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Abstract

Econometric modelling and statistical inference are considerably complicated by the
possibility of correlation across data data recorded at different locations in space. A
major branch of the spatial econometrics literature has focused on testing the null
hypothesis of spatial independence in Spatial Autoregressions (SAR) and the asymp-
totic properties of standard test statistics have been widely considered. However, finite
sample properties of such tests have received relatively little consideration. Indeed,
spatial datasets are likely to be small or moderately-sized and thus the derivation of
finite sample corrections appears to be a crucially important task in order to obtain
reliable tests. In this project we consider finite sample corrections based on formal
Edgeworth expansions for the cumulative distribution function of some relevant test
statistics.

In Chapter 1 we provide the background for the results derived in this thesis.
Specifically, we describe SAR models together with some established results in first
order asymptotic theory for tests for independence in such models and give a brief
account on Edgeworth expansions. In Chapters 2 and 3 we present refined proce-
dures for testing nullity of the spatial parameter in pure SAR based on ordinary
least squares and Gaussian maximum likelihood, respectively. In both cases, the
Edgeworth-corrected tests are compared with those obtained by a bootstrap proce-
dure, which is supposed to have similar properties. The practical performance of new
tests is assessed with Monte Carlo simulations and two empirical examples. In Chap-
ter 4 we propose finite sample corrections for Lagrange Multiplier statistics, which are
computationally particularly convenient as the estimation of the spatial parameter is
not required. Monte Carlo simulations and the numerical implementation of Imhof’s
procedure confirm that the corrected tests outperform standard ones. In Chapter 5 the
slightly more general model known as “mixed” SAR is considered. We derive suitable
finite sample corrections for standard tests when the parameters are estimated by or-
dinary least squares and instrumental variables. A Monte Carlo study again confirms
that the new tests outperform ones based on the central limit theorem approximation

in small and moderately-sized samples.



Al nonno



Acknowledgments

First of all, I am greatly indebted to my advisor, Professor Peter Robinson, for his
invaluable support and guidance.

Many thanks are due to Abhisek Banerjee, Zsofia Barany, Ziad Daoud, Abhimanyu
Gupta, Javier Hidalgo, Tatiana Komarova, Jungyoon Lee, Oliver Linton, Elena Man-
zoni, Myung Hwan Seo, Marcia Schafgans and Sorawoot Tang Srisuma for plenty of
helpful comments and discussions.

I also thank all my friends and fellow researchers at the LSE, in particular the
participants at the work in progress seminars, for discussions and comments on my
work.

Financial support from the Bank of Italy, Fondazione Luigi Einaudi and ESRC
Grant RES-062-23-0036 is gratefully acknowledged.

I owe a lot to my family, and in particular to my parents, for their support over the
past few years, and to Antonio, for being so patient and supportive. All this would
not have been possible without them.

I also thank all the friends who made me feel at home in London.



Contents
Abstract
Acknowledgments
Contents

List of Figures

List of Tables

1 Introduction
1.1 Spatial Autoregressions . . . . . . . . .. ...
1.2 First order statistics . . . . . . . . .. ... L o
1.3 Edgeworth expansions . . . . . . . .. .. ... ...
1.4 Finite sample issues and contribution of this thesis . . . . . .. .. ..

1.5 Some definitions and Assumptions . . . . . . . ... ... ...

2 Improved OLS Test Statistics for Pure SAR
2.1 Test against a one-sided alternative: Edgeworth-corrected critical val-
ues and corrected statistic . . . . .. ..o
2.2 Test against a two-sided alternative: Edgeworth-corrected critical val-
ues and corrected statistic . . . . .. ..o oo
2.3 Corrected critical values and corrected statistic for pure SAR with a
location parameter . . . . . . . . . ... ..o
2.4 Test against a local alternative . . . . . . .. ... ... ...
2.5 Bootstrap correction and simulation results . . . ... ... ... ...

A Appendix ...

3 Improved Test Statistics based on MLE for Pure SAR
3.1 Test against a one-sided alternative: Edgeworth-corrected critical val-
ues and corrected statistic . . . . .. ..o
3.2 Bootstrap correction and Monte Carlo results . . . . . . .. ... ...
3.3 Empirical evidence: the geography of happiness . . . ... .. .. ..
3.4 Empirical evidence: the distribution of crimes in Italian provinces. . .
A Appendix .. ...
A.1  Proof of Theorem 3.1 . . . ... ... ... ... ... .....
A2 Auxiliaryresults . . . .. ... ...

4 Finite Sample Corrections for the LM Test in SAR Models
4.1 Edgeworth-corrected LM tests for independence in pure SAR . . . . .

11
11
14
19
23
25

28

28

32

34
35
39
49

63

64
66
70
73
75
75
81

92



CONTENTS 7

4.2 Improved LM tests in regressions where the disturbances are spatially

correlated . . . . . . . L L 95

4.3 Alternative correction . . . . . . . . ... ... oo 98
4.4 Bootstrap correction and simulation results . . . . .. ... ... L. 101
4.5 The exact distribution . . . . . . .. ... ... oL 105
A Appendix ... 109
5 Refined Tests for Mixed SAR Models 119
5.1 Refined tests based on OLS estimates . . . . . ... ... ... .... 119
5.2 Refined tests based on IV estimates . . . . .. ... ... .. ..... 124
5.3 Finite sample corrections for testing 5. . . . . . .. .. ... 128
5.4 Bootstrap and Monte Carloresults . . . . . . ... ... ... ..... 130
A Appendix ... 135

References 149



List of Figures

21
2.2
3.1
3.2

Simulated pdf of aX under Ho in (1.2.1) . . .+« v v v v v e 43
Simulated pdf of g(ad) under Ho in (1.2.1) . . v v v v v v v v e e e e 43
Simulated pdf of @A under Ho in (1.2.1) « v v v v v v v v v e e e e e 68

Simulated pdf of (@A) under Ho in (1.2.1) . v v v v v v v v e e e e 69



List of Tables

21

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

3.3

Empirical sizes of the tests of Hy in (1.2.1) against H; in (2.1.1) when A in model
(1.2.5) is estimated by OLS and the sequence h is “divergent”. The reported values
have to be compared with the nominal 0.05. . . . . . . . . . . . .. ... ...
Empirical sizes of the tests of Ho in (1.2.1) against H; in (2.1.1) when A in model
(1.2.5)is estimated by OLS and the sequence h is “bounded”. The reported values
have to be compared with the nominal 0.05. . . . . . . . . . . . . . ... ...
Empirical sizes of the tests of Hop in (1.2.1) against H; in (2.2.1) when A in model
(1.2.5) is estimated by OLS and the sequence h is “divergent”. The reported values
have to be compared with the nominal 0.05. . . . . . . . . . . . . . ... ...
Empirical sizes of the tests of Hp in (1.2.1) against H; in (2.2.1) when X in model
(1.2.5)is estimated by OLS and the sequence h is “bounded”. The reported values
have to be compared with the nominal 0.05. . . . . . . . . . . . . . ... ...
Empirical powers of the tests of Hp in (1.2.1) against H; in (2.5.3), with A =
0.1,0.5,0.8, when A in model (1.2.5) is estimated by OLS and the sequence h is

“divergent”. awisset to 0.95. . . . . . . . ..o Lo oL oL e

Empirical powers of the tests of Hp in (1.2.1) against H; in (2.5.3), with X
0.1,0.5,0.8, when A in model (1.2.5) is estimated by OLS and the sequence h is
“bounded”. avisset t0 0.95. . . . . . . Lo 0oL
Numerical values corresponding to (2.5.5) (second row) and (2.5.6) (third row), com-
pared with the simulated values for the power of a test of (1.2.1) against (2.4.1) when
An in model (1.2.5) is estimated by OLS and the sequence h is “divergent”. . . . .
Numerical values corresponding to (2.5.5) (second row) and (2.5.6) (third row), com-
pared with the simulated values for the power of a test of (1.2.1) against (2.4.1) when
An in model (1.2.5) is estimated by OLS and the sequence h is “bounded”.
Simulated values of the power of a test of (1.2.1) against (2.4.1) based on the standard
and corrected statistics when A, in model (1.2.5) is estimated by OLS and the
sequence h is “divergent”. The values should be compared with the target 0.304.
Simulated values of the power of a test of (1.2.1) against (2.4.1) based on the standard
and corrected statistics when A, in model (1.2.5) is estimated by OLS and the
sequence h is bounded. The values should be compared with the target 0.304. . . .
Empirical sizes of the tests of Ho in (1.2.1) when X in (1.2.5) is estimated by MLE
and the sequence h is “divergent”. The reported values have to be compared with
the nominal 0.05. . . . . . . . . L Lo Lo
Empirical sizes of the tests of Ho in (1.2.1) when X in (1.2.5) is estimated by MLE
and the sequence h is “bounded”. The reported values have to be compared with
the nominal 0.05. . . . . . . . . . . ..o
Empirical powers of the tests of Ho in (1.2.1) against H; in (2.5.3) with A =
0.1,0.5,0.8 when X in (1.2.5) is estimated by MLE and the sequence h is “diver-

gent”. aisset t0 0.95. . . . L. L Lo Lo L e e e

42

42

44

44

45

45

46

47

47

48

67

67

69



LIST OF TABLES 10

3.4

3.5
3.6
3.7
3.8
4.1

4.2

4.3

4.4

4.5
4.6
5.1

5.2

5.3

5.4

Empirical powers of the tests of Ho in (1.2.1) against (2.5.3) with X = 0.1,0.5,0.8

when X in (1.2.5) is estimated by MLE and the sequence h is “bounded”. « is set

t00.95. .« L L e e e e e e 70

Outcomes of the tests of Ho in (1.2.1) when A in model (3.3.2) is estimated by OLS 72
( 3.3.2) is estimated by MLE 72

Outcomes of the tests of Hp in (1.2.1 3.4.1) is estimated by OLS 74

Outcomes of the tests of Ho in (1.2.1) when X in model (3.4.1) is estimated by MLE 74

)
Outcomes of the tests of Hp in (1.2.1) when A in model
)

(
(
when A in model (
(
Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.5) when the
sequence h is “divergent”. The reported values have to be compared with the nominal
0.05. . . e 103
Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.5) when the
sequence h is “bounded”. The reported values have to be compared with the nominal
0.05. .« L e s e e 103
Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.15) when the
sequence h is “divergent”. The reported values have to be compared with the nominal
0.05.  « o e e 104
Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.15) when the
sequence h is “bounded”. The reported values have to be compared with the nominal
0.05. .« L e e s e e e e e e e e e e e e 104
Edgeworth-corrected and Imhof’s a-quantiles of the cdf of T in when h is “divergent”.108
Edgeworth-corrected and Imhof’s a-quantiles of the cdf of T' when h is “bounded”. 108
Empirical sizes of the tests of (1.2.1) against a one-sided alternative when A and 3
in (1.1.3) are estimated by OLS. The reported values have to be compared with the
nominal 0.05. . . . . . . ..o e e e 133
Empirical sizes of the tests of (1.2.1) against a one-sided alternative when A\ and 3
in (1.1.3) are estimated by IV. The reported values have to be compared with the
nominal 0.05. . . . . . L. L 0oL e 133
Empirical sizes of the tests of (5.3.1) with R = (0, 1)’ against a one-sided alternative.
A and B in (1.1.3) are estimated by IV and A = 0.1,0.7. The reported values have
to be compared with the nominal 0.05. . . . . . . . . . . . . . .. ... ... 134
Empirical sizes of the tests of (5.3.1) with R = (—1,1) against a one-sided alterna-
tive. A and 8 in (1.1.3) are estimated by IV and A = 0.1,0.7. The reported values
have to be compared with the nominal 0.05. . . . . . . . . . . .. ... ... 135



11

1 Introduction

This chapter provides the background to appreciate the specific contribution of
this thesis to the existing spatial econometric literature and the main theoretical
techniques we will employ. Specifically, in Section 1.1 we discuss some issues that
arise with spatial data, together with a description of spatial autoregressions. In
Section 1.2 we give an account of established first order asymptotic theory for testing
for lack of correlation in spatial autoregressions. In Section 1.3 we report an overview
on Edgeworth expansions and their application to derive improved tests, while in
Section 1.4 we describe the motivation of this thesis, in view of some of the existing
results discussed in Sections 1.2 and 1.3. Finally, in Section 1.5 we introduce some

definitions and assumptions that will be used in Chapters 2-5.

1.1 Spatial Autoregressions

FEconometricians face considerable challenges posed by the possibility of cross-
sectional correlation, with respect to both modelling and statistical inference. Indeed,
starting from the early work by Moran (1950), Cliff and Ord (1968, 1972) and, more
recently, Cressie (1993), just to name a few, a large body of literature known as
Spatial Econometrics has addressed issues entailed by potential correlation across
data recorded at different locations in space. For recent reviews and discussions of
the challenges and progresses in the spatial econometric literature, refer to Robinson
(2008a) and Anselin (2010).

Much of the spatial statistical literature has focused on data recorded on a lattice,
i.e. regularly-spaced observations on a d—dimensional space, where d > 1. In general,
intervals between observations are constant within dimensions, but are allowed to vary
across different dimensions. Some extensions of standard asymptotic theory for the
time series setting (d = 1) to the case d > 1 are possible, as first noted by Whittle
(1954). Indeed, Whittle (1954) demonstrates that, in general, multilateral models have
a “half-plane” type of unilateral moving average representation which extends the well
known Wold representation for time series data, and hence suggests estimates of the
underlying unknown parameters based on an approximation for the Gaussian log-
likelihood function. However, such half-plane representations might contain functions
of the coefficients of the multilateral model that cannot be expressed in closed form.
Furthermore, a serious source of complication arising with lattice data for d > 1 is the
bias of the estimates entailed by the “edge effect”. Techniques to overcome such bias
are developed in Guyon (1982), Dahlhaus and Kiinsh (1987) and Robinson and Vidal
Sanz (2006).

However, observations recorded on a lattice are very uncommon in economics.
For example, in geographical settings there is irregular spacing when observations are

recorded across cities, regions or countries. When the data are recorded at irregularly-
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spaced geographical locations, a generalisation of the established theory for irregularly-
spaced time series is still possible. Specifically, some cases of irregularly-spaced time
series can be described by an underlying continuous time process where spacing is
generated by a point process. When the continuous time process is a first order
stochastic differential equation with constant coefficients and driven by white noise,
consistent and asymptotically normal estimates of the unknown parameters can be
obtained from an approximated Gaussian log-likelihood (see Robinson (1977)). This
framework can in principle be extended to more general models, but estimation and
asymptotic theory become complicated.

In any case, “space” should be more generally intended as a network, which in-
cludes physical/geographical space as a very special case, and in turn correlation
across observations may depend on some very general notion of economic distance
(e.g. differences in household income) that does not necessarily have a geographical
interpretation (see e.g. Conley and Ligon (2002) or Conley and Dupor (2003)). The
economic distance between units (or economic agents) i and j is defined as the dis-
tance between u; and u;, where u; and u; are vectors of characteristics pertaining to
agents ¢ and j, respectively. The distance between u; and «; might be defined in an
Euclidean sense. The aforementioned extensions of the theory for irregularly-spaced
time series to spatial data are unsuitable in case there is no geographical aspect.

Spatial autoregressions (SAR) offer a useful, applicable framework for describing
such data. In SAR models the notion of possible irregular spacing, applied to general
economic distances, is embodied in an n x n weight matrix (n being sample size),
denoted W, which needs to be chosen by the practitioner. Let w;; be the (i, j)—th
element of W,,. Conventionally, w;; = 0 for ¢ = 1,....n, i.e. the spatial interaction of
each unit (or economic agent) with itself is set to zero. Although in principle w;; can
be negative, in most practical applications W,, has non negative entries and is row
normalized, so that elements of each row sum to 1. In view of such normalization, w;;
can be defined in terms of the inverse of an economic distance d;; between units 7 and
J, i.e.

d;j
dis

Wi; = , (1.1.1)

M=

s=1

where d;; > 0 and possibly d;; # dj;, i.e. symmetry of the spatial interaction between
units ¢ and j (or economic agents ¢ and j) is not imposed.

For instance, when the data are recorded across different regions or countries W,
can be chosen according to a contiguity criterion, i.e. w;; = 1 if regions or countries

share a border and w;; = 0 otherwise. Eventually, the resulting matrix can then be
n

the row normalized so that ) w;; = 1 for all i. Alternatively, w;; can be defined as
=1
inverse of the geographical distance (e.g. measured in miles of kilometers) between

locations ¢ and j. In such case, the resulting W, is not row normalized. In the

empirical applications considered in this thesis, we will choose W,, according to the



1. Introduction 13

former specification, i.e. based on a contiguity criterion and then row normalized.
An example of W,, introduced by Case (1991), that has been extensively used to

illustrate theoretical results is

Wy =L@ By, By = ———(Inll. — L), (1.1.2)
m—1

where n = rm, r being the number of districts and m the number of households in
each district. In (1.1.2), ® indicates the Kronecker product, l,,, an m— dimensional
column of ones and I, the r x r identity matrix. Henceforth, we retain the subscript to
either [ or I only when the dimension is other than n, i.e. throughout [ and I denote
an n—dimensional column of ones and the n x n identity matrix. Under (1.1.2), two
households are neighbours if they belong to the same district, and each neighbour is
given the same weight. Since W,, in (1.1.2) is symmetric and block diagonal, (1.1.2)
is a convenient choice computationally and hence it has often been adopted in Monte
Carlo simulations to illustrate theoretical results. Indeed, throughout this thesis we
will employ (1.1.2) for our simulation studies. It should be stressed that although
(1.1.2) has been introduced by Case (1991) in a geographical setting, the block diagonal
structure of (1.1.2) can be used to describe more general situations where each unit
(agent) is equally influenced by units (agents) with similar characteristics and is not
affected by other units (agents) in the economy.

Although the choice of W,, plays a central role in deriving asymptotic theory for
spatial data and is a crucial empirical issue, we should outline that in this thesis we
will deal with tests for spatial independence and most of our results are derived under
the null hypothesis of no spatial correlation. For this reason, our results would be
valid even in case W, is not correctly chosen. However, efficiency of tests is affected
by the choice of W,,.

Let Y,, be an n x 1 vector of observations, X, an n x k matrix of exogenous
regressors of full column rank which might include a column of ones, and ¢, an n x 1
vector of independent and identically distributed (iid) random variables, with mean
zero and unknown variance o2. We assume that, for some unknown scalar A and some

unknown k X 1 vector (3, the data follow a general SAR model, i.e.
Y, = \W,Y, + X,.0 + €n. (1.1.3)

For notational simplicity, in the sequel we drop the n subscript, writinge =¢,, Y =Y,,
X = X,, W = W,, with the same convention for other n—dependent quantities.
Model (1.1.3) is a very parsimonious method of describing spatial dependence, con-
veniently depending only on economic distances rather than actual locations, which
may be unknown or not relevant. For sake of clarity, it should be stressed that often
in the spatial econometric literature “spatial independence” is used as a synonym for

“lack of spatial correlation”, though these concepts are in general identical only under
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Gaussianity. Although a major drawback of SAR models is the ex ante specification of
W, to which parameter estimates are sensitive, (1.1.3) has been widely used in practi-
cal applications. Relevant book-length descriptions of SAR model and its applications
include Anselin (1988) and Arbia (2006). Even more importantly, (1.1.3) represents
a convenient, widely-usable class of alternatives in testing the null hypothesis of lack
of spatial correlation which, if true, considerably simplifies statistical inference. Much
of the results in this thesis (Chapters 2, 3 and 4) are derived under the assumption
that § =0 a priori in (1.1.3), or that X =1, i.e. (1.1.3) only contains an intercept.
Although in this thesis we will only deal with SAR models, we acknowledge that
an interesting alternative approach to describe spatial interactions based on economic
distances has been formulated by Conley (1999). In Conley (1999), economic agents’
observations are modelled as realizations of a random process at points of a Euclidean
space and the distance between two agents in such Euclidean space reflects their
proximity (economic distance). Under mixing conditions and in a random field setting,
Conley (1999) derives asymptotic theory for various estimates. Conley (1999) and
Conley and Molinari (2007) also extend such a framework in case of measurement

error in the economic distance.

1.2 First order statistics

The problem of testing the null hypothesis
Hyp:A=0 (1.2.1)

in (1.1.3), or in a related model where the spatial correlation potentially also affects

the unobservable disturbances, i.e.
Y, = AW 1Yn + X8 +uy  uy = pWhoup + €n, (1.2.2)

Wy, and W, 2 being suitable weight matrices and p a scalar parameter, is a long
lasting issue in the spatial econometric literature.

When the focus of the investigation is both on estimation and testing of A in models
(1.1.3) or (1.2.2) various tests of (1.2.1) based on different estimates of A have been
proposed and widely used by practitioners. Ordinary Least Squares (OLS) estimation
of A and § in (1.1.3) was dismissed without thorough investigation in early work since
WY in (1.1.3) is correlated with € and hence OLS estimates are generally inconsistent.
However, Lee (2002) shows that OLS estimates of A and (3 in (1.1.3) can be consistent
and asymptotically normal for some choices of W. Throughout, the OLS estimates
of A and (8 are denoted by X and B , respectively. Let h = h,, be a snequence bounded

away from zero for all n. For w;; given in (1.1.1) and such that ) d;s is uniformly
s=1



1. Introduction 15

bounded away from zero at rate h, i.e. for all n

Z dis
s=1

0<c < n

where y/n/h = o(1) and ¢; being a generic arbitrarily small constant, Lee (2002) shows

that as n — oo,
VA=, (B=B)) 3 N, Vors), (1.2.3)

d L e . .
— and prime indicating convergence in distribution and transposition, respectively,

/ / -1
Lhﬁzﬁ(um1<EWNW>(mepm> .

n—oon, X'

and

In case h diverges at rate y/n, Lee (2002) shows

~ A~

V(A= (B - B)) S N, Vors), (1.2.4)

where b is an asymptotic bias that vanishes only when A = 0. Such results do not
hold in case h/\/n = o(1). Although t-type of tests of (1.2.1) based on A and 3 are
computationally very simple, the aforementioned strong condition on W restricts their
applicability.

Lee (2002) also shows that in case 8 in (1.1.3) is zero a priori, i.e. when the data
follows a “pure” SAR

Y = AWY +e, (1.2.5)
N Y'W'Y
A= vy (12.6)

is inconsistent and more generally, the estimate of A is inconsistent when (1.1.3) only
includes an intercept. However, in each of these cases, under Hy in (1.2.1), the OLS
estimate of A actually does converge to zero in probability. Although the case A = 0 is
very limited when the interest is estimation, it is a leading one in testing and we will
consider it in detail in Chapter 2. We will also show that when the data are driven
by (1.2.5), under Hy in (1.2.1), the rate of convergence of A might be slower than the
parametric y/n, depending on assumptions on W.

Procedures based on Gaussian maximum likelihood estimates (MLE) for A and
B in (1.1.3) and (1.2.2) have been developed by Cliff and Ord (1975) and broadly
considered. For an exhaustive survey about specification and implementation of tests
of (1.2.1) based on the Gaussian MLE of parameters in (1.1.3) and (1.2.2), refer
to Anselin (1988). Asymptotic properties of MLE and Pseudo-MLE (i.e. estimates
obtained by maximization of a Gaussian log-likelihood function when normality of the
error terms is not assumed) of A, § and ¢ in (1.1.3), denoted \, B, 6 henceforth, and
relevant test statistics have been derived in Lee (2004). Henceforth PMLE indicates
Pseudo-MLE.



1. Introduction 16

The pseudo log-likehood function of (1.1.3) is defined as

I\ B, 0%) = —gln(%r) - glnaz + In(det(S(N))) — %(S(A)Y — XB)(S(\Y — XB),
(1.2.7)

where, for every value of A,
S(A) =1 — AW (1.2.8)

and det(A) denotes the determinant of a generic square matrix A. It should be stressed
that in (1.2.7), A, 8 and o denote any admissible value of the parameters in (1.1.3).
Given \, the PMLE of 8 and o2 are

BN = (X'X)IX'S(\)Y (1.2.9)
and )
() = 5(Y’S(A)’ =B X)(SNY = XB(N), (1.2.10)
respectively. Hence
A =arg max I\, BN, 52(N), (1.2.11)

where A is a compact set included in (—1,1). The PMLE of 3 and o2 are then defined
as B = B(\) and 62 = 52()).
In particular, assuming w;; = O(1/h), h being either divergent or bounded and

such that h/n — 0 as n — oo, Lee (2004) proves that under standard conditions,

V(A =X (B - B)) % N0, Veare), (1.2.12)

where the explicit form of Vpy g is given in Lee (2004) and is not reported here in
order to avoid introducing further unnecessary notation. It should be stressed that
when 5 # 0 and the elements of € are normally distributed, Vparp = Vorg. Although
estimation of A in (1.2.5) can be regarded as a constraint maximization of (1.2.11)
when 5 = 0, Lee (2004) shows that in this case

\/ES\ 4 N0, VB ), (1.2.13)

where VAV denotes the asymptotic variance of y/n/hX in case the data follow
(1.2.5). From (1.2.13) it is clear that the rate of convergence of A to A can be slower
than /n when h is divergent. Test statistics based on X when the data are driven by
(1.2.5) will be the focus of Chapter 3.

Although the MLE (or PMLE, more generally) has been extensively used for both
estimation and testing, it is well known that it is computationally challenging when n
is large (see e.g. Pace and Berry (1997)). In order to reduce the computational burden,
tests of (1.2.1) based on alternative estimates of A have been proposed. Instrumental

Variable (IV) estimates of A, and / have been introduced by Kelejian and Prucha
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(1998) and subsequently improved by Lee (2003).

In particular, Kelejian and Prucha (1998) derive asymptotic properties of IV esti-
mates of parameters in (1.2.2). Although Kelejian and Prucha (1998) show consistency
and asymptotic normality of IV estimates of A and 3, denoted Ary and Bry hence-
forth, in the more general model (1.2.2), we report here only their results pertaining
to (1.1.3). Let Z be a n x (k+1) matrix of instruments. Under standard assumptions,

Kelejian and Prucha (1998) prove

Vi =X By = B)) 5 N(0,Viv), (1.2.14)
where
—1 , , —
E(Y
Viv =o? (lim 1Z’(WE(Y),X)> (lz’m 1Z’Z> (lz’m E ( (Y)W ) Z)
n—oon n—oon n—oon X/

The latter result holds under very weak conditions on W, and more details about those
will be provided in Chapter 5. The “ideal” choice of instruments is Z = (WE(Y), X)
and with such choice Vi = Vorg. Also, with such choice for Z and under normality of
the error terms, Viy = Vyrpg. Kelejian and Prucha (1998) propose to approximate the
“ideal” instrument, which is clearly infeasible, with a subset of the linearly independent
columns of (X, WX, W2X, .....). However, Kelejian and Prucha (1998) do not consider
relative efficiency issues and, in general, their choice of Z is suboptimal.

In turn, Lee (2003), improves the asymptotic efficiency of the Kelejian and Prucha
IV estimator. In a more recent paper, Kelejian et al. (2004) introduce a series-type
IV estimator for model (1.2.2), which is proved to be asymptotically normal, efficient
within the class of IV estimators and computationally simpler than one proposed in
Lee (2003).

We should mention that, although the test of (1.2.1) is generally the main focus,
we might be interested in testing restrictions on 4 in (1.1.3) and (1.2.2). However, IV
estimates cannot be obtained in case § = 0 in (1.1.3) and (1.2.2) and hence tests for
the joint significance of (31, ....0; (B; being the i—th element of ) are not possible in
this setting.

In Chapter 5 we will focus on tests for A and 3 in (1.1.3) based on Arv and B[V?
starting from Kelejian and Prucha (1998) main framework.

On the other hand, when the interest of the practitioner is testing rather than
estimation, a class of tests based on Langrange Multiplier (LM) statistics has received
considerable attention starting from the early contribution by Moran (1950). Such
tests are computationally very convenient as the estimation of A in either model (1.1.3)
or (1.2.2) is not required.

Moran (1950) presents a simple correlation test between neighbours in space based
on a normalized quadratic form in the variables that are being tested, without spec-

ifying the alternative hypothesis. Moran’s result has been applied by Cliff and Ord



1. Introduction 18

(1972, 1981) to test Hp in (1.2.1) in regression models with SAR disturbances, i.e.
Y=XB+u, u=NWu+e. (1.2.15)

(1.2.15) is equivalent to (1.2.2) when A in (1.2.2) is zero a priori, but we separate the
two models to outline clearly whether the parameter that we wish to test is the SAR
coefficient when the disturbances are also potentially correlated (i.e. A in (1.2.2)) or
that of the disturbance term of a linear regression (i.e. A in (1.2.15)). In particular,
assuming normality of the components of € in (1.2.15), Cliff and Ord (1972) show
that Moran’s statistic under Hp in (1.2.1) has a x3 asymptotic distribution . Cliff
and Ord’s (1972) normality assumption has been relaxed by Sen (1976), who derives
the x? asymptotic distribution of Moran’s test for Hy in (1.2.1) when the data follow
(1.2.15) assuming that the components of € are iid and under some specific moment
conditions. Though Moran test statistic (and its aforementioned extensions) was not
originally derived in a ML framework, Burridge (1980) shows it is indeed equivalent
to a LM statistic for spatially uncorrelated disturbances. Details of LM statistics to
test Hy in (1.2.1) will be given below.

Although this is not explicitly considered in this thesis, Kelejian and Robinson
(1992) derive an alternative test for spatial independence against correlation of un-
specified form in the disturbance term of regression models (possibly nonlinear) based
on regression residuals. Kelejian and Robinson (1992) do not refer explicitly to a
weight matrix and the ordering of observations is based on first order contiguity. Sim-
ilarly to Moran’s, Kelejian and Robinson test has a x? limiting distribution under
(1.2.1) and its asymptotic properties have been derived without assuming normality
of the error terms. However, the small sample performance of Kelejian and Robinson
test is quite poor, as shown in a number of Monte Carlo studies (e.g. Anselin and
Florax (1995) and Kelejian and Robinson (1998)).

Anselin (2001) provides an exhaustive survey of derivation and implementation
issues of Moran/LM tests of (1.2.1) when the data follow either (1.1.3) or (1.2.2).
As regarding asymptotic theory of Moran/LM test statistics, Kelejian and Prucha
(2001) derive a central limit theorem for quadratic forms in random variables which
allows to establish the asymptotic distribution of LM statistics for SAR models under
Hp in (1.2.1). This result is general enough to accommodate non linearity and the
possibility of heteroskedastic error terms. Also, Pinske (1999, 2004) outlines a set of
conditions for asymptotic normality (or asymptotic x?) of several Moran/LM-type of
test statistics, which include LM statistics for testing (1.2.1) in (1.1.3), (1.2.2) and
(1.2.15).

We briefly outline here some details on the construction of a version of the LM
statistic to test Hp in (1.1.3), its modification to either (1.2.2) or (1.2.15) is straight-
forward. Given (1.2.7), a version of the LM statistic to test (1.2.1) in model (1.1.3) is
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defined as

e (2005, Y (Cp (PR LYT g

From (1.2.7), by standard partial differentiation,

Bl(A, B, 02) WY
— lH =
oA €'é
where é = Y — X" and " is the OLS estimate of 8 in (1.1.3) under Hy (“restricted”

model, hence the superscript “r”) in (1.2.1) . Similarly,

WX3"YPWXS")

€'e

9

821(), B, o2
B ((8)\620)|H0) — (W) + tr(WW) 4+ 0
where

P=1-XX'X)"'x (1.2.17)

and ¢r indicates the trace operator. The derivation of (1.2.16) is based on a Gaussian
likelihood but the same first order limit distribution obtains more generally. Indeed,

as anticipated, under suitable conditions we have
d 2
LM %2 (1.2.18)

Tests of (1.2.1) based on (1.2.16) (or its appropriate modification) for either (1.2.5)
or (1.2.15) will be considered in detail in Chapter 4.

More generally, Robinson (2008b) derives the asymptotic distribution under the
null hypothesis of lack of correlation of a class of residual-based test statistics, which
include LM for either (1.1.3) or (1.2.2) as special cases. As expected, by considering
the asymptotic distribution of such residual-based class of statistics under a local al-
ternative, LM tests are motivated because they are locally optimal within this class.
Finite sample improvements of test statistics under the null hypothesis of lack of cor-
relation are also suggested. Robinson (2008b) results will be presented and discussed
in detail in Chapter 4.

1.3 Edgeworth expansions

In Section 1.2 we mentioned which test statistics will be considered in Chapters
2-5. However, before illustrating more precisely the contribution of this thesis, in this
section we give a brief account of existing literature on Edgeworth expansions, which
are indeed the main methodological instruments for the derivation of our results.
The literature on Edgeworth expansions and their applications in econometric and
statistical theory is very broad and here we only aim to provide some of the main

references together with a brief description of existing results that were useful to



1. Introduction 20

develop this project, although we acknowledge that this is not a complete survey.

The idea of (formally) expanding distribution functions was introduced by Edge-
worth (1896, 1905) for sums of iid random variables. For useful and relatively simple
surveys which deal with the derivation of Edgeworth expansions, refer to Rothenberg
(1984) and Barndorff-Nielsen and Cox (1989, Chapter 4). Here, we illustrate briefly
the derivation of the Edgeworth expansion for the cumulative distribution function
(cdf) of the standardized sample mean of iid random variables and how such deriva-
tion can be extended to the case of quadratic statistics in normal random variables,
which are the main focus of this thesis.

Specifically, let Uy, Us, .....U, be a sample of iid random variables with mean m = 0

and variance Var(U;) = 1. Tt is well known that the sample mean
— — 1
= U = —

is a \/n—consistent estimate of m. For notational simplicity, let S, = S = /nU. By
the central limit theorem,
S % N(0,1).

Equivalently, the latter result can be expressed in terms of the characteristic function
of S, i.e.
B (ez’tS) . 67t2/2

as n — oo, where /2 is the characteristic function of N(0,1) and i = /—1.

However, we might be interested in improving upon the approximation offered by
the central limit theorem. Let x, be the p—th cumulant of U; (throughout this thesis,
kp will denote the p—th cumulant of various quantities and the reader will be reminded
of this in each specific case in order to avoid notational confusion). It is known that
the cumulant generating function of U;, ¢y, (t), can be written as an infinite series in
Kp, 1.€.

oy =34

p=1 P!

Since k1 = m = 0 and kg = Var(U;) = 1, the latter expression becomes

Y, (1) t2 (1.3.1)
From (1.3.1), the cumulant generating function of S, ¥g(t), can be derived as
1 2. (it)P
Ys(t) = nyy, (t/v/n) = —=t* + Z (27) Kp- (1.3.2)
2 p:3n2 1p!



1. Introduction 21

From (1.3.2), it is clear that the normalized cumulants of S,
n_%—i_l/ﬁip for p > 3,

are decreasing in p. Hence, from (1.3.2),

it)P
_%t2+z (it) Kp

E( ztS) _ ews _ =
2
L2 L (it)? 1 [ (it)?
1+ pt+ = Kp + ...

( pZZS £-1 pl 2 ;nglp!

1 (it)3 1 [ (it)* (i) 5
< \/ﬁ 6 +* (24:‘€4+ 72 /€3 4+ .......

1
( 1(it) + Rg(zt) ....... >, (1.3.3)

where 5
t
Ra(it) = U,
6
(it)* (it)° o
t
Roit) = S mra+ = hs
and so on.
Since
g2t = /eimd@(ac), (1.3.4)
R

®(x) being the standard normal cdf, (1.3.3) suggests the “inverse” expansion

Pr(S <z)=o(z)+ \}ﬁPl(x) + %Pg(x) + ... (1.3.5)

where Pj(x) denotes a function whose Fourier-Stieltjes transform is Rj(it)e*#/ 2 ie
[eary@) = Bytine 2
R

By repeated integration by parts of (1.3.4),

P;(z) = Rj(—d/dz)d(z), (1.3.6)

where d/dz denotes the differential operator and R;(d/dx) should be interpreted as
a polynomial in d/dz. For notational compactness, throughout we denote ¢(¥)(x) the
i—th derivative of a function g. From (1.3.6), (1.3.5) becomes

Pr(S < z) = d(z) - \/15(1;@@(3)(3:) +2 (1@@( () + 712 §@<6>(x)> b (13.7)
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The latter is called Edgeworth expansion of the cdf of S.

Generally, (1.3.7) is truncated after a certain number of terms, e.g.

11 1 /1 1 1
e male) - @ L (L @iy s L 250 L
Pr(S <z)=o(x) \/56113@ (z) + - <24I€4CI) (x) + 72/<L3CI> (a:)) +0 <n3/2> ,
(1.3.8)

where the order of the remainder is conjectured from the rate and the parity of the
coefficients. Such argument is purely formal. It is possible to prove validity of (1.3.8)
by deriving the order of the remainder uniformly for all z. Starting from the work
developed by Cramér (1946), Sargan (1976) and Bhattacharya and Ghosh (1978),
among others, provided rigorous theory for validity of formal Edgeworth expansions. A
seminal book-length account of Edgeworth expansions and rigorous results for validity
issues is Bhattacharya and Rao (1976). In this thesis, we rely on formal Edgeworth
expansions and validity proofs are left for future work.

As anticipated at the beginning of this section, this thesis will mainly deal with
quadratic statistics in normal random variables and hence a short digression on how
to extend the derivation of the Edgeworth expansion described above for the cdf of S
to quadratic forms in normal random variables is worthwhile here. The characteristic
function of a quadratic form € C'e, where the elements of € are iid, normally distributed
with mean zero and variance o2 and C is a n x n symmetric matrix, can be analytically

evaluated by Gaussian integration as

! 1 _Ee e
E(ezte Ce) _ (271_0_2)71/2/6 s eztf Cédf
R

- ®;@W/f“ﬁ%ﬁmzwwemm)w. (1.3.9)
R

From (1.3.9), the cumulant generating function and hence the cumulants of €'Ce can
be derived. Once such cumulants are known, after suitable algebraical manipulation,
we can write an expansion for the characteristic function of a standardized version
of €Ce, similar to one given in (1.3.3), and hence derive the corresponding Edge-
worth expansion for the cdf. The derivation of Edgeworth expansions for the cdf of
quadratic forms in normal random variables will be discussed thoroughly in the proofs
of Theorems of Chapters 2-5.

It is clear that (1.3.8) (or a similar expansion for the statistic of interest) provides
a more accurate approximation of the cdf of S (or of the cdf of the statistic of interest)
than one offered by the central limit theorem. Also, (1.3.8) can be used to derive a
better approximation for the quantiles of the cdf of S than one based on the quantiles
of the standard normal. Alternatively, starting from (1.3.8), it is possible to derive a
transformed statistic g(.S) so that its cdf is closer to the normal than that of S. Such
results are very useful to derive improved testing procedures, since the former gives

more accurate critical values than ones commonly used in first order theory, while



1. Introduction 23

the latter provides improved test statistics under the null hypothesis. Obviously,
these results extend to the case of statistics other than S and the derivation of such
Edgeworth-corrected critical values and Edgeworth-corrected test statistics will be
shown and discussed in detail in this thesis in case of quadratic test statistics in
normal random variables.

Several authors have applied Edgeworth expansions to derive refined test statistics
in several context, starting from the work on the inverse of Edgeworth expansions
by Cornish and Fisher (1937, 1960). Among these, Konishi et al (1988) derive the
Edgeworth expansion and Edgeworth-corrected quantiles for the cdf of quadratic forms
in normal random variables. Taniguchi (1986, 1988, 1991a, 1991b), derives higher
order asymptotic properties of test statistics for time series data. Other relevant
examples of derivation of refined test statistics in time series contexts include Magee
(1989) and Kakizawa (1999). More specifically, Magee (1989) develops Edgeworth-
corrected tests for linear restrictions when the data follow a linear regression with
serially correlated disturbances. Also, Kakizawa (1999), starting from the earlier
work by Ochi (1983), derives a valid Edgeworth expansion for the cdf of two different
estimates of the correlation parameter in first order autoregressions and hence provides
Edgeworth-corrected confidence intervals. In a different context, Phillips and Park
(1988) derive Edgeworth-corrected Wald tests of nonlinar restrictions.

Before concluding this account on Edgeworth expansions, we should mention that
Hall (1992) offers a very useful monograph which gives a view of the theory on Edge-
worth expansions and Edgeworth-corrected tests in order to explain the performance
of bootstrap methods. Indeed, it is well established, starting from the work by Singh
(1981), that the bootstrap is a technique that can be used instead of the analytical
derivation of Edgeworth expansions to improve upon the approximation offered by the
central limit theorem. Indeed, Singh (1981) shows that the bootstrap automatically
corrects for the first term after the normal cdf in an Edgeworth expansion (e.g. the
second term at the RHS of (1.3.8)).

Although we do not aim to show theoretically the equivalence between the first
Edgeworth correction and the bootstrap, in this thesis we compare by Monte Carlo
the practical performance of Edgeworth corrections with bootstrap-based procedures
and more specific references to relevant bootstrap literature will be given in Chapters
2-5.

1.4 Finite sample issues and contribution of this thesis

In Section 1.2 we provided an account of existing tests for (1.2.1) in SAR models,
while in Section 1.3 we introduced the Edgeworth expansions and briefly discussed how
they can be used to derive improved tests. Indeed, the main scope of this thesis is to
derive refined tests for (1.2.1) in SAR models based on formal Edgeworth expansions.

Specifically, in Chapters 2 and 3 we will derive Edgeworth-corrected tests of (1.2.1)
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in (1.2.5) based on A and A, respectively. The refined tests derived in Chapters 2 and
3 will also be applied in two small empirical examples. In Chapter 4 we will derive
improved LM tests of (1.2.1) in (1.2.5) and (1.2.15). In Chapter 5 we will derive
Edgeworth-corrected tests for (1.2.1) in (1.1.3) based on A and A7y. Although testing
for spatial independence is the main focus of this work, in Chapter 5 improved tests
for linear restrictions on 3 in (1.1.3) based on Sy are also derived. Small sample
performance of Edgeworth-corrected tests are assessed by Monte Carlo and compared
with bootstrap-based procedures.

This thesis is motivated by the fact that although the literature on testing for
spatial independence is very broad, analytical derivation of finite sample corrections
for such tests has received little attention, other than the aforementioned contribu-
tion by Robinson (2008b). This issue is of particular concern in spatial econometrics
since datasets are usually small/moderately-sized, as very often the practitioner is
interested in estimating and testing spatial coefficients of SAR models when data are
recorded across cities, regions of countries. For instance, the two empirical examples
considered in this thesis deal with spatial correlation of variables recorded across 43
European countries and 103 Italian regions, respectively (hence n = 43 and n = 103,
respectively). When n is small/moderately-sized, testing procedures based on the
normal (or x?) approximation for the distribution of test statistics might be seriously
unreliable.

Together with the likely limited sample size, another source of concern for the
reliability of standard testing procedures in SAR models is given by the possibly slow
rate of convergence of A and A when the data follow (1.2.5), as outlined in Section
1.2. When this is the case, the cdf of statistics based on such estimates is poorly
approximated by a normal and finite sample corrections are indeed crucial in order
to obtain reliable tests. This issue provide even stronger motivation for the new tests
presented in Chapters 2 and 3.

Although the spatial econometrics literature on analytical finite sample corrections
is very limited, small sample performance of estimates of the parameters in (1.1.3),
(1.2.2) and (1.2.15) and corresponding tests have been assessed quite extensively by
Monte Carlo studies, see e.g. Anselin and Rey (1991), Anselin and Florax (1995),
Das et al. (2003) and, more recently, Egger et al. (2009). More specifically, Anselin
and Rey (1991) and Anselin and Florax (1995) report and discuss broad sets of Monte
Carlo results to evaluate the practical performances of various existing tests for spatial
independence. Das et al. (2003) perform a Monte Carlo study to assess the finite
sample behaviour of IV-type of estimates of parameters in (1.2.2), while Egger et al.
(2009) propose a similar analysis for Wald-type of tests of (1.2.1) in SAR models based
on MLE and Generalized Method of Moments estimates.

Before concluding this section, we should acknowledge that an analytical procedure
that attempts to derive Edgeworth-based corrections for the cdf of X in (1.2.5) has
been derived by Bao and Ullah (2007). Using a stochastic expansion of the score
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function, they derive the second order bias and mean squared error of X in (1.2.5).
However, Bao and Ullah (2007) do not outline the possibly slow rate of convergence
of A in (1.2.5) and do not consider improved tests.

1.5 Some definitions and Assumptions

We first define some notation that will be used throughout and has not been

introduced previously.

i) ¢(z) denotes the the probability density function (pdf) of a standard normal

random variable.

ii) 1(.) indicates the indicator function, i.e. 1(A C B) =1if A C B and 1(A C
B) = 0 otherwise.

ili) H;(z) denotes the j—th Hermite polynomial, i.e.

P22 dj 2
Hj(z) = (—1)’e /256 2, (1.5.1)

e.g.
Hi(z) =z, Ho(x)=2°-1 and Hs(z)=2>—3z.

iv) ~ denotes an exact rate, i.e. a ~ b means that |a/b| converges to a positive,

finite limit.

v) 1ni(A), i = 1,....q denotes the eigenvalues of a generic ¢ X ¢ matrix A.

vi)
7A) = mas (A} (152)
vii)
n(4) = min {|n;(4)[}.
viii) [|.|| indicates the spectral norm, i.e. for any p x ¢ matrix B
1B]I* = 7(B'B).

ix) ||A]|, denotes the maximum row sum matrix norm, i.e.

q
|A]l» = m?XZ |ai;|,
j=1

a;j being the (i, j)th element of A.
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x) ||A]lc indicates the maximum column sum matrix norm, i.e.

q
| A[le = max ) _ |ai;| .
J =
=1

We introduce some assumptions, which are common to Chapters 2-5, while other

relevant model-specific conditions are left to each chapter.

Assumption 1 The elements of € are independent and identically distributed

normal random variables with mean zero and unknown variance o2.

Assumption 2
(1) For all n, Wi = 0, E;L:lwzj = 17 7= 1,...’7’1, 5 and HWH =1.

(ii) For all n, W is uniformly bounded in row and column sums in absolute value,
i.e.
Wl + W]l < K,

where K is a finite generic constant.

(ili) Uniformly in i,j = 1,...,n, wyj = O(1/h), where h = hy, is bounded away from

zero for all n and h/n — 0 as n — oo.

As is common in much higher order literature, Gaussianity is assumed in this
derivation. Assumption 1 can be relaxed at expense of considerable extra complica-
tions in the derivation of Edgeworth expansions. We should stress that Assumption
1 is not necessary for (1.2.3), (1.2.4), (1.2.12), (1.2.13), (1.2.14) and (1.2.18) which
indeed hold more generally. However, in this thesis we are interested in deriving
statistics with better finite-sample properties and we can only justify these under the
precise distributional assumption.

The normalizations in Assumption 2(i) are not strictly necessary for the proofs
of the results presented in Chapters 1-4, but they play a role in constructing the
likelihood. Furthermore, Assumption 2(i) or some other normalization is required for
identification when A # 0. Assumption 2(i) requires that W is row normalized so that
the elements in each row sum to one. It also imposes that the maximum eigenvalue
of W'W equals one. It should be stressed that actually |[W|| = 1 would be sufficient
for identification purposes and hence row normalization seems somehow redundant.
However, the latter entails significant algebraical simplifications in the derivation of
some of the results presented in this thesis (see e.g. Section 2.3) and is therefore
retained. In general, 7(W) < ||[W|| (see Horn and Johnson (1985), page 297) and,
by Assumption 2(i), ||IW|| = 1. Since 1 is an eigenvalue of W when the latter is row

normalized, we can conclude (W) = 1.
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Assumption 2(ii) is standard. It has been introduced by Kelejian and Prucha
(1998) to keep the spatial correlation to a manageable degree. Assumption 2(ii) plays
an important role both in the proofs of the first order theory results, i.e. (1.2.3),
(1.2.4), (1.2.12), (1.2.13), (1.2.14) and (1.2.18) and in the proofs of the results of this
thesis. It is also worth mentioning that row normalization and non negative w;;, for
all i,7 =1,....,n, implies ||W]||, = 1.

Assumption 2(iii) formalises the definition and some general conditions on the se-
quence h already introduced in Section (1.2). Indeed, Assumption 2(iii) is the same
as one in Lee (2004). As already outlined in Section 1.2, h can be bounded or di-
vergent. A condition on w;; is commonly required in asymptotic theory for statistics
based on SAR models. Assumption 2(iii) will be suitably strengthened in Chapter 5,
consistently with one in Lee (2002), as discussed in Section 1.2.

We should notice that W in (1.1.2) can satisfy Assumption 2. In this case h =
m — 1. It is straightforward to verify that Assumptions 2(i)-(ii) are satisfied for this
choice of W, whether h is bounded or divergent (that is, whether the number of
households in each unit diverges or is bounded as n increases). Assumption 2(iii)

holds provided that » — oo, m being either divergent or bounded.



28

2 Improved OLS Test Statistics
for Pure SAR

Throughout most of this chapter we assume that for some scalar A € (—1,1) the
data follow (1.2.5), which is model (1.1.3) when S = 0 a priori, i.e. none of the
exogenous regressors is relevant, and we are interested in testing (1.2.1) when A is
estimated by OLS. An extension of the proposed procedures to the pure SAR with
intercept term is also considered.

As discussed in Chapter 1, it is known (Lee (2002)) that A in model (1.2.5) is
inconsistent when \ # 0. However, it converges to zero in probability under (1.2.1)
and although this case is limited when the interest is estimation, it is relevant in testing
and should be investigated further. As anticipated in Chapter 1, in this chapter we
show that, under Hy in (1.2.1), the rate of convergence of A might be slower than the
parametric y/n, depending on assumptions on W.

When the rate of convergence of X is slower than V/n, the cdf of the t-statistic
based on A under (1.2.1) is not accurately approximated by a normal. Our new tests
are based on refined t-statistics, whose cdf are closer to the normal than those of
the standard statistics and therefore entail better approximations. Alternatively, we
show that inference based on standard statistics can be improved by considering more
accurate approximations for critical values than ones of the normal cdf.

This chapter is organised as follows. In Sections 2.1 and 2.2 we present refined tests
for (1.2.1) against one-sided and two-sided alternatives, respectively. In Section 2.3,
we show that the results of Sections 2.1 and 2.2 can be easily extended when model
(1.2.5) contains a location parameter. In Section 2.4 we present some results for the
power of the test of (1.2.1) against a local alternative. In Section 2.5 we report and
discuss the results of some Monte Carlo simulations of the tests presented in Sections

2.1-2.4. Relevant proofs are left to appendices.

2.1 Test against a one-sided alternative: Edgeworth-corrected criti-
cal values and corrected statistic

We suppose that model (1.2.5) holds and we are interested in testing (1.2.1) against
a one-sided alternative
Hi:A>0 (<0). (2.1.1)

As previously mentioned, \ in (1.2.6) converges in probability to zero under Hy, as
shown by a straightforward modification of Lemma 2.3 reported in the Appendix.

Let Assumptions 1-2 hold and in addition:
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Assumption 3 The limits

h h h
lim —tr(W'W),  lim —tr(WW'W),  lim —tr(W'W)?),

n—oon, n—oon, n—oon,

h h
lim —tr(W?),  lim —tr(W?) (2.1.2)

n—oon, n—oon,

are non-zero.

Under Assumption 2 the limits displayed in (2.1.2) exist and are finite by Lemma
2.1. Thus, the content of Assumption 3 is that such limits are also non-zero. Let ¢ be

any finite real number.

Theorem 2.1 Let model (1.2.5) and Assumptions 1-3 hold. The cdf of A\ under Hy
in (1.2.1) admits the third order formal Edgeworth expansion

kS r / 2
Pr(a < JHo) = 9(0)+26C°0(0) ~ Q) ~ (i - ) (0

2 45 (2 K§, 94 Kq - (4 h\*?
+ 207¢10 () = oW () + e (¢) + O () ,

4! n
(2.1.3)
where
tr(W'W) tr(WW'W)
a= , b= , (2.1.4)
(tr(W'W + W?2))1/2 (tr(W'W + W2)1/2tr(W'W)
3 1A 2
S ~ 2tr(W?) + 6tr(W'W?) (2.1.5)
(tr(W'W + W2))3/2
and
o Btr(WHh) 4 24tr(W'W3) 4 12tr(WW')?) + 6tr(W2W'2) (2.16)

1 (tr(W'W + W?2))2

The proof of Theorem 2.1 is in the Appendix.

Under Assumption 3, as n — 00
, ﬁ 1/2 tr((W’W)2) ﬁ . ﬁ 1/2 . ﬁ
n) 0 w2 w3 M
and therefore

c 1/2
20¢*9(¢) — 5 @V(C) ~ (h) ,

C(tr(WW)?) o) s 2 dg(2) RS, 2 (1) RS - ) h
<(tr(W’W))2 66)<¢<C>+2b<¢> (Q) = bt (Q) + e ~ .



2. Improved OLS Test Statistics for Pure SAR 30

Since a ~ (n/h)'/? from Assumption 3, when the sequence h is divergent the rate of
convergence of Pr(al < ¢|Hy) to the standard normal cdf is obviously slower than
the usual y/n. It must be stressed that the expansion in (2.1.3) is formal and hence
the order of the remainder can only be conjectured by the rate of the coefficients.

As anticipated in Chapter 1, from the expansion (2.1.3) Edgeworth-corrected crit-
ical values can be obtained. We denote w, and z, the a—quantiles of the null statistic
aX and the standard normal cdf, respectively. By inversion of (2.1.3) we can obtain

an infinite series for w,, i.e.

Wo = 2o + P1(2a) + P2(20) + -oos) (2.1.7)

1/2 and h/n, respectively.

where pi(zq) and p2(z,) are polynomials of orders (h/n)
Both p1(za) and pa(za) can be determined using the identity a = Pr(al < wa|Ho)
and the asymptotic expansion given in Theorem 2.1. Even though the procedure can
be extended to higher orders, for algebraic simplicity we focus on the second order
Edgeworth correction and therefore only p;(z4) has to be determined.

For convenience, we report the second order Edgeworth expansion

Pr(ad < C[Ho) = B(C) +20¢%6(¢) — B8 () + 0 (h> S (219

n

From (2.1.8) and the property (derived from (1.5.1))
(—d/dzy®(x) = —H; 1 (2)(), (2.1.9)
we have

o = Pr(aA < wal o) = ®(wa) — (52 Ho(uwa) — 20u)o(wa) + O (Z) .

Moreover, expanding w, according to (2.1.7) and dropping negligible terms,

a = Pr(a) < wa|Ho)

— B(aa) + 1)) — (5 (i) — 222)6z0) + O (1)

K3

51 112(2a) = 2023)¢(2a) + O (Z) : (2.1.10)

= a+pi(2a)P(za) — (

where the second equality follows by Taylor expansion of ®(w,) around z,. The last
displayed identity holds up to order O(h/n) when

%Hg(za) — 2b22

o

P1(2a) =
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Hence (2.1.7) becomes
K 9 h
We, :za—i—?Hg(za)—sza—l—O — . (2.1.11)
! n

The size of the test of (1.2.1) obtained with the usual approximation of w,, by zq,
that is
Pr(a) > z4|Hy), (2.1.12)

can be compared with the one obtained using the Edgeworth-corrected quantile as

given in (2.1.11), i.e.

C
Pr(ad > zo + %Hg(za) — 2b22| Hp). (2.1.13)

1/2 while it is reduced

When z, is used to approximate w,, the error has order (h/n)
to (h/n) when the Edgeworth-corrected critical value is used.

Rather than corrected critical values, an Edgeworth-corrected test statistic can be
derived. By (2.1.9) and since H2(¢) = (2 — 1, (2.1.8) can be written as

Pr(ak < ([Ho) = ®(¢ + 2b¢% — Z—%(CQ ~1)+0 (Z) .

When the transformation

KS K$ K$
v(Q) = (426 = H(E -1 =+ (20— )+ 57
is monotonic, we can write
N C N C h
Pr(al + (2b — %)(a)\)2 + % <) =d()+0 <n>

and make inference on A based on the corrected statistic v(a)). The function v(¢) is
strictly increasing when ¢ > —1/(2(2b — k§/3!)), however the latter does not hold in
general and therefore a cubic transformation that does not affect the remainder but
such that the resulting function is strictly increasing over the whole domain should
be considered. A suitable transformation is in Hall (1992) or, in a more general case,
Yanagihara et al (2005):

1 kS \ 2
SO =v(O+QO),  wih Q@)= (2-5) ¢

Indeed, it can be shown (Yanagihara et al (2005)) that for a statistic 7' that admits

the general expansion

Pr(T < z)=®(z) + p1(z)p(z) + O <> ,
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where pi(z) ~ /h/n, the transformation

2
g(z) =x+pi(x) + iQ(x) with  Q(z) = / (dcipl(x)) dz (2.1.14)

is strictly increasing and does not affect higher order terms, i.e.

Pr(g(T) < z) = ®(2) + O <Z> |

It is straightforward to verify that in the present case the function g({) is strictly
increasing for every (, its first derivative being (1 + (2b — (k§/3!)¢))%.
The size of the test of (1.2.1) based on such corrected statistic,

Pr(g(a)) > z4|Hy), (2.1.15)

can be compared with the standard (2.1.12). As previously mentioned, the error
when the standard statistic is used has order /h/n, while it is reduced to h/n when

considering the corrected variant.

2.2 Test against a two-sided alternative: Edgeworth-corrected criti-
cal values and corrected statistic

In Section 2.1 we focused on testing (1.2.1) against (2.1.1). However, in some
circumstances the practitioner might not have a prior conjecture about the sign of A
in (1.2.5) and a test of (1.2.1) against a two-sided alternative may be more suitable.

In this section we propose refined tests for (1.2.1) against a two-sided alternative
Hy:\#0. (2.2.1)
From Theorem 2.1, (2.1.9) and
A=) =0(¢), 2P (=) =-0P((), e¥(=()=2P(), oW (-()=-2W(0),
we obtain
Pr(laA| < ¢[Ho) = Pr(ad <¢) - Pr(ah < —()

T ! §
- @(g)—@<—<>—2(m

c c 2
_ ol Ri () h
23b§® (C)—|—24!<I> (C)+O<<n>>

- 6b2) Go(0) + 42O (Q)

r((WW)?) 652> ¢S — 4BRCHL (C)

= 20(()—1+{-2 <(tr(W W)

KS KS R\ 2
2 Ey(0) - My (0)0(0) + 0 ((n) ) . (2.2.2)
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Under Assumption 3 the terms in braces of the last displayed expansion have order
h/n, while, as previously mentioned, the order of the remainder is conjectured by the
rate of the coefficients and the parity of the expansion.

As discussed in Section 2.1, Edgeworth-corrected critical values and corrected null
statistics can be derived from (2.2.2). Let g, be the a—quantile of the null statistic
laX|. From (2.2.2),

a = Pr(la)| < qu|Hy)

r 12 2
— 20(g) —1-2 (t (WW)) _ 6b?> 26(da) — 45qA Hy (g0)6(g0)

(tr(W'W))

n

KS K hy
+ 250002 Hy(40)9(4n) — 2 H(0)0laa) + O <<> )

and therefore

a r(W'W)?
s = o)~ (G — ) dolan) - 2P0k an)o(an)
¢ KC 2
+ ’?bqu3<qa>¢<qa>—5H3<qa>¢<qa>+0<<f;) ) (2:23)

Correspondingly, an infinite series for g, in terms of z(441)/2 can be written as

o = Zep1 +p1(zaT+1) +0 (<h> 2) . (2.2.4)

n

Similarly to the case presented in Section 2.1, the size of the test of (1.2.1) against a
two-sided alternative when g, is approximated by 2(q1)/2 can be compared with that
obtained when ¢, is approximated by the Edgeworth-corrected quantity z(q11)/2 +
P1(2(at1)/2). The error of the latter approximation is reduced to O((h/n)?). The
polynomial p1(2(q+1)/2) can be determined by substituting (2.2.4) into (2.2.3) and
dropping negligible terms, i.e.

a+1 )?)
5 = P(atn/e +P1(2a41)2)) — ((tr(W’W))Z - 652) Zat1)/28(2(a+1)/2)

22622, 4 1) /0 H3(2(a41)/2) 0 (2(a41)2)

_ 2()22?&-1—1)/2}]1(Z(a+1)/2)¢(2(a+1)/2) +
KS b
= 1 3(2at1)/2)0(3as1)2) + O (<n> ) _

Hence, by Taylor expansion,

a+1
2

= @(2(at1)/2) + P19(2(a41)2) — (W - 6b2> 2oty 29(Z(ar1)2)
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K;C

— 20200 11 o 1 (Z(ar1)2) B (Z(at1yj2) + 3352(2&+1)/2H3(Z(a+1)/2)¢(z(a+1)/z)

KS N
_ ﬁH3(Z(a+1)/2)¢(Z(a+1)/2) +0 ((n> > '

The last displayed identity holds up to order O(h/n)?

r((
b1 ( (a+1) /2 ( (W/W 6b2 Z(a+1 /2 + 2b Z(a+1)/2H1( (a+1)/2)

l‘i
3 020ty M3 (201 2) + 1 Ha (2t 2)- (2.2.5)

As discussed in Section 2.1, a corrected statistic under Hy can also be derived from
(2.2.2). Indeed, (2.2.2) can be written as

N B tr(W'W)?) K$ K§
Prad <0 = 20 (¢~ (TR - 02 ) ¢ - 220 Q) + S0 Ha(0) - o))

2
140 ((h) ) .
n
By a straightforward modification of the procedure described in Section 2.1 (Yanagi-
hara et al (2005)), we obtain

2
Pr(v(la)]) < ¢|Hy) = 2@(¢) — 1+ O (<Z> ) :

where

2 ¢
v(z) =2 — <(tr(EWW§)g 6b2> 2% — 2022 Hy (z) + %beHg( ) — IH?,( z). (2.2.6)
The error when the distribution of the corrected statistic under Hy is approximated by
the standard normal is reduced to O((h/n)?). As pointed out in Section 2.1, the latter
result relies on the monotonicity (at least local) of v(.). Because of the cumbersome
functional form of the correction terms, in this case it is algebraically difficult to obtain
the cubic transformation given in (2.1.14). Hence, we rely on some numerical work to
assess whether v(.) is indeed locally increasing and, eventually, implement numerically

the cubic transformation in (2.1.14).

2.3 Corrected critical values and corrected statistic for pure SAR

with a location parameter

In Sections 2.1 and 2.2 we considered model (1.2.5), which is a particular case of
(1.1.3) where § = 0 a priori. In this section we extend the results derived in Section
2.1 to model

Y = pul + AWY +e, (2.3.1)
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where p denotes a scalar parameter. For simplicity we focus on one-sided test, but
extensions of the results derived in Section 2.2 are also straightforward, at expense of
extra algebraical burden.

Specifically, we obtain

Theorem 2.2 Suppose that model (2.3.1) and Assumptions 1-3 hold. The cdf ofj\

under Hy in (1.2.1) admits the second order formal Edgeworth expansion

1
(tr(W2 4+ W'W))1/2
h

_ %%@(3)(0 +0 (n) 7 (2.3.2)

Pr(ad < C[H)) = @(C)+ ( T 2b<2> 6(0)

where a, b and k§ have been defined in (2.1.4) and (2.1.5).
The proof of Theorem 2.2 is in the Appendix A.

From (2.3.2) corrected critical values and corrected statistics under Hy can be
obtained. The derivation is identical to one presented in Section 2.1 and is therefore
omitted. Let w!, be the true a—quantile of the cdf of aX under Hy. From (2.3.2),

1 KS h
l 2 3
=z4 — + 2b 4+ —=Ho(zq)+0O|—].

l

)

O((h/n)'/?), while it is reduced to O(h/n) when the Edgeworth-corrected critical

value is used.

Hence, as previously discussed, when z, is used to approximate w,, the error is

Similarly, the corrected statistic under Hy can be derived from (2.3.2). As dis-
cussed in Section 2.1, the transformation defined in (2.1.14) is strictly increasing and
constructed so that the error obtained by approximating the cdf of the null trans-
formed statistic with a normal is reduced to order h/n. In this case, from (2.3.2),
(2.1.14) becomes

1 g 1 g
glx) =2+ +2bx2—@(a:2—1)+7 <2b—l€3:1:3>.

(tr(W2 + W'IW))1/2 3l 3 3!

2.4 Test against a local alternative

In this section we focus on testing (1.2.1) in model (1.2.5) against a local alternative

hypothesis

B\ 1/2
H, :)\n:c<> , ¢>0 (<0). (2.4.1)

n

Although we previously specified that the subscript n would be omitted, we retain it

in this case to stress the shrinking nature of the class of alternatives. For algebraic
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simplicity, the results in this section are derived assuming that W is symmetric. The
extension to the case of non symmetric W is trivial, but algebraically more cumber-
some. Without loss of generality, the following results are developed for ¢ > 0 in
(2.4.1). As already mentioned, when A # 0 the OLS estimate of A in (1.2.5) is incon-
sistent. However, under H; as defined in (2.4.1), An converges in probability to zero,
as shown in Lemma 2.3 reported in the Appendix. More specifically, by Lemma 2.3,
An = An 4 Op((h/n)'/?), i.e. the probability limit of A, — ), vanishes at least at fast
as Ap.

Under Assumption 2(ii), when W is symmetric, ||[W]|, < K/2 and ||[W]|. < K/2.

The series representation

ST =D (W) (2.4.2)
t=0
holds when |||\, W ||| < 1, |||.]|| denoting any matrix norm (see e.g. Horn and Johnson

(1985), page 301). Under Hy, using the spectral norm,

B /2 B /2
AW = () 1w =<> <1,
n n

for ¢ < 1 or n large enough.
Under H; in (2.4.1), S71()\,) is also uniformly bounded in row sums in absolute

value since

ISl = IOl < SONIWAL < SO
t=0 t=0 t=0
=\ K\’ 1
< —) =
< > (vy) =i

for n large enough that c(h/n)Y/2K/2 < 1. Trivially, by symmetry of W, S~1()\,) is

uniformly bounded in column sums in absolute value.

We obtain the following result

Theorem 2.3 Suppose that model (1.2.5) and Assumptions 1-3 hold. The cdf of

An — An under Hy as defined in (2.4.1) admits the formal second order Edgeworth

exrpansion

Pra(h, = M)  GIE) = B¢~ Aaa) = (¢~ Ana) = 2O~ M) +0 (7).
(2.4.3)
where a and k§ have been defined in (2.1.4) and (2.1.5), respectively, and
tr(W3) tr(W3)

w(€) = =5t = 2007 + S (2Ana T =0T (C —adn). (244)
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The proof of Theorem 2.3 is in the Appendix.

Since Theorem 2.3 has been proved for a symmetric W, a and x5 can be simpli-
fied to /tr(W2)/v/2 and 8tr(W?3)/2v/2tr(W?)3/2 respectively. Under Assumption
3, w(C) ~ \/W and a), has a positive limit. Hence, to a first approximation, un-
der Hy, a(S\n — Ap) is normally distributed with mean A,a and unit variance. It is
straightforward to notice that when A, = 0 we recover the expansion given in (2.1.8).
Intuitively, the term a),, is a large sample bias that vanishes only when A, = 0 (or
An = O((h/n)7), with v > 1/2).

A very simple, straightforward result that can be derived using the expansion in
Theorem 2.3 consists in the possibility of providing a better approximation of the
(local) power of the test of (1.2.1) against (2.4.1) based on the statistic a), than
that given by the usual first order theory. Specifically, suppose Hy is rejected when
aXn > 7. The power of such test (as function of 7), denoted as II() henceforth, is
defined as

I(7) = Pr(a\, > 7|Hy) = 1 — Pr(a\, < 7|Hy) = 1 — Pr(a(A, — A) < 7 — aXn|Hy).
Obviously, Pr(a(A, — An) < 7 — aA,|H1) is unknown, but Theorem 2.3 can be
used to obtain a more accurate approximation for II(7) than that based on the normal

approximation. Indeed, standard first order theory offers the approximation

. B\ 1/2
II(1) =1—Pr(a(An—A\n) < T—aX|H1) =1—®(7 -2 na)+ 0 ((n) ) , (2.4.5)

while, by Theorem 2.3,

(1) = 1—=Pr(a(Ay,— M) <7 —a\|Hy) =1—®(7 —2\,0)
+ w(T —a\y)o(T — 2 \pa) + %%HQ(T —2Xpa) (T — 2Mna) + O <Z> .
(2.4.6)

In Section 2.5 we will present some Monte Carlo results to confirm that the inclusion
of the Edgeworth correction terms, as given in the RHS of (2.4.6), entails a closer
approximation for II(7) than one based on the normal.

A more interesting result that can be derived starting from Theorem 2.3 is a
“corrected” version of the test statistics under H;. In Section 2.1 we have proposed a
size-corrected statistic for testing (1.2.1) against a one-sided alternative. Now, from
Theorem 2.3, we aim to derive a corrected statistic so that, under H; in (2.4.1), the
error when its distribution is approximated by a normal is reduced. The corrected

version under Hy can be recovered when A,, = 0 in the derivation that follows.
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Similarly to the derivation in Section 2.1, (2.4.3) can be written in the equivalent

form

C

Pr(a\, < ¢|Hy) = ®((¢ — 2\a) — w(C — Aa) — %Hz(ﬁ —2\pa)) + O <Z> .

When the function

C

v(r) =2 —w(x — A\a) — %Ib@ —2\pa) (2.4.7)

is monotonic,

Pr(v(ad,) < C|Hy) = (¢ — 2Mna) + O (Z) : (2.4.8)

The result in (2.4.8) can be derived by a modification of the argument in Yanagi-

hara et al (2005). Specifically, when v is monotonic,

Pr(v(ad,) < C|H) = Pr(ah, <v '(¢)|Hy)
= O(v71(¢) — 2Ma) — (W(©7H(C) — Ana)
— ()~ D)ol 0) ~ 2a) +0 (1)
(2.4.9)

From (2.4.7),

¢ = vt (c —w(C = M) — ’;T%HQ(C — 2)\na)>

_ (o) - (w(C ~Ana)+ ,;—%HQ(C - 2)\na)> d“dlc“) +0 <Z> (2.4.10)

where the last equality follows by Taylor expansion. Let y = v=1(¢). Since v is

monotonic,

dv=(¢) <dv(y)>1 _ (1 B dw(yd—yAna) g? de(ydena)>l

i\ dy
- 2\,a % —a”? § -
= <1 + tr(W3) <)\na_2 + a—(y — A\pa) — a4ay> - %(y - 2)\na)>

4

B\ /2
= 140 <> . (2.4.11)
n

Therefore, by substituting (2.4.11) into (2.4.10),

C

v O = ¢+ (w(( — Ana) + %HQ(C - 2)\na)> +0 (Z) .
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Hence, by Taylor expansion,

d(v ) —2Ma) = (¢ —2M\0)
+ (= )+ B - 00 ) ol - 27+ 0 (1)),

(2.4.12)
d(v 1) — 2 na) = (¢ — 2M\a) + O <h> v : (2.4.13)
w(v ) = Ma) = w(¢ — Mpa) + O ( ) (2.4.14)
and i
Hy(v™1(¢) — 2Mna) = Ha (¢ — 2\pa) + O < > (2.4.15)

The result (2.4.8) follows by substituting (2.4.12), (2.4.13), (2.4.14) and (2.4.15) into
(2.4.9).

A remark on the monotonicity of the function v(.) is necessary at this stage. In
Section 2.1, we explicitly derived the appropriate cubic transformation to guarantee
the monotonicity of v over the whole domain without affecting the order of the remain-
der terms. However, this case is algebraically more complex and the inclusion of the
cubic term in the corrected statistic would increase the computational burden (both
theoretically and in terms of the simulation time) by a significant amount. Therefore,
we rely on some numerical work to state that v(aj\n) is indeed locally monotonic under
Hy in (2.4.1).

Hence, when inference is based on v(a),) rather than ah,,
< < h
II(7) = Pr(v(aA,) > 7|H1) =1 — Pr(v(al,) < 7|H;) =1—®(( — 2\a) + O () .
n

By comparison with (2.4.5), it is straightforward to notice that the error of the ap-

proximation is reduced.

2.5 Bootstrap correction and simulation results

In this section we report and discuss some Monte Carlo simulations to investigate
the finite sample performance of the tests derived in Sections 2.1, 2.2 and 2.4.

In this simulation work, we adopt the Case (1991) specification for W given in
(1.1.2). With this choice, W is symmetric and hence a, b, k§ and £ can be simpli-
fied accordingly. In each of 1000 replications the disturbance terms are N(0,1), i.e
according to Assumption 1 with o2 = 1. We set a = 95%.

A brief remark on W defined in (1.1.2) is necessary. As already mentioned in
Chapter 1, it is straightforward to verify that Assumption 2 is satisfied for this choice
of W, whether h is bounded or divergent. It is possible to verify that also Assumption
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3 holds, i.e.
h .
lim —tr(W*) #0 for =234,

n—oon,

by observing that
h : h : h ,
—tr((I, ® Bp)") = —tr(1,)tr(B,,) = —rtr(B;,).
“tr((1 © Bu)') = ~tr(1)tr(Bl,) = “rtr(B,)

By standard linear algebra, B,, has one eigenvalue equal to 1 and the other m — 1
equal to —1/(m — 1). Therefore

tr(BL) =1+ (m—1) <_1>Z

m—1

and hence

Mt e BaY) = Lee(sh) ="l (1 + (m(—1>>

- mﬂ; ! (1 + (m(:ll);_1> ,

which is non-zero in the limit whether m = h+1 is bounded or not for i = 2,4. When

i = 3 and m is bounded, we require m > 2 (at least for large n) for the latter quantity
to be non-zero.

In Tables 2.1-2.4 the empirical sizes of the test of (1.2.1) against a one-sided alter-
native (Tables 2.1-2.2) and two-sided alternative (Tables 2.3-2.4) based on the usual
normal approximation are compared with the same quantities obtained with both the
Edgeworth-corrected critical values and corrected test statistics. In addition, we con-
sider the simulated sizes based on bootstrap critical values since it is well established
that these may achieve the first Edgeworth correction and should then be comparable
with the results obtained in Sections 2.1 and 2.2 (see e.g. Hall (1992) or DiCiccio and
Efron (1996)).

Before discussing and comparing the simulation results, the procedure to obtain
the bootstrap critical values should be outlined. It must be stressed that we focus
on the implementation of the bootstrap procedure, without addressing validity issues.

The bootstrap critical values are obtained by the following algorithm:
Step 1 Given model (1.2.5), under Hy, Y =e.

Step 2 Under Assumption 1, a parametric bootstrap can be used, i.e. we construct B
n—dimensional vectors whose components are independently generated from N (0, 52),
where 6% = €e/n = Y'Y/n. We denote ¢}, for j = 1,....B, each of these vectors.
Hence, we generate B pseudo-samples as Y = €} for j = 1,...B. (When the dis-
tribution of the disturbances is known, the parametric bootstrap proved to be more

efficient than the usual procedure based on resampling the residuals with replacement,
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see e.g Hall (1992)).
Step 3 We obtain B bootstrap OLS null statistics as

"yx71
VWY

Zj = a7 )

Step 4 The a—percentile is computed as the value w}, which solves

B

1 .
j=1

Step 5 The size of the test of (1.2.1) when the bootstrap critical value is used is then
Pr(aX > w’|Hy). (2.5.1)

The extension of Steps 4-5 in the latter procedure to the test of (1.2.1) against

a two-sided alternative is straightforward, i.e. the a—percentile is computed as the

B
value ¢}, which solves ) 1(|Z;| < ¢,)/B = a and the size based on such critical value
j=1
is computed as

Pr(laA| > ¢4|Ho). (2.5.2)

In both cases, we set B = 199.

Regarding Step 1, a remark is needed. When we are interested in testing, the
bootstrap procedure with Hy imposed to obtain the residuals (and then to generate
the pseudo-data) gives results at least as good as the same algorithm without imposing
Hj (see Paparoditis and Politis (2005)).

Tables 2.1 and 2.2 display the simulated values corresponding to (2.1.12), (2.1.13),
(2.1.15) and (2.5.1) when m is increased monotonically and kept fixed, respectively.
The former case is indeed consistent with divergent h, while the latter correspond to
a bounded h. For such reason, henceforth we refer to “divergent” and “bounded” h.
Moreover, Tables 2.3 and 2.4 display the simulated values corresponding to Pr(|a5\| >
Z(a+1)/2/Ho), Pr(]a}] > Z(at1)/2 + P1(Z(at1)/2) [ Ho), where p1(.) is defined according
to (2.2.5), Pr(v(laA]) > 2(a+1)/21Ho), with v(.) given by (2.2.6), and (2.5.2) when
h is either “divergent” or “bounded”, respectively. All the values in Tables 2.1-2.4
have to be compared with the nominal 5%. For notational convenience, in the Tables
we denote by “normal”, “Edgeworth”, “transformation” and “bootstrap” the sim-
ulated values corresponding to the size obtained with the standard approximation,
Edgeworth-corrected critical values, Edgeworth-corrected null statistic and bootstrap

critical values, respectively.
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m =8 m =12 m =18 m = 28
r=29 r=2~8 r=11 r=14
normal 0 0 0.001 0.001
Edgeworth 0.125 0.117 0.110 0.099
transformation | 0.056 0.055 0.052 0.048
bootstrap 0.039 0.061 0.053 0.054

Table 2.1: Empirical sizes of the tests of Ho in (1.2.1) against H; in (2.1.1) when A in model (1.2.5)
is estimated by OLS and the sequence h is “divergent”. The reported values have to be compared
with the nominal 0.05.

m=2>5 m =25 m=2>5 m=25

r=2=8 r=20 r =140 r =280
normal 0.001 0.001 0.001 0.011
Edgeworth 0.096 0.070 0.057 0.052
transformation | 0.055 0.057 0.055 0.051
bootstrap 0.043 0.040 0.057 0.055

Table 2.2: Empirical sizes of the tests of Ho in (1.2.1) against Hi in (2.1.1) when A in model (1.2.5)is
estimated by OLS and the sequence h is “bounded”. The reported values have to be compared with
the nominal 0.05.

By observing the results in Tables 2.1 and 2.2, it is clear that the usual normal
approximation does not work well in practice, since the simulated values for the size
greatly underestimate the nominal 5% for all sample sizes. On the other hand, the
Edgeworth-corrected results seem to perform reasonably well. However, the results
obtained with the Edgeworth-corrected critical values exceed the target 0.05 for very
small sample sizes, but the convergence to the nominal value appears to be fast.
Indeed, such correction performs already quite well for moderate sample sizes such as
m =18, r = 14.

More specifically, when h is “divergent” and inference is based on Edgeworth-
corrected critical values, the discrepancy between the simulated values and the nominal
5% appears to be 26% higher than such discrepancy obtained when inference is based
on standard normal critical values, on average across sample sizes. However, we
also notice that the difference between actual and nominal values only decreases by
about 0.6%, on average, when sample size increases in case of the standard test,
while it decreases by 13% when Edgeworth-corrected critical values are used. On the
other hand, the simulated sizes based on the Edgeworth-corrected statistics are very
satisfactory also for very small sample sizes. Indeed, on average across sample sizes,
when h is “divergent” and inference is based on the Edgeworth-corrected statistic and
bootstrap critical values, the simulated values are 92% and 85%, respectively, closer
to 0.05 than values obtained with the standard t-statistic.

A similar pattern can be observed in Tables 2.2. When h is bounded the cdf of
a\ under (1.2.1) converges faster to the normal. The figures displayed in Table 2.1
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and 2.2 are consistent with this theoretical result. Indeed we notice from the first
column of Table 2.2 that, on average, the difference between simulated values and
the nominal 0.05 decreases by 6% as sample size increases when inference is based
on the standard statistic (such value has to be compared with the aforementioned
0.6% decrease in case h is “divergent”). Also, we notice that in Table 2.2, the average
improvements on average across sample sizes offered by Edgeworth-corrected critical
values, Edgeworth-corrected statistic and bootstrap critical values over the standard
OLS t-statistic are about 98%, 87% and 99%, respectively.
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Figure 2.1: Simulated pdf of aA under Hy in (1.2.1)
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Figure 2.2: Simulated pdf of g(a)) under Ho in (1.2.1)

In Figures 2.1 and 2.2 we plot the pdf obtained from the Monte Carlo simulation
of the non-corrected OLS null statistic aA and its corrected version g(a)). The pdf
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of the non-corrected statistics is very skewed to the left but most of this skewness is

removed by the corrected version.

m =8 m =12 m =18 m = 28

r=29 r==8 r=11 r=14
normal 0.132 0.130 0.126 0.106
Edgeworth 0.062 0.060 0.056 0.055
transformation | 0.130 0.128 0.105 0.098
bootstrap 0.048 0.044 0.045 0.047

Table 2.3: Empirical sizes of the tests of Hy in (1.2.1) against H; in (2.2.1) when X in model (1.2.5)
is estimated by OLS and the sequence h is “divergent”. The reported values have to be compared

with the nominal 0.05.

m=2>5 m=2>5 m=2>5 m =25

r=2=8 r=20 r =140 r =280
normal 0.096 0.078 0.068 0.061
Edgeworth 0.040 0.052 0.047 0.046
transformation | 0.063 0.025 0.044 0.052
bootstrap 0.049 0.047 0.051 0.050

Table 2.4: Empirical sizes of the tests of Ho in (1.2.1) against Hi in (2.2.1) when A in model (1.2.5)is
estimated by OLS and the sequence h is “bounded”. The reported values have to be compared with
the nominal 0.05.

From Tables 2.3 and 2.4 it is clear again that the normal approximation does
not produce satisfactory results, since the nominal 5% is greatly overestimated for
all sample sizes, whether h is “divergent” or “bounded”. In turn, results obtained
with the Edgeworth-corrected critical values are very close to the nominal for all
sample sizes. Indeed, when inference is based on Edgeworth-corrected critical values,
the discrepancy between the simulated values and the nominal is reduced on average
across sample sizes by 89% when h is “divergent” and by 79% when h is “bounded”.
On the other hand, simulated sizes based on the Edgeworth-corrected statistic seem
still to greatly overestimate the target 5%, especially when h is “divergent” but appear
to decrease to the nominal value quite fast. Specifically the improvement offered by
the Edgeworth-corrected statistic over the standard one is 58% when h is “bounded”,
but only 13% when h is “divergent”. Results based on bootstrap critical values are,
as expected, comparable to the Edgeworth-corrected ones and are very close to 5%
for all sample sizes. Again, the pattern of the results is similar for “divergent” and
“bounded” h.

As mentioned in Section 2.2, a remark on the monotonicity of v(.) in (2.2.6) is
needed. Indeed, some numerical work shows that v(.) cannot be considered locally
strictly increasing unless n is very large. Hence, the corresponding results in Tables

2.3 and 2.4 have been derived by a numerical implementation of the cubic transfor-
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mation in (2.1.14). Such numerical implementation can indeed be the reason of the
less satisfactory performance of the Edgeworth-corrected statistic compared to the

corrected critical values.

m =28 m =12 m =18 m = 28

r=25 r=28 r=11 r=14

A A A A

01 O 01 O 0.1 0.005 0.1 0.009
normal

05 0 0.5 0.335 0.5 0.673 0.5 0.854

0.8 0.257 0.8 0.994 0.8 1 0.8 1

A A A A

0.1 0.561 0.1 0.610 0.1 0.663 0.1 0.693
Edgeworth

0.5 0.952 0.5 0.986 0.5 0.993 05 1

0.8 1 0.8 1 0.8 1 0.8 1

A A A A

0.1 0.111 0.1 0.119 0.1 0.155 0.1 0.164
bootstrap

0.5 0.725 0.5 0.873 0.5 0.938 0.5 0.966

0.8 0.996 0.8 1 0.8 1 0.8 1

Table 2.5: Empirical powers of the tests of Hp in (1.2.1) against H; in (2.5.3), with A = 0.1,0.5,0.8,
when A in model (1.2.5) is estimated by OLS and the sequence h is “divergent”. « is set to 0.95.

m =25 m=25 m=2>5 m =25

r=2_8 r =20 r =40 r =80

A A A A

0.1 0.010 0.1 0.083 0.1 0.187 0.1 0.363
normal

0.5 0.551 0.5 0.988 05 1 05 1

0.8 0.999 08 1 08 1 08 1

A A A A

0.1 0.640 0.1 0.739 0.1 0.852 0.1 0.693
Edgeworth

0.5 0.991 05 1 05 1 05 1

0.8 1 08 1 0.8 1 0.8 1

A A A A

0.1 0.139 0.1 0.203 0.1 0.296 0.1 0.451
bootstrap

0.5 0.888 0.5 0.992 05 1 05 1

08 1 08 1 08 1 08 1

Table 2.6: Empirical powers of the tests of Hp in (1.2.1) against H; in (2.5.3), with A = 0.1,0.5,0.8,
when A in model (1.2.5) is estimated by OLS and the sequence h is “bounded”. « is set to 0.95.

In Tables 2.5 and 2.6 we report some Monte Carlo results to assess the finite sample
behaviour of the power of both standard and corrected tests of (1.2.1) against a fixed
alternative hypothesis, i.e.

Hy:A=X>0. (2.5.3)
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Obviously, the same argument can be carried on with very minor modifications in
case A < 0 . In Tables 2.5 and 2.6 we report the simulated quantities corresponding
to Pr(aX > zo|Hy1), Pr(aX > 2o + p1(za)|H1) and Pr(aX > w*|H;). We choose three
different values of A, specifically A = 0.1, 0.5,0.8. The values in Tables 2.5 and 2.6 are
consistent with the empirical sizes reported in Tables 2.1 and 2.2. In particular, we
observe that, when A = 0.1 for instance, the simulated power when inference is based
on Edgeworth-corrected critical values is (on average across sample sizes) more than
300% higher than the corresponding result based on bootstrap critical values. Such a
huge difference can be explained by the sign of the probability limit of A— X when W
is chosen according to (1.1.2).

Indeed, as previously mentioned, ) is inconsistent when A # 0. Therefore, in case
plimj\ < A for A > 0, it might be that under Hj, plim;\ = 0 (obviously, for A < 0
the argument would be modified as: in case plimS\ > )\ as n — oo it might be that
under Hy, plim) = 0). In this case, the standard test of (1.2.1) against (2.5.3) would
be inconsistent. Nevertheless, it is quite straightforward to evaluate the sign of the

probability limit of A for any particular choice of W. Specifically,

Theorem 2.4 Suppose that model (1.2.5) holds. Under Assumption 1 and for W
given by (1.1.2), plim(X\ — ) is finite and has the same sign of \.

n—o0

The proof of Theorem 2.4 is in the Appendix. It is worth mentioning that the
sign of the probability limit in Theorem 2.4 can be computed similarly for any other
choices of W, although it might not always be possible to obtain close form expressions.
Obviously, Assumption 1 could be relaxed. However, Assumption 1 has been assumed
throughout this project and is retained here for algebraic simplicity.

By Theorem 2.4, as n — o0, plimjx > A when A > 0 (or plz'mj\ < A when A\ < 0)
and hence it is straightforward to show that, as n — oo, Pr(a\ > z4|Hy) — 1,
Pr(aX > zq + p1(za)|H1) — 1 and Pr(g(a)) > z4|Hy) — 1, ie. our new tests
based on OLS estimates for A\ are consistent when W chosen according to (1.1.2). As
anticipated, the result of Theorem 2.4 also explains why the simulated values for the
power of a test of (1.2.1) against (2.5.3) based on Edgeworth-corrected critical are so

much higher than the same quantities obtained by bootstrap.

m =8 m =12 m = 18 m = 28
r=>5 r=2_8 r=11 r=14
Monte Carlo power 0 0.020 0.046 0.070
1%t order approximation | 0.304 0.304 0.304 0.304
274 order approximation | 0.054 0.089 0.111 0.127

Table 2.7: Numerical values corresponding to (2.5.5) (second row) and (2.5.6) (third row), compared
with the simulated values for the power of a test of (1.2.1) against (2.4.1) when A, in model (1.2.5)
is estimated by OLS and the sequence h is “divergent”.
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m =25 m =25 m=2>5 m =25
r=2_8 r =20 r =40 r =280
Monte Carlo power 0.054 0.171 0.213 0.250
1%t order approximation | 0.304 0.304 0.304 0.304
274 order approximation | 0.138 0.199 0.229 0.252

Table 2.8: Numerical values corresponding to (2.5.5) (second row) and (2.5.6) (third row), compared
with the simulated values for the power of a test of (1.2.1) against (2.4.1) when A, in model (1.2.5)
is estimated by OLS and the sequence h is “bounded”.

In the first row of Tables 2.7 and 2.8 we report the simulated values corresponding
to

Pr(a), > zo|Hy), (2.5.4)

where Hj is given in (2.4.1). These should be compared with the values obtained by

the normal approximation (reported in second row)

1—2®(zq — 2a),) (2.5.5)

and with the values obtained by the Edgeworth-corrected approximation (reported in
the third row), i.e.

1—®(r — 2 \a) + w(T — aly)o(T — 2\pa) + i‘g’Hg(T — 2 pa)o(T — 2M\na),

5 (2.5.6)

where w(.) is defined in (2.4.4). In Tables 2.7 and 2.8 the sample is increased con-
sistently with a divergent and bounded h, respectively. We choose ¢ = 0.8 in the
expression for A, given in (2.4.1), although a different choice for ¢ does not change
the pattern of the results of the simulations.

As expected, the actual power obtained in the Monte Carlo simulations tends to
the value corresponding to (2.5.5) when the sample size is large. However, the values
obtained by (2.5.6) are 23% and 19% closer, on average across sample sizes, to the
simulated ones when h is “divergent” and “bounded”, respectively. The difference
between the values obtained by (2.5.5) and those obtained by (2.5.6) becomes increas-
ingly smaller as the sample size increases and, as expected, the convergence is faster
in case of “bounded” h. Specifically, when h is “bounded”, such difference decreases

by 32% on average as sample size increases, but only 11% in case h is “divergent”.

m =38 m =12 m =18 m = 28

r=2>5 r=2_8 r=11 r=14
Monte Carlo power 0 0.020 0.046 0.070
Monte Carlo power/corrected | 0.180 0.231 0.248 0.253

Table 2.9: Simulated values of the power of a test of (1.2.1) against (2.4.1) based on the standard and
corrected statistics when A, in model (1.2.5) is estimated by OLS and the sequence h is “divergent”.
The values should be compared with the target 0.304.
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m=>5 m=>5 m =25 m=>5

r=28 r=20 r =40 r =80
Monte Carlo power 0.054 0.171 0.213 0.250
Monte Carlo power/corrected | 0.223 0.275 0.278 0.290

Table 2.10: Simulated values of the power of a test of (1.2.1) against (2.4.1) based on the standard
and corrected statistics when A, in model (1.2.5) is estimated by OLS and the sequence h is bounded.
The values should be compared with the target 0.304.

Finally, in Tables 2.9 and 2.10 we compare the simulated values corresponding to
(2.5.4), reported in the first row, with

Pr(v(ai,) > zao|Hy), (2.5.7)

where v(.) is defined in (2.4.7). Tables 2.9 and 2.10 correspond to divergent and
bounded h, respectively. The values in Tables 2.9 and 2.10 should be compared
with (2.5.5), which is 0.304 for this particular setting. From both tables it is clear
that, as expected, the results when inference is based on the corrected statistic are
closer to the target value 0.304 for all sample sizes. In particular, the simulated
values for the power based on the Edgeworth-corrected statistic are, on average across
sample sizes, 72% and 19% closer to the nominal value than those based on the
standard statistic, when h is “divergent” and “bounded”, respectively. As expected,
when h is “bounded”, the discrepancy between actual and nominal values decreases
faster as sample size increases. Specifically, when inference is based on the standard
statistic, such discrepancy decreases by 8% on average as sample size increases when
h is “divergent” and by 40% when h is “bounded”.
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A Appendix

Proof of Theorem 2.1

The OLS estimate of A in (1.2.5) is defined as

. Y'W'e
A= A= ———
Y'W'WY
and therefore, under Hy,
5= éW'e
 EW'We

The cdf of A\ under Hy can be written in terms of a quadratic form in €, i.e.
Pr(A<z)=Pr(f <0),

where )
f = 56/(0 + C/)Ea

C=W —zWW (2.A.1)

and x is any real number.

Under Assumption 1, the characteristic function of f can be derived as

B9 = o [0 i ag
) Egh
%n
™ o
%n
= det(I — ito*(C + O) ™ = ] (1 —it*ny(C + 072,
j=1
(2.A.2)

where 77;(C+C") are the eigenvalues of (C+C"). From (2.A.2) the cumulant generating

function of f is

n n > (ito2n. s
Y(t) = —%Zln(l —ito’n;(C + C")) = ;ZZ( to”n;(C +C"))

j=1 j=1s=1 5
1o (ito?)s 1o (ito?)®
— S e ey =5y e 0. @A)
s=1 j=1 s=1

From (2.A.3) the s-th cumulant of f can be derived as

K1 = o’tr(C), (2.A.4)
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4

Ko = %tr((C—i—CI)Q), (2A5)
2s | IAY]
I (GRS (2.A.6)
2 s
Let f
C __ _K:]‘
o=
Ko

i.e. the centred and scaled version of f. The cumulant generating function of f¢ is

o0

ey Lo ks (it)*
where
c Ks
Ry = —Ja0 (2.A.7)
Ko
so the characteristic function of f€¢ is
itfey o —ig2 = Ky (it)® _
Be) = i ep(3 S} -
L gy SRR L QIR | L SNR(it)"
= e 2 {1+§§+2'<;§) +3|(8§:33') 4+ ..... }
_ e R§G)T ) RGGT | RE()° | RE (RS e
= e 2" {1+ TR TR - +{E+ (3!)2}(275) + e}
Thus, by the Fourier inversion formula,
Pr(fc<z) = /¢(z)dz+‘?/H3(z)¢(z)d +4‘/H4(z)<;5(z)dz—|— .....

Collecting the results derived above,

Pr(\<z)=Pr(f <0) = Pr(fsy? + r < 0) = Pr(f° < —r%)

C K C K'C
= ®(—kS) — 3%@@(—&1) + ﬁq><4>(_ﬁg) + ... (2.A.8)

From (2.A.4), (2.A.5) and (2.A.7),

a’tr(C)
o?(5tr((C + C")2))1/2’

K] =

where C'is defined according to (2.A.1). The numerator of x{ is

o2tr(W) — o?xtr(W'W) = —a ztr(W'W),
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while the denominator of { is o2 times

(%tr(C O = (tr(W?) + tr(WW') — datr(WW'W) + 22t (W'W)?)) V2,

Thus

—ztr(W'W)
(tr(W?2) + tr(WW') — datr(WW'W) + 222tr(W/'W)2))1/2
—axtr(W'W)

atr(WW'W)+2z2tr (W' W)2 ’
(b (W2 W) 1/2(1 — 2O 2

We choose = = a~ ¢, where

tr(W'W)
(tr(W'W + W2))1/2"

Moreover,

y _ _tr(WWW)
YT Ww + w2
and
b tr((W'W)?)
2T (WW + W2

Now,

o —xtr(W'W) _ —C
! (tr(W'W + W2)V/2(1 — daby + 222b2)V/2 (1 — 4xby + 222by)1/2

3/2
= —C (1 +2a71¢by — a7?¢%by + 6a 3¢ + O ((Z) ))

3/2
= (-2 4+ a2y — 607203 + O (<Z> > :

where the third equality follows by performing a standard Taylor expansion of the
term (1 — 4aby 4 222by)~1/2, ie.

B\ 3/2
(1 — 4aby + 22%b9) V% = 1 4 2zby — 22by + 62°03 + O (() > ,
n

Under Assumption 3,

h\'? h h
2a7'¢%by ~ () , a2 Chy ~ 6a=*bi¢* ~ —.
n n n
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Moreover, by Taylor expansion,

B\ 3/2

= ®(¢) + (2a7'¢*b1 — a™*¢%bz + 6a7C*bT)9(C)

B 3/2
+2a2¢20@ () + O <<n> ) (2.A.9)
and
@) (—x§) = 2@ (¢) +2a7 12012 (¢) + O <Z> : (2.A.10)

Collecting (2.A.8), (2.A.9) and (2.A.10), the third order Edgeworth expansion of

the cdf of a\ under Assumptions 1-3, becomes

Pr(ad < ([Hp) = 2(¢)+ 20~ 0i%6() — a9 (()

— (a7%by = 6a”b) ¢ (C) + 20207 0P ()

_ iga—lb 2™ () + /151(1)(4)(() +0 h i
3 ! 4! n ’

where, from (2.A.5), (2.A.6) and (2.A.7),

aStr((C +C")3) 2tr(W3) + 6tr(W'W?2)
oS(Ltr((C+CN2)PR2 " (tr(WW + W2))3/2

K§ =

and

308tr((C+CY)  6tr(WH) + 24tr(W'W3) + 12tr(WW')?) + 6tr(W2W'2)
A(Str((C+C2)2 (tr(W'W + W2))? '

K§ =

Setting b = bia~! and substituting the expression for a and by into a"2by, the

expansion stated in Theorem 2.1 follows.

Proof of Theorem 2.2

The OLS estimate of A in (2.3.1) is defined as

R Y'W'Pe
YD W L
Y'W'PWY’

where P = I —[(I'l)"'l'. Since W is row normalized, W1 = [. Hence, under H,

eW'Pe

A= Wpwe
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Similarly to the proof of Theorem 2.1, the cdf of A under Hy can be written in terms

of a quadratic form in e, i.e.

where

1
f= 56’(0 + e
and
C=WPI-zW). (2.A.11)
The derivation of the cumulants is similar to one in the proof of Theorem 2.1 with
C' defined according to (2.A.11) and is therefore omitted. Given (2.A.11),
k1 = 02r(C) = —o? (1 + atr (W'W) — %(l’WW’l)) ,

since

tr(C) = tr(W'PI —zW)) = tr(W) — tr(W1(I'1)11")
— xtr(W’W)—i—xtr(W (I'D~H'W)
= —l "Wl — xtr(W'W) + (l WW'l)

)+
= 1 atr(WW) + %(z wWw').
Similarly, by straightforward algebra,

%tr((C’ +0"?) = %tr((W’P + PW — 22W'PW)?)

2 1
= tr(W?) +tr(WW) +1— Ez’wz — E(Z’WW’Z)
— Axtr(W PW' PW) + 22%tr (W' PW)?)

and hence
ot N2
Ko = ?tr((C—FC) )
2 1
= oltrW? +tr(W'W) +1 — ﬁl’Wl - E(Z’WW’Z)

— datr(W PW'PW) 4 2z°tr((W'PW)?)).

Proceeding as in the proof of Theorem 2.1, we obtain the first centred cumulant

as

— (atr(W'W) +1 — SUWW)
~1/2
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) (1 | L= BIWL- LEWW) — detr (W PW'PW) + 2x2tr((W’PW)2))_1/ 2,
Y
where vy = tr(W2+W'W). From Lemma 2.2, I'W1 and (I'WW'l) are O(n), tr(W'PW'PW)
and tr((W'PW)?) are O(n/h) by Lemma 2.1 (since P is uniformly bounded in row
and column sums in absolute value and the product of matrices which are uniformly
bounded in row and column sums retains the same property) and v ~ n/h under
Assumption 3.

By setting © = a~'¢ where a has been defined in (2.1.4) and by standard Taylor

expansion,
1 h 2a tr(W' PW' PW h
6= (oo () (1o ()
¥ n y n
1 2a Ytr(W' PW' PW h

1 2tr(W'PW'PW) h

(- F1/2 o 124 (W?2) ¢CH+O(~
1 2er(W'WW') 4 h

(- A1/2 o ~1 24 (W?2) CHO(~ ),

where the last equality follows since tr(W'PW'PW) = tr(W'WW') + O(1).

Proceeding as in the proof of Theorem 2.1,

< B 1 2tr(W'WW') K$ h
Pr(ad < (JHo) = @(¢)+ (71/2 ) CQ> Q) — 51 +0 (n> :

where

o O(CH O 2Ar(W'PY) +6tr(WPEPW) [
o (Ltr(C + C1)2)*? (tr(W?2 + W'W))3/2 n’
The last displayed rate holds since the leading terms of tr((W’P)3) and 6tr((W'P)2PW)
are tr(W?3) and tr(W'WW'), respectively, which have exactly order n/h under As-
sumption 3.
The expansion in Theorem 2.2 follows by observing that tr(W/WW') /v 2tr(W?) =
b, where b is defined according to (2.1.4).

Proof of Theorem 2.3

The general structure of the proof is similar to ones of Theorems 2.1 and 2.2 and

hence several details will be omitted.
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Since Y = S~1(\n)e,

Y'We €S~ () We

A=A = = :
Y'W2Y ST (\,)W2S—1(\,)e

It is straightforward to see that, given (2.4.2), if W is symmetric so are S~1()\,) and
Sil()\n)W. By standard manipulation, the cdf of ;\n — A\, under H; can be written

in terms of a quadratic form in e, i.e.
Pr(A, — A, <) = Pr(f <0),

where f = €'Ce,
C =S O)W — 287 () W2S™L(\)

and x is any real number.

Similarly to the proofs of Theorems 2.1 and 2.2, the first cumulant of f is
k1 = o2tr(C) = o (tr(ST )W) — 2tr(S™ (M) W2S7H ()

=: (tr (i(xm@%) — xtr (i(AnW)tWQi(Aan))

t=0 t=0 s=0
=02 <Z)\;tr(Wt+l) wtr(W?) — 22X, tr(W3) — atr( Z WZZ()\,LW)S)>
= o (Antr(W2) + A2tr(W3) + Y Motr (W) — atr (W?) — 2z dntr (W)
t=3
—x Z ALXS tr (WL s H1)), (2.A.12)

t,s=1

where the third equality follows by (2.4.2). By Lemma 2.1,
tr(WHh =0 (%) and tr(WTWsth) =0 (ﬁ> ,

for every t and s. Hence, under Hy,

ZM AStr(WHIW s+ = ( ) <Z)\t> - (f) (1 f”Anf — 0(1)

t,s=1

and

S =0 (3 S5 -0 (5) (25) ~oy1).

t=3

By a similar argument,

Ko = 20Mtr(C?) = 20 (tr((ST (M) W)?) + 22tr (ST ) W2S™H(\))?)
—22tr (ST M)W S M) W25 (M)
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=204 ((tr(W?) + 22 tr(W3) + ZM A tr (W) 4+ 22t (SO W28~ ())?)
t,s=1

—2atr (W?) — 6zntr(W*) — 6zdntr(WP) — 2z Y ALAS A tr(WHHW sy ety),
t,s,v=1

(2.A.13)

By choosing = = a~1(, where a = tr(W?2)/\/2tr(W?2) = /2tr(W2)/2 (which is
(2.1.4) when W is symmetric), (2.A.12) and (2.A.13) become

k1 = 02 (—a 1 Ctr(W?2) + M\atr(W2) 4+ A2 tr(W3) — 207 1 Ctr (W3)) + O (ﬁ)

and

ke = 20%(tr(W?2) 4+ 2X,tr(W3) — 2a71¢tr(W3) + O(1))

— 20 r(W?) (1 + zAnZ%Z; —1<trEWS§ 0 (Z))
= 20Mr(W?) (1 + 2)\nm — 2[%4 +0 <Z>> .

Hence, by standard algebra,

—a"Hr(W?2)¢ + Atr(W?2) + N2tr(W3) — 2071\ tr(W3) + O <\/g>

1/2
26r(W7) (1+ 27 n v} — 2V 2y € + O (1))

= (—C + al, + tr(W?3) <>\%2_1 - )\na_QC) +0 <Z>)

(1 i o (1))

3
”(ZV ) (X2~ — 22,07%0)

+ W(2Ana_2 —a30)(¢C—a\,) + O (Z) . (2.A.14)

For notational simplicity, let

w0 = "0z - ana) 4

r(W3 :
! (ZV )<2)\na72 - ai‘iC)(C - a)‘n)'

Given (2.A.14) and proceeding as described in the proofs of Theorems 2.1 and 2.2,

the expansion for the cdf of 5\n — A\p under H; becomes

Pr(a(h, = A) <€) = B(—k5) — ’;j?cb”( KS) + oo

= B(C = Ana) —w( Q)9 — Ana) — T - A”“”O(Z)
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o7

= B¢~ M) — (OB — M) — S Hp(C ~ Ana)(C — Ana) + O (Z) ,

3!

where

o 80%r(C) 232 (W) (h)3/2
3— .

23/2551r(C2) " (tr(W2))32 "\

Proof of Theorem 2.4

The OLS estimate of \ is

5o by'we B beS—1 (N We
o hynwry T hag-1()wzs-1(\)e

since W in (1.1.2) is symmetric and Y = S~1()\)e.
As regarding the numerator of the RHS of (2.A.15),

(h> 2 E(€STY N We — o?tr(SHAN)W))?

n

h 2
- (n) E(STINWe)? — o (tr(STHNW))?

n

= 20t <h>2tr((5_1()\)W)2) — 0
as n — oo, since tr((SH(A)W)?) = O(n/h) by Lemma 2.1. Hence

h(e'S*l(A)We — *tr(STHA)W)) = 0

n
in second mean, implying

plimﬁels_l()\)We = lim aQﬁtr(S—l(A)W).

n—oo M n—oo N

Similarly,

pzz'mﬁe’S*l(A)W?S*l(A)e = lim aQﬁtr((S’l(A)Wf).

n—oo Tl n—oo N

From (2.A.16) and (2.A.17),

First, we show that the RHS of (2.A.18) is finite. Lemma 2.1 implies

%tr(S’l()\)W) =0(1).

(2.A.15)

(2.A.16)

(2.A.17)

(2.A.18)
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The denominator in the RHS of (2.A.18) is non-negative and, by (2.4.2),

h h
—tr((ST'WW)?) ~ —tr(W?
Pir((5T W) ~ (),
which is non-zero for W given in (1.1.2), as shown in Section 2.5. Hence, the RHS of
(2.A.18) is finite and its sign depends on its numerator.

From (1.1.2) and the series representation in (2.4.2),

tr(STH W) = tr(D> _Ntr(W)) = r> Ner(BiH).
=0 i=0
Since By, has one eigenvalue equal to 1 and the other (m — 1) equal to —1/(m — 1),

we have
) 1 i+1
1
tT(B;T ) — 1 _I_ (m — 1) <Tn_1>

and hence, since |A| < 1,

o 1 i
—1 _ 7
tr(S ()\)W)_r;)\ (1—<m_1>>
r r B A m
1—X 1+m%_1—>\m—1+)\'

(2.A.19)

By substituting h = m — 1 and n = mr into (2.A.19),

h 1 m—1 X rm A m — 1
Etr(s WW) = mr 1—Am—14+X 1—-Am—1+\

which has the same sign of A, whether m is divergent or bounded, provided that
m > 1.

Lemma 2.1 If w;; = O(1/h), uniformly in i and j,

tr(WA) =0 (%) ,

where A is an n X n matriz so that ||Al|, + ||A||l. < K.

Proof Let a;; be the (i — j)th element of A. The i—th diagonal element of WA has

absolute value given by

- 1
(W A)i] < maxcfwy |3 lasi| = O <h> ,

J=1

uniformly in ¢. Therefore

tr(WA) < YW A)| < nmax| (W A)ul = 0 ()
=1
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Lemma 2.2 Let R and S be n x 1 vectors whose i—th components are denoted by r;

and s;, respectively. Let A be an n x n matriz. If, for all n,

A< < <
@g\n!_ff gglszl_fﬂ I[All- + [|A]lc < K,

then |R'AS| = O(n).

Proof Let a;; be the (i — j)th component of A.

n n n n n n
IRIAS| = 1) rmagsi| <Y Irillaglls;] <  max il las]
,Jsn

i=14=1 i=14=1 - i=1j=1
n n n n

<1 S50 K s Sl S0 =00
i=1j5=1 7j=1 =1

Lemma 2.3 Suppose model (1.2.5) and Assumptions 1-3 hold. For A\, = c(h/n)Y
with 0 < v < 1/2, Ay = Op(An), while with v > 1/2, A, = O,((h/n)/?).

Proof We should stress that Assumption 1 could be relaxed. However, Gaussianity

is assumed throughout this work and hence is retained. Here, Assumption 1 simplifies

the derivation of the expectations of quadratic forms in € in the following argument.
By the OLS formula,

N C hy'wre RS An)We
byt wiwe — Be/S=1(\)W/WS~1(\n)e

n n —

Therefore, when v < 1/2, we need to show that

h /S—l n Ay v o
S ) Wee ) (PN (2.A.20)
herS—1(N)WWS=1(Ay)e T \\n

Similarly, when v > 1/2, it suffices to show

h /S—l /\n "W 1/2
e STH ) W'WS—L(Ap)e n

and conclude the claim by observing that O((h/n)'/?) dominates A\, = O((h/n)")
when v > 1/2.

Under Assumptions 1-3, the denominator in (2.A.20) (and (2.A.21)) has a finite
and positive probability limit. Indeed, let

v, = %6/5‘1(An)’W’WS‘1(An)€ - %E (€S7 W) WWS™ (An)e) -
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Then,

52 = (1) Bes owmwws o)
- <h>2(E(e’S‘l(An)’W’WS_l()\n)e))2

n
2

_ (h>2 o (tr(S™ () WIS (A\)))? + 2 (D ottr((S™H ) WWS™H(\))?)

n

. (h>204(tr(51()\n)/W/W51(>\n)))2

n

- 2 (h)20—4t7«((51(An)'W’W51(An))2) =0 <h> ,

n n

where the last equality follows by Lemma 2.1, after observing that |[S™1(\,)||» +
I1S7*(\)|le € K, as shown in Section 2.4. Hence, as n — oo, E(V,?) — 0 and
therefore V,, 5 0, i.e.

plimﬁe’s—l(An)’W’WS—l(An)e = lim ﬁE(e’s—l(An)’W’WS—l(An)e). (2.A.22)

n—oo Tl n—oon

Let b
Q = lim —tr(W'W).

n—,oon,

Under Assumption 3 @) > 0. Moreover,
rq—1 1! -1 h 2 ! h K
E(€S™T (M) WWS ™ (A\n)e) = -0 tr(W'W) 4+ O - .
The last displayed expression has been obtained by observing that

B(ES~ n) WIS~ (A)e) = Z 24(S1 () WIS (An)
— 02% tr(W'W) + 2\ tr(W')*W) + tr (i (A W’)"W’Wi(AnW)J’))

h oo, .
= 2= | tr(W'W) + 2\t "W+t AN it
o |t (WW) + 22t (WPW) +tr | D AN,

i=1j=1

= 2= | tr(WW) + 2\ tr (W) W) +ZZA;A£tr(W/i+1Wj+1))
i=1j=1

_ 02% tr(W'W) + 2Antr (W +ZZ>\”\"O( ))

1=17=1

o (mwfw>+mwf>zw>+ (25) o).
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where the fifth equality holds since tr(W 1 Wit1) = O(n/h) for every i, j by Lemma
2.1. The last equality is obtained by

;’\": T— N,

since |A,| < 1 for n sufficiently large. Hence, from (2.A.22),

pzz’m@e’s—l(xn)/wfws—l(An)e =Q>0. (2.A.23)

n—oo 1l

On the other hand, the numerator in (2.A.20) is Op((h/n)7), when v < 1/2, and
O,((h/n)'/?), when v > 1/2, since

2 2
(2) B 0wref) = ot () (v () + 2r (VS (1))
h\? SN n
— ot <n> ((o+tr(ZA;WZ+1))2+o(h)>, (2.A.24)
i=1
while

tr) AW = AW
=1 =1

o) - ol -o()7) eam
Therefore, collecting (2.A.24) and (2.A.25),
<Z>2 E((€S5~ (A)W'e)?) = O <<Z>27> |

when v < 1/2, and

(h)2E<<e's—1<An>'W’e>2> —o(%).

n n

when v > 1/2. By Markov’s inequality,

ﬁ ra—1 i, — ﬁ K

€ ST ) We=0, - , (2.A.26)
when v <1/2, and

horg1y v A%

€ ST HAn) W'e=0, . , (2.A.27)

when v > 1/2.
Collecting (2.A.23), (2.A.26) and (2.A.27) the claims in (2.A.20) and (2.A.21)
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follow trivially.
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3 Improved Test Statistics based
on MLE for Pure SAR

In Chapter 2 we focused on the test of Hyp in (1.2.1) when X in model (1.2.5) is
estimated by OLS. As outlined, the OLS estimate of A in (1.2.5) is inconsistent when
A # 0 and hence the results of Chapter 2 cannot be extended to test the more general
null hypothesis

Ho: X=X (3.0.1)

against the alternative
Hy:A> X (< No) (3.0.2)

for any fixed \g. More importantly, as discussed in Section 2.5, a test of Hy in (1.2.1)
might be inconsistent for some choices of W.

In this chapter we derive new tests of (1.2.1) based on A when again the data
follow model (1.2.5), i.e. (1.1.3) when 8 = 0 a priori. As discussed in Chapter 1, A
is consistent for every value of A € (—1,1) in model (1.2.5), as shown in Lee (2004).
Hence, in principle we could extend the results presented in this section to test (3.0.1)
against (3.0.2). Although the procedure would be identical, when Ay # 0 the algebraic
burden would increase dramatically. In addition, in most of practical application,
A = 0 is probably the most interesting value one wishes to test, as discussed in the
Chapter 1. Therefore, it seems reasonable to focus only on the test of Hy as specified
in (1.2.1).

Similarly to what discussed in Chapter 2 and as already outlined in Chapter 1, the
rate of convergence of )\ can be slower than the parametric rate \/n, depending on the
choice of W. When this is the case, the normal cdf might not be an accurate approx-
imation for the cdf of the t-statistic based on A under Hy. Thus, inference based on
standard first order asymptotic theory can be unreliable and this provides motivation
for employing instead refined statistics, based on formal Edgeworth expansions, which
entail closer approximations.

In Section 3.1 we present refined tests based on both Edgeworth-corrected critical
values and corrected t-statistics under Hy in (1.2.1). In Section 3.2 we report the
results of Monte Carlo simulations to assess the finite sample performance of the new
tests. Finally, in Sections 3.3 and 3.4 the new tests based on both MLE and OLS
estimates of A in model (1.2.5) are applied in two empirical examples. It should be
stressed that these examples are intended for illustrative purpose only and do not aim

to be exhaustive analyses of the issues involved. Proofs are reported in the appendices.
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3.1 Test against a one-sided alternative: Edgeworth-corrected criti-
cal values and corrected statistic

We suppose that model (1.2.5) holds and we are interested in testing (1.2.1) against
(2.1.1). Extensions of the following results to testing (1.2.1) against a two-sided alter-
native are straightforward in principle, but algebraically very cumbersome, since the
derivation or a third order Edgeworth expansion, rather than the second order one,
would be necessary (similarly to what was discussed in Section 2.2). The Gaussian
log-likelihood function for model (1.2.5) is given by (1.2.7) when 8 =0, i.e.

1
I\ 0?) = _gzn(%) - glna2 +in(det(SV) = 55 Y'SOYSOVY.  (3.11)
g
Given )\, the MLE of o2 is
1
52(\) = =Y'S(\)'S(\Y (3.1.2)

and hence

A = arg max I\, G2(N),
where A € (—1,1) and here A denotes any admissible value.

When A € (—1,1), det(S(N\)) in (3.1.1) is positive for every A € A. Indeed,
det(S(N\)) = det(I — A\W) is positive when |[\| < 1/7(W), where 7(WW) is defined in
(1.5.2). On the other hand under Assumption 2(i) 7(W) = 1, as discussed in Chap-
ter 1. Furthermore, under Assumption 2(i), existence of S~!(\) is guaranteed from
(2.4.2) provided that |A] < 1.

We have the following result

Theorem 3.1 Let model (1.2.5) and Assumptions 1-3 hold. The cdf of X\ under Hy
in (1.2.1) admits the second order formal Edgeworth expansion

~ r ! r(W3 3
Pr(a\ < (|Hy) = ®(¢) + (2t WW'W) + tr(W )> #(¢) — ??@(3>(<) +o ( h) ,

a3 a3 n

or equivalently

Prad < ) = 2(6) + (27O MDD 06y - Bncyor) + o ( ) 7

a3

where

a=/tr(W2 +W'W) (3.1.4)



3. Improved Test Statistics based on MLE for Pure SAR 65

and

Atr(W3) 4 6tr(WW'W) h

as n

Ry ~

The proof of Theorem 3.1 is in Appendix A.1.

Under Assumption 3,

a3 a3 (C) ~ .

It should again be stressed that the expansion in (3.1.3) is formal and hence the order
of the remainder can only be conjectured by the rate of the coefficients. Without
considering validity issues, the error order 0(\/%) is the sharpest one can conjec-
ture since several approximations are used to obtain (3.1.3), as explained in detail in
Appendices A.1 and A.2

Under Assumption 3 a is finite and strictly positive for large n and hence the rate
of convergence of Pr(a\ < ¢|Hp) to the standard normal cdf is slower than the usual
v/n when the sequence h is divergent.

From expansion (3.1.3), Edgeworth-corrected critical values and the corrected null
statistic can be obtained. The derivation is very similar to that reported in Chapter
2, Section 2.1, for the cdf of aA and is omitted here. The size of the test of (1.2.1)

obtained with the usual standard normal approximation

Pr(a\ > zq|Hp) (3.1.5)
can be compared with that for the Edgeworth-corrected critical value, that is

Pr(aX > t¥4|Hy), (3.1.6)

where

/ 3 ~c
iFd — 4, — 2tr(W~W W) + tr(j/V ) + @Hg(za).
as as 3!

As discussed in Chapter 2, when z, is used to approximate the true quantile, we have
an error of order /h/n, while the error is decreased to o(y/h/n) when the Edgeworth-
corrected critical value is used.

Finally, (3.1.5) can be compared with the size based on the corrected statistic, i.e.

Pr(g(a)) > z4|Ho), (3.1.7)
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where

r ! r 3 P2 ~
g(x) =x+ o! (W;;/ W) + ! (~VV ) _ —3H2(37) + Q(z),

and
- AN
Qz) = <3,> 3
As discussed in detail in Section 2.1, Q(x) can be derived from (2.1.14) and is cubic

so that g(x) is strictly increasing over the whole domain, but does not affect the order

of the remainder.

3.2 Bootstrap correction and Monte Carlo results

In this section we report and discuss some Monte Carlo simulations to investigate
the finite sample performance of the tests derived in Section 3.1. As in Chapter 2,
we adopt the Case (1991) specification for W, specified in (1.1.2). The setting of the
Monte Carlo study is identical to that described in Section 2.5.

The empirical sizes of the test of (1.2.1) based on the usual normal approximation
are compared with the same quantities obtained with both the Edgeworth-corrected
critical values and corrected test statistics. In addition, we consider the simulated sizes
based on bootstrap critical values. The bootstrap algorithm to obtain the critical
values is similar to that outlined in Section 2.5. Once B pseudo-samples Y, j =
1,....B, are obtained from N(0,Y'Y/n), we obtain B bootstrap MLE null statistics

where

Aj = arg max 5(\)

and

/

N n n, 1_., N
(A = —§(ln(27r) +1)— gln(ﬁYj S()\)’S()\)Yj ) + In(det(S(N))).
The a—percentile is computed as the value w}, which solves
1S -
EZ1(ZJ- <wk) =a.

=1

The size of the test of (1.2.1) when the bootstrap critical value is used is then
Pr(a\ > | Hyp). (3.2.1)

Similarly to Section 2.5, in the Tables we denote by “normal”, “Edgeworth”,
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“transformation” and “bootstrap” the simulated values corresponding to the size ob-
tained with the standard approximation, Edgeworth-corrected critical values, Edgeworth-
corrected null statistic and bootstrap critical values, respectively. Also, similarly to
Section 1.5, we denote by “divergent” and “bounded” h the cases where m is mono-

tonically increased and kept fixed, respectively.

m =8 m =12 m =18 m = 28

r=>5 r=38 r=11 r=14
normal 0.005 0.006 0.004 0.013
Edgeworth 0.118 0.091 0.074 0.060
transformation | 0.056 0.052 0.052 0.045
bootstrap 0.058 0.052 0.054 0.046

Table 3.1: Empirical sizes of the tests of Hy in (1.2.1) when X in (1.2.5) is estimated by MLE and
the sequence h is “divergent”. The reported values have to be compared with the nominal 0.05.

m = m=>5 m=2>5 m=>5

r==8 r =20 r =40 r = 80
normal 0.012 0.025 0.032 0.038
Edgeworth 0.090 0.075 0.068 0.049
transformation | 0.057 0.055 0.049 0.051
bootstrap 0.062 0.056 0.058 0.052

Table 3.2: Empirical sizes of the tests of Hy in (1.2.1) when X in (1.2.5) is estimated by MLE and
the sequence h is “bounded”. The reported values have to be compared with the nominal 0.05.

Tables 3.1 and 3.2 display the simulated values corresponding to (3.1.5), (3.1.6),
(3.1.7) and (3.2.1) when h is “divergent” and “bounded”, respectively. All the values
in Tables 3.1 and 3.2 have to be compared with the nominal 5%.

For both “divergent” and “bounded” h, it is clear that the usual normal ap-
proximation does not work well in practice, since the simulated values for the size
greatly underestimate the nominal 5% for all sample sizes. On the other hand, the
Edgeworth-corrected results seem to perform reasonably well. Similarly to what dis-
cussed in Section 2.5, the results obtained with the Edgeworth-corrected critical values
exceed the target 0.05 for very small sample sizes, but the convergence to the nominal
value appears to be fast. Specifically, on average across sample sizes, the difference
between the values obtained with Edgeworth-corrected critical values and the nom-
inal 0.05 is only 19% and 21% smaller than the same quantity obtained with the
standard t-statistic, h being “divergent” and “bounded”, respectively. However, as
sample size increases, such difference decreases at a faster rate when inference is based
on corrected critical values. Indeed, the difference between actual and nominal values
decreases by 46% and 53% when inference is based on Edgeworth-corrected critical

values, and only by 6% and 32% when we rely on the standard statistic, h being
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“divergent” or “bounded”, respectively. The simulated sizes based on the corrected
statistics, instead, are very satisfactory also for very small sample sizes, whether A is
“divergent” or “bounded”. Finally, for all sample sizes, the bootstrap results appear
to be very similar to ones based on the Edgeworth-corrected statistic, whether h is
“divergent” or “bounded”. Specifically, when h is “divergent”, the values obtained by
Edgeworth-corrected statistic and by bootstrap critical values are 91% and 89% closer
to 0.05 than values obtained by the standard statistic. Such improvements become
87% and 71% when h is “bounded”.

As expected, by comparing Tables 3.1 and 3.2 with Tables 2.1 and 2.2 (reported
in Section 2.5), we notice that the results are similar whether X is estimated by OLS
or MLE. However, for “divergent” h and when considering the Edgeworth-corrected
critical values, the results obtained when A is estimated by MLE slightly outperform
those based on the OLS estimate. Other than this case, the values appear to be

comparable.

45

Figure 3.1: Simulated pdf of @A under Ho in (1.2.1)
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Figure 3.2: Simulated pdf of (@A) under Hy in (1.2.1)

In Figures 3.1 and 3.2 we plot the pdf obtained from the Monte Carlo simulation
of the non-corrected MLE null statistic a\ and its corrected version g(CNLS\), respec-
tively. We notice that the non-corrected statistic is skewed to the left but most of this

skewness is removed when we consider the corrected version.

m=28 m =12 m = 18 m = 28

r==5 r=2~8 r=11 r=14

A A A A

0.1 0.0100 0.1 0.0370 0.1 0.0380 0.1 0.0560
normal

0.5 0.4740 0.5 0.7270 0.5 0.8640 0.5 0.8930

0.8 0.9850 0.8 0.9990 08 1 0.8 1

A 5 X A

0.1 0.1270 0.1 0.1300 0.1 0.1410 0.1 0.1740
Edgeworth

0.5 0.7600 0.5 0.8710 0.5 0.9270 0.5 0.9750

0.8 0.9900 0.8 1 0.8 1 0.8 1

A A A A

0.1 0.0940 0.1 0.1220 0.1 0.1300 0.1 0.1450
bootstrap

0.5 0.7480 0.5 0.8560 0.5 0.9180 0.5 0.9990

0.8 0.9980 0.8 1 08 1 08 1

Table 3.3: Empirical powers of the tests of Ho in (1.2.1) against H in (2.5.3) with A = 0.1,0.5,0.8
when A in (1.2.5) is estimated by MLE and the sequence h is “divergent”. « is set to 0.95.
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m=>5 m =15 m =25 m=2>5

r=28 r =20 r =40 r =280

A A A A

0.1 0.0510 0.1 0.1260 0.1 0.2070 0.1 0.4000
normal

0.5 0.7910 0.5 0.9890 0.5 0.9980 05 1

0.8 1 08 1 08 1 08 1

A A A A

0.1 0.1260 0.1 0.1920 0.1 0.2720 0.1 0.4530
Edgeworth

0.5 0.8820 0.5 0.9950 05 1 0.5 1

0.8 1 08 1 08 1 08 1

A A A A

0.1 0.1140 0.1 0.1940 0.1 0.3020 0.1 0.5220
bootstrap

0.5 0.8920 05 1 05 1 05 1

0.8 . 08 1 08 1 08 1

Table 3.4: Empirical powers of the tests of Hy in (1.2.1) against (2.5.3) with X\ = 0.1,0.5,0.8 when
A in (1.2.5) is estimated by MLE and the sequence h is “bounded”. « is set to 0.95.

In Tables 3.3 and 3.4 we report some Monte Carlo results to assess the finite
sample value of the power of both standard and corrected tests of (1.2.1) against a
fixed alternative hypothesis, as specified in (2.5.3). In Tables 3.3 and 3.4 we report
the simulated quantities corresponding to Pr(a\ > z4|Hi), Pr(ax > 74 H;) and
Pr(a\ > wt|Hy). As in Section 2.5, we choose three different values of ), specifically
A = 0.1,0.5,0.8. The values in Tables 3.3 and 3.4 are consistent with the empirical
sizes reported in Tables 3.1-3.4. By comparison of the results in Tables 3.3 and 3.4
with Tables 2.5 and 2.6, we notice that the simulated values for the power obtained
with Edgeworth-corrected critical values when A is estimated by MLE are significantly
smaller than the corresponding ones when A is estimated by OLS. This is due to the
sign of the probability limit of (A — A) (Theorem 2.4) when W is chosen as in (1.1.2)

and does not necessarily extend to other choices of W.

3.3 Empirical evidence: the geography of happiness

In this section the corrected tests presented in Sections 2.1 and 3.1 are applied
to a small empirical example based on Stanca (2009). We first shortly describe the
methodology and main results in Stanca (2009) and then outline the purpose and
results of our analysis. The main goal of the empirical work in Stanca (2009) is to
investigate the spatial distribution of the effects of both income and unemployment
on well-being for a sample of n = 81 countries. For the purpose of our analysis we
only focus on income effects. Several specifications are considered in Stanca (2009),

the three main ones being

P=AWP+Xy+e, (3.3.1)
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P=AWP +e, (3.3.2)

P=Xy+e, (3.3.3)

where € ~ N(0,0%I). P is the n— dimensional vector of sensitivities of well-being to
income in each country, X is a n X k matrix, kK = 10, containing exogenous macroe-
conomic conditions, which include GDP per capita, unemployment rate, government
size and trade openness. W is the usual matrix of spatial weights and more details
about the choice of W will be given below.

The components of P are clearly unobservable. Stanca (2009) provides a proxy for
each component of P by estimating n country-specific, micro-level linear models where
well-being (denoted W?, henceforth) is regressed on income (denoted In, henceforth)
as well as unemployment status, demographic factors, social conditions, personality
traits and environmental characteristics. For notational convenience we denote Z;, for
j=1,...81, the n; x k; matrix of all the regressors other than income, k1 = 19. The
sample sizes n1 of each country-specific analysis varies country by country, on average

n1 = 2300. Specifically, for each country j =1, .....81,
ij = ﬁLjInj + Bz’ij + uj, (3.3.4)

where u; is a normally distributed error term. Stanca (2009) chooses the OLS estimate
of 31, denoted ﬂAM, for j =1,....81, as proxy for each component of P.

For each individual in the sample, W (intended as life satisfaction) is a self re-
ported number from 1 to 10 while income is measured by self reported deciles in the
national distribution of income. The data source for the analyses in (3.3.1), (3.3.2)
and (3.3.3) is the database “World Development Indicators” (World Bank (2005)).
The data source for the country-specific regressions in (3.3.4) is the “World Values
Survey”.

The results in Stanca (2009) indicate that by estimating A by MLE in model (3.3.2)
the presence of spatial correlation is detected. However, when the macroeconomic
conditions are included among the regressors, such as in specification (3.3.1), the
estimate of A becomes insignificant, suggesting that the geographical correlation is
mainly explained by similar underlying macroeconomic conditions in neighbouring
countries. Therefore, either specification (3.3.2) or (3.3.3) can be appropriate, as the
estimate of A in model (3.3.2) should reflect the macroeconomic similarities among
countries.

By a closer inspection of the results in Stanca (2009), we notice that the estimates
of the relevant components of 7 in (3.3.3) are strongly significant (1% or 0.5% level),
while the estimate of A in specification (3.3.2) is barely significant at 5%. Given that
specifications (3.3.2) and (3.3.3) should both be appropriate, in principle we would

expect the estimates of the relevant coefficients of the two specifications to be equally
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significant (at least roughly). Therefore, it can be useful to investigate whether an
Edgeworth-corrected test gives a different result.

We only consider a sub-sample of the 43 European countries, rather than the 81
worldwide ones considered in Stanca (2009). Since P in specification (3.3.2) is a vector
of estimates and not actual data, some heterogeneity issues might be eliminated by
considering only European countries. Indeed, we expect that the micro-level analysis
to obtain Bl,j> j = 1,...43, does not exhibit strong structural differences across a
sample of 43 European countries. On the other hand, when considering a broader
sample, some systematic differences in the relationship among the country-specific
variables might occur. In practice, (3.3.4) might not be the correct specification
for all countries, when such countries are very heterogeneous. In turn, when such
differences occur, the reliability of BLJ‘ as proxies for the components of P is not clear.
This problem might be reduced by considering only a sub-sample of less heterogeneous
countries.

Since the dependent variable in (3.3.2) is a vector of proxies and not actual data, we
acknowledge that the corrections derived in Sections 2.1 and 3.1 do not fully hold. In
principle, we might be neglecting some relevant term arising from the approximation
of the components of P by Bl,j; j=1,....43, in the Edgeworth expansions of the cdf
of the OLS and MLE statistics under Hy in (1.2.1). However, at least for illustrative
purpose, we think that a preliminary investigation of the effects of the inclusion of the
small sample corrections derived in Sections 2.1 and 3.1 is worthwhile.

The choice of W is not described in Stanca (2009). We construct W based on a

contiguity criterion, i.e. w;; = 1 if country ¢ and country j share a border and w;; = 0

otherwise.
Rejection rule | a = 0.95 a=0.99
aX > za reject Hy (1.713 > 1.645) | fail to reject Hy (1.713 < 2.326)
ak > tFd reject Hy (1.713 > 1.287) | reject Hy (1.713 > 1.666)

Table 3.5: Outcomes of the tests of Hp in (1.2.1) when X in model (3.3.2) is estimated by OLS

Rejection rule | o = 0.95 a=0.99
ar > zg reject Hp (2.869 > 1.645) | reject Hy (2.869 > 2.326)
ax > o reject Hy (2.869 > 1.429) | reject Hy (2.869 > 1.922)

Table 3.6: Outcomes of the tests of Hp in (1.2.1) when X in model (3.3.2) is estimated by MLE

In Tables 3.5 and 3.6, we report the outcome of the tests of (1.2.1) when A\ is
estimated by OLS and MLE, respectively. The actual values of statistics and critical
values are reported in brackets. When \ is estimated by OLS, X is only (barely)
significant at 5%, while it becomes significant at 1% when corrected critical values
are used. We notice that in case A is estimated by MLE, the outcome of the test

does not change when corrected critical values are used. This is a result that could
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be expected, to some extent. From the simulation work, the non-corrected results for

the MLE appear to be slightly better than OLS in very small samples.

3.4 Empirical evidence: the distribution of crimes in Italian provinces

The second example we consider to assess the practical performance of the new
tests derived in Sections 2.1 and 3.1 is based on a paper by Buonanno et al. (2009) and
deals with crime rates in Italian provinces. In particular, Buonanno et al. (2009) aim
to investigate whether social capital, intended as civic norms and associational net-
works, affects the property crime rate at a provincial level. The 103 Italian provinces
are especially suitable for this purpose since Italy displays significant provincial dis-
parities despite being politically, ethically and religiously quite homogeneous. The
literature about the influence of social capital on crime rate is broad and a survey
is beyond the scope of this example. Similarly, for a discussion about the peculiar
contribution of Buonanno et al. (2009), we refer to the paper.

For the purpose of our investigation, we consider the following three models

Y = AWY +e¢, (3.4.1)
Y = AWY + 515C + 8o X + 0D + ¢, (3.4.2)
and

where € ~ N(0,0%I). Y is the n—dimensional vector of crime rates in each province,
where n = 103. Each component of Y is obtained by dividing the reported crime
rate at provincial level by the corresponding overall report rate at regional level. The
dataset, originally constructed by Buonanno et al. and mainly based on ISTAT (“Is-
tituto Nazionale di Statistica”) records, contains three sets of observations, regarding
car thefts, robberies and general thefts rates. SC is the vector of social capital ob-
servations. Buonanno et al. (2009) proposes four different measures of social capital,
which are used separately, namely the number of recreational associations, voluntary
associations, referenda turnout and blood donation. X is a n X k matrix of exogenous
regressors, with k& = 8, containing deterrence (such as the average length of judicial
process and the crime specific clear up rate), demographic and socio-economic vari-
ables. In addition, X contains a measure of criminal association at provincial level.
Finally, D is a matrix of geographical dummies to control for heterogeneity among the
north, centre and south of the country. Our analysis is conducted with and without
the inclusion of the geographical dummies and the results do not appear to vary sig-
nificantly. The data pertain to 2002 or, when an average is considered, to the period
2000-2002.

In Buonanno et al. (2009) the parameters in model (3.4.2) are estimated for each

crime type, with different variants of W and measures of social capital. Details of the
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estimation methods used are not provided in the paper. The results in Buonanno et
al. (2009) indicate that the estimate of A in model (3.4.2) is insignificant in each of
the regressions considered (or only barely significant at 10%, in few cases). However,
we observe that when we estimate A in model (3.4.1) we detect spatial correlation,
suggesting that the effect of geographical contiguity is mostly taken into account by
the regressors included in model (3.4.2). Hence, both models (3.4.1) and (3.4.3) seem
to be appropriate and we expect the estimate of A in model (3.4.1) to reflect the overall
similarities across neighbouring provinces.

For the purpose of out analysis, in order to investigate more specifically which
are the main determinants of Y, we perform an OLS estimation of the parameters
in model (3.4.3) and observe that Y is strongly affected by the measure of criminal
association (denoted C'A, henceforth). Indeed, the estimate of the coefficient of C'A is
significant at 0.5% level. In turn, we expect that C' A displays significant correlation
across provinces and to confirm our conjecture we estimate the spatial parameter
of the additional model

CA=pWCA+e. (3.4.4)

As expected, the estimate of u is strongly significant (0.5% level) when inference is
based on the normal approximation.

When regressors are not included, such as in (3.4.1), we would expect to detect a
similarly strong spatial correlation in the dependent variable. However, the estimate
of XA in (3.4.1) is only significant at 5% level, when inference is based on the normal
approximation.

As discussed for the previous example, we investigate whether we obtain a different
outcome of the test of (1.2.1) by including the small sample corrections derived in
Sections 2.1 and 3.1. We report the results obtained for the robberies rates, W defined
by a contiguity criterion as described in Section 3.3 (the same choice of W is adopted in
Buonanno et al. (2009)), and blood donation as a measure of social capital, although
similar results can be derived for the other crime rates and alternative measures of

social capital.

Rejection rule | a =0.95 a=10.99 a = 0.995
aX > zq4 reject Hp (1.9998 > 1.645) fail to reject Hp (1.9998 < 2.326) fail to reject Hp (1.9998 < 2.5776)
aX > tEd reject Hgp (1.9998 > 1.4042) reject Hg (1.9998 > 1.8821) fail to reject Hg (1.9998 < 2.0410)

Table 3.7: Outcomes of the tests of Hp in (1.2.1) when X in model (3.4.1) is estimated by OLS

Rejection rule | a =0.95 a=10.99 a = 0.995
arx > zq reject Hg (2.2934 > 1.645) fail to reject Hp (2.2934 < 2.326) fail to reject Hy (2.2934 < 2.5776)
ax > fed reject Hg (2.2934 > 1.5227) | reject Hp (2.2934 > 2.0767) reject Ho (2.2934 > 2.2704)

Table 3.8: Outcomes of the tests of Hp in (1.2.1) when X in model (3.4.1) is estimated by MLE
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The outcomes of the tests of Hp in (1.2.1) when A is estimated by OLS and MLE
are reported in Tables 3.7 and 3.8, respectively. We notice that when the usual normal
approximation is adopted, we are able to reject Hy only at 5% level, A being estimated
by either OLS or MLE. Instead, when the Edgeworth correction is included, we are
able to reject Hy at 1% level when A is estimated by OLS and at 0.5% level when A is
estimated by MLE. As is the case in the previous example, these results confirm those
of the simulation work, i.e. for small/moderate sample sizes, the results obtained

when A is estimated by MLE slightly outperform those obtained by OLS estimation.

A  Appendix
A.1 Proof of Theorem 3.1

We first introduce some notation that will be used throughout the proof. We write
(A =1\, 5°(N),

where (), 0?) and 62()\) are defined in (3.1.1) and (3.1.2), respectively. Define also

Z0(\) = \/Zag())\‘), ZO\) = \/z (a;l)g\) _E <a;l§;\)>> ,

NY:AeY K() = _%E (821()\)> o) A

W= N2 ox ~ ax PO
Finally, Oc(.) indicates an exact rate (in probability). In order to establish whether the

orders of the coefficients appearing in Theorem 3.1 hold as exact rates, it is relevant
here to distinguish Oc(.) from O,(.).

By (3.1.1),
AN (YWY - \YWWY) o
5 = YISOVS Y tr(STHN)W) (3.A.1)
and
Pl - YWwWY Lo AY'W'WY - Y'WY)?
Az YISOYSOOY T (YIS(NSOOY )2
—tr(STY)WSTH)W). (3.A.2)
Therefore, under Hy,
(1) 6/W6
ZM(0) = Vhn—, (3.A.3)
€€

and

17! / 2 A7)
z<2>(0)_\/f{—n6WW€+2n<“f/6) —tr(W2)+nE<€WW€>
€

¢ €e €e
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/

/ 2
—onE <6W6) +tr(W2)}
€€

"W'We dWe\? eW'We
= %{—ni6 WZ/EVV +2n < :Ie/ ) —tr(W?) + nE(EZ’eV)V )
/ "\ 2
EpNeACl (EVL;ZV ) tr(W?)}
= Z{_ne’W;’GI/Ve +2n (6(/?6/;)2 + tr(W'W)
_ %tr((W LW + %)—1}, (3.A.4)
E(€W'We) = o?tr(W'W), (3.A.5)
E((€(W +W"e)?) = 20Mr (W + W')?) (3.A.6)
and
E((€€)?) = o*(n® + 2n). (3.A.7)

The second equality in (3.A.4) follows because both the ratios

€We %6'(W +W'e eW'We
= and _—
€e e ee

are independent of their own denominator and therefore the expectation of the ratio

is equal to the ratio of the expectations (Pitman (1937)). Similarly,

h <—6n6,W66/W/W6 8n(We)3

= — — T 3 A
J(O) =~ o gy W )) (3.A.8)

and, using (3.A.5), (3.A.6), (3.A.7),

17! /1 Ne 2
K(0) = —% <— E(EEZ,KE) Lon” (e ;g{e,;?/) ) > + %tr(Wz)
-1
= %tr(WQ) + %tr(W’W) — %tr((W +W"?) <1 + Z) : (3.A.9)

By Lemmas 3.1, 3.2 and 3.3 (reported in Appendix A.2) Z(M(0) = 0.(1), Z?)(0) =
O,(1) and J(0) = Op(1), respectively. In addition, under Assumption 3, K (0) is finite
and positive for large n.
By the Mean Value Theorem,
o hOUA) _ hal©)  he*0)5  1hU0) 5, £84l(;\)5\3
n O\ n 0N n 0N 2n ON3 6n 0N "7
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where A is an intermediate point between A and 0. Therefore,

h h - R R S IOV
o) no2) )5 — 152
\/;Z (0)+\/;Z ()X = K(O)X+ 5 T(0)X + o =0

and rearranging,

- ZW©0) Z®OW0) . 1 mJ0) ., 1 \/ﬁ AU\ -
A= At Sy A 4y = A% 3.A.10
\/; x0) " K0 " 2Var©" T6Vn on (3-4.10)
The first term of the RHS of (3.A.10) is O (1), the second and the third are O,(\/h/n),
since it is known that A = O(y/h/n) (see Lee (2004)) while Z()(0) and J(0) ar )s

e Op(1
by Lemma 3.2 and Lemma 3.3, respectively. The last term is o,(1/h/n) since A0
and 0*1(0)/0A* ~ tr(W*) ~ (n/h). Hence,

\/; o ZH0  [hZ@z00) 1 RioEvoR ( h) |

-~ K(0) n  K(0)2 2Vn  K(0)3

n

where the last displayed expression has been obtained by substituting into (3.A.10)
the approximation for A implicit in (3.A.10), i.e

- h ZMW(0)
AL K(0)

Let z be any finite real number. We have

Pr(\/z;\ <)
_ Z'(0) Z®©0)zM©) 1 [nJ0)(Z21(0)) h
= PT(K(O) +\/; (0)2 +2\/; K(0)3 +0p< n) S:E)
B 1 [heéWe h 22 (0)Z2M(0)
- P“Km»V:;aE+V:Kmp

1 [hJ(0)(Z2M(0))? h
‘+2V:1ww*+%<V:>§”

where the last equality is obtained by substituting (3.A.3) and multiplying both nu-

merator and denominator of the first term by 1/n. We write

KO h Z2(0)ZzM(0)1

\[ We—a— \/; KO)  n¢
1 (0)(Z'(0)) h
*zV:Bu»z7f€+%<V:>
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e BZP0Z00 1, 1 RI0)@ED0) 1, 0
_2e(C+C)e+ - K(0) Seet oy K(0)? n66+0p |
(3.A.11)
where
C= \/EW _ A0, (3.A.12)
n n

Therefore, by standard algebraic manipulation,

Pr(\/zj\ <z)=Pr(f<0).

Under Assumption 3 and by a slight modification of the argument in Lemma 3.1 the
first term of the RHS of (3.A.11) is Oc(1). The second and the third terms are both
Op(y/h/n) by Lemmas 3.1, 3.2 and 3.3, and since K (0) is finite and positive in the
limit.

Under Assumption 1 the characteristic function of f can be written as

E(eitf) _ b /eitfe;ogdu

V2no? .
_ 1 / Litw! (O4€ )U{Hit\ﬁzm(o)zu)(o) 1
V2mo? . n K(0) n

where, from (3.A.3), (3.A.4) and (3.A.8), it is clear than in Z(1)(0), Z)(0) and J(0)
appearing in the integrand function of the last displayed expression, are functions of
u. Next,

it f ]. 1 / 2 A A
Bleithy — /e—%Qu (I=ito®(C+C)u g,
= Ve
+z‘t\/z — / i =ite*( 6N 200 2D ()
n\/2no? K(O);R n
Lofh 1 1w cronu (Z21(0)T (0)u' \/ﬁ
1, /h 1 1 Y
! 2“\/;¢WK(0>2/6 2 aduto (g
%”L
Let
S = (I —ite*(C+ ). (3.A.13)

By the change of variable
u— v =32y, (3.A.14)
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W F ~ 1
E(e™) = det(I — ita*>(C + C")) V2 ——
(") = det( €N g
_aly o1 ZW0)Z2® 01
-2 ; _
x{/e 202 (1 + it D T(0) - dv

§Rn
1. [ 1 (ZW(0)2J0)w's h
+ QZt\/;K 0)? -~ Jdv} + o (\/Z)

n (1) @) (0)e'n-1L

4= zt\/>K < D) Z(o)ezle>}+o <\/Z> , (3.A.15)

where det(I —ito?(C' +C"))~1/2 is the Jacobian of the transformation in (3.A.14) and
T]j(é +C"),j = 1....n, are the eigenvalues of (C'+ C"). It should be stressed that, after
the transformation in (3.A.14), Z1(0), Z)(0) and J(0) in the expectations displayed
n (3.A.15) are functions of V = ¥ ~1/2¢ instead of ¢ only.

For notational simplicity, let

Q:Q1+Q2+o<\/z>’
Q1= it\/z ! E <Z(1)(O)Z(2)(O)e’§]—1€>
nK(0) .
1. /h 1 (ZW(0))27(0)¢'S e
o= 3y s ( n ) |

From (3.A.15) the cumulant generating function for f, denoted t(t), can be written

where

and

as

U(t) = —%Zln(l —ita®n;(C +C")) +In(1+ Q)
j—l
s+1

72 (ito”) r((C + C')* Z (3.A.16)

Let &5 be the sth cumulant of f. The contributions of the first term of the RHS of
(3.A.16) to &1, ke and k3 are given by

o?tr(C) = —o?xK(0), (3.A.17)

%tr((é + %) = %#(tr(mﬂ +W'W))+ 0 (i) (3.A.18)
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and

/
oStr(C + €'Y = o <h>3 : (2tr(W3) + 6tr(W?W')) + o ( h) : (3.A.19)

n n

respectively. The contribution to &1, Ko and &3 of the second term of the RHS of
(3.A.16) are evaluated in Appendix A.2. Collecting (3.A.17), (3.A.18), (3.A.19) and
the results in Appendix A.2,

W\ tr(WW'W) h\ 3% tr(W3) h
~ 2 2 2
= —0“2K(0) — 2 — _— - — —
= ok (0) =202 (1) () T el
(3.A.20)
- 4h 2 / h
and
fig = —40" () tr(W3) — 60° <> tr(WW'W)+o|+/=|. (3.A.22)
n n n
By centring and scaling the statistic f ,
A
fc = ~1/2 )
nQ/
the cumulant generating function of fc can be written as
ey Lo RE(it)
Uty = 51t + ZT’ (3.A.23)

where £ = Rs/ Rz/ ?. From (3.A.23), the characteristic function of f¢ becomes

E(eitfc) — 6—%152

T N T
2 RS(D3 RS REGD)® RS (RS2,
= i1t 3(3!t) - 451? * 5(5!t) o ((3?))2}(“)” ----- b

Thus, by the Fourier inversion formula,

Pr(f¢<z) = 7¢( dz+/H3 dz+/H4 2)dz + ..
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Collecting the results derived above,

pr<\/fx <a)=Pr(f <0) = Pr(fRy + f < 0) = Pr(f* < —&S)

e RS RS e
= (-7 — 3?@(3>( )+4—‘!1<1><4>(—m1)+.... (3.A.24)

Now, from (3.A.20) and (3.A.21),

3/2 tr 3/2 tr(W3
. —oftK(0)—20 2 (L )/ %_02 () tl%) -
M= h / 1/2 “+ o0 E
o2 (n(tr(W?2 + W'W)))

r(W
h tr(WW'W h tr(W3)
_xﬁ(tr(WQ +W'W)) - 2\/7 tr(W2+W’W \/;(tr(WQ—i-W’W))
(E(tr (W2 + W/W)))1/2
+ ol4/= ),
n

where the second equality has been obtained by substituting
h 9 , 1

according to (3.A.9). We set x = \/n/ha~1(, where

a=\/tr(W2+W'W).

Therefore

_ e s (WW’W) (W) +0< h)

and, from (3.A.21) and (3.A.22),

i~ —4tr(W3) — 6tr(WW'W) _ Atr(W3) 4 6tr(WW'W) o n

(tr(W2 + W/W))3/2 as n’

By Taylor expansion of the function ®(—£f) in (3.A.24),

Priassq) = o)+ (2T 4 1 ) )o0) - a0 +o< h) .

as as

A.2 Auxiliary results

In this appendix we will present and prove some of the auxiliary results used in the
proof of Theorem 3.1. As already stressed, the expansion in Theorem 3.1 is formal, so
we do not deal with convergence issues in some of the results that follow. Moreover,

it must be mentioned that for notational simplicity, we prove Lemmas 3.1, 3.2 and
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3.3 for a symmetric W. When W is not symmetric the same results hold simply by

substituting (W + W’)/2 instead of W where necessary.

Lemma 3.1 Under Assumptions 1-3

Proof We have

B eWe\? _ E(We)?  2tr(W?)
 E(de)2  n2+2n

e

under Assumptions 1-3. Hence, by Markov’s inequality,

/
Vi e _ o,

€e

Lemma 3.2 Under Assumptions 1-3

where Z?) () is defined according to (3.A.4).

Proof By rearranging terms in the first two lines of (3.A.4),

! ! ! !
Z2®(0) = — h neWWe_nE eW'We n h on,
n €e €e n €e

By the C, inequality,

E(Z)(0))*

/

€e /

n €c€ €c€

Now,

17A7! Y Vel 2 /
< 2QE (neWWe —nE (6WW6>> +2QE <2n (elj[/e
n

1

nh’

eWe

!/

)

e€We

€e

))

2 / 2\ 2
) _an<€W€>> .
€e

(3.A.25)

187! 17! 2 17! 2
E(newwe—nE<6WW€>) :E<n€WW€—tr(W’W))

€e €e €e
E(dW'We)? E(eW'We)
2 ! 2 /
=_n‘—— tr(WW)* = 2ntr(WW) ——————=
U TR + (tr( )" — 2ntr( ) E@o)
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—((tr (W'W))? + 26 (WW)2)) (1 ~240 (7112 ) — (W)
ot (WW)2) <1 - % +0 <;2>> (W) (i +0 <nlg)> (3.A.26)
and hence,
E (ne'vzfewe —nE <€/”€/,T/6)>2 ~ 2r(W'W)?) ~ % (3.A.27)

under Assumption 3. In case the sequence h is bounded, the latter result would be

modified as

2% vl A7t 2
E <n€ WWe g (6 v WE)) ~ 2tr((WW)2)

€e €e

2 (tr(W'W))? ~ n.

n

It is worth stressing that, despite we are not attempting to provide an exact rate, we

could not use the inequality

E(X - B(X))* < B(X?)

instead of (3.A.26), as it would neglect relevant terms. Moreover,
eWe\? dWe\? ’ eWe\?

4n’E —-E < 4n’E

€e €e €e

E(eWe)* 5 12(tr(W?2))2 +48tr(W4) 1
n ~

=An? " — L ~ 4 . A2
" E(ee)* n* h? (3-4.28)

Collecting (3.A.25), (3.A.27), (3.A.28) and by Markov’s inequality, we conclude Z(?)(0) =
Op(1).

Lemma 3.3 Under Assumptions 1-3

where J(0) is defined according to (3.A.8).

Proof By the C, inequality (applied twice),

B(I(0)? <2 (E <6”€,W€6/W/W6>2 +E (8”(6/%)3 - 2tr(W3)>2>

—T 2 (6/6)2 (6/6)3

n

K2 (6neWedW'We\?  h2 _ [8n(éWe)3\”
<2—F 4—F | ————

<2t (M) e (M)




3. Improved Test Statistics based on MLE for Pure SAR 84

2

4 ()2, (3.A.29)

n?
In order to evaluate the rate of the first term in (3.A.29), we use E(A/B) ~ E(A)/E(B),
without deriving the exact order of the remainder. As previously mentioned, E(A/B) =
E(A)/E(B) when A/B is independent of B. When the latter fails, we are able to
justify E(A/B) ~ E(A)/E(B) as an approximation using an argument similar to

Lieberman (1994). Using standard results on the expectations of quadratic forms,

/ 187! 2 / 1A7! 2 2 / 2
E 2
B Gne'Wee W'We\” 36m2 (€ Wee'W'We) 3602 tr(W=)(tr(W'W))
(€'e)? E(ee)t nt
n
~ (3.A.30)
Moreover, by a recursive formula (Ghazal (1996)),
n—1 '
E(We)" = g E(¢We)" ', (3.A.31)
i=0
where
—1 L :
i = ( " )ilzza%“tr((wv“),
i
we have
Sn(€Wed\?  64n2E(We)S ,120(tr(W2))3 1
Fl——) =————F—F"— ~064 ~ . 3.A.32
( (e'€)3 E(€e)b " nb nh3 ( )

Hence, the term

n2

h?
in (3.A.29) dominates both (3.A.30) and (3.A.32), whether h is divergent or bounded.

Therefore,

4(tr(W3)?) ~

h? n?

(ﬁﬁ) = 0(1),

E(J(0)*=0

implying J(0) = Op(1).

Evaluation of cumulants

Here we evaluate the contribution to K1, K9 and K3 of the term

ho1lo1
Q= z‘t\/;K(O)nE(Z(l)(O)Z(Q)(O)e’E16)

appearing in (3.A.15). Since the expansion in Theorem 3.1 is formal, E(A/B) ~
E(A)/E(B) is used without proving the exact order of the remainder terms. Substi-
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tuting (3.A.3) and (3.A.4),

Q1= Q11+ Q12 + Q13,

where

ho1 EX12W R 2ee 12 Y 1 2

—ity [ — hE ,
n K(0) e>le
ho1 (X212 We=1/2¢)3
= 2ity/ — hE
2= \/;K(O) ( (X 1e)?

and

Contribution from term Q1

By standard results on the expectations of quadratic forms in normal random

variables, we have

t\/7 1 S 1/2(W + W/)2—1/26612—1/2wlwz—1/26)
"V E©O E(¢STe)
B t\/’ tr((W + WHEDtr(WWE™Y) + tr(EHW + W)STITW'W))
- K(0 o?tr(X-1) '
Since -
S = (I —ite?(C+ ) = (ite*(C + C'))°
s=0

by (2.4.2), it is straightforward to show that tr(X71) ~ n.

The contribution from ()11 to &1 is then

AN Ko tr(WW'W) h
\[U (WWW)+ ( n)__202\/;tr(W2)+tr(W’W)+O<\/;>’

(3.A.33)

since

K(0) = %(tng FWW)) 4+ 0(%),

according to (3.A.9).

The contribution to K9 comes from the term

_(it)204(7h1)3/2K10){;tr((W +W(E + E)er (W)
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+ tr((C+ CYW + WHW'W) + tr((W + W) (C + CYW'W)},

with C' given by (3.A.12). The contribution to &y is given by

hoy 1 , ) h
_04(5)2K(0) (tr(W+W )Q)tr(W W)+ o, <\/;> , (3.A.34)
tr(W 4+ W) (C +C") = (tr(W + W')? )\ﬁ ~ ( Z) , (3.A.35)

tr((C + CYW + WHW'W) ~ (

%

> (3.A.36)

" tr((W 4+ W) (C + CYW'W) <\/Z> (3.A.37)

Similarly, the contribution to %3 comes from the term

—(z‘t)?’(Z)S/?K}m;a%;tr((W FWE + ENr(WW(C + EY)
+ %tr((W +WE + CY2)er(WW) + tr((C + CY2(W + W)W

+ tr(W + W) (C + C")V*W'W) + tr((C + C")YW + W) (C + CYW'W)).

Now,
tr(W'W(C +C")) ~ \/z%r(WW’W), (3.A.38)
(W (C + C)2) ~ %tr((W WY, (3.A.39)
tr((C+ C2(W + W)W'W) = o (ﬂ) , (3.A.40)
tr(W 4+ W) (C + C"?W'W) =o <\/Z> (3.A.41)
and
tr((C+CYW + W) (C + " YW'W) =o (ﬂ) : (3.A.42)

Using (3.A.35), (3.A.36), (3.A.38)-(3.A.42), and after some tedious but straightfor-

ward algebra we conclude that the contribution to &3 is

-6 (h)5/2 ! S (2tr(W2)tr (WW'W) + 5tr(W'W)tr(WW'W)
" K(())a T r T r

+tr(W'W)tr(W3)) + o ( h) : (3.A.43)

n
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When W is symmetric (e.g. W given in (1.1.2)), the latter expression simplifies to

3/2
—24 (h> oStr(W3) + o < h) ,
n n

1
K(0) = 2?40 <) :
n n

as

according to (3.A.9).
Contribution from term Q1o

When X~ is positive definite, 1/2(¢/S~1/2(W +W')E"Y2¢) /¢S~ e and €Y~ e are
independent (see e.g. Heijmans (1999), who provides sufficient conditions for Pitman
(1937) general result to hold). Without considering validity issues for (2.4.2), ¥~! in
(3.A.13) is indeed positive definite, since X! ~ o2I. Hence,

3
1 I =1/2770-1/2
Qn = 2L hp (6 W2 Te) omte

n K(0) €Y le
3

ho1 X2 WE 12 1

= ta\/>K(O)hE< T, ) E(€X %)
1 ’2_1/2(W+W’)E_1/26)3 -

- 2t\/7K EDRAE E(€x71e)
_ 6 Ny—11)3
= 2it nK(O)hU {( r(W+WHE™))

1 Ny —1 1 Ny —1 ?
+ 6tr §(W+W)E tr §(W+W)E

1 % o?tr(x71)
+ 8t ((22 1(W+W)> >}06((tr§3_1)3+6t7“(2_1)t7“(2_2)+8tr(2_3)).

We have

(trE™1)3 + 6tr(D " tr(72) + 8tr(X73) ~ 0

and tr(X71) ~ n.

The contribution from ()15 to &1 is then

h
\/>K r(W 4+ W"3) = ( n) (3.A.44)

A similar argument holds also for the contribution from Q12 to both Ko and k3.

Contribution from term i3
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We have

3/2
Qs = it (Z) K}O)(tr(w'vv) _ %tr((W FWI) (14 %)_I)UQtr(%(W L WsL).

It is straightforward to see that there are no contributions to i, since

3/2
52 (Z) Kto)(tr(W’W) _ %tr(WQ)(l + %)—1)757«(14/) ~0. (3.A.45)

The contribution to K9 comes from

3/2 ~ -
(it) 20t (Z) Kto)(tr(W’W) - %tr(Wz)(l + %)*U%w((W W (E + )

and by (3.A.35) we conclude that Q13 contributes to kg with

2
ot <Z> Kto)tr((W +WH)tr(W'W) + o, <\/§) : (3.A.46)

The contribution to &3 comes from

3/2 - -
(it)30" (Z) K}O)(tr(W’W) - %tr(WQ)(l + %)*)%m«((w LW E + )

and hence, from (3.A.39), we conclude that @13 contributes to k3 with

5/2
60" (Z) Kto)tT(W,W)(t""(W?))+3tr(W(W,)2))+0( Z) (3.A.47)

When W is symmetric, the latter simplifies to

n

1206(@)3/2tr(w3) +0 ( h) :

From (3.A.33), (3.A.44) and (3.A.45) we conclude that @); contributes to &1 with

From (3.A.34) and (3.A.46) we conclude that any contribution to &2 from @ is ne-
glegible, while collecting (3.A.43) and (3.A.47) we have that the contribution to &3
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from Q1 is
126h5/21tWW’WtW2 tr(W'W f
— 2t () G W) () o 1
/
= —120° (Z)thr(WW'W)—I—o( Z) (3.A.49)

Finally, we report the main steps for the evaluation of the contribution to K1, ks

_ ;z't\/ZK(lo)QiE((Z“)(O))?J(O)az16).

Substituting (3.A.3) and (3.A.8), we write

and &3 from

Q2 = Q21 + Q22 + Qas,

where, by independence between 1/2(¢/S1/2(W + W")E~1/2¢) /¢ N 1e and ¢/X e

/Z 1/2WE 1/2 ) 6/271/2V[/'/V[/'Efl/2€>
Q21 ~ —3it
K E(@s 1) ’

5
h 1 ¢Y12we-1/2¢
= 4ity/— h’E 'yt
@z ! \/;K(O)2 ( €Y le ‘ ¢

/Z 1/2WE 1/2) 1
= 4275\/7[( Bl 1oy E(€X %)

and

2
h 1 h? ¢X12Wn-1/2¢
= —ity/— —tr(W3E 'n-l
Qs ! \/;K(O)2 n r(Ws) ( ¥ le ‘ ‘

h 1 h? E(ex12Wwe—1/2¢)2
N (w3 E(€x71e).
! \/;K(0)2 AU T v (€277)

Contribution from term Q9

Using some standard results on the expectations of quadratic forms in normal

random variables,

E((%E’E_l/Q(W + WS 23S 12w ws—12¢)

_ 08((tr(2_1%(W W) (S
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+ 6(757"(2*1%(1/[/ + W’)))%T(Z*l%(w + WHZtw'w)

4 6tr((2’1%(W + W’))%w(g*%(w W) (S W)
4 8tr(z—1%(w + W’))tr((Z_lé(W WS

4 12157“(2_1%(12[/ + W’)Z_1W’W)tr((2_1%(W L))

+ 48757‘((2_1%(1/1/ + WH)3STW'W))

and E(e'Y~te)? ~ 0%n3. Therefore, the contribution to & is

2
-\l e (W WP (W WOWW)

h

+ 6tr(W+W)PWW)) =0 < n) :

A similar argument holds for the contribution to both ko and k3.
Contribution from term Q9

We have
E(¢xte) o’n 1

B Te) o105 T o8pd”

Also, we can evaluate the fifth moment of ¢S ~1/2Wx~1/2¢ by the recursive formula
given in (3.A.31). By tedious, but straightforward algebra, it is possible to show that
the contribution to &1, &g and &3 are o(y/h/n). Intuitively, this is because no term in
E((€x~12Wx~12¢)%) is large enough to offset the factor h2/n?.

Contribution from term o3

We have
E((€x712ws"12¢)?) = iE(e’E_l/Q(W + Wn1/2¢)?
- ot <i(tr(2_1(W +FW)?+ %tr((z‘l(W + W’))2)>
and

E(ex1e) no? 1

B> 102" n2ot T no?

Therefore, the contribution to %1 is

2
— 02\/51((10)2 %(tr(WQ) + tr(W/'W))tr(W?)
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- R (W) h
__ “2\/;(757«04/2 R ( n) . (3.A.50)

Similarly, the contribution to K2 comes from the term

2 ~ ~
—(it)204\/zK(10)2 %tr(W?’)tr((W +WHAC +C"))

and, by (3.A.36), is o(y/h/n).

Finally, the contribution to k3 comes from the term

7/2
(it <h> K(lo)ztr(W?))(tr((W - W)))?

n

and hence the actual contribution to k3 is

n n

/
— 650 <h>3 2tr(W3) +0 ( h) : (3.A.51)

n n

7/2
6o® <h> [(;Wtr(Wg)(tr(W2)+t7‘(W’W))2+o( h)

Collecting (3.A.48) and (3.A.50), we conclude that the contribution to #; from
Q1+ Q2 is

n

n

gy <h>3/2 r(WW'W) <h>3/2 tr(W?3) h

K(0) Ko W)

The overall contribution to sy from @1 + @2 is neglegible, while that to &3 is

6l G / 6 (M) 3 h
—120° | — tr(WW'W) —60° | — tr(W?°)+o -1,
n

n n

by collecting (3.A.49) and (3.A.51).
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4 Finite Sample Corrections for
the LM Test in SAR Models

As already outlined in Chapter 1, LM testing is especially computationally con-
venient because it depends on the null model, and thus does not require estimating
the spatial coefficient. An LM test can be expected to be efficient against local SAR
alternatives, and to have an asymptotic x? distribution under the null. However, the
x? approximation may not be accurate in modest samples, so a test based on it may
be badly sized. Thus we develop tests with improved finite-sample properties.

The main contribution of this chapter is to develop tests based on the Edgeworth
expansion of the cdf of the LM statistic. Specifically, in Section 4.1 we derive a refined
test for Hy in (1.2.1) against a (2.2.1) when the data follow model (1.2.5). We focus
here on a two-sided test because in some circumstances the practitioner might not
have an ex ante evidence regarding the sign of A. We then provide corresponding
tests of (1.2.1) in linear regression models with SAR disturbances. In both cases the
proofs of the theorems are left to the Appendix. In Section 4.3 we describe the finite
sample corrections of Robinson (2008b), so that the finite sample performance of the
latter can be compared with that of the Edgeworth-corrected tests. In Section 4.4
we compare the corrected tests presented in Sections 4.1-4.3 with bootstrap-based
ones in a Monte Carlo study of finite sample. Section 4.5 compares the Edgeworth

approximation with the the exact distribution of the LM statistic.

4.1 Edgeworth-corrected LM tests for independence in pure SAR

We suppose that model (1.2.5) holds and we focus on testing (1.2.1) against (2.2.1).
For any admissible values of A and o2, the Gaussian log-likelihood for Y in model
(1.2.5) is given by (3.1.1). As discussed in Section 3.1, any A € A where A is any
closed subset of (—1,1) is admissible.

By standard linear algebra,

8l()\,02) . -1 1 ! /

T = (ST W) + SYSAWY,

PiroY) (S~Y)W)2) — =YW WY,
O\2 N " o2 '

Hence, given the MLE for o2 displayed in (3.1.2)

01()\,02)‘ _Y'WY
ox T Lyry
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and SU(N. 0?)
, 0 2
Therefore, a version of the LM statistic is

n2 YWY \?
LM = 4.1.1
tT(M/Q + MNM/') ( ]/‘IY > ( )

so, under Hy,

n? eWe\?
LM = . 4.1.2
tr(W?2 +W'W) ( €'e > ( )

The latter corresponds to (1.2.16) when 5 = 0 a priori in (1.1.3).
As noted by Burridge (1980), (4.1.2) is also the LM statistic for testing (1.2.1)

against the spatial moving average model
Y =€+ A\We

(a corresponding equivalence to that found with time series models).

As already discussed in Chapter 1, under suitable conditions we have
P(LM <n)=F(n)+o(1)

for any 7 > 0, where F denotes the cdf of a x? random variable. Thus (1.2.1) is rejected
in favour of (2.2.1) if LM exceeds the appropriate percentile of the x? distribution.
We can likewise test (1.2.1) against (2.1.1) by comparing v/ LM with the appropriate
upper or lower percentiles of the standard normal distribution. However, except in
Section 4.5, we focus throughout on a two-sided tests.

Throughout this chapter f denotes the x? pdf.

Theorem 4.1 Suppose that model (1.2.5) and Assumptions 1-8 hold. Under Hy in
(1.2.1), the cdf of LM admits the formal Edgeworth expansion

PHLM < alf) = F(o) + ufn) — S5 +o () (413)

i case h is divergent, and

PHEM < 1) = F) + §uf () = {0 = 2 +0(3) (@

when h 1s bounded, where
L tr(W' + W)4

d4

~

% (4.1.5)

and a defined according to (3.1.4)
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The proof of Theorem 4.1 is in the Appendix. Again, it must be stressed that
both expansions in Theorem 4.1 are formal.

Clearly, (4.1.3) and (4.1.4) entail better approximations than (1.2.18). The leading
terms in (4.1.3) and (4.1.4) depend on known quantities, so they can be used directly
for approximating the cdf. The two outcomes in Theorem 4.1 create a dilemma for
the practitioner because it cannot be determined from a finite data set whether to
treat h as divergent or bounded. However, (4.1.4) is justified also when h is divergent
because the extra term in the expansion, —2n2f(n)/n, is o(h/n).

Theorem 4.1 can be used to derive Edgeworth-corrected critical values. Let wZ

LM

be the a-quantile of LM . By inverting either expansion, we can expand wy

as an

infinite series

LM

Wy, = 2(21+01)/2 +p1 (Z(21+a)/2) 4+ ... y (416)

where 101(2(21 +a) /2) is a polynomial whose coefficients have order h/n, and that can
be determined using the identity o = Pr(LM < wkM) and the expansions given in
Theorem 4.1. It is worth recalling that, consistently with the notation used in Chapters
2 and 3, z, denoted the a—quantile of the standard normal variate. Specifically, when

h is divergent, we have
h
0 = PrEM < wf) = F) + (Ful - StP) s +o 1)
4 12 n
By substituting (4.1.6), the leading terms of the LHS are
F(zf )+ p1(2f )f (2 )
(14a)/2) T P12 (14a)/2 (1+a)/2

) K 4 ) h
- (ZZ(1+a)/2 N EZ(1+04)/2) f(Z(Ha)/Q) +o (n)
= a+ p1(2(21+a)/2)f(2(21+a)/2)

K 2 K 4 2 h
+ <Z’z(1+a)/2 - ﬁz(1+a)/2) F(Zfiqay2) To (n> :

The latter is & 4+ o(h/n) (rather than o + O(h/n)), when we take

__(E,_F 2) R 4.1
p1(x) <4x T ~ (4.1.7)
Similarly, when h is bounded, we take
K K o9 2 4 1
[ — —_ _ — ~ —, 4.1.
pi@) <4x 127 " ) n (4.1.8)

If wiM were known, the size of a test of Hy in (1.2.1) would obviously be Pr(LM >
wkM|Hp) = 1 — a. We can compare the size of the test of (1.2.1) against (2.2.1) based
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on the usual first order approximation, i.e.
Pr(LM > 2., 5| Ho) (4.1.9)

with
Pr(LM > 2,1y 5 + P1(20011)/2) | Ho), (4.1.10)

where p;(.) is defined according to (4.1.7) if h is divergent and (4.1.8) if h is bounded.
Thus, the error of the approximation of (4.1.9) is O(h/n), while that of (4.1.10) is
o(h/n) when the sequence h is divergent, or o(1/n) when it is bounded.
As an alternative to using corrected critical values, we can also apply Theorem 4.1
to construct a transformation of LM whose distribution better approximates x? than

LM itself. Starting from the expansion in (4.1.3), we consider the cubic transformation

K

g(x) =z + %x -5t iQ(m), Q(z) = (gf <;7x3 - %mQ + x) o (4.1.11)

such that h
Pr(g(LM) <n)=F(n)+o <> )

n

Similarly, from (4.1.4), we can write

such that )
Prlo(Lan) < 1) = Flo) + o3 )

n

As already outlined in Section 2.1, the transformations (4.1.11) and (4.1.12) were
proposed in case of a standard normal limiting distribution by Hall (1992), or, in a
slightly more general setting, Yanagihara et al. (2005). In Lemma 4.2 (reported in
the Appendix) we show that such result extends to x? limiting distributions.

Therefore, we can compare
Pr(g(LM) > 2, 1) 2| Ho), (4.1.13)

where ¢(.) is defined according to (4.1.11) or (4.1.12) depending on h, with (4.1.9).
Again, (4.1.13) has error o(h/n) compared to the O(h/n) error of (4.1.9).

4.2 Improved LM tests in regressions where the disturbances are

spatially correlated

In this section we extend the results derived in Section 4.1 to to the more general
model (1.2.15).
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From Burridge (1980), Anselin (1988, 2001), the LM statistic for testing (1.2.1)
against (2.2.1) is

~ 2 A 2 2 ! 2
LM = i LU I L O ISy
tr(W'W) + tr(W?2) a? Y'PY

where P is defined according to (1.2.17). Indeed, when data are driven by (1.2.15)
and for any admissible values of A, ¢ and 3, the Gaussian log-likelihood for Y is given
by

I\ 0% 5) = —gln(27r) - gln(ag) + In(det(S(N))) (Y — XBYS(NSO\N (Y — XB).

1
- 202
Thus, given A, the MLE for # and o? are
BN = (X'S(NSA)'X)IX'S(NS(N)'Y
and )
G*(\) = e XB)'SNSN(Y — XB).

It is straightforward to notice that 5(0) is the OLS estimate of 3. We denote @ =
Y- X B (0), which is the vector of OLS residuals. By standard linear algebra,
ol(\, 02, B) 1 5 W' Wa

o = gy (V = XBO)WY = X3(0)) = n=rme

and 52 )
E (W) o= tr(W'W) + tr(W?).

Hence, LM is given by (4.2.1).

We impose the following condition on X

Assumption 4 For alln, each element x;; of X is predetermined and |z; ;| < K.

Moreover, for all sufficiently large n

()
0<c <nm -

and the limits of at least one element of each X'W X/n, X'W?2X/n and X'W'W X /n

are non zero.

Non nullity of the limits of at least one element of each X'W X/n, X'W?2X/n and
X'W'W X /n is required to ensure that the orders of some of the quantities appearing
in the following Theorem hold as exact rates and not only as upper bounds, as will

be explained below. We have the following results

Theorem 4.2 Suppose that model (1.2.15) and Assumptions 1-4 hold. Under (1.2.1),
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the cdf of LM admits the formal Edgeworth ezpansion

~ K K o h
< = - — - 2.
Pr(Ld <l = £+ (5 - fy? 4 2am) s+ (5) (22
i ( ) 1K)
_t?“Kg—Kg 1t’I“K1
wy = = I e (4.2.3)
if h is divergent, and
Pr(LM <n) = F(n) + En— 4w 2 f(n)+o 1 (4.2.4)
<n)=Fn 11 1" 21— n - 2.
v (Ks—K2)  1(tr(K)?  k
. tr 3 — 2 1 (tr 1 1
wo = o) 3 @ - (4.2.5)
if h is bounded, where k is given in (4.1.5),
K =(X'X)"'X'WX, (4.2.6)
Ky = %X’(W WX (XXX (W 4 W)X (X X)) (4.2.7)
and
Ks=X'(W4+ W)X (X' X)L (4.2.8)

The components of (X’X)~! have order 1/n by Assumption 4. On the other hand,
the absolute values of the components of X'W X, X'(W +W’)X and X'(W +W')2X
are O(n) by Lemma 2.2. Assumption 4 imposes that for at least one component of
each matrix the latter holds as an exact rate. It follows that tr(K7), tr(Ks2) and

tr(K3) are bounded and non zero. Since a?

~ n/h under Assumption 3, w; and wa
have exactly order h/n and 1/n, respectively.
The proof of Theorem 4.2 is the Appendix. Again, both the expansions are formal.
From (4.2.2) and (4.2.4), we can obtain Edgeworth-corrected critical values. Pro-

ceeding as described in Section 4.1, the size based on x? critical value is
Pr(LM > 23,1 5| Ho) (4.2.9)
while the Edgeworth-corrected critical value is
Pr(LM > Z(2a+1)/2 +]51(Z(2a+1)/2)|H0)7 (4.2.10)

where
~ K K
P1(200i1)2) = — (ZZ(QQH)/Q - EZ?aJrl)/Z + 2w12(2a+1)/2>
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if h is divergent and

- K K 2
P1(2(at1)/2) = — <4Z(2a+1)/2 - ﬁz?a—i-l)/Z + 20220 1) — nz?a+1)/2>

if h is bounded. As before, (4.2.9) has error of order h/n, while (4.2.10) has error
o(h/n).

As in Section 4.1, we can also consider Edgeworth-corrected test statistics. The
size of test of (1.2.1) based on LM is compared with that based on a corrected statistic,
ie.

Pr(g(LM) > 27,1, ol Ho). (4.2.11)

The choice of the function g is motivated by Lemma 4.2 and in this case is given by

K K
71'_7

1
2 —
1 T + 2wz + 4Q(:c),

g(x) =2+

where

2 1/2 2 1 2
Q(zx) = ((Z) + 4w? + mul) T3 <3/<;w1 + ,;2) z? + 3 (g) z3
in case h is divergent and

2 1
g(x) =z + Bo— L2y Qo — —x2 + ZQ(SU),
n

4 12

with

Q) = (542 )2—(5+2>5+é TR
Tom g T Ty e TRt T3\e ) ”

if h is bounded. Similarly to Section 4.1, when LM is used the error of the approx-
imation has order h/n while it is reduced to o(h/n) when the test is based on the

Edgeworth-corrected variant.

4.3 Alternative correction

The results derived in Sections 4.1 and 4.2 can be compared with two alternative
corrections derived for asymptotically x? statistics in Robinson (2008b). The class of
statistics considered in Robinson (2008b) include the LM for testing (1.2.1) in either
(1.2.5) or (1.2.15) as special cases. In particular, Robinson (2008b) proposes both
mean-adjusted and mean and variance-adjusted variants of (4.1.1) and (4.2.1), which
prove to be asymptotically distributed as a x? random variable with one degree of
freedom. Such corrected statistics are expected to have better finite sample properties
than either (4.1.1) or (4.2.1), even though the magnitude of the gain in accuracy is not
explicitly shown. In finite sample the corrected statistic based on mean adjustment

might have a larger variance than the non-corrected version, resulting in a partial (or
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total) offset of the gain in accuracy from the mean standardisation. In such case, a
mean and variance standardisation should be performed instead.

It should be stressed that such corrected statistics might be convenient in the
present case since the ratios €We/e'e and € PW Pe/e Pe are independent of their
own denominator and therefore the expectation of the ratio is equal to the ratio of
expectations (Pitman (1937)). If the latter condition failed, a correction based on
mean and variance standardisation be much less feasible, since the evaluation of mean
and variance would require some approximation.

We suppose that Assumptions 1-4 hold and focus on the simpler case first, i.e.
the statistic given in (4.1.1). Specifically, Robinson (2008b) proposes a mean and

variance-adjusted statistic under Hj as

1/2
<VW(LM>> (LM — E(LM)) +1, (4.3.1)

where Var(LM) denotes the variance of LM . In order to compare the performance of
such corrected statistics with that based on the results presented in Section 4.1, the
leading terms of (4.3.1) have to be derived.

As presented in Robinson (2008b),

E(LM) = <1+2>1, (4.3.2)

while

nt E(éWe)* 2\ 2

By standard formulae for moments of quadratic forms in normal random variables
(see e.g. Ghazal (1996)),

E(We)' = E (;e’(W - W’)e>4

. %ﬁa8<6tr<<w +WH2EE (W + W)e) + 48tr(W + W')Y)

= 30%a* +tr(W + W'

and

12 44 48
E(de)t = o%nt +12n + 44n” 4 48n) = o°n? <1 +—+ 5+ 3> .
n  n? n

Hence,

Var(LM) = nt 3a' + 3tr(W + W) (1 N > —2

=4 12 | 44 43
a n4(1+?+nfg+$)
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(4.3.3)

at n n

_ 2+3tr((W~+W’)4) _32+0<1>7

where the second equality follows by standard Taylor expansion.
Collecting (4.3.2) and (4.3.3), (4.3.1) becomes

1+3tr((WiW/)4)—1—6+o VY o (142 B +1
(o (1) (s ()
= (- 4O B (1) (e -1k 20 (2)) 41

where the second equality follows by Taylor expansion. Hence, when h is divergent,

we define "
LM = LM — i”“W:W”(LM _), (4.3.4)
a
while o
LM = LM — §tff((yK;W))(LM —1)+ S8 (4.3.5)
4 at n n

when h is bounded.
For both divergent and bounded h, we consider the size of the test of (1.2.1) against
(2.2.1) based on LM, i.e.
Pr(LM > 2, ) 5|Ho) (4.3.6)

We expect that when inference is based on LM rather than on LM, the error of the
approximation is reduced by one order. To this extent, the finite sample performance
of LM should be similar to that of g(LM), with g defined in (4.1.11) or (4.1.12).
Finally, we consider the mean-adjusted null statistic corresponding to (4.2.1).
Since the algebraic burden is larger relative to the previous case, the derivation of
the mean and variance-adjusted variant is omitted. At the beginning of this section,
we stressed that mean and mean and variance adjustments might be algebraically more
convenient than Edgeworth corrections. However, the mean and variance standardi-
sation of (4.2.1) does not entail significant computational advantage and is therefore
omitted.
Given (4.2.1), Robinson (2008b) proposes the mean-adjusted null statistic
LM (4.3.7)
E(LM)

Using standard formulae, we describe the results of Robinson (2008b) as

. n2 E (L P(W + W) Pe)?
a2 E(€ Pe)?
_ oy rE))? (K —Ks)  2(1 - K) +o( 1 )

a? a? n
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where Kj, Ky and K3 are defined according to (4.2.6), (4.2.7) and (4.2.8), respec-
tively. The second equality follows by a standard Taylor expansion of the denominator.
Hence, (4.3.7) becomes

i (1 (tr(K)?  tr(E — ) 1o (1)

a2 a2 n

in case h is divergent, and

s (1o WrED? (K —Ky) 20—k (1
( )+ (3)

a2 a2 n

if h is bounded. We define

= ~ tr(K1))?  tr(Ks — K.
LM = LM (1 _ T(a;)) _ i 2&2 3)> (4.3.8)
in case h,, is divergent, and
= ~ tr(K1))?  tr(Ks — K. 21—k

when h,, is bounded.
We consider the size of the test of (1.2.1) against (2.2.1) based on LM, i.e.

Pr(LM > 22,1, 5| Ho). (4.3.10)

As previously mentioned, the finite sample variance of the mean-adjusted statistic
can be larger than that of the non corrected one. From (4.3.8) and (4.3.9), it is
straightforward to notice that this might be the case, depending on the choice of
W. By Monte Carlo simulations we can assess whether the mean standardisation
correction is worthwhile for any particular choice of W and its performance is therefore

comparable with that based on Edgeworth corrections.

4.4 Bootstrap correction and simulation results

In this section we report some Monte Carlo simulations to investigate the finite
sample performance of the refined tests derived in Sections 4.1, 4.2 and 4.3. The
general setting of the Monte Carlo simulation is identical to that described in Section
1.5. In addition, we construct X as an n x 3 matrix (that is, we set k = 3) whose
first column is a column of ones, while each component of the remaining two columns
are generated independently from a uniform distribution with support [0, 1] and kept
fixed over replications.

For both models (1.2.5) and (1.2.15), the empirical sizes of the test of Hy in (1.2.1)
against (2.2.1) based on the usual normal approximation are compared with the same

quantities obtained with both the Edgeworth-corrected critical values and Edgeworth-
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corrected test statistics. Such values are compared also with the empirical size based
on the corrected statistics derived according to the procedure described in Section 4.3.
In addition, we consider the simulated sizes based on bootstrap critical values.

Before discussing and comparing the simulation results, we outline how the boot-
strap critical values have been obtained in this case. Again, we focus on the implemen-
tation of the bootstrap procedure, without addressing validity issues. As described in
both Sections 2.5 and 3.2, we generate B pseudo-samples Yj*, 7 =1,....B, and hence
B bootstrap statistics

’ 2

2 (YWY

=" "3 ) —1..B
J (12 Y'J*)/J*

The bootstrap quantile wy, is defined such that the proportion of LM that does not
exceed w}, is a. The bootstrap test rejects Hy when LM > w},. Hence, the size of the
test of (1.2.1) based on bootstrap is

Pr(LM > w|Hy). (4.4.1)

When dealing with (4.2.1), we modify the previous algorithm accordingly, i.e. we

define )
-« n? (ulPWPu
M =2 <H> . j=1,...B,
a ul Pu?
3t
where uj is a vector of independent observations from the N (0, Y'PY /n) distribution.

In this case, we denote w}, the bootstrap a—quantile. The size of the test of (1.2.1)

based on the bootstrap procedure is then
Pr(LM > w}|Hp). (4.4.2)

Tables 4.1 and 4.2 display the simulated values corresponding to (4.1.9), (4.1.10),
(4.1.13), (4.3.6) and (4.4.1) when m is increased monotonically and kept fixed (i.e.
when h is “divergent” and “bounded”), respectively. Moreover, Tables 4.3 and 4.4
display the simulated values corresponding to (4.2.9), (4.2.10), (4.2.11), (4.3.10) and
(4.4.2) when h is either “divergent” or “bounded”, respectively. All the values in
Tables 4.1-4.4 have to be compared with the nominal 5%. Similarly to Chapters
2 and 3, in the Tables we denote by “chi square”, “Edgeworth”, “transformation”,
“mean-variance correction” and “bootstrap” the simulated values corresponding to
(4.1.9)/(4.2.9),(4.1.10)/(4.2.10), (4.1.13)/(4.2.11), (4.3.6)/(4.3.10) and (4.4.1)/(4.4.2),

respectively.
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m =8 m =12 m =18 m = 28

r=2>5 r=2_8 r=11 r=14
chi square 0.032 0.036 0.038 0.037
Edgeworth 0.040 0.039 0.041 0.042
transformation 0.045 0.048 0.046 0.048
mean-variance correction | 0.035 0.037 0.041 0.042
bootstrap 0.054 0.046 0.047 0.053

Table 4.1: Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.5) when the sequence
h is “divergent”. The reported values have to be compared with the nominal 0.05.

m=2>5 m=2>5 m=>5 m=2>5

r=28 r=20 r =40 r =80
chi square 0.034 0.036 0.037 0.037
Edgeworth 0.041 0.042 0.047 0.048
transformation 0.034 0.045 0.048 0.050
mean-variance correction | 0.041 0.043 0.046 0.052
bootstrap 0.063 0.052 0.051 0.052

Table 4.2: Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.5) when the sequence
h is “bounded”. The reported values have to be compared with the nominal 0.05.

From Tables 4.1 and 4.2 we notice that the approximation entailed by the first
order asymptotic theory does not work well in practice. Indeed, the nominal 5% is
underestimated for all sample sizes and whether h is “divergent” or “bounded”, al-
though in the latter case the convergence to the nominal value appears to be faster, as
expected. On the other hand, all the corrections we consider improve upon the approx-
imation. In particular, when h is “divergent” (Table 4.1) the corrections based on the
Edgeworth-corrected test statistic and bootstrap critical values appear to outperform
the others, at least for the sample sizes considered here. On average across sample
sizes, the simulated sizes based on Edgeworth-corrected statistic and bootstrap criti-
cal values are 77% and 75%, respectively, closer to the nominal 0.05 than the values
based on standard LM statistic. Improvements entailed by Edgeworth-corrected criti-
cal values and mean-variance correction, instead, are only 32% and 21%, respectively.
A similar pattern holds in case h is “bounded” (Table 4.2), although the discrepancy
among the performance of the different corrections is less glaring. The difference
between the nominal 0.05 and simulated sizes based on Edgeworth-corrected critical
values, Edgeworth-corrected statistics, mean-variance corrections and bootstrap criti-
cal values are, on average across sample sizes, 62%, 62%, 61% and 70% lower than the
difference between the nominal 0.05 and the simulated sizes based on the standard
LM statistic. The latter result was expected since, as previously mentioned, the rate

of convergence of the cdf of LM to the x? cdf is faster in this case.
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m =8 m =12 m = 18 m = 28

r=2>5 r=2_8 r=11 r=14
chi square 0.023 0.027 0.036 0.027
Edgeworth 0.044 0.048 0.046 0.047
transformation 0.055 0.049 0.047 0.049
mean-variance correction | 0.030 0.034 0.032 0.038
bootstrap 0.045 0.052 0.056 0.051

Table 4.3: Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.15) when the sequence
h is “divergent”. The reported values have to be compared with the nominal 0.05.

m=2>5 m=2>5 m=>5 m=2>5

r=28 r=20 r =40 r =80
chi square 0.025 0.035 0.038 0.036
Edgeworth 0.031 0.044 0.047 0.052
transformation 0.033 0.042 0.047 0.052
mean-variance correction | 0.027 0.044 0.046 0.052
bootstrap 0.043 0.047 0.048 0.048

Table 4.4: Empirical sizes of the tests of (1.2.1) against (2.2.1) for model (1.2.15) when the sequence
h is “bounded”. The reported values have to be compared with the nominal 0.05.

From Tables 4.3 and 4.4 we see that the usual test based on first order asymp-
totic theory performs even worse than in the previous case. Indeed, when inference
is based on the standard x? approximation, on average the difference between the
simulated sizes and the nominal 0.05 is 52% larger than in the previous case when
h is “divergent”, and 16% when h is “bounded”. However, the corrections give very
satisfactory results. In particular, when A is “divergent”, both the test based on
Edgeworth-corrected critical values and Edgeworth-corrected statistics appear to per-
form very well, giving results that are comparable to the bootstrap-based procedure.
Specifically, when h is “divergent, the improvements entailed by Edgeworth-corrected
critical values, Edgeworth-corrected statistics and bootstrap critical values over the
standard LM statistic are 82%, 88% and 81%, respectively (on average across sample
sizes). The simulated values corresponding to (4.3.6) are closer to the nominal than
ones of the standard test for all sample sizes, but not as satisfactory as the Edgeworth-
based results (the improvement over the standard LM is only 18% ). This might be
due to the variance inflation discussed in Section 4.3. Again, when the sequence h is
“bounded”, the pattern of the results appears to be very similar: on average across
sample sizes, the values for the simulated sizes based on Edgeworth-corrected critical
values, Edgeworth-corrected statistics, mean-variance standardization and bootstrap
critical values are, respectively, 61%, 60%, 55% and 80% closer to 0.05 than those
based on the standard LM statistic.
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4.5 The exact distribution

In Sections 4.1 and 4.2 we developed refined procedures for testing (1.2.1) against
(2.2.1) based on LM statistics, as given in (4.1.1) and (4.2.1), respectively. It must be
mentioned that, since A is a scalar parameter, we could have focused on the square
root of the statistics in (4.1.1) and (4.2.1) and test Hy against a one-sided alternative.
We chose to develop the corrected procedure based on (4.1.1) and (4.2.1), and compare
its performance in finite samples with that derived in Robinson (2008b), because in
several circumstances we might not have any preliminary evidence about the sign of A
and therefore the standard two-sided LM test might be preferred instead. However, it
should be stressed that in case a test against a one-sided alternative is justified, suitable
Edgeworth-corrections can be derived by a relatively straightforward modification of
the proofs of either Theorems 4.1 or 4.2.

In this section we investigate numerically the properties of the distribution under
Hj of the square root of both (4.1.1) and (4.2.1), denoted by T and T respectively,
by means of Imhof’s procedure and compare the results with those obtained using
Edgeworth correction terms. The numerical evaluation of the cdf of T and T and
the corresponding quantiles, despite the obvious limitations of numerical algorithms,
provides some information about the true distribution of the statistics and, to some
extent, confirms the accuracy of Edgeworth corrections.

Since the numerical procedure is implemented using W given in (1.1.2), we describe
the algorithm for a symmetric weight matrix, although it can be easily generalised to
any choice of W. Moreover, we will describe the numerical procedure for evaluating
the cdf of T, but the same argument with minor, obvious, modifications holds for T'.

As discussed in the proof of Theorem 4.1, we can write Pr(T < () = Pr('Ce < 0),
where C' = W — I{a/n (that is (4.A.2) with = = a().

When the cdf can be written in terms of a quadratic form in normal random
variables, as is the case in the last displayed expression, a procedure to evaluate it by
numerical inversion of the characteristic function has been developed by Imhof (1961)
and then improved and extended to different contexts by several authors. For the
purpose of our implementation, we rely on the work by Imhof (1961), Davies (1973),
Davies (1980), Ansley et al. (1992) and on the survey of Lu and King (2002).

Let s be the number of distinct eigenvalues of o?C, which are denoted by u; for
Jj = 1,..,s, while n; for j = 1,...,s is their order of algebraic multiplicity. Starting
from the inversion formula of Gil-Pelaez (1951), Imhof (1961) suggests to evaluate the
cdf of €Ce as

1 1 T si
Pr(dCe<0) = 5 77/8;:0(1(;;) du, (4.5.1)
0

where

O(u) = (%tg_lﬂu,uj)) and  y(u H (1 + 4u’p ”3/4
7=0 7=1
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The integral on the RHS of (4.5.1) cannot be evaluated using standard analytical
methods because of the oscillatory nature of the integrand function and numerical
procedures should be employed instead.

As suggested in Lu and King (2002), we rely on the discretisation rule provided
by Davies (1973), which is based on a trapezoidal approximation for the integral on
the RHS of (4.5.1), i.e.

1
Pr(dCe<0)=-— (4.5.2)

where A is the step interval and M is related to the truncation point, denoted by U
henceforth, by the relationship U = (M +1/2)A. Both A and U need to be determined
numerically.

We denote by MGF(t) the moment generating function of ¢ Ce. In order to

evaluate A, we solve numerically the equation
MGF(t) — tMGFW(t) — In(E;) = 0, (4.5.3)

where MGF((t) = dMGF(t)/dt and Ej is the maximum allowable integration error.
It can be shown (see e.g. Ansley et al.(1992)) that the last displayed equation has
always two solutions ¢; > 0 and ¢z < 0, both satisfying the constraint (1 — 2¢;u,) >
0, Vj=1,...s,and i = 1,2. For ¢ = 1,2, we define

2
MGFO ()|t =t;

A; = sign(t;)

We choose A appearing in the RHS of (4.5.2) as the minimum value of A;, for i = 1,2.
We briefly mention the algorithm to determine U, for more details we see Lu
and King (2002). It is possible to show that the function wy(u) in (4.5.1) is strictly

increasing, while |sinf(u)| is bounded. Hence, there exists a function £(U) such that

(o)

1 [sinf(u)
|— dul <¢(U) < Er,
W{ uy(u)

where Ep is the maximum allowable truncation error. U is then derived as the nu-
merical solution of
In&(U) — InEr = 0. (4.5.4)

Several functional forms for £(U) have been proposed in the literature. In the present

case, we implement the procedure using Imhof’s truncation bound, that is

2 Y
W) = —J[In~"7220) 2.
j=1
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Our results seem to be insensitive to the choice of {(U).

Once both A and U are obtained, the cdf of €Ce using (4.5.2) can be evaluated.
As suggested in Davies (1973), we set tolerance E = 107% and choose E; = 0.1E and
Er =09E.

In order to calculate the a-quantile of the cdf of T, we need to find ¢ so that

Pr(T <¢) =a,

where the LHS of the last displayed expression can be obtained, as a function of {, by
the algorithm described above. However, in the present case, the numerical solution
to calculate ( is particularly troublesome since the approximated cdf of T' is almost
flat as ¢ varies.

Although Imhof’s framework to obtain the cdf and its quantiles is useful to some
extent, it obviously relies heavily on several numerical solutions of highly non-linear
equations, such as (4.5.3) and (4.5.4). Hence it cannot be preferred to analytical pro-
cedures that improve upon the approximation given by the central limit theorem, such
as those based on Edgeworth expansions or on mean and variance standardization.
However, despite being not fully reliable, quantiles obtained with Imhof’s procedure
can be compared with Edgeworth-corrected ones, to provide further evidence that the
latter are closer to the true values than those of the normal cdf.

Edgeworth-corrected quantiles of the cdf of T' can be obtained from intermediate
results reported in the proof of Theorem 4.1 and a procedure similar to that described
in Section 4.1. Specifically, in the Appendix we derive the Edgeworth expansion for
the cdf of T" as

where & = tr(W’' + W)3/a3. From the last displayed expression we can derive a
corresponding expansion for the a—quantile by a straightforward modification of the
argument presented in Section 4.1. We denote the true a—quantile of the cdf of T' by
wl and write

wgzzaJrRHg(C)Jro( h),

3! n

whether h is either divergent or bounded.
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a=95% | a=97.5% | a =99%
m =38 Edgeworth 1.9334 2.4403 3.0715
r=29 Imhof 1.8620 2.3250 2.9000
m =12 Edgeworth 1.8925 2.3722 2.9658
r=38 Imhof 1.8430 2.3100 2.8850
m = 18 Edgeworth 1.8668 2.3294 2.8994
r=11 Imhof 1.8310 2.2880 2.8550
m = 28 Edgeworth 1.8482 2.2985 2.8514
r=14 Imhof 1.8200 2.2700 2.8250

Table 4.5: Edgeworth-corrected and Imhof’s a-quantiles of the cdf of T in when h is “divergent”.

a=95% | a=97.5% | a=99%
m =25 Edgeworth 1.8357 2.2777 2.8191
r=2_8 Imhof 1.7840 2.1920 2.6800
m=>5 Edgeworth 1.7656 2.1609 2.6379
r =20 Imhof 1.7450 2.1280 2.5850
m =25 Edgeworth 1.7303 2.1021 2.5465
r =40 Imhof 1.7200 2.0860 2.5200
m=>5 Edgeworth 1.7053 2.0605 2.4819
r =80 Imhof 1.7010 2.0530 2.4730

Table 4.6: Edgeworth-corrected and Imhof’s a-quantiles of the cdf of T when h is “bounded”.

As expected, from Tables 4.5 and 4.6 we notice that for all sample sizes and
for h being either divergent or bounded, the Edgeworth-corrected quantiles for @ =
0.95,0.975,0.99 are closer to those obtained by Imhof’s procedure than ones of the
standard normal cdf. Indeed, the standard normal quantiles are significantly lower
than Imhof’s ones for all sample sizes. To some extent, this confirms that tests based
on Edgeworth-corrected critical values should be more reliable than those based on
the standard normal approximation.

Imhof’s algorithm was also implemented to obtain the cdf of T. Unfortunately,
in this case, the numerical procedure does not work well and it appears to be too
sensitive to both the choice of the initial values for the numerical solution of non-
linear equations and the choice of X. This give strong motivation to the practitioner
to rely on the analytical corrections based on Edgeworth expansions, rather than on

numerical procedures to evaluate the exact cdf.
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A Appendix

Proof of Theorem 4.1

Given (4.1.2), we start by deriving the formal Edgeworth expansion of the cdf of

e€We

€e

(4.A.1)

The development is standard and similar to that presented for the proofs of Theorems
2.1, 2.2 and 2.3. Hence, some of the details are omitted. The cdf of (4.A.1) can be

written in terms of a quadratic form in e, i.e.

<z)=Pr(dCe<0),

where )
CZ§W+WU—%’ (4.A.2)

and x is any real number.
Proceeding as described in detail in the proof of Theorem 2.1, under Assumption

1, we derive the s-th cumulant, x,, of €Ce as

k1 = o’tr(C), (4.A.3)
Ko = 20%tr(C?), (4.A.4)
25 o19s5—1 s
= TSET(CY) y (4.A.5)
s

From (4.A.3), (4.A.4) and given (4.A.2),
2 4 2 / 2 5 a2, 2 o
ki =—0z, kKy=o0 (tr(W +WW)+—z°|=0"(a"+ —x
n n
and hence the first centred cumulant, denoted x{, becomes
—x

K = . (4.A.6)
1 &(1+ §2x2)1/2

n

We set
x = a(, (4.A.7)

where (, as usual, denotes any real number. Under Assumption 3, x ~ \/n/h. By

Taylor expansion of the denominator of (4.A.6) we obtain

kK] = —(C (1—;&) —i—o(i).
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Moreover, under Assumption 3,

. 8c%r(C?)  tr(W' +W)? h
37 32 3 ~“\Vn
Ko

and

K‘/i: ~ ~

(R2)2 at

By Taylor expansion we have

8 4 / 4
48c°tr(C*)  3tr(W' + W) % (4.A.8)

(—k7) = 2(¢) + O <;> =®(()+o0 <hn)

when h is divergent and

when h is bounded.
Proceeding as in the proof of Theorem 2.1, for = given in (4.A.7) and when h is

divergent, the Edgeworth expansion of the cdf of (4.A.1) under Hy is

C

Pr < - ’€W€ C) B(¢) — yq)( )(¢) + %@(4)(@ +o <Z>

—0(0) ~ S H(O8(0) ~ Q0@ +o (1), (1A9)

3

where the last equality follows by (2.1.9). Similarly, when h is bounded,

pr(na < <) - <<>—<3¢><c>—<I><><<>+“Z<I><4><c>+o<1>

3 K
=)~ 3 S H(00(0) - (i + 4fHa@)) $(Q) +o <;) .
(4.A.10)

For notational simplicity, let T = na~1e'We/e'e, so that LM = T?. Term by term
differentiation of (4.A.9) and (4.A.10) gives the corresponding expressions for the pdf

of T, fr(Q), i.e
3 i 4 2 h
Fr(6) = 6(6) = =6+ 300(0) - ¢+ 62 =300 +o (1) (@A)

and

C

F1(0) =9(Q) + 1(¢* = BEID(Q) — (¢ +3QD(C) — TH(~¢* 4+ 667~ B)6(0) + ol ),
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respectively.
For divergent h, using (4.A.11), we can derive an approximate expression for the
characteristic function of T? as

1 o2 02 5 i
/eztv2€—2(1 _ @(—U?’ + 3U) — %(—U4 + 60> — 3))dU

1 ’ it _ 3 Ky, 4 2
v 30 (—v® + 3v) 2 (—v* + 6v° — 3))dv. (4.A.13)
R

We notice that the first term of the last displayed integral is

- (1— 2@1‘, (1 - 2“)71/27

v

which is the x? characteristic function. By Gaussian integration, the second and third
terms are, respectively,

_2?
5 (1—2it) 3 3dU—O

vl

and
~t (1-2it) 33vdv =0,
\/27r/ 3!
while
1 o2 < 3 v? 1
— Y (1=2it) 4 g, — / —5(1-2it) 2 0, — '
\/271'/6 v (1—2it)52"  /2r ! (1 — 2it)3/2
R
Collecting the previously displayed results, (4.A.13) becomes
1 K 1 _Kg 1 /<a4 1
— 4.A.14
V1 —2it 3 VI=2it 4 (1—2it)3/2 T3 8 (1 — 2it)5/2 ( )
Term by term Fourier inversion of (4.A.14) gives
Kg Kg Kg
Pr(LM <n) =F(n) + §F(n) - ZFg(T}) + §F5( )+ol|—
K K h
=F —4 — ~Ap? — . 4.A.1
)+ gt~ S +o () (4A15)

The last displayed equality follows from the recursions (see e.g. Harris (1985))

frro(x) = k™ firo(z),
Fiopo(x) = Fy(z) — 22k~ fi(2), (4.A.16)

where fi, and Fj, denote the x? pdf and cdf with k degrees of freedom, respectively.
When no subscript is specified, k = 1.
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Similarly, for bounded h, from (4.A.12) we obtain an approximation for the char-

acteristic function as

1 Kg 1 K 1 K 1
VT2 B Vi—2i 4 (L—2t2 8 (1—2it)”
1 3 3 1
T (1—2it)5/2  n (1 — 2it)3/2

and thus, term by term Fourier inversion gives

Pr(LM < 1) =F(i) + "SF () = "R + ‘SEs(a) + 2Rl + Fala) 40 ()
=)+ g n) = T ) - 2 s +o (). (4.A.17)

The claim in Theorem 4.1 follows from (4.A.15) and (4.A.17) by letting k = 3tr(W’' +
W)*/at, which is the leading term of x5, as given in (4.A.8).

Proof of Theorem 4.2

Parts of the proof of Theorem 4.2 are similar to Theorem 4.1 and are omitted. We

derive the third order Edgeworth expansion of the cdf of

¢ PW Pe

e (4.A.18)

where P is defined according to (1.2.17). The cdf of (4.A.18) can be written in terms

of a quadratic form in €, i.e.

"PWP
Pr(% <z)=Pr(fCe<0),
€ Pe
where ) )
C= 5P(W + WP — —Pz (4.A.19)
n

and z is any real number.

The same argument presented in the proof of Theorem 4.1 for the evaluation
of both characteristic and cumulant generating functions holds here with C' defined
according to (4.A.19) instead of (4.A.2). From (4.A.19),

1 _
b= o (PW) — 0 Ler(P)s = —o?(r((X' X)X WX) — P F
n n

z).

Also, by straightforward algebra,

k., 4
Ko = o*(tr(WPW P) + tr(W PW P) + 22 2

z°— ﬁtr(PW)z)

k 4
22 — —tr(PW)z)
n

n

= o* (tr(W + W)PWP) +2

n2
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= ot (tr(W?) + tr(W'W) + %tr(X’(W +WHX (X' X) I X'(W + W)X

n—k

—tr(X'(W 4+ W )X(X' X)) +2—;
n

4
24+ —tr(X'X) ' X'WX)2).
n

By (4.2.6), (4.2.7), and (4.2.8), we write

k
k1 = —c’tr(Ky) — 0%z + 0%~z
n
and L A
~ n—
ko = ot (a? + tr(Ky — K3) +2 5 22+ %tr(Kl)z).

Similarly to the proof of Theorem 4.1, we define f¢ = (¢/Ce — m)/m;m

the centred cumulants as k§ = RS/I{S/Q. From (4.A.20) and (4.A.21),

—o%tr(Ky) — oz + 0%k

K] =

- r 172"
(14 S ) pncpn g

We choose z = a¢. Under Assumptions 3 and 4, we have a ~ y/n/h and
n tr(Ky) tr(Ks)
z ~ — ~
h’ a2

9 ~

a2

tr(Ks)

9 ~

a2

~

~

S|
S|
e
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(X'X)™)

(4.A.20)

(4.A.21)

and derive

(4.A.22)

Hence, substituting the expression for z in (4.A.22) and performing a standard Taylor

expansion of the denominator we obtain

(o Y (o R (0)

(k) (K —K) (h>

= —(— _

a 2a2

in case h is divergent, and

i = = (o4 MU R (14 SR L (1))

a n 262
tr(K k tr(K3 — K. 1 1
- g7(})+<7(iﬁziﬁ<+@+o<>
a n 2a n n
if h is bounded.
Moreover,
¢ 8o5tr(C3)  tr((W + W' P)3) h
k3 = 32 a3 ~\Vn
Ko
and

. 48c%tr(CY)  3tr(W+W)P)Y) h
METTR T it r
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Therefore,

'PW Pe
Pr(na—'S
r(na TP

< (|Hy) = Pr(¢'Ce < 0|Hp)
= Pr(fery? + w1 < 0|Ho) = Pr(f° < —k¢)

C K/C C K/C C
= (k) — 3—?@)(3)(—&1) + 4—?q><4>(—m1) + ... (4.A.23)

By Taylor expansion we have

. 2
B(f) = 0(0)+ T g() 4 T 20y 4 (I i) 4o (1)
when h is divergent and
a(-xf) = o(0) + T () 4 I ZE2)
2
- 2000 - 00+ (M) @0 o 1)
when h is bounded. Therefore, (4.A.23) becomes
Prna= IS < ) =a(c) + T o) - gy 4 L)
1 t’l”(K) 2 (2) K (4) h
+5 <&> o (C)+4—‘!‘<I>4 (C)—i—o(n)
—a(0) + T 0) - a0y + LKD) o
1 [tr(K)\? K h
-5 ("E) 1000 - 000 +o ().
(4.A.24)
where the last equality follows by (2.1.9). Similarly, when A is bounded,
Prina 0P < i) = a0 + T ) - o) 4 T ED 0y
+3 <a> () = ~Co(Q) = —*e(C)
K h
+ 4—?‘@(4)(0 +o0 <n>
= 2(0) + " g(0) - B erc) + T )
2
-5 ("8M) 10000 - Eesie) - 1¢%9t0)
S (0)6(0) + o (i) . (1.4.25)

For notational convenience, we write T = na ‘¢ PW Pe/€ Pe, so that LM = T2,
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Moreover, we recall that Hy(¢) = ¢, Ha(¢) = ¢?> — 1 and H3(¢) = ¢ — 3¢.
As discussed in detail in the proof of Theorem 4.1, term by term differentiation of
(4.A.24) and (4.A.25) gives

£2(0) = 00— TV o(0) - T (2 4 30)0(0) + TE D (1 2y
r 2 KC
= - o) - et v - mip o (L) wa)
and
126 = 6(0) — TV 4(0) - B (¢ + 30)0(0)
B 21D g0 - B )00
- 2= 00— 166 = 0l0) - ¢t 0 - 300 4o ()
(4.A.27)
respectively.
In order to simplify the notation, we define
- tT(Kg —KQ) 1(157"(K1))2 . tT(Kg —KQ) 1(t7’(K1))2 ﬁ
ST T2 e T T a2 T2 @

and
tr(Ky) N K§

w3 = = .
a 2

Proceeding as described in the proof of Theorem 4.1, when h is divergent we

approximate the characteristic function of T as

C C
/ *7 1—w3fu+3—fu + wi (1 —v?) — %(—U4+6v2—3))dv
R
(&
/ ~2 (- 2i1) (1 — waw 45 3 Byt w(1—0?) - %(—v4 + 6v% — 3))dv
§R !
w1 K4 1 kg 1 K4
—= - — — . 4.A.28
\/1—21 <+w1 T—2it " B (1—2it) 41—2it 8 ( )

By term by term Fourier inversion of (4.A.28) and some standard algebraic ma-

nipulation,

Pr(LM < gltio) =F () + (5 + wl) P - (s +52) R+ Rt + 0 (%)

=F(n) + (’fn - ﬁn + 2w1n) fm) +o (Z) : (4.A.29)
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Similarly, when A is bounded, we have

Pr(EM < alHo) = F) + (' ) ) = (w4 5+ 2 ) oo

+ <';4 + 2) Fs(n) +o <7ll)
=F(n)+ (Hfln — ii?f + 2wan — 2772> f(m)+o <1> . (4.A.30)
4 12 n n
The claim in Theorem 4.2 follows from (4.A.29) and (4.A.30) by observing that
the leading term of § is & = 3tr(W' +W)*/a*. Indeed, each term in (tr(W +W')*P)
other than tr((W + W')4) ~ n/h is O(1) by Assumption 4 and Lemma 2.2, and is
therefore o(n/h).
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Lemma 4.1 Suppose that for all n, each element x;; of X is non-stochastic and

|zi;| < K. Moreover, for all sufficiently large n,
()
0<c <nm .
“\n

1Pl +[[Plle < K,

It follows that

where P is defined according to (1.2.17) .

Proof We show that || X (X'X)"'X'||, < K. Let 2} be the ith row of X.

Hence,

X (X' X)"1X||, = maxZ| (X' X)71X")5| = many ;)|

1<z<n 1<z<n

< maXZIIﬂCHH (X'X)" 1|||!~”UJH< max [zl XX) 1|!||~”vy||<*kK2<Oo

since
1 1 -1 1 1
X7 = g (-X'X = < —
n n ( X’X) cl
and
max ||z;]| = max (ziz;)"/? < (kK*)'/? < K.
0<i<n 0<i<n

By symmetry, || X (X'X)"1X'||. < K. Trivially, the same property holds for P in
(1.2.17).

Lemma 4.2 Let £ be a statistic whose cdf admits the expansion

Pri€ <n) = Fl+ st s +o (). (4A31)

where h can be either divergent or bounded and s(n) is a polynomial in 1, whose leading

coefficients are finite and non-zero as n — oo. We define the function g(.) as

Z)2Q(x), with Q(m)zi/(is(w)ydw (4.4.32)

glz) =z + %S(x) + (

Pr(g(§) <n)=o <h> :

n

Proof It is straightforward to verify that g(x) is strictly increasing, its first derivative
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being

R () () - (e

Since g(.) is monotonic,

Now, by (4.A.32),

2 1y
n=g"' (n + %S(n) + <Z> Q(n)) =g '(n)+ ngdx( )||m=?75(77) +o (h) :

(4.A.34)

where the second equality follows by a standard Taylor expansion. We define ¢ =
g~ !(x). Therefore,

dgdlx(ar) . <d£2(qq) > - oy =140 (Z) , (4.A.35)

where the last equality follows by total differentiation of the function g(.) and Taylor
expansion. Collecting (4.A.34) and (4.A.35),

n=g '(n)+ %8(71) +o <Z>

and hence

g ) =n— %s(n) +o0 <h> ) (4.A.36)

Finally, by substitution of (4.A.36) into (4.A.33) and using

Fla ) = P~ s+ o (1)
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5 Refined Tests for Mixed SAR
Models

Throughout this chapter we suppose that the data follow model (1.1.3). However,
we rule out the case where only the intercept and none of the other regressors is rele-
vant (this case was indeed discussed in Section 2.3). Hence, throughout this chapter,
B # 0 indicates that at least one component of 3 other than the intercept is non
zero. The main focus of this chapter is to derive finite sample corrections for standard
tests of (1.2.1) against (2.1.1) when A in (1.1.3) is estimated by OLS and IV. We also
consider finite sample corrections for testing linear restrictions on  in (1.1.3).

As discussed in Chapter 1, unlike in model (1.2.5) the estimates of A and 8 in
(1.1.3) converge to the true values at the standard /n rate, regardless of the choice of
W. Therefore, the error when the approximation of the cdf of relevant test statistics
is based on the normal is the usual 1/y/n. However, in much empirical work, only
small or moderately-sized samples are available and this motivates refined tests.

In Sections 5.1 and 5.2 we derive Edgeworth-corrected tests for (1.2.1) based on
OLS and IV estimates, respectively. In Section 5.3 we propose a refined procedure to
test linear restrictions on /5 in (1.1.3) based on IV estimates. In Section 5.4 the small
sample performance of the new tests is investigated with a Monte Carlo simulation

and compared with bootstrap-corrected ones.

5.1 Refined tests based on OLS estimates

In this section we focus on testing (1.2.1) against (2.1.1) when A and § in (1.1.3)
are estimated by OLS. We modify Assumption 2(iii) to

Assumption 2(iv) Uniformly in i,j5 = 1,...,n, w;; = O(1/h), where h = h,, is
bounded away from zero for all n. Moreover, \/n/h = O(1) and and h = O(n).

Assumption 2(iv) provides conditions on W under which OLS estimates of A and
B in (1.1.3) are consistent (Lee (2002)), as discussed in Chapter 1. For instance, when
W is chosen as in (1.1.2), Assumption 2(iv) rules out not only the case where each
household has a finite number of neighbors in the limit, but also the case where the
number of neighbors increases slower than y/n. It’s worth stressing that, unlike the
case of pure SAR considered in Chapter 2, under Assumptions 2(i), 2(ii) and 2(iv), A
in (1.1.3) is consistent and asymptotically normal for every A € (—1,1). However, we
will show that it is not possible to derive Edgeworth-based corrections for testing the
general null hypothesis given in (3.0.1) against (3.0.2) and hence we will focus here
on the test of (1.2.1).
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(X, 3) can be conveniently written as

( AmA > = M, (5.1.1)
B-B

where
M= mi1  Mmi2 ’
mo1  M22
with
miy =Y WWY, mlz:m’m =Y'W'X, mo=X'X, (5.1.2)
and

with u; = Y/W'e and ug = X’e. We denote

el ! mil 2 ]

m21 m22

where m!t, m'2, m?! and m?? are obtained by the standard formulae for the inverse

of a partitioned matrix, i.e.

11 -1 -1 12 21’ 11 -1
m = (mu — M12Moyy m21) s m=m = =M M2y, ,

m?? = m2_21(I + m21m11m12m2_21).
Let P be the projection matrix defined in (1.2.17). We impose the following

assumption on X.

Assumption 5 For all n, each element xi; of X is predetermined and |z;;| < K.

Moreover,

X'X
0<cl<n(( >

for all sufficiently large n and at least one element of X'W X /n is non zero in the
limits. Finally, V3 # 0, the limits of B/ X'W/'PWXB/n and 8’ X'W' PWPWXj/n

are non zero.

Assumption 5 is similar to Assumption 4 in Chapter 4 We should stress that,
although the first part of Assumption 5 is the same as Assumption 4, the second
part of the latter would not be sufficient to guarantee limg' X'W'PW X 3/n # 0 and
HmB' X'WPWPWXS/n # 0 as n — oo. In particular, the limits displayed in As-
sumption 5 are finite by Lemma 1.2, after observing that ||P||,+]||P||. < K by Lemma
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4.1. Assumption 5 requires that such limits are also non zero. We also stress that

Assumption 5 is sufficient to guarantee that M /n has a finite limit under Hy and is

therefore invertible. Indeed, since Y = X + € under Hy, under Assumption 2(iv) it
is easy to verify (Lee (2002)) that

!/ /

1,1 ( E(l; 3W

n n

> (WE(Y),X) + 0p(1).
Finiteness of (M/n)~! can be concluded under Assumption 5 by applying standard

formulae for the inverse of a partitioned matrix.

Theorem 5.1 Suppose that model (1.1.3) and Assumptions 1, 2(i), 2(ii), 2(iv), 3 and
5 hold. Under Hy in (1.2.1), the cdf of \, admits the second order formal Edgeworth

exrpansion
512 ¢ K 1
Pr <0A < <1Ho> =00 - 0000 - o940 (3] (513)
when \/n/h = o(1), and
el 3!

1/2 y
Pr (5 i < C|Ho> — B(¢) — D2(0)(C) — LD (¢) 10 (\}) . (5.1)

when h ~ \/n, where
5= BX'WPWXS ~n,

 otr(X'WX(X'X)TY 20¢ 1
h(¢) = - 512 — g I X' W PWPWXS ~ N
otr(X'WX(X'X)™Y  tr(WPW 20¢?
92(¢) = — ( 5 /g ) _ 5 )g— 53/C2 BX'W'PWPW X}
- J—Qt (W'P)? + W PW)¢ 1
25" %

BX'WPWPWXS 1
53/2 ~

Kk = 60

B

The proof of Theorem 5.1 in the Appendix.

We should notice that (5.1.4) is justified also when /n/h = o(1), since the extra
term (tr(W/PW)/8)¢ and (02/28)tr((W'P)? + W'PW )¢ would be O(1/h). The rates
of 8, ¥1, ¥2 and k follow by Assumption 5 and Lemmas 2.1 and 2.2. Specifically, § and
B'X'W'PW PW X 3 have exact rate n under Assumption 5. Also, under Assumption
5, each element of (X’X)~! has rate 1/n while at least one component of X'W X
has exact rate n. It follows that tr(X'WX(X'X)™!) = O(1) and is non zero. Also,
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tr(W'PW)and tr((W'P)? + W/ PW) have exact rate n/h under Assumption 3, their
leading terms being tr(W/'W) and tr(W?2+ W'W), respectively. For sake of clarity we
should mention that, to the extent of Theorem 5.1, Assumption 3 is only needed for
establishing the exact rate of the latter two quantities.

We must stress that (5.1.3) and (5.1.4) are infeasible, since o and [ are un-
known. In order to apply Theorem 5.1 to derive refined tests for (1.2.1), we substitute
\/n—consistent estimates for o and  in (5.1.3) and (5.1.4). Heuristically, we expect
that a second order Edgeworth expansion is not affected when \/n— consistent esti-
mates are used instead of true values, but theoretical justification of such conjecture
is beyond the scope of this project and is left for future investigation.

Let

§=BX'WPWX},

Al A

52 =5 with é=S\)Y — X5,

n
oo (XWX (X'X)TH 26¢2 :
s (C) - _ R — 5 X W PWPWX},
) et (X'WX(X'X)TY) 262, 2
U2(¢) = — 312 T 53/2 PXWPWPWXS
/P ~2
B (t(WW> O WPy Wfpm) ¢
1) 20
and . N
. BXWPWPWXS
Ak =060 = .
03/2

Similarly to what discussed in the previous chapters, we can compare the size of test

(1.2.1) against (2.1.1) using the standard normal a—quantile,

§1/2 .
Pr TA > ZQ‘HO y (515)

with the same quantity based on Edgeworth-corrected a—quantile, i.e
51/2 .
Pr 7)\ > Za, +p1(20¢)‘H0 (516)

where pi(z,) can be determined from Theorem 5.1. The derivation of the Edgeworth-
corrected a— quantile is identical to what was discussed in detail in Chapter 2 and is
omitted. We obtain .

A K

P1(2a) = V1(2a) + 3!H2(za),
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when /n/h = o(1), and

- K

P1(2a) = U2(2a) + 3!H2(za),

when h ~ /n. When inference is based on the corrected quantile, we expect that the
error of the approximation decreases from O(1//n) to o(1/4/n) (or, more precisely,
to O(1/h) when y/n/h = o(1)).

Alternatively, from Theorem 5.1 we can derive the Edgeworth-corrected statistic.
Again, the details of derivation are identical to those presented in Chapter 2. For
notational convenience, let

46

Ya = 53/2

BX'W' PWPW XS +

Wl

and

/P ~2
”(WSW) - ‘2’57:7-((14/’19)2 + W'PW).

From Theorem 5.1, the transformation in (2.1.14) becomes

9y =

A % 1
gla) = — i) - 5(2* = 1) + ;502"
when /n/h = o(1) and
A R 1 1 1
g(z) = x — V() — 5(1:2 -1+ ﬁggsc?’ + Zgagbe + Zggx,

when h ~ y/n. Therefore we can compare (5.1.5) with

§1/2 .
Prlig|—X\)| >zdHo |- (5.1.7)
o

The error when the standard statistic is used has order 1/4/n, while it is reduced to
o(1/+4/n) (or to O(1/h) when y/n/h = o(1)) when considering the corrected variant.

In Section 5.4 we will discuss some Monte Carlo simulation to assess the finite
sample performance of the proposed new tests.

Before concluding this section, a remark on the limitations of the OLS estimator
is necessary. We have mentioned at the beginning of this section that, despite A
being consistent and asymptotically normal YA € (—1, 1), it is not possible to derive a
standard Edgeworth expansion when A # 0. A more detailed explanation is outlined
in the Remark after the proof of Theorem 5.1 (reported in the Appendix). Thus, not
only we are unable to derive Edgeworth-corrected tests for (3.0.1), but also we cannot
derive improved procedures for testing linear (or possibly non linear) restrictions on
B in (1.1.3), such as

Hy:Rp=r H:RB#r,
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where R is a non zero k—dimensional vector and r is some constant. Indeed, it is
known (Lee (2002)) that OLS is inconsistent in case § = 0 and A # 0. Thus, it is
impossible to test the joint significance of the components of 3, f1,....0;, based on
OLS estimates even when we rely on standard first order asymptotic theory. However,
we might be interested in testing the joint significance of a subset of 31, ....0;. In this
case, under the null, OLS estimates would be consistent and asymptotically normal
and therefore standard tests based on the normal approximation could be performed.
However, since a standard Edgeworth expansion cannot be derived when X # 0, finite
sample improvements of the performance of such tests are not possible.

Another drawback of the OLS estimation is the impossibility of deriving a stan-
dard Edgeworth expansion of order higher than two. Details are again outlined in
the Remark reported in the Appendix. Consequently, we cannot improve upon the
approximation offered by the central limit theorem in case the alternative hypothesis
is given by (2.2.1).

Finally, we should stress that the proposed procedure does not extend to the case
of h/y/n = o(1). It is therefore clear that, even though the proposed finite sample
corrections based on OLS might perform well, they are possible only in very specific
settings. In the following section we will discuss improved tests based on IV estimates,

which are expected to be more general.

5.2 Refined tests based on IV estimates

We suppose that the data follow model (1.1.3). In Section 5.1, we proposed
Edgeworth-corrected tests for Hy in (1.2.1) when (), 3’)" are estimated by OLS and
we noted that such corrected statistics can be derived only in very specific cases. In
this section we focus on statistics based on A v and B V.

Similarly to what was outlined in Chapter 1, let Z = (Z;,Z2) be an n x (k + 1)

matrix of instruments. (A, B}V)’ is defined as

()= (5 )orem) (2)
Brv Zy VA

As discussed in Chapter 1, the “ideal” choice of Z is (E(WY), X) (see e.g. Kelejian
and Prucha (1998) or Lee (2003)). A discussion about the optimal construction of Z;
is beyond the scope of this work (and it would be, generally, data-dependent) and we
refer to Kelejian and Prucha (1998) and Lee (2003) for further references.

For simplicity, let

Srvi = ZiPWS ™ (NXB dpve = ZiPWS ' (\)PZ,
Srva = Z{PWS ™ (NS~ (N W'PZ. (5.2.1)

We introduce the following Assumptions.
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Assumption 6 VA € (—1,1), [[|STX )|l +|[ST*N)|e < K, i.e. STL(N) is uniformly

bounded in both row and column sums in absolute value.
Existence of S™H(\) VA € (—1,1) follows from (2.4.2) under Assumption 2(i).

Assumption 7

(i) For all n, each element x;; of X is predetermined and |x; ;| < K. For all n,

each element z1; of the n—dimensional, non-null column vector Z is constant
and |z1;| < K. Let Z = (Z1,X). Also,

()
0<c <n "

for all sufficiently large n.

(i) VB#0,VZ #0,

1 1 1
ltm *(5[\/71, lim *(5[\/}2, lim *(5[\/73 (5.2.2)
n—oon, n—oon n—oon

are non zero. Moreover, Y3 # 0, at least one element of X'WS~1X3/n has a

non-zero limit.

The limits displayed in (5.2.2) are finite by Lemma 2.2. Assumption 7(ii) imposes
that they are also non-zero.

By standard algebra, we obtain
(Arv =X, (Brv = B)') = Mprurv, (5.2.3)

where

mrvir  Miv,a2
M[V - ’
miv21  Miv2e2

with mrvii = Z{WY', mivi2 = ZiX, mrvy21r = X/WY, mrvyo2 = X/X, and

Z1€
ury = :
v e

11 12
M=l [ Ty Ty
v m2l 22 ’

Also,

v My

where m}%/, m}%/, m%%, and m%%/ can be obtained by standard results on the inverse
of a partitioned matrix.

Similarly to Section 5.1, Assumption 7 is sufficient to guarantee invertibility of
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My /n as n — co. Indeed,
1 1( z
My = ( o ) (WEY, X) + 0,(1).

Finiteness of (Mjy/n)~! can then be established under Assumption 7 by applying

formulae for the inverse of a partitioned matrix to

Z/
< le ) (WEY, X).

We have the following result

Theorem 5.2 Suppose that model (1.1.3) and Assumptions 1, 2(i), 2(ii), 6 and 7
hold. The cdf of A\iv — A, admits the third order formal Edgeworth expansion

VZIPZ) 0rval(Z1P21)

5?V2 1 5IV3 2.3
’ —sa | o Ce(Q)
?V,lZiPZl 25?\/,1

+ i%g‘l@(?)(g) +0 1 i
2 0%y, (Z1PZ1) n ’

Pr <J"§W’1'<Lv—x>s<> = RO+ ()
3
26

(5.2.4)

where éryv.1, drv2 and Oryg are defined according to (5.2.1).

The proof of Theorem 5.2 is in the Appendix. Under Assumption 7(ii), d7v1, orv,2

and d7y,3 have exact rate n. Moreover, under Assumption 7(i),
Z\PZy = 717, — Z1X (X' X)X Z) ~ n.

Hence, the second term in (5.2.4) has exact rate 1/4/n, while third and fourth ones
have exact rate 1/n.

We notice that Theorem 5.2 holds VA € (—1,1) and therefore, in principle, we
are able to use a feasible version of (5.2.4) to derive improved tests of the general
null hypothesis given in (3.0.1) against a one-sided alternative. However, A = 0 is
generally the most interesting value one wishes to test and thus we focus on (1.2.1)
against (2.1.1). Nevertheless, it should be stressed that the following results can be
extended with very minor modifications to the test of (3.0.1). Under Hy in (1.2.1)
S=L(\) = I, and 67y1 and 6y can be simplified accordingly.

In order to obtain a feasible version of (5.2.4), we substitute \/n—consistent esti-
mates of § and o into (5.2.4) without providing theoretical justification, similarly to

what we discussed in Section 5.1. Intuitively, we expect the second order expansion
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being unaffected by replacing true quantities by their estimates, but such conjecture

might not hold true for higher order terms of the expansion. Let
drva = ZPW X Bry (5.2.5)

and g
63y = I with ey = S()Y - XBy (5.2.6)
n

Hence, we can use the feasible, second order, version of (5.2.4), i.e.

Orval < Grvorve 9 <1>
Pr| ——————— ;v <(|Hy | =®(()+— ’ +0(—), (5.2.7
r<m i ity | = 00+ =R 0(0)+0 (1) (527)

to derive improved tests of Hy in (1.2.1).

Let wlV be the true a— quantile of the cdf of (|<§1V’1 |/orv \/m)qu. Similarly
to Section 5.1, (5.2.7) can be used to derive a more accurate approximation for w?"
than that based on z,. The derivation is identical to that outlined in Chapter 2 and

is omitted. We compare the size based on the standard normal approximation, i.e.

Grv/Z\PZ; Vn

with that obtained with the Edgeworth-corrected a—quantile, i.e.

5 R 1
() -1-avo(). o

vl s 1vOrv,2 9 <1>
Pr| ————==A\1v > 20 — = : zolHop | =1—a4+0 | —]. (5.2.9
(&W\/m v o1 |(Z] PZy)\/2 [Ho n) 029

From (5.2.7) and (2.1.14) we can derive a corrected test statistic

g —‘ 511/,1 5\IV
6rv/ 2 PZ, ’
where

2
g(r) =2+ OIVOv2 +1 O1voIv,2 23
|07v,1(Z1 PZ1)'/? 3\ |orval(Z1PZ1)1/? 7

so that

orval s _ <1>
Pr (9 <&IV\/WAIV> < C|H0> =®(¢)+0 ~ )

Thus, the error in the size when inference is based on the transformed statistic, i.e.

Orval <
Prgl—"Y10 5,0 > zulHo |, 5.2.10
(‘q (&W 7Pz, Y [Ho ( )

is expected to be reduced from O(1/y/n) to O(1/n).
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5.3 Finite sample corrections for testing [.

In this section we propose an Edgeworth-improved procedure for testing
Hy: R'B=0, (5.3.1)

where R is a k—dimensional, non-null column vector, based on IV estimates for A
and f in (1.1.3). For algebraical simplicity, we focus on tesing (5.3.1) against a one
sided alternative H; : R'8 > 0 (< 0), even though our procedure can be easily
extended to the case of a two-sided alternative. The proposed test can be extended
to Hy : R’ = r, where r is a non zero constant.

As mentioned in Chapter 1, non nullity of at least one component of 3 (other
than the intercept) is required for the IV estimates to be well defined. Thus, in
this framework, we cannot test Hy : § = 0. The results derived in this section
can therefore be applied to test (5.3.1) provided that R # l;. Also, we rule out a
test for the joint significance of the components of 5 other than the intercept, e.g.
Hy: By = f3 = ....0r = 0, where 1 corresponds to the intercept.

By (5.2.3),

R (Brv — B) = Rm%, Ze + R'm? X',

where
21 -1 11 vIy\—1y/ / -1
mIV = (m]V722) m[‘/;leIV = (X X) X WY(Zl_PWY) s
miy = (mpvee) '+ (mrvee) 'mpvoimpymivas(mrves) !
= (X'X)'+(X'X)IX'WY(Z,PWY) ' Z1 X (X' X)L,
and
mpy = (mpva1 — mIV,lQm[_‘iQQmIV,Zl)_l = (ZiPWY)™ L.
Therefore,
RBrv—p) = —RX'X)'X'WY(Z,PWY) ' Zje+ R(X'X)"'Xe
+ R(X'X) ' X'WY(Z,PWY) ' Z X(X'X) ' X'e
= —RX'X)"'X'WY(ZiPWY) ' ZPe+ R(X'X) ' Xe.
(5.3.2)
We define
Q=XX'X)"'RziP, G =pX'STTVN)W'(Q - Q). (5.3.3)

We introduce the following Assumption.
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Assumption 8
(i) R e R*/{0}.
(i) VB#0,2Z1#0, R#0 and X € (—1,1),

l l Y -1 rq—1 /
im GG iy GQ=QIWSTNG | G'STH W' PZ,

n—oo 1 n—00 n n— 00 n

exist and are non zero. Moreover, at least one component of each of the k— dimensional
vectors X'W S~ (A\)PZy/n and Z;PWS~Y(\)X/n is non zero.

Assumption 8(ii) guarantees that the orders of some of the coefficients in the

following Theorem hold as exact rates.

We have the following result.

Theorem 5.3 Suppose that model (1.1.3) and Assumptions 1, 2(i), 2(ii), 6, 7 and 8
hold. Under Hy in (5.3.1), the cdf of R'Bry admits the formal second order Edgeworth
expansion

. drv otr(Q — Q')WS*()\)
01v1] (G'G)1/2
UGIS_I()‘)IW/P21 ,
I I(eZE) DEIAS
G v HQ(C)QS(C)—FO(l)’ 5

[0rv,1] 3! n

Pr(MR'BIV§<|Ho) — 20 6(0)

U(G/G)l/Q

where
_ 602G’(Q — Q’)WS_l()\)G i
Kiv,g = O_Q(G/G)g/g \/ﬁ

The proof of Theorem 5.3 is in the Appendix. Assumption 7(ii) is relevant here
only to the extent of imposing an exact rates for 6,1 and X'WS~H(A) XS (the lat-
ter is required to guarantee existence of (Mjy/n)~! and is therefore relevant). We
notice that under Assumptions 7(ii) and 8(ii) the third and fourth terms in (5.3.4)
have exact rate 1/y/n. As discussed in detail in the proof, the second term vanishes
when WS™1()) is symmetric ( e.g. when W is symmetric and (2.4.2) holds). In the

Appendix we show that, in case W is not symmetric, so that
tr( QWS (V) # tr(QWS™H(N),

tr((Q — Q" YWS~1(\)) = O(1). Assumptions 7(i) and 8(ii) guarantee that the latter
does not vanish in the limit, so that the second term in (5.3.4) has exact rate 1/y/n.
Similarly to what discussed in Sections 5.1 and 5.2, (5.3.4) depends on the un-

known o, G and dry,1. In order to use (5.3.4) to derive improved tests, we replace
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unknowns with consistent estimates without providing theoretical justification. Specif-

ically, given j\lv and BIV, let
G =B X' ST ) W'(@Q - Q),
drva = ZyPWS™(A\rv) X Bryv
and

657,G'(Q — QWS (Ary)G
62, (G'G)3/2

kv, =

)

where 6%, is given by (5.2.6). Thus, we can use the feasible version of (5.3.4) to derive a
more accurate approximation for the a—quantile of the cdf of (|dry1|/G1v (G'G)Y?)R By .
We can compare the size of the test of (5.3.1) based on the normal approximation,

i.e.

101v,1 ¥ 1
Pr{——5— ofHo | =1- =) o
r<5zv(G’G)1/2RBIV>Z [Ho O\ 39
with

Pr MR,BH/ > Za+p(za)|Ho | =1 -+ 0 . (5.3.6)

&IV<G,G)1/2 n)’
() = 5:IV,1 arvir(Q —AQI)WS_l(;\IV) _ &IV@iS—l()}“{)’W’PZl x? + Rivg Hj(z)
0rv;a] GGz 0rv(G'G)Y/2 !

Similarly, from (2.1.14), we can derive an Edgeworth-corrected statistic so that

[01v.al ' <1>
prlg 21 __p > zolHo | =1—a+0(=), 5.3.7
<g<&w<c"c>1/2 v ) =zl n 30

(2) = - orva [ orvtr(Q — QYWS(A) _ 6rvGSTHN)W'PZ, 22 Rrv,s (22 —1)
9 |(§W71| (G/é’)l/2 SIV,l(G/é)l/Q 3!

T

3”/71(@/@)1/2 3

. N 2
1 <zalvc/sl<Alv)'W/le fﬁw) 3

The small sample performance of the proposed tests will be analysed by Monte

Carlo in the next section.

5.4 Bootstrap and Monte Carlo results

In this section we assess the finite sample performance of the new tests presented
in Sections 5.1, 5.2 and 5.3 by means of a Monte Carlo study. The setting of the
simulation is identical to the one described in Section 2.5. X is a n X 2 matrix whose

elements are generated from a uniform distribution with support [0, 1] and kept fixed
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over replications. Furthermore, Z7 is chosen as one of the column of WX so that
rank(Zi,X) = 3.

As already discussed, the size based on Edgeworth-corrected tests can also be
compared with the results obtained by the implementation of a bootstrap algorithm.
The procedure to obtain the bootstrap critical value based on OLS statistic is very
similar to one described in Section 2.5: after imposing Hy in (1.1.3), we estimate
by OLS and obtain the “restricted” residuals é, = Y — X B We then generate B
n—dimensional vectors €}, j = 1,...B from N(0,¢&¢,/n) and hence B pseudo-data
Yj = Xﬂ + ej, 7=1, B For every j = 1,....B, we compute bootstrap estimates )\;
and ﬂ; by regressing Y;* on WY and X, and we construct

b _ (SOPY) = XBY(SODY) - XB7)

n

We then obtain B bootstrap OLS null statistics as

*1/2 ' Y171 D 2ok
(5]. YJ WPej

ol YW PWY;

where 67 = B;IX "W'PWX 7, and compute the a—th bootstrap critical value w5

as the solution of

5*1/ 2 yywpe

<
BZ ( o} Yj*’W’PWYj* -

’IUSLS*’H()> < a.
The size of the test of (1.2.1) based on wQ™* is defined as
51/2
Pri{—A\> w95 Hy | . (5.4.1)

Similarly, after obtaining Y/ ( = 1,....B) as described above, for every j we obtain

Brv. j and A}y, j by IV estimation and we construct

2 (S(ATy )Y — XBiy ;) (S(Afy,;) Y] XBIV])
1V,j —

n
We obtain B IV null test statistics as
107v1] Z1Pe;

oy iV 21 P2 ZPWY}

where 51V1 = 21PWX51VJ and compute the a—th bootstrap quantile wlv

B ~
1 o0 A Pe*
721 < ’ Vl‘ 1 év*|H0> <a.

!/ * —
B\ ojy 1\ Z1PZ 2 PWY

* as the

solution of
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The size of the test of (1.2.1) based on wlV* is then

«

61v\/Z\PZ,

When dealing with testing (5.3.1), the bootstrap procedure based on restricted
residuals depends on the choice of R. For instance, if R = (1,0), i.e. Hy: f2 = 0,

we would be able to derive restricted residuals and pseudo-data by a straightforward

5 A
Pr (“V’l')\lv > wgV*H()) : (5.4.2)

modification of the procedures described above. For sake of generality, however, we
rely on the general framework, without imposing Hy to obtain residuals (e.g. DiCiccio
and Efron (1996)). In particular, we obtain A;y and Bry in (1.1.3) and hence the
residuals €;yy = S (S\IV)Y - X BIV- We then generate B n—dimensional vector é?V,j’
j=1,...B, from N(0,é}érv/n) and the corresponding pseudo-data

Yiv; = STHAW) (X Brv + €vj), j=1,....,B.

In order to avoid notational confusion, we should notice that YI*M ; is obtained by
a different procedure than Y;" defined above, since the latter was constructed by
imposing (1.2.1).

From Y}y, i for every j = 1,....B we obtain 'B;V,u,j and )\?V,u,j by IV estimation
and hence

0’ . = .
IV,u,j n

The extra subscript “u” indicates that here the estimates are obtained from “unre-
stricted” (i.e. obtained without imposing Hy in (5.3.1)) pseudo-samples. Similarly,

57V,1,u = ZiPW‘Sil( ?V,u,j)XB}(V,u,j

and
G* = By X' ST Ny W'(Q - Q).

The size based on the bootstrap a—quantile tév* is defined as

5 .
Pr ('IV’I’R’BIV > t@V*yH()) , (5.4.3)

6rvV GG

tIV* is obtained by solving

where

B *

1 107v1,u 5

*Zl %R,(ﬁ;\/uj - Brv) < tév*|H0 < o

B <‘77v,u,j VGrG

Similarly to the notation used in Sections 2.5, 3.2 and 4.4, in the Tables we denote

by “normal”, “Edgeworth”, “transformation” and “bootstrap” the simulated values
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of the size based on normal quantiles, Edgeworth corrected quantiles, Edgeworth-
corrected null statistics and bootstrap quantiles.

In particular, in Table 5.1 we report the simulated values corresponding to (5.1.5),
(5.1.6), (5.1.7) and (5.4.1).
condition y/n/h = o(1). We set 8 = (1,0.5)’, but the results are insensitive to the

The sample has been increased consistently with the

choice of 3.
m =8 m =12 m =18 m = 28
r=>5 r=2_8 r=11 r=14
normal 0 0 0.007 0.017
Edgeworth 0.129 0.078 0.063 0.054
transformation | 0.095 0.063 0.055 0.053
bootstrap 0.028 0.040 0.040 0.058

Table 5.1: Empirical sizes of the tests of (1.2.1) against a one-sided alternative when A and 3 in
(1.1.3) are estimated by OLS. The reported values have to be compared with the nominal 0.05.

From Table 5.1 we observe that, as expected, the normal approximation does not
work well since the nominal 5% is greatly underestimated for all sample sizes. On
the other hand, the results obtained by both Edgeworth-corrected critical values and
the Edgeworth-corrected statistic appear to overestimate 0.05 for very small sample
sizes, but the convergence to the nominal value appear to be fast. By a comparison
with the bootstrap based results, we notice that in this case the latter outperform
the Edgeworth corrections. More precisely, on average across sample sizes the values
obtained by Edgeworth-corrected critical values, Edgeworth-corrected statistic and
bootstrap critical valeus are 36%, 66% and 72%, respectively, closer to 0.05 than
the values obtained by standard inference. Moreover, as sample size increases the
difference between actual value and 0.05 decreases, on average, by 62% and 57% when
inference is based on Edgeworth-corrected critical values and Edgeworth-corrected
statistics, respectively. These figures have to be compared with a decrease of only
12% when we rely on the standard statistic.

In Table 5.2 we report the simulated values corresponding to (5.2.8), (5.2.9),
(5.2.10) and (5.4.2). Again, § = (1,0.5)".

m =38 m =12 m = 18 m = 28

r=2>5 r=38 r=11 r=14
normal 0.023 0.028 0.034 0.033
Edgeworth 0.078 0.065 0.062 0.056
transformation | 0.042 0.035 0.060 0.054
bootstrap 0.025 0.030 0.037 0.042

Table 5.2:

Empirical sizes of the tests of (1.2.1) against a one-sided alternative when A and 8 in
(1.1.3) are estimated by IV. The reported values have to be compared with the nominal 0.05.
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Similarly to Table 5.1, the results in Table 5.2 based on the normal approximation
are below 5% for all sample size, although the discrepancy is less severe. On the other
hand, Edgeworth-corrected quantiles and corrected IV statistic appear to improve
upon the normal approximation by 29% and 54%, respectively, on average across
sample sizes. The performance of Edgeworth corrections in this case appears to be
better than the bootstrap one, since in the latter the obtained values are, on average
across sample sizes, only 22% closer to 0.05 by than ones obtained by the standard

normal approximation.

m =8 m =12 m = 18 m = 28
r=2>5 r=2_8 r=11 r=14
A A A A
normal 0.1 0.032 0.1 0.041 0.1 0.042 0.1 0.044
0.7 0.032 0.7 0.031 0.7 0.039 0.7 0.043
A A A A
Edgeworth 0.1 0.071 0.1 0.051 0.1 0.051 0.1 0.047
0.7 0.068 0.7 0.055 0.7 0.052 0.7 0.051
A A A A
transformation | 0.1 0.075 0.1 0.062 0.1 0.054 0.1 0.051
0.7 0.088 0.7 0.063 0.7 0.048 0.7 0.049
A A A A
bootstrap 0.1 0.055 0.1 0.040 0.1 0.045 0.1 0.046
0.7 0.061 0.7 0.042 0.7 0.041 0.7 0.043

Table 5.3: Empirical sizes of the tests of (5.3.1) with R = (0,1)" against a one-sided alternative. X
and S in (1.1.3) are estimated by IV and A = 0.1,0.7. The reported values have to be compared with
the nominal 0.05.



5. Refined Tests for Mixed SAR Models 135
m =8 m =12 m = 18 m = 28
r=2>5 r=238 r=11 r=14
A A A A

normal 0.1 0.033 0.1 0.031 0.1 0.035 0.1 0.041
0.7 0.029 0.7 0.032 0.7 0.033 0.7 0.040
A A A A
Edgeworth 0.1 0.070 0.1 0.066 0.1 0.055 0.1 0.047
0.7 0.059 0.7 0.060 0.7 0.044 0.7 0.052
A A A A
transformation | 0.1 0.072 0.1 0.058 0.1 0.055 0.1 0.049
0.7 0.069 0.7 0.059 0.7 0.053 0.7 0.052
A A A A
bootstrap 0.1 0.064 0.1 0.041 0.1 0.044 0.1 0.046
0.7 0.059 0.7 0.043 0.7 0.044 0.7 0.043

Table 5.4: Empirical sizes of the tests of (5.3.1) with R = (—1,1)’ against a one-sided alternative.
A and § in (1.1.3) are estimated by IV and A = 0.1,0.7. The reported values have to be compared
with the nominal 0.05.

Finally, in Tables 5.4 and 5.5 we display the simulated values of the size of test of
(5.3.1) against a one-sided alternative when R = (0,1)’ (i.e. Hp: 2 = 0) and R =
(—=1,1) (i.e. Ho: B1 = P2), respectively. For each case, we choose two different values
for A, that is A = 0.1 and A = 0.7. In both cases the values of the size based on both
Edgeworth corrected quantiles and corrected statistics are closer to 5% than the values
obtained with the normal approximation. The pattern of the results is similar for the
two choices of R and does not appear to change with the value of \. More specifically,
when R = (0,1) and A = 0.1, the values obtained by using Edgeworth-corrected
critical values, Edgeworth-corrected statistic and bootstrap critical values are 52%,
15% and 32% closer, respectively, to the nominal 0.05 than the values obtained by the

standard statistic.

A  Appendix

Proof of Theorem 5.1

From (5.1.1),
X=X = m'luy +m'Puy = mll(ul — m12m2_21u2).

By standard algebra, we can write the cdf of A under Hy as Pr(\ < z) = Pr(f < 0),

where
z
mlil

f=u— m12m521u2 - (5.A.1)

and z being any real number.
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Under Hy, by (5.1.2),

my1 = (XB+e)WW(XB+e¢)

and
mig =my = (XB+¢)W'X.
Therefore,
miamaymar = (XB + €)W X(X'X) ' X'W (XS +€)
and hence
m'' = (XB+e)WPW(XB+e) . (5.A.2)
Similarly,
up = (XB+¢)'W'e

and hence

uy — migmayug = (XB + €)' W'e — (XB+ )W X(X'X) ' X'e = (XB+ €)W’ Pe.
(5.A.3)
Substituting (5.A.2) and (5.A.3), (5.A.1) becomes

f o= W'P—2WPW)e+ (BX'W'P—2:8XW'P)e— 28 X'WPWX}
= WP — :W)e+ BXW'P(I — 2:W)e — 28 X'W' PW X

= %e’(C +CNe+de+d
where
C=WPrPI-zW), (5.A.4)
d =0 X'WPI-2:W), (5.A.5)
and
d=—2fX'WPWXB§. (5.A.6)

We define § = /' X'W/ PW X3, so that d = —2z4.

Under Assumption 1, we can derive the characteristic function of f as

E(eitf) :E(eit(%e’(C—&-C”)e—&-c’e—i—d))
itd ’
:(2 ; /2 /eitég’(C+C’)£+itc/§€;‘§d£
)" Egh
§Rn
itd , ) o
:(gij / e H(E—a) (I=ita(C+C)(E—a) 3o/ I—itr*Chage | (5.A.7)
R
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where ¢ satisfies itc’ = ¢/(I — ito?(C + C"))/o. By standard algebra,
q= (I —ita*(C + C")) Litco,

and hence

¢ (I —ite*(C+C"))g= —t*¢ (I —ite*(C + ")~ ?

By Gaussian integration, (5.A.7) becomes

E(eitf) :eitdf%tzc’(lfitaz(C+C’))*1cd€t(1 . itUQ(C + Cl))fl/Q

:eitdfthC/(If’itO'Q(C+Cl))_1c ﬁl(l - ltO'QT]j(C + Cl))fl/Q. (5A8)
‘7:

From (5.A.8), the cumulant generating function of f is

2 n
W(t) =itd — %t%’([ —ito*(C +C")) e — %Zln(l —ito?n;(C +C"))

j=1
—itd — %tQC’Z (ite®(C + C")) Z (ite®)*tr((C + C")),  (5.A.9)
s=0 =
where the last displayed equality follows since
(I —ite®(C+ )"t = (ite®(C + C"))*,
s=0
, 2. (ito?n; (C + C"))?
In(1 —ito’n;(C + C")) = —Z; -

and hence

1 n . 1 n oo 1 ‘ s 5
—§Zm(1 —ito’n;) = izzg(ztaz) n;(C +C")
j=1 j=ls=1
1 = L 2\s - A
= 525("“ )*> ni(C+C")
s=1 j=1
- 1i1(¢ta2)8tr((c )
24s '
From (5.A.9) we can derive the sth cumulant of f as:
k1 =d+ o*trC,
o2
Ky = o2 (cc+ ?tr((C’ +C"?)),

25 ¢ 1\s
g = L2 <1C(C+C/)S2 W>,8>2.

2 o2 s
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As in the proof of Theorem 2.1, let f¢ be f¢ = (f — m)/ﬁa;/2 where k¢ = HS/H;/Q.

By the same argument outlined in detail in the proof of Theorem 2.1,

Pr(\ < z) = Pr(f¢ < —x$) = ®(—x$) — %cp@(—ﬂ‘f) + %@4)(—/@5) + ... (4.A.10)

Now,
d+ o?tr(C)

o (c’c + Zr((C + 0)2))

K] =

172"

Under Assumption 5,

d= —2z0 ~ —zn.

By standard linear algebra,
trC = tr(W'P(I—2W)) = tr(W'P)—ztr(W'PW) = —tr(X'W'X (X' X)) —2tr(W'PW).

The first term of the RHS of the last displayed is O(1) and non zero under Assumption
5, since each component of (X’X)~! has exact rate 1/n and at least one component
of X'W’'X has exact rate n. By Lemma 2.1, tr(W'PW) = O(n/h). Moreover,
de = BX'WPWXS— 428 X'W PWPWXS + 4228 X'W'PWW'PW X .
= §— 428 X'WPWPWXS + 2%0(n),

since B’ X'W'PWW'PW X8 = O(n) by Lemma 2.2. Finally,
tr((C+C"?) = 2r((W'P)?) 4 2tr(W' PW) — 8ztr(W'P)*W) + 42%tr(W'PW)?),
where tr((W'P)2+W'PW), tr(W'P)2W) , tr((W'PW)?) are O(n/h) by Lemma 2.1.

We set
o 1

= aRt Y

z
Thus, when /n/h = o(1),

26— P2t (X'WX(X' X)) + 0 (%)

K] =
L o612 (1- L XWPWPWXS+0 (1))

= (—c _ XWX <1>) (1 + 2% g PWPW X B+ O (1>)

S51/2 h 53/2 h
B otr( X'WX(X'X)™Y) 20

1
51/2 - 53/2 N

=—C N

B’X’W’PWPWXBC2+O( ) (5.A.11)

The second equality follows by a standard Taylor expansion around zero of the de-
nominator. Under Assumption 5, both the second and the third term in (5.A.11) have
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exact rate 1/y/n. Similarly, when h ~ \/n,

—26 — 2tr(X'WX (X' X)) — ztr(W' PW)

= 1/2 4z pr Y o? 1 P2 / 1 1/2
o (1— 42 @1 X1W' PW PW X 8 + Setr((W'P) +WPW)+0(%))

B otr(X'WX(X'X)™Y)  tr(W'PW) 20, e 9
=—(- 5172 - 5 ¢~ sl X W PWPWXB(

o’ 7 V2 / 1
+%t7“((W P)y*+W'PW)(+o (ﬁ) .

Also, by tedious but straightforward linear algebra,

30 (c’(C +C'e+ Ftr((C + C’)3)) BX'WPWPWXB 1
3/2 e 3/2 N~
o (et Gir((C+ 1)) ’ v

K§ =

since, by Assumption 5,
d(C+Ce~28X'WPWPWXJ ~n,
while by Lemma 2.1

tr(C+C"3 ~ tr(WP+PW)) =0 (%) .

For notational simplicity let

Cotr(X'WX(X'X)™h)  20¢°

91(¢) = 512 — 3 BX W' PWPW X5
and
otr(X'WX(X'X)™h  tr(WPW) 202
a(C) = - 512 - 5 ¢ S AXWPWPWX§
2
+ %tr((W’P)2+W’PW)g.

Therefore, by Taylor expansion,
1
B(r) = 2(0) - 01(00() + 0 7 )

when y/n/h = o(1), and

when h ~ y/n.
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Thus, when /n/h = o(1), (4.A.10) becomes

1/2 KE .
Pr(‘%x <) =®(¢) = (o) — 5P+ 0 (2)
and
1/2 KE .
Pr =3 £ Q) = 8(0) - 0(00(0) ~ 0O +o (72 )

when h ~ n.

Remark

From the proof of Theorem 5.1 is clear that the remainder of rate 1/h would
dominate the first Edgeworth correction if h was bounded or diverging at rate slower
than /n. Similarly, it is clear that we cannot derive higher order terms, since the
O(1/h) remainder would dominate x§, which is expected to have rate 1/n.

Some extra consideration about the impossibility of deriving a standard expansion
when A # 0 are worthwhile. When A # 0 we would modify the proof of Theorem 5.1

as follows.

Since Y = S7Y(\)(XB + €), with S(A) defined according to (1.2.8), instead of
(5.A.4), (5.A.5) and (5.A.6), we would have

C =S ' NW'PI - :WS™(N),

d=FX'STENW'P(I —2:2WS~1(\)),

and
d=—28X'STTNWPWS Y NXB = —26,

where § = B/ X'STI\)/W'PWS~L(\) X B.
Hence, setting z = 0¢/6%/2, (5.A.11) would be

—20 + o*tr(WS~L(A\)P) + O <%)

0012 (1 — LF XS W PWS=H (N PWS-L(N) X+ 0 (+))"?

_ <—<+ atr(W(;Sl'/;(/\)P) o (D)

20C 1o Ixr! - - 1
(1+53/2BXS "N WPWS (N PWS 1()\)Xﬁ+0(h)>

otr(WS=Y(\)P) 202
= ¢+ 51/2 ~53/2

Assuming |[STL(N)]|| + [|ST(V)||e < K, the second term in the last displayed ex-

BX'STYNWPWS YA\ PWS T (AN)XE+ 0 (

1
h

)
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pression is O(y/n/h), since tr(WS~1(A\)P) = O(n/h) by Lemma 2.1, while the third
(under suitable assumptions) has rate (1/y/n). It is straightforward to notice that the
term of order O(y/n/h) term in x{ dominates k§ ~ 1/4/n, unless h diverges at rate
faster than or equal to n. However, by Assumption 2(iv), h = O(n). Hence, we could
derive a standard Edgeworth expansion for A £ 0 only when h = n. Clearly, this is a

very limited case and does not deserve to be pursued any further.

Proof of Theorem 5.2

From (5.2.3),

3 11 v 12 1 11 (7t -1 /
)\[V — A= mIVZ1€ + mij € = mlv(Zlﬁ — m]V712mI‘/v722X 6),

where
11 _ —1 -1 _ ! ! / —1 v -1
mpy = (mvi— mIV,l?mIV,22mIV,21) =(Z1WY - Z1 X (X' X)) X'WY)
= (Z1(I - X(X'X)"' X" Ywy) ! = (z;PwY)!
and

12 11 —1 / —1 Iy —1
mpy = —MpymivieMpy g, = —(ZPWY) T Z1 X (X'X) 7
Hence, for any real z, we can write

PT(XIV - A < Z) :PT(fIV < 0), when 5[\/71 > 0,
=Pr(frv >20), when drv1 <0, (5.A.12)

where 07y is defined in (5.2.1) and

_ z
frv = Zje— mjv,umn},ng/E vy
1A%
= Zie—Z\X(X'X)"'X'e — 2Z, PWY

= Z|Pe—2ZPWS Y\ XB — 2ZPWS™ (N,

since Y = STH(\) (X3 +¢).
An explanation of (5.A.12) is necessary at this stage. It is clear that such step

depends on the sign of m}%/ Specifically,
ZYPWY = Z\PWS ' (N XB + Z;PWS ' (Ne = 61v1 + Z,PWS™ (Ve

Under Assumption 7(ii), the first term has exact rate n. Regarding the second term,
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we have
E(Z,PWS™1(Ne)? = a2ZiPWS (NS NW'PZ, = O(n),

by Lemma 2.2. Hence, by Markov inequality, Z] PWS™'(A)e = O,(y/n). We can

therefore conclude that, at least for n large enough, the sign of m}%, is determined by

orv,-
Let
dry = —2Z}PWS ' (\)XB = —201v4
and
cy = Z1P(I — 2WS~H(\). (5.A.13)
Therefore,

/
f]V = Cry€+ dry.

Since fry is linear in €, under Assumption 1 fry ~ N(dyv, 020’1‘/01‘/). Hence, the

cumulants of fry are

2/
kiva =drv, Krve =0 cyerv, Krvs =0,8 > 2.
Accordingly, the centred and scaled cumulants of fry become

drv

1/2°

——————, Ky, =0,5>2. (5.A.14)
O'(CIVC[V)

ﬂ?v,l =
From (5.A.13),
ey = ZYPZy — 2221 PW S YN PZy + 22 Z PW S~ Y\ S™L (N W' Pz,

_2ZPWST\(WPZ | 2ZIPWST (NS () W'PZ,
Z'P7Z; Z/PZ; ‘

= Z1PZ, <1
Under Assumption 7(i),
Z\PZ, = 217, — Z\ X (X' X)X Z ~ n.
We set
(Z,PZy)/? 1

\/ﬁ?

since |d7v,1| ~ n under Assumption 7(ii). Hence (5.A.14) becomes

|0rva1

—201v,1

Z,PWS-1(\)PZ 2 PWS-1(\)S-1 AW/ PZ, \ 1/2
o(Z|PZy)1/? (1 — 2z Z;Pz(l) L4225 (Zi)le( ) 1)

a4 ZZ{PWS*()\)PZI P ZIPWSTI VST N W PZ,
Z\P7, 2 Z\PZ,

Cc —
Krvia =

orva
0rva

=—¢
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ﬁ(zgpwsfl(A)PijLO 1\*? )
2 (Z,PZ,)? n
_Sva o(ZPWSTMANPZ)  brva

10rv1] |6rva (2 PZy)1/2 10rv1]
02 ZIPWS~Y(\)S~L (N W'PZy
o . ¢
2 5[\/71

302 (Z1PW S~ (/\)PZ1)2C3 owva o (L 3/2
2 6%V,1Z/PZ1 ‘5IV,1| n )

Under Assumption 7(ii), the second term has exact rate 1/4/n, while the third and

orv,1

fourth ones have exact rate 1/n.

Hence, when é7y,1 > 0

Pr( &v;Zl(X —/\)§§>:Pr(fn/§0)

frv — RIVL _
( 1/2 —Kivi | = q)(—’”v?v,l)

Krv,ae
o(Z,PWS~Y(\)PZ)
=o(¢) + 5;V1(Z,le)l/2 Y e24(¢)

(3(21PWS L(\)PZ;)? 1Z{PWS—1()\)S—1(>\)’W’PZ1>02C3¢(C)

_l’_

2 §2,,Z,PZ 2 %y

0% (ZLPW S~ (NPZ1)? 4 (o) (1)3/2
YT waaezy 0 OoG) )

where the fourth equality has been obtained by Taylor expansion of @(—H?V’l). Sim-

ilarly, when d7v,1 <0,

—01vi 3 frv — Krva
r = (A\rv —=A) < | = Pr(fry >0)=Pr = > K]
(0 /7Z{PZ1( v )_C> (frv 2 0) ( K}% > —Kiv

=1- ‘I’(—’ﬁv,l)
o(Z,PWS—(\)PZ)
=1—{d(—
{ ( C) 5]V’1(ZiPZ1)1/2
_(3(Z1PWSTI(N)PZy)* 1 ZiPWST' (VST (N W'PZ, 023 4(—()
2 03121 PZy 2 5y
o2 (ZIPWSY(\PZ)? , 1\*/?
i d2(— hl
> oL (4PZ) (=0+0 (n)
_a(0) - o(Z,PWS~Y(\)PZy)
B Srva(Z,PZy)1/?

o(—0)

¢?¢(Q)
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B(APWS (NPZ)’ 1 ZPWST NS A WPZY oy
2 0, Z\PZ 2 2 ’

o (ZLPWS Y (NPZ1)? 4 (o) 1)?%/?
A CIN (2) ).

since ) (—¢) = —®®@)((). Collecting,

6rval  « _ o(Z1PW S~ (N)PZ1) .,
Pr (U 77 A)SC)—<1>(C)+ e TE § AR S
3(Z,PWS Y NPZ)?2  1ZPWSTLN)STYAYW'PZ\ 4 4
2 0%,,2{PZ 2 o 7CoE)
0% (ZLPW S (NPZ1)? 4 (o) 1)%/?
2 0%,,(Z|PZy) CeTOF+0 <n> ‘

The claim in Theorem 5.2 follows by setting

Srva = Z{PWS 1 (\)PZ,

and
Srvs = ZPWS™H (N STH N W' PZy.

Proof of Theorem 5.3

Similarly to (5.A.12), from (5.3.2) under Hy, we can write

PT'(f[V,g < 0) if (5[‘/71 >0
= PT(f[Vﬂ > 0) if 5]\/71 < 0,

P?“(R/,é]\/ S Z)

where

frvg = —R(X'X)'X'WYZ{Pe+ R(X'X) ' X'eZ{PWY — 2Z{PWY

= —PZIR(X'X)'X'WY 4+ X(X'X)'RZ{PWY — 2Z, PWY.

Since Y = S7L(\)(XB + ¢),

frvg = —€PZIR(X'X) ' X'WS I NXB - PZiR(X'X) ' X' WS (N)e
+ XX'X)'RZIPWST'NXB + X (X' X) 'RZPWS™ 1 (\)e

— 2Z'PWS YA\ XB — 2ZiPWS™(\)e
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1
= 5€(Crvp+ Cryp)e + cyge + divig,
where

Crvp=—PZ1R(X'X) ' X'WSTN+X (X' X) 'RZ,PWSTH(\) = (Q-Q")YWS™1()N),
(5.A.15)

dyg = BX'STNW(-X(X'X)'RZP + PZiR(X'X) ' X") = 2Z1PW S5~ ())
= G —2Z,PWS(\),

and
drv,p = —2Z{PWS (M) X8 = —z61v,1. (5.A.16)

Following the same procedure used in the proof of Theorem 5.1, the cumulants of
frvp are
krvp = divg + o trCry,g,
o2
kvpe = 0 (crygervs + 5 tr((Crvs + Cryp)?)

and

o%s! 1

_ tT((C[Vﬂ + C}V )s)
KIV,3,s = T{;C}v,ﬁ(cmﬂ + Clyp)* Pervg + &

S

bos > 2.
From (5.A.15) and (5.A.16),
Krvpl = —20v1+at(tr(QWSTHN) — QWSTI(\)).
Under Assumption 8(ii), d7v,;1 ~ n. Before proceeding, we notice that
tr(QWS YA —QWSt(\) =0

when (WS=1(X))" = WS~1()). The latter may hold, for instance, when W is symmet-
ric. Indeed under Assumption 2(i), (2.4.2) holds and hence symmetry of W implies
symmetry of S71()). Therefore,

(WS =8 TNW =St O)W =ws (),

since W and S~!()\) commute when (2.4.2) holds true. In general, when W.S~—1()\) is

not symmetric,
(QWSTHN) = QWS (N)iil < QW STHA))ail + [(QWSTHN))iil.

We can show that under Assumptions 7(i) and 8 both terms at the RHS of the last

displayed expression are O(1/n), uniformly in i. We show the result in detail for
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(QW S™Y(N))il, a similar argument with very minor modification holds for the second

term.
We have
QWS ()l = I(X(X'X)™ RZPWS™ (\)a] = [ef(X'X) " RZfa
1
< ) RIZal =0 (1),

where z} and a; indicate the i—th row of X and the i—th column of A = PWS~1()),
respectively. Indeed, under Assumptions 7(i), and 8(i),

1 X'x\ ! 1 X'xX\ ! 1
rx;( ) R<|rx;\|r|( ) |H|R\|=o<), (5.A.17)
n n n n n

uniformly in i (the latter argument is very similar to one in the proof of Lemma 4.1).
Also, ||Al| + ||A]lc < K , since P, W and S~!()\) have the same property. We denote

by z1; the ith component of Z; and ay; the ¢ — ith element of A. Uniformly in 4,

n n n
| Z5asl =1 zuan| <zl < m?X|zlt|Z|ati| =0(1). (5.A.18)
t=1 t=1 t=1

Therefore,
tr(QWS™H(A) — QWS™H(N)| < nmldeI(QWS’l(/\))ii\ + nm?x\Q’WS’l()\))ii\ = O(1).
Moreover,
cvpervg = G'G—22G'STHNW'PZy+ 22 ZiPWS™ (NS (N W'PZy.
Under Assumption 8(ii),
G'G ~ n,
G'STYNW'PZ, ~ n,

while

ZyPWS™HN)STH N W'PZ, = O(n)

by Lemma 2.2.
Similarly,

(tr(Crv,g + Ciyp)?) = tr(Chyg) + tr(Crv,sChy )

r((Q ) (WS™H(\)? )+t7‘((Q QWS NS N W'(Q - Q)
= ”‘(Q2( O+ ((Q)P(WSTHA))?) = 2tr(QQ'(WSTH(N))?)

+ tr((Q - ) STHNSTHY W’(Q -Q)).

Il
T o
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It can be shown that each of the terms appearing in the last displayed expression is
O(1) under Assumptions 6, 7(i) and 8. We only show

tr((Q — @) (WS (X)) = 0(1),
but similar arguments apply also to the remaining terms. We have,

tr(@*(WSTIN)H)| = [tr(X(X'X)T'RZIPX(X'X) T RZIP(WSTI(V))?)|
|ZyP(WSTY ()X (X' X)'RZiPX(X'X)'R|

|ZiP(WST' ()X (X' X)'R||Z; PX(X'X) 'R

= |Z{BX(X'X)"'R||Z{PX(X'X)"'R]|

IN

where B = P(WS~1()\))? satisfies
1Bll» + ||Bl|c < K.

Now, denoting b; the i—th column of B,

ZBX(X'X) 'R = |3 Ziba(X'X) ' R| < 3| Z4bil | (X'X)'R| = O(1),

i=1 =1
since |Z1b;] = O(1), uniformly in ¢, by the same argument given in (5.A.18) and
|2/(X'X)~'R| = O(1/n), uniformly in i, by (5.A.17). Similarly, |Z; PX(X'X)"'R| =
O(1).
We choose
U(G/G)1/2
2= ——""
10rv1

Hence, the first centred cumulant of f7v g, denoted KTva becomes

Koyvan = —20rv1 + atr((Q — QHYWS™L(N)
" N1 /2 2:G'S—1(\)/W'PZ, 11\ /2
o(GG)V2 (1 e, +0(3))
_ (_ Srva atr((QQ’)WS‘l()\))> <1 aa's—l(A)’W'PZlC o (1
|01v;1] (G'G)/? 0rva|(G'G)1/2
(5[\/’1 O’tr((Q — Q/)WS_I()\)) B aG’S‘l()\)’W’PZl CQ 5[\/71 L0 <
1

- ¢

|6rv;1l (G'G)Y/? |6rv1|(G'G)V/? |0rv1]
L orvi otr((Q — Q/)WS_I(/\)) B oG'ST*\NW'PZ, C2 0 <1>
|5IV71| (G,G)I/Q (5]V71(G/G)1/2 '

Under Assumption 8(ii), when WS~1()) is not symmetric (e.g. when (2.4.2) holds
and W is not symmetric) both the second and third terms have exact rate (1/y/n).

As shown above, when W S~1()\) is symmetric the second term vanishes.

)
)
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Moreover,

RKIV33 304y 5(Crvig + Chyg)erv,s

K?Vﬁﬁ - /€§</22 , o2(G'G)3/?
65°G'(Q - QHYWS'(NG 1
O-2(GIG)3/2 \/ﬁ

under Assumption 8(ii), while each term of tr((Crv g + C}V,,B)g) is O(1) (the latter
property can be shown with a slight modification of the argument we used to show
that each element of t7((Crv,s + Cy5)?) is O(1)).

Finally, following the same procedure we described in the proof of Theorem 5.1,

when 5IV,1 > 0,

Pr (MR’B < g) = &(0)
o(

G’G)1/2
<UtT(Q — Q’)WS_I()\) B aG’S‘l(A)’W’PZl C2) 6(0)
o (G’G)UQ 5IV,1(G'G)1/2
KS 1
- SR HAQO(C) + 0 (n) :

When 5IV,1 < 0,

76 5 /23 f b K 5Ly C
Pr(aaA <) = Prtin>0) = pr (BEE > iy )
B otr(Q — QYWS=L()) B oG'STY\NW'PZ, 2> B

- ﬂ?v,6,3H2(_g)q§(—C)} +0 (i)

3!
otr(Q = QWS '(A\)  oG'ST'N)W'PZ
(G’G)1/2 51u1(G’G)1/2

— a0+ ( c2> 5(0)

C . 1
000 +0 (1)

Collecting terms,

|6 ,| /A _
o N —1 oG’ -1 v v
- drva < tr(@Q — QWS ()\)_ G'S ()\)WP21€2> (C)

0rva] (G'G)1/2 Srva(G'G)Y/?
drvia KTv,ss (1)

_ O Fvies g vo(+).
Grva] 3! 2(¢)9(C) -

The claim in Theorem 5.3 follows by setting kv g = KTv.g3-



149

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Aca-

demic Publishers.

Anselin, L. (2001). Rao’s score test in spatial econometrics. Journal of Statistical
Planning and Inference, 97, 113-39.

Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional
Science, 89, 3-25.

Ansley, C.F., R. Kohn and T.S. Shively (1992). Computing p— values for the
generalized Durbin-Watson and other invariant test statistics. Journal of Econo-
metrics, 54, 277-300.

Anselin, L. and R. Florax (1995). Small sample properties of tests for spatial
dependence in regression models: some further results. In L. Anselin and R.
Florax (Eds.) New Directions in Spatial Econometrics. Springer-Verlag, Berlin,
21-74.

Anselin, L. and S. Rey (1991). Properties of tests for spatial dependence in

linear regression models. Geographical Analysis, 23, 112-31.

Arbia, G. (2006). Spatial Econometrics: Statistical Foundation and Applications
to Regional Analysis. Springer-Verlag, Berlin.

Bao, Y and A. Ullah (2007). Finite sample properties of maximum likelihood

estimator in spatial models. Journal of Econometrics, 137, 396-413.

Barndorff-Nielsen, O.E. and D.R. Cox (1989). Asymptotic Techniques for Use
in Statistics. Chapman and Hall, London.

Bhattacharya, R.N. and J.K. Ghosh (1978). On the validity of the formal Edge-
worth expansion. Annals of Statistics, 6, 434-451.

Bhattacharya, R.N. and R.R. Rao (1976). Normal Approzimation and Asymp-
totic Erpansions. John Wiley & Sons.

Buonanno, P., D. Montolio and P. Vanin (2009). Does social capital reduce

crime? Journal of Law and Economics 52, 145-70.

Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the
Royal Statistical Society, Series B, 42, 107-8.

Case, A.C. (1991). Spatial Patterns in Household Demand. Econometrica, 59,
953-65.



References 150

Cliff, A. and J.K. Ord, (1968). The problem of spatial autocorrelation. Joint
Discussion Paper, University of Bristol: Department of Economics, 26, Depart-

ment of Geography, Series A, 15.

Cliff, A. and J.K. Ord, (1972). Testing for spatial autocorrelation among regres-
sion residuals. Geographical Analysis, 4, 267-84.

Cliff, A. and J.K. Ord, (1975). Spatial Autocorrelation. Pion, London.

Conley, T.G. (1999). GMM estimation with cross-sectional dependence. Journal
of Econometrics, 92, 1-45.

Conley, T.G. and B. Dupor (2003). A spatial analysis of sectoral complemen-
tarity. Journal of Political Economy, 111, 311-52.

Conley, T.G. and E. Ligon (2002). Economic distance and cross-country spillovers.
Journal of Economic Growth, 7, 157-87.

Conley, T.G. and F. Molinari (2007). Spatial correlation robust inference with

errors in location or distances. Journal of Econometrics, 140, 76-96.

Cornish, E.A. and R.A. Fisher (1937). Moments and cumulants in the specifi-

cation of distributions. International Statistical Reviews, 5, 307-22.

Cornish, E.A. and R.A. Fisher (1960). The percentile points of distributions

having known cumulants. Technometrics, 2, 209-26.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University

Press, Princeton, NJ.
Cressie, N. (1993). Statistics for Spatial Data. Wiley, New York.

Dahlhaus, R. and H. Kiinsch (1987). Edge effects and efficient parameter esti-

mation for stationary random fields. Biometrika, 74, 877-82.

Das, D., H.H. Kelejian, and I. Prucha (2003). Small sample properties of estima-
tors of spatial autoregressive models with autoregressive disturbances. Papers

in Regional Science, 82, 1-26.

Davies, R.B. (1973). Numerical inversion of a characteristic function. Biometrika,
60, 415-417.

Davies, R.B. (1980). The distribution of a linear combination of x? random
variables. Applied Statistics, 29, 323-333.

DiCiccio, T.J. and J.P. Romano (1995). On bootstrap procedures for second-
order accurate confidence limits in parametric models. Statistica Sinica, 5, 141-
60.



References 151

DiCiccio, T.J. and B. Efron (1996). Bootstrap confidence intervals. Statistical
Science, 11, 189-228.

Edgeworth, F.Y. (1896). The asymmetrical probability curve. Philosophical
Magazine, 5th Series, 41, 90-9.

Edgeworth, F.Y. (1905). The law of error. Proceedings of the Cambridge Philo-
sophical Society, 20, 36-65.

Efron, B. and R.J. Tibshirani (1993). An Introduction to the Bootstrap. London:
Chapman and Hall.

Egger, P., M. Larch, M. Pfaffermayr and J. Walde (2009). Small sample prop-
erties of maximum likelihood versus generalized method of moments based tests
for spatially autocorrelated errors. Regional Science and Urban Economics, 39,
670-78.

Ghazal, G.A. (1996). Recurrence formula for expectation of products of quadratic
forms. Statistics and Probability Letters, 27, 101-9.

Guyon, X. (1982). Parametric estimation for a stationary process on a d—dimensional
lattice. Biometrika,69, 95-106.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag.

Heijmans, R. (1999). When does the expectation of a ratio equal the ratio of
expectations? Statistical Papers, 40, 107-15.

Harris, P. (1985). An asymptotic expansion for the null distribution of the
efficient score statistic. Biometrika, 72, 653-659.

Horn, R.A. and C.R. Johnson (1985). Matriz Analysis. New York: Cambridge

University Press.

Kakizawa, Y. (1999). Valid Edgeworth expansions of some estimators and boot-
strap confidence intervals in first-order autoregression. Journal of Time Series
Analysis, 20, 343-59.

Kelejian, H.H. and L.R. Prucha (1998). A generalized spatial two-stages least
squares procedure for estimating a spatial autoregressive model with autoregres-

sive disturbances. Journal of Real Estate Finance and Economics, 17,99-121.

Kelejian, H.H. and I.R. Prucha (2001). On the asymptotic distribution of the
Moran I test statistic with applications. Journal of Econometrics, 104, 219-57.

Kelejian, H.H, I.R. Prucha and Y. Yuzefovich (2004). Instrumental variable

estimation of a spatial autoregressive model with autoregressive disturbances:



References 152

large and small sample results. In J.P. Lesage and R.K.Pace (Eds.) Advances in
Econometrics: Spatial and Spatiotemporal Econometrics . Elsevier, New York,
163-98.

Kelejian, H.H. and D.P. Robinson (1992). Spatial autocorrelation - a new com-
putationally simple test with an application to the per capita county police

expenditures. Regional Science and Urban Economics, 22, 317-31.

Kelejian, H.H. and D.P. Robinson (1998). A suggested test for spatial auto-
correlation and/or heteroskedasticity and corresponding Monte Carlo results.
Regional Science and Urban Economics, 28, 389-417.

Konishi, S., N. Niki and A.K. Gupta (1988). Asymptotic expansions for the
distribution of quadratic forms in normal variables. Annals of the Institute of
Statistical Mathematics, 40, 279-96.

Imhof, J.P. (1961). Computing the distribution of quadratic forms in normal
variables. Biometrika, 48, 266-83.

Lee, L.F. (2002). Consistency and efficiency of least squares estimation for mixed

regressive, spatial autoregressive models. Fconometric Theory, 18, 252-277.

Lee, L.F. (2003). Best spatial two-stages least squares estimators for a spatial
autoregressive model with autoregressive disturbances. FEconometric Reviews,
22, 307-335.

Lee, L.F. (2004). Asymptotic distribution of quasi-maximum likelihood esti-

mates for spatial autoregressive models. Econometrica, 72, 1899-1925.

Lieberman, O. (1994). A Laplace approximation to the moments of a ratio of
quadratic forms. Biometrika 81, 681-90.

Magee, L. (1989). An Edgeworth test size correction for the linar model with
AR(1) errors. Econometrica, 57, 661-74.

Moran, P.A.P. (1950). A test for the serial dependence of residuals. Biometrika
37, 178-81.

Ochi, Y. (1983). Asymptotic expansions for the distribution of an estimator in

the first order autoregressive process. Journal of Time Series Analysis, 4, 57-67.

Pace, R.K. and R. Berry (1997). Quick computation of spatial autoregressive
estimators. Geographical Analysis, 29, 232-46.

Paparoditis, E. and D.N. Politis (2005). Bootstrap hypothesis testing in regres-
sion models. Statistics & Probability Letters, 74, 356-365.



References 153

Phillips, P.C.B. and J.Y.Park (1988). On the formulation of the Wald tests of

nonlinear restriction. Econometrica, 56, 1065-1083.

Pinkse, J. (1999). Asymptotics of the Moran test and a test for spatial correla-

tion in probit models. UBC, mimeo.

Pinkse, J. (2004). Moran - flavoured tests with nuisance parameters: examples.
In Anselin, L., Florax, R.G.M., Rey, S. (eds.). Advances in Spatial Econometrics:
Methodology, Tools and Applications. Springer-Verlag, Berlin, 66-77.

Pitman, E.G.J. (1937). Significant tests which may be applied to samples from
any population. Supplement to Journal of the Royal Statistical Society, 4, 119-
30.

Robinson, P.M. (1977). Estimation of a time series model from unequally spaced

data. Stochastic Processes and their Applications, 6, 9-24.

Robinson, P.M. (2008a). Developments in the analysis of spatial data. Journal
of the Japan Statistical Society (issue in honour of H. Akaike) 38, 87-96.

Robinson, P.M. (2008b). Correlation testing in time series, spatial and cross-

sectional data. Journal of Econometrics, 147, 5-16.

Robinson, P.M. and J. Vidal Sanz (2006). Modified Whittle estimation of mul-
tilateral models on a lattice. Journal of Multivariate Analysis, 97, 1090-120.

Rothenberg, T.J. (1984). Approximating the distribution of econometric esti-
mators and test statistics. In Handbook of Econometrics, 2. Elsevier Science
Publisher.

Sargan, J.D. (1976). Econometric estimators and the Edgeworth approximation.
Econometrica, 44, 421-48.

Sen, A. (1976). Large sample-size distribution of statistics used in testing for

spatial correlation. Geographical Analysis, 9, 175-84.

Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Annals of
Statistics, 9, 1187-95.

Stanca, L. (2009). The geography of economics and happiness: spatial pat-
terns in the effects of economic conditions on well being. Forthcoming, Social

Indicators Research.

Taniguchi, M. (1983). On the second order asymptotic efficiency of estimators
of Gaussian ARMA processes. Annals of Statistics 11, 157-69.



References 154

Taniguchi, M. (1986). Third order asymptotic properties of Maximum Likeli-
hood Estimators for Gaussian ARMA processes. Journal of Multivariate Anal-
ysis 18, 1-31.

Taniguchi, M. (1988). Asymptotic expansion of the distributions of some test
statistics for Gaussian ARMA processes. Journal of Multivariate Analysis 27,
494-511.

Taniguchi, M. (1991a). Third order asymptotic properties of a class of test
statistics under a local alternative. Journal of Multivariate Analysis, 37, 223-
38.

Taniguchi, M. (1991b). Higher Order Asymptotic Theory for Time Series Anal-
ysis. Springer-Verlag, Berlin.

Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434-
49.

Yanagihara, H. and K. Yuan (2005). Four improved statistics for contrasting
means by correcting skewness and kurtosis. British Journal of Mathematical
and Statistical Psychology, 58, 209-37.



