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Foreword

I spent the first year of my PhD working on a completely different research
project whose results I did not include in this dissertation as I preferred
submitting a unified work. The paper resulting from this research project
is entitled “A Semiparametric Model for the Systematic Factors of Portfolio
Credit Risk Premia” and it is published in the Journal of Empirical Finance,
Volume 16, Issue 4, September 2009, pp. 655-670.

The paper investigates the empirical relationship between the daily returns
of a Credit Default Swap (CDS) index and stock returns, stock price volatil-
ity, and interest rates. Analogous empirical analyses were previously con-
ducted in the literature by Bystrom (2008) and Alexander and Kaeck (2008).
Bystrom (2008) estimated several linear regression models finding a negative
relationship between the daily returns of various CDS indexes, current stock
returns, and lagged stock returns. Alexander and Kaeck (2008) estimated
a Markov-switching model with a low-volatility regime and a high-volatility
regime finding that interest rates, stock returns, and stock volatility have a
stronger linear relationship with various CDS indexes in the high-volatility
regime.

Both in Bystrom (2008) and Alexander and Kaeck (2008) the relationship
between the daily returns of a CDS index and its determinants is assumed to
be well approximated by a unique parametric model over a rather extended
period of time. However, the parametric model describing the relationship
between the daily returns of a CDS index and its determinants is likely to
be affected by instability and sudden shifts over a relatively long period of
time. Instability and sudden shifts in the regression function could result,
for instance, from the smooth evolution of the economic scenario, or from

extreme and unexpected negative developments in the economy. For this



reason, in our paper the relationship between the daily returns of a CDS
index and its determinants is described by a semiparametric model which
accounts for a nonlinear regression function characterized by inhomogeneous
smoothness properties and unknown number and locations of jumps. The
model is estimated by the adaptive nonparametric techniques introduced by
Spokoiny (1998) and further developed by Cizek et al. (2009) which consist
in locally approximating a regression function by a simple parametric model
and in selecting the degree of locality of the parametric approximation by a
multiscale local change point analysis.

Our estimation results indicate that from November 2004 to January 2008
the relationships between the daily returns of the considered CDS index and
stock returns, stock price volatility, and interest rates' were characterized by
relatively long phases of stability interrupted by several sudden and extreme
jumps. The jumps were associated to the downgrade of Ford and General
Motors in 2005, to the slowdown of the US housing market in 2006, and to
the credit crisis started in 2007. Our estimation results also suggest that
in normal economic conditions the relationship between the daily returns of
the considered CDS index and its determinants tends to be relatively weak
but coherent with economic intuition and with earlier empirical findings,
while during periods of economic instability the relationship between the
daily returns of the CDS index and its determinants tends to be stronger

but often inconsistent with common economic intuition and with earlier em-

!The considered CDS index is the iTraxx Europe index. The iTraxx Europe is the
benchmark credit index in Europe and it is constructed as an equally weighted portfolio
of 125 liquidly traded single-name CDS’s. The considered stock returns are the daily
returns of the Dow Jones Euro Stoxx 50 index. The Dow Jones Euro Stoxx 50 is a blue-
chip index and it is constructed as a portfolio of 50 stocks weighted according to their
market capitalization and representative of different Eurozone countries. The considered
proxy for stock volatility is the Dow Jones VStoxx 50 index. The Dow Jones VStoxx 50
index measures the volatility implied in options on the Dow Jones Euro Stoxx 50 index.
The considered interest rate variable is the Euro swap rate versus Euribor for 1-year
maturity.



pirical findings as it tends to reflect the prevailing circumstances of economic

distress.



Abstract

In this dissertation we study the indifference buyer’s price and the indiffer-
ence seller’s price of an uncertainty averse decision-maker and the charac-
terization of a decision-maker’s attitudes toward uncertainty.

In the first part of the dissertation we study the properties fulfilled by the
indifference buyer’s price and by the indifference seller’s price of an uncer-
tainty averse decision-maker. We find that the indifference buyer’s price
is a quasiconvex risk measure and that the indifference seller’s price is a
cash-additive convex risk measure. We identify the acceptance family of the
indifference buyer’s price as well as the acceptance set of the indifference
seller’s price. We characterize the dual representations of the indifference
buyer’s price and of the indifference seller’s price both in terms of probabil-
ity charges and in terms of probability measures.

In the second part of the dissertation we study the characterization of a
decision-maker’s attitudes toward uncertainty in terms of the indifference
buyer’s price and of the indifference seller’s price. We find that a decision-
maker is more uncertainty averse than another if and only if her indifference
buyer’s price and her indifference seller’s price are larger than for the other.
We find that a decision-maker is increasingly (respectively, decreasingly, con-
stantly) uncertainty averse if and only if her indifference buyer’s price and
her indifference seller’s price are increasing (respectively, decreasing, con-
stant) functions of her constant initial wealth.

In the last part of the dissertation we further develop the characterization
of increasing, decreasing, and constant uncertainty aversion and we derive
a technical condition that allows to immediately verify whether an uncer-
tainty averse representation of preferences exhibits increasing, decreasing, or

constant uncertainty aversion. We find that this technical condition allows



to classify a large class of uncertainty averse representations of preferences

into increasingly, decreasingly, and constantly uncertainty averse.
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Chapter 1

Introduction

The indifference prices are the boundaries delimiting the prices of a contract
that would be agreed to by an individual who prefers more money to less
money and who endeavors to maximize the relative desirability of her mon-
etary endowment. The technique of indifference pricing was introduced by
Bernoulli (1738) contextually with the prediction that an individual chooses,
among alternative monetary endowments, the one providing a maximum of
expected utility. The consistency of the paradigm of expected utility maxi-
mization and, accordingly, of the resulting indifference prices, with criteria
of logic and rationality, was established by von Neumann and Morgenstern
(1953) in a framework in which future events are assigned objective prob-
abilities, and extended by Savage (1972) to a framework in which future
events are assigned subjective probabilities (see also Ramsey (1931) and de
Finetti (1964)).

The technique of indifference pricing was further developed by Pratt (1964)
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in relation to the characterization of an individual’s attitudes toward risk.
In Pratt (1964) risk is intended as the variability of the outcomes of a mon-
etary prospect, irrespective of whether the different possible outcomes of
the monetary prospect are described by objective probabilities as in von
Neumann and Morgenstern (1953) or by subjective probabilities as in Sav-
age (1972). Pratt (1964) found that an individual is more risk averse than
another if and only if the maximum price that she would offer to avoid a
risky monetary prospect is larger than for the other, and that an individ-
ual is increasingly (respectively, decreasingly, constantly) risk averse if and
only if the maximum price that she would offer to avoid a risky monetary
prospect is an increasing (respectively, decreasing, constant) function of her
constant initial wealth. Pratt (1964) further observed that an individual is
more risk averse than another if and only if the degree of relative convexity
of her utility function (de Finetti (1952), Arrow (1970) and Pratt (1964))
is larger than for the other, and that an individual is increasingly (respec-
tively, decreasingly, constantly) risk averse if and only the degree of relative
convexity of her utility function is an increasing (respectively, decreasing,
constant) function of her constant initial wealth. Pratt (1964) showed that
the characterization of increasing, decreasing and constant risk aversion in
terms of the degree of relative convexity of a utility function (de Finetti
(1952)) or Arrow-Pratt coefficient of risk aversion (Arrow (1970) and Pratt
(1964)) allows to immediately classify the different possible specifications of
a utility function into increasingly, decreasingly, and constantly risk averse.
The indifference prices of an expected utility maximizer, intended indiffer-
ently either in the sense of von Neumann and Morgenstern (1953) or in
the sense of Savage (1972), have been extensively applied in the actuarial

mathematics literature on premium calculation principles (see, among oth-
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ers, Bithlmann (1970) and Deprez and Gerber (1985)), and in the financial
mathematics literature on pricing in incomplete markets (see, for instance,
Carmona (2009) and the references therein). Ellsberg (1961) observed that,
however, individuals do not always act consistently with the maximization
of expected utility!. Ellsberg (1961) observed that, specifically, if an indi-
vidual considers herself considerably ignorant of the relative frequencies of
future events, and if she dislikes her state of considerable ignorance of the
relative frequencies of future events, then “it is impossible to find probability
numbers in terms of which [... her| choices could be described - even roughly
or approximately - as maximizing the mathematical expectation of wutility”.
Schmeidler (1989) indicated that the violation of the paradigm of expected
utility maximization in the particular situations described by Ellsberg (1961)
is consistent with a disfavor for the choices involving subjective rather than
objective probabilities. Schmeidler (1989) designated an individual’s disfa-
vor for the choices involving subjective rather than objective probabilities as
uncertainty aversion, and showed that the choices of an uncertainty averse
individual could be described as maximizing an objective function which
is more general than the mathematical expectation of utility. Schmeidler
(1989) showed that, in particular, the choices of an uncertainty averse in-
dividual could be described as maximizing the integral of the utility with
respect to a capacity or non-additive probability. Since the seminal paper
of Schmeidler (1989), several other objective functions have been proposed
in the literature to describe the choices of an uncertainty averse individual.
Examples are the multiple priors (Gilboa and Schmeidler (1989)), the mul-

tiplier (Hansen and Sargent (2001), Strzalecki (2011)) and the variational

!Other deviations from the paradigm of expected utility maximization different from
the one described by Ellsberg (1961) were discovered, for instance, by Allais (1953). This
dissertation is concerned, however, only with the violations of expected utility theory
observed by Ellsberg (1961), and not also with the ones observed by Allais (1953).
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(Maccheroni et al. (2006)) representations of preferences. Cerreia Vioglio
et al. (2011a) showed that, however, many objective functions which de-
scribe the choices of an uncertainty averse individual are particular cases of
a more general objective function which, because of its unifying character,
was denominated by Cerreia Vioglio et al. (2011a) the uncertainty averse
representation of preferences.

In this dissertation we study the indifference prices defined by the uncer-
tainty averse representation of preferences of Cerreia Vioglio et al. (2011a)
and their relationship with the characterization of an individual’s attitudes
toward uncertainty.

In Chapter 2 we introduce the uncertainty averse representation of prefer-
ences of Cerreia Vioglio et al. (2011a) along with its particular specifica-
tions corresponding to the variational (Maccheroni et al. (2006)), the multi-
plier (Hansen and Sargent (2001), Strzalecki (2011)) and the multiple priors
(Gilboa and Schmeidler (1989)) representations of preferences.

In Chapter 3 we study the indifference prices defined by the uncertainty
averse representation of preferences of Cerreia Vioglio et al. (2011a). We
define the indifference buyer’s price as the maximum price that an uncer-
tainty averse individual would offer to avoid an uncertain monetary prospect,
and the indifference seller’s price as the minimum price that an uncertainty
averse individual would demand to accept an uncertain monetary prospect.
We show that the indifference buyer’s price is a quasiconvex risk measure,
and that the indifference seller’s price is a cash-additive convex risk mea-
sure. We study the relationship between the indifference buyer’s price and
its acceptance family, as well as the relationship between the indifference
seller’s price and its acceptance set. We provide the dual representations

of the indifference buyer’s price and of the indifference seller’s price both
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on probability charges and on probability measures. We further develop the
dual representations on probability measures of the indifference buyer’s price
and of the indifference seller’s price defined in terms of the variational (Mac-
cheroni et al. (2006)), the multiplier (Hansen and Sargent (2001), Strzalecki
(2011)) and the multiple priors (Gilboa and Schmeidler (1989)) representa-
tions of preferences.

In Chapter 4 we study the characterization of an individual’s attitudes to-
ward uncertainty in terms of the indifference buyer’s price and of the in-
difference seller’s price defined by the uncertainty averse representation of
preferences of Cerreia Vioglio et al. (2011a). We show that a decision-
maker is more uncertainty averse than another if and only if her indifference
buyer’s price and her indifference seller’s price are larger than for the other,
and that a decision-maker is increasingly (respectively, decreasingly, con-
stantly) uncertainty averse if and only if her indifference buyer’s price and
her indifference seller’s price are increasing (respectively, decreasing, con-
stant) functions of her constant initial wealth. We find a correspondence
between increasing, decreasing, and constant uncertainty aversion and the
additive properties that the indifference buyer’s price satisfies with respect
to the positive constants (e.g. cash-subadditivity (El Karoui and Ravanelli
(2009))), and we show that these additive properties fulfilled by the in-
difference buyer’s price allow to immediately establish various inequalities
between the indifference buyer’s price and the indifference seller’s price. We
find a correspondence between increasing, decreasing, and constant uncer-
tainty aversion and the multiplicative properties that the uncertainty index
appearing in the uncertainty averse representation of preferences of Cer-
reia Vioglio et al. (2011a) satisfies with respect to the positive constants

(e.g. star-shapedness (Cerreia Vioglio et al. (2010))), and we show that
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these multiplicative properties fulfilled by the uncertainty index allow to
immediately classify the different possible specifications of the uncertainty
averse representation of preferences of Cerreia Vioglio et al. (2011a) into
increasingly, decreasingly, and constantly uncertainty averse. We find that
the variational (Maccheroni et al. (2006)) and, as a consequence, the mul-
tiplier (Hansen and Sargent (2001), Strzalecki (2011)), representations of
preferences are decreasingly uncertainty averse, and that the multiple priors
(Gilboa and Schmeidler (1989)) representation of preferences is constantly

uncertainty averse.
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Chapter 2

Decision-Theoretic Framework

2.1 Notations and Basic Concepts

2.1.1 Mathematical Notations

The pair (5,%) is a measurable space where S is a set of future states of
nature and Y is a g-algebra of subsets of S representing future events.

The set X = B(S,X) is the set of all bounded, real-valued, ¥-measurable
functions X on S, including the constant functions X(s) = x € R for all
s € S. The subset of constant functions in X is identified with R and every
equality or inequality involving elements of X is intended as holding for all
ses.

The set X* = ba(S, X)) is the set of all bounded, finitely additive, real-valued
set functions P on ¥ and X} = ca(S,X) C X* is its subset of countably
additive elements. A set function P on X is finitely additive if P(U] | E;) =

S P(E;) for every finite family {E;}!; of pairwise disjoint sets in X
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and it is countably additive if P(U°, E;) = > _>°, P(E;) for every countable
family {E;};en of pairwise disjoint sets in 3. The set of positive normalized

set functions in A'* is indicated by,
A={PeX*|P(E)>0VEe€X, P(S)=1}

and the subset of countably additive elements in A C X* is indicated by
A C X
The sets X and X* endowed, respectively, with the supremum norm! and

2

with the total variational norm?*, are Banach spaces. The space A* is iden-

tified with the dual space of X and the evaluation duality is given by,

Ep[X] ::/SX(S)P(ds)

for all (X, P) € X x X*. Unless otherwise specified, X is endowed with its
norm topology, X* is endowed with its weak™ topology, and product spaces
are endowed with their product topology. For the definitions of the different

topologies see Aliprantis and Border (2006, Chapter 2).

2.1.2 A Note on Terminology

In the terminology of measure theory the elements of A C X* are probability
charges and the elements of A C X} are probability measures. In this
dissertation we adopt, however, the terminology of decision-theory, in which
the elements of A C X'* are finitely additive probabilities, and the elements

of A% C X} are countably additive probabilities.

'That is, || X||ec := sup,cg | X (s)| for all X € X.
*For every E € ¥ the total variation of a P on E is defined as || P|| = sup .1, |P(E;)|
where the supremum is taken over all finite sequences {E;} of disjoint sets in ¥ with

E; C E (see Dunford and Schwartz (1988, II1.1.4)).
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2.1.3 Decision-Theoretic Concepts

The considered decision-theoretic set-up is a Savage (1972) framework. The
elements of X’ are interpreted as monetary payoffs, that is as the alternative
courses of actions that are available to an individual whose consequences are
money payments.

The non-constant monetary payoffs in X are interpreted as entailing “un-
measurable” uncertainty (Knight (1921)) in the sense of having as their “[...]
consequences a set of possible specific outcomes, but where the probabilities of
these outcomes are completely unknown or are not even meaningful” (Luce
and Raiffa (1989)).

The constant monetary payoffs in X are instead interpreted as certain as

they “[...] lead invariably to a specific outcome” (Luce and Raiffa (1989)).

2.2 Background on Uncertainty Aversion

In this section we present the notions and concepts of decision under un-
certainty which were relevant to the study and development of uncertainty
averse preferences. In Subsection 2.2.1 we briefly introduce Savage’s (1972)
expected utility. In Subsection 2.2.2 we describe the violation of Savage’s
(1972) expected utility known as Ellsberg’s (1961) paradox. In Subsection
2.2.3 we describe Schmeidler’s (1989) rationalization of Ellsberg’s (1961)

paradox in terms of a preference for mixtures, averages, or randomizations.

2.2.1 Subjective Expected Utility

According to Savage’s (1972) expected utility theory an individual whose
choices are consistent with some essential principles of logic and are not

intrinsically contradictory evaluates the relative desirability of alternative
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monetary payoffs by a function U%® : X — R of the form,
U9 (X) = Eqlu(X)] (2.1)

for all X € X. The finitely additive probability @ € A in Equation (2.1) is a
subjective probability, prior, or belief (see also Ramsey (1931) and de Finetti
(1964)) reflecting the decision-maker’s personal opinion on the relative likeli-
hoods of future events. The function v : R — R in Equation (2.1) is a utility
function reflecting the value, utility, or advantage, that the decision-maker
derives from particular monetary outcomes (see Bernoulli (1738) and von

Neumann and Morgenstern (1953)).

2.2.2 Ellsberg’s Paradox

The representation in Equation (2.1) implies that an individual whose choices
are consistent with the normative principles established by Savage (1972)
acts as if she assigned probabilities to future events and as if she chose,
among alternative monetary payoffs, the one providing a maximum of ex-
pected utility. Ellsberg (1961) observed that there are, however, some par-
ticular circumstances in which an individual perceives her information on the
relative likelihoods of future events as considerably opaque, deceitful, or in-
sufficient and, in contrast with the predictions of Savage’s (1972) expected
utility theory, she does not assign, or act as if she assigned, “meaningful
probabilities” to future events.

Ellsberg (1961) discussed, for instance, the following example. Consider an
urn known to contain 30 red balls and 60 black and green balls, the latter
in unknown proportion. One ball is to be drawn at random from the urn.

The “objective” probabilities of a red ball being drawn (R) and of a red ball

20



not being drawn (R®) are “completely known” and equal to 1/3 and 2/3
respectively. In contrast, the “objective” probabilities of a black ball being
drawn (B) and of a green ball being drawn (G) are “significantly ignored”.
They are not “completely ignored” because they are known to lie in the
interval [0, 2/3]; there is, however, only little information to judge their pre-
cise values. Ellsberg (1961) investigated how an individual chooses among
the alternative monetary payoffs described in Table 2.1 whose outcomes are
contingent on the colour of the ball drawn from the urn described above.

Ellsberg (1961) observed that most individuals prefer X to Y and Y’ to X’

30 60
—_——
R B G
X $100 $0 $0
Y $0 $100 $0
X" $100 $0 $100
Y $0 $100 $100

Table 2.1: Urn Example I.

and that “it is impossible to find probability numbers in terms of which these
choices could be described - even roughly or approximately - as maximizing
the mathematical expectation of utility”. Consider, in fact, an individual
who maximizes the expected utility in Equation (2.1) and assume, without
loss of generality®, that «(0) = 0, and that «(100) = 1. This individual
strictly prefers X to Y if and only if Q(R) > Q(B) and strictly prefers Y’
to X’ if and only if Q(RY) > Q(BY). Thus, the choices of this individ-
ual reveal that her subjective probability satisfies both Q(R) > Q(B) and

Q(R) < Q(B), which is impossible. For this reason, these findings, as well

3The utility function 4 : R — R in Equation (2.1) is unique up to positive affine
transformations. Thus, there is no loss of generality in replacing v : R — R by @ : R - R
where 4(x) = B+ au(z) for all z € R with 8 € R and a € (0,40o0) such that o =
1/(u(100) — u(0)) and B =1 — u(100)/(u(100) — u(0)) provided that u(100) > u(0).
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as other analogous findings collected by Ellsberg (1961), are referred to as
the FEllsberg’s paradozx.

Ellsberg (1961) further observed that the choice of X over Y and of Y’ over
X' is motivated by a preference for the monetary payoffs whose outcomes are
realized on events whose “objective” probabilities are “completely known”,
as opposed to the monetary payoffs whose outcomes are realized on events

whose “objective” probabilities are “significantly ignored”.

2.2.3 Uncertainty Aversion

Schmeidler (1989) noticed that an individual’s violation of the paradigm of
expected utility maximization in the circumstances described by Ellsberg
(1961) is consistent with a preference for smoothing, or averaging, alter-
native monetary payoffs across states of nature, and that this preference
for mixtures reflects an endeavor to “objectify” the probabilities of the fu-
ture events on which the outcomes of the monetary payoffs are realized (see
Klibanoff (2001)). Consider again the urn described in Subsection 2.2.2 and
assume that an individual is asked to choose among the alternative monetary

payoffs described in Table 2.2. An individual who considers herself consid-

30 60
— -~
R B G
Y $0 $100 $0
z $0 $0 $100
Y +17Z %0 $50 $50

Table 2.2: Urn Example II.

erably ignorant of the relative likelihoods of the events on which a blue ball
is drawn (B) and a green ball is drawn (G) would be indifferent between Y

and Z, but would prefer their “average” %Y + %Z to either of them alone:
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while the probability that either Y or Z pays $100 is “significantly ignored”,
as it is only known to lie in the interval [0,2/3], the probability that their
“average” %Y + %Z pays $50 is “completely known”, as it is known to be
equal to 2/3.

Schmeidler (1989) designated an individual who prefers a mixture of equally
desirable monetary payoffs to either of them alone as uncertainty averse to
indicate that her choices reveal a preference for the monetary payoffs whose
outcomes are realized on the future events to which probabilities are assigned
“objectively” and a disfavour for the monetary payoffs whose outcomes are
realized on the future events to which probabilities are to be assigned sub-

jectively (see also Klibanoff (2001)).

2.3 Uncertainty Averse Preferences

Although whether uncertainty aversion should be considered a normative
principle of decision under uncertainty or a possibly implausible and irra-
tional trait of particular individuals is still the object of debate (see Al-Najjar
and Weinstein (2009)) several models of choice under uncertainty have been
developed in the economic literature which explicitly postulate uncertainty
aversion of the decision-maker. Examples are the multiple priors (Gilboa
and Schmeidler (1989)), the multiplier (Hansen and Sargent (2001), Strza-
lecki (2011)), and the variational (Maccheroni et al. (2006)) representations
of preferences. Other models of choice under uncertainty which allow for
uncertainty aversion of the decision-maker are, among others, the Choquet
expected utility (Schmeidler (1989)) and the smooth ambiguity (Klibanoff
et al. (2005)) representations of preferences.

Cerreia Vioglio et al. (2011a) showed that all the decision-theoretic models

which characterize uncertainty aversion through Schmeidler’s (1989) prefer-
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ence for mixtures represent particular cases of a more fundamental class of
preferences which, because of their great generality, were denominated by
Cerreia Vioglio et al. (2011a) uncertainty averse preferences*. The uncer-

tainty averse representation of preferences U“ : X — R of Cerreia Vioglio

et al. (2011a) is given by,
u,G o
U™(X) = Fl)Ielg G(Ep[u(X)], P) (2.2)

for all X € X. The function v : R — R in Equation (2.2) is a utility func-
tion (as in Equation (2.1)) reflecting the decision-maker’s attitudes toward
risk. The function G : R x A — (—o0,+00] in Equation (2.2) is an un-
certainty index reflecting the decision-maker’s attitudes toward uncertainty.
The smaller the uncertainty index G, the larger the decision-maker’s uncer-
tainty aversion. The uncertainty index G : R x A — (—o00, +o0] in Equation
(2.2) is increasing on R for each P € A, lower semi-continuous and quasi-
convex on R x A, normalized, that is such that infpea G(y, P) = y for all
y € R, and such that G(., P) is extended-valued continuous on R for each
P e A°.

The representation in Equation (2.2) implies that an uncertainty averse
decision-maker whose choices are consistent with the principles established
by Cerreia Vioglio et al. (2011a) evaluates the relative desirability of an
uncertain monetary payoff in X as if, by the function G, she appraised its
expected utility under each probabilistic scenario in A, and as if she summa-
rized her appraisal by considering exclusively the worst probabilistic scenario
in A.

“As the Choquet expected utility model of Schmeidler (1989) and the smooth ambi-
guity model of Klibanoff et al. (2005) do not require a priori that the decision-maker is
uncertainty averse, in this dissertation they will not be treated as special cases of the
uncertainty averse representation of preferences of Cerreia Vioglio et al. (2011a).

®That is, limy—4, G (2, P) = G(z0, P) € (—o0, +o0] for all g € R and P € A.
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In the following subsections we illustrate that the variational (Maccheroni
et al. (2006)), the multiplier (Hansen and Sargent (2001), Strzalecki (2011)),
and the multiple priors (Gilboa and Schmeidler (1989)) representations of
preferences are obtained as particular cases of the uncertainty averse rep-
resentation of preferences of Cerreia Vioglio et al. (2011a) under suitable
specifications of the uncertainty index G : R x A — (—o00, +00] in Equation

(2.2).

2.3.1 Variational Preferences

The variational representation of preferences U%¢ : X — R of Maccheroni

et al. (2006) is given by,
U"e(X) = inf (Ep[u(X)] +c(P)) (2.3)

for all X € X. The function u : R — R in Equation (2.2) is a utility function
(as in Equation (2.1)) reflecting the decision-maker’s attitudes toward risk.
The function ¢ : A — (—o0,+0o0] in Equation (2.3) is an ambiguity index
reflecting the decision-maker’s attitudes toward uncertainty. The smaller
the ambiguity index ¢, the larger the decision-maker’s uncertainty aversion.
The ambiguity index ¢ : A — (—o0, +00] is convex, lower semi-continuous,
and normalized, that is such that inf pea ¢(P) = 0.

The representation in Equation (2.3) implies that an uncertainty averse
decision-maker whose choices are consistent with the principles established
by Maccheroni et al. (2006) evaluates the relative desirability of an uncer-
tain monetary payoff in X as if, by the function ¢, she applied a correction
to its expected utility under each probabilistic scenario in A, and as if she

summarized her appraisal by considering exclusively the worst probabilistic

25



scenario in A.
The variational representation of preferences is a particular case of the un-
certainty averse representation of preferences in Equation (2.2) which is

obtained when the uncertainty index G : R x A — (—o00, +00] satisfies,
G(z,P) =x + ¢(P) (2.4)
for all (z,P) € R x A.

2.3.2 Multiplier Preferences

The multiplier representation of preferences U%RF" . X — R introduced

by Hansen and Sargent (2001) and axiomatized by Strzalecki (2011) is given

U (X) = inf <Ep[u(X)] +0R(P||IF’*)> (2.5)

for all X € X with 0 € (0,400] and P* € A°. The function v : R — R
in Equation (2.2) is a utility function (as in Equation (2.1)) reflecting the
decision-maker’s attitudes toward risk. The constant 6 € (0, +oco] in Equa-
tion (2.2) is a parameter reflecting the decision-maker’s attitudes toward
uncertainty. The smaller the parameter 6 € (0, +00], the larger the decision-
maker’s uncertainty aversion. The function R(.||P*) : A — [0,+0o0] in
Equation (2.2) is the relative entropy with respect to P* € A? which is

given by,

R(P||P*) = Ep[ln (dfp*)] if P e A%(P*)

+00 otherwise

for all P € A. The set A?(Q) C A7 is the set of all probability measures on
(S, %) which are absolutely continuous with respect to P* € A?. The prob-

ability measure P* € A7 is interpreted as the decision-maker’s best guess of
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the “right” probability on (S, X) and it is designated as the decision-maker’s
reference probability (see Strzalecki (2011)).

The representation in Equation (2.5) implies that an uncertainty averse
decision-maker whose choices are consistent with the principles established
by Strzalecki (2011) evaluates the relative desirability of an uncertain mon-
etary payoff in X as if she applied a correction to its expected utility under
each probabilistic scenario in P € A, the correction depending on the “dis-
tance” R(P||P*) of the considered probabilistic scenario P € A from the
reference scenario Q € A7, and on the relevance # € (0,+o00] that the
decision-maker assigns to this “distance”, and as if she summarized her ap-
praisal by considering exclusively the worst probabilistic scenario in A.
The multiplier representation of preferences is a particular case of the un-
certainty averse representation of preferences in Equation (2.2) which is

obtained when the uncertainty index G : R x A — (—o0, +00] satisfies,

G(z, P) = z + OR(P || P*) (2.6)

for all (z, P) € R x A.

2.3.3 Multiple Priors Preferences

The multiple priors representation of preferences UF : X — R of Gilboa

and Schmeidler (1989) is given by,

U“P(X) = inf Ep[u(X)] (2.7)

for all X € X. The function u : R — R in Equation (2.2) is a utility function
(as in Equation (2.1)) reflecting the decision-maker’s attitudes toward risk.

The set P C A is a set of priors reflecting the decision-maker’s attitudes
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toward uncertainty. The larger the set of priors P, the larger the decision-
maker’s uncertainty aversion.

The representation in Equation (2.7) implies that an uncertainty averse
decision-maker whose choices are consistent with the principles established
by Gilboa and Schmeidler (1989) evaluates the relative desirability of an
uncertain monetary payoff in X as if she appraised its expected utility under
each probabilistic scenario in P C A and as if she summarized her appraisal
by considering exclusively the worst probabilistic scenario in P.

The multiple priors representation of preferences is a particular case of the
uncertainty averse representation of preferences in Equation (2.2) which is

obtained when the uncertainty index G : R x A — (—o0, +00] satisfies,

G(z,P) =z +6(P|P) (2.8)

for all (z, P) € R x A and where 6(.|P) — [0, +o0] is defined by,

0 itPeP
(P|P)=

+o00 otherwise

for all P € A.

2.4 Remarks, Assumptions, and Continuity Concepts

In this section we discuss various technical aspects of the uncertainty averse
representation of preferences of Cerreia Vioglio et al. (2011a). In section
2.4.2 we clarify the relationship between the Savage (1972) framework con-
sidered in this dissertation and the generalized Anscombe and Aumann
(1963) framework originally considered by Cerreia Vioglio et al. (2011a).

In Section 2.4.2 we clearly state the assumptions on the uncertainty averse
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representation of preferences of Cerreia Vioglio et al. (2011a) which allow
to obtain the results presented in this dissertation. In Section 2.4.3 we dis-
cuss some continuity concepts which allow to characterize the situations in
which the uncertainty averse representation of preferences of Cerreia Vioglio
et al. (2011a) can be equivalently expressed in terms of countably additive

probabilities.

2.4.1 Remarks

The representations of preferences of Cerreia Vioglio et al. (2011a), Strza-
lecki (2011), Maccheroni et al. (2006) and Gilboa and Schmeidler (1989)
were originally obtained in a generalized Anscombe and Aumann (1963)
framework in which the objects of choice are uncertain acts. An uncertain
act is a Y-measurable simpleS function f on S taking values in a convex
subset C of a vector space. C' could be specified, for instance, as the set of
all probability measures p on (R, B(R)) with finite support, where B(R) is
the Borel o-algebra on R. A probability measure p on (R, B(R)) has finite
support if the smallest closed set B € B(R) such that p(B¢) = 0 is finite.

Let F := F(C) be the set of all uncertain acts. Let @ : C — R be
a non-constant affine function. Let a(C) := {u(c),c € C} C R. Let
By(X,u(C)) := Bo(S,Z;u(C)) be the set of all real-valued X-measurable
simple functions on S with values in 4(C) C R. Observe that, if f € F, then
a(f) € Bo(%,a(C)). Let G : 4(C) x A — (—00, 400] be such that G(., P) is
increasing on 4(C) C R for each P € A, lower semi-continuous and quasi-
convex on @(C) x A, normalized, that is such that inf pea G(y, P) = y for all
y € 4(C), and such that G(., P) is extended-valued continuous on %(C) C R

for each P € A. An uncertainty averse representation of preferences (Cer-

S A function is said to be simple if it takes on only finitely many values.
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reia Vioglio et al. (2011a, Theorem 3)) is a function Vil . F - R defined
by,

VEC(f)i= nt G(Epli(f)],P) (2.9)

for all f € F. As in Section 2.3, the function G : 4(C) x A — (—00, +]
in Equation (2.9) is an uncertainty index describing the decision-maker’s
attitudes toward uncertainty. Differently from Section 2.3, the function
@ : C — R in Equation (2.9) is not a utility function” but a wutility index
describing the decision-maker’s attitudes toward risk. If C is specified, for
instance, as the set of all probability measures p on (R, B(R)) with finite
support, then the utility index @ : C'— R in Equation (2.9) is related to the

utility function v : R — R in Equation (2.2) by the following relationship,

a(f(s)) = /R u(@)d f(s,7)

for all s € S. Although the uncertainty averse representation of preferences
was defined and characterized by Cerreia Vioglio et al. (2011a) on the set
F of all ¥-measurable simple function f on S with values in C, it admits
a continuous extension V¥ ¢ Fp — R to the set Fp, = Fp(C) of all
bounded Y-measurable functions f;, on S with values in C' (see Ghirardato
and Siniscalchi (2009)). As a result of this extension, C' can be specified
as the set M; := My(R, B(R)) of all probability measures p on (R, B(R))
with bounded support. A probability measure u on (R, B(R)) has bounded

support if ju([—b,b]) = 1 for some b > 0. Denote by X := F,(M,) the set of

"As indicated in Section 2.2.1 in this dissertation a utility function is intended as a
utility function for money u : R — R. Thus, in this dissertation a utility function is not,
in general, an affine function.
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all bounded E-measurable functions X := f, on S with values in My. Then,

#(X(s)) = /Ru(as)d X (s,2) (2.10)

for all s € S. Let X € X and let 6y € X be such that dx(s)(.) is a Dirac

measure on B(R) for each s € S, that is,

1 if X(s)eB
5X(s)(B) =

0 otherwise

for all B € B(R). Follmer and Schied (2004, Section 2.5) observed that the

mapping,
XeX —dyek

is an embedding. It follows that the space X of all bounded, real-valued, X:-
measurable functions on S can be identified with the set of all the elements
of X which are Dirac measures on B(R) for each s € S. Let U%% : X = R

be the function defined by,

!

UG (X) = VG (5y) (2.11)

for all X € X. Thus, by Equation (2.11), Equation (2.9), and Equation
(2.10),

U (X) = inf G'(Bpli(6x)), P)

:Fj)ng G’(Ep[/RU(x)dst(x) , P)

= inf G'(Ep[u(X)), P)

as in Equation (2.2).
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2.4.2 Assumptions

Throughout this dissertation we will implicitly assume that the utility func-
tion u : R — R is strictly increasing and concave and that the monotonicity
of the uncertainty index G : R x A — (—o00,+00] in its first argument is
strict.

The assumption that the utility function w is increasing ensures that the pref-
erences that the decision-maker expresses through the indifference prices are
consistent with the compelling principle of rationality (see Cerreia Vioglio
et al. (2010)). The assumption that the utility function u is concave ensures
that the preferences that the decision-maker expresses through the indiffer-
ence prices are consistent with the fundamental principle that diversification
does not increase “risk” (see Cerreia Vioglio et al. (2010)).

The assumptions that the utility function v and the uncertainty index G
are strictly increasing guarantee that the indifference prices are uniquely

defined.

Assumption 2.1. The utility function v : R — R is strictly increasing and

concave.

Assumption 2.2. The uncertainty index G : Rx A — (—o00, +00] is strictly

increasing in its first argument.

Observe that, as u is concave and finite on all of R, it is necessarily continu-
ous (see Rockafellar (1970, Corollary 10.1.1)) and that the continuity of the
utility function u, combined with the different continuity properties of the
uncertainty index GG, guarantees that the indifference prices exist.

Overall, Assumption 2.1 and Assumption 2.2 ensure that the uncertainty
averse representation of preferences U%® : X — R in Equation (2.2) is

strictly increasing, quasiconcave, and continuous with respect to the sup-
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norm ||.||cc-

2.4.3 Continuity Concepts

The theories of decision under uncertainty discussed in Section 2.3 describe a
decision-maker’s subjective probabilities, priors, or beliefs in terms of finitely
additive probabilities. The conditions of positivity, normalization, and fi-
nite additivity are in fact sufficient for a set function to be interpretable as
an individual’s “coherent” judgment of probabilities (de Finetti, Chapter 3
(1970)). An individual’s judgment of probabilities is said to be “coherent”,
acceptable, or admissible if it is not intrinsically contradictory (de Finetti,
Chapter 3 (1970)).

Although from the decision-theoretic perspective the condition of count-
able additivity is objectionable (see Ramsey (1931), de Finetti (1964), and
Savage (1972)), from the mathematical perspective it is a convenient simpli-
fication. The axiom with which an individual’s choices must be consistent
for her preferences to be represented in terms of countably additive proba-
bilities is the axiom of monotone continuity (Arrow (1970)). The axiom of
monotone continuity was introduced by Arrow (1970) in the framework of
Savage’s (1972) expected utility and was employed, among others, by Cer-
reia Vioglio et al. (2011a), Maccheroni et al. (2006) and Chateauneuf et al.
(2005) to express, respectively, the uncertainty averse (Cerreia Vioglio et al.
(2011a)), the variational (Maccheroni et al. (2006)), and the multiple priors
(Gilboa and Schmeidler (1989)) representations of preferences in terms of
countably additive probabilities. An equivalent technical condition, known
as continuity from below, is employed in the financial mathematics literature
to describe the situation in which a quasiconvex (see Cerreia Vioglio et al.

(2010)) or convex (see, for instance, Follmer and Schied (2004, Chapter 4))
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risk measure admits a dual representation on probability measures.
For simplicity in this dissertation we will assume, however, the stronger
condition of continuity with respect to bounded point-wise convergence, also

known as the Lebesgue property (see Jouini et al. (2006)).

Definition 2.1. An uncertainty averse representation of preferences U%C :
X — R is said to be continuous with respect to bounded point-wise conver-
gence if UC(X,,) — U%%(X) whenever (X,)nen is a uniformly bounded

sequence® in X such that X, (s) — X(s) for every s € S.

Proposition 2.1 shows that the uncertainty averse representation of prefer-
ences U»Y : X — R in Equation (2.2) is continuous with respect to bounded
point-wise convergence if and only if the set of finitely additive probabili-
ties A C X* in Equation (2.2) can be equivalently replaced by its subset of
countably additive elements A% C X} as the elements of A C X* which are
not countably additive do not contribute to the formation of the minimum
in Equation (2.2). In what follows the set of all elements of A C X™* which

do not belong to A7 C X7} is denoted by,

A\A°={PcX*:PcA and P¢ A%}

The proof of Proposition 2.1 is an immediate application of Proposition 4.3

and Proposition 4.5 in Cerreia Vioglio et al. (2010).

Proposition 2.1. An uncertainty averse representation of preferences U%C
X — R is continuous with respect to bounded point-wise convergence if and
only if,

G(z,P) = 400

for all (x,P) € R x (A\ A?).

8That is, there exists M € R such that ||Xn||lc < M for all n € N.
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Proof of Proposition 2.1. Observe that Equation (2.2) can be equivalently

written as,

UvG(X) = —pPu(X)) vXex

where pf : X — R is a quasiconvex risk measure which is continuous with
respect to the sup-norm ||.||s and which is represented by the maximal risk

function R : R x A — [—o00, +00) given by,

R(z, Q) = —G(-x,Q)

for all (z,Q) € R x A. Observe also that U*% : X — R is continuous
with respect to bounded point-wise convergence if and only if p® : X —
R is continuous with respect to bounded point-wise convergence. Thus,
the statement follows directly from Proposition 4.3 and Proposition 4.5 in

Cerreia Vioglio et al. (2010). O
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Chapter 3

Indifference Pricing with Uncertainty

Averse Preferences

3.1 Indifference Buyer’s Price

Consider an uncertainty averse decision-maker who is endowed with a con-
stant monetary payoff wg € R and an uncertain monetary payoff X € X.
The uncertainty averse decision-maker contemplates a transaction which
allows her to transfer the uncertain component of her wealth X € X in
exchange for paying a constant amount of money m € R. Accepting the
agreement would make her wealth constant and equal to wyg —m € R. The
uncertainty averse decision-maker is therefore in the position of a buyer
of a policy (or insured) and the mazimum price (or insurance premium)
m € R which, from the perspective of her uncertainty averse preferences
U»¢ : X — R, makes the the constant monetary payoff wg — m € R

more desirable than the uncertain monetary payoff wg + X € X, corre-
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sponds precisely to the price which makes them equally desirable. For this
reason, this maximum price is denominated indifference buyer’s price. In
Subsection 3.1.1 we introduce its definition, we derive its properties, and we
identify its acceptance family. In Subsection 3.1.2 we characterize its dual
representation on finitely additive probabilities and on countably additive
probabilities. In Subsection 3.1.3 we provide more explicit characterizations
of its dual representation on countably additive probabilities in terms of the
variational (Maccheroni et al. (2006)), the multiplier (Hansen and Sargent
(2001), Strzalecki (2011)), and the multiple priors (Gilboa and Schmeidler

(1989)) representations of preferences.
3.1.1 Definition, Properties, and Acceptance Family

3.1.1.1 Definition

The indifference buyer’s price, which in this dissertation is considered from
an actuarial perspective, is defined as a function 7rfff,’OG : X — R yielding the
mazimum price that a decision-maker with uncertainty averse preferences
UG . ¥ — R and with constant initial wealth wy € R would offer to avoid

an uncertain monetary prospect in X (e.g. to receive insurance).

Definition 3.1. A function 7'('3,’0G : X — R is said to be an indifference

buyer’s price if it satisfies,
u,G _ 717u,G
u(wy — m (X)) = U7 (wo + X) (3.1)

for all X € X and wy € R.
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3.1.1.2 Properties

Proposition 3.1 asserts that the indifference buyer’s price is monotone de-
creasing, quasiconvex, and normalized. As a consequence of these properties,
the indifference buyer’s price mf’f,’oG : X = R is a quasiconvex risk measure.
Quasiconvex risk measures were introduced in the financial mathematics
literature by Cerreia Vioglio et al. (2010). A quasiconvex risk measure is
a function representing the ordering of alternative monetary payoffs in X
based on their relative “risk”, where the term risk is “/...] used in a loose
way to refer to any sort of uncertainty viewed from the standpoint of the

unfavorable contingency” (Knight (1921)).

Proposition 3.1. The indifference buyer’s price 775’0G : X = R satisfies the

following properties for all XY € X and wy € R.

(i) Monotonicity: If X > Y, then 75 (X) < 7% (Y).

(ii) Quasiconvezity: oS (AX + (1 — \)Y) < max{ﬂg,’oG(X),ﬁf,’OG(Y)} for
all X € [0,1].

(iii) Normalization: Wi‘U’OG(m) = —m for allm € R.

Proof of Proposition 3.1. (i) Let X,Y € X. If X > Y, then by Definition
3.1 and by the increasing monotonicity of U%“ : X — R,

u(wo — mn (X)) = U™ (wo + X) 2 U (wo +Y) = u(wo — w5 (V)

wo

and the increasing monotonicity of u : R — R yields 74 (X) < 75 (Y).

Thus, 7rff,’0G : X = R is monotone decreasing.

11 € (0,1}, then efinition 3.1, the quasiconcavity o X =
(ii) If X € [0, 1], then by Definition 3.1, by the quasi ity of U"C : X
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R and by the increasing monotonicity of u : R — R,

u(wy — wt (AX + (1= A)Y))
= U%C(wg + AX + (1-N\)Y)
= U (Mwo+X) + (1 = N)(wo + Y))
> min{U"% (wy + X), U (wo + Y)}
— min{u(wy — 7% (X)), u(wo — 74 (Y))}

— u(wp — max{r%C(X), 74C (Y)})

) wo

and the increasing monotonicity of u : R — R yields,

TOAX + (1 - NY) < max{r%%(X), %% (Y)}

) wo

for all A € [0,1]. Thus, 7% : X — R is quasiconvex.

(iii) If m € R, then by Definition 3.1,

u(wy — W;‘,’OG(m)) = u(wo + m)

and the strict monotonicity of v : R — R yields 7'('3,’0G(m) = —m. Thus,

mlf,’OG : X — R is normalized.

Decreasing monotonicity implies that the decision-maker is willing to offer

higher prices to avoid higher losses. Quasiconvexity implies that the maxi-

mum price that the decision-maker is willing to offer to avoid a portfolio of

uncertain monetary payoffs is lower than the highest of the prices that she

is inclined to offer to avoid its constituents. Normalization implies that the

maximum price that the decision-maker is willing to offer to avoid a certain

loss is exactly equal to its amount.
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3.1.1.3 Acceptance Family

The indifference buyer’s price TI'wO : X — R can be equivalently studied in
terms of an appropriately defined acceptance family. Acceptance families
were introduced in the mathematical finance literature on quasiconvex risk
measures by Drapeau and Kupper (2010). An acceptance family is a col-
lection of acceptance sets. We define the acceptance set of an uncertainty
averse decision-maker U™C : X — R with constant initial wealth wy € R at
level m € R as the subset A%DG 'm of X given by,

ALG = X € XU (wo + X) > u(wy —m)} (3.2)

wo,m

The acceptance set ALC wo.m defined by Equation (3.2) is the set of uncertain
monetary payoffs in X that a an uncertainty averse decision-maker U%¢ :
X — R with constant initial wealth wy € R prefers to the constant monetary
payoff —m € R. We call (.Aﬁ,OG 'm)meR the acceptance family of an uncertainty
averse decision-maker U™ : X — R with constant initial wealth wg € R.

Proposition 3.2 asserts that the acceptance family (Aﬁf 'm)meR 1S monotone,

convex, and normalized.

Proposition 3.2. The acceptance family (A&fm)meﬂg satisfies the following

properties for oll XY € X and m,n € R.
(i) Monotonicity:

(a) IerAwOm and Y > X, thenYeAwOm

(b) If m < mn, then Awom Awo,

(ii) Convezity: If X,Y € A%C,, then AX + (1 — \)Y € A%C, for all
A€ [0,1].

(iii) Normalization: inf{x € R |z € Ay’ m} =—
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Proof. Let X, Y € X and m,n € R.
(i-a) Let X € Awo m and Y > X. By the increasing monotonicity of U%¢ :
X — R,

U (wo 4+ Y) > U (wy 4+ X) > u(wy — m)

Thus, Y € Awo m-
(i-b) Let n > m and X € Awo 'm- By the increasing monotonicity of u : R —
R,

U (wo + X) > u(wo —m) > u(wy — n)
Thus, X € Awo,

(ii) Let X,Y € .Awo m- By the quasiconcavity of U»% : X — R,

USC(wg + AX + (1 = A)Y)
= U"Y(A(wo + X)+(1 — A)(wy +Y))
> min{U%% (wo 4+ X), U (wy + Y)}

> u(wo —m)

for all A € [0,1]. Thus, AX + (1 —\)Y € A%S, for all X € [0,1].

(iii) By the increasing monotonicity of u : R — R,
inf{x € R|u(wy + =) > u(wg —m)} = —m.

O]

Observe that the acceptance set A%OG 'm C X corresponds to the set of all un-
certain monetary prospects for which an uncertainty averse decision-maker

UG . X — R with constant initial wealth wg € R would agree to buy

41



protection, or insurance, at a price less than m € R, that is,

ALE ={X € X |15 (X) < m} (3.3)

wo,m

for all m € R. Observe also that the indifference buyer’s price mqf,’OG X =R
satisfies,

7CG(X) = inf{m e R| X € A“C

wo wo,m

for all X € X. It follows from Equation (3.3) that Proposition 3.1 could be
equivalently obtained combining Proposition 3.2 with Theorem 1.7 in Dra-
peau and Kupper (2010). It also follows from Equation (3.3) that the indif-
ference buyer’s price inherits directly all the different continuity properties
of the uncertainty averse representation of preferences because ﬂlf,’OG X =R
and U%C : X — R have the same level sets.

Let Affv’g T,f be the subset of X' given by,

ABG T (X € X|U"C (wy + X) < u(wy —m)} (3.4)

wo,m

for every m € R. Remark 3.1, when combined with Equation (3.3), asserts
that the indifference buyer’s price WZ’OG : X — R inherits the continuity of
the uncertainty averse representation of preferences U%%¢ : X — R with

respect to the sup-norm ||.||sc.

C
Remark 3.1. The sets AZ)OG m C X and .A%OG m C X are closed with respect

to convergence in sup-norm ||.||s for all m € R.

Remark 3.2, when combined with Equation (3.3), asserts that the indiffer-
ence buyer’s price 7r§f,’OG : X — R inherits the continuity with respect to
bounded point-wise convergence of the uncertainty averse representation of

preferences U%“ : X — R.
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Remark 3.2. U%% : X — R is continuous with respect to bounded point-
C
wise convergence if and only if the sets AZOG m C X and AZOG m C X are

closed with respect to bounded point-wise convergence for all m € R.

3.1.2 Dual Representation
3.1.2.1 Finitely Additive Probabilities

As a consequence of its monotonicity, quasiconvexity, and continuity with
respect to the sup-norm ||.||so, the indifference buyer’s price 75" : X — R
admits a representation in term of the set A C X™* of all finitely additive
probabilities. The illustration of the representation results is considerably
simplified by introducing an appropriate notation for the support function?
of the acceptance set A%’gm C X which, consistently with the terminology
adopted in the mathematical finance literature, we designate as minimal
penalty function (see Drapeau and Kupper (2010) and Follmer and Schied
(2002, 2004)).

Definition 3.2. The minimal penalty function TﬁjoG Rx A — (—00,+00]

of the indifference buyer’s price 713,’00 : X — R is defined by,
TZ’OG(m, Q)= sup Eg[—X] (3.5)
XEAGSm
for all (m,Q) € R x A.
The representation of the indifference buyer’s price TrfijG in Proposition 3.3
is an application of the duality for quasiconcave functions introduced by

de Finetti (1949), extended by Cerreia Vioglio et al. (2011b) and further

developed by Drapeau and Kupper (2010).

'For support functions see §13 in Rockafellar (1970).
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Proposition 3.3. The indifference buyer’s price va’OG : X — R has the
following representation,

i (X) = sup R(Eq[-X],Q) (3.6)
QeA

for all X € X. The maximal risk function R%’OG R X A — [—o00,+00) for

which the representation in Equation (3.6) holds is unique and defined by,
Ry (2, Q) i= inf{m € R| 7} (m, Q) > } (3.7)

for all (x,Q) € Rx A. In particular, if R : RX A — [—00, +00) is any other
function satisfying the representation in Equation (3.6), then R(z,Q) <

R (2,Q) for all (z,Q) € R x A.

Proof of Proposition 3.3. By Proposition 3.1 and Remark 3.1 W%’OG X =R

is monotone decreasing, quasiconvex, and continuous with respect to the

sup-norm ||.||sc. By Theorem 4 in Cerreia Vioglio et al. (2011b) a monotone

decreasing and quasiconvex function ;" : X — R which is continuous with

respect to the sup-norm ||.||c has the following representation,

(X)) = sup R%C(Eg[-X],Q)

for all X € X, where R&" : R x A — [—00, +00) is defined by,
R%C = inf wO(X
g (2 Q) Xexzég[f)qzx Ty (X)

for all (z,Q) € R x A, and can be rewritten as,

R4C(2,Q) = inf{n%¥(X) eR|X € X : Eg|-X] >z}
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=inf{m e R|IX € X : 749(X) < m, Eg[-X] > z}

= inf{m €R | SUD y e 2.2 (X)<m Eql—-X] > «}

— inf{m € R|r&C(m,Q) > x}

for all (z,Q) € R x A. By Corollary 2 in Cerreia Vioglio et al. (2011b), if
R:R x A — [—00,400) is increasing in the first component, quasiconcave,
upper semi-continuous, and such that R(., Q) is extended-valued continuous

on R for each @ € A, then the function 7r§f,’0G : X = R defined by,

m40(X) = sup R(Eq[-X],Q)
QEA

for all X € X, is monotone decreasing, quasiconvex and continuous with
respect to the sup-norm ||.||sc. Moreover, for all (Z,Q) € Rx A and X € X
such that Eg[—X] > 7,

ﬂ-g;oG(X) = Ssup R(EQ[_XL Q) > R(EQ[_X]7 Q) > R(i}, Q)

QeA
Thus?,
RYC(z,Q) = inf Tl (X) > R(z,Q)
wo XeX:Egl-X]>z "° -
for all (z,Q) € R x A. O

The representation in Equation (3.6) implies that an uncertainty averse
decision-maker evaluates the maximum price that she would pay to avoid an
uncertain monetary payoff in X as if, by the function R?UOG , she appraised
its expected loss under each probabilistic scenario in A, the appraisal R;LOG
depending on her risk attitudes u, on her uncertainty attitudes G' and on

her initial wealth wy € R and as if, by the function 772}5}?, she summarized

2See also Cerreia Vioglio et al. (2011a, Lemma 51)
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her appraisal by considering exclusively the worst probabilistic scenario in

A.

3.1.2.2 Countably Additive Probabilities

Proposition 3.4 shows that an uncertainty averse representation of prefer-
ences U™C : X — R is continuous with respect to bounded point-wise con-
vergence if and only if the set of all finitely additive probabilities A C X'*
in Equation (3.6) can be equivalently replaced by its subset of countably
additive elements A% C AX}.

Proposition 3.4 is a direct consequence of Remark 3.2 and of Proposition

4.3 and Proposition 4.5 in Cerreia Vioglio et al. (2010).

Proposition 3.4. An uncertainty averse representation of preferences U™C
X — R is continuous with respect to bounded point-wise convergence if and
only if,

R(z,Q) = —o0

for all (z,Q) € R x (A\ A7).

3.1.3 Examples

In this subsection we characterize the dual representations on countably
additive probabilities of the indifference buyer’s price defined in terms of the
variational (Maccheroni et al. (2006)), the multiplier (Hansen and Sargent
(2001), Strzalecki (2011)), and the multiple priors (Gilboa and Schmeidler
(1989)) representations of preferences. In what follows u* : R — R denotes
the convex conjugate of the strictly increasing and concave utility function
u: R — R, that is,

u*(A) := sup (u(z) — Ax) (3.8)
z€eR
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for all A € R. All the examples presented in this subsection are direct
applications of various representation results collected in the Appendix at

the end of this chapter.

Example 3.1. The indifference buyer’s price myy : X — R defined by a
variational representation of preferences U%¢ : X — R which is continuous
with respect to bounded point-wise convergence has the representation in
Proposition 3.3 with,
RY%(z,Q) = wo—ufl( inf {)\(wo—x)+ inf (C(]P’)-HEP [u (A@)]) )
wo R AE(0,400) PeA” dP
(3.9)

for all (z,Q) € R x A?. Equation (3.9) follows directly from Proposition
3.13 and Theorem 3.1 in the Appendix.

Example 3.2. The indifference buyer’s price W,Tf}f’R’P* : X — R defined
by a multiplier representation of preferences U%?RP" : X — R has the

representation in Proposition 3.3 with,

REORE (2,.Q) =
wo —u! ( )\E(iOI}-if-OO) {/\(wo — )+ ]}Deg;f(]?*) (QR(P‘ [P%) + Ee [u* Ofl%ﬂ ) })

(3.10)

for all (z,Q) € R x A7 with § € (0,+00] and P* € A?. Equation (3.10)

follows directly from Proposition 3.13 and Corollary 3.1 in the Appendix.

Example 3.3. The indifference buyer’s price 7r§f,’op : X — R defined by a
multiple priors representation of preferences U%” : X — R which is contin-

uous with respect to bounded point-wise convergence has the representation
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in Proposition 3.3 with,

a7 @)= (ot (o g 2o ()] }) @

for all (z,Q) € R x A with P C A?. Equation (3.11) follows directly from

Proposition 3.13 and Corollary 3.2 in the Appendix.

3.2 Indifference Seller’s Price

Consider an uncertainty averse decision-maker who is endowed with a con-
stant monetary payoff wy € R. The uncertainty averse decision-maker is
offered a constant amount of money m € R in exchange for accepting an
uncertain monetary payoff X € X. Agreeing to the transaction would make
her wealth uncertain and equal to wg + X +m € X. The uncertainty
averse decision-maker is therefore in the position of a seller of a contract
(or insurer) and the minimum price (or insurance premium) m € R which,
from the perspective of her uncertainty averse preferences U*C : X — R,
makes the uncertain monetary payoff wyo + X +m € X more desirable than
the constant monetary payoff wy € R, corresponds precisely to the price
which makes them equally desirable. For this reason, this minimum price
is denominated indifference seller’s price. In Subsection 3.2.1 we introduce
its definition, we derive its properties, and we identify its acceptance set.
In Subsection 3.2.2 we characterize its dual representation on finitely ad-
ditive probabilities and on countably additive probabilities. In Subsection
3.2.3 we provide more explicit characterizations of its dual representation
on countably additive probabilities in terms of the variational (Maccheroni
et al. (2006)), the multiplier (Hansen and Sargent (2001), Strzalecki (2011)),

and the multiple priors (Gilboa and Schmeidler (1989)) representations of
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preferences.

3.2.1 Definition, Properties, and Acceptance Set
3.2.1.1 Definition

The indifference seller’s price, which in this dissertation is considered from an
actuarial perspective, is defined as the minimum price that a decision-maker
with uncertainty averse preferences U»“ : X — R and with constant initial
wealth wg € R would demand to accept an uncertain monetary prospect in

X (e.g. to provide insurance).

Definition 3.3. A function cpZ,OG : X — R is said to be an indifference

seller’s price if it satisfies,
_ 77u,G u,G
u(wo) = U™ (wo + X + @i, (X)) (3.12)
for all X € X and wg € R.

3.2.1.2 Properties

Proposition 3.5 asserts that the indifference seller’s price is monotone de-
creasing, convex, cash-additive, and normalized. As a result of these prop-
erties, the indifference seller’s price (pZOG : X — R is a cash-additive conver
risk measure. Cash-additive convex risk measures were introduced by Deprez
and Gerber (1985) in the actuarial mathematics literature and by Frittelli
and Rosazza Gianin (2002) and Follmer and Schied (2002) in the financial
mathematics literature. A cash-additive convex risk measure is a function
yielding the minimum constant amount of money m € R that must be added

to an uncertain monetary payoff in X € X such that the adjusted uncertain
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position X +m € X becomes acceptable? to a decision-maker.

Proposition 3.5. The indifference seller’s price gp&’OG : X — R satisfies the

following properties for all X,Y € X.
(i) Monotonicity: If X >Y, then go%’oG(X) < @%’OG(Y).
(ii) Convezity: sl (AX + (1= NY) < Aol (X) + (1= N (Y) for all
A€ 0,1].
(iii) Cash-additivity: ©%C (X +m) = % (X) —m for all m € R.
(iv) Normalization: ©%C (0) = 0.

Proof of Proposition 3.5. (i) Let X, Y € X. If X > Y, then by Definition

3.3 and by the increasing monotonicity of U%% : X — R,

u(wo) = U (wo+Y + @8 (V)
= U"C(wp + X + o4 (X))

> U (wy + Y + p%%(X))

and the increasing monotonicity of U%C : X — R yields % (X) < oS (V).
Thus, @&’OG : X = R is monotone decreasing.

(ii) If m € R, then by Definition 3.3,

u(wo) = UC (wo+X + %5 (X))
= U (wg + X +m + %% (X 4+ m))

wo

= u(w)

3The criterion of acceptability is subjectively determined by the decision-maker de-
pending on the situation and on the problem under consideration.
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and the strict monotonicity of U»% : X — R yields,
Py (X) = m + @l (X + m)

Thus, p%C : X — R is cash-additive.
(iii) If A € [0,1], then by the quasiconcavity of U*¢ : X — R and by

Definition 3.3,

UG (wp + AX + (1= \)Y + AphG(X) + (1 — Mg (V)
= U"C(A(wo + X + ¢ (X)) + (1 — M) (wo + Y + 945 (Y)))
> min{U"% (wy + X + ¢4 (X)), U (wo + Y + 0% (Y))}
=U"“%(wo + AX + (1 = N)Y + gl fAX + (1= N)Y))

wo

= u(wo)
and the increasing monotonicity of U%% : X — R yields,
PLEOX + (1= 7)< AT () + (1= ()

Thus, goiijG : X = R is convex.

(iv) As u : R — R is strictly increasing,
u(wo + ¢ (0)) = u(wo)

if and only if (,pzf,’OG (0) = 0. Thus, @%’OG : X — R is normalized. O

Decreasing monotonicity implies that a decision-maker would demand higher
prices to accept higher losses. Convexity implies that the minimum price
that a decision-maker would demand to accept of a portfolio of uncertain

monetary payoffs is lower than the convex combinations of the prices that
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she would demand to accept its constituents. Cash-additivity implies that
adding a constant amount of money to an uncertain monetary payoff de-
creases the minimum price that a decision-maker would demand to accept
the uncertain prospect exactly by this constant amount. Normalization im-
plies that a decision-maker would not pay any money to receive a monetary

payoff which is certainly equal to zero®.

3.2.1.3 Acceptance Set

The indifference seller’s price wiﬁ’f : X — R can be equivalently studied in

u,G

terms of the acceptance set Awo 0

C X of an uncertainty averse decision-
maker U%C : X — R with constant initial wealth wy € R at level zero. This

is the subset AZ}’S oy of X given by,
AZ’O(,;O ={X e X|U"%(wo + X) > u(wp)} (3.13)

and it corresponds to the set of uncertain monetary payoffs in A that a
decision-maker with uncertainty averse preferences U»“ : X — R and with
constant initial wealth wg € R finds more desirable than nothing.
Proposition 3.6 asserts that the acceptance set AZ)’S o C & is monotone, con-
vex, and normalized. Proposition 3.6 is a direct consequence of Proposition
3.2 in Subsection 3.2.1.3 and its proof is not provided.

u,G
wo,0

Proposition 3.6. The acceptance set A C X satisfies the following

properties for all X,Y € X.

i) Monotonicity: If X € A“C andY > X, then Y € A“C
wo,0

wo,0”

(ii) Converity: If X,Y € A“C . then AX + (1 — \)Y € AZ’SO for all

wo,0?

Ae0,1].

“In other words, a decision-maker would demand a non-negative price to accept a
monetary payoff which is certainly equal to zero.

52



(iii) Normalization: inf{z € R|z € A“%} =0.

wo,0
Remark 3.3 clarifies the relationship between the acceptance set A&oG m C X
at level m € R and the acceptance set AZ)’(?O at level zero of an uncertainty

averse decision-maker U%“ : X — R with constant initial wealth wo € R.

Remark 3.3. The acceptance set A%OG 'm C X satisfies A%OG m = ALY otm

wo—m,
for all m € R.
Observe that the acceptance set .AZ)OG o C & corresponds to the set of all un-
certain monetary prospects for which an uncertainty averse decision-maker
U%% . X — R with constant initial wealth wg € R would agree to sell
protection, or insurance, in exchange of nothing, that is,

AYG = (X € X |pC(X) <0} (3.14)

wo,0

Observe also that the indifference seller’s price cpﬁf}OG : X — R satisfies,

PuC(X) =inf{m e R| X +m e A“C

wo,0

for all X € X. It follows from Equation (3.14) that Proposition 3.1 could
be equivalently obtained combining Proposition 3.6 with Proposition 4.7
in Follmer and Schied (2004). It also follows from Equation (3.14) that
the indifference seller’s price inherits directly all the different continuity
properties of the uncertainty averse representation of preferences because
owC X 5 R and U*C : X — R have the same level sets.

Let A,L“U’S Oc be the subset of X' given by,

AG (X € X | U%C (wo + X) < u(wo)} (3.15)

wo,0

Remark 3.4, when combined with Equation (3.14), asserts that the indiffer-
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ence seller’s price cpZ;OG : X — R inherits the continuity of the uncertainty
averse representation of preferences U : X — R with respect to the sup-

norm ||.||so-

C
Remark 3.4. The sets AZOG o C X and AZ’(SO C X are closed with respect

to convergence in sup-norm ||.||cc-

Remark 3.5, when combined with Equation (3.14), asserts that the indif-
ference seller’s price @%OG : X — R inherits the continuity with respect to
bounded point-wise convergence of the uncertainty averse representation of

preferences U“ : X — R.

Remark 3.5. U%% : X — R is continuous with respect to bounded point-
C
wise convergence if and only if the sets AZOG y C X and A“CT X are

wo,0

closed with respect to bounded point-wise convergence.

Observe that, as a result of decreasing monotonicity and cash-additivity, the
indifference seller’s price gbZ’OG : X — R is even Lipschitz continuous with
respect to the supremum norm |||~ (see Féllmer and Schied (2004, Lemma

4.3)).

3.2.2 Dual Representation
3.2.2.1 Finitely Additive Probabilities

As a consequence of its monotonicity, convexity, and cash-additivity, the in-
difference seller’s price gpﬁ;oG : X — R admits a representation in terms of the
set A C X* of all finitely additive probabilities. The following proposition
is a direct application of Proposition 3.5 and of Follmer and Schied (2004,

Theorem 4.15).
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Proposition 3.7. The indifference seller’s price goﬁ,’OG : X = R has the

following representation,

Pl (X) = swp (Egl-X] - a(Q)) (3.16)
QeA

for all X € X. The minimal penalty function aif;OG : A — (—o0,+00] for

which the representation in Equation (3.16) holds is unique and defined by,

abf(Q) = sup Eg[-X] (3.17)
XeAys,

for all Q € A. In particular, if o : A — (—00,+00] is any other function
satisfying the representation in Equation (3.16), then aﬁ’oG(Q) < a(Q) for

all Q € A.

The representation in Equation (3.16) implies that an uncertainty averse

decision-maker evaluates the minimum price that she would demand to ac-

cept an uncertain monetary payoff in X as if, by the function Ozﬁ’OG , she

applied a correction to its expected loss under each probabilistic scenario in

A, the correction ago depending on her risk attitudes u, on her uncertainty

attitudes G and on her initial wealth wy € R and as if, by the function
G

©w, , she summarized her appraisal by considering exclusively the worst

probabilistic scenario in A.

3.2.2.2 Countably Additive Probabilities

Proposition 3.4 shows that an uncertainty averse representation of prefer-
ences U™C : X — R is continuous with respect to bounded point-wise con-
vergence if and only if the set of all finitely additive probabilities A C X'*

in Equation (3.16) can be equivalently replaced by its subset of countably
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additive elements A7 C X.
Proposition 3.8 is a direct consequence of Remark 3.5, of Proposition 4.5 in

Cerreia Vioglio et al. (2010), and of Proposition 3 in Krétschmer (2005).

Proposition 3.8. An uncertainty averse representation of preferences U%C

X — R is continuous with respect to bounded point-wise convergence if and

only if,

for all Q ¢ A°.

3.2.3 Examples

In this subsection we derive the dual representations on countably addi-
tive probabilities of the indifference seller’s price defined in terms of the
variational (Maccheroni et al. (2006)), the multiplier (Hansen and Sargent
(2001), Strzalecki (2011)), and the multiple priors (Gilboa and Schmeidler
(1989)) representations of preferences. As in subsection 3.1.3, in what fol-
lows ©* : R — R will denote the convex conjugate of the strictly increasing
and concave utility function u : R — R. All the examples presented in this
subsection are direct applications of various representation results collected

in the Appendix at the end of this chapter.

Example 3.4. The indifference seller’s price @y : X — R defined by a
variational representation of preferences U™ : X — R which is continuous
with respect to bounded point-wise convergence has the representation in

Proposition 3.7 with,

Qe (Q) = wo + _inf i{ inf <C(IP’) +Ep [u* (A@ﬂ) — u(wo)} (3.18)

A€(0,400) PeAc

for all Q@ € A?. Equation (3.18) follows directly from Remark 3.6 and
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Theorem 3.1 in the Appendix.

Example 3.5. The indifference seller’s price gp&’oe REL X = R defined
by a multiplier representation of preferences U%?RF" . ¥ — R has the

representation in Proposition 3.7 with,

QIR () =
dQ

ottt (018 B (2] e} a0

for all (z,Q) € R x A% with 6 € (0,+00] and P* € A?. Equation (3.19)

follows directly from Remark 3.6 and Corollary 3.1 in the Appendix.

Example 3.6. The indifference seller’s price go%’g) : X — R defined by a
multiple priors representation of preferences U%” : X — R which is contin-
uous with respect to bounded point-wise convergence has the representation

in Proposition 3.7 with,

Q@ =wot  inf %{ inf Ep|u (Afl%)} —u(w)}  (3.20)

for all (z,Q) € R x A7 with P C A?. Equation (3.20) follows directly from

Remark 3.6 and Corollary 3.1 in the Appendix.

3.3 Appendix

The dual representations of the indifference buyer’s price and of the indiffer-
ence seller’s price defined by the variational, the multiplier, and the multiple
priors representations of preferences presented in Subsection 3.1.3 and Sub-
section 3.2.3 are special cases of the dual representations of the indifference
buyer’s price and of the indifference seller’s price defined by a general strictly

increasing, concave, and continuous function. In Subsection 3.3.1 of this Ap-
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pendix we describe the dual representation of a general strictly increasing,
concave, and continuous function while in Subsection 3.3.2 of this Appendix
we characterize the maximal risk function and the minimal penalty function
representing the indifference buyer’s price and the indifference seller’s price

defined by a general strictly increasing, concave, and continuous function.
8.8.1 Dual Representation of a Concave Preference Functional

In this section we describe the dual representation of a general strictly in-
creasing, concave, and continuous function U : X — R in terms of its convex

conjugate function U* : X* — (—00, +00| defined by,

U*(1) = sup (U(X) ~ B, [X]) (3.21)

for all p € X*.

Proposition 3.9. A strictly increasing, concave, and continuous function

U : X — R has the following representation,

UX) = nf | inf (EQ[)\X] +U*()\Q)> (3.22)

forall X € X.

Proof. By Proposition 3.3 a monotone increasing, quasiconcave, and contin-

uous function U : X — R has the following representation,
U(X) = inf V(EgQ[X],Q) (3.23)

QeA

for all X € X. The minimal value function V* : R x A — (—o0, 00| for
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which the representation in Equation (3.23) holds is unique and defined by,

V¥(z,Q) = sup U(X)
XeX: Eg[X|<z

for all (z,Q) € R x A. In particular, if V : R x A — (—o0, +0o0] is any other
function satisfying the representation in Equation (3.23), then V(z,Q) >
V*(z,Q) for all (z,Q) € R x A. The minimal value function V*: R x A —

(=00, +00] can be rewritten as,

V*(z,Q) =sup{U(X) eR| X € X : Eg[-X]| > —z}
=sup{m e R|IX e X : U(X) >m, Eg[-X] > —x}

= sup{m € R| supxcx.v(x)>m EQ[-X] > —x}

for all (z,Q) € Rx A. As U : X — R is concave® and U*(0) = +oco, by
Theorem 13.5 and Theorem 9.7 in Rockafellar (1970),

1
sup Eo[-X]= inf —(U*(ANQ)—m 3.94
XeX:U(X)>m al ] Ae(0,400) A ( (AQ) ) ( )

for all (m, P) € R x A. Thus,

* . 1
V*(z,Q) = sup {m € ]R‘ /\e(loanroo) X

(v 0Q) —m) = -z}

= sup {m € R‘ /\e(ioanroo) ()\x + U (\Q) > m)}

- )\e(iOr,{oo) (M + UWQ)) (3.25)

for all (z, P) € R x A. See also Cerreia Vioglio et al. (2011b, Example 3.2)
and Cerreia Vioglio et al. (2011a, Corollary 38). O

®Observe that a concave function is quasiconcave, while a quasiconcave function is not
necessarily concave.
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Proposition 3.10 characterizes the situation in which the set of finitely ad-
ditive probabilities A C X* in Equation (3.22) can be equivalently replaced
by its subset of countably additive elements A% C X*. Proposition 3.10 is

a direct consequence of Proposition 2.1.

Proposition 3.10. A strictly increasing, concave, and continuous function
U: X — R is continuous with respect to bounded point-wise convergence if
and only if,

U*(AQ) = +o0

for all Q@ ¢ A7 and X\ € (0,+0).

A classic example of strictly increasing, concave, and continuous function U :
X — R which is continuous with respect to bounded point-wise convergence
is the expected utility U** : X — R defined in terms of a countably additive
probability P € A7 (see Equation (2.1)). Consistently with the assumptions
and with the notation employed throughout this dissertation, in what follows
u : R — R denotes a strictly increasing and concave function, and v* : R —

R denotes its convex conjugate function (see Equation (3.8)).

Proposition 3.11. Let U : X — R be the function defined by,
U(X) = Epfu(X)] (3.26)

for all X € X where P € A%, Then U : X — R has the representation in

Proposition 8.9 with,

) = Ep[tt*()\%)} if Q € A7(P)

+00 otherwise

for all X € (0, +00).
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Proof of Proposition 3.11. By Proposition 4.104 and Theorem 4.106 in Follmer
and Schied (2004),

1
inf - (EIP’ [u* ()\@)} — m) if Q S AU(P)
oup  Bol-X] = <0+ v
XeX:Ep[u(X)]>m +00 otherwise

Thus, the statement follows from Theorem 13.5 and Theorem 9.7 in Rock-

afellar (1970) (see Equation (3.24)). O

Theorem 3.1 describes the convex conjugate function of a variational repre-
sentation of preferences U“¢ : X — R which is continuous with respect to
bounded point-wise convergence. Recall that a variational representation of
preferences U*¢ : X — R is continuous with respect to bounded point-wise

convergence if and only if ¢(P) = +oo for all P ¢ A% (see Proposition 2.1).

Theorem 3.1. Let U : X — R be the function defined by,

U(X) = inf (Ee[u(X)] +c(P))

forall X € X. Then U : X — R has the representation in Proposition 3.9
with,

N A LR ()
+00 otherwise

for all X € (0, +00).

Proof of Theorem 3.1. Observe that a variational representation of prefer-
ences U : X — R which is continuous with respect to bounded point-wise

convergence can be equivalently written as,

UX) = —p°(u(X)) VX eX
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where p¢ : X — R is a cash-additive convex risk measure represented by
the minimal penalty function ¢ : A — (—o0, +00] such that ¢(P) = 400 for
all P ¢ A%. Let A € (0,400) and Q € A. By decreasing monotonicity of
P X =R,

U*(0Q) = sup (Eq[-AX] — p(u(X)))

= sup (EQ[—)\X] — pC(Z))
(X, 2)eXxXu(X)>Z

= sup (EQ[—AX}—/)C(Z)—(S(X,ZW))
(X,2)EX XX

where U C X x X is the convex set defined by,
U={(X,Z2)e X xX:ulX)>Z}
and 6(.|U) : X x X — [0, +0o0] is the convex function defined by,

0 if(X,2)eu
§(X, Z|U) =

+o00 otherwise

Let g : X x X — R be the concave function defined by,
9(X, Z) := Eq[-AX] — p(Z)

for all (X,Z) € X x X. Let f: X x X — [0, +00] be the convex function
defined by,
f(X,2):=6(X, Z|U)

for all (X,Z) € X x X. By Fenchel’s Duality Theorem (see Rockafellar
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(1970, Theorem 31.1)),

s (9(X,2) - f(X,2)) = __inf (g"(P.Q)+ f'(P.Q))

(X,2)exXxX (P,Q)eXx*xX*

The function ¢g* : X* x X* — (—o0, +00] is the convex conjugate function

of g: X x X = R, that is,

g (P.Q)= sw (g(X.2)— EplX] - By[2))
(X,Z)exxx

for all (P,Q) € X* x X*. The function f* : X* x X* — (—o0, +0o0] is the
convex conjugate function of f: X x X — [0, +oc], that is,

F(PQ = sw  (EplX]+ Eglz) - (X, 2))
(X,Z2)exXxXx

for all (P,Q) € X* x X*. The function g* : X* x X* — (—o0, +00| satisfies,
g'(P.Q) = s (Bql-AX] - p*(2) - EplX] - Egl7])
(X,Z)eXxX

= ;lell))(<EQ[_Z] — pc(Z)> + )S{EI;)( (EQ[_)\X] - EP[XD

=c(Q) + (=P [2Q)

where the function 0(. | AQ) : X* — [0, 400] is defined by,

i 0 if-P=XQ
(=P |AQ) =

+o0o otherwise

for all P € X*. It follows that,

it (g"(P.Q)+ F1(P.Q)

(P.Q)eXx X
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= _inf (@ +0(=PXQ) + F(P.Q)

(P,Q)eX*xX*

P
— inf (C(Q) (-2Q, 0 )

Qex*
= inf («Q)+(-2Q,Q))

where the last equality follows from the fact that ¢(Q) = +oo for all Q ¢ A°.

The function f*: X* x X* — (—o0, +00] satisfies,

F(2QQ) = s (Bol-AX]+Eql2] - 6(X, 2 |U))

(X,2)exxX

= (XS71Zl§)€u (EQ[Z] — Eq [AX])

- sup (EQ[Z] - Eqg [AX])
(X, 2)eXx Xu(X)>Z

= s (Bqlu() - Eqfh)

for all ) € A°. Therefore, by Proposition 3.11,

NN
F(=2Q,Q) = EQ[" (A@H if Q@ € A7(Q)

400 otherwise

for all Q € A?. Thus,

o (3B ko e A
inf (cQ+17(-2Q.Q)) = ol (1@ + ol (35)]) rees
- +oo otherwise

O]

Corollary 3.1 describes the convex conjugate function of a multiplier repre-
sentation of preferences U*?RF" . ¥ — R. Observe that, since R(P||P*) =

400 for all P ¢ A°(P*), any multiplier representation of preferences U*¢RP" .
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X — R is continuous with respect to bounded point-wise convergence (see

Proposition 2.1).

Corollary 3.1. Let U : X — R be the function defined by,

UX) =, o (Eelu(X)] +OR(PP))

for all X € X with 0 € (0,400] and P* € A?. Then U : X — R has the

representation in Proposition 3.9 with,

U*(\Q) = Peinﬂf(lp*) (R(PHP*) +Ep [u*( %)D if Q € A7

400 otherwise

for all A € (0, +00).

Proof of Corollary 3.1. Follows from Theorem 3.1 setting ¢(P) = 6R(P||P*)
for all P € A7 with 6 € (0, +o0] and P* € A“. O

Corollary 3.2 describes the convex conjugate function of a multiple priors
representation of preferences U%F : X — R which is continuous with respect
to bounded point-wise convergence. Recall that a multiple priors represen-
tation of preferences U%F : X — R is continuous with respect to bounded

point-wise convergence if and only if P C A (Proposition 2.1).

Corollary 3.2. Let U : X — R be the function defined by,
U(X) = inf Eplu(X)]

PeP

for all X € X with P C A?. Then U : X — R has the representation in
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Proposition 3.9 with,

o[BI voes
400 otherwise

for all X € (0, +00).

Proof of Corollary 3.2. Follows from Theorem 3.1 setting ¢(P) =0 if P € P
and ¢(P) = 400 if P ¢ P for all P € A% and with P C A°. O

8.8.2 Dual Representation of the Indifference Buyer’s Price Defined by a

Concave Preference Functional

In this subsection we characterize the dual representation of the indifference
buyer’s price and of the indifference seller’s price defined in terms of a strictly
increasing, concave, and continuous function. As in Subsection 3.3.1, we
denote by U : X — R a strictly increasing, concave, and continuous function,
and by U* : X* — (—o0, +0o0] its convex conjugate function (see Equation
(3.21)). In addition, we denote by u : R — R the restriction of U : X — R

to the real line, that is,

for all x € R. It follows that u : R — R is a strictly increasing and concave
function.

Proposition 3.12 and Remark 3.6 characterize the minimal penalty functions
representing, respectively, the indifference buyer’s price and the indifference
seller’s price, defined by a strictly increasing, concave, and continuous func-

tion U : X — R.

Proposition 3.12. Let rgo : A X R — (—o0,+00] be the function defined
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rgo (m,Q) := sup EqQl—X]
XeX:U(wo+X)>u(wog—m)

for all (m,Q) € A x R. Then,

rgo (m,Q) =wo + )\e(ionioo) %(U*(AQ) —u(wy — m))

for all (m,Q) € R x A.

Proof of Proposition 3.12. As U : X — R is concave and U*(0) = 400, by
Theorem 13.5 and Theorem 9.7 in Rockafellar (1970),

Tgo(m, Q)= )\E(ionf_oo) 1<)s(1ég (U(wo +X) —u(wg —m) — EQ[)\X]))

1
= inf — U X)— EplA X + Awg — —
Ae(l()r}+oo) ()S(lé[))( ( (wo + X) QM wo + )]) wo — u(wo m))

: Lo,
= wp + )\6(1017{00) X (U (AQ) — u(wo — m))

for all (m,Q) € R x A. O

Remark 3.6. Let ago : A — (—o00, +0o0] be the function defined by,
ag() (Q) = Tgo (07 Q)
for all @ € A. Then,

(@ =wot it $(0°(6Q) —u(wy))

A€(0,400

for all Q € A.

Proposition 3.13 characterizes the maximal risk function representing the
indifference buyer’s price defined by a strictly increasing, concave, and con-

tinuous function U : X — R.
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Proposition 3.13. Let Rgo : A XR — [—00,4+00) be the function defined

by,
RY (z,Q) :==inf{m e R|rY (m,Q) >z}

for all (z,Q) € A xR. Then,

RY (2,Q) = wo — u_l( nf ()\(wg )+ U*(AQ)))

A€(0,400
for all (z,Q) € R x A.

Proof of Proposition 3.13. By Proposition 3.12,

Rgo(:v,Q) = inf {m eR ‘ wo +  inf l(U*()\Q) — u(wo — m)) > :E}

AE(0,400) A

= inf {m € R‘ /\e(ior,{oo) ()\(wo —x)+ U*()\Q)> > u(wy — m)}

— inf {m eR ‘ m > wo — “_I(Ae(ion{oo) (/\(wo —o)+ U*()‘Q)»}

= wy — u71<>\€ inf ()\(wo —x)+ U*()‘Q)>)

(0,400)

for all (z,Q) € R x A. O
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Chapter 4

Characterizations of Comparative

Uncertainty Attitudes

4.1 Comparative Uncertainty Aversion

In this section we study the comparison of the different extents of uncer-
tainty aversion of different decision-makers at a given level of constant initial
wealth. In Section 4.1.1 we present a definition of comparative uncertainty
aversion which is consistent with the definition of comparative uncertainty
aversion of Ghirardato and Marinacci (2001) and with the definition of com-
parative risk aversion of Yaari (1969). In Section 4.1.2 we provide various
characterizations of comparative uncertainty aversion in terms of the in-
difference buyer’s price and of the indifference seller’s price introduced in
Chapter 3.

Observe that, for simplicity, all the definitions and all the results are pro-

vided in terms of the more general notion of comparative risk and uncer-

69



tainty aversion, and that all the definitions and all the results which charac-
terize comparative uncertainty aversion only will be recovered as particular

cases under a suitable normalization condition.

4.1.1 Definition

The notion of comparative risk and uncertainty aversion allows to compare
the different extents of risk and uncertainty aversion of different decision-
makers U"¢1 : X — R and U*% : X — R endowed with the same
constant initial wealth wg € R. The intuition underlying the notion of
comparative risk and uncertainty aversion is that if a decision-maker U%1:C1
X — R endowed with constant initial wealth wy € R prefers a constant
monetary payoff x € R to a stochastic monetary payoff X € X', then a more
risk and uncertainty averse decision-maker U%2:¢2 : X — R endowed with

the same constant initial wealth wy € R will do the same.

Definition 4.1. A decision-maker U*>C1 : X — R is said to be less risk

and uncertainty averse than another U%2:¢2 : X — R if,

ur(wo + ) > U (wo + X) = ug(wo + ) > U2 (wo + X)  (4.1)

forall X € X, x € R, and wy € R.

Note that the second decision-maker U%2:%2 may prefer the constant mon-
etary payoff x € R either because she is more risk averse than the first
decision-maker U%:C1 that is because she dislikes the variability of the
outcomes of the stochastic monetary payoff X € X more than the first

decision-maker [J¥1,G1

, or because she is more uncertainty averse than the
first decision-maker U%1:C1 that is because she dislikes the fact that the

probabilities of the different possible outcomes of X € X are not objectively
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determined more than the first decision-maker U%C1. For this reason, Def-
inition 4.1 is, in general, a definition of comparative risk and uncertainty
aversion, and not a definition of comparative uncertainty aversion only.
For Definition 4.1 to specialize to comparative uncertainty aversion only, it
is necessary that both decision-makers U*"¢1 and U¥>¢2 display the same
risk attitudes u; and wug, that is that u; = us'. This normalization condition
ensures, in fact, that different choices of the decision-makers are ascribable
only to their different uncertainty attitudes G1 and G, and not also to their
different risk attitudes u; and us.

Remark 4.1. Definition 4.1 can be immediately characterized in terms of
the acceptance family (AZ,OG 'm)meRr introduced in Section 3.1.1.3. In fact, it
follows directly from Definition 4.1 that a decision-maker U%C1 : X — R is
less risk and uncertainty averse than another U%2:%2 : X — R if and only if,

Au2,G2 C Aul,Gl (4.2)

wo,m = Y wo,m

for all m € R and wg € R. Therefore, a more risk and uncertainty averse
decision-maker U%2:%2 : X — R prefers fewer stochastic monetary payoffs
X € X to a constant monetary payoff —m € R at every level of constant

initial wealth wg € R.

Note that U*"C1 is said to be more risk and uncertainty averse than U%2:2
when the implication in Equation (4.1) holds true in the opposite direction
and that U"1C1 is said to be as risk and uncertainty averse as U"2"%2 when
the implication in Equation (4.1) holds true in both directions. The same

considerations apply to the set inclusion in Remark 4.1.

1Actua11y, it is not necessary that w1 and us are identical, as it is sufficient that u; and
ug are equivalent, that is that either u; is a positive affine transformation of us, or that
ug is a positive affine transformation of u;. Nevertheless, without loss of generality, we
can set u1 = ug. See also Cerreia Vioglio et al. (2011a, Section 3.3).
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4.1.2 Characterizations

Theorem 4.1 asserts that a decision-maker is less risk and uncertainty averse
than another if and only if her indifference buyer’s price and her indifference
seller’s price are smaller than for the the other at every level of constant
initial wealth. Analogous results in term of the indifference buyer’s price
were obtained by Pratt (1964) in the expected utility framework in relation

to the characterization of comparative risk aversion.
Theorem 4.1. The following statements are equivalent.

(i) UG s less risk and uncertainty averse than UY2C2.
(i1) W%})’Gl < WZE’GZ for all wg € R.

(i) go%’Gl < gp%%’% for all wy € R.

Proof of Theorem 4.1. Let X € X and z € R.

(i) < (ii) By Definition 4.1 and Definition 3.1, U"1:C1 : X — R is less risk

and uncertainty averse than U%2:¢2 : X — R if and only if,
uy(wo + x) > ug(wy — FZB’GI (X)) = ua(wo + ) > ug(wo — 773,%’% (X))

that is, since u; : R — R and uo : R — R are strictly increasing, if and only
if,

TO(X) > —2 = 7l2P(X) > —x

Thus, U161 : X — R is less risk and uncertainty averse than U%2:C2 : X —
R if and only if,

O (X) < 72O (X).

(i) < (iii) By Definition 4.1 and Definition 3.3, U*1C1 : X — R is less risk
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and uncertainty averse than U%2:¢2 : X — R if and only if,

Uul,Gl(wO +r4+ X —I—(pm’Gl(X)) > UuhGl(wO +X) =>

wo+x

U %2 (wy + x + X + 92 92(X)) > U292 (wy + X)

wo+x

that is, since U*°¢1 : X — R and U%2:%2 : X — R are strictly increasing, if
and only if,
7G ,G
Pugra(X) = =2 = @ 0(X) > —
Thus, U*C1 : X — R is less risk and uncertainty averse than U%2:¢2 : X —

R if and only if,
G G
Puota(X) < uyz (X).
O
Corollary 4.1 provides the dual characterization of uncertainty aversion con-
sistent with Theorem 4.1 and with the representation results in Proposition

3.3 and Proposition 3.7.
Corollary 4.1. The following statements are equivalent.

(i) UG s less risk and uncertainty averse than U252,
(ii) RuvS1 < RS> for all wy € R.
(iii) aihCt > o292 for all wy € R.

Proof of Corollary 4.1. (i) < (ii) By Remark 4.1, U*C1 : X — R is less

risk and uncertainty averse than U¥>%2 : X — R if and only if A%’%ﬁ -

AU for all m € R. By Rockafellar (1970, Corollary 13.1.1),

Au2,G2 - AvnGr o rfuf)’% (ij) < T%,G1 (m, Q)

wo,m wo,m
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for all (m, @) € RxA. By Equation (3.7) and by the increasing monotonicity
of PG R x A = (=00, +00] and ri2? : R x A — (—o0, +00] in the first

argument,

Pz (m,Q) < it (m,Q) V(m,Q) ERxA &

u1,G U2,
RU-C1(2,Q) < R¥292(2,Q) V(z,Q) ERx A

Thus, U161 : X — R is less risk and uncertainty averse than U%2:¢2 : X —
R if and only if,
Ry (2,Q) < Bz (2, Q)

for all (z,Q) € R x A.
(i) < (#ii) By Theorem 4.1 and by Remark 3.3 U*1&1 : X — R is less risk
and uncertainty averse than U%>¢2 : X — R if and only if AZ;’_G,%’O —m C

AC o for all m € R. By Rockafellar (1970, Corollary 13.1.1),

wo—m,0

AumGz —mC AULGI —m = au2,GQ (Q) —m< auLGl (Q) —m

wo—m,0 wo—m,0 wo—m wo—m

for all m € R and Q € A. Thus, U*C1 : X — R is less risk and uncertainty

averse than U%2C2 : X — R if and only if,
G G
0% Q) <l % (Q)

for all m € R and Q € A. O
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4.2 Increasing, Decreasing, and Constant Uncertainty Aver-

sion

In this section we study the comparison of the different extents of uncer-
tainty aversion of a given decision-maker at different levels of constant initial
wealth. In Section 4.2.1 we present a definition of increasing, decreasing, and
constant uncertainty aversion which is consistent with the definition of in-
creasing, decreasing, and constant risk aversion in Kreps (1988, Chapter 6,
page 75). In Section 4.2.2 we provide various characterizations of increasing,
decreasing, and constant uncertainty aversion in terms of the indifference
buyer’s price and of the indifference seller’s price introduced in Chapter 3.
Observe that, for simplicity, all the definitions and all the results are pro-
vided in terms of the more general notion of increasing, decreasing, and
constant risk and uncertainty aversion, and that all the definitions and all
the results which characterize increasing, decreasing, and constant uncer-
tainty aversion only will be recovered as particular cases under a suitable

normalization condition.

4.2.1 Definition

The notion of increasing, decreasing, and constant uncertainty aversion al-
lows to compare the different extents of uncertainty aversion of a given
decision-maker U%“ : X — R at different levels of constant initial wealth
w; € R and we € R. The intuition underlying the notion of increasing
uncertainty aversion is that if a decision-maker U%® : X — R prefers a
constant monetary payoff x € R to a stochastic monetary payoff X € X
when her constant initial wealth is w; € R, and if she still prefers the con-

stant monetary payoff x € R when her constant initial wealth is increased
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to wy € R, then she is increasingly risk and uncertainty averse?.

Definition 4.2. A decision-maker U*% : X — R is said to be increasingly

risk and uncertainty averse if,
w(wy + x) > U (wy + X) = u(wy +z) > U (wy + X) (4.3)

for all X € X, x € R, and wy,ws € R such that w; < ws.

Note that the decision-maker U%¢ : X — R may still prefer the constant
monetary payoff * € R when her constant initial wealth is increased to
wy € R either because she is increasingly risk averse, that is because she dis-
likes even more the variability of the outcomes of the stochastic monetary
payoff X € X when her constant initial wealth is increased to ws € R, or
because she is increasingly uncertainty averse, that is because she dislikes
even more the fact that the probabilities of the different possible outcomes
of X € X are not objectively determined when her constant initial wealth
is increased to wo € R. For this reason, Definition 4.2 is a definition of
increasing risk and uncertainty aversion, and not a definition of increasing
uncertainty aversion only.

For Definition 4.2 to specialize to increasing uncertainty aversion only, it is
necessary that the decision-maker U™ displays the same risk aversion at
different levels of constant initial wealth w; € R and wo € R, that is that
u: R — R is constantly absolute risk averse (CARA). This normalization
condition ensures, in fact, that the decision-maker’s different choices at dif-
ferent levels of constant initial wealth wy € R and wy € R are ascribable

only to the way in which her uncertainty aversion changes when her con-

2In fact, if this decision-maker U*% : X — R was decreasingly risk and uncertainty
averse, than at some high level constant initial wealth ws € R she would reverse her
preferences and choose the stochastic monetary payoff X € X.
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stant initial wealth is increased from w; € R to we € R, and not also to the
way in which her risk aversion changes when her constant initial wealth is
increased from w; € R to wy € R. Recall that the CARA utility functions
are the linear utility function u(z) = 4 ax for all z € R with § € R and
a € (0,+00) and the exponential utility function u(z) = —ae™%" for all

x € R with a, 6 € (0, +00).

Remark 4.2. Definition 4.2 can be immediately characterized in terms of
the acceptance family (A&OG 'm)meRr introduced in Section 3.1.1.3. In fact, it
follows directly from Definition 4.2 that a decision-maker U%% : X — R is
increasingly risk and uncertainty averse if and only if,

ALG G (4.4)

w2,m = Ywi,m

for all m € R and wy,ws € R such that w; < we. Thus, an increasingly risk
and uncertainty averse decision-maker U%% : X — R prefers fewer stochastic
monetary payoffs X € X to the constant monetary payoff —m € R when

her constant initial wealth is increased from w; € R to wg € R.

Note that U%% is said to be decreasingly risk and uncertainty averse when
the implication in Equation (4.3) holds true in the opposite direction, and
that U™® is said to be constantly risk and uncertainty averse when the
implication in Equation (4.3) holds true in both directions. The same con-

siderations apply to the set inclusion in Remark 4.2.

4.2.2 Characterizations

Theorem 4.2 asserts that a decision-maker is increasingly risk and uncer-
tainty averse if and only if her indifference buyer’s price and her indifference

seller’s price are increasing functions of her constant initial wealth. Analo-
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gous results in term of the indifference buyer’s price were obtained by Pratt
(1964) in the expected utility framework in relation to the characterization

of increasing, decreasing, and constant risk aversion.

Theorem 4.2. The following statements are equivalent.
(i) U is increasingly risk and uncertainty averse.
(i1) ﬂ%’lc < W&’QG for all wi,wy € R such that wi < ws.

(i) Lpﬁ,lG < @ZQG for all wi,ws € R such that wi < ws.

Proof of Theorem 4.2. Follows from applying the same arguments as in the
proof of Theorem 4.1 with U%% (w; + X) = U1 (wg + X) and U (wy +
X) = U¥CG2(wg + X) for all X € X and with wy,wz € R such that w; <

wa. O

Corollary 4.2 provides a dual characterization of uncertainty aversion con-
sistent with Theorem 4.2 and with the representation results of Proposition

3.3 and Proposition 3.7.
Corollary 4.2. The following statements are equivalent.

(i) U is increasingly risk and uncertainty averse.

(ii) quf,’lG < RZ;QG for all wi,wy € R such that wi < ws.
(i) aﬁ,’lg > aif,’QG for all wi,ws € R such that wy < ws.
Proof of Corollary 4.2. Follows from applying the same arguments as in the
proof of Corollary 4.1 with A&Gm = .AE{% and A%G m = AZ%’%Q for all
m € R and with wq,ws € R such that w; < ws. O

4.2.3 Further Characterizations

This section illustrates some further characterizations of increasing, decreas-

ing and constant risk and uncertainty aversion which do not rely on the
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dependence of the indifference buyer’s price mzf,’OG : X — R and of the indif-
ference seller’s price go%f,’(? : X — R on the decision-maker’s constant initial
wealth wg € R. The characterization results presented in this section rely
instead on the observation that the notion of increasing, decreasing, or con-
stant risk and uncertainty aversion describes how a decision-maker’s choice
between an uncertain monetary payoff X € X and a constant monetary
payoff x € R is altered if a positive constant amount of money m € [0, +00)

is added to both alternatives.
Proposition 4.1. A decision-maker U%% : X — R is increasingly risk and
uncertainty averse if and only if,

w(wo + ) > U (wo + X) = u(wo+z +m) > U (wo + X +m) (4.5)

for allm € [0,+00), X € X, z € R, and wy € R.

Proof of Proposition 4.1. Follows from Definition 4.2 taking w; = wg € R

and setting we = wo +m € R with m € [0, +00). O

Proposition 4.2 shows that Proposition 4.1 can be equivalently characterized

in terms of the acceptance family (Ai;f 'm)meR-

Proposition 4.2. A decision-maker U%C : X — R is increasingly risk and

uncertainty averse if and only if,

ABG ARG 4 (4.6)

wo,m = wo,m-+n

for allm € R, n € [0, +00) and wy € R.

Proof of Proposition 4.2. Let X € X and m € R. By Proposition 4.1 U% :
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X — R is increasingly risk and uncertainty averse if and only if,
w(wo —m) > U%%(wy + X) = u(wg—m —n) > U (wg + X —n)
for all n € (—o0,0], that is, if and only if,

u,G u,G
Awo,m 2 ‘Awo,m-l—n +n

for all n € (—o0,0]. Thus, U%% : X — R is increasingly risk and uncertainty
averse if and only if,

u,G u,G
Awo,m g ‘Awo,m-l—n +n

for all n € [0, 400). O

Note that decreasing risk and uncertainty aversion is obtained reversing
the direction of the implication in Equation (4.5), and that constant risk
and uncertainty aversion is obtained when the implication in Equation (4.5)
applies in both directions. The same considerations apply to the set inclusion

in Equation (4.6).

4.2.3.1 Cash-Subadditivity

As a consequence of Proposition 4.1, increasing, decreasing and constant
risk and uncertainty aversion are equivalently characterized by the additive
properties that the indifference buyer’s price mlf,’OG : X — R satisfies with
respect to the positive constant monetary payoffs m € [0, +00) for any given

wp € R.

Theorem 4.3. A decision-maker U : X — R is increasingly risk and
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uncertainty averse if and only if,
TG (X +m) > 19 (X) —m (4.7)

for allm € [0,4+00), X € X, and wy € R.

Proof of Theorem 4.3. Let X € X, z € Rand m € [0,400). By Proposition
4.1 and Definition 3.1 U%Y : X — R is increasingly risk and uncertainty

averse if and only if,

w(wo + ) > u(wo—74Y (X)) =

u(wo +m + ) > u(wo — 7% (X +m))

wo

or, equivalently, as v : R — R is strictly increasing, if and only if,
u7G X > _ u,G X > _
Ty (X) > —x = 7 (X +m) +m > —x

Thus, U%% : X — R is increasingly risk and uncertainty averse if and only
if,

TwG (X +m) > kS (X) —m.
0

Theorem 4.3 asserts that a decision-maker U%¢ : X — R is increasingly
risk and uncertainty averse if and only if the indifference buyer’s price
773}’0(; : X = R is cash-subadditive. It follows from Proposition 3.1 that
the indifference buyer’s price of an increasingly risk and uncertainty averse
decision-maker is a cash-subadditive quasiconvex risk measure. The property

of cash-subadditivity was introduced in the mathematical finance literature

by El Karoui and Ravanelli (2009) to model the impact of default risk and
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interest rate ambiguity on the minimal reserve amount that must be added
to an uncertain monetary payoff such that it becomes acceptable to a fi-
nancial regulator or supervisory agency. The property of cash-subadditivity
is a weakening of the property of cash-additivity considered by Deprez and
Gerber (1985), Frittelli and Rosazza Gianin (2002), and Féllmer and Schied
(2002).

It follows from Theorem 4.3 implies that U»% : X — R is decreasingly risk

and uncertainty averse if and only if,
T4G(X +m) < G (X) —m (4.8)

for all m € [0,400) and X € X, that is if and only if 7557 : X — R is
a cash-superadditive quasiconvex risk measure, and that U*¢ : X — R is

constantly risk and uncertainty averse if and only if,
WZ’OG(X +m) = 7TL‘;0G(X) —-m (4.9)

for all m € R and X € &, that is if and only if 7'('3,’0G : X =- Ris a cash-
additive convex risk measure (see Cerreia Vioglio et al. (2010, Proposition
2.1)). In the framework of expected utility preferences U%% : X — R
the characterization of constant risk aversion in terms of cash-additivity of
the indifference buyer’s price Wﬁ}? : X — R is a direct consequence of the
Nagumo-Kolmogorov-de Finetti Theorem (see de Finetti (1931)).

Corollary 4.3 provides a dual characterization of increasing risk and uncer-
tainty aversion consistent with Theorem 4.3 and with the representation
result of Proposition 3.3. Proposition 4.3 is a direct application of Proposi-

tion 2.11 in Drapeau and Kupper (2010).

Corollary 4.3. A decision-maker U»C : X — R is increasingly risk and

82



uncertainty averse if and only if,
RyC(z—m,Q) > Ry (2,Q) —m (4.10)

for all m € [0,400), (z,Q) € R x A, and wy € R.

The different additive properties of the indifference buyer’s price Wff,’oG X =
R described by Equation (4.7), Equation (4.8), and Equation (4.9), allow to
immediately establish various inequalities between the indifference buyer’s
price df;OG : X = R and the indifference seller’s price QD:Z’OG : X — R. The

derivation of the various inequalities is based on the useful result of Lemma,

4.1.

Lemma 4.1. The indifference buyer’s price 77171”,’(? : X — R satisfies,
TEO(X + pu (X)) =0 (4.11)

for all X € X and wy € R.

Proof of Lemma 4.1. Let X € X. By Definition 3.1 and Definition 3.3,
u(wo = T (X + @i (X)) = U (wo + X + @i (X)) = u(wo)

and the strict monotonicity of u : R — R yields 7'('3;’0G(X + goiijG (X))=0. O

Lemma 4.1, combined with Theorem 4.3, allows to characterize increasing,
decreasing, and constant risk and uncertainty aversion in terms of the in-
equalities fulfilled by the indifference buyer’s price mﬁﬂbG : X = R and by the

indifference seller’s price go%’OG : X = R for every wg € R.

Theorem 4.4. A decision-maker U : X — R is increasingly risk and
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uncertainty averse if and only if,

TG (X) < o (X) (4.12)

wo

for all X € X such that o%C (X) € [0, +00).

Proof of Theorem 4.4. By Theorem 4.3 and Lemma 4.1 U%% : X — R is

increasingly risk and uncertainty averse if and only if,
G .G ,G .G
0 = Ty (X + @y (X)) 2 7 (X) = 0iy” (X)

for all X € X such that p%C(X) € [0, +00). O

It follows from Theorem 4.4 that U%% : X — R is decreasingly risk and

uncertainty averse if and only if,

TG (X) > o (X) (4.13)

wo

for all X € X such that o4 (X) € [0,+00), and that U*C : X — R is
constantly risk and uncertainty averse if and only if,

G (X) = o (X) (4.14)

wo

for all X € X.
Lemma 4.2 provides a dual characterization of Lemma 4.1 in terms of the
maximal risk function RZ’OG : RxA — [—00, +00) and of the minimal penalty

function a5C 1 A = (—oo, +o0.

Lemma 4.2. The mazimal risk function R%’OG R x A — [—00,+00) satis-

fies,
u,G
Ry (2,Q) <0
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for all (z,Q) € R x A such that z < a5 (Q).

Proof of Lemma 4.2. By the increasing monotonicity of RﬁijG R A —

[—00, +00) in its first argument, by Equation (3.6), and by Lemma 4.1,

R4 (2,Q) < RuC(Eg[-X)-¢15%(X), Q)

< sup RLC(Bg[—X] — ¢%%(X), Q)
QEA

=0

for all (z,Q) € R x A such that z < Eg[—X]| — cpﬁ;f(X) for some X € X,
that is for all (z,Q) € R x A such that,

r < sup (EQ[_X] - WZOG(X))

XeX
= sup Eg[—X]
XeAys,
.G
=y (@)

See also Remark 4.16 point (a) in Follmer and Schied (2004). Thus, R(z, Q) <
0 for all (z,Q) € R x A such that x < afu’OG(Q). O

Lemma 4.2, combined with Corollary 4.3, allows to characterize increasing,
decreasing and constant risk and uncertainty aversion in terms of the in-
equalities that maximal risk function RZOG : R x A — [—00,400) and the

minimal penalty function ozfj,’OG i A — (—o0, +o0] fulfill for every wy € R.

Corollary 4.4. A decision-maker U»C : X — R is increasingly risk and

uncertainty averse if and only if,

R%%(2,Q) <z — a%C(Q) (4.15)

wo
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for all (z,Q) € R x A such that z > a5 (Q).

Proof. By Lemma 4.2 and Corollary 4.3 U%% : X — R is increasingly risk

and uncertainty averse if and only if,
0> Rif(a — (¢ — aii(Q)), Q) = Ryt (2, Q) — + ali’ (Q)

for all (z,Q) € R x A such that z > o%%(Q). Thus, U%C : X — R is

increasingly risk and uncertainty averse if and only if,
RS (2,Q) < x —alf(Q)
for all (z,Q) € R x A such that = > a55(Q) O

4.2.3.2 Star-Shapedness

The uncertainty indexes G : R x A — (—o00, +00] that are minimally and
maximally uncertainty averse consistently with the notion of comparative
uncertainty aversion described in Section 4.1 have already been characterized
by Cerreia Vioglio et al. (2011a, Section 3.3) who found that a decision-
maker U":C1 : X — R is more uncertainty averse than another U>¢2 :
X — R if and only if,

Gi1 <Gy

provided that u; = uo : R — R. Theorem 4.5 characterizes the uncer-
tainty indexes G : R x A — (—o00, +00] that are increasingly, decreasingly,
and constantly uncertainty averse accordingly with the notion of increas-
ing, decreasing and constant uncertainty aversion described in Section 4.2.
The proof of Theorem 4.5 exploits the characterization of a decision-maker’s

increasing, decreasing, and constant risk and uncertainty aversion in Theo-

86



rem 4.3 under the normalization condition that the decision-maker’s utility

function is constantly absolute risk averse (see Subsection 4.1.1).

Theorem 4.5. A decision-maker U%C : X — R is increasingly uncertainty

averse if and only if,
G(Ax +m, P) < \G(z, P) +m

for all X € (0,1], m € [0,+00), and (xz, P) € Rx A, decreasingly uncertainty

averse if and only if,
Gz +m,P) > \G(z, P) +m

for all A € (0,1], m € [0,4+00), and (x,P) € R x A, and constantly uncer-

tainty averse if and only if,
GAx +m,P) = \G(x,P)+m

for all A € (0,+00), m € R, and (z,P) € R x A.

Proof of Theorem 4.5. The indifference buyer’s price ’7T5)6G : X — R defined
in terms of the linear utility function u(z) = f+ax for all z € R with § € R
and « € (0, +00) is given by,

LG/ vy g 1.
T (X) = wo + o &ﬁléfa G(8 + awy + aEp[X], P) (4.16)

for all X € X and wy € R. By Drapeau and Kupper (2010, Proposition 2.11)
the function 7r§ ‘¢ X — R in Equation (4.16) is cash-subadditive if and only
if G(z+m, P) < G(z, P)+m for all m € [0,400), cash-superadditive if and

only if G(z+m, P) > G(z, P)+m for all m € [0,400), and cash-additive if
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and only if G(z +m, P) = G(z, P) +m for all m € R.
The indifference buyer’s price ﬂfu’OG : X = R defined in terms of the expo-

nential utility function u(z) = —ae™% for all 2 € R with a, 0 € (0, +00) is

given by,
£.a 1 L. —0(wo+X)
T (X) :wo—i-gln(— alyelfA G(Ep[—ae ],P)) (4.17)

for all X € X and wy € R. By Cerreia Vioglio et al. (2010, Proposition
4.1) the function 5% : X — R in Equation (4.17) is cash-subadditive if
and only if G(A\z, P) < AG(z, P) for all A € (0, 1], cash-superadditive if and
only if G(Az, P) > AG(z, P) for all X € (0, 1], and cash-additive if and only
if G(\z, P) = AG(z, P) for all A € (0, +00).

It follows that ma:"

: X - R and va’OG : X — R are cash-subadditive if and
only if G(Az+m, P) < AG(x, P)+m for all X\ € (0, 1] and m € [0, +00), cash-
superadditive if and only if G(Az+m, P) > AG(z, P)+m for all A € (0,1] and
m € [0, +00), and cash-additive if and only if G(Az+m, P) = AG(z, P)+m
for all A € (0,400) and m € R.

Thus, the statement follows from Theorem 4.3, together with the normal-

ization condition that the decision-maker’s utility function is either linear

or exponential discussed in Section 4.2. O

Theorem 4.5 asserts that a decision-maker U%® : X — R is increasingly un-
certainty averse if and only if her uncertainty index G : R x A — (—o00, +-00]
is star-shaped® and cash-subadditive. The property of star-shapedness was
introduced in the mathematical finance literature by Cerreia Vioglio et al.
(2010) to model the impact of liquidity risk on the minimal reserve amount

that must be added to an uncertain monetary payoff such that it becomes

3A function h : R — R is said to be star-shaped if h(Az) < Ah(z) for all A € (0,1] and
xz €R.
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acceptable to a financial regulator or supervisory agency. The property of
star-shapedness is a weakening of the property of positive homogeneity* con-
sidered by Artzner et al. (1999) and Delbaen (2002).

The characterization of increasing, decreasing, and constant uncertainty
aversion in Theorem 4.5 allows to easily classify the different possible spec-
ifications of the uncertainty averse representation of preferences of Cerreia
Vioglio et al. (2011a) into increasingly, decreasingly, and constantly uncer-

tainty averse.

Example 4.1. By Theorem 4.5, the variational representation of prefer-
ences U"° : X — R of Maccheroni et al. (2006) is decreasingly uncer-
tainty averse. In fact, as ¢(P) > 0 for all P € A, the uncertainty index

G:R x A — (—o0,+00] in Equation (2.4) satisfies,

G(A\x +m, P) = x +m+ ¢(P)
> Az +m+ Ae(P)

= AG(z,P)+m

for all A € (0,1], m € R, and (z, P) € R x A.

Example 4.2. The multiplier representation of preferences U%?R:Q : x —
R of Hansen and Sargent (2001) and Strzalecki (2011) is a particular case
of the variational representation of preferences of Maccheroni et al. (2006)

which is obtained when,

c¢(P) = 0R(P||Q)

for all P € A where 0 € (0,+00) and R(.||Q) : A — [0, 400] is the relative

entropy with respect to Q € A7 (see Subsection 2.3.2). Thus, the multiplier

4A function h : R — R is said to be positively homogeneous if h(Az) = Ah(z) for all
A€ (0,400) and = € R.
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representation of preferences U%?RQ . X — R is decreasingly uncertainty

averse.

Example 4.3. By Theorem 4.5, the multiple priors representation of pref-
erences U%? : X — R of Gilboa and Schmeidler (1989) is constantly
uncertainty averse. In fact, as for every P € A either 6(P|P) = 0 or
d(P|P) = +o0, the uncertainty index G : R x A — (—o0, +00] in Equation

(2.8) satisfies,

GA\x+m,P) =X x+m+6(P|P)
=Xx+m+X(P|P)

= \G(z,P)+m

for all A € (0,400), m € R, and (z,P) € R x A.
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Chapter 5

Conclusion

In this dissertation we studied the problem of indifference pricing in the gen-
eral decision-theoretic framework of uncertainty averse preferences (Cerreia
Vioglio et al. (2011a)).

In the first part of the dissertation we studied the preferences that an uncer-
tainty averse decision-maker expresses through her indifference prices and
we found that they are consistent with the basic principles of rationality and
diversification (see Cerreia Vioglio et al. (2010)). We found, in particular,
that the indifference buyer’s price is a quasiconvex risk measure, and that
the indifference seller’s price is a cash-additive convex risk measure. We
found that the acceptance family of the indifference buyer’s price as well
as the acceptance set of the indifference seller’s price are completely char-
acterized by the decision-maker’s uncertainty averse preferences and by the
decision-maker’s constant initial wealth. We found that, as a result, the

maximal risk function representing the indifference buyer’s price as well as
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the minimal penalty function representing the indifference seller’s price are
completely described by the decision-maker’s uncertainty averse preferences
and by the decision-maker’s constant initial wealth. We provided explicit
expressions for the maximal risk function and for the minimal penalty func-
tions representing the indifference buyer’s price and the indifference seller’s
price defined by the variational (Maccheroni et al. (2006)), the multiplier
(Hansen and Sargent (2001), Strzalecki (2011)), and the multiple priors
(Gilboa and Schmeidler (1989)) representations of preferences.

In the second part of the dissertation we studied the different extents of
uncertainty aversion that a decision-maker’s expresses through her indiffer-
ence prices. We showed that a decision-maker is more (respectively, less)
uncertainty averse than another if and only if her indifference prices are
pointwise larger (respectively, smaller) than the other’s, and that a decision
is as uncertainty averse as another if and only if her indifference prices are
pointwise equal to the other’s. We also showed that a decision-maker is
increasingly (respectively, decreasingly) uncertainty averse if and only if her
indifference prices are increasing (respectively, decreasing) functions of her
constant initial wealth, and that a decision is constantly uncertainty averse
if and only if her indifference prices are constant functions of her constant
initial wealth.

We found that a decision-maker is increasingly (respectively, decreasingly)
uncertainty averse if and only if her indifference buyer’s price is a cash-
subadditive (respectively, cash-superadditive) quasiconvex risk measure, and
constantly uncertainty averse if and only her indifference buyer’s price is a
cash-additive convex risk measure. We found that a decision-maker is in-
creasingly (respectively, decreasingly) uncertainty averse if and only if her

indifference buyer’s price is less than (respectively, greater than) her indiffer-
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ence seller’s price whenever the latter is positive, and constantly uncertainty
averse if and only if her indifference buyer’s price is equal to her indifference
seller’s price irrespective of whether the latter is positive or negative.

In the last part of the dissertation we derived a technical condition on the
uncertainty index appearing in the uncertainty averse representation of pref-
erences of Cerreia Vioglio et al. (2011a) which allows to easily classify the
various particular specifications of the uncertainty averse representation of
preferences of Cerreia Vioglio et al. (2011a) into increasingly, decreasingly,
and constantly uncertainty averse. We found that the variational (Mac-
cheroni et al. (2006)) and, as a result, the multiplier (Hansen and Sargent
(2001), Strzalecki (2011)), representations of preferences are decreasingly
uncertainty averse, and that the multiple priors (Gilboa and Schmeidler
(1989)) representation of preferences is constantly uncertainty averse.

Further research might investigate the extension of the analysis of this dis-
sertation to a framework of optimal risk exchange. The problem of opti-
mal risk exchange was studied by Borch (1962), Arrow (1963), and Gerber
(1978) in the expected utility framework. The study of the problem of op-
timal risk exchange was extended by Barrieu and El-Karoui (2005), Jouini
et al. (2008) and Filipovic and Kupper (2008) to a more general framework
in which the relevant decision-makers evaluate the relative desirability of
alternative uncertain monetary endowments by cash-additive convex risk
measures. The study of the problem of optimal risk exchange was further
developed by Acciaio (2007), who considered decision-makers with concave
objective functions which are cash-additive but not necessarily monotone,
and by El Karoui and Ravanelli (2009), who considered decision-makers with
concave objective functions which are cash-subadditive and monotone. The

solution of the problem of optimal risk exchange was characterized under
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even less restrictive assumptions by Ravanelli and Svindland (2011) who
considered decision-makers with objective functions which are only concave
and monotone.

All the objective functions previously employed in the literature on optimal
risk exchange, with the exception of the non-monotone functions considered
by Acciaio (2007), are particular cases of the uncertainty averse representa-
tion of preferences of Cerreia Vioglio et al. (2011a) and, as shown in Section
4.2.3.2 of this dissertation, they can be classified based on whether they
exhibit increasing, decreasing, or constant uncertainty aversion. Thus, fu-
ture work might investigate the existence and the characterization and the
solution of the problem of optimal risk exchange in the general framework
of uncertainty averse preferences of Cerreia Vioglio et al. (2011a) and, along
the lines of this dissertation, it might examine how the equilibrium depends
on the different attitudes toward uncertainty of the decision-makers involved

in the exchange.
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