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Abstract

This thesis examines settings where multiple decision makers with conflicting interests
benefit from cooperation in joint combinatorial optimisation problems. It draws on co-
operative game theory, polyhedral theory and graph theory to address cost sharing in
joint single-source shortest path problems and joint weighted minimum colouring prob-
lems.

The primary focus of the thesis are problems where each agent corresponds to a
vertex of an undirected complete graph, in which a special vertex represents the com-
mon supplier. The joint combinatorial optimisation problem consists of determining the
shortest paths from the supplier to all other vertices in the graph. The optimal solution
is a shortest path tree of the graph and the aim is to allocate the cost of this shortest
path tree amongst the agents. The thesis defines shortest path tree problems, proposes
allocation rules and analyses the properties of these allocation rules. It furthermore in-
troduces shortest path tree games and studies the properties of these games. Various core
allocations for shortest path tree games are introduced and polyhedral properties of the
core are studied. Moreover, computational results on finding the core and the nucleolus
of shortest path tree games for the application of cost allocation in Wireless Multihop
Networks are presented.

The secondary focus of the thesis are problems where each agent is interested in
having access to a number of facilities but can be in conflict with other agents. If two
agents are in conflict, then they should have access to disjoint sets of facilities. The
aim is to allocate the cost of the minimum number of facilities required by the agents
amongst them. The thesis models these cost allocation problems as a class of cooperative
games called weighted minimum colouring games, and characterises total balancedness
and submodularity of this class of games using the properties of the underlying graph.
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Money,
It’s a crime.

Share it fairly,
But don’t take a slice of my pie.

Money, Pink Floyd (Dark Side of the Moon, 1973)
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Chapter 1

Introduction

This thesis addresses cost allocation in situations where there are multiple decision mak-
ers who are motivated to cooperate upon solving a joint combinatorial optimisation prob-
lem in order to realise cost savings. The primary focus of the thesis is a connection
problem, namely the shortest path tree problem, and the corresponding games. The
secondary focus of the thesis are games arising from a conflict problem, namely the
weighted minimum colouring games.

Combinatorial optimisation deals with problems in which a single decision maker
searches for an optimal solution in a discrete set of potential solutions where optimality
is defined with respect to the desired objective of the decision maker. There are a vari-
ety of practical applications such as ship routing, machine sequencing and airline crew
scheduling that can be modelled as combinatorial optimisation problems. Although the
optimal solution of these problems is a subset of a finite set and thus in theory can be
identified by complete enumeration (Wolsey, 1998), the large number of possible so-
lutions for such practical applications makes complete enumeration intractable. There-
fore, a considerable amount of research on combinatorial optimisation concentrates on
developing fast and efficient algorithms for solving different classes of combinatorial
optimisation problems.

For combinatorial optimisation problems involving several decision makers who are
motivated to work together in order to reduce their overall costs (to increase their overall
profits), the theory of cooperative games provides valuable insights for cost (profit) allo-
cation. Cooperative game theory concentrates on games with multiple decision makers
(players) who are assumed to be able to form subsets (coalitions) and addresses the al-
location of the total cost (profit) of a joint project if the players involved work together
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CHAPTER 1. INTRODUCTION 9

to reduce costs (increase profits). The players use different coalitions as a basis of ne-
gotiation for their share of the cost (profit) of the joint project. In cases where multiple
decision makers with conflicting interests benefit from cooperation upon solving their
joint combinatorial optimisation problem, the solution process can be seen as consisting
of two sequential subprocesses. Firstly, combinatorial optimisation techniques enable
the decision makers to solve their common problem to optimality. Next, making use of
cooperative game theoretical concepts, a “mutually satisfactory” or “fair” allocation can
potentially be reached.

In this thesis we employ two approaches from the cooperative game theory literature
to address cost allocation arising from combinatorial optimisation problems. Firstly, we
consider existing, well-known game theoretical allocation concepts and introduce new
allocation rules that arise from the particular setting that is of interest to us. Secondly,
we investigate the properties of the cooperative games that we define.

1.1 Literature Review

The following paragraphs will introduce four games arising from combinatorial opti-
misation problems to help position this thesis within the existing literature on the in-
terplay between cooperative game theory and combinatorial optimisation. Firstly, we
concentrate on two games defined on trees, namely minimum cost spanning tree and
maintenance games, and in the context of these games, we define and illustrate cooper-
ative game theoretical properties and solution concepts that this thesis will draw upon.
We furthermore present Chinese postman games and highway games where cooperative
game theoretical properties are studied in relation to the properties of the underlying
graph representing the combinatorial optimisation problem. Various other examples of
cooperative games arising from combinatorial optimisation problems that are not dis-
cussed below (e.g. travelling salesman games, sequencing games, assignment games)
can be found in the comprehensive survey on games induced by operational research
problems by Borm et al. (2001). Furthermore, cooperative games arising from combi-
natorial optimisation problems constitute the subject of the book by Curiel (1997). A
wider class of cost allocation problems and “fairness” in cost allocation in general are
discussed in Young (1985).
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Example 1.1. Minimum Cost Spanning Tree Games. Consider the following situation
arising from the minimum cost spanning tree problem displayed in Figure 1.1. A span-

ning tree of a graph G is a connected and acyclic subgraph of G containing all vertices
of G. A minimum cost spanning tree (MCST) of G is a spanning tree with the property
that the sum of the costs of the edges of the spanning tree is minimum.
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Figure 1.1: An MCST problem.

Let v0 represent a water supplier and let the vertices 1, 2 and 3 represent three villages
that need to be connected to the water supplier. The edge costs represent (in £millions)
the cost of building a pipeline between two villages or between a village and the water
supplier. The villages are to cover the cost of the construction of the water distribution
system.

If the three villages choose to act on their own, they would have to pay £5m, £10m
and £13m, respectively, for connecting to the water supplier. If, however, they all decide
to cooperate to build a water distribution system, the pipelines go from the water supplier
to village 1, from village 1 to village 3, and finally from village 3 to village 2 resulting
in a total cost of £20m. In fact, this solution is an MCST of the complete graph induced
by vertices v0, 1, 2 and 3. The combinatorial optimisation problem of determining an
MCST of a graph can be solved efficiently by the algorithms proposed by Kruskal (1956)
and Prim (1957). Observe that when the villages cooperate, they can save (£5m + £10m
+ £13m)-£20m = £8m. Now, the question is how to allocate the total cost of £20m fairly
amongst the three villages. Would dividing the total cost by 3 and allocating £6.66m to
each village be considered a good allocation? Or is it better to allocate to each village the
cost of the pipeline that connects them to the water distribution system and thus to assign
£5m, £7m and £8m to villages 1, 2 and 3, respectively? Naturally, there are numerous
possible ways of defining such allocations. As pointed out by Tijs and Driessen (1986),
the choice of the “best” allocation is a contextual issue depending on the setting of the
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joint problem or on the perspectives of the decision makers as to what is deemed “fair” or
“satisfactory”. Therefore, a central aspect is to identify desirable properties that can then
be used to compare and contrast different allocations. The literature on such properties
is reviewed in Thomson (2007).

The cost allocation problem associated with the MCSTs was introduced by Claus
and Kleitman (1973). From the numerous studies on cost allocation rules, the properties
as well as the axiomatic characterisations of these rules for MCST problems, we mention
Branzei et al. (2004), Moretti et al. (2005), Tijs et al. (2006), Bergantiños and Vidal-Puga
(2007) and Bergantiños and Kar (2010), as well as Feltkamp et al. (1994a) and Feltkamp
et al. (1994b) for generalisations of MCST problems.

The game theoretic approach to the allocation of cost in MCST problems was initi-
ated by Bird (1976) and further analysed by Granot and Huberman (1981) and Granot
and Huberman (1984).

A cooperative (cost) game is a pair (N, c) whereN = {1, 2, . . . , n} is the finite set of
players and c : 2N → R is the characteristic function such that c(∅) = 0. Here 2N is the
collection of all subsets of N (also referred to as coalitions). The MCST game (N, c),
arising from the MCST problem in Figure 1.1, consists of the player set N = {1, 2, 3}
and the characteristic function c displayed in Table 1.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
c(S) 5 10 13 15 13 17 20

Table 1.1: Coalitional costs of the MCST game (N, c) in £millions.

Consider the allocation of £6.66m to each village. Village 1 would not be satisfied
with this allocation since if village 1 were to build a pipeline on its own, it would only
have to pay £5m. Therefore, the allocation (6.66, 6.66, 6.66) does not provide incentive
to village 1 to cooperate with the rest of the villages. In fact, every subset of villages
can employ this perspective and use the cost of building a pipeline amongst themselves
as a benchmark. Then an allocation vector x = (x1, x2, x3) where xi denotes the cost
allocated to player i by x, that guarantees that the exact cost of the water distribution
system is paid by the three villages such that no subset of villages pay more than what
they would have paid if they acted on their own must satisfy the following constraints:

x1 + x2 + x3 = 20
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x1 + x2 ≤ 15

x1 + x3 ≤ 13

x2 + x3 ≤ 17

x1 ≤ 5

x2 ≤ 10

x3 ≤ 13.

The set of all solutions satisfying these constraints is called the core of (N, c) (Gillies,
1953) and is defined as

Core(c) =

{
x ∈ RN |

∑
i∈N

xi = c(N) and
∑
i∈S

xi ≤ c(S) for all S ⊂ N

}
.

Note that if an allocation x ∈ RN satisfies
∑

i∈N xi = c(N), then it is called efficient.
The collection {S1, S2, . . . , Sk} of coalitions of N is called a balanced collection if
there exist positive numbers λ1, λ2, . . . , λk such that for every i ∈ N ,

∑
j:Sj∋i λj = 1.

The numbers λ1, λ2, . . . , λk are called balancing weights (Kannai, 1992). The core of
a game has been characterised by Bondareva (1963) and Shapley (1967) as follows.
The core of a game (N, c) is non-empty if and only if for every balanced collection
{S1, S2, . . . , Sk} with balancing weights λ1, λ2, . . . , λk,

∑k
j=1 λkc(Sj) ≥ c(N) holds.

Since the non-emptiness of the core and balancedness are shown to be equivalent, the
games with non-empty cores are also referred to as balanced games . For this example,
the allocation (5, 7, 8) that can be read from the MCST, called the Bird rule (Bird, 1976),
is always a core element for the MCST games. Therefore, the core of the MCST games
is not empty. Thus, MCST games are said to be balanced. Now, consider a subgame

of (N, c), which is a game that is restricted to a coalition S. Formally, a subgame of
(N, c) is denoted by (S, cS) where S ⊆ N , S ̸= ∅ and cS(T ) = c(T ) for all T ⊆ S. If
we take S = {1, 3}, we have cS({1}) = 5, cS({3}) = 13 and cS({1, 3}) = 13. Then
the allocation of £5m and £8m to villages 1 and 3, respectively, by the Bird rule gives a
core allocation for the subgame (S, cS) induced by S = {1, 3}. If any of the subgames
(S, cS) are balanced, then (N, c) is called totally balanced. Since every subgame of an
MCST game is also an MCST game and thus is balanced, the MCST games are totally
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balanced.
Total balancedness provides coalitional stability as we have discussed above since it

guarantees that no subset of players pay more than what they would have paid if they
acted on their own. Nonetheless, this may not be adequate if the situation is dynamic,
that is, new players might join over time. Assume that initially the water distribution
system only covered villages 2 and 3. In this case, if the cost was allocated according to
the Bird rule, village 2 would pay £10m and village 3 would pay £7m. When village 1

offers to join the water distribution system and the cost allocation is (5, 7, 8) according
to the Bird rule, player 3 would veto the inclusion of village 1 since if village 1 is a part
of the water distribution system village 3 has to pay £8m instead of £7m. Population

monotonic allocation schemes (PMASs), defined by Sprumont (1990), require that the
cost allocated to a player does not increase if new players join the coalition to which it
belongs. Therefore, this notion introduces an incentive for cooperation to the existing
players since they would not pay more in the case of new players joining in. Formally,
the table x = (xS,i)S∈2N\{∅},i∈S is a PMAS if the following two conditions hold:

i. For all S ∈ 2N\{∅},
∑

i∈S xS,i = c(S).

ii. For all S, T ∈ 2N\{∅} such that S ⊆ T and for all i ∈ S, xS,i ≥ xT,i.

The Bird rule, therefore, would generate a table that is not a PMAS since for i = 3,
S = {2, 3} and T = {1, 2, 3} we get xS,i = 7 ≤ 8 = xT,i as we have discussed above.
It has been shown by Norde et al. (2004) that MCST games always allow a PMAS. For
the MCST game considered in this example, a PMAS is presented in Table 1.2. Note
that cooperative games that allow PMASs are totally balanced.

S 1 2 3
{1, 2, 3} 5 8 7
{1, 2} 5 10 ∗
{1, 3} 5 ∗ 8
{2, 3} ∗ 10 7
{1} 5 ∗ ∗
{2} ∗ 10 ∗
{3} ∗ ∗ 13

Table 1.2: A PMAS for the MCST game (N, c) (costs in £millions).
⋄
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Figure 1.2: A maintenance problem.

Example 1.2. Maintenance Games. We adapt the scenario of this example from Borm
et al. (2001). Consider the following situation arising from the maintenance problem
displayed in Figure 1.2. Let v0 represent the town library and let the vertices 1, 2, 3
and 4 represent four houses that are connected to the town library via the fixed road
network represented by the edges of the tree. Assume that the stripes on the entire road
network need to be repainted and the cost of the repainting is to be paid by the four
houses that use the road network. The maintenance costs are represented by the edge
costs (in £100s). Therefore, the total cost of maintenance is £3000.

If house 3 wanted to pay for the repainting of the stripes on the roads that connect
it to the town library without cooperating with the rest of the players, it would have to
pay the cost of the entire path from v0 to itself, which is £2600. However, if houses 2

and 3 wanted to pay for the repainting of the stripes on the roads that connect them to
the town library without cooperating with the rest of the players, they would still pay
£2600 since the path from v0 to house 3 contains the connection of house 2 to v0. The
maintenance game arising from the maintenance problem in Figure 1.2 consists of the
player set N = {1, 2, 3, 4} and characteristic function c displayed in Table 1.3 where
the cost of a coalition is the cost of the fixed tree network’s subgraph that is also a tree
preserving the connections of all the members of this coalition to the town library at
minimum cost.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4}
c(S) 12 18 26 16 18 26 16 26 22

S {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
c(S) 30 26 22 30 30 30

Table 1.3: Coalitional costs of the maintenance game (N, c) in £100s.
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The maintenance games were discussed in Koster et al. (2001) and Bjøndal et al.
(1999). Observe that the underlying combinatorial structure is an MCST for both MCST
games and the maintenance games. Nonetheless, the characteristic function of these
games, and thus the games are different since the connection network is fixed in main-
tenance games and is not fixed in MCST games.

For this maintenance game, we will present three well-known one point allocation
concepts from the cooperative game theory literature, namely the Shapley value (Shap-
ley, 1953), the nucleolus (Schmeidler, 1969), and the τ value. (Tijs, 1981).

Firstly, let us discuss the Shapley value. Assume that the houses enter this mainte-
nance problem one by one in a given order, say house 1, house 3, house 2 and house 4.
House 1 then has to pay the cost of the repainting of the road that connects it to the town
library, which is £1200. When house 3 enters, the total cost of houses {1, 3} is £2600,
but since £1200 has already been paid by house 1, house 3 only pays £1400. Similarly,
when house 2 enters it pays the difference between the cost of houses {1, 2, 3}, and
{1, 3}, which is £0. Finally, when house 4 enters it pays the difference between the cost
of houses {1, 2, 3, 4}, and {1, 2, 3}, which is £400. Thus, this particular order of entering
the maintenance problem gives rise to the allocation (1200, 0, 1400, 400).

Let Π(N) denote the set of all permutations of N . Let π denote a permutation of N,
and let π(i) denote the order of player i in permutation π. Let πi = {j : π(i) > π(j)}
denote the set of players preceding i in permutation π. Then the marginal vector mπ(c)

is defined as

mπ
i (c) = c(πi ∪ {i})− c(πi) for all i ∈ N.

Therefore, (1200, 0, 1400, 400) is the marginal vector corresponding to permutation π =

[1, 3, 2, 4]. If we let π = [2, 4, 3, 1], we getmπ(c) = (c({1, 2, 3, 4})−c({2, 3, 4}), c({2}),
c({2, 3, 4})− c({2, 4}), c({2, 4})− c({2})) = (0, 1800, 800, 400).

The Shapley value of a cost game (N, c), denoted by ϕ(c), is equal to the average of
the marginal vectors over all permutations of N . For the maintenance game (N, c), the
Shapley value ϕ(c) = (300, 600, 1400, 700). Formally,

ϕi(c) =
∑

π∈Π(N)

mπ
i (c)

n!
for all i ∈ N

where n = |N |.
Secondly, we discuss the nucleolus. Assume that the total cost of maintenance was
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allocated using the Shapley value as (300, 600, 1400, 700) and consider the coalition
{2, 3}. If houses 2 and 3 only cooperated with each other, they would have paid £2600,
whereas according to the Shapley value they pay £2000. The difference between these
two values, which equals £600, can be seen as a measure of satisfaction of this coali-
tion from the Shapley value. In general, the excess of a coalition S with respect to

an allocation x ∈ RN , denoted by e(S, x), is defined as e(S, x) = c(S) −
∑

i∈S xi.
Furthermore, let I(c) denote the set of imputations of a cost game (N, c) such that
I(c) = {x ∈ RN :

∑
i∈N xi = c(N) and xi ≤ c({i}) for all i ∈ N}. We adapt the

following interpretation of the nucleolus by Maschler et al. (1979) due to its intuitive
appeal. Assume that there exists an arbitrator who interprets e(S, x) as the satisfaction
of coalition S from allocation x. The arbitrator would like to choose an imputation that
maximises the satisfaction of the least satisfied coalition from allocation x. There can
possibly be more than one imputation that satisfy this criterion. Amongst these imputa-
tions, the arbitrator then would like to choose the one that maximises the satisfaction of
the second least satisfied coalition from allocation x. If the arbitrator continues in this
manner, the unique imputation that he reaches is the nucleolus. Thus, the nucleolus of
a cooperative cost game is the unique imputation that lexicographically maximises the
excesses of all coalitions. Formally, let I(c) ̸= ∅ and let x ∈ I(c) be an imputation.
Let Θ(x) ∈ R2N be a vector whose elements are the excesses e(S, x) of all possible
coalitions in 2N in a nondecreasing order. Let y, z ∈ Rk be two vectors for which either
there exists an index j ≤ k such that yi = zi for i < j and yj > zj or y = z. Then
y is said to be lexicographically greater than or equal to z, denoted by y ≽lex z. The
nucleolus η(c) ∈ I(c) is the unique imputation such that Θ(η(c)) ≽lex Θ(x) for all
x ∈ I(c). For a balanced game, the nucleolus is always a core element. The nucleolus
of the maintenance game (N, c) is equal to η(c) = (400, 500, 1300, 800).

For a general cooperative cost game, the main drawback of the nucleolus and the
Shapley value is the complexity of computing these allocations. We mention the work of
Elkind and Pasechnik (2009) on the complexity of computing the nucleolus of weighted
voting games, which may be applied to a wider class of games, as well as the work
of Bachrach et al. (2010) on the complexity of computing the Shapley value of simple
coalitional games.

Due to the special structure of the maintenance games, the nucleolus and the Shapley
value can be computed easily with the following two “painting stories”. We start with
the computation of the nucleolus, which is due to Maschler et al. (1995). Assume that
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four painters, each hired by one of the four houses, are to carry out the repainting work.
Assume furthermore that the edge costs now represent the number of minutes it would
take one painter to repaint the stripes on the corresponding road. The repainting work is
carried out according to the following rules (Borm et al., 2001):

(a) Every painter paints with speed 1.

(b) Every painter has to keep on working until the stripes on all the roads from the town
library to the house that employed him have been repainted.

(c) Every painter only works on a road that is between the town library and the house
that employed him.

(d) If the stripes on a road between a house’s predecessor on the fixed tree and the town
library have not been fully repainted, the painter employed by this house carries out
the painting work on this road.

(e) As long as rules (a)-(d) permit, every painter works as close to the house that em-
ployed him as possible.

Table 1.4 presents the time (t) period in minutes and the roads (edges) that each
painter is working on where eij denotes the edge between vertices i and j. Note that all
the painters start working at t = 0 and a X indicates that the painter has completed his
work.

1 2 3 4
0 ≤ t ≤ 400 ev01 ev01 e12 ev01

400 < t ≤ 500 X e12 e12 e14
500 < t ≤ 800 X X e23 e14
800 < t ≤ 1300 X X e23 X
1300 < t X X X X

Table 1.4: The time (t) period in minutes and the roads whose stripes are being repainted
by the four painters according to rules (a)-(e).

Therefore, painter 1 works for 400 minutes, painter 2 works for 500 minutes, painter 3
works for 1300 minutes and painter 4 works for 800 minutes to complete the repainting.
This gives rise to the allocation (400, 500, 1300, 800), which is the nucleolus of this
game.
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The Shapley value is computed with a slightly modified painting story (Bjøndal et al.,
1999). Assume that rule (d) no longer applies and that rule (e) is replaced by (Borm et al.,
2001):

(f) As long as rules (a)-(c) permit, every painter works as close to the town library as
possible.

In this case, we get the time periods and the roads that each painter is working on
presented in Table 1.5.

1 2 3 4
0 ≤ t ≤ 300 ev01 ev01 ev01 ev01

300 < t ≤ 600 X e12 e12 e14
600 < t ≤ 700 X X e23 e14
700 < t ≤ 1400 X X e23 X
1400 < t X X X X

Table 1.5: The time (t) period in minutes and the roads whose stripes are being repainted
by the four painters according to rules (a)-(c) and (f).

Therefore, painter 1 works for 300 minutes, painter 2 works for 600 minutes, painter 3
works for 1400 minutes and painter 4 works for 700 minutes to complete the repainting.
This gives rise to the allocation (300, 600, 1400, 700), which is the Shapley value of this
game.

Thirdly, we illustrate the τ value. Let i ∈ N . Let us first assume that house i wants
to pay the minimum amount it can hope to pay upon cooperation with the rest of the
houses. This amount equals c(N) − c(N\{i}) because this cost is only incurred when
house i enters the game and is referred to as the marginal contribution of house i. For the
maintenance game (N, c) of this example, this principle gives us the allocation m(c) =

(0, 0, 800, 400). The allocation of the marginal contributionmi(c) to house i can be seen
as a lower bound on its share of the total cost. Now, let us establish an upper bound as
follows. Consider the coalition {1, 2, 3} and assume that all the houses except for house
1 pay their marginal contribution. Then house 1 would have to pay the remaining cost
of c({1, 2, 3}) −m2(c) −m3(c) = 2600 - 0 - 800 = 1800. In fact, with respect to this
coalition house 1 would never agree to pay more than £1800 since all the other houses in
the coalition are already paying the lowest possible amount that they can hope to pay. For
every coalition that house 1 is a member of it would never pay more than the remaining
amount if the rest of the houses only pay their marginal contribution. Therefore, house 1
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would only agree to pay the minimum of such remaining costs amongst all the coalitions
that it is a member of. The minimum remaining cost of house 1 is with respect to
coalition {1, 4}, and calculated as c({1, 4})−m4(c) = 1600 - 400 = 1200. If every house
employs this principle, we get the allocation M(c) = (1200, 1800, 2600, 1600). Since,
the total cost of repainting is £3000 and this is exactly the cost the houses would cover,
we take the convex combination of the two aforementioned vectors such that the sum of
the shares of the four houses in the resulting allocation equals £3000. In order words, we
take the convex combination of vectorsm(c) andM(c) such that the resulting allocation
is efficient. This gives us the τ value of (N, c), τ(c) = (360, 540, 1340, 760). The τ value
is a compromise between an allocation vector that favours each player and an allocation
vector that disfavours each player. Formally, the τ value is defined as follows. Let
mi(c) = c(N) − c(N\{i}) and let Mi(c) = minS⊆N : i∈S

{
c(S) −

∑
j∈S\{i}mj(c)

}
for

all i ∈ N . Then τ(c) = µm(c)+ (1−µ)M(c) where µ is such that
∑

i∈N τi(c) = c(N).
Finally, we consider two properties of the maintenance games. The cooperative game

(N, c) is submodular if for all i ∈ N and for all S ⊂ T ⊆ N\{i}, its characteristic
function satisfies c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ). Therefore, the incentive for
joining a coalition increases as the coalition grows for a submodular game. Submodular
games allow PMASs and consequently are totally balanced. The core of the submodular
games has been characterised by Shapley (1971) and Ichiishi (1981) as the convex hull
of the marginal vectors. Therefore, the Shapley value is always stable and the centre
of mass of the marginal vectors for submodular games. The cooperative game (N, c) is
monotone if its characteristic function satisfies c(S) ≤ c(T ) for any S ⊆ T ⊆ N . Thus,
this property implies that the cost of a given coalition is greater than or equal to the cost
of each of its subsets, that is, larger coalitions pay more. The maintenance games are
submodular and monotone.

Various generalisations of maintenance games are studied in Megiddo (1978), Gra-
not and Granot (1992), Maschler et al. (1995), Granot et al. (1996), Granot and Maschler
(1998), van Gellekom and Potters (1999), Miquel et al. (2006). ⋄
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Example 1.3. Chinese Postman Games. Consider the following situation arising from
the Chinese postman problem displayed in Figure 1.3.

v0

v1

v2 v3

e2,50 e4,10

e1,30

e3,20

Figure 1.3: A Chinese postman problem.

Let v0 represent the post office. A postman, who has to start and finish his journey at
the post office, has to deliver mail to four streets of a neighbourhood represented by the
edges e1 to e4. In order to deliver the mail, the postman has to visit each street at least
once. The cost of the postman to travel through a street is represented by the weight
of the corresponding edge. The combinatorial optimisation problem is to determine the
tour that starts and ends at v0, and visits each edge at least once at minimum cost. This
problem is the Chinese postman problem (Kwan, 1963). An optimal tour for the problem
in Figure 1.3 is v0, e1, v1, e2, v2, e3, v3, e4, v1, e1, v0.

A cooperative cost game arising from this combinatorial optimisation problem is
introduced by Hamers et al. (1999). Firstly, let N = {1, 2, 3, 4} be the set of play-
ers such that player i ∈ N is associated with edge (street) ei. The computation of the
cost of a coalition in the Chinese postman game of Hamers et al. (1999) is as follows.
There are two types of costs involved, namely the travel and delivery costs. The cost
of travelling through a street is the weight of the associated edge and is incurred ev-
ery time the street is visited. On the other hand, the cost of delivery is only incurred
when the postman delivers mail to a street. The delivery cost is the same for all streets
and equals £10. Since the postman needs to start and finish his journey at the post of-
fice, he would have to travel through streets even when he is not delivering mail and in
fact the cost of such trips constitute the characteristic function of the Chinese postman
games. Let us explain this by calculating c({1, 2}). The associated minimum cost tour
is v0, e1, v1, e2, v2, e3, v3, e4, v1, e1, v0. The postman starts by travelling through and de-
livering to streets e1 and e2, thus incurring the corresponding travel and delivery costs of
£30+£10=£40 and £50+£10=£60, respectively. The costs of £40 and £60 are referred to
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as fixed costs and are to be paid by the associated players 1 and 2, respectively. There-
fore, these costs can be attributed to the members of the coalition {1, 2} individually and
are not significant to the calculation of the cost of this coalition within the context of the
Chinese postman game. Now, the postman needs to travel from v2 to v0 through streets
e3, e4 and e1 incurring £20+£10+£30 = £60 of travelling cost when he is not delivering
mail. This amount is to be covered by the members of the coalition {1, 2} collectively.
Thus, c({1, 2}) = 60. Let us also calculate c({3}). In this case, the minimum cost tour
of the postman is v0, e1, v1, e4, v3, e3, v2, e3, v3, e4, v1, e1, v0. Since the postman delivers
mail during his first visit to e3, we ignore the travelling cost of his first visit to e3 upon
calculating c({3}). The cost of this coalition therefore covers travelling through streets
e1, e4, e3 (on the return trip the postman is not delivering mail to this street), e4 and e1
and adds up to £30+£10+£20+£10+£30=£100 of travelling cost when he is not delivering
mail. Thus, c({3}) = 100. The characteristic function c is displayed in Table 1.6.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4}
c(S) 30 90 100 70 60 70 40 70 80

S {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
c(S) 90 40 50 60 60 30

Table 1.6: Coalitional costs of the Chinese postman game (N, c).

We conclude this example by summarising the relationships that have been estab-
lished between the properties of the underlying undirected graph and the properties of
the associated Chinese postman game by Hamers et al. (1999) and Granot et al. (1999).
Note that Granot et al. (1999) also study the properties of the directed and mixed graphs.
A graph is said to be Chinese Postman (CP) balanced, CP totally balanced and CP

submodular if the corresponding Chinese postman game is balanced, totally balanced
and submodular, respectively, for all edge costs and all locations of the post office. A
connected undirected graph G is called Eulerian if G can be traversed such that each
edge is visited only once. A connected undirected graph G is called weakly Eulerian

if it consists of a number of Eulerian graphs such that shrinking each of these Eulerian
graphs into a vertex gives a tree. A connected undirected graph G is called weakly cyclic

if every edge of G is contained in at most one cycle. The first result is that a connected
undirected graph G is weakly Eulerian if and only if it is CP balanced. The ‘only-if’-
part and the ‘if’-part of this statement are due to Hamers et al. (1999) and Granot et al.
(1999), respectively. For a connected undirected graph G, being weakly cyclic, CP to-
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tally balanced and CP submodular are shown to be equivalent by Granot et al. (1999).
We furthermore mention the work of Granot and Hamers (2004) for a similar approach
to studying game theoretical properties in relation to graph theoretical properties for CP
and travelling salesman games. ⋄

Example 1.4. Highway Games. Consider the following situation arising from a high-
way problem. Let N = {1, 2, 3} denote the set of agents. Each agent i ∈ N is respon-
sible for constructing a highway between two locations si and ti. Locations of si and ti,
and the costs of the edges, which represent feasible connections, are displayed in Figure
1.4.
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Figure 1.4: A highway problem.

The optimal solution of this problem is to construct a highway between v1 and v2,
between v2 and v3, and between v3 and v4 at a total cost of £8bn.

The highway games were introduced by Mosquera (2007) for the case where the
underlying graph is a tree. Nonetheless, here we present the cooperative cost game
associated with a highway problem on a weakly cyclic graph, which is studied by Çiftçi
et al. (2010). Next, we illustrate the computation of the cost of a coalition in a highway
game. Let us start by calculating c({1}). If agent 1 were to pay for the construction
of a highway between s1 and t1, that is, between v1 and v3, the cheapest connection
would be established through v2 at a cost of c({1}) = 5. Let us now calculate c({1, 3})
where agents 1 and 3 cooperate to build a highway that connects s1 to t1, and s3 to t3
at minimum cost. Therefore, agents 1 and 3 construct a highway between v1 and v3
through v4 at a cost of c({1, 3}) = 7. The characteristic function c is displayed in Table
1.7.
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
c(S) 5 3 4 5 7 7 8

Table 1.7: Coalitional costs of the highway game (N, c) in £billions.

Finally, we summarise the characterisation of balancedness and submodularity of
highway games on weakly cyclic graphs by Çiftçi et al. (2010). Similar to the case of
the Chinese postman games, game theoretical properties are studied in relation to the
properties of the underlying graph. A graph is said to be highway game (HG) balanced

and HG submodular if all highway games induced by G are balanced and submodular,
respectively. A weakly cyclic graphG is called weakly triangular if every cycle inG has
3 edges. Firstly, a graph G is weakly cyclic if and only if G is HG balanced. Secondly,
a graph G is weakly triangular if and only if G is HG submodular. ⋄

1.2 Overview

We present a brief summary of the thesis in this section.
The first part of the thesis consisting of Chapter 2, Chapter 3 and Chapter 4 is

concerned with situations arising from a shortest path tree problem and the associated
games. Each agent in a shortest path tree problem corresponds to a vertex of an undi-
rected complete graph, in which a special vertex represents the common supplier. The
joint combinatorial optimisation problem of the agents involved consists of determining
a tree that spans all the agents such that the path between an agent and the supplier is
a shortest path. The cost of this shortest path tree is the sum of the cost of the shortest
paths between the supplier and all the agents. In a shortest path tree game, the set of
players is equal to the set of agents of the shortest path tree problem and the cost of a
coalition is the cost of a shortest path tree formed by its members.

We illustrate a shortest path tree problem and the associated cooperative game in the
following example.
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Example 1.5. Shortest Path Tree Games. Consider the following situation arising from
the shortest path tree problem displayed in Figure 1.5.

1
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Figure 1.5: A shortest path tree problem.

Let v0 represent a base station that provides internet to the users 1, 2 and 3 repre-
sented by the vertices. The edge costs represent (in £) the cost of establishing a wireless
connection between two users or between a user and the base station. The users can
connect to the base station directly or via other users who are willing to cooperate. If the
three users decide to act on their own, they need to pay £4, £25 and £25, respectively, to
connect to the base station. However, if they all decide to cooperate the minimum cost
connection of the three users to the base station is a shortest path tree rooted at v0 where
user 1 connects directly to the base station at a cost of £4 and users 2 and 3 connect to
the base station via user 1 at a cost of £13 and £5, respectively. Therefore, the total cost
of the shortest path tree equals £4+£13+£5=£22 and this is the cost to be shared amongst
the three users. The shortest path tree game (N, c) arising from the shortest path tree
problem in Figure 1.5 consists of the player set N = {1, 2, 3} and the characteristic
function c displayed in Table 1.8 where the cost of a coalition S ⊆ N is equal to the cost
of the shortest path tree formed by its members to connect to v0.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
c(S) 4 25 25 17 9 50 22

Table 1.8: Coalitional costs of the shortest path tree game (N, c) in £.
⋄
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Chapter 2 defines and studies the shortest path tree problems. We address the allo-
cation of the cost of a shortest path tree amongst the agents by proposing three different
allocation rules specific to our context of shortest path tree problems. Firstly, the tree

solution θ assigns to each agent the cost of its own shortest path on a shortest path tree
formed by all the agents. Secondly, the δi rule is defined with respect to an agent i ∈ N

by considering a shortest path tree formed by all the agents excluding i. According to
this rule all the agents excluding i pay the cost of their own shortest path on a shortest
path tree formed by all the agents excluding i, and agent i pays the difference between
the cost of a shortest path tree formed by all the agents and the cost of a shortest path
tree formed by all the agents excluding i, that is, agent i pays its marginal contribution.
Thirdly, the γ rule is defined as the average of δi for all agents i. Note that the δi and the
γ rules are novel allocation rules proposed by us in this thesis. We furthermore analyse
a number of properties of these three allocation rules in order to compare and contrast
them. Finally, we axiomatically characterise the tree solution θ.

In Chapter 3, we introduce the shortest path tree games arising from the shortest path
tree problems. We start by analysing the properties of the shortest path tree games to help
us position these games amongst other classes of cooperative games. We show that the
shortest path tree games are totally balanced, allow a PMAS but are not submodular and
not monotone. Next, we apply a number of existing solution concepts from cooperative
game theory literature to shortest path tree games. In particular, we consider the core
(Gillies, 1953), the Shapley value (Shapley, 1953), the τ value (Tijs, 1981) and the
nucleolus (Schmeidler, 1969). Initially, we concentrate on core allocations since the core
of the shortest path tree games is not empty. Firstly, we demonstrate that the rules θ, δi

and γ all generate core allocations. Secondly, we show that the Shapley and the τ values
are not necessarily core elements for the shortest path tree games. Our work on core
allocations is concluded by presenting two methods of generating core allocations for the
shortest path tree games. These methods are based on determining a shortest path tree in
the absence of a special player and thus are efficient since the shortest path tree problem
can be solved efficiently using Dijkstra’s algorithm (Dijkstra, 1959). Next, a polyhedral
analysis of the core of the shortest path tree games is presented by identifying a class of
extreme points and determining the dimension of the core of shortest path tree games,
and by finding a class of facets of the core of the shortest path tree games that correspond
to shortest path tree problems with a unique optimal tree. Furthermore, a collection of
coalitions are identified for which the corresponding inequalities are redundant in the
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description of the core of the shortest path tree games, which leads to a result on the
reduced description of the core of the shortest path tree games. In this chapter, we also
discuss some aspects of the computation of the nucleolus of shortest path tree games
from a theoretical point of view. Finally, we discuss the implications of the special case
where the triangle inequality holds for the shortest path tree problem.

Chapter 4 presents our computational results on the core and the nucleolus of the SPT
games. We consider a practical application of the SPT games, namely the cost allocation
problem in Wireless Multihop Networks (WMNs). We start by defining WMNs and the
associated cost allocation problem, and discussing their properties. Next, we present
the results of our simulations on the reduction in the definition of the core of the SPT
games. We then present three approaches to computing the nucleolus of the SPT games
for this application. Firstly, we propose to compute the nucleolus of the SPT games
for the WMN application using the linear programming based algorithm of Kopelowitz.
Secondly, our reduction in the description of the core result is incorporated into this
algorithm. Finally, a constraint generation approach for the computation of the nucleolus
is employed in order to generate the cost of the non-redundant coalitions on the fly. This
section concludes by a comparison of the performance of these three approaches.

The second part of the thesis consisting of Chapter 5 focuses on conflict situations
arising from a weighted minimum colouring problem. Each agent represented by a ver-
tex of an undirected graph is interested in having access to a number of facilities but can
be in conflict with other agents. The number of facilities that an agent would like to have
access to is represented by the weight of the corresponding vertex and the conflict rela-
tions between the agents are represented by edges between the corresponding vertices.
The joint combinatorial optimisation problem of the agents is to determine the minimum
number of facilities subject to the conflict relations, that is, to determine the weighted
chromatic number of the graph representing the conflict relations. In order to address
the allocation of the cost of the minimum number of facilities amongst the agents, we
introduce a class of cooperative cost games, namely the weighted minimum colouring
games. The following example demonstrates a weighted minimum colouring game.
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Example 1.6. Weighted Minimum Colouring Games. Consider the following situation
corresponding to the weighted minimum colouring problem displayed in Figure 1.6.

4

w1=3 w2=5

w3=4 w4=10

1 2

3

G

Figure 1.6: A weighted minimum colouring problem induced by graph G and weight
vector w.

Let the vertices 1, 2, 3 and 4 represent four transmitters each of which needs to be
assigned a certain number of frequency bands. The number of frequency bands required
by each transmitter i is represented by the weight wi of the corresponding vector. If
two transmitters are connected by an edge, then unacceptable interference might occur
between them and hence they must be assigned disjoint sets of frequency bands. Assume
that each transmitter is owned by a cellular telephone network company. If companies
1, 2 and 4 all decide to act on their own then they require 3 + 5 + 10 = 18 frequency
bands. Transmitters 1 and 2 are connected and thus together they need 8 frequency
bands. However, if companies 1 and 2 cooperated with company 4, the three companies
would only require 10 frequency bands in total since transmitters 1 and 2 can use 8 of
the 10 frequency bands of transmitter 4. Assume that the cost of a frequency band is
fixed and equals £1. The weighted minimum colouring game arising from this problem
consists of the player set N = {1, 2, 3, 4} and the characteristic function cG,w displayed
in Table 1.9 where the cost of a coalition S ⊆ N is computed as the cost of the minimum
number of frequency bands required by the players in S.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4}
cG,w(S) 3 5 4 10 8 7 10 9 10

S {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
cG,w(S) 14 12 10 14 14 14

Table 1.9: Coalitional costs of the weighted minimum colouring game (N, cG,w).
⋄
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Observe that the minimum number of frequency bands required by the players in
S is equal to the weighted chromatic number of the subgraph of G induced by S with
respect to w.

Note that the minimum colouring games arising from the minimum colouring prob-
lem, which is a special case of the weighted colouring problem when all the vertex
weights are equal to 1, are introduced by Deng et al. (1999). The characterisation of to-
tal balancedness, submodularity and existence of a PMAS of minimum colouring games
are due to Deng et al. (2000), Okamoto (2003) and Hamers et al. (2011), respectively.
Chapter 5 characterises total balancedness and submodularity of the weighted minimum
colouring games as follows. We show that a graph G induces a totally balanced WMC
game for all positive integer weight vectors if and only if it is perfect and that any graph
G induces a totally balanced WMC game for at least one positive integer weight vector.
Furthermore, we show that a graph G induces a submodular WMC game for all positive
integer weight vectors if and only if it is complete r-partite and that a graph G induces
a submodular WMC game for at least one positive integer weight vector if and only if it
is (2K2, P4)-free.

We conclude the thesis with some remarks on further research we have carried out on
SPT problems and games as well as future research directions for both SPT and WMC
games.



Chapter 2

Shortest Path Tree Problems

The single-source shortest path problem consists of finding a tree that spans all the ver-
tices in a given graph with the property that the path between a preidentified source
vertex to every other vertex in the graph is a shortest path. Thus, alternatively, one can
refer to this problem as the shortest path tree problem. This problem often arises in
designing wireless communication networks. Depending on the particular application,
the shortest path tree problem may be dealing with time, cost, path loss or other as-
pects of these networks that accumulate additively along a path and is to be minimised.
The application that initiated the study in this chapter is an example to such a wireless
communication network problem (Makki et al., 2008). In a Wireless Multihop Network
(WMN), there are geographically spread users who need to connect to the internet that
is provided by the base station. In these networks, the connection cost of a user depends
on the entire path between itself and the base station. Each wireless link in the network
has a cost associated with the power needed to transmit, which is proportional to the
distance between the users to the power of a small integer in the range 2− 4. Users can
relay other users’ signals in order to reduce the total power used in the network. The
optimal (minimum cost) solution, which is calculated by the base station, is a shortest
path tree formed by all the users. We provide further details, examples and analysis of
WMNs in Section 4.1.

Graphs consist of discrete elements such as vertices and edges, therefore they pro-
vide a natural setting for situations where decision makers or agents are either located
at or can control different parts of the network underlying their shared problem. This
chapter is concerned with the allocation of joint costs in the context of a single-source
shortest path problem on a graph and introduces the shortest path tree problems. We

29
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would like to emphasise that this problem, as well as the corresponding games studied
in the next chapter, have been defined and analysed for the first time in this thesis. First,
we associate an agent with each vertex, excluding the single special vertex that corre-
sponds to the source, on an undirected complete graph with nonnegative edge costs. The
optimal solution to the agents’ joint single-source shortest path problem is a shortest
path tree that connects them to the source. This shortest path tree has a cost that is the
sum of the cost of the shortest paths between the source and all the agents. Having in-
troduced this cooperative situation, we turn our attention to introducing allocation rules
for sharing the cost of a shortest path tree amongst the agents. Firstly, we define the tree

solution θ where each agent is assigned the cost of its shortest path on the shortest path
tree formed by all the agents. Secondly, we define an allocation rule, which we call the
δi rule with respect to an agent i. For this allocation, we consider the shortest path tree
formed by the agents excluding i, each of which pays the cost of its shortest path on
this tree, and agent i pays its marginal contribution. Thirdly, we consider an allocation
rule γ that is the average of δi for all agents i. Note that δi and γ are novel allocation
rules suggested by us in this chapter. Next, we consider a number of properties of cost
allocation rules, and identify the properties satisfied by the aforementioned allocation
rules. Finally, we present a characterisation of the tree solution θ.

This chapter is organised as follows. In Section 2.1, we define the shortest path tree
problems. In Section 2.2, we present a number of properties of shortest path trees that
will be used throughout this thesis. We then propose three different allocation rules for
sharing cost amongst the agents in a shortest path tree problem in Section 2.3.1. Fi-
nally, in Section 2.3.2, we define properties of cost allocation rules in shortest path tree
problems, analyse the allocation rules using these properties and we provide a charac-
terisation of one of the allocation rules that we propose.

Related Work

One of the well-known problems involving a network of decision makers and an
underlying optimisation problem is the minimum cost spanning tree problems. In these
problems, each agent is assumed to be located at a vertex of a graph, excluding a given
source vertex, and there are costs associated with the edges of this graph. The graph
theoretical question is to connect all the agents to the source vertex at minimum cost.
Similar to a shortest path tree, a minimum cost spanning tree is a tree that spans all the
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agents. However, unlike a shortest path tree, the cost of a minimum cost spanning tree
is equal to the sum of the costs of the edges used for connection. Such problems arise in
applications such as allocating the cost of a water pipeline system amongst villages that
connect to a water supplier or the cost of a cable television network amongst its users.
The common aspect in these examples is that the cost of every link, a pipe or a cable
connection, between two agents involved is incurred only once upon construction of the
network. The cost allocation problem in minimum cost spanning trees was introduced
by Claus and Kleitman (1973) and starting with the work of Bird (1976), has been ex-
tensively studied. There are numerous cost allocation rules that have been proposed for
the minimum cost spanning tree problems. Some of these allocation rules, as well as the
analysis of their properties, can be found in Branzei et al. (2004), Moretti et al. (2005),
Tijs et al. (2006), Bergantiños and Vidal-Puga (2007) and Bergantiños and Kar (2010).

2.1 Definition of the Shortest Path Tree Problems

In this section, we define a shortest path tree (SPT) problem and introduce some notation
related to the SPT problems that will be used throughout this chapter.

Let N = {1, 2, . . . , n} denote the set of agents. Let G = (N ∪ {v0}, E) be an
undirected complete graph with finite vertex set N ∪ {v0} and edge set E = {{i, j} :

i, j ∈ N ∪{v0} and i ̸= j} where v0 is a special vertex that represents the source vertex.
Let t : E → R+

0 be a cost function that assigns a nonnegative cost tij to every edge
{i, j} ∈ E where tij = tji since the graph is undirected. We denote an SPT problem
by ((N ∪ {v0}, E), t). Observe that the source vertex v0 is not associated with an agent,
and every vertex in G, excluding the source vertex, is associated with exactly one agent.

The SPT problem ((N ∪ {v0}, E), t) consists of finding a tree T N
v0

rooted at v0 such
that the unique path from v0 to each i ∈ N is a minimum cost path from v0 to i in G. We
refer to T N

v0
as a shortest path tree. For simplicity of notation, we omit the subscript and

the superscript and denote a shortest path tree of the SPT problem ((N ∪{v0}, E), t) by
T . Henceforth, the shortest path of i on T will refer to the shortest path from v0 to i on
T . Let E(i, T ) denote the set of edges on the shortest path of i on T and let V (i, T )

denote the set of vertices on the shortest path of i on T , excluding v0 but including i.
The cost of E(i, T ) is denoted by tE(i,T ) and is equal to the sum of the costs of the edges
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in E(i, T ). Formally,
tE(i,T ) =

∑
{k,l}∈E(i,T )

tkl.

The cost of a shortest path tree T is denoted by t(T ) and is equal to the sum of the
costs of the shortest paths of all i ∈ N . We have

t(T ) =
∑
i∈N

tE(i,T ).

Note that there can be multiple shortest path trees, however the cost of the shortest path
of an agent is the same on all shortest path trees of a given SPT problem. Consecutively,
all the shortest path trees of a given SPT problem have the same cost. In other words,
given an SPT problem, the value of tE(i,T ) for all i ∈ N and t(T ) do not depend on the
choice of a specific shortest path tree.

Next, we give an example to the SPT problem and illustrate the concepts defined
above.
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3
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Figure 2.1: An SPT problem.

Example 2.1. Consider the SPT problem displayed in Figure 2.1. T is indicated by the
bold lines. For agent 3, E(3, T ) = {{v0, 1}, {1, 2}, {2, 3}} and V (3, T ) = {1, 2, 3}.
We have t(T ) = tE(1,T ) + tE(2,T ) + tE(3,T ) = 2 + 3 + 5 = 10. ⋄
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We would like to highlight that in the case of the triangle inequality holding, the
shortest path tree will always be a star graph. Further discussions on this special case
along with its implications for our results on SPT games are presented in Section 3.8.

Now, let us introduce notation relating to the SPT problem defined on a subgraph of
G. Let S ⊆ N . Then the SPT problem ((S ∪ {v0}, ES), tS) is defined on GS =

(S ∪{v0}, ES) such that ES = {{i, j} : i, j ∈ S ∪{v0} and i ̸= j} where v0 represents,
also in the subgraph, the source vertex and tS the restriction of the cost function t to S
such that tSij = tij for all i, j ∈ S ∪ {v0}. We denote an optimal solution to
((S∪{v0}, ES), tS) by T S . For an agent i ∈ S, E(i, T S) denotes the set of edges on the
shortest path of i on T S and V (i, T S) denotes the set of vertices on the shortest path of
i on T S , excluding v0 but including i. The cost of E(i, T S) is denoted by tE(i,T S) such
that

tE(i,T S) =
∑

{k,l}∈E(i,T S)

tSkl.

The cost of a shortest path tree T S is denoted by t(T S) such that

t(T S) =
∑
i∈S

tE(i,T S).

Example 2.2. Consider the SPT problem displayed in Figure 2.1. Let S = {2, 3}.
The shortest path tree T S formed by agents 2 and 3 to connect to v0 is unique and its
edges are {v0, 2} and {2, 3}. For agent 2, E(2, T S) = {{v0, 2}} and V (2, T S) = {2}.
For agent 3, E(3, T S) = {{v0, 2}, {2, 3}} and V (3, T S) = {2, 3}. We have t(T S) =

tE(2,T S) + tE(3,T S) = 9 + 11 = 20. ⋄
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Differences between the Shortest Path Tree Problems and Games and the Mini-
mum Cost Spanning Tree Problems and Games

We start by discussing the differences between the SPT problem the minimum cost span-
ning tree (MCST) problem. Firstly, an SPT of a graph is not necessarily an MCST of
the graph. The MCST is a spanning tree that connects the vertices in N to v0 such that
the sum of the costs of the edges in the tree is minimum. Therefore, given a graph G,
an SPT and an MCST are not necessarily the same spanning tree, as we illustrate in
Example 2.3.

Example 2.3. Let us consider the graph G, and the two subgraphs T and T̂ of G in
Figure 2.2. T is the SPT. We have t(T ) = tE(1,T ) + tE(2,T ) + tE(3,T ) = 2 + 2 + 3 = 7.
T̂ is an MCST with a total cost of tv01 + t12 + t13 = 2 + 1 + 1 = 4. ⋄
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Figure 2.2: T and T̂ of G form a shortest path tree and a minimum cost spanning tree
respectively.

This implies that, as we have discussed in Example 1.1, the characteristic function
of an MCST game is different than that of an SPT game, which we define and study in
the next chapter.

Secondly, we would like to mention the updating of an SPT and an MCST. Updating
refers to adding a vertex, increasing the cost of a tree edge or decreasing the cost of a
non-tree edge. Spira and Pan (1973) have shown that solving an updated SPT problem is
as hard as solving the original problem. This is shown not to be the case for the updating
of the MCSTs. Consider the following example of increasing the cost of a tree edge.
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1
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Figure 2.3: Graph G.

Example 2.4. Consider the graph G displayed in Figure 2.3. Assume that all the edges
that are not shown have cost 100. The tree displayed in bold is the MCST and the SPT
of this graph. The MCST has a total cost 1 + 1 + 2 + 2 = 6 and the SPT has a cost
1+2+4+4 = 11. Now, assume that we increase the cost of the tree edge {1, 2} to 100.
Spira and Pan (1973) argue that to construct an updated MCST, we consider the two
subtrees that are formed if this edge is excluded. Then, we search for the minimum cost
link between those two subtrees. For this example, an MCST of the updated problem
can be seen in Figure 2.4(a) with a total cost of 1 + 5 + 2 + 2 = 10. On the other hand,
the authors have shown that in general constructing an updated SPT in the case of a tree
edge cost increase is as hard as resolving a new SPT problem. For this example, the
updated SPT tree can be seen in Figure 2.4(b) with a total cost of 1 + 5 + 5 + 5 = 16. ⋄
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v0

5

2

3 4

(a) An updated MCST

1 5

5 5

1 2 3 4

v0

(b) The updated SPT

Figure 2.4: An updated MCST and the updated SPT after the tree edge cost increase
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These differences imply that known results for MCST problems and games do not
directly yield any properties for SPT problems and games.

2.2 Properties of the Shortest Path Trees

This section introduces some definition and notation, and presents a number of proper-
ties of shortest path trees that will be used throughout this thesis.

Let ((N ∪{v0}, E), t) be an SPT problem. Let F (i, T ) denote the set of followers of

an agent i on T such that F (i, T ) = {j : i ∈ V (j, T )} where V (j, T ) is the set of agents
on the shortest path of j on T , excluding v0 but including j. Note that i ∈ F (i, T ). An
agent i is called a hub of T if V (i, T ) = {i}. Thus, hubs are agents that are directly
connected to v0 on T . Let H(T ) = {i : V (i, T ) = {i}} denote the set of hubs of T .
Let h ∈ H(T ), then Bh(T ) = F (h, T ) is called the branch of N induced by hub h of

T . Observe that {Bh(T ) : h ∈ H(T )} is a partition of N . We refer to this partition as
the branch partition of N with respect to T . The hub of an agent i on T , denoted by
Hub(i, T ), is defined as Hub(i, T ) = h if i ∈ Bh(T ). An agent i is called a leaf of T
if F (i, T ) = {i}. Let L(T ) = {i : F (i, T ) = {i}} denote the set of leaves of T .

Example 2.5. Let us consider the shortest path tree T illustrated in Figure 2.5.

v0

1

752

3 6

4

Figure 2.5: A shortest path tree.

We have H(T ) = {1, 4} and L(T ) = {3, 6, 7}. Moreover, F (5, T ) = {5, 6} and
F (1, T ) = {1, 2, 3}. The two branches of N with respect to T , which form a partition
of N , are B1(T ) = {1, 2, 3} and B4(T ) = {4, 5, 6, 7}. We have Hub(3, T ) = 1 and
Hub(5, T ) = 4. ⋄
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We further introduce some notation, which will be used for the rest of this chapter.
Consider the SPT problem (((N\{i}) ∪ {v0}, EN\{i}), tN\{i}). We denote an optimal
solution to this problem by T −i. Moreover, we let T −S denote a shortest path tree of the
SPT problem (((N\S) ∪ {v0}, EN\S), tN\S). Therefore, T −i and T −S replace T N\{i}

and T N\S for convenience of notation.
Next, we present a number of properties of shortest path trees. First, consider an

SPT problem and a shortest path tree T . Furthermore, consider a modified SPT problem
that arises when an agent and all its followers on T are removed from the original SPT
problem. The following lemma states that there always exists a shortest path tree of the
modified SPT problem such that the set of edges on the shortest path of all the agents in
the modified SPT problem is the same set of edges on their shortest path on T .

Lemma 2.1. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let i ∈ N . Let (((N\F (i, T )) ∪ {v0}, EN\F (i,T )), tN\F (i,T )) be an SPT problem.

Then there exists a shortest path tree T −F (i,T ) such that E(j, T −F (i,T )) = E(j, T ) for

all j ∈ N\F (i, T ).

Proof: Let j ∈ N\F (i, T ). Then V (j, T ) ⊆ N\F (i, T ). Therefore, there exists a
T −F (i,T ) such that E(j, T −F (i,T )) = E(j, T ) for all j ∈ N\F (i, T ).

We further consider the SPT problem ((Bh(T )∪{v0}, EBh(T )), tBh(T )) whereBh(T )

is the branch of N induced by hub h of T . We have the next corollary stating that there
exists a shortest path tree formed by the agents inBh(T ) on which the set of edges on the
shortest path to an agent i is the set of edges on the shortest path to i on the shortest path
tree formed by all the agents in N . The corollary follows from Lemma 2.1 by removing
the followers of the hubs in H(T )\{h}, in other words, by removing all the branches of
N induced by H(T )\{h} one by one.

Corollary 2.1. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let h ∈ H(T ). Let ((Bh(T ) ∪ {v0}, EBh(T )), tBh(T )) be an SPT problem. Then

there exists a shortest path tree T Bh(T ) such that

E(i, T Bh(T )) = E(i, T ) for all i ∈ Bh(T ).

We call the tree T Bh(T ) that satisfies E(i, T Bh(T )) = E(i, T ) for all i ∈ Bh(T ) the

tree branch of T induced by hub h ∈ H(T ). Next, we have a lemma stating that the
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cost of a shortest path tree T is equal to the sum of the costs of its tree branches induced
by the branch partition of N with respect to T .

Lemma 2.2. Let ((N ∪{v0}, E), t) be an SPT problem and let T be a shortest path tree.

Let T Bh(T ) be the tree branch of T induced by hub h ∈ H(T ). Then we have

t(T ) =
∑

h∈H(T )

t(T Bh(T )).

Proof: We get

t(T ) =
∑
i∈N

tE(i,T ) =
∑

h∈H(T )

∑
i∈Bh(T )

tE(i,T ) =
∑

h∈H(T )

t(T Bh(T ))

where the last equality follows from Corollary 2.1.

The following lemma states that given an SPT problem, the shortest path cost of an
agent i never increases if new agents enter the problem.

Lemma 2.3. Let S ⊆ T ⊆ N . Let ((S ∪ {v0}, ES), tS) and ((T ∪ {v0}, ET ), tT ) be

SPT problems, and let T S and T T be shortest path trees. Let i ∈ S. Then

tE(i,T T ) ≤ tE(i,T S).

Proof: Let E(i, T S) = {{v0, i1}, {i1, i2}, . . . , {ik−1, ik}, {ik, i}} be the set of edges on
the shortest path to i on T S . Since {i1, i2, . . . , ik, i} ⊆ S ⊆ T , we have E(i, T S) ⊆ ET .
Therefore, the edges in E(i, T S) are on a path to i whereas the edges in E(i, T T ) are
on a shortest path to i in the SPT problem ((T ∪ {v0}, ET ), tT ). Hence, tE(i,T T ) ≤
tE(i,T S).
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2.3 Cost Allocation in the Shortest Path Tree Problems

In this section, we address the issue of allocating the cost of a shortest path tree amongst
the agents. In Section 2.3.1, we propose three different cost allocation methods. Firstly,
we consider a shortest path tree formed by all the agents and define the tree solution θ by
allocating to every agent the cost of its shortest path. Secondly, we consider a shortest
path tree formed by all the agents excluding an agent i and define the δi rule by allocating
to each of these agents the cost of its shortest path on this tree and by allocating to agent i
its marginal contribution. Thirdly, we consider an allocation rule γ that is the average of
δi for all agents i. In Section 2.3.2, we consider a number of properties of cost allocation
rules and identify the properties satisfied by the aforementioned allocation rules. Finally,
we present a characterisation of the tree solution θ.

2.3.1 Cost Allocation Rules

This section proposes three cost allocation rules for sharing the cost of a shortest path
tree amongst the agents.

Let SPT (N) denote the class of all SPT problems corresponding to the agent set
N . A cost allocation rule is a function ψ : SPT (N) → RN . The cost allocated to an
agent i by cost allocation rule ψ is denoted by ψi.

We start with the allocation rule where each agent i is assigned the cost of its shortest
path on T . This allocation is similar to the Bird rule for the minimum cost spanning tree
problems (Bird, 1976). We call this the tree solution since it is derived from a shortest
path tree T of a given SPT problem.

Definition 2.1. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Then the tree solution θ is defined as

θi
(
((N ∪ {v0}, E), t)

)
= tE(i,T ) for all i ∈ N.

Note that for an SPT problem, the tree solution is unique even when T is not unique
since the cost of the shortest path of an agent i is the same on all shortest path trees.
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Example 2.6. Consider the SPT problem displayed in Figure 2.6. The tree solution is
θ
(
((N ∪ {v0}, E), t)

)
= (2, 3, 5). ⋄
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Figure 2.6: An SPT problem.

We next introduce for each i ∈ N an allocation rule, δi. For the allocation δi
(
((N ∪

{v0}, E), t)
)

each agent j ∈ N\{i} pays its shortest path cost on the tree formed by all
the agents excluding agent i and agent i pays its marginal contribution.

Definition 2.2. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let i ∈ N . Then the δi rule is defined as

δij
(
((N ∪ {v0}, E), t)

)
=

tE(j,T −i) for j ∈ N\{i},

t(T )− t(T −i) for j = i.

The δi rule is defined for each agent i ∈ N . We next propose a cost allocation rule
that is the average of δi for all i ∈ N .

Definition 2.3. Let ((N ∪ {v0}, E), t) be an SPT problem. Then the γ rule is defined as

γ
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
i∈N

δi
(
((N ∪ {v0}, E), t)

)
.

Example 2.7. Consider the SPT problem in Figure 2.6, we have t(T ) = 10. For the
cost allocation δ1

(
((N ∪ {v0}, E), t)

)
, agents 2 and 3 are allocated the cost of their

shortest paths on T −1, which equal to tE(2,T −1) = 9 and tE(3,T −1) = 11 respectively.
We have t(T −1) = 20. The surplus of t(T ) − t(T −1) = 10 − 20 = −10 is allocated
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to agent 1 giving us δ1
(
((N ∪ {v0}, E), t)

)
= (−10, 9, 11). Furthermore, we have

δ2
(
((N ∪ {v0}, E), t)

)
= (2,−6, 14) and δ3

(
((N ∪ {v0}, E), t)

)
= (2, 3, 5). Since the

γ rule is the average of these three allocations, γ
(
((N ∪ {v0}, E), t)

)
= (−2, 2, 10). ⋄

The next proposition states that the tree solution is equal to the δi rule when i is a
leaf agent.

Proposition 2.1. Let ((N ∪ {v0}, E), t) be an SPT problem and let T to be a shortest

path tree. Let L(T ) denote the set of leaves of T . Then

θ((N ∪ {v0}, E), t) = δl((N ∪ {v0}, E), t) for all l ∈ L(T ).

Proof: We have L(T ) ̸= ∅. Consider the allocation δl((N ∪ {v0}, E), t). Since l is a
leaf, none of the agents in N\{l} have l on their shortest path on T . For all j ∈ N\{l},
we get

δlj((N ∪ {v0}, E), t) = tE(j,T −l) = tE(j,T ) = θj((N ∪ {v0}, E), t).

Since
∑

j∈N θj((N ∪{v0}, E), t) = t(T ) and
∑

j∈N δ
l
j((N ∪{v0}, E), t) = t(T ) by the

definitions of these allocation rules, δll((N ∪ {v0}, E), t) = θl((N ∪ {v0}, E), t). Thus,
we have θ((N ∪ {v0}, E), t) = δl((N ∪ {v0}, E), t).

Example 2.8. Consider the SPT problem in Figure 2.6 where agent 3 is a leaf and we
have δ3

(
((N ∪ {v0}, E), t)

)
= θ

(
((N ∪ {v0}, E), t)

)
= (2, 3, 5). ⋄

Alternative Definitions of the γ Rule

In this section, we present two alternative definitions of the γ rule, which we have de-
fined as the average of δi for all i ∈ N .

For the first definition, we define the maximum claims of i from j, denoted by mij , to
be the difference between the shortest path cost of j on T and the shortest path cost of
j on T −i. That is, mij = tE(j,T ) − tE(j,T −i) for i ̸= j, i, j ∈ N and mii = 0. Note that,
from Lemma 2.3, which states that the shortest path cost of an agent never increases
if new agents enter the problem, we have mij ≤ 0 for all i, j ∈ N . Starting from the
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definition of the γ rule, for i ∈ N , we derive

γi
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
j∈N

δji
(
((N ∪ {v0}, E), t)

)
=

1

n

δii(((N ∪ {v0}, E), t)
)
+

∑
j∈N\{i}

δji
(
((N ∪ {v0}, E), t)

)
=

1

n

t(T )− t(T −i) +
∑

j∈N\{i}

tE(i,T −j)


=

1

n

∑
j∈N

tE(j,T ) −
∑

j∈N\{i}

tE(j,T −i) +
∑

j∈N\{i}

tE(i,T −j)


=

1

n

∑
j∈N

tE(j,T ) −
∑

j∈N\{i}

tE(j,T −i) +
∑

j∈N\{i}

tE(i,T −j)


+

1

n

[
tE(i,T −i) − tE(i,T −i)

]
=

1

n

∑
j∈N

[
tE(j,T ) − tE(j,T −i) + tE(i,T −j)

]
= tE(i,T ) − tE(i,T ) +

1

n

∑
j∈N

[
tE(j,T ) − tE(j,T −i) + tE(i,T −j)

]
= tE(i,T ) +

1

n

∑
j∈N

[
−tE(i,T ) + tE(j,T ) − tE(j,T −i) + tE(i,T −j)

]
= tE(i,T ) +

1

n

∑
j∈N

[
tE(j,T ) − tE(j,T −i)

]
− 1

n

∑
j ∈ N

[
tE(i,T ) − tE(i,T −j)

]
= tE(i,T ) +

1

n

∑
j∈N

mij −
1

n

∑
j∈N

mji.

We get the following definition of the γ rule:

γi
(
((N ∪ {v0}, E), t)

)
= tE(i,T ) +

1

n

∑
j∈N

mij −
1

n

∑
j∈N

mji for all i ∈ N.

Therefore, the γ rule is defined as an adjustment on the shortest path cost of an agent.
First, the γ rule allocates their shortest path cost to all of the agents. Then each agent
receives their average maximum claims since mij ≤ 0 and pays their average maximum
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claims to all other agents.
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Figure 2.7: An SPT problem.

Example 2.9. Consider the SPT problem displayed in Figure 2.7. We have

m11 = 0 (by definition)

m12 = tE(2,T ) − tE(2,T −1) = 3− 9 = −6

m13 = tE(3,T ) − tE(3,T −1) = 5− 11 = 0

m21 = tE(1,T ) − tE(1,T −2) = 2− 2 = 0

m22 = 0 (by definition)

m23 = tE(3,T ) − tE(3,T −2) = 5− 14 = −9

m31 = tE(1,T ) − tE(1,T −3) = 2− 2 = 0

m32 = tE(2,T ) − tE(2,T −3) = 3− 3 = 0

m33 = 0 (by definition).

Since tE(1,T ) = 2, tE(2,T ) = 3 and tE(3,T ) = 5, we get

γ1 = 2 +
1

3
[0− 6− 6]− 1

3
[0 + 0 + 0] = −2

γ2 = 3 +
1

3
[0 + 0− 9]− 1

3
[−6 + 0 + 0] = 2

γ3 = 5 +
1

3
[−6− 9 + 0]− 1

3
[0 + 0 + 0] = 10

which was shown to be the γ allocation for this SPT problem in Example 2.7. ⋄
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For the second definition, we define the power of i over j, denoted by pij , to be
the difference of the cost of a shortest path to i when j is not present and the cost of a
shortest path to j when i is not present. That is, pij = tE(i,T −j) − tE(j,T −i) for i, j ∈ N .
Observe that pij = −pji. Note furthermore that the lower the value of pij the more
powerful agent i is over j. Starting from the definition of the γ rule, for i ∈ N , we
derive

γi
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
j∈N

δji
(
((N ∪ {v0}, E), t)

)
=

1

n

δii(((N ∪ {v0}, E), t)
)
+

∑
j∈N\{i}

δji
(
((N ∪ {v0}, E), t)

)
=

1

n

t(T )− t(T −i) +
∑

j∈N\{i}

tE(i,T −j)


=

1

n

t(T )−
∑

j∈N\{i}

tE(j,T −i) +
∑

j∈N\{i}

tE(i,T −j)


=
t(T )

n
+

1

n

∑
j∈N\{i}

[
tE(i,T −j) − tE(j,T −i)

]
=
t(T )

n
+

1

n

∑
j∈N\{i}

[
tE(i,T −j) − tE(j,T −i)

]
+

1

n

[
tE(i,T −i) − tE(i,T −i)

]
=
t(T )

n
+

1

n

∑
j∈N

[
tE(i,T −j) − tE(j,T −i)

]
=
t(T )

n
+

1

n

∑
j∈N

pij.

We get the following definition of the γ rule:

γi
(
((N ∪ {v0}, E), t)

)
=
t(T )

n
+

1

n

∑
j∈N

pij for all i ∈ N.

Therefore, the γ rule is defined as an adjustment on the egalitarian allocation where
each agent is assigned an equal share of the shortest path tree cost. First, the γ rule
allocates an equal share of the cost to all of the agents. Then the cost of each agent is
adjusted based on its average power over N , which is defined as Pi =

1
n

∑
j∈N pij . That

is, if Pi > 0 and the agent does not have much power over others it pays more than the
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egalitarian allocation and if Pi < 0 and the agent has large amounts of power over others
it pays less than the egalitarian allocation.

Example 2.10. Consider the SPT problem displayed in Figure 2.7. We have

p11 = tE(1,T −1) − tE(1,T −1) = 0

p12 = tE(1,T −2) − tE(2,T −1) = 2− 9 = −7 = −p21
p13 = tE(1,T −3) − tE(3,T −1) = 2− 11 = −9 = −p31
p22 = tE(2,T −2) − tE(2,T −2) = 0

p23 = tE(2,T −3) − tE(3,T −2) = 3− 14 = −11 = −p32
p33 = tE(3,T −3) − tE(3,T −3) = 0.

Since t(T ) = 10, we get

γ1 =
10

3
+

1

3
[0− 7− 9] = −2

γ2 =
10

3
+

1

3
[7 + 0− 11] = 2

γ3 =
10

3
+

1

3
[9 + 11 + 0] = 10

which was shown to be the γ allocation for this SPT problem in Example 2.7. ⋄

2.3.2 Properties of the Cost Allocation Rules

We start this section by presenting a set of properties of a cost allocation rule
ψ : SPT (N) → RN where ψi denotes the cost allocated to agent i. We then check
which of these properties are satisfied by the cost allocation rules defined in the previous
section. Finally, we present a characterisation of the tree solution θ.

Definition of the Properties of the Cost Allocation Rules and Related Results

This section introduces a number of properties of cost allocation rules and presents a
number of results for shortest path trees related to these properties.
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Efficiency

A cost allocation is efficient if the total cost to be shared amongst all the agents is exactly
the cost of a shortest path tree T . In other words, no excess over total cost is charged
and no outside resource is required to cover any part of the costs.

Definition 2.4. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Then a cost allocation rule ψ is efficient if∑
i∈N

ψi

(
((N ∪ {v0}, E), t)

)
= t(T ).

Branch Efficiency

For the SPT problem, we introduce an efficiency property defined on the branch partition
of N with respect to T . We call it the branch efficiency property. A cost allocation rule
is branch efficient with respect to T if the sum of allocations to the agents of the branch
Bh(T ) is equal to the cost of the tree branch T Bh(T ) of T induced by hub h ∈ H(T ).

Definition 2.5. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let T Bh(T ) be the tree branch of T induced by hub h ∈ H(T ). Then a cost

allocation rule ψ is branch efficient with respect to T if∑
i∈Bh(T )

ψi

(
((N ∪ {v0}, E), t)

)
= t(T Bh(T )) for all h ∈ H(T ).

Branch efficiency has appeared in Megiddo (1978) as a decomposition property for
fixed trees.

Next, we show that a cost allocation rule that satisfies branch efficiency also satisfies
efficiency.

Proposition 2.2. Let ((N ∪{v0}, E), t) be an SPT problem and let T be a shortest path

tree. Then if a cost allocation rule ψ is branch efficient with respect to T then it is

efficient.

Proof: Let ψ be branch efficient with respect to T . Then we have∑
i∈N

ψi

(
((N ∪ {v0}, E), t)

)
=

∑
h∈H(T )

∑
i∈Bh(T )

ψi

(
((N ∪ {v0}, E), t)

)
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=
∑

h∈H(T )

t(T Bh(T ))

= t(T )

where the last equality follows from Lemma 2.2. Thus, ψ is efficient.

Symmetry

Now, we turn our attention to a different property. The symmetry property states that
a symmetric cost allocation rule assigns the same cost to two symmetric agents i and
j. The notion of symmetric agents and the symmetry property that are introduced next
are inspired by Bergantiños and Vidal-Puga (2007) for the minimum cost spanning tree
problems. For an SPT problem ((N∪{v0}, E), t), agents i and j are said to be symmetric

if for all k ∈ N ∪ {v0}, tik = tjk.

Definition 2.6. Let ((N ∪ {v0}, E), t) be an SPT problem. Let i, j ∈ N be symmetric

agents. Then a cost allocation rule ψ is symmetric if

ψi

(
((N ∪ {v0}, E), t)

)
= ψj

(
((N ∪ {v0}, E), t)

)
.

We have the following lemma stating that on a shortest path tree formed by a subset
of the agents, such that symmetric agents i and j are both in this subset, the cost of the
shortest path of i and of j are the same.

Lemma 2.4. Let S ⊆ N . Let ((S ∪ {v0}, ES), tS) be an SPT problem and let T S be a

shortest path tree. Let i, j ∈ S be symmetric agents. Then tE(i,T S) = tE(j,T S).

Proof: Let E(j, T S) = {{v0, j1}, {j1, j2}, . . . , {jk−1, jk}, {jk, j}} be the set of edges
on the shortest path to j on T S . If i ∈ {j1, j2, . . . , jk}, then tE(j,T S) ≥ tE(i,T S). If
i ̸∈ {j1, j2, . . . , jk}, then there exists a path to i consisting of edges E(i) = {{v0, j1},
{j1, j2}, . . . , {jk−1, jk}, {jk, i}} since i and j are symmetric, which satisfies tE(i) =

tE(j,T S). Since E(i) is a path and E(i, T S) is a shortest path, we get tE(i) ≥ tE(i,T S).
Thus, tE(j,T S) ≥ tE(i,T S). Since i and j are symmetric, interchanging them in the above
argument gives us tE(i,T S) ≥ tE(j,T S). Hence, tE(j,T S) = tE(i,T S).

Strong Cost Monotonicity

Next, we consider a monotonicity property called strong cost monotonicity inspired by
Bergantiños and Vidal-Puga (2004). This property implies that if a subset of edge costs
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decrease, and the cost of any remaining edges stay the same, then no agent should be
allocated a higher cost.

Definition 2.7. Let ((N ∪ {v0}, E), t) and ((N ∪ {v0}, E), t̄) be SPT problems where t

and t̄ are two cost functions such that t > t̄. Then a cost allocation rule ψ is strong cost
monotone if

ψi

(
((N ∪ {v0}, E), t)

)
≥ ψi

(
((N ∪ {v0}, E), t̄)

)
for all i ∈ N.

The following lemma states that the cost of a shortest path of an agent never increases
if the cost of an edge decreases. The proof of this lemma is omitted since the result
follows trivially.

Lemma 2.5. Let S ⊆ N . Let ((S ∪ {v0}, ES), tS) and ((S ∪ {v0}, ES), t̄S) be SPT

problems, and let T S and T S
be corresponding shortest path trees. Let i, j ∈ S ∪ {v0}.

Let t and t̄ be two cost functions such that tkl = t̄kl for all k, l ∈ S∪{v0}, {k, l} ≠ {i, j}
and tij > t̄ij . Let tE(m,T S) =

∑
{p,q}∈E(m,T S) t

S
pq and t̄E(m,T S

) =
∑

{p,q}∈E(m,T S
)
t̄Spq.

Then we have tE(m,T S) ≥ t̄E(m,T S
) for all m ∈ S.

Power Monotonicity

We define a monotonicity property for the SPT problems. Recall that pij = tE(i,T −j) −
tE(j,T −i) is the power of i over j for i, j ∈ N and Pi =

1
n

∑
j∈N pij is the average power

of an agent i over N . An allocation rule is power monotone if the cost it allocates to the
more powerful agent i is lower than the cost it allocates to the less powerful agent j such
that Pi ≤ Pj .

Definition 2.8. Let ((N ∪ {v0}, E), t) be an SPT problem. Let i, j ∈ N such that

Pi ≤ Pj . Then a cost allocation rule ψ is power monotone if

ψi

(
((N ∪ {v0}, E), t)

)
≤ ψj

(
((N ∪ {v0}, E), t̄)

)
.

Leaf Consistency

Finally, we define a consistency property for the SPT problems. An allocation rule is
leaf consistent if the cost it allocates to an agent is the same upon the removal of a leaf
from the original SPT problem.
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Definition 2.9. Let ((N ∪ {v0}, E), t) be an SPT problem. Let l ∈ L(T ) be a leaf and

let ((N\{l} ∪ {v0}, EN\{l}), tN\{l}) be an SPT problem. Then a cost allocation rule ψ

is leaf consistent if

ψi

(
((N ∪ {v0}, E), t)

)
= ψi

(
((N\{l} ∪ {v0}, EN\{l}), tN\{l})

)
for all i ∈ N\{l}.

Properties Satisfied by the Proposed Cost Allocation Rules

In this section, we consider each of the cost allocation rules defined in Section 2.3.1 and
identify the properties that they satisfy. We start with the tree solution θ.

Theorem 2.1. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Then tree solution θ
(
((N ∪ {v0}, E), t)

)
is branch efficient with respect to T ,

efficient, symmetric, strong cost monotone and leaf consistent.

Proof: It is sufficient to prove that θ is branch efficient with respect to T , symmetric,
strong cost monotone and leaf consistent. Recall that the tree solution θ assigns to every
agent the cost of its shortest path on T . We get∑

i∈Bh(T )

θi
(
((N ∪ {v0}, E), t)

)
=

∑
i∈Bh(T )

tE(i,T ) = t(T Bh(T )) for h ∈ H(T )

where the last equality follows from Corollary 2.1. Therefore, θ is branch efficient with
respect to T .

Next, we show that θ is symmetric. Let i, j ∈ N be symmetric agents. We have

θi
(
((N ∪ {v0}, E), t)

)
= tE(i,T ) = tE(j,T ) = θj

(
((N ∪ {v0}, E), t)

)
.

where the second equality follows from Lemma 2.4 by setting S = N .
Now, we show that θ satisfies strong cost monotonicity. Let us consider SPT problems
((N ∪ {v0}, E), t) and ((N ∪ {v0}, E), t̄), and the corresponding shortest path trees T
and T where t and t̄ are two cost functions such that t > t̄. We get

θk
(
((N ∪ {v0}, E), t)

)
= tE(k,T ) ≥ t̄E(k,T ) = θk

(
((N ∪ {v0}, E), t̄)

)
for all k ∈ N

where the inequality follows from Lemma 2.5 by setting S = N .
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Finally, we show that θ satisfies leaf consistency. We have

θi
(
((N ∪ {v0}, E), t)

)
= tE(i,T )

= tE(i,T −l)

= θi
(
((N\{l} ∪ {v0}, EN\{l}), tN\{l})

)
for all i ∈ N\{l} where the second equality follows from Lemma 2.1 since for a leaf
l ∈ L(T ) we have F (l, T ) = {l}.

We show that the tree solution for the SPT problems is not power monotone in the
next example.

v0

1

1

1

1

3

2

20

3

25

Figure 2.8: An SPT problem.

Example 2.11. Consider the SPT problem displayed in Figure 2.8. The tree solution
θ
(
((N ∪ {v0}, E), t)

)
= (1, 2, 3). We have

p11 = tE(1,T −1) − tE(1,T −1) = 0

p12 = tE(1,T −2) − tE(2,T −1) = 2− 3 = −1 = −p21
p13 = tE(1,T −3) − tE(3,T −1) = 2− 4 = −2 = −p31
p22 = tE(2,T −2) − tE(2,T −2) = 0

p23 = tE(2,T −3) − tE(3,T −2) = 3− 20 = −17 = −p32
p33 = tE(3,T −3) − tE(3,T −3) = 0.
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Therefore, P1 =
0−1−2

3
= −1 and P2 =

1+0−17
3

= −16
3

. We have θ1
(
((N∪{v0}, E), t)

)
≤

θ2
(
((N ∪{v0}, E), t)

)
where P1 ≥ P2 and thus the tree solution is not power monotone.

⋄

Now, we present the properties of the δi rule.

Theorem 2.2. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let i ∈ N , then δi
(
((N∪{v0}, E), t)

)
is branch efficient with respect to T , efficient

and symmetric.

Proof: Efficiency follows trivially from the definition of δi. Let us now show that this
rule is branch efficient with respect to T . Assume that Hub(i, T ) = h∗. Thus, we have
i, h∗ ∈ Bh∗(T ). The δi rule allocates the cost of the shortest path of j on T −i to agents
j ∈ N\{i}. From Lemma 2.1, we know that the shortest path costs of the agents in
branches Bh(T ) for all h ∈ H(T )\{h∗} do not change if i is removed, since they are
not followers of i on T . Hence,∑
j∈Bh(T )

δij
(
((N ∪ {v0}, E), t)

)
=

∑
j∈Bh(T )

tE(j,T ) = t(T Bh(T )) for all h ∈ H(T )\{h∗}.

Since the δi rule is efficient, we have∑
j∈Bh∗ (T )

δij
(
((N ∪ {v0}, E), t)

)
= t(T )−

∑
h∈H(T )\{h∗}

t(T Bh(T )) = t(T Bh∗ (T )).

Now, let us consider the symmetry property. Let k, l ∈ N be symmetric agents. Let
i ∈ N be an agent and consider the corresponding δi rule. We discuss the following
cases.
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Case 1. i ̸= k, l. We have

δik
(
((N ∪ {v0}, E), t)

)
= tE(k,T −i) = tE(l,T −i) = δil

(
((N ∪ {v0}, E), t)

)
where the second equality follows from Lemma 2.4 by setting S = N\{i}.

Case 2. i = k. First, we show that tE(j,T ) = tE(j,T −i) for all the agents in N\{i}. The
agents that are not followers of i are not affected by the removal of agent i, and
the agents that are followers of i, excluding itself, have a shortest path through
agent l that is symmetric to i since tij = tlj for all j ∈ N . We have

δii
(
((N ∪ {v0}, E), t)

)
= t(T )− t(T −i)

=
∑
j∈N

tE(j,T ) −
∑

j∈N\{i}

tE(j,T −i)

= tE(i,T ) −
∑

j∈N\{i}

[
tE(j,T ) − tE(j,T −i)

]
= tE(i,T )

= tE(l,T )

= δil
(
((N ∪ {v0}, E), t)

)
where the fourth equality follows from tE(j,T ) = tE(j,T −i) for all the agents in
N\{i} and the fifth equality follows from Lemma 2.4 by setting S = N .

Based on the above discussion, we can conclude that δi is symmetric.

We show that the δi rule for the SPT problems is not leaf consistent and is not strong
cost and power monotone in the next example.

Example 2.12. Consider the SPT problem in Figure 2.8 of Example 2.11. We have
shown that P1 ≥ P2. For this problem, δ1

(
((N ∪ {v0}, E), t)

)
= (−1, 3, 4). We have

δ11
(
((N ∪ {v0}, E), t)

)
≤ δ12

(
((N ∪ {v0}, E), t)

)
where P1 ≥ P2 and thus the δi rule is

not power monotone.
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Now, consider the SPT problem in Figure 2.9. For this problem, we have δ1
(
((N ∪

{v0}, E), t)
)
= (−13, 9, 11, 12), δ2

(
((N ∪{v0}, E), t)

)
= (2,−9, 14, 12) and δ3

(
((N ∪

{v0}, E), t)
)
= (2, 3, 2, 12) and δ4

(
((N ∪ {v0}, E), t)

)
= (2, 3, 5, 9).

v0

1

2

1

2

3

2

14

9

20

4

4 12

9
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Figure 2.9: An SPT problem.

We start with leaf consistency. Consider removing agent 4 ∈ L(T ). We get
δ1
(
((N\{4}∪{v0}), tN\{4})

)
= (−10, 9, 11), δ2

(
((N\{4}∪{v0}), tN\{4})

)
= (2,−6, 14)

and δ3
(
((N\{4} ∪ {v0}), tN\{4})

)
= (2, 3, 5). Therefore, δ11

(
((N ∪ {v0}, E), t)

)
̸=

δ11
(
((N\{4} ∪ {v0}), tN\{4})

)
, δ22

(
((N ∪ {v0}, E), t)

)
̸= δ22

(
((N\{4} ∪ {v0}), tN\{4})

)
and δ33

(
((N ∪{v0}, E), t)

)
̸= δ33

(
((N\{4}∪{v0}), tN\{4})

)
. Thus, δi is not leaf consis-

tent.
Now, we consider strong cost monotonicity. Let us change the cost of the edge

{v0, 4} from 12 to 11 and assume that all the other edge costs remain the same. The δ1 al-
location for the new SPT problem is (−12, 9, 11, 11), the δ2 allocation is (2,−8, 14, 11)

and the δ3 allocation is (2, 3, 3, 11) and the δ4 allocation does not change. Since, in the
new SPT problem δ11 , δ22 and δ33 increase as an edge cost decreases, δi is not strong cost
monotone. ⋄

We finally study the properties of the γ rule.

Theorem 2.3. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Then γ
(
((N∪{v0}, E), t)

)
is branch efficient with respect to T , efficient, symmetric

and power monotone.

Proof: We start with branch efficiency. From Theorem 2.2, for all i ∈ N , δi rule is
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branch efficient with respect to T . Therefore, we have

∑
j∈Bh(T )

γj
(
((N ∪ {v0}, E), t)

)
=

∑
j∈Bh(T )

1

n

∑
i∈N

δij
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
i∈N

∑
j∈Bh(T )

δij
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
i∈N

t(T Bh(T ))

= t(T Bh(T ))

for all h ∈ H(T ).
Next, we show that the γ rule is symmetric. For symmetric agents k, l ∈ N we have

δik
(
((N ∪ {v0}, E), t)

)
= δil

(
((N ∪ {v0}, E), t)

)
for all i ∈ N . Thus, we get

γk
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
i∈N

δik
(
((N ∪ {v0}, E), t)

)
=

1

n

∑
i∈N

δil
(
((N ∪ {v0}, E), t)

)
= γl

(
((N ∪ {v0}, E), t)

)
.

Finally, we show that the γ rule is power monotone. Recall the following alternative
definition of the γ rule.

γi
(
((N ∪ {v0}, E), t)

)
=
t(T )

n
+

1

n

∑
j∈N

pij for all i ∈ N.

Based on this definition, for any i, j ∈ N such that Pi ≤ Pj , we have γi
(
((N ∪

{v0}, E), t)
)
≤ γj

(
((N ∪ {v0}, E), t)

)
and therefore this rule is power monotone.

In the next example, we demonstrate that the γ rule is not leaf consistent and is not
strong cost monotone.

Example 2.13. Consider the SPT problem in Figure 2.9. For this problem, we have
γ
(
((N ∪ {v0}, E), t)

)
= (−7

4
, 3
2
, 8, 45

4
).

We start with leaf consistency. Consider removing agent 4 ∈ L(T ). We get
γ
(
((N\{4} ∪ {v0}), tN\{4})

)
= 1

3
[(−2, 2, 10) + (2,−6, 14) + (2, 3, 5)] = (−2, 2, 10).

Thus, γi
(
((N∪{v0}, E), t)

)
̸= γi

(
((N\{4}∪{v0}), tN\{4})

)
for i ∈ N\{4}. Therefore,
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γ is not leaf consistent.
Now, we consider strong cost monotonicity. Let us change the cost of the edge

{v0, 4} from 12 to 11 and assume that all the other edge costs remain the same. The γ
allocation for the new SPT problem is (−6

4
, 7
4
, 33

4
, 42

4
). Since, the cost allocated to agents

1, 2 and 3 increase as an edge cost decreases, γ is not strong cost monotone. ⋄

We present a summary of the properties of the allocation rules in the Table 2.1.

θ δi γ
Efficiency X X X

Branch Efficiency X X X
Symmetry X X X

Strong Cost Monotonicity X × ×
Power Monotonicity × × X

Leaf Consistency X × ×

Table 2.1: Properties of the cost allocation rules.

Characterisation of the Tree Solution θ

This section characterises the tree solution θ.

Theorem 2.4. Let ((N ∪ {v0}, E), t) be an SPT problem. Then the cost allocation rule

θ is the unique rule that satisfies efficiency and leaf consistency.

Proof: From Theorem 2.1, θ is efficient and leaf consistent. Let ψ be a cost allocation
rule that satisfies efficiency and leaf consistency. We show that ψ

(
((N ∪{v0}, E), t)

)
=

θ
(
((N ∪{v0}, E), t)

)
by induction on the number of agents in ((N ∪{v0}, E), t). First,

let |N | = 1. We get ψ
(
((N ∪ {v0}, E), t)

)
= θ

(
((N ∪ {v0}, E), t)

)
from efficiency.

Assume that if |N | = n then ψ
(
((N ∪ {v0}, E), t)

)
= θ

(
((N ∪ {v0}, E), t)

)
. Let

|N | = n + 1. The shortest path tree T formed by the agents in N , has at least one leaf.
Consider removing a leaf l ∈ L(T ). Since ψ is leaf consistent, we have

ψi

(
((N ∪ {v0}, E), t)

)
= ψi

(
((N\{l} ∪ {v0}, EN\{l}), tN\{l})

)
for all i ∈ N\{l}. Then by induction,

ψi

(
((N\{l} ∪ {v0}, EN\{l}), tN\{l})

)
= θi

(
((N\{l} ∪ {v0}, EN\{l}), tN\{l})

)
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for all i ∈ N\{l}. Since θ is leaf consistent, we get

θi
(
((N ∪ {v0}, E), t)

)
= θi

(
((N\{l} ∪ {v0}, EN\{l}), tN\{l})

)
for all i ∈ N\{l}. Therefore, we have

ψi

(
((N ∪ {v0}, E), t)

)
= θi

(
((N ∪ {v0}, E), t)

)
for all i ∈ N\{l}. From efficiency,

ψl

(
((N ∪ {v0}, E), t)

)
= θl

(
((N ∪ {v0}, E), t)

)
.

This completes the proof.



Chapter 3

Shortest Path Tree Games

We introduce the shortest path tree (SPT) games corresponding to the SPT problems
defined in the previous chapter. The set of players of an SPT game is the set of agents
in the corresponding SPT problem. The cost of a subset of players (coalition) in an SPT
game is the cost of the shortest path tree formed by its members. This chapter studies
several properties and solutions of SPT games.

Cooperative game theory is commonly used to model interactive settings where mul-
tiple decision makers benefit from cooperation upon solving a joint problem and it pro-
vides a natural framework to study cost allocation problems in such settings. The main
focus of cooperative game theory is allocating the optimal cost value of this joint prob-
lem amongst the decision makers involved. In the cooperative game theory literature,
there are various allocation concepts, which either define a one-point solution or define
a set of solutions. For the SPT games, we consider the Shapley value (Shapley, 1953),
the τ value (Tijs, 1981) and the nucleolus (Schmeidler, 1969), which define one-point
solutions, and the core (Gillies, 1953), which defines a set of solutions. In a cooperative
game, the players are able to form coalitions whose cost they use as a basis of compar-
ison with the cost they are allocated for the overall game. The core is a fundamental
notion in cooperative game theory. It is a convex polyhedron described by an exponen-
tial number of inequalities, each of which guarantees that the players in a coalition do not
pay more than what they would have paid if they broke away from the rest of the players.
Core allocations create no disincentive for cooperation and consequently are considered
to be stable. Core allocations do not exist for all cooperative games. However, if they
do exist, it is desirable to find allocations that belong to the core.

57
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In this chapter, we study the core of the SPT games since it is not empty. We start
by identifying core allocations for the SPT games. We first investigate the stability of
the allocation rules defined in Chapter 2 for SPT problems. Although these rules have
been defined independent of the game context, they all transpire to be stable for the
SPT games. On the other hand, the Shapley value and the τ value are not necessarily
core elements. We conclude our work on core allocations by proposing two methods for
generating core allocations. The proposed methods are both based on solving a shortest
path tree problem in the absence of a special player, and this problem can be solved
using Dijkstra’s algorithm (Dijkstra, 1959) with a complexity of O(|N |2) where N is
the set of players. Next, we present a polyhedral analysis of the core of the SPT games.
We determine the dimension and identify a class of facets of the core of SPT games
that correspond to SPT problems with a unique optimal tree, and we present a class of
extreme points of the core of the SPT games. We furthermore identify a collection of
coalitions for which the corresponding inequalities can be omitted from the description
of the core of the SPT games. Finally, we discuss some aspects of the computation of
the nucleolus of an SPT game theoretically.

Another area of interest of cooperative game theory is properties that are satisfied
by different classes of games. This chapter shows that the SPT games are totally bal-
anced, allow a population monotonic allocation scheme but are not submodular and not
monotone.

This chapter is organised as follows. In Sections 3.1 and 3.2, we define the SPT
games and study their properties respectively. In Section 3.3, we focus on core alloca-
tions for the SPT games. Section 3.4 determines the dimension and identifies a class of
facets of the core of SPT games that correspond to SPT problems with a unique optimal
tree, and presents a class of extreme points of the core of the SPT games. In Section
3.5, we identify a collection of coalitions for which the corresponding inequalities are
redundant in the description of the core of the SPT games. Finally, Section 3.7 reviews
some aspects of the computation the nucleolus of the SPT games.

Related Work

In order to enable us to position our work on SPT games within the body of existing
literature, we next mention a number of cooperative games dealing with situations where
cost is to be allocated amongst cooperating players who are located at or can control
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different elements of a graph. The minimum cost spanning tree (MCST) games were
introduced Bird (1976), and studied in Granot and Huberman (1981) and Granot and
Huberman (1984). Similar to SPT games, there is one-to-one correspondence between
the vertices, excluding the source vertex, and the players in MCST games. The players
form a minimum cost spanning tree where the connection cost of a player is equal to its
connection cost to the tree, not to the source vertex. The MCST games have nonempty
cores since the allocation where each player is assigned their connection cost to a given
minimum cost spanning tree, known as the Bird rule, is always a core element.

A different application of cooperative games to cost allocation in graph theoretical
problems is the class of shortest path (SP) games studied in Fragnelli et al. (2000) and
Voorneveld and Grahn (2002). The underlying network optimisation problem is that of
finding the shortest path between a source and a sink. Fragnelli et al. (2000) assume
there are various sources and sinks in the network. Each player is associated with a set
of nodes including the sources and the sinks. The players can generate income when
they transport a good from a source to the sink in the network, and incur the cost of
the transportation given by the length of the path from a source to a sink. They study
the allocation of the profits in such settings amongst the players involved and identify
the conditions under which SP games are balanced. On the other hand, Voorneveld and
Grahn (2002) assume that there is a single source and a single sink in the SP game. Each
player in this version of the SP games is associated with a number of arcs rather than
nodes. Moreover, a single arc can be associated with more than one player. A player
can generate a reward if he can transfer his own good from the source of the network
to the sink. The authors show that their version of SP games is totally balanced and
allow a population monotonic allocation scheme. Furthermore, they present methods
for obtaining core elements.

Finally, we consider congestion network problems and the corresponding games
studied by Quant et al. (2006). In congestion network problems, the cost of an arc
of the network depends on the number of agents using this arc. For example, if more
vehicles use a particular road it would be more “costly” in terms of the congestions ef-
fects to use this particular road. It is shown that the congestion network problems with
concave cost functions have an optimal solution that forms a tree, however the core of
the corresponding games may be empty whereas congestion network games with convex
cost functions are balanced. Note that an SPT problem is in fact a symmetric congestion
network problem with linear cost functions. For the congestion network games corre-



CHAPTER 3. SHORTEST PATH TREE GAMES 60

sponding to such problems, the authors show that assigning to each player the costs of
its optimal path yields a unique core element. In this chapter, we restate this result for
the SPT games where we show that the tree solution, which is unique, always generates
a core element.

Other examples of the interplay between cooperative game theory and cost allocation
problems arising from networks can be found in the survey by Borm et al. (2001).

3.1 Definition of the Shortest Path Tree Games

This section introduces the SPT games where the set of players is equal to the set of
agents N in an SPT problem ((N ∪ {v0}, E), t). Recall that T S denotes a shortest path
tree of the SPT problem ((S ∪ {v0}, ES), tS), and the cost of T S is denoted by t(T S).

Definition 3.1. Let ((N ∪ {v0}, E), t) be an SPT problem. Then the corresponding

shortest path tree (SPT) game (N, c) is defined by

c(S) = t(T S) for all S ⊆ N.

Next, we illustrate the characteristic function c of the SPT game corresponding to
the SPT problem from Example 2.1.

Example 3.1. Consider the SPT problem with N = {1, 2, 3} in Figure 3.1. For the
corresponding SPT game (N, c), we have c(N) = t(T ) = 2+3+5 = 10. For S = {3},
c(S) = t(T S) = 14 and for S = {2, 3}, c(S) = t(T S) = 9 + 11 = 20.

v0
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2

1

2

3

2
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20

Figure 3.1: An SPT problem.
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Table 3.1 gives the costs of all the coalitions of the SPT game (N, c).

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
c(S) 2 9 14 5 16 20 10

Table 3.1: Coalitional costs of the SPT game (N, c).
⋄

3.2 Properties of the Shortest Path Tree Games

In this section, we study some properties of the SPT games to provide a more detailed
understanding of these games as well as helping us to position the SPT games amongst
other cooperative games. We show that the SPT games are totally balanced, they allow a
population monotonic allocation scheme but they are not submodular. Finally, we show
that SPT games are not monotone.

First, we show that the SPT games are totally balanced, that is, the core of any of the
subgames of an SPT game is not empty. Similar to the Bird rule for the MCST games
(Bird, 1976), a core allocation can be derived from a shortest path tree T of an SPT
problem. Recall that the tree solution θ is defined as θi((N ∪ {v0}, E), t) = tE(i,T ) for
all i ∈ N .

Theorem 3.1. Let ((N∪{v0}, E), t) be an SPT problem. Let (N, c) be the corresponding

SPT game. Then θ((N ∪ {v0}, E), t) ∈ Core(c).

Proof: We know that θ((N ∪ {v0}, E), t) is efficient from Theorem 2.1. Therefore, we
get

∑
i∈N θi((N ∪ {v0}, E), t) = t(T ) = c(N).

For S ⊂ N , we have∑
i∈S

θi((N ∪ {v0}, E), t) =
∑
i∈S

tE(i,T ) ≤
∑
i∈S

tE(i,T S) = c(S)

where the inequality follows from Lemma 2.3. Thus, θ((N ∪ {v0}, E), t) is in Core(c).

Now, we show that SPT games are totally balanced.

Theorem 3.2. SPT games are totally balanced.
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Proof: Let ((N ∪{v0}, E), t) be an SPT problem. Let S ⊆ N . Let ((S ∪{v0}, ES), tS)

be an SPT problem and let T S be a shortest path tree. Let (S, cS) be the subgame where
cS(T ) = c(T ) for all T ⊆ S. Therefore, every subgame (S, cS) of an SPT game is also
an SPT game and is balanced from Theorem 3.1 since the tree solution θ is always in
the core of the SPT games.

Next, we prove the existence of a population monotonic allocation scheme for SPT
games.

Theorem 3.3. Let ((N∪{v0}, E), t) be an SPT problem. Let (N, c) be the corresponding

SPT game. Then the tree solution θ generates a population monotonic allocation scheme

for (N, c).

Proof: We show that both conditions of population monotonic allocation schemes hold
for θ.

i. For all S ∈ 2N\{∅}, we have∑
i∈S

θi((S ∪ {v0}, ES), tS) =
∑
i∈S

tE(i,T S) = c(T S) = c(S).

ii. For all S, T ∈ 2N\{∅} such that S ⊆ T and for all i ∈ S, we have

θi((S ∪ {v0}, ES), tS) = tE(i,T S) ≥ t(i,T
T ) = θi((T ∪ {v0}, ET ), tT )

where the inequality follows from Lemma 2.3.

We show that the SPT games are not submodular and not monotone in the following
example.

Example 3.2. Consider the SPT problem and the corresponding SPT game displayed
in Figure 3.2 (please see next page). Let S = {2}, T = {1, 2} and i = 3. We have
S ⊆ T ⊆ N\{i}. We have c(S ∪ {i}) − c(S) = c({2, 3}) − c({2}) = 5 − 11 = −6

and c(T ∪ {i}) − c(T ) = c({1, 2, 3}) − c({1, 2}) = 4 − 3 = 1. The SPT game is not
submodular since c(S ∪ {i})− c(S) < c(T ∪ {i})− c(T ).

For monotonicity, consider S = {2} and T = {1, 2}. We have S ⊆ T but c(S) >
c(T ).
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Figure 3.2: An SPT problem.

3.3 Core Allocations for the Shortest Path Tree Games

This section starts with showing that the cost allocation rules that have been introduced
for the SPT problems in Section 2.3.1 are elements of the core of the corresponding
SPT games. Then, the Shapley and the τ values of the SPT games are considered. It
is shown that these values are not necessarily core elements for SPT games. Finally,
two methods of generating core elements are presented. Both of these methods rely on
finding a shortest path tree in the absence of a special player.

3.3.1 Core Allocations Generated by the Cost Allocation Rules for
the Shortest Path Tree Problems

Firstly, we know that the tree solution θ generates a core element of the SPT games from
Theorem 3.1.

Consider the SPT problem ((N\{i}∪{v0}, EN\{i}), tN\{i}) and recall that we denote
an optimal solution to this problem by T −i. Next, we show that the δi rule generates a
core element.

Theorem 3.4. Let ((N∪{v0}, E), t) be an SPT problem. Let (N, c) be the corresponding

SPT game. Let i ∈ N . Then δi((N ∪ {v0}, E), t) ∈ Core(c).

Proof: We know that the δi rule is efficient from Theorem 2.2. Therefore, we get∑
j∈N δ

i
j((N ∪ {v0}, E), t) = t(T ) = c(N). Next, considering the two cases below,

we show that
∑

j∈S δ
i
j((N ∪ {v0}, E), t) ≤ c(S) holds for all S ⊂ N .
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Case 1. i ̸∈ S. We have∑
j∈S

δij((N ∪ {v0}, E), t) =
∑
j∈S

tE(j,T −i) ≤
∑
j∈S

tE(j,T S) = c(S)

where the inequality follows from Lemma 2.3.

Case 2. i ∈ S. We have∑
j∈S

δij((N ∪ {v0}, E), t) = δii((N ∪ {v0}, E), t) +
∑

j∈S\{i}

δij((N ∪ {v0}, E), t)

= t(T )− t(T −i) +
∑

j∈S\{i}

tE(j,T −i)

=
∑
j∈N

tE(j,T ) −
∑

j∈N\{i}

tE(j,T −i) +
∑

j∈S\{i}

tE(j,T −i)

=
∑
j∈N

tE(j,T ) −
∑

j∈N\S

tE(j,T −i)

=
∑
j∈S

tE(j,T ) +
∑

j∈N\S

[
tE(j,T ) − tE(j,T −i)

]
≤

∑
j∈S

tE(j,T )

≤
∑
j∈S

tE(j,T S)

= t(T S) = c(S)

where the inequalities follow from Lemma 2.3.

Theorem 3.4 implies the following corollary since the γ rule is a convex combination
of δi for i ∈ N and Core(c) is a convex set.

Corollary 3.1. Let ((N ∪{v0}, E), t) be an SPT problem. Let (N, c) be the correspond-

ing SPT game. Then γ((N ∪ {v0}, E), t) ∈ Core(c).

3.3.2 The Shapley and the τ Values for the Shortest Path Tree Games

We consider two well-known one point allocation concepts from the cooperative game
theory literature, namely the Shapley and the τ values. In the next example, we show
that the Shapley value of the SPT games is not necessarily a core element.
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Example 3.3. Consider the SPT problem displayed in Figure 3.3 and the corresponding
SPT game (N, c). The Shapley value of (N, c) is ϕ(c) = (1

3
,−1

6
, 61

2
, 31

3
). Let S =

{2, 4}, we have c(S) = 3. We get
∑

i∈S ϕi(c) = ϕ2(c) + ϕ4(c) = −1
6
+ 31

3
= 31

6
> 3.

Therefore, ϕ(c) ̸∈ Core(c). ⋄
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Figure 3.3: An SPT problem.

We show that the τ value is not necessarily in the core of an SPT game in the fol-
lowing example.

Example 3.4. Consider the SPT problem displayed in Figure 3.4 and the corresponding
SPT game (N, c). Assume that all the edges that are not shown have cost 100. The τ
value of (N, c) is τ(c) = (21

41
,−19

41
, 221

41
, 4
41
, 412

41
, 6 2

41
). Let S = {1, 3}, we have c(S) = 3.

We get
∑

i∈S τi(c) = τ1(c) + τ3(c) =
21
41

+ 221
41

= 3 1
41
> 3. Therefore, τ(c) ̸∈ Core(c).

⋄
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Figure 3.4: An SPT problem.
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3.3.3 Two Further Methods of Generating Core Allocations for the
Shortest Path Tree Games

We introduce two further methods of generating core allocations. For each method, we
first define a cost allocation rule for the SPT problem and then show that this rule gen-
erates a core element for the corresponding SPT game. Note that the proposed methods
are both based on solving a shortest path tree problem in the absence of a special player,
and this problem can be solved using Dijkstra’s algorithm (Dijkstra, 1959).

Recall that H(T ) = {i : V (i, T ) = {i}} denotes the set of hubs of T where
V (i, T ) is the set of players on the shortest path of i on T , excluding v0 but including
i. Furthermore, Hub(i, T ) denotes the hub of agent i on T and Hub(i, T ) = h if
i ∈ Bh(T ) where Bh(T ) is the branch of N induced by hub h of T . Let i ∈ N\H(T ).
First, we introduce the allocation rule σi. This allocation rule is such that all the agents
in N\{i,Hub(i, T )} pay their shortest path cost on T , agent i pays its shortest path cost
on the tree formed by all the agents excluding its hub and the remaining costs are paid
by the hub of agent i on T .

Definition 3.2. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let i ∈ N\H(T ). Then the σi rule is defined as follows

σi
j((N ∪ {v0}, E), t) =


tE(j,T ) for j ∈ N\{i,Hub(i, T )},
tE(i,T −Hub(i,T )) for j = i,

rσHub(i,T ) for j = Hub(i, T ).

where rσHub(i,T ) = t(T )−
∑

k∈N\{i,Hub(i,T )}

tE(k,T ) − tE(i,T −Hub(i,T )).

Example 3.5. Consider the SPT problem displayed in Figure 3.5. Consider the cost
allocation σ3((N ∪ {v0}, E), t). We have Hub(3, T ) = 1. Agents in N\{1, 3} pay
the cost of their shortest path on T . Agent 3 pays the cost of its shortest path on T −1

and the remaining costs are allocated to agent 1. Since t(T ) = 10, tE(3,T −1) = 11 and
tE(2,T ) = 3, we get σ3((N∪{v0}, E), t) = (10−3−11, 3, 11) = (−4, 3, 11). Moreover,
σ2((N ∪ {v0}, E), t) = (−4, 9, 5). ⋄
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Figure 3.5: An SPT problem.

The following theorem shows that the σi rule generates a core allocation for the
corresponding SPT game.

Theorem 3.5. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let (N, c) be the corresponding SPT game. Let i ∈ N\H(T ). Then

σi((N ∪ {v0}, E), t) ∈ Core(c).

Proof: It is trivial to show that σi is efficient. Thus, we have
∑

j∈N σ
i
j((N∪{v0}, E), t) =

t(T ) = c(N). Now, we show that
∑

j∈S σ
i
j((N ∪ {v0}, E), t) ≤ c(S) holds for all

S ⊂ N considering the four cases below.

Case 1. i,Hub(i, T ) ̸∈ S. ∑
j∈S

σi
j((N ∪ {v0}, E), t) =

∑
j∈S

tE(j,T )

≤
∑
j∈S

tE(j,T S)

= t(T S) = c(S)

where the inequality follows from Lemma 2.3.
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Case 2. i,Hub(i, T ) ∈ S.∑
j∈S

σi
j((N ∪ {v0}, E), t) = σi

i((N ∪ {v0}, E), t)

+ σi
Hub(i,T )((N ∪ {v0}, E), t)

+
∑

j∈S\{i,Hub(i,T )}

σi
j((N ∪ {v0}, E), t)

= tE(i,T −Hub(i,T ))

+ t(T )−
∑

j∈N\{i,Hub(i,T )}

tE(j,T ) − tE(i,T −Hub(i,T ))

+
∑

j∈S\{i,Hub(i,T )}

tE(j,T )

=
∑
j∈N

tE(j,T ) −
∑

j∈N\S

tE(j,T )

=
∑
j∈S

tE(j,T )

≤
∑
j∈S

tE(j,T S)

=t(T S) = c(S)

where the inequality follows from Lemma 2.3.

Case 3. i ∈ S, Hub(i, T ) ̸∈ S.∑
j∈S

σi
j((N ∪ {v0}, E), t) = σi

i((N ∪ {v0}, E), t) +
∑

j∈S\{i}

σi
j((N ∪ {v0}, E), t)

= tE(i,T −Hub(i,T )) +
∑

j∈S\{i}

tE(j,T )

≤ tE(i,T S) +
∑

j∈S\{i}

tE(j,T S)

=
∑
j∈S

tE(j,T S) = t(T S) = c(S)

where the inequality follows from Lemma 2.3.
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Case 4. i ̸∈ S, Hub(i, T ) ∈ S.∑
j∈S

σi
j((N ∪ {v0}, E), t) = σi

Hub(i,T )((N ∪ {v0}, E), t)

+
∑

j∈S\{Hub(i,T )}

σi
j((N ∪ {v0}, E), t)

= t(T )−
∑

j∈N\{i,Hub(i,T )}

tE(j,T ) − tE(i,T −Hub(i,T ))

+
∑

j∈S\{Hub(i,T )}

tE(j,T )

=
∑
j∈N

tE(j,T ) −
∑

j∈N\(S∪{i})

tE(j,T ) − tE(i,T −Hub(i,T ))

=
∑
j∈S

tE(j,T ) + tE(i,T ) − tE(i,T −Hub(i,T ))

≤
∑
j∈S

tE(j,T )

≤
∑
j∈S

tE(j,T S)

=t(T S) = c(S)

where the inequalities follow from Lemma 2.3.

Next, we introduce another cost allocation rule for SPT problems. We start with
some definitions and notation.

Consider the coalition F (j, T ) ⊆ N , that is, the coalition of the followers of a player
j on T . Recall that j ∈ F (j, T ). Let i, j ∈ N and i ̸= j. We let Sup(i, F (j, T )) to
denote the superior of player i with respect to the followers of player j on T where

Sup(i, F (j, T )) =

j if i ∈ F (j, T )

Hub(i, T ) if i ̸∈ F (j, T ).
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Example 3.6. Let us consider the shortest path tree T illustrated in Figure 3.6. Consider
the coalition F (5, T ) = {5, 6}. We have Sup(6, F (5, T )) = 5 since 6 ∈ F (5, T ) and
Sup(3, F (5, T )) = 1 since 3 ̸∈ F (5, T ). ⋄
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Figure 3.6: A shortest path tree.

Now, we are ready to define a new cost allocation rule for the SPT problems. Let
i, j ∈ N\H(T ) and i ̸= j. The cost allocation rule ρi,F (j,T ) is defined with respect
to an agent i and the followers of agent j. The cost allocation rule is such that all the
agents except for i and its superior with respect to F (j, T ) pay their shortest path cost
on T , agent i pays its shortest path cost on the tree formed by all the agents excluding
its superior and its superior pays the remaining costs.

Definition 3.3. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let i, j ∈ N\H(T ) and i ̸= j. Then the ρi,F (j,T ) rule is defined as

ρ
i,F (j,T )
k ((N∪{v0}, E), t) =


tE(k,T ) for k ∈ N\{i, Sup(i, F (j, T ))},
tE(i,T −Sup(i,F (j,T ))) for k = i,

rρSup(i,F (j,T )) for k = Sup(i, F (j, T )).

where rρSup(i,F (j,T )) = t(T )−
∑

l∈N\{i,Sup(i,F (j,T ))}

tE(l,T ) − tE(i,T −Sup(i,F (j,T ))).

Example 3.7. Consider the SPT problem displayed in Figure 3.5. Consider the cost al-
location ρ3,F (2,T )((N ∪{v0}, E), t). We have Sup(3, F (2, T )) = 2. Agents in N\{2, 3}
pay the cost of their shortest path on T . Agent 3 pays the cost of its shortest path on
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T −2 and the remaining costs are allocated to agent 2. Since t(T ) = 10, tE(3,T −2) = 14

and tE(1,T ) = 2, we get ρ3,F (2,T )((N ∪{v0}, E), t) = (2, 10− 2− 14, 14) = (2,−6, 14).
Moreover, ρ2,F (3,T )((N ∪ {v0}, E), t) = (−4, 9, 5). ⋄

Observe that ρi,F (j,T )((N ∪ {v0}, E), t) = σi((N ∪ {v0}, E), t) if i ̸∈ F (j, T ).
Finally, we show that the ρi,F (j,T ) rule generates a core allocation for the corresponding
SPT game.

Theorem 3.6. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let (N, c) be the corresponding SPT game. Let i, j ∈ N\H(T ) and i ̸= j. Then

ρi,F (j,T )((N ∪ {v0}, E), t) ∈ Core(c).

Proof: It is trivial to show that ρi,F (j,T ) is efficient. Thus,
∑

k∈N ρ
i,F (j,T )
k ((N∪{v0}, E), t)

= t(T ) = c(N). Now, we show that
∑

k∈S ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) ≤ c(S) holds for

all S ⊂ N considering the four cases below.

Case 1. i, Sup(i, F (j, T )) ̸∈ S.∑
k∈S

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) =

∑
k∈S

tE(k,T )

≤
∑
k∈S

tE(k,T S)

= t(T S) = c(S)

where the inequality follows from Lemma 2.3.

Case 2. i, Sup(i, F (j, T )) ∈ S.∑
k∈S

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) = ρ

i,F (j,T )
i ((N ∪ {v0}, E), t)

+ ρ
i,F (j,T )
Sup(i,F (j,T ))((N ∪ {v0}, E), t)

+
∑

k∈S\{i,Sup(i,F (j,T ))}

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t)

= tE(i,T −Sup(i,F (j,T )))

+ t(T )−
∑

k∈N\{i,Sup(i,F (j,T ))}

tE(k,T )

− tE(i,T −Sup(i,F (j,T )))
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+
∑

k∈S\{i,Sup(i,F (j,T ))}

tE(k,T )

=
∑
k∈N

tE(k,T ) −
∑

k∈N\S

tE(k,T )

=
∑
k∈S

tE(k,T )

≤
∑
k∈S

tE(k,T S)

=t(T S) = c(S)

where the inequality follows from Lemma 2.3.

Case 3. i ∈ S, Sup(i, F (j, T )) ̸∈ S.∑
k∈S

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) = ρ

i,F (j,T )
i ((N ∪ {v0}, E), t)

+
∑

k∈S\{i}

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t))

=tE(i,T −Sup(i,F (j,T ))) +
∑

k∈S\{i}

tE(k,T )

≤tE(i,T S) +
∑

k∈S\{i}

tE(k,T S)

=
∑
k∈S

tE(k,T S)

=t(T S) = c(S)

where the inequality follows from Lemma 2.3.

Case 4. i ̸∈ S, Sup(i, F (j, T )) ∈ S.∑
k∈S

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) = ρ

i,F (j,T )
Sup(i,F (j,T ))((N ∪ {v0}, E), t)

+
∑

k∈S\{Sup(i,F (j,T ))}

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t)

= t(T )−
∑

k∈N\{i,Sup(i,F (j,T ))}

tE(k,T )

− tE(i,T −Sup(i,F (j,T )))
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+
∑

k∈S\{Sup(i,F (j,T ))}

tE(k,T )

=
∑
k∈N

tE(k,T ) −
∑

k∈N\(S∪{i})

tE(k,T )

− tE(i,T −Sup(i,F (j,T )))

=
∑
k∈S

tE(k,T ) + tE(i,T ) − tE(i,T −Sup(i,F (j,T )))

≤
∑
k∈S

tE(k,T )

≤
∑
k∈S

tE(k,T S)

=t(T S) = c(S)

where the inequalities follow from Lemma 2.3.

3.4 Extreme Points, Dimension and Facets of the Core
of the Shortest Path Tree Games

In this section, we analyse the core of the SPT games. We do so firstly by presenting
a class of extreme points and secondly by determining the dimension of the core of the
SPT games. Finally, we identify a class of facets of the core of the SPT games that
correspond to SPT problems with a unique shortest path tree.

3.4.1 Preliminaries on Polyhedral Theory

We present some definitions and results from polyhedral theory that will be used in the
subsequent three sections on the extreme points, dimension and facets of the core of the
shortest path tree games, respectively.

The following preliminaries are adapted from the books of Nemhauser and Wolsey
(1988) and Wolsey (1998). A polyhedron P = {x ∈ Rn : Ax ≤ b} is a subset of Rn

described by a finite set of linear constraints. Let α ∈ Rn and α0 ∈ R. The inequality
αx ≤ α0 is a valid inequality for P ⊆ Rn if αx ≤ α0 for all x ∈ P . The points
x1, x2, . . . , xk ∈ Rn are linearly independent if the unique solution of

∑k
i=1 λix

i = 0 is
λi = 0 for all i = 1, 2, . . . , k. The points x1, x2, . . . , xk ∈ Rn are affinely independent if
x2 − x1, x3 − x1, . . . , xk − x1 are linearly independent. The dimension of P is denoted
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by dim(P ). If the maximum number of affinely independent points in P is k + 1 then
dim(P ) = k. Therefore, if there exist k + 1 affinely independent points in P then
dim(P ) ≥ k. A set of linear equalities are linearly independent if none of the equations
can be derived from other equations algebraically. If the maximum number of linearly
independent equalities that hold for P ⊆ Rn is k then dim(P ) = n− k. Hence, if there
exist k linearly independent equalities that hold for P ⊆ Rn then dim(P ) ≤ n − k. A
face of P is F = {x ∈ P : αx = α0} if αx ≤ α0 is a valid inequality for P . A facet of
P is a face F of P if dim(F ) = dim(P )− 1. An extreme point of P is a face F of P if
dim(F ) = 0.

We have the following example, which is adapted from Wolsey (1998), to illustrate
the above concepts1.

x2

x1

(1)

(5) (4)(2) (3)
(7)

(6)

Figure 3.7: A polyhedron P .

Example 3.8. Consider the polyhedron P ⊆ R2 displayed in Figure 3.7, which is de-
fined by the following inequalities:

x1 ≤ 2 (1)

x1 + x2 ≤ 5 (2)

x1 + 2x2 ≤ 12 (3)

x1 + 2x2 ≤ 8 (4)

1For illustrations of further MP related concepts see Gebreiter (2011).
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x1 + x2 ≥ 3 (5)

x1 ≥ 0 (6)

x2 ≥ 0 (7).

Firstly, since P ⊆ R2, dim(P ) ≤ 2. Secondly, since (2, 1), (1, 2) and (2, 3) are three
affinely independent points in P , dim(P ) ≥ 2. Therefore, dim(P ) = 2. The inequality
x1 ≤ 2 defines a facet of P since (2, 1) and (2, 3) are two affinely independent points in
P satisfying x1 ≤ 2 as an equality. Similarly, the inequalities x1 + 2x2 ≤ 8, x1 ≥ 0 and
x1 + x2 ≥ 3 define facets of P . The inequality x1 + x2 ≤ 5 defines a face consisting
only of point (2, 3) of P . The inequalities x1 + x2 ≤ 5, x1 + 2x2 ≤ 12 and x2 ≥ 0 are
redundant in the description of P . The minimal description of P is given by:

x1 ≤ 2

x1 + 2x2 ≤ 8

x1 + x2 ≥ 3

x1 ≥ 0.

Finally, the points (0, 3), (0, 4), (2, 1) and (2, 3) are the extreme points of P . ⋄

3.4.2 Extreme Points of the Core

This section presents a class of extreme points of the core of the SPT games. This class
of extreme points has been initially identified during our simulations on PORTA2, a free
software consisting of routines for analysing polytopes and polyhedra. Firstly, note that
the class of extreme points presented in this section does not constitute all the extreme
points of the core of the SPT games. Furthermore, note that there did not appear any
other class of points that were always extreme points of the core of the SPT games in
our extensive simulations.

We start by identifying a subset of permutations of N that define marginal vectors
that correspond to allocations δi((N ∪ {v0}, E), t) for i ∈ N . Let Π(N) denote the set

2For further information on PORTA and to download the software please visit http://www2.iwr.uni-
heidelberg.de/groups/comopt/software/PORTA/
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of all permutations of N . Let π denote a permutation of N, and let π(j) denote the order
of player j in permutation π.

Let i ∈ N . We consider the permutations π ∈ Π(N) where

i. π(i) = |N |, that is, player i is the last player to enter,

ii. π(j) > π(k) for all k ∈ V (j, T −i)\{j}, that is, all the players on the shortest path
of a player j ∈ N\{i}, excluding j itself, on T −i enter before player j.

The next lemma shows that the marginal vectors corresponding to such permutations
π give the allocation δi((N ∪ {v0}, E), t).

Lemma 3.1. Let ((N ∪{v0}, E), t) be an SPT problem and (N, c) be the corresponding

SPT game. Let i ∈ N . Let π ∈ Π(N) denote a permutation of the players N such that

π(i) = |N | and π(j) > π(k) for all j ∈ N\{i} and for all k ∈ V (j, T −i)\{j}, and

mπ(c) be the corresponding marginal vector. Then

mπ(c) = δi((N ∪ {v0}, E), t).

Proof: Let i ∈ N . We have

mπ
i (c) = c(N)− c(N\{i}) = t(T )− t(T −i) = δii((N ∪ {v0}, E), t).

Let j ∈ N\{i} and let πj = {l : π(j) > π(l)} denote the set of players preceding player
j in permutation π. Since π(j) > π(k) for all k ∈ V (j, T −i)\{j}, all the vertices on the
shortest path of j on T −i, including j, are in πj ∪ {j}. Thus,

tE(j,T πj∪{j}) = tE(j,T −i) for all j ∈ N\{i}. (3.1)

Furthermore, we have

πl ∪ {l} ⊆ πj ⊂ πj ∪ {j} for l ∈ πj. (3.2)

We get

tE(l,T πl∪{l}) = tE(l,T πj
) = tE(l,T πj∪{j}) = tE(l,T −i) for all l ∈ πj (3.3)
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from (3.2) and since all the vertices on the shortest path of l on T −i are in πl ∪ {l}.
Therefore, we have

mπ
j (c) = c(πj ∪ {j})− c(πj)

=
∑

l∈πj∪{j}

tE(l,T πj∪{j}) −
∑
l∈πj

tE(l,T πj
)

= tE(j,T πj∪{j}) +
∑
l∈πj

[
tE(l,T πj∪{j}) − tE(l,T πj

)
]

= tE(j,T −i) +
∑
l∈πj

[
tE(l,T −i) − tE(l,T −i)

]
= tE(j,T −i)

= δij((N ∪ {v0}, E), t)

for j ∈ N\{i} where the fourth equality follows from (3.1) and (3.3).

The marginal vectors are either outside the core or are extreme points of the core
(Meinhardt, 2002). From Theorem 3.4, the allocations δi((N ∪ {v0}, E), t) for i ∈ N

are in the core of the SPT games. Therefore, we have the following result.

Theorem 3.7. Let ((N∪{v0}, E), t) be an SPT problem. Let (N, c) be the corresponding

SPT game. Let i ∈ N . Then δi((N ∪ {v0}, E), t) is an extreme point of Core(c).

The next proposition states that the tree solution always generates an extreme point
of the core of the SPT games.

Proposition 3.1. Let ((N ∪ {v0}, E), t) be an SPT problem. Let (N, c) be the corre-

sponding SPT game. Then θ((N ∪ {v0}, E), t) is an extreme point of Core(c).

Proof: Let T be a shortest path tree. Let L(T ) denote the set of leaves of T . We have
L(T ) ̸= ∅. Let l ∈ L(T ). From Proposition 2.1, we have θ((N ∪ {v0}, E), t) =

δl((N ∪ {v0}, E), t). Thus, θ((N ∪ {v0}, E), t) is an extreme point of the core of the
SPT games from Theorem 3.7.
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Figure 3.8: An SPT problem.

EA

B

C

x3≥5

x2+x3≥8

x2≤9

x3≤14

x2+x3≤20

D

Figure 3.9: The core of the SPT game in Figure 3.8.

Example 3.9. Consider the SPT game displayed in Figure 3.8 and its core as illustrated
in Figure 3.9. The extreme points corresponding to the δi((N ∪ {v0}, E), t) allocations
are B = δ1((N ∪ {v0}, E), t) = (−10, 9, 11), D = δ2((N ∪ {v0}, E), t) = (2,−6, 14)

and E = δ3((N ∪ {v0}, E), t) = θ((N ∪ {v0}, E), t) = (2, 3, 5). ⋄

3.4.3 Dimension of the Core

This section presents the results on the dimension of the core of SPT games.
We start with the following lemma, which states that for any allocation in the core

of the SPT games the total cost allocated to the players in Bh(T ) equals the cost of the
coalition formed by this branch.
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Lemma 3.2. Let ((N ∪{v0}, E), t) be an SPT problem and let T be a shortest path tree.

Let (N, c) be the corresponding SPT game. Let x ∈ Core(c). Then∑
i∈Bh(T )

xi = c(Bh(T )) for all h ∈ H(T ).

Proof: We have
∑

i∈N xi = c(N) since x is a core allocation. The branches of N with
respect to T form a partition, therefore∑

h∈H(T )

∑
i∈Bh(T )

xi = c(N). (3.4)

Furthermore,

c(N) = t(T ) =
∑

h∈H(T )

t(T Bh(T )) =
∑

h∈H(T )

c(Bh(T )) (3.5)

where the second equality follows from Lemma 2.2. From (3.4) and (3.5), we get∑
h∈H(T )

∑
i∈Bh(T )

xi =
∑

h∈H(T )

c(Bh(T )). (3.6)

Since Bh(T ) ⊆ N for all h ∈ H(T ), we have∑
i∈Bh(T )

xi ≤ c(Bh(T )) for all h ∈ H(T ). (3.7)

From (3.6) and (3.7), we get∑
i∈Bh(T )

xi = c(Bh(T )) for all h ∈ H(T ).

Next, we have the following definitions and notation. A shortest path tree is called
a maximal shortest path tree if it is an optimal solution to ((N ∪ {v0}, E), t) and it
has the maximum number of branches among all solutions to ((N ∪ {v0}, E), t). Let
MaxTree(N) denote the set of maximal shortest path trees of ((N ∪ {v0}, E), t). Ob-
serve that if an agent i is a hub for any shortest path tree T , then it is a hub for all
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T ∈ MaxTree(N). Therefore, the set of hubs is the same for all maximal shortest
path trees. Let H denote the set of hubs H(T ) for T ∈ MaxTree(N). Note that if
the shortest path tree problem ((N ∪ {v0}, E), t) has a unique optimal solution T then
MaxTree(N) = {T }, and H = H(T ).

1

1 1
1

v0
1

2

3 4

2

(a) Tree T

1

1

1

1 2 3

4

v0

2

1

(b) Tree T̂

Figure 3.10: An example illustrating maximal shortest path trees.

Example 3.10. Consider the SPT problem displayed in Figure 3.10. Assume that all
the edges that are not shown have cost 100. The shortest path trees T and T̂ are both
optimal solutions to this SPT problem. For this example, T ̸∈ MaxTree(N) and T̂ ∈
MaxTree(N) since T̂ has maximum possible number of branches. Furthermore, H =

{1, 2, 3}. ⋄

An agent is called a multihub agent if there exists T , T̂ ∈ MaxTree(N) such that
Hub(k, T ) ̸= Hub(k, T̂ ) for all k ∈ F (i, T ) and Hub(j, T ) = Hub(j, T̂ ) for all
N\F (i, T ). Therefore, an agent is a multihub agent if there exists two maximal shortest
path trees such that all the followers of agent i on one of those trees, which includes
itself, have a different hub on the other one and the rest of the agents have the same hub
on both trees. Let MultiHub denote the set of multihub agents. Note that if the shortest
path tree problem ((N ∪ {v0}, E), t) has a unique optimal solution T then Multihub =

∅.

Example 3.11. Consider the SPT problem displayed in Figure 3.11. Assume that all
the edges that are not shown have cost 100. The shortest path trees T and T̂ are both
optimal solutions to this SPT problem. Furthermore, T , T̂ ∈ MaxTree(N). We have
Multihub = {3}. Agent 3 and all of its followers on tree T belong to the branchB1(T ).
For tree T̂ , agent 3 and all of its followers on this tree are in branch B5(T̂ ). ⋄
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Figure 3.11: An example illustrating multihub agents.

The main result of this section is the following theorem. The theorem follows from
Lemma 3.4 and Lemma 3.5 which are stated and proven subsequently.

Theorem 3.8. Let ((N ∪ {v0}, E), t be an SPT situation. Let T ∈ MaxTree(N) be a

maximal shortest path tree. Let (N, c) be the corresponding SPT game. Then

dim(Core(c)) = |N | − |H| − |MultiHub|.

Example 3.12. Consider the SPT problem displayed in Figure 3.11. Assume that all
the edges that are not shown have cost 100. We have T , T̂ ∈ MaxTree(N). Fur-
thermore, H = {1, 5, 7} and Multihub = {3}. Therefore, dim(Core(c)) = |N | −
|H| − |Multihub| = 7 − 3 − 1 = 3. From Lemma 3.2, we have x1 + x2 + x3 + x4 =

1 + 2 + 3 + 4 = 10 and x5 + x6 = 1 + 2 = 3. Secondly, we have B1(T̂ ) = {1, 2} and
B5(T̂ ) = {5, 6, 3, 4}. In this case, we get x1 + x2 = 1+2 = 3 and x5 + x6 + x3 + x4 =

1+ 2+ 3+ 4 = 10. Therefore, in the core of this SPT game at least four equations hold
x1 + x2 = 1 + 2 = 3, x3 + x4 = 3 + 4 = 7, x5 + x6 = 1 + 2 = 3 and x7 = 2 where
x3 + x4 = 3 + 4 = 7 is implied from x1 + x2 + x3 + x4 = 1 + 2 + 3 + 4 = 10 and
x1 + x2 = 1 + 2 = 3. Below will show that these are the only equalities that hold for
the core of the SPT games. ⋄

As a special instance of this main result, we also state the result for SPT games that
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correspond to SPT problems that have a unique optimal solution. Let USPT (N) denote
the collection of SPT problems that have a unique shortest path tree. Since there are no
multihub agents for a unique shortest path tree, we have the following corollary.

Corollary 3.2. Let ((N ∪ {v0}, E), t) ∈ USPT (N). Let T be the shortest path tree.

Let (N, c) be the corresponding SPT game. Then

dim(Core(c)) = |N | − |H(T )|.

Example 3.13. Consider the SPT game displayed in Figure 3.8. The core of this game is
illustrated in Figure 3.9. We have H(T ) = {1}, thus dim(Core(c)) = |N | − |H(T )| =
3− 1 = 2. ⋄

We have the following lemma stating that for an allocation in the core of the SPT
games corresponding to SPT situations, the sum of the costs allocated to the followers
of a multihub agent is equal to the sum of their shortest path costs, which, as stated
previously, is the same for all shortest path trees of any given SPT situation.

Lemma 3.3. Let ((N ∪ {v0}, E), t) be an SPT situation. Let T ∈ MaxTree(N) be

a maximal shortest path tree. Let (N, c) be the corresponding SPT game. Let i ∈
MultiHub. Let x ∈ Core(c). Then∑

j∈F (i,T )

xj =
∑

j∈F (i,T )

tE(j,T ).

Proof: Let i ∈MultiHub. Let T , T̂ ∈MaxTree(N) such thatHub(k, T ) ̸= Hub(k, T̂ )

for all k ∈ F (i, T ) and Hub(j, T ) = Hub(j, T̂ ) for all N\F (i, T ). Therefore, only the
branch of the followers of i on T changes in T̂ . On T̂ , the followers of i are in the branch
BHub(i,T̂ )(T̂ ). On T , this branch consists of the players in BHub(i,T̂ )(T ). Therefore,

BHub(i,T̂ )(T̂ ) = BHub(i,T̂ )(T ) ∪ F (i, T ).

Thus,
BHub(i,T̂ )(T̂ )\BHub(i,T̂ )(T ) = F (i, T ). (3.8)



CHAPTER 3. SHORTEST PATH TREE GAMES 83

We have tE(j,T ) = tE(j,T̂ ). Using this and Lemma 3.2, we get∑
j∈B

Hub(i,T̂ )
(T̂ )

xj =
∑

j∈B
Hub(i,T̂ )

(T̂ )

tE(j,T ) (3.9)

and ∑
j∈B

Hub(i,T̂ )
(T )

xj =
∑

j∈B
Hub(i,T̂ )

(T )

tE(j,T ). (3.10)

Subtracting (3.10) from (3.9), and using (3.8), we have∑
j∈F (i,T )

xj =
∑

j∈F (i,T )

tE(j,T ).

Example 3.14. Consider the SPT problem displayed in Figure 3.11. Assume that all the
edges that are not shown have cost 100. For tree T , we have B1(T ) = {1, 2, 3, 4} and
from Lemma 3.2, we get x1+x2+x3+x4 = 1+2+3+4 = 10. We have Multihub =

{3}. Furthermore, for tree T̂ , we have B1(T̂ ) = {1, 2} and x1 + x2 = 1+2 = 3. These
two equations imply x3 + x4 = 3 + 4 = 7. ⋄

We have the following lemma giving us an upper bound on the dimension of the core
of the SPT games corresponding to SPT situations with multiple shortest path trees.

Lemma 3.4. Let ((N ∪ {v0}, E), t) be an SPT situation. Let T ∈ MaxTree(N) be a

maximal shortest path tree. Let (N, c) be the corresponding SPT game. Then

dim(Core(c)) ≤ |N | − |H| − |MultiHub|.

Proof: Let T ∈ MaxTree(N). From Lemma 3.2,
∑

i∈Bh(T ) xi = c(Bh(T )) holds for
all h ∈ H for x ∈ Core(c). Since, T is a maximal shortest path tree, |H| is the maxi-
mum number of branch equalities. The branch equalities have disjoint sets of variables
and therefore are linearly independent. Moreover, we have H ∩MultiHub = ∅. This
is because if a multihub agent is in H , then it cannot have two different hubs on two
different maximal shortest path trees, and thus cannot be a multihub agent. Therefore,
BHub(i,T )(T )\F (i, T ) ̸= ∅ for i ∈ MultiHub. Thus, for each i ∈ MultiHub, using
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Lemma 3.3, the branch equality∑
j∈BHub(i,T )(T )

xj = c(BHub(i,T )(T ))

is decomposed into two linearly independent equalities with disjoint sets of variables as∑
j∈F (i,T )

xj =
∑

j∈F (i,T )

tE(j,T )

and ∑
j∈BHub(i,T )(T )\F (i,T )

xj = c(BHub(i,T )(T ))−
∑

j∈F (i,T )

tE(j,T ).

Finally, consider two agents i, j ∈ MultiHub and i ̸= j. There are two cases to
consider. Firstly, F (i, T ) and F (j, T ) can be disjoint if j ̸∈ V (i, T ) and i ̸∈ V (j, T ). In
this case the equalities introduced by the followers of i and j are linearly independent.
Secondly, one of the agents can be on the shortest path of the other agent, such that
j ∈ V (i, T ). In this case, F (i, T ) ⊆ F (j, T ). We have∑

k∈F (i,T )

xk =
∑

k∈F (i,T )

tE(k,T ) (3.11)

and ∑
k∈F (j,T )

xk =
∑

k∈F (j,T )

tE(k,T )

which imply ∑
k∈F (j,T )\F (i,T )

xk =
∑

k∈F (j,T )\F (i,T )

tE(k,T ). (3.12)

Since the variables in (3.11) and (3.12) are disjoint, these equalities are linearly inde-
pendent. Therefore, in Core(c) of an SPT game, at least |H| + |MultiHub| linearly
independent equalities hold.

Lemma 3.5. Let ((N ∪ {v0}, E), t) be an SPT situation. Let T ∈ MaxTree(N) be a

maximal shortest path tree. Let (N, c) be the corresponding SPT game. Then

dim(Core(c)) ≥ |N | − |H| − |MultiHub|.
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Proof: We prove this lemma by identifying |N | − |H| − |MultiHub| + 1 allocations
that belong to the core of the SPT games and are affinely independent.

Firstly, we consider the tree solution θ((N ∪{v0}, E), t), which is unique. Secondly,
we consider the σi((N ∪ {v0}, E), t) rule for i ∈ N\(H ∪ Multihub). Recall that
H ∩MultiHub = ∅. Therefore, we have |N | − |H| − |MultiHub|+ 1 allocations that
belong to the core from Theorems 3.1 and 3.5.

We conclude the proof by showing that these |N |−|H|−|MultiHub|+1 allocations
are affinely independent. We do so by defining zi ∈ RN such that zi = σi((N ∪
{v0}, E), t) − θ((N ∪ {v0}, E), t) and showing that zi are linearly independent for i ∈
N\(H ∪Multihub).

Let j ∈ N . The jth element of zi is zi(j) = σi
j((N ∪ {v0}, E), t) − θj((N ∪

{v0}, E), t).

We consider the following cases for the jth element of zi.

Case 1. j ∈ N\{i,Hub(i, T )}. We have

zi(j) = σi
j((N ∪ {v0}, E), t)− θj((N ∪ {v0}, E), t)

= tE(j,T ) − tE(j,T ) = 0.

Case 2. j = i. If player i has a unique shortest path, that is, the shortest path of i is the
same on all shortest path trees, then Hub(i, T ) is on the unique shortest path
of i. Therefore, the cost of the shortest path of i on T −Hub(i,T ) is greater than
the cost of the shortest path of i on T , that is, tE(i,T −Hub(i,T )) > tE(i,T ). We
know that player i does not have a shortest path via a hub in H\{Hub(i, T )}
since i ̸∈ Multihub. There is only one case left to be considered, which is
when i has an alternative shortest path via the players in the same branch. Since
H is maximal, the players in the same branch as i, excluding the hub of this
branch, cannot be a hub on any shortest path tree. Therefore, if there exists
an alternative shortest path via the same branch, this path has to go through
Hub(i, T ). Thus, also in this final case, tE(i,T −Hub(i,T )) > tE(i,T ). We have

zi(i) = σi
i((N ∪ {v0}, E), t)− θi((N ∪ {v0}, E), t)

= tE(i,T −Hub(i,T )) − tE(i,T ) > 0.
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Case 3. j = Hub(i, T ). Following from the argument of the previous case, we have

zi(Hub(i, T )) =σi
Hub(i,T )((N ∪ {v0}, E), t)− θHub(i,T )((N ∪ {v0}, E), t)

= t(T )−
∑

k∈N\{i,Hub(i,T )}

tE(k,T )

− tE(i,T −Hub(i,T )) − tE(Hub(i,T ),T )

=
∑
k∈N

tE(k,T ) −
∑

k∈N\{i,Hub(i,T )}

tE(k,T )

− tE(i,T −Hub(i,T )) − tE(Hub(i,T ),T )

=tE(i,T ) + tE(Hub(i,T ),T ) − tE(i,T −Hub(i,T )) − tE(Hub(i,T ),T )

=tE(i,T ) − tE(i,T −Hub(i,T )) < 0.

Thus,

zi(j) =


0 for j ∈ N\{i,Hub(i, T )},

tE(i,T −Hub(i,T )) − tE(i,T ) for j = i,

tE(i,T ) − tE(i,T −Hub(i,T )) for j = Hub(i, T ).

Let êk ∈ RN be the unit vector with a 1 in the kth coordinate and 0’s elsewhere. We
get

zi = (tE(i,T −Hub(i,T )) − tE(i,T )) · (êi − êHub(i,T )).

Since (êi − êHub(i,T )) for i ∈ N\(H ∪ Multihub) are linearly independent and
tE(i,T −Hub(i,T ))−tE(i,T ) > 0, zi for i ∈ N\(H∪Multihub) are linearly independent.

3.4.4 Facets of the Core (Unique Shortest Path Tree Case)

In this section, we identify a class of facets of the core of SPT games that correspond
to SPT problems with a unique shortest path tree. Based on the simulations we have
performed in PORTA, we could not identify a class of coalitions that always defines
facets of the core of the SPT games that correspond to SPT problems with multiple
optimal solutions. Furthermore, note that the class of facets identified in this section does
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not generate all the facets of the core of an SPT game that corresponds to an SPT problem
with a unique shortest path tree. Finally, we would like to highlight that we could not
identify any other class of coalitions in our simulations such that the corresponding
equalities always defined facets of the core of the SPT games.

We have the following result.

Theorem 3.9. Let ((N ∪{v0}, E), t) ∈ USPT (N). Let T be the shortest path tree. Let

j ∈ N\H(T ). Let (N, c) be the corresponding SPT game. Then∑
k∈F (j,T )

xk ≥ c(N)− c(N\F (j, T ))

defines a facet of Core(c).

Proof: From Theorem 3.2, the dimension of the core of the SPT games corresponding
to SPT problems with a unique shortest path is |N | − |H(T )|. Therefore, any facet of
the core is of dimension |N | − |H(T )| − 1. We prove that∑

k∈F (j,T )

xk ≥ c(N)− c(N\F (j, T ))

defines a facet by identifying |N | − |H(T )| allocations that are in the core, satisfy this
inequality as an equality and are affinely independent.

Firstly, we consider the tree solution θ, which is unique. Secondly, we let j ∈
N\H(T ) and consider allocations generated by the ρi,F (j,T ) rule for i ∈ N\H(T ) and
i ̸= j. There are |N | − |H(T )| − 1 such allocations. Since the tree solution θ and the
ρi,F (j,T ) rule generate core allocations from Theorems 3.1 and 3.6, respectively, we can
generate |N | − |H(T )| allocations that belong to the core.

We proceed by showing that these |N |−|H(T )| allocations lie on the facet. Consider
the SPT problem ((N\S ∪ {v0}, EN\S), tN\S) and recall that we denote an optimal
solution to this problem by T −S . Firstly, we have

c(N)− c(N\F (j, T )) =
∑
k∈N

tE(k,T ) −
∑

k∈N\F (j,T )

tE(k,T −F (j,T ))

=
∑
k∈N

tE(k,T ) −
∑

k∈N\F (j,T )

tE(k,T )

=
∑

k∈F (j,T )

tE(k,T )
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where the second equality follows from Lemma 2.1.
For the tree solution, we have

∑
k∈F (j,T ) θk((N ∪ {v0}, E), t) =

∑
k∈F (j,T ) t

E(k,T ).
For the ρi,F (j,T ) rule, we have two cases.

Case 1. i ∈ F (j, T ). Then Sup(i, F (j, T )) = j and thus Sup(i, F (j, T )) ∈ F (j, T ).
Therefore,∑

k∈F (j,T )

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) =

∑
k∈F (j,T )\{i,Sup(i,F (j,T ))}

tE(k,T )

+ tE(i,T −Sup(i,F (j,T )))

+ t(T )−
∑

k∈N\{i,Sup(i,F (j,T ))}

tE(k,T )

− tE(i,T −Sup(i,F (j,T )))

=
∑
k∈N

tE(k,T ) −
∑

k∈N\F (j,T )

tE(k,T )

=
∑

k∈F (j,T )

tE(k,T ).

Case 2. i ̸∈ F (j, T ). Then Sup(i, F (j, T )) = Hub(i, T ) and thus Sup(i, F (j, T )) ̸∈
F (j, T ). Therefore,∑

k∈F (j,T )

ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) =

∑
k∈F (j,T )

tE(k,T ).

Thus, the |N | − |H(T )| points considered satisfy the facet inducing inequality as an
equality.

We conclude the proof by showing that these |N | − |H(T )| allocations are affinely
independent. We do so by defining zi ∈ RN such that zi = ρi,F (j,T )((N ∪{v0}, E), t)−
θ((N ∪ {v0}, E), t) and showing that zi are linearly independent for i, j ∈ N\H(T )

and i ̸= j. Let k ∈ N . The kth element of zi is zi(k) = ρ
i,F (j,T )
k ((N ∪ {v0}, E), t) −

θk((N ∪ {v0}, E), t).
We consider the following cases for the kth element of zi.

Case 1. k ∈ N\{i, Sup(i, F (j, T ))}. We have

zi(k) = ρ
i,F (j,T )
k ((N ∪ {v0}, E), t)− θk((N ∪ {v0}, E), t)
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= tE(k,T ) − tE(k,T ) = 0.

Case 2. k = i. We have

zi(i) = ρ
i,F (j,T )
i ((N ∪ {v0}, E), t)− θi((N ∪ {v0}, E), t)

= tE(i,T −Sup(i,F (j,T ))) − tE(i,T ).

Case 3. k = Sup(i, F (j, T )). We have

zi(Sup(i, F (j, T ))) = ρ
i,F (j,T )
Sup(i,F (j,T ))((N ∪ {v0}, E), t)

− θSup(i,F (j,T ))((N ∪ {v0}, E), t)

= t(T )−
∑

k∈N\{i,Sup(i,F (j,T ))}

tE(k,T )

− tE(i,T −Sup(i,F (j,T ))) − tE(Sup(i,F (j,T )),T )

=
∑
k∈N

tE(k,T ) −
∑

k∈N\{i,Sup(i,F (j,T ))}

tE(k,T )

− tE(i,T −Sup(i,F (j,T ))) − tE(Sup(i,F (j,T )),T )

=tE(i,T ) + tE(Sup(i,F (j,T )),T ) − tE(i,T −Sup(i,F (j,T )))

− tE(Sup(i,F (j,T )),T )

=tE(i,T ) − tE(i,T −Sup(i,F (j,T ))).

Thus,

zi(k) =


0 for k ∈ N\{i, Sup(i, F (j, T ))}

tE(i,T −Sup(i,F (j,T ))) − tE(i,T ) for k = i

tE(i,T ) − tE(i,T −Sup(i,F (j,T ))) for k = Sup(i, F (j, T )).

We get

zi = (tE(i,T −Sup(i,F (j,T ))) − tE(i,T )) · (êi − êSup(i,F (j,T ))).

Since ((N ∪ {v0}, E), t) ∈ USPT (N), the shortest path of i on T is unique. Fur-
thermore, since Sup(i, F (j, T )) is on the unique shortest path of i on T , the cost of the
shortest path of i on T −Sup(i,F (j,T )) is greater than the cost of the shortest path of i on
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T . This gives us tE(i,T −Sup(i,F (j,T ))) − tE(i,T ) > 0. Moreover, (êi − êSup(i,F (j,T ))) are
linearly independent for i ∈ N\H(T ) and i ̸= j. Thus, zi are linearly independent for
i ∈ N\H(T ) and i ̸= j.

Example 3.15. Consider the SPT game displayed in Figure 3.8 and its core as illus-
trated in Figure 3.9. We have N\H(T ) = {2, 3}. Furthermore, F (2, T ) = {2, 3}
and F (3, T ) = {3}. The facet inducing inequalities generated by Theorem 3.9 are
x2 + x3 ≥ 8 and x3 ≥ 5. Observe that the remaining facet inducing inequalities x2 ≤ 9,
x2 + x3 ≤ 20 and x3 ≤ 14 do not being to the class of facets generated by 3.9. ⋄

3.5 Redundant Core Inequalities of the Shortest Path
Tree Games

This section identifies a collection of coalitions for which the corresponding inequalities
are redundant in the description of the core of the SPT games. We start with some
definitions. Let x ∈ RN be an allocation for the SPT game (N, c) and let xi denote the
cost allocated to a player i by x. Recall that the core of (N, c) is defined as

Core(c) =

{
x ∈ RN |

∑
i∈N

xi = c(N) and
∑
i∈S

xi ≤ c(S) for all S ⊂ N

}
.

The collection of inequalities
∑

i∈S xi ≤ c(S) for all S ⊂ N guarantees that the
players in a coalition S are never charged more than what they would have paid if they
broke away from the rest of the players. Thus, this principle is referred to as the stand-

alone principle (Moulin, 1988). Now, consider the no-subsidy principle (Moulin, 1988)
that ensures that the players in a coalition S must at least pay the marginal cost of being
served. Therefore, this principle implies that

∑
i∈S xi ≥ c(N) − c(N\S) holds for all

S ⊂ N . In fact, the no-subsidy principle is equivalent to the stand-alone principle for
x ∈ Core(c). Firstly, the no-subsidy principle implies the stand-alone principle since∑

i∈N xi = c(N) gives us
∑

i∈S xi ≥
∑

i∈N xi − c(N\S) for all S ⊂ N , which in
turn is equivalent to

∑
i∈N\S xi ≤ c(N\S) for all S ⊂ N . Secondly, the stand-alone

principle implies the no-subsidy principle since subtracting
∑

i∈N xi from both sides of∑
i∈S xi ≤ c(S) and

∑
i∈N xi = c(N) give −

∑
i∈N\S xi ≤ c(S) − c(N), which is

equivalent to
∑

i∈N\S xi ≥ c(N)− c(S) for all S ⊆ N . In this section, we consider the
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definition of the core based on the no-subsidy principle, which is

Core(c) =

{
x ∈ RN |

∑
i∈N

xi = c(N) and
∑
i∈S

xi ≥ c(N)− c(N\S) for all S ⊂ N

}
.

Before identifying a collection of coalitions for which the corresponding inequalities
are always redundant in the description of the core of the SPT games, we introduce some
notation.

Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path tree. Let
S ⊂ N . Let

V S(i, T ) = {k : k ∈ S ∩ V (i, T )}.

The vertices in V S(i, T ) are the vertices on the shortest path of i on T and in S. A
player i in S is called an S-hub if V S(i, T ) = {i}. Thus, S-hubs are players who do not
have any other player in S on their shortest path on T . Let

HS(T ) = {i : V S(i, T ) = {i}}

denote the set of S-hubs on T . Let h ∈ HS(T ), then

BS
h (T ) = S ∩ F (h, T )

is called the S-branch induced by S-hub h on T . Thus, BS
h (T ) denotes the set of

players in S that are followers of S-hub h on T . Observe that {BS
h (T ) : h ∈ HS(T )}

is a partition of S.

Example 3.16. Consider the shortest path tree T illustrated in Figure 3.12. Let S =

{1, 3, 5, 7}. Then V S(7, T ) = {5, 7}. The set of S-hubs is HS(T ) = {1, 5} since
there does not exist any other player in S that is on the shortest path of these players on
T . The two S-branches on T , which form a partition of S, are BS

1 (T ) = {1, 3} and
BS

5 (T ) = {5, 7}. ⋄

We furthermore let F−S(HS(T )) denote the set of players in N\S that have an S-
hub on their shortest path on T . Let

B−S
h (T ) = F−S(HS(T )) ∩ F (h, T ).



CHAPTER 3. SHORTEST PATH TREE GAMES 92

v0

2

3

1 4

5 8

6 7

Figure 3.12: A shortest path tree.

Thus, B−S
h (T ) denotes the set of players that are in F−S(HS(T )) and that are the

followers of S-hub h on T . Observe that {B−S
h (T ) : h ∈ HS(T )} is a partition of

F−S(HS(T )).

Example 3.17. Consider the shortest path tree T illustrated in Figure 3.12. Let S =

{1, 3, 5, 7}. Then, F−S(HS(T )) = {2, 6} is the set of players in N\S that have an
S-hub on their shortest path on T , and this set is partitioned into B−S

1 (T ) = {2} and
B−S

5 (T ) = {6}. ⋄

Let SB(T ) =
{
BS

h (T ) : S ∈ 2N\{∅, N}, h ∈ HS(T )
}

denote the collection of S-
branches for S ∈ 2N\{∅, N}. Note that |HS(T )| = 1 for a coalition S ∈ SB(T )

and |HS(T )| > 1 for a coalition S ∈ (2N\{∅, N})\SB(T ). Furthermore, for S ∈
(2N\{∅, N})\SB(T ), the S-branches BS

h (T ) ∈ SB(T ) for all h ∈ HS(T ).

Example 3.18. Consider the shortest path tree T illustrated in Figure 3.12. We have
SB(T ) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}, {2}, {2, 3}, {3}, {4}, {4, 5}, {4, 6}, {4, 7},
{4, 8}, {4, 5, 6}, {4, 5, 7}, {4, 5, 8}, {4, 6, 7}, {4, 6, 8}, {4, 7, 8}, {4, 5, 6, 7}, {4, 5, 6, 8},
{4, 5, 7, 8}, {4, 6, 7, 8}, {4, 5, 6, 7, 8}, {5}, {5, 6}, {5, 7}, {5, 6, 7}, {6}, {7}, {8}}.Thus,
of the 254 coalitions in S ∈ 2N\{∅, N} only 30 are in SB(T ). Furthermore, let S =

{5, 6, 8}. Then S ∈ (2N\{∅, N})\SB(T ), HS(T ) = {5, 8}, and S-branches BS
1 (T ) =

{5, 6} and BS
5 (T ) = {8} are in SB(T ). ⋄

The next lemma states that the inequality
∑

i∈S xi ≥ c(N)− c(N\S) corresponding
to a coalition S ∈ (2N\{∅, N})\SB(T ) is redundant in the description of the core.
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Lemma 3.6. Let ((N ∪{v0}, E), t) be an SPT problem and let T be a shortest path tree.

Let S ∈ (2N\{∅, N})\SB(T ). Let (N, c) be the corresponding SPT game. Let x ∈ RN .

Then

∑
i∈S

xi ≥ c(N)− c(N\S)

is redundant in the description of Core(c).

Proof: We show that there exists |HS(T )| > 1 valid inequalities∑
i∈BS

h (T )

xi ≥ c(N)− c(N\BS
h (T )) for all h ∈ HS(T )

whose sum gives us the inequality∑
h∈HS(T )

∑
i∈BS

h (T )

xi ≥
∑

h∈HS(T )

[
c(N)− c(N\BS

h (T ))
]

(3.13)

which dominates ∑
i∈S

xi ≥ c(N)− c(N\S). (3.14)

Since {BS
h (T ) : h ∈ HS(T )} is a partition of S, the left hand sides of (3.13) and

(3.14) are equal. Let α0 denote the right hand side value of (3.13), and let β0 denote the
right hand side value of (3.14). In order to show that (3.14) is dominated by (3.13), we
need to show that β0 ≤ α0.

We start with the following two results. Recall that T −S denotes a shortest path tree
of the SPT problem ((N\S ∪ {v0}, EN\S), tN\S). Firstly,

tE(i,T ) = tE(i,T −S) for i ∈ (N\S)\F−S(HS(T )). (3.15)

Since i ̸∈ F−S(HS(T )), i does not have any player in HS(T ) on its shortest path on
T , which in turn implies that it does not have any player in S on its shortest path on T .
Hence, (3.15) holds. Secondly,

tE(i,T ) = tE(i,T −BS
h (T )) for i ∈ (N\BS

h (T ))\B−S
h (T ). (3.16)

Since i ̸∈ B−S
h (T ), i does not have h on its shortest path on T , which in turn implies

that it does not have any player in BS
h (T ) on its shortest path on T . Hence, (3.16) holds.
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Now, we are ready to show that β0 ≤ α0. We have

β0 = c(N)− c(N\S)

= t(T )− t(T −S)

=
∑
i∈N

tE(i,T ) −
∑

i∈N\S

tE(i,T −S)

=
∑
i∈S

tE(i,T ) +
∑

i∈N\S

[
tE(i,T ) − tE(i,T −S)

]
=

∑
i∈S

tE(i,T ) +
∑

i∈F−S(HS(T ))

[
tE(i,T ) − tE(i,T −S)

]
=

∑
h∈HS(T )

∑
i∈BS

h (T )

tE(i,T ) +
∑

h∈HS(T )

∑
i∈B−S

h (T )

[
tE(i,T ) − tE(i,T −S)

]
≤

∑
h∈HS(T )

∑
i∈BS

h (T )

tE(i,T ) +
∑

h∈HS(T )

∑
i∈B−S

h (T )

[
tE(i,T ) − tE(i,T −BS

h (T ))

]

=
∑

h∈HS(T )

 ∑
i∈BS

h (T )

tE(i,T ) +
∑

i∈B−S
h (T )

[
tE(i,T ) − tE(i,T −BS

h (T ))

]
=

∑
h∈HS(T )

 ∑
i∈BS

h (T )

tE(i,T ) +
∑

i∈N\BS
h (T )

[
tE(i,T ) − tE(i,T −BS

h (T ))

]
=

∑
h∈HS(T )

∑
i∈N

tE(i,T ) −
∑

i∈N\BS
h (T )

tE(i,T −BS
h (T ))


=

∑
h∈HS(T )

[
c(N)− c(N\BS

h (T ))
]

= α0

where the fifth equality follows from (3.15), the sixth inequality follows since {BS
h (T ) :

h ∈ HS(T )} and {B−S
h (T ) : h ∈ HS(T )} are partitions of S and F−S(HS(T ))

respectively, the inequality follows since tE(i,T −BS
h (T )) ≤ tE(i,T −S) from Lemma 2.3, and

the eighth equality follows from (3.16).

We next consider an example illustrating the above result.
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Figure 3.13: An SPT problem.

Example 3.19. Consider the SPT problem illustrated in Figure 3.13 and the correspond-
ing SPT game (N, c). The core of (N, c) using the no-subsidy principle is described by
the constraints

x1 + x2 + x3 + x4 = 8

x1 + x2 + x3 ≥ −1

x1 + x2 + x4 ≥ 3

x1 + x3 + x4 ≥ 4

x2 + x3 + x4 ≥ 7

x1 + x2 ≥ −3

x1 + x3 ≥ −5

x1 + x4 ≥ −1

x2 + x3 ≥ 3

x2 + x4 ≥ 5

x3 + x4 ≥ 5

x1 ≥ −7

x2 ≥ 2

x3 ≥ 1

x4 ≥ 3.
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There exists an inequality for each of the coalitions S ⊂ N in the description of
the core. Nonetheless, in order to characterise the core not all of these inequalities are
always needed. The inequalities that are needed to describe the core depend on the
coalitional costs, which are determined by the edge costs. Therefore, it is not trivial to
identify the most compact description of the core for every SPT game. However, using
the result of Lemma 3.6, we are able to identify a collection of inequalities that are al-
ways dominated by other inequalities independent of the edge costs, and thus can always
be eliminated from the description of the core. Firstly, consider x2 + x3 ≥ 3. This in-
equality is redundant since it is implied by x2 ≥ 2 and x3 ≥ 1. Similarly, x2+x4 ≥ 5 and
x2+x3+x4 ≥ 7 are redundant since they are implied by x2 ≥ 2 and x4 ≥ 3, and by x2 ≥
2 and x3 + x4 ≥ 5 respectively. Therefore, if we remove the inequalities correspond-
ing to coalitions {2, 3}, {2, 4} and {2, 3, 4}, the core does not change. For this example,
SB(T ) = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2}, {3}, {3, 4}, {4}}.
Observe that the coalitions {2, 3}, {2, 4} and {2, 3, 4} are not in SB(T ) and therefore,
the corresponding inequalities are always redundant in the description of the core.

We conclude this example by providing the most compact description of the core of
this game generated by PORTA below.

x1 + x2 + x3 + x4 = 8

x1 + x2 + x3 ≥ −1

x1 + x2 + x4 ≥ 3

x1 + x3 + x4 ≥ 4

x1 + x2 ≥ −3

x3 + x4 ≥ 5

x2 ≥ 2

x3 ≥ 1

x4 ≥ 3.

Observe that a number inequalities including the ones corresponding to {2, 3}, {2, 4}
and {2, 3, 4}, which are generated by the method proposed above, are redundant in the
description of the core of (N, c). ⋄
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3.6 Reduced Description of the Core of the Shortest Path
Tree Games

This section first presents the theorem on the reduced description of the core using our
previous results on branches and redundant inequalities. Secondly, this section illustrates
the reduction in the number of coalitions whose costs need to be computed to describe
the core of the SPT games.

For simplicity of notation, let us denote the collection of branches of a shortest path
tree T by B(T ), that is, B(T ) = {Bh(T ) : h ∈ H(T )}.

Theorem 3.10. Let ((N ∪ {v0}, E), t) be an SPT problem and let T be a shortest path

tree. Let (N, c) be the corresponding SPT game. The core of (N, c) is defined as

Core(c) =

{
x ∈ RN |

∑
i∈S

xi = c(S) ∀S ∈ B(T ),
∑
i∈S

xi ≤ c(S) ∀N\S ∈ SB(T )\B(T )

}
.

Proof: Firstly, from Lemma 3.2, we know that in the core of the SPT games the total
cost allocated to the players in a branch equals the cost of the coalition formed by this
branch, that is,

∑
i∈S xi = c(S) for all S ∈ B(T ). Adding these equalities imply the

efficiency condition
∑

i∈N xi = c(N) from Lemma 2.2, which states that the cost of a
shortest path tree is the sum of the costs of its tree branches.

Secondly, from Lemma 3.6, we know that
∑

i∈S xi ≥ c(N) − c(N\S) for S ∈
SB(T ) are non-redundant in the description of the core of the SPT games. Since we
have

∑
i∈N xi = c(N), we get

∑
i∈S xi ≥

∑
i∈N xi − c(N\S) for all S ∈ SB(T ).

Rearranging this inequality gives us
∑

i∈N\S xi ≤ c(N\S) for all S ∈ SB(T ) and
exchanging S with N\S implies that

∑
i∈S xi ≤ c(S) for all N\S ∈ SB(T ) are non-

redundant in the description of the core of the SPT games.
Finally, consider S ∈ B(T ), that is, a branch of N with respect to T . For such S,

the player that lies on the shortest path of all other players in a branch is in fact the hub
of this branch, so HS(T ) = {h} and |HS(T )| = 1. Since we know that S such that
|HS(T )| = 1 are in SB(T ), we get B(T ) ⊆ SB(T ). In other words, the inequalities
corresponding to the branches of N with respect to T are always non-redundant from
Lemma 3.6. However, we do not need to consider the inequalities corresponding to
coalitions in B(T ) as inequalities since they are in fact always satisfied as equalities
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from Lemma 3.2. Therefore, it is sufficient to consider the inequalities
∑

i∈S xi ≤
c(S) for all N\S ∈ SB(T )\B(T ).

Next, we illustrate the reduction in the number of coalitions, which are required to
describe the core of the SPT games, introduced by Theorem 3.10. The theorem implies
that to describe the core of the SPT games, we need to compute the costs of |SB(T )|
non-redundant coalitions in total for the equalities and the inequalities of the reduced
description of the core of the SPT games.

Let S ∈ 2N\{∅, N}. In the previous section, we have discussed that the non-
redundant coalitions S ∈ SB(T ) are S ⊂ N for which |HS(T )| = 1 where HS(T )

is the set of S-hubs. In other words, there exists a single player that lies on the shortest
path of all other players in S for every coalition in SB(T ). Recall that i ∈ F (i, T )

where F (i, T ) denotes the set of the followers of a player i on T . In order to compute
the number of coalitions that are in SB(T ), we need to consider each player i ∈ N

and all the coalitions it forms with the players in F (i, T )\{i}. Therefore, each i ∈ N

induces 2|F (i,T )−1| coalitions that belong to SB(T ) except for when the shortest path tree
formed by all the players has exactly one hub, who is a player that is directly connected
to v0, and if this is the case h lies on the shortest paths of all players in N\{h} on T .
Since the coalition that h forms with all of its followers is in fact the set of all players
N , h induces 2|F (i,T )−1| − 1 coalitions that are in SB(T ).

Consider T1 in Figure 3.14 (see next page) where player 1 is the only hub. We have
|SB(T1)| = 2n−1 − 1 +

∑n
i=2 2

n−i = 2n − 2. Therefore, for this case none of the
coalitions in S ∈ 2N\{∅, N} is redundant. Next, consider T2 in Figure 3.14. In this
case, all the players are hubs and have no followers other than themselves, and thus
SB(T2) = {{1}, {2}, . . . , {n}} and the coalitions in S ∈ 2N\{∅, {1}, {2}, . . . , {n}, N}
are redundant. Observe that T2 is a star graph rooted at v0 and has depth 1. Next consider
T3 where the depth of the tree rooted at v0 is 2. For this tree, player 1 is the only hub and
we have |SB(T2)| = 2n−1 − 1. Therefore, for this tree of depth 2 the exponent is only
reduced by one compared to T1, which was a line graph. In general for a shortest path
tree, say for T4 in Figure 3.14, as long as there is a player with followers other than itself,
such as player 4, there is an exponential number of inequalities that are not redundant
imposed by this player.

On the other hand, in practice, this method can reduce the number of coalitional
costs c(S) that are needed to describe the core of the SPT games despite the fact that
in general the exponential nature of the problem still persists. For instance, in Example
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Figure 3.14: Different types of trees.

3.19, we have shown that only 30 of the 254 coalitions in S ∈ 2N\{∅, N} are in SB(T ),
which is in fact a significant reduction.

We illustrate our computational results on the reduction of the core for the applica-
tion of Wireless-Multihop Networks in the next chapter.

3.7 The Nucleolus of the Shortest Path Tree Games

In this section, we discuss some aspects of computing the nucleolus of an SPT game
from a theoretical aspect.

The nucleolus of a cooperative cost game is defined as the unique imputation that
lexicographically maximises the excesses of all coalitions. Due to the comparison of
vectors of exponential size, algorithms that compute the nucleolus of a general coop-
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erative game based on this definition would take an exponential time (Granot et al.,
1998). There exist various examples of computing the nucleolus in polynomial time by
exploiting the special structure of a particular class of cooperative games such as the nu-
cleolus of fixed cost spanning forest games by Granot and Granot (1992), of tree games
by Megiddo (1978) and by Granot et al. (1996), and of assignment games by Solymosi
and Raghavan (1994). Elkind and Pasechnik (2009) propose a general framework for
computing the nucleolus of weighted voting games, which can potentially be applied to
a wider class of games. Granot et al. (1998) introduce the notion of a characterisation
set for the nucleolus, which is based on identification of the minimum relevant informa-
tion to characterise the nucleolus of a class of games. Our attempts to computing the
nucleolus of the SPT games were inspired by this notion.

We use Kopelowitz’s algorithm (Kopelowitz (1967) and Maschler et al. (1979)) to
compute the nucleolus, which is discussed in detail in Chapter 4. The algorithm is based
on solving linear programmes (LPs) sequentially until a unique solution, which is the
nucleolus, is found. At each of the iterations of the algorithm, an LP that includes a
constraint corresponding to a coalition S ⊆ N containing the cost c(S) of this coalition
is solved. Therefore, for the preparation of the input of the algorithm for SPT games, a
shortest path tree problem is solved for each S ⊆ N using Dijkstra’s algorithm in order
to determine c(S). Consequently, the time spent for data generation grows exponentially
with the number of players. Firstly, from our result in Theorem 3.10, we know that to
describe the core of the SPT games we only need to compute the costs of |SB(T )|
coalitions. Recall that in Section 3.6, we have argued that in general there are still an
exponential number of coalitions whose costs need to be computed to describe the core
of the SPT games. Based on the simulations we have performed, a smaller set of non-
redundant inequalities does not appear to exist to describe the core of any SPT game.

We would like to note that our attempts for identifying a characterisation set of the
nucleolus of SPT games did not prove successful. The structural similarities between
the minimum cost spanning tree games and the SPT games have been mentioned previ-
ously, thus we would like to point out that Granot et al. (1998) state that the computation
of the nucleolus of a general minimum cost spanning tree game would require exponen-
tial time. Moreover, Faigle et al. (1998) show that computing the nucleolus of general
minimum cost spanning tree games is NP -hard and hence the nucleolus is unlikely to
be computed efficiently.

Despite the difficulties of obtaining a theoretical reduction in the exponential nature
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of the computation of the nucleolus, in the next chapter we illustrate that using our
result of the reduction in the description of the core coupled with a constraint generation
approach made it possible to find the nucleolus for cases that were otherwise intractable
for the application of Wireless-Multihop Networks.

3.8 Special Case: Triangle Inequality Holds

In this section, we discuss the special case of the triangle inequality holding for the SPT
problem and its implications for the properties of the SPT games.

Firstly, consider the SPT problem in Figure 3.15. If the triangle inequality holds then
we have tv01 < tv02 + t12. In this case, the shortest path for player 1 goes through edge
tv01. On the SPT of this graph players 1 and 2 will be directly connected to the source
vertex.

tv01

v0

1 2

tv02

t12

Figure 3.15: An SPT problem.

It is easy to observe that if we assume that the triangle inequality holds for the SPT
problems, the optimal solution will always be a star graph where all players are hubs.
Therefore, each branch will consist exactly of one player that is connected to the source
vertex through its direct link. Firstly, note that c({i}) = tv0i. Secondly, from Lemma
3.2, which states that in the core of the SPT games the total cost allocated the players in
a branch equals exactly to the cost of this coalition, we have

xi = tv0i for all i ∈ N.

The implication of the above result is that in the case where the triangle inequality
holds the core of the SPT game consists of exactly one point and this point is the tree
solution. Since we know that if the core is nonempty then the nucleolus is always a
member of the core, for this special case θ((N ∪{v0}, E), t) = η(c) where η(c) denotes
the nucleolus of the SPT game (N, c).
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Let us now consider the monotonicity and the submodularity of the SPT games when
the triangle inequality holds. Firstly, observe that c(S) =

∑
i∈S tv0i. That is, when

the triangle inequality holds, the cost of a coalition is just the sum of the costs of the
direct links of all its members. Since edge costs are assumed to be nonnegative, we
have c(S) ≤ c(T ) for all S ⊆ T . Therefore, for this special case SPT games satisfy
monotonicity. Furthermore, we have c(S ∪ {i})− c(S) = tv0i = c(T ∪ {i})− c(T ) for
all i ∈ N and for all S ⊂ T ⊆ N\{i} and hence for this special case SPT games also
satisfy submodularity.

Finally, we mention that when the triangle inequality holds θ((N ∪ {v0}, E), t) =

ϕ(c) where ϕ(c) denotes the Shapley value of the game (N, c). This is because we know
that for a submodular game the Shapley value is always in the core, and for this special
case the core only consists of the tree solution.



Chapter 4

Computing the Core and the Nucleolus
of the Shortest Path Tree Games in
Wireless Multihop Networks

This chapter presents our computational results on the core and the nucleolus of the SPT
games. The results in this chapter hold for any application of the SPT games but here
we will demonstrate these results through the application of cost allocation in Wireless
Multihop Networks (WMNs). We start, in Section 4.1, with a discussion on the def-
inition and properties of WMNs. In Section 4.2, the results of our simulations on the
reduction of the definition of the core of the SPT games are presented. These simulations
are performed to observe the application of our theoretical result on the non-redundant
coalitions in the definition of the core of the SPT games to the WMN example. Section
4.3 first proposes to compute the nucleolus of the SPT games for the WMN application
using the linear programming based algorithm of Kopelowitz. Next, we incorporate our
reduction in the description of the core result to this algorithm. Finally, we employ a
constraint generation approach for the computation of the nucleolus in order to gener-
ate the cost of the non-redundant coalitions on the fly. We conclude this section by a
comparison of the performance of these three approaches.

103
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4.1 An Application: Cost Allocation in Wireless Multi-
hop Networks

An application of the SPT games is the problem of cost allocation in Wireless Multihop
Networks (WMNs). WMNs are cellular networks distributed over geographical areas
called cells, each served by one fixed-location base station that provides connectivity to
the internet. In WMNs, users can relay information for other users in order to reduce the
total power used for the signal to reach the base station. Each wireless link has a cost
associated with the power needed to transmit, and power is proportional to da where d is
the distance between users and a is the path loss exponent (a small number in the range
2−4). Thus, it is often cheaper in terms of power for a signal to hop several times before
reaching the base station instead of direct transmission.

WMNs have two major benefits. Firstly, they help save energy due to the power
savings, so they are considered to be a green technology. Moreover, for cases where
there is no wired connection or there is limited wireless transmission range, WMNs
make connectivity possible.

In WMNs, each base station has a capacity that depends on the number of users in a
cell that the base station can provide connectivity for. In the simulations of this chapter,
we consider up to 20 users in a cell. This is considered to be a realistic and reasonable
number of users in a cell. For geographical areas with denser population of users such
as urban areas, the cells are smaller compared to suburban/rural areas. Moreover, since
the size of the cells are smaller in urban areas the distances between the base station and
the users are also smaller. As a result if this, although in urban areas relaying signals
saves energy for some users, generally the shortest path tree formed by the users tend
to include more direct links. However, in suburban/rural areas the cells are larger. The
WMN technology in such areas is not only crucial for energy savings but also provides
connectivity for users who are otherwise outside the range of a base station. Therefore,
in suburban/rural areas there is more relaying and shortest path trees use fewer direct
links. For this reason, we assume a cell that is approximately 2km × 2km, which is
representative of a suburban area, and perform our simulations for the reduction in the
definition of the core and nucleolus for WMNs in suburban areas. Finally, we would like
to highlight that for the WMNs the triangle inequality does not hold, therefore the cost
allocation problem for the WMNs does not correspond to the (trivial) case as discussed
in Section 3.8.
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Formally, let N = {1, 2, . . . , n} be the set of users in the WMN. We consider the
undirected graph G = (N ∪{v0}, E) where the source vertex v0 denotes the base station
and the set of edges E = {{i, j} : i, j ∈ N ∪ {v0} and i ̸= j} represents the set of all
possible transmissions. We associate a cost tij with each edge {i, j}, which is the power
needed to transmit from user i to user j (and vice versa). The base station chooses the
optimal solution, that is, a shortest path tree T of the graph G. Then, the total cost of the
shortest path tree, t(T ), needs to be shared among the users. The cost sharing problem
in WMNs can be formulated as an SPT game where the cost represents power used.

Figure 4.1: A Wireless Multihop Network

Let us assume that the optimal solution to a WMN problem in a cell with five users
is the shortest path tree displayed in Figure 4.1. On this tree, all the users are connected
to the base station. Now, the base station should allocate the cost of this shortest path
tree in a “fair” and “mutually satisfactory” manner. For example, let us consider the tree
solution θ such that each user is allocated its own connection cost. In this case, could it
be considered “fair” for the hub user, that is, the user closest to the base station, to be
allocated its own connection cost? The hub user helps reduce the connection cost of all
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the other four users in this example. The base station could consider allocating a lower
cost to such users in order to motivate them to stay and thus, reduce the connection cost
of other users.

4.2 Reduction in the Description of the Core of the Short-
est Path Tree Games

In this section, we present the results of our simulations on the reduction of the core of
the SPT games discussed in Section 3.6. Recall that in Theorem 3.10, we have presented
a reduced description of the core of the SPT games. As a result, we have argued that
in order to describe the core of the SPT games we only need to consider the costs of
|SB(T )| non-redundant coalitions.

To demonstrate the reduction in complexity, we generated random graphs G based
on the application of WMNs where the costs are calculated as power needed for trans-
mission. We consider a 2km×2km cell with n users for a number of different values of
n. Table 4.1 shows the distribution of the proportion of non-redundant coalitions. These
proportions are based on 100 scenarios for each value of n. As we can see from the
table, there is a high probability that the number of non-redundant coalitions will be a
small percentage (0− 5%) of the total number of coalitions especially as n increases.

% of Non-redundant Coalitions: 0-5% 5-50% 50-100%
n=8 0.06 0.86 0.08

n=10 0.38 0.56 0.06
n=12 0.53 0.40 0.07
n=14 0.68 0.20 0.12
n=16 0.75 0.16 0.09
n=18 0.78 0.12 0.10
n=20 0.79 0.16 0.05

Table 4.1: Distributions of the percentages of non-redundant coalitions: each row shows
the empirical probability distribution derived over 100 randomly generated graphs with
n vertices.

Furthermore, given that the users are spread approximately uniformly within the
2km × 2km area, the depth of the shortest path tree is likely to grow according to
O(log(n)) where n is the number of users. Thus, the percentage of non-redundant coali-
tions is likely to decrease as n gets larger as shown in Table 4.1.
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4.3 Computing the Nucleolus of the Shortest Path Tree
Games

In this section, we compute the nucleolus of the SPTs using three different approaches.
First, in Section 4.3.1, we introduce a linear programming based algorithm (Kopelowitz’s
algorithm) for the calculation of the nucleolus of the SPT games. Secondly, in Section
4.3.2, we modify this algorithm such that it only takes the non-redundant coalitions in
the description of the core of the SPT games into consideration. Finally, in Section
4.3.3, we furthermore introduce a constraint generation approach to the algorithm of
Section 4.3.2. In Section 4.3.4, we compare the performance of these three approaches
to computing the nucleolus of the SPT games for the WMN application.

4.3.1 A Linear Programming Based Algorithm to Compute the Nu-
cleolus

The nucleolus of a cooperative game (N, c) can be computed using Kopelowitz’s algo-
rithm (Kopelowitz (1967) and Maschler et al. (1979)), which is based on solving linear
programmes (LPs) sequentially until a unique solution, which is the nucleolus, is found.
In any one of the LPs, there are three types of coalitions: the ones initially set as equal-
ities, the inequalities and the ones that have been fixed during the steps prior to solving
this linear programme. Therefore, we identify an iteration of the algorithm with the LP
that we need to solve at this iteration using three types of coalitions and denote it as
LP (Q, I,Φk) where Q is the set of coalitions whose costs are initially set as equalities,
I is the set coalitions that indicate the inequalities, and Φk = F1 ∪ F2 ∪ · · · ∪ Fk is the
collection of coalitions that indicate the inequalities fixed as equalities until the current
iteration k such that Fk is the set of inequalities fixed as equalities at iteration (k − 1)

and the algorithm starts with iteration k = 0.
We will now define iteration 0. We have Q = {N}, I0 = 2N\{∅, N} and Φ0 =

F0 = {∅}. We solve

LP ({N}, 2N\{∅, N}, {∅}) max ϵ

s.t. c(S)−
∑
i∈S

xi ≥ ϵ for all S ∈ 2N\{∅, N}∑
i∈N

xi = c(N) .
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We stop if LP ({N}, 2N\{∅, N}, {∅}) has a unique solution. Otherwise, let y1(S)
denote the dual variable corresponding to the constraint for coalition S in the above
LP. Let (ϵ∗1, x

∗) be an optimal solution to LP ({N}, 2N\{∅, N}, {∅}) and y∗1(S) be the
corresponding dual solution. Let F1 ⊆ I0 be the set of coalitions that are binding at the
optimum solution, so F1 = {S ∈ I0| y∗1(S) > 0}. Let I1 = I0\F1 and Φ1 = F1. For
iteration 1, we solve

LP ({N}, I1,Φ1) max ϵ

s.t. c(S)−
∑
i∈S

xi ≥ ϵ for all S ∈ I1

c(S)−
∑
i∈S

xi = ϵ∗1 for all S ∈ F1∑
i∈N

xi = c(N) .

We stop if LP ({N}, I1,Φ1) has a unique solution, otherwise we continue in the
fashion described as above.

Assume that we have Fk = {S ∈ Ik−1| y∗k−1(S) > 0}, Ik = Ik−1\Fk. For
iteration k, we solve

LP ({N}, Ik,Φk) max ϵ

s.t. c(S)−
∑
i∈S

xi ≥ ϵ for all S ∈ Ik

c(S)−
∑
i∈S

xi = ϵ∗1 for all S ∈ F1

c(S)−
∑
i∈S

xi = ϵ∗2 for all S ∈ F2

...

c(S)−
∑
i∈S

xi = ϵ∗k for all S ∈ Fk∑
i∈N

xi = c(N) .

which has a unique optimal solution (ϵ∗k+1, x
∗) and x∗ is the nucleolus η(c) of (N, c).

Note that in order to determine the uniqueness of the solution after any iteration
of the algorithm, the Gaussian elimination method described in Fromen (1997) can be
employed. We construct a 0-1 matrix Mk+1 after the kth iteration, which consists of
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rows mS
k+1 for each coalition S ∈ Q ∪ Φk+1 such that

mS
k+1 =

1 if i ∈ S

0 otherwise.

There will be a unique solution x∗ which gives us the nucleolus, only if Mk+1 ∈
R(|Q|+|Φk+1|)×|N | has full rank, that is, rank(Mk+1) = |N |.

The above procedure to compute the nucleolus of η(c) of (N, c) is summarised be-
low.

Algorithm 1: An LP Based Algorithm to Compute the Nucleolus
Input: c(S) for all S ∈ 2N\{∅} of (N, c).
begin

Set k=0;
Let I0 = 2N\{∅, N};
Let Φ0 = {∅};
Let M0 be an empty matrix;
while (rank(Mk) < |N |) do

begin
Solve LP ({N}, Ik,Φk);
Store η(c)=x∗;
k = k + 1;
Let Fk = {S ∈ Ik−1| y∗k−1(S) > 0};
Let Φk = Φk−1 ∪ Fk;
Let Ik = Ik−1\Fk;
Construct Mk;

end;
end;
Output: η(c) is the nucleolus of (N, c).
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4.3.2 A Linear Programming Based Algorithm to Compute the Nu-
cleolus Using Non-redundant Coalitions

In this section, to obtain a better performance for the LP based nucleolus algorithm,
we present a modified version of the aforementioned algorithm where we exploit the
reduction in the description of the core of the SPT games as discussed in Section 3.6.

Recall that from Theorem 3.10, the reduced description of the core is

Core(c) =

{
x ∈ RN |

∑
i∈S

xi = c(S) ∀S ∈ B(T ),
∑
i∈S

xi ≤ c(S) ∀N\S ∈ SB(T )\B(T )

}
.

Thus, in order to prepare the input of the modified LP based algorithm to compute the
nucleolus, we only need to compute the c(S) values for S ∈ B(T ) and for N\S ∈
SB(T )\B(T ). In return, instead of running 2|N | − 1 Dijkstra’s algorithms to prepare
the input, we only need to run |SB(T )| Dijkstra’s algorithms, which is shown to be
significantly less than 2|N | − 1 in Section 3.6 except for the case where the shortest path
tree is a line.

Based on Theorem 3.10, we can redefine the initial linear programme as follows
and denote it by LP (B(T ),SB(T )\B(T ), {∅}). Note that the difference between the
notation of LP and LP is due to the fact that LP considers coalitions N\S to indicate
the inequalities c(S) −

∑
i∈S xi ≥ ϵ to be considered whereas LP considers coalitions

S. We let Q = B(T ), I0 = SB(T )\B(T ) and Φ0 = {∅}. We solve

LP (B(T ),SB(T )\B(T ), {∅}) max ϵ

s.t. c(S)−
∑
i∈S

xi ≥ ϵ for all N\S ∈ SB(T )\B(T )∑
i∈S

xi = c(S) for all S ∈ B(T ) .

The rest of the procedure will be the same as Algorithm 1 where the stopping con-
dition is the rank of the matrix, whose rows represent the coalitions whose costs have
been fixed so far, being equal to |N |. We summarise this approach in Algorithm 2.
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Algorithm 2: An LP Based Algorithm to Compute the Nucleolus Using Non-redundant
Coalitions
Input: c(S) for all S ∈ B(T ) and

for all N\S ∈ SB(T )\B(T ) of (N, c).
begin

Set k=0;
Let I0 = SB(T )\B(T );
Let Φ0 = {∅};
Let M0 be an empty matrix;
while (rank(Mk) < |N |) do

begin
Solve LP (B(T ), Ik,Φk);
Store η(c)=x∗;
k = k + 1;
Let Fk = {S ∈ Ik−1| y∗k−1(S) > 0};
Let Φk = Φk−1 ∪ Fk;
Let Ik = Ik−1\Fk;
Construct Mk;

end;
end;
Output: η(c) is the nucleolus of (N, c).
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4.3.3 A Linear Programming Based Algorithm to Compute the Nu-
cleolus Using Constraint Generation and Non-redundant Coali-
tions

Based on the distribution of the percentage of the non-redundant coalitions illustrated
in Table 4.1 in Section 4.2, we have shown that the non-redundant coalitions constitute
only around 0-5% of all the coalitions for most of the cases. Nevertheless, as pointed
out previously in Section 3.6, theoretically there are still an exponential number of non-
redundant coalitions and data generation would become intractable as n grows. More-
over, the size of each linear programme solved becomes very large. Due to these two
issues, we will now employ the constraint generation procedure introduced by Gilmore
and Gomory. This procedure has been used for Linear Production Games in Halle-
fjord et al. (1995) where the violated coalitions are generated by solving mixed integer
programmes (MIPs). For our games, this implies that the cost of a coalition will be
generated by solving an MIP only if it is needed to find the nucleolus.

We will start with a summary of the constraint generation approach within the con-
text of our problem. In order to find the nucleolus of the SPT games we need to solve
LP (B(T ),SB(T )\B(T ), {∅}) lexicographically. This problem has only n variables,
therefore not all the inequality constraints will be required to obtain an optimal solution.
Since we do not have prior knowledge of the inequality constraints that are actually
needed, we first run this linear programme with a small subset of the inequalities. In
this case, some of the excluded coalitions will not be satisfied with the current alloca-
tion. To find the least satisfied one, we solve an MIP. We add the coalition generated
by the MIP to the small subset of inequalities initially included and rerun the linear pro-
gramme. Then, we solve the MIP again to find the least satisfied coalition with respect
to the new allocation. The procedure continues until the MIP cannot find the least satis-
fied coalition, that is, when there is no coalition that is not satisfied with respect to the
current allocation. This means that we have all the constraints we needed to solve the
initial linear programme LP (B(T ),SB(T )\B(T ), {∅}) to optimality. Then, we find the
coalitions to be fixed and proceed to the next linear programme of the nucleolus algo-
rithm. For every iteration of the nucleolus algorithm, we repeat the above procedure of
running an MIP and adding a constraint until the compact version gives the same solu-
tion with the corresponding linear programme of the nucleolus algorithm. As a result,
we only calculate c(S) values for coalitions that are needed to find the nucleolus, and
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simultaneously reduce the size of the linear programmes solved to find the nucleolus.
The constraint generation approach as used by the authors in (Hallefjord et al.,

1995) would generate any coalition if adapted to the SPT problem formulation. How-
ever, since we have already found a reduced description of the core using inequalities∑

i∈S xi ≤ c(S) for all N\S ∈ SB(T )\B(T ), we modify the MIPs to only generate the
least satisfied coalition S such that its complement N\S is in SB(T )\B(T ). Although
this makes the MIPs harder to solve, we will use the modified version in light of the very
poor performance of the simulations where we allowed the MIPs to generate coalitions
that correspond to redundant core inequalities.

We proceed to the formal description of the procedure of finding the nucleolus of the
SPT games iteratively using a constraint generation approach. Let LP (B(T ),V , {∅})
denote the relaxed version of LP (B(T ),SB(T )\B(T ), {∅}) including only the inequal-
ities for N\S ∈ V where V ⊂ SB(T )\B(T ). We have

LP (B(T ),V, {∅}) max ϵ

s.t. c(S)− x(S) ≥ ϵ for all N\S ∈ V∑
i∈S

xi = c(S) for all S ∈ B(T ) .

where V denotes the set of coalitions initially chosen to be included. This set can be
the empty set, the singleton coalitions or the set of singleton complements (Hallefjord
et al., 1995). For the SPT games, we can also take V to be the set of facets, which we
have identified in Theorem 3.9. Assume that solving the above LP gives us the solution
(ϵ∗, x∗).

We will now present the formulation of the MIP to generate the least satisfied coali-
tion S such that N\S ∈ SB(T ) with respect to the given solution. Recall that V (i, T )

denotes the set of vertices on the shortest path of i on T , excluding v0 but including i
and V S(i, T ) = {k : k ∈ S ∩ V (i, T )}. A player i in S is an S-hub if V S(i, T ) = {i}.
Thus, S-hubs are players who do not have any other player in S on their shortest path
on T .

Below are the parameters and variables of the MIP formulation for the constraint
generation.



CHAPTER 4. COMPUTING THE CORE AND THE NUCLEOLUS 114

Parameters

N : Set of vertices

n : Number of vertices

tij : Cost of edge {i,j}

ϵ∗ : Optimal value of happiness given by the most recent nucleolus iteration

x∗i : Allocation given by the nucleolus iteration for vertex i, ∀i ∈ N

SPij :=

1, if j ∈ V (i, T )

0, otherwise

(Note: SPii = 1)

Variables

yij ≥ 0 : Number of shortest paths going through edge {i,j}

si binary :=

1, if i ∈ S

0, otherwise

zij binary :=

1, if i, j ∈ N\S

0, otherwise

uj :=
∑
i∈N

SPij · zij ∀j ∈ N

wi binary :=

1, if i ∈ N\S

0, otherwise

bj binary :=


1, if uj =

∑
k∈N

wk

0, otherwise

or

bj binary :=

1, if vertex j is the N\S-hub

0, otherwise

The following formulation finds the most violated inequality
∑

i∈S xi ≤ c(S) such
that N\S is in SB(T )\B(T ). The variables wi ensure that the complement of the coali-
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tion generated will be in SB(T )\B(T ).

(MIP) min
∑

i∈{v0}∪N

∑
j∈{v0}∪N

tij · yij −
∑
i∈N

x∗i · si − ϵ∗ (4.1)

s.t. −
∑

i∈{v0}∪N

yiv0 +
∑

k∈{v0}∪N

yv0k =
∑
j∈N

sj (4.2)

∑
i∈{v0}∪N

yij −
∑

k∈{v0}∪N

yjk = sj ∀j ∈ N (4.3)

yij ≤ n · si ∀i ∈ {v0} ∪N, ∀j ∈ {v0} ∪N (4.4)

yij ≤ n · sj ∀i ∈ {v0} ∪N, ∀j ∈ {v0} ∪N (4.5)

sv0 = 1 (4.6)∑
j∈N

sj ≥ 1 (4.7)∑
j∈N

sj ≤ n− 1 (4.8)

wi = 1− si ∀i ∈ N (4.9)

zij ≤ wi ∀i ∈ N, j ∈ N (4.10)

zij ≤ wj ∀i ∈ N, j ∈ N (4.11)

zij ≥ wi + wj − 1 ∀i ∈ N, j ∈ N (4.12)

uj =
∑
i∈N

SPij · zij ∀j ∈ N (4.13)∑
i∈N

bi = 1 (4.14)

ui −
∑
k∈N

wk ≤ n · (1− bi) ∀i ∈ N (4.15)

ui −
∑
k∈N

wk ≥ n · (bi − 1) ∀i ∈ N (4.16)

The objective function (4.1) minimises satisfaction by minimising the difference be-
tween the actual cost of the coalition and the current allocation. The constraints (4.2)-
(4.5) are derived from the shortest path tree problem formulation. (4.2) makes sure that
the number of shortest paths going out of the source vertex equals to the number of
vertices that will be in S. The set of equalities in (4.3) is to guarantee that exactly one
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shortest path reaches a vertex provided that it will be in the coalition. The equalities in
(4.4) and (4.5) ensure that the corresponding shortest path variables are only positive if
both the source and the destination are in the coalition. (4.6) forces the source vertex to
always be considered along with every coalition since we are trying to find the shortest
path to the source vertex. (4.7) and (4.8) limit the number of players in a coalition to
be between 1 and (n− 1) since we do not wish to generate the empty set and the grand
coalition. We have (4.9) to find make sure that S will be the complement of a coalition in
SB(T ). In other words, (4.9) provides a link between the shortest path formulation and
the rest of the formulation where we guarantee that the MIP will only produce coalitions
whose complements are in SB(T ). Therefore, we will only be adding non-redundant
inequalities to the LPs.

By definition, a coalition in SB(T ) satisfies the following where w variables repre-
sent inclusion in such a coalition

maxj∈N
∑
i∈N

SPij · zij =
∑
k∈N

wk. (4.17)

since there exists a vertex that is on the shortest path of every vertex in the coalition.
The constraints (4.10)-(4.16) are the linear representation of the expression in (4.17).

The zij are the binary variables that indicate both vertices i and j are in a coalition that
belongs to SB(T ). Thus, using constraints (4.10)-(4.12), we link the wi variables to the
zij variables. Constraints (4.13) define variables u. The binary variable bj takes value 1

if vertex j is N\S-hub. Since there is only one such hub, (4.14) should hold. If vertex j
is the N\S-hub, that is, bj = 1 or equivalently (4.17) holds, then (4.15) and (4.16) force
uj =

∑
i∈N SPij · zij =

∑
k∈N wk. Otherwise, they only provide some tight bounds

on u. Note that instead of using (n − 1), we can use the cardinality of the branch that
satisfies max |Bh(T )| for all h ∈ H(T ) and obtain a tighter bound on (4.15) and (4.16).

Solving the MIP gives us the most violated coalition denoted by S∗ = {i|s∗i =

1} and the cost of this constraint c(S∗) =
∑

i∈{v0}∪N
∑

j∈{v0}∪N tij · yij . We add the
constraint x(S∗) − c(S∗) ≥ ϵ to the initial LP, that is, we expand V with N\S∗, and
solve LP (B(T ),V , {∅}) to obtain a new solution. The loop that consists of solving the
MIP and resolving the linear programme with the added constraints will continue until

min
∑

i∈{v0}∪N

∑
j∈{v0}∪N

tij · yij −
∑
i∈N

x∗i · si − ϵ∗ ≥ 0.

If the above condition holds, then there is no coalition that is dissatisfied and therefore
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all the constraints of LP (B(T ),SB(T ), {∅}) are satisfied. Thus, LP (B(T ),V , {∅})
will give us the optimal solution of LP (B(T ),SB(T ), {∅}) with a smaller number of
inequalities since V ⊂ SB(T ). Now, we can fix the cost of the coalitions that are binding
at this solution and repeat the constraint generation procedure for the next iteration of
the nucleolus iteration.

It is important to note here that the MIP will not generate the same coalition at a
certain step of the nucleolus iteration. However, the problem changes as we move to the
next iteration. Therefore, a cut is added to the MIP to make sure a coalition will not be
regenerated (Hallefjord et al., 1995). Let us define such a cut as

Cut(S∗) :=
∑
i|s∗i=0

si +
∑
i|s∗i=1

(1− si) ≥ 1.

Note that for the SPT games, we start with cutting the branches and the coalitions
we initially choose to include in V since they will already be considered in the initial
linear programme LP (B(T ),V , {∅}).

All the aforementioned steps are integrated into Algorithm 3.
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Algorithm 3: An LP Based Algorithm to Compute the Nucleolus Using Constraint
Generation and Non-redundant Coalitions
Input: c(S) for all S ∈ B(T ) and

for all N\S ∈ V of (N, c).
begin

Set k=0;
Add Cut(S) for all S ∈ B(T ) ∪ V to MIP;
Let Φ0 = {∅};
Let M0 be an empty matrix;
while (rank(Mk) < n) do

begin
Set MinSatisfaction=-100;
while MinSatisfaction < 0

begin
Solve LP (B(T ),V ,Φk);
Solve MIP;
Let MinSatisfaction be the optimal objective function value of the MIP;
if MinSatisfaction ≥ 0

begin
Store η(c)=x∗;
k = k + 1;
Fk = {S ∈ V| y∗k(S) > 0};
Φk = Φk−1 ∪ Fk;
V = V\Fk;
Construct Mk;

end;
else

begin
Add Cut(S∗) to MIP;
V = V ∪ {N\S∗};

end;
end;

end;
end;
Output: η(c) is the nucleolus of (N, c).
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4.3.4 Comparison of the Performance of the Nucleolus Algorithms

This section discusses the computational performance of the algorithms to compute the
nucleolus of an SPT game. All our simulations in this section assume a WMN problem
with 2km× 2km cells and applies the algorithms introduced in the previous sections to
compute the nucleolus.

We first present results comparing the running times of Algorithm 1 and Algorithm
2. The results are shown in Table 4.2.

% of Non-redundant Coalitions: 0-25% 25-50% 50-100%
% Reduction in Comp. Time: n=8 81 61 29

n=10 87 65 38
n=12 90 78 47
n=14 97 83 52

% Reduction in Nucleolus Iter.: n=8 81 57 16
n=10 84 54 24
n=12 85 64 35
n=14 87 62 32

Table 4.2: The table entries are average % reductions in time and iterations when using
the nucleolus algorithm with non-redundant coalitions (Algorithm 2) as opposed to Al-
gorithm 1. This is performed for 3 types of graphs depending on the % of non-redundant
coalitions.

As can be seen from the table the reduction is significant both in computational
times but also in the number of iterations (number of linear programmes solved) that the
algorithm performs. The reduction tends to increase as n increases as the percentage of
non-redundant coalitions decreases with n.

Since we can see above that the nucleolus algorithm that only uses non-redundant
coalitions is faster, we will use Algorithm 2 as a basis of comparison with the iterative
nucleolus algorithm utilising the constraint generation approach. Thus, next we com-
pare the performance of Algorithm 2 and Algorithm 3. As mentioned earlier, with the
constraint generation approach, the cost of a coalition is generated upon solving the
MIP only if it is needed to find the nucleolus whereas without constraint generation,
coalitional costs for all the non-redundant coalitions must be generated using Dijkstra’s
algorithm before the procedure starts. Furthermore, if we use the constraint generation
approach, the linear programmes that are solved will only have the inequalities that are
required and therefore will be much smaller in size. On the other hand, in general MIPs
are harder to solve as compared to linear programmes. Thus, there is a trade-off in terms
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of the running times of the two algorithms, which find the nucleolus with and with-
out using constraint generation. Note that both algorithms make use of our results on
non-redundant coalitions. The results are illustrated in Table 4.3.

Algorithm 2: Algorithm 3:

% of all % of non-redundant Total time (in secs) Total time (in secs)

Tree coalitions coalitions without with

that are that are constraint generation constraint generation

non-redundant needed [of which data generation]

1 0.20 9.45 562 [488] 607
2 0.11 15.06 310 [292] 365
3 0.06 24.26 202 [173] 378
4 0.13 10.33 365 [340] 326
5 0.08 9.86 232 [224] 177
6 0.01 75.00 59 [49] 145
7 0.10 16.28 359 [313] 423
8 9.43 0.34 42295 [13751] 23258

Table 4.3: Comparison of running times of Algorithm 2 and Algorithm 3 for finding the
nucleolus of SPT games (n = 20), without and with constraint generation respectively.

Each row of Table 4.3 corresponds to a simulation that is based on generating 20

random vertices on a cell of size 2km× 2km and calculating the shortest path tree. For
every tree, both Algorithm 2 and Algorithm 3 are performed to compare the running
times. The second column of the table shows the percentage of all coalitions, which
are non-redundant for each tree. In line with our previous results, the number of non-
redundant coalitions constitute a small portion of the 1, 048, 575 (220 − 1) coalitions.
The third column shows the percentage of non-redundant coalitions that are actually
needed to identify the nucleolus. The actual number of non-redundant coalitions needed
is an indication of the number of times that the MIP was solved, excluding the initial
cuts added. In order to exemplify the aforementioned trade-off concerning the running
time of the two algorithms, we consider trees 6 and 8. Tree 6 has a very low number
of non-redundant coalitions. For this tree, Algorithm 2, which does not use constraint
generation, takes significantly less time since a low number of LPs are solved for data
preparation and at each iteration of the nucleolus algorithm the LP solved has a low
number of constraints. On the other hand, the constraint generation approach uses MIPs
to generate coalitional costs thus Algorithm 3 takes much longer than Algorithm 2 to
compute the nucleolus. Now, let us consider tree 8. Tree 8 has a very high number of
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non-redundant coalitions. Therefore, firstly the data generation phase of Algorithm 2

takes a long time generating costs of all non-redundant coalitions. Furthermore, at each
iteration of the nucleolus algorithm the LP solved has a large number of constraints. For
tree 8, Algorithm 3, which uses a constraint generation approach, performs significantly
better than Algorithm 2. As mentioned earlier, for the constraint generation approach the
coalitional costs are generated on the fly and at each iteration of the nucleolus algorithm
the LP solved only include the coalitions required to find the nucleolus.

4.4 Concluding Remarks on Computational Results

In Section 3.6, we have presented our result on the reduced description of the core of
the SPT games. We have furthermore shown that theoretically there are an exponential
number of coalitions whose costs have to be calculated to identify the core of an SPT
game in general. This chapter has aimed at assessing the consequences of our reduction
result for the application of cost allocation in WMNs. We have demonstrated that we
can achieve significant reductions both in the number of coalitional costs needed to be
computed to describe the core as well as the time it takes to compute the nucleolus with
a realistic number of users (up to 20). In fact, the computation of the nucleolus of the
examples with 20 users would have been intractable with the basic LP based algorithm
due to the requirement of calculating the costs of 1, 048, 575 (220 − 1) coalitions.

For the computation of the nucleolus, we first compared the performance of the
basic LP based algorithm (Algorithm 1) that computes the cost of all coalitions to the
performance of the LP based algorithm that incorporates our result on the non-redundant
inequalities of the core of the SPT games (Algorithm 2). We showed that there are con-
siderable savings in terms of time and number of iterations required to find the nucleolus.
Since Algorithm 2 performed better, we modified it further and incorporated a constraint
generation approach to the computation of the nucleolus (Algorithm 3). When we com-
pared the performance of Algorithm 2 to the performance of Algorithm 3, we observed
that when there are lower number of non-redundant coalitions Algorithm 2 performed
better whereas when there are higher number of non-redundant coalitions Algorithm 3

performed better.
We would like to finally highlight that the constraint generation approach, as em-

ployed in Hallefjord et al. (1995), is designed to generate the most violated coalition.
Our constraint generation approach, on the other hand, specifically generates the most
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violated non-redundant coalition. For this reason, we had to define a special MIP. This
MIP is harder to solve than the MIP that generates any coalition. The MIPs that generate
any violated coalition run faster but we need to run too many of such MIPs unnecessarily
since they also generate redundant coalitions. The special MIPs that we have developed
are harder to solve but they only generate non-redundant coalitions. Despite the fact
that this situation might sound like a trade-off, we know that the MIPs that only gener-
ate non-redundant coalitions consistently perform significantly better than the MIPs that
generate any violated coalition based on our simulations.



Chapter 5

Weighted Minimum Colouring Games

The weighted minimum colouring problem is a combinatorial optimisation problem
where there is a positive integer weight associated with each vertex of a graph repre-
senting the number of colours required to colour this vertex and the objective is to find
the minimum number of colours k such that adjacent vertices are coloured with disjoint
sets of colours where k is referred to as the weighted chromatic number of the graph.
An application of this problem is the channel assignment in cellular telephone networks
(McDiarmid and Reed, 2000). The problem is to assign sets of frequency bands to
transmitters, each of which demands a different number of bands, and if unacceptable
interference might occur between two transmitters, they should be assigned disjoint sets
of bands. If a conflict graph is constructed such that each transmitter is represented by
a vertex, the number of frequency bands required by a transmitter is represented by the
positive integer weight of the corresponding vertex and the interference relation between
two transmitters is represented by an edge between the corresponding vertices, then the
minimum number of frequency bands needed is the weighted chromatic number of this
graph. Consider a scenario where a number of mobile network operators are to provide
cell phone service to a geographical area. Assume that all the frequency bands have the
same cost and that the transmitters are owned by different operators. In order to pro-
vide the cell phone service with the minimum number of frequency bands, the operators
should cooperate with each other. In this chapter, we tackle the allocation of the total
cost of the minimum number of frequency bands amongst the operators involved using
cooperative game theory. We define a new class of cooperative games called weighted
minimum colouring (WMC) games where the cost of a subset of players is equal to the
weighted chromatic number of the conflict subgraph induced by this subset.

123
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A special case of the weighted colouring problem is when all the vertex weights are
equal to 1. This problem is called a minimum colouring problem. The objective is to find
the minimum number of colours k such that adjacent vertices are not assigned the same
colour and k is referred to as the chromatic number of the graph. Therefore, the min-
imum colouring games defined by Deng et al. (1999) can be considered an instance of
the WMC games. The cost of a subset of players in a minimum colouring game is equal
to the chromatic number of the conflict subgraph induced by this subset. The class of
minimum colouring games as well as the WMC games belong to the more general class
of cooperative games arising from combinatorial optimisation problems. In general, the
core of a minimum colouring game can be empty. Nonetheless, Deng et al. (2000) show
that a minimum colouring game is totally balanced if and only if the underlying graph
is perfect. A graph is perfect if for all its subgraphs the chromatic number is equal to
the clique number. Furthermore, Okamoto (2003) characterises the submodularity of
the minimum colouring games by showing that this property is satisfied if and only if
the underlying graph is complete r-partite. A graph is complete r-partite if its vertices
can be partitioned into r nonempty partition classes, and two vertices are adjacent if and
only if they belong to different partition classes. More recently, Hamers et al. (2011)
show that a minimum colouring game allows a population monotonic allocation scheme
if and only if the underlying graph is (2K2, P4)-free. A (2K2, P4)-free graph is a graph
that does not have a subgraph isomorphic to the union of two complete graphs of size 2

or to a line graph of size 4.
In this chapter, we characterise total balancedness and submodularity of the WMC

games using the properties of the underlying graph. We show that a graph G induces
a totally balanced WMC game for all positive integer weight vectors if and only if it is
perfect and that any graph G induces a totally balanced WMC game for at least one pos-
itive integer weight vector. Furthermore, we show that a graph G induces a submodular
WMC game for all positive integer weight vectors if and only if it is complete r-partite
and that a graph G induces a submodular WMC game for at least one positive integer
weight vector if and only if it is (2K2, P4)-free. These graph classes will be defined
formally in relevant sections.

This chapter is organised as follows. We start with some graph theoretical definitions
and notation in Section 5.1, which will be used throughout this chapter. In Section 5.2,
we first define and illustrate the minimum colouring games. Furthermore, we review
the existing research on the properties of this class of games. We furthermore formally
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introduce the WMC games. In Sections 5.3 and 5.4, we characterise total balancedness
and submodularity of the WMC games, respectively.

Related Work

Our approach to the characterisation of total balancedness and submodularity of
WMC games is in the same spirit with the characterisation of balancedness, total bal-
ancedness and submodularity of Chinese postman (CP) and travelling salesman (TS)
games by Granot and Hamers (2004). In this paper, the authors define a graph to be
globally (respectively, locally) CP balanced (respectively, totally balanced and submod-
ular) if for all vertices (respectively, at least one vertex) and any non-negative weight
vector defined on the edges, the corresponding CP game is balanced (respectively, to-
tally balanced and submodular) and study the equivalence between globally and locally
CP balanced (respectively, totally balanced and submodular) graphs. Similar results are
obtained for the TS case. Moreover, from the existing line of research on characterising
game theoretical properties by the properties of the underlying graph, we mention the
characterisation of the balancedness (respectively, total balancedness and the submodu-
larity) of CP games by Granot et al. (1999), the characterisation of the submodularity of
the Steiner TS games on undirected graphs by Herer and Penn (1995) and on directed
graphs by Granot et al. (2000) and of highway games by Çiftçi et al. (2010).

5.1 Preliminaries on Graph Theory

In this section, we present a number of graph theoretical definitions and notation.
Let G = (N,E) be an undirected graph with finite vertex set N = {1, 2, . . . , n}

and edge set E ⊆ {{i, j} : i, j ∈ N, i ̸= j} where each edge represents a connection
between an unordered pair of vertices of G. The graph GS = (S,ES) is the subgraph

of G induced by a subset S ⊆ N of its vertices where ES = {{i, j} ∈ E : i, j ∈ S}. A
graph G = (N,E) is isomorphic to G′ = (N ′, E ′) if there exists a bijection v : N → N ′

such that {v(i), v(j)} ∈ E ′ if and only if {i, j} ∈ E. The complement of a graph G is the
graph Ḡ = (N, Ē) where Ē = {{i, j} : i, j ∈ N, i ̸= j, {i, j} ̸∈ E}, that is, two vertices
in Ḡ are adjacent if and only if they are not adjacent in G. A graph in which there exists
an edge between each pair of distinct vertices is a complete graph. A clique in a graph G
is a subset S ⊆ N of its vertices such that GS is complete. A clique is maximum if there
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are no cliques containing more elements and it is maximal if it is not contained within a
clique with more elements. Note that maximum cliques are always maximal. The clique

number of G, denoted by ω(G), is the number of vertices in a maximum clique in G.
Let w ∈ ZN

+ be a positive integer weight vector where wi is the weight associated with
vertex i ∈ N . For a subset S ⊆ N of vertices, the weight of S is defined as the sum
of the weights of its elements, that is,

∑
i∈S wi. We define a maximum weighted clique

in G with respect to w as a clique C ⊆ N with maximum weight. The corresponding
weight is called the weighted clique number of G with respect to w and denoted by
ωw(G). Note that maximum weighted cliques are always maximal. Furthermore, note
that a maximum clique in G is not necessarily a maximum weighted clique in G as we
illustrate in the next example.

Example 5.1. Consider the graph G and the weight vector w displayed in Figure 5.1.
The maximum clique in G is {1, 2, 3} and ω(G) = 3. The maximum weighted clique in
G with respect to w is {3, 4} and ωw(G) = 8. ⋄

3 4

w1=3 w2=2

w3=1 w4=7

1 2

Figure 5.1: Graph G and weight vector w.

A proper k-colouring of G is a map g : N → {1, 2, . . . , k} such that g(i) ̸= g(j)

for all {i, j} ∈ E, that is, adjacent vertices are not assigned the same colour. The
chromatic number ofG, denoted by χ(G), is the minimum value of k for which a proper
k-colouring of G exists. A proper weighted k-colouring ofG is a function h that assigns
a set of wi different colours to each vertex i such that adjacent vertices i and j receive
disjoint sets of colours. Formally, a proper weighted k-colouring of G is a map h : N →
2{1,2,...,k} such that |h(i)| = wi for all i ∈ N and h(i) ∩ h(j) = ∅ for all {i, j} ∈ E.
Accordingly, the weighted chromatic number ofGwith respect to w, denoted by χw(G),
is the minimum number k needed for a proper weighted k-colouring of G . Note that
the clique number and the weighted clique number are lower bounds for the chromatic
number and the weighted chromatic number, respectively. Therefore, χ(G) ≥ ω(G)

and χw(G) ≥ ωw(G). Furthermore, if we let wi = 1 for all i ∈ N , the weighted
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clique problem and the proper weighted k-colouring problem are equivalent to the clique
problem and the proper k-colouring problem, respectively.

Example 5.2. Consider the graph G and the weight vector w displayed in Figure 5.1.
We have χ(G) = 3. A proper 3-colouring of G is given by g(1) = 1, g(2) = 2,
g(3) = 3 and g(4) = 1. Furthermore, note that χw(G) = 8 and that a proper weighted
8-colouring of G is given by h(1) = {1, 2, 3}, h(2) = {4, 5}, h(3) = {6} and h(4) =
{1, 2, 3, 4, 5, 7, 8}. ⋄

Finally, we introduce three graph classes discussed in this chapter. A graph G is
perfect if χ(GS) = ω(GS) for all induced subgraphs GS of G, S ⊆ N . A complete r-

partite graphG = (N,E) is a graph whose vertex set can be partitioned into r nonempty
partition classes N1, N2, . . . , Nr such that for k, l ∈ {1, 2, . . . , r} and any two vertices
i ∈ Nk and j ∈ Nl, {i, j} ∈ E if and only if k ̸= l. A complete graph with n vertices
is denoted by Kn and a line graph with n vertices is denoted by Pn. A (2K2, P4)-free

graph is a graph that does not have an induced subgraph isomorphic to 2K2 or P4 (see
Figure 5.2).

2K2 P4

Figure 5.2: 2K2 and P4.

5.2 Definition of the Weighted Minimum Colouring Games

This section introduces the class of weighted minimum colouring games. We start this
section with a discussion on the minimum colouring games, which are special instances
of the weighted minimum colouring games where all the vertex weights are equal to 1.

Let G be a graph. Then the minimum colouring (MC) game (N, cG) is defined by

cG(S) = χ(GS) for all S ⊆ N.

We illustrate the characteristic function c of an MC game in the following example.
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2

3

1 4

Figure 5.3: Graph G.

Example 5.3. Consider the graph G displayed in Figure 5.3. For the corresponding MC
game (N, cG), we have N = {1, 2, 3, 4} and cG(N) = χ(G) = 3. For S = {1, 2},
cG(S) = χ(GS) = 2 and for S = {1, 4}, cG(S) = χ(GS) = 1. Table 5.1 gives the costs
of all the coalitions of the MC game (N, cG).

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4}
cG(S) 1 1 1 1 2 2 1 2 2

S {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
cG(S) 2 3 2 2 3 3

Table 5.1: Coalitional costs of the MC game (N, cG).
⋄

Properties of the MC games have been characterised in relation to the properties of
the graphs that these games are defined on. Firstly, Deng et al. (2000) show that an
MC game (N, cG) is totally balanced if and only if G is a perfect graph. Secondly,
Hamers et al. (2011) prove that an MC game (N, cG) allows a PMAS if and only if G
is (2K2, P4)-free. Finally, Okamoto (2003) demonstrates that an MC game (N, cG) is
submodular if and only if G is complete r-partite. Note that complete r-partite graphs
are (2K2, P4)-free, and (2K2, P4)-free graphs are perfect, and observe the correspon-
dence between the graph theoretical properties and the game theoretical properties since
submodular games allow a PMAS, and games that allow a PMAS are totally balanced.

Example 5.4. Consider the graph G displayed in Figure 5.3 and the MC game (N, cG)

induced byG. In fact,G is a complete 3-partite graph with partition classesN1 = {1, 4},
N2 = {2} and N3 = {3}. Thus, (N, cG) is submodular. Consequently, G allows a
PMAS and is totally balanced. ⋄

Now, we present the class of weighted minimum colouring games.
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Definition 5.1. Let G be a graph and let w ∈ ZN
+ be a positive integer weight vector.

Then the weighted minimum colouring (WMC) game (N, cG,w) is defined by

cG,w(S) = χw(G
S) for all S ⊆ N.

We illustrate the characteristic function c of a WMC game in the following example.

Example 5.5. Consider the graph G and the weight vector w displayed in Figure 5.1.
For the corresponding WMC game (N, cG,w), we have N = {1, 2, 3, 4} and cG,w(N) =

χw(G) = w3 + w4 = 1 + 7 = 8. For S = {1, 2}, cG,w(S) = χw(G
S) = w1 + w2 =

3 + 2 = 5 and for S = {1, 4}, cG,w(S) = χw(G
S) = w4 = 7. Table 5.2 gives the costs

of all the coalitions of the WMC game (N, cG,w).

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4}
cG,w(S) 3 2 1 7 5 4 7 3 7

S {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
cG,w(S) 8 6 7 8 8 8

Table 5.2: Coalitional costs of the WMC game (N, cG,w).
⋄

5.3 Total Balancedness of the Weighted Minimum Colour-
ing Games

In this section, we establish the equivalence of perfect graphs and graphs that induce
a totally balanced WMC game for all positive integer weight vectors. Furthermore,
we show that any graph induces a totally balanced WMC game for at least one positive
integer weight vector. We start by presenting the graph classes considered in this section.
Note that, Hamers et al. (2011) point out that for the subclass of minimum coloring
games characterising balancedness in terms of properties of the underlying graph seems
impossible. Due to this, we focus on characterising total balancedness of the WMC
games.

Recall that a graph G is perfect if χ(GS) = ω(GS) for all induced subgraphs GS

of G, S ⊆ N . Let w ∈ ZN
+ be a weight vector. We introduce a property, called

w-perfectness, which states that a graph G is w-perfect if χw(G
S) = ωw(G

S) for all



CHAPTER 5. WEIGHTED MINIMUM COLOURING GAMES 130

S ⊆ N . A graph G is weighted perfect if it is w-perfect for all weight vectors w ∈ ZN
+ .

The concept of a weighted perfect graph in graph theory literature can be traced back
to the “replication lemma” of Lovász (1972) since repeated application of this lemma
implies weighted perfectness (Schrijver, 2003). Note that a graph G that is not perfect
can be w-perfect for some w ∈ ZN

+ . We have the following example.

Example 5.6. Consider the graph G and the weight vector w displayed in Figure 5.4.
Note that G is not perfect since χ(G) = 3 and ω(G) = 2. We have χw(G) = ωw(G) =

17. Moreover, it is easy to verify that χw(G
S) = ωw(G

S) for all S ⊂ N . Hence, G is
w-perfect. ⋄

1

2 5

3 4

w1=7

w2=10 w5=4

w3=2 w4=9

Figure 5.4: G is w-perfect but not perfect.

Before presenting the main results of this section, we have the following lemma
stating that a w-perfect graph G induces a totally balanced WMC game.

Lemma 5.1. LetG be a graph and letw ∈ ZN
+ . IfG isw-perfect, then the corresponding

weighted minimum colouring game (N, cG,w) is totally balanced.

Proof: Let w ∈ ZN
+ . Let G be a w-perfect graph. Let C ⊆ N be a maximum weighted

clique in G with respect to w. Let xC ∈ RN be an allocation for the weighted minimum
colouring game (N, cG,w) such that

xCi =

wi if i ∈ C

0 otherwise.

We show that this allocation is in the core of (N, cG,w). Since G is w-perfect, we
have cG,w(S) = χw(G

S) = ωw(G
S) for all S ⊆ N . For efficiency, we get

∑
i∈N x

C
i =∑

i∈C wi = ωw(G) = cG,w(N). For any subset S ⊂ N , we have
∑

i∈S x
C
i =

∑
i∈(C∩S)wi.
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Moreover, let CS be a maximum weighted clique in GS with respect to w. Then
cG,w(S) = ωw(G

S) =
∑

i∈CS wi. Therefore, for coalitional rationality, we need to
show that

∑
i∈(C∩S)wi ≤

∑
i∈CS wi for all S ⊂ N . This inequality holds since C ∩S is

a clique in GS and CS is a maximum weighted clique in GS with respect to w. Hence,
(N, cG,w) is balanced. Since every induced subgraph of a w-perfect graph is also w-
perfect, (N, cG,w) is totally balanced.

The following theorem characterises graphs that induce a totally balanced WMC
game for all positive weight vectors. G is w-perfect, then the corresponding weighted
minimum colouring game (N, cG,w) is totally balanced.

Theorem 5.1. For a graph G, the following statements are equivalent.

(i) G is perfect.

(ii) G is weighted perfect.

(iii) The corresponding weighted minimum colouring game (N, cG,w) is totally bal-

anced for all w ∈ ZN
+ .

Proof: (i) ⇒ (ii): This result is due to Grötschel et al. (1988).
(ii) ⇒ (iii): This result directly follows from Lemma 5.1.
(iii) ⇒ (i): Let G be a graph that induces a totally balanced WMC game for all

w ∈ ZN
+ . Let wi = 1 for all i ∈ N . In fact, the WMC game (N, cG,w) is the minimum

colouring game on G. Since Deng et al. (2000) showed that a minimum colouring game
is totally balanced if and only if G is a perfect graph, G is perfect.

Next, we show that any graph induces a totally balanced WMC game for at least one
positive integer weight vector.

Theorem 5.2. Let G be a graph. Then there exists at least one w ∈ ZN
+ such that the

corresponding weighted minimum colouring game (N, cG,w) is totally balanced.

Proof: In order to prove this theorem, we will first show the existence of a positive
integer weight vector such that for any graph the maximum weighted clique is unique.
Next, we show that in this case the vertices of the graph can be coloured using no more
colours than the weighted clique number. Since the weighted clique number is always
a lower bound on the weighted chromatic number, the weighted clique number and the
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weighted chromatic number are equal to each other. The result holds for all subgraphs
of this graph and hence from Lemma 5.1 the graph induces a totally balanced WMC
game for this weight vector.

Let G be a graph and let wi = 2i−1 for all i ∈ N . First, we show that G is w-
perfect, that is, χw(G

S) = ωw(G
S) for all S ⊆ N . We start by discussing some prop-

erties of a maximum weighted clique in G with respect to w. Firstly, two different
cliques in G do not have the same weight with respect to w since the binary represen-
tations of their weights, which are in fact the characteristic vectors of these cliques,
are always different. Therefore, the maximum weighted clique in G with respect to w
is unique. Let C be the maximum weighted clique in G with respect to w such that
C = {i1, i2, . . . , ik}. Without loss of generality assume that i1 > i2 > . . . > ik.
We have ωw(G) = 2i1−1 + 2i2−1 + . . . + 2ik−1. Next, we show that i1 is the ver-
tex with the maximum index in N , that is, i1 = n. Assume that n ̸∈ C. We have∑

j∈C wj ≤ 1 + 2 + . . .+ 2n−2 < 2n−1 = wn, which contradicts C being the maximum
weighted clique. Therefore, n ∈ C and i1 = n. Finally, we show that for all l such
that 2 ≤ l ≤ k, il = max {j ∈ {1, 2, . . . , il−1 − 1} : j is adjacent to i1, i2, . . . , il−1}.
Consider the case where l = 2 and assume that there exists a vertex m ̸∈ C that is
adjacent to i1 such that m > i2. We have wi1 + wm = 2n−1 + 2m−1 > wi1 + wi2 +

. . . + wik , which again contradicts C being the maximum weighted clique. Therefore,
i2 = max {j ∈ {1, 2, . . . , i1 − 1} : j is adjacent to i1}. With a similar argument, it can
be verified that for 3 ≤ l ≤ k, il is the vertex with the maximum index that is adjacent
to vertices i1, i2, . . . , il−1.

Now, we present a colouring of the vertices of G using no more than ωw(G) =∑k
l=1wil colours. We start by colouring each vertex il of C with wil = 2il−1 different

colours, therefore using ωw(G) different colours in total. Next, we colour the vertices
in N\C. First, we construct a partition of N\C with k elements. Let A1 be the set of
vertices in N\C that are not adjacent to i1. Let Al be the set of vertices in N\C that
are adjacent to vertices i1, i2, . . . , il−1 but not to il for 2 ≤ l ≤ k. Since the maximum
weighted clique C is also a maximal clique, there does not exist a vertex in N\C that
is adjacent to all the vertices in C. Therefore,

∪k
l=1Al = N\C and by construction

the elements of the partition are pairwise disjoint. Since a vertex in Al is not adjacent
to il, the corresponding wil colours can be used to colour this vertex. Furthermore, the
vertex with the maximum index in Al has at most an index of il − 1. This is due to the
two aforementioned properties of C that i1 is the vertex with the maximum index in N ,
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that is, i1 = n and that for 2 ≤ l ≤ k, il is the vertex with the maximum index that
is adjacent to vertices i1, i2, . . . , il−1. Hence, for all l ∈ {1, 2, . . . , k}, we have Al ⊆
{1, 2, . . . , il − 1}, which in turn implies

∑
j∈Al

wj ≤ 1 + 2 + . . .+ 2il−2 < 2il−1 = wil .
Therefore, the wil distinct colours that are used to colour vertex il ∈ C are sufficient to
colour all the vertices inAl. Since

∪k
l=1Al = N\C, all the vertices inN\C are coloured

using no more than ωw(G) =
∑k

l=1wil colours. Thus, χw(G) ≤ ωw(G). Recall that
the weighted clique number is a lower bound on the weighted chromatic number, that is,
χw(G) ≥ ωw(G). Therefore, χw(G) = ωw(G).

A similar argument holds for all the weighted subgraphs of G, and thus G is w-
perfect for wi = 2i−1 for all i ∈ N . From Lemma 5.1, (N, cG,w) is totally balanced.
Therefore, there exists at least one w ∈ ZN

+ such that the corresponding weighted mini-
mum colouring game (N, cG,w) is totally balanced.

We conclude this section by illustrating the above proof by means of an example.

Example 5.7. Consider the graph G and the weight vector w displayed in Figure 5.5.

2

3

7

8
5

w2=2 w7=2
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w5=2
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w8=2
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w1=1 w4=2
3 w6=2
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4 6

Figure 5.5: Graph G induces a totally balanced WMC game for at least one positive
integer weight.

Note that wi = 2i−1 for all i ∈ N . From the proof of Theorem 5.2, we know that in
order to show that the WMC game (N, cG,w) is totally balanced for at least one w ∈ ZN

+ ,
it is sufficient to show that G is w-perfect. The maximum weighted clique in G with
respect to w is C = {3, 5, 8}. Let us denote the vertex in C with the maximum label
with i1, the second largest label by i2 and finally the third largest label by i3. Therefore,
i1 = 8, i2 = 5 and i3 = 3. Observe that i1 = 8 is the vertex with maximum index in N ,
that i2 = 5 is the vertex with maximum weight in N that is adjacent to i1 = 8 and that
i3 = 3 is the vertex with maximum weight in N that is adjacent to i1 = 8 and i2 = 5.
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We have ωw(G) = 27 + 24 + 22. Next, we colour the vertices in N using no more than
ωw(G) colours. In order to colour the vertices in C, ωw(G) distinct colours are needed.
Let us now partition the vertices in N\C = {1, 2, 4, 6, 7} in the following manner. Let
A1 = {6, 7} be the set of vertices that are not connected to i1 = 8. Let A2 = {1, 4} be
the set of vertices that are connected to i1 = 8 but not to i2 = 5, and let A3 = {2} be the
set of vertices that are connected to i1 = 8 and i2 = 5 but not to i3 = 3. The 27 distinct
colours that are used to colour i1 = 8 can be used to colour the vertices in A1 since
these vertices are not adjacent to i1. Furthermore, the 27 distinct colours that are used to
colour i1 = 8 are sufficient to colour the vertices in A1 since 25 + 26 ≤ 27. Similarly,
the 24 and 22 distinct colours that are used to colour i2 = 5 and i3 = 3 can be used and
are sufficient to colour the vertices in A2 and A3, respectively. Thus, all the vertices in
N\C are coloured by using no more than ωw(G) colours and hence χw(G) ≤ ωw(G).
Recall that χw(G) ≥ ωw(G) always holds. Therefore, χw(G) = ωw(G) = 27 + 24 + 22.
A similar argument holds for all the weighted subgraphs of G, and thus G is w-perfect.
⋄

5.4 Submodularity of the Weighted Minimum Colour-
ing Games

This section establishes the equivalence of complete r-partite graphs and graphs that
induce a submodular WMC game for all positive integer weight vectors, as well as of
(2K2, P4)-free graphs that induce a submodular WMC game for at least one positive
integer weight vector. Recall that the two graph theoretical properties that are used in
this section, namely complete r-partiteness and (2K2, P4)-freeness, have been formally
defined in Section 5.1.

The following theorem establishes the equivalence of complete r-partite graphs and
graphs that induce a submodular WMC game for all positive integer weight vectors.

Theorem 5.3. G is a complete r-partite graph if and only if the corresponding weighted

minimum colouring game (N, cG,w) is submodular for all w ∈ ZN
+ .

Proof: We start with the ‘if’-part. Let wi = 1 for all i ∈ N . In fact, the WMC game
(N, cG,w) is the minimum colouring game on G. Since Okamoto (2003) showed that a
minimum colouring game is submodular if and only if G is a complete r-partite graph,
G is complete r-partite.
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Next, we prove the ‘only-if’-part. Let G be a complete r-partite graph and let
N1, N2, . . . , Nr be the partition classes of the vertex set N . A maximum clique in G
consists of exactly one vertex from each one of the r partition classes and hence has
exactly r elements. Let w ∈ ZN

+ . A maximum weighted clique in G with respect to w is
a maximum clique in G. Moreover, each vertex in a maximum weighted clique in G is a
maximum weighted vertex in the partition class that it belongs to. Let C be a maximum
weighted clique in G with respect to w. Then we have

∑
i∈C wi =

∑r
k=1maxi∈Nk

wi.
Let S ⊆ N . We define NS = {k ∈ {1, 2, . . . , r} : S ∩ Nk ̸= ∅} to be the

set of indices of the partition classes that have at least one common vertex with S.
Now, consider the subgraph GS and note that GS is a complete multipartite graph
with |NS| partition classes, that is, a complete |NS|-partite graph. Let CS be a max-
imum weighted clique in GS with respect to w. Let k ∈ NS . Since GS is a com-
plete multipartite graph, we know that CS has exactly one maximum weighted ver-
tex from S ∩ Nk. Thus, ωw(G

S) =
∑

j∈CS wj =
∑

k∈NS
maxj∈S∩Nk

wj . Moreover,
note that a complete multipartite graph is perfect. Therefore, for S ⊆ N , we have
cG,w(S) = χw(G

S) = ωw(G
S) =

∑
k∈NS

maxj∈S∩Nk
wj .

Now, let i ∈ N and let S ⊆ N\{i}. Furthermore, let p(i) ∈ {1, 2, . . . , r} such that
i ∈ Np(i). We have two cases to consider, namely p(i) ̸∈ NS and p(i) ∈ NS . Firstly, if
p(i) ̸∈ NS , then NS∪{i} = NS∪{p(i)}. Moreover, maxj∈(S∪{i})∩Nk

wj = maxj∈S∩Nk
wj

for all k ∈ NS and maxj∈(S∪{i})∩Np(i)
wj = wi. Therefore,

cG,w(S ∪ {i})− cG,w(S) =
∑

k∈NS∪{i}

max
j∈(S∪{i})∩Nk

wj −
∑
k∈NS

max
j∈S∩Nk

wj

= wi +
∑
k∈NS

max
j∈S∩Nk

wj −
∑
k∈NS

max
j∈S∩Nk

wj

= wi

if p(i) ̸∈ NS . Secondly, if p(i) ∈ NS , then NS = NS∪{i}. Moreover, maxj∈(S∪{i})∩Nk
wj =

maxj∈S∩Nk
wj for all k ∈ NS\{p(i)} and maxj∈(S∪{i})∩Np(i)

wj = max(wi, wj∗S,i
) where

j∗S,i ∈ S ∩Np(i) such that wj∗S,i
= maxj∈S∩Np(i)

wj . Therefore,

cG,w(S ∪ {i})− cG,w(S) =
∑

k∈NS∪{i}

max
j∈(S∪{i})∩Nk

wj −
∑
k∈NS

max
j∈S∩Nk

wj
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= max(wi, wj∗S,i
) +

∑
k∈NS\{p(i)}

max
j∈S∩Nk

wj − wj∗S,i
−

∑
k∈NS\{p(i)}

max
j∈S∩Nk

wj

= max(wi − wj∗S,i
, 0)

if p(i) ∈ NS . In order to prove submodularity, let i ∈ N and S ⊂ T ⊆ N\{i} and
consider the following cases.

Case 1. p(i) ̸∈ NT . Then p(i) ̸∈ NS since S ⊂ T . Thus,

cG,w(S ∪ {i})− cG,w(S) = wi

= cG,w(T ∪ {i})− cG,w(T ).

Case 2. p(i) ∈ NT and p(i) ̸∈ NS . Then we have

cG,w(S ∪ {i})− cG,w(S) = wi

≥ max(wi − wj∗T,i
, 0)

= cG,w(T ∪ {i})− cG,w(T ).

Case 3. p(i) ∈ NT and p(i) ∈ NS .

cG,w(S ∪ {i})− cG,w(S) = max(wi − wj∗S,i
, 0)

≥ max(wi − wj∗T,i
, 0)

= cG,w(T ∪ {i})− cG,w(T )

where the inequality holds since wj∗T,i
≥ wj∗S,i

for S ⊂ T .

Therefore, cG,w(S ∪ {i}) − cG,w(S) ≥ cG,w(T ∪ {i}) − cG,w(T ) for all i ∈ N and
S ⊂ T ⊆ N\{i}. Since this result holds for every positive integer weight vector w,
the corresponding weighted minimum colouring game (N, cG,w) is submodular for all
w ∈ ZN

+ .

We have an example illustrating the above proof.
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Example 5.8. Consider the complete 3-partite graph G with partition classes N1 =

{1, 2, 3}, N2 = {4, 5} and N3 = {6, 7}, and the weight vector w displayed in Figure
5.6.
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Figure 5.6: Graph G induces a submodular WMC game for all positive integer weight
vectors.

The clique C = {3, 5, 7} is the maximum weighted clique in G with respect to w. We
have cG,w(N) = χw(G) = ωw(G) =

∑
i∈C wi = w3 + w5 + w7 = 15. Let S = {1}

and T = {1, 2, 5}. Observe that GS and GT are complete multipartite graphs. We
have NS = {1} and NT = {1, 2}. Moreover, CS = {1} and CT = {2, 5} giving us
cG,w(S) = w1 = 1 and cG,w(T ) = w2+w5 = 7. Next, for a number of different vertices
i ∈ N such that S ⊂ T ⊆ N\{i}, we illustrate that

cG,w(S ∪ {i})− cG,w(S) ≥ cG,w(T ∪ {i})− cG,w(T ).

Firstly, let i = 6. We have p(6) = 3, 3 ̸∈ NT and hence 3 ̸∈ NS . We get

cG,w(S ∪ {6})− cG,w(S) = w1 + w6 − w1

= w6

= w2 + w5 + w6 − [w2 + w5]

= cG,w(T ∪ {6})− cG,w(T ).

Secondly, let i = 4. We have p(4) = 2, 2 ∈ NT and 2 ̸∈ NS . We get

cG,w(S ∪ {4})− cG,w(S) = w1 + w4 − w1

= w4

≥ 0

= max(w4 − w5, 0)
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= w2 + w5 − [w2 + w5]

= cG,w(T ∪ {4})− cG,w(T ).

Finally, let i = 3. We have p(3) = 1, 1 ∈ NT and 1 ∈ NS . We get

cG,w(S ∪ {3})− cG,w(S) = max(w3 − w1, 0)

= w3 − w1

≥ w3 − w2

= max(w3 − w2, 0)

= w3 + w5 − [w2 + w5]

= cG,w(T ∪ {3})− cG,w(T ).

⋄

Next, we show the equivalence of (2K2, P4)-free graphs and graphs that induce a
submodular WMC game for at least one positive integer weight vector. To do so, we
first mention the relationship between a (2K2, P4)-free graph and a rooted forest, and
introduce a special weighting of the vertices of a rooted forest.

Let (N,A) be a directed graph where N = {1, 2, . . . , n} is the finite vertex set and
A ⊆ {(i, j) : i, j ∈ N, i ̸= j} is the set of directed arcs. A rooted tree is a directed graph
with a special vertex r ∈ N , called the root, such that for each vertex i ∈ N there exists
a unique path from r to i. The disjoint union of rooted trees is called a rooted forest. If
F = (N,A) is a rooted forest, then for every i ∈ N there is a unique path from some
root to i. Let P (i) denote the collection of vertices on this path. The set of descendants

of a vertex i ∈ N is the set D(i) = {j ∈ N : i ∈ P (j) and i ̸= j}.
Every rooted forest induces a (2K2, P4)-free graph in the following manner. Let

F = (N,A) be a rooted forest. Let G(F ) = (N,E) be a graph such that {i, j} ∈ E

if and only if i ̸∈ P (j) and j ̸∈ P (i) in F . Then G(F ) is a (2K2, P4)-free graph and
F is referred to as a forest representation of G(F ). This result is due to the fact that
a (2K2, P4)-free graph is the complement of a quasi-threshold graph, or equivalently, a
(C4, P4)-free graph where Cn is a cycle with n vertices (see Figure 5.7).
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C4 K1UUUUK2

Figure 5.7: C4 and K1 ∪K2.

Every quasi-threshold graph is induced by a rooted forest F by adding an edge between
vertices i and j if and only if i ∈ D(j) or j ∈ D(i) in F (Wölk (1965), Yan et al.
(1996)).

Example 5.9. Consider the rooted forest F and graph G(F ) in Figure 5.8. The rooted
forest F is a forest representation of the (2K2, P4)-free graph G(F ). ⋄
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Figure 5.8: A rooted forest F and the (2K2, P4)-free graph G(F ) induced by F .

Now, we introduce a weighting of the vertices of a rooted forest F . We start by
considering a partition of the vertices of a rooted forest F . Let N0 = {j ∈ N : (i, j) ̸∈
A for all i ∈ N}. The elements of N0 are the roots of the rooted trees that constitute
F . A root r ∈ N0 is the root of a vertex i if i ∈ D(r). Furthermore, let us refer to the
distance d(i, j) between i ∈ N and j ∈ N as the number of edges on the path from i

to j. Let M denote the maximum distance from any of the vertices in N to its root. Let
Nk = {i ∈ N : there exists a root r ∈ N0 such that d(r, i) = k}. Then N =

∪M
k=0N

k
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is a partition of N . Now, consider a permutation of the vertices in N such that all
the vertices in N0 precede all the vertices in N1, all the vertices in N1 precede all the
vertices in N2 and so on up to all the vertices in NM−1 precede all the vertices in NM .
Let σ = [[N0], [N1], . . . , [NM ]] denote such a permutation where [Nk] is a permutation
of the vertices in Nk for k ∈ {0, 1, . . . ,M}. Note that [Nk] can be chosen arbitrarily.
We refer to σ as a root-first permutation of the vertices in N . A root-first 2-weighting of
the vertices of a rooted forest F = (N,A) is a bijection f : N → {1, 2, . . . , 2n−1} such
that f(i) = 2n−σ(i).

Example 5.10. Consider the rooted forest F in Figure 5.8. We have M = 2, and
N0 = {1, 3}, N1 = {2, 4, 5} and N2 = {6}. Furthermore, let σ = [1, 3, 2, 5, 4, 6] be
a root-first permutation of N . Then the corresponding root-first 2-weighting of N is
f(1) = 25, f(2) = 23, f(3) = 24, f(4) = 2, f(5) = 22, f(6) = 1. ⋄

Observe that a root r ∈ N0 is not adjacent to any of its descendants D(r) on the
corresponding (2K2, P4)-free graph G(F ). Let wi = f(i) for all i ∈ N . In order to
colour a root r ∈ N0, wr colours are needed. For the root-first 2-weighting, we have
wr >

∑
i∈D(r)wi for all r ∈ N0, ensuring that the wr colours are adequate to colour all

the vertices in D(r) on G(F ). Therefore, the weighted chromatic number of G(F ) with
respect to w is χw(G(F )) =

∑
r∈N0 wr. In fact, a similar result can be derived for the

weighted chromatic number of the subgraph GS(F ) with respect to w in the following
manner. Let S ⊂ N . A vertex in S is called an S-root if it is not the descendant of
any other vertex in S. Let S0 = {j ∈ S : j ̸∈ D(i) for all i ∈ S} denote the set of
S-roots. For root-first 2-weighting, we have wr >

∑
i∈D(r)wi for all r ∈ S0. Therefore,

χw(G
S(F )) =

∑
r∈S0 wr.

Example 5.11. Consider the rooted forest in Figure 5.8. SinceN0 = {1, 3}, χw(G(F )) =

w1+w3 = 25+24. Moreover, let S = {2, 3, 6}. We have S0 = {2, 3} and χw(G
S(F )) =

w2 + w3 = 23 + 24. ⋄

Before establishing the equivalence of (2K2, P4)-free graphs and graphs that induce
a submodular WMC game for at least one positive integer weight vector, we have the
following lemma stating that a graph that is isomorphic to K1 ∪ K2 (see Figure 5.7)
induces a submodular WMC game if and only if the weight of the vertex to which no
edge is incident is greater than or equal to the sum of the weights of the vertices that are
connected by an edge.
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Lemma 5.2. Let G = (N,E) be a graph with N = {1, 2, 3} and E = {{1, 2}}. Let

w = (w1, w2, w3) be a positive weight vector. Then the corresponding WMC game

(N, cG,w) is submodular if and only if w3 ≥ w1 + w2.

Proof: The costs of all the coalitions of the WMC game (N, cG,w) are displayed in Table
5.3.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
cG,w(S) w1 w2 w3 w1 + w2 max(w1, w3) max(w2, w3) max(w1 + w2, w3)

Table 5.3: Coalitional costs of the WMC game (N, cG,w).

First, we prove the ‘only-if’-part. Let (N, cG,w) be submodular and assume, on the
contrary, that w3 < w1 + w2. Then we have

w1 + w2 + w3 > max(w1, w3) + max(w2, w3)

which is equivalent to

max(w1 + w2, w3) + w3 > max(w1, w3) + max(w2, w3).

Hence,

cG,w({1, 2, 3})− cG,w({3}) > cG,w({1, 3})− cG,w({2, 3})

and (N, cG,w) is not submodular.
The ‘if’-part follows readily by checking that all submodularity conditions are satis-

fied if w3 ≥ w1 + w2.

The following theorem shows that (2K2, P4)-freeness and local WMC submodular-
ity of a graph G are equivalent.
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Theorem 5.4. A graphG is (2K2, P4)-free if and only if there exists at least onew ∈ ZN
+

such that the corresponding weighted minimum colouring game (N, cG,w) is submodu-

lar.

Proof: We start with the ‘if’-part. Assume that there exists at least one w ∈ ZN
+ such

that the WMC game (N, cG,w) is submodular but assume, on the contrary, that G has a
subgraph isomorphic to 2K2 or P4. Without loss of generality, let G be a graph such that
{1, 2, 3, 4} ⊆ N , {1, 2}, {3, 4} ∈ E and {1, 3}, {2, 3}, {2, 4} ̸∈ E. Let S = {1, 2, 3}.
Let w ∈ ZN

+ . From Lemma 5.2, (S, cGS ,wS
) is submodular if and only if w3 ≥ w1 + w2.

Now, let S = {2, 3, 4}. Similarly, (S, cGS ,wS
) is submodular if and only if w2 ≥ w3+w4

from Lemma 5.2. Adding the inequalities w3 ≥ w1 + w2 and w2 ≥ w3 + w4 gives us
0 ≥ w1+w4, which contradicts w1, w4 > 0. Therefore, the WMC game (N, cG,w) is not
submodular for any w ∈ ZN

+ . This contradicts our initial assumption that there exists at
least one w ∈ ZN

+ such that the WMC game (N, cG,w) is submodular. Hence, G does
not have any subgraph isomorphic to 2K2 or P4 and hence is (2K2, P4)-free.

Next, we prove the ‘only-if’-part. Observe that the characteristic function of a WMC
game cG,w satisfies cG,w(T ) = χw(G

T ) ≥ χw(G
S) = cG,w(S) for all S ⊆ T ⊆ N and

for all w ∈ ZN
+ and thus is monotone.

Let G = (N,E) be a (2K2, P4)-free graph and let F = (N,A) be a rooted forest
representation ofG. Let us replace the notation ofGwithG(F ) to represent the fact that
it is derived from F . Let f be a root-first 2-weighting and let wi = f(i) for all i ∈ N .
Let i ∈ N and S ⊂ T ⊆ N\{i}. We have to show that

cG(F ),w(S ∪ {i})− cG(F ),w(S) ≥ cG(F ),w(T ∪ {i})− cG(F ),w(T ). (5.1)

Firstly, assume that i is not a root in T ∪ {i}, that is, i ̸∈ (T ∪ {i})0. Then we have
cG(F ),w(T∪{i})−cG(F ),w(T ) = 0. Furthermore, we have cG(F ),w(S∪{i})−cG(F ),w(S) ≥
0 from the monotonicity of cG(F ),w and hence (5.1) holds.

Therefore, we assume that i is a root in T ∪ {i}, that is, i ∈ (T ∪ {i})0. Let
S0
i = {s ∈ S0 : s ∈ D(i)} and T 0

i = {t ∈ T 0 : t ∈ D(i)} be the set of roots in S and T ,
respectively, that are descendants of i. Then

cG(F ),w(S ∪ {i})− cG(F ),w(S) = wi +
∑

j∈S0\S0
i

wj −
∑
j∈S0

wj
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= wi −
∑
j∈S0

i

wj

and similarly

cG(F ),w(T ∪ {i})− cG(F ),w(T ) = wi −
∑
j∈T 0

i

wj.

Hence, in order to prove (5.1), it is sufficient to show that

∑
j∈T 0

i

wj ≥
∑
j∈S0

i

wj. (5.2)

Let t ∈ T 0
i . Since T 0

i ̸= ∅, we know that such t always exists. Furthermore, assume
that there exists a root s ∈ S0

i . Since S ⊂ T and s and t are roots in S and T , respec-
tively, s ∈ D(i) and t ∈ D(i) imply either s = t or s ∈ D(t). Let R1 = T 0

i ∩ S0
i ,

R2 = T 0
i \S0

i and R3 = S0
i \T 0

i . Obviously, R1 and R2 form a partition of T 0
i , and R1

and R3 form a partition of S0
i . Moreover, from the above argument, we get R3 ⊆ D(R2)

where D(R2) = {j ∈ N : j ∈ D(t) for some t ∈ R2}. Now, we prove (5.2). We have

∑
j∈T 0

i

wj =
∑
j∈R1

wj +
∑
j∈R2

wj

≥
∑
j∈R1

wj +
∑

j∈D(R2)

wj

≥
∑
j∈R1

wj +
∑
j∈R3

wj

=
∑
j∈S0

i

wj

where the first inequality follows from root-first 2-weighting since wt >
∑

j∈D(t)wj for
all t ∈ R2. Therefore, (N, cG(F ),w) is submodular and hence there exists at least one
w ∈ ZN

+ such that the WMC game (N, cG(F ),w) is submodular.

We have the following example to illustrate the above proof.
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Example 5.12. Consider the rooted forest F and the weight vector w, which is a root-
first 2-weighting, displayed in Figure 5.9.
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Figure 5.9: Rooted forest F and a weight vector w.

Let G(F ) be the graph induced by F . Recall that P (i) denotes the collection of vertices
on the unique path from the root of i to i in F and that {i, j} ∈ E if and only if i ̸∈ P (j)

and j ̸∈ P (i) in F . We know that G(F ) is (2K2, P4)-free. Let S = {6, 10, 11, 12}
and T = {5, 6, 7, 8, 10, 11, 12}. The roots of S and T are S0 = {6, 10, 11} and T 0 =

{5, 6, 7, 8}, respectively. Therefore, cG(F ),w(S) = w6+w10+w11 and cG(F ),w(T ) = w5+

w6+w7+w8. Next, for a number of different vertices i ∈ N such that S ⊂ T ⊆ N\{i},
we illustrate that

cG(F ),w(S ∪ {i})− cG(F ),w(S) ≥ cG(F ),w(T ∪ {i})− cG(F ),w(T ). (5.3)

Let i = 9. Since 9 is not a root in T∪{9}, we have cG(F ),w(T∪{9})−cG(F ),w(T ) = 0.
Similarly, cG(F ),w(T ∪ {4}) − cG(F ),w(T ) = 0 for i = 4, and cG(F ),w(T ∪ {12}) −
cG(F ),w(T ) = 0 for i = 12. Furthermore, cG(F ),w(S ∪ {i}) − cG(F ),w(S) ≥ 0 from the
monotonicity of cG(F ),w. Therefore, for all three cases (5.3) holds.

Now, we concentrate on vertices i ∈ N that become a root in T ∪ {i}. Therefore, to
prove (5.3), we need to show that

∑
j∈T 0

i

wj ≥
∑
j∈S0

i

wj. (5.4)
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Firstly, let i = 2. We have T 0
2 = {5} and S0

2 = ∅. Therefore, (5.4) holds from
w5 > 0. Note that R1 = R3 = ∅ and R2 = {5}. Furthermore, D(R2) = ∅ and
R3 ⊆ D(R2).

Secondly, let i = 3. Then T 0
3 = {6, 7, 8} and S0

3 = {6, 10, 11}. We have R1 = {6},
R2 = {7, 8} and R3 = {10, 11}. Moreover, D(R2) = {9, 10, 11, 12} and R3 ⊆ D(R2).
We get

∑
j∈T 0

3

wj = w6 + w7 + w8

≥ w6 + w9 + w10 + w11 + w12

≥ w6 + w10 + w11

=
∑
j∈S0

3

wj

and hence (5.4) holds. ⋄

5.5 Existence of Population Monotonic Allocation Schemes
for the Weighted Minimum Colouring Games

An open question for further research is to characterise the existence of PMASs for
WMC games. We conclude this chapter with some remarks on this question.

Let G be globally (respectively, locally) WMC population monotonic if for all posi-
tive integer weight vectors w (respectively, for at least one positive integer weight vector
w) the corresponding WMC game allows a PMAS. Firstly, we readily know from the
result of Hamers et al. (2011) that for wi = 1 for all i ∈ N , a graph G induces a WMC
game that allows a PMAS if and only if it is (2K2, P4)-free. Therefore, the class of glob-
ally WMC population monotonic graphs cannot be larger than the class (2K2, P4)-free
graphs. Furthermore, the class of globally WMC population monotonic graphs cannot
be smaller than the class of complete r-partite graphs since we have already shown that
complete r-partiteness is equivalent to global WMC submodularity, which in turn im-
plies the existence of a PMAS for a WMC game induced by a complete r-partite graph
for all positive integer weight vectors. Finally, we have the following example illustrat-
ing that locally WMC population monotonic graphs are not necessarily restricted to be
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(2K2, P4)-free.
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Figure 5.10: Graphs G and H , and the weight vector w.

Example 5.13. Consider the graphs G and H , and the weight vector w displayed in
Figure 5.10. Graphs G and H are isomorphic to 2K2 and P4, respectively. Let
N = {1, 2, 3, 4}. A PMAS for the WMC game (N, cG,w) and for the WMC game
(N, cH,w) are displayed in Table 5.4 and 5.5, respectively.

S 1 2 3 4
{1, 2, 3, 4} 0 0 4 5
{1, 2, 3} 0 0 4 ∗
{1, 2, 4} 0 0 ∗ 5
{1, 3, 4} 0 ∗ 4 5
{2, 3, 4} ∗ 0 4 5
{1, 2} 1 2 ∗ ∗
{1, 3} 0 ∗ 4 ∗
{1, 4} 0 ∗ ∗ 5
{2, 3} ∗ 0 4 ∗
{2, 4} ∗ 0 ∗ 5
{3, 4} ∗ ∗ 4 5
{1} 1 ∗ ∗ ∗
{2} ∗ 2 ∗ ∗
{3} ∗ ∗ 4 ∗
{4} ∗ ∗ ∗ 5

Table 5.4: A PMAS for the WMC game (N, cG,w).
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S 1 2 3 4
{1, 2, 3, 4} 1 0 4 4
{1, 2, 3} 1 0 4 ∗
{1, 2, 4} 1 0 ∗ 4
{1, 3, 4} 1 ∗ 4 4
{2, 3, 4} ∗ 0 4 5
{1, 2} 1 2 ∗ ∗
{1, 3} 1 ∗ 4 ∗
{1, 4} 1 ∗ ∗ 4
{2, 3} ∗ 0 4 ∗
{2, 4} ∗ 0 ∗ 5
{3, 4} ∗ ∗ 4 5
{1} 1 ∗ ∗ ∗
{2} ∗ 2 ∗ ∗
{3} ∗ ∗ 4 ∗
{4} ∗ ∗ ∗ 5

Table 5.5: A PMAS for the WMC game (N, cH,w).
⋄



Concluding Remarks

The thesis concludes with a discussion on a number of further results we have tried to
obtain for SPT problems and games as well as possible directions for further research
for both SPT and WMC games.

We start with the γ rule that we have introduced in Chapter 2. As we have mentioned
earlier we have come up with this novel allocation rule and showed many desirable prop-
erties of this rule. We have also made a considerable effort to axiomatically characterise
this allocation rule due to the important and central role that the axiomatic characterisa-
tions play in the design of allocation rules. After thoroughly researching the literature
on the properties of cost allocations rules and consulting with other researchers in this
area, we have proved that this allocation rule satisfies many interesting properties but we
could not identify a set of rules that uniquely define this rule. Nonetheless, this study
has led to the axiomatic characterisation of the tree solution as well as to the alternative
definitions of the γ rule as we have discussed in Chapter 2.

In Chapter 3, we have discussed our results on the polyhedral analysis of the core
of the SPT games. Previously, the polyhedral analysis of the core of cooperative games
has mainly concentrated on extreme point and marginal vectors. With the help of the
special polyhedral analysis package PORTA, we have firstly determined the dimension
of the core of the SPT games. We have furthermore identified a class of extreme points
of the core of the SPT games and a class of facets of the core of the SPT games that
correspond to an SPT problem with a unique optimal solution. In light of these initial
interesting results, we have performed numerous simulations to identify more facets
and extreme points. However, there did not exist any other classes of facets or extreme
points that were always present irrespective of the costs of the edges of the graph in
consideration. Furthermore, it was not possible to extend our result on the facets to the
multiple optimality case since there did not appear to exist a particular class of facets for
the multiple optimal case in our simulations.

148
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One of the open problems of the thesis is concerned with the nucleolus of the SPT
games. Chapter 4 has presented our computational results on finding the nucleolus of
the SPT games for the application of Wireless Multihop Networks. Recall that Algo-
rithm 3 uses constraint generation to find the nucleolus. An issue with this approach is
the hardness of solving the mixed integer programme (MIP) to identify the violated con-
straints. Especially, when the number of players gets larger our MIP will become harder
to solve. One possible way of overcoming this problem would be devising a heuristic
to solve this MIP. Such a heuristic would overcome this issue by either eliminating or
reducing the size of any MIP that need to be solved. Note that we have made some initial
investigations into this area and found out that due to the special structure of our MIP
(specifically due to the structure of the constraints (4.15) and (4.16) that ensure that we
generate non-redundant coalitions) identifying such a heuristic is not a straightforward
task. However, it is still an interesting research area that is worth exploring further since
it will have a major impact on the size of the problems for which we can identify the
nucleolus of the SPT games.

Another research direction worth pursuing on WMC games, which we have intro-
duced in Chapter 5, is the characterisation of the existence of PMASs for this class of
games. We have started some investigations into this open question. Recall that for
Theorem 5.1and Theorem 5.3 where we have characterised total balancedness and sub-
modularity of WMC games for a graph G and all positive integer weight vectors respec-
tively, the ‘if’-parts of our proofs have extended the results of the unweighted minimum
colouring games. Our initial results have indicated that proving the existence of PMASs
for WMC games would not be a straightforward task since the results of Hamers et al.
(2011) on PMASs of unweighted minimum colouring games did not appear to extend to
the weighted case. Nonetheless, a possible approach to this open problem would be to
devise special algorithms that would always generate PMASs for WMC games defined
on certain graph classes.
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