
Mixing Graph Colourings

Luis Cereceda

A thesis submitted for the degree of

Doctor of Philosophy

Department of Mathematics

London School of Economics

and Political Science

December 2007

Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD degree of

the London School of Economics and Political Science is solely my own work other than

where I have clearly indicated that it is the work of others (in which case the extent of

any work carried out jointly by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced without

the prior written consent of the author.

I warrant that this authorisation does not, to the best of my knowledge, infringe the

rights of any third party.

Abstract

This thesis investigates some problems related to graph colouring, or, more

precisely, graph re-colouring. Informally, the basic question addressed can be

phrased as follows. Suppose one is given a graph G whose vertices can be prop-

erly k-coloured, for some k ≥ 2. Is it possible to transform any k-colouring

of G into any other by recolouring vertices of G one at a time, making sure

a proper k-colouring of G is always maintained? If the answer is in the affir-

mative, G is said to be k-mixing. The related problem of deciding whether,

given two k-colourings of G, it is possible to transform one into the other by

recolouring vertices one at a time, always maintaining a proper k-colouring

of G, is also considered.

These questions can be considered as having a bearing on certain mathe-

matical and ‘real-world’ problems. In particular, being able to recolour any

colouring of a given graph to any other colouring is a necessary pre-requisite

for the method of sampling colourings known as Glauber dynamics. The

results presented in this thesis may also find application in the context of fre-

quency reassignment: given that the problem of assigning radio frequencies

in a wireless communications network is often modelled as a graph colour-

ing problem, the task of re-assigning frequencies in such a network can be

thought of as a graph recolouring problem.

Throughout the thesis, the emphasis is on the algorithmic aspects and the

computational complexity of the questions described above. In other words,

how easily, in terms of computational resources used, can they be answered?

Strong results are obtained for the k = 3 case of the first question, where a

characterisation theorem for 3-mixing graphs is given. For the second ques-

tion, a dichotomy theorem for the complexity of the problem is proved: the

problem is solvable in polynomial time for k ≤ 3 and PSPACE-complete for

k ≥ 4. In addition, the possible length of a shortest sequence of recolourings

between two colourings is investigated, and an interesting connection between

the tractability of the problem and its underlying structure is established.

Some variants of the above problems are also explored.

To my parents,

for all their support.

Contents

Acknowledgements 9

1 Introduction 10

1.1 Preliminaries . 12

1.2 Background and motivation . 16

1.3 Outline of the thesis . 20

2 First results on mixing 22

2.1 Basic properties of mixing . 22

2.2 Mixing k -colourings in k -chromatic graphs 30

3 Mixing 3-colourings 37

3.1 Characterising 3-mixing graphs . 37

3.2 The complexity of 3-Mixing . 42

3.3 A polynomial time algorithm for 3-Mixing for planar graphs 53

4 Paths between 3-colourings 59

4.1 A polynomial time algorithm for 3-Colour Path 60

4.2 Distances between 3-colourings . 70

5 Paths between k-colourings 74

5.1 Preliminaries . 75

5.2 PSPACE-completeness of k -Colour Path 79

5.3 Distances between k -colourings . 84

5.4 Tractability of k -Colour Path and distances between k -colourings . . . 93

6 Miscellaneous results about recolouring 96

6.1 Recolouring using extra colours . 96

6.2 The complexity of finding alternative colourings 99

7 Conclusion 104

7.1 Related work . 104

7

Contents

7.2 Discussion and open problems . 109

Appendix 113

Bibliography 116

8

Acknowledgements

This thesis would not exist without the help and collaboration of a great number of

people. I would like to acknowledge some particular contributions.

Firstly, I am truly indebted and very thankful to Jan van den Heuvel for his excellent

supervision throughout the development of this thesis. He has been a constant source

of inspiration and fruitful mathematical questions; his patience and encouragement have

been second to none.

Secondly, I owe thanks to my coauthors—Paul Bonsma, Jan van den Heuvel and Matthew

Johnson—for all their help and generosity in sharing and communicating ideas, as well as

to Hajo Broersma for putting forward the seminal question that led to the development of

this thesis. For other questions and remarks that led to further results I am also grateful

to Bill Jackson, Mark Jerrum, Gary MacGillivray, Steve Noble, Moshe Vardi and Peter

Winkler.

Thanks also to everyone at the Mathematics Department at the London School of Eco-

nomics for making my time there so enjoyable. In particular, I would like to thank

Graham Brightwell and Bernhard von Stengel for their interest and helpful discussions,

and Jackie Everid, Simon Jolly and Dave Scott for their unstinting support in all mat-

ters non-mathematical. I would also like to acknowledge the London School of Economics

itself and the Engineering and Physical Sciences Research Council for their financial sup-

port.

Lastly, and in some sense most importantly, thanks to all my friends and family for all

their love and support during the past four years.

9

1
Introduction

Graph theory deals with the abstract study of connections between objects. It is a

fundamental branch of combinatorial mathematics with a very wide range of applications.

Its origin is usually attributed to Leonhard Euler’s solution of the Seven Bridges of

Königsberg Problem in 1735. The city of Königsberg in Prussia (now called Kaliningrad,

and situated in Russia), set on the river Pregel, included two large islands connected to

each other and the mainland by seven bridges. Allegedly, the residents had long asked

themselves whether it was possible to tour the city crossing each bridge exactly once,

ending up at the point from which one had started. Euler proved, in what is widely

accepted to be the first paper in the history of graph theory [21], that no such tour is

possible.

Roughly speaking, a graph is a set of vertices—which may be thought of as represent-

ing objects—and a set of edges between pairs of vertices—which may be thought of as

connections between pairs of objects. As a basic way of representing the connectivity

properties of a set of objects, graphs are used to model, for example, road and railway

networks, components on an electrical circuit board, flows through a system of pipes, the

structure of molecules, computer networks, and the Internet. In all these contexts, many

interesting problems can be cast in graph-theoretic terms, and can therefore be attacked

employing the tools of graph theory. But graphs do not serve just as models for physical

connections between objects. Many other, more abstract problems, such as how best to

timetable a set of exams, or how best to assign a set of jobs to a given set of people, can

also be explored using graph-theoretic techniques.

This thesis concentrates on the area of graph theory known as graph colouring. The

origins of graph colouring can be traced back to the middle of the 19th century when,

in 1852, Francis Guthrie asked whether four colours are enough to colour the regions

10

Chapter 1. Introduction

of any map drawn in the plane in such a way that regions with a common boundary

receive different colours. It was not until 1976 that this question was settled in the

affirmative by Appel and Haken [2, 3], though some researchers argue that their proof is

not completely satisfactory. Part of Appel and Haken’s proof relies heavily on the use of

a computer for extensive case-analysis, and the part that is supposedly hand-checkable

is still extraordinarily complicated. Some twenty years later, another, simpler and more

easily verifiable proof (indeed independently verified)—though still relying on the use

of a computer—was provided by Robertson, Sanders, Seymour and Thomas [56]. Ever

since this first graph colouring problem was posed a century and a half ago, the subject

has grown continually and is now vast. The fact that many non-mathematicians know of

Guthrie’s question or of the subsequent Four Colour Theorem is testament to its status.

Indeed graph colouring now occupies a central position in discrete mathematics: it has

developed into an elegant theory with many applications, sometimes surfacing in unex-

pected areas. It deals with the basic problem of partitioning a set of objects according

to certain prescribed rules or constraints. Typically, the constraints specify, for each pair

of objects, whether both objects are allowed in the same class or not. Sequencing and

scheduling problems are important applications which fall into this category. As a basic

example, consider the following problem. Suppose we wish to construct a timetable for

a set of exams, taking care to use the smallest number of time-slots as possible. This

problem can be modelled as a graph colouring problem by letting each exam be repre-

sented by a vertex, and joining two exams by an edge if there is some student sitting

both exams (which therefore require different time-slots). If we think of time-slots as

‘colours’, an assignment of colours to the vertices of the graph that gives vertices joined

by an edge different colours—a colouring—yields a timetable. Hence a colouring using

the minimum possible number of colours will yield the desired timetable. Another im-

portant application of graph colouring, which we will examine in some detail later in this

chapter, is the task of assigning radio frequencies in a wireless communications network.

The field is still a very active area of research, and many important questions remain

unresolved. An abundance of graph colouring open problems, together with detailed

annotations, historical notes and references can be found in the monograph of Jensen

and Toft [37].

The results in this thesis can more precisely be described as concentrating not on graph

colouring, but on graph re-colouring. Basically, we investigate the following two prob-

lems.

11

Chapter 1. Introduction

1. Given a graph, is it possible to recolour any colouring of the graph to any other by

recolouring vertices one at a time, always maintaining a colouring of the graph?

2. Given a graph and two colourings of the graph, is it possible to recolour one colour-

ing to the other by recolouring vertices one at a time, always maintaining a colour-

ing?

Our primary focus is on the algorithmic aspects of these questions. In particular, we

study the computational complexity of the decision problems associated with them: that

is, how easily, in terms of computational resources used, can we answer them?

We also examine related issues. For example, we provide some answers to the following

questions. Can we characterise the graphs for which the answer to the first question is

‘yes’? Is there anything remarkable or particular about the colourings of such graphs?

For the second question, if, for a particular instance, we know that the answer is in the

affirmative, how easily can we find a sequence of recolourings that achieves the transfor-

mation? How long is such a sequence, and how long is a shortest possible sequence? On

the other hand, if we know the answer is in the negative, can we achieve the transforma-

tion by using relatively few extra colours? How many are actually necessary?

Before proceeding, in the rest of this chapter, to provide some motivation for studying

these problems and to give an overview of the thesis, we describe our basic terminology

and notation, together with some fundamental concepts and definitions.

1.1 Preliminaries

Most of our mathematical terminology and notation is standard. Let us point out some

particulars. The cardinality of a set X is denoted by |X|, and the set-theoretic difference

between X and any other set Y by X \ Y . We do not count 0 as a natural number, and,

for k ∈ R, bkc is the largest integer less than or equal to k.

We assume familiarity with the basic concepts of graph theory and computational com-

plexity theory. For an introduction to the former we refer the reader to any standard

textbook on graph theory such as, for example, Diestel [17] or West [61]; for an introduc-

tion to the latter, see Garey and Johnson [24] or Papadimitriou [53]. The reader should

also find definitions for concepts and terminology not defined here in these references.

We presently revise some of the basics of graph theory and describe some particular con-

ventions used in this thesis. Following this, we will give some definitions necessary for a

precise description of our results.

12

Chapter 1. Introduction

Basic graph-theoretic concepts and conventions used in this thesis

We denote the set of vertices of a graph G by V (G) and its set of edges by E(G). When

there is no danger of confusion, or the graph in question is given implicitly, we will write V

and E. Throughout this thesis we consider only finite graphs with no loops or multiple

edges. Thus for any graph G, V will be a finite set and E will be a set of unordered pairs

of elements of V , where elements in any given pair are distinct. We will often write n

for |V | and m for |E|. For simplicity and ease of reference, we will also often deliberately

confuse a graph with its set of vertices.

We denote an edge between vertices u and v by uv (or, equivalently, by vu), saying

vertices u and v are adjacent, or neighbours, and that the vertex u is incident with, or an

end-vertex of, the edge uv. We write d(v) for the degree of v, which is the number of edges

incident with v. If we need to distinguish the graph G in which the degree is measured,

we will write dG(v). The maximum and minimum degree of G are respectively denoted

by ∆(G) and δ(G). If it is clear from the context which graph is under consideration, we

will simply write ∆ or δ.

A path between vertices u and v—a (u, v)-path—is a sequence of distinct vertices, starting

at u and ending at v, such that pairs of consecutive vertices in the sequence constitute

an edge of the graph. The distance between vertices v and w, denoted d(v, w), is the

number of edges in a shortest path between v and w; if there is no path between v and w

we say that the distance between them is infinite. If we need to distinguish the graph G

in which the distance is measured, we will write dG(v, w). The diameter of G, diam(G),

is defined as max{d(u, v) |u, v ∈ V }.
For a subset X of V , we denote by G−X the graph that has V \X as its vertex set and

whose edges are the edges of G that have both end-vertices in V \ X. For X a subset

of E, G−X denotes the graph with vertex set V and edge set E \X.

A graph G is said to be connected if any two of its vertices are linked by path. It

is k-connected if it has at least k + 1 vertices and for every set X ⊂ V with |X| < k,

G−X is connected.

If H is a subgraph of G, we write H ⊆ G. The degeneracy of G, deg(G), is defined

as the largest minimum degree of any subgraph of G. That is, deg(G) = max{δ(H) |
H ⊆ G}. This quantity is also known as the colouring number or maximin degree of G.

It is an easy exercise to verify that a graph has degeneracy r if and only if there is an

ordering v1, v2, . . . , vn of its vertices such that for 1 ≤ i ≤ n, the vertex vi has at most r

neighbours vj with j < i. Such a graph is described as r-degenerate, as is any associated

vertex-ordering.

13

Chapter 1. Introduction

A drawing of a graph G on a surface S (that is, a compact 2-dimensional manifold without

boundary) is a graphical representation of G on S, with each vertex assigned a distinct

point on S, and curves joining points which correspond to vertices forming an edge.

The drawing is said to be an embedding if no two curves intersect (other than at vertex

points), and G is embeddable on S if there exists an embedding of G on S. If a graph is

embeddable on the sphere it is said to be planar, since the plane is homeomorphic to a

sphere with a point removed.

Two graphs G1 and G2 are said to be isomorphic, written G1
∼= G2, if there exists a

bijection ϕ : V (G1)→ V (G2) such that uv ∈ E(G1) if and only if ϕ(u)ϕ(v) ∈ E(G2).

We denote the cycle on n vertices (or n-cycle) by Cn, and the complete graph on n vertices

by Kn. The graph C3
∼= K3 is known as the triangle. Quite often we will describe a cy-

cle Cn by just listing its vertices v1, v2, . . . , vn, with the edges v1v2, v2v3, . . . , vn−1vn, vnv1

being read implicitly.

Colourings and recolouring: the colour graph

In this section we recall some basic definitions about colouring, and formalise our notions

about recolouring graph colourings.

All colourings considered in this thesis are proper vertex colourings. That is, for a natural

number k ≥ 2, we define a k-colouring of a graph G as a function α : V → {1, 2, . . . , k}
such that α(u) 6= α(v) for all uv ∈ E. If G has a k-colouring, we say it is k-colourable. (We

insist that k ≥ 2 in order to avoid trivialities—there is not much to say about 1-colourable

graphs.) For 1 ≤ i ≤ k, the preimages α−1(i) are termed colour classes. The smallest k

for which a k-colouring of G exists is called the chromatic number of G, χ(G). We will

generally use lower case Greek letters α, β, . . . to denote specific colourings, and we will

often describe a k-colouring of a path or cycle by just listing the colours as they appear

on consecutive vertices.

Definition 1.1

Let G be a k-colourable graph. The k-colour graph of G, denoted Ck(G), is the graph

that has the k-colourings of G as its vertex set, with two k-colourings joined by an edge

in Ck(G) if they differ in colour on precisely one vertex of G. If Ck(G) is connected, we

say that G is k-mixing.

The colour graph allows us to talk about recolourings and possible sequences of recolour-

ings in a graph-theoretic language: we may now meaningfully talk of adjacency, paths

and distances between colourings.

14

Chapter 1. Introduction

A k-colouring of G that forms an isolated node in Ck(G) is said to be frozen. Note that

the existence of a frozen k-colouring of a graph immediately implies that the graph is not

k-mixing. If G has a k-colouring α, then we say that we can, from α, recolour G with β

if αβ is an edge of Ck(G). If v is the unique vertex on which α and β differ, then we also

say that we can recolour v. Given a k-colouring α, a colour is available for a vertex v if

neither v nor any of its neighbours are assigned that colour. If there is a path between α

and β in Ck(G) we will say that we can recolour α to β.

We will sometimes describe recolourings explicitly, and sometimes implicitly. In either

case, it will often be useful to think of a sequence of recolourings as a list of ordered

pairs (v, c) where, at any stage in the sequence, v is the vertex to be recoloured with

colour c.

Decision problems about recolouring

We are now in a position to formally state the decision problems corresponding to the

two questions stated at the beginning of this introduction, and whose computational

complexity will be the central question addressed in this thesis.

Corresponding to the first question (given a graph, is it possible to recolour any colouring

of the graph to any other by recolouring vertices one at a time, always maintaining a

colouring of the graph?) we have the problem k-Mixing.

k-Mixing

Instance : A connected graph G.

Question : Is G k-mixing? That is, is Ck(G) connected?

Corresponding to the second question (given a graph and two colourings of the graph, is

it possible to recolour one colouring to the other by recolouring vertices one at a time,

always maintaining a colouring?) we have the problem k-Colour Path.

k-Colour Path

Instance : A connected graph G together with two k-colourings of G, α and β.

Question : Is there a path between α and β in Ck(G)?

Note that k is never part of the input. In other words, we have two classes of problems,

each consisting of an infinite number of problems parametrised by k. Note also that we

always insist that the instance graph G is connected. If G is not connected, then it is easy

to see that G is k-mixing if and only if H is k-mixing for every connected component H

15

Chapter 1. Introduction

of G. Similarly, there is a path between k-colourings α and β of G if and only if, for

every connected component H of G, there is a path between the colourings induced by α

and β on H. Thus we may always reduce our problems to connected graphs, and will

therefore, as a general rule, take graphs to be connected.

1.2 Background and motivation

Our main motivation for studying the problems described above is for their own sake.

The questions are simple and fairly natural, and lead to, in the author’s opinion, some

interesting mathematics. However, the questions can certainly be regarded as being

motivated by other lines of research, or indeed as having applications. We proceed to

outline two such motivating applications.

Sampling colourings via Glauber dynamics

The question of when the k-colour graph is connected is not new. It has been looked at,

as a subsidiary issue, by researchers in the statistical physics community studying the

Glauber dynamics of an anti-ferromagnetic Potts model at zero temperature. Associated

with that research is the work on rapid mixing of Markov chains used to obtain efficient

algorithms for almost uniform sampling of k-colourings of a given graph. We give a brief

description of the basic ideas involved in these areas of research.

Randomness plays an important role in many parts of combinatorics and theoretical com-

puter science. Indeed results from probability theory have led to major developments in

both fields. It is therefore unsurprising that researchers are often interested in obtaining

random samples of particular combinatorial structures. For example, much attention

has been devoted to the problem of sampling from an exponential number of structures

(exponential in the size of the object over which the structures are defined) in time poly-

nomial in this quantity. One of the reasons for this is that being able to sample almost

uniformly from a set of combinatorial structures is enough to be able to approximately

count such structures—see [38] for an example illustrating the method in the context of

graph colourings, and [39] for full details.

Quite often, the sampling is done via the simulation of an appropriately defined Markov

chain. Here the important point is that the Markov chain should be rapidly mixing.

This means, loosely speaking, that it should converge to a close approximation of the

stationary distribution in time polynomial in the size of the problem instance. For a

precise description of this concept and further details we refer the reader to [39].

16

Chapter 1. Introduction

In the context of the particular Markov Chain used for sampling k-colourings of a graph

known as Glauber dynamics—originally defined for the anti-ferromagnetic Potts model

at zero temperature (see below)—we have the following. For a particular graph G and

value of k, let us denote the Glauber dynamics for the k-colourings of G by Mk(G) =

(Xt)∞t=0. The state space of Mk(G) is the set of k-colourings of G, the initial state X0

is an arbitrary colouring, and its transition probabilities are determined by the following

procedure.

1. Select a vertex v of G uniformly at random.

2. Select a colour c ∈ {1, 2, . . . , k} uniformly at random.

3. If recolouring vertex v with colour c yields a proper colouring, then set Xt+1 to be

this new colouring. Otherwise, set Xt+1 = Xt.

The relation of Mk(G) to the k-colour graph of G should be obvious: a simulation of

the chain corresponds to a walk in Ck(G), since two k-colourings α, β of G form an edge

of Ck(G) if and only if Pr(Xt+1 = β |Xt = α) > 0, in which case

Pr(Xt+1 = β |Xt = α) =
1

k|V | .

Clearly Mk(G) is irreducible if and only if G is k-mixing. Thus the fact that a graph is

k-mixing is a necessary condition for its Glauber dynamics Markov chain to be rapidly

mixing. (This should go some way to explaining our choice of terminology for describing

a graph with a connected k-colour graph!) Let us remark, however, that a graph being

k-mixing is not sufficient for its Glauber dynamics Markov chain to be rapidly mixing.

An example showing this is given by the stars K1,m, which are k-mixing for any k ≥ 3

(see Theorem 2.7 in Section 2.1) but whose Glauber dynamics is not rapidly mixing for

k ≤ m1−ε, for fixed ε > 0 (proved in [44]).

We turn to a brief and informal description of the Potts model. This is a statistical

mechanics model for studying the interaction of spins (intrinsic angular momenta) of the

particles in a crystalline lattice. It is used as a theoretical description for ferromagnetism

and other phenomena of solid-sate physics. In the ferromagnetic case, like spins of neigh-

bouring particles are encouraged by a certain lowering of the total energy of the system

for every neighbouring pair with like spins. In the anti-ferromagnetic case, neighbouring

particles are encouraged to have different spins. The temperature of the system reflects

the extent of ‘encouragement’: the lower the temperature, the more the energy of the

system is lowered by a given neighbouring pair of particles having like/unlike spins. At

17

Chapter 1. Introduction

zero temperature, this encouragement becomes an inviolable requirement. Thus the zero-

temperature anti-ferromagnetic k-state Potts model of a particular lattice—where each

particle has one of k possible spins, and neighbouring particles cannot have the same

spin—has as its set of configurations the set of k-colourings of the graph corresponding

to the lattice. The Glauber dynamics of this model describes the transitions between the

spin states of the system in precisely the same manner as described above.

Let us point out that much of the work on rapid mixing of the Glauber dynamics Markov

chain (as well as that of its many generalisations and variants) has concentrated on

specific graphs, or on values of k so large that the connectedness of the k-colour graph is

guaranteed. In particular, because of its focus on crystalline structures, the Potts model

has been widely studied on very regular and highly symmetric graphs such as integer

grids. In contrast, we address the question of the irreducibility of the chain in a wider

sense, asking what can be said in general, for any graph and relatively small values of k.

Radio frequency reassignment

Besides its use in sequencing and scheduling, another important application of graph

colouring is that of modelling the assignment of frequencies in radio-communication net-

works. The basic aim of the Frequency Assignment Problem (FAP) is to assign frequen-

cies to users of a wireless network, minimising the interference between them and taking

care to use the smallest possible range of frequencies. Because the radio spectrum is a

naturally limited resource with a constantly growing demand for the services that rely on

it, it has become increasingly important to use it as efficiently as possible. As a result,

and because of the inherent difficulty of the problem, the subject of frequency assignment

is huge. For an introduction and survey of different approaches and results we refer the

reader to [43] and [48].

The FAP was first considered as a graph colouring problem by Hale in [28]. In this

setting, we think of the available frequencies (discretised and appropriately spaced in

the spectrum) as colours, transmitters as vertices of a graph, and we add edges between

transmitters that must be assigned different frequencies. In order to better capture the

subtleties of the ‘real-world’ problem, this basic model has been generalised in a multitude

of different ways. Typically this might involve taking into account the fact that radio

waves decay with distance obeying an inverse-square law. For instance, numerical weights

can be placed on the edges of the graph to indicate that frequencies assigned to the

end-vertices of an edge must differ by the amount given by the particular edge-weight.

Another example is provided by the well-known L(2, 1)-labelling problem: this asks for

18

Chapter 1. Introduction

the smallest k such that the vertices of a graph can be labelled with values from the set

{1, 2, . . . , k} in a way such that labels on adjacent vertices differ by at least 2, and labels

on vertices at distance two differ by at least 1. See [36] for a survey of graph colouring

and labelling techniques applied to the FAP.

One of the the major factors contributing to the growth in demand for use of the radio

spectrum has been the dramatic increase, in recent years, of mobile telecommunication

systems. In such systems, where new transmitters are continually added to meet increases

in demand, an optimal or near-optimal assignment of frequencies will in general not

remain so for long. On the other hand, it might just be the case that, because of the

difficulty of finding optimal assignments, a sub-optimal assignment is to be replaced with

a recently-found better one. It thus becomes necessary to think of the assignment of

frequencies as a dynamic process, where one assignment is to be replaced with another.

In order to avoid interruptions to the running of the system, it is desirable to avoid a

complete re-setting of the frequencies used on the whole network. In a graph colouring

framework, this leads naturally to our problems.

Not much attention seems yet to have been devoted to the problem of reassigning fre-

quencies in a network. Some first results can be found in [4, 6, 29, 47]. The work in

[4, 6, 29] describes some specific heuristic approaches to the problem, as well as some

associated computational simulations.

A more general approach, with a theoretical bent which gives rise to problems similar

to the ones we study, can be found in [47]. Here the authors describe a problem they

call colour switching : given a graph G and two proper vertex colourings of G, the colour

switching problem asks for a sequence of vertex recolourings that transforms the first

colouring into the second, with all intermediate colourings being proper. This looks

remarkably similar to the problem k-Colour Path, but is quite different. Firstly,

colour switching is a combinatorial problem (it asks for a sequence of recolourings)

while k-Colour Path is a decision problem (it asks for a yes or no answer). Thus

colour switching is always possible (by using enough extra colours), while the question

in k-Colour Path might well be answered in the negative. This is because of the more

important fundamental difference between the problems: for k-Colour Path we in-

sist that all colourings considered (both the input colourings as well as all intermediate

colourings) are k-colourings, while in colour switching no such restriction is imposed.

A tight bound on the minimum number of extra colours necessary to guarantee one can

always find a solution to colour switching is given in [47]. We have obtained the same

result independently, with very similar examples illustrating tightness. We will describe

this result in Chapter 6. The authors of [47] also consider the question of finding bounds

19

Chapter 1. Introduction

on the number of recolourings necessary to transform one colouring into another when

the number of extra colours used is minimal, or nearly so. Indeed this is an issue we have

also addressed (for k-Colour Path, where no extra colours are allowed), and to which

we devote our attention in the latter sections of Chapters 4 and 5.

1.3 Outline of the thesis

In Chapter 2 we prove some basic results about k-colour graphs and the k-mixing prop-

erties of graphs. We first look for values of k that ensure a graph will be k-mixing,

considering possible bounds in terms of the chromatic number and the degeneracy. We

also examine the case k = χ(G), showing that if k = χ(G) is 2 or 3, then G is not

k-mixing. On the other hand, we show that for all k ≥ 4 there are k-chromatic graphs

that are k-mixing, and k-chromatic graphs that are not k-mixing.

Chapter 3 addresses the computational complexity of deciding whether a given graph is

3-mixing. Given that 3-chromatic graphs are never 3-mixing, we focus our attention on

bipartite graphs. We give two equivalent characterisations of 3-mixing bipartite graphs

and prove that deciding if a given bipartite graph is 3-mixing is coNP-complete. We also

prove that for planar bipartite graphs the problem is decidable in polynomial time.

Chapter 4 gives a polynomial time algorithm for 3-Colour Path. The algorithm can

be used to exhibit a path between the two 3-colourings, if this exists. It also allows us to

deduce that the connected components of C3(G) always have diameter at most quadratic

in the size of the graph.

In Chapter 5 we examine the complexity of k-Colour Path for values of k ≥ 4, proving

that in this regime the problem is PSPACE-complete. We also show, by means of explicit

construction, that in these cases the distance between colourings can be superpolynomial

in the size of the graph.

Chapter 6 describes some miscellaneous results. In particular, we provide an answer to

the following question: given any graph G together with two k-colourings, what is the

least number of extra colours necessary to guarantee that it is possible to recolour the

first k-colouring to the second? We show that the answer to this question is χ(G) − 1.

We also examine the complexity of finding some particular types of k-colouring of a given

k-colourable graph.

We close in Chapter 7 with a discussion of our work. We also describe related work and

mention some possibilities for further research.

Most of the work presented in this thesis is the result of joint work. Some parts of it

20

Chapter 1. Introduction

have been published and other parts are in the process of being accepted for publication.

The main results of Chapter 2 are to be found in [10]; Chapter 3 corresponds entirely

to [11], Chapter 4 to [12], and Chapter 5 to [7]. The results of Section 6.1 are also joint

work with Jan van den Heuvel.

Note

It has recently come to the author’s attention that very similar results to those presented

in Chapter 5 appear in [35], a dissertation which is otherwise unpublished. In that thesis,

the problem of deciding whether two given colourings of a graph are connected, where

the number of colours k is part of the input, is proved to be PSPACE-complete. The

reduction in [35] also proves the existence of graphs with colourings at superpolynomial

distance, but not by means of any explicit construction. The result showing that χ(G)−1

extra colours are always enough to recolour a given k-colouring of a graph to a second

given k-colouring of the graph, and that this bound is best possible—presented in Chap-

ter 6, and proved independently in [47]—can also to be found in [35]. We will make a

comparative study of all these results in Chapter 7.

21

2
First results on mixing

In this chapter we prove some first results about the mixing properties of graphs. After

making some preliminary observations, we look for values of k that will ensure a graph

is k-mixing; we consider possible bounds in terms of various graph invariants including

the chromatic number and the degeneracy of a graph. We also study this question for

graphs embeddable on a particular surface. In Section 2.2 we examine the case k = χ(G),

showing that if G is a graph with chromatic number k ∈ {2, 3}, then G is not k-mixing.

On the other hand, we prove that for all k ≥ 4 there exist k-chromatic graphs that are

k-mixing, as well as k-chromatic graphs that are not k-mixing.

2.1 Basic properties of mixing

The k-colour graph of a given graph G is a complex structure containing much information

about G. Indeed it turns out that for k > χ(G) it actually determines G, in the sense

that non-isomorphic χ-chromatic graphs have non-isomorphic k-colour graphs, as long

as k > χ, [32]. Clearly if G is not k-colourable, Ck(G) is just the null graph (though note

that, strictly speaking, we have defined the k-colour graph only for k-colourable graphs).

In general, Ck(G) will have exponential size, with |V (Ck(G))| = PG(k), where PG is the

chromatic polynomial of G.

Let us make some simple observations. Notice that for any k and any graph G, Ck(G)

is an induced subgraph of Ck+1(G), since a k-colouring of G can be regarded as a

(non-surjective) (k + 1)-colouring, and any possible recolouring in Ck(G) is also possible

in Ck+1(G).

Let Qp(k) be the generalised p-dimensional cube. This graph has vertex set {1, 2, . . . , k}p,

the set of all sequences of length p with entries from {1, 2, . . . , k}, and an edge between any

22

Chapter 2. First results on mixing

two sequences that differ in precisely one entry. If we denote the empty graph on n vertices

(that is, the graph consisting of n isolated vertices) by Un, we have Ck(Un) ∼= Qn(k). On

the other hand, for the complete graph on n vertices, Kn, we have Cn(Kn) ∼= Un!.

In what follows we investigate the relationship between the mixing properties of a graph

and two of the most important graph invariants relating to colouring: the chromatic

number and the degeneracy of a graph. This leads naturally to the exploration of the

mixing properties of a graph embeddable on a certain surface.

Mixing and chromatic number

Let us briefly consider the 2-mixing properties of 2-chromatic graphs. A connected

2-chromatic graph has exactly two frozen 2-colourings, so its 2-colour graph consists

of two isolated vertices. If G is a disconnected 2-chromatic graph (so G is bipartite and

contains at least one edge), then there is a path between a pair of 2-colourings of G

if and only if the colourings agree on every connected component that contains more

than one vertex. It is an easy exercise to show that if such a G has p isolated vertices

and q other connected components, then C2(G) has 2q connected components, each of

which is isomorphic to the p-dimensional cube Qp(2). To see this, observe that from any

given 2-colouring of G, only isolated vertices may be recoloured, and that they may be

recoloured freely (by which we mean that any isolated vertex may be recoloured at any

time). Thus the set {1, 2}p can be thought of as representing the 2p possible colourings

of these p isolated vertices, with adjacent colourings differing in precisely one entry. Be-

cause each of the other q connected components has two possible 2-colourings (which are

frozen), we see that C2(G) consists of 2q disjoint copies of Qp(2). In any case, whether G

is connected or not, we have the following result.

Proposition 2.1

Let G be a graph with chromatic number 2. Then G is not 2-mixing.

Note that these observations immediately render the decision problems 2-Mixing and

2-Colour Path trivial. We will examine the k-mixing properties of k-chromatic graphs

for k ≥ 3 later in this chapter, in Section 2.2.

At first one might expect that if k is sufficiently large compared with the chromatic

number of a graph, then the graph will be k-mixing. We now show that no such result

is possible.

For m ≥ 3, let Lm be the graph obtained from the balanced complete bipartite graph

Km,m by removing the edges of a perfect matching in Km,m. More formally, we have the

23

Chapter 2. First results on mixing

2 3 41

1 2 3 4 m

m

Figure 2.1 The graph Lm together with a frozen m-colouring.

following definition.

Definition 2.2

Let m ≥ 3. The graph Lm has

• vertex set V (Lm) = {v1, v2, . . . , vm, w1, w2, . . . , wm}, and

• edge set E(Lm) = {viwj | 1 ≤ i, j ≤ m, i 6= j}.

Note that Lm is 2-chromatic. Since m ≥ 3, it is obvious that there are many ways to

colour Lm with m colours. But suppose that we colour the vertices in each part of the

bipartition of Lm with the colours 1, 2, . . . , m, where vertices in opposite parts that were

originally connected by an edge from the removed perfect matching are given the same

colour. For example, we could set κ(vi) = κ(wi) = i, for 1 ≤ i ≤ m. The graph Lm

together with this m-colouring is shown in Figure 2.1. This m-colouring is clearly an

isolated node in the k-colour graph Cm(Lm), and so Lm is not m-mixing. This proves

the following.

Proposition 2.3

There is no expression ϕ(χ) in terms of the chromatic number χ, so that for all graphs G

and integers k ≥ ϕ(χ(G)), G is k-mixing.

It is interesting and worth observing that the graphs Lm are mixing for all other values

of k ≥ 3.

24

Chapter 2. First results on mixing

Proposition 2.4

For any fixed m ≥ 3, the graph Lm is k-mixing if and only if k ≥ 3 and k 6= m.

Proof. We have observed that Lm is not m-mixing; because it is 2-chromatic, neither is

it 2-mixing. We show that for all other k it is k-mixing, distinguishing the cases k < m

and k > m.

Let Lm have vertex bipartition {X, Y } and consider a k-colouring of Lm with 3 ≤ k ≤
m− 1. Since X contains m vertices, there is at least one colour c1 that appears on more

than one vertex of X. But this means that no vertex in Y is coloured with c1. Hence

it is possible to recolour all vertices in X with c1. Once this is done, we can choose a

second colour c2 6= c1 and recolour every vertex in Y with c2. Thus we have shown that

any k-colouring of Lm is connected to some 2-colouring of Lm. It is an easy exercise to

show that if k ≥ 3, all 2-colourings of Lm are connected in Ck(Lm). This can be seen

by observing that if it is not possible to directly recolour a given 2-colouring of Lm to

another distinct 2-colouring—by recolouring all vertices in one part of the bipartition

to their required colour, followed by recolouring all vertices in the other part—then this

must be because the two 2-colourings use the same two colours. But then recolouring

all vertices in X, say, with a third colour (possible since k ≥ 3) allows us to recolour all

vertices in Y to their target colour and finally reach the target 2-colouring by recolouring

all vertices in X. This proves that Ck(Lm) is connected for 3 ≤ k ≤ m− 1.

If we colour Lm with k ≥ m + 1 colours, then again we have that a certain colour is not

used on Y . By a similar argument to that in the case above, it follows that Ck(Lm) is

connected for k ≥ m + 1. 2

Proposition 2.4 also allows us to deduce that, unlike colouring, mixing is not a monotone

property; a fact which might seem, at first glance, a little surprising.

Proposition 2.5

There exist graphs G for which there exist numbers k1 < k2 such that G is k1-mixing but

not k2-mixing.

Even though a particular graph G may not be k-mixing for k arbitrarily larger than

its chromatic number, it is obvious that there always exists a value k′ such that G is

guaranteed to be k-mixing for all k ≥ k′. We can take k′ = |V (G)| + 1, for example. A

better bound on such a value k′ is to be found via the maximum degree of G, a fact first

observed by Jerrum [38] in the context of sampling colourings via Glauber dynamics.

25

Chapter 2. First results on mixing

Proposition 2.6 (Jerrum [38])

For any graph G and integer k ≥ ∆(G) + 2, G is k-mixing.

We omit the proof of this proposition due to its similarity to that of Theorem 2.7 below,

which in fact refines the result. Observe that the bound on k is best possible: the

complete graphs Kn, which have maximum degree n − 1, are not n-mixing since every

n-colouring is a frozen colouring. Similarly, the graphs Lm have maximum degree m− 1

but are not m-mixing.

Mixing and degeneracy

The degeneracy is a particularly useful invariant for studying the colouring properties of

a graph. We will find it is also highly relevant to the mixing properties of a graph.

Let us recall that a graph G with degeneracy r can always be coloured with at most r+1

colours. Such a colouring can easily be found by following an r-degenerate ordering of

the vertices of G, colouring each successive vertex with the first available colour (that is,

the lowest colour not appearing on any of the neighbours of the vertex to be coloured).

At most r + 1 colours will be necessary because, at any stage in the process, a vertex to

be coloured will have at most r neighbours that have already been coloured.

In contrast with the chromatic number, we find that if k is sufficiently large compared

with the degeneracy of a graph, then the graph will be k-mixing. The following result is

proved in [20] as a lemma leading to a further result on the colouring of random graphs.

We give a proof for completeness.

Theorem 2.7 (Dyer, Flaxman, Frieze and Vigoda [20])

For any graph G and integer k ≥ deg(G) + 2, G is k-mixing.

Proof. We use induction on the number of vertices of G. The result is obviously true

for the graph with one vertex, so suppose G has two or more vertices. Let v be a vertex

with degree dG(v) ≤ deg(G), and set G′ = G− {v}. Note that deg(G′) ≤ deg(G), hence

we also have k ≥ deg(G′) + 2. By induction we can assume that Ck(G′) is connected.

Take two k-colourings α and β of G, and let α′, β′ be the k-colourings of G′ induced

by α, β. Since Ck(G′) is connected, there exists a sequence α′ = γ′0, γ
′
1, . . . , γ

′
N = β′ of

k-colourings of G′ so that for i = 1, . . . , N , γ′i−1 and γ′i differ in the colour of exactly one

vertex of G′. Denote this vertex by vi and denote the new colour γ′i(vi) by ci. We now

try to take the same recolouring steps to recolour G, starting from α. If for some i it

is not possible to recolour vertex vi, this must be because vi is adjacent to v and v at

26

Chapter 2. First results on mixing

that moment has colour ci. But because v has degree at most deg(G) ≤ k − 2, there is

a colour c 6= ci that does not appear on any of the neighbours of v. Hence we can first

recolour v to c, then recolour vi to ci and continue.

In this way we find a sequence of k-colourings of G, starting at α, and ending in a

colouring in which all the vertices except possibly v will have the same colour as in β.

But then, if necessary, we can also recolour v to give it the colour from β. This gives a

path between α and β in Ck(G), completing the proof. 2

Since for any graph G, deg(G) ≤ ∆(G), Theorem 2.7 immediately refines Proposition 2.6.

There are many graphs that show the bound in Theorem 2.7 is best possible. For example,

the graphs Lm have degeneracy m − 1 and are not m-mixing, and the graphs Kn have

degeneracy n− 1 and are not n-mixing.

We mention that the best known lower bound on the number of colours needed for rapid

mixing is 11
6 ∆(G), proved by Vigoda [59]. We also observe that the expression in terms

of the degeneracy that guarantees mixing cannot guarantee rapid mixing of the Glauber

dynamics Markov chain. For instance, the stars K1,m have degeneracy deg(K1,m) = 1,

but it is shown in [44] that the Glauber dynamics Markov chain for these graphs is not

rapidly mixing for k ≤ m1−ε, for fixed ε > 0.

Mixing on surfaces

We examine what can be said about the mixing properties of a graph if we know it is

embeddable on a certain surface.

Let us begin by recalling some basic definitions and facts about surfaces. For concepts

not defined here, as well as for a thorough exploration of the topic of embeddings of

graphs on surfaces, we refer the reader to the monograph by Mohar and Thomassen [52].

A surface S is a compact 2-dimensional manifold without boundary. Every surface is

either homeomorphic to an orientable surface Sg of genus g ≥ 0 or to a non-orientable

surface Ng of non-orientable genus g ≥ 1. The genus of the surface Sg can be consid-

ered as the number of handles added to a sphere, and the non-orientable genus of the

surface Ng as the number of cross-caps added to a sphere. Thus the surface S0 is the

sphere and S1 is the torus; N1 is the projective plane and N2 is the Klein bottle. The

Euler genus ε(S) of S = Sg is 2g and that of S = Ng is g. The Euler genus of a surface,

together with its orientability, determine the surface up to homeomorphism.

We examine first the case of the sphere. Let G be a planar graph with n vertices, m edges

and f faces. Euler’s formula asserts that n −m + f = 2. One can easily deduce from

27

Chapter 2. First results on mixing

1

2

1

4

5

52

3 4

3

(a) (b)

6

54

23 6
5

32

4

1

1

Figure 2.2 (a) a planar graph with a frozen 5-colouring, and (b) a planar

graph with a frozen 6-colouring.

this that G must contain a vertex of degree at most 5 (a planar graph has at most 3n−6

edges, so its average degree, 2m
n , is strictly less than 6), and from this it follows that

deg(G) ≤ 5. Theorem 2.7 then tells us that for any k ≥ 7, a planar graph is k-mixing.

This bound is tight: for every k ≤ 6, there exists a planar graph that is not k-mixing.

In fact, a stronger statement is true: for every k ≤ 6, there exists a planar graph with

a frozen k-colouring. For k ≤ 4, this follows trivially from the fact that the complete

graphs K2,K3 and K4 are planar. For k = 5 and k = 6 we need to look harder: K5

and K6 are not planar, and neither are the graphs L5 and L6, other graphs which we

have observed to have frozen 5- and 6-colourings. Examples of the required graphs and

colourings are shown in Figure 2.2 (the graph in (b) is actually the icosahedron). This

means we have a sharp threshold in the value of k which guarantees that any given planar

graph will be k-mixing.

Given a surface S, let us define the mixing number of S as the smallest integer µ(S)

such that for any graph G embeddable on S and any k ≥ µ(S), G is guaranteed to be

k-mixing. Thus we have just seen that the mixing number of the sphere is µ(S0) = 7.

Can we say anything about the mixing number of other surfaces? Before providing an

answer, let us review some facts about the colouring of graphs embeddable on a certain

surface. The minimum number of colours γ(ε) necessary to guarantee that any graph

embeddable on a surface S of Euler genus ε can be coloured with γ(ε) colours is called

the chromatic number of S. Clearly γ(ε) = max{χ(G) | G is embeddable on S}.
For both orientable and non-orientable surfaces, Euler’s formula generalises to the Euler-

Poincaré formula n − m + f = 2 − ε. From this it is possible to deduce that for any

graph G embeddable on a surface S with ε ≥ 1, we have deg(G) ≤ H(ε)−1 , where H(ε)

28

Chapter 2. First results on mixing

is the Heawood number, given by

H(ε) =
⌊

7 +
√

1 + 24ε

2

⌋
.

A proof of this result may be found in [52]; specifically, see Theorem 8.3.1 on p. 230.

In 1890, Heawood [31] conjectured that γ(ε) = H(ε). (He in fact conjectured this only

for orientable surfaces, but the conjecture easily generalises and, as we shall see shortly,

is nearly as true for a non-orientable surface as for an orientable one.) It is clear that

γ(ε) ≤ H(ε). For ε ≥ 1, this follows from the fact that deg(G) ≤ H(ε) − 1 for any

graph G embeddable on S. For ε < 1, we are in fact dealing with the sphere. In this case

equality follows from the Four Colour Theorem [2, 3, 56], which asserts that γ(0) = 4.

It was not until 1968 that Ringel and Youngs (see [55] and references therein) managed

to complete the proof that γ(ε) ≥ H(ε) holds for all surfaces with ε ≥ 1 except the

Klein bottle. They did this by showing how a complete graph on H(ε) vertices embeds

on any S 6= N2 of Euler genus ε. (In fact, it is also true that any graph with chromatic

number H(ε) embeddable on S 6= N2 with ε ≥ 1 contains a complete graph on H(ε)

vertices as a subgraph—this was proved by Dirac [18, 19] for the torus and ε ≥ 4, and

by Albertson and Hutchinson [1] for ε = 1 and ε = 3.) Franklin [23] showed that for the

Klein bottle we do not have a maximum chromatic number of H(2) = 7 but of 6. (He

also showed that there are 6-chromatic graphs embeddable on the Klein bottle that do

not contain a K6.) Thus Heawood’s conjecture is true for all surfaces except the Klein

bottle; in particular, it is true for all orientable surfaces.

All these results imply the following.

Theorem 2.8

Let S be any surface, excluding the sphere and the Klein bottle, and let S have Euler

genus ε. Then µ(S), the mixing number of S, is given by µ(S) = H(ε) + 1, where H(ε)

is the Heawood number of S.

Any graph embeddable on the Klein bottle is guaranteed to be 8-mixing since such a graph

is 6-degenerate. Franklin [23] also proved that K7 is not embeddable on this surface, but

that K6 is; we thus have a non-6-mixing graph embeddable on the Klein bottle. Whether

all graphs embeddable on the Klein bottle are 7-mixing or not remains an open question.

We point out a result that hints at the fact that determining the mixing number of the

Klein bottle is unlikely to be as straightforward as for all other surfaces. This result

states that there is no 6-regular graph embeddable on the Klein bottle which has frozen

29

Chapter 2. First results on mixing

7-colourings, and is a consequence of the following result of Hliněný [33]. Let us say that

a graph G is a cover of a graph H if there exists a surjection ϕ : V (G)→ V (H) such that

for every vertex v of G, ϕ maps the neighbours of v in G bijectively to the neighbours

of ϕ(v) in H. Thus a cover of a complete graph Kk is precisely a (k − 1)-regular graph

that has frozen k-colourings. Hliněný [33] proves, amongst other results, the following.

Theorem 2.9 (Hliněný [33])

The complete graph K7 has no cover which is embeddable on the Klein bottle.

This means that if there is a graph embeddable on the Klein bottle which has frozen 7-

colourings, it cannot be 6-regular. On the other hand, if there are no graphs embeddable

on N2 with frozen 7-colourings, and µ(N2) = 8, proving that this is the correct number—

that is, proving that there are non-7-mixing graphs embeddable on the Klein bottle—

will in all likelihood require some ingenuity. Similarly, if it happens that µ(N2) = 7,

proving this will require an argument beyond the simple recolouring procedure provided

by following a degenerate ordering.

2.2 Mixing k-colourings in k-chromatic graphs

We have seen that 2-chromatic graphs are not 2-mixing. What about the k-mixing

properties of k-chromatic graphs for values of k ≥ 3? In this section we prove that

3-chromatic graphs are not 3-mixing, and that, for k ≥ 4, a k-chromatic graph may or

may not be k-mixing.

Graphs with chromatic number 3

Let G be a 3-colourable graph. To orient a cycle in G means to orient each edge on

the cycle so that a directed cycle is obtained. If C is a cycle, then by
−→
C we denote the

cycle with one of the two possible orientations. Given a 3-colouring α, the weight of an

edge e = uv oriented from u to v is

w(−→uv, α) =

{
+1, if α(u)α(v) ∈ {12, 23, 31};
−1, if α(u)α(v) ∈ {21, 32, 13}.

(2.1)

The weight W (
−→
C , α) of an oriented cycle

−→
C is the sum of the weights of its oriented

edges:

30

Chapter 2. First results on mixing

W (
−→
C , α) =

∑

−→uv∈E(
−→
C)

w(−→uv, α).

Lemma 2.10

Let α and β be 3-colourings of a graph G that contains a cycle C. If α and β are in the

same component of C3(G), then W (
−→
C , α) = W (

−→
C , β).

Proof. Let α and α′ be 3-colourings of G that are adjacent in C3(G), and suppose the

two 3-colourings differ on vertex v. If v is not on C, then we certainly have W (
−→
C , α) =

W (
−→
C ,α′).

If v is a vertex of C, then all its neighbours must have the same colour in α, for otherwise

we would not be able to recolour v. If we denote the in-neighbour of v on
−→
C by vi

and its out-neighbour by vo, then this means that w(−→viv, α) and w(−→vvo, α) have opposite

sign, hence w(−→viv, α) + w(−→vvo, α) = 0. Recolouring vertex v will change the signs of

the weights of the oriented edges −→viv and −→vvo, but they will remain opposite. Therefore

w(−→viv, α′) + w(−→vvo, α
′) = 0, and it follows that W (

−→
C ,α) = W (

−→
C ,α′).

From the above we immediately obtain that the weight of an oriented cycle is constant

on all 3-colourings in the same component of C3(G). 2

We observe that the converse of Lemma 2.10 is not true. Given a 3-colouring of an

oriented 3-cycle, consider a second 3-colouring obtained by changing the colour on each

vertex to that of its unique out-neighbour in the original colouring. The two colourings

are not connected—they are in fact both frozen—but the weight of the cycle is the same

for each.

Lemma 2.11

Let α be a 3-colouring of a graph G that contains a cycle C. If W (
−→
C , α) 6= 0, then G is

not 3-mixing.

Proof. Let β be the 3-colouring of G obtained by setting, for each vertex v of G:

β(v) =





1, if α(v) = 2;

2, if α(v) = 1;

3, if α(v) = 3.

It is easy to check that for each edge e of C, w(~e, α) = −w(~e, β), which gives W (
−→
C ,α) =

−W (
−→
C , β). Since W (

−→
C ,α) 6= 0, we must have W (

−→
C , α) 6= W (

−→
C , β), and so, by

Lemma 2.10, α and β belong to different components of C3(G). 2

31

Chapter 2. First results on mixing

Theorem 2.12

Let G be a graph with chromatic number 3. Then G is not 3-mixing.

Proof. As G has chromatic number 3, it contains a cycle C of odd length. Let α be a

3-colouring of G, and note that as the weight of each edge in
−→
C is +1 or −1, W (

−→
C ,α) 6= 0.

We are done by Lemma 2.11. 2

Given this result, one may now ask about the 3-mixing properties of bipartite graphs.

We study this question in detail in the following chapter.

Graphs with chromatic number at least 4

For any k ≥ 4, it is easy to find graphs with chromatic number k that are not k-mixing.

For example, the complete graph Kk or any k-chromatic graph that contains it as an

induced subgraph is not k-mixing. We now show that, in contrast to the results we

have seen for graphs with chromatic number 2 or 3, for k ≥ 4, there exist graphs with

chromatic number k that are k-mixing. The following definition describes examples of

such graphs.

Definition 2.13

Let m ≥ 4. The graph Hm has

• vertex set V (Hm) = {u, v1, v2, . . . , vm−1, w1, w2, . . . , wm−1}, and

• edge set E(Hm) = {vivj | 1 ≤ i < j ≤ m− 1} ∪ {wiwj | 1 ≤ i < j ≤ m− 1}
∪ {uvi | 2 ≤ i ≤ m− 1} ∪ {uwi | 2 ≤ i ≤ m− 1} ∪ {v1w1}.

It is easy to verify that the graphs Hm are m-chromatic. This actually follows from

the fact that Hm is obtained from two copies of Km using Hajos’ construction; see, for

example, [17, pp. 117–118]. This also means that it is m-critical, which means that

removing any vertex or edge from Hm will yield a graph with chromatic number less

than m. We observe that the two set of vertices {v2, v3, . . . , vm−1} and {w2, w3, . . . , wm−1}
induce two complete graphs isomorphic to Km−2. This allows for a simple representation

of Hm, as the sketch in Figure 2.3 shows. Note that the degeneracy of Hm is m− 1 and

so by Theorem 2.7, Hm is k-mixing for all k ≥ m + 1. In fact:

Theorem 2.14

For every fixed m ≥ 4, the graph Hm is m-mixing.

32

Chapter 2. First results on mixing

u

v1 w1

Km−2 Km−2

Figure 2.3 The graph Hm.

We shall prove Theorem 2.14 via the following sequence of claims, first giving some

definitions. Let us divide the m-colourings of Hm into classes according to the colour

of v1 and w1. An m-colouring α is a (c, c′)-colouring if α(v1) = c and α(w1) = c′. If

also α(u) = c, we call α a standard (c, c′)-colouring.

We will show that Hm is m-mixing by showing that

• every m-colouring is connected to a standard colouring;

• for any pair c, c′, the set of all standard (c, c′)-colourings is connected; and

• for any two pairs c, c′ and d, d′, each standard (c, c′)-colouring is connected to a

standard (d, d′)-colouring.

Claim 2.15

Let c and c′ be distinct colours. Let α be a (c, c′)-colouring of Hm where α(u) = c′′. Then

there is a path from α to a standard (c, c′)-colouring or to a standard (c′′, c′)-colouring

of Hm in Cm(Hm).

Proof. Let us assume c 6= c′′, for else we are done. Note that as α(v1) = c, α(vi) 6= c for

2 ≤ i ≤ m− 1. If it is not possible to immediately recolour u with c to obtain a standard

(c, c′)-colouring, then there must be a vertex wj , j ∈ {2, . . . ,m−1}, such that α(wj) = c.

If c′′ = c′, then, as two of the m − 1 neighbours of wj are coloured c′, there is some

colour d not used on either wj or any of its neighbours. Recolour wj with d and then u

with c to obtain a standard (c, c′)-colouring.

33

Chapter 2. First results on mixing

If c′′ 6= c′, then no neighbour of v1 is coloured c′′. By recolouring v1 with c′′, we immedi-

ately obtain a standard (c′′, c′)-colouring. 2

Claim 2.16

For each distinct pair of colours c and c′, all standard (c, c′)-colourings belong to the same

connected component of Cm(Hm).

Proof. Let α and β be distinct standard (c, c′)-colourings and let x be the first vertex in

the ordering v2, . . . , vm−1, w2, . . . , wm−1 at which α and β disagree. To prove the claim,

we show that from α we can recolour to obtain a standard (c, c′)-colouring that agrees

with β on x and all vertices prior to it in the ordering.

Suppose that x = vi for some i ∈ {2, . . . , m−1}. We simply recolour vi with β(vi) unless

there is a vertex vj such that α(vj) = β(vi); in which case, by the choice of x, j > i. Note

that a total of m−1 colours are used on u, v1, . . . , vm−1 in any standard (c, c′)-colouring,

so there is a colour d available for vj . Recolour vj with d and then recolour vi with β(vi).

The other possibility is that x = wi for some i ∈ {2, . . . , m − 1}. Much as before,

recolour wi with β(wi) unless there is a vertex wj , j > i, such that α(wj) = β(wi). In

this case, however, there is no colour available for wj . Hence we find, if necessary, a

vertex vl ∈ {v2, . . . , vm−1} coloured c′ and recolour it with its available colour. In any

case, u can now be recoloured c′ and so c is now available at wj . Finally we perform the

following sequence of recolourings : wj with c, wi with β(wi), wj with α(wi), u with c

and, if such a vertex was found, vl with α(vl). 2

Claim 2.17

Let α be a standard (c, c′)-colouring of Hm. Then there is a path from α to a standard

(c′, c′′)-colouring of Hm for any c′′ /∈ {c, c′}.

Proof. From α, we describe a sequence of recolourings that lead to a standard (c′, c′′)-

colouring. First, if one of v2, . . . , vm−1 is coloured c′, it is recoloured with its available

colour. Then u is recoloured c′. Next, if one of w2, . . . , wm−1 is coloured c′′, it is re-

coloured c. Then w1 is recoloured c′′ and v1 is recoloured c′. 2

Proof of Theorem 2.14. Let α and β be two m-colourings of Hm; we must show that

they are connected. By Claim 2.15, we can assume that they are standard colourings. So

suppose that α is a standard (c, c′)-colouring and that β is a standard (d, d′)-colouring.

34

Chapter 2. First results on mixing

By Claim 2.16, it is sufficient to find a path from α to any standard (d, d′)-colouring.

There are a number of cases to consider.

Suppose that d = c′. If d′ 6= c, then the theorem follows immediately from Claim 2.17. If

d′ = c, then let b and b′ be distinct colours not in {c, c′}. (As m ≥ 4, such colours can be

found. This need to have four colours available, explains, in essence, why the theorem is

not correct for smaller m.) Now we repeatedly apply Claim 2.17: from α we can find a

path to a standard (c′, b)-colouring, then to a standard (b, b′)-colouring, then a standard

(b′, c′)-colouring and finally a standard (c′, c)-colouring.

Suppose that d = c. Then if d′ = c′ the result follows from Claim 2.16. Otherwise,

applying Claim 2.17, we find a path from α to a standard (c′, b)-colouring (for some

colour b distinct from c, c′ and d′), then to a standard (b, c)-colouring, and then to the

required standard (c, d′)-colouring.

If d /∈ {c, c′} and d′ 6= c′, then Claim 2.17 gives a path from α to a standard (c′, d)-

colouring and then to a standard (d, d′)-colouring. Otherwise, for d′ = c′, we can recolour

α to β via a standard (c′, b)-colouring and a standard (b, d)-colouring, for some b distinct

from c, c′ and d, as above. This completes the proof. 2

Graphs that are mixing for specified values only

The results proved in this chapter allow us to characterise all positive integers l and

sets F with min F ≥ l such that there exist graphs G with χ(G) = l that are k-mixing if

and only if k /∈ F .

Theorem 2.18

Let l ≥ 2 be an integer, and F a set of integers with min F ≥ l, if F 6= ∅. Then the

following two statements are equivalent.

(i) There exists a graph G with chromatic number l such that for all k ≥ l, G is

k-mixing if and only if k /∈ F .

(ii) The set F is finite, and if l ∈ {2, 3}, then l ∈ F .

Proof. By Theorem 2.7, a graph can be non-k-mixing for a finite number of k only. By

Proposition 2.1 and Theorem 2.12, a graph with chromatic number l ∈ {2, 3} cannot be

l-mixing. Hence statement (i) implies statement (ii).

Before proving the converse, let us make some basic observations and recollections. If a

graph G is the disjoint union of graphs G1, . . . , Gs, then we obviously have that χ(G) is

35

Chapter 2. First results on mixing

max{χ(Gi) | i = 1, . . . , s }, and G is k-mixing if and only each Gi, 1 ≤ i ≤ s, is k-mixing.

We have just seen that for m ≥ 4, Hm has chromatic number m and is k-mixing if and

only if k ≥ m. Similarly, the complete graph Km is m-chromatic and is k-mixing only for

k ≥ m + 1, since deg(Km) = m− 1. Let us also recall the graphs Lm from Definition 2.2:

for every m ≥ 3, Lm has chromatic number 2 and is k-mixing if and only if k ≥ 3 and

k 6= m.

Now let l and F be as in the theorem and suppose that statement (ii) holds. If F = ∅,

we are in the case l ≥ 4 and the graph Hl will do the trick for (i). Hence we can assume

that F is not empty and finite. Let us write F = {p1, . . . , pt}, with p1 = min F . Then

if l ∈ F (so p1 = l) the disjoint union of Kl, Lp2 , . . . , Lpt has chromatic number l, and

for k ≥ l, the graph is k-mixing if and only if k /∈ F . Otherwise, if l /∈ F , we must have

p1 > l ≥ 4, and then the disjoint union of Hl, Lp1 , . . . , Lpt yields a graph for which (i)

holds. 2

36

3
Mixing 3-colourings

In this chapter we investigate what can be said about the 3-mixing properties of a given

graph. Having already considered some facts about 3-colourings (of 3-chromatic graphs)

in Chapter 2, we will refer to definitions and results from the relevant section, Section 2.2.

Recall that we saw in Theorem 2.12 that if G is a 3-chromatic graph, then G is not

3-mixing. For this reason we focus exclusively on bipartite graphs in this chapter.

In Section 3.1 we give two equivalent characterisations of a 3-mixing bipartite graph;

one in terms of the possible 3-colourings it may have, the other in terms of its struc-

ture. In Section 3.2 we consider the problem of deciding whether a given bipartite graph

is 3-mixing, and prove that this problem is coNP-complete. In the final section, Sec-

tion 3.3, we describe an algorithm that answers this question for bipartite planar graphs

in polynomial time.

3.1 Characterising 3-mixing graphs

Let us make some preliminary observations about the 3-mixing properties of some specific

graphs, noting in particular that there exist 3-mixing bipartite graphs as well as non-

3-mixing bipartite graphs. By Theorem 2.7 we know that any 1-degenerate graph is

3-mixing. Hence all trees are 3-mixing. The cycle on four vertices, C4, is also 3-mixing—

this is easily verified by hand after noting that any 3-colouring of a 4-cycle has a pair of

vertices at distance two which are coloured the same. All other even cycles, however, are

not 3-mixing. Given a cycle C2m with 2m ≥ 6, it is easy to construct a 3-colouring α

of C2m so that W (
−→
C2m, α) 6= 0: just use the colour pattern 1, 2, 3, 1, 2, 3, . . . for as long

as possible, making sure that the final vertices are properly coloured. Lemma 2.11 then

guarantees that the cycle C2m is not 3-mixing.

37

Chapter 3. Mixing 3-colourings

In Theorem 3.1 below we distinguish between 3-mixing and non-3-mixing bipartite graphs

in terms of their structure and the possible 3-colourings they may have. Before being

able to state it we need two simple definitions.

If v and w are vertices of a bipartite graph G at distance two, then we define a pinch on v

and w as the identification of v and w (together with the replacement of all double edges

by single edges). We say that G is pinchable to a graph H if there exists a sequence of

pinches that transforms G into H.

Theorem 3.1

Let G be a connected bipartite graph. Then the following statements are equivalent.

(i) The graph G is not 3-mixing.

(ii) There exists a cycle C in G and a 3-colouring α of G with W (
−→
C , α) 6= 0.

(iii) The graph G is pinchable to the 6-cycle C6.

To prove Theorem 3.1, we need some definitions and technical lemmas. For the rest of this

section, let G = (V, E) denote a connected bipartite graph with vertex bipartition X, Y .

Given a 3-colouring α of G, let us define a height function for α with base X as a

function h : V → Z satisfying the following three conditions. (See [5, 25] for other, similar

definitions and uses of height functions.)

(H1) For all v ∈ X, h(v) ≡ 0 (mod 2); and for all v ∈ Y , h(v) ≡ 1 (mod 2).

(H2) For all uv ∈ E, |h(v)− h(u)| = 1.

(H3) For all v ∈ V , h(v) ≡ α(v) (mod 3).

If h : V → Z satisfies conditions (H2), (H3) and also

(H1′) For all v ∈ X, h(v) ≡ 1 (mod 2); and for v ∈ Y , h(v) ≡ 0 (mod 2),

then h is said to be a height function for α with base Y .

Observe that for a particular colouring of a given G, a height function might not exist.

An example of this is the 6-cycle C6 coloured 1-2-3-1-2-3.

Conversely, however, a function h : V → Z satisfying conditions (H1) and (H2) induces

a 3-colouring of G: the unique α : V → {1, 2, 3} satisfying condition (H3), and so h is in

fact a height function for this α. Observe also that if h is a height function for α with

base X, then so are h + 6 and h − 6; while h + 3 and h − 3 are height functions for α

38

Chapter 3. Mixing 3-colourings

with base Y . Because we will be concerned solely with the question of existence of height

functions, we assume henceforth that for a given G, all height functions have base X.

Thus we let HX(G) be the set of height functions with base X corresponding to some

3-colouring of G, and, following [25], we define a metric m on HX(G) by setting

m(h1, h2) =
∑

v∈V

|h1(v)− h2(v)|,

for h1, h2 ∈ HX(G). Note that condition (H1) above implies that m(h1, h2) is always

even.

For a given height function h, h(v) is said to be a local maximum (respectively, local

minimum) if h(v) is larger than (respectively, smaller than) h(u) for all neighbours u

of v. Again following [25], we define the following height transformations on h.

An increasing height transformation takes a local minimum h(v) of h and transforms h

into the height function h′ given by

h′(x) =

{
h(x) + 2, if x = v;

h(x), if x 6= v.

A decreasing height transformation takes a local maximum h(v) of h and transforms h

into the height function h′ given by

h′(x) =

{
h(x)− 2, if x = v;

h(x), if x 6= v.

Note that these height transformations give rise to transformations between the corre-

sponding colourings. Specifically, if we let α′ be the 3-colouring corresponding to h′, an

increasing transformation yields α′(v) = α(v)− 1 and α′(x) = α(x) for all x 6= v, while a

decreasing transformation yields α′(v) = α(v) + 1 and α′(x) = α(x) for all x 6= v, where

addition is modulo 3.

The following lemma, a simple extension of the range of applicability of a similar lemma

appearing in [25], shows that all colourings with height functions are connected in C3(G).

Lemma 3.2 (Goldberg, Martin and Paterson [25])

Let α, β be two 3-colourings of G with corresponding height functions hα, hβ. Then there

is a path between α and β in C3(G).

Proof. We use induction on m(hα, hβ). The lemma is trivially true when m(hα, hβ) = 0,

since in this case α and β are identical.

39

Chapter 3. Mixing 3-colourings

Suppose therefore that m(hα, hβ) > 0. We show that there is a height transformation

transforming hα into some height function h with m(h, hβ) = m(hα, hβ)− 2, from which

the lemma follows.

Without loss of generality, let us assume that there is some vertex v ∈ V with hα(v) >

hβ(v), and let us choose v with hα(v) as large as possible. We show that such a v must

be a local maximum of hα. Let u be any neighbour of v. If hα(u) > hβ(u), then it follows

that hα(v) > hα(u), since v was chosen with hα(v) maximum, and |hα(v) − hα(u)| = 1.

If, on the other hand, hα(u) ≤ hβ(u), we have hα(v) ≥ hβ(v)+1 ≥ hβ(u) ≥ hα(u), which

in fact means hα(v) > hα(u).

Thus hα(v) > hα(u) for all neighbours u of v, and we can apply a decreasing height

transformation to hα at v to obtain h. Clearly m(h, hβ) = m(hα, hβ)− 2. 2

In the same way that we consider weights of oriented cycles in a 3-coloured graph, let us

consider weights of oriented paths. For a path P in a graph G, let
−→
P denote one of the

two possible oriented paths obtainable from P . If G is 3-coloured with α, we define the

weight W (
−→
P , α) of

−→
P as the sum of the weights of its oriented edges:

W (
−→
P , α) =

∑

−→uv∈E(
−→
P)

w(−→uv, α),

where w(−→uv, α) takes values as defined in equation (2.1).

The next lemma tells us that for a given 3-colouring, non-zero weight cycles are, in some

sense, the obstructing configurations forbidding the existence of a corresponding height

function.

Lemma 3.3

Let α be a 3-colouring of G with no corresponding height function. Then G contains a

cycle C for which W (
−→
C , α) 6= 0.

Proof. Let us observe that if a 3-colouring of a certain graph does have a height function,

it is possible to construct one by fixing a vertex x of the graph, giving x an appropriate

height (satisfying conditions (H1) and (H3)) and then assigning heights to all vertices in

the graph by following a breadth-first ordering from x.

Whenever we attempt to construct a height function h for α in such a fashion, we must

come to a stage in the ordering where we attempt to give some vertex v a height h(v)

and find ourselves unable to because v has a neighbour u with a previously assigned

height h(u) and |h(u) − h(v)| > 1. Letting P be a path between u and v formed by

40

Chapter 3. Mixing 3-colourings

vertices that have been assigned a height, and choosing the appropriate orientation of P ,

we have W (
−→
P , α) = |h(u) − h(v)|. The lemma now follows by letting C be the cycle

formed by P and the edge uv. 2

The following lemma is obvious.

Lemma 3.4

Let u and v be vertices on a cycle C in a graph G, and suppose there is a path P between u

and v in G internally disjoint from C. Let α be a 3-colouring of G. Let C ′ and C ′′ be the

two cycles formed from P and edges of C, and let
−→
C ′,
−→
C ′′ be the orientations of C ′, C ′′

induced by an orientation
−→
C of C (so the edges of P have opposite orientations in

−→
C ′

and
−→
C ′′). Then W (

−→
C , α) = W (

−→
C ′, α) + W (

−→
C ′′, α).

Note this tells us that W (
−→
C , α) 6= 0 implies W (

−→
C ′, α) 6= 0 or W (

−→
C ′′, α) 6= 0.

Proof of Theorem 3.1. Let G be a connected bipartite graph.

(i) =⇒ (ii). Suppose C3(G) is not connected. Take two 3-colourings of G, α and β,

in different components of C3(G). By Lemma 3.2 we know at least one of them, say α,

has no corresponding height function, and by Lemma 3.3, there is a cycle C in G with

W (
−→
C ,α) 6= 0.

(ii) =⇒ (iii). Let G contain a cycle C with W (
−→
C , α) 6= 0 for some 3-colouring α of G.

Because W (
−→
C4, β) = 0 for any 3-colouring β of C4, it follows that C = Cn for some even

n ≥ 6. If G = C, then it is easy to find a sequence of pinches that will yield C6. If G

is C plus some chords, then Lemma 3.4 tells us that there is a smaller cycle C ′ with

W (
−→
C ′, α) 6= 0 and we can again easily find a sequence of pinches that will yield C6. Thus

if G 6= C, we can assume that V (G) 6= V (C), and we describe how to pinch a pair of

vertices so that (ii) remains satisfied (for a specified cycle with G replaced by the graph

created by the pinch and α replaced by its restriction to that graph, also denoted α); by

repetition, we can obtain a graph that is a cycle and, by the previous observations, the

implication is proved.

Note that we shall choose vertices coloured alike to pinch so that the restriction of α to

the graph obtained is well-defined and proper. If C has three consecutive vertices u, v, w

with α(u) = α(w), pinching u and w yields a graph containing a cycle C ′ = Cn−2 with

W (
−→
C ′, α) = W (

−→
C ,α). Otherwise C is coloured 1-2-3-· · · -1-2-3. We can choose u, v, w to

be three consecutive vertices of C, such that there is a vertex x /∈ V (C) adjacent to v.

Suppose, without loss of generality, that α(x) = α(u), and pinch x and u to obtain a

graph in which W (
−→
C , α) is unchanged.

41

Chapter 3. Mixing 3-colourings

(iii) =⇒ (i). Suppose G is pinchable to C6. Take two 3-colourings of C6 not connected by

a path in C3(C6): 1-2-3-1-2-3 and 1-2-1-2-1-2, for example. Considering the appropriate

orientation of C6, note that the first colouring has weight 6 and the second has weight 0.

We construct two 3-colourings of G not connected by a path in C3(G) as follows. Consider

the reverse sequence of pinches that gives G from C6. Following this sequence, for

each colouring of C6, give every pair of new vertices introduced by an ‘unpinching’ the

same colour as the vertex from which they originated. In this manner we obtain two

3-colourings of G, α and β, say. Observe that every unpinching maintains a cycle in G

which has weight 6 with respect to the colouring induced by the first colouring of C6

and weight 0 with respect to the second induced colouring. This means G will contain a

cycle C for which W (
−→
C ,α) = 6 and W (

−→
C , β) = 0, showing that α and β cannot possibly

be in the same connected component of C3(G).

This completes the proof of the theorem. 2

3.2 The complexity of 3-MIXING

Let us now turn our attention to the computational complexity of deciding whether or

not a 3-colourable graph G is 3-mixing. From Theorem 2.12 we know that we can restrict

our attention to bipartite graphs, so the case k = 3 of our decision problem k-Mixing

we formally define as follows.

3-Mixing

Instance : A connected bipartite graph G.

Question : Is G 3-mixing?

Observing that Theorem 3.1 gives us two polynomial time verifiable certificates for

when G is not 3-mixing, we immediately obtain that 3-Mixing is in the complexity

class coNP. By the same theorem, the following decision problem is the complement of

3-Mixing.

Pinchability-to-C6

Instance : A connected bipartite graph G.

Question : Is G pinchable to C6?

We will prove the following result.

42

Chapter 3. Mixing 3-colourings

Theorem 3.5

The decision problem 3-Mixing is coNP-complete.

Our proof will in fact show that Pinchability-to-C6 is NP-complete. We will obtain a

reduction from the following decision problem.

Retractability-to-C6

Instance : A connected bipartite graph G with an induced 6-cycle S.

Question : Is G retractable to S? That is, does there exist a homomorphism

r : V (G)→ V (S) such that r(v) = v for all v ∈ V (S)?

It is mentioned in [60], without references, that Tomás Feder and Gary MacGillivray

have independently proved that Retractability-to-C6 is NP-complete by a reduction

from 3-Colourability. For completeness, we give a sketch proof.

3-Colourability

Instance : A connected graph G.

Question : Is G 3-colourable?

Theorem 3.6 (Feder; MacGillivray; see [60])

The decision problem Retractability-to-C6 is NP-complete.

Proof. That Retractability-to-C6 is in NP is clear.

Given a connected graph G, construct a new graph G′ as follows: subdivide every edge uv

of G by inserting a vertex yuv between u and v. Also add new vertices a, b, c, d, e together

with edges za, ab, bc, cd, de, ez, where z is a particular vertex of G (any one will do).

The graph G′ is clearly connected and bipartite, and the vertices z, a, b, c, d, e induce a

6-cycle S. We will prove that G is 3-colourable if and only if G′ retracts to the induced

6-cycle S.

Assume that G is 3-colourable and take a 3-colouring τ of G with τ(z) = 1. From τ we

construct a 6-colouring σ of G′. For this, first set σ(x) = τ(x), if x ∈ V (G). For the new

vertices yuv set

σ(yuv) =





4, if τ(u) = 1 and τ(v) = 2,

5, if τ(u) = 2 and τ(v) = 3,

6, if τ(u) = 3 and τ(v) = 1,

43

Chapter 3. Mixing 3-colourings

and for the cycle S take σ(a) = 4, σ(b) = 2, σ(c) = 5, σ(d) = 3 and σ(e) = 6. Now

define r : V (G′)→ V (S) by setting

r(x) =





z, if σ(x) = 1,

a, if σ(x) = 4,

b, if σ(x) = 2,

c, if σ(x) = 5,

d, if σ(x) = 3,

e, if σ(x) = 6.

It is easy to check that r is a retraction of G′ to S.

Conversely, suppose G′ retracts to S. We can use this retraction to define a 6-colouring

of G′ in a similar way to that in which we defined r from σ in the preceding paragraph.

The restriction of this 6-colouring to G yields a proper 3-colouring of G, completing the

proof. 2

Our proof of Theorem 3.5 follows [60], where, as a special case of the main result of that

paper, the following problem is proved to be NP-complete.

Compactability-to-C6

Instance : A connected bipartite graph G.

Question : Is G compactable to C6? That is, does there exist an edge-surjective homomor-

phism c : V (G)→ V (C6)?

If an edge-surjective homomorphism c : V (G)→ V (C6) exists, we call it a compaction.

In [60] a polynomial time reduction from Retractability-to-Ck to Compactability-

to-Ck, with k ≥ 6 even, is given. We will use exactly the same transformation (for k = 6)

to prove that Pinchability-to-C6 is NP-complete.

Proof of Theorem 3.5. As mentioned before, we will show that 3-Mixing is coNP-

complete by showing that Pinchability-to-C6 is NP-complete. This we do by giving

a polynomial time reduction from Retractability-to-C6 to Pinchability-to-C6.

Consider an instance of Retractability-to-C6: a connected bipartite graph G with

an induced 6-cycle S. From G we construct, in time polynomial in the size of G, an

instance G′ of Pinchability-to-C6 such that

G retracts to S if and only if G′ is pinchable to C6. (∗)

44

Chapter 3. Mixing 3-colourings

h5

h4

a

h0

h1 h3

wa
1

h2

ya
1

ya
2

ua
1

ua
2

Figure 3.1 The subgraph of G′ added around a vertex a ∈ GA\SA, together

with the 6-cycle S.

h5

h4h0

h1 h3

h2

b

yb
1

yb
2

ub
1

wb
1

wb
2

Figure 3.2 The subgraph of G′ added around a vertex b ∈ GB \SB, together

with the 6-cycle S.

Assume G has vertex bipartition (GA, GB). Let V (S) = SA∪SB, where SA = {h0, h2, h4}
and SB = {h1, h3, h5}, and assume E(S) = {h0h1, . . . , h4h5, h5h0 }.
The construction of G′ is as follows.

• For every vertex a ∈ GA \ SA, add to G new vertices ua
1, u

a
2, w

a
1 , ya

1 , ya
2 , together

with edges ua
1h0, aua

2, w
a
1h3, awa

1 , ua
1w

a
1 , ya

1h5, y
a
2h2, u

a
1y

a
1 , wa

1ya
2 , ua

1u
a
2, y

a
1ya

2 .

• For every vertex b ∈ GB \SB, add to G new vertices ub
1, w

b
1, w

b
2, y

b
1, y

b
2, together with

edges ub
1h0, bu

b
1, w

b
1h3, bw

b
2, u

b
1w

b
1, y

b
1h5, y

b
2h2, u

b
1y

b
1, w

b
1y

b
2, w

b
1w

b
2, y

b
1y

b
2.

• For every edge ab ∈ E(G) \E(S), with a ∈ GA \SA and b ∈ GB \SB, add two new

vertices : xab
a adjacent to a and ua

1; and xab
b adjacent to b, wb

1 and xab
a .

45

Chapter 3. Mixing 3-colourings

From the construction it is clear that G′ is connected and bipartite. Note that G′ con-

tains G as an induced subgraph, and note also that the subgraphs constructed around a

vertex a ∈ GA \ SA and a vertex b ∈ GB \ SB are isomorphic. These graphs are depicted

in Figures 3.1 and 3.2.

We will prove (∗) via a sequence of claims.

Claim 3.7

Suppose G retracts to S. Then G is pinchable to C6.

Proof. The fact that G retracts to S means we have a homomorphism r : V (G)→ V (S)

such that r(v) = v for all v ∈ V (S). Define a partition {Ri | i = 0, 1, . . . , 5} of V (G)

by setting v ∈ Ri ⇐⇒ r(v) = hi. Because r is a homomorphism, we know any edge

e ∈ E(G) has one vertex in Rj and another in Rj+1, for some j, where subscript addition

is modulo 6. Using this partition of V (G), we show that G is pinchable to a 6-cycle—to S,

in fact. We describe how to pinch a pair of vertices such that the resulting (smaller) graph

still has S as an induced subgraph; by repetition, this will eventually yield S. Supposing

V (G) 6= V (S) (for else we are done), let E− = E(G) \ E(S). Because G is connected,

there must be an edge uv ∈ E− with u ∈ V (S) and v ∈ V (G) \ V (S). Suppose v ∈ Rj ,

for some j ∈ {0, 1, . . . , 5}. Pinch v with hj , and note that the resulting graph remains

bipartite, connected and contains S as an induced subgraph. Denote the resulting graph

by G and repeat. 2

We now prove the ‘only if’ part of (∗).

Claim 3.8

Suppose G retracts to S. Then G′ is pinchable to C6.

Proof. By Claim 3.7, G is pinchable to C6. In fact, by the proof of Claim 3.7, we

know G is pinchable to S. Because G is an induced subgraph of G′, we can follow, in G′,

the sequence of pinches that gives S from G. We now show how, after following this

sequence of pinches, we can choose some further pinches that will leave us with S. For

a vertex v ∈ V (G) \ V (S), we will pinch into S all vertices introduced to G′ on account

of v, yielding a smaller graph still containing S as an induced subgraph. By repetition,

we will eventually end up with just S.

First let us consider where a vertex a ∈ GA \ SA with no neighbours in GB \ SB might

have been pinched to, and how we could continue pinching. There are three possibilities.

46

Chapter 3. Mixing 3-colourings

1. The vertex a has been pinched with h1. In that case pinch ya
1 with h0, ya

2 with h1,

ua
1 with h1, ua

2 with h0, and wa
1 with h2.

2. The vertex a has been pinched with h3. In that case pinch ya
1 with h4, ya

2 with h3,

ua
1 with h5, ua

2 with h4, and wa
1 with h4.

3. The vertex a has been pinched with h5. In that case pinch ya
1 with h4, ya

2 with h3,

ua
1 with h5, ua

2 with h0, and wa
1 with h4.

Similarly, let us consider where a vertex b ∈ GB \ SB with no neighbours in GA \ SA

might have been pinched to, and how we could continue pinching. Again, there are three

possibilities.

1. The vertex b has been pinched with h0. In that case pinch yb
1 with h0, yb

2 with h1,

ub
1 with h1, wb

1 with h2, and wb
2 with h1.

2. The vertex b has been pinched with h2. In that case pinch yb
1 with h0, yb

2 with h1,

ub
1 with h1, wb

1 with h2, and wb
2 with h3.

3. The vertex b has been pinched with h4. In that case pinch yb
1 with h4, yb

2 with h3,

ub
1 with h5, wb

1 with h4, and wb
2 with h3.

Now let us consider the case where a vertex a ∈ GA\SA is adjacent to a vertex b ∈ GB\SB.

There are six cases to consider, corresponding to the six edges of S to which ab might

have been pinched. Often there will be a choice of pinches—for each case we give just

one.

1. The edge ab has been pinched to h1h2. We can use the previous case analyses to

conclude that ua
1 must be pinched with h1 and wb

1 with h2. Now we must deal

with xab
a and xab

b . Pinching xab
a with h2 and xab

b with h1 gives us what we require.

2. The edge ab has been pinched to h1h0. Then we conclude ua
1 must be pinched

with h1 and wb
1 with h2. Now pinch xab

a with h0 and xab
b with h1.

3. The edge ab has been pinched to h3h4. Then ua
1 must be pinched with h5 and wb

1

with h4. Now pinch xab
a with h4 and xab

b with h3.

4. The edge ab has been pinched to h3h2. Then ua
1 must be pinched with h5 and wb

1

with h2. Now pinch xab
a with h4 and xab

b with h3.

5. The edge ab has been pinched to h5h0. Then ua
1 must be pinched with h5 and wb

1

with h2. Now pinch xab
a with h0 and xab

b with h1.

47

Chapter 3. Mixing 3-colourings

6. The edge ab has been pinched to h5h4. Then ua
1 must be pinched with h5 and wb

1

with h4. Now pinch xab
a with h4 and xab

b with h5.

This completes the proof of the claim. 2

We must now prove the ‘if’ part of (∗). We do this via the next three claims.

Claim 3.9

Suppose G′ is pinchable to C6. Then G′ is compactable to C6.

Proof. The fact that G′ is pinchable to the 6-cycle C6 means there exists a homomor-

phism c : V (G′)→ V (C6). In order to make this precise, let V (C6) = {k0, k1, k2, k3, k4, k5}
and E(C6) = {k0k1, . . . , k4k5, k5k0}. Let us also define sets Pi, for i = 0, 1, . . . , 5, as fol-

lows. Initially, set Pi = {ki}. Now let us consider the reverse sequence of ‘unpinchings’

that yields G′ from C6. Following this sequence, suppose a vertex v ∈ Pj is unpinched.

Delete v from Pj and add to Pj the two vertices that were identified to give v in the orig-

inal pinch. Repeat this until G′ is obtained, and now define c by setting, for v ∈ V (G′),

c(v) = ki ⇐⇒ v ∈ Pi. Clearly the sets Pi form a partition of V (G′) and so c is

well-defined. In addition, by the way the sets Pi have been constructed, it is clear

that any edge uv ∈ E(G′) has one end-vertex in Pj and the other in Pj+1, for some

j ∈ {0, 1, . . . , 5}. This means c(u)c(v) ∈ E(C6) and so c is a homomorphism. Moreover,

it is edge-surjective: the Pis are all non-empty and there is at least one edge between

every pair Pi, Pi+1. 2

The proof of the following claim is the same as the proof in [60] that shows that if G′ is

compactable to C6, then G′ retracts to S.

We need some further notation. As usual, for a set S and a function f , we let f(S) =

{f(s) | s ∈ S}. Recalling that we denote the distance between vertices u and v in a

graph H by dH(u, v), let us write, for a vertex u and set of vertices S of H, dH(S, u) =

min{dH(v, u) | v ∈ S}.

Claim 3.10 (Vikas [60])

Suppose G′ is pinchable to C6. Then G′ retracts to S.

Proof. By Claim 3.9 we know there exists a compaction c : V (G′) → V (C6). (Recall

that a compaction is just an edge-surjective homomorphism.) We prove that c is in

fact a retraction to S. To do this, we must show that for all v ∈ V (S), c(v) = v.

48

Chapter 3. Mixing 3-colourings

For convenience, we now use the same notation for C6 and S; that is, we let V (C6) =

{h0, h1, . . . , h5} and E(C6) = {h0h1, . . . , h4h5, h5h0 }.
Let U = {uv

1 | v ∈ V (G) \ V (S)} ∪ {h0, h1, h5} and W = {wv
1 | v ∈ V (G) \ V (S)} ∪

{h2, h3, h4}. Because both these vertex sets induce subgraphs of diameter 2 in G′, c(U)

and c(W) must each induce a path of length 1 or 2 in C6. We prove they each induce a

path of length 2.

Suppose that c(U) has only two vertices, adjacent in C6. Thus we let c(U) = {h0, h1},
with c(h0) = h0. (Due to the symmetry of C6, we can, if necessary, redefine c in this way.)

Let U− = U \ {h0}. Because h0 is adjacent to every other vertex in U , c(U−) = {h1}.
It is easy to check that for any g ∈ G′, dG′(U−, g) ≤ 2. But we have dC6(c(U−), h4) =

dC6(h1, h4) = 3, which means no g ∈ G′ can be mapped to h4 under c, contradicting the

fact that c is a compaction.

Hence c(U) induces a path on three vertices. By a similar argument, the same ap-

plies to c(W). By the symmetry of C6, we can without loss of generality take c(U) =

{h1, h0, h5}. This means that c(h0) = h0. We now prove that c(h3) = h3.

Let gg′ be an edge of G′ that is mapped to h3h2 or h3h4, with c(g) = h3, and c(g′) = h2

or c(g′) = h4. Note that h3 is at distance 2 from c(U) in C6 while h2 and h4 are at

distance 1 from c(U) in C6. This means that dG′(U, g) ≥ 2 and dG′(U, g′) ≥ 1. Earlier

we noted that the distance between U− and any vertex of G′ is at most 2, which means

that dG′(U, g) ≤ 2, so in fact dG′(U, g) = 2. Because G′ is bipartite, dG′(U, g′) = 1.

Hence g is one of a, xab
b , h3, y

a
2 , yb

2, w
b
2, and g′ is one of b, xab

a , ua
2, h2, h4, y

a
1 , yb

1, w
a
1 , wb

1, for

some a ∈ GA \ SA, b ∈ GB \ SB. Given that c(h0) = h0, we cannot have c(h3) = h2

or c(h3) = h4. Aiming for a contradiction, let us suppose that c(h3) 6= h3. Then no

edge of G′ with h3 as an endpoint covers h3h2 or h3h4. Hence gg′ must be one of

the following : axab
a , ab, aua

2, awa
1 , xab

b xab
a , xab

b b, xab
b wb

1, ya
2ya

1 , ya
2wa

1 , ya
2h2, y

b
2y

b
1, y

b
2w

b
1, y

b
2h2,

wb
2w

b
1, w

b
2b. If ah2 or ah4 is an edge of G′, then we also need to consider such an edge as

a possible candidate for gg′. By previous assumptions, we have c(h3) = h1 or c(h3) = h5.

We now prove that c(h3) 6= h3 is impossible as follows. We first assume c(h3) = h1 and

show that no possible edge for gg′ covers h3h4, and then assume c(h3) = h5 and show

that no possible edge for gg′ covers h3h2. Thus let us assume c(h3) = h1.

Let us suppose that for some v ∈ V (G) \ V (S), yv
2wv

1 covers h3h4, so c(yv
2) = h3 and

c(wv
1) = h4. But c(h3) = h1, and since h3 an wv

1 are adjacent, we must have c(wv
1) = h0

or c(wv
1) = h2, a contradiction.

By exactly the same argument, we come to the conclusion that none of the edges awa
1 ,

wb
2w

b
1, xab

b wb
1 can cover the edge h3h4. A similar argument applies to yv

2h2.

49

Chapter 3. Mixing 3-colourings

Suppose that for some v ∈ V (G) \ V (S), yv
2yv

1 covers h3h4, so c(yv
2) = h3 and c(yv

1) = h4.

Now c(uv
1) = h1 or c(uv

1) = h5, but since uv
1 and yv

1 are adjacent we must have c(uv
1) = h5.

Because c(wv
1) must be adjacent to c(yv

2) = h3, c(wv
1) = h2 or c(wv

1) = h4. But uv
1 is

adjacent to wv
1 , so c(wv

1) = h4. This means yv
2wv

1 covers h3h4, which we have already

seen is impossible.

Now suppose that for some b ∈ GB \ SB, wb
2b covers h3h4, so c(wb

2) = h3 and c(b) = h4.

If c(b) = h4, we must have c(ub
1) = h3 or c(ub

1) = h5. But c(h0) = h0 means c(ub
1) = h1 or

c(ub
1) = h5, so c(ub

1) = h5. This implies, since c(wb
1) = h2 or c(wb

1) = h4, that c(wb
1) = h4.

But this means that wb
2w

b
1 covers h3h4, which we have already excluded as a possibility.

Assume that for some a ∈ GA \ SA, aua
2 covers h3h4, so c(a) = h3 and c(ua

2) = h4.

Because ua
1 and ua

2 are adjacent, c(ua
1) = h3 or c(ua

1) = h5, but since ua
1 is adjacent to h0

and c(h0) = h0, we have c(ua
1) = h5. Similarly, c(wa

1) = h2 or c(wa
1) = h4, but since wa

1

and ua
1 are adjacent, we have c(wa

1) = h4. Hence awa
1 covers h3h4, but we have already

seen this is impossible.

Now assume that for some a ∈ GA \ SA, axab
a covers h3h4, so c(a) = h3 and c(xab

a) = h4.

Now c(ua
1) = h1 or c(ua

1) = h5, but since ua
1 and xab

a are adjacent, we have c(ua
1) = h5.

Because c(ua
2) must be adjacent to c(a) = h3 as well as c(ua

1) = h5, we have c(ua
2) = h4.

Hence aua
2 covers h3h4, but we have already seen this is impossible.

Suppose that for some b ∈ GB \SB, xab
b b covers h3h4, so c(xab

b) = h3 and c(b) = h4. Now

c(ub
1) = h1 or c(ub

1) = h5, but since b and ub
1 are adjacent, we must have c(ub

1) = h5.

Because c(wb
1) must be adjacent to c(xab

b) = h3, we have c(wb
1) = h2 or c(wb

1) = h4.

But ub
1 and wb

1 are adjacent, so c(wb
1) = h4. This means xab

b wb
1 covers h3h4, which we

have already ruled out as a possibility.

Now suppose that for some a ∈ GA \ SA and some b ∈ GB \ SB, ab covers h3h4, so

c(a) = h3 and c(b) = h4. Since ua
2 is adjacent to a and we have seen aua

2 does not

cover h3h4, we must have c(ua
2) = h2. Now c(ua

1) = h1 or c(ua
1) = h5, but since ua

1 and ua
2

are adjacent, we must have c(ua
1) = h1. Also, c(xab

a) must be adjacent to c(ua
1) = h1

and c(a) = h3, so c(xab
a) = h2. Similarly, c(xab

b) must be adjacent to c(xab
a) = h2 and

c(b) = h4, so c(xab
b) = h3. But this means xab

b b covers h3h4, which we have already seen

is impossible.

Suppose that for some a ∈ GA \ SA and some b ∈ GB \ SB, xab
b xab

a covers h3h4, so

c(xab
b) = h3 and c(xab

a) = h4. Since a is adjacent to xab
a and we have seen axab

a does not

cover h3h4, we must have c(a) = h5. Because c(b) must be adjacent to c(a) = h5 and

c(xab
b) = h3, we have c(b) = h4. But then xab

b b covers h3h4, and we have seen this is

impossible.

50

Chapter 3. Mixing 3-colourings

Lastly, if ah2 (or ah4) is an edge of G′, assuming c(a) = h3 and c(h2) = h4 (or c(a) = h3

and c(h4) = h4) immediately leads us to a contradiction, since c(h3) = h1.

From all this we obtain that assuming c(h3) = h1 leads us to the conclusion that no edge

of G′ covers h3h4, contradicting the fact that c is a compaction.

We now show that assuming c(h3) = h5 leads us to the conclusion that no edge of G′

covers h2h3.

Let us suppose that for some v ∈ V (G) \ V (S), yv
2wv

1 covers h3h2, so c(yv
2) = h3 and

c(wv
1) = h2. But c(h3) = h5, and since h3 an wv

1 are adjacent, we must have c(wv
1) = h0

or c(wv
1) = h4, a contradiction.

By exactly the same argument, we come to the conclusion that none of the edges awa
1 ,

wb
2w

b
1, xab

b wb
1 can cover the edge h3h2. A similar argument applies to yv

2h2.

Suppose that for some v ∈ V (G) \ V (S), yv
2yv

1 covers h3h2, so c(yv
2) = h3 and c(yv

1) = h2.

Now c(uv
1) = h1 or c(uv

1) = h5, but since uv
1 and yv

1 are adjacent we must have c(uv
1) = h1.

Because c(wv
1) must be adjacent to c(yv

2) = h3, c(wv
1) = h2 or c(wv

1) = h4. But uv
1 is

adjacent to wv
1 , so c(wv

1) = h2. This means yv
2wv

1 covers h3h2, which we have already

seen is impossible.

Now suppose that for some b ∈ GB \ SB, wb
2b covers h3h2, so c(wb

2) = h3 and c(b) = h2.

If c(b) = h2, we must have c(ub
1) = h3 or c(ub

1) = h1. But c(h0) = h0 means c(ub
1) = h1 or

c(ub
1) = h5, so c(ub

1) = h1. This implies, since c(wb
1) = h2 or c(wb

1) = h4, that c(wb
1) = h2.

But this means that wb
2w

b
1 covers h3h2, which we have already excluded as a possibility.

Assume that for some a ∈ GA \ SA, aua
2 covers h3h2, so c(a) = h3 and c(ua

2) = h2.

Because ua
1 and ua

2 are adjacent, c(ua
1) = h3 or c(ua

1) = h1, but since ua
1 is adjacent to h0

and c(h0) = h0, we have c(ua
1) = h1. Similarly, c(wa

1) = h2 or c(wa
1) = h4, but since wa

1

and ua
1 are adjacent, we have c(wa

1) = h2. Hence awa
1 covers h3h2, but we have already

seen this is impossible.

Now assume that for some a ∈ GA \ SA, axab
a covers h3h2, so c(a) = h3 and c(xab

a) = h2.

Now c(ua
1) = h1 or c(ua

1) = h5, but since ua
1 and xab

a are adjacent, we have c(ua
1) = h1.

Because c(ua
2) must be adjacent to c(a) = h3 as well as c(ua

1) = h1, we have c(ua
2) = h2.

Hence aua
2 covers h3h2, but we have already seen this is impossible.

Suppose that for some b ∈ GB \SB, xab
b b covers h3h2, so c(xab

b) = h3 and c(b) = h2. Now

c(ub
1) = h1 or c(ub

1) = h5, but since b and ub
1 are adjacent, we must have c(ub

1) = h1.

Because c(wb
1) must be adjacent to c(xab

b) = h3, we have c(wb
1) = h2 or c(wb

1) = h4.

But ub
1 and wb

1 are adjacent, so c(wb
1) = h2. This means xab

b wb
1 covers h3h2, which we

have already ruled out as a possibility.

51

Chapter 3. Mixing 3-colourings

Now suppose that for some a ∈ GA \ SA and some b ∈ GB \ SB, ab covers h3h2, so

c(a) = h3 and c(b) = h2. Since ua
2 is adjacent to a and we have seen aua

2 does not

cover h3h2, we must have c(ua
2) = h4. Now c(ua

1) = h1 or c(ua
1) = h5, but since ua

1 and ua
2

are adjacent, we must have c(ua
1) = h5. Also, c(xab

a) must be adjacent to c(ua
1) = h5

and c(a) = h3, so c(xab
a) = h4. Similarly, c(xab

b) must be adjacent to c(xab
a) = h4 and

c(b) = h2, so c(xab
b) = h3. But this means xab

b b covers h3h2, which we have already seen

is impossible.

Suppose that for some a ∈ GA \ SA and some b ∈ GB \ SB, xab
b xab

a covers h3h2, so

c(xab
b) = h3 and c(xab

a) = h2. Since a is adjacent to xab
a and we have seen axab

a does not

cover h3h2, we must have c(a) = h1. Because c(b) must be adjacent to c(a) = h1 and

c(xab
b) = h3, we have c(b) = h2. But then xab

b b covers h3h2, and we have seen this is

impossible.

Lastly, if ah2 (or ah4) is an edge of G′, assuming c(a) = h3 and c(h2) = h2 (or c(a) = h3

and c(h4) = h2) immediately leads us to a contradiction, since c(h3) = h5.

From all this we obtain that assuming c(h3) = h5 leads us to the conclusion that no edge

of G′ covers h3h2, contradicting the fact that c is a compaction.

From all the above we obtain that c(h3) = h3, which means that c(W) = {h2, h3, h4}.
Now we show c(h1) 6= c(h5). To the contrary, assume c(h1) = c(h5). Since c(h0) = h0, we

have c(h1), c(h5) ∈ {h1, h5}. Due to symmetry, we can without loss of generality assume

c(h1) = c(h5) = h1. Since c(U) = {h1, h0, h5}, it must be the case that c(uv
1) = h5 for

some v ∈ V (G) \ V (S). Now c(wv
1) and c(h2) must both be adjacent to c(h3) = h3, so

c(wv
1), c(h2) ∈ {h2, h4}. Because c(uv

1) = h5 and uv
1 and wv

1 are adjacent, c(wv
1) = h4.

Similarly, because c(h0) = h0 and h1 and h2 are adjacent, c(h2) = h2. Now c(yv
2) must

be adjacent to c(h2) = h2 and c(wv
1) = h4, so c(yv

2) = h3. Also, c(yv
1) must be adjacent

to c(h5) = h1 and c(uv
1) = h5, so c(yv

1) = h0. Thus we have that yv
1 and yv

2 are adjacent

in G′, but c(yv
1) = h0 and c(yv

2) = h3 are not adjacent in C6, a contradiction.

Hence c(h1) 6= c(h5). That is, c({h1, h5}) = {h1, h5}. Without loss of generality, we

can take c(h1) = h1 and c(h5) = h5. Since c(h3) = h3, we have c(h2), c(h4) ∈ {h2, h4}.
Because h1 and h2 are adjacent in G′ and the distance between c(h1) = h1 and h4 in C6

is 3, it must be that c(h2) 6= h4 and so c(h2) = h2. Similarly, because h5 and h4 are

adjacent in G′ and the distance between c(h5) = h5 and h2 in C6 is 3, it must be that

c(h4) 6= h2, and so c(h4) = h4.

Thus c(hi) = hi for all i = 0, 1, . . . , 5, and c : V (G′)→ V (C6) is a retraction. 2

The last claim is a simple observation that completes the proof of (∗) and thus also of

52

Chapter 3. Mixing 3-colourings

Theorem 3.5.

Claim 3.11

Suppose G′ is pinchable to C6. Then G retracts to S.

Proof. By Claims 3.9 and 3.10 we know there exists a retraction r : V (G′) → V (S).

Because S is an induced subgraph of G, and G is an induced subgraph of G′, restricting r

to G gives us what we need. 2

3.3 A polynomial time algorithm for 3-MIXING for planar

graphs

In this section, we prove the following.

Theorem 3.12

Restricted to planar bipartite graphs, the decision problem 3-Mixing is in the complexity

class P.

To prove the theorem we need two lemmas.

Lemma 3.13

Let P be a shortest path between distinct vertices u and v in a connected bipartite graph H.

Then H is pinchable to P .

Proof. Let P have vertices u = v0, v1, . . . , vk−1, vk = v, and let T be a breadth-first

spanning tree of H rooted at u that contains P (we can choose T so that it contains P

since P is a shortest path). Now, working in T , pinch all vertices at distance one from u

to v1. Next pinch all vertices at distance two from u to v2. Continue until all vertices at

distance k from u are pinched to vk = v. If necessary, arbitrary pinches on the vertices

at distance at least k + 1 from u will yield P . 2

In the following, when we say some vertices of a graph are properly precoloured, we just

mean that they are assigned colours in a way such that the subgraph induced by these

vertices is properly coloured.

53

Chapter 3. Mixing 3-colourings

Lemma 3.14

Let H be a bipartite graph, and suppose the vertices of a 4-cycle in H are properly

precoloured using colours from {1, 2, 3}. Then this 3-colouring can be extended to a proper

3-colouring of H.

Proof. Since any 3-colouring of a four cycle C4 has two vertices with the same colour,

we can without loss of generality assume the four vertices are coloured 1-2-1-2 or 1-2-1-3.

In the first instance, since H is bipartite, we can extend the precolouring to a colouring

of H using colours 1 and 2 only. For the second case, we can use the same colouring,

except leaving the vertex coloured 3 as it is. 2

The sequence of claims that follows outlines an algorithm that, given a connected bipartite

planar graph G as input, determines in polynomial time whether or not G is 3-mixing.

We first show how we can take the input graph to be 2-connected.

Claim 3.15

Let G be a connected bipartite planar graph, and suppose that G has a cut-vertex v. Let H1

be a component of G − {v}. Denote by G1 the subgraph of G induced by V (H1) ∪ {v},
and let G2 be the subgraph induced by V (G) \ V (H1). Then G is 3-mixing if and only if

both G1 and G2 are 3-mixing.

Proof. If G is 3-mixing, then clearly so are G1 and G2. Conversely, if G is not 3-mixing,

we know by Theorem 3.1 that there must exist a 3-colouring α of G and a cycle C in G

such that W (
−→
C , α) 6= 0. But because C must lie completely in G1 or G2, we have that G1

or G2 is not 3-mixing. 2

Let us now consider an embedding of our 2-connected bipartite planar graph G in the

plane, and let us identify G with this embedding. (Throughout the rest of this section,

we will usually, for ease of reference, identify a planar graph with a given embedding of

the graph in the plane.) Given a cycle D in G, denote by Int(D) and Ext(D) the sets of

vertices inside and outside of D, respectively. Note that the vertices of D itself are not

included in Int(D) nor in Ext(D). If both Int(D) and Ext(D) are non-empty, D is said

to be separating. For D a separating cycle in G, let us write GInt(D) = G−Ext(D) and

GExt(D) = G− Int(D), and note that D is part of both these graphs.

We now consider the case that the planar embedding of G has a separating 4-cycle.

54

Chapter 3. Mixing 3-colourings

Claim 3.16

Let G be a 2-connected bipartite planar graph, and suppose that G has a planar embedding

with a separating 4-cycle D. Then G is 3-mixing if and only if GInt(D) and GExt(D) are

both 3-mixing.

Proof. To prove necessity, we show that if one of GInt(D) or GExt(D) is not 3-mixing,

then G is not 3-mixing. Without loss of generality, suppose that GInt(D) is not 3-mixing,

so there exists a 3-colouring α of GInt(D) and a cycle C in GInt(D) with W (
−→
C ,α) 6= 0.

By Lemma 3.14, the 3-colouring of the vertices of the 4-cycle D can be extended to a

3-colouring of GExt(D). The combination of the 3-colourings of GInt(D) and GExt(D)

gives a 3-colouring of G with a non-zero weight cycle, showing that G is not 3-mixing.

To prove sufficiency, we show that if G is not 3-mixing, then at least one of GInt(D)

and GExt(D) must fail to be 3-mixing. Suppose that α is a 3-colouring of G for which

there is a cycle C with W (
−→
C , α) 6= 0. If C is contained entirely within GInt(D) or GExt(D)

we are done, so let us assume that C has some vertices in Int(D) and some in Ext(D).

Then applying Lemma 3.4 (repeatedly, if necessary) we can find a cycle C ′ contained

entirely in GInt(D) or GExt(D) for which W (
−→
C ′, α) 6= 0, completing the proof. 2

We need two further claims to complete the description of our algorithm. We call a

face of G with k edges in its boundary a k-face, and a face with at least k edges in its

boundary a ≥ k-face. The number of ≥ 6-faces of G—which we can now assume has no

separating 4-cycle—will in fact determine if G is 3-mixing.

Claim 3.17

Let G be a 2-connected bipartite planar graph. Suppose that G has a planar embedding

with no separating 4-cycle, and suppose that every internal face of the embedding is a

4-face. Then G is 3-mixing.

Proof. Let α be any 3-colouring of G and let C be any cycle in G. We show W (
−→
C ,α) = 0

by induction on the number of faces inside C. If there is just one face inside C, C is

in fact a facial 4-cycle and W (
−→
C , α) = 0. For the inductive step, let C be a cycle with

r ≥ 2 faces in its interior. If, for two consecutive vertices u, v of C, we have vertices

a, b ∈ Int(C) together with edges ua, ab, bv in G, let C ′ be the cycle formed from C by

the removal of the edge uv and the addition of edges ua, ab, bv. If not, check whether

for three consecutive vertices u, v, w of C, there is a vertex a ∈ Int(C) with edges ua, aw

in G. If so, let C ′ be the cycle formed from C by the removal of the vertex v and the

addition of the edges ua, aw. If neither of the previous two cases apply, we must have,

55

Chapter 3. Mixing 3-colourings

for u, v, w, x four consecutive vertices of C, an edge ux inside C. In such a case, let C ′ be

the cycle formed from C by the removal of vertices v, w and the addition of the edge ux.

In all cases we have that C ′ has r−1 faces in its interior, so, by induction, we can assume

W (
−→
C ′, α) = 0. From Lemma 3.4 we then obtain W (

−→
C , α) = 0. 2

Claim 3.18

Let G be a 2-connected bipartite planar graph. Suppose that G has a planar embedding

with no separating 4-cycle, and suppose further that the embedding has an internal ≥ 6-

face, and that the outer face is a ≥ 6-face. Then G is not 3-mixing.

Proof. We claim that G, under the given assumptions, is pinchable to C6. Denote the

internal ≥ 6-face by f , and the outer face by fo. We call a cycle D in G f -separating if f

lies inside D, where we include the possibility that edges on the boundary of f lie on the

cycle D. (Note that the cycle bounding fo is always an f -separating cycle, and thus an

f -separating cycle need not be a separating cycle.) Obviously G contains no f -separating

4-cycle, since such a cycle would constitute a separating 4-cycle. We now claim that if

G is not a cycle, then it is possible to find a sequence of one or more pinches so that

the resulting graph is a planar graph that has an internal ≥ 6-face f ′, whose outer face

is a ≥ 6-face, and without an f ′-separating 4-cycle. (Note that bipartiteness is trivially

maintained by pinching.) Repeating such a sequence of pinches will eventually transform

G into a cycle of length at least six, proving that G is not 3-mixing.

Let C be the cycle that bounds f : we will initially attempt to pinch vertices into C. Let

x, y, z be three consecutive vertices of C with y having degree at least 3; if there is no

such vertex y, then G is simply a cycle of length at least six and we are done. Let a be

a neighbour of y distinct from x and z, such that the edges ya and yz form part of the

boundary of a face adjacent to f .

Suppose the result of pinching a and z introduces no f -separating 4-cycle. If so, we

pinch a and z. Note that the resulting graph still contains the internal ≥ 6-face f , and

is planar since the edges ya and yz form part of a common face. Note also that the

outer face, though it might have decreased in size, remains a ≥ 6-face: if it did not—

so the edges ya and yz were originally part of the boundary of fo, which had length

six—then we would have a contradiction to the fact that pinching a and z introduced no

f -separating 4-cycle. We observe that pinching a and z might well introduce a cut-vertex

into the graph, but that as long as such a vertex is not included twice on the boundary

of the outer face, this is not a problem. (Note that such a situation cannot arise for

the internal face f .) If we do find that the boundary of the outer face now includes a

56

Chapter 3. Mixing 3-colourings

vertex v twice, then let us denote by G′ the graph resulting from pinching a and z. Let

us also denote by C ′
o and C ′′

o the two distinct cycles formed by the boundary of the outer

face, with V (C ′
o) ∩ V (C ′′

o) = {v}, and where G′
Int(C

′
o) is the subgraph of G′ containing

the internal face f (so C ′
o must have length at least six, for otherwise we have introduced

an f -separating 4-cycle). Now, considering an edge vw of C ′′
o , we pinch G′

Int(C
′′
o) to vw

(using Lemma 3.13 and the fact that vw is a shortest path between v and w). Using this

same sequence of pinches in G′, followed by pinching vw into C ′
o, leaves us with a graph

with the required invariants, and every vertex on the boundary of the outer face of the

resulting graph distinct.

Suppose pinching a and z does result in the creation of an f -separating 4-cycle. If so, this

must be because the path a, y, z forms part of an f -separating 6-cycle D. We now show

how we can find alternative pinches which do not introduce an f -separating 4-cycle.

The fact that D is f -separating means there is a path P ⊆ D of length 4 between a

and z. Note that P cannot contain y, for this would contradict the fact that G has no

f -separating 4-cycle. Consider the graph G′ = GInt(D)− {yz}. We claim that the path

P ′ = P ∪ {y} is a shortest path between y and z in G′. To see this, remember that G

is bipartite, so any path between y and z in G has to have odd length. We cannot have

another edge yz ∈ E(G′) since G is simple. Now note that any path between y and z

in G′, together with the edge yz, forms an f -separating cycle in G. Hence a path of

length 3 between y and z would contradict the fact that G has no f -separating 4-cycle,

and so P ′ is indeed a shortest path between y and z in G′. Using Lemma 3.13, we see

that G′ is pinchable to P ′. Using the same sequence of pinches in G will pinch GInt(D)

into D. Note this introduces no separating 4-cycle into the resulting graph, and note

also that this graph is planar, since it is a subgraph of G. Moreover, note that the length

of the cycle bounding the outer face remains the same, that the vertices of this cycle

are all distinct, and that the cycle D now bounds an internal 6-face. It follows that this

sequence of pinches is a sequence as required by the claim. This completes the proof. 2

The algorithm that decides 3-Mixing runs as follows. Given a connected bipartite planar

graph G with n vertices, we first find the blocks of G. (A block of G is a maximal

connected subgraph of G with no cut-vertex.) These can be found by a standard depth-

first search method (see, for example, [61, p. 157]) in time O(n). Note that a block which

is not 2-connected is either a K1 or a K2, which are both trivially 3-mixing.

Next, for each 2-connected component H of G, we perform the following procedure. Find

an embedding of H in the plane. Let us recall that a planar embedding of a graph can

be specified by a combinatorial embedding (a list of adjacencies for each vertex, with

57

Chapter 3. Mixing 3-colourings

adjacencies listed as they are found in a clockwise order around the vertex) together

with the specification of its outer face. There are fast algorithms, for instance the linear

time algorithm of Mohar [50], to find such an embedding. We now check whether the

embedding has a ≥ 6-face, by traversing the edges of H as they form faces, using the

adjacency lists (this will take time at most O(n2
H), where nH is the number of vertices

of H). If the embedding has a ≥ 6-face, then we transform the embedding into an

embedding in which this face is the outer face. This is done by reversing the order

of vertices in each adjacency list and specifying the new face as the outer face, taking

time O(nH). We now check whether or not the embedding of H has a separating 4-cycle.

A naive approach, which checks all subsets of 4 elements of V (H), runs as follows. First,

check whether a given 4-tuple forms a cycle, using the adjacency lists. If so, we check

whether or not it has an empty interior (note that it will always have non-empty exterior,

where the outer ≥ 6-face is) by checking whether or not, for each vertex of the 4-cycle,

the edges of the cycle are consecutive in the cyclic ordering of neighbours defining the

embedding. This will take O(n5
H) time: O(n4

H) to enumerate all 4-tuples, multiplied

by O(nH), the time needed to check whether, for a given 4-tuple, we have a cycle and

whether this has a non-empty interior. If H does have a separating 4-cycle, we apply

Claim 3.16 and recurse on two smaller problems. If it does not, then we check for a

≥ 6-face different from the outside face (adding O(n2
H) to the running time), and then

either Claim 3.17 or 3.18 must apply to H. If at any stage in the process, for some H,

Claim 3.18 applies, then the algorithm returns ‘no’. Otherwise, the algorithm concludes

that G is 3-mixing.

If we denote the running time of the procedure we are running on H by T (nH), the

recursive call arising from finding a separating 4-cycle D leads to the recurrence relation

T (nH) = T (nInt)+T (nExt)+O(n5
H), where nInt and nExt are, respectively, the number of

vertices of HInt(D) and HExt(D). Noting that nH = nInt+nExt−4, we may rewrite this as

T (nH) = T (nInt)+T (nH−nInt +4)+O(n5
H), and because we have 5 ≤ nInt ≤ nH−1, we

see that we are in fact recursing on two smaller problems. After observing that T (5) = c

for some constant c, a simple inductive argument yields that T (nH) is O(n6
H). Because

we have less than n blocks in G, the running time of the algorithm is bounded by O(n7).

This completes the proof of Theorem 3.12.

58

4
Paths between 3-colourings

In this chapter we examine what can be said about possible sequences of recolourings

between a given pair of 3-colourings. We determine how easy it is to find if a sequence

exists, and also what its length may be if it does. Our main result is the following.

Theorem 4.1

The decision problem 3-Colour Path is in the complexity class P.

We prove Theorem 4.1 in Section 4.1 by describing an algorithm that decides the problem

in polynomial time. In doing so, we will see that in the case that two 3-colourings of a

graph G belong to the same component of C3(G), our algorithm can be used to exhibit

a path of length O(|V (G)|2) between them. This proves the following.

Theorem 4.2

Let G be a 3-colourable graph with n vertices. Then the diameter of any component

of C3(G) is O(n2).

In Section 4.2 we turn our attention to what else can be said about the distance between a

given pair of 3-colourings. We will prove that in many cases, the algorithm of Section 4.1

in fact returns a shortest path between two 3-colourings which are connected in C3(G).

We will also show that the quadratic bound on the number of recolourings can be met

from below, constructing a class of instances G, α, β such that α and β are connected

and at distance Ω(|V (G)2|) in C3(G).

59

Chapter 4. Paths between 3-colourings

4.1 A polynomial time algorithm for 3-COLOUR PATH

The algorithm that decides 3-Colour Path stems from the proof of a characterisation

of instances G,α, β where α and β belong to the same component of C3(G). We will

describe this characterisation in Theorem 4.6 below. Before doing so, we examine what

can forbid the existence of a path between 3-colourings α and β of a graph G in C3(G).

The proof of the characterisation of connected pairs of 3-colourings is via an algorithm

that, given G,α, β, either finds a sequence of recolourings between α and β, or exhibits

a structure which proves that no such sequence exists. Thus this algorithm also decides

3-Colour Path.

Obstructions to paths between 3-colourings

Let us examine what can stop us from being able to find a sequence of recolourings

between a pair of 3-colourings α, β of a graph G. Informally, we call a structure in G,α, β

forbidding the existence of a path between α and β in C3(G) an obstruction. For the

remainder of this section we assume that we are dealing with some fixed graph G.

We saw in Lemma 2.10 in Chapter 2 how a cycle C in G can act as an obstruction

between α and β: if its weight W (
−→
C ,α) in α is different to that in β, W (

−→
C , β), then

there can be no path between α and β in C3(G).

A second obstruction is given by what we call fixed vertices. For a 3-colouring α, we

define a vertex v as fixed if there is no sequence of recolourings from α which will allow

us to recolour v. In other words, a vertex v is fixed if for every colouring β in the

same component of C3(G) as α we have β(v) = α(v). For example, if a cycle with

0 mod 3 vertices is coloured 1-2-3-1-2-3-· · · -1-2-3, then every vertex on the cycle is fixed

(as none can be the first to be recoloured); we call this a fixed cycle (with respect to

the 3-colouring α). Similarly, a path coloured · · · 3-1-2-3-1-2-3-1-· · · , both of whose end-

vertices lie on fixed cycles, cannot be recoloured and is called a fixed path.

Given a 3-colouring α of G, we denote the set of fixed vertices of G by Fα. We shall

shortly prove the following.

Proposition 4.3

Let α be a 3-colouring of G. Then every v ∈ Fα belongs to a fixed cycle or a fixed path.

The next lemma, which illustrates how fixed vertices may act as an obstruction, follows

immediately from the definitions.

60

Chapter 4. Paths between 3-colourings

Lemma 4.4

Let α and β be two 3-colourings of G. Then if α and β belong to the same component

of C3(G), we must have Fα = Fβ and α(v) = β(v) for each v ∈ Fα. 2

The following lemma, very similar to Lemma 2.10, shows a third type of obstruction.

Lemma 4.5

Let α and β be 3-colourings of G with Fα = Fβ 6= ∅ and α(v) = β(v) for all v ∈ Fα, and

suppose that G contains a path P with end-vertices u and w, where u, w ∈ Fα. Then if α

and β are in the same component of C3(G), we must have W (
−→
P , α) = W (

−→
P , β).

Proof. Let α and α′ be 3-colourings of G that are adjacent in C3(G), and suppose the

two 3-colourings differ on vertex v. Note that v cannot be a vertex in Fα, so neither can

it be an end-vertex of P . If v is not on P , then we certainly have W (
−→
P , α) = W (

−→
P , α′).

If v is an internal vertex of P , then all its neighbours must have the same colour in α,

for otherwise we would not be able to recolour v. If we denote the in-neighbour of v

on
−→
P by vi and its out-neighbour by vo, then this means that w(−→viv, α) and w(−→vvo, α)

have opposite sign, hence w(−→viv, α) + w(−→vvo, α) = 0. Recolouring vertex v will change

the signs of the weights of the oriented edges −→viv and −→vvo, but they will remain opposite.

Therefore w(−→viv, α′) + w(−→vvo, α
′) = 0, and it follows that W (

−→
P , α) = W (

−→
P , α′).

From the above we immediately obtain that the weight of an oriented path between fixed

vertices is constant on all 3-colourings in the same component of C3(G). 2

Lemmas 2.10, 4.4 and 4.5 give necessary conditions for two 3-colourings α and β of a

graph G to belong to the same component of C3(G). From Lemmas 4.4 and 2.10 we

obtain, respectively:

(C1) Fα = Fβ and α(v) = β(v) for each v ∈ Fα; and

(C2) for every cycle C in G, W (
−→
C , α) = W (

−→
C , β).

If for two 3-colourings α and β of G we take condition (C1) to be satisfied, Lemma 4.5

gives a third necessary condition for α and β to belong to the same component of C3(G):

(C3) for every path P between fixed vertices, W (
−→
P , α) = W (

−→
P , β).

61

Chapter 4. Paths between 3-colourings

s

s
s s s s s s

s

s
"

""

b
bb

b
bb

"
""

2

1

3 1 2 3 1 3 2

1

s

s
s s s s s s

s

s
"

""

b
bb

b
bb

"
""

2

1

3 1 3 2 1 3 2

1

Figure 4.1 Two 3-colourings of a graph G not connected in C3(G).

Bearing in mind that we are only considering condition (C3) if condition (C1) is already

satisfied, let us observe that neither conditions (C1) and (C2) taken together, nor con-

ditions (C1) and (C3) taken together, are sufficient to guarantee the existence of a path

between 3-colourings α and β.

To see that conditions (C1) and (C2) are not sufficient, consider the graph and two

3-colourings shown in Figure 4.1. It is easy to check that (C1) and (C2) are satisfied (note

that only vertices on the 3-cycles are fixed), but the two colourings are not connected:

fix an orientation of the path between the two 3-cycles, and observe that the weight of

this oriented path is +3 in one colouring and −3 in the other.

To see that conditions (C1) and (C3) are not sufficient, consider two 3-colourings α and β

of a 5-cycle that differ only in that the colours 1 and 2 are swapped: (C1) and (C3) are

satisfied (since Fα = Fβ = ∅), but there is no path between the two colourings as the

5-cycle has different weights in the two colourings.

We now prove that if all three conditions are satisfied by a pair of colourings α and β

of G, then they are in the same component of C3(G).

A characterisation of connected pairs of 3-colourings

The proof of the following characterisation of connected pairs of 3-colourings will yield

a polynomial time algorithm for 3-Colour Path, proving Theorem 4.1. We will also

prove Theorem 4.2 in the process.

Theorem 4.6

Two 3-colourings α and β of a graph G belong to the same component of C3(G) if and

only if

(C1) Fα = Fβ and α(v) = β(v) for each v ∈ Fα;

(C2) for every cycle C in G, W (
−→
C ,α) = W (

−→
C , β); and

62

Chapter 4. Paths between 3-colourings

(C3) for every path P between fixed vertices, W (
−→
P , α) = W (

−→
P , β).

The necessity of the three conditions has already been established. We prove that they

are sufficient by outlining an algorithm whose input is a graph G and two 3-colourings α

and β of G, and whose output is either a path in C3(G) from α to β, or an obstruction

that shows that (C1), (C2) or (C3) is not satisfied, so no such path exists.

The first step of the algorithm is to find Fα and Fβ. We claim that the following procedure

finds the fixed vertices of a graph G with 3-colouring α.

• Let S1, S2 and S3 initially be the three colour classes induced by α.

• For i ∈ {1, 2, 3}, and for each vertex v ∈ Si: let Si = Si\{v} unless v has neighbours

in each of the other two sets.

• Repeat the previous step until no further changes are possible. Return S = S1 ∪
S2 ∪ S3.

Claim 4.7

The above procedure returns S = Fα.

Before proving the claim, let us give some definitions. Fix a vertex v of G and set

L+
0 = L−0 = {v}. For i = 1, 2, . . ., let a vertex u belong to L+

i if u has a neighbour

w ∈ L+
i−1 and α(u) ≡ α(w) + 1 (mod 3). (So, for example, if v is coloured 3, then L+

1

contains all neighbours of v coloured 1, L+
2 contains all vertices coloured 2 that have a

neighbour in L+
1 , and so on.) For j = 1, 2, . . ., let a vertex u belong to L−j if u has a

neighbour w ∈ L−j−1 and α(u) ≡ α(w) − 1 (mod 3). We call these sets the levels of v,

and the sets can be categorised as positive or negative according to their superscript.

Observe that v lies on a fixed cycle if and only if there is a vertex u ∈ L+
i ∩ L−j , for

some i, j > 0. To see this, note that if v lies on a fixed cycle C, then v ∈ L+
p (v) and

v ∈ L−p (v), where p is the number of edges of C. Hence there is a u ∈ L+
i ∩ L−j , for

some i, j > 0. Conversely, if we have a u ∈ L+
i ∩ L−j for some i, j > 0, then there

is a path P+ in G formed by vertices v = p+
0 , p+

1 , . . . , p+
i = u, where p+

k ∈ L+
k (v) for

0 ≤ k ≤ i, and there is also a path P− in G formed by vertices v = p−0 , p−1 , . . . , p−j = u,

where p−k ∈ L−k (v) for 0 ≤ k ≤ j. Note that we can assume that u is distinct from all of

p+
0 , p+

1 , . . . , p+
i−1 and p−0 , p−1 , . . . , p−j−1; that is, we choose i and j to be as small as possible.

Then the graph induced by P+ ∪ P− forms a fixed cycle of G in α.

Similarly, v lies on a fixed path with end vertices u and w (each on a fixed cycle) if and

only if u ∈ L+
i′ ∩ L+

i for some i′ > i > 0 and w ∈ L−j′ ∩ L−j for some j′ > j > 0. To

63

Chapter 4. Paths between 3-colourings

see this, first observe that if v lies on a fixed path with end-vertices u and w, we can

conclude, without loss of generality, that u ∈ L+
i and w ∈ L−j for some i, j > 0. Then,

because u and w are each part of a fixed cycle, by the argument above we have that

u ∈ L+
i′ for i′ = i + p, and w ∈ L−j′ for j′ = j + q, where p and q are the respective

lengths of the fixed cycles of u and w. Hence u ∈ Li ∩ Li′ , where i′ > i > 0, and

w ∈ Lj ∩ Lj′ , where j′ > j > 0. For the converse, suppose we have u ∈ Li ∩ Li′ , for

some i′ > i > 0, and w ∈ Lj ∩ Lj′ , for some j′ > j > 0. Ensuring that i′ > i > 0 and

j′ > j > 0 are all chosen as small as possible, we can then consider a sequence of vertices

v = p+
0 , p+

1 , . . . , p+
i = u, p+

i+1, . . . , p
+
i′ = u, where p+

k ∈ L+
k (v) for 0 ≤ k ≤ i′, and such

that p+
0 , . . . , p+

i form a fixed path and p+
i , . . . , p+

i′−1 induce a fixed cycle. We can choose

a similar sequence of vertices from the negative levels of v which includes w (twice) to

complete the proof.

Proof of Claim 4.7 (and Proposition 4.3). Suppose the procedure described above

is run on G,α, and has terminated. Note that a vertex that lies on a fixed cycle or path

is certainly in S. We shall show that for each vertex v ∈ V (G), either

• v lies on a fixed cycle or path (so is both fixed and in S), or

• v is neither fixed nor in S.

This will prove that S = Fα, and also Proposition 4.3.

Fix a vertex v of G and consider the levels of v. We have observed that if there is a

vertex that is in L+
i , for some i > 0, and also in L−j , for some j > 0, then v lies on a

fixed cycle. Also, if there is a vertex that belongs to L+
i and L+

i′ , for some i′ > i > 0, and

another vertex that belongs to L−j and L−j′ , for some j′ > j > 0, then v lies on a fixed

path.

If neither of these two properties hold, then either the positive or negative levels (or

both) are disjoint and thus only finitely many of them are non-empty. We show that this

means we can recolour v and so v is not fixed. Let us assume therefore that L+
t = ∅ or

L−t = ∅ for some t > 0. Without loss of generality, let us assume L+
t = ∅. Thus each

vertex u ∈ L+
t−1 can be recoloured with α(u) + 1 (mod 3). Then each vertex w ∈ L+

t−2

can be recoloured with α(w) + 1 (mod 3), and so on, until v is recoloured. The fact

that v can be recoloured implies it is not in S: every vertex in S has a pair of differently

coloured neighbours, so no vertex in S can be the first to be recoloured. 2

Claim 4.7 allows us to find Fα and Fβ. If Fα 6= Fβ, or if there is a vertex v ∈ Fα such

that α(v) 6= β(v), then there is no path from α to β. The algorithm outputs Fα, Fβ and,

64

Chapter 4. Paths between 3-colourings

if necessary, v.

Henceforth we assume that condition (C1) is satisfied, so Fα = Fβ and for all v ∈ Fα,

α(v) = β(v).

If Fα 6= ∅, we construct, from G, a new graph Gf by identifying, for i = 1, 2, 3, all

vertices in Si and denoting the newly created vertex by fi. In other words:

• V (Gf) = (V (G) \ Fα) ∪ {f1, f2, f3}, and

• E(Gf) = {uv ∈ E(G) | u, v ∈ V (G) \ Fα} ∪ {f1f2, f1f3, f2f3}
∪

⋃

i=1,2,3

{ufi | u ∈ V (G) \ Fα and ∃ v ∈ Si with uv ∈ E(G)}.

If G has no fixed vertices with respect to α, then we set Gf = G.

It is convenient to assume that all edges are retained so that G and Gf have the same

edge set. Since S1, S2, S3 are independent sets (they are subsets of the colour classes of

the colouring α), this means Gf is a graph with possibly multiple edges, but no loops.

Let αf and βf be the colourings induced on Gf by α and β. It is easy to observe that if

Fα 6= ∅,

• f1, f2 and f3 are the only fixed vertices of Gf in αf and βf , and

• f1, f2 and f3 induce a (fixed) 3-cycle in Gf in both colourings.

Note that if α and β belong to the same component of C3(G), this component is isomorphic

to the component of C3(Gf) that contains αf and βf . Hence we have the following.

Claim 4.8

There is a path from α to β in C3(G) if and only if there is a path from αf to βf in C3(Gf).

To prove Theorem 4.6, we shall prove the following claim.

Claim 4.9

Two 3-colourings αf and βf of a graph Gf belong to the same component of C3(Gf) if

and only if

(C2 ′) for every cycle C in Gf , W (
−→
C ,αf) = W (

−→
C , βf).

Let us first establish that the claim implies the theorem, recalling that we are assuming

condition (C1). Let
−→
C be an oriented cycle in G. In Gf , the oriented edges of

−→
C form

65

Chapter 4. Paths between 3-colourings

a set of edge-disjoint oriented cycles. (Here we are using the convention that all edges

from G are retained in Gf .) Since these cycles contain the same edges as
−→
C , similarly

oriented, it is easy to see that the sum of the weights of these cycles is equal to W (
−→
C , α).

Thus if Gf , αf and βf satisfy (C2′), then G, α, β satisfy (C2).

Now, let
−→
P be an oriented path between fixed vertices in G. If the end-vertices of P

have the same colour, then the oriented edges of
−→
P again form a set of edge-disjoint

oriented cycles in Gf , and (C2′) implies that W (
−→
P , α) = W (

−→
P , β). If the end-vertices

of P have a different colour, then we can suppose, without loss of generality, that the

end-vertices of P are coloured 1 and 2 and that
−→
P is oriented from the end-vertex

coloured 1 towards the end-vertex coloured 2. This means that the union of the ori-

ented edges of
−→
P and the edge

−−→
f2f1 forms a set of oriented cycles in Gf . Since we

have w(
−−→
f2f1, α

f) = w(
−−→
f2f1, β

f), (C2′) again implies that W (
−→
P , α) = W (

−→
P , β). Hence

if Gf , αf , βf satisfy (C2′), then G,α, β satisfy (C3).

Conversely, if there is a cycle C in Gf such that W (
−→
C ,αf) 6= W (

−→
C , βf), then this same

cycle can be found in G or, if C intersects {f1, f2, f3}, then there is a path between fixed

vertices in G that has different weights under α and β. This shows that if Gf , αf , βf do

not satisfy (C2′), then one of (C2) or (C3) fails for G,α, β.

Proof of Claim 4.9. To prove the claim we describe an algorithm that either finds a

path from αf to βf in C3(Gf), or finds a cycle C in Gf such that W (
−→
C ,αf) 6= W (

−→
C , βf).

The algorithm attempts to find a sequence of recolourings that transforms αf into βf .

It maintains a set F ⊆ V (Gf) such that the subgraph induced by F is connected and for

each v ∈ F , the current colouring of v is βf (v). Initially, if Fα and Fβ were not empty,

we let F = {f1, f2, f3}. Otherwise, we set F = ∅. We then try to increase the size of F

one vertex at a time.

We show how to extend F if F 6= V (Gf). If F 6= ∅, then choose a vertex v /∈ F such

that v is adjacent to a vertex u ∈ F . If F = ∅, then we choose an arbitrary vertex v, and u

does not exist. Suppose the current colouring is α′. If α′(v) = βf (v), we can extend F

to include v immediately. Otherwise, let us assume that α′(v) = 2 and βf (v) = 3. Note

that this means that α′(u) = 1 (if u exists), since α′(u) = βf (u) and u is adjacent to v.

Now we attempt to find the positive levels of v in α′. This is easily done algorithmi-

cally: L+
1 (v) contains those neighbours of v coloured 3; L+

2 (v) contains neighbours of

vertices in L+
1 (v) coloured 1, and so on. We stop if either

(L1) we reach a level L+
i that is empty, or

(L2) we find a level that contains a vertex w ∈ F .

66

Chapter 4. Paths between 3-colourings

Note that one of (L1) or (L2) must occur. This is because any vertex not in F belongs

to at most one level (if a vertex belongs to two levels it is fixed, and all fixed vertices

are in F). Hence we eventually reach either a level that contains a vertex w ∈ F , or an

empty level. If F is empty, then, of course, (L1) must occur.

If (L1) occurs, then we can recolour each vertex z in L+
j , j = i − 1, i − 2, . . . , 0, with

α′(z)+1 (mod 3), starting with the highest level and working down. Thus, ultimately, v

is recoloured 3 and we can now add v to F . If there are still vertices not in F , we repeat

the procedure.

Suppose (L2) occurs. Then there is a path P from u to w coloured 1-2-3-1-2-3-· · · -α′(w).

Moreover, no internal vertex of P is in F . As u and w are in F , and F induces a

connected subgraph, we can extend P to a cycle C using a path Q = w, . . . , u in F . We

claim that W (
−→
C ,α′) 6= W (

−→
C , βf), and hence the cycle C is an obstruction that shows

that α′ and βf do not belong to the same component of C3(G). Because αf and α′ do

belong to the same component of C3(G), this cycle is also an obstruction showing that αf

and βf do not belong to the same component of C3(G).

To see that W (
−→
C ,α′) 6= W (

−→
C , βf), choose the orientation

−→
C so that the edge uv is

oriented from u to v. The weight of
−→
C is the sum of the weights of

−→
P and

−→
Q (taking

−→
P

and
−→
Q to have the same orientation as

−→
C). Let W (

−→
Q,α′) = k. As vertices in F are

coloured alike in α′ and βf , W (
−→
Q, βf) = k. Let p be the number of edges in P . Then

W (
−→
P , α′) = p, since each edge has weight +1. But W (

−→
Q, βf) < p, since w(−→uv, βf) = −1.

Thus we find W (
−→
C , βf) < k + p = W (

−→
C , α′).

All the above was done under the assumption that α′(v) = 2 and βf (v) = 3. In the cases

α′(v) = 3, βf (v) = 1 and α′(v) = 1, βf (v) = 2 we do exactly the same, again using the

positive levels L+
i (v). In the other three cases, we follow the same steps, but now using

the negative levels L−i (v) of v. This completes the proof of the claim. 2

This completes the proof of Theorem 4.6.

Note that if α and β are in the same component of C3(G) and G has n vertices, the

algorithm in the proof of Claim 4.9 will use at most 1
2n(n + 1) recolouring steps: each

time a vertex is added to F , we have recoloured all vertices not in F at most once. This

proves Theorem 4.2.

Note also that the procedure which finds the fixed vertices of a given 3-colouring, the

construction of Gf from G, and the algorithm in the proof of Claim 4.9 can clearly be

performed in polynomial time. This proves Theorem 4.1.

67

Chapter 4. Paths between 3-colourings

Using Theorem 4.6, it is now possible to give an alternative proof of Theorem 4.1. We

describe a modification of the algorithm that proves Theorem 4.6 which, given a graph G

together with two 3-colourings α and β as input, decides whether or not α and β belong

to the same component of C3(G) by simply checking conditions (C1), (C2) and (C3).

As before, we first check whether condition (C1) is satisfied. We proceed by assuming

it (else the algorithm terminates), and then transform the instance G,α, β into the in-

stance Gf , αf , βf . We have already observed that these operations can be performed in

polynomial time.

Having seen that condition (C2′) is equivalent to conditions (C2) and (C3), we now

claim that condition (C2′) can be verified in polynomial time. (Note that, a priori—

that is, without having proved Theorem 4.1—, this is not immediately obvious, since the

graph Gf may contain an exponential number of cycles.) In order to prove this claim,

we need to recall some definitions.

Let H be a connected graph with n vertices and m edges. It is well-known that (the edge

sets of) the cycles of H form a vector space over the field F2 = {0, 1}, where addition

is symmetric difference. This vector space is known as the cycle space of H. Given any

spanning tree T of H, adding any of the m − n + 1 edges e ∈ E(H) \ E(T) to T yields

a unique cycle Ce of H. These m− n + 1 cycles are called the fundamental cycles of T ,

and they form a basis of the cycle space of H known as a cycle basis. In fact, it is easy

to prove that for every cycle C,

C =
∑

e∈E(C)\E(T)

Ce,

where addition is as in the vector space (F2)m. We refer the reader to [17, Section 1.9]

for full details.

That we can check if Gf , αf , βf satisfies condition (C2′) in polynomial time follows from

the following lemma.

Lemma 4.10

Let H be a connected graph with n vertices and m edges. Let α be a 3-colouring of H, T

a spanning tree of H, and {Ce | e ∈ E(H) \ E(T)} the set of fundamental cycles of T .

Then for any cycle C in H, W (
−→
C ,α) is determined by the values of W (

−→
Ce, α), for all

e ∈ E(H) \ E(T).

Proof. Let C be any cycle in H, and write C =
∑

e∈E(C)\E(T)

Ce, with addition as in the

vector space (F2)m. Choose an orientation
−→
C for C. For each e ∈ E(C) \ E(T), orient

68

Chapter 4. Paths between 3-colourings

the fundamental cycle Ce so that e has the same orientation in
−→
C and in

−→
Ce. We claim

that

W (
−→
C , α) =

∑

e∈E(C)\E(T)

W (
−→
Ce, α), (4.1)

where addition is now the normal addition of integers. We prove (4.1) by counting

edge-weight contributions to both sides of the equation.

Let e = uv be an edge of C, with orientation −→uv on
−→
C . Clearly w(−→uv, α) is counted exactly

once on the left-hand side (LHS) of (4.1). To count the contributions that e makes to

the right-hand side (RHS) of (4.1), we distinguish two cases, according to whether or

not e is an edge of T . If e /∈ E(T), then the definition of Ce and the choice of the

orientation
−→
Ce immediately give that e contributes exactly the weight w(−→uv, α) to the

RHS. If e = uv ∈ E(T), we claim that it appears oriented as −→uv exactly one more time

than it appears oriented as ←−uv in the cycle expansion of
−→
C . Note that uv is a cut-edge

of T and, as such, its removal splits T into two subtrees Tu and Tv, with u ∈ V (Tu)

and v ∈ V (Tv). We also have V (Tu) ∪ V (Tv) = V (H). Let f ∈ E(C) \ E(T) with

uv ∈ E(Cf). Then, in fact, we can take f = xy with x ∈ V (Tu) and y ∈ V (Tv). If f has

the orientation −→xy in
−→
C , then it has the same orientation in

−→
Cf , and hence the edge uv

has the orientation ←−uv in Cf . The reverse is the case if f has the orientation ←−xy in
−→
C .

Going along the oriented edges of the cycle
−→
C , we have the same number of edges −→xy

with x ∈ V (Tu) and y ∈ V (Tv), as we have edges between V (Tu) and V (Tv) going in the

other direction. But since uv is one of the edges of the first count, we get exactly one

more edge xy 6= uv of
−→
C with x ∈ V (Tu) and y ∈ V (Tv) oriented as←−xy than oriented the

other way round. This means that in the sum on the RHS of (4.1) we have exactly one

more contribution of the form w(−→uv, α) than of the form w(←−uv, α).

Now suppose that e = uv is not an edge of C. Clearly this edge makes no contribution

to the LHS of the equation. Again, to count the contributions of this edge to the RHS

of the expression, we distinguish the cases where e is an edge of T and where it is not. If

e = uv ∈ E(T), we can argue as in the preceding paragraph to see that this time we have,

in the RHS of (4.1), exactly the same number of contributions of the form w(−→uv, α) as of

the form w(←−uv, α). Hence the net contribution to the RHS is zero. Lastly, if e /∈ E(T)

it makes no contribution either, since the fundamental cycle Ce to which it corresponds

does not appear in the cycle expansion of C.

This completes the proof of the lemma. 2

69

Chapter 4. Paths between 3-colourings

4.2 Distances between 3-colourings

We have seen that if α and β are 3-colourings of a graph G that are in the same component

of C3(G), then they are at distance O(|V (G)|2). In this section we show that this bound

on the distance between 3-colourings is of the right order. Before doing so, we prove that

in the case that α and β are connected and Fα 6= ∅ (so Fβ 6= ∅ and for all v ∈ Fα,

α(v) = β(v)), the algorithm described in Section 4.1 finds a shortest path from α to

β in C3(G). Once again, throughout this section, G will denote a fixed 3-colourable

connected graph. We also use the notation and terminology introduced in the previous

section.

Finding shortest paths between 3-colourings

Theorem 4.11

Let α and β be two 3-colourings of a connected graph G that are in the same component

of C3(G), and suppose that Fα 6= ∅. Then the algorithm described in Section 4.1 finds a

shortest path between α and β.

Proof. Our algorithm in fact finds a path from αf to βf in Gf , but, as we observed ear-

lier, the relevant components of the two colour graphs are isomorphic. For a 3-colouring γ

of Gf , let us denote by Cγ the component of C3(Gf) containing γ. Note that since we are

assuming that α and β are connected, so are αf and βf ; that is, Cαf = Cβf .

Recall that Gf has exactly three fixed vertices f1, f2, f3 in the colourings αf and βf .

Let γ be a 3-colouring in Cβf . For any vertex v of Gf , let
−→
P be an oriented path from f1

to v. Then the height of v in γ is defined as

h(v, γ) = |W (
−→
P , γ)−W (

−→
P , βf)|.

We need to prove that this definition is independent of the choice of P . If there are two

oriented paths
−→
P1 and

−→
P2 from f1 to v, then, noting that their union is a set of oriented

cycles and applying Lemma 2.10, we have

W (
−→
P1, γ)−W (

−→
P2, γ) = W (

−→
P1, β

f)−W (
−→
P2, β

f).

Rearranging, we obtain

|W (
−→
P1, γ)−W (

−→
P1, β

f)| = |W (
−→
P2, γ)−W (

−→
P2, β

f)|.

Now let γ and δ be adjacent 3-colourings in Cβf and let w be the unique vertex on which

they differ. Note that this means that all neighbours of w are coloured the same as one

70

Chapter 4. Paths between 3-colourings

another, and all these neighbours are coloured the same in both γ and δ. Let
−→
P be an

oriented path from f1 to some vertex v and let us consider how the height of v changes

as γ is recoloured to δ. If w is not on
−→
P , then clearly h(v, γ) = h(v, δ). We know w 6= f1,

as f1 is fixed. If w is an internal vertex of
−→
P , then the sum of the weights of the two

edges of
−→
P incident with w is zero for both γ and δ, so again h(v, γ) = h(v, δ). If w = v,

then the sign of the weight of the edge of
−→
P incident with v changes as we recolour. So

in this last case we have |h(v, γ)− h(v, δ)| = 2.

Note that finding a path from αf to βf is equivalent to finding a sequence of recolourings

that reduces the height of every vertex v from h(v, αf) to zero. In the previous paragraph

we saw that each time we recolour, only the height of the vertex being recoloured changes,

and it either increases or decreases by 2. So if we can find a sequence of recolourings that

always reduces the height of the vertex being recoloured, we will have found a shortest

path. We show that this is indeed what the algorithm of Claim 4.9 does.

Recall that the algorithm starts with a set F = {f1, f2, f3} and then repeatedly adds

vertices v to F , where v has a neighbour u ∈ F . To add v to F , the vertices in either

all its positive levels or all its negative levels are recoloured before v itself is recoloured.

Assume that we are in the case that to recolour v all positive levels need to be recoloured;

the other case is proved in the same way. Let y be a vertex that is about to be recoloured

at some stage in this process (this can be v itself, or any of the vertices in the positive

levels of v). We must show that its height will be reduced. Let γ and δ be the colourings

before and after y is recoloured. Let
−→
Q be an oriented path from u to y that contains one

vertex from each non-negative level of v. So if there are k edges in
−→
Q , then W (

−→
Q, γ) = k.

Thus W (
−→
Q, δ) = k−2, since the edge of

−→
Q incident with y has its weight changed from 1

to −1 when y is recoloured. Let
−→
R be an oriented path from f1 to u containing only

vertices in F , and let
−→
P be the union of

−→
R and

−→
Q .

Since the colourings βf , γ, δ agree on F , we have W (
−→
R, βf) = W (

−→
R, γ) = W (

−→
R, δ). We

also know that w(−→uv, βf) = −1, and since
−→
Q has k edges, this means

W (
−→
Q, βf) ≤ k − 2 = W (

−→
Q, δ) < k = W (

−→
Q, γ).

From this we can derive

h(y, γ) = |W (
−→
P , γ)−W (

−→
P , βf)| = |W (

−→
Q, γ)−W (

−→
Q, βf)|

= W (
−→
Q, γ)−W (

−→
Q, βf) = k −W (

−→
Q, βf)

and similarly,

h(y, δ) = k − 2−W (
−→
Q, βf).

71

Chapter 4. Paths between 3-colourings

Hence every recolouring indeed reduces the height of the vertex being recoloured. This

completes the proof. 2

Now let us observe that if there are no fixed vertices, the algorithm may find a much

longer path. For example, consider two colourings of a path that differ only on an end-

vertex v and its neighbour: α = 1-2-3-1-2-3-1-· · · -1-2-3 and β = 2-1-3-1-2-3-1-· · · -1-2-3.

The algorithm starts by setting F = ∅ and then chooses an arbitrary first vertex to start

the recolouring. If that first vertex is v, then the algorithm will start by recolouring

every vertex on the path. But clearly it is possible to get from α to β via only three

recolourings. The reader can check that this shortest number of recolourings would be

obtained if the first vertex chosen by the algorithm were any vertex other than v.

We believe that the algorithm from Section 4.1 will also, with an appropriate choice of

initial vertex, find a shortest path between two 3-colourings without fixed vertices.

Conjecture 4.12

Let α and β be two 3-colourings of a graph G that are in the same component of C3(G),

and suppose that Fα = Fβ = ∅. For v ∈ V (G), let T (v) be the number of recolourings

required by the algorithm in Section 4.1 when the algorithm starts by adding v to F = ∅.

Then the length of the shortest path between α and β is equal to minv∈V (G) T (v).

Pairs of 3-colourings at quadratic distance

We construct a class of instances G,α, β where, for each G, α and β are connected and

at distance Ω(|V (G)|2) in C3(G). For N ∈ N, let us define the graph GN as the graph

consisting of a 3-cycle with an attached path of length N . More precisely, let

• V (GN) = {f1, f2, f3} ∪ {v1, v2, . . . , vN}, and

• E(GN) = {f1f2, f1f3, f2f3} ∪ {f3v1, v1v2, v2v3, . . . , vN−1vN}.

Let αN be the 3-colouring of GN given by αN (fi) = i, for i = 1, 2, 3, and where the

vertices v1, v2, . . . , vN are coloured 1, 2, 3, 1, 2, 3, Similarly, let βN be the 3-colouring

of GN given by βN (fi) = i, for i = 1, 2, 3, and where the vertices v1, v2, . . . , vN are

coloured 2, 1, 3, 2, 1, 3,

Theorem 4.13

Let N ∈ N and let GN , αN , βN be as described above. Then the 3-colourings αN and βN

of GN are connected and at distance 1
2N(N + 1) = Ω(|V (GN)|2) in C3(GN).

72

Chapter 4. Paths between 3-colourings

Proof. It is clear that GN , αN and βN satisfy conditions (C1), (C2) and (C3). Therefore,

by Theorem 4.6, αN and βN are connected in C3(GN).

As in the proof of Theorem 4.11, we consider heights of vertices. For any vertex v of GN ,

let
−→
P be an oriented path from f3 to v, noting that f3 ∈ FαN . Define the height of v

in αN as h(v, αN) = |W (
−→
P , αN)−W (

−→
P , βN)|.

We have seen, in the proof of Theorem 4.11, that finding a shortest path from αN to βN

is equivalent to finding a sequence of recolourings that reduces the height of every vertex

in αN to zero, and that, with each recolouring, we reduce the height of the recoloured

vertex by 2, while the height of all other vertices remains the same. This enables us to

calculate the distance between αN and βN : we just need to calculate the heights of all

vertices in αN .

First observe that h(fi, αN) = 0, for i = 1, 2, 3. For i = 1, . . . , N , let
−→
Pi be the oriented

path from f3 to vi, and observe that W (
−→
Pi, αN) = i, while W (

−→
Pi, βN) = −i. This

means that h(vi, αN) = |W (
−→
Pi, αN) −W (

−→
Pi, βN)| = 2i. We thus find that the distance

between αN and βN is equal to

1
2

N∑

i=1

h(vi, αN) =
N∑

i=1

i =
1
2
N(N + 1).

Since GN has N + 3 vertices, we obtain that this distance is indeed Ω(|V (GN)|2). 2

73

5
Paths between k-colourings

We saw in Chapter 4 that the decision problem 3-Colour Path is solvable in polynomial

time. In this chapter we determine the complexity of the problem k-Colour Path for

values of k ≥ 4, proving the following.

Theorem 5.1

For every fixed k ≥ 4, the decision problem k-Colour Path is PSPACE-complete.

Moreover, it remains PSPACE-complete for the following restricted instances:

(i) bipartite graphs and any fixed k ≥ 4;

(ii) planar graphs and any fixed 4 ≤ k ≤ 6; and

(iii) bipartite planar graphs and k = 4.

The reader will also recall that we proved in Chapter 4 that if α and β are two 3-colourings

of a graph G connected in C3(G), then the distance between them is O(|V (G)|2). Again,

we will see that things are remarkably different for the case of general k-colourings:

we will prove that if k ≥ 4, the distance between two k-colourings of a graph can be

superpolynomial in the size of the graph. More precisely, we will prove the following.

Theorem 5.2

For every fixed k ≥ 4, there exists a class of graphs {GN,k | N ∈ N} with the fol-

lowing properties. The graphs GN,k have size O(N2), and for each of them there exist

two k-colourings in the same component of Ck(GN,k) which are at distance Ω(2N). More-

over,

(i) the graphs GN,k may be taken to be bipartite;

74

Chapter 5. Paths between k-colourings

(ii) for every 4 ≤ k ≤ 6, the graphs GN,k may be taken to be planar (in such a case the

graphs actually have size O(N4)); and

(iii) for k = 4, the graphs GN,k may be taken to be planar and bipartite (in such a case

the graphs actually have size O(N4)).

The proofs of Theorems 5.1 and 5.2 both involve the construction of particular k-Colour

Path instances. In both cases it will be convenient, in order to simplify the proofs, to

first define some preliminary constructions. We do this in Section 5.1. We then prove

Theorem 5.1 in Section 5.2 and Theorem 5.2 in Section 5.3. Theorems 4.1, 4.2, 5.1 and 5.2

together suggest that the computational complexity of k-Colour Path and the possible

distance between k-colourings are intimately linked. We investigate the extent of this

correspondence in Section 5.4.

5.1 Preliminaries

List-colouring instances

In Sections 5.2 and 5.3 we will construct particular k-Colour Path instances G,α, β:

first for the PSPACE-hardness proof, and then for the superpolynomial distance proof.

In both cases, it is easier to first define list-colouring instances: for such instances we

give every vertex v a colour list L(v) ⊆ {1, 2, 3, 4}. A proper list-colouring is a proper

vertex colouring with the additional requirement that every vertex colour needs to be

chosen from the colour list of the vertex. In the same way as that in which we define

the colour graph Ck(G) of G with nodes corresponding to proper k-colourings, we define

the list-colour graph C(G,L) of G with nodes corresponding to proper list-colourings,

where L represents the colour lists. The problem List-Colour Path is now defined as

follows.

List-Colour Path

Instance : Graph G, colour lists L(v) ⊆ {1, 2, 3, 4} for all v ∈ V (G), two list-colourings

of G, α and β.

Question : Is there a path between α and β in C(G, L)?

Whenever colour lists are given for the vertices of the graph, ‘proper list-colouring’ should

be read when we say ‘colouring’. In figures we will write colour lists as 123 instead of

{1, 2, 3}, for example.

75

Chapter 5. Paths between k-colourings

A list-colouring instance can then be turned into a normal 4-colouring instance, for exam-

ple, by adding a complete graph K4 on vertex set {u1, u2, u3, u4}. Since any 4-colouring

of K4 is frozen, we may without loss of generality assume that κ(ui) = i in all colour-

ings κ in the component of the colour graph we consider. Now adding edges vui if and

only if i 6∈ L(v) turns the graph into a 4-colouring instance, where in all 4-colourings κ

we consider, κ(v) ∈ L(v). The next lemma proves formally that this can be done for

various k without increasing the size of the graph too much, even when we require that

planarity and bipartiteness should be maintained.

Lemma 5.3

For any k ≥ 4, a List-Colour Path instance G,L, α, β with lists L(v) ⊆ {1, 2, 3, 4}
can be transformed into a k-Colour Path instance G′, α′, β′ such that the distance

between α and β in C(G, L) (possibly infinite) is the same as the distance between α′

and β′ in Ck(G′). Moreover,

(i) if G is bipartite, this can be done so that G′ is also bipartite, for all k ≥ 4;

(ii) if G is planar, this can be done so that G′ is also planar, when 4 ≤ k ≤ 6; and

(iii) if G is planar and bipartite, this can be done so that G′ is also planar and bipartite,

when k = 4.

In all cases, the transformation can be accomplished in a way such that |V (G′)| ≤
|V (G)|f(k) and |E(G′)| ≤ |E(G)|+ |V (G)|g(k), for some functions f(k) and g(k).

Proof. For our transformations we need: for every k ≥ 4, a bipartite graph with a

frozen k-colouring; for every 4 ≤ k ≤ 6, a planar graph with a frozen k-colouring; and

a planar bipartite graph with a frozen 4-colouring. For the first case we can take the

graphs Lk described in Definition 2.2: we observed in Chapter 2 that these graphs satisfy

our requirements. For the second we can use K4 and the planar graphs with frozen

colourings shown in Figure 2.2. For the third case we just need to observe that the

graph L4, which is in fact isomorphic the 3-dimensional cube, is planar.

The transformation from a List-Colour Path instance G,L, α, β to a k-Colour Path

instance G′, α′, β′ is now as follows. Let F be a graph with a frozen k-colouring κ. For

every vertex v ∈ V (G) and colour c ∈ {1, . . . , k} \ L(v), we add a copy of F to G,

labelled Fv,c. We also add an edge between v and a vertex u of Fv,c with κ(u) = c.

This yields G′. The colourings α′ and β′ are obtained by extending α and β using the

colouring κ for every Fv,c.

76

Chapter 5. Paths between k-colourings

u v

231 14 23 31442

Figure 5.1 A (1, 3)-forbidding path from u to v.

It is easy to see that every k-colouring obtainable from α′ or β′ by recolouring induces the

same frozen colouring on every copy of F . Also, because of the way the edges between v

and vertices of Fv,c are added, all these k-colourings of G′ correspond to list-colourings

of G, and vice-versa. This proves that the distance between α and β in C(G,L) is exactly

the same as the distance between α′ and β′ in Ck(G′).

When G and F are bipartite, the construction of G′ starts with a number of bipartite

components, and edges are added only between different components. So in this case G′

is also bipartite. It can also be seen that G′ is planar when G and F are planar: start

with a planar embedding of G and for each copy Fv,c of F , consider a planar embedding

that has a vertex with colour c on its outer face. These embeddings of Fv,c can be inserted

into a face of G that is incident with v. Now adding an edge between v and a vertex

of Fv,c with colour c can be done without violating planarity.

Since for all k ≥ 4 we can choose F to be bipartite, for 4 ≤ k ≤ 6 we can choose F to be

planar, and for k = 4 we can choose F to be both planar and bipartite, we are done. 2

Adding (a,b)-forbidding paths

The next notion that will be used in the following sections is that of an (a, b)-forbidding

path. For a, b ∈ {1, 2, 3, 4}, an (a, b)-forbidding path from u to v is a (u, v)-path with

colour lists L, with L(u), L(v) 6= {1, 2, 3, 4}, such that in any colouring, it is not possible

that u has colour a and v simultaneously has colour b. Any other combination of colours

for u and v (chosen from their colour lists) is possible. In addition, any recolouring of u

and v is possible—perhaps after first recolouring a few internal vertices of the path—as

long as it does not yield the forbidden colour combination. (Note that if a 6= b, an (a, b)-

forbidding path from u to v is not the same as an (a, b)-forbidding path from v to u.)

Figure 5.1 shows an example of a (1, 3)-forbidding path from u to v. We formalise these

concepts in the following definition.

77

Chapter 5. Paths between k-colourings

Definition 5.4

A colouring κ of a (u, v)-path is a (c, d)-colouring if κ(u) = c and κ(v) = d. A (u, v)-

path P with colour lists L, where a ∈ L(u) and b ∈ L(v) is an (a, b)-forbidding path if

the following two conditions are satisfied.

• A (c, d)-colouring exists if and only if c ∈ L(u), d ∈ L(v) and (c, d) 6= (a, b). Such

a pair (c, d) is called admissible for P .

• If both (c, d) and (c′, d) are admissible, then for any (c, d)-colouring, a sequence of

recolourings exists that ends with a (c′, d)-colouring, without ever recolouring v,

and only recolouring u in the last step. A similar statement holds for admissible

pairs (c, d) and (c, d′).

In the constructions in the following sections we will often say ‘add an (a, b)-forbidding

path between u and v’. This means that we add an (a, b)-forbidding (u′, v′)-path P with

L(u′) = L(u) and L(v) = L(v′) to the graph, and then identify u with u′ and v with v′.

Then for the colourings and recolourings of u and v in the resulting graph, the above

properties will hold. This means that in our proofs we do not have to consider colourings

and recolourings of the internal vertices of the path in detail; we can simply assume that

any recolouring of u and v is possible, as long as this does not respectively give them

colours a and b.

The next lemma shows that we do not even have to describe such an (a, b)-forbidding

path in detail; as long as L(u), L(v) 6= {1, 2, 3, 4}, such a path always exists.

Lemma 5.5

For any Lu ⊂ {1, 2, 3, 4}, Lv ⊂ {1, 2, 3, 4}, a ∈ Lu and b ∈ Lv, there exists an (a, b)-

forbidding (u, v)-path P with L(u) = Lu, L(v) = Lv and all other colour lists L(w) ⊆
{1, 2, 3, 4}. Moreover, we can insist P has even length at most six.

Proof. Let c ∈ {1, 2, 3, 4} \ L(u) and d ∈ {1, 2, 3, 4} \ L(v). If c 6= d then we let P be

a path of length four with the following colour lists along the path: Lu, {a, c}, {c, d},
{d, b}, Lv. We prove it is an (a, b)-forbidding path: if in a given colouring u has colour a,

then the second vertex has colour c, the third colour d, the fourth colour b, so v cannot

have colour b. When v has colour b the reasoning is analogous. It can also be seen

that for every admissible (x, y), an (x, y)-colouring exists. This colouring is unique if

x = a or y = b. If not, then it can be verified that all (x, y)-colourings can be obtained

from each other by recolouring internal vertices of P only. Adjacent (x, y)- and (x, y′)-

colourings are found as follows: if x = a, then both colourings are unique, and they

78

Chapter 5. Paths between k-colourings

are adjacent. If x 6= a then we find adjacent colourings by, if necessary, colouring the

vertex next to u with a, the middle vertex with c, and the vertex adjacent to v with

colour d, in both colourings. Adjacent (x, y)- and (x′, y)-colourings are found similarly.

We conclude that P with these colour lists is indeed an (a, b)-forbidding path with the

required properties.

If c = d, then we let P be a path of length six with the following colour lists along

the path: Lu, {a, c}, {c, e}, {e, f}, {f, c}, {c, b}, Lv, for some e ∈ {1, 2, 3, 4} \ {a, c}
and f ∈ {1, 2, 3, 4} \ {b, c} with e 6= f . As before, it can be verified that this is an

(a, b)-forbidding path. 2

5.2 PSPACE-completeness of k-COLOUR PATH

In this section we prove Theorem 5.1. We recall that PSPACE is defined as the class

of decision problems that are decidable by a deterministic Turing machine that uses at

most a polynomial (in the size of the input) amount of work space. Similarly, NPSPACE

is the class of decision problems decidable by a non-deterministic Turing machine using

a polynomially-bounded amount of space. The PSPACE-hardness of k-Colour Path

will be shown using a reduction from Sliding Tokens, one of several decision problems

defined and proved to be PSPACE-complete by Hearn and Demaine in [30]. We first

reduce Sliding Tokens to List-Colour Path and then apply Lemma 5.3 to prove the

existence of equivalent k-Colour Path instances. We first establish that k-Colour

Path is indeed in PSPACE.

Claim 5.6

The decision problem k-Colour Path is in the complexity class PSPACE.

Proof. We actually prove that k-Colour Path is in NPSPACE, and then appeal to

Savitch’s Theorem, which asserts that PSPACE = NPSPACE (see [53, p. 150] or [57]

for details). Given an instance G,α, β of k-Colour Path together with a sequence of

recolourings transforming α into β (the certificate), we can easily check the validity of

the certificate using a polynomial amount of space. This means that k-Colour Path is

in NPSPACE. 2

79

Chapter 5. Paths between k-colourings

A PSPACE-complete problem: SLIDING TOKENS

The main result of Hearn and Demaine [30] is the presentation of a new non-deterministic

model of computation based on reversing edge directions in weighted directed graphs with

minimum in-flow constraints on vertices. This model, called non-deterministic constraint

logic, or NCL, is shown to have the same computational power as a space-bounded

Turing machine, and several decision problems surrounding it are proved to be PSPACE-

complete. These decision problems are then used to prove the PSPACE-completeness of

certain sliding-block puzzles such as Rush Hour and Sokoban. The last section of [30]

gives an equivalent formulation of NCL in terms of sliding tokens along graph edges, and

it is this formulation that we use for our reductions. We proceed to describe it, first

giving some definitions. (The interested reader will find a more detailed description of

NCL and its different formulations in the Appendix.)

A token configuration of a graph G is a set of vertices on which tokens are placed, in such

a way that no two tokens are adjacent. (Thus a token configuration can be thought of

as an independent set of vertices of G.) A move between two token configurations is the

displacement of a token from one vertex to an adjacent vertex. Note that a move must

result in a valid token configuration.

Amongst others, the following decision problem, which we call Sliding Tokens, is

proved in [30] to be PSPACE-complete.

Sliding Tokens

Instance : Graph G, two token configurations of G, TA and TB.

Question : Is there a sequence of moves transforming TA into TB?

The reduction used to prove PSPACE-completeness of Sliding Tokens in [30] actually

shows that the problem remains PSPACE-complete for very restricted graphs and token

configurations. Our reduction to List-Colour Path is actually from a slightly wider

class of restricted instances for which Sliding Tokens remains PSPACE-complete, but

we do not give a reduction from the general problem. We proceed to describe the instances

G, TA, TB of Sliding Tokens that we will use for our reduction.

The graphs G are made up of token triangles (copies of K3) and token edges (this involves

a slight abuse of terminology: when we say token edge, we actually mean a copy of K2).

Token triangles and token edges are all mutually disjoint, and joined together by edges

called link edges, in such a way that every vertex of G is part of exactly one token triangle

or token edge. Moreover, every vertex in a token triangle ends up with degree 3, and G

has a planar embedding where every token triangle bounds a face. The graphs G have

80

Chapter 5. Paths between k-colourings

Figure 5.2 An example of a restricted instance graph together with a stan-

dard token configuration.

maximum degree 3 and minimum degree 2.

The token configurations TA and TB are such that every token triangle and every token

edge contain exactly one token on one of their vertices. In any sequence of moves from TA

or TB, a token will never leave its triangle or its edge: the first time a token were to do

so, we would cease to have a valid token configuration. Hence tokens will never slide

along a link edge. (We remark that it is this limitation on possible token displacements

that allows for a reasonably straightforward reduction.) Token configurations where

every token triangle and every token edge contain exactly one token are called standard

token configurations of G—thus TA and TB are standard token configurations. A simple

example of a restricted instance graph G with a standard token configuration is shown

in Figure 5.2, where token triangles and token edges are shown in bold. We insist: for

these restricted instances, Sliding Tokens is PSPACE-complete. For further details,

we refer the reader to the Appendix and [30].

The construction of equivalent LIST-COLOUR PATH instances

Given a restricted instance G,TA, TB of Sliding Tokens as described above, we con-

struct an instance G′, L, α, β of List-Colour Path such that standard token configu-

rations of G correspond to list-colourings of G′, and sliding a token in G corresponds to

a sequence of vertex recolourings in G′.

We first label the vertices of G: the token triangles are labelled 1, . . . , nt, and the vertices

of triangle i are labelled ti1, ti2 and ti3. The token edges are labelled 1, . . . , ne, and the

vertices of token edge i are labelled ei1 and ei2.

The construction of G′ is as follows: for every token triangle i we introduce a vertex ti,

81

Chapter 5. Paths between k-colourings

with colour list L(ti) = {1, 2, 3}. For every token edge i we introduce a vertex ei in G′,

with colour list L(ei) = {1, 2}. Whenever a link edge of G joins a vertex tia with a

vertex ejb, we add an (a, b)-forbidding path (of even length at most 6) between ti and ej

in G′. We do the same for pairs tia and tjb, and pairs eia and ejb. Note that this is a

polynomial time transformation.

Standard token configurations of G now correspond to colourings of G′ as follows: a

token configuration where the token of token edge i is on eij (j = 1, 2) corresponds to

colourings of G′ where ei has colour j. Analogously, if the token of token triangle i is on

tij (j = 1, 2, 3), this corresponds to colourings where ti has colour j. Since tokens are not

adjacent, it is possible to choose colours for the internal vertices of the (a, b)-forbidding

paths so as to obtain a proper colouring of G′. Two colourings α and β corresponding

respectively to TA and TB are constructed this way. Note that to a given standard token

configuration of G there can correspond multiple colourings of G′ because of the freedom

in choice of colours for the internal vertices of the (a, b)-forbidding paths.

Claim 5.7

The graph G′ as constructed above is planar and bipartite.

Proof. Let us consider a planar embedding of G where all token triangles bound a face. A

planar embedding of G′ can be obtained from that of G by contracting all token triangles

and token edges, and subdividing the remaining (link) edges. All (a, b)-forbidding paths

in G′ have even length, so G′ is bipartite. 2

Claim 5.8

Let G,TA, TB be a restricted instance of Sliding Tokens, and let G′, L, α, β be a cor-

responding instance of List-Colour Path as constructed above. Then G,TA, TB is a

YES-instance if and only if G′, L, α, β is a YES-instance.

Proof. Recall that a token configuration in which the token of token edge i (token

triangle i) is on eij (on tij) corresponds to multiple colourings of G′ where ei (ti) has

colour j. Because of this multiplicity of colourings, we define colour classes of colourings:

if two colourings κ and λ of G′ have κ(ti) = λ(ti) and κ(ei) = λ(ei) for every i, then κ

and λ are said to be in the same colour class.

Hence the correspondence between standard token configurations of G and colourings

of G′ defines a mapping between standard token configurations and colour classes. This

mapping is in fact a bijection: (a, b)-forbidding paths restrict their end vertices from

82

Chapter 5. Paths between k-colourings

having colours a and b respectively, but they pose no other restriction on the possible

colours of their end vertices. So tia and ejb cannot both be occupied by a token in a

token configuration if and only if no colouring κ has κ(ti) = a and κ(ej) = b. (Similar

statements hold for pairs ti and tj , and pairs ei and ej .)

Now we claim that if there exists a sequence of moves that transforms TA into TB, then

there exists a sequence of recolourings that transforms α into β. We mentioned earlier

that any token configuration obtainable from TA is a standard token configuration. Hence

every token move corresponds to recolouring a vertex ti or a vertex ei. Note that before

recolouring ti (or ei), it may be necessary to first recolour some internal vertices of (a, b)-

forbidding paths incident with ti (or ei), but by the definition of (a, b)-forbidding paths,

we know this is always possible. It can also be seen that when we finally arrive at the

colour class that contains β in this way, the internal vertices of all (a, b)-forbidding paths

can be recoloured so that exactly the colouring β is obtained.

Similarly, for every sequence of recolourings from α to β we can construct a sequence

of token moves from TA to TB: whenever a vertex ti (ei) is recoloured from colour a to

colour b, we move the corresponding token from tia to tib (from eia to eib). This completes

the proof. 2

Claim 5.8 shows that the instance G′, L, α, β of List-Colour Path we constructed above

is equivalent to the given instance of Sliding Tokens. In addition, G′ is planar and

bipartite, by Claim 5.7. Now we can use Lemma 5.3 to construct equivalent k-Colour

Path instances from G′, L, α, β. All of these transformations can be accomplished in

polynomial time, and we saw in Claim 5.6 that k-Colour Path is in PSPACE. This

completes the proof of Theorem 5.1.

Let us now observe that the values of k in parts (ii) and (iii) of Theorem 5.1 are tight.

We saw in Chapter 2 that a planar graph is always k-mixing for k ≥ 7. We saw this

as a consequence of Theorem 2.7 and the fact that the degeneracy of a planar graph is

at most 5. Hence any instance G,α, β of k-Colour Path, where G is planar and α, β

are k-colourings with k ≥ 7 is trivially a YES-instance. Similarly, if we note that the

degeneracy of a bipartite planar graph is at most 3 and appeal to Theorem 2.7, we have

that k-Colour Path is trivial for bipartite planar graphs and k ≥ 5. The fact that

for a bipartite graph G we have deg(G) ≤ 3 can be seen as follows. Considering an

embedding of G in the plane, let us write F (G) for the set of faces of G and, for φ a

face of G, let us denote the number of edges bounding φ by d(φ). Then, noting that

83

Chapter 5. Paths between k-colourings

∑

v∈V (G)

d(v) =
∑

φ∈F (G)

d(φ) = 2m, we may write Euler’s formula n−m + f = 2 as

∑

v∈V (G)

(d(v)− 4) +
∑

φ∈F (G)

(d(φ)− 4) = −8.

Since G is bipartite, d(φ) ≥ 4 for all φ ∈ F (G). This means that for some vertices of G

we must have d(v) < 4; that is, deg(G) ≤ 3.

Together with Theorems 4.1 and 5.1, the observations above allow us to completely

determine the complexity of k-Colour Path for planar and bipartite planar graphs.

Theorem 5.9

Restricted to planar graphs, the decision problem k-Colour Path is PSPACE-complete

for 4 ≤ k ≤ 6, and in P for all other values of k.

Theorem 5.10

Restricted to bipartite planar graphs, the decision problem k-Colour Path is PSPACE-

complete for k = 4, and in P for all other values of k.

5.3 Distances between k-colourings

In this section we construct classes of k-Colour Path instances such that the distance

between the two colourings is superpolynomial in the size of the graph. As in the proof of

Theorem 5.1, we will do this by first constructing classes of List-Colour Path instances

and then applying Lemma 5.3.

For every integer N ≥ 1, we construct a graph GN with colour lists L. (To avoid cluttering

the notation, we will denote the colour lists of each GN by L; which graph these lists

belong to will be clear from the context.) The graphs GN will have size O(N2) and

the list-colour graphs C(GN , L) will have a component of diameter Ω(2N). Later in the

section we will show how to obtain bipartite and planar instance classes with the same

property. In the case of planar instances, the graphs GN will have size O(N4) and the

list-colour graphs C(GN , L) will have a component of diameter Ω(2N).

The number N can be seen as the number of ‘bits’ that is used in the graph: the graph

will have N vertices whose colour can be thought of as a binary variable. For every

combination of binary values there will exist a corresponding colouring of GN . These

combinations can be mapped to values 0, . . . , 2N − 1 in such a way that one can only

increase or decrease this value by one when recolouring GN .

84

Chapter 5. Paths between k-colourings

For a given N , the graph GN is constructed as follows. Start with N triangles, each

consisting of vertices vi, v′i and v∗i with L(vi) = {1, 2}, L(v′i) = {1, 2, 3} and L(v∗i) =

{3, 4}, for i = 1, . . . , N . In a colouring κ where κ(v∗i) = 3, triangle i is said to be

locked, otherwise it is unlocked. Now between every pair v∗i and v∗j with i 6= j we add a

(4, 4)-forbidding path. Hence we have the following.

Claim 5.11

At most one triangle can be unlocked in any colouring.

For every i, we add (a, b)-forbidding paths from v∗i to every vj with j < i: we add a

(4, 1)-forbidding path from v∗i to vi−1, and (4, 2)-forbidding paths from v∗i to vj with

j ≤ i− 2. This ensures the following.

Claim 5.12

Triangle i can only be unlocked in a colouring κ when κ(vi−1) = 2 and κ(vj) = 1 for

all j ≤ i− 2.

This yields the graph GN .

Claim 5.13

The graphs GN have O(N2) vertices and O(N2) edges.

Proof. The graph GN consists of N triangles, N(N − 1)/2 (4, 4)-forbidding paths,

and N(N − 1)/2 paths that are either (1, 4)-forbidding or (2, 4)-forbidding.

Because by Lemma 5.5 we can assume that all (a, b)-forbidding paths have length at

most 6, we get |V (GN)| ≤ 3N + 5N(N − 1) and |E(GN)| ≤ 3N + 6N(N − 1). 2

To show that there exists a pair of colourings of GN such that exponentially many steps

(exponential in N) are needed to go from one to the other, we need only consider the

colours of the vertices vi. These can be seen as the N bits with value 1 or 2. We call a

colouring κ of GN a (c1, c2, . . . , cN)-colouring if κ(vi) = ci for all i. All (c1, c2, . . . , cN)-

colourings together form the colour class (c1, c2, . . . , cN).

Claim 5.14

Let ci ∈ {1, 2} for 1 ≤ i ≤ N . Then the colour class (c1, . . . , cN) is non-empty.

Proof. Consider a colouring κ where κ(vi) = ci, κ(v′i) = 3 − ci and κ(v∗i) = 3 for

all i. Since all triangles are locked, this colouring does not violate any of the constraints

imposed by the forbidding paths, and so can be extended to a full colouring of GN . 2

85

Chapter 5. Paths between k-colourings

Lemma 5.15

Let (x1, x2, . . . , xN) and (y1, y2, . . . , yN) be distinct tuples with all xi, yi ∈ {1, 2}.

• If the tuples differ only on position i, with xi−1 = 2 and xj = 1 for all j < i − 1,

then from any colouring in class (x1, x2, . . . , xN) we can reach some colouring in

class (y1, y2, . . . , yN) via a sequence of recolourings, without ever leaving colour class

(x1, x2, . . . , xN) in the intermediate colourings.

• Otherwise, there is no colouring in class (x1, x2, . . . , xN) that is adjacent to a colour-

ing in class (y1, y2, . . . , yN).

Proof. Let (x1, x2, . . . , xN) and (y1, y2, . . . , yN) be tuples as described above, and sup-

pose that the conditions described in the first bullet point hold. We show that any colour-

ing κ in class (x1, x2, . . . , xN) can be recoloured to a colouring in class (y1, y2, . . . , yN).

Note that by the definition of (a, b)-forbidding paths, we may ignore all recolourings of

the internal vertices of these paths, since we know that any necessary recolouring of these

vertices is always possible.

We first show how to recolour κ to an (x1, x2, . . . , xN)-colouring in which only triangle i

is unlocked. If all triangles are locked in κ, we can immediately recolour v∗i to 4—this

does not violate any of the constraints imposed by the forbidding paths. Otherwise, there

is exactly one triangle which is unlocked. Let this triangle be triangle j, where j 6= i. We

now lock this triangle. If we cannot immediately recolour v∗j to 3, this must be because

κ(v′j) = 3. We change this colour to κ(v′j) = 3−κ(vj), and then triangle j can be locked.

Next, triangle i can be unlocked: no other triangles are unlocked, so the (4, 4)-forbidding

paths pose no restriction. Since κ(vi−1) = 2 and κ(vj) = 1 for all j < i−1, the (4, 1) and

(4, 2)-forbidding paths starting at v∗i pose no restriction either. At this point, we can set

κ(v′i) = 3, and then set κ(vi) = yi to obtain a colouring in class (y1, . . . , yN). This proves

the first statement.

Now let α be an (x1, x2, . . . , xN)-colouring, let β be a (y1, y2, . . . , yN)-colouring, and

suppose that that α and β are adjacent. This means they differ only on one vertex, and

because the tuples are distinct, α and β must therefore differ precisely on a vertex vi, for

some i. This means triangle i is unlocked in both colourings. Because of the (4, 1)- and

(4, 2)-forbidding paths starting at v∗i , α(vi−1) = 2 and α(vj) = 1 for all j < i − 1. This

proves the second statement. 2

It follows from Lemma 5.15 that every colour class is adjacent to at most two other colour

classes (we use the concept of adjacency of colour classes with the obvious meaning).

86

Chapter 5. Paths between k-colourings

1111 → 2111 → 2211 → 1211 →
1221 → 2221 → 2121 → 1121 →
1122 → 2122 → 2222 → 1222 →
1212 → 2212 → 2112 → 1112

Figure 5.3 Colour classes visited in a shortest path between a (1, 1, 1, 1)-

colouring and a (1, 1, 1, 2)-colouring of G4.

Firstly, the colour of v1 can always be changed. In addition, there is at most one vi such

that vi−1 has colour 2 and vj has colour 1 for all j < i−1; this is the only other vertex of

v1, . . . , vN whose colour can be changed without first changing that of one of the others.

Figure 5.3 shows all colour classes of G4 and the order in which these need to be visited

in order to go from a (1, 1, 1, 1)-colouring to a (1, 1, 1, 2)-colouring of G4—all 16 different

classes need to be visited. We now prove this formally for every N .

Theorem 5.16

Every graph GN has two colourings α and β in the same component of C(GN , L) which

are at distance at least 2N − 1.

Proof. For the colouring α we choose a colouring in class (1, . . . , 1). Colouring β will

be a colouring in class (1, . . . , 1, 2). Such colourings exist by Claim 5.14. We first prove

by induction that such colourings are connected, using the following induction hypothesis.

Induction hypothesis

There is a path in C(GN , L) from any colouring α′ in class (1, . . . , 1, x0, x1, . . . , xN−n) to

some colouring β′ in class (1, . . . , 1, 3− x0, x1, . . . , xN−n).

The colourings differ on vertex vn: we have α′(vn) = x0 and β′(vn) = 3 − x0, while

for all i 6= n, we have α′(vi) = β′(vi). If n = 1, the statement follows directly from

Lemma 5.15. If n > 1, then from α′ we recolour to a (1, . . . , 1, 2, x0, x1, . . . , xN−n)-

colouring (which differs from the initial class only in the (n − 1)-th position), using the

induction hypothesis. Then we recolour to a (1, . . . , 1, 2, 3− x0, x1, . . . , xN−n)-colouring,

using Lemma 5.15. Finally, using the induction hypothesis again, we can recolour to a

(1, . . . , 1, 1, 3− x0, x1, . . . , xN−n)-colouring, which proves the statement.

Now we show that to go from a (1, . . . , 1)-colouring to a (1, . . . , 1, 2)-colouring, at least

87

Chapter 5. Paths between k-colourings

2N − 2 other colour classes need to be visited, using the following induction hypothesis.

Induction hypothesis

To go from a (1, . . . , 1, 1, x1, . . . , xN−n)-colouring to a (1, . . . , 1, 2, y1, . . . , yN−n)-colouring,

at least 2n − 2 other colour classes need to be visited.

Let us denote the vertex recoloured from 1 to 2 (appearing before the vertex coloured

x1 and y1) by vn. If n = 1, the statement is obvious. If n > 1, then consider a

shortest path between two colourings in these classes, if it exists. At some point in

the sequence of recolourings, the colour of vn is changed for the first time; before this

we must have a (1, . . . , 1, 2, 1, z1, . . . , zN−n)-colouring, by Lemma 5.15 (in this colouring,

vn−1 has colour 2). By the induction hypothesis, at least 2n−1 − 2 colour classes have

been visited before this colour class was reached. Now changing the colour of vn to 2

yields a (1, . . . , 1, 2, 2, z1, . . . , zN−n)-colouring. Using the induction hypothesis again, at

least 2n−1 − 2 colour classes need to be visited before class (1, . . . , 1, 2, y1, . . . , yN−n) is

reached. This means that in total, at least 2n − 4 + 2 intermediate colour classes have

been visited in the recolouring procedure. This completes the proof. 2

Claim 5.13 and Theorem 5.16 show that GN with its colour lists L is a list-colouring

instance such that C(GN , L) has a component of diameter superpolynomial in the size

of GN . Unfortunately, the graphs GN are neither bipartite nor planar. We now use

the graphs GN to construct bipartite and planar list-colouring instances with the same

property.

Making the graphs planar and bipartite

We start with a copy of GN with lists L and obtain a bipartite graph GB
N with lists L

as follows. For every i, we remove the edge viv
∗
i : this does not influence the possible

colourings and recolourings of vi and v∗i since the colour-lists of these vertices are disjoint.

All forbidding paths can be chosen of even length by Lemma 5.5, and since all vertices vi

and v∗i are now in the same part of the bipartition, the resulting graph is bipartite. As

before, we can find two colourings α and β of GB
N that are at distance at least 2N − 1.

The size of these graphs is not significantly different to that of the graphs GN .

Claim 5.17

The graphs GB
N have O(N2) vertices and O(N2) edges.

88

Chapter 5. Paths between k-colourings

Next, we use the graphs GB
N to construct bipartite planar List-Colour Path in-

stances GP
N . Observe that GB

N can be drawn in the plane so that only edges of forbidding

paths cross; that is, so that edges that were formerly part of the triangles never cross. Us-

ing such a drawing of GB
N (without too many crossings, see Claim 5.20 below), we replace

every (a, b)-forbidding path P on which there are r crossings by a long path consisting

of r + 2 new paths Q0, . . . , Qr+1, drawn along the same curve as the old path. We do

this in a way such that the paths Qi contain exactly one crossing, for 1 ≤ i ≤ r, and Q0

and Qr+1 contain no crossings. For 0 ≤ i ≤ r, the paths Qi and Qi+1 share a vertex with

colour list {1, 2}. For 1 ≤ i ≤ r, the path Qi will be a (1, 2)-forbidding path; Q0 will be

an (a, 2)-forbidding path and Qr+1 will be a (1, b)-forbidding path. Together, these even

length paths form an (a, b)-forbidding path of even length, as can be seen from repeated

application of the following observation.

Claim 5.18

Let Q be an (a, b)-forbidding path from u to v, and let Q′ be a (c, d)-forbidding path from v

to w such that V (Q) ∩ V (Q′) = {v}, where L(v) = {b, c}. Together, Q and Q′ form an

(a, d)-forbidding path from u to w.

After this is done for every (a, b)-forbidding path that contains crossings, we end up with

a drawing where the only crossings occur between (1,2)-forbidding paths, where both

end vertices of both paths have colour list {1, 2}. All such pairs are now replaced with a

crossing component such as that depicted in Figure 5.4: the figure shows an example of

the crossing component for an (n, s)-path and a (w, e)-path that are both (1, 2)-forbidding

paths.

After replacing all such crossings we obtain a planar graph. Note that bipartiteness is

maintained: previously all end vertices of (a, b)-forbidding paths were in the same part

of the bipartition, and this is also true for the end vertices of the crossing component. In

addition, all cycles in the crossing component are even. We call the resulting graph GP
N .

The following lemma shows that, with regard to the possible colourings and recolourings

of the end vertices n, s, w, e, this crossing component behaves in exactly the same way as

the two old forbidding paths.

89

Chapter 5. Paths between k-colourings

w

21

we e

21

14

34

23
21

21

21

n

s

13 34 42

n
21

21

s
21

34

34

24

12

42

12 23 34

1234

34

34 41 12 12

13

34

34

34

14

13

23

c

Figure 5.4 A crossing component corresponding to two (1, 2)-forbidding

paths.

Lemma 5.19

The crossing component of Figure 5.4 has the following properties.

• For cn, cs, cw, ce ∈ {1, 2}, a colouring κ with κ(n) = cn, κ(s) = cs, κ(w) = cw and

κ(e) = ce exists if and only if

¬(cn = 1 ∧ cs = 2) ∧ ¬(cw = 1 ∧ ce = 2).

• For any colouring κ with κ(s) = 1, there exists a sequence of recolourings that ends

by changing κ(n), without ever changing κ(s), κ(w) or κ(e). Similar statements

hold for recolouring s when κ(n) = 2, recolouring w when κ(e) = 1 and recolouring e

when κ(w) = 2.

Proof. The vertex c is the central vertex of the crossing component. The graph consists

of four branches around c, called the north, south, west and east branches. Before we

begin the proof of the above statements, let us make the following observation, which

spares us a lot of case analysis: swapping colours 1 and 2 in the lists of the crossing

component corresponds to mirroring the drawing in the bottom-left to top-right diagonal,

90

Chapter 5. Paths between k-colourings

and swapping colours 3 and 4 corresponds to mirroring in the top-left to bottom-right

diagonal. So whenever we prove a statement for the north branch, the same statement

holds for the east (west) branch when we swap the colours 1 and 2 (3 and 4) in the

statement. Swapping both 1 with 2 and 3 with 4 yields a correct statement for the south

branch.

If c has colour 3, then n must have colour 2 (arguing along the right path of the north

branch). If c has colour 2, then n again has colour 2 (consider the left path in the north

branch). In general we find, for a colouring κ:

• if κ(c) ∈ {2, 3}, then κ(n) = 2;

• if κ(c) ∈ {1, 4}, then κ(s) = 1;

• if κ(c) ∈ {2, 4}, then κ(w) = 2;

• if κ(c) ∈ {1, 3}, then κ(e) = 1.

Since either c ∈ {2, 3} or c ∈ {1, 4}, it follows that κ(n) = 1 and κ(s) = 2 cannot

occur simultaneously; similarly for w and e. It can also be seen that whenever c is not

coloured with 2 or 3, there exist colourings of the north branch where n has colour 1, and

colourings where n has colour 2. Similar statements hold for the other three branches.

All this proves that for every combination of colours cn, cs, cw, ce for the four vertices,

a corresponding colouring κ exists, except when cn = 1 and cs = 2, or when cw = 1

and ce = 2. This proves the first statement about possible colourings. Now we consider

possible recolourings of the crossing component.

We prove that we can always recolour n, as long as s has colour 1, without ever recolour-

ing w or e. Whenever c has colour 1 or 4, it is easy to see that we can recolour the north

branch and change the colour of n without any recolouring of c or of the other branches.

Now suppose κ(c) = 3. This means κ(n) = 2 and κ(e) = 1. In this case we first change

the colours of all vertices adjacent to c to 2 or 4, without changing κ(n), κ(s), κ(w)

or κ(e).

• It is obvious this can be done in the west branch.

• For the east branch we use the fact that κ(e) = 1.

• For the south branch we use the fact that κ(s) = 1.

• For the north branch we use the fact that κ(n) = 2.

91

Chapter 5. Paths between k-colourings

At this point we can recolour c to 1. Now it can be checked that the vertices in the north

branch can be recoloured so that n gets colour 1.

Similarly, when κ(c) = 2 all of c’s neighbours can be recoloured to 1 or 3 without

recolouring n, s, w or e. Then c can be recoloured to 4, which in turn allows n to receive

colour 1, after a few steps.

This shows that we can always recolour n whenever κ(s) = 1. For the other three

branches, similar statements follow from the above mentioned symmetries. 2

Claim 5.18 and Lemma 5.19 show that after replacing forbidding paths with multiple

forbidding paths, and replacing crossings with crossing components, the new structures

act like the old forbidding paths with regard to possible colourings and recolourings of

vi, v′i and v∗i (though perhaps ‘a few’ more recolourings of internal vertices are needed).

So the statements from Lemma 5.15 and Theorem 5.16 can be proved for these graphs.

Adapting the two colourings of GN to colourings of GP
N is straightforward. It remains

only to consider the size of the graphs GP
N .

Claim 5.20

The graphs GP
N have O(N4) vertices and O(N4) edges.

Proof. We start with a drawing of GN in which only (a, b)-forbidding paths cross. It is

easy to see that a drawing can be found such that every pair of forbidding paths crosses

at most once. An informal proof runs as follows. First embed the 3N vertices in the N

triangles along a circular closed curve in the plane, where the three vertices of each

triangle are placed consecutively along the circle. The edges of the triangles are then

placed along the circle, or outside it. The forbidding paths are now added as straight

lines across the interior of the circle. If more than two paths go through the same point,

then this can be corrected by small perturbations. This yields the desired drawing.

The graph GN has O(N2) forbidding paths, so the drawing we have just described has

at most O(N4) crossings. For every crossing we introduce a number of new vertices that

is bounded by some constant (closely related to the number of vertices in a crossing

component), so the number of vertices, which was O(N2), increases to at most O(N4).

So the number of vertices of GP
N is O(N4). Since GP

N is planar, its average degree is less

than six, so the number of edges is O(N4) as well. 2

We have constructed bipartite List-Colour Path instances with size O(N2) (Claim 5.17)

and bipartite planar List-Colour Path instances with size O(N4) (Claim 5.20). The

pairs of colourings for each of these instances are at distance at least 2N − 1, just as for

92

Chapter 5. Paths between k-colourings

the original List-Colour Path instances, proved in Theorem 5.16. Lemma 5.3 shows

that these can be transformed into k-Colour Path instances without a significant size

increase. This completes the proof of Theorem 5.2.

5.4 Tractability of k-COLOUR PATH and distances between

k-colourings

In this section we examine the relationship between the tractability of k-Colour Path

and the possible distances between k-colourings.

Let us first examine the relationship between Theorems 5.1 and 5.2. In terms of the

well-known NP 6= PSPACE conjecture, Theorem 5.1 means the following. Loosely speak-

ing, having established that k-Colour Path is PSPACE-complete, asserting that NP 6=
PSPACE is equivalent to saying that for every possible YES-certificate for k-Colour

Path, there exist instances for which the certificate cannot be verified in polynomial

time. Theorem 5.2 of course shows this only for a particular certificate—the certificate

for a YES-instance consisting of a list of colourings constituting a path from the first

colouring to the second colouring—but this is in some sense the the most natural cer-

tificate. It is for this reason that we consider the construction of these instances to be

of independent interest. In addition, they have a clear bearing on the limitations of

sampling colourings via Glauber dynamics.

Theorems 4.1 and 4.2 from Chapter 4 tell us that 3-Colour Path is polynomial time

solvable and that for any YES-instance G,α, β of this problem, the distance between α

and β in C3(G) is at most quadratic in the size of G. On the other hand, Theorems 5.1

and 5.2 establish a connection between instance classes for which k-Colour Path is

PSPACE-complete and possible superpolynomial distances in the k-colour graphs of these

instances. How strong is this connection between PSPACE-completeness and superpoly-

nomial distances in the colour graph? For completeness let us point out that artificial

graph classes can be constructed for which k-Colour Path is easy, but which still

contain instances with colourings at superpolynomial distance. This can be done, for

example, using the graphs from Section 5.3.

We remark that the reason why we cannot make the values of k in parts (ii) and (iii) of

Theorem 5.2 larger by a straightforward extension of our methods rests fundamentally

on the fact that for a planar graph G, deg(G) ≤ 5, and that for a bipartite planar

graph G, deg(G) ≤ 3. These considerations, together with Theorems 5.9 and 5.10, beg

the following question: is it true that for a planar graph G and k ≥ 7, or G a bipartite

93

Chapter 5. Paths between k-colourings

planar graph and k ≥ 5, Ck(G) always has polynomial diameter? More generally, given

that an instance of k-Colour Path is always a YES-instance for k ≥ deg(G) + 2, is it

true that for any graph G and k ≥ deg(G) + 2, Ck(G) has polynomial diameter? Noting

that the proof of Theorem 2.7 only gives an exponential upper bound, we conjecture that

this is indeed the case, and that in fact a quadratic bound is the correct answer. (Let us

remark that in [7], the paper containing the results of this chapter, it is in fact a cubic

upper bound which is conjectured.)

Conjecture 5.21

For a graph G with n vertices and k ≥ deg(G) + 2, the diameter of Ck(G) is O(n2).

For values of k ≥ 2 deg(G) + 1, we are in fact able to prove this bound.

Theorem 5.22

For a graph G with n vertices and k ≥ 2 deg(G) + 1, the diameter of Ck(G) is O(n2).

Proof. We can iteratively delete vertices of degree at most deg(G) until no vertices are

left. Using such an elimination ordering, we label the vertices v1, v2, . . . , vn so that every

vertex has at most deg(G) neighbors with a lower index. (The label vn corresponds to the

first deleted vertex.) Using this vertex ordering, we first prove the following statement

by induction on n.

Induction hypothesis

Let α and β be distinct k-colourings of G, and let i be the lowest index such that

α(vi) 6= β(vi). There exists a recolouring sequence that starts with α and ends with

recolouring vi to β(vi), where every vj with j < i is never recoloured, and every vj with

j ≥ i is recoloured at most once.

The statement is trivial for n = 1. If i = n, then vn can be recoloured to β(vn) be-

cause β is a proper colouring that coincides with α on all other vertices. Now suppose

i < n, and let G′ = G− {vn}. Let α′ be the k-colouring of G′ induced by α. By induc-

tion we can assume there exists a recolouring sequence starting with α′ that ends with

recolouring vi to β(vi), in which vertices vj with j < i are not recoloured, and vertices vj

with j ≥ i are recoloured at most once. So for every vertex we can identify an old colour

and a new colour in this recolouring sequence (which may in fact be the same). Because

there are at least 2 deg(G) + 1 available colours, and vn has at most deg(G) neighbours,

a colour c can be chosen for vn that is not equal to the old colour or new colour of any of

94

Chapter 5. Paths between k-colourings

its neighbours. First recolour vn to c if necessary, and then recolour the rest of the graph

according to the recolouring sequence for G′. By the choice of colour c, all intermediate

colourings are proper, so this is the desired recolouring sequence for G.

Now we can keep repeating the above procedure, each time for a new vertex vi with

a higher index, since the colours of the vertices with a lower index are not changed. So

every vertex vi is considered only once this way, and for every vi only n − i recolour-

ings of other vertices are needed before it can be recoloured to β(vi). This will yield β

after O(n2) recolouring steps. 2

Let us now observe that if in Conjecture 5.21 we replace the degeneracy with the maxi-

mum degree, we again obtain a quadratic bound on the diameter of the k-colour graph.

This answers a question of Bill Jackson.

Proposition 5.23

For a graph G with n vertices and k ≥ ∆(G) + 2, the diameter of Ck(G) is O(n2).

Proof. Let α and β be distinct k-colourings of G. We claim that it is possible to

recolour α to β using at most ∆n recolouring steps. Let v1, v2, . . . , vn be an arbitrary

ordering of the vertices of G, and consider the following recolouring procedure that trans-

forms α into β. For i = 1, 2, . . . , n, we attempt to recolour vi to β(vi). If for some i this is

not possible, this must be because vi has a neighbour w that is currently coloured β(vi).

But because w has degree at most ∆ ≤ k − 2, there is a colour c 6= β(vi) that does not

appear on any of the neighbours of w. Hence we can first recolour w to c, and repeat

the same procedure for any other neighbour of vi coloured β(vi). This allows us to then

recolour vi to β(vi) and continue. Because any vi has at most ∆ such neighbours, and

once vertex vi has colour β(vi) it will not be necessary to recolour it again, we reach β

after at most ∆n recolourings. Noting that ∆ ≤ n− 1 yields the result. 2

If we now observe that for a regular graph G, ∆(G) = deg(G), Proposition 5.23 allows

us to deduce that Conjecture 5.21 is true for regular graphs.

95

6
Miscellaneous results about

recolouring

In this chapter we prove some miscellaneous results obtained during the development of

this thesis. In Section 6.1 we explore the problem of finding a sequence of recolourings

between two k-colourings of a graph when we are allowed to use some extra colours.

Section 6.2 covers some results about the complexity of finding alternative colourings of

graphs. Specifically, we investigate several versions of the following decision problem:

given a graph G together with a k-colouring of G, how easily can we decide whether

there exists a k-colouring of G with certain specific properties?

6.1 Recolouring using extra colours

Suppose we are given a graph G and two k-colourings of G, α and β. We have seen that

these colourings may or may not be connected in Ck(G), and that deciding if they are is

in general a PSPACE-complete problem. If we are very keen to recolour one to the other

(as may be the case in a frequency reassignment context), with perhaps the use of some

extra colours, how many extra colours are enough to guarantee that such a recolouring

is possible? It is obvious that this can always be done for a sufficiently large number of

extra colours, but it should also be obvious that we might want to minimise the number

of extra colours used. The problem can be put another way: what (reasonably small)

value of q will guarantee that all k-colourings of a graph G are in the same connected

component of Cq(G)? The theorem below provides an answer to this question, originally

put to us by Steve Noble.

96

Chapter 6. Miscellaneous results about recolouring

Theorem 6.1

Let α and β be two k-colourings of a graph G, and let G have chromatic number χ. Then

for any q ≥ k + (χ− 1), there is a path between α and β in Cq(G).

Proof. We show that we can recolour α to β with the use of χ−1 new colours. Consider

a χ-colouring γ of G: this gives a partition of the vertex set of G into independent sets

Γ1, Γ2, . . . , Γχ. We recolour α to β using γ. First we recolour, from α, all vertices in Γi

with colour k + i, for 1 ≤ i ≤ χ − 1. It is clear that no recolouring in this sequence

violates the constraint that we maintain a proper-colouring of G. Vertices that are not

recoloured in this way are precisely those in the set Γχ, but because Γχ is independent,

we can recolour all vertices in this set to their colours in β. It is easy to see that we

can now recolour all vertices v ∈ V \ Γχ to β(v) without introducing any edges with

end-vertices coloured alike. This completes the proof. 2

Note that this proof requires knowledge of a χ-colouring of G, which in general will not

be readily available since determining the chromatic number of a graph is NP-hard. The

best bound we have on the number of sufficient extra colours supported by a constructive

proof—that is, one that will allow us to actually recolour α to β without knowledge

of a χ-colouring—is of k − 1 new colours. The idea is similar to that of the proof of

Theorem 6.1. From α, we recolour all vertices coloured i to k + i, for 1 ≤ i ≤ k − 1, and

then recolour to β, recolouring vertices coloured k in β last.

We now show that Theorem 6.1 is best possible, in the sense that no lower number of extra

colours will always be enough to guarantee a path between any two given k-colourings.

That is, we show that χ− 1 extra colours are sometimes necessary.

Theorem 6.2

For every k ≥ χ ≥ 2, there exists a χ-chromatic graph G that has two k-colourings which

are not connected in Cq(G), where q = k + (χ− 2).

Proof. We let G be the categorical (or tensor) product of Kχ and Kk, which we denote

by Bχ,k. This is the graph with vertex set {(i, j) | 1 ≤ i ≤ χ, 1 ≤ j ≤ k} and edge

set {(i, j)(i′, j′) | i 6= i′ and j 6= j′}. (An example of such a graph—the graph B3,4—is

depicted in Figure 6.1.) We will think of the is as indexing rows and the js as indexing

columns of Bχ,k. For the two k-colourings of Bχ,k we take α and β given by α((i, j)) = i

and β((i, j)) = j. Note that α is in fact a χ-colouring, but because k ≥ χ we can actually

regard it as a k-colouring. We prove the graphs Bχ,k are χ-chromatic by showing that

no (χ− 1)-colouring of Bχ,k exists. Let us assume the contrary. Observe that given any

97

Chapter 6. Miscellaneous results about recolouring

Figure 6.1 The graph B3,4.

colouring of Bχ,k, if in some row there are two vertices with the same colour, this colour

cannot appear in any other row (and similarly for columns). Thus if we are considering

a (χ − 1)-colouring of Bχ,k, we cannot have all rows each containing two vertices with

the same colour. This means there is at least one row with all its k vertices coloured

differently, but since k > χ− 1, we have a contradiction.

We now prove that it is not possible to recolour α to β using χ−2 new colours. Suppose it

is possible, and consider a sequence of recolourings that accomplishes the transformation.

Note that α is a colouring where all vertices in any given row of Bχ,k have the same colour,

and β is a colouring where no two vertices in a given row have the same colour. Hence

there must come a point in the sequence of recolourings where for the first time we see

a row that has all its vertices coloured differently—row i∗, say. Consider this colouring

in the sequence: how many different colours do we see on Bχ,k? Because any row other

than row i∗ has at least two vertices with the same colour, we see at least χ− 1 different

colours on rows other than row i∗. Because none of these colours can appear on row i∗,

which has its k vertices coloured differently, in total we see at least k + χ − 1 different

colours. This contradiction completes the proof. 2

We note that the results of Theorems 6.1 and 6.2 have been obtained independently in

[35] and [47]. In fact, the graphs of Theorem 6.2 that illustrate the tightness of the result

are the same in [35] and (with a minor modification) in [47]. The result in [35] analogous

to Theorem 6.1 is in fact a refinement of our result: the author considers k-colourings

as possibly using different sets of colours, and proves, for α a k-colouring using colour

set A and β a k-colouring using colour set B, that the recolouring can be achieved using

max{0, |A ∩B| − 1} extra colours.

98

Chapter 6. Miscellaneous results about recolouring

6.2 The complexity of finding alternative colourings

The results in this section are motivated by the following question of Peter Winkler:

what is the complexity of deciding whether the k-colour graph of a k-colourable graph G

contains an isolated node? We answer this question below, in Theorem 6.3, first giving

a formal definition of the problem.

Frozen k-colouring

Instance : A connected graph G together with a k-colouring α of G.

Question : Does G have a frozen k-colouring?

It is obvious that the decision problem Frozen 2-colouring is trivial: the 2-colouring

given with a connected bipartite graph is frozen. We now prove that for any k ≥ 3, the

problem is NP-complete, initially giving a reduction from 3-Colourability (defined

formally in Section 3.2) to the k = 3 case.

Theorem 6.3

For every fixed k ≥ 3, the decision problem Frozen k-colouring is NP-complete.

Proof. That Frozen k-colouring is in NP is clear. We first prove that Frozen

3-colouring is NP-complete by giving a polynomial time reduction from 3-Colour-

ability, and then show that Frozen k-colouring is reducible to Frozen (k + 1)-

colouring.

Given an instance G of 3-Colourability, we construct an instance G′ of Frozen

3-colouring such that G is 3-colourable if and only if G′ has a frozen 3-colouring.

We obtain G′ from G as follows. We replace every edge uv of G with two internally

disjoint paths between u and v, one of length 2 and another of length 4, effectively

obtaining a 6-cycle between every two vertices that were previously joined by an edge.

More formally, for every edge e = uv of G, we delete e and add vertices we, xe, ye, ze

and edges uwe, wev, uxe, xeye, yeze, zev to obtain G′. Note that G′ is bipartite so we can

trivially find a 3-colouring of G′ to form part of the instance of Frozen 3-colouring.

Now suppose G is 3-colourable, and consider a 3-colouring τ of G. An observation: given

any 6-cycle C with two vertices at distance two precoloured with two different colours

from {1, 2, 3}, we can extend this precolouring to obtain a frozen 3-colouring of C. It is

now clear how to obtain a frozen 3-colouring of G′: we just use this observation on every

6-cycle of G′ that contains vertices we, xe, ye, ze in G′, for some specified edge e of G.

On the other hand, suppose G′ has a frozen 3-colouring τf . Restricting τf to vertices

99

Chapter 6. Miscellaneous results about recolouring

originally in G yields a proper 3-colouring of G: otherwise, for some vertices u, v of G′

originally forming an edge e of G we have τf (u) = τf (v), and this contradicts τf being

frozen, for we could then recolour we.

To show that Frozen k-colouring is reducible to Frozen (k+1)-colouring it suffices

to take an instance G,α of Frozen k-colouring and form the graph G′ by adding a

new vertex v adjacent to all vertices of G. We can easily obtain a (k + 1)-colouring α′

of G′ by setting α′(v) = k + 1 and α′(x) = α(x) for all x 6= v. Clearly G has a frozen

k-colouring if and only if G′ has a frozen (k + 1)-colouring. 2

Given that 3-Colourability remains NP-complete for planar graphs of maximum de-

gree 4, we readily conclude from the above proof that Frozen 3-colouring remains

NP-complete for planar graphs of maximum degree 8. We observe that by arguments

similar to those of Lemma 5.3 (ii), we can deduce that Frozen k-colouring remains

NP-complete for planar graphs and 4 ≤ k ≤ 6. For k ≥ 7, it should be clear that any

planar instance of Frozen k-colouring is a NO-instance.

Similarly, the reduction to Frozen 3-colouring yields a bipartite graph, and arguments

similar to those of Lemma 5.3 (i) can then be used to see that Frozen k-colouring

actually remains NP-complete for bipartite graphs and all values of k.

We observed in Section 2.1 that finding a frozen k-colouring of a particular (k − 1)-

regular graph G is equivalent to verifying that G is a cover of the complete graph Kk.

(Remember that we define a graph G as a cover of a graph H if there exists a surjection

ϕ : V (G) → V (H) such that for every vertex v of G, ϕ maps the neighbours of v in G

bijectively to the neighbours of ϕ(v) in H, and thus deciding if G is a cover of Kk is

equivalent to deciding if G has a frozen k-colouring.) In [40] it is proved that deciding if

a given graph G is a cover of Kk, for any fixed k ≥ 4, is NP-complete. Hence other than

for k = 3, Theorem 6.3 is not new.

We can also regard the decision problem Frozen k-colouring as related to the problem

of determining whether a given k-colourable graph is uniquely k-colourable. This asks,

given a graph G together with a k-colouring α, whether G admits a k-colouring that in-

duces colour classes different to those induced by α, and is known to be NP-complete, [16].

Note that if a graph is uniquely k-colourable, its k-colour graph will consist of k! isolated

nodes. We now study two other problems related to deciding unique colourability.

100

Chapter 6. Miscellaneous results about recolouring

Alternative k-colouring

Instance : A connected graph G together with a k-colouring α of G and two vertices

u, v of G with α(u) = α(v).

Question : Does there exist a k-colouring β of G with β(u) 6= β(v)?

Alternative k-colouring II

Instance : A connected graph G together with a k-colouring α of G and two vertices

u, v of G with α(u) 6= α(v).

Question : Does there exist a k-colouring β of G with β(u) = β(v)?

Again we find the same dichotomy for the computational complexity of these problems:

trivial for k = 2 and NP-complete for any k ≥ 3. For both, we give an initial reduction

to the k = 3 case from the problem 3-Precolouring Extension, proved NP-complete

in [41], even when restricted to planar graphs.

3-Precolouring Extension

Instance : A connected bipartite graph G with some vertices properly precoloured

with colours from {1, 2, 3}.
Question : Does the precolouring of G extend to a 3-colouring of G?

Theorem 6.4

For every fixed k ≥ 3, the decision problems Alternative k-colouring and Alter-

native k-colouring II are NP-complete.

Proof. Both problems are clearly in NP. For each, we first give a reduction from

3-Precolouring Extension to the k = 3 case. Before doing so, we show how we may

first simplify a general instance of 3-Precolouring Extension so that we can assume

that only 3 vertices of the graph are precoloured. (This trick is from [34, Lemma 2.2].)

Let G be an instance graph of 3-Precolouring Extension and let X,Y be the bipar-

tition of G. Note that if we identify two vertices x, x′ ∈ X that are precoloured the same

we end up with an equivalent bipartite instance, in the sense that the new instance is a

YES-instance if and only if the original one is. Hence we can assume that G is precoloured

in such a way that each colour occurs at most once in X and at most once in Y . We

now add two new disjoint sets of vertices to G, X ′ = {x′1, x′2, x′3} and Y ′ = {y′1, y′2, y′3},
so that (X ∪X ′), (Y ∪ Y ′) is the bipartition of the new graph G′ formed by introducing

the following edges, where x ∈ X, y ∈ Y and i, j ∈ {1, 2, 3}:

• x′i is adjacent to y′j if and only if i 6= j;

101

Chapter 6. Miscellaneous results about recolouring

• x′i is adjacent to y ∈ Y if and only if y is precoloured with a colour distinct from i;

• y′j is adjacent to x ∈ X if and only if y is precoloured with a colour distinct from j.

If we now consider G′ as an instance of 3-Precolouring Extension, where only

vertices x′1, x
′
2, x

′
3 are respectively coloured with colours 1,2,3, we obtain an instance

equivalent to the original instance.

We now transform our simplified instance G′, x′1, x
′
2, x′3 of 3-Precolouring Extension

into an instance G∗, α, u, v of Alternative 3-colouring. To obtain the graph G∗, we

simply add to G new vertices a, b, c together with edges ab, bc, ca, x′1c, x′2c, x′3a, x′3b,

putting u = x′1 and v = x′2. To obtain a 3-colouring α of G∗ with α(u) = α(v), we

set α(x) = 1 for all x ∈ X ∪ X ′ \ {x′3}; α(x′3) = 3; α(y) = 2 for all y ∈ Y ∪ Y ′; and

α(a) = 1, α(b) = 2, α(c) = 3. It is straightforward to check that the precolouring of G′

extends to the whole of G′ if and only if there is a 3-colouring of G∗ where u and v receive

different colours.

For Alternative k-colouring II the reduction is even simpler: we transform G′, x′1,

x′2, x
′
3 with its precolouring into G∗, α, u, v by adding a single new vertex a and edges

x′1a, x′1x
′
2, x′2a to G′, and putting u = a and v = x′3. The colouring α is obtained by

setting α(x′1) = 1, α(x′2) = 2, α(x) = 1 for all x ∈ X ∪ X ′ \ {x′1, x′2}; α(y) = 3 for all

y ∈ Y ∪ Y ′, and α(a) = 3. Note α(u) = 3 6= 1 = α(x′3) and that the precolouring of G′

extends to the whole of G′ if and only if there is a 3-colouring of G∗ where u and v receive

the same colour.

For both Alternative k-colouring and Alternative k-colouring II, a k-colouring

instance is easily reduced to a k + 1-colouring instance by adding a new vertex adjacent

to all other vertices and extending the colouring accordingly. This completes the proof. 2

We note that Theorem 6.4 has been obtained independently by Rackham [54]. In that

paper, however, both the approach to the problem and the reduction that proves NP-

hardness are different. The reduction is from 3-Colourability, and the problems

Alternative k-colouring and Alternative k-colouring II are studied in the

context of extending precolourings of a graph. In particular, Section 6 of [54] considers

the following problem: given a graph G, a k-colouring of G, and two vertices of G

properly precoloured with colours from {1, 2, . . . , k}, does the precolouring extend to a

proper k-colouring of G? It is shown that this problem can be solved in polynomial time

when k ≥ ∆(G), but that it is NP-complete for k ≤ ∆(G)− o(k).

Chleb́ık and Chleb́ıková [14] show that the precolouring extension problem with any

number of precoloured vertices is solvable in polynomial time when k ≥ ∆(G). This

102

Chapter 6. Miscellaneous results about recolouring

shows that the precolouring extension problem is in P for graphs of maximum degree

3: given a graph G, an integer k ≥ 2 and a precolouring of G using at most k colours,

we can decide whether the precolouring extends to a k-colouring of G as follows. If

k ≥ ∆(G) = 3, we just use the aforementioned algorithm described in [14]. Otherwise

k = 2 and the problem is reduced to deciding if the precolouring extends to a 2-colouring,

which is easily solvable in polynomial time.

In contrast, it is also proved in [14] that 3-Precolouring Extension remains NP-

complete for planar bipartite graphs of maximum degree 4.

103

7
Conclusion

We close in this chapter with a discussion of the results presented in this thesis. We first

attempt to put our work into a wider context, examining results related to our own in

Section 7.1. Section 7.2 summarises our results and outlines some open problems and

possibilities for further research.

7.1 Related work

As was mentioned in Chapter 1, the study of the colour graph is not new. For instance,

the question of its connectedness has been addressed by researchers interested in rapidly

mixing Markov chains for sampling colourings of a graph. In addition, during the devel-

opment of this thesis we have come across a series of lines of research that can be thought

of as related to the study of the colour graph. Some of them bear close similarity to our

own, or even impinge on them directly—indeed we have seen that some of our results

have been independently obtained by other researchers. Other lines can be considered

as generalisations of the problems we have addressed. We proceed to give an overview of

all of these, beginning with results that, to some extent or other, match our own.

Recolouring graph colourings

In [35]—an unpublished graduate thesis—we find results which closely resemble those of

Chapter 5. In particular, the author of [35] proves that the problem of deciding whether

there exists a sequence of recolourings between two given colourings of a graph, using

no extra colours, is PSPACE-complete. This is, in essence, the result of Theorem 5.1,

but is significantly weaker in various respects. Firstly, for the problem as studied in

104

Chapter 7. Conclusion

[35], the number of colours is part of the input. Secondly, the result is not proved for

any restricted graph classes such as planar or bipartite graphs—in fact the construction

used is highly non-planar. The reduction is also different; from the problem of deciding

whether a space-bounded deterministic Turing machine will halt in an accepting state,

and via several other decision problems involving word replacement on strings. Because

deciding whether a space-bounded deterministic Turing machine will halt in an accepting

state is known to possibly take a superpolynomial number of steps, and all the steps in

the reductions involve problems with ‘states’, the proof of PSPACE-completeness in

fact also yields a proof of the existence of superpolynomial paths between colourings.

The intricacy of the reductions used, however, indicates that actually constructing such

instances would be far from straightforward.

We mentioned in Chapter 6 that Theorems 6.1 and 6.2 have also been independently

obtained in [35], and that in fact the former is refined. The author of [35] also studies

recolouring problems in an online setting, where vertices continually leave or join the

graph whose colourings are under consideration.

We saw that Theorems 6.1 and 6.2 were also obtained (independently of [35] and of

this thesis) in [47] in the context of the so-called colour switching problem, described in

Chapter 1. A rather surprising result on the algorithmic complexity of a variant of colour

switching is to be found in [13]. Here it is shown that if, in requiring a transformation

from a k-colouring to a k′-colouring of a given graph (with k′ < k), we only care about

the partition induced by the k′-colouring (and not on the actual colours used), then

a shortest possible sequence of recolourings can be found in polynomial time. This is

achieved by a reduction of the problem to the weighted matching problem on bipartite

graphs, a well-known polynomial time solvable problem.

Generalisations of the colour graph

Instead of recolouring a single vertex, we could consider a different transformation be-

tween colourings: for example, that provided by a Kempe change. Given a graph G,

a k-colouring α of G and colours c1, c2 ∈ {1, 2, . . . , k}, let G(c1, c2) be the subgraph

of G induced by vertices coloured c1 or c2. Switching colours c1 and c2 on any con-

nected component of G(c1, c2) yields a new k-colouring of G. This operation is known

as a Kempe change, and two colourings are said to be Kempe-equivalent if one can be

obtained from the other by a sequence of Kempe changes. Analogously to the way in

which we define the k-colour graph of a graph G, we could consider the graph with

vertex set the k-colourings of G and edges between colourings that are connected by a

105

Chapter 7. Conclusion

single Kempe change. Note that Ck(G) is a subgraph of this graph, which we call the

Kempe k-colour graph, and note that Kempe-equivalent colourings form the connected

components of this graph. Questions similar to the ones we are interested in have been

addressed in this context: Fisk [22] proved that all 4-colourings of an Eulerian trian-

gulation of the plane are Kempe-equivalent, and Meyniel [49] that all 5-colourings of a

planar graph are Kempe-equivalent. Later Las Vergnas and Meyniel [42] showed that

the property of Kempe-equivalence holds for all 5-colourings of a graph containing no K5

minor, and more recently, Mohar [51] has done so for all k-colourings of a planar graph

with chromatic number less than k.

A generalisation in a different direction is considered by Brightwell and Winkler in [8, 9].

For a graph G and a constraint graph H (which may have loops), they define the graph

Hom(G,H) as the graph with vertex set the homomorphisms from G to H, and two

homomorphisms adjacent when they differ on precisely one vertex of G. (Recall that

a homomorphism from G to H is a function ϕ : V (G) → V (H) such that for every

uv ∈ E(G) we have ϕ(u)ϕ(v) ∈ E(H), and note that a k-colouring of a graph G is nothing

more than a homomorphism from G to the complete graph Kk.) They investigate an

important dichotomy of constraint graphs, giving several equivalent characterisations of

graphs H which they call dismantlable. Letting u, v be two vertices of a finite H with

N(u) ⊆ N(v), where N(x) denotes the set of neighbours of a vertex x, they define a

fold of H as the homomorphism from H to H − {u} mapping u to v and every other

node to itself. The graph H is said to be dismantlable if there exists a sequence of

folds reducing H to a graph with one node (looped or not). Amongst other things, they

address the question of connectedness of Hom(G,H). In particular, they prove that a

constraint graph H is dismantlable if and only if it is true that for any finite graph G,

Hom(G,H) is connected.

Mixing Boolean satisfiability solutions

Remarkably similar results to those contained in this thesis, but for a wholly different

problem, are to be found in [26]. The authors of [26] consider the exact analogues of

our decision problems k-Mixing and k-Colour Path in the context of the Boolean

satisfiability problem. We proceed to examine their results in some detail, first giving

some necessary definitions.

A logical relation R is a non-empty subset of {0, 1}k, where k ≥ 1 is the arity of R.

For S a finite set of logical relations, a CNF(S)-formula over a set of variables V =

{x1, x2, . . . , xn} is a finite conjunction C1 ∧C2 ∧ . . .∧Cm of clauses built using relations

106

Chapter 7. Conclusion

from S, variables from V , and the constants and 0 and 1. Hence each Ci is an expression

of the form R(ξ1, ξ2, . . . , ξk), where R is a relation of arity k, and each ξj is a variable

in V or one of the constants 0, 1.

The satisfiability problem Sat(S) associated with a finite set of logical relations S asks:

given a CNF(S)-formula ϕ, is it satisfiable? Schaefer [58] proved a celebrated dichotomy

theorem for the complexity of Sat(S): for certain sets S—known as Schaefer sets—

Sat(S) is solvable in polynomial time, while for all other sets S, the problem is NP-

complete. We refer the reader to [58] for the full details; a definition of Schaefer sets may

also be found in [26].

For an instance ϕ of Sat(S), the authors of [26] define the graph G(ϕ) as the graph with

vertex set the satisfying assignments of ϕ, and assignments adjacent whenever they differ

in exactly one bit. The graph G(ϕ) is a subgraph of the n-dimensional hypercube—this

is the graph with vertex set {0, 1}n and edges between vertices that differ in exactly one

bit. Hence a path in G(ϕ) corresponds to a sequence of different satisfying assignments

of ϕ, each obtained from the previous one by flipping precisely one bit.

They define the following two decision problems, whose close resemblance to k-Mixing

and k-Colour Path should be obvious.

Conn(S)

Instance : A CNF(S)-formula ϕ.

Question : Is G(ϕ) connected?

st-Conn(S)

Instance : A CNF(S)-formula ϕ and two satisfying assignments of ϕ, s and t.

Question : Is there a path between s and t in G(ϕ)?

The authors of [26] prove dichotomy theorems for the complexity of both of these deci-

sion problems. They also prove a dichotomy theorem for the possible diameter of the

graphs G(ϕ), finding, for both problems, the same correspondence between PSPACE-

complete instances and possible superpolynomial-length shortest-paths in the graph of

satisfying assignments as we do for k-Colour Path. The key concept on which their

results rely is that of a tight set of relations S—see [26] for a precise definition of this con-

cept. The class of tight sets of relations properly contains the class of Schaefer relations:

if S is Schaefer, then S is tight; the converse, however, is not true.

In some detail, they prove the following results.

107

Chapter 7. Conclusion

Theorem 7.1 (Gopalan, Kolaitis, Maneva and Papadimitriou [26])

Let S be a finite set of logical relations. If S is tight, then Conn(S) is in coNP; if it is

tight but not Schaefer, then it is coNP-complete; otherwise, it is PSPACE-complete.

Theorem 7.2 (Gopalan, Kolaitis, Maneva and Papadimitriou [26])

Let S be a finite set of logical relations. If S is tight, then st-Conn(S) is in P; otherwise,

it is PSPACE-complete.

Theorem 7.3 (Gopalan, Kolaitis, Maneva and Papadimitriou [26])

Let S be a finite set of logical relations. If S is tight, then for every CNF(S)-formula ϕ,

the diameter of any component of G(ϕ) is linear in the number of variables of ϕ; other-

wise, there are CNF(S)-formulas ϕ such that G(ϕ) has some component with diameter

superpolynomial in the number of variables of ϕ.

The authors of [26] in fact conjectured a trichotomy for the complexity of Conn(S),

claiming that if S is Schaefer, then Conn(S) is actually in P (and showing that this

is true for a particular type of Schaefer sets). This conjecture was recently disproved

in [46], where a set of Schaefer relations for which the problem Conn(S) remains coNP-

complete is exhibited. In a recent updated version of [26], Gopalan, Kolaitis, Maneva and

Papadimitriou [27] formulate a (modified) trichotomy conjecture for the complexity of

Conn(S), where it only remains to determine the complexity of Conn(S) for a certain

subset of Schaefer sets of relations.

We summarise their results, along with those of Schaefer [58], in Table 7.1 below.

S Sat(S) Conn(S) st-Conn(S) Diameter

Schaefer P coNP P O(n)

Tight, non-Schaefer NP-complete coNP-complete P O(n)

Non-tight NP-complete PSPACE-compl. PSPACE-compl. 2Ω(
√

n)

Table 7.1 The complexity of Sat(S), Conn(S) and st-Conn(S), together

with the possible diameter of components of G(ϕ), for various types of relation

sets S.

We note that despite the close parallelism between the results presented in this thesis

and those of [26], the proofs are, in each case, very different.

108

Chapter 7. Conclusion

7.2 Discussion and open problems

We have studied the basic properties of mixing, exploring the relationship between the

mixing properties of a graph and certain graph invariants, notably the chromatic number

and the degeneracy.

We have also obtained strong results for the computational complexity of the decision

problems k-Mixing and k-Colour Path. In particular, we have settled the complex-

ity 3-Mixing, finding an important distinction between the general problem and its

restriction to planar graphs. (Given that most NP-complete decision problems relating

to 3-colouring become no easier for planar graphs, it is a curious fact that 3-Mixing,

a coNP-complete problem, becomes polynomial time solvable when restricted to planar

graphs.) We have also characterised those graphs which are 3-mixing.

The complexity of k-Colour Path has also been settled, and an important and what

appears to be fundamental relationship between the tractability of the problem and its

underlying structure has been established. In terms of the number of colours k and

the degeneracy deg(G) of the instance graph, we have proved a full dichotomy for the

complexity of k-Colour Path. If k ≤ 3 or k ≥ deg(G) + 2, the problem is in P. In

all other cases, the problem is PSPACE-complete (note that the reductions that prove

Theorem 5.1 yield instances with deg(G) = k − 1). Moreover, we have seen how this

completely determines the complexity of k-Colour Path for planar and bipartite planar

graphs.

We have also shown that for k ≤ 3 or k ≥ 2 deg(G) + 1, the components of Ck(G) always

have quadratic diameter. On the other hand, for 4 ≤ k ≤ deg(G) + 1, there exist graphs

whose k-colour graph has components of superpolynomial diameter (the reader can easily

verify that the graphs of Theorem 5.2 also have degeneracy k − 1). Thus it remains to

determine whether for every graph G, the diameter of Ck(G) is polynomial (perhaps even

quadratic) in the size of G when k ≥ 4 and deg(G) + 1 < k < 2 deg(G) + 1. If true,

this would provide a complete correspondence between the PSPACE-completeness of

k-Colour Path and possible superpolynomial diameter components in Ck(G), according

to our classification of instances by number of colours and degeneracy.

Our most obvious open problem is determining the complexity of k-Mixing for k ≥ 4.

An intimately related problem is of course finding a characterisation theorem for k-mixing

graphs. Using the fact that k-Colour Path is in PSPACE, Claim 5.6, we can at least

determine that k-Mixing is in PSPACE.

109

Chapter 7. Conclusion

Claim 7.4

The decision problem k-Mixing is in the complexity class PSPACE.

Proof. Given a graph G with n vertices, we can determine whether its k-colour graph

is connected using a polynomial (in n) amount of space by the following procedure. Let

us assume that the vertex set of G is {v1, v2, . . . , vn} and observe that given a string

s = s1s2 . . . sn from {1, 2, . . . , k}n we can check in polynomial space whether or not this

corresponds to a proper k-colouring α of G where α(vi) = si. Now, given two strings s

and s′ from {1, 2, . . . , k}n corresponding to k-colourings of G, Claim 5.6 tells us that

checking whether these colourings are connected in Ck(G) also takes a polynomial amount

of space. Given these observations, all we need to do is sequentially run through all k2n

pairs of strings (using the obvious ordering), checking whether or not they correspond to

colourings of G, and if they do, then checking if they are connected in Ck(G). Because we

are running through the strings in order, at each stage we can re-use our working space,

which is always polynomially bounded. 2

A first step towards determining the complexity of k-Mixing (for k = 4, at least) might

be provided by an answer to the following question. Let G be a 3-chromatic graph and

let α and β be two 3-colourings of G not connected in C3(G). Note that by Theorem 6.1

these colourings are connected in C5(G). What is the complexity of deciding if they are

connected in C4(G)?

Our main results, together with the complexity of k-Colourability, are summarised

in Table 7.2 below.

k k-Colourability k-Mixing k-Colour Path Diameter

2 P P P 0

3 NP-complete coNP-complete P O(n2)

≥ 4 NP-complete PSPACE PSPACE-complete 2Ω(
√

n)

Table 7.2 The complexity of k-Colourability, k-Mixing and k-Colour

Path, together with the possible diameter of components of Ck(G), for dif-

ferent values of k.

It is very interesting to compare the results from Tables 7.1 and 7.2: the similarity be-

tween them is striking. The comparison suggests that k-Mixing might well be PSPACE-

110

Chapter 7. Conclusion

complete for k ≥ 4; this is also hinted at by the complexity of k-Colour Path. If true,

this would provide an example of a decision problem exhibiting a trichotomy of complex-

ity, much the same as Conn(S) would, if the conjecture in [27] (that for any set S of

relations, Conn(S) is PSPACE-complete, coNP-complete, or in P) is true.

Given the similarity between Tables 7.1 and 7.2, it would be interesting to try to find

a relationship between the problems, perhaps expressing the problems k-Mixing and

k-Colour Path within the framework of [26]. This seems unlikely to be straightforward.

A standard first approach would be to encode a k-colouring of a graph as a satisfiability

problem by introducing a variable for every vertex, colour pair (v, c) which is set to true

when v is coloured c. This, however, would not yield a correspondence between flipping

bits in the graph of satisfying assignments and recolouring vertices of the graph being

coloured.

Let us briefly turn our attention to list-colouring versions of our problems. We saw

in Chapter 5 that the problem List-Colour Path is PSPACE-complete, and that in-

stances of this problem all have colour lists contained in {1, 2, 3, 4}. The reader will have

no trouble verifying, however, that the reduction that proves the PSPACE-hardness of

this problem (from Sliding Tokens) actually yields instances where each colour list

has size at most 3. Hence the problem equivalent to 3-Colour Path for list-colourings

is PSPACE-complete. This fact has also been independently observed by Jan van den

Heuvel and Zsolt Tuza, who also proved that for colour lists of size at most 2, the problem

is solvable in polynomial time, [32]. In this case the list colouring problem is reducible

to a 2-Sat problem where the (v, c)-encoding mentioned above yields a correspondence

between flipping bits in the graph of satisfying assignments and recolouring vertices of

the graph. Then a result of [26] shows it is possible to verify the connectedness of two

satisfying assignments (list-colourings) in polynomial time.

It would also be interesting to further explore the properties of colour graphs themselves.

For example, what sort of structures might we find in colour graphs? On the other hand,

what graphs can occur as colour graphs? Let us mention at this point two results related

to the structure of colour graphs, which we phrase in the terminology of this thesis. In the

context of finding Gray codes for k-colourings of a graph G, MacGillivray and Choo [15]

prove that if k ≥ deg(G) + 3, then Ck(G) is Hamiltonian. Mačaj [45] proves, further to a

study of the metric structure of the category of finite sets and mappings between them,

that the k-colour graph of the complete graph Kn is vertex-transitive for any k > n, and

that for these same values the automorphism group of Ck(Kn) is in fact isomorphic to

Sn × Sk, where Sm denotes the symmetric group.

We recall two other questions that this thesis leaves unanswered. One, what is the mixing

111

Chapter 7. Conclusion

number of the Klein bottle? And two, is it true that the algorithm for 3-Colour Path

from Chapter 4 can be implemented so as to always find a shortest path between two

given 3-colourings?

Closing, we mention a question related to the rapid mixing of Markov chains for sampling

colourings, the field from whence the inspiration for this thesis arose. If Ck(G) is not

connected, what might be sensible edges to add between certain k-colourings to ensure

that it is connected? That is, what additional moves might ensure that the state space of

the chain is irreducible? This is a question that is often addressed when trying to obtain

efficient algorithms for sampling k-colourings of particular graphs, but can anything be

said in general?

112

Appendix

Non-deterministic constraint logic

We describe the non-deterministic constraint logic (NCL) model of computation of Hearn

and Demaine [30], together with some associated decision problems. We also describe how

the restricted instances of Sliding Tokens used to prove the PSPACE-completeness of

k-Colour Path in Theorem 5.1 arise.

An NCL machine is specified by an undirected graph together with an assignment of

non-negative integer weights to its vertices and edges; the vertex weights are minimum

in-flow constraints. A configuration of the machine is specified by an orientation of its

edges such that the sum of incoming edge-weights at each vertex is at least the minimum

in-flow constraint of the vertex. A move from one configuration to another is simply the

reversal of a particular edge direction such that all minimum in-flow constraints remain

satisfied.

The authors of [30] present the following three decision problems associated with NCL

machines.

1. Given an NCL machine together with a particular configuration, can a specified

edge be eventually reversed by some sequence of moves?

2. Given an NCL machine together with two particular configurations A and B, is

there a sequence of moves from A to B?

3. Given two edges eA and eB of an NCL machine, and orientations for each, are there

configurations A and B such that eA has its desired orientation in A, eB has its

desired orientation in B, and there is a sequence of moves from A to B?

We remark that it is the second problem that we use for our definition of Sliding

Tokens in Chapter 5, after some suitable transformations which we now describe.

113

Appendix

It turns out that certain vertex configurations in NCL machines are of particular interest.

A vertex with minimum in-flow constraint 2 and three incident edges with weights 1, 1, 2

behaves as a logical And: the edge with weight 2 can be directed outwards only when the

other two edges are directed inwards. Such a vertex is called an And vertex. Likewise,

a vertex with minimum in-flow constraint 2 and three incident edges with weights 2, 2, 2

behaves as a logical Or: a given edge may be directed outward if and only if at least one

of the other two is directed inwards. Such a vertex is called an Or vertex.

The authors of [30] claim without proof that every NCL graph is reducible in logarithmic

space to an equivalent (in terms of the given decision problems) And/Or constraint

graph—this is a graph composed exclusively of And and Or vertices. They then prove

all three of the above decision problems to be PSPACE-complete for such graphs. Note

that this unproved claim is not used in our reductions, and is therefore unnecessary for

our results: our reductions are always from And/Or constraint graphs, or rather, their

sliding-token versions (see below).

The three problems are then shown to remain PSPACE-complete for 3-connected planar

And/Or graphs; this is achieved by the construction of a suitable crossover gadget and

a suitable connectivity-augmentation gadget. After describing some applications of NCL

and the above decision problems by proving strong PSPACE-completeness results for a

variety of sliding-block puzzles, the final section of [30] contains an alternative formulation

of And/Or constraint graphs in terms of sliding tokens along graph edges.

In this context, the ‘machine’ is again an undirected graph G. A token configuration of a

graph G is a set of vertices on which tokens are placed, in such a way that no two tokens

are adjacent. (Thus a token configuration can be thought of as an independent set of

vertices of G.) A move between two token configurations is the displacement of a token

from one vertex to an adjacent vertex. Note that a move must result in a valid token

configuration.

The simulation of NCL And and Or vertices via sliding-token gadgets is depicted in

Figure A.1. The gadgets are in fact the vertex configurations within the dotted lines and

the edges that cross the dotted lines are termed port-edges—these connect the gadgets.

For the And sliding-token gadget, the two lower port-edges correspond to the edges of

an NCL And vertex with weight 1. A token on an outer port-edge vertex represents an

NCL edge directed inwards, and a token on an inner port-edge vertex represents an edge

directed outwards.

Hence given an And/Or constraint graph and configuration, a corresponding sliding-

token graph can be constructed by joining And and Or vertex gadgets and placing

114

Appendix

(a) (b)

Figure A.1 (a) an And sliding-token gadget, and (b) an Or sliding-token

gadget.

the port tokens appropriately. Moreover, it is not hard to see that such a sliding-token

instance is equivalent to the original NCL instance. The And gadget satisfies the same

constraints as an NCL And vertex: the upper token can slide in precisely when both

lower tokens are slid out. Similarly, the Or gadget satisfies the same constraints as an

NCL Or vertex: the upper token can slide in when either lower token is slid out—the

internal token can then be displaced to allow the upper token to slide in.

We finish by making some remarks about the way we describe these sliding-token in-

stances in Chapter 5. The token triangles of our Sliding Tokens instances—copies

of K3—are precisely the triangles in Or configurations; token edges—copies of K2—are

the port edges on the boundaries of both And and Or configurations. Because the orig-

inal instances of NCL can be taken to be planar, we can see that every sliding-token

instance has a planar embedding where every token triangle bounds a face. Moreover,

because the NCL instances can be taken to be 3-connected, every sliding-token gadget is

connected to three other gadgets and so we can take our instances of Sliding Tokens

to have minimum degree 2.

115

Bibliography

[1] M.O. Albertson and J.P. Hutchinson, The three excluded cases of Dirac’s map-color

theorem. Ann. New York Acad. Sci. 319 (1979), 7–17.

[2] K. Appel and W. Haken, Every planar map is four colorable. Part I. Discharging.

Illinois J. Math. 21 (1977), 429–490.

[3] K. Appel, W. Haken and J. Koch, Every planar map is four colorable. Part II.

Reducibility. Illinois J. Math. 21 (1977), 491–567.

[4] V. Barbéra and B. Jaumard, Design of an efficient block retuning. Mobile Netw.

Appl. 6 (2001), 501–510.

[5] R.J. Baxter, Exactly Solved Models in Statistical Mechanics. Academic Press, New

York, 1982.

[6] J. Billingham, R.A. Leese and H. Rajaniemi, Frequency reassignment in cellular

phone networks. Smith Institute Study Group Report (2005). Available from http:

//www.smithinst.ac.uk/Projects/ESGI53/ESGI53-Motorola/Report.

[7] P. Bonsma and L. Cereceda, Finding paths between graph colourings: PSPACE-

completeness and superpolynomial distances. Submitted. [A conference proceedings

version of this article can be found in Proceedings of Mathematical Foundations of

Computer Science, 32nd International Symposium, MFCS 2007. Lect. Notes Com-

put. Sci. 4708 (2007), 738–749.]

[8] G.R. Brightwell and P. Winkler, Graph homomorphisms and phase transitions.

J. Combin. Theory Ser. B 77 (1999), 221–262.

[9] G.R. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs. J. Com-

bin. Theory Ser. B 78 (2000), 141–166.

[10] L. Cereceda, J. van den Heuvel and M. Johnson, Connectedness of the graph of

vertex-colourings. Discrete Math. 308(5–6) (2008), 913–919.

116

Bibliography

[11] L. Cereceda, J. van den Heuvel and M. Johnson, Mixing 3-colourings in bipartite

graphs. Submitted. [A conference proceedings version of this article can be found

in Proceedings of the 33rd International Workshop on Graph-Theoretic Concepts in

Computer Science, WG 2007. Lect. Notes Comput. Sci. 4769 (2007), 166–177.]

[12] L. Cereceda, J. van den Heuvel and M. Johnson, Finding paths between 3-colourings.

Submitted.

[13] Y.M. Chee and A. Lim, The algorithmic complexity of colour switching. Inform.

Process. Lett. 43 (1992), 63–68.

[14] M. Chleb́ık and J. Chleb́ıková, Hard coloring problems in low degree planar bipartite

graphs. Discrete Appl. Math. 154(14) (2006), 1960–1965.

[15] K. Choo and G. MacGillivray, Gray code numbers for graphs. Preprint (2006).

[16] D.P. Dailey, Uniqueness of colorability and colorability of planar 4-regular graphs

are NP-complete. Discrete Math. 30 (1980), 289–293.

[17] R. Diestel, Graph Theory, 3rd edition. Springer-Verlag, Heidelberg, 2005.

[18] G.A. Dirac, Map colour theorems related to the Heawood colour formula. J. London

Math. Soc. 31 (1956), 460–471.

[19] G.A. Dirac, Short proof of a map-colour theorem. Canad. J. Math. 9 (1957), 225–

226.

[20] M. Dyer, A. Flaxman, A. Frieze and E. Vigoda, Randomly colouring sparse ran-

dom graphs with fewer colours than the maximum degree. Random Structures Al-

gorithms 29(4) (2006), 450–465.

[21] L. Euler, Solutio problematis ad geometriam situs pertinentis. Comment. Academiae

Sci. I. Petropolitanae 8 (1741) 128–140. Available from http://math.dartmouth.

edu/∼euler/pages/E053.html.

[22] S. Fisk, Geometric coloring theory. Adv. Math. 24 (1977), 298–340.

[23] P. Franklin, A six color problem. J. Math. Phys. 13 (1934), 363–379.

[24] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-completeness. Freeman, New York, 1979.

[25] L.A. Goldberg, R. Martin and M. Paterson, Random sampling of 3-colorings in Z2.

Random Structures Algorithms 24(3) (2004), 279–302.

117

Bibliography

[26] P. Gopalan, P.G. Kolaitis, E.N. Maneva and C.H. Papadimitriou, The connectivity

of Boolean satisfiability: computational and structural dichotomies. In Proceedings

of Automata, Languages and Programming, 33rd International Colloquium, ICALP

2006, Part I. Lect. Notes Comput. Sci. 4051 (2006), 346–357.

[27] P. Gopalan, P.G. Kolaitis, E.N. Maneva and C.H. Papadimitriou, The connectivity of

Boolean satisfiability: computational and structural dichotomies. (Revised version.)

Preprint (2007). Available from http://arxiv.org/abs/cs.CC/0609072v2.

[28] W.K. Hale, Frequency assignment: theory and applications. Proc. IEEE 68(12)

(1980), 1497–1514.

[29] J. Han, Frequency reassignment problem in mobile communication networks. Com-

put. Oper. Res. 34 (2007), 2939–2948.

[30] R.A. Hearn and E.D. Demaine, PSPACE-completeness of sliding-block puzzles and

other problems through the nondeterministic constraint logic model of computation.

Theoret. Comput. Sci. 343 (2005), 72–96.

[31] P.J. Heawood, Map colour theorem. Quart. J. Math. Oxford Ser. 24 (1890), 332–338.

[32] J. van den Heuvel, personal communication.

[33] P. Hliněný, A note on possible extensions of Negami’s conjecture. J. Graph The-

ory 32 (1999), 234–240.

[34] M. Hujter and Zs. Tuza, Precoloring extension II. Graph classes related to bipartite

graphs. Acta Math. Univ. Comenian. LXII(1) (1993), 1–11.

[35] R. Jacob, Standortplanung mit Blick auf Online-Strategien. Graduate Thesis, Uni-

versity of Würzburg, 1997. Available from http://www14.in.tum.de/personen/

jacob/Publications/index.html.

[36] J. Janssen, Channel Assignment and Graph Labeling. John Wiley & Sons, New York,

2002.

[37] T.R. Jensen and B. Toft, Graph Coloring Problems. Wiley-Interscience, New York,

1995.

[38] M. Jerrum, A very simple algorithm for estimating the number of k-colourings of a

low degree graph. Random Structures Algorithms 7 (1995), 157–165.

[39] M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity. Birk-

häuser Verlag, Basel, 2003.

118

Bibliography

[40] J. Kratochv́ıl, Perfect codes in general graphs. Colloq. Math. Soc. János Bolyai 52

(1987), 357–364.

[41] J. Kratochv́ıl, Precoloring extension with fixed color bound. Acta Math. Univ. Come-

nian. LXII(2) (1993), 139–153.

[42] M. Las Vergnas and H. Meyniel, Kempe classes and the Hadwiger conjecture.

J. Combin. Theory Ser. B 31 (1981), 95–104.

[43] R.A. Leese and S. Hurley (Eds.), Methods and Algorithms for Radio Channel As-

signment. Oxford University Press, Oxford, 2003.

[44] T. ÃLuczak and E. Vigoda, Torpid mixing of the Wang-Swendsen-Kotecký algorithm

for sampling colorings. J. Discrete Alg. 3 (2005), 92–100.

[45] M. Mačaj, Vertex-transitive graphs and 2-transitive groups I. Injective mappings.

Preprint (2001).

[46] K. Makino, S. Tamaki and M. Yamamoto, On the Boolean connectivity problem for

Horn relations. In Proceedings of the 10th International Conference on Theory and

Applications of Satisfiability Testing (SAT) 2007, Lect. Notes Comput. Sci. 4501

(2007), 187–200.

[47] O. Marcotte and P. Hansen, The height and length of colour switching. In P. Hansen

and O. Marcotte (Eds.), Graph Colouring and Applications, Proceedings of the Cen-

tre de Réchérches Mathématiques, Vol. 23. Oxford University Press, Oxford, 1999.

[48] C.J.H. McDiarmid, Discrete Mathematics and Radio Channel Assignment. In B.A.

Reed and C. Linhares-Salas (Eds.), Recent Advances in Algorithms and Combina-

torics. Springer-Verlag, New York, 2003.

[49] H. Meyniel, Les 5-colorations d’un graphe planaire forment une classe de commuta-

tion unique. J. Combin. Theory Ser. B 24 (1978), 251–257.

[50] B. Mohar, A linear time algorithm for embedding graphs in an arbitrary surface.

SIAM J. Discrete Math. 12 (1999), 6–26.

[51] B. Mohar, Kempe equivalence of colorings. In J.A. Bondy, J. Fonlupt, J.L. Fouquet,

J.-C. Fournier, and J. Ramı́rez Alfonśın (Eds.), Proceedings of Graph Theory in

Paris, a Conference in Memory of Claude Berge. Birkhäuser, 2006.

[52] B. Mohar and C. Thomassen, Graphs on Surfaces. The Johns Hopkins University

Press, Baltimore, 2001.

119

Bibliography

[53] C.H. Papadimitriou, Computational Complexity. Addison-Wesley, Boston, 1994.

[54] T.J. Rackham, A precolouring extension of Brooks’ theorem. Preprint (2006). Avail-

able from http://www.maths.ox.ac.uk/∼rackham/pebt2006.pdf.

[55] G. Ringel and J.W.T. Youngs, Solution of the Heawood map-coloring problem. Proc.

Nat. Acad. Sci. U.S.A. 60 (1968), 438–445.

[56] N. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The four colour theorem.

J. Combin. Theory Ser. B 70 (1997), 2–44.

[57] W.J. Savitch, Relationships between nondeterministic and deterministic tape com-

plexities. J. Comput. System Sci. 4(2) (1970), 177–192.

[58] T.J. Schaefer, The complexity of satisfiability problems. Proc. 10th Annual ACM

Symp. on Theory of Computing (1978), 216–226.

[59] E. Vigoda, Improved bounds for sampling colorings. J. Math. Phys. 41 (2000), 1555–

1569.

[60] N. Vikas, Computational complexity of compaction to irreflexive cycles. J. Comput.

System. Sci. 68 (2004), 473–496.

[61] D.B. West, Introduction to Graph Theory, 2nd edition. Prentice-Hall, New Jersey,

2001.

120

