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Abstract

The possible presence of cross-sectional dependence in economic panel or cross-sectional
data needs to be taken into consideration when developing econometric theory for data
analysis. This thesis consists of three works that either allow for or estimate cross-
sectional dependence in the disturbance terms of a regression model, each addressing
different problems, models and methods in the areas of non- and semi-parametric
estimation.

Chapter 1 provides an overview of the motivations for, and contributions of, the
three topics of this thesis. A review of relevant literature is given, followed by a sum-
mary of main results obtained in order to help place the present thesis in perspective.
Chapter 2 develops asymptotic theory for series estimation under a general setting of
spatial dependence in regressors and error term, including cases analogous to those
known as long-range dependence in the time series literature. A data-driven studen-
tization, new to non-parametric and cross-sectional contexts, is theoretically justified,
then used to develop asymptotically correct inference. Chapter 3 discusses identifi-
cation and kernel estimation of a non-parametric common regression with additive
individual fixed effects in panel data, with weak temporal dependence and arbitrarily
strong cross-sectional dependence. An efficiency improvement is obtained by using
estimated cross-sectional covariance matrix in a manner similar to generalised least-
squares, achieving a Gauss-Markov type efficiency bound. Feasible optimal band-
widths and feasible optimal non-parametric regression estimation are established and
asymptotically justified. Chapter 4 deals with efficiency improvement in the estima-
tion of pure Spatial Autoregressive model. We construct a two-stage estimator, which
adapts to the unknown error distribution of non-parametric form and achieves the
Cramer-Rao bound of the correctly specified maximum likelihood estimator. In es-
tablishing feasibility of such adaptive estimation, we find that the gain in efficiency
from adaptive estimation is typically smaller than in the relevant time series context,
but could be also greater under certain asymptotic behaviour of the weight matrix of
the model.
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1 Introduction

This chapter provides an overview of the motivations for, and contributions of,
the present thesis. A review of relevant literature on the topics of cross-sectional
dependence and non- and semi-parametric methods is provided in detail, in order to
help place the thesis in perspective. We then summarise the main contributions of

each of the three topics of this thesis in relation to the existing studies.

1.1 Cross-sectional dependence

Three types of data are encountered in economics, namely, time series, cross-section
and panel data. This thesis focuses on estimation and inference for the latter two types
and consists of three chapters developing non- and semi-parametric methods that
either allow for or estimate cross-sectional dependence in the disturbance terms of a
regression model. Implications of possible dependence between cross-sectional units on
econometric methods has been less studied in the literature than that of dependence
across time periods. Unfortunately, the nature of cross-sectional dependence and
heterogeneity observed in economic data hinders a simple extension of the time series
literature to cross-section or panel data.

In economic datasets, cross-sectional units naturally correspond to economic en-
tities, such as individuals, households, firms, industries, cities, regions or countries.
A typical type of dataset involving smaller units like individuals or households con-
sists of survey data collected by governments or firms using various sampling schemes.
The most prevalent sampling schemes encountered in economics are simple random
sampling where each unit has the same probability of being sampled, cluster sam-
pling where clusters consisting of individual units are sampled, or stratified sampling
where units in the sample are represented with different frequencies than they are
in the population, see Wooldridge (2002, pp. 132-135) for a good exposition. When
the cross-section units are larger entities such as firms within an industry, regions
or countries, the sampling may be exhaustive, i.e. all population units are observed
in the data. It is obvious that the need to allow for dependence and heterogeneity
across cross sectional units is even more compelling when the sample coincides with
the population.

A standard practice in the econometric literature, particularly with survey data,
has been to assume that cross-sectional observations are independent and identically
distributed (i.i.d.). An exception to this is the literature on data collected using clus-
ter sampling, where accounting for possible group effects via cluster-robust standard
errors of Liang and Zeger (1986) is widely available. This method allows for arbitrary
dependence within clusters but assumes independence between clusters and works well
when the number of clusters is large relative to the sample size. There seems to be

a common misconception that the simple random sampling scheme leads to the .i.d
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property of the collected data. This, along with the difficulty of dealing with cross-
sectional dependence and heterogeneity of economic data in theoretical development,
partly explains the relative lack of econometric literature concerning cross-sectional
dependence in survey data. In the case of larger cross-sectional units, there has been
relatively more literature that allows for cross-sectional dependence, as will be dis-
cussed below.

In the case of survey data, it is important to appreciate that when there is depen-
dence and heterogeneity between underlying cross-sectional units in the population,
the ¢.¢.d assumption on the sampled units is at best an approximation, that needs to
be carefully weighed against the specific data setting under consideration. Even the
simple random sampling scheme does not warrant that the sampled units are ¢.7.d.,
as clearly exposited in Andrews (2005) and Conley (1999). They offer probabilistic
frameworks which first define random vectors for all units in the population, not just
the observed units, and then consider drawing sampled units from the population.

There are two possible sources of dependence in the error terms of cross sec-
tional units that have been discussed in the econometric literature. Firstly, there
may be common shocks that affect all or some of individual units. Andrews (2003)
gives a comprehensive discussion on possible common shocks that may arise in eco-
nomic contexts, such as macroeconomic, technological, legal/institutional, political,
environmental, health and sociological shocks. Such shocks could have either global
or local effects, influencing individual units in a possibly heterogeneous manner, that
may depend on the unit’s characteristics. Secondly, there may be dependence between
individual units’ unobservables due to their economic interactions. Conley (1999) pro-
vides an example where insurance contracts are made by risk-averse agents in order to
smooth individual idiosyncratic shocks. This inevitably leads to dependence in con-
sumption across those individuals. Another example arises due to spill-over between
agents: an idiosyncratic productivity shock to a firm/industry, such as technological
innovation, may subsequently affect the productivity of other related firms/industries.
Yet another example arises in hedonic pricing model of houses: neighbouring houses
may share similar unobservable characteristics resulting in spatial dependence in the
disturbance terms, although this example does not arise from economic interaction as
such. In these three examples, it is clear that such dependence will be governed by
the degree of interaction/proximity between units. Dependence arising from economic
interaction is likely to be local in nature, in contrast to that generated by the presence

of common shocks, which can produce either global or local effects.

1.1.1 Models of cross-sectional dependence in disturbance terms

This subsection discusses three existing classes of models for cross-sectional depen-

dence in disturbances.
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Models with common shocks

For the case of common shocks, recent works by Bai (2009) and Pesaran (2006)
consider the linear regression model with large N, large T' panel data. They model
the error term of the ¢-th cross sectional unit’s ¢-th time period observation as, U;; =
N;F} + €1, where Fy is the vector of unobserved common factors, A; the vector of
individual-specific factor loadings, giving rise to cross-sectional dependence, and e
the idiosyncratic error. Both papers allows the unobserved factors, Fi, to also affect
the regressors linearly, which seems plausible especially in macroeconomic settings
such as cross-country data, for which the large N and large T" asymptotic framework
of the papers is particularly relevant as N and T" may be of similar magnitude. This
however results in the component A, F} in the error terms that are correlated with the
regressors, which can be seen as individual-specific and time-varying ”fixed effects”
that cannot be purged by simple data transformation like first differencing. The two
papers provide estimation methods that lead to consistent estimates of the linear
parameters of the regression model despite the presence of such fixed effects. The
estimation methods of the above papers are unfortunately not applicable to cross-
section data and it is not straightforward to extend similar methods to nonlinear
or non- and semi-parametric regression models or to relax the linear specification in
which the unobserved factors affect the disturbance term and/or regressor.

Andrews (2005) looks at the linear regression model with cross-section data when
there is arbitrary dependence and heterogeneity in the error terms between underlying
units in population generated by the presence of common shocks, and observations
are collected using random sampling. He derives asymptotic properties of the least
squares (LS) estimates of the linear parameters of the regression and establishes a nec-
essary and sufficient condition for consistency. This condition requires the regressors
and errors to be uncorrelated conditional on the o-field, C, generated by the com-
mon shocks. The random sampling assumption implies that observations are %.7.d.
conditional on C, needed for law of large numbers (LLN) and central limit theorem
(CLT) results that are used to show asymptotic properties of the LS estimate. The
asymptotic framework offered by Andrews (2005) is indeed very useful for survey data
collected using random sampling schemes but not when random sampling does not
hold.

Spatial models

For cross-sectional dependence in the unobservables arising from economic agents’
interdependence, two classes of models of dependence have been prominent in recent
literature, involving a concept of ”economic location”. As mentioned above, cross-
sectional units in economic data correspond to economic agents such as individuals
or firms. One could envisage that these agents are positioned in some socio-economic
(even geographical) space, whereby their relative locations in this space underpin the

strength of dependence between them. For a detailed discussion and examples of such



1. Introduction 12

proximity, see e.g. Conley (1999) and Pinkse, Slade and Brett (2002). These models
are often called ”spatial”, reflecting the inclusion of space in the set-up.

The first type of model includes the pure Spatial Autoregressive (SAR) and related
models, which form a part of a more general class of models, first suggested by Cliff
and Ord (1968). This class of models is characterized by the use of exogenously given
weight matrices, which capture the structure of spatial dependence between units
up to a finite number of unknown parameters. In the case of modelling dependence
in the error terms, the spatial dependence is simply modelled parametrically as a
linear transformation of underlying shocks. Let U = (Uy,---,U,) be a vector of
observations having zero mean, with the prime denoting transposition. The class of

spatial dependence models is given by
Q()\o)Uzdoe, (1.1.1)

where € = (e1,--+ ,&,) is a vector of 4.i.d. random variables with zero mean and unit
variance, oy is a scalar, \g is a finite-dimensional vector of parameters, and Q(\g) is a
known, non-singular n x n matrix function of its argument. In general Ao, o and og
are unknown and () depends on one or more known spatial weight matrices. Denote

by W a generic n X n matrix,with real-valued elements w;; such that
n
wy; = 0, dwy=1, i=1--,n. (1.1.2)
j=1

The latter condition, called row normalization restriction, is not always imposed in
the literature, but some normalization on W is required in order to identify Ag. The
quantities w;; are typically interpreted as inverse economic distances, see e.g. Arbia
(2006), and may form triangular arrays. The following are three examples of @ in

which )\g is scalar:

1. Pure SAR(1) (spatial autoregression of degree 1)
Q(Ao) =1 — NW, (1.1.3)

where I is the n x n identity matrix and \g € (—1,1).

2. Pure SMA(1) (spatial moving average of degree 1)
Qo) = (I = W) ™1,
for g € (—1,1).
3. MESS (matrix spatial exponential, see LeSage and Pace (2009)):

Q()\Q) = exp (—)\0W) .
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The clear limitation of these models is the presumption that the spatial dependence
is known to the practitioner up to a small number of parameters (\p). Nonetheless,
these models, the pure SAR model in particular, have gained popularity in empirical
works, see Arbia (2006) for examples. In these models where the spatial dependence is
parsimoniously captured by the unknown Ao, the estimation of Ag is often of interest,
possibly for the purpose of testing for lack of spatial dependence. In chapter 3 of the
thesis, efficient estimation of \g in a generalised version of (1.1.3) is considered.

The second class of models involves the use of mixing coefficients familiar from
the time series literature. Suppose unit 7 is endowed with a vector of characteristics
zi, the economic distance between units ¢ and j is defined as the distance between
z; and zj, e.g. the Euclidean norm ||z; — z||. Conley (1999) approximates the lo-
cations z; by regularly spaced lattice points and applies strong mixing conditions in
deriving asymptotic theory for generalized method of moments (GMM) estimates.
An alternative mixing condition in spatial setting was proposed in Pinkse, Shen and
Slade (2007). Mixing conditions, in contrast to the SAR and related models men-
tioned above, are essentially non-parametric, desirably avoiding a specific parametric
description of dependence.

It is notable that in the models with common factors, cross-sectional dependence
is allowed to be "strong” as well as ”"weak”, in the sense that common shocks are al-
lowed to affect all units in the sample (and population) significantly. In contrast,
the afore-mentioned spatial models require spatial dependence to fall as the eco-
nomic distance between units increases, sufficiently fast that the strength of spatial-
dependence satisfies weak dependence conditions analogous to ones in time series
litnerature. For this thesis, the ”"weak” dependence in Uj; is defined by the condition
Z |Cov(U;,U;)| = O(n), which is analogous to the concept of weak dependence in

,j=1
o0

stationary time series: Z |Cov(Uy, Uryk)| < oco. ”Strong” dependence in Uj;, on

k=—o00

n
the other hand, is defined by the condition Z |Cov(U;, Uj)|/n — o0 as n — oo. In
Q=1
Chapter 4, it is explained how the existing SAR literature imposes weak dependence

restriction. In the case of weak dependence, the common factor models and spatial
models may produce similar patterns of dependence, although the motivation and

specification of the disturbance terms may be rather different.

Model of Robinson (2011)

Robinson (2011) provides an alternative way of modeling cross-sectional depen-
dence, which can produce strong as well as weak dependence, and need not involve
known economic distances although can readily accommodate them. The following

general, possibly non-stationary, linear process is used to describe the disturbance of
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a regression model:
Ui = 0i(X;)es, ei:ZbijEj; Zb% =1, 1<i<n, n=12---, (1.1.4)

where U; is the scalar disturbance term, X; a finite dimensional vector of regressors in
the regression model, €;’s are independent random variables with zero mean and unit
variance that are independent of {X;,i = 1,--- ,n,n > 1}, 0;’s are scalar unknown
functions and b;;’s are unknown fixed weights. These weights b;;’s, and hence U;’s,
may form triangular arrays, and the reference to n is suppressed for ease of notation.
Notice that e;’s are generated by summation over j = 1 to infinity, letting the sampled
units be also affected by unsampled units, in contrast to the pure SAR and related
models. This specification allows both unconditional and conditional heteroscedas-
ticity. The triangular array structure also accommodates the panel data case where
some relabeling of observations would be required if both 7" and N are allowed to
grow as n = NT — oo. As the unknown weights b;;’s may vary across ¢ and j, the
above specification offers a general model of spatial dependence.

An important question to ask when specifying the model for the disturbance in
a regression with stochastic regressors is the extent to which the disturbance term
is dependent with the regressors. Pesaran (2006) and Bai (2009) allow the same set
of unobserved factors to enter both regressors and error terms, and Andrews (2005)
requires that they are uncorrelated conditional on the o-algebra of common shocks. In
comparison, the above specification is relatively more restrictive in that e; is indepen-
dent of the regressors X;’s. In particular, one may be concerned that the dependence
patterns between units ¢ and k in their disturbance terms and the regressors may be
similar, especially in the spatial setting where they may be governed by the same dis-
tance measure between the units. The specification (1.1.4) does allow the dependence
between units ¢ and k in regressors and disturbances to be related. For example, one
could let the joint density function f;; of X; and X}, which reflects the dependence
between two units’ regressors, be a function of a distance between unit ¢ and k, de-
noted djx, i.e. fix(z,y) = f(x,y;d;;) and at the same time also allow the weights b;’s

to be governed by the same distance measure, b, = b(d;).

1.1.2 Some implications of cross-sectional dependence

The consequence of cross-sectional dependence in estimation of a regression model
varies according to the strength of dependence. It has been shown in the time series
literature that weak dependence typically does not affect consistency or asymptotic
normality results of parameter estimates, but does alter their variances relative to the
i.3.d. setting. Therefore disturbance variance structures need to be suitably estimated
in order to carry out valid inference. In case of strong dependence, depending on

the specification, even consistency may sometimes break down, although in the afore-
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mentioned papers that allow for strong dependence (Andrews (2005) and Robinson
(2011)), consistency and asymptotic normality of estimates were shown under suitable
conditions. The issues discussed in Pesaran (2006) and Bai (2009) are rather different
as there is the additional problem of correlation between regressors and disturbance
terms and the two papers offer new methods of estimation that achieve consistency of
regression parameter estimates.

Developing standard errors that are robust to dependence and heterogeneity is
considerably more difficult in the cross-sectional setting than in time series, where so
called heteroscedasticity autocorrelation consistent (HAC) estimation is facilitated by
the information carried by the time index. The dependence between observations at
times ¢ and s is modelled in terms of |t — s|. In the spatial context, an extension
of HAC estimation is feasible if additional information which may take the role of
the time indices is available e.g. the socio-economic or geographical distance between
units which underpin the structure of the spatial dependence. Conley (1999) has
considered HAC estimation under a stationary random field with measurement error
in distance measures, Kelejian and Prucha (2007) for models of Cliff and Ord (1968)
and Robinson and Thawornkaiwong (2010) for a more general set-up than Cliff-Ord
type models. Chapter 1 of this thesis offers an alternative method of robust inference
to that based on HAC estimation.

1.2 Non- and semi-parametric methods in economics

In the afore-mentioned papers, regression models take a parametric form, with the
exception of Robinson (2011). However economic theory usually does not imply a
particular functional form and there may be little confidence that a linear or specific
nonlinear regression model is correctly specified. Non-parametric estimation allow
researchers to drop the presumption of known functional form, instead requiring non-
parametric restrictions such as smoothness and existence of certain moments, that
may be less restrictive. In some contexts, specifying some components of the model to
be parametric while keeping the others non-parametric may be more appealing than a
fully non-parametric specification. This could be either due to practical reasons, such
as avoiding ”curse of dimensionality” in non-parametric regression with many regres-
sors, or due to the practitioner having confidence and interest in parameterization of
some components while not in the others. Such models are called semi-parametric.
Chapter 2 consider estimation of known functionals of the non-parametric regression
function, an example of which is estimation of slope parameters in partly linear re-
gression model, in which some regressors enter linearly and others non-parametrically.
In Chapter 4, the regression model is parametric but the unknown error density is
left to be non-parametric. A non-parametric estimate of the "score” function, the
ratio of the first derivative of the error density to the density itself, is used in order

to construct an estimate of the parameter of the regression model that achieves the
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Cramer-Rao bound of the correctly specified MLE.

There are some differences in the type of theoretical results we typically obtain
for non-parametric and semi-parametric estimates. Non-parametric estimates achieve
a slower rate of convergence to the true value, compared to the correctly specified
parametric estimates, which is a natural consequence of the parsimony of the latter.
In contrast, some semi-parametric estimates have been shown to achieve the same
rate of convergence as its parametric counterpart under suitable conditions, which
is remarkable since semi-parametric estimates rely on the first stage non-parametric
estimates that exhibit a slower rate of convergence. This type of results has received
wide interest in econometric literature, starting from Robinson (1988) and Powell,
Stock and Stocker (1989), which deal with the two well-known semi-parametric models,
partly linear regression model and single index model, respectively. Chapter 2 of
this thesis provides a set of sufficient conditions, including those on the strength of
dependence and heterogeneity in the data, for semi-parametric estimates to obtain
the parametric rate of convergence.

There are two main methods of non- and semi-parametric estimation used in
econometrics. The first method is the kernel approach, which uses local smooth-
ing/averaging with a chosen kernel function and bandwidth parameter. The second
is the sieve estimation method, which uses an increasing number of base functions as
the sample size increases, to approximate the non-parametric function of interest. In
this thesis, the focus is on estimation of the conditional expectation, i.e. regression
function, which is the topic of the first two chapters, and the score function used in
the third chapter is estimated using the same method as regression estimation. In the
sieve estimation literature, regression estimation has been developed under the name
of series estimation and in the context of this thesis, the terms ”sieve” and ”series”
are used interchangeably.

There are many theoretical results on kernel estimation of regression and density
under temporal dependence, see e.g. Roussas (1969), Rosenblatt (1971), Robinson
(1983) for weak dependence and Robinson (1991), Robinson (1997), Hidalgo (1997)
for strong dependence. A notable difference from parametric estimation is that in the
case of weak dependence, the asymptotic variance of non-parametric kernel estimates
are the same as in the i.i.d. setting, which arises from the local nature of estimation.
Robinson (2011) and Robinson and Thawornkaiwong (2010) have considered kernel
estimation in non-parametric regression and partly linear regression, respectively, un-
der strong and weak cross-sectional dependence and found similar results to the time
series literature.

The main advantages of series estimation over kernel estimation are four-fold.
When economic theory generates certain restrictions on the non-parametric function
of interest, such as monotonicity, convexity and additive separability, series estimation
offers a more natural way of using such information in estimation by reflecting it in

the choice of series functions. Secondly, it is computationally convenient, because
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the data is summarized by a relatively few estimated coefficients. Thirdly, from a
theoretical point of view, theories can be developed in a unified way to include both
non-parametric regression and general semi-parametric quantities, as will be made
clear in Chapter 2. This is in contrast to kernel estimation where an asymptotic
theory for each semi-parametric model needs to be developed separately. Finally,
semi-parametric estimation with kernel methods typically involves ”trimming” out
some observations, if the density estimates at their values are smaller than a certain
trimming parameter. This is because of the form of many kernel estimates which have
as their denominator, the random density estimate that can be very close to zero.
Introduction of a user-chosen trimming-parameter could be in itself a disincentive to
the practitioner, while generating complications in development of econometric theory
behind estimation. Semi-parametric estimation of series method is free from the need
for trimming.

The asymptotic behaviour of series estimation under independence has been stud-
ied in Andrews (1991) and Newey (1997). For weakly dependent time series data,
Chen and Shen (1998) and Chen, Liao and Sun (2011) together offer asymptotic
theory and robust inference of general sieve M estimation, which includes series esti-
mation as a special case. Importantly, Chen, Liao and Sun (2011) found that certain
non-parametric sieve estimates under weak temporal dependence also have the same
asymptotic variance as in the i.i.d. setting, analogous to the result reported for kernel
estimation in Robinson (1983). Chapter 2 of this thesis establishes asymptotic theory
for a spatial setting similar to Robinson (2011), which covers strong, as well as weak,
dependence. In future work, it would be of interest to extend Chen et al. (2007)’s
finding to the spatial setting and compare asymptotic results on series estimates of

non-parametric regression to those of kernel estimates, reported in Robinson (2011).

1.3 Summary of main contributions

This section highlights the contributions of each of the three chapters of this thesis,

and place them in relation to the existing studies.

1.3.1 Chapter 2

In Chapter 2 ”Series estimation under cross-sectional dependence”, the following

model is studied,
Y =m(X;)+U;, where U;=o0(X;)e;,

oo oo
61':2%'63‘, supr?j<oo, 1<i<n, n=1,2,---,
j=1 voj=1

where Y;,U; € R and X; € X C R? are random variables, m : X — R is an unknown

function of interest, o(-) is a real bounded function, {b;;,i,j > 1} are unknown con-
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stants and {ej,j > 1} are independent random variables with zero mean and unit
variance. Processes {X;} and {¢;} are assumed to be independent of each other.
The specification of U; has been slightly modified from Robinson (2011), but both
conditional and unconditional heteroscedasticities are still allowed.

The quantity of interest is a d x 1 functional of m denoted 6y = a(m), which is esti-
mated by plugging in the series estimate 1 of m in the known functional operator a(-).
Theorem 2.1 reports a uniform rate of convergence of m to m. A uniform rate of con-
vergence for non-parametric regression estimates is useful for many semi-parametric
problems and has been extensively studied in the context of kernel estimation, see e.g.
Masry (1996) and Hansen (2008). For series estimation, Newey (1997) provided a rate
for the i.i.d. setting, which was subsequently improved by de Jong (2002), under the
additional assumption of compact X'. The rate result obtained in Theorem 2.1 reduces
to that of Newey (1997) under the i.i.d. setting and contains a variance contribution
term that reflects the collective dependence in the U;’s and X;’s.

In this work, dependence in {X;} is allowed to be strong, as well as weak, and two
measures of dependence are introduced. The first is used in showing the consistency
and CLT results, while the second is needed for the variance matrix of the estimate
0 = a(mh) conditional on {X;} to be well-behaved so that the unconditional asymptotic
variance matrix can be obtained. The first measure of dependence is defined in terms
of departure of bivariate density function from the product of marginals. Denote by

fij the joint density function of X; and X; and define,

bai= 3 [ o) = @) ldady.

i,j=1,i#j

The rate of growth of A,, is a measure of bi-variate dependence in the X;’s and has an
upper bound of 2n%. The quantity A\, is zero in case of independence across i and we
may view the condition A,, = O(n) as an analogue to short-range/weak dependence

in the time series literature. We find an upper bound on A, for the case of Gaussian
n

Xi’s to be Z |Cov(X;, X;)|, which is the quantity used in the definition of weak

i j=1,i#j
dependence earlier.

Similar measures of dependence have been used in Robinson (2011), where the local
nature of kernel estimation meant conditions were confined to the neighbourhoods
of the points at which the function m was estimated. For establishing asymptotic
normality result for kernel estimates of m, Robinson (2011) also imposed conditions
on the third and fourth order joint probability densities of Xj.

For the partly linear regression model, Robinson and Thawornkaiwong (2010) also
offered a global measure of dependence which involves the supremum over the entire
support of X;. However, the measures of dependence used in their Assumption B6 are

more complicated and less tractable than A, and they impose uniform boundedness
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of marginal and joint densities of order up to four. We avoid imposing restrictions
on the third and fourth order joint densities of X;’s, which are considerably harder
to verify than that involving bivariate density even in the simple case of Gaussian
random variables. Instead we formulate our second measure of dependence in {X;}
in terms of the fourth order cumulants of quantities combining U; and X;. Our re-
strictions on their collective dependence allow strong, as well as weak dependence in
both X;’s and U;’s. Cumulants have been often used in the time series literature as a
measure of dependence, see e.g. Brillinger (1981). Chapter 2 also provides sufficient
conditions for § = a(m) of certain smooth functionals a(-) to be \/n-consistent, ex-
tending Newey (1997)’s results obtained in the i.i.d setting. It is interesting that some
strong dependence in X; is allowed although the U;’s need to be weakly dependent for
the /n-consistency result.

Chapter 2 of this thesis also establishes theoretical justification for the use of the
studentization method of Kiefer, Vogelsang and Bunzel (2000), which is new to the
cross-sectional setting and non- and semi-parametric methods. In time series, HAC
estimation of the asymptotic variance matrix is widely known to perform poorly in
small samples, see e.g. Andrews and Monahan (1992) and Den Haan and Levin
(1997). Kiefer et al. (2000) offer a data-driven studentization method that can
produce better small sample performance than HAC-based inference. Kiefer et al.
(2000)’s assumption A1l requires a functional central limit theorem (FCLT) result on
a data-driven quantity that forms a basis of the studentizing matrix. They provide
conditions of Phillips and Durlauf (1986) as an example of a set of sufficient conditions
for this FCLT result to hold. Phillips and Durlauf (1986)’s conditions require weakly
stationary a-mixing sequences. The contributions of the extensions offered by the
current thesis are as follows.

1) This is the first work to apply Kiefer et al. (2000)’s studentization method in
non- and/or semi-parametric contexts to the best of our knowledge.

2) We relax the conditions of homogeneity, regular spacing and ordering of U;’s
and X;’s, which are exhibited by stationary time series, but not by cross-sectional
data.

Indeed, a notable contribution of Chapter 2 is evaluating the extent to which the
dependence and heterogeneity of the U;’s can depart from stationary mixing and still
achieve the FCLT result required in order to apply Kiefer et al. (2000)’s studentiza-
tion method. The degree of relaxation of the regularity conditions is summarised by
Assumption C3 of Chapter 2, where a detailed discussion can also be found.

The main results of Chapter 2 are, Theorem 2.1 which states the uniform rate of
convergence for the series regression estimate, Theorem 2.2 that presents the asymp-
totic distribution of the estimate of a functional of the regression function, and The-

orem 2.5 which establishes the validity of the studentization method.



1. Introduction 20

1.3.2 Chapter 3

Chapter 3, ”Panel data model with non-parametric common regression and individual
fixed effects”, considers the following model for a balanced panel data set of size N xT'.
Below Yj; denotes a one dimensional dependent variable, A\; an additive individual-
specific fixed effect of individual i, Z; is a vector of time-varying regressor common
to all individuals, whereas m(-) is the non-parametric regression function of interest,

and U;; denotes the error term:
Yie=Xi+m(Z) + Uy, EUU/|Zi=2)=Q%z2), i=1,---,N, t=1,-- T,

where () is a N x N matrix of smooth functions. Importantly, an arbitrary form
and strength of cross-sectional dependence are allowed in Uy, while Z; and Uy’s are
required to satisfy a S-mixing condition over time. Nadaraya-Watson (N-W) kernel
estimate is used to estimate m(-). The setting in mind is with larger 7" than N, such
as in regional data with long time series. Cross-sectional units are typically large
entities like regions or countries in such settings, where the need to allow for strong
dependence and heterogeneity across the cross-section may be compelling. Therefore
we do not impose restrictions on (2, other than some smoothness and boundedness
conditions.

A similar model was considered in Robinson (2011) in the context of common
trend estimation, with Z; replaced by the deterministic argument t/T" where Uj’s
are assumed to be i.i.d. across time. He clarified the issue of joint identification
of m(-) and A;’s and showed how to incorporate the knowledge of cross-sectional
dependence in Uy’s into estimating m(t/T) in order to obtain an efficiency gain. In
particular, a generalised least squares (GLS) type estimate under the full knowledge of
cross-sectional dependence was shown to be superior in the mean square error (MSE)
sense, to the one that does not incorporate such information. Asymptotic equivalence
between the infeasible and feasible GLS type estimates was also established.

Chapter 3 of this thesis essentially extends the results of Robinson (2011) to the
case of multivariate non-stochastic regressor, which leads to the need for conditional
heteroscedasticity captured in Q(z). We also allow Z; and Uj’s to be jointly weakly
dependent over time, rather than using the ¢.¢.d. condition imposed on Uj’s in Robin-
son (2011). We first establish asymptotic MSE, the consequent optimal bandwidth

choice and asymptotic distribution of a simple N-W estimate of m(-) based on the

n

simple cross-sectional average of Yj;’s, Z Yi:/n. We then obtain similar results for
i=1

the optimal N-W estimate, based on the knowledge of the cross-sectional error covari-

ance structure (2. This optimal estimate is analogous to the GLS estimate in linear
regression model where a data transformation based on 2 produces transformed er-
ror terms that are homoscedastic and uncorrelated. A similar principle is used here,

leading to the optimal estimate achieving a Gauss-Markov type bound. We then con-
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struct a feasible version of such optimal estimate using an estimate of € based on the
fitted residuals from the simple N-W estimation. We establish asymptotic equivalence
between the feasible and infeasible versions of the optimal N-W estimate and also
between their optimal bandwidth choices. Unlike in Robinson (2011), the conditional
heteroscedasticity here implies that the optimal weight for the GLS-type estimation
now varies over the point z at which the function m(-) is estimated.

In obtaining the theoretical results, we prove a useful result, Lemma 3.6, that
represents an additional and significant contribution of the chapter. Many sample
quantities in econometrics take the form of a U-statistic, whose properties in the i.i.d.
setting are well understood. Similar results on the behaviour of U-statistics under
dependence is often obtained by showing the negligibility of the departure of the U-
statistic under dependent process from its counterpart under the i.7.d. setting. Dehling
(2006) offers an excellent review of both the literature under the i.i.d. setting and that
covering the dependent case. Fan and Li (1999) utilized Yoshihara (1976)’s lemma, to
obtain an upper bound on the difference in expectations of a third order U-statistic
under independence and the S-mixing process. Lemma 3.6 of this chapter extends
Fan and Li (1999)’s result to U-statistics with an asymmetric kernel and of order up
to four. This lemma would be useful in many applications, especially when finding
the asymptotic order of magnitude for moments of various estimates with time series
data.

The main results of Chapter 3 are, Theorem 3.7 which establishes how good an
estimate of the cross-sectional error covariance matrix we have, and Lemma 3.6 that
presents useful decomposition of the expectation of U-statistics based on [-mixing

processes.

1.3.3 Chapter 4

While Chapters 2 and 3 deal with non-parametric regression models, in Chapter 4
"Efficiency improvement in the semi-parametric pure Spatial Autoregressive (SAR)
model”, we consider the parametric pure SAR model, presented in (1.1.1) and (1.1.3).

We state the model again for ease of reference:
(I - )\[)W)U = 0p€&. (1.3.1)

For the weight matrix W, it is assumed that | ax |wi;j| = O(1/h), with a sequence
h = h,, that is either fixed or divergent as n — oo. This is a typical condition imposed
in the SAR literature, e.g. in Lee (2002, 2004), Kelejian and Prucha (1998), and it
has been shown that the behaviour of the sequence h has implications on asymptotic
theory of parameter estimates. In Chapter 4, U; will be allowed to have a non-zero
mean, providing a model for observables, as well as disturbances. However for clarity
of exposition, we stick to the simpler version (1.3.1) in the present description.
Estimation of A\ in pure SAR model was considered in Lee (2002, 2004). In the
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former, the ordinary least squares (OLS) estimate was shown to be inconsistent while
in the latter the Gaussian pseudo maximum likelihood estimate (PMLE) was shown
to be consistent, at the usual rate \/n when h is fixed, and at a slower rate, \/7%,
if h is divergent. When ¢;’s, therefore U;’s, are Gaussian, the Gaussian PMLE is of
course the MLE itself, attaining the Cramer-Rao bound. This property is lost once the
true likelihood seizes to be Gaussian. The lack of efficiency property of the Gaussian
PMLE of A\g when U;’s are not Gaussian, in addition to the possibly slower rate of
convergence in case of divergent h, gives rise to an interest in improved estimation of
Agp- This is the focus of Chapter 4 and we treat ug and og as nuisance parameters.

We let ¢;’s be i.i.d. with unknown density function of non-parametric form, thus
avoiding possible parametric misspecification of density function, which could lead
to inconsistency of the corresponding MLE. This is what makes the model semi-
parametric, as it contains a non-parametric error density function along with a para-
metric regression model. There is a large literature addressing whether the Cramer-
Rao bound of the correctly specified MLE can be achieved in the absence of knowledge
of the density function, with only non-parametric assumptions. This is attained by an
estimate that takes an approximate Newton-step from an initial consistent and ineffi-
cient estimate of Ag, which is the Gaussian PMLE in our case. In Beran (1976), Newey
(1988), Robinson (1995) and Robinson (2011), the Newton-step is constructed from
a non-parametric series estimate of the score function of the error density. Chapter 4
also uses this estimate and establishes that it indeed achieves the Cramer-Rao bound
of the correctly specified MLE.

Another notable and interesting finding of Chapter 4 is that the relative efficiency
of the adaptive estimate A to the PMLE can be either less or more than ones in
the classical outcome, which includes the results under mixed regressive SAR model
considered in Robinson (2011) and the time series setting. As mentioned earlier, pure
SAR model is a particularly popular model in the more general class of models and it
is hoped that the results of this chapter may be extended in future to other models.

The main results of Chapter 4 are, Lemma 4.1 which establishes feasibility of
efficiency improvement from the (Gaussian) PMLE of \p, and Theorem 4.1 which
presents the asymptotic distribution of the improved estimate, which coincides with
that of the true MLE.
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2 Series Estimation under Cross-

sectional Dependence

2.1 Introduction

Economic agents are typically interdependent, due for example to externalities, spill-
overs or the presence of common shocks. Such dependence is often overlooked in cross-
sectional or panel data analysis, in part due to a lack of econometric literature that
deals with the issue at hand. Implications of dependence on econometric analysis have
long been studied in the context of time series data, where the temporal dependence
is naturally modeled in terms of the distance between observations along the time
axis. Unfortunately, the nature of cross-sectional dependence observed in economic
data hinders a simple multi-dimensional extension of time series literature to spatial
data. For example, the index of observations in economic cross-sectional data cannot
be used to describe the dependence between units in the way that the time index can
be. This is because there is often no natural ordering of cross-sectional data and the
indices do not represent relative positioning of the units sampled.

In order to start accounting for possible cross-sectional dependence, one needs
first to establish a framework under which the structure of such dependence can be
suitably formalised. Three classes of models of cross-sectional dependence have been
prominent in recent literature. The first class of models deal with the presence of
unobserved common factors that may affect some/all of individual units, see Andrews
(2005), Pesaran (2006) and Bai (2005). These models could give rise to cross-sectional
dependence that are persistent throughout units, analogous to ”strong” or ”long-
range” dependence in the time series literature.

The other two classes of models involve a concept of ”economic location”. In
economic data, cross-sectional units correspond to economic agents such as individuals
or firms. One could envisage that these agents are positioned in some socio-economic
(even geographical) space, whereby their relative locations in this space underpin the
strength of dependence between them. For a detailed discussion and examples of such
proximity, see e.g. Conley (1999) and Pinkse, Slade and Brett (2002).

The second class of models is the Spatial Autoregressive (SAR) model of Cliff and
Ord (1968, 1981), see e.g. Lee (2002, 2004), Kelejian and Prucha (1998, 1999), Robin-
son (2010a), Rossi (2010). In this approach, the dependent variable (or disturbance)
of a given unit is assumed to be affected by a weighted average of the dependent vari-
ables (or disturbances) of the other sampled units. The weights used in the averaging
are presumed to be known and reflect the degree of proximity between agents, leaving
a finite number of parameters (often scalar) to be estimated to explain the spatial
dependence. The SAR model has gained popularity in empirical works, see e.g. Arbia
(2006).
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The third class of models involve the use of mixing coefficients familiar from the
time series literature. Conley (1999) and the related papers develop spatial mixing
conditions in terms of economic distance between agents, under a suitable stationarity
assumption. An alternative mixing condition in spatial setting was proposed in Pinkse,
Shen and Slade (2007).

Robinson (2011) has offered a new way of modeling cross-sectional dependence,
which does not hinge on the idea of economic distance although can certainly accom-
modate it. A general, possibly non-stationary, linear process is assumed for distur-
bances, which, unlike a mixing framework, allows possible strong dependence. The
dependence in the regressors is phrased in terms of the departure of joint densities from
the product of marginals, allowing possible heterogeneity across units. The model’s
ability to cover both weak and strong dependence in the error term and regressors
allows the development of a general set of theory. While the model accommodates
many spatial settings plausible in economic data, no new concepts, other than those
familiar from standard econometric literature, need to be introduced.

On the other hand, non-parametric and semi-parametric estimation have become
an established method in econometric analysis. Such methods allow researchers to
drop the assumption of known parametric functional form that is often not warranted
by economic theory. There are many theoretical results on non-parametric kernel
estimation under temporal dependence, see e.g. Robinson (1983) and Hidalgo (1997).
Robinson (2011) and Robinson and Thawornkaiwong (2010) have considered kernel
estimation in the non-parametric regression model and the partly linear regression
model, respectively, under cross-sectional dependence.

The asymptotic behaviour of the series estimation under independence has been
studied in Andrews (1991) and Newey (1997). For weakly dependent time series
data, Chen and Shen (1998) and Chen, Liao and Sun (2011) offer a rather complete
treatment of asymptotic theory and robust inference of the general sieve M estima-
tion, which includes series estimation as a special case. This chapter produces an
asymptotic theory that covers general cross-sectional heterogeneity and dependence,
including weak and strong dependence. The conditions of the chapter, while designed
for spatial setting, readily lend themselves to time series and panel data, expanding
the applicability of the results to those settings. They follow the framework of Robin-
son (2011), however the nature of series estimation necessitated some modifications.
This chapter offers alternative conditions in terms of the fourth order cumulants fa-
miliar from time series literature, enabling to avoid conditions on joint densities which
may be difficult to verify for some processes. Due to a number of similarities of series
estimation to OLS in linear regression, asymptotic results derived here easily extend
to the linear regression.

The other main contribution of this chapter is establishing a theoretical back-
ground for the use of a studentization method that offers an alternative to the ex-

isting variance estimation literature in spatial setting. In the spatial context, an
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extension of HAC estimation familiar from the time series literature, see e.g. Han-
nan (1957), Newey and West (1987), is possible if additional information such as
the socio-economic distance between units which underpin the structure of the spa-
tial dependence is available. Conley (1999) has considered HAC estimation under a
stationary random field with measurement error in distance measures, Kelejian and
Prucha (2007) for models of Cliff and Ord (1981) and Robinson and Thawornkaiwong
(2010) for a more general set-up than Cliff-Ord type models. Bester, Conley, Hansen
and Vogelsang (2008) consider the asymptotic theory of the HAC estimation when a
fixed, rather than a vanishing, proportion of the sample is used in the variance esti-
mation. However, the small sample performance of HAC estimation is known to be
poor even in time series setting and an alternative method that achieves better finite
sample performance was suggested by Kiefer, Vogelsang and Bunzel (2000) in the lin-
ear regression in time series context. This chapter provides theoretical justification for
extending the use of Kiefer et al.’s studentization to spatial or spatio-temporal data.

The chapter is structured as follows. In Section 2.2, the setting of the model
is outlined. In Section 2.3, the series estimation is introduced and a uniform rate
of convergence for the non-parametric component is established. Section 2.4 contains
asymptotic normality results. Section 2.5 presents sufficient conditions for the /n rate
of convergence of certain semi-parametric estimators, with data-driven studentization.
Section 2.6 presents a small Monte Carlo study of finite sample performance. Section
2.7 discusses some empirical examples and Section 2.8 concludes. The Appendix

contains the proofs.

2.2 Setting of the model

This chapter discusses inference on the following non-parametric regression model,
Y, :m(Xi)—l—Ui, 1=1,2,---.,n, (2.2.1)

where Y;,U; € R and X; € X C RY are random variables and m : X — R is an

unknown function of interest. The error term U; of the model is assumed to follow
(o) o0
U, = O'(Xi)ei, e; = Z bij&‘j, Zb?J <oo t=1,2,---,n, (2.2.2)
j=1 j=1

where o(-) is a real function, {b;;,%,j > 1} are unknown constants and {e;,j > 1} are
independent random variables with zero mean and unit variance. Processes {X;} and
{e;} are assumed to be independent of each other. The linear process e; in U; was
also used in Robinson (2011) and Robinson and Thawornkaiwong (2010). Quantities
Y, X;, Ui, ei, €5, b;; are allowed to admit a triangular structure throughout this work,
accommodated by the proofs of later theorems. The additional n subscript in e.g.

bijn = b;j is suppressed for the ease of notation. Triangular array structure takes
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into account the possible need to re-label observations as n increases in panel-data
or multi-dimensional lattice data as this work uses a single index i for observations,

see Robinson (2011) for discussion. Allowing coefficients b;; = b;j, to vary with n is

n
important in making (2.2.2) to cover the popular SAR model, whereby e; = Z bijne;
j=1

will include summation only up to n.

The structure (2.2.2) is designed to encompass various forms of spatial dependence
and heterogeneity in the unobserved errors U;, that could arise in economic applica-
tions. Conditional and unconditional heteroscedasticity of the errors U; is allowed,
while the restrictions later imposed on b;;’s are rather mild, affording an ample scope
for possible non-stationarity /heterogeneity across i. For example, b;;’s need not ex-
hibit any form of conformity across ¢ and j, in particular, be affected by |i — j|. The
specification (2.2.2) also accommodates the idea of ”economic distance”, in which case
b;; will be determined by distances between units. Restrictions on dependence and
heterogeneity in X; are stated and discussed in Section 3.

Errors (2.2.2) obviously cover equally-spaced stationary time series, where b;; is
of the form bj;_j|. An alternative to (2.2.2) is a mixing framework, which would allow
us to relax the condition of independence between {X;}" ; and {e;}!' ;. However, a
mixing framework necessitates the introduction of some distance measures and the
notion of stationarity, which are not always justifiable in economic applications. More
importantly, long-range dependence is not covered by a mixing-framework.

Regarding the function m(x) = E(Y;|X; = x) in (2.2.1), it denotes the conditional
expectation of Y; at X; = z. For any given function g(-) : X — R, let a(g) denote
a d x 1 vector-valued functional of g(-), i.e. a mapping from a possible conditional
expectation to a real vector. There are many applications where a (known) functional
a(m) of the conditional expectation m is of interest. It can be estimated by a(rh),
where m(-) denotes a series estimator of m(-), constructed as a linear combination of
pre-specified approximating functions. Simple examples of a(g) include the value of
the function at multiple fixed points, a(g) = (g(z1), - ,g9(xq)), (x1,--- ,2q) € X9,
which is of interest in non-parametric regression estimation, and the value of partial

derivative of the function with respect to the %" argument at fixed points,

alg) = (Og(x) ’ e 9g(x) ‘ )”
Oxy 'T1 Oxy '%d
which is of interest in the case of non-parametric derivative estimation. An example of
nonlinear functional a(-) given in Newey (1997) is the consumer surplus. Letting Y; be
the log consumption and X; = (log p;,log I;)’, a 2x 1 vector of log price and log income,
the estimated demand function at a fixed point X; = z is given by exp(m(z)), whereas
the approximate consumer surplus is equal to the integral of the demand function over

a range of prices. For a fixed income I, an estimator of this functional, when p and p
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represent the lower and upper bounds on the price, is
D _
a(m) = / exp (m(logt,log I))dt.
P

If one was interested in the approximate consumer surplus at multiple fixed values of
income, a(m) would take a vector form. Further example of a(-) arises in the context
of the partly linear regression model and will be discussed in detail in Section 5.
Previously, Andrews (1991) showed asymptotic normality for a vector-valued lin-
ear functional a(rm), using for {X;}7 , and {U;}}", independent and non-identically
distributed (i.n.i.d) setting and, in addition, indicating that “the proof can be ex-
tended to cover strong mixing regressors without too much difficulty.” Newey (1997)
has established uniform rate of convergence for |m(xz) — m(z)| and asymptotic nor-
mality result for a(/m) — a(m) when {X;}? | and {U;}?, are both i.i.d. and a(g)
is a general (possibly nonlinear) scalar functional. Newey (1997) has also offered a
set of conditions on the functional a(-), under which a(m) converges to a(m) at the
parametric rate. Chen and Shen (1998) and Chen, Liao and Sun (2011) consider the
problem of sieve extreme estimation for weakly dependent time series setting. In the
context of series estimation, Chen and Shen (1998)’s results yield a convergence rate
for the non-parametric regression estimate m(-) and asymptotic normality for a(m)
in the case of y/n-rate of convergece. Chen, Liao and Sun (2011) offer an asymptotic
normality result that also covers the case of slower-than-/n rate of convergence and
provide methods of inference robust to time series weak dependence. They also unveil
a rather striking fact that for certain cases of slower-than-/n rate of convergence, the
asymptotic variance of the estimate a(7n) coincides with that obtained under inde-
pendence. An important example is the case of non-parametric regression function
evaluated at a finite number of fixed points, for which a similar observation was made

by Robinson (1983) for kernel estimation.

2.3 Estimation of m and uniform consistency rate

Estimation of m is based on the use of approximating functions. Denote by ps(-), s =

1,2,--- a set of approximating functions from X to R:
pPC) = (), ()

Next, introduce a deterministic sequence of positive integers K = K,,, nondecreas-
ing in n, which denotes the number of approximating functions used in the series
estimation where n stands for the sample size. The integer K can be regarded as a
bandwidth parameter, analogous to the window length in kernel estimation, and its
choice gives rise to a bias/variance trade-off as seen below. Under a suitable choice of
approximating functions, larger values of K will reduce the bias while increasing the

variance of the estimate m. A number of assumptions introduced in the following two
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sections reflect the reliance of the theory on a suitable choice of K.
Let 3 = (p'p) p'Y € R¥, where p = pp = [pX(X1), -+, pM (X)) e RK, ¥ =

(Y1,---,Y,) € R" and A~ denotes the Moore-Penrose inverse for a matrix A.

Definition 1. A series estimator of m(x), at a fixed point x € X, based on K

approximating functions, p’ (-) = (p1(-), - ,px(:)), is given by
A _ K /
m(x) =p™ (z)'B. (2.3.1)

In the remainder of this section, we establish a uniform consistency rate of the
estimate m(x).

Assumption Al. The random variables {X;}} , n=1,2,---, are independent of
{gj}521 and identically distributed with the probability density function f(z), x € X.
The joint density of X; and X;, fij(x,y), x,y € X, exists for all i and j.

The assumption of identity of distribution on {X;}" ; later facilitates proofs of
theorems by offering some algebraic simplification, allowing us to afford more hetero-
geneity in the unobserved {U;}!_;, which was deemed more crucial than allowing for
non-identical distribution of the observed {X;}! ;. Heterogeneity /non-stationarity in
X; across ¢ is still allowed as the dependence in X; may vary across the index i.
Assumption A2. The random variables {U;}! {, n = 1,2,---, follows the linear
specification (2.2.2) with some bounded positive function o(z) : X — R, and innova-
tions {e;} are independent across j, satisfying E(e?) =1 and r§1>afc Ele;|* < oo,
for some v > 0.

For any k£ > 1, define a k x k matrix
By = EQ"(X)p*(X:)), k=1,2,---. (2.3.2)

Let A(A) and A(A) denote the minimal and maximal eigenvalues of a square matrix
A. In this work, Euclidean norm is used for vectors: ||al|?> = a’a. For matrices, we use

spectral norm, induced by Euclidean vector norm: ||A| = ”m”ax |Az|| = A/2(A'A).
z||=1

For functions, the uniform norm |g|o, = sup |g(z)] is used.
TEX
Define a sequence of scalar constants (k) as

E(k) = sup [pF(a)l, k=12,
TeEX
Quantities similar {(k) were also used in Andrews (1991) and Newey (1997). If it is
known that m is a bounded function, one may choose bounded and non-vanishing

series functions, in which case &(k) increases at the rate of vk: sup |p¥(z)| =
reX

k
sup (Zp? (:c))l/2 < CVk. Tt is sometimes possible to obtain the rate of £(K) explic-
zeX T

itly in terms of K. Newey (1997) provides examples where under suitable conditions,

£(K) = K when series functions are orthogonal polynomials, and &(K) = K'/2 when
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they are B-splines.
Assumption A3. (i) There exists ¢ > 0 such that \(By) > ¢, Vk>1.

(ii) K and p®(-) are such that K?&4(K) = o(n).

Condition A(Bj) > ¢ of Assumption A3(i) requires By to be nonsingular for all
values of k and is also assumed in Andrews (1991) and Newey (1997). When this
assumption fails, some series functions in ps(-),s > 1 may be redundant and need to
be eliminated to make it hold. Assumption 3(ii) imposes an upper bound on the rate
of increase of £(K) as K — oo. Using the explicit bounds £(K) mentioned in the
previous paragraph, A3 (ii) boils down to K = o(n'/*) for the case of B-splines and
K = 0(n'/6) in the case of orthonormal polynomials under the suitable conditions
required for those expressions of {(K).

Assumption A4. The function m(-) : X — R and series functions ps(-),s > 1,
are such that there exist a sequence of vectors Bx and a number o > 0 satisfying, as
K — oo,

m — 5 Bicloe = O(K ).

Assumption A4 is a standard condition used in the series estimation literature, and
appears in Andrews (1991) and Newey (1997). It requires the uniform approximation
error of m(-) by a linear combination of the chosen set of series functions to diminish
fast enough. It can be seen as a smoothness condition imposed on m(-), if the functions
ps(:),s = 1,2,--- are ordered so that higher values of s correspond to less smooth
functions. In such case, the smoother the function m(-) is, the faster is the rate
of decay in the coefficients of the vector i in the series expansion p’Sx of m(-).
Some further insights into Assumption A4 for certain choices of the approximating
functions, including polynomials, trigonometric polynomials, splines and orthogonal
wavelets, can be found in Chen (2007), pp. 5573. Assumption A4 will control the bias
term of our estimate m, and « is also related to the number of the regressors. Newey
(1997) points out that for splines and power series, Assumption A4 is satisfied with
a = s/q where s is the number of continuous derivatives of m and ¢ is the dimension
of x. Conditions imposing an upper bound on the rate of increase in K, such as A3
(ii), may necessitate a stronger assumption on the smoothness of the unknown m.

Now, we will state an assumption that is required to control the strength of de-

pendence in X;’s across i¢. Introduce the quantity:

bui= Y[ 1fsla) = f@)fldedy. (233

i,j=1,i%j

The rate of growth of A\, is a measure of bi-variate dependence in X;’s and has
an upper bound of 2n?, a useful property used in the proofs. The quantity A, is
zero in case of independence across ¢ and we may view the condition A, = O(n)
as an analogue to the concept of short-range/weak dependence in time series litera-

ture. Quantities of similar nature were used in Robinson (2011) and Robinson and
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Thawornkaiwong (2010).
In the case that X;’s are Gaussian random variables, /\,, satisfies the following
(X) _ _(X) _
=0 ' =1.

[z 7

simple bound. Let JZ(JX) = Cov(X;, X;). Assume for simplicity that o
If for some ¢y < 1, one has ’0'1(15()’ <co,Vi,k=1,---,n;i#k, n>1, then

n
see Proposition 2.1 in Appendix B. Clearly, if max Z |a§,§()| < Cn, then A,, = O(n),
1§k§ni:1
whereas A\, = o(n?) holds for a large class of covariances. Thus, in the Gaussian case,
n

A, can be replaced by the sum Z \Ui(lf)].
i k=1:i#k
Assumption A5. As n — oo, n 2K2¢4(K)A, = o(1).

Assumption A5 indicates that stronger dependence in X; will require the use of
smaller K. In the light of Assumption A4, this will necessitate a stronger assumption
on the smoothness of the unknown function m. Under weak dependence, i.e. A, =
O(n), A5 reduces to K2¢*(K) = o(n) which is stated in A3(ii). Otherwise, A5 is a
stronger condition than A3(ii) imposed on the upper bound of the growth in K and
§(K).

To state our first theorem, it is necessary to introduce some notation. Define nor-
malised functions P¥(z) := By, /*p*(x) with By as in (2.3.2) such that E(P*(X;) P*(X,))
= Ij,. We shall write P(z) = PX(2) with K = K, suppressing the superscript K for
the rest of the chapter for the ease of notation. Note that P(-) = [Pix(-), -, Pxx ()],
with the double subscripts at Psg(-) arising from the definition P(-) = B[_{l/ 2pK ().
Such normalised functions were also used in Newey (1997). Let P = P, = (P(X}),

-, P(X,)) € R, For a given sequence K = K, define the following K x K
n

variance-covariance matrix ¥, of the K x 1 vector sum Z P(X)U;/v/n:

=1
S, = E(P'UUP/n) = Var (1 Zn:P(Xi)UZ) (2.3.4)
Vﬁ%i:l

_ % Y E(P(X;)U;UP' (X))
ik=1

- % > yinE(o(X:)o(Xp) P(X;) P (X)),
k=1

where

Yik = COU(Z bij€;, Z brjej) = Z bijbr;-
j=1 j=1 J=1

The following theorem obtains the uniform rate of convergence of the estimator m(z).
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Theorem 2.1 (Uniform Rate of Convergence). Under Assumptions A1-A5,

), as mn — oo.

This result coincides with the rate obtained by Newey (1997) for i.i.d. {X;} and {U;}.
In the latter case ¥, = 0?E(P(X;)P(X;)") = 0?1k leading to tr(X,) = O(K). The
proof of the above Theorem is given in the Appendix A. The first term in the rate of

TeEX

sup |in(z) — m()| = O, (5<K> [ ) | geo

Theorem 2.1 reflects the contribution of the variance of m, while the second term arises
from the bias component. The uniform rate of consistency highlights the bias/variance
trade-off in the selection of K: the use of larger K reduces the bias and increases the
variance.

The rates obtained in Theorem 2.1 need to be verified to be 0,(1), to establish
uniform consistency of the series estimate . The requirement £(K)K ¢ = o(1) of
negligible bias suggests that it may be favourable to choose series functions which
are bounded. To evaluate the contribution of the variance, suppose for now that
the original series functions and thus, the normalized functions Pig,--- , Pk, are

n
uniformly bounded. Then, tr(3,) = K - Z vik /M, making the variance contribution
i k=1

n n

EEWEK( Z fyik/nQ)l/Q. Under weak dependence on e;’s, Z vik = O(n), meaning
i,k=1 ik=1

the rate becomes ¢(K)+/K/n = K/\/n which is o(1) by Assumption A3 (ii). Under

strong dependence of e;’s, the rate is slower and further conditions restricting the

increase of K and {(K) may be needed to show uniform consistency.

For the i.i.d. setting, the uniform rate of convergence obtained by Newey (1997)
was improved by de Jong (2002), under the additional assumption of compact X
Under the presence of dependence, it was not possible to obtain improvement similar
to that achieved in de Jong (2002), whose proof makes use of Hoeffding’s inequality
for a sum of i.i.d. random variables. It would be of interest for future work to sharpen
the bound provided by Theorem 2.1.

2.4 Asymptotic normality

The previous section established the uniform rate of convergence for m — m, whilst
our ultimate interest lies in inference on the functional a(m). Denote 6y = a(m) and
0 = a(m). In this section, we study the asymptotic distribution of 0 — 0y. First,
we provide some technical assumptions needed for establishing asymptotic normality.
Recall that a(-) is a vector-valued functional operator.
Assumption B1l. One of the following two assumptions holds.

(i) a(g) is a linear operator in g.

(ii) For some € > 0, there exists a linear operator D(g) and a constant C = C, < 00
such that ||a(g) — a(m) — D(g —m)|| < C(|lg —m|oc)?, if |g — m|oc < €.
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Assumption B2. For some C < oo, D(:) of Assumption B1 satisfies || D(g)| <
Clgloo-

Assumptions B1 and B2 are the same as in Newey (1997). Assumption B2 requires
the linear functional D(+) to be continuous, which follows from the fact that D(-) is the
Frechet-differential of a(-) at m. A functional a(-) is said to be Frechet-differentiable
at m if there exists a bounded linear operator D(-) satisfying the following property:
Vo >0, Je > 0 such that ||a(g) — a(m) — D(g — m)|| < d|lg — M| if |g — M| < €.
Assumption B1(ii) imposes a stronger smoothness condition on a(-) at m than Frechet
differentiability. It is not restrictive, see e.g. its verification for some a(-) in Newey
(1997, pp. 153). When a(-) is a linear operator, its Frechet-derivative is itself, D(g) =
a(g).-

Define a K x d matrix A, with D(-) as in Assumption B1 and the K x 1 vector of

normalised functions P(-) as defined above, setting

A= (D(Pig),--- ,D(Pgg)) € RExd,

Consider a linear operator a(m) = (m(z1),---,m(xzq))’, for some (1, --,xq) €
X?. The linearity of a(m) yields a(Psx) = D(Psx) = (Psi (1), , Psx (za ) s =
1, K.

n
Denote by V,, the dxd conditional variance-covariance matrix of the sum Z A'P(X;)U;/+/n,
i=1

Vp :i=Var (Z A'P U/f’le Ty, n> — Z ’)/ku Xk)A P(XZ)PI(Xk)A

zkl

To gain an insight into the the matrix V;, and its role in the statement of the asymptotic

distribution, note that one may alternatively write

_ e |1 & , 1
Vo = AV B! n Z ko (Xi)o (Xp)p" (Xi)p™ (Xp) | By A,
ik=1

where A* := (D(p1),---,D(pk)) = B}(/2A € RE*4 the matrix of Frechet-derivatives
of the original series functions. One sees that the matrix V}, takes the form of the con-
ditional variance-covariance matrix of a nonlinear function of least squares estimates,

where the matrix A* is the Jacobian term and

I / _
~ D o (Xi)o(Xp)p" (X)p™ (Xk) | By
i k=1

is the conditional variance-covariance matrix of LS estimates for a possibly misspecified
model. Assumption B3 below specifies the conditions under which V, is the correct

normalising matrix to be used in the statement of the asymptotic result of Theorem
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2.2 below.

Two alternative representations of V;, in terms of P(-) or p¥(-) were given above.
In the statement of assumptions and theorems, quantities will be written in terms of
the vector of normalized functions P(-) to facilitate discussion of the quantity V;, in a
more tractable manner. We shall need the following assumptions.

Assumption B3. Asn — oo,

(i) E(E)tr(Sn) = o(n'/?).
(i) K3¢S(K)tr(,) (i + ﬁ;) = o(1).
(iil) ne*(K)K 2t =o(1).

Assumption B3 combines various conditions on the rate of increase of K, £(K), tr(3y,)
and A, as n — oco. The rate of increase of tr(%,,) depends on that of K and the
strength of dependence in U; and X;. Uniform consistency of Theorem 2.1 required
smoothness condition £(K)K ™% = o(1) on the unknown m, while deriving asymptotic
normality in Theorem 2.2 needs a stronger smoothness condition of B3 (iii). Revisiting
the case of bounded functions Psx (-)’s and weakly dependent e;’s leading to tr(%,,) =
O(K), note that B3 (i) is implied by A3 (ii), while B3 (ii) becomes K*¢5(K) = o(n)
which implies A3 (ii).

Assumption B4. K and functions p® () are such that, as n — oo,

&(K) -
N {; \bz‘j!} =o(1).

Assumption B4 requires the influence of €; of any particular j on U;,i =1,2,---

to die off, more quickly if £(K) grows faster.
Assumption B5. Asn — oo, ||V, || = O,(1).

Assumption B5 trivially holds in the case when the random matrix V;, converges to
a finite nonsingular matrix, considered in the next section of y/n rate of convergence.
Validation of such convergence requires stronger restrictions both on the functional
a(-) and the strength of dependence in X;’s and U;’s. Theorem 2.3 allows V, to
diverge with n as long as approximation ||V, — V|| = o(1) holds for some sequence
of deterministic nonsingular matrices V,,. Such approximation still requires certain,
although weaker, restrictions to be placed on the strength of dependence in X;’s and
U;’s. We present Theorem 2.2 separately from Theorem 2.3, to separate assumptions
yielding asymptotic normality from those required for ||V, — Vp|| = 0,(1). Assumption
B5 certainly assumes the derivative matrix A to have rank d for all K > d. Throughout
this work, denote by A'/2 the unique positive definite square root of a positive definite

matrix A.
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Theorem 2.2 (Asymptotic Normality). Under assumptions A1-A5 and B1-B5,
VRV Y20 — 0g) =g N(0,1;), as n— oco. (2.4.1)
The proof of Theorem 2.2 is given in the Appendix A.

2.4.1 Properties of V,,

The conditional covariance matrix V,, is a random quantity. In this section we study

conditions, under which ||V,, — V,,|| converges to zero, where

Vo = = Var (ZA/ U/\f) Z YikB[o(Xi)o(Xy)A'P(X;) P' (X)) Al.

zkl

This will allow us to present the asymptotic distribution result (2.4.1) for (§ —6) with
normalisation Vj,. In Theorem 2.3 below, the i*" element of the d x 1 estimator 0 is
shown to be \/ﬁ(anl/ 2)u‘—consistent, where (anl/ 2)“ denotes the 7*" diagonal element
of V_l/ 2,

To gain an intuition of implications of this rate, let’s focus on the case of scalar
a(-) in this paragraph. We rule out the possibility of shrinking V;, which corresponds
to presence of negative dependence in X;’s or U;’s, as this is rather unlikely for real
data. The above expression of V,, indicates that V,, = O(1) would correspond to
the case of short range dependence in the combined quantity A’P(X;)U; if K were
fixed. This may still allow for possibility of long range dependence in A’P(X;) or
U; to a certain degree. With increasing K, V,, may be increasing even under short-
range dependence of A’ P(X;)U;. The main contribution of this chapter is developing
inference procedures when V,, is unknown and deriving asymptotic distribution results
under additional generality in the strength of dependence in both {X;} and {U;}.

The following two conditions state restrictions on the strength of dependence in
X;’s and U;’s across i. Again, an upper bound is imposed on the rate of increase in
the measure of bivariate dependence in X;, A,,.

Assumption B6. As n — oo,

8 n
() (n + D) maxzm

2 = o
n 1<j<n 4

Assumption B6 indicates how the dependence in the data restricts the choice of
the bandwidth parameter K and series functions. The stronger the dependence is,
the slower the rate of increase in K and £(K) is required to be, leading to further
repercussions on the smoothness in Assumption B3 (iii), where a larger value of «
would be needed to compensate for slower rate of growth in K.

Next we state an assumption on the strength of dependence in {X;} across i in

terms of their 4th order joint cumulant. The following definition is required to do this.
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Definition 2. Let 7y, 25, Z3, Z4 be zero-mean random variables with finite fourth

moments. Then, the joint cumulant of these four random variables is defined as

K(Z1, Za, Z3, Zy) = E(Z1Z9732y) — E(Z1Z2)E(Z32y)
—FE(Z17Z3)E(Z22y) — E(Z1Z4)E(Z273)
= COU(leQ, ZgZ4) - CO’U(Zl, Zg)CO’U(ZQ, Z4) - CO’U(Zl, Z4)CO'U(Z2, Zg).

Recalling A = (A1, -, Ax) € RE*4 introduce the following notations:
n9 = o(X)AP(X), (2.4.2)
B9 = e(X)AUP(X:) — E (o(X)AP(Xy)), 1<i<n, 1<(<d.

The latter term is a de-meaned version of the former, introduced here so that we can
make use of the definition of joint cumulant for mean-zero random variables.
In the time series literature, see e.g. Brillinger (1968), the weak dependence charac-

terization in terms of cumulants typically implies that the 4/* order cumulant satisfies,

n

> 6%, Ziyy Ziyy Ziy)| = O(n). (2.4.3)

11,12,13,14=1

Assumption B7. E[(Big))ﬂ < oo and /@(l_z(g) AP pO B(p)) are such that

21 772 213 0 Ny

1 - 70 70 70 1
D s D0 (i BT = o).
- i1,42,03,04=1
Comparing Assumption B7 to (2.4.3), one observes that Assumption B7 is not restric-
tive and may allow strong dependence in both X; and U;. One can have arbitrarily

strong dependence in Uj; if {l_zy)} are weakly dependent, c.f. (2.4.3):

n

1 70 7(0) 70 1)y _
LHS§C1£,%}§CJE, Z 1|"0(hz‘17hz‘2 yhig s hi, )| = o(1),
11,12,13,14=

noting [yix| < /Yiier < C < o0, i,k =1,--- ,n,n>1.
Assumption B8. Asn — oo, ||V, 1| = O(1).

The following theorem establishes asymptotic normality if 0.
Theorem 2.3 Under Assumptions B7-BS,

IV, Ml = 0p(1),  and, (2.4.4)
[V = Val| = 0p(1). (2.4.5)
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Consequently, under assumptions A1-A5 and B1-BS,
ViV, 26 = 60) —a N (0, Ia). (2.4.6)

Theorem 2.3 covers non-parametric, as well as parametric rate of convergence of 6
to 6y, and the /n rate case will be the focus of the next section. An important example
of slower-than-/n rate of convergence is the non-parametric regression estimation
at d number of fixed points, a(m) = (m(z1), -+ ,m(z4))’. Noting linearity of this

functional, we have the following expression for A:

Pig(xz1) Pig(z2) -+ Pig(zaq)

Pg(x1) Por(x2) -+ Pog(xaq)
A= ) . .

Prg(x1) Prr(x2) -+ Prr(xa)

The (¢, p)th element of V;, is therefore

(Vi)ep Z P (22) P (2 { Z Vit [0(X:) (Xk) Py (Xi) Prurc (X)) |-
jm=1 i,k=1
In order to use Theorem 2.3 to carry out inference on a(m) = (1m(x1),- - ,m(xq))’, we

need to estimate the term in the curly bracket, which reflects dependence in X;’s and
U;’s across 4. Such estimation typically requires additional information like distance
measure between units in spatial setting, as discussed in Section 2.1. In contrast, kernel
non-parametric regression estimation literature found that the relevant asymptotic
covariance matrix coincides with that under independence when X;’s and U;’s are
weakly dependent across i, see e.g. Robinson (1983, 2011). This justifies the use of the
covariance matrix under independence, that is easily estimated, for inference on kernel
non-parametric regression estimates under weak dependence, at least for sample with a
large n. It is notable that similar result has been recently obtained for series estimation
by Chen, Liao and Sun (2011) in the context of weakly dependent time series data.
They found that under certain conditions on the functional a(-), that include the case
of a(m) = (m(x1),--- ,m(xq)) and preclude the /n rate of convergence of a(rn),

V,, reduces asymptotically to the same matrix as under independence, which in our
setting is equal to hm — Z'y“ o(X -)2A'P(X-)P’(X-)A]. In future work, it is of

great interest to extend Chen Liao and Sun (2011)’s result to the spatial setting
considered here, which may offer a method of inference for some cases of slower-than-
\/n rate of convergence under weak dependence. Alternatively, devising a consistent
estimation of V,,, that may even offer method of inference under strong dependence,

is a challenging yet important task for future research.
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2.5 /n rate inference

Theorem 2.3 provides sufficient conditions for convergence \/ﬁVn_l/ 2(a(m) —a(m)) —q
N(0,14), where V, is a d x d matrix that may grow with n. In this section, we
establish sufficient conditions under which V,, converges to a finite limit V', as n — oo,
which in turn implies the parametric \/n rate convergence of 0 to fp. Attainment of
the parametric rate of convergence by some semi-parametric estimates have received
wide interest in econometric literature, starting from Robinson (1988) and Powell,
Stock and Stocker (1989). This type of results are available for the two well-known
semi-parametric models: the single index model and partly linear model. While in
the kernel estimation each semi-parametric model needs to be considered separately,
Newey (1997) has shown that series estimation allows introducing a general semi-
parametric estimate encompassing both afore-mentioned popular models, enabling
attainment of a unified theory of y/n-rate of convergence. Chen and Shen (1998)
obtained similar results for weakly dependent time series case. It is of interest to
extend these results to the setting of cross-sectional dependence, since semi-parametric
estimates, such as in the partly linear regression model, are widely used in empirical
works, generating a need for a method of inference robust against general spatial
dependence and heterogeneity. This section provides a data-driven studentization

method that overcomes certain limitations of the existing alternatives.

2.5.1 Partly linear regression model

Before starting the formal statement of theory, we discuss the partly linear regression
model in some detail, as the semi-parametric estimate of this model satisfies the condi-
tions of this section and will be used in the Monte Carlo study and empirical examples.
This model is a popular alternative to the fully non-parametric regression model and
imposes a restriction on the non-parametric function m(-) that a d-dimensional subset
of the regressors enter m(-) linearly. For notational convenience, denote this subset

by Z; and the remaining regressors by X;. Then the model can written as
Y, = ZZ{(SO + ho(Xl) + U; (2.5.1)

where hy(+) is a function of unknown non-parametric form. The model is particularly
suitable when Z; are categorical variables, and is often used when the number of
regressors is large since the fully non-parametric specification suffers from the curse of
dimensionality. This model has received much attention in kernel estimation, see e.g.
Robinson (1988) and Fan and Li (1999), where it has been noted that the parameter
dp can be estimated at the \/n rate despite the first stage non-parametric estimate
having a slower-than-/n rate of convergence.

Series estimation of (2.5.1) had been considered in Chamberlain (1986), where the

choice of the series functions takes into account the partly linear regression form. The
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first d number of series functions are set to be Z;, while the remaining K — d number
of series functions include only X; in their arguments. The series estimate of &g is
then the first d elements of 3, and h(z) = m(z, z) — 2/6. At first glance, the form of
series estimation of §y may seem very different from kernel estimate, where first-stage
non-parametric regression estimates of Y;’s and Z;’s in terms of X;’s are required.
Contrary to what meets the eye, they are in fact very similar, as explained below.

Kernel and series estimates of dg are both based on the following relation: sub-
tracting E(Y;|X;) = E(Z;|X;) 00 + ho(X;) from (2.5.1) yields

Y, — E(Yi|X;) = [Zi — E(Zi| X3)) 60 + Us,

suggesting that dp could be estimated by running a regression of Y; — E(Y;| X;) on Z; —
E(Z;)X;). In Robinson (1988)’s kernel estimate denoted, 0, the unknown quantities
E(Y;|X;) and E(Z;|X;) are replaced by suitable kernel estimates,

0=(Z - E(Z1X))(Z - E(Z|X))]"(Z - E(Z|X))'(y - E(y|2)),

with Z = (Z1,---,Z,)', X = (X1,--- , X,,)', and where F(Z|X) and E(y|Z) denote
the first stage kernel estimates of the n x d matrix of conditional expectations F(Z|X)
and the n x 1 vector E(y|X).

In the series estimation, the same operation is being implemented by the property
of # = (p'p) PY € RE, albeit implicitly. To see this, one may write down the
following partitioned regression formula familiar from linear regression. Recall that §is
the first d elements of 3 such that 3 = (', \) = (p'p) " p'Y € RE, with pX(Z;, X;) =
(Z!,q(X;)"), where g(-) is the vector of K — d series functions in terms of X;. Define
the n x n residual maker matrix M := I — P(P'P)~P’, using n x (K — d) matrix
P = (q(X1), -+ ,q(Xy)). Then, partitioned regression formula yields,

6= (Z'MZ)"Z'My.

The projections P(P'P)~1P'Z and P(P'P)~ P’y are series estimates of E(Z|X) and
E(y|X). Therefore, the series estimate 8 of &y effectively takes the same form as the
kernel estimate 0 of Robinson (1988), with series estimates of E(Z|X) and E(y|X)
replacing corresponding kernel estimates.

Next, we clarify the functional a(-) used to represent the quantity of interest dp.
There is more than one functional a(-) that yields a(m) = dp. Andrews (1991) notes
one could write a(m) = Om(x,z)/0z = §y for any values of x,z. In this work, we
use the following functional as in Newey (1997), since this facilitates verification of
conditions for /n-consistency. Denote Z* = Z — E(Z|X), where Z and X are random
variables independent of the data used to construct 5. Suppose F(Z*Z*') is a non-

singular matrix, which is an identification condition for dg, and consider the following
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functional of m:

a(m) = E{[B(ZZ")]'z"m(x,2)} (2.5.2)
= [BE(z*z")] ' {E(z*Z) + E[Z"ho(X)]} = do.

The last equality follows from

E(z*z") = E(zZ') - E|E(Z|X)Z'] — E[ZE(Z'|X)] + E[E(Z|X)E(Z'|X)]
= FE(zZ) - E[E(z|X)Z] = E(z*Z),

since E[ZE(Z'|X)] = E[E(Z|X)E(Z'|X)] by the law of iterative expectation, and
E[Z"ho(X)] = E[Zho(X)] — E[E(Z[X)ho(X)] = 0.

To see how this functional can be used to characterise the series estimate of dg, re-
call B = (&, N) and p¥(x,2) = (¢, q(x)'). Then, m(z,z) = 26 + q(z)’\. Hence,

conditioning on the data, and consequently on B , we have,

a(m) = E{[B(z*z")'z"n(X,2)}
= [B(z'z)! [E(z*z’)é + E[z*q(x)’]ﬁ\] =4,

2.5.2 /n rate of convergence

Returning to the discussion of the y/n rate of convergence, the following assumption
states the key condition and is from Newey (1997).
Assumption C1. There exists a dx1 vector-valued function w(z) = (wy(z), -, wq(x))
with the following properties.

(i) Elw(X;)w'(X;)] is finite and nonsingular,

(ii) D(m) = Ew(X:)m(X;)], D(Psk) = E[w(Xi)Psx (Xi)],1 < s < K for all K,

(iii) E[||lw(X;) — 6 P(X;)||?] — 0 for some sequence of fivzed d x K matrices .

Discussion of sufficient conditions for Assumption C1 can be found in Newey
(1997), pp. 155. The vector-valued function w(-) is the element of the domain of
D(-) that is used in the Riesz representation of D(-). Assumption C1 (iii) requires
such function w(-) to lie in the linear span of the series functions. Newey (1997) ex-
plicitly verifies that Assumption C1 holds for the semi-parametric estimands in the
partly linear and single index models and also for the case of average consumer sur-
plus estimation, where the quantity of interest is the approximate consumer surplus
integrated over a range of income. The verification for the partly linear regression
case is straightforward in the view of (2.5.2). Interested readers are referred to pp.
155 of Newey (1997).

By Assumption Cl, D(Psx) = Flw(X;)Pskx(X;)], 1 < s < K. Thus, one can write
A = E[P(X;)w'(X;)]. Since the K x 1 vector of normalized functions P(-) satisfies
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E[P(X;)P'(X;)] = Ik, A’P(x) can be written as the mean square projection of w(zx)

on the K x 1 vector P(-) of approximating functions:
A'P(z) = A’IglP(x) = Elw(X;)P'(X;)|E[P(X;)P'(X;)] ' P(x).

Denote d x 1 vector A'P(z) =: vig(z) = (vig(x),- - ,vgx(x))’, with the subscript K
indicating that vg is a mean-square projection of w onto the linear space spanned by

K series functions. Then V,, can be written as

V= 3 2 Blo (X0 (X ore(Xi)ole(Xi)]
ik=1

Next, define d x d matrix W,, where vk (-) is replaced by the function w(-):

W, = % > ik Elo(Xi)o (X )w(X)w' (X)),
i,k=1

The following assumption provides sufficient conditions for \/n rate of convergence of

a(m) to a(m).

Assumption C2. (i) V := lim W, exists; (ii) Z |vik] = O(n).

n—oo
i,k=1
Existence of the limit V' is a condition imposed on the collective strength of depen-
dence in U; and X;, comparable to Assumption A4 of Robinson and Thawornkaiwong
(2010). Assumption C2 (ii) is a weak dependence restriction for e;’s.

Theorem 2.4. (y/n rate of convergence). Under assumptions C1 and C2,
Vi =V <oo, as n— . (2.5.3)

Consequently, under assumptions A1-A5, B1-B7, and C1-C2,

V(@ —0g) =4 N(0,V), as n— .

Theorem 2.4 has obtained the /n rate of convergence for certain semi-parametric
estimates under weak dependence. The asymptotic variance-covariance matrix V is
unknown and needs to be estimated to construct a confidence interval or carry out
hypothesis testing for the unknown 8y. The next subsection considers the issues related
to this.

2.5.3 Studentization

In the earlier Section 1, possible problems of using the HAC estimator in the cross-
sectional setting have been discussed. Under the conditions for y/n rate of convergence
of a(m) to a(m) given in this section, it is possible to construct a new studentization

for a(m) — a(m) that does not require availability of economic distances. Theorem 2.4
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states /n(f, — 0p) =4 N(0,V), where the matrix
V= lim AP'E(UU'|X)PA/n = lim AYBZ'E(UU' | X)pBi A% /n

is unknown. It is not possible to consistently estimate V', unless one resorts to ad-
ditional information of suitable distance measures, as considered in Conely (1999),
Kelejian and Prucha (2007) and Robinson and Thawornkaiwong (2010). Instead,
we devise a matrix C’n, defined in the subsequent discussion, such that the limit of
\/ﬁCA'J 1/2 (én —0p) is free from unknown parameters. Similar idea was used in a setting
of linear OLS estimation in Kiefer, Vogelsang and Bunzel (2000).

Recall some notations: Bx = E(pX(X;)p*(X;)), P(x) = B;(lmpK(m), A =
(D(Pik), -+, D(Pxk)) € REX4 A* = (D(py),--- , D(pk))' = BY*A € RE*? with
D(-) from Assumption B1(i). Denote by A* and By the estimates of the corresponding
true values A* and By.

K1 n
A= W‘B:B’ Bg :=p'p/n = ;pK(Xi)pK(Xi)'/n. (2.5.4)
Given A* and By, we can construct the sample analogue of A’P’U/+\/n by A*/B;(I p'U//n,
where U =Y — M, with M = (m(X1),- -+ ,m(Xy)), is the n x 1 vector of correspond-

ing residuals. To introduce Cp,, set

m
St =Y A BN (XU, 1<m<n
=1

where Wy(-) denotes a d-dimensional vector of independent Brownian motions and ¥4
is the integral of the outer product of d-dimensional multivariate Brownian bridge.
Recall that EWy(r)Wy(u) =rI, 0<r<u<1.

[rn] n
Assumption C3. (i) Z Z |vik| = o(n) uniformly in r € [0, 1];
=1 k=[rn]+1

n
(ii) 112%2 ik = O(1).

Previously, Assumption C2 (ii) of Theorem 2.4 required e;’s to be weakly de-
pendent. C3 (ii) further rules out the presence of any ”dominant” unit whose error
covariances with new units added to the sample are persistently significant. Assump-
tion C3 (i) requires some falling-off of dependence as |i — k| increases, which inevitably
necessitates the ordering of the data to carry at least some information of the struc-

ture of dependence, albeit with a significant relaxation from the time series case where
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dependence is a function of |i — k|. Both C3 (i) and (ii) are natural implications of
weak dependence in the time series context where the dependence is a fast-decreasing
function of the distance in time. The current setting differs from the time series in two
ways; firstly it allows v,z = Vg to admit a triangular array structure, and secondly
it relaxes the link between v;; and |i — k|. For example, Assumption C3(i) is satis-

fied if there exists a positive function, n(-), such that |y;x| < n(i — k),i,k = 1,2,---

[ee]
and Z n(j) < oo. See Proposition 2.2, Appendix B. If 7;; takes on a triangular
j=—o00
array structure, as allowed in the pure SAR model, then Assumption C3 (i) is poten-

tially more restrictive. In this setting, Assumption C3 (ii) allows a unit ¢ to interact
with infinitely many others as the sample increases, as long as the bilateral interaction
Yikn, k = 1,2, -+ | falls suitably fast in n, whereas C3 (i) requires a faster uniform-in-n
rate of reduction in 7, as |t — k| increases.

Therefore, in order to apply the studentization method to cross-sectional data, the
ordering of data needs to carry some meaning. This rules out the case where the data
was collected at random from the population without any record of how units may be
related. Another issue is that in spatial settings it may not always be straightforward
to order units along a single line, as their dependence structure may be based on e.g.
a plane. Nonetheless, there are many economic applications where the data can be
ordered to adhere to the requirements of Assumption C3. For example, with firm
data, one may expect that firms using similar inputs or producing similar outputs
would exhibit high correlation in disturbances, the knowledge of which can help put
the data in order. This ordering may not be perfect because some perturbation may
result from the imperfection of practitioner’s knowledge of the underlying dependence
and also because of the challenge of ordering along a single index, as when trying
to order locations on a plane into a line. These considerations are dealt with in a
simulation study later.

Assumption C4. (i) A, = O(n); (i) tr(Z,) = O(K); (iii) A(Bg) = O(1); (iv)
VRE(K)K =2 = o(1).

Assumption C4 (i) can be seen as weak dependence condition on X;’s, whereas
Assumption C4 (iii) is a restriction on the choice of the approximating functions,
requiring their second moments to be bounded. Assumption C4 (ii) is a condition on
the strength of dependence across i in the combined quantity P(X;)U;. Assumption
C (iv) strengthens the smoothness condition of Assumption B3 (iii).

Assumption C5. E(e?) =k <ooforall j=1,2,---.

Recall the functional derivative D(-) from Assumptions B1 and B2. It is Frechet
differential of the functional a(-), evaluated at m. Now, let D(-;g) denote the func-
tional derivative of a(-) evaluated at g. Let D(-;g) = (D1(+;9), - ,Dd(-;g)),.
Assumption C6. For some 0 < C,e < 0o and all g,g such that |g — m|s < € and
15— mloo < &, 1Di(9:9) — Dilgi DIl < Clglocld — Glows i = 1, -+ 1.

Assumption C5 is the same as in Newey (1997) and requires the functional deriva-
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tives D;(+; g) to exhibit continuity over g, the point at which the derivative is taken.

The following theorem shows that the asymptotic distribution for the estimation
error 0 — 0o, when studentized by the matrix (f'n, is free from the unknown variance
matrix V' and only depends on d, and is non-Gaussian.

Theorem 2.5. Under the assumptions of Theorem 2.4 and Assumptions C1-C6,
C 2/ = B0) —a WP Wa(1).

Now, suppose we are interested in testing the hypothesis Hy : a(m) = r against
the alternative Hy : a(m) # r for a d x 1 fixed vector r. Then the test statistic can be
constructed as t* := n(@ — r)’C;; (6 — r). Since t* = ||\/n(f — r)’é;1/2||2, Theorem
2.5 implies the following result.

Theorem 2.6. Under Assumptions of Theorem 2.5,

th = Wy(1)W;'Wy(1), under Hy,

ty = oo, under Hj.

The critical values c¢,, satisfying Pr(t, < ¢o) — 1—a, required to carry out hypothesis
tests can be obtained from Table 2 of Kiefer et al. (2000) for d = 1,---,30. In
particular, for d = 1, c59, = 46.39, and c¢1gy, = 28.88. Correspondingly, the 97.5t" and
95" percentiles for \1!1_1/2W1(1) in Theorem 2.5 are v/46.39 and 1/28.88.

2.6 Monte Carlo Study of Finite-Sample Performance

In this section, we focus on the partly linear model of (2.5.1) where regressors X; and

Z; are both one-dimensonal:
Y; = 60Z; + h(X;) + U;.

It was noted in Section 2.5 that the functional a(m) = §p satisfies the conditions of
Theorem 2.4. Therefore the studentization devised in Theorem 2.5 and 2.6 applies.
We set the true model at 6y = 0.3 and h(z) = log(1 + 22).

There are two issues we would like to address in this section, related to the difficulty
of ordering data in line with the requirements of Assumption C3. Firstly, there may
be noise in our information about the ordering. For example, in a spatial setting, one
may correctly know which characteristic of individual units underpin the structure of
dependence, but this characteristic may be observed with error. Secondly, it may not
be straightforward to order the data with a single index as the underlying dependence
structure is more complex. For instance, one may observe units residing on a plane,
and there is no single obvious rule to order them with only a single index. In this
simulation, we consider two set-ups that cover the two issues separately.

In the first set of simulations, we generate random locations for individual units
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along a line, which determines the underlying dependence structure. We then com-
pare performance of studentization under the correct ordering of data to that under
perturbed ordering, that arises when the original locations are observed with noise,
then used to order the data. To be specific, the locations of the observations, denoted
s = (s1,-+-,8n), were generated by a random draw from the uniform distribution
over [0,n]. Keeping these locations fixed across replications, U; and Z; were generated
independently as scalar normal random variables with mean zero and covariances
Cov(U;,Uj) = Cov(Z;, Z;) = pl¥i=2il. To construct X;, we generate another scalar
normal random variable V; in the same way as U; and Z; and let X; =1+ V; +0.5Z7;.
The dependent variable is then formed as Y; = log(1 + XZQ) +0.3%7; + U;.

For the studentization part of simulations, we add noise to the locations, to gen-

erate four sets of ”perturbed” locations:

/ / " 7 " n " "
s =8 +te€, s =8 +¢€, S =8 +e€, S =8+¢€,

where the perturbations are independently drawn from

€ = (e, - ,€e) ~N(0,4L,), € = (€, - el ~ N(0,25I,),

e n
"= (', €Y ~ N(0,1001,), €" = (", ,€) ~ N(0,4001L,).
These perturbations may be seen as the measurement error in observations of the
locations. We use studentization with 5 different ordering of the data, according to
the five sets of locations s, s’, s”,s"”, s"".

We let n = 100,400 and p = 0,0.2,0.4,0.6, giving 8 combinations. For each
combination, three values of K = 4,6,9 were tried and 1000 iterations carried out.
For the series functions of Xj;, the first K — 1 orthonormal Legendre polynomials were
used.

The first objective of this simulation study is to analyse the finite sample per-
formance of the series estimation for both the non-parametric function m and semi-
parametric quantity a(m) under differing sample sizes, strength of dependence and
choices of K. We report in Table 2.1 the Monte Carlo MSE, bias and variance of
the non-parametric regression estimate at a fixed point (x,z) = (0.5,0.5), and the
Monte Carlo integrated MSE, defined as E[(m(X;) — m(X;))?] conveying how the
non-parametric estimation performs globally. Table 2.1 also contains the Monte Carlo
MSE of the estimate & of 8. The Monte Carlo variance and bias of the non-parametric
estimate at a fixed point are in line with the prediction that larger values of K reduce
the bias while increasing variance. As for the Monte Carlo MSE for m(0.5,0.5), under
all four values of p, K = 4 or K = 6 led to the smallest MSE for n = 100, while K = 6
did so for n = 400. For the MISE, K = 4 for n = 100 always led to the smallest
MISE, while K = 6 did so for n = 400. The Monte Carlo MSE of the semi-parametric

estimate & shows remarkable invariance to the choice of K across all of the 8 settings,



2. Series Estimation under Cross-sectional Dependence 45

which is especially important as the optimal choice of the bandwidth parameter K
for semi-parametric estimate is often more difficult than in the case of non-parametric
estimation. See Robinson and Thawornkaiwong (2010) for a discussion.

The second objective is to investigate how the studentization of Section 2.5.3

performs in finite samples. Theorem 2.5 implies in this setting,

n(3 — 0 ) (5 50 —)d W1 \/>1 W1
V(6 — 8o) @)
GV

Kiefer et al. (2000, Table 2) give simulated values of the percentiles of WZ(1)/¥1, from

which the corresponding percentiles of the square-rooted quantity W1(1)/+/¥; can be

easily derived. The 99.5",97.5!" and 95" percentile of W1 (1)/v/¥7 are v/101.2,1/46.39
and v/28.88, respectively. Based on this, we construct the asymptotic 95% confidence

interval for dg:
. C, - | C
Pr|édoe |0 —1/46.39—2,6 4+ 1/46.39—= — 0.95.
n n

Table 2.2 reports the Monte Carlo average length of the 95% confidence intervals
for studentization based on the correctly ordered data, i.e. ordered according to s.
The length of confidence intervals decreases with the sample size, increases with p and
does not report much variation over the choice of K. The same patterns are observed
with results under perturbed ordering.

Table 2.3 reports the empirical coverage probabilities for the 99%, 95% and 90%
asymptotic confidence intervals under the five different orderings of data, based on

locations s, s',s”, 5", and s

. When p = 0, studentizations with all orderings produce
a rather precise coverage probabilities for both samples sizes. For p = 0.2,0.4,0.6 and
correct ordering based on s, the coverage proabilities suffer slightly in the small sample
n = 100, while being rather good for n = 400, at least for p = 0.2 and 0.4. As we
perturb the ordering, a gradual deterioration in coverage probabilities is reported.
Nevertheless, even with the perturbation caused by substantial noises €/” ~ N (0, 100)
and €” ~ N(0,400), the reported coverage probabilities are remarkably encouraging.

Table 2.4 reports empirical power of testing Hy : dg =  against Hy : §y # 4, for
6 = 0.3,0.4,0.5,0.7. Since the true §p used in data generation is 0.3, the columns
corresponding to § = 0.3 report empirical size of the test. Not surprisingly for p = 0,
empirical powers across different orderings are similar, while for p = 0.2,0.4 and 0.6,
power tends improve with larger perturbations to ordering.

The second set of simulations aims to investigate the implications of ordering
spatial data with a single index, while their underlying dependence may be more

complex. We generate random locations on a plane then order the data with a sin-
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gle index in an ascending order of the distance from the origin (0,0). To generate
the data, we follow the random location setting of Robinson and Thawornkaiwong
(2010), where the vector of locations of the observations, denoted s1,--- ,s,, were
generated by a random draw from the uniform distribution over [0, 2n'/2] x [0, 2n'/2].
Again, keeping these locations fixed across replications, U; and Z; were generated
independently as scalar normal random variables with mean zero and covariances
Cov(U;,Uj) = Cov(Z;, Zj) = pllsi=sil | where || - || denotes Euclidean norm. To con-
struct X;, we generate another scalar normal random variable V; in the same way as
U; and Z; and let X; = 1+ V; + 0.5Z;. The dependent variable is then formed as
Y; = log(1 4+ X?) 4 0.3Z; + U;. Again, we considered two sample sizes, n = 100, 400,
three values of K = 4,6,9 and carry out 1000 iterations. For the series functions of
X;, the first K — 1 orthonormal Legendre polynomials were used. For the values of
p’s, we considered p = 0,0.2,0.4,0.52 for n = 100 and p = 0,0.2,0.35,0.5 for n = 400.
The random location setting implies the degree of dependence is determined not only
by the value of p, but also by the set of distances based on random locations. The fact
that we are considering locations on a plane, rather than along a line, implies that
the value of p produces differing strength of dependence compared to the stationary
time series AR(1) model we are familiar with, making it difficult to get a sense of
the degree of dependence in data generating models considered in our simulations.
One W&Z of comparing dependence between different settings is to measure it by the
value Z |Cov(U;, Uj)|. The choices of p’s were such that this summation is of sim-
ilar mzzfgnlitude to that in the time series AR(1) setting with p = 0,0.2,0.4,0.6. For
n = 100, the values of the above summation in our spatial simulations corresponding
to p = 0,0.2,0.4,0.52 were 100,152,255, 384, respectively, which are comparable to
100, 150, 232, 396 corresponding to time series AR(1) models with p = 0,0.2,0.4,0.6.
For n = 400, the values of the above summation in our simulation corresponding
to p = 0,0.2,0.4,0.52 were 400,611,949, 1602, respectively, which are comparable to
400, 599, 930, 1590 of time series AR(1) models with p = 0,0.2,0.4,0.6.

We report in Table 2.5, the Monte Carlo MSE, bias and variance of the non-
parametric regression estimate at a fixed point (z,z) = (0.5,0.5), Monte Carlo in-
tegrated MSE, Monte Carlo MSE of the estimate 5 of dp. Again, patterns of bias
and variance of the non-parametric regression estimate with changing K is in line
with the theory’s predictions and the choice K = 4 generated the lowest MSE for all
combinations for n = 100 and K = 6 did so for n = 400.

As mentioned before, we ordered data in an ascending order of Euclidean dis-
tance from the origin for the purpose of studentization. Table 2.6 reports the Monte
Carlo average length of the 95% confidence intervals. As before, the length of con-
fidence intervals decreases with the sample size, increases with p and does not show
much variation over the choice of K. Table 2.7 reports the empirical coverage prob-

abilities for the 99%, 95% and 90% asymptotic confidence intervals, which are re-
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ported to be highly satisfactory despite the difficulty of ordering and dependence.
Table 2.8 reports empirical power of testing Hy : g = 0 against Hy : &g # 9, for
0 =10,0.1,0.2,0.3,0.4,0.5,0.7,1 with 5% significance level. The asymptotic distribu-
tion of the test statistic is symmetric, and as expected, powers reported for § = 0.1

and 0.2 are similar to those reported for § = 0.5 and 0.4, respectively.
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Table 2.1: Monte Carlo MSE, Variance and Bias

p nK|MSE(g,) Var(gs) Bias(g.) MISE(§) MSE(S)
0 100 4] 0.0353 0.0283 0.0842 0.0595 0.0126
6/ 0.035 0.0347 0017  0.0701 0.0125

9 0.0463 0.0463 0.0039  0.0989 0.0132

400 4| 0.0162 0.0071 0.0956  0.0265 0.0033

6 0.0082 0.0079 0.0174  0.0199 0.0033

9 0.0098 0.0098 -0.0024  0.025 0.0034

02 100 4] 0.0526 0.0453 0.0855  0.0863 0.0216
6/ 0.055 0.0546 0.0201  0.0992  0.022

9| 0.0671 0.067 0.0066  0.1261 0.0229

400 4| 0.0219 00121  0.099  0.033  0.005

6/  0.0141 0.0135 0.0254  0.0278 0.0051

9| 0.0151 0.0151 0.0041  0.0334 0.0051

04 100 4] 0.0693 0.0647 0.0674  0.106 0.0268
6|  0.0757 0.0756  0.005  0.1207 0.0273

9| 0.0915 0.0915 -0.002  0.1493 0.0278

400 4|  0.025 0.0148 0.1014  0.0394 0.0065

6/ 0.0175 0.0168 0.0265  0.0347 0.0065

9 0.0193 0.0192 0.0058  0.0404 0.0065

0.6 100 4] 0.0863 0.0309 00738  0.1326 0.0341
6/ 0.0861 0.0859 0.0112  0.1465 0.0348

9  0.1028 0.1028 -0.0013  0.1739 0.0358

400 4| 0.034 00253 0.0931  0.0517 0.0107

6| 0.0272 0.0267 0.0222  0.0481 0.0107

9 0.0301 0.0301 -0.0006 0.0542 0.0107

Table 2.2: Monte Carlo average 95 % CI length

nK| p=0p=02p=04p=0.6

100 4

0.5605
6]0.5608
9/0.5608

0.6746
0.6701
0.6736

0.7447 0.8328
0.7401 0.8276
0.7353 0.8224

0.2955
6]0.2933
9/0.2922

0.3519
0.3501
0.3489

0.4043 0.4889
0.4039 0.4874
0.402 0.4869
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Table 2.5: Monte Carlo MSE, Variance and Bias

p nK|MSE(j;) Var(gs) Bias(§s) MISE(g) MSE(9)
0100 4| 0.1884 0.024 0.4054 0.1965 0.0149
6 0.0315 0.0258  0.0752 0.0587 0.0131

9/ 0.0384 0.0384 -0.0029 0.0808 0.0136

400 4 0.1717  0.006 0.407 0.1785 0.0037

6 0.016 0.0064 0.098 0.0264 0.0031

9 0.0081 0.0077 0.0211 0.0213 0.0031

0.2100 4 0.1891 0.0316  0.3969 0.2009 0.0191
6 0.0394 0.0334 0.0775 0.0676 0.017

9 0.0433 0.0432  0.0097 0.0873 0.017

400 4 0.1707 0.0083 0.403 0.1811 0.004

6 0.0168 0.0083 0.0924 0.028 0.0035

9 0.01 0.0099 0.0138 0.0233 0.0034

0.4100 4 0.198 0.0473 0.3881 0.2107 0.0184
6 0.0529 0.0475 0.0734 0.0815 0.0179

9 0.0578 0.0578  0.0028 0.1009 0.018
0.35400 4 0.177 0.0118 0.4064 0.1827  0.0046
6 0.0214 0.0115 0.0996 0.0321  0.0042

9 0.013 0.0126  0.0205 0.0272  0.0042
0.52100 4| 0.2089 0.0558 0.3913 0.2186  0.0225
6 0.0614 0.0542 0.085 0.0942 0.021

9/ 0.06564 0.065 0.0195 0.1146  0.0212

0.5400 4 0.1778 0.0164 0.4018 0.1878  0.0062
6/ 0.0264 0.017 0.0968 0.0387  0.0058

9 0.0183 0.018 0.0171 0.0343  0.0058

Table 2.6: Monte Carlo average 95 % CI length

n K

p=0p=02 p=04p=0.52

100 4
6
9

0.6241 0.6653
0.5823 0.628
0.5812 0.624

0.6816
0.6471
0.6484

0.717
0.6776
0.6747

n K

p=0p=02p=0.35

p=0.5

400 4

0.3099 0.3234
0.2869 0.3026
0.2862 0.3016

0.3483
0.3288
0.3271

0.3793
0.361
0.3584
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2.7 Empirical examples

This section presents two illustrative empirical examples in which the series estima-
tion and studentization method of this chapter are applied. The examples are from

Yatchew (2003) and are analysed by fitting the partly linear specification of
Y; = Zi6o + ho(X;) + Us.

The series estimation of &g yields similar values of § to the kernel estimates reported
in Yatchew (2003). To test the hypothesis Hy : do¢ = 0 against Hy : dg¢ # 0, £ =
1,---,d, the test using the usual t-statistic derived under independence assumption
is contrasted with that based on the test statistic ¢ := n(é — r)’é’gl(é —7r),r =0 of
Theorem 2.6 of this chapter, which allows for spatial dependence.

The first example involves a hedonic pricing of housing attributes. The data con-
sists of a relatively small sample of 92 detached homes in Ottawa that were sold
during 1987. The dependent variable is the sale price of a given house (price), while
the regressors contain various attributes of the house including the lot size (lotarea),
square footage of housing (usespc), number of bedrooms (nrbed), average neighbour-
hood income (acginc), distance to highway (dhwy), presence of garage (grge), fireplace
(frplc), and luxury bathroom (lux). In the non-parametric function enter two location

coordinates denoted s and w (south and west) of the house:

price = h(s,w) + 61 frplc + dagrge + dslux + dsacginc + dsdhwy
+dglotarea + drnrbed + dgusespe + u.

The first set of columns of Table 2.9 recalls the results of kernel semi-parametric
estimation reported in Yatchew (2003) based on the work of Robinson (1988). The
second set of columns reports the corresponding results from series estimation. The
estimates of coefficients, their standard errors and the t-statistics are broadly similar,
reporting significance of many of the regressors at the 5% level. Series estimation was
based on (1, s, w, sw) as approximating functions.

In applying the studentization of the previous section, the ordering of the data
is important in the light of Assumption C3. We have ordered data in ascending
order of the distance from the geographical coordinate (s, w) = (0,0), expecting
spatial dependence in the error terms of neighbouring houses. SE reports standard
error under assumption of independence, T'S* is test statistic ¢}, of Section 4.5 with
critical values 46.39, 28.88 at sizes 5% and 10%, respectively. Test statistics with * are
significant at 5% level and those with A at 10% significance level. The test statistic
tr of this work, which accounts for dependence, reports that the presence of fire place
and luxury bathroom are significant at the 5% significance level and square footage,
presence of fire place, luxury bathroom, and garage at 10% level, which may be more

informative, bearing in mind the small sample size of 92.
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Table 2.9: Hedonic House Pricing
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kernel series
Variable Coef SE  t-stat Coef SE  t-stat Ts*
frplc 126 5.8 2.17* 12.7 5.62 2.26* 126.23*
grge 129 49 2.63* 12.8 431 2.97% 29.98%
luz 57.6 10.6  5.43* 58.2 11.3 5.15* 177.10*
acginc 0.6 023 2.61* 0.61 0.2 3.08* 22.06
dhwy 1.5 214 0.07 -9.2 586  -1.57 10.38
lotarea 3.1 2.2 1.41 3.8 1.85 2.03* 22.12
nrbed 6.4 48  1.33 7.8 42 1.85% 14.57
usespc 24.7 10.6  2.33* 23.6 11.6 2.04* 37.672

The contrasting conclusions on the significance of J-coefficients between the t-test
under independent errors and test ¢;, allowing for dependence may be due to a presence
of cross-sectional dependence in the data. This seems to be natural as the dependent
variable is price of houses of the same type, sold in the same year and city, which
would have been subject to an overlapping set of demand and supply side factors,
driven by the same macroeconomic fundamentals.

The second empirical example concerns the following cost function of distributing
electricity, also from Yatchew (2003):

) )
f(cust) + wage + dapcap + gwage2 + Eélz?cap2 + dswage - pcap

+66 PUC + d7kwh + dglife + 09l f 4+ d10kmwire + u.

tc =

We have as the dependent variable, tc, the log of total cost per customer. As re-
gressors, cust is the log of the number of customers, wage is the log wage rate, pcap
is the log price of capital, PUC is a dummy variable for public utility commissions
that deliver additional services, therefore may benefit from economies of scope, life
is the log of the remaining life of distribution assets, [f is the log of the load factor
(this measures capacity utilization relative to peak usage), and kmwire is the log
of kilometers of distribution wire per customer. In Yatchew (2003), it is of interest
to non-parametrically estimate the conditional expectation of tc given cust, holding
other regressors fixed, as the shape of this curve reveals whether there are increas-
ing/decreasing returns to scale in electricity distribution. For the purpose of this
chapter, we are interested in the estimates of the linear parameters §’s and test of
their significance, Hy: 0; =0, Hy:6 #0forl=1,---,d, when allowing for depen-
dence in the error terms. The data consists of 81 municipal distributors in Ontario,
Canada, during 1993.

The first set of columns of Table 2.10 replicates the kernel estimates of d’s and
their standard errors assuming uncorrelatedness of error terms from Yatchew (2003).
The second set of columns report the estimates using series estimation, where the first

three Legendre polynomials were used as the series functions. The test statistics with
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x are those significant at 5% significance level, while those with A are significant at
10% significance level. In order to apply the studentization of section 2.5.3, the data
needs to be ordered with Assumption C3 in mind. Two different orderings were tried.
Firstly, the data was ordered in the ascending order of wage rate faced by the firm.
The rationale behind this ordering is that firms may be subject to input shocks, and
those with similar wage rate may use similar inputs, leading to dependence in their
disturbance terms. Test statistics based on this stundentization is denoted T'S;, in
Table 2.10. Secondly, data was ordered according to the number of employees of the
firm, which is a measure of the firm size. One may envisage that firms with similar
sizes are subject to similar shocks, or alternatively, are interdependent due to e.g.
competition. Test statistics based on this stundentization is denoted T'S; in Table
2.10.

Inference based on the assumption of uncorrelated error terms lead to PUC, life,lf
and kmwire being significant at 5% level with kernel estimation, while PUC,life and
kmuwire are reported significant at 5% level with series estimation. When allowing for
dependence in the error terms, life and kmwire are still reported significant at 5%
level with both orderings, while I f is now reported significant at 10% level. pcap and
wage - pcap are reported significant at 10% level under both orderings, while PUC,
which was significant at 5% level under uncorrelatedness assumption on error terms,

is now significant at 10%, only with the ordering according to number of employees.

Table 2.10: Cost function in Electricity Distribution

kernel series
Coef SE t-stat Coef SE t-stat T8y T8y
wage | -6.298 12.453  -0.506 | -6.002 15.736  -0.381 0.426 0.261
pcap | -1.393 1.6 -0.872 | -2.531 1.846  -1.371  44.08® 35.433%2
swage? 0.72 213  0.3388 | 1.731 12.837 0.135 0.061 0.036
tpcap? | 0.032  0.066 0.485 | 0.148 0.318 0.466 1.593 1.491
wage -peap | 0.534  0.599 0.891 | 2.044 1.553 1.317 43.155%  40.27%
PUC | -0.086 0.039 —2.205* | -0.043 0.017  —2.6*  11.042 28.893"
kwh | 0.033  0.086 0.384 | 0.0828 0.102  0.8085 8.208 9.486
life | -0.634 0.115 —5.513* | -0.613 0.124 —4.935*  104.6* 92.7*

If 1.249  0.436 2.865* 0.746  0.486 1.535  39.669° 36.587%
kmwire 0.399  0.087 4.586* 0.442  0.088 5.012*  202.65* 151.02*

2.8 Conclusion

This chapter has established the theoretical background for the series estimation
of a vector-valued functional of the non-parametric regression function under cross-
sectional dependence and nonstationarity. A uniform rate of consistency, asymptotic
normality and sufficient conditions for the y/n rate of convergence were provided. Im-
portantly, a data-driven studentization method that offers an alternative to exiting

methods of inference was introduced for the /n-consistent semi-parametric estimates.
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The problem of inference for non-parametric or semi-parametric estimates that do not
achieve the y/n rate of convergence remains open and calls for further research.

The framework of cross-sectional dependence and non-stationarity of this chapter
and its asymptotic arguments, e.g. application of the FCLT, may be used to establish
asymptotic theory for other estimation methods under the cross-sectional setting. The
robust inference offered by the studentization of this chapter provides a new tool for
inference with cross-sectional data and needs to be extended to other commonly used

methods such as GMM estimation of parametric models.
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2.9 Appendix A. Proofs of Theorems 2.1-2.5.

The main matrix norm used in this work is spectral norm, ||A||? := A\(A’A), defined as

the largest eigenvalue of the matrix A’A. It is submultiplicative, i.e. ||[AB| < || A|||| B,

and when A is positive semi-definite and symmetric, it satisfies ||AY/2?||? = ||A|| and
A=Y=t = ||A||. When A is positive semi-definite, symmetric and random, one has
that

1Al = Op(E[IAl) = Op(E(A(A))) < Op(E(tr(A))) = Op(tr(E(A))).

In addition, three other matrix norms appear in the proofs. Let || - ||z denote
Euclidean norm for matrix, || - [|¢ maximum column sum norm and | - || maximum

row sum norm. Let A = (a;;) be a ¢ X ¢ matrix. Then,

q q q
B (). Il = s (3l Il = e (3
I = (30 65 Al o= g (sl 141 = oo, (3 o)

The following inequalities hold:
1A < [ Alle,  AI7 < lAllzlAlle,  [tr(AB)| < ||All£] Blle,

IABlz < [ AllzllBl, [[ABlz < [AlzlBl -

The above facts can be found in Searle (1982), Horn and Johnson (1990) and the
appendix of Davies (1973).

Alternative representations of 7 in p and P

In Section 3, we introduced a K x 1 vector of normalised functions P(z) =
PE(z) = B;lﬂpK(:r) satisfying F(P(X;)P(X;)") = Ix. Given that the series estima-
tor m(-) is a projection of the unknown function m(-) onto the linear space spanned
by pi(+), -+ ,pk(-), the estimate m(-) is invariant to any nonsingular linear transfor-

mation of approximating functions. Hence,
m(x) = p"(x)'f = P(x)'3, (2.9.1)
where 3 = (p'p) p'Y € RE with
p=p,=[p"(X1), PN (X)) €RE, ¥V =Y, =1, .Y,) €R"
and 4 = (P'P)"P’Y € R where
P=P,=[P(X)), --,P(X,)] € R"™*K,

To show such invariance, one can use the equality P = pB;(I/ % to establish the
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following relation between 4 and B:
. _ 1/2 — 1/2 5—1/2 1/2 4
4= (P'P)"P'Y = B)*(p'p) BY*B;/*p'Y = B}/*8.

Above equality holds, because the fact that (p’p)~ is the Moore-Penrose inverse of
p'p implies (P'P)~ = (B *p'pB,"*)~ = B}’ (p'p) B>

Proof of Theorems 2.1-2.5 benefits from algebraic convenience of studying the
representation 1m(z) = P(z)'4 instead of m(z) = pX(2)'. Assumptions imposed on
quantities involving p’ (-) such as ¢(K) will continue to hold for their counterparts
defined in terms of P (). To show this fact for Assumption A4, note that

p"(x) B = P(x) vk, where i = B%zﬁK.
Therefore, Assumption A4 implies
Im — P'ykloo = O(K™%), as K — oo.

To verify that assumptions involving the upper bound £(K) continue to hold for the
corresponding quantity based on P(-), define:

((K) = sup |1P* ()]

Then, for some C' < oo, ((k) < C&(k) for all k > 1, because

(k) = swp 1B 20 (@)l < |1B; | sup [ (2)] < CE(F). (2.9.2)

noting that by Assumption A3(i) and symmetry and positive semi-definiteness of By,
1B = BRI = ABE)Y? = A\(Bk) 2 < C.

The bound indicates that assumptions involving the upper bound £(K') continue to
hold also for ((K). The rest of the proof will be completed using m(z) = P(zx)'4.
Wherever needed, translation to and from the two alternative representations of m
given in (2.9.1) is clarified.

Proof of Theorem 2.1. Let M = M, = (m(X1),---,m(X,)) € R* and Q :=
Qn = P'P/n € REXK_ We shall use these notations for the rest of the proof. To
study the order of |/ — m|~, we decompose the quantity m(x) — m(x) into the bias

and stochastic terms. Let yx = B}(/zﬁ i for Bx of Assumption A4. Write:

i(e) —m(@) = [P@) (5 —7x)] + [P@)rx — m(@)]. (2.9.3)

!Existence and uniqueness of Moore-Penrose inverse were established in Penrose (1955). The four
Penrose conditions can be found in Searle (1982), pp. 212.
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where 4 = (P'P)"P'Y = (Q)"P'Y/n. Recall

Y. =E (P'UU'P/n)

n

the K x K variance-covariance matrix of the vector Z P(X;)U;/+/n. We shall show
i=1

below that

R tr(X, 1/2 o
15 = xll = O, (ﬂl) +K ) . (2.9.4)

Then, by the definition of ((K) and Assumption A4,

[ —mle < ’PI(’AYK — VK )|oo + ‘P/'YK — Mo
C(K) ||k — vkl + O(K™%)

0, (C(K) tr(Zn) K—a] > .

nl/2

IN

Therefore, we obtain the statement of Theorem 2.1:

nl/2

|7 = mloo = Op (f(K)

Proof of (2.9.4). Observe that the matrix Q in 4 = (Q)"P’Y/n depends on the
sample (X1, -+, X,) of random variables. Thus invertibility of Q for any given sample
cannot be taken for granted. Let 1, := I(A(Q) > a) be the indicator function for the
smallest eigenvalue of Q, A(Q), to be greater than some positive number a < 1. Then
the inverse of @ exists when 1, = 1. It will be shown that Pr(1, = 1) — 1 as
n — 00, so that Q! exists with probability tending to 1. First we study the quantity
1,(% — 7K ), subsequently used to get the required result. Decompose 1, (¥ — 7k ) as

follows:
(5 —7K) = 1, |Q7'P/(Y — M) /n+ Q'P'(M — Pyg)/n| . (2.9.5)

Applying triangle inequality to (2.9.5) and the property ||AB| < ||A||||B|| of the

spectral norm gives

In(y =)l < [11.Q™"P'U/nl| + [[1,Q7'P'(M — Pyg) /n|
1. Q@ HIP'U/n|| + [1.Q ' P'/Val[[|(M — Pyk)/v/nl(2.9.6)

IN
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Below we shall prove that

11,Q7"P'/v/nll = 0p(1), (2.9.7)
r(%,)1/2

IP'U/n|| = O, (H?/ﬁ)) (2.9.8)

1M =PVl = Op(K~). (2.99)

These lead to
2 tr(zn)l/Q —x
110 (¥ — &)l = Op <n1/2+K ;

which gives |[yx — vx| = Op (tr(2,)/2/n/? + K~). To see this, use the fact that
1 —1, = 0p(1) and the triangle inequality, to obtain

IN

(=) I+ 11 = 1) (5 =)l (2.9.10)
1n (5 = vl + 0p(W[ = k]

19 =l

IN

Thus

17 = & [[(1 4+ 0p(1)) < [ 1n(¥ = v&)I,
15 = vl < 15 = ) /(L + 0p(1)) = O, (tr( D)2 /2 4 K- )(2.9.11)

Proof of 1,, =, 1. It suffices to show that A(Q) —pl,asn — o0 .
First we derive tr {(Q - 1)2} = 0p(1). Recall the definition P(z) := B, 21/ pK(z) =
[Pig(x),- -, Pkir(x)]. Observe that

E[tr{(@—[)z}} = Z ZPpK i) Poxc (Xi) — 1(€ = p)}?]

pl=1

= _2ZVM <ZP,,K P (X ))

pl=1

noting that E(Q) = I: E(Q) = n™! ZE(P(X,-)P’(Xi)) where E(P(X;)P'(X;)) =

=1
B PEpR (Xp" (X,)1Bi'"* = B "B By'* = I. For any pair p,¢ = 1,--- .k,

Var <Z X)) P (X ) ZZCOU{ Xi)Porc (Xi), Pox (X)) P (X5) }
=1 j=1

:ZVW pi (Xi) Porc (X Z Cov{ Pk (Xi) Por (Xi), Pprc (X;5) Porc (X;5) }
i,j=1,j7#i

—. V(P:Z) 4 V(pz’é)

©Vnl n,
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Then E[[|Q — I]]2] < n2 Z (V&Y + v %9). One has
pl=1
4
K
w2 n(plﬁ = ZVW pic (X PZK(X))SCEZ )'
To bound Vn(g’z) we use Assumption A5:
SV = / e () P Py P (5 S L) — £(@) S0} )dady
1,j=1,j7#1
1 _
< Gy X [Isten) - @) )ldsdy) =m0,
i,J=1,i#]
Therefore,
K
plrf{@-n7] = > wn v
pl=1

KCUK) | KCE)A

- n n2

= K*YK) (1 + A”) = o(1), (2.9.12)

n n2

by Assumptions A3(ii), and A5.

Hence to show A(Q) —, 1, it suffices to verify that [A(Q)—A(I)| < [tr {(Q - I)z}] 1/2.
The symmetric matrix (Q — I) can be written as Q — I = C(A — I)C’, where
C = (¢;;) € RE*K is orthonormal eigenvector matrix such that C’C = I and Ais a
diagonal matrix consisting of eigenvalues of Q. Consequently, (Q ~-1)?=C (A —1)2C".

K
Now, tr{(Q — I)?} = tr (C(A - 1)20') =3 (M(Q) — 1), because
/=1
. K K A K A K K A
tr (C(A - 1)20') =33 @0 -2 =3 (-1 (Z c3j> =30y - 12,
i=1 j=1 j=1 i=1 j=1

because columns of C' are orthonormal. Therefore,

AQ) - 1)*<tr{(@ D% IAQ) — 1 < [tr{(Q — I)*}]'/* = 0,(1),

as was concluded in (2.9.12). This completes the proof of Pr(1, =1) — 1 as n — 0.
Now we prove (2.9.7) -(2.9.9).
Proof of (2.9.7). Note that @ is symmetric and nonnegative definite. Thus, by

the properties of the spectral norm,

||1nQ71|| = 1n5\((§71) = 1n(A(Q))71
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The facts 1, —, 1 and A(Q) —, 1 established above imply 1,(A(Q))~* —, 1. Hence,
by Slutsky theorem, ||1,Q | = O,(1). Therefore,

11.Q7"P'/V/n|? = [1.Q'P'PQ™"/n|l = [1,Q || = Op(1).

Proof of (2.9.8). One has

) 1, 1 [ /PUU'P\]Y? tr (Sn) "2
e e T Y e (n/>

Proof of (2.9.9). We have,

I(M —Pryx)/Val* = (M = Pyk) (M — Pyk)/n

= 3 (90X~ P(Xiw)? = Op(K ),
i=1

by Assumption 4, which completes the proof of (2.9.4) and of the theorem. W
Proof of Theorem 2.2. Let T,, := A'P'U/n, where P = pKBI_(l/2 e R" A=
(D(Pik), D(Pog), - - ,D(PKK))/ € REXd and U = (Uy,--- ,U,) € R™. Write

We shall show that

VAV, P, = 0,(1), (2.9.13)
ViV, 2T, = N(0, 1), (2.9.14)

which implies convergence (2.4.1) of Theorem 2.2.

Proof of (2.9.13). Again, let 1,, = I(A(Q) > a) for some positive number a < 1 as
in the proof of Theorem 2.1, hence 1,, = 1+ 0,(1). By the same argument as in proof
of Theorem 2.1, (2.9.13) follows if we show that

LoV Y2, = 0,(1). (2.9.15)

We shall use the bound ||1n\/ﬁf/n_1/27“n\| < \/ﬁHVn_l/2H||1nrn||. To evaluate [|1,7,]|,
recall m = P'yx. Write
o = 0n — 0y — T, = {a(h) — a(m) — D(m) + D(m)}
HD() ~ D(m) - T,} + {D(m) ~ D(m)}.
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Then
lrall < lla(@) — a(m) — D(mn) + D(m)|
+  |[D() = D(m) — Tl + [ D(m) — D(m)]|
= raall + llrnell + [l sl
To show (2.9.13), note that by assumption of the theorem, ||Vn71/2H = |V Y2 =
O,(1). Thus, it suffices to prove that
Lovn|rnl = 0p(1), i=1,2,3. (2.9.16)

For i = 1, by Assumption B1, ||r,1]| = Op(J — m|%). Thus by Theorem 2.1 and
Assumption B3(i), (iii)

tr(%,)

Vitlraall = 0, (Ve (" + k7)) <o) (29.17)

A~

For ¢ = 2, to bound ||ry 2| recall the notation: m(z) = P(z)'9y, Q = P'P/n, ¥ =
(PP)"PY =Q PY/n, Y =M+U and A= (D(Pg),- - ,D(Pxg))’. Then,

) = D(P'9)=A%=AQ P(M+U)/n, (2.9.18)
D(m) = D(Pyk)= Alvg. (2.9.19)

S
S)

As in the proof of Theorem 2.1, one can replace anA’ with anfl. Hence

Iarnzl = [Ia(AQ'PY/n — Ay — AP'U/n)|
= |1, AQ'P' (M +U)/n— Alyg — A'P'U/n|
= [[1,A(Q " = DP'U/n+ AQ'P'(M — Pyk)/n|
11,A(Q" = )P'U/n|| + |A'Q™"P'(M — Pvyk)/n||
A1 (@7 = DIIP'T/nll + |A11.Q P /v/all| (M — Pyk)/v/nl.

IN

IN

Note that || A]|> < 3(K), [|[1,Q~"| = O,(1), and by (2.9.7)- (2.9.9),
11.Q7"P'/V/nll = 0,(1), (M = Pryx)/v/nll = Op(K~%), |[P'U/n| =0, ((tr(En)/n)l/Q) :
Next, [[1,(Q7 = D) = [1,Q7X( = Q)| < [1.Q M1 = Qll = Op(|IT - Ql)). Thus,

Il = OpVVEC(E) (I = QUEr(Ea)/m)? + K.

To bound ||T — Q| note that E[||Q — I|?] = E [x {(Q - I)QH <E [tr {(Q - 1)2}].
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From (2.9.12),

, 1/2
Vitllraall < (nEK¢(K))'? { [K2C4(K) (i + A“) : (E")] + K—a} = 0p(1)

by Assumptions B3(ii) and (iii).
For i = 3, by linearity of D(-) and Assumption B2 and A4, ||r, 3]| = O(|m—m|~) =
O(K™9),

Villrasll = Op(WViK =) = 0,(1), (2.9.20)

by Assumptions B3(iii), which implies nK 2 = o(1).
Proof of (2.9.14). To show asymptotic normality of the main term \/nV, 2T "

introduce the following representation
_ 1 < 3
U, = SR = S AP0 S e
i=1

00 1 I
= Z (ﬁ Z Vn1/2A/P(Xi)O'(Xi)bZ‘j> €5 = Z Win€j,
j i=1 j=1

letting

wjn = zn: Vn_l/QA/P(Xz)J(XZ)bw/\/’E (2921)

i=1

Noting that wj, is a function of {X;}I,, we show asymptotic normality conditional
on |V, 1| < C and {X;}" ,, treating w;, as non-random. The key point here is to
obtain the conditional asymptotic distribution to be N (0, I;), which is independent
of {X;}" . This yields the required unconditional asymptotic normality result of
Theorem 2.2. Such line of reasoning was used in Robinson (2011).

By Cramer-Wold device, to derlve asymptotic normality of the vector \/nV;, 2T .

we focus on a scalar summation Zc wjnej with any fixed vector ¢ € R? such that
=1
¢ = 1. Consider splitting \/nc’ anl/ *T;, into two sums,

N(n) 00
VRV T, = N dwjnej + Y dwjngy,
j=1 j=N(n)+1
where the integer N(n) is chosen to be the smallest satisfying

x
Z cw]n §1/logn.
j=N(n)+1
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The choice of N(n) is deterministic once we condition on {X;}” ;. The purpose of

this truncation is to make the contribution from the second summation negligible:

(> dwpme)? = Ou(B( Y. duwjng))?)
j:N(n)+1 j:N(n)+1
> 1
B Op(j=1%)+1(dwjn)2) =0 <logn> = oll).

Since {c'wje;} are martingale differences under assumption A2, asymptotic normality
of the first summation is established by verifying the following two sufficient conditions

for asymptotic normality from Scott (1973), adapted for our setting.

N(n)

E((cwjej)?) —p 1, (2.9.22)
j=1
N(n)

E((dwjne;)*1(|cwine;| > 0)) = 0, V5 > 0. (2.9.23)
j=1

By Assumption A2, we have

N(n) N(n)
Z E((d wief)?) = Z (Cwin)?.
j=1 J=1
By the choice of N(n),
N(n) 0o 00
chm chjnz— Z (dwjn) fl—i—o(l)
j=1 7=1 j=N(n)+1

Next let v be as in Assumption A2. Then,

N(n) N(n)
Y Bl 1| > ) = 3 (s PEIEA s > )
j=1
N( / 2 ’c/wjn’ v 24v —v N(n) / 24-v 24v
< Z(C’wg‘n) —5 ) Blalm =9 > [winl* T Elej|
j=1 j=1
N(n) N(n)
<C6v dwi, | < C657Y max |dwipl” dwin)?.
O8O s [l 3 )

N(n)
The first inequality follows from 1(|c'wjne;| > 6) < (|dwjne;|/d)”. With Z (Cwjn)?* —
j=1
1, (2.9.23) is verified once we show that max |dwjn|” — 0. Conditionally on X1, , X,
3>
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the following holds for any j > 1:
C/

1/2 ZA/ bz]
el v 1/2H Jnax Z [bij || A"P(X3)o (X))
0] ( NG 113]a<xnz ]b”|> = o (2.9.24)
by Assumption B4 and the bound ||A'P(X;)o(X;)| < C|AJ|||P(X;)] < C3(K). &
Proof of Theorem 2.3. We will prove later that ||V;,—V;|| = 0,(1). Then, V,;1V,, —,

I since |V, 2V, = I|| < ||V, IV — Vaull = 0p(1), which in turn gives V,,V, 1 —, I. It
follows that

|dwjn| =

IN

IV < IV VAVl = Op(1).

Now, to show the final statement, (2.4.6), of the Theorem 2.3, write:

ViV Y20 — 00) = /aV V20 — 60) + (VY2 - VoY) (6 - 6).

The first term was shown to converge in distribution to N (0, I,) in Theorem 2.2, while

the second term is negligible:

VAV, 2 = V2) (0 = 80) | < (Vi 2V = DIlIVAV, (8 — 60)]l = op(1),

since Vj, /2712 —p I from V71V, —, I, and thus HV_l/QVl/2 —I|| = op(1).
Proof of ||V, — Vy|| = 0p(1). By definition of the spectral norm, ||V, — V|| = 0,(1)
follows if |(V,, — Vi)ep| = 0,(1), for all £,p =1,--- ,d, where (B)g, denotes the (£, p)"

element of a matrix B. Then, using notation (2.4.2),

(Vn - Vn)ép = % Z Yij {U(Xz)A/EP(XZ)U(X])P/<XJ)AP - E<O'(XZ)A2P(XZ)U(X])P/(

4,j=1

= LS {80~ B

1,j=1

Since

X

’)Ap)}
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we obtain that

r ]. r - f — — g —
(h=Vadp = = > 7 {WORY - BRORP)}
i,j:l
0y, 1 ¢ ¢
+ = Zlmg B(h) + Zl YO E(hP)
2¥) 2Y)

= Sl,n + S2,n + S3,n-
‘We shall show that
Var(Sgn) =o0(1), k=1,2,3, (2.9.25)

which proves ||V;, — V,,|| = 0,(1).
Proof of (2.9.25), k=1. We have

1 4 J4
Var(Sin) = 2 Z ViyigVigis COV (h( )hl(2), hig)h(p)> .

11,02,13,14=1

Introduce the notation, qb(z’ Cov(hl(z), Bg )) and denote by ®“P) the n x n matrix
whose (i, )" element is qb P) " Recall that by the Definition 2 of joint 4" order

cumulant,

COU(leQ, 2324) = H(Zl, Zo, 43, Z4) + COU(Zl, Zg)CO’U(ZQ, Z4) + COU(Zl, Z4)CO?)(Z2, Zg).

One has
1 z 0 - o -
Var(SL") - n2 Z YiviaVizia K (h§1)7h£2)7h§3)7hg)) (2.9.26)
11,82,13,54=1
RN )
+ ﬁ Z 7i1i27i3i4¢@'113 ¢12£) (2.9.27)
11,12,13,14=1
1 - ) (p,0)
+ ﬁ Z %112%324¢§1£ sz;g . (2.9.28)

11,12,13,14=1

Denote by I' = T, the n xn matrix whose (i, ) element is 7;;. Firstly, by Assumption
B7, the RHS of (2.9.26) is o(1). To bound (2.9.27) and (2.9.28), write

n

1 (&0 ,(p, 1 2,0
2 E %112%314@”3 qbg’lf Qtr (F(I)(PJ’)F(I)( : )) ,
11,02,13,i4=1

1 n 2 .
ﬁ Z VZ122/72314¢7,1£)¢1§Z3 = n2 tr (]_“(I)(p, )F@(p,f)) .
11,02,3,54=1
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By the properties of matrix norms given earlier, we see that

’tr (m(f?vmrcb(”))’ < |ra®P) (2.9.29)
Partition 0072 = 5" (607) = 3 @IV 4+ Y (48P Fori =,
i,j=1 i=1,i=j i,j=1 z;é]

)| = Var(h{") < ¢Y(K). For i # j, one has [P < CCH(K) /X fislw,y)
f(@) f(y)ldxdy, since |o(X;)ALP(X;)| < CC*(K). Therefore,

2
8P4 < Cn¢d(K) + CC3(K </|fu ,y) )f(y)\dxdy) :

1,j=1,i7#]

It is clear that [ |f;j(x,y) — f(x)f(y)|dzdy < 2 for all ¢ and j. Hence,

(/\fuwy ><>\dwdy) <2 3 [Ifslen)- sy = 20,

1,j=1,i#] 1,j=1,i#j
Thus, for any p=1,--- ,d,
90D = 3 (607 < U + 1), (2:9.30)
ij=1
Hence, by (2.9.29) and Assumption B6,
QHFH 1P| |05 < — (maxZ !%y\) K)(n+ LHq) = o(1),

since by the property of spectral norm ||A||? < ||A||¢||A| g, and by the symmetry of
L,

2
n

IT|1> < |IT|1 = (glgfz I%j> :
- =1

Similarly, it follows that n=2tr (Fé(p’Z)FCI)(p’Z)) = 0o(1), which completes the proof of
(2.9.25) when k = 1.
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Proof of (2.9.25), k=2,3. Recall, S, 2 =n"2 Z ’yZ] (h(e)) Therefore,
i,j=1

- ¢ O\ 7 ()7
Var(ng) = -5 Z 7i1i27i3i4E(hz(1))E(hz(3))E(hz(g)hl(f))

11,12,13,14=1

1 0 . 14 )
= ﬁ Z (Z ’72112 h() ) (Z 'Yi3i4E(hz(3))> ¢§§£)

i9,i4=1 \11=1 i3=1

2 n
1
- ( ) > 157
ij=1
2 n
1 (p.p)
n2 ( 1rélja<X Z |7ij] > Z "bz] ‘

ij=1

A
|

max
1<j<n 4 Z i

IN

using the bound E ]hz@\ < CC*(K). By the same steps taken in two lines prior to
(2.9.30),

ST 0P| < CCHE) (n+ D).
i,j=1

This, together with Assumption B6 yields

8 n 2
Var(Sy2) < COE)(n+ An) (maxz Vi1 ) = o

n2

|
Proof of Theorem 2.4. We need to show ||V, — V|| = o(1), as n — oo. By the
triangle inequality,

||Vn - VH < ||Vn - Wn” + HWn - VH,

where ||WW,, — V|| = o(1) holds by Assumption C2 (i). To bound ||V,, — W, || note that

n

1 n
> i Elo (X))o (Xi) {vr (Xi) v (Xx) — w(Xi)w' (X5)}]-
i=1 k=1
We shall establish ||[V;, — W,|| = o(1) by showing that elements (V, — Wy)¢p, 1 <

,p <d, of V,, — W, converges to zero. We have that
1 n n
(Vo= Wadepl = |=> > vk Elo(Xi)o(Xe) (verc (Xi)vpic (Xi) — we(Xi (X))
i=1 k=1

% SO ikl Ello(Xi) o (Xi) {ver (Xi)vpr (Xi) — we(Xi )wy(Xi) H].

i=1 k=1

IN
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Notice that

Ello(X;)o (Xk){ver (Xi)vpr (Xk) — we(X;)wp(Xk) }H]
< CBlloerc (X3) {vpic (Xi) — wp(Xi) H] + CE[ {verc (X:) — we(X:) bop (X |
< C (Bl (X)) (Bl{opx (Xe) — wp(Xi)}%) "2
+C (Bl[{oer (X3) — we(X0) ) (Blw2 (X)) = o(1),

because for any p = 1,--- ,d, E[wz(Xi)] < oo by Assumption C1 (i), E[{vpx(X;) —
wy(X;)}?] = o(1) by Assumption C1 (iii) and E[vﬁK(Xi)] < 00. The latter follows

from
Evyx(X:)] < 2E[{vpk (Xi) — wp(X;)}?] 4 2E[w?(X;)] < oo. (2.9.31)

Hence,

n n

(Ve = W, Ep!<[ > I%k\] (1) = o(1),

=1 k=1
by Assumption C2 (ii). This completes the proof of the Theorem. W

Proof of Theorem 2.5. Proof of Theorem 2.5 is based on Lemmas 2.1, 2.2 and 2.3
stated in Appendix B. Define the d x 1 summation

S’:(T) = ZA*,B[_(IPK(XZ)Z?z/\/ﬁ7 0 <r< 17
i=1

where [rn| denotes the integer part of rn. Based on the statement of Lemma 2.2

and 2.3, one has weak convergence (S'T*L(r))re[ = (VVH{W(r) — rWy(1)})

0,1] rel0,1]

n 1
in the space D[0,1]%. Observe that C,, = 1 Z S;(m)S,*L(T)’ ~ / Sk (r)Sk(r) dr.
n n 0

m=1
Therefore, continuous mapping theorem gives

V2E, V2 o wy, (2.9.32)

Write
G2 nlby = 00) = (CMPVIR) (Vuv TV (B, — o).

By Lemma 2.1-2.3, C’EI/QV1/2 = \116;1/2, and by Theorem 2.4, \/ﬁV_l/z(én —6y) —

N(0,1;), where convergence of the two terms is joint, completing the proof.
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2.10 Appendix B. Lemmas 2.1-2.3. Propositions 2.1-2.2.

Let X(-),Y () € DJ0, 1], the space of all real valued functions on [0, 1] that are right-
continuous with finite left limits. Skorohod metric d(-,-) in D[0, 1] is given by:

d(X,Y) = inf{e: []A| <, . (X (r) =Y (A(r))] < e}

where A is any continuous mapping of [0, 1] onto itself with A(0) =0, A(1) =1 and

A= sup  |log 2O ZAW

0<r<u<l.
rou€[0,1]:r#u u—r ‘7 B B

Denote by

[rn]

ZAP DUi/v/n, and  Sp( ZA’ DUi/v/n, rel0,1]  (2.10.1)

the d x 1 vector-valued summations.

Note that S,(-) € D[0,1]¢ = D[0,1] x --- x D[0,1], where D[0,1]?¢ is the product
space. Endowing each component space D[0, 1] with the well-known Skorohod metric
d(-,-), stated above, we assign the following metric to the product space D|0, 1]P as
was done in Phillips and Durlauf (1986). For X(-) = (X1(-), -+, X4(-))" € DJ0,1]¢
and Y(-) = (Y1("), -, Ya(+))" € D[0,1]¢, define the metric:

d(X,Y) = d( X, Yy) : Xo, Y, € D[0,1]}.

(X,Y) llglgg(d{ (Xe,Ye) : Xy, Yo € D[0,1]}
Lemma 2.1 states functional central limit theorem (FCLT) for S, (r) in D[0, 1]¢
equipped with the metric d'(+,-). The notation = Dlo,1]¢ signifies weak convergence of

the associated probability measures in D0, 1]%.

Remark. The specification of S, (r), and similarly S,(r), in (2.10.1) as a partial

summation over i = 1 up to [rn| may seem like an obvious choice, as partial summation
[rn]

of random variables, S, (r) = Zm, where 7; does not depend on n, is frequently
i=1

considered in FCLT literature, see e.g. Phillpis and Durlauf (1986) and Davidson and

de Jong (2000). But it is worth noting that the setting here is more involved and
differs somewhat from those works. This is because the summand of S, (r) takes on a
triangular array structure. Bearing in mind K = K (n) is a function of n and recalling
A= (D(Pig),D(Pyk), -+, D(Pxk)) € REX?, we see the summand A'P(X;)U;/v/n
of (2.10.1) can be written as:

K(n)

'P(X;)Ui/v/n =Y D(Puc)Pic(Xi) Y bijej/v/n.
=1 j=1
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Now, consider the following representation of Sy(r), as a weighted summation of €;’s

over j = 1 to oo, with weights that are triangular arrays:

[rn (n)

= S [Y P RK(X Zb”ej/f}

=1 =1

=

00 rn] K(n)

Z {Z Z D(Pig) Pk ( i)bz’j/\/ﬁ} g5 = ch(n; r)ej, (2.10.2)

i=1 I=1 j=1

—

.

where we denote

[rn] K(n)

eimir) = [ 3 DA Pic(Xi)byy/ V], T €01, n>1.

i=1 [=1

oo
The specification S, (r) = ch(n; r)e; was previously considered in Kasahara and

j=1
Maejima (1986) for general functional limit theorems for infinite weighted sums. It

goes without saying that the alternative representations of Sy, (r) given by (2.10.1) and
(2.10.2) are of course equivalent. For the rest of the proof, we use the form (2.10.1)
[e.@]

instead of (2.10.2) for ease of algebra, as using U; instead of szj&?j considerably
j=1
simplifies some steps, by the use of the quantity ~;; = Cov(U;, U;).

In the following proofs we will need some notations. For j > 1, introduce a
J x K random matrix P; = (P(X1),---,P(Xj;)) and j x 1 random vectors, M; =
(m(X1), - m(X;)) and N = (i(X1), - (X))
Lemma 2.1. Under Assumptions of Theorem 2.5,

(Sn(r))()grgl :>D[0,1]d (Vl/QWd(r))Ogrgl' (2103)

Proof of Lemma 2.1. Lemma 2.1 states weak convergence in the d-dimensional
product space D[0,1]%. Phillips and Durlauf (1986, pp. 487-489) had established
two sufficient conditions for weak convergence of probability measures in this multi-
dimensional product space. These two conditions, adapted here for (2.10.3), are;
convergence of finite dimensional distributions of S,(-) to those of V1/2Wy(-), and;
tightness of each component of the vector Sy(-).

We first establish the following two statements, which will be subsequently used
to obtain the above two facts: for any 0 <r <wu <1,

ES,(r)Sp(u) —r-V, (2.10.4)
E|Spi(u) — Spe(r)2 < C] [un]

L =1, .d (2.10.5)



2. Series Estimation under Cross-sectional Dependence 73

where Sy (r) = (Sp1(r), - ,Snd(r))/. Write
ES,(r)Sn(u) = ES,(r)Su(r) + E(Sn(r)(Sn(u)' — Sn(r)’)).

By Theorem 2.4, E(S,S]) =V, — V. Therefore,

’ [rn] 1 / /
Hence (2.10.4) follows if we show that E(Sy(r)(S,(u)’ — Sp(r)’)) — 0. This is done

by showing that the corresponding limit of each element of the vector is zero. For
£7p: 17 7d7

[7’”] [un]
[E[Sn(r)(Sn(u) = Su(r))],| < — Z Z ik | Elver (Xi)vpr (X)) |
=1 k=[rn|+1
[Tn] [un]
< = Z Z |r71k| - 0
1=1 k=[rn]+1

by Assumption C3 (i), and because
Eloex (X)vpre (X3)| < (Bvdge(Xi) Ev2ge(Xi) 2 < o0

as shown in the proof of Theorem 2.4. This completes the proof of (2.10.4).
To prove (2.10.5), observe that

[un]
E|Spe(u) = Spe(r)* = E|l—= > APX)U|”
\/>z [rn]+1
1 [un]
< > klBlo(Xo)o(Xe)ver (Xi) v (X5
i,k=[rn]+1
C [un] C [un]
s - Z ikl < o Z ax Z |yir ]
i,k=[rn]+1 i=[rn]+1 k=1
[un] — [rn]
< Ol———|

by Assumption C3 (ii), which proves (2.10.5).
Next we show that finite dimensional distributions of S, (-) converge to those of
v/ 2W4(-). This states that for an arbitrary integer k, and any choices of points

T1, 5Tk in [07 1]7
(Sn(r1), -+ 5 Sn(r1)) —a (VY2Wy(r1), -, VI2Wy(ry)).

Using Cramer-Wold device, it suffices to show that for any d x 1 vectors ¢}, -- , ¢},
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the scalar random variable

Qn = Z Cl 7“1 —d Z Clvl/ZWd(?”l) Q (2.10.6)
=1
Write S, ( Zw] (rn]€j With w; ) as in (2.9.21), with V,, replaced by V. Then,
7=1
00 k
n = Z wi,e; with wj, = Z ¢jw; r,n]- Then by (2.10.4),
j=1 =1
00 k
Var(Qn) = Z 2 5 Var(Q) = Z Ve - min{r;, r} < oo.
J=1 Lt=1
By (2.9.24), which holds for all cjw;jn, I = 1,---,k, we have max]wjn] o(1),
3=

and convergence (2.10.6) follows by the same argument as in the proof of asymptotic
normality (2.9.14).

Finally, we establish tightness for individual component of the vector S,,(r), which
completes the proof of the lemma. Noting S,¢(-) € D[0,1], £ =1,--- ,d, we verify the
following sufficient condition for tightness given in Billingsley (1968, Theorem 15.6,
pp.128): for any 0 <r < s <t <1, andsomeﬁZO,a>%andC>O,

E[[Sne(s) = Sne(r)[*?|Sne(t) — Sne(s)[*’] < C|t — T\2a7 (=1,---,d. (2.10.7)

This is in turn derived by showing that for any 0 <r < wu <1,

;[Tn]ﬁ

E|Sne(w) — Spe(r)|* < C| [un (2.10.8)

To see (2.10.8) implies (2.10.7), note that for § = 1, the LHS of (2.10.7) is

E[|Sne(s) = Sue(r)PISnelt) = Sue($)P] < {El1Snel) = Sner)*|EISe(t) = Suels)[ ]}
< C’(’ [sn] ; [rn] |2} [tn] ; [sn] ’2)1/2
_ C‘ n| — [rn] H [tn] ; [sn] ‘
< C\M\2, (2.10.9)

where the first step uses the Cauchy-Schwarz inequality, the second inequality follows
from (2.10.8) and the last inequality from 0 < r < s <t < 1. As explained on pp.138
of Billingsley (1968), if t —r > 1/n, then (2.10.9) implies (2.10.7) with a = 1: since
[nte] < nty and [nt1] > nty — 1,

[ntQ] — [ntl] < nto —nt; +1
n o n

1
:tg—tl—FES?(tQ—tl).
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On the other hand, if t —r < 1/n, then at least one of [sn] — [rn] = 0 or [tn] —[sn] =0
holds. Then the LHS’s of (2.10.7) and (2.10.9) vanish, and thus (2.10.7) holds.
To verify (2.10.8), denote by ey, a d-dimensional vector, whose /! element is 1 and

the other elements 0. Then one can write
o0 o0
Sng(u) - Sng(r) = ZGZ(wj,[un} — wjv[m})sj = Z )\jnsj.
j=1 j=1

Rewriting the LHS of (2.10.8) with the new notation and noting E(s?) =K < 00, Vj
by Assumption C5, we obtain

EQ Amed)' = D NN Nisn i B(€5:€5,85525,)
i=1 1 da=1
= 30 > AN AR N, <CD NP
Jg'=1#5" =1 o1

= C(E|Sne(u) = Sne(r)?)* < c\wﬁ

n

where the last step follows from (2.10.5). This completes the proof of the lemma. B

Lemma 2.2. Under Assumptions of Theorem 2.5,
(50),__ =poge (V/HWalr) =rWa(D)}) ooy (2.10.10)

Proof of Lemma 2.2. Since U; — U; = m(X;) — m(X;),

[rn]

Ly(r) := Su(r) = Su(r) = Y A'P(Xi){m(X;) —m(Xi)}/ V.
=1

We can write, using m(X;) = P'(X;)7,

[rn] [rn]
Lo(r) = Y A'P(X){m(X;) = P'(Xi)vx}/Vn+ Y A'P(X) P (Xi) (v —4)/vn
i=1 1=1
= AP (M) = Ppen)vc) [V + AP Pl (v — 4) /v,
leading to
~ A/P/rn M?‘n -P rn]” A/Pl'r P m ’A}/ -7

vn Vn
= Sp(r) + an(r) — y(r).
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‘We shall show that

sup |lan(r)|| = op(1), (2.10.11)
re(0,1]
Cn(r) = ppo.aga TV Wy(1), (2.10.12)

which, together with Lemma 2.1, prove (2.10.10).
Proof of (2.10.11). One has

sup flan(ll < A sup [Phoyll sup | (M) — Pprngric) /v/nl] (2.10.13)
ref0,1] rel0,1]

rel0,1]
= Op(Vne*(K)K™?) (2.10.14)
because ||A’|| < ((K) < {(K), whereas

Sl[lp HP[rn]H p(\/ﬁg(K))7 SL[})pl] H(M[Tn] [rn}fYK)/\/ﬁH = O(Kia%
rel0 re
by Assumption A4. Then (2.10.11) follows by Assumption C4.
Proof of (2.10.12). Recall Y = M + U, and one has 4 = (P'P)"!P'Y =
(P'P)"'P'(M — Pyg) + (P'P)"1P/(Pyg + U). Therefore,

n

P'P)‘1 P/(M — Prg) (P'P)‘1 P'U
n

Vit =) = ( = .

Hence,

P, P, P\ PN —
) = Af( P! 1) (P PO

n n \/ﬁ
P P / -1 /
/ [rn] T [rn] PP PU N

We shall show the following two results which constitute the proof of (2.10.12):

P [0 (P)ll = 0p(1),  Lon(r) = ppo,ja rWa(1).
re|0,

Noting that (P'P/n)~! = O,(1) and sup HP[Tn]P[m]/nH L (E3(K)), since
r€(0,1]

HZP Xi)/n|| < €(K),
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we obtain
P, P ! "M —
rn] T [rn] PP, P (M P’)/K)
1 (T < |4’ sup [rn] H H
T N e | (5 —
M-P .
< o) | |12 — 0, (i () ) = o1,

by Assumption C4(iv). Next, write

PlrnPTn P/P -t P/U
eQ,n(r):rA’P'U/\/ﬁ+A’<< [ 11[ ]>< n > —ﬂ) -

Since convergence 7(A'P'U/+/n) —4 7V/2Wy(1) was shown in the proofs of Theorems
2.2 and 2.4, it remains to verify that

P P, PP\ ! P'U
A/ [rn] [rn] ] _ 1).
rzl[g,)l]” (( " - i v | = op(1)

One has ||Al| = O(¢(K)) and ||P'U/y/n|| = O(VK) by Assumption C4 (ii). Next, we

have

[7‘77,] P/[Tn]P[rn} PP,
sup —rl
sup G 50
P P, /
B Y LA e S
refo,1] T [rn] n
Pl Pin PP _
s o] || T ) + sup [rn] ’ PP, 1_IH+0(1/n)'
refo,1] T [rn] refo,1] T n

From the proof of Theorem 2.1, (2.9.12), we have

PP 2

HQ—HP=H 1
n

=Q(K%WO@+A3)

n2
This fact, by Horn and Johnson (1990) pp 335-336, implies

P'P 2
n

=0, (K +03) ) = 0y (K€1) ).

)i

|

with the last step following from Assumption C4(i). Similarly, one has that

2

— s ()%, <K2£4(K)(1 + A“””;}))

refo,1] M [rn] ~ [rn]

Pl[rn] P [rn] .

]

( [rn]

refo,] M

)2

[rn] < 24 1 A[m}
= sup —O, | K K)(—+
re[or,)u n 7 & )(” n[rn]

)) =0, (K*"(K)/n),  (2.10.16)
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by Assumption A4 (i). Therefore,

P Pra\ /PP ! P'U
A [rn] [rn] I
e I (( - - r \/ﬁll

= Op(KVEE (K)/V/n) = 0p(1), (2.10.17)

with the last step following from Assumption A3 (ii). This completes the proof of
Lemma 2.2. B

Lemma 2.3. Under assumptions of Theorem 2.5, sup ||S:(r) — Su(r)| = 0p(1).
re(0,1]

Proof of Lemma 2.3. Recall that A" = A*’B;{lﬂ, P, = B}(ﬂP/ . Thus,

[rn] [rn)

1S5(r) = Su()l = (A" Bg'PlUrn) — APy Un) / V11l
= (AYBE'BY? — A7 B P U V.

Therefore,

Sl[lp}HSé(r)—Sm)u < AYBBY2 - 4B
rel0,1

re

: sup] P Ut/ V0l = di 1o (2.10.18)
0,1

‘We shall show that

s = Op(KE(K) /i) + 0y (€2() (| 7L

dnz = Op(K'? + K=*/n). (2.10.20)

+K7%), (2.10.19)

Then, since tr(X) = Op(K) by Assumption C4 (ii),

dnidna = Op(KE(K) Vi +E(K)K)0p(KY2 1+ K~ /i)

= Op(K*P&(K)/Vn+ E(K)K ™2 + E(K)K~*V/n) = 0p(1),
by Assumption B3 (iii), C4 (iv) and B3 (ii).
dni = |AB B~ AP < |4 - A7 | B B - B
1 =1 121/2 ~1/2 T % ~1/2
HIANBE B = B+ A7 = A B

Note that ||A*|| < ¢(K), and by Assumption A3 (i), || Bg'|| = Op(1). Now,

A1 51/2 ~1/2 A _ 1/2 1
1B B - B < 1B - BRANB | = 0, (K&?(K%) . (210.21)
since by Assumption C4 (iii), || Bx | = O(1), whereas | Bx — Bk |* = O, (K2¢4(K)/n)

which can be shown using the same argument shown in obtaining an order of magni-
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tude (2.9.12) for ||Q — I|| and applying Assumption C4 (i). Then, |By! — B'|? =
O, (K2¢*(K)/n) follows from Horn and Johnson (1990) pp 335-336, under Assump-
tions C4 (iii) and A3 (i), which imply || Bk| = O(1) and | Bx'| = O(1), as n — occ.
To obtain (2.10.19), it remains to evaluate the term [|A* — A*||. Newey (1997)
showed that the estimate A* = (ff{, e ,fl;) is equal to the quantity (D(pl; m), -, D(pk; Th))l
with probability approaching one. Recalling D(+;7) = (Di(+;m), -+, Dqg(+;m)), the

it column of A* — A* can be written as

!/

Ay — A7 = (Di(p1;m) — Di(pr;m), -+, Di(pic; ) — Di(piim))’, =1, ,d.
Using linearity of D;(g;7) in g, one writes

A7 — AZI2 = (A7 — AD)(A; — A7) = |Dy((A7 — A5)'piim) — Dy((Af — A7)p<im))
< CI(A7 — A7)'P" ool — mlo < CYJAT — AT 1 — m]oc,

with the first inequality following from Assumption C6. Therefore, HA;" - A =
Op(&(K) | —m|oo), for i =1,--- ,p. This allows us to bound

p
i=1

p
= (D_IIA; = 471) < C(K) i —ml,.
i=1

Therefore, applying for [ — m|s the bound of Theorem 2.1, we obtain

- A =0, (52<K> [ ) | K] )) = 0y(1)

by Assumption B3 (ii)-(iii), completing the proof of (2.10.19).

Next, decompose d,, o as follows.

dn,? =~ sup HPl[rn](i][rn] - U[rn])/\/ﬁ” + sup ”Plrn] U[m]/\/;lH
ref0,1] r€[0,1]

= dp21 + dp22.

N

As in the proof of Lemma 2.2, one can bound

dn,21 < S%pl} ”P/[rn}(M[rn] - P[rn}’YK)/\/ﬁH + SL[EPI] HP/[rn]P[Tn]/n”H\/ﬁ(;y - ’7K)||'
rel0, rel0,

From (2.10.14) it is seen that the first term on the RHS is O, (v/n&(K)K™%) = 0p(1),

by Assumption C4 (iv). By (2.9.11), (¥ — v&)vnl = Op(tr(S,)/? + K—%/n) =

O, (K2 K~%\/n) from Assumption C4 (ii), whereas by (2.10.16), sup HP’[M]P[M]/[rn] | =
rel0,1]

0,(1) + O,(K¢*(K)/v/n) = Op(1) by Assumption A3 (ii). Thus, d, 21 = Op(KY? +



2. Series Estimation under Cross-sectional Dependence 80

K=%\/n).
Finally, one has
dmy-%%é]fﬂmg Ui VIl = O s V%) = 0,(VED,
re re

by Assumption C4(ii). Hence, dy, o = O,(K'/?), which proves (2.10.20) and completes
the proof of the lemma. H

In the following proposition we provide the upper bound for A, in (2.3.3) in the
case of Gaussian random variables X;.
Proposition 2.1. Let X; ~ N(0,1),i = 1,2,---, be Gaussian variables with Ui(JX) =
Cov(X;, X;). If for some ¢y < 1, one has |ai(£()| <co,Vi,k=1,2,---; 1 # k, then,

n
Ln<C Y oL n>1 (2.10.22)
ik=1,ik

Proof of Proposition 2.1. Recall that the bivariate density of X ~ N(0,1),Y ~
N(0,1),Cov(X,Y) =pis

1
fo(x,y) = ——=-exp ( —my(x,y)),
(53) = e ()
22 + 9% — 2pwy
’mp(x,y)::W, z,y € R.

Then fo(x,y) = f(x)f(y), where f(x) = (2r)~"/2 exp(—x%/2). We shall show that for
all |p| <o <1,
(Fe )

2
f,05,¥) ~ fo(x )] < Cpexp (V) v em (2.10.23)

where C' does not depend on p. Since fix(x,y) = 5, (x,y) is the bivariate density of
X, X, the following holds by (2.10.23),

NS [ 1560 ~ F@)1 )l dody

i,k= lzyék

< C Z \ozk ]/exp (2 +y*)/8)dxdy

i,k= lzik

C EI o],

ik=1,i£k

IN

which proves (2.10.22).
Proof of (2.10.23) By the mean value theorem, applied in |p| < o,

Ito(x,y) — fo(x, ¥)| < |p| ‘S‘lip £, ¥)I- (2.10.24)
pl<co
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Note that
£ (x,y) = £,(x,¥) <1 _”p2 - ampa(;" y>> . (2.10.25)
One has .
‘1—10p2 = 1—063.
We shall show that
f,(x,y) < cexp (— (x* +y?)/4) (2.10.26)
\W} <l +y?), z,y €R, (2.10.27)

where ¢ does not depend on p and z,y, which together with (2.10.24) and (2.10.25)
implies (2.10.23).

Note that
a® +y* = 2|pxy|
el 2 T o)
lol(2? +y* = 2|lzyl) + (1 = [p) (=* + 3%
B 2(1—|pl?)
A=l +y*) 2?2 +y? 2?4y
- 21— 1pl®) 21 +1p) — 4

the second inequality following from 2|zy| < 2% + y2. This implies (2.10.26):

fp(xay) = 27T\/i_ipzeXp(—mp(UCa?J))
L oxp (= (@ + y))/4)

21/ 1 — p?

1

2m/1 — cg

IN

IN

exp (— (2 + yz)/4).

Next,

'8mp(w, y) ‘ _ ‘ —4(1 = p*)zy + 4p(a”® + y* — 2pzy)
dp B 2(1 — p?)]?
EM |22 4 y* — 2pxy|
- (1-p?) [(1—p?)]?
lzyl | 2? +y? 4 2|pay|
(1—cf) (1—c§)?

< c(a® +y7),

since 2|xy| < 22 + 32, which proves (2.10.27) and completes the proof of the proposi-
tion. W

o
Proposition 2.2 Assume that there exists n(j) > 0, j € Z such that Z n(j) < oo

j=—o00
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and |[Yikn| < (i — k),Vi,k =1,2,---. Then for any r € [0, 1],

[rn]

Z Z |'szm|—0 )

=1 k=[rn]+1
Proof of Proposition 2.2. Note that 7, := Z n(j) — 0 as n — oo, and
lj|=logn
max7)(j) < C < co. One has
J
[rn] [rn]
SID OIS SIb SUMITS Sl SR
i=1 k=[rn|+1 1=1 k=[rn|+1 1=1 k=[rn|+logn
[rn]—logn [rn] [rn]+logn
N SR SR IR SR Sl
k=[rn]+1 =1 i=[rn]—logn k=[rn|+1
[rn] n
< Tnz 1+7, Z 1+ 2Clogn < 21,n + 2Clogn = o(n).
k=[rn]+1

This completes the proof of the proposition.
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3 Panel Data Model with
Non-parametric Common

Regression and
Individual Fixed Effects

3.1 Introduction

Availability of multiple observations on a set of individuals over time, i.e. panel data,
allows economists to account for unobserved individual effects, which is not possible
when dealing with observations of a single cross section. There is a substantial amount
of literature on estimation of linear or non-linear panel data models with individual
effects, see e.g. Arellano and Honore (2001), Hahn and Kuersteiner (2002), Wooldridge
(2002) and Bai (2009).

Non-parametric methods that enable consistent estimation of functions without
the danger of parametric misspecification are becoming increasingly more accepted,
at least in samples of moderate size. Ruckstuhl, Welsh and Carroll (2000) consid-
ered kernel estimation of regression function with panel data when the cross-sectional
size, N, is fixed and there are additive individual effects that are "random”, i.e. un-
correlated with regressors. Additive individual components represent the effects of
unobserved time-invariant individual characteristics on the variable of interest and
are often viewed as a simple yet satisfactory way of modeling individual heterogeneity
in panel data. In many economic applications, it is difficult to justify the assumption
of "random” effects as the unobserved individual characteristics may be correlated
with the regressors. Henderson et al. (2008) consider consistent estimation of non-
parametric and semi-parametric (partly linear) regression functions when additive
individual ”fixed” effects, that may be correlated with regressors, are present.

In this chapter, we consider a panel data model with additive individual compo-
nents and time-varying ”common” regressor, that is shared by all cross-sectional units,
for a dataset whose time dimension, 7', is large relative to its cross-sectional size, N.
The type of data envisaged is when the cross-sectional units are large entities such as
countries/regions or firms. It is expected that such datasets typically exhibit cross-
sectional dependence in the error terms: countries or firms may be interdependent
or subject to global shocks that affect everyone. Such dependence could be substan-
tial, and it is deemed crucial in this work not to impose stringent restrictions on the
strength of cross-sectional dependence.

We consider the following model for a balanced panel data set of size N xT'. Below
Y;: denotes a one dimensional dependent variable, A; an additive individual fixed

effect of individual i, Z; is a g-dimensional vector of time-varying common regressors,
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common to individuals, whereas m(-) is the non-parametric regression function of

interest, and U;; the error term. Yj; is defined as follows:
Yio=Xi+m(Z)+ Uy, i=1,--- N, t=1,---,T. (3.1.1)
The model can be written in N-dimensional vector form as
Yi=A+m(Z)In+Uys, t=1,---,T,

setting: Yy = (Yi, -+, Yne) , A= (A1, A0)  Iv = (1, -+, 1), Uy = (Ug, -+, Unt)'.
The cross-sectional size N(= Np) is assumed to be either fixed or increasing slowly
as T' — oo.

The model above was considered in Robinson (2010b) for common trend estima-
tion, with Z; replaced by the deterministic argument ¢/7" . He showed how to incor-
porate the knowledge of cross-sectional dependence in Uy’s into estimating m(t/T")
in order to obtain an efficiency gain. In particular, a generalised least squares (GLS)
type estimate under the full knowledge of cross-sectional dependence was shown to be
superior in the mean square error (MSE) sense, to one that does not incorporate such
information. Asymptotic equivalence between the infeasible and feasible GLS type
estimates was also established.

The present chapter aims to address similar issues in the case of multivariate
stochastic regressors. The random nature of the regressors, as opposed to the de-
terministic ¢/7" of Robinson (2010b), gives rise to the possibility of conditional het-
eroscedasticity as we do not assume independence between the error term and regres-
sors. In our setting, we allow the cross-sectional covariance matrix of the error terms
to depend on the value of the concurrent regressors, which leads to the use of ”local”
weights in the GLS-type estimation, as opposed to the global weight used in the trend
estimation in Robinson (2010b). We further relax conditions on U; (and Z;) from
being independent and identically distributed (i.i.d.) across time to possible weak
dependence.

Our interest in the model (3.1.1) can be more broadly motivated from a more
general and applicable model where time-varying, individual-specific regressors are
also present. For example, one may want to model house price indices of countries
within the Eurozone, Y, in terms of the interest rate set by the European Central
Bank, Z;, and country-specific covariates X;; such as the country’s GDP, inflation and

stock market index. One could formulate for Y;; a partly linear regression specification:
Yie = Xi + Xipy + m(Zy) + Uy (3.1.2)

The estimation of the linear parameter v could be faciliated by the following data

transformation that involves differencing across the cross section and time. Noting
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that Vi — Yi_1: = N — A\ + (XZ — Xi_lt)”y + Uy —U;_1t, ©=2,---,N, consider:

(}/; - Yvi—lt) - (}/;:t—l - }/i—lt—l) — [(Xz - Xi_lt) — (Xit—l — Xi—lt—l)],’)’
+(Uit = Ui—1e) — (Uig—1 = Ui—14-1), t=2,---,T.

Based on the transformed data above, the linear parameter + can be estimated at
the parametric v/ NT rate under the same conditions as those required for first differ-
ence estimation of the linear regression model with additive individual effects, see e.g.
Wooldridge (2002, pp. 279-281) and Arellano et al. (2001, pp. 3233-3241). There-
fore, in considering non-parametric estimation of m(-) in (3.1.2), one could treat ~y
as known and focus on the simpler model (3.1.1), instead of (3.1.2), noting that ~
can be consistently estimated at a faster rate of convergence than m(-) under suitable
conditions.

The plan of the chapter is as follows. Section 3.2 introduces the simple kernel
estimate of the function m(-) and presents its asymptotic MSE, the consequent optimal
choice of the bandwidth parameter, and establishes its asymptotic normality. Section
3.3 discusses improved estimation based on the unknown cross-sectional covariance
matrix of the error terms, stating asymptotic results on the behaviour of the improved
estimate. Estimates of the cross-sectional covariance matrix are considered in Section
3.4, with asymptotic justification for their use in deriving the optimal bandwidths and
improved trend estimates. Section 3.5 presents a small Monte Carlo study of finite
sample performance. Appendix A contains some useful lemmas, of which Lemma 3.6
constitutes an additional contribution of this work in offering a useful decomposition
of U statistic of order up to 4, under serial dependence in its arguments. Proofs of

theorems are provided in Appendix B.

3.2 Simple non-parametric regression estimation
In (3.1.1), it is notable that A\; and m(-) are only identified up to a location shift.

N
As noted in Robinson (2010b), an (arbitrary) identification restriction Z)‘i =0
i=1
identifies the function m(-) up to a vertical shift and leads to the relationship:

Ya, = m(Zy) + Uay, (3.2.1)

N N

where we denote by Yy, := Z Yit/N and U == Z Uit/N, the cross-sectional aver-
i=1 i=1

ages. Under (3.2.1), one can non-parametrically estimate m(-) using the time series

data (Yas, Z}). In this section, we derive the asymptotic MSE of the simple Nadaraya-
Watson (N-W) estimator of m(-), based on (3.2.1), at a fixed point {, and consider
optimal bandwidth choice. A temporal dependence condition on Z; and Ug,7 > 1

will be phrased in terms of their a-mixing coefficients. A multivariate CLT is also
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presented at d fixed points, ((1,C2, - ,(q), which is nothing new in itself and in-
cluded here for the sake of completeness. The main reference is Robinson (1983), with
conditions amended to suit the setting under consideration.

For ease of algebra, we consider product kernels with a diagonal bandwidth matrix,
which could cover the general case of different kernel function and /or bandwidth choice
in each dimension of regressors. For ease of algebra and notation we will use the same
kernel function and bandwidth for each element of Z;, the relaxation of which is
straight-forward.

Let a7 = a be a positive scalar bandwidth parameter approaching 0 as T increases.
Below, the subscript T will be suppressed for brevity. For a given real-valued bounded
kernel function k : R — R, the product kernel K : R? — R is defined as

K(u) =[] k(u), w=(u,ug-ug).
j=1

Definition 1. The simple N-W non-parametric regression estimate of m(¢) at a fixed

point ¢ which uses the cross sectional average Yya; is defined as

(%
() == =5 :

S R(*)

Definition 2. (a-mixing) Let M}, be the o-field of events generated by a stationary

vector process Xz, u <t < wv. Then the a-mizing coefficient of X is defined as

a(T) :=sup sup |P(ANB)— P(A)P(B)|, 7>0.

teN AeMt . BEM

A stationary process Xy is called a-mizing if a(t) — 0 as 7 — oo.
Definition 3. [y, £ > 1, denotes the class of uniformly bounded even functions
k: R — R satisfying

oo
/k:(u)du =1, /ulk(u)du =0, i=1,--- -1, xp:= / u|k(u)|du < oo,
—00
(3.2.2)
and such that sup,, (1 + |u|“)|k(u)| < oc.
Assumption 1. For all i > 1, (Z;,Uy) is a jointly stationary a-miving processes

with mizing coefficient a;(7). Define a(1) := max (7). For some § > 2,
(2

Z a172/9(7_) =o(L™Y, as L — oo
T=L

Assumption 2. The process {Uy} is such that for alli=1,--- N, N>1 t>
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1, E(Uy) =0 and E(Uy|Z;) = 0.

Let (1, ,Cq) be the set of d points in R? where m(+) is estimated.
Assumption 3.  The process Zy,t > 1, is stationary and has probability density
function (pdf) f which is continuous and bounded. Moreover, f((;) >0, [=1,---,d.
Assumption 4. The functions f(-) and m(-) have bounded derivatives of total order
satz=(,l=1,---,d.

Assumption 5. The conditional expectation functions w;j(z) = E(UyUj|Z; =
z), 4,5 =1,---,N are bounded continuous functions of z. We denote the N x N
conditional covariance matriz of Uy by Q(z) = Q(Z; = z) = {wij(2)}.

The N-subscript is suppressed but it is recalled that N may be increasing with 7.
Assumption 6. k(u) is a uniformly bounded and even function that belongs to Ks.

Assumption 6, combined with Assumption 4, leads to a bias reduction for the
N-W estimation arising from the use of higher order kernels, exploiting the assumed
smoothness of unknown functions m and f.

Assumption 7. The bandwidth a = ar — 0 is such that Ta? — co as T — oc.

The randomness of the denominator in the non-parametric regression estimator
m((;) gives rise to difficulty in obtaining the exact expression for its MSE and instead,
as is conventional, we consider an ”approximate” MSE. Below, we present an approx-
imate bias expression, of which the detailed derivation for the scalar Z; case can be
found in p. 97-102 of Pagan and Ullah (1999), then combine this with the asymptotic
variance expression from the CLT result in Theorem 3.3, in order to formulate the
approximate MSE for m((;), presented in Theorem 3.1.

Denote the approximate bias expression for 7(¢) when using an s order kernel,
by

Biass(m(C)) := Xet o(m(()),

f(Q)
where © (s—0)
L1 1 0Om 9OF
d(m = g - '
(m(Q)) e lg— 4 g)z]lf 2=C azj—é 2=(

Theorems 3.1-3.3 are merely restatements of standard results and proofs are not given
here. Let k = [*_ k*(u)du and x2 be as in (3.2.2). In the rest of the chapter, when
we say ”asymptotically”, we mean ”as T, and possibly N = Np, go to co”.

Theorem 3.1. Under Assumptions 1-7, asymptotically, the approximate MSE is

w1 TyQG) 1N

Taif(c) N2 T Bias3(m(G))- (3.2.3)

MSE (m(g)) ~

The first term on the right hand side (RHS) represents the variance contribution, re-
flecting the variance of the simple cross-sectional average Uas: Var(Uar) = 1y(()1n /N2

Theorem 3.2.  Under Assumptions 1-7, the bandwidth minimising the approximate
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MSE (5.2.3) is

a’ - ( RIF(G) 1/zv9(Cz)1N)q+125
m,AMSE(() — TXE(I)(m(Cl))z N2 .

Now, let fj(z,u) denote the joint pdf of (Z;, Z;1;) and fj (2, u,w) denote the joint
pdf of (Zt, Zt+j7 Zt—l—j—&-k)‘
Assumption 8. (i) For some £ > 0, sup ||z]|*f(2) < oc. (ii) For some C < oo,

z

sup fj(z,u) <C Vj>1 and sup fj(z,u,w) <C, Vjk>1

Zu 2 u,w
Assumption 8 (i) bounds the joint densities of Z;’s and is natural given that Assump-
tion 3 assumes boundedness of the marginal density. Assumption 8 (i) is from Hansen
(2008) and is later needed to obtain a uniform rate of convergence.
Assumption 9. For 0 > 2 of Assumption 1, E\m(Z;)|? < oo and E|Uy|? < C < o,
fori=1,--- N, N>1t>1.
Assumption 10. For some ¢ > 0 and for z =, 1 = 1,--- ,d, E(|Uy||Z; = 2) is
finite and has bounded derivatives of order s.

Assumptions 9 and 10 are both from Robinson (1983) and are additional assump-
tions required for the asymptotic normality result below. For a symmetric positive
definite matrix A, let A2 denote its unique matrix square root. Below, we present
asymptotic normality result of m({;) when the bandwidth parameter a is set so that
the bias term is negligible compared to the variance component.

Theorem 3.3. Let the bandwidth a be such that Ta??* — 0 as T — oo. Then

under Assumptions 1-10, asymptotically,
1o - - ~ "d
(Ta?) 3V (1) = G+ s i(Ca) = m(C)) 5 Na(0,Ta),

where V is a d x d diagonal matriz whose (I,1)" element is k71, Q(G)1n /N2 ().

N
The quantity 15 Q(¢)1y/N? = Z w; j((;)/N? reflects the strength of cross-sectional
dependence in the error terms. In thejcase of increasing N, 1,Q({)1n/N? = O(N 1)
is analogous to a common weak dependence assumption in time series. We are only
requiring 1y2(¢;)1x/N? = O(1) in Assumption 5, therefore allowing the possibility
of what is analogous to strong or long-range dependence in time series. On the other
hand, since 1§2(¢;)1n/N? may be of order o(1), the rate of convergence of the N-W

estimator is affected by the strength of cross sectional dependence if N — oo.

3.3 Improved estimation

This section considers improvement in the efficiency of the common regression esti-
mation in a similar way to Robinson (2010b), taking into account possible conditional

heteroscedasticity. Recall that the identifying condition of the non-parametric regres-
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sion function m in (3.1.1) was 1’y A = 0, leading to Yar = m(Z;)+Upay, where the N x 1
weight vector used in Y4; was 1 /N. Replacing 1) /N with an alternative weight vec-
tor gives rise to a different identification restriction. The following representation of

Y.; corresponds to a general N x 1 weight vector w:
V=2 4 m(Z)1n + Uy, 'Yy =mN(Z) +0'Uy,

where the identifying restriction is given by w/A(®) = 0. There is a vertical shift
between the functions identified under w’A\(*) = 0 and 1y,A = 0, namely, m(")(z) —
m(z) = w'\ for all z.

One may improve the efficiency of estimation of m by using an optimal weight
vector. Note Var(w'U4|Z; = z) = w'Q(z)w, which enters into the variance of the
N-W estimator as a scale factor. Therefore, the following weight vector would give

rise to the minimum variance N-W estimate out of all estimates formed this way:
w*(z) = argmin, w'Q(2)w = (IyQ(2) 1x) " 1Q(2) . (3.3.1)

Hence, we define the optimal N-W estimator at z as:

ZK(Zta_ Z)w*(z)’Y.t

m*(z) = =1 (Z ) , (3.3.2)
> r(A

where w*(z) is the optimal weight vector that minimises the conditional variance of

the weighted average of w'Y; when Z; = z:
Assumption 11. The matriz Q(z) is nonsingular at z=(, l=1,--- ,d.

Conditional heteroscedasticity implies the optimal weight vector varies across the
point of estimation, leading to the additional caveat that values of the regression
function m*(w*) identified at different points have vertical differences between them.
The regression function identified under w*(z) has the following vertical shift from
that identified in (3.1.1):

m*(z) —m(z) = w*(2)'\. (3.3.3)

Therefore, in the improved estimation, for the sake of comparability between points
of estimation, one should first carry out the optimal N-W estimation at each point of
interest, then adjust back to the baseline by using an estimate of the additive fixed

effect X\. One can use the following v/T-consistent estimate of A to do this in light of
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N

T
(3.3.3), where Y;4 := % ZY“ and Yau := % ZYM:
t=1 i=1

with the last step following from Assumption 1 and 5.
Theorem 3.4. Under Assumptions 1-7 and 11, the approximate MSE is given by

MSE(i*(G)) ~ INQ(G) M w) T+ Bias2((G)).

k4 (
Taf(G)
Note that the bias is the same as in Theorem 3.1 of the previous section.

Theorem 3.5. Under Assumptions 1-7 and 11, the bandwidth minimising the ap-
prozimate MSE of m*({;) is given by

q +2s
Uy AMSE(C)) = (1“)(5&){77{%))2( NG) ) 1>q :

Theorem 3.6. Let a be such that Ta97? — 0 as T — oo. Then under Assumptions

1-11, asymptotically,

(Ta) iV (7 (G) = (@), (Ga) = () —a Nat0, 1),

where m*(() = m({) + w*({)' XN with m and X from (3.1.1) and V*y is a d x d
diagonal matriz whose (I,1)"" element is fiq(l’NQ(Q)_llN)_l/f(Q).

The result shows that the rate of convergence depends on the rate of decay (if
any) of (1§VQ(§1)_llN)_1 as N — oo. Hence in the case of N — oo, the improved
estimator may have a faster rate than that of the simple N-W estimator if the rate
of decay of (1’NQ(Q)_11N)_1 is faster than that of (1y€2(¢;)1n)/N?. It was shown
in Robinson (2010b) that (1€(¢)~ 11N)_1 < (UyQ(G)1n)/N?, unless £2(¢) has an
eigenvector 1. For a discussion of when such situation would arise in the context of
the familiar factor models or spatial autoregressive models, see Section 4 of Robinson
(2010b).

3.4 Feasible estimator

We need now to consider feasibility of such estimation and efficiency gain in the
absence of knowledge of €2((;). As is done in the GLS framework, it is natural to form
a feasible version of m*((;) by replacing Q((;) with a consistent estimator. However,
consistency may not be in itself satisfactory if the estimating error of Q((;) does

not vanish fast enough and outweigh the efficiency gain desired. Theorem 3.9 below
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will provide additional conditions for asymptotic negligence of the difference between
the infeasible and feasible N-W estimators. We first need to establish how good an
estimator of Q((;) we have, see Theorem 3.7. The proof of that theorem involves
finding the stochastic order of some quantities taking the form of U-statistics whose
arguments are observations from a time series process with dependence across time.
To do this, we use results of Yoshihara (1976) whose conditions involve [-mixing
coefficients. Therefore some assumptions in this section will be phrased in terms of
the S-mixing coeflicients of Z; and Uy, i = 1,2, - -.

Definition 4. (f-mixing) Let M}, be the o-field of events generated by the vector
process X¢,u <t <wv. Then the B-mizing coefficient of X is defined as

B(1) :=sup sup |P(A|MPL,) — P(A)|. (3.4.1)

teN AeMt ,BEMS .

Xy is called B-mizing if f(T) — 0 as T — o0.

In addition, to derive the uniform rate of convergence result for the non-parametric
density estimator, we will use a-mixing conditions of Hansen (2008). It can be shown
that (1) < a(7) where a(7) is the a-mixing coefficient. Hence -mixing condition
is more restrictive than a-mixing condition, but a number of interesting processes
have been shown to be S-mixing. Volkonskii and Rozanov (1961) showed if Gaussian
process X; has spectrum with j-th derivative of bounded variation, then S(7) =
O(7Y), with v = j — 1. Pham and Tran (1985) established that for (vector-valued)

oo

linear process X; = E bjei—j, where &; are i.i.d. and b;’s are fixed weights, one has
J=0

B(r) = O( Z(Z HijE)‘S/(HJ)), where § > 0, || - || g denotes Euclidean norm, and &;

k=1 l=k
satisfies a d-th moment condition and has a pdf satisfying certain conditions. Pham

(1986) showed that some random coefficient autoregressive and bilinear processes are
f-mixing with (7) = O(7?), for any v > 0.
To estimate €2(¢), we use the following fitted residual:

A~

Uit = YZ — YiA — ﬁ”L(Zt) + }_/AA (342)
T
= (M+m(Z) +Usy) — (N + % Z m(Zy) + Uia) — m(Zy) + (% Z m(Zt) + Uan)
t=1 t=1
= Uy — UiA — T?L(Zt) +m(Zy) + Usa. (3.4.3)

As will be made clear later, there is a need for a different bandwidth to be used in
the preliminary stage regression: we will denote that bandwidth h.

No parametric structure on the conditional heteroscedasticity €2(¢) is pre-imposed.
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We will use the kernel local smoothing estimate of €((;):

T
ZKZ(Zt; hU. U,
QG = =5 , (3.4.4)
> Ki(Zi;h)
t=1

where Kj(z;h) = K* ((z — (;)/h), for suitable kernel function K*, with the * super-
script to stress that the kernel function used in the estimation of €2 need not be the
same as one used in the N-W estimate of m(-). An additional caveat involved in the lo-
cal smoothing of Q(-), namely that we need to investigate the behavior of K;(Z;; h)/ fi,
where f; := f(Z;). The function 1/f(z) is typically not integrable and we will get
around this difficulty using a kernel K* with a bounded support.
Assumption 12. For all i > 1, (Z;,Uy) is a jointly stationary vector [-mixing
processes with mixing coefficient B;(1). Define 3(7) := max Bi(T).

(i) For some 0 <y <1 ande >0, B(r)=0(r"2+)/) as 7 - 0.

(ii) For some 3 > 1+ q+&* and some £ > 0, their a-mizing coefficients satisfy
a(t) =0(r7%) as T — 0.

Assumption 12 (ii) is implied by 12 (i) if (2 + €)/y > . Assumption 12 (i) is

oo
taken from Fan and Li (1999) and implies 276(7)7 < o0, a fact used in the proof

T=1
of Lemma 3.6. Assumption 12(ii) was required in Hansen (2008).

Assumption 9.  For some 0 > 4/(1 — ), where v is as in Assumption 12 (i),
sup E|U x| < oo,. Also, 8 and y are such that 1 — 4y < 8.
t

Note that sup E|U4|? < oo is a stronger condition than assuming sup E|Uy|? <
t t

00,4 =1,---, N. Assumption 9’ strengthens the moment condition on the error terms
from E|Uy|® < 00,60 > 2 of Assumption 9 and is required in the proof of Theorem 3.7
below.

Assumption 13. The functions m(z) and f(z) are s-times partially boundedly
differentiable over z for some s > 2q/6.

Assumption 13 strengthens the local differentiability conditions on the two func-
tions m and f in Assumption 4 to the global differentiability and is needed in handling
the bias of the first stage non-parametric estimates.

Assumption 14. The kernel function k(-) used in the preliminary stage N-W
estimation is an even and uniformly bounded, integrable function that belongs to KCs
and satisfies [ ]k(u)]%du < 00. Also, [k(u)| < Clu|~Y¢" for u large.
Assumption 15. Fach element of Q(z) has bounded derivatives of total order p at
z2=¢, 1=1,2,---,d.

Assumption 16. The kernel function K*(-) € IC, used in local smoothing of €2((;)
s an even and uniformly bounded function of bounded support.

Assumption 15 together with Assumption 16 imply that the bias of each element
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of the smoothing estimate (3.4.4) of Q((;) is of order O(hP).
Assumption 17. The bandwidth h — 0 is such that, with v as in Assumption 12
(i) and o = %ﬁ;q with »,&* as in Assumption 12(ii), as T — oo,

2 4
(i) logT/(T°h%) — 0, (ii)logT x h To0-m — 0.

Assumption 17 (i) is from Hansen (2008) and implies Th? — oo, which is needed to
make the variance component of the first stage kernel estimation of f({;),l =1,--- ,d
to go to zero. Assumption 17 (ii) is satisfied if h takes the form of 7" for some 7 > 0.

Denote by @;; the (i,7)!" element of non-parametric conditional covariance esti-
mator Q(Q). Theorem 3.7 gives the consistency rate for each w;;. It is reminded that
in this chapter, ”"asymptotically” means "as T', and possibly N = Np, go to co”.
Theorem 3.7. Under Assumptions 2,3,8, 9°, 12-17, asymptotically

(Jax |Wij — wij| = Op(Rrp), N >1,

where

1 1 1 1
PR + mt et &(3.4.5)
Th*9t%  ThIT1I+S Th2 T aa— Thits

Ry o= hP + h%~ 7 +

The rate obtained in Theorem 3.7 will be instrumental in the proof of Theorems 3.8
and 3.9.

Recall that Theorems 3.2 and 3.5 provide optimal bandwidth choices when €2((;)
is known. When carrying out feasible estimation using the estimate Q(Q) instead of
Q((;), optimal bandwidths are obtained by replacing unknown values in the expression
for a;‘n’AMSE(Q) and a:;;,*,AMSE(g) by their corresponding estimates. Theorem 3.8
shows that the infeasible and feasible optimal bandwidth choices become equivalent
asymptotically. To show such equivalence, we need however to impose the following
additional assumptions.

Assumption 18. The estimates f and & are such that asymptotically,

F@) = 1@ = o, (I I - AN,
$2((@) - 02 (1(@) = O (I IR - Q) L=1,+ .

Assumption 18 is rather unprimitive, but is essentially required to ensure that
the effect of estimating biases for quantities f((;) and ®2(m((;)), which are required
to construct the optimal bandwidth choices, are negligible so as to yield asymptotic
equivalence of the feasible and infeasible optimal bandwidth choices.

Assumption 19. N and h are such that asymptotically, NRp ) = o(1).

Assumption 19 requires the choice of bandwidth parameter h to be such that the

rate Ry obtained in Theorem 3.7 converges sufficiently fast to 0.
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Assumption 20. € is such that

NINQ(G) I
(UG~ 11N)?

I~ +

Assumption 20 was discussed in detail in Robinson (2010b), where it was noted
the first term on the LHS requires the smallest eigenvalue of £2(¢;) to be bounded away
from zero for large N. A sufficient (but not necessary) condition for the second therm
on the LHS to be bounded is that the greatest eigenvalue of €2((;) is bounded. See
Robinson (2010b) for an example where the second term on the LHS may be bounded
although the greatest eigenvalue of €2((;) may increase with N.

Theorem 3.8. Under Assumptions 1-20, asymptotically

&:n,MSE(Q) din*,MSE(Cz)

)

Spl, I=1,---d.

Uy MSEQ)  %m* MSE(Q)

Next, we define a feasible optimal N-W estimate with a bandwidth a as

. . Ny A,
R e R B e
Q) = 7 =

ZK(Zt;Cl)

Assumption 21. The bandwidth a is such that as T — oo, N3a? — 0, and with
1 = min {25 - %q,p}, where p is as in Assumption 15, V N3Tadh¥ = o(1).

Assumption 21 actually requires the bandwidth h, used in the preliminary stage,

to decay slower than the bandwidth a. The last condition shows that strengthening
the global smoothness conditions on m and f and the local smoothness condition on
Q) ensures that the non-parametric estimations in the first stage yield small enough
bias.

Theorem 3.9. Under Assumptions 1-21, asymptotically,

/ 17 \-1/2
m* () —m* () = op ((1Nﬂ((§jiq)1:l/12\7) n as) =1 .d

Based on Theorem 3.9, one could establish an asymptotic normality result for
m*(¢;), with the same limiting distribution as m*((;), that is presented in Theorem
3.6.

3.5 Finite sample performance

We carry out a small simulation study to compare finite sample performance of the
three estimates of m(z), namely the simple N-W estimate, m(z), the infeasible optimal

N-W estimate, m*(z), and the feasible optimal N-W estimate, m*(z). It is of interest
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to see the extent to which the feasible m*(z) matches the efficiency of the infeasible
m*(z) and whether it is actually better than the simple m(z), given the sampling
error in estimating €(z). The simulation design was chosen in a close resemblance to
the one reported in the common trend estimation of Robinson (2010b) for the ease of
comparison to the common trend estimation case.

Recall the model Y;; = \; + m(Z;) + Uy. We set the regression function to be
m(z) = 1/(1 + 2?) and fix the individual effects \; by first generating A1, -+, Ay_1
independently from standard normal distribution, then taking Ay = —A1 —---—Ay_1
and keeping these \; fixed across replications. Error terms were generated by the
following factor model that gives rise to cross-sectional dependence, where the factor
loadings were functions of Z;, engineering the desired conditional heteroscedasticity
of the covariance matrix. Factor loadings were set to be a product of a fixed N x 1
vector b = (by,---by)’, that was generated by b ~ Ny (0,10Iy) and kept fixed across
replications, and a function of the value of concurrent regressor Z;: by = b;(1 +

|Z;)=1/4, The error terms were then defined as
Uit = bit77t Y 0.561',5, Q(Z) = 0.51 + btb;.

The variables {Z:}, {n:},{€ir},i = 1,--- , N were generated as independent Gaussian
AR(1) time series, where four values of AR coefficient, p = 0,0.2,0.5,0.8 are tried in
order to see how our estimates perform under differing degrees of serial dependence.
The choice of the points of estimation, and the second stage bandwidth parameters

are in line with the choice of Robinson (2010b): the one-dimensional regressor was

1
» 16
making this set-up comparable to the trend estimation where the % € [0,1] and the

generated as Zy ~ (0.5, 7z), so as to have most observations lie in the interval [0.1],
three fixed points of estimation used were: z = 0.25,0.5,0.75. The second stage band-
width parameters were set to be a = 0.1,0.5, 1. Because of the need for oversmoothing
in the first stage, required by Assumption 21, we have set the first stage bandwidth
to be 1.2 times greater than that of the second stage.

Tables 3.1 and 3.2 report the Monte Carlo MSE for differing settings of the three es-
timates for different choices of p, z and a for (N,T") = (5,100), and (N,T) = (10,500),
respectively. There are 2 x 4 x 3 x 3 = 72 cases in total and each case is based on
1000 replications.

Tables 3.1 and 3.2 show that the reduction in the Monte Carlo MSE by using
GLS-type estimation is substantial in all the cases. It is to be stressed here that the
improvement in the MSE, that of the variance to be more specific, depends crucially
on the form of the cross-sectional covariance matrix. The greater the difference be-
tween 1yQ1x/N? and (15,Q 1)1, the greater the scope for efficiency improvement
via GLS type estimation. The choice of the coefficients, in particular that of b, in gen-
erating U was such that the scope for improvement in the variance was particularly

large.
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It is natural that the improvement in the MSE is more pronounced for cases of
smaller bandwidth parameter where the variance component dominates the bias com-
ponent and this is indeed seen from the results. We would expect infeasible GLS-type
estimate, m*(z), to perform better than the feasible version m*(z). However, there
were 7 occasions out of 72 where the feasible estimate m*(z) performed marginally
better, and these were all in the case of larger bandwidth parameters (0.5 or 1).

Tables 3.3 and 3.4 report relative Monte-Carlo MSE of infeasible and feasible GLS-
type estimates in relation to that of the simple N-W estimate and were designed to
facilitate comparison between differing strengths of serial dependence.

Comparing results from different degrees of serial dependence in Table 3.3, it is
reported that larger serial dependence often leads to (sometimes significant) improve-
ment in the performance of infeasible GLS-type estimate in relation to the simple
N-W estimate. In fact, the ratio of Monte Carlo MSE’s is smaller (i.e. better relative
performance of infeasible GLS-type estimate) when p = 0.8 compared to p = 0 in
every case of Table 3.3. Also for the larger bandwidth cases (0.5 and 1) there is a uni-
lateral improvement in the relative performance of the infeasible GLS-type estimate
in Table 3.3 with increase in p. Turning to Table 3.4, similar patterns to Table 3.3
are reported: namely, there is a unilateral improvement in the relative performance
of feasible GLS-type estimate with increasing p for the case of larger bandwidth (0.5
and 1).
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Table 3.1: Monte Carlo MSE, N = 5,7 = 100

p z a| MSEz(z) MSEp«(z) MSE;(z)
0 025 0.1 0.4092 0.0107 0.1398
0.5 0.1117 0.0141 0.0131

1 0.1129 0.0246 0.0147

0.5 0.1 0.2817 0.0062 0.0523
0.5 0.0991 0.0022 0.0111

1 0.095 0.0021 0.0107

0.75 0.1 0.5918 0.011 0.1274
0.5 0.1416 0.0157 0.0235

1 0.123 0.0246 0.0326

0.2 025 0.1 0.4344 0.0115 0.1526
0.5 0.1541 0.0151 0.0145

1 0.1582 0.0256 0.0167

0.5 0.1 0.3108 0.007 0.0522
0.5 0.145 0.0031 0.0128

1 0.1417 0.0031 0.0125

0.75 0.1 0.6228 0.0114 0.1538
0.5 0.1899 0.0166 0.0247

1 0.1713 0.0256 0.0342

0.5 0.25 0.1 0.5717 0.0157 0.2047
0.5 0.2836 0.0181 0.0223

1 0.2953 0.0285 0.0245

0.5 0.1 0.4658 0.01 0.0701
0.5 0.2868 0.0061 0.0203

1 0.2812 0.0061 0.0202

0.75 0.1 0.8636 0.0164 0.2183
0.5 0.3462 0.0198 0.0332

1 0.3139 0.0286 0.0416

0.8 0.25 0.1 1.3983 0.0321 0.829
0.5 0.8153 0.0295 0.0561

1 0.8284 0.0398 0.056

0.5 0.1 1.0854 0.0231 0.1601
0.5 0.8281 0.0172 0.0523

1 0.8193 0.0173 0.0515

0.75 0.1 1.9009 0.0344 0.7075
0.5 0.9368 0.0321 0.0666

1 0.8578 0.0401 0.0727
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Table 3.2: Monte Carlo MSE, N = 10,7 = 500

p z a| MSEz(z) MSEp«(z) MSE;(z)
0 025 0.1 0.0758 0.0014 0.0172
0.5 0.0359 0.0126 0.0152

1 0.0431 0.0234 0.0251

0.5 0.1 0.0659 0.0008 0.0103
0.5 0.0228 0.0004 0.0036

1 0.0219 0.0004 0.0038

0.75 0.1 0.1236 0.0014 0.0206
0.5 0.0421 0.0134 0.0103

1 0.0455 0.0223 0.0166

0.2 025 0.1 0.0851 0.0015 0.018
0.5 0.0456 0.0128 0.0155

1 0.0537 0.0236 0.0254

0.5 0.1 0.0802 0.001 0.0106
0.5 0.0336 0.0005 0.004

1 0.0326 0.0006 0.0041

0.75 0.1 0.1436 0.0015 0.0214
0.5 0.0544 0.0135 0.0106

1 0.0567 0.0225 0.0169

0.5 0.25 0.1 0.1261 0.0021 0.025
0.5 0.0747 0.0132 0.0176

1 0.0851 0.0241 0.0278

0.5 0.1 0.1109 0.0014 0.013
0.5 0.0653 0.0009 0.006

1 0.0648 0.001 0.0061

0.75 0.1 0.2013 0.0021 0.0276
0.5 0.0914 0.014 0.0125

1 0.0895 0.0229 0.0186

0.8 0.25 0.1 0.2814 0.0046 0.0664
0.5 0.1935 0.0151 0.0285

1 0.2097 0.0259 0.0387

0.5 0.1 0.2623 0.0032 0.0288
0.5 0.192 0.0026 0.0163

1 0.1915 0.0027 0.0163

0.75 0.1 0.4748 0.0045 0.0709
0.5 0.2372 0.0158 0.0225

1 0.2184 0.0247 0.0281
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Table 3.3: Relative MSE: M SE(m*(z))/MSE(m(z))

N =5,T = 100

z_a\p

0

0.2

0.5

0.8

0.25 0.1
0.5
1

0.026149
0.126231
0.217892

0.026473
0.097988
0.16182

0.027462
0.063822
0.096512

0.022956
0.036183
0.048044

0.5 0.1
0.5
1

0.022009
0.0222
0.022105

0.022523
0.021379
0.021877

0.021468
0.021269
0.021693

0.021282
0.02077
0.021116

0.75 0.1
0.5
1

0.018587
0.110876
0.2

0.018304
0.087414
0.149445

0.01899
0.057192
0.091112

0.018097
0.034266
0.046747

N=10,T =

500

z_a\p

0

0.2

0.5

0.8

0.25 0.1
0.5
1

0.01847
0.350975
0.542923

0.017626
0.280702
0.439479

0.016653
0.176707
0.283196

0.016347
0.078036
0.12351

0.5 0.1
0.5
1

0.01214
0.017544
0.018265

0.012469
0.014881
0.018405

0.012624
0.013783
0.015432

0.0122
0.013542
0.014099

0.75 0.1
0.5
1

0.011327
0.31829
0.49011

0.010446
0.248162
0.396825

0.010432
0.153173
0.255866

0.009478
0.06661
0.113095

Table 3.4

: Relative MSE: MSE(m*(z))/MSE(m(z))

N=5,T=100

z_a\p

0

0.2

0.5

0.8

0.25 0.1
0.5
1

0.341642
0.117278
0.130204

0.351289
0.094095
0.105563

0.358055
0.078632
0.082966

0.592863
0.068809
0.0676

0.5 0.1
0.5
1

0.185659
0.112008
0.112632

0.167954
0.088276
0.088215

0.150494
0.070781
0.071835

0.147503
0.063157
0.062859

0.75 0.1
0.5
1

0.215275
0.16596
0.265041

0.246949
0.130068
0.19965

0.252779
0.095898
0.132526

0.372192
0.071093
0.084752

N=10,T =

500

z_a\p

0

0.2

0.5

0.8

0.25 0.1
0.5
1

0.226913
0.423398
0.582367

0.211516
0.339912
0.472998

0.198255
0.235609
0.326675

0.235963
0.147287
0.184549

0.5 0.1
0.5
1

0.156297
0.157895
0.173516

0.13217
0.119048
0.125767

0.117223
0.091884
0.094136

0.109798
0.084896
0.085117

0.75 0.1
0.5
1

0.166667
0.244656
0.364835

0.149025
0.194853
0.29806

0.137109
0.136761
0.207821

0.149326
0.094857
0.128663

99
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3.6 Appendix A. Proof of Theorems 3.7-3.9

Proof of Theorem 3.7. For the (i) element &;;(¢) of €((), one has

T
> Ki(Z ){UuUj1 — wig(Q)}
0ij(Q) — wii(Q) = = = =: REJI.) + RZ(JQ-), (3.6.1)
ZKZ(Zt; h)
=1
with
T T o
> Ki(Zy; h){UisUjr — wig(Q)} > Ki(Zy W){UiUjr — UnUjt}
(1) _ t=1 (2) _ t=1
Rij - T ) Rij = T
> KiZih) N Ki(Zish)
t=1 t=1

. . 1), 1 .
Under Assumptions 12, 15 and 16, it can be shown ]Rij | =0, (W + hp> as this
is the estimation error of the usual N-W estimator of the conditional expectation
E(UxUjt|Zy = () = wij((), with the typical variance and bias contributions. Next,
we show that |R1(32)‘ = Op (Rr,n), which implies (3.4.5) of Theorem 3.7.

Denote d; := Uaa — Uja and e; := m(Z;) — m(Z;). From (3.4.3),
Ui = Uy — Uia + Una +m(Zy) — (Zy) = U + d; + ey
Using this equality, we can decompose
UnUse — UUye = (di + e1)(dj + er) + Ut (dj + eq) + Uje(di + e;). (3.6.2)

For the rest of the proof, denote Ky := K;(Z;;h) for brevity. We need to find the
stochastic order of
1 Z

R = FQ) ™ g D0 Kel(di + en)(d; + ) + Uie(d; + e0) + Upeldi +e0)}, (3.6.3)
t=1

where f((;) is a non-parametric kernel estimator of f((;):
T
s o 1 Zs — Cl
fG) = 7, ;K <h> ,

which is consistent in the light of Assumptions 3, 4, 12, 14 and 17 (i). Therefore,

1 1
Q) @) +op(1) ~ Op(1). (3.6.4)

Next, we study the stochastic order of the rest of (3.6.3). Firstly, we bound sums that
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involve d;d;, Uy d; and Ujd;, namely,
1 I
m Z Kt{didj + Uitdj + thdi}. (3.6.5)
t=1

Since U ’s are weakly dependent across time and Assumption 9’ implies Var(U at) < C
and Cov(Ugas, Uas) < C, one has
T 1 X
- L= . _ = —1/2
di=5m D> Ui =7 ) U= ZUAt ZUZt = 0p(T"1/%).
t=1

t=1 i=1

Therefore, the upper bound of the first term in (3.6.5) is

e iK =0, () i@ =0, (7 ) x 1@+ 1) =0, ()

because f((;) = £(¢) + 0p (1). The upper bound of the second (and third) term is

T
1 1 1 1
x ==Y KUy=0p| =) xO0p (=] =0, —~= ],
Thi & " p(ﬂ) p<ﬂhq> p(Tth)

T

because Z K Ui /Th? consistently estimates F(U;|Z; = () = 0, with zero bias and
t=1

the usual variance contribution. Thus, (3.6.5) satisfies the bound |RZJ | = Op (Ryp).

Now the terms left to analyse from the numerator of (3.6.1), are
1 T
m ; Kt{ef + Uier + thet + d;e; + djet}. (3.6.6)

Introduce the leave-one-out counterpart of e;, &, := (I — ny)/ ft, where

lesz K (252) tniz)-m(z2)) nt::Tlm_sztK(Zs;Zt)UAs.

The asymptotic equivalence between (3.6.6) and
1 7
T ; K{&2 + Uy + Ujils + diée + djé) (3.6.7)

will be shown below. Recall d; = O, (T_l/Q). To bound (3.6.7), we need to obtain an
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upper bound of six quantities. Setting K; := K;(Z;; h), these are:

T
71 t
Thqtz: 1 Tth’ t’ Thq;’ t’ =: At + Br,
Tha tlet et = Thq ZKt zt Thq ZKt tht =: Ct + D, (3682)

=:Er + Fr.

t 1 ly
+ ——— Z KtT
Tha p fi

Then, the LHS of (3.6.7) is bounded by At 4+ B+ Ct + Dp+O(T~'/?){Er + F1}.
Now, we show the negligibility of the difference between (3.6.6) and (3.6.7). Notice
that

1 Zy — Zy 1 Zy — 7 K(0) -
€t — € = Tth ( h ) {m(Zt) — m(Zt)} + Tth ( n ) UAt Tha UAt'

We need to show negligibility of

T
1 . . - . .
Thi Z Ki{(e} — &)+ Uir(er — &) + Uji(er — &) + di(er — &) + dj(er — &)}
t=1
Firstly,

L« C < _ Odi &
m tzz; Kt{Uit(et - €t) + di(et - et)} = (Thq)2 tzz; K.UjUas + W tz:; KU

=0 (i ) + O (i e ) = ot

T
To justify the above bound, note that Z KUyUa/ThY is a N-W estimator of the

t=1
N

conditional expectation function E(UyUa¢|Z; = () = Zwij(g)/N with bias of or-
j=1
der AP in the light of Assumption 15 and 16, and variance of order (T'h4)~! under
T

Assumption 12. Similarly, in the latter term, ﬁ Z KUy, is the N-W estimator of
_ t=1
the conditional expectation function F(Ua¢|Z; = ;) = 0 with zero bias and variance

of order (Th?)~!



3. Panel Non-parametric Common Regression Model with Fixed Effects 103
Next, recalling e; — €; = %U At

T

1 2 ~2
m ;Kt(et €t) Thq ZKt e — et)(2et + (et — et))

- Thq ZKtetUAt hq ZKtUAt (3.6.9)

The second term can be written as
T
K(0)

1 2 K(O) P 1 _
QZKtUAt The " T 2 K104 = Ty O <h T ) = ot

T
noting that MSE of the N-W estimator Tihq ZKtUit of the conditional expecta-
t=1
N
tion function E(U%,|Z; = () = Z wij(G)/N? is O(h® + (Th?%)~') in the light of

ij=1
Assumptions 12, 15 and 16.

The first term of (3.6.9) satisfies the same upper bound as Ct + Dt noting the
T T

similarity of the expression 75 Y  K;i&Ua¢ to 747 > Ki&Uy in the LHS of (3.6.8).
t=1 t=1
In deriving an upper bound on Ct + D, the condition E|Uy|? < oo, implied by As-

sumption 9, is repeatedly used. The same proof, and therefore the same upper bound,
applies to the first term of (3.6.9) by replacing Uy with Uy, and using E|Ux|? < oo
of Assumption 9’.

To complete the proof of Theorem 3.7 we need to show that

Ar+Br+Cp+Dp < CRT,ha (3610)
Er + Fr < CVTRyy,. (3.6.11)
The terms Ar,--- ,Fr can be divided into two types. Write
1 1 1 1
= +=-F LUz Uiz f), (3.6.12)

A ft fufe

The first type of terms contains 1/ f; and takes the form of a U-statistic. Finding their
stochastic order of magnitude is complicated by serial dependence in Z; and Uy in
their arguments. These terms will be analyzed using Lemma 3.6, which provides the
asymptotic order of the difference between such U-statistics and their counterparts
under independence. Bounding the first type of terms, firstly, the asymptotic order
of the expectation of the kernel of U-statistic under the corresponding independent
process will be derived and, secondly, the remainder terms evaluated, applying Lemma
3.6.
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To deal with the second type of terms that contain (f; — f;)/fif;, we use the
uniform rate of convergence result of Hansen (2008). Under Assumptions 8 (ii), 12
(ii), 13, 14 and 17 (i) Hansen (2008) showed that

logT' 1/2 s
=0, ((Thq> +h7 ], (3.6.13)

where s is the smoothness parameter on f and m appearing in Assumption 13. It is

f(z) = f(2)

sup
z€RY

worth noting here that the term ”kernel” is used also to refer to the summand of a

U-statistic, as well as the kernel function of non-parametric estimation.

3.6.1 Upper bound on Ary.

In this section, it will be shown that

AT = O(T’lT), (3.6.14)
_ (b ’ {TQ}Z?Q*%Q + T2h3¢1(1*’7)*%]
mr = Thi )

which implies (3.6.10) for Ar.
We first divide A into two parts, using (3.6.12).

1 T
Ar = TZ Thqz| t| Thqz| ( ft93615)
t=1 ftft
1 o -
< T t|f2 e f2f2 Thqz| Kapns
. / ft*ft "
= Ap tK#O ffff T

Taking max over {t : K; # 0} instead of over all ¢ is facilitated by the boundedness
of the support of K;(-;h), since any t with corresponding (Z; — (;)/h falling outside
the support of K is assigned a zero weight. We show that

EAL = O(ri7), (3.6.16)
EAY = O(rir), (3.6.17)
12— 2

max
t:KﬁéO

27

o 1/2
= 0, <<1Tgth> +hs> = 0,(1), (3.6.18)

which implies (3.6.14), noting non-negativity of Af, and Af.
Let us first find the asymptotlc order of A’r. Denote K ((Z; — Zs)/h) = Ky, for

brevity of presentation. Let E denote a summation over non-overlapping indices
Ty, 5ty
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(tl, s ,tk) for k > 2. Then,

T /
1 3 | Ky, | -
BAR) = () B( X 5 UK (36.19)
t1,ta=1 ftl
1 LKy
T3 t1
+(Thq) E(ﬁﬂ%:l ftl UAthAththKhtB) (3620)
1
(Thq) (A1T+A2T) (3.6.21)

To prove (3.6.16), it remains to show that for i = 1,2,
Air <Crir. (3.6.22)

Noting that A;7 and Asp are expectations of second and third order U-statistics, we
can apply Lemma 3.6 (i) and (ii) to find their upper bounds. Denote W; = Wyp =
(Z,,Uxt, -+ ,Uny)', where N = Np may increase with T. Let {Wt} denote an i.i.d.
process with the marginal distribution function of Wy, and independent of {IV;}.

In finding the M7 quantities of Lemma 3.6, the conditions used to obtain an
upper bound below are uniform over ¢, - ,t4, meaning the maximum over indices is

redundant.

Upper bound on A;7.  In this section we will show (3.6.22), for ¢« = 1. Notice

that A7 is a second order U-statistic whose kernel is

| Ky

(Wi, W) = 72
t

UAths
By Lemma 3.6 (i),

/ ~ ~
[Ar| = [ E¢r(Wi, Wo)| < T(T — 1)|E¢r(Wh, Wa)| + CTMyp,".  (3.6.23)

We will denote below expectation under independent process with a superscript *.

Trivially,

E((bT(th WS)) =E" <If{t’UAsKts> = E* <|§-(t|E* (UAsKts‘Zt)>
t t

Applying Holder’s inequality with p,r > 1 and p~! +r~t =1,

1 1
d s

B (03,K212:) < [B* (1041 20)]7 [B* (1Kul"120)]" = [B (104:)]7 [B° (1Kol 120)]7

where the last step holds because of the supposed independence between U4, and
Z;. The power p is selected as follows. Notice that E|Uas|* < oo, with 2p = 6,

by Assumption 9. Then, % =1- %. Since Assumption 14 implies k is such that
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[ 1k(w)|*"du < oo, we have E* (|Kys|*"|Z; = z) = O(h?) uniformly over z by Lemma
3.1. Therefore, E* (U3,K2|Zy = 2) = O (hq(e—Q)/e) uniformly over z. Hence

E(ér(Wp, W) = / W

onie o <\K2t\> _0 (hzq—%q) 7 (3.6.24)
fi

E* (UKL Zy = 2) f(2)dz

IN

where the last step follows by Lemma 3.3.
Next, we bound the quantity

Mry = | ape (Elr (Ws, W75 + Bldp (W, 9|7~ ).

where 7 (W, Wy) = (W, Wy) + (W, Wy). We have

1 1
1 K - Ty _2p \p
E'|¢)T(I/Vt’I/Vs)|1iv = FE ( ?;UjsKtzs W) < <E‘US’1_p7>p E'Kts
t

- 0 (hQQ(l—ﬁ)> 7

where the last step follows using Lemma 3.4 (i) and choosing p such that from setting
2p/(1—~) = 6, by Assumption 9 we have E|U4|**/(1=7) = E|Ux;|? < co. Such choice
of p gives % =1- ﬁ. Similarly,

Elgr(We, W) |77 = 0 (07 702)),
K

Elor(We, W) 77 = B*(| 7
t

UR.KE| ) = 0 (nH i)

This gives Mr};7 < Cp20-M=7F and together with (3.6.23) and (3.6.24) implies
3.6.22) for i = 1, because Th%(1=71)=4 = T2p3a(-7= (Tpa(=7)=1 — O(T2p3a0-")~7
( ) ; ( ) ( )

by Assumption 17.
Upper bound on Ayr. We will prove (3.6.22) for Aop. Aor = O <T2h3q(1—'y)—%> .
Recalling A7 defined in (3.6.20), the kernel function is

K|l - -
(z)T(Wta Ws; W’I‘) = |f2t|UAsUAthsKt7"- (3625)
t

The proof follows the structure of the proof for A;r. By Lemma 3.6 (ii),

| Aor| < T3|Epp (Wi, Wa, Wa)| + C(T2 M) + TMps"). (3.6.26)
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The expectation under independence is

. K. _ _
E[¢T(Wt7 W, WT)] =E <|fzt|E*(UAsKts’Zt)E*(UAthr|Zt)> =0,
t

because by Assumption 2, E*(UasKys|Zt) = E*[KisE*(Uas|Zs)|Zt] = E*[Kis-0|Z4) =
0. Next, we will use Lemma 3.6 (ii) to find upper bounds on Mps and Mypqs.

As noted earlier, in obtaining the upper bounds, we use the fact that the upper
bound under serial dependence between arguments dominates that obtained under

independence. We will show that

My = max (Elor(Wi, Wi, W)™ + Eldr (Wi, Ws, W) 77)

— O(h* ), (3.6.27)
Mrpy = | mas (Blor(We, We, Wy) |75 + Elr (W, W, W)|75)

= (W), (3.6.28)

4q

which with (3.6.26) imply Agp < C[T2h310-0=F 4 Tp2(-1=F) < cT2p3a0-1—7F
because Th?1=7) — 0o by Assumption 17. This proves (3.6.22) for Ayy.

Upper bound on Mpio. For Mpio, we need to consider when the variables that
enter ¢ are divided into either two or three independent subsets. The methods and
conditions used to derive the upper bounds apply uniformly over 1 < r,s,¢, < T so
the max over indices is redundant: we are concerned only with how the arguments
W,., Ws, Wr are divided into independent subsets. For the case of two independent
subsets, the symmetry between W, and W, in ¢ means that it suffices to consider
two distinct cases, namely {Wt, Ws, W,.} and {WT, Wy, Wi}

For {W;, W, W, }, we will show that

1
1—

Kt k Et,sr (‘UASUAthsKtT}ﬁ |Zt>> =0 (h3q_ 9(14_W)> ;

- 1
E’¢T(Wt7Ws; Wr)’177 = Et,sr ( F
t

where F; ;- denotes expectation taken under {Wt, Ws, W}, To show (3.6.29), note
that for p,w > 1, p~ ' +w™! =1,

_ _ _1
Et,sr (‘UASUATKtSKt'I" 1= ‘Zt = Z)

gl

1 w
< [Et,sr (‘ﬁAsUAA% |Zt = Z)} g |:Et,sr <|I{1551{1fr|ﬁ |Zt = Z)}
ENET v 1
_ _ T— P T w
= |:Et,s7" <‘UASUAT| 7>:| |:Et,sr <|KtsKt7"1 ! |Zt == Z>:|

because of the presumed independence between {UAS,UAT} and Z;. By Cauchy-
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Schwarz inequality and Assumption 9’,
. 2 2 \]V2
Et,sr (‘UASUAT‘liﬂ/) < |:E (‘UAS‘I’Y)E(}UAT“I’Y)] <C < oo.

We select p setting % =60. Then % =1-7 2__. Now,

)

v—Zz

h

Ey s (|KtsKtr!% | Z = Z) < sup fr—s| (v, ) / K ( )| do
w?y

[ (2 dy = o0

uniformly over z by Lemma 3.1. The above estimates together with Lemma 3.3 imply
the bound (3.6.29):

Et,sr (

The contribution of the case of {VNVT, Wy, Ws} in Mo can be bounded by

1
1—

KT o N
t Et,sr (‘UASUAT‘KtsKtr}l—W |Zt)> = F (

12

Ky
2
—0 (hq X th‘ﬁ) —0 (hi”q‘%) .

_1
1“/) O(h2q—79<143,y) )

~ _1 Kt _ ﬁ _ 1—y
Ets,r|¢T(Wta W57 Wr)| =y = Ets,r FUAsKts Ets,r (‘UAthr‘ |Zt>
t
— 0 (h?’q*%) . (3.6.29)

To obtain it, apply Holder’s inequality on the inner conditional expectation

_ 1_’Y _ _p % _w i q— q
Ets,r (‘UAthr‘ |Zt = Z) < Ets,r (‘UAr’ 1_7) Ets,r (’Ktr’ 1=y |Zt = Z) = O(h o(1=) )7
noting that by Lemma 3.1, E (\KW\% | Zy = z) = O(h?) uniformly over z, with p

defined by 6 = % and % =1- ﬁ. Now, since W, and W; are dependent,
Ets,r (

) < C [Bus, (\17,45\1"7)}; Evsy (‘KtsKt w)] - 0 (nr).,

7
with p,w as above, which yields (3.6.29), and completes the proof of (3.6.27). The
contribution to Myi19 of the case of (Wt, WS, WT) is not larger than that of the two
cases presented above, since the steps to get to the upper bounds in the cases of
{Wt, Ws, W, } and {WT, Wy, Ws} apply to the case of (Wt, W, WT)
Upper bound on Mps. We obtain M3 = O (hzq_ﬁ> since under dependence

LG

ft2 UAS Kts
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between all three time periods:

= _ 2 \]r K |1 v __dq__
(s el oo o

with p defined by 0 = 2p/(1 —~), - =1 — ﬁ by Assumption 9, and Lemma
3.4 (i). This rate dominates the contr1but10ns from (Wy, Wy, W,.) and (Wy, W, W,.)
presented above and proves (3.6.28).

Proof of (3.6.18). Since f((;) > 0,1 =1,2,--- ,d, for T large enough, there exists
a constant ¢ > 0 such that t:rlr(lgél() f(Z:) > ¢, due to the boundedness of the support of

UAs Kts UAT‘ Ktr

f?

the kernel Kj(-;h) and continuity of f(-) and h — 0. Now,

1
7?

=17
1217

5 |72 72| ma

1
max ma.
t: K #0 t Kgéo t: KgéO ft t: Kﬁéo

The second term is a random variable bounded by a finite constant for T sufficiently

large. As for the third term, as T' — oo,

1 1
05| = o~ O
K0 | f 1}(11;10 ’ft |

because  min 721 > trgggolft | - gl{?golft = Jmin 1fil +0p(1) 2 e+ 0p(1) =

c(1+0,(1)). Now,

max |17 = f7| = maxe |(f = )2 + 24 - Fo)|

t: K #0

) 1/2
_[max £~ ft\] +2 max | f,| max |f, - ft\:op<(1°gT) +hs>,

t:Ky t: K #£0 t: K #0 Tha

since by (3.6.13),

max ‘ft - ft) < sup‘f(z) - f(z)‘ =0, <<logT>1/2 N hs) .

tZKz?éO Thq
Therefore,
f2 log T\ /2
= J2| o, (8 +1° ) = 0,(1).
t:Kt;ﬁO ft ft Th4
T
Proof of (3.6.17) Notice the similarity of FAL = Z |K;(Zy; h)|ni] to EAL in
t=1

(3.6.15). Compared to equation (3.6.15), the difference is that we have |K;(Z;; h)|
instead of |K;(Zs; h)|/fi in the kernel of the U-statistic. The steps to get the upper

bound for this terms is almost identical to the steps for Af., with results such as
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E|K;(Z; h)|* = O(h?) replacing their corresponding ones, such as E‘Kl Zt’h)’

O(h9), in the proof and yields the same upper bound as for Af..

3.6.2 Upper bound on Br.

In this section, we will show that

1 \3
Bt = Op(r2r), where rop = <Thq> [T?’h3qu25 + T2p2a+2 L p2p3a(l—)+2
which also implies (3.6.10) for By. Since 4 = 2 + (ffﬂ?),
ft t ft ft
B T
fE-ft 1 2
Br = \ t\ < | t\ = | e D 1Kl
Thq z} 72 Thq Z TS| g2 | The ;
=17
~ Br+ may & = Bh +0,(1)
BKA0 | f2 2

by (3.6.18). We will show that

EB{I‘ = O(T’QT), EB” = O(TQT),

which because of non-negativity of B/ and B implies (3.6.30). Firstly, the stochastic

order of BT, can be found by studying

3 T /! )

(3.6.30)

3 T )
) 2O X Uz - m@)} Kl (Z) - m(Z) i)

2
Tha t1,t2,t3=1 ftl
1\3
=: <W> (BlT + BQT).
Upper bound on Bi7. We will show
Bir = O (T2h2q+2 + Thzq(l—w”) , (3.6.31)
Bor = O (T3h2q+28 + T2h3‘1(1*7)+2) . (3.6.32)

Bir is expectation of a second order U-statistic with kernel

|Kt\

t

o (Wi, Wy) = m(Zs) = m(Zs) K.



3. Panel Non-parametric Common Regression Model with Fixed Effects 111

By Lemma 3.6 (i),
|Bir| < CT? E¢r (Wi, Wy)| + CT M, (3.6.33)
To prove (3.6.31), we show that
\Eor(Wy, Wy)| < Ch2+2, and Mg < O 7. (3.6.34)
The expectation under independence is
B .) = B (Bt () - mz)152)
- 5 (e (2 - mizoyizi2) ) = 002,

by Lemmas 3.2 and 3.3. To bound Moy, similar to Aq7:

1
1—

B o 2) - m(Zs>}Ktsrﬁ>

fi

+E* (

by Lemma 3.4 (iii), which proves (3.6.34).

Mor < E(

1
1—

K| 1= {m(Zy) — m(Zs)}KtsPQ”> -0 (h2q+%> ,

12

Upper bound on Byp. To bound Bap, we will show
Bor =0 (T3h3q+25 + T2R3a0-M42 4 Th2‘I(1‘“f)+2) =0 (T3h3q+25 + T2h3‘1(1‘7)+2> , (3.6.35)

where the last inequality follows from Assumption 17, Th'™ — oo, which yields
(3.6.31). Bar is a third order U-statistic with the kernel

| Ky

b1 (We, We, W) = Z5m(Zy) — m(Zs) Y Kys{m(Ze) — m(Z,)} K. (3.6.36)
t
By Lemma 3.6 (ii),
|Bor| < T3 E(dr (Wi, Wy, W,)| + C(T2 My + TM;3"). (3.6.37)

To prove (3.6.35), we shall show that

‘E(¢T(Wt7 W37 Wr)| S Ch2q+287 (3.6.38)
Moo < CR¥H 55 (3.6.39)
Mypy < CH2H 15 (3.6.40)
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Expectation under independence is

L]
ft
|E*({m(Zy) — m(Zs) } | Zo) | | ({m( Ze) — m(Zr) } K| Zt)\)

) o,

B (or (W W, ;)| = | B ( (m(Z)) — m(Ze)} Ky {m(Z2) — m(za}Ktr) |
K

< E*
<5 (|7
< Ch2(a+s) p* (

Ky
2
t

by Lemma 3.2 (i) and Lemma 3.3. Obtaining the bound (3.6.39) for Mr;2 follows
the same steps as in case of Ao above. To find upper bound on Mypis, due to the
symmetry between W, and W, in (3.6.36), it suffices to consider two distinct cases

when there are two independent subsets.
For (W,, W,, Wt),

K, = 1
Bt ||| Bt (10m(20) = m(Za)} Koclm( ) = ml 20} r| 75| 2:)
t
1
2+-2 o || K| g2
< — g — —
< CNTTRE || 0 (h w) ,

because uniformly over z, under Assumption 4, by Lemma 3.1

Bare (Hm(Z0) = m(Z)} Kusm(Z0) = m(Z0)} K 7 | )

< sup fi(10.) / [{m(2) — m(w)}K (

zZ— W

)| duw

[ Hmtz) = m)}K () [y
<cl [ Ik = o (1#°75).

For (Wt,WT,Ws),

T B (1m(20) = m(Z)} Kl 7 | 2)

)=o),

by Lemma 3.2 and then applying Lemma 3.4 (iii), which completes the proof of
(3.6.34). The same upper bound is applicable in the case of (W, Wy, W;) as all the
steps taken above apply in that case.

fi;{m%) — (20} K

Etr,s

fi;{mwt) — m(Z,)} K

S Chq—i_ﬁ Etr,s <
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Proof of (3.6.40). Under dependence across all three time periods,

Mrs = E Ii;{m(zt) — m(ZWV K Am(Z)) — m(Z VK|
% 1% 1/2 % 1% 1/2
< | B[ FHm(Z) = m(Ze) ’ (20 = m(Z)} K, ]
t t

=0 (n*r)
by Lemma 3.4 (iii), which yields (3.6.40) and completes the proof of (3.6.32).
T
Upper bound on B7.. Noting the similarity of B}, = T}LQE <Z ]Kﬂl?) to BT,

t=1
all the steps of finding upper bound of B/ yield the same bound as for Bf.. This

completes the proof of (3.6.30).

3.6.3 Upper bound on Cr.

Recall that by (3.6.12),

T
CT = Thq ZKt it = |
1 ETIK lt ZK lf ft —'C/—l-C”
>~ Thq — t ztf Thq tUatlt n i N T
‘We shall show that
Cr = O o (737), (3.6.41)
_2q logT
ch = 0 (r2T+h25 7 08 ) (3.6.42)
ThQ+7
rap = (TLM)Z(T?%M@— 2) | 3ty -2(%-1) | 2p2a01-7)-2(3 - 1))1/2,

which implies (3.6.10) for Cr.
Proof of (3.6.42). Using inequality |ab| < a® + b,

T

1 ft_ft 2 lt 2
C” < UrL + -
T = Thqztl K10 (ft)}
fi—fin, 1 ¢
< P ST KUR) + Br =t I - Ve + B, (3.64

By (3.6.30), Bt = O,(rar). Next, to bound V7, note that by Lemma 3.3,

2
E[|Ki|U2] < (E|K2)Y2(E|Ux|HY? < Cht=7.
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Then Vp < Ch=29/%  and since Iy = Op(l;gth + h2%),

logT
IV < Op(—2=_ 4 b2~ %), (3.6.44)
Tthrj

which proves (3.6.42).
Proof of (3.6.41). Since Clp = Op([E(Cfr)Q}%), we show that

1
Tha

2q

E[(C{r)Q] S C( ) (T3h3q+257f +T3h4q(1 ) ( 71) +T2h2q(1f’y) 7 (3 6. 45)

which implies (3.6.41).

Write
[(C’ )?]
T ' 17/ K, th
Th‘l Z . tz ( D —— Uity Uit Kyt K1, Am(Z, ) — m(Zy,) H{m(Zig) — m(Zt4)}>
T /
= (Tihq)4 Z Z {111 +112E[ ] +113E[”']} = (01T+02T+03T)’

t1,t2=1 t3,t4=1

where [y Ul U I3 = [1, ,T]4,

I = {(t1 =t3,t2 =t4), (t1 = ta, t2 = t3)},
Iy = {(t1 =t3,t2 # ta), (t1 = ta,to # 13), (I3 = to, t1 # ta), (t2 = ta, t1 # 13)}
Iz = {(t1 #t3,t2 #ta)}.

We will show that

Cir = O((m) (T2h220-0))), (3.6.46)

Cor = O((

)N (rBpra0-3)y), (3.6.47)
Car = O((7)" (704072620 L p2p2a0=0=23-0)) - (3.6.48)
which proves (3.6.45).

Proof of (3.6.46) for Cyp. Since

K K
Uz Uzs
ft fs !

S(ftUzt> +<fsUzs>7
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then,
T K2
Cir < Y E(UiKi{m(Z) — m(Z))

t,s=1 t
K; K,

+ | =L 22U Uss KE{m(Zy) —m(Zs)}Q)
ft fs

< 5y B B KL (n(2) — m(Z0Y)
t,s=1

< CT2h2+2q(1_5),

because with p such that 2p = 6, and 1 =1- % =1- %,
T K2
Z B(—z UiKi{m(Z) — m(Z;)}?)
t,5= t

K 2r .,

< (B |t Kistm(z) ~ m(z0)| )7 (B 10
< O(h2a+2r)1/2 = Ch2+2 _ Ch2+2q(1f%)7

by Lemma 3.4 (iii) which proves (3.6.46).

Proof of (3.6.47) for Cyr. It suffices to show that

K; K,
E <1IQE fttl ftt3 Ultl UitsKt1t2Kt3t4{m(Zt1) - m(Zt2)}{m(Zt3) - m(Zt4)}D
1 3
< Cp2t3ai=5), (3.6.49)

According to definition of Iz, we need to check (3.6.49) in four cases.

Case 1, (t; = t3,ta # t4). Then, the above expectation becomes

E(I;;t KK {m(Z;) — m(Zs) Hm(Z:) — m(Z,)})
2 w
< (E I;: KisKip{m(Zy) — m(Zs) H{m(Z;) — m(Z,)} )l/w (E |Uie )7
< (5 = op2H3a-)), (3.6.50)

selecting p such that 2p = 6, setting % =1- %, and using Lemma 3.4 (iv) and
Assumption 9.
Case 2, (t1 = ta,t2 # t3). Then the expectation on the LHS of (3.6.49) is

mfi%%mmMMww%mmm—mmw (3.6.51)

Since K:K UZtUZs’ < &Uit)Q + (&Uis)Q, the bound (3.6.49) follows similarly as

Is
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(3.6.50).
Case 3, (t3 = to,t1 # t4). Here, the expectation of the LHS of (3.6.49) is

K K

E‘ ft fs

UitUisKtsKsr{m(Zt) - m(Zs)}{m(Zs) - m(Z’/‘)}

)

and (3.6.49) follows by the same argument as in Case 2.
Case 4, (ta = t4,t1 # t3). Here, the expectation of the LHS of (3.6.49) is

B Ul e (m(2) = m(Z2)} (m(Z.) = m(Z,))

)

and (3.6.49) follows the same argument as in Case 2.

Upper bound on C3p. Next, we bound C3p. We will show that

q

Cyr = O(T3h4‘1(1 =2 -1) 4 p2p2a0- >2<§—1>)- (3.6.52)

Csr is the expectation of a fourth order U statistic, whose kernel is

K K.

ng(Wt’WSaWT?Wu) ft f

UztUerts ru{m(zt) ( s)}{m(ZT) —’I?’L(Zu)}
By Lemma 3.6 (iii),
|Car| = T Egr (Wi, Wa, Wa, Wy)| + C[T3 My ], + T2Myp + T2 My, ).

Expectation under independence is zero:

Elpr (Wi, Wa, W3, Wy)] = <KtK

ft fr
= F* (ft Kts{m Zt) < 5)}E*(UitZt7ZS)>

UitUir Kts ru{m(Zt) ( s)}{m(Zr)_m(Zu)}>

x E* (I;; K, {m(Z,) — m(Zu)}E*(U¢T|ZT,Zu)> =0,

by Assumption 2.
We will show that

Mri12 < Ch4q7%(%q71)7 (3.6.53)
Miyg, Mpy < Ch2 7531, (3.6.54)

which proves (3.6.52).
th

Proof of (3.6.53). As noted in Lemma 3.6 (iii), Mpi12 is the maximal (=) 7)
moment quantity when partitioning the four time periods into either three or four
independent subsets. There are three distinct combinations of dependence to be con-

sidered in the case of three independent subsets.
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For (W,., Wy, Wt, WS), one can separate out expectations,

1
1—y

K 1
Fruts (|50 Brugs (IKislm(Z) = m(Z)} 7 |2,
t
K 1
1—v
X Eru,t,s JUzTKru{m(Zr) - m(Zu)} ]
r

< RIS x palv ¢ TR _ <h4q_1—1v(?§_2)> :

because by Lemma 3.2 (ii), Lemma 3.3, and Holder’s inequality with Assumption 9’,

1

settingpsuchthat%z@and%zl—%ZI—m:

Erups[|Kes{m(Ze) — m(Z)} 75| 24) = O(h 775, (3.6.55)

K, 1 p K
B U < (B0 e

q

=)V = O(hw),  (3.6.56)

and by Lemma 3.4 (iii),

K, 1 o
Eru,t,s TUerru{m(Zr) - m(Zu)H li"’ < (E‘Uzr| 15)7)1/p
KT _w _w 1 29, 1
X (Bpus| == Kru{m(Z,) = m(Z)}| T2 = O T5)0) = o(hw +i9),

fr
with p =6(1 — ) andi:lfﬁ_

For (W,, W, Wy, VNVT), the (1i7) th moment of the kernel is

KUy KUy |75
ft fr
1
X Esutr <‘Kts{m(Zt) —m(Zs)} Kru{m(Z,) — m(Zu) } 7 | Zs, Zr) }
KtUit KrUir
ft fr

Esu,t,r{

1
1—n

< CEsu,t,r

B2t =0 <h4q—13~,(3—1)> . (3.6.57)
because the inner conditional expectation evaluated at Z; = z and Z, = u is

Butr (IKes{m(Z0) = m(Z)} K {m(Zy) = m(Z)} 75 |2 = 2. 2, = u)

1—v

dw

w—z

<swp () [ K (M55 o) = mw)

<[ | (252 onte) - mis)

uniformly over z and u due to Lemma 3.1. Noting the independence between W, and

1
1—

T dy = O(h¥H )




3. Panel Non-parametric Common Regression Model with Fixed Effects 118

W,., by (3.6.56),

Esutr

sby

‘KtUit KrUir
ft fr

1—v

(1K KUy [
)= (5 = ()

— o) =0 ().

For (Wy, W,., Ws, W), by (3.6.55),

KtUzt K Uzr
ft fr
XEtr,s,u (|Kru{m(Zr)

Etr,s,u{

_1
< Ch2(¢]+ Ty )Etr,s,u

ft
-0 <h2q(1_9(12—7)) < h

since by Lemma 3.4 (ii),

"amuomgmwa m(Z)}| ™ |2:)

1
~m(Z)NT1Z,) )
K Uiy K, Uiy | ™

fr

”Wf”>20<ﬁwﬁx?4g,

1
K ) KT ir = K K “ - — ot
| B BT 1 (U | 75 Ve () B S e = 0(hE) = 003 9), (3.6.58)
ft fr ft fr
setting 12_7137 =6 and % = 0(1 ok This proves (3.6.53).

Upper bound on MT13 and Mry.

For both Mp13 and Mpy, one finds the upper

bound that holds for all relevant combinations of dependence:

KtUit KrUir
ft fr

E Kts{m(Zt)

Ji

(E?irdm<>—mww}l

— m(

<Gﬂm%KﬁmM0ﬂmiﬂ

a»Kmvmz»—mww}l1
= KU =\ 2
E’ }TZTKTu{m(ZT)—m(Zu)} )

P
,7)1/2p(E |Ult‘%)l/w
D

77)1/2p(E ‘Ur|%)1/w

_ RS _ o (h2‘1—1—2&(2§—1)) 7

by setting 2p/(1 — ) = 6 and + =1 — ﬁ and Lemma 3.4 (iii), which proves

(3.6.57).
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3.6.4 Upper bound on Dr.

By (3.6.8) and (3.6.12),

T TthKt it

Thq Z Kt zt

fft

tJt

Thq ZKt it =: D1’ + Dp”.

We will show that

1 3q— 229 _\1/2
Dy = Op(rar), rar:= (Thq) (T3h390 %) 4 2% a=0) "2 (3.6.59)
log T
DY} = Op(rir+ —2r + % %), (3.6.60)
Thts

where ri7 is the same as in (3.6.14), which proves (3.6.22) for Dr.
Proof of (3.6.60). Similarly as in the proof of (3.6.42),

ft
ftft

T
1 n?
Dy < —— Thi Z| K|{|U + -5} < IrVp + Arp.
t=1 ¢
By (3.6.14), AT = Op(rir) which together with (3.6.44) implies DI, = Op(rir +
og T | p2s- ) proving (3.6.60).

Tthr

Proof of (3.6.59). Since D, = Op([E(D’T)Q]%), we show that

1

2q— 5o
Thq) (T3h%0=5) 4 T2 7057, (3.6.61)

E[(D)*] < O

which implies (3.6.59).
Write

E[(D’ )]

Ky, K,
Thq Z Z ( fttl f:s Ultl Ultd Kt1t2 Kt3t4 UAtQ UAt4)
1 3

t1,t2=1 t3, t4 1

Z Z {111 J+1L,E[ -]+ 1,E[---1} =t (Dir + Dar + Dar),

t1,t2=1 t3,t4=1

Thq

where I, I and I3 are as in the proof for Ct’.
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We will show that

P = O((TLM)ZL(TQhQQ(l—%)))’ (3.6.62)
Por = O((%M)4(T3h3Q(l—%))), (3.6.63)
Dyr = O((TLM)A‘(T%‘*"*% +T2h3q*%)), (3.6.64)

which proves (3.6.61).

Proof of (3.6.62) for Dyp. Similarly as in the proof for Cir, since

o <(Gron) + (Foon)
Uz UzsU U s| = 7Uz U + UzsU s ;
ft fs t AtV A ft tU At fs A
then,
L K? _ K K
Dir < Y E(5- U SKEUS, + ft 7 UaUisUnUas| K7)
t,s=1 t tJs
T K?
S 3 Z (f UzztUAsKtQS) < T2h2q( )
t,s=1 t
1 1 4
because with p such that 4p =6, and = =1 — 5= 1-3,
T 2 4
Z (f UiUi.Ki) < ‘Kts )l/r (E ‘Uz’tUAs‘Qp)l/p < Ch+ = Ch¥1=5),
i

by Lemma 3.4 (i) and Assumption 9 yielding £ ‘UztUAsfp < (E \Ult|4p E |U |4p 12
00, which proves (3.6.62).
Proof of (3.6.63) for Dyr. It suffices to show that

Ky, Ky,
Tu Jts

E <]~ng U’Ltl 1t3UAt2UAt4Kt1t2Kt3t4

> < Cp3ai=9). (3.6.65)

According to definition of I5, we need to check (3.6.65) in four cases.

Case 1, (t1 = t3,ta # t4). Then, the above expectation becomes

K? _
E(f—gUz%\KtsKtrUAsUAr\)
t
K} 1 oy
‘ LR K| )Y (B U™ |TasUarP) P
‘ LR Ky ”1”<E|Uit|4p (E|Uas| P E|Ua, 7)) /2

W) = Ch=7), (3.6.66)
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selecting p such that 4p = 0, setting % =1- %, and using Lemma 3.4 (v) and
Assumption 9.
Case 2, (t1 = tq,t2 # t3). Then the expectation on the LHS of (3.6.65) is

mmij

@WW%%“WﬂfW%MML

Uit Uis Kts Krt UAS UAt ’

since ‘Kt Ky, UZS’ < Uzt)2 + (%UiS)Q. The bound (3.6.65) follows similarly as in
(3.6.66).
Case 3, (t3 = ta,t1 # t4). Here, the expectation of the LHS of (3.6.65) is

p|AL A

7Uz Ust SKST‘U sU T
ft fs ! ! AstA |

and (3.6.65) follows the same argument as in Case 2.
Case 4, (ta = t4,t1 # t3). Here, the expectation of the LHS of (3.6.65) is

K K _
JTUitUisKtsKrsUis ‘7
t s

and (3.6.65) follows the same argument as in Case 2.

E|

Upper bound on D3p. We will show that

1y 3p4q(1—)— 272q(1—v)—F
DW_O<QWJ[Th T ﬂ . (3.6.67)
Denote K
<mmmwwm=ff%w%M@m
t r

By Lemma 3.6 (iii),
|Dyr| = T Epr (Wi, Wa, Wa, Wa)| + C[T3 My, + T> My + T2 My, ).
The expectation under independence is zero by Assumption 2:

==~ K,
E[¢T(W1,W2, W3a W4)] = <ftt f UztUertsKruUAsUAu>

* K *(T] *
=F (ftthSE (Uas|Zt, Zs)E (Uit|Zt’ZS)>

K,
x E* <f}QJ?@thmZ)EWMAZ”Z)> 0.
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We will show that

Mg < CRYO-1-F (3.6.68)
M1z, Mpy < CRPO-1-7" (3.6.69)

which proves (3.6.67).
Proof of (3.6.68). Proof is similar to that of (3.6.53). As noted in Lemma 3.6 (iii),

M112 is the maximal (1iw) " moment quantity when partitioning the four time periods

into either three or four independent subsets. There are three distinct combinations
of dependence to be considered in the case of three independent subsets.

For (W, Wy, Wy, WS), one can separate out expectations,

1
KU, - K, U; -y
Eru,t,s il KtsUAs Eru,t,s < KruUAu
fi fr
1
KU | T I K.U; N
=FE* tf it E*(‘KtsUAs{l_W ‘Wt) ru,t,s ‘ } ZrKruUAu ]
t T

=0 () <o (W) =0 (K,

because by Lemma 3.1 and 3.3 and Assumption 9’, we set 2p = 6 giving % =1- %
K 1 p K
BIZHUal™ < (BIUa 75) P (BI S 5) " = o), (3.6.70)
t t

E|KsUs| T < (B|Uas|T7) VP (B K| T7)YY = O(h),

and by Lemma 3.4 (i) with 2p =60(1 — ) and = =1 — ﬁ,

K
.
—O(h™) = o(th*70(33w> ).

E K

_ 1 _2p_ — 2p_ K, _w
KruUirUAu’ -7 < (E|Uzr‘ 1= E‘UAU| 1= )1/2p(Eru,t7s‘TrKru’ 1= )l/w
r

For (W, W,, W, W, ), the T 7) " oment of the kernel is
KUy KpUy | T 1
sutr il f su,t,'r [‘KtsUAs‘ ‘th| su,t,r [‘KruUAu‘ 1= ’Zr}

-0 (hQ‘I‘ﬁ) S0 (hq‘ﬁ x h“ﬁ) ~0 <h4q_ﬁ) :
because the inner conditional expectation is
= L= 7T\ 1/ = 1/w o Te gt
Boutr |[KusUs| =7 124) < (BIOs| 7)Y || K| ™5 |22 ])1 < R0,

by Lemma 3.1 and Assumption 97, setting p = (1 — ~) and % =1- ﬁ. Noting
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the independence between W; and W,., by (3.6.56),

1 1
™ KUy |7 ’KU =
=F E
) <’ ft > < fr

For (Wy, Wy, Wy, W), similarly to (3.6.58) and (3.6.56),

K 3 KrUir
Esutr ‘ tUt
ft fr

1

K UW
fr

Kt it

Etr,s,u ‘ KruUAu

7T __6q
e [l 2] 2] =0 (5E).

since uniformly over z

E(M%@M*ﬂ%zz)swOKafﬂa=zﬁwﬂmmmﬁwﬁ=o(Mwﬁw)

K, U

r

Bl

T EI R = 0 (1)

and F ‘ KUt Ky Upyl =

by Lemma 3.1 and Assumption 9’, setting 12_—’77 = and % =1-3 =) 7)

4
O(th_ "(137)) by similar argument as in the proof of (3.6.58). This proves (3.6.70).
Upper bound on Mrpi3 and Mps. For both Mpi3 and Mpy, one finds the upper

bound that holds for all relevant combinations of dependence:

1
K K, U; -
i UAuKtsUAs f WKTU ’
r
7] 1 1 1
KK, | e SONIEIE E
SC E ! Kts ’ [E‘UitUAull?’y]Zp [E’UirUAs‘lﬁy]gp
ft fr
-1
K, K, v _ap \1/2 1/47
<C|E|5 =Ky {(E|U,-t|1—pv) (EI Uau|™= W) ]
ft fr i
:o<h3q e(1w>>

by setting 4p/(1 — ) = 6 and + =1 — ﬁ and Lemma 3.4 (vi) and Assumption
9’, which proves (3.6.69). This completes the proof of (3.6.69).

3.6.5 Upper bounds on E; and Fr.

T
Notice that by Lemma 3.3, = Z |K¢| = Op(1). Therefore, by Holder inequality,
t=1
1 I
_— 1/2 1/2
Er+Fr < (Tth‘K {( Tth’KH

2] H )12} = 0,(A)% + By/).
Thq —
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Thus, by (3.6.10)
T-V2(Er +Fr) = Op(TV(AY? + BY?) = 0)(T" (A1 + Br)) = Op(Rry),

completing proof of (3.6.11).
We showed that

At + Bt + Ct+ Drp +T71/2<ET + FT)

log T q
<C( = o +h2 + 717 + ror + r37 + Tar), (3.6.71)
Th‘H’j
where
1 2 ) _4a
rr = (W)S (T2h2q_9 + T?p3e(=7) eq>
L \3 (13730125 27 2q+2 27 3q(1—)+2
rar = () (TORF2 4 T22042 4 20042
L N2 (37 243¢01-2 37 4q(1—y)—2(3 -1 2, 2q(1—7)—2(22—1)\ /2
ror = () (Th+q< 3) o T3pAa-—n—2(5-1) | p2p2a(-)-2(5 )) 7
1 __12q
rr = (=) (TPR%0-8) 4 2t )2,

Rep = WPy % 4 ! ! ! !

+ + + .
’ TH3He Tt E -l ppitaaty  /rpet Y

The proof of Theorem 3.7 is completed by showing that (3.6.71) is O(Ry,). Firstly,

by Assumption 17 (ii), and since % = % + %,
logT (log T)h%qu ) 1
20 4q = O( 4q ) = O(RTJL)'
Thite TR o0 ThI o0
Secondly,
2q 2q 1 1
< 25—t — p2s—
ey S RTO AT =AUV 4 That%  Tp3vet
1 1
< hQS_%q + = O(RTyh).

+
Thetety  ThYTHE
Thirdly, by 1 — 4+ < % of Assumption 9’

1 1 1
+ +
\/Thf]‘i’%*? \/Th47q+%q—2 Thq+7q+%q—l
VB F 2 (5 —(1=47))g+2 1
=+

+
Thit Thet5" Thiti !

o(1) o(1) 1 — O(Rrn).

- -

rsy =
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Finally,

1

1
raT = +
VTRt TRd s

= O(RT,h).

|
Proof of Theorem 3.8 We provide proof for the ay, MSEQ)? while the proof for

aj‘n*’ MSE(G) follows by the same argument. Recall

Uy AMSE(G) — Gm, AMSE(Q)
ALY f<<z>lﬁvﬂ<<l>1N}qﬁzr Aoy | T
= (TNQX%> ({ (m(())? { &(m(@)? } ) . (3.6.72)

By the mean value theorem, the last term is bounded in absolute value by

)

[5G U@ 5 ()= G~ \@(m@l)): - <i><)m<<l>>2
3.6.73

where r;’s, i = 1,2, 3 are derivatives of the expression in the curly bracket in the RHS

q+ 2r

of (3.6.72) with respect to Q, f and ®, respectively. 7; lies in

! {((I)("i(g))y)( (G L) T ( f(@))Q) (1) 1) )} 7

A A B(m(¢
79 lies in

1 17,Q(¢)1 (=) —q—2r+1 1" ()1 T ) o
q+2r < ‘Ijj(ﬁ%((céz)))g>( ) (f(Cl))( cronl (W) (f(Cz))( 4zt >] |

and 73 lies between

e T (B ((())2) e
1 2 N SUCINF(Q)) P2 (2((Q))7)

(—g—2r—1)

(U QUG InF Q)T (B(())D) o) .

Then straightforwardly we deduce that the upper bound of (3.6.73) is

Oy (1 QG Ly) o-2r D/t 2] [Numm QG + (AW IWIFG) — FQ)
+(INQUG)1N) “P m(())? - 2“)
= 0p<<13vn<<l>1N><*q*2T+1>/<q+2T>N[||n<<z> QG + 1217 - £
IR | [@67(G)) = ()]
= 0, (NN T2 D@ N2(G) - ()] |
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where the last step follows from Assumption 19. Thus (3.6.72) becomes

. 1.Q(G) 1y \ 77 N o )
U MSE(G) ~ OmMSE(Q) = Op<<NT§VQQ)N> (W(Q)lz\/) |Q(CI)Q(CZ)||>
1.Q(C)1x\ 72 )
_ o, <<NT§§”N) 12(@) nmn) = 0ula, e
m

Proof of Theorem 3.9
For the same reason as in Robinson (2009, pp.28-29), it is sufficient to show that

1
N = §
Rrp=o0 (a + m),

which follows by Assumption 20. B

3.7 Appendix B. Lemmas 3.1-3.6

q

Recall the product form of the kernel K (u) = H k(uj). We first note the multivariate
j=1

version of Taylor expansion for a function m : R? — R. Suppose m possesses continu-

ous partial derivatives of order r at any z € R? which are uniformly bounded. Then,

for z,w € RY, one may write

q ¢ L
8m(t1,~-,tq)
g Oty -~ - 0t;, ‘t:zj[[l(z” wiy)
'

[Tz, —wi,), G.7.1)

j=1

1 & Lorm(ty, -ty
+QZZ Ot ...3tirq ’t:a)

where x lies on the line segment joining z and w.

Lemma 3.1. Let [ |k(u)|(1+ |u|*)du < oo, for some a > 0. Then uniformly in z,

/ e — 2]

K (5w = e [ oo
< patege / |u%(u)ydu( / |k(u)|du>q_1 = O(h?*%).  (3.7.2)

Lemma 3.2. Suppose m and f have bounded derivatives of total order up to s,
k € Ks and sup, f(z) < oo.
(i) (Lemma 5 of Robinson (1988)) If Z; and Z; are independent, then, uniformly

over z, ‘E <{m(zl) m(Z)}K <Z1 ; Z2> |Z1 = z>‘ =0 (h77).

(i) If [ |u®k(u)|*du < oo for some a > 0 and Z; and Zs are independent, then
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uniformly over z,

5 ([tmiz - mzop (22|

7y = z> = O(htte). (3.7.3)

(iii) If Z; and Z, are dependent with joint density f(z,y) satisfying sup / fz,z+
6
0)dz < o0, then,

|tz - mznx (252

Proof. (ii) Notice that (3.7.1) implies |m(z) —m(w)|* < C||z —w]|*. Then by (3.7.2),
the LHS of (3.7.3) is bounded by

) = O(h"™). (3.7.4)

c/uw—zu 1K) () w<c/rw—zu () dw = 0.

(iii) From (3.7.2), it follows that the LHS of (3.7.4) is bounded by

[ lmGe) = mune (2

<cnre [ ol|K )" ( JECEE htb)dZ) i = O(h™*),

w> | f(z, w)dzdw

Lemma 3.3. Let k£ be a kernel function with a compact support, say [—1, 1], such
that [ |k(u)|*du < oo for some a > 0. Suppose that Z is a random variable with a
continuous pdf f and ¢ € R? is such that f(¢{) > 0. Then, for all b > 1,

K(Z-o/mF
E{ 7zy }‘O“”'

Proof. Since f is continuous and positive at (, there exist § > 0 and € > 0 such that
f(C+w) > 9, for lw| < e. Then |hu| < g, V|u| < 1, for T large enough. Thus as
T — oo,

KGZ_OmEy _ [IKC Oy, o [ LKL,
F iy >—/ S W e

< / ) du = O(h).

Lemma 3.4. Let Zi, Zs, Z3 be random variables with joint densities f(-,-,-), f(-,")
and marginal density f(-) such that sup f(z,u) < oo, sup f(z,u,w) < oo and f(¢) >

Z,uw

0, for a fixed point (. Let k be a kernel function with a compact support, and ¢
be a kernel function such that f{|€ )| + |k(u)|P}du < oo for some a,b > 0 and let

q
¢ > 0. Then the product kernels L(u H l(uj), K(u) = H k(uj) have the following
j=1
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properties:
e e L
) B[ lejv/h) K2 OM*_ o,
i) 5|12 Joniz - meznp A2 S h| = oun,
B (| (A= [z - mzpmz) - mzn 2y (A=) end
= o)
e e | ] P}
o) B[k RE LA ] =0,

Proof. (i) Denote ¢ = (2 — ()/h and ¥ = (w — {)/h. Since sup f(z,w) < oo and
f(z)>0for [z —¢| < chash— 0, ’

f(z,w)
1) dzdw

< op / K (@)L — ) "dédy
_ p2 / K (6)|de / L()°di = O(h%).

(ii) Similarly, since f(z) > ¢ > 0 in the neighborhood of (,

/}K z— /h) ((@;( O/ | (z,w)dzdw
<C/‘K /‘K w — C/h
< Ch2( / K (¢ ! d)® = O(h™).

(iii) As above,

- mp( L

< Cp2to / K () Py / 16141Z(6)[de = O(h2+a),

) dzdw

Proof of (iv) follows by the same argument as in (iii), proof of (v) is analogous to that
of (i) and proof of (vi) is similar to that of (i) and (ii). W
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The next three lemmas offer convenient tools in dealing with asymptotic behaviour
of U-statistics of a stationary S-mixing process.
Lemma 3.5. (Yoshihara’s Inequality) Suppose {W,} is a strictly stationary /-
mixing process with mixing coefficient §(7), taking values in R? with marginal dis-
tribution function F. Let 1 < ¢ < --- < t3,k > 2 be integers and Fy, .., the
joint distribution function of (Wy,,---, Wy, ). Denote by ¢r(wi,--- ,wi) a sequence
of functions on (R9)*. Then for 0 < v < 1,

‘/CZ)T(w)dFtl,---,tk _/¢T(w)dFt1,---,tdetj+1,---,tk

1—y
<4 </ |67 (w)[ VOV F, ., + Ftl,---,thth,---,tk}) x B(tj+1 —t5)7,

provided the RHS exists.

Proof can be found in Yoshihara (1976). The original lemma had ¢, not ¢ and
the extension is mentioned in Robinson (1991).

Before stating the next lemma, we need the following notation. By (m(1),--- ,m(k))
denote a permutation of the set (1,--- , k). For example, for k = 3, (w(1),--- ,m(3)) €
{(1,2,3),(1,3,2),(2,1,3), (2,3,1), (3,2, 1), (3,1,2)}. Define

Sr(wi,-wp) = > Sr(Ways s Wagr)), (3.7.5)

where the sum Z is taken over all permutation of the set {1,---,k}. Note
71-(1)7‘“ ,ﬂ'(k)
that ¢7 is a symmetric function. For brevity, we write Fy, 1, 15 = Fiy tg,t5 (W1, w2, w3),

Fy, Fi, ty = Fy, (w1) Fyy 15 (w2, w3), and so on.

Define:
- e 1/(1—)
Mry = _max_ /R 1Gr(un wn) O AF 1+ FyF,
Mrs = 1<t1g}3§t3<T /1‘@311 |(£T(w17 w2, w3)|1/(17’y)d{Ft17t2,t3 + FtlFt27t3 + Ft17t2Ft3}7

7 1/(1—
Mz := 1§t1g§2a§t3ST /R3q |¢T(w1’ w2, w3)‘ / ’Y)d{Ftlthts + Ftl,tthS + FtlFt2Ft3}a
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MT4 = max ~T w1, W2, W3, W4 1/(177)01 Ft to.ta.t +Ft Ft tat
1<ty <trets<ts<T [piq ’(z) ( ’ ) ’ )| { 1,12,13,%4 14 t2,t3,t4
+Ft1,t2Ft37t4 + Ft1,t27t3Ft4}v
M3 := max b (w1, wa, w3, wa)|Y YAy Fiy .04 + Fiy oty Fi t
1<t <trets<ts<T [piq | ( ) 5 ) )‘ { 147t2,t3,ta 1,t247t3,ta

+Ft1,t2,t3Ft4 + Ftl,tthsFt4 + FtlFt2,t3Ft4 + FtlFt2Ft37t4}7

Mri12 = |¢~)T(w17 wa, W3, w4>|1/(1_7)d{Ft1,t2Ft3Ft4 + FtlFt27t3Ft4

max
1<t <to<t3<ts<T Jp4q
+Fy Fiy Figg + By Foy By Fyy b

Let {W;} denote an i.i.d. process with the marginal distribution function F, and
!

Z is a summation over non-overlapping indices (¢1,- -+ ,tg).

ty, oty
Lemma 3.6. In addition to assumptions of Lemma 3.5, assume that for some 0 < v <

1 and € > 0, the S-mixing coefficient of W; satisfies 5(7) = O(7~?+9)/7) as 7 — oo.
Then, for some 0 < C' < oo,

() | B @r(Wi, W) = T(T = DE (6r(W1, Wa) )| < CTMy, ",
t1,t2
() | D Bor(Wa Wi, Wiy) = T(T = 1)(T = 2)E (6r(W1, Wa, m))'
t1,t2,t3
< CT?Myy,) + CTMy,".
(ii) S B (Gr(Wiy, Wi, Wiy, Wiy)) = T(T = 1)(T — 2)(T — 3)E (¢T(W1, Wo, W, W4)> ‘
t1,t2,t3,l4

< CT*My ], + CT? My + CT* My,
Proof. (i) One can write

/
Z E (¢T(Wt17 Wt2)) = Z E (¢T(Wt17 Wt2) =+ ¢T(Wt27 th)) :
1<t1,t2<T 1<t1<t2<T

For all 1 <t; <ty < T, Yoshihara’s inequality yields:

|Blor (Wi, Wiy) = ér(W1, Wa))| < CMp3787(t — ),

|Blor (Wi, Wey) = ér (W, Wa)l| < CMp; "8 (02 — 1),

Therefore,

> "El(¢r(Wey, W) — or(W1, Wa)]| < CMp5" > Blta—t)
1<ty £2<T 1<t <t2<T
T-1
< OTM}," S B7(r) < OTMy,",

T=1
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because of the assumption f(7) = O(T*(Q“)/V) and E(bT(Ws,Wt) = E(bT(Wl,Wg)
for t # s.
(ii) One has

Z /E[(bT(th, Wt27 Wts)]

t1,t2,t3

= Z E[¢T(Wt1?Wt27Wt3) + - +¢T<Wt37Wt27Wt1)]

1<t1<to<t3<T

= Z E(;(th Wtz; Wt3)7
1<t1<to<ts<T

where &T isasin (3.7.5). Forany 1 < t; < to < t3 < T, define t* := max{ts—ta,toa—t1}
and t, := min{ts — to,to — t1}. Then by stationarity and Yoshihara’s inequality,

Elpr (Wi, , Wiy, Wiy)] — dr(ty, ta, t3)| < CM%?W@*)?
dr(t1,t2,t3) == //égT(wlan,w3)dF0,t*(w1,w2)F(w3),

|dr(t1,t2,t3) — /&T(wlawmwz)dF(wl)F(w)F(wa)! < 4Mpg B7(t).

Therefore |,

‘EgET(Wti, W, W) — / b7 (w1, wa, ws)dF (w1 )dF (ws)dF (ws)

< CMypy B (t°) + C My B (1)

This leads to

Z 'E (¢r(We,, Wiy, Wey)) = T(T — 1)(T — 2)E(¢r (W1, W, VV:&))‘

t1,t2,t3

<CMps" Y, B +CMyy > Bk

1<t1<to<tz<T 1<t1<to<t3<T
< C[TMypy" +T? My, (3.7.6)

To verify (4.7.4), note that from definition of t* and t,, and B(7)Y < er—(3+),

B(t) < clts — to "+ |ty — 4,7 (0Fe/2)
B(t) < cllts — ta] 4 4 [ty — 11|49,



3. Panel Non-parametric Common Regression Model with Fixed Effects 132

Thus,
T T 2
> e sc (Z 1) (ZS‘“*”)) <o,
1<t1<to<ts<T t1=1 s=1
T T
Yo Bt)<C Y -0 (Z 1) =¢ <Z 8_(2+6)> reor
1<t <to<t3<T 1<t)<to<T tg=1 s=1

(iii) For any 1<t <ta<tz<ity < T, define t* := max{t4 — 13,13 — t2,l20 — tl},
t* = min{t4—t3,t3—t2,t2—t1} and tm = {t4—t3,t3—t2,t2—t1}\{t*,t*}. By similar

steps to (ii), one has

S B0 (Wiy, Wiy, Wy, Way)) = T(T = 1)(T = 2)(T = 3)E (60 (Wa, Wa, Wa, W) )

t1,t2,t3,ta '

< CMypith > B () + C My > B (tm)

1<t1<ta<tz3<tsa<T 1<t1<ta<tz3<ts<T
1—
+C My, > B ()
1<t1<to<tz<t4<T
1- 3 1—yp2 1—vyp2
< C|Mp LT+ My T + My T (3.7.7)

The last bounds in (3.7.7) follows noting that (7)Y < ¢r~(*9) and therefore

BY(t*) < clts — t2!_(1+5/2)]t2 _ tl‘—(1+5/2)’
B (tm) < c|ts — t2|_(1+a/2)\t2 . t1|—(1+5/2),
B (ts) < c(|ts — t3|—(2+a) + |ts — 252|—(2—i—a) tlts — t1|_(2+5)),

Hence

T T 2
> BIE) + B () <C | D1 (Zs<1+€/2>> < CT?,

1<t1<to<tz<t4<T t1,t4=1 s=1

T

> Bit)<C > fa—ty 7T "1

1<t <to<ts<ts<T 1<t1<t2<T t1,t4=1

T
< CT3 (Z S—(2+E)> < CT3,

s=1

which proves (3.7.7) and completes the proof of (iii). W
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4 Efficiency Improvement in
Estimation of Semi-parametric

Pure Spatial Autoregressive
Model

4.1 Introduction

Spatial econometric data typically feature irregular spacing, for example, when obser-
vations are recorded across cities, regions or countries. In numerous applications of
interest in Economics, correlation across observations may be characterized by some
general notion of economic distance (e.g. differences in household income or product
characteristics) that does not necessarily have a geographical interpretation, see, e.g.
Conley and Dupor (2003). These two features render much of the spatial statistics
inapplicable to economic data. As a result, Spatial Autoregressive (SAR) models of
Cliff and Ord (1968), that can cater for the two afore-mentioned features, have gained
popularity in applications (see, e.g. Arbia (2006)), and received much attention in the
theoretical literature, see, e.g. Kelejian and Prucha (1998), Lee (2002), Lee (2004)
and Rossi (2010).

In this chapter, we consider the so-called pure SAR model, which describes spa-
tial dependence in the absence of any regressors, modeled parametrically by a linear
transformation of underlying shocks. Let y = (y1,--- ,yn)” be a vector of observations
having the same (unknown) mean, E (y;) = po, and with y denoting transposition.
The model is given by

(I —XoW) (y — polyn) = ooe, (4.1.1)

where 1,, isanx1 vector of 1’s, e = (g1, - - ,sn)T is a vector of independent identically
distributed random variables with zero mean and unit variance, and oy and A\g are
unknown scalar parameters. The n x n weight matrix, W = W,,, is fixed and assumed

to be known a priori, having real-valued (7, j)-th element w;; = w;j;y, such that
n
wi; =0, Y wy=Lli=1--,n ie Wl,=1, (4.1.2)
j=1

It is noted that the elements w;j, of the weight matrix may change with n but the n
subscript is suppressed below for brevity. The w;; are typically interpreted as inverse
economic distances (see, e.g. Arbia (2006)).

The meaning of the row-normalisation restriction of (4.1.2) becomes more tangible
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once we write the model in a scalar form:
n
vi — 1o = M| Y wij(y; — po)] + o0es.
j=1

The summation inside the square bracket on the right hand side (RHS) is called
the ”spatial lag” of unit ¢ and the row normalisation naturally requires this to be a
weighted average.

When ¢, and thus y, is Gaussian, the model (4.1.1) can be thought of as primarily
describing the covariance matrix of y, since this, and ug, describe the distribution of y

completely. The parameter vector 6y = (A, o, JO)T can be asymptotically efficiently
- - T
estimated by the maximum likelihood estimate (MLE) 6 = ()\, it &) . It has been

explicitly established in Lee (2004) that, under some regularity conditions, 6 is con-
sistent and asymptotically normal. In fact, these latter properties hold over a much
more general class of distributions of the &;, in which case the estimate 6 is termed a
(Gaussian) pseudo MLE (PMLE).

However 6 is not asymptotically efficient when it is only a PMLE. Given a (non-
Gaussian) parametric specification of the distribution of €1, we can construct a (non-
Gaussian) MLE as follows. Let f(x;(y) = R'T? — R! be the probability density
function of €1, a given function of all its arguments, with (y being an unknown ¢ x 1
parameter vector. Write 6y = ()\0, 1405 00, Cg)T, and denote by 0 = (/\,M,U, CT)T any
admissible value of 6. Introducing the notation S(A) := I — AW allows us to write
the log likelihood as

n T _ n
L(6) = Zlogf <Si () (g ) ; C) + log det{S(\)} — 5 log o2, (4.1.3)
i=1

where ST ()\) denotes the i-th row of S(\). The MLE 7 = (X/],&,@T)T of 79 maxi-
mizes (4.1.3) over a suitable compact set, and can be expected to be asymptotically
efficient. Unfortunately there are rarely strong prior grounds for specifying f, and
misspecification of a non-Gaussian probability density f can lead to inconsistent esti-
mation.

In practice, Ag is often the main feature of interest, with puo and oy being nui-
sance parameters (and our results on estimation of Ay are unaffected if py = 0 is
known a priori). In this chapter we establish an estimate X of Ao that achieves the
same asymptotic distribution as the MLE ), in the presence of only non-parametric
assumptions on the distribution of €. Specifically, )\ takes a Newton step from the
Gaussian PMLE 5\, using non-parametric (series) estimation of the score function.

This kind of ”adaptive” property was previously established in a spatial context
by Robinson (2010a), for the model

(I —XoW)y = po+ XBo+ oo, (4.1.4)
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where X is a n x k matrix of observed regressors and [y is a vector of unknown param-
eters. Although it may seem that pure SAR is a special case of the mixed SAR with
B =0, it has been shown in literature, see Lee (2004), that the asymptotic behaviour
of the parameter estimates of g under the two models are radically different, with
different rates of convergence. Consequently, the feasibility and implementation of
such adaptive estimation in the pure SAR model need to be established separately.

The method of estimation we employ is very similar to that of Robinson (2010a),
but the asymptotic variance matrix of his estimate of (Ao, 3¢)T corresponds to that
found in the classical adaptive estimation literature, whereas the asymptotic variance
matrix of our estimate of Ay differs from the classical one. In particular, the gain in
efficiency of X over \ can be either less or more (typically less) than in the classical
outcome.

Section 4.2 presents the information matrix corresponding to estimation based on
(4.1.3), its form suggesting both the potential for adapting to unknown distributional
form of €1 in the estimation of Ay, and the scope for efficiency gains described in the
previous paragraph. Sections 4.3 and 4.4 describe, respectively, our estimate A and
its asymptotic distribution. Section 4.5 reports a Monte Carlo study of finite-sample

behaviour of this estimator.

4.2 Block-diagonality of the information matrix

The feasibility of adaptive estimation of Ag w.r.t. unknown error distribution in the
pure SAR model is shown via establishing the block-diagonality of the information
matrix. Firstly, we introduce restrictions on the weight matrix W. Define S(A) :=
Sp(N) =1—-\W.

Assumption 1. (i) W = (wjj)ij=1,..n i row-normalized, i.e. W1, = 1,, and is

uniformly bounded in both row and column sums, i.e.

n

n
1@&};2 |wij| = O(1) and 1Iilja<XnZ; lwi;| = O(1).
J= i=

. 1
(ii) For some h = hy, — o0 and h = o(n) as n — oo, 1513};” lw;;| = O(ﬁ)

(iii) S := S(A\g) is non-singular and S~ is uniformly bounded in both row and
column sums.

The sequence h is important in the asymptotic analysis, defining the rate of con-
vergence of estimates of the parameter Ag.

The row and column absolute summability of W are used routinely in the SAR
literature to control the degree of dependence, e.g. in Kelejian and Prucha (1998,
2001), Lee (2002, 2004). In fact, all those works also assume Assumption 1 (iii),

which in turn leads to row and column absolute summability of the n x n covariance
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n
matrix E(yy’) = 03S(S')~!. This implies Z |Cov(y;,y;)] = O(n), which is our
i,j=1
definition of weak dependence as mentioned in Chapter 1. So the existing literature

on pure SAR model only covers weak spatial dependence.
We shall use notation G()\) := W(I — AW)~! and set G := G(\g) = (gi;). Lee
(2002, pp. 258) has shown that under Assumption 1, the matrix G has the property,

1
| ax gij| = O(5)- (4.2.1)

Assumption 1 also implies that G is uniformly bounded in both row and column sums:

1<i<n

n n

max Z} lgijl = O(1) and 113%2 lgi;] = O(1). (4.2.2)
= 1=

We assume the following limits exist and are non-zero,

= n]g]go %tr(GGT), wo 1= nh—>nolo %tr(GQ).
Assumption 2. The h and W are such that there exist finite limits wy # 0, wo #£ 0.
To show feasibility of adaptive estimation of Ay w.r.t. unknown error distribution,
we need to establish the block-diagonality of the information matrix between the
parameter of interest Ao and the other (nuisance) parameters of the model. Let f
denote the probability density function (pdf) of ;. Suppose f is parametric, i.e.
f(z) = f(x;(), where f: R x R? = R is a known function of its arguments and (p is

d x 1 vector of unknown parameter. Recall the log likelihood of 6 is given by

Zlogf( )y = n ”),g) +logdet{S(\)} — glogJZ, (4.2.3)

writing § = (X, p, 02, CT)T and denoting by ST (\) the i-th row of S()),.
To derive the information matrix of the model, we need the following quantities:
v, = —ilo f(gi;¢o) ; —glo f(ei; o), 1=1,2 n
A 867; g 1150/ Xi = 8C g 7y S0 — LH 4 s 10y
J = E@}, D=diag{(n/h)?, n2lss}.

d*L(6o)
= 1 -1 -1
Define Z := nh_}nc}oD E(— 10407 )D .
Lemma 4.1. Under Assumptions 1-7,
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Jwi +we
2
1-A
= _ 0 < "00> J
0 (52) Blwd) EEEw -1
0 0 _%E(Q@bi)ﬁ) E(xix?)

Noting the zero non-diagonal elements of the first column, the feasibility of adap-
tive estimation of Ay with respect to unknown error distribution is established. The

proof of Lemma 4.1 is given in the Appendix.

4.3 Adaptive estimation

Our objective is to construct adaptive estimate \ based on a preliminary estimator A

of \g. Recall the score function

where prime denotes differentiation. To form our adaptive estimator, we will use
series estimation of the score function, of which the advantages over kernel estimation
are discussed in Robinson (2010a). To formulate the adaptive estimator, we will need
some additional notations. Let ¢y(s), ¢ =1,2,--- be a sequence of smooth functions,
which will be used in the series estimation of ¢(-). For an integer L > 1, where L = L,

will be regarded as increasing with n, define the L x 1 vectors

P (s) = (¢1(s),- - ou(s)T, P (s) =" (s) — E {¢<L> (s»} , (4.3.1)
¢ (s) = (¢1(s), -, pr(s).

L = L, is the number of approximating functions that are used in the series estimation
of ¢(-) for a sample size n. Allowing L — oo as n — oo facilitates non-parametric

estimation ¢(-). Consider first the case when 1 (s) has a parametric form

¥(s,al) = ¢t (5)"a™), (4.3.2)

T is an unknown vector, and ¢")(g;) has zero mean. As

where aP) = (ay,--- ,ar)
mentioned in Robinson (2010a), under some mild conditions on f, integration-by-
parts allows a(") to be identified by

a® = |E{6P (s ()" ||

-1

E {¢’<L> (si)} . (4.3.3)

Given a vector of observable proxies & = (£1,---,&,)7, we shall approximate para-

metric aX) by @), a sample analogue of (4.3.3) constructed as follows. For a generic
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vector x = (x1,--- ,x,)T € R", define
a" (z) = W (2) TP (z)
where

W (z) = %

; ) ()" ()", B (i) = ) () — - > 9P(ay),

¢ ) (z;). Next, for given z = (z1, -+ ,xn)7

M=

and wM (z) := 1
1

Ijﬁ'

define the functio

P (xi; at) (x)) =B (z)Ta)(z), i=1,---,n.

and z;,i=1,---
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The estimator 1, = &) (5]-;&(]“) (éz)) of (g;) for a given vector &, which will be

later used to construct the Newton step term of our adaptive estimator (2.9.8).

The above discussion is based on a given vector of proxy € for €. We now construct

the specific proxy € that will be used in the adaptive estimation of A\g. Consider the

n x 1 vector,
e() = (e1(N)s -+ eaW)T = (1= AW)y = SNy, A€ 0,1,
Since (4.1.1) gives a mean-adjusted expression of y, namely
ooe = S(Xo)y — poS(Ao)ln = S(Ao)y — E{S(Xo)y},

we denote,

e\ = ei(A) — %Zej(x), i1
j=1

Using the n x n matrix H :=1 — %1,11%’, we can write

e =(a(N), e W) =HSN)y, i=1,---,n. (4.3.4)

For a given estimate X of A, we shall estimate o2 by

This leads to the definition of our proxy & for errors e based on A:

- W)

Ei=—.
o

For convenience, set ¥;1, := iz (X, &), where ;1 (X, o) := ®L(e;(\) /o) Tak (e(N) /o).
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Introduce the estimate of the information measure J := F (w2(6¢)), denoted by
Jr = Jr(\,6), where

T\ o) = % S 950 0). (4.3.5)
=1

We are now ready to define our adaptive estimator of A9, based on a preliminary

estimate 5\, as follows:
A= A+ (jL tr {G(X)G(X)T} +tr {G(S\)2}>71 (zn: @EiL?{ “tr {G(X)})
=1
= A (G u{ame®m T} +u{at?))” (;@M, e D) HWy — tr { G

The second term of (4.3.6) represents the approximate Newton step, based on the

non-parametric estimate of the score function ¢ (-). The estimator A can be written

alternatively as follows. Introduce the n x 1 vector of derivatives e’ := (e}, --- ,el)T =
82(/\’\) = —Wy, which do not depend on A. Denote by €, = e} — %Z?:l e 1=
1,2,--- ,n, the sample-mean-adjusted form of e;, which can be written as

€ = —-HWy.
Write,

/

b\, 0)% —tr {G(\)} (4.3.7)

M:

7"L(Aa J) =
=1

= @m(x,a), e (O a)) HWy — tr {G(\)}
0 (ﬁlL(A,U), . ,z;nL(A,a)) HGe — tr {G(\)}.

g

-
L=

SIS

Note that HWy = HW (S~ 'oge — poly,) = 0oHGe due to HW1,, = H1,, = 0. Hence
A of (4.3.6) can be written as

S—do= G-+ (Fn - w{ehed™ ru{eGp)) nde). @)

4.4 Asymptotic normality and efficiency

Assumption 3. {g;} is a sequence of i.i.d. random variables with zero mean, unit
variance and twice differentiable probability density function f(-) such that sf'(s) — 0

and s?f"(s) — 0 as |s| — oo and satisfy the following moment conditions:
Eleil* < oo, Elp(e))* < oo, Eleigh(e)*™ < 0.

Assumption 4. In (4.3.1) and (4.3.2), ¢e(s) = ¢*(s), £ =1,---, L, where ¢(s) is

(4.3.6)

X)}).



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 140

strictly increasing and thrice differentiable function such that for some k > 0, K > 0,
() < 1+ 5%, [¢(5)] + 16" ()] + 16" ()] < CA+[(5)F), s€R  (441)

Define 17 := 1+ v/2 and ¢ := (1 + |¢(s1)])/{p(s2) — ¢(s1)}, with [s1, s5] being an
interval on which f(s) is bounded away from zero.
Assumption 5. The sequences h and L of (4.3.1) satisfy one of the following condi-
tions with Kk as in (4.4.1).
(i) k =0, E(e}) < oo, and for some A > nmax(p, 1),
log h

< ——— . 4.
Llog L < Slog A’ n — 0o (4.4.2)

(ii) k > 0, for some w >0 and ¢t > 0, E (et‘€i|w) < 00, and for some B > 8k max(1, %),

logh
LlogL < og , N — o0. (4.4.3)

(iii) k > 0, the random variables ;’s are almost surely bounded, and for some C' > 4k,

LlogL < %, n — oo. (4.4.4)

Assumption 6. Asn — oo,
E{d0) " — )} =ot/m), B{d(E)Ta® —¢/(=)} = o).
Assumption 7. Asn — oo,
X = ol = Op((h/n)Y2), |5 — 00| = Op(n~Y2).

Recalling that the object being estimated by series estimation is score function
() = —f'(-)/f(), it is of interest to allow for the possibility that v (-) may be
unbounded. Assumption 4 imposes a restriction on the rate at which the tail of ¢(-)
and its derivatives may diverge by the choice of k. If we restrict the series functions
to be bounded by setting x = 0, the relatively mild fourth order moment condition
suffices in Assumption 5 (i). For unbounded ¢(-), we have a choice between moment
generating function (ii) and boundedness (iii) requirements on &; of Assumption 5.
Part (ii) of Assumption 5 holds with w = 1 for Laplace ¢; and with w = 2 for Gaussian
E;.

Implication of Assumption 5 on the rate of increase in L as n — oo is the same
across all three cases considered, namely Llog L = O(logh). The different constants
in the upper bound of Llog L are stated here for the sake of precision. The condition
Llog L = O(log h) was also imposed in Assumption 5 (ii) and (iii) of Robinson (2010a)

and is difficult to verify in practice, as it is rare that the sequence h = h,, is known



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 141

in terms of more tangible quantities such as n. An exception to this is the following
block-diagonal weight matrix of Case (1991), which was introduced for m number of

districts with equal number of farmers r, hence n = mr:

1,1, — 1, 0 0
1 0 1,1, —I. 0
W= 445
r—1 : : L ()
0 0 e L1,

With the above weight matrix, h = r — 1 and Assumption 1 requires both r and m
to increase with n. Assumption 5 requires Llog L = O(logr), meaning the faster the
rate of increase in r as n — 0o, the less restrictive is Assumption 5.

Assumption 6 requires the choice of series functions to yield a series approximation
error of the estimator of the unknown score function (-) that decreases at a suitably
fast rate as n increases, which is a typical condition imposed in series estimation liter-
ature. Assumption 6 is stronger than Assumption 7 of Robinson (2010a), necessitated
by the slower rate of convergence of the estimate of A\g in the pure SAR model.

It may be of interest to relax Assumption 5, which together with Assumption 6
requires that series functions approximate the score function at a sufficiently fast rate.
In Robinson (2010a), the rate restriction on L of Assumption 5 in part (i) was in fact
milder at log L = O(log h). In this work, this milder restriction was sufficient for the
part of technical interest in the proof of Theorem 4.1, but would have resulted in an
untenable length of proof for less interesting results that are required for the theorem
to hold.

Assumption 7 requires availability of preliminary estimates X of Ao and & of oy
that have the above rates of convergence. The quasi-maximum likelihood estimators
(QMLE) \QMLE GQMLE f ,ee (2004) satisfy Assumption 7 and will be used in the
first stage of our adaptive estimation.

The following theorem states asymptotic normality of the adaptive estimator A of
(4.3.6).

Theorem 4.1. Let y follow the model (4.5.1) with Ao € (—1,1) and Assumptions 1 -
7 be satisfied. Then, as n — oo,

\/z (3= X0) =4 N(0, {Tw1 + w2} 7).

4.5 Efficiency comparison of adaptive estimate and Gaussian PMLE

In Lee (2004) it was shown that

\/Z(;QMLE — o) =4 N (0, {w + w2} ™) .
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It is of interest to compare the asymptotic variance of AQMLE  to that of A given in
Theorem 4.1 and see how the efficiency improvement attained via adaptive estimation
in the spatial setting contrasts to that in time series setting.

Under general enough conditions on W, it may be possible that tr(G?) < 0, wp <
0. However, if all elements of G are non-negative, which is implied if w;; > 0 and
Ao > 0, or if W is symmetric, then wy > 0. In any case, it is possible to show that
tr(G(G + GT)) > 0, so since tr(GGT) > 0 also, we have w; > 0 and w; +wy > 0,
implying

Jwi +wy > wy +wy >0, because J > 1.

This shows that ) is better than A@MLE The relative efficiency of ) to N@MLE g

given by
wi+ws  l4ws/wg
Jwi+ws T +wrfwr

In the time series setting, where W is lower triangular matrix, wy = 0 and therefore

the efficiency improvement is 1/7. If wy > 0, then the efficiency improvement of
adaptive estimator is smaller than in the time series situation. For example if W is
symmetric, the relative efficiency is 2/(J7 + 1). On the contrary, we < 0 yields greater
efficiency improvement than under time series setting. The latter case is not ruled out

by any conditions of this chapter.

4.6 Monte Carlo study of finite sample performance

In this section, we report results from a small Monte Carlo study of the finite sam-
ple performance of the adaptive estimator . We study the efficiency improvement

ACMLE ynder differ-

achieved by the adaptive ) relative to the preliminary estimate
ing error distributions, sample sizes, and the magnitude of spatial dependence. 1000
replications were carried out in each setting considered.

We use the block diagonal weight matrix of Case (1991) introduced in (4.4.5). The
sample size is n = mr and we have h = r — 1. We take values of (m, r) same as in the
Monte Carlo study of Robinson (2010a): (m,r) = (12,8),(18,11) and (28, 14) with
the corresponding sample sizes n = 96, 198 and 392. To investigate effects of differing
strength of spatial dependence, we consider three different values of A\g = 0.2,0.4,0, 8.
As was done in the Monte Carlo study of Robinson (2010a), the following four different
distributions of €; are used with the asymptotic relative efficiency (ARE) (= 2/(J+1))
of \ to AN@MLE 44 reported below.

(a) Bimodal mixture normal, ; = u/+/10, where the pdf of ¢ is

0.5 —3)2 0.5 + 3)2
f(U)Zmexp(—(uz ) )+mexp(—(“2)), u€R ARE = 0.188.
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(b)Unimodal mixture normal, &; = u/+/2.2 where

0.05 u?,  0.95 u?
u) = ——exp(— —) + —exp(— =), ueR ARE =0.679.

(c) Laplace, f(u) = exp(—|s|v/2)v2, ARE = 0.666.

(d) Student t5, &; = u+/3/5, where u ~ t5, ARE = 0.685.

The ARE was calculated from the reported values of 1/7 from Robinson (2010a).

Three choices of the number of series functions in series estimation were tried,
L =1,2,4. Tt was set that ¢y(s) = ¢’(s),£ = 1,---, L and two choices of ¢(s) were

used:

s
(Lt 212

Based on the 1000 replications, the Monte Carlo variance and MSE of the two es-

(1) o(s)=s, (i) o(s) =

timates of \g were computed in each setting considered, and their ratios are presented
in Table 4.1 and 4.2. The ratio taking a value smaller than 1 indicates an efficiency
improvement.

Across all the cases, it appears that the choice L = 1 led to poor approximation to
the score function, resulting in disappointing performance of the adaptive estimator,
especially for the choice (i) of ¢(-). The relative performance of the adaptive estimator
is best for L = 4 in all cases and the improvements are substantial in the cases of
(a) and (b), which were also observed in Robinson (2010a). Table 4.2 reports the
relative MSE to ascertain whether the bias has been adversely affected by the adaptive
estimation. In fact, the relative MSE reported often greater improvement than the
relative variance, suggesting the bias has been also reduced. A distinctive contrast to
the results reported in the mixed SAR case of Robinson (2010a) is that the efficiency
improvement is greater under larger values of A\g. It is possible to take more than a
single Newton-Raphson step, subsequently iterating the adaptive estimation and it is

expected that this would yield some further improvement.
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Table 4.1: Relative Monte Carlo Variance, Var(X)/Var(AQMLE)

Xo| 0.2 0.4 0.8
oL| (12,8) (18,11) (28,14)[ (12,8) (18,11) (28,14)[ (12,8) (18,11) (28,14)
(a) (i) 1[2.1912 1.858 1.7041[1.3752 1.1709 1.1491 1 1 1.0001

2|2.1467 1.8419 1.693|1.3726 1.1515 1.1449|0.9783 0.9975 0.9929
4| 0.623 0.5256 0.4811(0.3994 0.3118 0.3026/0.2315 0.2326 0.2144
1.9314 1.6553 1.5123|1.3698 1.2129 1.215|1.5921 1.6036 1.7006
1.7766 1.612 1.4534|1.2862 1.1232 1.1676|1.3956 1.4979 1.5807
0.5331 0.4387 0.388|0.3115 0.243 0.2573|0.1582 0.1747 0.1692
2.1525 1.8964 1.7921]1.3475 1.1279 1.074 1 1 1.0001
2.0793 1.8681  1.78]1.3259 1.1107 1.079(0.9778 0.9805 0.9896
1.2754 1.2546 1.286|0.7531 0.6707 0.7388| 0.493 0.5742 0.5968
1.502 1.2897 1.1915|0.8544 0.6116 0.5971|0.3871 0.3545 0.3335
1.3285 1.1955 1.1465|0.7838 0.5705 0.5907|0.3618 0.3391 0.325
0.3033 0.2476 0.2274|0.2011 0.1225 0.1143|0.1117 0.0963 0.0942
2.1835 1.9367 1.803[1.3102 1.2397 1.0924 1 1 1

(i) 1
2
4
1
2
4
1
2
4
1
22.1701 1.9235 1.7901[1.2915 1.2007 1.0898(0.9795 0.9848 0.993
4
1
2
4
1
2
4
1
2
4

2.0268 1.7568 1.6724/1.1888 1.065 0.966/0.8725 0.8517 0.8663
2.0655 1.7866 1.6708/1.1707 1.081 0.9327/0.8184 0.7775 0.7744
2.0558 1.7879 1.6644/1.1628 1.0717 0.9395/0.8091  0.78 0.7734
1.8495 1.5566 1.4152|1.0579 0.9311 0.8062|0.7904 0.75 0.739
2.1609 1.7507 1.6618/1.3784 1.1419 1.0921 1 1 1.0001
2.1383 1.7384 1.6374/1.3713 1.1235 1.0614| 0.959 0.9771 0.9884
2.0261 1.6514 1.5371]1.3212 1.0477 1.0221|0.9103 0.8992 0.9186
2.0034 1.6464 1.5368]1.3185 1.0383 1.0067|0.8883 0.8891 0.9031
2.012 1.6332 1.5335/1.3017  1.05 1.0082| 0.894 0.8979 0.9033
1.9794 1.623 1.5315|1.3266 1.0534 1.0166/|0.9115 0.8811 0.9111
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Table 4.2: Relative Monte Carlo MSE, MSE(\)/MSE(AQMLE)

Xo| 0.2 0.4 0.8
oL| (12,8) (18,11) (28,14)[ (12,8) (18,11) (28,14)[ (12,8) (18,11) (28,14)
(a) (i) 1| 2.416 1.9759 1.795[1.3647 1.162 1.1409 1 1 1.0001

2|2.3677 1.9568 1.7847|1.3476 1.139 1.138| 0.972 0.9983 0.9897
0.6339 0.5154 0.4696|0.3564 0.2655 0.2697|0.2092 0.2093 0.1915
2.4891 2.1387 1.9654(1.8218 1.7635 1.8302(2.4763 2.7575 3.3888
2.1592 2.0142 1.8636(1.5547 1.5418 1.7266(1.9975 2.4224 3.0505
0.5393 0.4248 0.3771/0.2744 0.2019 0.2242/0.1379 0.1538 0.1481
2.353 2.0171 1.8689| 1.335 1.125 1.0718 1 1 1.0001
2.2473 1.9833 1.8614/1.2925 1.1065 1.072| 0.964 0.9773 0.9903
1.3087 1.2746 1.2818|0.6782 0.6346 0.7045|0.4588 0.547 0.5618
1.4966 1.2269 1.0941]0.7056 0.5168 0.5075|0.3169 0.3427 0.3774
1.3109 1.1418 1.0534/0.6437 0.4822 0.5021]|0.2948 0.3255 0.3636
0.3033 0.2413 0.2124| 0.169 0.1107 0.1039/0.1006 0.0914 0.0913
2.3959 2.0794 1.8871| 1.298 1.226  1.09 1 1 1.0001
2.3464 2.0589 1.8747/1.2709 1.1895 1.0878/0.9731 0.9811 0.9924
2.1503 1.8614 1.7165[1.1455 1.0438 0.962/0.8478 0.8331 0.8571
2.1842 1.8482 1.6713/1.0989 1.0106 0.8798(0.7419 0.7006 0.6936
2.1496 1.8532 1.6679/1.0862 1.0034 0.8879(0.7362 0.7056 0.6945
1.9216 1.6038 1.4314{1.0143 0.9098 0.7955| 0.759 0.7396 0.7424
2.3796 1.8576 1.737] 1.36 1.1347 1.0874 1 1 1.0001
2.3352 1.8327 1.6972]1.3529 1.1218 1.0565(0.9572 0.9716 0.9875
2.1958 1.7309 1.586(1.2881 1.0355 0.9997|0.9004 0.8849 0.9055
2.1805 1.7256 1.5744/1.2771 1.0096 0.9673/0.8684 0.8529 0.8674
2.1745 1.7145 1.5711]1.2619 1.0216 0.9698| 0.877 0.8622 0.8705
2.1169 1.6951 1.5724/1.2788 1.0259 0.9779| 0.898 0.8588 0.889
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4.7 Proofs

d2
- .1 —1 —1 _ _
Proof of Lemma 4.1. Recall £ := nth;oD E(- WL(GO))D , S =S =

I — W, G=WS~! and that the log likelihood L(6) is given by

n T _ 0
L(9) = Zlogf(si (A)(z “1”);4) + log det{S(\)} - 5 log o?,
i=1

where ST (\) denotes the i-th row of S()). Firstly, notice from (4.1.1),

— poln r — uol,
e=(e1,,en) = S(Ao)(li 1o ), - S ()\0)((3;/ 1o )’ i=1.. ..
0 0

The first derivatives of L() w.r.t 0 = (X, i, 02, ()T at 6y = (Ao, po, 03, Co)? is given
by

OL()

Wl (y — Moln)¢(S¢T(/\o)(3/ — poly)

00 a0

|

) - (),
=1

OL(6) Z SiT1n¢<SiT()‘O)(y — Moln))

8u 1 g0 g0
OL(6h) _ Zn: STxo)(y — N01H)¢(51'T()‘0)(y - ﬂoln)> _n
0o Pt 208 oo 203’
OL(60) = N~
aC ;X’L?
taking into account that
T
dlog{de;)(\S(Ao))} — tr(ST(/\o)fl dS )f)\o)) — tr(sil()\o)T(—WT)) — —tr(GT) — —tl"(G).

The following facts are repeatedly used in deriving the second order derivative matrix:

o(s)  (f'()* = f"(s)f(s) o f"(s)
o5 s VYT ey
9 S Mo)y—poln) _ =Wy —poln) _ N
Y - = o = -WIS(\o)e = —GTe,
9S50y —poln) — =ST (Aol
6u (o) N (1) ’
0 STy —moln)  =STOo)(y—poln)  —e
Oc? 00 N 20(3) N 203’

where G;TF denotes the ith row of G. Next, we derive the elements of =. For brevity,
we denote ; = ¥(g;).
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(1, 1)!" element of . We note first that

otr(G)
(3D

A1 — AgW)~1
O

= tr(W : ) - tr(W(I — W) TIW(I - )\OW)‘1> = tr(G2).

0 { Zn: Wy — MOln)w<SiT()‘0)(y - Moln)>}

87>\0 (o1)] g0

F"(ST o)y — ﬂOln)/UO))aSiT()‘O)(y — Holn)

_ - T T o
Zst( (57 (M) (y = poln)/o0) — F(ST(Xo)(y — poln)/o0) / OA a0

=3 GTe (4T o)y — oL o) — Lo o)y ol )y

i=1 f(SZT()\())(y - NOln)/UO) '
N f"(ei)
_ ;(Gfgf . (1/,22 -~ ) (4.7.1)

Then, in the last line of (4.7.1), expectation of the first term is

S B(GTe? = - Z Zg” £202(e,)]
i=1

=1 j=1
= —B@HEED )Y g5+ (B@HEED) - B(etvd) - ) oi
i=1 j=1 i=1

- 7. tr(GGT)+O<h2>

since g;; = O(1/h) uniformly in i, see (4.2.1). Next, taking the expectation of the
second product of (4.7.1) and noting E(f”(e;)/f(g:)) =0,

;E(w?e)?“’;'éi?) B )/ FE) ng—%r @) = 0(1y).

since under Assumption 3, E(¢2f”(e1)/f(e1)) = 2. Therefore, the (1,1)" element of

= is given by
h d*L(0 h

lim —E(— () —(jtr(GGT) + tr(G2)> = Jwi + wo.

n—oo N d\2 ) T nSoon

(2,2)!" element. We have

E( B 82 > Zzn; (STl ) (¢2(51) _ ];/((;3)) _ n(1 ;8A0)2j’

since SiTln = (EZT — )\OWZ-T)ln =1—Ag, due to WZ-Tln =1 Vi. Therefore, the (2,2)t"
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element of = is
1—Xg)?

lim nJ (1= 2o)” _ T(1 = Xo)2.

n—o00 n

(3,3)!" element. The second order derivative w.r.t. o2 is given by
SF (M) (y — Moln)>

—0° _ 357 (00)(y — poln)
9(02)? Libo) = ; 4of ¢( o0
(ST Qo)W = p01n))” (o ST (M) (y — ol
R

.
Il
—_

ST o)y - Moln)/00)> _n
F(ST(Xo)(y — poln)/o0)
f//(ai))} _ L

e (2 A
40.61 (,QZ} (52) f(fz)

[ i Y(ei) +

4
4o

(cath) = 1 and B(2 () (<)) = 2, yields

I
.M3

1

-
Il

Taking expectation, noting

82
(gt ®) = g3 (B -
_n ( (21/}1)_1)

400

B(3f"(e)/ () + 3E(t)) — 57
0

Therefore, the (3,3)" element of Z is given by E( 29p? — 1) /40;

(1,2)"" element. One has
P W ST 00— mola)
8M8AL(90) N ; (s} w( g0 )
"W
+y Wily - MOl (1#2(5?(/\0)(31 — poln)/o0)
=1
+f”(S?(ony —ohy)/o0) ST ol
F(ST(N0)(y — poln)/o0) o0
" w1 " (e A
> i L ale(v + JE) FC
i=1 i=1
Taking expectation, and noting (4.2.1)
—0? (1-20) v f"(e) - n
E(auaAL(90)> o : ;9( (i) + B e "t )> —O<;|9““) - O(ﬁ)'

Therefore, the (1,2)™ element of = is of order O(%) X
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(1,3)!" element. One has

—0? Wy = poln) ST (Xo)(y — poln)
8028)\L(00) ; 208 v o0 )
" ST (y — poly,
30 B0l (25T ()~ o) o)
0

i=1

J" (5T (Xo)(y — poln )/UO)>W¢T()\0)(Z/—M01n)
F(ST(Xo)(y — poln)/o0) o0

:iGlT@z;lerZ 2 (v + LY ae

Taking expectation yields

B H00) = g Sau(Blew) + B +2) =0( L) = o)

th = n L = A1) =
Therefore, the (1,3)" element of = is of order O(h) = O(ﬁ) = o(1).

n
(2,3)™" element. One has

% L60) zn: SZ'T(AO)l”w(‘SiT()‘O)(y - uoln))

do20p pot 208 o0

—Z L 01 (52T (30) (5 — a0t )
f”(S?(Ao)( - u01n>/ao>> ST 001,

ST (M) (y — piol o) /o

"L ST (M)l RAC) 7 (Mo)ln
- Z 2% Z ( (Z)) U;)

=1 0 =1

Taking expectation, noting Ev; = 0 and E(e;f"(;)/f(e:)) = 0 yields

—9?
E(@UQB (90> 200 ;E it <))

Therefore, the (2,3)" element of Z is %E(elw%).
90

(4,4)*" element. Under mild regularity conditions on f,

#seart) = (PAB2L00) — (o).

(1,4)™" element. In deriving the (1,4)"", (2,4)" and (3,4)" elements of Z, the follow-
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ing result is used repeatedly.
81&(81,{0) o _f(E’MCO)ag dcf(82a<0) f(€Z7C0)8<f(827<0)
aC f (517C0)
4> f (€i5C0)q -1
- [Tdc]f (43 C0) + Xivi-
The cross-second order derivative of L(fp) w.r.t. A and ( is
82 0 Ez, - f(es;
ZGT Beleii o) Z CO)]f (€5 C0) — Gl exathi.

aAag 86186

=1

Taking expectation yields

E(_ 832§L(90)> Zgu < & W] (€i; Co > ng <€in‘”¢@')

1) Zgii = O(%)
=1

= n vh _ 1) =
Therefore, the (1,4)th element of = is of order O(h) X = O(ﬂ) = o(1).

n
(2,4)t" element. The cross-second order derivative of L(fy) w.r.t. u and C is

O*L(6o) )\0 Ly, 9 (45 Co)
oudC _Z aC

0g;0C

_ _Z 1 ;OAO 9? f(EmCO)]f (8“&)) + Z (1 ; )‘0) Xlwl
i=1

=1

Taking expectation yields

n(1— Ao) f(ei; o)y o1, . ]
S E(Fpe T e @) Blava)| =0,
because E(x;1i) = 0 and

E<[82f(5i5<0)

92,0¢ ]f_l(Ei;Co)) =0.

(3,4)!" element. The cross-second order derivative of L(6p) w.r.t. o2 and ( is

0? . &g 8¢ €Z7C0)
_aa2acL(9°) - _Z « 207

—~ & 0*f(es; _ "y
N leiggifafwf 1(6i;<0)_Z%Xiwi-
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The (3,4)™ element of = is given by

1 02 11 DPfeio) pon, . 5N Si oo
V(= gageL0) = nz;%gE(er 1(el,co>)n;E(20gxlwl)

-1
= ME(EiXiwi)-

Proof of Lemma is completed. l
Proof of Theorem 4.1. Let A be as in nd recall G(\) :== W(I — AW)~!

)
Set @y = (h/n)tr( ()\)G(S\)T> , h/n) )

By the mean value theorem apphed to ro (A &) in (4.3.7),
TL(S\,OA') =rr(Xo,00) + 51L(6 — 00) + §2L(5\ — o),

where 517, = (0/0A)rL(A, &) and 391, = (0/d0)rL(\, ) are the first derivatives of 7y,

at some (X, &) such that |A — \g| < |A — \o| and |G — 00| < |6 — 0¢|. Thus,
- . y-1p
A—X = ()\—)\0) |:1+{jw1 —|—LL)2} '51L:| (4.7.2)
n
- _y-1h ~
+ {Jm + wz} — [521.(6 — 00) + LMo, 00)] -
n
Let N' = ()\,0' A= X0l < Vh/n,|lo —op| < «/1/n) be a small neighborhood of
(Mo, 00), which takes into account the different rates of convergence of MLE for the
two parameters A and ¢ in pure SAR model.

As in Robinson (2010a), the proof of consistency and asymptotic normality of the

adaptive estimators (5\, &) consist of showing

h
\/;TL()\O, 00) =4 N(0, Jw1 + w2), (4.7.3)
in addition to

w1 —rp W1, W —rp W2, (4.7.4)

h
. s11.(Xo, 00) —=p —(Jwi + wa), (4.7.5)

h
ﬁszL(Ao, a0) —p 0, (4.7.6)
JIL(No,00) =p T, (4.7.7)

n .

sup |siL (A, &) — siz (Mo, 50)| = 0p (ﬁ) . i=1,2, (4.7.8)

N
Sup TN, 0) = TL(Xo, 00)| = 0p(1). (4.7.9)

Proof of (4.7.3).
Recall the sample log likelihood L(fy) from (4.2.3). We verify (4.7.3), by estab-



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 152

lishing
\/Za%(f‘)) —a N(0, Twi + ws), (4.7.10)
OL(#
r1(No, 00) — a(;) = 0,(1). (4.7.11)

To prove (4.7.10), write

8%(?)) = gWZTy pol) Y(g;) — tr(G) (4.7.12)
= (P(e1),- ,¥(en) Ge —tr(G) = > ms, (4.7.13)
i=1

as the sum of martingale differences n; := (e;¢(g;)—1)gi+€; Z P(es)gij+v(ei) Z €Gjis
7<i 7<i

which satisfy E(n;|Fi—1) = 0, F; = o(ej,j < i). Therefore, we establish (4.7.10) by

verifying the following sufficient conditions of central limit theorem for martingale

differences, see Hall and Heyde (1980):

h

~ D B Fin) =y T+, (4.7.14)
=1

- > EnPt = o. (4.7.15)

Proof of (4.7.15). Firstly, noting E(e;1;) = 1,E(¢?) = 1 and E(¢?) = J and
using i.i.d. property of {&;},

E(m}) = gilBEEW) -1U+T Y. gi+T D> g5+2 > giigis

1<5<i 1<5<i 1<5<i

ZE(U'?) = Zgu 21/% j]—i—fZg%-i—Zgwgﬂ

i=1 ij=1 ij=1

= 0(1) Zgi- + Jtr(GGT) + tr(G?).

i=1

Therefore, by Assumption 2,

h n
- > E(n}) = Jwi + wa, (4.7.16)
i=1
h n 1 . . .
since % Zg” = H h2) = O(ﬁ) = o(1). Now, direct calculation, noting that
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Ee21; = 0 under Assumption 3, gives

E(?|Fie1) = E(}) = Do Uitygigi + Y050 = J)
JJ' <uj#j’ J<i
+ T > gEpgigpi+ T Y g — 1)
G <ig A" j<i
+ 294E(ie) ZgjiEj
j<i
+ 2 Y gy +2 Y (e — Vg
J<i j<igi j<i

=i M+ -+ myg.
In view of (4.7.16), to prove (4.7.15), it suffices to show that
h < 2 2
n Z [E(m |Fi—1) — E(n; )]

i=1
h h
= Ezmli—F"'"i‘ Ezmh = op(1),
=1 =1
which is verified once we establish

Bl(7 > ma)’] =o(1), for d=1.--T. (4.7.17)
=1

We first verify (4.7.17) for d=1.

BSm) = FIE Y wma)

i=1 74,5’ <i:j#j’

2 Z ZZ \955917 i 9iwgirk | E(0F) E(7)

<
ii'=1 j<i k<i’
n
< C > 19909090k
il k=1
Thus recalling (4.2.2),
n 9 n
E[(Zmu)] < Cht Z |9ij 91 9irk|
i=1 iif k=1
n n n n
< Ch' )01 max Y |giklmax Y gy max Y gyl
i=1 Yok=1 T b=t
2

< o) =o((2)

Verification of (4.7.17) for d = 3,6 follows similar steps as in the proof for d = 1.
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To establish (4.7.17) for d = 2, recall that ? — J = ¢ — Ev? is an i.i.d. sequence.
Thus,

E(Y ) = E(S X6 -0 < B - BRP) 3 st

) ) 2 i—1 j<7j ) 2 1,1 ,j=1
:CZ(Z%@) SCZ<m§tX|gij|Zlgij|>
maX ]g” ZmaXZ‘QZHZL‘J@ﬂ < Ch™ nO( )O( ) (%)

Verifications of (4.7.17) for d = 4,5, 7 follows similar steps.
Proof of (4.7.15). Tt holds |a + b|>T® < C(|a]**® + |b|**?). Therefore,

n
> BP0 < (Z 1gis| T E e |20 + Z Elei*PE1Y gy
=1 7<t
+ Z B* 0B Y gjie )
1<t
< (Z |9u’2+5 + Z E|g,]¢]]2+6 + Z E‘g]ZEj‘2+6) C(pin + P2n + P3n)-
=1 1<t 1<t

To prove (4.7.15), we need to verify that pg, = 0((n/h)2+5) for d = 1,2, 3. Firstly, for
d =1, using |gi;| = O(1/h),

n n2to
Pin = O(3575) = o(5755)-

For d = 2, by Burkholder inequality (see Burkholder (1973)),

ZE’ Zgw%’zw < CZ ZE gw% 2+5)/2

7<t i=1

where for any ¢ = 1,--- ,n, by Assumption 3,

(ZE gi;¥ )QH)/ (2:92])(%(s C(m?X|9ij|j§|gij|>(2+6)/2 zO(ﬁ).

Therefore, pon, = O(;5573) = o((n/h)?*?). Proof of ps, = o((n/h)?*?) follows similar
steps.
Proof of (4.7.11). Let, for the brevity, rr, G and zﬁiL denote quantities evaluated
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at the true parameter values (6p, o) and 1); abbreviates ¥ (g;). Then we can write

~ 9L(6o)
oA

= (1/;1L, e ﬂzjnL) HGe —tr{G} — (¢¥1, ..., n) Ge + tr(G)

= (@m — 1, Ul —¢n> HGe+ (Y1, ;) (H — I)Ge
= Qn,1+Qn,2-

It remains to show ¢, ; = op(y/n/h), i = 1,2. First consider i = 2. Denote G' = (g;).
Then,

iy = (e ) (H = 1)Ge =~ (i, ) (1n1])Ge

= —n! [éfg(ggzg)] 'mzn:lwm,

where Z L — Z Y(em) = Op(v/n) due to ¢;’s being i.i.d. By Assumption 1,
m=1

n n n
max (Z |9;]) < C uniformly over j. Then, nilE(Zsj(Zgij)) =0, and
sjsno i j=1  i=1

n

Var(n ™Y e (3 gi) = n (32 (Dgw)) =0 (7).
j=1 =1 j=1 =1
Hence, ¢n0 = Op(n"1/2)0,(n/?) = 0,(1) = 0,(y/n/h), because n/h — co.
Next, we show g1 = 0p(y/n/h). In the following quantities introduced below, the

triangular array structure is present but the n-subscript is suppressed. Let

n

tij := ngT& - Z E?GTln/n =3Gij — Z Imj, Xi = ETGT( - 711 28] i)

m=1 m 1

n
where ¢; stands for the i*" column of I and the equality Z x:; = 0 holds, arising from
i=1

Ztij =0 for j =1,---,n. As pointed out in Robinson (2010, pp. 18), Assumption

1
1 implies |t;;| = O(1/h) uniformly over i and j, following from max 9i5] = O(E)
<ij<n
Let

n
ay == ZbliXiv l=2,3,4.
i—1
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Write

P (Mo, 00) —ples) = [P (é‘i;a(L)) — ()] + [P (51‘;&(”(5)) — 3 <6i;G(L))]
+ [ (o, 00) — 9P (52‘; ") (5)) | =: coi + e3i + cai.

We can rewrite

In,1 = @m — 1, YL, — 1/%) HGe = coixi+ Y caiXi+ Y CaiXi i= a2 + a3 + as.
i=1 i=1 i=1
To prove g,,1 = op(1/n/h), we show that
ag = op(\/n/h), €=2,34. (4.7.18)

Proof of (4.7.18) for i = 2. It requires the projection error, arising from projecting
the score function onto the space spanned by the functionals of our series estimation,
to be of small enough order, as required in Assumption 6.

Write down as as in (A.27) of Robinson (2010a):

Zcmtzﬁ Z coicitij, (4.7.19)

i,j=1:j7#1

recalling ¢g; = (P (s—:i; a(L)) —(g;). Then,

E’ Zn;cZiEitii‘ <{E (C%z)}% z"; |tsi] = 0(\/2) O(%) = 0( Z) , (4.7.20)

by Assumptions 1 and 6. The second term of (4.7.19) has zero mean and

n

2
Var( Z CQiEitij) =k [( Z Czieitij) + (Z CQiEitij)}
ij=1:ji i< <
< 2F [( Z 62i€itij)2:| +2F [( Z ng‘é“itij)2:| . (4.7.21)

The first expectation can be bounded by
2 Z Z |E[CQi€jCQi/€j/]tijti/jl
1<j i<y’

1 n
<22E621 et Z]|_QZO p(ﬁ):(’p(ﬁ)’

1<J 1<j

using independence of €;s, the bound Ec% = o,(h/n) from Assumption 6 and t;; =

O(1/h).
The same bound holds for the second term in (4.7.21) which yields as = o,(y/n/h).
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To prove (4.7.18) for i = 3,4, we shall use the following notation. Let

m = (log L)n**1(p < 1) + (Llog L)n**1(¢ = 1) + (log L) (ne)*1(¢ > 1)
< L(logL)A%F, (4.7.22)

with A = npmax(p,1). Note that A > 1.
Set

pur, = CL, ifu=0,
= (CL)"M/*  if u > 0 and Assumption 5(ii) holds,
= CF, if u > 0 and Assumption 5(iii) holds.

Proof of (4.7.18) for i = 3. Proof is based on an extensive use of Assumption 5.
Equations (A.31)-(A.39) of pages 19-20 of Robinson (2010a) yield the upper bound

on the stochastic order of as:
n 1
az = O, <{L3/2P25LPZI€L7T%>
n Hs 3/9 1 9
= Op(/+—=), Hz:=L 2 w2, 4.7.23
P < h \/E) ) 3 P2xLPawkTL ( )
To prove (4.7.18) for i = 3, it remains to show

Hs = o(Vh). (4.7.24)

Case 1. Let Assumption 5 (i) hold. Then, poyr = paxr, = CL and Hg = 03/2L37r%.
Notice that for any p > 0 and € > 0,

LP =o((1+¢)"). (4.7.25)
Hence, as L — oo,
77 =o((1+¢e)tA*r), Ve >o. (4.7.26)

Combining (4.7.25) and (4.7.26), we obtain Hz = o([(1 4 €)AJ*F), Ve > 0.
Thus, to prove that H3 = o(v/h), it suffices to show that

[(1+e)A* < Vh, ie. (4.7.27)

log h
< S Qloel(l = AT
ALlog[(1 +e)A] < (1/2)logh, o L < grm v

which is valid for small € > 0 by Assumption 5 (i).
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Case 2. Let Assumption 5 (ii) hold. Then, p,, = (CL)% and

3 1 3 _ AsL _ 4kl
Hy = L2pyppi i =L2C o Lw 77,

Observe that for any C > 0, p >0, a > 0 and € > 0,
LP = o(L°Y), € = o(LL). (4.7.28)
Hence by (4.7.22),
72 =o(LFL), Ve >0, (4.7.29)
and Hy = o( L*C5+9)) Ve > 0. Thus, Hs = o(v/h) holds if
L) < Vh, e (4.7.30)
4k 1 log h
— +¢)Llog L < =logh, LlogL < ——=——,
(w e)Llog < 5 log or og <3 +9)
which is valid for small € > 0 by Assumption 5 (ii).
: 1
Case 3. Let Assumption 5(iii) hold. Then, p,;, = C¥, and H3 = L%,OQKLPZI{LTF% =
L%C%ﬂ'%. Then by (4.7.28) and (4.7.29), Hs = o(L*"), Ve > 0. Thus, H3 = o(\v/h),
if
L <Vh, e (4.7.31)
1 1
elLlogl < §logh, or LlogL < 2—Elogh,
which is valid for sufficiently small € > 0 by Assumption 5 (ii).

Now, we prove (4.7.18) for i = 4.
Following (A.45)-(A.56) of Robinson (2010a), we obtain the following upper bound

a4 = Op(\{f[ﬂ)v

Hy = poprmr X {CHLL% + porrmrL* + meLﬂL(CL)4HL+3n_% log TL} .
It remains to show that
Hy = 0,(Vh). (4.7.32)
Case 1. Under Assumption 5 (i), paxr, = CL, and

Hy = TI'LL% + 720t + W%L5n_% log n.
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By (4.7.25) and (4.7.26),
Hy=o([(1+ AP + (1 +e)A* (1 +n1/? logn)) = o([(1+ 5)A]4L).

Hence Hy = o(V/h), if [(1 + ) A]** < v/h, which is true for small € > 0 as shown in
(4.7.27).
Case 2. Let Assumption 5 (ii) hold. Then p,7, = (CL)% and

4rL(1+1/w) 132
_ (L 2kL/w 7y T/2 4kLjw 7?2 2 (CL) L
Hy=C"(CL) L' 7, + (CL) Loy + NG
By (4.7.28) and (4.7.29),
. . L(4H(1+1/w)+5)L
H, — AR N S G e
4 of + + vn/logn
. L4I€L
_ (4L 2 )
0( (1+ Vn/ logn))

By (4.7.30), L(E+9L < /b, if ¢ > 0 is small. Next, for any § > 0, \/n/logn >

ns=9 > h3=%. Hence by the same arguments as in proving (4.7.27), we obtain that

L4/£L L4HL

<1, 4.7.33
nl/2/logn ~ p3—% — ( )

if Llog L < (4 — &) log h/4x which holds for small §. Hence H = o(v/h), and (4.7.32)
holds.
Case 3. Under Assumption 5(iii), po;, = C* and

Hy = CW+HDLLT/2, CZLLQW% + C(4n+2)L+3L4nL+3ﬂ%n% log 7.

L(4x+e)L

By (4.7.28) and (4.7.29), Hy = o(L°F + e TToan
prove that Hy = o(v/h), it remains to show that

). By (4.7.31), L*L < v/h. Hence, to

L(4H+8)L L(4n+a)L

< <
vn/logn = v/h/logh ~

where the first inequality holds because h < n. For that we shall verify that for small
6 >0, LWl < pl=d e

Vh,

1-9
(4 +e)Llog L < (1 —0)logh, or LlogL < (i/ﬁ—i—é))bgh’
which follows from Assumption 5 (iii) when ¢ and e are small enough. This completes
the proof of (4.7.3), which is by far the most difficult and distinctive part of the
Theorem proofs. B
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4.7.1 Proofs of (4.7.4)-(4.7.9)

In the rest of this appendix, we will give a detailed proof of (4.7.4) and (4.7.5) and
comments on the proofs of (4.7.6) to (4.7.9).

Some preliminaries

In the proofs below, the vector norm used is Euclidean norm, denoted | - ||, and
four matrix norms are used: the spectral norm || - ||, Euclidean norm || - ||z , the
maximum column sum norm || - ||¢, and the maximum row sum norm || - ||g. For a
n x 1 vector a = (a1,--- ,a,)" and n x n matrix A, one has

n

lall =) a?, 1A]J? = A(A'A), 1A = (Y @),
=1

3,j=1

n n
Ille = max (X laail), NAlln = o (3l
1= J=

where \(A’A) is the largest eigenvalue of the matrix A’A. The afore-mentioned matrix
norms are all submultiplicative, i.e. for conformable square matrices A and B, it holds
|AB|| < ||A||||B]|. For square matrices A and B, the following inequalities will be

useful later:

1A < [[Allz,  AI* < 1Azl Alle,  [tr(AB)] < |Allz| B e,
IAB|e < [ AllllBl, [[ABlz < [AlzlBl e (4.7.34)

For a square matrix of functions of a scalar parameter A, A = A()), the following

three results will be used in the proofs:

d d

LA B Y -1

A A (d)\A)A : (4.7.35)
d 1 d .

i log |A] = tr(A laA), where | - | denotes the determinant,

d
||A()\1) — A()\Q)H S |)\1 — )\2|HaA()\)H for some 0, |/\ — )\2| § |)\1 — )\2’

The above facts can be found in Searle (1982), Horn and Johnson (1990) and the
Appendix of Davies (1973).

Next, we establish some properties for the matrices that appear frequently in
the proofs. Assumption 1 stated that the weight matrix W and the matrix S~! =
(I —XoW)~! are both uniformly bounded in row and column sums, i.e. |W||g, |[W|lc,
1S~ R, IS~ |lc = O(1). Assumption 1 also requires | ax |wij| = O(1/h). Hence,
by submultiplicative property of the norms || - [|¢ and || _|| R, the matrix G = WS~ is
also uniformly bounded in both row and column sums. Furthermore, the elements of
G are uniformly bounded by O(1/h). The (i,5)-th element is g;; = W;S~'¢;, where
W; is the i-th row of W, and ¢; is the j-th column of I. Denote by (S71)g;, the
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(k, j)-th element of S~!. Then, uniformly in i and j,

1
Igml—lzwm - kjl<max|wzk!Z| Dl = 0(3)- (4.7.36)

k=1

We introduced earlier in Section 4.3 the n x n matrix H = I — l1 217 which has

bounded row and column sums. We denote T' := HG = {t;;}, which is used in
n
defining (x1,--+,xn)" = HGe = Te, where y; = Ztijsj,z’ =1,---,n. One can

verify ||T||r, || T|lc = O(1) and | Inax |tij| = O(1/h) using the same argument as in
17-]
the case of G. These properties also hold for products GTG, GGT, TTT, and TT7,
which can be verified by the same reasoning.
Recall that Assumption 4 set out the following form for the series function used in
the estimation of the score function: ¢,(s) = ¢*(s), £ = 1,--- ,n, where ¢(s) is strictly

increasing and thrice differentiable function such that for some £ > 0 and K > 0,
(D) < T+ [s]%, ¢ ()| + 16" ()] + 1" (s)| < C(L+|o(5)|"), s €R,

where C' denotes a generic constant throughout this proof. For k = 0, |¢(s)], |¢'(s)], |¢” ()]
and |¢"(s)| are bounded. For x > 0, Assumption 4 allows tails of series functions ¢y(-)
and their derivatives to diverge, at a rate increasing with £. We introduce the quantity

te = 1+ El|gi|¢ ¢ > 0, which is useful in bounding the moments of above functions.
Recall ¢y(s) = ¢*(s). We have

pe(s)] < CH(L+|s]™),

[65(5)] = €16 (5)8" " (5)] < CE(1 4 |s] 1),

(67 ()] = 160 = 1)6"2(5)((5))? + £6'~ ()¢ (5)] < CU42 (1 4 |s|<=1428)),
|67/ (s)] < U3 (1 + |s|(-143K))

Therefore, for r > 0,

E’¢E(€1)‘r < Cérﬂm‘é,
E’¢IE(€1)‘T < Cérgrumr(f—l—i-K) < CETKTM/@T(E—&—K)?
E’¢H(51)|T < CZTKQT”HT((—H—QK) < CZTEQTMHT(H—QK)?

E|¢} (e1)]” < CT 0 ppo—1435) < C O par o135 - (4.7.37)
L

Lemma 9 of Robinson (2005) established that Zuangb < por for any a,b > 0.
(=1

Trivially, |pe|” < pgr for a,r > 0.
Proof of (4.7.4). We will prove (4.7.4) for i = 2. Recall G(A\) = W (I — A\W)~ 1, for

. - h
ease of notation, denote G = G(\) and G = G()\g). We assumed wy = li_)m ﬁtr(GQ) is
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finite and nonzero, and denote wy = %tr(éQ). Therefore, (4.7.4) for i = 2 is established
if we show !%(tr(é‘?)—tr(@?)) ‘ = 0p(1). By linearity of the trace operator and (4.7.34),

tr(G?) — t1(G?)| = |r(G* = G?)| = |&r[G(G - G)] + tr[(G — G)(]]
< |Gl&lG - Gle + IGlelIG - GlE. (4.7.38)

Lee (2004, pp.1918) established that if S~!()\g) exhibits row and column summability,
as assumed in Assumption 1 (iii), then the same holds uniformly in A for S~1(\), for \’s
in some neighbourhood of A\y. Another consequence of row and column summability
of S~1()\) is that every element of G()) is uniformly of order O,(1/h), by the same
argument as in (4.7.36). Hence, it follows that

1/2 . 1/2

1Glle = ng < | Xmaxlagl Y lagl | =0n(4/3).
i=1 j=1

t,j=1

and ||G||g = O(\/n/h) applying the same steps as above.
To find the upper bound on the RHS of (4.7.38), we need to find that on HG’— Gle.
We have that

IG—Gllg < |X— Ao ]H H for some A, |A = Xo| < |A = Aol
where
dG(A) o dI = W)t L d(I = AW) .,
T WT =-W({I - \W) T(I — W)

=W({I - I\W)'TW (T - W)t =G%()N).

By (4.7.34), |G?[|l5 < |GllelGll < IG1eVIGIRIG]c = Op(v/n/h), and therefore,

16~ Gl = 0,y o) = 0,

Hence,

~ ~ ~ ~ n
r(G) ~ (6] < G516~ Gl + IG18lG - Gls = 0p(y 7).

h =2 2 o h
~Jer(G?) — tr(G?)] = op< 5)'
Proof of (4.7.5). Recall si1, = (0/0\)rr(Xo, 00) is the first derivatives of r, w.r.t. A
at the true value of parameters (A, 0g). Recall that the fitted residuals at (A, o) are,
€N _ HS(Ny €M) _ HS(Mo)y

_= s = = H€
o o oo og
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From here on, for brevity we denote ¢ = €(\g) and ¢; = ¢€;(Ag). Below, we get
n
€)oo = € —& where & = Zsi /n. The following derivative is used repeatedly

i=1
throughout the proof,

d(e(N)/o) 1 dHS(\)y 1 B
e e = o ey =~ H 1) = —HGe,
d\ o oo d\ - 7 W(S™ ooe + poln) Ge

because HW1, = H1, =0 and G = WS~!. Therefore, for i =1,--- ,n,

d(e;(N)/o -
( N ) }ao)\o =-—HGe=—y; = — Ztijz’:‘j.

Recall that r (Ao, 00) =1L = Z@iin —tr{G(Xg)}. Since 11, = @7 (¢;/og)all),
i=1
we have

h  h (=i )
SosiL = (i_l o\ i tr{G ()\0)}>

n

(L)
- Z(a@ (TG0, + 0T (e ) 2 xz) ~ L (@00}

By Assumption 2, the limit of the latter term lim o htr {G*(A)} /n = —ws. We will

show for

n nr €(Mo)
A::i 0T (& 5 (L)( ()\o) ' Z L)T aa )( o )Xz
n < o\ o0 — o\ ’
that
—p 7;7001, B —p 07 (4739)

which completes the proof of (4.7.5), hsip/n =, —Jwi — wa.

Recall the notations ¢(s)") = (@1(s), - or(s NT, d(s) B = (¢i(s), -+, br(s)”
where (i) = ¢u(ei) — ( o(£1)), ()T = (#(s),--, 9 (s)T where ¢j(ei) =
¢y(e)—E(¢)(ei)) and ¢ (s)F) = (¢ (s), - , 7. (s))T where ¢7(e:) = ¢}/ ()~ E(¢] ().
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Proof of A —, —Jwi.

Since W‘/\oﬂo = —H;Ge = —x;, we can write
A = _k zn:[qg/(gi)@) i:d €J & () DT [aH) +d@)(@) — a2
n < = o0 '
. h h
- _= (e )T, _ = T L)y 2 ToL)y2 _ =~ T(L), 2
nz;¢(5z) Z@b niﬂna X; n;m X;

=: A1+ A+ Az + Ay,

using the L x 1 vectors,

= 3@ D) 40 and = (O YD) - e

We will now show that A1 —, —Jw; and A; = 0,(1), for i = 2,3, 4.
Showing Ay —, —Jwi. Denote,

h = - _
Av==23 )T =~ Z + (@) ™ =¥/ E)E = Au + Az
i=1
We establish A1 =, —Jwi and A2 = 0p(1).

We start with Aq;. It will be shown that E(A;1) — —Jw; and E[A; —E(A11)]? =

o(1). Taking expectation of A1, we obtain,

E(An) = —— Z tijti E(Y (e:)ejer)
Jk 1
= LY BB E)EE) - Y BB ) - B ) EE)
z‘j—l i=1
= —j th +0
1,j=1

because E(¢/(g;)) = E(¥?(g;)) = J and Zt O(n/h?). Now, denoting g; :=
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n
% Z gmj and recalling that ¢;; = g;; — g; from T'= HG, allow us to write

m=1

%ZZ@ = % Z(gij —g)?’ = % Z(g?j —2G;9ij + J3)

= =1 ig=1
*Zgzr%Zga ng ZZ%
,5=1 i=1 j=1
*Zgzﬁhzga "3 o) s
7.7 1 ,] 1
as 9]2- < Z |Gm;|]> ) due to absolute column summability of the matrix G

and tr(GGT) = Z gU

t,j=1
Next, we show E[(A17 — E(A11))?] = o(1), which together with above completes

the proof of A; =, —Jwi. Recall

h 9 n n
E(A%) = (E) Z Z tijtintajrtow E(Y (ei)ejent’ (ev)ejrer),

4,5k, =115 ,k'=1
so that,

h n
E Z Z tz] zktz’j’t ’k’E(wl(Ei)Ejgkwl(Ei’)Ej’gk’)

i,5,k=14" 3" k'=1
n
~TH )

',j—l

=C4 (h Z Ztljtlj/ th jt’L’] + O Z t’LthZQJ

33'1 i=1 4,4/ ,j=1

+C3 Z Lyt z] z] + C'4 Z it Z/’L/tl]tlj + C5 Z t?]ti

i,1/,j=1 1,1/,j=1 4,j=1

n
+C Y tith; + Cr Z t5t3; + Cs Z t; + Co Z tit};], (4.7.40)

4,j=1 3,j=1 4,j=1 3,j=1

E(AY) - [E(An)) =

where Cy,, m = 1,--- ;9 denotes some constants. First we bound the summations that



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 166

are multiplied to C7 — Cy above. We have,

n n n

Z th]t” th ]tz] Z (Zt’utz]’)2 = Z (TTT)‘?j’
7,g'=1 =1 3,3'=1 =1 J.j'=1
n 2
< Zrnﬁ'x‘(TTT)jj" D NTTT) ] = 0(%) =0 <Zz> )
ot —
2,2 T2 n n’
Z tijtig = (- Z Zt ZT T)]"]':O(hQ):0<h2>’
4,4’ ,7=1 i= Jj=1
n n
<> max [tiq] D ltGlI(T7T),1
j=1 i—1
1

‘ Z tiitijth ;| = ‘ZZt“t”Zt
~0()o() ~o (;;i) ,

i,/ 5=1 J=11=1
n n n

‘ § 125 E tiry E tijlj| <
i=1 =1 j=1

2

2 n
<3l Y- 717l = 0Gi) = o ()

We can bound the summations corresponding to Cs — Cy, since  max |tij| = O(1/h),
<ij<n
as explained in lines following (4.7.36),
hyz S 12 2 3 2,2 4 —Oh2 n2_01_1
(ﬁ) D[t + bty + a5 + thltat]] = (ﬁ x ﬁ) = 0(—) = o(1).
ij=1
Applying these bounds in (4.7.40) implies E[(A1; — E(A11))?] = (1)

Showing A1z = 0p(1). Recall that by Assumption 6, E[(¢'(e;)Tall w’(az-))z] =
o(1). Therefore

Bldl < *ZE! )M el — ')
< %(E(gz_b'(el)(L)Ta() ) Z{ 172
= 2oo(}) = of0)
because
ZZ:; (B6) = 0(7), (4.7.41)

which follows from

maxE (x}) = 3max22t” = 3max Zt < 3( max\tU]Z\t” = O(%) (4.7.42)

Jj=1k=1 Jj=1
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Proof of A; = o0,(1), i = 2,3,4. Recall

h o - h o h
Ay + Az + Ay = - > ¢ (e0) PTIH) G — - ZTZTG(L)X? - ZT?Z(L)X%
i=1 i=1 i=1

Using notations ¢/(e;) ") = (¢} (e:), -+ , ¢ ()" and ¢ () ") = (¢f/(e4), - - , &7 (e0))7
decompose r; into two parts:

(1) nj:l a0
i Ly~ / I~y
= {[¢ (B - -3 F (B - [P - > e ]
j=1 i=1

Since ¢'(g;)() = ¢/ (g;)F) — E(qb’(z—:i)(L)), we can express ro as follows, explaining the

lack of 7 subscript in the L x 1 vector ro:

ro = [¢/(e)) P — %ZW(%‘)(L)} — [¢/(e0) ) — B(¢/(e5)P)]
j=1

n

1

= E(¢(g;)P)) - = ML) 4.7.43
(#E) = 5 o) (1.7.43)
For each element of the L x 1 vector ri; = (ry1,--- ,rliL)T, the mean value theorem

(MVT) yields

* 1 & *\\ =
riie = { o (eF) — - > lents, £=1,--- L, (4.7.44)
j=1

letting € denote some point that lies between €;/0g and ¢;, such that, ¢(e;/o0) —
®y(ei) = ¢/ (€F), and recalling €;/0g = &; — &. The £}’s may differ across ¢’s but we
suppress the reference to £ for brevity.

Since the L x 1 vector [(F) is the estimation error in estimating the unknown
coefficients a("), an upper bound on ||I(¥)|| can be established by combining Lemma
10 and 19 of Robinson (2005):

(L, €A (L, €A . -
0 = 1652 a0 < GG ~a @ + 160 - o) = 0y R,

L L2 CL 4kL+3
Ruim g 1V ) 4 i (o O g

nl/2 n

To complete the proof of (4.7.39), we will show negligibility of the terms, Ag, A3, Ay,
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written using the above decomposition of r; :
| A2| + [As] + A4 = *\Z(ﬁ e)ITIE X1|+*|Z r1; +1r2)Tal x|

+H‘ ;(rli + T‘Q)TZ(L)Xﬂ.

n

Showing |Az| = op(1). It suffices to show E|As| — 0. Note that hZ(EX;l)lm/n =
i=1

O(1) by (4.7.41) and from (4.7.37) by Lemma 9 of Robinson (2005),

E||¢'(e1)P|* = ZE F(e1)?) < OQLZE Hon(er i) < C*FL2par.
(=1

Therefore,
)DL (L 2] /2 h 491/2
B| 4| < Zm¢ (3 < WP B8 )@ IE) 2 BN
_ /2
:WW@W@WW}Om:%w%
gn = Ry % CLLp;fj:.

It remains to show g, = o(1) in order to establish |As| = 0,(1). Trivially, we have for
any p,e > 0 and C < oo, LP < L¢L and CF < LL. We also have 77, < L(+9L for any
e > 0 and recall p,;, < max{CL,(CL)*//“} from Assumption 5. Hence, there exist

a1, as > 0 large enough, so that we can write

(LalL N Losz . ) (LOélL LagL logn) (L(alJrozg)L
=0 ——logn) = =0 ——
PN T T NN Vi

since Assumption 5 and 1 (ii) imply that Llog L = o(logn), hence L{c1te2)l/\ /n =
O(1).
Showing |As| = op(1). We bound |As| using r; = ri; + o,

) —o(1), (4.7.46)

n n

h
|A3|§’ﬁzrlz ]-H*Z aP) X7| =1 |Asi| + |Asal.

=1 =1
We have by Cauchy-Schwarz inequality,

n

h h h 12
BlAn| < =" Erfia® 3 < a1 37 Bl < a2 3 (BllrlPExt)
i=1 i=1 =1
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Denoting 71,0 = { ¢} (}) Z ¢ye5) e =: pie allows us to write

L L
= 0,() S [ BEW] Y < 00(0) Y [ (B EGE) ) )
=1 /(=1 =1 (=1
< 0,(=) S BN (B )
i=1 /=1

L
1 cr
< 0,(=) Y (BN ety }lfjwm]l/?gop(ﬁ)ﬁp}lﬁ, (4.7.47)

using Cauchy-Schwarz inequality, and since max (Exf)l/ 2 = O(1/h) by (4.7.42),
E(g*) = O(1/n?) and Lemma 9 of Robinson (2005):

L
1/2
Z 02££4M4£ oK) < 2L Z €4M4n(€+2K) < C'ZLL4,04,.€L.
=1

We have E((pj;)*) < CY0 g er2k) since
‘¢Zl(€>{)‘ < 0%2(1 + ’51‘N(£_1+2K) + |€—’n(€—1+2K)).

Therefore, using Lemma 10 of Robinson (2005) which states [|a(")|| = O(L,O;éi’f([,)

we conclude:

cLr3 1/2 1/27T
E|A31| S 9] ( pg\;%pzlnL L _ 0(1)’

where the last bound can be established by the same argument as in the proof of
gn = o(1) in (4.7.46).
Our next task is finding an upper bound on E|Ass].

h h &
E|Az| < Ha(L)H*E EllmxfllS\Ia(”H[Ellrzllz]”Q*E (ExH?
n n
i=1 =1

1/2
— laDOp([E]r2]]?),

1/2

since by (4.7.42) %Z O(1). Now, introducing the L x 1 vector ro =

L
(ra1,--+ ,ror)”, we will find an upper bound on E|ry||? = ZE(T%E). For each ¢,
/=1
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recalling the notation ¢)(¢) = ¢}(c) — E[¢,(¢)] and independence of ¢;s,
1~ -
E(r3) = Zm &) = B(¢i(en)? = SB[y i)
j=1

1l CQZH%(HK)
=3 ; [00%(ej)] = ——————

n

Therefore,
9 L L oo IU‘QK(Z—FK) C*'L2poser,
Elrz|* =) E(r3) < Z = 0p(—E), (a7a)
=1 =
by Lemma 9 of Robinson (2005). Putting together terms:
N oo CHLpY
Eldsa| < @] [ Blral*0 3 ExE | = 0oy gm0 (= 225 = o(1),
i=1

the last equality follows by the same reasoning as in the proof of ¢, = o(1) in (4.7.46).
Showing |A4| = 0p(1). Now, the remaining task to complete the proof of A —,

—Jwq is to show

n n

h h
[Ag] < |E > orfi e + !; S rF1IENG | =1 |An| + |Ase| = 0p(1).

=1 i=1

Firstly, using the previous results (4.7.45) and (4.7.47), it follows

B CLL2p1£2
[Anl < 11D D llraxdll = Op(R)Op (=455 = 0p(1),

i=1 \/ﬁ

where the last equality can be established by the same argument as in (4.7.46).
Secondly, from (4.7.48) and (4.7.45),

B C LpléQ
Al < a0 D32 = Op(F—22E) x Ople) = op(1)
=1
n ]’L n
since 23" Ey? < 50(%) = 0(1), as Ex? < mjax\t,-jlzmj\ = O(1/h) uniformly
i=1 j=1

over i while the bound o0,(1) follows by the same reasoning as in (4.7.46).
Proof of B —, 0.
Recall,
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For ease of notation, let

W —po )y g g 2 g

00 a0

We decompose B as follows, using chain rule:

n A ~ (L) (€(Xo)
ﬁZXiCI)(L)T(&) . 0a(%5,") (5o
n (1) oA

=1

h — € oW EN-1 = iy _q ()1
- |2 T Cy| | ) ) (L1 W)
[n;x@ (UO)] [ oo+ () )

= D[Fo® + (w1

B:

Next, we find upper bounds on || D, [(F®)1, [F|, @], and || J].
Upper bound of ||D|. We decompose the L x 1 vector D as follows:

D - Zixi@@(;) - Ziilxi(@“(;) (&) + Zx CRIEEERIC
—% iXiQ_ﬁ(L) (€i) =: D1+ Dy + D3.
We verify below that
ID|| < 1Dyl + | Dall + | D3l = Op(C*Loy3)-

Upper bound of |D1||. By the MVT, we have ¢(¢;/00) — ¢(e;) = ¢/ (}), implying
that the /-th element of the vector ®()(¢;/og) — ®F)(g;) is

— * 1 - = * = * 1 - * =
E84(eh) — — D E0(E)) = E|oneh) — = Y ule)| = 2P
j=1 j=1
Hence, triangular inequality gives
) 1/2 L n I3 ) 1/2
e Z il [Z = (v ] == > I [Z (vi) ] -
(=1 i

Next, we find an upper bound on the latter term of above expression, using triangular

and Cauchy-Schwarz inequalities,

n L L
B B(IlS 62 < B3 (230 )] - ovmorct L),
=1 /=1 ;
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because for each 1 < ¢ < L, in view of |¢)(s)| < CU(1 + |g;|8HE) 4 |g=(+K))

L L
ZE Phe)’ < > CPP s iy < CPPLP pagr,
=1 /=1

n
with the last step by Lemma 9 of Robinson (2005). On the other hand, 2 Z(EX?)UQ =
i=1

O(Vh), as Ex? < max |tij] Z |tij| = O(1/h). Therefore, ||Di| = O(C’LLpéfL).

Unper vound of | D]

D, = ° iﬁ;xi(w (€) - D) = Z_:x (PP - > o )
- Sl

hSaell:

hCLPzéL 1

| D2 =0 T)Op(ﬁ)'

IA

We have, since |[TT7||c = O(1),

E(ZX’L) Z tzktk<Z|TTT lj|_ZO
=1

1,5,k=1 3,j=1
Since, E(q@%(aj)) < C% lioyes,
h < 2 hia M _ 92 L
B2 36| = G XY B(6) € == Y 0o = O(-Cpa).

j=1 (=1 j=1 =1

This proves ||Ds|| = Op(CLLP;fL)'
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Upper bound of ||Ds|.

n

has =
BIDsI = B S e = ;2215(2;@@ 5))

(=1

L n
= (P2 Blxddedile)
/=11,5=1
hioes -
= (g) Z E [tinert jmeme(€i)de(e;)]
0=1i,jk,m=1
h ) L n ) - ) ~ 9
= ()" [tijE(W(Ez‘) )+(tiitjj+tijtji)(E(€i¢£(5i))> }
0=1i,j=1
< Z C%H%HZC Hiier1 = (C pm) (4.7.49)

since we have p? )+ 1 < Hag(r+K)+2 and as explained in lines following (4.7.36),
n n n2
N Zmaxrth\tm =0(7), Yl Il =0(55).
ij=1 i=1 j=1
> tutal < Zr (1)l = 0(5)-

i,j=1

Therefore, || D3| = Op(CLLp;fL).
Upper bound of ||&(")].
We decompose the L x 1 vector @) into three parts and establish the following

upper bound on their norms:

n

[&P < 1B E)®@) + H% > (¢ - E<<z>'<sl><L>>) H

i=1

+H*Z<¢(a )L )H - Lpy%),  (4.7.50)

=1 0

with the last step by Lemma 9 of Robinson (2005). Similarly, the first term of the
RHS of (4.7.50) has the following upper bound:

L

IE(¢' ()P =) [E(si(e)]” <Y C*Cud i

(=1 /=1

~

L
ZC Cliggerrcy < C*F L porr, = O(C*M L payer).
/=1

The second term of the RHS of (4.7.50) has the following upper bound, recalling the
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notation ¢'(g;)F) = ¢/ () ) — E(¢/(e1)P)):
1 -

The third term of the RHS of (4.7.50) has the following upper bound, by the MVT,

n

Hf( W¢mwwzagiiw@W@=%WW%%

because
1 L n 1 n L
72 E\¢ 7 (7)) < o > B ()]
= “
L
Z O pian(erarc) < CPF L pagr.-

-

&
Il
-
~
Il
-

Upper bound of H(W(L))_lH.
We use the following matrix result, see e.g. Davies (1973, pp.496). If W& s
non-singular and ||[WW&) — WO ||[|[WE)~1|| < 1, then

(W
L [wE =W —wE |

IWE) = <

Lemma 8 of Robinson (2005) states that ||(W))~1|| = O(r). Lemma 10 and 19 of
Robinson (2005) state, respectively:

IWE () = WE| = Oy ((Lpawr/n)2),

K K /2 1/2
0 7 pasL(Ln'/? + L2 (10gn)) L2+ py 5 (log n)
20)) 0 o) = 0y . + ; ).

=200 —w D (W B

€(Ao)

< (WP () =W 4 W o ) WEEDIWS) <1

because by the same reasoning used in showing ¢, = o(1) in (4.7.46), we have

T + - . =o(1).

Therefore we conclude ||[W )| = O,(ry).
Upper bound of || F||. We obtain an upper bound on || F|| as, || F|| < [|[W5)])2]|0W F) /o),

2k L+2 L2+, 1/2 1 1/2
(\/m P2nL(L\/ﬁ + L (10g n)) + ( o8 n) )L(log L)AZL ==
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following from (4.7.35).

Introduce a L x 1 vector,

ni = 8P (L) — ¢ (e;) = [0 () — 8D (e))] + [0 (e) — D) (1)) =: mai + mo,

00 g0

where similar as in 7;,
N1y = ng - Z ¢Z &,

e = B () = 30 g0
j=1

We have, with some abuse of notation,

T
ow &) 2 — € € 1 €5
- = pL) (v feZeN(L) = 1 2 y(L)
X nZXZ‘I’ (UO)(WUO) HZMUO) )
L i L T
- fo (60 () + i) (¥ ® + 1)
_ _ 2 _ 22 _
= EZXW(L)(&W(&)(L)TJF gZXifb(L)(@i)ﬁTJr 52Xi“i¢/5z‘)(L)T+
=1 =1 =1
+»me = Fi + Fy + F3 + Fy.

Below we will find upper bounds on ||F1||g, || F2|| £, | F3||r and ||Fy| g then conclude

ow &) 1
=551 = p((% h)C2LL3/2 pr):
- 3 oW (L) 1
IE < NV TP =551l = Op v Op(( 7= + DGR,

Upper bound of ||F1||. Firstly, the (m, ¢)-th element of F} is

(Fdme = 2 3 xibm(e0)81(c2).
=1
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Therefore, for Cy — C5 denoting constants,

E|R|E = n2 Z Z Z tijtyj (€565 Sm(ei) Pp(ei) dm () Dy (ewr)

mil=114,j5=1435=1

1 L n
= = > [00Y titn BE @) File)
m,Z:I iij=1
+02 Z tutz z’ Ez¢m(€z)¢é 52 + C3 Z tzz’tzz 52¢m(51)¢£<51))]2
+C4y Z tiiti B bm(€i) 9y(€0) ) E(m(cir) Py len))
3,0/=1

+CS Zt 2¢m 51 ¢£(51)2)] .

We have, based on the lines following (4.7.36),

n 2
n
Z [tijtirs] = ZZ 2] Z Itij| = > [titios| = O(73),
3, ,j=1 j=11i=1 3,i'=1
n “ 7’L2
Z |tistis| = O(ﬁ)» Z |tiitins| = O(ﬁ)v Z 65| = (*)
ii'=1 ii'=1 i=1

We also have that

‘E(»S?)[E(cf;m(si)cf;’z(&))}Q (7 0m(e0)dp(e0)) E(m(er)dy(en),
[E(eidm(ei)di(e))?, B o (e0)ier)?) < C* O Pho(1ymes ),

since |s2@,(5)2¢)(s)?] < C2m+2042 (1 4 |s|2(Fmutr(t+K))) - Therefore,

E|R|}: = i EL: ( cAm+0 2, (n+”2))
n2 (14+k(m~+L+K)) 2
) L L
= C4L(g 21 {;52@ (14 m+€+K))]
e LS B = 0L 4 ) )
n h n h

3
Il

Upper bound for ||F,|. Using r1 = r1; + r2, we decompose

2 e~ - 2 e -
= 23 b D (e + 23 xid P ek = For + Fo.
n — X@d’ (51)T1Z + n 2 Xi® (51)7'2 21 + F29
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n
Recalling 1,0 = { ¢}/ (e}) — %Z ¢/e/(€;)}§, the (m, ¢)-th argument of Fy is given by

2~ - 1
(F21)m,£ = E Zqubm(El)g{qb/K/(g:) - ﬁ ¢Z( ])}
=1

=1

Introduce notation p, := ¢ (e}) — + Z #y (e%). We will show that

CL3pyr,

L n
1
”F21||2E = 8_2% Z Z [XZqubm &€ pwgﬁm(Q)Pﬂ} = OP(E)OP( nh )

ml=11,j=1

Indeed, by Cauchy-Schwarz inequality,

MEZZ

1/2
XzX]¢m i plﬁ¢m €5 pjé‘ < C Z Z E 2 2 / (¢m(5i)4p;,€4

ml=11i,j=1 mf 14,5=1

11 n L /

2(m+20) p2  1/2
So(ﬁ)ﬁ Z Z CHmO 2y Par(m+0+2K)
ij=1m, =1
n L L
O(7) ZZC%mM s (m-+£+2K)
m=1/

CU L3 pypr,

L
1
< =D OV LPpu = O(—— =),

m=1

2 92711/2 < 4 1/4 .
because |nax [Exix;]'~ < | ax [EX; EXJ] = O(1/h) by (4.7.42), with the last
inequality following from Lemma 9 of Robinson (2005).
As for Fyy, we already have ||rz|| = O(C’LLpéfL/\/ﬁ) by (4.7.48). From evaluation

of D3, (4.7.49), we also have

9 n ~ ol 1£2
|%;MW%M:( —raL ),

yielding
C! Lpasr,

F. < O0,(—=—2).

22l < Op( NG )
Therefore, || F2|| = Op(%).
Upper bound of ||F3||. We decompose
2 n
n > Xi(nai +n2)d’ melz¢ )BT 4 = ZXW2¢ e)) T =: Fyy + Fi,.

i=1
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By the MVT, the ¢-th element of ny; is

1 n

nie = (¢p(e; - Z €;) P
This means that the (m, ¢)-th element of F3; is
2 .
(Fs1)me =~ Xiblim®i(1)-

i=1

Therefore,

L n
4 L )
1F31l|% = i SN XX &P @) @i(e))]

ml=11,5=1
4 L n
=& 72 Z Z X@Xj52p;m¢2(5i)p3m¢2(Ej)] .
ml=11,5=1
By Cauchy-Schwarz inequality,
- 1/2
ng Z Z E|X2XJ€ pzm¢£(€1)p]m¢€ 5] - Z Z EXZQX? 1/2 ;m4¢2(51)4] /
m=11,j=1 mf 14,j=1
1 & y 1
2(me 2 1/2 4L 15
=0(3) D L R O(7)C L7 pant.-
m =1
Therefore,
1 C*™ L5 CHL L5 paer,
F3||% = O(— x ——252) = o(——52).
1Fsll = O(— % ) = 0(———)
Now, usingthe L x 1 vector ny = (nai, - - ,ngL)T, we will find an upper bound on
L
E||ng||? = Z E(n2,). For each £, recalling the notation ¢g(e) = ¢y(e) — E[¢e(e)],
(=1
E(n3,) = ZW gj) = E(de(e1))]” = Z¢é £j)]
M2 2
n2 ZE W 2] n .

Therefore, by Lemma 9 of Robinson (2005),

2L
E|ns|* = ZE n3,) <ZC Haxt O(C PRl (4.7.51)

n
(=1
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Hence,
(CQLLp2nL>
P\ b )

2 e~ -
| Paall < limall| = " xid(e0)
i=1
because by the same argument as in the proof of (4.7.49) with ¢’ ) and 62;1,%(“_1()

replacing ¢(&) and po,e, respectively, we obtain
1/2

n L
I3 el = o S,

Therefore, ||F3|| = Op(CQLL5/2pL/{2 /Vnh).
Upper bound for | Fy||. Write

2 — 2 —
Fy = E Z Xi(nh' + ng)(ru + TQ)T = - Z Xi (nh*?“%; + nlﬂ‘g + 7127‘%; + nng)
i=1

i—1
=: Fy + Fio + Fy3 + Fyy.

We have ||ro|| = Op(CELpY2 /\/n) by (4.7.48) and |[ns| = O,(CEpy/% //n) from

(4.7.51). Recall notations,

niie = <751z Z ¢e

T1ie = ¢ - Z¢ = glfg

2@67

ml
||

Firstly, we show that

AL 76 2
C™LPpg, 1,

9 1 n L
|Ful < H*sznnm NP YPS XGPHP PP = Op (57
j=1m/=1

By Cauchy-Schwarz inequality, using the argument we used repeatedly above

1 & &
= 2 D ElXaupiiempim

i,j=1m=1
1/2 14 114 14 4\ 1/4
Z Z EXZX?, {E Piv Pie )E(p]m Pim )}
i,j=1ml=1
RS / /
2(6+m)p3, 3 1/4 1/4
sz Z M P Mty (043K Par(m+3K)
ml=1
CAL 6 L 14 2 (QAL[S )
s — ( 'u4/~c(é+3K)> S 5 PRkL

(=1

N—

. (4.7.52)
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Since &4 = O(1/n?), this proves (4.7.52). To bound || Fjz||, we use that

- CULLpy,
Z szxmepﬂ 10 (%)OP(%),

i,7=1 (=1

H* ZX”L”M

which follows noting that by Cauchy-Schwarz inequality,

n

L
% YD Elxixplill < L Z X2 1/22 1172

i,j=14=1 i,j=1

L
C C4LL4 .
ﬁ E £4M4H(Z+K) = O(%)-
=1

To bound || Fy3]|, we use that

C4LL8
Zszxgpi’zpﬁ 0y )OS mE,

1,J=1¢=1

1 — 2
H*E XiT1i
n -

=1

which follows noting that by Cauchy-Schwarz inequality,

n2 Z ZE!szgpi’ep;’g 1 Z 2 1/22 1172

1,j=1 ¢=1 7‘71

\ Q

L
C4LL8 .
=7 Z B pa(erar) = O(%)-
—1

To bound || Fy4||, we use that

n n
—ZE\XA <lyie 2 il Llesl = O(7)

,31

Combining results above gives

C2LL3
|Full = 0p( =),

nvh
C’ZLLQplé2 C3LL3 s
|Fuall = OP(WM)OP(CLLpéfL/\/ﬁ) = Op(ni\/{),
CzLL4Pi{;2L L 1/2 C3L LA pynr,
1Fsll = OP<W>OP(C porr/V=n) = Op(ﬂi\/ﬁ)-
CzLLPan

IFuall = 0y (CH LAY V) Oy (CHoYf3 V) Oy(3) = Op (T 2025E).

180

Recall that for any fixed a,b,c > 0, we may find o« > 0 large enough so that



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 181

CLLPp.p = O(LAF) = o(v/h) from Assumption 5. Therefore, we conclude

C?LL3(psr, + Lpar)
1Pl = 0y — ).

We have found
1/2
IRl = 0 (= + ) 202 ),

C2LL1/2 1/2 )

9

1F5]| = Op

9

(G
|Fall = Op (———L2eL
v

CQLL5/2 1/2 >

c?Lr3 (p8nL + LP4HL))
nvVh '

By the same reasoning as above, we find that the rate of ||F}|| dominates. Therefore,

17l = Oy
1 Ly o1 ,3/2 2 1/2
1E1l = 0p (o= + 3)C* L2037 ).

Upper bound of ||J|. Write

J— a( j{: )by
=1

- Z¢Il Xz + = Z // EZ - ”(51)(L)]Xi = Jl + J2-

We find upper bounds on ||J1]| and ||J2||. Firstly,

EHJ1H2 n2 Z Z (Xix; 9% (€ W(EJ) )

{=11,7=1
1 L n
< 3 S BOE B )
(=1 4,5=1
L
1 g4 1/2 C* L pyur,
= O(D) S g = (L)
=1

because | max [E(X%X;)]I/Q = O(1/h) by (4.7.42) and using Lemma 9 of Robinson
<ij<n
(2005).
Now, note that the MVT implies that the ¢-th element of (b”(;—g)(L) — ¢ () =
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£¢y’ (7). Hence,

L n
2 1 .
BllRl* = =37 37 Bw®s) (€)' ()
(=114,j=1
1 n L | L
< BOEB(@ ()0 ()12 < O(—) B () ]2
n
L
— 1 20 p6 - C2LL6p4KL
= O(%) ;::10 C pg(e3K) = O<T)’
since &2 = O(1/n) and [E (X?X?)]lﬁ = O(1/h) uniformly in ¢ and j, and using Lemma

1/2
9 of Robinson (2005). Therefore, ||.J|| = O,(CLL2p}2 /\/h).
To complete the proof of || B|| = 0,(1), we list our findings:

ID| =0 <0LLp§(fL>

1/2
171 = 0y (7 (= + 1) C*L9201 ).
[0 )| = 0p(CELpyl3),
I(WE) | = Oy(m),
CLszl,/f
[ ]l = Op(——=1E).
Vh
Therefore,
IBIl < IDIIENEE |+ | (WE)H )]
TLC* L3 pyer, h
-~ OP(T(1+7TL(TL \/E)CQLL1/2 pis)) = op(1),

where the last step follows by again noting for any a,b,c,d > 0, we may find o > 0
large enough such that C*LPp.7¢ = O(L*F) = o(v/h) by Assumption 5. This
completes the proof of (4.7.5).
Comments on the proofs of (4.7.6) to (4.7.9).

Proof of (4.7.6) follows similar steps to those used in the proof of (4.7.5), with
derivatives of r7, and €(\)/o w.r.t. A replaced by those w.r.t o.

For the proof of (4.7.7), one has

fzqm Moy o) — F = Z[%L(AO,UO) [ 21/;2 &) ] (4.7.53)
=1

The second term in (4.7.53) is of order o,(1) since ¢;’s are i.i.d. random variables and
J = E(¥*(e1)). To show that the first term in (4.7.53) is of order o,(1), we need to
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establish that uniformly in¢=1,--- ,n,

192, (Mo, 00) — %2(£:)] < |¥ir (Mo, 00) — ()| [hir. (Nos 00) + 9(e3))|
< iz (%0, 00) = (=] (126E0)] + [z (o, 00) = ¥(En)l) = 0,(1),

which is in turn implied by
Wiz (Mo, 00) — (i) = 0p(1).

Recalling 1z (Ao, 00) = ®(e;(Xo)/00) DT aF)(e(N)/og), the above statement can be
verified using the following decomposition of ®(e;(Xg)/c0)” and a™)(e(\)/op) then
following steps similar to those in the proof of (4.7.5):

(I)(EZ(AU))(L) _ (I)(EZ(/\()))(L) _ (I)(gz)(L) + (I)(&.Z)(L) _ (ZE(L)(EZ) + &(L)(EZ‘),

o0 o0
s Ny w0 Z a0y @) 4 a®(e) — oD,
790 g0

The proofs of (4.7.8) and (4.7.9) are broadly similar to the proofs of (4.7.5), (4.7.6)
and (4.7.9). They rely on the mean value theorem to find upper bounds on the
difference between quantities evaluated at (A, o) € N and at (Ao, 00), where N' =
()\,0 DA = Xo| < VR/n,lo —ao| < \/1/771) In the proof of (4.7.5), the difference
between the fitted residual at (Ao, 00), €;/00, and the true error term, &;, was & =
Op(1/+/n). Below, we will show that the difference between fitted residuals at (Ao, o)
and any (\,0) € N, is also of order O,(1/y/n). Recall that e(A\) = HS()\)y, where
S(A) =1 — A\W. We have

) o) _ e)  e(do) N €(Ao)  €(Xo)
o oo o o o 00
_ (Ao — N)opHGe n og — GHE,
o o

with the second inequality following from

e(A) —e(Xo) = H(S()\) - S()\o))y =N —NHWy
= (Mo — NHW (S ooe + poln) = (Ao — N)ooHG,
e(\o) = HSy = HS(S Yope + poly) = ooHe,

since HS1,, = H(I — \oW)1,, = H(1 — \g)1,, = 0 as W1,, = 1,,. This means that for
i=1,---,n,and (\,0) € N,

o) — O

IN

o = A2 bl + |

= o omoy (L) + 0( L )0,0) = 0y
= 0(Y2)0()0,(2) +0(7)0,(1) = O,( ).

o |le; — £
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because y; = Op ((Ex?)'/?) where E(x?) = Zt?j =0O(1/h). N
j=1
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