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Abstract

This paper considers estimation of parameters for high-dimensional time series with the
presence of many nuisance parameters. In particular we are interested in data consisting
of p time series of length n, with p to be as large or even larger than n. Here we consider
the composite-likelihood estimation and the profile quasi-likelihood estimation. The
asymptotic properties of these methodologies are investigated. Simulations are used to

illustrate our both of these methods and explore the performance of these methods.

Key words: composite likelihood, nuisance parameter, profile likelihood, quasi-likelihood,

root-n convergence, time series.
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Chapter 1

Introduction

1.1 Introduction

Rapid developments in technology in this information age has led to data collection in an
unprecedentedly large scale. This brings a new opportunity with challenge to statistics.
The availability of large data sets enable statisticians to look into complex structures
using sophisticated models. In this paper we consider a class of models in which the
number of parameters of interest is finite while the number of nuisance parameters is
large or excessively large in relation to the sample size. Those models arise in various
statistical applications. For example, in a longitudinal model with a large number of
sites the primary interest lies in a small number of parameters representing the common
effects while the individual levels of different sites are treated as nuisance parameters. For
a large panel of time series data, one is often interested in a few common factors which
drives the dynamics of all the component series and treats the parameters representing
each idiosyncratic components as nuisance parameters. In the attempts to model the
volatilities of large number of financial securities, it is often to assume that the dynamic
volatilities are controlled by a small number of parameters in the presence of large

number of nuisance parameters representing marginal covariance matrices.

In this paper we consider two methods to obtain the estimators of a fixed number of pa-
rameters of interest in presence of a large number of nuisance parameters. The methods
concerned are the maximum profile quasi-likelihood estimation (MPQLE) and the maxi-
mum composite quasi-likelihood estimation (MCQLE). With an initial estimator for the
nuisance parameter vector, the MPQLE maximises a profile quasi-likelihood function to
obtain the estimation. This is in line with more conventional approach. By plugging in

an initial estimator for the nuisance parameters, we avoid a maximisation problem with
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a large number of variables. However it is intuitively clear that the quality of the initial

estimator impacts on the ultimate outcome of the procedure.

Another method to be considered is the composite likelihood, the name coined by Lind-
say (1988). See also a recent survey Varin et al. (2011). A composite likelihood is
a function derived by multiplying a collection of, typically two- or there-dimensional,
marginal density functions. In our context, each low dimensional density function only
depends on a small number of nuisance parameters, hence can be easily profiled. The
resulting composite profile likelihood function depends on those parameters of interest
only, can be solved to obtain the estimator without running into high-dimensional opti-
misation problems. Because the marginal densities are multiplied together, ignoring the
original distribution structure, the MCQLE can be viewed as derived from a (seriously)

misspecified model.

The major contribution of this paper is the establishment of the asymptotic properties for
both the MCQLE and the MPQLE under the condition which is relevant to the settings
concerned. The conventional asymptotic theory is typically under the assumption that
the sample size goes to infinity while everything else remains fixed. For our setting,
the number of nuisance parameters is of a comparable magnitude of the sample size.
Hence it is more pertinent to consider the asymptotics when both the sample size and
the number of nuisance parameters go to infinity together. Though bearing a similar
banner, our theory is different from large literature on the theory for the so-called ‘large
p and small n’ regression problem; see, among the others, Zou (2006), Fan and Lv (2008),
Huang et al (2008), Zhang and Huang (2008), Bickel et al (2009) and Zhang (2009).

The name of ‘composite likelihood’” was introduced by Lindsay (1988), although the
idea of using ‘submodels’ or ‘marginal models’ had appeared before. As the full like-
lihood with complex models are often computationally infeasible, The composite like-
lihood methods have been used in different regression with dependent errors (Eicher
1967), problems including modelling spatial processes (Besag 1974), case control studies
(Liang 1987), inference for nonlinear dynamic models (Gallant and White 1988), cor-
related binary data (Kuk and Nott 2000), grouped data (deLeon 2005), longitudinal
studies (Molenberghs and Verbeke 2005), multivariate volatility modeling (Engle et al.
2008), bioinformatice (Larribe and Fearnhead 2011). The asymptotic theory under the
assumption that only sample size tends to infinity has been studies by, for example,
Cox (1961), Eicher (1967), White (1982), Gallant and White (1988), and Cox and Reid
(2004). To our knowledge, no results have been derived under our setting when both the
sample size and the number of nuisance parameters go to infinity together. For more
comprehensive survey in the composite likelihood methodology, we refer to the first issue

Statistica Sinica (2011) vol.21 which contains a collection of the papers on this topic.
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The rest of the paper is organised as follows. Section 2 deals with the MCQLE and
section 3 is on MPQLE. In each of those two sections, we outline the method and
state the asymptotic normality results. Both the methods are illustrated in simulation

reported in section 4. All technical proofs are given in section 5.
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Methodology

2.1 Composite-likelihood estimation

Let {Xy,---,X,,} be p x 1 observations from a stationary process with the underlying
distribution depending on parameter (8, w) € ©xQ C R4 where 0 is a d x 1 parameter
of interest, and w is a ¢ x 1 nuisance parameter. Our goal is to estimate 8. We consider
now a maximum composite quasi-likelihood estimation method for 8. We will show that
such an estimator is asymptotically normal with the standard root-n convergence rate

as n,q — oo together while d is fixed, and p may also diverge to infinity.

Let X1, -+, Xy be r subvectors of X;. The lengths of those r subvectors may be
different from each other, and some of those subvectors may share common components
from X;. With the observations X;;,¢ = 1,---,n, the log marginal quasi-likelihood

function is defined as

1i(0,w;) = log f;(X4j; 0, w;),
t=1

which depends on the parameter of interest 8, and a subset of nuisance parameter
denoted by w;. Let
w;(0) = argmax(;(0,w;). (2.1.1)
wj

We define a composite quasi-likelihood function for 6 as
10) => 1;(0,0;(0)). (2.1.2)
j=1

The maximum composite quasi-likelihood estimator (MCQLE) for 0 is defined as

0 = arg mgxl(e). (2.1.3)
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We assume that r = r(q) — 0o as ¢ — oo, while all the lengths of X;; and w; are fixed.

One implicit condition for the MCQLE defined in (2.1.3) being reasonable is that the
nuisance parameters wi, - - - , w, are distinct from each other such that the maximisation
(2.1.1) may be carried out independently for each j without confounding constraints from
each other. This is a rather strong requirement, and may only be facilitated by selecting
subvectors Xy, -+, Xy in a restrictive manner. It is very likely there may be a heavy
loss of information if we adhere to this requirement in practice. One alternative is to
adopt the so-called ‘variation-free’ condition imposed by Engle, Hendry and Richard
(1983), which ignores the links among different w; and treats wi, - ,w, as different
and unconnected nuisance parameters. See also Engle, Shephard and Sheppard (2008).
Of course there will be some efficiency loss in estimation of 8 resulted from neglecting
the links among different w;. The trade-off is that we will be able to reduce an extra
high-dimensional optimisation problem to many low-dimensional problems, which is the
essential motivation of using composite-likelihood approach. Note that this variation-

free condition also implies that 0 is the global maximiser in the sense that

(5, @1, -, Wp) = arg wnlaax Zl (0,w;),
where we treat wi,--- ,w, as different and independent parameters. In the rest of this

section, we always adopt this assumption.

Let 8 = (0,0}, - ,w;),and [(B) = >_7_, 1;(0,w;). In practice we take B = (5,,&3’1, @Y

as a solution of the likelihood equation

~ 0 B
i(B) = *agl(ﬂ)‘ﬁ:@ = 0. (2.1.4)
Let
Bo = (05, Wiy, -+ wWhy) = arg max E{§ log f;(Xyj;0,w;)} (2.1.5)
wl? 7 ] 1

be the true value of the parameter, which is assumed to be an inner point of the param-

eter space. Put

0 0
a;(0,w;) = 20 log fj(X¢j;0,w;j), byi(0,w)) = %jlog [i (X5 0,w;5),
2 2
A0, wj) = 9000 log fj(X45;0,w;), Bij(0,w;) = 900w / log f;(Xt;; 0, w;),
2
Ctj(é?,wj) = Wlogfj(th;O,wj).
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We simply write a;; = a;;(8,,wjo), and byj, Ayj, Byj and Cy; in the same manner. Put

' EA; EBy - EBy
EB! EC
M, = — = " : (2.1.6)
EB), EC,,
Ly EAy %EBH #EBW
1 /
LEB ECy
My = — Ve ! _ , (2.1.7)
%EBQT EC;,

and the elements at the blank places in the above matrices are 0.

We introduce some regularity conditions first.

A1l {X;} satisfies the mixing condition stated in C3 in the Appendix.

A2 f; are smooth enough such that all the required derivatives exist and are continuous

and integrable whenever necessary.

A3 Denote by &; any component of a;;, and 7;; any component of b;. For v > 2 given

in A1l above, it holds that

— ol
rlggoE{\rz;gtj\ } < o0, (2.1.8)
J:
T 1 - v v
Tlgrgor;[E(n?j) +{E(Imis ) }?"] < oo. (2.1.9)
j:

By Hlder’s inequality this is equivalent to

T

Tiy 1 v v
Jm E[E(Imjl )] < oo, (2.1.10)
]:

A4 Denote by 1 any element of Ay; — E(Ayj), Byj — E(By;) or Cyj — E(Cyj). Then
(2.1.9) holds.

A5 The matrix M, is positive-definite. Furthermore all the eigenvalues of the matrix

M, are bounded above from co and below from 0, as r — oo.

A6 There exists a constant ¢; > 0 and positive functions A;(-) such that ]W log f(x;;0,w;)| <
Aj(x;) for any [[0—8,|| < ¢; and ||wj—wjol| < ¢1. Furthermore lim, o0 sup; < j<,. E{X;j(Xy;)} <
0,, and (219) holds with with Nej = )‘j(th) - E{A](th)}
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A7 (2.1.9) holds with n;; being any component of ¢,; = ay;; — E(By;)(ECy;) 'by;.
Furthermore the limits of the convariance
Wk = hm,,_wo %(Z;:l Clj’ Z;:l Ck—}—l,j)? k= 0, 17 S Exists

Remark 1. (i) Note that M; = —E{%;B, > j—1log fj(th;O,wj)}. The condition
that M; > 0 in A5 implies that 3,, defined in (2.1.5), is an isolated maximiser. It
also implies that Mj is positive-definite as My = AM;A, where A is an appropriate

full-ranked diagonal matrix.

(ii) If X4,---,X,, are independent observations, conditions A3, A4 and A6 may be

reduced to those with v = 2 only.

2.1.1 Theorem 1

Theorem 1. Let conditions A1 — A6 hold. Then there exists a solution of the likelihood
equation (2.1.4) for which

- 1<~ P
m{||9—90|!2+;2|!wj —wjol[’} —0
j=1

for any m — oo, r/m — 0 and r?m/n — 0.

Remark 2. The convergence rates in Theorem 1 are not optimal; see, for example, The-
orem 2 below which indicates that the convergence rate for 0 is root-n. The important
message here is the difference in the convergence rates between 0 and {©j,j=1,---,r}
As r — oo together with n, the rate for the uniform convergence of &1, - - , @, is slower.
It also imposes some restrictions on the number of parameters which can be consistently
estimated, although the implied rates such as r = o(nl/ 3) is presumably too restrictive.
In region of the true parameter if there is a unique solution then this would be the true

min.

2.1.2 Theorem 2

Theorem 2. Let conditions A1 — A7 hold, matrices E(Cy;), j = 1,--- ,r, be invertible,
and the limit of My, defined in (2.1.7), exist (as 7 — oo). Furthermore, let r/n — 0.

For any consistent solution of the likelihood equation (2.1.4) in the sense that

.

~ N P

160 = 0,/ + > 1@, — wjol > = 0, (2.1.11)
j=1
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it holds that

Vn(@ - 6) 2 N(o, L (Wo+2 i Wk)Lfl),
k=1

where Wy, are defined in A7, and L = lim, 00 77" Y-7_  {E(A1;)— E(B1;)(ECy;) ' E(BY;)}.

Remark 3. (i) The consistence condition (2.1.10) is weaker than that identified in

Theorem 1, as m/r — oo.

(ii) The limit which defines the matrix L exists. This is implied by the existence of the
limit of My.

2.2 Profile quasi-likelihood estimation

We consider now the asymptotic properties of a qMLE for 6, obtained based on a
reasonable initial estimator for the nuisance parameter w. We will show that the qMLE
is asymptotically normal with the standard root-n convergence rate in spite that the

number of nuisance parameters g goes to oo.

We use a log quasi-likelihood function
10, w) = log f(X4; 0, w), (2.2.12)
t=1

where f is a density function defined on RP. With an initial estimator @ for the nuisance

parameter w, a profile quasi-likelihood function for 0 is defined as
t=1

and the maximum profile quasi-likelihood estimator (MPQLE) is defined as

0= arg max 1(6) = arg mgX;log f(Xy; 0, @).

Let (0,,w,) = arg maxg o, E{log f(X; 8,w)} be the true parameter values. Since [(6) =

0, it follows a Taylor expansion that

i/ﬁ 0(8,), (2.2.13)

V@80 = ~{-i(e"}”"

m

where 6* is between 6 and 6,, and m is a normalised constant depending on q.
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We introduce the regularity conditions first. Let

. o1(0) . 0%1(0) 0
1(0) = —— 1(0) = —— ;0 1 (7]
( ) 80 Y ( ) 8080/7 a(X, 7w) 80 Og f(x (.AJ)
2 2
B(x;0,w) = 8eae,logf(xﬂw) C(x;0,w) = 5000 o log f(x;0,w),
and D(0,w) = E{C(X};0,w)}.
B1 The initial estimator @ = (&1, -+ ,&W,)" is asymptotically linear in the sense that

for each 1 < j < ¢, ©j — wjo = 2 37| g;(X¢) + op(n~/2), where E{g;(X;)} = 0,
Var{g;(X;)} < ¢ < oo, and ¢ > 0 is a constant independent of j. Furthermore
& — wol[* = Op(g/n), and g/n — 0.

B2 f(x;0,w) is smooth such that all the required partial derivatives exists and are
continuous. Denoted by a; the j-th component of a. There exists a positive

number ¢; and a positive function A (-)

such that

82 j 707
’Mu < M (x)|[u]|* for any |Jw—w,|| < ¢, u€R? and 1< j <gq,
Owiow

and E{\1(X;)} is bounded (as ¢ — o0). Furthermore ¢/(m+/n) — 0

B3 {X;} satisfies condition C1 in the Appendix, and
Un (X, X)) = {C(Xy; 00, w0)8(Xs) + C(Xss; 00, wo)g(Xe) }/m

satisfies condition C2.
B4 For somey > 2 and v > §' given in C1, limy—,00 E{||a(Xt; 05, wo)+2D(0,, wo)g(Xe)|[7}/m™ <
00. Furthermore

3; = lim —Cov{a(Xh00,w0)+2D(00,w0) (X1), a(Xi14j; 60, wo)+2D (05, wo)g(Xi4j)}

q—00 m?
exists for all j > 0.

B5 Let b;;(x;60,w) be the (i, j)-th element of B(x;0,w). There exist a positive number
¢y and a positive function Aa(-) such that ||25b;;(x;0,w)|| + || bi;(x; 0, w)|| <
A2(x) for any [|@ — 0,|| < co, ||w — wo|| < c2 and 1 < 4,5 < d, the limit of
E{b;j(X;0,,w,)}/m exists, and both E{A2(Xy;0,,w,)" }/m” and E{b;;(Xy; 65, wo)" }/m”

are bounded (as ¢ — o0), where v > 2 is given as in C3. Furthermore, [N 6.
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2.2.1 Theorem 3

Theorem 3. Under conditions B1-B5, ﬁ(é—@o) is asymptotically normal with mean 0
and covariance matrix M~ (242 Z]Oil ;)M where M = lim,,00 E{B(X¢; 00, w,)}/m >
0, and X, is defined in B4.
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Numerical Properties

3.1 Example 1

One-way error component model for panel data (Baltagi 2005, Chapter 2). Let
th]:M“‘X;],B‘F/J]‘Fetja tz]-a"',”?j:l?"'ar'

In the above model Y;; is the observation on the j-th individual at the time ¢, Xy; is the
k x 1 observation on k explanatory variables, u; denotes the individual-specific effect, g¢;
are i.i.d. noise with mean 0 and variance o2. To make the parameters identifiable, we
assume that > i =0. Suppose that we are interested in the effect of the explanatory
variables on individuals. Therefore we would like to estimate 3 and , treating 1, - -« , by
as nuisance parameters. We consider the case that r is large in relation to n while k is
fixed.

The conventional approach is to treat p; i.i.d. from an unknown distribution. Then the
MCQLE may be viewed as a conditional inference on p;. It is interesting to compare

the two approaches.

As an example, Y;; could be a country’s GDP. X;; are explanatory variables for each
country j at year ¢t such as population, literacy rate, unemployment rate etc. We are
interested in the parameters u and § for the linear regression Y;; = u + X;j,B. The
time-invariant p; accounts for any idiosyncratic domestic productivity. An example of
p; could be the amount the j-th country’s GDP is boosted by the timber which its
sub-tropical climate produces, assuming sustainable cutting and re-planting of trees this
constant boost is time-invariant and specific to this country. We are not interested in

such country specific factors and treat it as a nuisance parameter.

11
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We will conduct a Monte Carlo simulation with 1000 repetitions. Newton Raphson
algorithm will be used to solve the likelihood equations for this and all subsequent
examples. First we generate 8 as random numbers from U(—1,1). Next we generate
1 ~ N(0,1), we then construct p = 1 > i=1(t7). We transform i — pi; — i so that the
condition jH;=01s satisfied. We then generate X;; where each element is a random
number from N(0,1), let X; = 1 3% | (Xy;). We will transform Xy; — Xy — X so that
the new Xj; satisfy the condition %Z?:l(th) = 0. Finally we generate the dependent
variable Yy; = p + X};8 + p1j + £t by adding the i.i.d noise e¢; ~ N(0, 1).

We wish to minimise the log likelihood function of the form

- 1 /
Z(MHB’IU’) = _522(}/}] KB thﬁ - Mj)2’
Jot

FOR MCQLE we will use 2 different approaches. First we pick all subsets (Xy;, Xy;) for
1 < # j <r. The number of subsets is 7(r — 1)/2 and will grow rapidly as r increases,
which is computationally costly. Our second approach we will pick consecutive subsets
of (X, Xyj) with 1 <4 <r —1,andj =i+ 1.

For MPQLE we’ll need to find an initial estimator ;.
1 « 1< 1«

= V) =n+ - D (XB) + g+ - > (e),
t=1 t=1

n
t=1

Since we constructed Xy; such that 2 3% | (Xy;) = 0 and g4 ~ N(0,1) we have:

1 n
- > (V) =+,
t=1
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Table 1: The root mean square error of the methods over 1000 replications. n is the

number of observation, and r the number of nuisance parameters.

n u B1 B2 B3 w | e | g | s u B1 B2 B3

r=10

20 0.0703 0.0726 0.0745 0.0720 | 0.0691 0.0758 00714 0.0707 0.0679 0.0729 0.0735 0.0710

50 0.0459 0.0453 0.0456 0.0454 0.0498 0.0431 0.0474 0.0515 04210 0.0466 0.0447 0.0426

100 0.0319 0.0309 0.0318 0.0316 0.0323 " 0.0365 0.0325 0.0334 0.0308 0.0320 0.0316 0.0323

200 0.0224 0.0230 0.0213 0.0207 0.0238 0.0212 0.0239 0.0175 0.0231 0.0227 0.0220 0.0221
r=20

20 0.0499 0.0508 0.0516 0.0511 0.0525 0.0531 0.0451 0.06086 0.0501 0.0530 0.0542 0.0518

50 0.0308 0.0318 0.0321 0.0316 0.0310 0.0318 0.0335 0.0313 0.0309 0.0302 0.0309 0.0293

100 0.0229 0.0230 0.0223 0.0221 0.0211 0.0232 0.0210 0.0229 0.0228 0.0229 0.0227 0.0221

200 0.0152 0.0161 0.0157 0.0167 0.0130 0.0159 0.0151 0.0147 0.0167 0.0153 0.0155 0.0160
r=50

20 0.0324 0.0338 0.0327 0.0345 0.0328 00324 0.0348 0.0334 0.0308 0.0326 0.0317 0.0330

50 0.0199 0.0201 0.0199 0.0201 0.0201 0.0209 0.0203 0.0180 0.0194 0.0209 0.0200 0.0186

100 0.0142 0.0145 0.0138 0.0144 0.0138 0.0152 0.0136 0.0148 0.0143 0.0150 0.0133 0.1420

200 0.0107 0.0095 0.0098 0.0099 0.0111 0.0096 0.0099 0.1040 0.0100 0.0096 0.0102 0.1010
r=100

20 0.0229 0.0218 0.0223 0.0233 0.0222 0.0210 0.0214 0.0219 0.0225 00214 00228 00227

50 0.0138 0.0143 0.0148 0.0139 0.0133 0.0135 0.0125 0.0131 0.0136 0.0137 0.0131 0.0141

100 0.0099 0.0099 0.0099 0.0103 0.0104 0.0102 0.0096 0.0088 0.0113 0.0091 0.0110 0.0095

200 0.0072 0.0071 0.0071 0.0070 0.0069 0.0068 0.0070 0.0067 0.0070 0.0073 0.0067 0.0071

The results above illustrate the nice ”blessings of dimensionality”. As r increases the
number of nuisance parameteres p; also increases, however the additional ”information”
available improves our estimates for g and 5. As n the number of observations increase
we see improvements in our estimators as we would expect. The main hinderance to the
accuracy of our estimator would come from an increase in k, the number of explanatory

variables.

The performance of MPQLE and MCQLE is very similar at all n and r, it is important
to remember that the performance of MPQLE depends heavily on the quality of the

initial estimator, for this example our initial estimator is very good.

The quality of estimators from MCQLE and MCQLE consecutive are very close across all
n and r, however the computational cost of MCQLE is very high compared to MCQLE

consecutive. MCQLE is far more time efficient in practice.
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3.2 Example 2

Scalar BEKK model (Engle, Shephard and Sheppard 2008). Let us consider p x 1 return
series X; defined by
Xt = Hi/2€t7 €t ~iid. (07 Ip)7 (321)

Ht = (1 - — ﬂ)Z + aXt_1X;/71 + BHt_l, (322)

where o, f > 0 are dynamic parameters, o + § < 1, ¥ = (045) > 0 is the unconditional
covariance matrix of X;. Note that the model admits a strictly stationary solution.
Our interest is to estimate the dynamic parameters a and 8 while o;; play the role of

nuisance parameters. It may be shown that (3.2.2) admits the solution

l—a-p

H;: =
¢ -3

Z—i—aZﬂJ XX (3.2.3)

Assuming &, ~ N(0,1,), the log-likelihood function is of the form

1 _
e 8, 5) = — 5 " (log [Hy| + X/H, ' X,),

t

which involves both the inverse and the determinant of p x p matrices H;.

For MCQLE, we may consider two options: using all binary pairs (Xy;, Xy;) for all
1 <i# j < p, or using only the consecutive pairs (X, X¢;41) fori =1,---,p— 1. For
MPQLE, we use the initial estimator

where X =n~1 Y, X;.

First we generate a random unconditional covariance matrix o, steps are made to ensure
it is positive semi-definite. We explicitly choose true values of o and § in the region
of the empirical values of a and 8 when using the BEKK model on equity indices such
as DAX30, FTSE100, S&P500, in a similar fashion to Engle, Shephard and Sheppard
2008.

(a, 8) = (0.1,0.8), (0.05,0.93), (0.02,0.97) and p = 5,10, 50, 100, n = 2000.

Then we will generate X; and Hy stepwise. During our estimation we use the constraint

that 0 < a, 8 and a4+ 8 < 1. We will do 500 repetitions in our simulation.
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For MCQLE, we may consider two options: using all binary pairs (X, X;;) for all
1 <i# j < p; we call this MCQLEA, or using only the consecutive pairs (X, Xt i41)
fori =1, ---,p—1 we call this MCQLEB. For MPQLE, we use the MLE of the covariance
matrix as the initial estimator for 3. Since we use the sample covariance matrix as an
initial estimator the conditions for theorem 2 is met.
51 Zn:(x ~X)(X; - XY
n 2 t ¢ )

where X =n~1 3", X;.
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Table 2: Root mean square error of the methods over 500 replications. Where the
number of observation n is fixed at 1000, and different values are taken for the number
of nuisance parameters p. 3 Sub-tables with different true values for the parameters we

wish to estimate.

|» x B a B a B

3 0.0063 0.0395] 00068 0.0594] 00060 0.0388
10 0.0024 0.0062] 00028 0.0075] 00023 0.0058
30 0.0017 000400 00025 000600 00058 000139

100 0.0011 0.0031] 00014 0.0054] 00112 0.0205

3 0.004% 00142] 00116 0.0228] 00048 00144
10 0.0021 00074] 00028 0.0085] 00029 0.0069
30 0.0012 000500 00014 O00046] 00062 2 0.0151

100 0.0007 0.0036] 00010 0.0025] 00108 0.0231

3 0.0188 00397] 00171 0.0495] 00164 0.0365
10 0.0027 0.0148] 00094 00201] 00060 00121
30 0.0015 00087] 00037 001290 00130 0.0150

104 0.0012 0.0064] 00034 0.0105] 00170 0.0193

From the table above we can see for both MCQLEA and MCQLEB we gain performance
with the increase of dimensionality in p, however for MPQLE when p increases and gets
closer to the size of n the quality of estimators starts to get worse. We will further
investigate the impact on all 3 approaches when the size of p is large compared to n

with another simulation shown below.

MCQLEB does not perform as well as MCQLEA when the dimension p of X; is small,
but in the cases where p is large there are no significant differences in performance.
However the number of subset pairings of MCQLEA is p(p — 1)/2 while MCQLEB only
have p—1 pairs. The huge increase of computational cost of MCQLEA is not justified for
reasonably large p. In some situations, for example indices derivatives trading, a decision
or price quotation could be extremely time sensitive, it may be worth investigating
what impact reducing the number of pairings even further could have. We saw similar
results in example 1 in terms of the computational cost benefits of not choosing subsets

efficiently and not excessively.
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Table 3: We perform 500 replications where each sub-table has a fixed number of nui-

sance parameters p, with the number of observations T' ranging from 100 to 1000.

RMSE

L=

100 00225 0.2213] 00284 03463] 00224 0.3711
200 00091 00251 00126 004400 00192 0.1884
00 00062 001104 00070 00174 00093 00198
1,001 0.0027 00090 00036 00093 00064 0.0108

100 0.0147 0.1042)] 00182 01463 00333 0.6528
200 0.0054 002500 00083 00263 00194 00292
00 0.0034 0.0093) 00059 00098 00117 00194
1,001 0.0026 0.0041] 0.0034 0.0054] 00066 0.0075

100 0.0126 0.0548] 00158 0.1218] 00591 08949
200 0.0037 0.0215]) 00061 00227 00344 00427
00 0.0029 00105 00037 001090 00283 00237
1,001 0.0023 0.0032] 0.0027 0.0039) 00118 0.0160

We perform further simulations to cross examine how the estimation methods compare
with each other when p is large in relation to n. We will perform 500 replications
for each simulation. We use the values a = 0.03 and 5 = 0.95, p = 10,50,100 and
t = 100, 200, 500, 1000

The results above show that the increase in n improves our estimators for all 3 approaches
as we would expect, since more information from an increase of observations would yield
better estimates. For the same n both MCQLE approaches give better estimators as p
increases. For MPQLE this is not the case and the increased p has a heavy negative

impact on the quality of estimators.



Chapter 4
Proofs

We use the same notation as in chapter 2.

4.1 Proof of Theorem 1

The basic idea in the proof of Theorem 1 is the same as that of Theorem 6.5.1 of
Lehmann and Casella (1998), although it becomes technically much more involved in

order to handle the increasing number of parameters as n — oo.

Let
1 T
Qs ={(B w1, ,w,) [ 118 Gol* + = D [foj — wioll? = */m}.
j=1

We will show that for any § > 0 fixed, {(B8) < I(8,), for all B € Qs, with probability
converging to 1. Therefore with probability arbitrarily close to 1 [(3) attains a local
maximum in the interior of @, for all sufficiently large n. Let B be the local maximum
closest to B,. By the above argument, B must lie in the interior of Qs for any J > 0.

This entails the required assertion.

To establish the needed fact concerning the behaviour of I[(3) on Qs, we evoke a Taylor

expansion:
1 1 i 1 o
E{K/B) - Z(IBO)} = E(B - ﬁo) l(IBO) =+ %(ﬁ - ﬁo) Z(IBO)(IB - ﬁo)
71 0* *\
+ 6 M,k(ﬁf — Beo) (Bi — Bio) (B — ﬁko)ml(ﬁ ) = S1+ S22+ S44.1.1)

where 3* lies between 3 and 3,.

18
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For B3 € Qs, write 8 — 0, = \/im'y and w; —wj, = 04/;-7;- Then all the elements of v

and -y; are between —1 and 1. Furthermore,

54/ 5
SlZanZ::iZatﬁn@z_:rzygbtj. (4.1.2)

Let &; denote any component of a;;. Since F (Z a;;) = 0, it holds for any € > 0 that

n 1 r n—1
P(T;}T;&j’ >e) < 2{Var Cr) +2; (1-- COV(ClraClthr)}
< S {Var(Gr) +2B(Gul") Y a(®)! "} +401.3)
t=1

where (. =771 > <j<r &tj- The last inequality follows from Proposition 2.5 of Fan and
Yao (2003); see also conditions Al and A3. Hence the first sum on the RHS of (4.1.2)
is of the order op(m™!), and the convergence is uniform for ~ in any compact subset of
R

To estimate the second term on the RHS of (4.1.2), let d; denotes the length of by; =

(bij1, - -+, beja;)- Then maxi<j<, d; are bounded (as 7 — 00). Note

SUPIZZ'VJbtJ‘ = SUP‘Z% beﬂ, = ZZ‘ZbW

vt =1 =1 j=11i=1 t=1
Hence
F@ Z'y;bt]‘>e} <P{FZZ‘me]>er}
{v;} j=1i=1 t=1
S ZP{FZ‘thﬂ‘>E} < ZZP{F‘thﬂ|>E/d}
=1 t=1 7=11i=1
< maxf ZZ{V&I (biji) + 2(E|byji]") /”ia 1=2/v) 50, (4.1.4)
Jj=11=1 t=1

as r?m/n — 0 and condition A3 stands. The last inequality in the above expression
follows the same argument as for (4.1.3). This shows that the second sum on the RHS

of (4.1.2) is also op(m~1). Therefore S; = op(m™!), and the convergence is uniform for

B € Qs.
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To calculate Sz, we first note that similar to (4.1.4), condition A4 implies that
T

EZZO 0,)Aj(0 —0,) — 2(9—00)’E(A1j)(0—90)

— Z Z 0 0 At] EAtj)(O - 90) = OP(m_l)v

n s r

S S0 0By — i) — D260 B, B(By,)(w; — wiy) = op(m ™),
t=1 j=1 j=1

LSS s — ) sl — wig) — - D (e~ wig) B(Cy)(w; — wiy) = op(m ™).
t=1 j=1 j=1

Furthermore, all the convergences above are uniform for B8 € s, as the sizes of all
the matrices on the LHS of in the above expressions are fixed, and the the uniform

convergence may be established in the same manner as in (4.1.4). Now

5= Gy ZZ{ (60— 05)' A (0 — 00) +2(0 — 0,)Byj(w; — wjo) + (wj — wjo) Crj(wj — wjo) }
t=1 j=1

1+0
71"2{0 0,)EA;(0—0,) +2(0 —0,)EByj(w; — wjo) + (w;j — wjo) ECyj(w; — wjo
7j=1

= (B B,MI(B— B,){1 +0p(1)} = — LAMoB, {1+ 0p(1)},
where M, My are defined in (2.1.6) and (2.1.7), and
B, =((0 = 0,), (w1 —wio)' /Vr, -+, (W — wro) V1)

For B € Qs, ||8,||?> = §2/m. Since all the eigenvalues of My are bounded between 0 and
oo (see condition A5), .Mz, = 2¢||8,||> = 2¢6%/m, where ¢ > 0 is a constant. Hence
Sy = —c6?/m{1 + op(1)} uniformly for all B € Qs.
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Finally we deal with S3. Note that 5% (% ~1(B) = 0 for any i # j. Similar to the above,
it may be proved using condition A6 that

1 s
155 < OP ( | D (0 = 000) (0: — 0:0) (O — O10)| D E{N;(X¢j)}
£,k J=1

T

+ |Z —0i0) (O — Oko)| D | Y (wie — wieo)| E{N;(X4j)}

j=1 ¢

+ |Z 914: - eko ‘ Z ’ Z Wi — U-)jﬁo w]z Wjio ‘E{A th
7j=1

Z

+ Z | D (wie = wieo)(wji — wiio) Wik — Wiko)| E{/\j(th)}>
j=1 £ik
(931 + S32 + S33 + S34){1 + 0p(1)}.

Note that E{)\;(Xy;)} is bounded by a constant for 1 < j < r, |§; — 0;5| < §/y/m and
|wjk —Wiko| < 04/r/m for all B € Qs, and all the lengths of w; are bounded. It is easy to
see S31 = O(m~3/2) = o(m™1) and S33 = O(m~3/2r1/2) = o(m=1). On the other hand,

r
C2 2
S33 < T\ﬁZ|Z Wit — wjto) (Wi — Wyio)| = rmZ‘Z(wﬁ_wﬂo)‘
=1 L3 J=1 g
C3 —
S w]0||2 3/2 = O(m 1)7

S3

e & s _ estl/? B
< sz;’zi:(wjiwj‘io)‘ S 37 =o(m ).
This concludes that S5 = op(m™1).

Combining the above asymptotic approximations for Si, So and S3 together, we have

shown that uniformly for 8 € Qs

L {U(B) ~ 1B} = —cd*/m+ op(m ™),

where ¢ > 0 is a constant. This completes the proof.

4.2 Proof of Theorem 2

Since | (B) =0, it follows from a simple Taylor expansion that

B-B8,=—{i(B)}1(@B,) (4.2.5)
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where [ = and (3* lies on the line between B and 3,. Note

9%l
oBop"’

2221 Atj(aawj) Btj(eawl) Btr(07wr)
B1(0,w1) Ci1(6,w1)

t=1 : ’
Btr(ngr)/ Ctr(avwr)

where the entries at the blank places are all 0. We partition the above matrix into
2 x 2 blocks with 37, > A4;(0,w;) as the (1,1)-th block. By inverting this partitioned

matrix, the first d components of (4.2.5) may now be expressed as

V(6 - 6,)
= {1 Z(ZAt] (0%, wj ZBU (6", wj {ZCU J J*')}_lZBtj(a*’w;)/)}
t=1

s n n

x \/%7" Z (Zatj _ZBU(O*’W;){thj(e*vw;)}_lzbtj)- (4.2.6)
j=1  t=1 t=1 =1 —1

-1

For any matrix B, denote by |B|, the sum of the absolute values of all the elements of
B. Note that all the sizes of the matrices Ay, B¢j and Cy; are bounded. It follows from
condition A6 that

%%EZM],] E(Ayj)], (4.2.7)
< lrgjz%ﬁ}Z{At] ,wi) — Ay}, +121?§T’*ZAU BE(A4j)],
< {\0*_90‘,1-1-11%1;3% ]w — Wiola }lrgaéaZ/\ (X¢j) +1IE;E{T‘EZAU E(Aqj) ‘
For any € > 0,

P{lIE?é(r‘EZAt] Al] >€} < ZP“*ZAU Al] ’ 4}28

< S [Var(m) + 2E(m ) Y atk) ] o

nj j=1 k=1

The limit above is guaranteed by condition A4 and the fact that r/n — 0. In the above
expression, 7;; denotes a generic element of A;;, and the sum ij is taken over all the

elements of Ay;. The last inequality follows the same argument as in (4.1.3). In the
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same way we may show that max; |1 "7 | [X;(Xy;) — E{\;(Xy)}]| 50, and therefore

max — g )\ X 4.2.
1<i<r n tj ( ) ( 9)
Now we show that
— —> 4.2.1
112?5 ]w wjo\a 0. ( 0)

It follows from (2.1.10) that for any € > 0, it holds for all sufficiently large n that
T
P{Y @y — wjol P < /K3 } > 1,
j=1
where kg is the maximum length of the vectors wq,-- - ,w;, which is fixed. Since w;‘- lies

between &; and wo, |w3‘ — Wjola < |Wj — wjole. Hence

; < > ; <
P{filjaf |wj — wjola < €} P{fgaf |@j — wjola < €}

> P{ Z &) — wjol? < E/k5} > 1 -
=

Therefore (4.2.10) holds. Combining (4.2.7) — (4.2.10), we conclude
P
max \ﬁ ZAW ,w}) — E(Aqj)], — 0. (4.2.11)
It may be established in the same manner that

E%’;Z:Bw .w}) = E(By)|, =+ 0, max\*ZCm wj) = E(Cy)|, — 0,

1<;<r'n

which implies that

1 S * ok & * K\ — & * ok -
max. HZBU(O LW Cy(0%, W)} By;(0%,w}) —E(By;)(ECy,) T E( llj)‘a — 0.
- t=1 t=1 t=1

Combining this with (4.2.11), we obtain that
EZ <ZAt] 9 w ZBt] 0 w th] , W }712Btj(9*,w§)'>
t=1

= Z{E(AU) — E(By;)(ECy;) ' E(BY;)} +op(1) — L.
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Using the similar arguments, we may show that

ZZBM wj {Z% Wi} Y b Z (B1)(ECy) ™' Y by 0.
t=1 =1

[ t=1

Now it follows from (4.2.6) that
f(@ 6,) Z Z{at] E(By;)(ECy;)” lbtj}{l +op(1)}.
=

The required asymptotic normality follows from Proposition 2 in the Appendix now; see

condition A7. This concludes the proof.

4.3 Proof of Theorem 3

Using the notation in section 3, we have

1
m+/n

i0) = = S a(Xii0,.0,) = o3 {a(X:0,,8) — a(Xis0,. iF}2)
t=1

m~/n —
10%a1(X¢;0,,0*)

((:\J — wo) W(w wg)

; 007"‘)0)(&} - wo) +

(a - wo)/8 ad(xtyaov“" )

Owiw'’ (w wO)

q
- n3/2m Z C(X+; 00, w,)g (Xs)+op(m\/ﬁ),

t,s=1

where w* is between & and w,, and g = (g1, -+ ,94). The last equality in the above

expression follows from conditions B1 and B2. Note that

> CXy;00,w0)g(Xs) = 2 > {C(Xy;0, w,)8(Xs) (4.3.13)
t,s=1 1<t<s<n

+ C(Xsi05,wo)g(X0)} + Y C(Xy;0,,wo)g(X).
t=1

By applying the Hoeffding decompostion (A.1) (with m = 2) to the first sum on the
RHS of (4.3.13), it follows from (4.3.12) and (4.3.13) that

1 . 1 Zn 2(n—1)
x D( 4.3.14
m\/ﬁl(e) my/n & 1a 1100 20) n3/2m tz (oo o) (131
1 q
+ Ln+ mZCmt;emwag(m +or(o )
t=1
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where

2

L, = m X Z [C(Xta 0,, wo)g(xs)+C(Xs; 0,, wo)g(Xt)_D(gm wo){g(Xt)+g<Xs)}] .
<t<s<n

By Proposition 1 in the Appendix, E{(n~'/?L,)?} = O(n~'=7). Hence it holds for any

constant c,
P(|Ln| > ¢) = P{n(n""2L,)? > ¢} =n-O(n'"7) = O(n™") = 0;

see condition B3. We may also show in the similar (but simpler) manner that

Z C(Xy; 0, wo)g(Xy) = Op(n~?).

n3/ ’m
Therefore it follows from (4.3.14) that

1
my/n

“M:m}L 0,,w,) + 2D (B8, w,)g(X0)} + 0p(1).

Note conditions B4 and B3 imply conditions C3 and C4. By Proposition 2,

1
m~/n

oo
i(8,) 2> N0, So+2)3). (4.3.15)
j=1

Furthermore, the convergence of the sum ) j>1 24 is guaranteed by condition B4.

On the other hand,

1 n n

1 . 1
la* = BX.GO o . ) **7 *7 *— O)A_ 0)s .O.
—1(67) nm;:l (X3 ,w)+nmt§_1G(Xt0 W, 0" — 0,0 —w,), (4.3.16)

where (0™, w*) lies between (0*,@) and (0,,w,), and G is a d X d matrix with the
(i,7)-th element

0

*k * P 8
5t (X1 07,0%) 4 (@ = w0) 5

(0" —8,) 50

bij(Xt;G**,w*), (4.3.17)

and b;; denotes the (7,7)-th element of B. Write 5, = E{bi;j(Xy;0,,w,)}/m. Then
for any € > 0,

P{‘%Zb” (X560, wo) — Higm (6o, wo) ‘ > 6} < Var{ Zb” Xt;60,wo) }_> 0.
t 1
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The limit is guaranteed by B5 and the mixing condition on Xy; see Proposition 2.5 of
Fan and Yao (2003). Hence

1 n
— N B(X:00,w,) o M,
nm —1

where M is a d x d matrix with the limit of p;;,, as its (i, j)-th element. Note that the

absolute value of the expression in (4.3.17) is bounded from the above by
A2(Xi; 00, wo){[16” — Ool| + [|w — wol[}-

Condition B5 implies that there exists a positive and finite constant ¢ for which
1 n
P{ — ; Ao (Xp;00,w0) <} — 1.

Since [|0* — 0,|| + ||&@ — w,|| 5 0, the second term on the RHS of (4.3.16) converges to

0 in probability. Therefore %Z(O*) FMm. This, together with (4.3.15), concludes the

theorem.
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Appendix: U-statistics

Let &, be a p x 1 strictly stationary process, &, is Fi-measurable, and 73 C Fo C --- isa
sequence of o-algebra. Let 1, (x1,- -+ ,X;,) be a real-valued function defined on (RP)™
and it is symmetric in its m(> 2) arguments. A U-statistic based on n observations

&, , &, is defined as

! m)!
Up=———" Z Yn(&iys 0 &)
1<i1 < <im<n
Fork=1,--- ,m—1,let

n

¢n,k(x17 o 7Xk) == /wn(xla oy Xy X1y 7Xm) H F(dX]),
j=k+1
where F'(-) denotes the marginal distribution of &,. For the simplicity in presentation,
we assume that E{¢, 1(&;)} = 0. (Otherwise we replace 1, by ¥, — E{t¢,1(§,)}.) Put
hni(x1) = ¥na(x1),

hpa(x1,X2) = Ypa(x1,x2) — hy 1(X1) — hp,1(x2),

hn3(x1,X2,X3) = vy 3(x1,X2,X3) E B, 1(x5) E hn2(xi,%5),

1<i<y<3
m
hn,m(xla"' 7Xk) = wn(xla § hn,l X] E hn2 XI,XJ
j=1 1<i<j<m

- Z hn,m—l(xila te 7Xik)-

1<i1 < impm—1<m

27
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The Hoeffding decomposition (Lemma A, pp. 178 in Serfling 1980) is of the form

m — i m!
U, = Y Z wn,1(£j) + Z msn,lm (A.1)
j=1 k=2
where I
Soi= S e 6. (A2

1<i1 < <ip<n
As long as the variance of 9, 1(§;) does not diminish to 0, the asymptotic property
of U, is determined by that of the first sum on the RHS of (A.1). The lemma below
shows indeed that the remainder term (i.e. the other sum) is asymptotically negligible.
Different from conventional setting, we allow the kernel function v, to vary with respect
to the sample size n. Furthermore, we allow the dimension p of §; to diverge to oo

together with n. We first introduce some regularity conditions.

Cl. {¢,} is a strictly stationary and [-mixing (i.e. absolutely regular) process with
the S-mixing coefficients satisfying the condition 8(n) = O(n~(1¥)/%") where
8" € (0,0) is a constant.

C2. It holds for all n, pand 1 <4y < -+ < i, < n that B{|¢n (&, , &, )*T0} < M,

and

/W”(le‘" ’Xm)’2+5HF(de) < M,

=1

where § > 0, M > 0 are fixed constants.

Proposition 1. Under conditions C1 and C2, it holds that E(S?,) = O(n~'77) for

k=2,---,m, where S, j is defined as in (A.2) and v = min{1, (%,(?ng}.

5.1 Proposition 1

Proposition 1 is essentially Lemma 2 of Yoshihara (1976). The only difference here is to

allow v, to vary with n and the dimension p to grow. Nevertheless the original proof

is still applicable. However it was an error to define v = g,(é__fg in Yoshihara (1976), as
the optimal rate for E(S2 ) is n=2. Therefore it must hold that v < 1. Note that this
optimal rate is attainable when, for example, {,} is a sequence of independent r.v.s, or

the rate of the mixing coefficients is strengthened to satisfy the condition

> kB(R)Y ) < oo,

k=1
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Now we turn to the asymptotic normality of the first term on the RHS of (A.1). We

state the required regularity conditions separately below.

C3. {¢,} is a strictly stationary and a-mixing (i.e. strong mixing) process with a-

1-2/v

mixing coefficients satisfying the condition ), a(k) < 0o, where v > 2 is

a constant.

C4. For v > 2 given in C3 above, lim,, o E{|n1(£&;)|"} < co. Furthermore, the limit
of Cov{yn,1(&1), ¥n1(§;)} exists for any 1 < j <n.

Put
n n—l
= %Var{ Z Una(&)} = Var{tn,1(&))}+2 Z Cov{dm 1&1): ¥na(€ras)}-
t=1 =1

5.2 Proposition 2

Proposition 2. Under conditions C3 and C4, it holds that

) 25 N(0, 1).

5.2.1 Proof

Proof. By Proposition 2.5 of Fan and Yao (2003) with p = ¢ = v,

[Cov{tn1(€1), Yn1 (€14} < 8a()' F {Eltbnr (€)1},

see condition C4. Hence it follows from condition C3 that

n—1

hm Z|Cov{¢n 1(&1)s Yn1(€145)} <8 hm {E|¢n1(f1)| }2/VZ ()2 < oo

7j=1

Now by the Lebesgue dominated convergence theorem, it holds that

lim B2 = lim Var{z¢n1 )} =0 €(0,00), (A.3)

n— 00 n—oo n

2

where 0“ is a constant.

Now we partition the set {1,---,n} into 2k, + 1 subsets with large blocks of size [,,,

small blocks of size s, and the last remaining set of size n — ky(l,, + s, ), where [,, and
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sy, are selected such that
Sp = 00,  Spflp =0, l,/n—0, and k, =[n/(ln+ sn)] = O(sy).

For example, we may choose [, = O(naT_l) and s, = O(n'/%) for any a > 2. Then
kn = O(nl/a) too. For j =1,--- , k,, define

Gln+(G—1)sn J(lntsn) n
n; = Z wn,l(éi)v Cj = Z wnvl(gi)’ X = Z ¢n’1(£l)
i=(j—1)(In+sn)+1 i=jln+(j—1)sn+1 i=kn (Intsn)+1

Similar to (A.3), it may be proved that

and n~'Var(y) — 0. Hence

1 « 1 kn kn | I
\/ﬁBn;wn,l(gt):M{;nj-i-;gj-l-X}:M;m—kop(l). (A.4)

By Proposition 2.6 of Fan and Yao (2003),

B{exp (”n S n)} -] Eexp (\;%%n)}’ < 16(kn — 1a(sn) — 0,  (A.5)

see condition C3. Again similar to (A.3), it holds that Var(3_ <y, 7;)/Bn — 1. It

follows from condition C4 that

lim sup E[[,1(£1) P 1{|4n1(€1)] > ev/n}] < %V/Q_l lim E{|¢n,1(&1)]"} — 0,
n € n n

for any ¢ > 0. Noticing (A.3), it follows from the theorem on page 31 of Serfling (1980)
that

NH

This together with (A.5) and (A.4) entails the required result. O

kn o
H E{exp ( 1 )} = e /2,
j=1
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