1

btj
P−→ 0.

Now it follows from (4.2.6) that

√
n(θ̂ − θo) = L−1

1√
n

n∑
t=1

1

r

y∑
j=1

{atj − E(B1j)(EC1j)
−1btj}{1 + oP (1)}.

The required asymptotic normality follows from Proposition 2 in the Appendix now; see

condition A7. This concludes the proof.

4.3 Proof of Theorem 3

Using the notation in section 3, we have

1

m
√
n
l̇(θo)−

1

m
√
n

n∑
t=1

a(Xt;θo,ωo) =
1

m
√
n

n∑
t=1

{
a(Xt;θo, ω̂)− a(Xt;θo,ωo)}(4.3.12)

=
1

m
√
n

n∑
t=1

C(Xt;θo,ωo)(ω̂ − ωo) +
1

m
√
n

n∑
t=1


(ω̂ − ωo)′ ∂

2a1(Xt;θo,ω?)
∂ω∂ω′ (ω̂ − ωo)

...

(ω̂ − ωo)′ ∂
2ad(Xt;θo,ω?)

∂ω∂ω′ (ω̂ − ωo)


=

1

n3/2m

n∑
t,s=1

C(Xt;θo,ωo)g(Xs) +OP
( q

m
√
n

)
,

where ω? is between ω̂ and ωo, and g = (g1, · · · , gq)′. The last equality in the above

expression follows from conditions B1 and B2. Note that

n∑
t,s=1

C(Xt;θo,ωo)g(Xs) = 2
∑

1≤t<s≤n
{C(Xt;θo,ωo)g(Xs) (4.3.13)

+ C(Xs;θo,ωo)g(Xt)} +
n∑
t=1

C(Xt;θo,ωo)g(Xt).

By applying the Hoeffding decompostion (A.1) (with m = 2) to the first sum on the

RHS of (4.3.13), it follows from (4.3.12) and (4.3.13) that

1

m
√
n
l̇(θ) =

1

m
√
n

n∑
t=1

a(Xt;θo,ωo) +
2(n− 1)

n3/2m

n∑
t=1

D(θo,ωo)g(Xt) (4.3.14)

+ Ln +
1

n3/2m

n∑
t=1

C(Xt;θo,ωo)g(Xt) + OP
( q

m
√
n

)
,
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where

Ln =
2

n3/2m

∑
1≤t<s≤n

[
C(Xt;θo,ωo)g(Xs)+C(Xs;θo,ωo)g(Xt)−D(θo,ωo){g(Xt)+g(Xs)}

]
.

By Proposition 1 in the Appendix, E{(n−1/2Ln)2} = O(n−1−γ). Hence it holds for any

constant c,

P (|Ln| ≥ c) = P
{
n(n−1/2Ln)2 > c

}
= n ·O(n−1−γ) = O(n−γ)→ 0;

see condition B3. We may also show in the similar (but simpler) manner that

1

n3/2m

n∑
t=1

C(Xt;θo,ωo)g(Xt) = OP (n−1/2).

Therefore it follows from (4.3.14) that

1

m
√
n
l̇(θo) =

1

m
√
n

n∑
t=1

{a(Xt;θo,ωo) + 2D(θo,ωo)g(Xt)}+ oP (1).

Note conditions B4 and B3 imply conditions C3 and C4. By Proposition 2,

1

m
√
n
l̇(θo)

D−→ N(0, Σ0 + 2

∞∑
j=1

Σj). (4.3.15)

Furthermore, the convergence of the sum
∑

j≥1 Σj is guaranteed by condition B4.

On the other hand,

1

nm
l̈(θ?) =

1

nm

n∑
t=1

B(Xt;θo,ωo) +
1

nm

n∑
t=1

G(Xt;θ
??,ω?,θ? − θo, ω̂ − ωo), (4.3.16)

where (θ??,ω?) lies between (θ?, ω̂) and (θo,ωo), and G is a d × d matrix with the

(i, j)-th element

(θ? − θo)′
∂

∂θ
bij(Xt;θ

??,ω?) + (ω̂ − ωo)′
∂

∂ω
bij(Xt;θ

??,ω?), (4.3.17)

and bij denotes the (i, j)-th element of B. Write µij,m = E{bij(Xt;θo,ωo)}/m. Then

for any ε > 0,

P
{∣∣ 1

nm

n∑
t=1

bij(Xt;θo,ωo)−µij,m(θo,ωo)
∣∣ > ε

}
≤ 1

ε2n2
Var
{ 1

m

n∑
t=1

bij(Xt;θo,ωo)
}
→ 0.
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The limit is guaranteed by B5 and the mixing condition on Xt; see Proposition 2.5 of

Fan and Yao (2003). Hence

1

nm

n∑
t=1

B(Xt;θo,ωo)
P−→M,

where M is a d× d matrix with the limit of µij,m as its (i, j)-th element. Note that the

absolute value of the expression in (4.3.17) is bounded from the above by

λ2(Xt;θo,ωo){||θ? − θo||+ ||ω̂ − ωo||}.

Condition B5 implies that there exists a positive and finite constant c for which

P
{ 1

nm

n∑
t=1

λ2(Xt;θo,ωo) ≤ c
}
→ 1.

Since ||θ?−θo||+ ||ω̂−ωo||
P−→ 0, the second term on the RHS of (4.3.16) converges to

0 in probability. Therefore 1
nm l̈(θ

?)
P−→M. This, together with (4.3.15), concludes the

theorem.
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Appendix: U-statistics

Let ξt be a p×1 strictly stationary process, ξt is Ft-measurable, and F1 ⊂ F2 ⊂ · · · is a

sequence of σ-algebra. Let ψn(x1, · · · ,xm) be a real-valued function defined on (Rp)m,

and it is symmetric in its m(≥ 2) arguments. A U -statistic based on n observations

ξ1, · · · , ξn is defined as

Un =
m!(n−m)!

n!

∑
1≤i1<···<im≤n

ψn(ξi1 , · · · , ξim).

For k = 1, · · · ,m− 1, let

ψn,k(x1, · · · ,xk) =

∫
ψn(x1, · · · ,xk,xk+1, · · · ,xm)

n∏
j=k+1

F (dxj),

where F (·) denotes the marginal distribution of ξt. For the simplicity in presentation,

we assume that E{ψn,1(ξt)} = 0. (Otherwise we replace ψn by ψn − E{ψn,1(ξt)}.) Put

hn,1(x1) = ψn,1(x1),

hn,2(x1,x2) = ψn,2(x1,x2)− hn,1(x1)− hn,1(x2),

hn,3(x1,x2,x3) = ψn,3(x1,x2,x3)−
3∑
j=1

hn,1(xj)−
∑

1≤i<j≤3
hn,2(xi,xj),

· · · · · ·

hn,m(x1, · · · ,xk) = ψn(x1, · · · ,xk)−
m∑
j=1

hn,1(xj)−
∑

1≤i<j≤m
hn,2(xi,xj)− · · ·

−
∑

1≤i1<···im−1≤m
hn,m−1(xi1 , · · · ,xik).

27
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The Hoeffding decomposition (Lemma A, pp. 178 in Serfling 1980) is of the form

Un =
m

n

n∑
j=1

ψn,1(ξj) +
m∑
k=2

m!

(m− k)!
Sn,k, (A.1)

where

Sn,k =
(n− k)!

n!

∑
1≤i1<···<ik≤n

hn,k(ξi1 , · · · , ξik). (A.2)

As long as the variance of ψn,1(ξj) does not diminish to 0, the asymptotic property

of Un is determined by that of the first sum on the RHS of (A.1). The lemma below

shows indeed that the remainder term (i.e. the other sum) is asymptotically negligible.

Different from conventional setting, we allow the kernel function ψn to vary with respect

to the sample size n. Furthermore, we allow the dimension p of ξj to diverge to ∞
together with n. We first introduce some regularity conditions.

C1. {ξt} is a strictly stationary and β-mixing (i.e. absolutely regular) process with

the β-mixing coefficients satisfying the condition β(n) = O(n−(2+δ
′)/δ′), where

δ′ ∈ (0, δ) is a constant.

C2. It holds for all n, p and 1 ≤ i1 < · · · < im ≤ n that E{|ψn(ξi1 , · · · , ξim)|2+δ} ≤M ,

and ∫ ∣∣ψn(x1, · · · ,xm)
∣∣2+δ m∏

j=1

F (dxj) ≤M,

where δ > 0, M > 0 are fixed constants.

Proposition 1. Under conditions C1 and C2, it holds that E(S2
n,k) = O(n−1−γ) for

k = 2, · · · ,m, where Sn,k is defined as in (A.2) and γ = min{1, 2(δ−δ′)
δ′(2+δ)}.

5.1 Proposition 1

Proposition 1 is essentially Lemma 2 of Yoshihara (1976). The only difference here is to

allow ψn to vary with n and the dimension p to grow. Nevertheless the original proof

is still applicable. However it was an error to define γ = 2(δ−δ′)
δ′(2+δ) in Yoshihara (1976), as

the optimal rate for E(S2
n,k) is n−2. Therefore it must hold that γ ≤ 1. Note that this

optimal rate is attainable when, for example, {ξt} is a sequence of independent r.v.s, or

the rate of the mixing coefficients is strengthened to satisfy the condition

∞∑
k=1

kβ(k)δ/(2+δ) <∞.
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Now we turn to the asymptotic normality of the first term on the RHS of (A.1). We

state the required regularity conditions separately below.

C3. {ξt} is a strictly stationary and α-mixing (i.e. strong mixing) process with α-

mixing coefficients satisfying the condition
∑

k≥1 α(k)1−2/ν < ∞, where ν > 2 is

a constant.

C4. For ν > 2 given in C3 above, limn→∞E{|ψn,1(ξ1)|ν} <∞. Furthermore, the limit

of Cov{ψn,1(ξ1), ψn,1(ξj)} exists for any 1 ≤ j ≤ n.

Put

B2
n =

1

n
Var
{ n∑
t=1

ψn,1(ξt)
}

= Var{ψn,1(ξ1)}+2

n−1∑
j=1

(
1− j

n

)
Cov{ψn,1(ξ1), ψn,1(ξ1+j)}.

5.2 Proposition 2

Proposition 2. Under conditions C3 and C4, it holds that

1√
nBn

n∑
t=1

ψn,1(ξt)
D−→ N(0, 1).

5.2.1 Proof

Proof. By Proposition 2.5 of Fan and Yao (2003) with p = q = ν,

|Cov{ψn,1(ξ1), ψn,1(ξ1+j)}| ≤ 8α(j)1−
2
ν {E|ψn,1(ξ1)|ν}2/ν ,

see condition C4. Hence it follows from condition C3 that

lim
n→∞

n−1∑
j=1

|Cov{ψn,1(ξ1), ψn,1(ξ1+j)}| ≤ 8 lim
n→∞

{E|ψn,1(ξ1)|ν}2/ν
∞∑
j=1

α(j)1−2/ν <∞.

Now by the Lebesgue dominated convergence theorem, it holds that

lim
n→∞

B2
n = lim

n→∞

1

n
Var
{ n∑
t=1

ψn,1(ξt)
}

= σ2 ∈ (0,∞), (A.3)

where σ2 is a constant.

Now we partition the set {1, · · · , n} into 2kn + 1 subsets with large blocks of size ln,

small blocks of size sn and the last remaining set of size n − kn(ln + sn), where ln and
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sn are selected such that

sn →∞, sn/ln → 0, ln/n→ 0, and kn = [n/(ln + sn)] = O(sn).

For example, we may choose ln = O(n
a−1
a ) and sn = O(n1/a) for any a > 2. Then

kn = O(n1/a) too. For j = 1, · · · , kn, define

ηj =

jln+(j−1)sn∑
i=(j−1)(ln+sn)+1

ψn,1(ξi), ζj =

j(ln+sn)∑
i=jln+(j−1)sn+1

ψn,1(ξi), χ =

n∑
i=kn(ln+sn)+1

ψn,1(ξi).

Similar to (A.3), it may be proved that

lim
n→∞

1

n
Var
( kn∑
j=1

ζj
)

= lim
n→∞

knsn
n

1

knsn
Var
( kn∑
j=1

ζj
)

= 0,

and n−1Var(χ)→ 0. Hence

1√
nBn

n∑
t=1

ψn,1(ξt) =
1√
nBn

{ kn∑
j=1

ηj +

kn∑
j=1

ζj + χ} =
1√
nBn

kn∑
j=1

ηj + oP (1). (A.4)

By Proposition 2.6 of Fan and Yao (2003),

∣∣∣E{ exp
( it√

nBn

kn∑
j=1

ηj
)}
−

kn∏
j=1

E{exp
( itηj√

nBn

)}∣∣∣ ≤ 16(kn − 1)α(sn)→ 0, (A.5)

see condition C3. Again similar to (A.3), it holds that Var(
∑

1≤j≤kn ηj)/Bn → 1. It

follows from condition C4 that

lim sup
n
E
[
|ψn,1(ξ1)|2I{|ψn,1(ξ1)| ≥ ε

√
n}
]
≤ 1

εν−2nν/2−1
lim
n
E{|ψn,1(ξ1)|ν} → 0,

for any ε > 0. Noticing (A.3), it follows from the theorem on page 31 of Serfling (1980)

that
kn∏
j=1

E{exp
( itηj√

nBn

)}
→ e−t

2/2.

This together with (A.5) and (A.4) entails the required result.
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