Mixing Graph Colourings

Luis Cereceda

A thesis submitted for the degree of
Doctor of Philosophy

Department of Mathematics

London School of Economics

and Political Science

December 2007

Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD degree of
the London School of Economics and Political Science is solely my own work other than
where I have clearly indicated that it is the work of others (in which case the extent of

any work carried out jointly by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted,
provided that full acknowledgement is made. This thesis may not be reproduced without

the prior written consent of the author.

I warrant that this authorisation does not, to the best of my knowledge, infringe the

rights of any third party.

Abstract

This thesis investigates some problems related to graph colouring, or, more
precisely, graph re-colouring. Informally, the basic question addressed can be
phrased as follows. Suppose one is given a graph G whose vertices can be prop-
erly k-coloured, for some k > 2. Is it possible to transform any k-colouring
of GG into any other by recolouring vertices of G one at a time, making sure
a proper k-colouring of G is always maintained? If the answer is in the affir-
mative, G is said to be k-mizing. The related problem of deciding whether,
given two k-colourings of G, it is possible to transform one into the other by
recolouring vertices one at a time, always maintaining a proper k-colouring

of G, is also considered.

These questions can be considered as having a bearing on certain mathe-
matical and ‘real-world’ problems. In particular, being able to recolour any
colouring of a given graph to any other colouring is a necessary pre-requisite
for the method of sampling colourings known as Glauber dynamics. The
results presented in this thesis may also find application in the context of fre-
quency reassignment: given that the problem of assigning radio frequencies
in a wireless communications network is often modelled as a graph colour-
ing problem, the task of re-assigning frequencies in such a network can be

thought of as a graph recolouring problem.

Throughout the thesis, the emphasis is on the algorithmic aspects and the
computational complexity of the questions described above. In other words,
how easily, in terms of computational resources used, can they be answered?
Strong results are obtained for the k = 3 case of the first question, where a
characterisation theorem for 3-mixing graphs is given. For the second ques-
tion, a dichotomy theorem for the complexity of the problem is proved: the
problem is solvable in polynomial time for k£ < 3 and PSPACE-complete for
k > 4. In addition, the possible length of a shortest sequence of recolourings
between two colourings is investigated, and an interesting connection between

the tractability of the problem and its underlying structure is established.

Some variants of the above problems are also explored.

To my parents,

for all their support.

Contents

Acknowledgements 9
1 Introduction 10
1.1 Preliminaries e 12
1.2 Background and motivationo oL 16
1.3 Outline of the thesis L 20
2 First results on mixing 22
2.1 Basic properties of mixing 22
2.2 Mixing k-colourings in k-chromatic graphs 30
3 Mixing 3-colourings 37
3.1 Characterising 3-mixing graphs 37
3.2 The complexity of 3-MIXING 42
3.3 A polynomial time algorithm for 3-MIXING for planar graphs 53
4 Paths between 3-colourings 59
4.1 A polynomial time algorithm for 3-COLOUR PATH 60
4.2 Distances between 3-colourings L. 70
5 Paths between k-colourings 74
5.1 Preliminaries L 75
5.2 PSPACE-completeness of k-COLOUR PATH 79
5.3 Distances between k-colourings 84
5.4 Tractability of k-COLOUR PATH and distances between k-colourings . .. 93
6 Miscellaneous results about recolouring 96
6.1 Recolouring using extra colours L oL 96
6.2 The complexity of finding alternative colourings 99
7 Conclusion 104
7.1 Related work 104

Contents

7.2 Discussion and open problems
Appendix

Bibliography

Acknowledgements

This thesis would not exist without the help and collaboration of a great number of

people. I would like to acknowledge some particular contributions.

Firstly, I am truly indebted and very thankful to Jan van den Heuvel for his excellent
supervision throughout the development of this thesis. He has been a constant source
of inspiration and fruitful mathematical questions; his patience and encouragement have

been second to none.

Secondly, I owe thanks to my coauthors—Paul Bonsma, Jan van den Heuvel and Matthew
Johnson—for all their help and generosity in sharing and communicating ideas, as well as
to Hajo Broersma for putting forward the seminal question that led to the development of
this thesis. For other questions and remarks that led to further results I am also grateful
to Bill Jackson, Mark Jerrum, Gary MacGillivray, Steve Noble, Moshe Vardi and Peter
Winkler.

Thanks also to everyone at the Mathematics Department at the London School of Eco-
nomics for making my time there so enjoyable. In particular, I would like to thank
Graham Brightwell and Bernhard von Stengel for their interest and helpful discussions,
and Jackie Everid, Simon Jolly and Dave Scott for their unstinting support in all mat-
ters non-mathematical. I would also like to acknowledge the London School of Economics
itself and the Engineering and Physical Sciences Research Council for their financial sup-

port.

Lastly, and in some sense most importantly, thanks to all my friends and family for all

their love and support during the past four years.

Introduction

Graph theory deals with the abstract study of connections between objects. It is a
fundamental branch of combinatorial mathematics with a very wide range of applications.
Its origin is usually attributed to Leonhard Euler’s solution of the Seven Bridges of
Ko6nigsberg Problem in 1735. The city of Konigsberg in Prussia (now called Kaliningrad,
and situated in Russia), set on the river Pregel, included two large islands connected to
each other and the mainland by seven bridges. Allegedly, the residents had long asked
themselves whether it was possible to tour the city crossing each bridge exactly once,
ending up at the point from which one had started. Euler proved, in what is widely
accepted to be the first paper in the history of graph theory [21], that no such tour is
possible.

Roughly speaking, a graph is a set of vertices—which may be thought of as represent-
ing objects—and a set of edges between pairs of vertices—which may be thought of as
connections between pairs of objects. As a basic way of representing the connectivity
properties of a set of objects, graphs are used to model, for example, road and railway
networks, components on an electrical circuit board, flows through a system of pipes, the
structure of molecules, computer networks, and the Internet. In all these contexts, many
interesting problems can be cast in graph-theoretic terms, and can therefore be attacked
employing the tools of graph theory. But graphs do not serve just as models for physical
connections between objects. Many other, more abstract problems, such as how best to
timetable a set of exams, or how best to assign a set of jobs to a given set of people, can

also be explored using graph-theoretic techniques.

This thesis concentrates on the area of graph theory known as graph colouring. The
origins of graph colouring can be traced back to the middle of the 19th century when,

in 1852, Francis Guthrie asked whether four colours are enough to colour the regions

10

Chapter 1. Introduction

of any map drawn in the plane in such a way that regions with a common boundary
receive different colours. It was not until 1976 that this question was settled in the
affirmative by Appel and Haken [2, 3], though some researchers argue that their proof is
not completely satisfactory. Part of Appel and Haken’s proof relies heavily on the use of
a computer for extensive case-analysis, and the part that is supposedly hand-checkable
is still extraordinarily complicated. Some twenty years later, another, simpler and more
easily verifiable proof (indeed independently verified)—though still relying on the use
of a computer—was provided by Robertson, Sanders, Seymour and Thomas [56]. Ever
since this first graph colouring problem was posed a century and a half ago, the subject
has grown continually and is now vast. The fact that many non-mathematicians know of

Guthrie’s question or of the subsequent Four Colour Theorem is testament to its status.

Indeed graph colouring now occupies a central position in discrete mathematics: it has
developed into an elegant theory with many applications, sometimes surfacing in unex-
pected areas. It deals with the basic problem of partitioning a set of objects according
to certain prescribed rules or constraints. Typically, the constraints specify, for each pair
of objects, whether both objects are allowed in the same class or not. Sequencing and
scheduling problems are important applications which fall into this category. As a basic
example, consider the following problem. Suppose we wish to construct a timetable for
a set of exams, taking care to use the smallest number of time-slots as possible. This
problem can be modelled as a graph colouring problem by letting each exam be repre-
sented by a vertex, and joining two exams by an edge if there is some student sitting
both exams (which therefore require different time-slots). If we think of time-slots as
‘colours’, an assignment of colours to the vertices of the graph that gives vertices joined
by an edge different colours—a colouring—yields a timetable. Hence a colouring using
the minimum possible number of colours will yield the desired timetable. Another im-
portant application of graph colouring, which we will examine in some detail later in this

chapter, is the task of assigning radio frequencies in a wireless communications network.

The field is still a very active area of research, and many important questions remain
unresolved. An abundance of graph colouring open problems, together with detailed
annotations, historical notes and references can be found in the monograph of Jensen
and Toft [37].

The results in this thesis can more precisely be described as concentrating not on graph
colouring, but on graph re-colouring. Basically, we investigate the following two prob-

lems.

11

Chapter 1. Introduction

1. Given a graph, is it possible to recolour any colouring of the graph to any other by

recolouring vertices one at a time, always maintaining a colouring of the graph?

2. Given a graph and two colourings of the graph, is it possible to recolour one colour-
ing to the other by recolouring vertices one at a time, always maintaining a colour-

ing?

Our primary focus is on the algorithmic aspects of these questions. In particular, we
study the computational complexity of the decision problems associated with them: that

is, how easily, in terms of computational resources used, can we answer them?

We also examine related issues. For example, we provide some answers to the following
questions. Can we characterise the graphs for which the answer to the first question is
‘yes’? Is there anything remarkable or particular about the colourings of such graphs?
For the second question, if, for a particular instance, we know that the answer is in the
affirmative, how easily can we find a sequence of recolourings that achieves the transfor-
mation? How long is such a sequence, and how long is a shortest possible sequence? On
the other hand, if we know the answer is in the negative, can we achieve the transforma-

tion by using relatively few extra colours? How many are actually necessary?

Before proceeding, in the rest of this chapter, to provide some motivation for studying
these problems and to give an overview of the thesis, we describe our basic terminology

and notation, together with some fundamental concepts and definitions.

1.1 Preliminaries

Most of our mathematical terminology and notation is standard. Let us point out some
particulars. The cardinality of a set X is denoted by | X |, and the set-theoretic difference
between X and any other set Y by X \ Y. We do not count 0 as a natural number, and,
for k € R, |k| is the largest integer less than or equal to k.

We assume familiarity with the basic concepts of graph theory and computational com-
plexity theory. For an introduction to the former we refer the reader to any standard
textbook on graph theory such as, for example, Diestel [17] or West [61]; for an introduc-
tion to the latter, see Garey and Johnson [24] or Papadimitriou [53]. The reader should
also find definitions for concepts and terminology not defined here in these references.
We presently revise some of the basics of graph theory and describe some particular con-
ventions used in this thesis. Following this, we will give some definitions necessary for a

precise description of our results.

12

Chapter 1. Introduction

Basic graph-theoretic concepts and conventions used in this thesis

We denote the set of vertices of a graph G by V(G) and its set of edges by E(G). When
there is no danger of confusion, or the graph in question is given implicitly, we will write V'
and E. Throughout this thesis we consider only finite graphs with no loops or multiple
edges. Thus for any graph G, V will be a finite set and E will be a set of unordered pairs
of elements of V', where elements in any given pair are distinct. We will often write n
for |V| and m for |E|. For simplicity and ease of reference, we will also often deliberately

confuse a graph with its set of vertices.

We denote an edge between vertices v and v by uv (or, equivalently, by vu), saying
vertices u and v are adjacent, or neighbours, and that the vertex w is incident with, or an
end-vertez of, the edge uv. We write d(v) for the degree of v, which is the number of edges
incident with v. If we need to distinguish the graph G in which the degree is measured,
we will write dg(v). The maximum and minimum degree of G are respectively denoted
by A(G) and 6(G). If it is clear from the context which graph is under consideration, we
will simply write A or 4.

A path between vertices u and v—a (u, v)-path—is a sequence of distinct vertices, starting
at v and ending at v, such that pairs of consecutive vertices in the sequence constitute
an edge of the graph. The distance between vertices v and w, denoted d(v,w), is the
number of edges in a shortest path between v and w; if there is no path between v and w
we say that the distance between them is infinite. If we need to distinguish the graph G
in which the distance is measured, we will write dg (v, w). The diameter of G, diam(G),

is defined as max{d(u,v) |u,v € V}.

For a subset X of V, we denote by G — X the graph that has V'\ X as its vertex set and
whose edges are the edges of G that have both end-vertices in V' '\ X. For X a subset
of E, G — X denotes the graph with vertex set V and edge set £\ X.

A graph G is said to be connected if any two of its vertices are linked by path. It
is k-connected if it has at least k + 1 vertices and for every set X C V with |X| < k,

G — X is connected.

If H is a subgraph of G, we write H C G. The degeneracy of G, deg(G), is defined
as the largest minimum degree of any subgraph of G. That is, deg(G) = max{dJ(H) |
H C G}. This quantity is also known as the colouring number or mazimin degree of G.
It is an easy exercise to verify that a graph has degeneracy r if and only if there is an
ordering v1,vo, ..., v, of its vertices such that for 1 < ¢ < n, the vertex v; has at most r
neighbours v; with j < ¢. Such a graph is described as r-degenerate, as is any associated

vertex-ordering.

13

Chapter 1. Introduction

A drawing of a graph G on a surface S (that is, a compact 2-dimensional manifold without
boundary) is a graphical representation of G on S, with each vertex assigned a distinct
point on &, and curves joining points which correspond to vertices forming an edge.
The drawing is said to be an embedding if no two curves intersect (other than at vertex
points), and G is embeddable on S if there exists an embedding of G on S. If a graph is
embeddable on the sphere it is said to be planar, since the plane is homeomorphic to a

sphere with a point removed.

Two graphs G1 and Gs are said to be isomorphic, written G = (o, if there exists a
bijection ¢ : V(G1) — V(G2) such that uv € E(G) if and only if p(u)p(v) € E(G2).

We denote the cycle on n vertices (or n-cycle) by C,,, and the complete graph on n vertices
by K,. The graph C3 = K3 is known as the triangle. Quite often we will describe a cy-
cle C, by just listing its vertices v1,v2, ..., v,, with the edges vive, vov3, . .., Upn_1Vp, VU1

being read implicitly.

Colourings and recolouring: the colour graph

In this section we recall some basic definitions about colouring, and formalise our notions

about recolouring graph colourings.

All colourings considered in this thesis are proper vertex colourings. That is, for a natural
number k > 2, we define a k-colouring of a graph G as a function a : V- — {1,2,... k}
such that a(u) # «a(v) for alluv € E. If G has a k-colouring, we say it is k-colourable. (We
insist that £ > 2 in order to avoid trivialities—there is not much to say about 1-colourable
graphs.) For 1 <i < k, the preimages o~ 1(7) are termed colour classes. The smallest k
for which a k-colouring of G exists is called the chromatic number of G, x(G). We will
generally use lower case Greek letters «, (3, ... to denote specific colourings, and we will
often describe a k-colouring of a path or cycle by just listing the colours as they appear

on consecutive vertices.

Definition 1.1

Let G be a k-colourable graph. The k-colour graph of G, denoted C(G), is the graph
that has the k-colourings of G as its vertex set, with two k-colourings joined by an edge
in Cx(G) if they differ in colour on precisely one vertex of G. If Cx(G) is connected, we

say that G is k-mizing.

The colour graph allows us to talk about recolourings and possible sequences of recolour-
ings in a graph-theoretic language: we may now meaningfully talk of adjacency, paths

and distances between colourings.

14

Chapter 1. Introduction

A k-colouring of G that forms an isolated node in Cx(G) is said to be frozen. Note that
the existence of a frozen k-colouring of a graph immediately implies that the graph is not
k-mixing. If G has a k-colouring «, then we say that we can, from «, recolour G with (8
if a3 is an edge of Cx(G). If v is the unique vertex on which v and 3 differ, then we also
say that we can recolour v. Given a k-colouring «, a colour is available for a vertex v if
neither v nor any of its neighbours are assigned that colour. If there is a path between «

and [in Cx(G) we will say that we can recolour a to 3.

We will sometimes describe recolourings explicitly, and sometimes implicitly. In either
case, it will often be useful to think of a sequence of recolourings as a list of ordered
pairs (v,c) where, at any stage in the sequence, v is the vertex to be recoloured with

colour c.

Decision problems about recolouring

We are now in a position to formally state the decision problems corresponding to the
two questions stated at the beginning of this introduction, and whose computational

complexity will be the central question addressed in this thesis.

Corresponding to the first question (given a graph, is it possible to recolour any colouring
of the graph to any other by recolouring vertices one at a time, always maintaining a

colouring of the graph?) we have the problem k-MIXING.

k-MIXING
Instance: A connected graph G.
Question : Is G k-mixing? That is, is Cx(G) connected?

Corresponding to the second question (given a graph and two colourings of the graph, is
it possible to recolour one colouring to the other by recolouring vertices one at a time,

always maintaining a colouring?) we have the problem k-COLOUR PATH.

k-COLOUR PATH
Instance: A connected graph G together with two k-colourings of G, a and 3.
Question : Is there a path between o and 3 in Ci(G)?

Note that k is never part of the input. In other words, we have two classes of problems,
each consisting of an infinite number of problems parametrised by k. Note also that we
always insist that the instance graph G is connected. If G is not connected, then it is easy

to see that G is k-mixing if and only if H is k-mixing for every connected component H

15

Chapter 1. Introduction

of G. Similarly, there is a path between k-colourings a and § of G if and only if, for
every connected component H of G, there is a path between the colourings induced by «
and # on H. Thus we may always reduce our problems to connected graphs, and will

therefore, as a general rule, take graphs to be connected.

1.2 Background and motivation

Our main motivation for studying the problems described above is for their own sake.
The questions are simple and fairly natural, and lead to, in the author’s opinion, some
interesting mathematics. However, the questions can certainly be regarded as being
motivated by other lines of research, or indeed as having applications. We proceed to

outline two such motivating applications.

Sampling colourings via Glauber dynamics

The question of when the k-colour graph is connected is not new. It has been looked at,
as a subsidiary issue, by researchers in the statistical physics community studying the
Glauber dynamics of an anti-ferromagnetic Potts model at zero temperature. Associated
with that research is the work on rapid mixing of Markov chains used to obtain efficient
algorithms for almost uniform sampling of k-colourings of a given graph. We give a brief

description of the basic ideas involved in these areas of research.

Randomness plays an important role in many parts of combinatorics and theoretical com-
puter science. Indeed results from probability theory have led to major developments in
both fields. It is therefore unsurprising that researchers are often interested in obtaining
random samples of particular combinatorial structures. For example, much attention
has been devoted to the problem of sampling from an exponential number of structures
(exponential in the size of the object over which the structures are defined) in time poly-
nomial in this quantity. One of the reasons for this is that being able to sample almost
uniformly from a set of combinatorial structures is enough to be able to approximately
count such structures—see [38] for an example illustrating the method in the context of

graph colourings, and [39] for full details.

Quite often, the sampling is done via the simulation of an appropriately defined Markov
chain. Here the important point is that the Markov chain should be rapidly mizing.
This means, loosely speaking, that it should converge to a close approximation of the
stationary distribution in time polynomial in the size of the problem instance. For a

precise description of this concept and further details we refer the reader to [39].

16

Chapter 1. Introduction

In the context of the particular Markov Chain used for sampling k-colourings of a graph
known as Glauber dynamics—originally defined for the anti-ferromagnetic Potts model
at zero temperature (see below)—we have the following. For a particular graph G and
value of k, let us denote the Glauber dynamics for the k-colourings of G by My (G) =
(X¢)22o- The state space of My(G) is the set of k-colourings of G, the initial state Xy
is an arbitrary colouring, and its transition probabilities are determined by the following

procedure.

1. Select a vertex v of G uniformly at random.
2. Select a colour ¢ € {1,2,..., k} uniformly at random.

3. If recolouring vertex v with colour ¢ yields a proper colouring, then set X;11 to be

this new colouring. Otherwise, set X1 = X;.

The relation of M (G) to the k-colour graph of G should be obvious: a simulation of
the chain corresponds to a walk in C,(G), since two k-colourings «, 5 of G form an edge
of Cx(G) if and only if Pr(Xy+1 = 8| X; = «) > 0, in which case

1

Pr(Xt+1 = ﬁ ’ Xt = Oé) = W

Clearly My (G) is irreducible if and only if G is k-mixing. Thus the fact that a graph is
k-mixing is a necessary condition for its Glauber dynamics Markov chain to be rapidly
mixing. (This should go some way to explaining our choice of terminology for describing
a graph with a connected k-colour graph!) Let us remark, however, that a graph being
k-mixing is not sufficient for its Glauber dynamics Markov chain to be rapidly mixing.
An example showing this is given by the stars K ,,, which are k-mixing for any k > 3
(see Theorem 2.7 in Section 2.1) but whose Glauber dynamics is not rapidly mixing for

k < m!'~¢, for fixed £ > 0 (proved in [44]).

We turn to a brief and informal description of the Potts model. This is a statistical
mechanics model for studying the interaction of spins (intrinsic angular momenta) of the
particles in a crystalline lattice. It is used as a theoretical description for ferromagnetism
and other phenomena of solid-sate physics. In the ferromagnetic case, like spins of neigh-
bouring particles are encouraged by a certain lowering of the total energy of the system
for every neighbouring pair with like spins. In the anti-ferromagnetic case, neighbouring
particles are encouraged to have different spins. The temperature of the system reflects
the extent of ‘encouragement’: the lower the temperature, the more the energy of the

system is lowered by a given neighbouring pair of particles having like/unlike spins. At

17

Chapter 1. Introduction

zero temperature, this encouragement becomes an inviolable requirement. Thus the zero-
temperature anti-ferromagnetic k-state Potts model of a particular lattice—where each
particle has one of k possible spins, and neighbouring particles cannot have the same
spin—has as its set of configurations the set of k-colourings of the graph corresponding
to the lattice. The Glauber dynamics of this model describes the transitions between the

spin states of the system in precisely the same manner as described above.

Let us point out that much of the work on rapid mixing of the Glauber dynamics Markov
chain (as well as that of its many generalisations and variants) has concentrated on
specific graphs, or on values of k so large that the connectedness of the k-colour graph is
guaranteed. In particular, because of its focus on crystalline structures, the Potts model
has been widely studied on very regular and highly symmetric graphs such as integer
grids. In contrast, we address the question of the irreducibility of the chain in a wider

sense, asking what can be said in general, for any graph and relatively small values of k.

Radio frequency reassignment

Besides its use in sequencing and scheduling, another important application of graph
colouring is that of modelling the assignment of frequencies in radio-communication net-
works. The basic aim of the Frequency Assignment Problem (FAP) is to assign frequen-
cies to users of a wireless network, minimising the interference between them and taking
care to use the smallest possible range of frequencies. Because the radio spectrum is a
naturally limited resource with a constantly growing demand for the services that rely on
it, it has become increasingly important to use it as efficiently as possible. As a result,
and because of the inherent difficulty of the problem, the subject of frequency assignment
is huge. For an introduction and survey of different approaches and results we refer the
reader to [43] and [48].

The FAP was first considered as a graph colouring problem by Hale in [28]. In this
setting, we think of the available frequencies (discretised and appropriately spaced in
the spectrum) as colours, transmitters as vertices of a graph, and we add edges between
transmitters that must be assigned different frequencies. In order to better capture the
subtleties of the ‘real-world’ problem, this basic model has been generalised in a multitude
of different ways. Typically this might involve taking into account the fact that radio
waves decay with distance obeying an inverse-square law. For instance, numerical weights
can be placed on the edges of the graph to indicate that frequencies assigned to the
end-vertices of an edge must differ by the amount given by the particular edge-weight.

Another example is provided by the well-known L(2, 1)-labelling problem: this asks for

18

Chapter 1. Introduction

the smallest k such that the vertices of a graph can be labelled with values from the set
{1,2,...,k} in a way such that labels on adjacent vertices differ by at least 2, and labels
on vertices at distance two differ by at least 1. See [36] for a survey of graph colouring

and labelling techniques applied to the FAP.

One of the the major factors contributing to the growth in demand for use of the radio
spectrum has been the dramatic increase, in recent years, of mobile telecommunication
systems. In such systems, where new transmitters are continually added to meet increases
in demand, an optimal or near-optimal assignment of frequencies will in general not
remain so for long. On the other hand, it might just be the case that, because of the
difficulty of finding optimal assignments, a sub-optimal assignment is to be replaced with
a recently-found better one. It thus becomes necessary to think of the assignment of
frequencies as a dynamic process, where one assignment is to be replaced with another.
In order to avoid interruptions to the running of the system, it is desirable to avoid a
complete re-setting of the frequencies used on the whole network. In a graph colouring

framework, this leads naturally to our problems.

Not much attention seems yet to have been devoted to the problem of reassigning fre-
quencies in a network. Some first results can be found in [4, 6, 29, 47]. The work in
[4, 6, 29] describes some specific heuristic approaches to the problem, as well as some

associated computational simulations.

A more general approach, with a theoretical bent which gives rise to problems similar
to the ones we study, can be found in [47]. Here the authors describe a problem they
call colour switching: given a graph G and two proper vertex colourings of GG, the colour
switching problem asks for a sequence of vertex recolourings that transforms the first
colouring into the second, with all intermediate colourings being proper. This looks
remarkably similar to the problem k-COLOUR PATH, but is quite different. Firstly,
colour switching is a combinatorial problem (it asks for a sequence of recolourings)
while k-COLOUR PATH is a decision problem (it asks for a yes or no answer). Thus
colour switching is always possible (by using enough extra colours), while the question
in k-COLOUR PATH might well be answered in the negative. This is because of the more
important fundamental difference between the problems: for k-COLOUR PATH we in-
sist that all colourings considered (both the input colourings as well as all intermediate

colourings) are k-colourings, while in colour switching no such restriction is imposed.

A tight bound on the minimum number of extra colours necessary to guarantee one can
always find a solution to colour switching is given in [47]. We have obtained the same
result independently, with very similar examples illustrating tightness. We will describe

this result in Chapter 6. The authors of [47] also consider the question of finding bounds

19

Chapter 1. Introduction

on the number of recolourings necessary to transform one colouring into another when
the number of extra colours used is minimal, or nearly so. Indeed this is an issue we have
also addressed (for k-COLOUR PATH, where no extra colours are allowed), and to which

we devote our attention in the latter sections of Chapters 4 and 5.

1.3 Outline of the thesis

In Chapter 2 we prove some basic results about k-colour graphs and the k-mixing prop-
erties of graphs. We first look for values of k£ that ensure a graph will be k-mixing,
considering possible bounds in terms of the chromatic number and the degeneracy. We
also examine the case k = x(G), showing that if £ = x(G) is 2 or 3, then G is not
k-mixing. On the other hand, we show that for all k > 4 there are k-chromatic graphs

that are k-mixing, and k-chromatic graphs that are not k-mixing.

Chapter 3 addresses the computational complexity of deciding whether a given graph is
3-mixing. Given that 3-chromatic graphs are never 3-mixing, we focus our attention on
bipartite graphs. We give two equivalent characterisations of 3-mixing bipartite graphs
and prove that deciding if a given bipartite graph is 3-mixing is coNP-complete. We also

prove that for planar bipartite graphs the problem is decidable in polynomial time.

Chapter 4 gives a polynomial time algorithm for 3-COLOUR PATH. The algorithm can
be used to exhibit a path between the two 3-colourings, if this exists. It also allows us to
deduce that the connected components of C3(G) always have diameter at most quadratic

in the size of the graph.

In Chapter 5 we examine the complexity of k-COLOUR PATH for values of k > 4, proving
that in this regime the problem is PSPACE-complete. We also show, by means of explicit
construction, that in these cases the distance between colourings can be superpolynomial

in the size of the graph.

Chapter 6 describes some miscellaneous results. In particular, we provide an answer to
the following question: given any graph G together with two k-colourings, what is the
least number of extra colours necessary to guarantee that it is possible to recolour the
first k-colouring to the second? We show that the answer to this question is x(G) — 1.
We also examine the complexity of finding some particular types of k-colouring of a given

k-colourable graph.

We close in Chapter 7 with a discussion of our work. We also describe related work and

mention some possibilities for further research.

Most of the work presented in this thesis is the result of joint work. Some parts of it

20

Chapter 1. Introduction

have been published and other parts are in the process of being accepted for publication.
The main results of Chapter 2 are to be found in [10]; Chapter 3 corresponds entirely
o [11], Chapter 4 to [12], and Chapter 5 to [7]. The results of Section 6.1 are also joint

work with Jan van den Heuvel.

Note

It has recently come to the author’s attention that very similar results to those presented
in Chapter 5 appear in [35], a dissertation which is otherwise unpublished. In that thesis,
the problem of deciding whether two given colourings of a graph are connected, where
the number of colours k is part of the input, is proved to be PSPACE-complete. The
reduction in [35] also proves the existence of graphs with colourings at superpolynomial
distance, but not by means of any explicit construction. The result showing that x(G)—1
extra colours are always enough to recolour a given k-colouring of a graph to a second
given k-colouring of the graph, and that this bound is best possible—presented in Chap-
ter 6, and proved independently in [47]—can also to be found in [35]. We will make a

comparative study of all these results in Chapter 7.

21

First results on mixing

In this chapter we prove some first results about the mixing properties of graphs. After
making some preliminary observations, we look for values of k that will ensure a graph
is k-mixing; we consider possible bounds in terms of various graph invariants including
the chromatic number and the degeneracy of a graph. We also study this question for
graphs embeddable on a particular surface. In Section 2.2 we examine the case k = x(G),
showing that if G is a graph with chromatic number k € {2, 3}, then G is not k-mixing.
On the other hand, we prove that for all £ > 4 there exist k-chromatic graphs that are

k-mixing, as well as k-chromatic graphs that are not k-mixing.

2.1 Basic properties of mixing

The k-colour graph of a given graph G is a complex structure containing much information
about G. Indeed it turns out that for £ > x(G) it actually determines G, in the sense
that non-isomorphic x-chromatic graphs have non-isomorphic k-colour graphs, as long
as k > x, [32]. Clearly if G is not k-colourable, Cx(G) is just the null graph (though note
that, strictly speaking, we have defined the k-colour graph only for k-colourable graphs).
In general, Cx(G) will have exponential size, with |V (Cx(G))| = Pg(k), where Pg is the

chromatic polynomial of G.

Let us make some simple observations. Notice that for any k& and any graph G, Ci(G)
is an induced subgraph of Cyi1(G), since a k-colouring of G can be regarded as a
(non-surjective) (k + 1)-colouring, and any possible recolouring in C(G) is also possible
in Cp+1(G).

Let Qp(k) be the generalised p-dimensional cube. This graph has vertex set {1,2,...,k}?,

the set of all sequences of length p with entries from {1,2, ..., &k}, and an edge between any

22

Chapter 2. First results on mixing

two sequences that differ in precisely one entry. If we denote the empty graph on n vertices
(that is, the graph consisting of n isolated vertices) by U, we have C(U,) = Qn (k). On
the other hand, for the complete graph on n vertices, K,,, we have C,(K,) = Up,.

In what follows we investigate the relationship between the mixing properties of a graph
and two of the most important graph invariants relating to colouring: the chromatic
number and the degeneracy of a graph. This leads naturally to the exploration of the

mixing properties of a graph embeddable on a certain surface.

Mixing and chromatic number

Let us briefly consider the 2-mixing properties of 2-chromatic graphs. A connected
2-chromatic graph has exactly two frozen 2-colourings, so its 2-colour graph consists
of two isolated vertices. If G is a disconnected 2-chromatic graph (so G is bipartite and
contains at least one edge), then there is a path between a pair of 2-colourings of G
if and only if the colourings agree on every connected component that contains more
than one vertex. It is an easy exercise to show that if such a G has p isolated vertices
and ¢ other connected components, then Co(G) has 29 connected components, each of
which is isomorphic to the p-dimensional cube Q,(2). To see this, observe that from any
given 2-colouring of GG, only isolated vertices may be recoloured, and that they may be
recoloured freely (by which we mean that any isolated vertex may be recoloured at any
time). Thus the set {1,2}? can be thought of as representing the 2P possible colourings
of these p isolated vertices, with adjacent colourings differing in precisely one entry. Be-
cause each of the other ¢ connected components has two possible 2-colourings (which are
frozen), we see that Co(G) consists of 2¢ disjoint copies of Q,(2). In any case, whether G

is connected or not, we have the following result.

Proposition 2.1
Let G be a graph with chromatic number 2. Then G is not 2-mixing.

Note that these observations immediately render the decision problems 2-MIXING and
2-COLOUR PATH trivial. We will examine the k-mixing properties of k-chromatic graphs

for k > 3 later in this chapter, in Section 2.2.

At first one might expect that if & is sufficiently large compared with the chromatic
number of a graph, then the graph will be k-mixing. We now show that no such result

is possible.

For m > 3, let L,, be the graph obtained from the balanced complete bipartite graph

Ky,.m by removing the edges of a perfect matching in K, ,,. More formally, we have the

23

Chapter 2. First results on mixing

Figure 2.1 The graph L,, together with a frozen m-colouring.

following definition.

Definition 2.2
Let m > 3. The graph L, has

o vertex set V(L) = {vi,v2,...,0m, w1, wa, ..., Wy}, and

o edge set E(Ly,) ={viw; |1 <4,j <m, i j}.

Note that L, is 2-chromatic. Since m > 3, it is obvious that there are many ways to
colour L,, with m colours. But suppose that we colour the vertices in each part of the
bipartition of L,, with the colours 1,2, ..., m, where vertices in opposite parts that were
originally connected by an edge from the removed perfect matching are given the same
colour. For example, we could set k(v;) = k(w;) = 4, for 1 < i < m. The graph L,
together with this m-colouring is shown in Figure 2.1. This m-colouring is clearly an
isolated node in the k-colour graph C,,(L,), and so L, is not m-mixing. This proves

the following.
Proposition 2.3
There is no expression ¢(x) in terms of the chromatic number x, so that for all graphs G

and integers k > o(x(Q)), G is k-mizing.

It is interesting and worth observing that the graphs L,, are mixing for all other values
of k> 3.

24

Chapter 2. First results on mixing

Proposition 2.4
For any fized m > 3, the graph Ly, is k-mizing if and only if k > 3 and k # m.

Proof. We have observed that L,, is not m-mixing; because it is 2-chromatic, neither is
it 2-mixing. We show that for all other k it is k-mixing, distinguishing the cases k < m
and k£ > m.

Let L,, have vertex bipartition {X,Y} and consider a k-colouring of L,, with 3 < k <
m — 1. Since X contains m vertices, there is at least one colour ¢; that appears on more
than one vertex of X. But this means that no vertex in Y is coloured with ¢;. Hence
it is possible to recolour all vertices in X with ¢;. Once this is done, we can choose a
second colour ¢y # ¢; and recolour every vertex in Y with ¢s. Thus we have shown that
any k-colouring of L,, is connected to some 2-colouring of L,,. It is an easy exercise to
show that if £ > 3, all 2-colourings of L,, are connected in Cg(L,,). This can be seen
by observing that if it is not possible to directly recolour a given 2-colouring of L., to
another distinct 2-colouring—by recolouring all vertices in one part of the bipartition
to their required colour, followed by recolouring all vertices in the other part—then this
must be because the two 2-colourings use the same two colours. But then recolouring
all vertices in X, say, with a third colour (possible since k > 3) allows us to recolour all
vertices in Y to their target colour and finally reach the target 2-colouring by recolouring

all vertices in X. This proves that Ci(Ly,) is connected for 3 < k <m — 1.

If we colour L,, with £ > m + 1 colours, then again we have that a certain colour is not
used on Y. By a similar argument to that in the case above, it follows that Ci(Ly,) is

connected for £ > m + 1. O

Proposition 2.4 also allows us to deduce that, unlike colouring, mixing is not a monotone

property; a fact which might seem, at first glance, a little surprising.

Proposition 2.5
There exist graphs G for which there exist numbers k1 < ko such that G is ki-mixing but

not ko-mizing.

Even though a particular graph G may not be k-mixing for k arbitrarily larger than
its chromatic number, it is obvious that there always exists a value &’ such that G is
guaranteed to be k-mixing for all & > k’. We can take ¥’ = |V(G)| + 1, for example. A
better bound on such a value &’ is to be found via the maximum degree of G, a fact first

observed by Jerrum [38] in the context of sampling colourings via Glauber dynamics.

25

Chapter 2. First results on mixing

Proposition 2.6 (Jerrum [38])
For any graph G and integer k > A(G) + 2, G is k-mixing.

We omit the proof of this proposition due to its similarity to that of Theorem 2.7 below,
which in fact refines the result. Observe that the bound on k is best possible: the
complete graphs K, which have maximum degree n — 1, are not n-mixing since every
n-colouring is a frozen colouring. Similarly, the graphs L,, have maximum degree m — 1

but are not m-mixing.

Mixing and degeneracy

The degeneracy is a particularly useful invariant for studying the colouring properties of

a graph. We will find it is also highly relevant to the mixing properties of a graph.

Let us recall that a graph G with degeneracy r can always be coloured with at most r+1
colours. Such a colouring can easily be found by following an r-degenerate ordering of
the vertices of G, colouring each successive vertex with the first available colour (that is,
the lowest colour not appearing on any of the neighbours of the vertex to be coloured).
At most r 4+ 1 colours will be necessary because, at any stage in the process, a vertex to

be coloured will have at most r neighbours that have already been coloured.

In contrast with the chromatic number, we find that if k£ is sufficiently large compared
with the degeneracy of a graph, then the graph will be k-mixing. The following result is
proved in [20] as a lemma leading to a further result on the colouring of random graphs.

We give a proof for completeness.

Theorem 2.7 (Dyer, Flaxman, Frieze and Vigoda [20])
For any graph G and integer k > deg(G) + 2, G is k-mizing.

Proof. We use induction on the number of vertices of G. The result is obviously true
for the graph with one vertex, so suppose G has two or more vertices. Let v be a vertex
with degree dg(v) < deg(G), and set G’ = G — {v}. Note that deg(G’) < deg(G), hence

we also have k > deg(G’) 4+ 2. By induction we can assume that Cr(G’) is connected.

Take two k-colourings o and 3 of G, and let o/, 3 be the k-colourings of G’ induced
by a, 3. Since Ci(G’) is connected, there exists a sequence o' = ~y,71,...,7y = 3 of
k-colourings of G’ so that for i = 1,..., N, 4/_; and ~/ differ in the colour of exactly one
vertex of G'. Denote this vertex by v; and denote the new colour ~/(v;) by ¢;. We now
try to take the same recolouring steps to recolour G, starting from «. If for some i it

is not possible to recolour vertex v;, this must be because v; is adjacent to v and v at

26

Chapter 2. First results on mixing

that moment has colour ¢;. But because v has degree at most deg(G) < k — 2, there is
a colour ¢ # ¢; that does not appear on any of the neighbours of v. Hence we can first

recolour v to ¢, then recolour v; to ¢; and continue.

In this way we find a sequence of k-colourings of G, starting at «, and ending in a
colouring in which all the vertices except possibly v will have the same colour as in .
But then, if necessary, we can also recolour v to give it the colour from (. This gives a

path between « and 3 in Ci(G), completing the proof. O

Since for any graph G, deg(G) < A(G), Theorem 2.7 immediately refines Proposition 2.6.
There are many graphs that show the bound in Theorem 2.7 is best possible. For example,
the graphs L,, have degeneracy m — 1 and are not m-mixing, and the graphs K, have

degeneracy n — 1 and are not n-mixing.

We mention that the best known lower bound on the number of colours needed for rapid
mixing is % A(G), proved by Vigoda [59]. We also observe that the expression in terms
of the degeneracy that guarantees mixing cannot guarantee rapid mixing of the Glauber
dynamics Markov chain. For instance, the stars K ,, have degeneracy deg(Ki) = 1,
but it is shown in [44] that the Glauber dynamics Markov chain for these graphs is not
rapidly mixing for k < m!'~¢, for fixed € > 0.

Mixing on surfaces

We examine what can be said about the mixing properties of a graph if we know it is

embeddable on a certain surface.

Let us begin by recalling some basic definitions and facts about surfaces. For concepts
not defined here, as well as for a thorough exploration of the topic of embeddings of
graphs on surfaces, we refer the reader to the monograph by Mohar and Thomassen [52].
A surface S is a compact 2-dimensional manifold without boundary. Every surface is
either homeomorphic to an orientable surface Sy of genus g > 0 or to a non-orientable
surface Ny of non-orientable genus g > 1. The genus of the surface S, can be consid-
ered as the number of handles added to a sphere, and the non-orientable genus of the
surface N, as the number of cross-caps added to a sphere. Thus the surface Sy is the
sphere and Sy is the torus; Vi is the projective plane and Ns is the Klein bottle. The
Euler genus €(S) of S = S is 2¢g and that of S = N, is g. The Euler genus of a surface,

together with its orientability, determine the surface up to homeomorphism.

We examine first the case of the sphere. Let G be a planar graph with n vertices, m edges

and f faces. Euler’s formula asserts that n — m + f = 2. One can easily deduce from

27

Chapter 2. First results on mixing

A

L
3 “ 2

(b)

Figure 2.2 (a) a planar graph with a frozen 5-colouring, and (b) a planar

graph with a frozen 6-colouring.

this that G must contain a vertex of degree at most 5 (a planar graph has at most 3n —6
edges, so its average degree, 277”, is strictly less than 6), and from this it follows that
deg(G) < 5. Theorem 2.7 then tells us that for any k > 7, a planar graph is k-mixing.
This bound is tight: for every k£ < 6, there exists a planar graph that is not k-mixing.
In fact, a stronger statement is true: for every k£ < 6, there exists a planar graph with
a frozen k-colouring. For k < 4, this follows trivially from the fact that the complete
graphs Ko, K3 and K4 are planar. For £k = 5 and k£ = 6 we need to look harder: Kj
and Kg are not planar, and neither are the graphs Ls and Lg, other graphs which we
have observed to have frozen 5- and 6-colourings. Examples of the required graphs and
colourings are shown in Figure 2.2 (the graph in (b) is actually the icosahedron). This
means we have a sharp threshold in the value of k which guarantees that any given planar

graph will be k-mixing.

Given a surface S, let us define the mizing number of S as the smallest integer u(S)
such that for any graph G embeddable on § and any k& > u(S), G is guaranteed to be
k-mixing. Thus we have just seen that the mixing number of the sphere is u(Sy) = 7.
Can we say anything about the mixing number of other surfaces? Before providing an
answer, let us review some facts about the colouring of graphs embeddable on a certain
surface. The minimum number of colours «y(¢) necessary to guarantee that any graph
embeddable on a surface S of Euler genus ¢ can be coloured with v(e) colours is called

the chromatic number of S. Clearly v(¢) = max{x(G) | G is embeddable on S}.

For both orientable and non-orientable surfaces, Euler’s formula generalises to the Euler-
Poincaré formula n — m 4+ f = 2 — . From this it is possible to deduce that for any
graph G embeddable on a surface S with € > 1, we have deg(G) < H(e)—1 , where H(¢)

28

Chapter 2. First results on mixing

is the Heawood number, given by

H(e) = V + \/TWJ .

A proof of this result may be found in [52]; specifically, see Theorem 8.3.1 on p. 230.

In 1890, Heawood [31] conjectured that v(¢) = H(e). (He in fact conjectured this only
for orientable surfaces, but the conjecture easily generalises and, as we shall see shortly,
is nearly as true for a non-orientable surface as for an orientable one.) It is clear that
v(e) < H(e). For ¢ > 1, this follows from the fact that deg(G) < H(e) — 1 for any
graph G embeddable on S. For € < 1, we are in fact dealing with the sphere. In this case
equality follows from the Four Colour Theorem [2, 3, 56], which asserts that v(0) = 4.

It was not until 1968 that Ringel and Youngs (see [55] and references therein) managed
to complete the proof that v(¢) > H(e) holds for all surfaces with ¢ > 1 except the
Klein bottle. They did this by showing how a complete graph on H(g) vertices embeds
on any S # Ny of Euler genus €. (In fact, it is also true that any graph with chromatic
number H (g) embeddable on & # Ny with € > 1 contains a complete graph on H(e)
vertices as a subgraph—this was proved by Dirac [18, 19] for the torus and & > 4, and
by Albertson and Hutchinson [1] for ¢ = 1 and € = 3.) Franklin [23] showed that for the
Klein bottle we do not have a maximum chromatic number of H(2) = 7 but of 6. (He
also showed that there are 6-chromatic graphs embeddable on the Klein bottle that do
not contain a Kg.) Thus Heawood’s conjecture is true for all surfaces except the Klein

bottle; in particular, it is true for all orientable surfaces.

All these results imply the following.

Theorem 2.8
Let § be any surface, excluding the sphere and the Klein bottle, and let S have Euler
genus €. Then u(S), the mizing number of S, is given by u(S) = H(e) + 1, where H(¢)

s the Heawood number of S.

Any graph embeddable on the Klein bottle is guaranteed to be 8-mixing since such a graph
is 6-degenerate. Franklin [23] also proved that K7 is not embeddable on this surface, but
that Kg is; we thus have a non-6-mixing graph embeddable on the Klein bottle. Whether
all graphs embeddable on the Klein bottle are 7-mixing or not remains an open question.
We point out a result that hints at the fact that determining the mixing number of the
Klein bottle is unlikely to be as straightforward as for all other surfaces. This result

states that there is no 6-regular graph embeddable on the Klein bottle which has frozen

29

Chapter 2. First results on mixing

7-colourings, and is a consequence of the following result of Hlinény [33]. Let us say that
a graph G is a cover of a graph H if there exists a surjection ¢ : V(G) — V(H) such that
for every vertex v of G, ¢ maps the neighbours of v in G bijectively to the neighbours
of ¢(v) in H. Thus a cover of a complete graph K, is precisely a (k — 1)-regular graph

that has frozen k-colourings. Hlinény [33] proves, amongst other results, the following.

Theorem 2.9 (Hlinény [33])
The complete graph K7 has no cover which is embeddable on the Klein bottle.

This means that if there is a graph embeddable on the Klein bottle which has frozen 7-
colourings, it cannot be 6-regular. On the other hand, if there are no graphs embeddable
on Ny with frozen 7-colourings, and p(N2) = 8, proving that this is the correct number—
that is, proving that there are non-7-mixing graphs embeddable on the Klein bottle—
will in all likelihood require some ingenuity. Similarly, if it happens that pu(N2) = 7,
proving this will require an argument beyond the simple recolouring procedure provided

by following a degenerate ordering.

2.2 Mixing k-colourings in k-chromatic graphs

We have seen that 2-chromatic graphs are not 2-mixing. What about the k-mixing
properties of k-chromatic graphs for values of k > 37 In this section we prove that
3-chromatic graphs are not 3-mixing, and that, for k£ > 4, a k-chromatic graph may or

may not be k-mixing.

Graphs with chromatic number 3

Let G be a 3-colourable graph. To orient a cycle in G means to orient each edge on
the cycle so that a directed cycle is obtained. If C' is a cycle, then by 8 we denote the
cycle with one of the two possible orientations. Given a 3-colouring «, the weight of an
edge e = uv oriented from u to v is
N +1, if a(u)a(v) € {12, 23, 31};
w(uv,a) = (2.1)
-1, if a(u)a(v) € {21, 32, 13}.

The weight W(Z’),oz) of an oriented cycle 8 is the sum of the weights of its oriented
edges:

30

Chapter 2. First results on mixing

Lemma 2.10
Let a and B be 3-colourings of a graph G that contains a cycle C. If a and 3 are in the
same component of C3(G), then W(B, a) = W(Ez,ﬁ)

Proof. Let a and o’ be 3-colourings of G that are adjacent in C3(G), and suppose the
two 3-colourings differ on vertex v. If v is not on C, then we certainly have W(a, a) =
W(B, o).

If v is a vertex of C, then all its neighbours must have the same colour in «, for otherwise
we would not be able to recolour v. If we denote the in-neighbour of v on c by v;
and its out-neighbour by v,, then this means that w(v;0, a) and w(vv,, a) have opposite
sign, hence w(v;0,) + w(vv,,) = 0. Recolouring vertex v will change the signs of

the weights of the oriented edges v;0 and vv,, but they will remain opposite. Therefore
w(v;0,) + w(vv,, o) = 0, and it follows that W(E'}, a) = W(E?, o).

From the above we immediately obtain that the weight of an oriented cycle is constant

on all 3-colourings in the same component of C3(G). 0

We observe that the converse of Lemma 2.10 is not true. Given a 3-colouring of an
oriented 3-cycle, consider a second 3-colouring obtained by changing the colour on each
vertex to that of its unique out-neighbour in the original colouring. The two colourings
are not connected—they are in fact both frozen—but the weight of the cycle is the same

for each.

Lemma 2.11
Let a be a 3-colouring of a graph G that contains a cycle C. If VV(H7 a) #0, then G is

not 3-mizxing.

Proof. Let 8 be the 3-colouring of GG obtained by setting, for each vertex v of G:

1, if a(v) = 2;
Blv) = ¢ 2, ifa(v)=1;
3, if a(v)=3.

It is easy to check that for each edge e of C, w(€, a) = —w(€, B), which gives W(E’), a) =
—W(B,ﬁ). Since W(B, a) # 0, we must have W(?, a) # W(B,ﬁ), and so, by
Lemma 2.10, @ and (3 belong to different components of C3(G). O

31

Chapter 2. First results on mixing

Theorem 2.12

Let G be a graph with chromatic number 3. Then G is not 3-mixing.

Proof. As G has chromatic number 3, it contains a cycle C' of odd length. Let a be a
3-colouring of GG, and note that as the weight of each edge in Cis +1lor—1, W(E'), a) # 0.
We are done by Lemma 2.11. a

Given this result, one may now ask about the 3-mixing properties of bipartite graphs.

We study this question in detail in the following chapter.

Graphs with chromatic number at least 4

For any k > 4, it is easy to find graphs with chromatic number k that are not k-mixing.
For example, the complete graph K} or any k-chromatic graph that contains it as an
induced subgraph is not k-mixing. We now show that, in contrast to the results we
have seen for graphs with chromatic number 2 or 3, for k > 4, there exist graphs with
chromatic number k that are k-mixing. The following definition describes examples of

such graphs.

Definition 2.13
Let m > 4. The graph H,, has

e vertex set V(Hp,) = {u,v1,v2,...,0m—1, W1, W2, ..., Wy_1}, and

e edge set E(Hy,) ={vivj|1<i<j<m—-1}U{ww;|1<i<j<m-—1}
U{uvi |2 <i<m—1}U{uw; |2 <i<m—1}U{viw}.

It is easy to verify that the graphs H,, are m-chromatic. This actually follows from
the fact that H,, is obtained from two copies of K, using Hajos’ construction; see, for
example, [17, pp. 117-118]. This also means that it is m-critical, which means that
removing any vertex or edge from H,, will yield a graph with chromatic number less
than m. We observe that the two set of vertices {va, vs, ..., vm—1} and {wa, w3, ..., Wp_1}
induce two complete graphs isomorphic to K,,_s. This allows for a simple representation
of H,,, as the sketch in Figure 2.3 shows. Note that the degeneracy of H,, is m — 1 and
so by Theorem 2.7, H,, is k-mixing for all k¥ > m + 1. In fact:

Theorem 2.14
For every fired m > 4, the graph H,, is m-mizing.

32

Chapter 2. First results on mixing

o

Figure 2.3 The graph H,,.

We shall prove Theorem 2.14 via the following sequence of claims, first giving some
definitions. Let us divide the m-colourings of H,, into classes according to the colour
of v1 and wy. An m-colouring « is a (¢, d)-colouring if a(vy) = ¢ and a(wy) = . If

also a(u) = ¢, we call a a standard (¢, ¢)-colouring.

We will show that H,, is m-mixing by showing that

e every m-colouring is connected to a standard colouring;
e for any pair ¢, ¢, the set of all standard (¢, ¢')-colourings is connected; and

e for any two pairs ¢, and d,d’, each standard (c,c)-colouring is connected to a

standard (d, d’)-colouring.

Claim 2.15
Let ¢ and ¢ be distinct colours. Let a be a (¢, c')-colouring of Hy, where a(u) = ¢”. Then

there is a path from « to a standard (c,c')-colouring or to a standard (¢”,c')-colouring
of Hy, in Cpp(Hpy).

Proof. Let us assume ¢ # ¢, for else we are done. Note that as a(v1) = ¢, a(v;) # ¢ for
2 <i<m-—1. If it is not possible to immediately recolour u with ¢ to obtain a standard

(¢, ')-colouring, then there must be a vertex wj, j € {2,...,m—1}, such that a(w;) = c.

If ¢’ = ¢, then, as two of the m — 1 neighbours of w; are coloured ¢, there is some
colour d not used on either w; or any of its neighbours. Recolour w; with d and then u

with ¢ to obtain a standard (e, ¢’)-colouring.

33

Chapter 2. First results on mixing

If ¢’ # ¢, then no neighbour of vy is coloured ¢’. By recolouring v; with ¢, we immedi-

ately obtain a standard (¢”, ¢’)-colouring. O

Claim 2.16
For each distinct pair of colours ¢ and ¢, all standard (¢, ¢')-colourings belong to the same

connected component of Cp,(Hp,).

Proof. Let o and [be distinct standard (¢, ¢’)-colourings and let x be the first vertex in
the ordering va, ..., vm_1,wo, ..., wy—1 at which o and 3 disagree. To prove the claim,
we show that from a we can recolour to obtain a standard (e, ¢’)-colouring that agrees

with 8 on x and all vertices prior to it in the ordering.

Suppose that = v; for some i € {2,...,m—1}. We simply recolour v; with 5(v;) unless
there is a vertex v; such that a(vj) = B(v;); in which case, by the choice of z, j > i. Note
that a total of m — 1 colours are used on w, vy, ..., v,—1 in any standard (¢, ¢')-colouring,

so there is a colour d available for vj. Recolour v; with d and then recolour v; with 3(v;).

The other possibility is that * = w; for some i € {2,...,m — 1}. Much as before,
recolour w; with B(w;) unless there is a vertex wj, j > 4, such that a(w;) = f(w;). In
this case, however, there is no colour available for w;. Hence we find, if necessary, a
vertex v; € {va,...,vm—1} coloured ¢’ and recolour it with its available colour. In any
case, u can now be recoloured ¢’ and so ¢ is now available at w;. Finally we perform the
following sequence of recolourings: w; with ¢, w; with G(w;), w; with o(w;), v with ¢

and, if such a vertex was found, v; with a(v;). O

Claim 2.17
Let « be a standard (c,c')-colouring of Hy,,. Then there is a path from « to a standard

(c, ")-colouring of Hy, for any " ¢ {c,c'}.

Proof. From «, we describe a sequence of recolourings that lead to a standard (¢/,¢”)-

colouring. First, if one of vs,...,v,_1 is coloured ¢/, it is recoloured with its available
colour. Then wu is recoloured ¢’. Next, if one of ws,...,w,_1 is coloured ¢”, it is re-
coloured c¢. Then wj is recoloured ¢’ and v; is recoloured ¢'. O

Proof of Theorem 2.14. Let a and 8 be two m-colourings of H,,; we must show that
they are connected. By Claim 2.15, we can assume that they are standard colourings. So

suppose that « is a standard (¢, ¢’)-colouring and that § is a standard (d, d’)-colouring.

34

Chapter 2. First results on mixing

By Claim 2.16, it is sufficient to find a path from « to any standard (d,d’)-colouring.

There are a number of cases to consider.

Suppose that d = /. If d’ # ¢, then the theorem follows immediately from Claim 2.17. If
d' = ¢, then let b and ¥’ be distinct colours not in {c¢,c’'}. (As m > 4, such colours can be
found. This need to have four colours available, explains, in essence, why the theorem is
not correct for smaller m.) Now we repeatedly apply Claim 2.17: from « we can find a
path to a standard (¢, b)-colouring, then to a standard (b, b’)-colouring, then a standard

(b, ¢)-colouring and finally a standard (¢, ¢)-colouring.

Suppose that d = ¢. Then if d = ¢ the result follows from Claim 2.16. Otherwise,
applying Claim 2.17, we find a path from « to a standard (¢,b)-colouring (for some
colour b distinct from ¢, ¢ and d'), then to a standard (b, ¢)-colouring, and then to the

required standard (c, d’)-colouring.

If d ¢ {c,d} and d' # ¢, then Claim 2.17 gives a path from « to a standard (¢/,d)-
colouring and then to a standard (d, d’)-colouring. Otherwise, for d' = ¢/, we can recolour
a to (3 via a standard (¢/, b)-colouring and a standard (b, d)-colouring, for some b distinct

from ¢, ¢ and d, as above. This completes the proof. O

Graphs that are mixing for specified values only

The results proved in this chapter allow us to characterise all positive integers [and
sets F' with min F' > [such that there exist graphs G with x(G) = [that are k-mixing if
and only if k ¢ F.

Theorem 2.18
Let | > 2 be an integer, and F a set of integers with min ' > [, if F # @. Then the

following two statements are equivalent.
(i) There exists a graph G with chromatic number | such that for oll k > 1, G is
k-mizing if and only if k ¢ F.
(ii) The set F is finite, and if | € {2,3}, then | € F.
Proof. By Theorem 2.7, a graph can be non-k-mixing for a finite number of k£ only. By

Proposition 2.1 and Theorem 2.12, a graph with chromatic number [€ {2,3} cannot be

[-mixing. Hence statement (i) implies statement (ii).

Before proving the converse, let us make some basic observations and recollections. If a

graph G is the disjoint union of graphs Gf, ..., Gs, then we obviously have that x(G) is

35

Chapter 2. First results on mixing

max{ x(G;) |i=1,...,s}, and G is k-mixing if and only each G;, 1 < i < s, is k-mixing.
We have just seen that for m > 4, H,, has chromatic number m and is k-mixing if and
only if £ > m. Similarly, the complete graph K, is m-chromatic and is k-mixing only for
k > m+1, since deg(K,,) = m — 1. Let us also recall the graphs L,, from Definition 2.2:
for every m > 3, L, has chromatic number 2 and is k-mixing if and only if £ > 3 and
k # m.

Now let [and F' be as in the theorem and suppose that statement (ii) holds. If F' = &,
we are in the case [> 4 and the graph H; will do the trick for (i). Hence we can assume
that F' is not empty and finite. Let us write F' = {p1,...,p;}, with py = min F'. Then
if i € F' (so p1 = 1) the disjoint union of Kj, L;,, ..., Ly, has chromatic number [, and
for k > [, the graph is k-mixing if and only if £ ¢ F. Otherwise, if [¢ F', we must have
p1 > 1 > 4, and then the disjoint union of Hy, Ly, ..., Ly, yields a graph for which (i)
holds. O

36

Mixing 3-colourings

In this chapter we investigate what can be said about the 3-mixing properties of a given
graph. Having already considered some facts about 3-colourings (of 3-chromatic graphs)
in Chapter 2, we will refer to definitions and results from the relevant section, Section 2.2.
Recall that we saw in Theorem 2.12 that if G is a 3-chromatic graph, then G is not

3-mixing. For this reason we focus exclusively on bipartite graphs in this chapter.

In Section 3.1 we give two equivalent characterisations of a 3-mixing bipartite graph;
one in terms of the possible 3-colourings it may have, the other in terms of its struc-
ture. In Section 3.2 we consider the problem of deciding whether a given bipartite graph
is 3-mixing, and prove that this problem is coNP-complete. In the final section, Sec-
tion 3.3, we describe an algorithm that answers this question for bipartite planar graphs

in polynomial time.

3.1 Characterising 3-mixing graphs

Let us make some preliminary observations about the 3-mixing properties of some specific
graphs, noting in particular that there exist 3-mixing bipartite graphs as well as non-
3-mixing bipartite graphs. By Theorem 2.7 we know that any 1-degenerate graph is
3-mixing. Hence all trees are 3-mixing. The cycle on four vertices, CYy, is also 3-mixing—
this is easily verified by hand after noting that any 3-colouring of a 4-cycle has a pair of
vertices at distance two which are coloured the same. All other even cycles, however, are
not 3-mixing. Given a cycle Csy,, with 2m > 6, it is easy to construct a 3-colouring «
of Co,, so that W(Ezgm,a) # 0: just use the colour pattern 1,2,3,1,2,3,... for as long
as possible, making sure that the final vertices are properly coloured. Lemma 2.11 then

guarantees that the cycle Cy,, is not 3-mixing.

37

Chapter 3. Mixing 3-colourings

In Theorem 3.1 below we distinguish between 3-mixing and non-3-mixing bipartite graphs
in terms of their structure and the possible 3-colourings they may have. Before being

able to state it we need two simple definitions.

If v and w are vertices of a bipartite graph G at distance two, then we define a pinch on v
and w as the identification of v and w (together with the replacement of all double edges
by single edges). We say that G is pinchable to a graph H if there exists a sequence of

pinches that transforms G into H.

Theorem 3.1

Let G be a connected bipartite graph. Then the following statements are equivalent.
(i) The graph G is not 3-mizing.
(ii) There exists a cycle C in G and a 3-colouring o of G with W(B,a) #0.
(iii) The graph G is pinchable to the 6-cycle Cg.

To prove Theorem 3.1, we need some definitions and technical lemmas. For the rest of this

section, let G = (V, E) denote a connected bipartite graph with vertex bipartition X, Y.

Given a 3-colouring o of G, let us define a height function for a with base X as a
function h : V' — Z satisfying the following three conditions. (See [5, 25] for other, similar

definitions and uses of height functions.)

(H1) For all v € X, h(v) =0 (mod 2); and for all v € Y, h(v) =1 (mod 2).
(H2) For all wv € E, |h(v) — h(u)| = 1.

(H3) For all v € V, h(v) = a(v) (mod 3).

If h: V — Z satisfies conditions (H2), (H3) and also

(H1") For all v € X, h(v) =1 (mod 2); and for v € Y, h(v) =0 (mod 2),

then h is said to be a height function for @ with base Y.

Observe that for a particular colouring of a given G, a height function might not exist.

An example of this is the 6-cycle Cg coloured 1-2-3-1-2-3.

Conversely, however, a function h : V' — Z satisfying conditions (H1) and (H2) induces
a 3-colouring of G: the unique o : V' — {1, 2, 3} satisfying condition (H3), and so h is in
fact a height function for this . Observe also that if h is a height function for « with
base X, then so are h + 6 and h — 6; while h + 3 and h — 3 are height functions for «

38

Chapter 3. Mixing 3-colourings

with base Y. Because we will be concerned solely with the question of existence of height
functions, we assume henceforth that for a given G, all height functions have base X.
Thus we let Hx(G) be the set of height functions with base X corresponding to some
3-colouring of G, and, following [25], we define a metric m on Hx (G) by setting

m(hy,hy) = Y |h(v) = ha(v)],

veV

for hi,he € Hx(G). Note that condition (H1) above implies that m(h1,hs) is always

even.

For a given height function h, h(v) is said to be a local mazimum (respectively, local
minimum) if h(v) is larger than (respectively, smaller than) h(u) for all neighbours u

of v. Again following [25], we define the following height transformations on h.

An increasing height transformation takes a local minimum h(v) of h and transforms h

into the height function A’ given by

W () = { h(z)+2, if x =wv;
h(x), if © # .

A decreasing height transformation takes a local maximum h(v) of h and transforms h

into the height function A’ given by

) = { h(z)—2, if x =wv;

B (z) =
h(x), if x # 0.

Note that these height transformations give rise to transformations between the corre-
sponding colourings. Specifically, if we let o/ be the 3-colouring corresponding to b/, an
increasing transformation yields o/ (v) = a(v) — 1 and o/(x) = a(z) for all z # v, while a
decreasing transformation yields o/(v) = a(v) + 1 and o/ (x) = «a(z) for all z # v, where

addition is modulo 3.

The following lemma, a simple extension of the range of applicability of a similar lemma

appearing in [25], shows that all colourings with height functions are connected in C3(G).

Lemma 3.2 (Goldberg, Martin and Paterson [25])
Let a, B be two 3-colourings of G with corresponding height functions ha, hg. Then there
is a path between o and 3 in C3(G).

Proof. We use induction on m(hq, hg). The lemma is trivially true when m(hq, hg) =0,

since in this case o and [are identical.

39

Chapter 3. Mixing 3-colourings

Suppose therefore that m(ha, hg) > 0. We show that there is a height transformation
transforming h, into some height function h with m(h, hg) = m(hq, hg) — 2, from which

the lemma follows.

Without loss of generality, let us assume that there is some vertex v € V with h,(v) >
hg(v), and let us choose v with hq(v) as large as possible. We show that such a v must
be a local maximum of h,. Let u be any neighbour of v. If hy(u) > hg(u), then it follows
that hq(v) > ha(u), since v was chosen with h,(v) maximum, and |hq(v) — he(u)| = 1.
If, on the other hand, h,(u) < hg(u), we have hqo(v) > hg(v)+1 > hg(u) > hq(u), which
in fact means hqy(v) > hq(u).

Thus hq(v) > he(u) for all neighbours u of v, and we can apply a decreasing height
transformation to h, at v to obtain h. Clearly m(h, hg) = m(hq, hg) — 2. O

In the same way that we consider weights of oriented cycles in a 3-coloured graph, let us
consider weights of oriented paths. For a path P in a graph G, let P denote one of the
two possible oriented paths obtainable from P. If G is 3-coloured with «, we define the

weight W(]_D), a) of P as the sum of the weights of its oriented edges:

W(P.a)= » w@aw),
weB(P)

where w(ud, o) takes values as defined in equation (2.1).

The next lemma tells us that for a given 3-colouring, non-zero weight cycles are, in some
sense, the obstructing configurations forbidding the existence of a corresponding height

function.

Lemma 3.3
Let a be a 3-colouring of G with no corresponding height function. Then G contains a
cycle C' for which W(a, a) #0.

Proof. Let us observe that if a 3-colouring of a certain graph does have a height function,
it is possible to construct one by fixing a vertex x of the graph, giving x an appropriate
height (satisfying conditions (H1) and (H3)) and then assigning heights to all vertices in
the graph by following a breadth-first ordering from z.

Whenever we attempt to construct a height function A for « in such a fashion, we must
come to a stage in the ordering where we attempt to give some vertex v a height h(v)
and find ourselves unable to because v has a neighbour v with a previously assigned
height h(u) and |h(u) — h(v)| > 1. Letting P be a path between w and v formed by

40

Chapter 3. Mixing 3-colourings

vertices that have been assigned a height, and choosing the appropriate orientation of P,
we have W(]_3>,a) = |h(u) — h(v)|. The lemma now follows by letting C' be the cycle
formed by P and the edge uwv. O

The following lemma is obvious.

Lemma 3.4

Let w and v be vertices on a cycle C in a graph G, and suppose there is a path P between u
and v in G internally disjoint from C. Let o be a 3-colouring of G. Let C' and C" be the
two cycles formed from P and edges of C, and let 8’,(37’ be the orientations of C',C"
induced by an orientation E') of C (so the edges of P have opposite orientations in 57

— N — —
and C"). Then W(C,a) =W (C', o)+ W(C", a).
— — —
Note this tells us that W(C', o) # 0 implies W(C’,) # 0 or W(C",) # 0.

Proof of Theorem 3.1. Let GG be a connected bipartite graph.

(i) = (ii). Suppose C3(G) is not connected. Take two 3-colourings of G, « and f3,
in different components of C3(G). By Lemma 3.2 we know at least one of them, say «,
has no corresponding height function, and by Lemma 3.3, there is a cycle C' in G with

W(ﬁ,a) # 0.

(ii) = (iii). Let G contain a cycle C' with W(a, a) # 0 for some 3-colouring « of G.
Because W(C—>'4, (3) = 0 for any 3-colouring 3 of Cy, it follows that C' = C), for some even
n > 6. If G = C, then it is easy to find a sequence of pinches that will yield Cg. If G
is C plus some chords, then Lemma 3.4 tells us that there is a smaller cycle C’ with
W(a ,a) # 0 and we can again easily find a sequence of pinches that will yield Cs. Thus
if G # C, we can assume that V(G) # V(C), and we describe how to pinch a pair of
vertices so that (ii) remains satisfied (for a specified cycle with G replaced by the graph
created by the pinch and « replaced by its restriction to that graph, also denoted «); by
repetition, we can obtain a graph that is a cycle and, by the previous observations, the

implication is proved.

Note that we shall choose vertices coloured alike to pinch so that the restriction of « to
the graph obtained is well-defined and proper. If C has three consecutive vertices u, v, w
with a(u) = a(w), pinching u and w yields a graph containing a cycle ¢’ = C),_2 with
W(g”, a) = W(B, a). Otherwise C is coloured 1-2-3-----1-2-3. We can choose u, v, w to
be three consecutive vertices of C, such that there is a vertex z ¢ V(C) adjacent to v.
Suppose, without loss of generality, that a(x) = «(u), and pinch = and u to obtain a

graph in which W(Ez, «) is unchanged.

41

Chapter 3. Mixing 3-colourings

(ili) = (i). Suppose G is pinchable to Cgs. Take two 3-colourings of Cg not connected by
a path in C3(Cp): 1-2-3-1-2-3 and 1-2-1-2-1-2, for example. Considering the appropriate
orientation of Cg, note that the first colouring has weight 6 and the second has weight 0.
We construct two 3-colourings of G not connected by a path in C3(G) as follows. Consider
the reverse sequence of pinches that gives G from Cg. Following this sequence, for
each colouring of Cg, give every pair of new vertices introduced by an ‘unpinching’ the
same colour as the vertex from which they originated. In this manner we obtain two
3-colourings of GG, a and 3, say. Observe that every unpinching maintains a cycle in G
which has weight 6 with respect to the colouring induced by the first colouring of Cg
and weight 0 with respect to the second induced colouring. This means G will contain a
cycle C for which W(E'), a) =6 and W(E'), B3) = 0, showing that o and 3 cannot possibly

be in the same connected component of C3(G).

This completes the proof of the theorem. O

3.2 The complexity of 3-MIXING

Let us now turn our attention to the computational complexity of deciding whether or
not a 3-colourable graph G is 3-mixing. From Theorem 2.12 we know that we can restrict
our attention to bipartite graphs, so the case k = 3 of our decision problem k-MIXING

we formally define as follows.

3-MixiNG
Instance: A connected bipartite graph G.

Question : Is G 3-mixing?

Observing that Theorem 3.1 gives us two polynomial time verifiable certificates for
when G is not 3-mixing, we immediately obtain that 3-MIXING is in the complexity
class coNP. By the same theorem, the following decision problem is the complement of

3-MIXING.
PINCHABILITY-TO-Cj
Instance: A connected bipartite graph G.

Question : Is G pinchable to Cg?

We will prove the following result.

42

Chapter 3. Mixing 3-colourings

Theorem 3.5
The decision problem 3-MIXING is coNP-complete.

Our proof will in fact show that PINCHABILITY-TO-C§ is NP-complete. We will obtain a

reduction from the following decision problem.

RETRACTABILITY-TO-Cy

Instance: A connected bipartite graph G with an induced 6-cycle S.

Question : Is G retractable to S? That is, does there exist a homomorphism
r: V(G) — V(95) such that r(v) = v for all v € V(5)7

It is mentioned in [60], without references, that Tomds Feder and Gary MacGillivray
have independently proved that RETRACTABILITY-TO-Cjg is NP-complete by a reduction

from 3-COLOURABILITY. For completeness, we give a sketch proof.

3-COLOURABILITY
Instance: A connected graph G.

Question : Is G 3-colourable?

Theorem 3.6 (Feder; MacGillivray; see [60])
The decision problem RETRACTABILITY-TO-Cg 4s NP-complete.

Proof. That RETRACTABILITY-TO-Cg is in NP is clear.

Given a connected graph G, construct a new graph G’ as follows: subdivide every edge uv
of G by inserting a vertex ., between u and v. Also add new vertices a, b, ¢, d, e together
with edges za,ab, be, cd, de, ez, where z is a particular vertex of G (any one will do).
The graph G’ is clearly connected and bipartite, and the vertices z,a, b, ¢, d, e induce a
6-cycle S. We will prove that G is 3-colourable if and only if G’ retracts to the induced
6-cycle S.

Assume that G is 3-colourable and take a 3-colouring 7 of G with 7(z) = 1. From 7 we

construct a 6-colouring o of G'. For this, first set o(x) = 7(x), if € V(G). For the new
vertices Yy, set

4, if 7(u) =1 and 7(v)

o(Yuw) = 5, if 7(u) =2 and 7(v)

6, if 7(u) =3 and 7(v)

2
3,
1

)

43

Chapter 3. Mixing 3-colourings

and for the cycle S take o(a) = 4, o(b) = 2, o(c) = 5, o(d) = 3 and o(e) = 6. Now
define r : V(G') — V(S) by setting

z, ifo(z) =1,

a, if o(x) =4,

b, if o(x) =2,
r(z) =

¢, ifo(z)=>5,

d, ifo(z) =3,

e, if o(x) =6.

It is easy to check that 7 is a retraction of G’ to S.

Conversely, suppose G’ retracts to S. We can use this retraction to define a 6-colouring
of G’ in a similar way to that in which we defined r from o in the preceding paragraph.
The restriction of this 6-colouring to GG yields a proper 3-colouring of G, completing the

proof. a

Our proof of Theorem 3.5 follows [60], where, as a special case of the main result of that

paper, the following problem is proved to be NP-complete.

COMPACTABILITY-TO-CY

Instance: A connected bipartite graph G.

Question : Is G compactable to Cg? That is, does there exist an edge-surjective homomor-
phism ¢ : V(G) — V(Cg)?

If an edge-surjective homomorphism ¢ : V(G) — V(Cs) exists, we call it a compaction.

In [60] a polynomial time reduction from RETRACTABILITY-TO-C) to COMPACTABILITY-
TO-C}, with k > 6 even, is given. We will use exactly the same transformation (for k& = 6)

to prove that PINCHABILITY-TO-C§ is NP-complete.

Proof of Theorem 3.5. As mentioned before, we will show that 3-MIXING is coNP-
complete by showing that PINCHABILITY-TO-Cg is NP-complete. This we do by giving

a polynomial time reduction from RETRACTABILITY-TO-Cg to PINCHABILITY-TO-Cg.

Consider an instance of RETRACTABILITY-TO-Cg: a connected bipartite graph G with
an induced 6-cycle S. From G we construct, in time polynomial in the size of G, an

instance G’ of PINCHABILITY-TO-Cg such that

G retracts to S if and only if G’ is pinchable to Cg. ()

44

Chapter 3. Mixing 3-colourings

Figure 3.1 The subgraph of G’ added around a vertex a € G 4\ Sa, together
with the 6-cycle S.

7
23

Figure 3.2 The subgraph of G’ added around a vertex b € Gp\ Sp, together
with the 6-cycle S.

)

Assume G has vertex bipartition (G4, Gp). Let V(S) = S4USp, where Sy = {hg, ha, ha}
and Sp = {h1, hs, hs}, and assume E(S) = { hohi, ..., hahs, hsho }.

The construction of G’ is as follows.
o For every vertex a € G4 \ Sa, add to G new vertices u$, ug, w{,y$, y5, together
with edges u$hg, aug, wihs, awt, ufws, y$hs, yshe, uys, wiysy, uius, yiys.

e For every vertex b € G\ Sp, add to G new vertices u?, w?, wh, y%, 45, together with

b b ,.b b . b,b by bz b b bbb, bbb
edges ujhg, buj, wi hs, bws, ujwy, yihs, ysho, uiyy, Wiy, WiWy, Y1 Ys-

e For every edge ab € E(G)\ E(S), witha € G4\ S4 and b € Gp \ S, add two new

vertices: 2% adjacent to a and u¢; and 2@ adjacent to b, w? and z2.

45

Chapter 3. Mixing 3-colourings

From the construction it is clear that G’ is connected and bipartite. Note that G’ con-
tains G as an induced subgraph, and note also that the subgraphs constructed around a
vertex a € G4\ Sa and a vertex b € Gp \ Sp are isomorphic. These graphs are depicted
in Figures 3.1 and 3.2.

We will prove () via a sequence of claims.

Claim 3.7
Suppose G retracts to S. Then G is pinchable to Cg.

Proof. The fact that G retracts to S means we have a homomorphism r : V(G) — V(S)
such that r(v) = v for all v € V(S). Define a partition {R; | ¢ = 0,1,...,5} of V(G)
by setting v € R; <= r(v) = h;. Because r is a homomorphism, we know any edge
e € E(G) has one vertex in R; and another in R, for some j, where subscript addition
is modulo 6. Using this partition of V' (G), we show that G is pinchable to a 6-cycle—to S,
in fact. We describe how to pinch a pair of vertices such that the resulting (smaller) graph
still has S as an induced subgraph; by repetition, this will eventually yield S. Supposing
V(G) # V(S) (for else we are done), let E~ = E(G) \ E(S). Because G is connected,
there must be an edge uv € E~ with u € V(S) and v € V(G) \ V(S). Suppose v € R;,
for some j € {0,1,...,5}. Pinch v with h;, and note that the resulting graph remains
bipartite, connected and contains S as an induced subgraph. Denote the resulting graph

by G and repeat. a
We now prove the ‘only if” part of ().

Claim 3.8
Suppose G retracts to S. Then G’ is pinchable to Cg.

Proof. By Claim 3.7, G is pinchable to Cs. In fact, by the proof of Claim 3.7, we
know G is pinchable to S. Because G is an induced subgraph of G’ we can follow, in G’,
the sequence of pinches that gives S from G. We now show how, after following this
sequence of pinches, we can choose some further pinches that will leave us with S. For
a vertex v € V(G) \ V(S), we will pinch into S all vertices introduced to G’ on account
of v, yielding a smaller graph still containing S as an induced subgraph. By repetition,

we will eventually end up with just S.

First let us consider where a vertex a € G4 \ S4 with no neighbours in Gp \ Sp might

have been pinched to, and how we could continue pinching. There are three possibilities.

46

Chapter 3. Mixing 3-colourings

1. The vertex a has been pinched with h;. In that case pinch y{ with hg, y5 with hq,

uf with hq, u§ with hg, and w{ with ha.

2. The vertex a has been pinched with hs3. In that case pinch y{ with h4, y§ with hs,

u§ with hs, u§ with hy, and w{ with hg.

3. The vertex a has been pinched with hs. In that case pinch y{ with h4, y§ with ha,

u{ with hs, u§ with hg, and w{ with hs.

Similarly, let us consider where a vertex b € Gp \ Sp with no neighbours in G4 \ Sa
might have been pinched to, and how we could continue pinching. Again, there are three

possibilities.

1. The vertex b has been pinched with hg. In that case pinch yll’ with hg, yg with Ay,

ul{ with hq, wll’ with hs, and wg with hq.

2. The vertex b has been pinched with hs. In that case pinch yll’ with hg, yg with hq,

ub with hy, w? with hg, and w§ with hs.

3. The vertex b has been pinched with h4. In that case pinch yll’ with hy, yg with hs,

u? with hs, w? with hy, and w§ with hg.

Now let us consider the case where a vertex a € G 4\ S4 is adjacent to a vertex b € Gp\Sp.
There are six cases to consider, corresponding to the six edges of S to which ab might
have been pinched. Often there will be a choice of pinches—for each case we give just

one.

1. The edge ab has been pinched to hihs. We can use the previous case analyses to
conclude that u{ must be pinched with h; and wll’ with hg. Now we must deal

with 22 and :c‘blb . Pinching 2% with ho and xgb with hy gives us what we require.

2. The edge ab has been pinched to hihg. Then we conclude u{ must be pinched

with h; and wll’ with hs. Now pinch mgb with hg and mgb with h;.

3. The edge ab has been pinched to hzhs. Then u{ must be pinched with hs and wlf
with h4. Now pinch :L‘gb with h4 and IL‘gb with hs.

4. The edge ab has been pinched to hzhy. Then u$ must be pinched with hs and w?
with hg. Now pinch xgb with hg and xgb with hs.

5. The edge ab has been pinched to hshg. Then u{ must be pinched with hs and wll’

with hs. Now pinch xgb with hg and xgb with hq.

47

Chapter 3. Mixing 3-colourings

6. The edge ab has been pinched to hshs. Then u¢ must be pinched with hs and w?

with h4. Now pinch xgb with h4 and xgb with hs.
This completes the proof of the claim. O
We must now prove the ‘if” part of (x). We do this via the next three claims.

Claim 3.9
Suppose G’ is pinchable to Cg. Then G’ is compactable to Cg.

Proof. The fact that G’ is pinchable to the 6-cycle Cs means there exists a homomor-
phism ¢ : V(G") — V(Cs). In order to make this precise, let V(Cg) = {ko, k1, k2, ks, k4, k5 }
and E(Cg) = {koki, ..., kaks, ksko}. Let us also define sets P;, for i = 0,1,...,5, as fol-
lows. Initially, set P; = {k;}. Now let us consider the reverse sequence of ‘unpinchings’
that yields G’ from Cg. Following this sequence, suppose a vertex v € P; is unpinched.
Delete v from P; and add to P; the two vertices that were identified to give v in the orig-
inal pinch. Repeat this until G’ is obtained, and now define ¢ by setting, for v € V(G'),
c(v) = k; <= v € P,. Clearly the sets P, form a partition of V(G’) and so ¢ is
well-defined. In addition, by the way the sets P; have been constructed, it is clear
that any edge uv € E(G’) has one end-vertex in P; and the other in Pji;, for some
j €{0,1,...,5}. This means c(u)c(v) € E(Cg) and so ¢ is a homomorphism. Moreover,
it is edge-surjective: the P;s are all non-empty and there is at least one edge between

every pair P;, Pj41. O

The proof of the following claim is the same as the proof in [60] that shows that if G’ is
compactable to Cg, then G’ retracts to S.

We need some further notation. As usual, for a set S and a function f, we let f(S) =
{f(s) | s € S}. Recalling that we denote the distance between vertices u and v in a
graph H by dp(u,v), let us write, for a vertex u and set of vertices S of H, di(S,u) =
min{dg(v,u) | v € S}.

Claim 3.10 (Vikas [60])
Suppose G’ is pinchable to Cg. Then G’ retracts to S.

Proof. By Claim 3.9 we know there exists a compaction ¢ : V(G') — V(Cg). (Recall
that a compaction is just an edge-surjective homomorphism.) We prove that ¢ is in

fact a retraction to S. To do this, we must show that for all v € V(95), c(v) = v.

48

Chapter 3. Mixing 3-colourings

For convenience, we now use the same notation for Cg and S; that is, we let V(Cq) =
{ho,h1, ..., hs} and E(Cg) = { hoh1, ..., hahs, hsho }.

Let U = {u} | v € V(G)\ V(S)} U{ho,h1,hs} and W = {w} | v € V(G) \ V(S)} U
{ha, h3, hs}. Because both these vertex sets induce subgraphs of diameter 2 in G’, ¢(U)
and ¢(W) must each induce a path of length 1 or 2 in Cs. We prove they each induce a
path of length 2.

Suppose that ¢(U) has only two vertices, adjacent in Cs. Thus we let ¢(U) = {ho, h1},
with ¢(hg) = hg. (Due to the symmetry of Cg, we can, if necessary, redefine ¢ in this way.)
Let U= = U \ {ho}. Because hy is adjacent to every other vertex in U, ¢(U~) = {h1}.
It is easy to check that for any g € G', dg/ (U™, g) < 2. But we have de,(c(U™), hs) =
dcy(h1, hg) = 3, which means no g € G’ can be mapped to h4 under ¢, contradicting the

fact that c is a compaction.

Hence ¢(U) induces a path on three vertices. By a similar argument, the same ap-
plies to ¢(W). By the symmetry of Cgs, we can without loss of generality take c¢(U) =
{h1, ho, hs}. This means that c¢(hg) = hg. We now prove that c¢(hg) = hs.

Let gg’ be an edge of G’ that is mapped to hghs or hshyg, with ¢(g) = hs, and ¢(g’) = ha
or ¢(g') = hys. Note that hs is at distance 2 from ¢(U) in Cg while hy and hy are at
distance 1 from ¢(U) in Cg. This means that dg/ (U, g) > 2 and deg/(U, ¢') > 1. Earlier
we noted that the distance between U~ and any vertex of G’ is at most 2, which means
that de/(U,g) < 2, so in fact de(U,g) = 2. Because G’ is bipartite, dg/(U,g') = 1.
Hence g is one of a,mgb,hg,yg,yg,wg, and ¢’ is one of b,xgb,ug, ho, h4,y‘1‘,yll’,w‘1‘,wl1’, for
some a € G4\ Sa, b € Gp \ Sp. Given that c(hy) = hg, we cannot have c(hg) = ho
or c¢(hs) = hg. Aiming for a contradiction, let us suppose that c¢(hs) # hs. Then no
edge of G’ with hsy as an endpoint covers hzho or hshy. Hence gg’ must be one of

: . b b,.ab b b,,b b, b ,b,,b b
the following: ax§’,ab,aus,aw?, xp’xy’, x3°b, 23°w?, ysyt, yswi, ysha, you7i, yswy, yshe,

wiw?, wib. If ahs or ahy is an edge of G, then we also need to consider such an edge as
a possible candidate for g¢g’. By previous assumptions, we have ¢(hg) = hy or ¢(hs) = hs.
We now prove that c(hg) # hs is impossible as follows. We first assume c¢(h3) = hy and
show that no possible edge for gg’ covers hghy, and then assume c(h3) = hs and show

that no possible edge for gg’ covers hszhs. Thus let us assume c(hg) = hy.
Let us suppose that for some v € V(G) \ V(S5), yJw} covers hzhyg, so c(y5) = hz and
c(w}) = hyg. But ¢(hs) = hi, and since hs an w} are adjacent, we must have c(w}) = hg

or ¢(wy) = ha, a contradiction.

By exactly the same argument, we come to the conclusion that none of the edges aw{,

wgw’{, :cgbwll’ can cover the edge hghs. A similar argument applies to y3ho.

49

Chapter 3. Mixing 3-colourings

Suppose that for some v € V/(G) \ V(5), y5y} covers hzhy, so c¢(yy) = hz and c(y}) = ha.
Now c¢(u}) = hy or c(u}) = hs, but since uj and y} are adjacent we must have c(u}) = hs.
Because c(w}) must be adjacent to c¢(y3) = hs, c(w]) = ha or c¢(w}) = hy. But uf is
adjacent to wy, so c¢(w}) = hy. This means yjw] covers hsh4, which we have already

seen is impossible.

Now suppose that for some b € Gp \ Sp, wgb covers hzhy, so c(wg) = hz and ¢(b) = hy.
If ¢(b) = hy4, we must have c(u?) = h3 or c(u?) = hs. But c¢(hg) = ho means c(u?) = hy or
c(u8) = hs, so c(ub) = hs. This implies, since c(w}) = hg or c(w}) = hy, that c(w?) = hy.

But this means that w2w11’ covers hgh4, which we have already excluded as a possibility.

Assume that for some a € G4 \ Sa, auj covers hshg, so c(a) = hg and c(u§) = ha.
Because u§ and u§ are adjacent, c¢(uf) = hg or c(uf) = hs, but since u{ is adjacent to hg
and c(hg) = ho, we have c(uf) = hs. Similarly, c(w{) = hg or c¢(w{) = ha, but since w{
and u§ are adjacent, we have c¢(w{) = hy. Hence aw{ covers hghy, but we have already
seen this is impossible.

b aby —

Now assume that for some a € G4 \ Sa, ax’ covers hghy, so c(a) = hg and c¢(x

a hy.
Now c(u$) = hy or c(uf) = hs, but since uf and 2% are adjacent, we have c(u$) = hs.
Because c(u§) must be adjacent to c(a) = hs as well as ¢(uf) = hs, we have c(u§) = hy.

Hence au§ covers hzhg, but we have already seen this is impossible.

Suppose that for some b € G\ Sp, 28 covers hzha, so c(zi’) = hs and c(b) = hy. Now

c(ub) = hy or c(u}) = hs, but since b and u} are adjacent, we must have c(u}) = hs.

Because c(w?) must be adjacent to c(zg’) = hs, we have c(w8) = hy or c(w}) = ha.

But u} and w? are adjacent, so c(w?) = hy. This means z{®w? covers hzhs, which we

have already ruled out as a possibility.

Now suppose that for some a € G4\ S4 and some b € Gp \ Sp, ab covers hshy, so
c(a) = hz and c(b) = hy. Since u§ is adjacent to a and we have seen au§ does not
cover hghy, we must have c(u§) = ha. Now c(uf) = hy or c(uf) = hs, but since u{ and u§
are adjacent, we must have c(uf) = hi. Also, c(x%) must be adjacent to c(u$) = hy
and c(a) = hg, so c(z2) = hy. Similarly, c(z@’) must be adjacent to ¢(z2’) = hy and
c(b) = ha, so c(zf?) = h3. But this means z{%b covers hzhy, which we have already seen
is impossible.

Suppose that for some a € G4 \ Sq and some b € G\ Sp, :cgb ab covers hsha, SO

c(x$?) = hg and ¢(x2%) = hy. Since a is adjacent to 22° and we have seen ax?® does not
cover hghy, we must have c(a) = hs. Because ¢(b) must be adjacent to c(a) = hs and
c(x$?) = hg, we have c(b) = hs. But then zf’b covers hshy, and we have seen this is

impossible.

50

Chapter 3. Mixing 3-colourings

Lastly, if ahs (or ahy) is an edge of G', assuming c(a) = hs and ¢(hg) = hy (or c¢(a) = hs

and c¢(hy) = hy) immediately leads us to a contradiction, since c(h3) = hy.

From all this we obtain that assuming c¢(h3) = hy leads us to the conclusion that no edge

of G’ covers hzhy, contradicting the fact that ¢ is a compaction.

We now show that assuming c(hs) = hs leads us to the conclusion that no edge of G’

covers hohs.

Let us suppose that for some v € V(G) \ V(S5), yJw} covers hzha, so c¢(yy) = hz and
c(wy) = ha. But ¢(hs) = hs, and since h3 an w} are adjacent, we must have c¢(w}) = hg
or c(wy) = hy, a contradiction.

By exactly the same argument, we come to the conclusion that none of the edges aw{,

whwt, xfPwh can cover the edge hzho. A similar argument applies to y3ho.

Suppose that for some v € V/(G) \ V(5), y5y} covers hsha, so ¢(yy) = hz and c(y}) = ha.
Now c(u}) = hy or c¢(u}) = hs, but since uj and y} are adjacent we must have c¢(u}) = hy.
Because c(w{) must be adjacent to c¢(y3) = hs, c(w]) = ha or c¢(w}]) = hy. But uf is
adjacent to wy, so c(w}) = hg. This means yjw} covers hzha, which we have already

seen is impossible.

Now suppose that for some b € Gp \ Sp, wgb covers hzhs, so c(wg) = hsz and ¢(b) = ha.
If ¢(b) = ha, we must have c(u}) = hz or c(u}) = hy. But c¢(hg) = ho means c(u}) = hy or
c(u8) = hs, so c(ul) = hy. This implies, since c(w}) = hg or c(wh) = hy, that c(w?) = ha.

But this means that wSw? covers hzhs, which we have already excluded as a possibility.

Assume that for some a € G4 \ Sa, auj covers hsha, so c(a) = hg and c(u§) = ha.
Because u§ and u§ are adjacent, c¢(u{) = hg or ¢(uf) = hq, but since u{ is adjacent to hg
and c(hg) = ho, we have c(uf) = hy. Similarly, c(w{) = hg or c¢(w{) = hy, but since w{
and u§ are adjacent, we have c(w{) = ho. Hence aw{ covers hghg, but we have already
seen this is impossible.

ab

Now assume that for some a € G4 \ Sa, ax® covers hghz, so c(a) = hz and c(x%%) = hs.

Now c(uf) = hy or c(u$) = hs, but since uf and 2 are adjacent, we have c

L~

Because c¢(u§) must be adjacent to c(a) = hs as well as c(uf) = hy, we have ¢

Hence au§ covers hzhsy, but we have already seen this is impossible.

Suppose that for some b € Gp \ Sp, xl‘jbb covers hghs, SO c(xgb) = hg and ¢(b) = ho. Now

c(u}) = hy or c(ul) = hs, but since b and u} are adjacent, we must have c(u?) = h;.

Because c(w?) must be adjacent to c(zg’) = hs, we have c(w?) = hy or c(w}) = hy.

But u} and w? are adjacent, so c(w?) = hy. This means z{®w? covers hzhs, which we

have already ruled out as a possibility.

51

Chapter 3. Mixing 3-colourings

Now suppose that for some a € G4 \ S4 and some b € Gp \ Sp, ab covers hsha, so
c(a) = hz and c(b) = hg. Since uj is adjacent to a and we have seen au§ does not
cover hghg, we must have c(u§) = hy. Now c(uf) = hy or c(uf) = hs, but since u{ and u§

ab

are adjacent, we must have c(uf) = hs. Also, c(z?

) must be adjacent to c(uf) = hs
and c(a) = h3, so c(z2) = hy. Similarly, c(z@’) must be adjacent to c(z2%) = hy and
c(b) = ha, so c(zf’) = hs. But this means 2’ covers hshy, which we have already seen
is impossible.

Suppose that for some a € G4 \ Sa and some b € Gp \ Sp, a:gbxgb covers hshs, so

c(x$?) = hg and ¢(x%) = hs. Since a is adjacent to 2%° and we have seen ax?® does not
cover hghg, we must have c(a) = h;. Because ¢(b) must be adjacent to ¢(a) = h; and
c(x$?) = hg, we have c(b) = hy. But then b covers hshs, and we have seen this is

impossible.

Lastly, if ahs (or ahy) is an edge of G’ assuming c(a) = hg and c(hg) = hy (or ¢(a) = hg

and c(hyg) = hy) immediately leads us to a contradiction, since c¢(hg) = hs.

From all this we obtain that assuming c¢(hs) = hs leads us to the conclusion that no edge

of G’ covers hghs, contradicting the fact that ¢ is a compaction.
From all the above we obtain that c(hs) = hs, which means that ¢(W) = {ha, hs, ha}.

Now we show ¢(h1) # c¢(hs). To the contrary, assume c(hi) = c¢(hs). Since c¢(ho) = ho, we
have ¢(hy),c(hs) € {h1, hs}. Due to symmetry, we can without loss of generality assume
c(h1) = ¢(hs) = hy. Since ¢(U) = {h1, ho, hs}, it must be the case that c(u}) = hs for
some v € V(G) \ V(S). Now c(w}) and c(h2) must both be adjacent to c¢(hs) = hs, so
c(wy),c(he) € {ha,ha}. Because c(u]) = hs and uj and w} are adjacent, c(w}) = hy.
Similarly, because c(hg) = ho and h; and hy are adjacent, c(ha) = ho. Now c(y3) must
be adjacent to c¢(ha) = he and c(w}) = ha, so c(y3) = hs. Also, c¢(y]) must be adjacent
to c¢(hs) = hy and c¢(u}) = hs, so ¢(y}y) = ho. Thus we have that y} and y3 are adjacent
in G', but ¢(y}) = ho and ¢(yy) = hs are not adjacent in Cp, a contradiction.

Hence c¢(h1) # c(hs). That is, c({h1,hs}) = {h1,hs}. Without loss of generality, we
can take c(h1) = hy and c(hs) = hs. Since c(hs) = hg, we have c(hg), c(hy) € {ha, ha}.
Because hy and hy are adjacent in G’ and the distance between ¢(h;) = hy and hy in Cy
is 3, it must be that c¢(hy) # hg and so ¢(hg) = hg. Similarly, because hs and hy are

adjacent in G’ and the distance between c¢(hs) = hs and hs in Cg is 3, it must be that
C(h4) 75 hg, and so C(h4) = h4.

Thus ¢(h;) = h; for alli =0,1,...,5, and c: V(G') — V(Cs) is a retraction. 0
The last claim is a simple observation that completes the proof of (%) and thus also of

52

Chapter 3. Mixing 3-colourings

Theorem 3.5.

Claim 3.11
Suppose G’ is pinchable to Cg. Then G retracts to S.

Proof. By Claims 3.9 and 3.10 we know there exists a retraction r : V(G') — V(S).
Because S is an induced subgraph of G, and G is an induced subgraph of G’, restricting r

to G gives us what we need. a

3.3 A polynomial time algorithm for 3-MIXING for planar

graphs
In this section, we prove the following.

Theorem 3.12
Restricted to planar bipartite graphs, the decision problem 3-MIXING is in the complexity

class P.
To prove the theorem we need two lemmas.

Lemma 3.13
Let P be a shortest path between distinct vertices u and v in a connected bipartite graph H.
Then H is pinchable to P.

Proof. Let P have vertices u = vy, v1,...,Vp_1,v = v, and let T be a breadth-first
spanning tree of H rooted at u that contains P (we can choose T so that it contains P
since P is a shortest path). Now, working in 7', pinch all vertices at distance one from u
to v1. Next pinch all vertices at distance two from u to v9. Continue until all vertices at
distance k from w are pinched to vy = v. If necessary, arbitrary pinches on the vertices

at distance at least k + 1 from u will yield P. a
In the following, when we say some vertices of a graph are properly precoloured, we just

mean that they are assigned colours in a way such that the subgraph induced by these

vertices is properly coloured.

53

Chapter 3. Mixing 3-colourings

Lemma 3.14
Let H be a bipartite graph, and suppose the wvertices of a 4-cycle in H are properly
precoloured using colours from {1,2,3}. Then this 3-colouring can be extended to a proper

3-colouring of H.

Proof. Since any 3-colouring of a four cycle Cy has two vertices with the same colour,
we can without loss of generality assume the four vertices are coloured 1-2-1-2 or 1-2-1-3.
In the first instance, since H is bipartite, we can extend the precolouring to a colouring
of H using colours 1 and 2 only. For the second case, we can use the same colouring,

except leaving the vertex coloured 3 as it is. a

The sequence of claims that follows outlines an algorithm that, given a connected bipartite
planar graph G as input, determines in polynomial time whether or not G is 3-mixing.

We first show how we can take the input graph to be 2-connected.

Claim 3.15

Let G be a connected bipartite planar graph, and suppose that G has a cut-vertexv. Let Hq
be a component of G — {v}. Denote by G1 the subgraph of G induced by V(Hy) U {v},
and let Gy be the subgraph induced by V(G) \ V(H1). Then G is 3-mizing if and only if
both G1 and Go are 3-mixing.

Proof. If G is 3-mixing, then clearly so are G; and Go. Conversely, if GG is not 3-mixing,
we know by Theorem 3.1 that there must exist a 3-colouring a of G and a cycle C' in G
such that W(a, a) # 0. But because C' must lie completely in G or Go, we have that G

or (G2 is not 3-mixing. a

Let us now consider an embedding of our 2-connected bipartite planar graph G in the
plane, and let us identify G with this embedding. (Throughout the rest of this section,
we will usually, for ease of reference, identify a planar graph with a given embedding of
the graph in the plane.) Given a cycle D in G, denote by Int(D) and Ext(D) the sets of
vertices inside and outside of D, respectively. Note that the vertices of D itself are not
included in Int(D) nor in Ext(D). If both Int(D) and Ext(D) are non-empty, D is said
to be separating. For D a separating cycle in G, let us write Gy (D) = G — Ext(D) and
Guxt(D) = G — Int(D), and note that D is part of both these graphs.

We now consider the case that the planar embedding of G has a separating 4-cycle.

54

Chapter 3. Mixing 3-colourings

Claim 3.16

Let G be a 2-connected bipartite planar graph, and suppose that G has a planar embedding
with a separating 4-cycle D. Then G is 3-mizing if and only if G (D) and Gt (D) are
both 3-mixing.

Proof. To prove necessity, we show that if one of Gy (D) or G (D) is not 3-mixing,
then G is not 3-mixing. Without loss of generality, suppose that Gy (D) is not 3-mixing,
so there exists a 3-colouring a of Gy (D) and a cycle C in Gy (D) with W(E'), a) # 0.
By Lemma 3.14, the 3-colouring of the vertices of the 4-cycle D can be extended to a
3-colouring of Gyt (D). The combination of the 3-colourings of Gy (D) and Ggx(D)

gives a 3-colouring of G with a non-zero weight cycle, showing that G is not 3-mixing.

To prove sufficiency, we show that if G is not 3-mixing, then at least one of Gy (D)
and Ggx(D) must fail to be 3-mixing. Suppose that « is a 3-colouring of G for which
there is a cycle C' with W(E’), a) # 0. If C' is contained entirely within Gy (D) or Ggxi (D)
we are done, so let us assume that C' has some vertices in Int(D) and some in Ext(D).
Then applying Lemma 3.4 (repeatedly, if necessary) we can find a cycle C’ contained
entirely in Gy (D) or Gy (D) for which W(C—>” ,a) # 0, completing the proof. O

We need two further claims to complete the description of our algorithm. We call a
face of G with k edges in its boundary a k-face, and a face with at least k edges in its
boundary a > k-face. The number of > 6-faces of G—which we can now assume has no

separating 4-cycle—will in fact determine if G is 3-mixing.

Claim 3.17
Let G be a 2-connected bipartite planar graph. Suppose that G has a planar embedding
with no separating 4-cycle, and suppose that every internal face of the embedding is a

4-face. Then G is 3-mixing.

Proof. Let a be any 3-colouring of G and let C' be any cycle in G. We show W(Ez, a)=0
by induction on the number of faces inside C'. If there is just one face inside C, C is
in fact a facial 4-cycle and I/V(Ez7 a) = 0. For the inductive step, let C' be a cycle with
r > 2 faces in its interior. If, for two consecutive vertices u,v of C, we have vertices
a,b € Int(C) together with edges ua,ab,bv in G, let C’ be the cycle formed from C by
the removal of the edge uv and the addition of edges ua, ab, bv. If not, check whether
for three consecutive vertices u, v, w of C, there is a vertex a € Int(C') with edges ua, aw
in G. If so, let C’ be the cycle formed from C by the removal of the vertex v and the

addition of the edges ua,aw. If neither of the previous two cases apply, we must have,

95

Chapter 3. Mixing 3-colourings

for u, v, w, x four consecutive vertices of C, an edge ux inside C. In such a case, let C’ be
the cycle formed from C' by the removal of vertices v, w and the addition of the edge uz.
In all cases we have that C’ has r — 1 faces in its interior, so, by induction, we can assume
W(a, a) = 0. From Lemma 3.4 we then obtain W(B, a) = 0. O

Claim 3.18
Let G be a 2-connected bipartite planar graph. Suppose that G has a planar embedding
with no separating 4-cycle, and suppose further that the embedding has an internal > 6-

face, and that the outer face is a > 6-face. Then G is not 3-mizing.

Proof. We claim that G, under the given assumptions, is pinchable to Cg. Denote the
internal > 6-face by f, and the outer face by f,. We call a cycle D in G f-separating if f
lies inside D, where we include the possibility that edges on the boundary of f lie on the
cycle D. (Note that the cycle bounding f, is always an f-separating cycle, and thus an
f-separating cycle need not be a separating cycle.) Obviously G contains no f-separating
4-cycle, since such a cycle would constitute a separating 4-cycle. We now claim that if
G is not a cycle, then it is possible to find a sequence of one or more pinches so that
the resulting graph is a planar graph that has an internal > 6-face f’, whose outer face
is a > 6-face, and without an f’-separating 4-cycle. (Note that bipartiteness is trivially
maintained by pinching.) Repeating such a sequence of pinches will eventually transform

G into a cycle of length at least six, proving that G is not 3-mixing.

Let C be the cycle that bounds f: we will initially attempt to pinch vertices into C'. Let
x,1, 2z be three consecutive vertices of C' with y having degree at least 3; if there is no
such vertex y, then G is simply a cycle of length at least six and we are done. Let a be
a neighbour of y distinct from z and z, such that the edges ya and yz form part of the

boundary of a face adjacent to f.

Suppose the result of pinching a and z introduces no f-separating 4-cycle. If so, we
pinch a and z. Note that the resulting graph still contains the internal > 6-face f, and
is planar since the edges ya and yz form part of a common face. Note also that the
outer face, though it might have decreased in size, remains a > 6-face: if it did not—
so the edges ya and yz were originally part of the boundary of f,, which had length
six—then we would have a contradiction to the fact that pinching @ and z introduced no
f-separating 4-cycle. We observe that pinching a and z might well introduce a cut-vertex
into the graph, but that as long as such a vertex is not included twice on the boundary
of the outer face, this is not a problem. (Note that such a situation cannot arise for

the internal face f.) If we do find that the boundary of the outer face now includes a

56

Chapter 3. Mixing 3-colourings

vertex v twice, then let us denote by G’ the graph resulting from pinching a and z. Let
us also denote by C? and C the two distinct cycles formed by the boundary of the outer
face, with V(C}) N V(C!) = {v}, and where G7,(C}) is the subgraph of G’ containing
the internal face f (so C! must have length at least six, for otherwise we have introduced
an f-separating 4-cycle). Now, considering an edge vw of C}/, we pinch G}, (C}) to vw
(using Lemma 3.13 and the fact that vw is a shortest path between v and w). Using this
same sequence of pinches in G’, followed by pinching vw into C!, leaves us with a graph
with the required invariants, and every vertex on the boundary of the outer face of the

resulting graph distinct.

Suppose pinching a and z does result in the creation of an f-separating 4-cycle. If so, this
must be because the path a,y, z forms part of an f-separating 6-cycle D. We now show
how we can find alternative pinches which do not introduce an f-separating 4-cycle.
The fact that D is f-separating means there is a path P C D of length 4 between a
and z. Note that P cannot contain y, for this would contradict the fact that G has no
f-separating 4-cycle. Consider the graph G’ = Gut(D) — {yz}. We claim that the path
P’ = PU{y} is a shortest path between y and z in G’. To see this, remember that G
is bipartite, so any path between y and z in G has to have odd length. We cannot have
another edge yz € E(G’) since G is simple. Now note that any path between y and z
in G', together with the edge yz, forms an f-separating cycle in G. Hence a path of
length 3 between y and z would contradict the fact that G has no f-separating 4-cycle,
and so P’ is indeed a shortest path between y and z in G'. Using Lemma 3.13, we see
that G’ is pinchable to P’. Using the same sequence of pinches in G will pinch Gy (D)
into D. Note this introduces no separating 4-cycle into the resulting graph, and note
also that this graph is planar, since it is a subgraph of G. Moreover, note that the length
of the cycle bounding the outer face remains the same, that the vertices of this cycle
are all distinct, and that the cycle D now bounds an internal 6-face. It follows that this

sequence of pinches is a sequence as required by the claim. This completes the proof. O

The algorithm that decides 3-MIXING runs as follows. Given a connected bipartite planar
graph G with n vertices, we first find the blocks of G. (A block of G is a maximal
connected subgraph of G with no cut-vertex.) These can be found by a standard depth-
first search method (see, for example, [61, p. 157]) in time O(n). Note that a block which

is not 2-connected is either a K; or a Ks, which are both trivially 3-mixing.

Next, for each 2-connected component H of G, we perform the following procedure. Find
an embedding of H in the plane. Let us recall that a planar embedding of a graph can

be specified by a combinatorial embedding (a list of adjacencies for each vertex, with

o7

Chapter 3. Mixing 3-colourings

adjacencies listed as they are found in a clockwise order around the vertex) together
with the specification of its outer face. There are fast algorithms, for instance the linear
time algorithm of Mohar [50], to find such an embedding. We now check whether the
embedding has a > 6-face, by traversing the edges of H as they form faces, using the
adjacency lists (this will take time at most O(n%), where ny is the number of vertices
of H). If the embedding has a > 6-face, then we transform the embedding into an
embedding in which this face is the outer face. This is done by reversing the order
of vertices in each adjacency list and specifying the new face as the outer face, taking
time O(ng). We now check whether or not the embedding of H has a separating 4-cycle.
A naive approach, which checks all subsets of 4 elements of V(H), runs as follows. First,
check whether a given 4-tuple forms a cycle, using the adjacency lists. If so, we check
whether or not it has an empty interior (note that it will always have non-empty exterior,
where the outer > 6-face is) by checking whether or not, for each vertex of the 4-cycle,
the edges of the cycle are consecutive in the cyclic ordering of neighbours defining the
embedding. This will take O(n%) time: O(n};) to enumerate all 4-tuples, multiplied
by O(np), the time needed to check whether, for a given 4-tuple, we have a cycle and
whether this has a non-empty interior. If H does have a separating 4-cycle, we apply
Claim 3.16 and recurse on two smaller problems. If it does not, then we check for a
> 6-face different from the outside face (adding O(n?%) to the running time), and then
either Claim 3.17 or 3.18 must apply to H. If at any stage in the process, for some H,
Claim 3.18 applies, then the algorithm returns ‘no’. Otherwise, the algorithm concludes

that G is 3-mixing.

If we denote the running time of the procedure we are running on H by T'(ng), the
recursive call arising from finding a separating 4-cycle D leads to the recurrence relation
T(ng) =T (nm)+T (nExt) —I—O(n%), where npy and ngyt are, respectively, the number of
vertices of Hiy (D) and Hpyxi (D). Noting that ng = ning +ngx —4, we may rewrite this as
T(ng) =T (nm) +T(ng —nme+4) +O(n?{), and because we have 5 < nyyy < ng—1, we
see that we are in fact recursing on two smaller problems. After observing that T'(5) = ¢
for some constant ¢, a simple inductive argument yields that T'(ny) is O(n%). Because
we have less than n blocks in G, the running time of the algorithm is bounded by O(n").

This completes the proof of Theorem 3.12.

58

Paths between 3-colourings

In this chapter we examine what can be said about possible sequences of recolourings
between a given pair of 3-colourings. We determine how easy it is to find if a sequence

exists, and also what its length may be if it does. Our main result is the following.

Theorem 4.1

The decision problem 3-COLOUR PATH is in the complexity class P.

We prove Theorem 4.1 in Section 4.1 by describing an algorithm that decides the problem
in polynomial time. In doing so, we will see that in the case that two 3-colourings of a
graph G belong to the same component of C3(G), our algorithm can be used to exhibit
a path of length O(|V (G)|?) between them. This proves the following.

Theorem 4.2

Let G be a 3-colourable graph with n wvertices. Then the diameter of any component

of C3(G) is O(n?).

In Section 4.2 we turn our attention to what else can be said about the distance between a
given pair of 3-colourings. We will prove that in many cases, the algorithm of Section 4.1
in fact returns a shortest path between two 3-colourings which are connected in C3(G).
We will also show that the quadratic bound on the number of recolourings can be met

from below, constructing a class of instances G, a, 3 such that a and (§ are connected
and at distance Q(|V(G)?]) in C3(G).

59

Chapter 4. Paths between 3-colourings

4.1 A polynomial time algorithm for 3-COLOUR PATH

The algorithm that decides 3-COLOUR PATH stems from the proof of a characterisation
of instances G, «, 3 where o and (belong to the same component of C3(G). We will
describe this characterisation in Theorem 4.6 below. Before doing so, we examine what
can forbid the existence of a path between 3-colourings o and 3 of a graph G in C3(G).
The proof of the characterisation of connected pairs of 3-colourings is via an algorithm
that, given G, «, 3, either finds a sequence of recolourings between « and [, or exhibits
a structure which proves that no such sequence exists. Thus this algorithm also decides

3-COLOUR PATH.

Obstructions to paths between 3-colourings

Let us examine what can stop us from being able to find a sequence of recolourings
between a pair of 3-colourings «, 8 of a graph G. Informally, we call a structure in G, o, 8
forbidding the existence of a path between a and § in C3(G) an obstruction. For the

remainder of this section we assume that we are dealing with some fixed graph G.

We saw in Lemma 2.10 in Chapter 2 how a cycle C in G can act as an obstruction
between a and (3: if its weight W(a,a) in « is different to that in f3, W(E’:ﬁ), then
there can be no path between o and [in C3(G).

A second obstruction is given by what we call fized vertices. For a 3-colouring «, we
define a vertex v as fized if there is no sequence of recolourings from « which will allow
us to recolour v. In other words, a vertex v is fixed if for every colouring § in the
same component of C3(G) as a we have ((v) = a(v). For example, if a cycle with
0 mod 3 vertices is coloured 1-2-3-1-2-3-- - --1-2-3, then every vertex on the cycle is fixed
(as none can be the first to be recoloured); we call this a fized cycle (with respect to
the 3-colouring). Similarly, a path coloured - - - 3-1-2-3-1-2-3-1-- - -, both of whose end-

vertices lie on fixed cycles, cannot be recoloured and is called a fixed path.

Given a 3-colouring « of G, we denote the set of fixed vertices of G by F,. We shall
shortly prove the following.

Proposition 4.3
Let a be a 3-colouring of G. Then every v € F, belongs to a fized cycle or a fixed path.

The next lemma, which illustrates how fixed vertices may act as an obstruction, follows

immediately from the definitions.

60

Chapter 4. Paths between 3-colourings

Lemma 4.4
Let o and (8 be two 3-colourings of G. Then if a and B belong to the same component
of C3(G), we must have F, = Fg and a(v) = $(v) for each v € F,. 0

The following lemma, very similar to Lemma 2.10, shows a third type of obstruction.

Lemma 4.5

Let o and 3 be 3-colourings of G with F,, = Fg # @ and a(v) = B(v) for allv € F,, and
suppose that G contains a path P with end-vertices v and w, where u,w € Fy. Then if a
and 3 are in the same component of C3(G), we must have W(]_ﬁ,a) = W(f’),ﬁ).

Proof. Let a and o be 3-colourings of G that are adjacent in C3(G), and suppose the
two 3-colourings differ on vertex v. Note that v cannot be a vertex in Fy,, so neither can

it be an end-vertex of P. If v is not on P, then we certainly have W(]—3>, a) = W(1—3>, o).

If v is an internal vertex of P, then all its neighbours must have the same colour in «,
for otherwise we would not be able to recolour v. If we denote the in-neighbour of v
on P by v; and its out-neighbour by v,, then this means that w(v;0,) and w(vvg,)
have opposite sign, hence w(v;0,) + w(vv,,a) = 0. Recolouring vertex v will change
the signs of the weights of the oriented edges v;0 and vv,, but they will remain opposite.
Therefore w(v;0, o) + w(vvy, o) = 0, and it follows that W(?, a) = W(?,O/).

From the above we immediately obtain that the weight of an oriented path between fixed

vertices is constant on all 3-colourings in the same component of C3(G). 0
Lemmas 2.10, 4.4 and 4.5 give necessary conditions for two 3-colourings « and 3 of a
graph G to belong to the same component of C3(G). From Lemmas 4.4 and 2.10 we
obtain, respectively:

(C1) F, = Fpg and a(v) = (v) for each v € Fy,; and

(C2) for every cycle C' in G, W(Ez, a) = W(Ez,ﬂ).

If for two 3-colourings v and (3 of G we take condition (C1) to be satisfied, Lemma 4.5

gives a third necessary condition for o and 3 to belong to the same component of C3(G):

(C3) for every path P between fixed vertices, W(Z_g, a) = W(Z_ﬁ, B).

61

Chapter 4. Paths between 3-colourings

Figure 4.1 Two 3-colourings of a graph G not connected in C3(G).

Bearing in mind that we are only considering condition (C3) if condition (C1) is already
satisfied, let us observe that neither conditions (C1) and (C2) taken together, nor con-
ditions (C1) and (C3) taken together, are sufficient to guarantee the existence of a path

between 3-colourings « and S.

To see that conditions (C1) and (C2) are not sufficient, consider the graph and two
3-colourings shown in Figure 4.1. It is easy to check that (C1) and (C2) are satisfied (note
that only vertices on the 3-cycles are fixed), but the two colourings are not connected:
fix an orientation of the path between the two 3-cycles, and observe that the weight of

this oriented path is +3 in one colouring and —3 in the other.

To see that conditions (C1) and (C3) are not sufficient, consider two 3-colourings o and 3
of a 5-cycle that differ only in that the colours 1 and 2 are swapped: (C1) and (C3) are
satisfied (since F,, = Fg = @), but there is no path between the two colourings as the

5-cycle has different weights in the two colourings.

We now prove that if all three conditions are satisfied by a pair of colourings « and (8

of G, then they are in the same component of C3(G).

A characterisation of connected pairs of 3-colourings

The proof of the following characterisation of connected pairs of 3-colourings will yield
a polynomial time algorithm for 3-COLOUR PATH, proving Theorem 4.1. We will also

prove Theorem 4.2 in the process.

Theorem 4.6
Two 3-colourings o and 3 of a graph G belong to the same component of C3(G) if and

only if
(C1) Fy = Fg and o(v) = B(v) for each v € Fy;
(C2) for every cycle C in G, W(E'),a) = W(@,ﬁ); and

62

Chapter 4. Paths between 3-colourings

(C3) for every path P between fized vertices, W(]_3>, a) = W(I_ﬁ,ﬂ).

The necessity of the three conditions has already been established. We prove that they
are sufficient by outlining an algorithm whose input is a graph G and two 3-colourings «
and [of G, and whose output is either a path in C3(G) from « to [, or an obstruction
that shows that (C1), (C2) or (C3) is not satisfied, so no such path exists.

The first step of the algorithm is to find F,, and Fjg. We claim that the following procedure
finds the fixed vertices of a graph G with 3-colouring «.

e Let 57, So and S5 initially be the three colour classes induced by a.

e Fori € {1,2,3}, and for each vertex v € S;: let S; = S;\ {v} unless v has neighbours

in each of the other two sets.

e Repeat the previous step until no further changes are possible. Return S = 57 U
Sy U S3.

Claim 4.7

The above procedure returns S = F,.

Before proving the claim, let us give some definitions. Fix a vertex v of G and set
Lar = Ly = {v}. Fori =1,2,..., let a vertex u belong to Lj if u has a neighbour
w € LT | and a(u) = a(w) + 1 (mod 3). (So, for example, if v is coloured 3, then L
contains all neighbours of v coloured 1, L; contains all vertices coloured 2 that have a
neighbour in L}, and so on.) For j = 1,2,..., let a vertex u belong to L; if u has a
neighbour w € L, ; and a(u) = a(w) — 1 (mod 3). We call these sets the levels of v,

and the sets can be categorised as positive or negative according to their superscript.

Observe that v lies on a fixed cycle if and only if there is a vertex u € L;r nL;, for
some i,j > 0. To see this, note that if v lies on a fixed cycle C, then v € L;;(v) and
v E L;(v), where p is the number of edges of C. Hence there is a u € LT N Lj_, for
some 4,5 > 0. Conversely, if we have a u € L;r nL; for some 4,5 > 0, then there
is a path P* in G formed by vertices v = pa',pf, .. ,pf = u, where p;: € L,':(v) for
0 <k <4, and there is also a path P~ in G formed by vertices v = py,p], ... D = u,
where p,” € L, (v) for 0 < k < j. Note that we can assume that u is distinct from all of
par,pik, . ,p;r_l and py,p;,--. ' Dj_q; that is, we choose 7 and j to be as small as possible.
Then the graph induced by P+ U P~ forms a fixed cycle of G in a.

Similarly, v lies on a fixed path with end vertices u and w (each on a fixed cycle) if and

only if u € L N L} forsomez”>i>0andw€Lj_,ﬂLj_ for some j/ > j > 0. To

63

Chapter 4. Paths between 3-colourings

see this, first observe that if v lies on a fixed path with end-vertices v and w, we can
conclude, without loss of generality, that u € L:r and w € Lj_ for some ¢,5 > 0. Then,
because u and w are each part of a fixed cycle, by the argument above we have that
u € LZT*,' for /¥ =i+ p, and w € Lj_, for 7/ = j + q, where p and ¢ are the respective
lengths of the fixed cycles of v and w. Hence u € L; N Ly, where 7/ > ¢ > 0, and
w € Lj N Lj, where j° > j > 0. For the converse, suppose we have u € L; N Ly, for
some ¢ > i >0, and w € L;j N Ly, for some j* > j > 0. Ensuring that ¢ > 4 > 0 and
4" > 7 > 0 are all chosen as small as possible, we can then consider a sequence of vertices
v=rpi,pf,...,0f = u,p;rﬂ,...,pl'.',’ = u, where p; € L (v) for 0 < k < 4', and such
that pa“ yeees p;r form a fixed path and p;r, ey pj,fl induce a fixed cycle. We can choose
a similar sequence of vertices from the negative levels of v which includes w (twice) to

complete the proof.

Proof of Claim 4.7 (and Proposition 4.3). Suppose the procedure described above
is run on G, o, and has terminated. Note that a vertex that lies on a fixed cycle or path

is certainly in S. We shall show that for each vertex v € V(G), either

e v lies on a fixed cycle or path (so is both fixed and in 5), or

e v is neither fixed nor in S.

This will prove that S = F,, and also Proposition 4.3.

Fix a vertex v of G and consider the levels of v. We have observed that if there is a
vertex that is in L;“, for some ¢ > 0, and also in L;, for some j > 0, then v lies on a
fixed cycle. Also, if there is a vertex that belongs to LZTF and L;, for some i >4 > 0, and
another vertex that belongs to L; and Lj_,, for some j' > j > 0, then v lies on a fixed

path.

If neither of these two properties hold, then either the positive or negative levels (or
both) are disjoint and thus only finitely many of them are non-empty. We show that this
means we can recolour v and so v is not fixed. Let us assume therefore that L = @ or
L; = @ for some t > 0. Without loss of generality, let us assume Lf = . Thus each
vertex u € L | can be recoloured with a(u) + 1 (mod 3). Then each vertex w € L,
can be recoloured with a(w) + 1 (mod 3), and so on, until v is recoloured. The fact
that v can be recoloured implies it is not in S: every vertex in S has a pair of differently

coloured neighbours, so no vertex in S can be the first to be recoloured. a

Claim 4.7 allows us to find F,, and Fj. If F, # Fj, or if there is a vertex v € F, such
that a(v) # ((v), then there is no path from « to 3. The algorithm outputs Fy,, Fj and,

64

Chapter 4. Paths between 3-colourings

if necessary, v.

Henceforth we assume that condition (C1) is satisfied, so F,, = Fj3 and for all v € F,,
a(v) = B(v).
If F, # @, we construct, from G, a new graph G/ by identifying, for i = 1,2,3, all

vertices in S; and denoting the newly created vertex by f;. In other words:

o V(G = (V(G)\ Ea) U{f1, fo, f3}, and

o E(GN ={uww € E(G) |u,v € V(G)\ E.} U{fif2, fif3, fof3}

U | {ufilueV(G)\ F, and Jv € S; with uv € E(G)}.
1=1,2,3

If G has no fixed vertices with respect to «, then we set Gf = G.
It is convenient to assume that all edges are retained so that G and G7 have the same
edge set. Since Si, S, 53 are independent sets (they are subsets of the colour classes of
the colouring «), this means G is a graph with possibly multiple edges, but no loops.
Let of and 3/ be the colourings induced on Gf by a and 3. It is easy to observe that if
F,# 2,

e fi, fo and f3 are the only fixed vertices of Gf in of and 7, and

e f1, fo and f3 induce a (fixed) 3-cycle in G7 in both colourings.

Note that if v and 3 belong to the same component of C3(G), this component is isomorphic

to the component of C3(G7) that contains o/ and 3. Hence we have the following.

Claim 4.8
There is a path from o to 8 in C3(G) if and only if there is a path from of to 31 in C3(GY).

To prove Theorem 4.6, we shall prove the following claim.

Claim 4.9
Two 3-colourings of and 87 of a graph GI belong to the same component of C3(GT) if
and only if

(C2') for every cycle C in G7, W(Ez,af) = W(Ez,ﬂf).

Let us first establish that the claim implies the theorem, recalling that we are assuming

condition (C1). Let C' be an oriented cycle in G. In GY, the oriented edges of C form

65

Chapter 4. Paths between 3-colourings

a set of edge-disjoint oriented cycles. (Here we are using the convention that all edges
from G are retained in G7.) Since these cycles contain the same edges as 6'), similarly
oriented, it is easy to see that the sum of the weights of these cycles is equal to W(B, Q).
Thus if G/, of and B/ satisfy (C2'), then G, a, 3 satisfy (C2).

Now, let P be an oriented path between fixed vertices in G. If the end-vertices of P
have the same colour, then the oriented edges of P again form a set of edge-disjoint
oriented cycles in G, and (C2) implies that W(I_D), a) = W(I_D), B). If the end-vertices
of P have a different colour, then we can suppose, without loss of generality, that the
end-vertices of P are coloured 1 and 2 and that P is oriented from the end-vertex
coloured 1 towards the end-vertex coloured 2. This means that the union of the ori-
ented edges of P and the edge]?fl) forms a set of oriented cycles in Gf. Since we
have w(fg—f{,af) = w(]?f{,ﬁf), (C2') again implies that W(I—g,a) = W(]_D),ﬁ). Hence
if G7,af, B! satisfy (C2'), then G, a, 3 satisfy (C3).

Conversely, if there is a cycle C' in Gf such that W(?, al) # W(g, 1), then this same
cycle can be found in G or, if C intersects { f1, f2, f3}, then there is a path between fixed
vertices in G that has different weights under o and 3. This shows that if G7, o/, 3/ do
not satisfy (C2'), then one of (C2) or (C3) fails for G, «, 3.

Proof of Claim 4.9. To prove the claim we describe an algorithm that either finds a
path from of to 57 in C3(GY), or finds a cycle C in G such that W(B, of) # W(a, Bh.
The algorithm attempts to find a sequence of recolourings that transforms o/ into 7.
It maintains a set ' C V(GY) such that the subgraph induced by F is connected and for
each v € F, the current colouring of v is 4/ (v). Initially, if F,, and Fj were not empty,
we let F' = {f1, fo, f3}. Otherwise, we set F' = &. We then try to increase the size of F'

one vertex at a time.

We show how to extend F if F # V(GY). If F # &, then choose a vertex v ¢ F such
that v is adjacent to a vertex u € F'. If F' = &, then we choose an arbitrary vertex v, and u
does not exist. Suppose the current colouring is o’. If /(v) = 57 (v), we can extend F
to include v immediately. Otherwise, let us assume that o/(v) = 2 and 3/ (v) = 3. Note
that this means that o/ (u) = 1 (if u exists), since o/(u) = 44 (u) and v is adjacent to v.

Now we attempt to find the positive levels of v in /. This is easily done algorithmi-
cally: L (v) contains those neighbours of v coloured 3; Lj (v) contains neighbours of

vertices in L (v) coloured 1, and so on. We stop if either

(L1) we reach a level L] that is empty, or

(L2) we find a level that contains a vertex w € F'.

66

Chapter 4. Paths between 3-colourings

Note that one of (L1) or (L2) must occur. This is because any vertex not in F' belongs
to at most one level (if a vertex belongs to two levels it is fixed, and all fixed vertices
are in F'). Hence we eventually reach either a level that contains a vertex w € F, or an

empty level. If F' is empty, then, of course, (L1) must occur.

If (L1) occurs, then we can recolour each vertex z in Lj, g =1—1,9—2,...,0, with
o/(z)+1 (mod 3), starting with the highest level and working down. Thus, ultimately, v
is recoloured 3 and we can now add v to F'. If there are still vertices not in F', we repeat

the procedure.

Suppose (L2) occurs. Then there is a path P from u to w coloured 1-2-3-1-2-3-- - - -a/(w).
Moreover, no internal vertex of P is in F. As uw and w are in F, and F induces a
connected subgraph, we can extend P to a cycle C using a path Q = w,...,u in F. We
claim that W(E?, o) # W(Z”}, B7), and hence the cycle C is an obstruction that shows
that o and 3/ do not belong to the same component of C3(G). Because of and o' do
belong to the same component of C3(G), this cycle is also an obstruction showing that o

and 87 do not belong to the same component of C3(G).

To see that W(E’),a’) # W(E'),ﬁf), choose the orientation C' so that the edge uv is
oriented from u to v. The weight of C is the sum of the weights of P and Zj (taking P
and ZQ) to have the same orientation as 6) Let W(@),a’) = k. As vertices in F' are
coloured alike in o/ and 7, W(Cj,ﬁf) = k. Let p be the number of edges in P. Then
W(]_3>, a') = p, since each edge has weight +1. But W(Zj,ﬁf) < p, since w(wv, B1) = —1.
Thus we find W(C, 87) < k+p=W(C,a).

All the above was done under the assumption that o/ (v) = 2 and 4/ (v) = 3. In the cases
() =3, #/(v) =1 and o/(v) = 1, 57 (v) = 2 we do exactly the same, again using the
positive levels L;r (v). In the other three cases, we follow the same steps, but now using

the negative levels L; (v) of v. This completes the proof of the claim. O

This completes the proof of Theorem 4.6.

Note that if a and (3 are in the same component of C3(G) and G has n vertices, the
algorithm in the proof of Claim 4.9 will use at most %n(n + 1) recolouring steps: each
time a vertex is added to F', we have recoloured all vertices not in F' at most once. This

proves Theorem 4.2.

Note also that the procedure which finds the fixed vertices of a given 3-colouring, the
construction of Gf from G, and the algorithm in the proof of Claim 4.9 can clearly be

performed in polynomial time. This proves Theorem 4.1.

67

Chapter 4. Paths between 3-colourings

Using Theorem 4.6, it is now possible to give an alternative proof of Theorem 4.1. We
describe a modification of the algorithm that proves Theorem 4.6 which, given a graph GG
together with two 3-colourings « and § as input, decides whether or not a and (3 belong

to the same component of C3(G) by simply checking conditions (C1), (C2) and (C3).

As before, we first check whether condition (C1) is satisfied. We proceed by assuming
it (else the algorithm terminates), and then transform the instance G, «, 3 into the in-
stance Gf, af, Bf. We have already observed that these operations can be performed in

polynomial time.

Having seen that condition (C2') is equivalent to conditions (C2) and (C3), we now
claim that condition (C2') can be verified in polynomial time. (Note that, a priori—
that is, without having proved Theorem 4.1—, this is not immediately obvious, since the
graph G/ may contain an exponential number of cycles.) In order to prove this claim,

we need to recall some definitions.

Let H be a connected graph with n vertices and m edges. It is well-known that (the edge
sets of) the cycles of H form a vector space over the field Fo = {0,1}, where addition
is symmetric difference. This vector space is known as the cycle space of H. Given any
spanning tree T of H, adding any of the m —n + 1 edges e € E(H) \ E(T) to T yields
a unique cycle C, of H. These m — n + 1 cycles are called the fundamental cycles of T,
and they form a basis of the cycle space of H known as a cycle basis. In fact, it is easy

to prove that for every cycle C,

c= > .,

e€ E(C)\E(T)

where addition is as in the vector space (F2)™. We refer the reader to [17, Section 1.9]

for full details.

That we can check if G/, af, 3/ satisfies condition (C2') in polynomial time follows from

the following lemma.

Lemma 4.10

Let H be a connected graph with n vertices and m edges. Let o be a 3-colouring of H, T
a spanning tree of H, and {C. | e € E(H) \ E(T)} the set of fundamental cycles of T
Then for any cycle C' in H, W(a,a) is determined by the values of W((T)'e,oa), for all
ec€ E(H)\ E(T).

Proof. Let C be any cycle in H, and write C' = Z C., with addition as in the
c€ E(C)\E(T)
-
vector space (F3)™. Choose an orientation C' for C. For each e € E(C) \ E(T'), orient

68

Chapter 4. Paths between 3-colourings

the fundamental cycle C, so that e has the same orientation in 6’) and in C_>’e We claim
that
W@, = Y WC,a) (4.1)
e€ E(C)\E(T)
where addition is now the normal addition of integers. We prove (4.1) by counting

edge-weight contributions to both sides of the equation.

Let e = uv be an edge of C, with orientation wt on C. Clearly w(u®,) is counted exactly
once on the left-hand side (LHS) of (4.1). To count the contributions that e makes to
the right-hand side (RHS) of (4.1), we distinguish two cases, according to whether or
not e is an edge of T. If e ¢ E(T), then the definition of C. and the choice of the
orientation 5; immediately give that e contributes exactly the weight w(uv,) to the
RHS. If e = wv € E(T), we claim that it appears oriented as w9 exactly one more time
than it appears oriented as v in the cycle expansion of C. Note that uv is a cut-edge
of T and, as such, its removal splits 7" into two subtrees T, and T,, with v € V(Ty)
and v € V(T,). We also have V(T,) UV(T,) = V(H). Let f € E(C)\ E(T) with
uv € E(Cy). Then, in fact, we can take f = xy with € V(T,,) and y € V(T,). If f has
the orientation Ty in E'), then it has the same orientation in C—>'f , and hence the edge uv
has the orientation #v in Cy. The reverse is the case if f has the orientation Ty in C.
Going along the oriented edges of the cycle 6'), we have the same number of edges zy
with z € V(T,) and y € V(Ty), as we have edges between V(Ty) and V(T},) going in the
other direction. But since uv is one of the edges of the first count, we get exactly one
more edge xy # uv of C witha € V(T,) and y € V(T,) oriented as Ty than oriented the
other way round. This means that in the sum on the RHS of (4.1) we have exactly one

more contribution of the form w(u®, o) than of the form w(uw, a).

Now suppose that e = uv is not an edge of C. Clearly this edge makes no contribution
to the LHS of the equation. Again, to count the contributions of this edge to the RHS
of the expression, we distinguish the cases where e is an edge of T" and where it is not. If
e =uv € E(T), we can argue as in the preceding paragraph to see that this time we have,
in the RHS of (4.1), exactly the same number of contributions of the form w(u®,) as of
the form w(uv, a). Hence the net contribution to the RHS is zero. Lastly, if e ¢ E(T)
it makes no contribution either, since the fundamental cycle C, to which it corresponds

does not appear in the cycle expansion of C.

This completes the proof of the lemma. a

69

Chapter 4. Paths between 3-colourings

4.2 Distances between 3-colourings

We have seen that if a and § are 3-colourings of a graph G that are in the same component
of C3(G), then they are at distance O(|V(G)|?). In this section we show that this bound
on the distance between 3-colourings is of the right order. Before doing so, we prove that
in the case that o and (3 are connected and F, # @ (so Fg # @ and for all v € F,,
a(v) = B(v)), the algorithm described in Section 4.1 finds a shortest path from « to
B in C3(G). Once again, throughout this section, G will denote a fixed 3-colourable
connected graph. We also use the notation and terminology introduced in the previous

section.

Finding shortest paths between 3-colourings

Theorem 4.11

Let a and B be two 3-colourings of a connected graph G that are in the same component
of C3(G), and suppose that F,, # &. Then the algorithm described in Section 4.1 finds a
shortest path between o and (3.

Proof. Our algorithm in fact finds a path from o to 3/ in G, but, as we observed ear-
lier, the relevant components of the two colour graphs are isomorphic. For a 3-colouring
of G7, let us denote by C, the component of C3(G7) containing . Note that since we are

assuming that a and 8 are connected, so are of and 8f; that is, C s = Car-
Recall that Gf has exactly three fixed vertices f1, fa, f3 in the colourings af and gf.

Let v be a 3-colouring in Cgs. For any vertex v of GT, let P be an oriented path from f;
to v. Then the height of v in v is defined as

h(v,) = [W(P,y) - W(P,5)|.

We need to prove that this definition is independent of the choice of P. If there are two
— —
oriented paths P; and P, from f; to v, then, noting that their union is a set of oriented

cycles and applying Lemma 2.10, we have
— — 5 af = af
W(P1,v) = W(P,7y) =W (P,) = W(P,).
Rearranging, we obtain

W (P1,~) — W (P, 8)| = W (Ps,~) — W(E, 8.

Now let v and ¢ be adjacent 3-colourings in Cgs and let w be the unique vertex on which

they differ. Note that this means that all neighbours of w are coloured the same as one

70

Chapter 4. Paths between 3-colourings

another, and all these neighbours are coloured the same in both v and §. Let P be an
oriented path from f; to some vertex v and let us consider how the height of v changes
as 7 is recoloured to ¢. If w is not on 1_3), then clearly h(v,v) = h(v,d). We know w # fi,
as fi is fixed. If w is an internal vertex of]_3, then the sum of the weights of the two
edges of P incident with w is zero for both ~ and 4, so again h(v,vy) = h(v,d). If w =,
then the sign of the weight of the edge of P incident with v changes as we recolour. So

in this last case we have |h(v,7) — h(v,0)| = 2.

Note that finding a path from of to 37 is equivalent to finding a sequence of recolourings
that reduces the height of every vertex v from h(v, af) to zero. In the previous paragraph
we saw that each time we recolour, only the height of the vertex being recoloured changes,
and it either increases or decreases by 2. So if we can find a sequence of recolourings that
always reduces the height of the vertex being recoloured, we will have found a shortest

path. We show that this is indeed what the algorithm of Claim 4.9 does.

Recall that the algorithm starts with a set ' = {f1, f2, f3} and then repeatedly adds
vertices v to F', where v has a neighbour v € F. To add v to F, the vertices in either
all its positive levels or all its negative levels are recoloured before v itself is recoloured.
Assume that we are in the case that to recolour v all positive levels need to be recoloured;
the other case is proved in the same way. Let y be a vertex that is about to be recoloured
at some stage in this process (this can be v itself, or any of the vertices in the positive
levels of v). We must show that its height will be reduced. Let v and § be the colourings
before and after y is recoloured. Let Zj be an oriented path from u to y that contains one
vertex from each non-negative level of v. So if there are k edges in 6, then W(@), v) =k.
Thus W(Zj, d) = k—2, since the edge of Cj incident with y has its weight changed from 1
to —1 when y is recoloured. Let R be an oriented path from f; to u containing only

— — —
vertices in F', and let P be the union of R and Q.

— — —
Since the colourings 3f,v,d agree on F, we have W(R,3f) = W(R,~) = W(R,§). We

— . = :
also know that w(uv, Gf) = —1, and since @ has k edges, this means
— — —
W(Q,87) < k—2=W(Q,0) <k =W(Q,).
From this we can derive

w(qQ, 8%
W(Q,8) = k—W(Q,8%)

h(y,7) = [W(P,v) - W(P,8)| = [W(Q,)
- W(Q,7)

and similarly,

h(y,6) = k—2-W(Q,8%).

71

Chapter 4. Paths between 3-colourings

Hence every recolouring indeed reduces the height of the vertex being recoloured. This

completes the proof. O

Now let us observe that if there are no fixed vertices, the algorithm may find a much
longer path. For example, consider two colourings of a path that differ only on an end-
vertex v and its neighbour: o = 1-2-3-1-2-3-1-----1-2-3 and 8 = 2-1-3-1-2-3-1-- - --1-2-3.
The algorithm starts by setting F' = @ and then chooses an arbitrary first vertex to start
the recolouring. If that first vertex is v, then the algorithm will start by recolouring
every vertex on the path. But clearly it is possible to get from « to 3 via only three
recolourings. The reader can check that this shortest number of recolourings would be

obtained if the first vertex chosen by the algorithm were any vertex other than v.

We believe that the algorithm from Section 4.1 will also, with an appropriate choice of

initial vertex, find a shortest path between two 3-colourings without fixed vertices.

Conjecture 4.12

Let a and 3 be two 3-colourings of a graph G that are in the same component of C3(G),
and suppose that F,, = Fg = @. For v € V(Q), let T(v) be the number of recolourings
required by the algorithm in Section 4.1 when the algorithm starts by adding v to F = @.
Then the length of the shortest path between a and 3 is equal to min,cy () T'(v).

Pairs of 3-colourings at quadratic distance

We construct a class of instances GG, «, 3 where, for each G, o and § are connected and
at distance Q(|V(G)|?) in C3(G). For N € N, let us define the graph Gy as the graph
consisting of a 3-cycle with an attached path of length N. More precisely, let

o V(GN) ={f1, f2, f3} U{v1,v9,...,un5}, and

o E(GN) = {fif, fifs, f2f3} U{fsv1, 0102, 0003, ..., un—10N }.

Let ay be the 3-colouring of Gy given by an(f;) = i, for ¢ = 1,2,3, and where the
vertices vy, v, ..., vn are coloured 1,2,3,1,2,3,.... Similarly, let Sy be the 3-colouring
of Gy given by On(fi) = i, for i = 1,2,3, and where the vertices vy, v,...,vy are
coloured 2,1,3,2,1,3,....

Theorem 4.13
Let N € N and let Gy, an, Oy be as described above. Then the 3-colourings an and By
of Gy are connected and at distance 3N(N + 1) = Q(|V(Gn)[?) in C3(Gn).

72

Chapter 4. Paths between 3-colourings

Proof. 1t is clear that G, an and Sy satisfy conditions (C1), (C2) and (C3). Therefore,

by Theorem 4.6, oy and By are connected in C3(G).

As in the proof of Theorem 4.11, we consider heights of vertices. For any vertex v of Gy,
let P be an oriented path from f3 to v, noting that f3 € F,,. Define the height of v
in ay as h(v,ay) = ‘W(T;,(XN) - W(I_ﬁ,ﬂN)].

We have seen, in the proof of Theorem 4.11, that finding a shortest path from ay to Sy
is equivalent to finding a sequence of recolourings that reduces the height of every vertex
in apy to zero, and that, with each recolouring, we reduce the height of the recoloured
vertex by 2, while the height of all other vertices remains the same. This enables us to
calculate the distance between a and Gy: we just need to calculate the heights of all

vertices in ay.

First observe that h(f;,an) =0, for i =1,2,3. For i =1,..., N, let FZ be the oriented
path from f3 to v;, and observe that W(F;,aN) = 4, while W(F;,ﬂN) = —i. This
means that h(v;, an) = |W(F£,a]\/) - W(Fz,ﬁ]\/ﬂ = 2i. We thus find that the distance

between an and Gy is equal to

1 N N

§Zh(vi,am => i= %N(N +1).

i=1 =1

Since Gy has N + 3 vertices, we obtain that this distance is indeed Q(|V (G n)[?). 0

73

Paths between k-colourings

We saw in Chapter 4 that the decision problem 3-COLOUR PATH is solvable in polynomial
time. In this chapter we determine the complexity of the problem k-CoLOUR PATH for

values of k > 4, proving the following.

Theorem 5.1
For every fixred k > 4, the decision problem k-COLOUR PATH is PSPACE-complete.

Moreover, it remains PSPACE-complete for the following restricted instances:

(i) bipartite graphs and any fived k > 4;
(ii) planar graphs and any fized 4 < k < 6; and

(iii) bipartite planar graphs and k = 4.

The reader will also recall that we proved in Chapter 4 that if & and 3 are two 3-colourings
of a graph G connected in C3(G), then the distance between them is O(|V(G)|?). Again,
we will see that things are remarkably different for the case of general k-colourings:
we will prove that if k& > 4, the distance between two k-colourings of a graph can be

superpolynomial in the size of the graph. More precisely, we will prove the following.

Theorem 5.2

For every fized k > 4, there ezists a class of graphs {Gny | N € N} with the fol-
lowing properties. The graphs G have size O(N?), and for each of them there exist
two k-colourings in the same component of Cy(Gn k) which are at distance Q(2V). More-

over,
(1) the graphs Gy may be taken to be bipartite;

74

Chapter 5. Paths between k-colourings

(it) for every 4 < k <6, the graphs Gy 1 may be taken to be planar (in such a case the
graphs actually have size O(N*)); and

(1it) for k =4, the graphs Gy, may be taken to be planar and bipartite (in such a case
the graphs actually have size O(N*)).

The proofs of Theorems 5.1 and 5.2 both involve the construction of particular k-COLOUR
PATH instances. In both cases it will be convenient, in order to simplify the proofs, to
first define some preliminary constructions. We do this in Section 5.1. We then prove
Theorem 5.1 in Section 5.2 and Theorem 5.2 in Section 5.3. Theorems 4.1, 4.2, 5.1 and 5.2
together suggest that the computational complexity of k-COLOUR PATH and the possible
distance between k-colourings are intimately linked. We investigate the extent of this

correspondence in Section 5.4.

5.1 Preliminaries

List-colouring instances

In Sections 5.2 and 5.3 we will construct particular k-COLOUR PATH instances G, «, (:
first for the PSPACE-hardness proof, and then for the superpolynomial distance proof.
In both cases, it is easier to first define list-colouring instances: for such instances we
give every vertex v a colour list L(v) C {1,2,3,4}. A proper list-colouring is a proper
vertex colouring with the additional requirement that every vertex colour needs to be
chosen from the colour list of the vertex. In the same way as that in which we define
the colour graph Ci(G) of G with nodes corresponding to proper k-colourings, we define
the list-colour graph C(G,L) of G with nodes corresponding to proper list-colourings,
where L represents the colour lists. The problem LiST-COLOUR PATH is now defined as

follows.

LisT-COLOUR PATH

Instance: Graph G, colour lists L(v) C {1,2,3,4} for all v € V(G), two list-colourings
of G, a and (.

Question : Is there a path between o and 3 in C(G, L)?

Whenever colour lists are given for the vertices of the graph, ‘proper list-colouring’ should

be read when we say ‘colouring’. In figures we will write colour lists as 123 instead of

{1,2, 3}, for example.

75

Chapter 5. Paths between k-colourings

A list-colouring instance can then be turned into a normal 4-colouring instance, for exam-
ple, by adding a complete graph K4 on vertex set {uy,us,us, us}. Since any 4-colouring
of K4 is frozen, we may without loss of generality assume that x(u;) = 4 in all colour-
ings k in the component of the colour graph we consider. Now adding edges vu; if and
only if ¢ ¢ L(v) turns the graph into a 4-colouring instance, where in all 4-colourings k
we consider, k(v) € L(v). The next lemma proves formally that this can be done for
various k without increasing the size of the graph too much, even when we require that

planarity and bipartiteness should be maintained.

Lemma 5.3

For any k > 4, a L1ST-COLOUR PATH instance G, L, «, 3 with lists L(v) C {1,2,3,4}
can be transformed into a k-COLOUR PATH instance G',a/, 3" such that the distance
between o and 3 in C(G, L) (possibly infinite) is the same as the distance between o

and 3" in Cx(G'). Moreover,

(i) if G is bipartite, this can be done so that G is also bipartite, for all k > 4;
(i1) if G is planar, this can be done so that G' is also planar, when 4 < k < 6; and

(11) if G is planar and bipartite, this can be done so that G’ is also planar and bipartite,
when k = 4.

In all cases, the transformation can be accomplished in a way such that |V(G")| <

\V(G)|f(k) and |E(G")| < |E(G)| + |V (G)|g(k), for some functions f(k) and g(k).

Proof. For our transformations we need: for every k > 4, a bipartite graph with a
frozen k-colouring; for every 4 < k < 6, a planar graph with a frozen k-colouring; and
a planar bipartite graph with a frozen 4-colouring. For the first case we can take the
graphs Lj, described in Definition 2.2: we observed in Chapter 2 that these graphs satisfy
our requirements. For the second we can use K4 and the planar graphs with frozen
colourings shown in Figure 2.2. For the third case we just need to observe that the

graph L4, which is in fact isomorphic the 3-dimensional cube, is planar.

The transformation from a LisST-COLOUR PATH instance G, L, a, 8 to a k-COLOUR PATH
instance G’, o/, ' is now as follows. Let F' be a graph with a frozen k-colouring . For
every vertex v € V(G) and colour ¢ € {1,...,k} \ L(v), we add a copy of F to G,
labelled F,.. We also add an edge between v and a vertex u of F,. with x(u) = c.
This yields G’. The colourings o and (3’ are obtained by extending a and 3 using the

colouring x for every F, ..

76

Chapter 5. Paths between k-colourings

231 14 42 23 314

u (%

Figure 5.1 A (1,3)-forbidding path from u to v.

It is easy to see that every k-colouring obtainable from o’ or 3 by recolouring induces the
same frozen colouring on every copy of F'. Also, because of the way the edges between v
and vertices of F, . are added, all these k-colourings of G’ correspond to list-colourings
of G, and vice-versa. This proves that the distance between « and 3 in C(G, L) is exactly

the same as the distance between o’ and ' in Ci(G’).

When G and F are bipartite, the construction of G’ starts with a number of bipartite
components, and edges are added only between different components. So in this case G’
is also bipartite. It can also be seen that G’ is planar when G and F are planar: start
with a planar embedding of G' and for each copy F;, . of F', consider a planar embedding
that has a vertex with colour c on its outer face. These embeddings of F,, . can be inserted
into a face of G that is incident with v. Now adding an edge between v and a vertex

of F, . with colour ¢ can be done without violating planarity.

Since for all k > 4 we can choose F' to be bipartite, for 4 < k < 6 we can choose I’ to be

planar, and for k£ = 4 we can choose F' to be both planar and bipartite, we are done. O

Adding (a,b)-forbidding paths

The next notion that will be used in the following sections is that of an (a, b)-forbidding
path. For a,b € {1,2,3,4}, an (a,b)-forbidding path from w to v is a (u,v)-path with
colour lists L, with L(u), L(v) # {1, 2, 3,4}, such that in any colouring, it is not possible
that u has colour a and v simultaneously has colour b. Any other combination of colours
for u and v (chosen from their colour lists) is possible. In addition, any recolouring of u
and v is possible—perhaps after first recolouring a few internal vertices of the path—as
long as it does not yield the forbidden colour combination. (Note that if a # b, an (a, b)-
forbidding path from w to v is not the same as an (a,b)-forbidding path from v to w.)
Figure 5.1 shows an example of a (1, 3)-forbidding path from u to v. We formalise these

concepts in the following definition.

7

Chapter 5. Paths between k-colourings

Definition 5.4
A colouring « of a (u,v)-path is a (¢, d)-colouring if k(u) = ¢ and k(v) = d. A (u,v)-
path P with colour lists L, where a € L(u) and b € L(v) is an (a,b)-forbidding path if

the following two conditions are satisfied.

e A (c¢,d)-colouring exists if and only if ¢ € L(u), d € L(v) and (¢,d) # (a,b). Such

a pair (c,d) is called admissible for P.

e If both (¢,d) and (¢, d) are admissible, then for any (¢, d)-colouring, a sequence of
recolourings exists that ends with a (¢, d)-colouring, without ever recolouring v,

and only recolouring u in the last step. A similar statement holds for admissible
pairs (¢,d) and (¢, d’).

In the constructions in the following sections we will often say ‘add an (a, b)-forbidding
path between u and v’. This means that we add an (a, b)-forbidding (u’,v")-path P with
L(v') = L(u) and L(v) = L(v') to the graph, and then identify u with u/ and v with v’.
Then for the colourings and recolourings of u and v in the resulting graph, the above
properties will hold. This means that in our proofs we do not have to consider colourings
and recolourings of the internal vertices of the path in detail; we can simply assume that
any recolouring of v and v is possible, as long as this does not respectively give them

colours a and b.

The next lemma shows that we do not even have to describe such an (a, b)-forbidding

path in detail; as long as L(u), L(v) # {1, 2, 3,4}, such a path always exists.

Lemma 5.5
For any L, C {1,2,3,4}, L, C {1,2,3,4}, a € L, and b € L,, there exists an (a,b)-
forbidding (u,v)-path P with L(u) = L,, L(v) = L, and all other colour lists L(w) C

{1,2,3,4}. Moreover, we can insist P has even length at most siz.

Proof. Let c € {1,2,3,4} \ L(u) and d € {1,2,3,4} \ L(v). If ¢ # d then we let P be
a path of length four with the following colour lists along the path: L., {a,c}, {c,d},
{d, b}, L,. We prove it is an (a, b)-forbidding path: if in a given colouring u has colour a,
then the second vertex has colour ¢, the third colour d, the fourth colour b, so v cannot
have colour b. When v has colour b the reasoning is analogous. It can also be seen
that for every admissible (x,y), an (z,y)-colouring exists. This colouring is unique if
x = a or y = b. If not, then it can be verified that all (z,y)-colourings can be obtained
from each other by recolouring internal vertices of P only. Adjacent (z,y)- and (x,y’)-

colourings are found as follows: if z = a, then both colourings are unique, and they

78

Chapter 5. Paths between k-colourings

are adjacent. If x # a then we find adjacent colourings by, if necessary, colouring the
vertex next to w with a, the middle vertex with ¢, and the vertex adjacent to v with
colour d, in both colourings. Adjacent (z,y)- and (2, y)-colourings are found similarly.
We conclude that P with these colour lists is indeed an (a, b)-forbidding path with the

required properties.

If ¢ = d, then we let P be a path of length six with the following colour lists along
the path: L., {a,c}, {c,e}, {e, f}, {f,c}, {c,b}, Ly, for some e € {1,2,3,4} \ {a,c}
and f € {1,2,3,4} \ {b,c} with e # f. As before, it can be verified that this is an
(a, b)-forbidding path. O

5.2 PSPACE-completeness of k-COLOUR PATH

In this section we prove Theorem 5.1. We recall that PSPACE is defined as the class
of decision problems that are decidable by a deterministic Turing machine that uses at
most a polynomial (in the size of the input) amount of work space. Similarly, NPSPACE
is the class of decision problems decidable by a non-deterministic Turing machine using
a polynomially-bounded amount of space. The PSPACE-hardness of k-COLOUR PATH
will be shown using a reduction from SLIDING TOKENS, one of several decision problems
defined and proved to be PSPACE-complete by Hearn and Demaine in [30]. We first
reduce SLIDING TOKENS to LIsST-COLOUR PATH and then apply Lemma 5.3 to prove the
existence of equivalent k-COLOUR PATH instances. We first establish that k-COLOUR
PATH is indeed in PSPACE.

Claim 5.6
The decision problem k-COLOUR PATH is in the complexity class PSPACE.

Proof. We actually prove that k-COLOUR PATH is in NPSPACE, and then appeal to
Savitch’s Theorem, which asserts that PSPACE = NPSPACE (see [53, p. 150] or [57]
for details). Given an instance G, «, 8 of k-COLOUR PATH together with a sequence of
recolourings transforming « into 3 (the certificate), we can easily check the validity of

the certificate using a polynomial amount of space. This means that k-COLOUR PATH is
in NPSPACE. O

79

Chapter 5. Paths between k-colourings

A PSPACE-complete problem: SLIDING TOKENS

The main result of Hearn and Demaine [30] is the presentation of a new non-deterministic
model of computation based on reversing edge directions in weighted directed graphs with
minimum in-flow constraints on vertices. This model, called non-deterministic constraint
logic, or NCL, is shown to have the same computational power as a space-bounded
Turing machine, and several decision problems surrounding it are proved to be PSPACE-
complete. These decision problems are then used to prove the PSPACE-completeness of
certain sliding-block puzzles such as Rush Hour and Sokoban. The last section of [30]
gives an equivalent formulation of NCL in terms of sliding tokens along graph edges, and
it is this formulation that we use for our reductions. We proceed to describe it, first
giving some definitions. (The interested reader will find a more detailed description of

NCL and its different formulations in the Appendix.)

A token configuration of a graph G is a set of vertices on which tokens are placed, in such
a way that no two tokens are adjacent. (Thus a token configuration can be thought of
as an independent set of vertices of G.) A move between two token configurations is the
displacement of a token from one vertex to an adjacent vertex. Note that a move must

result in a valid token configuration.

Amongst others, the following decision problem, which we call SLIDING TOKENS, is
proved in [30] to be PSPACE-complete.

SLIDING TOKENS
Instance: Graph G, two token configurations of G, T4 and 1.

Question : Is there a sequence of moves transforming 714 into Tg7

The reduction used to prove PSPACE-completeness of SLIDING TOKENS in [30] actually
shows that the problem remains PSPACE-complete for very restricted graphs and token
configurations. Our reduction to LiST-COLOUR PATH is actually from a slightly wider
class of restricted instances for which SLIDING TOKENS remains PSPACE-complete, but
we do not give a reduction from the general problem. We proceed to describe the instances

G,Ty,Tp of SLIDING TOKENS that we will use for our reduction.

The graphs G are made up of token triangles (copies of K3) and token edges (this involves
a slight abuse of terminology: when we say token edge, we actually mean a copy of K3).
Token triangles and token edges are all mutually disjoint, and joined together by edges
called link edges, in such a way that every vertex of GG is part of exactly one token triangle
or token edge. Moreover, every vertex in a token triangle ends up with degree 3, and G

has a planar embedding where every token triangle bounds a face. The graphs G have

80

Chapter 5. Paths between k-colourings
g N Z

Figure 5.2 An example of a restricted instance graph together with a stan-

dard token configuration.

maximum degree 3 and minimum degree 2.

The token configurations T4 and T’ are such that every token triangle and every token
edge contain exactly one token on one of their vertices. In any sequence of moves from 7'y
or T, a token will never leave its triangle or its edge: the first time a token were to do
so, we would cease to have a valid token configuration. Hence tokens will never slide
along a link edge. (We remark that it is this limitation on possible token displacements
that allows for a reasonably straightforward reduction.) Token configurations where
every token triangle and every token edge contain exactly one token are called standard
token configurations of G—thus T4 and T are standard token configurations. A simple
example of a restricted instance graph G with a standard token configuration is shown
in Figure 5.2, where token triangles and token edges are shown in bold. We insist: for
these restricted instances, SLIDING TOKENS is PSPACE-complete. For further details,

we refer the reader to the Appendix and [30].

The construction of equivalent LIST-COLOUR PATH instances

Given a restricted instance GG,T4,Tg of SLIDING TOKENS as described above, we con-
struct an instance G’, L, a, 8 of LiST-COLOUR PATH such that standard token configu-
rations of G correspond to list-colourings of G’, and sliding a token in G corresponds to

a sequence of vertex recolourings in G'.

We first label the vertices of G: the token triangles are labelled 1,...,n;, and the vertices
of triangle ¢ are labelled t;1, t;o and t;3. The token edges are labelled 1,...,ne, and the

vertices of token edge ¢ are labelled e;; and e;o.

The construction of G’ is as follows: for every token triangle i we introduce a vertex t;,

81

Chapter 5. Paths between k-colourings

with colour list L(t;) = {1,2,3}. For every token edge i we introduce a vertex e; in G,
with colour list L(e;) = {1,2}. Whenever a link edge of G joins a vertex t;, with a
vertex ej,, we add an (a, b)-forbidding path (of even length at most 6) between ¢; and e;
in G’. We do the same for pairs t;, and tjp, and pairs e;, and e;p. Note that this is a

polynomial time transformation.

Standard token configurations of G' now correspond to colourings of G’ as follows: a
token configuration where the token of token edge ¢ is on e;; (j = 1,2) corresponds to
colourings of G’ where ¢; has colour j. Analogously, if the token of token triangle i is on
tij (j = 1,2,3), this corresponds to colourings where ¢; has colour j. Since tokens are not
adjacent, it is possible to choose colours for the internal vertices of the (a,b)-forbidding
paths so as to obtain a proper colouring of G’. Two colourings a and [corresponding
respectively to T4 and Tp are constructed this way. Note that to a given standard token
configuration of G there can correspond multiple colourings of G’ because of the freedom

in choice of colours for the internal vertices of the (a, b)-forbidding paths.

Claim 5.7

The graph G’ as constructed above is planar and bipartite.

Proof. Let us consider a planar embedding of G where all token triangles bound a face. A
planar embedding of G’ can be obtained from that of G' by contracting all token triangles
and token edges, and subdividing the remaining (link) edges. All (a, b)-forbidding paths
in G’ have even length, so G’ is bipartite. O

Claim 5.8

Let G, T, Tg be a restricted instance of SLIDING TOKENS, and let G', L, o, 3 be a cor-
responding instance of LIST-COLOUR PATH as constructed above. Then G,Ta,Tp is a
YES-instance if and only if G', L, o, 3 is a YES-instance.

Proof. Recall that a token configuration in which the token of token edge i (token
triangle 7) is on e;; (on t;;) corresponds to multiple colourings of G’ where e; (¢;) has
colour j. Because of this multiplicity of colourings, we define colour classes of colourings:
if two colourings x and A of G’ have k(t;) = A(t;) and x(e;) = A(e;) for every 4, then &

and A are said to be in the same colour class.

Hence the correspondence between standard token configurations of G and colourings
of G’ defines a mapping between standard token configurations and colour classes. This

mapping is in fact a bijection: (a,b)-forbidding paths restrict their end vertices from

82

Chapter 5. Paths between k-colourings

having colours a and b respectively, but they pose no other restriction on the possible
colours of their end vertices. So t;, and ej, cannot both be occupied by a token in a
token configuration if and only if no colouring s has k(t;) = a and s(e;) = b. (Similar

statements hold for pairs t; and ¢;, and pairs e; and e;.)

Now we claim that if there exists a sequence of moves that transforms 7'y into T, then
there exists a sequence of recolourings that transforms « into 5. We mentioned earlier
that any token configuration obtainable from T4 is a standard token configuration. Hence
every token move corresponds to recolouring a vertex t; or a vertex e;. Note that before
recolouring ¢; (or e;), it may be necessary to first recolour some internal vertices of (a, b)-
forbidding paths incident with ¢; (or e;), but by the definition of (a, b)-forbidding paths,
we know this is always possible. It can also be seen that when we finally arrive at the
colour class that contains (3 in this way, the internal vertices of all (a, b)-forbidding paths

can be recoloured so that exactly the colouring § is obtained.

Similarly, for every sequence of recolourings from « to § we can construct a sequence
of token moves from Ty to Tp: whenever a vertex ¢; (e;) is recoloured from colour a to
colour b, we move the corresponding token from t;, to t;, (from e;q to ;). This completes

the proof. a

Claim 5.8 shows that the instance G’, L, a, 3 of L1ST-COLOUR PATH we constructed above
is equivalent to the given instance of SLIDING TOKENS. In addition, G’ is planar and
bipartite, by Claim 5.7. Now we can use Lemma 5.3 to construct equivalent k-COLOUR
PATH instances from G’, L,a, 3. All of these transformations can be accomplished in
polynomial time, and we saw in Claim 5.6 that k-COLOUR PATH is in PSPACE. This
completes the proof of Theorem 5.1.

Let us now observe that the values of k in parts (ii) and (iii) of Theorem 5.1 are tight.
We saw in Chapter 2 that a planar graph is always k-mixing for £ > 7. We saw this
as a consequence of Theorem 2.7 and the fact that the degeneracy of a planar graph is
at most 5. Hence any instance G, a, 3 of k-COLOUR PATH, where G is planar and «,
are k-colourings with k > 7 is trivially a YES-instance. Similarly, if we note that the
degeneracy of a bipartite planar graph is at most 3 and appeal to Theorem 2.7, we have
that k-COLOUR PATH is trivial for bipartite planar graphs and k£ > 5. The fact that
for a bipartite graph G we have deg(G) < 3 can be seen as follows. Considering an
embedding of G in the plane, let us write F'(G) for the set of faces of G and, for ¢ a
face of G, let us denote the number of edges bounding ¢ by d(¢). Then, noting that

83

Chapter 5. Paths between k-colourings

Y dw) -4+ D> (d(¢)—4) = -8
veV(Q) PEF(G)
Since G is bipartite, d(¢) > 4 for all ¢ € F(G). This means that for some vertices of G
we must have d(v) < 4; that is, deg(G) < 3.

Together with Theorems 4.1 and 5.1, the observations above allow us to completely

determine the complexity of k-COLOUR PATH for planar and bipartite planar graphs.

Theorem 5.9
Restricted to planar graphs, the decision problem k-COLOUR PATH is PSPACE-complete
for 4 <k <6, and in P for all other values of k.

Theorem 5.10
Restricted to bipartite planar graphs, the decision problem k-COLOUR PATH is PSPACE-
complete for k =4, and in P for all other values of k.

5.3 Distances between k-colourings

In this section we construct classes of k-COLOUR PATH instances such that the distance
between the two colourings is superpolynomial in the size of the graph. As in the proof of
Theorem 5.1, we will do this by first constructing classes of LiIsT-COLOUR PATH instances

and then applying Lemma 5.3.

For every integer N > 1, we construct a graph Gy with colour lists L. (To avoid cluttering
the notation, we will denote the colour lists of each G by L; which graph these lists
belong to will be clear from the context.) The graphs G will have size O(N?) and
the list-colour graphs C(Gy, L) will have a component of diameter Q(2V). Later in the
section we will show how to obtain bipartite and planar instance classes with the same
property. In the case of planar instances, the graphs Gy will have size O(N*) and the

list-colour graphs C(Gy, L) will have a component of diameter Q(2%).

The number N can be seen as the number of ‘bits’ that is used in the graph: the graph
will have N vertices whose colour can be thought of as a binary variable. For every
combination of binary values there will exist a corresponding colouring of G . These
combinations can be mapped to values 0,...,2Y — 1 in such a way that one can only

increase or decrease this value by one when recolouring G .

84

Chapter 5. Paths between k-colourings

For a given N, the graph Gy is constructed as follows. Start with N triangles, each
consisting of vertices v;, v, and v} with L(v;) = {1,2}, L(v)) = {1,2,3} and L(v}) =
{3,4}, for i = 1,...,N. In a colouring x where x(v]) = 3, triangle i is said to be
locked, otherwise it is unlocked. Now between every pair v; and 1); with ¢ # j we add a

(4,4)-forbidding path. Hence we have the following.

Claim 5.11

At most one triangle can be unlocked in any colouring.

For every i, we add (a,b)-forbidding paths from v} to every v; with j < i: we add a
(4,1)-forbidding path from v} to v;—1, and (4,2)-forbidding paths from v} to v; with
J <4 — 2. This ensures the following.

Claim 5.12
Triangle i can only be unlocked in a colouring k when k(vi—1) = 2 and k(vj) = 1 for

all j <i—2.
This yields the graph Gy.

Claim 5.13
The graphs G have O(N?) vertices and O(N?) edges.

Proof. The graph Gy consists of N triangles, N(N — 1)/2 (4,4)-forbidding paths,
and N(N — 1)/2 paths that are either (1,4)-forbidding or (2,4)-forbidding.

Because by Lemma 5.5 we can assume that all (a,b)-forbidding paths have length at
most 6, we get |V(Gn)| <3N +5N(N —1) and |[E(Gn)| <3N +6N(N —1). O

To show that there exists a pair of colourings of G such that exponentially many steps
(exponential in V) are needed to go from one to the other, we need only consider the

colours of the vertices v;. These can be seen as the N bits with value 1 or 2. We call a

colouring k of Gy a (c1,¢a,...,cn)-colouring if k(v;) = ¢; for all i. All (¢q,c,...,cN)-
colourings together form the colour class (c1,ca,...,cN).
Claim 5.14

Let ¢; € {1,2} for 1 <i < N. Then the colour class (c1,...,cn) is non-empty.

Proof. Consider a colouring x where x(v;) = ¢, £(v)) = 3 — ¢ and k(v]) = 3 for
all 7. Since all triangles are locked, this colouring does not violate any of the constraints

imposed by the forbidding paths, and so can be extended to a full colouring of Gx. O

85

Chapter 5. Paths between k-colourings

Lemma 5.15
Let (x1,x9,...,2N) and (y1,Y2,-..,yn) be distinct tuples with all x;,y; € {1,2}.

o If the tuples differ only on position i, with x;_1 = 2 and x; = 1 for all j <i—1,
then from any colouring in class (x1,22,...,xN) we can reach some colouring in
class (y1,y2, - - -, YN) via a sequence of recolourings, without ever leaving colour class

(x1,22,...,2N) in the intermediate colourings.

e Otherwise, there is no colouring in class (x1,x2,...,xN) that is adjacent to a colour-

ing in class (y1,Yy2, ..., YN).

Proof. Let (x1,x9,...,xn) and (y1,¥2,...,yn) be tuples as described above, and sup-
pose that the conditions described in the first bullet point hold. We show that any colour-
ing k in class (x1,x9,...,2N) can be recoloured to a colouring in class (y1,y2,...,yN).
Note that by the definition of (a, b)-forbidding paths, we may ignore all recolourings of
the internal vertices of these paths, since we know that any necessary recolouring of these

vertices is always possible.

We first show how to recolour k to an (z1, 2, ..., zy)-colouring in which only triangle i
is unlocked. If all triangles are locked in , we can immediately recolour v} to 4—this
does not violate any of the constraints imposed by the forbidding paths. Otherwise, there
is exactly one triangle which is unlocked. Let this triangle be triangle j, where j # i. We
now lock this triangle. If we cannot immediately recolour vj to 3, this must be because
K (V]
Next, triangle i can be unlocked: no other triangles are unlocked, so the (4, 4)-forbidding

= 3. We change this colour to k(v;) = 3 — k(v;), and then triangle 7 can be locked.
We ch h 1 ; Ji d th iangl be locked

paths pose no restriction. Since k(v;—1) =2 and k(v;) =1 for all j < i—1, the (4,1) and
(4, 2)-forbidding paths starting at v} pose no restriction either. At this point, we can set
k(v}) = 3, and then set x(v;) = y; to obtain a colouring in class (y1,...,yn). This proves

the first statement.

Now let o be an (x1,x9,...,xyN)-colouring, let 5 be a (y1,¥2,...,yn)-colouring, and
suppose that that « and § are adjacent. This means they differ only on one vertex, and
because the tuples are distinct, o and § must therefore differ precisely on a vertex v;, for
some ¢. This means triangle i is unlocked in both colourings. Because of the (4,1)- and
(4, 2)-forbidding paths starting at v}, o(v;—1) = 2 and a(v;) =1 for all j < i — 1. This

proves the second statement. a

It follows from Lemma 5.15 that every colour class is adjacent to at most two other colour

classes (we use the concept of adjacency of colour classes with the obvious meaning).

86

Chapter 5. Paths between k-colourings

1111 — 2111 — 2211 — 1211 —
1221 — 2221 — 2121 — 1121 —
1122 — 2122 — 2222 — 1222 —
1212 — 2212 — 2112 — 1112

Figure 5.3 Colour classes visited in a shortest path between a (1,1,1,1)-

colouring and a (1,1, 1, 2)-colouring of Gj.

Firstly, the colour of v; can always be changed. In addition, there is at most one v; such
that v;_1 has colour 2 and v; has colour 1 for all j < i— 1; this is the only other vertex of
v1,...,vN whose colour can be changed without first changing that of one of the others.
Figure 5.3 shows all colour classes of G4 and the order in which these need to be visited
in order to go from a (1,1, 1, 1)-colouring to a (1, 1,1, 2)-colouring of G4—all 16 different

classes need to be visited. We now prove this formally for every N.

Theorem 5.16
Every graph G has two colourings o and (3 in the same component of C(Gn, L) which

are at distance at least 2N — 1.

Proof. For the colouring o we choose a colouring in class (1,...,1). Colouring § will
be a colouring in class (1,...,1,2). Such colourings exist by Claim 5.14. We first prove

by induction that such colourings are connected, using the following induction hypothesis.

Induction hypothesis

There is a path in C(Gn, L) from any colouring o' in class (1,...,1,20,21,...,TN_pn) to

some colouring 8" in class (1,...,1,3 — 2o, 21,...,TN—p)-

The colourings differ on vertex v,: we have o/(v,) = zp and ' (v,) = 3 — xp, while
for all i # n, we have o/(v;) = ('(v;). If n = 1, the statement follows directly from
Lemma 5.15. If n > 1, then from o' we recolour to a (1,...,1,2,20,21,...,TN_n)-
colouring (which differs from the initial class only in the (n — 1)-th position), using the
induction hypothesis. Then we recolour to a (1,...,1,2,3 — zg, z1,...,ZN—_yn)-colouring,
using Lemma 5.15. Finally, using the induction hypothesis again, we can recolour to a

(1,...,1,1,3 — zo, 21, ..., TN—pn)-colouring, which proves the statement.

Now we show that to go from a (1,...,1)-colouring to a (1,...,1,2)-colouring, at least

87

Chapter 5. Paths between k-colourings

2V — 2 other colour classes need to be visited, using the following induction hypothesis.

Induction hypothesis

To go froma (1,...,1,1,21,...,xN_p)-colouring to a (1,...,1,2,y1,...,yn—n)-colouring,

at least 2™ — 2 other colour classes need to be visited.

Let us denote the vertex recoloured from 1 to 2 (appearing before the vertex coloured
x1 and yp) by v,. If n = 1, the statement is obvious. If n > 1, then consider a
shortest path between two colourings in these classes, if it exists. At some point in
the sequence of recolourings, the colour of v, is changed for the first time; before this
we must have a (1,...,1,2,1, 21, ..., 2y_yn)-colouring, by Lemma 5.15 (in this colouring,
vn_1 has colour 2). By the induction hypothesis, at least 2"~ — 2 colour classes have
been visited before this colour class was reached. Now changing the colour of v, to 2
yields a (1,...,1,2,2,21,...,2Ny_pn)-colouring. Using the induction hypothesis again, at
least 2"~ — 2 colour classes need to be visited before class (1,...,1,2,91,...,YN_n) is
reached. This means that in total, at least 2" — 4 + 2 intermediate colour classes have

been visited in the recolouring procedure. This completes the proof. O

Claim 5.13 and Theorem 5.16 show that G with its colour lists L is a list-colouring
instance such that C(Gy, L) has a component of diameter superpolynomial in the size
of Gxn. Unfortunately, the graphs Gy are neither bipartite nor planar. We now use

the graphs G to construct bipartite and planar list-colouring instances with the same

property.

Making the graphs planar and bipartite

We start with a copy of G with lists L and obtain a bipartite graph Gﬁ with lists L

as follows. For every ¢, we remove the edge v;v;: this does not influence the possible
colourings and recolourings of v; and v] since the colour-lists of these vertices are disjoint.
All forbidding paths can be chosen of even length by Lemma 5.5, and since all vertices v;
and v} are now in the same part of the bipartition, the resulting graph is bipartite. As
before, we can find two colourings o and 3 of Gﬁ that are at distance at least 2V — 1.

The size of these graphs is not significantly different to that of the graphs G .

Claim 5.17
The graphs G% have O(N?) vertices and O(N?) edges.

88

Chapter 5. Paths between k-colourings

Next, we use the graphs G]]% to construct bipartite planar LisT-COLOUR PATH in-
stances Gﬁ. Observe that Gﬁ can be drawn in the plane so that only edges of forbidding
paths cross; that is, so that edges that were formerly part of the triangles never cross. Us-
ing such a drawing of Gﬁ (without too many crossings, see Claim 5.20 below), we replace
every (a,b)-forbidding path P on which there are r crossings by a long path consisting
of r + 2 new paths Qy, ..., Qr+1, drawn along the same curve as the old path. We do
this in a way such that the paths @; contain exactly one crossing, for 1 <+¢ < r, and Qq
and)41 contain no crossings. For 0 <4 < r, the paths (); and (); 41 share a vertex with
colour list {1,2}. For 1 <i < r, the path @; will be a (1, 2)-forbidding path; Qo will be
an (a, 2)-forbidding path and @Q,+; will be a (1, b)-forbidding path. Together, these even
length paths form an (a, b)-forbidding path of even length, as can be seen from repeated

application of the following observation.

Claim 5.18

Let Q be an (a,b)-forbidding path from u to v, and let Q' be a (¢, d)-forbidding path from v
to w such that V(Q) NV (Q') = {v}, where L(v) = {b,c}. Together, Q and Q" form an
(a,d)-forbidding path from u to w.

After this is done for every (a, b)-forbidding path that contains crossings, we end up with
a drawing where the only crossings occur between (1,2)-forbidding paths, where both
end vertices of both paths have colour list {1,2}. All such pairs are now replaced with a
crossing component such as that depicted in Figure 5.4: the figure shows an example of
the crossing component for an (n, s)-path and a (w, e)-path that are both (1, 2)-forbidding
paths.

After replacing all such crossings we obtain a planar graph. Note that bipartiteness is
maintained: previously all end vertices of (a, b)-forbidding paths were in the same part
of the bipartition, and this is also true for the end vertices of the crossing component. In
addition, all cycles in the crossing component are even. We call the resulting graph Gﬁ.
The following lemma shows that, with regard to the possible colourings and recolourings
of the end vertices n, s, w, e, this crossing component behaves in exactly the same way as

the two old forbidding paths.

89

Chapter 5. Paths between k-colourings

?21
¥ 14
» 34
w & |:> €
21 13 34 | 42 21 91 13 42 91
$23
621

34 41 12

Figure 5.4 A crossing component corresponding to two (1,2)-forbidding
paths.

Lemma 5.19

The crossing component of Figure 5.4 has the following properties.

o For cp, Cs, Cu, Ce € {1,2}, a colouring k with k(n) = cn, K(s) = cs, K(w) = ¢y and

k(e) = ce exists if and only if

“(en=1Ncs=2)AN(cwy =1ANce =2).

e For any colouring k with k(s) = 1, there exists a sequence of recolourings that ends
by changing k(n), without ever changing k(s), k(w) or k(e). Similar statements
hold for recolouring s when k(n) = 2, recolouring w when k(e) = 1 and recolouring e

when k(w) = 2.

Proof. The vertex c is the central vertex of the crossing component. The graph consists
of four branches around ¢, called the north, south, west and east branches. Before we
begin the proof of the above statements, let us make the following observation, which
spares us a lot of case analysis: swapping colours 1 and 2 in the lists of the crossing

component corresponds to mirroring the drawing in the bottom-left to top-right diagonal,

90

Chapter 5. Paths between k-colourings

and swapping colours 3 and 4 corresponds to mirroring in the top-left to bottom-right
diagonal. So whenever we prove a statement for the north branch, the same statement
holds for the east (west) branch when we swap the colours 1 and 2 (3 and 4) in the
statement. Swapping both 1 with 2 and 3 with 4 yields a correct statement for the south

branch.

If ¢ has colour 3, then n must have colour 2 (arguing along the right path of the north
branch). If ¢ has colour 2, then n again has colour 2 (consider the left path in the north

branch). In general we find, for a colouring x:

o if k(c) € {2,3}, then k(n) = 2;
o if k(c) € {1,4}, then k(s) = 1;
o if k(c) € {2,4}, then r(w) = 2;

o if k(c) € {1,3}, then k(e) = 1.

Since either ¢ € {2,3} or ¢ € {1,4}, it follows that x(n) = 1 and k(s) = 2 cannot
occur simultaneously; similarly for w and e. It can also be seen that whenever c is not
coloured with 2 or 3, there exist colourings of the north branch where n has colour 1, and
colourings where n has colour 2. Similar statements hold for the other three branches.
All this proves that for every combination of colours ¢,, cs, ¢y, ce for the four vertices,
a corresponding colouring x exists, except when ¢, = 1 and ¢; = 2, or when ¢, = 1
and c. = 2. This proves the first statement about possible colourings. Now we consider

possible recolourings of the crossing component.

We prove that we can always recolour n, as long as s has colour 1, without ever recolour-
ing w or e. Whenever ¢ has colour 1 or 4, it is easy to see that we can recolour the north

branch and change the colour of n without any recolouring of ¢ or of the other branches.

Now suppose r(c) = 3. This means k(n) = 2 and k(e) = 1. In this case we first change
the colours of all vertices adjacent to ¢ to 2 or 4, without changing x(n), x(s), x(w)

or k(e).

e It is obvious this can be done in the west branch.
e For the east branch we use the fact that x(e) = 1.
e For the south branch we use the fact that x(s) = 1.

e For the north branch we use the fact that x(n) = 2.

91

Chapter 5. Paths between k-colourings

At this point we can recolour ¢ to 1. Now it can be checked that the vertices in the north

branch can be recoloured so that n gets colour 1.

Similarly, when k(c) = 2 all of ¢’s neighbours can be recoloured to 1 or 3 without
recolouring n, s, w or e. Then ¢ can be recoloured to 4, which in turn allows n to receive

colour 1, after a few steps.

This shows that we can always recolour n whenever k(s) = 1. For the other three

branches, similar statements follow from the above mentioned symmetries. a

Claim 5.18 and Lemma 5.19 show that after replacing forbidding paths with multiple
forbidding paths, and replacing crossings with crossing components, the new structures
act like the old forbidding paths with regard to possible colourings and recolourings of
v;, v; and v} (though perhaps ‘a few’ more recolourings of internal vertices are needed).
So the statements from Lemma 5.15 and Theorem 5.16 can be proved for these graphs.
Adapting the two colourings of G to colourings of Gﬁ is straightforward. It remains

. . P
only to consider the size of the graphs G .

Claim 5.20
The graphs G&; have O(N*) vertices and O(N*) edges.

Proof. We start with a drawing of Gy in which only (a, b)-forbidding paths cross. It is
easy to see that a drawing can be found such that every pair of forbidding paths crosses
at most once. An informal proof runs as follows. First embed the 3N vertices in the N
triangles along a circular closed curve in the plane, where the three vertices of each
triangle are placed consecutively along the circle. The edges of the triangles are then
placed along the circle, or outside it. The forbidding paths are now added as straight
lines across the interior of the circle. If more than two paths go through the same point,

then this can be corrected by small perturbations. This yields the desired drawing.

The graph Gy has O(N?) forbidding paths, so the drawing we have just described has
at most O(N*) crossings. For every crossing we introduce a number of new vertices that
is bounded by some constant (closely related to the number of vertices in a crossing
component), so the number of vertices, which was O(N?), increases to at most O(N%).
So the number of vertices of GX is O(N*). Since G¥, is planar, its average degree is less

than six, so the number of edges is O(N*) as well. 0

We have constructed bipartite LiST-COLOUR PATH instances with size O(N?) (Claim 5.17)
and bipartite planar LisST-COLOUR PATH instances with size O(N%) (Claim 5.20). The

pairs of colourings for each of these instances are at distance at least 2V — 1, just as for

92

Chapter 5. Paths between k-colourings

the original LisT-COLOUR PATH instances, proved in Theorem 5.16. Lemma 5.3 shows
that these can be transformed into k-COLOUR PATH instances without a significant size

increase. This completes the proof of Theorem 5.2.

5.4 Tractability of k-COLOUR PATH and distances between

k-colourings

In this section we examine the relationship between the tractability of k-COLOUR PATH

and the possible distances between k-colourings.

Let us first examine the relationship between Theorems 5.1 and 5.2. In terms of the
well-known NP # PSPACE conjecture, Theorem 5.1 means the following. Loosely speak-
ing, having established that k-COLOUR PATH is PSPACE-complete, asserting that NP #
PSPACE is equivalent to saying that for every possible YES-certificate for k-COLOUR
PATH, there exist instances for which the certificate cannot be verified in polynomial
time. Theorem 5.2 of course shows this only for a particular certificate—the certificate
for a YES-instance consisting of a list of colourings constituting a path from the first
colouring to the second colouring—but this is in some sense the the most natural cer-
tificate. It is for this reason that we consider the construction of these instances to be
of independent interest. In addition, they have a clear bearing on the limitations of

sampling colourings via Glauber dynamics.

Theorems 4.1 and 4.2 from Chapter 4 tell us that 3-COLOUR PATH is polynomial time
solvable and that for any YES-instance G, «, 8 of this problem, the distance between «
and § in C3(G) is at most quadratic in the size of G. On the other hand, Theorems 5.1
and 5.2 establish a connection between instance classes for which k-COLOUR PATH is
PSPACE-complete and possible superpolynomial distances in the k-colour graphs of these
instances. How strong is this connection between PSPACE-completeness and superpoly-
nomial distances in the colour graph? For completeness let us point out that artificial
graph classes can be constructed for which k-COLOUR PATH is easy, but which still
contain instances with colourings at superpolynomial distance. This can be done, for

example, using the graphs from Section 5.3.

We remark that the reason why we cannot make the values of k in parts (ii) and (iii) of
Theorem 5.2 larger by a straightforward extension of our methods rests fundamentally
on the fact that for a planar graph G, deg(G) < 5, and that for a bipartite planar
graph G, deg(G) < 3. These considerations, together with Theorems 5.9 and 5.10, beg
the following question: is it true that for a planar graph G and k > 7, or G a bipartite

93

Chapter 5. Paths between k-colourings

planar graph and k > 5, Ci(G) always has polynomial diameter? More generally, given
that an instance of k-COLOUR PATH is always a YES-instance for £ > deg(G) + 2, is it
true that for any graph G and k > deg(G) + 2, Cx(G) has polynomial diameter? Noting
that the proof of Theorem 2.7 only gives an exponential upper bound, we conjecture that
this is indeed the case, and that in fact a quadratic bound is the correct answer. (Let us
remark that in [7], the paper containing the results of this chapter, it is in fact a cubic

upper bound which is conjectured.)

Conjecture 5.21
For a graph G with n vertices and k > deg(G) + 2, the diameter of Ci(G) is O(n?).

For values of k > 2deg(G) + 1, we are in fact able to prove this bound.

Theorem 5.22
For a graph G with n vertices and k > 2deg(G) + 1, the diameter of C.(G) is O(n?).

Proof. We can iteratively delete vertices of degree at most deg(G) until no vertices are
left. Using such an elimination ordering, we label the vertices v1,vs,. .., v, so that every
vertex has at most deg(G) neighbors with a lower index. (The label v,, corresponds to the
first deleted vertex.) Using this vertex ordering, we first prove the following statement

by induction on n.

Induction hypothesis

Let a and B be distinct k-colourings of G, and let i be the lowest inder such that
a(v;) # B(vi). There exists a recolouring sequence that starts with o and ends with
recolouring v; to $(v;), where every v; with j < i is never recoloured, and every v; with

J > 1 s recoloured at most once.

The statement is trivial for n = 1. If ¢ = n, then v, can be recoloured to [(v,) be-
cause (3 is a proper colouring that coincides with « on all other vertices. Now suppose
i <n,and let @ = G — {v,}. Let o be the k-colouring of G’ induced by «. By induc-
tion we can assume there exists a recolouring sequence starting with o’ that ends with
recolouring v; to 3(v;), in which vertices v; with j < i are not recoloured, and vertices v;
with j > i are recoloured at most once. So for every vertex we can identify an old colour
and a new colour in this recolouring sequence (which may in fact be the same). Because
there are at least 2 deg(G) + 1 available colours, and v, has at most deg(G) neighbours,

a colour ¢ can be chosen for v, that is not equal to the old colour or new colour of any of

94

Chapter 5. Paths between k-colourings

its neighbours. First recolour v, to ¢ if necessary, and then recolour the rest of the graph
according to the recolouring sequence for G’. By the choice of colour ¢, all intermediate

colourings are proper, so this is the desired recolouring sequence for G.

Now we can keep repeating the above procedure, each time for a new vertex v; with
a higher index, since the colours of the vertices with a lower index are not changed. So
every vertex v; is considered only once this way, and for every v; only n — ¢ recolour-
ings of other vertices are needed before it can be recoloured to ((v;). This will yield

after O(n?) recolouring steps. O

Let us now observe that if in Conjecture 5.21 we replace the degeneracy with the maxi-
mum degree, we again obtain a quadratic bound on the diameter of the k-colour graph.

This answers a question of Bill Jackson.

Proposition 5.23
For a graph G with n vertices and k > A(G) + 2, the diameter of C(G) is O(n?).

Proof. Let a and (8 be distinct k-colourings of G. We claim that it is possible to
recolour a to 8 using at most An recolouring steps. Let vi,vs,...,v, be an arbitrary
ordering of the vertices of GG, and consider the following recolouring procedure that trans-
forms « into 5. Fori =1,2,...,n, we attempt to recolour v; to 3(v;). If for some i this is
not possible, this must be because v; has a neighbour w that is currently coloured 3(v;).
But because w has degree at most A < k — 2, there is a colour ¢ # [(v;) that does not
appear on any of the neighbours of w. Hence we can first recolour w to ¢, and repeat
the same procedure for any other neighbour of v; coloured 3(v;). This allows us to then
recolour v; to B(v;) and continue. Because any v; has at most A such neighbours, and
once vertex v; has colour f(v;) it will not be necessary to recolour it again, we reach (3

after at most An recolourings. Noting that A < n — 1 yields the result. O

If we now observe that for a regular graph G, A(G) = deg(G), Proposition 5.23 allows

us to deduce that Conjecture 5.21 is true for regular graphs.

95

Miscellaneous results about

recolouring

In this chapter we prove some miscellaneous results obtained during the development of
this thesis. In Section 6.1 we explore the problem of finding a sequence of recolourings
between two k-colourings of a graph when we are allowed to use some extra colours.
Section 6.2 covers some results about the complexity of finding alternative colourings of
graphs. Specifically, we investigate several versions of the following decision problem:
given a graph G together with a k-colouring of G, how easily can we decide whether

there exists a k-colouring of G with certain specific properties?

6.1 Recolouring using extra colours

Suppose we are given a graph G and two k-colourings of G, a and 3. We have seen that
these colourings may or may not be connected in Cx(G), and that deciding if they are is
in general a PSPACE-complete problem. If we are very keen to recolour one to the other
(as may be the case in a frequency reassignment context), with perhaps the use of some
extra colours, how many extra colours are enough to guarantee that such a recolouring
is possible? It is obvious that this can always be done for a sufficiently large number of
extra colours, but it should also be obvious that we might want to minimise the number
of extra colours used. The problem can be put another way: what (reasonably small)
value of ¢ will guarantee that all k-colourings of a graph G are in the same connected
component of Cy(G)? The theorem below provides an answer to this question, originally

put to us by Steve Noble.

96

Chapter 6. Miscellaneous results about recolouring

Theorem 6.1
Let a and (3 be two k-colourings of a graph G, and let G have chromatic number x. Then
for any ¢ > k+ (x — 1), there is a path between o and [in Cy(G).

Proof. We show that we can recolour « to § with the use of x —1 new colours. Consider
a y-colouring v of G: this gives a partition of the vertex set of G into independent sets
I',Tg,...,I'y. We recolour a to 8 using 7. First we recolour, from «, all vertices in I';
with colour k£ + 4, for 1 < ¢ < x — 1. It is clear that no recolouring in this sequence
violates the constraint that we maintain a proper-colouring of G. Vertices that are not
recoloured in this way are precisely those in the set I'y, but because I'y is independent,
we can recolour all vertices in this set to their colours in 3. It is easy to see that we
can now recolour all vertices v € V \ T’y to B(v) without introducing any edges with

end-vertices coloured alike. This completes the proof. O

Note that this proof requires knowledge of a y-colouring of (G, which in general will not
be readily available since determining the chromatic number of a graph is NP-hard. The
best bound we have on the number of sufficient extra colours supported by a constructive
proof—that is, one that will allow us to actually recolour « to § without knowledge
of a x-colouring—is of kK — 1 new colours. The idea is similar to that of the proof of
Theorem 6.1. From «, we recolour all vertices coloured i to k + 4, for 1 <i <k —1, and

then recolour to (3, recolouring vertices coloured k in (last.

We now show that Theorem 6.1 is best possible, in the sense that no lower number of extra
colours will always be enough to guarantee a path between any two given k-colourings.

That is, we show that y — 1 extra colours are sometimes necessary.

Theorem 6.2
For every k > x > 2, there exists a x-chromatic graph G that has two k-colourings which
are not connected in Cq(G), where ¢ =k + (x — 2).

Proof. We let G be the categorical (or tensor) product of K, and K}, which we denote
by By . This is the graph with vertex set {(,7)[1 < i < x, 1 < j < k} and edge
set {(4,7)(7',j") |1 # i and j # j'}. (An example of such a graph—the graph Bz 4—is
depicted in Figure 6.1.) We will think of the is as indexing rows and the js as indexing
columns of B, j. For the two k-colourings of B, ; we take o and 3 given by o((7,7)) =
and 3((4,7)) = j. Note that « is in fact a y-colouring, but because k > y we can actually
regard it as a k-colouring. We prove the graphs B, j are x-chromatic by showing that

no (x — 1)-colouring of B, j exists. Let us assume the contrary. Observe that given any

97

Chapter 6. Miscellaneous results about recolouring

Figure 6.1 The graph B3 4.

colouring of B, j, if in some row there are two vertices with the same colour, this colour
cannot appear in any other row (and similarly for columns). Thus if we are considering
a (x — 1)-colouring of B, j, we cannot have all rows each containing two vertices with
the same colour. This means there is at least one row with all its k vertices coloured

differently, but since k£ > y — 1, we have a contradiction.

We now prove that it is not possible to recolour a to § using x —2 new colours. Suppose it
is possible, and consider a sequence of recolourings that accomplishes the transformation.
Note that « is a colouring where all vertices in any given row of B, ; have the same colour,
and (is a colouring where no two vertices in a given row have the same colour. Hence
there must come a point in the sequence of recolourings where for the first time we see
a row that has all its vertices coloured differently—row ¢*, say. Consider this colouring
in the sequence: how many different colours do we see on B, 7 Because any row other
than row ¢* has at least two vertices with the same colour, we see at least xy — 1 different
colours on rows other than row ¢*. Because none of these colours can appear on row i*,
which has its k vertices coloured differently, in total we see at least k + x — 1 different

colours. This contradiction completes the proof. O

We note that the results of Theorems 6.1 and 6.2 have been obtained independently in
[35] and [47]. In fact, the graphs of Theorem 6.2 that illustrate the tightness of the result
are the same in [35] and (with a minor modification) in [47]. The result in [35] analogous
to Theorem 6.1 is in fact a refinement of our result: the author considers k-colourings
as possibly using different sets of colours, and proves, for a a k-colouring using colour
set A and [a k-colouring using colour set B, that the recolouring can be achieved using

max{0,|AN B| — 1} extra colours.

98

Chapter 6. Miscellaneous results about recolouring

6.2 The complexity of finding alternative colourings

The results in this section are motivated by the following question of Peter Winkler:
what is the complexity of deciding whether the k-colour graph of a k-colourable graph G
contains an isolated node? We answer this question below, in Theorem 6.3, first giving

a formal definition of the problem.

FROZEN k-COLOURING
Instance: A connected graph G together with a k-colouring a of G.

Question : Does G have a frozen k-colouring?

It is obvious that the decision problem FROZEN 2-COLOURING is trivial: the 2-colouring
given with a connected bipartite graph is frozen. We now prove that for any k& > 3, the
problem is NP-complete, initially giving a reduction from 3-COLOURABILITY (defined

formally in Section 3.2) to the k = 3 case.

Theorem 6.3
For every fized k > 3, the decision problem FROZEN k-COLOURING is NP-complete.

Proof. That FROZEN k-COLOURING is in NP is clear. We first prove that FROZEN
3-COLOURING is NP-complete by giving a polynomial time reduction from 3-COLOUR-
ABILITY, and then show that FROZEN k-COLOURING is reducible to FROZEN (k + 1)-
COLOURING.

Given an instance G of 3-COLOURABILITY, we construct an instance G’ of FROZEN
3-COLOURING such that G is 3-colourable if and only if G’ has a frozen 3-colouring.
We obtain G’ from G as follows. We replace every edge uv of G with two internally
disjoint paths between u and v, one of length 2 and another of length 4, effectively
obtaining a 6-cycle between every two vertices that were previously joined by an edge.
More formally, for every edge e = uv of G, we delete e and add vertices we, ¢, Ye, Ze
and edges UWe, We, UTe, Tele, YeZe, 2ev to obtain G’. Note that G’ is bipartite so we can
trivially find a 3-colouring of G’ to form part of the instance of FROZEN 3-COLOURING.
Now suppose G is 3-colourable, and consider a 3-colouring 7 of G. An observation: given
any 6-cycle C with two vertices at distance two precoloured with two different colours
from {1,2,3}, we can extend this precolouring to obtain a frozen 3-colouring of C. It is
now clear how to obtain a frozen 3-colouring of G’: we just use this observation on every
6-cycle of G’ that contains vertices we, Te, Ye, ze in G’, for some specified edge e of G.

On the other hand, suppose G’ has a frozen 3-colouring 7. Restricting 7 to vertices

99

Chapter 6. Miscellaneous results about recolouring

originally in G yields a proper 3-colouring of G: otherwise, for some vertices u,v of G’
originally forming an edge e of G we have 7¢(u) = 7¢(v), and this contradicts 7; being

frozen, for we could then recolour we.

To show that FROZEN k-COLOURING is reducible to FROZEN (k+1)-COLOURING it suffices
to take an instance G, « of FROZEN k-COLOURING and form the graph G’ by adding a
new vertex v adjacent to all vertices of G. We can easily obtain a (k + 1)-colouring o’
of G’ by setting o/(v) = k + 1 and o/(z) = a(z) for all x # v. Clearly G has a frozen
k-colouring if and only if G’ has a frozen (k + 1)-colouring. a

Given that 3-COLOURABILITY remains NP-complete for planar graphs of maximum de-
gree 4, we readily conclude from the above proof that FROZEN 3-COLOURING remains
NP-complete for planar graphs of maximum degree 8. We observe that by arguments
similar to those of Lemma 5.3 (ii), we can deduce that FROZEN k-COLOURING remains
NP-complete for planar graphs and 4 < k < 6. For k > 7, it should be clear that any

planar instance of FROZEN k-COLOURING is a NO-instance.

Similarly, the reduction to FROZEN 3-COLOURING yields a bipartite graph, and arguments
similar to those of Lemma 5.3 (i) can then be used to see that FROZEN k-COLOURING

actually remains NP-complete for bipartite graphs and all values of k.

We observed in Section 2.1 that finding a frozen k-colouring of a particular (k — 1)-
regular graph G is equivalent to verifying that G is a cover of the complete graph K.
(Remember that we define a graph G as a cover of a graph H if there exists a surjection
¢ : V(G) — V(H) such that for every vertex v of G, ¢ maps the neighbours of v in G
bijectively to the neighbours of ¢(v) in H, and thus deciding if G is a cover of K}, is
equivalent to deciding if G has a frozen k-colouring.) In [40] it is proved that deciding if
a given graph G is a cover of Kj, for any fixed k > 4, is NP-complete. Hence other than

for kK = 3, Theorem 6.3 is not new.

We can also regard the decision problem FROZEN k-COLOURING as related to the problem
of determining whether a given k-colourable graph is uniquely k-colourable. This asks,
given a graph G together with a k-colouring «, whether G admits a k-colouring that in-
duces colour classes different to those induced by «, and is known to be NP-complete, [16].
Note that if a graph is uniquely k-colourable, its k-colour graph will consist of k! isolated

nodes. We now study two other problems related to deciding unique colourability.

100

Chapter 6. Miscellaneous results about recolouring

ALTERNATIVE k-COLOURING

Instance: A connected graph G together with a k-colouring a of G and two vertices
u,v of G with a(u) = a(v).

Question : Does there exist a k-colouring 3 of G with (u) # ((v)?

ALTERNATIVE k-COLOURING II

Instance: A connected graph G together with a k-colouring a of G and two vertices
u,v of G with a(u) # a(v).

Question : Does there exist a k-colouring of G with B(u) = (v)?

Again we find the same dichotomy for the computational complexity of these problems:
trivial for £k = 2 and NP-complete for any k > 3. For both, we give an initial reduction
to the k£ = 3 case from the problem 3-PRECOLOURING EXTENSION, proved NP-complete

in [41], even when restricted to planar graphs.

3-PRECOLOURING EXTENSION
Instance: A connected bipartite graph G with some vertices properly precoloured
with colours from {1,2,3}.

Question : Does the precolouring of G extend to a 3-colouring of G7

Theorem 6.4
For every fixed k > 3, the decision problems ALTERNATIVE k-COLOURING and ALTER-

NATIVE k-COLOURING II are NP-complete.

Proof. Both problems are clearly in NP. For each, we first give a reduction from
3-PRECOLOURING EXTENSION to the k = 3 case. Before doing so, we show how we may
first simplify a general instance of 3-PRECOLOURING EXTENSION so that we can assume
that only 3 vertices of the graph are precoloured. (This trick is from [34, Lemma 2.2].)
Let G be an instance graph of 3-PRECOLOURING EXTENSION and let X,Y be the bipar-
tition of G. Note that if we identify two vertices z, 2’ € X that are precoloured the same
we end up with an equivalent bipartite instance, in the sense that the new instance is a
YES-instance if and only if the original one is. Hence we can assume that G is precoloured
in such a way that each colour occurs at most once in X and at most once in Y. We
now add two new disjoint sets of vertices to G, X' = {a],x}, x5} and Y = {y, v}, 5},
so that (X U X’), (Y UY") is the bipartition of the new graph G’ formed by introducing
the following edges, where x € X,y € Y and ¢,5 € {1,2,3}:

e ; is adjacent to y; if and only if i # j;

101

Chapter 6. Miscellaneous results about recolouring

e 1/ is adjacent to y € Y if and only if y is precoloured with a colour distinct from i;
° y} is adjacent to x € X if and only if y is precoloured with a colour distinct from j.
If we now consider G’ as an instance of 3-PRECOLOURING EXTENSION, where only
vertices x,z), x% are respectively coloured with colours 1,2,3, we obtain an instance

equivalent to the original instance.

We now transform our simplified instance G’, 2/, 4, =% of 3-PRECOLOURING EXTENSION
into an instance G*, a, u, v of ALTERNATIVE 3-COLOURING. To obtain the graph G*, we
simply add to G new vertices a,b,c together with edges ab, be, ca, ¢, xhe, xha, hb,
putting v = 2} and v = z},. To obtain a 3-colouring a of G* with a(u) = «a(v), we
set a(z) = 1for all z € X U X'\ {z4}; a(ah) = 3; a(y) =2 for all y € Y UY’; and
ala) =1, a(b) = 2, a(c) = 3. It is straightforward to check that the precolouring of G’
extends to the whole of G’ if and only if there is a 3-colouring of G* where u and v receive

different colours.

For ALTERNATIVE k-COLOURING II the reduction is even simpler: we transform G', 7,
xh, x4 with its precolouring into G*, o, u,v by adding a single new vertex a and edges
rha, £y, xba to G, and putting u = a and v = 2. The colouring « is obtained by
setting a(z)) = 1, a(2f) = 2, a(x) = 1 for all z € X U X"\ {2}, 24}; a(y) = 3 for all
y € YUY’ and a(a) = 3. Note a(u) = 3 # 1 = a(x}) and that the precolouring of G’
extends to the whole of G’ if and only if there is a 3-colouring of G* where u and v receive

the same colour.

For both ALTERNATIVE k-COLOURING and ALTERNATIVE k-COLOURING 11, a k-colouring
instance is easily reduced to a k 4 1-colouring instance by adding a new vertex adjacent

to all other vertices and extending the colouring accordingly. This completes the proof. O

We note that Theorem 6.4 has been obtained independently by Rackham [54]. In that
paper, however, both the approach to the problem and the reduction that proves NP-
hardness are different. The reduction is from 3-COLOURABILITY, and the problems
ALTERNATIVE k-COLOURING and ALTERNATIVE k-COLOURING II are studied in the
context of extending precolourings of a graph. In particular, Section 6 of [54] considers
the following problem: given a graph G, a k-colouring of GG, and two vertices of GG
properly precoloured with colours from {1,2,...,k}, does the precolouring extend to a
proper k-colouring of G? It is shown that this problem can be solved in polynomial time
when k£ > A(G), but that it is NP-complete for k£ < A(G) — o(k).

Chlebik and Chlebikovéa [14] show that the precolouring extension problem with any

number of precoloured vertices is solvable in polynomial time when k& > A(G). This

102

Chapter 6. Miscellaneous results about recolouring

shows that the precolouring extension problem is in P for graphs of maximum degree
3: given a graph G, an integer k > 2 and a precolouring of G using at most k colours,
we can decide whether the precolouring extends to a k-colouring of G as follows. If
k> A(G) = 3, we just use the aforementioned algorithm described in [14]. Otherwise
k = 2 and the problem is reduced to deciding if the precolouring extends to a 2-colouring,

which is easily solvable in polynomial time.

In contrast, it is also proved in [14] that 3-PRECOLOURING EXTENSION remains NP-

complete for planar bipartite graphs of maximum degree 4.

103

Conclusion

We close in this chapter with a discussion of the results presented in this thesis. We first
attempt to put our work into a wider context, examining results related to our own in
Section 7.1. Section 7.2 summarises our results and outlines some open problems and

possibilities for further research.

7.1 Related work

As was mentioned in Chapter 1, the study of the colour graph is not new. For instance,
the question of its connectedness has been addressed by researchers interested in rapidly
mixing Markov chains for sampling colourings of a graph. In addition, during the devel-
opment of this thesis we have come across a series of lines of research that can be thought
of as related to the study of the colour graph. Some of them bear close similarity to our
own, or even impinge on them directly—indeed we have seen that some of our results
have been independently obtained by other researchers. Other lines can be considered
as generalisations of the problems we have addressed. We proceed to give an overview of

all of these, beginning with results that, to some extent or other, match our own.

Recolouring graph colourings

In [35]—an unpublished graduate thesis—we find results which closely resemble those of
Chapter 5. In particular, the author of [35] proves that the problem of deciding whether
there exists a sequence of recolourings between two given colourings of a graph, using
no extra colours, is PSPACE-complete. This is, in essence, the result of Theorem 5.1,

but is significantly weaker in various respects. Firstly, for the problem as studied in

104

Chapter 7. Conclusion

[35], the number of colours is part of the input. Secondly, the result is not proved for
any restricted graph classes such as planar or bipartite graphs—in fact the construction
used is highly non-planar. The reduction is also different; from the problem of deciding
whether a space-bounded deterministic Turing machine will halt in an accepting state,
and via several other decision problems involving word replacement on strings. Because
deciding whether a space-bounded deterministic Turing machine will halt in an accepting
state is known to possibly take a superpolynomial number of steps, and all the steps in
the reductions involve problems with ‘states’, the proof of PSPACE-completeness in
fact also yields a proof of the existence of superpolynomial paths between colourings.
The intricacy of the reductions used, however, indicates that actually constructing such

instances would be far from straightforward.

We mentioned in Chapter 6 that Theorems 6.1 and 6.2 have also been independently
obtained in [35], and that in fact the former is refined. The author of [35] also studies
recolouring problems in an online setting, where vertices continually leave or join the

graph whose colourings are under consideration.

We saw that Theorems 6.1 and 6.2 were also obtained (independently of [35] and of
this thesis) in [47] in the context of the so-called colour switching problem, described in
Chapter 1. A rather surprising result on the algorithmic complexity of a variant of colour
switching is to be found in [13]. Here it is shown that if, in requiring a transformation
from a k-colouring to a k’-colouring of a given graph (with &’ < k), we only care about
the partition induced by the k’-colouring (and not on the actual colours used), then
a shortest possible sequence of recolourings can be found in polynomial time. This is
achieved by a reduction of the problem to the weighted matching problem on bipartite

graphs, a well-known polynomial time solvable problem.

Generalisations of the colour graph

Instead of recolouring a single vertex, we could consider a different transformation be-
tween colourings: for example, that provided by a Kempe change. Given a graph G,
a k-colouring o of G and colours c1,c2 € {1,2,...,k}, let G(c1,c2) be the subgraph
of G induced by vertices coloured ¢; or co. Switching colours ¢; and ¢ on any con-
nected component of G(cq1,cz) yields a new k-colouring of G. This operation is known
as a Kempe change, and two colourings are said to be Kempe-equivalent if one can be
obtained from the other by a sequence of Kempe changes. Analogously to the way in
which we define the k-colour graph of a graph G, we could consider the graph with

vertex set the k-colourings of G and edges between colourings that are connected by a

105

Chapter 7. Conclusion

single Kempe change. Note that Cx(G) is a subgraph of this graph, which we call the
Kempe k-colour graph, and note that Kempe-equivalent colourings form the connected
components of this graph. Questions similar to the ones we are interested in have been
addressed in this context: Fisk [22] proved that all 4-colourings of an Eulerian trian-
gulation of the plane are Kempe-equivalent, and Meyniel [49] that all 5-colourings of a
planar graph are Kempe-equivalent. Later Las Vergnas and Meyniel [42] showed that
the property of Kempe-equivalence holds for all 5-colourings of a graph containing no Kj
minor, and more recently, Mohar [51] has done so for all k-colourings of a planar graph

with chromatic number less than k.

A generalisation in a different direction is considered by Brightwell and Winkler in [8, 9].
For a graph G and a constraint graph H (which may have loops), they define the graph
Hom(G, H) as the graph with vertex set the homomorphisms from G to H, and two
homomorphisms adjacent when they differ on precisely one vertex of G. (Recall that
a homomorphism from G to H is a function ¢ : V(G) — V(H) such that for every
uv € E(G) we have p(u)p(v) € E(H), and note that a k-colouring of a graph G is nothing
more than a homomorphism from G to the complete graph Kj.) They investigate an
important dichotomy of constraint graphs, giving several equivalent characterisations of
graphs H which they call dismantlable. Letting u,v be two vertices of a finite H with
N(u) C N(v), where N(z) denotes the set of neighbours of a vertex z, they define a
fold of H as the homomorphism from H to H — {u} mapping u to v and every other
node to itself. The graph H is said to be dismantlable if there exists a sequence of
folds reducing H to a graph with one node (looped or not). Amongst other things, they
address the question of connectedness of Hom(G, H). In particular, they prove that a
constraint graph H is dismantlable if and only if it is true that for any finite graph G,
Hom(G, H) is connected.

Mixing Boolean satisfiability solutions

Remarkably similar results to those contained in this thesis, but for a wholly different
problem, are to be found in [26]. The authors of [26] consider the exact analogues of
our decision problems k-MIXING and k-COLOUR PATH in the context of the Boolean
satisfiability problem. We proceed to examine their results in some detail, first giving

some necessary definitions.

A logical relation R is a non-empty subset of {0,1}*, where k > 1 is the arity of R.
For S a finite set of logical relations, a CNF(S)-formula over a set of variables V =

{x1,29,...,2y} is a finite conjunction C; A Cy A ... A Cy, of clauses built using relations

106

Chapter 7. Conclusion

from S, variables from V', and the constants and 0 and 1. Hence each C; is an expression
of the form R(&1,&2,...,&;), where R is a relation of arity k, and each ; is a variable

in V or one of the constants 0, 1.

The satisfiability problem SAT(S) associated with a finite set of logical relations S asks:
given a CNF(S)-formula ¢, is it satisfiable? Schaefer [58] proved a celebrated dichotomy
theorem for the complexity of SAT(S): for certain sets S—known as Schaefer sets—
SAT(S) is solvable in polynomial time, while for all other sets S, the problem is NP-
complete. We refer the reader to [58] for the full details; a definition of Schaefer sets may
also be found in [26].

For an instance ¢ of SAT(S), the authors of [26] define the graph G(¢p) as the graph with
vertex set the satisfying assignments of ¢, and assignments adjacent whenever they differ
in exactly one bit. The graph G(y) is a subgraph of the n-dimensional hypercube—this
is the graph with vertex set {0,1}"™ and edges between vertices that differ in exactly one
bit. Hence a path in G(p) corresponds to a sequence of different satisfying assignments

of ¢, each obtained from the previous one by flipping precisely one bit.

They define the following two decision problems, whose close resemblance to k-MIXING

and k-CoOLOUR PATH should be obvious.

CoONN(S)
Instance: A CNF(S)-formula ¢.
Question : Is G(¢) connected?

sT-CONN(S)
Instance: A CNF(S)-formula ¢ and two satisfying assignments of ¢, s and t.
Question : Is there a path between s and t in G(¢)?

The authors of [26] prove dichotomy theorems for the complexity of both of these deci-
sion problems. They also prove a dichotomy theorem for the possible diameter of the
graphs G(yp), finding, for both problems, the same correspondence between PSPACE-
complete instances and possible superpolynomial-length shortest-paths in the graph of
satisfying assignments as we do for k-COLOUR PATH. The key concept on which their
results rely is that of a tight set of relations S—see [26] for a precise definition of this con-
cept. The class of tight sets of relations properly contains the class of Schaefer relations:

if S is Schaefer, then S is tight; the converse, however, is not true.

In some detail, they prove the following results.

107

Chapter 7. Conclusion

Theorem 7.1 (Gopalan, Kolaitis, Maneva and Papadimitriou [26])
Let S be a finite set of logical relations. If S is tight, then CONN(S) is in coNP; if it is
tight but not Schaefer, then it is coNP-complete; otherwise, it is PSPACE-complete.

Theorem 7.2 (Gopalan, Kolaitis, Maneva and Papadimitriou [26])
Let S be a finite set of logical relations. If S is tight, then ST-CONN(S) is in P; otherwise,
it is PSPACE-complete.

Theorem 7.3 (Gopalan, Kolaitis, Maneva and Papadimitriou [26])

Let S be a finite set of logical relations. If S is tight, then for every CNF (S)-formula ¢,
the diameter of any component of G(p) is linear in the number of variables of ¢; other-
wise, there are CNF (S)-formulas ¢ such that G(¢) has some component with diameter

superpolynomial in the number of variables of .

The authors of [26] in fact conjectured a trichotomy for the complexity of CONN(S),
claiming that if S is Schaefer, then CONN(S) is actually in P (and showing that this
is true for a particular type of Schaefer sets). This conjecture was recently disproved
in [46], where a set of Schaefer relations for which the problem CONN(S) remains coNP-
complete is exhibited. In a recent updated version of [26], Gopalan, Kolaitis, Maneva and
Papadimitriou [27] formulate a (modified) trichotomy conjecture for the complexity of
CoONN(S), where it only remains to determine the complexity of CONN(S) for a certain

subset of Schaefer sets of relations.

We summarise their results, along with those of Schaefer [58], in Table 7.1 below.

S SAT(S) CONN(S) sT-CONN(S) Diameter
Schaefer p coNP P O(n)
Tight, non-Schaefer | NP-complete | coNP-complete | P O(n)
Non-tight NP-complete | PSPACE-compl. | PSPACE-compl. | 294v7)

Table 7.1 The complexity of SAT(.S), CONN(S) and sT-CONN(S), together
with the possible diameter of components of G (), for various types of relation

sets S.

We note that despite the close parallelism between the results presented in this thesis

and those of [26], the proofs are, in each case, very different.

108

Chapter 7. Conclusion

7.2 Discussion and open problems

We have studied the basic properties of mixing, exploring the relationship between the
mixing properties of a graph and certain graph invariants, notably the chromatic number

and the degeneracy.

We have also obtained strong results for the computational complexity of the decision
problems k-MIXING and k-COLOUR PATH. In particular, we have settled the complex-
ity 3-MIXING, finding an important distinction between the general problem and its
restriction to planar graphs. (Given that most NP-complete decision problems relating
to 3-colouring become no easier for planar graphs, it is a curious fact that 3-MIXING,
a coNP-complete problem, becomes polynomial time solvable when restricted to planar

graphs.) We have also characterised those graphs which are 3-mixing.

The complexity of k-COLOUR PATH has also been settled, and an important and what
appears to be fundamental relationship between the tractability of the problem and its
underlying structure has been established. In terms of the number of colours k& and
the degeneracy deg(G) of the instance graph, we have proved a full dichotomy for the
complexity of k-COLOUR PATH. If £ < 3 or k > deg(G) + 2, the problem is in P. In
all other cases, the problem is PSPACE-complete (note that the reductions that prove
Theorem 5.1 yield instances with deg(G) = k£ — 1). Moreover, we have seen how this
completely determines the complexity of k-COLOUR PATH for planar and bipartite planar

graphs.

We have also shown that for k£ < 3 or k > 2deg(G) + 1, the components of Ci(G) always
have quadratic diameter. On the other hand, for 4 < k < deg(G) + 1, there exist graphs
whose k-colour graph has components of superpolynomial diameter (the reader can easily
verify that the graphs of Theorem 5.2 also have degeneracy k — 1). Thus it remains to
determine whether for every graph G, the diameter of Cx(G) is polynomial (perhaps even
quadratic) in the size of G when k > 4 and deg(G) + 1 < k < 2deg(G) + 1. If true,
this would provide a complete correspondence between the PSPACE-completeness of
k-CoLOUR PATH and possible superpolynomial diameter components in Cx(G), according

to our classification of instances by number of colours and degeneracy.

Our most obvious open problem is determining the complexity of k-MIXING for k > 4.
An intimately related problem is of course finding a characterisation theorem for k-mixing
graphs. Using the fact that k-CoLOUR PATH is in PSPACE, Claim 5.6, we can at least
determine that k-MIXING is in PSPACE.

109

Chapter 7. Conclusion

Claim 7.4
The decision problem k-MIXING is in the complexity class PSPACE.

Proof. Given a graph G with n vertices, we can determine whether its k-colour graph
is connected using a polynomial (in n) amount of space by the following procedure. Let
us assume that the vertex set of G is {v1,vs,...,v,} and observe that given a string
$=8182...8, from {1,2,...,k}"™ we can check in polynomial space whether or not this
corresponds to a proper k-colouring « of G where a(v;) = s;. Now, given two strings s
and s’ from {1,2,...,k}" corresponding to k-colourings of G, Claim 5.6 tells us that
checking whether these colourings are connected in C(G) also takes a polynomial amount
of space. Given these observations, all we need to do is sequentially run through all k%"
pairs of strings (using the obvious ordering), checking whether or not they correspond to
colourings of G, and if they do, then checking if they are connected in Cx(G). Because we
are running through the strings in order, at each stage we can re-use our working space,

which is always polynomially bounded. O

A first step towards determining the complexity of k-MIXING (for k = 4, at least) might
be provided by an answer to the following question. Let G be a 3-chromatic graph and
let @ and (3 be two 3-colourings of G not connected in C3(G). Note that by Theorem 6.1
these colourings are connected in C5(G). What is the complexity of deciding if they are

connected in C4(G)?

Our main results, together with the complexity of k-COLOURABILITY, are summarised
in Table 7.2 below.

k k-COLOURABILITY | k-MIXING k-COLOUR PATH Diameter
2 P P P 0

3 NP-complete coNP-complete | P O(n?)

> 4 | NP-complete PSPACE PSPACE-complete | 29(vVn)

Table 7.2 The complexity of k-COLOURABILITY, k-MIXING and k-COLOUR
PATH, together with the possible diameter of components of Ci(G), for dif-

ferent values of k.

It is very interesting to compare the results from Tables 7.1 and 7.2: the similarity be-

tween them is striking. The comparison suggests that k-MIXING might well be PSPACE-

110

Chapter 7. Conclusion

complete for k£ > 4; this is also hinted at by the complexity of k-COLOUR PATH. If true,
this would provide an example of a decision problem exhibiting a trichotomy of complex-
ity, much the same as CONN(S) would, if the conjecture in [27] (that for any set S of
relations, CONN(S) is PSPACE-complete, coNP-complete, or in P) is true.

Given the similarity between Tables 7.1 and 7.2, it would be interesting to try to find
a relationship between the problems, perhaps expressing the problems k-MIXING and
k-CoLOUR PATH within the framework of [26]. This seems unlikely to be straightforward.
A standard first approach would be to encode a k-colouring of a graph as a satisfiability
problem by introducing a variable for every vertex, colour pair (v, c¢) which is set to true
when v is coloured c¢. This, however, would not yield a correspondence between flipping
bits in the graph of satisfying assignments and recolouring vertices of the graph being

coloured.

Let us briefly turn our attention to list-colouring versions of our problems. We saw
in Chapter 5 that the problem LisT-COLOUR PATH is PSPACE-complete, and that in-
stances of this problem all have colour lists contained in {1,2,3,4}. The reader will have
no trouble verifying, however, that the reduction that proves the PSPACE-hardness of
this problem (from SLIDING TOKENS) actually yields instances where each colour list
has size at most 3. Hence the problem equivalent to 3-COLOUR PATH for list-colourings
is PSPACE-complete. This fact has also been independently observed by Jan van den
Heuvel and Zsolt Tuza, who also proved that for colour lists of size at most 2, the problem
is solvable in polynomial time, [32]. In this case the list colouring problem is reducible
to a 2-SAT problem where the (v, ¢)-encoding mentioned above yields a correspondence
between flipping bits in the graph of satisfying assignments and recolouring vertices of
the graph. Then a result of [26] shows it is possible to verify the connectedness of two

satisfying assignments (list-colourings) in polynomial time.

It would also be interesting to further explore the properties of colour graphs themselves.
For example, what sort of structures might we find in colour graphs? On the other hand,
what graphs can occur as colour graphs? Let us mention at this point two results related
to the structure of colour graphs, which we phrase in the terminology of this thesis. In the
context of finding Gray codes for k-colourings of a graph G, MacGillivray and Choo [15]
prove that if £ > deg(G) + 3, then Ci(G) is Hamiltonian. Macaj [45] proves, further to a
study of the metric structure of the category of finite sets and mappings between them,
that the k-colour graph of the complete graph K, is vertex-transitive for any k > n, and
that for these same values the automorphism group of Ci(K,) is in fact isomorphic to

Sn X Sk, where S, denotes the symmetric group.

We recall two other questions that this thesis leaves unanswered. One, what is the mixing

111

Chapter 7. Conclusion

number of the Klein bottle? And two, is it true that the algorithm for 3-COLOUR PATH
from Chapter 4 can be implemented so as to always find a shortest path between two

given 3-colourings?

Closing, we mention a question related to the rapid mixing of Markov chains for sampling
colourings, the field from whence the inspiration for this thesis arose. If Ci(G) is not
connected, what might be sensible edges to add between certain k-colourings to ensure
that it 7s connected? That is, what additional moves might ensure that the state space of
the chain is irreducible? This is a question that is often addressed when trying to obtain
efficient algorithms for sampling k-colourings of particular graphs, but can anything be

said in general?

112

Appendix

Non-deterministic constraint logic

We describe the non-deterministic constraint logic (NCL) model of computation of Hearn
and Demaine [30], together with some associated decision problems. We also describe how
the restricted instances of SLIDING TOKENS used to prove the PSPACE-completeness of
k-CoLOUR PATH in Theorem 5.1 arise.

An NCL machine is specified by an undirected graph together with an assignment of
non-negative integer weights to its vertices and edges; the vertex weights are minimum
in-flow constraints. A configuration of the machine is specified by an orientation of its
edges such that the sum of incoming edge-weights at each vertex is at least the minimum
in-flow constraint of the vertex. A mowve from one configuration to another is simply the
reversal of a particular edge direction such that all minimum in-flow constraints remain

satisfied.

The authors of [30] present the following three decision problems associated with NCL

machines.
1. Given an NCL machine together with a particular configuration, can a specified
edge be eventually reversed by some sequence of moves?

2. Given an NCL machine together with two particular configurations A and B, is

there a sequence of moves from A to B?

3. Given two edges e4 and eg of an NCL machine, and orientations for each, are there
configurations A and B such that e4 has its desired orientation in A, eg has its

desired orientation in B, and there is a sequence of moves from A to B?

We remark that it is the second problem that we use for our definition of SLIDING

TOKENS in Chapter 5, after some suitable transformations which we now describe.

113

Appendix

It turns out that certain vertex configurations in NCL machines are of particular interest.
A vertex with minimum in-flow constraint 2 and three incident edges with weights 1,1, 2
behaves as a logical AND: the edge with weight 2 can be directed outwards only when the
other two edges are directed inwards. Such a vertex is called an AND vertex. Likewise,
a vertex with minimum in-flow constraint 2 and three incident edges with weights 2, 2,2
behaves as a logical OR: a given edge may be directed outward if and only if at least one

of the other two is directed inwards. Such a vertex is called an OR vertex.

The authors of [30] claim without proof that every NCL graph is reducible in logarithmic
space to an equivalent (in terms of the given decision problems) AND/OR constraint
graph—this is a graph composed exclusively of AND and OR vertices. They then prove
all three of the above decision problems to be PSPACE-complete for such graphs. Note
that this unproved claim is not used in our reductions, and is therefore unnecessary for
our results: our reductions are always from AND/OR constraint graphs, or rather, their

sliding-token versions (see below).

The three problems are then shown to remain PSPACE-complete for 3-connected planar
AND/OR graphs; this is achieved by the construction of a suitable crossover gadget and
a suitable connectivity-augmentation gadget. After describing some applications of NCL
and the above decision problems by proving strong PSPACE-completeness results for a
variety of sliding-block puzzles, the final section of [30] contains an alternative formulation

of AND/OR constraint graphs in terms of sliding tokens along graph edges.

In this context, the ‘machine’ is again an undirected graph G. A token configuration of a
graph G is a set of vertices on which tokens are placed, in such a way that no two tokens
are adjacent. (Thus a token configuration can be thought of as an independent set of
vertices of G.) A move between two token configurations is the displacement of a token
from one vertex to an adjacent vertex. Note that a move must result in a valid token

configuration.

The simulation of NCL AND and OR vertices via sliding-token gadgets is depicted in
Figure A.1. The gadgets are in fact the vertex configurations within the dotted lines and
the edges that cross the dotted lines are termed port-edges—these connect the gadgets.
For the AND sliding-token gadget, the two lower port-edges correspond to the edges of
an NCL AND vertex with weight 1. A token on an outer port-edge vertex represents an
NCL edge directed inwards, and a token on an inner port-edge vertex represents an edge

directed outwards.

Hence given an AND/OR constraint graph and configuration, a corresponding sliding-

token graph can be constructed by joining AND and OR vertex gadgets and placing

114

Appendix

Figure A.1 (a) an AND sliding-token gadget, and (b) an OR sliding-token
gadget.

the port tokens appropriately. Moreover, it is not hard to see that such a sliding-token
instance is equivalent to the original NCL instance. The AND gadget satisfies the same
constraints as an NCL AND vertex: the upper token can slide in precisely when both
lower tokens are slid out. Similarly, the ORrR gadget satisfies the same constraints as an
NCL OR vertex: the upper token can slide in when either lower token is slid out—the

internal token can then be displaced to allow the upper token to slide in.

We finish by making some remarks about the way we describe these sliding-token in-
stances in Chapter 5. The token triangles of our SLIDING TOKENS instances—copies
of Ks3—are precisely the triangles in OR configurations; token edges—copies of Ko—are
the port edges on the boundaries of both AND and OR configurations. Because the orig-
inal instances of NCL can be taken to be planar, we can see that every sliding-token
instance has a planar embedding where every token triangle bounds a face. Moreover,
because the NCL instances can be taken to be 3-connected, every sliding-token gadget is
connected to three other gadgets and so we can take our instances of SLIDING TOKENS

to have minimum degree 2.

115

Bibliography

1]

M.O. Albertson and J.P. Hutchinson, The three excluded cases of Dirac’s map-color
theorem. Ann. New York Acad. Sci. 319 (1979), 7-17.

K. Appel and W. Haken, Every planar map is four colorable. Part I. Discharging.
Illinois J. Math. 21 (1977), 429-490.

K. Appel, W. Haken and J. Koch, Every planar map is four colorable. Part II.
Reducibility. Illinois J. Math. 21 (1977), 491-567.

V. Barbéra and B. Jaumard, Design of an efficient block retuning. Mobile Netw.
Appl. 6 (2001), 501-510.

R.J. Baxter, Fxactly Solved Models in Statistical Mechanics. Academic Press, New
York, 1982.

J. Billingham, R.A. Leese and H. Rajaniemi, Frequency reassignment in cellular
phone networks. Smith Institute Study Group Report (2005). Available from http:
//www.smithinst.ac.uk/Projects/ESGI53/ESGI53-Motorola/Report.

P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Submitted. [A conference proceedings
version of this article can be found in Proceedings of Mathematical Foundations of
Computer Science, 32nd International Symposium, MFCS 2007. Lect. Notes Com-
put. Sci. 4708 (2007), 738-749.]

G.R. Brightwell and P. Winkler, Graph homomorphisms and phase transitions.
J. Combin. Theory Ser. B 77 (1999), 221-262.

G.R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs. J. Com-
bin. Theory Ser. B 78 (2000), 141-166.

L. Cereceda, J. van den Heuvel and M. Johnson, Connectedness of the graph of
vertex-colourings. Discrete Math. 308(5-6) (2008), 913-919.

116

Bibliography

[11]

[12]

[13]

[14]

[17]

[18]

[19]

L. Cereceda, J. van den Heuvel and M. Johnson, Mixing 3-colourings in bipartite
graphs. Submitted. [A conference proceedings version of this article can be found
in Proceedings of the 33rd International Workshop on Graph-Theoretic Concepts in
Computer Science, WG 2007. Lect. Notes Comput. Sci. 4769 (2007), 166-177.]

L. Cereceda, J. van den Heuvel and M. Johnson, Finding paths between 3-colourings.

Submitted.

Y.M. Chee and A. Lim, The algorithmic complexity of colour switching. Inform.
Process. Lett. 43 (1992), 63-68.

M. Chlebik and J. Chlebikova, Hard coloring problems in low degree planar bipartite
graphs. Discrete Appl. Math. 154(14) (2006), 1960-1965.

K. Choo and G. MacGillivray, Gray code numbers for graphs. Preprint (2006).

D.P. Dailey, Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discrete Math. 30 (1980), 289-293.

R. Diestel, Graph Theory, 3rd edition. Springer-Verlag, Heidelberg, 2005.

G.A. Dirac, Map colour theorems related to the Heawood colour formula. J. London
Math. Soc. 31 (1956), 460-471.

G.A. Dirac, Short proof of a map-colour theorem. Canad. J. Math. 9 (1957), 225—
226.

M. Dyer, A. Flaxman, A. Frieze and E. Vigoda, Randomly colouring sparse ran-
dom graphs with fewer colours than the maximum degree. Random Structures Al-

gorithms 29(4) (2006), 450-465.

L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Academiae
Sci. I. Petropolitanae 8 (1741) 128-140. Available from http://math.dartmouth.
edu/~euler/pages/E053.html.

S. Fisk, Geometric coloring theory. Adv. Math. 24 (1977), 298-340.
P. Franklin, A six color problem. J. Math. Phys. 13 (1934), 363-379.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, New York, 1979.

L.A. Goldberg, R. Martin and M. Paterson, Random sampling of 3-colorings in Z2.
Random Structures Algorithms 24(3) (2004), 279-302.

117

Bibliography

[26]

[29]

[30]

[31]

32]

33]

[36]

[37]

[38]

P. Gopalan, P.G. Kolaitis, E.N. Maneva and C.H. Papadimitriou, The connectivity
of Boolean satisfiability: computational and structural dichotomies. In Proceedings

of Automata, Languages and Programming, 33rd International Colloquium, ICALP
2006, Part 1. Lect. Notes Comput. Sci. 4051 (2006), 346-357.

P. Gopalan, P.G. Kolaitis, E.N. Maneva and C.H. Papadimitriou, The connectivity of
Boolean satisfiability: computational and structural dichotomies. (Revised version.)

Preprint (2007). Available from http://arxiv.org/abs/cs.CC/0609072v2.

W.K. Hale, Frequency assignment: theory and applications. Proc. IEEE 68(12)
(1980), 1497-1514.

J. Han, Frequency reassignment problem in mobile communication networks. Com-
put. Oper. Res. 34 (2007), 2939-2948.

R.A. Hearn and E.D. Demaine, PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation.
Theoret. Comput. Sci. 343 (2005), 72-96.

P.J. Heawood, Map colour theorem. Quart. J. Math. Ozxford Ser. 24 (1890), 332-338.
J. van den Heuvel, personal communication.

P. Hlinény, A note on possible extensions of Negami’s conjecture. J. Graph The-
ory 32 (1999), 234-240.

M. Hujter and Zs. Tuza, Precoloring extension II. Graph classes related to bipartite
graphs. Acta Math. Univ. Comenian. LXII(1) (1993), 1-11.

R. Jacob, Standortplanung mit Blick auf Online-Strategien. Graduate Thesis, Uni-
versity of Wiirzburg, 1997. Available from http://wwwl4.in.tum.de/personen/
jacob/Publications/index.html.

J. Janssen, Channel Assignment and Graph Labeling. John Wiley & Sons, New York,
2002.

T.R. Jensen and B. Toft, Graph Coloring Problems. Wiley-Interscience, New York,
1995.

M. Jerrum, A very simple algorithm for estimating the number of k-colourings of a
low degree graph. Random Structures Algorithms 7 (1995), 157-165.

M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complezity. Birk-
hauser Verlag, Basel, 2003.

118

Bibliography

[40]

[41]

[42]

[47]

[49]

[50]

J. Kratochvil, Perfect codes in general graphs. Collog. Math. Soc. Jdnos Bolyai 52
(1987), 357-364.

J. Kratochvil, Precoloring extension with fixed color bound. Acta Math. Univ. Come-
nian. LXII(2) (1993), 139-153.

M. Las Vergnas and H. Meyniel, Kempe classes and the Hadwiger conjecture.
J. Combin. Theory Ser. B 31 (1981), 95-104.

R.A. Leese and S. Hurley (Eds.), Methods and Algorithms for Radio Channel As-
signment. Oxford University Press, Oxford, 2003.

T. Luczak and E. Vigoda, Torpid mixing of the Wang-Swendsen-Kotecky algorithm
for sampling colorings. J. Discrete Alg. 3 (2005), 92—-100.

M. Macaj, Vertex-transitive graphs and 2-transitive groups I. Injective mappings.

Preprint (2001).

K. Makino, S. Tamaki and M. Yamamoto, On the Boolean connectivity problem for
Horn relations. In Proceedings of the 10th International Conference on Theory and
Applications of Satisfiability Testing (SAT) 2007, Lect. Notes Comput. Sci. 4501
(2007), 187-200.

O. Marcotte and P. Hansen, The height and length of colour switching. In P. Hansen
and O. Marcotte (Eds.), Graph Colouring and Applications, Proceedings of the Cen-
tre de Réchérches Mathématiques, Vol. 23. Oxford University Press, Oxford, 1999.

C.J.H. McDiarmid, Discrete Mathematics and Radio Channel Assignment. In B.A.
Reed and C. Linhares-Salas (Eds.), Recent Advances in Algorithms and Combina-
torics. Springer-Verlag, New York, 2003.

H. Meyniel, Les 5-colorations d’un graphe planaire forment une classe de commuta-
tion unique. J. Combin. Theory Ser. B 24 (1978), 251-257.

B. Mohar, A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Math. 12 (1999), 6-26.

B. Mohar, Kempe equivalence of colorings. In J.A. Bondy, J. Fonlupt, J.L. Fouquet,
J.-C. Fournier, and J. Ramirez Alfonsin (Eds.), Proceedings of Graph Theory in
Paris, a Conference in Memory of Claude Berge. Birkhauser, 2006.

B. Mohar and C. Thomassen, Graphs on Surfaces. The Johns Hopkins University
Press, Baltimore, 2001.

119

Bibliography

[53]

[54]

[55]

[56]

C.H. Papadimitriou, Computational Complezity. Addison-Wesley, Boston, 1994.

T.J. Rackham, A precolouring extension of Brooks’ theorem. Preprint (2006). Avail-
able from http://www.maths.ox.ac.uk/~rackham/pebt2006.pdf.

G. Ringel and J.W.T. Youngs, Solution of the Heawood map-coloring problem. Proc.
Nat. Acad. Sci. U.S.A. 60 (1968), 438-445.

N. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The four colour theorem.
J. Combin. Theory Ser. B 70 (1997), 2-44.

W.J. Savitch, Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4(2) (1970), 177-192.

T.J. Schaefer, The complexity of satisfiability problems. Proc. 10th Annual ACM
Symp. on Theory of Computing (1978), 216-226.

E. Vigoda, Improved bounds for sampling colorings. J. Math. Phys. 41 (2000), 1555—
1569.

N. Vikas, Computational complexity of compaction to irreflexive cycles. J. Comput.
System. Sci. 68 (2004), 473-496.

D.B. West, Introduction to Graph Theory, 2nd edition. Prentice-Hall, New Jersey,
2001.

120

