
Robust Asset Allocation Under

Model Ambiguity

Sandrine Tobelem - Foldvari

Department of Statistics

The London School of Economics and Political Sciences

A thesis submitted for the degree of

Doctor of Philosophy

London, September 2010

mailto:s.e.tobelem@lse.ac.uk
http://www.eng.cam.ac.uk
http://www.lse.ac.uk/


I certify that the thesis I have presented for examination for the MPhil/PhD

degree at the London School of Economics and Political Science is solely my own

work other than where I have clearly indicated that it is the work of others (in

which case the extent of any work carried out jointly by me and any other person

is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced

without the prior written consent of the author.

I warrant that this authorisation does not, to the best of my belief, infringe the

rights of any third party.

i



Acknowledgements

Starting a PhD is like embarking upon a very long and uncertain

journey. Support is a key component for success, and I am extremely

grateful I have been helped so much throughout the long six years I

spent writing this thesis.

I would like to thank the Statistics Department at the London School

of Economics and Political Sciences that allowed me to undertake

an especially difficult part-time PhD. I would like to acknowledge in

particular the academic help I received from Pr Ragnar Norberg, Pr

Qiwei Yao, Pr Umut Cetin and Pr Henry Wynn. I also would like

to thank the administrative staff of the department and in particular

Ian Marshall. Thank to my fellow LSE PhD students; even if I did

not meet with them often, they still made me feel I was part of the

research department.

I would like to acknowledge the financial support of the CREST in

Paris for the grant I received for the first two years of my PhD, and

especially Pr Christian Gourieroux, Pr Laurence Lescourret and Pr

Nizar Touzi.

I also would like to thank my current employer Credit Suisse, which

financed the remaining four years of my research, and gave me enough

flexibility in my job to be able to complete my thesis, despite a very

challenging and demanding environment. I particularly would like to

thank all my colleagues and my managers who were supportive and

allowed me to take my Fridays to work on my PhD for three years.



I especially would like to thank Yves Bentz, my previous manager

at Credit Suisse, who initially offered me to work at the bank while

completing my PhD. He has been a real inspiration and support in

all respects.

I also would like to acknowledge the help and advice I received from

Pr Monique Jean-Blanc, Pr Bernard Sinclair-Desgagne and especially

Pr Leonard Smith and Pr Rudiger Kiesel.

I thank all my friends, and especially David Le Bris and Judith Byd-

lowski who devoted time reading parts of my PhD and giving me

sensible and most welcome advice.

But first and foremost, I would like to thank my PhD supervisor, Pr

Pauline Barrieu. I will never be able to express enough gratitude. She

has been incredibly inspiring, guiding me through every step, never

letting me give up and encouraging me in my most difficult times.

She became a very dear and important person to me and I owe her

much more than the great achievement of finishing my PhD thesis.

I thank warmly my family, my parents and my brother and my parents

in law who gave me confidence and emotional support.

Finally, I would like to thank my husband Peter. He supported me

the most completely and always believed I would finish my PhD thesis

even when I was convinced I could never do it. He gave me an infinite

supply of time, trust and love and I would like to dedicate my research

to him, as I could not have done it without his unconditional support.

I also dedicate my PhD thesis to our two lovely baby daughters Laura

and Emma.



Abstract

A decision maker, when facing a decision problem, often considers

several models to represent the outcomes of the decision variable con-

sidered. More often than not, the decision maker does not trust fully

any of those models and hence displays ambiguity or model uncer-

tainty aversion.

In this PhD thesis, focus is given to the specific case of asset allocation

problem under ambiguity faced by financial investors. The aim is not

to find an optimal solution for the investor, but rather come up with

a general methodology that can be applied in particular to the asset

allocation problem and allows the investor to find a tractable, easy to

compute solution for this problem, taking into account ambiguity.

This PhD thesis is structured as follows: First, some classical and

widely used models to represent asset returns are presented. It is

shown that the performance of the asset portfolios built using those

single models is very volatile. No model performs better than the

others consistently over the period considered, which gives empirical

evidence that: no model can be fully trusted over the long run and

that several models are needed to achieve the best asset allocation

possible. Therefore, the classical portfolio theory must be adapted

to take into account ambiguity or model uncertainty. Many authors

have in an early stage attempted to include ambiguity aversion in

the asset allocation problem. A review of the literature is studied

to outline the main models proposed. However, those models often



lack flexibility and tractability. The search for an optimal solution

to the asset allocation problem when considering ambiguity aversion

is often difficult to apply in practice on large dimension problems,

as the ones faced by modern financial investors. This constitutes

the motivation to put forward a novel methodology easily applicable,

robust, flexible and tractable. The Ambiguity Robust Adjustment

(ARA) methodology is theoretically presented and then tested on a

large empirical data set. Several forms of the ARA are considered and

tested. Empirical evidence demonstrates that the ARA methodology

improves portfolio performances greatly.

Through the specific illustration of the asset allocation problem in

finance, this PhD thesis proposes a new general methodology that will

hopefully help decision makers to solve numerous different problems

under ambiguity.
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Chapter 1

Introduction

”Success is not final, failure is not fatal: it is the courage to continue that counts.”

Sir Winston Churchill.

A decision-maker, when facing a decision problem, often considers several models

in order to represent the possible outcomes of the decision variables considered.

More often than not, the decision-maker does not fully trust any of the models

considered, and, hence, displays ambiguity, or model uncertainty aversion. In this

PhD thesis, the generic terminology ’model uncertainty’, or ’ambiguity’ is used

to refer to any situation where a decision-maker has to consider different models,

different scenarii, or, has to rely on different experts (that may all be wrong, or

at least subject to error), to come to a decision. The general term ’prior’ de-

scribes a model, scenario, or expert’s opinion. The question of how ambiguity

aversion should be taken into account in the decision-making problem has, there-

fore, arisen, and has now become crucial in many scientific fields (including but

not limited to: economics, biology, physics, climatology and finance).

There is a substantial body of literature on the problem of decision-making under

ambiguity. The classical approaches have significant limitations: they often prove

to be very difficult and challenging to implement in practice. To overcome these

1



limitations, a methodology to operate a trade-off between robustness and opti-

misation has been proposed. Since the complexity of most practical frameworks

makes this task almost impossible with current limitations, the objective has not

been to find the ”optimal” decision for the decision-maker; the focus has been,

rather, on a robust approach that allows the decision-maker to combine different

priors in a practical and tractable way - and to take the best decision - in a robust

sense (i.e. that can be easily adapted to the different types and number of priors

considered). The question is, really, about finding a solution that encompasses all

the different information given by the different priors, but also the ambiguity the

decision-maker faces regarding the set of priors; in other words, finding a robust

decision rule, as defined by Levin & Williams (2003): a rule that ”although not

exactly optimal for any prior, yields outcomes that are acceptable to all priors”.

The contribution of this PhD thesis is therefore to provide the decision maker

with a novel methodology that deals with model ambiguity in an original fashion.

In this thesis, focus is given to the financial field to illustrate decision-making

under ambiguity. The novel methodology proposed in this PhD theisi is applied

to the asset allocation problem of an investor, when ambiguous about the models

used to describe the asset returns distribution, providing a practical, systematic

algorithm to trade a large portfolio of assets.

The Modern Portfolio Theory, initiated with the classical Markowitz framework,

aims at solving the asset allocation problem. Many authors have, since then,

considered more complex settings, allowing the investor to take into account sev-

eral models for risky asset return distributions. Indeed, many different models

can be used in finance to represent asset returns: very quantitative models, as

well as more qualitative ones. The uncertainty about which model to use adds

complexity to the asset allocation problem. The main idea underlying the asset

allocation problem is that an investor needs to balance the risk they are willing

to take and the return expected from the invested portfolio. Ideally, the aim of

the investor is to come up with the optimal portfolio (i.e. generally speaking

the preferred portfolio allocation, depending on the investor own preferences),

which perfectly represents the risk-return equilibrium required by the investor.
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However, an optimal solution is all the more hard to find, as the investor con-

siders different models to represent asset returns (and, therefore, the anticipated

portfolio performance).

During this research, the aim has not been to find an optimal solution for the

investor facing an asset allocation problem, but, rather, to come up with a general

methodology that can be applied, in particular, to the asset allocation problem

- that allows the investor to find a tractable, easy to compute solution for this

problem - taking into account aversion to model uncertainty, otherwise called

ambiguity.

This PhD thesis is structured as follows. First, some classical and widely used

models that represent asset returns are presented and discussed. It is shown that

the performance of the asset portfolios built using those single models is very

volatile. No model performs consistently better than the others over the period

considered, which gives empirical evidence that: no model can be fully trusted

over the long-run, and that several models are needed to achieve the best asset

allocation possible. Therefore, the classical portfolio theory must be adapted

to take into account ambiguity or model uncertainty. Many authors have, in

the early stages, attempted to include ambiguity aversion in the asset allocation

problem. However, those models often lack flexibility and tractability. A review

of the literature is performed to outline the main models proposed. The search for

an optimal solution to the asset allocation problem, when considering ambiguity

aversion, is, in practice, often difficult to apply to large dimension problems, such

as the ones faced by modern financial investors. This constitutes the motivation

to put forward a novel methodology that is easily applicable, robust, flexible and

tractable. The remaining chapters of this PhD thesis present and test this new

approach. The Ambiguity Robust Adjustment (ARA) methodology is presented

theoretically, and, then tested on a large empirical data-set. Several forms of the

ARA are considered and tested. Empirical evidence demonstrates that the ARA

methodology improves portfolio performances greatly.

This PhD thesis is organised according to six different chapters:
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• In the second Chapter, focus is given to the Modern Portfolio Theory; a

general framework, for this PhD thesis, is outlined, and some classical asset

allocation problems, involving a sole model to represent asset returns such as

the Markowitz mean-variance optimal allocation, the Sharpe Capital Asset

Pricing Model or the Ross Asset Pricing Theory, are described. Performance

measures, used to evaluate and compare different portfolio allocations, are

also presented.

• In the third Chapter, other types of asset return models, widely used among

practitioners are detailed, such as fundamental or statistical factor models,

encompassing the Capital Asset Pricing Model (CAPM) and different ver-

sions of the Asset Pricing Theory (APT). The performance of the models is

tested by a number of different performance measures. Empirically, none of

the models can be considered as the best over a long time-period: the per-

formance measures vary greatly over time, which provides further evidence

of the model uncertainty problem faced by a financial investor.

• In the fourth Chapter, focus is given to the theoretical approaches presented

in the literature to date, which include model ambiguity aversion into asset

allocation problems. A more formal definition for the concept of ambiguity

is given, and the main models used to incorporate ambiguity in portfolio

allocation problems are recalled.

• In the fifth Chapter, the novel Ambiguity Robust Adjustment (ARA) method-

ology is presented. The central idea is that it is extremely challenging to

compute a closed form solution, or numerical solution, for the asset alloca-

tion optimisation problem when several priors are considered. More often

than not, the priors considered do not belong to the same class of models

(different parametric/ non parametric models) and, therefore, it can be,

even, impossible to precisely define the optimisation problem under a theo-

retical form. That is why a more ad hoc, practical methodology, is proposed

that is altogether easier to compute, more flexible (in terms of the type and

number of prior models that can be considered) and tractable (the ARA

methodology allows the investor to measure precisely aversion to ambiguity
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towards a specific prior but also towards the overall set of priors consid-

ered). In principle, the ambiguity aversion is decomposed into two types of

ambiguity: the absolute ambiguity aversion towards a given model and the

relative ambiguity aversion towards the set of models considered. More pre-

cisely, this two-step methodology takes, as input, the allocations inferred

by the different priors as if they were the only model to consider (those

weights can be computed through optimisation, they can be inferred by a

qualitative approach). Those weights are first adjusted through an Absolute

Robust Ambiguity Adjustment function (ARAA), which allows the investor

to express absolute ambiguity towards a given model. Then, the different

set of weights, corresponding to the different models, are mixed through a

Relative Ambiguity Robust Adjustment (RARA) function that expresses

the overall ambiguity of the investor toward the set of priors considered.

The ARA methodology is compared to recent approaches of optimisation

under ambiguity and a theoretical example is proposed as an illustration.

• In the sixth Chapter, an empirical study is conducted on European empir-

ical data; the performance of the classical portfolios presented in Chapter

2, as well as the Savage Subjected Expected Utility portfolio (basically, a

linear blending of the classical portfolios) and the ARA portfolio, are dis-

played. Due to the high-dimensionality of the asset allocation problem, in

practice (financial investors often consider portfolios of hundreds of assets),

a simple, tractable methodology is needed. Effectively, the Ambiguity Ro-

bust Adjustment is easily applicable to large dimension, complex empirical

problems. It has been found, through the empirical study, that the SEU

portfolio outperforms almost all of the single strategies by all performance

measures considered. This means, that blending the different strategies

allows the investor to achieve a smoother, more reliable portfolio perfor-

mance. It is also shown, that the ARA portfolio beats the SEU portfolio

performances, consistently, proving that the ARA methodology is easily ap-

plicable to the large-dimension problem considered in this study; and taking

into account ambiguity in the asset allocation problem, greatly improves the

empirical portfolio performances.
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• In the last Chapter, the novel ARA methodology is enhanced by inves-

tigating forms for the RARA function, that are more complex than the

linear form proposed in the precedent empirical study; the RARA function

is calibrated through the non-parametric Support Vector Machine (SVM)

methodology, or fitted, a priori, with respect to some nonlinear properties.

Indeed, ambiguity aversion implies some nonlinear effects, and taking them

into account allows the investor to further enhance portfolio performances,

as shown in the empirical tests, which are conducted and presented in this

chapter.

This PhD thesis proposes a, new, general methodology that is designed to con-

tribute to discourses and practices of decision-making under ambiguity. The

robust approach proposed illustrates and is applied to financial fields, but is not

restrictive. Indeed, the approach could be used, for instance, to meet the spe-

cific attributes and needs of various research and practice areas, including, but

not limited to, financial and actuarial risk management, environmental policy,

monetary policy and technology management. Individual decision-making and

collective decision-making can be undertaken using the proposed methodology,

since it does not rely on specificities of any particular choice criterion.
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Chapter 2

Classical Approaches to the
Asset Allocation Problem

”The process of selecting a portfolio may be divided into two stages. The first

stage starts with observation and experience and ends with beliefs about the future

performance of available securities. The second stage starts with the relevant

beliefs about future performances and ends with the choice of portfolio.”

Harry Markowitz, Portfolio Selection, The Journal of Finance, 1952.

When facing asset allocation problems, financial investors aim to allocate their

initial wealth optimally across financial assets, i.e they want find the allocation

that best fits their preferences. To define the portfolio of assets, an investor

requires a model to represent asset returns. In practice investors can employ a

variety of models, including the classical models presented in this Chapter. The

following section will comprehensively describe the three most established Modern

Portfolio Theories: the Efficient Frontier developed by Markowitz (1952), the

Capital Asset Pricing Model developed by Sharpe (1964) and the Asset Pricing

Theory more recently proposed by Ross (1976).

Modern portfolio theories aim to solve asset allocation problems faced by financial

investors. As Markowitz notes, the portfolio selection problem is constituted by

7



several phases: the observational phase, where investors empirically observe price

dynamics; the modelling phase, reflecting inferred investor beliefs from the initial

observation; and finally a decision phase, where informed investors express their

preferences:

1 Observation phase: signifies investor observes financial asset prices

2 Modelling phase: describes investor beliefs concerning financial market

uncertainty, and encompassing:

– the set of possible states of the world : i.e. the set of definitions for

asset prices.

– the asset price dynamics : i.e. the distribution measure the investor

believes to lead asset prices.

– how asset prices reflect the flow of information: market efficiency is

commonly assumed, i.e. asset prices fully reflect available information,

representing true investment values.

3 Decision phase: defines the investor decision-making procedure under risk

and uncertainty; specifying:

– the investor preferences : commonly defined through a utility function,

that takes into account investor risk aversion.

– the investor valuation function: often expressed through the expected

utility framework as the investor discounted expected final wealth util-

ity.

A persistent and major assumption within portfolio optimisation problem settings

has been that investors are able to accurately model uncertainty by attributing

the right probability measure leading asset prices. However, the addition of a

fourth phase to the portfolio selection procedure introduced in the early stages

of modern finance created a fundamental distinction between uncertainty and

ambiguity (see Knight (1921), as discussed in Chapter 4):
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2.1 Framework

4 Ambiguity adjustment phase: investors determine a method to account

for ambiguity (i.e. investor acts upon doubts both of investment beliefs

expressed in the modelling phase and the ability to perfectly model asset

prices dynamics).

The following chapter will focus on the (second) modelling phase and (third)

decision phase of the classical portfolio selection problem. The (first) observation

and (fourth) ambiguity adjustment phases will be further discussed in Chapters

3 and 5 respectively.

The first section of this chapter will outline the key definitions utilised through-

out this thesis. Furthermore it will describe the settings of the portfolio selection

problems considered throughout this research. Important results are proved in

the text; and additional proofs can be found in the Appendix. The second section

will describe the Efficient Frontier (which represents the set of efficient portfolios)

proposed by Markowitz (1952). A particular focus will be placed upon the intro-

duction of two efficient portfolios: the fully invested Minimum Variance portfolio

and the Maximum Sharpe portfolio, tested in Chapter 3. The third section will

describe the equilibrium theory and the Capital Asset Pricing Model developed

by Sharpe (1964), also tested in Chapter 3. The fourth section will focus on the

more general Arbitrage Pricing Theory introduced by Ross (1976), which forms

the basis for all modern factor models, including some models considered in the

next chapter. The final section will introduce the performance measures that are

used to compare the portfolio performances discussed throughout the remainder

of this thesis.

2.1 Framework

The aim of this section is to define the portfolio allocation problem in greater

detail. First the framework and appropriate notations will be precisely described

for the financial market considered throughout this PhD thesis. The second sec-

tion will provide the definition of a trading strategy (i.e. the formal description

of a portfolio allocation). The third sub-section will describe the classical deci-

sion under risk procedures that are used by investors to effectively discriminate
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2.1 Framework

between different trading strategies. Finally, the classical optimisation problem

will be formally specified.

2.1.1 Notation and setting

Unless otherwise specified, the following key assumptions and notations are used

throughout the PhD thesis.

• Time horizon : Static one period models are considered; the correspond-

ing investment horizon is taken to be a finite and unique time horizon T .

It is assumed that there is one single period [0;T ]. At time 0, the investors

make their investment decisions, and at time T they observe the value of

their portfolio.

• Financial Market : It is assumed that financial market uncertainty is

modelled using a standard probability space (Ω,F,P), where:

– The set Ω represents the set of all possible states of the world.

– The σ-field F represents the structure of available information on the

financial market at time T .

– P stands for the true probability measure of the financial market con-

sidered according to the set of possible states of the world:

P ∈M(Ω,F)

where M(Ω,F) stands for the set of measurable functions from Ω to

F. In the context of a risky, non-ambiguous framework, the objective

probability P is known. However, in the context of a risky, ambiguous

framework the objective probability is inferred as it is not known by

investors.

• Financial Assets : There are N + 1 primary assets traded between date

0 and T , consisting of two different types:

– Risky assets : It is assumed that there are N risky assets in the

financial market. Their prices at time T , denoted by sT = (s1
T , ..., s

N
T ),

are F-measurable.
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2.1 Framework

– Risk-free asset: A risk-free asset also exists. The risk-free asset price

at time T is denoted by s0
T . It is assumed that the price of the risk-

free asset is deterministic (and in particular: non-ambiguous). The

constant instantaneous risk-free rate is denoted by rf .

As a standard assumption, financial assets are considered to be exchanged in a

friction-free financial market. The following additional standard assumptions are

made:

• No transaction costs are generated when buying or selling financial assets:

exchanges and broker’s fees are disregarded1.

• Asset prices are infinitely divisible. Price granularity, such as lot size (min-

imum amount of shares to be exchanged in one transaction) or tick size

(minimum price granularity authorised by the exchanges) is disregarded.

• There is an unlimited and costless liquidity: any amount of financial assets

can be exchanged, bought or sold at market price without any price impact.

In particular, an agent can short-sell any asset without cost (i.e. borrowing

costs and short selling regulation limiting the amount of asset shares to be

sold without cover are disregarded).

Finally, a number of general notations will be applied consistently throughout

the thesis. The following denotes:

• A scalar, or one-dimensional random variable by a simple letter (e.g. a),

• A vector, or multi-dimensional random variable by a bold letter (e.g. a)2,

• A matrix by a bold capital letter (e.g. A),

• A time index as a subscript (e.g. at is the value of the variable a at time t)

• An asset or portfolio index as an upper script (e.g. ai is the value of the

variable a for the asset i)

1However, it should be noted that in empirical tests some transaction costs are introduced
to give more realistic results.

2a′ denotes the transpose of the vector a
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2.1 Framework

• For the probability measure P, the expectancy operator is denoted as EP, the

variance operator as VP and the covariance operator as COVP. Moreover, if

the reference probability P is obvious, they are denoted as E, V and COV.

• To simplify notations whenever needed, the expected value of the variable

a can be denoted µa and its standard deviation σa. The covariance of two

variables a and b can be denoted as σa,b and their correlation coefficient as

ρa,b.

2.1.2 Trading Strategy

This section provides a definition of portfolio allocation (more formally described

as a trading strategy). Put simply, a financial investor with a given initial wealth

denoted by x0, wants to allocate their initial wealth among the different financial

assets available. A given allocation φ (that is also called a trading strategy) is

defined as:

Definition 2.1. Trading Strategy

The trading strategy φ assigns the set of weights or asset allocation (φ0, ..., φN) to
the N + 1 financial assets at date 0. The various components φi for i = 0, 1, ...N
represent the proportional cash units invested in the security i. Negative as well as
positive real values are assumed, reflecting assumptions concerning short-selling
and asset divisibility. The allocation φ is defined according to the information
available up to the initial date of portfolio rebalance (i.e., when the investor defines
their asset allocation at time 0 for the period [0;T ]). The value at time T of the
portfolio φ will be denoted by xφT :

xφT =
N∑
i=0

φisiT

In order to decide which trading strategy is the best, an investor needs to specify a

set of decision preferences. The following section describes the classical procedure

of decision under risk. Preferences are expressed through a utility function and

the value function is defined as the expected utility of the investor’s terminal

wealth (i.e. the value of the investor’s portfolio at the horizon time T ).
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2.1 Framework

2.1.3 Decision under risk

Investors need to be able to compare differing asset allocations and choose which

one is best. They consider a preference relation between different investment

alternatives. This preference relation allows them to discriminate the different

investment options they have. Therefore, they can choose the strategy that max-

imises their preferences. The utility functions translate those preferences into

numerical values that can then be used in optimisation problem modelling.

Under uncertainty (i.e. the risky financial asset prices are random), the investor

needs to evaluate a certainty equivalent value of their preferences. Indeed, the

investor has to be able to compare the different outcomes of their portfolio choices

so that they can make a decision. In the classical framework presented in this

chapter, the investor relies on the certainty equivalent to compare random pay-

outs, and uses the von Neumann-Morgenstern expected utility maximisation as

a decision criterion.

More precisely, the investor terminal wealth (the quantity xφT ) is random, and

depends on the vector of asset prices sT at horizon T . However, the expected

utility of this quantity is certain. Therefore, the certainty equivalent of xφT denoted

c(xφT ) is defined such that:

u[c(xφT )] = EP[u(xφT )]

where u is a concave, increasing utility function. And the criterion used by the

investor can be described as the value function:

V (φ) ≡ EP[u(xφT )]

To obtain the optimal portfolio under these settings, the investor needs to max-

imise the value function V over all the possible asset allocations φ. The classical

portfolio optimisation problem can therefore be described as follows.

2.1.4 The classical portfolio optimisation problem

The portfolio optimisation problem is solved by Markowitz (1952), assuming the

investor knows the true probability distribution P. What differentiates investors
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2.2 The Efficient Frontier, Markowitz (1952)

is their attitude towards risk (represented by their risk aversion parameter λ).

In the case of a classical von Neumann-Morgenstern utility maximisation setting,

the decision maker problem can be formalised as:

max
φ

EP[u(xφT , λ)] (2.1)

where either u is a quadratic function (u(x, λ) = x − λx2), or the dynamic of x

is normal, so that the von Neumann-Morgenstern value function defined as:

V (xφT ) ≡ E[u(xφT , λ)]

only depends on the first two moments (the mean and variance) of the terminal

wealth xφT distribution, as is detailed in the next section.

Now that the framework of study and the classical asset allocation problem faced

by financial investors has been described, a detailed investigation of the three most

famous approaches of portfolio selection can take place; starting with the Efficient

Frontier of Markowitz. The construction of particular portfolio allocations is

proved in the Appendix section.

2.2 The Efficient Frontier, Markowitz (1952)

The Markowitz Efficient Frontier provides the foundation for single-period in-

vestment theory. It explicitly addresses the trade-off between the expected and

variance values for the rate of return of a given portfolio. Any efficient portfolio

lying on the Efficient Frontier can be expressed as a convex combination of two

given efficient portfolios (”Two Fund Theorem”) or as a linear combination of

the tangent portfolio and the risk-free asset, if such a risk-free asset exists (”One

Fund Theorem”). The section is organised as follows. In a first sub-section, the

hypothesis of the Markowitz framework is detailed: the mean-variance paradigm

and the diversification effect. Then, the Efficient Frontier Equation, and a formal

description of two classical efficient portfolios are given: the Minimum Variance

portfolio and the Maximum Sharpe portfolio. In the third sub-section, a risk-free

asset is introduced. Furthermore, the -in this case- simplified equation of the
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2.2 The Efficient Frontier, Markowitz (1952)

Efficient Frontier is given, which can be entirely expressed with the knowledge of

a single portfolio: the Tangential portfolio.

2.2.1 Background

The Markowitz Frontier solves the asset allocation problem under the assumption

that any investor believes in the mean-variance paradigm. More specifically, only

the first two moments of a portfolio return (the mean and variance) are significant

to define the best allocation. The diversification effect justifies the mean-variance

paradigm as explained in the following.

2.2.1.1 The mean-variance paradigm

The grounds for the Markowitz mean-variance paradigm can be expressed through

the following concept:

Higher expected returns come with greater risk, and lower expected returns come

with lesser risk, where the risk is measured by the variance of an investor portfolio.

Assuming the investor intends to optimise their portfolio asset allocation, there

are two equivalent ways of proceeding: either by maximising the expected return

of the portfolio under the constraint that the portfolio variance remains below

a certain risk tolerance level, or by minimising the risk (i.e. the variance of the

portfolio), given the level of portfolio return intended to be achieved.

There is a strong underlying assumption required to justify the mean-variance

paradigm. This is that either the investor preferences are described by a quadratic

utility function (only the first two moments of the returns distribution are sig-

nificant), or that the asset returns are normally distributed (their distribution is

entirely defined by their first two moments).

Markowitz offers justification for the mean-variance paradigm on the basis that

it complies with the benefits of diversification (as the number of uncorrelated

assets with identical return distribution in the portfolio increases, the portfolio

standard deviation decreases, whereas; the portfolio expected return converges

towards the assets common expected return).
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2.2 The Efficient Frontier, Markowitz (1952)

2.2.1.2 The concept of diversification

Two simple illustrations will be used to provide a formal demonstration of the

diversification effect. The random return of the asset i over the period [0;T ] will

be denoted by ri ≡ siT−s
i
0

si0
. Let us denote by µ the N × 1 vector of risky asset

returns mean and by Σ the N × N covariance matrix of the asset returns. µi

denotes the mean of the return ri and σi denotes its standard deviation.

Two simple examples will be considered:

Situation A: It is assumed that the asset returns are mutually independent and

follow a normal distribution N(µi, σi) with mean µi and standard deviation σi.

It is assumed that the mean and standard deviation are bounded for any risky

asset i:

{
µmin < µi < µmax
σmin < σi < σmax

The Equally Weighted portfolio, where for any risky asset i, φi = 1
N

will be

considered. The return of the portfolio φ will be denoted by rφ ≡ xφT−x
φ
0

xφ0
. For the

sake of simplicity, all initial prices are assumed to be set to 1, resulting in:

E(rφ) =
∑N

i=1
µi

N
> µmin and V(rφ) =

∑N
i=1

(σi)2

N2 < σ2
max

N

When N becomes very large, the portfolio return is bounded from below by

µmin and its variance is bounded from above by a quantity that converges to 0.

The effect of diversification is fully observed: when the number of uncorrelated

assets in the portfolio increases, the expected return of the portfolio converges

to a value greater than the minimum expected asset return, while the portfolio

standard deviation (assimilated to its risk) converges to zero.

Situation B : now, it will be assumed that the asset returns are correlated. The

covariance between the returns of the assets i and j are denoted by σi,j; it is

assumed that for any risky assets i and j:

σi,j > σ2
min
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Therefore:

E(rφ) =
∑N

i=1
µi

N
> µmin and V(rφ) =

∑N
i=1

(σi)2

N2 +
∑N

i=1

∑
j 6=i

σi,j

N2 > σ2
min

The diversification effect is limited: the portfolio standard deviation is bounded

below by σ2
min, whatever the number of assets N included in the portfolio φ.

The correlation of the asset returns limits the diversification effect. However, as

long as the asset returns are not 100% correlated, the diversification effect still

diminishes the risk of the portfolio when the number of assets increases.

Diversification allows the investor to reduce variance; therefore, reducing risk,

and increasing the investor’s future wealth expected utility.

2.2.1.3 Efficient Frontier Definition

In the Markowitz framework, investors choose their portfolio among a common

set of efficient portfolios defined as the efficient frontier, according to their risk

aversion.

Definition 2.2. Efficient Portfolio

A portfolio is said to be efficient if its variance is smaller than the variance of
all the portfolios with the same expected return. Formally speaking, it is said
that the portfolio represented by the asset allocation φ is efficient if for any other
allocation φ̃ the following is found:

E(xφ̃T ) = E(xφT )⇒ V(xφ̃T ) > V(xφT )

This leads to the following general definition of the Markowitz Efficient Frontier:

Definition 2.3. Efficient Frontier

The Efficient Frontier is the set of all efficient portfolios.

More precisely, Markowitz establishes a mapping of expected returns and stan-

dard deviation (or risk) for any fully invested portfolio φ (i.e. the weights

(φi)1≤i≤N sum to one). The optimal asset allocation is found by the investor

by moving along the Efficient Frontier according to either, their risk aversion (i.e.
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2.2 The Efficient Frontier, Markowitz (1952)

the amount of risk he/she is willing to take), or the expected return they want

to achieve. Therefore, the portfolio asset allocation problem can be synthesised

by either one of the two optimisation problems:

Maximise expected return for a given risk level σP
maxφ E(rφ)
s.t V(rφ) = σP

and φ′1 = 1

or

Minimise risk for a given expected return µP
minφV(rφ)
s.t E(rφ) = µP

and φ′1 = 1

The expected return and variance of the portfolio φ are denoted by:

E(rφ) = µφ ≡ µ′φ and V(rφ) = (σφ)2 ≡ φ′Σφ

To recall, µ and Σ stand respectively for the empirical mean and covariance

matrix of the asset returns.

In the following section, the formal equation of the Efficient Frontier is provided;

cases with and without a risk-free asset will be discussed.

2.2.2 The Efficient Frontier without a risk-free asset

To present the equation for the efficient frontier, a description will first be made

of the Minimum Variance portfolio (MN) and then the fully invested Maximum

Sharpe portfolio (MS); two efficient portfolios of particular interest.
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2.2.2.1 The Minimum Variance portfolio

The efficient portfolio that has the smallest variance of all efficient portfolios will

be considered. This portfolio represents the minimum amount of risk an investor

must be ready to take when investing on the financial markets.

Proposition 2.1 (Minimum Variance Portfolio).
If the Minimum Variance portfolio allocation is denoted by φMN , then φMN is
the solution for the following problem:{

minφ
1
2
φ′Σφ

s.t φ′1 = 1

The first two moments of the portfolio return rφ
MN

are:

E(rφ
MN

) = µ′Σ−11
1′Σ−11

and V(rφ
MN

) = 1
1′Σ−11

-and the Minimum Variance Portfolio allocation is φMN = Σ−11
1′Σ−11

.

Proof. See Appendix.

2.2.2.2 The Maximum Sharpe ratio portfolio

The Sharpe ratio, as detailed in Sharpe (1994), is one of the most popular mea-

sures of portfolio performance. The Sharpe ratio represents the average return

per unit of risk (risk being defined as the portfolio standard deviation) and there-

fore complies with the mean-variance paradigm (only the first two moments of

the portfolio return distribution matter to evaluate the portfolio performance).

For any portfolio φ, the Sharpe ratio is defined as:

Sharpeφ =
E(rφ)√
V(rφ)

=
µr

φ

σrφ

More details will be given in Section (2.5), when additional performance measures

will also be introduced. The efficient frontier is actually the set of portfolios that

maximise the Sharpe ratio for any given expected return (fixing µφ, the Sharpe

is maximised when σφ is minimised).
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If the portfolio expected return E(rφ) = µP is fixed, the maximum Sharpe ratio

allocation associated with this portfolio is defined as the allocation that minimises

the standard deviation of a portfolio of expected value µP :

Proposition 2.2 (Maximum Sharpe Ratio Portfolio).
If φMS denotes the Maximum Sharpe ratio portfolio allocation with expected re-
turn µMS, then φMS is the solution of the following problem:

{
minφ

1
2
φ′Σφ

s.t φ′µ = µMS

The first two moments of the portfolio return φMS are:

E(rφ
MS

) = µMS and V(rφ
MS

) = (µMS)2

c

Where c = µ′Σ−1µ.

The Maximum Sharpe Portfolio allocation is φMS = µMS

c
Σ−1µ.

Proof. See Appendix.

Note that the set of Maximum Sharpe portfolios forms a straight line in the

risk-return map (σ, µ), with the Equation:

σ =
1√
c
µ (2.2)

One particular Maximum Sharpe portfolio will be described. The Fully Invested

Maximum Sharpe portfolio is the portfolio that is said to lay on the tangent of

both: the Efficient Frontier of fully invested portfolios with the Equation (2.3),

that is explicitly outlined below, and the Maximum Sharpe portfolios line with

Equation (2.2). In the remainder of this thesis, MS will denote the Fully Invested

Maximum Sharpe portfolio.

Proposition 2.3 (Fully Invested Maximum Sharpe Portfolio).
If φMS denotes the fully invested Maximum Sharpe portfolio allocation, then the
mean µMS and standard deviation σMS of this portfolio must respect the Equations
(2.3) and (2.2):{

(1)σMS =
√

a
d
(µMS − b

a
)2 + 1

a

(2)σMS = 1√
c
µMS
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2.2 The Efficient Frontier, Markowitz (1952)

Where it is denoted:
a = 1′Σ−11
b = 1′Σ−1µ = µ′Σ−11
c = µ′Σ−1µ
d = ac− b2

The first two moments of the portfolio return φMS are:

E(rφ
MS

) = c
b

and V(rφ
MS

) = c
b2

The fully invested Maximum Sharpe Portfolio allocation is: φMS = Σ−1µ
µ′Σ−11

.

Proof. See Appendix.

2.2.2.3 The Two Fund Theorem.

The solution to either the variance-minimisation- or mean-maximisation-problem

can be used to find the relation that the Efficient Frontier Equation establishes

between the mean E(rφ) and variance V(rφ) of any fully invested efficient portfolio

φ when there is no risk-free asset.

Proposition 2.4 (Efficient Frontier Equation).
Considering the variance minimisation problem:

minφV(rφ)
s.t E(rφ) = µP

and φ′1 = 1

-it is found that the Efficient Frontier Equation is:

V(rφ
P

) =
a

d
[E(rφ

P

)− b

a
]2 +

1

a
(2.3)

Proof. See Appendix.

It is now possible to state the Two Fund Theorem proved by Merton (1973):
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2.2 The Efficient Frontier, Markowitz (1952)

Theorem 2.1 (Two Fund Theorem).
Any efficient portfolio can be duplicated in terms of mean and variance as a linear
combination of any two efficient portfolios.
In particular, any efficient portfolio can be defined by the knowledge of the Mini-
mum Variance and the fully invested Maximum Sharpe portfolios:

V(rφ
P

) = V(rφ
MN

) +
V(rφ

MN
)

E(rφ
MN

)[E(rφ
MS

)− E(rφ
MN

)]
[E(rφ

P

)− E(rφ
MN

)]2

Proof. Apply Equation (2.3) to the Minimum Variance and Fully Invested Max-
imum Sharpe portfolios mean and variance.

This result has dramatic implications: according to the Two Fund Theorem, an

investor can replicate any efficient investment by investing solely in two efficient

portfolios without purchasing individual stocks. However, this conclusion is based

on the strong assumptions that investors only attribute significance to the mean

and variance of their investment, and that only a single period is appropriate.

Figure (2.1) plots the efficient frontier for Eurostoxx constituent returns that have

been computed from 2000 to 2010; the fully invested Maximum Sharpe portfo-

lio (or Tangential portfolio); and the Minimum Variance portfolio. Individually

speaking, it can be seen that the assets are all sub-efficient (they all lie below

the efficient frontier); however, this is an illustration of the diversification benefit:

indeed, an efficient portfolio can be constituted of non-efficient assets. Depend-

ing on either their expected return or risk aversion, the investor can choose any

portfolio on the red curve.

2.2.3 Introduction of a risk-free asset

Assuming that the investor can freely borrow or lend money at a risk-free rate,

denoted by rf : a proportion of the investor initial wealth can be borrowed or lent

at the risk-free rate. Thus, the portfolio optimisation problem for the investor

becomes:

{
minφ

1
2
φ′Σφ

s.t φ′µ+ (1− φ′1)rf = µP
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2.2 The Efficient Frontier, Markowitz (1952)

Figure 2.1: Efficient Frontier

Proposition 2.5 (Efficient Frontier Equation with a risk-free asset). It is found
that in the case where a risk-free asset exists, the Markowitz efficient frontier is
a straight line with equation:

µP =
√
eσP + rf (2.4)

with e ≡ (µ− rf1)′Σ−1(µ− rf1).

Proof. See Appendix.

2.2.3.1 Tangential portfolio

The Efficient Frontier line joins the risk-free rate with the Tangential portfo-

lio. The Tangential portfolio, denoted by φT , has coordinates that comply with

Equations (2.3) and (2.4).

Proposition 2.6 (Tangential Portfolio).
If φT denotes the Tangential portfolio allocation; the mean and standard deviation
of this portfolio are given by:

E(rφ
T
) = e√

ae−d + rf and V(rφ
T
) = e

ae−d

23



2.2 The Efficient Frontier, Markowitz (1952)

-where:
a = 1′Σ−11
b = 1′Σ−1µ = µ′Σ−11
c = µ′Σ−1µ
d = ac− b2

e = (µ− rf1)′Σ−1(µ− rf1)

Proof. See Appendix.

2.2.3.2 The One Fund Theorem.

As any efficient portfolio lies on the efficient frontier line, it can be expressed in

terms of mean and variance as a linear combination of the Tangential portfolio

and the risk-free asset. This property is called the One Fund Theorem.

Theorem 2.2 (One Fund Theorem).
When a risk-free asset exists, the mean and variance of any efficient portfolio
can be defined as a linear combination of any efficient portfolio (in particular the
Tangential portfolio) and the risk-free asset.
Thus, the Markowitz frontier Equation becomes:

E(rφ
P

) = rf +
(E(rφ

T
)− rf )√

V(rφ
T
)

√
V(rφ

P
) (2.5)

Proof. Apply Equation (2.4) to the Tangential portfolio mean and variance.

This is illustrated in Figure (2.2), which sets rf = 1.5 basis points.

Extending from the Markowitz Efficient Frontier, Sharpe deduces an equilibrium

model that can be used to provide the correct price of a risky asset within the

framework of the mean-variance setting. The model is described in the following

section.
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2.3 The Capital Asset Pricing Model (CAPM), Sharpe (1964)

Figure 2.2: Efficient Frontier with a risk-free asset

2.3 The Capital Asset Pricing Model (CAPM),

Sharpe (1964)

In what is considered to be a landmark paper, Sharpe (1964) extends the

Markowitz model to a multi-agent setting. Proposing a global equilibrium model,

known as the Capital Asset Pricing Model (CAPM), a mapping between risk, re-

turn and asset prices is enabled. It is shown, that if all investors anticipate similar

expected returns and standard deviation of asset prices (and if the assumption

of the Markowitz model is satisfied), then all asset returns must lie on the Secu-

rity Market Line, which links expected return to risk. Thus, the CAPM gives a

standard of comparison under the strong consensus assumption that all investors

share the same view upon the distribution of asset returns.

The first sub-section will describe the Market portfolio and the Capital Mar-

ket Line, which effectively corresponds to the the Tangential portfolio and the

Markowitz Efficient Frontier described in Section 2.2.3. The equation of the

equilibrium value for any risky asset in the context of the CAPM is then given.

Finally, a description is formed of the CAPM model, and the specific performance
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2.3 The Capital Asset Pricing Model (CAPM), Sharpe (1964)

measure developed byJensen (1969). This allows the CAPM portfolio tested in

the following chapter to be constructed along with the Minimum Variance and

Maximum Sharpe portfolios described in the previous section.

2.3.1 The Capital Market Line (CML)

Assuming that investors rely on the mean-variance paradigm, and there is com-

plete agreement on the return distribution for the risky assets, it becomes possible

to compute a unique equilibrium price for any efficient portfolio. The Markowitz

frontier when computed for a representative agent, is from this point on referred

to as the Capital Market Line, and is considered to apply to all investors in the

financial market. In addition, the Tangential portfolio has been renamed the

Market portfolio. Below, this portfolio will be described, after which the formal

equation of the Capital Market Line will be outlined.

2.3.1.1 The Market Portfolio

By reference to the One Fund Theorem (if a risk-free asset exists), it is known

that any investor can purchase a single portfolio, which is typically the Tangential

portfolio. In addition, the investor can freely borrow or lend money at a risk-

free rate to replicate any efficient portfolio. Furthermore, since in the CAPM

assumptions all investors use the same probability measure P to represent the

risky assets distribution: the same representative portfolio will be considered.

This common ”One Fund” or representative portfolio is referred to as the Market

Portfolio. In actual fact, it represents a weighted average of all the risky assets

weighted by their proportional market capitalisation. This result is based on

an equilibrium argument: if the representative portfolio were not identical for

investors sharing the same view on asset returns distribution, the price of assets

in higher demand would rise and the price of assets in lower demand would fall.

Ultimately, this will lead to a re-computation of the investors’ representative

portfolio converging towards the Market Portfolio. More formally, we have:

Proposition 2.7 (Market Portfolio). In the CAPM model, the Tangential port-
folio is effectively unique and common to all investors. It can be described as the
Market portfolio (i.e. the allocation that weights risky assets according to their
market capitalisation).
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2.3 The Capital Asset Pricing Model (CAPM), Sharpe (1964)

Proof. The uniqueness of One Fund stems from the fact that all investors have
identical anticipations about the distribution P; and therefore, solve the same
optimisation problem as specified in section 2.2.3. The market capitalisation will
be denoted by qi of the risky asset i, where i ∈ [1, N ] (i.e. the number of shares
trading for the asset i multiplied by the price of the asset i). The Tangential
portfolio allocation will be denoted by φT and the Market portfolio allocation by
φM . According to the definition of the Market portfolio the following is given:

∀i ∈ [1, N ], φM,i ≡ qi∑N
i=1 q

i

Furthermore, it will be assumed that there are J investors in the financial market.
The amount detained by the investor j ∈ [1, J ], of any asset i ∈ [1, N ], is denoted
as θi,j. Therefore:

J∑
j=1

θi,j = qi

The total market capitalisation of the asset i is equal to the sum of the individual
investments made by investors in the risky asset i. If the initial wealth of the
investor j invested in the Tangential portfolio φT is denoted by xj0, the following
is given:

J∑
j=1

xj0 =
N∑
i=1

qi

In fact, the sum of wealth invested in the risky assets must be equal to the total
market capitalisation.
According to the One Fund Theorem the following is given:

∀i ∈ [1, N ], θi,j = φT,ixj0

Therefore, by summing over all the investors, the following is obtained:

∀i ∈ [1, N ],
J∑
j=1

θi,j = φT,i
J∑
j=1

xj0 ⇒ φT,i =
qi∑J
j=1 x

j
0

=
qi∑N
i=1 q

i

-which is precisely the allocation of the Market portfolio for the asset i.

The Market Portfolio is effectively the Market Index. Note: all tests carried out

in this research are run on European data, and the Market Index is taken to be

the Eurostoxx 600 index.
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2.3 The Capital Asset Pricing Model (CAPM), Sharpe (1964)

2.3.1.2 The CML Equation

In the CAPM framework, the Efficient Frontier in the (σ−µ) map is a straight line,

emanating through the risk-free asset and passing through the Market portfolio.

The Efficient Frontier is then termed the Capital Market Line; the equation of

which is given by the following formula:

Proposition 2.8. The CML Equation shows the relation between the expected
return and the risk of return for any efficient portfolio of assets P . More formally,
this is given as:

E(rφ
P

) = rf +
(E(rφ

M
)− rf )√

V(rφ
M

)

√
V(rφ

P
) (2.6)

Proof. This is a direct consequence of the One Fund Theorem as applied to the
Market Portfolio.

The expected return of any efficient portfolio belonging to the CML is a linear

function of its standard deviation. The slope factor:
E(rφ

M
)−rf√

V(rφM )
is called the market

price of risk. To simplify notations in the following, instead of rφ
M

, the Market

portfolio returns are denoted by rM .

2.3.2 The Security Market Line (SML)

The CAPM goes further, and signifies how the expected return of a single asset

should relate to its individual risk. This gives a precise pricing formula for any

risky asset in the CAPM framework. The price of risk is commonly referred to

as Beta, as shown in a first sub-section. The Security Market Line Equation and

pricing formula for any risky asset are given in a subsequent section.

2.3.2.1 The CAPM Betas

Definition 2.4 (CAPM Beta). The Beta of a risky asset i is denoted by βi,M . It
represents the price of risk of the asset i, and is effectively the covariance of the
returns of the asset i and the returns of the Market portfolio rM (in the empirical
example the Eurostoxx index), adjusted by the variance of the Market portfolio
returns. The Beta can be represented more formally as:
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2.3 The Capital Asset Pricing Model (CAPM), Sharpe (1964)

βi,M =
COV(ri, rM)

V(rM)

The Beta of an asset i represents the relative contribution of the asset return i

to the variance of the market return rM .

2.3.2.2 The SML Equation

The main result of the CAPM is that Sharpe extends the CML to a general

relationship between any single risky asset expected return (that is not necessarily

efficient and therefore does not lay automatically on the CML) and the Market

portfolio return:

Proposition 2.9 (Security Market Line Equation).
The expected return of any asset i is given by:

E(ri) = rf + βi,M [E(ri)− rf ]

Proof.

The portfolio a constituted by the risky asset i in proportion a, and the market
portfolio in proportion (1-a) will be considered. The first two moments of this
portfolio are expressed as:{

E(ra) = aE(ri) + (1− a)E(rM)
V(ra) = a2V(ri) + (1− a)2V(rM) + 2a(1− a)COV(ri, rM)

Thus, it is found that:{
dE(ra)
da

= E(ri)− E(rM)
dV(ra)
da

= 2[aV(ri) + (a− 1)V(rM) + (1− 2a)COV(ri, rM)]

When a = 0 is taken:

d
√
V(ra)

da

∣∣∣∣∣a=0 =
1

2
√
V(ra)

dV(ra)

da

COV(ri, rM)− V(rM)√
V(rM)
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And then:
dE(ra)

d
√
V(ra)

∣∣∣∣∣a=0 =
(E(ri)− E(rM))

√
V(rM)

COV(ri, rM)− V(rM)

Using equality with the CML slope in a = 0, the result is finally:

(E(ri)−E(rM ))
√

V(rM )

COV(ri,rM )−V(rM )
=

E(ri)−rf√
V(rM )

Under the equilibrium conditions assumed by the CAPM, any asset (including

efficient assets) should fall on the Security Market Line. Therefore, under the

CAPM assumptions, the Security Market Line is a universal pricing line.

2.3.3 The CAPM

The CAPM proposes a model for asset price returns that complies with the SML.

In a first sub-section, the CAPM will be formally described, and then the method

of building the CAPM portfolio based on the Jensen measure will be presented.

The CAPM portfolio will be empirically tested in Chapter 3, among other classical

portfolios.

2.3.3.1 The CAPM Equation

The CAPM states that any random asset return ri can be separated into a sys-

tematic component and a residual component:

ri = rf + βi(rM − rf ) + εi

If no assumption is made on the distribution of εi, this equation is arbitrary.

To be coherent with the SML (taking the expected value on both sides of the

equation), the CAPM assumes that the idiosyncratic risk is uncorrelated with

the market risk, and its expected value is zero. The CAPM theorem can now be

stated precisely:
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2.3 The Capital Asset Pricing Model (CAPM), Sharpe (1964)

Theorem 2.3 (CAPM). Any risky asset return can be expressed with respect to
its price for risk:

ri = rf + βi(rM − rf ) + εi

-where εi is such that:

∀i, E(εi) = 0 and ∀i, COV(εi, rM) = 0

This leads to the following:

∀i, E(ri) = βiE(rM) and ∀i, V(ri) = (βi)2V(rM) + V(εi)

To summarise the workings undertaken in the chapter so far, the CAPM de-

composes any risky asset excess return in a systematic component, defined as

βi(rM − rf ), and an idiosyncratic component, which is defined as εi. The first

equation states that the expected return of a risky asset is the product of the

risky asset Beta and the expected return of the market. This relation defines

the ”Security Market Line”. Figure (2.3) plots the Security Market Line for the

Eurostoxx 600 constituents (the Betas are estimated over the whole period Jan-

uary 2000 to April 2010). It can be observed that the CAPM relationship is not

well respected empirically (the empirical observations presented are well dispersed

around the theoretical SML...). The second equation states that any asset risk

can be decomposed into a systematic risk (the market risk adjusted by the asset

Beta) and a specific risk. Under the CAPM assumption, although the market

risk is inescapable, the idiosyncratic risk is escapable through diversification. As

such, the idiosyncratic risk is self-imposed by the investor as a trade off between

return and risk (i.e. the investor’s risk aversion).

Figure (2.3) plots the SML that has been deduced from the empirical estimation of

European stock returns, where the Market portfolio is the Eurostoxx 600. When

comparing the empirical asset returns with their empirical Betas, The points are

rather scattered around the Security Market Line: empirically the strict CAPM

equilibrium of asset returns and their Beta times the market return does not hold.

2.3.3.2 The Jensen Alpha

Jensen (1969) provides a performance analysis of investment funds benchmarked

to the CAPM. Jensen defines the Alpha as a deviation from the equilibrium

induced by the CAPM. The Alpha is formally defined as:
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Figure 2.3: Security Market Line

Definition 2.5 (Jensen Alpha). The Alpha of an asset i is denoted by αi, and
defined as:

αi ≡ rf + βi(rM − rf )− ri

-where ri stands as the empirical mean of the asset i returns, and rM as the
empirical mean of the Market portfolio.

According to the CAPM, the value of αi should be zero. Hence, it measures

how much the observed performance of the asset i (i.e. its empirical mean) has

deviated from its theoretical value. If αi > 0, the return of stock i is below its

equilibrium CAPM value, and if the CAPM holds, the return of stock i will be

expected to increase. If αi < 0, the return of stock i is above its equilibrium

CAPM value, and the return of stock will be expected to decrease. The CAPM

portfolio allocation φCAPM is constructed as:

∀i, φCAPM,i ≡ αi∑N
j=1 |αj|

-which corresponds to a relative Alpha weight, normalised by the sum of absolute

Alphas, and additionally, that correspond to the scale of the portfolio (how many

Alpha units in absolute terms the investors need to invest in the portfolio). The
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performances of the CAPM, Minimum-Variance and Maximum-Sharpe portfolios

will be tested in the next chapter.

The CAPM is a powerful model which provides a general equilibrium theory

for asset prices. Under the CAPM framework, all the investors have the same

expectations and differ only in their tolerance for risk. Of course, the very strong

assumptions implied by the CAPM make it subject to qualification, and caution

must be applied. Nonetheless, the CAPM represents a powerful benchmark that

is widely used in practice: investors assume real asset returns should respect

the hypothesis and theoretical framework of the CAPM (i.e. they should be

proportional to their Beta times the market return). The main drawback of the

CAPM can be attributed to the difficulty involved in estimating the βi in practice.

This is all the more so when investors have access to varied information, making

a divergence on their estimation of the βi more likely.

If the Market can effectively explain a good proportion of the asset returns,

the strong assumptions of the CAPM are a deterrent. As such, a number of

alternative models have been proposed, including the Asset Pricing Theory, which

is the most widely known alternative to the CAPM.

2.4 The Asset Pricing Theory (APT), Ross (1976)

The Asset Pricing Theory is reliant upon the factor model framework and forms

an alternative theory of asset pricing based on the no-arbitrage principle. The

theory omits the assumption that investors rely on the mean-variance paradigm.

Thus, in this sense, the APT is more general than the CAPM, which is limited

by the reliance upon both the mean-variance framework, and a strong version of

equilibrium that assumes that all investors use the same framework.

In the first sub-section, the APT framework is described in detail. Then the APT

is presented more formally, before finally providing the methodology for portfolios

constructed using factor models such as the APT.
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2.4.1 The APT Framework

Ross (1976) considers a multi-factor model, which is defined by the use of more

than one factor to take into account and represent asset returns. The APT is a

model of expected returns. As such, it is an equilibrium model that is based upon

no-arbitrage, and excludes investor preference. Ross argues that if equilibrium

prices offer no arbitrage opportunities over a static portfolio of the assets, then

the expected returns on the assets are approximately linearly-related to the factor

loadings. The APT, unlike the CAPM, is not a consensus model as it depends

on the selection of factors made by each investor.

The APT model can be formalised through the following equation:

ri = E(ri) +
K∑
k=1

fkβk,i + εi (2.8)

-where K is the number of factors selected 1, fk stands for the centred return of

the factor k (i.e. the return of the factor k minus its mean) and βk,i is the loading

of the asset i on the factor k.

The systematic component of the asset return is therefore defined as the factors

exposure
∑K

k=1 f
kβk,i, and the idiosyncratic risk of the asset return i is defined as

εi. At this point, if no assumption is made on εi, the equation is arbitrary. The

APT relies upon an assumption concerning the distribution of the idiosyncratic

risk εi, as it assumes that it is uncorrelated with every one of the K factors, and

its expected value is zero. Also, the factors can be assumed to be uncorrelated

(so that dim(f 1, ..., fk) = K)2. More formally, the APT assumes the following

conditions are satisfied:

APT Assumptions (A) :


(a)∀i, E(εi) = 0 and ∀j 6= i, COV(εi, εj) = 0
(b)∀i, ∀k, COV(εi, fk) = 0
(c)∀k, ∀k′ 6= k, COV(fk, fk

′
) = 0

(d)K << N

1Note that K < N − 2 is a necessary condition for the APT to hold true.
2Note that this is not a key assumption of the APT.
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The APT theorem can now be formally enunciated.

2.4.2 APT Theorem

Theorem 2.4 (APT). If considering the following Equation (2.8):

ri = E(ri) +
K∑
k=1

fkβk,i + εi

-under the hypothesis (A), the following result holds true:

∀i, E(ri) = rf +
K∑
k=1

E(fk − rf )βk,i (2.9)

-which leads to:

∀i, V(ri) =
K∑
k=1

V(fk)(βk,i)2 + V(εi) (2.10)

The proof of Equation (2.9) is based on a no-arbitrage argument.

Step 1: Firstly, a portfolio φ with a null initial value is constructed:

N∑
i=1

φi = 0

According to Equation (2.8), the return of this portfolio is defined as:

N∑
i=1

φiri =
N∑
i=1

φiE(ri) +
N∑
i=1

φi
K∑
k=1

fkβk,i +
N∑
i=1

φiεi

Step 2: Secondly, a particular value of φ is chosen. The non-risky portfolio is

considered. The exposure of this portfolio to the different K factors is eliminated:

∀k,
N∑
i=1

φiβk,i = 0
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Because according to assumption (b), the εi are independent of the factors, it

is only necessary to eliminate the Beta exposure to eliminate the factors risk.

When N is large enough, the residual risk can eliminated. Indeed, thanks to the

diversification effect, when N is large the following occurs:

N∑
i=1

εi = 0

Step 3:

From Step 1 and 2, because the initial value of the portfolio is null and the

portfolio is non-risky, the return of this portfolio should also be null under the no

arbitrage principle; therefore:

N∑
i=1

φiµ,i = 0

where µ is the vector of risky asset mean returns (i.e. ∀i, µi ≡ E(ri)).

It is deduced that φ belongs to RT , which is the orthogonal space of R generated

by µ.

From Step 2, it is also deduced that φ also belongs to P T , the orthogonal space

of P , which is the space generated by the vectors (1,β1, ...,βK).

Step 4:

The non-arbitrage argument implies that: P T ⊂ RT and therefore R ⊂ P . There-

fore, there exists a K + 1 vector λ (this vector is unique if the factors are inde-

pendent, i.e. dim(P ) = K + 11) such that:

µ = λ01 +
K∑
k=1

λkβk

-or for any asset i the following is given:

µi = λ0 +
K∑
k=1

λkβk,i

1Note that if dim(P ) > N the problem has no solution.
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In the particular case of the risk-free asset, because ∀k, βk,f = 0 (the risk-free

asset is independent of all the risky assets and in particular it is independent of

all the APT factors, i.e. COV(rf , f
k) = 0), it can be deduced that:

λ0 = rf

Applying the equality to any factor k, and given that ∀k′ 6= k, βk,k
′
= 0 (assump-

tion (c)) and βk,k = 1, the following is given:

E(fk − rf ) = λk

Finally, the following is obtained:

E(ri) = µi = rf +
K∑
k=1

E(fk − rf )βk,i

The proof of Equation (2.10) is a direct result of the conditions (a), (b) and (c).

In many cases it is assumed that the factor relationships are more stable than

the stock relationships, and are therefore more predictable. The APT is not a

general equilibrium model as it is subjective in the factors selection process; in

contrast to the CAPM, it is investor specific. The APT does not provide an

investment rule as the One Fund Theorem provided by the CAPM. However, it

is less constraining than the CAPM because it is not constrained by quadratic

preferences and there is no assumption made on the factors return distribution.

Note that the CAPM is a particular case of the APT where a unique factor is

considered: the Market factor. The main problem connected with the APT is

the identification of the factors, as will be discussed in the next chapter.

2.4.3 Construction of a factor model portfolio

In the next chapter, several different factor models based on the APT principle

are tested. Given the choice of a set of factors (f 1, ..., fK), the factor model Alpha

is defined as:

αAPT,i ≡ rf +
K∑
k=1

E(fk − rf )βk,i − ri
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According to the APT, the value of αAPT,i should be zero. Hence, it measures

how much the observed performance of the asset i (i.e. its empirical mean)

has deviated from its theoretical value. The APT portfolio allocation φAPT is

constructed:

∀i, φAPT,i ≡ αAPT,i∑N
j=1 |αAPT,j|

Different types of factor model portfolios are tested in the next chapter. In partic-

ular, a form of the famous empirical application of the APT model developed by

Fama & French (1992) will be tested. In addition, tests will be performed on fac-

tor models that are based on pure statistical models such as Principal Component

Analysis or Independent Component Analysis.

In order to evaluate and compare different models, numerous performance mea-

sures have been proposed in the literature. As presented above, the Sharpe ratio

is a measure linked to the Efficient Frontier. Other measures are also considered

in order to compare the performance of the different models throughout this PhD

thesis.

2.5 Performance measures

The excess return of any risky asset i, will be denoted by ri :

ri ≡ ri − rf

The Sharpe is by far the most widely known measure of performance. Many

improvements have been proposed in the literature. One such example is the

Sortino which only considers the standard deviation of the losses (or negative

returns) as risk. The Sharpe and Sortino represent an expected average return

per unit of risk, expressed as:

• Sharpe Ratio (see Sharpe (1994)): represents the ratio of the mean

excess return of an investment over the standard deviation of its returns.
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This is the most famous risk measure used in finance. It effectively indicates

the average expected return of an investment per unit of risk.

Sharpe ≡ E(ri)

σ(ri)

• Sortino Ratio (see Sortino & Price (1994)): represents the ratio of

the mean excess return of an investment over the standard deviation of its

negative returns. It is an adjusted Sharpe ratio: the idea here is that only

downside risk matters to the investor (i.e. the variations of the negative

returns). Therefore, the standard deviation of the returns is replaced by

the standard deviation of the truncated distribution of the returns (only

taking into account negative returns).

Sortino ≡ E(ri)

σ(ri/ri < 0)

The main problem with the precedent measures, is the implicit assumption that

the asset returns are either normally distributed, or that only the first two mo-

ments of their distribution are significant (i.e. the investor needs to fully believe

in the mean-variance paradigm), however it has been shown in many empiri-

cal studies that, contrary to theoretical assumptions, real asset returns are not

normally distributed (see for instance Longin & Solnik (2001)). The following

two measures are more empirical and do not form assumptions concerning the

distribution of the returns. The Win/Lose ratio (or hit ratio), and the similar

Gain/Loss ratio are widely used in the hedge fund industry, as they are easily

interpretable and model-independent. (There is no implicit assumption made on

the return distribution, as is the case for the other measures that consider the

returns normally distributed or at least solely defined by its first two moments).

These measures represent a percentage of comparison at 50%: if above, the num-

ber of positive returns or gain surpasses the number of negative returns or losses.

In the following, the empirical cumulative distribution of a given random variable

x is denoted by F (x).
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• Gain Loss Ratio (see Bernardo & Ledoit (2001)): it is the ratio of

total positive returns over total negative returns. It gives an idea of the

proportion of gains against losses when investing in a strategy.

GainLoss ≡
∫
ri>0

ridF (ri)∫
ri
ridF (ri)

• Winner Loser Ratio (WinLose): similar to the Gain Loss ratio, it is

the ratio of the number of total positive returns over the number of total

negative returns. Also called the ”Hit Ratio”, it proportionately indicates

the number of times an investment is profitable.

WinLose ≡
∫
r̃i>0

dF (r̃i)∫
r̃
dF (r̃i)

• Certain Equivalent Ratio (CER) : corresponds to the equivalent risk-

free return of the index return. This measure can be considered more

academic, as practitioners often find it difficult to parametrize their risk

aversion.

CER ≡ E(ri)− λσ2(ri)

where λ stands for the investor risk aversion parameter1.

In the next Chapter, these performance measures will be used to study the empir-

ical performance of a number of commonly used portfolios, including the classical

models described above, and a number of other factor model based portfolios.

1In the following, λ = 1 is taken, as in DeMiguel et al. (2007)
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2.6 Appendix

2.6 Appendix

2.6.1 Efficient Frontier without a risk-free asset

Proposition 2.10 (Minimum Variance Portfolio).
The Minimum Variance portfolio allocation denoted by φMN is the solution for
the following problem: {

minφ
1
2
φ′Σφ

s.t φ′1 = 1

- The first two moments of the portfolio return rφ
MN

are:{
E(rφ

MN
) = µ′Σ−11

1′Σ−11
= b

a

V(rφ
MN

) = 1
1′Σ−11

= 1
a

- The Minimum Variance Portfolio allocation is φMN = Σ−11
1′Σ−11

.

Proof.
The Lagrangian associated with the above equation is:

L(φ, λ) ≡ 1

2
φ′Σφ− λ(φ′1− 1)

- The first order conditions read:{
(1) δL(φ,λ)

δφ
= 0⇔ φ = λΣ−11

(2) δL(φ,λ)
δλ

= 0⇔ 1′φ = 1

By multiplying (1) by 1′ and using (2), it is found that φMN = Σ−11
1′Σ−11

.

- The value of E(φMN) and V(φMN) is deduced:{
E(φMN) = µ′φMN = µ′Σ−11

1′Σ−11
= b

a

V(φMN) = φMN ′ΣφMN = φMN ′ΣΣ−11
1′Σ−11

= 1
a

Proposition 2.11 (Maximum Sharpe Ratio Portfolio).
If the Maximum Sharpe ratio portfolio allocation with expected return µMS is
denoted by φMS, then φMS is the solution for the following problem:

{
minφ

1
2
φ′Σφ

s.t φ′µ = µMS

- The first two moments of the portfolio return φMS are:
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2.6 Appendix

{
E(rφ

MS
) = µMS

V(rφ
MS

) = (µMS)2

c

- In addition, the Maximum Sharpe Portfolio allocation is φMS = µMS

c
Σ−1µ.

Proof.
The Lagrangian associated with the problem is:
L(φ, λ) ≡ 1

2
φ′Σφ− λ(φ′µ− µMS)

- The first order conditions read:{
(1) δL(φ,λ)

δφ
= 0⇔ φ = λΣ−1µ

(2) δL(φ,λ)
δλ

= 0⇔ µ′φ = µP

By multiplying (1) by µ′ and using (2), it is found that φP = µP

c
Σ−1µ. Therefore,

V(φP ) = φP ′ΣφP = (µP )2

c

Proposition 2.12 (Fully Invested Maximum Sharpe Portfolio).
If the fully invested Maximum Sharpe portfolio allocation is denoted by φMS,
then the mean µMS and standard deviation σMS of this portfolio must respect the
equations (2.3) and (2.2):{

(1)σMS =
√

a
d
(µMS − b

a
)2 + 1

a

(2)σMS = 1√
c
µMS

- The first two moments of the portfolio return φMS are:{
E(rφ

MS
) = c

b

V(rφ
MS

) = c
b2

- The fully invested Maximum Sharpe Portfolio allocation is: φMS = Σ−1µ
µ′Σ−11

.

It is possible to derive (1) and (2) with respect to µMS, and those two derivatives

must be equal:{
(1) δσMS

δµMS =
ad(µMS− b

a
)

σMS

(2) δσMS

δµMS = 1√
c

By equaling (1) and (2), µMS = c
b

and σMS =
√
c
b

are found. The Maximum

Sharpe portfolio asset allocation is such that: µ′φMS = c
b

and therefore φMS =
Σ−1µ
µ′Σ−11

.
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Proposition 2.13 (Efficient Frontier Equation without a risk free asset).
If the variance minimisation problem is considered:

minφV(rφ)
s.t E(rφ) = µP

and φ′1 = 1

-it is found that:

V(rφ
P

) = a
d
[E(RφP )− b

a
]2 + 1

a
(2.11)

Proof.

The Lagrangian associated with the problem is:

L(φ, λ1, λ2) ≡ 1

2
φ′Σφ− λ1(φ′1− 1)− λ2(φ′µ− µP )

-the first order conditions read:
(1) δL(φ,λ1,λ2)

δφ
= 0⇔ φ = λ1Σ

−11 + λ2Σ
−1µ

(2) δL(φ,λ1,λ2)
δλ1

= 0⇔ 1′φ = 1

(3) δL(φ,λ1,λ2)
δλ2

= 0⇔ µ′φ = µP

By multiplying (1) by µ′ and 1′ respectively and using (2) and (3), it is found
that:{

(4) 1 = λ1a+ λ2b
(5)µP = λ1b+ λ2c

Then, by multiplying (4) by b and (5) by a and (4) by c and (5) by b, it is found
that:{
λ1 = c−bµP

d

λ2 = aµP−b
d

It is deduced that V(rφ
P

) = φP ′ΣφP = λ1φ
P ′1 + λ2φ

P ′µ.

Therefore, V(rφ
P

) = a(µP )2−2bµP+c
d

is given. It is finally found:

V(φP ) =
a

d
[E(φP )− b

a
]2 +

1

a

2.6.2 Efficient Frontier with a risk-free asset

Proposition 2.14 (Efficient Frontier Equation with a risk-free asset).
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It is found that in a given case when a risk-free asset exists, the Markowitz efficient
frontier is a straight line, with the equation:

µP =
√
eσP + rf (2.12)

with e ≡ (µ− rf1)′Σ−1(µ− rf1).

Proof.
The Lagrangian associated with the problem is:
L(φ, λ) ≡ 1

2
φ′Σφ− λ(φ′µ+ (1− φ′1)rf − µP )

- The first order conditions read:{
(1) δL(φ,λ)

δφ
= 0⇔ φ′ = λ(µ− rf1)′Σ−1

(2) L(φ,λ)
δλ

= 0⇔ φ′(µ− rf1) = µP − rf
By multiplying (1) by (µ−1rf ) and using (2), it is found that λ =

µP−rf
(µ−rf1)′Σ−1(µ−rf1)

.

Therefore: V(φP ) = (σP )2 = φ′Σφ = λ(µ− rf1)′φ = λ(µP − rf ) =
(µP−rf )2

e
,

where e ≡ (µ− rf1)′Σ−1(µ− rf1).

Proposition 2.15 (Tangential Portfolio).
If φT denotes the Tangential portfolio allocation, then the mean µT and standard
deviations σT of this portfolio are:{

E(rφ
T
) = e√

ae−d + rf

V(rφ
T
) = e

ae−d

where e = (µ− rf1)′Σ−1(µ− rf1).

Proof. (1)E(rφ
T
) =

√
d
a
(V(rφ

T
)− 1

a
) + b

a

(2)E(rφ
T
) =

√
eV(rφ

T
) + rf

It is possible to derive (1) and (2) with respect to V(φT ) as the derivative of the
two equations must be equal at the tangential point: (1) δE(rφ

T
)

V(φT )
=
√

(e)

(2) δE(rφ
T

)

V(φT )
=
√

dV(φT )

aV(φT )−1
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It is finally found that the coordinates of the Tangential portfolio are:{
E(rφ

T
) =

rfd−be
d−ae

V(rφ
T
) =

(rfd−be)2
e(d−ae)2

-where e = (µ− rf1)′Σ−1(µ− rf1).
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Chapter 3

Factor Model Performances:
Empirical Evidence

”A central problem in finance (and especially portfolio management) has been that

of evaluating the performance of portfolios of risky investments.”

Michael C. Jensen, The Performance of Mutual Funds in the Period 1945-1964,

Journal of Finance, 1967.

This chapter will provide a general and empirical overview of the main factor

models used by financial investors to evaluate asset returns. Theoretical models

are used empirically by financial investors: the real asset returns are assumed to

respect the hypothesis and theoretical framework of those models and the discrep-

ancy observed between real asset returns and the returns theoretically expected

by factor models are taken as practical investment opportunities for financial in-

vestors (any deviance observed between real returns and theoretical returns is

considered as an ”error” that will be corrected). A number of models commonly

used by practitioners will be tested, including: the Capital Asset Pricing Model;

factor models based on the Asset Pricing Theory, such as those based on a selec-

tion of general external factors, and a Fama and French type of model; and three

purely statistical models that are based on Principal Component Analysis, Inde-

pendent Component Analysis and Cluster Analysis, respectively. The classical
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methodology introduced by Jensen (1969) will be applied to evaluate the perfor-

mance of, and compare the aforementioned standard models. The significant fact

to note is that the performance of the different models varies greatly over time;

thus, investors are unable to exclusively rely on any single one of them.

The different factor models will be evaluated with European stock returns data

collected from 2000 to 2010. In contrast to numerous reference papers focusing on

portfolio analysis (for instance Fama & French (1998), who test high price to book

ratio portfolios against low price to book ratio portfolios, or Jensen (1969), who

test mutual funds performance) a single stock approach is adopted here, rather

than a portfolio approach. Our aim is not to evaluate precisely some stand alone

portfolio strategies, but to compare different factor models using some common

criteria, such as the Jensen Alpha (Jensen (1969)) described in Chapter 2, Section

3. Also, daily data for a large number of European stocks are retrieved, allowing

better granularity in the data than the two monthly studies cited above. In

particular, daily fundamental data are used so that a pure fundamental factor

model is built where stock returns are directly explained by fundamental factors.

The chapter is structured as follows: a first section will outline general remarks

on factor models and how they are used by financial investors. In Section 2, the

data-set used for the analysis and the cleaning process conducted on stock returns

will be presented. In Section 3, the CAPM portfolio (as presented in Chapter

2) will be studied, and a description put forward of the Jensen statistics - first

used by Jensen (1969) to test the CAPM - that will be applied in this research

to test the different factor models considered in this chapter. In addition, several

factor model portfolios based on the Asset Pricing Theory will also be studied.

In Section 4, an External Factor Model (EFM) will be studied that considers

three exogenous factors. In Section 5, a Fundamental Factor Model (FFM) will

be presented (largely inspired by the model developed by Fama & French (1992)),

that considers three endogenous fundamental factors. Finally, in Sections 6, 7 and

8, three purely statistical factor models will be studied, namely: the Principal

Component Analysis (PCA), the Independent Component Analysis (ICA) and

a Cluster Analysis (CA). Section 9 will conclude, furthermore incorporating a
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performance comparison table for the different models tested. All the models

presented in this Chapter can be considered as fairly common. However, the

analysis of those models and their empirical comparision is original.

3.1 General remarks on factor models

A conceptual discussion on the construction and usage of factor models by fi-

nancial investors will be outlined. Initially, the two differing purposes of factor

models on financial data will be presented, and a description made of the three

different types of factor models an investor is able to consider. Lastly, it will be

shown, how, generally speaking, an investor can construct a portfolio strategy

based on a given factor model.

3.1.1 Factor models objectives

As first stated in the CAPM (see Chapter 2, Section 3), the stock returns can be

decomposed into a systematic, and specific part. The aim of a factor model is to

explain the systematic risk of stock returns, whereas, the residuals of the model

are identified as the specific risks of the considered stock returns.

Factor models are mainly used to achieve the following two objectives:

• Risk modelling : given a portfolio of financial assets: an investor wants to

understand their exposures with respect to different risk factors. A factor

model allows an investor to diversify and control their risk for selected and

identified factors. Thus, the idea is to perform a computation to account for

the sensitivities of different portfolio components to some identified major

factors. A systematic risk model is used to, as far as is possible, reduce a

portfolio exposure against identified factors (or sources of risks) a portfolio

manager wants to be protected from.

• Forecasting or Alpha modelling : a factor model can also be seen as a

predictive tool, giving some indications about future financial asset returns.

Any discrepancy observed between the theoretical asset return stemming

from the factor model equilibrium and the current observed real return

is considered as an anomaly that is assumed to be corrected by market
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3.1 General remarks on factor models

strengths (the hypothesis beeing that the theoretical factor model perfectly

represent asset returns). The difference between the return observed rit at

time t for the stock i, and the expected return stemming from the equi-

librium factor model f , denoted by f(rit), is seen as a trading opportunity

commonly denoted by ”Alpha” and defined as:

αit ≡ f(rit)− rit

As discussed in the previous chapter, Jensen (1969) first introduced the

notion of Alpha applied to the CAPM. Nowadays, the concept of Alpha

is widely used in the financial world, and is in fact applied to all types

of equilibrium model. In a sense, a model used for forecasting (or Alpha

modelling) purposes is more complex than a risk model, as for risk models,

the factors are easily identified. The factors depend on the risk aversion of a

given investor that wishes not to be exposed to specific risks. In the case of

a predictive model, however, the investor aims at exhaustively identifying

all the factors that can explain stock returns; which demonstrably, can be

very challenging.

In the remainder of this thesis, the manner in which factor models are used for

Alpha modelling purposes will be considered.

3.1.2 Types of factor models

In finance, two main types of factor model are usually considered; these are:

exogenous factor models, characterised by factors that are identified before the

modelling phase; and endogenous factor models, characterised by factors that are

computed during the modelling phase. In this chapter particular cases of the

following types of models will be studied:

• Exogenous general factor models : the factors are chosen as exogenous

explanatory variables which are common for all the stocks considered: a

multivariate regression is computed to evaluate the sensitivities of the stock

returns toward the exogenous variables. The most well known model in that
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category is certainly the Capital Asset Pricing Model (CAPM), (developed

by Sharpe (1964) and presented in Chapter 2), where the unique exogenous

factor is the market. An APT model, based on the selection of three external

factors will also be presented; namely: the External Factor Model (EFM).

• Exogenous individual factor models: in this case the factors are spe-

cific to each stock. A cross-sectional regression is computed in order to

evaluate the sensitivity of stock returns toward the factor returns. Those

factors are usually specific fundamental factors, such as size factors (market

capitalisation) and value factors (book to equity ratio); and as suggested in

the three factors model tested by Fama & French (1992), that consider the

market factor of the CAPM with two additional fundamental factors (size

and value factors) to explain US stock returns. In the following section, a

Fundamental Factor Model (FFM) based on three fundamental factors will

be tested.

• Pure statistical endogenous factor models: in this instance, the fac-

tors are obtained through the actual modelling process. These models are

mainly based on covariance analysis of the stock returns. Among the range

of different statistical methods, the most commonly used is the Principal

Component Analysis (PCA), which operates under the assumption that the

stock returns are Gaussian. More recently still, the Independent Compo-

nent Analysis (ICA) and also the Cluster Analysis (CA) have been used.

The ICA has the advantage that it assumes non-Gaussian returns, which

is more realistic in the context of financial markets. The CA offers a more

intuitive approach by allowing stocks to be grouped according to a distance

criterion that is based upon the correlation of returns. Those three statis-

tical models (PCA, ICA and CA) will be tested in the following section.

The main difficulty presented by the first two types of models lies in the identi-

fication of the exogenous factors, as such: if an important explanatory factor is

overlooked, the model will be weak in forecasting stock returns; Yet, these models

offer a way to analyse and diversify identified risk in a portfolio. The difficulty

associated with the third type of model lies in the interpretation of the statistical
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factors, and specifically, their replication in order to hedge a portfolio against

them. However, these last models are potentially able to better explain stock

return variations; therefore, offering a more accurate forecasting tool (provided

enough factors are used).

In this chapter, nine different factor models will be tested. The models form a

wide selection of methods that are relevant to applications in financial investment.

The models tested will consist of: the six models outlined above (CAPM, EFM,

FFM, PCA, ICA and CA); three benchmark portfolios, consisting of the naive

equally weighted portfolio (EW), (that gives equal weight to all risky assets, and

which is a good and stable proxy for the Market portfolio see DeMiguel et al.

(2007)); the Minimum Variance portfolio (MN) and the Mean Variance portfolio

(MV) described in Chapter 2.

3.2 Presentation of the data

The following section will describe the data-set used throughout this PhD the-

sis; first, describing the raw data; second, the cleaning process implemented in

this research and applied to the data; and finally, discussing the results of the

computation and cleaning processes.

3.2.1 The raw data

The data-set utilised in this study will consist of daily European stock returns

computed from closing prices over the period 3rd of January 2000 to 26th of May

2010. Note that, contrary to classical studies, this study deals with daily-data,

and not monthly or yearly data. In addition, the time-period considered is a key

feature for some of the selected models; and is particularly true for the exogenous

factor models, where the choice of relevant factors is obviously conditioned by

the historical context and may vary over time.

Four main European index components are considered:
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• The global composite European index, Eurostoxx 600 denoted

as SXXP: is a broad based capitalisation-weighted European stock index.

The base value of the index was 100 as of December 31, 1991; it contains

600 assets.

• The large caps UK index, Ftse 100 denoted as UKX: is a capitalisation-

weighted index and is limited to the 100 most highly capitalised companies

traded on the London Stock Exchange. This index was developed with a

base level of 1000 as of January 3, 1984; it contains 102 assets, 97 of which

are in the Eurostoxx 600.

• The main French index, Cac 40 denoted as CAC: is a narrow-based,

modified capitalisation-weighted index, consisting of 40 companies listed on

the Paris Stock Exchange. The index was developed with a base level of

1,000 as of December 31, 1987; it contains 40 assets, 38 of which are in the

Eurostoxx 600.

• The main German index, Dax 30 denoted DAX : is a total-return

index, consisting of a selection of 30 German stocks traded on the Frankfurt

Stock Exchange. The index has a base value of 1,000 as of December 31,

1987; it contains 30 assets, all of which are in the Eurostoxx 600.

The Eurostoxx 600 contains six-hundred elements: all but seven of the stocks of

the three other indexes1.

Closing prices by local currency are collected from January 3rd 2000 to May

26th 2010. All European markets close approximately at the same: GMT time:

4.30pm2. Closing-prices are considered to be the official prices that are printed by

the exchanges at the end of each trading-day. In most cases, closing-prices repre-

sent the last traded price for each stock (or the closing auction price). T = 2172

1Note: the constituents of the indexes are considered as of the 26th of May 2010. Im-
portantly, there is a survival bias in the set of stocks considered (it can be argued that the
constituents considered in the indexes at the end of the period have probably performed better
than the constituents of those same indexes at the beginning of the period). However, as the aim
of this study is to compare factor models, rather than to accurately estimate the performance
of a given index, the said bias should not significantly affect the subsequent analysis.

2Note: within the Eurostoxx 600 the components do not trade in the same currency, or by
the same exchanges; there are six different currencies and 21 different exchanges.
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corresponds to the number of ”working business days” (non-holiday weekdays)

within the period considered.

3.2.2 The cleaning process

Therefore, a T × N matrix of close prices is given. However, these prices need

to be cleaned before any computation can be performed, as several problems can

occur:

• Missing values: Firstly, the bank-holidays may differ between the different

exchanges where the stocks considered are traded. In fact, the four indexes

selected for this analysis incorporate stocks traded on 21 separate exchange

markets. Therefore, all missing data resulting from a market being closed,

has been replicated with the previous available value; as is common practice,

subsequently defaulting all non-trading days to zero-return days.

• Abnormal prices: Abnormal prices are trimmed out. Prices are consid-

ered to be abnormal if an ”abnormal jump” is observed in the closing price

series. Jumps may occur if, for instance, a wrong report is sent from the

exchange, or a corporate action has been incorrectly reported. If sit de-

notes the closing price of the stock i at time t, an ”abnormal jump” will be

detected if:

sit+1 > sit(1 + e) or sit+1 < sit(1− e)

where e stands for the maximum jump allowed in percentage form. In

practice this is usually e = 30%, as it corresponds to an extreme case (for

most European markets, continuous trading is suspended by the exchange if

the stock price jumps by more than 10%. The average daily volatility of the

stocks considered over the period specified for this study is 1.94%� 30%).

In such a case, all abnormal prices will be replaced by the last available

closing price.

The stock returns are computed from the observed closing prices. In fact, it

is more convenient to consider returns rather than prices, because as opposed
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to prices, returns are more likely to be stationary processes, and in addition,

the problems with price scaling when comparing differing stocks held in differing

currencies can be avoided.

3.2.3 The returns

The following section offers a more formal description of the computation and

cleaning of the stock returns; in addition, some descriptive statistics will be pro-

vided, and basic normality tests run on the return time-series.

3.2.3.1 Computation and cleaning process

Let (ri)1≤i≤N denote the T − 1-dimensional vectors of the geometric returns for

the stock i; thus:

∀i ∈ [1, N ], ∀t ∈ [2, T ], rit = log(
sit
sit−1

) ≈ sit
sit−1

− 1

when
sit
sit−1
− 1 is close enough to zero.

M denotes the (T − 1)×N matrix of stocks returns: M = {(rit)
1≤i≤N
2≤t≤T }.

As some abnormal prices may have escaped the basic cleaning process, and consid-

ering that outliers have the potential to compromise the analysis, it is important

to undertake additional procedures that enable abnormal returns to be detected

and withdrawn by the analyst. Thus, the next stage of the procedure is the

trimming of returns in order to remove extreme data from the observations. A

Winsorisation procedure is used to detect major outliers. To perform this pro-

cedure, all return values beyond three standard deviation of the empirical mean

of each return series are cut off (it is found in this study that only 1.70% of the

returns are abnormal).

Note that the outliers are understood as outliers for modelling purposes. Indeed,

when building a model to represent asset returns, the investor needs to prevent

outliers or extreme events from corrupting the estimation of a given model. How-

ever, to be strictly consistant, the investor should only remove those outliers for

modelling purposes and re-introduce them when evaluating the performance of
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the model on real data (an extreme return may be legitimate if an extreme event

led the asset return up or down - like for instance bankruptcy rumor, merger

rumor...). In this PhD thesis only one clean data set is considered both for es-

timating and evaluating asset return models, as the purpose is more to compare

models than to precisely evaluate them. However, in practice, one should always

consider two data sets: one for modelling and one for back testing.

Figure (3.1) displays the empirical returns of the four indexes considered in this

study.

Figure 3.1: Cumulative Indexes Returns in %

3.2.3.2 Some basic statistics

The returns distribution will be briefly studied, and in particular, simple nor-

mality tests performed. It is commonly assumed that stock returns are normally

distributed (as in the Black and Scholes option pricing theory). However, as has

been shown in numerous empirical studies, this assumption does not, in fact, hold

true (see for instance Longin & Solnik (2001)); furthermore, it is confirmed by

the non-normal distribution seen in the sample considered by this study. To give

a more precise description of stock returns, and in addition, to test the normality

of the returns distribution, the following statistics displayed in Table (3.1) will
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be computed for the empirical distribution of each stock contained within each

of the four indexes:

• Mean, Standard Deviation, Kurtosis and Skewness:1 The empirical

cross-sectional median is computed for all four values for the four indexes

considered (i.e. computed daily on the series of the index constituent re-

turns).

• The percentage of p-value smaller than 5% relative to the Jarque-

Bera normality test: the percentage of a given index components return

distribution for which the null hypothesis of normality has been rejected is

computed. The statistic for the Jarque-Bera normality test is given by:

n[
µ2

3

6µ3
2

+
1

24
(

µ4

µ2
2 − 3

)2]

where µi denotes the ith moment of the returns empirical distribution, n

denotes the number of observations (n = (T − 1) ∗N).

Under the null assumption H0 of normality for the considered stock returns

distribution, the test statistic follows a chi-square distribution with two

degrees of freedom.

• The percentage of p-value smaller than 5%, relative to the Kolmogorov-

Smirnov normality test: the percentage of a given index components

return distributions for which the null hypothesis of normality is rejected

is computed. The Kolmogorov-Smirnov test compares the empirically ob-

served cumulative distribution FX of a series of observations denoted X,

to a normal cumulative distribution F with same mean and variance than

the empirical mean and variance of the observed time series X. The test

statistic is given by:

DX ≡ supx(|FX(x)− F (x)|)

1note: the Kurtosis figure is expressed as an excess, compared to a Kurtosis that is equal
to 3 for a normal distribution.
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under the Kolmogorov-Smirnov test null hypothesis that the sample comes

from the distribution F (x),
√
DX converges in distribution toward supx(B(F (x))),

where B(.) is the Brownian Bridge distribution.

By testing the same hypothesis on several series (the same test are conducted

simultaneously on the return distributions of all the different components of a

given index), a simultaneous testing problem is confronted; thus, the first order

risk (here chosen to be 5%) must be adjusted in order to prevent bias. The

Bonferroni adjustment consists in dividing the single test first order risk by the

number of tests per index (i.e. the number of constituents per index; for instance,

40 for the CAC40). Thus, the Bonferroni adjustment is made procedurally for

all the subsequent statistics.

SXXP Index UKX Index CAC Index DAX Index
Median mean (Bps) 2.98 2.64 1.54 3.09

Median std (Bps) 220.05 221.28 230.71 226.43
Median Kurtosis 7.35 7.34 5.82 6.50

Median Skewness 0.25 0.26 0.25 0.30
% of J-B test p-value ≤ 5% 99.83 99.03 97.50 96.67
% of K-S test p-value ≤ 5% 99.83 99.03 97.50 96.67

Table 3.1: Normality Statistics

At this point, the following observations can be made:

• As the market was generally up for the period covering January 2000-April

2010, the mean return is positive for all four indexes, which accounts for

the slight positivity of the Skewness of the distribution.

• As the Kurtosis is around 6-7, the return distributions can be said to show

”fat tails” (Kurtosis of a normal distribution is equal to 3 << 6); confirming

previous observations made by Longin & Solnik (2001).

• The Jarque-Bera tests reject normality for almost all the distributions in

each market; the distributions are clearly abnormal, and this seems to be

mainly due to more extreme values.
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Now that the data-set has been introduced, the empirical modelling of the dif-

ferent types of factor-models can be undertaken.

3.3 The Capital Asset Pricing Model (CAPM)

The CAPM, although widely criticised, remains a central tool for assessing asset

allocation problems. In particular, investors often want to achieve Beta neutrality

(i.e. they compute the CAPM market Beta for each asset, and they construct a

Beta neutral portfolio). More precisely, an asset allocation φ is said to be market-

or Beta-neutral if:

N∑
i=1

βi,Mφi = 0

where βi,M is the CAPM Beta, or the sensitivity of the i stock returns against the

market returns (as specified in Chapter 2). In the following section, the CAPM

portfolio will be tested. In a first sub section, some notations of the CAPM

model, introduced in Chapter 2, will be outlined. More specifically, this section

will cover how the CAPM Betas are estimated on empirical time series. The

discussion will then focus on a major issue of the CAPM, which is the instability

of the Betas. Finally, the CAPM model will be evaluated using the different

statistical measures introduced by Jensen (1969).

3.3.1 Estimation of the CAPM model

In this section, the value of the CAPM Beta estimates will be explicated, provid-

ing some basic statistics for the ”goodness of fit” for the CAPM.

3.3.1.1 Betas Estimation

To recall, the CAPM equation is given by:

∀i ∈ [1, N ], t ∈ [1, T ], rit = rf + βi(rMt − rf ) + εit (3.1)

where εit represents the residual of the model for the stock i.
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3.3 The Capital Asset Pricing Model (CAPM)

The stock-market is typically represented by an index; such as the four indexes

presented in Section 3.2. The financial risk of any asset i is decomposed into two

components: a systematic risk (or market risk) that is modelled through the Beta

(βi(rMt − rf )), and a specific risk (εit). The Beta is estimated to be the coefficient

of regression, when the vector of returns of a given financial asset is regressed

against the vector of returns of the market-index. More formally:

βi ≡ COV(ri, rM)

VAR(rM)
= ρ(ri, rM)

σ(ri)

σ(rM)

where ρ stands for the correlation operator between two variables, and σ stands

for the standard deviation of a given variable. rM corresponds to the vector

of observed returns of the index between time 2 and T , and ri corresponds to

the vector of observed returns of the ith component of the index considered

between time 2 and T . A histogram of the estimated Betas for the Eurostoxx

600 components is displayed in Figure (3.2).

Figure 3.2: Market Betas for the Eurostoxx 600 components

The assumption of constant Betas over the time-window [1, T ] is not verified,

as will be seen in Section 3.3.2, where the stability of rolling Beta time-series is

tested.
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3.3.1.2 Goodness of fit of the CAPM

As can be seen in the histogram representation of the R2 relative to each of the

CAPM regressions in Figure (3.3), the average adjusted CAPM R2 is below 20%.

Figure 3.3: CAPM R2

The CAPM fails to fully explain stock returns. The reason for this is probably

due to the fact that important factors had been disregarded in order to explain

stock return variability; thus, highlighting the fact that the market return alone

is not sufficient to explain stock returns. This is confirmed by closer inspection

of the CAPM residuals. The CAPM residuals appear not to be either normally

distributed, nor independent. In Figure (3.4) a quantile-quantile plot is displayed,

showing the CAPM residuals distribution compared against a normal distribution

with same mean and variance. The empirical distributions of the residuals display

heavy tails.

With a low R2 and non-normal residuals, the CAPM appears weak. In particular,

the aforementioned assumption made on constant Betas cannot be held, which

will be demonstrated in the next section.

3.3.2 Betas instability

A static model, such as the basic CAPM, can be a good predictive tool, on the

condition that the parameters remain stable over time. This is the main reason
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Figure 3.4: CAPM Residuals QQ Plot

a deeper analysis on the CAPM Betas has been conducted.

3.3.2.1 Betas time series

Although generally held to cover several periods, the CAPM is a one-period static

model; and as such, the underlying assumption is that the CAPM Beta is constant

over time. The CAPM works on the assumption that the returns distribution

mean and standard deviation are constant and common to all investors (homo-

geneous anticipations), and all investors share the same time-horizon. Jensen

(1969) relaxes the later assumption by introducing a multi-period horizon, and

he proves that the Betas are constant whatever the length of the time horizon set.

Merton (1973) extends the CAPM model into a multi-period model, where the

conditions under which the single period CAPM can be extended directly to an

inter-temporal model are given: if the investment opportunity set stays constant

over time and the investor preferences are not state dependent then the inter

temporal portfolio maximisation can be treated as if the investor had a single

period utility function 1. On US market data, Fama & French (1992) expose the

predictive weakness of the CAPM. The Betas do not seem to satisfy the assump-

tion that they are constant over the prediction period (i.e. it is difficult to use the

1This was later developed and extended in the theory of stochastic control through the
Hamilton-Jacobi-Bellman equation.
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Betas estimated on past periods to estimate future stock returns). In his paper

testing the CAPM empirical performances, Jensen also points out the instability

of the Betas as he computes Betas estimates on two consecutive non-overlapping

samples and scatter plots the two series of Betas estimated (the resulting plot

being rather more scatter than a straight line).

The empirical evidence put forward by Jenson is confirmed in the data-set studied

here. The confirmation can be made by the fact that when a rolling window

regression procedure is performed over 100 days (the Betas are computed on a

non-overlapping sub-sample of 100 observations), the resulting Beta time-series

are not stable.In the following subsection, stationary tests will be performed to

confirm the evidence that the CAPM Beta time-series are non-stationary.

3.3.2.2 Stationary tests

Three different stationary tests that have been computed are displayed in Ta-

ble (3.2).

% of t-test p-value ≤ 5% 95.21
% of D-F test p-value ≤ 5% 97.36
% of P-P test p-value ≤ 5% 70.79

Table 3.2: Betas Stationarity Statistics

• The T test: compares the Beta time series values computed over a rolling

window of 100 days, with the Beta that has been computed over the whole

data-set. The null hypothesis assumes the Beta time-series is equal to the

Beta has been computed over the whole data set. The statistics for the

test are βt−β
σ(βt)

, when (βt) is the Beta rolling window time-series, and β is the

Beta that has been computed over the whole period.

• The Augmented Dickey Fuller Unit Root Test (D-F Test): An

augmented Dickey-Fuller test is a test for a unit root in a time series sample

(see Dickey & Fuller (1979)). This test is a version of the Dickey-Fuller test
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3.3 The Capital Asset Pricing Model (CAPM)

which takes into account more auto regressive lags than the original Dickey-

Fuller test. The Dickey-Fuller test tests whether the slope b is equal to one

in the econometric equation:

yt − yt−1 = a+ (b− 1)yt−1 +
K∑
k=1

ck(yt−k − yt−k−1) + εt

where t is an integer greater than zero indexing time and K is the number

of autoregressive lags considered. b is estimated by least square. The test

statistic T (̂b − 1) has a known distribution (T is the sample size), which

is different from a classical t-test statistics. The null hypothesis is b = 1,

which means that the time series is not stationary.

• The Phillips-Perron Unit Root Test (P-P test): as the ADF, it

tests for the null hypothesis of a unit root. It is more robust than the ADF

test to general forms of heteroscedasticity of the residuals, and it is not

necessary to specify an autoregressive lag length as is needed in the case of

the ADF test (the parameter K). For more details, see Phillips & Perron

(1988).

Although when considering t-tests one cannot reject the hypothesis that the Beta

time series-mean is equal to the Beta computed over the whole period, the hy-

pothesis of stationarity is rejected for almost all the Beta time-series. indeed, the

null hypothesis of non-stationarity cannot be rejected for more than 90% of the

ADF, and almost 80% of the PP tests computed. In the data sample that has

been presented, the Beta series has significantly evolved over time.

The instability of the Betas highlights the need for a more complex setting than

the one used by the initial CAPM. In particular, to explain stock returns, a

number of extra factors need to be considered in addition to the market.

In this chapter, the methodology developed by Jensen (1969) to study time-series

of fund performance is used extensively to compare the different factor models

that are the subject of this research. In the next section, the Jensen statistics will
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3.3 The Capital Asset Pricing Model (CAPM)

be studied in detail, and applied to the CAPM model that has been computed

using the core data-set considered in this PhD thesis.

3.3.3 The Jensen statistics

The measures Jensen proposes to test whether the CAPM holds on empirical data

are computed. Jensen uses those statistics to evaluate the performance of US fund

managers. The idea is to deduce the Alpha for the aggregated portfolios for each

fund manager. Jensen finds that the Alphas are not significant, and comes to

the conclusion that fund managers have no specific stock selection expertise. The

approach presented here is different, as it looks at single stock Alphas for all the

market index constituents. The Alphas are used to compare factor models, rather

than to evaluate the performance of a given portfolio. The Alpha can be seen as a

performance criterion. There is a trade off to make here, as the Alpha represents

a trading opportunity, as long as the investor trusts their model: the smaller the

Alphas, the better the model is on average. However, if the Alpha is too big, it

is a signal for the investor that the model is missing information for the purposes

of stock return explanation.

More precisely, the following Jensen statistics are considered for the purposes of

testing the CAPM. The statistics value are displayed in Table (3.3).

SXXP Index UKX Index CAC Index DAX Index
Mean β 0.80 0.86 0.90 0.84

Mean Index/Stock corr (%) 47.12 53.99 59.23 58.24
Mean Residuals/Index corr (%) 0.00 −0.00 0.00 0.00
Mean Residuals/Time corr (%) −0.43 −0.46 −0.46 −0.36

Mean Residuals autocorr (%) −1.16 −1.50 0.06 0.09
Mean R2(%) 41.04 34.40 22.33 27.41
Mean α(%) 76.09 68.10 60.84 60.82

Table 3.3: CAPM Statistics

• The Beta: The average arithmetic Beta is smaller than one, which is

caused by the fact that bigger stocks in the index have smaller Betas than

smaller stocks; and in addition, they have bigger weight in the index than

smaller stocks (the Beta of the index itself is of course one).
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• The Stock/Index Correlation: corresponds to the average correlation

between stock returns and the market index. The CAPM assumes there

exists a linear stable relationship between stock returns and the market

returns. A market correlation of around 50% is observed (slightly less for

the Eurostoxx 600, which is probably due to a size effect: with an increasing

number of constituents, the average correlation of the single stocks returns

and the index returns will decrease). The index variation explains only

about half the variation of the single stock returns. The CAPM does not

fully explain stock returns.

• The Residuals/Index Correlation: corresponds to the average corre-

lation between residuals and the market index. The residuals have on aver-

age a null correlation with the index. This fits with the CAPM assumption

that the residuals are independent of the explanatory factor of the CAPM

regression (i.e. the market - here assimilated to the index return).

• The Residuals First Order Autocorrelation: for the autocorrelation

of a time series with T observations to be significantly different from zero,

it must be above 1√
T
' 2.15% in absolute value. It can be seen that this

is not the case for all of the four markets considered: the residuals are

not significantly auto correlated. Indeed, this also fits with the CAPM

assumption of IID residuals; the CAPM is not state dependent, so the error

series should not be autocorrelated.

• The Residuals-Time Correlation : the residuals are not significantly

correlated with time, as, for the four markets considered, the estimated

correlation is always smaller than 1√
T
' 2.15% in absolute value. If the

residuals were time dependant, it would interfere with the CAPM assump-

tion. The CAPM assumes stable state conditions, so the error series should

be uncorrelated with time.

• The Alpha: Finally and more importantly, the Alpha is computed, as

described by Jensen1. The Alpha corresponds to the average difference

1Jensen (1969) did not actually used the term Alpha to denote the excess returns with
respect to the CAPM expected return, but he used the notation δ∗.
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between the observed stock return and its CAPM predicted value. It is

a synthetic measure of model performance. The Alpha is scaled by the

average stock return, so the Alpha for the risky asset i, is expressed as a

percentage of the average stock return for the stock i:

αi ≡ µr
i−βiµrM

µri
.

The average Alpha is around 70%, which means that the CAPM fails to

explain around 70% of the stock returns. That is why an investigation of a

more elaborate model is needed to explain stock returns.

Although the market return is a significant variable to explain stock returns,

as the Betas are statistically different from zeros, the CAPM is not a sufficient

model to explain and predict stock returns. Indeed, it lacks goodness of fit (with

a R2 << 50% for almost all regressions). In addition, the CAPM is not stable, as

the Betas seem to evolve significantly over time. In the following, different Asset

Pricing Theory (APT) models are tested, considering a greater number of factors

to explain stock returns.

3.4 An Exogenous Factor Model (EFM)

In this Section, a classical Exogenous Factor Model is presented. The stock

returns are decomposed into the systematic returns explained by exogenous factor

returns and an idiosyncratic portion that corresponds to the residuals of the factor

model. In addition to the market factor, three exogenous factors that are common

for all the stocks will be considered: an oil index factor, an interest rate factor and

a volatility factor. First, a detailed description is made of the three exogenous

factors considered, and intuition about the expected effects of the different factors

on stock returns is given. Then, a more formal description of EFM model is made;

and finally, the Jensen statistics associated with this model are presented.
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3.4.1 The exogenous factors

The choice of the three factors considered here is mainly motivated by the histor-

ical context of the considered time period: more precisely, due to the situation

in the Middle East, oil prices have been rising dramatically, which has had a sig-

nificant influence on stock prices. Also, after the 11th September 2001, and the

more recent subprime crisis, the stock market has shown an increase in correlation,

and investors have been increasingly aware of the volatility factor in explaining

stock returns1. Finally, the period considered has experienced a decrease in in-

terest rates, primarily because central banks employ ”stimulus packages”, such

as quantitative easing monetary policies to curb the effects of major financial

shocks.

3.4.1.1 Expected sensitivities toward the exogenous factors

For economic and rational reasons, the following sensitivities of stock returns for

oil, interest rates and volatility factors are expected:

• Factor CO1 . The Crude Brent future closing price return as it is quoted

on the London Stock Exchange is chosen; therefore, it is synchronous with

the European markets. When oil prices rise, stock prices tend to drop (but

not for oil companies): oil is often a raw material used by industrial com-

panies, an increase in oil prices is often a burden for an economy, specially

in the US, where the domestic market is highly dependent on oil supply.

• Factor GDBR10 . The Euro-Bund yield to maturity quoted on the Ger-

man Exchange is chosen, which corresponds to the implied rate of return

for a bond maturity of 10 years.2 When interest rates rise, stock prices

tend to drop, and vice versa. Several reasons could be mentioned: first,

the discounted value of future stock dividends drops; therefore, the value

of the stock is negatively affected. On the other hand, the fixed income

1when the volatility of stock returns tend to increase, reflecting a shock in financial markets,
the correlation of stock returns tends to increase as well, this phenomenon is often referred to
as the ”skew effect”.

2In the context of the Euro, continental European interest rates are closely correlated one
another, and up until the subprime crisis, the UK interest rates are also very correlated to the
German interest rates.
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investment offers higher return, and investors tend to shift their investment

slightly, from equity to fixed income assets. Note that when a bond yield

increases, it means the interest rates are going down, and vice versa.

• Factor VDAX . The Virtex index closing price return quoted on the Ger-

man Exchange is used, which is a volatility index based on the German

index DAX components implied volatilities (volatilities obtained when re-

verting the Black and Scholes formula for At The Money Put and Call

option prices). In a bear market, price returns tend to be more volatile

than in a bullish market. It is the so called ”volatility skew” effect. When

the market goes down, stock prices tend to be more correlated; therefore,

increasing the overall volatility of a stock portfolio (for a recent analysis

of this effect, see Longin & Solnik (2001)). The implied volatility of stock

options is a good indicator of anticipated future stock volatility.

3.4.1.2 Exogenous factor returns and index returns

Before presenting the model, the statistical relationship between index returns

and the three exogenous factor returns described above will be analysed. First,

an analysis will be made of the correlation matrix of index and factor returns;

then basic regressions of index returns will be run on factor returns to study the

strength of the statistical relationship.

Figure (3.5) displays the three factor returns over the considered period; and

Table (3.4) displays the correlation matrix of the factors and index returns.

VDAX Index GDBR10 Comdty CO1 Comdty SXXP Index UKX Index CAC Index DAX Index
VDAX Index 100.00 −31.00 −13.63 −71.53 −62.70 −69.70 −70.42

GDBR10 Comdty −31.00 100.00 14.47 42.50 39.42 40.97 38.37
CO1 Comdty −13.63 14.47 100.00 20.23 22.60 18.07 14.32
SXXP Index −71.53 42.50 20.23 100.00 93.56 96.07 89.25
UKX Index −62.70 39.42 22.60 93.56 100.00 85.43 77.30
CAC Index −69.70 40.97 18.07 96.07 85.43 100.00 87.81
DAX Index −70.42 38.37 14.32 89.25 77.30 87.81 100.00

Table 3.4: Index Factor Correlation (%)

It can be noticed that:

• Factor VDAX: All the four index returns have a strong negative correla-

tion with the volatility index returns. The data here, confirms the ”volatility
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Figure 3.5: Exogenous Cumulative Factors Returns in %
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skew effect” that had been expected: the higher the volatility return, the

lower the index returns.

• Factor GDBR10: Higher interest rates tend to make bond investments

more attractive, which is to the detriment of stock investment. When the

yield of a bond increases, the price drops, because the bond coupon gets

smaller relative to the expected rate of returns.

• Factor CO1: The oil index effect is somewhat curious. As mentionned

above, when oil prices increase, the expected effect is a negative return

for equity prices. However, a small positive effect is noticed. Over the

period considered, the oil price has risen dramatically, see Figure (3.5). In

addition, over the same period, the index prices have mostly increased, see

Figure (3.1).

• The three exogenous factors are not greatly correlated one another; thus,

making good candidates for a multivariate model.

A pre-analysis consists of a study of how the stock returns are correlated with the

return of the three factors that have been pre-selected. To study the sensitivities

of the index returns towards the different factor returns, four different regressions

have been run on the exogenous factors; thus, one for each of the four indexes

used in this study. The results are presented in Table (3.5). For each regression,

the estimated coefficients for the intercept and the three factors VDAX, GDBR10

and CO1 Betas are presented. In addition, a 95% confidence interval is given for

each of the coefficient estimates.

The intercept is never significantly different from 0, as the confidence interval

contains 0 for all the four regressions. The Oil factor (CO1) seems to be also

non-significant. However, the Volatility (VDAX) and interest Rate (GDBR10)

factors are significant. This tends to show, that for all the four indexes considered,

if the volatility factor increases, the stock returns decrease; and if the bund yield

increases, the stock returns increase also - which is consistent with the remarks

made in the factors/stock returns correlation analysis. The average R2 is around

50% for all four index regressions, which is higher than for the CAPM model
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SXXP Index: R2=56.43
Beta lower bound upper bound

Intercept 0.00 −0.00 0.00
VDAX Index −0.18 −0.19 −0.17

GDBR10 Comdty 0.07 0.06 0.08
CO1 Comdty 0.05 0.03 0.06

UKX Index: R2=45.17
Beta lower bound upper bound

Intercept 0.00 −0.00 0.00
VDAX Index −0.17 −0.17 −0.16

GDBR10 Comdty 0.07 0.06 0.08
CO1 Comdty 0.07 0.06 0.09

CAC Index: R2=53.15
Beta lower bound upper bound

Intercept 0.00 −0.00 0.00
VDAX Index −0.21 −0.22 −0.20

GDBR10 Comdty 0.08 0.07 0.09
CO1 Comdty 0.04 0.03 0.06

DAX Index: R2=52.69
Beta lower bound upper bound

Intercept 0.00 −0.00 0.00
VDAX Index −0.23 −0.23 −0.22

GDBR10 Comdty 0.07 0.06 0.08
CO1 Comdty 0.02 0.00 0.04

Table 3.5: Index/Factors Regressions

(see Table (3.3)). Therefore, the addition of three exogenous factors improves

the explanative power of the CAPM model.

3.4.2 The EFM model

In this section, a simple approach is used to explain stock returns by considering

four different exogenous factors. As the factors considered are not necessarily

independent the model can be viewed as an extension of the APT model developed

by Ross (1976) and briefly presented in Chapter 2. The model estimation is

performed as if the residuals were un-correlated with the factors. The following
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section will briefly present the model and discuss the results.

For each stock i, the following regression is run:

rit = ai + βi,MrMt + βi,V DAXrV DAXt + βi,GDBR10rGDBR10
t + βi,CO1rCO1

t + εit (3.2)

where ai stands for the constant regression coefficient, rit stands for the stock

return i at time t, rMt corresponds to the return of the index to which the stock

considered belongs to, rV DAXt represents the Volatility factor return, rGDBR10
t

represents the Interest Rate factor return, rCO1
t represents the Oil factor return

and εit represents the residual of the model for the stock i.

As in the previous section dedicated to the CAPM, this model is tested on the

four considered markets (SPXX, CAC, DAX and UKX).

3.4.3 Results

The same methodology as the one presented for the CAPM is used to test the

model. The next section will first discuss the Beta instability of the EFM, and

then, give the Jensen statistics associated with the model.

3.4.3.1 Betas instability

As for the CAPM, a major problem of the EFM is the instability of the Betas over

time. If a relationship holds for a certain period between stock returns and some

factor returns, it may not be stable over time. Table (3.6) summaries the results

of the stationary tests computed previously on the CAPM Betas. The EFM Betas

seem to be slightly more stable than the CAPM Betas: the EFM t-test rejects

less often the null hypothesis of constant Betas mean for the Market Betas. Also

the D-F tests and P-P tests reject the null hypothesis of non-stationarity for more

than 70% of the cases for the Oil, Interest Rate and Volatility Betas time series.

Therefore, the addition of external factors tends to reduce the instability of the

model.
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Market Betas

% of t-test p-value ≤ 5% 91.07
% of D-F test p-value ≤ 5% 37.31
% of P-P test p-value ≤ 5% 37.07

VDAX Index

% of t-test p-value ≤ 5% 77.85
% of D-F test p-value ≤ 5% 13.75
% of P-P test p-value ≤ 5% 13.28

GDBR10 Comdty

% of t-test p-value ≤ 5% 92.73
% of D-F test p-value ≤ 5% 11.02
% of P-P test p-value ≤ 5% 10.51

CO1 Comdty

% of t-test p-value ≤ 5% 85.12
% of D-F test p-value ≤ 5% 15.12
% of P-P test p-value ≤ 5% 14.67

Table 3.6: EFM Betas Stationarity Statistics

3.4.3.2 Jensen statistics

In the EFM, the Alpha for the risky asset i is defined as:

αi ≡ µr
i − βi,MµrM − βi,V DAXµrVDAX − βi,GDBR10µr

CO1 − βi,GDBR10µr
CO1

µri

The higher the Alpha, the less the model can explain stock returns on average.

The Alphas of the External Factor Model are slightly smaller than the Alphas of

the CAPM. To conclude, it can be said that the External Factor Model improves

the plain CAPM. The external factors seem to play an additional role to the

Market factor to explain stock returns.

Table (3.7) gives a synthesis of the main statistics obtained from the four models

estimated (one for each of the four market considered). The following remarks

can be made when comparing them with the CAPM statistics of Table (3.3):
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SXXP Index UKX Index CAC Index DAX Index
Mean βM(%) 74.87 80.51 85.29 75.22

Mean βV DAX(%) −1.49 −1.86 −1.48 −3.24
Mean βGDBR10(%) 0.61 0.81 0.93 1.50

Mean βCO1(%) 1.59 0.97 0.46 1.66
Mean Residuals/Index corr (%) −0.00 −0.00 −0.00 −0.00
Mean Residuals/Time corr (%) −0.38 −0.41 −0.43 −0.21

Mean Residuals autocorr (%) −1.28 −1.76 −0.19 0.02
Mean R2 (%) 41.38 36.42 23.21 27.79

Mean α(%) 75.31 67.14 60.07 59.38

Table 3.7: EFM Statistics

• The market Betas are lower than in the pure CAPM model for every one

of the indexes considered.

• As in the case of the CAPM, the residuals are not correlated with the

market, they are not time dependent or auto correlated.

• The average R2 statistics are higher than for the CAPM for the four indexes

considered (The R2 are above 60% for the four indexes tested, whereas

the CAPM R2 is never greater than 45%). The explanative power of the

Exogenous Factor Model is higher than that of the CAPM.

• The average Alpha is consequently lower than for the CAPM, which con-

firms the fact that the additional three factors improve significantly the

CAPM.

Obviously, the more significant factors the investor considers, the better the model

will be. The model can be dramatically refined by adding country or sector spe-

cific factors; as presented in the Barra model (see Stefek (2002)). An elaborated

exogenous factor model, with a larger number of factors, can certainly out per-

form the CAPM. However, the tractability and implementation have also to be

considered when choosing a model. To select the number of factors required to

explain stock returns, one must find a trade-off between a good fit (calling for

more factors) and over-complexity (calling on the contrary to a smaller number

of factors).
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In the next section, a different type of factor model is considered, that has fun-

damental endogenous stock specific factors. Stock by stock regressions are run,

and the factor values are specific to each stock.

3.5 A Fundamental Factor Model (FFM)

The following section discusses a number of fundamental factors that explain

stock returns. This type of model has first been studied by Fama & French

(1993). However, the approach used in this thesis is different because it does not

use these factors to build portfolios (based on the ranking of those fundamental

factors); they are directly used as the factors of the FFM regression. First, the

model is presented, and then empirical estimations will be discussed. The Jensen

statistics are used to compare the results of the CAPM model with the EFM

model results presented above.

3.5.1 The FFM model

In this section, the FFM is described in greater detail; first, the three fundamental

factors considered are described, and then, the FFM equation is presented.

3.5.1.1 The FFM factors

The stock specific factors considered are:

• The Price Earning Ratio (PE): The relationship between the price

of a stock and its earnings per share is calculated as the stock price divided

by earnings per share. Earnings per share is calculated on a trailing 12

month basis, where information is available, by adding up the most recent

four quarters.

• Price to Cash Flaw Ratio (PCF): The price to cash flow ratio is the

ratio of a stock price divided by the cash flow per share.

• Price to Book Ratio (PB): The ratio of a stock price divided by the

book value per share.
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Those three factors have been chosen for their relevance, but also for their

tractability: indeed, they constitute clean and available fundamental data, rep-

resenting reasonably simple financial ratios. Those three factors are also easier

to use without adjustment when considering a large portfolio of stocks. With the

new IFRS rules, the firms are obliged to provide an Earnings value, which respects

strict accountancy rules. This makes the comparison between different European

firms easier. The Book ratio and the Cash Flow ratio are straightforward values.

As fundamental data is usually dirtier than price related data, a cleaning pro-

cess is required. Indeed, fundamental data is provided by different brokers, and

collected by general data providers such as Reuters or Bloomberg. Because of

the variety of sources the data is more likely to be incorrectly reported. First,

all missing values are replaced by the last available value. Then the arithmetic

returns of the ratios are computed. All returns greater than 100% are defaulted

to zero.

3.5.1.2 FFM equation

A cross-sectional regression is used on the stock return space daily. More formally,

for each day, the following model is computed:

rit = at + βt,PCF ri,PCFt + βt,PEri,PEt + βt,PBri,PBt + εit (3.3)

where t stands as an index for day t, at stands for the constant regression coef-

ficient, rit stands for the stock return i at time t, ri,PCFt represents the Price to

Cash Flow factor return relative to stock i, ri,PEt represents the Price to Earning

factor return relative to stock i, ri,PBt represents the Price to Book factor return

relative to stock i, and εit represents the residual of the model for the stock i.

3.5.2 Estimation of the FFM model

First, an examination needs to be undertaken of the cross-sectional correlation

between the fundamental factor returns and the stock returns, as plotted in Fig-

ure (3.6). This figure plots the exponential moving average (half life of one year

or 250 observations) of the correlation time-series that increases greatly overtime:
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the stock returns get more and more correlated with fundamental factors, up un-

til the collapse of Lehman Brothers in September 2008, that marks the pick of

the recent subprime financial crisis. Indeed, it can be noticed that the correla-

tion between the fundamental factors and the stock returns increase steadily, up

until the last quarter of 2008: in a period of economic growth, the fundamental

financial ratios explain stock returns well. However, at the end of 2008, investors

started to loose confidence in the financial ratios due to the fact that many fi-

nancial statements became doubtful (for instance, the American insurer AIG,

the American business bank Lehman Brothers, the national mortgage and loan

American companies Freddie Mac and Fanny Mae have been suspected of hav-

ing manipulated their financial figures). This was especially the case for earning

figures, for which valuations became suspicious (the Book Value and Cash Flow

Value are more straightforward measures and therefore less subject to caution).

That may explain why, since end of 2008, the correlation of the PE ratio with

stock returns decreased even more so than the Book ratio or the Cash Flow ratio.

Figure 3.6: Fundamental Factors Returns / Stocks Returns Correlation in %
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Table (3.8) displays some basic statistics relative to the FFM. The following

remarks can be made:

• The Adjusted R2 are better than for the CAPM and the EFM. In each of

the four markets, the mean R2 is greater than 90%.

• The Alphas are much smaller than for the CAPM or the EFM (10 to 20%

only).

SXXP Index UKX Index CAC Index DAX Index
Mean βPE(%) 11.03 7.46 8.28 15.36

Mean βPCF (%) 4.13 7.19 −8.40 4.64
Mean βPB(%) 82.12 78.08 87.78 79.01

Mean Residuals autocorr (%) 0.54 −3.43 −3.78 −5.60
Mean R2 (%) 85.77 85.10 78.97 98.87

Mean α(%) 12.03 8.00 14.58 6.08

Table 3.8: FFM Statistics

This model shows a greater goodness of fit than the two previously studied mod-

els. This is due to the fact that much more data is used compared with the

other models. Therefore, there is a better granularity of information to explain

stock returns. Also many fund managers base their stock picking on the analysis

of financial ratios: these measures being widely monitored, they tend to signifi-

cantly affect stock returns. The Alphas are around 10 to 20%, which represents

a dramatic improvement compare to the CAPM or EFM models.

3.5.3 Comments on the FFM

Out of the all the different factor models discussed in this thesis that are based

upon external factor selection, the best model appears to be the FFM.

The following sections will focus on statistical models and present more specifi-

cally three different statistical models (Principal Component Analysis, Indepen-

dent Component Analysis and Cluster Analysis), that, conceptually speaking,

differ greatly from the precedent models presented above. In those models in-

deed, the factors are said to be endogenous as they are identified during the
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model estimation process; on the contrary to the models previously presented,

where exogenous factors are pre-selected before the estimation phase.

3.6 Principal Component Analysis (PCA)

A very common endogenous statistical factor model is based on Principal Compo-

nent Analysis. The first sub-section provides a brief recap of the PCA principles,

and the second sub-section presents the results of the estimations carried out in

this research. Here, the selection of the explanative factors is purely data driven:

the factors are selected and estimated through the modelling procedure.

3.6.1 The PCA model

In practice, it is impossible for any investor to be able to analyse the entirety

of information available, and; therefore near impossible to select all the factors

needed to explain stock returns. Well informed investors have access to powerful

information tools - such as, Bloomberg and Reuters terminals - which represent

very exhaustive data bases of all types of asset prices; such as: Equity and Fixed

Income data, as well as a whole set of worldwide news covering economics, com-

panies, and national and international politics. Over the last few years, many

data providers have specialised in clean fundamental data (for instance: FactSet

and Starmine). If a large amount of such information is relevant in explaining

risky asset price processes, the fact remains that it still contains a high level of

noise, and for practical reasons, a restrictive set of factors need to be selected.

Indeed, to track and monitor the factors in an effective way, a limited number of

factors must be considered (computational power is limited to handle too large a

number of explanative factors). When an a priori selection of exogenous factors

is not believed to be sufficiently exhaustive to explain stock returns, the PCA

offers a methodology that can be used to select the most relevant explanatory

factors.

3.6.1.1 The PCA principle
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In the case of PCA, the model selection is particularly complex on account of it

being two-fold:

• First, it is necessary to define a subset of statistically computed explanatory

factors for the whole set of information available, through a defined selection

procedure.

• Second, it is necessary to identify those explanatory endogenous factors.

The PCA is a statistical method which allows to decompose the variance of a set

of variables (here the stock returns) into uncorrelated factors. Note that for the

factors to be also independant, it is necessary to add the strong assumption that

the returns are Gaussian (uncorrelated Gaussian vectors are also independant, but

more generally speaking uncorrelated vectors are not necessarily independant).

In the following, the PCA procedure is detailed.

3.6.1.2 Factors selection and Betas calibration

An outline of the PCA procedure as applied to the matrix of asset returns will be

presented. For an in depth explanation of PCA models, refer to Theil (1971). It

is assumed that the historical returns matrix M is of dimension (T−1)∗N , where

T represents the number of observations equally spaced in time (the frequency

is one day) and N the number of financial assets. The idea is to project M in

a new base, where the variance between each transformed variable is maximised

(i.e. the new variables or principal components are the most distinct possible in

terms of variance). It can be shown that this optimal base corresponds to the

orthogonal base constituted of the eigenvectors corresponding to the eigen values

of the positive defined symmetric covariance matrix of historical excess returns

M′M.

Denoted by λi for i = 1, ..., N , are the N positive eigenvalues of M′M and Λ, the

diagonal matrix with diagonal elements the λi. Let P denote the N ∗N matrix

of the eigenvectors of M′M. Hence: M′M = P′ΛP. The first column of M

is the decomposition of the first principal component on the basis of the asset

returns, which corresponds to the highest eigenvalue of M′M; the second column
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corresponds to the decomposition of the second principal component with the

second highest eigenvalue of M′M; and so on.

The fraction of the data variance explained by each of the principal components

is given by: λi∑N
j=1 λ

j
. If F denotes the matrix of factor returns, therefore:

F = PM

and M = P′F

The explanatory factors (or principal components) are linear combinations of

the risky assets. This is in fact the major shortcoming of endogenous factor

models, such as the PCA, as, it is difficult to identify explanatory factors as

relevant variables (exogenous variables such as economic indicators). However,

the advantage of the PCA is that no a priori knowledge is held on the selection

of explanatory factors; therefore, it is an interesting model to run if the investor

does not have true knowledge on which exogenous variables can explain stock

returns.

3.6.2 PCA Estimation and Results

In this study, PCA is performed using the built in ”princomp” routine from

the statistical toolbox of the statistical software MATLAB 7.5.0. To reduce a

market effect bias, the model is run on centred returns (the market return can

be approximated as the mean of all asset returns). The stock returns are also

normalised by their correlation matrix, in order to prevent highly volatile stocks

to biais the procedure.

3.6.2.1 Explanatory power of the PCA

Figure( 3.7) displays the cumulative explanatory power of the PCA factors. As

can be seen, the first four factors of the PCA explain almost 30% of the total

variance of the stock returns. The higher the number of factors selected, the

higher the explanatory power.

Here, only the four first factors are selected. There are two main reasons to

do so. First, for the exogenous factor models presented in this thesis, a limited

81



3.6 Principal Component Analysis (PCA)

Figure 3.7: PCA Factor Cumulative Explanatory Power

number of factors (four factors for the EFM and three for the FFM models) are

utilised. Secondly, the number of factors are selected so that a R2 above 10%

can be obtained. The R2, assimilated to a measure of model performance, can

be expressed as the total percentage of variance explained by the PCA factors.

3.6.2.2 PCA Factors Identification

The PCA factor returns (F) are computed by inverting the loading matrix (P)

and multiplying it by the stock return matrix (M). Depending on the number of

factors considered, almost any amount of stock return variance can be explained

in sample. A big problem, then, is the identification of those factors. As shown

in Figure (3.8), the PCA factor returns are very volatile. It is almost impossible

to identify them according to their loadings when there are so many stocks in the

universe considered (N = 600).

A common procedure used to identify such factors is to perform correlation anal-

ysis between the statistical endogenous factor returns and a number of external

82



3.6 Principal Component Analysis (PCA)

Figure 3.8: PCA First 4 Factors Returns

factor returns. Table (3.9) displays the correlation matrix of the first four factor

returns for the PCA, the SXXP returns (assimilated to the market return), and

the three external factors studied previously in Section 3.4 (namely, the volatility

factor, the interest rate factor and the oil factor).

Factor 1 Factor 2 Factor 3 Factor 4
SXXP Index −93.90 23.70 −1.27 −3.51
VDAX Index 69.99 −14.53 6.43 1.86

GDBR10 Comdty −42.24 6.12 −0.74 −2.63
CO1 Comdty −21.82 −12.26 −7.33 11.05

Table 3.9: PCA Factors Correlation

• the first PCA factor is very highly anti-correlated with the SXXP Index

(more than 95% of absolute correlation), and positively correlated with the

Volatility and Interest Rate factors. This factor could be identified as the
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”Market” factor, or the ”Size” factor, as commonly found in empirical PCA

run on asset returns1.

• the three other factors display weaker correlations with the other external

factors.

Overall, it can be said, that the first factor is the only one to be identified after

this first analysis.

The PCA loadings are very volatile over time. The PCA factor loadings have

been computed on a rolling window; and as for the Betas of the previous models,

the stationary tests reject the assumption of stationarity for the loadings: the

PCA factors vary greatly overtime.

3.6.2.3 The Jensen Statistics

The model is described as:

∀i, t, Ri
t = βF1,i

t F 1
t + βF2,i

t F 2
t + βF3,i

t F 3
t + βF4,i

t F 4
t + εit

where (F j
t )1≤j≤4 are the first four PCA factor returns, and (βFj,it )1≤j≤4 are the

loadings of factor j on stock i, estimated through the PCA procedure. The εit are

computed as the difference between the stock returns and the PCA prediction

based on the first four factors.

To compare the PCA model to the other models, the statistics that have been

computed for the previous exogenous models (CAPM, EFM, FFM) will be stud-

ied; see Table (3.10). It can be seen that that the Alphas, that represent the

average error between stock returns and the returns computed through the factor

model, are very high on average (more than 85% for the four indexes considered).

The higher the Alphas, the further away the model prediction is compared to the

observed stock returns. In all probability, it is necessary to include many more

factors in order to reach a good Alpha value. By increasing the number of factors,

the Alphas naturally decrease; as seen in Figure (3.9). To reach an average Alpha

of 20%, more than 300 factors need to be considered; however, the more factors

1Note: because the PCA aims to explain the total variance of the initial signals, the ex-
tracted factors are not signed (in the sense that, the sign of any PCA principal components
could be reversed).
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added to the PCA model, the more difficult it is to identify them. The number

of factors to be selected calls for parsimony. Indeed, the investor needs to make a

trade off between the number of factors needed and the Alpha values one wants

to achieve.

SXXP Index UKX Index CAC Index DAX Index
Mean βF1(%) 3.75 9.14 14.82 16.99
Mean βF2(%) −0.58 −1.35 −0.66 −1.17
Mean βF3(%) 0.28 −1.51 0.71 2.04
Mean βF4(%) 0.02 −0.58 −0.42 −1.66

Mean Residuals autocorr (%) −2.56 −3.33 −2.04 −2.51
Variance explained(%) 36.84 40.71 47.54 52.10

Mean α(%) 68.68 64.52 64.60 60.64

Table 3.10: PCA Statistics

3.6.3 Comment on the PCA model

The PCA model is attractive to investors as it potentially allows the investor to

detect ”hidden” factors that could explain stock returns. Indeed, it can detect if

stock returns are suddenly led by strong factors that may have been overlooked

in the first place. The problem is obviously related to the identification of those

hidden factors (a correlation analysis with external factors is often used as an

identification technique). The PCA can be a good tool for risk management

purposes; however, it is weak at transparently explaining stock returns (i.e. with

well identified explanatory factors). In addition, the PCA relies on the heavy

assumption that stock returns are Gaussian.

Indeed, if the PCA is a straightforward statistical method used to decompose

stock returns into independent factors (in the sense of correlation), it can only

be valid if used with a strong hypothesis of normality. However, the normality

of stock returns has been questioned for quite some time (as has been shown in

a basic study, in Section 3.2, the stock return distributions are fat-tailed, and

basic normality tests reject the hypothesis of normality). In the next section,
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Figure 3.9: Mean Alpha vs. Number of PCA factors selected

an alternative purely statistical technique is presented that has drawn increasing

attention in the financial world: the Independent Component Analysis (ICA).

3.7 Independent Component Analysis (ICA)

The ICA is a neuronal network technique, initially developed to filter noise from

signals in a context where the signals are considered to be strictly non-Gaussian

data. The ICA looks for statistically independent components and uses more in-

formation from the data than the PCA which, assuming normality, only considers

the first two empirical moments of the multivariate dataset. Several attempts

have been made to apply the ICA to financial datasets, and in particular, the

study by Back & Weigend (1997) is discussed.

86



3.7 Independent Component Analysis (ICA)

3.7.1 ICA principle

The ICA assumes that the multivariate dataset of historical asset returns M can

be decomposed in the following way:

M = SA

Where S is a (T − 1) ∗ N matrix (same dimensions as M) of statistically inde-

pendent signals (or components) and A is a N ∗N mixing matrix, and stands for

the loading of the asset returns on the independent components.

The ICA assumes that M is a multivariate non-Gaussian matrix that can be

decomposed into a linear combination of statistically independent variables. In

order to define S, an algorithm capable of constructing independent signals from

the original dataset X is needed. Because S and A are unknown, the ICA assumes

the previous equality holds, and looks for independent components one by one.

The strong form of independence states that two variables are independent, if

and only if, their joint distribution is the product of their marginal densities (a

consequence is that the correlation of the two variables is null; the equivalence

holds if the variables considered are Gaussian). As the matrix S and resultant

multivariate distribution are unknown, a statistical definition of independence is

required.

The ICA is a stepwise procedure, that, one by one, looks for the non-Gaussian

independent components s1, ..., sN of S; thus:

S = XW

Therefore, the aim of the ICA is to define, by successional process, the columns

of W: (w1, ...,wN). It can then be deduced: A ≡ W−1. The idea is to find

w1, insofar that it maximises the non-Gaussianity of Mw1 ≡ s1 (therefore, the

importance of the non-Gaussian hypothesis, is that it stands as the first selection

criterion to define the independent components). Then, w2 is defined insofar as

it maximises the non-Gaussianity of Mw2 ≡ s2, and, such that s1 and s2 are

statistically independent (to make sure s2 is defined differently from s1). Then,

the algorithm is reiterated until the Nth signal is defined.
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3.7.2 ICA Fast Algorithm

Any ICA algorithm needs to define statistical measures for non-Gaussianity and

independence. The ”FastICA algorithm” introduced below, focuses on negen-

tropy and mutual information.

3.7.2.1 Negentropy: a measure of non-Gaussianity

The FastICA algorithm developed by Hyvrinen & Oja (2000) is used for empirical

testing. Statistical tools are required to evaluate non-Gaussianity, and statistical

independence. The FastICA algorithm uses negentropy as a measure of non-

Gaussianity. The negentropy exploit‘s the fact that a Gaussian variable has the

largest entropy among all variables of equal variance. Therefore the negentropy

of a variable y, is defined as the difference between the entropy of the Gaussian

variable yg, defined as the Gaussian variable with same mean and variance as the

variable y, and the entropy of y. The empirical entropy measure H(.), is defined

as:

H(y) = −
∑
i

P(y = ai) log(P (y = ai))

Where (ai) defines the set of possible values for y. Therefore, the empirical

negentropy measure J of y is defined as:

J(y) = H(yg)−H(y)

3.7.2.2 Mutual information

The mutual information takes into account the whole dependence structure of a

dataset, unlike the PCA that only considers covariances. The Mutual information

I of a set of variables (y1, ...,yn), is defined as:

I(y1, ...,yn) =
n∑
i=1

H(yi)−H(y1, ...,yn)

where H(y1, ...,yn) is defined as the mutual entropy of the variables ((y1, ...,yn)) :
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H(y1, ...,yn) = −
∑
i1

...
∑
in

P(y1 = ai1 , ...,yn = ain)) log(P (y1 = ai1 , ...,yn = ain))

In actual fact, it is proven that the minimisation of Mutual Information (and

therefore maximisation of statistical independence) is equivalent to the maximi-

sation of negentropy, and; therefore, non-Gaussianity.

FastICA uses efficient empirical measures to estimate mutual entropy (see Hyvri-

nen & Oja (2000) for details). To simplify the algorithmic process, the initial

dataset M is centred (the mean of each variable is subtracted) and whitened (the

transformed variables are uncorrelated with a variance of one).

It is important to note, that, unlike the PCA, where the principal components are

sorted by their eigenvalues, the independent components have the same variance,

and are randomly built; therefore, there is no unique way to sort them. A number

of different procedures have been suggested to determine the order of the principal

components. As Back & Weigend (1997) suggest, the individual components can

be ranked according to their L∞-norm, (i.e. the maximum coefficient for each

independent component).

3.7.3 Estimation of the model

In this study, the ICA is performed using the MATLAB 7.5.0 ”FastICA” routine

developed by the Laboratory of Computer and Information Science (CIS) at the

Helsinki University of Technology1.

The algorithm is run, and the four components with the highest L∞-norm are

selected. Figure (3.10) plots those four factor returns:

For the PCA, the principal components can be identified by a computation of their

returns correlation with the returns of exogenous factors. A similar procedure

can be used to identify the ICA factors. Table (3.11) displays those correlations,

and the correlation of the first four ICA factors with the PCA factors. As for the

PCA, what matters is the amplitude of the correlation; rather, than its sign.

It can be seen that:

1 http://www.cis.hut.fi/projects/ica/fastica/
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Figure 3.10: ICA First 4 Factors Returns

• The first ICA factor is correlated with the first PCA factor and can also be

considered as a ”size” factor (expressing the fact that all the asset returns

move in the same direction). This is corroborated by the fact that the first

ICA factor is also much correlated with the SXXP Index (which can be

assimilated to the market factor).

• It is difficult to identify any of the ICA factors with one of the external

factors (volatility, oil or interest rate).

• The second ICA factor is highly correlated with the third PCA factor;

however, it is difficult to identify it through the exogenous factors.

• The third and fourth ICA factors are also difficult to identify through this

primary correlation analysis.

Table (3.12) shows the same statistics used for all the precedent models.
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ICA Factor 1 ICA Factor 2 ICA Factor 3 ICA Factor 4
SXXP Index 12.71 13.82 3.86 1.72
VDAX Index −4.06 −8.90 4.26 −0.18

GDBR10 Comdty 3.30 2.95 2.01 0.70
CO1 Comdty 4.59 6.19 0.17 −2.23
PCA Factor 1 −14.65 −13.96 −1.56 −6.67
PCA Factor 2 4.71 5.24 0.60 8.11
PCA Factor 3 0.80 −9.61 −2.29 −2.00
PCA Factor 4 −0.26 −0.14 10.85 −0.55

Table 3.11: ICA Factors Correlation

SXXP Index UKX Index CAC Index DAX Index
Mean βF1(%) −0.02 0.01 −0.00 −0.01
Mean βF2(%) −0.01 0.20 0.19 0.13
Mean βF3(%) 0.00 0.14 0.27 0.15
Mean βF4(%) 0.08 0.04 −0.15 0.18

Mean Residuals autocorr (%) −2.66 −1.43 −0.66 −2.05
Pct infinity norm ICA 2.22 24.84 37.42 11.44

Mean α(%) 99.95 96.39 93.29 97.93

Table 3.12: ICA Statistics

The mean Alpha is very high for all the indexes considered. The percentage of

infinity norm explained is not very significant, as all the principal components

explain the same variance. As can be seen in Figure (3.11), at least 200 principal

components are needed to reduce the mean Alpha to 60%.

As is the case for the PCA, the ICA components are not easy to identify. They

can be useful for the detection of hidden factors in asset returns among exogenous

factors already selected by the investor. However, it has been demonstrated that

the first four ICA factors are difficult assimilate to any of the three external

factors that have been considered previously (volatility, oil or interest rate).

The ICA and the PCA can be useful and interesting additional tools to explain

stock returns; however, as stand alone models, they lack traceability. The next

section presents a statistical model that uses some prior information and can
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Figure 3.11: ICA Alphas vs. Number of Independent Components

therefore be more traceable than the PCA or ICA techniques.

3.8 Clusters Analysis (CA)

In this section, another purely statistical technique is presented, where the es-

timation algorithm was specifically developped in this research. The technique

allows the investor to group the stocks into clusters. Furthermore, it can be a mix

between a pure statistical model and an exogenous model, because prior clusters

can be chosen (based, for instance, on industry sectorisation) to run the cluster

algorithm. Below, the CA principle and empirical results are presented.

3.8.1 Cluster Analysis principle

The idea is that the returns of a stock behave similarly to the returns of its

”brothers”: stock returns belonging to the same sector tend to display similar

patterns. The reversion assumption is that if the returns of a stock shift away
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from its brothers’s (i.e. the stocks within a common cluster), they tend to revert

back to the overall cluster returns behaviour.

3.8.2 Methodology

The matrix of stock returns M is considered. Initially, C prior original clusters

are considered. Each stock is assigned to one of those C predefined clusters. The

return matrix M is adjusted by decaying the returns with respect to time. Indeed,

greater relative weight to more recent returns and less relative weight to older

returns is desired (to calibrate the decay, a half-life of 20 days, or approximately,

one month is considered). Therefore, work is undertaken on the adjusted matrix

M̃, defined as:

M̃ = (exp−λ(T−t)rit)1≤i≤N,1≤t≤T

where λ ≡ log 2
20

1. Then, the cluster centroid returns are computed for each of

the original clusters. The centroid returns series is defined as the average of

the cluster members returns. The distance of each stock is computed to each

of the different centroids, and stocks are reassigned to the closest centroid. The

procedure is repeated until the membership clustering remains invariant; thus, at

each iteration the following steps are proceeded:

• The centroid returns series for each of the clusters is computed,

• The distance of all the stocks to each centroid is computed,

• Each stock is assigned to its closest centroid; therefore, redefining the clus-

ters membership.

If the resulting clustering is invariant when compared to the initial clustering, the

algorithm is stopped. In order to ensure that the algorithm does eventually stop,

and to exclude outliers, a maximum distance to the centroid is set. The centroid

variance is defined as the mean distance of all the cluster members to the cluster

centroid. At a given step, the stocks of a given cluster that have a distance to the

1For the half life to be equal to 20, the weight of the 20th observation is required be 1
2 ;

therefore, it is required that: exp−20λ = 1
2 .
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centroid greater than ten times the mean distance to the centroid of this specific

cluster are excluded.

As a natural measure of distance, the dispersion of a stock return against the

centroid returns is considered. If rc ≡ (r̃ct )1≤t≤T denotes the centroid decayed

returns of the cluster c, the distance of a stock i toward this centroid can be

defined as:

δ(i, c) ≡ 1− rc′ri

√
rc′rc
√

ri′ri

The assumption made in a cluster reversion model, is that each cluster member

returns must revert to the centroid cluster returns. The expected return of a stock

should therefore be its centroid return. The Alpha is defined as the discrepancy

between each stock return and its cluster centroid returns.

3.8.3 Estimation of the model

A clustering algorithm, has been developed in MATLAB 7.5.0 for the purpose of

this analysis, and allows clusters to be created from a prior clustering defined as

sector membership. The Bloomberg industry sectorisation (ten industry sectors,

therefore C = 10) is used to initialise the clusters, see Table (3.13):

Number of stocks Sector Dispersion (%)
Basic Materials 50 41

Communications 52 51
Consumer, Cyclical 60 52

Consumer, Non-cyclical 106 47
Diversified 10 93

Energy 38 49
Financial 137 46
Industrial 101 55

Technology 24 42
Utilities 28 44

Table 3.13: Sectors

The clusters seem to remain very similar to the original sectorisation, as the

correlation between a sector and a corresponding cluster is always above 85%.
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The table below displays the mean dispersion for each cluster. As can be seen, the

dispersion of the clusters is much lower than the dispersion of the initial sectors.

Number of members Cluster Dispersion (%)
Cluster 1 30 15
Cluster 2 68 15
Cluster 3 90 18
Cluster 4 79 28
Cluster 5 94 19
Cluster 6 37 15
Cluster 7 73 13
Cluster 8 73 19
Cluster 9 20 23

Cluster 10 41 18

Table 3.14: Clusters Dispersion

A clustering distance measure is used in order to compare the clustering solution

with the initial sectorisation. The clustering distance between two clustering

solutions, with respective membership 1 and 2, is computed as follows: For each

couple of assets i and j (1 ≤ N , 1 ≤ j ≤ N and i 6= j) the value 0 is affected

if i and j belong to a same cluster in either membership 1 or 2, or, if i and j

belong to a different cluster in either membership 1 or 2. Otherwise, the value 0

is affected to the couple (i, j). The resulting sum of all the asset couple values is

divided by the sum found in the case where the two clustering solutions are the

same (i.e. membership 1 and 2 are the same), i.e. N(N−1)
2

.

It is clear to see that the clusters are more equally constituted than the sectors

(whereas, the smallest sector has only 10 members, and the largest, 137, the

smallest and largest cluster has 20 and 94 members respectively). The dispersion

of the clusters ranges between 13% and 28%, whereas, the dispersion of the initial

sectors ranges from 42% to 93%. As mentioned above, the assumption made in a

cluster analysis, is that member returns of a cluster revert to the centroid returns.

Therefore, the cluster is not exactly a factor model, as factors and Betas are not

extracted from the procedure. To compute the Alphas of the cluster model, a

different cluster analysis is run on a rolling window of 100 days:
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• For each day t > 100, the cluster analysis is computed for the returns series

between date t− window and t− 1.

• The return for date t is computed for the centroid of each sector c, denoted

as rct .

• For each member i of the cluster c, the Alpha is computed as: αit = rit− rct .

Table (3.15) displays the mean Alphas and clustering distances for the sector

clustering of each of the four indexes studied:

SXXP Index UKX Index CAC Index DAX Index
Mean α(%) 28.83 −60.01 −54.24 −89.65

Mean Clustering Distance(%) 20.46 11.64 15.23 18.63

Table 3.15: CA Statistics

The average Alphas (between 30 and 40%) are preferable to the PCA or ICA

average Alphas. This is probably due to the fact that prior knowledge of industry

sectorisation has been used to initialise the search for reliable clusters. In fact, the

amount by which the clusters differ on account of initial sectorisation is between

13% to 20%, which essentially means that the prior clustering has a significant

impact on the final clustering obtained through the algorithm. The CA Alphas

are also preferable to those of the CAPM or the EFM. On average, only the FFM

Alphas are smaller than the CA Alphas; which is most probably due to the fact

that the FFM requires a larger quantity of data than the other models (a value,

per factor per stock, rather than just factor returns).

It is commonly held knowledge within the finance industry, that stock returns

tend to behave similarly within a given sector. In the case of the CA, prior

knowledge allows to use more efficiently pure statistical approaches.

3.9 Conclusions

This chapter has presented a number of models that are commonly used in finance

to explain stock returns. For practical reasons, the choice has been made to stick
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to simple, tractable models, as the main purpose is to provide a broad overview of

factor models, and a simple methodology utilising straightforward metrics (similar

to the statistics used by Jensen (1969)) to help investors discriminate between

different factor models).

Figure (3.12) plots the theoretical returns of the six different factor models studied

in this chapter (CAPM, EFM, FFM, PCA, ICA and CA); a benchmark portfolio

(the Equally Weighted portfolio EW, as considered in DeMiguel et al. (2007)); and

the classical portfolios presented in Chapter 2 (the minimum variance portfolio

MN and the mean variance portfolio MV). The theoretical returns are computed

below:

rFt =
N∑
i=1

αi,Ft rit

where αi,Ft is the Alpha computed for the Factor Model F .

The performance of the Factor Models varies greatly over time. None of the mod-

els can be considered to perform the best over the whole time-horizon considered.

This can be seen in Table (6.1), where details are given of the annual Sharpe

ratios for the different models concerned (the three best Sharpe ratios per year

are indicated in bold).

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
EW 1.54 −0.58 −1.13 1.76 2.45 1.57 0.42 −3.69 1.98 −0.44
MN 0.75 0.00 −0.77 0.75 2.82 2.49 1.52 −1.51 0.98 −0.04
MV 0.01 −1.28 −1.30 0.87 2.46 2.10 1.57 −0.42 1.28 0.23

CAPM −1.88 −0.01 2.29 0.18 3.89 4.70 2.35 1.45 3.51 −0.57
FFM −2.07 0.17 2.03 −0.13 1.21 2.63 2.08 1.82 0.82 −0.28
EFM −2.15 −1.88 0.84 −0.32 0.18 0.36 0.55 1.75 −0.45 0.10
PCA −3.55 −0.09 1.06 −0.84 2.36 2.26 1.52 3.93 1.40 −0.26
ICA −2.11 −1.97 0.63 −0.05 −0.12 1.15 0.28 1.32 0.06 0.52
CA −2.47 2.18 1.90 1.07 4.36 4.42 3.85 2.02 4.10 1.45

Table 3.16: Sharpe per Strategy per Period no Transaction Costs

The factor models that have been considered, are only useful if an investor pos-

sesses the foresight to be able to choose the most appropriate factors relative to
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Figure 3.12: Factor Models Cumulative Returns (%)

the investment period (the factors that are required to construct a useful model

may vary greatly over time). In this chapter, an overview has been given of the

main types of factor models used in contemporary financial industries, which have

been tested on the same daily dataset of European stock returns. In addition, the

statistics introduced in an early CAPM testing paper by Jensen have been drawn

upon. The intention of this research, rather than to find the best model, has been

to provide a methodology that can be applied to compare the models considered.

All the models tested, are of course, simplified models that can be refined further

(e.g. introducing dynamic components with nonlinear methods - rather, than the

linear regressions used - and increasing the number of factors). It is important to

note that: because no single model appears to be able to constantly outperform

any of the others, it is not possible to select one single model. Instead, one has to

consider different models; which raises the fundamental questions on model risk

and optimal and dynamic model mixtures, that are addressed in the remainder

of this PhD thesis.
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Chapter 4

Decision Under Ambiguity:
Literature Review

”But Uncertainty must be taken in a sense radically distinct from the familiar

notion of Risk, from which it has never been properly separated. [...] It will

appear that a measurable uncertainty, or ”risk” proper, as we shall use the term,

is so far different from an unmeasurable one that it is not in effect an uncertainty

at all. [...] It is this ”true” uncertainty, and not risk, as has been argued, which

forms the basis of a valid theory of profit and accounts for the divergence between

actual and theoretical competition.”

F.H. Knight, ”Risk, Uncertainty, and Profit”, Hart, Schaffner & Marx, Houghton

Mifflin Co., Boston, MA, 1921.

As presented in the previous chapter, many different models can be considered to

represent asset return dynamics. The performance of such models varies greatly

over time and investors cannot rely unconditionally on any of those. This chapter

will describe the notion of ambiguity in greater detail. In the first section, the

theoretical framework behind ambiguity will be discussed by reference to key lit-

erature. In particular, the fundamental distinction between risk and uncertainty

will be explained, and examples discussed to demonstrate how decision makers

adapt their decisions according to aversion toward both risk and ambiguity. In
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the second section, a brief overview of key approaches developed to solve decision

problems under ambiguity will be outlined, with a focus on models in literature

that engage problems concerning asset allocation under ambiguity. Finally, the

last section will refer to recent studies and analysis that demonstrate the weak-

nesses of those contemporary models to perform well on real data. Therefore,

this chapter will argue that financial investors require new approaches to solve

the asset allocation problem under ambiguity.

4.1 The concept of Ambiguity

When under ambiguity, decision makers are prevented from forming beliefs with

confidence due to a lack of reliable information. In this section, the theoretical

fundaments of ambiguity will be outlined. Knight (1921) is the first to formally

describe ambiguity. Later, Ellsberg (1961) illustrated the Knightian uncertainty

with the famous Ellsberg Paradox. More recently, Kahneman and Tversky (1979)

have formalised the impact of ambiguity in the decision making process.

4.1.1 The Knight Uncertainty

Knight (1921) is the first to formally discuss the intuition behind ambiguity.

According to Knight, there is a significant difference between risk (an agent is

uncertain about the precise outcome of a gamble, despite certainty concerning the

distribution measure determining the set of possible outcomes) and ambiguity or

model uncertainty (an agent is uncertain of the distribution measure). Ambigu-

ity corresponds therefore to a non-measurable randomness against which decision

makers show some aversion. Knight explains how an economic agent distinguishes

between the estimates of their outputs and the degree of confidence they have

in their estimates: ”The action which follows upon an opinion depends as much

upon the amount of confidence in that opinion as it does upon the favourableness

of the opinion itself”1. Although not formally modelled, Knight pinpoints the

significance of opinions of certainty concerning the future outcome of decision

1Knight (1921)

100



4.1 The concept of Ambiguity

variables. It was some forty years later that Ellsberg clearly illustrated the con-

cept of ambiguity through the Ellsberg Paradox; which will be discussed in the

next section in reference to the classical settings developed by Savage (1954).

4.1.2 Savage Subjective Expected Utility (1954)

In a classical unambiguous setting, the decision maker is assumed to be cer-

tain about the distribution of P ≡ (p1, .., pn) upon the set of possible outcomes

(x1, ..xn). In that case, the Von Neumann-Morgenstern Expected Utility (EU)

paradigm states that the decision maker intends to optimise the following pro-

gram:

maxEP[u(x, λ)] (4.1)

where x represents the random outcome of the gamble played by the decision

maker, u is a classical utility function and λ represents the agent’s risk aversion.

In practice, it is impossible for a decision maker to comprehend the true proba-

bility P. Savage (1954) proposes a method to account for the subjective estima-

tions made by decision makers to model the true distribution P ≡ (p1, ..., pn) of

the outcomes (x1, ..., xn). Savage introduces the concept of Subjective Expected

Utility (SEU), to account for the fact that decision makers do not know the true

probability P and may work with several priors Q to model the distribution of

outcomes. In the SEU settings, decision makers are probabilistically sophisticated

and form subjective beliefs based upon on a set of prior probability measures Q

on Ω ≡ (ω1, ..., ωn). In this context, what differentiates investors is their risk

aversion λ and a distribution measure π based upon a set of priors Q. Thus, the

decision maker maximizes a linear average over the different priors:

max
∑
Q∈Q

EQ[u(x, λ)]π(Q) (4.2)

In this setting, the decision maker is uncertain about the true probability P,

however, there is no ambiguity about the set of priors and their probability to

occur. The decision maker assumes the distribution π used for the set of priors is
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unambiguous. The priors are uncertain but unambiguous; therefore the decision

maker is not exposed to ambiguity.

For example: assume that a decision maker has two priors Q1 and Q2 to model

the true distribution P. Assuming that the decision maker’s subjective weights

(i.e. the probability that either Q1 or Q2 is the true model) are ε and 1− ε, and

the control variable of this problem is φ (i.e. the agent decision determines the

variable φ that affects the random outcome xφ); the Problem (5.2) becomes1:

max εEQ1 [u(xφ, λ)] + (1− ε)EQ2 [u(xφ, λ)] (4.3)

In virtue of the expectancy operator linearity, the obtained solution φ∗ of Problem

(4.3) is averagely weighted to the solutions φ1 and φ2 of Problem (5.1) applied to

Q1 and Q2; obtaining:

φ∗ = εφ1 + (1− ε)φ2

4.1.3 The Ellsberg Paradox

Ellsberg (1961) describes Knight’s theory with simple gamble examples. Ellsberg

demonstrates that decision makers show a more averse behaviour when betting on

events represented by probabilities that are subjective and ambiguous. Therefore,

he states that an ambiguity premium is added implicitly by decision makers to

the risk premium which balances their risk aversion. In addition, Ellsberg shows

that under ambiguity, decision makers violate some of the axioms of decision

under uncertainty developed by Savage (1954).

More formally, a gamble is defined as a contract that yields given outcomes xi

with probability pi, where
∑

i pi = 1. Therefore, considering three gambles a,

b and c, and taking � to be the order relation on the set of gambles; the four

Savage axioms are defined as:

1Note that for the equality to hold, some regularity conditions must be respected for the
function u, specifically continuity.

102



4.1 The concept of Ambiguity

(P1) Complete ordering of actions: if a � b and b � c then a � c. If

gamble a is preferred to gamble b, and gamble b is preferred to gamble c,

then gamble a must be preferred to gamble c also.

(P2) Sure thing principle: if a � b then a+c � b+c. If gamble a is preferred

to gamble b, then any combination of gamble a and another gamble c must

be preferred to gamble b combined with the same gamble c.

(P3) Independence of probabilities and payoffs: if a � b then a + w �
b+w, when w stands as a certain payoff. If gamble a is preferred to gamble

b, then gamble a combined with the sure payoff w must be preferred to

gamble b combined with the same sure payoff.

(P4) Admissibility (or rejection of dominated actions): if a � b, then

gamble a cannot be preferred to gamble b by the decision maker.

Even before Savage exposes his axioms, Allais (1953) finds that decision mak-

ers tend to attribute excessive weight to outcomes that are considered certain,

violating (P3). Indeed, even if the expected payoff of a gamble is larger than a

given fixed payoff, decision makers tend to prefer the sure payoff (provided gam-

ble values are not sufficiently large to induce decision maker preference). Ellsberg

illustrates how decision makers violate many of the Savage axioms with a simple

example recalled below:

Gain per a single draw a b c d e f
Red 100 0 0 0 100 100

Yellow 0 100 0 100 0 100
Black 0 0 100 100 100 0

Table 4.1: Ellsenberg’s single-urn Paradox, Single Draw

To explain the example, the urn contains 30 red balls, and 60 additional balls

that are in unknown proportions of black and yellow. One ball is randomly drawn

from the urn, and the decision maker can gamble on the outcomes of the game.

Table (4.1) displays the different gains a decision maker stands to make depending

on the states of the draw:
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• For gamble a, the decision maker receives 100 if a red ball is drawn and 0

otherwise.

• For gamble b, the decision maker receives 100 if a yellow ball is drawn and

0 otherwise.

• For gamble c, the decision maker receives 100 if a black ball is drawn and

0 otherwise.

• For gamble d, the decision maker receives 100 if either a yellow or a black

ball is drawn and 0 otherwise.

• For gamble e, the decision maker receives 100 if either a red or a black ball

is drawn and 0 otherwise.

• For gamble f, the decision maker receives 100 if either a yellow or a red ball

is drawn and 0 otherwise.

Typically, a is preferred to b and c (where b and c are chosen indifferently) -

it is noted a � b ∼ c, and d is preferred to e and f (where e and f are chosen

indifferently)- noting d � e ∼ f. If a decision maker can only pick one colour

to obtain a positive gain (case a, b or c), they pick the colour the proportion of

which is known, however if a decision maker can pick two of the three colours

to obtain a positive gain (case d, e and f), they pick the colours in unknown

proportions (i.e. the couple Yellow/Black). This breaches the Savage axiom (P2)

that the utility of an act is an additively separable function of the consequences

it yields in different states of the world:

a � b and b ∼ c ; e(= a ∪ c) � d(= b ∪ c) or f(= a ∪ b) ∼ d(= a ∪ c)

Such preferences are inconsistent with choices made based on rational probabili-

ties. Indeed, if it is assumed that there were a probability measure P underlying

these choices, then a � b implies P(Red) > P(Black), while d � f implies

P(Black) +P(Y ellow) > P(Red) +P(Y ellow)1, hence revealing a contradiction.

This paradox describes the attitude of ambiguity aversion displayed by decision

makers: a is preferred to b and c because b and c represent ambiguous states. The

1Where P(Red), P(Y ellow), P(Black) denote respectively the probability that a red, yellow
or black ball is drawn.
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state d is preferred to the state e or f because it is not ambiguous: the probability

to draw a black or a yellow ball is equal to 60
90

, whereas the probability to draw

either a red or a black ball or a red or a yellow ball is unknown. The Ellsberg

paradox highlights the aversion to ambiguity: decision makers prefer objective

probabilities (the proportion of red balls in the urn is known) in comparison

to subjective probabilities where it becomes necessary to infer from incomplete

information (the proportion of combined black and yellow balls is known, but the

exact proportion of black and/or yellow balls is not).

In this case: ”The Bayesian or Savage approach give wrong predictions [...]” (see

Ellsberg (1961)). Ellsberg demonstrates that decision makers take into account

a degree of ambiguity aversion within their decision-making processes.

4.1.4 Kahneman and Tversky Prospect Theory (1979)

Following the work by Ellsberg and Savage, Kahneman & Tversky (1979) develop

a modelling framework (or prospect theory) for decision making under ambiguity

(for an analysis of prospect theory see also the paper by Wu & Gonzalez (1999)):

the central principle is that for decisions under ambiguity, the weighting of a

decision attached to a given event by a decision maker differs from the probability

assigned to the event. More specifically, Kahneman and Tversky elaborate the

following two-stage model under ambiguity, encompassing:

- the modelling of subjectively judged probabilities assigned by the investor to

the different events;

- the modelling of decision probabilities (more conservative than the judged prob-

ability) that stand as a transformed version of the subjective probabilities through

a function ψ to account for the decision maker’s aversion to ambiguity.

Kahneman and Tversky introduce two ”scales” to adapt the expected utility

framework to decision under ambiguity: a weighting function π and a value func-

tion v:
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- π associates a decision weight π(pi) to each probability pi.

- v assigns to each outcome xi a subjective value v(xi).

Typically, the value function v can be assimilated to an S-shaped function (con-

cave for gains and convex for losses), and the weighting function π can be for-

malized as a nonlinear increasing function that over-estimates the weight of small

probabilities and underestimates larger probabilities.

In 2002, Daniel Kahneman was awarded the Nobel Prize for his contribution

to behavioural economics with his work on Prospect Theory, which has been

considered a milestone in research into modelling decisions under ambiguity. The

remainder of this chapter will present and discuss the contrasting models proposed

in the literature for decision under ambiguity, focusing on applications in asset

allocation problems.

4.2 Decision under Ambiguity

In this section, we introduce the concepts of Max-Min Utility and Robust Control

that were the first proposed methods to account for ambiguity in decision making

problems.

4.2.1 Gilboa and Schmeidler Max-Min Expected Utility
(1989)

Gilboa & Schmeidler (1989) are the first to take into account aversion towards

ambiguity, by using a max-min criterion for decision making under non-unique

prior in the specific framework of risk measures. Instead of maximizing an ex-

pected utility, the agent takes a pessimistic view, minimising the maximum ex-

pected utility over the set of priors considered to model P. By applying this

methodology, the decision maker opts for the most conservative, worst-case sce-

nario (i.e., the prior that leads to the minimum optimal expected utility). Gilboa
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and Schmeidler re-specify the decision problem under ambiguous priors as:

min
Q∈Q

max
φ

EQ[u(xφ, λ)] (4.4)

The main drawback of this approach is that it effectively only considers the worst-

case scenario, i.e. the prior under which the maximized expected utility of the

gamble outcome is the lowest. Robust control theory addresses this issue and

provides a less conservative methodology for decision making under ambiguity.

4.2.2 Hansen and Sargent Robust Control (2001)

Hansen and Sargent elaborate on the max-min expected utility of Gilboa and

Schmeidler considering robust control theory. Their idea is to refine the max-min

principle by adding a penalty function α to the decision problem (4.4). The robust

preference approach criterion penalises the different investor models Q ∈ Q1 with

respect to their difference to a reference model P, defined as:

max min
Q∈Q

EQ[u(w, λ)] + θα(Q)

An example for the penalty function is the relative entropy of each prior Q with

respect to P:

α(Q) = EQ[log(
dQ
dP

)]

The robustness parameter θ is interpreted as an implicit Lagrange multiplier on

the specification error α(Q) < ε, where the investor can set the tolerance ε (i.e.

how far away a model can be from the reference model P).

Note that the same principle is used in financial mathematics for convex risk

measures recently introduced (see Föllmer & Schied (2002)) to assess and manage

risky financial positions, when the true probability P is unknown. The idea is to

create an acceptable investment position by determining the minimal amount of

capital (or capital requirement) ρ(x), that need to be added to the risky portfolio

x in order to account for ambiguity aversion. The first form of risk measure is the

1We assume that Q ∈ {Q ∈M, Q ≺≺ P}, so that it is possible to define an entropy measure
between Q and P for all Q ∈ Q.
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coherent risk measure as introduced by Artzner et al. (1999); the idea of which

is to compute the worst expected loss under the different priors considered:

ρ(x) = sup
Q∈Q

EQ(−x) (4.6)

Föllmer & Schied (2002) extend the risk measure concept with a penalty function

as in Hansen & Sargent (2001):

ρ(x) = sup
Q∈Q

EQ(−x)− α(Q) (4.7)

However, the risk measure solely takes into account ambiguity aversion.

In the remainder of this Chapter, focus is given more precisely on decision making

problems in finance. The ambiguity aversion is treated similarly in a context of

portfolio optimisation, where risk aversion is also considered. The next section

will focus specifically on the portfolio allocation problem under ambiguity.

4.3 Portfolio Allocation and Model Risk

Focusing on decision under ambiguity in problems of asset allocation, this section

will build upon the examples specified in Chapter 2. To recall the problem con-

sidered: the investor wants to allocate the initial wealth x0 among the different

assets N + 1 available in the market (N risky assets and one risk-free asset).

In this case, xφ represents the value of the investor’s portfolio at a future time

horizon, and the control variable φ represents the investor’s strategy to initially

allocate wealth among the assets. More precisely, φ is a vector of weights assign-

ing a positive value for each proportion of wealth allocated to a given asset that

is bought or a corresponding negative value if this asset is sold. Each element of

φ belongs to [−1 : 1]. Note that for a more in depth literature review of asset

allocation under model risk, one can refer to Fabozzi et al. (2007).
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4.3.1 The classical Markowitz settings

As covered in Chapter 2, the portfolio optimisation problem in the case of Markowitz

is as follows:

max
φ

EP[u(xφ, λ)] (4.8)

Subject to some investment constraints, where u is a quadratic utility function

parametrized by a risk aversion parameter λ1.

Originally the problem is solved by treating P as a known probability. In practical

examples where asset returns are assumed to be normally distributed2, the sample

mean µ and sample covariance matrix Σ of observed asset returns are used to

estimate the joint distribution of the first two moments of the asset returns.

Because the asset return distribution is assumed to be normal, the knowledge of

µ and Σ encompasses the knowledge of P. The problem (4.8) therefore becomes:

max
φ

µ′xφ − λφ′Σφ (4.9)

As demonstrated by contemporary research, the above treatment of the problem

results in suboptimal portfolio choices. Indeed, from early on, many authors have

challenged the performance of the Markowitz portfolios (see for instance Merton

(1973), who points out the instability of the estimation of µ and Σ through the

sample mean and sample covariance matrix of the asset returns). In practice

the investor can only anticipate P, therefore challenging the sustainability of the

central assumption that all investors are mutually informed and in agreement

about distribution P. Indeed, it is necessary for the investor to infer the true

probability P from historical data. The following section will draw upon the

more recent approaches to ambiguity, taking into account investor uncertainty

regarding the true probability P.

The following section will outline proposed techniques to improve the robustness

of mean and covariance asset returns estimation for model risk in portfolio op-

1u(x) = x− λx2
2 Justifying the quadratic form of the utility function, as the first two moments entirely

define the whole distribution of the asset returns.
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timisation. The notion of model risk will then be applied to more generalised

frameworks.

4.3.2 Learning and Filtering

Historically, model risk was first assimilated with parameterisation uncertainty.

Assuming the asset returns belong to a class of parametrized distributions, the

problem is to find robust estimators for the parameters. Stochastic filtering and

Bayesian statistics provide methods to account for this parameter uncertainty.

Assuming markets are complete, the investor learns from the information in-

cluded in the observed asset returns and can update estimators accordingly. Over

time, estimators eventually converge towards the real values of the asset returns

distribution parameters.

4.3.2.1 Classical Learning: the Bayesian approach

Basak (2005) considers the case where different investors have different priors

concerning the dynamics of financial assets. He uses the stochastic filtering theory

to compute market equilibrium when agents disagree on the mean growth rate of

asset returns in a context of a dynamic, complete financial market. The agents

have heterogeneous beliefs about the dynamic endowment trend (or growth rate)

of the risky financial asset (in this setting, N = 1). Under the true probability

P, the dynamics of the risky asset is:

dSt
St

= µtdt+ σtdwt

Investors consider equivalent probabilities Pi also equivalent to P. Each investor

i considers the following process for the risky asset:

dSt
St

= µitdt+ σtdw
i
t

Where µi is the anticipated dynamic trend rate for the investor i (σt is deduced

from the quadratic variations of St) and wi is the investor’s innovation process

(such that the dynamic anticipated by each investor is coherent with the observed

risky financial asset process). Investors update their beliefs in a Bayesian fashion:
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µit = EPi(µt/Ft)

Where (Ft) ≡ σ(Ss, 0 ≤ s ≤ t) is the information filtration generated by the

observation of the asset prices.

The example of a Gaussian Filtering setting allows Basak to give close formula for

the growth rate dynamics of the two agents and a disagreement process. Basak

provides solutions for the instance that there is only one risky asset.

He also presents more complex settings adding a risk free asset and considering the

case of dividend paying assets, testing scenarios generalised to several investors

and several sources of risk. Under heterogeneous beliefs, risk is transferred from

a more pessimistic to an optimistic investor. The transfer of risk is proportional

to the extent of investor disagreement. The basis for the methodology proposed

is a rational learning setting, where the learning model is correctly specified,

and the agents have constant beliefs concerning modelled asset prices, despite

disagreement.

Brennan & Xia (2001) offer a numerical solution to a similar dynamic portfolio

allocation problem. In their problem, the investor does not fully believe in one

model and uses a mixture of two different priors to model asset returns: a normal

prior and a factor pricing model based normal prior (the factor model used is

the CAPM). They find that the investor allocation between the market portfolio

and the Fama-French SMB (Small capitalization Minus Big capitalization stocks)

and HML (High book/price ratio Minus Low book/price ratio stocks) portfolios

changes dramatically if the investor uses a mixture of priors (i.e., the investor

is uncertain about the model to use to represent asset returns and therefore

considers two different models). The trend process of the asset returns is modelled

as follows:

EP(µt/Ft) = πtµ̂1
t + (1− πt)µ̂2

t

Where πt is the weight given to the CAPM model, and µ̂1
t is the estimated trend

under the CAPM prior, and µ̂2
t is the estimated trend under a classical normal

prior. Using a normal prior in conjunction with the CAPM model allows the
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investor to consider some of the CAPM anomalies as genuine, similar to the ex-

ample identified by Fama and French (their SMB and HML portfolio returns

violate the CAPM model, as a Beta adjusted portfolio of small stocks tends to

outperform a Beta adjusted portfolio of big stocks, and a Beta adjusted portfolio

of low book to price ratio stocks tends to outperform a Beta adjusted portfolio of

high book to price ratio stocks). Brennan and Xia demonstrate that model un-

certainty (i.e. uncertainty about the authenticity of the SMB and HML anomaly)

can have a major impact on portfolio choices. Empirically they found that if an

investor does not fully trust the CAPM, they would reduce investment in the

market portfolio (the ”Beta” portfolio of the CAPM) and take long positions in

the SMB and HML portfolios (outweighing small stocks and low book to price

ratios stocks).

Following Brennan & Xia (2001), Cvitanić et al. (2006) give a close form solution

for a dynamic portfolio choice problem when the investor detects abnormal re-

turns as deviations from an asset pricing model used as a prior (here the dynamic

version of the CAPM). The authors consider the market portfolio and N single

assets as normal assets. The investor is unaware of the trend process of the assets,

dynamically updating priors in a Bayesian fashion. To account for anomalies in

the CAPM model, the expected return of an asset j is modelled as:

EP(µjt/Ft) = r + βj(µMt − r) + αj

where µM is the market trend process, r is the risk free rate, βj is the asset j

CAPM beta with respect to the market portfolio and αj accounts for the abnor-

mal or idiosyncratic return of the stock j. The authors use changes in analysts

recommendations as an estimate for the Alphas.

However, such models use classical Bayesian updating techniques assuming the

parameterisation family to which the distribution P belongs to is comprehended

by the investor. Although the investor is uncertain about the parameters, there is

no model ambiguity per se as the Bayesian updating procedure assumes that if the

investor has enough observational data, the estimated distribution will ultimately

converge towards the true one.
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4.3.2.2 Learning Under Ambiguity

In this section, we present the more recent research by Epstein & Schneider

(2008), considering an alternative to classical Bayesian updating, when there

exists some ambiguity. The authors argue that ambiguity radically transforms

results attributable to classical Bayesian updating rules. The agents, when up-

dating beliefs under ambiguous information form attitudes that can be divided

into three distinct types:

• Ambiguity Aversion: investor shows ambiguity adverse behaviour, max-

imising their utility under a worst-case scenario.

• Asymmetric Behaviour: investor displays asymmetric behaviour toward am-

biguity. Under ambiguity, bad news affects conditional actions to greater

extent than good news.

• Ambiguity Anticipation: investor reduces consumption of particular assets

associated with information that is expected to be ambiguous.

The central idea proposed by the theoretical framework developed by Epstein &

Schneider (2008), is that in order to model ambiguous information, an investor

when confronted with difficulties in the judgement of signals quality, treats those

signals as ambiguous. Instead of updating beliefs in standard Bayesian fashion,

the investor considers a number of likely outcomes when interpreting the signals.

Epstein and Schneider propose the example of the noisy news signal about the

dividend s of a given risky asset:

s = θ + ε

where θ is the true information and ε is an ambiguous noise distributed as N(0, σ2
s),

with σ2
s ∈ [σ2

s ;σ
2
s ].

In the pricing theory developed by Epstein and Schneider, the greater influence of

bad news on asset returns requires that market participants be compensated for

enduring periods of ambiguous news. Epstein and Schneider build a pricing model

of financial assets being appraised by their discounted future dividend values

where in every period, the agents observe an ambiguous signal of the next period
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dividend. The stock price today must be equal to the worst-case conditional

expectation of the discounted value of all future ambiguous dividends.

Epstein and Schneider conclude that ambiguity lowers the mean return of a port-

folio of assets, no matter how many assets constitute the portfolio. On the con-

trary to pure risk where a diversification phenomenon can take place, the market

portfolio does not become less uncertain with an increased number of assets. The

news communication process introduces a permanent ambiguity into beliefs about

the fundamentals (here the dividends).

The pricing model under ambiguity developed by Epstein & Schneider (2008)

is theoretical and deals with a unique risky asset. Models developed by Basak

(2005), Brennan & Xia (2001) or Cvitanić et al. (2006), are very theoretical as

well. More practical models are needed to solve large asset portfolio allocation

problems under ambiguity. In the next section, more practical models considering

large portfolios of assets are discussed.

Empirically, it has been already demonstrated that the Makrowitz model per-

forms badly (see for instance Merton (1973)). This is due to the fact that the

estimation of the mean vector and covariance matrix of a large number of asset

returns is often unstable. Also, in the case where the investor considers several

models, we have seen that the Gilboa-Schmeilder min-max paradigm forces the

investor to consider only the worst case. In order to still take into account the dif-

ferent priors the investor considers, and to overcome the major shortfall of mean

and covariance estimation instability, several penalization procedures have been

proposed. The different priors are penalized with respect to a defined distance

towards a reference model. Unlike the traditional approach, where inputs to the

portfolio framework are treated as deterministic (especially the parameters of the

parameterized distribution of asset returns), robust portfolio optimization incor-

porates the notion that inputs have been estimated with errors, and therefore

constraint that they should lay in a reasonable interval. The resulting robust

portfolio allocation tend to be more stable and less sensitive to small changes in

model parameters.
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4.3.2.3 The shrinkage approach

The idea behind the shrinkage approach is to use prior knowledge in order to

make the portfolio allocation more robust (i.e. less dependant on estimation

variations). Black & Litterman (1990) introduced in the classical Markowitz

settings the option for the investor to specify some ”view” on the asset returns,

which effectively boils down to specifying a prior for the asset returns mean

vector. More generally speaking, the shrinkage approach proposes to shrink the

sample mean toward a prior value, that enhances the robustness of the estimator.

In practice, this means estimating the mean vector µ as a weighted average

of the sample mean µ̄ and a prior value. Jorion (1986) uses the Bayes Stein

estimator and shrinks the sample mean toward the minimum variance portfolio

mean. Pastor (2000) proposes to shrink the unconstrained sample mean toward

a mean constrained by a prior model. As an example he uses the CAPM as a

prior model (and therefore the constrained mean is defined for each asset i as:

∀i, µi = βiµM).

Wang (2005) elaborates on and integrates the shrinkage approach developed by

Pastor and max-min optimisation as proposed by Gilboa & Schmeidler (1989).

The asset model used is also the CAPM, hence, the mean of the asset returns is

estimated as: µ = α+βµM . Wang models the prior distribution of α conditional

on the covariance matrix Σ as a normal centred distribution with variance pro-

portional to the covariance matrix: θΣ, θ > 0. Finally, Wang models the investor

portfolio decision problem as:

max
φ

min
θ

E[u(xφ, θ)]

4.3.2.4 The Multiple Prior Approach

Garlappi et al. (2009) generalize the approach to multiple priors adding to the

min-max optimization a constraint (in the spirit of Hansen & Sargent (2001))

on the parameters in order to relax the worst case scenario settings of Wang.

Investors minimize their preferences only among priors that are close enough

to the empirical sample estimators. They add a constraint so that they only
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consider models for which the implied mean is close enough to the empirical

mean: in practice, they add to the problem above the following constraint:

f(µ, µ̄, Σ̄) < ε

where µ̄ and Σ̄ are the sample mean and variance and ε accounts for the investor

model ambiguity aversion (the bigger ε, the more averse the investor is). f can

be assimilated to a t-test statistics that tests if the model constraint mean is in

the neighbourhood of the sample mean.

Note that f plays the role of a confidence interval: only priors for which expected

returns are close enough to the empirical mean of asset returns are considered.

Along similar lines, Kogan et al. (2002) restrict the set of priors to only those that

are close enough to the empirical data according to entropy measurements (the

entropy between the empirical data and the priors considered must be smaller

than a tolerance level ε); the investor solves the following problem:

max
φ

min
Q∈Qε

EQ[u(Xφ)]

where Qε = {Q ∈ Q : E[dQ
dP̂ ln dQ

dP̂ ] < ε} and P̂ stands for the empirical distribution

of observed asset returns.

In their recent paper Epstein & Schneider (2007) use a likelihood ratio test to con-

straint the portfolio optimization problem: only priors close enough to historical

data in terms of likelihood ratio are considered.

All those models however are constrained by the choice of relevant reference

priors. Some general models have been recently proposed and are presented in

the following section.

4.3.3 Generalised framework to model ambiguity in the
asset allocation problem

More recently, some authors have considered more generalised models that en-

compass the different frameworks proposed so far in the literature to account for

model ambiguity in the portfolio optimisation problem.
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4.3.3.1 A smooth class of preferences that models ambiguity

Maccheroni et al. (2006) generalise a smooth class of preferences dealing with

ambiguity. They generalise the Gilboa-Schmeidler max-min model to asset allo-

cation problems as they introduce a penalty function α:

max
φ

min
Q∈Q

EQ[u(xφ, λ)] + α(Q) (4.10)

The function α operates as a generalised penalty function that encompasses:

• the entropy penalty criterion used by Hansen et al. (2006), where the in-

vestor considers a unique prior Q. α(Q) ≡ EQ(log dQ
dP ) is the relative entropy

of Q with respect to P.

• the multiple prior models (for instance the one studied by Epstein & Schnei-

der (2008)) where the investor considers several priors in a subset Q∗ of the

set Q. α(Q) ≡ 0 if Q ∈ Q∗ otherwise α(Q) ≡ +∞.

The bigger is α(Q), the higher the penalisation; and, therefore the greater the

ambiguity aversion.

The next section will present a general theoretical method that take into account

ambiguity developed by Klibanoff et al. (2005). This methodology is a gener-

alisation of convex risk measures as developed by Föllmer & Schied (2002) and

adapted to portfolio optimisation. Note that the novel Ambiguity Robust Ad-

justment methodology proposed in this PhD thesis will be benchmarked by this

general model of asset allocation under ambiguity.

4.3.3.2 A Generalised Model

Klibanoff et al. (2005) propose a generalised methodology to take into account

ambiguity. They extend the theory of coherent risk measure developed by Artzner

et al. (1999) and elaborate on the model of value function proposed by Maccheroni

et al. (2006). Klibanoff, Marinacci and Mukerji introduce a smooth function φ
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characterising the investor ambiguity aversion by the parameter γ. Thus, the

portfolio optimisation problem becomes:

max
φ

Eπψ[EQ[u(xφ, λ)], γ] (4.11)

Note that the SEU portfolio allocation problem (5.2) is a particular case of (4.11)

when the agent is not averse to ambiguity, where ψ is a linear function (subjective

probability with an average weighting of the priors in Q) and π represents the

subjective distribution of the priors Q ∈ Q. Eπψ[EQ[u(Xφ, λ)], γ] can be inter-

preted as the certainty equivalent of the ambiguous conditional expected utility

EQ[u(Xφ, λ)] under any prior model Q ∈ Q. The nonlinearity of ψ accounts for

decision maker aversion to ambiguity.

The main drawback of the general methodology proposed by Klibanoff, Marinacci

and Munkerji is that it is often impossible to solve without numerical methods,

and furthermore, it can be difficult to use empirically (when the dimension of

the decision variable is large). Additionally, the ambiguity aversion is not clearly

identified: it is assumed the ambiguity aversion is the same against all the different

priors. It does not make the distinction between the absolute ambiguity aversion

an investor shows for a given prior and the overall ambiguity aversion that the

investor displays to the set of priors considered.

4.4 The Poor Performance of Ambiguity Mod-

els on Empirical Data.

The problems encountered with the methods above stem from either an over-

dependency upon parametric specification of priors and/or rely on too complex a

process to be practically implemented. Models that utilise an increase in the num-

ber of priors and a refinement of the methods to control estimation errors result

in high levels of noise, and ultimately poor realised performance of subsequent

optimised portfolios.

In fact, DeMiguel et al. (2007) have conducted a thorough study comparing the

performance of different portfolios. Monthly equity returns from 1952 to 1999
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(provided by the website: Kenneth French website) are used to build and compare

the performance of 14 different portfolios (the naive equally weighted portfolio,

where the asset weights are all equal to 1
N

; the sample mean-variance portfolio;

the Bayesian estimated mean variance portfolio; the Bayes-Stein shrinkage es-

timated portfolio; the Data and Model Pastor portfolio; the minimum variance

portfolio; the CAPM portfolio; the Garlappi-Uppal-Wang multiple prior portfo-

lio; the short sell constrained portfolio, and a number of mixed variations of the

above portfolios). They compute the out of sample means and standard devia-

tions of the portfolio returns (denoted µk and σk), ∀k ∈ [1, 14]. They then use

the following performance measures to compare the different portfolios:

• the Out of Sample Sharpe Ratio (mean over standard deviation of out of

sample portfolio returns: Sharpek ≡ µk
σk

)

• the Certainty Equivalent Return of the different portfolio strategies (mean

minus risk aversion adjusted variance): CERk ≡ µk − λσ2
k)

• the Turnover of the portfolio (i.e. the amount of shares traded due to

portfolio rebalances when the weights are modified)

The main result of the study conducted by DeMiguel et al. (2007) is that: all

the selected portfolios fail to significantly beat the performance of the simplistic

equally weighted portfolio (that is denoted 1/N , as it affects an equal weight to

all the N risky assets considered). Only the minimum variance portfolio signifi-

cantly out performs the equally weighted portfolio in terms of Sharpe; in terms

of CEQ, only the mean-variance portfolio beats the 1/N portfolio; and in terms

of Turnover, the equally weighted portfolio is by construction the best performer

(with a null Turnover), as the allocation remains always the same for all risky

assets. Indeed, the greater the uncertainty concerning the set of the constraints

in a robust optimisation portfolio problem, the greater the chance that the re-

sulting optimal portfolio will be conservative, and consequently a quantity of the

potential portfolio performance will be sacrificed. In a robust portfolio optimisa-

tion, the investor trades off optimality against the risk of employing an inaccurate

model. It can often prove very costly to over constrain the optimisation problem.
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Mounting criticism of ambiguity aversion methodology (see for instance Al-Najjar

& Weinstein (2009) who question whether the Ellsberg choices are rational re-

sponses to ambiguity, therefore contradicting the ambiguity-aversion postulate

and many dependent ambiguity aversion methods) is questioning the theoretical

and empirical limitations of accepted methods. Responding to Al-Najjar & We-

instein (2009) critics, Nehring (2009) argues that rational choice under ambiguity

aims at robustness rather than an impossible avoidance of ambiguity. However,

as Fabozzi et al. (2007) point out, robust decisions under ambiguity are often

paid for by the poor performance of those models in practice: ”By using robust

portfolio optimization, investors are likely to trade off the optimality of their

portfolio allocation in cases in which nature behaves as they predicted for protec-

tion against the risk of inaccurate estimation”. Hence this thesis proposes a new

methodology that avoids the use of penalization techniques; instead proposing

modification of the outputs (i.e. the different asset allocations) of the models

considered. The next chapter will present this novel methodology to account for

model ambiguity that performs well empirically and outperforms existing models

in simplicity of practical application.
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Chapter 5

A Robust Alternative Approach
to Model Ambiguity

”Any financial model is by definition a simplified and thus imperfect represen-

tation of the economic world and the ways in which agents perform investment,

trading or financing decisions under uncertainty.”

R. Gibson, Model risk, RISK books, 2000:

This chapter constitutes the core contribution of this PhD thesis by proposing

a new approach to account for model ambiguity aversion in the portfolio opti-

mization problem. Our aim is to introduce a simple, practical and easily imple-

mentable approach to account for model risk in a robust way. Our motivation

to propose a simple methodology to account for ambiguity aversion is essentially

due to the complexity to solve the allocation problem under the settings proposed

by Klibanoff et al. (2005) and presented in Chapter 4.

A two-step robust ambiguity methodology is introduced, which offers the advan-

tages of greater tractability and easier implementation when compared with many

of the various approaches proposed in the literature, and detailed in Chapter 4.

This methodology decomposes ambiguity aversion into both a model specific ab-

solute ambiguity aversion, and a relative ambiguity aversion across the set of
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different prior models considered for the asset returns. First, the optimal allo-

cations under each prior are transformed through a generic absolute ambiguity

function ψ; then, the adjusted allocations are mixed through an adjustment func-

tion π that reflects the relative ambiguity aversion of the investor towards the

different models.

The original approach proposed in this thesis is altogether more flexible, easier

to compute, and more tractable than the one proposed in the literature. Further-

more, this novel approach is robust in the sense that it is totally independent of

the class of priors Q considered by investors to model financial asset returns, as

well as optimisation criteria; and therefore, can be applied to any kind of portfolio

optimisation model.

The organisation of the chapter is as follows. Firstly, a general background is out-

lined for the portfolio optimisation problem under model ambiguity after which,

the Ambiguity Robust Adjustment (ARA) methodology will be presented in de-

tails. First, the Absolute Ambiguity Robust Adjustment (AARA) function ψ will

be introduced. The AARA transforms the optimal weights computed under each

prior, considered according to the idiosyncratic ambiguity aversion the investor

displays for each given prior. Then, the Relative Ambiguity Robust Adjustment

(RARA) adjustment function π will be also introduced. The RARA accounts for

the systematic ambiguity aversion of the different priors considered. The func-

tion π allows a mix to be made of the individual optimal weights obtained in the

precedent phase through the function ψ. In addition, the specific role of the risk

free asset in the ARA methodology will be discussed. In a third section, some

key properties of the Ambiguity Robust Adjustment (ARA) transformation will

be listed. The last two sections give theoretical examples of the original ARA

methodology presented in this research: in the fourth section, the ARA method-

ology will be compared to the methodology developed by Klibanoff et al. (2005)

(denoted KMM) in their landmark paper, showing that in the specific example

given by Klibanoff et al. (2005), the ARA methodology is very similar to the

KMM methodology. Finally, a theoretical example of greater complexity will be

presented to illustrate how the novel ARA methodology can deal with more com-
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plex settings, and to exhibit how in the case considered, portfolio allocation is

affected by ambiguity aversion.

5.1 Settings

Initially, the same settings as in Chapter 2 are considered: an investor with a

given initial wealth x0 wants to allocate their wealth among the N + 1 different

assets available in the market. xφ represents the value of the investor’s portfolio

at a future time-horizon, and the control variable φ represents their strategy

(i.e. how the wealth is allocated amongst the assets). More precisely, φ is a

vector of weights with each component corresponding to the proportion of wealth

the investor allocates to a given asset; a negative value translating the fact that

a particular asset is sold. Each element of φ belongs to a domainDφ that is

considered to be [−1 : 1]. Note that there is an investment constraint:
∑N

i=0 φ
i =

1, in order to translate the idea that 100% of the initial wealth has been invested.

It is assumed that the investor considers several different models to represent the

dynamic of xφ; and that the investor is ambiguous in regard to those models.

The following section will re-specify the background literature on ambiguity, ex-

posed earlier in Chapter 4 that is of specific interest to the portfolio allocation

problems discussed in this chapter.

The standard Markowitz framework (as presented in Chapter 2) does not in-

clude model uncertainty for investment decision-making. The optimal portfolio

allocation is obtained as the solution of the following optimisation programme:

φ∗ ≡ argmax
φ

EP[u(xφ, λ)] (5.1)

where u is a Von Neumann-Morgenstern utility function characterising the in-

vestor’s preferences, and parametrized by the risk-aversion parameter λ. In such

a setting, P stands for the only prior (or model for the distribution of the assets

returns) the investor has, which is held without ambiguity. Hence, the risk is

perfectly quantifiable by the investor through knowledge of the distribution P.
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As suggested by the Subjective Expected Utility (SEU) framework developed by

Savage (1954) and discussed in Chapter 4, an agent may also consider different

models Q in a finite set of possible models Q. In such a case, the investment prob-

lem is modified according to the subjective view π(Q) taken by the investor for

each model Q. More precisely, π(Q) represents the investor subjective likelihood

of the model Q to occur. The investor operates a linear blending of the different

models, weighted by their subjective probability π(Q) to be the ”real” model.

Under each model, the investor considers the objective expected utility of their

future wealth. Across all priors, the investor considers the subjective expected

value of the expected utilities under the different models. The optimal portfolio

allocation is then obtained as:

φ∗ ≡ argmax
φ

∑
Q∈Q

EQ[u(Xφ, λ)]π(Q) (5.2)

According to this framework however, even if the agent considers several priors,

he is neutral towards model uncertainty: there is no ambiguity towards the set

of models considered - or their likelihood to occur.

However, as demonstrated by Ellsberg (1961), decision-makers show more adverse

behaviour when betting on events for which outcomes are ambiguous (i.e. when

there is also some uncertainty regarding the underlying model); rather, than when

betting on events for which the outcomes are only risky (i.e. the underlying model

is well known). Consider a financial illustration of the Ellsberg Paradox: the risk

premium paradox. Investment tends to be placed in local markets, despite the

fact that the expected returns are lower in comparison with those that can be

made through foreign markets. This is due to investors adding an ambiguity-

premium to foreign risky assets (investors prefer investing in assets located in

their geographical zone, because they believe they can better apprehend their

return distribution).

The SEU framework fails to take into account this additional source of aversion

for financial investors. Of the various approaches presented in Chapter 4 that take

into account such aversion towards model uncertainty in the investor decision-

making process, the most general approach is the Klibanoff et al. (2005) model.
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This approach considers an increasing, concave transformation function Ψ that

characterises investor ambiguity aversion through the parameter γ. Thus, the

optimal-weights vector is determined as:

φ∗ ≡ argmax
φ

∑
Q∈Q

Ψ
{
EQ[u(xφ, λ)], γ

}
π(Q) (5.3)

This theoretical approach can be challenging to implement in practice for a variety

of different reasons; including, the difficulty involved in finding the calibration of

the various parameters. Indeed, no distinction is made between specific ambiguity

aversion for a given model (i.e. How closely does a specific model represent

reality?), and general ambiguity aversion for the whole class of models (i.e. How

well does the set of all models encompass reality?). Moreover, providing an

explicit solution to Programme (5.3) can be extremely difficult, even numerically;

and especially in the multi-dimensional case; or, when a number of constraints

are added to portfolio allocation. It is important to note that in their paper,

Klibanoff et al. (2005) only provide a simple numerical example for a portfolio

with 3 assets to illustrate their methodology, whereas practitioners often consider

portfolios with hundreds of assets. In addition, the Klibanoff, Marinacci and

Munkerji approach lacks flexibility: if an investor considers a new model, they

have to entirely re-compute the optimization programme to find the new adequate

allocation. To overcome the aforementioned limitations, this thesis proposes a

robust general framework for decision-making under uncertainty where, rather

than aiming towards the optimal solution for a given criterion, the objective is

to find a robust solution in cases when a large number of assets is considered and

several different priors taken into account.

5.2 An alternative robust approach to model

uncertainty: the Ambiguity Robust Adjust-

ment (ARA)

The main idea behind the novel methodology proposed here, is to perform an am-

biguity robust adjustment of each allocation obtained for each individual prior
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before performing a global adjustment over the class of models. This method-

ology, hereafter referred to Ambiguity Robust Adjustment (ARA), has the key

advantages of being very flexible (any type of priors can be considered, and any

priors can be easily added or removed from the set), tractable (the investor am-

biguity aversion can be precisely described in monetary units), and (as will be

argued in Chapter 6 where an empirical study in conducted) is better suited to

practical situations. Indeed, the ARA methodology is easily applied to large di-

mensional problems, when investors want to allocate their wealth among a large

number of assets.

More precisely, the ARA consists of two main steps, which correspond to an

adjustment for two different types of ambiguity aversion:

• Absolute ambiguity aversion : This refers to the ambiguity aversion the in-

vestor has for a given prior. It operates an adjustment on the preferred

allocation given under a prior Q. More specifically, the investor will first

solve the optimisation programme for each prior Q in the set Q, subject to

an investment constraint:

max
φ

EQ[u(Xφ)]

assuming that Q was the only prior model available to the investor. Then,

the optimisation outcome argmaxφ EQ[u(Xφ)] is distorted by a function ψ

to account for the (absolute) level of ambiguity aversion the investor has

toward the prior Q:

ψ[argmax
φ

EQ[u(Xφ)], γQ]

The distortion function ψ is called Absolute Ambiguity Robust Adjustment

(AARA). ψ is common to all priors, however it is parametrized by a coeffi-

cient γQ, which depends on the prior Q. The adjustment of the optimisation

outcome through ψ answers the question of how much the prior Q can be

trusted for a particular decision problem.

• Relative ambiguity aversion : This refers to the relative ambiguity aversion

the investor has for the set of priors Q. More precisely, the investor aggre-

gates the adjusted allocations per prior they have obtained in the first step,

using a function π, called Relative Ambiguity Robust Adjustment (RARA).
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The asset allocation of the model Q will be denoted as φQ. The ARA

portfolio allocation φARA ≡ (φARA,i)i∈{1,...,N} is then obtained as:

{
φARA,i ≡

∑
Q∈Q ψ

{
φQ,i, γ

}
π(Q), i ∈ {1, ..., N}

φARA,0 ≡ 1−
∑N

i=1 φ
ARA,1

In the section below the characteristics of the functions ψ and π are described,

with particular focus on their desired properties.

5.2.1 The Absolute Ambiguity Robust Adjustment (AARA)

The idea behind the AARA is that because the investor has doubts about the

weights generated by a given model, they wish to scale-down those weights, in or-

der to reduce the decision weights obtained for ambiguous models, and especially

the biggest absolute weights that could entail the biggest risks in their portfolio.

The investor treats the absolute ambiguity aversion with the same type of trans-

formation across all the different models (ψ is the same for all the models). What

distinguishes the absolute ambiguity aversion transformation across the models

is the specific ambiguity aversion parameter γQ the investor attributes to each

model Q ∈ Q. As the optimal weights obtained for each model φQ are bounded by

1, ψ(1, γQ) represents the maximum weight the investor will assign to any asset

after the AARA transformation. The following notations are used:

{
∀Q ∈ Q, aQ ≡ ψ(1, γQ)
and a ≡ maxQ∈Q a

Q

Therefore, ψ is defined on the set of optimum model dependent weights [−1; 1]×Q
onto a set [−a; a] of transformed weights. Note that the investor can set the value

of aQ to express how much he is willing to reduce a maximum weight for a given

model Q, and deduce from there the value of γQ depending on the explicit form

chosen for ψ.

Definition 5.1 (AARA). A function ψ:
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{
ψ : [−1; 1]× Q→ [−a; a]
(φ,Q) :→ ψ(φQ, γQ)

is an Absolute Ambiguity Robust Adjustment (AARA) if it satisfies the following
properties of Universality, Monotonicity and Convexity.

The following properties apply for the risky assets only, (i.e. for i ∈ {1, ..., N}).

Property 5.1 (Universality:). The function ψ is the same for all the priors.

The investor distorts the optimal allocation obtained for each prior using the

same type of transformation. The absolute ambiguity aversion adjustment can be

different across the different priors depending on the absolute ambiguity aversion

parameter γQ; which may differ from one model to the other.

Property 5.2 (Monotonicity:). The function ψ preserves the ranking of the
individual risky asset allocations obtained for a given prior Q.

If for a given model Q, and for two risky assets i and j, φi < φj then ψ(φi, γ
Q) ≤

ψ(φj, γ
Q). In other words, the investor is consistent in their choices and the

transformation ψ preserves their preferences.

The function ψ also satisfies some properties of convexity to express ambiguity

aversion:

Property 5.3 (Convexity:). The function ψ is concave on [0; 1] and convex on
[−1; 0].

More precisely, the function ψ is parametrized by a coefficient of ambiguity aver-

sion γQ, so that the function ψ reduces the absolute largest weights given by

the optimised portfolios under each model considered. The bigger the aversion

coefficient γQ the more averse the investor is to large weights inferred by Q. As

it applies greater penalisation to the largest positive and negative weights , the

function ψ has an S-shape.

For all assets i ∈ [1, N ] and all models Q ∈ Q: |ψ(φQ,i)| ≤ |φQ,i|.
In absolute terms, the absolute ambiguity adjusted weights are smaller than the

optimal weights computed under a given model Q.

Some additional properties can be considered depending on the assumption made

concerning investor preferences and trading constraints.
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Property 5.4 (Invariant point:). There is no ambiguity aversion for a zero
weight: ψ(0) = 0.

If the model Q assigns no weight on a given asset, the transformation ψ should

not modify the ”neutrality” of model Q in respect to this asset.

Property 5.5 (Symmetry :). The function ψ is an odd function symmetric
around zero.

In a context where short selling is possible, there is no reason to differentiate

the long or short weights of the same magnitude in terms of ambiguity aversion.

It can be assumed that a long-short investor has the same aversion to positive

or negative weights of the same absolute value: The AARA function penalises

the scale of the optimal weights of a given model without discriminating between

negative and positive weights. Which translates to:

∀φi ∈ [−1; 1], ψ(−φi) = −ψ(φi)

Property 5.6 (Limit behaviour:). The function ψ has the following limit val-
ues:

 ∀x ∈ [−1, 1], lim
γ→∞

ψ(x, γ) = 0

∀x ∈ [−1, 1], lim
γ→0

ψ(x, γ) = x

An investor who is infinitely averse to ambiguity will be prevented from trading as

none of the models considered can be trusted. Therefore, all the portfolio weights

should be defaulted to zero. However, if the investor is neutral to ambiguity, the

function ψ should leave the model-dependent weights invariant.

This thesis uses a similar function to the one applied by Klibanoff et al. (2005)

to account for ambiguity; the function ψ can be any classical S-Shape function

that possesses the useful properties of concavity (convex for negative values),

symmetry and monotonicity (similar attributes as for classical utility functions).

An example for the function ψ is:

ψ(x, γ) ≡


1−exp−γx

γ
, 0 ≤ x ≤ 1

expγx−1
γ

,−1 ≤ x ≤ 0
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Figure 5.1: ψ for different values of the ambiguity aversion parameter γ
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What actually characterises the function ψ is the ambiguity parameter γ that

gauges the concavity of the function ψ; and therefore, the ambiguity aversion of

the investor.

Note that the transformation by the function ψ does not modify the preferences

of the investor, as it is applied on the allocation that maximizes the investor

value function. All the four utility preference axioms (completeness, reflexivity,

transitivity and continuity) are therefore still respected.

5.2.2 The Relative Ambiguity Robust Adjustment (RARA)

Once the allocations have been computed for each prior Q and have been inde-

pendently adjusted for ambiguity aversion through the AARA function ψ, they

need to be aggregated across all priors in the set Q. The RARA function takes

into account the ambiguity aversion of each prior relative to the whole class of

priors Q and therefore depends on Q and Q. Such an adjustment is made through

a mixture function π. The RARA function π(Q) represents the likelihood or de-

gree of confidence the decision maker has for the adjusted result given under the

model Q when all the adjusted results for all the other priors are considered.

π(Q) can be seen as a subjective weight given by the decision-maker to the

adjusted solution ψ(φQ, γQ) for the model Q. Therefore, π(Q) is always non-

negative. If the decision-maker categorically mistrusts the prior Q relative to the

other priors, they will simply set the value π(Q) to zero. Yet, if on the contrary,

the prior Q relative to the additional priors is fully trusted, then the value of the

function π for all the additional priors will be zero. Note that in this case, the

weight π(Q) is not necessarily one, since the agent may assume a less than full

understanding of the situation (i.e. the set of prior Q does not encompass the

true probability P).

More formally the following definition for the RARA function can be given:

Definition 5.2 (RARA). The function π : Q → [0; 1] is a Relative Ambiguity
Robust Adjustment (RARA) function if:

∀Q ∈ Q, 0 ≤ π(Q) ≤ 1
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and
∑

Q∈Q π(Q) ≤ 1

After the transformation through ψ, the weight of any risky assets is defined as:

∀i ∈ [1;N ], φARA,i =
∑
Q∈Q

ψ(φQ,i, γQ)π(Q)

and the weight of the risk free asset is defined as:

φARA,0 = 1−
N∑
i=1

φARA,i

The major difference with the Subjective Expected Utility framework, is that the

sum of the weights π(Q) over the set of priors Q does not necessarily sum to one,

since the agents may doubt the existence of a full comprehension of reality. Unlike

under the SEU settings, the weights π(Q) cannot be assimilated to probabilities.

More precisely, if
∑

Q∈Q π(Q) < 1, it means the investor does not hold the belief

that a perfect representation of the asset returns distribution with the set of priors

Q can be made.

5.2.3 The role of the risk free asset

Due to the specific nature of the risk free asset, it has no model risk associated

with it (its future value is known with certainty). Therefore, it plays a specific

role in the ambiguity adjusted optimal asset allocation. It can be assimilated to a

refuge value in the following sense: the more the investor is averse to ambiguity,

the more they invest in the risk-free asset. Thus, as the ”disinvested” part of

the wealth from the risky assets is transferred to the risk-free asset, the adjusted

weight of the risk-free asset corresponds to the amount of money the investor is

reluctant to invest in risky assets due to their aversion towards model risk. After

the transformation ψ, the weight of the risk free asset allocation is defined as the

residual of wealth not invested in risky assets:

∀Q ∈ Q, ψ(φ0,Q, γQ) ≡ 1−
N∑
i=1

ψ(φi,Q, γQ)

And the reserve made because of absolute ambiguity aversion towards the model

Q is therefore defined as:
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ρQ ≡ ψ(φ0,Q, γQ)− φ0,Q

I.e., it represents the allocation invested in the risk free asset after the AARA

transformation minus the allocation initially granted to the risk free asset under

the prior Q.

Similarly, after the mixture function π is applied, the final ARA risk free asset

allocation is defined as the residual of wealth not invested in risky assets:

φARA,0 ≡ 1−
N∑
i=1

ψ(φi, γQ)π(Q)

The reserve made because of total ambiguity aversion is therefore defined as:

ρ ≡ φARA,0 −
∑
Q∈Q

φ0,Qπ(Q)

And the reserve made because of relative ambiguity aversion towards the set of

models Q is deduced to be:

ρQ ≡ ρ−
∑
Q∈Q

ρQπ(Q)

5.2.4 ARA parameterisation

The investor aversion to ambiguity is dynamic; as depending on the period consid-

ered, the investors are more or less confident about their models and the overall

set of models considered. Therefore, the function π and the ambiguity aver-

sion parameter γ are allowed to adapt dynamically, and expand or contract the

total investment size; whether, or not the total ambiguity aversion decreases

or increases over time (the ambiguity parameter γ and the function π can be

re-parametrized every time a decision is made). As pointed out by Epstein &

Schneider (2007), the ambiguity aversion of an investor does not decrease mono-

tonically over time. The novel RARA function allows the investor to dynamically

adjust their portfolio weights depending on their beliefs concerning the accuracy

of a given prior Q to model the true distribution P, relatively to the set of priors

Q considered.
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The approach differs considerably from the classical Bayesian updating approach

(where the investor learns more about the underlying model with any new infor-

mation flowing in the stock price returns). In a Bayesian framework, investors be-

lieve that they have adequate information, and their model ultimately converges

toward the true model. Therefore, investor confidence in their model increases

gradually and monotonically. Under model ambiguity; however, this is not the

case. Investors can become more or less confident over time in a non-monotonic

way; thus, investors do not assume that more information can systematically

increase confidence about their model.

Many methods could be used in practice to calibrate the adjustment π(Q), and the

ambiguity aversion parameter γQ for a given model Q. As an illustration, a simple

empirical methodology is proposed that takes into account the relative historical

performance of the different models: initially, a number of performance measures

(the Sharpe, Sortino, Gain Loss or Win Lose ratios, as described in Chapter 2)

are computed for the different models considered, and evaluated over a given

time-window. The adjustment π can then be computed as a weighted average of

a given performance measure; whereas, the ambiguity aversion parameter γ can

be parametrized as the inverse of the particular performance measure chosen for

the prior model Q considered. In Chapter 6, a more in depth description is made

of the calibration used in the empirical study testing the performance of the ARA

methodology on real data.

5.3 Some definitions relative to the ARA asset

allocation

To form comparisons between the different asset allocations for different models,

and the impacts of the ambiguity aversion on the different weights assigned to

each asset, the following section will present a number of properties and defini-

tions relative to the ARA, as also described in Tobelem & Barrieu (2010a). In

addition, a measure is proposed to represent the distance between two different
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asset allocations, which is used to compare differing asset allocations in the em-

pirical study developed in Chapter 6. The Ambiguity Robust Adjustment refers

to the combined adjustment; firstly, by the AARA of the optimal weights inde-

pendently computed for each prior; and secondly, by the RARA performed to

combine those adjusted weights. The Absolute Ambiguity Adjustment (AAA)

and the Relative Ambiguity Adjustment (RAA) measures presented below are

relative to the AARA and RARA respectively. Those measures can be used to

describe an investor ambiguity aversion toward a specific model and relatively to

the whole set of models considered.

For the following definitions, let φQ be the asset allocation conditional on model

Q ∈ Q and φARA the ARA asset allocation.

Definition 5.3. Portfolio distance

Consider two models: Q1 and Q2, in the set of priors Q. The distance measure δ
between the two models is defined as:

δ(φQ1

,φQ2

) =
N∑
i=0

|φQ1,i − φQ2,i|

δ(φQ1 , φQ2) represents the turnover value to rebalance the investor portfolio from

the asset allocation φQ1
to the asset allocation φQ2

.

Definition 5.4. Absolute Ambiguity Adjustment (AAA)
The value of the Absolute Ambiguity Adjustment (AAA) of an investor toward
the model Q is defined as:

AAA(Q) ≡
N∑
i=0

|φQ,i − ψ(φQ,i, γQ)|

AAA(Q) represents the theoretical turnover to rebalance the investor’s asset allo-

cation on the risky assets i = 1, ..., N obtained under the prior Q to the Absolute

Ambiguity Adjusted asset allocation, taking into account the investor absolute

aversion against the same prior Q.
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Thus, it is deduced that the total value of the investors’ Absolute Ambiguity

Adjustment toward all their priors is defined as:

AAA(Q) ≡
∑
Q∈Q

N∑
i=0

|φQ,i − ψ(φQ,i, γQ)|π(Q)

Definition 5.5. Relative Ambiguity Adjustment (RAA)
The value of the Relative Ambiguity Adjustment (RAA) of an investor is defined
as:

RAA(Q) ≡
N∑
i=0

|φARA,i −
∑
Q∈Q

φQ,iπ(Q)|

Which effectively represents the turnover between the Robust Ambiguity Portfolio

and the Subjective Expected Utility Portfolio.

Recall that, in the singular SEU case, π is considered to be a probability and;

therefore,
∑

Q∈Q πQ = 1, the SEU portfolio allocation is thus defined as:

φSEU,i ≡
∑
Q∈Q

φQ,iπ(Q)

Note that this is the assumption made in the remainder of this and the next

Chapter (where some empirical tests are run to evaluate the ARA methodology).

In Chapter 7, this assumption about π is relaxed.

5.4 Comparison with the Klibanoff, Marinacci,

Mukerji model (KMM)

In the present section, the approach of Klibanoff et al. (2005) is compared to the

novel ARA methodology presented in this research.

5.4.1 Settings

In the article illustrating their methodological basis, Klibanoff, Marinacci and

Mukerji provide an example that considers a simple one period, three asset model

with a: risk free asset s0, a risky asset s1 and an ambiguous asset s2. In this model,
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there are two different states of the world ω1 and ω2. The investor considers two

different priors Q1 and Q2 and has equal subjective beliefs for both of them:

π(Q1) = π(Q2) =
1

2

The three assets have the same initial value of 1; their terminal values at the

horizon time are given as follows:

Table 5.1: KMM example framework

Q1 Q2

π(Q1) = 1
2

π(Q2) = 1
2

ω1 ω2 ω1 ω2

Q1(ω1) = 1
4

Q1(ω2) = 3
4

Q2(ω1) = 3
4

Q2(ω2) = 1
4

s0 1.15 1.15 1.15 1.15
s1 3 1 3 1
s2 2 2 1 1

Note that:

• s0 is a risk-free asset, as it has the same terminal value across all states and

the universe of priors;

• s1 is a risky asset as it has the same possible terminal values for both models

Q1 and Q2 but its value depends on the state of the universe (ω1 and ω2);

• Finally s2 is ambiguous as its terminal value depends on the model taken

into account but not the state of the universe;

Recall that under the ARA methodology, the solution is defined as:

φARA ≡
∑
Q

ψ(φQ, γQ)π(Q)

In this case, the different models asset allocation φQ, where Q ∈ Q, are defined

as the solutions of the expected utility maximisation:

φQ ≡ argmax
φ

EQ[u(xφ, λ)]
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Whereas, the KMM solution is defined as:

φKMM ≡ argmax
φ

Eπψ[EQ[u(xφ, λ)], γ]

5.4.2 Results

Using the same choice criterion presented by Klibanoff, Marinacci and Mukerji

(the same utility function is considered), the weights for the three different as-

sets are obtained for various scenarios on the risk aversion parameter λ and the

ambiguity aversion parameter γ for both the KMM and the ARA models. The

respective solution weights are plotted in Figure ( 5.3) and Figure ( 5.2).
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Figure 5.2: KMM weights

Figure 5.3: ARA weights
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Two cases are considered:

• The ambiguity parameter γ = 0 is fixed, and the risk aversion parameter λ

is allowed to vary. As the risk aversion increases (assuming the ambiguity

aversion remains null), the proportion of the risky asset decreases, both for

the ARA model and the KMM model; whereas, the proportion of the risk

free asset increases. However, the ambiguity asset proportion tends to rise

in the ARA model; whereas, it also decreases in the KMM model (although

it decreases less than the proportion of the risky asset). The ARA model

tends to discriminate between the risky and ambiguous assets better than

the KMM model. Also, the weights are more extreme in the KMM model

than in the ARA model (ranging from -6 to 8; whereas, the ARA weights

remain in the [-.4;1.2] range).

• The risk parameter λ = 2 is fixed and the ambiguity aversion parameter

γ is allowed to vary. Both models display the same behaviour: when the

ambiguity aversion parameter increases, the ambiguity asset allocation de-

creases to the profit of the risk free asset while the risky asset allocation

remains constant.

The KMM and ARA models adjust the asset allocation in a very similar way,

but the ARA model tends to allocate more weight to the risk free asset as the

ambiguity aversion increases; although, this depends mainly on the calibration of

the risk and ambiguity aversion parameters. To conclude, it can be said that when

considering the conditions within the framework given by Klibanoff, Marinacci

and Mukerji in their basic example, the ARA and KMM methodologies are indeed,

very similar. The great advantage of the ARA methodology is that it can be

applied to more complex theoretical settings and to large dimensional empirical

problems - as will be demonstrated in the next section.

5.5 A parametrized model application

In this present section, a theoretical example with settings of greater complexity is

presented (this example has also been developed in Tobelem & Barrieu (2010b)).
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In this example both the set of priors, and the distribution for the risky and

ambiguous assets, are continuous. It is shown that the original ARA methodology

can be used to explicitly solve the asset allocation problem under ambiguity in a

given theoretical case of high complexity, which is simply not possible with the

KMM model. The framework of this theoretical example is first outlined, then

the resulting ARA weights are formally computed. Finally, a particular focus is

given on the asymptotic ARA weights when γ → 0 and γ →∞.

5.5.1 Settings

The settings for this specific example will now be described; it is assumed that:

• It is a one period model: at time 0, an investment decision is made and at

time T , the terminal payoff of the strategy is observed.

• The set of priors Q is a countable set of priors Qq, where q ∈ [0, d]. π

defines the distribution upon the different priors, and it is assumed that all

the priors are equipotent for the investor:

∀q ∈ [0, d], π(Qq) =
1

d

Meaning, all priors have the same likelihood 1
d
. As assumed in the precedent

example, three assets s0, s1 and s2 are considered, with an initial value 1.

The terminal values s0
T , s1

T and s2
T of those assets at time T are defined as:

• s0
T = rf . The risk free return is rf . The asset s0 displays a constant return

rf whatever prior is considered; thus, it is non-risky and non-ambiguous.

• s1
T = s, where s follows a normal distribution with mean q ∈ [0, d] (where

rf < d), and standard deviation σ. The risky asset follows the same normal

distribution under any prior Qq:

∀Qq, s ↪→Qq N(q, σ)

The asset s1 displays a normally distributed return, whatever prior Qq is

considered; thus, it is is a non-ambiguous, risky-asset.

141



5.5 A parametrized model application

• s2
T = q. The ambiguous asset follows a uniform distribution upon the priors

distribution:

q ↪→π U[0,d]

The asset s2 displays a constant return q depending on the prior Qq con-

sidered. Under a given prior Qq, s2 is risk free; thus, it is an ambiguous,

non-risky asset.

In addition, the investor utility function is defined as:

u(x, λ) = − exp−λx

where λ stands for the investor risk aversion parameter. The investor wants to

form an optimal portfolio that maximises future expected wealth utility; where

the future wealth xφT is defined as:

xφT =
2∑
i=0

φisiT

where the φi1≤i≤2 denote the different weights of the assets si in the investor’s

portfolio; note that the following is given:

xφ0 =
2∑
i=0

φi = 1

and the ambiguous, risky terminal wealth is defined as:

xφT = φ0rf + φ1s+ φ2q

In the following subsection, the ARA transformed weights are computed.

5.5.2 The ARA transformation

The optimal weights obtained through an ARA transformation will now be com-

puted. First, the optimal weights under each prior Qq will be computed. Two

cases can be distinguished:
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5.5 A parametrized model application

• Case where 0 ≤ q ≤ rf

For all the priors Qq, q ∈ [0, rf ], the ambiguous asset always provides a lower

return than the risk-free asset. Therefore, under a prior Qq, the investor

will only consider investments in the risky asset and the most profitable

risk-free asset (i.e. in the present case s0). In this case, φ2 = 0, and for

simplification it can be denoted that φ1 = φ and φ0 = 1− φ.

Under a prior Qq, q ∈ [0, rf ], the investor wants to optimise the following

program:

max
φ

EQq [u(xφT , λ)] = −max
φ

EQq
{

exp−λ[φs+(1−φ)rf ]
}

It is deduced that the optimal solution in this case is:

Optimal weights, 0 ≤ q ≤ rf
φQq ,0 1− d−rf

λσ2

φQq ,1 d−rf
λσ2

φQq ,2 0

• Case where rf < q ≤ d

For all the priors Qq, q ∈]rf , d], the ambiguous asset always provides a

greater return than the risk-free, ambiguous free asset. As previously ar-

gued, under a prior Qq, the investor will only consider investments in the

risky and the most profitable risk-free assets (i.e. in the present case s2).

In this case, φ0 = 0, and for simplification it can be denoted that φ1 = φ

and φ2 = 1 − φ. Under a given prior Qq, q ∈ [rf , d], the risk-free return of

the ambiguous asset is q and the investor wants to optimise the following

programme:

max
φ

EQq [u(xφT , λ)] = −max
φ

EQq
{

exp−λ[φs+(1−φ)q]
}

By applying calculus similar to that previously applied, it is found that the

optimal solution in this case is:
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Optimal weights, rf < q ≤ d
φQq ,0 0

φQq ,1 d−q
λσ2

φQq ,2 1− d−q
λσ2

It is now necessary to apply the AARA transformation to the optimal weights

obtained for each prior Qq. The following AARA function ψ is considered:

ψ(x, γ) ≡

{
1−exp−γx

γ
, 0 ≤ x ≤ 1

expγx−1
γ

,−1 ≤ x ≤ 0

To simplify the case-study, it is assumed that the parameter γ remains the same

for all the priors considered (this goes along with the fact that the investor applies

an homogeneous weight to all the priors: a priori, the investor considers all the

priors equally ambiguous). Thus:

∀Qq, γQ
q

= γ

The RARA transformation is also applied across all the priors considered; there-

fore, the final ARA optimal weights are defined as:{
φARA,i ≡

∫ d
0
ψ(φQq ,i, γ)dπ(Qq), i ∈ {1; 2}

φARA,0 ≡ 1− φARA,1 − φARA,2

It is assumed that the investor’s risk aversion λ is such that λ ≥ d
σ2 ; and therefore,

all the optimal weights under all the priors are defined on the interval [0, 1]. When

λ < d
σ2 , the calculus would be similar.

The optimal weights under the ARA transformation are computed as:

φARA,i =
1

d

∫ d

0

(1− exp−γφ
Qq,i

)

γ
dq, i ∈ {1; 2}

More specifically, the optimal weights are given as:

• φARA,0 = 1− φARA,1 − φARA,2

• φARA,1 =
∫ rf

0
1
d

(1−exp
−γ(

d−rf
λσ2

)
)

γ
dq +

∫ d
rf

1
d

(1−exp
−γ( d−q

λσ2
)
)

γ
dq

144



5.5 A parametrized model application

• φARA,2 =
∫ d
rf

1
d

(1−exp
−γ(1− d−q

λσ2
)
)

γ
dq

Finally, the ARA weights are defined as:

ARA weights
φARA,0(γ) 1− φARA,1(γ)− φARA,2(γ)

φARA,1(γ)
d−rf
dγ

+ (
rf
d
− λσ2

dγ
)1−exp

−γ
d−rf
λσ2

γ

φARA,2(γ)
d−rf
dγ

+ exp−γ λσ2

dγ
1−exp

γ
d−rf
λσ2

γ

It has been shown that it is straightforward to compute the ARA weights un-

der theoretical settings of greater complexity. The ARA solutions asymptotic

behaviour will now be studied, when γ →∞ and γ → 0.

5.5.3 Asymptotic behaviour of the ARA weights

In order to test the consistency of the ARA methodology, the ARA weights are

studied at the limit values of the parameter γ, and it is shown that they comply

with Property 5.6.

5.5.3.1 ARA weights asymptotic behaviour when γ →∞

It will now be assumed that the aversion to ambiguity of the investor is infinite:

the investor does not trust any of their models. Therefore, it is given (see proof

in the Appendix): 
lim
γ→∞

φARA,1(γ) = 0

lim
γ→∞

φARA,2(γ) = 0

lim
γ→∞

φARA,0(γ) = 1

When the ambiguity aversion extends to infinity, investors invest all their wealth

in the risk-free non-ambiguous asset; as they do not trust any prior models, they

cannot invest in any of the risky assets.
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5.5.3.2 ARA weights asymptotic behaviour when γ → 0

The ARA weights will now be computed for a scenario when an investor has no

aversion to ambiguity: γ = 0.
φARA,1(0) =

rf
d

d−rf
λσ2 +

d−rf
rf

d−
d+rf

2

λσ2

φARA,2(0) =
d−rf
d

(1− d−
d+rf

2

λσ2 )

φARA,0(0) =
rf
d

(1− d−rf
λσ2 )

When the aversion to ambiguity is null, it can be considered in a similar light to

the case of the Subjective Expected Utility as seen in Savage (1954); and thus,

the optimal weights are equal to the expected weights of the prior conditional

weights:

φARA,i = Eπ(φQq ,i), i ∈ {0, 1, 2}

This is consistent with the remark made in Chapter 4.

5.5.3.3 ARA weights for different values of the parameter γ

In Figure (5.4), the ARA weights are plotted with a parameter γ ranging from

0.1 to 5:

The aversion to ambiguity affects both the risky asset allocation, and the ambigu-

ous asset allocation. The weights of both assets decrease with an increase in the

aversion parameter γ; whereas, the allocation of the risk-free non-ambiguous as-

set increases. Therefore, an easy to compute, close-form solution can be provided

for an asset allocation problem under ambiguity when considered under relatively

complex settings (i.e. continuous set of priors and continuous distribution for the

risky and ambiguous assets).

5.6 Conclusion

In this chapter, an easy to implement and robust ambiguity methodology has

been proposed that allows the investor to adapt their portfolios to their level of

ambiguity aversion. The calibration for the Absolute Ambiguity Aversion param-

eter γ and the Relative Ambiguity Adjustment function π will be the subject of
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Figure 5.4: φARA
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5.6 Conclusion

the following two chapters. The question of mixing appropriately the weights ob-

tained through heterogeneous priors remains a great challenge in many scientific

fields. In particular, in Chapter 6, a linear form for the function π is considered.

In Chapter 7, an investigation is undertaken of nonlinear forms for the function

π.
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5.7 Appendix

5.7 Appendix

5.7.1 ARA-KMM weights comparison

The Klibanoff, Marinacci and Mukerji example settings are recalled, and three

assets are considered: s0, s1 and s2 respectively as a risk-free, risky and ambiguous

asset. In the two different states of the world ω1 and ω2 and under the two different

priors considered Q1 and Q2, the asset values are taken to be the following:

Q1 Q2

π 1
2

1
2

ω1 ω2 ω1 ω2

µ 1
4

3
4

3
4

1
4

s0 1.15 1.15 1.15 1.15
s1 3 1 3 1
s2 2 2 1 1

The utility function is defined as:

u(x) = 1 +
x1−λ − 1

21−λ − 1
, λ 6= 1

Thus, it is gained:

u′(x) =
1− λ

21−λ − 1
x−λ, λ 6= 1

5.7.1.1 Computation of the ARA weights

The respective weights of the assets s0, s1 and s2 are defined by φ0, φ1 and φ2 .

• Under Q1

The ambiguous asset gives a higher return than the risk free asset under

the two states of the world, therefore it is denoted:

φ0 = 0

, φ1 = φ and φ2 = 1− φ
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5.7 Appendix

Therefore:

VQ1(φ) = EQ1 [u(Xφ)]

where Xφ is the final wealth of the investor.

VQ1(φ) =
1

4
u(φ+ 2) +

3

4
u(2− φ)

Thus, the following is gained:

δV

δφ
= 0⇔ 1

4
u′(φ+ 2)− 3

4
u(2− φ)

Finally, it is given:

φQ1

=
2(1− exp

log 3
λ )

1 + exp
log 3
λ

• Under Q2

The risk free asset gives a higher return than the ambiguous asset under

the two states of the world, therefore it is denoted:

φ0 = 1− φ

, φ1 = φ and φ2 = 0

It is gained:

VQ2(φ) = EQ2 [u(Xφ)]

VQ2(φ) =
3

4
u(1.85φ+ 1.15) +

1

4
u(1.15− 0.15φ)

Thus:

δV

δφ
= 0⇔ 5.55

4
u′(1.85φ+ 1.15)− 0.15

4
u(1.15− 0.15φ)
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Finally it is given:

φQ2

=
1.15(exp

log 37
λ −1)

1.85 + 0.15 exp
log 37
λ

5.7.1.2 ARA and KMM weights comparison

The results computed by Klibanoff, Marinacci and Mukerji are compared to the

ARA weights. Two cases are considered: firstly, when the ambiguity aversion γ

is set to 0 and the risk-aversion varies; and secondly, when the risk aversion λ is

set to 2 and the ambiguity aversion varies. The comparative results are displayed

in the following tables:

γ = 0 KMM ARA

λ φ0 φ1 φ2 φ0 φ1 φ2

0.75 -5.5514 4.4715 2.0799 -0.8311 1.0233 0.8078
1.25 -3.2214 2.3605 1.8608 -0.1065 0.4180 0.6886

2 -1.4097 1.1961 1.2136 0.1858 0.1955 0.6187
5 0.1977 0.3576 0.4447 0.3969 0.0554 0.5477

20 0.8211 0.0762 0.1027 0.4767 0.0114 0.5119

Table 5.2: Comparison of ARA and KMM portfolio weights when γ = 0

λ = 2 KMM ARA

γ φ0 φ1 φ2 φ0 φ1 φ2

0 -1.4097 1.1961 1.2136 0.1858 0.1955 0.6187
1 -1.2493 1.2017 1.0476 0.5175 0.1276 0.3549
2 -1.1278 1.2052 0.9226 0.6867 0.0843 0.2290
5 -0.9044 1.2102 0.6943 0.8740 0.0262 0.0998

20 -0.6210 1.2139 0.4071 0.9748 0.0002 0.0250

Table 5.3: Comparison of ARA and KMM portfolio weights when λ = 2
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5.7.2 Theoretical illustration

5.7.2.1 Computation of φARA

Under a given prior Q, the investor wants to optimise the following program

(V (φ) denotes the value function the investor wants to optimise):

max
φ

[V (φ)] ≡ max
φ

EQ[u(Xφ
T , λ)] = −max

φ
EQ
{

exp−λ[φs+(1−φ)rf ]
}

V (φ) = − exp−λ[(1−φ)rf ] EQ[exp−λφs]

By a Laplace transform the following is given:

EQ[exp−λφs] = exp−λ(φd−σ
2φ2λ
2

)

So that:

V (φ) = − exp−λ[(1−φ)rf+φd−σ
2φ2λ
2

]

The first order condition becomes:

∂V (φ)

∂φ
= −λ(d− φσ2λ) exp−λ[(1−φ)rf+φd−σ

2φ22λ

2
]

It is deduced:

∂V (φ)

∂φ
= 0⇔ φ =

d− rf
λσ2

5.7.2.2 Computation of φARA,1(0)

It is recalled that:

φ1(γ) =
d− rf
dγ

+ (
rf
d
− λσ2

dγ
)
1− exp−γ

d−rf
λσ2

γ

In the neighbourhood of zero, the following limited developments are gained:

1− exp−γ
d−rf
λσ2

γ

γ→0
=

d− rf
λσ2

− (d− rf )2

(2λσ2)2
γ + ◦(γ)
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Therefore,

φ1(γ) =
d− rf
dγ

+ (
rf
d
− λσ2

dγ
)(
d− rf
λσ2

− (d− rf )2

(2λσ2)2
γ) + ◦(γ)

The following result is immediately given:

φARA,1(0) =
rf
d

d− rf
λσ2

+
d− rf
rf

d− d+rf
2

λσ2

This is consistent with the fact that ψ(φ, 0) = φ. Indeed, it is also given that:

φARA,1(0) =

∫ rf

0

d− rf
λσ2

dq +

∫ d

rf

d− q
λσ2

dq =
rf
d

d− rf
λσ2

+
d− rf
rf

d− d+rf
2

λσ2

The end result is the classical Savage Expected Utility optimal weights.

In a similar way, the risk free and ambiguous weight when γ tends to 0 can be

computed:

5.7.2.3 Computation of φARA,2(0)

It is recalled that:

φARA,2(γ) =
d− rf
dγ

+
exp−γ λσ2

dγ

1− expγ
d−rf
λσ2

γ

In the neighbourhood of zero, the following limited developments are gained: exp−γ
γ→0
= 1− γ + ◦(γ)

1−exp
γ
d−rf
λσ2

γ

γ→0
= −d−rf

λσ2 − (d−rf )2

2(λσ2)2
γ + ◦(γ)

The following result is immediately given:

φARA,2(0) =
d− rf
d

(1−
d− d+rf

2

λσ2
)

This is consistent with the fact that ψ(φ, 0) = φ. Indeed, it is also given:

φARA,2(0) =

∫ d

rf

1− d− q
λσ2

dq =
d− rf
d

(1−
d− d+rf

2

λσ2
)

Thus, the classical Savage SEU solution is found.
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Chapter 6

Evidence from Empirical Study :
Outperformance of the ARA
Portfolio

”Look deep into nature, and then you will understand everything better.”

Attributed to Albert Einstein.

In practice, the portfolio allocation problem often deals with a great number of

assets, as investors want to capture the diversification effect. When consider-

ing hundreds of assets, it is crucial to be able to use an easy to compute, simple

methodology that allows investors to make decisions in a timely fashion. More and

more, portfolio strategies involve high-frequency rebalances when the portfolio al-

location is revised up to several times a day. The Ambiguity Robust Adjustment

proposed in this thesis has the great advantage of being easily applicable to the

sorts of large dimension, complex empirical problems faced by financial investors,

which is not the case for other theoretical methodologies presently proposed in

the literature. In this section, an empirical study is run to evaluate the per-

formance of the Ambiguity Robust Adjusted (ARA) portfolio on real data. The

performance of the ARA methodology is compared to simple single strategies and

to the Subjective Expected Utility (SEU) portfolio (that does not take into ac-

count ambiguity when blending the single portfolio allocations). More precisely,
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an investor who uses different models is considered, and the performance of the

portfolios obtained by a classical SEU blending and the ARA blending (adjust-

ing the allocation with respect to ambiguity aversion, as presented in Chapter

5) of the single models are compared. It is shown that adjustment to ambiguity

aversion allows the investor to significantly enhance portfolio returns and reduce

the portfolio turnover (and therefore transaction costs). The ARA portfolios that

adjust asset allocation with respect to absolute and relative ambiguity aversion

consistently beat the SEU portfolios obtained as a simple linear combination of

the portfolios built from the different models considered by the investor, in terms

of all the performance measures considered. This empirical study, being rela-

tively close to the reality faced by financial investors, practically shows that the

methodology proposed can be easily used to mix different models in order to

compute the final investment portfolio and enhance investor returns.

This chapter is organised as follows. Firstly, the general background for the em-

pirical study undertaken is provided: the specificities of the dataset used are

briefly recalled, some notations given, the description of the portfolios tested and

details of the empirical computation of the different portfolio weights provided,

as well as the performance measures used to parametrize the ambiguity aversion

parameters. In the second section, details of the empirical calibration of the aver-

sion parameter γ and the aversion adjustment π are given, and the performances

of the different single portfolios considered, as well as of the combined SEU and

ARA portfolios, are displayed.

6.1 Empirical study framework

Using the same dataset, as presented in Chapter 3, a back test on historical Eu-

ropean data, when investors make a daily re-balance of their portfolio, is run, by

re-estimating the different models over a rolling estimation window, re-calibrating

their aversion to ambiguity and re-setting the resulting investment weights every

day. The different performance measures presented in Chapter 2 are then used

to evaluate the performance of the different strategies.

In this section, the framework of the empirical study is first presented; then,

the computation of the portfolio weights for the different models considered is
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outlined, i.e. the Equally Weighted (EW), the Minimum Variance (MN), the

Mean Variance (MV) and the Capital Asset Pricing Model (CAPM) portfolios

as presented in Chapter 2, as well as the External Factor Model (EFM), Funda-

mental Factor Model (FFM), Principal Component Analysis (PCA), Independent

Component Analysis (ICA) and Cluster Analysis (CA) portfolios as described in

Chapter 3. The computation of the four performance measures introduced at

the end of Chapter 2 is detailed and further used to parametrize the absolute

ambiguity aversion parameter γ and the relative aversion adjustment π.

6.1.1 Dataset and notations

The same cleaned dataset of European stock returns (based on historical closing

prices for the Eurostoxx 600 constituents as of end of May 2010) from January

2000 to May 2010, as presented in Chapter 3 is utilised. First, some specific

notations used throughout this chapter are recalled:

• S ≡ {snt }T×N denotes the matrix of stock prices over the period considered,

where T = 2712 denotes the number of days and N = 600 the number of

stocks.

• M ≡ rnt+1 = { s
n
t+1

snt
− 1}T−1×N defines the matrix of asset arithmetic returns.

• µt,t+h
1 and Σt,t+h

2 denote the first two empirical moments of the matrix

Mt,t+h between the dates t and t+ h (with t > 0 and h > 0).

• Finally, the return of a strategy φ at date t is defined as: rφt ≡φ′rt,.. By ex-

tension, rφt,t+h denotes the vector of daily returns of the strategy φ between

date t and t+ h.

6.1.2 Portfolios tested

Several models are considered to predict the asset price returns as detailed in

Chapters 2 and 3. More precisely, for each model, the portfolio weights are

1µt,t+h ≡Mt,t+h ≡ 1
t+h−t+1Mt,t+h

′1t+h−t+1, where 1t denotes the unit vector of dimen-
sion t.

2 Σt,t+h ≡ σ(Mt,t+h) ≡ 1
(t+h−t+1)(t+h−t)Mt,t+h

′Mt,t+h
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computed using an estimation window, denoted w. Details are given below on

how the different weights are computed; this study focuses on how investors deal

with their model ambiguity after the different model portfolio weights have been

computed.

6.1.2.1 Single strategies considered

In this sub section, the precise empirical asset allocations that correspond to each

one of the simple models considered are provided (i.e. the single priors Q that

constitute the set of priors Q.)

• The Equally Weighted portfolio (EW): gives an equal weight to all

the risky assets. The EW portfolio asset allocation is defined as:

φEWt =
1

Nt

1Nt

This portfolio represents the market benchmark. Nt represents the number

of assets considered ”active” at time t (i.e. the assets for which at least 50

return observations are available over the estimation window [t−w : t−1]).

1 stands for the N-vector of ones.

The Minimum Variance and the Maximum Sharpe portfolios as presented in

Chapter 2 are considered:

• The Minimum Variance portfolio (MN): is the fully invested Markowitz

efficient portfolio with minimum variance, obtained when investors min-

imise the expected variance of their portfolio. The MN portfolio allocation

is defined as:

φMN
t =

Σ−1
t−w,t−11Nt

1N ′tΣ
−1
t−w,t−11N

where Σt−w,t−1 is the empirical covariance matrix estimated over the window

[t− w, t− 1].
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• The Mean Variance portfolio (MV): is the fully invested, maximum

Sharpe, mean-variance Markowitz efficient portfolio, obtained when the in-

vestor maximises the empirical quadratic expected utility. Note that a risk

aversion equal to 1 is considered, as in DeMiguel et al. (2007). The MV

allocation is defined as:

φMV
t =

Σ−1
t−w,t−1µt−w,t−1

1′NtΣ
−1
t−w,t−1µt−w,t−1

where Σt−w,t−1 is the empirical covariance matrix estimated over the window

[t−w, t− 1] and µt−w,t−1 is the empirical vector of mean returns estimated

over the same window.

Due to the singularity of the covariance matrix Σt−w,t−1 (some of the as-

set returns are almost collinearly dependant), it is not straightforward to

obtain a stable value for the inverted matrix Σ−1
t−w,t−1. A Singular Value

Decomposition methodology is used to estimate the empirical inverse of the

covariance matrix Σt−w,t−1, as shown in the Appendix at the end of the

chapter.

• The CAPM portfolio (CAPM): the CAPM portfolio is based upon the

Jensen Alphas, as presented in Chapter 2. The CAPM Betas are estimated

over the estimation window. Considering rMt−w,t−1 as the vector of the Eu-

rostoxx 600 market returns over the period [t − w, t − 1] , the Beta of the

risky asset, i, is, therefore, estimated at time t as:

∀i ∈ [1, N ], βit ≡
COV(rit−w,t−1, r

M
t−w,t−1)

VAR(rMt−w,t−1)

The Jensen Alpha is then computed as the difference between the observed

return at time t of the asset i and the Beta adjusted market return:

∀i ∈ [1, N ], αit ≡ rit − βitrMt
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The CAPM weights are then defined as the weighted average Alphas across

all the risky assets considered adjusted by the variance of the CAPM resid-

uals1:

∀i ∈ [1, N ], φCAPM,i
t ≡

αit
VAR(αi.)∑N
j=1

αjt
VAR(αj. )

So that
∑

i φ
CAPM,i
t = 1.

• In addition, consideration is given to the factor model portfolios presented

in Chapter 3: i.e. the EFM, FFM, PCA, ICA and CA portfolios. More

formally, as for the CAPM portfolio, the Jensen Alpha of the different

factor models is computed as the difference between the observed return at

time t of the asset i and the Beta adjusted factor returns:

∀i ∈ [1, N ], αm,it ≡ rit − β
m,i
t Fm

t

Where βm,it denotes the vector of factor loadings of the asset i for the

model m ∈ {EFM,FFM,PCA, ICA,CA} as estimated over the window

[t − w, t − 1], and Fm
t the factor returns vector of the model m at date

t. Then, the model m weights are defined as the weighted average Alphas

across all the risky assets considered, and adjusted by the variance of the

residuals:

∀i ∈ [1, N ], φm,it ≡
αm,it

VAR(αi.)∑N
j=1

αm,jt

VAR(αj. )

6.1.2.2 Combined portfolios

In this sub section, the allocations obtained when considering portfolios

that combine the allocations obtained by the different strategies mentioned

in the previous sub-section, are exposed.

1As suggested in Brennan & Xia (2001), the optimal portfolio is found by scaling the Alpha
by its empirical variance
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• The Subjective Expected Utility Portfolio (SEU): it is recalled that

the SEU portfolio is obtained when mixing different priors when the investor

is neutral to ambiguity. If qt defines the vector of probabilities given to the

models considered at any date t (the investor is neutral to ambiguity in

the sense that the probabilities of each model are supposed known and well

defined), thus, the result is: ∑
Q∈Q

qt(Q) = 1

Therefore, the SEU portfolio weights are defined as the different weights of

the models linearly weighted by qt.

∀i ∈ [1, N ], φSEU,it ≡
∑
Q∈Q

φQ,i
t qt(Q)

• The Ambiguity Robust Portfolio (RA): now, if the investor is averse

to ambiguity (i.e. the investor does not know for sure the probability of each

prior to occur), the optimal ambiguous portfolio weights are defined as the

different weights of the models adjusted by the Absolute Robust Ambiguity

Adjustment ψ, calibrated by the absolute ambiguity aversion parameters

(γQt )Q∈Q and weighted by the Relative Ambiguity Robust Adjustment πt:

∀i ∈ [1, N ], φARA,it ≡
∑
Q∈Q

ψ(φQ,i
t , γQt )πt(Q)

In this empirical study, a linear form for π is considered, such that:∑
Q∈Q

πt(Q) = 1

and in particular, no differentiation is made between the Relative Ambiguity

Robust Adjustment, and the classical Subjective Expected Utility probability

weights for each model. Therefore, in this particular empirical study, the ARA

and SEU allocations only differ because of the Absolute Ambiguity Robust Ad-

justment through ψ.

In Chapter 7, more complex forms for π are considered.
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6.1 Empirical study framework

6.1.3 Performance measures

Once the portfolio weights have been computed for the different models, the re-

turns of the different strategies are computed and evaluated through the four per-

formance measures, details of which are presented in Chapter 2 (Sharpe, Sortino,

Win Lose and Gain Loss ratios). For a given strategy φ in the period [t, t + h],

the performance measure values are estimated as:

• Sharpe ratio:

Sharpeφt,t+h ≡
µrφt,t+h

σrφt,t+h

where µrφt,t+h stands for the strategy φ return between date t and t+ h and

σrφt,t+h stands for its standard deviation.

• Sortino ratio:

Sortinoφt,t+h ≡
µrφt,t+h

σ
rφt,t+h
n

where σn stands for the standard deviation of the negative components of

a series.

• Gain Loss ratio:

GainLossφt,t+h ≡

∑N
i=1 r

φ,i
t,t+h1rφ,it,t+h>0∑N

i=1 r
φ,i
t,t+h1rφ,it,t+h>0 −

∑N
i=1 r

φ,i
t,t+h1rφ,it,t+h<0

where
∑N

i=1 r
φ,i
t,t+h1rφ,it,t+h>0 stands for the sum of positive returns, and

∑N
i=1 r

φ,i
t,t+h1rφ,it,t+h<0

stands for the sum of negative returns of the strategy φ between the dates

t and t+ h.

• Winner Loser ratio:

WinLoseφt,t+h ≡

∑N
i=1 1rφ,it,t+h>0∑N

i=1 1rφ,it,t+h<0 +
∑N

i=1 1rφ,it,t+h>0
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6.1 Empirical study framework

where
∑N

i=1 1rφ,it,t+h>0 stands for the number of positive returns of the strategy

φ between the dates t and t + h, and
∑N

i=1 1rφ,it,t+h<0 stands for the number

of negative returns.

All the measures presented above will be used independently to calibrate the

ambiguity parameter γ and the ambiguity adjustment function π; the following

two measures will be used to compare the different portfolio performances, as in

the comparative study of portfolio performances by DeMiguel et al. (2007).

• The Certainty equivalent return: which corresponds to the equivalent

risk-free return of the strategy return:

CERt,t+h ≡ µrφt,t+h − λ(σrφt,t+h)2

As in DeMiguel et al. (2007), it is assumed that λ = 1 in the empirical

study.

• The Turnover: corresponds to the change in portfolio weights from one

period to the other; i.e. to the absolute sum of the trades needed to re-

balance the portfolio weights from one period to the next. The investor

aims at reducing the turnover as trading implies costs (exchange fees, price

impact...):

T/Ot,t+h ≡
N∑
i=1

|φit+h − φit| = δ(φt+h, φt)

For the Turnover and the Certainty Equivalent ratios, an average daily value is

given.

In the following section, the performances of the single portfolio strategies are

presented. A more precise outline will then be made of how the absolute ambi-

guity parameter, γ, and the relative ambiguity parameter, π, are calibrated in

practice. Finally, the performances of the classical SEU portfolio and the ARA

portfolio are presented and compared. It is shown, in this empirical study, that

taking into account ambiguity in the portfolio selection problem, does make a

difference in practice, and allows the investor to achieve better performances.
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6.2 Calibration and empirical portfolio performances

6.2 Calibration and empirical portfolio perfor-

mances

In this section, the performances of the nine single strategies presented in Sec-

tion 6.1 are analysed and compared, and the performances of the SEU and ARA

portfolios are computed and displayed. First, the performances of the single

strategies are presented, initially without taking into account transaction costs

and then with the addition of a 3 basis points transaction cost, with respect to

the turnover generated by the given daily strategy rebalances. It is found that the

performances of the single strategies, post-transaction costs, are very poor and

unstable over time. Then, the means by which the absolute ambiguity parameter,

γ, and the relative ambiguity parameter, π, are parametrized according to the

different four performance measures considered (Sharpe, Sortino, Win Lose or

Gain Loss ratios) are established. The focus will then be on the analysis of the

linearly blended strategy (SEU) and the ambiguity averse strategy (ARA) perfor-

mances post-transaction costs, as - to evaluate real performances - it is necessary

to take into account those costs. It is found that the SEU strategies improve the

single strategies and are more stable over time. Finally, the performances of the

ARA portfolios are exposed. It is found that the ARA portfolios consistently beat

the SEU portfolios, providing the investor an enhanced and stable performance

across the long period considered (from January 2000 to May 2010).

6.2.1 Single portfolios performances

It is assumed that the risk-free rate is negligible, as the portfolios are rebalanced

every day1. Figures (6.1) and (6.2) plot the cumulative return of the models (EW,

MN, MV, CAPM, FFM, EFM, PCA, ICA and CA) over the period January 2000

to May 2010; and Tables (6.1) and (6.2) display the performance statistics of the

different strategies across the whole period considered, without and with trans-

action costs respectively (the worse measures are in red and the best measures

are in blue).

1For an annual Libor rate of 0.75% as of end of May 2010, the daily rate represents around
0.3 basis point.
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EW MN MV CAPM FFM EFM PCA ICA CA
µ(%) 72.27 57.31 72.43 106.68 87.58 16.61 77.12 25.09 147.22

µ(Bps) 2.77 2.19 2.77 4.08 3.35 0.64 2.95 0.96 5.64
σ(%) 13.69 12.93 12.41 6.30 8.14 12.06 7.15 12.57 6.30

max(µ)(Bps) 656.54 806.84 766.76 377.46 543.72 647.09 508.51 644.48 365.03
min(µ)(Bps) −504.58 −707.95 −938.54 −376.17 −362.11 −554.71 −349.11 −504.68 −290.25

Sharpe 0.51 0.42 0.56 1.62 1.03 0.13 1.03 0.19 2.24
Sortino 0.57 0.52 0.68 2.14 1.39 0.18 1.36 0.26 3.02

GainLoss(%) 52.52 52.11 52.89 58.09 55.03 50.65 55.04 50.95 61.01
WinLose(%) 56.47 54.94 52.03 56.40 53.32 50.81 54.40 50.76 58.99

CER(Bps) 2.39 1.86 2.47 4.00 3.22 0.34 2.85 0.64 5.56
T/O(%) 19.33 114.29 108.03 143.49 150.36 148.89 148.60 148.88 150.53

Table 6.1: Strategies Performances No Transaction Costs

It is also assumed that the transaction costs (exchange fees, slippage and so on)

account for 3 basis points of the daily portfolio turnover. As a reference, DeMiguel

et al. (2007) assumed a 0.5 basis point transaction cost per monthly transaction.

Note that the 3 basis points transaction cost assumption is very optimistic 1. On

a daily basis, the real cost reaches probably more than this. In the empirical

example presented, a transaction cost of 5 basis points (more realistic) kills all

the single strategies, and especially the CA, which has the highest turnover. Due

to the fundamental empirical importance of transaction costs, a constant 3 basis

points transaction cost is assumed for the remainder of the empirical study.

EW MN MV CAPM FFM EFM PCA ICA CA
µ(%) 60.83 −40.36 −23.04 −3.06 −29.52 −97.29 −39.33 −90.69 32.07

µ(Bps) 2.33 −1.55 −0.88 −0.12 −1.13 −3.72 −1.51 −3.47 1.23
σ(%) 13.69 12.91 12.50 6.30 8.14 12.06 7.14 12.57 6.29

max(µ)(Bps) 656.03 805.77 766.45 373.50 539.07 643.67 503.37 640.99 361.20
min(µ)(Bps) −505.07 −710.86 −948.33 −380.61 −367.13 −560.71 −355.11 −510.23 −295.45

Sharpe 0.43 −0.30 −0.18 −0.05 −0.35 −0.77 −0.53 −0.69 0.49
Sortino 0.48 −0.37 −0.22 −0.06 −0.48 −1.07 −0.71 −0.95 0.68

GainLoss(%) 52.13 48.51 49.09 49.77 48.31 46.23 47.42 46.59 52.43
WinLose(%) 55.35 50.98 48.66 47.90 46.69 46.11 47.40 45.75 50.47

CER(Bps) 1.95 −1.88 −1.19 −0.20 −1.26 −4.02 −1.61 −3.79 1.15
T/O(%) 19.33 114.29 108.03 143.49 150.36 148.89 148.60 148.88 150.53

Table 6.2: Strategies Performances 3 bps Transaction Costs

It is recalled that µ stands for the total strategy return over the whole period

in percentage. µ stands for the average daily return in basis points and σ is the

standard deviation of the strategy returns.

Without transaction costs, the CA portfolio has the best overall performance,

and the EFM portfolio, the worse, in terms of all performance measures. How-

ever, when transaction costs are considered, all the single strategies are greatly

1Note that this transaction cost assumption is chosen; otherwise most of the single strategies
would not give any positive returns and, therefore, the empirical study would not mean much.
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6.2 Calibration and empirical portfolio performances

Figure 6.1: Cumulative Strategies Returns (%) without transaction costs

Figure 6.2: Cumulative Strategies Returns (%) with 3 basis points transaction
costs
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penalised due to their high turnover (to the exception of the EW strategy, that

by construction has a very low turnover) and especially the CA strategy that

has the highest turnover (above 150%). Indeed, the amount of shares traded to

rebalance the different portfolios every day, entails transaction costs: the higher

the turnover, the higher the costs, and; therefore, the more penalised the strategy

returns.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
EW 1.54 −0.58 −1.13 1.76 2.45 1.57 0.42 −3.69 1.98 −0.44
MN 0.75 0.00 −0.77 0.75 2.82 2.49 1.52 −1.51 0.98 −0.04
MV 0.01 −1.28 −1.30 0.87 2.46 2.10 1.57 −0.42 1.28 0.23

CAPM −1.88 −0.01 2.29 0.18 3.89 4.70 2.35 1.45 3.51 −0.57
FFM −2.07 0.17 2.03 −0.13 1.21 2.63 2.08 1.82 0.82 −0.28
EFM −2.15 −1.88 0.84 −0.32 0.18 0.36 0.55 1.75 −0.45 0.10
PCA −3.55 −0.09 1.06 −0.84 2.36 2.26 1.52 3.93 1.40 −0.26
ICA −2.11 −1.97 0.63 −0.05 −0.12 1.15 0.28 1.32 0.06 0.52
CA −2.47 2.18 1.90 1.07 4.36 4.42 3.85 2.02 4.10 1.45

Table 6.3: Sharpe per Strategy per Period no Transaction Costs

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
EW 1.41 −0.71 −1.25 1.68 2.34 1.50 0.35 −3.75 1.94 −0.50
MN −0.28 −0.62 −1.25 −0.75 1.76 1.36 0.34 −1.88 0.38 −0.98
MV −1.02 −2.32 −1.90 0.20 1.62 0.82 0.37 −1.06 0.74 −0.79

CAPM −3.65 −1.88 1.04 −1.28 0.08 1.46 −0.39 0.41 2.19 −3.41
FFM −3.70 −1.38 0.60 −1.42 −1.68 1.30 0.28 0.92 −0.22 −1.89
EFM −3.45 −3.01 −0.20 −1.33 −1.65 −0.65 −0.37 1.17 −1.12 −0.52
PCA −5.49 −1.84 −0.13 −2.13 −1.08 −0.22 −1.16 2.72 0.39 −2.43
ICA −3.39 −3.18 −0.37 −1.08 −1.90 0.19 −0.64 0.75 −0.54 −0.12
CA −4.50 0.25 0.55 −0.43 0.49 1.53 1.21 0.91 2.69 −1.03

Table 6.4: Sharpe per strategy per periods 3 bps Transaction Costs

Most of the single strategies are, also, highly unstable overtime. In Tables (6.3)

and (6.4)1, the annual Sharpe ratio has been computed for the different strategies.

It can be seen, that, depending on the years, the best strategies differ (the three

1The three best Sharpe measures per period are highlighted in bold.

166



6.2 Calibration and empirical portfolio performances

best yearly strategies are never the same from year 2001 to year 2010, for raw

performances as well as for transaction cost adjusted ones). Therefore, it is crucial

for investors to diversify their investments among different strategies, as has been

outlined in the previous chapter.

As the performance of the different models varies greatly overtime, how can in-

vestors achieve the best mix for their asset allocation? It has to be kept in mind,

that, ex ante, the investors do not know which of the different single strategies

will perform best. Therefore, investors need to consider the different models in

order to define the preferred asset allocation. In the following section, the per-

formance measures of two different portfolios are presented, taking into account

the whole set of prior models: the classical SEU portfolio that linearly blends

the models and is neutral to model ambiguity; and the ARA portfolio approach

developed in this research, that takes into account model ambiguity expressed

through the investor’s ambiguity aversion.

6.2.2 Calibration of the absolute ambiguity parameter γ

and the relative ambiguity adjustment π

To compute the SEU and ARA asset allocations, the ambiguity parameters, γ

and π, presented in Chapter 5, need to be calibrated. Thus, a methodology that

links the ambiguity aversion parameters with the performance measures of the

single portfolios considered is proposed.

Figure (6.3) plots the different values of the performance measures over time.

It can be seen that the performance of the different strategies is very volatile, as

also shown in the year on year performances of the single strategies in Table (6.4).

Also, it should be noted that the investor is not supposed to favour one particular

strategy and can not know, ex ante, which one of those strategies will perform

well in the future. This, therefore, implies that the adjustment of each models

should be dynamic.

More precisely, to calibrate γ and π, an estimation window of w ≡ 100 business

days (equivalent to approximately five months)1 is used to estimate the portfolio

1A minimum number of observations is needed to reliably estimate model parameters, 100
data points are sufficient to obtain good asymptotic properties of the model parameters esti-
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Figure 6.3: Performance measures
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weights: Typically, at each date t, the performance measures as presented above

are computed based upon daily returns computed over the window [t−w; t− 1].

Note that the Sharpe and Sortino values are annualised (their daily value is mul-

tiplied by
√

250, as there are around 250 business days per calendar year), and

floored to zero (all negative Sharpe and Sortino ratios are defaulted to zero).

The Win Lose and Gain Loss ratios are floored to 50%; all measures below this

threshold are also defaulted to zero. Indeed, if the Sharpe or Sortino ratios are

negative over the past window considered, the corresponding strategies have had

a particularly bad performance, and, therefore, it is assumed that the investor

will not invest in this strategy for the following period. Similarly, if the Gain

Loss or Win Lose ratios are under 50%, the corresponding strategy has lost more

than it gained over the considered period, and it is assumed that the investor will

not invest in this strategy for the following period, either. PMQ
t denotes a given

performance measure for the model Q over the window t − w, t − 1, where PM

stands for one of the performance measures (Sharpe, Sortino, GainLoss, WinLose)

described above. Note that the CER and T/O measures are not used for param-

eterisation, but only for performance comparison as in DeMiguel et al. (2007).

More formally, the following parameterisation for γQt and πt(Q) is considered:

• The absolute ambiguity parameter γQt is estimated as the negative inverse

absolute past performance measure of the portfolio computed from the

model Q (the worst the past performance of the portfolio, the bigger the

absolute ambiguity aversion):

γQt ≡ −
1

PMQ
t

(6.1)

The absolute ambiguity parameter γQ is absolute in the sense that it is

specific to each model Q, and does not depend on the performance of the

other models in the set of priors Q.

mates.
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• The relative ambiguity parameter πQ (that effectively depends on the whole

set of models Q considered) is estimated as the relative performance measure

of the model Q in the class Q of models considered:

π(Q) ≡ PMQ∑
P∈Q PM

P (6.2)

The measure π is relative, as it takes into account the performances of all the

different models; whereas γ is absolute, as it solely considers the performance

of a given model. Both the relative ambiguity adjustment π and the absolute

ambiguity parameter γ are proportional to the performance measure considered:

the higher the performance measure, the higher the parameter. Also, if PMQ
t = 0

(i.e. as expressed above, if the Sharpe or Sortino is negative or if the Gain Loss

or Win Lose ratio is below 0%) then πQ
t = 0 and γQt = 0. Indeed, at worse the

investor will not invest in a strategy at all, and all the weights are defaulted to zero

(if either the absolute aversion parameter or the relative ambiguity parameter is

null, the subsequent weights of the SEU or ARA portfolio are defaulted to zero).

Note that it is for simplicity that the choice has been made to parametrize π and

γ similarly; what matters is that the absolute and relative ambiguity aversion

are positively correlated with the performance measure considered. Other ways

to parametrize γ or π that do not depend on the past performance of single

strategies could also be considered. However, empirically, this simple calibration

method makes sense and can be used for the empirical study carried out in this

research.

6.2.3 The SEU portfolio performance

DeMiguel et al. (2007) use the out of sample Sharpe ratio as well as the CER

and Turnover to compare 14 different optimised allocations of portfolios (rather

than the allocation of individual stocks that have been proposed here) and the

equally weighted portfolio monthly (rather than daily) performances. They find

that none of the classical optimised portfolios outperform the basic EW portfolio,

significantly, in terms of Sharpe, CER or Turnover measures. Similar results are
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found and it is shown that the SEU portfolio outperforms all the single strategy

allocations (EW included).

In Table (6.5), the performances and statistics are computed for four SEU port-

folios, where the probability of each model is defined as the weighted average of

one of the four performance measures: Sharpe ratio, Sortino ratio, Win Lose or

Gain loss ratios. Figure (6.4) displays the returns of the different SEU strategies,

with a transaction cost of 3 basis points. All the SEU portfolios outperform the

single strategies in terms of CER (SEU strategies have higher CER: 1.66 to 1.95

against -3.79 to 1.95) and Turnover (SEU strategies have lower Turnover: 115%

on average against 140% on average for single strategies, with the exception of

the naive market representative EW strategy).
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sharpe sortino gainloss winlose
µ(%) 55.32 51.28 47.80 49.10

µ(Bps) 2.12 1.96 1.83 1.88
σ(%) 9.30 9.04 9.26 9.31

max(µ)(Bps) 656.03 656.03 656.03 656.03
min(µ)(Bps) −408.09 −408.09 −408.09 −408.09

Sharpe 0.57 0.54 0.49 0.50
Sortino 0.69 0.66 0.60 0.61

GainLoss(%) 52.73 52.62 52.39 52.44
WinLose(%) 53.58 53.48 52.96 53.12

CER(Bps) 1.94 1.80 1.66 1.71
T/O(%) 113.38 115.09 117.08 116.84

Table 6.5: SEU Strategies Performances 3 bps Transaction Costs

Where the four different columns correspond to the calibration of the parameters

γ and π with respect to respectively the Sharpe, Sortino, Gain Loss and Win

Lose ratios.

Figure 6.4: Subjective Expected Utility Strategies Cumulative Returns

Mixing the different models based on their past performance measures enhance

investor performance, especially because it allows the investor to reduce the

turnover, and; therefore, the total transaction costs. But also, it allows the

investors to smooth their performances over time, as can be seen in the SEU
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strategies annual Sharpe values displayed in Table (6.6): the different SEU strate-

gies display a positive Sharpe for 6 years on average, whereas single strategies

display a positive Sharpe in only one to five years (expect for the CA and EW

strategies).

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
sharpe −0.03 −1.00 0.41 −0.89 2.06 1.66 0.93 0.39 1.29 −1.37
sortino 0.03 −1.00 0.41 −0.91 2.05 1.70 0.90 0.31 1.30 −1.43

gainloss −0.45 −0.89 0.69 −0.95 1.98 1.50 0.61 0.52 0.99 −1.35
winlose −0.43 −0.87 0.72 −0.97 1.99 1.42 0.56 0.59 0.98 −1.29

Table 6.6: Sharpe per SEU strategy per periods

However, further improvement can be made to the performance of the investor

portfolio with the Ambiguity Robust Adjustment approach presented here, which

is demonstrated in the following section.
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6.2.4 The ARA portfolio performance

In this subsection, the ARA portfolio performances are presented. An emphasis is

made of the fact that taking account of ambiguity affects, empirically, affects the

performance of the portfolio positively: the portfolio performance is better and

the portfolio returns are more stable overtime. Figure (6.5) plots the performance

of the four different ARA portfolios (where the absolute ambiguity parameter γ

and the relative ambiguity adjustment π are estimated through the four different

performance measures considered: Sharpe, Sortino, Gain Loss and Win Lose

ratios).

Figure 6.5: Ambiguity Robust Adjusted Strategies Cumulative Returns

In Table (6.7), the statistics of the various ARA portfolios have been computed.

The ARA strategies beat all the single strategies with transaction costs in terms

of Sharpe, Sortino and CER, and they have a reduced Turnover (except for the

EW strategy, which by construction has a very low turnover).

More importantly, the ARA strategies also outperform the SEU strategies. In

Table (6.7), the Relative Ambiguity Adjustment (RAA) measure, as presented in

Chapter 5, is computed, which represents the turnover between the SEU portfolio

and the ARA portfolio, and gives the amount of wealth invested in the risk free

asset (or buffer) due to the investor Absolute Ambiguity aversion1. The RAA

1As
∑
π = 1. In the example used here, the ARA solely differs from the SEU portfolio by
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sharpe sortino gainloss winlose
µ(%) 63.34 57.65 55.12 58.30

µ(Bps) 2.43 2.21 2.11 2.23
σ(%) 9.23 8.75 9.69 9.91

max(µ)(Bps) 656.03 656.03 656.03 656.03
min(µ)(Bps) −408.09 −408.09 −408.09 −430.06

Sharpe 0.66 0.63 0.54 0.56
Sortino 0.81 0.79 0.66 0.69

GainLoss(%) 53.20 53.10 52.69 52.77
WinLose(%) 52.91 52.77 52.91 52.83

CER(Bps) 2.25 2.05 1.92 2.04
T/O(%) 99.84 104.60 108.21 107.42

AAA 0.70 0.62 0.91 0.92
RAA 0.59 0.53 0.73 0.73

Table 6.7: ARA Strategies Performances 3 bps Transaction Costs

is around 60%: the ARA and SEU portfolios effectively differ a lot. These al-

location differences allow the ARA portfolios to achieve a much lower turnover

than the SEU portfolios (around 100% against 115%). The different ARA port-

folios outperform all the SEU portfolios, in terms of CER and Turnover: all ARA

strategies CER are above, or close to, 2, whereas all SEU strategies CER are well

below 2.

As shown, specifically, in the summary Table (6.8), where a comparison of the

two SEU and ARA Sharpe strategies is displayed, the ARA strategy beats the

SEU strategy in terms of all the performance measures considered (but for the

Win Lose ratio). In particular, the Sharpe and Sortino are improved by 15% and

17% respectively. Also, in comparison to the SEU strategy, the ARA strategy

improves the two benchmark measures greatly (the CER is improved by almost

16% and the Turnover is reduced to under 100%, 12% less than in the SEU case).

Note that similar results are found for the other performance measures: Sortino,

Gain Loss or Win Lose ratios.

The annual Sharpe is also computed for each of the ARA strategies in Table (6.9).

It can be seen that the performance of the ARA strategies is more stable over

the Absolute Ambiguity Robust Adjustment: the ARA weights are shrunk by the function ψ,
parametrized by the absolute ambiguity parameter γ.
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time than the single strategies, as only the CA and EW strategies have a positive

Sharpe over more than six years, whereas it is the case for all SEU or ARA

strategies.

ARA SEU Diff(%)
µ(%) 63.34 55.32 14.51

µ(Bps) 2.43 2.12 14.51
σ(%) 9.23 9.30 −0.71

max(µ)(Bps) 656.03 656.03 0.00
min(µ)(Bps) −408.09 −408.09 0.00

Sharpe 0.66 0.57 15.32
Sortino 0.81 0.69 17.51

GainLoss(%) 53.20 52.73 0.88
WinLose(%) 52.91 53.58 −1.24

CER(Bps) 2.25 1.94 15.92
T/O(%) 99.84 113.38 −11.94

Table 6.8: SEU and RA Sharpe Strategies Comparison

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
sharpe 0.53 −1.52 0.03 −0.97 1.94 1.59 0.21 0.68 1.48 −1.19
sortino 0.51 −1.54 −0.03 −0.99 1.98 1.73 0.26 0.53 1.60 −1.32

gainloss 0.29 −1.30 1.07 −0.69 1.73 1.11 −0.12 0.63 1.36 −1.25
winlose 0.36 −1.26 1.15 −0.80 1.75 0.98 −0.03 0.68 1.34 −1.11

Table 6.9: Sharpe per ARA strategy per periods

6.3 Conclusion

In this empirical study, it has been shown that investors, facing a choice between

different models to explain stock returns, enhance their portfolio returns with

combined strategies, such as the SEU or ARA strategies. Moreover, the ARA

ambiguity averse portfolio improves the SEU portfolio, significantly, in terms of

CER and Turnover, but also in terms of Sharpe, Sortino, Gain Loss and Win

Lose ratios. With the ARA methodology, an improved alternative to the SEU
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strategy is presented, that is easy to implement in practice; robust, in terms of

performances, and also very flexible. It has been shown that taking into account

ambiguity gives better results than a basic blending of models in an empirical

study conducted over a very long period of time, encompassing two major finan-

cial crisis (2001 and 2008). Note that in this empirical example, a very simple

linear function, π, is used in order to easily compare the SEU and ARA portfo-

lios. In the following chapter, a more elaborate version of the relative ambiguity

adjustment, π, is presented by introducing some nonlinearity.
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6.4 Appendix: Estimation of the empirical inverse of the covariance
matrix

6.4 Appendix: Estimation of the empirical in-

verse of the covariance matrix

In practice, the estimation of the covariance matrix is a difficult task (see Ledoit

& Wolf (2004)), as the covariance matrix can be close to singular. Indeed, the

eigenvalues of the covariance matrix can be very small, and, therefore, the in-

version of the covariance matrix can become problematic. Actually, in order to

estimate the covariance matrix Σ of the excess returns, , a Singular Value Decom-

position procedure is adopted (the time indices are dropped to simplify notations

in this section). More precisely, the matrix , and is found, such that:

Σ = UDV T

Where D is a diagonal matrix with elements (λi)1≤i≤N and UT = U−1 and

V T = V −1. Σ−1 is estimated to be:

Σ−1 = V D∗UT

Where D∗ is a diagonal matrix with elements (λ∗i )1≤i≤N , such that:

λ∗i =

{
1
λi

if λi > ε

0 otherwise.

where ε is the singularity threshold, which is set to 0.1 in this study, to keep the

percentage of null eigen values below 10%.
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Chapter 7

Nonlinear Relative Ambiguity
Adjustment

”I know nothing except the fact of my ignorance.”

Socrates, cited in Diogenes Laertius, Lives of Eminent Philosophers.

In this Chapter, the novel Ambiguity Robust Adjustment methodology presented

in Chapter 5is enhanced by considering a none linear form for Relative Ambiguity

Robust Adjustment π. As has been shown in the previous chapter, the Ambiguity

Robust Adjustment (ARA) can allow an investor to enhance their portfolio allo-

cation performance on real empirical data. However, the linear form considered

for the Relative Ambiguity Robust Adjustment, π, does not take into account

nonlinear effects that can be produced by ambiguity adjustment. For instance,

aggregated asset allocations could be capped, and penalised to a greater degree if

models widely disagree; a cash buffer can be set aside if overall ambiguity aversion

is high. The impact of the nonlinearity of the function, π, on the performance of

the ARA portfolio will be tested on real data.

It is recalled that the function π represents the relative adjustment for a given

model among the class of models considered by the investor, and accounts for

the blending of the different models taken into account by the investor. Once the

different model outputs have been computed and adjusted for Absolute Ambiguity

Robust Aversion through the function ψ, the different adjusted solutions must

179



be combined to compute the final portfolio allocation. A linear form for π, along

with the fact that
∑

Q∈Q πQ = 1, relates to the Subjected Expected Utility (SEU)

framework: the different models are given independently a fixed weight1, that is

applied for the blending allocation of all the assets.

On contrary to the prior chapters, it is no longer assumed, in this chapter, that

π is linear. More theoretically, the ARA weights are defined as:

∀i ∈ [1, N ], φARA ≡ π[ψ(φQ1,i, γQ1), ..., ψ(φQp,i, γQp)]

In this context, the function π is more flexible, and can account for a number of

effects that cannot be expressed through a linear function

• Weight dispersion: first, the function π can operate a nonlinear blending

of the different models, or class of models, amplifying the weights of assets

when several models agree, and further reducing the weights of assets for

which the models disagree.

• Precautionary principle: also, the final asset weights can be capped in order

to express the fact that an investor, averse to ambiguity, is always reluctant

to invest fully in any risky asset.

• Global ambiguity aversion: finally, the function π can partly control the

buffer the investor decides to invest in a cash reserve, due to aversion to

ambiguity.

The calibration of the function π is more an art than an exact science; quanti-

tative, as well as more qualitative, methods can be used to estimate π. In the

remainder of this Chapter, two different methods to calibrate π are presented: a

non-parametric quantitative method, stemming from the neuronal network area,

and a more ad hoc, qualitative methodology, where the function π is constructed

with respect to some desired nonlinear properties.

The chapter is organised as follows: in the first section, a statistical non-parametric

method, that can be used to estimate π, is presented: the Support Vector Ma-

chines (SVM). The SVM methodology is explained, more theoretically, and then

1In this case it corresponds to a probability.
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applied in the second sub-section to the same European dataset used in the em-

pirical study in Chapter 6. However, it is shown that the empirical application

of the SVM method on real data can be challenging: non-parametric, numerical,

methods such as the SVM have some major drawbacks, including computational

time, and cannot necessarily be applied efficiently to large datasets, calling for

alternative methods. In the second section, a more ad hoc, nonlinear form for π

is considered that respects some desired nonlinear properties. Then, an empirical

application is proposed that respects the properties described above. It is shown

that this ad hoc nonlinear form for π can greatly improve the ARA portfolio

performances. The third section concludes the chapter.

7.1 A nonlinear, non-parametric method to es-

timate π: the Support Vector Machines (SVM)

Assuming the investor has no prior knowledge about the form of the function π,

the investor needs, therefore, a non-parametric methodology, to calibrate it on

empirical data. The machine learning area has developed numerous methods for

nonlinear estimations, for instance learning trees or genetic algorithms. Those

neural network algorithms have the advantage of being able to approximate non-

linear functions without a priori assumptions about the data.

7.1.1 The SVM theory

Here, a new, non-parametric machine learning method is presented, which has

been proposed recently by Vapnik (1995) to empirically parametrize the function

π. Many authors found that SVM can beat other classical machine learning meth-

ods to forecast stock returns (see for instance Cao & Tay (2001) who compare the

SVM technique to a classical back propagation neural network on S&P 500 data,

using a Gaussian kernel SVM, or Kim (2003), who makes the same comparison

on Korean data).
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7.1 A nonlinear, non-parametric method to estimate π: the Support
Vector Machines (SVM)

7.1.1.1 Basic theory: linear SVM

Here, an overview of the SVM technique is given. For an in depth description,

refer to Smola & Scholkopf. (1998).

A set of N data (xi, yi)1≤i≤N is considered, where the xi ∈ RD, are some inputs

(these can be multidimensional, i.e. D > 1 ), and the yi ∈ R are the outputs.

The novel aspect of the SVM is that it seeks to minimise an upper bound of the

estimation error, rather than minimising the estimation error itself. Indeed, the

goal of SVM is to find a function f(.) that has, at most, a deviation ε to the

outputs (yi)1≤i≤N , i.e.:

∀i, |f(xi)− yi| ≤ ε (7.1)

The function f is defined as:

f(x) =< ω, x > +ω0

where < a, b >≡
∑D

d=1 adbd refers to the scalar product.

The SVM separates the input vector, (xi)1≤i≤N , through hyperplanes, in such

a way that the separated data (or decision classes) are as far as possible from

each other. A way to achieve this goal, is to minimise the Euclidian norm of the

parameter vector ||ω||2 ≡< ω, ω >. The smaller the norm of the vector ω, the

”flatter” the function f is considered to be. Therefore, SVM is aimed at solving

the following quadratic programming optimisation problem:

min
1

2
< ω, ω > (7.2)

subject to, ∀i ∈ [1, N ],

{
yi− < ω, xi > −ω0 ≤ ε
< ω, xi > +ω0 − yi ≤ ε

The constraints reflect the fact that it is desirable to respect inequality 7.1.

However, Problem 7.2 may be unfeasible when no function f can approximate all

pairs, (xi, yi), with precision ε. One can introduce slack variables, (νi, ηi), and a
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soft margin loss function parametrized by a parameter c. Problem 7.2 becomes:

min
1

2
< ω, ω > +c

N∑
i=1

(νi + ηi) (7.3)

subject to ∀i ∈ [1, N ],


yi− < ω, xi > −ω0 ≤ ε+ νi
< ω, xi > +ω0 − yi− ≤ ε+ ηi
νi, ηi ≥ 0

The parameter c determines the trade-off between the flatness of f and the

amount by which deviations that are larger than ε are tolerated. A dual for-

mulation of 7.3 leads to the following maximisation quadratic programme:

max−1

2

N∑
i,j=1

(αi−α∗i )(αj−α∗j ) < xi, xj > −ε
N∑
i=1

(αi−α∗i )+
N∑
i=1

yi(αi−α∗i ) (7.4)

subject to ∀i ∈ [1, N ],

{ ∑N
i=1(αi − α∗i ) = 0

αi, α
∗
i ∈ [0, c]

Where the (αi, α
∗
i ) are Lagrange multiplicators and ω =

∑N
i=1(αi − α∗i )xi (the

vector parameter ω can be completely described as a linear combination of the

inputs xi). The function f is, therefore, defined as:

f(x) =
N∑
i=1

(αi − α∗i ) < xi, x > +ω0

and the hyperplanes (αi−α∗i ) < xi, x > +ω0, for such i where αi > 0 and α∗i > 0

are effectively the Support Vectors that separate in classes the inputs xi.

7.1.1.2 Nonlinear SVM

The SVM algorithm has the property of being entirely defined by scalar products

of the inputs. This allows the algorithm to be made nonlinear by simply pre-

processing the inputs. The goal of the nonlinear SVM is to estimate the following

function:

f(x) =< ω, π(x) > +ω0
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Where π is a nonlinear function of the input x. A kernel, k, that transforms the

original inputs, (xi)1≤i≤N , is considered. The fact that k can be nonlinear allows

the SVM to operate nonlinear estimations. Because the SVM algorithm only

depends on dot products, it, therefore, suffices to know k(x, y) ≡< π(x), π(y) >,

instead of the nonlinear transformation function π(.). Common examples of the

kernel function are the polynomial kernel: k(x, y) = (xy + 1)d and the Gaussian

kernel: k(x, y) = exp−
(x−y)2

δ2 . In the empirical example displayed here, Gaussian

kernels will be considered, as the polynomial kernel requires longer time in the

training of the SVM algorithm (as pointed out by Kim (2003)).

7.1.2 Empirical application: nonlinear ARA portfolio cal-
ibrated with the SVM algorithm

In this section, the ARA portfolio allocation is constructed when the RARA func-

tion is estimated through the SVM methodology, and is applied to the European

dataset previously used in Chapter 3 and Chapter 6. In a first sub-section, the

framework for the empirical application is defined, then the results are presented

and discussed.

7.1.2.1 Framework and calibration of the SVM algorithm

In order to conduct an empirical test on real data, it is necessary to specify the

framework of the test. Indeed, some simplifications are required in order to run

an SVM algorithm on a very large data sample. The precise calibration of the

SVM algorithm parameters is also discussed.

To compute the SVM analysis, the MATLAB 7.5.0 package developed by Canu

et al. (2008) is used. As an input to the SVM algorithm, the outputs of the differ-

ent 9 models previously studied are used (The Equally Weighted (EW), Minimum

Variance (MN), Mean Variance (MV), CAPM, External Factor Model (EFM),

Fundamental Factor Model (FFM), Principal Component Analysis (PCA), Inde-

pendent Component Analysis (ICA) and Cluster Analysis (CA) portfolios). The

idea is to find the nonlinear function π that achieves the best mix of single strat-

egy outputs to explain stock returns. Therefore, the idea is to solve the following

nonlinear regression:
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φi,ARAt ≡ π(φi,EWt−1 , φi,MN
t−1 , φi,MV

t−1 , φi,CAPMt−1 , φi,EFMt−1 , φi,FFMt−1 , φi,PCAt−1 , φi,ICAt−1 , φi,CAt−1 ) + εit

In order to find the relevant support vectors at each date t, the SVM algorithm is

computed over a sample rolling window of w ≡ 100 days, i.e. a sample covering

the time interval [t−w, t−1]. Due to computational time issues, the more expla-

native variables are considered the longer the algorithm runs. The nine different

single strategies are, therefore, aggregated in three relevant groups in order to

consider only three explanative variables to calibrate the SVM (as a reference

Cao & Tay (2001) consider only 5 variables to explain the returns of some fi-

nancial index futures). The three subsequent aggregated models are, therefore,

considered:

• Classical portfolio (CP): defined as the average of the EW, MN and MV

portfolios.

• Exogenous factor model portfolio (EP): defined as the average of the CAPM,

EFM and FFM portfolios.

• Statistical factor model portfolio (SP): defined as the average of the PCA,

ICA and CA portfolios.

The allocations obtained for each aggregated model, over the window considered,

are concatenated across all stocks. Finally, the SVM algorithm is run in order to

calibrate the following nonlinear equation:

sign(φ1:N,ARA
t ) ≡ π(φ1:N,CP

t ,φ1:N,EP
t ,φ1:N,SP

t ) + εt

where φ1:N,ARA
t stands for the vector of all risky assets weights at date t, and the

φ1:N,.
t represents the vectors of the aggregated CP, EP and SP portfolio alloca-

tions.

To estimate πt at each date t, the concatenated vectors of stock returns and

CP, EP and SP portfolio allocations over the time interval [t − w, t − 1] are

considered. Note that the SVM algorithm does not give a prediction for the

returns themselves, but for the sign of the returns. Indeed, it is computationally
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too challenging to run an SVM algorithm that can predict the scale of returns

for such a large dimension problem.

As pointed out by Cao & Tay (2001), the SVM algorithm is very sensitive to the

calibration of the Gaussian kernel parameter, δ2, the loss function parameter, c,

and the deviation parameter, ε. To calibrate these parameters, a validation test

was conducted on a sub-sample of the dataset (i.e. the last 110 days of the data

set considered: 100 days being considered for the in sample calibration of the

SVM algorithm, and the last 10 days being used as an out of sample validation

set), where a range of different values have been tested for the three parameters

considered. The set of parameters that gives the best Hit ratio1 for the out of

sample dataset is selected2:
δ2 = 0.01
c = 10
ε = 0.3

Ideally, one may want to re-calibrate the three parameters, δ2, c and ε, for each

day where the SVM is re-computed. However, due to long computation time

(each SVM in sample calibration over a 100 day window takes between one and

three minutes), it is not possible to re-calibrate those parameters at each step

of the empirical study. Therefore, for this study, the decision has been made to

keep those parameters constant over the whole period considered.

Now that the framework of the SVM calibration has been specified, the results of

a nonlinear ARA portfolio performance, when the function π is estimated through

the SVM technique are displayed and discussed in the next section.

1number of good signed predictions divided by the total number of predictions
2The data ranges chosen for each parameter are as follows: δ2 ∈ [0.01 : 0.1] with a step of 0.01
c ∈ [10 : 100] with a step of 10
ε ∈ [0.1 : 1] with a step of 0.1
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7.1.2.2 Comparison of the SVM generated ARA portfolio perfor-
mance against the SEU and linear ARA portfolio performances

The performance of predictions is evaluated using the Hit ratio (HIT) metrics, as

considered in Chapter 6. The Hit ratio for a given portfolio P (where P is either

the Subjected Expected Utility portfolio - denoted SEU, the ARA portfolio, where

a simple linear form for π is considered - denoted ARA - as described in Chapter 6

or the ARA portfolio where a nonlinear form for π is evaluated through the SVM

technique and denoted SVM) is defined as:

HIT Pt+1 ≡
∑N

i=1{sign(rit) = sign(rP,it )}
N

The Hit ratio effectively represents the percentage of times the sign of the pre-

dicted return is equal to the sign of the realised return. Consequently, the higher

the Hit ratio is, the better. In Figure (7.1), the Hit ratios for the three considered

portfolios, SEU, ARA linear and SVM, are plotted.

Figure 7.1: SEU, ARA and SVM strategies Hit ratios

The Hit ratio of the SVM portfolio is higher on average than that of the SEU or

linear ARA portfolios (around 52% of the time, the SVM Hit ratio is higher than
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the ARA or SEU Hit ratios). The SVM technique, allowing for a consideration

of a nonlinear form for the Relative Ambiguity Robust Adjustment, π, improves

the ARA portfolio performance in terms of Hit ratio, i.e. the SVM technique

allows a better prediction of the signs corresponding to future risky asset returns.

However, many drawbacks have to be taken into account when implementing the

SVM algorithm on real empirical data.

7.1.2.3 Main drawbacks of the SVM algorithm to calibrate π

The non-parametric SVM technique is very flexible in the form the function π

can take. However, the main issue with the SVM algorithm is the computation

time (the algorithm considered takes several minutes to run to estimate a one day

prediction over an in sample data set of 100 days). Because the SVM algorithm

is highly dependent on the specification of the parameters, c, ε and δ2, the risk

of data mining (where the algorithm is over-fitted for the in sample data set)

is high. Also, for the large dataset, as the one considered here, the number of

support vectors necessary to fit the Gaussian kernel to the in sample data can be

very large as well, making the SVM approach not very tractable (when numerous

support vectors are necessary to fit the function π, it makes it difficult to have a

good apprehension of the estimated form of the function π); this challenges some

of the original motivations for developing the ARA methodology, i.e. simplicity

and tractability.

Such drawbacks have led to serious consideration of a more ad hoc approach,

where the form of the function π is pre defined according to its desired properties.

7.2 A more ad hoc method to calibrate a non-

linear form for π

In this section, the approach to calibrate a nonlinear form for π, to compute the

ARA final allocation, is inverted: some prior nonlinear properties, desired by the

investor, are discussed and the form of the Relative Ambiguity Adjustment π is

deduced from them. More precisely, the approach is as follows. In the first sub-

section, three nonlinear properties are described in detail, which are the product

of ambiguity aversion. In the second subsection, an ad hoc, nonlinear form for
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π, fulfilling those properties, is proposed and tested on real data. The third

subsection concludes.

7.2.1 Some nonlinear desired properties of the Relative
Ambiguity Robust Adjustment π

The function π is a universal function applied to all the different models taken

into account by the investor. The nonlinear properties of the function π should

allow the investor to express their relative aversion to ambiguity. A number of

desirable properties are required for the function π, so that the nonlinearity of π

reflects some economical rationalities expressed by the investor. In particular:

• The weight dispersion

• The precautionary principle

• The global ambiguity aversion

7.2.1.1 Weight dispersion across the different models

A desirable characteristic of the function π is that it should shrink the weights of

the assets on which the different classes of models tend to disagree. The concavity

of the function π should increase for weights for which the models disagree.

To give a more precise idea of this theoretical property, two assets i and j are

considered. A measure of dispersion v is considered (for instance, the standard de-

viation, but it can also be the variance, the absolute mean deviation...). The dis-

persion and mean of all the Absolute Ambiguity Adjusted weights (ψ(φi,Q, γ))Q∈Q

for any asset i are denoted vi and µi. The weight dispersion property for the func-

tion π is defined as:

Property 7.1 (Weight dispersion). If vi < vj (meaning that the models disagree
more on asset j than on asset i), then the final ARA weight φi,ARA should be
closer relatively to the mean µi than the weight φj,ARA to the mean µj i.e:

vi < vj ⇒ |φ
i,ARA − µi|
|µi|

<
|φj,ARA − µj|
|µj|
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7.2.1.2 Precautionary principle

If the models disagree widely on a given asset allocation, the investor should

require the function π, to set the questionable asset allocation to zero. The

investor is able to set a threshold, vmax, such that if the dispersion of the different

models considered is above this threshold for a given asset, the final robust ARA

weight should be set to zero. More precisely:

Property 7.2 (Precautionary principle). If for a given asset i, vi > vmax, then
φi,ARA = 0

Note that the dispersion measure, v, can be quantitative (for instance the stan-

dard deviation), but it also can be qualitative. Indeed, an investor may consider

more qualitative measures for dispersion; for instance, the number of agreeing or

disagreeing experts.

7.2.1.3 The global ambiguity aversion

Finally, the ARA methodology allows the investor to compute a cash buffer that

represents the amount of investment money not allocated to the risky assets due

to the investor’s ambiguity aversion. The first main conceptual difference between

the ARA and the SEU blending is that the Relative Ambiguity Adjustment, π, is

not necessarily a probability distribution, in the sense that the different models

weights, π(Q), do not necessarily sum to one. Indeed, investors may consider that

the combination of all their models remains insufficient to explain stock returns,

and, therefore, allows a proportion of their wealth to not be invested in risky

assets. In the case when π is a linear function, and when
∑

Q∈Q π(Q) < 1, the

amount 1−
∑

Q∈Q π(Q) is disinvested from the risky assets to the risk-free asset,

due to Relative Ambiguity Aversion of the investor. Depending on the context,

this buffer can increase and decrease. During uncertain periods (as for instance

during financial crisis), the buffer gets more important, whilst during more stable

times it can shrink back. This RAA is, therefore, precisely measurable, and

can for instance set the rules to define the amount of reserves required by a

risk management policy: if financial markets become more risky, the amount of

investment wealth set aside should increase; and vice versa. As an analogy, the
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RAA is similar, conceptually, to the capital required for a given level of VaR.

Although in this case, the RAA is not model dependant, and is, therefore, more

flexible than the VaR methodology.

As already mentioned in Chapter 5 (where a linear form of π is considered) the

cash buffer is more formally defined in this case as:

Property 7.3 (cash buffer). The ARA cash buffer ρ is defined as:

ρ ≡ φ0,ARA − π(φ0,Q1

, ..., φ0,Qq)

where the set of priors Q ≡ {Q1, ...,Qq}.
The ARA cash buffer can be decomposed into two parts: the AARA cash buffer
for each prior Q ∈ Q denoted ρQ and the RARA cash buffer for the set of priors
Q denoted ρQ:{
∀Q ∈ Q, ρQ ≡ ψ(φ0,Q,γQ)− φ0.Q

ρQ ≡ ρ− π(ρQ1 , ..., ρQq)

The cash buffer represents the global ambiguity aversion of an investor. It cor-

responds to the difference between the specific allocation given to the risk-free

asset considered as a ”refuge value” in the ARA portfolio allocation and the Rel-

ative Ambiguity Adjusted combined allocations of the risk-free asset under the

different models, when only ambiguity towards the set of models is considered.

Note that the cash buffer represents, effectively, an overall cap on the sum of

total asset allocations for the ARA portfolio.

Those three properties are not exhaustive, and an investor could come up with

additional properties specific to a given allocation problem. In the next section,

a very tractable, ad hoc, form of π is considered, that fulfils all the desired

properties presented above.

7.2.2 Ad hoc nonlinear form for π for the ARA allocation

As specified in the preceding section, where the ARA allocation is computed

through the SVM algorithm, non-parametric methods to calibrate nonlinear func-

tions are often very computationally heavy (the processing time required to re-
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compute portfolio allocations is often important when considering real-life trad-

ing constraints, when portfolios are re-balanced every day or even several times

a day). That is the reason why a more ad hoc version of π is proposed, here,

that proves better performing with empirical data than the linear form of π con-

sidered in Chapter 6. In the first sub section, the details of the computation, of

π, is presented. Then, the performance of the resulting ”nonlinear” ARA port-

folio (calibrated with respect to the Sharpe of the different single strategies) is

displayed in comparison to the equivalent ”linear” ARA portfolio performance,

computed in Chapter 6.

7.2.2.1 Prior specification of the function π

A simple nonlinear form of π can be considered to fulfil the three properties of:

weight dispersion, precautionary principle and global ambiguity aversion. The

generic form can be expressed as:

∀i ∈ [1, N ], φARA,i ≡ max{φmax, µQ∈Q[ψ(φQ,i, γQ)]

vQ∈Q[ψ(φQ,i, γQ)]
}

where φmax is a maximum cap value for any ARA allocation φARA,i, reflecting

the precautionary principle and also the cash buffer, as the sum of all ARA

risky allocations will also be capped. µQ∈Q[ψ(φQ,i, γQ)] describes the average

AARA transformed allocation of the single strategies Q ∈ Q for the asset i,

and vQ∈Q[ψ(φQ,i, γQ)] represents a dispersion value of the AARA transformed

allocation of the single strategies Q ∈ Q for the same risky asset i, translating the

weight diversification property. Indeed, the higher vQ∈Q[ψ(φQ,i, γQ)], the smaller

the absolute allocation φARA,i.

More specifically, considering a cap value of 1 and the variance as dispersion

measure, the final nonlinear ARA allocation can be defined as:

∀i ∈ [1, N ], φARA,i ≡ max{1, µQ∈Q[ψ(φQ,i, γQ)]

σ2
Q∈Q[ψ(φQ,i, γQ)]

} (7.5)

Note that in this case, the nonlinear allocation, φARA, is capped by one (no single

asset allocation can be greater than one in absolute terms).
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7.2.2.2 Results and Comments

The nonlinear version of the ARA portfolio will now be empirically tested, and its

performance compared to the linear version of the ARA portfolio, as described in

Chapter 6. Note that the nonlinear ARA portfolio is constructed with a similar

methodology, and the same dataset as the one employed in Chapter 6 to define

the linear ARA allocation.

Two portfolios are considered here:

• The ARA portfolio as described in Chapter 6, where a simple linear form

for π is considered, where priors AARA transformed allocations are linearly

weighted according to past performance measures, and where the aversion

parameters are calibrated with respect to the Sharpe ratio performance

measure (denoted ”sharpe” thereafter).

• The ARA portfolio, where a nonlinear form for π, as described in Equa-

tion 7.5, is considered (denoted ”nonlinear” thereafter).

Note that for the ”nonlinear” ARA portfolio, the AARA transformation and the

calibration of the aversion parameters are specified as for the ”sharpe” portfolio.

Note also, that the decision has been made to only display the ARA portfolios

that have been constructed with a calibration of the absolute ambiguity parameter

γ according to the Sharpe measure. This choice is for the sake of result clarity,

only, since a calibration with the other performance measures (Sortino, Win Lose

or Gain Loss ratios) gives similar results.

As can be seen in Figure 7.2, the nonlinear, ad hoc version of π outperforms

the linear form considered in Chapter 6: the overall total return of the non-

linear version of the ARA portfolio is higher (85% overall return against only

65%). Consequently, of course, the nonlinear ARA portfolio outperforms all sin-

gle strategies and the SEU strategy, as well. Furthermore, the linear form of the

ARA portfolio displays a negative cumulative return up until 2004, which is not

the case for the nonlinear ARA portfolio: the nonlinear ARA portfolio prevents

the investor from being subjected to a drawdown, offering more robust and stable

performance than the linear ARA portfolio.
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The detailed statistics, presented in Table 7.1, confirm the graphical observation:

the nonlinear ARA portfolio performs better than the linear ARA portfolio in

terms of Sharpe, Sortino, Gain Loss and especially CER ratios (3.23 against

2.39), for a comparable level of turnover (104% against 99%). The nonlinear

ARA portfolio offers, therefore, a much better remuneration for risk than the

linear ARA portfolio.

Figure 7.2: Ad hoc nonlinear Sharpe ARA strategy versus linear Sharpe ARA
strategy cumulative returns

7.3 Conclusion

Ambiguity aversion implies some nonlinear properties that can be taken into ac-

count, not only, through the Absolute Robust Ambiguity Adjustment ψ, but, also

through the Relative Ambiguity Robust Adjustment π. Indeed, the more models

actually agree on the allocation for a given risky asset, the less the investor should

allegedly be averse to it, and vice versa. Also, the investor averse to ambiguity

may apply a precautionary principle, and cap final risky asset allocations due to

global ambiguity aversion towards the set of models.
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non linear sharpe
µ(%) 85.88 63.34

µ(Bps) 3.29 2.43
σ(%) 12.18 9.23

max(µ)(Bps) 820.39 656.03
min(µ)(Bps) −504.85 −408.09

Sharpe 0.67 0.66
Sortino 0.86 0.81

GainLoss(%) 53.43 53.20
WinLose(%) 52.84 52.91

CER(Bps) 3.23 2.39
T/O(%) 104.32 99.84

Table 7.1: Non Linear Strategy Performance

When Investigating nonlinear forms for π, empirical evidence shows that it can

further enhance portfolio allocation performances: the overall return of the non-

linear ARA portfolios, presented in this Chapter, is much higher than the one for

a linear ARA portfolio, as the one considered in Chapter 6. Also, the Certainty

Equivalent Ratio obtained with a nonlinear ARA portfolio is 35% higher than

the CER obtained with the linear ARA portfolio.

Non-parametric numerical methods, which have the advantage of not assuming

any a priori form for π, prove, however, challenging to use in practice due to

computational time limitations and lack of tractability for the solution selected.

Another more practical approach, proposed in this chapter, is to come up with a

prior form for π that respects some desired, selected, nonlinear properties. It has

been shown, empirically, that this version of π allows a better performing ARA

asset allocation than the ones considered previously.

This chapter is a first step; the ad hoc form for π, proposed in this chapter, is

by no means a unique, or best solution. It is solely shown, that, via an empirical

test, this approach can make a contribution to a better way of allocating assets.

Further research is clearly needed to investigate the potentialities of nonlinearity
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for the RARA function; such as deciding, which nonlinear properties to consider

and how to take them into account.

196



Chapter 8

Conclusion

”This is not the end. It is not even the beginning of the end. But it is, perhaps,

the end of the beginning.”

Sir Winston Churchill.

In this PhD thesis, a new methodology to account for model ambiguity has been

proposed: the Ambiguity Robust Adjustment (ARA). This novel approach dif-

fers from classical approaches found in the literature, as it focuses on finding a

robust, tractable and flexible solution, rather than an optimal solution, sensu

stricto. The methods developed in this research have, thus far, proved to be

an easy to implement, robust ambiguity methodology that allows investors to

adapt asset allocation decisions to the level of ambiguity aversion held against

the different priors considered when modelling asset return dynamics. Through

this approach, the investor is able to distinguish between two types of ambigu-

ity: a model specific absolute ambiguity aversion, and relative ambiguity aversion

across the set of different priors. Contrary to the classical approaches offered in

the literature, the ARA can be applied to complex, high-dimension problems.

In particular, empirical studies performed on financial data have shown that

the ARA methodology greatly improves the performance of an asset allocation

problem solution: the ARA portfolio allocation outperforms the single strategy
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allocations consistently; as well as the SEU allocation, which operates a plain lin-

ear blending of the single strategies. It has also been shown, that, given a more

complex nonlinear form for the RARA function, the ARA portfolio performance

can be further enhanced, giving scope for significant improvement in the portfolio

allocation problem facing financial practitioners.

The novel ARA approach yields better portfolio returns when applied to the

asset allocation problem. Mixing models by scaling down extreme asset weights

through the AARA function and adjusting the different models allocations through

the RARA function allows the investor to smooth the portfolio performance bet-

ter than when mixing models with a simple linear approach as the SEU that does

not take into account ambiguity. It is not to say though that this new method-

ology is the ultimate solution to deal with ambiguity. There may be other, more

effective ways to account for ambiguity in the decision making process. However,

the benchmark approach used in this PhD thesis, comparing the SEU method

(used as a benchmark, not taking into account ambiguity) to the ARA method

(taking into account ambiguity) shows that the treatment of ambiguity made by

the later novel approach improves the decision making process. Note that this

benchmark approach may remain insufficiant to irrevocably prove that the ARA

treatment of ambiguity is the sole cause of improved portfolio performance, other

hidden effects could have been overlooked, and this could constitute material for

further research.

The research conducted in this PhD thesis has led to numerous questions, and

by no means have they been all addressed in this PhD thesis. Further research

will almost certainly involve reflections on the following topics:

• Calibration of the absolute and relative ambiguity aversion parameters.

• Other forms for the RARA function.

• Application of the ARA methodology on other fields.

More specifically:
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• Testing different forms for the Absolute Robust Ambiguity Adjustment

function ψ and also the Relative Ambiguity Robust Adjustment π; indeed,

throughout this PhD thesis, only a few forms have been investigated for

those two functions. Research should be undertaken, especially, into other

nonlinear calibrations for π . For instance, deterministic models such as

those stemming from Chaos Theory could be tested; other stochastic ap-

proaches could also be used. For instance, many non-parametric neural net-

work algorithms could be considered (the neural network field, with genetic

or learning algorithm, has evolved immensely over the past few years), even

if numerically challenging, they could offer a good alternative to calibrate

the function π. In addition, parametric models, such as the Gaussian Mix-

ture of models, could also be investigated, even though they require a strong

prior (i.e. the decomposition of π in different normal distributions). Some

qualitative approaches could also be used when blending different models

under ambiguity, as has been proposed in political sciences, environmental

policies, biology ...

• Another area that requires further research is the calibration of the absolute

and relative ambiguity parameters. In this research, a method based on

the knowledge of past model performances is used. However, it could be

assumed that decision-makers are able to define their aversion to ambiguity

in ways that are more qualitative.

• Finally, the ARA methodology should be tested on decision-making prob-

lems in areas other than the financial field, which has been the main consid-

eration in this thesis. Indeed, this method could be applied to many areas

involving decision-making under uncertainty. For instance, the ARA could

be used, not only to characterise robust investment strategies, but also, to

design and establish specific risk-management regulation for pension funds,

that - although currently underdeveloped - are crucial to the avoidance of

dramatic impacts of financial market crashes at a larger scales of the econ-

omy. Collective decision-making is another important application of this

research proposal. Climate change policy and environmental regulation,

more generally, constitute a direct application area. Macroeconomic and
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monetary policies, where robustness is now the object of an expanding re-

search community, should also benefit from the decision method proposed

here.

Because of the increasing complexity of modelling requirements (due to the evo-

lution of modern technology as well as the progression of many different scientific

fields) and the diversity of prior models that can be considered to represent various

decision variables, it became clear that it was important to consider an adaptable

approach to account for ambiguity. This constituted the main motivation to un-

dertake this PhD thesis; the aim has been to introduce an original methodology

to account for ambiguity in the decision-making process, generally speaking, in

ways that are robust, flexible and tractable.
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