
Diagnostic checking and Intra-daily effects 

in Time series models 

By 

Siem Jan Koopman 

London 

January 1992 

A thesis submitted for a degree of Doctor of Philosophy 

The London School of Economics and Political Science 



ABSTRACT 

A variety of topics on the statistical analysis of time 

series are addressed in this thesis. The main emphasis is on the 

state space methodology and, in particular, on structural time 

series (STS) models. There are now many applications of STS models 

in the literature and they have proved to be very successful. 

The keywords of this thesis vary from - Kalman filter, 

smoothing and diagnostic checking - to - time-varying cubic splines 

and intra-daily effects -. Five separate studies are carried out for 

this research project and they are reflected in the chapters 2 to 6. 

All studies concern time series models which are placed in the state 

space form (SSF) so that the Kalman filter (KF) can be applied for 

estimation. The SSF and the KF play a central role in time series 

analysis that can be compared with the important role of the 

regression model and the method of least squares estimation in 

econometrics. Chapter 2 gives an overview of the latest developments 

in the state space methodology including diffuse likelihood 

evaluation, stable calculations, etc. 

Smoothing algorithms evaluate the full sample estimates of 

unobserved components in time series models. New smoothing 

algorithms are developed for the state and the disturbance vector of 

the SSF which are computationally efficient and outperform existing 

methods. Chapter 3 discusses the existing and the new smoothing 

algorithms with an emphasis on theory, algorithms and practical 

implications. The new smoothing results pave the way to use 

auxiliary residuals, that is full sample estimates of the 

disturbances, for diagnostic checking of unobserved components time 

series models. Chapter 4 develops test statistics for auxiliary 

residuals and it presents applications showing how they can be used 

to detect and distinguish between outliers and structural change. 



A cubic spline is a polynomial function of order three which 

is regularly used for interpolation and curve-fitting. It has also 

been applied to piecewise regressions, density approximations, etc. 

Chapter 5 develops the cubic spline further by allowing it to vary 

over time and by introducing it into time series models. These time-

varying cubic splines are an efficient way of handling slowly 

changing periodic movements in time series. 

This method for modelling a changing periodic pattern is 

applied in a structural time series model used to forecast hourly 

electricity load demand, with the periodic movements being intra-

daily or intra-weekly. The full model contains other components, 

including a temperature response which is also modelled using cubic 

splines. A statistical computer package (SHELF) is developed to 

produce, at any time, hourly load forecasts three days ahead. 
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CHAPTER 1 

INTRODUCTION 

This thesis deals with a variety of topics concerning the 

statistical analysis of time series. It is my belief that structural 

time series models provide the most satisfactory framework for 

analysing time series since it does not rely on all kinds of 

subjective judgements to the process of time series modelling. 

Moreover, the structural approach of time series modelling easily 

adopts all powerful results related to the state space model and the 

Kalman filter, it provides a full set of different diagnostic tools 

to validate the estimated model and it has a close connection with 

various econometric methodologies of modelling. But most important, 

the structural time series model is preferable because it provides a 

direct appeal to the interpretability of unobserved components in 

time series. 

Five separate studies are carried out for this research 

project and, basically, they all concern the linear state space 

model and the Kalman filter which, jointly, play a central role in 

time series analysis such as the regression framework plays a 

central role in econometrics. 

State space form and the Kalman filter 

The first part describes briefly but clearly the latest 

developments in the state space methodology such as diffuse initial 

conditions, fixed effects in time series models, likelihood 

evaluation, prediction, diagnostic checking and computational 

considerations. This part is primarily based on research of Harvey 

(1989), De Jong (1988a,1991b), Anderson & Moore (1979) and Ansley & 

Kohn (1985). 

Smoothing algorithms for state and disturbance vector 

The second part of this thesis is a study on smoothing in 

time series models and it concentrates on theory, algorithms and 
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practical implications. Essentially, it proposes to concentrate on 

the disturbance vector of the SSF. A special smoothing algorithm is 

developed to calculate the auxiliary residuals, that is the full-

sample estimates of the elements of the disturbance vector. A new 

method to calculate smoothed (full sample) estimates of the state 

vector is developed which is computationally efficient and 

outperforms existing methods, see Anderson & Moore (1979), De Jong 

(1988b,1989) and Kohn & Ansley (1989), for most practical time 

series models. Furthermore, the new residual smoother leads to an 

attractive method of estimating covariance parameters of a time 

series model. This estimation method can be regarded as an essential 

improvent of the EM algorithm, see Watson & Engle (1983). 

Diagnostic checking of innovations and auxiliary residuals 

The new smoothing results pave the way to use auxiliary 

(smoothed) residuals for diagnostic checking of unobserved component 

time series models. Commonly, diagnostic checking is carried out 

using the standardised innovations. These residuals can be compared 

with the recursive residuals in the regression framework, see Brown, 

Durbin & Evans (1975). Due to the nice properties of the 

innovations, e.g. they are serially uncorrelated, it is attractive 

to use them for tests on normality, heteroscedasticity, serial 

correlation, etc. Auxiliary residuals are obtained from polynomial 

functions (within the forward time operator) of the innovations and 

they are not serially uncorrelated even when the parameters of the 

model are known, see Maravali (1987). Therefore, the diagnostic 

checks on normality and heteroscedasticity for the auxiliary 

residuals must be corrected. It seems at first sight that the 

auxiliary residuals are not very useful for diagnostic checking 

because they contain no new information and they do not possess 

special properties. It will be shown that, on the contrary, they are 

very useful because they present the information, available from 

innovations, in such a way that several problems in time series 

modelling, such as detecting outliers and structural change, are 

tackled straightforwardly. This research project has examined how 

the auxiliary residuals are related to each other and to the 

2 
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innovations and how they they can be used to construct test-

statistics. A number of examples are given as illustrations. 

Time-varying cubic splines 

The fourth part of the thesis deals mainly with the 

structural time series model applied to periodic time series where 

the observations are affected by intra-daily or intra-weekly 

effects. The basic structural time series model consists of the 

unobserved components trend, seasonal and irregular. Many seasonal 

time series can be effectively described by the basic structural 

time series model, see Harvey (1989). For example, the periodicity 

of monthly observations is modelled by time-varying dummy parameters 

or, alternatively, by time-varying.trigonometric terms. For 

observations at more frequent intervals, e.g. daily or hourly 

observations, the dummy or trigonometric seasonal component may not 

be very parsimonious for modelling the periodic effect. 

This study explores the idea of time-varying cubic splines to 

handle frequent periodic movements in time series. The spline 

function is well-known as a technique to describe a complicated and, 

perhaps, unknown non-linear function. A particular spline function, 

the cubic spline, can be easily established in the regression 

framework, see Poirier (1973). The periodic cubic spline is defined 

by imposing special begin- and end-conditions on the cubic spline. 

In the context of time series, it is restrictive to consider the 

periodic cubic spline as fixed over time. Treating the periodic 

cubic spline as time-varying and incorporating it in a time series 

model causes some theoretical problems but they can be solved 

straightforwardly. The required calculations for imposing a time-

varing periodic cubic spline in a time series model are implemented 

in an efficient algorithm that avoids standard matrix inversions. 

Forecasting hourly electricity load demand 

A structural time series model with time-varying splines is 

applied to the problem of forecasting total hourly electricity load 

demand at an electricity power station in the north-west of the 
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United States of America. A computer model, which will be referred 

to as SHELF, is developed to produce, at any time, three days ahead 

hourly load forecasts. In this illustration, explanatory wheather 

variables are included in the time series model to improve the 

forecasts. Two problems arise, (i) the response of weather on the 

load demand is non-linear and (ii) the response of weather is 

different at specific hours during the week. These problems are 

handled by using fixed cubic spline functions. 

Preliminaries and notation 

A time series is denoted by yt  where t=1,...,n such that the 

length of the time series is n. The full set of observations is 

denoted by Y, the sub-set of observations y l ,...,yt  is denoted by Y t  

and YE'Yn . The logarithm of the joint density function under normality 

for the set of observations Y is denoted by l[y] and the, so-called, 

likelihood criterion is denoted by L[y] so that l[y] = -1 L[y] + 

constants. The likelihood criterion conditional on a set of random 

variables .5 is denoted by L[1718] and the concentrated likelihood 

criterion with respect to 8 is written as L 6 [y]. The minimum mean 

square linear estimator of any unknown x is denoted by E[x] with its 

mean square error matrix Mse[x]=Cov(x-E[x]). When the estimator is 

constructed using the data-set Y, the notation becomes E[xly] and 

Mse[xly], respectively. Under normality assumptions with regards to 

y, the estimator E[xly] is no longer confined to the class of linear 

estimators. Thus, under normality, E[xly] can be referred to as the 

minimum mean square estimator and, indeed, E[xly] can be regarded as 

the conditional expectation of x using y. 

A (nxl) column vector v is a stack of n elements and is 

denoted by v=(e i ;. . ;en) . A (lxn) row vector w is written as 

w=(el ,...,en). The transpose of any matrix M is denoted by M'. Let 

the (nx2) matrix M consist of, respectively, 2 (nxl) column vectors 

u and v then M=(u,v). Let the (2xn) matrix N consist of, 

respectively, 2 (lxn) row vectors w and x then N=(w;x). This 

notation implies that (A',B')'=(A;B) where A and B are matrices with 

the same number of columns. Furthermore, the trace of a matrix A is 

tr A and the determinant of a matrix A is lAl. The notation for a 



zero value is 0 but it can be a scalar, vector or matrix. 

Finally, a section of a chapter is only referred to by its 

number when it can be found in the same chapter otherwise a section 

is denoted by two numbers from which the first number refers to the 

chapter, for example section 2.3 (chapter 2 section 3). The sub-

sections are not numbered. The equations are indicated by two 

numbers from which the first one is the section number. When .an 

equation is referred from another chapter, it is indicated by three 

numbers from which the first number is the chapter number and the 

second number is the section number. The sub-equations are numbered 

with use of an additional small letter. The tables and figures are 

all numbered by two numbers from which the first one refers to the 

chapter. The appendices are indicated by the number of the chapter 

and a capital letter. A note is indicated by a number surrounded by 

squared brackets and it can be found at the end of a chapter. 

5 



CHAPTER 2 

THE STATE SPACE FORM AND THE KALMAN FILTER : 

theory, algorithms and applications 

0. ABSTRACT 

This chapter considers the linear state space model and the 

Kalman filter which, jointly, play an important role in time series 

analysis. The latest developments in the state space methodology are 

discussed. These include diffuse initial conditions, fixed effects 

in time series models, log-likelihood evaluation, prediction, 

diagnostic checking and computational considerations. This chapter 

is primarily based on research of Harvey (1989), De Jong 

(1988a,1991b), Anderson & Moore (1979') and Ansley & Kohn (1985). 

Keywords : Diagnostic checking; Diffuse; Kalman filter; Likelihood 

evaluation; Prediction; Square root filter; State space; Structural 

time series models. 

1. INTRODUCTION 

The state space form (SSF) is a natural set up for linear 

time series models. Although originating in the engineering 

literature, several authors, e.g. Harvey (1981), have emphasized 

that the. SSF has a potential to be important in the study of time 

series in statistics and econometrics. A main attraction is its 

generality: all linear time series models can be placed in the state 

space form. For example, the linear regression model is naturally 

embedded within the SSF but also any autoregressive moving average 

(ARMA) model can be put into this framework. The basic tool for 

statistical analysis with the SSF is the Kalman filter (KF) which 
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was developed by Kalman (1960) and Kalman & Bucy (1961). The Kalman 

recursions give one-step ahead predictions allowing parameter 

estimation via the prediction error decomposition. Moreover, the 

Kalman filter is of importance for analytical and practical matters 

related to estimating initial and fixed effects, smoothing, 

prediction and other topics in time series analysis. 

The literature contains many examples nowadays where the 

state space methodology is applied successfully. Some good examples 

in practical time series analysis are Burridge & Wallis (1985), 

Burmeister et.al . (1986), Engle & Watson (1981) and Harvey & 

Phillips (1979). Also, the new developments in structural time 

series models and its applications contribute to the state space 

methodology, see Harvey (1989) and Harvey & Shephard (1992). 

Recently, the state space form is modified to deal with initial and 

fixed effects in time series models explicitly, see De Jong (1991b). 

This modification paves the way to estimate these effects directly 

and to compute the likelihood function exactly using the Kalman 

filter. The expression for the likelihood function depends on the 

assumptions regarding the initial effects which may be fixed, random 

or diffuse. 

This chapter concerns the state space form, the Kalman 

filter, likelihood evaluation and some other related issues in time 

series analysis. The organisation of this chapter is as follows. 

Section 2 presents the state space form which is adjusted to allow 

for fixed effects. Several practical time series models are 

discussed in section 3. . The derivation of the Kalman filter is given 

in section 4 and it is modified in section 5 in order to estimate 

fixed and initial effects and to evaluate the likelihood under 

several assumptions. 

Several diagostics are available to validate how well the 

time series model describes the data generation process. Commonly, 

diagnostic checking is carried out using the one-step ahead 

prediction errors which are also known as the innovations. These 

residuals are obtained from the Kalman filter. The methodology of 

structural time series modelling, where these diagnostics play an 

important role, is illustrated by using a real time series in 

section 6. To ensure numerical stability, the Kalman recursions can 
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be formulated in a square root form. This can be compared with 

numerical stable approaches to least-squares computations in 

regression analysis. Section 7 explains a numerical 

orthogonalization technique (the Householder transformation) and 

shows how the square root form can be implemented. Finally, a 

general Pascal computer program is given in section 8 for some 

required computations discussed in this chapter. Section 9 concludes 

this chapter. 

2. STATE SPACE FORM 

The state space form (SSF) consists of the following two 

equations 

Yt = Z ta t 	Xt 0 	Gte t 
	 (2.1a) 

a t+i = Tta t 	Wt 0 	Hte t 
	 (2.1b) 

where yt  is a vector of time series for t=1,...,n. The vector a l  and 

the vector p are given by 

a l = 0  + He o o f3 = b + B8 	 (2.2) 

The disturbance vector e t  and the parameter vector 8 are both random 
with distributions 

et 	( 0 , o2 1 ) 
	

8 - ( µ , a2  A ) 	 (2.3) 

where 8 and e t  are uncorrelated for t=0,...,n. The matrices Z t , Xt , 

G t , T t , Wt , Ht , for t=1,...,n, and (b,B), Wo  and Ho  are called system 

matrices and are supposed to be fixed and known. Equation (2.1a) is 

referred to as the measurement equation and equation (2.1b) is 

called the transition equation. The vector a t  is the state vector and 
is not fully defined without a proper definition for the initial 

state vector a l  as given in (2.2). To separate known and unknown 

elements of D but also to incorporate linear restrictions, the 
vector p is parameterized by (2.2). 
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The state space form (2.1)-(2.3) is proposed by De Jong 

(1991b) and it is analytically attractive because it accomodates 

random, fixed and diffuse effects in time series models explicitly 

rather than only time-varying effects. Moreover, this SSF handles 

correlation between the disturbances in the measurement and 

transition equations. The following remarks clarify the SSF in more 

detail. 

[1] The system matrices of (2.1) are time-varying. A time series 

model is time invariant if the system matrices Z t , Tt , Gt  and Ht  do 

not change over time for t=1,...,n. The initial system matrices W o 

 and Ho  are allowed to differ from the time invariant system matrices 

Wt  and Ht . 

[2] It is not restrictive that the parameter vector 0 appears in 
the measurement and transition equations. The matrices X t  and Wt  may 

be interpreted as selection matrices. Note that for many time series 

models the restriction XX=0 holds. 

[3] The matrices Gt  and Ht  transform the sequence of disturbance 

vectors into a multivariate random process with zero mean and a 

specific time-varying covariance structure. For the special case 

that HtGt1 =0 for, t=1,...,n, the measurement equation and the 

transition equation are said to be uncorrelated. 

[4] Under the assumption that the disturbance vector is normally 

distributed, the related estimators are minimum mean square 

estimators (rnmse). If the normality assumption does not apply, the 

inference results are still valid but the estimators are optimal 

within the class of linear estimators, i.e. they are minimum mean 

square linear estimators (mmsle); see Duncan & Horne (1972) and 

Anderson & Moore (1979). 

[5] It is well known that any linear time series process can be 

placed into the Markovian representation as given by the transition 

equation of (2.1b), see Harvey (1981). 

[6] The dimension of the state vector #[a t ] may also vary over 

time. This is particularly useful for interventions in time series 

models where specific effects are only valid for some sub-set of 

observations. 

[7] The parameter vector 0 is a linear combination of the random 

vector 8. When the covariance matrix A is set to zero, the parameter 
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vector 3 is fixed but unknown. The initial state vector can still 

be , partially, random by an appropriate choice of H o . The SSF may 

handle partially diffuse initial conditions as discussed by Ansley & 

Kohn (1985), De Jong (1988a,1991b) and Marshall (1992). The random 

vector 8 is said to be diffuse when the inverse of A converges to 

zero in the Euclidian norm, denoted by A-.. The diffuse assumption 

reflects parameter uncertainty and it needs to be applied when a 

time series model is nonstationary. The specification of the initial 

state vector, such that it depends on a random, fixed or diffuse 

parameter vector 8, implies a particular method of initializing the 

Kalman filter as discussed in section 2.5. 

[8] 	The SSF can be regarded as a multivariate regression model 

with 0 as the parameter vector. This is not obvious at first sight 

although it can be shown easily. Let y be the stack of the 

observation vectors y t , y=(y/ ;...;yn ), and define the matrix T as a 

lower block triangular matrix with i(n+1)(n+2) non-zero blocks and 

identity matrices on the main block diagonal. The (t,j) block of 

matrix T is given by the matrix product 

T . = T T 	T. t,j 	t-1 t -2"' j (2.4) 

for t=2,...,n+1 and j=1,...,t-1. It follows from (2.1) and (2.2) 

that 

y = Za + X0 + Ge 	 (2.5a) 

a = T(W(3 + He) 
	

(2.5b) 

where a=(a 1 ;...;a n,0 ), e=(e 0 ;e / ;...;e n ), Z=[diag(Z 1 ,...,Z n),0], 
X= (X 1 ; . . . ;Xn ) , G= [0 , diag (G 1 , . 	, Gn ) ] , W= (1010 ; . . . ;W n ) and 
H=diag(H0 ,...,Hn). Equation (2.5b) shows that a is linear in 0 and, 

therefore, y also is linear in (3. This becomes apparent by 

substituting (2.5b) into (2.5a) leading to 

y = A0 + a 	 (2.6) 

where A=ZTW+X and a=(ZTH+G)e such that Cov(a)=a 2 (ZTH+G)(ZTH+G)I. The 

matrices (ZTW+X) and (ZTH+G) are supposed to be known. 
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3. TIME SERIES MODELS 

The state space form (2.1)-(2.3) includes various types of 

time series models. The following types of models will be discussed 

in this section, the regression model, the autoregressive moving 

average (ARMA) model and the structural time series model. 

Regression models 

Many books are available on the introduction of regression 

analysis. The strength of the regression model is its simplicity, 

its optimal properties as formulated in the Gauss-Markov theorem and 

its effectiveness in empirical analysis. The ordinary linear 

regression model is given by 

Yt = x'13 	e 
	

(3.1) 

where e t  is NID(O,o2) and 0 is the vector of fixed parameters. It is 

seen immediately that (3.1) is a special case of the SSF where X t=x; 

and Gt=1. All other system matrices are equal to zero including the 

covariance matrix A. Any linear restriction can be incorporated by 

0=b+88. The dynamic regression model is established in this 

framework when lagged and differenced explanatory variables are 

included in X. 

A regression model with stochastic parameters is given by 

(3.1) as well but now 0=6 and its covariance matrix A is assumed to 

be non-singular. A regression model with time-varying parameters is 

formulated in terms of .the state vector 

yt  = xt ' a t + ut 
a t =+ vt t-i 

for t=1,...,n 

for t=2,...,n 

(3.2a) 

(3.2b) 

where ut  is NID(0,02 ) and vt  is NID(0,02 V). Also the regression model 

with time-varying parameters can be put into the SSF by Z t=xt, 
Gt  t=ut =ut ,  Gtt G'=1 WO  =I H 1  e t  =vt , Htt H'=V and Tt=I for t=1,...,n. All1

other system matrices are zero except matrix (b,B). Thus the first 

parameter vector a l  is set equal to 0=b+B5 where 8 can be regarded as 
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fixed, random or diffuse. 

Autoregressive moving average (ARMA) model 

A time series yt  is often effectively described by a 

stochastic process known as the autoregressive integrated moving 

average model of a specific order (p,d,q), denoted by ARIMA(p,d,q), 

which is given by 

z t = (1) 1 Z t-1 	... 	4:sp Z t-p 	lit  — glut-1 — 	— 0qt—q 
	 (3.3) 

where ut  is NID(0,o 2) and yt  is differenced d times, z t=(1-L) ci),. t  where 

yt  are the observations. Note that L is the lag operator such that 

Lyt=Yt . i • For an extensive discussion on the ARIMA model, the reader 

is referred to the standard text of Box & Jenkins (1976). Also, many 

other books on basic time series analysis are available that give an 

introduction in ARIMA modelling. The ARIMA(p,d,q) model is 

represented by a time-invariant state space model with 

Z = (1,o') (3.4a) 

(3.4b) 

Rt  = (1;0 1 ;...0 1_ 1 ) (3.4c) 

and with r=max(p,q+1), I is the identity matrix, o is a column 

vector of zeroes and #[o]=r-1. The system matrices X t  and Wt  are 

zero. If Xt  is non-zero, the SSF is regarded as a regression model 

with ARMA residuals, see Harvey & Phillips (1979). The initial 

condition for an ARMA model in the context of the SSF. is extensively 

discussed in the literature, see for example Gardner, Harvey & 

Phillips (1980). The initial condition for an ARMA model with some 

non-stationary roots is discussed by De Jong & Chu-Chun-Lin (1991). 

The state space specification for univariate ARMA models is easily 

generalised for multivariate ARMA models. 

Structural time series models 

The structural time series (STS) model is an unobserved 

components time series model where a time series is decomposed by 

interpretable components such as trend, season, cycle and irregular. 
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The STS model can be regarded as a time-varying regression model 

where the explanatory variables are functions of time. The 

structural time series model is easily represented in a state space 

form. 
A structural time series model can be generally expressed by 

yt =µ t  + Yt 	ut 
	 (3.5) 

where µ t  is the level or trend component, y t  is the seasonal 

component and the irregular u t  is NID(0,02 ). The components trend and 

seasonal can be modelled in different ways. For example, a 

deterministic trend is given by ii t=a+bt where a is the level constant 

and b is the trend slope. It is unfortunate that this simple trend 

component is rarely appropriate for real time series. Especially for 

economic time series where the components trend and seasonal do 

change over time. Therefore, it is unreasonable that, in the context 

of forecasting, all observations receive the same weight at any 

point in time. This can be solved by allowing the regression 

coefficients to evolve over time. This implies the discounting of 

past observations. An appropriate way of modelling a stochastic 

level is by a random walk process 

I t  = Pt-i 	lit 
	 (3.6) 

where ri t  is N10(0011 02 ). The so-called local level (LL) model (3.5) 

and (3.6), with y t=0, is easily embedded within the state space model 

by putting Z t=Tt=1, •Gt=(1,0), Ht=(0,1%) and all other system matrices 

equal to zero. Usually, the initial trend is regarded as diffuse 

such that (b,B)=(0,1), W o=1 and H0=0. Note that sometimes the LL 

model is referred to as the random walk plus noise (RWN) model. The 

ARIMA representation, or reduced form, of the LL model is of order 

(0,1,1) with MA parameter e l  equals to i (2+%-i[4q 1 -1-q7  ]) . The forecast 

function of the LL model is an exponential weighted moving average 

(EWMA) scheme with smoothing parameter (1-0 1 ). 

The local linear trend (LLT) model is given by (3.5) with 
y t=0 and the trend component p t  is modelled as 
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Pt = 	Ot-, 	it 
	 (3.7a) 

Dt = 13 t-, 
	 (3.7b) 

where ( t  is NID(0,q). This model (3.5) and (3.7) is put into a SSF 

with Z t= (1,0) , T t= (1,1 ; 0,1) , W 0=B=I , G t= (1,0,0) , H t= [0 , Diag ] , 

the other system elements equal to zero and (5 regarded as diffuse. 

The reduced form of a LLT model is an ARIMA model of order (0,2,2) 

and the forecasting function has a Holt-Winters forecasting scheme, 

see Harvey (1989). 

The basic structural time series model (BSM) is given by 

(3.5) and (3.7) where y t  is modelled as a stochastic seasonal 

process. There are several methods for modelling y t  but the most 

straightforward BSM is based on dummy seasonals. The seasonal dummy 

regression model consists of a parameter vector with the elements y j 

 for j=1,...,s where s is the seasonal length. The implementation of 

dummy seasonals in a regression model requires the restriction E7 =1  y j 

 = 0 or, equivalently, ys  = - 21:1 y i . The BSM allows the seasonal 

dummies to evolve over time such'that the seasonal effect at time t 

is y t=y i  where period j is prevailing at time t and 

SQ 
	 = 

"'1=0 r t-i 	wt (3.8) 

where of  is NID(0,m2 ). Thus the seasonal dummies do not exactly sum 

up to zero but the expectation of the sum is zero such that the 

dummies have the flexibility to change over time. This basic 

structural time series model can also be put into the SSF. For 

example, consider a quarterly. BSM with dummy seasonals (s=4), the 

system matrices of the time-invariant SSF are given by 

Z t  = (1,0,1,0,0) 
	

G t  = (1,0,0,0) 

Tt  = Diag (T ET3  , T Es3 ) 
	

Ht  = (0,H;0) 

Ti m  = (1,1;0,1) 
	

H = Diag 
T Es3  = (-1,-1,-1;0,1,0;0,0,1) 

	wo  = B = I 

and all other sytem elements are equal to zero, see Harvey (1989) 

for more details. A monthly BSM with dummy seasonals has an ARMA 

representation (reduced form) which is very close to the 'airline' 
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model of Box & Jenkins (1976). 

Other approaches also exist to deal with stochastic seasonal 

components in unobserved components time series models. For example, 

Harvey (1989) discusses an alternative BSM with time-varying 

trigonometric terms and Harrison & Stevens (1976) propose a vector 

of random walks where each element characterizes a particular 

season. In chapter 5, both approaches are discussed in the context 

of modelling seasonality by periodic cubic splines. 

For a thorough discussion on stochastic properties, 

applications and many other issues concerning structural time series 

models, the reader is referred to the elaborate work of Harvey 

(1989). 

4. THE KALMAN FILTER 

The Kalman filter is primarily a recursive set of analytical 

expressions for the minimum mean square linear estimator and the 

mean square error matrix of the observation vector and state vector 

using Yt . 1  and parameter vector 8. Because the likelihood can be 

expressed in terms of one-step ahead prediction errors, the Kalman 

filter is an important tool for evaluating the log-likelihood 

function. This section will give the details of this efficient 

method of calculating the likelihood. In the following it is assumed 

that all system matrices are known and that the vector 5 is random. 

Prediction error decomposition 

The log-likelihood function of y conditional on the random 

parameter vector S is defined by l[y1 ,5]=- 1(#[y] log 27t + 1417 1 8 ]) 
where the likelihood criterion L[y145] is given by 

L[1718] = logi/ y 1 	(Y- 110'Ec(Y- Ily ) 	 (4.1) 

where ily=E[yj 8]=(ZTW+X) (3 and Zy=Mse[y18]=Cov(y-py)=a2  (ZTH+G) (ZTH+G) 

see equation (2.6). Expression (4.1) is computationally not 

attractive. An efficient approach to evaluate the likelihood is 

derived in the two results [2.1] and [2.2]. The first result derives 
an alternative expression for (4.1) using the prediction error 
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decomposition. This likelihood formulation can be easily computed 
via the Kalman filter. The second result contains the derivation of 
the Kalman filter. 

Result [2.1] Denote the minimum mean square linear estimator of a t , 

using Yt - 1  and 8, and its mean square error matrix as, respectively, 

2 P aflt-1 = B[cctlYt_1,8] 	a 	= Mse[at lYt-1/8] (4.2) 

then the likelihood criterion L[y18] of (4.1) can be rewritten as 

HY] log a2 	En 	1 [10a F t=1 	-ti 	(1 -2Nq F -t i vt ] (4.3) 

where the prediction error or innovation vt  and its covariance matrix 
a2  Ft are defined as 

vt = art - B [Yt 1  Yt-11 5 ] = yt 	Z tatlt-1 	XtP 
	

(4.4a) 
a2  Ft  = Mse [yt lYt-1'45] = Cov(vt ) 	02  (Z tPt i t _ i Z 	Gt G 

	 (4.4b) 

Equation (4.3) follows from the prediction error decomposition, see 
Harvey (1981), that allows rewriting the likelihood criterion as a 
sum of likelihood functions which are conditional on the set of past 
observations Y t1  and the random vector 8, 

L[y18] = L[y118] 	Vt'-,2L[YtlYt-118] 
	

(4.5) 

The equation for vt  follows from E[yt 1  Yt . / ,8] = Ztat i t . 1  + Xt 0 as implied  
by the measurement equation of the SSF. The equation for a 2 F t  is 
obtained by introducing the state prediction error vector 

Xt = a t - 	E[atl Yt-1 ,6]  = at - atit-1 (4.6) 

with Cov(xt)= a2Pflt i• By substituting the measurement equation of -  
(2.1a) into (4.4a), leads to v t  = Z t  xt  + G te t from which it follows 
directly that its covariance matrix a 2 Ft  is given as asserted. [ ] 
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Kalman filter 

Equation (4.3) provides a viable method for calculating the 

likelihood criterion. The innovations and their variances are 

provided by the Kalman filter which is mainly a recursive set of 

equations to evaluate the estimators at i t . /  and P t i t _ / . The following 

result derives the Kalman filter. 

Results [2.2] The Kalman filter is given by 

vt  = yt  - Ztatit_i -Xt R Ft  .= Z tPtIt-i z 	GtG; 

Kt 	(TtPtit-iz + H tG)Fi l  

at+11t = Tta t i t _ i  + W t I3 + Ktvt  

Pt+Ilt = TtPtit-i L 	Htl'q 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

where Lt=T t-KtZ t  and M t=H t-K tGt . The equations (4.7a,b) can be regarded 

as definitions. The proof of the two latter Kalman recursions is 

given below. 

Because the set of innovations. I t={vi ,...,vt } is a linear 

combination of the set of observations Y t=(y i ,....,y t ) and the 

parameter vector 8, the minimum mean square linear estimator of the 

state vector can be redefined as 

at+i i t  = E[a t+i I Y t ,8] = E[a t+i  I I t ]. 	 (4.8) 

The set of innovations I t  are independent. Therefore, as follows from 

appendix 2A (result 2), the state estimator can be decomposed into 

a t+i i t  = 	+ E[a t+i  Ivt ] - E[a t+i ] 	(4.9) 

where 

E[a t+i 1 ]= E[Ttat+Wtil+Htet It-1] = T ta t i t _ i  + WtR 
	

(4.10) 

An explicit expression for the term E[a t+i lv t ] is obtained using the 

minimum mean square linear estimation results of appendix 2A. It 

follows that 



where 

E [ a t+i  I vt ] = • E [ a t+i  ] + Mse [ a t.0  ,v t ]Mse [vt ] - 1 (vt -E [v t ] ) 

= E [ cc t+i ] 	 Nse  [ a t+i vt] (3-2F-t ivt 

Mse[a t+i ,vt ] = Cov(T t {a t-E[a t ]} + Hte t  , Z txt  + G t e t ) 

2 = 	( TtPtit-i Z  + HtG ti ) 
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(4.11) 

(4.12) 

By substituting the equations (4.10) and (4.11) into (4.9) and by 

defining the Kalman gain matrix as K t  = (TtPtit 	 + HtG)F -t 1 , the 

recursion for a t4lit  follows immediately. The estimator of the initial 

state vector is a 110 = E[c( 1 15] = Wo (b+B8). 
The recursion for Pt.olt  is derived by starting to note that 

a2Ptq1 t = Mse[a t+i  I Yt .,8] = Cov(xt+0 

= Cov(a-E [ cc t+i] ,xt+1 )  

where the prediction error xt4.1= atql  - a 	can be evaluated 
recursively by 

xt+1 = Ltxt + Mte t 

(4.13) 

(4.14) 

This follows from the definitions of a t0 and atilit  leading to xt ,1  = 

a t+1 	= Ttxt 	H te t - Ktvt  where vt  = Z txt  + Gte t . From this result, 
the Kalman equation for Pt.o l t  follows immediately because 

02  Pt+i It = Cov(Tt {a t -E[a t ]) + Hte t  , Lx +Me) t t 	t t (4.15) 

which give the recursion for Pt.o l t  as asserted. The initial mean 
square error matrix Mse[a l lo] is given by a 2 P10  = cr2 Holij [ ] 

The update equations for a wit  and Pt.olt  will be referred to as 
the Kalman recursions. The derivation of result [2.2] follows mainly 
the proof of Anderson & Moore (1979) using linear estimation theory. 
Simpler alternative derivations are at present in the literature. 
Duncan & Horn (1972) derive the KF by using generalized least 
squares techniques, see also Harvey (1981). Another simple proof can 
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be  given when Gaussianity is assumed. The proof is based on applying 

the rules of conditional expectations, see Harvey (1989) and 

appendix 2B. 

The second part of the likelihood criterion (4.3) can be 

rewritten by fn  + o -2qn  where both scalars are evaluated recursively 

by 

ft  = ft-1  + log IFt 1 
	

qt = qt-i 	vt' Ftivt 
	(4.16) 

and fo=0 and qo=0. Both recursions are assumed to be included in the 

Kalman filter. 

Steady state 

A time invariant SSF is given by 

yt  = Za t  + Xt r3 + Ge t 	t+1 = Ta t + Wt + He t 
	(4.17) 

together with (2.2) and (2.3). The Kalman filter applied to the time 

invariant SSF is still time varying but can converge into a time 

invariant filter, that is when 

P 	= P 
	

(4.18) 

In this occasion, the KF is said to be in a steady-state such that 

the KF quantities Ft , Kt  and Pt.o l t  are constant over time. In fact, 

the steady state mean square error matrix P is the solution of the 

Riccati equation which is given by 

P - TPT' + (TPZ'A-HG 1 )(ZPZ 1 +GG') -1 (TPZ 1 +HG')' - HH' = 0 (4.19) 

This Ricatti equation follows from the recursion of P tfl i t  which can 

be rewritten as 

Pt+i i t  = TtPt i t _ i T - KtFtic + HtHt 	 (4.20) 

Equation (4.20) is obtained by considering (4.7d) and the 

definitions of Kt , Lt  and Mt . It is not straightforward to get a 
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solution for (4.19) and, if a solution is available, it is not clear 

whether P is unique or whether P is a positive semi-definite matrix, 

see the discussion in Anderson & Moore (1979) and Harvey (1989, 

section 3.3.3). 

The innovation and the estimator of the state are linear in 8 

The equations for F t , Kt  and P tit . 1  are data-independent. These 

quantities only depend on the system matrices whereas the vectors v t 

 and at+ilt  depend on the set of observations Y t , the parameter vector 8 

and the system matrices. In view of the linear SSF and the linear 

KF, the vectors v t  and a t+l i t  appear to be linear functions of the set 

of observations Y t  and of the parameter vector P=b+B5. Because no 

actual values are given for f3, the vectors v t  and a t i t _ i  cannot be 

evaluated. This is in contrast with the Kalman quantities F t , Kt  and 

Ptit1 which are not dependent on 0. The following result will show 

that v t  and a t i t . 1  are linear functions of parameter vector 8. 

Result [2.3] The innovation vt  and state a tit . 1  can be expressed 

explicitly as linear functions of 6 

vt  = vt + v+,6 = vt (1;6) 	 (4.21a) 

a t i t _ i  = at + a+t8 = At (1;8) 	 (4.21b) 

where 

vt = yt 	Z t  et 	Xtb 
	

et+1  = T tet  + Wtb + K tv't  

vt = - Z t  a+  - XtB 	a+t+i  = T ta+t  + WtB + Ktv+t  

Vt  = (v°t ,v+t ) 
	

At  = (et ,a+t ) 

and A l  = Wo (b,B). Equation (4.21) follows directly from the Kalman 

equations v t  and atit.1  by replacing p with its definition b+B8 and 
rearranging the KF equations. [ ] 

The Kalman filter in stacks and the Cholesky decomposition 

It was recognised in the literature, see Harvey (1981), that 

the Kalman filter performs a Cholesky decomposition on the set of 

observations such that they are transformed into an orthogonal data-

set. The following result gives the details. 
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Result [2.4] The stack of the innovations v=(v 1 ;...;vn) is a Cholesky 

transformation on (y-µ y), where p y  = E[yio] = (ZTW+X)0, as given by 

v = C[y - p. y ] 
	

Cov(v) = a2 F = a2 CEyC' 	(4.22) 

where C is the Cholesky (lower block triangular) matrix. 

The update equation for a t.o l t  can be rewritten as 

a t+11t = Ltatlt - 1 	Ntil 	KtYt 
	 (4.23) 

where Lt=Tt-KtZ t  and Nt=Wt-KtXt . Equation (4.23) is obtained by 

substituting the equation for v t  into avo l t . In order to derive 

expressions for the stack of the vectors vt  and atit _ i , define 

a= (a l i o ; . . ;anfi  in ) , K=(0;diag(K1 ,...,Kn), N=(Wo' • 	* *IT 	;Nn) and note that 
N=W-KX where X and W are defined in section 2 (8-th remark). 

Furthermore, define matrix L as a lower block triangular matrix with 

1(n+1)(n+2) non-zero blocks and with identity matrices on the main 

block diagonal. The (t,$) block of matrix L is given by the matrix 

Lt,s = Lt-1 Lt-2* • • Ls 	 (4.24) 

for t=2,...,n+1 and s=1,...,t-1. Compare matrix L with matrix T, the 

latter has the same structure as L but its blocks are replaced by 

the blocks of (2.4). It follows that 

v = y - Za - XP 
	

a = L(NO + Ky) 	(4.25) 

By substituting a into v and by recalling y = (ZTW+X)0 + (ZTH+G)e 

from (2.6), we have 

v = Cy - (ZLN+X)P = C(y-XP) - ZLWP = (CZT-ZL)WP + Je 	(4.26) 

where C=I-ZLK and J=C(ZTH+G). Because E[v]=0, it must hold that 

CZT=ZL and v=Je=C[y-(ZTW+X)P]. The Cholesky result follows now 

immediately. Note that covariance matrix 43 2 F equals a2 JJ' where 

J=C(ZTH+G)=ZLH+CG=ZLM+G and M=H-KG=(Ho ;Mi ;. . • ;Mn ) • [ ] 
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The Cholesky decomposition shows, in an alternative way, that 

the likelihood criterion of (4.1) can be rewritten as (4.5), 

L[17 1 8 ] = loglEy l 	(Y- 110 1 Ey1 (Y- Ily ) 

= logICII/y IIC'I 	(Y-PO'C'(CEyC I ) -1 C(y- py ) 

= #[y] log a2  + logIF1 + 0 -217 1 F -1v . 	(4.27) 

Note that  ICI=IC'l  =1 and IAIIBI=IABI when A and B are non-singular 

square matrices. Finally, it follows from the stack notation as well 

that the innovation is a linear function of parameter vector 8, 

v = C[y - (ZTW+X)b] - C(ZTW+X)B8 = v°  + v+8 = V(1;8) 	(4.28) 

where v°=(v7;...;v°n)=C[y-(ZTW+X)b], v+=(v+i ;...;v+n)=-C(ZTW+X)B and 

V=(v° ,v+ ). 

5. LIKELIHOOD EVALUATION AND ESTIMATION 

The likelihood criterion L[y18] is given in (4.3) and it is 

evaluated by the KF. The derivations are given for the concentrated 

likelihood criterions Ls [y] and La;a [y] for the following three cases 

regarding 8 	(p , 02 A). (i) It is straightforward to derive the 

likelihood for the case that the parameter vector is fixed such that 

A=0•. (ii) When A is a non-singular covariance matrix, parameter 

vector 8 is said to be random. (iii) A special case of the random 

assumption is a diffuse 6, that is, the inverse of A converges to 

zero in the Euclidean norm. The likelihood criterions for these 

cases are derived below as well. The approach of De Jong (1991b) and 

Marshall (1992) is adopted in this section but the derivations are 

more transparent. 

The likelihood criterion under fixed conditions 

When the parameter vector 8 is assumed to be fixed such that 
A-o, the likelihood criterion is similar to (4.3) or (4.27). By 

replacing v with V(1;8), the likelihood criterion is 
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L[y18] = #[y] log 02  + log IF + 0 -2 (1;8) 1 Q(1;8) 	(5.1) 

where Q = (q,-s';-s,S) = V'F-1V. It follows that the maximum 
likelihood estimator for 5 is equal to the generalised least squares 

estimator 

S = s - is 	 Mse[8] = 02 S -1 	(5.2) 

and the concentrated likelihood criterion, with respect to 8, L s [y] 

is given by 

La [y]=  #[y] log 02  + log 111 + a-2  (q - s'S -1 s) 
	

(5.3) 

The maximum likelihood estimator for 02  follows from (5.3) and it is 

given by 

02  = (q - s'S -1 s)/#[y] 	 (5.4) 

such that the concentrated likelihood criterion, with respect to 

(8;02 ), Ii6;a [y] is given by 

A 
L6;(7 [y] = #[y](1 + log 02 ) + log IF1 (5.5) 

To evaluate matrix Q = znt.iv: F -t lVt , a partially modified Kalman filter 

is applied as given in the next result. 

Result [2.5] The modified Kalman filter is primarily extended to 

calculate the dummy matrices of (4.21). Thus, the modification only 

concern the vectors v t  and a t i t . / . Their equations are replaced by the 

matrix equation and matrix recursion, respectively, 

Vt  = (yt ,0) - Z tAt  - X t (b,B) 
	

(5.6a) 

At+i = TtAt + Wt(b / B ) 	KtVt 
	 (5.6b) 

where A l  = Wo (b,B). Also, the matrix recursion 

Qt = Q t- 1 + Vt F; lvt 	 (5.7) 
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is added where Q 0=0 and 	In.fact, the latter recursion replaces 

the recursion for qt  but the recursion for ft  remains, see (4.16) [ ] 

This approach of estimating the parameter vector (8;0 2 ) and 

evaluating the likelihood criterion, for fixed initial conditions, 

is a generalisation of the results of Rosenberg (1973). It is based 

on the fact that the (fixed) initial conditions are linear in the 

observations and, therefore, a generalised least squares procedure 

can be applied to obtain maximum likelihood estimates. The required 

computations are relatively straightforward because of the 

prediction error decomposition. The modified Kalman filter (5.6) is 

proposed by De Jong (1991b) in what he calls the diffuse Kalman 

filter (DKF). This name is slightly confusing because it has, 

strictly speaking, nothing to do with a diffuse 8. 

The likelihood criterion under random conditions 

The likelihood criterion L[y], when vector 8 is assumed to be 

random,'can be derived using Bayes' rule, L[y] = L[y18] + L[8] - 

L[81y]. The first likelihood criterion is given by 

L[y18] = #[y] log 0 2  + log 1F1 + 0 -2 (1;8)'Q(1;8) 

= #[y] log 02  + log 1F1 + 0 2 (q - 28's + 8'S8) 	(5.8) 

where Q=(q,-s';-s,S) is evaluated by the modified KF. The definition 

of L[8] is straightforward and is given by 

L[8] = #[8] log 02  + log 1A1 + 0 -2 (1 1 A -1 11 - 28 , A -1 11 + 8 1 A -1 8) 

(5.9) 

Although it is based on classical results, see any textbook on 

multivariate statistical theory, it .  is not straightforward to derive 

L[8117]. The results of appendix 2A need to be applied in the same 

way as they are applied to the derivation of the Kalman filter in 

section 4. It is given that L[51y]=L[81 v°]  because, as it is observed 

earlier, the vector v°  is a linear combination of y. Furthermore, 

E[8] = 1.1 	Cov[8] = 02 A 	Cov(8,v° ) = -02 Av+1  
E[v°] = -v+p 	Cov[v° ] = 02  (v+11.v." + F) 	(5.10) 



and, by applying the result of minimum mean square linear 

estimation, it follows that 
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ENS I v°] = p - Av." (v+Av+' + F) -1 (v° + v+p) 
Mse[8Iv° ] = 02  (A - Av+ '(v+Av+ ' + F) -1v+A) 

Applying the standard inversion lemma on (v +Av+1 +F) leads to 

(v4-Av4" + F) -1  = F-1  - F-1v+ (A-1  + S) -1v-"F-1  

such that (5.11) can be rewritten as 

E[811.1°] = p + A(I - S(A-1  + S) -1 )(s - Sp) 

= Iv + (A-1  + S) -1 (s - Sp) 
= (A- 1 	s) "1 ( s 	A- 1 11 ) 

Mse[8Iv° ] = 02  (A - A(I - S(A-1  + S) -1 )SA) 

= o2  (I - (A-1  + S) -1 S)A 
= (32 (A-1 + s ) - 1 

(5.11a) 

(5.11b) 

(5.12) 

(5.13a) 

(5.13b) 

The derivation of (5.13) becomes apparent by replacing all identity 

matrices with the matrix term (A -1+S)(A-1+S) -1  or its reverse. The 

likelihood criterion L[Olv°]=L[81y] follows immediately from (5.13) 

and is given by 

L[81y] = #[8] log 02  - log IA-1  + SI + 0 -2 (8-17) 1 Z -1 (8-5) 

(5.14) 

11=E[81y] and 2=Mse[81y], see (5.13). 

The likelihood criterion for y where 8 is assumed to be 

random follows from the equations (5.8), (5.9) and (5.14) and is 

given by 

L[y] = #[y] log o2  + log IFI + log IAI + log le+SI 
+ o -2 (q + 
	

(s 	A-1 11) I  (A-1  + S) (S 	A-1 11) 
	

(5.15) 

The likelihood criterion (5.15) can be evaluated using the modified 

Kalman filter (5.6) provided that actual values are given for p and 
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A. However, in the case that p and A are known, it is. much simpler 

to get the likelihood from the normal KF which is initialized with 

afl o  = Wo (b+Bp) and P flo  = WoBAB'W4 + Holij and where t is replaced by 
b+Bp. 

The concentrated likelihood criterion, with respect to p, is 

given by 

Lp [y] = #[y]log o2  + logIFI + loglI + AS( 

+ 0 -2 (q - s'S -1 s) 
	

(5.16) 

Note that the maximum likelihood estimator for p is given by S -1 s. It 

follows from (5.16) directly that the estimator for A is a zero 

matrix such that the concentrated likelihood criterion L p,A [y] under 

random conditions is the same as the concentrated likelihood 

criterion L8 [y] under fixed conditions. Finally, the estimator for o 2 

 remains equal to (q - s'S-1 s)/#[y]. 

The likelihood criterion under diffuse conditions 

The random vector 8 	(p,o2 A), is said to be. diffuse if the 

inverse of A converges to zero in the Euclidian norm which implies 

that a'A-lb-.0 where a and b can be any non-zero vector. The initial 

condition must be treated as diffuse'for non-stationary time series 

models but also in cases where time series models have been applied 

since time immemorial, see De Jong & Chu-Chun-Lin (1991) for a 

thorough discussion. In general, the diffuse condition reflects the 

uncertainty regarding the initializiation of the time series model. 

It can be•regarded as a standard assumption for nonstationary time 

series models. 

The diffuse likelihood criterion is defined as the limit of 

(5.15) when A•. and where the term loglAI is dropped, i.e., 

L[y] = #[y]log a2  + logIFI + logISI + (q - s'S -1 s)/o2 	(5.17) 

This pseudo-likelihood criterion differs from the one for the fixed 

case with only the term logISI. At first sight, it seems arbitrarily 

to drop the term logIAI to get the diffuse likelihood. Nevertheless, 

(5.17) is a likelihood criterion for My where (i) the transformation 
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matrix M has rank #[y]-#[8], (ii) Cov(My,8)=0 and (iii) logICov(My)I 

= (#[y]log o2 +logIFI+logISI), see De Jong (1991b). In fact, the 

likelihood criterion (5.17) is very similar to the marginal 

likelihood, see for example McCullagh & Nelder (1989). The marginal 

likelihood is based on a linear transformation as well, say Ny, but 

only the restrictions (i) and (ii) hold such that the data are 

invariant to 8. Since logICov(Ny)1=logIo 2 NEyN'1=#[y]log o2 +logIF1 

+logINN'I, it is obvious that the difference between the marginal 

and the diffuse likelihood is equal to the term logISI-logINN'I. 

The estimator for S under diffuse conditions is the limit of 

(5.13) when A- 00, i.e., 

8 = E[81y] = S 1 s 	Mse[81y] = o2 S -1 
	

(5.18 . ) 

These inference results do not differ from the earlier inference 

results for the fixed case. The estimator for (5 2  is unchanged 

because its estimator for the random case is invariant to A. 

It can be concluded that the inference results concerning 8 

do not differ when 8 is assumed to be fixed or diffuse, see table 

2.1. However, the associated likelihood criterions do differ. 

Initialization of the Kalman filter 

Consider the Kalman filter as derived in section 4. The 

parameter vector . 8 is assumed to be unknown, thus the KF cannot be 

initialized properly. This initialization problem is widely 

discussed in the time series literature. The 'main stream' solution 

is to start the KF with a very large covariance matrix given by 

P i l 0=KI where K is a large constant, see Harvey & Phillips (1979). 

This 'big-K' method reflects the uncertainty with regards to the 

initial state. It is a numerical solution that may cause 

computational inaccuracies and, more importantly, it is 

conceptuallly not appealing. Another proposed solution is to apply 

the information filter that provides recursive equations for the 

inverse of P flt-1 , see Anderson & Moore (1979). Note that the 'big-K' 

method is implied by P -1 1 0=0. Ansley & Kohn (1985) point out that the 

information filter is numerically inefficient and cannot be used in 
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specific cases like ARMA models. It is also possible to use an 

initial stretch of the data-set to estimate the initial state vector 

by regression techniques, see Harvey & Pierse (1984). The drawback 

of their approach is that the initial data set cannot include 

missing observations and that it is tailored to specific cases. A 

similar approach is put forward by Bell & Hillmer (1951). 

This section has shown how the likelihood function can be 

evaluated exactly by applying the modified Kalman filter which does 

not have an initialization problem ( A i=Wo (b,B) is known ). Ansley & 

Kohn (1985) propose another modification of the Kalman filter which 

also deals with diffuse initial conditions but they use other 

concepts. Although judgements of this alternative method are rather 

subjective, their approach is less appealing. De Jong (1991b) 

clearly points out why. The approach of Ansley & Kohn (1985), as 

also presented in many of their subsequent papers, is analytically 

not attractive because their derivations are cumbersome to follow. 

The approach of De Jong (1991b), adopted in this .chapter, is a 

trivial modification of the KF and the derivation is transparent. ' 

The main result is based on Rosenberg (1973). Finally, the approach 

of Ansley & Kohn (1985) is less general. 

The extra computational costs of the modified KF compared to 

the usual KF is that (i) the vector recursions for v t  and avolt  are 

extended with a number of #[S] equivalent vector recursions and (ii) 

the scalar recursion for qt  is replaced by the matrix recursion for 

Qt , see (5.6). The dimension of this matrix recursion is (1+#[S]) x 

(1+#[S]). Note that #[8] is in many cases equal to #[a t ]. For 

example, the basic structural, time series model with a quarterly 

dummy seasonal component is put in a SSF with dimensions #[a t ]=#[S]=5 
and #[e t ]=4. 

In general, it is not required to apply.the modified KF for 

the full data-set. After an initial stretch of the data, the matrix 
S t  becomes non-singular such that an estimator for 8 exists. Note 

that the length of the initial data set, say d, can never be smaller 

than #[8]. The initial estimator of S is used to collapse from the 

modified KF to the usual KF. The collapsed KF is applied to 

t=d+1,...,n and it starts off with the state A d+1 (1;Sci-l sd ) and with its 
mean square error matrix Pd+i i d  + a+th1 S ci-1 a+601 . Furthermore, the matrix 
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recursion for Qt  (5.7) reduces to the scalar recursion for q t 

 initialised with qd  - st;Sd I sd . The full details are given in De Jong 

(1991a) and Chu-Chun-Lin (1991). This is the preferred method to 

initialize the usual KF. However, this method implies that a full-

sample estimator for 8 cannot be evaluated unless 8 is fully 

included in the state vector of the collapsed KF. In many cases a 

full-sample estimator of the initial condition is not of particular 

interest but a full-sample estimator of the 'regression' effects is 

of interest. 

To illustrate matters, redefine the specification of the 

initial condition and the parameter vector associated with the SSF 

as 

a 1  = bo + Bo b + H e o o 13 = b 1  + B1 6 

such that Bo  'selects' the elements of 8 for the initial conditions 

and B1  corresponds to the 'regression' effects of a time series • 

model. Assume that the part of 6 that is concerned with the initial 

state vector, i.e. corresponding to Bo , will be collapsed. With 

regards to the part of 5 that is associated with the 'regression' 

effects, two strategies can be adopted. First, (CKF - I) the 

appropriate part of 6 can be included in the state vector of the 

usual KF after an initial estimator is available. Second, (CKF - II) 

the modified KF remains for the part of 8 associated with B 1 . The 

second option is computationally superior to the usual KF with 8 

(partially) in the state vector, this is illustrated for a local 

linear trend model with two explanatory variables. In table 2.3, the 

set of boxes show the dimensions of the Kalman filter quantities 

(each block represents one element). For example, in the case of a, 

modified Kalman filter applied to the LLT model with two explanatory 

variables, the innovation vector v It-  is of dimension 4x1. Table 2.2 

gives the number of additions and multiplications for each step of 

the Kalman filter. It is clear that the strategy CKF - II (a 

partially collapsed KF) is more efficient than the CKF - I strategy. 

For a complete discussion on collapsing the Kalman filter, see Chu- 
Chun-Lin (1991). 
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6. PRACTICAL TIME SERIES MODELLING 

This section discusses a selection of topics concerning 

practical time series modelling using the state space formulation. 

The first step is to place the time series model into the SSF. 

Generally, some elements of the system matrices are unknown. They 

are commonly referred to as hyperparameters. There are several 

methods of estimating these unknowns as discussed below. 

Diagnostic tools for checking the adequacy of an estimated 

time series model to describe the data are widely available and they 

can be classified into graphical procedures and into test-

statistics. These diagnostics are applied to the estimated 

standardised innovations which are derived, together with the 

estimated state vectors, in this section. An overview of several 

diagnostic tools is given in this section as well. Finally, an 

illustrative example is given. 

Hyperparameter estimation 

The system matrices of the SSF (2.1)-(2.3) are assumed to be 

known. As it is shown in section 3, this does not hold for most time 

series models because specific elements of the system matrices are 

related to unknown parameters of the time series model. For example, 

the SSF for an ARMA model places the AR parameters in the transition 

matrix T t  and it places the MA parameters in the matrix H t . The ARMA 

parameters are not known apriori. For time-varying and structural 

time series models, (diagonal) elements of the matrix H tlit ' are not 
known. 

Any unknown element in a system matrix will be referred tq as 

a hyperparameter. The estimation of hyperparameters takes place by 

minimizing a certain criterion, for example the 'least squares' or 

the 'maximum likelihood' criterion, which can be constructed from 

the innovations, see section 2.5. The decision of which criterion 

has to be minimized is an important one. In the case of structural 

time series models, it is appropriate to use the diffuse likelihood 

criterion as derived in section 2.5. 
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The appropriate criterion is computed by the Kalman filter 

and its optimal value is found via some non-linear optimization 

technique, for example, the method of scoring. A more simple 'grid-

search' procedure is mostly not a favourable strategy to find the 

optimal value because the number of function calls, i.e. the Kalman 

filter, can be huge. Scoring methods are better because they provide 

a more precise search direction by taking account of the exact or 

approximated first derivative of the criterion with respect to the 

hyperparameters. In appendix 2C the analytic first derivative 

functions are given for the likelihood criterion where it is assumed 

that the hyperparameters are only in the time-invariant matrix H t . 

This method of estimating the hyperparameters is referred to as 

estimation in the time domain (TD). 

Another method of hyperparameter estimation is based on 

approximating the estimation criterion via the frequency domain (FD) 

where the innovations are obtained from the Fourier transform, see 

Harvey (1981). A very different approach of estimating the hyper-

parameters is the EM (expectation-maximization) algorithm which is 

developed in the context of time series models by Watson & Engle 

(1983) and Shumway & Stoffer (1982). It is reported by Harvey & 

Peters (1990) that the EM algorithm performs poorly in estimating 

the hyperparameters of a structural time series model. A 

modification of the EM algorithm is given in the next chapter. 

Prediction 

In the state space approach of time series modelling, the 

following estimators are of particular interest, 

A 	 A 	 A 

Yt 	E[Yt  I Yt-i] 	vt = Yt 	Yt a = E[a IY ] t 	• 	t 	t1 (6.1) 

The estimators of 8 and their mean square error matrices, under 
fixed, random and diffuse conditions, are developed in section 2.5 

and are given in table 2.1. 

The estimators for y t  and a t  are given by 

Yt = E[YtlYt_i] = E{ E [Ytl Yt-1 ,6 ] 	) 

yt 	E[Vt( 1 ; 6 ) I Yt.i] = Yt 	Vt( 1 ; 8 t-1) 
	

(6.2a) 
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at =E[atlYt-1] = E 	E[atlYt-1 ,8 ] 	7t-1 ) = 
= E[A t (1;8) I Yt-1] = At( 348 t-1) 
	

(6.2b) 

with their mean square error matrices 

Mse [y t 1 	] = Cov (y t  - E [Yt lY t _i , 8] + E[YtlYt_i 8 ] 	E [Ytl Yt-i] ) 
= Cov(vt) + Cov[Vt (1;45) - Vt (1;8„)] 

= (12 F t  + vi-tMse[St-i]v+ti 	 (6.3a) 

Mse[a t  1 Yti] 
 

= Cov(a t  - atit_i + atlt-i - a t) 
= Cov(x t ) + Cov[At (1;8) - At(1 ;8t-1)] 

= G2 Pt I t-i+ a+tMse [ S t-I] a+t i  

A 

The prediction error v t  = yt  - E [YtlYt.i] is given by Vt (1; S t _ /  ) with 

its covariance matrix a 2  F t + v+tMse [8t-I]Nr+ti•  Finally, the estimator 

for 02  using Y t  is given by 

A 

= (qt  - s t'Si l s t )/(t#[y t ]) 
	

(6.4) 

and this result is invariant to any assumptions regarding 8. 

All estimation quantities are evaluated by the modified KF. 

The estimator of 8 and its mean square error matrix can be evaluated 

recursively by 

Vt 	Vt (ljg t.i ) 
Vkt  = VtDiag(0;St l_i) 	 F t = F t + VtVt 
8 t 	8 t-1 	Vtitivt 	S -1  = S -1  - V* ' /F t-i 	t 	t t 

(6.4a) 

(6.4b) 

(6.4c) 

The equations (6.4) are obtained by applying an inversion lemma to 

the matrix S t = S t  _ 1  + v+t 	The recursion (6.4) is started off at 

t=d+1 where d is the first integer for which Sd  is non-singular. The 

estimators cannot be computed by (6.4) for t=1,...,d, unless a 

generalized inverse of S t  is used. Section 8 discusses more details 

and implement all required calculations in a Pascal computer 

Program. An alternative recursion for (6.4) is embedded within a 

square root version of the modified KF, see De Jong (1991a). 

(6.3b) 
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When a full collapse has taken place at some point in time, 

the usual Kalman filter quantities a tit _ i  and vt  are already the 

estimators based on Yt _ i  and the equations (6.4) are not (and cannot 

be) applied. 

Diagnostic checking 

Once the estimators are evaluated, plotting the estimate of 

a t  or some linear combination, e.g. Z ta t , and plotting the estimate of 

yt  against time provides some indication of the adequacy of the 

model. More informative diagnostics are based on the standardised 
A A 

prediction errors Fnv. These residuals are approximately serially 

independent in a correctly specified model and it is regularly 

assumed that they are normal distributed with a zero mean and a 

constant variance. The purpose of diagnostic checking is to validate 

these propositions. The available tools for this important phase in 

time series modelling can be classified in diagnostic tests and 

diagnostic plots. In the following, an overview of some important 

diagnostics will be given. For simplicity, it is assumed that the 
• 	 A 	A 

observation y t  is a scalar such that v t  and Ft  also are scalars. 

DIAGNOSTIC PLOTS 

Standardised residual plot: The sequence of residuals 

ut  = FA t" l vA t/r 
	

t=d+l,...,n 

where r2  = ( 'n-d-1) -1 2 11t=1  (F -t ivA t  - m) 2  and m = (n-d-1) - 	can be 

plotted against time and must be checked for any irregularities. 

Variance plot : To check if the variance is constant over time, the 

quantity at of (6.4) might be examined. 

Cumulative sum of residuals : Brown et.al . (1975) propose to check 

the cumulative sum of residuals to check for irregularities. The so-

called CUSUM plot consist of the sequence 

cusumt  = cusumt.1  + u t  = Et u. j=d+1 j 

for t=d+1,..., n and with cusumd=0. If cusumt  does exceed specific 
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bands, which are associated with some siginificance level, it might 

indicate that some form of a structural change has taken place. The 

CUSUM is certainly not a formal test procedure. 

Cumulative sum of squared residuals : Brown et.al . (1975) also 

propose to check the cumulative sum of squared residuals to check if 

the variance is constant. The so-called CUSUM-SQR plot is based on 

cusumsqr = 	u?)/(Y u?) t 	j=d4-1 	j=d+i 

The CUSUM-SQR can be regarded as an additional diagnostic for 

structural change but is more appropriate as a check for 

heteroscedasticity. 

Correlogram : A graph of the correlations is useful to check whether 

the residuals are serially correlated. The scaled residual sample 

autocovariance a. is given by 

a. = E =d+j . +1 (ut 	m) (ut 	- m) t  

for j=1,...,P and P is a specific constant. The residual sample 

autocorrelation of lag j is given by a j/ao . A plot of a j/ao  is called 

the correlogram. The significance of serial correlation at a 

specific lag depends on n, see Harvey (1981). 

DIAGNOSTIC STATISTICS 

Mean and variance : The sample mean m and the sample variance r 2  of 

the set of innovations Ft"Vt  for t=1,...,n, can be regarded as 

descriptive statistics. 

Box-Ljung portmanteau statistic : This test statistic is mostly used 

in the context of ARIMA models and is based on a sum of squared 

autocorrelations, specifically, 

Q = n* (n*+2)E Pj=i (n*-j) -l aT. 

where n*=n-d. The Q statistic is asymptotically 4, provided that all 

system matrices of the SSF are known, see Ljung & Box (1978). If 

not, the statistic can be used as a diagnostic. 
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Measures of skewness and kurtosis : The third and fourth moments of 

ut 
are given by, respectively, 

s = r-3 ( n-d-1 ) -1Ent-ci+1 (i‘t iVA t 	111)  3  
k = r-4 (n-d-1) -1 E n 	(F -1*V - m) 4  t=do t t 

which are asymptotically normal distributed 

s 	(0 , 6/(n-d-1)) 

k - (3 , 24/{n-d-1}) 

when the time series model is Gaussian and correctly specified. 

Normality test : Bowman and Shenton (1975) propose a test for non-

normality based on the statistic 

N = (n-d-1) (s2 /6 + {k-3} 2 /24) 

and is, under the null hypothesis, 2d distributed in large samples. 

Heteroskedasticity : A simple and intuitive diagnostic for 

heteroskedasticity is 

Hh = SS(n-h+l,n)/SS(d+1,d+l+h) 

where SS(a,b) 	Ebt.A and h is the nearest integer to (n-d)/3. Under 

the null hypothesis, the statistic H h  has a F(h,h) distribution. 

Goodness of fit 

A discussion of several goodness of fit measures is given by 

Harvey (1989). The basic measure is the prediction error variance 
A 

0 2 -- (q-s 1 S -I s)/#[y]. The standard relative measure of fit is R2  which , 
 

compares (q-s 1 S -I s) with the sum of squared deviations from the mean, 

see Maddala (1988). In the context of time series it is better to 

base the comparison on the first differences of the data (Rg) or on 

the seasonal adjusted data (R2 ), see Harvey (1989, section 5.5.5). 

These adjusted measures have a direct connection with Theil's U-

statistic. Finally, two rival models may be compared on the basis of 

information criteria such as AIC, see Harvey (1981). 
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Illustration : the COAL series 

This example concerns the quarterly UK coal consumption from 

1960 until 1986 (source of data : UK Department of Energy). The time 

series is analysed earlier in Harvey (1989) where also the actual 

values of the COAL series are listed (p. 512). The log of the COAL 

series is plotted in figure 2.1. The salient features of this time 

series are a general downwards movement between 1965 and 1976, a 

clear seasonal pattern and a number of shocks of which the one in 

1984 is most clear. These features can be explained as follows. The 

downwards trend is due to the introduction of gas from the North Sea 

in the late sixties. The seasonal effect is explained from the fact 

that the energy demand rises during the winter months for heating. 

The extreme values are generally caused by various industrial 

disputes but some are also caused by extreme cold periods. However, 

the sharp fall in 1984 is due to the prolonged miners' strike during 

that year. 

'It is the basic structural time series model that decomposes 

the COAL series into the salient components as discussed above. Let 

yt  denote the 'log of the COAL series and define the BSM model as 

Yt = Pt 	Yt 	ut 
	 (6.5) 

where p t  is the trend, y t  is the seasonal component and u t  the 

irregular which takes account of the random shocks in the series. 

The observations after 1983 are not considered such that the 

estimates are not influenced by the miners' strike in 1984. 

In order to show that the data cannot be described 

satisfactorily by deterministic components, a regression model is 

fitted with a constant and a time-trend (p t=a+13t) and dummy 

seasonals. The regression results are given in table 2.4 and the 

plots of the series with the fitted trend line and the standardised 

OLS residuals are given in figure 2.2 and 2.3, respectively. Some 

diagnostics applied to the OLS residuals show that the regression 

model with a constant trend does not fit the data very well. A 

prominent indicator is the Box-Ljung test statistic for serial 

correlation Q(10)=74.49 but also the Durbin-Watson test is far off 
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its base-value 2.0. The global trend may be appropriate for the 

middle of the series but it is surely not appropriate for the end of 

the series, say, after 1975. This will cause serious problems in 

post-sample forecasting. To what extent the local trend for after 

1975 differs with the global trend becomes clear from figure 2.2. 

The estimated slope of the global trend is -.0173 and the one for 

the local trend (from 1976 onwards) is -.0053. This notion of global 

and local properties of time series has led to the development of 

structural time series models where components such as trend and 

seasonal are allowed to change over time. 

The components of a basic structural time series model follow 

various stochastic processes as discussed in section 3. The 

seasonals are based on dummies such that the sum of the four 

seasonal parameters has expectation zero. It is shown before that 

the BSM can be placed into a SSF from which three elements of its 

system matrices are unknown, i.e. the signal-to-noise ratios. These 

hyperparameters are estimated in the frequency domain by a scoring 

method using the computer program STAMP M3 , see table 2.5. Other 

estimation methods gave similar estimates of the hyperparameters. 

The initial conditions of a BSM are assumed to be diffuse 

because the model can be applied since time immemorial, see De Jong . 

& Chu-Chun-Lin (1991). The modified KF provides estimates of the 

initial conditions and, from the mean square error matrix S -1 , their 

standard errors and their t-statistics can be calculated, see table 

2.6. 
A , A 

The graph of the standardised innovations F
„
nv i t  in figure 2.4 

clearly shows that some large shocks disturb the time series. 

Although the values of the residuals are within the 95% confidence 

boundaries, i.e. approximately between the values -2 and 2, the set . 

of diagnostics will point out whether the standardised innovations 

can be regarded as non-informative noise. In fact, the diagnostics 

reported in table 2.5 suggest that the BSM fits the COAL series not 

unsatisfactorily. Compare, for example, the Box-Ljung test-statistic 

with the one for the regression model. The additional diagnostic 

plots in figure 2.5 confirm this conclusion as well. Finally, the 

model can be improved by treating some observations, which cause the 

huge shocks, as missing. 



38 

7. NUMERICAL CONSIDERATIONS 

Kalman filter computations sometimes lead to numerical in-

stabilities caused by missing observations, badly defined initial 

conditions and rounding-off errors. A particular problem is the 

Kalman recursion for P t i t _ /  that does not rule out a negative definite 

matrix. To escape from these problems, the square root form of the 

KF (Sqrt KF) is applied. The Sqrt KF is based on othogonalization 

transformations such as the Householder, Givens or QR 

decompositions. A good reference for these techniques and associated 

matrix computations is Golub & van Loan (1989). 

This section includes an exposition of the Householder 

transformation and gives details of the implementation of the Sqrt 

KF. The modified Sqrt KF requires an extra adjustment concerning the 

recursion for Q t . 

HoUseholder transformation 

Result [2.7] The Householder orthogonal transformation (HOT) finds, 

for any non-zero row vector x, a matrix P such that xP is a row 

vector of zeroes except its first position equals -±q(xx 1 ). More 

formally, given a non-zero row vector x, the HOT defines 

p = x ± (xx')e / 	P = I - 2p'p/pp' 
	

(7.4a) 

such that 

xP = -± ,/(xx 1 )e l  . 	 (7.4b) 

Note that the e l  vector can be replaced by any zero vector with on a 

particular position a unit value, e.g. e j . Matrix P will be referred 

to as the HOT matrix. 

To derive the HOT method, let p be any row vector and define 

square matrix P = I - 2p'p/pp' = I - 2p'q where row vector q is 

given by q=p/pp'. Note that pq'=1. It follows, sequentually, that 

(i) P = P', (ii) pP = -p and Pp' = -p', (iii) PP = P-2Pp'q = P+2p'q 
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= I and (iv) P = P-1  and P'P = I. Consider a non zero row vector x 

and post multiply it by matrix P such that xip=x-2x(120 121/pW)=x-

2p(xp7pp 1 ). Choose p=x+ae1  where a is an unknown scalar value and e 1 

 is a row vector of zeroes except its first position is unity. 

Substitution of this particular p vector into xP leads to 

xP =[1 - 2(xp'/pp')]x - 2a(xpi/pp')e1 	(7.3a) 

where 

. xp' = xx' + ax1 	 (7.3b) 

pp' = xp' + ap 1  = xx' + ax1  + ax1  + a 2 = xx' 	2ax1  + a 2  (7.3c) 

and z 1  denotes the first element of a vector z. The HOT aims to find 

a value for a such that xp'/pp' = 	and xP = -ae 1 , see (7.3a). The 

equations (7.3b) and (7.3c) show that the equation xp'/pp' = 1 is 

equivalent to 2xx 1 +2ax1  = xx 1 +2ax1 +a2  and leads to the solution 

a=±i(xx'). [ ] 

The row vector x can also be regarded as a row of any matrix 

X. A sequence of vector HOT operations is able to transform X into a 

spatial matrix Y denoted by Y-HOT(X). This matrix HOT operation 

involves a sequence of matrix multiplications, e.g. XQ where 

Q=P1 P2 ...Pk  and Pi  is a particular HOT matrix based on an exclusive 

row of X. Note Q'Q=I. When a particular part of a row vector must be 

transformed into zeroes, the HOT matrix is partioned, accordingly. 

For example, let x=(a,b,c) where non-zero row vector b must be 

transformed into a zero vector (except its first position). For this 

case, the HOT matrix is defined by P = diag(I,R,I) such that r = b ± 

‘1 (bb')e., R = I 	2r'r/rr' and xP = (a,-± 

Some practical problems arises during implementation, for 

example, the choice of plus or minus 1(xx'). Such matters are 

discussed extensively in Golub & van Loan (1989). In the numerical 

literature, the HOT procedure is known as a very flexible and stable 

technique. 
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The square root Kalman filter 

The square root form of the KF is based on the work of Morf & 

Kailath (1975). An introduction can be found in Anderson & Moore 

(1979). 

Result [2.8] The Sqrt KF mainly consists of the HOT operation 

Et  - HOT (Dt ) 

where matrix Dt  = [(Zt;Tt) Ptit-1,(Gt;Ht)] and matrix Et  is the spatial 

matrix [FY2t , 0 ;KtFIbt , Pit'.0 1 t ,0]. This matrix HOT operation appears to be 

recursive which is implied by the definitions of Dt  and Et . 

Consider the mean square error matrix of the joint vector 

(yt ;a t ) using the data-set Y t . i , Ct=Mse[yt ;a t  Yt . 1 ], given by 

Ct  = 02(Zt;Tt)Ptit-i(Zt;Tt) 	(Gt ;Ht ) (Gt ;Ht ) 
	

(7.5) 

The mean square error matrix (7.5) can be rewritten in two different 

ways, e.g. DtD; and EtE;. The equivalence Ct=EtE; becomes clear from 

the Kalman filter equations for Ft , Kt  and Pt,. /it , see (4.20) for the 

latter. This implies that a matrix Q exists such that DtQ = Et  and 

Q'Q=I. A matrix HOT operation provides such a matrix. In fact, the 

Sqrt KF involves only the transormation of Dt  into a matrix with the 

same spatial structure of E t  [ ] 

The matrices D t  and Et  do have the same number of rows but, 

in general, matrix Dt  does have more non-zero columns than Et . 
Therefore, the matrix Et  is expanded with 'dummy' zero columns to let 

pt  and E t  have the same number of columns, see table 2.9. 

The KF quantities can all be formed using matrix E t . The mean 

square error matrix Pe 	is now, by definition, positive 

definite. A systematic scheme of the modified Sqrt KF is given in 

table 2.7. De Jong (1991a) formulates the recursion for Q t  in a 

square root form as well. The attraction is that the inverse of S t  is 

obtained without inverting the matrix S t  straightforwardly. Moreover, 

the paper of De Jong (1991a) presents an eloborate discussion on 

stable calculations regarding the modified Kalman filter. 
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The sqrt KF applied to a structural time series model does 

not involve many transformations with large HOT matrices. This will 

be illustrated for the the local level (LL) model, the local linear 

trend (LLT) model and the basis structural time series model (BSM) 

with quarterly dummy seasonals. Table 2.9 presents the structure of 

the Dt  and the E t  matrix with o denoting a zero value and * denoting 

a non-zero value. Table 2.8 gives, for some STS models, the 

dimensions of the required transformations and the number of times 

it has to be applied for one KF update. It can be concluded from 

these tables that the dimension of the state vector determines how 

many times a HOT matrix must be constructed and that the dimensions 

of the transformations vary but are in general quite small. 

8. COMPUTER PROGRAMS 

This section presents a computer program which takes care of 

all computations discussed in this chapter. The computer language is 

Pascal. The actual code of the program is given at the end of the 

thesis. The code can be adjusted in a flexible way so that the user 

can add other computations. It is recommended to keep the main' 

structure of the program. 

The program below only deals with univariate time series 

models such that the observation, the innovation and their 

covariances are scalars and the Kalman gain is a vector. It is 

straightforward to generalise the program for multivariate time 

series models, this version of the program is avaible on request. 

The main program 

The system matrices are placed in the variables, TSM (time 

series model), RGM (regression model), CSM (covariance structure), 

ICM (initial conditions) and CIM (covariances of initial 

conditions). In table 2.10 it is shown how these matrices are 

organised in the computer program. The dimensions of the system 

matrices all depend on the integers DimSt #[a t ], DimBt #[0], DimEp 
#[e t ] and DimRg #[8]. The one-dimension array of real values (Data-

record) Y does contain the set observations. The set of Data-records 
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X contain time-varying system elements such as explanatory variables 

in a regression (X t ). 

The system matrices are in general sparse and may contain 

specific values such as plus or minus unity, sine and cosine 

quantities and time-varying values. The computer program takes 

account of all these special features by defining a special record 

for system elements given by 

SysFlt = Record 
Code 	: 0..9; 
Positive : Boolean; 
R1 	: Real; 
Pos 	: Integer; 

End; 

where the field code corresponds to 

0 = 0.0 5 = Cos(2n/R1) 
1 = 1.0 6 = Tan(2n/R1) 
2 = R1 7 = Sqr(R1) 
3 = X[Pos] 8 = Sqrt(R1) 
4 = Sin(2n/R1) 9 = Exp(R1) 

For example, if a system element has the sequence of field values 

(4,FALSE,4.0,0) then its value is -Sin(n/2). Another example is 

(3,TRUE,0.0,2) such that the system element value is found in the 

second Data-record of X. This allows system elements to be time-

varying. The system matrices consist of a double array of system 

element pointer records. If the system element pointer is NIL then 

its value is zero. The Kalman filter quantities, that is V t , Ft , Kt , 
At  and P 	are arrays of real values. 

Specific procedures are required that read in the 

observations and the system matrices. The computer program, as 

discussed in this section, does not deal with the input/output 

procedures but it will indicate where to place it in the main 

program. Another important part of the program are two procedures 

that multiply and add system elements. 

Two procedures are discussed in detail below. The first 

procedure concerns the Kalman update for the state quantities given 

a specified time series model, the new observation and the previous 
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state quantities. The other procedure computes the likelihood, it 

calculates estimates of fixed and diffuse effects and it computes 

one-step ahead predictions of the state and the observation 

sequences given the time series model and the set of observations. 

In the next chapter, some other procedures are discussed which can 

be included in the main program as well. 

The KFupdate procedure 

This procedure updates the state vector and its mean square 

error matrix for a given new scalar observation. It computes the 

innovation, its variance and the Kalman gain vector as well. The 

heading of the procedure is 

KFupdate( 
	

Obs 	: Float; 
DimKF 	: Integer; 

Var KFA, KFP 	: Matrix ); 

The new observation is placed in Obs and the dimension of the KF 

operations regarding Vt  and At  is given by DimKF. Note that when 

DimKF is equal to zero, the modified KF reduces to the usual KF. For 

a time-invariant time series model, the KF may reach a steady state 

at, say, time j such that Pt.0It=Pflt-1f  for t=j+l,...,n. In this case, 

the calculations for Ft , Kt  and Pt., / I t , for t=j+1,...,n, are not 

required. The procedure does indicate where to check for a steady 

state but it is not implemented in the program. The structures of 

the matrices KFA and KFP differ slightly before and after the KF 

update procedure, see table 2.11. 

The procedure KFupdate consists of the following parts 

1. M1  = (Z t ;Tt )At  

2. KFP = (Z t ;Tt )PV 

3. KFA = M1  + (Xt ;Wt ) 

KFP = KFP + (Ht ;Gt ) (H t ;Gt ) 

4. Vt  = (yt , 0) - KFA [ 0 , 0 DimKF] 

5. KtFt  = KFP[1..DimSt,0] 

6. At+i  = KFA[1..DimSt,O..DimKF] + K tVt  

Pt+i I t 
	KFP[1..DimSt,1..DimSt] - KtFtIc 

M2 = (zt;Tt)Ptit-i 

Ft  = KFP[0,0] 

K;=KFP[0,1..DimSt]/Ft 
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When the KF enters a steady state, the computations regarding the 

matrices M2  and KFP can be dropped. 

The Estimation procedure 

Primarily, the procedure Estimation evaluates recursively the 

scalar 	the the vector s t  and the matrix S -t 1  for t=j+l,...,n. From 

these quantities, the one-step ahead predictions of the observation 

and the state vector, including their mean square error quantities, 

can be evaluated. Note that this includes the one-step ahead 

prediction error and its variance. Furthermore, at the end of the 

procedure, the likelihood can be calculated and the estimate of 8 

can be constructed. The heading of the procedure is 

Estimation( Var Q : Matrix; 
Var L : Float; 
Var d : Integer); 

Var A,P,Si : Matrix; 
k : Vector; 
v,f,a : Float; 
t : Integer; 

The integer value d indicates the time that the matrix S t  becomes 

non-singular and the integer value t is the time index. The real 

value L contains the likelihood value. The structure of the 

composite matrix Q is given by (q,-s';-s,S) for t=1,...,d and (q,- 

s';Sj,Si) for t=d+1,...,n •where Si=S -1  and Sj=S -l s. The matrices A and 
P contain all KF quantities and they act as the intermediates for 

the KFupdate procedure. The vector k places V tS t-l_ i  and the real values 
A A 	 A 

v, f and a places v t , F t  and at respectively, see equation (6.4). The 

overall structure of the procedure is given by table 2.12. The 

computer code indicates where to check for a steady state via the 
sign !. 
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9. CONCLUDING REMARKS 

This chapter is an overview of the latest developments in the 

state space methodology. The new developments, such as diffuse 

likelihood evaluation and estimation of fixed effects in time series 

models, can be straightforwardly applied to structural time series 

models as also emphasized by Harvey & Shephard (1992). Furthermore, 

the general results are important for the new smoothers whiche are 

developed in the next chapter. 

NOTES 

M 3  The computer program STAMP (Structural Time series Analyser, 

Modeller and Predictor) is a menu-driven software system for IBM-

compatible PCs and its main task consists of hyperparameter 

estimation, diagnostics, forecasting and full sample estimation of 

unobserved components for univariate structural time series models. 

(Information : STAMP, Statistics Department, LSE, Houghton Street, 

London WC2A 2AE, UK ) 



APPENDIX 2A 

Two results on minimum mean square linear estimation 

This appendix gives two important standard results of linear 

estimation. The proofs can be found in many books on multivariate 

statistical analysis but also in Anderson & Moore (1979). 

1. Minimum mean square linear estimation. 

Consider two random vectors x 	(p., Z.) and y 	(p),,Ey ) which have a 

non-zero covariance matrix E xy  and where E y  is non-singular. The 

minimum mean square linear estimator for x, using y, and its mean 

square error (Mse) matrix are given by 

x = E[xly] = px 	ZxyZ y-1  (y-py ) 	 Mse(x) = Ex  - Z.yEy l Ey. 

2. Uncorrelated predictions 

Suppose y=(111 ;...;yn ) 	(py ,Ey ) where Ey  is block diagonal such that 

the sequence y 1 ,...,yn  'is mutually uncorrelated, then the minimum 

mean square linear estimator' of x 	(px ,E.) using y is given by 

X = E[xly] = 	E[xly t ] - (n-1)px  

and the estimator using (17 1 ;...;y0 is given by 

E[xly i ,...,yt ] = E[xly i  , .... Yt-i] 	E[xlYt ] 

APPENDIX 2B 

Derivation of the Kalman filter under Gaussianity 

Consider the state space form (2.1)-(2.3)) and assume 

Gaussianity, i.e. Et  is normally distibuted, such that the theory of 

conditional distributions can be applied to derive the Kalman 

filter. This particular derivation requires some classical results 

46 
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of conditional distributions which are found in many introductory 

books on statistics, see for example Mood, Graybill and Boes (1974). 

The distribution of the state vector at  conditional on Y t-1 
and 6 is given by 

atlYt-1 ,6 	N(a 	a' tit-1 	, 	P tIt-1) 

From the SSF it follows that the conditional distribution for y t  is 

given by 

y t lY t _ i , 6 " N(Z ta tit.i  + X t13 , cr 2F t ) 

where F t = Z tP tit _ / Z;+G tG; . Consider the joint distribution of (Yt;at+i), 
conditional on Y t.1  and 6, given by 

 

[

Z

t
a

tit-1
+X

t
g 

T ta tlt-i+W tg 

  

N( 2 
Z tP t t _ i  Z; +G tG; 

 

T tP tit-1 Z;+H tG; 

Z tP tit-1T; +G tHt 

 TtP tit _ i T;+HtHt 

    

The conditional distribution for ato lYt.1 ,yt ,6 is given by 

N ( a til It c2P t+i It ) where  

= T ta tit _ i  + wtg + K tv t awit  
= T tPtit _ i T; - KFK' + H H' t t t 	t t 

with vt =yt- 	 z t atiti -Xtg and K t = E Y t  I Y t .1, 	=Y t - 	 [TtPtit-1z; +HtG; ]E; . These 
update equations are obtained by applying the standard rule on 

conditional distributions. It follows, by definition, that a llo  = 
Wo (b+B6) and its mean square error matrix a 213 /10  is equal to a 2HoHd. 
The recursions and the definitions for v t , F t  and K t  form the Kalman 
filter which is derived under Gaussianity, see also Anderson & Moore 

(1979) and Harvey (1989). 



APPENDIX 2C 

The Jacobian for a Structural time series model 

This appendix derives the first derivative of the likelihood 

criterion of a structural time series model with respect to a set of 

unknown parameters. Any structural time series model can be put into 

the Gaussian time-invariant univariate state space formulation, i.e. 

yt  = Zat 	( c), °)Et 
	at+ = Ta t  + He 

where Et  is normally distributed with mean zero and covariance matrix 

I. The observations are supposed to be scalar such that Z is a row 

vector. The unknown hyperparameters are only found in matrix H which 

can be regarded as a function of the parameter vector 4r. The 

likelihood criterion can be expressed as 

L  = Znt=i L t 
	 where L t  = log F t  + v: /Ft  

and the standard deviation a can be concentrated out of the 

likelihood and estimated directly, see section 2.4. The Kalman 

filter can be rewritten as the set of equations 

a flt-1 = Ta t 	P tI t.1  = TP t1T' + HH'1

vt = y t - Za tit-1 	Ft  = 	+ 0 2  

a t = a tit-1 
	

F t v t 

Pt = P tit-1 

where all quantities are conditional on the initial state vector a 1 . 

To derive the Jacobian vector of L with respect to 	denoted by 

J(*), we adopt the matrix differential theorems of Magnus & 
Neudecker (1988). The differential for L is dL = 4=1 dL t  where 

dL t  = (2v t/F t )(dv t ) - ([v:-F t ]/F;)(dF t ) 
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and 
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dvt  = -Z datit.1 	 da 	= T dat _ i  
dFt  = Z dPtit _ i  Z' dPtit _ I  = T dPt _ i  T' 	+ dH H' + H dH' 

In order to evaluate the differentials recursively, we obtain 

dP t  = dPtit_i t 	tit-, - dPtit _ I  Z'F -1 ZP 

+ Pit-IZiFil  dFt t F-1ZP tit, - PtIt-IZ 'F -t 1 Z dPt" 

such that 

dP t-olt = Lt  dPt „ L; + dH H' + H dH' 

where L t  = T - K Z and Kt  

	

= TP t „Z'F; 1 . Note that dFi l  = 	dFt  F -t 1 . By 
using the previous result, the following results can be derived in 
the same way 

dat  = da dF dP flt1 t t 	 t Ft tvt 
dvt  

datolt  Lt datlt-i  + T dPtit-i t t - K dF t F t tv t 
= Lt  dat " + Lt  dPt„ t 	t • 

Using the arguments in Magnus & Neudecker (1988), the Jacobian row 
vector of 	with respect to i.  can be written as J(*) = Ent=i J t  where 

J t  = aLt /a*. 	-[ 2(vt /Ft )Z , (v:-Ft )(Z o Z) /Ft  ] Dt  
and 

D t  = a(atit _ I  ; vec Pt") / a* ,  

which can be evaluated recursively by 

D t+1  = [Lt ,(vt /Ft )(Z 	Lt ) ; 0,Lt 	Lt ]Dt  
+ [0 ; Ho' + I®H](avec H/allr') 

Note that vec(1,2;3,4;5,6)=(1;3;5;2;4;6) and vec ABC=(C' 	A)vec B. 
For the standard structural time series models the matrix avec H/air 
is a selection matrix with elements equals to zero or one. 



TABLES & FIGURES 

Table 2.1 

Inference results concerning 6 under different assumptions for 6 

st = E[ 6 1Yt_1] 

Fixed t 	t 

Random 	(A-1  + St ) -1 (A-1 p + s t ) 

Diffuse t 	t 

Mse[ 6t ] = Mse[6IY t ] 

c 2 S -t 1  

a 2 (A-1St ) i 

0 2 s -t 1  

Table 2.2 

Required number of computations for one Kalman filter step applied 
to a LLT model with two explanatory variables 

modified KF 
	

CKF - I 	CKF - II 

Additions 	56 	54 	32 
Multiplication 	68 	50 	32 
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Ft 
 Kt  

P t 

Table 2.3 

Dimensions of Kalman filter quantities before and after the collapse 
for a LLT model with two explanatory variables 
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modified KF  CKF - I CKF - II 

V 
At  

Qt 

Table 2.4 

OLS regression results for COAL 

dependent variable : Log of COAL t 	t = 1960q1,...,1983q4 
number of observations : 96 	season : quart. (s=4) 
model : deterministic BSM 	method : OLS 

parameter  

level a 
slope 
seas y i  

Y2 
Y3 

estimate 	stand.err. 	t-statistic 

	

5.472 	0.031 	178.197 

	

-0.017 	0.001 	-31.551 

	

0.262 	0.026 	9.926 
-0.106 	0.026 	-4.014 
-0.412 	0.026 	-15.611 

R-square 
DW-stats 
BL-stats 	(10) 
SumairResid 

0.937 
1.183 
74.49 
2.024 

(adjusted 0.934) 
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Table 2.5 

Hyperparameter estimates BSM for COAL 

dependent variable : Log of COAL t 	t = 1960q1,...,1983q4 
number of observations : 96 	season : quart. (s=4) 
model : BSM with diffuse initial cond. method : FD scoring 

hyperparameter 	estimate  

10 4  x a: 	114 

10 4  x a,2 	 4.577 

10 4  x 0 2  0.125 

10 4  x a 2 3.803 

q ratio  

0.04015 

0.00110 

0.03336 

Table 2.6 

Estimates of diffuse initial conditions BSM for COAL 

dependent variable : Log of COAL t 	t = 1960q1,...,1983q4 
number of observations : 96 	season : quart. (s=4) 
model : BSM with diffuse initial cond. method : modified KF 

state element estimate 	stand.err. 	t-statistic 

level al  5.360 0.194 27.643 
slope /31  -0.008 1.046 -0.008 
seas y 1  0.286 0.231 1.239 

Y2 0.196 0.207 0.948 
Y3 -0.360 0.205 -1.760 
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Table 2.7 

Outline of implementation square root KF 

Ste 2 	Description  

[0] 	The Sqrt KF is initialized with 
Al  = Wo (b,B) and Pi lo  = (H0 ,0) 

[1] The matrix V t  is calculated and D t  = [(Z t ;T t )41t./ ,(Gt ;Ht )] 

[2] E t 	HOT(D t ) 

[3] The matrix A t+1  is updated using E t  

[4] The process [1]-[3] is repeated until end of sample 

Table 2.8 

Number of Householder transformations for one square root KF-step 

Model Dimension 
2 3 4 5 6 

Local Level 1 1 
Local Linear Tr 1 2 
Basic Str TSM4  • 	1 1 3 1 
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Table 2.9 

Zero (o) and non-zero (*) elements for Sqrt KF matrices D and E 

Model 
	

Matrix D 	Matrix E 

Local Level 
* * o 	 * o o 

* * o 

Local Linear Tr 
* o*oo 
	 *0000 

* * o * o 
	 * * * o o 

o * o o * 
	 * * * o o 

Basic Str TSM 4  
* o*o o* 000 
* *00 00 *oo 
o *0 00 00* o 
o o * * * 0 0 0* 
o o *000 000 
O 00*00000 

* 00000000 
• * * * * * o o o 
• * 	* * * o 0 0 
* * * * * * o 0 0 
* * 	* * * o o 0 
• * * * * * 0 0 0 

Table 2.10 

Organisation of the SSF system matrices in the computer program 

Program name 	Positions 	System matrix 

TSM 	0,1..DimSt 	Z t 
1..DimSt,l..DimSt 	T t 

RGM 	0,0 	X tb 
0,1..DimRg 	X B t 
1..DimSt,0 	Wtb 
1..DimSt,l..DimRg 	W tB 

CSM 	0,0 	GtGt 
0,1..DimSt 	Gtlit 
1 . .DimSt , 0 	H tG t. 
1..DimSt,l..DimSt 	HtHt  

ICM 	1..DimSt,0 	Wob 
1..DimSt,l..DimRg 	WoB 

CIM 	1..DimSt,l..DimSt 	HH' 0 o 
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Table 2.11 

Organisation of the modified KF matrices 
before and after KF update 

in the computer program : 

Name Position Before KF After KF 

KFA 0,0..DimKF V t 
1..DimSt,1..DimKF At At1 

KFP 0,0 Ft  
0,1..DimSt 
1..DimSt,0 - K tF t 1..DimSt,l..DimSt tlt-1 Pt+1It 

Table 2.12 

Structure of procedure Estimation 

Step Control Operations 

0. Initialize Q= 0 	L= 0 t= 0 

1. KF step 

A = Wo (b,B) 	P = HH' o 	o 

t = t+1 

d = 0 

KFupdate( 	y[t], 	#[6], A, 	P 	) 
L = L + log F t  

2. If d=0 then Q = Q + NW -t i V t  
If not IQ] 	= 0 then : 	Sinv = S -1  

Sinvs = 
d = t 

else (q;-s) = (q;-s) + V;F; I v't)  
(0;k) = (0;Sinv)V; 
v = V t (1;Sinvs) 	f 	= Ft + V t (0;k) 
Sinvs = Sinvs - k(v/f) Sinv = Sinv - kk'/f 
a = (q - s'Sinvs)/t 

3. If t=n then goto 4 
else goto 1 

4. q = (q - s'Sinvs) 
L = L - log ISinvl + n + log 2ffq 
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CHAPTER 3 

On Smoothing in Time Series Models : 

theory, algorithms and applications 

0. ABSTRACT 

The main objective of this chapter is to develop a new and 

efficient method for evaluating the smoothed estimator of the state 

vector and the disturbance vector. For most linear time series 

models, the new algorithms lead to considerable computational 

savings as compared with existing methods. The smoothing results 

have several implications, for example, they can be applied to 

obtain the theoretical auto- and cross-correlation functions of the 

estimated residuals of a time series model. Also, the new smoothing 

results are applied to improve the EM algorithm for estimating 

parameters in the covariance matrices of a time series model. 

Keywords : Auxiliary residuals; Diffuse; EM algorithm; Kalman 

filter; Signal extraction; Smoothing; State space; Structural time 

series model. 

I. INTRODUCTION 

The (modified) Kalman filter yields estimators of the state 

vector using the set of past observations 	see the previous 

chapter. The objective of a smoother is the same but it takes 

account of all observations in the sample, i.e. Yn . The full-sample 

estimator of the state vector is often referred to as the smoothed 

state vector. Smoothers are important in different areas of time 

series modelling such as signal extraction, maximum likelihood 

estimation via the EM algorithm, cross-validation and missing value 

estimation by interpolation. 

An extensive overview of classical smoothing algorithms is 
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given by Anderson & Moore (1979, Chapter 7). They give three 

different smoothing algorithms for different purposes. The 

derivations of these smoothers are messy and they are based on an 

extension of the state vector with the quantities of interest. For 

econometric and statistical applications, but also in other areas, 

the fixed interval smoother is the most important smoothing 

algorithm. This off-line smoother requires a huge amount of computer 

storage space and it is computational expensive. In section 2, the 

classical methods of smoothing will be discussed in detail. 

Recently, improved smoothing algorithms have been developed 

by De Jong (1988b,1989) and Kohn & Ansley (1989) to be referred to 

as DJKA. They propose a simple backwards dummy vector recursion as 

the 'heart' of the smoother. Their approach is computationally more 

efficient compared to the classical smoothing algorithms but no 

savings on storage space are obtained. Section . 3 will show that the 

DJKA smoother follows immediately from the classical methods of 

smoothing. Also, the formal derivation of the improved smoothers, as 

given by DJKA, will be reproduced and discussed. 

Section 4 develops a fixed interval smoother which evaluates 

the smoothed estimators of the disturbance vector and its mean 

square error matrix. The disturbance vector appears in the 

measurement equation and in the transition equation of the SSF, see 

section 2.2. The derivation of the disturbance smoother is direct 

and straightforward and it is based on minimum mean square linear 

estimation. The dummy recursion of DJKA does appear as well but now 

the result is transparent and an interpretation is available for the 

dummy vector. 

Smoothing algorithms can be modified in a similar way as the 

KF is modified such that they can deal with fixed and diffuse 

initial conditions. The modifications are trivial and 

straightforward. The smoothed estimators can be evaluated exactly by 

using the modified smoothing algorithms. These matters and 

computational matters of smoothing are discussed at the end of the 

sections 3 and 4. 

One important implication of the disturbance smoother is a 

more efficient new fixed interval smoothing algorithm for the state 

vector. In comparing DJKA's method, it saves on computational time 
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and storage space for important practical time series models which 

have a SSF with sparse system matrices, see section 5. Another 

attractive implication of the new disturbance smoother is a 

considerable improvement of the EM algorithm for estimating the 

parameters of a time series model by maximum likelihood. The new EM 

algorithm is discussed in section 6. 

The new smoothing results are, in particular, useful for 

practical time series modelling. For example, it is straightforward 

to construct the theoretical auto- and cross correlation functions 

of the residuals of a time series model. Using the same illustration 

as in chapter 2, section 7 will give the details of how the 

smoothing methods can be applied in empirical time series analysis. 

Section 8 gives computer programs for the new smoothing algorithms. 

Some conclusions and a discussion follow in section 9. 

2. CLASSICAL METHODS OF SMOOTHING 

Anderson & Moore (1979) discusses three different types of 

smoothing algorithms that adjust the Kalman filter predictors of the 

state vector by taking account of an augmented set of observations. 

The fixed point smoother is concerned with the estimator of the 

state vector at a specific time-point j using the set of 

observations Y. plus the observations which are gradually coming 

available after time j. Thus it evaluates E[a i lYt ,8] for t=j,...,n 

where 0<j<n is a fixed integer.. This smoother is an on-line filter 

such that it is applied in parallel with the Kalman filter. The 

fixed lag smoother is also an on-line smoother but it gives 

estimators of the set of lagged state vectors, E[a t_i;•••;a t _ p lYt . 8 ] 
for some fixed p. The estimators of the full set of state vectors' 

(a 1 ;...;an), using the full set of observations Yn , are obtained from 

the fixed interval smoother. This smoother for E[a t  Yr,/ 8 ] t=1,...,n, 

is a backwards off-line filter which can be applied after the 

forwards Kalman filter. 

This section discusses only the fixed point and the fixed 

interval smoothers because they are most important in empirical 

applications concerning social and economic time series. The 
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derivations of these classic smoothers are given as presented in 

Anderson & Moore (1979). Furthermore, it will be shown how the 

smoothers can be modified as the KF is modified in order to deal 

with fixed and diffuse conditions regarding 8. 

Fixed point smoother 

An algorithm that evaluates the estimator of the state vector 

at a specific time j using the observations upto time tj, i.e. 

E[a j lY t ,8] for t=j+1,...,n, is called a fixed point smoother. It is 

obtained by including the state vector a l  into the state space 

formulation, for t=j,...,n, and applying the Kalman filter 

straightforwardly. The augmented SSF is given by 

yt  = (Z t ,0)(a t ;a i ) + Xt P + Gte t 	 (2.1a) 

(a t. i ;a i ) = (Tt ,0;0,I)(a t ;a j ) + (Wt ;0)13 + (Ht ;0)e t 	(2.1b) 

for t=j,...,n. The usual KF for the augmented SSF (2.1) gives the 

required estimator (at,l i t ;an t ) for t=j,...,n. By decomposing the 

augmented KF analytically for the two parts of the state vector, 

leads to (i) the usual KF for the non-augmented SSF and (ii) a new 

set of recursions to be used in parallel with the usual KF, see 

Anderson & Moore (1979) and Harvey (1989). The second set of 

recursions is called the fixed point smoother and it is given by 

K;,t = 
	

=.1"btk-1 14 
	

(2.2a) 

al i t  = 	+ KLtVt 	= Pflt-1 	Pbtk-1Z;ebt t 
	

(2.2b) 

for t=j,...,n and where Lt=Tt-Kt Z t . The two mean square error matrices 

	

are defined by 02Pi1t.1=Mse[ailYt.1.8]  and oPLtk  2 	1=Mse[a i ,a t lY t . 1 ,8] and - 
it is defined that 1 .The smoother is started off at t=3 
and is applied (on-line) in parallel with the KF. The equation for 

Pfl t  can be dropped when the smoothed mean square error matrix of a i 

 is not of interest. 

The fixed point smoothing algorithm shows that the smoothed 

estimator of the state vector a. is a linear combination of future 

innovations where the weights are constructed from mean square error 

quantities. Harvey (1989) shows for the local level (LL) model that, 
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when the KF has reached a steady state, the weights decline 

exponentially over time. This is also true for other time series 

models. The larger the values for the diagonal elements of H t , the 

more rapidly the decline takes place via the matrix L t . 

Fixed interval smoother 

This smoother is concerned with the full sample estimator of 

the state vector E[a j  Yn ,6]=a j i n  and its mean square error matrix 

Mse[a j lYn ,8]=02 P j i n  for j=1,...,n. The recursive smoothing algorithm 

is given by 

a j i n  = 	 + a. l . 	( 	- 

	

J1.1 	.11.1 	J 	J+IIJ 	 a 1 4- 11.1 )  

	

j n = P j11 	P j11 T ^ 1+ 1 1J s 	( - 

 Pi+11n 	Pi+111 )  

(2.3a) 

(2.3b) 

where am = a111_1 + P fli _ I ZiFi lv i  and Pm = 	- 

The fixed interval smoother (2.3) is a backwards off-line 

filter that starts at j=n and it terminates at j=1. Before this 

smoother can be applied, the KF quantities 	P i .0 1 1 , KJ , vi  and F. 

must be available for j=1,...,n. Thus to obtain the full sample 

estimators of,the state vectors, a forwards pass (Kalman filter) and 

a backwards pass (smoother) are required. 

The derivation uses the earlier results of the fixed point 

smoother. Considering (2.2) gives 

= P j1j-1 (Lt:1 Lt-2 . 	" . L .1 4- 1 L .1 ) 	= 
K- 	= P.,- (Z L -)'F 1  

t 	t 

(2.4a) 

(2.4b) 

for j=t-1,...,1 where matrix L tj=Lt _ iLt . 2 . .Li+/ Lj , see equation 

(2.4.17). The matrix Ltj  is the (t,j) block of the lower block 

triangular matrix L of section 2.4 and it can be evaluated 

recursively. The exact definition of the important matrix Ltj  is 

given by 

= 0 
	

t = 1,...,j-1 

Lt j 
	= I 
	

t = j 

= Lt‘j+i L i 	t = j+1,...,n 
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By repeatingly applying the former equation of (2.2b) and using the 

definition of (2.4b) leads to 

a i in  = 	+ 	 = ajli . 1  + Pi 	E nt=i  (Z tLt,i ) 	 (2.5) 

and, similarly, a j. / in  = ai+11i  + Pj+1 lj Z ilt. i+i  (Z tLt,i+i ) Ft i vt  such that 

Z 

	

( 	L 	) 	 lv 	-. 1  

	

t=j+i 	t t,j+1 	F  t 	t 	.1 P +1 (a j+1In 	a l+11i )  ' 

From equation (2.5), the result (2.3a) is derived as 

	

afl n  = am  + 	rt. 1 .0 (Z tLt,j )'F t 1vt  

= aiii  + Pi Ii.. 1 L1 	(Z tLt,i+1 ) 

= aj lj + P 	L' P -  II-1 	1 	(a j+1 In - 

(2.6) 

(2.7) 

The definitions for am and Pm are obtained directly from (2.2) for 

t=j. It can be easily shown that Pm. 1 1,;=Pfl iT; such that (2.3a) 

follows as asserted. The recursion for P .i i n  can be derived by using 

the same steps of the derivation for a j i n . An alternative proof of the 

. fixed interval smoother (2.2) is given by Ansley & Kohn (1982) which 

is based on geometrical arguments. 

Harvey (1989) shows for the local level (LL) model that the 

smoother recursion (2.3a) reduces to an exponential weighted moving 

average (EWMA) scheme for j=t,...,n where t is the time-point for 

which the KF has reached a steady state. The smoothing parameter is 

based on P. T'Pl l  1 

The modified smoother 

In a similar way as the Kalman filter is modified to deal 

With the unknown parameter vector 8, the smoothing algorithms can be 

adjusted as well. These modified smoothers are required to compute 

the smooth predictions Ept i  Yt l and their mean square error matrices 

Mse[a j lY t ] for t=j,...,n and 1<j<n (fixed point) or for j=1,...,n and 

t=n (fixed interval). As it is observed in section 2.6, the 

estimation results of 8 do not differ whether 8 is fixed or diffuse, 

see table 2.1. 
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The estimator ajlt'is  defined as E[a j lYt ,8]. It follows 
directly from the results of chapter 2 that a nt , as defined in (2.5a) 
with n=t, can be rewritten as 

ant  = anj . 1  + E4. 1 1ej,iv i  = An t (1;8) 

where 
An t  = ( a7k,aIl t ) = Aj  + El. j KLiV i  

for t=j,...,n. The modified fixed point smoother replaces the 
recursion of ant  in (2.2b) by 

An t  = Ant -1 + 	V t 

(2.8a) 

(2.8b) 

(2.9) 

for t=j,...,n. Note that Anj _ / =Aj . The implication for this modified 
fixed point smoother is that an additional number of #[8] vectors 
have to be calculated. 

The modified fixed interval smoother follows directly from 
the previous results and it is given by 

Aj I n  = Ai l i  + PI ' fr it 	(Ai+1 1 n  — A i+1 ) 	 ( 2.10) 

such that a1 =An n (1;8). Indeed, equation (2.3b) remains the same. 
Again, the modification consists of calculating an additional number 
of #[8] vectors, compare (2.3a). 

A 

The predictor ant=E[a j  I Yt ] and its mean square error matrix 
I a2  P i  ., t=Mse[a j IY t ] for t=j,...,n and 1<j <n (fixed point) or for 

j=1,...,n and t=n (fixed interval), are obtained by 

an t  = E[a i lYt ] = E[Aj (1;8)1Yt ] = Aj (1;8 t ) 	 (2.11a), 

a2 Pn t  = Mse[a j lYt ] = Cov[a j  - ant ] 
A 

= Cov[a l  - an t  + ant  - an t ] 
= a 2 Pj,t  + Cov[Ant (0;8-8 t )] = 02 Pn t  + en tMse[8 t ]en; (2.11b) 

where the estimators regarding a fixed, random and diffuse 8 are 
given in table 2.1, see section 2.5. These smoothed estimation 
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results for the classical smoothing methods are not reported earlier 

but they follow directly from earlier results. 

In section 2.5 the initialization of the Kalman filter and 

the approach of collapsing the modified KF are discussed. When a 

collapse takes place at time r, such that matrix S r  is non-singular, 

the modified fixed point smoother collapses in a similar fashion at 

time t=r. It reduces to (2.11) for t=r and, consequently, the 

smoother (2.2) is applied for t=r+l,...,n. In case of the fixed 

interval smoother, the equation of a jin , see (2.3), does apply for 

j=n,...,1 but for j=r,...,1, the terms v j  and an J.1  must be replaced 

by V j (1;8 r ) and Aj (1;8 r ), respectively. 

Computational matters 

The fixed point smoother (2.2) is an on-line filter that must 

be applied in parallel with the Kalman filter. Even its modified 

form is a relatively efficient recursion and no storage is required. 

On the other hand, the computational and storage costs for the 

(modified) fixed interval smoother are severe. The main burden of 

the computational effort consists of the calculation of the inverse 

of Pt. lit  for t=1,...,n. Since these matrices are not sparse, the 

number of calculations for inverting is huge. Also, it is required 

that the modified Kalman filter quantities A t  and Pt  are stored for 

t=1,...,n. To avoid the re-calculation of V t , Ft  and Kt  during the 

backwards smoothing algorithm, these quantities may be stored as 

well. In the case of univariate time series models, the storage 

requirements for the modified fixed interval smoother, where V t , F t 

 and Kt  are to be stored as well, consist mainly of a number of 

(#[a t ]+1) columns of dimension (#[a t ]+#[8]+1) for every observation 

(t=1,...,n). 

In the next chapters, fixed interval smoothers for the state 

and disturbance vectors are developed which are much more efficient 

because they avoid computing the inverse of the matrix P t  for 

t=1,...,n. Therefore, it is not useful to compare the computational 

requirements of these new efficient methods with the classical fixed 

interval smoothing algorithm as discussed in this section. 



67 

3. THE STATE SMOOTHER 

As was observed in the previous section, the classical fixed 

interval smoother is computationally demanding. De Jong (1988b,1989) 

and Kohn & Ansley (1989), to be referred as DJKA, propose a more 

efficient fixed interval smoother. The DJKA's smoother will be 

referred to as the state smoother. The algorithm is based on two 

dummy recursions and it does not require any matrix inversion. 

The aim of the state smoother is to evaluate the estimator 

a tIn=E  [ a t Yr,/ 	and its mean square error matrix a2 P t1 n=Mse  [ a t  Yn f 8 ] 

for t=1,...,n. It is given by the equations 

r t  _1  =Z t Ft vt + Lt rt 	Nt1  = Z t  Ft  1 Z t  + I4Nt Lt 	 (3.1a) 

a tin  = 	+Ptit 1 r t PtIn = Pflt - 1 	Ptit - 1 Nt - 1 Ptit - 1 
	 (3.1b) 

The smoother (3.1) is an off-line backwards filter which starts off 

at t=n where vector rn=0 and matrix Nr1=0. The Kalman quantities a tit . i , 

Ptit - 1f Kt , vt  and Ft  must be stored but the latter three quantities can 

be re-calculated as well during the backwards smoother. Indeed, the 

predictors in (3.1) cannot be evaluated unless the parameter vector 

5 is known. 

The derivation of the state smoother (3.1) can be reproduced 

by starting from the earlier results of section 2 or by using the 

results of minimum mean square linear estimation directly. Both 

approaches are presented below. 

A simple derivation of the state smoother 

The derivation of the state smoother of DJKA can be given . 

very simply by using the results of the previous section. Consider 

(2.5) and define 

rt - 1 = E 	(Z.L. ) 'F 1 V- J=t 	J,t 	j 	j  (3.2) 

such that the equation for a tlas  follows immediately. The weighted sum 
of future innovations r t  can be evaluated recursively, because 
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rt =(Z-L- 	) 
J=t+i 	j J,t+1 J 

and 

rt _./  = Zt Ft-lv t  + Er3 , ( Z .L. ) ' F lv- J=t+, 	j,t 	j 	j  

Z;Ft ivt  + L'Z9 	(Z-L- 	) 	'F lv_ Lt j=t+i 	j J,t+1 	j 	j (3.3) 

such that the recursion for r t ., in (3.1) follows directly. Three 
miscellaneous results are of importance, i.e. 

rn = 0 
	 (3.4a) 

Cov(rt ,vt ) = 0 
	 (3.4b) 

rt 1 = Pd t .,(a t i n  - 	 (3.4c) 

Result (3.4c) follows from equation (2.5c) but also from the derived 
equation for atitl . 

The mean square error matrix 02 Ptin=Mse  [ a t I Yn ,  6] is also 
evaluated by using a dummy recursion. Define 02 Nt=Cov(rt ) and from 
(3.4c) it follows that 

Nt-1  = 	Covaa t-at i t.0 - [a t  -atiti]) Pflt-1 
= 10-1 	

(D 
	 P )P-1  tit"1 -  tit - 1 	tin 	tit-1 

such that the equation for Pt i n  in (3.1b) and the initial condition 
Nn=0 follows immediately. The recursion for Nit.  in (3.1a) emerges 
from the definition of r t ., in (3.1a) and from result. (3.4b) that 
leads to 

(32  Nt-i = cov(rt. „) = Z:Ft 1 Cov(vt )FilZt  + Lt'Cov(rt )Lt 
	(3.6) 

This completes the proof of the state smoother. In view of the 
arguments used in this derivation of the state smoother, which are 
very close to the arguments used by Anderson & Moore (1979), it is 
remarkable that this efficient state smoother is not reported 
earlier than the late eighties by DJKA. Even more surprisingly, this 
(simple) state smoother is rarely used in applied research. 
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General derivation of state smoother 

The DJKA state smoother can also be derived by using the 

results of minimum mean square linear estimation. This 'stand-alone' 

proof is split up in four results from which the final two results 

give the actual proof as adopted from De Jong (1989). Before these 

results are given, some definitions of chapter 2 are restated here 

xt 	at - a tlt-i 
	 Lt  = Tt - Kt Z t 	 Mt = Ht - Kt Gt 

xt+i  = Ltxt  + Mte t 	 Cov (xt+i) = °2 Pt+i It = a2  (LtPtIt - i T; +MtH; ) 
vt  = Z txt  + Gte t 	 Cov(v0 = G2 Ft = G2  ( Z tPtIt-i Z ; +GtG ; ) 

and the composite matrix L t,i  is defined in the previous section. 

Result [3.1] More general expressions for the prediction errors are 

given by 

xt  = Lt,ix j  + 

vt  = Z tLt,ix i + Z tE1:1Lt,i+i M i e i  + Gte t 

for j=1,...,t-1. The equation for x t  follows from repeated 

substitution of its recursion and the equation for vt  is obtained by 
substituting xt  into v t=Z txt+Gte t . 

Result [3.2] The covariance matrix between the two different 

prediction errors Cov(x t ,v i ) is equal to Cov(a t ,v i ) and is given by 

= 0 
	

for j = 1,...,t-1 

Cov(a t  v.) 
	

for j = t 

= a2PtIt-1(ZiLi,t) 
	

for j = t+1,...,n 

These covariances follow from the definition of v t  in result [3.1] 
and 

Cov(a tr Vj ) = Cov(a x Hz.L. ]f tf 	t 	j,t for j = t,...,n 

which lead immediately to the asserted result. Note that L t,t=I. 
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Result [3.3] The state smoother is given by 

atlas = atit.1  + Pflt.1rt..1 	Pfln = Pflt-1 
where 

rt.1  = ErPrt? (Z.LLt 	 j ) 1 F 	. . 1v 	Nt . 1  = Er?=t 	j L (Z.L.t j(j Lt ) 

and rn=0 and Nn=0. The smoothed estimator of the state vector atlas  and 
its mean square error matrix o 2 

 
Pt i n  are derived by 

E[atlY ,8 ] = E[cctlYt-i , vt , 	• , vn] = atlt-i 	17-tE[ a tI vi] 
+ 17.tcov(a t ,v3 )Fi 1v3  atlt-i 	1 7,-tPtIt-1( Z i L3,t )  ' F i lv i 

Mse[a t IY,8] = Cov (atf{at-afln)) = Cov(a t ,xt ) - Cov(a t ,rt_OP - 0t-1 
= Pflt-1 - E tCov(a t ,v1 )Fi 1 (Z 3 L3,t ) P -tit1 
= Pt i t _,I  - Pt i„ ET=t (Z i Lbt )!F?(Z j Iii,t ) Ptit-1  

The state smoother follows immediately. The derivation of atlas  is 
based on the uncorrelated prediction results of appendix 2A. 

Result [3.4] The dummy vector r t  and dummy matrix Nt  are evaluated 
recursively as given by (3.1a). The recursions follow from the 
definitions of rt  and Nt , see result [3.3], as it is shown for rt  in 
(3.3). It also follows directly that Cov(rd=o 2 Nt . 

Modified state smoothing 
The modified form of the state smoother computes the full 

A 

sample predictions of the state vector ai n=E[a t l Yn ] and its mean 
square error matrix o 2 Pt i n=Mse[a t lYn ]. The derivation is similar to 
that given in the previous section. The smoothed state is rewritten 
as 

a tlas  = (At  + PtRt _ i ) (1;6) 
where 

Rt-1 = (r 	- E n 

	

t-i I t-i, — 	- 	.. 	 1 V J't
(ZL  j,t 'F j 

which follows straightforwardly. The matrix Rt  can be evaluated 
recursively in a similar way by 
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Rt-i = Z t  F t  ' 1  Vt  + LRt 
	 (3.8) 

and it follows that r t=Rt (1;5) and Rn=0. The matrices Vt  and At  are 

obtained from the modified Kalman filter. 

The smoothed predictions are given by 

atin 	E [ a t I Yri] E[ (At  + PtRt-i) ( 1 ; 8 ) Yn] 
= (At  + PtRt _ i ) (1;8 n ) 

A 

Mse[a tin ] = Mse[a t lYn ] = Cov[a t 	a tin  + a tin  - a t ] 

= a2 Ptin  + Cov[(At  + PtRt _ 1 )(0;8-8)] 

= 02  (Pt  - PtNt _ i Pt ) + (at . + Ptet . i )Mse[k](a+t  + Ptet _ i )' 

(3.9a) 

Note that g n=E[81Yn ]=S -l s and Mse[S n]=Mse[SlY n ]=o2 S -1  when 8 is supposed 

to be fixed or diffuse, see section 2.6. 

Computational matters 

The state smoother of DJKA is a fixed interval smoother for 

the state vector but it is much more efficient than the classical 

method as described in section 2. The clearest improvement is that 

matrix inversions are avoided. The dummy recursions for r t  and Nt  are 
computationally efficient. For many practical time series models, 

the system matrices of the SSF, such as Z t  and Tt , are sparse, see 

section 2.3. Computations concerning sparse matrices can be done 

very efficient as it is shown by the computer programs of section 

2.8. Note that matrix Lt  is the composite matrix Tt -Kt Z t  such that the 
product Lt 'X partially involves sparse matrix computations, see also 
the next section. 

The computational consequences of the state smoother are 

given in table 3.1 for state space models with different state 

dimensions. The computational costs and the required storage space 

are considered for every observation yt  which is supposed to be a 
scalar. Thus the number of additions and multiplications are counted 

for the recursions Rt  and Nt  and for the equations of At inAt+Ptit-1Rt-1 
and Pt i n . The required storage capacity is measured by counting the 

number of elements to be stored. Two strategies regarding storing 

the Kalman filter quantities can be followed : (i) storing A t  and Pt 
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from the modified KF and re-calculating V t , Ft  and K t ; (ii) storing 

At , pt , Vt , Ft  and 	The The latter option is considered in table 3.1. 

The sparsity of the system matrices are not exploited. Table 3.1 

reports the computational costs of the modified state smoother as 

well. In this case, the number of additions and multiplications are 

multiplied by (1+#[ S]) with regard to the equations r t _ l  and a tin' 
Also, the number of elements to be stored are multiplied by (1+#[S]) 

with regard to v t  and a flt-i• 

4. THE DISTURBANCE SMOOTHER 

The full-sample estimator of the state vector is of interest 

in time series applications. In most cases where the smoothed state 

vectors are required, the classical fixed-interval smoothing 

algorithm is used to compute them. A much more efficient state 

smoother will be developed in section 5. The applications are often 

related to signal extraction and to the decomposition of time series 

into orthogonal components. For these cases the smoothed state 

vector is the important feature. However, the full-sample estimator 

of the disturbance vector is rarely considered. The smoothed 

estimator of the measurement disturbance vector G te t  plays a similar 

role as the best linear unbiased estimated (BLUE) disturbance in 

regression analysis. The smoothed transition residuals, i.e. the 

full-sample estimators of H te t  for t=1,...,n, have never been used in 

empirical situations. Chapter 4 will show that these transition 

residuals have a potential to play an important role in time series 

analysis. In the following, the smoothed estimator of the 

disturbance vector e t  and its mean square error matrix are derived. 

This section is organized as follows. Firstly, a simple 

derivation is given for only the smoothed estimators for the 

disturbances G te t  and H te t  where it is assumed that H tG t1 =0. This 

derivation will show that the dummy vector rt  is in fact the scaled 

smoothed estimator of the transition residual vector Hte t . Secondly, 

a general derivation, where the assumption HtG;=0 is dropped, is 
given of the smoothing algorithm for the disturbance vector e t  and 

its (lagged) mean square error matrix. The results are based on 
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minimum mean square linear estimation arguments. Furthermore, as in 
the previous sections, a discussion takes place on the modified 
smoother and some computational matters. 

The smoothed disturbance vector 
In many practical time series it holds that H tG;=0 such that 

both equations are uncorrelated. The results below assume this 

restriction. 
Consider the recursion for r t  that can be split up into two 

parts 

et  = Ftivt -Kt rt 	 rt -1 = Z t et + Tt'rt 
	 (4.1) 

which follows from the definition Lt=Tt -Kt Z t . It will be shown that 
the quantities et  and rt  are interpreted as the scaled smoothed 
disturbances of the measurement and transition equation, 
respectively, under the assumption that H tG=0 which implies that 

and Htivq=HtH. The smoothed measurement disturbance is 1(t=TtPtIt-i -Z t F t-1  
given by 

E[Gte t lYn ,8] = yt  - Z tatin  - 
vt  - Z tPtIt-i rt-1 = v t 	(Ft 	GtGn et  - Ftic rt 

= Ftet  - (Ft  - GtG)et  = GtGet  

and the smoothed transition residual is given by 

E [Hte t lYn f 8 ] = at+iln 	(Ttatin 	WO) 
= Ktvt 	 Tt Ptit-i rt-1 
= Ktvt  + Pt+iltrt 	Tt Ptit-i( ZFtivt 	L ' r  t t) = HtHtIrt 

(4.2a) 

(4.2b) 

The derivations (4.2) uses the definition of a tin  and the definitions 
of (4.1). Until now the vector rt  was regarded as a dummy vector but 
the above result shows that it is in fact the scaled smoothed 
transition residual. Note that in the previous section the vector r t  
is defined as a weighted sum of future innovations. Furthermore, it 
is shown that e t  is the scaled smoothed measurement residual. Note 
that the signal of the time series is given by Z t a t+Xt fi=yt-Gte t  and its 
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estimator is given by 

yt 	yt 	E [Gte t  I Yn r 5] = yt  - GtGet 	 ( 4 . 3 ) 

it is clear that this is a much more efficient method of evaluating 

the signal than computing the signal by y t  = Z tatIn  + Xt 0 because the 

calculation of the smoothed state vector is required for the latter 

case. Note again that all the results above hold under the 

assumption HtG;=0 for t=1,...,n. 

A general proof of the disturbance smoother 

The aim of the disturbance smoother is to evaluate the 

estimator ut=E[e t lYn ,5] and its (lagged) mean square error matrices 

for every time series model in state space form without the 

restriction HtG:=0. The disturbance smoother equations are given by 

ut  = GF-t ivt  + Mt rt 	Ct  = G't  F -t 1 Gt  + Mt NtMt 
et = GF -t 1 Z t  + Mt'NtLt t  

rt-1 = Z't Ftlvt  + Lt rt 	Nt _ 1  = Z't Ft1Zt  + Lt'NtLt 

(4.4a) 

(4.4b) 

(4.4c) 

where the definitions for rt  and Rt  are given by result [3.3]. The 

mean square error matrices Mse[e t lY,8]•and Mse[e t ,e l lY,8] are given by 

Mse[ut ] = a2  (I - 	Mse [ut , ui  ] = -02  etLt,i+iMj 	(4.5) 

respectively, for t=j-1,...,1. The required Kalman filter quantities 

are reduced to only v t , Ft  and Kt . Therefore, the storage space is 

limited considerably as compared to the state smoother. The 

computations can be done efficiently by re-organizing the equations 

appropriately, see below. 

The derivation of the smoother (4.4) is based on minimum mean 

square linear estimation results. The recursive evaluation of r t  and 
Nt  is derived in result [3.4]. The following two results, with some 

references to earlier results, forms the derivation of (4.4). 



Result [4.1] The covariance matrices between the disturbance vector 

e t 
and the sequence of innovations are given by 

= 0 	for j = 1,...,t-1 

Cov(e t ,v i ) = o2 Gt 	for j = 

= a2 (Z-L.j,t+1 Mt  ) 	for j = t+1,...,n  
Cov(e of  v.) 	= a2  (Z iLi,1 110 ) ' 	for j = 1, 	,n 

These covariances follow almost immediately by writing the 

innovation as in result [3.3] with s=1, i.e. 

v j  = Z iLl‘iHoe o  + ZA:11,j,t+1Mte t  + G je j 

 and note that xi=Hoe o . [ ] 

Result [4.2] The smoothed.estimator of the disturbance vector e t  is 

given by 

ut  = E[e t lY,8] = 	= E7=1E[e t iv i ] 

= E7=1 Cov (e t  v j ) 	= Gt F t-lvt  + / 7=t+1  (Z iLi,t+iMt ) Fi lv j  

=+ M' E"_ (ZL 	) 1 F: 1v. j 	j t t 	t 	t 	j=t+i 	,t+1 	j 	j 

and leads to the former equation of (4.4a) using the definition of 

rt . In a similar way it can be shown that 

uo  = E[e o lY,8] = Faro  

The mean square error matrix Mse[e t ,IY,8] is given by 

Mse[ut ] = Cov(e t ,e t-u t) = Cov(e t ,e t-G;F-t ivt) - Cov(e t ,r t )Mt  = 

a2  (I-G; F t-l G t ) - ( E7=t+1 Cov (e t  , v j  ) 	(Z j I,j,t+i  ) )M t  

02  (I -G; F t- 1 G t  ) - 1/1; {T7=t+i 	, 	) 'Fi l  (Z i Lj,t+i ) }Mt  

and is evaluated by using the latter equation of (4.4a). The mean 

square error matrix Mse[e t ,e s IY,8], for s=1,...,t-1, is given by 

75 
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Mse[ut ,us ] = Cov(e t ,e s-us ) = Cov(e t ,e s-G:Fs lvs) - Cov(e t ,rs )Ms  

= —Cov(e t ,rs)Ms  = --f B7=s+i Cov (e t  ,vj ) Fi l  (Z i Lj,s+i ) }Ms  

( here note that cov(e t ,v j )=0 for j=1,...,t-1 and s<t ) 

= - Cov(e t ,vt )F t-1 (Z tLt.s+1 )Ms  - E7=t+1 Cov(e t ,vi )Fi 1 (Z i Li,s+1 )Ms 

 =-a2 { G ti Ft-1  ( Z tLt,s+1) 	 14; E T=t+i 	 Fi l  ( Z j Li,s+1) ) Ms 
= -02  G: F -t I Z t  + 	[ E7=t, 1  (Z ) LLt+i ) 'Fi l  (Z i Li,t+i ) ]Lt }Lt,s+iMs  

and is evaluated using the equation for C; of (4.4b). This completes 
the derivation of the disturbance smoother. Finally note that 

Mse[uo ] = a2  (I - 1-1 43N0H0 ) 
	Mse [ut , uo] = - c12  C tLt 1H0 

A simple alternative derivation of the disturbance smoother 
can be given when Gaussianity is assumed, see appendix 3A. It is 
noted that the disturbance smoother (4.4) is a backwards recursive 
algorithm that starts off with rn=0 and Nn=0 and terminates at t=1. 
The various calculations can be done very efficiently. This is shown 
by the next result. 

Result [4.3] To re-organise the equations of (4.4), define 

et  = Ft ivt  - Kt rt 	 Dt  = Ft-1  + Kt NtKt • 
	(4.6) 

and note that Cov(ed=a 2 Dt . The backwards residual smoother becomes 

ut  = Jt bt 	 Ct  = Jt'BtJt 
	 (4.7a) 

et  = Jt  BtI t 	 (4.7b) .  
rt . 1  = It 	 Nt . 1  = I t BtI t 

	 (4.7c) 

where 

= (Gt;Ht) 	 It  = (Zt ;Tt ) 
b t  = (e t ;rt ) = (-Kt;I)rt  + (I;O)Ft-lvt 	 (4.8a) 
a 2  Bt  = Cov (b t ) = Cov ( e t  ; rt ) = a2  (Dt  , -Kt N t  ; -NtKt  , Nt ) 	(4.8b) 

It follows that Cov(u t ,rt _ i )=0 2  et . The equations follow directly from 
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the earlier results by some minor manipulation. [ ] 

The efficient disturbance smoother (4.6)-(4.7) can be 

regarded as efficient because the main part is concerned with the 

system matrices of the state space formulation which are in general 

sparse, see the discussion on computational matters below. 

Under the assumption that HtG=0, the same result for 

smoothed residuals does appear as in (4.2), but without this 

assumption, the stack of the measurement and transition smoothed 

residual becomes 

Jtut = J tJt (etIrt) 
	

(4.9) 

where Jt=(Gt' .11t ). The mean square error matrix of the stack follows 

immediately from (4.5), for example, Mse(J tut ) is given by 

02  [JtJti - JtJ: ( Dt  , 	Nt  ; -NtKt  , Nt ) J tJtt ] 

The estimator of the signal of the time series model is given by 

E[yt i '1,8] = yt  - G tut  = yt  - GtGet  - Gtiq rt 	(4.10) 

such that (4.10) is similar to (4.3) when H tGt'=0. 

Specific results of the disturbance smoother (4.6)-(4.7) are 

earlier recognised by DJKA. Their state smoother and related results 

include the recursions for rt  and Nt  and they do recognise that 

vector et  is the scaled measurement smoothed residual with covariance 

matrix a2 Dt , under the assumption that H tGt'=0. DJKA derive the 

equations for e t  and Dt  by using the approach as adopted in (4.2a). 

However, it has never been recognised that r t  is the scaled 

transition smoothed residual, under the assumption H tG;=0. These 

smoothed residuals have proved to be important in empirical time 

series modelling, for example, in detecting irregularities in time 

series such as outliers and structural changes, see Chapter 4. Also, 

the (lagged) mean square error matrices of the residual vector have 

not been derived earlier. Other implications of the disturbance 

smoother results are discussed in the next sections. 
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Modified disturbance smoothing 

The modified disturbance smoother computes the predictions 

uA =E[e 1Y t 	t n ] and the associated mean square error matrices. Therefore, 

the disturbance smoother must be adjusted in a similar way as the 

modified Kalman filter. In the previous section it is shown how the 

recursion for rt  can be modified, to deal with the parameter vector 

8, by replacing it with Rt  such that rt=Rt (1;8). The next equations 

are required in addition, 

Et  
Ut  

Rt-1 

= F-thlt  - IcRt  
= J.NEt ;Rt ) 

= I t( Et; Rt) 

E Et 
 U t 

= 
= 

(e°  et 
(u°  

such that et=Et (1;8) and ut=Ut (1;5). The modifications follow directly 

from the equations (4.7) and (4.8) and with replacing v t  by Vt (1;8). 

The equations for C t  and CI; remain the same. 

The smoothed prediction quantities are given by 

U t  = Ut (1;S 'I S) 
A 

+ '  Mse[u] = 02  (I - Ct  + utS t ut ' ) 
A A 

Mse[ut ,uj ] = 02  (-C:Lt‘j+i Mi  + utS 1 Ui l ) 

(4.12a) 

(4.12b) 

(4.12c) 

for t=1,...,n and j=1,...,t-1. These results are valid when 8 is 

supposed to be fixed or diffuse. If 8 is supposed to be random, S -1 

 must be replaced by (A-1 +8) -1  and s must be replaced by (A -1 p+s), see 

table 2.1. The derivation is given by 

A 	 4 
U t  = E[e t lY] = E(E[e t lY,8]1Y) = E[Ut (1:5)1Y] = Ut (1;E[8IY]) 

A A 	 A 	A Mse[ut ,uj ] = Mse[e t ,e i  1Y] = Cov(e t-ut+ut-ut ,e i -uj+ui -ui ) 
= Mse[ut ,ui ] + Cov[Ut  (0;45-g) ,Uj (0;8-8) 
= Mse[ut ,uj ] + u+tMse[81Y]ul- ' 

for j=1,...,t. The smoothed predictions are derived as asserted. 

et. ) t 
u+ ) t 
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Computational matters 

The computational costs for the disturbance smoother is much 

less compared with the state smoother because the former does not 

require the storage and the calculations concerning the Kalman 

quantities atit . 1 =At (1;8) and Ptit _ / . The disturbance smoother, as 

represented by equations (4.7) and (4.8), has the nice property that 

most computations only involve system matrices which are usually 

sparse. Moreover, they also depend on the dimension of the 

disturbance vector which is in many cases less than the dimension of 

the state vector. 

The computational consequences of the disturbance smoother 

are presented in table 3.2 in a similar fashion as in table 3.1. 

Again, the number of additions and multiplications are counted for 

the various smoothing equations. Also, the required storage space, 

concerning the Kalman quantities V t , Ft  and Kt , is measured by 

counting the number of elements to be stored. The sparsity of the 

system matrices is not taken into account. The additional 

computational costs for some equations, when the modified smoother 

is applied, is proportional to the dimension of (1;8). 

5. A NEW EFFICIENT METHOD FOR STATE SMOOTHING 

It is discussed earlier that the state smoother of section 3 

is important for various features in time series analysis. For 

example, the estimated unobserved components of a structural time 

series model are extracted by a state smoothing algorithm. This 

section presents a new efficient method for state smoothing which is 

based on the results of the previous section. The new smoother, to 

be referred as the K smoother, is, compared with the state smoother 

of DJKA (see section 3), computationally very efficient for many 

practical time series models. The gains only correspond to the 

smoothed state vector, the new results do not consider the mean 

square error matrix of the smoothed state. 

This section discusses also a very different smoothing 

approach based on a chalenging article of Whittle (1991). This 

approach suggests a smoothing algorithm that requires no storage of 
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any Kalman filter quantity at all. It is disappointing that a 

straightforward implementation of this method is not numerically 

stable and cannot be used in practice. This section shows that an 

adjustment of Whittle's smoother leads to the same method of state 

smoothing as discussed in this section. 

Computational matters are also considered in this section and 

it will be shown that the new method of state smoothing is much more 

efficient and, therefore, faster than the state smoother of section 

3 for various time series models and, in particular, for structural 

time series models. 

Efficient state smoothing 

The new state smoother is based on the idea that the 

transition equation provides an approach of state smoothing as well 

because 

a t+i In = E[a t+i lY,S] = TtE[a t lY,S] + Wt r3 + litE[etlY. 8 ] 
	

(5.1a) 

	

= Tta tin + Wt  13 Htut 
	 (5.1b) 

where a lln  = E[a l lY,g] = WO + HoE[e o  1Y, 8 ] = WO + Houo • The sequence of 

smoothed residuals is obtained from the efficient disturbance 

smoother of the previous section. Thus, the usual KF and the usual 

disturbance smoother are required including the storage of v t , Ft  and 
Kt . It will be argued below that no additional storage space is 

required. 

In practical applications, since 45 is generally unknown, the 

modified form of the state smoother (5.1) must be applied. The 
A 

smoothed prediction of the state vector is defined as a in=E[a t  1Y]  and 
it follows that 

A 	 A 

Tta t  i n  + 	Htut 	 (5 . 2 ) 

A 	A 	A 

where fi=b+Bg and a iin=WO+Houo  for t=0,...,n. The forwards recursion 
(5.2) is in fact the new method of smoothing. Its derivation is very 

simple and it follows immediately. The 'input' of this recursion 

consists of g and u t  for t=0,...,n. As it is observed in the previous 
chapter, the estimator g is a result of the modified KF. The 
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smoothed predictions 11t are obtained from the backwards residual 

smoother as given by section 4. Thus the proposed K smoother is a 

three-step method : 

1.  The modified Kalman filter (a forwards pass) 

2.  The disturbance smoother (a backwards pass) 

3.  The state recursion (5.1) (a forwards pass) 

Note the following three remarks. (i) The modified KF must be 

applied primarily because the full-sample estimator of 8 (g=8 -1 s) is 

required. (ii) The disturbance smoother can keep its usual (non-

modified) form, as presented by (4.7) and (4.8), except that v t  must 

be replaced by Vt (1;S -I s) where Vt  is obtained from the modified KF. 
A A 

This specific disturbance smoother give the sequences e t , rt  and 
A 	A 	A 

ut=G;et+}qrt  for t=0,...,n. The modified smoother quantities E t  and 

Rt , which form together U t=Gt'Et+1-qRt , do not have to be computed 
A 

because the mean square error matrix Mse[u t ] is not required. (iii) 

Finally, the initialization for (5.2) is computed by using the 

estimator g. 

Whittle's approach of smoothing 

Whittle (1991) uses path integrals as a flexible framework 

for estimation and prediction in time series analysis. The 

attraction of his approach is that the optimization criterions 

(represented by an integral) can be maximized freely without 

constraints. This direct approach of estimation is a very non-

classical approach in statistical inference but it has a potential 

to become very important in future, see Whittle (1991, including the 

remarks of the participants in the discussion). One application of . 

this approach (although it has nothing to do with path integrals) 

shows that considering the likelihood function directly leads to 

attractive results with regards to smoothing. However, the smoothing 

results are limited to the smoothed state and disturbance vector, 

expressions for mean square error matrices are not obtained. The 

result of Whittle (1991, section 11) for a local level (or random 

walk plus noise) model is generalised below for any time series 

model in state space form. 
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It is assumed, for simplicity, that H tG:=0, (X t ;Wt)=0 and 02 =1 

for t=1,...,n. Furthermore, it is assumed that the initial condition 

is known and fixed. These restrictions can be relaxed 

straightforwardly. The logarithm of the joint density function can 

be given directly in terms of the state space model, i.e. 

log GtG; I + (y t-Z ta t ) ' (GtG,  ) -1  (yt-Z ta t ) +. 

log I H tiq I + ( a t+1 -T ta t ) ' (H tlq ) -1  ( at+1 -T t a t ) } 

Under appropriate regularity conditions (Gaussianity, etc), the 

maximum of this log-density with regards to the sequence of state 

vectors a t , for t=1,...,n, gives the minimum mean square (full 

sample) linear estimator of a t . By taking the first derivative with 

respect to a t  and restricting it to zero, the 'first-order' condition 

is obtained and given by 

(Ht-,Ht-1 )-(a t-Tt-1 a t-1 ) = Z r'.(G tGt') - (yt-Z ta t ) + Tttri)-(a t+1 -T t a t ) 

for t=1,...,n. The solution of this system of restrictions is 
A 	 A 	A 	A 	A 

denoted by a t . Now, define e= (GtGt' ) (yt-Z ta t ) and r t= (H tic ) ( a t+1-T ta t ) 

such that the sequence of first order conditions can be represented 

by 

A 	A 	A 

rt _ i  = Z ;  e t + T tIr t 

for t=1,...,n. This result is equivalent to the recursion (4.7c). 
A 	A 

The vectors e t  and r t  are directly defined as the scaled smoothed 

measurement and transition residual, respectively. Note that it is 
A 

assumed that H tGt'=0. The definitions for e t  and r t  leads to a method 

to evaluate these quantities plus the smoothed prediction of the 
A 

state. Thus from the definition for r t  it follows that 

A 	A 
1 a = T -  (a 	- HH'r ) t 	t 	t+1 	t t t 

such that e t  can, be calculated by its definition and, consequently, 
A 

r t _ i  is computed using its recursion. This leads to a backwards 

recursive algorithm (t=n,...,1) that is able to evaluate the 
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smoothed state vector without using any KF quantity except the state 

estimate a , r1+1,11° This one-step ahead prediction of the state is 

required to initialize the recursion by computing a n . The inverse of 

Tt  does exists in many applications but, in general, this may cause 

problems and Tt l  must be replaced by a generalized inverse. Finally, 

note again that rn=0. 

This method of smoothing is, at first sight, a revolutionary 

result that allows efficient smoothing without storage. It is even 

more an attractive result because the derivation has used very 

simple arguments. This contributes to Whittle's approach of 

estimation and prediction in time series analysis by having a direct 

appeal to the optimization criterion. It is unfortunate that a 

straightforward implementation of Whittle's smoother is numerically 

unstable. The reason is that the same filter can be derived in a 

reverse time order and, therefore, the roots of the polynomial 

cannot be solved uniquely. This problem will be illustrated for the 

local level (LL) model in chapter 4. The unstability can be avoided 

by restricting the smoother at its begin- and end-points as Whittle 

puts forward in the discussion with Harvey, see Whittle (1991). Some 

details has been given by Whittle in a personal correspondence but 

the required adjustments leads to the Kalman filter approach as 

given in section 4.• 

A straightforward suggestion to make Whittle's smoother 

stable will end in the efficient state smoother as described earlier 

in this section. The quantity e t  must not be computed using its 

definition but must be replaced by-e t=Fi l it-K t  as given in section 3 

and 4. Furthermore, the backwards recursion for a t  can be easily 

reversed to a forwards recursion such that the inverse of Tt  is not 

required. This solution requires the storage space as discussed 

earlier. 

Computational matters 

Before the computational costs of the state smoothers are 

compared, more details are given of the DJKA state smoother and the 

K state smoother (5.1). Both approaches can be carried out in its 

usual form or in its modified form. 
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DJKA's smoother applies the Kalman filter and, alongside, 

stores the state vector a tit . 1  and its mean square error matrix P tit . i . 

In addition, v t , F t  and Kt  may be stored to avoid re-calculation. The 

KF is followed by the backwards recursion for the state vector as 

given by 

ut  = F; lv t  - Kt'r t 	r t . 1  = Zu t + Tr t 
a tin  = a tit . 1  + 

where all the KF quantities are available or have to be re-

calculated. The modified form of the DJKA's smoother requires the 

modified KF (with storage) and the backwards smoother as given by 

A 	 A 	 A 	 A 

Ut  = Fi lV 	8 - t (1;) 	Icrt 	r 	= Z t . 1 	u + T t 	rt 
A 	 A 

atin = A1 (1;8) + Ptrt _ i  

such that the matrices Vt  and At  must be stored in stead of the 

vectors vt  and atit . i , respectively. 

The proposed smoothing method of this section also requires 

the Kalman filter but only the quantities K t , vt  and Ft  have to be 

stored. In general, the dimensions of these quantities are much less 

compared to a t i t . 1  and Ptit . / . The second step is the backwards 

recursion for u t  and rt  as given above. The vector rt  can be stored by 

using the space of Kt . Thus,, the KF quantity Kt  is replaced by rt 

 during the backwards recursion and no extra storage space is 

required. The dimensions for Kt  and rt  are the same for univariate 

time series models but, in, general, the required storage space for K t 

 is always larger than for rt . If necessary, the storage for v t  can be 

replaced by e t . These quantities always have the same dimension. 

Finally, the forwards recursion (5.2) is applied. Note that the 

procedure for the modified form of the K state smoother is similar 

but it requires the storage of Vt  in stead of vt  during the forwards 

KF. 

Table 3.3 considers four different models : the local level 

model, the local linear trend model, the basic structural time 

series model and a time-varying regression model. Section 2.3 

discusses these models and gives their state space formulation. In 
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table 3.3.a the additions and multiplications are counted for one 

recursion of r t . The same is done for the DJKA smoother and the 

recursion (5.1). The table 3.3.b does report the same but for the 

modified form. The number of elements to be saved for the recursion 

rt  (in its usual and modofied) form is reported in table 3.3.c. Also, 

the extra required saving space for the DJKA smoother and the 

recursion (5.1) is given. For the DJKA smoother it is supposed that 

the quantities K t , vt  and Ft are stored as well such that they do not 

have to be re-calculated. It is concluded from table 3.3 that the K 

smoother outperforms the DJKA smoother for many time series models. 

6. A NEW EM ALGORITHM FOR ESTIMATING COVARIANCES OF THE SSF 

The estimation of the hyper parameters of the state space 

formulation can be done by a scoring method where the KF is used to 

calculate the estimation criterion, see section 2.6. An alternative 

method is proposed by Watson & Engle (1983) and Shumway & Stoffer 

(1982), to be referred to as WESS. Their method is based on the EM 

algorithm and it is explored for use in the context of time series 

models. The way in which the EM algorithm can be applied to hyper-

parameter estimation for structural time series models is described 

by Harvey & Peters (1990). They report that the EM algorithm tended 

to be very time consuming due to slow convergence., Although it has 

to be said that the EM algorithm performs well in the context of 

multivariate data analysis, in the case of estimation of a time 

series model, it is advocated to adopt a mixture of EM (to get close 

to the maximum of the likelihood criterion) and a scoring method (to 

get quickly to the optimum), see Watson & Engle (1983). 

In this section it is shown that the computational effort fot 

the EM algorithm can be reduced considerably when the hyper 

parameters are only found in the covariance matrix (G t ;H t ). This new 

result is based on the argument that the state vector is a 

cumulative sum of the initial state plus the disturbances. The 

derivation of the improved EM algorithm is based on the smoothing 

results of section 3.3. It is assumed that the covariance matrix is 

time invariant such that (G t ;H t)=(G;H). For simplicity reasons, 
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additional assumptions are HR'=0, (X t ;Wt )=0 for t=1,...,n and B=0 

such that the usual KF can be applied which is initialized by the 

big k method, see section 2.5. The latter three assumptions can be 

relaxed without violating the arguments used below. 

The EM algorithm for time series models 

The EM algorithm is derived by setting up the likelihood 

directly in terms of the state space formulation in a similar way as 

Whittle (1991) does to derive his estimation methodology, see 

section 3.5. The expectation step (E-step) is to evaluate the 

likelihood conditional on the set of observations, i.e. E[L[y]lY] 

what reduces, for time series models, to smoothing. The maximization 

step (M-step) obtains the estimates of the hyper parameters by 

taking first and (approximated) second derivatives from the 

'expected' likelihood in order to get the normal equations. 

Alternatively, by using more intuitive arguments, the EM 

algorithm can be derived as follows. Given the identities 

	

a2  GG' = Cov(yt  - Z ta t ) 	a2  HH' = Cov(a t+i  - Tta t ) 

and given the set of observations Y=(y i ,...,yn ), the estimators for 

GG' and HH' are derived by, respectively, 

	

GG' = 	a-2Cov[ (yt-Ztatin) 	Zt(cgt-atin) 

	

= 	[ a-2  (yt —Z tatin ) (yt —Z tatin ) ' + ZtPtinZ; ]=1 

	

HH' = 	0-2Cov[ (avoin—Ttatin) 	cg t+1 —a t+1 In) — Tt (at — atin) 

	

= 	[ a-2 (at+1in—Ttatin) (a t+ fi n —Ttat l n ) 

Pt+1In 	TtPt,t+1In 	Pt+1,tInT; 	TtPtInT; 

Note that these estimators can be regarded as maximum likelihood 

estimators, see WESS. 

The computational consequences of the EM algorithm are 

severe. The main computational burden is that a fixed interval 

smoothing algorithm must be applied to obtain the smoothed state 

vector at i n  and its mean square error matrix Po, for t=1,...,n. Of 

course, the state smoother of DJKA, see section 3.3, is preferred 
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rather than the classical smoothing method. However, even the DJKA 

state smoother requires a huge amount of storage and many 

computational operations, see table 3.1. Another implication of the 

EM algorithm is that the cross mean square error matrix Pt, LtIn is 
 required. Watson & Engle (1983) propose to augment the state vector 

for the Kalman filter and the state smoother by (a t„ 1 ;a t) such that 

the cross mean square error matrix P t„Lt i n  is obtained automatically. 

The number of extra computations and the increase in storage costs 

are huge. A special smoother for Pt.,1,01 is developed by Shumway & 

Stoffer (1982). An improved (more efficient) algorithm for P t .0,01  is 

proposed by De Jong & MacKinnon (1988). However, all suggestions 

imply a severe increase in computational costs. 

An improved EM algorithm 

The new EM algorithm is more efficient mainly because it 

i avoids the state smoother plus the algorithm for Pt,Lt  1 n  and, 

therefore, the huge computational and storage requirements. Instead, 

the improved EM algorithm applies the disturbance smoother of 

section 3.3 which is, for many time series models, more efficient 

than the state smoother. Without giving facts, it is clear that the 

approach below reduces the computational costs for the EM algorithm 

considerably. Note that the new results only apply to estimating 

hyperparameters in the covariance matrices of the SSF. 

The arguments for the derivation of the new EM algorithm are 

similar as before. Given the identities 

02 GG' = Cov(Ged 	o2 HH' = Cov(Hed 

and given the set of observation Y, it follows that 

GG' = 11 -1 / 1  o -2Cov[ Gu t  - G(e t-ut ) ] 

= 	(1 -2Cov[ GG' e t  - G(e t-ut ) ] 

= GG' + GG'( n .  t 	[ (3 -2ete - D t  ] }GG' 

HH' = n -In=1  cl -2Cov[ Hu t  - H(e t-ut ) ] 

= 	G-2Cov[ HH'r t  - H(e t-u t ) ] 

= HH' + HH'{ n' 1 Ert1. 1  [ cl 2rtrt - N t  ] }HH' 



A 	 A 	 A 	 A 

yt  = yt  - Gtu t Mse (y t ) = G tCov (u t ) Gr; 
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Note that from section 3.3 it follows that GC tG'=GG'D tGG' and 

fiC t 1-1 1 =HH'N tHH' under the assumption that HG 1 =0. These estimators are 

appealing and appear to be recursive in a natural way. The maximum 

likelihood estimators are found if the summation term within the 

curly brackets is close to a zero matrix. This discrepancy function 

is expected to close to zero for theoretical reasons. The outline of 

the EM algorithm is given in table 3.4. 

The computational attraction of the new EM algorithm is due 

to the efficiency of the disturbance smoother but also to the fact 

that only the disturbance smoother is required. So, a matrix like 

Pt, t+1 I n is not required. This emphasizes the importance of the derived 

results in section 3. 

. PRACTICAL SMOOTHING 

In section 2.6. a structural time series model is fitted to 

the COAL series. In this section, the same time series is considered 

again but now it is shown what specific role the smoothing results 

may play in applied time series analysis. 

Signal extraction 

The signal of y t  is defined as Z t a t  + XtO and its estimator 

is evaluated by the disturbance smoother that also gives (lagged) 

mean square error quantities, e.g. 

A A 	 A A 

Mse(y t ,y i ) = G tCov(u t ,u j )G1 

The plot of the signal together with the actual series is 

informative and it may help the time series analysist to check if 

the model describes the time series satisfactory. The signal of the 

COAL series is presented in figure 3.1. 

Full-sample estimates of the unobservables 

Full sample estimates of the unobserved components trend, 

seasonal and irregular are obtained from a state smoother such as 
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the efficient K smoother, see section 5. In case of unobserved 

components models, the full-sample estimates of the unobservables 

are an important. diagnostic in the process of model selection. When 

the estimated Unobservable components appear to be different as one 

might expect from theoretical arguments, the particular model 

specification must be reconsidered. 

In the case of the COAL series, the extracted components of 

the BSM reflect the features of the time series as discussed in 

section 2.7. The estimated trend component in figure 3.2 moves 

clearly downwards between 1975 and 1986. As expected, the seasonal 

pattern in figure 3.3 does not change dramatically over the years. 

The shock movements do appear much clearer in the estimated 

irregular than in the standardised innovations, compare the figures 

2.4 and 3.4. When the confidence intervals for the estimated 

irregular are plotted as well, possible interventions for outliers 

can be selected easily. A further discussion on outliers takes place 

in the next chapter. 

Theoretical auto- and cross correlations of the residuals 

The class of structural time series models, discussed in 

section 2.3, all assume that G tG ti 	HtG:=0 and Htli; is a diagonal 

matrix which is not neccessarily of full rank such that zeroes may 

be found on the diagonal. In other words, the unobserved components 

(trend, seasonal, cycle, irregular) are assummed to be orthogonal 

and, therefore, the associated disturbances are uncorrelated. It is 

a misunderstanding that the set of estimated disturbances, to be 

referred to as the auxiliary residuals, are expected to be 

uncorrelated as well. It can be shown by using classical results of 

signal extraction, see for example Maravall (1987) and explored in 

the context of structural time series models in the next chapter 

(section 4.2), that in a double infinite sample, the auto- and 

cross-correlation values for auxiliary residuals can be quite high. 

This is also true for finite samples as will be shown below. 

The theoretical auto- and cross-correlation functions for the 

auxiliary residuals of any structural time series model can be 

calculated using the recursion for the covariance matrix 0 2 Ct  and the 

(t-j) lagged covariance matrix o 2 C;Lt‘i+1Mj  of equation (4.4). These 
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quantities are time-varying but for time-invariant time series 

models they are approximately constant in the middle of the series. 

This is shown for the variance of the measurement residual of a 

local level (LL) model with different signal-to-noise ratios q in 

figure 3.5. Define cmk  as the (i,k) element of the covariance matrix 

cy2ct  where t is close to ln. Similarly, define c t . j,ik  as the (i,k) 

element of the lagged covariance matrix o 2 C:Lt‘j+1M i  where t is close 

to In, j=t-1,...,t-P and P can be any moderate integer value between 

0 and In. For example, it follows directly that the auto-correlation 

value at lag m for the i-th auxiliary residual is given by c uoi/cmi . 

Studies are at present in the literature where the existence 

of auto- and cross-correlation in auxiliary residuals are a source 

of concern for the validity of the decomposition of time series into 

orthogonal components, see Garcia-Ferrer & del Hoyo (1991). Although 

they are aware that auto- and cross-correlations may exist in the 

set of auxiliary residuals, they 'expect' it to be rather low in a 

well-specified model. Table 3.6 shows that, for different signal-to-

noise ratio values, the theoretical auto- and cross correlation 

values of the auxiliary residuals can be relatively high. The auto-

and cross correlogram of the auxiliary residuals may be compared 

with their theoretical counterparts. 

Harvey, in his comment on Garcia-Ferrer & del Hoyo (1991), 

makes it perfectly clear that 'large' auto- and cross-correlograms 

for the auxiliary residuals do not tell us anything about the 

validity of the assumptions underlying a structural time series 

model. Misspecification is related to the ARIMA representation 

(reduced form). A structural time series model is valid by 

construction when it is given that the implied reduced form is 

consistent with the underlying data generation process. Of course, 

other decompositions can be constructed as well such as, for 

example, the canonical decomposition, see Pierce (1979) and Hillmer 

& Tiao (1982). The question of which decomposition is appropriate 

can only be solved by an appeal to theoretical arguments concerning 

the type of properties one wishes unobserved components to possess, 

see Harvey (1989, Chapter 6). 

It is concluded that the auxiliary residuals are serially 

correlated even for a correctly specified model with known 
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parameters, see table 3.6. One may be alerted to misspecification by 

the fact that the correlograms of the auxiliary residuals are very 

different to their implied auto-correlations. It remains to be seen 

if this diagnostic check is worthwhile for detecting model 

misspecification as Maravall (1987) has suggested. In the case of 

the COAL series, table 3.5 reports theoretical auto-correlations of 

the set of 4 auxiliary residuals for some lags together with the 

associated correlogram values. They all match relatively close. 

The next chapter will develop a new methodology of tracing 

irregularities in time series (outliers and structural change) 

mainly by checking the plots of the auxiliary residuals and applying 

some simple test diagnostics to these residuals. The required tools 

for this approach are all developed in this chapter. This emphasizes 

again the importance of the new smoothing results for empirical time 

series analysis. 

8. COMPUTER PROGRAMS 

This section presents four additional procedures which 

concern the computations discussed in this chapter. All procedures 

can be placed in the main program of section 2.8. The actual code of 

the program is given the end of this thesis. The procedures can be 

adjusted in a flexible way. Again, it is recommended to keep the 

main structure of the program. Note that the main program only deals 

with univariate time series models such that the observation, the 

innovation and their covariances are scalars and the Kalman gain is 

a vector. 

SmoothUpdate 

The SmoothUpdate procedure updates the matrices R t  and Nt  and 

calculates the vector E t , the scalar D t  and the vector -N tKt , given 

the Kalman quantities Vt , Ft  and Kt . The appropriate equations can be 

found in section 4, equations (4.6)-(4.8). From these matrices the 

smoothing computations, as discussed in this section, can be done 

straightforwardly. The heading of the procedure SmoothUpdate is 
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SmoothUpdate( 	DimKF 	: Integer; 
Var DSE,DSD,DSU,DSC : Matrix); 

The dimension of the parameter vector 8 for the modified KF update 

is given by DimKF. Note that if DimKF is equal to zero, the modified 

disturbance smoother reduces to the usual smoother. The structure of 

the matrices DSE and DSD are different at start and at finish of the 

procedure, see table 3.7. The matrices DSU and DSC contain the 

information for the smoothed disturbance vector u t=Ut (1;8) and its 

covariance matrix C t , respectively. All computations concerning 

covariances can be dropped when the KF has been in a steady state. 

The structure of the SmoothUpdate procedure consists of the 

following five steps 

1. DSE[0,0..DimKF] 	= VtFil  - K:Rt  

DSD[0,0] 	= F -t 1  + K:N tKt  

DSD[0,1..DimSt] = - Kt Nt  DSD[1..DimSt,0] = - N tKt  

2. DSU = 	(Gt ;Ht ) (Gt ;Ht)'DSE M2  = 	(Gt ;Ht ) (Gt ;Ht )'DSD 

3. DSC = 	(G t ;Ht ) (G t ;H t ) '1.14 

4. M 1  = 	(Z t ;T t )'DSE M2  = 	(Z t ;T t)'DSD 

5. DSE = 	(E t ;Mi ) DSD = 	(Z t ;T t ) 

AuxResiduals 

This procedure gives a sequence of auxiliary residuals, 

associated with the measurement equation or with a specific element 

of the state vector, and the sequence of mean square errors for 

t=1,...,n. The heading is 

AuxResiduals( 	Nr 	: Integer; 
Q 	: Matrix; 

Var r,vr : Data); 

where Nr indicates which residual is requested. When Nr equals zero, 

the measurement residual is requested. The Data-types r and vr 

consist of the auxiliary residuals and their mean square errors, 

respectively. Before this routine can be called, the procedure 

Estimation must be applied to store the Kalman filter quantities Vt , 

Ft  and Kt . Also the matrix Q of the procedure Estimation must be 
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available. In fact, this procedure is the implementation of equation 

(4.12a) and the implementation of the diagonal elements of the mean 

square error matrix (4.12b). The structure of this procedure is 

straightforward and speaks for itself. 

AuxCrossMse 

This procedure gives the cross mean square error values 

between two requested auxiliary residuals for t=1,...,n. The heading 

is 

AuxCrossMse( 	Nrl,Nr2 	: Integer; 
Q 	: Matrix; 

Var cc 	: Data); 

The structure is very similar to the previous procedure and it is in 

fact the implementation of the non-diagonal elements of the mean 

square matrix of equation (4.12b). The requirements of the procedure 

AuxResiduals must be valid for this procedure as well. 

AuxCrossCorrFnc 

This procedure runs the smoother up to the middle of the 

series and calculates from there the cross correlation function 

between two selected auxiliary residuals for a given maximum lag. 

The heading is 

AuxCrossCorrFnc( 
	

Nr1,Nr2 	: Integer; 
Q 	: Matrix; 
MaxLag 	: Integer; 

Var ccf 	: Vector); 

This procedure can be regarded as a way of obtaining useful 

information from equation (4.12c). The requirements are the same as 

for the previous two procedures. 
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9. CONCLUDING REMARKS 

This chapter has developed a disturbance smoother for the SSF 

which produces the full sample estimates of the disturbance vector 

(auxiliary residuals) and its mean square error matrix. The 

auxiliary residuals can be very important in practical time series 

modelling, see the next chapter. Other implications of the new 

smoother is a very efficient state smoother for the SSF which 

produces the full sample estimates of the state vector. There are 

clear computational improvements for most practical time series 

models compared with existing smoothers. Also, the new results lead 

to a new EM algorithm for estimating hyperparameters in the 

covariance structure of the SSF. 
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APPENDIX 3A 

Smoothing under Gaussianity 

A straightforward approach to derive the disturbance smoother 

under Gaussianity is to use the 'stack-argument'. This implies that 

the SSF is formulated by the multivariate regression model (2.2.6) 

where it is assumed that 

e 	N( 0 , 0 2 1 ) 

The smoothed disturbance vector is defined as u = E[ElY,6]. it holds 

as well that u = E[elv] because the innovations v are a full-rank 

linear combination of the set of observations Y and the parameter 

vector 6. In order to obtain the conditional distribution of E 
conditional on v, the joint distribution of (E;v) is required. The 

classical multivariate results provide the appropriate formulas to 

get the conditional distribution of Elv from the joint distribution 

(E;v), see any introductory book on multivariate statistical theory 

or Harvey (p.165, 1989). 

It is shown in result 2.4 that the stack of the innovations 

v=(v 1 ;...;vn ) can be expressed as a linear combination of the 

disturbance vector 

V = JE 

where matrix J = ZLM + G is lower block triangular with on the main 

diagonal blocks the sequence Gt . Note that Cov(v).=o 2 F=o 2 JJ' is a 

block diagonal matrix. The definitions of the matrices Z, L, M and d 

can be found in sections 2.2 and 2.4. The joint distribution of the 

stacked vector (E;v) is given by 

(E;v) 	N[ (0;0) , 0 2 (I,J';J,F) ] 
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It follows that 

Ely 	N[ LPF -I v , ci 2 U'F-1 U ] 

N[ u , a 2 C ] 

Taking into account the special structure of matrix J, it follows 

that 

u = 	+ M'r 	r = 

Note that the matrix L is lower block triangular with on the main 

diagonal identity matrices. The matrices G, M and Z are block 

diagonal. By exploiting the structure of these matrices, the 

equations for u and r lead to the following recursion which is 

recogised earlier 

ut  = + M; r t 	= 	+ Lrt t t 	t 	t t 	t 

The recursion for the covariance matrix of ut  can be obtained in a 

similar way and are given by equation (3.4.4). All smoothing results 

of section 3.3 can be obtained by using this approach, see Koopman 

(1991). The state smoother can be derived under Gaussianity using 

the 'stack-argument' as well, see De Jong (1988). 
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TABLES & FIGURES 

Table 3.1 

Computational consequences of state smoother (#[y t ]=1 	#[cr t ]=k #[6]=d) 

CALCULATIONS 

Number Additions Nr Multiplications 
Dim State k 5 10 k 	5 	10 

Equation 

L t=Tt - Kt Z t k 2  25 100 k 2  25 100 

rt-it 	t =Z 1 F-I vt 	+ 	L; rt k 2  25 100 k 2 +k+i 	31 111 
(modified) (d+l)k 2  (d+1)(k 2 +k+1) 

Nt _ i =Z;F -t i Z t 	- 	Lt'NtL t 2k 3 -k 2  225 1900 2k 3 +k 2 +k 280 2110 

altrin=ap i  + Pt "rti 
 ( odi led) 

k 2 
 (d+l)k 2  

25 100 k 2  
(d+1)k 2  

25 100 

P tin=Pqt-1 	— 	P tit-I Nt-i Ptit-1 2k 3 -k 2  225 1900 2k 3  250 2000 

STORAGE 

Dim State k 5 10 
KF quantities 

v t  
(modified) 

1 
d+1 

1 1 

Ft K t k+1 6 11 

a tit.1  k 5 10 
(Modified) (d+1 )k 

P
tit-1 k 2  25 100 



98 

Table 3.2 

Computational consequences of disturbance smoother 
(#[Yt ]= 1 	#[at]=k #[Et]=m  #[ 6 ]=d) 

CALCULATIONS 

Dimensions 
Equation 

Number 	Additions Nr Multiplications 
(k,m) (7,4) (k,m) 	(7,4) 

bt 	= 	(e;rt ) k 7 k+1 8 
(modified) (d+1)k (d+1)(k+1) 

Bt  = 	(Dt ,-Kt'Nt ;-NtKt ,Nt ) k 2  49 k 2 +k+1 57 

ut  = Jibt  km 28 (k+l)m 32 
(modified) (d+1)mk (d+1)(k+l)m 

Ct  = J;BtJt  (m+k+l)mk 336 (m+k+l)m(k+1) 384 

Ct  = J;B tI t  (2k+1)mk 420 (2k+1)m(k+1) 480 

rt.1 	= 	I tibt  k 2  49 (k+1 )k 56 
(modified) (d+l)k 2  (d+1)(k+l)k 

Nt.1 	= 	I t BtI t 2k 3 +k 2  735 2k 3 +3k 2 +k  840 

STORAGE 

Dimensions (k,m) (7,4) 
KF quantities 

vt  1 1 
(modified) (d+1) 

Ft K t k+1 8 
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Table 3.3 

Comparing computational costs of DJKA and K state smoother 

COMPUTATIONS 

(a) 
Usual state smoother 

recursion r 
add 	mult  

DJKA smoother 
add 	mult  

K smoother 
add 	mult 

LLM 2 2 1 1 1 1 
LLT 4 3 4 4 3 2 
BSM4  10 6 25 25 6 3 
BSM12  26 14 169 169 14 3 
TVR6  

(b) 
Modified state smoother 

12 13 36 36 6 6 

LLM 3 3 2 2 1 1 
LLT 6 5 8 8 3 2 
BSM4  15 11 50 50 6 3 
BSM12  39 27 338 338 14 3 
TVR6  18 19 72 72 6 6 

(C) 
STORAGE REQUIREMENTS 

recursion r t  
usual 	modif 

DJKA smoother 
usual 	modif 

K smoother 
usual 	modif 

LLM 3 4 2 3 0 0 
LLT 4 6 6 10 0 0 
BSM4  7 12 30 55 0 0 
BSM12  15 28 182 351 0 0 
TVR6 8 14 42 78 0 0 



Table 3.4 

Outline of the new EM algorithm 

Ste R 	Description  

0. 	Initial values are set for the hyper parameters 

1. The KF is applied and the quantities v t , F t  and K t  are stored 

2. The variance 0 2  is etimated by 02 = n-1z11 v  F- 
t=1 	t t

lv 
 t 

3. The disturbance smoother is applied and the cumulative sums 
TG = E n 

t=1 s te t' 

J
^ 

= 
t=1 r tr t 

 can be calculated 

JG2 = VL1 D t 
JH = E n N  

2 	t=1 	t 

recursively. 

4. The new estimates for GG' and HH' are, respectively, 

GG' + GG'((;-2JT - JD/n)GG' 

HH' + HH' ((; -23-7 - 4)/n)HH' 

5. The iterative process from 1 to 4 is terminated when the 

matrices within the curly brackets of step 4 is close enough 

to zero 

Table 3.5 

Theoretical and sample autocorrelations of COAL auxiliary residuals 

Et 
Lag 	Theory Sample 

fl 

Theory Sample 
t  o t  
Theory Sample Theory Sample 

1 -0.062 -0.111 0.735 0.710 0.984 0.975 -0.415 -0.406 
2 -0.076 -0.160 0.503 0.427 0.945 0.913 -0.172 -0.208 
3 -0.042 -0.003 0.3 .11 0.236 0.890 0.830 -0.290 -0.153, 
4 -0.167 -0.263 0.141 0.048 0.824 0.735 0.744 0.572 
5 -0.014 -0.073 0.060 0.012 0.755 0.637 -0.288 -0.294 

100 
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Table 3.6 

Theoretical auto- and cross-correlations for the auxiliary residuals 
of a Local Level model with different signal to noise ratios (q) 

Lags 
theta 0 1 2 3 4 5 6 

PE 

0.001 0.969 1.00 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 
0.010 0.905 1.00 -0.05 -0.04 -0.04 -0.04 -0.03 -0.03 
0.100 0.730 1.00 -0.14 -0.10 -0.07 -0.05 -0.04 -0.03 
1.000 0.382 1.00 -0.31 -0.12 -0.05 -0.02 -0.01 -0.00 
10.00 0.084 1.00 -0.46 -0.04 -0.00 -0.00 -0.00 -0.00 
100.0 0.010 1.00 -0.50 -0.00 -0.00 -0.00 -0.00 -0.00 

P: 

0.001 0.969 1.00 0.97 0.94 0.91 0.88 0.85 0.83 
0.010 0.905 1.00 0.90 0.82 0.74 0.67 0.61 0.55 
0.100 0.730 1.00 0.73 0.53 0.39 0.28 0.21 0.15 
1.000 0.382 1.00 0.38 0.15 0.06 0.02 0.01 0.00 
10.00 0.084 1.00 0.08 0.01 0.00 0.00 0.00 0.00 
100.0 0.010 1.00 0.01 0.00 0.00 0.00 0.00 0.00 

E N 

0.001 0.969 0.12 0.12 0.12 0.11 0.11 0.11 0.10 
0.010 0.905 0.22 0.20 0.18 0.16 0.15 0.13 0.12 
0.100 0.730 0.37 0.27 0.20 0.14 0.10 0.08 0.06 
1.000 0.382 0.56 0.21 0.08 0.03 0.01 0.00 0.00 
10.00 0.084 0.68 0.06 0.00 0.00 0.00 0.00 0.00 
100.0 0.010 0.70 0.01 0.00 0.00 0.00 0.00 0.00 

calculations are based on sample size n=100, 
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Table 3.7 

Organisation of the modified disturbance smoother matrices in the 
computer program : before and after the smooth update 

Name Position Before smooth After smooth 

DSE 0,0..DimKF Vt Et 1..DimSt,1..DimKF Rt Rt-1 

DSD 0,0 Ft Dt 0,1..DimSt K; -Kt Nt 1..DimSt,0 - NKt 1..DimSt,l..DimSt P t N 1 

DSU 1..DimSt,l..DimKF - Ut 

DSC 1..DimSt,l..DimSt Ct  
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Figure 3.2 Trend for COAL 
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Fig 3.5a 	Mean square error of irregular in a LL model (q=1.0) 
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CHAPTER 4 

Diagnostic checking of unobserved components time series models 

0. ABSTRACT 

Diagnostic checking of the specification of time series 

models is normally carried out using the innovations, that is the 

one-step ahead prediction errors. In an unobserved components model, 

other sets of residuals are available. These auxiliary residuals are 

estimators of the disturbances associated with the unobserved 

components. They can often yield information which is less apparent 

from the innovations, but suffer from the disadvantage that they are 

serially correlated, even in a correctly specified model with known 

parameters. This chapter shows how the properties of the auxiliary 

residuals may be obtained, how they are related to each other and 

the innovations, and how they can be used to construct test 

statistics and diagnostics. Applications are presented showing how 

residuals can be used to detect and distinguish between outliers and 

structural change. 

Keywords.: Misspecification; Outliers; Signal extraction; Smoothing; 

Structural change; Structural time series model. 

1. INTRODUCTION 

Diagnostic checking of the specification of .a time series 

model is normally carried out using the one-step ahead prediction 

errors, see section 2.6. In an unobserved components model, other 

residuals are available. These auxiliary residuals are full-sample 

estimators of the disturbances associated with the observation y t  and 

with the unobserved components. In the state space framework, these 

disturbances are given by (Gt ;Ht )e t  and expressions for the auxiliary 
residuals (Gt ;Ht )ut  can be obtained from section 3.4. As is shown in 

chapter 3, the auxiliary residuals are functions of innovations, but 
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they present the information in a different way. This can lead to 

the discovery of features of the fitted model which are not apparent 

from the innovations themselves. Unfortunately, the auxiliary 

residuals suffer from the disadvantage that they are serially 

correlated, even in a correctly specified model with known 

parameters. This follows from section 3.4 since the lagged mean 

square error matrix Mse[u t ,ui ], see equation (3.4.5), is not equal to 

zero. 

The aim of this chapter is to show how the properties of 

auxiliary residuals may be obtained, how they are related to each 

other and to the innovations, and how they can be used to construct 

test-statistics and diagnostics. The methods extend 

straightforwardly to models containing observed explanatory 

variables. 

Section 2 derives the properties of the auxiliary residuals 

using the classical approach based on a doubly infinite sample. This 

follows Maravall (1987), except that in his paper attention is 

restricted to the irregular component in the decomposition of an 

autoregressive integrated moving average (ARIMA) model. Although the 

results are general for any time series model in SSF, the emphasis 

is on structural time series models. It is our conviction that these 

models provide the most satisfactory framework for exploring many 

important issues in time series analysis, in particular, issues 

concerning outliers and structural change. 

It is clear from the results of section 3.4, which can be 

applied to any time series model placed in the SSF, that various 

relationships exist between the auxiliary residuals themselves and 

the innovations in finite samples. Section 3 studies these finite 

sample relationships in more detail for structural time series 

models by using the direct approach of Whittle (1991) as presented 

in section 3.5. It is shown that the finite sample relationships are 

similar to those observed for infinite samples. Note that the 

(theoretical) auto- and cross-correlations of the auxiliary 

residuals for any time series model can be obtained from the 

disturbance smoother as described in section 3.7. 

The interpretation of the auxiliary residuals means that they 

are potentially useful, not only for detecting outliers and 
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structural changes, but also for distinguishing between them. The 

work of Kohn & Ansley (1989), which is concerned only with the 

measurement residuals to detect outliers, is extended. Section 4 

discusses how the Bowman-Shenton test can be modified to take 

account of the serial correlation in the auxiliary residuals. The 

behaviour of these adjusted tests in small samples is investigated 

by some Monte-Carlo experiments. Section 5 gives several 

illustrations for some data sets. 

2. PROPERTIES OF RESIDUALS IN INFINITE SAMPLES 

Classical results in signal extraction can be used to derive 

the properties of various auxiliary residuals in a doubly infinite 

sample. Let the observed univariate time series, y t , be the sum of 

m+1 mutually uncorrelated ARIMA processes, 	that that is 

Yt = 	il it = 111=0 a i( L)Eit 
	 (2.1) 

where a i (L) is an infinite polynomial in the lag operator, and the 

disturbance E it  is a mutually and serially uncorrelated random 
variable, with zero mean and constant variance, oT, for i=0,...,m. 

The polynomial a i (L) may be restricted to a rational function of lag 

polynomials as given by 

a i (L) = O i (L)/41 i (L) 	 (2.2) 

where 0 1 (L) and ck i (L) are finite lag polynomials and they are 

referred to as moving-average and autoregressive polynomials, 

respectively. The autoregressive polynomial is allowed to contain ' 

unit roots. The reduced form, i.e. the overall model consistent with 
(2.1), is given by 

yt  = 	 (2.3) 

where E is white noise with constant variance o2 . The infinite lag 

polynomial a(L) may be defined as a rational function of two finite 
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lag PolYnomials, e.g. a(L)=0(L)/(1)(L). Classical results on signal 

extraction as developed by Bell (1984) include the minimum mean 

square linear estimator (mmsle) of p it  which is given by 

µ ;t = faTla i (L) 1 2  ) 	{E7,-.0 0 ,1 1 Cti (L) 1 2  ) yt 

= 	{GT lai(L)1 2 ) /{o 2 la(L)1 2 } Yt  

= {a?a ; (L)a ; (F)) / (a2 a(L)a(F)) y t 	(2.4) 

where F=L-1  is the lead operator. Since the mmsle of E it  can be 
A 

expressed by /. it  = aii(L)p i , it follows from (2.3) and (2.4) that 

= (oTa i (F)) / (02 a(L)a(F)) yt  

= (0Ta i (F)) / {02 a(F)} E t 	 (2.5) 

Under the assumption that the infinite polynomials are rational 

functions, the last expression may be written as 

it = 0T(1)(F)8 i (F)} / 020(F)4) ; (F)) E t 	(2.6) 

Unit roots in 4)(F) will cancel with unit roots in 4(F) and so, if 

time is reversed, 	is seen to be an ARMA process, driven by the 

innovations 	The The process is stationary but due to the possibility 

of unit roots in 0(F), not necessarily strictly invertible. 

The autocovariance function (ACF) of 	may be evaluated 

from a knowledge of the ARMA process implied by (2.6). In the case 

of an unobserved components time series model as (2.1), the ACF 

follows straightforwardly, see Maravall (1987). In the context of 

structural time series models, a reduced form, or ARMA 

representation, exists but it is only for the local level model that 

an exact relationship exists between the hyperparameter (signal-to-' 

noise ratio) and the reduced form parameter, see Harvey (1989). The 

classical signal extraction results are now applied to some of the 

principal structural time series models. 

Local level 

The local level (LL) model (2.3.5)-(2.3.6), where y t=0, is 

discussed in section 2.3 and is given by 
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Yt = µ t  + e t 
	= 	it 

where e t  and 'fit are mutually uncorrelated white noise processes with 
variances o: and o2 , respectively. The signal-to-noise ratio is 

defined as ofil=q1 /0:. The reduced form of the LL model is based on Ay t 

 = 	+ e t  - e t _ i  and can be expressed as the ARIMA(0,1,1) model 

Ayt  = (1 - 0L)E t 	0 s 0 s 1 	(2.7) 

The autocorrelations of both specifications are given by, 

respectively, 

p(1) = -1 / (2 + qq ) 	0 s 	< 00 	 (2.8a) 

= -0 / (1 + 02 ) 
	

(2.8b) 

and p(T)=0 for T=2,...,00. This leads to the relationship 0 = 1(2 + (I n 

 - /(4% + c4)). Thus the LL model ,can be written as 

Yt = qt/A 	e t 
	 (2.9) 

or, in terms of (2.1), m=1, a o (L)=1 and a l (L)=1/(1-L). Note that the 

reduced form implies a(L)=(1-0L)/(1-L). Applying equation (2.6) 

gives 

and 

A 
e t  = {(1-F)/(1-0F))(o:/a 2 )E t 

 = (1/(1-0F))(qi /a2 ) E t  

A 	A 
Thus both e t  and i t  depend on future innovations and, if time is 

A 	 A 
reversed, the sequence Ti t  follows an AR(1) process while e t  follows a 

strictly noninvertible ARMA(l,1) process. Their theoretical auto-

correlations are given by 

P;(± 1 ) = -1(1 - 0) 
	

p; (±z) = OP;(TT1) 
	

(2.11a) 

p;;(±1) = 0 
	

p; (±z) = 
	

(2.11b) 
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for T=2,3,...,00. Note that the effect of serial correlation is to 

make the variance of e t  less than that of e t , see Maravall (1987). 

The theoretical cross-correlations are obtained by comparing 

both equations of (2.10) such that 

A 	A 	A 

nt = 	gnet 0 s qn  < 00 (2.12) 

A A 	A 	A 	A 

The cross-covariance is Cov(e t ol t _0=Cov((il t  - l til )n t_Wqn ), for T=0, 

±1, ±2,..., and so 

p; i7 (t) = OV(1( 1 - 0) ) 	0 5 0 s 1 	 (2.13) 

while 

p;;; ( -1) = — P;“T -1 ) 
	

T = 1,2,... 	(2.14) 

As (3! becomes smaller, 0 tends towards zero and p;;;(0) tends toward 

0.707. Thus, although e t  and 	are assumed to be uncorrelated, their 

estimators may be quite highly correlated. 

Local linear trend 

The local linear trend (LLT) model is discussed in section 

2.3 and is given by 

Yt = Pt + e t 	Pt = Pt-i 	Pt-1 Pt = P 	c t-i 	t (2.15) 

where li t  and c t  are mutually uncorrelated white noise processes with 

variances 4:1=qti o: and scr=q 4o: , respectively. The reduced form' is an 

ARIMA(0,2,2) model such that a(L)=(1-0 1 L-02L)/(1-L) 2  in (2.3). A 

relationship between the q-values and the MA parameters can be found* 

in the same way as it is found for the LL model but, additionally, 

some discrepancy function has to be minimized because the 

relationship is non-linear. In the formulation of (2.1), the LLT 

model is given by 

yt  = 1lt/(1-L) 	ct-1/(1-L)2 + e t 	 (2.16) 
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such that m=3, a o (L)=1, a 1 (L)=1/(1-L) and a 2 (L)=L/(1-L) 2 . Applying 

(2.6) leads to 

E t  = {(1-F) 2 /0(F))(o:/a2 )E t 	 (2.17a) 

Ci t  = ((1-F)/0(F))(0/0 2 ) t 	 (2.17b) 

= {F/0(F)}(o/o2 ) t 	 (2.17c) 

A 	A 	 A 
where 0(F)=1-0 1 F-0 2F2 . The residuals e t , i t  and 	follow ARMA(2,2), 

A 	 A 
ARMA(2,1) and AR(2) processes, respectively, with e t  and Ti t  being 

strictly non-invertible. The three processes are stationary provided 

that 02 >0, see Harvey (1989). The autocorrelation functions for the 

residuals can be obtained using (2.17) only if the appropriate 

values for the 0(L) polynomial are determined. 

The relationships between the residuals of the LLT model are 

given by 

A 	A 	A 

al t  = rit+i + % e t 
A 	A 	 A 

( G / c/2 ) 144.1 
A 	A 	

11 A  

= 2  t+1 	t+2 	Cace t+1 

0 5 	< 00 

0 5 qc  < 

where (2.18a) is similar to (2.12) for the LL model. From these 

interrelationships, the cross-correlations of the disturbances can 

be determined. 

In typical applications, the variance 	is relatively small. 

As a result the MA polynomial 0(L) for the LLT model will have one, 
 

and possibly two, of its roots close to unity. The sequence c t  will 

therefore tend to exhibit very strong positive positive serial 

correlation. This effect is counteracted in the other auxiliary 

residuals by the presence of unit roots in the moving average. 

Basic structural time series model 

The three methods of modelling a seasonal component, y t , are 

described in Harvey (1989, Ch.2), see also section 2.3. All 

specifications can be expressed in the form 

E ^=o yt-i = 0,(L)(a t 	 (2.19) 
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where of denotes a white noise disturbance with variance (3.2 =qua:, s 

is the number of seasons and 0,(L) is a polynomial of finite order at 

most s-2. Adding the seasonal yt  into the LLT model yields the basic 

structural time series model (BSM). 

The BSM with dummy seasonals, as discussed in section 2.3, is 

specified as (2.19) with 0,(L) equals unity. The BSM may be written 

as the set of orthogonal unobserved components (2.1) with m=3 and 

a o (L) = 1 
	a 1  (L)= 1/(1-L) 
	

(2.20a) 

a 2 (L) = L/(1-L) 2 
	

a3 (L) = 0,(L)/S(L) 
	

(2.20b) 

where S(L)=1+L+...+Ls . The reduced form of the BSM is defined as 

(2.3) where 

a(L) = 0(L)/{(1-L)(1-L) s ) 	 (2.21) 

and 0(L) is of order s+1. A relationship between the q-values of the 

BSM with dummy seasonals and the 0-values of the lag-polynomial 0(L) 

cannot be made unless s-2 0-values are restricted to some known 

values. Applying (2.6) yields 

e t  = ((l-F)(1-Fs)/0(F))(a:/a2 ) t  
A 
i t  = t (I....1'6)/0(F) } (a +2i

/a2 ) t 

S t  = {s(F)F/O(F))(c1/02 ).E t  
of = ((1-F) 2 0.(F))/0(F)}(a2/0 2 )E t  

(2.22a) 

(2.22b) 

(2.22c) 

(2.22d) 

A 	A 	A 
The residuals e t , 71 t  and c t  bear exactly the same relationship to each 

other as in the LLT model, see (2.18), but in addition, it holds 

that 

A 
S(F)ot  = q.0.(F)e t 	0 sq() < 00 	 (2.23) 

and q„=o!/o:. 

Analytical expressions for the theoretical auto- and cross-

correlation functions of the auxiliary residuals can be obtained 

from the implied (time-reverse) ARMA processes (2.22) although it is 

not easy to obtain them for the BSM case unless 0(L) is known. 
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However, numerical values for the theoretical acf's and ccf's can be 

computed for specific parameter values using the disturbance 

smoother as described in section 3.4. For a quarterly BSM with dummy 

seasonals, qn =1, c:1=0.1 and q,=0.1, the first ten auto-correlations 

are as shown in table 4.1. The acf's of the irregular and the level 

residuals are not too dissimilar to what one might expect in a LL 

model with 31=1 although, if anything, the serial correlation in the 

level is somewhat reduced by the presence of other components. The 

high positive serial correlation in the slope residual, to which 

attention was drawn at the end of the discussion on the LLT model, 

is clearly apparent. The seasonal residual shows a strong pattern of 

serial correlation, the most prominent feature of which is the high 

values at the seasonal lags four and eight. Table 4.1 reports the 

cross-correlations as well. The relatively pronounced patterns for 

1);g and pi suggested by the analysis for the LLT model are still 
A 

apparent, while the relationships involving of  show seasonal effects. 

3. PROPERTIES OF RESIDUALS IN FINITE SAMPLES 

The derived relationships between auxiliary residuals of 

structural time series models, such as (2.12), are valid for doubly 

infinite samples. However, exact relationships can be derived for 

finite samples using the techniques as explored in the sections 3.4, 

3.5 and 3.7. The next sub-section below shows how this can be done 

for the local level (LL) model using the idea of Whittle (1991), see 

section 3.5. Furthermore, it will be shown, for the local linear 

trend (LLT) model, that the relationships also follow from the 

disturbance smoother. 

Relationships between auxiliary residuals of LL model 

Consider the LL model, yt=p. t+e t  where p t=p t _ i +li t  for t=1,...,n, 

and suppose that the disturbances e t  and q t  are normally distributed. 

The initial state is supposed to be normal as well with mean p and a 

finite variance alp and it is independent of the disturbances. The 

logarithm of the joint-density of the observations y=(y1 ;...;yn ) and 

the states (p o N.y...Nin) is, neglecting constants, 
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J = 	. 2152 	1r =1 (Yt 'll t) 2 	
ly 1  (11 0 ....p. ) 2 + cflEnt=1  

( 	Pt-1 )2  ) 	(3.1 ) 

where q is the signal-to-noise ratio. Partially differentiating J 

with respect to the state p t  provides a means of evaluating the 

smoothed (full-sample) estimators p t , which are, under certain 

regularity conditions, the expected values of the state conditional 

on the observations, see section 3.5. Thus by setting the first 

derivative with respect to p t  equal to zero, the following backwards 

recursion appears 

A 	 A 	 A 

= 2 1-Lt - Pt+, - q(Yt - Pt) (3.2) 

for t=n-1,...,1. The initialization is obtained from aJ/ap n  such that 

A 	 A 	 A 

= li n 	q (yn 

A 	 A 
and so (3.2) can be started at t=n by setting 'I mo  equal to p n . 

Letting p-oo gives the end-condition for a diffuse prior, namely 

A 	A 	 A 

112 = 	- q(Yi - 

(3.3) 

(3.4) 

Although (3.2) looks, at first sight, to be an extremely 

attractive way of computing the smoothed estimators of the states p t , 

it is argued in section 3.5 that it is numerically unstable. This 

becomes even clearer from the equations (3.3) and (3.4) which are in 

time reverse order (take for (3.3) n=3 or n=1). Therefore, the 
A 

computation of the states p i  and p2  using recursion (3.2), 

initialized by (3.3), is almost certainly violating (3.4). 

Nevertheless, (3.2) is useful for the theoretical insights it 

provides. The residuals are defined by 

A 	 A 	 A 	A 	A 

e t = yt - Pt 	= Pt - Pt-1 
	 (3.5) 

and (3.2) can be re-written as 

A 	A 	 A 

q t = 11 t+1 	ge t 
	 (3.6) 
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A 	 A 

 for t=n,...,2 and with starting value iin+1=0. Thus i t  is a backwards 

cumulative sum (cusum) of the smoothed residuals e t  as given by 

al t  = q n 	 (3.7) 

A 

for t=2,...,n. The end condition (3.4) tells us that 11 2  = -ge l  and so 

on setting t=2 in (3.7) it follows that 

E t = 
	 (3.8) 

It will be recalled that the ordinary least squares regression 

residuals have the 'sum-up-to-zero' property when a constant term 

is included. 

Relationships between auxiliary residuals of LLT model 

In general, the calculation of the auxiliary residuals is 

carried out by placing the model in SSF and applying the Kalman 

filter and the disturbance smoother. The algorithm described in 

section 3.4 enables the computations to be carried out relatively 

quickly in a numerically stable manner. Structural time series 

models generally contain nonstationary components and these are 

handled by means of a diffuse initial condition. The smoother can be 

modified such that the calculations associated with the initial 

conditions are carried out exactly, see section 3.4. 

For example, consider the LLT model, 

art=1-L t+e t 
	 pt=pt- i ± ct 

for t=1,...,n and where the disturbances e t , i t  and 	are mutually 

uncorrelated noise terms, see section 2.3. Note that, for the LLT 

model in SSF, the state vector is given by (p t ;fi t ) and the 

disturbance vector is given by (e t ;i t .41 ;c t .0 ). The disturbance smoother 

for the LLT model is 

u t = vt/ft - Ktrt 
	

(3.9a) 

rt . /  = (1;0)u t  + (1,0;1,1)r t 	 (3.9b) 



and 
e t = ut 
A 	 A 

= (q1 ,0)rt _ 1  t  = (0 , qc ) rt _ i  
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(3.10a) 

(3.10b) 

The initialization is different from that for the LL model using 
A 	A 

Whittle's approach. It is assumed that i n+1=c n+1=0 (rte 0) such that 

(3.9) and (3.10) are valid for t=n,...1. The relationships between 

the residuals are found by combining (3.9b) and (3.10) and by some 

minor manipulations, 

A 	A 	A 

	

t = 11  t+1 	gli e t 
A 	A 	 A 

C  t = C  t+1 	( q4/q11 )  t 
A 	A 	A 	A 

Ct-i = 2 Ct 	Ct+i 	cl4e t-1 

This set of relationships for the auxiliary residuals is equivalent 
 

to the infinite results of (2.18). Thus the recursion for i t  is 

equivalent as for the LL model and is a backwards cusum of the es. 
A 	A 

Note that, for the exact smoother, it holds that n, l e t  = 11 1 = (q1 ,0)ro 

 which is typically close to zero but not equal to zero. The 

backwards cusum (3.11b) implies that c n=0 and 

A 	 A 

C  t = (c1c/clid E7=t+1 71  

for t=n-1,...,1. Finally, from (3.11c) or (3.12) we have 

A 	 A 

C t = q 	 € - c 	i=t+i 	1 -  =  

(3.12) 

(3.13) 

for t=n-1,...,1. 

Theoretical auto- and cross-correlation functions 

In section 2 it is shown how the auto- and cross-correlation 

structure of the auxiliary residuals can be obtained directly from 

the large sample theory when the parameters of the reduced form are 

known. The disturbance smoother provides recursions to evaluate the 

theoretical variances, covariances, auto-covariances and cross-

covariances of the smoothed (auxiliary) residuals for finite 

samples. These quantities are time-varying. For time-invariant time 
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series models, the various variances and covariances of the 

auxiliary residuals near the middle of the series are constant, see 

the discussion in section 3.7. However, the variance and covariance 

quantities of the disturbance smoother are different at the 

beginning and at the end of the finite sample, see figure 3.5. 

Table 4.2 reports for different sample sizes the auto- and 

cross-correlations of auxiliary residuals from a LL model with 

different signal-to-noise ratios. These correlations are obtained 

from the variance quantities of the disturbance smoother near the 

middle of the sample. It shows that for even small sample sizes, the 

disturbance smoother (at the middle of the sample) gives the same 

auto-  and cross-correlations as for very large (infinite) samples. 

Note that if q is relatively large, the memory of the moving average 

of the reduced form is very small and therefore only a few 

observations are needed to get the exact theoretical correlations. 

Note that the covariance matrix differs from the mean square 

error matrix of the auxiliary residual vector. It is well known that 
A 

Mse(x)=Cov(x-x). For example, the Kalman filter evaluates the matrix 

02 Ft which is the mean square error matrix of the estimator of the 
A 	 A 

observation yt , that is o2 Ft=Mse(yt )=Cov(yt-yt )=Cov(vt ). Thus, a2  Ft can 

also be regarded as the covariance matrix of the innovation. This 

equivalence does not exist for the auxiliary residuals. The•mean 

square error matrix of the estimator of the disturbance vector is 

given by Mse(ut )=Cov(e t-ut )=Cov(e t ,e t-ud=o2 I-Cov(ud=o2 (I-Ct ) where e t 

 is the disturbance vector of the SSF. The mean square error matrix 

of ut  increases at both ends of the finite sample such that the 

covariance matrix o 2 Ct  decreases at both ends of the sample. The 

covariance and mean square error quantities are of interest for 

different purposes. For example, the auxiliary residuals are 

standardised by using the mean square error matrix but their auto-

and cross-correlation structure is obtained from the covariance 

quantities. 
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4. DIAGNOSTICS 

The issues of outliers, structural changes and other 

irregularities in time series are discussed extensively in the 

literature and they are still a matter of debate. Several detection 

procedures are developed in the context of ARMA models, for example, 

Chang, Tiao & Chen (1988) present an approach based on likelihood 

ratio criteria that is able to detect two different types of 

outliers. An additive outlier (AO) only influences a specific 

observation while an innovational outlier (I0) affects a sequence of 

future observations. The innovational outlier does not indicate a 

structural change (or level change). The former affects future 

observations through a (stationary) dynamic structure and the latter 

influences the future observations permanently, see Tsay (1988). A 

methodology of identifying (additive and innovative) outliers by an 

iterative procedure is explored and illustrated by Tsay (1986). 

Another example of a detection procedure, developed within the ARIMA 

framework, is the 'leave-k-out' methodology as discussed by Bruce & 

Martin (1989). This approach is primarily based on model 

identification using the correlogram which can be seriously 

distorted when outliers are present. Therefore, this methodology can 

be regarded as cumbersome. 

Within the context of a structural time series model, an 

outlier arises at time t if the value taken by y t  is not consistent 

with what might reasonable be expected given the model specification 

and the way in which this fits the other observations. The best 

indicator of an outlier should be 	compare Kohn & Ansley (1989). 

Note that an outlier at time t will not affect the innovations 

before time t. Therefore it makes sense that E t depends only on the 

innovations which are affected by the outlier. 

The simplest kind of structural change is a permanent shift 

in the level of a series which is of a greater magnitude than might 

reasonably be expected given the model specification and the other 

observations. Within the context of the local level model, such a 
A 

shift might be best detected by an outlying value of q. Again only 

the innovations at time t and beyond are affected by such a shift 
A 

and q t  combines these innovations in the most appropriate way. 
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A sudden change in the slope is likely to be more difficult 

to detect than a shift in the level. As already noted, the its will 

typically be very strongly correlated so a break will spread its 

effect over several qs. Furthermore the high serial correlation 

means that the variances of the normality and kurtosis statistics 

discussed below will need to be increased considerably giving the 

tests rather low power. Sudden shifts in the seasonal pattern are 

also likely to be difficult to detect, primarily because it may not 

be possible to associate a shift with a single prominent disturbance 

in the seasonal stochastic equation. Coupled with this is the strong 

serial correlation which the corresponding auxiliary residuals will 

tend to display. A change in the seasonal pattern is therefore more 

likely to be signalled by a group of large residuals. Therefore, it 

may also be useful to examine the estimated seasonal factors 

diredtly. More research on this topic is under progress. 

The proposed detection procedure is to plot the auxiliary 

residuals after they have been standardized. In a Gaussian model, 

indications of outliers and/or structural change arise for values 

greater than two in absolute value. The standardized innovations may 

also indicate outliers and structural change, but will not normally 

give a clear indication as to the source of the problem. 

In the following, the concentration is on a procedure to 

detect unusually large residuals. Mostly these approaches are based 

on a test for excess kurtosis and, if the test is combined with a 

test for skewness, can be extended to the Bowman-Shenton test for 

normality. In order for such tests to be asymptotically valid, it is 

necessary to adjust them for serial correlation. 

Test based on skewness and kurtosis 

Let z t  be a stationary Gaussian time series with 

autocorrelations, p,, T=0,1,2,... , and variance (q. Lomnicki (1961) 

explores asymptotically results for higer order moments when serial 

correlation is present. Consider the estimated moments about the 

sample mean 

m = n-1 En
t=1 (Z t — 	 a = 2,3,4 
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and define 

K (a) = 	 a = 2,3,4 

Then if ga  denotes the theoretical a-th moment, 

In (ma  — pd 	L N ( 0 , a! K(a),:q a  ) 

This result enables asymptotically valid test statistics based on 

higher order moments to be constructed as follows. 

[a] excess kurtosis test  

The measure of kurtosis is k = m4  / m2, compare its definition in 

section 2.6. Since m2  is a consistent estimator of cq, it follows 

that the excess kurtosis test statistic 

K = (k - 3) / /[24K(4)/n] 

is asymptotically N(0,1) under the null hypothesis. An outlier test 

is carried out as a one-sided test on the upper tail. 

[b] normality test  

The measure of skewness is s = m 3 	2 / m2/2 . Combining this with the 

measure of kurtosis gives the Bowman-Shenton normality test which 

when corrected for serial correlation takes the form 

N = [n s2  / 6 K(3) ] + [n (k-3) 2  / 24 K(4) ] 

Under the null hypothesis N is asymptotically ,q distributed. 

The normality and excess kurtosis tests may be applied to 

innovations, see section 2.6, and auxiliary residuals. In contrast 

to serial correlation tests, no amendments are needed to allow for 

the estimation of unknown parameters; compare section 3.7. The 

serial correlation correction terms, i.e. the K(a)'s terms for 

a=2,3,4 , needed for the auxiliary residuals can be computed using 

the general disturbance smoother of section 3.4. The results in 
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section 4.2 are useful in that they enable one to get some idea of 

the likely size of K(a) where 

K (a) = 	= pa, 

A 

In the case of the LL model, for 	it it holds that 

K (a) = 1 + 2{ pa + (0p)a + (0 2 0)a + (0 3 p)a 
	

) 

= 1 + 2 p a  / (1 - 0') 

= 1 + 2 1-4  {-(1 - 0)) a  / (1 - 0') 

where p=p“1), see (2.11a). This is greater than or equal to unity 

for a=4, but less than or equal to unity for a=3. When 0 is unity, 

K(a) takes the values -0.75 and 1.125 for a=3 and 4, respectively. 
A 

On the other hand, for i t , where p=p;(1), see (2.11b), 

K (a) = 1 + 2 pa / (1 - 0') 

= (1 + 0") / (1 - 0 a ) 

This is unity for a random walk, that is 0=0, and goes monotonically 

towards infinity as ql  tends towards zero, that is 0 tends to unity. 

The kurtosis test statistic for e t  always becomes smaller 

after being corrected for serial correlation because its K(4)=1.125. 

This is also true for the normality statistic when applied to the 

level residual i t  because its K(a)>1 for a=3,4 and 0<ql<00. The 

normality test statistic for the irregular may, however, increase 

because its K(3)=-0.75. For the irregular the correction factors are 

relatively small. The high correction factors for the level residual 

when 0 is close to unity may appear to make the detection of 

structural change difficult. However, if level shifts are introduced 

into an otherwise well behaved series, the effect is likely to be an 

increase in the estimate of the relative variance of i t , and hence a 

corresponding decreases in 0 and in K(a). 

For more complex models, the correction factors can be 

computed numerically using the disturbance smoother of section 3.4. 

Table 4.3 shows the K(a) values for the four sets of auxiliary 

residuals from a specific quarterly BSM. The correction factors are 
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calculated using the first 20 autocorrelations. 

Some Monte Carlo experiments 

A series of simulation experiments was applied to examine the 

performance of the test statistics discussed in the previous 

section. The experiments were conducted on the local level (LL) 

model using a sample size of n=150 and different values of the 

signal to noise ratio, 	The white noise disturbances e t  and n t  were 
generated using the Box-Muller algorithm in Knuth (1981). The 

results presented in table 4.4 are based on one thousand 

replications and show the estimated probabilities of rejection for 

tests at a nominal 5% level of significance. 

Table 4.4 gives the estimated size of the tests. It is known 

that, for independent observations, the size of the Bowman-Shenton 

test can be some way from the nominal size for small samples and 

Granger & Newbold (1977, p.314-315) cite evidence which suggests 

that serial correlation may make matters even worse. However, their 

remarks are concerned with a test statistic in which the correction 

factors are based on the correlogram, whereas in our case the 

correction factor is based on the estimator of a single parameter, 

O. The figures in table 4.4 indicate that the estimated type I 

errors are not too far from the nominal values for both the 

innovations and the auxiliary residuals. 

Table 4.4 shows the estimated powers of the tests when an 

outlier was inserted three quarters of the way along the series. The 

magnitude of the outlier was five times o:. As can be seen, the 

powers of the tests based on the irregular residual are higher than 

those based on the innovation. As hoped, the power of the tests 

based on the level residual are much lower. The kurtosis test is 

slightly more powerful than the normality test. 

A shift in the level, up by five times 0:, was introduced 

three quarters of the way along the series to generate the results 

in table 4.4. The tests based on the level residual are now more 

powerful. 

Overall the results are very encouraging. They suggest that 

the tests have acceptable sizes for moderate samples even when 

serial correlation corrections have to be made. Furthermore, the 
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tests based on auxiliary residuals are reasonably effective in 

detecting, and distinguishing between outliers and structural 

change. 

5. APPLICATIONS 

The way in which outliers and structural changes may be 

detected is illustrated below. In all cases parameter estimation was 

carried by non-linear optimization of the likelihood, using the 

method of scoring in the frequancy.domain, see section 2.6. 

United States exports to Latin America 

The monthly series of US exports to Latin America (LAXL), 

taking logs, contains a number of outliers which are easily detected 
A 

by examining the irregual component, e t , from a basic structural 

model; see the comments by Harvey on Bruce & Martin (1990). In fact, 

the principal outliers, which turn out to be due to dock strikes, 

are easily seen in a plot of the series and also appear quite 

clearly in the innovations. If the data are aggregated to the 

quarterly level (the graph is given in figure 4.1 and estimation 

results are reported in table 4.5), the outliers are less apparent 

in the innovations, though they still emerge clearly in the 

irregular component, see figure 4.2. The kurtosis statistic for the 

innovations is K = 2.18 and the normality statistic is N = 5.14. The 

normality statistic is therefore not statistically significant at 

the 5% level, while the kurtosis is significant on a one-sided test 

at the 5% level, but not at the 1% level. For the irregular, on the 

other hand, the raw K and N statistics are 7.32 and 80.08, 

respectively. After correction for serial correlation these become K 

= 7.54 and N = 86.41, both of which are significant. 

Since 02  is estimated to be zero, all the movements in the 

trend stem from the slope disturbance. The (corrected) K and N 

statistics for the associated auxiliary residuals are only 0.31 and 

0.22, respectively. The auxiliary residual diagnostics therefore 

point clearly to the presence of outliers. 
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Car drivers killed and seriously injured in Great Britain 

Monthly observations of car drivers killed and seriously 

injured in Great Britain (CDKSI) were used by Harvey & Durbin (1986) 

in their study of the effects of the seat belt legislation which 

took effect from the beginning of February 1983. The seat belt law 

led to a drop in the level of the series. It will be shown below how 

this structural change would be detected by the auxiliary residuals. 

In order to avoid the large fluctuations associated with the 

oil crisis of 1974, a BSM was estimated using data from July 1975 to 

the end of the series December 1984, see figure 4.3. The slope and 

seasonal variances were both estimated to zero, and so the fitted 

model is basically a local level model with deterministic slope and 

seasonals, see table 4.6. The theory at the end of sub-section 4.1 

therefore applies directly, with q = 0.118 and ii = 0.710. The 

correction factors for the irregular are x(3) = 0.99 and x(4) = 1.00 

while for the level they are x(3) = 2.12 and x(4) = 1.69. 

The kurtosis and normality statistics are shown in table 4.6, 

with the uncorrelated figures in parantheses. The innovation 

statistics clearly indicate excess kurtosis, and the auxiliary 

residual diagnostics point to this as emanating from a change in the 

level., with the K and N statistics both being statistically 

significant at the one percent level. The plot of the innovations in 

figure 4.4 shows large values in December 1981 and Februari 1983 

at -3.28 and -3.97, respectively. In the irregular residuals, shown 

in figure 4.4 as well, both these months are -2.84 but such a value 

is not excessively large compared with those for some of the other 

months. In the level residuals, on the other hand, Februari 1983 

is -4.46 while December 1981 is only -1.76. 

The residuals therefore point clearly to a structural break 

at the beginning of 1983. The role of December 1981 is less clear. 

It could be treated as an outlier. In fact, Harvey & Durbin (1986) 

noted that December 1981 was a very cold month. However, even when 

the model is re-estimated with an intervention variable for the seat 

belt law, it does not give rise to a particularly large irregular 

residual, though, curiously enough, the corresponding innovation is 

still quite high. 
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A final point with respect to this example concerns checks 

for serial correlation as given in section 3.7. For the innovations 

the Box-Ljung statistic based on the first ten sample 

autocorrelations is Q(10) = 8.58. Thus no serial correlation is 

indicated. The correlograms and theoretical autocorrelation 

functions for both the irregular and the level residuals are quite 

similar and hence give no further hint of model misspecification. 

Nor do the sample and theoretical cross-correlations. Of course, 

evidence of dynamic misspecification can be masked by outliers and 

structural breaks, but in this instance there was still no evidence 

of serial correlations after the inclusion of interventions. 

Number of Marriages in the UK 

West & Harrison (1989) analyse an interesting set of 

observations: the number of marriages in the UK between 1965 and 

1970 for each quarter, see figure 4.5. Many marriages take place in 

the third quarter of each year because many couples prefer to marry 

on a day when there is A reasonable chance of good weather. The 

relatively large number of marriages in the first quarter of the 

years 1965, 1966, 1967 and 1968 is caused by the UK income tax law 

system during these years. The UK tax law provides higher tax free 

allowances for married couples from the current tax year onwards 

(running from April to ,March). After 1968 the married person's 

allowance for the current year was abolished, the claims could be 

made after the current tax year. 

The 24 observations can be modelled with a quarterly BSM with 

the estimated hyperparameters as reported in table 4.7. The 

standardized innovation at the first quarter of 1969 is very large 

for this model. The source of the problem can be found by examining 

the auxiliary residuals. The plots in figure 4.6 and the diagnostics 

reported in table 4.7 clearly points to the seasonal component. 

A change in the seasonal pattern is modelled by a regression 

intervention in the transition equation of the SSF. The seasonal 

interventions are only made for the seasons 1, 2 and 4. It is 

estimated that the number of marriages in the first quarter has 

reduced by 43,550. All diagnostics of the BSM with interventions are 
A 

 i satisfactory and o 2  is equal to 16.69. 
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Consumption of Spirits in the UK 

The per capita consumption of spirits in the UK for 1870 to 

1938 is a classical data-set which is analysed for the first time by 

Prest (1949). It has become widely known since it was used as one of 

the testbeds for the d-statistic in Durbin & Watson (1951). The time 

series was analysed later, for different purposes and using 

different approaches, by Fuller (1976), Tsay (1986) and Kohn & 

Ansley (1989). 

The time series, as presented in figure 4.7, can be 

explained, at least partly, by relative price of spirits and income 

per capita, as presented in figure 4.7 as well. However, a 

regression formulated in this way shows significant serial 

correlation even if a time trend is included, see Durbin & Watson 

(1951). The regression model with a stochastic trend component, i.e. 

art = Pt 	Xt8 	et 	 (5.1) 

where p t  is a local linear trend, as in (2.3.7), and 8 is a fixed 

vector of parameters and e t  is NID(0,o2 ), provides a good fit in many 

respects. It is more parsimonious than the regression model with a 

quadratic time trend and a first-order autoregressive disturbance 

reported in Fuller (1976, p.426). The stochastic trend in (5.1) can 

be interpreted as reflecting changes in tastes. Finally, this 

regression model can be placed in the SSF (2.1)-(2.3), 

straightforwardly. 

The estimates reported in table 4.8 are for the period.1870 

to 1930. As can be seen, the slope is stochastic and so there is a 

set of three auxiliary residuals, see figure 4.8. The associated 

test statistics are in table 4.8 as well. Kohn & Ansley (1989) 

estimate the model without a slope component, so p t  is just a random 

walk. Indeed, estimating such a model might not be unreasonable for 

preliminary data analysis if we wish to focus attention on 

structural changes which affect the level. However, in this 

particular case, the kurtosis statistics in table 4.8 are high for 

both the irregular and level residuals and the presence of the slope 

makes very little difference. 

The plots shown in figure 4.8 indicate a shift in the level 
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in 1909, with a number of candidates for outliers during World War 

I. We fitted a level intervention first. The 1918 outlier than stood 

most clearly in the irregular. On estimating with a 1918 

intervention, 1915 stood out most clearly. This led to a model with 

a 1909 level intervention together with outlier interventions at 

1915 and 1918. All the diagnostics in this model are satisfactory. 

Table 4.9 shows the estimated coefficients of the explanatory 

variables and compares them with the coefficients obtained from the 

model without interventions. There is a clear improvement in 

goodness of fit and this is reflected in the t-statistics shown in 

parentheses. The innovation diagnostic in the intervention model are 

entirely satisfactory. It is particularly interesting to note the 

reduction in the value of the Box-Ljung test-statistic based on the 

first ten residual autocorrelations, Q(10). In the model without any 

interventions there were high autocorrelations at lags 8,9 and 10 

which had no obvious explanation. 

Reference back to Prest (1949), who originally assembled the 

SPIRITS data set, reveals that the figures for 1915 to 1919 were 

estimates based on consumptions in the British Army. Thus they may 

be considerably less reliable than the other observations and taking 

them all out by intervention variables may not be unreasonable. The 

results are shown in the last column of table 4.10. The changes in 

the coefficients of income and price are due to the influence of the 

observations corresponding to the additional interventions rather 

than the fact that they may be outliers; see Kohn & Ansley (1989). 

On the basis of the level residual, see figure 4.8, there is 

a case for a structural change in 1919. However, the general 

unreliability of the observations in 1915 to 1919 makes it difficult 

to estimate such a change with any degree of confidence. None of the, 

other results change significantly when the 1919 outlier 

intervention is replaced by a level shift intervention. 

The explanation for the level change in 1909 may be found in 

the social, economic and political situation during this year in the 

UK. In this remarkable year, the Chancellor of the Exchequer Lloyd 

George, later PM, presented his budget in which the Government 

announces their plans of rising income taxes for the well-off and 

increasing taxes on land-ownership, on luxury goods and on goods 
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like spirits and tobacco. Some influence of these tax reforms can be 

found in the downwards shock of the relative price of spirits after 

1909. But the overall shock effect, which affected the demand for 

complementary goods as well, cannot be modelled differently than by 

an intervention. 

The fall in the level of 1909 is highly significant in both 

of our intervention models, and indicates a permanent reduction, 

other things being equal, of around 9 %. It is this feature which is 

detected by our techniques and which is the prime source of the 

difference between our model and that of Kohn & Ansley (1989). They 

identify 1909 as a possible outlier. Their preferred model has 

outlier interventions for the years 1915 to 1919 and 1909. Fitting 

this model, including variations such as the inclusion of a 

stochastic slope and using time domain in stead of frequency domain 

estimation, resulted in a poorer fit than our model and somewhat 

different coefficients for the explanatory variables. 

Tsay (1986) uses the ARIMA approach of detecting outliers, as 

earlier mentioned in section 4, and applies these techniques to the 

SPIRITS data set as well. His conclusions are similar to ours. In 

his terminology, innovative outliers are recognised in 1909, 1910, 

1911 and 1912, and additive outliers are found for 1915 and 1918. 

Note that innovative outliers do not influence residuals 

permanently, the influence for future residuals damps out 

exponentially over time. The final model of Tsay (1988) is the same 

regression model as proposed by Fuller (1976) but with ARMA(1,1) 

residuals, an innovative outlier at 1909 and the two earlier 

mentioned additive outliers. The two parameters concerned with the 

innovative outlier do relate to each other in such a way that the 

memory of the innovative outlier is long and, therefore, the effect , 

of this innovative outlier approximates the effect of a level 

intervention as employed to our model. It must be stressed that, 

although the methodology used by Tsay (1988) leads to the same 

conclusions, our detection method based on the auxiliary residuals 

is straightforward and much easier to use. It is also more robust 

since it does not rely on a model identification procedure based on 

the correlogram which can be seriously distorted when outliers are 

present in the time series. 



7. CONCLUDING REMARKS 

The auxiliary residuals are serially correlated and 

correlated with each other even when the model is correctly 

specified. Nevertheless, it seems that they are an useful tool for 

detecting outliers and shifts in the level in structural time series 

models. Plots of the auxiliary residuals can be very informative and 

these can be supplemented with tests for normality and kurtosis 

corrected to allow for the implied serial correlation. The examples 

and Monte Carlo experiments illustrate that the techniques work 

quite well in practice and, finally, they are very simple to apply 

as well. 

130 
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TABLES & FIGURES 

Table 4.1 

Theoretical auto- and cross-correlations for the auxiliary residuals 
of a quarterly BSM with q n=1, qc=0.1 and q,=0.1 

Lag 

AUTO-CORRELATIONS 

^ 

0 1.00 1.00 1.00 1.00 
1 -0.29 0.28 0.88 -0.44 
2 -0.14 -0.02 0.70 -0.14 
3 0.02 -0.12 0.52 -0.24 
4 -0.18 -0.24 0.37 0.65 
5 0.07 -0.09 0.28 -0.25 
6 0.03 -0.05 0.21 -0.14 
7 0.04 -0.05 0.15 -0.14 
8 -0.11 -0.11 0.10 0.42 
9 0.05 -0.02 0.07 -0.14 
10 0.03 0.00 0.06 -0.13 

CROSS-CORRELATIONS 
^^ ^^ ^^ 

Lag 

0 	0.60 	0.11 0.06 0.24 -0.07 0.07 
1 0.25 -0.01 0.06 0.38 -0.00 0.03 
2 0.08 -0.05 -0.32 0.37 0.07 0.03 
3 0.10 -0.10 0.35 0.31 -0.31 0.07 
4 -0.12 -0.04 -0.02 0.19 0.11 -0.08 
5 -0.03 -0.02 -0.02 0.15 0.09 -0.03 
6 -0.00 -0.02 -0.22 0.13 0.06 0.01 
7 0.05 -0.05 0.22 0.10 -0.20 0.05 
8 -0.08 0.01 0.01 0.05 0.06 -0.05 
9 -0.02 0.00 -0.03 0.04 0.07 -0.02 
10 0.01 -0.00 -0.14 0.04 0.04 0.01 
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Table 4.2 

Theoretical auto- and cross-correlations for the auxiliary residuals 
of a LL model based on samples of different sizes 

sample sizes  : 

ratio q=1.0 

lag 

n=6 n=10 n=20 n=50 n=100 n=ala 

1 -.3261 -.3094 -.3090 -.3090 -.3090 -.3090 
2 -.1631 -.1190 -.1180 -.1180 -.1180 -.1180 
3 -.0476 -.0451 -.0451 -.0451 -.0451 
4 

lag 

-.0238 -.0172 -.0172 -.0172 -.0172 

1 .3734 .3818 .3820 .3820 .3820 .3820 
2 .1245 .1454 .1459 .1459 .1459 .1459 
3 .0545 .0557 .0557 .0557 .0557 

qt. 

4 

lag 

.0238 .0172 .0172 .0172 .0172 

0 .5111 .5550 .5559 .5559 .5559 .5559 
1 .1071 .2102 .2123 .2123 .2123 .2123 
2 .0755 .0811 .0811 .0811 .0811 

PE 

3 

ratio q=0.1 

lag 

.0163 .0310 .0310 .0310 .0310 

1 -.2109 -.1546 -.1359 -.1351 -.1351 -.1351 
2 -.1917 -.1226 -.0996 -.0986 -.0986 -.0986 
3 -.1030 -.0732 -.0720 -.0720 -.0720 

P2 

4 

lag 

-.0936 -.0542 -.0525 -.0525 -.0525 

1 .4933 .6529 .7264 .7298 .7298 .7298 
2 .2349 .4399 .5285 .5327 .5327. .5327 
3 .2709 .3835 .3888 .3888 .3888 
4 .1290 .2769 .2837 .2837 .2837 

1.19. 
0 .4780 .4042 .3692 .3675 .3675 .3675 
1 .3847 .3050 .2699 .2682 .2682 .2682 
2 .2363 .1975 .1958 .1958 .1985 

PE 

3 

ratio q=0.01 

in 

.1911 .1449 .1429 .1429 .1429 

1 -.1767 -.1088 -.0642 -.0483 -.0476 -.0476 
2 -.1750 -.1057 -.0601 -.0438 -.0430 -.0430 
3 -.1036 -.0566 -.0397 -.0389 -.0389 

P2 

4 

lag 

-.1026 -.0536 -.0360 -.0352 -.0352 

1 .3867 .4962 .6978 .8920 .9048 .9049 
2 .1924 .3679 .6037 .8057 .8187 .8188 
3 .2432 .5157 .7274 	. .7409 .7409 

PV,`, 

4 

lag  
0 .5159 

.1210 

.4087 

.4328 

.2863 

.6564 

.2215 

.6703 

.2181 

.6704 

.2181 
1 .5045 .3929 .2664 .2007 .1974 .1973 
2 .3811 .2491 .1820 .1786 .1786 
3 .3731 .2343 .1651 .1616 .1616 



Auxiliary residual 	K(3) 	K(4)  

Irregular 
	0.93 
	

1.02 
Level noise 
	1.01 
	

1.02 
Slope noise 
	

3.53 
	

2.90 
Seasonal noise 	1.49 

	
1.53 

Table 4.4 

Estimated rejection probabilities for tests at a nominal 5% level of 
significance for a local level model with sample size n=150 * 

q = 2.0 q = 0.5 
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Table 4.3 

Correction factors for a quarterly BSM with q n=1, qc=0.1 and q,=0.1 

(a) NO MISSPECIFICATION 

Residual N-cor N-unc K-cor K-unc N-cor N-unc K-cor .  K-unc 

Innovation 0.062 	0.062 0.077 	0.077 0.055 	0.055 0.077 	0.077 
Irregular 0.038 	0.036 0.058 0.062 0.039 	0.039 0.060 	0.062 
Level noise 0.034 	0.038 0.061 	0.062 0.037 	0.064 0.053 	0.065 

(b) SINGLE OUTLIER at t=112 

Residual N-cor K-cor N-cor K-cor 

Innovation 0.49 0.56 0.87 0.90 
Irregular 0.76 0.79 0.97 0.97 
Level noise 0.25 0.30 0.26 0.31 

(c) STRUCTURAL SHIFT in level at t=112 

Residual N-cor K-cor N-cor K-cor 

Innovation 0.42 0.45 0.83 0.85 
Irregular 0.15 0.19 0.27 0.34 
Level noise 0.47 0.49 0.94 0.95 

* based on Monte-Carlo experiments with 1000 replications 
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Table 4.5 

Hyperparameter estimates and diagnostics for LAXL 

dependent variable : Log of LAXL 	t = 1966q1,...,1983q4 
number of observations : 72 	season : quarterly (s=4) 
model : BSM with diffuse initial cond. method : FD scoring 

HYPERPARAMETER ESTIMATION 

hyperparameter estimate 

	

v, 	0.00314 

0.0 

2 

	

c 	0.00084 

0.00001 

q ratio  

0.0 

0.2675 

0.0032 

DIAGNOSTICS 

Auxiliary residual 
	

Kurtosis K 	Normality N 

Innovation 	2.18 	5.14 
Irregular 	7.53 * 	86.41 * 
Slope residual 	0.31 	0.22 
Seasonal residual 	0.11 	0.45 

+ US exports to Latin America (see Bruce & Martin, 1989) 
* Significant at 1 % level 
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Table 4.6 

Hyperparameter estimates and diagnostics for CDKSI 

dependent variable : Log of CDKSI 	t = 1975m1,...,1984m12 
number of observations : 120 	season : monthly (s=12) 
model : BSM with diffuse initial cond. method : FD scoring 

HYPERPARAMETER ESTIMATION 

hyperparameter estimate 	q ratio 

0.00425 

0.000495 

0.0 

0 .0 

0.1165 

0.0 

0.0 

DIAGNOSTIC STATISTICS 

Auxiliary residual 	Kurtosis K 

Innovation 	2.51 * 
Irregular 	0.50 
Level residual 	4.80 * 

Normality N 

12.61 * 
0.86 

38.04 * 

+ Car drivers killed and seriously injured in Great Britain 
(see Harvey & Durbin, 1986) 

* Significant at 1 % level 
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Table 4.7 

Hyperparameter estimates and diagnostics for MARRIAGE 

depend. variable : MARRIAGE 	t = 1965q1,...,1970q4 
number of observations : 24 	season : quarterly (s=4) 
model : BSM with diffuse initial cond. method : FD scoring 

HYPERPARAMETER ESTIMATION 

hyperparameter estimate 	q ratio 

C 2  

C 2  0 

0.0 

1.41630 

0.0 

76.4621 

0.18523 

0.0 

1.0 

DIAGNOSTICS 

Auxiliary residual 
	

Kurtosis K 	Normality N 

Innovation 	6.48 * 	63.12 * 
Level residual 	0.85 	3.08 
Seasonal residual 	7.72 * 	79.87 * 

+ Number of marriages in UK (see West & Harrison, 1989) 
* Significant at 1 % level 
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Table 4.8 

Hyperparameter and regression estimates and diagnostics for SPIRITS 

dependent variable : Log of SPIRITS + 	t = 1870,...,1930 
explanatory vars : 	Log of INCOME 

Log of PRICE 
number of observations : 61 	season : yearly 
model : LLT with diffuse initial cond. method : FD scoring 

HYPERPARAMETER ESTIMATION 

hvperparameter estimate 	q ratio 

a
: 

	

0.000161 

	

0.000069 
	

0.4286 

C
2 	 0.000037 

	
0.2298 

REGRESSION ESTIMATION 

fixed effect 	estimate 	t-test . 

Income 	0.69 	5.28 
Price 	-0.95 	-13.6 

GOODNESS OF FIT AND DIAGNOSTIC STATISTICS ° 

0.000229 
Ro 	 0.71 
Box-Ljung 0 -io 	13.06 
Normality 	5.87 
Kurtosis 	2.21 
Heteroskedasticity 	2.47 

Auxiliary residual 
	

Kurtosis K 	Normality N 

Irregular 	7.53 * 	69.76 * 
Level residual 	5.19 * 	31.65 * 
Slope residual 	0.32 	0.45 

+ Consumption of Spirits in UK (see Durbin & Watson, 1951) 
: Goodness of fit and diagnostics are discussed in section 2.6 

Significant at 1 % level 
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Hyperparameter and regression estimates and diagnOstics for SPIRITS 
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dependent variable : Log of SPIRITS + 
explanatory vars : 	Log of INCOME 

Log of PRICE 
interventions : 	Structural shift 1909 

Outlier 1915 1918 

number of observations : 61 
model : LLT with diffuse initial cond. 

t = 1870,...,1930 

season : yearly 
method : FD scoring 

HYPERPARAMETER ESTIMATION 

hyperparameter estimate 	q ratio  

2 
0.0 

62 
0, 	0.000117 

0.000014 0.1197 

REGRESSION ESTIMATION 

fixed effect 	estimate 	t-test 

Income 	0.66 	7.82 
Price 	-0.73 	-15.2 
1909 Structural shift 	-0.09 	-7.90 
1915 Outlier 	0.05 	5.33 
1918 	- 	-0.06 	-7.47 

GOODNESS OF FIT AND DIAGNOSTIC STATISTICS ° 

0.000166 
RD' 	 0.91 
Box-Ljung Q 10 	5.25 
Normality 	1.53 
Kurtosis 	1.23 
Heteroskedasticity 	0.83 

Auxiliary residual 	Kurtosis K 
	

Normality N 

Irregular 
Level residual 
	

0.93 	0.94 
Slope residual 
	

0.03 	0.01 

• Consumption of Spirits in UK (see Durbin & Watson, 1951) 
o Goodness of fit and diagnostics are discussed in section 2.6 

Significant at 1 % level 
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Table 4.10 

Hyperparameter and regression estimates and diagnostics for SPIRITS 

dependent variable : Log of SPIRITS 
	

t = 1870 ..... 1930 
explanatory vars : 	Log of INCOME 

Log of PRICE 
interventions : 	Structural shift 1909 

Outlier 1915 1916 1917 1918 1919 

number of observations : 61 	season : yearly 
model : LLT with diffuse initial cond. 	method : FD scoring 

HYPERPARAMETER ESTIMATION 

hyperparameter estimate 	q ratio  

2 

O n  
0 2 

0.0 
0.000079 
0.000030 

REGRESSION ESTIMATION 

fixed effect  

Income 
Price 
1909 Structural shift 
1915 Outlier 
1916 
1917 
1918 
1919 

0.3797 

estimate 

0.58 
-0.53 
-0.09 
0.06 
0.004 
-0.05 
-0.10 
-0.01 

t-test 

6.45 
-6.31 
-8.69 
4.34 
0.30 
-2.79 
-6.41 
-1.25 

GOODNESS OF FIT AND DIAGNOSTIC STATISTICS ° 

RD2 
Box-Ljung 
Normality 
Kurtosis 
Heteroskedasticity 

Auxiliary residual  

0.000144 
0.93 
4.93 
0.73 
0.84 
0.75 

Kurtosis K 

410 

Normality N 

Irregular 	- 
Level residual 	0.46 	0.24 
Slope residual 	0.25 	0.18 

Consumption of Spirits in UK (see Durbin & Watson, 1951) 
° Goodness of fit and diagnostics are discussed in section 2.6 

Significant at 1 % level 
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Figure 4.3 Car drivers killed and seriously injured in GB (in logs) 
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Figure 4.4b Auxiliary residuals for CDKSI : Irregular 
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CHAPTER 5 

CUBIC SPLINES IN TIME SERIES MODELS 

0. ABSTRACT 

A non-linear function can be approximated by a cubic spline 

function which can be regarded as a polynomial function of order 

three. So the first three derivatives of a cubic spline function 

exist but only the first two derivatives are continuous. Splines are 

generally used for interpolation and curve fitting but also for 

piecewise regressions. This chapter deals with cubic splines mainly 

in the context of time series models. They are adopted to describe 

seasonal or cyclical movements in time series but also to 

approximate non-linear responses of explanatory variables. An 

important contribution of this chapter is.to let cubic spline 

functions vary over time and to place them into the state space 

form. 

Keywords : Cubic splines; Piecewise regression; Periodic splines; 

Seasonality; Time-varying. 

I. INTRODUCTION 

The spline method is a stable and flexible interpolation 

technique which is especially useful to describe a pattern of data 

points generated from a particular unknown function. In fact, it 

draws a smooth line through a set of points in a XY diagram, see 

figure 5.1. The spline function can be chosen as smooth as one 

desires. This depends mainly on the number of existing derivatives. 

For example, if the first p derivatives of a spline function exist, 

the spline function is of order p. If p is large, the spline 

function is very smooth. However, a spline function with a 

relatively small value for p produces already a smooth line. The 

149 
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linear spline function has p equal to 1, the quadratic spline 

function has p equal to 2, and the cubic spline function has p equal 

to 3. The latter is of primary concern in this chapter. 

Several applications of splines can be found in the 

literature of numerical analysis and they are mostly concerned with 

interpolation and curve-fitting. Other applications are related to 

particular problems in regression analysis such as structural breaks 

which can be modelled via a piecewise linear regression model as 

well, see Johnston (1984). Spline functions allow for a smooth 

change from one parameter value to another and preserve continuity 

of derivatives upto a certain order. This chapter will develop more 

theoretical results concerning cubic splines in the context of time 

series. 

Periodic movements are an important feature in time series 

analysis. Seasonal effects tend to be the rule rather than the 

exception with monthly or quarterly time series. When observations 

are available at more frequent intervals, periodic movements may 

exist within the week or the day. Commonly, a periodic pattern over 

s time intervals is modelled with s-1 dummy variables or, 

alternatively, with s-1 trigonometric terms. Two important issues 

arise with this approach. Firstly, periodic movements are almost 

never fixed in real time series, they may evolve over time. 

Secondly, if s is large, the model with dummy or trigonometric terms 

become cumbersome and not very parsimonious. The use of a cubic 

spline is in many of these cases a more appropriate solution for 

modelling periodic time series. The main purpose of this chapter is 

to address these problems and to provide a solution by developing 

the idea of time-varying splines. 

The organisation of this chapter is as follows. The next 

section will derive the cubic spline function as a linear system of 

equations. The derivation follows mainly the steps which can be 

found in various books on introductory numerical analysis. An 

illustration describes the method of interpolation using cubic 

splines. Statistical applications with splines are widely available 

in the literature. Section 3 gives a straightforward approach of 

calculating a polygon through a histogram using cubic splines. Also, 

cubic splines are incorporated in regression models to approximate 
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non-linear responses of explanatory variables, illustrated by an 

example that deals with the non-linear response of the demand of 

electricity on temperature levels. Moreover, it introduces 

distributed lags for these regression models and it provides a 

parsimonious solution. Section 4 incorporates periodic splines into 

regression models. This spline is restricted to a 'sum-up-to-zero' 

constraint. An efficient method of computing the periodic spline is 

proposed as well. The main novelty in this chapter is the 

development of time-varying splines as can be found in section 5. 

Some essential computer programs are described in section 6. This 

chapter is concluded with some general remarks. 

2. CUBIC SPLINES 

This section presents the derivation of a cubic spline 

function g(x) that approximates an unknown function f(x) by a set of 

cubic polynomial functions. Thus the functional form of f(x) is 

unknown but it is assumed that some particular values of f(x) are 

known. The set of known pair values {x4i- ,y4i=f(xI)), for i=0,...,k, will 

be referred to as the set of knot points associated with the, so-

called, mesh {4,...,K). The (k+1) knot points can be graphically 

reproduced in a XY diagram, see figure 5.1. The spline approximation 

method provides the smooth line through the knot points. 

The spline function g(x) is based on a set of polynomial 

functions. The spline function is said to be of order p when the 

first p derivative functions exist and the first (p-1) derivative 

functions are continuous. The value of p can be interpreted as an 

order of smoothness. In many applications it is appropriate to have 

p equals to 3. This particular spline function is referred to as a' 

cubic spline and can be derived in an analytically attractive way. 

It is shown below that the cubic spline function is derived as a set 

of linear equations. 

Assume that (i) the mesh is of ascending order such that 
x+0<x+1 <...<x+k , (ii) the distance z 1  is defined as z i=x4i-x4i. . 1  for 

i=1,...,k and (iii) the i-th derivative of g(x) is denoted by V(x). 

In order to let the third derivative function exist, the second 
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derivative function can be taken as a•linear function for every area 

between the mesh-elements. Note that it is not required that the 

third derivative is continuous, it only has to exist. An example of 

a second derivative function V2 (x) for a cubic spline is graphically 

reproduced in figure 5.2b. The functional form of V2 (x) is locally, 

for xt-i sxsxt, given by j 

V? (x) = {(xt-x)/z.)a 	+ ((x-xt )/z.)a ^
j 	j-1 	j1 	j 	j 
	 (2.1) 

for j=1,...,k. The values a o  and ai=7 (xi) for j=1,...,k are not 

known. The second derivative V2 (x) of the cubic spline function g(x) 

is continuous as required. The third derivative function is dis-

continuous and it is given by 

Vq (x) = (a. -a. )/z. 
j 	 -1 	j 

(2.2) 

for xt -i  sxsxt and j=1,...,k. This can be interpreted as the slope of j 
the second derivative function. • 

In the following, the cubic spline function g(x) is derived 

in four steps starting off from the definition of the second 

derivative function. The first step derives the first derivative 

function and the cubic spline function g(x) using standard rules of 

integration. It follows that the functions g(x) and V(x) are unknown 

because they are expressed in terms of the unknown values a j  for 

j=0,...,k. The second step restricts the cubic spline function g(x) 

to cross the knotpoints as required. The continuity restriction for 

the first derivative function is enforced in the third step. The 

first three steps provide a system of (k-1) equations with (k+1) 

unknown values for a j , j=0,...,k. The last step solves this under-

identification by treating a ci  and ak  as known constants. By solving' 

the system of (k-1) equations, the functions g(x), V(x), V 2 (x) and 
V3 (x) can be evaluated and the associated graphs can be drawn, see 

figures 5.1 and 5.2. 

Step (i) 

The primitive function of Vl(x) and V i (x) is derived by using 

standard integration rules. Thus, we have V i (x)=P1(x)dx and 
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V.(x) = 	(xt -x)2/z.
j 	j-1 	j
)a 	+ (1(x-xt 1jj  )2 /z.)a. - b. + c. 	(2.3) 

where c.J -b.J  is a constructed integration constant. Again, the 

primitive of V1 (x) is g j (x) and is derived in a similar fashion, 

g j (x) = {(xti -x) 3 /6zda j _ i  + ((x-xtj _0 3 /6zda j  + 

(xt-x)b. + (x-xt )c. + d. 

	

1 	j1 	j 	1 
	 (2.4) 

where d.1  is the integration constant. Note that the cubic spline 

function g(x)=g 1 (x) for xl. i sxsx+1  and j=1,...,k. 

Step (ii) 

It is required that the cubic spline crosses the knotpoints 

and, therefore, it is enforced that g j (x+1 )=1,1 and g j (x1_ 1 )=y1_ 1  for 

j=1,...,k. This implies that the constants b j , c j  and d j  must be 

chosen as 

b j  = y1 _ 1  /z. - (z j/6)a j _ 1 

 c = yt/z. - (z./6)a- J 	J 	1 	1 	J 

d.1  = 0 

(2.5a) 

(2.5b) 

(2.5c) 

Substituting the constants b j  and c i  into the first derivative 

function leads to 

V1 (x) = 	(x+j -x) 2 /z i • - z j/6)ai. 1  + {1(x-x1.0 2 /z i  - z j/6)a j  + 

(2.6) 

and substituting the constants b j , c j  and d j  into the spline function 
g(x) leads to 

g j  (x) = [(xtrx) { (x+j -x) 2 - Z1 }/6Z I ] 	+ ((x+j-x)/z i }y4i_ 1  + 

[(x-xt )((x-xt ) 2 -z2)/6z.]a. + ((x-xt )/z.)17t J1 	J 	1 	j-1 	j 	j 

for xt sxsxt and j=1,...,k. J-1 

(2.7) 

Step (iii) 

Finally, it is also required that the first derivative of the 
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cubic spline function is continous. This is enforced by the 

restriction V.(xt)=V_ 41 J (xt) where 
J 	J  

V.(xt) = (2z./6)a. + (z/6)aj-1 + (yt-yt )/ j 	 j 	j1 	
z- 

• 	j 

-Vi+1  (Xi)= {2Z i+1/6 )a i  + (z j+1/6)a i+1  + {yti -y1+1 }/z i+1  (2.8) 

for j=1,..,k-1. By some minor manipulation, the set of restrictions 

leads to the following set of (k-1) equations 

{z i,/(z 1 *z i .0 )}a j _ 1  + 2a 1  + {z i+1/(z i+z i+1 )}a i+1  = 

6171. 1/{z i (z i+z j .0 )) - 6yyz i z j .0  + 6yti+1/(z i+1 (z i+z i41 )) 	(2.9) 

for j=1,...,k-1. 

Step (iv) 

The previous steps lead to a sequence of k+1 unknown values, 

i.e. a- for j=0,...,k, and a system of k-1 restrictions. This system 

of linear restrictions cannot be solved unless two linear 

restrictions are added. A number of possibilities are discussed in 

Poirier (1973,1976). A straightforward and, in many cases, an 

appropriate solution is to treat the unknowns a o  and a k  as known 

constants. A cubic spline function g(x) is referred to as a natural 

spline function when it is supposed that a o=ak=0. 

The final set of restrictions can be represented in matrix 

notation by 

Pa = Qy+ 	 (2.10) 

where a=(a0 ;...;a k), y+=(y+0 ;...;y+k) and the matrices P and Q are 

tridiagonal matrices with the non-zero elements chosen appropriately 

according to (2.9). The solution for a is given by P -1 Qyt  and this 

enables us to calculate g(x) for any *xsx +k , see figure 5.1. 

Since, the parameter vector a is expressed as a linear 

combination of y+ , it follows that the solution for g(x) is also 

linear in y+ . In matrix notation, 

g(x) = r'yt  + s'a = wlyt 	 (2.11) 
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where row vector w' is equal to r 1 -1-s'P -1Q and r and ' are column 

vectors with the non-zero elements chosen appropriately according to 

(2.7). If x corresponds to an element of the mesh, (x;,...,K), then 

all elements of w are zero except the j-th element is equal to unity 

such that g(x+i )=yi. In that case, s=0 and r=w. 

In order to calculate the elements of the w vector for a 

particular x-value, the inverse of P is required. This can be done 

very efficiently because the matrix is tridiagonal, see Press et.al . 

(1989, p.48). Appendix 5A gives the details to calculate the vector 

w based on a particular x value and a set of knots. 

An illustration 

Suppose, weather data for the year 1990 of a small weather 

station in England is lost. Only the average monthly temperature 

values for January, May, August and December are found. These values 

are 30F, 45F, 65F and 35F, respectively. The head of the weather 

station decides to approximate the missing monthly averages by a 

natural cubic spline. 

The month January is coded with number 1 and the month 

December is coded with number 12 such that the knot points are 

(1,30), 	(5,45), 	(8,65) 	and 	(12,35). 	The , w' vectors for the set of x-  

values 1,2,...,12 are, respectively, 

1 1.0000 0.0000 0.0000 0.0000 
2 0.6798 0.4338 -0.1287 0.0150 
3 0.3877 0.7941 -0.2059 0.0241 
4 0.1517 1.0074 -0.1801 0.0211 
5 0.0000 1.0000 0.0000 0.0000 
6 -0.0517 0.7386 0.3497 -0.0365 
7 -0.0365 0.3497 0.7386 -0.0517 
8 0.0000 0.0000 1.0000 0.0000 
9 0.0211 -0.1801 1.0074 0.1517 

10 0.0241 -0.2059 0.7941 0.3877 
11 0.0150 -0.1287 0.4338 0.6798 
12 0.0000 0.0000 0.0000 1.0000 

and the monthly interpolated temperature values are, respectively, 

30.0, 32.1, 34.8, 38.9, 45.0, 53.1, 60.8, 65.0, 63.3, 56.6, 46.7 and 

35.0. These values are graphically reproduced in figure 5.3. 
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3. STATISTICAL APPLICATIONS OF CUBIC SPLINES 

Cubic splines can be applied to several problems in 

statistical theory. In this section, three different applications 

are discussed. Firstly, the cubic spline is used to obtain a 

frequency polygon from a frequency histogram. This application 

provides several ideas which can be explored in a future research 

project. The second application considers piecewise regressions with 

cubic splines as proposed by Poirier (1973). This approach is 

especially useful to approximate non-linear effects in regression 

models. The last application develops piecewise regressions with 

cubic splines for regression models including distributed lags. 

Specific applications of cubic splines in the context of time series 

models are discussed in the sections 4 and 5. 

The frequency polygon as a cubic spline based on a histogram 

The frequency distribution for a variable x is given in table 

5.1 and can be graphically reproduced as a frequency histogram, see 

figure 5.4. This graph is discontinuous. When a continuous graphical 

presentation of the frequency distribution is preferable, the 

polygon might be considered. This is the line through the midpoints 

of the classes. Van Casteren (1991) discusses some fundamental 

objections against this common polygon (cp) : " The cp is not 

constructed such that the surface under the polygon within each 

class is proportional to the frequency of that class ... the cp is 

too flat ... the cp may allocate positive surface to imaginary 

classes ". He proposes an alternative polygon based on a linear 

spline that takes account of these incompatibilities. 

In the following, a more smooth polygon is proposed based on 

cubic splines. Spline functions are earlier used as a frequency 

polygon, for example, Boneva et.al . (1971) present an elaborate 

discussion on the, so-called, histo-splines. However, the approach 

below is analytically transparent and the arguments are 

straightforward to comprehend. 

In this application, the mesh-values of the cubic spline can 
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be chosen freely and, therefore, they are known, but the 

corresponding y-values of the knot-points are not known. The number 

of elements in the mesh and their particular values can be chosen 

independently from the given classes within the total range of x-

values. However, to reproduce the frequency distribution as well as 

possible, in a continuous fashion, the knot positions are placed at 

the beginning of all the classes and at the end of the last class, 

in our example (0,10,20,30,50). The cubic spline is constructed in 

such a way that the surface under the cubic spline is equal to the 

surface of the histogram within all classes. The surface under the 

cubic spline between xt- i  and xt is obtained from the primitive j 
function G. (x) = fg.1  (x)dx for xt-1  sxsxt where j=1,...,k and k is the j 

number of classes (in our example k=4). Applying standard 

integration gives 

G(x) = [z.(xt-x) 2 /12 - (xt-x) 4/24z.]a. 
J 	1 	1 	I 	j 	j1 

- [Z i  (X-X41- _ / ) 2  /12 - (x-xti . 1 ) 4/24z i la i  

- yti _ 1 (x+i -x) 2 /2z i  + y-;(x-x. 1 ) 2 /2z i  + ei 	(3.1) 

where ei  is the integration constant. The surface under the cubic 

spline between x1. 1  and xl is calculated by G.J  (xt) - GI  (4 1 ) which is 
1 

equivalent to 

z i (ar; + y+1 . 1 )/2 - z3(ai  + ai _ 1 )/24 	 (3.2) 

The surface (3.2) is restricted to be the same as the surface f.1  of 

the histogram between xi. /  and x; for j=1,...,k. This set of k 

equations with two (k+l)xl unknown vectors is identified when it is 

assumed further that a0=0. The total set of equations can be put into 

matrix form by 

Ry+  - Sa = f 

where R and S are spatial matrices of simple structure provided by 

the equations (3.2) and the restriction a0=0, the vector f is the 

stack of histogram surface values and a zero. In our example, 
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- 0 0 0 0 0 - - 1 0 0 0 0 - - 	0 - 

1 1 0 0 0 1 1 0 0 0 200 

R= 5x 0 1 1 0 0 S = %5 3  x 0 1 1 0 0 f = 400 

0 0 1 1 0 0 0 1 1 0 300 

- 0 0 0 2 2 - 0 0 0 8 8 - - 200 - 

In the previous section, it is shown that the cubic spline is 

based on the set of restriction Pa = Qy +  where y+  is supposed to be 

known. However, for this application, y +  is a vector of (k+1)x1 

unknown values. To let the cubic spline start and finish at zero at 

either ends of the histogram, the restrictions y+0=4=0 are added 

which imply a slightly different structure for the matrices P and Q. 

An expression for y in terms of a is easily obtained by y+  = Q -1 Pa 

which can be substituted into (3.2) such that 

a = (RT 1P - S) - 1 	 (3.3a) 

= T IP(RT IP - S) -1 f 
	

(3.3b) 

The explicit solutions for the vectors a and y in our example are 

(0.0;-.459;-.207;.134;-.101) and (0.0;36.173;38.271;21.117;0.0), 

respectively. These vectors ensure that, for any x value between x +0 

 and 4, that is 0 and 50, the cubic spline function can be evaluated. 

The polygon is graphically reproduced as a smooth line through the 

histogram by the cubic spline in figure 5.4. 

Some specific issues arise when a cubic spline is used as a 

polygon. Firstly, it is possible that the cubic spline get negative 

at some intervals. This may happen when a class has a low frequency 

value and one of its two neighboring classes do have a high 

frequency. These undesirable negative cubic spline values can be 

avoided easily by forcing the negative knot points to be zero. A 

slightly different set of mesh values might be required. Secondly, 

the ogive can be calculated as well and is in fact the function 

G.(x). Thirdly, the sample mean and variance of x based on the 

calculated cubic spline polygon can be evaluated easily. More 

research has started, based on Monte Carlo simulations, to find out 

if this mean and variance are better estimates of the population 

mean and variance than their sample counterparts based on the 

histogram. All these issues are addressed in Koopman (1992). 

Approximating non-linear effects in regression models 
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The concept of a piecewise linear regression can be found in 

several standard econometrics textbooks, for example Johnston 

(1984). Basically, if the response of an explanatory variable is 

non-linear, the piecewise solution approximates the response locally 

by a linear function within a certain range of values corresponding 

to the explanatory variable. A linear spline is easily implemented 

by the method of restricted least squares which enforces the 

response function to be continuous, see Johnston (1984, p.392). The 

piecewise regression with cubic splines generalises the linear case 

such that, in addition, the first and second derivative functions 

are continuous. This option is preferable because it provides a 

smoother response function. It is shown below, following Poirier 

(1973), that the concept of a piecewise regression with cubic 

splines can be parameterized as a multiple linear regression model. 

Suppose a set of n pairs of observations (x t ,yt ), t=1,...,n, 

are available and that a non-linear regression model is appropriate 

of the form 

yt = f ( xt) + et 
	 (3.4). 

where e t  is a mutually uncorrelated disturbance term with zero mean 

and variance o2 . The unknown non-linear function f(x) is 

approximated by the cubic spline function g(x). The spline is based 

on the mesh x+0<x+1 <...<x+k . An element of the mesh (xl . ) does not have to 

correspond neccesarily to a x-value of the set of pair observations 

(xd. Thus the corresponding y-values of the mesh, i.e. y;,...,y, are 

supposed to be unknown. Following the derivation of a cubic spline 

in the previous section, the function f(xd can be approximated by 

g(xd which can be expressed as 

g (xt) = 14; Y .* 
	

(3.5) 

where 1,4"=.(y;...;y0 and the (k+1)xl vector w t  depends on the mesh and 
xt  as is shown in the previous section. This leads to the linear 

multiple regression model 

ytwtY.* + et 
	 (3.6) 
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It is the simplicity and the well-known properties of the linear 

regression model that makes the cubic spline an attractive 

approximation to complicated non-linear functions in regression 

models. Of course, given the assumptions on e t , the ordinary least 

squares (OLS) estimate 

A + 	Ent.iWtVj ) 	Ert)=1 Wtyt  ) 	 (3.7) 

can be regarded as the minimum mean square linear estimate (MMSLE) 

of the cubic spline parameter vector y + . 

An illustration 

Figure 5.5 presents a scatter plot of the demand for 

electricity in mega-watts against the temperature in Fahrenheit at 

one o'clock pm for all weekdays in 1990, except holidays (n=251). 

The data were obtained from the Puget Sound, Power & Light company °) . 

The scatterplot clearly shows that the linear regression response 

line is not appropriate because, obviously, the ?esponse of 

electricity demand on temperature is non-linear. The demand of 

electricity depends on temperature mainly due to heating but at high 

temperatures the demand increases due to air-conditioning. This non-

linear response is observed earlier in Bunn & Falmer (1985). Engle 

et.al . (1986) propose to fit a non-parametric spline. 

An appropriate treatment of this problem is to consider the 

non-linear regression model yt  = f(xt ) + e t  where yt  is the demand for 

electricity, xt  is the observed temperature and e t  is a normally 

distributed disturbance term with zero mean and variance a 2 . The 

function f(x) can be approximated by a cubic spline based on the 

mesh (10,65,90). It is shown above that this approach leads to the 

linear multiple regression model yt  = wty + e t  where vector y is 

fixed but unknown and the vector of natural cubic spline weights w t 

 corresponds to xt , see (3.5). The square root of the average squared 

residual q=[n-l E rt'. 1 (yt-yt ) 2 ] 1/2  is 125.65. For the ordinary regression 

model yt  = a + Pxt  + e t , this value is q=197.58. An adjusted Akaike 

information criterion (AIC) can be defined by 2(log q + k/n), where 

k is the number of parameters. The AIC is usually applied for model 

selection between non-nested models. For the two estimated 
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regression models, the AIC values are 9.69 and 10.59, respectively, 

such that it is concluded that the cubic spline regression model is 

preferable in the sense of a minimum AIC. The cubic spline function 

is plotted in figure 5.6. 

Approximating dynamic non-linear response functions 

The contemporaneous non-linear response model of the previous 

section can be generalised by including lagged response functions. 

Consider the model 

yt = r=o f i (xt- 	e t 
	 (3.8) 

where M is maximum lag window. The (M+1) non-linear response 

functions can be approximated by cubic splines, such that 

yt 	Yt + e t 
	 (3.9) 

where Yt=r;=o  y i,t  and y i,t=g i (x t . i )=w i, y; for i=0,...,M, the vector w i,t 

 is based on a mesh of dimension (ki+1) and the value x t _ i , the 

parameter vector y1 has dimension (k i+1). This multiple linear 

regression model with distributed lags can be estimated by methods 

based on ordinary least squares or maximum likelihood. However, 

severe problems may arise with the estimation of the parameters 

because of collinearity which leads to imprecise estimates. 

Moreover, the number of parameters can be quite large with this 

specification such that a more parsimonious solution may be looked 

for. 

The regression model (3.9) can be simplified when it is 

assumed that 

Y4; = AY' 
	

(3.10) 

and k i=k for i=0,...,M. The scalar 	rescales the fixed parameter 

vector y+ . This implies that the shape of the non-linear response 

function is constant for all lags and that only the intensity of the 
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response is different. For a number of applications, this assumption 

seems to be valid upto some degree. Note, that this restriction also 

implies that w 	for i=1,...,M, such that the contemporaneous 

vector of spline weights is redefined by w t=wo‘t.  The restricted 

component y t  of the dynamic regression model (3.9) becomes 

Yt = r 	-t Y +  =c1 	t-, (3.11) 

which contains a set of (k+M+2) unknown parmeters. A further 

reduction in the number of parameters is obtained by requiring that 

= 1. This restriction is enforced to conform to some 

normalizing argument. This implies that (k+M+1) number of free 

parameters remain to be estimated. Two problems arise with 

estimation. (i) Since no restrictions are introduced in the lag 

structure, such as polynomial distributed lags proposed by Almon 

(1965), collinearity is likely to be high between the vectors of 

weights w t , w (ii .) The model (3.9) and (3.11) cannot be 

estimated straightforwardly because the two sets of parameters do 

not relate to each other in a linear fashion. Both problems will be 

addressed below. 

(i) To avoid multicollinearity in the regression model (3.9) 

and (3.11) and, therefore, to increase numerical stability, it is 

useful to re-parameterize y t  by 

Yt = A* (wt  If+ ) + 	('hit-; Y) 
	

(3.12) 

where A is the first. difference operator, A *  = nroX i  = 1 and 1; = - 

E7=i+i l i  for i=0,...,M-1. Thus, y +  can be considered as the total (non-

linear) multiplier. 

(ii) The estimation of the regression model (3.9) and (3.11) 

can be carried in a similar iterative estimation process as proposed 

by Cochrane & Orcutt (1949) in the context of regression models with 

AR disturbances. It involves a sequence of least squares estimations 

based on two different linear regression models. The first 

regression specification RM1 is given by 
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yt = wt' Y+ 	et 
	 (3.13) 

where w; = wt  + m 	Awt . i . The second regression specification RM2 
is defined in terms of the set of unknown scalars {A4;...;A; 1 _ 1 }, that 

is 

1,t (3.14) 

where z i,t  = Awt _ i!y+  for i=0,...,M-1. A least squares estimation 
applied to RM1, where )4 = W 1  for i=0,...,M-1, followed by a least 

squares estimation applied to RM2, where y+  is replaced by its 

estimate from the previous regression applied to RM1, starts up a 

process of 'flip-flop' estimations applied to RM1 and RM2 which can 
be terminated when the estimates of the parameters converge to a set 

of constant values. This approach of estimating lagged splines, 

applied to the case of forecasting hourly electricity demand where 

temperature is the explanatory variable, is discussed in the next 

chapter. 

4. PERIODIC CUBIC SPLINES AND SEASONALITY 

Cyclical and seasonal movements do occur regularly in time 

series and are commonly modelled by a set of dummy variables or 

trigonometric terms. This approach is used in many cases of applied 

time series analysis and it has proved to be successful. However, 

when the periodic pattern repeats itself over a large number of time 

intervals, the classic approach is far from parsimonious. For 

example, when weekly observations are available for many years and . 

the data show a periodic movement which repeats itself every year, 

the classic approach requires 51 dummy or trigonometric terms. It 

will be shown below that for these cases a seasonal model can be 

formulated with much less parameters by using periodic cubic 

splines. 
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Periodic cubic splines 

Periodic variations can be described by cubic splines. 

Because the periodic pattern repeats itself several times, it is 

only required to describe one period by a spline which, 

subsequently, can be applied to all periods. The cubic spline 

becomes a continuous cyclical function when the knot points at the 

start and at the end of the cubic spline are the same. This is 

enforced by the assumption that y +0=y+k . Moreover, the first and second 

derivatives at either side of the cubic spline are restricted to be 

equal such that the continuity conditions for the derivatives upto 

order 2 still hold. It will be shown below that these additional 

restrictions remove the need for the arbitrarily restrictions a o=ak=0 

as applied to natural cubic splines in order to have an identified 

system of equations. 

Thus, in the case of periodic splines, it is required that 

V1 (4) =Vk ( x+k ) 	 7 (x)=7 (x) 	 (4.1) 

These continuity conditions remove the need for any further 

assumptions to solve the system (2.9) with (k-1) equations and (k+1) 

unknowns because the latter condition leads to a reduction of one 

unknown, that is a o=ak , and the former condition add the k-th 

equation as given by 

(z k/(z k+z i )la k _ i  + 2a k  + {z i/(z k+z i ))a i  = 

64-1/{zk(zk+z1)) - 6y+k/z kz 1  + 6y+1/(z i (z k+z i )) 
	

4.2) 

Note that it is also assumed that y+0=y+k . This linear system of k 

equations and k unknowns can also be expressed in the matrix 

formulation Pa=Qy +  but now the vectors are defined as a=(a 1 ;...;a k ) 
and y+=(y i ;...;y k). The periodic spline function can now be evaluated 

by a linear operation, that is g(x) = 	+ s'a = w'y+  where the 

vectors r and s are based on (2.7) but taking into account the 

restrictions a o=ak  and y+0=y+k . The weight vector w for a periodic cubic 

spline is still defined as wi=r 1 +stP -1Q. However, the matrices P and 

Q have lost their tridiagonal structure because of the equation 
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(4.2). However, the sparsity of matrix P can still be exploited to 

calculate its inverse efficiently and to avoid the use of a standard 

matrix inverse procedure. This is important for the computer 

algorithm that calculates the weight vector for a periodic cubic 

spline. Technical details are given in Appendix 5B. 

Regression model with seasonal effects 

Suppose that a sequence of observations follow a pattern 

which repeat itself over a stretch of s observations and that the 

appropriate regression model is the deterministic basic structural 

time series model as given by 

yt  = a + Bt + y t  + e t 	 (4.3) 

where e t  is a disturbance term with zero mean and variance o 2 . The 

level constant a and the fixed slope parameter B are unknown. The 

seasonal effect ',f t  is usually modelled by a set of dummy variables, 

see Johnston (1984). This approach is rather satisfactory provided 

that s is not large. For example, s being equal to 4 (quarterly) or 

12 (monthly) does not give any serious cause for concern. However, 

when s is equal to 24 (hourly) or 52 (weekly), a more parsimonious 

solution is needed. In the following, the periodic cubic spline is 

considered as an alternative to dummy and trigonometric variables. 

In order to parameterize the seasonal pattern by a periodic 

cubic spline, consider the periodic spline of the previous section 

and take x-=j for j=1,...,s and k<s=K. The seasonal component is 

defined by y t=y i  when a j-th seasonal effect is appropriate and 

Y -=WW J (4.4) 

where w. is the periodic spline weight vector depending on the mesh 

and the index value j. The kxl vector 1,4.=(*...;y0 is the spline 

parameter vector which elements correspond to the mesh of the 

periodic spline. 

To avoid the problem of multi-collinearity with the constant 

term a, the periodic effects are restricted to sum up to zero. This 
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problem does exist for a dummy and trigonometric seasonal model as 

well. For the periodic cubic spline, the restriction leads to 

E7=1Y; = lr iwl Y+ = w,:y+ = 0 

where w, is the kxl vector 

w  = E7 * 	=1w1 

This restriction is equivalent to the equation 

Yi+(  = '171 (w.j/w*k) Yi = - (w**/w*k) t  Y: 

(4.5a) 

(4.5b) 

(4.6) 

where w„ i  is the i-th element of the vector w„ and the (k-1)x1 vectors 

w„„ and y: are defined as w„,---- (w„ i ;...;v4 k _ i ) and y:=(y1;...;y:c . 1 ), 

respectively. The previous steps lead to the following specification 

of the j-th seasonal effect 

y. = z!y: 
	

(4.7) 

where z j  is a (k-1) x1 vector given by z i=w1,-(wik/w,k)w„ and 

wi,=(wjg...;w10( . 10 such that 	is the i-th element of w. and 

Wi-=(Wii,;Wjk ). The calculation of vector z i  is straightforward when the 

vector sequence w 1  is available for j=1,...,s. 

In the special case that k=s, the vector w j  is a vector of 

zeroes except its j-th element is equal to unity. Thus, the stack of 

all weight vectors wl, for j=1,...,s, is equal to the identity 

matrix, e.g. W=I. It is not surprising that in this case the 

regression model with periodic splines collapses to the dummy 

seasonal regression model with y i =y+j  for j=1,...,s. 
An alternative method to model seasonality in a regression 

model is to use a set of (s-1) trigonometric terms as mentioned 

earlier. It is possible to cut down the number of trigonometric 

terms by dropping the ones, related to some frequency level, which 

are not significant in the seasonal pattern of the observed data. 

This not a viable option when the seasonal pattern exhibits sharp 

peaks as, for example, typically happens with sales of certain 
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consumer goods which tend to be concentrated in the weeks 

immediately before Christmas. It might be an entirely satisfactory 

option for a slowly changing seasonal effect such as average weekly 

temperature. The latter case is discussed as a part of the next 

illustration. 

Illustration 

Consider a time series of weekly averages of daily 

temperature measurements at noon from January 1985 to August 1990 as 

given in figure 5.7. Thus, s=52 and the number of observations is 

n=347. The cyclical behaviour is the prominent feature of the time 

series. A regression model with a set of 52 seasonal dummies can be 

considered or, alternatively, the seasonal variation can be modelled 

by a periodic cubic spline based on the mesh of week numbers 

(10,22,32,42,52) such that k=5. The seasonal patterns generated by 

seasonal dummies and by a periodic cubic spline are given in figure 

5.8. The periodic cubic spline follows the seasonal dummies closely 

and smoothly. 

A simple F-test shows that the null hypothesis of the 

'restricted' model with a periodic cubic spline is not rejected. The 

test is constructed as follows. Denote qg as the average of the 

squared residual for the periodic cubic spline regression model, 

qg=4.04, and denote qT as the average of the squared residual of the 

dummy seasonal regression model, qT=3.88. The latter model has n-s 

degrees of freedom and the former model is of the same class of the 

latter model but with s-k linear restrictions imposed on it. The 

test criterion 

F*  = ( (q  - q2) /q2 ) * (n-s)/(s-k) 

is, under the null hypothesis, F-distributed with (s-k,n-s)=(47,295) 

degrees of freedom. The test value F *  is 0.26 which is much less than 

the critical value of the F-distribution 1.48 with 95% confidence. 

Note that this F-ratio has a direct relationship with other test 

criterions such as the AIC, see Maddala (1988, table 12.4, p.431). 

The cyclical variation can be modelled by a reduced set of 

trigonometric terms as well. To compare both specifications, a 
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regression model is fitted with four trigonometric terms, i.e. 

yt  = 11 1 (1;cos 2itt/s;sin 2nt/s;cos 47tt/s;sin 4nt/s) + e t  

where 3 is a (5x1) vector of coefficients. The average squared 

residual of the estimated trigonometric regression model is equal to 

q2=4.043. This result is very close to the cubic spline model with 

five knots. It is concluded that the trigonometric and the cubic 

spline solution are competitive when the seasonal variation is 

smooth. 

5. TIME-VARYING CUBIC SPLINES 

The illustration of the previous section shows that in 

specific cases cyclical or seasonal variations in time series can be 

modelled successfully by a periodic cubic spline. Typically, in the 

context of time series models, it is argued before that components 

such as trend and seasonal may change over time, see the discussion 

on the COAL series in section 2.7. The illustration of the previous 

section shows clearly a periodic variation in the time series of 

average temperatures but it is far from a constant periodic 

behaviour. Therefore, it is important to let this periodic cubic 

spline change over time. 

Consider the basic structural time series model where, 

instead of a dummy or trigonometric seasonal, the seasonal component 

is modelled as a periodic cubic spline as discussed in the previous 

section. However, now the spline is supposed to evolve over time. 

The spline vector 1,4" is assumed to follow a vector of random walks, 

that is 

Y +t 	 Xt 
	 (5 . 1) 

where x t  is a disturbance vector with zero mean and covariance matrix 

a2  V. Note that seasonal effect y t  is equal to w ily+t  where period j is 

prevailing at time t. This specification can be compared with a 

time-varying regression model. 

Again, the restriction is imposed that the sum of the 
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seasonal components sum up to zero. Therefore, it is enforced that 

w,:y+t=0 where w„ is defined in (4.5b). This restriction leads to 

w:Y +t = 	 w:Xt 
	 (5.2) 

such that also the term w:x t  must be restricted to zero. In the 

previous section it is shown how the 'sum-to-zero' restriction for y 4- 

 is implemented by dropping the last element of y+  and transforming 

the weight vector w 1  into z i . Similarly, the i-th seasonal effect at 

time t is measured by 

Yit = z Y:t 
	 (5.3) 

where z. is specified in•the previous section and the (k-1)x1 

periodic spline vector y4" is given by (y it 1.t .—W0(-1)t) and y 4it  is the 

i-th element of the vector y 4t. . The time-variation for the periodic 

spline vector is now reduced to 

- Y;v1 ) 
	 (5.4) 

where x" is a disturbance vector with zero mean and covariance 

matrix o2 V„. 

The 'sum-to-zero' restriction for the disturbance vector x t 

 implies that 

x kt  = - ( w./1,7*d'x -t 
	 (5.5) 

where x it  is the i-th element of the vector x t  and X* t=(x1 t ;.-.;X(k_1 )t ) 
such that Xt= (X*t;Xkt) • The cumulative spline weight vector w, can be 

decomposed by (w„;w, k) where w„.„ --(w„ 1 ;... . ; w„„) and w„ i  is the i-th 

element of vector w„, see equation (2.6). This restriction imposes a 

special covariance matrix. The matrix V can be partioned into 

(V„,v k ;v i! ,vkk) where 02 V„ is the covariance matrix of disturbance 

vector x" and 

Vk  = COV (X*t, Xl,a ) /02  = -V* (W**/W*k) 

Vkk 	Var Xkt / 02  = (w**/w*k) I  V* (W**/W*k) 
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Since the covariance matrix o 2 V is not necessarily symmetric 

anymore, the elements of the periodic spline vector rt  do not possess 

the same statistical properties. This is undesirable and, therefore, 

the covariance matrix o 2 V*  must be chosen in such a way that V is a 

symmetric matrix. This is achieved by assuming 

= I - w„w„Vw,:w * 	 (5.6) 

because this implies a symmetric matrix V, i.e. V=I-w,,w,Uw;w * . To 

show this is true, it only has to be shown that (v k ;vkk) is equivalent 

to the last column of V. It follows that 

vk  = 	 = w..( 	 - 1)/w.k  = -w..(w.k/W w.) 
Vkk = (W**/W*k ) t  V* (W**/W*k) 	W** ( 1  - (W*: W**/W W*) ) /W*Z 

= 	 = 1 - w4/Ww. 

Thus, all elements of the time-varying periodic spline vector 	have 

the same properties if V..=I-w *,„w„:/w,:w* . 

It is mentioned in the previous section that, for the special 

case when k=s, the stack of spline weight vectors, W, is an identity 

matrix. In the case of time-varying periodic cubic splines for the 

seasonal component, the model reduces to the seasonal model as 

advocated by Harrison & Stevens (1976). Therefore, the time-varying 

periodic cubic spline can be regarded as a generalization of the 

seasonal component of Harrison & Stevens (1976). 

The next chapter provides an elaborate illustration of how a 

time-varying cubic spline can be incorporated in a time series 

model... The cubic spline can be placed in the SSF (2.1)-(2.2) easily. 

The y t  vector is the state vector and the transition matrix T t  is 

equal to the unity matrix. The covariance structure must be 

constructed such that G tG;=1, HX=I-w**w.,:/w,:w*  and HtG:=0. Finally, 

the weight spline vector z t  is placed in Zt. 
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6. COMPUTER PROGRAMS 

The appendices 5A and 5B give some more details of how to 

construct the cubic spline weights efficiently. The implementation 

of all required calculations is provided in a set of Pascal computer 

procedures which are given in appendix 5C. 

The NatPinvQ procedure 

Appendix 5A shows that the matrices P and Q are tridiagonal. 

This procedure calculates the matrix product P -1Q which is needed to 

get the weight vector for a natural cubic spline wi=r'+s'P -1 Q. The 

main part of the routine is provided by Press et.al  (1989) and deals 

with inverting a tridiagonal matrix. The comments in the code of the 

procedure speak for themselves. 

The PerPinvQ procedure 

This procedure calculates the matrix product P -1 Q which is 

needed to get the weight vector for a periodic cubic spline 

w 1 =r 1 -1-stP-1 Q. The matrices P and Q are sparse, not tri-diagonal, and 

the procedure adopts the efficient method of calculating the inverse . 

of P as given in appendix 5B. 

The NatSplineWeight procedure 

The weight vector w for a natural cubic spline is calculated 

according to the equation (2.7) and the set of restriction Pa=Qy + . 

The matrix producy 13-1 Q is obtained from procedure NatPinvQ. 

The PerSplineWeight procedure 

The weight vector w for a periodic cubic spline is calculated 

as discussed in section 4. The matrix product P-1 Q is obtained from 

procedure PerPinvQ. 

The SeasSpline procedure 

This procedure transforms a set of periodic spline weight 

vectors in order to let the spline sum up to zero, see discussion in 

section 4. The last elements of all the weight vectors are replaced 

by unity values. 
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7. CONCLUDING REMARKS 

Cubic splines can be used in several statistical 

applications. For example, they can be implemented in a regression 

model for structural change and they can be used to describe non-

linear responses and smooth seasonal variations. Especially for the 

case when the cubic spline is used to model periodic movements in 

time series, it is suggested that the parameters must be allowed to 

change over time. Section 5 of this chapter has given the technical 

details to let cubic splines be time-varying. The necessary 

computations are implemented in a set of efficient computer 

procedures. 

NOTES 

(13  The Puget Sound, Power .& Light company, Bellevue, Washington 

State, USA has provided hourly data from 1 January 1985 to 31 August 

1991 of load demand in mega-watts and of temperature in Fahrenheit. 

Casey Brace has been extremely helpful in supplying the data to us. 



APPENDIX 5A 

Calculation of weight vector for natural cubic spline 

In this appendix the details are given of how to construct 

the weight vector for a natural cubic spline in order to evaluate 

the spline function g(x)=Wy+ for a specific value x. Suppose a 

natural cubic spline is based on a mesh of 9 elements such that k=8. 

The weight vector w is constructed in section 2 as wi=r'+siP -1 Q where 

the matrices P and Q are, respectively, given by 

2 0 0 0 0 0 0 0 0 
z 1 /u 1  2 z 2 /u1 0 0 0 0 0 0 
0 Z 2 /U 2 2 Z 3 /11 2 0 0 0 0 0 
0 0 z 3/u3 2 z 4/u 3 0 0 0 0 
0 0 0 Z 4 /U4 2 Z 5 /11 4 0 0 0 
0 0 0 0 Z 5 /U5 2 z 6/u5  0 0 
0 0 0 0 0 Z 6 /116 2 Z 7 /U6 0 
0 0 0 0 0 0 z 7 /u7  2 Z 8 /U 7 
0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 
6/z iu 1  -6/z 1 z 2 6/Z 211 i  0 0 0 0 0 0 
0 6 / Z 2U 2  - 6 /Z 2 Z 3  6 /Z 3U 2  0 0 0 0 0 
0 0 6 /Z 3U3  -6/z 3 Z 4 6 / Z 4U 3  0 0 0 0 
0 0 0 6 /Z 4U4  -6 / Z 4 Z 5  6 /Z 5U4  0 0 0 
0 0 0 0 6 /Z 5U 5  -6 /Z 5 Z 6  6/z 6U 5 0 0 
0 0 0 .0 0 6 /Z 6U6  - 6 /Z 6 Z 7  6 /Z 7U 6  0 
0 0 0 0 0 0 6 /Z 7U 7  - 6 /Z 7 Z 8  6 /Z 8U 7  
0 0 0 0 0 0 0 0 0 

and u 1 .z 1 +z.1+1  for i=1 ..... 7. The inverse of a tridiagonal matrix as P 

can be calculated recursively as explained in Press et.al. (1988). 

The vectors r and s correspond to a specific value x. Assume that x 

is a value between x; and x+4 . For this case the vectors r and s are, 

respectively, given by 

[0;0;k/z 4 ;1/z 4 ;0;0;0;0] 

[0;0;(k/6z 4 )(k 2  -z:);(1/6z 4 )(1 2 -z;);0;0;0;0] 

where k=x+4-x and 1=x-x+3 . The vector w is now calculated 

straightforwardly. 
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APPENDIX 5B 

Calculation of weight vector for periodic cubic spline 

In this appendix the details are given of how to construct 

the weight vector for a periodic cubic spline in order to evaluate 

the spline function g(x)=Wy' for a specific value x. Suppose a 

periodic cubic spline is based on a mesh of 8 elements such that 

k=8. The weight vector w is constructed in section 4 as w 1 =r 1 +s 1 P -1 Q 

where the matrices P and Q are, respectively, given by 

2 Z 2 /11 1 0 0 0 0 0 z 1 /u1 
Z 2/U2 2 Z 3/U2 0 0 0 0 0 
0 Z3/U'3 2 Z 4/U3 0 0 0 0 
0 0 . Z 4/U4 2 Z 5 /U4 0 0 0 
0 0 0 Z 5/U5 2 Z 6/U5 0 0 
0 0 0 0 Z 6/U6 2 z 7/u6 0 
0 0 0 0 0 Z 7 /U7 2 z 8/u7 
Z 1 /U8 0 0 0 0 0 Z 8/U8 2 

-6/z 1 z 2  6/z 2u 1  0 0 0 0 0 6/z 1u1 
6/z 2u2  -6/z 2 z 3  6 ./z3u2  0 0 0 0 0 
0 6/z 3u3  -6/z 3z 4  6/z 4u3  0 0 0 0 
0 0 6/z 4u4  -6/z 4 Z 5 6/Z 5U4  0 0 0 
0 0 0 6/Z 5U5  -6/Z 5 Z 6  6/z6u5 0 0 
0 0 0 0 6/z 6u6  -6/z 6 z 7  6/z 7u6 0 
0 0 0 0 0 6/z 7u 7  -6/z 7 z 8  6/z 8u7  
6/Z 1 118  0 0 0 0 0 6/z 8u 8  - 6/z 1 z 8  

and u i =z 1 +z i.0  for i=1 ..... 7 and u8=z 1 +z 3 . The matrix P has lost its 

tridiagonal structure but is still sparse. This can be exploited to 

preserve an efficient method of calculating its inverse. The matrix 

P can be expressed as P = P. + U'V where P. is the tridiagonal part 

of matrix P, U=(0,6/z 1u 1 ;6/z 1u8 ,0), V=(1,0;0,1) and 0 is a row vector 

of seven zeroes. The matrix inversion lemma 

P -1  = P, 1  - P: 11P(VP:Ut 	I) -1VP: 1  

can be applied which can be rewritten as 
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and X is a 8x8 matrix of zeroes except the corner elements are non-

zero, that is 

X11 = 6x21 /Z 1 U 1 
X18 = 6x22 /Z 1 U 1 
X8,1 = 6x1,1 7z 1 u8 
X8,8 = 6x12 /Z 1 U8 

where xLi  is the (i,j) element of the 2x2 matrix (VP; 1 U' + I) -1 . The 

calculation of P -1  is now straightforward. This method of inverting P 

does require the inverse of the tridiagonal matrix P. and the inverse 

of. a 2x2 matrix. Note that (a,b;c,d) -1 =(d,-b;-c,a)/(ad-bc) where 

a,b,c and d are scalars. 

Finally, assume that x is a value between x3 and x+4 . For this 

case the vectors r and s are, respectively, given by 

[0;0;k/z 4 ;1/z 4 ;0;0;0;0] 

[0;0; (k/6z 4 ) (k 2 -z:);(1/6z 4 )(1 2 -z4);0;0;0;0] 

where k=x+4-x and 1=x-x3+. The vector w is now calculated 

straightforwardly. 



TABLES & FIGURES 

Table 5.1 

Frequency distribution of variable x 

Class 	Frequency 

	

0 - 10 	20 

	

10 - 20 	40 

	

20 - 30 	30 

	

30 - 50 	10 

total 	100 
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Figure 5.1 A cubic spline through a set of points 

177 

90- 	 

ao- 

70 - 

60 - 

50 - 

4-0 - 

30 - 

20 - 

10 - 

0 
0 	10 20 30 40 50 60 70 60 do io 
• 

Figure 5.2a First derivative of a cubic spline 



Figure 5.2b Second derivative of a cubic spline 
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Figure 5.2c Third derivative of a cubic spline 
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Figure 5.3 Interpolated monthly averages of temperature 

Figure 5.4 Frequency histogram and cubic spline polygon 
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Figure 5.5 Scatterplot for all weekdays in 1990 at 1:00 pm 
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7igure 5.6 Cubic spline for response of load demand to temperature 
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Figure 5.7 Weekly averages of temperature at noon 

Figure 5.8 Weekly pattern of temp described by dummies & spline 
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CHAPTER 6 

SHORT TERM FORECASTING OF PERIODIC TIME SERIES 

USING TIME-VARYING SPLINES 

0. ABSTRACT 

This chapter shows that time-varying splines can effectively 

be used for modelling a changing periodic pattern. This method is 

relatively parsimonious compared with other approaches. The time-

varying spline is embedded within a structural time series model 

which is applied to forecast hourly electricity demand, with the 

periodic movements being intra-daily or intra-weekly. The full model 

contains other components, including a (non-linear) temperature 

response which is also modelled using splines. 

Keywords : Cubic splines; Forecasting; Load curve; Non-linear 

regression. 

.1.. INTRODUCTION 

The theoretical results developed in the previous chapter 

will be applied to the problem of modelling intra-daily and/or 

intra-weekly periodic (seasonal) effects in time series. This 

approach is illustrated with a time series of hourly demand for 

electricity. The data are provided by the Puget Sound Power & Light 

company [1] 

Time-varying seasonal effects can be captured by seasonal 

ARIMA models and for some formulations, such as the 'airline' model, 

it is possible to extract the seasonal component, see chapter 4 and 

Hillmer & Tiao (1982). An alternative approach, which lends itself 

much more readily to the kinds of problems discussed in this 

chapter, is based on structural time series models, see chapter 4 

and Harvey (1989)-. There are now many applications of the basic 

structural model in the literature. A case which shows up time-

varying seasonality quite clearly is the consumption of electricity 
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in the UK, reported in Harvey (1989, p95-98), where the change in 

seasonality in the early 1970's can be explained by the availability 

of gas from the North Seas and the subsequent substitution of 

electricity by gas in heating. 

Intra-daily effects arise in a variety of applications. In 

the context of electricity demand the intra-daily pattern is known 

as the load curve. A parsimonious way of modelling the load curve is 

highly desirable for hourly observations, and become even more 

important when observations are made for every half or quarter hour. 

It is important to allow such splines to evolve over time. The 

intra-daily pattern may change over a period of several years due to 

new technology. It certainly changes within the year as can be seen 

in figure 6.1 where typical load curves are plotted for a selection 

of months in 1990 [13 . As one might expect there are marked changes 

over the year with the intra-daily variations in demand being much 

greater in the winter. 

This chapter is organised as follows. Using the technology 

developed in the previous chapter, the next section shows how to 

model intra-daily and intra-weekly effects in a time series. Section 

3 incorporates this approach, together with other unobserved 

components, in a structural time series model. Some alternative 

methods for modelling hourly load demand are addressed in chapter 4. 

The illustration is given in section 5 and the developed computer 

program SHELF, that is the Structural Hourly Electricity Load 

Forecaster, is discussed in section 6. 

2. STATISTICAL TREATMENT OF INTRA-DAILY EFFECTS 

In many cases the intra-daily effects change over the year 

with the seasons. Since the seasons are repeated each year, the 

intra-daily effects behave like a cycle movement in the long run. To 

model the different patterns throughout the year, ideally, the 

intra-daily effects require different models for different times of 

the year. Estimation requires a model which effectively allowed one 

to average over past years. To transfer smoothly from one type of 

model to another, periodic splines can be considered. Indeed, such 
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an approach is cumbersome to implement, it can be far off from a 

parsimonious solution and it may not be very satisfactory when there 

are only a few years of data available. However, in some cases it 

might be a viable option and further empirical research in this 

direction can be fruitful. 

The approach of this research is to allow the intra-daily 

effect to accomodate seasonal and other changes by a slow movement 

over time. The time-varying spline technique enables this to be done 

with a relatively small number of parameters. With hourly data it is 

important to economise on the number of parameters since, without 

any restriction, a stochastic intra-weekly effect will contribute 

167 elements to the state vector of the state space formulation. 

Obviously, this problem becomes more acute if observations are 

available at more frequent intervals. 

To model intra-daily or intra-weekly effects parsimoniously, 

two approaches can be considered which are based on two different 

entities, i.e. the day or the week. The former approach interprets 

the intra-weekly effect as a cumulation of seven identical intra-

daily effects where some days or some of the same hours at specific 

days may be different and require a correction. The latter approach 

takes the week as one entity and restrict some parts of the weeks to 
be the same. Both approaches will be explored in this section. 

Intra-daily effects 

The standard intra-daily effect can be appropriately 

described by a periodic cubic spline, see section 5.3. The main 

practical problem is to determine the set of mesh-values, e.g. the 

x-positions of the knots. Generally, sections of the periodic 

pattern displaying sharp peaks require relatively more knots than do° 

less variable sections. However, it must be stressed that a certain 

amount of experimentation is needed to determine a good mesh. There 

is really no systematic way of going about this problem, although 

the starting point is obviously to use prior knowledge, an 

examination of unrestricted estimates or a good investigation of the 
graph to get an idea of the pattern. Next, an illustration discusses 

our approach in more detail. 
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Illustration 

In the context of electricity demand within a day, the main 

peaks are around breakfast time and, to a lesser extent, in the 

early evening. Figure 6.2 shows an example of the intra-daily 

pattern of the demand for electricity (Friday, 11 March 1988 (12 ). The 

set of mesh values for the periodic cubic spline can be chosen as 

(4, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20, 23, 24), compare Hendricks 

et.al . (1979). The corresponding regression model requires thirteen 

parameters and represents a considerable saving over the 24 needed 

for an unrestricted intra-daily component (dummies). The regression 

results are reported in table 6.1. Note that the square root average 

squared interpolation error is q=5.148 for this example. 

As discussed in section 5.4, the intra-daily pattern can also 

be described by a reduced number of trigonometric terms. The 

corresponding regression model with a constant and twelve 

trigonometr.ic terms gives a worse fit in terms of the square root 

average squared interpolation error because now q=15.675. Figure 6.3 

presents the graphs of two series of interpolation errors, one 

resulting from a periodic cubic spline and one resulting from 

trigonometrio,terms. 

Unfortunately, the same intra-daily pattern will not normally 

apply to all days of the week. In particular, Saturdays and Sundays 

may be different to weekdays, and in the case of the illustration 

above, there is no doubt that they are different. One way of 

handling this problem is to set up a time-varying spline to give an 

intra-daily correction factor to atypical days. Continuity is 

enforced by setting up splines which are constrained to be zero at 

the beginning and end of the day. This constraint is reflected in 

the vector of spline weights. Consider the periodic spline y i=wity+ 

 for j=1,...,s. To enforce this spline to be zero at time s, it is 

restricted that 14;=0 because w s=(0;. . ;0;1) . This restriction is 

equivalent to dropping all last elements of w j , for j=1,...,s, such 

that the vectors of spline weights are now all of dimension k-1. 

Using a correction factor is likely to be particularly 

appealing when the difference between the intra-daily pattern and 

the standard intra-daily pattern is relatively smooth. This implies 
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that fewer knots are needed as compared with a full intra-daily 

model. The same argument also leads one to consider modelling Sunday 

by a Saturday correction factor plus a further correction factor, 

again constrained to be zero at its end points, for the difference 

between Saturday and Sunday. The use of correction factors means 

that the intra-daily effects do not sum up to zero over a non-

standard day. Instead the sum of the correction factors gives the 

total amount by which the day in question differs from a non-

standard day. 

There are two disadvantages to the use of correction factors. 

The first is that they lead to discontinuity in first and second 

derivatives of the periodic cubic spline at the point where they 

join the standard intra-daily spline. Therefore, the transfer from a 

standard day to an atypical day may be less smooth. The second is 

that when one non-standard day follows another, as with Sunday and 

Saturday; the zero end point constraints imply that the intra-daily 

effect at the point where the correction factors meet should be as 

for a standard day. This can be unrealistic in some applications. 

However, the second problem may be solved by having one single 

correction factor for the whole weekend (which may include Friday 

afternoon and Monday morning). 

Illustration (cont) 

Figure 6.4 presents a typical weekly pattern of hourly 

electricity demand. A periodic spline for a standard day is fitted 

based on the mesh as given earlier. The interpolation errors are 

plotted in figure 6.5a. It is obvious that the standard day spline. 

is not appropriate for the Weekend and a correction spline is 

needed. After some initial trials, it is conceived that a correction, 

factor for Saturday may be based on the mesh ( 1, 4, 6, 7, 8, 

9, 10, 15, 18, 20, 24). The interpolation errors after a standard 

day correction and a Saturday correction applied to Saturday and  

Sunday  are plotted in figure 6.5b. Finally, an additional correction 

factor for Sunday may be based on the mesh ( 1, 6, 9, 10, 11, 14, 

17, 20, 24). The final interpolation errors for Sunday are plotted 

in 6.5c. It is this flexibility of cubic splines which makes them 

preferable in practice to a set of trigonometric terms. 
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This approach based on correction splines seems to work 

satisfactorily, see figure 6.6. The salient feature of the 

correction factor for Saturday is that the morning peak is less 

pronounced and occurs an hour or so later. This is exactly what we 

would expect given our prior knowledge of behaviour on Saturday 

mornings. The correction spline for Sunday can be interpreted along 

these lines as well. 

Thus, for this illustration concerning electricity demand, it 

is possible to base an additional Sunday correction factor on only 

nine knots, while Saturday requires eleven. The two correction 

factors meet each other at midnight when demand is low. This means 

that it is not particular important that first and second 

derivatives are discontinuous• and that the knots at midnight are 

restricted to be the same as for standard days. 

Intra-weekly effects 

Another solution to the problem of different patterns for 

different days is to set up a periodic spline for the whole week. 

The zero sum constraint is now imposed over the whole week and s=168 

when hourly observations are available. This approach does not 

suffer from the disadvantages noted at the end of the previous sub-

section, but at first sight it would appear to be very inefficient 

if the patterns for some of the days are the same. Fortunately, it 

is possible to take account of this problem. Thus, the vector If +t  may 

contain sets of parameters corresponding to the knots in each of the 

seven days. In that case, it is possible to work with a parameter 

vector of reduced dimension which only contains the elements which 

are different. Typically, three sets of parameters will be 

distinguished, e.g. the sets corresponding to weekdays, Saturdays 

and Sundays. The condensed parameter vector is denoted by 1 ,()  such 
that 

•K.  = Ry t 	 (2.1) 

where R can be regarded as a selection matrix of zeroes and ones. 

Now if z. is the vector of periodic cubic spline weights, which 
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enforce the 'sum-to-zero' restriction (see section 5.4), then the 

effect associated with the j-th hour in the week is 

y t  = zi Ryt = z7'y ct' 
	

(2.2) 

where period j is prevailing at time t for j=1,...,s. However, since 

some of the weight vectors z1).:Riz i  will be the same, less than the 

full complement of weight vectors need to be stored. Furthermore, 

although the vector z j  can become large, it needs to be computed only 

once and then post-multiplied by R to yield the sequance of vectors 

z? for j=1,...,s. 

This solution is very flexible. The net effect of this 

approach is that days which depend on the same section of y +t  will not 

have the same first and second derivatives at the knots because the 

restriction matrix R does only involve vector l ft . This does mean 

that, although the level of the knots are the same, the patterns for 

identical days can be (slightly) different since the parameters will 

partly depend on adjacent days. Suppose Wednesday and Friday depend 

on the same section of y (t) , the realized patterns on these days may 

differ because Friday is influenced by the weekend days. This 

additional flexibility is almost certainly an advantage. 

Illustration (cont) 

Again, consider figure 6.4 which shows a typical weekly load 

pattern. It is obvious that the daily patterns for Tuesday, 

Wednesday and Thursday are the same and that they are clearly 

different from the Saturday and Sunday patterns. The Monday morning 

and Friday afternoon/evening are slightly different from their 

counterparts at a normal weekday due to the influence of the 

adjacent weekends. The weekspline vector y+  may be based on the mesh' 

Sunday ( 4, 7, 8, 9,10,13,17,18,20,23,24) 
Monday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24) 
Tuesday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24) 
Wednesday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24) 
Thursday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24) 
Friday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24) 
Saturday ( 4, 6, 7, 8, 9,12,16,18,20,23,24) 
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The restricted spline y °  is based on the spline vector y +  and a set 

of constraints to ensure that Sunday, Saturday, Monday-morning (am 

hours) and Friday afternoon (pm hours) are based on different 

sections of the spline vector than the sections for standard days. 

3. SHORT TERM FORECASTING WITH STRUCTURAL TIME SERIES MODELS 

This section considers the modelling of observations which 

are measured within the day, say each hour or each minute. The main 

purpose of the model is to forecast future realizations two or three 

days ahead. Our approach is based on structural time series models 

which are discussed throughout the earlier chapters; for a full 

discussion, see Harvey (1989). A structural time series model for 

intra-daily effects and with explanatory variables included can be 

expressed by 

yt 	 Yt 	8 t 	et 
	 (3.1) 

where li t  denotes the underlying level which may include other 

unobserved components such as slope and cycle, y t  is the intra-daily 

effect, S t  refers to the total of explanatory responses and e t  is the 

white noise disturbance term. In a Gaussian model, the disturbances 

driving the various components are assumed to be normally 

distributed. The complement of components li t , yt  and e t  will be 

referred to as the univariate part of the model. 

The model can be handled by placing it in the state space 

form. The Kalman filter and associated recursive algorithms provide 

the basis for updating, prediction and smoothing, see chapters 2 and 

3. In addition the Kalman filter is used to construct the likelihood' 

function. Maximization of the likelihood yields estimators of the 

hyperparameters (variance parameters). Finally, the Kalman filter 

provides the ideal environment to produce multi-steps ahead 

forecasts straightforwardly. 
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Univariate components 

The model as it stands can be specified in different ways. 

The level p t  picks up both short and long run movements because e t  is 

white noise. Since the primary concern is short term forecasting, it 

will be appropriate for most cases to let li t  follow a random walk 

rather than the more elaborate local linear trend. However, a more 

general model is obtained when ti t  represents solely the long term 

'trend and e t  is generalized to become a stationary process, such as a 

first or second order autoregression, in order to describe the 

short-term dynamics. 

In the latter case, p t  may represent seasonal and cyclical 

movements which can be modelled by a full set or a limited number of 

trigonometric terms. For example, a time-varying trigonometric cycle 

is modelled by 

= cos (2n 	+ sin(2n/p)* t _ i  + K t 	 (3.2a) 

= -sin(2n/p)ip t . 1  + cos(2n /13 ) 14-1 	let 
	 (3.2b) 

where p is the length of the cycle, ic t  and et  are disturbances with 

mean zero and variance q. Also a stochastic slope term such as p t  
can be included in the level. Thus a possible specification for the 

long term trend may be µt=4 + Ip t  where 4 is a local linear trend and 
t is the cycle term (3.2). Typically, the long term dynamics will 

evolve very slowly over time and, therefore, their variance 

parameters tend to be very close to zero (almost deterministic). 

Alternatively, the long term trend can be based on a periodic spline 

or on a full seasonal component. 

Explanatory variables 

The introduction of explanatory variables into structural 

time series models is quite straightforward if these variables enter 

linearly, see Harvey (1989, Chapter 7). Suppose, a set of h 

explanatory variables are available and their total effect on the 

dependent variable yt  in the model (3.1) is denoted by S t  where 
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S t  = Xt 8 + 	 (3.3) 

where Xt  is the (hxl) row vector of explanatory variables at time t 

and 8 +  is the regression vector of coefficients. In the context of 

time series, explanatory variables may respond differently to the 

dependent variable y t  at various stages of the seasonal cycle, say 

winter and summer. It is difficult to extract the response pattern 

because the number of available observations are in general not 

large. For time series models which concern short term dynamics, the 

different responses at various sections in the periodic variation 

may be more pronounced and, therefore, they may be easier to 

identify. The following method is developed to extract intra-daily 

response patterns of explanatory variables. The results below can be 

easily generalised for an intra-weekly response pattern. 

If the j-th time of the day, j=1,...,s, is prevailing and 

only one explanatory variable is considered (h=1), then 

S t  = Xt8 I 	 (3.4a) 

where the scalar 45 4: may be parameterized as 

ot= (45 * . + 1)S x 
	

(3.4b) 

such that 

8! = 0 J and 
J=1 J 

= sSx (3.5) 

Thus if S! = 0 for j=1,...,s, the response of the explanatory 

variable is the same throughout the day. In this specification, the 

unknown scalar S x  can be regarded as the scaling parameter and the ' 

set of weights ei  determines the response of the explanatory variable 

within the day. The shape of the response can be approximated by a 

periodic cubic spline which is specified as (5.4.7) such that it 

sums up to zero. The spline is assumed to be based on a mesh with k 

elements. Thus 8 *. = z!yx and the response effect becomes 

S t  = 	(1 + zly x ) 	 (3.6) 
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where the j-th time of the day prevails. The set of parameters for 

the regression response 5 t  has reduced from s to k elements. The 

final result is that the response of an explanatory variable is 

specified as usual but rescaled by a set of weights which sum up to 

one within the day. The weights follow a pattern described by a 

periodic cubic spline. This approach is easily generalised for h 

explanatory variables when it is assumed that their responses to y t 

 show the same intra-daily pattern. In this case, the specification 

(3.6) remains but X t  and 6" are a (hxl) row and column vector, 

respectively. This specification contains (h+k-1) parameters. Since 

any non-linear response function can be approximated by a cubic 

spline which can be specified as a multiple regression, compare X t 8x, 

it is straightforward to generalize the solution above of modelling 

different responses within the day for non-linear explanatory 

variables. 

The two parameters 6 x  and le x  do not relate to each other in a 

linear fashion. This causes problems in linear estimation. In 

referring back to the discussion of section 5.3, where distributed 

lags are included in a non-linear regression model, a solution 

arises because estimation may proceed along these lines. The two 

different response specifications are given by 

atftax 	 where 	= X t (1 + zJy x ) 
	

(3.7a) 

8t = xt 	z;' y" 
	

where x t  = X t el x  and z. = x t z j 
	(3.7b) 

and the iterative estimation process can be initialized with setting 

yx  equal to a zero vector. 

There is no difficulty, in principle, in letting the 

parameter vector 6 x  change over time according to a multivariate 

random walk. The time-varying parameters become part of the state 

vector and the covariance structure (hyperparameters) governing the 

rate at which they can change is estimated numerically along with 

the other hyperparameters. Finally, without the restrictions implied 

by (3.4) it may be considered to use a bivariate spline, see Poirier 

(1976), to allow the shape of the response to change within the day. 

This would require many more parameters and could become quite 

complex and too elaborate. 
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Atypical days 

In many social economic time series with weekly, daily, 

hourly or more frequent observations, the influences of atypical 

days such as Christmas, New Year, Easter and Bank holidays are 

pronounced. Some public holidays can be handled by treating them as 

though they were Sundays. However, this is unlikely to be 

satisfactory for specific holidays such as Christmas and New Year. 

The best thing to do in such cases is probably to have a special 

intra-daily correction factor which is separate from the rest of the 

model and is just estimated from past observations, in terms of 

deviations from the underlying level, on that particular holiday. 

Forecasts of future values can then be made by adding this 

correction factor to the predicted underlying level. The observed 

holiday values are probably best treated as missing observations, 

since to include them could easily introduce distortions into future 

estimates. This may also apply to some days after a public holiday. 

4. VARIOUS APPROACHES TO MODELLING HOURLY ELECTRICITY LOAD DEMAND 

Intra-daily or intra-weekly effects arise in a variety of 

applications. In the context of electricity demand the intra-daily 

pattern is known as the load-curve. A parsimonious way of modelling 

the load curve is highly desirable for hourly observations e  and 

becomes even more important when observations are made every half or 

quarter hour. Our preferred solution is based on the short-term 

forecasting model developed in the previous section. It is shown in 

the next section that this approach provides valuable interpretable 

statistical information and has a very good short-term forecasting 

performance. 

The collection of papers in Bunn & Falmer (1985) gives some 

indication indication of the type of models which have been employed in short-

term forecasting of energy up to now. The main approaches seems to 

be based on ARIMA models, regression, exponential smoothing or some 

mixtures of these. 
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For daily observations the ARIMA 'airline' model, based on 

the AA7  operator, is sometimes used. For hourly observation, the 

'airline' model becomes 

AA168Yt 	(1+0L) (1-FeL 168 ) 	 (4.1) 

which might provide an approximation to the structural time series 

model for hourly observations, see section 2.3. However, it is 

unlikely that one would 'identify' such a model on the basis of the 

correlogram in the way Box & Jenkins (1976) advocate. In addition, 

it is not possible to take account of the fact that the pattern for 

some days may be the same such that the state vector of the state 

space form is of a huge dimension (#[a t ]=168). The introduction of a 

further component, such as a seasonal, is likely to make the 

selection of 'a suitable ARIMA model even more difficult, unless, it 

is derived from a structural time series model in the first place. 

An alternative approach is based. on treating hourly 

observations as a collection (vector) of 24 time series of daily 

observations. A regression model for every specific hour can be 

specified such that it is based on time functions, explanatory 

variables (temperature, humidity, etc.) and distributed lags. This 

approach may be sensible because the dynamic mechanisms driving the 

observations may be very different during night hours and hours 

around noon. However, this solution-is certainly not a parsimonious 

way of modelling hourly observations. Therefore, it is not 

surprising that this alternative approach may give better forecasts 

if enough observations are available. 

Alternatively, a small set of regression models can be 

formulated as described above for typical periods during the day, 

say, morning, afternoon, evening and night. The responses of the 

observations at each hour to these different models can be smoothly 

distributed through a periodic cubic spline. This may be a viable 

option in specific cases although it requires still a large set of 

parameters. Indeed, the number of parameters increases when atypical 

days do occur such as Saturday and Sunday. In addition, specific 

models have to be formulated for specific periods during these 

atypical days. 
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5. FORECASTING HOURLY ELECTRICITY LOAD DEMAND : 

THE PUGET POWER CASE 

This section illustrates the techniques developed in chapter 

5 and the previous sections of this chapter with hourly data from 

the Puget Sound Power & Light M 3  electricity company based in the 

north west of the USA. 

Data description 

The available data M3  consists of hourly load and temperature 

values from 1 January 1985 to 31 August 1991. The load is measured 

in mega-watts (MWs) and the temperature is measured in degrees 

Fahrenheit (F). Furthermore, every day is indicated by the day 

number (1..31), the month (1..12), the year (85..91), the day type 

(SUN,MON,TUE,WED,THU,FRI,SAT) and a holiday indicator (TRUE/FALSE). 

An important feature of the data is the intra-weekly pattern. 

Figure 6.7 presents the hourly load demand for the 5 ° , 15° , 25° , 35° 

 and 45th  week of 1990. Clearly, the weekly patterns do change 

throughout the year. However, all weekly patterns show that the 

Sunday and Saturday are different than the weekdays. The Monday 

morning (am hours) and the Friday afternoon/evening (pm hours) are, 

to a lesser extend, also different than these parts of the days 

during the other weekdays. Note that the Sunday of the 45 th  week in 

1990 was Veteran's day which is an official Holiday in the USA. 

It is recognised earlier that the response of temperature on 

electricity load demand is non-linear, see the illustration of 

section 5.3. The load demand increases with cold temperatures 

because heating is switched on. A period with extreme hot 

temperatures shows an increase in load demand as well because of 

air-conditioning. Therefore, the response of load demand on 

temperature is a U-shaped curve. The nature of this non-linear 

effect depends primarily on climatological factors but also on the 

technological development in a region. The load demand at some 

specific hours for all Wednesdays is scattered against the 

corresponding temperature for the days in 1990 (except for holidays) 
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in  figure 6.8. This shows that the various U-shapes are rather weak 

which is recognised earlier by Engle et.al . (1986) for the region 

Seattle (Washington, USA) but there is still a cause for using 

splines to model the temperature response. Indeed, the climate of 

the North-West of the USA is rather mild. Also, figure 6.8 shows 

that the response patterns do not strongly vary within the day. 

To get some idea of the long-term properties of the series, 

the load demand at some specific hours for weekdays is plotted in 

figure 6.9. These graphs show very clearly a weak upwards trend with 

a cyclical pattern over the year. The cycles corresponding to the 

early hours of a day are weaker than the cycles at later hours. The 

random shocks disturbing the cycle movements are explained by the 

influence of holidays and extreme weather conditions. 

Many other features do also influence the load curve, for 

example, other weather conditions (humidity, wind speed and cloud 

coverage of the sky) and various ad-hoc events (national events and 

TV coverage of sport events). The latter only affect in general a 

small set of hours. 

A preliminary regression model 

To get some preliminary insights of how the main features of 

the time series do interact with each other, a very simple 

regression model is constructed.. The regression model is concerned 

with a specific hour of the day in the years of 1986, 1987 and 1988. 

Thus, 24 different models (for each hour) are estimated using 1096 

observations. The regression model , is 

yit  = a i  + 	+ dsun 1  + ssat 1  + e it  

where yi,t , xi,t  and e i,t  are the load demand, the temperature and the 

Gaussian noise term at hour i and day t, respectively. The 

parameters dsun and dsat are dummies for Saturday and Sunday, 

respectively. A Holiday is regarded as a Sunday. The estimation 

results for the 24 models are reported in table 6.3. The t-tests are 

not given but almost all coefficients are significant. The 

coefficients are graphically presented in figure 6.10. These plots 
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are a good indication of the general, or 'average', behaviour within 

the day. All coefficients follow, more or less, the same intra-daily 

pattern as the intra-daily pattern of the observations. 

Model specification 

Several models of the kind described in the previous sections 

were fitted to the hourly observations described above. Our 

preferred model is of the form 

yt 	Pt + 	Yt 	(5 t + e t 
	 (5.1) 

where p t  is a random walk, lis t  is a deterministic cycle of a period of 

one year (365*24) hours, y t  is a time-varying weekly spline, S t  is 

the response on temperature modelled as a cubic spline and e t  is a 

random disturbance term with mean zero and variance 0 2 . 

The random walk p t  characterizes the long term trend movement 

of the series. The disturbances, generating this stochastic 

unobserved level component, do have a constant variance g[Ti a2  where ql 

 is the unknown signal to noise ratio. 

The deterministic cycle is modelled by a single pair of sines 

and cosines of the form (3.2) so it can be evaluated recursively. 

Recall that this periodic movement is not primarily due to 

temperature and other weather variables but arises from other 

seasonal changes such as the change in the number of hours of 

daylight. 

The time-varying spline is specified as presented in section 

5.5, that is y t  = z;y:t  (period j prevails at time t) where 

Y*t = Y 1 ( t -1) + X*t 
	 (5.2') 

and x*t  is a disturbance vector with zero mean and covariance matrix 

a2 qxV„ where qx  is the unknown signal to noise ratio concerning x„ t . 

The twelve knots for a standard weekday are based on the mesh of 

hours 

3am 6am 7am 8am 9am 11am 2pm 5pm 6pm 8pm llpm 12pm 
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and they are restricted to be the same for every standard weekday 

but the am hours of Monday and the pm hours of Friday (except 2pm) 

are allowed to be different. The eleven knots for a Sunday and a 

Saturday are based on the mesh of hours 

3am 7am 8am 9am 11am 2pm 6pm 7pm 9pm 10pm 12pm 

3am 6am 7am Sam 9am 12am 4pm 6pm 8pm 10pm 12pm 

respectively. Thus the total number of free knots (parameters) is 43 

and note that the knot at the Saturday midnight hour is restricted 

for the 'summing-to-zero' constraint. 

The temperature response S t  is modelled by a natural cubic 

spline based on the mesh 

OF 	40F 	65F 	99F 

and it is decided to let the parameters be fixed. 

The model (5.1) does not explicitly take account of holidays 

and some days after a holiday. To avoid that these distortions in 

the series do not influence parameter estimation and forecasting 

performance, holidays and the two days after holidays are regarded 

as missing. 

The following points have been considered during the process 

of model specification : (i) transforming y t  by logarithms to give a 

multiplicative model does not improve the model fit and the 

forecasting performance; (ii) other explanatory variables, such as 

humidity and windspeed, were included in preliminary versions of the 

model, but no specification in which they had a significant 

influence could be found; (iii) lagged values of temperature were 

included in the manner suggested earlier in chapter 5, but the main. 

effect seemed to come from current temperature; (iv) some evidence 

was found of different responses to temperature at different times 

of the day, but the additional complexity of the model was not 

justified in terms of model fit and forecasting performance. 

The model (5.1) can be placed in state space form 

straightforwardly. The state vector is the stack of parameters 

(1-L t 741t;**t ; Y:t ; 8x) The transition matrix T t does mainly consist of zero 
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and unity values. The measurement equation vector Z t  mainly consists 

of the spline weights. The system covariance matrix a 2 li tiq does 

contain two hyperparameters, that is qi  and qx . 

Estimation results 

The estimation of the hyperparameters is carried out in the 

time domain via the prediction error decomposition. Some scoring 

method is applied to maximize the log-likelihood function. The 

likelihood evaluation process (Kalman filter) is very time consuming 

in this case because the dimension of the state vector is relatively 

large and the number of hourly observations is approximately 57,650. 

The Kalman filter is initialized by the 'big-K' method with K=1000. 

The estimates of the hyperparameters are found to be 

= 0.0002 	qx  = 0.0012 

and recall that these values indicate the extent to which the level 

of the series and the weekly pattern, respectively, are allowed to 

change over time. 

The changing intra-weekly pattern is shown in figure 6.11 for 

some weeks in 1990. The contrast between a week-pattern in, say, 

January and May is particularly marked, compare figure 6.7. All the 

knot points of the periodic spline were significant throughout the 

year although the intensity of significance (observed via the t-

test) does change as well. 

The fixed effects in the model are all significant but the 

temperature effect was highly significant, see table 6.3. The shape 

of the temperature response is as expected; it shows a weak upturn 

when temperature exceeds 75F, see figure 6.12. The yearly cyclical 

pattern ip t  is plotted in figure 6.13. 

The model fitted better in the warmer months than in the 

winter. One indication may be the aggregation of the squared 

standardised innovations, the one-step ahead prediction errors, for 

every week in 1990, see figure 6.14. It shows very clearly that the 

last two weeks of 1990 have large errors because of the special 

holidays such as Christmas and New Year. 



200 

Forecasting results 

The electricity company Puget makes forecasts at 9 am on 

Monday through Thursday, for the next day, based on information up 

to one hour earlier, that is 8 am. Thus the maximum length for 

forecasting is 40 steps ahead. On Friday morning forecasts are made 

for Saturday, Sunday and Monday, that is forecasting with a maximum 

of 88 steps ahead. 

The load forecasts are conditional on the forecasted 

temperature values, as supplied by Puget, which are based on 

forecasts of several weather stations in the Bellevue region. It 

must be stressed that the accuracy of the forecasted load demand 

depends heavily on the accuracy of the forecasted temperature. 

However, latest (unpublished) results indicate that the SHELF 

forecasts do not depend on the temperature forecasts as much as 

competitive models do. 

The forecasting results for a Tuesday (one-day ahead) and a 

Friday (three-days ahead) are given in figure 6.15 as examples. It 

presents (a) the forecasted values against the actual observations 

and (b) the mean absolute percentage error (MAPE) of forecast 

errors. 

For the period 7 November 1990 until 31 March 1991, the 

forecasting performance of the model (5.1) is shown in table 6.4. 

The reported indicators are based on the MAPE of every forecast at a 

specific hour. The 24 MAPEs of a specific day are aggregated in five 

different ways : 

[i] AVG - average 

[ii] MIN - minimum 

[iii] MAX - maximum 

[iv] AM - average for peak morning hours 7am, 8am & 9am 

[v] PM - average for peak afternoon hours 4pm, 5pm & 6pm 

These indicators are calculated for the day types. Monday, Tuesday, 

Wednesday, Thursday, Friday, Saturday, Sunday, Weekday and Weekend. 

Their averages for the winter period of 1990/91 are given in table 

6.4. The holidays are excluded from this evaluation. 

To put the forecast results of table 6.4 in perspective, a 

simple (naive) forecast equation is applied to the same data and its 
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forecast performance is evaluated for the same winter period of 

1990/91. The forecast function is based on the set 24 dynamic (unit 

root) regression models 

Yi,t = Yi,t-7 + (x ; , t-x ; , t e i,t 

where y itt , xi,t  and e i,t  are the load demand, the temperature and the 

Gaussian noise term at hour i and day t, respectively. The 

regression parameter O f  is estimated by generalised least squares for 

i=1,...,24. The average hourly MAPEs (indicator [i]) for this 

forecast function are, with the type of day in parantheses, 7.31 

(Sunday), 5.60 (Monday), 5.22 (Tuesday), 5.39 (Wednesday), 5.70 

(Thursday), 6.93 (Friday), 6.74 (Saturday), 5.77 (Weekday) and 7.03 

(Weekend). The holidays are excluded from this evaluation. It can be 

concluded that the forecasts of model (5.1) are much more precise 

than the naive method. 

6. THE COMPUTER PROGRAM SHELF 

The computer program SHELF - Structural Hourly Electricity 

Load Forecaster - is the implementation of the model of section 5 

and it is primarily developed to forecast hourly load demand. The 

program is mainly a collection of procedures for cubic splines 

calculations (see section 5.6) for the Kalman filter (see section 

2.8) and for forecasting. The program is structured as follows : 

[a] Model specification 

The model is placed in SSF as discussed in the previous section. The 

vector Z t  of the SSF varies over time and it depends on the season 

and it depends on the level of temperature. Therefore two seperate 

matrices are defined in the program. One matrix is filled with the 

weight vectors for the intra-weekly periodic cubic spline, that is z i 

 for j=1,...,168. Another matrix is filled with the weight vectors 

for the natural cubic spline of temperature, that is w j  for 

j=0,...,99. The appropriate vectors are placed in some large vector 

that acts as the Z t  vector of the SSF. 
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[b] Reading data 

The daily observation is organised in a special record, that is 

Observation = 
Record 

Date 	: 1..31; 
Month 	: 1..12; 
Year 	: 0..99; 
Day 	: 1..7; 
Holiday : Boolean; 
Load 	: Array[1..24] Of Integer; 
Temp 	: Array[1..24] Of Integer; 

End; 

and a special procedure reads any pre-specified record from a big 

data-file. 

[c] Parameter updating 

This part of the program consists mainly of the Kalman filter. The 

state vector contains the time-varying and fixed parameters. The 

standardised innovations are stored to. construct some simple 

diagnostics afterwards. The Kalman filter is also used to evaluate 

the likelihood function and it can be embedded within a maximization 

procedure (some scoring method) to obtain hyperparameter estimates. 

However, this is not included in SHELF since it is not worthwhile to 

re-estimate the hyperparameters every time when new observations are 

coming available. 

[d] Forecasting 

After the parameters in the state vector are updated for a sequence 

of hours, a special procedure is incorporated in the KF procedure 

that produces the forecasts for the next day or for the next three 

days. An input procedure reads the forecasted temperature values for, 

the coming days from an external file. An output procedure puts the 

forecasts of electricity load demand in a special file. 



7. CONCLUDING REMARKS 

A time-varying periodic cubic spline component appears to 

provide a good way of modelling the changing electricity load 

pattern within the week with a relatively small number of 

parameters. The effect of the non-linear response is captured by a 

fixed natural cubic spline. 

NOTES 

(13  The Puget Sound, Power & Light company, Bellevue, Washington 

State, USA has provided hourly data from 1 January 1985 to 31 August 

1991 of load demand in mega-watts and of temperature in Fahrenheit. 

Casey Brace has been extremely helpful in supplying the data to us. 
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TABLES & FIGURES 

Table 6.1 

Regression results of cubic spline for load curve 

	

dependent 	variable : load 11 March 1988 03 
	

t = 1,...,24 

	

number of 	observations : 24 
	

season : hourly 
model : periodic cubic spline regression 	method : OLS 

REGRESSION ESTIMATION 

	

parameter 	estimate 	t-test  

Constant 	2276.08 	2048.74 

	

Knots 4am 	-459.08 	-135.17 

	

6am 	6.33 	1.60 

	

7am 	621.77 	122.97 

	

8am 	917.49 	203.05 

	

9am 	748.49 	232.79 

	

3pm 	-234.39 	-72.37 

	

4pm 	-268.43 	-59.41 

	

5pm 	-219.86 	-41.70 

	

6pm 	-33.60 	-6.34 

	

7pm 	214.78 	43.05 

	

8pm 	226.80 	59.82 

	

11pm 	-159.34 	-40.78 

C 2 = 5.148 
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Table 6.2 

Regression results of preliminary daily model 

dependent variable : Load demand 0] 
 number of observations : 1096 

model : linear regression 

t = 01/01/86D1 - 31/12/88D366 
season : daily 
method : OLS 

REGRESSION ESTIMATION 

Hour Constant Temperature dsat dsun 

1 2449 -19.4 39.1 15.7 
2 2403 -19.8 21.4 *  0.0 *  
3 2422 -20.6 6.9 *  -13.7 *  
4 2487 -21.7 -7.0 *  -29.7 
5 .2652 -23.6 -49.2 -77.7 
6 3150 -28.5 -214.1 -265.2 
7 3981 -36.1 -507.5 -594.6 
8 4478 -40.5 -531.2 -651.6 
9 4443 -39.5 -273.9 -404.5 
10 4174 -35.4 -74.7 -200.2 
11 3893 -31.1 -12.0 *  -120.0 
12 3621 -27.4 -12.2 *  -95.2 
13 3414 -24.8 -51.0 -96.7 
14 3245 -22.5 -103.3 -124.9 
15 3141 -21.4 -134.6 -158.0 
16 3192 -22.4 -159.2 -183.5 
17 3530 -27.5 -170.8 -191.6 
18 4038 -34.7 -200.5 -212.1 
19 4209 -37.2 -214.2 -211.6 
20 4094 -35.6 -220.1 -179.4 
21 3812 -31.2 -218.3 -146.0 
22 3387 -25.2 -185.6 -111.8 
23 2993 -21.5 -106.5 -108.0 
24 2675 -20.0 -34.5 -86.6 

* not significant at 95% confidence interval 
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Table 6.3 

Regression results of fixed effects in model (5.1) 

dependent variable : Load demand 0] 
	

t = 01/01/85H1 - 31/08/91H24 
number of observations : 58368 

	
season : hourly 

model : (5.1) 
	

method : KF 

REGRESSION ESTIMATION 

parameter 	estimate 	t-test 

Cycle 
** 

Temperature 
OOF 	3497.71 	199.54 
40F 	2187.06 	190.89 
65F 	1620.39 	140.71 
99F 	1773.52 	112.96 

2 = 5208.68 

Table 6.4 

Forecasting performance of SHELF 

Day : 	Mon Tue Wed Thu Fri Sat Sun WDay WEnd 

Indication 

Day average 4.3 3.7 3.2 4.1 3.7 3.9 5.1 3.8 4.5 

Day minimum 0.5 0.4 0.2 0.8 0.5 0.9 1.0 0.5 0.9 

Day maximum 10.5 8.7 8.2 9.8 8.9 8.5 10.8 9.2 9.6 

AM average 4.9 3.9 2.7 3.2 4.1 4.6 5.7 3.7 5.2 

PM average 4.7 4.6 4.2 4.7 4.2 3.9 5.9 4.5 4.9 

-132.05 
200.01 

-15.71 
23.99 



Figure 6.1a Load curve on 30 January 1991. 	 Figure 6.1b Load curve on 10 April 1991 
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Figure 6.1c Load curve on 19 June 1991 Figure 6.1d Load curve on 28 August 1991 
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Figure 6.2 Load curve on 11 March 1988 
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Figure 6.3 Interpolation errors with spline and trigonometrics 



Fir 5A Load demand pattern of first week in /,larch 1988 

\ik v V j 

Fore 65a iterpoicrtion errors after starKkrd day sprlde 

Figure 653 Irtterpalation errors after Sahrday correction 

200 

100. 

0 

—1100 

—200 

—300 

—4-00 

209 

3500 

3000 

2500 

2000 

1500 

1000 



Figure 6.8a Estimated weekly load pattern by standard day spine 
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Figure 6.7a Load pattern of week 5 of 1990 
	

Figure 6.7b Load pattern of week 15 of 1990 
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Figure 6.7c Load pattern of week 25 of 1990 
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Figure 6.8c LOAD vs TEMP for all Wednesdays In 1990 at 1pm.  
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6.8d LOAD vs TEMP for all Wednesdays in 1990 at 8pm 
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Figure 6.8a LOAD vs TEMP for all Wednesdays In 1990 at 3am' 6.8b LOAD vs TEMP for all Wednesdays in 1990 at Sam 
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Figure 6.9a Load demand on Wednesdays in 1985-1989 at 3am 6.9b Load demand on Wednesdays in 1985-1989 at 8am 
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figure 6.9c Load demand on Wednesdays in 1985-1989 at 4pm 
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Figure 6.10b Estimated beta in preliminary regression 
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Figure 6.10c Estimated DSAT In preliminary regression 
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Figure 6.10a Estimated constant in preliminary regression 
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Figure 6.10d Estimated DSUN in preliminary regression 
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Figure Silo Estimated weeky load pattern during FEB 	Figure 6.11b Estimated weeky load pattern during MAY 
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Figure 6.11c Estimated weeky load pattern during AUG 	Figure 6.11d Estimated weeky bad pattern during NOV 
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Figure 6.12 Estimated non—linear response to temperature 
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Figure 6.13 Estimated yearly cyclical pattern 
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Figure 6.14 Weekly aggregated standard prediction error in 1990 
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CHAPTER 7 

OVERVIEW AND DISCUSSION 

This thesis deals with smoothing algorithms, diagnostic 

checking of unobserved components time series models, time-varying 

cubic splines and short term forecasting of time series with the 

periodic movements being intra-daily or intra-weekly. All topics are 

discussed extensively with emphasis on theory, algorithms and 

practical implications. The novel contributions to the time series 

literature are 

[1] 	a smoothing algorithm for the disturbance vector and its 

(lagged) mean square error matrix 

an efficient smoothing algorithm for the state vector 

an alternative (more efficient) EM algorithm for estimating 

hyperparameters in the covariance structure of the SSF 

[4] auxiliary residuals are proposed as an supplement to 

innovations 

[5] diagnostic test statistics for auxiliary residuals are 

developed to detect and distinguish between outliers and 

structural change 

[6] cubic splines are allowed to vary over time by letting the 

parameters follow stochastic processes 

[7] a structural time series model is proposed for observations 

with intra-daily or intra-weekly periodic movements with an 

emphasis on short term forecasting 

These novel contributions are illustrated with various examples 

which can be found especially in chapters 4 and 6. More elaborate 
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applications are presented on the quarterly coal production in the 

UK between 1960 and 1983 (Chapters 2 and 3), on the yearly 

consumption of spirits in the UK'between 1870 and 1930 (Chapter 4) 

and on the hourly load demand of electricity at the Puget Sound 

power & Light company in Bellevue, Washington, USA, between 1985 and 

August 1991 (Chapter 6). The following conclusions can be drawn from 

our analyses : 

[a] the quarterly production of coal in the UK can be satisfactory 

described by a cumulation of three uncorrelated stochastic processes 

which can be directly interpreted as the unobserved components 

trend, seasonal and irregular; no significant distortions can be 

detected from the estimated model as observed from the innovations 

and the auxiliary residuals. 

[b] the yearly consumption of spirits in the UK between 1870 and 

1930 follow a time-varying trend and can be further explained by 

relative price and income per capita; a shift in the level of about 

9 % is observed in 1909 from the auxiliary residuals and can be 

explained by the Government's policy on social issues and taxation; 

outliers are distinguished in 1915 and 1918 but there is also a 

cause for outliers in the remaining years of World War I. 

[c] the hourly electricity demand at the Puget Power company in the 

period from 7 November 1990 to 31 March 1991 are well forecasted by 

the SHELF model (6.5.1) using the hourly data from 1 January 1985 

onwards. 

The necessary calculations are implemented in computer programs 

which are presented at the end of this thesis. The computer programs 

are computationally efficient. 



COMPUTER PROGRAMS 

Program Filtering; 
Const 

DimVec = 40; 
DimObs = 500; 

Type 
Vector = Array[0..DimVec] of Float; 
Matrix = Array[0..DimVec] of Vector; 
SysFlt = Record 

Code 	: 0..9; 
Positive : Boolean; 
Value 	: ReaL; 
Pos 	: Integer; 

End; 
SysVec = Array[0..DimVec] Of SysFltA; 
SysMat = Array[0..DimVec] Of SysVec; 
Data = Array[0..DimObs] Of Float; 

Var 
f SSF 	yt = z tat  + xtB + g t c t  

at+1 = Tat 
+ W

t
8 + Hc +  

al 	W
o
8 + H c 

0 0 	
8 = b + Eld 	3 

TSM (z t ;T t ), 
RGM fx t b,x t B;Wt b,W,B), 
CSM (g tgl_g + HI;Htgl,HHI), 
ICM (W0 (6,8)), 
CIM CHnH ip 	: SysMat; 

DimSt {#a ), 
DimBt 00, 
DimEp (ik), 
DimRg WI 	: Integer; 

Y 	 : Data; 

X 	 : Array[1..DimVec] Of Data; 

t,n,fobs,lobs 	: Integer; 

( fobs and lobs allow analyzing subset of Y[1..n] : Y[fobs..lobs] 

Function Mult(t : Integer; FL : Float; SFl 	SysFltA) : Float; 

Begin 
With SFLA do 
Case Code Of 
0 : Mult:=0.0; 
1 : Mult:=FL; 
2 : Mult:=FL*Value; 
3 : Mult:=FL*X[Pos,t]; 
4 : Mult:=FL*Sin(2*pi/Value); 
5 : Mult:=Fl*Cos(2*pi/Value); 
6 : Mult:=FL*Tan(2*pi/Value); 
7 : Mult:=FL*Sqr(Value); 

8 : Mult:=FL*Sqrt(Value); 
9 : Mult:=FL*Exp(Value); 

End; 
If Not SFLA.Positive then Mult:=-Mutt; 

End; 
Function Add(t : Integer; SFl : SysFltA) : Float; 

Begin 
With SFIA do 
Case Code Of 
0 : Add:=0.0; 

1 : Add:=1 .0; 
2 : Add:=Value; 

3 : Add:=X[Pos,t]; 
4 : Add:=Sin(Value); 
5 : Add:=Cos(Value); 
6 : Add:=Tan(Value); 
7 : Add:=Scir(/alue); 
8 : Add:=Sqrt(Value); 
9 : Add:=Exp(Value); 

End; 
If Not SFLA.Positive then Add:=-Add; 

End; 
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Procedure InitialF1( JobCode : Byte; Var St,CSt : Matrix ); 
Var i,j : Byte; 
Begin 
Case JobCode of 
1 : 	KF diffuse starting condition : St=0,CSt=a0  ) 

For i:=1 to DimSt do 
Begin 
St[i 3 O]:=0.0;ZeroVec(CSt[i]);CSt[i,i]:=999999.99 

End; 

2 : 	KF zero starting condition : St=0,CSt=0 ) 
For i:=1 to DimSt do 
Begin 
St[i 3 O]:=0.0;ZeroVec(CSt[i]); 

End; 
3 : 	Modified KF : St=WO (b,B);CSt=H olia ) 

For i:=1 to DimSt do 
Begin 
For j:=0 to DimRg do St[i,j]:=Add(0,ICM[i,j]); 
For j:=1 to DimSt do CSt[i,j]:=Add(0,CIM[i,j]); 

End 
End 

End; 

Procedure KFUpdate(Y : Real; DimKF : Integer; Var A,P : Matrix); 
Var 	M1,M2 : Matrix; 

i,j,k 	: Byte; 
Begin 
(Step 1) 

For i:=0 to DimSt do 
Begin 
ZeroVec(M1[1]); 

(!) ZeroVec(M2[i]); 
For j:=1 to DimSt do 
If TSM[i,j]<>NIL then 
Begin 
For k:=0 to DimKF do M1[i,k]:=M1[i,k]+Mult(t,A[j,k],TSM[i,j]); 

(!) 	For k:=1 to DimSt do M2[i,k]:=M2[i,k]+Mult(t,P[j,k],TSM[i,j]); 
End 

End; 

(Step 2) 
(!) For i:=0 to DimSt do 

Begin 
ZeroVec(P[i]); 
For j:=1 to DimSt do 
If TSM(i,j]<>NIL then 
For k:=0 to DimSt do P[i,k]:=P[i,k]+Mult(t,M2[k,j],TSM[i,j]); 

End; 

(Step 3) 
For i:=0 to DimSt do 
Begin 
EqualVec(A[i],M1[1]); 
For j:=0 to DimKF do A[i,j]:=A[i,j]+Add(t,RGM[i.j]); 

(!) For j:=0 to DimSt do P[i,j]:=P[i,j]+Add(t,CSM[i,j]); 
End; 

(Step 4 and 5) 
A[0,0]:=Y-A[0,0]; 
For i:=1 to DimKF do A[0,i]:=-A[0,i]; 

(!) For i:=1 to DimSt do P[0,i]:=P[0,i]/P[0,0]; 

(Step 6) 
For i:=1 to DimSt do 

Begin 
For j:=0 to DimKF A[i,j]:=A[i,j]-(P[0,i]*A[0,j]); 

(!) For j:=1 to DimSt do P[i,j]:=P[i,j]-(P[0,i]*P[0,0]*P[0,j]); 
End; 

End; 

( the sign ! means that the statement can be dropped in a steady state 
the procedure ZeroVec(x) puts zeroes in each element of x 
the procedure EqualVec(x,y) puts subsequently the elements of y into x) 
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Procedure Estimation 
( Var Q : Matrix; Var L : Float; Var d : Integer; Obs : Data ); 

Var 	A,P,S 	: Matrix; 
k 	: Vector; 
v,f,sigma : Float; 
i,j 	: Integer; 

Begin 
For i:=0 to DimRg do 
Begin 
ZeroVec(S[i]);ZeroVec(Q[i]); 

End; 
L:=0.0; 
d:=0 
InitialKF(3,A,P); 
For t:=fobs to lobs do 
Begin 
KFUpdate(y[t],DimRg,A,P); 
( Check p.d. of F, and Pt lit and other numerical unstabilities 
Store vector A[0,0..DimAgi 

(!) Store vector P[0,0..DimRg] ) 
L:=L+Ln(P[0,0]); 

If d=0 then 
Begin 
For i:=1 to DimRg do 
For j:=1 to DimRg do S[i,j]:=S[i,j]+(A[0,i]*A[0,j]/P[0,0]); 
If Not (t<DimRg) then 
Begin 
Det:=Determinant(1,DimRg,S); 
If Not (Det=0) then 
Begin 
Inverse(1,DimRg,Det,S,Q); 
Q[0,0]:=S[0,0]; 
For i:=1 to DimRg do 
Begin 
Q[0,i]:=S[0,i]; 
Q[i 3 O]:=0.0; 
For j:=1 to DimRg do 0[i 3 O]:=Q[i 3 O]-(80,WS[0,j]); 

End; 

d:=t; 
End; 

End; 
End 
Else ( If d is not zero ) 
Begin 
For j:=0 to DimRg do Q[0,j]:=Q[0,j]+(A[0,fl*A[0,0]/P[0,0]); 
v:=A[0,0];f:=P[0,0]; 
For i:=1 to DimRg do 
Begin 
v:=v+(A[0,i]*Q[i 3 O]); 
k[i]:=0.0; 
For j:=1 to DimRg do 
Begin 
k[i]:=k[i]+(A[0,j]*(1[j,i]); 

End; 
f:=f+(k[i]*A[0,i]) 

End; 
For i:=1 to DimRg do 
Begin 
Q[i 3 O]:=Q[i 3 O]-(k[i]*v/f); 
For j:=1 to DimRg do Q[i,j]:=Q[i,j]-(k[i]*k[j]/f) 

End; 
sigma:=Q[0,0]; 
For i:=1 to DimRg do sigma:=sigma-(Q[i 3 O]*Q[0,q); 
sigma:=sigma/(t-fobs+l); 

End; 
End; 

Q[0,0]:=sigma; 

Det:=Determinant(1,DimRg,Q); 
L:=L-Det+((lobs-fobs+1)*(1+1n(2*pi*Q[0,0]))); 

End; 
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Procedure SmoothUpdate 
( DimKF : Integer; Var DSE,DSD,DSU,DSC : Matrix ); 
Var M1,M2 : Matrix; 

i,j,k 	: Integer; 
Begin 
[Step 1) 

For i:=0 to DimKF do DSE[0,i]:=DSE[0,i]/DSD[0,0]; 
DSD[0,0]:=1/DSD[0,0]; 

For i:=1 to OimSt do 
Begin 
For j:=0 to DimKF do DSE[0,j]:=DSE[0,j]-(DSD[0,i]*OSE[i,j]); 
DSD[i 3 O]:=0; 
For j:=1 to DimSt do DSD[i 3 O]:=DSD[i 3 O]-(DSOMA]*DSD[0,j]); 
DSD[0,0]:=0S0[0,0]-(DSDO,OrDS0[0,i]) 

End; 
For i:=1 to DimSt do DS0[0,i]:=DS0[i 3 O]; 

(Step 2) 
For i:=0 to DimSt do 
Begin 
ZeroVec(DSU[i]);ZeroVec(M2[i]); 
For j:=0 to DimSt do 
If CSM[j,i]<>NIL then 
Begin 
For k:=0 to DimKF do DSU[i,k]:=DSU[i,k]+Mult(t,DSE[j,k],CSMO,i]); 
For k:=0 to OimSt do M2[i,k]:=M20,k]+Mult(t,DSD[j,k],CSM[j,i]) 

End; 
End; 

(Step 3) 
For i:=0 to DimSt do 
Begin 
For j:=0 to DimSt do DSC[i,j]:=0.0; 
For j:=0 to DimSt do 
If CSM[j,i]<>NIL then 
For k:=1 to OimSt do 0SC[i,k]:=DSC[i,k]+Mult(t,M2(k,j],CSM[j,i]); 

End; 

(Step 4) 
For i:=1 to DimSt do 
Begin 
ZeroVec(M1[i]):ZeroVec(M2[i]); 
For j:=0 to DimSt do 
If TSM[j,i]<>NIL then 

Begin 
For k:=0 to DimKF do M1[i,k]:=M1[i,k]+Mult(t,DSE[j,k],TSM[j,i]); 
For k:=0 to DimSt do M2[i,k]:=M20,k1+Mult(t,DSD[j,k],TSM[j,i]) 

End; 

End; 

(Step 5) 
For i:=1 to DimSt do 

Begin 
For j:=1 to DimSt do DSD[i,j]:=0.0; 
For j:=0 to DimKF do OSE[i,j]:=M1[i,j]; 

For j:=0 to DimSt do 
If TSM[j,i]<>NIL then 
For k:=1 to DimSt do DSD[i,k]:=DSD[i,k]+Mult(t,M2[k,j],7SM[j,i]); 

End; 
End; 
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Procedure AuxResiduals 
( Nr : Integer; Q : Matrix; Var r,vr : Data ); 
Var E,D,U,C 	: Matrix; 

rl 	: Real; 
i,j,k 	: Integer; 

Begin 
f Open memory space for KF quantities ) 
f Read (F n ,10) and put it into 0[0,..] ) 
f R n=0 N=0 3 
For i:=0

n 
 to DimSt do Begin ZeroVec(E[i]);ZeroVec(D[i]) End; 

For t:=Lobs downto fobs do 
Begin 
f Read V t and put it into E[0,..] ) 

(I) ( Read F t 
 ,K ) 

( Put (F,,K tt ) into D[0,..] ) 
SmoothUpaate(DimRg,E,D,U,C); 

r[t]:=U[Nr,0]; 
For j:=1 to DimRg do r[t]:=r[t]+(U[Nr,j]*Q[j,0]); 
vr[t]:=Add(t,CSM[Nr,Nr])-C[Nr,Nr]; 
For j:=1 to DimRg do 
Begin 
rl:=0.0; 
For k:=1 to DimRg do rl:=r1-1-(U[Nr,k]*Q[k,j]); 
vr[t]:=vr[t]+(U[Nr,j]*rl); 

End; 
End; 

End; 

Procedure AuxCrossMse 
( Nr1,Nr2 : Integer; Q : Matrix; Var cc : Data ); 
Var E,D,U,C 	: Matrix; 

rl 	: Real; 
i,j,k 	: Integer; 

Begin 
( Open memory space for KF quantities ) 
{ Read (F n ,KD and put it into D[0,..] ) 
f R n=0 N=0 1 
For i:=0

n 
 to DimSt do Begin ZeroVec(E[i]);ZeroVec(D[i]) End; 

For t:=Lobs downto fobs do 
Begin 
( Read V

t 
and put it into E[0,..] ) 

(I) ( Read F t ,K, ) 
{ Put (F,,K1) into D[0,..] ) 
SmoothUpdate(DimRg,E,D,U,C); 

cc[t]:=Add(t,CSM[Nr1,Nr2])-C[Nr1,Nr2]; 
For j:=1 to DimRg do 
Begin 
rl:=0.0; 
For k:=1 to DimRg do rl:=rl+(U[Nr1,k]*Q[k,j]); 
cc[t]:=cc[t]+(U[Nr2,j]*rl); 

End; 
End; 

End; 
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Program Splines; 

Const 

DimVec = 40; 

DimObs = 500; 
Type 

Vector = Array[0..DimVec] of Float; 
Matrix = Array[0..DimVec] of Vector; 

	

Data 	= Array[0..DimObs] of Real; 

Procedure NatPinvQ 
( k : Integer; xk : Vector; Var M : Matrix ); 

Var q,v,z,P1,P2,P3 : Vector; 

	

rl,rk 	: Real; 

	

i,j,l 	: Integer; 

Begin 

( k=number of knots xk=mesh M=P
-1
Q ) 

{ distances between knots } 

For i:=1 to k do z[i]:=xk[i]-xk[i-1]; 

( tridiagonal structure of P put in three vectors P1 P2 P3 ) 

For i:=1 to k-1 do 

Begin 

rl:=z[i]+z[i+1]; 
P1[i]:=z[i]/rl; 

P2[i]:=2.0; 
P3[i]:=z[i+1]/r1; 

End; 

P1[k]:=0.0;P2[0]:=1.0;P2[k]:=1.0;P3[0]:=0.0; 

( sequence of solving k sets of linear restrictions to get PinvQ } 

For i:=0 to k do 

Begin 

( i-th column of Q is put in q ) 

For j:=0 to k do q[j]:=0.0; 

If (i>1) then q[i-1]:=6/(z[i]*(z[i-1]+z[i])); 
If ( (i>0) AND (i<k) ) then q[i]:=-6/(z[i]*z[i+1]); 

If (i<k-1) then q[i+1]:=6/(z[i+1]*(z[i+1]+z[i+2])); 

{ solving m in Pm=q where m is i-th column of M, see Press et.al (1988) } 

rL:=P2[0]; 

M[0,i]:=q[0]/rl; 

For j:=1 to k do 

Begin 

v[j]:=P3[j-1]/rl; 

rl:=P2[j]-(P1[Wv[j]); 

M[j,i]:=(q[j]-(P1[j]*M[j-1,i]))/rl; 

End; 

For j:=(k-1) downto 0 do 

M[jj]:=M[Li]-(v[j+1] *M[j+1,i7); 
End; 

End; 
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Procedure PerPinvQ 
( k : Integer; xk : Vector; Var M : Matrix ); 
Var q,v,z,P1,P2,P3 : Vector; 

W,bM 	: Matrix; 
rl,rk 	: Real; 
i,j,l 	: Integer; 

Begin 
( k=number of knots xk=mesh M=P -1 0 ) 

( distances between knots ) 
For i:=1 to k do z[i]:=xk[i]-xk[i-1]; 
z[0]:=z[k]; 
z[k+1]:=z[1]; 

1 tridiagonal structure of P. put in three vectors P1 P2 P3 } 
For i:=1 to k do 
Begin 
rl:=z[i]+z[i+1]; 
P1[1]:=z[i]irl; 
P2[i]:=2.0; 
P3[i]:=z[i+1]/rl; 

End; 

For i:=0 to k+1 do 
Begin 
( i-th column of Q is put in q for i=1 	k ) 

( If i=0 	then the first column of U' is put into q ) 
( If i=k+1 then the second column of 1.1 ,  is put into q ) 

For j:=1 to k do q[j]:=0.0; 
If i=0 	then q[1]:=P1[1]; 
If i=k+1 then q[k]:=P3[k]; 
If ((i<k+1) AND (i>0)) then 
Begin 
c[i-1]:=6/(z[i]*(z0-11+z[i])); 
q[i]:= -6/(z[i]*z[i+1]); 
q[i+1]:=6/(z[i+1]*(z[i+1]+z[i+2])); 
If i=1 then q[k]:=6/(z[1]*(z[1]+z[k])); 
If i=k then q[1]:=6/(z[1]*(z[1]+z[2])); 

End; 

( solving m in Pm=q where m is i-th column of M, see Press et.al  (1988) ) 
rl:=P2[1]; 
M[1,i]:=q[1]/rl; 
For j:=2 to k do 
Begin 

v[j]:=P3[j-1]/rl; 
rl:=P2[j]-(P1[j]*v[j]); 
M[j,i]:=(q[j]-(P1[WM[j-1,i]))/rl; 

End; 
For j:=k-1 downto 1 do 
M[j,i]:=M[j,i]-(v[j+1]*M[j+1,i]); 

End; 

( rl is determinant of (VP.
-1

11 1 +I) ) 
rl:=((1.0+M[k,0])*(1.0+M[1,k+1]))-(M[1,0]*M[k,k+1]); 

( calculate P. -1 U'(VP. -1 U , +I) -1  ) 
For i:=1 to k do 
Begin 
P1[i]:=( ((1.0+M[1,k+1])*M[k,i])-(M[k,k+1]*M[1,i]) )/rl; 
P2[i]:=( ((1.0+M[k,0])*M[1,i])-(M[1,0]*M[k,i]) )/rl; 

End; 

1 
( calculate P Q ) 
For i:=1 to k do 
For j:=1 to k do 
M[i,j]:=M[i,j]-(M[i 3 O]*P1[j])-(M[i,k+1]*P2M); 
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Procedure NatSplineWeight 
( k : Integer; kn : Vector; M : Matrix; x : Real; Var w : Vector ); 
Var h,j 	: Integer; 

z,rl,rk : Real; 
Begin 
j:=1; 
z:=kn[1]-kn[0]; 
While (x>kn[j]) do 
Begin 
j:=j+1; 
z:=kn[j]-kn[j-1]; 

End; 
rl:=kn[j]-x; 
rk:=x-kn[j-1]; 

For h:=0 to k do 
w[h]:=((r1/(6*z))*(sqr(r1)-sqr(z))*M[j-1,h]) + 

((rk/(6*z))*(sqr(rk)-sqr(z))*M[j,h]); 
w[j-1]:=w[j-1]+(rl/z); 
w[j] :=w[j] +(rk/z); 
End; 

Procedure PerSplineWeight 
( k : Integer; kn : Vector; M : Matrix; x : Real; Var w : Vector ); 
Var h,j 	: Integer; 

z,rl,rk : Real; 
Begin 
j :=1 ; 

z:=kn[1]; 
While (x>kn[j]) do 
Begin 
j:=j+1; 
z:=kn[j]-kn[j-1]; 

End; 
rl:=kn[j]-x; 
rk:=x-kn[j-1]; 

If j=1 then 
Begin 
For h:=1 to k do 
w[h]:=((rl/(6*z))*(sqr(r1)-sqr(z))*M[k • h]) + 

((rk/(6*2))*(sqr(rk)-sqr(z))*M[j,h]); 
w[k]:=w[k]+(rl/z); 
w[j]:=w[j]+(rk/z); 

End 
Else 

Begin 
For h:=1 to k do 
w[h]:=((rl/(6*z))*(sqr(r1)-sqr(z))*M[j-1,h]) + 

((rk/(6*z))*(sqr(rk)-sqr(z))*M[j,h]); 
w[j-1]:=w[j-1]+(rl/z); 
w[j] 	:=w[j] +(rk/z); 

End; 
End; 

Procedure SeasSpline 

( p,k : Integer; Var W : Matrix ); 
Var t,i : Integer; 

sW : Vector; 
Begin 
For i:=1 to k do sW[i]:=0.0; 
For t:=1 to p do 
For i:=1 to k do sW[i]:=sW[i]+W[t,i]: 
For t:=1 to p do 
Begin 
For i:=1 to k-1 do W[t,i]:=W[t,i]-(0qt,k]/sW[k])*sW[i]); 
W[t,k]:=1.0; 

End; 
End; 
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