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ABSTRACT

A variety of topics on the statistical analysis of time
series are addressed in this thesis. The main emphasis is on the
state space methodology and, in particular, on structural time
series (STS) models. There are now many applications of STS models
in the literature and they have proved to be very successful.

The keywords of this thesis vary from - Kalman filter,
smoothing and diagnostic checking - to - time-varying cubic splines
and intra-daily effects -. Five separate studies are carried out for
this research project and they are reflected in the chapters 2 to 6.
All studies concern time series models which are placed in the state
space form (SSF) so that the Kalman filter (XF) can be applied for
estimation. The SSF and the KF play a central role in time series
analysis that can be compared with the important role of the
regression model and the method of least squares estimation in
econometrics. Chaptér 2 gives an overview of the latest developments
in the state space methodology including diffuse likelihood
evaluation, stable calculations, etc.

Smoothing algorithms evaluate the full sample estimates of
unobserved components in time series models. New smoothing
algorithms are developed for the state and the disturbance vector of
the SSF which are computationally efficient and outperform existing
methods. Chapter 3 discusses the existing and the new smoothing
algorithms with an emphasis on theory, algorithms and practical
implications. The new smoothing results pave the way to use
auxiliary residuals, that is full sample estimates of the
disturbances, for diagnostic checking of unobserved components time
series models. Chapter 4 develops test statistics for auxiliary
residuals and it presents applications showing how they can be used
to detect and distinguish between outliers and structural change.
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A cubic spline is a polynomial function of order three which
is regularly used for interpolation and curve-fitting. It has also
pbeen applied to piecewise regressions, density approximations, etc.
Chapter 5 develops the cubic spline further by allowing it to vary
over time and by introducing it into time series models. These time-
varying cubic splines are an efficient way of handling slowly

changing periodic movements in time series.

This method for modelling a changing periodic pattern is
applied in a structural time series model used to forecast hourly
electricity load demand, with the periodic movements being intra-
daily or intra-weekly. The full model contains other components,
including a temperature response which is also modelled using cubic
splines. A statistical computer package (SHELF) is developed to

produce, at any time, hourly load forecasts three days ahead.



(iv]
ACKNOWLEDGEMENTS

I am very grateful to my parents for their love and
invaluable encouragement throughout the years.

I thank Professor Andrew Harvey for his support and
supervision. This thesis has never been written without his
knowlegde and enthusiasm. Also, I like to thank Professor Piet de
Jong for his support and many discussions.

This work has never been accomplished without the love, help
and support of many but especially Margreet, Pauline, Karin, Regina,
Gerda, Zoila, Arthur, George and Wim. Furthermore, I wish to
mention, in alphabetical order, Casey Brace, Dr. Cristiano
Fernandes, Professor Jan de Gooijer,nklaus Jackisch, Dr. M. Knott,
Rob ILuginbuhl, Dr. Esther Ruiz and Dr. Neil Shephard.

For the general support in the Netherlands, I thank the
Tinbergen Institute (Dr. Annemarie Rima and Miep Oomes) at the
University of Amsterdam. I am indebted to the Electric Power
Research Institute (EPRI) in Palo Alto, California, USA, and the
Puget Light Power & Sound company, Bellevue, Washington, USA, for
their financial support.

Finally, I like to thank my teachers in econometrics at the
University of Amsterdam, the Professors J.S. Cramer, J.F. Kiviet and
H. Neudecker.



[v]
TABLE OF CONTENTS

chapter 1. Introduction

Chapter 2. The state space form and the Kalman filter :
theory, algorithms and applications

Introduction

State space form

Time series models

The Kalman filter

Likelihood evaluation and estimation
Practical time series modelling
Numerical considerations

Computer programs

O oo N 6 B & w N =

Concluding remarks

Appendix 2A Two results on minimum mean square linear estimation
Appendix 2B Derivation of the Kalman filter under Gaussianity
Appendix 2C The Jacobian for a structural time series model
Tables & Figures

Chapter 3. On smoothing in time series models :
theory, algorithms and applications

Introduction

Classical methods of smoothing

The state smoother

The disturbance smoother

. A new efficient method for state smoothing

- A new EM algorithm for estimating covariances of the SSF
Practical smoothing

Computer programs

W o N 6o 1 & w N -

Concluding remarks

Appendix 3A Smoothing under Gaussianity
Tables & Figures

11
15

- 22

30
38
41
45

59

59
61
67
72
79
85
88
91
94

95
97



[vi]

chapter 4. Diagnostic checking on residuals

A e W NN

in time series models

Introduction

properties of residuals in infinite samples
Properties of residuals in finite samples
Diagnostics

Applications

Concluding remarks

Tables & Figures

Chapter 5. Cubic splines in time series models

N Oy s W N

Introduction

Cubic splines

Statistical applications of cubic splines
Periodic cubic splines and seasonality
Time-varying cubic splines

Computer programs

. Concluding remarks

Appendix 5A Calculation of weight vector

for natural cubic spline

Appendix 5B Calculation of weight vector

for periodic cubic spline

Tables & Figures

106

106
108
114
119
124
130

131

1489

149
151
156
163
168
171
172

173

174
176



[vii]

chapter 6. Short term forecasting of periodic time series using

time-varying splines 182
1. Introduction 182
2. Statistical treatment of intra-daily effects 183
3. Short term forecasting with structural time series models 189
4. Various approaches to modelling
hourly electricity load demand 193
5. Forecasting hourly electricity load demand
The Puget Power Case v 195
6. The computer program SHELF ‘ 201
7. Concluding remarks - 203
Tables & Figures T 204
Chapter 7. Overview and discussion ' 219
Computer programs 221

References 229



2.12
3.1

3.6

[viii]

LIST OF TABLES

Title

Inference results concerning 6 under different assumptions
for 6 .

Required number of computations of one Kalman filter step
applied to a LLT model with two explanatory variables
Dimensions of Kalman filter quantities before and after the
collapse for a LLT model with two explanatory variables
OLS regression results for COAL

Hyperparameter estimates and diagnostics for COAL
Estimates of diffuse initial conditions for COAL

Outline of implementation square root KF

Number of Householder transformations for one square root
KF-step

Zero (o) and non-zero (*) elements for Sqrt KF matrices D
and E

Organisation of the SSF system matrices in the computer
program

Organisation of the modified KF matrices in the computer
program : before and after KF update

Structure of procedure Estimation

Computational consequences of state smoother

(#[y,)=1 #[a,J=k #[6]=d)

Computational consequences of disturbance smoother
(#[y,}=1 #[a,]=k #[€,]=m #[6]=d)

Comparing computational costs of DJKA and K state smoother
Outline of the new EM algorithm

Theoretical and sample autocorrelations of COAL auxiliary
residuals |

Theoretical auto- and cross-correlations for the auxiliary
residuals of a Local Level model with different signal to
noise ratios

Organisation of the modified disturbance smoother matrices

in the computer program : before and after the smooth update



[1x]
Title

Theoretical auto- and cross-correlations for the auxiliary
residuals of a quarterly BSM with q,=1, q,=0.1 and q=0.1
Theoretical auto- and cross-correlations for the auxiliary
residuals of a LL model based on samples of different sizes
Correction factors for a quarterly BSM with q,=1, q,=0.1 and
q,=0.1

Estimated rejection probabilities for tests at a nominal 5%
level of significance for a local level model with sample
size n=150

Hyperparameter estimates and diagnostics for LAXL
Hyperparameter estimates and diagnostics for CDKSI
Hyperparameter estimates and diagnostics for MARRIAGE
Hyperparameter and regression estimates and diagnostics for
SPIRITS : model I

Hyperparameter and regression estimates and diagnostics for
SPIRITS : model IT ,
Hyperparameter and regression estimates and diagnostics for
SPIRITS : model IIT

Frequency distribution of a variable x

. Regression results of cubic spline for load curve

Regression results of preliminary daily model
Regression results of fixed effects in model (5.1)
Forecasting performance of SHELF



Nr

W W W w W NN N NN

[ e
~N o W

g O 0 0 g s

U & w DD = g s W o -

A b w N F

[x]
LIST OF FIGURES
Title

UK Coal consumption between 60Q1 and 85Q4 (in logs)
UK Coal consumption with global and local fixed trends
Standardized OLS residuals for COAL

Standardized innovations for COAL

2

Diagnostic plots for COAL : 3t,

Signal for COAL
Trend for COAL
Seasonal component for COAL

Cusum and Cusum Square

Standardized irregular for COAL

Mean square error of irregular in a LL model for different
signal-to-noise ratios g

US exports to Latin America (in logs)

Innovations and auxiliary residuals for LAXL

Car drivers killed and seriously injured in GB (in logs)
Innovations and auxiliary residuals for CDKSI

Number of marriages in UK

Innovations and auxiliary residuals for MARRIAGE
Consumption of spirits, relative price of spirits and income
per capita in UK (all in logs)

Innovations and auxiliary residuals for SPIRITS

A cubic spline through a set of points

First three derivatives of a cubic spline

Interpolated monthly averages of temperature

Frequency histogram and cubic spline polygon

Scatter plot of electricty demand against temperature with
linear regression line for weekdays (except holidays) in
1990 at 1:00 pm

Cubic spline for response of load demand to temperature
Weekly averages of temperature at noon

Weekly pattern of temp described by dummies and by

periodic cubic spline



ATy O O OV OV OV OV OV OW OV OV OV O O
L T .

.5a
.5b
.6a
.6b
.6C

.10
.11
.12
.13
.14
.15

[xi]

Title

Load curves for some Wednesdays in 1991
Load curve on Friday, 41 March 1988

Interpolation errors with a periodic cubic spline and with

trigonometric terms

Load demand pattern of first week in March 1988
Interpolation errors after standard day spline
Interpolation errors after Saturday correction

Estimated weekly load pattern by standard day. splines
Estimated weekly load pattern with Saturday correction
Estimated weekly load pattern with Weekend correction
Load patterns for some weeks in 1990

Load vs temp for all Wednesdays in 1990 at various hours
Load demand on Wednesdays in 1985-1989 at various hours

Estimated coefficients of preliminary regression model

~ Estimated intra-weekly load patterns during some months

Estimated non-linear response to temperature
Estimated yearly cyclical pattern

Weekly aggregated standard prediction error in 1990
Examples of forecasts and MAPEs



ACF

AIC

ARIMA model
BSM

CCF

EWMA

HOT

KF

LL model
LLT model
MAPE

OLS

RWN model
SHELF

SSF

STAMP

STS model

[xii]

ABBREVIATIONS

Autocorrelation function

Akaike information.criterion
Autoregressive-integrated-moving average model
Basic structural time series model
Cross-correlation function

Exponential weighted moving average
Householder orthogonal transformation

Kalman filter

Local level model

Local linear trend model

Mean absolute percentage error

Ordinary least squares

Random walk plus noise model

Structural hourly electricity load forecaster
State space form

Structural time series analyser modeller predictor

Structural time series model



CHAPTER 1
INTRODUCTION

This thesis deals with a variety of topics concerning the
statistical analysis of time series. It is my belief that structural
time series models provide the most satisfactory framework for
analysing time series since it does not rely on all kinds of
subjective judgements to the process of time series modelling.
Moreover, the structural approach of time series modelling easily
adopts all powerful results related to the state space model and the
Kalman filter, it provides a full set of different diagnostic tools
to validate the estimated model and it has a close connection with
various econometric methodologies of modelling. But most important,
the structural time series model is preferable because it provides a
direct appeal to the interpretability of unobserved components in
time series.

Five separate studies are carried out for this research
project and, basically, they all concern the linear state space
model and the Kalman filter which, jointly, play a central role in
time series analysis such as the regression framework plays a

central role in econometrics.
State space form and the Kalman filter

The first part describes briefly but clearly the latest
developments in the state space methodology such as diffuse initial
conditions, fixed effects in time series models, likelihood
evaluation, prediction, diagnostic.checking and computational
considerations. This part is primarily based on research of Harvey
(1989), De Jong (1988a,1991b), Anderson & Moore (1979) and Ansley &
Kohn (1985).

Smoothing algorithms for state and disturbance vector

The second part of this thesis is a study on smoothing in

time series models and it concentrates on theory, algorithms and



practical implications. Essentially, it proposes to concentrate on
the disturbance vector of the SSF. A special smoothing algorithm is
developed to calculate the auxiliary residuals, that is the full-
sample estimates of the elements of the disturbance vector. A new
method to calculate smoothed (full sample) estimates of the state
vector is developed which is computationally efficient and
outperforms existing methods, see Anderson & Moore (1979), De Jong
(1988b,1989) and Kohn & Ansley (1989), for most practical time
series models. Furthermore, the new residual smoother leads to an
attractive method of estimating covariance parameters of a time
series model. This estimation method can be regarded as an essential
improvent of the EM algorithm, see Watson & Engle (1983).

Diagnostic checking of innovations and auxiliary residuals

The new smoothing results pave the way to use auxiliary
(smoothed) residuals for diagnostic checking of unobserved component
time series models. Commonly, diagnostic checking is carried out
using the standardised innovations. These residuals can be compared
with the recursive residuals in the regression framework, see Brown,
Durbin & Evans (1975). Due to the nice properties of the
innovations, e.g. they are serially uncorrelated, it is attractive
to use them for tests on normality, heteroscedasticity, serial
correlation, etc. Auxiliary residuals are obtained from polynomial
functions (within the forward time operator) of the innovations and
they are not serially uncorrelated even when the parameters of the
model are known, see Maravall (1987). Therefore, the diagnostic
checks on normality and heteroscedasticity for the auxiliary
residuals must be corrected. It seems at first sight that the
auxiliary residuals are not very useful for diagnostic checking
because they contain no new information and they do not possess
special properties. It will be shown that, on the contrary, they are
very useful because they present the information, available from
innovations, in such a way that several problems in time series
modelling, such as detecting outliers and structural change, are
tackled straightforwardly. This research project has examined how
the auxiliary residuals are related to each other and to the



innovations and how they they can be used to construct test-
statistics. A number of examples are given as illustrations.

Time-varying cubic splines

The fourth part of the thesis deals mainly with the
structural time series model applied to periodic time series where
the observations are affected by intra-daily or intra-weekly
effects. The basic structural time series model consists of the
unobserved components trend, seasonal and irregular. Many seasonal
time series can be effectively described by the basic structural
time series model, see Harvey (1989). For example, the periodicity
of monthly observations is modelled by time-varying dummy parameters
or, alternatively, by time-varying trigonometric terms. For
observations at more frequent intervals, e.g. daily or hourly
observations, the dummy or trigonometric seasonal component may not
be very parsimonious for modelling the periodic effect.

This study explores the idea of time-varying cubic splines to
handle frequent periodic movements in time series. The spline
function is well-known as a technique to describe a complicated and,
perhaps, unknown non-linear function. A particular spline function,
the cubic spline, can be easily established in the regression
framework, see Poirier (1973). The periodic cubic spline is defined
by imposing special begin- and end-conditions on the cubic spline.
In the context of time series, it is restrictive to consider the
periodic cubic spline as fixed over time. Treating the periodic
cubic spline as time-varying and incorporating it in a time series
model causes some theoretical problems but they can be solved
straightforwardly. The required calculations for iniposing a time-
varing periodic cubic spline in a. time series model are implemented

in an efficient algorithm that avoids standard matrix inversions.
Forecasting hourly electricity load demand
A structural time series model with time-varying splines is

applied to the problem of forecasting total hourly electricity load
demand at an electricity power station in the north-west of the



United States of America. A computer model, which will be referred
to as SHELF, is developed to produce, at any time, three days ahead
hourly load forecasts. In this illustration, explanatory wheather
variables are included in the time series model to improve the
forecasts. Two problems arise, (i) the response of weather on the
load demand is non-linear and (ii) the response of weather is
different at specific hours during the week. These problems are

handled by using fixed cubic spline functions.
Preliminaries and notation

A time series is denoted by y, where t=1,...,n such that the
length of the time series is n. The full set of observations is
denoted by Y, the sub-set of observations y,,...,y, is denoted by Y,
and Y=Y . The logarithm of the joint density function under normality
for the set of observations Y is denoted by 1l[y] and the, so-called,
likelihood criterion is denoted by L[y] so that 1[y] = -} L[y] +
constants. The likelihood criterion conditional on a set of random
variables 8 is denoted by L[y|8] and the concentrated likelihood
criterion with respect to 8 is written as IL;[y]. The minimum mean
square linear estimator of any unknown x is denoted by E[X] with its
mean square error matrix Mse[x]=Cov(x-E[X]). When the estimator is
constructed using the data-set Y, the notation becomes E[x|y] and
Mse[x|y], respectively. Under normality assumptions with regards to
y, the estimator E[x|y] is no longer confined to the class of linear
estimators. Thus, under normality, E[x|y] can be referred to as the
minimum mean square estimator and, indeed, E[x]|y] can be regarded as
the conditional expectation of x using y.

A (nx1l) column vector v is 'a stack of n elements and is
denoted by v=(e,;...ie ). A (1xn) row vector w is written as
w=(e;,...,e). The transpose of any matrix M is denoted by M'. Let
the (nx2) matrix M consist of, respectively, 2 (nxl) column vectors
U and v then M=(u,v). Let the (2xn) matrix N consist of,
respectively, 2 (1xn) row vectors w and x then N=(w;x). This
notation implies that (A',B')'=(A;B) where A and B are matrices with
the same number of columns. Furthermore, the trace of a matrix A is

tr A and the determinant of a matrix A is |A|. The notation for a




zero value is 0 but it can be a scalar, vector or matrix.

Finally, a section of a chapter is only referred to by its
number when it can be found in the same chapter otherwise a section
is denoted by two numbers from which the first number refers to the
chapter, for example section 2.3 (chapter 2 section 3). The sub-
sections are not numbered. The equations are indicated by two
numbers from which the first one is the section number. When an
equation is referred from another chapter, it is indicated by three
numbers from which the first number is the chapter number and the
second number is the section number. The sub-equations are numbered
with use of an additional small letter. The tables and figures are
all numbered by two numbers from which the first one refers to the
chapter. The appendices are indicated by the number of the chapter
and a capital letter. A note is indicated by a number surrounded by
squared brackets and it can be found at the end of a chapter.



CHAPTER 2

THE STATE SPACE FORM AND THE KAIMAN FILTER :
theory, algorithms and applications

0. ABSTRACT

This chapter considers the linear state space model and the
Kalman filter which, jointly, play an important role in time series
analysis. The latest developments in the state space methodology are
discussed. These include diffuse initial conditions, fixed effects
in time series models, log-likelihood evaluation, prediction,
diagnostic checking and computational considerations. This chapter
is primarily based on research of Harvey (1989), De Jong
(1988a,1991b), Anderson & Moore (1979) and Ansley & Kohn (1985).

Keywords : Diagnostic checking; Diffuse; Kalman filter; Likelihood
evaluation; Prediction; Square root filter; State space; Structural

time series models.

1. INTRODUCTION

The state space form (SSF) is a natural set up for linear
time series models. Although originating in the engineering
literature, several authors, e.g. Harvey (1981), have emphasized
- that the SSF has a potential to be important in the study of time
series in statistics and econometrics. A main attraction is its
generality: all linear time series models can be placed in the state
space form. For example, the linear regression model is naturally
embedded within the SSF but also any autoregressive moving average
(ARMA) model can be put into this framework. The basic tool for
statistical analysis with the SSF is the Kalman filter (KF) which



.was developed by Kalman (1960) and Kalman & Bucy (1961). The Kalman
recursions give one-step ahead predictions allowing parameter
estimation via the prediction error decomposition. Moreover, the
Kalman filter is of importance for analytical and practical matters
related to estimating initial and fixed effects, smoothing,
prediction and other topics in time series analysis.

The literature contains many examples nowadays where the
state space methodology is applied successfully. Some good examples
in practical time series analysis are Burridge & Wallis (1985),
Burmeister et.al. (1986), Engle & Watson (1981) and Harvey &
Phillips (1979). Also, the new developments in structural time
series models and its applications contribute to the state space
methodology, see Harvey (1989) and Harvey & Shephard (1992).
Recently, the state space form is modified to deal with initial and
fixed effects in time series models explicitly, see De Jong (1991b).
This modification paves the way to estimate these effects directly
and to compute the likelihood function exactly using the Kalman
filter. The expression for the likelihood function depends on the
assumptions regarding the initial effects which may be fixed, random
or diffuse.

This chapter concerns the state .space form, the Kalman
filter, likelihood evaluation and some other related issues in time
series analysis. The organisation of this chapter is as follows.
Section 2 presents the state space form which is adjusted to allow
for fixed effects. Several practical time series models are
discussed in section 3. The derivation of the Kalman filter is giVen
in section 4 and it is modified in section 5 in order to estimate
fixed and initial effects and to evaluate the likelihood under
several assumptions. |

Several diagostics are available to validate how well the
time series model describes the data generation process. Commonly,
diagnostic checking is carried out using the one-step ahead
prediction errors which are also known as the innovations. These
residuals are obtained from the Kalman filter. The methodology of
structural time series modelling, where these diagnostics play an
important role, is illustrated by using a real time series in

section 6. To ensure numerical stability, the Kalman recursions can



pe formulated in a square root form. This can be compared with
numerical stable approaches to least-squares computations in
regression analysis. Section 7 explains a numerical
orthogonalization technique (the Householder transformation) and
shows how the square root form can be implemented. Finally, a
general Pascal computer program is given in section 8 for some
required computations discussed in this chapter. Section 9 concludes

this chapter.

2. STATE SPACE FORM

The state space form (SSF) consists of the following two

equations
Y, = Z,2, + X B + G, (2.1a)
@, = T + WH + He, (2.1b)
where y, is a vector of time series for t=1,...,n. The vector ¢, and

the vector [ are given by
@, = W, + Hee, B=Db+ Bd (2.2)

The disturbance vector e, and the parameter vector § are both random
with distributions

e, ~ (0, 021 ) . O ~ (p , 02A) (2.3)

where & and €, are uncorrelated for t=0,...,n. The matrices Z.r X
Gy, T,, W, H,, for t=1,...,n, and (b,B), W, and H, are called system
matrices and are supposed to be fixed and known. Equation (2.l1la) is
‘referred to as the measurement equation and equation (2.1b) is
called the transition equation. The vector «, is the state vector and
is not fully defined without a proper definition for the initial
state vector @, as given in (2.2). To separate known and unknown
elements of B but also to incorporate linear restrictions, the

vector B is parameterized by (2.2).



The state space form (2.1)-(2.3) is proposed by De Jong
(1991b) and it is analytically attractive because it accomodates
random, fixed and diffuse effects in time series models explicitly
rather than only time-varying effects. Moreover, this SSF handles
correlation between the disturbances in the measurement and
transition equations. The following remarks clarify the SSF in more
detail.
[1] The system matrices of (2.1) are time-varying. A:-time series
model is time invariant if the system matrices Z,, T,, G, and H, do
not change over time for t=1,...,n. The initial system matrices W
and H, are allowed to differ from the time invariant system matrices
W, and H,.
[2] It is not restrictive that the parameter vector f appears in
the measurement and transition equations. The matrices X, and W, may
be interpreted as selection matrices. Note that for many time series -
models the restriction X W!=0 holds.
(3] The matrices G, and H, transform the sequence of disturbance
vectors into a multivariate random process with zero mean and a
specific time-varying covariance structure. For the special case
that HG!=0 for t=1,...,n, the measurement equation and the
transition equation are said to be uncorrelated.
[4] - Under the assumption that the disturbance vector is normally
distributed, the related estimators are minimum mean square
estimators (mmse). If the normality assumption does not apply, the
inference results are still valid but the estimators are optimal
within the class of linear estimators, i.e. they are minimum mean
square linear estimators (mmsle); see Duncan & Horne (1972) and
Anderson & Moore (1979).
[5] It is well known that any linear time series process can be
placed into the Markovian representation as given by the transition
equation of (2.1b), see Harvey (1981).
[6] ‘The dimension of the state vector #[{a,] may also vary over
time. This is particularly useful for interventions in time series
models where specific effects are only valid for some sub-set of
observations.
(7] The parameter vector P is a linear combination of the random
vector 6. When the covariance matrix A is set to zero, the parameter
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vector B is fixed but unknown. The initial state vector can still
pe, partially, random by an appropriate choice of H,. The SSF may
nandle partially diffuse initial conditions as discussed by Ansley &
Kohn (1985), De Jong (1988a,1991b) and Marshall (1992). The random
vector & is said to be diffuse when the inverse of A converges to
zero in the Euclidian norm, denoted by A-~x. The diffuse assumption
reflects parameter uncertainty and it needs to be applied when a
time series model is nonstationary. The specification of the initial
state vector, such that it depends on a random, fixed or diffuse
parameter vector §, implies a particular method of initializing the
Kalman filter as discussed in section 2.5.

(8] The SSF can be regarded as a multivariate regression model
with B as the parameter vector. This is not obvious at first sight
although it can be shown easily. Let y be the stack of the
observation vectors y,, y=(y,i..-iy,), and define the matrix T as a
lower block triangular matrix with % (n+1) (n+2) non-zero blocks and
identity matrices on the main block diagonal. The (t,]j) block of

matrix T is given by the matrix product

Ty ; = TeqTepe =T (2.4)
for t=2,...,n+1 and j=1,...,t-1. It follows from (2.1) and (2.2)
that

y = Za + Xp + Ge (2.5a)

¢ = T(WB + He) (2.5b)
where a=(a;7...7a. ), €=(€,i€,7...7€_ ), z=[diag(Z,...,2,),0],
=(Xy7...3%), G={0,diag(Gy,.-.,G.) ], W=(W,;...;W) and

H=diag(Hy,...,H ). Equation (2.5b) shows that « is linear in B and,
therefore, y also is linear in B. This becomes apparent by
substituting (2.5b) into (2.5a) leading to

y = Ap + a (2.6)

Where A=ZTW+X and a=(ZTH+G)e such that Cov (a)=02 (ZTH+G) (ZTH+G) '. The
matrices (2TW+X) and (ZTH+G) are supposed to be known.
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3. TIME SERIES MODELS

The state space form (2.1)-(2.3) includes various types of
time series models. The following types of models will be discussed
in this section, the regression model, the autoregressive moving
average (ARMA) model and the structural time series model.

Regression models

Many books are available on the introduction of regression
analysis. The strength of the regression model is its simplicity,
its optimal properties as formulated in the Gauss-Markov theorem and
its effectiveness in empirical analysis. The ordinary linear

regression model is given by
Ye = X{B + e, (3.1)

where €, is NID(0,0%) and B .is the vector of fixed parameters. It is
seen immediately that (3.1) is a special case of the SSF where X =x/!
and G,=1. All other system matrices are equal to zero including the
covariance matrix A. Any linear restriction can be incorporated by
f=b+Bd. The dynamic regression model is established in this
framework when lagged and differenced explanatory variables are
included in X,.

A regression model with stochastic parameters is given by
(3.1) as well but now P=6 and its covariance matrix A is assumed to
be non-singular. A regression model with time-varying parameters is
formulated in terms of ‘the state vector

Y, = x o+ ou for t=1,...,n (3.23a)

a, = « + v, for t=2,...,n (3.2Db)

t t-1
where u, is NID(0,02) and v, is NID(0,02V). Also the regression model
with time-varying parameters can be put into the SSF by z2.=x/!,
Gie=u,, G G'=1, W,=I, H,..€,,~v,, HH/=V and T =TI for t=1,...,n. All

other system matrices are zero except matrix (b,B). Thus the first

v

Parameter vector «, is set equal to B=b+Bd where 3 can be regarded as
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fixed, random or diffuse.

Autoregressive moving average (ARMA) model

A time series y, is often effectively described by a
stochastic process known as the autoregressive integrated moving
average model of a specific order (p,d,q), denoted by ARIMA(p,d,d),

which is given by

z, = ¢z, + ... + bz + u

pZt-p -0y, - ... - 8 u,. (3.3)

t
where u, is NID(0,¢?) and y, is differenced d times, z=(1-L)%, where
y, are the observations. Note that L is the lag operator such that
LY, =Y¢.q- For an extensive discussion on the ARIMA model, the reader
is referred to the standard text of Box & Jenkins (1976). Also, many
other books on basic time series analysis are available that give an
introduction in ARIMA modelling. The ARIMA(p,d,q) model is
represented by a time-invariant state space model with

Z, = (1,0') : (3.4a)
T, = (¢1,...,¢r;I,o)' (3.4Db)
R, = (1i6,7...:0_,) (3.4¢)

and with r=max(p,g+l), I is the identity matrix, o is a column
vector of zeroes and #[o]=r-1. The system matrices X and W, are
zero. If X  is non-zero, the SSF is regarded as a regression moedel
with ARMA residuals, see Harvey & Phillips (1979). The initial
condition for an ARMA model in the context of the SSF. is extensively
discussed in the literature, see for example Gardner, Harvey &
Phillips (1980). The initial condition for an ARMA model with some
non-stationary roots is discussed by De Jong & Chu-Chun-Lin (1991).
The state space specification for univariate ARMA models is easily
generalised for multivariate ARMA models.

Structural time series models
The structural time series (STS) model is an unobserved
components time series model where a time series is decomposed by

interpretable components such as trend, season, cycle and irregular.



13

rThe STS model can be regarded as a time-varying regression model
where the explanatory variables -are functions of time. The
structural time series model is easily represented in a state space

form.
A structural time series model can be generally expressed by

Ye = By + ¥, + 4 (3.5)

where p, 1is the level or trend component, y, is the seasonal
component and the irregular u, is NID(0,02). The components trend and
seasonal can be modelled in different ways. For example, a
deterministic trend is given by p,=a+bt where a is the level constant
and b is the trend slope. It is unfortunate that this simple trend
component 1is rarely appropriate for real time series. Especially for
economic time series where the components trend and seasonal do
change over time. Therefore, it is unreasonable that, in the context
of forecasting, all observations receive the same weight at any
point in time. This can be solved by allowing the regression
coefficients to evolve over time. This implies the discounting of
past observations. An appropriate way of modelling a stochastic

level is by a random walk process

Be = Byq + 0 (3.6)

where 7, is,NID(O,qﬁﬂ). The so-called local level (LL) model (3.5)
and (3.6), with y,=0, is easily embedded within the state space model
by putting z,=T,=1, G,=(1,0), H;=(0,fqﬁ) and all other system matrices
equal to zero. Usually, the initial trend is regarded as diffuse
such that (b,B)=(0,1), W,=1 and H=0. Note that sometimes the LL
model is referred. to as the random walk plus noise (RWN) model. The
ARIMA representation, or reduced form, of the LL model is of order:
(0,1,1) with MA parameter 8, equals to %(2+q{4]4q{ﬂﬁ]). The forecast
function of the LL model is an exponential weighted moving average
(EWMA) scheme with smoothing parameter (1-6,).

The local linear trend (LLT) model is given by (3.5) with
¥v=0 and the trend component p. is modelled as
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Be = Beg + Beq + 1 (3.7a)
By = By + G4 (3.7b)

where {, is NID(O,of). This model (3.5) and (3.7) is put into a SSF
with 2,=(1,0), T,=(1,1;0,1), W,=B=I, G=(1,0,0), Ht=[0,Diag(J-qn,J-qc)],
the other system elements equal to zero and 3 regarded as diffuse.
The reduced form of a LLT model is an ARIMA model of order (0,2,2)
and the forecasting function has a Holt-Winters forecasting scheme,
see Harvey (1989).

The basic structural time series model (BSM) is given by
(3.5) and (3.7) where ¥y, is modelled as a stochastic seasonal
process. There are several methods for modelling y, but the most
straightforward BSM is based on dummy seasonals. The seasonal dummy
regression model consists of a parameter vector with the elements Y; -
for j=1,...,s where s is the seasonal length. The implementation of
dummy seasonals in a regression model requires the restriction 2;1 Y;
= 0 or, equivalently, y, = - 2?3 Y;- The BSM allows the seasonal
dummies to evolve over time such' that the seasonal effect at time t
is v&=v; where period j is prevailing at time t and"

Bl Ve = 0 (3.8)
where o, is NID(0,qo02). Thus the seasonal dummies do not exactly sum
up to zero but the expectation of the sum is zero such that the
dummies have the flexibility to change over time. This basic
structural time series model can also be put into the SSF. For

example, consider a quarterly BSM with dummy seasonals (s=4), the
system matrices of the time-invariant SSF are given by

Z, = (1,0,1,0,0) G, = (1,0,0,0)

T, = Diag(Tnl,TwJ) H, = (0,H;0)

T = (1,1;0,1) H = Diag(wfqn,qu(,\fqu)
T® = (-1,-1,-1;0,1,0;0,0,1) W=B=1 '

and all other sytem elements are equal to zero, see Harvey (1989)
for more details. A monthly BSM with dummy seasonals has an ARMA
Ieépresentation (reduced form) which is very close to the 'airline!
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model of Box & Jenkins (1976).

Other approaches also exist to deal with stochastic seasonal
components in unobserved components time series models. For example,
Harvey (1989) discusses an alternative BSM with time-varying
trigonometric terms and Harrison & Stevens (1976) propose a vector
of random walks where each element characterizes a particular
season. In chapter 5, both approaches are discussed in the context
of modelling seasonality by periodic cubic splines.

For a thorough discussion on stochastic properties,
applications and many other issues concerning structural time series

models, the reader is referred to the elaborate work of Harvey

(1989) .
4. THE KALMAN FILTER

The Kalman filter is primarily a recursive set of analytical
expressions for the minimum mean square linear estimator and the
mean square error matrix of the observation vector and state wvector
using Y, , and parameter vector 3. Because the likelihood can be
expressed in terms of one-step ahead prediction errors, the Kalman
filter is an important tool for evaluating the log-likelihood
function. This section will give the details of this efficient
method of calculating the likelihood. In the following it is assumed

that all system matrices are known and that the vector 8 is random.

Prediction error decomposition

The log-likelihood function of y conditional on the random
parameter vector & is defined by 1[y|8]=-%(#[y] log 2=m + L[ylb])
where the likelihood criterion L[y|&] is given by

Liy|8] = log|Z | + (y-p,) 'Z(y-p,) (4.1)

where py=E[y|6]=(ZTW+X)B and Ey=Mse[y|6]=Cov(y—uy)=02(ZTH+G)(ZTH+G)',
see equation (2.6). Expression (4.1) is computationally not
attractive. An efficient approach to evaluate the likelihood is
derived in the two results [2.1] and [2.2]. The first result derives

an alternative expression for (4.1) using the prediction error
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decomposition. This likelihood formulation can be easily computed
via the Kalman filter. The second result contains the derivation of

the Kalman filter.

Result [2.1] Denote the minimum mean square linear estimator of «,
using Y, , and 8, and its mean square error matrix as, respectively,
= E[a,]Y

8] 02 P = Msela.|¥, ,,8] (4.2)

At|t-1 t-17 t|t-1

then the likelihood criterion L[y|&] of (4.1) can be rewritten as

#(y] log o + I .[log |F | + o 3v!F;'v,] (4.3)
where the prediction error or innovation v, and its covariance matrix

0?F, are defined as

Ve = ¥y = B[V ]Y¥. 1,81 = ¥, - 22y - XB (4.4a)

02F, = Mse[y,|Y,,,8] = Cov(v,) = o2 (2P, .2} + G.G}) (4.4Db)

t t-17 t|t-19¢

Equation (4.3) follows from the prediction error decomposition, see
Harvey (1981), that allows rewriting the likelihood criterion as a
sum of likelihood functions which are conditional on the set of past

observations Y 4 and the random vector §,
Liy|8] = Lly,|81 + I Lly,|Y,.,,8] (4.5)
The equation for v, follows from E[y,|¥,,,8] = Zya.|;.q + XB as implied

by the measurement equation of the SSF. The equation for 6?F,  is
obtained by introducing the state prediction error vector

+

X, = «

t - Ela,

¢ Yt_1,6] = o, - at|t_1 (4.6)

with Cov(x,) = 02P,,. By substituting the measurement equation of
(2.1a) into (4.4a), leads to v, = Z,x, + Ge, from which it follows

directly that its covariance matrix 62F, 1s given as asserted. [ ]
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Kalman filter

Equation (4.3) provides a viable method for calculating the
1ikelihood criterion. The innovations and their variances are
provided by the Kalman filter which is mainly a recursive set of

equations to evaluate the estimators A¢|¢-1 and P The following

t|t-1°
result derives the Kalman filter.

Results [2.2] The Kalman filter is given by

Ve = Yy T B8y — X.B F, = Z,P|,4Z{ + GG (4.7a)
_ -1

Ky = (TPy|e42{ + HG!)F| : (4.7b)

Apyqly = ’I'tatlt_1 + Wtﬁ + K, . . (4.7c)

Pevle = TePyleqly + HM! (4.74d)

where L =T, -K.Z2, and M,=H -KG,. The equations (4.7a,b) can be regarded
as definitions. The proof of the two latter Kalman recursions is
given below.

Because the set of innovations.I€={V1,...,vt} is a linear
combination of the set of observations Y ={(y{s«..,Y,} and the
parameter vector §, the minimum mean square linear estimator of the

state vector can be redefined as
CHRTI E[e,,|Y.,8] = E[a,,|L,]. (4.8)

The set of innovations I, are independent. Therefore, as follows from

appendix 2A (result 2), the state estimator can be decomposed into

a1:+1|t = E[at+1|1t-1] + E[at+1lvt] = E[dt+1] ' (4.9)

4

where

Elay]Tq] = E[Ta+WB+HE [T, ] = Ta, ., + WP (4.10)
An explicit expression for the term E[atﬂ|vt] is obtained using the
minimum mean square linear estimation results of appendix 2A. It
follows that
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E[t,q|V,] = E[a,] + Mse[«,,,,V,]Mse[v,] 1 (V.~E[V,])
= E[a,,,] + Mse[a,,, Vv ]0%F v, (4.11)

where

Mse[a,,,,V,] = Cov(T {« -E[a ]} + He,  , 2% + G)
= 02 (T Py[,.4Z¢ + HG!) (4.12)
By substituting the equations (4.10) and (4.11) into (4.9) and by

-1
tIt-1Zt' + HG!)F,, the
recursion for a.,, follows immediately. The estimator of the initial

defining the Kalman gain matrix as K, = (T,P

state vector is a;,= E[a,|8] = W,(b+B3).

The recursion for P is derived by starting to note that

t+1 ]t

02Pyyy| = Mse[a,,|¥,,8] = Cov(x,,,)

= Cov(a ~Efa., 4], ,X) (4.13)
where the prediction error X, = @, — @, can be evaluated
recursively by ‘

Xepq = Lix, + M, (4.14)
This follows from the definitions of «., and CHPT leading to %, =
Rppg = By = TX, + HeEe, - Kv, where v, = Z.x, + Ge,. From this result,

the Kalman equation for P follows immediately because

t+1 t
02Pt+1|t = Cov(Tt{at—E[at]} + He, , Lx + Mtet) (4.15)

which give the recursion for P as asserted. The initial mean

= o2HH! [ ]

t+1t

square error matrix Mse[a1[5] is given by 02P”0

The update equations for a¢4q|e and P, Wwill be referred to as
the Kalman recursions. The derivation of result [2.2] follows mainly
the proof of Anderson & Moore (1979) using linear estimation theory.
Simpler alternative derivations are at present in the literature.
Duncan & Horn (1972) derive the KF by using generalized least

Squares techniques, see also Harvey (1981). Another simple proof can
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pe given when Gaussianity is assumed. The proof is based on applying
the rules of conditional expectations, see Harvey (1989) and
appendix 2B.

The second part of the likelihood criterion (4.3) can be

rewritten by f_ + oiqh'where both scalars are evaluated recursively

by

f. = £

. + log |F,]| q, = d,.q + V/F v, (4.16)

t-1

and £,=0 and g,=0. Both recursions are assumed to be included in the

Kalman filter.

steady state
A time invariant SSF is given by

Y, = Za, + X B + Ge, o = Ta, + WP + He, (4.17)

t t+1

together with (2.2) and (2.3). The Kalman filter applied to the time
invariant SSF is still time varying but can converge into a time

invariant filter, that is when

b _p (4.18)

t+1)t

In this occasion, the KF is said to be in a steady-state such that

the KF quantities F,, K, and P are constant over time. In fact,

t+1]t
the steady state mean square error matrix P is the solution of the

Riccati equation which is given by

P - TPT' + (TPZ'+HG') (ZPZ'+GG') "(TPZ'+HG')' - HH' = 0 (4.19)

This Ricatti equation follows from the recursion of P which can

t+1|t
be rewritten as

Peale = T¢PyeTe — KF K + HH! (4.20)

Equation (4.20) is obtained by considering (4.7d) and the

definitions of K,, L, and M,. It is not straightforward to get a
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solution for (4.19) and, if a solution is available, it is not clear
whether P is unique or whether P is a positive semi-definite matrix,
see the discussion in Anderson & Moore (1979) and Harvey (1989,

section 3.3.3).

The innovation and the estimator of the state are linear in §

The equations for F,, K, and P |t.q are data-independent. These
quantities only depend on the system matrices whereas the vectors v,
and CRT depend on the set of observations Y., the parameter vector 3§
and the system matrices. In view of the linear SSF and the linear

KF, the vectors v, and a appear to be linear functions of the set

t+1]t
of observations Y  and of Lhe parameter vector B=b+BS. Because no
actual values are given for B, the vectors v, and CH cannot be
evaluated. This is in contrast with the Kalman quantities F,, K, and
Pyj¢-1 which are not dependent on . The following result will show
that v, and a ., are linear functions of parameter vector §.

Result [2.3] The innovation v, and state a can be expressed

t]t-1
explicitly as linear functions of &

Ve = VY + vid = V. (1;8) (4.21a)
—_ ] + — .
Ayjpq = ap + ad = A (1:9) (4.21Db)
where

o _ _ o _ 0 — o 0

Ve = Y, zZ.ay X.b . ag,, = T,ay + Wb + K vP

+ + + _ + +

Vi = - Z.a; - X.B a;,, = T,a; + WB + K vy

Ve = (V3D A, = (a3

and A; = W,(b,B). Equation (4.21) follows directly from the Kalman
equations v, and Agjeq BY replacing - f with its definition b+B& and

4

rearranging the KF equations. [ ]

The Kalman filter in stacks and the Cholesky decomposition

It was recognised in the literature, see Harvey (1981), that
the Kalman filter performs a Cholesky decomposition on the set of
Observations such that they are transformed into an orthogonal data-
Set. The following result gives the details. '
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Result [2.4] The stack of the innovations v=(v;;...;iv.) is a Cholesky
transformation on (y—uy), where B, = E(y|6] = (ZTW+X)B, as given by

v =Cly - ] Cov(v) = 02F = OZCEYC' (4.22)

where C is the Cholesky (lower block triangular) matrix.

The update equation for a can be rewritten as

t+1]t

= La + NP + Ky, (4.23)

Qrelt t]t-1

where L=T,-K.Z, and N =W -KX,. Equation (4.23) is obtained by

substituting the equation for v, into a In order to derive

t+1]t*

expressions for the stack of the vectors v, and a define

t|t-17
a=(a”0;...;am1h), K=(0;diag(K,,...,K), N=(W,;N,;...:N ) and note that
N=W-KX where X and W are defined in section 2 (8-th remark).
Furthermore, define matrix L as a lower block triangular matrix with
1 (n+1) (n+2) non-zero blocks and with identity matrices on the main
block diagonal. The (t,s) block of matrix L is given by the matrix

L, ¢ = LeqLepe - - L | (4.24)
for t=2,...,ntl and s=1,...,t-1. Compare matrix L with matrix T, the
latter has the same structure as L but its blocks are replaced by
the blocks of (2.4). It follows that

v =y - Za - Xp a = L(NB + Ky) (4.25)

By substituting a into v and by recdlling Yy = (ZTW+X) P + (ZTH+G)e
from (2.6), we have

v = Cy - (ZIN+X)P = C(y=XB) - ZIWP = (CZT-ZL)Wp + Je  (4.26)

where C=I-ZLK and J=C(ZTH+G). Because E[v]=0, it must hold that
CZT=ZL and v=Je=C[y-(ZTW+X)f]. The Cholesky result follows now
immediately. Note that covariance matrix ¢2F equals 02JJ' where
J=C(ZTH+G) =ZLH+CG=ZIM+G and M=H-KG=(Hy;M;;...;M ). [ ]
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The Cholesky decomposition shows, in an alternative way, that
the likelihood criterion of (4.1) can be rewritten as (4.5),

Liy|8] = log|3,| + (v-u,) '3/ (y-u,)
= loglc|Iz,|lc'] + (y-u,) 'C'(CE,C')C(y-h,)
= #[y] log &2 + log|F| + o >'F'v . (4.27)

Note that |[c|=|c'|=1 and |A||B|=|AB| when A and B are non-singular
square matrices. Finally, it follows from the stack notation as well-

that the innovation is a linear function of parameter vector §,
v = C[y - (Z2TW+X)b] - C(ZTW+X)Bd = v° + v'd = V(1;9) (4.28)

where v°=(V§i...i;v0)=C[y—-(2TW+X)b], v'=(Vv]ii...;V])=-C(ZTW+X)B and

v=(v°,v") .

5. LIKELTHOOD EVALUATION AND ESTIMATION

The likelihood criterion L[y|§] is given in (4.3) and it is
evaluated by the KF. The derivations are given for the concentrated
likelihood criterions IL,[y] and Ls,,[y] for the following three cases
regarding 6 ~ (p , 02A). (i) It is straightforward to derive the
likelihood for the case that the parameter vector is fixed such that
A=0. (ii) When A is a non-singular covariance matrix, parameter
vector & is said to be random. (iii) A special case of the random
assumption is a diffuse §, that is, the inverse of A converges to
zero in the Euclidean norm. The likelihood criterions for these
cases are derived below as well. The approach of De Jong (1991b) and
Marshall (1992) is adopted in this section but the derivations are ‘

more transparent.

The likelihood criterion under fixed conditions
When the parameter vector 8 is assumed to be fixed such that
A=0, the likelihood criterion is similar to (4.3) or (4.27). By

replacing v with V(1;8), the likelihood criterion is
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L{y|8] = #[y] log o2 + log |F| + 07%(1;8)'Q(1:9) (5.1)
where Q = (q,-s';-s,S) = V'F'V. It follows that the maximum
1ikelihood estimator for 6 is equal to the generalised least squares
estimator

5 = s’'s Mse[§] = o28™" (5.2)

and the concentrated likelihood criterion, with respect to 6, IL;[y]

is given by
Lyl = #[y] log o2 + log |F| + o%(q - s'S’'s) (5.3)

The maximum likelihood estimator for ¢2 follows from (5.3) and it is

given by
02 = (q - s'S's)/#(y] (5.4)

such that the concentrated likelihood criterion, with respect to
(6;02), L;.,[y]l is given by

L., [yl = #[y](1 + log 02) + log |F| (5.5)

To evaluate matrix Q = EgﬂVQF:V¥, a partially modified Kalman filter

is applied as given in the next result.

Result [2.5] The modified Kalman filter is primarily extended to
calculate the dummy matrices of (4.21). Thus, the modification only
concern the vectors v, and Aglp-1e Their equations are replaced by the

4

matrix equation and matrix recursion, respectively,

Ve = (Y.:0) - Z,A, - X, (b,B) (5.6a)
A, = TA, + W(b,B) + KV, (5.6b)
where A, = Wy(b,B). Also, the matrix recursion

Q, = Q. + VIFV, (5.7)
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is added where Q;=0 and Q=Q. In-fact, the latter recursion replaces

the recursion for g, but the recursion for f, remains, see (4.16) [ ]

This approach of estimating the parameter vector (d;02) and
evaluating the likelihood criterion, for fixed initial conditions,
is a generalisation of the results of Rosenberg (1973). It is based
on the fact that the (fixed) initial conditions are linear in the
observations and, therefore, a generalised least squares procedure
can be applied to obtain maximum likelihood estimates. The required
computations are relatively straightforward because of the
prediction error decomposition. The modified Kalman filter (5.6) is
proposed by De Jong (1991b) in what he ‘calls the diffuse Kalman
filter (DKF). This name is slightly confusing because it has,
strictly speaking, nothing to do with a diffuse §.

The likelihood criterion under random conditions

The likelihood criterion L([y], when vector § is assumed to be
random, 'can be derived using Bayes' rule, L(y] = L(y|8] + L[(8] -
L[d|y]l. The first likelihood criterion is given by

L{y|8] = #[y] log o2 + log |F| + 072(1:;8)'Q(1:98)
= #[y] log o2 + log |F| + 62(q - 28's + §'S$) (5.8)

where Q=(g,-s';-s,S) is evaluated by the modified KF. The definition
of L[6] is straightforward and is given by

L[8] = #[8] log o2 + log |A| + o 2(p'A'p - 28'ATp + 5'A18)
| (5.9)
Although it is based on classical results, see any textbook on
multivariate statistical theory, it is not straightforward to derive‘
L(8|y]. The results of appendix 2A need to be applied in the same
way as they are applied to the derivation of the Kalman filter in
section 4. It is given that L[8|y]=L[§|Vv°] because, as it is observed

earlier, the vector v° is a linear combination of y. Furthermore,

E[8] = p Cov[d] = o2A Cov(8,v°) = —oZAvt'.
E[v°] = -v'u Cov[Vv°] = o2 (V'AV'' + F) (5.10)
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and, by applying the result of minimum mean square linear

estimation, it follows that

E[8|v°] = p - AV (VAV'' + F) (v + v'p) (5.11a)
Mse[8§]Vv°] = o2 (A — AV'' (VAV'' + F) Ww*A) (5.11b)

applying the standard inversion lemma on (V'Av''+F) leads to
(VVAV'' + F) 1 = F' - Fi'vr(A!T + ) WvrEd (5.12)
such that (5.11) can be rewritten as

E[8|v°] = p + A(T - S(AY + 8) ) (s - sp)
=TIp + (A + 8) (s - sp)
= (A" + 8) (s + A'p) (5.13a)

Mse[§|v°] = 62 (A - A(I - S(A" + 8)")sA)
= g2 (I - (A" + 8) ')A
= o2 (A + s)! (5.13b)

The derivation of (5.13) becomes apparent by replacing all identity
matrices with the matrix term (A'+S) (A''+S)' or its reverse. The
likelihood criterion L[&|v°]=L[8|y] follows immediately from (5.13)
and is given by

L[(s|y]l = #[(8] log 62 - log |A' + 8| + o2(8-p) 'S " (8-p)
(5.14)
L=E[8|y] and E=Mse[d|y], see (5.13).
The likelihood criterion for y. where 8 is assumed to be
random follows from the equations (5.8), (5.9) and (5.14) and is
given by

L{y] = #[y] log o2 + log |F| + log |A| + log |A'+s]|
+0%(g+ p'Alp - (s + ATp) (AT + 8) (s + AMp)) (5.15)

The likelihood criterion (5.15) can be evaluated using the modified

Kalman filter (5.6) provided that actual values are given for p and-



26

A. However, in the case that p and A are known, it is much simpler
to get the likelihood from the normal KF which is initialized with
ayp = Wy (b+Byp) and Py, = W,BAB'W] + HJH] and where f is replaced by
b+Bp.

The concentrated likelihood criterion, with respect to p, is:
given by

L[yl = #[yllog o + log|F| + log|I + As|
+ 0%(q - s'sS’'s) (5.16)

Note that the maximum likelihood estimator for p is given by S’'s. It
follows from (5.16) directly that the estimator for A is a zero
matrix such that the concentrated likelihood criterion L, [y] under
random conditions is the same as the concentrated likelihood
criterion IL;[y] under fixed conditions. Finally, the estimator for o?

remains equal to (g - s'S’'s)/#[y].

The likelihood criterion under diffuse conditions

The random vector & ~ (p,02A), is said to be diffuse if the
inverse of A converges to zero in the Euclidian norm which implies
that a'A"'b~0 where a and b can be any non-zero vector. The initial
condition must be treated as diffuse ‘for non-stationary time series
models but also in cases where time series models have been applied
since time immemorial, see De Jong & Chu-Chun-Lin (1991) for a
thorough discussion. In general, the diffuse condition reflects the
uncertainty regarding the initializiation of the time series model.
It can be regarded as a standard assumption for nonstationary time
series models.

The diffuse likelihood criterion is defined as the limit of
(5.15) when A-« and where the term log|A| is dropped, i.e.,

L[{y] = #[yllog o2 + log|F| + logl|ls| + (q - s'S's) /02 (5.17)

This pseudo-likelihood criterion differs from the one for the fixed

case with only the term log|S|. At first sight, it seems arbitrarily
to drop the term log|A| to get the diffuse likelihood. Nevertheless,
(5.17) is a likelihood criterion for My where (i) the transformation
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natrix M has rank #[yl-#[81, (ii) Cov(My,8)=0 and (iii) log|cCov (My) |
= (#[y]log o%2+log|F|[+log|S|), see De Jong (1991b). In fact, the
1ikelihood criterion (5.17) is very similar to the marginal
likelihood, see for example McCullagh & Nelder (1989). The marginal
1ikelihood is based on a linear transformation as well, say Ny, but
only the restrictions (i) and (ii) hold such that the data are
invariant to &§. Since 1oglCov(Ny)|=1og|o2N2}J'L=#[y]log g2+log|F|
+1log|NN'|, it is obvious that the difference between the marginal
and the diffuse likelihood is equal to the term log|S|-log|NN'

The estimator for & under diffuse conditions is the limit of

.

(5.13) when A-«, i.e.,
§ = E[8|y] = s’'s Mse[d|y] = o028 ~ (5.18)

These inference results do not differ from the earlier inference.
results for the fixed case. The estimator for o2 is unchanged

because its estimator for the random case is invariant to A.

It can be concluded that the inference results concerning &
do not differ when 8§ is assumed to be fixed or diffuse, see table

2.1. However, the associated likelihood criterions do differ.

Initialization of the Kalman filter

Consider the Kalman filter as derived in section 4. The
parameter vector 8 is assumed to be unknown, thus the KF cannot be
initialized properly. This initialization problem is widely
discussed in the time series literature. The 'main stream' solution
is to start the KF with a very large covariance matrix given by
P”fml where k¥ is a large constant, see Harvey & Phillips (1979).
This 'big-k' method reflects the uncertainty with regards to the
initial state. It is a numerical solution that may cause
computational inaccuracies and, more importantly, it is
Conceptuallly not appealing. Another proposed solution is to apply
the information filter that provides recursive equations for the
inverse of P.|;.;, See Anderson & Moore (1979). Note that the 'big-x'
fethod is implied by Pi{;=0. Ansley & Kohn (1985) point out that the
information filter is numerically inefficient and cannot be used in
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specific cases like ARMA models. It is also possible to use an
initial stretch of the data-set to estimate the initial state vector
by regression techniques, see Harvey & Pierse (1984). The drawback
of their approach is that the initial data set cannot include
missing observations and that it is tailored to specific cases. A
similar approach is put forward by Bell & Hillmer (1991).

This section has shown how the likelihood function can be
evaluated exactly by applying the modified Kalman filter which does
not have an initialization problem ( A,=W,(b,B) is known ). Ansley &
Kohn (1985) propose another modification of the Kalman filter which
also deals with diffuse initial conditions but they use other
concepts. Although judgements of this alternative method are rather
subjective, their approach is less appealing. De Jong (1991b)
clearly points.'out why. The approach of Ansley & Kohn (1985), as
also presented in many of their subsequent papers, is analytically
not attractive because their derivations are cumbersome to follow.
The approach of De Jong (1991b), adopted in this chapter, is a
trivial modification of the KF and the derivation is transparent.
The main result is based on Rosenberg (1973). Finally, the approach
of Ansley & Kohn (1985) is less general.

The extra computational costs of the modified KF compared to

the usual KF is that (i) the vector recursions for v, and a are

t+1]t
extended with a number of #[8] equivalent vector recursions ;nd (ii)
the scalar recursion for q, is replaced by the matrix recursion for
Qs see (5.6). The dimension of this matrix recursion is (1+#[8]) x
(1+#[0]) . Note that #[8] is in many cases equal to #[a,]. For
example, the basic structural. time series model with a quarterly
dummy seasonal component is put in a SSF with dimensions #lax, ]=#[d]=5
and #[e 1=4. . _ .
In general, it is not required to apply.the modified KF for
the full data-set. After an initial stretch of the data, the matrix
S, becomes non-singular such that an estimator for § exists. Note
that the length of the initial data set, say d, can never be smaller
than #[8]. The initial estimator of & is used to collapse from the
modified KF to the usual KF. The collapsed KF is applied to
=d+1,...,n and it starts off with the state A¢4(l;sysd) and with its

Mean square error matrix Piqlg + 25q5ial.+. Furthermore, the matrix
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recursion for Q, (5.7) reduces to the scalar recursion for q,
initialised with g - s}Sj's,. The full details are given in De Jong
(1991a) and Chu~-Chun-Lin (1991). This is the preferred method to
jnitialize the usual KF. However, this method implies that a full-
sample estimator for & cannot be evaluated unless § is fully
included in the state vector of the collapsed KF. In many cases a
full-sample estimator of the initial condition is not of particular
interest but a full-sample estimator of the 'regression' effects is
of interest.

To illustrate matters, redefine the specification of the
initial condition and the parameter vector associated with the SSF

as
a, = by + Byd + Hye, B = Db, + Bd

such that B, 'selects' the elements of 6 for the initial conditions
and B, corresponds. to the 'regression' effects of a time series:
model. Assume that the part of & that is concerned with the initial
state vector, i.e. corresponding to Bj, will be collapsed. With
regards to the part of 3 that is associated with the 'regression'
effects, two strategies can be adopted. First, (CKF - I) the
‘appropriate part of 8 can be included in the state vector of the
usual KF after an initial estimator is available. Second, (CKF - II)
the modified KF remains for the part of & associated with B,. The
second option is computationally superior to the usual KF with § -
(partially) in the state vector, this is illustrated for a local .
linear trend model with two explanatory variables. In table 2.3, the
set of boxes show the dimensions of the Kalman filter quantities
(each block represents one element). For example, in the case of a ,
nodified Kalman filter applied to the LLT model with two  explanatory
variables, the innovation vector vy is of dimension 4x1. Table 2.2
gives the number of additions and multiplications for each step of
the Kalman filter. It is clear that the strategy CKF - II (a
Partially collapsed KF) is more efficient than the CKF - I strategy.

For a complete discussion on collapsing the Kalman filter, see Chu-
Chun-Lin (1991).
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6. PRACTICAL TIME SERIES MODELLING

This section discusses a selection of topics concerning
practical time series modelling using the state space formulation.
The first step is to place the time series model into the SSF.
Generally, some elements of the system matrices are unknown. They
are commonly referred to as hyperparameters. There are several
methods of estimating these unknowns as discussed below.

Diagnostic tools for checking the adequacy of an estimated
time series model to describe the data are widely available and they
can be classified into graphical procedures and into test-
statistics. These diagnostics are applied to the estimated
standardised innovations which are derived, together with the
estimated state vectors, in this section. An overview of several
diagnostic tools is given in this section as well. Finally, an

illustrative example is given.

Hyperparameter estimation

The system matrices of the SSF (2.1)-(2.3) are assumed to be
known. As it is shown in section 3, this does not hold for most time
series models because specific elements of the system matrices are
related to unknown parameters of the time series model. For example,
the SSF for an ARMA model places the AR parameters in the transition
matrix T, and it places the MA parameters in the matrix H,. The ARMA
parameters are not known apriori. For time-varying and structural
time series models, (diagonal) elements of the matrix HH. ' are not
known.

Any unknown element in a system matrix will be referred tq as
a hyperparameter. The estimation of hyperparameters takes place by
minimizing a certain criterion, for example the 'least squares' or
the 'maximum likelihood' criterion, which can be constructed from
the innovations, see section 2.5. The decision of which criterion
has to be minimized is an important one. In the case of structural
time series models, it is appropriate to use the diffuse likelihood
Criterion as derived in section 2.5.
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The appropriate criterion is computed by the Kalman filter
and its optimal value is found via some non-linear optimization
technique, for example, the method of scoring. A more simple 'grid-
search' procedure is mostly not a favourable strategy to find the
optimal value because the number of function calls, i.e. the Kalman
filter, can be huge. Scoring methods are better because they provide
a more precise search direction by taking account of the exact or
approximated first derivative of the criterion with respect to the
hyperparameters. In appendix 2C the analytic first derivative
functions are given for the likelihood criterion where it is assumed
that the hyperparameters are only in the time-invariant matrix H,.
This method of estimating the hyperparameters is referred to as
estimation in the time domain (TD).

Another method of hyperparameter estimation is based on
approximating the estimation criterion via the frequency domain (FD).
where the innovations are obtained from the Fourier transform, see
Harvey (1981). A very different approach of estimating the hyper-
parameters is the EM (expectation-maximization) algorithm which is
developed in the context of time series models by Watson & Engle
(1983) and Shumway & Stoffer (1982). It is reported by Harvey &
Peters (1990) that the EM algorithm performs poorly in estimating
the hyperparameters of a structural time series model. A

modification of the EM algorithm is given in the next chapter.

Prediction

In the state space approach of time series modelling, the
following estimators are of particular interest,

A A

Ve = ElY |Y. 1 vVv,=v, - v, ¢, = E[a,|Y, ;] (6.1)

The estimators of 8§ and their mean square error matrices, under
fixed, random and diffuse conditions, are developed in section 2.5
and are given in table 2.1.

The estimators for y, and «, are given by

Y. = E[v Y. ] = E{ E[y,|Y.,,8] | ¥
1

= ¥, - B[V(1:8) | Y41 =y, - V(1:8,,) (6.2a)
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A
@, =E[a,|¥ .1 = E { E[at|Yt/_\1,5] | Y., )

= E[A,(1;8) | ¥,,] = A (1:d,,) (6.2Db)

with their mean square error matrices

The
its

for

and

The

Mse[y,|¥,,] = Cov(y, - E[y,|¥.1,8] + E[y,|Y,,,8]) - E[y, ¥, ;1)
Cov(v,) + Cov[V,(1;8) - V (1:6,,)]

A
= ¢2F, + V{Mse[d, ,]V}' - (6.3a)
A
Mse[a,|Y ,] = Cov(a, - Qpjpg T g — &)
Py
= Cov(x,) + CoV[A.(1:8) - A,(1:0,,)]
= 02P, ., + aMse[d,  la}’ (6.3Db)

A A .
prediction error v, = y, - E[y,|¥,,] is given by V,(1;8,,) with
covariance matrix 02Ft4-wﬁMse[8t4]v:'. Finally, the estimator
62 using Y, is given by

A

02 = (q, - s/8;'s,)/(t#[y,]) (6.4)

this result is invariant to any assumptions regarding §.
All estimation quantities are evaluated by the modified KF.

estimator of 8 and its mean square error matrix can be evaluated

recursively by

A A

Vv, = V. (1:6,,) (6.4a)
* . -1 fa . *

Vy = V,Diag(0;s;) F, = F, + VV! (6.4Db)

5, =& . - VF sl = gl - VIRV 6.4C)
t — Tt-1 t Tt Vi t 7 Pt t Tttt (6.4c)

The equations (6.4) are obtained by applying an inversion lemma to
the matrix s, = S¢q t v:'F:v:. The recursion (6.4) is started off at

t=d+1 where d is the first integer for which S4 is non-singular. The

estimators cannot be computed by (6.4) for t=1,...,d, unless a

generalized inverse of S, is used. Section 8 discusses more details

and implement all required calculations in a Pascal computer

Program. An alternative recursion for (6.4) is embedded within a

Square root version of the modified KF, see De Jong (1991la).
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When a full collapse has taken place at some point in time,

the usual Kalman filter quantities a and v, are already the

t|t-1
estimators based on Y., and the equations (6.4) are not (and cannot

pe) applied.

piagnostic checking
Once the estimators are evaluated, plotting the estimate of

@, Or some linear combination, e.g. Z @., and plotting the estimate of

totr
Ytagainst time provides some indication of the adequacy of the
model. More informative diagnostics are based on the standardised
prediction errors ﬁf@t. These residuals are approximately serially
independent in a correctly specified model and it is regularly
assumed that they are normal distributed with a zero mean and a
constant variance. The purpose of diagnostic checking is to validate
these propositions. The available tools for this important phase in
time series modelling can be classified in diagnostic tests and
diagnostic plots. In the following, an overview of some important
diagnostics will be'given. For simplicity, it is assumed that the

observation Y, is a scalar such that Qt and ﬁt also are scalars.
DIAGNOSTIC PLOTS
Standardised residual plot: The sequence of residuals
AN
u, = F/'v,/r t=d+1,...,n

where r2 = (‘n—d—l)'122=d+1(§‘;13t - m)2 and m = (n—d-l)'12't‘=d+1f‘;13t, can be
plotted against time and must be checked for any irregularities.
Variance plot : To check if the variance is constant over time, the -
quantity 3% of (6.4) might be examined.
Cumulative sum of residuals : Brown et.al. (1975) propose to check
the cumulative sum of residuals to check for irregularities. The so-
called CUSUM plot consist of the sequence

cusum, = cusum,, + u, = E§

1 =g+

for t=d+1,..., n and with cusum=0. If cusum does exceed specific
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pands, which are associated with some siginificance level, it might
indicate that some form of a structural change has taken place. The
CUSUM is certainly not a formal test procedure.

cumulative sum of squared residuals : Brown et.al. (1975) also
propose to check the cumulative sum of squared residuals to check if

the variance is constant. The so-called CUSUM-SQR plot is based on
cusumsqgr, = (E}zdﬂu]?- )/ (57 4qu?)

The CUSUM-SQR can be regarded as an additional diagnostic for
structural change but is more appropriate as a check for
heteroscedasticity.

correlogram : A graph of the correlations is useful to check whether
the residuals are serially correlated. The scaled residual sample
autocovariance a; is given by

a; = Zlfc‘=d+j+1(ut - m) (u,; - m)
for j=1,...,P and P is a specific constant. The residual sample
autocorrelation of lag j is given by a;/a,. A plot of a;/a, is called
the correlogram. The significance of serial correlation at a

specific lag depends on n, see Harvey (1981).

DIAGNOSTIC STATISTICS

Mean and variance : The sample mean m and the sample variance r2 of
the set of innovations ﬁf@t, for t=1,...,n, can be regarded as
descriptive statistics.

Box-Ljung portmanteau statistic : This test statistic is mostly used
in the context of ARIMA models and is based on a sum of squared
autocorrelations, specifically,

Q = n"(n"+2) E?=1 (n*-3) '1a-J?
where n*=n-d. The Q statistic is asymptotically x2, provided that all

System matrices of the SSF are known, see Ljung & Box (1978). If

not, the statistic can be used as a diagnostic.
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Measures of skewness and kurtosis : The third and fourth moments of

u, are given by, respectively,

0
]

r3(n-da-1) 20, (F;'v, - m)?
k = r*(n-a-1) 20 (F'v, - m)*

which are asymptotically normal distributed

s ~ (0, 6/{n-d-1})
k ~ (3 , 24/{n-d-1))

when the time series model is Gaussian and correctly specified.
Normality test : Bowman and Shenton (1975) propose a test for non-
normality based on the statistic

N = (n-d-1) (s?2/6 + {k-3}2/24)

and is, under the null hypothesis, x% distributed in large samples.
Heteroskedasticity : A simple and intuitive diagnostic for
heteroskedasticity is

H, = SS(n-h+l,n)/SS(d+1,d+1+h)

where SS(a,b) = I _u? and h is the nearest integer to (n-d)/3. Under
the null hypothesis, the statistic H, has a F(h,h) distribution.

Goodness of fit

A discussion of several goodness of fit measures is given by
Harvey (1989). The basic measure is the prediction error variance
82=(q—s'sqs)/#[y]. The standard relative measure of fit is R? which
compares (g-s'S’'s) with the sum of squared deviations from the mean,
Sce Maddala (1988). In the context of time series it is better to

base the comparison on the first differences of the data (R3) or on
the seasonal adjusted data (RZ), see Harvey (1989, section 5.5.5).
These adjusted measures have a direct connection with Theil's U-
statistic. Finally, two rival models may be compared on the basis of
information criteria such as AIC, see Harvey (1981).
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Tllustration : the COAL series

This example concerns the quarterly UK coal consumption from
1960 until 1986 (source of data : UK Department of Energy). The time
series is analeed earlier in Harvey (1989) where also the actual
values of the COAL series are listed (p. 512). The log of the COAL
series is plotted in figure 2.1. The salient features of this time
series are a general downwards movement between 1965 and 139876, a
clear seasonal pattern and a number of shocks of which the one in
1984 is most clear. These features can be explained as follows. The
downwards trend is due to the introduction of gas from the North Sea
in the late sixties. The seasonal effect is explained from the fact
that the  energy demand rises during the winter months for heating.
The extreme values are generally caused by various industrial
disputes but some are also caused by extreme cold periods. However,
the sharp fall in 1984 is due to the prolonged miners' strike during
that year.

‘It is the basic structural time series model that decomposes
the COAL series into the salient components as discussed above. Let
y, denote the log of the COAL series and define the BSM model as

Ye = Be T ¥ + 4 (6.5)
where p, is the trend, y, is the seasonal component and u, the
irregular which takes account of the random shocks in the series.
The observations after 1983 are not considered such that the
estimates are not influenced by the miners' strike in 1984.

In order to show that the data cannot be described
satisfactorily by deterministic components, a regression model is
fitted with a constant and a time-trend (p=e+pt) and dummy
seasonals. The regression results are given in table 2.4 and the
Plots of the series with the fitted trend line and the standardised
OLS residuals are given in figure 2.2 and 2.3, respectively. Some
diagnostics applied to the OLS residuals show that the regression
model with a constant trend does not fit the data very well. A
Prominent indicator is the Box-Ljung test statistic for serial
Correlation Q(10)=74.49 but also the Durbin-Watson test is far off
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ite base-~value 2.0. The global trend may be appropriate for the
middle of the series but it is surely not appropriate. for the end of
the series, say, after 1975. This will cause serious problems in
post—sample forecasting. To what extent the local trend for after
1975 differs with the global trend becomes clear from figure 2.2.
The estimated slope of the global trend is -.0173 and the one for
the local trend (from 1976 onwards) is -.0053. This notion of global
and local properties of time series has led to the development of
structural time series models where components such as trend and
seasonal are allowed to change over time.

The components of a basic structural time series model follow
various stochastic proéesses as discussed in section 3. The
seasohals are based on dummies such that. the sum of the four
seasonal parameters has expectation zero. It is shown before that
the BSM can be placed into a SSF from which three elements of its
system matrices are unknown, i.e. the signal-to-noise ratios. These
hyperparameters are estimated in the frequency domain by a scoring
method using the computer program STAMP!Y, see table 2.5. Other
estimation methods gave similar estimates of the hyperparameters.

The initial conditions of a BSM are assumed to be diffuse
because the model can be applied since time immemorial, see De Jong
& Chu-Chun-Lin (1991). The modified KF provides estimates of the
initial conditions and, from the mean square error matrix S°', their
standard errors and their t-statistics can be calculated, see table
2.6. (

The graph of the standardised innovations ﬁf@t in figure 2.4
clearly shows that some large shocks disturb the time series.
Although the values of -the residuals are within the 95% confidence
boundaries, i.e. approximately between the values -2 and 2, the set .
~of diagnostics will point out whether the standardised innovations
can be regarded as non-informative noise. In fact, the diagnostics
reported in table 2.5 suggest that the BSM fits the COAL series not
unsatisfactorily. Compare, for example, the Box-Ljung test-statistic
with the one for the regression model. The additional diagnostic
bPlots in figure 2.5 confirm this conclusion as well. Finally, the
Model can be improved by treating some observations, which cause the
huge shocks, as missing.
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7. NUMERICAIL: CONSIDERATIONS

Kalman filter computations sometimes lead to numerical in-
stabilities caused by missing observations, badly defined initial
conditions and rounding-off errors. A particular problem is the

Kalman recursion for P that does not rule out a negative definite

t]t-1
matrix. To escape from‘these problems, the square root form of the
KF (Sgrt KF) is applied. The Sqgrt KF is based on othogonalization
transformations such as the Householder, Givens or QR
decompositions. A good reference for these techniques and associated
matrix computations is Golub & van Loan (1989).

This section includes an exposition of the Householder
transformation and gives details of the implementation of the Sqrt
KF. The modified Sgrt KF requires an extra adjustment concerning the

recursion for Q-
Householder transformation

Result [2.7] The Householder orthogonal transformation (HOT) finds,
for any non4zero row vector ¥, a matrix P such that xP is a row
vector of zeroes except its first position equals -#/ (xx'). More

formally, given a non-zero row vector x, the HOT defines

p=xzi(xx")e, P=1I- 2p'p/pp" (7.4a)
such that

xXP

- ¥ (xx")e, . (7.4Db)

Note that the e, vector can be replaced by any zero vector with on a
particular position a unit value, e.q. e;. Matrix P will be referred
to as the HOT matrix.

To derive the HOT method, let p be any row vector and define
SQuare matrix P = I - 2p'p/pp' = I - 2p'qg where row vector q is
given by a=p/pp'. Note that pg'=l. It follows, sequentually, that
(1) P = P', (ii) pP = -p and Pp' = -p', (iii) PP = P-2Pp'q = P+2p'q
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=T and (iv) P = P! and P'P = I. Consider a non zero row vector x
and post multiply it by matrix P such that xP=x-2x(p'p/pp')=x-
zp(xp'/pp'). Choose p=x+ae, where « is an unknown scalar value and e,
is a row vector of zeroes except its first position is unity.

gubstitution of this particular p vector into xP leads to
xP =[1 - 2(xp'/pp')1x - 2a(xp'/pp')e (7.3a)
where

xp' = xx' + ax, (7.3b)

pp' = Xp' + ap, = XX' + a¥, + ax, + &’ = ¥x' + 2ax, + ¢ (7.3c)

1
and z, denotes the first element of a vector z. The HOT aims to find
a value for « such that xp'/pp' = } and xP = -ee;, see (7.3a). The
equations (7.3b) and (7.3c) show that the equation xp'/pp' = 3 is
equivalent to 2xx'+2ex, = xx'+2ax,+«’ and leads to the solution

a=+{ (xx'). [ 1]

The row vector x can also be regarded as a row of any matrix
X. A sequence of vector HOT operations is able to transform X into a
spatial matrix Y denoted by Y+~HOT(X). This matrix HOT operation
involves a sequence of matrix multiplications, e.g. XQ where
Q=P,P,...P, and P; is a particular HOT matrix based on an exclusive
row of X. Note Q'Q=I. When a particular part of a row vector must be
transformed into zeroes, the HOT matrix is partioned, accordingly.
For 'example, let x=(a,b,c) where non-zero row vector b must be
transformed into a zero vector (except its first position). For this
case, the HOT matrix is defined by P = diag(I,R,I) such that r = b i
J(bb‘)ej, R-=1I - 2r'r/rr' and xP = (a,-% { (xx')e;,c).

Some practical problems arises during implementation, for
example, the choice of plus or minus vV (xx'). Such matters are
discussed extensively in Golub & van Loan (1989). In -the numerical

literature, the HOT procedure is known as a very flexible and stable
technique.
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The square root Kalman filter
The square root form of the KF is based on the work of Morf &
Kailath (1975). An introduction can be found in Anderson & Moore

(1979) -

Result [2.8] The Sgrt KF mainly consists of the HOT operation

E, ~ HOT(D,)
where matrix D, = [(Zt7Tt)Pﬁt4r(Gf7Ht)] and matrix E, is the spatial
matrix [Fﬂ,O;KJ%,Pﬁqh,O]. This matrix HOT operation appears to be

recursive which is implied by the definitions of D, and E,.
Consider the mean square error matrix of the joint vector

;2.) using the data-set Y, ,, C,=Mse[y,:a. Y, .], given by
(Y7 & t-1 t t7®el Ty
C, = 0%(Z 1T ) Py (2,3T) " + (G iH,) (G iH)' (7.5)

The mean square error matrix (7.5) can be rewritten in two different
ways, e.g. DD! and EE!. The equivalence C.=E.E! becomes clear from
ter|tr See (4.20) for the
latter. This implies that a matrix Q exists such that D,Q = E, and

the Kalman filter equations for F,, K, and P

Q'Q=I. A matrix HOT operation provides such a matrix. In fact, the
Sqrt KF involves only the transormation of D, into a matrix with the
same spatial structure of E, [ ]

The matrices D, and E, do have the same number of rows but,
in general, matrix D, does have more non-zero columns than E,.
Therefore, the matrix E, is expanded with 'dummy' zero columns to let
D, and E, have the same number of columns, see table 2.9. .

The KF quantities can all be formed using matrix E,. The mean
Square error matrix Pﬂt4=P§t4Pﬁ%4 is now, by definition, positive
definite. A systematic scheme of the modified Sqrt KF is given in
table 2.7. De Jong (1991a) formulates the recursion for Q, in a
Square root form as well. The attraction is that the inverse of S, is
obtained without inverting the matrix S, straightforwardly. Moreover,
the paper of De Jong (1991a) presents an eloborate discussion on
Stable calculations regarding the modified Kalman filter.
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‘The sgrt KF applied to a structural time series model does
not involve many transformations with large HOT matrices. This will
pe illustrated for the the local level (LL) model, the local linear
trend (LLT) model and the basis structural time series model (BSM)
with quarterly dummy seasonals. Table 2.9 presents the structure of
the D, and the E, matrix with o denoting a zero value and * denoting
a non—-zero value. Table 2.8 gives, for some STS models, the
dimensions of the required transformations and the number of times
it has to be applied for one KF update. It can be concluded from
these tables that the dimension of the state vector determines how
many times a HOT matrix must be constructed and that the dimensions

of the transformations vary but are in general quite small.

8. COMPUTER PROGRAMS

This section presents a computer program which takes care of
all computations discussed in this chapter. The computer language is
Pascal. The actual code of the program is given at the end of the
thesis. The code can be adjusted in a flexible way so that the user
can add other computations. It is recommended to keep the main
étructure of the program.

The program below only deals with univariate time series
models such that the observation, the innovation and their
covariances are scalars and the Kalman gain is a vector. It is
straightforward to generalise the program for multivariate time

series models, this version of the program is avaible on request.

The main program )
The system matrices are placed in the variables, TSM (time
series model), RGM (regression model), CSM (covariance structure),
ICM (initial conditions) and CIM (covariances of initial
conditions). In table 2.10 it is shown how these matrices are
organised in the computer program. The dimensions of the system
matrices all depend on the integers DimSt #(«,], DimBt #(P], DimEp
#[et] and DimRg #[6]. The one-dimension array of real values (Data-
Yecord) Y does contain the set observations. The set of Data-records
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x contain time-varying system elements such as explanatory variables
in a regression (X,).

The system matrices are in general sparse and may contain
specific values such as plus or minus unity, sine and cosine
quantities and time-varying values. The computer program takes
account of all these special features by defining a special record

for system elements given by

SysFlt = Record
Code : 0..9;
Positive : Boolean;
R1 : Real;
Pos : Integer;
End;

where the field code corresponds to

0 = 0.0 5 = Cos(2n/R1)
1=1.0 6 = Tan(2n/R1)
2 = R1l 7 = Sr(R1l)

3 = X[Pos] 8 = Sgrt(Rl)

4 = Sin(2n/R1) 9 = Exp(R1)

For example, if a system element has the sequence of field values
(4,FALSE,4.0,0) then its value is -Sin(n/2). Another example is
(3, TRUE,0.0,2) such that the system element value is found in the
second Data-record of X. This allows system elements to be time-
varying. The system matrices consist of a double array of system
element pointer records. If the system element pointer is NIL then
its value is zero. The Kalman filter quantities, that is v, F,, K

A, and P

t! tf

t]t-1r are arrays of real values.

Specific procedures are required that read in the .
observations .and the system matrices. The computer program, as
discussed in this section, does not deal with the input/output
pProcedures but it will indicate where to place it in the main
Program. Another important part of the program are two procedures
that multiply and add system elements.

Two procedures are discussed in detail below. The first
Procedure concerns the Kalman update for the state quantities given

a specified time series model, the new observation and the previous
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state quantities. The other procedure computes the likelihood, it
calculates estimates of fixed and diffuse effects and it computes
one-step ahead predictions of the state and the observation
sequences given the time series model and the set of observations.
In the next chapter, some other procedures are discussed which can

pe included in the main program as well.

The KFupdate procedure

This procedure updates the state vector and its mean square
error matrix for a given new scalar observation. It computes the
innovation, its variance and the Kalman gain vector as well. The

heading of the procedure is

KFupdate( Obs : Float:;
DimKF : Integer;
Var KFA,KFP : Matrix );

The new observation is placed in Obs and the dimension of the KF
operations regarding V, and A, is given by DimKF. Note that when
DimKF is equal to zero, the modified KF reduces to the usual KF. For
a time-invariant time series model, the KF may reach a steady state
at, say, time j such that Pii|e=Py[e-r TOX t=j+1,...,n. In this case,

the calculations for F_, K, and P for t=j+1,...,n, are not

t+1(t/
required. The procedure does indithe where to check for a steady
state but it is not implemented in the program. The structures of
the matrices KFA and KFP differ slightly before and after the KF
update procedure, see table 2.11. '

The procedure KFupdate consists of the following parts

1. My = (2.0T)A, - .Mz = (Zt7T£)Pﬂt4 ‘
2. KFP = (Z,:T,)M]
3. KFA = M, + (X,iW,)

KFP = KFP + (H,;G,) (H,;G,)"'
4, V., = (Y,,0) - KFA[0,0..DimKF] F, = KFP[0,0]
5. K., F, = KFP[1..DimSt, 0] {=KFP[0,1..DimSt]/F,
6. A, = KFA[1l..DinSt,0..DimKF] + K.V,

Peq|e = KFP[1..DimSt,1..DimSt] - K,FK/!

tTtt
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when the KF enters a steady state, the computations regarding the

matrices M, and KFP can be dropped.

The Estimation procedure

Primarily, the procedure Estimation evaluates recursively the
scalar q,, the vector s, and the matrix Sﬂ for t=j+1,...,n. From
these quantities, the one-step ahead predictions of the observation
and the state vector, including their mean square error quantities,
can be evaluated. Note that this includes the one-step ahead
prediction error and its variance. Furthermore, at the end of the
procedure, the likelihood can be calculated and the estimate of &
can be constructed. The heading of the procedure is

Estimation( Var Q : Matrix;
Var L : Float;
Var 4 : Integer);
var A,P,Si : Matrix;
k : Vector;
v,£,o : Float:;
t : Integer;

The integer value d indicates the time that the matrix S, becomes
hon—singular and the integer value t is the time index. The real
value L contains the likelihood value. The structure of the

composite matrix Q is given by (q,-s';-s,S) for t=1,...,d and (q,-
s';Sj,si) for t=d+1l,...,n where Si=S'! and Sj=S’'s. The matrices A and
P contain all KF quantities and they act as the intermediates for

the KFupdate procedure. The vector k places V}Sﬂ1 and the real values
v, £f and ¢ placeS'Gt, %t and 3% respectively, see equation (6.4). The
overall structure of the procedure is given by table 2.12. The .

computer code indicates where to check for a steady state via the
sign !.
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9. CONCLUDING REMARKS

This chapter is an overview of the latest developments in the
state space methodology. The new developments, such as diffuse
likelihood evaluation and estimation of fixed effects in time series
models, can be straightforwardly applied to structural time series
models as also emphasized by Harvey & Shephard (1992). Furthermore,
the general results are important for the new smoothers whiche are

developed in the next chapter.

NOTES

(1 The computer program STAMP (Structural Time series Analyser,
Modeller and Predictor) is a menu-driven software system for IBM-
compatible PCs and its main task consists of hyperparameter
estimation, diagnostics, forecasting and full sample estimation of
- unobserved components for univariate structural time series models.
( Information : STAMP, Statistics Department, LSE, Houghton Street,
London WC2A 2AE, UK )
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APPENDIX 2A

Two results on minimum mean square linear estimation

This appendix gives two important standard results of linear
estimation. The proofs can be found in many books on multivariate
statistical analysis but also in Anderson & Moore (1979).

1. Minimum mean square linear estimation.

(K 2,) and y
non-zero covariance matrix Zxy and where Zy is non-singular. The

consider two random vectors x- (K,,2,) which have a

minimum mean square linear estimator for x, using y, and its mean
square error (Mse) matrix are given by

b

% = - o - _ -1

x = E[x|y] = u_+ 2,2 (Y= H,) Mse(x) = 3, - 3, 28
2. Uncorrelated predictions
Suppose y=(Y,;-.-:Y,) (K,,Z)) where zZ, is block diagonal such that
the sequence y,,...,y, 'is mutually uncorrelated, then the minimum

mean square linear estimator of x (M,,2,) using y is given by

x = E[x|y] = 3}, E[x|y,] - (n-1)n,
and the estimator using (y,;...;y,) is given by

E[X|Y1I"'ryt] = E[le1l"'lyt_1] + E[X|yt] - My

APPENDIX 2B

Derivation of the Kalman filter under Gaussianity

Consider the state space form (2.1)-(2.3)) and assume
Gaussianity, i.e. €, is normally distibuted, such that the theory of
conditional distributions can be applied to derive the Kalman
filter. This particular derivation requires some classical results
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of conditional distributions which are found in many introductory

pooks on statistics, see for example Mood, Graybill and Boes (1974).
The distribution of the state vector a, conditional on Y, ,

and 6 is given by

, o°P

a|¥.,,6 ~ N(a

t]t-1 t[t-1)

From the SSF it follows that the conditional distribution for y, is
given by

Yel¥q,,6 ~ N(Z,a + X8 , O°F,)

t]t-1 t

where F=2.P.,2{+GG{. Consider the joint distribution of (y,;a
conditional on Y, , and §, given by

t+1) 4

N L8y tX S 2 ZePr o1 GG B P T{+GH )

Ttat]t-1+wt[j ‘ TtPt|t-1Zt' +HG{ Ttpt|t-1Tt' +HH{

The conditional distribution for a,,|¥,,,y,,6 is given by

2

N(a“”t,ojPH”t) where
Bt = Tedgpeg + Wb + Ky,
Poape = TP T - K FKY + HH{

with Vt=yt—E[yt|Yt_1,5]=yt—Ztat|t_1—Xt[J’ and K =[T Py Z; +HG{ IF;'. These
update equations are obtained by applying the standard rule on
conditional distributions. It follows, by definition, that T
Wo(b+Bs§) and its mean square error matrix oﬁﬁw is equal to o’HH/ .

The recursions and the definitions for Ve, Fy and K, form the Kalman

filter which is derived under Gaussianity, see also Anderson & Moore
(1979) and Harvey (1989).
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APPENDIX 2C
The Jacobian for a Structural time series model

This appendix derives the first derivative of the likelihood
criterion of a structural time series model with respect to a set of
unknown parameters. Any structural time series model can be put into
the Gaussian time-invariant univariate state space formulation, i.e.

-

Y = 2a, + (0,0)¢€, A = Ta, + He,
where €, is normally distributed with mean zero and covariance matrix
I. The observations are supposed to be scalar such that 2 is a row
vector. The unknown hyperparameters are only found in matrix H which
can be regarded as a function of the parameter vector ¢. The
likelihood criterion can be expressed as

L =3}, L, - where L, = log F, + v}/F,
and the standard deviation o can be concentrated out of the

likelihood and estimated directly, see section 2.4. The Kalman
filter can be rewritten as the set of equations

Bt = Ta, Piea = TP T + HE'
- _ 2
V, = Yy — Zatlt_1 F, = ZPqt4Z' + O
= -1
By = By T Py 2 FV
- _ -1
Py = Pt]t-1 Pt|t-1Z'Ft ZPtIt-1 :

where all quantities are conditional on the initial state vector a, .
To derive the Jacobian vector of L with respect to ¢, denoted by
J(¢), we adopt the matrix differential theorems of Magnus &
Neudecker (1988). The differential for L is dL = 3}, dL, where

dL, = (2v,/F,)(dv,) - ([V{-F,]/F?)(4F,)
and
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da
A dap

¢ = ~2 dag

t z dPt]t—1

dv
dr

= T da,_,
=Tdp,, T' + dH H' + H GH'

t]t-1

t{t-1

in order to evaluate the differentials recursively, we obtain

dp, = dpt|t-1 - dPt]t-1 Z'Ffzpt]m
+ Pt]t-1Z'F;1 dF, F;:1ZPt|t-1 B Pt]t-1Z'F;1Z dpt]t-1
such that
APy = Ly AP,y L/ + dH H' + H dH'
where L, = T - K7 and K, = TP, ,2'F;'. Note that dF' = -F{' dF, F;'. By

using the previous result, the following results can be derived in
the same way ’

= -1 -1 -1

da, = datlt_1 + dP,clt_1 Z'F{v, - PtIMZ'Ft dF, F;'v,
-1
+ Pt[t-1Z'Ft av,

‘ - -1 -1
dauﬂt— Ltdaqb14-T qub1Z'Ftvt— K, dF, F_'v,
- -1
= Ly daypq + Ly APy 2'Flv, .

Using the arguments in Magnus & Neudecker (1988), the Jacobian row
vector of L with respect to ¢ can be written as J(y) = 2., J, where

<G
n

¢ = OL/OY"' = -[" 2(v/F)Z , (V/-F,)(Z ® 2Z)/F} ] D,
and
D, = c?(atl,c_1 ; vec P y / oy’

t]t-1

which can be evaluated recursively by

Diyy = [Lt,(vt/Ft)(Z ® L) ; 0,L, @ Ly 1D,
+ [0 ; HeI + IeH](dvec H/3y')

Note that vec(l,2;3,4;5,6)=(1;3;5;2;4;6) and vec ABC=(C' ® A)vec B.
For the standard structural time series models the matrix dvec H/Jy"

is a selection matrix with elements equals to zero or one.
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TABLES & FIGURES

Table 2.1

Inference results concerning 6 under different assumptions for §

§, = E[6]Y, 4] Mse[6,] = Mse[6]Y,]
Fixed Si's, o®s]
Random (AT + ) (A + s,) o* (A + 5!
. -1 -1
piffuse S;'s, o*s;

Table 2.2

Required number of computations for one Kalman filter step applied
to a LLT model with two explanatory variables

modified KF CKF - I ' CKF - II

Additions 56 54 32
Multiplication 68 50 32
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Table 2.3

pimensions of Kalman filter quantities before and after the collapse
for a LLT model with two explanatory variables

modified KF CKF - I CKF - II

Vt

At

Flt

K\‘.

Pt

O ]

Table 2.4

OLS regression results for COAL

dependent variable : Log of COAL, t = 1960g1,...,1983qg4
number of observations : 96 season : quart. (s=4)
model : deterministic BSM method : OLS
parameter . estimate stand.err. t-statistic )
level a 5.472 0.031 178.197
slope S -0.017 0.001 -31.551
seas vy, 0.262 0.026 9.926
Y, -0.106 0.026 -4.014
Ys -0.412 0.026 -15.611
R-square 0.937 (adjusted 0.934)
DW-stats 1.183

BL-stats (10) 74.49
SumSqrResid 2.024
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Table 2.5

gyperparameter estimates BSM for COAL

dependent variable : Log of COAL, t = 1960ql1,...,1983q4
number of observations : 96 season : quart. (s=4)
model : BSM with diffuse initial cond. method : FD scoring
hyperparameter estimate g ratio

10 x of 114

10 x of 4.577 0.04015

10* x of 0.125 0.00110

10 x of 3.803 0.03336

Table 2.6

Estimates of diffuse initial conditions BSM for COAL

dependent variable : Log of COAL, t = 1960ql,...,1983q4
number of observations : 96 season : quart. (s=4)
model : BSM with diffuse initial cond. method : modified KF
state element estimate stand.err. t-statistic
level a, 5.360 0.194 27.643
slope ﬁ1 -0.008 1.046 ~-0.008
seas vy, 0.286 0.231 1.239

Y, 0.196 0.207 0.948

Ys -0.360 0.205 -1.760
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Table 2.7

outline of implementation square root KF

step Description

(0] The Sqrt KF is initialized with

A, = Wy(b,B) and Pjj, = (Hy,0)
[1] The matrix V, is calculated and D, = [(Zt;Tt)PmtJ’(Gt;Ht)]
[2] E, + HOT(D,)
[3] The matrix A, , is updated using E,
[4] The process [1]-[3] is repeated until end of sample
Table 2.8

Number of Householder transformations for one square root KF-step

Model , Dimension

2 3 4 5 6
Local Level 1 1
Local Linear Tr 1 2

w
=

Basic Str TSM, .1 1




Table 2.9

zero (o) and non-zero (*) elements for Sgrt KF matrices D and E

Model

Local Level

* %

Local Linear Tr

Basic Str TSM,

*
*

o]

O 000 % %

Matrix D

* %
* 0O

o * oo
*O*O
*OO*
O * 0o * o0O0
* oo o0 * oo
X 00000 * 0O
O***OOO*
O * OO0 O0OO0O0
OO0 * OO0 0 OO0

Matrix E

*

*

*
00
00

¥ % % % % %
¥ % % % %0
¥ % X % %0
¥ % % % %0
* % % % %0
¥ % X % %0
000000

000000
000000

Table 2.10

Organisation of

the SSF system matrices in the computer

program

Program _name

TSM

RGM

CSM

ICM

CIM

Positions
0,1..DimSt
1..DimSt,1..DimSt
0,0

0,1..DimRg
1..DimSt,0 ‘
l1..DimSt,1..DimRg
0,0

0,1..DimSt
1..DimSt,0
1..DimSt,1..DimSt

.DimSt, 0
.DimSt,1..DimRg

1..DimSt,1..DimSt

System matrix

~+ + ot

wo marao

s CEES Mo QaQ =S XX HN
sy

[=]
[=]
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Table 2.11

organisation of the modified KF matrices in the computer program :
pefore and after KF update

Name Position Before KF After KF

KFA 0,0..DimKF - v,
1..DimSt,1..DimKF A, A,

KFP 0,0 - F,
0,1..DimSt - K|
1..D0imSt,0 - K,CFt
1..DimSt,1..DimSt Ptlt_1 P“”t

Table 2.12

Structure of procedure Estimation

3

Step Control , Operations
0. Initialize Q =0 L =0 t =0
» A = Wy(b,B) P = HH] d =0
1. KF step t = t+1
KFupdate( y[t], #[6], A, P )
L =L + log F,
2. If d=0 then Q = Q + VIFV,
If not IQi = 0 then : sSinv = g
‘ Sinvs = -S°'s
d =t
else (g:-s) = (q;-s) + V/FWe¢
(0;k) = (0;8inv)V]
v = V,(1;Sinvs) f = F + V. (0:k)
Sinvs = Sinvs - k(v/f) sSinv = Sinv - kk'/f
o = (qQ - s'Sinvs)/t
3. If t=n then goto 4

else goto 1

(g - s'sinvs)

4, q
L =L - log |sinv| + n + log 2mq
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Figure 2.1 UK Codl consumption between 60Q1 and 85Q4 (in logs)
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Figure 2.3 Standardized OLS residudls for COAL
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CHAPTER 3
On Smoothing in Time Series Models :
theory, algorithms and applications

0. ABSTRACT

The main objective of this chapter is to develop a new and
efficient method for evaluating the smoothed estimator of the state
vector and the disturbance vector. For most linear time series
.models, the new algorithms lead to considerable computational
savings as compared with existing methods. The smoothing results
have several implications, for example, they can be applied to
obtain the theoretical auto- and cross-correlation functions of the
estimated residuals of a time series model. Also, the new smoothing
resulté,are applied to improve the EM algorithm for estimating

parameters in the covariance matrices of a time series model.

Keywords : Auxiliary residuals; Diffuse; EM algorithm; Kalman
‘filter; Signal extraction; Smoothing; State space; Structural time
series model.

1. INTRODUCTION

The (modified) Kalman filter yields estimators of the state

vector using the set of past observations Y see the previous

t-17
chapter. The objective of a smoother is the same but it takes

.

account of all observations in the sample, i.e. Y . The full-sample
estimator of the state vector is often referred to as the smoothed
state vector. Smoothers are important in different areas of time
series modelling such as signal extraction, maximum likelihood
estimation via the EM algorithm, cross-validation and missing value
estimation by interpolation.

An extensive overview of classical smoothing algorithms is
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given by Anderson & Moore (1979, Chapter 7). They give three
different smoothing algorithms for different purposes. The
derivations of these smoothers are messy and they are based on an
extension of the state vector with the quantities of interest. For
econometric and statistical applications, but also in other areas,
the fixed interval smoother is the most important smoothing
algorithm. This off-line smoother requires a huge amount of computer
storage space and it is computational expensive. In section 2, the
classical methods of smoothing will be discussed in detail.

Recently, improved smoothing algorithms have been developed
by De Jong (1988b,1989) and Kohn & Ansley (1989) to be referred to
as DJKA. They propose a simple backwards dummy vector recursion as
the 'heart' of the smoother. Their approach is computationally more
efficient compared to the classical smoothing algorithms but no
savings on storage space are obtained. Section 3 will show that the
DJKA smoother follows immediately from the classical methods of
smoothing. Also, the formal derivation of the improved smoothers, as
given by DJKA, will be reproduced and discussed.

Section 4 develops a fixed interval smoother which evaluates
the smoothed estimators of the disturbance vector -and its mean
square error matrix. The disturbance vector appears in the
measurement equation and in the transition equation of the SSF, see
section 2.2. The derivation of the disturbance smoother is direct
and straightforward and it is based on minimum mean square linear
estimation. The dummy recursion of DJKA does appear as well but now
the result is transparent and an interpretation is available for the
dumny vector.

Smoothing algorithms can be modified in a similar way as the
KF is modified such that they can deal with fixed and diffuse
initial conditions. The modifications are trivial and ‘
straightforward. The smoothed estimators can be evaluated exactly by
using the modified smoothing algorithms. These matters and
computational matters of smoothing are discussed at the end of the
sections 3 and 4.

One important implication of the disturbance smoother is a
more efficient new fixed interval smoothing algorithm for the state

vector. In comparing DJKA's method, it saves on computational time
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and storage space for important practical time series models which
have a SSF with sparse system matrices, see section 5. Another
attractive implication of the new disturbance smoother is a
considerable improvement of the EM algorithm for estimating the
parameters of a time series model by maximum likelihood. The new EM
algorithm is discussed in section 6.

The new smoothing results are, in particular, useful for
practical time series modelling. For example, it is straightforward
to construct the theoretical auto- and cross correlation functions
of the residuals of a time series model. Using the same illustration
as in chapter 2, section 7 will give the details of how.the
smoothing methods can be applied in empirical time series analysis.
Section 8 gives computer programs for the new smoothing algorithms.

Some conclusions and a discussion follow in section 9.

2. CLASSICAL METHODS OF SMOOTHING

Anderson & Moore (1979) discusses three different types of
smoothing algorithms that adjust the Kalman filter predictors of the
state vector by taking account of an augmented set of observations.

- The fixed point smoother is concerned with the estimator of the
state vector at a specific time-point j using the set of
observations Y, plus the observations which are gradually coming
available after time j. Thus it evaluates E[ajlYt,G] for t=j,...,n
where 0<j<n is a fixed integer.. This smoother is an on-line filter
such that it is applied in parallel with the Kalman filter. The

fixed lag smoother is also an on-line smoother but it gives

estimators of the set of lagged state vectors, E[ab1;...;atT|Yt,5]
for some fixed p. The estimators of the full set of state vectors'

(ay7...;e ), using the full set of observations Y , are obtained from

the fixed interval smoother. This smoother for E[e,|Y ,8), t=1,...,n,
is a backwards off-line filter which can be applied after the
forwards Kalman filter.

This section discusses only the fixed point and the fixed
interval smoothers because they are most important in empirical
applications concerning social and economic time series. The
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derivations of these classic smoothers are given as presented in
anderson & Moore (1979). Furthermore, it will be shown how the
smoothers can be modified as the KF is modified in order to deal

with fixed and diffuse conditions regarding §.

Fixed point smoother

An algorithm that evaluates the estimator of the state vector
at a specific time j using the observations upto time tzj, i.e.
E[aj|Yt,6] for t=j+1,...,n, is called a fixed point smoother. It is
obtained by including the state vector a; into the state space
formulation, for t=j,...,n, and applying the Kalman filter
straightforwardly. The augmented SSF is given by

Yo = (Z,,0) (aia;) + X.B + G, (2.1a)

(atﬂ;aj) = (T,070,I) (e ;a;) + (W,;0)B + (H,70)e, (2.1b)
for t=j,...,n. The usual KF for the augmented SSF (2.1) gives the
required estimator (aq(eiaj)) for t=j,...,n. By decomposing the

augmented KF analytically for the two parts of the state vector,
leads to (i) the usual KF for the non-augmented SSF and (il) a new
set of recursions to be used in parallel with the usual KF, see

" Anderson & Moore (1979) and Harvey (1989). The second set of

recursions is called the fixed point smoother and it is given by

* o _ -1 =
Kje = Pjﬂlb1ZgFt P en]t —~Pjﬂ,b,LJ (2.2a)
* . *
Ajle = Ao T Ky Ve Pile = Piler = PyefeZe Ky (2.2b)
for t=j,...,n and where L,=T,~K.Z,. The two mean square error matrices
are defined by 02P”t4=Mse[aj|Yt1,6] and 02PLHt4=Mse[aj,at|Yb1,6] and

it is defined that P i17-15Py|51 The smoother is started off at t=]
and is applied (on-line) in parallel with the KF. The equation for
P”t can be dropped when the smoothed mean square error matrix of a;
is not of interest.

The fixed point smoothing algorithm shows that the smoothed
estimator of the state vector a; is a linear combination of future
lnnovations where the weights are constructed from mean square error

Quantities. Harvey (1989) shows for the local level (LL) model that,
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when the KF has reached a steady state, the weights decline
exponentially over time. This is also true for other time series
models. The larger the values for the diagonal elements of H,, the
more rapidly the decline takes place via the matrix L.

Fixed interval smoother
This smoother is concerned with the full sample estimator of

the state vector E[aj|Yn,6]=a” and its mean square error matrix

n
Mse[ajlYn,6]=02P”n for j=1,...,n. The recursive smoothing algorithm

is given by

= 1 -1 -
aj1n = 515 T BT Py (Bpajn = 2jap) (2.3a)
_ o1 _ -1
Piln = Pyis * PisTiPinays (Piaaln = Piaags) Fraa iy (2.3b)
= 1! = - 1
where a.“ ajlj-1 + P.“_1Zj FJ. v; and P.“ P”j_1 lej-1zj FJ. ZJ.P

i i iti-1e
The fixed interval smoother (2.3) is a backwards off-line

]

filter that starts at j=n and it terminates at j=1. Before this
smoother can be applied, the KF quantities aqljr Piljr Kjr V5 and F,
must be available for j=1,...,n. Thus to obtain the full sample
estimators of the state vectors, a forwards pass (Kalman filter) and
a backwards pass (smoother) are required.

The derivation uses the earlier results of the fixed point

smoother. Considering (2.2) gives

Pieler = Pjlja(Dgqbege s < LinLp) ' = PyiqLd (2.4a)

* -1

Ko = Pjja(Zely ;) 'Fy (2.4b)
for j=t-1,...,1 where matrix L =Ly qDLep- - - LjyyL;, see equation

(2.4.17). The matrix Ly is the (t,Jj) block of the lower block
triangular matrix L of section 2.4 and it can be evaluated
recursively. The exact definition of the important matrix L ; is

given by

=0 £t =1,...,5-1

= Ly 1L t = Jj+1,...,n
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By repeatingly applying the former equation of (2.2b) and using the
definition of (2.4b) leads to

— n * — n 1 -1
Ajn = )5 T IGKG Ve = ag50 F Py D (2L ) TRV, (2.5)
‘o — -1
and, similarly, aj.q|, = 45 t P Btejur (Zely,juq) 'Fy vy such that
n -1 — -1 -
2t=j+1(ZtLt,j+1) 'Ft V't = Pj+1lj(aj+1ln aj+1|j) - (2.6)

From equation (2.5), the result (2.3a) is derived as

3 = A1 * Pjpr Dhejer (Bl ) 'FLY
= ay; + Pyl I (3D gu) 'FLV
= ;15 * Pyl Plgy (Bpan = apa)p) (2.7)
The definitions for a;; and P;; are obtained directly from (2.2) for
t=j. It can be easily shown that P;i;.4L/=P;;T/ such that (2.3a)
follows as asserted. The recursion for P;|, can be derived by using
the same steps of the derivation for aj|,- An alternative proof of the
fixed interval smoother (2.2) is given by Ansley & Kohn (1982) which
is based on geometrical arguments.

Harvey (1989) shows for the local level (LL) model that the
smoother recursion (2.3a) reduces to an exponential weighted moving
average (EWMA) scheme for j=t,...,n where t is the time-point for
which the KF has reached a steady state. The smoothing parameter is’
based on P”jT;P;”j.
The modified smoother

In a similar way as the Kalman filter is modified to deal
with the unknown parameter vector 8, the smoothing algorithms can be
" adjusted as well. These modified smoothers are required to compute
the smooth predictions E[ajlYt] and their mean square error matrices
Mse[ajlYt] for t=j,...,n and 1<j<n (fixed point) or for j=1,...,n and
t=n (fixed interval). As it is observed in section 2.6, the
estimation results of 6 do not differ whether & is fixed or diffuse,
See table 2.1.
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The estimator awt'is defined as E[a.lY 6]. It follows

directly from the results of chapter 2 that a as defined in (2.5a)

iler
with n=t, can be rewritten as

— t = . .
ile = 251 E1JKJ1V A”t(l,ﬁ) (2.8a)
where

+ _ t *
(a?lt'ajlt) = &+ Ei=JKj,iVi (2.8Db)

for t=j,...,n. The modified fixed point smoother replaces the

recursion of a in (2.2b) by

it

+ K. v (2.9)

Ajle = Byl iVt

for t=j,...,n. Note that A”J1
fixed point smoother is that an additional number of #[6] vectors

=A;. The implication for this modified

have to be calculated.
The modified fixed interval smoother follows directly from

the previous results and it is given by

A.

_ p-1 _
iln = 2515 F PiiT Py Bjuqn Ajiq) (2.10)

such that Qjjn= ”n

Again, the modification consists of calculating an additional number

(1;8). Indeed, equation (2.3b) remains the same.

of #[&] vectors, compare (2.3a).

The predictor a E[a |Y ] and its mean square error matrix

il
62D ji=Msela;|Y¥] for t= j,...,n and 1<j<n (fixed point) or for

j=1,...,n and t=n (fixed interval), are obtained by
A A
aje = E[o;]Y,] = E[A;(1;8) lY,1 = A;(1:5,) (2.11a),
2/\ ~
02P; | = Mse[a;|Y,] = Cov[a. = aj),]
= Covia; = ay, + aj, - &)

= 02P. + CoV[A,

e (078-8,)1 = o2p,|, + al| Mse(§ jat); (2.11b)

ilt

where the estimators regarding a fixed, random and diffuse & are

given in table 2.1, see section 2.5. These smoothed estimation
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results for the classical smoothing methods are not reported earlier
put they follow directly from earlier results.

In section 2.5 the initialization of the Kalman filter and
the approach of collapsing the modified KF are discussed. When a
collapse takes place at time r, such that matrix S_ is non-singular,
the modified fixed point smoother collapses in a similar fashion at
time t=r. It reduces to (2.11) for t=r and, consequently, the
csmoother (2.2) is applied for t=r+1l,...,n. In case of the fixed
interval smoother, the equation of aj|,r See (2.3), does apply for

J

j=n,...,1 but for j=r,...,1, the terms v; and a;;.q must be replaced

by Vj(l;gr) and Aj(l;gr), respectively.

computational matters

The fixed point smoother (2.2) is an on-line filter that must
be applied in parallel with the Kalman filter. Even its modified
form is a relatively efficient recursion and no storage is required.
on the other hand, the computational and storage costs for the
(modified) fixed interval smoother are severe. The main burden of
the computational effort consists of the calculation of the inverse
Of Pt

number of calculations for inverting is huge. Also, it is required

for t=1,...,n. Since these matrices are not sparse, the

that the modified Kalman filter quantities A, and P, are stored for
t=1,...,n. To avoid the re-calculation of V,, F, and K, during the
backwards smoothing algorithm, these quantities may be stored as
well. In the case of univariate time series models, the storage
requirements for the modified fixed interval smoother, where V., F,
and K, are to be stored as well, consist mainly of a number of
(#[a,]+1) columns of dimension (#[«,]+#[8]+1) for every observation
(t=1,...,n).

In the next chapters, fixed interval smoothers for the state

t

and disturbance vectors are developed which are much more efficient
because they avoid computing the inverse of the matrix p, for
t=1,...,n. Therefore, it is not useful to compare the computational
requirements of these new efficient methods with the classical fixed

interval smoothing algorithm as discussed in this section.
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3. THE STATE SMOOTHER

As was observed in the previous section, the classical fixed
interval smoother is computationally demanding. De Jong (1988b,1989)
and Kohn & Ansley (1989), to be referred as DJKA, propose a more
efficient fixed interval smoother. The DJKA's smoother will be
referred to as the state smoother. The algorithm is based on two
dummy recursions and it does not require any matrix inversion.

The aim of the state smoother is to evaluate the estimator

aﬂn=E[at|Yn’6] and its mean square error matrix 02Pﬂn=Mse[at|Yn,6],

for t=1,...,n. It is given by the equations
— -1 - -1
r,, = 2!F'v, + L!r, N, = 2/F;'z2_ + L!N,L, (3.1a)
Aln T Qglt-1 + Pt|t-1rt-1 Ptln = Ptlt-1 - Ptlt-1Nt-1Pt|t-1 (3.1b)

The smoother (3.1) is an off-line backwards filter which starts off
at t=n where vector r =0 and matrix N =0. The Kalman quantities a
Ptlt-1' Rer
be re-calculated as well during the backwards smoother. Indeed, the

tlt-17
v, and F, must be stored but the latter three quantities can

predictors in (3.1) cannot be evaluated unless the parameter vector
5 is known.

The derivation of the state smoother (3.1) can be reproduced
by starting from the earlier results of section 2 or by using the
results of minimum mean square linear estimation directly. Both

approaches are presented below.

A simple derivation of the state smoother

The derivation of the state smoother of DJKA can be given
very simply by using the results of the previous section. Consider
(2.5) and define

= -1
o = L0(%;L ) 'Fvy (3.2)

such that the equation for a follows immediately. The weighted sum

t|n
of future innovations r, can be evaluated recursively, because
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= -1
r, = E?=t+1(Zij,t+1) 'FJ. v;

and
— -1 n -1
r,., = Z{F v, + Ej=t+1(Zij,t) 'F;'v;
- -1
= Z!F'v, + LIZ0 (2L ) "Fi'V, (3.3)

j=t+i J

such that the recursion for r in (3.1) follows directly. Three

t-1
miscellaneous results are of importance, i.e.

r, =0 (3.4a)

Cov(r,,v,) = 0 (3.4Db)
— -1 -

Teq = P (@ A¢|t1) (3.4c)

Result (3.4c) follows from equation (2.5c) but also from the derived

equation for a,|,.
The mean square error matrix oden=Mse[at|Yn,6] is also

evaluated by using a dummy recursion. Define ¢2N,=Cov(r,) and from

(3.4c) it follows that

- p-1 _ - - -1
Ny = Ptlt-1 COV([“t at|t~1] (e, at\n]) PtIt-1
_ -1 - -1
- Ptlt-1(Pt]t-1 Pt|n)Pt|t-1

such that the equation for P in (3.1b) and the initial condition

tln
N=0 follows -immediately. The recursion for N,, in (3.1la) emerges
from the definition of r, ., in (3.1la) and from result (3.4b) that
leads to
02N, = Cov(r,,) = Z!F'Cov(v,)F;'Z2, + L!Cov(r,)L, . (3.6)
This completes the proof of the state smoother. In view of the
arguments used in this derivation of the state smoother, which are
very close to the arguments used by Anderson & Moore (1979), it is
remarkable that this efficient state smoother is not reported
earlier than the late eighties by DJKA. Even more surprisingly, this

(simple) state smoother is rarely used in applied research.
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General derivation of state smoother

The DJKA state smoother can also be derived by using the
results of minimum mean square linear estimation. This 'stand-alone'
proof is split up in four results from which the final two results
give the actual proof as adopted from De Jong (1989). Before these

results are given, some definitions of chapter 2 are restated here

Xe T & T e L, =T, - K2, M, = H, - KG;
Xeog = LeXe + M€, Cov(X.) = o2 Pevqe = o? (Ltptlt-1Tt'+Mthl)
v, = Z,X + G, Cov(v,) = @2F, = o2 (ZtPtlt-1Zt'+Gth')

and the composite matrix Ltj is defined in the previous section.

Result [3.1] More general expressions for the prediction errors are
given by

- t-1
Xy = Ly %5 + LiLL, sqMe,

t-1
= 2L ;% + 25050 ;qME; + Gey

<
1

for j=1,...,t-1. The equation for ¥, follows from repeated
substitution of its recursion and the equation for v, is obtained by

substituting x, into v.=Z x +G.€,.

Result [3.2] The covariance matrix between the two different

prediction errors Cov(xt,vj) is equal to Cov(at,vj) and is given by

=0 ' for j = 1,...,t-1
Cov (e, v;) = 02Pt|t_—1Zt' . for §J =t
= 02Pt|t_1(Zij,t)' for j = t+1,...,n

These covariances follow from the definition of v, in result [3.1]
and

Cov (a,,v;) = Cov(a,, X,) (2;L; 1" for j =t,...,n

which lead immediately to the asserted result. Note that L, ,=TI.
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Result [3.3] The state smoother is given by

a + P Pin = Pyje-1 = N, ,P

tln = Qt|t-1 tlt-1Tt-1 tln Pt|t-1 t-17t|t-1

where

—_— n ] -1
Ty = LI (Z;L; ) 'F;v; N

— n 11
t-1 = B9 (2;L; ) 'F (250 )

t-1

and rn=0 and N, =0. The smoothed estimator of the state vector 3¢ ln and

its mean square error matrix o2 Pt|n are derived by

E{a |Y,8] = E[a,|Y 1/ Vireeo,V,] = IR E?=tE[at|vj]

— n -1 — n 1ol
= @ Z}j=tCov(azt,vj)}?‘j Vi T 8 T Ej=tPt|t-1(Zij,t) F; v,

Mse[atlY,ﬁ] = Cov(at,{at—atln}) = Cov(a,,%x,) = Cov(ozt,rt_1)Pt!t_1
— - -1

= Pyl Erj‘=tCov(at,vj)Fj (Z;L; o) Pylea

_ - n -1

= Pyle L Ej=t(Zij,t) 'F; (Zij,t) Pl

The state smoother follows immediately. The derivation of Ay is

based on the uncorrelated prediction results of appendix 2A.

Result [3.4] The dummy vector r, and dummy matrix N, are evaluated
recursively as given by (3.l1a). The recursions follow from the
definitions of r, and N, see result [3.3], as it is shown for r, in
(3.3). It also follows directly that Cov(r,)=o2?N,.

Modified state smoothing

The modified form of the state smoother computes the full
sample predictions of the state vector $t|n=E[ozt|Yn] and its mean
square error matrix o2 lgtln=Mse[atl,Yn] . The derivation is similar to
that given in the previous section. The smoothed state is rewritten

as *

(A, + PR.,) (1:8)
wvhere

— + . _ n -1
Rey = (x3,,rey) = L (2L ) 'F;'V,

which follows straightforwardly. The matrix R, can be evaluated

recursively in a similar way by
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= -1
R, = Z!F'V, + L/R, (3.8)

and it follows that r=R,(1:3) and R =0. The matrices V, and A, are
optained from the modified Kalman filter.

The smoothed predictions are given by

Bn = E[e,]¥,] = E[(A + PR_;) (1:8) |¥,]

= (B, + PRy (118 (3-92)
Mse[aﬂn] = Mse[«.|Y ] = Cov[e, - a,, + a,, ~ @]
= 02P,, + Cov[(A, + PR, ) (0;8-8)]

A
= o2 (P, - PN _,P,) + (aj.+ Px{,)Mse[d 1(ay + P.xi,)"
Note that 8n=E[6|Yn]=qu and Mse[gn]=Mse[<‘3|Yn]=ozs'1 when 8 is supposed

to be fixed or diffuse, see section 2.6.

Computational matters

The state smoother of DJKA is a fixed interval smoother for-
the state vector but it is much more efficient than the classical
method as described in section 2. The clearest improvement is that
matrix inversions are avoided. The dummy recursions for r, and N, are
computationally efficient. For many practical time series models,
the system matrices of the SSF, such as Z, and T, are sparse, see
section 2.3. Computations concerning sparse matrices can be done
very efficient as it is shown by the computer programs of section
2.8. Note that matrix L, is the composite matrix T,~-K.Z, such that the
product L, 'X partially involves sparse matrix computations, see also
the next section.

The computational consequences of the state smoother are
given in table 3.1 for state space models with different state :
dimensions. The computational costs and the required storage space
are considered for every observation y, which is supposed to be a
scalar. Thus the number of additions and multiplications are counted
for the recursions R, and N, and for the equations of Ay =AtP Ry g
and Piih- The required storage capacity is measured by counting the
number of elements to be stored. Two strategies regarding storing

the Kalman filter quantities can be followed : (i) storing A, and P,
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from the modified KF and re-calculating V., F, and K,; (ii) storing
A, P., V., F, and K. The latter option is considered in table 3.1.
The sparsity of the system matrices are not exploited. Table 3.1
reports the computational costs of the modified state smoother as
well. In this case, the number of additions and multiplications are
multiplied by (1+#(d]) with regard to the equations r,, and ay|pn-
Also, the number of elements to be stored are multiplied by (1+#(d8])

with regard to v, and Qg1

4. THE DISTURBANCE SMOOTHER

The full-sample estimator of the state vector is of interest
in time series applications. In most cases where the smoothed state
vectors are required, the classical fixed-interval smoothing
algorithm is used to compute them. A much more efficient state
smoother will be developed in section 5. The applications are often
related to signal extraction and to the decomposition of time series .
into orthogonal components. For these cases the smoothed state
vector is the important feature. However, the full-sample estimator
of the disturbance vector is rarely considered. The smoothed
estimator of the measurement disturbance vector G, plays a similar
role as the best linear unbiased estimated (BLUE) disturbance in
regression analysis. The smoothed transition residuals, i.e. the
full-sample estimators of HJ% for t=1,...,n, have never been used in
empirical situations. Chapter 4 will show that these transition
residuals have a potential to play an important role in time series
analysis. In the following, the smoothed estimator of the
disturbance vector €, and its mean square error matrix are derived.

This section is organized as follows. Firstly, a simple
derivation is given for only the smoothed estimators for the
disturbances G.e, and He, where it is assumed that HG!=0. This
derivation will show that the dummy vector r, is in fact the scaled
smoothed estimator of the transition residual vector H.e, . Secondly, -
a general derivation, where the assumption H,G!=0 is dropped, is
given of the smoothing algorithm for the disturbance vector €, and

its (lagged) mean square error matrix. The results are based on
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pinimum mean square linear estimation arguments. Furthermore, as in
the previous sections, a discussion takes place on the modified

smoother and some computational matters.

The smoothed disturbance vector

In many practical time series it holds that H,G!=0 such that
poth equations are uncorrelated. The results below assume this
restriction.

Consider the recursion for r, that can be split up into two
parts
r., = 2le + T/r, (4.1)
which follows from the definition L=T.,-KZ,. It will be shown that
the quantities e, and r, are interpreted as the scaled smoothed
disturbances of the measurement and transition equation,
respectively, under the assumption that H,G!=0 which implies that
K=T Py
given by

Z;Fﬂ and Hg@?ﬂﬁHg. The smoothed measurement disturbance is

E[G.e,|Y.,,8] = v, - Zi 3¢, = X.B
= Ve = ZPyeTeq = Ve — (Fe - GGl)e, - FK{r,
= Fe, = (F, - GGl)e, = GGle, (4.2a)

and the smoothed transition residual is given by

E(He, |Y,,8] = a
= Kv, + P

t+1in (Ttat|n + WtB)

t+1|tFe = rI‘tPtIt-1rt-1
— - -1 — .
= Kv, + Pmltrf G%Pﬂtq(ngtVt'+ Ll'r,) = HH!r, (4.2b)

+

The derivations (4.2) uses the definition of a,_  and the definitions

of (4.1). Until now the vector r, was regardedtgg a dummy vector but
the above result shows that it is in fact the scaled smoothed
transition residual. Note that in the previous section the vector r,
1s defined as a weighted sum of future innovations. Furthermore, it
is shown that e, is the scaled smoothed measurement residual. Note

that the signal of the time series is given by z, ¢ +X p=y -G, and its
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estimator is given by

A

Y. = ¥, - E[Ge |Y,,8] =y, - GG/le, (4.3)
1t is clear that this is a much more efficient method of evaluating
en T X.p because the
calculation of the smoothed state vector is required for the latter

the signal than computing the signal by §t = Za

case. Note again that all the results above hold under the

assumption H,G!=0 for t=1,...,n.

A general proof of the disturbance smoother

The aim of the disturbance smoother is to evaluate the
estimator U{=E[et|Yn,6] and its (lagged) mean square error matrices
for every time series model in state space form without the

restriction H,G!=0. The disturbance smoother equations are given by

- -1 — -1

u, = G!/F v, + M'r, C, = G/F G + M!NM (4.4a)
* -1

C, = G/F'z, + M!N.L, (4.4b)
= -1 = -1

T, = Zt'Ft v, T Lt'rt N,y = Z,C'Ft z, + Lt'N,cLt (4.4c)

where the definitions for r, and R, are given by result [3.3]. The

mean square error matrices Mse[e,|Y,$] and Mse[et,ejlY,b] are given by

Mse[u,] = 02 (I - C,) Mse[u,,u;] = ~62C[L, ;M (4.5)
respectively, for t=j-1,...,1. The required Kalman filter quantities
are reduced to only v,, F, and K,. Therefore, the storage space is
limited considerably as compared to the state smoother. The
computations .can be done efficiently by . re-organizing the equations
appropriately, see below. )

The derivation of the smoother. (4.4) is based on minimum mean
square linear estimation results. The recursive evaluation of r, and
N, is derived in result [3.4]. The following two results, with some

references to earlier results, forms the derivation of (4.4).
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Result [4.1] The covariance matrices between the disturbance vector

€, and the sequence of innovations are given by

=0 for j =1,...,t-1
Cov (e, Vv;) = 062G/} for j = t

= g2 (Zij,tHMt)' for j = t+1,...,n
Cov (€4, V;) = @2 (Z2;Ly 4Hy) ' for 3 =1,...,n

These covariances follow almost immediately by writing the
innovation as in result [3.3] with s=1, i.e.

- i1
v, = ZJ.LJ.'1H0€0 + z.2) 1.

Pl M€+ Gj€;

and note that x=Hee,. [ ]

Result [4.2] The smoothed .estimator of the disturbance vector €, is

given by

u, = E(e,|¥,8] = E[e,|vy,...,v ] = 2?=1E[etlvj]
— -1 —_ -1 -1
= E?=1Cov(et,vj)Fj vV, = G/F v, + E?=t+1(ZjL M,)'F; v;

- -1 : -1
= GIF v, + M0 (2L ) "F'y,

J. 4

and leads to the former equation of (4.4a) using the definition of

r.. In a similar way it can be shown that

to

u, = E[e,|Y,8] = Hir,

The mean square error matrix Mse[e,, |¥,8] is given by

Mse[u,] = Cov (e, €,~u,) = Cov(e, e ~G!F;'v,) - Cov(e, r,)M, =
02 (I-G/F'G,) - (I Cov (€., V) F]' (2L (\y) IM,
02 (I-G{F'G,) = M! {3001 (2, L 1) "Fi' (2,1 1) 1M,

and is evaluated by using the latter equation of (4.4a). The mean

Square error matrix Msele,e_|Y,8], for s=1,...,t-1, is given by
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Mse[u,,u ] = Cov(e, e~u,) = Cov(e,e~G'F'v)) - Cov(e, r )M

-1
Cov (e, V) F; (Z;L; o4q) 3N

= -Cov(e,, r )M, = —(I" ;

j=s+1

( here note that Cov(e,,v;)=0 for j=1,...,t-1 and s<t )

i

= Cov (e, V)F (2L, ;)M — I]. ., Cov(e,,v))F;'(2;L; )M
-1 -1
=02 (GF (2L () + MIZL 1 (BiL hy) "FN(Z;L ) IM
-1 -1
= —02 (G!F.'Z, + M [0, (2L 1)) "FiU(Z;L; () ILIL, M

t,s+1"7s

and is evaluated using the equation for C; of (4.4b). This completes

the derivation of the disturbance smoother. Finally note that

Mse[uy] = 62 (I - H{NgH,) Mse[u,,u,] = -62C{L, ,H,
[ ]

A simple alternative derivation of the disturbance smoother
can be given when Gaussianity is assumed, see appendix 3A. It is
noted that the disturbance smoother (4.4) is a backwards recursive
algorithm that starts off with r =0 and N =0 and terminates at t=1.
The various calculations can be done very efficiently. This is shown -
by ther next result.

Result [4.3] To re-organise the equations of (4.4), define
= - Y
e, = F;lv, - K!r , D, = F' + K/NK, . (4.6)

and note that Cov(e,)=02D,. The backwards residual smoother becomes

u, = Jl!b, ¢, = J!BJ, (4.7a)
*
C; = J!BI, (4.7b)
Feq = I{by N., = I{B.T, (4.7¢)
where _
Je = (GyiHy) ‘ I, = (27T
b, = (e;r,) = (-K!;I)r, + (I:0)F;'v, (4.8a)
02B, = Cov(b,) = Cov(e,ir,) = o2 (Dyy—K!N ;-NK,,N,) (4.8b)

It follows that Cov(u,,r, ,)=02 C:. The equations follow directly from
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the earlier results by some minor manipulation. [ ]

The efficient disturbance smoother (4.6)-(4.7) can be
regarded as efficient because the main part is concerned with the
system matrices of the state space formulation which are in general
sparse, see the discussion on computational matters below.

Under the assumption that HG/!=0, the same result for
smoothed residuals does appear as in (4.2), but without this
agssumption, the stack of the measurement and transition smoothed

residual becomes
Ju, = JJ!(eir,) (4.9)

where J,=(G.;H,) . The mean square error matrix of the stack follows
immediately from (4.5), for example, Mse(Ju.) is given by

02 [JJ} - JJ}(D,, -K!N.;-NK,N)JTJT!]

The estimator of the signal of the time series model is given by

E(y |Y,8] =y, - Gu, =y, - GGle, - GH'r, (4.10)
such that (4.10) is similar to (4.3) when HG/=0.

Specific results of the disturbance smoother (4.6)-(4.7) are
earlier recognised by DJKA. Their state smoother and related results
- include the recursions for r_and N, and they do recognise that
vector e, is the scaled measurement smoothed residual with covariance
matrix ¢2D,, under the assumption that H.G'=0. DJKA derive the
equations for e, and D, by using the approach as adopted in (4.2a).
However, it has never been recognised that r, is the 'scaled
transition smoothed residual, under the assumption HG!=0. These
smoothed residuals have proved to be important in empirical time
series modelling, for example, in detecting irregularities in time
series such as outliers and structural changes, see Chapter 4. Also,
the (lagged) mean square error matrices of the residual vector have
not been derived earlier. Other implications of the disturbance

smoother results are discussed in the next sections.
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Modified disturbance smoothing

The modified disturbance smoother computes the predictions
Gf$H€t|Yn] and the associated mean square error matrices. Therefore,
the disturbance smoother must be adjusted in a similar way as the
modified Kalman filter. In the previous section it is shown how the
recursion for r, can be modified, to deal with the parameter vector
5, by replacing it with R, such that r=R,(1;0). The next equations

are required in addition,

1 _ .
E, = F, Ve - K{Rg E, = (ef,ey)
Uy = J{(EGRY) U, = (u:ru:)
Rep = I (E(iRY)

such that e =E (1;0) and u,=U,(1;8). The modifications follow directly
from the equations (4.7) and (4.8) and with replacing v, by V,(1;8).

The equations for C, and C::remain the same.

The smoothed prediction quantities are given by

U, = U, (1;8's) (4.12a)

Mse[u,] = o2 (I - C, + ulS'u'') " (4.12b)
A

Mse[Q,,u;] = 02 (-C{L, ,, .M, + uis u!") (4.12¢)

for t=1,...,n and j=1,...,t-1. These results are valid when & is
supposed to be fixed or diffuse. If 8§ is supposed to be random, S°!
‘must be replaced by (A'+S)! and s must be replaced by (A'p+s), see
table 2.1. The derivation is given by

A

u, = Efe,|Y] = E{E[e |Y,8]]Y) = E[(U,(1:3)|Y] = U (1;:E[5]¥])
Mse[ﬁt,ﬁj] = Mse[et,ej|Y] = Cov(et-uf+ut—ﬁt,ej—uf+uj—ﬁj)
= Mse[u,,u;] + Cov[U,(0;8-8),U,(0;8-8)]

= Mse[u,,u;] + upMse[6|Y]u§'

for j=1,...,t. The smoothed predictions are derived as asserted..
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computational matters

The computational costs for the disturbance smoother is much
1ess compared with the state smoother because the former does not
require the storage and the calculations concerning the Kalman

quantities a, ,=A.(1;6) and P The disturbance smoother, as

tft-1°
represented by equations (4.7; and (4.8), has the nice property that
most computations only involve system matrices which are usually
sparse. Moreover, they also depend on the dimension of the
disturbance vector which is in many cases less than the dimension of
the state vector.

The computational consequences of the disturbance smoother
are presented in table 3.2 in a similar fashion as in table 3.1.
Again, the number of additions and multiplications are counted for
the various smoothing equations. Also, the required storage space,
concerning the Kalman quantities V., F, and K, is measured by
counting the number of elements to be stored. The sparsity of the
system matrices is not taken into account. The additional
computational costs for some equations, when the modified smoother
is applied, is proportional to the dimension of (1:8).

‘5. A NEW EFFICIENT METHOD FOR STATE SMOOTHING

It is discussed earlier that the state smoother of section 3
is important for various features in time series analysis. For
example, the estimated unobserved components of & structural time
series model are extracted by a state smoothing algorithm. This
section presents a new efficient method for state smoothing which is
based on the results of the previous section. The new smoother, to
be referred as the K smoother, is, compared with the state smoother
of DJKA (see section 3), computationally very efficient for many
practical time series models. The gains only correspond to the
smoothed state vector, the new results do not consider the mean
Square error matrix of the smoothed state.

This section discusses also a very different smoothing
approach based on a chalenging article of Whittle (1991). This

approach suggests a smoothing algorithm that requires no storage of
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any Kalman filter quantity at all. It is disappointing that a
straightforward implementation of this method is not numerically
stable and cannot be used in practice. This section shows that an
adjustment of Whittle's smoother leads to the same method of state
smoothing as discussed in this section.

Computational matters are also considered in this section and
it will be shown that the new method of state smoothing is much more
efficient and, therefore, faster than the state smoother of section
3 for various time series models and, in particular, for structural

time series models.

Efficient state smoothing
The new state smoother is based on the idea that the
transition equation provides an approach of state smoothing as well

because.

= E[a

= T%a

|y,81 = T,E(a |Y¥,8] + WP + HE[e,|Y,8] (5.1la)
+ WpB + Hu, (5.1b)

- 8¢41)n t+1

tln

where a,, = E[a1|Y,5] = W,B +-}%E[60YY,6] = W,p + Hyu,. The sequence of
smoothed residuals is obtained from the efficient disturbance
smoother of the previous section. Thus, the usual KF and the usual
disturbance smoother are required including the storage of v,, F, and
K,. It will be argued below that no additional storage space is
required.

In practical applications, since 6 is generally unknown, the
modified form of the state smoother (5.1) must be applied. The
smoothed prediction of the state vector is defined as gth=E[“t|Y} and

it follows that

L]

A A A A
Apen = Tedgpn + wp + Hu, (5.2)
A A A A A

where f=b+Bé and a1h=WOB+H&% for t=0,...,n. The forwards recursion
(5.2) is in fact the new method of smoothing. Its derivation is very
simple and it follows immediately. The 'input' of this recursion

. A A . . . .
consists of & and u, for t=0,...,n. As it is observed in the previous

Cchapter, the estimator § is a result of the modified KF. The



81

smoothed predictions u
t

smoother as given by section 4. Thus the proposed K smoother is a

are obtained from the backwards residual

three-step method :

1. The modified Kalman filter (a forwards pass)
The disturbance smoother (a backwards pass)
3. The state recursion (5.1) (a forwards pass)

Note the following three remarks. (i) The modified KF must be
applied primarily because the full-sample estimator of 3§ (§=S4s) is
required. (ii) The disturbance smoother can keep its usual (non-
modified) form, as presented by (4.7) and (4.8), except that v, must
be replaced by V&(l;S*s) where V, is obtained from the modified KF.
This specific disturbance smoother give the sequences QU Q} and
{L=Ggg{+Hg§tvfor t=0,...,n. The modified smoother quantities E, and
R,, A
because the mean square error matrix Mse[u,] is not required. (iii)

which form together U,=G!E +H!R,, do not have to be computed

Finally, the initialization for (5.2) is computed by using the

estimator 8.

Whittle's approach of smoothing

' Whittle (1991) uses path integrals as a flexible framework
for estimation and prediction in time series analysis. The
attraction of his approach is that the optimization criterions
(represented by an integral) can be maximized freely without
constraints. This direct approach of estimation is a very non-
classical approach in statistical inference but it has a potential
to become very important in future, see Whittle (1991, including the
remarks of the participants in the discussion). One application of
this approach (although it has nothing to do with path integrals)
shows that considering the likelihood function directly leads to
attractive results with regards to smoothing. However, the smoothing
results are limited to the smoothed state and disturbance vector,
expressions for mean sguare error matrices are not obtained. The
result of Whittle (1991, section 11) for a local level (or random
walk plus noise) model is generalised below for any time series

model in state space form.
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It is assumed, for simplicity, that HG!=0, (X,;W,)=0 and o2=1
for t=1,...,n. Furthermore, it is assumed that the initial condition
is known and fixed. These restrictions can be relaxed
straightforwardly. The logarithm of the joint density function can

be given directly in terms of the state space model, i.e.

I0.( loglGeG!| + (v,-2.a,) ' (GG}) Wy, ~2Z.,) +
log|HH!| + (a,,~T.«,)"'(HH) "(a,,-T.) )

Under appropriate regularity conditions (Gaussianity, etc), the
maximum of this log-density with regards to the sequence of state
vectors «,, for t=1,...,n, gives the minimum mean square (full
sample) linear estimator of a,. By taking the first derivative with
respect to «, and restricting it to zero, the 'first-order' condition

is obtained and given by
(He B ) (a=Teq@q) = 20 (GG!) (y—Z.a,) + T¢ (HH!) (@,,~T.a)

for t=1,...,n. The solution of this system of restrictions is

A A A A
denoted by fx\t. Now, define et=(Gth')',(yt—Ztat) and r=(HH!) (&, ,~T.a)
such that the sequence of first order conditions can bé represented

by

>
Ii

N
[
rt
.

K>
rt

t-1

for t=1,...,n. This result is equivalent to the recursion (4.7c).
The vectors gt.and ?t are directly defined as the scaled smoothed
measurement and transition residual, respectively. Note that it is
assumed that H,G!=0. The definitions for'gt and gt leads to a method
to evaluate these quantities plus the smoothed prediction of the
state. Thus from the definition for ?t it follows that

A -1 A
¢, = T '(« - HH'

such that gt can be calculated by its definition and, consequently,
A

T,y is computed using its recursion. This leads to a backwards
recursive algorithm (t=n,...,1) that is able to evaluate the
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smoothed state vector without using any KF quantity except the state

estimate 3m4m- This one-step ahead prediction of tEe state is

required to initialize the recursion by computing « . The inverse of

T, does exists in many applications but, in general, this may cause

problems and Tf must be replaced by a generalized inverse. Finally,
~

note again that r =0.

This method of smoothing is, at first sight, a revolutionary
result that allows efficient smoothing without storage. It is even
more an attractive result because the derivation has used very
simple arguments. This contributes to Whittle's approach of
estimation and prediction in time series analysis by having a direct
appeal to the optimization criterion. It is unfortunate that a
straightforward implementation of Whittle's smoother is numerically
unstable. The reason is that the same filter can be derived in a
reverse time order and, therefore, the roots of the polynomial
cannot be solved uniquely. This problem will be illustrated for the
local level (LL) model in chapter 4. The unstability can be avoided
by restricting the smoother at its begin- and end-points as Whittle
puts forward in the discussion with Harvey, see Whittle (1991). Some
details has been given by Whittle in a personal correspondence but
the required adjustments leads to the Kalman filter approach as
given in section 4.

A straightforward suggestion to make Whittle's smoother
stable will end in the efficient state smoother as described earlier
in this section. The quantity gt must not be computed using its
definition but must be replaced by~3€=Ff$f—K;§t as given in section 3

~

and 4. Furthermore, the backwards recursion for «, can be easily

t
reversed to a forwards recursion such that the inverse of T, is not
required. This solution requires the storage space as discussed

earlier.

Computational matters

Before the computational costs of the state smoothers are
compared, more details are given of the DJKA state smoother and the
K state smoother (5.1). Both approaches can be carried out in its
usual form or in its modified form.
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DJKA's smoother applies the Kalman filter and, alongside,

stores the state vector a and its mean square error matrix P

t]t-1 tt-1°
In addition, v,, F, . and K  may be stored to avoid re-calculation. The

KF is followed by the backwards recursion for the state vector as

given by

—_ -1 - = [ '
u = F v, K!r, r . Z'a + T'r

+ P

tln — Atlt-1 t]t-1Tt-1

where all the KF quantities are available or have to be re-
calculated. The modified form of the DJKA's smoother requires the
modified KF (with storage) and the backwards smoother as given by

A A '/\ l/\
r, r., = Z!u, + T!r,

-1 ) 1
= F Ve (1:8) - K{ t-1

A A
= A (1;0) + P.xr ,

t

P> o>

t|n

such that the matrices v, and At must be stored in stead of the

vectors v, and a respectively.

t]t-17
The proposed.smoothing method of this section also requires

the Kalman filter but only the quantities K,, v, and F, have to be

stored. In general, the dimensions of these quantities are much less

compared to A¢|¢-1 and P The second step is the backwards

tlt-1°
recursion for u, and rtlas given above. The vector r, can be stored by
using the space of K,. Thus, the KF quantity K, is replaced by r,
during the backwards recursion and no extra storage space is
required. The dimensions for K, and r, are the same for univariate
time series models but, in.general, the required storage space for K,
is always larger than for r.. If necessary, the storage for v, can be
replaced by e,. These quantities always have the same dimension.
Finally, the forwards recursion (5.2) is applied. Note that the :
procedure for the modified form of the XK state smoother is similar
but it requires the storage of V, in stead of v, during the forwards
KF. .

Table 3.3 considers four different models : the local level
model, the local linear trend model, the basic structural time
series model and a time-varying regression model. Section 2.3

discusses these models and gives their state space formulation. In
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table 3.3.a the additions and multiplications are counted for one
recursion of r.. The same is done for the DJKA smoother and the
recursion (5.1). The table 3.3.b does report the same but for the
modified form. The number of elements to be saved for the recursion
r, (in its usual and modofied) form is reported in table 3.3.c. Also,
the extra required saving space for the DJKA smoother and the
recursion (5.1) is given. For the DJKA smoother it is supposed that
the quantities K., v, and Ft are stored as well such that they do not
have to be re-calculated. It is concluded from table 3.3 that the K

smoother outperforms the DJKA smoother for many time series models.

6. A NEW EM AIGORITHM FOR ESTIMATING COVARIANCES OF THE SSF

The estimation of the hyper parameters of the state space
formulation can be done by a scoring method where the KF is used to
calculate the estimation criterion, see section 2.6. An alternative
method is proposed by Watson & Engle (1983) and Shumway & Stoffer
(1982), to be referred to as WESS. Their method is based on the EM
algorithm and it is explored for use in the context of time series
models. The way in which the EM algorithm can be applied to hyper-
parameter estimation for structural time series models is described
by Harvey & Peters (1990). They report that the EM algorithm tended
to be very time consuming due to slow convergence., Although it has
to be said that the EM algorithm performs well in the context of
multivariate data analysis, in the case of estimation of a time
series model, it is advocated to adopt a mixture of EM (to get close
to the maximum of the likelihood criterion) and a scoring method (to
get quickly to the optimum), see Watson & Engle (1983).

In this section it is shown that the computational effort for
the EM algorithm can be reduced considerably when the hyper
parameters are only found -in the covariance matrix (G,;H,). This new
result is based on the argument that the state vector is a
cumulative sum of the initial state plus the disturbances. The
derivation of the improved EM algorithm is based on the smoothing
results of section 3.3. It is assumed that the covariance matrix is

time invariant such that (G,iH,)=(G;H). For simplicity reasons,
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additional assumptions are HR'=0, (X ;W,)=0 for t=1,...,n and B=0
such that the usual KF can be applied which is initialized by the
pig k method, see section 2.5. The latter three assumptions can be

relaxed without violating the arguments used below.

The EM algorithm for time series models

The EM algorithm is derived by setting up the likelihood
directly in terms of the state space formulation in a similar way as
whittle (1991) does to derive his estimation methodology, see
section 3.5. The expectation step (E-step) is to evaluate the
likelihood conditional on the set of observations, i.e. E[L[y]|Y]
what reduces, for time series models, to smoothing. The maximization
step (M-step) obtains the estimates of the hyper parameters by
taking first and (approximated) second derivatives from the
'expected' likelihood in order to get the normal equations.

Alternatively, by using more intuitive arguments, the EM

algorithm can be derived as follows. Given the identities

02GG' = Cov(y, = Z.a,) 02HH' = Cov(«

t5t 1~ Tl)
and given the set of observations ¥Y={y,,...,y,}, the estimators for
GG' and HH' are derived by, respectively,
GG' = n’'IY; o%Cov[ (v, Z.a,,) - Z.(a-ag,) ]

— -1 -2 - -
= n 2:2=1 [ o (yt Ztat|n) (Y, Ztat|n)' + ZtPt]nZt' ]
— -1 -2 - - - -
HH' = n Z‘;‘:.‘ o “Cov[ (at+1|n Ttat|n) (@ at+1|n) T (o B¢lm ]
= nl -2
=n E:=1 (o (at+1ln-Ttat|n) (at+‘l|n_Ttat|n) '
+ P T.P - P Tg + TtPﬂnT; ]

t+1ln = TtFt,t+1ln t+1,t|n

Note that these estimators can be regarded as maximum likelihood
estimators, see WESS.

The computational consequences of the EM algorithm are
severe. The main computational burden is that a fixed interval
smoothing algorithm must be applied to obtain the smoothed state
tln t|n for t=1,...,n. Of
course, the state smoother of DIJKA, see section 3.3, is preferred

vector a and its mean square error matrix P
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rather than the classical smoothing method. However, even the DJKA
state smoother requires a huge amount of storage and many
computational operations, see table 3.1. Another implication of the
t+1,t|n is
required. Watson & Engle (1983) propose to augment the state vector

EM algorithm is that the cross mean square error matrix P

for the Kalman filter and the state smoother by (¢.4ia,) such that

the cross mean square error matrix P is obtained automatically.

t+1,t|n
The number of extra computations and the increase in storage costs

are huge. A special smoother for P is developed by Shumway &

t+1,tln

stoffer (1982). An improved (more efficient) algorithm for Pt tn is
proposed by De Jong & MacKinnon (1988). However, all suggestions

imply a severe increase in computational costs.

An improved EM algorithm
The new EM algorithm is more efficient mainly because it

avoids the state smoother plus the algorithm for P and,

t+1,t|n
therefore, the huge computational and storage requireLents. Instead,
the improved EM algorithm applies the disturbance smoother of
section 3.3 which is, for many time series models, more efficient
than the state smoother. Without giving facts, it is clear that the
approach below reduces the computational costs for the EM algorithm
considerably. Note that the new results only apply to estimating
hyperparameters in the covariance matrices of the SSF.

The arguments for the derivation of the new EM algorithm are

similar as before. Given the identities
62GG' = Cov(Ge,) - 62HH' = Cov (He,)

and given the set of observation Y, %F follows that
GG' = n'I0, o’%Cov[ Gu, - G(e,~u,) ]

= n"'EL=1 6'2Cov| GG'e, - G(e,~u,) ]

GG' + GG'{ n'I}, [ o%ee! - D, ] )GG'

HH'

n'122rt‘=1 6 2Cov| Hu, - H(e,~u,) ]
= n'1Efc‘=1 ¢ 2Ccov| HH'r, - H(e,~u,) ]

= HH' + HH'({ n'20, [ o%rx! - N, ] }HH'
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Note that from section 3.3 it follows that GC,G'=GG'D,GG' and
HCH'=HH'N.HH' under the assumption that HG'=0. These estimators are
appealing and appear to be recursive in a natural way. The maximum
1ikelihood estimators are found if the summation term within the
curly brackets is close to a zero matrix. This discrepancy function
is expected to close to zero for theoretical reasons. The outline of
the EM algorithm is given in table 3.4.

The computational attraction of the new EM algorithm is due
to the efficiency of the disturbance smoother but also to the fact
that only the disturbance smoother is required. So, a matrix like
is not required. This emphasizes the importance of the derived

Pt,t+1|n
results in section 3.

7. PRACTICAL SMOOTHING

In section 2.6. a structural time series model is fitted to
the COAL series. In this section, the same time series is considered
again but now it is shown what specific role the smoothing results
may play in applied time series analysis.

Signal extraction
The signal of y, is defined as Z.«, + X, and its estimator
is evaluated by the disturbance smoother that also gives (lagged)
mean square error quantities, e.qg.
A A A A
Y = Yy = G, Mse(y,) = G.Cov(u,)G/

A A A A
Mse(yt,yj) = GfCov(ut,uj)G;

The plot of the signal together with the actual series is
informative and it may help the time series analysist to check if
the model describes the time series satisfactory. The signal of the -

COAL series is presented in figure 3.1.

Full-sample estimates of the unobservables
Full sample estimates of the unobserved components trend,

Seasonal and irregular are obtained from a state smoother such as
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the efficient K smoother, see section 5. In case of unobserved
components models, the full-sample estimates of the unobservables
are an important- diagnostic in the process of model selection. When
the estimated unobservable components appear to be different as one
might expect from theoretical arguments, the particular model
specification must be reconsidered.

In the case of the COAL series, the extracted components of
the BSM reflect the features of the time series as discussed in
section 2.7. The estimated trend component in figure 3.2 moves
clearly downwards between 1975 and 1986. As expected, the seasonal
pattern in figure 3.3 does not change dramatically over the years.
The shock movemenﬁs do appear much clearer in the estimated
irregular than in the standardised innovations, compare the figures
2.4 and 3.4. When the confidence intervals for the estimated
irregular are plotted as well, possible interventions for outliers
can be selected easily. A further discussion on outliers takes place

in the next chapter.

Theoretical auto- and cross correlations of the residuals

The class of structural time series models, discussed in
section 2.3, all assume that G,G/=1, HG/=0 and HH! is a diagonal
matrix which is not neccessarily of full rank such that zeroes may
be found on the diagonal. In other words, the unobserved components
(trend, seasonal, cycle, irregular) are assummed to be orthogonal
ahd, therefore, the associated disturbances are uncorrelated. It is
a misunderstanding that the set of estimated disturbances, to be
referred to as the auxiliary residuals, are expected to be
uncorrelated as well. It can be shown by using classical results of
signal extraction, see for example Maravall (1987) and explored in
the context of structural time series models in the next chapter
(section 4.2), that in a double infinite sample, the auto- and
Cross-correlation values for auxiliary residuals can be quite high.
This is also true for finite samples as will be shown below.

The theoretical auto- and cross-correlation functions for the
auxiliary residuals of any structural time series model can be
Calculated using the recursion for the covariance matrix 62C_ and the

(t-j) lagged covariance matrix OZCﬁ%J+J% of equation (4.4). These
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quantities are time-varying but for time-invariant time series
models they are approximately constant in the middle of the series.
This is .shown for the variance of the measurement residual of a
1jocal level (LL) model with different signal-to-noise ratios g in
figure 3.5. Define Co, ik @S the (i,k) element of the covariance matrix
. as the (i, k)
element of the lagged covariance matrix ozcﬁ%J+@% where t is close
to in, j=t-1,...,t-P and P can be any moderate integer value between

02C, where t is close to in. Similarly, define Ce.ji

0 and in. For example, it follows directly that the auto-correlation
value at lag m for the i-th auxiliary residual is given by c ;i/C; ;-

Studies are at present in the literature where the existence
of auto- and cross-correlation in auxiliary residuals are a source
of concern for the validity of the decomposition of time series into
orthogonal components, see Garcia-Ferrer & del Hoyo (1991). Although
they are aware that auto- and cross-correlations may exist in the
set of auxiliary residuals, they 'expect' it to be rather low in a
well-specified model. Table 3.6 shows that, for different signal-to-
noise ratio values, the theoretical auto- and cross correlation
values of the auxiliary residuals can be relatively high. The auto-
and cross correlogram of the auxiliary residuals may be compared
with their theoretical counterparts.

Harvey, in his comment on Garcia-Ferrer & del Hoyo (1991),
makes it perfectly clear that 'large' auto- and cross-correlograms
for the auxiliary residuals do not tell us anything about the
validity of the assumptions underlying a structural time series
model. Misspecification is related to the ARIMA representation
(reduced form). A structural time series model is valid by
construction when it is given that the implied reduced form is
consistent with the underlying data generation process. Of course,
other decompositions can be constructed as well such as, for
example, the canonical decomposition, see Pierce (1979) and Hillmer
& Tiao (1982). The question of which decomposition is appropriate
can only be solved by an appeal to theoretical arguments concerning
the type of properties one wishes unobserved components to possess,
see Harvey (1989, Chapter 6).

It is concluded. that the auxiliary residuals are serially

Correlated even for a correctly specified model with known
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parameters, see table 3.6. One may be alerted to misspecification by
the fact that the correlograms of the auxiliary residuals are very
different to their implied auto-correlations. It remains to be seen
if this diagnostic check is worthwhile for detecting model
misspeéification as Maravall (1987) has suggested. In the case of
the COAL series, table 3.5 reports theoretical auto-correlations of
the set of 4 auxiliary residuals for some lags together with the
associated correlogram values. They all match relatively close.

The next chapter will develop a new methodology of tracing
irregularities in time series (outliers and structural change)
mainly by checking the plots of the auxiliary residuals and applying
some simple test diagnostics to these residuals. The required tools
for this approach are all developed in this chapter. This emphasizes
again the importance of the new smoothing results for empirical time

series analysis.

8. COMPUTER PROGRAMS

This section presents four additional procedures which
concern the computations discussed in this chapter. All procedures-
can be placed in the main program of section 2.8. The actual code of
the program is given the end of this thesis. The procedures can be
adjusted in a flexible way. Again, it is recommended to keep the
main structure of the program. Note that the main program only deals
with univariate time series models such that the 6bservatidn, the
innovation and their covariances are scalars and the Kalman gain is

a vector.

SmoothUpdate )
The SmoothUpdate procedure updates the matrices R, and N_ and
calculates the vector E,, the scalar D, and the vector -NK,., given
the Kalman quantities V,, F, and K,. The appropriate equations can be
found in section 4, equations (4.6)-(4.8). From these matrices the
smoothing computations, as discussed in this section, can be done

straightforwardly. The heading of the procedure SmoothUpdate is
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SmoothUpdate ( DimKF : Integer;
Var DSE,DSD,DSU,DSC : Matrix):

The dimension of the parameter vector § for the modified KF update
is given by DimKF. Note that if DimKF is equal to zero, the modified
disturbance smoother reduces to the usual smoother. The structure of
the matrices DSE and DSD are different at start and at finish of the
procedure, see table 3.7. The matrices DSU and DSC contain the
information for the smoothed disturbance vector u;ﬂ%(l;&) and its
covariance matrix C,, respectively. All computations concerning
covariances can be dropped when the KF has been in a steady state.

The structure of the SmoothUpdate procedure consists of the
following five steps

1. DSE[0,0..DimKF] = V.F;' - K/!R,

DSD[0,0] = F;' + K!N.K,

DSD[0,1..DimSt] = - K!N, DSD[1..DimSt,0] = - N,K,
2. DSU = (G,;H,) (G,iH,) 'DSE M, = (G,iH,) (G,;H,) 'DSD
3. DSC = (G,iH,) (G.iH,) 'M)
4. M, = (2,:;T,) 'DSE M, = (Z,T,) 'DSD
5. DSE = (E,iM,) DSD = (Z,iT,)'M]
AuxResiduals

This procedure gives a sequence of auxiliary residuals,
associated with the measurement equation or with a specific element

of the state vector, and the sequence of mean square errors for

t=1,...,n. The heading is
AuxResiduals( Nr : Integer;
Q : Matrix;
Var r,vr : Data):; )

where Nr indicates which residual is requested. When Nr equals zero,
the measurement residual is requested. The Data-types r and vr
consist of the auxiliary residuals and their mean square errors,
respectively. Before this routine can be called, the procedure
Estimation must be applied to store the Kalman filter quantities V,,

F, and K,. Also the matrix Q of the procedure Estimation must be
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available. In fact, this procedure is the implementation of equation
(4.12a) and the implementation of the diagonal elements of the mean
square error matrix (4.12b). The structure of this procedure is

straightforward and speaks for itself.

AuxCrossMse
This procedure gives the cross mean square error values

petween two requested auxiliary residuals for t=1,...,n. The heading

is

AuxCrossMse( Nrl,Nr2 : : Integer;
Q : Matrix;
var cc : Data);

The structure is very similar to the previous procedure and it is in
fact the implementation of the non-diagonal elements of the mean
square matrix of equation (4.12b). The requirements of the procedure
AuxResiduals must be valid for this procedure as well.

AuxCrossCorrFnc

This procedure runs the smoother up to the middle of the
series and calculates from there the cross correlation function
between two selected auxiliary residuals for a given maximum lag.

The heading is

AuxCrossCorrFnc( Nrl,Nr2 : Integer;
Q : Matrix;

MaxLag : Integer;

vVar ccf : Vector) ;

This procedure can be regarded as a way of obtaining useful
information from equation (4.12c). The requirements are the same as

for the previous two procedures.
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9. CONCLUDING REMARKS

This chapter has developed a disturbance smoother for the SSF
which produces the full sample estimates of the disturbance vector
(auxiliary residuals) and its mean square error matrix. The
auxiliary residuals can be very important in practical time series
modelling, see the next chapter. Other implications of the new
smoother is a very efficient state smoother for the SSF which
produces the full sample estimates of the state vector. There are
clear computational improvements for most practical time series
models compared with existing smoothers. Also, the new results lead
to a new EM algorithm for estimating hyperparameters in the

covariance structure of the SSF.
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APPENDIX 3A

Smoothing under Gaussianity

A straightforward approach to derive the disturbance smoother
under Gaussianity is to use the 'stack-argument'. This implies that
the SSF is formulated by the multivariate regression model (2.2.6)
where it is assumed that

The smoothed disturbance vector is defined as u = E[€|Y,6]. It holds
as well that u = E[€|v] because the innovations v are a full-rank
linear combination of the set of observations Y and the parameter
vector 8. In order to obtain the conditional distribution of €
conditional on v, the joint distribution of (€;v) is required. The
classical multivariate results provide the appropriate formulas to
get the conditional distribution of €|v from the joint distribution
(€;v), see any introductory book on multivariate statistical theory
or Harvey (p.165, 1989).

It is shown in result 2.4 that the stack of the innovations
v=(V,;...;V,) can be expressed as a linear combination of the

disturbance vector
v = J€

where matrix J = ZLM + G is lower block triangular with on the main
diagonal blocks the sequence G,. Note that Cov(v)=c’F=0°JJ' is a
block diagonal matrix. The definitions of the matrices Z, L, M and d
can be found in sections 2.2 and 2.4. The joint distribution of the

stacked vector (€;v) is given by

(€:v) ~ N[ (0;0) , o*(I,3';J3,F) }
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1t follows that

elv - N[ U'F'v , c*U'F'U ]
“ N[ u , o?C ]

Taking into account the special structure of matrix J, it follows
that

u=G'F'Wv + M'r r=2'L'Flv

Note that the matrix L is lower block triangular with on the main
diagonal identity matrices. The matrices G, M and Z are block
diagonal. By exploiting the structure of these matrices, the
equations for u and r lead to the following recursion which is
recogised earlier

u, = G/F;'v, + Mr, r,, = Z/F'v, + L!r,
The recursion for the covariance matrix of u, can be obtained in a
similar way and are given by equation (3.4.4). All smoothing results
of section 3.3 can be obtained by using this approach, see Koopman

(1991). The state smoother can be derived under Gaussianity using
the 'stack-argument' as well, see De Jong (1988).
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computational consequences of state smoother (#[y,]=1 #[a,1=k #[6]1=d)

CALCULATIONS

Dim State

Equation

L:T-KZ

r,. ’F v, + L r,

( dlfled)

= -1 -
Nt-1_zt'Ft 2y LN,

+ P
(dodl 1ed)

Pen=Prje1 — Pejeos

STORAGE

Dim State
KF quantities

Vt
(modified)

Fy Ky

a
(iédified)

Pt]t-1

t]t-15¢-1

Number Additions

k 5
k? 25
k? 25
(d+1)k?

2k®-k?* 225

k? 25
(d+1)k?

2k®-k?* 225

k 5
1 1
d+1

k+1 6
k 5
(d+1)k

k? 25

10

100
100

1900

100

1900

10

11

10

100

Nr Multiplications

k 5 10
k? 25 100
k*+k+1 31 111

(d+1) (k*+k+1)

2k*+k?*+k 280 2110

k* 25 100
(d+1)k?
2k? 250 2000




Table 3.2

computational consequences of disturbance smoother
(#[y.1=1 #[a, )=k #[€ J=m #[5]=4)

CALCULATIONS
Number Additions Nr Multiplications

Dimensions (k,m) (7,4) (k,m) (7.,4)
Equation
b, = (e.,;r) k 7 k+1 8
(modified) (d+1)k (d+1) (k+1)
B, = (Dy,~K/N.;-NX,N) k? 49 k*+k+1 57
u, = Jd/b, km 28 (k+1)m 32
(modified) (d+1)mk. (d+1) (k+1)m
C, = J!B.J, (m+k+1)mk 336 (m+k+1)m(k+1) 384
C; = J!B,I, (2k+1)mk 420 (2k+1)m(k+1) 480
r,, = I'b, k? 49 (k+1)k 56
(modified) - (d+1)k? (d+1) (k+1)k
N,, = I/B,I, 2k*+k* 735 2k*+3k*+k 840
STORAGE

Dimensions (k,m) (7.,4)
KF quantities
v, 1 1
(modified) (d+1)

F. K, k+1 ‘ 8
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Table 3.3

comparing computational costs of DJKA and K state smoother

COMPUTATIONS

recursion r DJKA smoother K smoother

add mult  add mult  add mult
(a)
ysual state smoother
LLM 2 2 1 1 1 1
LLT 4 3 4 4 3 2
BSM, 10 6 25 25 6 3
BSM,, 26 14 169 169 14 3
TVR, 12 13 36 36 6 6
(b)
Modified state smoother
LLM 3 3 2 2 1 1
LLT 6 5 8 8 3 2
BSM, 15 11 50 50 6 3
BSM,, 39 27 338 338 14 3
TVR, 18 19 72 72 6 6
(c)
STORAGE REQUIREMENTS

recursion r, DJKA smoother K smoother

usual modif usual modif usual modif

LLM -3 4 2 3 0 0
LLT 4’ 6 6 10 0 0
BSM, 7 12 30 55 0 0
BSM,, 15 28 182 351 0 0
TVR 8 14 42 78 0 0
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Table 3.4

outline of the new EM algorithm

step Description
0 Initial values are set for the hyper parameters
1 The KF is applied and the quantities v, F, and K, are stored
2. The variance o? is etimated by o? = nlsl . vFv,
3 The disturbance smoother is applied and the cumulative sums
JT = 3 el T2 = i D
Iy = B, rr Iy = 34, N
can be calculated recursively.
4. The new estimates for GG' and HH' are, respectively,
GG' + GG'{ (073§ ~ J3)/n)ce!
HH' + HH'{(0"3J) - J%)/n)HH"
5. The iterative process from 1 to 4 is terminated when the
- matrices within the curly brackets of step 4 is close enough
to zero
Table 3.5

Theoretical and sample autocorrelations of COAL auxiliary residuals

B W= oyl
o))

~ ~ A A

€ n 4 o
Theorv Sample‘,»Theorv Sample Theorv Sample Theorv Sample

-0.062 -0.111 0.735 0.710 0.984 0.975 -0.415 -0.406
-0.076 -0.160 0.503 0.427 0.945 0.913 -0.172 -0.208
-0.042 -0.003  0.311 0.236 0.890 0.830 -0.290 -0.153
-0.167 -0.263 0.141 0.048 0.824 0.735 0.744 0.572
-0.014 -0.073 0.060 0.012 0.755 0.637 -0.288 -0.294
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Table 3.6

Theoretical auto- and cross-correlations for the auxiliary residuals
of a Local Level model with different signal to noise ratios (q) *

Lags

q theta 0 1 2 3 4 5 6
p2

0.001 0.969 1.00 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01
0.010 0.905 1.00 -0.05 -0.04 -0.04 -0.04 -0.03 -0.03
0.100 0.730 1.00 -0.14 -0.10 -0.07 -0.05 -0.04 -0.03
1.000 0.382 1.00 -0.31 -0.12 -0.05 -0.02 -0.01 -0.00
10.00 0.084 1.00 -0.46 -0.04 -0.00 -0.00 -0.00 -0.00
100.0 0.010 1.00 -0.50 -0.00 -0.00 -0.00 -0.00 -0.00
pa

0.001 0.969 1.00 0.97 0.94 0.91 0.88 0.85 0.83
0.010 0.905 1.00 0.90 0.82 0.74 0.67 0.61 0.55
0.100 0.730 1.00 0.73 0.53 0.39 0.28 0.21 0.15
1.000 0.382 1.00 0.38 0.15 0.06 0.02 0.01 0.00
10.00 0.084 1.00 0.08 0.01 0.00 0.00 0.00 0.00
100.0 0.010 1.00 0.01 0.00 0.00 0.00 0.00 0.00
P24

0.001 0.969 0.12 0.12 0.12 0.11 0.11 0.11 0.10
0.010 0.905 0.22 0.20 0.18 0.16 0.15 0.13 0.12
0.100 0.730 0.37 0.27 0.20 0.14 0.10 0.08 0.06
1.000 0.382 0.56 0.21 0.08 0.03 0.01 0.00 0.00
10.00 0.084 0.68 0.06 0.00 0.00 0.00 0.00 0.00
100.0 0.010 0.70 0.01 0.00 0.00 0.00 0.00 0.00

* calculations are based on sample size n=100.,
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organisation of the modified disturbance smoother matrices in the

computer program

before and after the smooth update

DSU

DSC

Position

0,0..DimKF
l1..DimSt,1..DimKF

..DimSt,0
..DimSt,1..DimSt

1..DimSt,1..DimKF

1..DimSt,1..DimSt

Before smooth

~ e

Ul RA" g

After smooth




Figure 3.1 Signal for COAL
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Figure 3.3 Seasonal component for COAL
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Fig 3.4 Standardized Irreqular for COAL
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Fig 3.50 Mean square error of ¥requlor in a LL model (q=10)
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Fig 3.5b Mean square eror of Fregulor in a LL model (g=0.01)

18 4]

0.084

0.08

0.07-

0.06-

0.054

0.04 T T T T T T T T T

Fig 3.5¢ Mean square error of Fregular in a LL model (g=0.001)

0.035

0.030

0.025-

0.020-

0O . :




106

CHAPTER 4

Diagnostic checking of unobserved components time series models

0. ABSTRACT

Diagnostic checking of the specification of time series
models is normally carried out using the innovations, that is the
one-step ahead prediction errors. In an unobserved components model,
other sets of residuals are available. These auxiliary residuals are
estimators of the disturbances associated with the unobserved
components. They can often yield information which is less apparent
from the innovations, but suffer from the disadvantage that they are
serially correlated, even in a correctly specified model with known
parameters. This chapter shows how the properties of the auxiliary
residuals may be obtained, how they are related to each other and
the innovations, and how they can be used to construct test
statistics and diagnostics. Applications are presented showing how
residuals can be used to detect and distinguish between outliers and

structural change.

Keywords : Misspecification; -Outliers; Signal extraction; Smoothing;

Structural change; Structural time series model.

1. INTRODUCTION

Diagnostic checking cf the specification of a time series
model is normally carried out using the one-step ahead prediction °
errors, see section 2.6. In an unobserved components model, other
residuals are available. These auxiliary residuals are full-sample
estimators of the disturbances associated with the observation y, and
with the unobserved components. In the state space framework, these
disturbances are given by (G,iH,)e, and expressions for the auxiliary
residuals (G,;H,)u, can be obtained from section 3.4. As is shown in

chapter 3, the auxiliary residuals are functions of innovations, but
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they present the information in a different way. This can lead to
the discovery of features of the fitted model which are not apparent
from the innovations themselves. Unfortunately, the auxiliary
residuals suffer from the disadvantage that they are serially
correlated, even in a correctly specified model with known
parameters. This follows from section 3.4 since the lagged mean
square error matrix Mse[u,,u;], see equation (3.4.5), is not ecqual to
zero.

The aim of this chapter is to show how the properties of
auxiliary residuals may be obtained, how they are related to each
other and to the innovations, and how they can be used to construct
test-statistics and diagnostics. The methods extend
straightforwardly to models containing observed explanatory
variables.

Section 2 derives the properties of the auxiliary residuals
using the classical approach based on a doubly infinite sample. This
follows Maravall (1987), except that in his paper attention is
restricted to the irregular component in the decomposition of an
autoregressive integrated moving average (ARIMA) model. Although the
results are general for any time series model in SSF, the emphasis
is on structural time series models. It is our.conviction that these
models provide the most satisfactory framework for exploring many
important issues in time series analysis, in particular,  issues
concerning outliers and structural change.

It is clear from the results of section 3.4, which can be
applied to any time series model placed in the SSF, that various
relationships exist between the auxiliary residuals themselves and
the innovations in finite samples. Section 3 studies these finite
sample relationships in more detail for structural time series
models by using the direct approach of Whittle (1991) as presented
in section 3.5. It is shown that the finite sample relationships are
similar to those observed for infinite samples. Note that the
(theoretical) auto- and cross-correlations of the auxiliary
residuals for any time series model can be obtained from the
disturbance smoother as described in section 3.7.

The interpretation of the auxiliary residuals means that they
are potentially useful, not only for detecting outliers and
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structural changes, but also for distinguishing between them. The
work of Kohn & Ansley (1989), which is concerned only with the
measurement residuals to detect outliers, is extended. Section 4
discusses how the Bowman-Shenton test can be modified to take
account of the serial correlation in the auxiliary residuals. The
pehaviour of these adjusted tests in small samples is investigated
py some Monte-Carlo experiments. Section 5 gives several

illustrations for some data sets.

2. PROPERTIES OF RESIDUALS IN INFINITE SAMPLES

Classical results in signal extraction can be used to derive
the properties of various auxiliary residuals in a doubly infinite
sample. Let the observed univariate time series, y,, be the sum of

m+1l mutually uncorrelated ARIMA processes, H;, that is
Ye = 20 By = I, (D) &y, ' (2.1)

where «;(L) is an infinite polynomial in the lag operator, and the
disturbance En is a mutually and serially uncorrelated random
variable, with zero mean and constanjf variance, o%, for i=0,...,m.
The polynomial «.(L) may -be restricted to a rational function of lag
polynomials as given by

ai(L) = ei(L)/d)i(L) (2.2)

where 6.(L) and ¢,(L) are finite lag polynomials and they are
referred to as moving-average and autoregressive polynomials,
respectively. The autoregressive polynomial is allowed to contain °
unit roots. The reduced form, i.e. the overall model consistent with

(2.1), is given by

Y, = a(L)E, (2.3)

where §, is white noise with constant variance o¢2. The infinite lag

Polynomial «(L) may be defined as a rational function of two finite
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ljag polynomials, e.g. a(L)=8(L)/¢(L). Classical results on signal
extraction as developed by Bell (1984) include the minimum mean
square linear estimator (mmsle) of p,;, which is given by

i = (02 |a (D) |2} / (3", o2 |e; (L) |2) vy,

= (o?le; (L) |2) / (0 ]a(D)[?) v,

= ({o0%¢;(L)a;(F)} / {o?a(L)a(F)} v, (2.4)

where F=L'! is the lead operator. Since the mmsle of ;. can be
expressed by £, = a'(L)p,,, it follows from (2.3) and (2.4) that

£, = (0%a,(F)} / {o?a(L)a(F)} v,
= {o2a,(F)} / {02a(F)} E, (2.5)

Under the assumption that the infinite polynomials are rational
functions, the last expression may be written as

€ = (020(F)B.(F)) / (028(F)d,(F)) E, (2.6)
Unit roots in ¢;(F) will cancel with unit roots in ¢(F) and so, if
time is reversed, €H is seen to be an ARMA process, driven by the
innovations §,. The process is stationary but due to the possibility
of unit roots in 8 (F), not necessarily strictly invertible.

The autocovariance function (ACF) of EH may be evaluated
from a knowledge of the ARMA process implied by (2.6). In the case
of an unobserved components time series model as (2.1), the ACF
follows straightforwardly, see Maravall (1987). In the context of
structural time series models, a reduced form, or ARMA
representation, exists but it is only for the local level model that
an exact relationship exists between the hyperparameter (signal-to-*
noise ratio) and the reduced form parameter, see Harvey (1989). The
classical signal extraction results are now applied to some of the

principal structural time series models.

Local level
The local level (LL) model (2.3.5)-(2.3.6), where Y.~0, is

discussed in section 2.3 and is given by
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Yo = By T € By = Beq + 0t
where €, and n, are mutually uncorrelated white noise processes with
variances ¢2 and oﬁ, respectively. The signal-to-noise ratio is
defined as gfwﬁ/og. The reduced form of the LL model is based on Ay,
=1, t €, — €, and can be expressed as the ARIMA(0,1,1) model

Ay, = (1 - OL)§, 0 <6 <1 (2.7)

The autocorrelations of both specifications are given by,

respectively,
p(L) = -1/ (2 + q) 0 < q <o ' (2.8a)
= -8 / (1 + 62) (2.8Db)
and p(t)=0 for t=2,...,». This leads to the relationship 6 = {2 + q,

- ¥(4q, + @2)}. Thus the LL model .can be written as
Y. = /4 + €, (2.9)
or, in terms of (2.1), m=1, ay(L)=1 and «,(L)=1/(1-L). Note that the

reduced form implies «(L)=(1-6L)/(1-L). Applying equation (2.6)
gives '

@>
Il

¢ {(1-F)/(1-6F) } (02 /02)&, - (2.10a)
and ' '

(1/(1-6F)} (2 /%) E, (2.10b)

=3
D
Il

A A
Thus both €, and 1, depend on future innovations and, if time is
reversed, the sedquence ﬁt follows an AR(1l) process while gt follows a
strictly noninvertible ARMA(1l,1l) process. Their theoretical auto-

correlations are given by’

©
>
—
I
H
A
I
i
N
~~
}—)
|
o
A
©
® >
—
I
)
g
|

= 0p; (t71) (2.11a)
pr(¥1) =6 pr(¥t) = 67 (2.11b)
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for t=2,3,...,~. Note that the effect of serial correlation is to
make the variance of ét less than that of €¢,, see Maravall (1987).

The theoretical cross-correlations are obtained by comparing
poth equations of (2.10) such that

A

T = Ny + G e, 0 < q < (2.12)

A A A A A
The cross-covariance is Cov(e.,n..)=Cov{(n, = Nyy)n../9q,}, for =0,

+1, ¥2,..., and so

por(e) = 6W(i(1 -6)) 0s6 <1 (2.13)
while

por(—t) = —pgp(e-1) T =1,2,... (2.14)

As 02 becomes smaller, 8 tends towards zero and pen (0) tends toward
0.707. Thus, although e, and n, are assumed to be uncorrelated, their

estimators may be quite highly correlated.

Local linear trend
The local linear trend (LLT) model is discussed in section

2.3 and is given by

Yo = Be + € Be = Beg + Beg + o1y By = Beq + < (2.15)

where n, and ¢, are mutually uncorrelated white noise processes with
variances o§=qﬁo§ and o%=qko§, respectively. The reduced form is an
ARIMA(0,2,2) model such that «(L)=(1-6,L-8,L)/(1-L)2 in (2.3). A
relationship between the g-values and the MA parameters can be found ‘*
in the same way as it is found for the LL model but, additionally,
some discrepancy function has to be minimized because the
relationship is non-linear. In the formulation of (2.1), the LLT

model is given by

Ye = M/ (1-L) + ¢, /(1-L)%2 + e, (2.16)
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such that m=3, «,(L)=1, «,(L)=1/(1-L) and «,(L)=L/(1-L)2. Applying
(2.6) leads to

€, = ((1-F)2/0(F)}(02/02)E, (2.17a)
N, = ((1=F)/B(F)) (02 /02)E, (2.17Db)
¢ = (F/B(F))(02/0%)E, (2.17c)

where 8 (F)=1-0,F-0,F2. The residuals gt, ﬁt and Et follow ARMA(2,2),
ARMA (2,1) and AR(2) processes, respectively, with gt and ﬁt being
strictly non-invertible. The three processes are stationary provided
that o§>0, see Harvey (1989). The autocorrelation functions for the
residuals can be obtained using (2.17) only if the appropriate
values for the 6 (L) polynomial are determined.

The relationships between the residuals of the LLT model are

given by
A A + A o < (2 18 )
=1 € . < = .18a
Ne = My + GE q,
Ce = Gpq t (02/07 )My
A A A
T 2Cuq T Cup T A€ 141 0 < q. < « (2.18Db)

where (2.18a) is similar to (2.12) for the LL model. From these
- interrelationships, the cross-correlations of the disturbances can
be determined.

In typical applications, the variance o2 is relatively small.
As a result the MA polynomial 6 (L) for the LLT model will have one,
and possibly two, of its roots close to unity. The sequence Et will
therefore tend to exhibit very strong positive positive serial
correlation. This effect is counteracted in the other auxiliary

residuals by the presence of unit roots in the moving average.

Basic structural time series model
The three methods of modelling a seasonal component, Y.r are
described in Harvey (1989, Ch.2), see also section 2.3. All

specifications can be expressed in the form

250 Yoy = 8,(D) o, (2.19)
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where o, denotes a white noise disturbance with variance o2=q0Z, s
is the number of seasons and 6 (L) is a polynomial of finite order at
most s-2. Adding the seasonal y, into the LLT model yields the basic
structural time series model (BSM).

The BSM with dummy seasonals, as discussed in section 2.3, is
specified as (2.19) with 6, (L) equals unity. The BSM may be written

as the set of orthogonal unobserved components (2.1) with m=3 and

5 (L)
(L)

1 @, (L)
L/ (1-L)2 a3 (L)

1/ (1-L) (2.20a)
8,(L)/S (L) (2.20Db)

il
I

where S(L)=1+L+...+L8'. The reduced form of the BSM is defined as
(2.3) where

«(L) = 8(L)/{(1-L) (1-L)%} (2.21)

and 8 (L) is of order s+1. A relationship between the g-values of the
BSM with dummy seasonals and the 6-values of the lag-polynomial 6 (L)
cannot be made unless s-2 6-values are restricted to some known

values. Applying (2.6) yields

€, = {(1-F) (1-F%) /8 (F)} (02 /02)E, (2.22a)
N = {(1-F%)/8(F)} (o2 /02)E, (2.22b)
S, = (S(F)F/B(F) ) (a2/02), (2.22¢)
6, = {(1-F)26,(F))/8(F)} (02 /02)E, (2.224)

The residuals ét, ﬁt and Et bear exactly the same relationship to each
other as in the LLT model, see (2.18), but in addition, it holds
that

S(F)at = qmﬂu(F)ét 0 < g, <o (2.23)

and g =02 /02 .

Analytical expressions for the theoretical auto- and cross-
correlation functions of the auxiliary residuals can be obtained
from the implied (time-reverse) ARMA processes (2.22) although it is
not easy to obtain them for the BSM case unless 6 (L) is known.
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However, numerical values for the theoretical acf's and ccf's can be
computed for specific parameter values using the disturbance
smoother as described in section 3.4. For a gquarterly BSM with dummy
ceasonals, q;il,c@=0.1 and gq=0.1, the first ten auto-correlations
are as shown in table 4.1. The acf's of the irregular and the level
residuals are not too dissimilar to what one might expect in a LL
model with q;=1 although, if anything, the serial correlation in the
level is somewhat reduced by the presence of other components. The
high positive serial correlation in the slope residual, to which
attention was drawn at the end of the discussion on the LLT model,
is clearly apparent. The seasonal residual shows a strong pattern of
serial correlation, the most prominent feature of which is the high
values at the seasonal lags four and eight. Table 4.1 reports the
cross—-correlations as well. The relatively pronounced patterns for
[ and p;g suggested by the analysis for the LLT model are still

1

apparent, while the relationships involving ©, show seasonal effects.

t

3. PROPERTIES OF RESIDUALS IN FINITE SAMPLES

The derived relationships between auxiliary residuals of
structural time series models, such as (2.12), are valid for doubly
infinite samples. However, exact relationships can be derived for
finite samples using the techniques as explored in the sections 3.4,
3.5 and 3.7. The next sub-section below shows how this can be done
for the local level (LL) model using the idea of Whittle (1991), see
section 3.5. Furthermore, it will be shown, for the local linear
trend (LLT) model, that the relationships also follow from the

disturbance smoother.

Relationships between auxiliary residuals of LL model

Consider the LL model, Y=k €, where p=p ,+n, for t=1,...,n,
and suppose that the disturbances e, and 1, are normally distributed.
The initial state is supposed to be normal as well with mean p and a
finite variance o2p and it is independent of the disturbances. The
logarithm of the joint-density of the observations y=(yq,i-..7y,) and
the states (Ko7 Bq7+--iB,) is, neglecting constants,



115

T = (-202) 1 E0 (y,~B)2 + P (Be=8)2 + a7 B0 (BB )2 ) (3.1)

where q is the signal-to-noise ratio. Partially differentiating J
with respect to the state p, provides a means of evaluating the
smoothed (full-sample) estimators ﬁt, which are, under certain
regularity conditions, the expected values of the state conditional
on the observations, see section 3.5. Thus by setting the first
derivative with respect to p, equal to zero, the following backwards

recursion appears
A
Beog = 2B, = By — aly, = By (3.2)
for t=n-1,...,1. The initialization is obtained from BJ/apn such that
A A A
Boq = B, = aly, - u,) . (3.3)

and so (3.2) can be started at t=n by setting ﬁm4 equal to ﬁm

Letting p-« gives the end-condition for a diffuse prior, namely

A A

) By — q(Y1 - |J'1) . ' (3.4)

Although (3.2) looks, at first sight, to be an extremely
attractive way of computing the smoothed estimators of the states y,
it is argued in section 3.5 that it is numerically unstable. This
becomes even clearer from the equations (3.3) and (3.4) which are in
time reverse order (take for (3.3) n=3 or n=1). Therefore, the
computation of the states ﬁ1 and ﬁz using recursion (3.2),
initialized by (3.3), is almost certainly violating (3.4).
Nevertheless, (3.2) is useful for the theoretical insights it

provides. The residuals are defined by

€ = Y T By ' Me = Be = By (3.5)

and (3.2) can be re-written as

A A

A
Ne = My + d€ (3.6)
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for t=n,...,2 and with starting value ﬁnﬂ=0. Thus ﬁt is a backwards
cumulative sum (cusum) of the smoothed residuals gt as given by

n, = a I, €; (3.7)
for t=2,...,n. The end condition (3.4) tells us that ﬁz = —q81 and so
on setting t=2 in (3.7) it follows that

n, €, =0 (3.8)
Tt will be recalled that the ordinary least squares regression
residuals have the 'sum-up-to-zero' property when a constant term

is included.

Relationships between auxiliary residuals of LLT model

In general, the calculation of the auxiliary residuals is
carried out by placing the model in SSF and applying the Kalman
filter and the disturbance smoother. The algorithm described in
section 3.4 enables the computations to be carried out relatively
quickly in a numerically stable manner. Structural time series
models generally contain nonstationary components and these are
handled by means of a diffuse initial condition. The smoother can be
modified such that the calculations associated with the initial
conditions are carried out exactly, see section 3.4.

For example, consider the LLT model,

Y=R e, Be=he g HBe o, Be=Biqte,

for t=1,...,n and where the disturbances €., M, and ¢, are mutually
uncorrelated noise terms, see section 2.3. Note that, for the LLT
model in SSF, the state vector is given by (p.:;f,) and the
disturbance vector is given by (€,iM417G¢4q) - The disturbance smoother
for the LLT model is

u = v/f, - Kr, (3.9a)

r,, = (1;0)u, + (1,0;1,1)r, (3.9b)



117

and
(3.10a)

%t = (q,,0)r, ¢, = (0,q) x4 (3.10Db)

The initialization is different from that for the LL model using
whittle's approach. It is assumed that ﬁn”=2m4=0 (r,=0) such that
(3.9) and (3.10) are valid for t=n,...l. The relationships between
the residuals are found by combining (3.9b) and (3.10) and by some

ninor manipulations,

A A A

Ny = Nguq T L€ (3.11a)
A A A

o = Cuq (/)N (3.11b)
A A A A

Crog = 2C¢ ~ Gy *"L€t4 (3.11c)

This set of relationships for the auxiliary residuals is equivalent
to the infinite results of (2.18). Thus the recursion for ﬁt is
equivalent as for the LL model and is a backwards cusum of the ggs.
Note that, for the exact smoother, it holds that IQ.e, = %, = (q,,0)x,
which is typically close to zero but not equal to zero. The
backwards cusum (3.11lb) implies that €n=0 and

A A

€, = (qc/qn) 2?=t+1nj : (3.12)
for t=n-1,...,1. Finally, from (3.11c) or (3.12) we have

~ n n A :

¢ = a4, I DG, (3.13)
for t=n-1,...,1.

Theoretical auto- and cross—correlation -functions

In section 2 it is shown how the auto- and cross-correlation
structure of the auxiliary residuals can be obtained directly from
the large sample theory when the parameters of the reduced form are
known. The disturbance smoother provides recursions to evaluate the
theoretical variances, covariances, auto-covariances and cross-
Covariances of the smoothed (auxiliary) residuals for finite

Samples. These quantities are time-varying. For time-invariant time
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ceries models, the various variances and covariances of the-
auxiliary residuals near the middle of the series are constant, see
the discussion in section 3.7. However, the variance and covariance
quantities of the disturbance smoother are different at the
peginning and at the end of the finite sample, see figure 3.5.

Table 4.2 reports for different sample sizes the auto- and
cross—-correlations of auxiliary residuals from a LL model with
different signal-to-noise ratios. These correlations are obtained
from the variance quantities of the disturbance smoother near the
middle of the sample. It shows that for even small sample sizes, the
disturbance smoother (at the middle of the sample) gives the same
auto—- and cross-correlations as for very large (infinite) samples.
Note that if g is relatively large, the memory of the moving average
of the reduced form is very small and therefore only a few
observations are needed to get the exact theoretical correlations.

Note that the covariance matrix differs from the mean square
error matrix of the auxiliary residual vector. It is well known that
Mse(§)=Cov(x—§). For example, the Kalman filter evaluates the matrix
02F, which is the mean square error matrix of the estimator of the
observation y,, that is 02F}=Mse(§t)=Cov(yt—§t)=Cov(vi).-Thus, 02F, can
also be regarded as the covariance matrix of the innovation. This
equivalence does not exist for the auxiliary residuals. The.mean
sqﬁare error matrix of the estimator of the disturbance vector is
given by Mse(u,)=Cov(e,~u,)=Cov (e ,e . ~u.)=02I-Cov(u,)=62 (I-C,) where € -
is the disturbance vector of the SSF. The mean square error matrix
of u, increases at both ends of the finite sample such that the
covariance matrix 62C, decreases at both ends of the sample. The
covariance and mean square error quantities are of interest for
different purposes. For example, the auxiliary residuals are
standardised by using the mean square error matrix but their auto-
and cross—égrrelation structure is obtained from the covariance .
quantities.
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4. DIAGNOSTICS

The issues of outliers, structural changes and other
irregularities in time series are discussed extensively in the
1iterature and they are still a matter of debate. Several detection
procedures are developed in the context of ARMA models, for example,
chang, Tiao & Chen (1988) present an approach based on likelihood
ratio criteria that is able to detect two different types of
outliers. An additive outlier (AO) only influences a specific
observation while an innovational outlier (IO) affects a sequence of
future observations. The innovational outlier does not indicate a
structural change (or level change). The former affects future
observations through a (stationary) dynamic structure and the latter
influences the future observations permanently, see Tsay (1988). A
nethodology of identifying (additive and innovative) outliers by an
iterative procedure is explored and illustrated by Tsay (1986).
Another example of a detection procedure, developed within the ARIMA
framework, is the 'leave-k-out' methodology as discussed by Bruce &
Martin (1989). This approach is primarily based on model
identification using the correlogram which can be seriously
distorted when outliers are present. Therefore, this methodology can
be regarded as cumbersome.

Within the context of a structural time series model, an
outlier arises at time t if the value taken by y, is not consistent
with what might reasonable be expected given the model specification
and the way in which this fits the other observations. The best
indicator of an outlier should be gt; compare Kohn & Ansley (1989).
Note that an outlier at time t will not affect the innovations
before time t. Therefore it makes sense that gt depends only on the
innovations which are affected by the outlier.

The simplest kind of structural change is a permanent shift
in the level of a series which is of a greater magnitude than might
reasonably be expected given the model specification and the other
observations. Within the context of the local level model, such a
shift might be best detected by an outlying value of ﬁt. Again only
the innovations at time t and beyond are affected by such a shift

A
and n, combines these innovations in the most appropriate way.
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A sudden change in the slope is likely to be more difficult
to detect than a shift in the level. As already noted, the Egs will
typically be very strongly correlated so a break will spread its
effect over several ¢/!s. Furthermore the high serial correlation
means that the variances of the normality and kurtosis statistics
discussed below will need to be increased considerably giving the
tests rather low power. Sudden shifts in the seasonal pattern are
also likely to be difficult to detect, primarily because it may not
be possible to associate a shift with a single prominent disturbance
in the seasonal stochastic equation. Coupled with this is the strong
serial correlation which the corresponding auxiliary residuals will
tend to display. A change in the seasonal pattern is therefore more
likely to be signalled by a group of large residuals. Therefore, it
may also be useful to examine the estimated seasonal factors
directly. More research on this topic is under progress.

The proposed detection procedure is to plot the auxiliary
residuals after they have been standardized. In a Gaussian model,
indications of outliers and/or structural change arise for values
greater than two in absolute value. The standardized innovations may
also indicate outliers and structural change, but will not normally
give a clear indication as to the source of the problem.

‘ In the following, the concentration is on a procedure to
detect unusually large residuals. Mostly these approaches are based
on a test for excess kurtosis and, if the test is combined with a
test for skewness, can be extended to the Bowman-Shenton test for
normality. In order for such tests to be asymptotically valid, it is

necessary to adjust them for serial correlation.

Test based on skewness and kurtosis

Let z, be a stationary Gaussian time series with
autocorrelations, p_, t=0,1,2,... , and variance 62 . Lomnicki (1961)
explores asymptotically results for higer order moments when serial
correlation is present. Consider the estimated moments about the

sample mean

- z)¢ « =2,3,4

— -1 n
m, = n" EL, (2

t
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and define
k(e) = X_._ Pt 0 =2,3,4

T=-

Then if p, denotes the theoretical «-th moment,
¥n (m, = K,) L N (0, a! K(a)oi“ )

This result enables asymptotically valid test statistics based on

higher order moments to be constructed as follows.

[a] excess kurtosis test
The measure of kurtosis is k = m, / m3, compare its definition in
section 2.6. Since m, is a consistent estimator of o2, it follows

that the excess kurtosis test statistic
K= (k - 3) / Vy[24x(4)/n]

is asymptotically N(0,1) under the null hypothesis. An outlier test

is carried out as a one-sided test on the upper tail.

[b] normality test

The measure of skewness is s.= m; / m?z. Combining this with the
measure of kurtosis gives the Bowman-Shenton normality test which

when corrected for serial correlation takes the form
N=[ns?2 /6%«x(3) ]+ [n (k-3)2 / 24.x(4) ]
Under the null hypothesis N is asymptotically x% distributed.

The normality and excess kurtosis tests may be applied to
innovations, see section 2.6, and auxiliary residuals. In contrast
to serial correlation tests, no amendments are needed to allow for
the estimation of unknown parameters; compare section 3.7. The
serial correlation correction terms, i.e. the k(a)'s terms for
@=2,3,4 , needed for the auxiliary residuals can be computed using

the general disturbance smoother of section 3.4. The results in
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section 4.2 are useful in that they enable one to get some idea of

the likely size of x(a) where
k(a) =3, _p; =1+ 2 X7, p}

in the case of the LL model, for ét, it holds that
x(a) = 1 + 2{ p® + (Bp)" + (620)° + (63p)* ... }

1+ 2 p*/ (1 - 6%
1+ 27 (-(1 - 8)) / (1 - 89

I

where p=p;(1), see (2.1la). This is greater than or equal to unity
for a=4, but less than or equal to unity for a=3. When 6 is unity,
k(@) takes the values -0.75 and 1.125 for a=3 and 4, respectively.
On the other hand, for ﬁt, where p=pa(1), see (2.11b),

x(a) =1 + 2 p* / (1 - 6%
= (1 + 8% / (1- 69

This is unity for a random walk, that is 6=0, and goes monotonically
towards infinity as d, tends towards zeri, that is 6 tends to unity.

The kurtosis test statistic for €, always becomes smaller
after being corrected for serial correlation because its kx(4)=1.125.
This is also true for the normality statistic when applied to the
level residual ﬁt because its x(a)>1 for a=3,4 and 0<q, <. The
normality test statistic for the irregqular may, however, increase
because its k(3)=-0.75. For the irregular the correction factors are
relatively small. The high correction factors for the level residual
when 0 is close to unity may appear to make the detection of .
structural change difficult. However, if level shifts are introduced
into an otherwise well behaved series, the effect is likely to be an
increase in the estimate of the relative variance of 7,, and hence a
corresponding decreases in 6 and in x(a).

For more complex models, the correction factors can be
computed numerically using the disturbance smoother of section 3.4.
Table 4.3 shows the k(a) values for the four sets of auxiliary

residuals from a specific quarterly BSM. The correction factors are
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calculated using the first 20 autocorrelations.

some Monte Carlo experiments

A series of simulation experiments was applied to examine the
performance of the test statistics discussed in the previous
section. The experiments were conducted on the local level (LL)
model using a sample size of n=150 and different values of the
signal to noise ratio, q,- The white noise disturbances €, and n, were
generated using the Box-Muller algorithm in Knuth (1981). The
results presented in table 4.4 are based on one thousand
replications and show the estimated probabilities of rejection for
tests at a nominal 5% level of significance.

Table 4.4 gives the estimated size of the tests. It is known
that, for independent obsérvations, the size of the Bowman-Shenton
test can be some way from the nominal size for small samples and
Granger & Newbold (1977, p.314-315) cite evidence which suggests
that serial correlation may make matters even worse. However, their
remarks are concerned with a test  statistic in which the correction
factors are based on the correlogram, whereas in our case the
correction factor is based on the estimator of a single parameter,
6. The figures in table 4.4 indicate that the estimated type I
erfors are not too far from the nominal values for both the
innovations and the'auxiliary residuals.

Table 4.4 shows the estimated powers of the tests when an
outlier was inserted three quarters of the way along the series. The
magnitude of the outlier was five times ¢2. As can be seen, the
powers of the tests based on the irregular residual are higher than
those based on the innovation. As hoped, the power of the tests
based on the level residual are much lower. The kurtosis test is
slightly more powerful than the normality test.

A shift in the level, up by five times ¢2, was introduced
three quarters of the way along the series to generate the results
in table 4.4. The tests based on the level residual are now more
powerful.

Overall the results are very encouraging. They suggest that
the tests have acceptable sizes for moderate samples even when

serial correlation corrections have to be made. Furthermore, the
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tests based on auxiliary residuals are reasonably effective in

detecting, and distinguishing between outliers and structural

change.

5. APPLICATIONS

The way in which outliers and structural changes may be
detected is illustrated below. In all cases parameter estimation was
carried by non-linear optimization of the likelihood, using the
method of scoring in the frequancy domain, see section 2.6.

United States exports to Latin America
The monthly series of US exports to Latin America (LAXL),
taking logs, contains a number of outliers which are easily detected

by examining the irregual component, e,, from a basic structural

er
model; see the comments by Harvey on Bruce & Martin (1990). In fact,
the principal outliers, which turn out to be due to dock strikes,
are easily seen in'a plot of the series and also appear quite
clearly in the innovations. If the data are aggregated to the
quarterly level (the graph is given in figure 4.1 and estimation
results are reported in table 4.5), the outliers are less apparent .
in the innovations, though they still emerge clearly in the
irregular component, see figure 4.2. The kurtosis statistic for the
innovations is K = 2.18 and the normality statistic is N = 5.14. The
normality statistic is therefore not statistically significant at
the 5% level, while the kurtosis is significant on a one-sided test
at the 5% level, but not at the 1% level. For the irregular, on the
other hand, the raw K and N statistics are 7.32 and 80.08,
respectively. After correction for serial correlation these become K‘
= 7.54 and N = 86.41, both of which are significant.

Since oﬁ is estimated to be zero, all the movements in the
trend stem from the slope disturbance. The (corrected) K and N
statistics for the associated auxiliary residuals are only 0.31 and
0.22, respectively. The auxiliary residual diagnostics therefore

point clearly to the presence of outliers.
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car drivers killed and seriously injured in Great Britain

Monthly observations of car drivers killed and seriously
injured in Great Britain (CDKSI) were used by Harvey & Durbin (1986)
in their study of the effects of the seat belt 1egislation which
took effect from the beginning of February 1983. The seat belt law
led to a drop in the level of the series. It will be shown below how
this structural change would be detected by the auxiliary residuals.

In order to avoid the large fluctuations associated with the
oil crisis of 1974, a BSM was estimated using data from July 1975 to
the end of the series December 1984, see figure 4.3. The slope and
seasonal variances were both estimated to zero, and so the fitted
model 1is basically a loecal level model with deterministic slope and
seasonals, see table 4.6. The theory at the end of sub-section 4.1
therefore applies directly, with g = 0.118 and 1 = 0.710. The
correction factors for the irreqular are x(3) = 0.99 and x(4) = 1.00
while for the level they are x(3) = 2.12 and x(4) = 1.69.

The kurtosis and normality statistics are shown in table 4.6,
with the uncorrelated figures in parantheses. The innovation
statistics clearly indicate excess kurtosis, and the auxiliary
residual diagnostics point to this as emanating from a change in the
level., with the K and N statistics both being statistically
significant at the one percent level. The plot of the innovations in
figure 4.4 shows large values in December 1981 and Februari 1983
at -3.28 and -3.97, respectively. In the irregqular residuals, shown
in figure 4.4 as well, both these months are -2.84 but such a value
is not excessively large compared with those for some of the other
months. In the level residuals, on the other hand, Februari 1983
is -4.46 while December 1981 is only -1.76. ’

The residuals therefore point clearly to a structural break
at the beginning of 1983. The role of December 1981 is less clear.
It could be treated as an outlier. In fact, Harvey & Durbin (1986)
noted that December 1981 was a very cold month. However, even when
the model is re-estimated with an intervention variable for the seat
belt law, it does not give rise to a particularly large irregular
residual, though, curiously enough, the corresponding innovation is
still quite high.
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A final point with respect to this example concerns checks
for serial correlation as given in section 3.7. For the innovations
the Box-Ljung statistic based on the first ten sample
autocorrelations is Q(10) = 8.58. Thus no serial correlation is
indicated. The correlograms and theoretical autocorrelation
functions for both the irregular and the level residuals are quite
similar and hence give no further hint of model misspecification.
Nor do the sample and theoretical cross-correlations. Of course,
evidence of dynamic misspecification can be masked by outliers and
structural breaks, but in this instance there was still no evidence

of serial correlations after the inclusion of interventions.

Number of Marriages in the UK

West & Harrison (1989) analyse an interesting set of
observations: the number of marriages in the UK between 1965 and
1970 for each quarter, see figure 4.5. Many marriages take place in
the third quarter of each year because many couples prefer to marry
on a day when there is a reasonable chance of good weather. The
relatively large number of marriages in the first quarter of the
years 1965, 1966, 1967 and 1968 is caused by the UK income tax law
system during these years. The UK tax law provides higher tax free
allowances for married couples from the current tax year onwards
(running from April to March). After 1968 the married person's
allowance for the current year was abolished, the claims could be-
made after the current tax year.

The 24 observations can be modelled with a quarterly BSM with
the estimated hyperparameters as reported in table 4.7. The
standardized innovation at the first quarter of 1969 is very large
for this model. The source of the problem can be found by examining .
the auxiliary residuals. The plots in figure 4.6 and the diagnostics
reported in table 4.7 clearly points to the seasonal component.

A change in the seasonal pattern is modelled by a regression
intervention in the transition equation of the SSF. The seasonal
interventions are only made for the seasons 1, 2 and 4. It is
estimated that the number of marriages in the first quarter has
reduced by 43,550. All diagnostics of the BSM with interventions are
satisfactory and 02 is equal to 16.69.
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consumption of Spirits in the UK

The per capita consumption of spirits in the UK for 1870 to
1938 is a classical data-set which is analysed for the first time by
prest (1949). It has become widely known since it was used as one of
the testbeds for the d-statistic in Durbin & Watson (1951). The time
series was analysed later, for different purposes and using
different approaches, by Fuller (1976), Tsay (1986) and Kohn &
Ansley (1989).

The time series, as presented in figure 4.7, can be
explained, at least partly, by relative price of spirits and income
per capita, as presented in figure 4.7 as well. However, a
regression formulated in this way shows significant serial
correlation even if a time trend is included, see Durbin & Watson
(1951) . The regression model with a stochastic trend component, i.e.

Ye = By + X3 + € (5.1)

where p, is a local linear trend, as in (2.3.7), and § is a fixed
vector of parameters and e, is NID(0,02), provides a good fit in many
respects. It is more parsimonious than the regression model with a
quadratic time trend and a first-order autoregressive disturbance
reported in Fuller (1976, p.426). The stochastic trend in (5.1) can
be interpreted as reflecting changes in tastes. Finally, this
regression model can be placed in the SSF (2.1)-(2.3),
straightforwardly.

The estimates reported in table 4.8 are for the period 1870
to 1930. As can be seen, the slope is stochastic and so there is a
set of three auxiliary residuals, see figure 4.8. The associated
test statistics are in table 4.8 as well. Kohn & Ansley (1989) .
estimate the model without a slope component, so B, is just a random
walk. Indeed, estimating such a model might not be unreasonable for
preliminary data analysis if we wish to focus attention on
structural changes which affect the level. However, in this
pParticular case, the kurtosis statistics in table 4.8 are high for
both the irregular and level residuals and the presence of the slope
makes very little difference.

The plots shown in figure 4.8 indicate a shift in the level
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in 1909, with a number of candidates for outliers during World War
I. We fitted a level intervention first. The 1918 outlier than stood
most clearly in the irregular. On estimating with a 1918
intervention, 1915 stood out most clearly. This led to a model with
a 1909 level intervention together with outlier interventions at
1915 and 1918. All the diagnostics in this model are satisfactory.
Table 4.9 shows the estimated coefficients of the explanatory
variables and compares them with the coefficients obtained from the
model without interventions. There is a clear improvement in
goodness of fit and this is reflected in the t-statistics shown in
parentheses. The innovation diagnostic in the intervention model are
entirely satisfactory. It is particularly interesting to note the
reduction in the value of the Box-Ljung test-statistic based on the
first ten residual autocorrelations, Q(10). In the model without any
interventions there were high autocorrelations at lags 8,9 and 10
which had no obvious explanation.

Reference back to Prest (1949), who originally assembled the
SPIRITS data set, reveals that the figures for 1915 to 1919 were
estimates based on consumptions in the British Army. Thus they may
be considerably less reliable than . the other observations and taking
them all out by intervention variables may not be unreasonable. The
results are shown in the last column of table 4.10. The changes in
the coefficients of income and price are due to the influence of the
observations corresponding to the additional interventions rather
than the fact that they may be outliers; see Kohn & Ansley (1989).

On the basis of the level residual, see figure 4.8, there is
a case for a structural change in 1919. However, the general
unreliability of the observations in 1915 to 1919 makes it difficult
to estimate such a change with any degree of confidence. None of the,
other results change significantly when the 1919 outlier
intervention is replaced by a level shift intervention.

The explanation for the level change in 1909 may be found in
the social, economic and political situation during this year in the
UK. In this remarkable year, the Chancellor of the Exchequer Lloyd
George, later PM; presented his budget in which the Government
announces their plans of rising income taxes for the well-off and

increasing taxes on land-ownership, on luxury goods and on goods
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1ike spirits and tobacco. Some influence of these tax reforms can be
found in the downwards shock of the relative price of spirits after
1909. But the overall shock effect, which affected the demand for
complementary goods as well, cannot be modelled differently than by
an intervention.

The fall in the level of 1909 is highly significant in both
of our intervention models, and indicates a permanent reduction,
other things being equal, of around 9 %. It is this feature which is
detected by our techniques and which is the prime source of the
difference between our model and that of Kohn & Ansley (1989). They
identify 1909 as a possible outlier. Their preferred model has
outlier interventions for the years 1915 to 1919 and 1909. Fitting
this model, including variations such as the inclusion of a
stochastic slope and using time domain in stead of frequency domain
estimation, resulted in a poorer fit than our model and somewhat
different coefficients for the explanatory variables.

Tsay (1986) uses the ARIMA approach of detecting outliers, as
earlier mentioned in section 4, and applies these techniques to the
SPIRITS data set as well. His conclusions are similar to ours. In
. his terminology, innovative outliers are recognised in 1909, 1910,
1911 and 1912, and additive outliers are found for 1915 and 1918.
Note that innovative outliers do not influence residuals
permanently, the influence for future residuals damps out
exponentially over time. The final model of Tsay (1988) is the same
regression model as proposed by Fuller (1976) but with ARMA(1,1)
residuals, an innovative outlier at 1909 and the two earlier
mentioned additive outliers. The two parameters concerned with the
innovative outlier do relate to each other in such a way that the
memory of the innovative outlier is long and, therefore, the effect .
of this innovative outlier approximates the effect of a level
intervention as employed to our model. It must be stressed that,
although the methodology used by Tsay (1988) leads to the same
conclusions, our detection method based on the auxiliary residuals
is straightforward and much easier to use. It is also more robust
since it does not rely on a model identification procedure based on
the correlogram which can be seriously distorted: when outliers are
present in the time series.
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7. CONCLUDING REMARKS

The auxiliary residuals are serially correlated and
correlated with each other even when the model is correctly
specified. Nevertheless, it seems that they are an useful tool for
detecting outliers and shifts in the level in structural time series
models. Plots of the auxiliary residuals can be very informative and
these can be supplemented with tests for normality and kurtosis
corrected to allow for the implied serial correlation. The examples
and Monte Carlo experiments illustrate that the techniques work
quite well in practice and, finally, they are very simple to apply

as well.
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Theoretical auto- and cross-correlations for the auxiliary residuals

of a quarterly BSM with q,=1, g,=0.1 and g,=0.1
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Table 4.2

Theoretical auto- and cross-correlations for the auxiliary residuals
of a LL model based on samples of different sizes

sample sizes : n=6 n=10 n=20 n=50 n=100 n=w
ratio g=1.0
Pt lag
1 -.3261 -.3094 -.3090 -.3090 -.3090 -.3090
2 -.1631 -.1190 -.1180 -.1180 -.1180 -.1180
3 -.0476 -.0451 -.0451 -.0451 -.0451
4 -.0238 -.0172 -.0172 -.0172 -.0172
ph lag
1 .3734 .3818 .3820 .3820 .3820 .3820
2 .1245 . 1454 .1459 . 1459 .1459 . 1459
3 .0545 .0557 .0557 .0557 .0557
4 .0238 .0172 L0172 .0172 .0172
ped lag
0 5111 .5550 .5559 .5558 .5559 .5559
1 .1071 .2102 .2123 .2123 .2123 .2123
2 .0755 .0811 .0811 .0811 .0811
3 .0163 .0310 .0310 .0310 .0310
ratio q=0.1
ps lag ‘
1 -.2109 -.15486 -.1359 -.1351 -.1351 -.1351
2 -.1917 -.1226 -.0996 -.0986 -.0986 -.0986
3 -.1030 -.0732 -.0720 -.0720 -.0720
4 -.0936 -.0542 -.0525 -.0525 -.0525
] lag i :
1 .4933 .6529 .7264 .7298 .7298 .7298 ‘
2 .2349 .4399 .5285 .5327 .b327 = .5327
3 .2709 .3835 .3888 .3888 .3888
4 .1290 .2769 .2837 .2837 .2837
Pea lag
0 .4780 . 4042 .3692 .3675 . 3675 .3675
1 .3847 . 3050 .2699 .2682 .2682 .2682
2 .2363 L1975 .1958 .1958 .1985
3 L1911 . 1449 .1429 . 1429 .1429
ratio g=0.01
Pt lag
1 -.1787 -.1088 -.0642 -.0483 -.0476 -.0476
2 -.1750 -.1057 -.0601 -.0438 -.0430 -.0430
3 -.1036 -.0566 -.0397 -.0389 -.0389
4 -.1026 -.0536 -.0360 -.0352 -.0352 .
Pa lag
1 .3867 . 4962 .6978 .8920 .9048 .9049
2 .1924 .3679 .6037 .8057 .8187 .8188
3 .2432 .5157 L7274 - .7409 .7409
4 .1210 .4328 .6564 .6703 .6704
Ped lag
0 .5159 . 4087 .2863 .2215 .2181 .2181
i .5045 .3929 . 2664 .2007 .1974 L1973
2 .3811 L2491 .1820 .1786 L1786
3 .3731 .2343 . 1651 .1616 .1616




133

Table 4.3

correction factors for a quarterly BSM with q,=1, q,=0.1 and q,=0.1

Auxiliary residual x(3) x(4)
Irregular 0.93 1.02
Level noise 1.01 1.02
Slope noise 3.53 2.90
Seasonal noise 1.49 1.53

Table 4.4

Estimated rejection probabilities for tests at a nominal 5% level of
significance for a local level model with sample size n=150 ~

qg= 2.0 g =0.5

(a) NO MISSPECIFICATION

Residual N-cor N-unc K-cor K-unc . N-cor N-unc K-cor. K-unc
Innovation 0.062 0.062 0.077 0.077 0.055 0.055 0.077 0.077
Irregular 0.038 0.036 0.058 0.062 0.039 0.039 0.060 0.062

Level noise 0.034 0.038 0.061 0.062 0.037 0.064 0.053 0.065

(b) SINGLE OUTLIER at t=112

Residual N-cor K-cor N-cor K-cor
Innovation 0.49 0.56 0.87 0.90
Irregular 0.76 0.79 0.97 0.97
Level noise 0.25 0.30 0.26 0.31

(c) STRUCTURAL SHIFT in level at t=112

Residual N-cor K-cor N-cor K-cor
Innovation 0.42 0.45 0.83 0.85
Irregular 0.15 0.19 0.27 0.34
Level noise 0.47 0.49 0.94 0.95

" based on Monte-Carlo experiments with 1000 replications
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Table 4.5

Hyperparameter estimates and diagnostics for LAXL

dependent variable : Log of LAXL * t = 1966ql,...,1983g4
number of observations : 72 season : quarterly (s=4)
model : BSM with diffuse initial cond. method : FD scoring

HYPERPARAMETER ESTIMATION

hyperparameter estimate g ratio

of 0.00314

ol 0.0 0.0

o; 0.00084 0.2675

o; 0.00001 0.0032
DIAGNOSTICS

Auxiliary residual Kurtosis K Normality N
Innovation 2.18 5.14
Irregular 7.53 ° 86.41 °
Slope residual 0.31 0.22
Seasonal residual 0.11 0.45

US exports to Latin America (see Bruce & Martin, 1989)
Significant at 1 % level -
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Hyperparameter estimates

and diagnostics for CDKSI

dependent variable Log
number of observations :
model BSM with diffuse

HYPERPARAMETER ESTIMATION

hyperparameter estimate

ol 0.00425

ol 0.000495
2

G( 0.0

L2

o 0.0

DIAGNOSTIC STATISTICS

Auxiliary residual

Kurtosis K

of CDKSI * t = 1975ml,...,1984ml2
120 season monthly (s=12)
initial cond. method : FD scoring

g ratio

0.1165

Normality N

Innovation
Irregular
Level residual

+

Car drivers killed and

* *

2.51 12.61
0.50 0.86
* 38.04

4.80

seriously injured in Great Britain

.(see Harvey & Durbin, 1986)

-]

Significant at 1 %

level




136

Table 4.7

Hyperparameter estimates and diagnostics for MARRIAGE

depend. variable : MARRIAGE * t = 1965qg1,...,1970qgq4
number of observations : 24 season : quarterly (s=4)
model : BSM with diffuse initial cond. method : FD scoring

HYPERPARAMETER ESTIMATION

hyvperparameter estimate g _ratio
2
o 0.0
o? 1.41630 0.18523
o; 0.0 0.0
ol 76.4621 1.0
DIAGNOSTICS
Auxiliary residual Kurtosis K Normality N
Innovation 6.48 " 63.12 °
Level residual 0.85 . 3.08 .

Seasonal residual - 7.72 79.87

Number of marriages in UK (see West & Harrison, 1989)
Significant at 1 % level
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Table 4.8

Hyperparameter and regression estimates and diagnostics for SPIRITS

dependent variable : Log of SPIRITS * t = 1870,...,1930
explanatory vars : Log of INCOME

Log of PRICE
number of observations : 61 season : yearly

model : LLT with diffuse initial cond. method : FD scoring

HYPERPARAMETER ESTIMATION

hyperparameter estimate g ratio
.o} 0.000161

ol 0.000069 0.4286

o} 0.000037 0.2298

REGRESSION ESTIMATION

fixed effect estimate t-test.
Income 0.69 5.28
Price -0.95 -13.6

GOODNESS OF FIT AND DIAGNOSTIC STATISTICS °

A

o 0.000229

R, 0.71

Box-Ljung Q,, 13.06

Normality 5.87

Kurtosis 2.21

Heteroskedasticity 2.47

Auxiliary residual Kurtosis X Normality N
Irregular 7.53 ° 69.76 ©
Level residual 5.19 © 31.65 °
Slope residual 0.32 0.45

Consumption of Spirits in UK (see Durbin & Watson, 1951)
Goodness of fit and diagnostics are discussed in section 2.6
Significant at 1 % level

o
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gyperparameter and regression estimates and diagnostics for SPIRITS

dependent variable : Log of SPIRITS * t = 1870,...,1930
explanatory vars : Log of INCOME

Log of PRICE
interventions : Structural shift 1909

Outlier 1915 1918

number of observations : 61 season : yearly

model : LLT with diffuse initial cond. method : FD scoring

HYPERPARAMETER ESTIMATION

hyperparameter estimate g ratio
a; 0.0

o 0.000117

ag 0.000014 0.1197

REGRESSION ESTIMATION

fixed effect estimate t-test
Income 0.66 7.82
Price -0.73 -15.2
1909 Structural shift -0.09 -7.90
1915 Outlier 0.05 5.33
1918 - -0.06 -7.47

GOODNESS OF FIT AND DIAGNOSTIC STATISTICS °

~

o 0.000166

R/ 0.91

Box-Ljung Q,q 5.25

Normality 1.53

Kurtosis 1.23

Heteroskedasticity 0.83

Auxiliary residual Kurtosis K Normality N
Irregular - =

Level residual 0.93 0.94
Slope residual 0.03 0.01

Consumption of Spirits in UK (see Durbin & Watson, 1951)

Goodness of fit and diagnostics are discussed in section 2.6

Significant at 1 % level
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Table 4.10

‘gyperparameter and regression estimates and diagnostics for SPIRITS

dependent variable : Log of SPIRITS * t = 1870,...,1930
explanatory vars : Log of INCOME

Log of PRICE
interventions : Structural shift 1909

Outlier 1915 1916 1917 1918 1919

number of observations : 61 season : yearly
model : LLT with diffuse initial cond. method : FD scoring

HYPERPARAMETER ESTIMATION

hyperparameter estimate g ratio
o? 0.0

oF 0.000079

o} 0.000030 0.3797

{
REGRESSION ESTIMATION

fixed effect estimate t-test
Income 0.58 - 6.45
Price -0.53 -6.31
1909 Structural shift -0.09 -8.69
1915 Outlier 0.06 , 4 .34
1916 - 0.004 0.30
1917 - -0.05 -2.79
1918 - -0.10 -6.41
1919 - -0.01 -1.25

GOODNESS OF FIT AND DIAGNOSTIC STATISTICS °

A

o 0.000144

R 0.93

Box-Ljung Q, 4.93

Normality 0.73

Kurtosis 0.84

Heteroskedasticity 0.75 ‘
Auxiliary residual Kurtosis K Normality N

Irregular - -

Level residual 0.46 0.24

Slope residual 0.25 0.18

Consumption of Spirits in UK (see Durbin & Watson, 1951)
Goodness of fit and diagnostics are discussed in section 2.6
Significant at 1 % level




Figure 4.1 US Exports to Latin America {in logs)
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Figure 4.2b Auxiliary residuals for LAXL : Irregular
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Figure 4.3 Car drivers killed and seriously injured in GB (in logs)
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Figure 4.4b Auxiliary residudls for CDKSI : Irregular
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Figure 4.4c Auxiliary residuals for CDKSI : Level residual

7% 76 77 78 79 80 81 82 83 84



Figure 4.5 Number of marriages in UK

Figure 4.6a Innovations for MARRIAGE
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Figure 4.6b Auxiliary residuals for MARRIAGE : Irregular
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Figure 4.7a Consumption of spirits in UK (in logs)
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Figure 4.7c Income per capita in UK (in logs)
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Figure 4.8b Auxiliary residudls for SPIRMTS : Irregular
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CHAPTER 5
CUBIC SPLINES IN TIME SERIES MODELS

0. ABSTRACT

A non-linear function can be approximated by a cubic spline
function which can be regarded as a polynomial function of order
three. So the first three derivatives of a cubic spline function
exist but only the first two derivatives are continuous. Splines are
generally used for interpolation and curve fitting but also for
piecewise regressions. This chapter deals with cubic splines mainly
in the context of time series models. They are adopted to describe
seasonal or cyclical movements in time series but also to
approximate non-linear responses of explanatory variables. An
important contribution of this chapter is .to let cubic spline
functions vary over time and to place them into the state space
form.

Keywords : Cubic splines; Piecewise regression; Periodic splines;
Seasonality; Time-varying.

1. INTRODUCTION

The spline method is a stable and flexible interpolation
technique which is especially useful to describe a pattern of data
points generated from a particular unknown function. In fact, it .
draws a smooth line through a set of points in a XY diagram, see
figure 5.1. The spline function can be chosen as smooth as one
desires. This depends mainly on the number of existing derivatives.
For example, if the first p derivatives of a spline function exist,
the spline function is of order p. If p is large, the spline
function is very smooth. However, a spline function with a

relatively small value for p produces already a smooth line. The
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1inear spline function has p equal to 1, the quadratic spline
function has p equal to 2, and the cubic spline function has p equal
to 3. The latter is of primary concern in this chapter.

Several applications of splines can be found in the
literature of numerical analysis and they are mostly concerned with
interpolation and curve-fitting. Other applications are related to
particular problems in regression analysis such as structural breaks
which can be modelled via a piecewise linear regression model as
well, see Johnston (1984). Spline functions allow for a smooth
change from one parameter value to another and preserve continuity
of derivatives upto a certain order. This chapter will develop more
theoretical results concerning cubic splines in the context of time
series.

Periodic movements are an important feature in time series
analysis. Seasonal effects tend to be the rule rather than the
exception with monthly or quarterly time series. When observations
are available at more frequent intervals, periodic movements may
exist within the week or the day. Commonly, a periodic pattern over
s time intervals is modelled with s-1 dummy variables or,
alternatively, with s-1 trigonometric terms. Two important issues
arise with this approach. Firstly, periodic movements are almost
never fixed in real time series, they may evolve over time.
Secondly, if s is large, the model with dummy or trigonometric terms
become cumbersome and not very parsimonious. The use of a cubic
spline is in many of these cases a more appropriate solution for
modelling periodic time series. The main purpose of this chapter is
to address these problems and to provide a solution by developing
the idea of time-varying splines.

The organisation of this chapter is as follows. The next
section will derive the cubic spline function as a linear system of‘
equations. The derivation follows mainly the steps which can be
found in various books on introductory numerical analysis. An
illustration describes the method of interpolation using cubic
splines. Statistical applications with splines are widely available
in the literature. Section 3 gives a straightforward approach of
Calculating a polygon through a histogram using cubic splines. Also,

cubic splines are incorporated in regression models to approximate
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non-linear responses of explanatory variables, illustrated by an
example that deals with the non-linear response of the demand of
electricity on temperature levels. Moreover, it introduces
distributed lags for these regression models and it provides a
parsimonious solution. Section 4 incorporates periodic splines into
regression models. This spline is restricted to a 'sum-up-to-zero'
constraint. An efficient method of computing the periodic spline is
proposed as well. The main novelty in this chapter is the
development of time-varying splines as can be found in section 5.
some essential computer programs are described in section 6. This

chapter is concluded with some general remarks.

2. CUBIC SPLINES

This section presents the derivation of a cubic spline
function g(x) that approximates an unknown function f(x) by a set of
cubic polynomial functions. Thus the functional form of f(x) is
unknown but it is assumed that some particular values of f(x) are
known. The set of known pair values (x,y;=f(x{)}, for i=0,...,k, will
be referred to as the set of knot points associated with the, so-
called, mesh {Xy,...,X}. The (k+1) knot points can be graphically
reproduced in a XY diagram, see figure 5.1. The spline approximation
method provides the smooth line through the knot points.

The spline function g(x) is based on a set of polynomial
functions. The spline function is said to be of order p when the
first p derivativé functions exist and the first (p-1) derivative
functions are continuous. The value of p can be interpreted as an
order of smoothness. In many applications it is appropriate to have
- p equals to 3. This particular spline function is referred to as a‘
cubic spline and can be derived in an analytically attractive way.
It is shown below that the cubic spline function is derived as a set
of linear equations.

Assume that (i) the mesh is of ascending order such that

Xp<Xj<...<x, (ii) the distance z, is defined as z;=x{-x

+
i-1
i=1,...,k and (iii) the i-th derivative of g(x) is denoted by V' (x).

for

In order to let the third derivative function exist, the second
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derivative function can be taken as a .linear function for every area
petween the mesh-elements. Note that it is not required that the
third derivative is continuous, it only has to exist. An example of
a second derivative function V2 (x) for a cubic spline is graphically
reproduced in figure 5.2b. The functional form of V? (x) is locally,

for Xj.,<X<X;, given by
V2 (x) = {((xj-x)/2z;)a;., + {((x-%].4)/2;}a; (2.1)

for j=1,...,k. The values a; and a;=V (x]) for j=1,...,k are not
known. The second derivative V2 (x) of the cubic spline function g(x)
is continuous as required. The third derivative function is dis-

continuous and it is given by
V(%) = (a;-a;4)/z; (2.2)

for x}1sxsx} and j=1,...,k. This can be interpreted as the slope of
the second derivative function.

In the following, the cubic spline function g(x) is derived
in four steps starting off from the definition of the second
derivative function. The first step derives the first derivative
function and the cubic spline function g(x) using standard rules of
integration. It follows that the functions g(x) and V(x) are unknown
because they are expressed in terms of the unknown values a; for
j=0,...,k. The second step restricts the cubic spline function g(x)
to cross the knotpoints as required. The continuity restriction for
the first derivative function is enforced in the third step. The
first three steps provide a system of (k-1) equations with (k+1)
unknown values for aj,
identification by treating a, and a, as known constants. By solving’

3j=0,...,k. The last step solves this under-

the system of (k-1) equations, the functions g(x), V{X), V2 (x) and
WV (x) can be evaluated and the associated graphs can be drawn, see
figures 5.1 and 5.2.

Step (i)
The primitive function of V?(x) and VG(X) is derived by using
standard integration rules. Thus, we have VG(X)=]V?(x)dx and
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Vi(x) = —{%(x}—x)z/zj}aj_1 + {%(x—x‘}_1)2/zj}aj - b; + ¢ (2.3)

where cf4% is a constructed integration constant. Again, the

primitive of VG(X) is gj(x) and is derived in a similar fashion,

gj(X) = {(x}—x)3/6zj}aj_1 + {(X_X}‘.1)3/6Zj}aj +
(x}—x)bj + (x—x}1)cj + d; (2.4)

where dj is the integration constant. Note that the cubic spline

function g(x)=g;(x) for x}1sxsx} and j=1,...,k.

Step (iil)

It is required that the cubic spline crosses the knotpoints
and, therefore, it is enforced that g;(x})=y] and g;(%j,)=y]., for
j=1,...,k. This implies that the constants b;, c; ahd d; must be

chosen as

bj = Y}-.1/Zj - {zj/6}aj_1 . (2.5a)
cj = Y}'/Zj - {zj/6}aj (2.5b)

Subétituting the constants bj and C; into the first derivative
function leads to

Vi(x) = ={3(x-%)2/2; - z;/6)a;, + (3(x-x].)2/2; - z;/6}a; +
(y;_y:-‘.ﬂ/zj (2.6)

-

and substituting the constants b;, ¢; and g, into the spline function
g(x) leads to

gj(x) = [(X}—X){(X}—X)Z—Z? }/sz]aj_1 + {(X}.-X)/ZI}Y}'-‘] +
[(x=%.) ((x=%.,)2 =22 }/62;]a; + ((x-X}.,)/2,)Y] (2.7)

+ + s
for X} SX<X; and j=1,...,k.

Step (iii)
Finally, it is also required that the first derivative of the
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cubic spline function is continous. This is enforced by the

restriction V,(x])=V,,,(x]) where

Vi(x}) = (2z;/6}a; + {2;/6}a;, + (¥]-¥].1}/2;
"'Vj+1(x}) = {221+1/6}aj + {Zj+1/6}aj+1 + {y-}-_y-}-+1}/zj+1 (2-8)

for j=1,..,k-1. By some minor manipulation, the set of restrictions
leads to the following set of (k-1) equations

{zj/(zj+zj+1)}aj_1 + 2aj + {zj.+1/(zj.+zj+1)}aj+1 = _
6y}'_1/{zj(zj+zj+1)} - 6y]f/zjzj+1 + 6y}f+1/(zj+1(zj+zj+1)} (2.9)

for j=1,...,k-1.

Step (iv)

The previous steps lead to a sequence of k+1 unknown values,
i.e. a; for j=0,...,k, and a system of k-1 restrictions. This systen
of linear restrictions cannot be solved unless two linear
restrictions are added. A number of possibilities are discussed in
Poirier (1973,1976). A straightforward and, in many cases, an
appropriate solution is to treat the unknowns a, and a, as known
constants. A cubic spline function g(x) is referred to as a natural
spline function when it is supposed that a;=a =0.

The final set of restrictions can be represented in matrix
notation by

Pa = Qy" (2.10)

where a=(agi...;a,), y™=(ygi-.-:y;) and the matrices P and Q are
tridiagonal matrices with the non-zero elements chosen appropriately
~according to (2.9). The solution for a is given by P 'Qy* and this
enables us to calculate g(x) for any xgsxsx;, see figure 5.1.

Since, the parameter vector a is expressed as a linear
combination of y*, it follows that the solution for g(x) is also

linear in y*. In matrix notation,

+

g(x) =r'y" + s'a =w'y (2.11)
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where row vector w' is equal to r'+s'P'Q0 and r and ' are column
vectors with the non-zero elements chosen appropriately according to
(2.7) - If x corresponds to an element of the mesh, (xg,...,%;}, then
all elements of w are zero except the j-th element is equal to unity
such that g(x})=y}. In that case, s=0 and r=w.

In order to calculate the elements of the w vector for a
particular x-value, the inverse of P is required. This can be done
very efficiently because the matrix is tridiagonal, see Press et.al.
(1989, p.48). Appendix 5A gives the details to calculate the vector

w based on a particular x value and a set of knots.

An illustration

Suppose, weather data for the year 1990 of a small weather
station in England ié lost. Only the average monthly temperature
values for January, May, August and December are found. These values
are 30F, 45F, 65F and 35F, respectively. The head of the weather
station decides to approximate the missing monthly averages by a

natural cubic spline.

The month January is coded with number 1 and the month
December is coded with number 12 such that the knot points are
.(1,30), (5,45), (8,65) and (12,35). The w' vectors for the set of x-

values 1,2,...,12 are, respectively,

1.0000 0.0000 0.0000 0.0000
0.6798 0.4338 -0.1287 0.0150
0.3877 0.7941 -0.2059 0.0241
0.1517 1.0074 -0.1801 0.0211
0.0000 1.0000 0.0000 0.0000
-0.0517 0.7386 0.3497 -0.0365
-0.0365 0.3497 0.7386 -0.0517
0.0000 0.0000 1.0000 0.0000
. 0.0211 -0.1801 1.0074 - 0.1517
10 0.0241 -0.2059 0.7941 0.3877
11 0.0150 -0.1287 0.4338 0.6798
12 0.0000 0.0000 0.0000 1.0000

VCONOANOWN PR

and the monthly. interpolated temperature values are, respectively,
30.0, 32.1, 34.8, 38.9, 45.0, 53.1, 60.8, 65.0, 63.3, 56.6, 46.7 and
35.0. These values are graphically reproduced in figure 5.3.



156

3. STATISTICAL APPLICATIONS OF CUBIC SPLINES

Cubic splines can be applied to several problems in
statistical theory. In this section, three different applications
are discussed. Firstly, the cubic spline is used to obtain a
frequency polygon from a frequency histogram. This application
provides several ideas which can be explored in a future research
project. The second application considers piecewise regressions with
cubic splines as proposed by Poirier (1973). This approach is
especially useful to approximate non-linear effects in regression
models. The last application develops piecewise regressions with
cubic splines for regression models including distributed lags.
Specific applications of cubic splines in the context of time series

mnodels are discussed in the sections 4 and 5.
The frequency polygon as a cubic spline based on a histogram

The frequency distribution for a variable x is given in table
5.1 and can be graphically reproduced as a freguency histogram, see
figure 5.4. This graph is discontinuous. When a continuous graphical
presentation of the frequency distribution is preferable, the
polygon might be considered. This is the line through the midpoihts
of the classes. Van Casteren (1991) discusses some fundamental
objections against this common polygon (cp) : " The cp is not
constructed such that the surface under the polygon within each
‘class is proportional to the frequency of that class ... the cp is
too flat ... the cp may allocate positive surface to imaginary
classes ". He proposes an alternative polygon based on a linear
spline that takes account of these incompatibilities.

In the following, a more smooth polygon is proposed based on
cubic splines. Spline functions are earlier used as a frequency
polygon, for example, Boneva et.al. (1971) preéent an elaborate
discussion on the, so-called, histo-splines. However, the approach
below is analyticaliy transparent and the arguments are
straightforward to comprehend.

In this application, the mesh-values of the cubic spline can
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pe chosen freely and, therefore, they are known, but the
corresponding y-values of the knot-points are not known. The number
of elements in the mesh and their particular values can be chosen
independently from the given classes within the total range of x-
values. However, to reproduce the frequency distribution as well as
possible, in a continuous fashion, the knot positions are placed at
the beginning of all the classes and at the end of the last class,
in our example {0,10,20,30,50}. The cubic spline is constructed in
such a way that the surface under the cubic spline is equal to the
surface of the histogram within all classes. The surface under the
cubic spline between x}1 and x; is obtained from the primitive
function Gj(x) = fgj(x)dx for x}Tsxsxﬁ where j=1,...,k and k is the
number of classes (in our example k=4). Applying standard

integration gives

G (x) = [z;(xj-x)2/12 - (x]-x)*/24z;]a;,
[z;(x-x%],)2/12 - (x-x}_1)4/24zj]aj
- Vi (X]-x)2/22; + yi(X-%].)%/22; + e; (3.1)

where e; is the integration constant. The surface under the cubic
spline between X, and x] is calculated by G;(x]) - G;(x}.;) which is

equivaient to

z; (Y] + ¥7.4)/2 - 2zj(a; + a;.,)/24 : - (3.2)

The surface (3.2) is restricted to be the same as the surface fj of
‘the histogram between x}1 and x} for j=1,...,k. This set of k
equations with two (k+1)x1 unknown vectors is identified when it is
assumed further that a,=0. The total set of equations can be put into
matrix form by

Ry* - sa = f
vhere R and S are spatial matrices of simple structure provided by

the equations (3.2) and the restriction a,=0, the vector f is the

stack of histogram surface values and a zero. In our example,
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000O0O 10000 0
11000 11000 200
R=5x| 01100 S =%58x| 01100 f = 400
oo0110 00110 300
00022 0 0O 8 8 200

In the previous section, it is shown that the cubic spline is
pased on the set of restriction Pa = Qy" where y* is supposed to be
known. However, for this application, y* is a vector of (k+1)x1
unknown values. To let the cubic spline start and finish at zero at
either ends of the histogram, the restrictions yj=y;=0 are added
which imply a slightly different structure for the matrices P and Q.
An expression for y in terms of a is easily obtained by y* = Q'pa
which can be substituted into (3.2) such that

a = (RQ''p - 5) 't ' ‘ (3.3a)
vyt = Q'p(rRQ'P - 5) 't (3.3b)

The explicit solutions for the vectors a and y in our example are
' (0.0;-.459;-.207;.134;-.101) and (0.0;36.173;38.271;21.117;0.0),

respectively. These vectors ensure that, for any x value between x;

0
and x;, that is 0 and 50, the cubic spline function can be evaluated.

The polygon is graphically reproduced as a smooth line through the
histogram by the cubic spline in figure 5.4.

Some specific issues arise when a cubic spline is used as a
polygon. Firstly, it is possible that the cubic spline get negative
at some intervals. This may happen when a class has a low frequency
value and one of its two neighboring clésses do have a high
frequency. These undesirable negative cubic spline values can be
avoided easily by forcing the negative knot points to be zero. A
slightly different set of mesh values might be required. Secondly,
the ogive can be calculated as well and is in fact the function
G;(x). Thirdly, the sample mean and variance of x based on the
Calculated cubic spline polygon can be evaluated easily. More
research has started, based on Monte Carlo simulations, to find out
if this mean and variance are better estimates of the population
mean and variance than their sample counterparts based on the
histogram. All these issues are addressed in Koopman (1992).

Approximating non-linear effects in regression models
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The concept of a piecewise linear regression can be found in
cseveral standard econometrics textbooks, for example Johnston
(1984) . Basically, if the response of an explanatory variable is
non-linear, the piecewise solution approximates the response locally
by a linear function within a certain range of values corresponding
to the explanatory variable. A linear spline is easily implemented
py the method of restricted least squares which enforces the
response function to be continuous, see Johnston (1984, p.392). The
piecewise regression with cubic splines generalises the linear case
such that, in addition, the first and second derivative functions
are continuous. This option is preferable because it provides a
smoother response function. It is shown below, following Poirier
(1973), that the concept of a piecewise regression with cubic
splines can be parameterized as a multiple linear regression model.

Suppose a set of n pairs of observations {X¢0Y )y £=1,...,1,
are available and that a non-linear regression model is appropriate
of the form

y. = £(x,) + €, (3.4).

where €, is a mutually uncorrelated disturbance term with zero mean
and variance o2. The unknown non-linear function f(x) is

approximated by the cubic spline function g(x). The spline is based
on the mesh xg<xi<...<¥,. An element of the mesh (x]) does not have to
correspond neccesarily to a x-value of the set of pair observations
(x,) . Thus the corresponding y-values of the mesh, i.e. vyg,...,y;, are
supposed to be unknown. Following the derivation of a cubic spline
in the previous section, the function f(x,) can be approximated by
g(x,) which can be expressed as

+

g(x,) = wly (3.5)
where y*=(ygi...;yy) and the (k+1)x1l vector w, depends on the mesh and

X, as is shown in the previous section. This leads to the linear

multiple regression model

Yo = WY+ e, (3.6)
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1t is the simplicity and the well-known properties of the linear
regression model that makes the cubic spline an attractive
approximation to complicated non-linear functions in regression
models. Of course, given the assumptions on €,, the ordinary least

squares (OLS) estimate
Y= (Tw W) (I vy, (3.7)

can be regarded as the minimum mean square linear estimate (MMSLE)

of the cubic spline parameter vector y*.

An illustration

Figure 5.5 presents a scatter plot of the demand for
electricity in mega-watts against the temperature in Fahrenheit at
one o'clock pm for all weekdays in 1990, except holidays (n=251).
The data were obtained from the Puget Sound, Power & Light company“ﬁ
The scatterplot clearly shows that the linear regression response
line is not appropriate because, obviously, the response of
electricity demand on temperature is non-linear. The demand of
electricity depends on temperature mainly due to heating but at high
temperatures the demand increases due to air-conditioning. This non-
linéar response is observed earlier in Bunn & Falmer (1985). Engle
et.al. (1986) propose‘to fit a non-parametric spline.

An appropriate treatment of this problem is to consider the
non-linear regression model y, = £(x,) + e, where Y, is the demand for
electricity, ¥, is the observed temperature and €, is a normally
.distributed disturbance term with zero mean and variance o¢2. The
function f(x) can be approximated by a cubic spline based on the
mesh {(10,65,90}. It is shown above that this approach leads to the
linear multiple regression model y, = w'!y + e, where vector y is
- fixed but unknown and the vector of natural cubic spline weights W,
corresponds to x,, see (3.5). The square root of the average squared
residual q=[n422ﬂ(yk—§02]% is 125.65. For the ordinary regression
model y, = a + Px, + €., this value is g=197.58. An adjusted Akaike
information criterion (AIC) can be defined by 2(log g + k/n), where
k is the number of parameters. The AIC is usually applied for model

Selection between non-nested models. For the two estimated
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regression models, the AIC values are 9.69 and 10.59, respectively,
such that it is concluded that the cubic spline regression model is
preferable in the sense of a minimum AIC. The cubic spline function

is plotted in figure 5.6.

Approximating dynamic non-linear response functions

The contemporaneous non-linear response model of the previous
section can be generalised by including lagged response functions.

consider the model
Ye = ?wfi(xbi) t € . ' (3.8)

where M is maximum lag window. The (M+1) non-linear response

functions can be approximated by cubic splines, such that

Y = Y, + € (3.9)

where N}=Eim Y; ¢ and yit=gi(xti)=wi;y; for. i=0,...,M, the vector W,
¢-ir the
parameter vector y] has dimension (k;+1) . This multiple linear

t
is based on a mesh of dimension (k;+1) and the value x

regression model with distributed lags can be estimated by methods
based on ordinary least squares or maximum likelihood. However,
severe problems may arise with the estimation of the parameters
because of collinearity which leads to imprecise estimates.
Moreover, the number of parameters can be quite large with this
specification such that a more parsimonious solution may be looked
for.

The regression model (3.9) can be simplified when it is
assumed that

Y: = Ay (3.10)
and k;=k for i=0,...,M. The scalar A, rescales the fixed parameter

vector y*. This implies that the shape of the non-linear response

function is constant for all lags and that only the intensity of the
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response is different. For a number of applications, this assumption
seems to be valid upto some degree. Note, that this restriction also
implies that Wi =Wo g0 for i=1,...,M, such that the contemporaneous
vector of spline weights is redefined by W EW, o The restricted

component y, of the dynamic regression model (3.9) becomes
Ye = Lig MWy (3.11)

which contains a set of (k+M+2) unknown parmeters. A further
reduction in the number of parameters is obtained by requiring that
ZEmAj = 1. This restriction is enforced to conform to some
normalizing argument. This implies that (k+M+1) number of free
parameters remain to be estimated. Two problems arise with
estimation. (i) Since no restrictions are introduced in the lag
structure, such as polynomial distributed lags proposed by Almon
(1965), collinearity is likely to be high between the vectors of
weights w,, w4, ...,W,.,. (ii) The model (3.9) and (3.11) cannot be
estimated straightforwardly because the two sets of parameters do
not relate to each other in a linear fashion. Both problems will be
addressed below.

(i) To avoid multicollinearity in the regression model (3.9)
and (3.11) and, therefore, to increase numerical stability, it is
useful to re-parameterize“yt by

Yo = A(wivT) + LIS AT(Aw !y (3.12)

where A is the first difference operator, A" = IMod; = 1 and A = -
Eivnkj for i=0,...,M-1. Thus, ¥' can be considered as the total (non-
linear) multiplier. '

(ii) The estimation of the regression model (3.9) and (3.11)
can be carried in a similar iterative estimation process as proposed
by Cochrane & Orcutt (1949) in the context of regression models with
AR disturbances. It involves a sequence of least squares estimations
based on two different linear regression models. The first

regression specification RM1 is given by



163

Ve = W'Y + €, (3.13)

where w, = w, + Y¥1 17 Aw_,. The second regression specification RM2
is defined in terms of the set of unknown scalars {A;;...;k;1}, that
is

Y. = (wly') = Y] ).’]fzi't + e, (3.14)
where z; . = Awb;y+ for i=0,...,M-1. A least squares estimation
applied to RM1, where A} = M'! for i=0,...,M-1, followed by a least
squares estimation applied to RM2, where y* is replaced by its
estimate from the previous regression applied to RM1l, starts up a
process of 'flip-flop' estimations applied to RM1 and RM2 which can
“be terminated when the estimates of the parameters converge to a set
of constant values. This approach of estimating lagged splines,
applied to the case of forecasting hourly electricity demand where
temperature is the explanatory variable, is discussed in the next

chapter.

4. PERIODIC CUBIC SPLINES AND SEASONALITY

Cyclical and seasonal movements do occur regularly in time
series and are commonly modelled by a set of dummy variables or
trigonometric terms. This approach is used in many cases of applied
time series analysis and it has proved to be successful. However,
when the periodic pattern repeats itself over a large number of time
intervals, the classic approach is far from parsimonious. For
example, when weekly observations are available for many years and .
the data show a periodic movement which repeats itself every year,
the classic approach requires 51 dummy or trigonometric terms. It
will be shown below that for these cases a seasonal model can be
formulated with much less parameters by using periodic cubic
splines.
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periodic cubic splines

Periodic variations can be described by cubic splines.
Because the periodic pattern repeats itself several times, it is
only required to describe one period by a spline which,
subsequently, can be applied to all periods. The cubic spline
pbecomes a continuous cyclical function when the knot points at the
start and at the end of the cubic spline are the same. This is
enforced by the assumption that y;=y;. Moreover, the first and second
derivatives at either side of the cubic spline are restricted to be
equal such that the continuity conditions for the derivatives upto
order 2 still hold. It will be shown below that these additional
restrictions remove the need for the arbitrarily restrictions a,=a =0
as applied to natural cubic splines in order to have an identified
system of equations.

Thus, in the case of periodic splines, it is required that

Y, (%5) =V, (%}) V2 (x5) =% (x}) (4.1)
These continuity conditions remove the need for any further
assumptions to solve the system (2.9) with (k-1) equations and (k+1)
unknowns because the latter condition leads to a reduction of one
unknown, that is aj=a,, and the former condition add the k-th

equation as. given by

(2,/(2,+2)) Ya,, + 23, + (2,/(2,1+2)}a, =
6Vi.1/{2,(2,+2,) )} - 6Y,/2,2, + 6Yi/(2,(2,+2,)} = ©(4.2)

Note that it is also assumed that y;=y:. This linear system of k )
equations and k unknowns can also be expressed in the matrix
formulation Pa=Qy* but now the vectors are defined as a=(a,;i...ia)
and y*=(y;;...;y;). The periodic spline function can now be evaluated
by a linear operation, that is g(x) = r'y" + s'a = w'y* where the
vectors r and s are based on (2.7) but taking into account the
restrictions aﬁ=ak’and Vo=Y,- The weight vector w for a periodic cubic
spline is still defined as w'=r'+s'P 'Q. However, the matrices P and

Q have lost their tridiagonal structure because of the equation
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(4.2) . However, the sparsity of matrix P can still be exploited to
calculate its inverse efficiently and to avoid the use of a standard
matrix inverse procedure. This is important for the computer
algorithm that calculates the weight vector for a periodic cubic

spline. Technical details are given in Appendix 5B.
Regression model with seasonal effects

Suppose that a sequence of observations follow a pattern
which repeat itself over a stretch of s observations and that the
appropriate regression model is the deterministic basic structural

time series model as given by
y, = a + Bt + vy, + e, (4.3)

where €, is a disturbance term with zero mean and variance s2?. The
level constant a¢ and the fixed slope parameter B are unknown. The
seasonal effect y, is usually modelled by a set of dummy variables,
see Johnston (1984). This approach is rather satisfactory provided
that s 'is not large. For example, s being equal to 4 (quarterly) or
12 (monthly) does not give any serious cause for concern. However,
when s is equal to 24 (hourly) or 52 (weekly), a more parsimonious
solution is needed. In the following, the periodic cubic spline is
considered as an alternative to dummy and trigonometric variables.
In order to parameterize the seasonal pattern by a periodic
cubic spline, consider the periodic spline of the previous section
and take Xf=j for j=1,...,s and k<s=x;. The seasonal component is .

defined by YY; when a j-th seasonal effect is appropriate and

—_ +
Y=y (4.4)

where wihis the periodic spline weight vector depending on the mesh
and the index value j. The kx1 vector y'=(yj;...:y,) is the spline
parameter vector which elements correspond to the mesh of the
periodic spline. (

To avoid the problem of multi-collinearity with the constant

term a, the periodic effects are restricted to sum up to zero. This
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problem does exist for a dummy and trigonometric seasonal model as

well. For the periodic cubic spline, the restriction leads to

?=1Yj = ?=1WJ'Y+ = wly" =0 (4.5a)

where w, is the kxl1 vector
—_ S
Wi = LW (4.5Db)
This restriction is equivalent to the equation

Yo = =15 (W /W) ¥ = = (Waa/ W) ' Y5 ~ (4.6)

where w,; is the i-th element of the vector w, and the (k-1)xl1l vectors
W and yi are defined as We=(Wi;ie..iWu_q) and yi=(Y7i«--i¥q) s
respectively. The previous steps lead to the following specification
of the j-th seasonal effect

Y; = z]ve (4.7)

where z; is a (k-1)x1 vector given by 2, =W~ (W), /Wy ) W and
Wi=(Wjyie..iW;.qy) such that wy, is the i-th element of w; and
w;=(W;.iw;, ). The calculation of vector z; is straightforward when the
vector sequence w; is available for j=1,...,s.

In the special case that k=s, the vector W is a vector of
zeroes except its j-th element is equal to unity. Thus, the stack of
all weight vectors w!, for j=1,...,s, is equal to the identity
matrix, e.g. W=I. It is not surprising that in this case the
regression model with periodic splines collapses to the dummy )
seasonal regression model with yj=y§ for j=1,...,s.

An alternative method to model seasonality in a regression
model is to use a set of (s-1) trigonometric terms as mentioned
earlier. It is possible to cut down the number of trigonometric
terms by dropping the ones, related to some frequency level, which
are not significant in the seasonal pattern of the observed data.
This not a viable option when the seasonal pattern exhibits sharp

bPeaks as, for example, typically happens with sales of certain
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consumer goods which tend to be concentrated in the weeks
immediately before Christmas. It might be an entirely satisfactory
option for a slowly changing seasonal effect such as average weekly
temperature. The latter case is discussed as a part of the next

illustration.

Illustration

Consider a time series of weekly averages of daily
temperature measurements at noon from January 1985 to August 1990 as
given in figure 5.7. Thus, s=52 and the number of observations is
=347. The cyclical behaviour is the prominent feature of the time
series. A regression model with a set of 52 seasonal dummies can be
considered or, alternatively, the seasonal variation can be modelled
by a periodic cubic spline based on the mesh of week numbers
(10,22,32,42,52} such that k=5. The seasonal patterns generated by
seasonal dummies and by a periodic cubic spline are given in figure
5.8. The periodic cubic spline follows the seasonal dummies closely
and smoothly.

A simple F-test shows that the null hypothesis of the
'‘restricted' model with a periodic cubic spline is not rejected. The
test is constructed as follows. Denote g} as the average of the
squared residual for the periodic cubic spline regression model,
g?=4.04, and denote g} as the average of the squared residual of the
dummy seasonal regression model, g?=3.88. The latter model has n-s
degrees of freedom and the former model is of the same class of the
latter model but with s-k linear restrictions imposed on it. The

test criterion

*

Fro={ (qf - d)/af } * (n-s)/(s-k) .

is, under the null hypothesis, F-distributed with (s-k,n-s)=(47,295)
degrees of freedom. The test value F' is 0.26 which is much less than
the critical value of the F-distribution 1.48 with 95% confidence.
Note that this F-ratio has a direct relationship with other test
Ccriterions such as’the AIC, see Maddala (1988, table 12.4, p.431).
The cyclical variation can be modelled by a reduced set of

trigonometric terms as well. To compare both specifications, a
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regression model is fitted with four trigonometric terms, i.e.
Y, = B'(l;cos 2nt/s;sin 2nt/s;cos 4nt/s;sin 4nt/s) + e,

where B is a (5x1) vector of coefficients. The average squared
residual of the estimated trigonometric regression model is equal to
q?2=4.043. This result is very close to the cubic spline model with
five knots. It is concluded that the trigonometric and the cubic
spline solution are competitive when the seasonal variation is

smooth.
5. TIME-VARYING CUBIC SPLINES

The illustration of the previous section shows that in
specific cases cyclical or seasonal variations in time series can be
modelled successfully by a periodic cubic spline. Typically, in the
context of time series models, it is argued before that components
such as trend and seasonal may change over time, see the discussion
on the COAL series in section 2.7. The illustration of the previous
section shows clearly a periodic variation in the time series of
average temperatures but it is far from a constant periodic
behaviour. Therefore, it is important to let this periodic cubic
spline change over time.

Consider the basic structural time series model where,
instead of a dummy or trigonometric seasonal, the seasonal component
is modelled as a periodic cubic spline as discussed in the previous
section. However, now the spline is supposed to evolve over time.
The spline vector y* is assumed to follow a vector of random walks,
that is

Vi = Yia * X (5.1)

where y, is a disturbance vector with zero mean and covariance matrix
62V. Note that seasonal effect y, is equal to w;y: where period j is
Prevailing at time t. This specification can be compared with a
time-varying regression model.

Again, the restriction is imposed that the sum of the



169

seasonal components sum up to zero. Therefore, it is enforced that

w!Y;=0 where w, is defined in (4.5b). This restriction leads to
Wiyl = Wlyp, t wlx, | (5.2)

such that also the term w.!yx, must be restricted to zero. In the
previous section it is shown how the 'sum-to-zero' restriction for el
is implemented by dropping the last element of y* and transforming
the weight vector w; into z;. Similarly, the i-th seasonal effect at

time t is measured by
Yie = Z{¥x (5.3)

where z, is specified in-the previous section and the (k-1)x1
periodic spline vector yi, is given by (Y7 i---:i¥y.1y) and vi, is the
i-th element of the vector y;. The time-variation for the periodic
spline vector is now reduced to

Yie = Yeceery T Xeg (5.4)

where x., is a disturbance vector with zero mean and covariance
matrix o2Vv,.

The 'sum-to-zero' restriction for the disturbance vector x,
implies that '

Xee = _(W**/W*k) 'X*t : (5.5)

where ¥, is the i-th element of the vector x, and Xwe™ (X7 o« o P Xk-1yt)
such that X, =(X«:X,) - The cumulative spline weight vector w, can be .
decomposed by (Wan iWyy ) Where w,,=(Wy i...iW, ,) and w,; is the i-th
element of vector w,, see equation (2.6). This restriction imposes a
special covariance matrix. The matrix V can be partioned into
(V*AQ;VQ,VR) where 02V, is the covariance maﬁrix of disturbance
vector x,, and

Ve = COV(X,\,t,th)/O2 = —V*(W**/W*k)
Vik = Var(xkt)/oz = (W**/W*k) 'V, (W**/W*k)
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since the covariance matrix 62V is not necessarily symmetric
anymore, the elements of the periodic spline vector y; do not possess
the same statistical properties. This is undesirable and, therefore,
the covariance matrix o2V, must be chosen in such a way that V is a

symmetric matrix. This is achieved by assuming
Ve =1 = W**W**'/W*'W* (5-6)

because this implies a symmetric matrix v, i.e. V=I-ww.!/w!w,. To
show this is true, it only has to be shown that (v,;v,,) is equivalent
to the last column of V. It follows that

Ve = —V*(W**/W*k) Z W { (Wil Wi/ WS W) = 1}/W*k = -W**(W*k/W,:W*)
Ve = (War/ W) "V Wi/ W) = Wl Wi {1 = (Wil W/ WIW,) ) /W2 =

= W**'w**/w*!w* =1 - W*ﬁ/w-k'w*

Thus, all elements of the time-varying periodic spline vector y} have
the same properties if V,=I-w,W.!/w!w,.

It is mentioned in the previous section that, for the special
case when k=s, the stack of spline weight vectors, W, is an identity
matrix. In the case of time-varying periodic cubic splines for the
seasonal component; the model reduces to the seasonal model as
advocated by Harrison & Stevens (1976). Therefore, the time-varying
periodic cubic spline can be regarded as a generalization of the

seasonal component of Harrison & Stevens (1976).

The next chapter provides an elaborate illustration of how a
time-varying cubic spline can be incorporated in a time series .
model.. The cubic spline can be placed in the SSF (2.1)-(2.2) easily.
The y, vector is the state vector and the transition matrix T, is
equal to the unity matrix. The covariance structure must be
constructed such that G,G!=1, HH!=I-w,w,!/w!w, and H.G!=0. Finally,

the weight spline vector z, is placed in Z..
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6. COMPUTER PROGRAMS

The appendices 5A and 5B give some more details of how to
construct the cubic spline weights efficiently. The implementation
of all required calculations is provided in a set of Pascal computer

procedures which are given in appendix 5C.

The NatPinvQ procedure

Appendix 5A shows that the matrices P and Q are tridiagonal.
This procedure calculates the matrix product P''Q which is needed to
get the weight vector for a natural cubic spline w'=r'+s'P'Q. The
main part of the routine is provided by Press et.al (1989) and deals
with inverting a tridiagonal matrix. The comments in the code of the

procedure speak for themselves.

The PerPinvQ procedure

This procedure calculates the matrix product P'Q which is
needed to get the weight vector for a periodic cubic spline
w'=r'+s'P''Q. The matrices P and Q are sparse, not tri-diagonal, and
the procedure adopts the efficient method of calculating the inverse .
of P as given in appendix 5B.

The NatSplineWeight procedure
The weight vector w for a natural cubic spline is calculated
according to the equation (2.7) and the set of restriction Pa=Qy".

The matrix producy P 'Q is obtained from procedure NatPinvQ.

The PerSplineWeight procedure
The weight vector w for a periodic cubic spline is calculated
as discussed in section 4. The matrix product P'Q is obtained from

procedure PerPinvQ.

The SeasSpline procedure

This procedure transforms a set of periodic spline weight
vectors in order fo let the spline sum up to zero, see discussion in
section 4. The last elements of all the weight vectors are replaced

by unity values.
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7. CONCLUDING REMARKS

Cubic splines can be used in several statistical
applications. For example, they can be implemented in a regression
model for structural change and they can be used to describe non-
linear responses and smooth seasonal variations. Especially for the
case when the cubic spline is used to model periodic movements in
time series, it is suggested that the parameters must be allowed to
change over time. Section 5 of this chapter has given the technical
details to let cubic splines be time-varying. The necessary
computations are implemented in a set of efficient computer

procedures.

NOTES

I The Puget Sound, Power .& Light company, Bellevue, Washington
State, USA has provided hourly data from 1 January 1985 to 31 August
1991 of load demand in mega-watts and of temperature in Fahrenheit.

Casey Brace has been extremely helpful in supplying the data to us.
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APPENDIX 5A

Calculation of weight vector for natural cubic spline

In this appendix the details are given of how to construct
the weight vector for a natural cubic spline in order to evaluate
the spline function g(x)=w'y* for a specific value x. Suppose a
natural cubic spline is based on a mesh of 9 elements such that k=8.
The weight vector w is constructed in section 2 as w'=r'+s'P’'Q where
the matrices P and Q are, respectively, given by

2 0 0 0 0 0 0 0 0
z,/4, 2 z,/u, 0 0 0 0 0 0

0 z,/u, 2 za/u2 0 0 0 0 0

0 0 z3/u3 2 z4/u3 0 0 0 0

0 0 0 z4/u4 2 zs/u4 0 0 0

0 0 0 0 zs/u5 2 za/u5 0 0

0 0 0 0 0 zs/u6 2 z,/u6 0

0 0 0 0 0 0 z7/u7 2 zs/u7
0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0
6/2,4, -6/2,2, 6/z,, 0 0 0 0 0 0

0 6/zzu2 —6/zzz3 6/z3u2 0 0 0 0 0

0 0 6/zu, -6/2,z, 6/z,u; O 0 0 0

0 0 0 6/z4u4 -6/2,z, 6/zsu4 0 0 0

0 0 0 0 - 6/2.u, -6/2,2, 6/z4u, 0 0

0 0 0 0 0 6/z§% —6/zsz7 6/Zﬂ% 0

0 0 0 0 0 0 6/2,u, —6/z7z8 6/zgu,
0 0 0 0 0 0 0 0 0

andui=z1.+z1.+1 for i=1,...,7. The inverse of a tridiagonal matrix as P
can be calculated recursively as explained in Press et.al. (1988).
The vectors r and s correspond to a specific value x. Assume that x .
is a value between x; and x;. For this case the vectors r and s are,

respectively, given by

[O;O;k/z4;l/z4;0;0;0;0]
[0;0;(k/6z,)(k*~2z;);(1/62,)(1*~-2/);0;0;0;0]

where k=x;~x and l=x~xg. The vector w is now calculated
straightforwardly.
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APPENDIX 5B

Calculation of weight vector for periodic cubic spline

In this appendix the details are given of how to construct
the weight vector for a periodic cubic spline in order to evaluate
the spline function g(x)=w'y® for a specific value x. Suppose a
periodic cubic spline is based on a mesh of 8 elements such that
k=8. The weight vector w is constructed in section 4 as w'=r'+s'P'Q

where the matrices P and Q are, respectively, given by

2 zz/u1 0 0 0 0 0 z/u1
zz/u2 2 z3/u2 0 0 0 0 0

0 z,/u, 2 z,/u, 0 0 0 0

0 0 z24/u, 2 z,/u, 0 0 0

0 0 0 z./u, 2 z4/u, 0 0

0 0 0 0 zs/uG 2 z,/uS 0

0 0 0 0 0 z,/u7 2 28/117
z1/u8 0 0 0 0 0 za/u,3 2
—6/z1z2 6/zzu1 0 0 0 0 0 6/z1u1
6/2,4, —6/2223 6A/zsu2 0 0 0 0 0

0 6/zsu3 —6/zsz4 6/2z,u, 0 0 0 0

0 0 6/z4u4 —6/z4z5 6/z.u, 0 0 0

0 0 0 6/z.u, —6/zszs 6/zgu, 0 0

0 0 0 0 6/zsu5 —6/zaz7 6/z7u6 0

0 0 0 0 0 6/z7u7 —6/z7z8 6/28u7
6/z1u8 0 0 0 0 0 6/zau8 —6/z1za
and w,=2z.+2, , for i=1,...,7 and Ug=2,+24. The matrix P has lost its

tridiagonal structure but is still sparse. This can be exploited to
preserve an efficient method of calculating its inverse. The matrix
P can be expressed as P = P, + U'V where P, is the tridiagonal part
of matrix P, U=(0,6/2z,u,;6/2z,u,,0), V=(1,0;0,1) and 0 is a row vector

of seven zeroes. The matrix inversion lemma
p' = p;' - pJlur(ve'U' + 1) 'R
can be applied which can be rewritten as

Pl = p;' - p'xp;’
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and X is a 88 matrix of zeroes except the corner elements are non-
zero, that is

Xiq = 6%, ,/2,4,
Xig = 6x22/z1u1
Xgq = 6xu1jzﬂ%
Xgg = 6%y ,/2,U,

where %, ; is the (i,j) element of the 2x2 matrix (VP;'U' + I)7'. The
calculation of P! is now straightforward. This method of inverting P
does require the inverse of the tridiagonal matrix P, and the inverse
of. a 2x2 matrix. Note that (a,b;c,d)'=(d,-b;-c,a)/(ad-bc) where
a,b,c and d are scalars.

Finally, assume that x is a value between xj and Xxj. For this

case the vectors r and s are, respectively, given by

[0;0;k/2z,;1/2,;0;0;0;0]
[0:0;(k/62,) (k*-2z/);(1/62,)(1*-2,);0;0;0;0]

where k=x;—x and l=x—x§. The vector w is now calculated
straightforwardly.
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TABLES & FIGURES

Table 5.1

Frequency distribution of variable x

class Frequenc
0 - 10 20

10 - 20 40

20 - 30 30

30 - 50 10

total 100




Figure 5.1 A cubic spline through a set of points
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Figure 5.2b Second derivative of a cubic spline
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Interpolated monthly averages of temperature

Figure 5.3

RO

Figure 5.4 Frequency histogram and cubic spline polygon
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Figure 55 Scatterplot for all weekdays in 1990 at 1:00 pm
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Figure 5.7 Weekly averages of temperature at noon
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CHAPTER 6
SHORT TERM FORECASTING OF PERIODIC TIME SERIES
USING TIME-VARYING SPLINES

0. ABSTRACT

This chapter shows that time-varying splines can effectively
pe used for modelling a changing periodic pattern. This method is
relatively parsimonious compared with other approaches. The time-
varying spline is embedded within a structural time series model
which is applied to forecast hourly electricity demand, with the
periodic movements being intra-daily or intra-weekly. The full model
contains other components, including a (non-linear) temperature

response which is also modelled using splines.

Keywords : Cubic splines; Forecasting; Load curve; Non-linear

regression.
‘1. INTRODUCTION

The theoretical results developed in the previous chapter
will be applied to the problem of modelling intra-daily and/or
intra-weekly periodic (seasonal) effects in time series. This
approach is illustrated with a time series of hourly demand for
electricity. The data are provided by the Puget Sound Power & Light
company M,

Time-varying seasonal effects can be captured by seasonal
ARTMA models and for some formulations, such as the 'airline' model,
it is possible to extract the seasonal component, see chapter 4 and
Hillmer & Tiao (1982). An alternative approach, which lends itself
much more readily to the kinds of problems discussed in this
Chapter, is based on structural time series models, see chapter 4
and Harvey (1989)-..There are now many applications of the basic
structural model in the literature. A case which shows up time-

varying seasonality quite clearly is the consumption of electricity
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in the UK, reported in Harvey (1989, p95-98), where the change in
seasonality in the early 1970's can be explained by the availability
of gas from the North Seas and the subsequent substitution of
electricity by gas in heating.

Intra-daily effects arise in a variety of applications. In
the context of electricity demand the intra-daily pattern is known
as the load curve. A parsimonious way of modelling the load curve is
highly desirable for hourly observations, and become even more
important when observations are made for every half or quarter hour.
It is important to allow such splines to evolve over time. The
intra-daily pattern may change over a period of several years due to
new technology. It certainly changes within the year as can be seen
in figure 6.1 where typical load curves are plotted for a selection
of months in 1990 . As one might expect there are marked changes
over the year with the intra-daily wvariations in demand being much
greater in the winter.

This chapter is organised as follows. Using the technology
developed in the previous chapter, the next section shows how to
model intra-daily and intra-weekly effects in a time series. Section
3 incorporates this approach, together with other unobserved
components, in a structural time series model. Some alternative
methods for modelling hourly load demand are addressed in chapter 4.
The illustration is given in section 5 and the developed computer
program SHELF, that is the Structural Hourly Electricity Load
Forecaster, is discussed in section 6.

2. STATISTICAL TREATMENT OF INTRA-DAILY EFFECTS

In many cases the intra-daily effects change over the year
with the seasons. Since the seasons are repeated each year, the
intra-daily effects behave like a cycle movement in the long run. To
model the different patterns throughout the year, ideally, the
intra-daily effects require different models for different times of
the year. Estimation requires a model which effectively allowed one
to average over past years. To transfer smoothly from one type of

model to another, periodic splines can be considered. Indeed, such
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an approach is cumbersome to implement, it can be far off from a
parsimonious solution and it may not be very satisfactory when there
are only a few years of data available. However, in some cases it
might be a viable option and further empirical research in this
direction can be fruitful.

The approach of this research is to allow the intra-daily
effect to accomodate seasonal and other changes by a slow movement
over time. The time-varying spline technique enables this to be done
with a relatively small number of parameters. With hourly data it is
important to economise on the number of parameters since, without
any restriction, a stochastic intra-weekly effect will contribute
167 elements to the state vector of the state space formulation.
Obviously, this problem becomes more acute if observations are
available at more frequent intervals.

To model intra-daily or intra-weekly effects parsimoniously,
two approaches can be considered which are based on two different
entities, i.e. the day or the week. The former approach interprets
the intra-weekly effect as a cumulation of seven identical intra-
daily effects where some days or some of the same hours at specific
days may be different and require a correction. The latter approach
takes the week as one entity and restrict some parts of the weeks to

be the same. Both approaches will be explored in this section.
Intra-daily effects

The standard intra-daily effect can be appropriately
described by a periodic cubic spline, see section 5.3. The main
practical problem is to determine the set of mesh-values, e.g. the
x-positions of the knots. Generally, sections of the periodic
pattern displaying sharp peaks require relatively more knots than do‘
less variable sections. However, it must be stressed that a certain
amount of experimentation is needed to determine a good mesh. There
is really no systematic way of going about this problem, although
the starting point is obviously to use prior knowledge, an
examination of unrestricted estimates or a good investigation of the
graph to get an idea of the pattern. Next, an illustration discusses

our approach in more detail.
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1l1lustration

In the context of electricity demand within a day, the main
peaks are around breakfast time and, to a lesser extent, in the.
early evening. Figure 6.2 shows an example of the intra-daily
pattern of the demand for electricity (Friday, 11 March 1988 ). The
set of mesh values for the periodic cubic spline can be chosen as
(4, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20, 23, 24), compare Hendricks
et.al. (1979). The corresponding regression model requires thirteen
parameters and represents a considerable saving over the 24 needed
for an unrestricted intra-daily component (dummies). The regression
results are reported in table 6.1. Note that the square root average
squared interpolation error is g=5.148 for this example.

As discussed in section 5.4, the intra-daily pattern can also
be described by a reduced number of trigonometric terms. The
corresponding regression model with a constant and twelve
trigonometric terms gives a worse fit in terms of the square root
average squared interpolation error because now g=15.675. Figure 6.3
presents the graphs of two series of interpolation errors, one
resulting from a periodic cubic spline and one resulting from

trigonometric. terms.

Unfortunately, the same intra-daily pattern will not normally
apply to all days of the week. In particular, Saturdays and Sundays
may be different to weekdays, and in the case of the illustration
above, there is no doubt that they are different. One way of
handling this problem is to set up a time-varying spline to give an
intra-daily correction factor to atypical days. Continuity is
enforced by setting up splines which are constrained to be zero at
the beginning and end of the day. This constraint is reflected in

the vector of spline weights. Consider the periodic spline yj=w;y*

for j=1,...,s. To enforce this spline to be zero at time s, it is
restricted that y;=0 because w=(0;...;0;1). This restriction is
equivalent to dropping all last elements of Wi, for j=1,...,s, such

that the vectors of spline weights are now all of dimension k-1.
Using a correction factor is likely to be particularly
appealing when the difference between the intra-daily pattern and

the standard intra-daily pattern is relatively smooth. This implies
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that fewer knots are needed as compared with a full intra-daily
model. The same argument also leads one to consider modelling Sunday
py a Saturday correction factor plus a further correction factor,
again constrained to be zero at its end points, for the difference
petween Saturday and Sunday. The use of correction factors means
+hat the intra-daily effects do not sum up to zero over a non-
standard day. Instead the sum of the correction factors gives the
+otal amount by which the day in question differs from a non-
standard day.

There are two disadvantages to the use of correction factors.
The first is that they lead to discontinuity in first and second
derivatives of the periodic cubic spline at the point where they
join the standard intra-daily spline. Therefore, the transfer from a
standard day to an atypical day may be less smooth. The second is
that when one non-standard day follows another, as with Sunday and
Saturday, the zero end point constraints imply that the intra-daily
effect at the point where the correction factors meet should be as
for a standard day. This can be unrealistic in some applications.
However, the second problem may be solved by having one single
correction factor for the whole weekend (which may include Friday

afternoon and Monday morning).

Illustration (cont)

Figure 6.4 presents a typical weekly pattern of hourly
electricity demand. A periodic spline for a standard day is fitted
based on the mesh as given earlier. The interpolation errors are
plotted in figure 6.5a. It is obvious that the standard day spline.
is not appropriate for the Weekend and a correction spline is
needed. After some initial trials, it is conceived that a correction,
factor for Saturday may be based on the mesh ( 1, 4, 6, 7, 8,

9, 10, 15, 18, 20, 24). The interpolation errors after a standard
day correction and a Saturday correction applied to Saturday and
Sunday are plotted in figure 6.5b. Finally, an additional correction
factor for Sunday may be based on the mesh ( 1, 6, 9, 10, 11, 14,
17, 20, 24). The final interpolation errors for Sunday are plotted
in 6.5c. It is this flexibility of cubic splines which makes them

preferable in practice to a set of trigonometric terms.
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This approach based on correction splines seems to work
satisfactorily, see figure 6.6. The salient feature of the
correction factor for Saturday is that the morning peak is less
pronounced and occurs an hour or so later. This is exactly what we
would expect given our prior knowledge of behaviour on Saturday
mornings. The correction spline for Sunday can be interpreted along
these lines as well.

Thus, for this illustration concerning electricity demand, it
is possible to base an additional Sunday correction factor on only
nine knots, while Saturday requires eleven. The two correction
factors meet each other at midnight when demand is low. This means
that it is not particular important that first and second
derivatives are discontinuous- and that the knots at midnight are

restricted to be thé same as for standard days.
Intra-weekly effects

Another solution to the problem of different patterns for
different days is to set up a periodic spline for the whole week.
The zero sum constraint is now imposed over the whole week and s=168
when hourly observations are available. This approach does not
suffer from the disadvantages noted at the end of the previous sub-
section, but at first sight it would appear to be very inefficient -
if the patterns for some of the days are the same. Fortunately, it
is possible to take account of this problem. Thus, the vector Y, may
contain sets of parameters corresponding to the knots in each of the
seven days. In that case, it is possible to work with a parameter
vector of reduced dimension which only contains the elements which
are different. Typically, three sets of parameters will be
distinguished, e.g. the sets corresponding to weekdays, Saturdays
and Sundays. The condensed parameter vector is denoted by y: such
that

Y: = Ry§ (2.1)

where R can be regarded as a selection matrix of zeroes and ones.

Now if z; is the vector of periodic cubic spline weights, which
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enforce the 'sum-to-zero' restriction (see section 5.4), then the

effect associated with the j-th hour in the week is
Y, = ZfRYZ = z2{'Y{ (2.2)

where period j is prevailing at time t for Jj=1,...,s. However, since
gsome of the weight vectors z‘J?=R'zj will be the same, less than the
full complement of weight vectors need to be stored. Furthermore,
although the vector z; can become large, it needs to be computed only
once and then post-multiplied by R to yield the sequance of vectors
z? for j=1,...,s.

This solution is very flexible. The net effect of this
approach is that days which depend on the same section of y; will not
have the same first and second derivatives at the knots because the
restriction matrix R does only involve vector y;. This does mean
that, although the level of the knots are the same, the patterns for
identical days can be (slightly) different since the parameters will
partly depend on adjacent days. Suppose Wednesday and Friday depend
on the same section of y§, the realized patterns on these days may
differ because Friday is influenced by the weekend days. This
additional flexibility is almost certainly an advantage.

Illustration (cont) -

Again, consider figure 6.4 which shows a typical weekly load
pattern. It is obvious that the daily patterns for Tuesday,
Wednesday and Thursday are the same and that they are clearly
different from the Saturday and Sunday patterns. The Monday morning
and Friday afternoon/evening are slightly different from their
counterparts at a normal weekday due to the influence of the

adjacent weekends. The weekspline vector ¥* may be based on the mesh'

Sunday ( 4, 7, 8, 9,10,13,17,18,20,23,24)

Monday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24)
Tuesday (4, 6, 7, 8, 9,15,16,17,18,19,20,23,24)
Wednesday (4, 6, 7, 8, 9,15,16,17,18,19,20,23,24)
Thursday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24)
Friday ( 4, 6, 7, 8, 9,15,16,17,18,19,20,23,24)
Saturday (4,6, 7, 8, 9,12,16,18,20,23,24)
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The restricted spline y° is based on the spline vector y¥*' and a set
of constraints to ensure that Sunday, Saturday, Monday-morning (am
hours) and Friday afternoon (pm hours) are based on different

sections of the spline vector than the sections for standard days.

3. SHORT TERM FORECASTING WITH STRUCTURAL TIME SERIES MODELS

This section considers the modelling of observations which
are measured within the day, say each hour or each minute. The main
purpose of the model is to forecast future realizations two or three
days ahead. Our approach is based on structural time series models
which are discussed throughout the earlier chapters; for a full
discussion, see Harvey (1989). A structural time series model for
intra-daily effects and with explanatory variables included can be

expressed by
Ye = Be T ¥ + 8, + & (3.1)

where p, denotes the underlying level which may include other
unobserved components such as slope and cycle, y, is the intra-daily
effect, &, refers to the total of explanatory responses and €, is the
white noise disturbance term. In a Gaussian model, the disturbances
driving the various compdnents are assumed to be normally
distributed. The complement of components p,, y, and €, will be
referred to as the univariate part of the model.

The model can be handled by placing it in the state space
form. The Kalman filter and associated recursive algorithms provide
the basis for updating, prediction and smoothing, see chapters 2 and
3. In addition the Kalman filter is used to construct the likelihood*
function. Maximization of the likelihood yields estimators of the
hyperparameters (variance parameters). Finally, the Kalman filter
provides the ideal environment to produce multi-steps ahead
forecasts straightforwardly.
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univariate components

The model as it stands can be specified in different ways.
The level p, picks up both short and long run movements because €, is
white noise. Since the primary concern is short term forecasting, it
will be appropriate for most cases to let p, follow a random walk
rather than the more elaborate local linear trend. However, a more
general model is obtained when p, represents solely the long term
‘trend and €, is generalized to become a stationary process, such as a
first or second order autoregression, in order to describe the
short-term dynamics.

In the latter case, y, may represent seasonal and cyclical
movements which can be modelled by a full set or a limited number of
trigonometric terms. For example, a time-varying trigonometric cycle
is modelled by

Y, = cos(2n/p) Y., + sin(zn/p)qf:_1 + K, (3.2a)
w: -sin(2n/p) Y., + cos(zn/p)q:’t‘_1 + x: (3.2b)

where p is the length of the cycle, x, and K: are disturbances with
mean zero and variance ¢2. Also a stochastic slope term such as B,
can be included in the level. Thus a possible specification for the
long term trend may be p,=p; + ¥, where p; is a local linear trend and
¥, is the cycle term (3.2). Typically, the long term dynamics will
evolve very slowly over time and, therefore, their variance
parameters tend to be very close to zero (almost deterministic).
Alternatively, the long term trend can be based on a periodic spline

or on a full seasonal component.
Explanatory variables :

The introduction of explanatory variables into structural
time series models is quite straightforward if these variables enter
linearly, see Harvey (1989, Chapter 7). Suppose, a set of h
explanatory variables are available and their total effect on the
dependent variable Y, in the model (3.1) is denoted by Bt where
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3, = Xx,87 (3.3)
where X, is the (hxl) row vector of explanatory variables at time t
and 8% is the regression vector of coefficients. In the context of
time series, explanatory variables may respond differently to the
dependent variable y, at various stages of the seasonal cycle, say
winter and summer. It is difficult to extract the response pattern
pecause the number of available observations are in general not
large. For time series models which concern short term dynamics, the
different responses at various sections in the periodic variation
may be more pronounced and, therefore, they may be easier to
identify. The following method is developed to extract intra-daily
response patterns of explanatory variables. The results below can be
easily generalised for an intra-weekly response pattern.

If the j-th time of the day, j=1,...,s, is prevailing and
-only one explanatory variable is considered (h=1), then

§, = xtb‘} (3.4a)

where the scalar 6; may be parameterized as

8, = (6*j + 1)8% (3.4b)
such that
1548 =0 and E?ﬂby = gb% (3.5)

Thus if 6; = 0 for j=1,...,s, the response of the explanatory
variable is the same throughout the day. In this specification, the
unknown scalar 6* can be regarded as the scaling parameter and the ‘'
set of weights 6} determines the response of the explanatory variable
within the day. The shape of the response can be approximated by a
periodic cubic spline which is specified as (5.4.7) such that it
sums up to zero. The spline is assumed to be based on a mesh with k
elements. Thus 6§<= z/y* and the response effect becomes

8, = X 0% (1 + 2!y (3.6)
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where the j-th time of the day prevails. The set of parameters for
the regression response bt has reduced from s to k elements. The
final result is that the response of an explanatory variable is
specified as usual but rescaled by a set of weights which sum up to
one within the day. The weights follow a pattern described by a
periodic cubic spline. This approach is easily generalised for h
explanatory variables when it is assumed that their responses to y,
show the same intra-daily pattern. In this case, the specification
(3.6) remains but X, and 8" are a (hxl) row and column vector,
respectively. This specification contains (h+k-1) parameters. Since
any non-linear response function can be approximated by a cubic
spline which can be specified as a multiple regression, compare X,4%,
it is straightforward to generalize the solution above of modelling
different responses within the day for non-linear explanatory
variables.

The two parameters 8* and y* do not relate to each other in a
linear fashion. This causes problems in linear estimation. In
referring back to the discussion of section 5.3, where distributed
lags are included in a non-linear regression model, a solution
arises because estimation may proceed along these lines. The two

different response specifications are given by

5, = X;6% where X; = X (1 + 2/¥%) (3.7a)

d, = x, + z’;'yx ‘ ‘ where x, = X, 6* and z:.' = X,2; (3.7b)
and the iterative estimation process can be initialized with setting
v* equal to a zero vector.

There is no difficulty, in principle, in letting the
parameter vector 6* change over time according to a multivariate
random walk. The time-varying parameters become part of the state ‘
vector and the covariance structure (hyperparameters) governing the
rate at which they can change is estimated numerically along with
the other hyperparameters. Finally, without the restrictions implied
by (3.4) it may be considered to use a bivariate spline, see Poirier
(1976), to allow the shape of the response to change within the day.
This would require many more parameters and could become quite
complex and too elaborate.
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Atypical days

In many social economic time series with weekly, daily,
hourly or more frequent observations, the influences of atypical
days such as Christmas, New Year, Easter and Bank holidays are
pronounced. Some public holidays can be handled by treating them as
though they were Sundays. However, this is unlikely to be
satisfactory for specific holidays such as Christmas and New Year.
The best thing to do in such cases is probably to have a special
intra-daily correction factor which is separate from the rest of the
model and is just estimated from past observations, in terms of
deviations from the underlying level, on that particular holiday.
Forecasts of future values can then be made by adding this
correction factor to the predicted underlying level. The observed
holiday values are probably best treated as missing observations,
since to include them could easily introduce distortions into future

estimates. This may also apply to some days after a public holiday.

4. VARIOUS APPROACHES TO MODELLING HOURLY ELECTRICITY LOAD DEMAND

Intra-daily or intra-weekly effects arise in a variety of
applications. In the context of electricity demand the intra-daily
pattern is known as the load-curve. A parsimonious way of modelling
the load curve is highly desirable for hourly observations, and
becomes even more important when observations are made every half or
quarter hour. Our preferred solution is based on the short-term
forecasting model developed in the previous section. It is shown in
the next section that this approach provides valuable interpretable
statistical information and has a very good short-term forecasting
performance.

The collection of papers in Bunn & Falmer (1985) gives some
indication of the type of models which have been employed in short-
term forecasting of energy up to now. The main approaches seems to
be based on ARIMA models, regression, exponential smoothing or some
nixtures of these.
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For daily observations the ARIMA 'airline' model, based on
the AA, operator, is sometimes used. For hourly observation, the

1airline' model becomes
AA Gy, = (1+BL) (1+6L'®)E. | (4.1)

which might provide an approximation to the structural time series
model for hourly observations, see section 2.3. However, it is
unlikely that one would 'identify' such a model on the basis of the
correlogram in the way Box & Jenkins (1976) advocate. In addition,
it is not possible to take account of the fact that the pattern for
some days may be the same such that the state vector of the state
space form is of a huge dimension (#[«,]=168). The introduction of a
further component, such as a seasonal, is likely to make the
selection of ‘a suitable ARIMA model even more difficult, unless, it
ig derived from a structural time series model in the first place.

An alternative approach is based on treating hourly
observations as a collection (vector) of 24 time series of daily
observations. A regression model for every specific hour can be
specified such that it is based on time functions, explanatory
variables (temperature, humidity, etc.) and distributed lags. This
approach may be sensible because the dynamic mechanisms driving the
observations may be very different during night hours and hours
around noon. However, this solution-is certainly not a parsimonious
way of modelling hourly observations. Therefore, it is not
surprising that this alternative approach may give better forecasts
if enough observations are available.

Alternatively, a small set of regression models can be
formulated as described above for typical periods during the day,
say, morning, afternoon, evening and night. The responses of the .
observations at each hour to these different models can be smoothly
distributed through a periodic cubic spline. This may be a viable
bp%ion in specific cases although it requires still a large set of
parameters. Indeed, the number of parameters increases when atypical
days do occur such as Saturday and Sunday. In addition, specific
models have to be—formulated for specific periods during these
atypical days. |
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5. FORECASTING HOURLY ELECTRICITY LOAD DEMAND :
THE PUGET POWER CASE

This section illustrates the techniques developed in chapter
5 and the previous sections of this chapter with'hourly data from
the Puget Sound Power & Light ™ electricity company based in the
north west of the USA.

Data description

The available data ! consists of hourly load and temperature
values from 1 January 1985 to 31 August 1991. The load is measured
in mega-watts (MWs) and the temperature is measured in degrees
Fahrenheit (F). Furthermore, every day is indicated by the day
number (1..31), the month (1..12), the year (85..91), the day type
(SUN,MON, TUE,WED, THU, FRI,SAT) and a holiday indicator (TRUE/FALSE).

An important feature of the data is the intra-weekly pattern.
Figure 6.7 presents the hourly load demand for the 5%, 15th, 2s5th 35th
~and 45 week of 1990. Clearly, the weekly patterns do change
throughout the year. However, all weekly patterns show that the
Sunday and Saturday are different than the weekdays. The Monday
. morning (am hours) and the Friday afternoon/evening (pm hours) are,
to a lesser extend, also different than these parts of the days
during the other weekdays. Note that the Sunday of the 45™ week in
1990 was Veteran's day which is an official Holiday in the USA.

It ‘is recognised earlier that the response of temperature on
electricity load demand is non-linear, see the illustration of
section 5.3. The load demand increases with cold temperatures
because heating is switched on. A period with extreme hot ‘
temperatures shows an increase in load demand as well because of
air-conditioning. Therefore, the response of load demand on
temperature is a U-shaped curve. The nature of this non-linear
effect depends primarily on climatological factors but also on the
technological development in a region. The load demand at some
specific hours for all Wednesdays is scattered against the

corresponding temperature for the days in 1990 (except for holidays)
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in figure 6.8. This shows that the various U-shapes are rather weak
which is recognised earlier by Engle et.al. (1986) for the region
seattle (Washington, USA) but there is still a cause for using
splines to model the temperature response. Indeed, the climate of
the North-West of the USA is rather mild. Also, figure 6.8 shows
that the response patterns do not strongly vary within the day.

To get some idea of the long-term properties of the series,
the load demand at some specific hours for weekdays is plotted in
figure 6.9. These graphs show very clearly a weak upwards trend with
a cyclical pattern over the year. The cycles corresponding to the
early hours of a day are weaker than the cycles at later hours. The
random shocks disturbing the cycle movements are explained by the
influence of holidays and extreme weather conditions.

Many other features do also influence the load curve, for
example, other weather conditions (humidity, wind speed and cloud
coverage of the sky) and various ad-hoc events (national events and
TV coverage of sport events). The latter only affect in general a

small set of hours.
A preliminary regression model

To get some preliminary insights of how the main features of
the time series do interact with each other, a very simple
regression model is constructed.. The regression model is concerned
with a specific hour of the day in the years of 1986, 1987 and 1988.
Thus, 24 different models (for each hour) are estimated using 1096
.observations. The regression model is .

Yie = @ + ﬁixht + dsun; + ssat; + € ¢

where Yier ¥t and €; . are the load demand, the temperature and the
Gaussian noise term at hour i and day t, respectively. The
parameters dsun and dsat are dummies for Saturday and Sunday,
respectively. A Holiday is regarded as a Sunday. The estimation
results for the 24 models are reported in table 6.3. The t-tests are
not given but almost all coefficients are significant. The

coefficients are graphically presented in figure 6.10. These plots
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are a good indication of the general, or 'average', behaviour within
the day. All coefficients follow, more or less, the same intra-daily
pattern as the intra-daily pattern of the observations.

Model specification

Several models of the kind described in the previous sections
were fitted to the hourly observations described above. Our
preferred model is of the form

Y. =B * U, Yy, + O + e, (5.1)

where p, is a random walk, ¥, is a deterministic cycle of a period of
one year (365%24) hours, y, is a time-varying weekly spline, §, is
the response on temperature modelled as a cubic spline and €, is a
random disturbance term with mean zero and variance o2.

The random walk p, characterizes the long term trend movement
of the series. The disturbances, generating this stochastic
unobserved level component, do have a constant variance gpz where:%
is the unknown signal to noise ratio.

The deterministic cycle is modelled by a single pair of sines
and cosines of the form (3.2) so it can be evaluated recursively.
Recall that this periodic movement is not primarily due to
temperature and other weather variables but arises from other
seasonal changes such as the change in the number of hours of
daylight.

The time-varying spline is specified as presented in section

5.5, that is y, = z;y; (period j prevails at time t) where

‘Y:t = ‘Y:(t"l) + X*t (5'2‘)

and y,, is a disturbance vector with zero mean and covariance matrix
02q9h where g, is the unknown signal to noise ratio concerning yx,,.
The twelve knots for a standard weekday are based on the mesh of
hours

3am 6am 7am 8am 9am llam 2pm 5pm 6pm 8pm llpm 12pm
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and they are restricted to be the same for every standard weekday
put the am hours of Monday and the pm hours of Friday (except 2pm)
are allowed to be different. The eleven knots for a Sunday and a

saturday are based on the mesh of hours

3am 7am 8am 9am llam 2pm 6pm 7pm 9pm 10pm 12pm
3am 6am 7am 8am 9am 12am 4pm 6pm 8pm 10pm 12pm

respectively. Thus the total number of free knots (parameters) is 43
and note that the knot at the Saturday midnight hour is restricted
for the 'summing-to-zero' constraint.

The temperature response 6, is modelled by a natural cubic

spline based on the mesh
oF 40F 65F 99F

and it is decided to let the parameters be fixed.

The model (5.1) does not explicitly take account of holidays
and some days after a holiday. To avoid that these distortions in
the series do not influence parameter estimation and forecasting
performance, holidays and the two days after holidays are regarded
as missing.

The following points have been considered during the. process
of model specification : (i) transforming y, by logarithms to give a
multiplicative model does not improve the model fit and the
forecasting performance; (ii) other explanatory variables, such as

humidity and windspeed, were included in preliminary versions of the -

model, but no specification in which they had a significant
influence could be found; (iii) lagged values of temperature were
included in the manner suggested earlier in chapter 5, but the main:
effect seemed to come from current temperature; (iv) some evidence
was found of different responses to temperature at different times
of the day, but the additional complexity of the model was not
justified in terms of model fit and forecasting performance.

The model (5.1) can be placed in state space form
straightforwardly. The state vector is the stack of parameters

ﬂ%7¢t?¢:7YL75x)- The transition matrix T, does mainly consist of zero
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and unity values. The measurement equation vector Z, mainly consists
of the spline weights. The system covariance matrix o2HH! does

contain two hyperparameters, that is q, and q,-
Estimation results

The estimation of the hyperparameters is carried out in the
time domain via the prediction error decomposition. Some scoring
method is applied to maximize the log-likelihood function. The
likelihood evaluation process (Kalman filter) is very time consuming
in this case because the dimension of the state vector is relatively
large and the number of hourly observations is approximately 57,650.
The Kalman filter is initialized by the 'big-k' method with x=1000.

The estimates of the hyperparameters are found to be

q, = 0.0002 g, = 0.0012

and recall that these values indicate the extent to which the level
of the series and the weekly pattern, respectively, are allowed to
change over time.

The changing intra-weekly pattern is shown in figure 6.11 for
some weeks in 1990. The contrast between a week-pattern in, say,
January and May is. particularly marked, compare figure 6.7. All the
knot points of the periodic spline were significant throughout the
year although the intensity of significance (observed via the t-
test) does change as well.

The fixed effects in the model are all significant but the
~ temperature effect was highly significant, see table 6.3. The shape
of the temperature response is as expected; it shows a weak upturn
when temperature exceeds 75F, see figure 6.12. The yearly cyclical :
pattern ¢, is plotted in figure 6.13.

The model fitted better in the warmer months than in the
winter. One indication may be the aggregation of the squared
standardised innovations, the one-step ahead prediction errors, for
every week in 1990, see figure 6.14. It shows very clearly that the
last two weeks of 1990 have large errors because of the special
holidays such as Christmas and New Year.
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Forecasting results

The electricity company Puget makes forecasts at 9 am on
Monday through Thursday, for the next day, based on information up
to one hour earlier, that is 8 am. Thus the maximum length for
forecasting is 40 steps ahead. On Friday morning forecasts are made
for Saturday, Sunday and Monday, that is forecasting with a maximum
of 88 steps ahead.

The load forecasts are conditional on the forecasted
temperature values, as supplied by Puget, which are based on
forecasts of several weather stations in the Bellevue region. It
must be stressed that the accuracy of the forecasted load demand
depends heavily on the accuracy of the forecasted temperature.
However, latest (unpublished) results indicate that the SHELF
forecasts do not depend on the temperature forecasts as much as
competitive models do.

The forecasting results for a Tuesday (one-day ahead) and a
Friday (three-days ahead) are given in figure 6.15 as examples. It
presents (a) the forecasted values against the actual observations
and (b) the mean abSoluté percentage error (MAPE) of forecast
errors.

For the period 7 November 1990 until 31 March 1991, the
forecasting performance of the model (5.1) is shown in table 6.4.
The reported indicators are based on the MAPE of every forecast at a
specific hour. The 24 MAPEs of a specific day are aggregated in five
different ways :
[i] AVG - average
[ii] ‘MIN - minimum
[iii] MAX - maximum
[iv] . AM - average for peak morning hours 7am, 8am & 9am
[v] PM - average for peak afternoon hours 4pm, 5pm & 6pn
These indicators are calculated for the day types Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, Sunday, Weekday and Weekend.
Their averages for the winter period of 1990/91 are given in table
6.4. The holidays are excluded from this evaluation.

To put the forecast results of table 6.4 in perspective, a

simple (naive) forecast equation is applied to the same data and its
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forecast performance is evaluated for the same winter period of
1990/91. The forecast function is based on the set 24 dynamic (unit

root) regression models

Vie = Yijer © B4 =% o) + €44

where V; ./ X% and €; . are the load demand, the temperature and the
Gaussian noiée term at hour i and day t, respectively. The
regression parameter f, is estimated by generalised least squares for
i=1,...,24. The average hourly MAPEs (indicator [i]) for this
forecast function are, with the type of day in parantheses, 7.31
(Sunday), 5.60 (Monday), 5.22 (Tuesday), 5.39 (Wednesday), 5.70
(Thursday), 6.93 (Friday), 6.74 (Saturday), 5.77 (Weekday) and 7.03
(Weekend). The holidays are excluded from this evaluation. It can be
concluded that the forecasts of model (5.1) are much more precise

than the naive method.

6. THE COMPUTER PROGRAM SHELF

The computer program SHELF - Structural Hourly Electricity
Load Forecaster - is the implementation of the model of section 5
and it is primarily developed to forecast hourly load demand. The:
program is mainly a collection of procedures for cubic splines
calculations (see section 5.6) for the Kalman filter (see section

2.8) and for forecasting. The program is structured as follows :

[a] Model specification

‘The model is placed in SSF as discussed in the previous section. The
vector Z, of the SSF varies over time and it depends on the season .
and it depends on the level of temperature. Therefore two seperate
matrices are defined in the program. One matrix is filled with the
weight vectors for the intra-weekly periodic cubic spline, that is z;
for j=1,...,168. Another matrix is filled with the weight vectors
for the natural cubic spline of temperature, that is w; for
j=0,...,99. The appropriate vectors are placed in some large vector
that acts as the 2, vector of the SSF.
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[p] Reading data

The daily observation is organised in a special record, that is

Observation =
Record
Date ¢ 1..31;

Month :1..12;

Year : 0..99;

Day : 1..7;

Holiday : Boolean;

Load : Array[l..24] Of Integer;
Tenmp : Array[l..24] Of Integer;
End;

and a special procedure reads any pre-specified record from a big

data-file.

[c] Parameter updating

This part of the program consists mainly of the Kalman filter. The
state vector contains the time-varying and fixed parameters. The
standardised innovations are stored tq,constfuct some simple

- diagnostics afterwards. The Kalman filter is also used to evaluate
the likelihood function and it can be embedded within a maximization
procedure (some scoring method) to obtain hyperparameter estimates.
However, this is not included in SHELF since it is not worthwhile to
re—estimate the hyperparameters every time when new observations are

coming available.

[d] Forecasting

After the parameters in the state vector are updated for a sequence
of hours, a special procedure is incorporated in the KF procedure
that produces the forecasts for the next day or for the next three
days. An input procedure reads the forecasted temperature values for

the coming days from an external file. An output procedure puts the
forecasts of electricity load demand in a special file.
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7. CONCLUDING REMARKS

A time-varying periodic cubic spline component appears to
provide a good way of modelling the changing electricity load
pattern within the week with a relatively small number of
parameters. The effect of the non-linear response is captured by a

fixed natural cubic spline.

NOTES

M The Puget Sound, Power & Light company, Bellevue, Washington
State, USA has provided hourly data from 1 January 1985 to 31 August
1991 of load demand in mega-watts and of temperature in Fahrenheit.
Casey Brace has been extremely helpful in supplying the data to us.
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Regression results of cubic spline for load curve

dependent variable

load 11 March 1988

number of observations : 24

model

REGRESSION ESTIMATION

parameter

Constant

Knots 4am
6am
7am
8am
Sam
3pm
4pm
5pm
6pm
7pm
8pm

llpm

estimate

2276

-459
6

~-234

214

5.148

periodic cubic spline regression

.08

.08
.33
621.
917.
748.
.39
-268.
-219.

-33.

77
49
49

43
86
60

.78
226.
-159.

80
34

t=1,...,24

season
method

t-test
2048.74

-135.17
1.60
122.97
203.05
232.79
-72.37
-59.41
-41.70
-6.34
43.05
59.82
-40.78

hourly
OLS
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Table 6.2

Regression results of preliminary daily model

dependent variable : Load demand [ t = 01/01/86D1 - 31/12/88D366
number of observations : 1096 season : daily
model : linear regression method : OLS

REGRESSION ESTIMATION

Hour Constant Temperature dsat dsun
1 2449 -19.4 39.1 15.7
2 2403 -19.8 21.4 " 0.0"
3 2422 -20.6 6.9 -13.7 "
4 2487 -21.7 -7.0" -29.7
5 2652 -23.6 -49.2 -77.7
6 3150 -28.5 -214.1 -265.2
7 3981 -36.1 -507.5 -594.6
8 4478 -40.5 -531.2 -651.6
9 4443 -39.5 -273.9 -404.5
10 4174 -35.4 -74.7 -200.2
11 3893 -31.1 -12.0" -120.0
12 3621 -27.4 -12.2 " -95.2
13 3414 -24.8 -51.0 -96.7
14 3245 ' -22.5 -103.3 -124.9
15 3141 -21.4 -134.6 ~-158.0
16 - 3192 -22.4 -159.2 -183.5
17 3530 -27.5 -170.8 -191.6
18 4038 ' -34.7 -200.5 -212.1
19 4209 -37.2 -214.2 - -211.6
20 4094 -35.6 -220.1 -179.4
21 3812 -31.2 -218.3 -146.0
22 3387 -25.2 -185.6 -111.8
23 2993 -21.5 -106.5 -108.0
.24 2675 -20.0 -34.5 -86.6

" not significant at 95% confidence interval
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Table 6.3

Regression results of fixed effects in model (5.1)

dependent variable : Load demand ['l t = 01/01/85H1 - 31/08/91H24
number of observations : 58368 season : hourly
model : (5.1) method : KF

REGRESSION ESTIMATION

parameter estimate t-test
Cycle

¥ -132.05 -15.71
y 200.01 23.99
Temperature

o]0 3497.71 199.54
40F 2187.06 190.89
65F 1620.39 140.71
99F 1773.52 112.96

0? = 5208.68

Table 6.4

Forecasting performance of SHELF

Day : Mon Tue Wed Thu Fri Sat Sun Wbhay WEnd
Indication

| Day average 4.3 3.7 3.2 4.1 3.7 3.9 5.1 3.8 4.5

Day minimum 0.5 0.4 0.2 0.8 0.5 0.9 1.0 0.5 0.9

Day maximum 10.5 8.7 8.2 9.8 8.9 8.5 10.8 9.2 9.6

AM average 4.9 3.9 2.7 3.2 4.1 4.6 5.7 3.7 5.2

PM average 4.7 4.6 4.2 4.7 4.2 3.9 5.9 4.5 4.9




Figure 6.1a Load curve on 30 January 1891 Figure 6.1 Load curve on 10 April 1991
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Figure 6.2 Load curve on 11 March 1988
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Figire 64 Lood demond pattern of first week in March 1888
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Figwe 650 Estimated weskly lood pattern by stondard day spine

Figre 65b Estimated weekly koad pattern with Sahwrday correction
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Flgure 6.7a Load pattern of week 5 of 1990 Figure 67b Load pattern of week 15 of 1990
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Flgure 6.8a LOAD vs TEMP for all Wednesdays In 090 ot 3am ‘
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Figure 6.9a Load demand on Wednesdays in 1985-1989 at 3am
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Figure 6.10a Estlmated constant In prellminary regression Figure 6.10b Estlmated beta in preliminary regresslon
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Figure 6.11a Estimated weekly load pattern durlhg FEB Flgure 6.1 Estimated weekly load pattern during MAY
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Figure 6.14 Weekly aggregated standard prediction error in 1990
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Figure 6.15a Actual vs Forecast Load on a Wednesdqy Figure 6.15b Absolute x Forecast Error for a Wednesday
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CHAPTER 7
OVERVIEW AND DISCUSSION

This thesis deals with smoothing algorithms, diagnostic
checking of unobserved components time series models, time-varying
cubic splines and short term forecasting of time series with the
periodic movements being intra-daily or intra-weekly. All topics are
discussed extensively with emphasis on theory, algorithms and
practical implications. The novel contributions to the time series
literature are

[1] a smoothing algorithm for the disturbance vector and its

(lagged) mean square error matrix

[2] an efficient smoothing algorithm for the state vector

[{3] an alternative (more efficient) EM algorithm for estimating
hyperparameters in the covariance structure of the SSF

[43% auxiliary residuals are proposed as an supplement to
innovations
[5] diagnostic test statistics for auxiliary residuals are

developed to detect ‘and distinguish between outliers and
structural change

[6] cubic splines are allowed to vary over time by letting the
parameters follow stochastic processes

[7] a structural time series model is proposed for observations
with intra-daily or intra-weekly periodic movements with an
emphasis on short term forecasting

These novel contributions are illustrated with various examples
which can be found especially in chapters 4 and 6. More elaborate
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applications are presented on the quarterly coal production in the
UK between 1960 and 1983 (Chapters 2 and 3), on the yearly
consumption of spirits in the UK between 1870 and 1930 (Chapter 4)
and on the hourly load demand of electricity at the Puget Sound
pPower & Light company in Bellevue, Washington, USA, between 1985 and
August 1991 (Chapter 6). The following conclusions can be drawn from

our analyses :

[a] the quarterly production of coal in the UK can be satisfactory
described by a cumulation of three uncorrelated stochastic processes
which can be directly interpreted as the unobserved components
trend, seasonal and irregular; no significant distortions can be
detected from the estimated model as observed from the innovations

and the auxiliary residuals.

[b] the yearly consumption of spirits in the UK between 1870 and
1930 follow a time-varying trend and can be further explained by
relative price and income per capita; a shift in the level of about
9 % is observed in 1909 from the auxiliary residuals and can be
explained by the Government's policy on social issues and taxation:
outliers are distinguished in 1915 and 1918 but there is also a

cause for outliers in the remaining years of World War I.

(c] the hourly electricity demand at the Puget Power company in the
period from 7 November 1990 to 31 March 1991 are well forecasted by
the SHELF model (6.5.1) using the hourly data from 1 January 1985

onwards.

The necessary calculations are implemented in computer programs
which are presented at the end of this thesis. The computer programs
are computationally efficient.



Program Filtering;

COMPUTER PROGRAMS

Const
DimYec = 4D;
DimObs = 50D;
Type
Yector = Array{D..DimVec] of Float;
Matrix = Array[D..DimVec] of Yector;
SysFlt = Record
Code : D..9;
Positive : Boolean;
YValue : Real;
Pos : Integer;
End;
SysVec = Array{D..DimYec] Of SysFlt4;
SysMat = Array{D..DimVec] Of SysVec;
Data = Array[D..DimObs] Df Float;
Var
{ SSF yt =z a + x, 8 + g.¢€
a¥+1 =tT:at +twt8 +th€t
of*2 w8+ Hpey Bibiss 3
TSM {2,373,
RGM {x,b,x.B; wtb w._B}.
CSM {g,9; LiHeg! H HLY,
ICM (W (g S Uttt t
CIM {H Hb} : SysMat;
DimSt {#a,}
DimBt {#BS
DimEp {#e€ }
DimRg {#65 : Integer;
Y : Data;
X : Array[1..DimVec] Of Data;
t.n, fobs, lobs : Integer;

{ fobs and lobs allow analyzing subset of Y{1..n] : Y[fobs..

Function Mult(t :
Begin

Integer; Fl

: Float; SFL : SysFitA) : Float;

With SFLA
Case Code

do
of

: Mult:=D.D;
: Mult:=Fi;
: Mult:=Fi*Value;
: Mult:=FLl*X{Pos,t];
: Mult:=Fl*sin(2*pi/Yalue);
: Mult:=Fl*Cos(2*pi/Value);
: Mult:=Fl*Tan(2*pi/Value);
: Mult:=F(*Sqr(Value);
: Mult:=Fl*Sqrt(Value);

: Mult:=Fl*Exp(YValue);

End;

If Not SFlA.Positive then Mult:=-Mult;
End;

WoONOTLWRN O

Function Add(t : Integer; SFL : SysFltA) : Float;

Begin

With SFlA do

Case Code Of
: Add:=D.D;
: Add:=1.D;

: Add:=Yalue;

: Add:=X{Pos,t];

: Add:=Sin(Value);
: Add:=Cos(Yalue);
: Add:=Tan(Value);
: Add:=Sqr(Value);
: Add:=Sqrt(Value);
+ Add:=Exp(Value);
End;

If Not SFlA.Positive then Add:=-Add;
End;

WoO~NOOTLWRN O

lobs] }
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Procedure InitialF1( JobCode : Byte; Yar St,CSt : Matrix );
Yar i,j : Byte;
Begin
Case JobCode of
1 : { KF diffuse starting condition : St=0,CSt=w }
For i:=1 to DimSt do
Begin
St[i,0]:=0.0;Zerovec(CSt[i]);CSt[i,1]:=999999.99
End;
2 : { KF zero starting condition : St=0,CSt=0 }
For i:=1 to DimSt do
Begin
St[i,0]:=0.0;ZeroVec(CSt[i]);
End;
3 : { Modified KF : St=wo(b,B);CSt=H0H6 3
For i:=1 to DimSt do
Begin
For j:=0 to DimRg do St[i,j]:=Add(0,IcM[i.j]);
For j:=1 to DimSt do CSt[i,j]:=Add(0,CIM[i.j]);
End
End
End;

Procedure KFUpdate(Y : Real; DimKF : Integer; var A,P : Matrix);
Yar M1,M2 : Matrix;
i,j,k : Byte:
Begin
{Step 13}
For i:=0 to DimSt do
Begin
ZeroYec(M1[i]);
{1} ZerovYec(M2[i]);
For j:=1 to DimSt do
If TSM[i,j]<>NIL then
Begin ¢
For k:=0 to DimKF do M1[i,k]:=M1[i kJ+Mult(t A[j, k].TSM[1.j]);
{!} For k:=1 to DimSt do M2[i,k]:=M2[i k]+Mult(t,P[j k].TSM[1,j]);
End
End;

{Step 2}
{!} For i:=0 to DimSt do

Begin

ZeroYec(P[i]):

For j:=1 to DimSt do

If TSM[i,j]<>NIL then

For k:=0 to DimSt do P[i,k]:=P[i,k]+Mult(t,M2[k,j],TSM[i,]j1);

End;

{Step 3}
For i:=0 to DimSt do
Begin
EqualVYec(A[i].M1[1]);
For j:=0 to DimKF do A[i,j]:=A[i,j]+Add(t RGM[i.j1);
{1} For j:=0 to DimSt do P[i,j]:=P[i.j]+Add(t,CSM[i.j]);
End;

{Step 4 and 5}
A[0,0]:=Y-A[0,0]:
For i:=1 to DimKF do A[0,i]:=-A[0,1];
{13} For i:=1 to DimSt do P[0,i]:=P[0.1]/P[0,0];

{Step 6}
For i:=1 to DimSt do
Begin
For j:=0 to DimKF A[i,j1:=A[1.j]1-(P[0,i]*A[0,j]1);
{!} For j:=1 to DimSt do P[i.j]:=P[i.j]-(P[0.,i1*P[0,0]*P[0.}]):
End;
End;

{ the sign ! means that the statement can be dropped in a steady state
the procedure ZeroVec(x) puts zeroes in each element of x

the procedure EqualYec(x.y) puts subsequently the elements of y into x}

222
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Procedure Estimation
( Yar Q : Matrix; Yar L : Float; Yar d : Integer; Obs : Data );

P.S : Matrix;
: Yector;

,f.sigma : Float;

B : Integer;

Yar

< X >

-

Begin
For i:=0 to DimRg do
Begin
ZeroVec(S[i]);ZeroVec(Q[i]);
End;
L:=0.0;
d:=0
InitialKF(3,A.P);
For t:=fobs to lobs do
Begin
KFUpdate(y[t].DimRg,A,P);
{ Check p.d. of F, and Pii1lt and other numerical unstabilities
Store vector A[B,O..Dim g
(!) Store vector P[0,0..DimRg] 3}
L:=L+Ln(P[0,0]);

If d=0 then
Begin
For i:=1 to DimRg do
For j:=1 to DimRg do S[i,jJ]:=S[i.j]+(A[0,iJ*A[0,j1/P[0,0]);
If Not (t<DimRg) then
Begin
Det:=Determinant(1,DimRg,S);:
If Not (Det=0) then
Begin
Inverse(1,DimRg,Det,S,Q);
Q[0,0]:=S[0,07;
For i:=1 to DimRg do
Begin
Q[0,i]:=S[0,i];
Q[i,0]:=0.0;
For j:=1 to DimRg do Q[i,03:=Q[1,0]-(S[,j3*S[0,j1):
End;
d:=t;
End;
End;
End
Else { If d is not zero }
Begin
For j:=0 to DimRg do Q[0,j1:=Q[0,j1+(A[0,j]*A[0.01/P[0,0]);
v:=A[0,0];f:=P[0,0];
For i:=1 to DimRg do

Begin
vi=v+(A[0,1]*Q[1,0]);
k[1]:=0.0;

For j:=1 to DimRg do

Begin
k[1J:=k[i1+(A[0,j1*Q[},i]):
End;

fr=f+(k[i1*A[0,i1)

End;

For i:=1 to DimRg do

Begin

Q[i,07:=Q[1.,0]-(k[i]*v/f);
For j:=1 to DimRg do Q[1,j]:=Q[i.j]-(k[i]1*k[j1/f)
End;
sigma:=Q[0,0];
For i:=1 to DimRg do sigma:=sigma-(Q[1,0]1*Q[0,i]);
sigma:=sigma/(t-fobs+1);
End;
End;

Q[0,0]:=sigma;

Det:=Determinant(1,DimRg,Q);

L:=L-Det+((lobs-fobs+1)*(1+ln(2*pi*Q[0,0])));:
End;



Procedure SmoothUpdate
( DimKF : Integer; Var DSE,DSD,DSU.DSC : Matrix );
Yar M1,M2 : Matrix;
i,j.k : Integer;
Begin
{Step 1}
For i:=0 to DimKF do DSE[0,i]:=DSE[D.i]}/0SD[0,0];
DSD[D,0]:=1/DSD{0,07;

For i:=1 to DimSt do
Begin
For j:=0 to DimKF do DSE[O,j]:=DSE[0,j]-(DSD[O,i]*DSE[i.j1);
DSD[i,0]:=0;
For j:=1 to DimSt do DSD[i.0]:=0SD[i,0]-(DSD[i,j]*DSD[0,j1);
DSD[0,03:=DSD[0,0]-(DSD[i,0]*0SD0,i])
End;
For i:=1 to DimSt do DSD[O,i]:=DSD[i,0];

{Step 2}
For i:=0 to DimSt do
Begin
ZeroYec(DSU[i]);ZeroVec(M2[i]);
For j:=0 to DimSt do
If CSM[j,i]J<>NIL then
Begin

For k:=0 to DimKF do DSU[i,k]:=0SU[i,k]+Mult(t DSE[j.k].CSM[j.i]);

For k:=0 to DimSt do M2[i,k]:=M2[i,k]+Mult(t,DSD[j.k],CSM[j.i])
End;
End;

{Step 3}

For i:=0 to DimSt do
Begin

For j:=0 to DimSt do DSC[i,j]:=0.0;

For j:=0 to DimSt do

If CSM[j,i]<>NIL then

For k:=1 to DimSt do 0SC[i,k]:=DSC[i,k]+Mult(t M2[k,j] CSM[j,i]):
End;

{Step 4}
For i:=1 to DimSt do
Begin
ZeroVec(M1[i]);ZeroVec(M2{i]):
For j:=0 to DimSt do
If TSM[j,i]<>NIL then
Begin
For k:=0 to DimKF do M1[i,k]:=M1[i, k]+Mult(t DSE[j,k].TSM[j.i1);
For k:=0 to DimSt do M2[i,k]:=M2[i k]+Mult(t,DSD[j.k].TSM[j.i])
End;
End;

{Step 5}
For i:=1 to DimSt do
Begin
For j:=1 to DimSt do 0SD[1,j]:=0.0;
For j:=0 to DimKF do DSE[i.]

—
Il
E <
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~
-
—.
—

For j:=0 to DimSt do
If TSM[j,iJ<>NIL then
For k:=1 to DimSt do DSD[i,k]:=0SD[i, KkJ+Mult(t M2[k.j],TSM[j.i1);
End;
End;
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Procedure AuxResiduals
{ Nr : Integer; Q : Matrix; Var r,vr : Data );

Yar E,D,U.C : Matrix;
ri : Real;
i,j.k : Integer;

Begin

{ Open memory space for KF quantities }

{ Read (Fn,K') and put it into D{0,..] 3}

{ R =0 N 20 3

For i:=0 to DimSt do Begin ZeroYec(E[i]);ZeroVec(D{i]) End;

For t:=lobs downto fobs do
Begin
{ Read Vt and put it into E[0,..] }
{13 { Read F, K, }
{ Put (F ,KI) into D[O,..1 3}
SmoothUpdate(DimRg,E,D,U,C);

r{t]:=U[Nr,0];
For j:=1 to DimRg do r{t]:=r{tJ+(U[Nr,jl}*Q[j, 0])
vr[t]:=Add(t,CSM[Nr Nr])-C[Nr Nrj;
For j:=1 to DimRg do
Begin
ri:=0.0;
For k:=1 to DimRg do rl:=rl+(U{Nr k]*Q[k,j])
vre(t]:=vr[t]+(U[Nr,jI*rl);
End;
End;
End;

Procedure AuxCrossMse
( Nr1,Nr2 : Integer; Q : Matrix; Yar cc : Data );

var E,D,U,C : Matrix;
ri : Real;
i,j.k : Integer;
Begin

{ Open memory space for KF quantities }

{ Read (F ,K!) and put it into B(0,..] 2}

{ Rn=0 Nn=0 3

For 'i:=0 to DimSt do Begin ZeroYec(E[i]);ZeroVec(D[i]) End;

For t:=lobs downto fobs do
Begin
{ Read Vt and put it into E[0,..] }
{!} { Read F_ K, }
{ Put (F.KJ) into D[O,..] )
SmoothUpdate(DimRg,E,D,U,C);

cc[t]:=Add(t,CSM[Nr1,Nr2])-C[Nr1,Nr2];

For j:=1 to DimRg do

Begin
rl:=0.0;
For k:=1 to DimRg do rl:=rl+(U[Nr1,k]1*Q[k,j]);
cc[t]:=cc{t]+(U[Nr2,j]*rl);

End;

End;

End;
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Program Splines;

Const
DimYec = 40;
DimObs = 500;

Type
Yector = Array[D..DimVec] of Float;
Matrix = Array{0..DimVec] of Vector;
Data = Array{0..DimObs] of Real;

Procedure NatPinvQ
{ k : Integer; xk : Vector; Yar M : Matrix );
Yar q,v,z,P1,P2,P3 : Yector;
ri,rk : Real;
i,j.t : Integer;
Begin 1
{ k=number of knots xk=mesh M=P™'Q }

{ distances between knots }
For i:=1 to k do z[1]:=xk[i]-xk[i-1];

{ tridiagonal structure of P put in three vectors P1 P2 P3 }
For i:=1 to k-1 do
Begin
rl:=z{ij+z[i+1];
Pi{i):=z[i]/rL;
P2[1]:=2.0;
P3[i):=z[i+1]/rL;
End;
P1[k]:=0.0;P2[0]:=1.0;P2{k]:=1.0,P3[0]:=0.0;

{ sequence of solving k sets of linear restrictions to get PinvQ }
For i:=0 to k do
Begin

{ i-th column of Q is put in q }

For j:=0 to k do q[j]:=0.0;

If (i>1) then q[i-1):=6/(z(i1]*(z[i-1])+2(i]));

If ( (i>0) AND (i<k) ) then q[i]:=-6/(z[i]*z[i+1]);

If (i<k-1) then q[i+1]:=6/(z[i+1]1*(z[i+1]+z[i+2]));

{ solving m in Pm=q where m is i-th column of M, see Press et.al (1988) }
rl:=P2[D];
M[0,iJ:=q[0]/rL;
For j:=1 to k do
Begin
v[jJ:=P3[j-1]/rL;
rl:=P2[j]-(P1LjI*vIil);
ML, i:=(qlil-(PT[JI*M[j-1,i1))/rL;
End;
For j:=(k-1) downto 0 do
MLj,i3:=M[j.i]-(v[i+1]*M[j+1.i1);
End;
End;



Procedure PerPinvQ
{ k : Integer; xk : Vector; Var M : Matrix );
var q,v,z,P1,P2,P3 : Vector;
W.bM : Matrix;
ri,rk : Real;
i.j.L : Integer;
Begin

End;

{ k=number of knots xk=mesh w=p Ta 3

{ distances between knots }

For i:=1 to k do z[i]:=xk[i]-xk[i-1];
2[0]:=2[k];

Z[k+1]:=2[1];

{ tridiagonal structure of P, put in three vectors P1 P2 P3 }

For i:=1 to k do
Begin
rle=z[i]+z[i+1];
P1[i]:=2z[i]/rl;
P2[1]:=2.0;
P3[1]):=z[i+1]/rL;

End;
For i:=0 to k+1 do
Begin
{ i-th column of Q is put in gq for i=1,..

{ If i=0 then the first column of U' is put into q }
{ If i=k+1 then the second column of U' is put into q }

For j:=1 to k do q[j]:=0.0;

If i=0 then q[1]:=P1[1];

If i=k+1 then q[k]:=P3[k];

If ((i<k+1) AND (i>0)) then

Begin
qi-11:=6/(z[1]1*(z[i-1]+2[11));
q[il:= -6/(z[i]*z[i+1]);
q[i+1]:=6/(z[i+1]1*(z[1+1]+2[142]));

If i=1 then q[k]:=6/(z[1]1*(z[1]+z[k]));
If i=k then q[1]:=6/(z[1]1*(2[1]+2[2]));

End;

{ solving m in Pm=q where m is i-th column of M, see Press et.al (1988) }

rl:=P2{1];
M[1,i]:=q[1]/rL;
For j:=2 to k do
Begin
v[j1:=P3[j-11/rL;
rL:=P2[j1-(PI[j1*v[i1):
MLj.i1:=(qli1-(PI[J1*M[j-1.i1))/rL;
End;
For j:=k-1 downto 1 do
M[j,i):=M[j,i]-(v[i+11*M[j+1,11);
End;

1

{ rl is determinant of (VP, 'U'+I) }

rle=((1.0+M[k,01)*(1.0+M[ T, k+1]1))-(M[1,07*M[k k+1]);

1

{ calculate P*'1U'(VP,' U'+I)'1 }

For i:=1 to k do

Begin

PI[id:=( ((1.0+M[1,k+11)*M[k,11)-(M[k k+11*M[1,i1) )/rl;
P2[i]:=( ((1.0+M[k,01)*M[1,i1)-(M[1.01*M[k,i]) )/rL;
End;

{ calculate p-la 3
For i:=1 to k do
For j:=1 to k do

k 3}

M1, j1:=M[i,31-(M[i,01*P1[j]1)- (M[i.k+1]1*P2[]]);
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Procedure NatSplineWeight
( k : Integer; kn : Yector; M : Matrix; x : Real; Yar w : Yector );

var h,j : Integer;
z,rt,rk : Real;
Begin
je=1;

z:=kn[1]-kn[0];
while (x>kn[j]) do
Begin

je=j+1;
z:=kn{j1-kn[j-11:
End;

rle=kn[j]-x;
rk:=x-kn[j-1];

For h:=0 to k do

wlhl:=((rl/(6*z))*(sqr(rl)-sqr(z))*M[j-1,h1) +
((rk/(6*=z))*(sqr(rk)-sqr(z))*M[i, h]};

wlj-1]1:=w[j-1]+(rl/2);

wlil :=w[jl +(rk/z);

End;

Procedure PerSplineWeight
( k : Integer; kn : Yector; M : Matrix; x : Real; var w : Yector );
Yar h,j : Integer; ’
z,rl,rk : Real;
Begin
ji=1;
z:=kn[1];
While (x>kn[j]) do
Begin
ji=j+l;
z:=kn[j]-kn[j-1];
End;
rls=kn{j]-x;
rk:=x-kn[j-1];

If j=1 then
Begin .
For h:=1 to k do
wlhl:=((rl/(6*2))*(sqr(rl)-sqr(z))*M(k. h1) +
((rk/(6*z))*(sqr{rk}-sqr(z))*M{j.h1};
wlk]:=w[k]l+(rl/z);
wljl:=wljl+(rk/z);
End
Else
Begin
For h:=1 to k do
wih]l:=((rl/(6*2))*(sar(rl)-sqr(z))*M[j-1,h]) +
((rk/(6%2))*(sqr(rk)-sqr(z))*M[j.h]);
wlj-1]:=w[j-11+(rl/2);
wlil :=w[j]l <+(rk/z)};
End;
End;

Procedure SeasSpline
( p.k : Integer; Yar W : Matrix );
var .t,i : Integer;
sW : Yector;
Begin
For i:=1 to k do sW[i]:=0.0;
For t:=1 to p do
For i:=1 to k do sW[i]:=sW[i]+W[t.i]:
For t:=1 to p do
Begin
For i:=1 to k-1 do W[t,i]:=W[t, i]-((W[t,k1/sW[k])*sW[i]);
Wit k]:=1.0;
End;
End;
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