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Abstract
The possible presence of cross-sectional dependence in economic panel or cross-sectional

data needs to be taken into consideration when developing econometric theory for data

analysis. This thesis consists of three works that either allow for or estimate cross-

sectional dependence in the disturbance terms of a regression model, each addressing

different problems, models and methods in the areas of non- and semi-parametric

estimation.

Chapter 1 provides an overview of the motivations for, and contributions of, the

three topics of this thesis. A review of relevant literature is given, followed by a sum-

mary of main results obtained in order to help place the present thesis in perspective.

Chapter 2 develops asymptotic theory for series estimation under a general setting of

spatial dependence in regressors and error term, including cases analogous to those

known as long-range dependence in the time series literature. A data-driven studen-

tization, new to non-parametric and cross-sectional contexts, is theoretically justified,

then used to develop asymptotically correct inference. Chapter 3 discusses identifi-

cation and kernel estimation of a non-parametric common regression with additive

individual fixed effects in panel data, with weak temporal dependence and arbitrarily

strong cross-sectional dependence. An efficiency improvement is obtained by using

estimated cross-sectional covariance matrix in a manner similar to generalised least-

squares, achieving a Gauss-Markov type efficiency bound. Feasible optimal band-

widths and feasible optimal non-parametric regression estimation are established and

asymptotically justified. Chapter 4 deals with efficiency improvement in the estima-

tion of pure Spatial Autoregressive model. We construct a two-stage estimator, which

adapts to the unknown error distribution of non-parametric form and achieves the

Cramer-Rao bound of the correctly specified maximum likelihood estimator. In es-

tablishing feasibility of such adaptive estimation, we find that the gain in efficiency

from adaptive estimation is typically smaller than in the relevant time series context,

but could be also greater under certain asymptotic behaviour of the weight matrix of

the model.
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1 Introduction
This chapter provides an overview of the motivations for, and contributions of,

the present thesis. A review of relevant literature on the topics of cross-sectional

dependence and non- and semi-parametric methods is provided in detail, in order to

help place the thesis in perspective. We then summarise the main contributions of

each of the three topics of this thesis in relation to the existing studies.

1.1 Cross-sectional dependence

Three types of data are encountered in economics, namely, time series, cross-section

and panel data. This thesis focuses on estimation and inference for the latter two types

and consists of three chapters developing non- and semi-parametric methods that

either allow for or estimate cross-sectional dependence in the disturbance terms of a

regression model. Implications of possible dependence between cross-sectional units on

econometric methods has been less studied in the literature than that of dependence

across time periods. Unfortunately, the nature of cross-sectional dependence and

heterogeneity observed in economic data hinders a simple extension of the time series

literature to cross-section or panel data.

In economic datasets, cross-sectional units naturally correspond to economic en-

tities, such as individuals, households, firms, industries, cities, regions or countries.

A typical type of dataset involving smaller units like individuals or households con-

sists of survey data collected by governments or firms using various sampling schemes.

The most prevalent sampling schemes encountered in economics are simple random

sampling where each unit has the same probability of being sampled, cluster sam-

pling where clusters consisting of individual units are sampled, or stratified sampling

where units in the sample are represented with different frequencies than they are

in the population, see Wooldridge (2002, pp. 132-135) for a good exposition. When

the cross-section units are larger entities such as firms within an industry, regions

or countries, the sampling may be exhaustive, i.e. all population units are observed

in the data. It is obvious that the need to allow for dependence and heterogeneity

across cross sectional units is even more compelling when the sample coincides with

the population.

A standard practice in the econometric literature, particularly with survey data,

has been to assume that cross-sectional observations are independent and identically

distributed (i.i.d.). An exception to this is the literature on data collected using clus-

ter sampling, where accounting for possible group effects via cluster-robust standard

errors of Liang and Zeger (1986) is widely available. This method allows for arbitrary

dependence within clusters but assumes independence between clusters and works well

when the number of clusters is large relative to the sample size. There seems to be

a common misconception that the simple random sampling scheme leads to the i.i.d
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property of the collected data. This, along with the difficulty of dealing with cross-

sectional dependence and heterogeneity of economic data in theoretical development,

partly explains the relative lack of econometric literature concerning cross-sectional

dependence in survey data. In the case of larger cross-sectional units, there has been

relatively more literature that allows for cross-sectional dependence, as will be dis-

cussed below.

In the case of survey data, it is important to appreciate that when there is depen-

dence and heterogeneity between underlying cross-sectional units in the population,

the i.i.d assumption on the sampled units is at best an approximation, that needs to

be carefully weighed against the specific data setting under consideration. Even the

simple random sampling scheme does not warrant that the sampled units are i.i.d.,

as clearly exposited in Andrews (2005) and Conley (1999). They offer probabilistic

frameworks which first define random vectors for all units in the population, not just

the observed units, and then consider drawing sampled units from the population.

There are two possible sources of dependence in the error terms of cross sec-

tional units that have been discussed in the econometric literature. Firstly, there

may be common shocks that affect all or some of individual units. Andrews (2003)

gives a comprehensive discussion on possible common shocks that may arise in eco-

nomic contexts, such as macroeconomic, technological, legal/institutional, political,

environmental, health and sociological shocks. Such shocks could have either global

or local effects, influencing individual units in a possibly heterogeneous manner, that

may depend on the unit’s characteristics. Secondly, there may be dependence between

individual units’ unobservables due to their economic interactions. Conley (1999) pro-

vides an example where insurance contracts are made by risk-averse agents in order to

smooth individual idiosyncratic shocks. This inevitably leads to dependence in con-

sumption across those individuals. Another example arises due to spill-over between

agents: an idiosyncratic productivity shock to a firm/industry, such as technological

innovation, may subsequently affect the productivity of other related firms/industries.

Yet another example arises in hedonic pricing model of houses: neighbouring houses

may share similar unobservable characteristics resulting in spatial dependence in the

disturbance terms, although this example does not arise from economic interaction as

such. In these three examples, it is clear that such dependence will be governed by

the degree of interaction/proximity between units. Dependence arising from economic

interaction is likely to be local in nature, in contrast to that generated by the presence

of common shocks, which can produce either global or local effects.

1.1.1 Models of cross-sectional dependence in disturbance terms

This subsection discusses three existing classes of models for cross-sectional depen-

dence in disturbances.
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Models with common shocks

For the case of common shocks, recent works by Bai (2009) and Pesaran (2006)

consider the linear regression model with large N , large T panel data. They model

the error term of the i-th cross sectional unit’s t-th time period observation as, Uit =

λ′iFt + εit, where Ft is the vector of unobserved common factors, λi the vector of

individual-specific factor loadings, giving rise to cross-sectional dependence, and εit

the idiosyncratic error. Both papers allows the unobserved factors, Ft, to also affect

the regressors linearly, which seems plausible especially in macroeconomic settings

such as cross-country data, for which the large N and large T asymptotic framework

of the papers is particularly relevant as N and T may be of similar magnitude. This

however results in the component λ′iFt in the error terms that are correlated with the

regressors, which can be seen as individual-specific and time-varying ”fixed effects”

that cannot be purged by simple data transformation like first differencing. The two

papers provide estimation methods that lead to consistent estimates of the linear

parameters of the regression model despite the presence of such fixed effects. The

estimation methods of the above papers are unfortunately not applicable to cross-

section data and it is not straightforward to extend similar methods to nonlinear

or non- and semi-parametric regression models or to relax the linear specification in

which the unobserved factors affect the disturbance term and/or regressor.

Andrews (2005) looks at the linear regression model with cross-section data when

there is arbitrary dependence and heterogeneity in the error terms between underlying

units in population generated by the presence of common shocks, and observations

are collected using random sampling. He derives asymptotic properties of the least

squares (LS) estimates of the linear parameters of the regression and establishes a nec-

essary and sufficient condition for consistency. This condition requires the regressors

and errors to be uncorrelated conditional on the σ-field, C, generated by the com-

mon shocks. The random sampling assumption implies that observations are i.i.d.

conditional on C, needed for law of large numbers (LLN) and central limit theorem

(CLT) results that are used to show asymptotic properties of the LS estimate. The

asymptotic framework offered by Andrews (2005) is indeed very useful for survey data

collected using random sampling schemes but not when random sampling does not

hold.

Spatial models

For cross-sectional dependence in the unobservables arising from economic agents’

interdependence, two classes of models of dependence have been prominent in recent

literature, involving a concept of ”economic location”. As mentioned above, cross-

sectional units in economic data correspond to economic agents such as individuals

or firms. One could envisage that these agents are positioned in some socio-economic

(even geographical) space, whereby their relative locations in this space underpin the

strength of dependence between them. For a detailed discussion and examples of such
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proximity, see e.g. Conley (1999) and Pinkse, Slade and Brett (2002). These models

are often called ”spatial”, reflecting the inclusion of space in the set-up.

The first type of model includes the pure Spatial Autoregressive (SAR) and related

models, which form a part of a more general class of models, first suggested by Cliff

and Ord (1968). This class of models is characterized by the use of exogenously given

weight matrices, which capture the structure of spatial dependence between units

up to a finite number of unknown parameters. In the case of modelling dependence

in the error terms, the spatial dependence is simply modelled parametrically as a

linear transformation of underlying shocks. Let U = (U1, · · · , Un)′ be a vector of

observations having zero mean, with the prime denoting transposition. The class of

spatial dependence models is given by

Q (λ0)U = σ0ε, (1.1.1)

where ε = (ε1, · · · , εn)′ is a vector of i.i.d. random variables with zero mean and unit

variance, σ0 is a scalar, λ0 is a finite-dimensional vector of parameters, and Q(λ0) is a

known, non-singular n× n matrix function of its argument. In general λ0, µ0 and σ0

are unknown and Q depends on one or more known spatial weight matrices. Denote

by W a generic n× n matrix,with real-valued elements wij such that

wii = 0,

n∑
j=1

wij = 1, i = 1, · · · , n. (1.1.2)

The latter condition, called row normalization restriction, is not always imposed in

the literature, but some normalization on W is required in order to identify λ0. The

quantities wij are typically interpreted as inverse economic distances, see e.g. Arbia

(2006), and may form triangular arrays. The following are three examples of Q in

which λ0 is scalar:

1. Pure SAR(1) (spatial autoregression of degree 1)

Q(λ0) = I − λ0W, (1.1.3)

where I is the n× n identity matrix and λ0 ∈ (−1, 1).

2. Pure SMA(1) (spatial moving average of degree 1)

Q(λ0) = (I − λ0W )−1 ,

for λ0 ∈ (−1, 1).

3. MESS (matrix spatial exponential, see LeSage and Pace (2009)):

Q(λ0) = exp (−λ0W ) .
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The clear limitation of these models is the presumption that the spatial dependence

is known to the practitioner up to a small number of parameters (λ0). Nonetheless,

these models, the pure SAR model in particular, have gained popularity in empirical

works, see Arbia (2006) for examples. In these models where the spatial dependence is

parsimoniously captured by the unknown λ0, the estimation of λ0 is often of interest,

possibly for the purpose of testing for lack of spatial dependence. In chapter 3 of the

thesis, efficient estimation of λ0 in a generalised version of (1.1.3) is considered.

The second class of models involves the use of mixing coefficients familiar from

the time series literature. Suppose unit i is endowed with a vector of characteristics

zi, the economic distance between units i and j is defined as the distance between

zi and zj , e.g. the Euclidean norm ‖zi − zj‖. Conley (1999) approximates the lo-

cations zi by regularly spaced lattice points and applies strong mixing conditions in

deriving asymptotic theory for generalized method of moments (GMM) estimates.

An alternative mixing condition in spatial setting was proposed in Pinkse, Shen and

Slade (2007). Mixing conditions, in contrast to the SAR and related models men-

tioned above, are essentially non-parametric, desirably avoiding a specific parametric

description of dependence.

It is notable that in the models with common factors, cross-sectional dependence

is allowed to be ”strong” as well as ”weak”, in the sense that common shocks are al-

lowed to affect all units in the sample (and population) significantly. In contrast,

the afore-mentioned spatial models require spatial dependence to fall as the eco-

nomic distance between units increases, sufficiently fast that the strength of spatial-

dependence satisfies weak dependence conditions analogous to ones in time series

literature. For this thesis, the ”weak” dependence in Ui is defined by the condition
n∑

i,j=1

|Cov(Ui, Uj)| = O(n), which is analogous to the concept of weak dependence in

stationary time series:
∞∑

k=−∞
|Cov(U1, U1+k)| < ∞. ”Strong” dependence in Ui, on

the other hand, is defined by the condition

n∑
i,j=1

|Cov(Ui, Uj)|/n → ∞ as n → ∞. In

Chapter 4, it is explained how the existing SAR literature imposes weak dependence

restriction. In the case of weak dependence, the common factor models and spatial

models may produce similar patterns of dependence, although the motivation and

specification of the disturbance terms may be rather different.

Model of Robinson (2011)

Robinson (2011) provides an alternative way of modeling cross-sectional depen-

dence, which can produce strong as well as weak dependence, and need not involve

known economic distances although can readily accommodate them. The following

general, possibly non-stationary, linear process is used to describe the disturbance of



1. Introduction 14

a regression model:

Ui = σi(Xi)ei, ei =

∞∑
j=1

bijεj ,

∞∑
j=1

b2ij = 1, 1 ≤ i ≤ n, n = 1, 2, · · · , (1.1.4)

where Ui is the scalar disturbance term, Xi a finite dimensional vector of regressors in

the regression model, εj ’s are independent random variables with zero mean and unit

variance that are independent of {Xi, i = 1, · · · , n, n ≥ 1}, σi’s are scalar unknown

functions and bij ’s are unknown fixed weights. These weights bij ’s, and hence Ui’s,

may form triangular arrays, and the reference to n is suppressed for ease of notation.

Notice that ei’s are generated by summation over j = 1 to infinity, letting the sampled

units be also affected by unsampled units, in contrast to the pure SAR and related

models. This specification allows both unconditional and conditional heteroscedas-

ticity. The triangular array structure also accommodates the panel data case where

some relabeling of observations would be required if both T and N are allowed to

grow as n = NT → ∞. As the unknown weights bij ’s may vary across i and j, the

above specification offers a general model of spatial dependence.

An important question to ask when specifying the model for the disturbance in

a regression with stochastic regressors is the extent to which the disturbance term

is dependent with the regressors. Pesaran (2006) and Bai (2009) allow the same set

of unobserved factors to enter both regressors and error terms, and Andrews (2005)

requires that they are uncorrelated conditional on the σ-algebra of common shocks. In

comparison, the above specification is relatively more restrictive in that ei is indepen-

dent of the regressors Xi’s. In particular, one may be concerned that the dependence

patterns between units i and k in their disturbance terms and the regressors may be

similar, especially in the spatial setting where they may be governed by the same dis-

tance measure between the units. The specification (1.1.4) does allow the dependence

between units i and k in regressors and disturbances to be related. For example, one

could let the joint density function fik of Xi and Xk, which reflects the dependence

between two units’ regressors, be a function of a distance between unit i and k, de-

noted dik, i.e. fik(x, y) = f(x, y; dik) and at the same time also allow the weights bik’s

to be governed by the same distance measure, bik = b(dik).

1.1.2 Some implications of cross-sectional dependence

The consequence of cross-sectional dependence in estimation of a regression model

varies according to the strength of dependence. It has been shown in the time series

literature that weak dependence typically does not affect consistency or asymptotic

normality results of parameter estimates, but does alter their variances relative to the

i.i.d. setting. Therefore disturbance variance structures need to be suitably estimated

in order to carry out valid inference. In case of strong dependence, depending on

the specification, even consistency may sometimes break down, although in the afore-
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mentioned papers that allow for strong dependence (Andrews (2005) and Robinson

(2011)), consistency and asymptotic normality of estimates were shown under suitable

conditions. The issues discussed in Pesaran (2006) and Bai (2009) are rather different

as there is the additional problem of correlation between regressors and disturbance

terms and the two papers offer new methods of estimation that achieve consistency of

regression parameter estimates.

Developing standard errors that are robust to dependence and heterogeneity is

considerably more difficult in the cross-sectional setting than in time series, where so

called heteroscedasticity autocorrelation consistent (HAC) estimation is facilitated by

the information carried by the time index. The dependence between observations at

times t and s is modelled in terms of |t − s|. In the spatial context, an extension

of HAC estimation is feasible if additional information which may take the role of

the time indices is available e.g. the socio-economic or geographical distance between

units which underpin the structure of the spatial dependence. Conley (1999) has

considered HAC estimation under a stationary random field with measurement error

in distance measures, Kelejian and Prucha (2007) for models of Cliff and Ord (1968)

and Robinson and Thawornkaiwong (2010) for a more general set-up than Cliff-Ord

type models. Chapter 1 of this thesis offers an alternative method of robust inference

to that based on HAC estimation.

1.2 Non- and semi-parametric methods in economics

In the afore-mentioned papers, regression models take a parametric form, with the

exception of Robinson (2011). However economic theory usually does not imply a

particular functional form and there may be little confidence that a linear or specific

nonlinear regression model is correctly specified. Non-parametric estimation allow

researchers to drop the presumption of known functional form, instead requiring non-

parametric restrictions such as smoothness and existence of certain moments, that

may be less restrictive. In some contexts, specifying some components of the model to

be parametric while keeping the others non-parametric may be more appealing than a

fully non-parametric specification. This could be either due to practical reasons, such

as avoiding ”curse of dimensionality” in non-parametric regression with many regres-

sors, or due to the practitioner having confidence and interest in parameterization of

some components while not in the others. Such models are called semi-parametric.

Chapter 2 consider estimation of known functionals of the non-parametric regression

function, an example of which is estimation of slope parameters in partly linear re-

gression model, in which some regressors enter linearly and others non-parametrically.

In Chapter 4, the regression model is parametric but the unknown error density is

left to be non-parametric. A non-parametric estimate of the ”score” function, the

ratio of the first derivative of the error density to the density itself, is used in order

to construct an estimate of the parameter of the regression model that achieves the
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Cramer-Rao bound of the correctly specified MLE.

There are some differences in the type of theoretical results we typically obtain

for non-parametric and semi-parametric estimates. Non-parametric estimates achieve

a slower rate of convergence to the true value, compared to the correctly specified

parametric estimates, which is a natural consequence of the parsimony of the latter.

In contrast, some semi-parametric estimates have been shown to achieve the same

rate of convergence as its parametric counterpart under suitable conditions, which

is remarkable since semi-parametric estimates rely on the first stage non-parametric

estimates that exhibit a slower rate of convergence. This type of results has received

wide interest in econometric literature, starting from Robinson (1988) and Powell,

Stock and Stocker (1989), which deal with the two well-known semi-parametric models,

partly linear regression model and single index model, respectively. Chapter 2 of

this thesis provides a set of sufficient conditions, including those on the strength of

dependence and heterogeneity in the data, for semi-parametric estimates to obtain

the parametric rate of convergence.

There are two main methods of non- and semi-parametric estimation used in

econometrics. The first method is the kernel approach, which uses local smooth-

ing/averaging with a chosen kernel function and bandwidth parameter. The second

is the sieve estimation method, which uses an increasing number of base functions as

the sample size increases, to approximate the non-parametric function of interest. In

this thesis, the focus is on estimation of the conditional expectation, i.e. regression

function, which is the topic of the first two chapters, and the score function used in

the third chapter is estimated using the same method as regression estimation. In the

sieve estimation literature, regression estimation has been developed under the name

of series estimation and in the context of this thesis, the terms ”sieve” and ”series”

are used interchangeably.

There are many theoretical results on kernel estimation of regression and density

under temporal dependence, see e.g. Roussas (1969), Rosenblatt (1971), Robinson

(1983) for weak dependence and Robinson (1991), Robinson (1997), Hidalgo (1997)

for strong dependence. A notable difference from parametric estimation is that in the

case of weak dependence, the asymptotic variance of non-parametric kernel estimates

are the same as in the i.i.d. setting, which arises from the local nature of estimation.

Robinson (2011) and Robinson and Thawornkaiwong (2010) have considered kernel

estimation in non-parametric regression and partly linear regression, respectively, un-

der strong and weak cross-sectional dependence and found similar results to the time

series literature.

The main advantages of series estimation over kernel estimation are four-fold.

When economic theory generates certain restrictions on the non-parametric function

of interest, such as monotonicity, convexity and additive separability, series estimation

offers a more natural way of using such information in estimation by reflecting it in

the choice of series functions. Secondly, it is computationally convenient, because



1. Introduction 17

the data is summarized by a relatively few estimated coefficients. Thirdly, from a

theoretical point of view, theories can be developed in a unified way to include both

non-parametric regression and general semi-parametric quantities, as will be made

clear in Chapter 2. This is in contrast to kernel estimation where an asymptotic

theory for each semi-parametric model needs to be developed separately. Finally,

semi-parametric estimation with kernel methods typically involves ”trimming” out

some observations, if the density estimates at their values are smaller than a certain

trimming parameter. This is because of the form of many kernel estimates which have

as their denominator, the random density estimate that can be very close to zero.

Introduction of a user-chosen trimming-parameter could be in itself a disincentive to

the practitioner, while generating complications in development of econometric theory

behind estimation. Semi-parametric estimation of series method is free from the need

for trimming.

The asymptotic behaviour of series estimation under independence has been stud-

ied in Andrews (1991) and Newey (1997). For weakly dependent time series data,

Chen and Shen (1998) and Chen, Liao and Sun (2011) together offer asymptotic

theory and robust inference of general sieve M estimation, which includes series esti-

mation as a special case. Importantly, Chen, Liao and Sun (2011) found that certain

non-parametric sieve estimates under weak temporal dependence also have the same

asymptotic variance as in the i.i.d. setting, analogous to the result reported for kernel

estimation in Robinson (1983). Chapter 2 of this thesis establishes asymptotic theory

for a spatial setting similar to Robinson (2011), which covers strong, as well as weak,

dependence. In future work, it would be of interest to extend Chen et al. (2007)’s

finding to the spatial setting and compare asymptotic results on series estimates of

non-parametric regression to those of kernel estimates, reported in Robinson (2011).

1.3 Summary of main contributions

This section highlights the contributions of each of the three chapters of this thesis,

and place them in relation to the existing studies.

1.3.1 Chapter 2

In Chapter 2 ”Series estimation under cross-sectional dependence”, the following

model is studied,

Yi = m(Xi) + Ui, where Ui = σ(Xi)ei,

ei =

∞∑
j=1

bijεj , sup
i

∞∑
j=1

b2ij <∞, 1 ≤ i ≤ n, n = 1, 2, · · · ,

where Yi, Ui ∈ R and Xi ∈ X ⊂ Rq are random variables, m : X → R is an unknown

function of interest, σ(·) is a real bounded function, {bij , i, j ≥ 1} are unknown con-
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stants and {εj , j ≥ 1} are independent random variables with zero mean and unit

variance. Processes {Xi} and {εj} are assumed to be independent of each other.

The specification of Ui has been slightly modified from Robinson (2011), but both

conditional and unconditional heteroscedasticities are still allowed.

The quantity of interest is a d×1 functional of m denoted θ0 = a(m), which is esti-

mated by plugging in the series estimate m̂ of m in the known functional operator a(·).
Theorem 2.1 reports a uniform rate of convergence of m̂ to m. A uniform rate of con-

vergence for non-parametric regression estimates is useful for many semi-parametric

problems and has been extensively studied in the context of kernel estimation, see e.g.

Masry (1996) and Hansen (2008). For series estimation, Newey (1997) provided a rate

for the i.i.d. setting, which was subsequently improved by de Jong (2002), under the

additional assumption of compact X . The rate result obtained in Theorem 2.1 reduces

to that of Newey (1997) under the i.i.d. setting and contains a variance contribution

term that reflects the collective dependence in the Ui’s and Xi’s.

In this work, dependence in {Xi} is allowed to be strong, as well as weak, and two

measures of dependence are introduced. The first is used in showing the consistency

and CLT results, while the second is needed for the variance matrix of the estimate

θ̂ = a(m̂) conditional on {Xi} to be well-behaved so that the unconditional asymptotic

variance matrix can be obtained. The first measure of dependence is defined in terms

of departure of bivariate density function from the product of marginals. Denote by

fij the joint density function of Xi and Xj and define,

4n :=
n∑

i,j=1,i 6=j

∫
X 2

|fij(x, y)− f(x)f(y)|dxdy.

The rate of growth of 4n is a measure of bi-variate dependence in the Xi’s and has an

upper bound of 2n2. The quantity 4n is zero in case of independence across i and we

may view the condition 4n = O(n) as an analogue to short-range/weak dependence

in the time series literature. We find an upper bound on 4n for the case of Gaussian

Xi’s to be

n∑
i,j=1,i 6=j

|Cov(Xi, Xj)|, which is the quantity used in the definition of weak

dependence earlier.

Similar measures of dependence have been used in Robinson (2011), where the local

nature of kernel estimation meant conditions were confined to the neighbourhoods

of the points at which the function m was estimated. For establishing asymptotic

normality result for kernel estimates of m, Robinson (2011) also imposed conditions

on the third and fourth order joint probability densities of Xi.

For the partly linear regression model, Robinson and Thawornkaiwong (2010) also

offered a global measure of dependence which involves the supremum over the entire

support of Xi. However, the measures of dependence used in their Assumption B6 are

more complicated and less tractable than 4n and they impose uniform boundedness
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of marginal and joint densities of order up to four. We avoid imposing restrictions

on the third and fourth order joint densities of Xi’s, which are considerably harder

to verify than that involving bivariate density even in the simple case of Gaussian

random variables. Instead we formulate our second measure of dependence in {Xi}
in terms of the fourth order cumulants of quantities combining Ui and Xi. Our re-

strictions on their collective dependence allow strong, as well as weak dependence in

both Xi’s and Ui’s. Cumulants have been often used in the time series literature as a

measure of dependence, see e.g. Brillinger (1981). Chapter 2 also provides sufficient

conditions for θ̂ = a(m̂) of certain smooth functionals a(·) to be
√
n-consistent, ex-

tending Newey (1997)’s results obtained in the i.i.d setting. It is interesting that some

strong dependence in Xi is allowed although the Ui’s need to be weakly dependent for

the
√
n-consistency result.

Chapter 2 of this thesis also establishes theoretical justification for the use of the

studentization method of Kiefer, Vogelsang and Bunzel (2000), which is new to the

cross-sectional setting and non- and semi-parametric methods. In time series, HAC

estimation of the asymptotic variance matrix is widely known to perform poorly in

small samples, see e.g. Andrews and Monahan (1992) and Den Haan and Levin

(1997). Kiefer et al. (2000) offer a data-driven studentization method that can

produce better small sample performance than HAC-based inference. Kiefer et al.

(2000)’s assumption A1 requires a functional central limit theorem (FCLT) result on

a data-driven quantity that forms a basis of the studentizing matrix. They provide

conditions of Phillips and Durlauf (1986) as an example of a set of sufficient conditions

for this FCLT result to hold. Phillips and Durlauf (1986)’s conditions require weakly

stationary α-mixing sequences. The contributions of the extensions offered by the

current thesis are as follows.

1) This is the first work to apply Kiefer et al. (2000)’s studentization method in

non- and/or semi-parametric contexts to the best of our knowledge.

2) We relax the conditions of homogeneity, regular spacing and ordering of Ui’s

and Xi’s, which are exhibited by stationary time series, but not by cross-sectional

data.

Indeed, a notable contribution of Chapter 2 is evaluating the extent to which the

dependence and heterogeneity of the Ui’s can depart from stationary mixing and still

achieve the FCLT result required in order to apply Kiefer et al. (2000)’s studentiza-

tion method. The degree of relaxation of the regularity conditions is summarised by

Assumption C3 of Chapter 2, where a detailed discussion can also be found.

The main results of Chapter 2 are, Theorem 2.1 which states the uniform rate of

convergence for the series regression estimate, Theorem 2.2 that presents the asymp-

totic distribution of the estimate of a functional of the regression function, and The-

orem 2.5 which establishes the validity of the studentization method.
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1.3.2 Chapter 3

Chapter 3, ”Panel data model with non-parametric common regression and individual

fixed effects”, considers the following model for a balanced panel data set of size N×T .

Below Yit denotes a one dimensional dependent variable, λi an additive individual-

specific fixed effect of individual i, Zt is a vector of time-varying regressor common

to all individuals, whereas m(·) is the non-parametric regression function of interest,

and Uit denotes the error term:

Yit = λi +m(Zt) + Uit, E(UtU
′
t |Zt = z) = Ω(z), i = 1, · · · , N, t = 1, · · · , T,

where Ω(·) is a N × N matrix of smooth functions. Importantly, an arbitrary form

and strength of cross-sectional dependence are allowed in Uit, while Zt and Uit’s are

required to satisfy a β-mixing condition over time. Nadaraya-Watson (N-W) kernel

estimate is used to estimate m(·). The setting in mind is with larger T than N , such

as in regional data with long time series. Cross-sectional units are typically large

entities like regions or countries in such settings, where the need to allow for strong

dependence and heterogeneity across the cross-section may be compelling. Therefore

we do not impose restrictions on Ω, other than some smoothness and boundedness

conditions.

A similar model was considered in Robinson (2011) in the context of common

trend estimation, with Zt replaced by the deterministic argument t/T where Uit’s

are assumed to be i.i.d. across time. He clarified the issue of joint identification

of m(·) and λi’s and showed how to incorporate the knowledge of cross-sectional

dependence in Uit’s into estimating m(t/T ) in order to obtain an efficiency gain. In

particular, a generalised least squares (GLS) type estimate under the full knowledge of

cross-sectional dependence was shown to be superior in the mean square error (MSE)

sense, to the one that does not incorporate such information. Asymptotic equivalence

between the infeasible and feasible GLS type estimates was also established.

Chapter 3 of this thesis essentially extends the results of Robinson (2011) to the

case of multivariate non-stochastic regressor, which leads to the need for conditional

heteroscedasticity captured in Ω(z). We also allow Zt and Uit’s to be jointly weakly

dependent over time, rather than using the i.i.d. condition imposed on Uit’s in Robin-

son (2011). We first establish asymptotic MSE, the consequent optimal bandwidth

choice and asymptotic distribution of a simple N-W estimate of m(·) based on the

simple cross-sectional average of Yit’s,
n∑
i=1

Yit/n. We then obtain similar results for

the optimal N-W estimate, based on the knowledge of the cross-sectional error covari-

ance structure Ω. This optimal estimate is analogous to the GLS estimate in linear

regression model where a data transformation based on Ω produces transformed er-

ror terms that are homoscedastic and uncorrelated. A similar principle is used here,

leading to the optimal estimate achieving a Gauss-Markov type bound. We then con-
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struct a feasible version of such optimal estimate using an estimate of Ω based on the

fitted residuals from the simple N-W estimation. We establish asymptotic equivalence

between the feasible and infeasible versions of the optimal N-W estimate and also

between their optimal bandwidth choices. Unlike in Robinson (2011), the conditional

heteroscedasticity here implies that the optimal weight for the GLS-type estimation

now varies over the point z at which the function m(·) is estimated.

In obtaining the theoretical results, we prove a useful result, Lemma 3.6, that

represents an additional and significant contribution of the chapter. Many sample

quantities in econometrics take the form of a U-statistic, whose properties in the i.i.d.

setting are well understood. Similar results on the behaviour of U-statistics under

dependence is often obtained by showing the negligibility of the departure of the U-

statistic under dependent process from its counterpart under the i.i.d. setting. Dehling

(2006) offers an excellent review of both the literature under the i.i.d. setting and that

covering the dependent case. Fan and Li (1999) utilized Yoshihara (1976)’s lemma, to

obtain an upper bound on the difference in expectations of a third order U-statistic

under independence and the β-mixing process. Lemma 3.6 of this chapter extends

Fan and Li (1999)’s result to U-statistics with an asymmetric kernel and of order up

to four. This lemma would be useful in many applications, especially when finding

the asymptotic order of magnitude for moments of various estimates with time series

data.

The main results of Chapter 3 are, Theorem 3.7 which establishes how good an

estimate of the cross-sectional error covariance matrix we have, and Lemma 3.6 that

presents useful decomposition of the expectation of U-statistics based on β-mixing

processes.

1.3.3 Chapter 4

While Chapters 2 and 3 deal with non-parametric regression models, in Chapter 4

”Efficiency improvement in the semi-parametric pure Spatial Autoregressive (SAR)

model”, we consider the parametric pure SAR model, presented in (1.1.1) and (1.1.3).

We state the model again for ease of reference:

(I − λ0W )U = σ0ε. (1.3.1)

For the weight matrix W , it is assumed that max
1≤i,j≤n

|wij | = O(1/h), with a sequence

h = hn that is either fixed or divergent as n→∞. This is a typical condition imposed

in the SAR literature, e.g. in Lee (2002, 2004), Kelejian and Prucha (1998), and it

has been shown that the behaviour of the sequence h has implications on asymptotic

theory of parameter estimates. In Chapter 4, Ui will be allowed to have a non-zero

mean, providing a model for observables, as well as disturbances. However for clarity

of exposition, we stick to the simpler version (1.3.1) in the present description.

Estimation of λ0 in pure SAR model was considered in Lee (2002, 2004). In the
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former, the ordinary least squares (OLS) estimate was shown to be inconsistent while

in the latter the Gaussian pseudo maximum likelihood estimate (PMLE) was shown

to be consistent, at the usual rate
√
n when h is fixed, and at a slower rate,

√
n/h,

if h is divergent. When εj ’s, therefore Ui’s, are Gaussian, the Gaussian PMLE is of

course the MLE itself, attaining the Cramer-Rao bound. This property is lost once the

true likelihood seizes to be Gaussian. The lack of efficiency property of the Gaussian

PMLE of λ0 when Ui’s are not Gaussian, in addition to the possibly slower rate of

convergence in case of divergent h, gives rise to an interest in improved estimation of

λ0. This is the focus of Chapter 4 and we treat µ0 and σ0 as nuisance parameters.

We let εi’s be i.i.d. with unknown density function of non-parametric form, thus

avoiding possible parametric misspecification of density function, which could lead

to inconsistency of the corresponding MLE. This is what makes the model semi-

parametric, as it contains a non-parametric error density function along with a para-

metric regression model. There is a large literature addressing whether the Cramer-

Rao bound of the correctly specified MLE can be achieved in the absence of knowledge

of the density function, with only non-parametric assumptions. This is attained by an

estimate that takes an approximate Newton-step from an initial consistent and ineffi-

cient estimate of λ0, which is the Gaussian PMLE in our case. In Beran (1976), Newey

(1988), Robinson (1995) and Robinson (2011), the Newton-step is constructed from

a non-parametric series estimate of the score function of the error density. Chapter 4

also uses this estimate and establishes that it indeed achieves the Cramer-Rao bound

of the correctly specified MLE.

Another notable and interesting finding of Chapter 4 is that the relative efficiency

of the adaptive estimate λ̂ to the PMLE can be either less or more than ones in

the classical outcome, which includes the results under mixed regressive SAR model

considered in Robinson (2011) and the time series setting. As mentioned earlier, pure

SAR model is a particularly popular model in the more general class of models and it

is hoped that the results of this chapter may be extended in future to other models.

The main results of Chapter 4 are, Lemma 4.1 which establishes feasibility of

efficiency improvement from the (Gaussian) PMLE of λ0, and Theorem 4.1 which

presents the asymptotic distribution of the improved estimate, which coincides with

that of the true MLE.
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2 Series Estimation under Cross-

sectional Dependence
2.1 Introduction

Economic agents are typically interdependent, due for example to externalities, spill-

overs or the presence of common shocks. Such dependence is often overlooked in cross-

sectional or panel data analysis, in part due to a lack of econometric literature that

deals with the issue at hand. Implications of dependence on econometric analysis have

long been studied in the context of time series data, where the temporal dependence

is naturally modeled in terms of the distance between observations along the time

axis. Unfortunately, the nature of cross-sectional dependence observed in economic

data hinders a simple multi-dimensional extension of time series literature to spatial

data. For example, the index of observations in economic cross-sectional data cannot

be used to describe the dependence between units in the way that the time index can

be. This is because there is often no natural ordering of cross-sectional data and the

indices do not represent relative positioning of the units sampled.

In order to start accounting for possible cross-sectional dependence, one needs

first to establish a framework under which the structure of such dependence can be

suitably formalised. Three classes of models of cross-sectional dependence have been

prominent in recent literature. The first class of models deal with the presence of

unobserved common factors that may affect some/all of individual units, see Andrews

(2005), Pesaran (2006) and Bai (2005). These models could give rise to cross-sectional

dependence that are persistent throughout units, analogous to ”strong” or ”long-

range” dependence in the time series literature.

The other two classes of models involve a concept of ”economic location”. In

economic data, cross-sectional units correspond to economic agents such as individuals

or firms. One could envisage that these agents are positioned in some socio-economic

(even geographical) space, whereby their relative locations in this space underpin the

strength of dependence between them. For a detailed discussion and examples of such

proximity, see e.g. Conley (1999) and Pinkse, Slade and Brett (2002).

The second class of models is the Spatial Autoregressive (SAR) model of Cliff and

Ord (1968, 1981), see e.g. Lee (2002, 2004), Kelejian and Prucha (1998, 1999), Robin-

son (2010a), Rossi (2010). In this approach, the dependent variable (or disturbance)

of a given unit is assumed to be affected by a weighted average of the dependent vari-

ables (or disturbances) of the other sampled units. The weights used in the averaging

are presumed to be known and reflect the degree of proximity between agents, leaving

a finite number of parameters (often scalar) to be estimated to explain the spatial

dependence. The SAR model has gained popularity in empirical works, see e.g. Arbia

(2006).
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The third class of models involve the use of mixing coefficients familiar from the

time series literature. Conley (1999) and the related papers develop spatial mixing

conditions in terms of economic distance between agents, under a suitable stationarity

assumption. An alternative mixing condition in spatial setting was proposed in Pinkse,

Shen and Slade (2007).

Robinson (2011) has offered a new way of modeling cross-sectional dependence,

which does not hinge on the idea of economic distance although can certainly accom-

modate it. A general, possibly non-stationary, linear process is assumed for distur-

bances, which, unlike a mixing framework, allows possible strong dependence. The

dependence in the regressors is phrased in terms of the departure of joint densities from

the product of marginals, allowing possible heterogeneity across units. The model’s

ability to cover both weak and strong dependence in the error term and regressors

allows the development of a general set of theory. While the model accommodates

many spatial settings plausible in economic data, no new concepts, other than those

familiar from standard econometric literature, need to be introduced.

On the other hand, non-parametric and semi-parametric estimation have become

an established method in econometric analysis. Such methods allow researchers to

drop the assumption of known parametric functional form that is often not warranted

by economic theory. There are many theoretical results on non-parametric kernel

estimation under temporal dependence, see e.g. Robinson (1983) and Hidalgo (1997).

Robinson (2011) and Robinson and Thawornkaiwong (2010) have considered kernel

estimation in the non-parametric regression model and the partly linear regression

model, respectively, under cross-sectional dependence.

The asymptotic behaviour of the series estimation under independence has been

studied in Andrews (1991) and Newey (1997). For weakly dependent time series

data, Chen and Shen (1998) and Chen, Liao and Sun (2011) offer a rather complete

treatment of asymptotic theory and robust inference of the general sieve M estima-

tion, which includes series estimation as a special case. This chapter produces an

asymptotic theory that covers general cross-sectional heterogeneity and dependence,

including weak and strong dependence. The conditions of the chapter, while designed

for spatial setting, readily lend themselves to time series and panel data, expanding

the applicability of the results to those settings. They follow the framework of Robin-

son (2011), however the nature of series estimation necessitated some modifications.

This chapter offers alternative conditions in terms of the fourth order cumulants fa-

miliar from time series literature, enabling to avoid conditions on joint densities which

may be difficult to verify for some processes. Due to a number of similarities of series

estimation to OLS in linear regression, asymptotic results derived here easily extend

to the linear regression.

The other main contribution of this chapter is establishing a theoretical back-

ground for the use of a studentization method that offers an alternative to the ex-

isting variance estimation literature in spatial setting. In the spatial context, an
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extension of HAC estimation familiar from the time series literature, see e.g. Han-

nan (1957), Newey and West (1987), is possible if additional information such as

the socio-economic distance between units which underpin the structure of the spa-

tial dependence is available. Conley (1999) has considered HAC estimation under a

stationary random field with measurement error in distance measures, Kelejian and

Prucha (2007) for models of Cliff and Ord (1981) and Robinson and Thawornkaiwong

(2010) for a more general set-up than Cliff-Ord type models. Bester, Conley, Hansen

and Vogelsang (2008) consider the asymptotic theory of the HAC estimation when a

fixed, rather than a vanishing, proportion of the sample is used in the variance esti-

mation. However, the small sample performance of HAC estimation is known to be

poor even in time series setting and an alternative method that achieves better finite

sample performance was suggested by Kiefer, Vogelsang and Bunzel (2000) in the lin-

ear regression in time series context. This chapter provides theoretical justification for

extending the use of Kiefer et al.’s studentization to spatial or spatio-temporal data.

The chapter is structured as follows. In Section 2.2, the setting of the model

is outlined. In Section 2.3, the series estimation is introduced and a uniform rate

of convergence for the non-parametric component is established. Section 2.4 contains

asymptotic normality results. Section 2.5 presents sufficient conditions for the
√
n rate

of convergence of certain semi-parametric estimators, with data-driven studentization.

Section 2.6 presents a small Monte Carlo study of finite sample performance. Section

2.7 discusses some empirical examples and Section 2.8 concludes. The Appendix

contains the proofs.

2.2 Setting of the model

This chapter discusses inference on the following non-parametric regression model,

Yi = m(Xi) + Ui, i = 1, 2, · · · , n, (2.2.1)

where Yi, Ui ∈ R and Xi ∈ X ⊂ Rq are random variables and m : X → R is an

unknown function of interest. The error term Ui of the model is assumed to follow

Ui = σ(Xi)ei, ei =
∞∑
j=1

bijεj ,
∞∑
j=1

b2ij <∞ i = 1, 2, · · · , n, (2.2.2)

where σ(·) is a real function, {bij , i, j ≥ 1} are unknown constants and {εj , j ≥ 1} are

independent random variables with zero mean and unit variance. Processes {Xi} and

{εj} are assumed to be independent of each other. The linear process ei in Ui was

also used in Robinson (2011) and Robinson and Thawornkaiwong (2010). Quantities

Yi, Xi, Ui, ei, εj , bij are allowed to admit a triangular structure throughout this work,

accommodated by the proofs of later theorems. The additional n subscript in e.g.

bijn = bij is suppressed for the ease of notation. Triangular array structure takes
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into account the possible need to re-label observations as n increases in panel-data

or multi-dimensional lattice data as this work uses a single index i for observations,

see Robinson (2011) for discussion. Allowing coefficients bij = bijn to vary with n is

important in making (2.2.2) to cover the popular SAR model, whereby ei =

n∑
j=1

bijnεj

will include summation only up to n.

The structure (2.2.2) is designed to encompass various forms of spatial dependence

and heterogeneity in the unobserved errors Ui, that could arise in economic applica-

tions. Conditional and unconditional heteroscedasticity of the errors Ui is allowed,

while the restrictions later imposed on bij ’s are rather mild, affording an ample scope

for possible non-stationarity/heterogeneity across i. For example, bij ’s need not ex-

hibit any form of conformity across i and j, in particular, be affected by |i− j|. The

specification (2.2.2) also accommodates the idea of ”economic distance”, in which case

bij will be determined by distances between units. Restrictions on dependence and

heterogeneity in Xi are stated and discussed in Section 3.

Errors (2.2.2) obviously cover equally-spaced stationary time series, where bij is

of the form b|i−j|. An alternative to (2.2.2) is a mixing framework, which would allow

us to relax the condition of independence between {Xi}ni=1 and {ei}ni=1. However, a

mixing framework necessitates the introduction of some distance measures and the

notion of stationarity, which are not always justifiable in economic applications. More

importantly, long-range dependence is not covered by a mixing-framework.

Regarding the function m(x) = E(Yi|Xi = x) in (2.2.1), it denotes the conditional

expectation of Yi at Xi = x. For any given function g(·) : X → R, let a(g) denote

a d × 1 vector-valued functional of g(·), i.e. a mapping from a possible conditional

expectation to a real vector. There are many applications where a (known) functional

a(m) of the conditional expectation m is of interest. It can be estimated by a(m̂),

where m̂(·) denotes a series estimator of m(·), constructed as a linear combination of

pre-specified approximating functions. Simple examples of a(g) include the value of

the function at multiple fixed points, a(g) = (g(x1), · · · , g(xd))
′, (x1, · · · , xd) ∈ X d,

which is of interest in non-parametric regression estimation, and the value of partial

derivative of the function with respect to the `th argument at fixed points,

a(g) =
(∂g(x)

∂x`

∣∣
x1
, · · · , ∂g(x)

∂x`

∣∣
xd

)′
,

which is of interest in the case of non-parametric derivative estimation. An example of

nonlinear functional a(·) given in Newey (1997) is the consumer surplus. Letting Yi be

the log consumption and Xi = (log pi, log Ii)
′, a 2×1 vector of log price and log income,

the estimated demand function at a fixed point Xi = x is given by exp(m̂(x)), whereas

the approximate consumer surplus is equal to the integral of the demand function over

a range of prices. For a fixed income Ī, an estimator of this functional, when p and p̄
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represent the lower and upper bounds on the price, is

a(m̂) =

∫ p̄

p
exp

(
m̂(log t, log Ī)

)
dt.

If one was interested in the approximate consumer surplus at multiple fixed values of

income, a(m̂) would take a vector form. Further example of a(·) arises in the context

of the partly linear regression model and will be discussed in detail in Section 5.

Previously, Andrews (1991) showed asymptotic normality for a vector-valued lin-

ear functional a(m̂), using for {Xi}ni=1 and {Ui}ni=1 independent and non-identically

distributed (i.n.i.d) setting and, in addition, indicating that “the proof can be ex-

tended to cover strong mixing regressors without too much difficulty.” Newey (1997)

has established uniform rate of convergence for |m̂(x) − m(x)| and asymptotic nor-

mality result for a(m̂) − a(m) when {Xi}ni=1 and {Ui}ni=1 are both i.i.d. and a(g)

is a general (possibly nonlinear) scalar functional. Newey (1997) has also offered a

set of conditions on the functional a(·), under which a(m̂) converges to a(m) at the

parametric rate. Chen and Shen (1998) and Chen, Liao and Sun (2011) consider the

problem of sieve extreme estimation for weakly dependent time series setting. In the

context of series estimation, Chen and Shen (1998)’s results yield a convergence rate

for the non-parametric regression estimate m̂(·) and asymptotic normality for a(m̂)

in the case of
√
n-rate of convergece. Chen, Liao and Sun (2011) offer an asymptotic

normality result that also covers the case of slower-than-
√
n rate of convergence and

provide methods of inference robust to time series weak dependence. They also unveil

a rather striking fact that for certain cases of slower-than-
√
n rate of convergence, the

asymptotic variance of the estimate a(m̂) coincides with that obtained under inde-

pendence. An important example is the case of non-parametric regression function

evaluated at a finite number of fixed points, for which a similar observation was made

by Robinson (1983) for kernel estimation.

2.3 Estimation of m and uniform consistency rate

Estimation of m is based on the use of approximating functions. Denote by ps(·), s =

1, 2, · · · a set of approximating functions from X to R:

pk(·) = (p1(·), · · · , pk(·))′.

Next, introduce a deterministic sequence of positive integers K = Kn, nondecreas-

ing in n, which denotes the number of approximating functions used in the series

estimation where n stands for the sample size. The integer K can be regarded as a

bandwidth parameter, analogous to the window length in kernel estimation, and its

choice gives rise to a bias/variance trade-off as seen below. Under a suitable choice of

approximating functions, larger values of K will reduce the bias while increasing the

variance of the estimate m̂. A number of assumptions introduced in the following two
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sections reflect the reliance of the theory on a suitable choice of K.

Let β̂ = (p′p)−p′Y ∈ RK , where p = pn = [pK(X1), · · · , pK(Xn)]′ ∈ Rn×K , Y =

(Y1, · · · , Yn)′ ∈ Rn, and A− denotes the Moore-Penrose inverse for a matrix A.

Definition 1. A series estimator of m(x), at a fixed point x ∈ X , based on K

approximating functions, pK(·) = (p1(·), · · · , pK(·))′, is given by

m̂(x) = pK(x)′β̂. (2.3.1)

In the remainder of this section, we establish a uniform consistency rate of the

estimate m̂(x).

Assumption A1. The random variables {Xi}ni=1, n = 1, 2, · · · , are independent of

{εj}∞j=1 and identically distributed with the probability density function f(x), x ∈ X .

The joint density of Xi and Xj, fij(x, y), x, y ∈ X , exists for all i and j.

The assumption of identity of distribution on {Xi}ni=1 later facilitates proofs of

theorems by offering some algebraic simplification, allowing us to afford more hetero-

geneity in the unobserved {Ui}ni=1, which was deemed more crucial than allowing for

non-identical distribution of the observed {Xi}ni=1. Heterogeneity/non-stationarity in

Xi across i is still allowed as the dependence in Xi may vary across the index i.

Assumption A2. The random variables {Ui}ni=1, n = 1, 2, · · · , follows the linear

specification (2.2.2) with some bounded positive function σ(x) : X → R, and innova-

tions {εj} are independent across j, satisfying E(ε2
j ) = 1 and max

j≥1
E|εj |2+ν < ∞,

for some ν > 0.

For any k ≥ 1, define a k × k matrix

Bk := E(pk(Xi)p
k(Xi)

′), k = 1, 2, · · · . (2.3.2)

Let λ(A) and λ̄(A) denote the minimal and maximal eigenvalues of a square matrix

A. In this work, Euclidean norm is used for vectors: ‖a‖2 = a′a. For matrices, we use

spectral norm, induced by Euclidean vector norm: ‖A‖ = max
‖x‖=1

‖Ax‖ = λ̄1/2(A′A).

For functions, the uniform norm |g|∞ = sup
x∈X
|g(x)| is used.

Define a sequence of scalar constants ξ(k) as

ξ(k) := sup
x∈X
‖pk(x)‖, k = 1, 2, · · · .

Quantities similar ξ(k) were also used in Andrews (1991) and Newey (1997). If it is

known that m is a bounded function, one may choose bounded and non-vanishing

series functions, in which case ξ(k) increases at the rate of
√
k: sup

x∈X
‖pk(x)‖ =

sup
x∈X

( k∑
i=1

p2
i (x)

)1/2 ≤ C√k. It is sometimes possible to obtain the rate of ξ(K) explic-

itly in terms of K. Newey (1997) provides examples where under suitable conditions,

ξ(K) = K when series functions are orthogonal polynomials, and ξ(K) = K1/2 when
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they are B-splines.

Assumption A3. (i) There exists c > 0 such that λ(Bk) ≥ c, ∀k ≥ 1.

(ii) K and pK(·) are such that K 2 ξ4 (K ) = o(n).

Condition λ(Bk) ≥ c of Assumption A3(i) requires Bk to be nonsingular for all

values of k and is also assumed in Andrews (1991) and Newey (1997). When this

assumption fails, some series functions in ps(·), s ≥ 1 may be redundant and need to

be eliminated to make it hold. Assumption 3(ii) imposes an upper bound on the rate

of increase of ξ(K) as K → ∞. Using the explicit bounds ξ(K) mentioned in the

previous paragraph, A3 (ii) boils down to K = o(n1/4) for the case of B-splines and

K = o(n1/6) in the case of orthonormal polynomials under the suitable conditions

required for those expressions of ξ(K).

Assumption A4. The function m(·) : X → R and series functions ps(·), s ≥ 1,

are such that there exist a sequence of vectors βK and a number α > 0 satisfying, as

K →∞,

|m− pK ′βK |∞ = O(K−α).

Assumption A4 is a standard condition used in the series estimation literature, and

appears in Andrews (1991) and Newey (1997). It requires the uniform approximation

error of m(·) by a linear combination of the chosen set of series functions to diminish

fast enough. It can be seen as a smoothness condition imposed on m(·), if the functions

ps(·), s = 1, 2, · · · are ordered so that higher values of s correspond to less smooth

functions. In such case, the smoother the function m(·) is, the faster is the rate

of decay in the coefficients of the vector βK in the series expansion pK ′βK of m(·).
Some further insights into Assumption A4 for certain choices of the approximating

functions, including polynomials, trigonometric polynomials, splines and orthogonal

wavelets, can be found in Chen (2007), pp. 5573. Assumption A4 will control the bias

term of our estimate m̂, and α is also related to the number of the regressors. Newey

(1997) points out that for splines and power series, Assumption A4 is satisfied with

α = s/q where s is the number of continuous derivatives of m and q is the dimension

of x. Conditions imposing an upper bound on the rate of increase in K, such as A3

(ii), may necessitate a stronger assumption on the smoothness of the unknown m.

Now, we will state an assumption that is required to control the strength of de-

pendence in Xi’s across i. Introduce the quantity:

4n :=

n∑
i,j=1,i 6=j

∫
X 2

|fij(x, y)− f(x)f(y)|dxdy. (2.3.3)

The rate of growth of 4n is a measure of bi-variate dependence in Xi’s and has

an upper bound of 2n2, a useful property used in the proofs. The quantity 4n is

zero in case of independence across i and we may view the condition 4n = O(n)

as an analogue to the concept of short-range/weak dependence in time series litera-

ture. Quantities of similar nature were used in Robinson (2011) and Robinson and
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Thawornkaiwong (2010).

In the case that Xi’s are Gaussian random variables, 4n satisfies the following

simple bound. Let σ
(X)
ij := Cov(Xi, Xj). Assume for simplicity that σ

(X)
ii = σ

(X)
i = 1.

If for some c0 < 1, one has |σ(X)
ik | ≤ c0, ∀i, k = 1, · · · , n; i 6= k, n ≥ 1, then

4n ≤ C
n∑

i,k=1,i 6=k
|σ(X)
ik |, n ≥ 1,

see Proposition 2.1 in Appendix B. Clearly, if max
1≤k≤n

n∑
i=1

|σ(X)
ik | ≤ Cn, then4n = O(n),

whereas 4n = o(n2) holds for a large class of covariances. Thus, in the Gaussian case,

4n can be replaced by the sum

n∑
i,k=1:i 6=k

|σ(X)
ik |.

Assumption A5. As n→∞, n−2K2ξ4(K)4n = o(1).

Assumption A5 indicates that stronger dependence in Xi will require the use of

smaller K. In the light of Assumption A4, this will necessitate a stronger assumption

on the smoothness of the unknown function m. Under weak dependence, i.e. 4n =

O(n), A5 reduces to K2ξ4(K) = o(n) which is stated in A3(ii). Otherwise, A5 is a

stronger condition than A3(ii) imposed on the upper bound of the growth in K and

ξ(K).

To state our first theorem, it is necessary to introduce some notation. Define nor-

malised functions P k(x) := B
−1/2
k pk(x) withBk as in (2.3.2) such that E(P k(Xi)P

k(Xi)
′)

= Ik. We shall write P (x) = PK(x) with K = Kn, suppressing the superscript K for

the rest of the chapter for the ease of notation. Note that P (·) = [P1K(·), · · · , PKK(·)]′,
with the double subscripts at PsK(·) arising from the definition P (·) = B

−1/2
K pK(·).

Such normalised functions were also used in Newey (1997). Let P = Pn = (P (X1),

· · · , P (Xn))′ ∈ Rn×K . For a given sequence K = Kn, define the following K × K

variance-covariance matrix Σn of the K × 1 vector sum

n∑
i=1

P (Xi)Ui/
√
n:

Σn := E(P′UU ′P/n) = V ar

(
1√
n

n∑
i=1

P (Xi)Ui

)
(2.3.4)

=
1

n

n∑
i,k=1

E
(
P (Xi)UiUkP

′(Xk)
)

=
1

n

n∑
i,k=1

γikE(σ(Xi)σ(Xk)P (Xi)P
′(Xk)),

where

γik := Cov(
∞∑
j=1

bijεj ,
∞∑
j=1

bkjεj) =
∞∑
j=1

bijbkj .

The following theorem obtains the uniform rate of convergence of the estimator m̂(x).
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Theorem 2.1 (Uniform Rate of Convergence). Under Assumptions A1-A5,

sup
x∈X
|m̂(x)−m(x)| = Op

(
ξ(K)

[√
tr(Σn)

n
+K−α

])
, as n→∞.

This result coincides with the rate obtained by Newey (1997) for i.i.d. {Xi} and {Ui}.
In the latter case Σn = σ2E(P (Xi)P (Xi)

′) = σ2IK leading to tr(Σn) = O(K). The

proof of the above Theorem is given in the Appendix A. The first term in the rate of

Theorem 2.1 reflects the contribution of the variance of m̂, while the second term arises

from the bias component. The uniform rate of consistency highlights the bias/variance

trade-off in the selection of K: the use of larger K reduces the bias and increases the

variance.

The rates obtained in Theorem 2.1 need to be verified to be op(1), to establish

uniform consistency of the series estimate m̂. The requirement ξ(K)K−α = o(1) of

negligible bias suggests that it may be favourable to choose series functions which

are bounded. To evaluate the contribution of the variance, suppose for now that

the original series functions and thus, the normalized functions P1K , · · · , PKK , are

uniformly bounded. Then, tr(Σn) = K ·
n∑

i,k=1

γik/n, making the variance contribution

ξ(K)
√
K
( n∑
i,k=1

γik/n
2
)1/2

. Under weak dependence on ei’s,
n∑

i,k=1

γik = O(n), meaning

the rate becomes ξ(K)
√
K/n = K/

√
n which is o(1) by Assumption A3 (ii). Under

strong dependence of ei’s, the rate is slower and further conditions restricting the

increase of K and ξ(K) may be needed to show uniform consistency.

For the i.i.d. setting, the uniform rate of convergence obtained by Newey (1997)

was improved by de Jong (2002), under the additional assumption of compact X .

Under the presence of dependence, it was not possible to obtain improvement similar

to that achieved in de Jong (2002), whose proof makes use of Hoeffding’s inequality

for a sum of i.i.d. random variables. It would be of interest for future work to sharpen

the bound provided by Theorem 2.1.

2.4 Asymptotic normality

The previous section established the uniform rate of convergence for m̂ −m, whilst

our ultimate interest lies in inference on the functional a(m). Denote θ0 = a(m) and

θ̂ = a(m̂). In this section, we study the asymptotic distribution of θ̂ − θ0. First,

we provide some technical assumptions needed for establishing asymptotic normality.

Recall that a(·) is a vector-valued functional operator.

Assumption B1. One of the following two assumptions holds.

(i) a(g) is a linear operator in g.

(ii) For some ε > 0, there exists a linear operator D(g) and a constant C = Cε <∞
such that ‖a(g)− a(m)−D(g −m)‖ ≤ C(|g −m|∞)2, if |g −m|∞ ≤ ε.
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Assumption B2. For some C < ∞, D(·) of Assumption B1 satisfies ‖D(g)‖ ≤
C|g|∞.

Assumptions B1 and B2 are the same as in Newey (1997). Assumption B2 requires

the linear functional D(·) to be continuous, which follows from the fact that D(·) is the

Frechet-differential of a(·) at m. A functional a(·) is said to be Frechet-differentiable

at m if there exists a bounded linear operator D(·) satisfying the following property:

∀δ > 0, ∃ε > 0 such that ‖a(g) − a(m) −D(g −m)‖ ≤ δ|g −m|∞ if |g −m|∞ ≤ ε.

Assumption B1(ii) imposes a stronger smoothness condition on a(·) at m than Frechet

differentiability. It is not restrictive, see e.g. its verification for some a(·) in Newey

(1997, pp. 153). When a(·) is a linear operator, its Frechet-derivative is itself, D(g) =

a(g).

Define a K × d matrix A, with D(·) as in Assumption B1 and the K × 1 vector of

normalised functions P (·) as defined above, setting

A = (D(P1K), · · · , D(PKK))′ ∈ RK×d.

Consider a linear operator a(m) = (m(x1), · · · ,m(xd))
′, for some (x1, · · · , xd) ∈

X d. The linearity of a(m) yields a(PsK) = D(PsK) =
(
PsK(x1), · · · , PsK(xd)

)′
, s =

1, · · · ,K.

Denote by V̄n the d×d conditional variance-covariance matrix of the sum

n∑
i=1

A′P (Xi)Ui/
√
n,

V̄n := V ar

(
n∑
i=1

A′P (Xi)Ui/
√
n|X1, · · · , Xn

)
=

1

n

n∑
i,k=1

γikσ(Xi)σ(Xk)A
′P (Xi)P

′(Xk)A.

To gain an insight into the the matrix V̄n and its role in the statement of the asymptotic

distribution, note that one may alternatively write

V̄n = A∗′B−1
K

 1

n

n∑
i,k=1

γikσ(Xi)σ(Xk)p
K(Xi)p

K′(Xk)

B−1
K A∗,

where A∗ := (D(p1), · · · , D(pK))′ = B
1/2
K A ∈ RK×d, the matrix of Frechet-derivatives

of the original series functions. One sees that the matrix V̄n takes the form of the con-

ditional variance-covariance matrix of a nonlinear function of least squares estimates,

where the matrix A∗ is the Jacobian term and

B−1
K

 1

n

n∑
i,k=1

γikσ(Xi)σ(Xk)p
K(Xi)p

K′(Xk)

B−1
K

is the conditional variance-covariance matrix of LS estimates for a possibly misspecified

model. Assumption B3 below specifies the conditions under which V̄n is the correct

normalising matrix to be used in the statement of the asymptotic result of Theorem
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2.2 below.

Two alternative representations of V̄n in terms of P (·) or pK(·) were given above.

In the statement of assumptions and theorems, quantities will be written in terms of

the vector of normalized functions P (·) to facilitate discussion of the quantity V̄n in a

more tractable manner. We shall need the following assumptions.

Assumption B3. As n→∞,

(i) ξ2(K)tr(Σn) = o(n1/2).

(ii) K3ξ6(K)tr(Σn)

(
1

n
+
4n

n2

)
= o(1).

(iii) nξ2(K)K−2α+1 = o(1).

Assumption B3 combines various conditions on the rate of increase of K, ξ(K), tr(Σn)

and 4n as n → ∞. The rate of increase of tr(Σn) depends on that of K and the

strength of dependence in Ui and Xi. Uniform consistency of Theorem 2.1 required

smoothness condition ξ(K)K−α = o(1) on the unknown m, while deriving asymptotic

normality in Theorem 2.2 needs a stronger smoothness condition of B3 (iii). Revisiting

the case of bounded functions PsK(·)’s and weakly dependent ei’s leading to tr(Σn) =

O(K), note that B3 (i) is implied by A3 (ii), while B3 (ii) becomes K4ξ6(K) = o(n)

which implies A3 (ii).

Assumption B4. K and functions pK(·) are such that, as n→∞,

ξ2(K)√
n

max
1≤j≤n

{
n∑
i=1

|bij |

}
= o(1).

Assumption B4 requires the influence of εj of any particular j on Ui, i = 1, 2, · · ·
to die off, more quickly if ξ(K) grows faster.

Assumption B5. As n→∞, ‖V̄ −1
n ‖ = Op(1).

Assumption B5 trivially holds in the case when the random matrix V̄n converges to

a finite nonsingular matrix, considered in the next section of
√
n rate of convergence.

Validation of such convergence requires stronger restrictions both on the functional

a(·) and the strength of dependence in Xi’s and Ui’s. Theorem 2.3 allows V̄n to

diverge with n as long as approximation ‖V̂n − Vn‖ = o(1) holds for some sequence

of deterministic nonsingular matrices Vn. Such approximation still requires certain,

although weaker, restrictions to be placed on the strength of dependence in Xi’s and

Ui’s. We present Theorem 2.2 separately from Theorem 2.3, to separate assumptions

yielding asymptotic normality from those required for ‖V̂n−Vn‖ = op(1). Assumption

B5 certainly assumes the derivative matrix A to have rank d for allK ≥ d. Throughout

this work, denote by A1/2 the unique positive definite square root of a positive definite

matrix A.
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Theorem 2.2 (Asymptotic Normality). Under assumptions A1-A5 and B1-B5,

√
nV̄ −1/2

n (θ̂ − θ0)→d N(0, Id), as n→∞. (2.4.1)

The proof of Theorem 2.2 is given in the Appendix A.

2.4.1 Properties of V̄n

The conditional covariance matrix V̄n is a random quantity. In this section we study

conditions, under which ‖V̄n − Vn‖ converges to zero, where

Vn := E(V̄n) = V ar

(
n∑
i=1

A′P (Xi)Ui/
√
n

)
=

1

n

n∑
i,k=1

γikE
[
σ(Xi)σ(Xk)A

′P (Xi)P
′(Xk)A

]
.

This will allow us to present the asymptotic distribution result (2.4.1) for (θ̂−θ0) with

normalisation Vn. In Theorem 2.3 below, the ith element of the d × 1 estimator θ̂ is

shown to be
√
n(V

−1/2
n )ii-consistent, where (V

−1/2
n )ii denotes the ith diagonal element

of V
−1/2
n .

To gain an intuition of implications of this rate, let’s focus on the case of scalar

a(·) in this paragraph. We rule out the possibility of shrinking Vn which corresponds

to presence of negative dependence in Xi’s or Ui’s, as this is rather unlikely for real

data. The above expression of Vn indicates that Vn = O(1) would correspond to

the case of short range dependence in the combined quantity A′P (Xi)Ui if K were

fixed. This may still allow for possibility of long range dependence in A′P (Xi) or

Ui to a certain degree. With increasing K, Vn may be increasing even under short-

range dependence of A′P (Xi)Ui. The main contribution of this chapter is developing

inference procedures when Vn is unknown and deriving asymptotic distribution results

under additional generality in the strength of dependence in both {Xi} and {Ui}.
The following two conditions state restrictions on the strength of dependence in

Xi’s and Ui’s across i. Again, an upper bound is imposed on the rate of increase in

the measure of bivariate dependence in Xi, 4n.

Assumption B6. As n→∞,

ξ8(K)(n+4n)

n2

(
max

1≤j≤n

n∑
i=1

∣∣γij∣∣)2 = o(1).

Assumption B6 indicates how the dependence in the data restricts the choice of

the bandwidth parameter K and series functions. The stronger the dependence is,

the slower the rate of increase in K and ξ(K) is required to be, leading to further

repercussions on the smoothness in Assumption B3 (iii), where a larger value of α

would be needed to compensate for slower rate of growth in K.

Next we state an assumption on the strength of dependence in {Xi} across i in

terms of their 4th order joint cumulant. The following definition is required to do this.
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Definition 2. Let Z1, Z2, Z3, Z4 be zero-mean random variables with finite fourth

moments. Then, the joint cumulant of these four random variables is defined as

κ(Z1, Z2, Z3, Z4) := E(Z1Z2Z3Z4)− E(Z1Z2)E(Z3Z4)

−E(Z1Z3)E(Z2Z4)− E(Z1Z4)E(Z2Z3)

= Cov(Z1Z2, Z3Z4)− Cov(Z1, Z3)Cov(Z2, Z4)− Cov(Z1, Z4)Cov(Z2, Z3).

Recalling A = (A1, · · · , AK)′ ∈ RK×d, introduce the following notations:

h
(`)
i := σ(Xi)A

′
`P (Xi), (2.4.2)

h̄
(`)
i := σ(Xi)A

′
`P (Xi)− E

(
σ(Xi)A

′
`P (Xi)

)
, 1 ≤ i ≤ n, 1 ≤ ` ≤ d.

The latter term is a de-meaned version of the former, introduced here so that we can

make use of the definition of joint cumulant for mean-zero random variables.

In the time series literature, see e.g. Brillinger (1968), the weak dependence charac-

terization in terms of cumulants typically implies that the 4th order cumulant satisfies,∣∣∣∣∣∣
n∑

i1,i2,i3,i4=1

κ(Zi1 , Zi2 , Zi3 , Zi4)

∣∣∣∣∣∣ = O(n). (2.4.3)

Assumption B7. E
[
(h̄

(`)
i )4

]
<∞ and κ(h̄

(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

) are such that

max
1≤`,p≤d

1

n2

∣∣∣∣∣∣
n∑

i1,i2,i3,i4=1

γi1i2γi3i4κ(h̄
(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

)

∣∣∣∣∣∣ = o(1).

Comparing Assumption B7 to (2.4.3), one observes that Assumption B7 is not restric-

tive and may allow strong dependence in both Xi and Ui. One can have arbitrarily

strong dependence in Ui if {h̄(`)
i } are weakly dependent, c.f. (2.4.3):

LHS ≤ C max
1≤`,p≤d

1

n2

n∑
i1,i2,i3,i4=1

|κ(h̄
(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

)| = o(1),

noting |γik| ≤
√
γiiγkk ≤ C <∞, i, k = 1, · · · , n, n ≥ 1.

Assumption B8. As n→∞, ‖V −1
n ‖ = O(1).

The following theorem establishes asymptotic normality if θ̂.

Theorem 2.3 Under Assumptions B7-B8,

‖V̄ −1
n ‖ = Op(1), and, (2.4.4)

‖V̄n − Vn‖ = op(1). (2.4.5)
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Consequently, under assumptions A1-A5 and B1-B8,

√
nV −1/2

n (θ̂ − θ0)→d N(0, Id). (2.4.6)

Theorem 2.3 covers non-parametric, as well as parametric rate of convergence of θ̂

to θ0, and the
√
n rate case will be the focus of the next section. An important example

of slower-than-
√
n rate of convergence is the non-parametric regression estimation

at d number of fixed points, a(m) = (m(x1), · · · ,m(xd))
′. Noting linearity of this

functional, we have the following expression for A:

A =


P1K(x1) P1K(x2) · · · P1K(xd)

P2K(x1) P2K(x2) · · · P2K(xd)
...

...
. . . · · ·

PKK(x1) PKK(x2) · · · PKK(xd)

 .

The (`, p)th element of Vn is therefore

(Vn)`p :=
K∑

j,m=1

PjK(x`)PmK(xp)
{ 1

n

n∑
i,k=1

γikE
[
σ(Xi)σ(Xk)PjK(Xi)PmK(Xk)

]}
.

In order to use Theorem 2.3 to carry out inference on a(m̂) = (m̂(x1), · · · , m̂(xd))
′, we

need to estimate the term in the curly bracket, which reflects dependence in Xi’s and

Ui’s across i. Such estimation typically requires additional information like distance

measure between units in spatial setting, as discussed in Section 2.1. In contrast, kernel

non-parametric regression estimation literature found that the relevant asymptotic

covariance matrix coincides with that under independence when Xi’s and Ui’s are

weakly dependent across i, see e.g. Robinson (1983, 2011). This justifies the use of the

covariance matrix under independence, that is easily estimated, for inference on kernel

non-parametric regression estimates under weak dependence, at least for sample with a

large n. It is notable that similar result has been recently obtained for series estimation

by Chen, Liao and Sun (2011) in the context of weakly dependent time series data.

They found that under certain conditions on the functional a(·), that include the case

of a(m) = (m(x1), · · · ,m(xd))
′ and preclude the

√
n rate of convergence of a(m̂),

Vn reduces asymptotically to the same matrix as under independence, which in our

setting is equal to lim
n→∞

1

n

n∑
i=1

γiiE
[
σ(Xi)

2A′P (Xi)P
′(Xi)A

]
. In future work, it is of

great interest to extend Chen, Liao and Sun (2011)’s result to the spatial setting

considered here, which may offer a method of inference for some cases of slower-than-
√
n rate of convergence under weak dependence. Alternatively, devising a consistent

estimation of Vn, that may even offer method of inference under strong dependence,

is a challenging yet important task for future research.
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2.5
√
n rate inference

Theorem 2.3 provides sufficient conditions for convergence
√
nV
−1/2
n (a(m̂)−a(m))→d

N(0, Id), where Vn is a d × d matrix that may grow with n. In this section, we

establish sufficient conditions under which Vn converges to a finite limit V , as n→∞,

which in turn implies the parametric
√
n rate convergence of θ̂ to θ0. Attainment of

the parametric rate of convergence by some semi-parametric estimates have received

wide interest in econometric literature, starting from Robinson (1988) and Powell,

Stock and Stocker (1989). This type of results are available for the two well-known

semi-parametric models: the single index model and partly linear model. While in

the kernel estimation each semi-parametric model needs to be considered separately,

Newey (1997) has shown that series estimation allows introducing a general semi-

parametric estimate encompassing both afore-mentioned popular models, enabling

attainment of a unified theory of
√
n-rate of convergence. Chen and Shen (1998)

obtained similar results for weakly dependent time series case. It is of interest to

extend these results to the setting of cross-sectional dependence, since semi-parametric

estimates, such as in the partly linear regression model, are widely used in empirical

works, generating a need for a method of inference robust against general spatial

dependence and heterogeneity. This section provides a data-driven studentization

method that overcomes certain limitations of the existing alternatives.

2.5.1 Partly linear regression model

Before starting the formal statement of theory, we discuss the partly linear regression

model in some detail, as the semi-parametric estimate of this model satisfies the condi-

tions of this section and will be used in the Monte Carlo study and empirical examples.

This model is a popular alternative to the fully non-parametric regression model and

imposes a restriction on the non-parametric function m(·) that a d-dimensional subset

of the regressors enter m(·) linearly. For notational convenience, denote this subset

by Zi and the remaining regressors by Xi. Then the model can written as

Yi = Z ′iδ0 + h0(Xi) + Ui, (2.5.1)

where h0(·) is a function of unknown non-parametric form. The model is particularly

suitable when Zi are categorical variables, and is often used when the number of

regressors is large since the fully non-parametric specification suffers from the curse of

dimensionality. This model has received much attention in kernel estimation, see e.g.

Robinson (1988) and Fan and Li (1999), where it has been noted that the parameter

δ0 can be estimated at the
√
n rate despite the first stage non-parametric estimate

having a slower-than-
√
n rate of convergence.

Series estimation of (2.5.1) had been considered in Chamberlain (1986), where the

choice of the series functions takes into account the partly linear regression form. The
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first d number of series functions are set to be Zi, while the remaining K − d number

of series functions include only Xi in their arguments. The series estimate of δ0 is

then the first d elements of β̂, and ĥ(x) = m̂(z, x) − z′δ̂. At first glance, the form of

series estimation of δ0 may seem very different from kernel estimate, where first-stage

non-parametric regression estimates of Yi’s and Zi’s in terms of Xi’s are required.

Contrary to what meets the eye, they are in fact very similar, as explained below.

Kernel and series estimates of δ0 are both based on the following relation: sub-

tracting E(Yi|Xi) = E(Zi|Xi)
′δ0 + h0(Xi) from (2.5.1) yields

Yi − E(Yi|Xi) = [Zi − E(Zi|Xi)]
′δ0 + Ui,

suggesting that δ0 could be estimated by running a regression of Yi−E(Yi|Xi) on Zi−
E(Zi|Xi). In Robinson (1988)’s kernel estimate denoted, δ̃, the unknown quantities

E(Yi|Xi) and E(Zi|Xi) are replaced by suitable kernel estimates,

δ̃ = [(Z − Ẽ(Z|X))′(Z − Ẽ(Z|X))]−1(Z − Ẽ(Z|X))′(y − Ẽ(y|Z)),

with Z = (Z1, · · · , Zn)′, X = (X1, · · · , Xn)′, and where Ẽ(Z|X) and Ẽ(y|Z) denote

the first stage kernel estimates of the n×d matrix of conditional expectations E(Z|X)

and the n× 1 vector E(y|X).

In the series estimation, the same operation is being implemented by the property

of β̂ = (p′p)−p′Y ∈ RK , albeit implicitly. To see this, one may write down the

following partitioned regression formula familiar from linear regression. Recall that δ̂ is

the first d elements of β̂ such that β̂ = (δ̂′, λ̂′)′ = (p′p)−p′Y ∈ RK , with pK(Zi, Xi) =

(Z ′i, q(Xi)
′)′, where q(·) is the vector of K − d series functions in terms of Xi. Define

the n × n residual maker matrix M := I − P(P ′P)−P ′, using n × (K − d) matrix

P = (q(X1), · · · , q(Xn))′. Then, partitioned regression formula yields,

δ̂ = (Z ′MZ)−Z ′My.

The projections P(P ′P)−1P ′Z and P(P ′P)−1P ′y are series estimates of E(Z|X) and

E(y|X). Therefore, the series estimate δ̂ of δ0 effectively takes the same form as the

kernel estimate δ̃ of Robinson (1988), with series estimates of E(Z|X) and E(y|X)

replacing corresponding kernel estimates.

Next, we clarify the functional a(·) used to represent the quantity of interest δ0.

There is more than one functional a(·) that yields a(m) = δ0. Andrews (1991) notes

one could write a(m) = ∂m(x, z)/∂z = δ0 for any values of x, z. In this work, we

use the following functional as in Newey (1997), since this facilitates verification of

conditions for
√
n-consistency. Denote Z∗ = Z − E(Z|X), where Z and X are random

variables independent of the data used to construct δ̂. Suppose E(Z∗Z∗′) is a non-

singular matrix, which is an identification condition for δ0, and consider the following
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functional of m:

a(m) := E
{

[E(Z∗Z∗′)]−1Z∗m(X, Z)
}

(2.5.2)

= [E(Z∗Z∗′)]−1
{
E(Z∗Z′)δ0 + E[Z∗h0(X)]

}
= δ0.

The last equality follows from

E(Z∗Z∗′) = E(ZZ′)− E[E(Z|X)Z′]− E[ZE(Z′|X)] + E[E(Z|X)E(Z′|X)]

= E(ZZ′)− E[E(Z|X)Z′] = E(Z∗Z′),

since E[ZE(Z′|X)] = E[E(Z|X)E(Z′|X)] by the law of iterative expectation, and

E[Z∗h0(X)] = E[Zh0(X)]− E[E(Z|X)h0(X)] = 0.

To see how this functional can be used to characterise the series estimate of δ0, re-

call β̂ = (δ̂′, λ̂′)′ and pK(x, z) = (z′, q(x)′)′. Then, m̂(x, z) = z′δ̂ + q(x)′λ̂. Hence,

conditioning on the data, and consequently on β̂, we have,

a(m̂) = E
{

[E(Z∗Z∗′)]−1Z∗m̂(X, Z)
}

= [E(Z∗Z∗′)]−1
[
E(Z∗Z′)δ̂ + E[Z∗q(X)′]λ̂

]
= δ̂.

2.5.2
√
n rate of convergence

Returning to the discussion of the
√
n rate of convergence, the following assumption

states the key condition and is from Newey (1997).

Assumption C1. There exists a d×1 vector-valued function w(x) = (w1(x), · · · , wd(x))′

with the following properties.

(i) E[w(Xi)w
′(Xi)] is finite and nonsingular,

(ii) D(m) = E[w(Xi)m(Xi)], D(PsK) = E[w(Xi)PsK(Xi)], 1 ≤ s ≤ K for all K,

(iii) E[‖w(Xi)− δKP (Xi)‖2]→ 0 for some sequence of fixed d×K matrices δK .

Discussion of sufficient conditions for Assumption C1 can be found in Newey

(1997), pp. 155. The vector-valued function w(·) is the element of the domain of

D(·) that is used in the Riesz representation of D(·). Assumption C1 (iii) requires

such function w(·) to lie in the linear span of the series functions. Newey (1997) ex-

plicitly verifies that Assumption C1 holds for the semi-parametric estimands in the

partly linear and single index models and also for the case of average consumer sur-

plus estimation, where the quantity of interest is the approximate consumer surplus

integrated over a range of income. The verification for the partly linear regression

case is straightforward in the view of (2.5.2). Interested readers are referred to pp.

155 of Newey (1997).

By Assumption C1, D(PsK) = E[w(Xi)PsK(Xi)], 1 ≤ s ≤ K. Thus, one can write

A = E[P (Xi)w
′(Xi)]. Since the K × 1 vector of normalized functions P (·) satisfies
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E[P (Xi)P
′(Xi)] = IK , A′P (x) can be written as the mean square projection of w(x)

on the K × 1 vector P (·) of approximating functions:

A′P (x) = A′I−1
K P (x) = E[w(Xi)P

′(Xi)]E[P (Xi)P
′(Xi)]

−1P (x).

Denote d × 1 vector A′P (x) =: vK(x) = (v1K(x), · · · , vdK(x))′, with the subscript K

indicating that vK is a mean-square projection of w onto the linear space spanned by

K series functions. Then Vn can be written as

Vn =
1

n

n∑
i,k=1

γikE[σ(Xi)σ(Xk)vK(Xi)v
′
K(Xk)].

Next, define d× d matrix Wn where vK(·) is replaced by the function w(·):

Wn :=
1

n

n∑
i,k=1

γikE[σ(Xi)σ(Xk)w(Xi)w
′(Xk)].

The following assumption provides sufficient conditions for
√
n rate of convergence of

a(m̂) to a(m).

Assumption C2. (i) V := lim
n→∞

Wn exists; (ii)
n∑

i,k=1

|γik| = O(n).

Existence of the limit V is a condition imposed on the collective strength of depen-

dence in Ui and Xi, comparable to Assumption A4 of Robinson and Thawornkaiwong

(2010). Assumption C2 (ii) is a weak dependence restriction for ei’s.

Theorem 2.4. (
√
n rate of convergence). Under assumptions C1 and C2,

Vn → V <∞, as n→∞. (2.5.3)

Consequently, under assumptions A1-A5, B1-B7, and C1-C2,

√
n(θ̂ − θ0)→d N(0, V ), as n→∞.

Theorem 2.4 has obtained the
√
n rate of convergence for certain semi-parametric

estimates under weak dependence. The asymptotic variance-covariance matrix V is

unknown and needs to be estimated to construct a confidence interval or carry out

hypothesis testing for the unknown θ0. The next subsection considers the issues related

to this.

2.5.3 Studentization

In the earlier Section 1, possible problems of using the HAC estimator in the cross-

sectional setting have been discussed. Under the conditions for
√
n rate of convergence

of a(m̂) to a(m) given in this section, it is possible to construct a new studentization

for a(m̂)−a(m) that does not require availability of economic distances. Theorem 2.4
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states
√
n(θ̂n − θ0)→d N(0, V ), where the matrix

V = lim
n→∞

A′P′E(UU ′|X)PA/n = lim
n→∞

A∗′B−1
K p′E(UU ′|X)pB−1

K A∗/n

is unknown. It is not possible to consistently estimate V , unless one resorts to ad-

ditional information of suitable distance measures, as considered in Conely (1999),

Kelejian and Prucha (2007) and Robinson and Thawornkaiwong (2010). Instead,

we devise a matrix Ĉn, defined in the subsequent discussion, such that the limit of
√
nĈ
−1/2
n (θ̂n−θ0) is free from unknown parameters. Similar idea was used in a setting

of linear OLS estimation in Kiefer, Vogelsang and Bunzel (2000).

Recall some notations: BK = E(pK(Xi)p
K(Xi)

′), P (x) = B
−1/2
K pK(x), A =

(D(P1K), · · · , D(PKK))′ ∈ RK×d, A∗ = (D(p1), · · · , D(pK))′ = B
1/2
K A ∈ RK×d with

D(·) from Assumption B1(i). Denote by Â∗ and B̂K the estimates of the corresponding

true values A∗ and BK .

Â∗ :=
∂a(pK ′β)

∂β

∣∣
β=β̂

, B̂K := p′p/n =

n∑
i=1

pK(Xi)p
K(Xi)

′/n. (2.5.4)

Given Â∗ and B̂K , we can construct the sample analogue ofA′P′U/
√
n by Â∗

′
B̂−1
K p′Û/

√
n,

where Û = Y −M̂ , with M̂ =
(
m̂(X1), · · · , m̂(Xn)

)
, is the n×1 vector of correspond-

ing residuals. To introduce Ĉn, set

Ŝ∗n,m :=
m∑
i=1

Â∗
′
B̂−1
K pK(Xi)Ûi/

√
n, 1 ≤ m ≤ n.

Now, define

Ĉn :=
1

n

n∑
m=1

Ŝ∗n,mŜ
∗
n,m
′, and Ψd :=

∫ 1

0
[Wd(r)− rWd(1)][Wd(r)− rWd(1)]′dr,

where Wd(·) denotes a d-dimensional vector of independent Brownian motions and Ψd

is the integral of the outer product of d-dimensional multivariate Brownian bridge.

Recall that EWd(r)Wd(u)′ = rI, 0 ≤ r ≤ u ≤ 1.

Assumption C3. (i)

[rn]∑
i=1

n∑
k=[rn]+1

|γik| = o(n) uniformly in r ∈ [0, 1];

(ii) max
1≤i≤n

n∑
k=1

|γik| = O(1).

Previously, Assumption C2 (ii) of Theorem 2.4 required ei’s to be weakly de-

pendent. C3 (ii) further rules out the presence of any ”dominant” unit whose error

covariances with new units added to the sample are persistently significant. Assump-

tion C3 (i) requires some falling-off of dependence as |i−k| increases, which inevitably

necessitates the ordering of the data to carry at least some information of the struc-

ture of dependence, albeit with a significant relaxation from the time series case where
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dependence is a function of |i − k|. Both C3 (i) and (ii) are natural implications of

weak dependence in the time series context where the dependence is a fast-decreasing

function of the distance in time. The current setting differs from the time series in two

ways; firstly it allows γik = γikn to admit a triangular array structure, and secondly

it relaxes the link between γik and |i − k|. For example, Assumption C3(i) is satis-

fied if there exists a positive function, η(·), such that |γik| ≤ η(i − k), i, k = 1, 2, · · ·

and
∞∑

j=−∞
η(j) < ∞. See Proposition 2.2, Appendix B. If γik takes on a triangular

array structure, as allowed in the pure SAR model, then Assumption C3 (i) is poten-

tially more restrictive. In this setting, Assumption C3 (ii) allows a unit i to interact

with infinitely many others as the sample increases, as long as the bilateral interaction

γikn, k = 1, 2, · · · , falls suitably fast in n, whereas C3 (i) requires a faster uniform-in-n

rate of reduction in γikn as |i− k| increases.

Therefore, in order to apply the studentization method to cross-sectional data, the

ordering of data needs to carry some meaning. This rules out the case where the data

was collected at random from the population without any record of how units may be

related. Another issue is that in spatial settings it may not always be straightforward

to order units along a single line, as their dependence structure may be based on e.g.

a plane. Nonetheless, there are many economic applications where the data can be

ordered to adhere to the requirements of Assumption C3. For example, with firm

data, one may expect that firms using similar inputs or producing similar outputs

would exhibit high correlation in disturbances, the knowledge of which can help put

the data in order. This ordering may not be perfect because some perturbation may

result from the imperfection of practitioner’s knowledge of the underlying dependence

and also because of the challenge of ordering along a single index, as when trying

to order locations on a plane into a line. These considerations are dealt with in a

simulation study later.

Assumption C4. (i) 4n = O(n); (ii) tr(Σn) = O(K); (iii) λ̄(BK) = O(1); (iv)
√
nξ3(K)K−α = o(1).

Assumption C4 (i) can be seen as weak dependence condition on Xi’s, whereas

Assumption C4 (iii) is a restriction on the choice of the approximating functions,

requiring their second moments to be bounded. Assumption C4 (ii) is a condition on

the strength of dependence across i in the combined quantity P (Xi)Ui. Assumption

C (iv) strengthens the smoothness condition of Assumption B3 (iii).

Assumption C5. E(ε4
j ) = κ <∞ for all j = 1, 2, · · · .

Recall the functional derivative D(·) from Assumptions B1 and B2. It is Frechet

differential of the functional a(·), evaluated at m. Now, let D(·; g) denote the func-

tional derivative of a(·) evaluated at g. Let D(·; g) =
(
D1(·; g), · · · , Dd(·; g)

)′
.

Assumption C6. For some 0 < C, ε < ∞ and all g̃, ḡ such that |g̃ −m|∞ ≤ ε and

|ḡ −m|∞ ≤ ε, ‖Di(g; g̃)−Di(g; ḡ)‖ ≤ C|g|∞|g̃ − ḡ|∞, i = 1, · · · , d.

Assumption C5 is the same as in Newey (1997) and requires the functional deriva-
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tives Di(·; g) to exhibit continuity over g, the point at which the derivative is taken.

The following theorem shows that the asymptotic distribution for the estimation

error θ̂ − θ0, when studentized by the matrix Ĉn, is free from the unknown variance

matrix V and only depends on d, and is non-Gaussian.

Theorem 2.5. Under the assumptions of Theorem 2.4 and Assumptions C1-C6,

Ĉ−1/2
n

√
n(θ̂n − θ0)→d Ψ

−1/2
d Wd(1).

Now, suppose we are interested in testing the hypothesis H0 : a(m) = r against

the alternative H1 : a(m) 6= r for a d× 1 fixed vector r. Then the test statistic can be

constructed as t∗n := n(θ̂ − r)′Ĉ−1
n (θ̂ − r). Since t∗n = ‖

√
n(θ̂ − r)′Ĉ−1/2

n ‖2, Theorem

2.5 implies the following result.

Theorem 2.6. Under Assumptions of Theorem 2.5,

t∗n ⇒Wd(1)′Ψ−1
d Wd(1), under H0,

t∗n ⇒∞, under H1.

The critical values cα, satisfying Pr(tn ≤ cα)→ 1−α, required to carry out hypothesis

tests can be obtained from Table 2 of Kiefer et al. (2000) for d = 1, · · · , 30. In

particular, for d = 1, c5% = 46.39, and c10% = 28.88. Correspondingly, the 97.5th and

95th percentiles for Ψ
−1/2
1 W1(1) in Theorem 2.5 are

√
46.39 and

√
28.88.

2.6 Monte Carlo Study of Finite-Sample Performance

In this section, we focus on the partly linear model of (2.5.1) where regressors Xi and

Zi are both one-dimensonal:

Yi = δ0Zi + h(Xi) + Ui.

It was noted in Section 2.5 that the functional a(m) = δ0 satisfies the conditions of

Theorem 2.4. Therefore the studentization devised in Theorem 2.5 and 2.6 applies.

We set the true model at δ0 = 0.3 and h(x) = log(1 + x2).

There are two issues we would like to address in this section, related to the difficulty

of ordering data in line with the requirements of Assumption C3. Firstly, there may

be noise in our information about the ordering. For example, in a spatial setting, one

may correctly know which characteristic of individual units underpin the structure of

dependence, but this characteristic may be observed with error. Secondly, it may not

be straightforward to order the data with a single index as the underlying dependence

structure is more complex. For instance, one may observe units residing on a plane,

and there is no single obvious rule to order them with only a single index. In this

simulation, we consider two set-ups that cover the two issues separately.

In the first set of simulations, we generate random locations for individual units
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along a line, which determines the underlying dependence structure. We then com-

pare performance of studentization under the correct ordering of data to that under

perturbed ordering, that arises when the original locations are observed with noise,

then used to order the data. To be specific, the locations of the observations, denoted

s = (s1, · · · , sn)′, were generated by a random draw from the uniform distribution

over [0, n]. Keeping these locations fixed across replications, Ui and Zi were generated

independently as scalar normal random variables with mean zero and covariances

Cov(Ui, Uj) = Cov(Zi, Zj) = ρ|si−sj |. To construct Xi, we generate another scalar

normal random variable Vi in the same way as Ui and Zi and let Xi = 1 + Vi + 0.5Zi.

The dependent variable is then formed as Yi = log(1 +X2
i ) + 0.3Zi + Ui.

For the studentization part of simulations, we add noise to the locations, to gen-

erate four sets of ”perturbed” locations:

s′i = si + ε′i, s′′i = si + ε′′i , s′′′i = si + ε′′′i , s′′′′i = si + ε′′′′i ,

where the perturbations are independently drawn from

ε′ = (ε′1, · · · , ε′n)′ ∼ N(0, 4In), ε′′ = (ε′′1, · · · , ε′′n)′ ∼ N(0, 25In),

ε′′′ = (ε′′′1 , · · · , ε′′′n )′ ∼ N(0, 100In), ε′′′′ = (ε′′′′1 , · · · , ε′′′′n )′ ∼ N(0, 400In).

These perturbations may be seen as the measurement error in observations of the

locations. We use studentization with 5 different ordering of the data, according to

the five sets of locations s, s′, s′′, s′′′, s′′′′.

We let n = 100, 400 and ρ = 0, 0.2, 0.4, 0.6, giving 8 combinations. For each

combination, three values of K = 4, 6, 9 were tried and 1000 iterations carried out.

For the series functions of Xi, the first K− 1 orthonormal Legendre polynomials were

used.

The first objective of this simulation study is to analyse the finite sample per-

formance of the series estimation for both the non-parametric function m and semi-

parametric quantity a(m) under differing sample sizes, strength of dependence and

choices of K. We report in Table 2.1 the Monte Carlo MSE, bias and variance of

the non-parametric regression estimate at a fixed point (x, z) = (0.5, 0.5), and the

Monte Carlo integrated MSE, defined as E[(m̂(Xi) − m(Xi))
2] conveying how the

non-parametric estimation performs globally. Table 2.1 also contains the Monte Carlo

MSE of the estimate δ̂ of δ0. The Monte Carlo variance and bias of the non-parametric

estimate at a fixed point are in line with the prediction that larger values of K reduce

the bias while increasing variance. As for the Monte Carlo MSE for m̂(0.5, 0.5), under

all four values of ρ, K = 4 or K = 6 led to the smallest MSE for n = 100, while K = 6

did so for n = 400. For the MISE, K = 4 for n = 100 always led to the smallest

MISE, while K = 6 did so for n = 400. The Monte Carlo MSE of the semi-parametric

estimate δ̂ shows remarkable invariance to the choice of K across all of the 8 settings,
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which is especially important as the optimal choice of the bandwidth parameter K

for semi-parametric estimate is often more difficult than in the case of non-parametric

estimation. See Robinson and Thawornkaiwong (2010) for a discussion.

The second objective is to investigate how the studentization of Section 2.5.3

performs in finite samples. Theorem 2.5 implies in this setting,

n(δ̂ − δ0)′Ĉ−1
n (δ̂ − δ0)→d W1(1)′

√
Ψ1
−1
W1(1),

√
n(δ̂ − δ0)√

Ĉn
→d

W1(1)√
Ψ1

.

Kiefer et al. (2000, Table 2) give simulated values of the percentiles of W 2
1 (1)/Ψ1, from

which the corresponding percentiles of the square-rooted quantity W1(1)/
√

Ψ1 can be

easily derived. The 99.5th, 97.5th and 95th percentile ofW1(1)/
√

Ψ1 are
√

101.2,
√

46.39

and
√

28.88, respectively. Based on this, we construct the asymptotic 95% confidence

interval for δ0:

Pr

δ0 ∈

δ̂ −
√

46.39
Ĉn
n
, δ̂ +

√
46.39

Ĉn
n

→ 0.95.

Table 2.2 reports the Monte Carlo average length of the 95% confidence intervals

for studentization based on the correctly ordered data, i.e. ordered according to s.

The length of confidence intervals decreases with the sample size, increases with ρ and

does not report much variation over the choice of K. The same patterns are observed

with results under perturbed ordering.

Table 2.3 reports the empirical coverage probabilities for the 99%, 95% and 90%

asymptotic confidence intervals under the five different orderings of data, based on

locations s, s′, s′′, s′′′, and s′′′′. When ρ = 0, studentizations with all orderings produce

a rather precise coverage probabilities for both samples sizes. For ρ = 0.2, 0.4, 0.6 and

correct ordering based on s, the coverage proabilities suffer slightly in the small sample

n = 100, while being rather good for n = 400, at least for ρ = 0.2 and 0.4. As we

perturb the ordering, a gradual deterioration in coverage probabilities is reported.

Nevertheless, even with the perturbation caused by substantial noises ε′′′i ∼ N(0, 100)

and ε′′′′i ∼ N(0, 400), the reported coverage probabilities are remarkably encouraging.

Table 2.4 reports empirical power of testing H0 : δ0 = δ against H1 : δ0 6= δ, for

δ = 0.3, 0.4, 0.5, 0.7. Since the true δ0 used in data generation is 0.3, the columns

corresponding to δ = 0.3 report empirical size of the test. Not surprisingly for ρ = 0,

empirical powers across different orderings are similar, while for ρ = 0.2, 0.4 and 0.6,

power tends improve with larger perturbations to ordering.

The second set of simulations aims to investigate the implications of ordering

spatial data with a single index, while their underlying dependence may be more

complex. We generate random locations on a plane then order the data with a sin-
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gle index in an ascending order of the distance from the origin (0,0). To generate

the data, we follow the random location setting of Robinson and Thawornkaiwong

(2010), where the vector of locations of the observations, denoted s1, · · · , sn, were

generated by a random draw from the uniform distribution over [0, 2n1/2]× [0, 2n1/2].

Again, keeping these locations fixed across replications, Ui and Zi were generated

independently as scalar normal random variables with mean zero and covariances

Cov(Ui, Uj) = Cov(Zi, Zj) = ρ‖si−sj‖, where ‖ · ‖ denotes Euclidean norm. To con-

struct Xi, we generate another scalar normal random variable Vi in the same way as

Ui and Zi and let Xi = 1 + Vi + 0.5Zi. The dependent variable is then formed as

Yi = log(1 + X2
i ) + 0.3Zi + Ui. Again, we considered two sample sizes, n = 100, 400,

three values of K = 4, 6, 9 and carry out 1000 iterations. For the series functions of

Xi, the first K − 1 orthonormal Legendre polynomials were used. For the values of

ρ’s, we considered ρ = 0, 0.2, 0.4, 0.52 for n = 100 and ρ = 0, 0.2, 0.35, 0.5 for n = 400.

The random location setting implies the degree of dependence is determined not only

by the value of ρ, but also by the set of distances based on random locations. The fact

that we are considering locations on a plane, rather than along a line, implies that

the value of ρ produces differing strength of dependence compared to the stationary

time series AR(1) model we are familiar with, making it difficult to get a sense of

the degree of dependence in data generating models considered in our simulations.

One way of comparing dependence between different settings is to measure it by the

value

n∑
i,j=1

|Cov(Ui, Uj)|. The choices of ρ’s were such that this summation is of sim-

ilar magnitude to that in the time series AR(1) setting with ρ = 0, 0.2, 0.4, 0.6. For

n = 100, the values of the above summation in our spatial simulations corresponding

to ρ = 0, 0.2, 0.4, 0.52 were 100, 152, 255, 384, respectively, which are comparable to

100, 150, 232, 396 corresponding to time series AR(1) models with ρ = 0, 0.2, 0.4, 0.6.

For n = 400, the values of the above summation in our simulation corresponding

to ρ = 0, 0.2, 0.4, 0.52 were 400, 611, 949, 1602, respectively, which are comparable to

400, 599, 930, 1590 of time series AR(1) models with ρ = 0, 0.2, 0.4, 0.6.

We report in Table 2.5, the Monte Carlo MSE, bias and variance of the non-

parametric regression estimate at a fixed point (x, z) = (0.5, 0.5), Monte Carlo in-

tegrated MSE, Monte Carlo MSE of the estimate δ̂ of δ0. Again, patterns of bias

and variance of the non-parametric regression estimate with changing K is in line

with the theory’s predictions and the choice K = 4 generated the lowest MSE for all

combinations for n = 100 and K = 6 did so for n = 400.

As mentioned before, we ordered data in an ascending order of Euclidean dis-

tance from the origin for the purpose of studentization. Table 2.6 reports the Monte

Carlo average length of the 95% confidence intervals. As before, the length of con-

fidence intervals decreases with the sample size, increases with ρ and does not show

much variation over the choice of K. Table 2.7 reports the empirical coverage prob-

abilities for the 99%, 95% and 90% asymptotic confidence intervals, which are re-
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ported to be highly satisfactory despite the difficulty of ordering and dependence.

Table 2.8 reports empirical power of testing H0 : δ0 = δ against H1 : δ0 6= δ, for

δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1 with 5% significance level. The asymptotic distribu-

tion of the test statistic is symmetric, and as expected, powers reported for δ = 0.1

and 0.2 are similar to those reported for δ = 0.5 and 0.4, respectively.
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Table 2.1: Monte Carlo MSE, Variance and Bias

ρ n K MSE(ĝx) V ar(ĝx) Bias(ĝx) MISE(ĝ) MSE(δ̂)

0 100 4 0.0353 0.0283 0.0842 0.0595 0.0126
6 0.035 0.0347 0.017 0.0701 0.0125
9 0.0463 0.0463 0.0039 0.0989 0.0132

400 4 0.0162 0.0071 0.0956 0.0265 0.0033
6 0.0082 0.0079 0.0174 0.0199 0.0033
9 0.0098 0.0098 -0.0024 0.025 0.0034

0.2 100 4 0.0526 0.0453 0.0855 0.0863 0.0216
6 0.055 0.0546 0.0201 0.0992 0.022
9 0.0671 0.067 0.0066 0.1261 0.0229

400 4 0.0219 0.0121 0.099 0.033 0.005
6 0.0141 0.0135 0.0254 0.0278 0.0051
9 0.0151 0.0151 0.0041 0.0334 0.0051

0.4 100 4 0.0693 0.0647 0.0674 0.106 0.0268
6 0.0757 0.0756 0.005 0.1207 0.0273
9 0.0915 0.0915 -0.002 0.1493 0.0278

400 4 0.025 0.0148 0.1014 0.0394 0.0065
6 0.0175 0.0168 0.0265 0.0347 0.0065
9 0.0193 0.0192 0.0058 0.0404 0.0065

0.6 100 4 0.0863 0.0809 0.0738 0.1326 0.0341
6 0.0861 0.0859 0.0112 0.1465 0.0348
9 0.1028 0.1028 -0.0013 0.1739 0.0358

400 4 0.034 0.0253 0.0931 0.0517 0.0107
6 0.0272 0.0267 0.0222 0.0481 0.0107
9 0.0301 0.0301 -0.0006 0.0542 0.0107

Table 2.2: Monte Carlo average 95 % CI length

n K ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6

100 4 0.5605 0.6746 0.7447 0.8328
6 0.5608 0.6701 0.7401 0.8276
9 0.5608 0.6736 0.7353 0.8224

400 4 0.2955 0.3519 0.4043 0.4889
6 0.2933 0.3501 0.4039 0.4874
9 0.2922 0.3489 0.402 0.4869
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Table 2.5: Monte Carlo MSE, Variance and Bias

ρ n K MSE(ĝx) V ar(ĝx) Bias(ĝx) MISE(ĝ) MSE(δ̂)

0 100 4 0.1884 0.024 0.4054 0.1965 0.0149
6 0.0315 0.0258 0.0752 0.0587 0.0131
9 0.0384 0.0384 -0.0029 0.0808 0.0136

400 4 0.1717 0.006 0.407 0.1785 0.0037
6 0.016 0.0064 0.098 0.0264 0.0031
9 0.0081 0.0077 0.0211 0.0213 0.0031

0.2 100 4 0.1891 0.0316 0.3969 0.2009 0.0191
6 0.0394 0.0334 0.0775 0.0676 0.017
9 0.0433 0.0432 0.0097 0.0873 0.017

400 4 0.1707 0.0083 0.403 0.1811 0.004
6 0.0168 0.0083 0.0924 0.028 0.0035
9 0.01 0.0099 0.0138 0.0233 0.0034

0.4 100 4 0.198 0.0473 0.3881 0.2107 0.0184
6 0.0529 0.0475 0.0734 0.0815 0.0179
9 0.0578 0.0578 0.0028 0.1009 0.018

0.35 400 4 0.177 0.0118 0.4064 0.1827 0.0046
6 0.0214 0.0115 0.0996 0.0321 0.0042
9 0.013 0.0126 0.0205 0.0272 0.0042

0.52 100 4 0.2089 0.0558 0.3913 0.2186 0.0225
6 0.0614 0.0542 0.085 0.0942 0.021
9 0.0654 0.065 0.0195 0.1146 0.0212

0.5 400 4 0.1778 0.0164 0.4018 0.1878 0.0062
6 0.0264 0.017 0.0968 0.0387 0.0058
9 0.0183 0.018 0.0171 0.0343 0.0058

Table 2.6: Monte Carlo average 95 % CI length

n K ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.52

100 4 0.6241 0.6653 0.6816 0.717
6 0.5823 0.628 0.6471 0.6776
9 0.5812 0.624 0.6484 0.6747

n K ρ = 0 ρ = 0.2 ρ = 0.35 ρ = 0.5

400 4 0.3099 0.3234 0.3483 0.3793
6 0.2869 0.3026 0.3288 0.361
9 0.2862 0.3016 0.3271 0.3584
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2.7 Empirical examples

This section presents two illustrative empirical examples in which the series estima-

tion and studentization method of this chapter are applied. The examples are from

Yatchew (2003) and are analysed by fitting the partly linear specification of

Yi = Z ′iδ0 + h0(Xi) + Ui.

The series estimation of δ0 yields similar values of δ̂ to the kernel estimates reported

in Yatchew (2003). To test the hypothesis H0 : δ0` = 0 against H1 : δ0` 6= 0, ` =

1, · · · , d, the test using the usual t-statistic derived under independence assumption

is contrasted with that based on the test statistic t∗n := n(θ̂ − r)′Ĉ−1
n (θ̂ − r), r = 0 of

Theorem 2.6 of this chapter, which allows for spatial dependence.

The first example involves a hedonic pricing of housing attributes. The data con-

sists of a relatively small sample of 92 detached homes in Ottawa that were sold

during 1987. The dependent variable is the sale price of a given house (price), while

the regressors contain various attributes of the house including the lot size (lotarea),

square footage of housing (usespc), number of bedrooms (nrbed), average neighbour-

hood income (acginc), distance to highway (dhwy), presence of garage (grge), fireplace

(frplc), and luxury bathroom (lux). In the non-parametric function enter two location

coordinates denoted s and w (south and west) of the house:

price = h(s, w) + δ1frplc+ δ2grge+ δ3lux+ δ4acginc+ δ5dhwy

+δ6lotarea+ δ7nrbed+ δ8usespc+ u.

The first set of columns of Table 2.9 recalls the results of kernel semi-parametric

estimation reported in Yatchew (2003) based on the work of Robinson (1988). The

second set of columns reports the corresponding results from series estimation. The

estimates of coefficients, their standard errors and the t-statistics are broadly similar,

reporting significance of many of the regressors at the 5% level. Series estimation was

based on (1, s, w, sw) as approximating functions.

In applying the studentization of the previous section, the ordering of the data

is important in the light of Assumption C3. We have ordered data in ascending

order of the distance from the geographical coordinate (s, w) = (0, 0), expecting

spatial dependence in the error terms of neighbouring houses. SE reports standard

error under assumption of independence, TS∗ is test statistic t∗n of Section 4.5 with

critical values 46.39, 28.88 at sizes 5% and 10%, respectively. Test statistics with * are

significant at 5% level and those with 4 at 10% significance level. The test statistic

t∗n of this work, which accounts for dependence, reports that the presence of fire place

and luxury bathroom are significant at the 5% significance level and square footage,

presence of fire place, luxury bathroom, and garage at 10% level, which may be more

informative, bearing in mind the small sample size of 92.
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Table 2.9: Hedonic House Pricing

kernel series
Variable Coef SE t-stat Coef SE t-stat TS∗

frplc 12.6 5.8 2.17* 12.7 5.62 2.26* 126.23*
grge 12.9 4.9 2.63* 12.8 4.31 2.97* 29.984

lux 57.6 10.6 5.43* 58.2 11.3 5.15* 177.10*
acginc 0.6 0.23 2.61* 0.61 0.2 3.08* 22.06

dhwy 1.5 21.4 0.07 -9.2 5.86 -1.57 10.38
lotarea 3.1 2.2 1.41 3.8 1.85 2.03* 22.12

nrbed 6.4 4.8 1.33 7.8 4.2 1.854 14.57
usespc 24.7 10.6 2.33* 23.6 11.6 2.04* 37.674

The contrasting conclusions on the significance of δ-coefficients between the t-test

under independent errors and test t∗n allowing for dependence may be due to a presence

of cross-sectional dependence in the data. This seems to be natural as the dependent

variable is price of houses of the same type, sold in the same year and city, which

would have been subject to an overlapping set of demand and supply side factors,

driven by the same macroeconomic fundamentals.

The second empirical example concerns the following cost function of distributing

electricity, also from Yatchew (2003):

tc = f(cust) + δ1wage+ δ2pcap+
δ3

2
wage2 +

δ4

2
pcap2 + δ5wage · pcap

+δ6PUC + δ7kwh+ δ8life+ δ9lf + δ10kmwire+ u.

We have as the dependent variable, tc, the log of total cost per customer. As re-

gressors, cust is the log of the number of customers, wage is the log wage rate, pcap

is the log price of capital, PUC is a dummy variable for public utility commissions

that deliver additional services, therefore may benefit from economies of scope, life

is the log of the remaining life of distribution assets, lf is the log of the load factor

(this measures capacity utilization relative to peak usage), and kmwire is the log

of kilometers of distribution wire per customer. In Yatchew (2003), it is of interest

to non-parametrically estimate the conditional expectation of tc given cust, holding

other regressors fixed, as the shape of this curve reveals whether there are increas-

ing/decreasing returns to scale in electricity distribution. For the purpose of this

chapter, we are interested in the estimates of the linear parameters δ’s and test of

their significance, H0 : δl = 0, H1 : δl 6= 0 for l = 1, · · · , d, when allowing for depen-

dence in the error terms. The data consists of 81 municipal distributors in Ontario,

Canada, during 1993.

The first set of columns of Table 2.10 replicates the kernel estimates of δ’s and

their standard errors assuming uncorrelatedness of error terms from Yatchew (2003).

The second set of columns report the estimates using series estimation, where the first

three Legendre polynomials were used as the series functions. The test statistics with
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∗ are those significant at 5% significance level, while those with 4 are significant at

10% significance level. In order to apply the studentization of section 2.5.3, the data

needs to be ordered with Assumption C3 in mind. Two different orderings were tried.

Firstly, the data was ordered in the ascending order of wage rate faced by the firm.

The rationale behind this ordering is that firms may be subject to input shocks, and

those with similar wage rate may use similar inputs, leading to dependence in their

disturbance terms. Test statistics based on this stundentization is denoted TS∗w in

Table 2.10. Secondly, data was ordered according to the number of employees of the

firm, which is a measure of the firm size. One may envisage that firms with similar

sizes are subject to similar shocks, or alternatively, are interdependent due to e.g.

competition. Test statistics based on this stundentization is denoted TS∗e in Table

2.10.

Inference based on the assumption of uncorrelated error terms lead to PUC, life, lf

and kmwire being significant at 5% level with kernel estimation, while PUC, life and

kmwire are reported significant at 5% level with series estimation. When allowing for

dependence in the error terms, life and kmwire are still reported significant at 5%

level with both orderings, while lf is now reported significant at 10% level. pcap and

wage · pcap are reported significant at 10% level under both orderings, while PUC,

which was significant at 5% level under uncorrelatedness assumption on error terms,

is now significant at 10%, only with the ordering according to number of employees.

Table 2.10: Cost function in Electricity Distribution

kernel series
Coef SE t-stat Coef SE t-stat TS∗w TS∗e

wage -6.298 12.453 -0.506 -6.002 15.736 -0.381 0.426 0.261
pcap -1.393 1.6 -0.872 -2.531 1.846 -1.371 44.084 35.4334

1
2wage

2 0.72 2.13 0.3388 1.731 12.837 0.135 0.061 0.036
1
2pcap

2 0.032 0.066 0.485 0.148 0.318 0.466 1.593 1.491
wage · pcap 0.534 0.599 0.891 2.044 1.553 1.317 43.1554 40.274

PUC -0.086 0.039 −2.205∗ -0.043 0.017 −2.6∗ 11.042 28.8934

kwh 0.033 0.086 0.384 0.0828 0.102 0.8085 8.208 9.486
life -0.634 0.115 −5.513∗ -0.613 0.124 −4.935∗ 104.6∗ 92.7∗

lf 1.249 0.436 2.865∗ 0.746 0.486 1.535 39.6694 36.5874

kmwire 0.399 0.087 4.586∗ 0.442 0.088 5.012∗ 202.65∗ 151.02∗

2.8 Conclusion

This chapter has established the theoretical background for the series estimation

of a vector-valued functional of the non-parametric regression function under cross-

sectional dependence and nonstationarity. A uniform rate of consistency, asymptotic

normality and sufficient conditions for the
√
n rate of convergence were provided. Im-

portantly, a data-driven studentization method that offers an alternative to exiting

methods of inference was introduced for the
√
n-consistent semi-parametric estimates.
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The problem of inference for non-parametric or semi-parametric estimates that do not

achieve the
√
n rate of convergence remains open and calls for further research.

The framework of cross-sectional dependence and non-stationarity of this chapter

and its asymptotic arguments, e.g. application of the FCLT, may be used to establish

asymptotic theory for other estimation methods under the cross-sectional setting. The

robust inference offered by the studentization of this chapter provides a new tool for

inference with cross-sectional data and needs to be extended to other commonly used

methods such as GMM estimation of parametric models.
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2.9 Appendix A. Proofs of Theorems 2.1-2.5.

The main matrix norm used in this work is spectral norm, ‖A‖2 := λ̄(A′A), defined as

the largest eigenvalue of the matrix A′A. It is submultiplicative, i.e. ‖AB‖ ≤ ‖A‖‖B‖,
and when A is positive semi-definite and symmetric, it satisfies ‖A1/2‖2 = ‖A‖ and

‖A−1‖−1 = ‖A‖. When A is positive semi-definite, symmetric and random, one has

that

‖A‖ = Op(E‖A‖) = Op
(
E(λ̄(A))

)
≤ Op

(
E(tr(A))

)
= Op

(
tr(E(A))

)
.

In addition, three other matrix norms appear in the proofs. Let ‖ · ‖E denote

Euclidean norm for matrix, ‖ · ‖C maximum column sum norm and ‖ · ‖R maximum

row sum norm. Let A = (aij) be a q × q matrix. Then,

‖A‖2E :=
( q∑
i,j=1

a2
ij

)
, ‖A‖C := max

1≤j≤q

( q∑
i=1

|aij |
)
, ‖A‖R := max

1≤i≤q

( q∑
j=1

|aij |
)
.

The following inequalities hold:

‖A‖ ≤ ‖A‖E , ‖A‖2 ≤ ‖A‖R‖A‖C , |tr(AB)| ≤ ‖A‖E‖B‖E ,

‖AB‖E ≤ ‖A‖E‖B‖, ‖AB‖E ≤ ‖A‖E‖B‖E .

The above facts can be found in Searle (1982), Horn and Johnson (1990) and the

appendix of Davies (1973).

Alternative representations of m̂ in pK and P

In Section 3, we introduced a K × 1 vector of normalised functions P (x) =

PK(x) = B
−1/2
K pK(x) satisfying E(P (Xi)P (Xi)

′) = IK . Given that the series estima-

tor m̂(·) is a projection of the unknown function m(·) onto the linear space spanned

by p1(·), · · · , pK(·), the estimate m̂(·) is invariant to any nonsingular linear transfor-

mation of approximating functions. Hence,

m̂(x) = pK(x)′β̂ = P (x)′γ̂, (2.9.1)

where β̂ = (p′p)−p′Y ∈ RK with

p = pn = [pK(X1), · · · , pK(Xn)]′ ∈ Rn×K , Y = Yn = (Y1, · · · , Yn)′ ∈ Rn

and γ̂ = (P′P)−P′Y ∈ RK , where

P = Pn = [P (X1), · · · , P (Xn)]′ ∈ Rn×K .

To show such invariance, one can use the equality P = pB
−1/2
K to establish the
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following relation between γ̂ and β̂:

γ̂ = (P′P)−P′Y = B
1/2
K (p′p)−B

1/2
K B

−1/2
K p′Y = B

1/2
K β̂.

Above equality holds, because the fact that (p′p)− is the Moore-Penrose inverse of

p′p implies (P′P)− = (B
−1/2
K p′pB

−1/2
K )− = B

1/2
K (p′p)−B

1/2
K .1

Proof of Theorems 2.1-2.5 benefits from algebraic convenience of studying the

representation m̂(x) = P (x)′γ̂ instead of m̂(x) = pK(x)′β̂. Assumptions imposed on

quantities involving pK(·) such as ξ(K) will continue to hold for their counterparts

defined in terms of PK(·). To show this fact for Assumption A4, note that

pK(x)′βK = P (x)′γK , where γK = B
1/2
K βK .

Therefore, Assumption A4 implies

|m− P ′γK |∞ = O(K−α), as K →∞.

To verify that assumptions involving the upper bound ξ(K) continue to hold for the

corresponding quantity based on P (·), define:

ζ(K) = sup
x∈X
‖P k(x)‖.

Then, for some C <∞, ζ(k) ≤ Cξ(k) for all k ≥ 1, because

ζ(k) = sup
x∈X
‖B−1/2

k pk(x)‖ ≤ ‖B−1/2
k ‖ sup

x∈X
‖pk(x)‖ ≤ Cξ(k), (2.9.2)

noting that by Assumption A3(i) and symmetry and positive semi-definiteness of BK ,

‖B−1/2
K ‖ = ‖B−1

K ‖
1/2 = (λ̄(B−1

K ))1/2 = (λ(BK))−1/2 ≤ C.

The bound indicates that assumptions involving the upper bound ξ(K) continue to

hold also for ζ(K). The rest of the proof will be completed using m̂(x) = P (x)′γ̂.

Wherever needed, translation to and from the two alternative representations of m̂

given in (2.9.1) is clarified.

Proof of Theorem 2.1. Let M := Mn = (m(X1), · · · ,m(Xn))′ ∈ Rn and Q̂ :=

Q̂n = P′P/n ∈ RK×K . We shall use these notations for the rest of the proof. To

study the order of |m̂−m|∞, we decompose the quantity m̂(x)−m(x) into the bias

and stochastic terms. Let γK = B
1/2
K βK for βK of Assumption A4. Write:

m̂(x)−m(x) =
[
P (x)′(γ̂ − γK)

]
+
[
P (x)′γK −m(x)

]
, (2.9.3)

1Existence and uniqueness of Moore-Penrose inverse were established in Penrose (1955). The four
Penrose conditions can be found in Searle (1982), pp. 212.
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where γ̂ = (P′P)−P′Y = (Q̂)−P′Y/n. Recall

Σn = E
(
P′UU ′P/n

)
the K ×K variance-covariance matrix of the vector

n∑
i=1

P (Xi)Ui/
√
n. We shall show

below that

‖γ̂ − γK‖ = Op

(
tr(Σn)1/2

n1/2
+K−α

)
. (2.9.4)

Then, by the definition of ζ(K) and Assumption A4,

|m̂−m|∞ ≤ |P ′(γ̂K − γK)|∞ + |P ′γK −m|∞
≤ ζ(K)‖γ̂K − γK‖+O(K−α)

= Op

(
ζ(K)

[
tr(Σn)1/2

n1/2
+K−α

])
.

Therefore, we obtain the statement of Theorem 2.1:

|m̂−m|∞ = Op

(
ξ(K)

[
tr(Σn)1/2

n1/2
+K−α

])
.

Proof of (2.9.4). Observe that the matrix Q̂ in γ̂ = (Q̂)−P′Y/n depends on the

sample (X1, · · · , Xn) of random variables. Thus invertibility of Q̂ for any given sample

cannot be taken for granted. Let 1n := I(λ(Q̂) ≥ a) be the indicator function for the

smallest eigenvalue of Q̂, λ(Q̂), to be greater than some positive number a < 1. Then

the inverse of Q̂ exists when 1n = 1. It will be shown that Pr(1n = 1) → 1 as

n→∞, so that Q̂−1 exists with probability tending to 1. First we study the quantity

1n(γ̂ − γK), subsequently used to get the required result. Decompose 1n(γ̂ − γK) as

follows:

1n(γ̂ − γK) = 1n

[
Q̂−1P′(Y −M)/n+ Q̂−1P′(M −PγK)/n

]
. (2.9.5)

Applying triangle inequality to (2.9.5) and the property ‖AB‖ ≤ ‖A‖‖B‖ of the

spectral norm gives

‖1n(γ̂ − γK)‖ ≤ ‖1nQ̂−1P′U/n‖+ ‖1nQ̂−1P′(M −PγK)/n‖

≤ ‖1nQ̂−1‖‖P′U/n‖+ ‖1nQ̂−1P′/
√
n‖‖(M −PγK)/

√
n‖.(2.9.6)
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Below we shall prove that

‖1nQ̂−1P′/
√
n‖ = Op(1), (2.9.7)

‖P′U/n‖ = Op

(
tr(Σn)1/2

√
n

)
, (2.9.8)

‖(M −PγK)/
√
n‖ = Op(K

−α). (2.9.9)

These lead to

‖1n(γ̂ − γK)‖ = Op

(
tr(Σn)1/2

n1/2
+K−α

)
,

which gives ‖γ̂K − γK‖ = Op
(
tr(Σn)1/2/n1/2 +K−α

)
. To see this, use the fact that

1− 1n = op(1) and the triangle inequality, to obtain

‖γ̂ − γK‖ ≤ ‖1n(γ̂ − γK)‖+ ‖(1− 1n)(γ̂ − γK)‖ (2.9.10)

≤ ‖1n(γ̂ − γK)‖+ op(1)‖γ̂ − γK‖.

Thus

‖γ̂ − γK‖(1 + op(1)) ≤ ‖1n(γ̂ − γK)‖,

‖γ̂ − γK‖ ≤ ‖1n(γ̂ − γK)‖/(1 + op(1)) = Op

(
tr(Σn)1/2/n1/2 +K−α

)
.(2.9.11)

Proof of 1n →p 1. It suffices to show that λ(Q̂)→p 1, as n→∞ .

First we derive tr
{

(Q̂− I)2
}

= op(1). Recall the definition P (x) := B
−1/2
K pK(x) =

[P1K(x), · · · , PKK(x)]. Observe that

E
[
tr
{

(Q̂− I)2
}]

=

K∑
p,`=1

E[{n−1
n∑
i=1

PpK(Xi)P`K(Xi)− 1(` = p)}2]

= n−2
K∑

p,`=1

V ar

(
n∑
i=1

PpK(Xi)P`K(Xi)

)
,

noting that E(Q̂) = I: E(Q̂) = n−1
n∑
i=1

E(P (Xi)P
′(Xi)) where E(P (Xi)P

′(Xi)) =

B
−1/2
K E[pK(Xi)p

K(Xi)
′]B
−1/2
K = B

−1/2
K BKB

−1/2
K = I. For any pair p, ` = 1, · · · , k,

V ar

(
n∑
i=1

PpK(Xi)P`K(Xi)

)
=

n∑
i=1

n∑
j=1

Cov {PpK(Xi)P`K(Xi), PpK(Xj)P`K(Xj)}

=
n∑
i=1

V ar (PpK(Xi)P`K(Xi)) +
n∑

i,j=1,j 6=i
Cov {PpK(Xi)P`K(Xi), PpK(Xj)P`K(Xj)}

=: V
(p,`)
n,1 + V

(p,`)
n,2 .
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Then E[‖Q̂− I‖2] ≤ n−2
K∑

p,`=1

(V
(p,`)
n,1 + V

(p,`)
n,2 ). One has

1

n2
V

(p,`)
n,1 =

1

n2

n∑
i=1

V ar
(
PpK(Xi)P`K(Xi)

)
≤ ζ4(K)

n
.

To bound V
(p,`)
n,2 we use Assumption A5:

1

n2
|V (p,`)
n,2 | =

∣∣ ∫ PpK(x)P`K(x)PpK(y)P`K(y)
( 1

n2

n∑
i,j=1,j 6=i

{fij(x, y)− f(x)f(y)}
)
dxdy

∣∣
≤ ζ4(K)

( 1

n2

∑
i,j=1,i 6=j

∫
|fij(x, y)− f(x)f(y)|dxdy

)
= ζ4(K)n−24n.

Therefore,

E
[
tr
{

(Q̂− I)2
}]

=
K∑

p,`=1

(V
(p,`)
n,1 + V

(p,`)
n,2 )

≤ K2ζ4(K)

n
+
K2ζ4(K)4n

n2

= K2ζ4(K)

(
1

n
+
4n

n2

)
= o(1), (2.9.12)

by Assumptions A3(ii), and A5.

Hence to show λ(Q̂)→p 1, it suffices to verify that |λ(Q̂)−λ(I)| ≤
[
tr
{

(Q̂− I)2
}]1/2

.

The symmetric matrix (Q̂ − I) can be written as Q̂ − I = C(Λ̂ − I)C ′, where

C = (cij) ∈ RK×K is orthonormal eigenvector matrix such that C ′C = I and Λ̂ is a

diagonal matrix consisting of eigenvalues of Q̂. Consequently, (Q̂−I)2 = C(Λ̂−I)2C ′.

Now, tr{(Q̂− I)2} = tr
(
C(Λ̂− I)2C ′

)
=

K∑
`=1

(λ`(Q̂)− 1)2, because

tr
(
C(Λ̂− I)2C ′

)
=

K∑
i=1

K∑
j=1

c2
ij(λ̂j − 1)2 =

K∑
j=1

(λ̂j − 1)2

(
K∑
i=1

c2
ij

)
=

K∑
j=1

(λ̂j − 1)2,

because columns of C are orthonormal. Therefore,

(λ(Q̂)− 1)2 ≤ tr{(Q̂− I)2}, |λ(Q̂)− 1| ≤ [tr{(Q̂− I)2}]1/2 = op(1),

as was concluded in (2.9.12). This completes the proof of Pr(1n = 1)→ 1 as n→∞.

Now we prove (2.9.7) -(2.9.9).

Proof of (2.9.7). Note that Q̂ is symmetric and nonnegative definite. Thus, by

the properties of the spectral norm,

‖1nQ̂−1‖ = 1nλ̄(Q̂−1) = 1n(λ(Q̂))−1.
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The facts 1n →p 1 and λ(Q̂)→p 1 established above imply 1n(λ(Q̂))−1 →p 1. Hence,

by Slutsky theorem, ‖1nQ̂−1‖ = Op(1). Therefore,

‖1nQ̂−1P′/
√
n‖2 = ‖1nQ̂−1P′PQ̂−1/n‖ = ‖1nQ̂−1‖ = Op(1).

Proof of (2.9.8). One has

‖P′U/n‖ =
1√
n
‖P′U/

√
n‖ =

1√
n

[
λ̄

(
P′UU ′P

n

)]1/2

= Op

(
tr (Σn)1/2

n1/2

)
.

Proof of (2.9.9). We have,

‖(M −PγK)/
√
n‖2 = (M −PγK)′(M −PγK)/n

=
1

n

n∑
i=1

(g(Xi)− P (Xi)γK)2 = Op(K
−2α),

by Assumption 4, which completes the proof of (2.9.4) and of the theorem. �

Proof of Theorem 2.2. Let Tn := A′P′U/n, where P = pKB
−1/2
K ∈ Rn, A =(

D(P1K), D(P2K), · · · , D(PKK)
)′ ∈ RK×d and U = (U1, · · · , Un)′ ∈ Rn. Write

θ̂n − θ0 = Tn + rn, rn := θ̂n − θ0 − Tn.

We shall show that

√
nV̄ −1/2

n rn = op(1), (2.9.13)
√
nV̄ −1/2

n Tn →d N(0, Id), (2.9.14)

which implies convergence (2.4.1) of Theorem 2.2.

Proof of (2.9.13). Again, let 1n = I(λ(Q̂) ≥ a) for some positive number a < 1 as

in the proof of Theorem 2.1, hence 1n = 1 + op(1). By the same argument as in proof

of Theorem 2.1, (2.9.13) follows if we show that

1n
√
nV̄ −1/2

n rn = op(1). (2.9.15)

We shall use the bound ‖1n
√
nV̄
−1/2
n rn‖ ≤

√
n‖V̄ −1/2

n ‖‖1nrn‖. To evaluate ‖1nrn‖,
recall m̄ = P ′γK . Write

rn = θ̂n − θ0 − Tn = {a(m̂)− a(m)−D(m̂) +D(m)}

+{D(m̂)−D(m̄)− Tn}+ {D(m̄)−D(m)}.
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Then

‖rn‖ ≤ ‖a(m̂)− a(m)−D(m̂) +D(m)‖

+ ‖D(m̂)−D(m̄)− Tn‖+ ‖D(m̄)−D(m)‖

=: ‖rn,1‖+ ‖rn,2‖+ ‖rn,3‖.

To show (2.9.13), note that by assumption of the theorem, ‖V̄ −1/2
n ‖ = ‖V̄ −1

n ‖1/2 =

Op(1). Thus, it suffices to prove that

1n
√
n‖rn,i‖ = op(1), i = 1, 2, 3. (2.9.16)

For i = 1, by Assumption B1, ‖rn,1‖ = Op(|m̂ − m|2∞). Thus by Theorem 2.1 and

Assumption B3(i), (iii)

√
n‖rn,1‖ = Op

(√
nζ(K)2

( tr(Σn)

n
+K−2α

))
= op(1). (2.9.17)

For i = 2, to bound ‖rn,2‖ recall the notation: m̂(x) = P (x)′γ̂, Q̂ = P′P/n, γ̂ =

(P′P)−P′Y = Q̂−P′Y/n, Y = M + U and A = (D(P1K), · · · , D(PKK))′. Then,

D(m̂) = D(P ′γ̂) = A′γ̂ = A′Q̂−P′(M + U)/n, (2.9.18)

D(m̄) = D(P ′γK) = A′γK . (2.9.19)

As in the proof of Theorem 2.1, one can replace 1nQ̂
− with 1nQ̂

−1. Hence

‖1nrn,2‖ = ‖1n(A′Q̂−1P′Y/n−A′γK −A′P′U/n)‖

= ‖1nA′Q̂−1P′(M + U)/n−A′γK −A′P′U/n‖

= ‖1nA′(Q̂−1 − I)P′U/n+A′Q̂−1P′(M −PγK)/n‖

≤ ‖1nA′(Q̂−1 − I)P′U/n‖+ ‖A′Q̂−1P′(M −PγK)/n‖

≤ ‖A′‖‖1n(Q̂−1 − I)‖‖P′U/n‖+ ‖A′‖‖1nQ̂−1P′/
√
n‖‖(M −PγK)/

√
n‖.

Note that ‖A‖2 ≤ ζ2(K), ‖1nQ̂−1‖ = Op(1), and by (2.9.7)- (2.9.9),

‖1nQ̂−1P′/
√
n‖ = Op(1), ‖(M −PγK)/

√
n‖ = Op(K

−α), ‖P′U/n‖ = Op

(
(tr(Σn)/n)1/2

)
.

Next, ‖1n(Q̂−1 − I)‖ = ‖1nQ̂−1(I − Q̂)‖ ≤ ‖1nQ̂−1‖‖I − Q̂‖ = Op(‖I − Q̂‖). Thus,

‖rn,2‖ = Op(1)
√
Kζ(K)

(
‖I − Q̂‖(tr(Σn)/n)1/2 +K−α

)
.

To bound ‖I − Q̂‖ note that E[‖Q̂ − I‖2] = E
[
λ̄
{

(Q̂− I)2
}]
≤ E

[
tr
{

(Q̂− I)2
}]

.
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From (2.9.12),

√
n‖rn,2‖ ≤

(
nKζ2(K)

)1/2{[
K2ζ4(K)

(
1

n
+
4n

n2

)
tr(Σn)

n

]1/2

+K−α

}
= op(1)

by Assumptions B3(ii) and (iii).

For i = 3, by linearity of D(·) and Assumption B2 and A4, ‖rn,3‖ = O(|m̄−m|∞) =

O(K−α),

√
n‖rn,3‖ = Op(

√
nK−α) = op(1), (2.9.20)

by Assumptions B3(iii), which implies nK−2α = o(1).

Proof of (2.9.14). To show asymptotic normality of the main term
√
nV̄
−1/2
n Tn,

introduce the following representation

√
nV̄ −1/2

n Tn =
1√
n

n∑
i=1

V̄ −1/2
n A′P (Xi)Ui =

1√
n

n∑
i=1

V̄ −1/2
n A′P (Xi)σ(Xi)

∞∑
j=1

bijεj

=
∞∑
j=1

(
1√
n

n∑
i=1

V̄ −1/2
n A′P (Xi)σ(Xi)bij

)
εj =

∞∑
j=1

wjnεj ,

letting

wjn :=
n∑
i=1

V̄ −1/2
n A′P (Xi)σ(Xi)bij/

√
n. (2.9.21)

Noting that wjn is a function of {Xi}ni=1, we show asymptotic normality conditional

on ‖V̄ −1
n ‖ ≤ C and {Xi}ni=1, treating wjn as non-random. The key point here is to

obtain the conditional asymptotic distribution to be N(0, Id), which is independent

of {Xi}ni=1. This yields the required unconditional asymptotic normality result of

Theorem 2.2. Such line of reasoning was used in Robinson (2011).

By Cramer-Wold device, to derive asymptotic normality of the vector
√
nV̄
−1/2
n Tn,

we focus on a scalar summation

∞∑
j=1

c′wjnεj with any fixed vector c ∈ Rd such that

c′c = 1. Consider splitting
√
nc′V̄

−1/2
n Tn into two sums,

√
nc′V̄ −1/2

n Tn =

N(n)∑
j=1

c′wjnεj +

∞∑
j=N(n)+1

c′wjnεj ,

where the integer N(n) is chosen to be the smallest satisfying

∞∑
j=N(n)+1

(c′wjn)2 ≤ 1/ log n.
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The choice of N(n) is deterministic once we condition on {Xi}ni=1. The purpose of

this truncation is to make the contribution from the second summation negligible:

( ∞∑
j=N(n)+1

c′wjnεj
)2

= Op
(
E
( ∞∑
j=N(n)+1

c′wjnεj
)2)

= Op
( ∞∑
j=N(n)+1

(c′wjn)2
)

= Op

(
1

log n

)
= op(1).

Since {c′wjεj} are martingale differences under assumption A2, asymptotic normality

of the first summation is established by verifying the following two sufficient conditions

for asymptotic normality from Scott (1973), adapted for our setting.

N(n)∑
j=1

E
(
(c′wjεj)

2
)
→p 1, (2.9.22)

N(n)∑
j=1

E
(
(c′wjnεj)

21(|c′wjnεj | > δ)
)
→p 0, ∀δ > 0. (2.9.23)

By Assumption A2, we have

N(n)∑
j=1

E
(
(c′wjεj)

2
)

=

N(n)∑
j=1

(c′wjn)2.

By the choice of N(n),

N(n)∑
j=1

(c′wjn)2 =

∞∑
j=1

(c′wjn)2 −
∞∑

j=N(n)+1

(c′wjn)2 = 1 + o(1).

Next let ν be as in Assumption A2. Then,

N(n)∑
j=1

E[(c′wjnεj)
21(|c′wjnεj | > δ)] =

N(n)∑
j=1

(c′wjn)2E[ε2
j1(|c′wjnεj | > δ)]

≤
N(n)∑
j=1

(c′wjn)2

(
|c′wjn|
δ

)ν
E|εj |2+ν = δ−ν

N(n)∑
j=1

|c′wjn|2+νE|εj |2+ν

≤ Cδ−ν
N(n)∑
j=1

|c′wjn|2+ν ≤ Cδ−ν max
1≤j≤n

|c′wjn|ν
N(n)∑
j=1

(c′wjn)2.

The first inequality follows from 1(|c′wjnεj | > δ) ≤ (|c′wjnεj |/δ)ν . With

N(n)∑
j=1

(c′wjn)2 →

1, (2.9.23) is verified once we show that max
j≥1
|c′wjn|ν → 0. Conditionally onX1, · · · , Xn,
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the following holds for any j ≥ 1:

|c′wjn| =

∣∣∣∣∣ c′√nV̄ −1/2
n

n∑
i=1

A′P (Xi)σ(Xi)bij

∣∣∣∣∣
≤ ‖c‖‖V̄ −1/2

n ‖ 1√
n

max
1≤j≤n

n∑
i=1

|bij |‖A′P (Xi)σ(Xi)‖

= O

(
ζ(K)2

√
n

max
1≤j≤n

n∑
i=1

|bij |

)
= o(1), (2.9.24)

by Assumption B4 and the bound ‖A′P (Xi)σ(Xi)‖ ≤ C‖A‖‖P (Xi)‖ ≤ Cζ2(K). �

Proof of Theorem 2.3. We will prove later that ‖V̄n−Vn‖ = op(1). Then, V −1
n V̄n →p

I since ‖V −1
n V̄n − I‖ ≤ ‖V −1

n ‖‖V̄n − Vn‖ = op(1), which in turn gives VnV̄
−1
n →p I. It

follows that

‖V̄ −1
n ‖ ≤ ‖V −1

n ‖‖VnV̄ −1
n ‖ = Op(1).

Now, to show the final statement, (2.4.6), of the Theorem 2.3, write:

√
nV −1/2

n (θ̂ − θ0) =
√
nV̄ −1/2

n (θ̂ − θ0) +
√
n
(
V −1/2
n − V̄ −1/2

n

)
(θ̂ − θ0).

The first term was shown to converge in distribution to N(0, Ip) in Theorem 2.2, while

the second term is negligible:

‖
√
n
(
V −1/2
n − V̄ −1/2

n

)
(θ̂ − θ0)‖ ≤ ‖

(
V −1/2
n V̄ 1/2

n − I
)
‖‖
√
nV̄ −1/2

n (θ̂ − θ0)‖ = op(1),

since V
−1/2
n V̄

1/2
n →p I from V −1

n V̄n →p I, and thus ‖V −1/2
n V̄

1/2
n − I‖ = op(1).

Proof of ‖V̄n−Vn‖ = op(1). By definition of the spectral norm, ‖V̄n−Vn‖ = op(1)

follows if |(V̄n − Vn)`p| = op(1), for all `, p = 1, · · · , d, where (B)`p denotes the (`, p)th

element of a matrix B. Then, using notation (2.4.2),

(V̄n − Vn)`p =
1

n

n∑
i,j=1

γij
{
σ(Xi)A

′
`P (Xi)σ(Xj)P

′(Xj)Ap − E(σ(Xi)A
′
`P (Xi)σ(Xj)P

′(Xj)Ap)
}

=
1

n

n∑
i,j=1

γij

{
h

(`)
i h

(p)
j − E(h

(`)
i h

(p)
j )
}
.

Since

h
(`)
i h

(p)
j − E(h

(`)
i h

(p)
j ) =

{
h̄

(`)
i h̄

(p)
j − E(h̄

(`)
i h̄

(p)
j )
}

+ h̄
(p)
j E(h

(`)
i ) + h̄

(`)
i E(h

(p)
j ),
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we obtain that

(V̄n − Vn)`p =
1

n

n∑
i,j=1

γij

{
h̄

(`)
i h̄

(p)
j − E(h̄

(`)
i h̄

(p)
j )
}

+
1

n

n∑
i,j=1

γij h̄
(p)
j E(h

(`)
i ) +

1

n

n∑
i,j=1

γij h̄
(`)
i E(h

(p)
j )

=: S1,n + S2,n + S3,n.

We shall show that

V ar(Sk,n) = o(1), k = 1, 2, 3, (2.9.25)

which proves ‖V̄n − Vn‖ = op(1).

Proof of (2.9.25), k=1. We have

V ar(S1,n) =
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4Cov
(
h̄

(`)
i1
h̄

(p)
i2
, h̄

(`)
i3
h̄

(p)
i4

)
.

Introduce the notation, φ
(`,p)
ij := Cov(h̄

(`)
i , h̄

(p)
j ) and denote by Φ(`,p) the n× n matrix

whose (i, j)th element is φ
(`,p)
ij . Recall that by the Definition 2 of joint 4th order

cumulant,

Cov(Z1Z2, Z3Z4) = κ(Z1, Z2, Z3, Z4) + Cov(Z1, Z3)Cov(Z2, Z4) + Cov(Z1, Z4)Cov(Z2, Z3).

One has

V ar(S1,n) =
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4κ(h̄
(`)
i1
, h̄

(p)
i2
, h̄

(`)
i3
, h̄

(p)
i4

) (2.9.26)

+
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,`)
i1i3

φ
(p,p)
i2i4

(2.9.27)

+
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,p)
i1i4

φ
(p,`)
i2i3

. (2.9.28)

Denote by Γ = Γn the n×n matrix whose (i, j)th element is γij . Firstly, by Assumption

B7, the RHS of (2.9.26) is o(1). To bound (2.9.27) and (2.9.28), write

1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,`)
i1i3

φ
(p,p)
i2i4

=
1

n2
tr
(

ΓΦ(p,p)ΓΦ(`,`)
)
,

1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4φ
(`,p)
i1i4

φ
(p,`)
i2i3

=
1

n2
tr
(

ΓΦ(p,`)ΓΦ(p,`)
)
.
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By the properties of matrix norms given earlier, we see that∣∣∣tr (ΓΦ(p,p)ΓΦ(`,`)
)∣∣∣ ≤ ‖ΓΦ(p,p)‖E‖ΓΦ(`,`)‖E ≤ ‖Γ‖2‖Φ(p,p)‖E‖Φ(`,`)‖E . (2.9.29)

Partition ‖Φ(p,p)‖2E =

n∑
i,j=1

(φ
(p,p)
ij )2 =

n∑
i=1,i=j

(φ
(p,p)
ii )2 +

n∑
i,j=1,i 6=j

(φ
(p,p)
ij )2. For i = j,

|φ(p,p)
ii | = V ar(h̄

(p)
i ) ≤ ζ4(K). For i 6= j, one has |φ(p,p)

ij | ≤ Cζ4(K)

∫
X 2

|fij(x, y) −

f(x)f(y)|dxdy, since |σ(Xi)A
′
pP (Xi)| ≤ Cζ2(K). Therefore,

‖Φ(p,p)‖2E ≤ Cnζ8(K) + Cζ8(K)

n∑
i,j=1,i 6=j

(∫
|fij(x, y)− f(x)f(y)|dxdy

)2

.

It is clear that
∫
|fij(x, y)− f(x)f(y)|dxdy ≤ 2 for all i and j. Hence,

n∑
i,j=1,i 6=j

(∫
|fij(x, y)− f(x)f(y)|dxdy

)2

≤ 2
n∑

i,j=1,i 6=j

∫
|fij(x, y)−f(x)f(y)|dxdy = 24n.

Thus, for any p = 1, · · · , d,

‖Φ(p,p)‖2E =

n∑
i,j=1

(φ
(p,p)
ij )2 ≤ Cζ8(K)(n+4n). (2.9.30)

Hence, by (2.9.29) and Assumption B6,

1

n2
‖Γ‖2‖Φ(p,p)‖E‖Φ(`,`)‖E ≤

1

n2

(
max
j≥1

n∑
i=1

|γij |

)2

ζ8(K)(n+4n) = o(1),

since by the property of spectral norm ‖A‖2 ≤ ‖A‖C‖A‖R, and by the symmetry of

Γ,

‖Γ‖2 ≤ ‖Γ‖2C =

(
max
j≥1

n∑
i=1

|γij |

)2

.

Similarly, it follows that n−2tr
(
ΓΦ(p,`)ΓΦ(p,`)

)
= o(1), which completes the proof of

(2.9.25) when k = 1.
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Proof of (2.9.25), k=2,3. Recall, Sn,2 = n−2
n∑

i,j=1

γij h̄
(p)
j E(h

(`)
i ). Therefore,

V ar(S2,n) =
1

n2

n∑
i1,i2,i3,i4=1

γi1i2γi3i4E(h
(`)
i1

)E(h
(`)
i3

)E(h̄
(p)
i2
h̄

(p)
i4

)

=
1

n2

n∑
i2,i4=1

(
n∑

i1=1

γi1i2E(h
(`)
i1

)

)(
n∑

i3=1

γi3i4E(h
(`)
i3

)

)
φ

(p,p)
i2i4

≤ 1

n2

(
ζ2(K)

∣∣∣∣∣ max
1≤j≤n

n∑
i=1

γij

∣∣∣∣∣
)2 n∑

i,j=1

|φ(p,p)
ij |

≤ 1

n2

(
ζ2(K) max

1≤j≤n

n∑
i=1

|γij |

)2 n∑
i,j=1

|φ(p,p)
ij |

using the bound E|h(`)
i | ≤ Cζ2(K). By the same steps taken in two lines prior to

(2.9.30),

n∑
i,j=1

|φ(p,p)
ij | ≤ Cζ4(K)(n+4n).

This, together with Assumption B6 yields

V ar(Sn,2) ≤ Cζ8(K)(n+4n)

n2

(
max
j≥1

n∑
i=1

|γij |

)2

= o(1).

�

Proof of Theorem 2.4. We need to show ‖Vn − V ‖ = o(1), as n → ∞. By the

triangle inequality,

‖Vn − V ‖ ≤ ‖Vn −Wn‖+ ‖Wn − V ‖,

where ‖Wn − V ‖ = o(1) holds by Assumption C2 (i). To bound ‖Vn −Wn‖ note that

Vn −Wn =
1

n

n∑
i=1

n∑
k=1

γikE[σ(Xi)σ(Xk){vK(Xi)v
′
K(Xk)− w(Xi)w

′(Xk)}].

We shall establish ‖Vn − Wn‖ = o(1) by showing that elements (Vn − Wn)`,p, 1 ≤
`, p ≤ d, of Vn −Wn converges to zero. We have that

|(Vn −Wn)`p| =

∣∣∣∣∣ 1n
n∑
i=1

n∑
k=1

γikE[σ(Xi)σ(Xk)(v`K(Xi)vpK(Xk)− w`(Xi)wp(Xk))]

∣∣∣∣∣
≤ 1

n

n∑
i=1

n∑
k=1

|γik|E[|σ(Xi)σ(Xk){v`K(Xi)vpK(Xk)− w`(Xi)wp(Xk)}|].
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Notice that

E[|σ(Xi)σ(Xk){v`K(Xi)vpK(Xk)− w`(Xi)wp(Xk)}|]

≤ CE[|v`K(Xi){vpK(Xk)− wp(Xk)}|] + CE[|{v`K(Xi)− w`(Xi)}wp(Xk)|]

≤ C
(
E[v2

`K(Xi)]
)1/2 (

E[{vpK(Xk)− wp(Xk)}2]
)1/2

+C
(
E[{v`K(Xi)− w`(Xi)}2]

)1/2 (
E[w2

p(Xk)]
)1/2

= o(1),

because for any p = 1, · · · , d, E[w2
p(Xi)] < ∞ by Assumption C1 (i), E[{vpK(Xi) −

wp(Xi)}2] = o(1) by Assumption C1 (iii) and E[v2
pK(Xi)] < ∞. The latter follows

from

E[v2
pK(Xi)] ≤ 2E[{vpK(Xi)− wp(Xi)}2] + 2E[w2

p(Xi)] <∞. (2.9.31)

Hence,

|(Vn −Wn)`p| ≤

[
1

n

n∑
i=1

n∑
k=1

|γik|

]
· o(1) = o(1),

by Assumption C2 (ii). This completes the proof of the Theorem. �

Proof of Theorem 2.5. Proof of Theorem 2.5 is based on Lemmas 2.1, 2.2 and 2.3

stated in Appendix B. Define the d× 1 summation

Ŝ∗n(r) :=

[rn]∑
i=1

Â∗′B̂−1
K pK(Xi)Ûi/

√
n, 0 ≤ r ≤ 1,

where [rn] denotes the integer part of rn. Based on the statement of Lemma 2.2

and 2.3, one has weak convergence
(
Ŝ∗n(r)

)
r∈[0,1]

⇒
(
V 1/2{Wd(r) − rWd(1)}

)
r∈[0,1]

in the space D[0, 1]d. Observe that Ĉn = 1
n

n∑
m=1

S∗n(
m

n
)S∗n(

m

n
)′ ∼

∫ 1

0
S∗n(r)S∗n(r)′dr.

Therefore, continuous mapping theorem gives

V −1/2ĈnV
−1/2 ⇒ Ψd. (2.9.32)

Write

Ĉ−1/2
n

√
n(θ̂n − θ0) = (Ĉ−1/2

n V 1/2)
(√
nV −1/2(θ̂n − θ0)

)
.

By Lemma 2.1-2.3, Ĉ
−1/2
n V 1/2 ⇒ Ψ

−1/2
d , and by Theorem 2.4,

√
nV −1/2(θ̂n − θ0)→d

N(0, Id), where convergence of the two terms is joint, completing the proof. �
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2.10 Appendix B. Lemmas 2.1-2.3. Propositions 2.1-2.2.

Let X(·), Y (·) ∈ D[0, 1], the space of all real valued functions on [0, 1] that are right-

continuous with finite left limits. Skorohod metric d(·, ·) in D[0, 1] is given by:

d(X,Y ) = inf
ε>0
{ε : ‖λ‖ ≤ ε, sup

r∈[0,1]
|X(r)− Y (λ(r))| ≤ ε}

where λ is any continuous mapping of [0, 1] onto itself with λ(0) = 0, λ(1) = 1 and

‖λ‖ = sup
r,u∈[0,1]:r 6=u

∣∣ log
λ(u)− λ(r)

u− r
∣∣, 0 ≤ r < u ≤ 1.

Denote by

Sn(r) :=

[rn]∑
i=1

A′P (Xi)Ui/
√
n, and Ŝn(r) :=

[rn]∑
i=1

A′P (Xi)Ûi/
√
n, r ∈ [0, 1] (2.10.1)

the d× 1 vector-valued summations.

Note that Sn(·) ∈ D[0, 1]d = D[0, 1] × · · · ×D[0, 1], where D[0, 1]d is the product

space. Endowing each component space D[0, 1] with the well-known Skorohod metric

d(·, ·), stated above, we assign the following metric to the product space D[0, 1]p as

was done in Phillips and Durlauf (1986). For X(·) = (X1(·), · · · , Xd(·))′ ∈ D[0, 1]d

and Y (·) = (Y1(·), · · · , Yd(·))′ ∈ D[0, 1]d, define the metric:

d′(X,Y ) = max
1≤`≤d

{d(X`, Y`) : X`, Y` ∈ D[0, 1]}.

Lemma 2.1 states functional central limit theorem (FCLT) for Sn(r) in D[0, 1]d

equipped with the metric d′(·, ·). The notation ⇒D[0,1]d signifies weak convergence of

the associated probability measures in D[0, 1]d.

Remark. The specification of Sn(r), and similarly Ŝn(r), in (2.10.1) as a partial

summation over i = 1 up to [rn] may seem like an obvious choice, as partial summation

of random variables, Sn(r) =

[rn]∑
i=1

ηi, where ηi does not depend on n, is frequently

considered in FCLT literature, see e.g. Phillpis and Durlauf (1986) and Davidson and

de Jong (2000). But it is worth noting that the setting here is more involved and

differs somewhat from those works. This is because the summand of Sn(r) takes on a

triangular array structure. Bearing in mind K = K(n) is a function of n and recalling

A =
(
D(P1K), D(P2K), · · · , D(PKK)

)′ ∈ RK×d, we see the summand A′P (Xi)Ui/
√
n

of (2.10.1) can be written as:

A′P (Xi)Ui/
√
n =

K(n)∑
l=1

D(PlK)PlK(Xi)
∞∑
j=1

bijεj/
√
n.
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Now, consider the following representation of Sn(r), as a weighted summation of εj ’s

over j = 1 to ∞, with weights that are triangular arrays:

Sn(r) =

[rn]∑
i=1

[K(n)∑
l=1

D(PlK)PlK(Xi)
∞∑
j=1

bijεj/
√
n
]

=
∞∑
j=1

[ [rn]∑
i=1

K(n)∑
l=1

D(PlK)PlK(Xi)bij/
√
n
]
· εj =

∞∑
j=1

cj(n; r)εj , (2.10.2)

where we denote

cj(n; r) :=
[ [rn]∑
i=1

K(n)∑
l=1

D(PlK)PlK(Xi)bij/
√
n
]
, r ∈ [0, 1], n ≥ 1.

The specification Sn(r) =

∞∑
j=1

cj(n; r)εj was previously considered in Kasahara and

Maejima (1986) for general functional limit theorems for infinite weighted sums. It

goes without saying that the alternative representations of Sn(r) given by (2.10.1) and

(2.10.2) are of course equivalent. For the rest of the proof, we use the form (2.10.1)

instead of (2.10.2) for ease of algebra, as using Ui instead of
∞∑
j=1

bijεj considerably

simplifies some steps, by the use of the quantity γij = Cov(Ui, Uj).

In the following proofs we will need some notations. For j ≥ 1, introduce a

j × K random matrix Pj = (P (X1), · · · , P (Xj))
′ and j × 1 random vectors, Mj =

(m(X1), · · · ,m(Xj))
′ and M̂j = (m̂(X1), · · · , m̂(Xj))

′.

Lemma 2.1. Under Assumptions of Theorem 2.5,(
Sn(r)

)
0≤r≤1

⇒D[0,1]d
(
V 1/2Wd(r)

)
0≤r≤1

. (2.10.3)

Proof of Lemma 2.1. Lemma 2.1 states weak convergence in the d-dimensional

product space D[0, 1]d. Phillips and Durlauf (1986, pp. 487-489) had established

two sufficient conditions for weak convergence of probability measures in this multi-

dimensional product space. These two conditions, adapted here for (2.10.3), are;

convergence of finite dimensional distributions of Sn(·) to those of V 1/2Wd(·), and;

tightness of each component of the vector Sn(·).
We first establish the following two statements, which will be subsequently used

to obtain the above two facts: for any 0 ≤ r ≤ u ≤ 1,

ESn(r)Sn(u)′ → r · V, (2.10.4)

E|Sn`(u)− Sn`(r)|2 ≤ C
∣∣ [un]− [rn]

n

∣∣, ` = 1, · · · , d (2.10.5)
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where Sn(r) =
(
Sn1(r), · · · , Snd(r)

)′
. Write

ESn(r)Sn(u)′ = ESn(r)Sn(r)′ + E
(
Sn(r)(Sn(u)′ − Sn(r)′)

)
.

By Theorem 2.4, E(SnS
′
n) = Vn → V . Therefore,

ESn(r)Sn(r)′ =
[rn]

n

1

[rn]
E(A′P′[rn]U[rn]U

′
[rn]P[rn]A)→ rV.

Hence (2.10.4) follows if we show that E
(
Sn(r)(Sn(u)′ − Sn(r)′)

)
→ 0. This is done

by showing that the corresponding limit of each element of the vector is zero. For

`, p = 1, · · · , d,

|E
[
Sn(r)(Sn(u)′ − Sn(r)′)

]
`p
| ≤ C

n

[rn]∑
i=1

[un]∑
k=[rn]+1

|γik|E|v`K(Xi)vpK(Xk)|

≤ C

n

[rn]∑
i=1

[un]∑
k=[rn]+1

|γik| = o(1),

by Assumption C3 (i), and because

E|v`K(Xi)vpK(Xk)| ≤
(
Ev2

`K(Xi)Ev
2
pK(Xk)

)1/2
<∞

as shown in the proof of Theorem 2.4. This completes the proof of (2.10.4).

To prove (2.10.5), observe that

E|Sn`(u)− Sn`(r)|2 = E
∣∣ 1√
n

[un]∑
i=[rn]+1

A′`P (Xi)Ui
∣∣2

≤ 1

n

[un]∑
i,k=[rn]+1

|γik|E|σ(Xi)σ(Xk)v`K(Xi)v
′
`K(Xk)|

≤ C

n

[un]∑
i,k=[rn]+1

|γik| ≤
C

n

[un]∑
i=[rn]+1

[
max

1≤i≤n

n∑
k=1

|γik|
]

≤ C
∣∣ [un]− [rn]

n

∣∣,
by Assumption C3 (ii), which proves (2.10.5).

Next we show that finite dimensional distributions of Sn(·) converge to those of

V 1/2Wd(·). This states that for an arbitrary integer k, and any choices of points

r1, · · · , rk in [0, 1],

(
Sn(r1), · · · , Sn(rk)

)
→d

(
V 1/2Wd(r1), · · · , V 1/2Wd(rk)

)
.

Using Cramer-Wold device, it suffices to show that for any d × 1 vectors c′1, · · · , c′k,
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the scalar random variable

Qn :=

k∑
l=1

c′lSn(rl)→d

k∑
l=1

c′lV
1/2Wd(rl) =: Q. (2.10.6)

Write Sn(r) =

∞∑
j=1

wj,[rn]εj with wj,[rn] as in (2.9.21), with V̄n replaced by V . Then,

Qn =
∞∑
j=1

w∗jnεj with w∗jn =
k∑
l=1

c′lwj,[rln]. Then by (2.10.4),

V ar(Qn) =
∞∑
j=1

(w∗jn)2 → V ar(Q) =
k∑

l,t=1

c′lV ct ·min{rl, rt} <∞.

By (2.9.24), which holds for all c′lwj,[rln], l = 1, · · · , k, we have max
j≥1
|w∗jn| = o(1),

and convergence (2.10.6) follows by the same argument as in the proof of asymptotic

normality (2.9.14).

Finally, we establish tightness for individual component of the vector Sn(r), which

completes the proof of the lemma. Noting Sn`(·) ∈ D[0, 1], ` = 1, · · · , d, we verify the

following sufficient condition for tightness given in Billingsley (1968, Theorem 15.6,

pp.128): for any 0 ≤ r ≤ s ≤ t ≤ 1, and some β ≥ 0, α > 1
2 and C > 0,

E[|Sn`(s)− Sn`(r)|2β|Sn`(t)− Sn`(s)|2β] ≤ C
∣∣t− r∣∣2α, ` = 1, · · · , d. (2.10.7)

This is in turn derived by showing that for any 0 ≤ r ≤ u ≤ 1,

E|Sn`(u)− Sn`(r)|4 ≤ C
∣∣ [un]− [rn]

n

∣∣2. (2.10.8)

To see (2.10.8) implies (2.10.7), note that for β = 1, the LHS of (2.10.7) is

E[|Sn`(s)− Sn`(r)|2|Sn`(t)− Sn`(s)|2] ≤
{
E[|Sn`(s)− Sn`(r)|4]E[|Sn`(t)− Sn`(s)|4]

}1/2

≤ C
(∣∣ [sn]− [rn]

n

∣∣2∣∣ [tn]− [sn]

n

∣∣2)1/2
= C

∣∣ [sn]− [rn]

n

∣∣∣∣ [tn]− [sn]

n

∣∣
≤ C

∣∣ [tn]− [rn]

n

∣∣2, (2.10.9)

where the first step uses the Cauchy-Schwarz inequality, the second inequality follows

from (2.10.8) and the last inequality from 0 ≤ r ≤ s ≤ t ≤ 1. As explained on pp.138

of Billingsley (1968), if t − r ≥ 1/n, then (2.10.9) implies (2.10.7) with α = 1: since

[nt2] ≤ nt2 and [nt1] ≥ nt1 − 1,

[nt2]− [nt1]

n
≤ nt2 − nt1 + 1

n
= t2 − t1 +

1

n
≤ 2(t2 − t1).
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On the other hand, if t− r < 1/n, then at least one of [sn]− [rn] = 0 or [tn]− [sn] = 0

holds. Then the LHS’s of (2.10.7) and (2.10.9) vanish, and thus (2.10.7) holds.

To verify (2.10.8), denote by e`, a d-dimensional vector, whose `th element is 1 and

the other elements 0. Then one can write

Sn`(u)− Sn`(r) =

∞∑
j=1

e′`(wj,[un] − wj,[rn])εj =:

∞∑
j=1

λjnεj .

Rewriting the LHS of (2.10.8) with the new notation and noting E(ε4
j ) = κ < ∞, ∀j

by Assumption C5, we obtain

E(

∞∑
j=1

λjnεj)
4 =

∞∑
j1,··· ,j4=1

λj1nλj2nλj3nλj4nE(εj1εj2εj3εj4)

= 3[

∞∑
j,j′=1:j 6=j′

λ2
jnλ

2
j′n] + κ

∞∑
j=1

λ4
jn ≤ C[

∞∑
j=1

λ2
jn]2

= C
(
E|Sn`(u)− Sn`(r)|2

)2 ≤ C∣∣ [un]− [rn]

n

∣∣2,
where the last step follows from (2.10.5). This completes the proof of the lemma. �

Lemma 2.2. Under Assumptions of Theorem 2.5,(
Ŝn(r)

)
0≤r≤1

⇒D[0,1]d
(
V 1/2{Wd(r)− rWd(1)}

)
0≤r≤1

. (2.10.10)

Proof of Lemma 2.2. Since Ûi − Ui = m(Xi)− m̂(Xi),

Ln(r) := Ŝn(r)− Sn(r) =

[rn]∑
i=1

A′P (Xi){m(Xi)− m̂(Xi)}/
√
n.

We can write, using m̂(Xi) = P ′(Xi)γ̂,

Ln(r) =

[rn]∑
i=1

A′P (Xi){m(Xi)− P ′(Xi)γK}/
√
n+

[rn]∑
i=1

A′P (Xi)P
′(Xi)(γK − γ̂)/

√
n

= A′P′[rn](M[rn] −P[rn]γK)/
√
n+A′P′[rn]P[rn](γK − γ̂)/

√
n,

leading to

Ŝn(r) = Sn(r) +
A′P′[rn](M[rn] −P[rn]γK)

√
n

−
A′P′[rn]P[rn](γ̂ − γK)

√
n

=: Sn(r) + an(r)− `n(r).
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We shall show that

sup
r∈[0,1]

‖an(r)‖ = op(1), (2.10.11)

`n(r)⇒D[0,1]d rV
1/2Wd(1), (2.10.12)

which, together with Lemma 2.1, prove (2.10.10).

Proof of (2.10.11). One has

sup
r∈[0,1]

‖an(r)‖ ≤ ‖A′‖ sup
r∈[0,1]

‖P′[rn]‖ sup
r∈[0,1]

‖(M[rn] −P[rn]γK)/
√
n‖(2.10.13)

= Op(
√
nξ2(K)K−α) (2.10.14)

because ‖A′‖ ≤ ζ(K) ≤ ξ(K), whereas

sup
r∈[0,1]

‖P′[rn]‖ = Op(
√
nξ(K)), sup

r∈[0,1]
‖(M[rn] −P[rn]γK)/

√
n‖ = O(K−α),

by Assumption A4. Then (2.10.11) follows by Assumption C4.

Proof of (2.10.12). Recall Y = M + U , and one has γ̂ = (P′P)−1P′Y =

(P′P)−1P′(M −PγK) + (P′P)−1P′(PγK + U). Therefore,

√
n(γ̂ − γK) =

(
P′P

n

)−1 P′(M −PγK)√
n

+

(
P′P

n

)−1 P′U√
n
.

Hence,

`n(r) = A′

(
P′[rn]P[rn]

n

)(
P′P

n

)−1 P′(M −PγK)√
n

+ A′

(
P′[rn]P[rn]

n

)(
P′P

n

)−1 P′U√
n

=: `1,n(r) + `2,n(r). (2.10.15)

We shall show the following two results which constitute the proof of (2.10.12):

sup
r∈[0,1]

‖`1,n(r)‖ = op(1), `2,n(r)⇒D[0,1]d rWd(1).

Noting that (P′P/n)−1 = Op(1) and sup
r∈[0,1]

∥∥∥P′[rn]P[rn]/n
∥∥∥ = Op(ξ

2(K)), since

‖
[rn]∑
i=1

P (Xi)P
′(Xi)/n‖ ≤ ξ2(K),



2. Series Estimation under Cross-sectional Dependence 77

we obtain

‖`1,n(r)‖ ≤ ‖A′‖ sup
r∈[0,1]

∥∥∥∥∥P′[rn]P[rn]

n

∥∥∥∥∥
∥∥∥∥(P′Pn )−1

∥∥∥∥∥∥∥∥P′(M −PγK)√
n

∥∥∥∥
≤ ‖A′‖Op

(
ξ2(K)

)
‖P′‖

∥∥∥∥(M −PγK)√
n

∥∥∥∥ = Op(
√
nξ3(K)K−α) = op(1),

by Assumption C4(iv). Next, write

`2,n(r) = rA′P′U/
√
n+A′

((
P′[rn]P[rn]

n

)(
P′P

n

)−1

− rI

)
P′U√
n
.

Since convergence r(A′P′U/
√
n)→d rV

1/2Wd(1) was shown in the proofs of Theorems

2.2 and 2.4, it remains to verify that

sup
r∈[0,1]

‖A′
((

P′[rn]P[rn]

n

)(
P′P

n

)−1

− rI

)
P′U√
n
‖ = op(1).

One has ‖A‖ = O(ξ(K)) and
∥∥P′U/√n∥∥ = O(

√
K) by Assumption C4 (ii). Next, we

have

sup
r∈[0,1]

∥∥∥∥∥( [rn]

n

)(P′[rn]P[rn]

[rn]

)(P′P
n

)−1 − rI

∥∥∥∥∥
≤ sup

r∈[0,1]

[rn]

n

∥∥∥∥∥P′[rn]P[rn]

[rn]
− I

∥∥∥∥∥
∥∥∥∥(P′Pn )−1 − I

∥∥∥∥
+ sup

r∈[0,1]

[rn]

n

∥∥∥∥∥P′[rn]P[rn]

[rn]
− I

∥∥∥∥∥+ sup
r∈[0,1]

[rn]

n

∥∥∥∥(P′Pn )−1 − I
∥∥∥∥+ o(1/n).

From the proof of Theorem 2.1, (2.9.12), we have

‖Q̂− I‖2 =

∥∥∥∥P′P

n
− I
∥∥∥∥2

= Op

(
K2ξ4(K)

( 1

n
+
4n

n2

))
.

This fact, by Horn and Johnson (1990) pp 335-336, implies∥∥∥∥(P′Pn )−1 − I
∥∥∥∥2

= Op

(
K2ξ4(K)

( 1

n
+
4n

n2

))
= Op

(
K2ξ4(K)/n

)
,

with the last step following from Assumption C4(i). Similarly, one has that

sup
r∈[0,1]

( [rn]

n

)2 ∥∥∥∥∥P′[rn]P[rn]

[rn]
− I

∥∥∥∥∥
2

= sup
r∈[0,1]

( [rn]

n

)2
Op

(
K2ξ4(K)

( 1

[rn]
+
4[rn]

[rn]2
))

= sup
r∈[0,1]

[rn]

n
Op

(
K2ξ4(K)

( 1

n
+
4[rn]

n[rn]

))
= Op

(
K2ξ4(K)/n

)
, (2.10.16)
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by Assumption A4 (i). Therefore,

sup
r∈[0,1]

‖A′
((

P′[rn]P[rn]

n

)(
P′P

n

)−1

− rI

)
P′U√
n
‖

= Op(K
√
Kξ3(K)/

√
n) = op(1), (2.10.17)

with the last step following from Assumption A3 (ii). This completes the proof of

Lemma 2.2. �

Lemma 2.3. Under assumptions of Theorem 2.5, sup
r∈[0,1]

‖Ŝ∗n(r)− Ŝn(r)‖ = op(1).

Proof of Lemma 2.3. Recall that A′ = A∗′B
−1/2
K , p′[rn] = B

1/2
K P′[rn]. Thus,

‖Ŝ∗n(r)− Ŝn(r)‖ = ‖(Â∗′B̂−1
K p′[rn]Û[rn] −A′P′[rn]Û[rn])/

√
n‖

= ‖(Â∗′B̂−1
K B

1/2
K −A∗′B−1/2

K )P′[rn]Û[rn]/
√
n‖.

Therefore,

sup
r∈[0,1]

‖Ŝ∗n(r)− Ŝn(r)‖ ≤ ‖Â∗′B̂−1
K B

1/2
K −A∗′B−1/2

K ‖

· sup
r∈[0,1]

‖P′[rn]Û[rn]/
√
n‖ =: dn,1dn,2. (2.10.18)

We shall show that

dn,1 = Op(Kξ
2(K)/

√
n) +Op

(
ξ2(K)

(√ tr(Σ)

n
+K−α

))
, (2.10.19)

dn,2 = Op(K
1/2 +K−α

√
n). (2.10.20)

Then, since tr(Σ) = Op(K) by Assumption C4 (ii),

dn,1dn,2 = Op(Kξ
2(K)/

√
n+ ξ2(K)K−α)Op(K

1/2 +K−α
√
n)

= Op(K
3/2ξ2(K)/

√
n+ ξ2(K)K−α+1/2 + ξ2(K)K−α

√
n) = op(1),

by Assumption B3 (iii), C4 (iv) and B3 (ii).

dn,1 = ‖Â∗′B̂−1
K B

1/2
K −A∗′B−1/2

K ‖ ≤ ‖Â∗′ −A∗′‖‖B̂−1
K B

1/2
K −B−1/2

K ‖

+‖A∗′‖‖B̂−1
K B

1/2
K −B−1/2

K ‖+ ‖Â∗′ −A∗′‖‖B−1/2
K ‖.

Note that ‖A∗‖ ≤ ξ(K), and by Assumption A3 (i), ‖B−1
K ‖ = Op(1). Now,

‖B̂−1
K B

1/2
K −B−1/2

K ‖ ≤ ‖B̂−1
K −B

−1
K ‖‖B

1/2
K ‖ = Op

(
Kξ2(K)

1√
n

)
, (2.10.21)

since by Assumption C4 (iii), ‖BK‖ = O(1), whereas ‖B̂K−BK‖2 = Op
(
K2ξ4(K)/n

)
which can be shown using the same argument shown in obtaining an order of magni-
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tude (2.9.12) for ‖Q̂ − I‖ and applying Assumption C4 (i). Then, ‖B̂−1
K − B

−1
K ‖2 =

Op
(
K2ξ4(K)/n

)
follows from Horn and Johnson (1990) pp 335-336, under Assump-

tions C4 (iii) and A3 (i), which imply ‖BK‖ = O(1) and ‖B−1
K ‖ = O(1), as n→∞.

To obtain (2.10.19), it remains to evaluate the term ‖Â∗ − A∗‖. Newey (1997)

showed that the estimate Â∗ = (Â∗1, · · · , Â∗d) is equal to the quantity
(
D(p1; m̂), · · · , D(pK ; m̂)

)′
with probability approaching one. Recalling D(·; m̂) =

(
D1(·; m̂), · · · , Dd(·; m̂)

)
, the

ith column of Â∗ −A∗ can be written as

Â∗i −A∗i =
(
Di(p1; m̂)−Di(p1;m), · · · , Di(pK ; m̂)−Di(pK ;m)

)′
, i = 1, · · · , d.

Using linearity of Di(g; m̂) in g, one writes

‖Â∗i −A∗i ‖2 = (Â∗i −A∗i )′(Â∗i −A∗i ) = |Di

(
(Â∗i −A∗i )′pK ; m̂

)
−Di

(
(Â∗i −A∗i )′pK ;m

)
|

≤ C|(Â∗i −A∗i )′pK |∞|m̂−m|∞ ≤ C‖Â∗i −A∗i ‖ξ(K)|m̂−m|∞,

with the first inequality following from Assumption C6. Therefore, ‖Â∗i − A∗i ‖ =

Op(ξ(K)|m̂−m|∞), for i = 1, · · · , p. This allows us to bound

‖Â∗ −A∗‖2 ≤ tr
(
(Â∗ −A∗)′(Â∗ −A∗)

)
=

p∑
i=1

(Â∗i −A∗i )′(Â∗i −A∗i )

=
( p∑
i=1

‖Â∗i −A∗i ‖2
)
≤ Cξ2(K)|m̂−m|2∞.

Therefore, applying for |m̂−m|∞ the bound of Theorem 2.1, we obtain

‖Â∗ −A∗‖ = Op

(
ξ2(K)

[√
tr(Σn)

n
+K−α

])
) = op(1),

by Assumption B3 (ii)-(iii), completing the proof of (2.10.19).

Next, decompose dn,2 as follows.

dn,2 ≤ sup
r∈[0,1]

‖P′[rn](Û[rn] − U[rn])/
√
n‖+ sup

r∈[0,1]
‖P′[rn]U[rn]/

√
n‖

= dn,21 + dn,22.

As in the proof of Lemma 2.2, one can bound

dn,21 ≤ sup
r∈[0,1]

‖P′[rn](M[rn] −P[rn]γK)/
√
n‖+ sup

r∈[0,1]
‖P′[rn]P[rn]/n‖‖

√
n(γ̂ − γK)‖.

From (2.10.14) it is seen that the first term on the RHS is Op(
√
nξ(K)K−α) = op(1),

by Assumption C4 (iv). By (2.9.11), ‖(γ̂ − γK)
√
n‖ = Op(tr(Σn)1/2 + K−α

√
n) =

Op(K
1/2+K−α

√
n) from Assumption C4 (ii), whereas by (2.10.16), sup

r∈[0,1]
‖P′[rn]P[rn]/[rn]‖ =

Op(1) + Op(Kζ
2(K)/

√
n) = Op(1) by Assumption A3 (ii). Thus, dn,21 = Op(K

1/2 +
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K−α
√
n).

Finally, one has

dn,22 = sup
r∈[0,1]

( [rn]

n

)1/2‖P′[rn]U[rn]/
√

[rn]‖ = Op( sup
r∈[0,1]

tr1/2(Σ[rn])) = Op(
√
K),

by Assumption C4(ii). Hence, dn,2 = Op(K
1/2), which proves (2.10.20) and completes

the proof of the lemma. �

In the following proposition we provide the upper bound for 4n in (2.3.3) in the

case of Gaussian random variables Xi.

Proposition 2.1. Let Xi ∼ N(0, 1), i = 1, 2, · · · , be Gaussian variables with σ
(X)
ij =

Cov(Xi, Xj). If for some c0 < 1, one has |σ(X)
ik | ≤ c0, ∀i, k = 1, 2, · · · ; i 6= k, then,

4n ≤ C
n∑

i,k=1,i 6=k
|σ(X)
ik |, n ≥ 1. (2.10.22)

Proof of Proposition 2.1. Recall that the bivariate density of X ∼ N(0, 1), Y ∼
N(0, 1), Cov(X,Y ) = ρ is

fρ(x, y) =
1

2π
√

1− ρ2
exp

(
−mρ(x, y)

)
,

mρ(x, y) :=
x2 + y2 − 2ρxy

2(1− ρ2)
, x, y ∈ R.

Then f0(x, y) = f(x)f(y), where f(x) = (2π)−1/2 exp(−x2/2). We shall show that for

all |ρ| ≤ c0 < 1,

|fρ(x, y)− f0(x, y)| ≤ Cρ exp
(−(x2 + y2)

8

)
, x, y ∈ R, (2.10.23)

where C does not depend on ρ. Since fik(x, y) = fσik(x, y) is the bivariate density of

Xi, Xk, the following holds by (2.10.23),

4n =

n∑
i,k=1,i 6=k

∫
|fij(x, y)− f(x)f(y)|dxdy

≤ C

n∑
i,k=1,i 6=k

|σ(X)
ik |

∫
exp

(
− (x2 + y2)/8

)
dxdy

≤ C

n∑
i,k=1,i 6=k

|σ(X)
ik |,

which proves (2.10.22).

Proof of (2.10.23) By the mean value theorem, applied in |ρ| ≤ c0,

|fρ(x, y)− f0(x, y)| ≤ |ρ| sup
|ρ|≤c0

|f ′ρ(x, y)|. (2.10.24)
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Note that

f ′ρ(x, y) = fρ(x, y)

(
ρ

1− ρ2
− ∂mρ(x, y)

∂ρ

)
. (2.10.25)

One has ∣∣∣∣ ρ

1− ρ2

∣∣∣∣ ≤ c0

1− c2
0

.

We shall show that

fρ(x, y) ≤ c exp
(
− (x2 + y2)/4

)
(2.10.26)∣∣∂mρ(x, y)

∂ρ

∣∣ ≤ c(x2 + y2), x, y ∈ R, (2.10.27)

where c does not depend on ρ and x, y, which together with (2.10.24) and (2.10.25)

implies (2.10.23).

Note that

mρ(x, y) ≥ x2 + y2 − 2|ρxy|
2(1− |ρ|2)

=
|ρ|(x2 + y2 − 2|xy|) + (1− |ρ|)(x2 + y2)

2(1− |ρ|2)

≥ (1− |ρ|)(x2 + y2)

2(1− |ρ|2)
≥ x2 + y2

2(1 + |ρ|)
≥ x2 + y2

4
,

the second inequality following from 2|xy| ≤ x2 + y2. This implies (2.10.26):

fρ(x, y) =
1

2π
√

1− ρ2
exp

(
−mρ(x, y)

)
≤ 1

2π
√

1− ρ2
exp

(
− (x2 + y2)/4

)
≤ 1

2π
√

1− c2
0

exp
(
− (x2 + y2)/4

)
.

Next, ∣∣∣∣∂mρ(x, y)

∂ρ

∣∣∣∣ =

∣∣∣∣−4(1− ρ2)xy + 4ρ(x2 + y2 − 2ρxy)

[2(1− ρ2)]2

∣∣∣∣
≤ |xy|

(1− ρ2)
+
|x2 + y2 − 2ρxy|

[(1− ρ2)]2

≤ |xy|
(1− c2

0)
+
x2 + y2 + 2|ρxy|

(1− c2
0)2

≤ c(x2 + y2),

since 2|xy| ≤ x2 + y2, which proves (2.10.27) and completes the proof of the proposi-

tion. �

Proposition 2.2 Assume that there exists η(j) ≥ 0, j ∈ Z such that

∞∑
j=−∞

η(j) <∞
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and |γikn| ≤ η(i− k), ∀i, k = 1, 2, · · · . Then for any r ∈ [0, 1],

[rn]∑
i=1

n∑
k=[rn]+1

|γikn| = o(n).

Proof of Proposition 2.2. Note that τn :=
∑
|j|≥logn

η(j) → 0 as n → ∞, and

max
j
η(j) ≤ C <∞. One has

[rn]∑
i=1

n∑
k=[rn]+1

|γikn| ≤
[rn]∑
i=1

n∑
k=[rn]+1

η(i− k) ≤
[rn]∑
i=1

n∑
k=[rn]+logn

η(i− k)

+
n∑

k=[rn]+1

[rn]−logn∑
i=1

η(i− k) + C

[rn]∑
i=[rn]−logn

[rn]+logn∑
k=[rn]+1

1

≤ τn
[rn]∑
i=1

1 + τn

n∑
k=[rn]+1

1 + 2C log n ≤ 2τnn+ 2C log n = o(n).

This completes the proof of the proposition. �
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3 Panel Data Model with

Non-parametric Common

Regression and

Individual Fixed Effects
3.1 Introduction

Availability of multiple observations on a set of individuals over time, i.e. panel data,

allows economists to account for unobserved individual effects, which is not possible

when dealing with observations of a single cross section. There is a substantial amount

of literature on estimation of linear or non-linear panel data models with individual

effects, see e.g. Arellano and Honore (2001), Hahn and Kuersteiner (2002), Wooldridge

(2002) and Bai (2009).

Non-parametric methods that enable consistent estimation of functions without

the danger of parametric misspecification are becoming increasingly more accepted,

at least in samples of moderate size. Ruckstuhl, Welsh and Carroll (2000) consid-

ered kernel estimation of regression function with panel data when the cross-sectional

size, N , is fixed and there are additive individual effects that are ”random”, i.e. un-

correlated with regressors. Additive individual components represent the effects of

unobserved time-invariant individual characteristics on the variable of interest and

are often viewed as a simple yet satisfactory way of modeling individual heterogeneity

in panel data. In many economic applications, it is difficult to justify the assumption

of ”random” effects as the unobserved individual characteristics may be correlated

with the regressors. Henderson et al. (2008) consider consistent estimation of non-

parametric and semi-parametric (partly linear) regression functions when additive

individual ”fixed” effects, that may be correlated with regressors, are present.

In this chapter, we consider a panel data model with additive individual compo-

nents and time-varying ”common” regressor, that is shared by all cross-sectional units,

for a dataset whose time dimension, T , is large relative to its cross-sectional size, N .

The type of data envisaged is when the cross-sectional units are large entities such as

countries/regions or firms. It is expected that such datasets typically exhibit cross-

sectional dependence in the error terms: countries or firms may be interdependent

or subject to global shocks that affect everyone. Such dependence could be substan-

tial, and it is deemed crucial in this work not to impose stringent restrictions on the

strength of cross-sectional dependence.

We consider the following model for a balanced panel data set of size N×T . Below

Yit denotes a one dimensional dependent variable, λi an additive individual fixed

effect of individual i, Zt is a q-dimensional vector of time-varying common regressors,
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common to individuals, whereas m(·) is the non-parametric regression function of

interest, and Uit the error term. Yit is defined as follows:

Yit = λi +m(Zt) + Uit, i = 1, · · · , N, t = 1, · · · , T. (3.1.1)

The model can be written in N -dimensional vector form as

Y·t = λ+m(Zt)1N + U·t, t = 1, · · · , T,

setting: Y·t = (Y1t, · · · , YNt)′, λ = (λ1, · · · , λN )′, 1N = (1, · · · , 1)′, U·t = (U1t, · · · , UNt)′.
The cross-sectional size N(= NT ) is assumed to be either fixed or increasing slowly

as T →∞.

The model above was considered in Robinson (2010b) for common trend estima-

tion, with Zt replaced by the deterministic argument t/T . He showed how to incor-

porate the knowledge of cross-sectional dependence in Uit’s into estimating m(t/T )

in order to obtain an efficiency gain. In particular, a generalised least squares (GLS)

type estimate under the full knowledge of cross-sectional dependence was shown to be

superior in the mean square error (MSE) sense, to one that does not incorporate such

information. Asymptotic equivalence between the infeasible and feasible GLS type

estimates was also established.

The present chapter aims to address similar issues in the case of multivariate

stochastic regressors. The random nature of the regressors, as opposed to the de-

terministic t/T of Robinson (2010b), gives rise to the possibility of conditional het-

eroscedasticity as we do not assume independence between the error term and regres-

sors. In our setting, we allow the cross-sectional covariance matrix of the error terms

to depend on the value of the concurrent regressors, which leads to the use of ”local”

weights in the GLS-type estimation, as opposed to the global weight used in the trend

estimation in Robinson (2010b). We further relax conditions on Uit (and Zt) from

being independent and identically distributed (i.i.d.) across time to possible weak

dependence.

Our interest in the model (3.1.1) can be more broadly motivated from a more

general and applicable model where time-varying, individual-specific regressors are

also present. For example, one may want to model house price indices of countries

within the Eurozone, Yit, in terms of the interest rate set by the European Central

Bank, Zt, and country-specific covariates Xit such as the country’s GDP, inflation and

stock market index. One could formulate for Yit a partly linear regression specification:

Yit = λi +X ′itγ +m(Zt) + Uit. (3.1.2)

The estimation of the linear parameter γ could be faciliated by the following data

transformation that involves differencing across the cross section and time. Noting
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that Yit − Yi−1t = λi − λ1 + (Xit −Xi−1t)
′γ + Uit − Ui−1t, i = 2, · · · , N , consider:

(Yit − Yi−1t)− (Yit−1 − Yi−1t−1) = [(Xit −Xi−1t)− (Xit−1 −Xi−1t−1)]′γ

+(Uit − Ui−1t)− (Uit−1 − Ui−1t−1), t = 2, · · · , T.

Based on the transformed data above, the linear parameter γ can be estimated at

the parametric
√
NT rate under the same conditions as those required for first differ-

ence estimation of the linear regression model with additive individual effects, see e.g.

Wooldridge (2002, pp. 279-281) and Arellano et al. (2001, pp. 3233-3241). There-

fore, in considering non-parametric estimation of m(·) in (3.1.2), one could treat γ

as known and focus on the simpler model (3.1.1), instead of (3.1.2), noting that γ

can be consistently estimated at a faster rate of convergence than m(·) under suitable

conditions.

The plan of the chapter is as follows. Section 3.2 introduces the simple kernel

estimate of the function m(·) and presents its asymptotic MSE, the consequent optimal

choice of the bandwidth parameter, and establishes its asymptotic normality. Section

3.3 discusses improved estimation based on the unknown cross-sectional covariance

matrix of the error terms, stating asymptotic results on the behaviour of the improved

estimate. Estimates of the cross-sectional covariance matrix are considered in Section

3.4, with asymptotic justification for their use in deriving the optimal bandwidths and

improved trend estimates. Section 3.5 presents a small Monte Carlo study of finite

sample performance. Appendix A contains some useful lemmas, of which Lemma 3.6

constitutes an additional contribution of this work in offering a useful decomposition

of U statistic of order up to 4, under serial dependence in its arguments. Proofs of

theorems are provided in Appendix B.

3.2 Simple non-parametric regression estimation

In (3.1.1), it is notable that λi and m(·) are only identified up to a location shift.

As noted in Robinson (2010b), an (arbitrary) identification restriction
N∑
i=1

λi = 0

identifies the function m(·) up to a vertical shift and leads to the relationship:

ȲAt = m(Zt) + ŪAt, (3.2.1)

where we denote by ȲAt :=

N∑
i=1

Yit/N and ŪAt :=

N∑
i=1

Uit/N , the cross-sectional aver-

ages. Under (3.2.1), one can non-parametrically estimate m(·) using the time series

data (ȲAt, Z
′
t). In this section, we derive the asymptotic MSE of the simple Nadaraya-

Watson (N-W) estimator of m(·), based on (3.2.1), at a fixed point ζ, and consider

optimal bandwidth choice. A temporal dependence condition on Zt and Uit, i ≥ 1

will be phrased in terms of their α-mixing coefficients. A multivariate CLT is also
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presented at d fixed points, (ζ1, ζ2, · · · , ζd), which is nothing new in itself and in-

cluded here for the sake of completeness. The main reference is Robinson (1983), with

conditions amended to suit the setting under consideration.

For ease of algebra, we consider product kernels with a diagonal bandwidth matrix,

which could cover the general case of different kernel function and/or bandwidth choice

in each dimension of regressors. For ease of algebra and notation we will use the same

kernel function and bandwidth for each element of Zt, the relaxation of which is

straight-forward.

Let aT = a be a positive scalar bandwidth parameter approaching 0 as T increases.

Below, the subscript T will be suppressed for brevity. For a given real-valued bounded

kernel function k : R→ R, the product kernel K : Rq → R is defined as

K(u) =

q∏
j=1

k(uj), u = (u1, u2, · · · , uq)′.

Definition 1. The simple N-W non-parametric regression estimate of m(ζ) at a fixed

point ζ which uses the cross sectional average ȲAt is defined as

m̃(ζ) :=

T∑
t=1

K
(Zt − ζ

a

)
ȲAt

T∑
t=1

K
(Zt − ζ

a

) .

Definition 2. (α-mixing) LetMv
u be the σ-field of events generated by a stationary

vector process Xt, u ≤ t ≤ v. Then the α-mixing coefficient of Xt is defined as

α(τ) := sup
t∈N

sup
A∈Mt

−∞,B∈M∞t+τ
|P (A ∩B)− P (A)P (B)|, τ > 0.

A stationary process Xt is called α-mixing if α(τ)→ 0 as τ →∞.

Definition 3. K`, ` ≥ 1, denotes the class of uniformly bounded even functions

k : R→ R satisfying∫
k(u)du = 1,

∫
uik(u)du = 0, i = 1, · · · , `− 1, χ` :=

∫ ∞
−∞

u`|k(u)|du <∞,

(3.2.2)

and such that supu(1 + |u|`+1)|k(u)| <∞.
Assumption 1. For all i ≥ 1, (Zt, Uit) is a jointly stationary α-mixing processes

with mixing coefficient αi(τ). Define α(τ) := max
i
αi(τ). For some θ > 2,

∞∑
τ=L

α1−2/θ(τ) = o(L−1), as L→∞.

Assumption 2. The process {Uit} is such that for all i = 1, · · · , N, N ≥ 1, t ≥
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1, E(Uit) = 0 and E(Uit|Zt) = 0.

Let (ζ1, · · · , ζd) be the set of d points in Rq where m(·) is estimated.

Assumption 3. The process Zt, t ≥ 1, is stationary and has probability density

function (pdf) f which is continuous and bounded. Moreover, f(ζl) > 0, l = 1, · · · , d.
Assumption 4. The functions f(·) and m(·) have bounded derivatives of total order

s at z = ζl, l = 1, · · · , d.

Assumption 5. The conditional expectation functions ωij(z) = E(UitUjt|Zt =

z), i, j = 1, · · · , N are bounded continuous functions of z. We denote the N × N
conditional covariance matrix of U·t by Ω(z) = Ω(Zt = z) = {ωij(z)}.

The N -subscript is suppressed but it is recalled that N may be increasing with T .

Assumption 6. k(u) is a uniformly bounded and even function that belongs to Ks.
Assumption 6, combined with Assumption 4, leads to a bias reduction for the

N-W estimation arising from the use of higher order kernels, exploiting the assumed

smoothness of unknown functions m and f .

Assumption 7. The bandwidth a = aT → 0 is such that Taq →∞ as T →∞.

The randomness of the denominator in the non-parametric regression estimator

m̃(ζl) gives rise to difficulty in obtaining the exact expression for its MSE and instead,

as is conventional, we consider an ”approximate” MSE. Below, we present an approx-

imate bias expression, of which the detailed derivation for the scalar Zt case can be

found in p. 97-102 of Pagan and Ullah (1999), then combine this with the asymptotic

variance expression from the CLT result in Theorem 3.3, in order to formulate the

approximate MSE for m̃(ζl), presented in Theorem 3.1.

Denote the approximate bias expression for m̃(ζ) when using an sth order kernel,

by

Biass(m̃(ζ)) :=
χsa

s

f(ζ)
Φ(m̃(ζ)),

where

Φ(m̃(ζ)) =

q∑
j=1

s∑
`=1

1

`!

1

s− `!
∂(`)m

∂z`j

∣∣∣
z=ζ

∂(s−`)f

∂zs−`j

∣∣∣
z=ζ

.

Theorems 3.1-3.3 are merely restatements of standard results and proofs are not given

here. Let κ =
∫∞
−∞ k

2(u)du and χ2 be as in (3.2.2). In the rest of the chapter, when

we say ”asymptotically”, we mean ”as T , and possibly N = NT , go to ∞”.

Theorem 3.1. Under Assumptions 1-7, asymptotically, the approximate MSE is

MSE
(
m̃(ζ)

)
∼ κq

Taqf(ζ)

1′NΩ(ζl)1N
N2

+ Bias2
s(m̃(ζl)). (3.2.3)

The first term on the right hand side (RHS) represents the variance contribution, re-

flecting the variance of the simple cross-sectional average ŪAt: V ar(ŪAt) = 1′NΩ(ζl)1N/N
2.

Theorem 3.2. Under Assumptions 1-7, the bandwidth minimising the approximate
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MSE (3.2.3) is

a∗m,AMSE(ζl)
=
( κqf(ζl)

Tχ2
sΦ(m̃(ζl))2

1′NΩ(ζl)1N
N2

) 1
q+2s

.

Now, let fj(z, u) denote the joint pdf of (Zt, Zt+j) and fj,k(z, u, w) denote the joint

pdf of (Zt, Zt+j , Zt+j+k).

Assumption 8. (i) For some ξ > 0, sup
z
‖z‖ξf(z) <∞. (ii) For some C <∞,

sup
z,u

fj(z, u) ≤ C ∀j ≥ 1 and sup
z,u,w

fjk(z, u, w) ≤ C, ∀j, k ≥ 1.

Assumption 8 (i) bounds the joint densities of Zt’s and is natural given that Assump-

tion 3 assumes boundedness of the marginal density. Assumption 8 (i) is from Hansen

(2008) and is later needed to obtain a uniform rate of convergence.

Assumption 9. For θ > 2 of Assumption 1, E|m(Zt)|θ <∞ and E|Uit|θ ≤ C <∞,

for i = 1, · · · , N, N ≥ 1, t ≥ 1.

Assumption 10. For some c > θ and for z = ζl, l = 1, · · · , d, E(|Uit|c|Zt = z) is

finite and has bounded derivatives of order s.

Assumptions 9 and 10 are both from Robinson (1983) and are additional assump-

tions required for the asymptotic normality result below. For a symmetric positive

definite matrix A, let A1/2 denote its unique matrix square root. Below, we present

asymptotic normality result of m̃(ζ1) when the bandwidth parameter a is set so that

the bias term is negligible compared to the variance component.

Theorem 3.3. Let the bandwidth a be such that Taq+2s → 0 as T → ∞. Then

under Assumptions 1-10, asymptotically,

(Taq)
1
2 V
−1/2
N

(
m̃(ζ1)−m(ζ1), · · · , m̃(ζd)−m(ζd)

)′ d−→ Nd(0, Id),

where VN is a d× d diagonal matrix whose (l, l)th element is κq1′NΩ(ζl)1N/N
2f(ζl).

The quantity 1′NΩ(ζl)1N/N
2 =

N∑
i,j

ωi,j(ζl)/N
2 reflects the strength of cross-sectional

dependence in the error terms. In the case of increasing N , 1′NΩ(ζl)1N/N
2 = O(N−1)

is analogous to a common weak dependence assumption in time series. We are only

requiring 1′NΩ(ζl)1N/N
2 = O(1) in Assumption 5, therefore allowing the possibility

of what is analogous to strong or long-range dependence in time series. On the other

hand, since 1′NΩ(ζl)1N/N
2 may be of order o(1), the rate of convergence of the N-W

estimator is affected by the strength of cross sectional dependence if N →∞.

3.3 Improved estimation

This section considers improvement in the efficiency of the common regression esti-

mation in a similar way to Robinson (2010b), taking into account possible conditional

heteroscedasticity. Recall that the identifying condition of the non-parametric regres-
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sion function m in (3.1.1) was 1′Nλ = 0, leading to ȲAt = m(Zt)+ŪAt, where the N×1

weight vector used in ȲAt was 1N/N . Replacing 1N/N with an alternative weight vec-

tor gives rise to a different identification restriction. The following representation of

Y·t corresponds to a general N × 1 weight vector w:

Y·t = λ(w) +m(w)(Zt)1N + U·t, w′Y·t = m(w)(Zt) + w′U·t,

where the identifying restriction is given by w′λ(w) = 0. There is a vertical shift

between the functions identified under w′λ(w) = 0 and 1′Nλ = 0, namely, m(w)(z) −
m(z) = w′λ for all z.

One may improve the efficiency of estimation of m by using an optimal weight

vector. Note V ar(w′U·t|Zt = z) = w′Ω(z)w, which enters into the variance of the

N-W estimator as a scale factor. Therefore, the following weight vector would give

rise to the minimum variance N-W estimate out of all estimates formed this way:

w∗(z) = argminww
′Ω(z)w = (1′NΩ(z)−11N )−1Ω(z)−11N . (3.3.1)

Hence, we define the optimal N-W estimator at z as:

m̃∗(z) :=

T∑
t=1

K
(Zt − z

a

)
w∗(z)′Y·t

T∑
t=1

K
(Zt − z

a

) , (3.3.2)

where w∗(z) is the optimal weight vector that minimises the conditional variance of

the weighted average of w′Y·t when Zt = z:

Assumption 11. The matrix Ω(z) is nonsingular at z = ζl, l = 1, · · · , d.

Conditional heteroscedasticity implies the optimal weight vector varies across the

point of estimation, leading to the additional caveat that values of the regression

function m∗(w∗) identified at different points have vertical differences between them.

The regression function identified under w∗(z) has the following vertical shift from

that identified in (3.1.1):

m∗(z)−m(z) = w∗(z)′λ. (3.3.3)

Therefore, in the improved estimation, for the sake of comparability between points

of estimation, one should first carry out the optimal N-W estimation at each point of

interest, then adjust back to the baseline by using an estimate of the additive fixed

effect λ. One can use the following
√
T -consistent estimate of λ to do this in light of
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(3.3.3), where ȲiA := 1
T

T∑
t=1

Yit and ȲAA := 1
N

N∑
i=1

ȲiA:

λ̂i := ȲiA − ȲAA = λi +
1

T

T∑
t=1

m(Zt) +
1

T

T∑
t=1

Uit −

(
1

T

T∑
t=1

m(Zt) +
1

NT

T∑
t=1

N∑
i=1

Uit

)

= λi +
1

T

T∑
t=1

Uit −
1

NT

T∑
t=1

N∑
i=1

Uit = λi +Op

(
1√
T

)
,

with the last step following from Assumption 1 and 5.

Theorem 3.4. Under Assumptions 1-7 and 11, the approximate MSE is given by

MSE
(
m̃∗(ζl)

)
∼ κq

Taqf(ζl)

(
1′NΩ(ζl)

−11N
)−1

+ Bias2
s(m̃(ζl)).

Note that the bias is the same as in Theorem 3.1 of the previous section.

Theorem 3.5. Under Assumptions 1-7 and 11, the bandwidth minimising the ap-

proximate MSE of m̃∗(ζl) is given by

a∗m∗AMSE(ζl)
=
( κqf(ζl)

Tχ2
sΦ(m̃(ζl))2

(
1′NΩ(ζl)

−11N
)−1
) 1
q+2s

.

Theorem 3.6. Let a be such that Taq+2s → 0 as T →∞. Then under Assumptions

1-11, asymptotically,

(Taq)
1
2 V∗

−1/2
N

(
m̃∗(ζ1)−m∗(ζ1), · · · , m̃∗(ζd)−m∗(ζd)

)′
→d Nd(0, Id),

where m∗(ζl) = m(ζl) + w∗(ζl)
′λ with m and λ from (3.1.1) and V∗N is a d × d

diagonal matrix whose (l, l)th element is κq
(
1′NΩ(ζl)

−11N
)−1

/f(ζl).

The result shows that the rate of convergence depends on the rate of decay (if

any) of
(
1′NΩ(ζl)

−11N
)−1

as N → ∞. Hence in the case of N → ∞, the improved

estimator may have a faster rate than that of the simple N-W estimator if the rate

of decay of
(
1′NΩ(ζl)

−11N
)−1

is faster than that of
(
1′NΩ(ζl)1N

)
/N2. It was shown

in Robinson (2010b) that
(
1′NΩ(ζl)

−11N
)−1

<
(
1′NΩ(ζl)1N

)
/N2, unless Ω(ζl) has an

eigenvector 1N . For a discussion of when such situation would arise in the context of

the familiar factor models or spatial autoregressive models, see Section 4 of Robinson

(2010b).

3.4 Feasible estimator

We need now to consider feasibility of such estimation and efficiency gain in the

absence of knowledge of Ω(ζl). As is done in the GLS framework, it is natural to form

a feasible version of m̃∗(ζl) by replacing Ω(ζl) with a consistent estimator. However,

consistency may not be in itself satisfactory if the estimating error of Ω(ζl) does

not vanish fast enough and outweigh the efficiency gain desired. Theorem 3.9 below
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will provide additional conditions for asymptotic negligence of the difference between

the infeasible and feasible N-W estimators. We first need to establish how good an

estimator of Ω(ζl) we have, see Theorem 3.7. The proof of that theorem involves

finding the stochastic order of some quantities taking the form of U-statistics whose

arguments are observations from a time series process with dependence across time.

To do this, we use results of Yoshihara (1976) whose conditions involve β-mixing

coefficients. Therefore some assumptions in this section will be phrased in terms of

the β-mixing coefficients of Zt and Uit, i = 1, 2, · · · .
Definition 4. (β-mixing) Let Mv

u be the σ-field of events generated by the vector

process Xt, u ≤ t ≤ v. Then the β-mixing coefficient of Xt is defined as

β(τ) := sup
t∈N

sup
A∈Mt

−∞,B∈M∞t+τ
|P (A|M∞t+τ )− P (A)|. (3.4.1)

Xt is called β-mixing if β(τ)→ 0 as τ →∞.

In addition, to derive the uniform rate of convergence result for the non-parametric

density estimator, we will use α-mixing conditions of Hansen (2008). It can be shown

that β(τ) ≤ α(τ) where α(τ) is the α-mixing coefficient. Hence β-mixing condition

is more restrictive than α-mixing condition, but a number of interesting processes

have been shown to be β-mixing. Volkonskii and Rozanov (1961) showed if Gaussian

process Xt has spectrum with j-th derivative of bounded variation, then β(τ) =

O(τv), with v = j − 1. Pham and Tran (1985) established that for (vector-valued)

linear process Xt =

∞∑
j=0

bjεt−j , where εt are i.i.d. and bj ’s are fixed weights, one has

β(τ) = O
( ∞∑
k=τ

(

∞∑
l=k

‖bj‖E)δ/(1+δ)
)
, where δ > 0, ‖ · ‖E denotes Euclidean norm, and εt

satisfies a δ-th moment condition and has a pdf satisfying certain conditions. Pham

(1986) showed that some random coefficient autoregressive and bilinear processes are

β-mixing with β(τ) = O(τv), for any v > 0.

To estimate Ω(ζ), we use the following fitted residual:

Ûit := Yit − ȲiA − m̃(Zt) + ȲAA (3.4.2)

= (λi +m(Zt) + Uit)− (λi +
1

T

T∑
t=1

m(Zt) + ŪiA)− m̃(Zt) + (
1

T

T∑
t=1

m(Zt) + ŪAA)

= Uit − ŪiA − m̃(Zt) +m(Zt) + ŪAA. (3.4.3)

As will be made clear later, there is a need for a different bandwidth to be used in

the preliminary stage regression: we will denote that bandwidth h.

No parametric structure on the conditional heteroscedasticity Ω(ζ) is pre-imposed.



3. Panel Non-parametric Common Regression Model with Fixed Effects 92

We will use the kernel local smoothing estimate of Ω(ζl):

Ω̂(ζl) =

T∑
t=1

Kl(Zt;h)Û·tÛ
′
·t

T∑
t=1

Kl(Zt;h)

, (3.4.4)

where Kl(z;h) = K∗ ((z − ζl)/h), for suitable kernel function K∗, with the ∗ super-

script to stress that the kernel function used in the estimation of Ω need not be the

same as one used in the N-W estimate of m(·). An additional caveat involved in the lo-

cal smoothing of Ω(·), namely that we need to investigate the behavior of Kl(Zt;h)/ft,

where ft := f(Zt). The function 1/f(z) is typically not integrable and we will get

around this difficulty using a kernel K∗ with a bounded support.

Assumption 12. For all i ≥ 1, (Zt, Uit) is a jointly stationary vector β-mixing

processes with mixing coefficient βi(τ). Define β(τ) := max
i
βi(τ).

(i) For some 0 < γ < 1 and ε > 0, β(τ) = O(τ−(2+ε)/γ) as τ →∞.
(ii) For some κ > 1 + q + ξ∗ and some ξ∗ > 0, their α-mixing coefficients satisfy

α(τ) = O(τ−κ) as τ →∞.
Assumption 12 (ii) is implied by 12 (i) if (2 + ε)/γ > κ. Assumption 12 (i) is

taken from Fan and Li (1999) and implies

∞∑
τ=1

τβ(τ)γ < ∞, a fact used in the proof

of Lemma 3.6. Assumption 12(ii) was required in Hansen (2008).

Assumption 9′. For some θ > 4/(1 − γ), where γ is as in Assumption 12 (i),

sup
t
E|ŪAt|θ <∞,. Also, θ and γ are such that 1− 4γ ≤ 8

θ .

Note that sup
t
E|ŪAt|θ < ∞ is a stronger condition than assuming sup

t
E|Uit|θ <

∞, i = 1, · · · , N . Assumption 9’ strengthens the moment condition on the error terms

from E|Uit|θ <∞, θ > 2 of Assumption 9 and is required in the proof of Theorem 3.7

below.

Assumption 13. The functions m(z) and f(z) are s-times partially boundedly

differentiable over z for some s > 2q/θ.

Assumption 13 strengthens the local differentiability conditions on the two func-

tions m and f in Assumption 4 to the global differentiability and is needed in handling

the bias of the first stage non-parametric estimates.

Assumption 14. The kernel function k(·) used in the preliminary stage N-W

estimation is an even and uniformly bounded, integrable function that belongs to Ks
and satisfies

∫
|k(u)|

2(1−γ)
θ(1−γ)−4du <∞. Also, |k(u)| < C|u|−q/ξ∗ for u large.

Assumption 15. Each element of Ω(z) has bounded derivatives of total order p at

z = ζl, l = 1, 2, · · · , d.

Assumption 16. The kernel function K∗(·) ∈ Kp used in local smoothing of Ω(ζl)

is an even and uniformly bounded function of bounded support.

Assumption 15 together with Assumption 16 imply that the bias of each element
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of the smoothing estimate (3.4.4) of Ω(ζl) is of order O(hp).

Assumption 17. The bandwidth h → 0 is such that, with γ as in Assumption 12

(i) and % = κ−1−ξ∗−q
κ+3−q with κ, ξ∗ as in Assumption 12(ii), as T →∞,

(i) log T/(T %hq)→ 0, (ii) log T × h
2q
θ

+ 4γq
θ(1−γ) → 0.

Assumption 17 (i) is from Hansen (2008) and implies Thq →∞, which is needed to

make the variance component of the first stage kernel estimation of f(ζl), l = 1, · · · , d
to go to zero. Assumption 17 (ii) is satisfied if h takes the form of T−η for some η > 0.

Denote by ω̂ij the (i, j)th element of non-parametric conditional covariance esti-

mator Ω̂(ζl). Theorem 3.7 gives the consistency rate for each ω̂ij . It is reminded that

in this chapter, ”asymptotically” means ”as T , and possibly N = NT , go to ∞”.

Theorem 3.7. Under Assumptions 2,3,8, 9’, 12-17, asymptotically

max
1≤i,j≤N

|ω̂ij − ωij | = Op(RT,h), N ≥ 1,

where

RT,h := hp + h2s− 2q
θ +

1

Th3γq+ 4q
θ

+
1

Thq+γq+
2q
θ
−1

+
1

Th
q
2

+ 6q
θ(1−γ)

+
1√

Thq+
12q
θ

.(3.4.5)

The rate obtained in Theorem 3.7 will be instrumental in the proof of Theorems 3.8

and 3.9.

Recall that Theorems 3.2 and 3.5 provide optimal bandwidth choices when Ω(ζl)

is known. When carrying out feasible estimation using the estimate Ω̂(ζl) instead of

Ω(ζl), optimal bandwidths are obtained by replacing unknown values in the expression

for a∗m,AMSE(ζl)
and a∗m∗,AMSE(ζl)

by their corresponding estimates. Theorem 3.8

shows that the infeasible and feasible optimal bandwidth choices become equivalent

asymptotically. To show such equivalence, we need however to impose the following

additional assumptions.

Assumption 18. The estimates f̂ and Φ̂ are such that asymptotically,

f̂(ζl)− f(ζl) = Op

(
‖Ω(ζl)‖−1‖Ω̂(ζl)−Ω(ζl)‖

)
,

Φ̂2(m̃(ζl))− Φ2(m̃(ζl)) = Op

(
‖Ω(ζl)‖−1‖Ω̂(ζl)−Ω(ζl)‖

)
, l = 1, · · · , d.

Assumption 18 is rather unprimitive, but is essentially required to ensure that

the effect of estimating biases for quantities f(ζl) and Φ2(m̃(ζl)), which are required

to construct the optimal bandwidth choices, are negligible so as to yield asymptotic

equivalence of the feasible and infeasible optimal bandwidth choices.

Assumption 19. N and h are such that asymptotically, NRT,h = o(1).

Assumption 19 requires the choice of bandwidth parameter h to be such that the

rate RT,h obtained in Theorem 3.7 converges sufficiently fast to 0.
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Assumption 20. Ω is such that

‖Ω(ζl)
−1‖+

N1′NΩ(ζl)
−21N

(1′NΩ(ζl)−11N )2
= O(1), l = 1, · · · , d.

Assumption 20 was discussed in detail in Robinson (2010b), where it was noted

the first term on the LHS requires the smallest eigenvalue of Ω(ζl) to be bounded away

from zero for large N . A sufficient (but not necessary) condition for the second therm

on the LHS to be bounded is that the greatest eigenvalue of Ω(ζl) is bounded. See

Robinson (2010b) for an example where the second term on the LHS may be bounded

although the greatest eigenvalue of Ω(ζl) may increase with N .

Theorem 3.8. Under Assumptions 1-20, asymptotically

â∗m,MSE(ζl)

a∗m,MSE(ζl)

,
â∗m∗,MSE(ζl)

a∗m∗,MSE(ζl)

→p 1, l = 1, · · · , d.

Next, we define a feasible optimal N-W estimate with a bandwidth a as

m̂∗(ζl) =

(1′NΩ̂(ζl)
−11N )−11′NΩ̂(ζl)

−1
T∑
t=1

K
(Zt − ζl

a

)
Y·t

T∑
t=1

K
(Zt − ζl

a

) .

Assumption 21. The bandwidth a is such that as T → ∞, N3aq → 0, and with

ψ = min
{

2s− 2q
θ , p

}
, where p is as in Assumption 15,

√
N3Taqhψ = o(1).

Assumption 21 actually requires the bandwidth h, used in the preliminary stage,

to decay slower than the bandwidth a. The last condition shows that strengthening

the global smoothness conditions on m and f and the local smoothness condition on

Ω ensures that the non-parametric estimations in the first stage yield small enough

bias.

Theorem 3.9. Under Assumptions 1-21, asymptotically,

m̃∗(ζl)− m̂∗(ζl) = op

(
(1′NΩ(ζl)

−11N )−1/2

(Taq)1/2
+ as

)
, l = 1, · · · , d.

Based on Theorem 3.9, one could establish an asymptotic normality result for

m̂∗(ζl), with the same limiting distribution as m̃∗(ζl), that is presented in Theorem

3.6.

3.5 Finite sample performance

We carry out a small simulation study to compare finite sample performance of the

three estimates of m(z), namely the simple N-W estimate, m̃(z), the infeasible optimal

N-W estimate, m̃∗(z), and the feasible optimal N-W estimate, m̂∗(z). It is of interest
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to see the extent to which the feasible m̂∗(z) matches the efficiency of the infeasible

m̃∗(z) and whether it is actually better than the simple m̃(z), given the sampling

error in estimating Ω(z). The simulation design was chosen in a close resemblance to

the one reported in the common trend estimation of Robinson (2010b) for the ease of

comparison to the common trend estimation case.

Recall the model Yit = λi + m(Zt) + Uit. We set the regression function to be

m(z) = 1/(1 + z2) and fix the individual effects λi by first generating λ1, · · · , λN−1

independently from standard normal distribution, then taking λN = −λ1−· · ·−λN−1

and keeping these λi fixed across replications. Error terms were generated by the

following factor model that gives rise to cross-sectional dependence, where the factor

loadings were functions of Zt, engineering the desired conditional heteroscedasticity

of the covariance matrix. Factor loadings were set to be a product of a fixed N × 1

vector b = (b1, · · · bN )′, that was generated by b ∼ NN (0, 10IN ) and kept fixed across

replications, and a function of the value of concurrent regressor Zt: bit = bi(1 +

|Zt|)(i−1)/4. The error terms were then defined as

Uit = bitηt +
√

0.5εit, Ω(z) = 0.5I + btb
′
t.

The variables {Zt}, {ηt}, {εit}, i = 1, · · · , N were generated as independent Gaussian

AR(1) time series, where four values of AR coefficient, ρ = 0, 0.2, 0.5, 0.8 are tried in

order to see how our estimates perform under differing degrees of serial dependence.

The choice of the points of estimation, and the second stage bandwidth parameters

are in line with the choice of Robinson (2010b): the one-dimensional regressor was

generated as Zt ∼ (0.5, 1
16), so as to have most observations lie in the interval [0.1],

making this set-up comparable to the trend estimation where the t
T ∈ [0, 1] and the

three fixed points of estimation used were: z = 0.25, 0.5, 0.75. The second stage band-

width parameters were set to be a = 0.1, 0.5, 1. Because of the need for oversmoothing

in the first stage, required by Assumption 21, we have set the first stage bandwidth

to be 1.2 times greater than that of the second stage.

Tables 3.1 and 3.2 report the Monte Carlo MSE for differing settings of the three es-

timates for different choices of ρ, z and a for (N,T ) = (5, 100), and (N,T ) = (10, 500),

respectively. There are 2 × 4 × 3 × 3 = 72 cases in total and each case is based on

1000 replications.

Tables 3.1 and 3.2 show that the reduction in the Monte Carlo MSE by using

GLS-type estimation is substantial in all the cases. It is to be stressed here that the

improvement in the MSE, that of the variance to be more specific, depends crucially

on the form of the cross-sectional covariance matrix. The greater the difference be-

tween 1′NΩ1N/N
2 and (1′NΩ−11N )−1, the greater the scope for efficiency improvement

via GLS type estimation. The choice of the coefficients, in particular that of b, in gen-

erating U was such that the scope for improvement in the variance was particularly

large.
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It is natural that the improvement in the MSE is more pronounced for cases of

smaller bandwidth parameter where the variance component dominates the bias com-

ponent and this is indeed seen from the results. We would expect infeasible GLS-type

estimate, m̃∗(z), to perform better than the feasible version m̂∗(z). However, there

were 7 occasions out of 72 where the feasible estimate m̂∗(z) performed marginally

better, and these were all in the case of larger bandwidth parameters (0.5 or 1).

Tables 3.3 and 3.4 report relative Monte-Carlo MSE of infeasible and feasible GLS-

type estimates in relation to that of the simple N-W estimate and were designed to

facilitate comparison between differing strengths of serial dependence.

Comparing results from different degrees of serial dependence in Table 3.3, it is

reported that larger serial dependence often leads to (sometimes significant) improve-

ment in the performance of infeasible GLS-type estimate in relation to the simple

N-W estimate. In fact, the ratio of Monte Carlo MSE’s is smaller (i.e. better relative

performance of infeasible GLS-type estimate) when ρ = 0.8 compared to ρ = 0 in

every case of Table 3.3. Also for the larger bandwidth cases (0.5 and 1) there is a uni-

lateral improvement in the relative performance of the infeasible GLS-type estimate

in Table 3.3 with increase in ρ. Turning to Table 3.4, similar patterns to Table 3.3

are reported: namely, there is a unilateral improvement in the relative performance

of feasible GLS-type estimate with increasing ρ for the case of larger bandwidth (0.5

and 1).
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Table 3.1: Monte Carlo MSE, N = 5, T = 100

ρ z a M̂SEm̃(z) M̂SEm̃∗(z) M̂SEm̂∗(z)

0 0.25 0.1 0.4092 0.0107 0.1398
0.5 0.1117 0.0141 0.0131

1 0.1129 0.0246 0.0147
0.5 0.1 0.2817 0.0062 0.0523

0.5 0.0991 0.0022 0.0111
1 0.095 0.0021 0.0107

0.75 0.1 0.5918 0.011 0.1274
0.5 0.1416 0.0157 0.0235

1 0.123 0.0246 0.0326
0.2 0.25 0.1 0.4344 0.0115 0.1526

0.5 0.1541 0.0151 0.0145
1 0.1582 0.0256 0.0167

0.5 0.1 0.3108 0.007 0.0522
0.5 0.145 0.0031 0.0128

1 0.1417 0.0031 0.0125
0.75 0.1 0.6228 0.0114 0.1538

0.5 0.1899 0.0166 0.0247
1 0.1713 0.0256 0.0342

0.5 0.25 0.1 0.5717 0.0157 0.2047
0.5 0.2836 0.0181 0.0223

1 0.2953 0.0285 0.0245
0.5 0.1 0.4658 0.01 0.0701

0.5 0.2868 0.0061 0.0203
1 0.2812 0.0061 0.0202

0.75 0.1 0.8636 0.0164 0.2183
0.5 0.3462 0.0198 0.0332

1 0.3139 0.0286 0.0416
0.8 0.25 0.1 1.3983 0.0321 0.829

0.5 0.8153 0.0295 0.0561
1 0.8284 0.0398 0.056

0.5 0.1 1.0854 0.0231 0.1601
0.5 0.8281 0.0172 0.0523

1 0.8193 0.0173 0.0515
0.75 0.1 1.9009 0.0344 0.7075

0.5 0.9368 0.0321 0.0666
1 0.8578 0.0401 0.0727
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Table 3.2: Monte Carlo MSE, N = 10, T = 500

ρ z a M̂SEm̃(z) M̂SEm̃∗(z) M̂SEm̂∗(z)

0 0.25 0.1 0.0758 0.0014 0.0172
0.5 0.0359 0.0126 0.0152

1 0.0431 0.0234 0.0251
0.5 0.1 0.0659 0.0008 0.0103

0.5 0.0228 0.0004 0.0036
1 0.0219 0.0004 0.0038

0.75 0.1 0.1236 0.0014 0.0206
0.5 0.0421 0.0134 0.0103

1 0.0455 0.0223 0.0166
0.2 0.25 0.1 0.0851 0.0015 0.018

0.5 0.0456 0.0128 0.0155
1 0.0537 0.0236 0.0254

0.5 0.1 0.0802 0.001 0.0106
0.5 0.0336 0.0005 0.004

1 0.0326 0.0006 0.0041
0.75 0.1 0.1436 0.0015 0.0214

0.5 0.0544 0.0135 0.0106
1 0.0567 0.0225 0.0169

0.5 0.25 0.1 0.1261 0.0021 0.025
0.5 0.0747 0.0132 0.0176

1 0.0851 0.0241 0.0278
0.5 0.1 0.1109 0.0014 0.013

0.5 0.0653 0.0009 0.006
1 0.0648 0.001 0.0061

0.75 0.1 0.2013 0.0021 0.0276
0.5 0.0914 0.014 0.0125

1 0.0895 0.0229 0.0186
0.8 0.25 0.1 0.2814 0.0046 0.0664

0.5 0.1935 0.0151 0.0285
1 0.2097 0.0259 0.0387

0.5 0.1 0.2623 0.0032 0.0288
0.5 0.192 0.0026 0.0163

1 0.1915 0.0027 0.0163
0.75 0.1 0.4748 0.0045 0.0709

0.5 0.2372 0.0158 0.0225
1 0.2184 0.0247 0.0281
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Table 3.3: Relative MSE: MSE(m̃∗(z))/MSE(m̃(z))

N = 5, T = 100

z a\ρ 0 0.2 0.5 0.8

0.25 0.1 0.026149 0.026473 0.027462 0.022956
0.5 0.126231 0.097988 0.063822 0.036183

1 0.217892 0.16182 0.096512 0.048044

0.5 0.1 0.022009 0.022523 0.021468 0.021282
0.5 0.0222 0.021379 0.021269 0.02077

1 0.022105 0.021877 0.021693 0.021116

0.75 0.1 0.018587 0.018304 0.01899 0.018097
0.5 0.110876 0.087414 0.057192 0.034266

1 0.2 0.149445 0.091112 0.046747

N = 10, T = 500

z a\ρ 0 0.2 0.5 0.8

0.25 0.1 0.01847 0.017626 0.016653 0.016347
0.5 0.350975 0.280702 0.176707 0.078036

1 0.542923 0.439479 0.283196 0.12351

0.5 0.1 0.01214 0.012469 0.012624 0.0122
0.5 0.017544 0.014881 0.013783 0.013542

1 0.018265 0.018405 0.015432 0.014099

0.75 0.1 0.011327 0.010446 0.010432 0.009478
0.5 0.31829 0.248162 0.153173 0.06661

1 0.49011 0.396825 0.255866 0.113095

Table 3.4: Relative MSE: MSE(m̂∗(z))/MSE(m̃(z))

N = 5, T = 100

z a\ρ 0 0.2 0.5 0.8

0.25 0.1 0.341642 0.351289 0.358055 0.592863
0.5 0.117278 0.094095 0.078632 0.068809

1 0.130204 0.105563 0.082966 0.0676

0.5 0.1 0.185659 0.167954 0.150494 0.147503
0.5 0.112008 0.088276 0.070781 0.063157

1 0.112632 0.088215 0.071835 0.062859

0.75 0.1 0.215275 0.246949 0.252779 0.372192
0.5 0.16596 0.130068 0.095898 0.071093

1 0.265041 0.19965 0.132526 0.084752

N = 10, T = 500

z a\ρ 0 0.2 0.5 0.8

0.25 0.1 0.226913 0.211516 0.198255 0.235963
0.5 0.423398 0.339912 0.235609 0.147287

1 0.582367 0.472998 0.326675 0.184549

0.5 0.1 0.156297 0.13217 0.117223 0.109798
0.5 0.157895 0.119048 0.091884 0.084896

1 0.173516 0.125767 0.094136 0.085117

0.75 0.1 0.166667 0.149025 0.137109 0.149326
0.5 0.244656 0.194853 0.136761 0.094857

1 0.364835 0.29806 0.207821 0.128663
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3.6 Appendix A. Proof of Theorems 3.7-3.9

Proof of Theorem 3.7. For the (i, j)th element ω̂ij(ζl) of Ω̂(ζl), one has

ω̂ij(ζl)− ωij(ζl) =

T∑
t=1

Kl(Zt;h){ÛitÛjt − ωij(ζl)}

T∑
t=1

Kl(Zt;h)

=: R
(1)
ij +R

(2)
ij , (3.6.1)

with

R
(1)
ij =

T∑
t=1

Kl(Zt;h){UitUjt − ωij(ζl)}

T∑
t=1

Kl(Zt;h)

, R
(2)
ij =

T∑
t=1

Kl(Zt;h){ÛitÛjt − UitUjt}

T∑
t=1

Kl(Zt;h)

.

Under Assumptions 12, 15 and 16, it can be shown |R(1)
ij | = Op

(
1√
Thq

+ hp
)

as this

is the estimation error of the usual N-W estimator of the conditional expectation

E(UitUjt|Zt = ζl) = ωij(ζl), with the typical variance and bias contributions. Next,

we show that |R(2)
ij | = Op (RT,h), which implies (3.4.5) of Theorem 3.7.

Denote di := ŪAA − ŪiA and et := m(Zt)− m̃(Zt). From (3.4.3),

Ûit = Uit − ŪiA + ŪAA +m(Zt)− m̃(Zt) = Uit + di + et.

Using this equality, we can decompose

ÛitÛjt − UitUjt = (di + et)(dj + et) + Uit(dj + et) + Ujt(di + et). (3.6.2)

For the rest of the proof, denote Kt := Kl(Zt;h) for brevity. We need to find the

stochastic order of

R
(2)
ij = f̃(ζl)

−1 1

Thq

T∑
t=1

Kt{(di + et)(dj + et) + Uit(dj + et) + Ujt(di + et)}, (3.6.3)

where f̃(ζl) is a non-parametric kernel estimator of f(ζl):

f̃(ζl) =
1

Thq

T∑
s=1

K

(
Zs − ζl
h

)
,

which is consistent in the light of Assumptions 3, 4, 12, 14 and 17 (i). Therefore,

1

f̃(ζl)
=

1

f(ζl) + op(1)
= Op(1). (3.6.4)

Next, we study the stochastic order of the rest of (3.6.3). Firstly, we bound sums that
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involve didj , Uitdj and Ujtdi, namely,

1

Thq

T∑
t=1

Kt{didj + Uitdj + Ujtdi}. (3.6.5)

Since Uit’s are weakly dependent across time and Assumption 9’ implies V ar(ŪAt) ≤ C
and Cov(ŪAt, ŪAs) ≤ C, one has

di =
1

NT

T∑
t=1

N∑
i=1

Uit −
1

T

T∑
t=1

Uit =
1

T

T∑
t=1

ŪAt −
1

T

T∑
t=1

Uit = Op(T
−1/2).

Therefore, the upper bound of the first term in (3.6.5) is

{didj}
1

Thq

T∑
t=1

Kt = Op

(
1

T

)
f̃(ζl) = Op

(
1

T

)
× (f(ζl) + op (1)) = Op

(
1

T

)
,

because f̃(ζl) = f(ζl) + op (1). The upper bound of the second (and third) term is

dj ×
1

Thq

T∑
t=1

KtUit = Op

(
1√
T

)
×Op

(
1√
Thq

)
= Op

(
1

T
√
hq

)
,

because
T∑
t=1

KtUit/Th
q consistently estimates E(Uit|Zt = ζl) = 0, with zero bias and

the usual variance contribution. Thus, (3.6.5) satisfies the bound |R(2)
ij | = Op (RT,h).

Now the terms left to analyse from the numerator of (3.6.1), are

1

Thq

T∑
t=1

Kt{e2
t + Uitet + Ujtet + diet + djet}. (3.6.6)

Introduce the leave-one-out counterpart of et, ẽt := (lt − nt)/f̃t, where

lt :=
1

Thq

T∑
s=1,s 6=t

K

(
Zs − Zt

h

)
{m(Zt)−m(Zs)}, nt :=

1

Thq

T∑
s=1,s 6=t

K

(
Zs − Zt

h

)
ŪAs.

The asymptotic equivalence between (3.6.6) and

1

Thq

T∑
t=1

Kt{ẽ2
t + Uitẽt + Ujtẽt + diẽt + dj ẽt} (3.6.7)

will be shown below. Recall di = Op
(
T−1/2

)
. To bound (3.6.7), we need to obtain an
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upper bound of six quantities. Setting Kt := Kl(Zt;h), these are:∣∣∣∣∣ 1

Thq

T∑
t=1

Ktẽ
2
t

∣∣∣∣∣ ≤ C

Thq

T∑
t=1

|Kt|
n2
t

f̃2
t

+
C

Thq

T∑
t=1

|Kt|
l2t

f̃2
t

=: AT + BT,∣∣∣∣∣ 1

Thq

T∑
t=1

KtUitẽt

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

Thq

T∑
t=1

KtUit
lt

f̃t

∣∣∣∣∣+

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUit
nt

f̃t

∣∣∣∣∣ =: CT + DT, ,(3.6.8)∣∣∣∣∣ 1

Thq

T∑
t=1

Ktẽt

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

Thq

T∑
t=1

Kt
nt

f̃t

∣∣∣∣∣+

∣∣∣∣∣ 1

Thq

T∑
t=1

Kt
lt

f̃t

∣∣∣∣∣ =: ET + FT.

Then, the LHS of (3.6.7) is bounded by AT + BT+CT + DT+O(T−1/2){ET + FT}.
Now, we show the negligibility of the difference between (3.6.6) and (3.6.7). Notice

that

et − ẽt =
1

Thq
K

(
Zt − Zt

h

)
{m(Zt)−m(Zt)}+

1

Thq
K

(
Zt − Zt

h

)
ŪAt =

K(0)

Thq
ŪAt.

We need to show negligibility of

1

Thq

T∑
t=1

Kt{(e2
t − ẽ2

t ) + Uit(et − ẽt) + Ujt(et − ẽt) + di(et − ẽt) + dj(et − ẽt)}.

Firstly,

1

Thq

T∑
t=1

Kt{Uit(et − ẽt) + di(et − ẽt)} =
C

(Thq)2

T∑
t=1

KtUitŪAt +
Cdi

(Thq)2

T∑
t=1

KtŪAt

= Op

(
1

Thq
(
hp +

1√
Thq

))
+Op

(
1

Thq
1√
T

1√
Thq

)
= op(RT,h).

To justify the above bound, note that

T∑
t=1

KtUitŪAt/Th
q is a N-W estimator of the

conditional expectation function E(UitŪAt|Zt = ζl) =

N∑
j=1

ωij(ζl)/N with bias of or-

der hp in the light of Assumption 15 and 16, and variance of order (Thq)−1 under

Assumption 12. Similarly, in the latter term, 1
Thq

T∑
t=1

KtŪAt is the N-W estimator of

the conditional expectation function E(ŪAt|Zt = ζl) = 0 with zero bias and variance

of order (Thq)−1.
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Next, recalling et − ẽt = K(0)
Thq ŪAt,

1

Thq

T∑
t=1

Kt(e
2
t − ẽ2

t ) =
1

Thq

T∑
t=1

Kt(et − ẽt)(2ẽt + (et − ẽt))

=
K(0)

Thq
[
2

T∑
t=1

KtẽtŪAt −
K(0)

Thq

T∑
t=1

KtŪ
2
At

]
. (3.6.9)

The second term can be written as

K(0)

(Thq)2

T∑
t=1

KtŪ
2
At =

K(0)

Thq
· 1

Thq

T∑
t=1

KtŪ
2
At =

K(0)

Thq
Op

(
hp +

1√
Thq

)
= op(RT,h),

noting that MSE of the N-W estimator 1
Thq

T∑
t=1

KtŪ
2
At of the conditional expecta-

tion function E(Ū2
At|Zt = ζl) =

N∑
i,j=1

ωij(ζl)/N
2 is O(h2p + (Thq)−1) in the light of

Assumptions 12, 15 and 16.

The first term of (3.6.9) satisfies the same upper bound as CT + DT noting the

similarity of the expression 1
Thq

T∑
t=1

KtẽtŪAt to 1
Thq

T∑
t=1

KtẽtUit in the LHS of (3.6.8).

In deriving an upper bound on CT + DT, the condition E|Uit|θ <∞, implied by As-

sumption 9’, is repeatedly used. The same proof, and therefore the same upper bound,

applies to the first term of (3.6.9) by replacing Uit with ŪAt and using E|ŪAt|θ < ∞
of Assumption 9’.

To complete the proof of Theorem 3.7 we need to show that

AT + BT + CT + DT ≤ CRT,h, (3.6.10)

ET + FT ≤ C
√
TRT,h. (3.6.11)

The terms AT, · · · ,FT can be divided into two types. Write

1

f̃t
=

1

ft
+

1

f̃t
− 1

ft
=

1

ft
+

(ft − f̃t)
f̃tft

. (3.6.12)

The first type of terms contains 1/ft and takes the form of a U-statistic. Finding their

stochastic order of magnitude is complicated by serial dependence in Zt and Uit in

their arguments. These terms will be analyzed using Lemma 3.6, which provides the

asymptotic order of the difference between such U-statistics and their counterparts

under independence. Bounding the first type of terms, firstly, the asymptotic order

of the expectation of the kernel of U-statistic under the corresponding independent

process will be derived and, secondly, the remainder terms evaluated, applying Lemma

3.6.
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To deal with the second type of terms that contain (ft − f̃t)/f̃tft, we use the

uniform rate of convergence result of Hansen (2008). Under Assumptions 8 (ii), 12

(ii), 13, 14 and 17 (i) Hansen (2008) showed that

sup
z∈Rq

∣∣∣f̃(z)− f(z)
∣∣∣ = Op

((
log T

Thq

)1/2

+ hs

)
, (3.6.13)

where s is the smoothness parameter on f and m appearing in Assumption 13. It is

worth noting here that the term ”kernel” is used also to refer to the summand of a

U-statistic, as well as the kernel function of non-parametric estimation.

3.6.1 Upper bound on AT .

In this section, it will be shown that

AT = O(r1T ), (3.6.14)

r1T =

(
1

Thq

)3 [
T 2h2q− 2q

θ + T 2h3q(1−γ)− 4q
θ

]
,

which implies (3.6.10) for AT .

We first divide AT into two parts, using (3.6.12).

AT =
1

Thq

T∑
t=1

|Kt|
n2
t

f̃2
t

=
1

Thq

T∑
t=1

|Kt|
n2
t

f2
t

+
1

Thq

T∑
t=1

|Kt|n2
t

(f2
t − f̃2

t

f2
t f̃

2
t

)
(3.6.15)

≤ 1

Thq

T∑
t=1

|Kt|
n2
t

f2
t

+ max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣ 1

Thq

T∑
t=1

|Kt|n2
t

=: A′T + max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣A′′T.
Taking max over {t : Kt 6= 0} instead of over all t is facilitated by the boundedness

of the support of Kl(·;h), since any t with corresponding (Zt − ζl)/h falling outside

the support of Kl is assigned a zero weight. We show that

EA′T = O(r1T ), (3.6.16)

EA′′T = O(r1T ), (3.6.17)

max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣ = Op

((
log T

Thq

)1/2

+ hs

)
= Op(1), (3.6.18)

which implies (3.6.14), noting non-negativity of A′T and A′′T.

Let us first find the asymptotic order of A′T. Denote K
(
(Zt − Zs)/h

)
= Kts for

brevity of presentation. Let
∑

t1,··· ,tk

′
denote a summation over non-overlapping indices
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(t1, · · · , tk) for k ≥ 2. Then,

E(A′T) =
( 1

Thq
)3
E
( T∑
t1,t2=1

′
|Kt1 |
f2
t1

Ū2
At2K

2
t1t2

)
(3.6.19)

+
( 1

Thq
)3
E
( T∑
t1,t2,t3=1

′
|Kt1 |
f2
t1

ŪAt2ŪAt3Kt1t2Kt1t3

)
(3.6.20)

=:
( 1

Thq
)3

(A1T +A2T ). (3.6.21)

To prove (3.6.16), it remains to show that for i = 1, 2,

AiT ≤ Cr1T . (3.6.22)

Noting that A1T and A2T are expectations of second and third order U-statistics, we

can apply Lemma 3.6 (i) and (ii) to find their upper bounds. Denote Wt = WtT =

(Z ′t, U1t, · · · , UNt)′, where N = NT may increase with T . Let {W̃t} denote an i.i.d.

process with the marginal distribution function of Wt, and independent of {Wt}.
In finding the MT quantities of Lemma 3.6, the conditions used to obtain an

upper bound below are uniform over t1, · · · , t4, meaning the maximum over indices is

redundant.

Upper bound on A1T . In this section we will show (3.6.22), for i = 1. Notice

that A1T is a second order U-statistic whose kernel is

φT (Wt,Ws) :=
|Kt|
f2
t

Ū2
AtK

2
ts.

By Lemma 3.6 (i),

|A1T | = |
∑
t,s

′
EφT (Wt,Ws)| ≤ T (T − 1)|EφT (W̃1, W̃2)|+ CTM1−γ

T2 . (3.6.23)

We will denote below expectation under independent process with a superscript ∗.

Trivially,

E(φT (W̃t, W̃s)) = E∗
(
|Kt|
f2
t

Ū2
AsK

2
ts

)
= E∗

(
|Kt|
f2
t

E∗
(
Ū2
AsK

2
ts|Zt

))
.

Applying Holder’s inequality with p, r > 1 and p−1 + r−1 = 1,

E∗
(
Ū2
AsK

2
ts|Zt

)
≤
[
E∗
(
|ŪAs|2p|Zt

)] 1
p
[
E∗
(
|Kts|2r|Zt

)] 1
r =

[
E
(
|ŪAs|2p

)] 1
p
[
E∗
(
|Kts|2r|Zt

)] 1
r ,

where the last step holds because of the supposed independence between ŪAs and

Zt. The power p is selected as follows. Notice that E|ŪAs|2p < ∞, with 2p = θ,

by Assumption 9. Then, 1
r = 1 − 2

θ . Since Assumption 14 implies k is such that
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∫
|k(u)|2rdu < ∞, we have E∗

(
|Kts|2r|Zt = z

)
= O(hq) uniformly over z by Lemma

3.1. Therefore, E∗
(
Ū2
AsK

2
ts|Zt = z

)
= O

(
hq(θ−2)/θ

)
uniformly over z. Hence

E(φT (W̃t, W̃s)) =

∫
z

|Kl(z;h)|
f(z)2

E∗
(
Ū2
AsK

2
ts|Zt = z

)
f(z)dz

≤ Ch
q(θ−2)
θ E

(
|Kt|
f2
t

)
= O

(
h2q− 2q

θ

)
, (3.6.24)

where the last step follows by Lemma 3.3.

Next, we bound the quantity

MT2 = max
1≤s<t≤T

(
E|φ̃T (Ws,Wt)|

1
1−γ + E|φ̃T (W̃sW̃t)|

1
1−γ
)
,

where φ̃T (Ws,Wt) = φT (Ws,Wt) + φT (Wt,Ws). We have

E|φT (Wt,Ws)|
1

1−γ = E

(∣∣∣∣Kt

f2
t

Ū2
AsK

2
ts

∣∣∣∣ 1
1−γ
)
≤
(
E
∣∣Ūs∣∣ 2p

1−γ

) 1
p

E ∣∣∣∣K2
ts

Kt

f2
t

∣∣∣∣
r

1−γ
 1

r

= O
(
h

2q(1− 2
θ(1−γ) )

)
,

where the last step follows using Lemma 3.4 (i) and choosing p such that from setting

2p/(1−γ) = θ, by Assumption 9 we have E|ŪAt|2p/(1−γ) = E|ŪAt|θ <∞. Such choice

of p gives 1
r = 1− 2

θ(1−γ) . Similarly,

E|φT (Ws,Wt)|
1

1−γ = O
(
h

2q(1− 2
θ(1−γ) )

)
,

E|φT (W̃s, W̃t)|
1

1−γ = E∗(|Kt

f2
t

Ū2
AsK

2
ts|

1
1−γ ) = O

(
h

2q(1− 2
θ(1−γ) )

)
.

This gives M1−γ
T2 ≤ Ch2q(1−γ)− 4q

θ and together with (3.6.23) and (3.6.24) implies

(3.6.22) for i = 1, because Th2q(1−γ)− 4q
θ = T 2h3q(1−γ)− 4q

θ (Thq(1−γ))−1 = O(T 2h3q(1−γ)− 4q
θ )

by Assumption 17.

Upper bound on A2T . We will prove (3.6.22) for A2T . A2T = O
(
T 2h3q(1−γ)− 4q

θ

)
.

Recalling A2T defined in (3.6.20), the kernel function is

φT (Wt,Ws,Wr) =
|Kt|
f2
t

ŪAsŪArKtsKtr. (3.6.25)

The proof follows the structure of the proof for A1T . By Lemma 3.6 (ii),

|A2T | ≤ T 3|EφT (W̃1, W̃2, W̃3)|+ C(T 2M1−γ
T12 + TM1−γ

T3 ). (3.6.26)
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The expectation under independence is

E[φT (W̃t, W̃s, W̃r)] = E∗
(
|Kt|
f2
t

E∗(ŪAsKts|Zt)E∗(ŪArKtr|Zt)
)

= 0,

because by Assumption 2, E∗(ŪAsKts|Zt) = E∗[KtsE
∗(ŪAs|Zs)|Zt] = E∗[Kts · 0|Zt] =

0. Next, we will use Lemma 3.6 (ii) to find upper bounds on MT3 and MT12.

As noted earlier, in obtaining the upper bounds, we use the fact that the upper

bound under serial dependence between arguments dominates that obtained under

independence. We will show that

MT12 = max
1≤s<t≤T

(E|φ̃T (W̃t, W̃s,Wr)|
1

1−γ + E|φ̃T (W̃t, W̃s, W̃r)|
1

1−γ )

= O(h
3q− 4

θ(1−γ) ), (3.6.27)

MT3 = max
1≤s<t≤T

(E|φ̃T (W̃t,Ws,Wr)|
1

1−γ + E|φ̃T (W̃t, W̃s,Wr)|
1

1−γ )

= O(h
2q− 4

θ(1−γ) ), (3.6.28)

which with (3.6.26) imply A2T ≤ C[T 2h3q(1−γ)− 4q
θ + Th2q(1−γ)− 4q

θ ] ≤ CT 2h3q(1−γ)− 4q
θ

because Thq(1−γ) →∞ by Assumption 17. This proves (3.6.22) for A2T .

Upper bound on MT12. For MT12, we need to consider when the variables that

enter φT are divided into either two or three independent subsets. The methods and

conditions used to derive the upper bounds apply uniformly over 1 ≤ r, s, t,≤ T so

the max over indices is redundant: we are concerned only with how the arguments

Wr,Ws,WT are divided into independent subsets. For the case of two independent

subsets, the symmetry between Ws and Wr in φT means that it suffices to consider

two distinct cases, namely {W̃t,Ws,Wr} and {W̃r,Wt,Ws}.
For {W̃t,Ws,Wr}, we will show that

E|φT (W̃t,Ws,Wr)|
1

1−γ = Et,sr

(∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ

Et,sr

(∣∣ŪAsŪArKtsKtr

∣∣ 1
1−γ |Zt

))
= O

(
h

3q− 4
θ(1−γ)

)
,

where Et,sr denotes expectation taken under {W̃t,Ws,Wr}. To show (3.6.29), note

that for p, w > 1, p−1 + w−1 = 1,

Et,sr

(∣∣ŪAsŪArKtsKtr

∣∣ 1
1−γ |Zt = z

)
≤
[
Et,sr

(∣∣ŪAsŪAr∣∣ p
1−γ |Zt = z

)] 1
p
[
Et,sr

(
|KtsKtr|

w
1−γ |Zt = z

)] 1
w

=

[
Et,sr

(∣∣ŪAsŪAr∣∣ p
1−γ
)] 1

p
[
Et,sr

(
|KtsKtr|

w
1−γ |Zt = z

)] 1
w

because of the presumed independence between {ŪAs, ŪAr} and Zt. By Cauchy-
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Schwarz inequality and Assumption 9’,

Et,sr

(∣∣ŪAsŪAr∣∣ p
1−γ
)
≤
[
E

(∣∣ŪAs∣∣ 2p
1−γ

)
E

(∣∣ŪAr∣∣ 2p
1−γ

)]1/2

≤ C <∞.

We select p setting 2p
1−γ = θ. Then 1

w = 1− 2
θ(1−γ) . Now,

Et,sr

(
|KtsKtr|

w
1−γ |Zt = z

)
≤ sup

w,y
f|r−s|(v, y)

∫
|K
(v − z

h

)
|
w

1−γ dv∫
|K
(y − z

h

)
|
w

1−γ dy = O(h2q)

uniformly over z by Lemma 3.1. The above estimates together with Lemma 3.3 imply

the bound (3.6.29):

Et,sr

(∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ

Et,sr

(∣∣ŪAsŪArKtsKtr

∣∣ 1
1−γ |Zt

))
= E

(∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ
)
O(h

2q− 4q
θ(1−γ) )

= O
(
hq × h2q− 4q

θ(1−γ)
)

= O
(
h

3q− 4q
θ(1−γ)

)
.

The contribution of the case of {W̃r,Wt,Ws} in MT12 can be bounded by

Ets,r|φT (Wt,Ws, W̃r)|
1

1−γ =

(
Ets,r

∣∣∣∣Kt

f2
t

ŪAsKts

∣∣∣∣ 1
1−γ

Ets,r

(∣∣ŪArKtr

∣∣1−γ |Zt))
= O

(
h

3q− 3q
θ(1−γ)

)
. (3.6.29)

To obtain it, apply Holder’s inequality on the inner conditional expectation

Ets,r

(∣∣ŪArKtr

∣∣1−γ |Zt = z
)
≤ Ets,r

(∣∣ŪAr∣∣ p
1−γ
) 1
p
Ets,r

(
|Ktr|

w
1−γ |Zt = z

) 1
w

= O(h
q− q

θ(1−γ) ),

noting that by Lemma 3.1, E
(
|Ktr|

w
1−γ |Zt = z

)
= O(hq) uniformly over z, with p

defined by θ = p
1−γ and 1

w = 1− 1
θ(1−γ) . Now, since Ws and Wt are dependent,

Ets,r

(∣∣∣∣Kt

f2
t

ŪAsKts

∣∣∣∣ 1
1−γ
)
≤ C

[
Ets,r

(∣∣ŪAs∣∣ p
1−γ
)] 1

p

[
Ets,r

(∣∣∣∣Kts
Kt

f2
t

∣∣∣∣ w
1−γ
)] 1

w

= O
(
h

2q− 2q
θ(1−γ)

)
,

with p, w as above, which yields (3.6.29), and completes the proof of (3.6.27). The

contribution to MT12 of the case of (W̃t, W̃s, W̃r) is not larger than that of the two

cases presented above, since the steps to get to the upper bounds in the cases of

{W̃t,Ws,Wr} and {W̃r,Wt,Ws} apply to the case of (W̃t, W̃s, W̃r).

Upper bound on MT3. We obtain MT3 = O
(
h

2q− 4q
θ(1−γ)

)
since under dependence
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between all three time periods:

E

(∣∣∣∣Kt

f2
t

ŪAsKtsŪArKtr

∣∣∣∣ 1
1−γ
)
≤ C

[
E

(∣∣ŪAs∣∣ 2p
1−γ

)] 1
p

[
E

(∣∣∣∣Ktr
Kt

f2
t

∣∣∣∣ w
1−γ
)] 1

w

= O
(
h

2q− 4q
θ(1−γ)

)
with p defined by θ = 2p/(1 − γ), 1

w = 1 − 2
θ(1−γ) , by Assumption 9, and Lemma

3.4 (i). This rate dominates the contributions from (W̃t,Ws,Wr) and (Wt,Ws, W̃r)

presented above and proves (3.6.28).

Proof of (3.6.18). Since f(ζl) > 0, l = 1, 2, · · · , d, for T large enough, there exists

a constant c > 0 such that min
t:Kt 6=0

f(Zt) ≥ c, due to the boundedness of the support of

the kernel Kl(·;h) and continuity of f(·) and h→ 0. Now,

max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣ ≤ max
t:Kt 6=0

∣∣∣f2
t − f̃2

t

∣∣∣ max
t:Kt 6=0

∣∣∣∣ 1

f2
t

∣∣∣∣ max
t:Kt 6=0

∣∣∣∣∣ 1

f̃2
t

∣∣∣∣∣ .
The second term is a random variable bounded by a finite constant for T sufficiently

large. As for the third term, as T →∞,

max
t:Kt 6=0

∣∣∣∣∣ 1

f̃2
t

∣∣∣∣∣ =
1

min
t:Kt 6=0

|f̃2
t |

= Op(1),

because min
t:Kt 6=0

|f̃2
t | ≥ min

t:Kt 6=0
|f2
t | − max

t:Kt 6=0
|f̃2
t − f2

t | = min
t:Kt 6=0

|ft| + op(1) ≥ c + op(1) =

c(1 + op(1)). Now,

max
t:Kt 6=0

∣∣∣f2
t − f̃2

t

∣∣∣ = max
t:Kt 6=0

∣∣∣(ft − f̃t)2 + 2f̃t(ft − f̃t)
∣∣∣

≤
[

max
t:Kt 6=0

∣∣∣ft − f̃t∣∣∣]2

+ 2 max
t:Kt 6=0

|ft| max
t:Kt 6=0

|ft − f̃t| = Op

((
log T

Thq

)1/2

+ hs

)
,

since by (3.6.13),

max
t:Kt 6=0

∣∣∣ft − f̃t∣∣∣ ≤ sup
∣∣∣f(z)− f̃(z)

∣∣∣ = Op

((
log T

Thq

)1/2

+ hs

)
.

Therefore,

max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣ = Op

((
log T

Thq

)1/2

+ hs

)
= Op(1).

Proof of (3.6.17) Notice the similarity of EA′′T = 1
Thq

T∑
t=1

[|Kl(Zt;h)|n2
t ] to EA′T in

(3.6.15). Compared to equation (3.6.15), the difference is that we have |Kl(Zt;h)|
instead of |Kl(Zt;h)|/ft in the kernel of the U-statistic. The steps to get the upper

bound for this terms is almost identical to the steps for A′T, with results such as
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E|Kl(Zt;h)|a = O(hq) replacing their corresponding ones, such as E
∣∣∣Kl(Zt;h)

f2t

∣∣∣a =

O(hq), in the proof and yields the same upper bound as for A′T.

3.6.2 Upper bound on BT.

In this section, we will show that

BT = Op(r2T ), where r2T :=

(
1

Thq

)3 [
T 3h3q+2s + T 2h2q+2 + T 2h3q(1−γ)+2

]
, (3.6.30)

which also implies (3.6.10) for BT. Since 1
f̃2t

= 1
f2t

+
(f2t −f̃2t )

f2t f̃
2
t

,

BT =
1

Thq

T∑
t=1

|Kt|
l2t

f̃2
t

≤ 1

Thq

T∑
t=1

|Kt|
l2t
f2
t

+ max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣ 1

Thq

T∑
t=1

|Kt|l2t

=: B′T + max
t:Kt 6=0

∣∣∣∣∣f2
t − f̃2

t

f2
t f̃

2
t

∣∣∣∣∣B′′T = B′T +Op(1)B′′T,

by (3.6.18). We will show that

EB′T = O(r2T ), EB′′T = O(r2T ),

which because of non-negativity of B′T and B′′T implies (3.6.30). Firstly, the stochastic

order of B′T can be found by studying

E(B′T) =

(
1

Thq

)3

E
( T∑
t1,t2=1

′
|Kl(Zt1 ;h)|

f2
t1

{m(Zt1)−m(Zt2)}2K2
12

)

+

(
1

Thq

)3

E
( T∑
t1,t2,t3=1

′
|Kl(Zt1 ;h)|

f2
t1

{m(Zt1)−m(Zt2)}K12{m(Zt1)−m(Zt3)}K13

)
=:

(
1

Thq

)3

(B1T +B2T ).

Upper bound on B1T . We will show

B1T = O
(
T 2h2q+2 + Th2q(1−γ)+2

)
, (3.6.31)

B2T = O
(
T 3h2q+2s + T 2h3q(1−γ)+2

)
. (3.6.32)

B1T is expectation of a second order U-statistic with kernel

φT (Wt,Ws) =
|Kt|
f2
t

{m(Zt)−m(Zs)}2K2
ts.
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By Lemma 3.6 (i),

|B1T | ≤ CT 2|EφT (W̃t, W̃s)|+ CTM1−γ
T2 . (3.6.33)

To prove (3.6.31), we show that

|EφT (W̃t, W̃s)| ≤ Ch2q+2, and MT2 ≤ Ch2q+ 2
1−γ . (3.6.34)

The expectation under independence is

E(φT (W̃t, W̃s)) = E∗
(
|Kt|
f2
t

{m(Zt)−m(Zs)}2K2
ts

)
= E∗

(
|Kt|
f2
t

E∗
(
{m(Zt)−m(Zs)}2K2

ts|Zt
))

= O(h2q+2),

by Lemmas 3.2 and 3.3. To bound M2T , similar to A1T :

M2T ≤ E

(∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ
|{m(Zt)−m(Zs)}Kts|

2
1−γ

)

+E∗

(∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ
|{m(Zt)−m(Zs)}Kts|

2
1−γ

)
= O

(
h

2q+ 2
1−γ
)
,

by Lemma 3.4 (iii), which proves (3.6.34).

Upper bound on B2T . To bound B2T , we will show

B2T = O
(
T 3h3q+2s + T 2h3q(1−γ)+2 + Th2q(1−γ)+2

)
= O

(
T 3h3q+2s + T 2h3q(1−γ)+2

)
, (3.6.35)

where the last inequality follows from Assumption 17, Th1−γ → ∞, which yields

(3.6.31). B2T is a third order U-statistic with the kernel

φT (Wt,Ws,Wr) =
|Kt|
f2
t

{m(Zt)−m(Zs)}Kts{m(Zt)−m(Zr)}Ktr. (3.6.36)

By Lemma 3.6 (ii),

|B2T | ≤ T 3|E(φT (W̃t, W̃s, W̃r)|+ C(T 2M1−γ
T12 + TM1−γ

T3 ). (3.6.37)

To prove (3.6.35), we shall show that

|E(φT (W̃t, W̃s, W̃r)| ≤ Ch2q+2s, (3.6.38)

MT12 ≤ Ch3q+ 2
1−γ , (3.6.39)

MT3 ≤ Ch2q+ 2
1−γ . (3.6.40)
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Expectation under independence is

|E(φT (W̃t, W̃s, W̃r)| = |E∗
(
|Kt|
f2
t

{m(Zt)−m(Zs)}Kts{m(Zt)−m(Zr)}Ktr

)
|

≤ E∗
(∣∣∣∣Kt

f2
t

∣∣∣∣ ∣∣E∗({m(Zt)−m(Zs)}Kts

∣∣Zt)∣∣ |E∗({m(Zt)−m(Zr)}Ktr|Zt)
∣∣)

≤ Ch2(q+s)E∗
(∣∣∣∣Kt

f2
t

∣∣∣∣) = O
(
h3q+2s

)
,

by Lemma 3.2 (i) and Lemma 3.3. Obtaining the bound (3.6.39) for MT12 follows

the same steps as in case of A2T above. To find upper bound on MT12, due to the

symmetry between Ws and Wr in (3.6.36), it suffices to consider two distinct cases

when there are two independent subsets.

For (Ws,Wr, W̃t),

Esr,t

[∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ

Esr,t

(
|{m(Zt)−m(Zs)}Kts{m(Zt)−m(Zr)}Ktr|

1
1−γ
∣∣Zt)]

≤ Ch2q+ 2
1−γE

[∣∣∣∣Kt

f2
t

∣∣∣∣ 1
1−γ
]

= O
(
h

3q+ 2
1−γ
)
,

because uniformly over z, under Assumption 4, by Lemma 3.1

Esr,t

(
|{m(Zt)−m(Zs)}Kts{m(Zt)−m(Zr)}Ktr|

1
1−γ
∣∣Zt)

≤ sup
w,y

f|s−t|(w, y)

∫
|{m(z)−m(w)}K

(z − w
h

)
|

1
1−γ dw∫

|{m(z)−m(y)}K
(z − y

h

)
|

1
1−γ dy

≤ C
[ ∫
‖ψ‖

1
1−γK(ψ)dψ

]2
= O

(
h

2q+ 2
1−γ
)
.

For (Wt,Wr, W̃s),

Etr,s

[∣∣∣∣Kt

f2
t

{m(Zt)−m(Zr)}Ktr

∣∣∣∣ 1
1−γ

Etr,s

(
|{m(Zt)−m(Zs)}Kts|

1
1−γ
∣∣Zt)]

≤ Chq+
1

1−γEtr,s

(∣∣∣∣Kt

f2
t

{m(Zt)−m(Zr)}Ktr

∣∣∣∣ 1
1−γ
)

= O
(
h

3q+ 2
1−γ
)
,

by Lemma 3.2 and then applying Lemma 3.4 (iii), which completes the proof of

(3.6.34). The same upper bound is applicable in the case of (W̃r, W̃s, W̃t) as all the

steps taken above apply in that case.
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Proof of (3.6.40). Under dependence across all three time periods,

MT3 = E

[∣∣∣∣Kt

f2
t

{m(Zt)−m(Zr)}Ktr{m(Zt)−m(Zs)}Kts

∣∣∣∣ 1
1−γ
]

≤

[
E

∣∣∣∣Kt

ft
{m(Zt)−m(Zr)}Ktr

∣∣∣∣ 2
1−γ
]1/2 [

E

∣∣∣∣Kt

ft
{m(Zt)−m(Zs)}Kts

∣∣∣∣ 2
1−γ
]1/2

= O
(
h

2q+ 2
1−γ
)
,

by Lemma 3.4 (iii), which yields (3.6.40) and completes the proof of (3.6.32).

Upper bound on B′′T. Noting the similarity of B′′T = 1
ThqE

(
T∑
t=1

|Kt|l2t

)
to B′T,

all the steps of finding upper bound of B′′T yield the same bound as for B′T. This

completes the proof of (3.6.30).

3.6.3 Upper bound on CT.

Recall that by (3.6.12),

CT =

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUit
lt

f̃t

∣∣∣∣∣
≤

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUit
lt
ft

∣∣∣∣∣+

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUitlt
ft − f̃t
f̃tft

∣∣∣∣∣ =: C′T + C′′T.

We shall show that

C′T = Op(r3T ), (3.6.41)

C′′T = Op(r2T + h2s− 2q
θ +

log T

Thq+
2q
θ

), (3.6.42)

r3T :=
( 1

Thq
)2 (

T 3h2+3q(1− 2
θ

) + T 3h4q(1−γ)−2( 2q
θ
−1) + T 2h2q(1−γ)−2( 2q

θ
−1)
)1/2

,

which implies (3.6.10) for CT .

Proof of (3.6.42). Using inequality |ab| ≤ a2 + b2,

C′′T ≤ 1

Thq

T∑
t=1

|Kt|{|Uit
ft − f̃t
ft
|2 + (

lt

f̃t
)2}

≤ max
t:Kt 6=0

|ft − f̃t
ft
|2(

1

Thq

T∑
t=1

|Kt|U2
it) + BT =: IT · VT + BT. (3.6.43)

By (3.6.30), BT = Op(r2T ). Next, to bound VT , note that by Lemma 3.3,

E[|Kt|U2
it] ≤ (E|Kt|2)1/2(E|Uit|4)1/2 ≤ Chq−

2q
θ .
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Then VT ≤ Ch−2q/θ, and since IT = Op(
log T
Thq + h2s),

ITVT ≤ Op(
log T

Thq+
2q
θ

+ h2s− 2q
θ ), (3.6.44)

which proves (3.6.42).

Proof of (3.6.41). Since C′T = Op([E(C′T)2]
1
2 ), we show that

E[(C′T)2] ≤ C
( 1

Thq
)4

(T 3h3q+2s− 2q
θ + T 3h4q(1−γ)−2( 2q

θ
−1) + T 2h2q(1−γ)−2( 2q

θ
−1)),(3.6.45)

which implies (3.6.41).

Write

E[(C′T)2]

=
( 1

Thq
)4 T∑
t1,t2=1

′ T∑
t3,t4=1

′

E

(
Kt1

ft1

Kt3

ft3
Uit1Uit3Kt1t2Kt3t4{m(Zt1)−m(Zt2)}{m(Zt3)−m(Zt4)}

)

=
( 1

Thq
)4 T∑
t1,t2=1

′ T∑
t3,t4=1

′

{1I1E[· · · ] + 1I2E[· · · ] + 1I3E[· · · ]} =: (C1T + C2T + C3T ),

where I1 ∪ I2 ∪ I3 = [1, · · · , T ]4,

I1 = {(t1 = t3, t2 = t4), (t1 = t4, t2 = t3)},

I2 = {(t1 = t3, t2 6= t4), (t1 = t4, t2 6= t3), (t3 = t2, t1 6= t4), (t2 = t4, t1 6= t3)}

I3 = {(t1 6= t3, t2 6= t4)}.

We will show that

C1T = O
(( 1

Thq
)4

(T 2h2+2q(1− 2
θ

))
)
, (3.6.46)

C2T = O
(( 1

Thq
)4

(T 3h2+3q(1− 2
θ

))
)
, (3.6.47)

C3T = O
(( 1

Thq
)4 (

T 3h4q(1−γ)−2( 2q
θ
−1) + T 2h2q(1−γ)−2( q

θ
−1)
))
, (3.6.48)

which proves (3.6.45).

Proof of (3.6.46) for C1T . Since∣∣∣∣Kt

ft

Ks

fs
UitUis

∣∣∣∣ ≤ (Kt

ft
Uit

)2

+

(
Ks

fs
Uis

)2

,
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then,

C1T ≤
T∑

t,s=1

E
(K2

t

f2
t

U2
itK

2
ts{m(Zt)−m(Zs)}2

+

∣∣∣∣Kt

ft

Ks

fs
UitUis

∣∣∣∣K2
ts{m(Zt)−m(Zs)}2

)
≤ 3

T∑
t,s=1

E
(K2

t

f2
t

U2
itK

2
ts{m(Zt)−m(Zs)}2

)
≤ CT 2h2+2q(1− 2

θ
),

because with p such that 2p = θ, and 1
r = 1− 1

p = 1− 2
θ ,

T∑
t,s=1

E
(K2

t

f2
t

U2
itK

2
ts{m(Zt)−m(Zs)}2

)
≤
(
E

∣∣∣∣Kt

ft
Kts{m(Zt)−m(Zs)}

∣∣∣∣2r)1/r(E |Uit|2p)1/p
≤ C(h2q+2r)1/2 = Ch

2q
r

+2 = Ch2+2q(1− 2
θ

),

by Lemma 3.4 (iii) which proves (3.6.46).

Proof of (3.6.47) for C2T . It suffices to show that

E

(
1I2E

∣∣∣∣Kt1

ft1

Kt3

ft3
Uit1Uit3Kt1t2Kt3t4{m(Zt1)−m(Zt2)}{m(Zt3)−m(Zt4)}

∣∣∣∣)
≤ Ch2+3q(1− 2

θ
). (3.6.49)

According to definition of I2, we need to check (3.6.49) in four cases.

Case 1, (t1 = t3, t2 6= t4). Then, the above expectation becomes

E
(K2

t

f2
t

U2
it|KtsKtr{m(Zt)−m(Zs)}{m(Zt)−m(Zr)}|

)
≤
(
E

∣∣∣∣K2
t

f2
t

KtsKtr{m(Zt)−m(Zs)}{m(Zt)−m(Zr)}
∣∣∣∣w)1/w(E |Uit|2p)1/p

≤ C(h
(3q+2w)

w ) = Ch2+3q(1− 2
θ

), (3.6.50)

selecting p such that 2p = θ, setting 1
w = 1 − 2

θ , and using Lemma 3.4 (iv) and

Assumption 9.

Case 2, (t1 = t4, t2 6= t3). Then the expectation on the LHS of (3.6.49) is

E
∣∣Kt

ft

Ks

fs
UitUisKtsKrt{m(Zt)−m(Zs)}{m(Zr)−m(Zt)}

∣∣. (3.6.51)

Since
∣∣Kt
ft

Ks
fs
UitUis

∣∣ ≤ (Ktft Uit)2 +
(
Ks
fs
Uis
)2

, the bound (3.6.49) follows similarly as
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(3.6.50).

Case 3, (t3 = t2, t1 6= t4). Here, the expectation of the LHS of (3.6.49) is

E
∣∣Kt

ft

Ks

fs
UitUisKtsKsr{m(Zt)−m(Zs)}{m(Zs)−m(Zr)}

∣∣,
and (3.6.49) follows by the same argument as in Case 2.

Case 4, (t2 = t4, t1 6= t3). Here, the expectation of the LHS of (3.6.49) is

E
∣∣Kt

ft

Ks

fs
UitUisKtsKsr{m(Zt)−m(Zs)}{m(Zs)−m(Zr)}

∣∣,
and (3.6.49) follows the same argument as in Case 2.

Upper bound on C3T . Next, we bound C3T . We will show that

C3T = O
(
T 3h4q(1−γ)−2( 2q

θ
−1) + T 2h2q(1−γ)−2( q

θ
−1)
)
. (3.6.52)

C3T is the expectation of a fourth order U statistic, whose kernel is

φT (Wt,Ws,Wr,Wu) =
Kt

ft

Kr

fr
UitUirKtsKru{m(Zt)−m(Zs)}{m(Zr)−m(Zu)}.

By Lemma 3.6 (iii),

|C3T | = T 4|EφT (W̃1, W̃2, W̃3, W̃4)|+ C[T 3M1−γ
T112 + T 2M1−γ

T13 + T 2M1−γ
T4 ].

Expectation under independence is zero:

E[φT (W̃1, W̃2, W̃3, W̃4)] = E∗
(
Kt

ft

Kr

fr
UitUirKtsKru{m(Zt)−m(Zs)}{m(Zr)−m(Zu)}

)
= E∗

(
Kt

ft
Kts{m(Zt)−m(Zs)}E∗(Uit|Zt, Zs)

)
×E∗

(
Kr

fr
Kru{m(Zr)−m(Zu)}E∗(Uir|Zr, Zu)

)
= 0,

by Assumption 2.

We will show that

MT112 ≤ Ch4q− 2
1−γ ( 2q

θ
−1)

, (3.6.53)

MT13,MT4 ≤ Ch2q− 2
1−γ ( 2q

θ
−1)

, (3.6.54)

which proves (3.6.52).

Proof of (3.6.53). As noted in Lemma 3.6 (iii), MT112 is the maximal 1
(1−γ)

th

moment quantity when partitioning the four time periods into either three or four

independent subsets. There are three distinct combinations of dependence to be con-

sidered in the case of three independent subsets.
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For (Wr,Wu, W̃t, W̃s), one can separate out expectations,

Eru,t,s

[∣∣∣∣Kt

ft
Uit

∣∣∣∣ 1
1−γ

Eru,t,s

(
|Kts{m(Zt)−m(Zs)}|

1
1−γ |Zt

)]

× Eru,t,s

[∣∣∣∣Kr

fr
UirKru{m(Zr)−m(Zu)}

∣∣∣∣ 1
1−γ
]

≤ h
q+ 1

1−γ × hq/w × h(2q+ w
1−γ )/w

= O

(
h

4q− 1
1−γ

(
3q
θ
−2
))

,

because by Lemma 3.2 (ii), Lemma 3.3, and Holder’s inequality with Assumption 9’,

setting p such that p
1−γ = θ and 1

w = 1− 1
p = 1− 1

θ(1−γ) :

Eru,t,s[|Kts{m(Zt)−m(Zs)}|
1

1−γ |Zt] = O(h
q+ 1

1−γ ), (3.6.55)

E|Kt

ft
Uit|

1
1−γ ≤ (E|Uit|

p
1−γ )1/p(E|Kt

ft
|
w

1−γ )1/w = O(h
q
w ), (3.6.56)

and by Lemma 3.4 (iii),

Eru,t,s|
Kr

fr
UirKru{m(Zr)−m(Zu)}|

1
1−γ ≤ (E|Uir|

p
1−γ )1/p

×(Eru,t,s|
Kr

fr
Kru{m(Zr)−m(Zu)}|

w
1−γ )1/w = O(h

(2q+ w
1−γ ) 1

w ) = O(h
2q
w

+ 1
1−γ ),

with p = θ(1− γ) and 1
w = 1− 1

θ(1−γ) .

For (Ws,Wu, W̃t, W̃r), the 1
(1−γ)

th
moment of the kernel is

Esu,t,r{
∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ

× Esu,t,r

(
|Kts{m(Zt)−m(Zs)}Kru{m(Zr)−m(Zu)}|

1
1−γ |Zt, Zr

)
}

≤ CEsu,t,r
∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ
· h2q+ 2

1−γ = O

(
h

4q− 2
1−γ

(
q
θ
−1
))

. (3.6.57)

because the inner conditional expectation evaluated at Zt = z and Zr = u is

Esu,t,r

(
|Kts{m(Zt)−m(Zs)}Kru{m(Zr)−m(Zu)}|

1
1−γ |Zt = z, Zs = u

)
≤ sup

w,y
f|u−s|(w, y)

∫ ∣∣∣∣K (w − zh

)
{m(z)−m(w)}

∣∣∣∣ 1
1−γ

dw

×
∫ ∣∣∣∣K (y − zh

)
{m(z)−m(y)}

∣∣∣∣ 1
1−γ

dy = O(h
2q+ 2

1−γ )

uniformly over z and u due to Lemma 3.1. Noting the independence between W̃t and
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W̃r, by (3.6.56),

Esu,t,r

(∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ
)

= E

(∣∣∣∣KtUit
ft

∣∣∣∣ 1
1−γ
)
E

(∣∣∣∣KrUir
fr

∣∣∣∣ 1
1−γ
)

= O(h
2q
w ) = O

(
h

2q(1− 1
θ(1−γ) )

)
.

For (Wt,Wr, W̃s, W̃u), by (3.6.55),

Etr,s,u{
∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ

Etr,s,u

(
|Kts{m(Zt)−m(Zs)}|

1
1−γ |Zt

)
×Etr,s,u

(
|Kru{m(Zr)−m(Zu)}|

1
1−γ |Zr

)
}

≤ Ch2(q+ 1
1−γ )

Etr,s,u

∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ

= O

(
h

2q(1− 2
θ(1−γ) ) × h

2q(θ− 2
1−γ )

θ

)
= O

(
h

4q− 2
1−γ

(
2q
θ
−1
))

,

since by Lemma 3.4 (ii),

E

∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ
≤ (E|UitUir|

p
1−γ )1/p(E|Kt

ft

Kr

fr
|
w

1−γ )1/w = O(h
2q
w ) = O(h

2q− 4q
θ(1−γ) ), (3.6.58)

setting 2p
1−γ = θ and 1

w = 1− 2
θ(1−γ) . This proves (3.6.53).

Upper bound on MT13 and MT4. For both MT13 and MT4, one finds the upper

bound that holds for all relevant combinations of dependence:

E

[∣∣∣∣KtUit
ft

KrUir
fr

Kts{m(Zt)−m(Zs)}Kru{m(Zr)−m(Zu)}
∣∣∣∣ 1
1−γ
]

≤

(
E

∣∣∣∣KtUit
ft

Kts{m(Zt)−m(Zs)}
∣∣∣∣ 2
1−γ

E

∣∣∣∣KrUir
fr

Kru{m(Zr)−m(Zu)}
∣∣∣∣ 2
1−γ
)1/2

≤ (E

∣∣∣∣Kt

ft
Kts{m(Zt)−m(Zs)}

∣∣∣∣ p
1−γ

)1/2p(E |Uit|
2w
1−γ )1/w

×(E

∣∣∣∣Kr

fr
Kru{m(Zr)−m(Zu)}

∣∣∣∣ p
1−γ

)1/2p(E |Ur|
2w
1−γ )1/w

= h
2q+ 2w

1−γ = O

(
h

2q− 2
1−γ

(
2q
θ
−1
))

,

by setting 2p/(1 − γ) = θ and 1
w = 1 − 2

θ(1−γ) and Lemma 3.4 (iii), which proves

(3.6.57).
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3.6.4 Upper bound on DT.

By (3.6.8) and (3.6.12),

DT =

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUit
nt

f̃t

∣∣∣∣∣
≤

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUit
nt
ft

∣∣∣∣∣+

∣∣∣∣∣ 1

Thq

T∑
t=1

KtUitnt
ft − f̃t
f̃tft

∣∣∣∣∣ =: DT
′ + DT

′′.

We will show that

D′T = Op(r4T ), r4T :=
( 1

Thq
)2(

T 3h3q(1− 4
θ

) + T 2h
3q− 12q

θ(1−γ)
)1/2

, (3.6.59)

D′′T = Op(r1T +
log T

Thq+
2q
θ

+ h2s− 2q
θ ), (3.6.60)

where r1T is the same as in (3.6.14), which proves (3.6.22) for DT .

Proof of (3.6.60). Similarly as in the proof of (3.6.42),

D′′T ≤
1

Thq

T∑
t=1

|Kt|{

∣∣∣∣∣Uit ft − f̃tf̃tft

∣∣∣∣∣
2

+
n2
t

f2
t

} ≤ ITVT +AT .

By (3.6.14), AT = Op(r1T ) which together with (3.6.44) implies D′′T = Op(r1T +
log T

Thq+
2q
θ

+ h2s− 2q
θ ) proving (3.6.60).

Proof of (3.6.59). Since D′T = Op([E(D′T)2]
1
2 ), we show that

E[(D′T)2] ≤ C
( 1

Thq
)4(

T 3h3q(1− 4
θ

) + T 2h
2q− 8q

θ(1−γ)
)
, (3.6.61)

which implies (3.6.59).

Write

E[(D′T)2]

=
( 1

Thq
)4 T∑
t1,t2=1

′ T∑
t3,t4=1

′

E

(
Kt1

ft1

Kt3

ft3
Uit1Uit3Kt1t2Kt3t4ŪAt2ŪAt4

)

=
( 1

Thq
)4 T∑
t1,t2=1

′ T∑
t3,t4=1

′

{1I1E[· · · ] + 1I2E[· · · ] + 1I3E[· · · ]} =: (D1T +D2T +D3T ),

where I1, I2 and I3 are as in the proof for CT
′.
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We will show that

D1T = O
(( 1

Thq
)4

(T 2h2q(1− 4
θ

))
)
, (3.6.62)

D2T = O
(( 1

Thq
)4

(T 3h3q(1− 4
θ

))
)
, (3.6.63)

D3T = O
(( 1

Thq
)4 (

T 3h
4q− 6q

θ(1−γ) + T 2h
3q− 12q

θ(1−γ)
))
, (3.6.64)

which proves (3.6.61).

Proof of (3.6.62) for D1T . Similarly as in the proof for C1T , since∣∣∣∣Kt

ft

Ks

fs
UitUisŪAtŪAs

∣∣∣∣ ≤ (Kt

ft
UitŪAt

)2

+

(
Ks

fs
UisŪAs

)2

,

then,

D1T ≤
T∑

t,s=1

E
(K2

t

f2
t

U2
itK

2
tsŪ

2
As +

∣∣∣∣Kt

ft

Ks

fs
UitUisŪAtŪAs

∣∣∣∣K2
ts

)
≤ 3

T∑
t,s=1

E
(K2

t

f2
t

U2
itŪ

2
AsK

2
ts

)
≤ T 2h2q(1− 4

θ
),

because with p such that 4p = θ, and 1
r = 1− 1

p = 1− 4
θ ,

T∑
t,s=1

E
(K2

t

f2
t

U2
itŪ

2
AsK

2
ts

)
≤
(
E

∣∣∣∣Kt

ft
Kts

∣∣∣∣2r)1/r(E ∣∣UitŪAs∣∣2p)1/p ≤ Ch 2q
r = Ch2q(1− 4

θ
),

by Lemma 3.4 (i) and Assumption 9 yielding E
∣∣UitŪAs∣∣2p ≤ (E |Uit|4pE ∣∣ŪAs∣∣4p)1/2 <

∞, which proves (3.6.62).

Proof of (3.6.63) for D2T . It suffices to show that

E

(
1I2E

∣∣∣∣Kt1

ft1

Kt3

ft3
Uit1Uit3ŪAt2ŪAt4Kt1t2Kt3t4

∣∣∣∣) ≤ Ch3q(1− 4
θ

). (3.6.65)

According to definition of I2, we need to check (3.6.65) in four cases.

Case 1, (t1 = t3, t2 6= t4). Then, the above expectation becomes

E
(K2

t

f2
t

U2
it|KtsKtrŪAsŪAr|

)
≤
(
E

∣∣∣∣K2
t

f2
t

KtsKtr

∣∣∣∣w)1/w(E |Uit|2p |ŪAsŪAr|p)1/p
≤
(
E

∣∣∣∣K2
t

f2
t

KtsKtr

∣∣∣∣w)1/w(E |Uit|4p (E|ŪAs|4pE|ŪAr|4p)1/2
)1/2p

≤ C(h
3q
w ) = Ch3q(1− 4

θ
), (3.6.66)
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selecting p such that 4p = θ, setting 1
w = 1 − 4

θ , and using Lemma 3.4 (v) and

Assumption 9.

Case 2, (t1 = t4, t2 6= t3). Then the expectation on the LHS of (3.6.65) is

E
∣∣Kt

ft

Ks

fs
UitUisKtsKrtŪAsŪAt

∣∣
≤ E

∣∣K2
t

f2
t

U2
itŪ

2
AtKtsKrt

∣∣+ E
∣∣K2

s

f2
s

U2
isŪ

2
AsKtsKrt

∣∣,
since

∣∣Kt
ft

Ks
fs
UitUis

∣∣ ≤ (Ktft Uit)2 +
(
Ks
fs
Uis
)2

. The bound (3.6.65) follows similarly as in

(3.6.66).

Case 3, (t3 = t2, t1 6= t4). Here, the expectation of the LHS of (3.6.65) is

E
∣∣Kt

ft

Ks

fs
UitUisKtsKsrŪAsŪAr

∣∣,
and (3.6.65) follows the same argument as in Case 2.

Case 4, (t2 = t4, t1 6= t3). Here, the expectation of the LHS of (3.6.65) is

E
∣∣Kt

ft

Ks

fs
UitUisKtsKrsŪ

2
As

∣∣,
and (3.6.65) follows the same argument as in Case 2.

Upper bound on D3T . We will show that

D3T = O

((
1

Thq

)4 [
T 3h4q(1−γ)− 6q

θ + T 2h2q(1−γ)− 8q
θ

])
. (3.6.67)

Denote

φT (Wt,Ws,Wr,Wu) =
Kt

ft

Kr

fr
UitUirŪAsŪAsKtsKru.

By Lemma 3.6 (iii),

|D3T | = T 4|EφT (W̃1, W̃2, W̃3, W̃4)|+ C[T 3M1−γ
T112 + T 2M1−γ

T13 + T 2M1−γ
T4 ].

The expectation under independence is zero by Assumption 2:

E[φT (W̃1, W̃2, W̃3, W̃4)] = E∗
(
Kt

ft

Kr

fr
UitUirKtsKruŪAsŪAu

)
= E∗

(
Kt

ft
KtsE

∗(ŪAs|Zt, Zs)E∗(Uit|Zt, Zs)
)

×E∗
(
Kr

fr
KruE

∗(ŪAu|Zr, Zu)E∗(Uir|Zr, Zu)

)
= 0.
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We will show that

MT112 ≤ Ch4q(1−γ)− 6q
θ , (3.6.68)

MT13,MT4 ≤ Ch3q(1−γ)− 12q
θ , (3.6.69)

which proves (3.6.67).

Proof of (3.6.68). Proof is similar to that of (3.6.53). As noted in Lemma 3.6 (iii),

MT112 is the maximal 1
(1−γ)

th
moment quantity when partitioning the four time periods

into either three or four independent subsets. There are three distinct combinations

of dependence to be considered in the case of three independent subsets.

For (Wr,Wu, W̃t, W̃s), one can separate out expectations,

Eru,t,s

[∣∣∣∣KtUit
ft

KtsŪAs

∣∣∣∣ 1
1−γ
]
Eru,t,s

[∣∣∣∣KrUir
fr

KruŪAu

∣∣∣∣ 1
1−γ
]

= E∗

[∣∣∣∣KtUit
ft

∣∣∣∣ 1
1−γ

E∗(
∣∣KtsŪAs

∣∣ 1
1−γ |W̃t)

]
Eru,t,s

[∣∣∣∣KrUir
fr

KruŪAu

∣∣∣∣ 1
1−γ
]

= O
(
h

2q− 2q
θ(1−γ)

)
×O

(
h

2q− 4q
θ(1−γ)

)
= O

(
h

4q− 6q
θ(1−γ)

)
,

because by Lemma 3.1 and 3.3 and Assumption 9’, we set 2p = θ giving 1
w = 1− 2

θ

E|Kt

ft
Uit|

1
1−γ ≤ (E|Uit|

p
1−γ )1/p(E|Kt

ft
|
w

1−γ )1/w = O(h
q
w ), (3.6.70)

E|KtsŪAs|
1

1−γ ≤ (E|ŪAs|
p

1−γ )1/p(E|Kts|
w

1−γ )1/w = O(h
q
w ),

and by Lemma 3.4 (i) with 2p = θ(1− γ) and 1
w = 1− 2

θ(1−γ) ,

Eru,t,s|
Kr

fr
KruUirŪAu|

1
1−γ ≤ (E|Uir|

2p
1−γE|ŪAu|

2p
1−γ )1/2p(Eru,t,s|

Kr

fr
Kru|

w
1−γ )1/w

= O(h
2q
w ) = O(h

2q− 4q
θ(1−γ) ).

For (Wt,Wr, W̃s, W̃u), the 1
(1−γ)

th
moment of the kernel is

Esu,t,r

[∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ

Esu,t,r

[∣∣KtsŪAs
∣∣ 1
1−γ |Zt

]
Esu,t,r

[∣∣KruŪAu
∣∣ 1
1−γ |Zr

]]
= O

(
h

2q− 4q
θ(1−γ)

)
×O

(
h
q− q

θ(1−γ) × hq−
q

θ(1−γ)
)

= O
(
h

4q− 6q
θ(1−γ)

)
,

because the inner conditional expectation is

Esu,t,r

[∣∣KtsŪAs
∣∣ 1
1−γ |Zt

]
≤ (E|ŪAs|

p
1−γ )1/p(E

[
|Kts|

w
1−γ |Zt

]
)1/w ≤ Chq−

q
θ(1−γ) ,

by Lemma 3.1 and Assumption 9’, setting p = θ(1 − γ) and 1
w = 1 − 1

θ(1−γ) . Noting
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the independence between W̃t and W̃r, by (3.6.56),

Esu,t,r

(∣∣∣∣KtUit
ft

KrUir
fr

∣∣∣∣ 1
1−γ
)

= E

(∣∣∣∣KtUit
ft

∣∣∣∣ 1
1−γ
)
E

(∣∣∣∣KrUir
fr

∣∣∣∣ 1
1−γ
)

= O(h
2q
w ) = O

(
h

2q− 2q
θ(1−γ)

)
.

For (Ws,Wu, W̃r, W̃t), similarly to (3.6.58) and (3.6.56),

Etr,s,u

[
|KrUir
fr
|

1
1−γ

[
E

∣∣∣∣KtUit
ft

KruŪAu

∣∣∣∣ 1
1−γ

E
[∣∣KtsŪAs

∣∣ 1
1−γ |Zt

]
|Zr

]]
= O

(
h

4q− 6q
θ(1−γ)

)
.

since uniformly over z

E
(∣∣KtsŪAs

∣∣ 1
1−γ |Zt = z

)
≤ [E

(
|Kts|

p
1−γ |Zt = z

)
]1/p[E|ŪAs|

r
1−γ ]1/r = O

(
h
q− q

θ(1−γ)
)
,

E|KrUir
fr
|

1
1−γ ≤ [E

∣∣∣∣Kr

fr

∣∣∣∣ p
1−γ

]1/p[E|Uir|
r

1−γ ]1/r = O
(
h
q− q

θ(1−γ)
)
,

by Lemma 3.1 and Assumption 9’, setting 2p
1−γ = θ and 1

w = 1− 2
θ(1−γ) and E

∣∣∣KtUitft
KruŪAu

∣∣∣ =

O(h
2q− 4q

θ(1−γ) ) by similar argument as in the proof of (3.6.58). This proves (3.6.70).

Upper bound on MT13 and MT4. For both MT13 and MT4, one finds the upper

bound that holds for all relevant combinations of dependence:

E

[∣∣∣∣KtUit
ft

ŪAuKtsŪAs
KrUir
fr

Kru

∣∣∣∣ 1
1−γ
]

≤ C

[
E

∣∣∣∣Kt

ft

Kr

fr
Kts

∣∣∣∣ r
1−γ
] 1
r [
E|UitŪAu|

2p
1−γ
] 1

2p
[
E|UirŪAs|

2p
1−γ
] 1

2p

≤ C

[
E

∣∣∣∣Kt

ft

Kr

fr
Kts

∣∣∣∣ w
1−γ
] 1
w [(

E|Uit̄|
4p

1−γ
)1/2 (

E|UAu|
4p

1−γ
)1/4

] 1
p

= O
(
h

3q− 12q
θ(1−γ)

)
by setting 4p/(1 − γ) = θ and 1

w = 1 − 4
θ(1−γ) and Lemma 3.4 (vi) and Assumption

9’, which proves (3.6.69). This completes the proof of (3.6.69).

3.6.5 Upper bounds on ET and FT .

Notice that by Lemma 3.3, 1
Thq

T∑
t=1

|Kt| = Op(1). Therefore, by Holder inequality,

ET + FT ≤ (
1

Thq

T∑
t=1

|Kt|)1/2{( 1

Thq

T∑
t=1

|Kt||
nt

f̃t
|2)1/2

+(
1

Thq

T∑
t=1

|Kt||
lt

f̃t
|2)1/2} = Op(A

1/2
T +B

1/2
T ).
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Thus, by (3.6.10)

T−1/2(ET + FT ) = OP (T−1/2(A
1/2
T + B

1/2
T )) = Op(T

−1(AT + BT )) = Op(RTh),

completing proof of (3.6.11).

We showed that

AT + BT + CT + DT + T−1/2(ET + FT)

≤ C
( log T

Thq+
2q
θ

+ h2s− 2q
θ + r1T + r2T + r3T + r4T

)
, (3.6.71)

where

r1T =
( 1

Thq
)3 (

T 2h2q− 2q
θ + T 2h3q(1−γ)− 4q

θ

)
,

r2T =
( 1

Thq
)3 (

T 3h3q+2s + T 2h2q+2 + T 2h3q(1−γ)+2
)
,

r3T =
( 1

Thq
)2 (

T 3h2+3q(1− 2
θ

) + T 3h4q(1−γ)−2( 2q
θ
−1) + T 2h2q(1−γ)−2( 2q

θ
−1)
)1/2

,

r4T =
( 1

Thq
)2(

T 3h3q(1− 4
θ

) + T 2h
3q− 12q

θ(1−γ)
)1/2

,

RT,h = hp + h2s− 2q
θ +

1

Th3γq+ 4q
θ

+
1

Thq+γq+
2q
θ
−1

+
1

Th
q
2

+ 6q
θ(1−γ)

+
1√

Thq+
12q
θ

.

The proof of Theorem 3.7 is completed by showing that (3.6.71) is O(RT,h). Firstly,

by Assumption 17 (ii), and since 4q
θ(1−γ) = 4q

θ + 4γq
θ(1−γ) ,

log T

Thq+
2q
θ

=
(log T )h

2q
θ

+ 4γq
θ(1−γ)

Th
q+ 4q

θ(1−γ)
= O

( 1

Th
q+ 4q

θ(1−γ)

)
= O(RT,h).

Secondly,

r2T ≤ h2s− 2q
θ + r1T = h2s− 2q

θ +
1

Thq+
2q
θ

+
1

Th3γq+ 4q
θ

≤ h2s− 2q
θ +

1

Th
q+ 4q

θ(1−γ)
+

1

Th3γq+ 4q
θ

= O(RT,h).

Thirdly, by 1− 4γ ≤ 8
θ of Assumption 9’,

r3T =
1√

Thq+
6q
θ
−2

+
1√

Th4γq+ 4q
θ
−2

+
1

Thq+γq+
2q
θ
−1

=

√
h

6q
θ

+2√
Thq+

12q
θ

+

√
h( 8

θ
−(1−4γ))q+2√
Thq+

12q
θ

+
1

Thq+γq+
2q
θ
−1

=
o(1)√
Thq+

12q
θ

+
o(1)√
Thq+

12q
θ

+
1

Thq+γq+
2q
θ
−1

= O(RT,h).
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Finally,

r4T =
1√

Thq+
12q
θ

+
1

Th
q
2

+ 6q
θ(1−γ)

= O(RT,h).

�

Proof of Theorem 3.8 We provide proof for the a∗m,MSE(ζl)
, while the proof for

a∗m∗,MSE(ζl)
follows by the same argument. Recall

a∗m,AMSE(ζl)
− â∗m,AMSE(ζl)

=
( κq

TN2χ2
r

) 1
q+2r

{f(ζl)1
′
NΩ(ζl)1N

Φ(m̃(ζl))2

} 1
q+2r

−

{
f̂(ζl)1

′
NΩ̂(ζl)1N

Φ̂(m̃(ζl))2

} 1
q+2r

 . (3.6.72)

By the mean value theorem, the last term is bounded in absolute value by

1

q + 2r
|r̃1||1′N (Ω(ζl)−Ω̂(ζl))1N |+

1

q + 2r
|r̃2||(f(ζl)−f̂(ζl)|+

1

q + 2r
|r̃3|

∣∣∣Φ(m̃(ζl))
2 − Φ̂(m̃(ζl))

2
∣∣∣ ,

(3.6.73)

where ri’s, i = 1, 2, 3 are derivatives of the expression in the curly bracket in the RHS

of (3.6.72) with respect to Ω, f and Φ, respectively. r̃1 lies in

1

q + 2r

( f(ζl)

Φ(m̃(ζl))2

) 1
(q+2r)

(1′NΩ(ζl)1N )
(−q−2r+1)

(q+2r) ,

(
f̂(ζl)

Φ̂(m̃(ζl))2

) 1
(q+2r)

(1′NΩ̂(ζl)1N )
(−q−2r+1)

(q+2r)

 ,
r̃2 lies in

1

q + 2r

(1′NΩ(ζl)1N
Φ(m̃(ζl))2

) 1
(q+2r)

(f(ζl))
(−q−2r+1)

(q+2r) ,

(
1′NΩ̂(ζl)1N

Φ̂(m̃(ζl))2

) 1
(q+2r)

(f̂(ζl))
(−q−2r+1)

(q+2r)

 ,
and r̃3 lies between

−1

q + 2r

[
(1′NΩ(ζl)1Nf(ζl))

1
(q+2r) (Φ(m̃(ζl))

2)
(−q−2r−1)

(q+2r) ,

(1′NΩ̂(ζl)1N f̂(ζl))
1

(q+2r) (Φ̂(m̃(ζl))
2)

(−q−2r−1)
(q+2r)

]
.

Then straightforwardly we deduce that the upper bound of (3.6.73) is

Op
(
(1′NΩ(ζl)1N )(−q−2r+1)/(q+2r)

[
N‖Ω(ζl)− Ω̂(ζl)‖+ (1′NΩ(ζl)1N )|f(ζl)− f̂(ζl)|

+(1′NΩ(ζl)1N )
∣∣∣Φ(m̃(ζl))

2 − Φ̂(m̃(ζl))
2
∣∣∣ ])

= Op((1
′
NΩ(ζl)1N )(−q−2r+1)/(q+2r)N [‖Ω(ζl)− Ω̂(ζl)‖+ ‖Ω(ζl)‖|f(ζl)− f̂(ζl)|

+‖Ω(ζl)‖
∣∣∣Φ(m̃(ζl))

2 − Φ̂(m̃(ζl))
2
∣∣∣])

= Op

(
(1′NΩ(ζl)1N )(−q−2r+1)/(q+2r)N‖Ω(ζl)− Ω̂(ζl)‖

)
,
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where the last step follows from Assumption 19. Thus (3.6.72) becomes

a∗m,MSE(ζl)
− â∗m,MSE(ζl)

= Op

((
1′NΩ(ζl)1N

TN2

) 1
q+2r

(
N

1′NΩ(ζl)1N

) 1
q+2r

‖Ω(ζl)− Ω̂(ζl)‖

)

= Op

((
1′NΩ(ζl)1N

TN2

) 1
q+2r

‖Ω(ζl)− Ω̂(ζl)‖

)
= op(a

∗
m,MSE(ζl)

).

�

Proof of Theorem 3.9

For the same reason as in Robinson(2009, pp.28-29), it is sufficient to show that

NRT,h = o

(
as +

1√
Taq

)
,

which follows by Assumption 20. �

3.7 Appendix B. Lemmas 3.1-3.6

Recall the product form of the kernel K(u) =

q∏
j=1

k(uj). We first note the multivariate

version of Taylor expansion for a function m : Rq → R. Suppose m possesses continu-

ous partial derivatives of order r at any z ∈ Rq which are uniformly bounded. Then,

for z, w ∈ Rq, one may write

m(z)−m(w) =
r−1∑
`=1

1

`!

q∑
i1=1

· · ·
q∑

i`=1

∂`m(t1, · · · , tq)
∂ti1 · · · ∂ti`

∣∣∣
t=z

∏̀
j=1

(zij − wij )

+
1

r!

q∑
i1=1

· · ·
q∑

ir=1

∂rm(t1, · · · , tq)
∂ti1 · · · ∂tir

∣∣∣
t=x

r∏
j=1

(zij − wij ), (3.7.1)

where x lies on the line segment joining z and w.

Lemma 3.1. Let
∫
|k(u)|(1 + |u|a)du <∞, for some a ≥ 0. Then uniformly in z,∫

‖w − z‖a
∣∣∣∣K (w − zh

)∣∣∣∣ dw = hq+a
∫
‖ψ‖a |K(ψ)|dψ

≤ hq+aqa
∫
|uak(u)|du

(∫
|k(u)|du

)q−1
= O(hq+a). (3.7.2)

Lemma 3.2. Suppose m and f have bounded derivatives of total order up to s,

k ∈ Ks and supz f(z) <∞.

(i) (Lemma 5 of Robinson (1988)) If Z1 and Z2 are independent, then, uniformly

over z, ∣∣∣∣E ({m(Z1)−m(Z2)}K
(
Z1 − Z2

h

)
|Z1 = z

)∣∣∣∣ = O
(
hq+s

)
.

(ii) If
∫
|usk(u)|adu < ∞ for some a > 0 and Z1 and Z2 are independent, then
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uniformly over z,

E

(∣∣∣∣{m(Z1)−m(Z2)}K
(
Z1 − Z2

h

)∣∣∣∣a |Z1 = z

)
= O(hq+a). (3.7.3)

(iii) If Z1 and Z2 are dependent with joint density f(z, y) satisfying sup
δ

∫
f(z, z+

δ)dz <∞, then,

E

(∣∣∣∣{m(Z1)−m(Z2)}K
(
Z1 − Z2

h

)∣∣∣∣a) = O(hq+a). (3.7.4)

Proof. (ii) Notice that (3.7.1) implies |m(z)−m(w)|a ≤ C‖z−w‖a. Then by (3.7.2),

the LHS of (3.7.3) is bounded by

C

∫
‖w − z‖a|K

(z − w
h

)
|af(w)dw ≤ C

∫
‖w − z‖a|K

(z − w
h

)
|adw = O(hq+a).

(iii) From (3.7.2), it follows that the LHS of (3.7.4) is bounded by∫ ∣∣{m(z)−m(w)}K
(
z − w
h

) ∣∣af(z, w)dzdw

≤ Chq+a
∫
‖ψ‖a

∣∣K (ψ)
∣∣a(∫ f(z, z − hψ)dz

)
dψ = O(hq+a).

Lemma 3.3. Let k be a kernel function with a compact support, say [−1, 1], such

that
∫
|k(u)|adu < ∞ for some a > 0. Suppose that Z is a random variable with a

continuous pdf f and ζ ∈ Rq is such that f(ζ) > 0. Then, for all b > 1,

E

[
|K((Z − ζ)/h)|a

f(Z)b

]
= O(hq).

Proof. Since f is continuous and positive at ζ, there exist δ > 0 and ε > 0 such that

f(ζ + w) ≥ δ, for |w| ≤ ε. Then |hu| < ε, ∀|u| < 1, for T large enough. Thus as

T →∞,

E(
|K((Z − ζ)/h)|a

f(Z)b
) =

∫
|K((z − ζ)/h)|a

f(z)b−1
dz = hq

∫ 1

−1

|K(u)|a

f(ζ + hu)b−1
du

≤ hq

δb−1

∫ 1

−1
|K(u)|adu = O(hq).

Lemma 3.4. Let Z1, Z2, Z3 be random variables with joint densities f(·, ·, ·), f(·, ·)
and marginal density f(·) such that sup

z,u
f(z, u) <∞, sup

z,u,w
f(z, u, w) <∞ and f(ζ) >

0, for a fixed point ζ. Let k be a kernel function with a compact support, and `

be a kernel function such that
∫
{|`(u)|a + |k(u)|b}du < ∞ for some a, b > 0 and let

c ≥ 0. Then the product kernels L(u) =

q∏
j=1

`(uj),K(u) =

q∏
j=1

k(uj) have the following
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properties:

(i) E

[∣∣∣∣K(Z1 − ζ
h

)∣∣∣∣b ∣∣∣∣L(Z1 − Z2

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h2q),

(ii) E

∣∣∣∣K((Z1 − ζ)/h)

f(Z1)

K((Z2 − ζ)/h)

f(Z2)

∣∣∣∣a = O(h2q),

(iii) E

[∣∣∣∣K(Z1 − ζ
h

)∣∣∣∣b ∣∣∣∣{m(Z1)−m(Z2)}L
(Z1 − Z2

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h2q+a),

(iv)E
[ ∣∣∣∣K(Z1 − ζ

h

)∣∣∣∣b ∣∣∣∣{m(Z1)−m(Z2)}{m(Z1)−m(Z3)}L
(Z1 − Z2

h

)
L
(Z1 − Z3

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h3q+2a),

(v) E

[∣∣∣∣K(Z1 − ζ
h

)∣∣∣∣b ∣∣∣∣L(Z1 − Z2

h

)
L
(Z1 − Z3

h

)∣∣∣∣a 1

f(Z1)c

]
= O(h3q),

(vi) E

[∣∣∣∣K(Z1 − ζ
h

)
K
(Z3 − ζ

h

)
L
(Z1 − Z2

h

)∣∣∣∣a 1

f(Z1)a
1

f(Z3)a

]
= O(h3q).

Proof. (i) Denote φ = (z − ζ)/h and ψ = (w − ζ)/h. Since sup
z,w

f(z, w) < ∞ and

f(z) > 0 for |z − ζ| ≤ ch as h→ 0,

∫ ∣∣∣∣K(z − ζh )∣∣∣∣b ∣∣∣∣L(z − wh )∣∣∣∣a f(z, w)

f(z)c
dzdw

≤ Ch2q

∫
|K(φ)|b|L(φ− ψ)|adφdψ

= h2q

∫
|K(φ)|bdφ

∫
|L(ψ)|adψ = O(h2q).

(ii) Similarly, since f(z) ≥ c > 0 in the neighborhood of ζ,∫ ∣∣∣∣K((z − ζ)/h)

f(z)

K((w − ζ)/h)

f(w)

∣∣∣∣a f(z, w)dzdw

≤ C
∫ ∣∣∣∣K((z − ζ)/h)

f(z)

∣∣∣∣a dz ∫ ∣∣∣∣K((w − ζ)/h)

f(w)

∣∣∣∣a dw
≤ Ch2q(

∫
|K(φ)|a dφ)2 = O(h2q).

(iii) As above, ∫ ∣∣K(z − ζ
h

)∣∣b|{m(z)−m(w)}L
(z − w

h

)
|a f(z, w)

f(z)c
dzdw

≤ Ch2q+a

∫
|K(ψ)|bdψ

∫
‖φ‖a|L

(
φ
)
|adφ = O(h2q+a).

Proof of (iv) follows by the same argument as in (iii), proof of (v) is analogous to that

of (i) and proof of (vi) is similar to that of (i) and (ii). �
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The next three lemmas offer convenient tools in dealing with asymptotic behaviour

of U-statistics of a stationary β-mixing process.

Lemma 3.5. (Yoshihara’s Inequality) Suppose {Wt} is a strictly stationary β-

mixing process with mixing coefficient β(τ), taking values in Rq with marginal dis-

tribution function F . Let 1 ≤ t1 < · · · < tk, k ≥ 2 be integers and Ft1,··· ,tk the

joint distribution function of (Wt1 , · · · ,Wtk). Denote by φT (w1, · · · , wk) a sequence

of functions on (Rq)k. Then for 0 < γ < 1,∣∣∣∣∫ φT (w)dFt1,··· ,tk −
∫
φT (w)dFt1,··· ,tjdFtj+1,··· ,tk

∣∣∣∣
≤ 4

(∫
|φT (w)|1/(1−γ)d{Ft1,··· ,tk + Ft1,··· ,tjFtj+1,··· ,tk}

)1−γ
× β(tj+1 − tj)γ ,

provided the RHS exists.

Proof can be found in Yoshihara (1976). The original lemma had φ, not φT and

the extension is mentioned in Robinson (1991).

Before stating the next lemma, we need the following notation. By (π(1), · · · , π(k))

denote a permutation of the set (1, · · · , k). For example, for k = 3, (π(1), · · · , π(3)) ∈
{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2)}. Define

φ̃T (w1, · · · , wk) =
∑

π(1),··· ,π(k)

φT (wπ(1), · · · , wπ(k)), (3.7.5)

where the sum
∑

π(1),··· ,π(k)

is taken over all permutation of the set {1, · · · , k}. Note

that φ̃T is a symmetric function. For brevity, we write Ft1,t2,t3 = Ft1,t2,t3(w1, w2, w3),

Ft1Ft2,t3 = Ft1(w1)Ft2,t3(w2, w3), and so on.

Define:

MT2 := max
1≤t1<t2≤T

∫
R2q

|φ̃T (w1, w2)|1/(1−γ)d{Ft1,t2 + Ft1Ft2},

MT3 := max
1≤t1<t2<t3≤T

∫
R3q

|φ̃T (w1, w2, w3)|1/(1−γ)d{Ft1,t2,t3 + Ft1Ft2,t3 + Ft1,t2Ft3},

MT12 := max
1≤t1<t2<t3≤T

∫
R3q

|φ̃T (w1, w2, w3)|1/(1−γ)d{Ft1Ft2,t3 + Ft1,t2Ft3 + Ft1Ft2Ft3},
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MT4 := max
1≤t1<t2<t3<t4≤T

∫
R4q

|φ̃T (w1, w2, w3, w4)|1/(1−γ)d{Ft1,t2,t3,t4 + Ft1Ft2,t3,t4

+Ft1,t2Ft3,t4 + Ft1,t2,t3Ft4},

MT13 := max
1≤t1<t2<t3<t4≤T

∫
R4q

|φ̃T (w1, w2, w3, w4)|1/(1−γ)d{Ft1Ft2,t3,t4 + Ft1,t2Ft3,t4

+Ft1,t2,t3Ft4 + Ft1,t2Ft3Ft4 + Ft1Ft2,t3Ft4 + Ft1Ft2Ft3,t4},

MT112 := max
1≤t1<t2<t3<t4≤T

∫
R4q

|φ̃T (w1, w2, w3, w4)|1/(1−γ)d{Ft1,t2Ft3Ft4 + Ft1Ft2,t3Ft4

+Ft1Ft2Ft3,t4 + Ft1Ft2Ft3Ft4}.

Let {W̃t} denote an i.i.d. process with the marginal distribution function F , and∑
t1,··· ,tk

′
is a summation over non-overlapping indices (t1, · · · , tk).

Lemma 3.6. In addition to assumptions of Lemma 3.5, assume that for some 0 < γ <

1 and ε > 0, the β-mixing coefficient of Wt satisfies β(τ) = O(τ−(2+ε)/γ) as τ → ∞.

Then, for some 0 < C <∞,

(i)

∣∣∣∣∣∑
t1,t2

′
E (φT (Wt1 ,Wt2))− T (T − 1)E

(
φT (W̃1, W̃2)

)∣∣∣∣∣ ≤ CTM1−γ
T2 .

(ii)

∣∣∣∣∣ ∑
t1,t2,t3

′
EφT (Wt1 ,Wt2 ,Wt3)− T (T − 1)(T − 2)E

(
φT (W̃1, W̃2, W̃3)

)∣∣∣∣∣
≤ CT 2M1−γ

T12 + CTM1−γ
T3 .

(iii)

∣∣∣∣∣ ∑
t1,t2,t3,t4

′
E (φT (Wt1 ,Wt2 ,Wt3 ,Wt4))− T (T − 1)(T − 2)(T − 3)E

(
φT (W̃1, W̃2, W̃3, W̃4)

)∣∣∣∣∣
≤ CT 3M1−γ

T112 + CT 2M1−γ
T13 + CT 2M1−γ

T4 .

Proof. (i) One can write∑
1≤t1,t2≤T

′
E (φT (Wt1 ,Wt2)) =

∑
1≤t1<t2≤T

E (φT (Wt1 ,Wt2) + φT (Wt2 ,Wt1)) .

For all 1 ≤ t1 < t2 ≤ T , Yoshihara’s inequality yields:∣∣∣E[φT (Wt1 ,Wt2)− φT (W̃1, W̃2)]
∣∣∣ ≤ CM1−γ

T2 βγ(t2 − t1),∣∣∣E[φT (Wt2 ,Wt1)− φT (W̃1, W̃2)]
∣∣∣ ≤ CM1−γ

T2 βγ(t2 − t1).

Therefore,∣∣∣∣∣∣
∑

1≤t1,t2≤T

′
E[(φT (Wt1 ,Wt2))− φT (W̃1, W̃2)]

∣∣∣∣∣∣ ≤ CM1−γ
T2

∑
1≤t1<t2≤T

βγ(t2 − t1)

≤ CTM1−γ
T2

T−1∑
τ=1

βγ(τ) ≤ CTM1−γ
T2 ,
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because of the assumption β(τ) = O(τ−(2+ε)/γ) and EφT (W̃s, W̃t) = EφT (W̃1, W̃2)

for t 6= s.

(ii) One has∑
t1,t2,t3

′
E[φT (Wt1 ,Wt2 ,Wt3)]

=
∑

1≤t1<t2<t3≤T
E [φT (Wt1 ,Wt2 ,Wt3) + · · ·+ φT (Wt3 ,Wt2 ,Wt1)]

=
∑

1≤t1<t2<t3≤T
Eφ̃(Wt1 ,Wt2 ,Wt3),

where φ̃T is as in (3.7.5). For any 1 ≤ t1 < t2 < t3 ≤ T , define t∗ := max{t3−t2, t2−t1}
and t∗ := min{t3 − t2, t2 − t1}. Then by stationarity and Yoshihara’s inequality,∣∣∣E[φ̃T (Wt1 ,Wt2 ,Wt3)]− dT (t1, t2, t3)

∣∣∣ ≤ CM1−γ
T3 βγ(t∗),

dT (t1, t2, t3) :=

∫ ∫
φ̃T (w1, w2, w3)dF0,t∗(w1, w2)F (w3),

|dT (t1, t2, t3)−
∫
φ̃T (w1, w2, w3)dF (w1)F (w2)F (w3)| ≤ 4M1−γ

T12 β
γ(t∗).

Therefore , ∣∣∣∣Eφ̃T (Wti ,Wtj ,Wtk)−
∫
φT (w1, w2, w3)dF (w1)dF (w2)dF (w3)

∣∣∣∣
≤ CM1−γ

T3 βγ(t∗) + CM1−γ
T12 β

γ(t∗).

This leads to∣∣∣∣∣ ∑
t1,t2,t3

′
E (φT (Wt1 ,Wt2 ,Wt3))− T (T − 1)(T − 2)E(φT (W̃1, W̃2, W̃3))

∣∣∣∣∣
≤ CM1−γ

T3

∑
1≤t1<t2<t3≤T

βγ(t∗) + CM1−γ
T12

∑
1≤t1<t2<t3≤T

βγ(t∗)

≤ C[TM1−γ
T3 + T 2M1−γ

T12 ]. (3.7.6)

To verify (4.7.4), note that from definition of t∗ and t∗, and β(τ)γ ≤ cτ−(2+ε),

β(t∗) ≤ c|t3 − t2|−(1+ε/2)|t2 − t1|−(1+ε/2),

β(t∗) ≤ c(|t3 − t2|−(2+ε) + |t2 − t1|−(2+ε)).
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Thus,

∑
1≤t1<t2<t3≤T

βγ(t∗) ≤ C

(
T∑

t1=1

1

)(
T∑
s=1

s−(1+ε/2)

)2

≤ CT,

∑
1≤t1<t2<t3≤T

βγ(t∗) ≤ C
∑

1≤t1<t2≤T
|t2 − t1|−(2+ε)

(
T∑

t3=1

1

)
≤ C

(
T∑
s=1

s−(2+ε)

)
T 2 ≤ CT 2.

(iii) For any 1 ≤ t1 < t2 < t3 < t4 ≤ T , define t∗ := max{t4 − t3, t3 − t2, t2 − t1},
t∗ := min{t4− t3, t3− t2, t2− t1} and tm := {t4− t3, t3− t2, t2− t1}\{t∗, t∗}. By similar

steps to (ii), one has∣∣∣∣∣ ∑
t1,t2,t3,t4

′
E (φT (Wt1 ,Wt2 ,Wt3 ,Wt4))− T (T − 1)(T − 2)(T − 3)E

(
φT (W̃1, W̃2, W̃3, W̃4)

)∣∣∣∣∣
≤ CM1−γ

T112

∑
1≤t1<t2<t3<t4≤T

βγ(t∗) + CM1−γ
T13

∑
1≤t1<t2<t3<t4≤T

βγ(tm)

+CM1−γ
T4

∑
1≤t1<t2<t3<t4≤T

βγ(t∗)

≤ C
[
M1−γ
T112T

3 +M1−γ
T13 T

2 +M1−γ
T4 T 2

]
. (3.7.7)

The last bounds in (3.7.7) follows noting that β(τ)γ ≤ cτ−(2+ε), and therefore

βγ(t∗) ≤ c|t3 − t2|−(1+ε/2)|t2 − t1|−(1+ε/2),

βγ(tm) ≤ c|t3 − t2|−(1+ε/2)|t2 − t1|−(1+ε/2),

βγ(t∗) ≤ c(|t4 − t3|−(2+ε) + |t3 − t2|−(2+ε) + |t2 − t1|−(2+ε)).

Hence

∑
1≤t1<t2<t3<t4≤T

|βγ(t∗) + βγ(tm)| ≤ C

 T∑
t1,t4=1

1

( T∑
s=1

s−(1+ε/2)

)2

≤ CT 2,

∑
1≤t1<t2<t3<t4≤T

βγ(t∗) ≤ C
∑

1≤t1<t2≤T
|t2 − t1|−(2+ε)

 T∑
t1,t4=1

1


≤ CT 3

(
T∑
s=1

s−(2+ε)

)
≤ CT 3,

which proves (3.7.7) and completes the proof of (iii). �
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4 Efficiency Improvement in

Estimation of Semi-parametric

Pure Spatial Autoregressive

Model
4.1 Introduction

Spatial econometric data typically feature irregular spacing, for example, when obser-

vations are recorded across cities, regions or countries. In numerous applications of

interest in Economics, correlation across observations may be characterized by some

general notion of economic distance (e.g. differences in household income or product

characteristics) that does not necessarily have a geographical interpretation, see, e.g.

Conley and Dupor (2003). These two features render much of the spatial statistics

inapplicable to economic data. As a result, Spatial Autoregressive (SAR) models of

Cliff and Ord (1968), that can cater for the two afore-mentioned features, have gained

popularity in applications (see, e.g. Arbia (2006)), and received much attention in the

theoretical literature, see, e.g. Kelejian and Prucha (1998), Lee (2002), Lee (2004)

and Rossi (2010).

In this chapter, we consider the so-called pure SAR model, which describes spa-

tial dependence in the absence of any regressors, modeled parametrically by a linear

transformation of underlying shocks. Let y = (y1, · · · , yn)T be a vector of observations

having the same (unknown) mean, E (yi) = µ0, and with yT denoting transposition.

The model is given by

(I − λ0W ) (y − µ01n) = σ0ε, (4.1.1)

where 1n is a n×1 vector of 1’s, ε = (ε1, · · · , εn)T is a vector of independent identically

distributed random variables with zero mean and unit variance, and σ0 and λ0 are

unknown scalar parameters. The n×n weight matrix, W = Wn, is fixed and assumed

to be known a priori, having real-valued (i, j)-th element wij = wijn such that

wii = 0,
n∑
j=1

wij = 1, i = 1, · · · , n, i.e. W1n = 1n. (4.1.2)

It is noted that the elements wijn of the weight matrix may change with n but the n

subscript is suppressed below for brevity. The wij are typically interpreted as inverse

economic distances (see, e.g. Arbia (2006)).

The meaning of the row-normalisation restriction of (4.1.2) becomes more tangible



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 134

once we write the model in a scalar form:

yi − µ0 = λ0

[ n∑
j=1

wij(yj − µ0)
]

+ σ0εi.

The summation inside the square bracket on the right hand side (RHS) is called

the ”spatial lag” of unit i and the row normalisation naturally requires this to be a

weighted average.

When ε, and thus y, is Gaussian, the model (4.1.1) can be thought of as primarily

describing the covariance matrix of y, since this, and µ0, describe the distribution of y

completely. The parameter vector θ0 = (λ0, µ0, σ0)T can be asymptotically efficiently

estimated by the maximum likelihood estimate (MLE) θ̃ =
(
λ̃, µ̃, σ̃

)T
. It has been

explicitly established in Lee (2004) that, under some regularity conditions, θ̃ is con-

sistent and asymptotically normal. In fact, these latter properties hold over a much

more general class of distributions of the εi, in which case the estimate θ̃ is termed a

(Gaussian) pseudo MLE (PMLE).

However θ̃ is not asymptotically efficient when it is only a PMLE. Given a (non-

Gaussian) parametric specification of the distribution of ε1, we can construct a (non-

Gaussian) MLE as follows. Let f(x; ζ0) = R1+q → R1 be the probability density

function of ε1, a given function of all its arguments, with ζ0 being an unknown q × 1

parameter vector. Write θ0 =
(
λ0, µ0, σ0, ζ

T
0

)T
, and denote by θ =

(
λ, µ, σ, ζT

)T
any

admissible value of θ0. Introducing the notation S(λ) := I − λW allows us to write

the log likelihood as

L(θ) =
n∑
i=1

log f

(
STi (λ) (y − µ1n)

σ
; ζ

)
+ log det{S(λ)} − n

2
log σ2, (4.1.3)

where STi (λ) denotes the i-th row of S(λ). The MLE τ̄ =
(
λ̄, µ̄, σ̄, ζ̄T

)T
of τ0 maxi-

mizes (4.1.3) over a suitable compact set, and can be expected to be asymptotically

efficient. Unfortunately there are rarely strong prior grounds for specifying f , and

misspecification of a non-Gaussian probability density f can lead to inconsistent esti-

mation.

In practice, λ0 is often the main feature of interest, with µ0 and σ0 being nui-

sance parameters (and our results on estimation of λ0 are unaffected if µ0 = 0 is

known a priori). In this chapter we establish an estimate λ̂ of λ0 that achieves the

same asymptotic distribution as the MLE λ̄, in the presence of only non-parametric

assumptions on the distribution of ε1. Specifically, λ̂ takes a Newton step from the

Gaussian PMLE λ̃, using non-parametric (series) estimation of the score function.

This kind of ”adaptive” property was previously established in a spatial context

by Robinson (2010a), for the model

(I − λ0W ) y = µ0 +Xβ0 + σ0ε, (4.1.4)
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where X is a n×k matrix of observed regressors and β0 is a vector of unknown param-

eters. Although it may seem that pure SAR is a special case of the mixed SAR with

β = 0, it has been shown in literature, see Lee (2004), that the asymptotic behaviour

of the parameter estimates of λ0 under the two models are radically different, with

different rates of convergence. Consequently, the feasibility and implementation of

such adaptive estimation in the pure SAR model need to be established separately.

The method of estimation we employ is very similar to that of Robinson (2010a),

but the asymptotic variance matrix of his estimate of (λ0, β
T
0 )T corresponds to that

found in the classical adaptive estimation literature, whereas the asymptotic variance

matrix of our estimate of λ0 differs from the classical one. In particular, the gain in

efficiency of λ̂ over λ̃ can be either less or more (typically less) than in the classical

outcome.

Section 4.2 presents the information matrix corresponding to estimation based on

(4.1.3), its form suggesting both the potential for adapting to unknown distributional

form of ε1 in the estimation of λ0, and the scope for efficiency gains described in the

previous paragraph. Sections 4.3 and 4.4 describe, respectively, our estimate λ̂ and

its asymptotic distribution. Section 4.5 reports a Monte Carlo study of finite-sample

behaviour of this estimator.

4.2 Block-diagonality of the information matrix

The feasibility of adaptive estimation of λ0 w.r.t. unknown error distribution in the

pure SAR model is shown via establishing the block-diagonality of the information

matrix. Firstly, we introduce restrictions on the weight matrix W . Define S(λ) :=

Sn(λ) = I − λW .

Assumption 1. (i) W = (wij)i,j=1,··· ,n is row-normalized, i.e. W1n = 1n and is

uniformly bounded in both row and column sums, i.e.

max
1≤i≤n

n∑
j=1

|wij | = O(1) and max
1≤j≤n

n∑
i=1

|wij | = O(1).

(ii) For some h = hn →∞ and h = o(n) as n→∞, max
1≤i,j≤n

|wij | = O
(1

h

)
.

(iii) S := S(λ0) is non-singular and S−1 is uniformly bounded in both row and

column sums.

The sequence h is important in the asymptotic analysis, defining the rate of con-

vergence of estimates of the parameter λ0.

The row and column absolute summability of W are used routinely in the SAR

literature to control the degree of dependence, e.g. in Kelejian and Prucha (1998,

2001), Lee (2002, 2004). In fact, all those works also assume Assumption 1 (iii),

which in turn leads to row and column absolute summability of the n× n covariance
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matrix E(yy′) = σ2
0S(S′)−1. This implies

n∑
i,j=1

|Cov(yi, yj)| = O(n), which is our

definition of weak dependence as mentioned in Chapter 1. So the existing literature

on pure SAR model only covers weak spatial dependence.

We shall use notation G(λ) := W (I − λW )−1 and set G := G(λ0) = (gij). Lee

(2002, pp. 258) has shown that under Assumption 1, the matrix G has the property,

max
1≤i,j≤n

|gij | = O
(1

h

)
. (4.2.1)

Assumption 1 also implies that G is uniformly bounded in both row and column sums:

max
1≤i≤n

n∑
j=1

|gij | = O(1) and max
1≤j≤n

n∑
i=1

|gij | = O(1). (4.2.2)

We assume the following limits exist and are non-zero,

ω1 := lim
n→∞

h

n
tr(GGT ), ω2 := lim

n→∞

h

n
tr(G2).

Assumption 2. The h and W are such that there exist finite limits ω1 6= 0, ω2 6= 0.

To show feasibility of adaptive estimation of λ0 w.r.t. unknown error distribution,

we need to establish the block-diagonality of the information matrix between the

parameter of interest λ0 and the other (nuisance) parameters of the model. Let f

denote the probability density function (pdf) of εi. Suppose f is parametric, i.e.

f(x) = f(x; ζ0), where f : R×Rd ⇒ R is a known function of its arguments and ζ0 is

d× 1 vector of unknown parameter. Recall the log likelihood of θ is given by

L(θ) =

n∑
i=1

log f
(STi (λ)(y − µ1n)

σ
; ζ
)

+ log det{S(λ)} − n

2
log σ2, (4.2.3)

writing θ =
(
λ, µ, σ2, ζT

)T
and denoting by STi (λ) the i-th row of S(λ),.

To derive the information matrix of the model, we need the following quantities:

ψi = − ∂

∂εi
log f (εi; ζ0), χi = − ∂

∂ζ
log f (εi; ζ0), i = 1, 2, · · · , n,

J = E(ψ2
i ), D = diag

{
(n/h)

1
2 , n

1
2 Id+2

}
.

Define Ξ := lim
n→∞

D−1E
(
− d2L(θ0)

dθdθT
)
D−1.

Lemma 4.1. Under Assumptions 1-7,
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Ξ =


Jω1 + ω2

0
(

1−λ0
σ0

)2
J

0
(

1−λ0
2σ3

0

)
E(εiψ

2
i )

1
4σ4

0
E(ε2

iψ
2
i − 1)

0 0 − 1
2σ2

0
E(εiψiχi) E(χiχ

T
i )

 .

Noting the zero non-diagonal elements of the first column, the feasibility of adap-

tive estimation of λ0 with respect to unknown error distribution is established. The

proof of Lemma 4.1 is given in the Appendix.

4.3 Adaptive estimation

Our objective is to construct adaptive estimate λ̂ based on a preliminary estimator λ̃

of λ0. Recall the score function

ψ(s) = −f
′(s)

f(s)
, s ∈ R,

where prime denotes differentiation. To form our adaptive estimator, we will use

series estimation of the score function, of which the advantages over kernel estimation

are discussed in Robinson (2010a). To formulate the adaptive estimator, we will need

some additional notations. Let φ`(s), ` = 1, 2, · · · be a sequence of smooth functions,

which will be used in the series estimation of ψ(·). For an integer L ≥ 1, where L = Ln

will be regarded as increasing with n, define the L× 1 vectors

φ(L)(s) = (φ1(s), · · · , φL(s))T , φ̄(L)(s) = φ(L)(s)− E
{
φ(L)(εi)

}
, (4.3.1)

φ
′(L)(s) = (φ

′
1(s), · · · , φ′L(s))T .

L = Ln is the number of approximating functions that are used in the series estimation

of ψ(·) for a sample size n. Allowing L → ∞ as n → ∞ facilitates non-parametric

estimation ψ(·). Consider first the case when ψ(s) has a parametric form

ψ(s, a(L)) = φ̄(L)(s)Ta(L), (4.3.2)

where a(L) = (a1, · · · , aL)T is an unknown vector, and φ̄(L)(εi) has zero mean. As

mentioned in Robinson (2010a), under some mild conditions on f , integration-by-

parts allows a(L) to be identified by

a(L) =
[
E
{
φ̄(L)(εi)φ̄

(L)(εi)
T
}]−1

E
{
φ
′(L)(εi)

}
. (4.3.3)

Given a vector of observable proxies ε̃ = (ε̃1, · · · , ε̃n)T , we shall approximate para-

metric a(L) by ã(L), a sample analogue of (4.3.3) constructed as follows. For a generic
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vector x = (x1, · · · , xn)T ∈ Rn, define

ã(L)(x) = W (L)(x)−1w(L)(x)

where

W (L)(x) =
1

n

n∑
i=1

Φ(L)(xi)Φ
(L)(xi)

T , Φ(L)(xi) = φ(L)(xi)−
1

n

n∑
j=1

φ(L)(xj),

and w(L)(x) := 1
n

n∑
i=1

φ
′(L)(xi). Next, for given x = (x1, · · · , xn)T and xi, i = 1, · · · , n,

define the function

ψ(L)
(
xi; ã

(L)(x)
)

:= Φ(L)(xi)
T ã(L)(x), i = 1, · · · , n.

The estimator ψ̃iL := ψ(L)
(
ε̃i; ã

(L)(ε̃i)
)

of ψ(εi) for a given vector ε̃, which will be

later used to construct the Newton step term of our adaptive estimator (2.9.8).

The above discussion is based on a given vector of proxy ε̃ for ε. We now construct

the specific proxy ε̃ that will be used in the adaptive estimation of λ0. Consider the

n× 1 vector,

e(λ) := (e1(λ), · · · , en(λ))T = (I − λW )y = S(λ)y, λ ∈ [0, 1].

Since (4.1.1) gives a mean-adjusted expression of y, namely

σ0ε = S(λ0)y − µ0S(λ0)1n = S(λ0)y − E {S(λ0)y} ,

we denote,

εi(λ) := ei(λ)− 1

n

n∑
j=1

ej(λ), i = 1, · · · , n.

Using the n× n matrix H := I − 1
n1n1Tn , we can write

ε(λ) = (ε1(λ), · · · , εn(λ))T = HS(λ)y, i = 1, · · · , n. (4.3.4)

For a given estimate λ̃ of λ0, we shall estimate σ2
0 by

σ̃2(λ̃) :=
1

n
ε(λ̃)T ε(λ̃).

This leads to the definition of our proxy ε̃ for errors ε based on λ̃:

ε̃ :=
ε(λ̃)

σ̃
.

For convenience, set ψ̃iL := ψ̃iL(λ̃, σ̃), where ψ̃iL(λ, σ) := ΦL(εi(λ)/σ)T ãL(ε(λ)/σ).
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Introduce the estimate of the information measure J := E
(
ψ2(εi)

)
, denoted by

J̃L := J̃L(λ̃, σ̃), where

J̃L(λ, σ) =
1

n

n∑
i=1

ψ̃2
iL(λ, σ). (4.3.5)

We are now ready to define our adaptive estimator of λ0, based on a preliminary

estimate λ̃, as follows:

λ̂ = λ̃+
(
J̃L · tr

{
G(λ̃)G(λ̃)T

}
+ tr

{
G(λ̃)2

})−1
(

n∑
i=1

ψ̃iL
E′i
σ̃
− tr

{
G(λ̃)

})
(4.3.6)

= λ̃+
(
J̃L · tr

{
G(λ̃)G(λ̃)T

}
+ tr

{
G(λ̃)2

})−1
(

1

σ̃
(ψ̃1L, · · · , ψ̃nL)HWy − tr

{
G(λ̃)

})
.

The second term of (4.3.6) represents the approximate Newton step, based on the

non-parametric estimate of the score function ψ(·). The estimator λ̂ can be written

alternatively as follows. Introduce the n×1 vector of derivatives e′ := (e′1, · · · , e′n)T =
∂e(λ)
∂λ = −Wy, which do not depend on λ. Denote by ε′i = e′i − 1

n

∑n
j=1 e

′
j , i =

1, 2, · · · , n, the sample-mean-adjusted form of e
′
i, which can be written as

ε′ = −HWy.

Write,

rL(λ, σ) :=
n∑
i=1

ψ̃iL(λ, σ)
ε′i
σ
− tr {G(λ)} (4.3.7)

=
1

σ

(
ψ̃1L(λ, σ), · · · , ψ̃nL(λ, σ)

)
HWy − tr {G(λ)}

=
σ0

σ

(
ψ̃1L(λ, σ), · · · , ψ̃nL(λ, σ)

)
HGε− tr {G(λ)} .

Note that HWy = HW (S−1σ0ε− µ01n) = σ0HGε due to HW1n = H1n = 0. Hence

λ̂ of (4.3.6) can be written as

λ̂− λ0 = (λ̃− λ0) +
(
J̃L · tr

{
G(λ̃)G(λ̃)T

}
+ tr

{
G(λ̃)2

})−1
rL(λ̃, σ̃). (4.3.8)

4.4 Asymptotic normality and efficiency

Assumption 3. {εi} is a sequence of i.i.d. random variables with zero mean, unit

variance and twice differentiable probability density function f(·) such that sf ′(s)→ 0

and s2f ′′(s)→ 0 as |s| → ∞ and satisfy the following moment conditions:

E|ε1|4 <∞, E|ψ(ε1)|4 <∞, E|ε1ψ(ε1)|2+δ <∞.

Assumption 4. In (4.3.1) and (4.3.2), φ`(s) = φ`(s), ` = 1, · · · , L, where φ(s) is
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strictly increasing and thrice differentiable function such that for some κ ≥ 0, K > 0,

|φ(s)| ≤ 1 + |s|κ, |φ′(s)|+ |φ′′(s)|+ |φ′′′(s)| ≤ C(1 + |φ(s)|K), s ∈ R. (4.4.1)

Define η := 1 +
√

2 and ϕ := (1 + |φ(s1)|)/{φ(s2) − φ(s1)}, with [s1, s2] being an

interval on which f(s) is bounded away from zero.

Assumption 5. The sequences h and L of (4.3.1) satisfy one of the following condi-

tions with κ as in (4.4.1).

(i) κ = 0, E(ε4
i ) <∞, and for some A > ηmax(ϕ, 1),

L logL ≤ log h

8 logA
, n→∞. (4.4.2)

(ii) κ > 0, for some ω > 0 and t > 0, E
(
et|εi|

ω)
<∞, and for some B > 8κmax(1, 1

ω ),

L logL ≤ log h

B
, n→∞. (4.4.3)

(iii) κ > 0, the random variables εi’s are almost surely bounded, and for some C > 4κ,

L logL ≤ log h

C
, n→∞. (4.4.4)

Assumption 6. As n→∞,

E
{
φ̄(L)(εi)

Ta(L) − ψ(εi)
}2

= o (h/n) , E
{
φ̄′(εi)

Ta(L) − ψ′(εi)
}2

= o(1).

Assumption 7. As n→∞,

|λ̃− λ0| = Op((h/n)1/2), |σ̃ − σ0| = Op(n
−1/2).

Recalling that the object being estimated by series estimation is score function

ψ(·) = −f ′(·)/f(·), it is of interest to allow for the possibility that ψ(·) may be

unbounded. Assumption 4 imposes a restriction on the rate at which the tail of φ(·)
and its derivatives may diverge by the choice of κ. If we restrict the series functions

to be bounded by setting κ = 0, the relatively mild fourth order moment condition

suffices in Assumption 5 (i). For unbounded φ(·), we have a choice between moment

generating function (ii) and boundedness (iii) requirements on εi of Assumption 5.

Part (ii) of Assumption 5 holds with ω = 1 for Laplace εi and with ω = 2 for Gaussian

εi.

Implication of Assumption 5 on the rate of increase in L as n → ∞ is the same

across all three cases considered, namely L logL = O(log h). The different constants

in the upper bound of L logL are stated here for the sake of precision. The condition

L logL = O(log h) was also imposed in Assumption 5 (ii) and (iii) of Robinson (2010a)

and is difficult to verify in practice, as it is rare that the sequence h = hn is known
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in terms of more tangible quantities such as n. An exception to this is the following

block-diagonal weight matrix of Case (1991), which was introduced for m number of

districts with equal number of farmers r, hence n = mr:

W =
1

r − 1


1r1
′
r − Ir 0 0 · · ·
0 1r1

′
r − Ir 0 · · ·

...
...

. . .
...

0 0 · · · 1r1
′
r − Ir

 . (4.4.5)

With the above weight matrix, h = r − 1 and Assumption 1 requires both r and m

to increase with n. Assumption 5 requires L logL = O(log r), meaning the faster the

rate of increase in r as n→∞, the less restrictive is Assumption 5.

Assumption 6 requires the choice of series functions to yield a series approximation

error of the estimator of the unknown score function ψ(·) that decreases at a suitably

fast rate as n increases, which is a typical condition imposed in series estimation liter-

ature. Assumption 6 is stronger than Assumption 7 of Robinson (2010a), necessitated

by the slower rate of convergence of the estimate of λ0 in the pure SAR model.

It may be of interest to relax Assumption 5, which together with Assumption 6

requires that series functions approximate the score function at a sufficiently fast rate.

In Robinson (2010a), the rate restriction on L of Assumption 5 in part (i) was in fact

milder at logL = O(log h). In this work, this milder restriction was sufficient for the

part of technical interest in the proof of Theorem 4.1, but would have resulted in an

untenable length of proof for less interesting results that are required for the theorem

to hold.

Assumption 7 requires availability of preliminary estimates λ̃ of λ0 and σ̃ of σ0

that have the above rates of convergence. The quasi-maximum likelihood estimators

(QMLE) λ̃QMLE , σ̃QMLE of Lee (2004) satisfy Assumption 7 and will be used in the

first stage of our adaptive estimation.

The following theorem states asymptotic normality of the adaptive estimator λ̂ of

(4.3.6).

Theorem 4.1. Let y follow the model (4.3.1) with λ0 ∈ (−1, 1) and Assumptions 1 -

7 be satisfied. Then, as n→∞,√
n

h

(
λ̂− λ0

)
→d N(0, {Jω1 + ω2}−1).

4.5 Efficiency comparison of adaptive estimate and Gaussian PMLE

In Lee (2004) it was shown that√
n

h
(λ̃QMLE − λ0)→d N

(
0, {ω1 + ω2}−1

)
.
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It is of interest to compare the asymptotic variance of λ̃QMLE , to that of λ̂ given in

Theorem 4.1 and see how the efficiency improvement attained via adaptive estimation

in the spatial setting contrasts to that in time series setting.

Under general enough conditions on W , it may be possible that tr(G2) < 0, ω2 <

0. However, if all elements of G are non-negative, which is implied if wij ≥ 0 and

λ0 ≥ 0, or if W is symmetric, then ω2 > 0. In any case, it is possible to show that

tr
(
G(G + GT )

)
> 0, so since tr(GGT ) ≥ 0 also, we have ω1 > 0 and ω1 + ω2 > 0,

implying

Jω1 + ω2 ≥ ω1 + ω2 > 0, because J ≥ 1.

This shows that λ̂ is better than λ̃QMLE . The relative efficiency of λ̂ to λ̃QMLE is

given by
ω1 + ω2

Jω1 + ω2
=

1 + ω2/ω1

J + ω2/ω1
.

In the time series setting, where W is lower triangular matrix, ω2 = 0 and therefore

the efficiency improvement is 1/J . If ω2 > 0, then the efficiency improvement of

adaptive estimator is smaller than in the time series situation. For example if W is

symmetric, the relative efficiency is 2/(J + 1). On the contrary, ω2 < 0 yields greater

efficiency improvement than under time series setting. The latter case is not ruled out

by any conditions of this chapter.

4.6 Monte Carlo study of finite sample performance

In this section, we report results from a small Monte Carlo study of the finite sam-

ple performance of the adaptive estimator λ̂. We study the efficiency improvement

achieved by the adaptive λ̂ relative to the preliminary estimate λ̃QMLE under differ-

ing error distributions, sample sizes, and the magnitude of spatial dependence. 1000

replications were carried out in each setting considered.

We use the block diagonal weight matrix of Case (1991) introduced in (4.4.5). The

sample size is n = mr and we have h = r− 1. We take values of (m, r) same as in the

Monte Carlo study of Robinson (2010a): (m, r) = (12, 8), (18, 11) and (28, 14) with

the corresponding sample sizes n = 96, 198 and 392. To investigate effects of differing

strength of spatial dependence, we consider three different values of λ0 = 0.2, 0.4, 0, 8.

As was done in the Monte Carlo study of Robinson (2010a), the following four different

distributions of εi are used with the asymptotic relative efficiency (ARE) (= 2/(J+1))

of λ̂ to λ̃QMLE as reported below.

(a) Bimodal mixture normal, εi = u/
√

10, where the pdf of ε is

f(u) =
0.5√
2π
exp
(
− (u− 3)2

2

)
+

0.5√
2π
exp
(
− (u+ 3)2

2

)
, u ∈ R ARE = 0.188.
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(b)Unimodal mixture normal, εi = u/
√

2.2 where

f(u) =
0.05√
50π

exp
(
− u2

50

)
+

0.95√
2π
exp
(
− u2

2

)
, u ∈ R ARE = 0.679.

(c) Laplace, f(u) = exp(−|s|
√

2)
√

2, ARE = 0.666.

(d) Student t5, εi = u
√

3/5, where u ∼ t5, ARE = 0.685.

The ARE was calculated from the reported values of 1/J from Robinson (2010a).

Three choices of the number of series functions in series estimation were tried,

L = 1, 2, 4. It was set that φ`(s) = φ`(s), ` = 1, · · · , L and two choices of φ(s) were

used:

(i) φ(s) = s, (ii) φ(s) =
s

(1 + s2)1/2
.

Based on the 1000 replications, the Monte Carlo variance and MSE of the two es-

timates of λ0 were computed in each setting considered, and their ratios are presented

in Table 4.1 and 4.2. The ratio taking a value smaller than 1 indicates an efficiency

improvement.

Across all the cases, it appears that the choice L = 1 led to poor approximation to

the score function, resulting in disappointing performance of the adaptive estimator,

especially for the choice (i) of ψ(·). The relative performance of the adaptive estimator

is best for L = 4 in all cases and the improvements are substantial in the cases of

(a) and (b), which were also observed in Robinson (2010a). Table 4.2 reports the

relative MSE to ascertain whether the bias has been adversely affected by the adaptive

estimation. In fact, the relative MSE reported often greater improvement than the

relative variance, suggesting the bias has been also reduced. A distinctive contrast to

the results reported in the mixed SAR case of Robinson (2010a) is that the efficiency

improvement is greater under larger values of λ0. It is possible to take more than a

single Newton-Raphson step, subsequently iterating the adaptive estimation and it is

expected that this would yield some further improvement.
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Table 4.1: Relative Monte Carlo Variance, V ar(λ̂)/V ar(λ̃QMLE)

λ0 0.2 0.4 0.8

φL (12,8) (18,11) (28,14) (12,8) (18,11) (28,14) (12,8) (18,11) (28,14)

(a) (i) 1 2.1912 1.858 1.7041 1.3752 1.1709 1.1491 1 1 1.0001
2 2.1467 1.8419 1.693 1.3726 1.1515 1.1449 0.9783 0.9975 0.9929
4 0.623 0.5256 0.4811 0.3994 0.3118 0.3026 0.2315 0.2326 0.2144

(ii) 1 1.9314 1.6553 1.5123 1.3698 1.2129 1.215 1.5921 1.6036 1.7006
2 1.7766 1.612 1.4534 1.2862 1.1232 1.1676 1.3956 1.4979 1.5807
4 0.5331 0.4387 0.388 0.3115 0.243 0.2573 0.1582 0.1747 0.1692

(b) (i) 1 2.1525 1.8964 1.7921 1.3475 1.1279 1.074 1 1 1.0001
2 2.0793 1.8681 1.78 1.3259 1.1107 1.079 0.9778 0.9805 0.9896
4 1.2754 1.2546 1.286 0.7531 0.6707 0.7388 0.493 0.5742 0.5968

(ii) 1 1.502 1.2897 1.1915 0.8544 0.6116 0.5971 0.3871 0.3545 0.3335
2 1.3285 1.1955 1.1465 0.7838 0.5705 0.5907 0.3618 0.3391 0.325
4 0.3033 0.2476 0.2274 0.2011 0.1225 0.1143 0.1117 0.0963 0.0942

(c) (i) 1 2.1835 1.9367 1.803 1.3102 1.2397 1.0924 1 1 1
2 2.1701 1.9235 1.7901 1.2915 1.2007 1.0898 0.9795 0.9848 0.993
4 2.0268 1.7568 1.6724 1.1888 1.065 0.966 0.8725 0.8517 0.8663

(ii) 1 2.0655 1.7866 1.6708 1.1707 1.081 0.9327 0.8184 0.7775 0.7744
2 2.0558 1.7879 1.6644 1.1628 1.0717 0.9395 0.8091 0.78 0.7734
4 1.8495 1.5566 1.4152 1.0579 0.9311 0.8062 0.7904 0.75 0.739

(d) (i) 1 2.1609 1.7507 1.6618 1.3784 1.1419 1.0921 1 1 1.0001
2 2.1383 1.7384 1.6374 1.3713 1.1235 1.0614 0.959 0.9771 0.9884
4 2.0261 1.6514 1.5371 1.3212 1.0477 1.0221 0.9103 0.8992 0.9186

(ii) 1 2.0034 1.6464 1.5368 1.3185 1.0383 1.0067 0.8883 0.8891 0.9031
2 2.012 1.6332 1.5335 1.3017 1.05 1.0082 0.894 0.8979 0.9033
4 1.9794 1.623 1.5315 1.3266 1.0534 1.0166 0.9115 0.8811 0.9111
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Table 4.2: Relative Monte Carlo MSE, MSE(λ̂)/MSE(λ̃QMLE)

λ0 0.2 0.4 0.8

φL (12,8) (18,11) (28,14) (12,8) (18,11) (28,14) (12,8) (18,11) (28,14)

(a) (i) 1 2.416 1.9759 1.795 1.3647 1.162 1.1409 1 1 1.0001
2 2.3677 1.9568 1.7847 1.3476 1.139 1.138 0.972 0.9983 0.9897
4 0.6339 0.5154 0.4696 0.3564 0.2655 0.2697 0.2092 0.2093 0.1915

(ii) 1 2.4891 2.1387 1.9654 1.8218 1.7635 1.8302 2.4763 2.7575 3.3888
2 2.1592 2.0142 1.8636 1.5547 1.5418 1.7266 1.9975 2.4224 3.0505
4 0.5393 0.4248 0.3771 0.2744 0.2019 0.2242 0.1379 0.1538 0.1481

(b) (i) 1 2.353 2.0171 1.8689 1.335 1.125 1.0718 1 1 1.0001
2 2.2473 1.9833 1.8614 1.2925 1.1065 1.072 0.964 0.9773 0.9903
4 1.3087 1.2746 1.2818 0.6782 0.6346 0.7045 0.4588 0.547 0.5618

(ii) 1 1.4966 1.2269 1.0941 0.7056 0.5168 0.5075 0.3169 0.3427 0.3774
2 1.3109 1.1418 1.0534 0.6437 0.4822 0.5021 0.2948 0.3255 0.3636
4 0.3033 0.2413 0.2124 0.169 0.1107 0.1039 0.1006 0.0914 0.0913

(c) (i) 1 2.3959 2.0794 1.8871 1.298 1.226 1.09 1 1 1.0001
2 2.3464 2.0589 1.8747 1.2709 1.1895 1.0878 0.9731 0.9811 0.9924
4 2.1503 1.8614 1.7165 1.1455 1.0438 0.962 0.8478 0.8331 0.8571

(ii) 1 2.1842 1.8482 1.6713 1.0989 1.0106 0.8798 0.7419 0.7006 0.6936
2 2.1496 1.8532 1.6679 1.0862 1.0034 0.8879 0.7362 0.7056 0.6945
4 1.9216 1.6038 1.4314 1.0143 0.9098 0.7955 0.759 0.7396 0.7424

(d) (i) 1 2.3796 1.8576 1.737 1.36 1.1347 1.0874 1 1 1.0001
2 2.3352 1.8327 1.6972 1.3529 1.1218 1.0565 0.9572 0.9716 0.9875
4 2.1958 1.7309 1.586 1.2881 1.0355 0.9997 0.9004 0.8849 0.9055

(ii) 1 2.1805 1.7256 1.5744 1.2771 1.0096 0.9673 0.8684 0.8529 0.8674
2 2.1745 1.7145 1.5711 1.2619 1.0216 0.9698 0.877 0.8622 0.8705
4 2.1169 1.6951 1.5724 1.2788 1.0259 0.9779 0.898 0.8588 0.889
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4.7 Proofs

Proof of Lemma 4.1. Recall Ξ := lim
n→∞

D−1E
(
− d2

dθdθT
L(θ0)

)
D−1, S = S(0) =

I − λ0W , G = WS−1 and that the log likelihood L(θ) is given by

L(θ) =
n∑
i=1

log f
(STi (λ)(y − µ1n)

σ
; ζ
)

+ log det{S(λ)} − n

2
log σ2,

where STi (λ) denotes the i-th row of S(λ). Firstly, notice from (4.1.1),

ε = (ε1, · · · , εn)T =
S(λ0)(y − µ01n)

σ0
, εi =

STi (λ0)(y − µ01n)

σ0
, i = 1, · · · , n.

The first derivatives of L(θ) w.r.t θ = (λ, µ, σ2, ζ)T at θ0 = (λ0, µ0, σ
2
0, ζ0)T is given

by

∂L(θ0)

∂λ
=

n∑
i=1

W T
i (y − µ01n)

σ0
ψ
(STi (λ0)(y − µ01n)

σ0

)
− tr(G),

∂L(θ0)

∂µ
=

n∑
i=1

STi 1n
σ0

ψ
(STi (λ0)(y − µ01n)

σ0

)
,

∂L(θ0)

∂σ2
=

n∑
i=1

STi (λ0)(y − µ01n)

2σ3
0

ψ
(STi (λ0)(y − µ01n)

σ0

)
− n

2σ2
0

,

∂L(θ0)

∂ζ
= −

n∑
i=1

χi,

taking into account that

d log{det(S(λ0))}
dλ

= tr
(

ST(λ0)−1 dST(λ0)

λ

)
= tr

(
S−1(λ0)T(−WT)

)
= −tr(GT) = −tr(G).

The following facts are repeatedly used in deriving the second order derivative matrix:

∂ψ(s)

∂s
=

(f ′(s))2 − f ′′(s)f(s)

f2(s)
= ψ2(s)− f ′′(s)

f(s)
,

∂

∂λ

STi (λ0)(y − µ01n)

σ0
=
−W T

i (y − µ01n)

σ0
= −W T

i S(λ0)ε = −GTi ε,

∂

∂µ

STi (λ0)(y − µ01n)

σ0
=
−STi (λ0)1n

σ0
,

∂

∂σ2

STi (λ0)(y − µ01n)

σ0
=
−STi (λ0)(y − µ01n)

2σ3
0

=
−εi
2σ2

0

,

where GTi denotes the ith row of G. Next, we derive the elements of Ξ. For brevity,

we denote ψi = ψ(εi).
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(1, 1)th element of Ξ. We note first that

∂tr(G)

∂λ
= tr

(
W · ∂(I− λ0W)−1

∂λ

)
= tr

(
W(I− λ0W)−1W(I− λ0W)−1

)
= tr(G2).

∂

∂λ0

{ n∑
i=1

W T
i (y − µ01n)

σ0
ψ
(STi (λ0)(y − µ01n)

σ0

)}
=

n∑
i=1

GTi ε
(
ψ2(STi (λ0)(y − µ01n)/σ0)− f ′′(STi (λ0)(y − µ01n)/σ0)

f(STi (λ0)(y − µ01n)/σ0)

) ∂
∂λ

STi (λ0)(y − µ01n)

σ0

= −
n∑
i=1

GTi ε
(
ψ2(STi (λ0)(y − µ01n)/σ0)− f ′′(STi (λ0)(y − µ01n)/σ0)

f(STi (λ0)(y − µ01n)/σ0)

)
GTi ε

= −
n∑
i=1

(GTi ε)
2 ·
(
ψ2
i −

f ′′(εi)

f(εi)

)
. (4.7.1)

Then, in the last line of (4.7.1), expectation of the first term is

−
n∑
i=1

E[(GTi ε)
2ψ2

i ] = −
n∑
i=1

n∑
j=1

g2
ijE[ε2

jψ
2(εi)]

= −E(ψ2
1)E(ε2

1) ·
n∑
i=1

n∑
j=1

g2
ij +

(
E(ψ2

1)E(ε2
1)− E(ε2

1ψ
2
1)
)
·
n∑
i=1

g2
ii

= −J · tr(GGT ) +O
( n
h2

)
,

since gii = O(1/h) uniformly in i, see (4.2.1). Next, taking the expectation of the

second product of (4.7.1) and noting E
(
f ′′(εi)/f(εi)

)
= 0,

n∑
i=1

E
(

(GTi ε)
2 f
′′(εi)

f(εi)

)
= E(ε2

1f
′′(ε1)/f(ε1)) ·

n∑
i=1

g2
ii = 2tr(G2) = O

( n
h2

)
,

since under Assumption 3, E(ε2
1f
′′(ε1)/f(ε1)) = 2. Therefore, the (1, 1)th element of

Ξ is given by

lim
n→∞

h

n
E
(
− d2L(θ0)

dλ2

)
= lim

n→∞

h

n

(
J tr(GGT) + tr(G2)

)
= Jω1 + ω2.

(2, 2)th element. We have

E
(
− ∂2

∂µ2
L(θ0)

)
=

n∑
i=1

(STi 1n
σ0

)2
E
(
ψ2(εi)−

f ′′(εi)

f(εi)

)
=
n(1− λ0)2

σ2
0

J ,

since STi 1n = (`Ti − λ0W
T
i )1n = 1− λ0, due to W T

i 1n = 1 ∀i. Therefore, the (2, 2)th
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element of Ξ is

lim
n→∞

nJ (1− λ0)2

n
= J (1− λ0)2.

(3, 3)th element. The second order derivative w.r.t. σ2 is given by

−∂2

∂(σ2)2
L(θ0) =

n∑
i=1

3STi (λ0)(y − µ01n)

4σ5
0

ψ
(STi (λ0)(y − µ01n)

σ0

)
+

n∑
i=1

(
STi (λ0)(y − µ01n)

)2
4σ6

0

(
ψ2
(STi (λ0)(y − µ01n)

σ0

)
−f
′′(STi (λ0)(y − µ01n)/σ0)

f(STi (λ0)(y − µ01n)/σ0)

)
− n

2σ4
0

=
n∑
i=1

[ 3εi
4σ4

0

ψ(εi) +
ε2
i

4σ4
0

(
ψ2(εi)−

f ′′(εi)

f(εi)

)]
− n

2σ4
0

.

Taking expectation, noting E(εiψi) = 1 and E(ε2
i f
′′(εi)/f(εi)) = 2, yields

E
( −∂2

∂(σ2)2
L(θ0)

)
=

1

4σ4
0

n∑
i=1

(
E
(
ε2
iψ

2
i

)
− E(ε2

i f
′′(εi)/f(εi)) + 3E(εiψi)

)
− n

2σ4
0

=
n

4σ4
0

(
E
(
ε2
iψ

2
i

)
− 1
)
.

Therefore, the (3, 3)th element of Ξ is given by E
(
ε2
iψ

2
i − 1

)
/4σ4

0.

(1, 2)th element. One has

−∂2

∂µ∂λ
L(θ0) =

n∑
i=1

W T
i 1n
σ0

ψ
(STi (λ0)(y − µ01n)

σ0

)
+

n∑
i=1

W T
i (y − µ01n)

σ0

(
ψ2(STi (λ0)(y − µ01n)/σ0)

+
f ′′(STi (λ0)(y − µ01n)/σ0)

f(STi (λ0)(y − µ01n)/σ0)

)STi (λ0)1n
σ0

=

n∑
i=1

W T
i 1n
σ0

ψi +

n∑
i=1

GTi ε
(
ψ2
i +

f ′′(εi)

f(εi)

)STi (λ0)1n
σ0

.

Taking expectation, and noting (4.2.1),

E
( −∂2

∂µ∂λ
L(θ0)

)
=

(1− λ0)

σ0

n∑
i=1

gii

(
E(εiψ

2
i ) + E

(
εi
f ′′(εi)

f(εi)

))
= O

( n∑
i=1

|gii|
)

= O
(n
h

)
.

Therefore, the (1, 2)th element of Ξ is of order O
(
n
h

)
×
√
h
n = O

(
1√
h

)
= o(1).
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(1, 3)th element. One has

−∂2

∂σ2∂λ
L(θ0) =

n∑
i=1

W T
i (y − µ01n)

2σ3
0

ψ
(STi (λ0)(y − µ01n)

σ0

)
+

n∑
i=1

STi (y − µ01n)

2σ3
0

(
ψ2(STi (λ0)(y − µ01n)/σ0)

+
f ′′(STi (λ0)(y − µ01n)/σ0)

f(STi (λ0)(y − µ01n)/σ0)

)W T
i (λ0)(y − µ01n)

σ0

=
n∑
i=1

GTi ε

2σ2
0

ψ(εi) +
n∑
i=1

εi
2σ2

0

(
ψ2(εi) +

f ′′(εi)

f(εi)

)
GTi ε.

Taking expectation yields

E
( −∂2

∂σ2∂λ
L(θ0)

)
=

1

2σ2
0

n∑
i=1

gii

(
E
(
εiψi

)
+ E

(
ε2
iψ

2
i

)
+ 2
)

= O
( n∑
i=1

|gii|
)

= O
(n
h

)

Therefore, the (1, 3)th element of Ξ is of order O
(
n
h

)
×
√
h
n = O

(
1√
h

)
= o(1).

(2, 3)th element. One has

−∂2

∂σ2∂µ
L(θ0) =

n∑
i=1

STi (λ0)1n
2σ3

0

ψ
(STi (λ0)(y − µ01n)

σ0

)
−

n∑
i=1

STi (y − µ01n)

2σ3
0

(
ψ2(STi (λ0)(y − µ01n)/σ0)

+
f ′′(STi (λ0)(y − µ01n)/σ0)

f(STi (λ0)(y − µ01n)/σ0)

)STi (λ0)1n
σ0

=
n∑
i=1

STi (λ0)1n
2σ3

0

ψ(εi)−
n∑
i=1

εi
2σ2

0

(
ψ2
i +

f ′′(εi)

f(εi)

)STi (λ0)1n
σ0

.

Taking expectation, noting Eψi = 0 and E(εif
′′(εi)/f(εi)) = 0 yields

E
( −∂2

∂σ2∂µ
L(θ0)

)
=

(1− λ0)

2σ3
0

n∑
i=1

E
(
εiψ

2(εi)
)
.

Therefore, the (2, 3)th element of Ξ is (1−λ0)
2σ3

0
E
(
ε1ψ

2
1

)
.

(4, 4)th element. Under mild regularity conditions on f ,

E
( −∂2

∂ζ∂ζT
L(θ0)

)
= E

(∂L(θ0)

∂ζ

∂L(θ0)

∂ζT

)
= nE

(
χiχ

T
i

)
.

(1, 4)th element. In deriving the (1, 4)th, (2, 4)th and (3, 4)th elements of Ξ, the follow-
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ing result is used repeatedly.

∂ψ(εi; ζ0)

∂ζ
= −

f(εi; ζ0) ∂2

∂εidζ
f(εi; ζ0)− ∂

∂εi
f(εi; ζ0) ∂∂ζ f(εi; ζ0)

f2(εi; ζ0)

= −
[d2f(εi; ζ0)

dεidζ

]
f−1(εi; ζ0) + χiψi.

The cross-second order derivative of L(θ0) w.r.t. λ and ζ is

− ∂2

∂λ∂ζ
L(θ0) = −

n∑
i=1

GTi ε
∂ψ(εi; ζ0)

∂ζ
=

n∑
i=1

GTi ε
[∂2f(εi; ζ0)

∂εi∂ζ

]
f−1(εi; ζ0)−GTi εχiψi.

Taking expectation yields

E
(
− ∂2

∂µ∂ζ
L(θ0)

)
=

n∑
i=1

giiE
(
εi
[∂2f(εi; ζ0)

∂εi∂ζ

]
f−1(εi; ζ0)

)
−

n∑
i=1

giiE
(
εiχiψi

)
= O(1)

n∑
i=1

gii = O
(n
h

)
.

Therefore, the (1,4)th element of Ξ is of order O
(
n
h

)
×
√
h
n = O

(
1√
h

)
= o(1).

(2, 4)th element. The cross-second order derivative of L(θ0) w.r.t. µ and ζ is

−∂
2L(θ0)

∂µ∂ζ
= −

n∑
i=1

STi (λ0)1n
σ0

∂ψ(εi; ζ0)

∂ζ

= −
n∑
i=1

(1− λ0)

σ0

[∂2f(εi; ζ0)

∂εi∂ζ

]
f−1(εi; ζ0) +

n∑
i=1

(1− λ0)

σ0
χiψi.

Taking expectation yields

n(1− λ0)

σ0

[
E
([∂2f(εi; ζ0)

∂εi∂ζ

]
f−1(εi; ζ0)

)
E(χiψi)

]
= 0,

because E(χiψi) = 0 and

E
([∂2f(εi; ζ0)

∂εi∂ζ

]
f−1(εi; ζ0)

)
= 0.

(3, 4)th element. The cross-second order derivative of L(θ0) w.r.t. σ2 and ζ is

− ∂2

∂σ2∂ζ
L(θ0) = −

n∑
i=1

εi
2σ2

0

∂ψ(εi; ζ0)

∂ζ

=

n∑
i=1

εi
2σ2

0

∂2f(εi; ζ0)

∂εi∂ζ
f−1(εi; ζ0)−

n∑
i=1

εi
2σ2

0

χiψi.
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The (3, 4)th element of Ξ is given by

1

n
E
(
− ∂2

∂σ2∂ζ
L(θ0)

)
=

1

n

n∑
i=1

1

2σ2
0

E
(
εi
∂2f(εi; ζ0)

∂εi∂ζ
f−1(εi; ζ0)

)
− 1

n

n∑
i=1

E
( εi

2σ2
0

χiψi

)
=
−1

2σ2
0

E
(
εiχiψi

)
.

Proof of Lemma is completed. �

Proof of Theorem 4.1. Let λ̂ be as in (4.3.6) and recall G(λ) := W (I − λW )−1.

Set ω̃1 = (h/n)tr
(
G(λ̃)G(λ̃)T

)
, ω̃2 = (h/n)tr

(
G(λ̃)2

)
.

By the mean value theorem applied to rL(λ̃, σ̃) in (4.3.7),

rL(λ̂, σ̂) = rL(λ0, σ0) + s̄1L(σ̂ − σ0) + s̄2L(λ̂− λ0),

where s̄1L = (∂/∂λ)rL(λ̄, σ̄) and s̄2L = (∂/∂σ)rL(λ̄, σ̄) are the first derivatives of rL

at some (λ̄, σ̄) such that |λ̄− λ0| ≤ |λ̃− λ0| and |σ̄ − σ0| ≤ |σ̃ − σ0|. Thus,

λ̂− λ0 = (λ̃− λ0)

[
1 +

{
J̃ ω̃1 + ω̃2

}−1 h

n
· s̄1L

]
(4.7.2)

+
{
J̃ ω̃1 + ω̃2

}−1 h

n
[s̄2L(σ̃ − σ0) + rL(λ0, σ0)] .

Let N =
(
λ, σ : |λ − λ0| ≤

√
h/n, |σ − σ0| ≤

√
1/n

)
be a small neighborhood of

(λ0, σ0), which takes into account the different rates of convergence of MLE for the

two parameters λ and σ in pure SAR model.

As in Robinson (2010a), the proof of consistency and asymptotic normality of the

adaptive estimators (λ̂, σ̂) consist of showing√
h

n
rL(λ0, σ0)→d N(0,Jω1 + ω2), (4.7.3)

in addition to

ω̃1 →p ω1, ω̃2 →p ω2, (4.7.4)

h

n
· s1L(λ0, σ0)→p −(Jω1 + ω2), (4.7.5)

h

n
s2L(λ0, σ0)→p 0, (4.7.6)

J̃L(λ0, σ0)→p J , (4.7.7)

sup
N
|siL(λ, σ)− siL(λ0, σ0)| = op

(n
h

)
, i = 1, 2, (4.7.8)

sup
N
|J̃L(λ, σ)− J̃L(λ0, σ0)| = op(1). (4.7.9)

Proof of (4.7.3).

Recall the sample log likelihood L(θ0) from (4.2.3). We verify (4.7.3), by estab-
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lishing √
h

n

∂L(θ0)

∂λ
→d N(0,Jω1 + ω2), (4.7.10)

rL(λ0, σ0)− ∂L(θ0)

∂λ
= op(1). (4.7.11)

To prove (4.7.10), write

∂L(θ0)

∂λ
=

n∑
i=1

W T
i (y − µ0`)

σ0
ψ(εi)− tr(G) (4.7.12)

= (ψ(ε1), · · · , ψ(εn))Gε− tr(G) =

n∑
i=1

ηi, (4.7.13)

as the sum of martingale differences ηi := (εiψ(εi)−1)gii+εi
∑
j<i

ψ(εj)gij+ψ(εi)
∑
j<i

εjgji,

which satisfy E(ηi|Fi−1) = 0, Fi = σ(εj , j ≤ i). Therefore, we establish (4.7.10) by

verifying the following sufficient conditions of central limit theorem for martingale

differences, see Hall and Heyde (1980):

h

n

∑
i=1

E(η2
i |Fi−1)→p Jω1 + ω2, (4.7.14)

∣∣∣∣hn
∣∣∣∣2+δ n∑

i=1

E|ηi|2+δ → 0. (4.7.15)

Proof of (4.7.15). Firstly, noting E(εiψi) = 1, E(ε2
i ) = 1 and E(ψ2

i ) = J and

using i.i.d. property of {εi},

E(η2
i ) = g2

ii[E(ε2
iψ

2
i )− 1] + J

∑
1≤j<i

g2
ij + J

∑
1≤j<i

g2
ji + 2

∑
1≤j<i

gijgji,

n∑
i=1

E(η2
i ) =

n∑
i=1

g2
ii[E(ε2

iψ
2
i )− 2− J ] + J

n∑
i,j=1

g2
ij +

n∑
i,j=1

gijgji

= O(1)

n∑
i=1

g2
ii + J tr(GGT ) + tr(G2).

Therefore, by Assumption 2,

h

n

n∑
i=1

E(η2
i )→ Jω1 + ω2, (4.7.16)

since h
n

n∑
i=1

g2
ii = O

(h
n
× n

h2

)
= O

(1

h

)
= o(1). Now, direct calculation, noting that
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Eε2
iψi = 0 under Assumption 3, gives

E(η2
i |Fi−1)− E(η2

i ) =
∑

j,j′<i:j 6=j′
ψjψj′gijgij′ +

∑
j<i

g2
ij(ψ

2
j − J )

+ J
∑

j,j′<i:j 6=j′
εjεj′gjigj′i + J

∑
j<i

g2
ji(ε

2
j − 1)

+ 2giiE(ψ2
i εi)

∑
j<i

gjiεj

+ 2
∑
j<i

∑
j′<i:j 6=j′

ψjεj′gijgj′i + 2
∑
j<i

(ψjεj − 1)gijgji

=: m1i + · · ·+m7i.

In view of (4.7.16), to prove (4.7.15), it suffices to show that

h

n

n∑
i=1

[
E(η2

i |Fi−1)− E(η2
i )
]

=
h

n

n∑
i=1

m1i + · · ·+ h

n

n∑
i=1

m7i = op(1),

which is verified once we establish

E
[(n
h

n∑
i=1

mdi

)2]
= o
(
1
)
, for d = 1, · · · 7. (4.7.17)

We first verify (4.7.17) for d=1.

E
[( n∑

i=1

m1i

)2]
= E

[( n∑
i=1

∑
j,j′<i:j 6=j′

ψjψj′gijgij′
)2]

≤ 2
n∑

i,i′=1

∑
j<i

∑
k<i′

|gijgi′jgikgi′k|E(ψ2
j )E(ψ2

k)

≤ C
n∑

i,i′,j,k=1

|gijgi′jgikgi′k|.

Thus recalling (4.2.2),

E
[( n∑

i=1

m1i

)2] ≤ Ch−1
n∑

i,i′,j,k=1

|gijgi′jgi′k|

≤ Ch−1(
n∑
i=1

1) ·max
i′

n∑
k=1

|gi′k|max
j

n∑
i′=1

|gi′j |max
i

n∑
j=1

|gij |

≤ C
(n
h

)
= o
(n2

h2

)
.

Verification of (4.7.17) for d = 3, 6 follows similar steps as in the proof for d = 1.
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To establish (4.7.17) for d = 2, recall that ψ2
i − J = ψ2

i − Eψ2
i is an i.i.d. sequence.

Thus,

E
[( n∑

i=1

m2i

)2]
= E

[( n∑
i=1

∑
j<i

g2
ij(ψ

2
j − J )

)2] ≤ E((ψ2
1 − Eψ2

1)2
) n∑
i,i′,j=1

g2
ijg

2
i′j

= C

n∑
j=1

( n∑
i=1

g2
ij

)2
≤ C

n∑
j=1

(
max
i
|gij |

n∑
i=1

|gij |
)2

≤
(

max
i,j
|gij |

)2 n∑
j=1

max
j

n∑
i=1

|gij |
n∑

i′=1

|gi′j | ≤ Ch−2nO(1)O(1) = o
(n2

h2

)
.

Verifications of (4.7.17) for d = 4, 5, 7 follows similar steps.

Proof of (4.7.15). It holds |a+ b|2+δ ≤ C(|a|2+δ + |b|2+δ). Therefore,

n∑
i=1

E|ηi|2+δ ≤ C
( n∑
i=1

|gii|2+δE|εiψi|2+δ +

n∑
i=1

E|εi|2+δE|
∑
j<i

gijψj |2+δ

+
n∑
i=1

E|ψi|2+δE|
∑
j<i

gjiεj |2+δ
)

≤ C
( n∑
i=1

|gii|2+δ +
∑
j<i

E|gijψj |2+δ +
∑
j<i

E|gjiεj |2+δ
)

=: C(p1n + p2n + p3n).

To prove (4.7.15), we need to verify that pdn = o
(
(n/h)2+δ

)
for d = 1, 2, 3. Firstly, for

d = 1, using |gii| = O(1/h),

p1n = O
( n

h2+δ

)
= o
(n2+δ

h2+δ

)
.

For d = 2, by Burkholder inequality (see Burkholder (1973)),

n∑
i=1

E|
∑
j<i

gijψj |2+δ ≤ C
n∑
i=1

[ n∑
j=1

E(g2
ijψ

2
j )
](2+δ)/2

,

where for any i = 1, · · · , n, by Assumption 3,

( n∑
j=1

E(g2
ijψ

2
j )
)(2+δ)/2

= C
( n∑
j=1

g2
ij

)(2+δ)/2
≤ C

(
max
j
|gij |

n∑
j=1

|gij |
)(2+δ)/2

= O
( 1

h1+δ/2

)
.

Therefore, p2n = O
(

n
h1+δ/2

)
= o
(
(n/h)2+δ

)
. Proof of p3n = o

(
(n/h)2+δ

)
follows similar

steps.

Proof of (4.7.11). Let, for the brevity, rL, G and ψ̃iL denote quantities evaluated
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at the true parameter values (θ0, σ0) and ψi abbreviates ψ(εi). Then we can write

rL −
∂L(θ0)

∂λ
=

(
ψ̃1L, · · · , ψ̃nL

)
HGε− tr {G} − (ψ1, ..., ψn)Gε+ tr(G)

=
(
ψ̃1L − ψ1, · · · , ψ̃nL − ψn

)
HGε+ (ψ1, · · · , ψn) (H − I)Gε

= qn,1 + qn,2.

It remains to show qn,i = op(
√
n/h), i = 1, 2. First consider i = 2. Denote G = (gij).

Then,

qn,2 = (ψ1, · · · , ψn) (H − I)Gε = − 1

n
(ψ1, · · · , ψn) (1n1Tn )Gε

= −n−1
[ n∑
j=1

εj
( n∑
i=1

gij
)]
·

n∑
m=1

ψm,

where

n∑
m=1

ψm =

n∑
m=1

ψ(εm) = Op(
√
n) due to εj ’s being i.i.d. By Assumption 1,

max
1≤j≤n

( n∑
i=1

|gij |
)
< C uniformly over j. Then, n−1E

( n∑
j=1

εj
( n∑
i=1

gij
))

= 0, and

Var
(
n−1

n∑
j=1

εj
( n∑
i=1

gij
))

= n−2
( n∑
j=1

( n∑
i=1

gij
)2)

= O
(
n−1

)
.

Hence, qn,2 = Op(n
−1/2)Op(n

1/2) = Op(1) = op(
√
n/h), because n/h→∞.

Next, we show qn,1 = op(
√
n/h). In the following quantities introduced below, the

triangular array structure is present but the n-subscript is suppressed. Let

tij := `Tj G
T `i −

n∑
m=1

`Tj G
T 1n/n = gij −

1

n

n∑
m=1

gmj , χi := εTGT (`i − n−11n) =
n∑
j=1

εjtij ,

where `i stands for the ith column of I and the equality

n∑
i=1

χi = 0 holds, arising from

n∑
i=1

tij = 0 for j = 1, · · · , n. As pointed out in Robinson (2010, pp. 18), Assumption

1 implies |tij | = O(1/h) uniformly over i and j, following from max
1≤i,j≤n

|gij | = O
(1

h

)
.

Let

al :=
n∑
i=1

bliχi, l = 2, 3, 4.
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Write

ψ̃(L) (λ0, σ0)− ψ(εi) =
[
ψ̄(L)

(
εi; a

(L)
)
− ψ(εi)

]
+
[
ψ(L)

(
εi; ã

(L)(ε)
)
− ψ̄(L)

(
εi; a

(L)
) ]

+
[
ψ̃(L) (λ0, σ0)− ψ(L)

(
εi; ã

(L)(ε)
) ]

=: c2i + c3i + c4i.

We can rewrite

qn,1 =
(
ψ̃1L − ψ1, · · · , ψ̃nL − ψn

)
HGε =

n∑
i=1

c2iχi +
n∑
i=1

c3iχi +
n∑
i=1

c4iχi := a2 + a3 + a4.

To prove qn,1 = op(
√
n/h), we show that

a` = op(
√
n/h), ` = 2, 3, 4. (4.7.18)

Proof of (4.7.18) for i = 2. It requires the projection error, arising from projecting

the score function onto the space spanned by the functionals of our series estimation,

to be of small enough order, as required in Assumption 6.

Write down a2 as in (A.27) of Robinson (2010a):

a2 =
n∑
i=1

c2iεitii +
n∑

i,j=1:j 6=i
c2iεitij , (4.7.19)

recalling c2i = ψ̄(L)
(
εi; a

(L)
)
− ψ(εi). Then,

E
∣∣ n∑
i=1

c2iεitii
∣∣ ≤ {E (c2

2i

)} 1
2

n∑
i=1

|tii| = o
(√h

n

)
·O
(n
h

)
= o

(√
n

h

)
, (4.7.20)

by Assumptions 1 and 6. The second term of (4.7.19) has zero mean and

Var
( n∑
i,j=1:j 6=i

c2iεitij

)
= E

[(∑
i<j

c2iεitij
)

+
(∑
j≤i

c2iεitij
)]2

≤ 2E
[(∑

i<j

c2iεitij
)2]

+ 2E
[(∑

j≤i
c2iεitij

)2]
. (4.7.21)

The first expectation can be bounded by

2
∑
i<j

∑
i′<j′

∣∣E[c2iεjc2i′εj′ ]tijti′j′
∣∣

≤ 2
∑
i<j

E(c2
2i)E(ε2

i )|tijti′j′ | = 2
∑
i<j

Op
(h
n

)
Op
(1

h

)
Op
(1

h

)
= op

(n
h

)
,

using independence of εj ’s, the bound Ec2
i2 = op(h/n) from Assumption 6 and tij =

O(1/h).

The same bound holds for the second term in (4.7.21) which yields a2 = op(
√
n/h).
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To prove (4.7.18) for i = 3, 4, we shall use the following notation. Let

πL := (logL)η2L1(ϕ < 1) + (L logL)η2L1(ϕ = 1) + (logL)(ηϕ)2L1(ϕ > 1)

≤ L(logL)A2L, (4.7.22)

with A = ηmax(ϕ, 1). Note that A > 1.

Set

ρuL = CL, if u = 0,

= (CL)uL/ω, if u > 0 and Assumption 5(ii) holds,

= CL, if u > 0 and Assumption 5(iii) holds.

Proof of (4.7.18) for i = 3. Proof is based on an extensive use of Assumption 5.

Equations (A.31)-(A.39) of pages 19-20 of Robinson (2010a) yield the upper bound

on the stochastic order of a3:

a3 = Op

(√
n

h
L3/2ρ2κLρ

1
2
4κLπ

2
L

)
= Op

(√
n

h

H3√
h

)
, H3 := L3/2ρ2κLρ

1
2
4κLπ

2
L. (4.7.23)

To prove (4.7.18) for i = 3, it remains to show

H3 = o(
√
h). (4.7.24)

Case 1. Let Assumption 5 (i) hold. Then, ρ2κL = ρ4κL = CL and H3 = C3/2L3π2
L.

Notice that for any p > 0 and ε > 0,

Lp = o
(
(1 + ε)L

)
. (4.7.25)

Hence, as L→∞,

π2
L = o

(
(1 + ε)LA4L

)
, ∀ε > 0. (4.7.26)

Combining (4.7.25) and (4.7.26), we obtain H3 = o
(
[(1 + ε)A]4L

)
, ∀ε > 0.

Thus, to prove that H3 = o(
√
h), it suffices to show that

[(1 + ε)A]4L ≤
√
h, i.e. (4.7.27)

4L log[(1 + ε)A] ≤ (1/2) log h, or L ≤ log h

8 log[(1 + ε)A]
,

which is valid for small ε ≥ 0 by Assumption 5 (i).
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Case 2. Let Assumption 5 (ii) hold. Then, ρaL = (CL)
aL
ω and

H3 = L
3
2 ρ2κLρ

1
2
4κLπ

2
L = L

3
2C

4κL
ω L

4κL
ω π2

L.

Observe that for any C > 0, p > 0, a > 0 and ε > 0,

Lp = o(LεL), CaL = o(LεL). (4.7.28)

Hence by (4.7.22),

π2
L = o(LεL), ∀ε > 0, (4.7.29)

and H3 = o
(
LL( 4κ

ω
+ε)
)
, ∀ε > 0. Thus, H3 = o(

√
h) holds if

LL( 4κ
ω

+ε) ≤
√
h, i.e. (4.7.30)(4κ

ω
+ ε
)
L logL ≤ 1

2
log h, or L logL ≤ log h

2
(

4κ
ω + ε

) ,
which is valid for small ε > 0 by Assumption 5 (ii).

Case 3. Let Assumption 5(iii) hold. Then, ρaL = CL, and H3 = L
3
2 ρ2κLρ

1
2
4κLπ

2
L =

L
3
2C

3L
2 π2

L. Then by (4.7.28) and (4.7.29), H3 = o(LεL), ∀ε > 0. Thus, H3 = o(
√
h),

if

LεL ≤
√
h, i.e. (4.7.31)

εL logL ≤ 1

2
log h, or L logL ≤ 1

2ε
log h,

which is valid for sufficiently small ε > 0 by Assumption 5 (ii).

Now, we prove (4.7.18) for i = 4.

Following (A.45)-(A.56) of Robinson (2010a), we obtain the following upper bound

a4 = Op
(√n
h
H4

)
,

H4 := ρ2κLπL ×
{
CκLL

7
2 + ρ2κLπLL

2 + ρ2κLπL(CL)4κL+3n−
1
2 log n

}
.

It remains to show that

H4 = op(
√
h). (4.7.32)

Case 1. Under Assumption 5 (i), ρ2κL = CL, and

H4 = πLL
9
2 + π2

LL
4 + π2

LL
5n−

1
2 log n.
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By (4.7.25) and (4.7.26),

H4 = o
(
[(1 + ε)A]2L + [(1 + ε)A]4L(1 + n−1/2 log n)

)
= o
(
[(1 + ε)A]4L

)
.

Hence H4 = o(
√
h), if [(1 + ε)A]4L ≤

√
h, which is true for small ε > 0 as shown in

(4.7.27).

Case 2. Let Assumption 5 (ii) hold. Then ρaL = (CL)
aL
ω and

H4 = CκL(CL)2κL/ωL7/2πL + (CL)4κL/ωL2π2
L +

(CL)4κL(1+1/ω)L3π2
L√

n/ log n
.

By (4.7.28) and (4.7.29),

H4 = o
(
L( 2κ

ω
+ε)L + L( 4κ

ω
+ε)L +

L(4κ(1+1/ω)+ε)L

√
n/ log n

)
= o

(
L( 4κ

ω
+ε)L(1 +

L4κL

√
n/ log n

)
)
.

By (4.7.30), L( 4κ
ω

+ε)L ≤
√
h, if ε > 0 is small. Next, for any δ > 0,

√
n/ log n ≥

n
1
2
−δ ≥ h

1
2
−δ. Hence by the same arguments as in proving (4.7.27), we obtain that

L4κL

n1/2/ log n
≤ L4κL

n
1
2
−δ
≤ 1, (4.7.33)

if L logL ≤ (1
2 − δ) log h/4κ which holds for small δ. Hence H = o(

√
h), and (4.7.32)

holds.

Case 3. Under Assumption 5(iii), ρaL = CL and

H4 = C(κ+1)LL7/2πL + C2LL2π2
L + C(4κ+2)L+3L4κL+3π2

Ln
− 1

2 log n.

By (4.7.28) and (4.7.29), H4 = o
(
LεL + L(4κ+ε)L

√
n/ logn

)
. By (4.7.31), LεL ≤

√
h. Hence, to

prove that H4 = o(
√
h), it remains to show that

L(4κ+ε)L

√
n/ log n

≤ L(4κ+ε)L

√
h/ log h

≤
√
h,

where the first inequality holds because h ≤ n. For that we shall verify that for small

δ > 0, L(4κ+ε)L ≤ h1−δ, i.e.

(4κ+ ε)L logL ≤ (1− δ) log h, or L logL ≤ (1− δ)
(4κ+ δ)

log h,

which follows from Assumption 5 (iii) when δ and ε are small enough. This completes

the proof of (4.7.3), which is by far the most difficult and distinctive part of the

Theorem proofs. �
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4.7.1 Proofs of (4.7.4)-(4.7.9)

In the rest of this appendix, we will give a detailed proof of (4.7.4) and (4.7.5) and

comments on the proofs of (4.7.6) to (4.7.9).

Some preliminaries

In the proofs below, the vector norm used is Euclidean norm, denoted ‖ · ‖, and

four matrix norms are used: the spectral norm ‖ · ‖, Euclidean norm ‖ · ‖E , the

maximum column sum norm ‖ · ‖C , and the maximum row sum norm ‖ · ‖R. For a

n× 1 vector a = (a1, · · · , an)T and n× n matrix A, one has

‖a‖ =
n∑
i=1

a2
i , ‖A‖2 := λ̄(A′A), ‖A‖2E :=

( n∑
i,j=1

a2
ij

)
,

‖A‖C := max
1≤j≤n

( n∑
i=1

|aij |
)
, ‖A‖R := max

1≤i≤n

( n∑
j=1

|aij |
)
,

where λ̄(A′A) is the largest eigenvalue of the matrix A′A. The afore-mentioned matrix

norms are all submultiplicative, i.e. for conformable square matrices A and B, it holds

‖AB‖ ≤ ‖A‖‖B‖. For square matrices A and B, the following inequalities will be

useful later:

‖A‖ ≤ ‖A‖E , ‖A‖2 ≤ ‖A‖R‖A‖C , |tr(AB)| ≤ ‖A‖E‖B‖E ,

‖AB‖E ≤ ‖A‖E‖B‖, ‖AB‖E ≤ ‖A‖E‖B‖E . (4.7.34)

For a square matrix of functions of a scalar parameter λ, A = A(λ), the following

three results will be used in the proofs:

d

dλ
A−1 = −A−1

( d
dλ
A
)
A−1, (4.7.35)

d

dλ
log |A| = tr

(
A−1 d

dλ
A
)
, where | · | denotes the determinant,

‖A(λ1)−A(λ2)‖ ≤ |λ1 − λ2|
∥∥ d
dλ
A(λ)

∥∥ for some θ, |λ− λ2| ≤ |λ1 − λ2|.

The above facts can be found in Searle (1982), Horn and Johnson (1990) and the

Appendix of Davies (1973).

Next, we establish some properties for the matrices that appear frequently in

the proofs. Assumption 1 stated that the weight matrix W and the matrix S−1 =

(I−λ0W )−1 are both uniformly bounded in row and column sums, i.e. ‖W‖R, ‖W‖C ,

‖S−1‖R, ‖S−1‖C = O(1). Assumption 1 also requires max
1≤i,j,≤n

|wij | = O(1/h). Hence,

by submultiplicative property of the norms ‖ · ‖C and ‖ · ‖R, the matrix G = WS−1 is

also uniformly bounded in both row and column sums. Furthermore, the elements of

G are uniformly bounded by O(1/h). The (i, j)-th element is gij = WiS
−1`j , where

Wi is the i-th row of W, and `j is the j-th column of I. Denote by (S−1)kj , the
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(k, j)-th element of S−1. Then, uniformly in i and j,

|gij | = |
n∑
k=1

wik · (S−1)kj | ≤ max
k
|wik|

n∑
k=1

|(S−1)kj | = O
(1

h

)
. (4.7.36)

We introduced earlier in Section 4.3 the n × n matrix H = I − 1
n1n1Tn , which has

bounded row and column sums. We denote T := HG = {tij}, which is used in

defining (χ1, · · · , χn)T = HGε = Tε, where χi =

n∑
j=1

tijεj , i = 1, · · · , n. One can

verify ‖T‖R, ‖T‖C = O(1) and max
1≤i,j,≤n

|tij | = O(1/h) using the same argument as in

the case of G. These properties also hold for products GTG, GGT , T TT , and TT T ,

which can be verified by the same reasoning.

Recall that Assumption 4 set out the following form for the series function used in

the estimation of the score function: φ`(s) = φ`(s), ` = 1, · · · , n, where φ(s) is strictly

increasing and thrice differentiable function such that for some κ ≥ 0 and K > 0,

|φ(s)| ≤ 1 + |s|κ, |φ′(s)|+ |φ′′(s)|+ |φ′′′(s)| ≤ C(1 + |φ(s)|K), s ∈ R,

where C denotes a generic constant throughout this proof. For κ = 0, |φ(s)|, |φ′(s)|, |φ′′(s)|
and |φ′′′(s)| are bounded. For κ > 0, Assumption 4 allows tails of series functions φ`(·)
and their derivatives to diverge, at a rate increasing with `. We introduce the quantity

µc = 1 + E|εi|c, c > 0, which is useful in bounding the moments of above functions.

Recall φ`(s) = φ`(s). We have

|φ`(s)| ≤ C`(1 + |s|κ`),

|φ′`(s)| = `|φ′(s)φ`−1(s)| ≤ C``
(
1 + |s|κ(`−1+K)

)
,

|φ′′` (s)| = |`(`− 1)φ`−2(s)(φ′(s))2 + `φ`−1(s)φ′′(s)| ≤ C``2
(
1 + |s|κ(`−1+2K)

)
,

|φ′′′` (s)| ≤ C``3
(
1 + |s|κ(`−1+3K)

)
.

Therefore, for r > 0,

E|φ`(ε1)|r ≤ C`rµκr`,

E|φ′`(ε1)|r ≤ C`r`rµκr(`−1+K) ≤ C`r`rµκr(`+K),

E|φ′′` (ε1)|r ≤ C`r`2rµκr(`−1+2K) ≤ C`r`2rµκr(`+2K),

E|φ′′′` (ε1)|r ≤ C`r`3rµκr(`−1+3K) ≤ C`r`3rµκr(`+3K). (4.7.37)

Lemma 9 of Robinson (2005) established that
L∑
`=1

µa`+b ≤ ρaL for any a, b ≥ 0.

Trivially, |µa|r ≤ µar for a, r ≥ 0.

Proof of (4.7.4). We will prove (4.7.4) for i = 2. Recall G(λ) = W (I − λW )−1, for

ease of notation, denote G̃ = G(λ̃) and G = G(λ0). We assumed ω2 = lim
n→∞

h

n
tr(G2) is
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finite and nonzero, and denote ω̃2 = h
ntr(G̃2). Therefore, (4.7.4) for i = 2 is established

if we show
∣∣h
n

(
tr(G̃2)−tr(G2)

)∣∣ = op(1). By linearity of the trace operator and (4.7.34),

∣∣tr(G̃2)− tr(G2)
∣∣ =

∣∣tr(G̃2 −G2)
∣∣ =

∣∣tr[G̃(G̃−G)
]

+ tr
[
(G̃−G)G

]∣∣
≤ ‖G̃‖E‖G̃−G‖E + ‖G‖E‖G̃−G‖E . (4.7.38)

Lee (2004, pp.1918) established that if S−1(λ0) exhibits row and column summability,

as assumed in Assumption 1 (iii), then the same holds uniformly in λ for S−1(λ), for λ’s

in some neighbourhood of λ0. Another consequence of row and column summability

of S−1(λ̃) is that every element of G(λ̃) is uniformly of order Op(1/h), by the same

argument as in (4.7.36). Hence, it follows that

‖G̃‖E =

 n∑
i,j=1

g̃2
ij

1/2

≤

 n∑
i=1

max
j
|g̃ij |

n∑
j=1

|g̃ij |

1/2

= Op
(√n

h

)
,

and ‖G‖E = O
(√

n/h
)

applying the same steps as above.

To find the upper bound on the RHS of (4.7.38), we need to find that on ‖G̃−G‖E .

We have that

‖G̃−G‖E ≤ |λ̃− λ0|
∥∥dG(λ)

dλ

∥∥ for some λ, |λ− λ0| ≤ |λ̃− λ0|,

where

dG(λ)

dλ
= W

d(I − λW )−1

dλ
= −W (I − λW )−1d(I − λW )

dλ
(I − λW )−1

= W (I − λW )−1W (I − λW )−1 = G2(λ).

By (4.7.34), ‖G2‖E ≤ ‖G‖E‖G‖ ≤ ‖G‖E
√
‖G‖R‖G‖C = Op

(√
n/h

)
, and therefore,

‖G̃−G‖E = Op(

√
h

n
)O
(√n

h

)
= Op(1).

Hence,

∣∣tr(G̃2)− tr(G2)
∣∣ ≤ ‖G̃‖E‖G̃−G‖E + ‖G‖E‖G̃−G‖E = Op

(√n

h

)
,

h

n

∣∣tr(G̃2)− tr(G2)
∣∣ = Op

(√h

n

)
.

Proof of (4.7.5). Recall s1L = (∂/∂λ)rL(λ0, σ0) is the first derivatives of rL w.r.t. λ

at the true value of parameters (λ0, σ0). Recall that the fitted residuals at (λ, σ) are,

ε(λ)

σ
=
HS(λ)y

σ
,

ε(λ0)

σ0
=
HS(λ0)y

σ0
= Hε.
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From here on, for brevity we denote ε = ε(λ0) and εi = εi(λ0). Below, we get

εi/σ0 = εi − ε̄ where ε̄ =
n∑
i=1

εi/n. The following derivative is used repeatedly

throughout the proof,

d
(
ε(λ)/σ

)
dλ

∣∣
σ0,λ0

=
1

σ0

dHS(λ)y

dλ

∣∣
σ0

= − 1

σ0
HW (S−1σ0ε+ µ01n) = −HGε,

because HW1n = H1n = 0 and G = WS−1. Therefore, for i = 1, · · · , n,

d
(
εi(λ)/σ

)
dλ

∣∣
σ0,λ0

= −HiGε = −χi = −
n∑
j=1

tijεj .

Recall that rL(λ0, σ0) = rL =
n∑
i=1

ψ̃iLχi − tr {G(λ0)} . Since ψ̃iL = Φ(L)T (εi/σ0)ã(L),

we have

h

n
· s1L =

h

n

(
n∑
i=1

∂ψ̃iL
∂λ

χi − tr
{
G2(λ0)

})

=
h

n

n∑
i=1

(
∂Φ(L)T (εi/σ0)

∂λ
ã(L)χi + Φ(L)T (εi/σ0)

∂ã(L)

∂λ
χi

)
− h

n
tr
{
G2(λ0)

}
.

By Assumption 2, the limit of the latter term lim→∞ htr
{
G2(λ)

}
/n = −ω2. We will

show for

A :=
h

n

n∑
i=1

∂Φ(L)T ( εiσ0 )

∂λ
ã(L)(

ε(λ0)

σ0
)χi, B :=

h

n

n∑
i=1

Φ(L)T (
εi
σ0

)
∂ã(L)( ε(λ0)

σ0
)

∂λ
χi,

that

A→p −Jω1, B →p 0, (4.7.39)

which completes the proof of (4.7.5), hs1L/n→p −Jω1 − ω2.

Recall the notations φ(s)(L) = (φ1(s), · · ·φL(s))T , φ̄(s)(L) = (φ̄1(s), · · · , φ̄L(s))T

where φ̄`(εi) = φ`(εi) − E(φ`(εi)), φ̄
′(s)(L) = (φ̄′1(s), · · · , φ̄′L(s))T where φ̄′`(εi) =

φ′`(εi)−E(φ′`(εi)) and φ̄′′(s)(L) = (φ̄′′1(s), · · · , φ̄′′L(s))T where φ̄′′` (εi) = φ′′` (εi)−E(φ′′` (εi)).



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 164

Proof of A→p −Jω1.

Since ∂(εi(λ)/σ)
∂λ |λ0,σ0 = −HiGε = −χi, we can write

A = −h
n

n∑
i=1

[φ̄′(εi)
(L) + φ′(

εi
σ0

)(L) −
n∑
j=1

φ′(
εj
σ0

)(L) − φ̄′(εi)(L)]T [a(L) + ã(L)(
ε(λ0)

σ0
)− a(L)]χ2

i

= −h
n

n∑
i=1

[φ̄′(εi)
(L) + ri]

T [a(L) + l(L)]χ2
i

= −h
n

n∑
i=1

φ̄′(εi)
(L)Ta(L)χ2

i −
h

n

n∑
i=1

φ̄′(εi)
(L)T l(L)χ2

i −
h

n

n∑
i=1

rTi a
(L)χ2

i −
h

n

n∑
i=1

rTi l
(L)χ2

i

=: A1 +A2 +A3 +A4,

using the L× 1 vectors,

l(L) := ã(L)(
ε(λ0)

σ0
)− a(L), and ri :=

(
φ′(

εi
σ0

)(L) −
n∑
j=1

φ′(
εj
σ0

)
)
− φ̄′(εi)(L).

We will now show that A1 →p −Jω1 and Ai = op(1), for i = 2, 3, 4.

Showing A1 →p −Jω1. Denote,

A1 = −h
n

n∑
i=1

φ̄′(εi)
Ta(L)χ2

i = −h
n

n∑
i=1

[ψ′(εi) + (φ̄′(εi)
Ta(L) − ψ′(εi))]χ2

i =: A11 +A12.

We establish A11 →p −Jω1 and A12 = op(1).

We start with A11. It will be shown that E(A11)→ −Jω1 and E[A11−E(A11)]2 =

o(1). Taking expectation of A11, we obtain,

E(A11) = −h
n

n∑
i,j,k=1

tijtikE(ψ′(εi)εjεk)

= −h
n

n∑
i,j=1

t2ijE(ψ′(εi))E(ε2
j )−

h

n

n∑
i=1

t2ii[E(ψ′(εi)ε
2
i )− E(ψ′(εi))E(ε2

j )]

= −J h
n

n∑
i,j=1

t2ij +O(
1

h
),

because E(ψ′(εi)) = E(ψ2(εi)) = J and

n∑
i=1

t2ii = O(n/h2). Now, denoting ḡj :=
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1
n

n∑
m=1

gmj and recalling that tij = gij − ḡj from T = HG, allow us to write

h

n

n∑
i=1

n∑
j=1

t2ij =
h

n

n∑
i,j=1

(gij − ḡj)2 =
h

n

n∑
i,j=1

(g2
ij − 2ḡjgij + ḡ2

j )

=
h

n

n∑
i,j=1

g2
ij − 2h

n∑
j=1

ḡj(
1

n

n∑
i=1

gij) +
h

n

n∑
i=1

n∑
j=1

ḡ2
j

=
h

n

n∑
i,j=1

g2
ij + h

n∑
j=1

ḡ2
j =

h

n

n∑
i,j=1

g2
ij −O

(h
n

)
→ ω1,

as ḡ2
j ≤ [ 1

n

n∑
m=1

|gmj |]2 = O(
1

n2
) due to absolute column summability of the matrix G

and tr(GGT ) =
n∑

i,j=1

g2
ij .

Next, we show E[(A11 − E(A11))2] = o(1), which together with above completes

the proof of A1 →p −Jω1. Recall

E(A2
11) =

(h
n

)2 n∑
i,j,k,=1

n∑
i′,j′,k′=1

tijtikti′j′ti′k′E(ψ′(εi)εjεkψ
′(εi′)εj′εk′),

so that,

E(A2
11)− [E(A11)]2 =

(h
n

)2 n∑
i,j,k=1

n∑
i′,j′,k′=1

tijtikti′j′ti′k′E(ψ′(εi)εjεkψ
′(εi′)εj′εk′)

−J 2
( n∑
i,j=1

t2ij
)2

= C1

(h
n

)2[
C1

n∑
j,j′=1

( n∑
i=1

tijtij′
n∑

i′=1

ti′jti′j′
)

+ C2

n∑
i,i′,j=1

t2ijt
2
i′j

+C3

n∑
i,i′,j=1

tiitijt
2
i′j + C4

n∑
i,i′,j=1

tiiti′i′tijti′j + C5

n∑
i,j=1

t2ijt
2
ii

+C6

n∑
i,j=1

tijt
3
jj + C7

n∑
i,j=1

t2iit
2
jj + C8

n∑
i,j=1

t4ij + C9

n∑
i,j=1

tiit
3
ij

]
, (4.7.40)

where Cm,m = 1, · · · , 9 denotes some constants. First we bound the summations that
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are multiplied to C1 − C4 above. We have,

n∑
j,j′=1

( n∑
i=1

tijtij′
n∑

i′=1

ti′jti′j′
)

=

n∑
j,j′=1

( n∑
i=1

tijtij′
)2

=

n∑
j,j′=1

(T TT )2
jj′

≤
n∑
j=1

max
j′
|(T TT )jj′ |

n∑
j′=1

|(T TT )jj′ | = O
(n
h

)
= o

(
n2

h2

)
,

n∑
i,i′,j=1

t2ijt
2
i′j =

(h
n

)2 n∑
j=1

( n∑
i=1

t2ij
)2

=

n∑
j=1

(T TT )2
j,j = O

( n
h2

)
= o

(
n2

h2

)
,

∣∣∣ n∑
i,i′,j=1

tiitijt
2
i′j

∣∣∣ =
∣∣∣ n∑
j=1

n∑
i=1

tiitij

n∑
i′=1

t2i′j

∣∣∣ ≤ n∑
j=1

max
i
|tii|

n∑
i=1

|tij ||(T TT )j,j |

= O
(n
h

)
O
(1

h

)
= o

(
n2

h2

)
,∣∣∣ n∑

i=1

tii

n∑
i′=1

ti′i′
n∑
j=1

tijti′j

∣∣∣ ≤ n∑
i=1

|tii|
n∑

i′=1

|ti′i′ ||(TT T )i,i′ | = O
(n2

h3

)
= o

(
n2

h2

)
.

We can bound the summations corresponding to C5−C9, since max
1≤i,j≤n

|tij | = O(1/h),

as explained in lines following (4.7.36),

(h
n

)2 n∑
i,j=1

[
t2ijt

2
ii + |tijt3jj |+ t2iit

2
jj + t4ij |tiit3ij |

]
= O

(h2

n2
× n2

h4

)
= O

( 1

h2

)
= o(1).

Applying these bounds in (4.7.40) implies E[(A11 − E(A11))2] = o(1).

Showing A12 = op(1). Recall that by Assumption 6, E[
(
φ̄′(εi)

Ta(L) − ψ′(εi)
)2

] =

o(1). Therefore

E|A12| ≤
h

n

n∑
i=1

E|(φ̄′(εi)(L)Ta(L) − ψ′(εi))χ2
i |

≤ h

n

(
E
(
φ̄′(ε1)(L)Ta(L) − ψ′(ε1)

)2)1/2
n∑
i=1

{
E(χ4

i )
}1/2

=
h

n
o(1)O

(n
h

)
= o(1),

because

n∑
i=1

(
E(χ4

i )
)1/2

= O
(n
h

)
, (4.7.41)

which follows from

max
i
E(χ4

i ) = 3 max
i

n∑
j=1

n∑
k=1

t2ijt
2
ik = 3 max

i

( n∑
j=1

t2ij
)2 ≤ 3

(
max
i,j
|tij |

n∑
j=1

|tij |
)2

= O
( 1

h2

)
. (4.7.42)
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Proof of Ai = op(1), i = 2, 3, 4. Recall

A2 +A3 +A4 = −h
n

n∑
i=1

φ̄′(εi)
(L)T l(L)χ2

i −
h

n

n∑
i=1

rTi a
(L)χ2

i −
h

n

n∑
i=1

rTi l
(L)χ2

i .

Using notations φ′(εi)
(L) = (φ′1(εi), · · · , φ′L(εi))

T and φ′′(εi)
(L) = (φ′′1(εi), · · · , φ′′L(εi))

T ,

decompose ri into two parts:

ri =
[
φ′(

εi
σ0

)(L) − 1

n

n∑
j=1

φ′(
εj
σ0

)(L)
]
− φ̄′(εi)(L)

=
{[
φ′(

εi
σ0

)(L) − 1

n

n∑
j=1

φ′(
εj
σ0

)(L)
]
−
[
φ′(εi)

(L) − 1

n

n∑
i=1

φ′(εi)
(L)
]}

+
{[
φ′(εi)

(L) − 1

n

n∑
i=1

φ′(εi)
(L)
]
− φ̄′(εi)(L)

}
=: r1i + r2.

Since φ̄′(εi)
(L) = φ′(εi)

(L) −E
(
φ′(εi)

(L)
)
, we can express r2 as follows, explaining the

lack of i subscript in the L× 1 vector r2:

r2 =
[
φ′(εi)

(L) − 1

n

n∑
j=1

φ′(εj)
(L)
]
−
[
φ′(εi)

(L) − E(φ′(εi)
(L))
]

= E
(
φ′(εi)

(L)
)
− 1

n

n∑
j=1

φ′(εj)
(L). (4.7.43)

For each element of the L× 1 vector r1i = (r1i1, · · · , r1iL)T , the mean value theorem

(MVT) yields

r1i` =
{
φ′′` (ε

∗
i )−

1

n

n∑
j=1

φ′′` (ε
∗
j )
}
ε̄, ` = 1, · · · , L, (4.7.44)

letting ε∗i denote some point that lies between εi/σ0 and εi, such that, φ′`(εi/σ0) −
φ′`(εi) = ε̄φ′′` (ε

∗
i ), and recalling εi/σ0 = εi − ε̄. The ε∗i ’s may differ across `’s but we

suppress the reference to ` for brevity.

Since the L × 1 vector l(L) is the estimation error in estimating the unknown

coefficients a(L), an upper bound on ‖l(L)‖ can be established by combining Lemma

10 and 19 of Robinson (2005):

‖l(L)‖ = ‖ã(L)(
ε(λ0)

σ0
)− a(L)‖ ≤ ‖ã(L)(

ε(λ0)

σ0
)− ã(L)(ε)‖+ ‖ã(L)(ε)− a(L)‖ = Op(Rl),

Rl :=
L

n1/2
ρ

1/2
2κLπL(1 + L1/2ρ

1/2
4κLπL) + ρ

3/2
2κLπ

2
L

( L2

n1/2
+

(CL)4κL+3

n
log n

)
. (4.7.45)

To complete the proof of (4.7.39), we will show negligibility of the terms, A2, A3, A4,
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written using the above decomposition of ri :

|A2|+ |A3|+ |A4| =
h

n

∣∣ n∑
i=1

φ̄′(εi)
(L)T l(L)χ2

i

∣∣+
h

n

∣∣ n∑
i=1

(r1i + r2)Ta(L)χ2
i

∣∣
+
h

n

∣∣ n∑
i=1

(r1i + r2)T l(L)χ2
i

∣∣.
Showing |A2| = op(1). It suffices to show E|A2| → 0. Note that h

n∑
i=1

(Eχ4
i )

1/2/n =

O(1) by (4.7.41) and from (4.7.37) by Lemma 9 of Robinson (2005),

E‖φ̄′(ε1)(L)‖2 =
L∑
`=1

E(φ̄′`(ε1)2) ≤ C2L
L∑
`=1

`2µ2κ(`+K) ≤ C2LL2ρ2κL.

Therefore,

E|A2| ≤
h

n

n∑
i=1

E|φ̄′(εi)(L)T l(L)χ2
i | ≤ ‖l(L)‖

[
E‖φ̄′(ε1)(L)‖2

]1/2 h

n

n∑
i=1

[Eχ4
i ]

1/2

= ‖l(L)‖
[
E‖φ̄′(ε1)(L)‖2

]1/2
O(1) = Op(qn),

qn := Rl × CLLρ
1/2
2κL.

It remains to show qn = o(1) in order to establish |A2| = op(1). Trivially, we have for

any p, ε > 0 and C <∞, Lp ≤ LεL and CL ≤ LεL. We also have πL ≤ L(1+ε)L for any

ε > 0 and recall ρuL ≤ max{CL, (CL)uL/ω} from Assumption 5. Hence, there exist

α1, α2 > 0 large enough, so that we can write

qn = o
(Lα1L

√
n

+
Lα2L

n
log n

)
= o
(Lα1L

√
n

+
Lα2L

√
n

log n√
n

)
= o
(L(α1+α2)L

√
n

)
= o(1), (4.7.46)

since Assumption 5 and 1 (ii) imply that L logL = o(log n), hence L(α1+α2)L/
√
n =

O(1).

Showing |A3| = op(1). We bound |A3| using ri = r1i + r2,

|A3| ≤
∣∣h
n

n∑
i=1

rT1ia
(L)χ2

i

∣∣+
∣∣h
n

n∑
i=1

rT2 a
(L)χ2

i

∣∣ =: |A31|+ |A32|.

We have by Cauchy-Schwarz inequality,

E|A31| ≤
h

n

n∑
i=1

E|rT1ia(L)χ2
i | ≤ ‖a(L)‖h

n

n∑
i=1

E‖r1iχ
2
i ‖ ≤ ‖a(L)‖h

n

n∑
i=1

(
E‖r1i‖2Eχ4

i

)1/2
.
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Denoting r1i` =
{
φ′′` (ε

∗
i )− 1

n

n∑
j=1

φ′′` ε
∗
j )
}
ε̄ =: p′′`iε̄ allows us to write

h

n

n∑
i=1

[
E‖r1i‖2E(χ4

i )
]1/2 ≤ h

n
max
i

(
E(χ4

i )
)1/2 n∑

i=1

[ L∑
`=1

E(r2
1i`)
]1/2

= Op
( 1

n

) n∑
i=1

[ L∑
`=1

E(ε̄2(p′′`i)
2)
]1/2 ≤ Op( 1

n

) n∑
i=1

[ L∑
`=1

(
[Eε̄4][E(p′′`i)

4]
)1/2]1/2

≤ Op
( 1

n

) n∑
i=1

(Eε̄4)1/4
[ L∑
`=1

(
E(p′′`i)

4
)1/2]1/2

≤ Op
( 1

n

) n∑
i=1

(Eε̄4)1/4
[ L∑
`=1

C2``4µ
1/2
4κ(`+2K)

]1/2 ≤ Op(CL√
n

)
L2ρ

1/2
4κL, (4.7.47)

using Cauchy-Schwarz inequality, and since max
i

(
Eχ4

i

)1/2
= O(1/h) by (4.7.42),

E(ε̄4) = O(1/n2) and Lemma 9 of Robinson (2005):

L∑
`=1

C2``4µ
1/2
4κ(`+2K) ≤ C

2L
L∑
`=1

`4µ4κ(`+2K) ≤ C2LL4ρ4κL.

We have E((p′′`i)
4) ≤ C4``8µ4κ(`+2K) since

|φ′′` (ε∗1)| ≤ C``2
(
1 + |ε1|κ(`−1+2K) + |ε̄|κ(`−1+2K)

)
.

Therefore, using Lemma 10 of Robinson (2005) which states ‖a(L)‖ = O(Lρ
1/2
2κLπL),

we conclude:

E|A31| ≤ O

(
CLL3ρ

1/2
2κLρ

1/2
4κLπL√

n

)
= o(1),

where the last bound can be established by the same argument as in the proof of

qn = o(1) in (4.7.46).

Our next task is finding an upper bound on E|A32|.

E|A32| ≤ ‖a(L)‖h
n

n∑
i=1

E‖r2χ
2
i ‖ ≤ ‖a(L)‖[E‖r2‖2]1/2

h

n

n∑
i=1

(Eχ4
i )

1/2

= ‖a(L)‖Op(
[
E‖r2‖2

]1/2
),

since by (4.7.42), h
n

n∑
i=1

(
Eχ4

i

)1/2
= O(1). Now, introducing the L × 1 vector r2 =

(r21, · · · , r2L)T , we will find an upper bound on E‖r2‖2 =

L∑
`=1

E(r2
2`). For each `,



4. Efficiency Improvement in Estimation of Pure Spatial Autoregressive Model 170

recalling the notation φ̄′`(ε) = φ′`(ε)− E[φ′`(ε)] and independence of εj ’s,

E(r2
2`) =

1

n2
E[

n∑
j=1

φ′`(εj)− E(φ′`(ε1))]2 =
1

n2
E[

n∑
j=1

φ̄′`(εj)]
2

=
1

n2

n∑
j=1

E[φ̄′`
2(εj)] =

C2``2µ2κ(`+K)

n
.

Therefore,

E‖r2‖2 =

L∑
`=1

E(r2
2`) ≤

L∑
`=1

C2``2µ2κ(`+K)

n
= Op

(C2LL2ρ2κL

n

)
, (4.7.48)

by Lemma 9 of Robinson (2005). Putting together terms:

E|A32| ≤ ‖a(L)‖

[
E‖r2‖2

h

n

n∑
i=1

Eχ4
i

]1/2

= O(Lρ
1/2
2κLπL)O

(CLLρ1/2
2κL√
n

)
= o(1),

the last equality follows by the same reasoning as in the proof of qn = o(1) in (4.7.46).

Showing |A4| = op(1). Now, the remaining task to complete the proof of A →p

−Jω1 is to show

|A4| ≤
∣∣h
n

n∑
i=1

rT1il
(L)χ2

i

∣∣+
∣∣h
n

n∑
i=1

rT2 l
(L)χ2

i

∣∣ =: |A41|+ |A42| = op(1).

Firstly, using the previous results (4.7.45) and (4.7.47), it follows

|A41| ≤ ‖l(L)‖h
n

n∑
i=1

‖r1iχ
2
i ‖ = Op(Rl)Op

(CLL2ρ
1/2
4κL√

n

)
= op(1),

where the last equality can be established by the same argument as in (4.7.46).

Secondly, from (4.7.48) and (4.7.45),

|A42| ≤ ‖r2‖‖l(L)‖h
n

n∑
i=1

χ2
i = Op

(CLLρ1/2
2κL√
n

)
×Op(Rl) = op(1).

since h
n

n∑
i=1

Eχ2
i ≤

h

n
O(
n

h
) = O(1), as Eχ2

i ≤ max
j
|tij |

n∑
j=1

|tij | = O(1/h) uniformly

over i while the bound op(1) follows by the same reasoning as in (4.7.46).

Proof of B →p 0.

Recall,

ã(L)(
ε(λ0)

σ0
) =

(
W̃ (L)(

ε(λ0)

σ0
)
)−1

w̃(L)(
ε(λ0)

σ0
).
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For ease of notation, let

W̃ (L) = W̃ (L)(
ε(λ0)

σ0
) and w̃(L) = w̃(L)(

ε(λ0)

σ0
).

We decompose B as follows, using chain rule:

B =

[
h

n

n∑
i=1

χiΦ
(L)T (

εi
σ0

)

]
·

[
∂ã(L)( ε(λ0)

σ0
)

∂λ

]

=

[
h

n

n∑
i=1

χiΦ
(L)T (

εi
σ0

)

]
·

[
∂(W̃ (L))−1

∂λ
w̃(L) + (W̃ (L))−1∂(w̃(L))−1

∂λ

]
=: D[Fw̃(L) + (W̃ (L))−1J ].

Next, we find upper bounds on ‖D‖, ‖(W̃ (L))−1‖, ‖F‖, ‖w̃(L)‖, and ‖J‖.
Upper bound of ‖D‖. We decompose the L× 1 vector D as follows:

D =
h

n

n∑
i=1

χiΦ
(L)(

εi
σ0

) =
h

n

n∑
i=1

χi

(
Φ(L)(

εi
σ0

)− Φ(L)(εi)
)

+
h

n

n∑
i=1

χi

(
Φ(L)(εi)− φ̄(L)(εi)

)
−h
n

n∑
i=1

χiφ̄
(L)(εi) =: D1 +D2 +D3.

We verify below that

‖D‖ ≤ ‖D1‖+ ‖D2‖+ ‖D3‖ = Op(C
LLρ

1/2
2κL).

Upper bound of ‖D1‖. By the MVT, we have φ(εi/σ0) − φ(εi) = ε̄φ′(ε∗i ), implying

that the `-th element of the vector Φ(L)(εi/σ0)− Φ(L)(εi) is

ε̄φ′`(ε
∗
i )−

1

n

n∑
j=1

ε̄φ′`(ε
∗
j ) = ε̄

[
φ′`(ε

∗
i )−

1

n

n∑
j=1

φ′`(ε
∗
j )
]

=: ε̄p′i`.

Hence, triangular inequality gives

‖D1‖ ≤
h

n

n∑
i=1

|χi|

[
L∑
`=1

ε̄2
(
p′i`

)2
]1/2

= ε̄
h

n

n∑
i=1

|χi|

[
L∑
`=1

(
p′i`

)2
]1/2

.

Next, we find an upper bound on the latter term of above expression, using triangular

and Cauchy-Schwarz inequalities,

h

n

n∑
i=1

E
(
|χi|
[ L∑
`=1

(
p′i`
)2]1/2) ≤ h

n

n∑
i=1

(Eχ2
i )

1/2
[
E

L∑
`=1

(
p′i`
)2]1/2

= O(
√
h)O(CLLρ

1/2
2κL),
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because for each 1 ≤ ` ≤ L, in view of |φ′`(s)| ≤ C``(1 + |εi|κ(`+K) + |ε̄|κ(`+K)),

L∑
`=1

E
(
p′i`
)2 ≤ L∑

`=1

C2``2µ2κ(`+K) ≤ C2LL2ρ2κL,

with the last step by Lemma 9 of Robinson (2005). On the other hand, hn

n∑
i=1

(Eχ2
i )

1/2 =

O(
√
h), as Eχ2

i ≤ max
j
|tij |

n∑
j=1

|tij | = O(1/h). Therefore, ‖D1‖ = O(CLLρ
1/2
2κL).

Upper bound of ‖D2‖.

D2 =
h

n

n∑
i=1

χi

(
Φ(L)(εi)− φ̄(L)(εi)

)
=
h

n

n∑
i=1

χi

(
E
(
φ(L)(εi)

)
− 1

n

n∑
j=1

φ(L)(εj)
)

=
[
− h

n

n∑
j=1

φ̄(L)(εj)
][ 1

n

n∑
i=1

χi

]
,

‖D2‖ ≤
∥∥∥h
n

n∑
j=1

φ̄(L)(εj)
∥∥∥∣∣∣ 1
n

n∑
i=1

χi

∣∣∣ = Op
(hCLρ1/2

2κL√
n

)
Op
( 1√

n

)
.

We have, since ‖TT T ‖C = O(1),

E
( n∑
i=1

χi

)2
=

n∑
i,j,k=1

tiktjk ≤
n∑

i,j=1

|(TT T )ij | =
n∑
i=1

O(1) = O(n).

Since, E
(
φ̄2
` (εj)

)
≤ C2`µ2κ`,

E
∥∥∥h
n

n∑
j=1

φ̄(L)(εj)
∥∥∥2

=
(h
n

)2 L∑
`=1

n∑
j=1

E
(
φ̄2
` (εj)

)
≤ 2h2

n

L∑
`=1

C2`µ2κ` = O
(h2

n
C2Lρ2κL

)
.

This proves ‖D2‖ = Op(C
LLρ

1/2
2κL).
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Upper bound of ‖D3‖.

E‖D3‖2 = E
∥∥h
n

n∑
i=1

χiφ̄
(L)(εi)

∥∥2
=
(h
n

)2 L∑
`=1

E
( n∑
i=1

χiφ̄`(εi)
)2

=
(h
n

)2 L∑
`=1

n∑
i,j=1

E
[
χiχjφ̄`(εi)φ̄`(εj)

]
=

(h
n

)2 L∑
`=1

n∑
i,jk,m=1

E
[
tikεktjmεmφ̄`(εi)φ̄`(εj)

]
=

(h
n

)2 L∑
`=1

n∑
i,j=1

[
t2ijE(φ̄`(εi)

2) + (tiitjj + tijtji)
(
E
(
εiφ̄`(εi)

))2]

≤
L∑
`=1

h

n
C2`µ2κ` +

L∑
`=1

C2`µ2
κ`+1 = O

(
C2Lρ2κL

)
, (4.7.49)

since we have µ2
κ(`+K)+1 ≤ µ2κ(`+K)+2 and as explained in lines following (4.7.36),

n∑
i,j=1

t2ij ≤
n∑
i=1

max
j
|tij |

n∑
j=1

|tij | = O
(n
h

)
,

n∑
i=1

|tii|
n∑
j=1

|tjj | = O
(n2

h2

)
,

∣∣ n∑
i,j=1

tijtji
∣∣ ≤ n∑

i=1

|(TT T )ii| = O
(n
h

)
.

Therefore, ‖D3‖ = Op(C
LLρ

1/2
2κL).

Upper bound of ‖w̃(L)‖.
We decompose the L × 1 vector w̃(L) into three parts and establish the following

upper bound on their norms:

‖w̃(L)‖ ≤ ‖E(φ′(ε1)(L))‖+
∥∥ 1

n

n∑
i=1

(
φ′(εi)

(L) − E(φ′(ε1)(L))
)∥∥

+
∥∥ 1

n

n∑
i=1

(
φ′(

εi
σ0

)(L) − φ′(εi)(L)
)∥∥ = Op(C

LLρ
1/2
2κL), (4.7.50)

with the last step by Lemma 9 of Robinson (2005). Similarly, the first term of the

RHS of (4.7.50) has the following upper bound:

‖E(φ′(ε1)(L))‖2 =

L∑
`=1

[
E(φ′`(ε1))

]2 ≤ L∑
`=1

C2``2µ2
κ(`+K)

≤
L∑
`=1

C2``2µ2κ(`+K) ≤ C2LL2ρ2κL = O(C2LL2ρ2κL).

The second term of the RHS of (4.7.50) has the following upper bound, recalling the
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notation φ̄′(εi)
(L) = φ′(εi)

(L) − E(φ′(ε1)(L)):

E
∥∥∥ 1

n

n∑
i=1

φ̄′(εi)
(L)
∥∥∥2

=
1

n2

L∑
`=1

n∑
i=1

E(φ̄′(εi)
2) ≤ C2LL2ρ2κL = O(C2LL2ρ2κL).

The third term of the RHS of (4.7.50) has the following upper bound, by the MVT,

∥∥∥ 1

n

n∑
i=1

(
φ′(

εi
σ0

)(L) − φ′(εi)(L)
)∥∥∥2

= ε̄2 · 1

n2

L∑
`=1

n∑
i,j=1

φ′′` (ε
∗
i )φ
′′
` (ε
∗
j ) = Op

(C2LL4ρ2κL

n

)
,

because

1

n2

L∑
`=1

n∑
i,j=1

E|φ′′` (ε∗i )φ′′` (ε∗j )| ≤
1

n2

n∑
i,j=1

L∑
`=1

[
E(φ′′` (ε

∗
i )

2
]

≤
L∑
`=1

C2``4µ2κ(`+2K) ≤ C2LL4ρ2κL.

Upper bound of
∥∥(W̃ (L))−1

∥∥.
We use the following matrix result, see e.g. Davies (1973, pp.496). If W (L) is

non-singular and ‖W̃ (L) −W (L)‖‖W (L)−1‖ < 1, then

‖(W̃ (L))−1‖ ≤ ‖W (L)−1‖
1− ‖W (L)−1‖‖W̃ (L) −W (L)‖

.

Lemma 8 of Robinson (2005) states that ‖(W (L))−1‖ = O(πL). Lemma 10 and 19 of

Robinson (2005) state, respectively:

‖W̃ (L)(ε)−W (L)‖ = Op
(
(Lρ4κL/n)1/2

)
,

‖W̃ (L)(
ε(λ0)

σ0
)− W̃ (L)(ε)‖ = Op

(ρ2κL(Ln1/2 + L2κL+2(log n))

n
+
L2κL+1ρ

1/2
2κL(log n)1/2

n

)
.

We hence obtain

‖W̃ (L)(
ε(λ0)

σ0
)−W (L)‖‖(W (L))−1‖

≤
(
‖W̃ (L)(ε)−W (L)‖+ ‖W̃ (L)(

ε(λ0)

σ0
)− W̃ (L)(ε)‖

)
‖(W (L))−1‖ ≤ 1

because by the same reasoning used in showing qn = o(1) in (4.7.46), we have

(√Lρ4κL√
n

+
ρ2κL(L

√
n+ L2κL+2(log n))

n
+
L2κL+1ρ

1/2
2κL(log n)1/2

n

)
L(logL)A2L = o(1).

Therefore we conclude ‖W̃ (L)‖ = Op(πL).

Upper bound of ‖F‖. We obtain an upper bound on ‖F‖ as, ‖F‖ ≤ ‖W̃ (L)‖2‖∂W̃ (L)/∂λ‖,
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following from (4.7.35).

Introduce a L× 1 vector,

ni = Φ(L)(
εi
σ0

)− φ̄(L)(εi) =
[
Φ(L)(

εi
σ0

)− Φ(L)(εi)
]

+
[
Φ(L)(εi)− φ̄(L)(εi)

]
=: n1i + n2,

where similar as in ri,

n1i` =
(
φ′`(ε

∗
i )−

1

n

n∑
j=1

φ′`(ε
∗
j )

(L)
)
ε̄,

n2 = E(φ(L)(εi))−
1

n

n∑
j=1

φ(L)(εj).

We have, with some abuse of notation,

∂W̃ (L)

∂λ
=

2

n

n∑
i=1

χiΦ
(L)(

εi
σ0

)

φ′( εi
σ0

)(L) − 1

n

n∑
j=1

φ′(
εj
σ0

)(L)

T

=
2

n

n∑
i=1

χi

(
φ̄(L)(εi) + ni

)(
φ̄′(εi)

(L) + ri

)T
=

2

n

n∑
i=1

χiφ̄
(L)(εi)φ̄

′(εi)
(L)T +

2

n

n∑
i=1

χiφ̄
(L)(εi)r

T
i +

2

n

n∑
i=1

χiniφ̄
′εi)

(L)T +

+
2

n

n∑
i=1

χinir
T
i =: F1 + F2 + F3 + F4.

Below we will find upper bounds on ‖F1‖E , ‖F2‖E , ‖F3‖E and ‖F4‖E then conclude

∥∥∂W̃ (L)

∂λ

∥∥ = Op(
( 1√

n
+

1

h

)
C2LL3/2ρ

1/2
2κL),

‖F‖ ≤ ‖(W̃ (L))−1‖2
∥∥∂W̃ (L)

∂λ

∥∥ = Op(π
2
L)Op(

( 1√
n

+
1

h

)
C2LL3/2ρ

1/2
2κL).

Upper bound of ‖F1‖. Firstly, the (m, `)-th element of F1 is

(F1)m` =
2

n

n∑
i=1

χiφ̄m(εi)φ̄
′
`(εi).
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Therefore, for C1 − C5 denoting constants,

E‖F1‖2E =
4

n2

L∑
m,`=1

n∑
i,j=1

n∑
i′,j′=1

tijti′j′E(εjεj′ φ̄m(εi)φ̄
′
`(εi)φ̄m(εi′)φ̄

′
`(εi′)

=
1

n2

L∑
m,`=1

[
C1

n∑
i,i′,j=1

tijti′jE(ε2
j )[E(φ̄m(εi)φ̄

′
`(εi))]

2

+C2

n∑
i,i′=1

tiiti′i′ [E(εiφ̄m(εi)φ̄
′
`(εi))]

2 + C3

n∑
i,i′=1

tii′ti′i[E(εiφ̄m(εi)φ̄
′
`(εi))]

2

+C4

n∑
i,i′=1

tiiti′iE(ε2
i φ̄m(εi)φ̄

′
`(εi))E(φ̄m(εi′)φ̄

′
`(εi′))

+C5

n∑
i=1

t2iiE(ε2
i φ̄

2
m(εi)φ̄

′
`(εi)

2)
]
.

We have, based on the lines following (4.7.36),

n∑
i,i′,j=1

|tijti′j | =
n∑
j=1

n∑
i=1

|tij |
n∑

i′=1

|ti′j | = O(n),

n∑
i,i′=1

|tiiti′i′ | = O(
n2

h2
),

n∑
i,i′=1

|tii′ti′i| = O(
n2

h2
),

n∑
i,i′=1

|tiiti′i| = O(
n2

h2
),

n∑
i=1

|t2ii| = O(
n

h2
).

We also have that∣∣∣E(ε2
j )[E(φ̄m(εi)φ̄

′
`(εi))]

2
∣∣∣, |E(ε2

i φ̄m(εi)φ̄
′
`(εi))E(φ̄m(εi′)φ̄

′
`(εi′))|,

[E(εiφ̄m(εi)φ̄
′
`(εi))]

2, E(ε2
i φ̄

2
m(εi)φ̄

′
`(εi)

2) ≤ C2(m+`)`2µ2(1+κ(m+`+K)),

since |s2φ̄m(s)2φ̄′`(s)
2| ≤ C2m+2``2

(
1 + |s|2(1+mκ+κ(`+K))

)
. Therefore,

E‖F1‖2E =
4

n2

L∑
m,`=1

O
(
C2(m+`)`2µ2(1+κ(m+`+K))

(
n+

n2

h2

))

≤ C4L
( 1

n
+

1

h2

) L∑
m=1

[ L∑
`=1

`2µ2(1+κ(m+`+K))

]
= C4L

( 1

n
+

1

h2

) L∑
m=1

L2ρ2κL = O(
( 1

n
+

1

h2

)
C4LL3ρ2κL).

Upper bound for ‖F2‖. Using r1 = r1i + r2, we decompose

F2 =
2

n

n∑
i=1

χiφ̄
(L)(εi)r

T
1i +

2

n

n∑
i=1

χiφ̄
(L)(εi)r

T
2 =: F21 + F22.
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Recalling r1i` =
{
φ′′` (ε

∗
i )− 1

n

n∑
j=1

φ′′` (ε
∗
j )
}
ε̄, the (m, `)-th argument of F21 is given by

(F21)m,` =
2

n

n∑
i=1

χiφ̄m(εi)ε̄
{
φ′′` (ε

∗
i )−

1

n

n∑
j=1

φ′′` (ε
∗
j )
}
.

Introduce notation p′′i` := φ′′` (ε
∗
i )− 1

n

n∑
j=1

φ′′` (ε
∗
j ). We will show that

‖F21‖2E = ε̄2 4
n2

L∑
m,`=1

n∑
i,j=1

[
χiχjφ̄m(εi)p

′′
i`φ̄m(εj)p

′′
j`

]
= Op(

1

n
)Op

(C4LL3ρ4κL

nh

)
.

Indeed, by Cauchy-Schwarz inequality,

4

n2

L∑
m,`=1

n∑
i,j=1

E
∣∣∣χiχjφ̄m(εi)p

′′
i`φ̄m(εj)p

′′
j`

∣∣∣ ≤ C 4

n2

L∑
m,`=1

n∑
i,j=1

[
Eχ2

iχ
2
j

]1/2[
E(φ̄m(εi)

4p′′i`
4)
]1/2

≤ O(
1

h
)

1

n2

n∑
i,j=1

L∑
m,`=1

C2(m+`)`2µ
1/2
4κ(m+`+2K)

≤ O(
n

h
)

L∑
m=1

L∑
`=1

C2(m+`)`2µ4κ(m+`+2K)

≤ 1

nh

L∑
m=1

C4LL2ρ4κL = O
(C4LL3ρ4κL

nh

)
.

because max
1≤i,j≤n

[
Eχ2

iχ
2
j

]1/2 ≤ max
1≤i,j≤n

[
Eχ4

iEχ
4
j

]1/4
= O(1/h) by (4.7.42), with the last

inequality following from Lemma 9 of Robinson (2005).

As for F22, we already have ‖r2‖ = O(CLLρ
1/2
2κL/
√
n) by (4.7.48). From evaluation

of D3, (4.7.49), we also have

‖ 2

n

n∑
i=1

χiφ̄
(L)(εi)‖ = O

(CLρ1/2
2κL

h

)
,

yielding

‖F22‖E ≤ Op(
C2LLρ2κL√

nh
).

Therefore, ‖F2‖ = Op(
C2LLρ2κL√

nh
).

Upper bound of ‖F3‖. We decompose

2

n

n∑
i=1

χi(n1i + n2)φ̄′(εi)
(L)T =

2

n

n∑
i=1

χin1iφ̄
′(εi)

(L)T +
2

n

n∑
i=1

χin2φ̄
′(εi)

(L)T =: F31 + F32.
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By the MVT, the `-th element of n1i is

n1i` =
(
φ′`(ε

∗
i )−

1

n

n∑
j=1

φ′`(ε
∗
j )
)
ε̄ =: p′i`ε̄.

This means that the (m, `)-th element of F31 is

(F31)m,` =
2

n

n∑
i=1

ε̄χip
′
imφ̄

′
`(εi).

Therefore,

‖F31‖2E =
4

n2

L∑
m,`=1

n∑
i,j=1

[
χiχj ε̄

2p′imφ̄
′
`(εi)p

′
jmφ̄

′
`(εj)

]
= ε̄2 × 4

n2

L∑
m,`=1

n∑
i,j=1

[
χiχj ε̄

2p′imφ̄
′
`(εi)p

′
jmφ̄

′
`(εj)

]
.

By Cauchy-Schwarz inequality,

4

n2

L∑
m,`=1

n∑
i,j=1

E
∣∣χiχj ε̄2p′imφ̄

′
`(εi)p

′
jmφ̄

′
`(εj)

∣∣ ≤ C

n2

n∑
m,`=1

n∑
i,j=1

[Eχ2
iχ

2
j ]

1/2
[
Ep′im

4φ̄′`(εi)
4
]1/2

= O(
1

h
)

L∑
m,`=1

C2(m`)`2m2µ
1/2
4κ(m+`+2K) ≤ O(

1

h
)C4LL5ρ4κL.

Therefore,

‖F31‖2E = O
( 1

n
× C4LL5ρ4κL

h

)
= O

(C4LL5ρ4κL

nh

)
.

Now, usingthe L× 1 vector n2 = (n21, · · · , n2L)T , we will find an upper bound on

E‖n2‖2 =
L∑
`=1

E(n2
2`). For each `, recalling the notation φ̄`(ε) = φ`(ε)− E[φ`(ε)],

E(n2
2`) =

1

n2
E[

n∑
j=1

φ`(εj)− E(φ`(ε1))]2 =
1

n2
E[

n∑
j=1

φ̄`(εj)]
2

=
1

n2

n∑
j=1

E[φ̄2
` (εj)] =

C2`µ2κ`

n
.

Therefore, by Lemma 9 of Robinson (2005),

E‖n2‖2 =

L∑
`=1

E(n2
2`) ≤

L∑
`=1

C2`µ2κ`

n
= O

(C2Lρ2κL

n

)
. (4.7.51)
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Hence,

‖F32‖ ≤ ‖n2‖
∥∥∥ 2

n

n∑
i=1

χiφ̄
′(εi)

∥∥∥ = Op

(C2LLρ2κL√
nh

)
,

because by the same argument as in the proof of (4.7.49) with φ̄′(L) and `2µ2κ(`+K)

replacing φ̄(L) and µ2κ`, respectively, we obtain

‖ 2

n

n∑
i=1

χiφ̄
′(L)(εi)‖ = O

(CLLρ1/2
2κL

h

)
.

Therefore, ‖F3‖ = Op(C
2LL5/2ρ

1/2
4κL/
√
nh).

Upper bound for ‖F4‖. Write

F4 =
2

n

n∑
i=1

χi(n1i + n2)(r1i + r2)T =
2

n

n∑
i=1

χi
(
n1ir

T
1i + n1ir

T
2 + n2r

T
1i + n2r

T
2

)
=: F41 + F42 + F43 + F44.

We have ‖r2‖ = Op(C
LLρ

1/2
2κL/
√
n) by (4.7.48) and ‖n2‖ = Op

(
CLρ

1/2
2κL/
√
n
)

from

(4.7.51). Recall notations,

n1i` =
(
φ′`(ε

∗
i )−

1

n

n∑
j=1

φ′`(ε
∗
j )
)
ε̄ =: p′i`ε̄,

r1i` =
(
φ′′` (ε

∗
i )−

1

n

n∑
j=1

φ′′` (ε
∗
j )
)
ε̄ =: p′′i`ε̄.

Firstly, we show that

‖F41‖2E ≤
∥∥∥ 1

n

n∑
i=1

χin1ir
T
1i

∥∥∥2

E
= ε̄4 × 1

n2

n∑
i,j=1

L∑
m,`=1

χiχjp
′
i`p
′′
i`p
′
jmp

′′
jm = Op

(C4LL6ρ2
8κL

n2h

)
. (4.7.52)

By Cauchy-Schwarz inequality, using the argument we used repeatedly above,

1

n2

n∑
i,j=1

L∑
m,`=1

E|χiχjp′i`p′′i`p′jmp′′jm|

≤ 1

n2

n∑
i,j=1

L∑
m,`=1

(Eχ2
iχ

2
i )

1/2
{
E(p′i`

4p′′i`
4)E(p′jm

4p′′jm
4)
}1/4

≤ 1

h

L∑
m,`=1

C2(`+m)`3m3µ
1/4
4κ(`+3K)µ

1/4
4κ(m+3K)

≤ C4LL6

h

( L∑
`=1

µ
1/4
4κ(`+3K)

)2
≤ C4LL6

h
ρ2

8κL.
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Since ε̄4 = O(1/n2), this proves (4.7.52). To bound ‖F42‖, we use that

∥∥∥ 1

n

n∑
i=1

χin1i

∥∥∥2
=
ε̄2

n2

n∑
i,j=1

L∑
`=1

χiχjp
′
i`p
′
j` = Op

( 1

n

)
Op(

C4LL4ρ4κL

h

)
,

which follows noting that by Cauchy-Schwarz inequality,

1

n2

n∑
i,j=1

L∑
`=1

E|χiχjp′i`p′j`| ≤
1

n

n∑
i,j=1

(Eχ2
iχ

2
j )

1/2
L∑
`=1

(
E(p′i`)

4
)1/2

≤ C

h

L∑
`=1

C4``4µ4κ(`+K) = O
(C4LL4ρ4κL

h

)
.

To bound ‖F43‖, we use that

∥∥∥ 1

n

n∑
i=1

χir1i

∥∥∥2
=
ε̄2

n2

n∑
i,j=1

L∑
`=1

χiχjp
′′
i`p
′′
j` = Op

( 1

n

)
Op(

C4LL8ρ4κL

h

)
,

which follows noting that by Cauchy-Schwarz inequality,

1

n2

n∑
i,j=1

L∑
`=1

E|χiχjp′′i`p′′j`| ≤
1

n

n∑
i,j=1

(Eχ2
iχ

2
j )

1/2
L∑
`=1

(
E(p′′i`)

4
)1/2

≤ C

h

L∑
`=1

C4``8µ4κ(`+2K) = O
(C4LL8ρ4κL

h

)
.

To bound ‖F44‖, we use that

1

n

n∑
i=1

E|χi| ≤
1

n

n∑
i,j=1

t2ij ≤
1

n

n∑
i=1

max
j
|tij |

n∑
j=1

|tij | = O(
1

h
).

Combining results above gives

‖F41‖ = Op

(C2LL3ρ8κL

n
√
h

)
,

‖F42‖ = Op
(C2LL2ρ

1/2
4κL√

nh

)
Op(C

LLρ
1/2
2κL/
√
n) = Op

(C3LL3ρ4κL

n
√
h

)
,

‖F43‖ = Op

(C2LL4ρ
1/2
4κL√

nh

)
Op
(
CLρ

1/2
2κL/
√

=n
)

= Op

(C3LL4ρ4κL

n
√
h

)
.

‖F44‖ = Op

(
CLLρ

1/2
2κL/
√
n
)
Op
(
CLρ

1/2
2κL/
√
n
)
Op(

1

h
) = Op

(C2LLρ2κL

nh

)
.

Recall that for any fixed a, b, c ≥ 0, we may find α > 0 large enough so that
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CaLLbρcL = O(LαL) = o(
√
h) from Assumption 5. Therefore, we conclude

‖F4‖ = Op

(C2LL3(ρ8κL + Lρ4κL)

n
√
h

)
.

We have found

‖F1‖ = OP

(( 1√
n

+
1

h

)
C2LL3/2ρ

1/2
2κL

)
,

‖F2‖ = OP

(C2LL1/2ρ
1/2
2κL

n
√
h

)
,

‖F3‖ = OP

(C2LL5/2ρ
1/2
4κL√

nh

)
,

‖F4‖ = Op

(C2LL3(ρ8κL + Lρ4κL)

n
√
h

)
.

By the same reasoning as above, we find that the rate of ‖F1‖ dominates. Therefore,

‖F‖ = OP

(( 1√
n

+
1

h

)
C2LL3/2π2

Lρ
1/2
2κL

)
.

Upper bound of ‖J‖. Write

J =
∂(w̃(L))−1

∂λ
=

1

n

n∑
i=1

φ′′(
εi
σ0

)(L)χi

=
1

n

n∑
i=1

φ′′(εi)
(L)χi +

1

n

n∑
i=1

[
φ′′(

εi
σ0

)(L) − φ′′(εi)(L)
]
χi =: J1 + J2.

We find upper bounds on ‖J1‖ and ‖J2‖. Firstly,

E
∥∥J1

∥∥2
=

1

n2

L∑
`=1

n∑
i,j=1

E(χiχjφ
′′
` (εi)φ

′′
` (εj)

(L))

≤ 1

n2

L∑
`=1

n∑
i,j=1

[E(χ2
iχ

2
j )]

1/2[Eφ′′` (εi)
4]1/2

= O
(1

h

) L∑
`=1

C2``4µ
1/2
4κ(`+m+2K) = O

(C2LL4ρ4κL

h

)
.

because max
1≤i,j≤n

[E(χ2
iχ

2
j )]

1/2 = O(1/h) by (4.7.42) and using Lemma 9 of Robinson

(2005).

Now, note that the MVT implies that the `-th element of φ′′( εiσ0 )(L) − φ′′(εi)(L) =
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ε̄φ′′′` (ε∗i ). Hence,

E
∥∥J2

∥∥2
=

1

n2

L∑
`=1

n∑
i,j=1

E(χiχj ε̄
2φ′′′` (ε∗i )φ

′′′
` (ε∗j ))

≤ 1

n2
ε̄2

n∑
i,j=1

L∑
`=1

[E(χ2
iχ

2
j )]

1/2[E(φ′′′` (ε∗i )φ
′′′
` (ε∗j ))

2]1/2 ≤ O(
1

nh
)

L∑
`=1

[E(φ′′′` (ε∗i )
4)]1/2

= O(
1

nh
)
L∑
`=1

C2``6µ4κ(`+3K) = O
(C2LL6ρ4κL

nh

)
,

since ε̄2 = O(1/n) and [E(χ2
iχ

2
j )]

1/2 = O(1/h) uniformly in i and j, and using Lemma

9 of Robinson (2005). Therefore, ‖J‖ = Op(C
LL2ρ

1/2
4κL/
√
h).

To complete the proof of ‖B‖ = op(1), we list our findings:

‖D‖ = Op(C
LLρ

1/2
2κL),

‖F‖ = Op

(
π2
L

( 1√
n

+
1

h

)
C2LL3/2ρ

1/2
2κL

)
.

‖w̃(L)‖ = Op(C
LLρ

1/2
2κL),

‖(W̃ (L))−1‖ = Op(πL),

‖J‖ = Op
(CLL2ρ

1/2
4κL√

h

)
.

Therefore,

‖B‖ ≤ ‖D‖[‖F‖‖w̃(L)‖+ ‖(W̃ (L))−1‖‖J‖]

= Op

(πLC2LL3ρ4κL√
h

(
1 + πL(

h

n
+

1√
h

)C2LL1/2ρ
1/2
2κL

))
= op(1),

where the last step follows by again noting for any a, b, c, d > 0, we may find α > 0

large enough such that CaLLbρcLπ
d
L = O(LαL) = o(

√
h) by Assumption 5. This

completes the proof of (4.7.5).

Comments on the proofs of (4.7.6) to (4.7.9).

Proof of (4.7.6) follows similar steps to those used in the proof of (4.7.5), with

derivatives of rL and ε(λ)/σ w.r.t. λ replaced by those w.r.t σ.

For the proof of (4.7.7), one has

1

n

n∑
i=1

ψ̃2
iL(λ0, σ0)− J =

1

n

n∑
i=1

[ψ̃2
iL(λ0, σ0)− ψ2(εi)] +

[ 1

n

n∑
i=1

ψ2(εi)− J
]
.(4.7.53)

The second term in (4.7.53) is of order op(1) since εi’s are i.i.d. random variables and

J = E(ψ2(ε1)). To show that the first term in (4.7.53) is of order op(1), we need to
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establish that uniformly in i = 1, · · · , n,

|ψ̃2
iL(λ0, σ0)− ψ2(εi)| ≤ |ψ̃iL(λ0, σ0)− ψ(εi)||ψ̃iL(λ0, σ0) + ψ(εi)|

≤ |ψ̃iL(λ0, σ0)− ψ(εi)|
(
|2ψ(εi)|+ |ψ̃iL(λ0, σ0)− ψ(εi)|

)
= op(1),

which is in turn implied by

|ψ̃iL(λ0, σ0)− ψ(εi)| = op(1).

Recalling ψ̃iL(λ0, σ0) = Φ(εi(λ0)/σ0)(L)T ã(L)(ε(λ)/σ0), the above statement can be

verified using the following decomposition of Φ(εi(λ0)/σ0)T and ã(L)(ε(λ)/σ0) then

following steps similar to those in the proof of (4.7.5):

Φ(
εi(λ0)

σ0
)(L) = Φ(

εi(λ0)

σ0
)(L) − Φ(εi)

(L) + Φ(εi)
(L) − φ̄(L)(εi) + φ̄(L)(εi),

ã(L)(
ε(λ)

σ0
)− a(L) = ã(L)(

ε(λ)

σ0
)− ã(L)(ε) + ã(L)(ε)− a(L).

The proofs of (4.7.8) and (4.7.9) are broadly similar to the proofs of (4.7.5), (4.7.6)

and (4.7.9). They rely on the mean value theorem to find upper bounds on the

difference between quantities evaluated at (λ, σ) ∈ N and at (λ0, σ0), where N =(
λ, σ : |λ − λ0| ≤

√
h/n, |σ − σ0| ≤

√
1/n

)
. In the proof of (4.7.5), the difference

between the fitted residual at (λ0, σ0), εi/σ0, and the true error term, εi, was ε̄ =

Op(1/
√
n). Below, we will show that the difference between fitted residuals at (λ0, σ0)

and any (λ, σ) ∈ N , is also of order Op(1/
√
n). Recall that ε(λ) = HS(λ)y, where

S(λ) = I − λW . We have

ε(λ)

σ
− ε(λ0)

σ0
=

ε(λ)

σ
− ε(λ0)

σ
+
ε(λ0)

σ
− ε(λ0)

σ0

=
(λ0 − λ)σ0HGε

σ
+
σ0 − σ
σ

Hε,

with the second inequality following from

ε(λ)− ε(λ0) = H
(
S(λ)− S(λ0)

)
y = (λ0 − λ)HWy

= (λ0 − λ)HW (S−1σ0ε+ µ01n) = (λ0 − λ)σ0HGε,

ε(λ0) = HSy = HS(S−1σ0ε+ µ01n) = σ0Hε,

since HS1n = H(I − λ0W )1n = H(1− λ0)1n = 0 as W1n = 1n. This means that for

i = 1, · · · , n, and (λ, σ) ∈ N ,

∣∣εi(λ)

σ
− εi(λ0)

σ0

∣∣ ≤ |λ0 − λ|
∣∣σ0

σ

∣∣|χi|+ ∣∣σ0 − σ
σ

∣∣|εi − ε̄|
= O

(√h√
n

)
O(1)Op

( 1√
h

)
+O

( 1√
n

)
Op(1) = Op

( 1√
n

)
,
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because χi = OP
(
(Eχ2

i )
1/2
)

where E(χ2
i ) =

n∑
j=1

t2ij = O(1/h). �
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