Embedding expert systems in semi-formal domains: Examining the

boundaries of the knowledge base

Edgar Albrecht Whitley

London School of Economics and Political Science

Submitted in fulfilment of the requirements for the award of the degree

of Doctor of Philosophy of the University of London.

April 1990.

ABSTRACT

This thesis examines the use of expert systems in semi-formal domains.
The research identifies the main problems with semi-formal domains and
proposes and evaluates a number of different solutions to them. The thesis
considers the traditional approach to developing expert systems, which sees
domains as being formal, and notes that it continuously faces problems that
result from informal features of the problem domain. To circumvent these
difficulties experience or other subjective qualities are often used but they are
not supported by the traditional approach to design.

The thesis examines the formal approach and compares it with a semi-
formal approach to designing expert systems which is heavily influenced by the
socio-technical view of information systems. From this basis it examines a
number of problems that limit the construction and use of knowledge bases in
semi-formal domains. These limitations arise from the nature of the problem
being tackled, in particular problems of natural language communication and
tacit knowledge and also from the character of computer technology and the role
it plays. The thesis explores the possible mismatch between a human user and
the machine and models the various types of confusion that arise.

The thesis describes a number of practical solutions to overcome the
problems identified. These solutions are implemented in an expert system shell
(PESYYS), developed as part of the research.

The resulting solutions, based on non-linear documents and other
software tools that open up the reasoning of the system, support users of expert
systems in examining the boundaries of the knowledge base to help them avoid
and overcome any confusion that has arisen. In this way users are encouraged
to use their own skills and experiences in conjunction with an expert system to

successfully exploit this technology in semi-formal domains.

Fy annwyl rhieni

My dear parents

"GewiB ist es zu bedauern, dal’ unter diesen Umstanden manche
h&ufige und bemerkenswerte Art aus Mangel an Platz nicht genannt
werden konnte und vieles, was sicherlich eine eingehendere
Besprechung verdient hatte, nur mit knappen verallgemeinernden

Worten sich andeuten liel3".

"It is certainly regrettable, that under the circumstances many
frequent and notable species cannot be referred to due to lack of
space and a great number of them, which would definitely have been

worthy of further attention, can only be mentioned in general”.

Richard Heymons. Berlin, Oktober 1915.

Vorwort "Brehms Tierleben - Die Vielfiililer, Insekten und Spinnenkerfe" -

Neubearbeitet von Richard Heymons unter Mitarbeit von Helene Heymons.

Aoée ta fax ro errovoiov

ACKNOWLEDGEMENTS

This thesis would not have been possible without the encouragement and friendship of
my supervisor, Dr. Georgios Doukidis. Georgios has given me so many opportunities in the
years that | have known him that I cannot hope to ever repay him for what he has done for me.
In some small way, Georgios, |1 hope that this thesis will be able to say thank you for
everything that you have done for me. Special thanks are also due Georgios' fiancee Lina
Vantziou, who acted as messenger between Georgios and myself.

I am also indebted to Dr. Tony Cornford who became my “local supervisor' when
Georgios was required to go to Greece. Without his support and encouragement this thesis
would still be no more than hazy ideas rather than a properly presented argument. | have also
benefitted greatly from his views on my work and his friendship.

To my parents, who have given me so much love, | am dedicating my thesis. They, and
the rest of my family, have taught me the most important lessons about life, love and friendship.
My parents have made many sacrifices to enable me to do the work | enjoy so much. Thank
you.

The Information Systems department at the London School of Economics and Political
Science has been a wonderful place to work in - both as a student and, more recently, as a
member of staff. The friendship, encouragement and discussions | have enjoyed with the
lecturers, secretaries and students have shaped many of the ideas expressed in this thesis to such
an extent that I could never mention all the individuals concerned.

Last, but by no means least, | am grateful for the love and companionship of all my
friends who kept me happy and “sane’ while | was researching my thesis. Their patience was
particularly appreciated when | became “anti-social' in the final stages of preparing the thesis.
Special thanks go to my mentor and friend, Scott Lucas who was the first PhD student | met at

university and who has been a dear, close friend ever since.

The first two years of this research were supported by an SERC research studentship no.
87307777.

TABLE OF CONTENTS

CHAPTER 1-INTRODUCTION 29
a. ARTIFICIAL INTELLIGENCE 29
I. Tasks that require intelligence 31

b. EXPERT SYSTEMS i 35
I. The problem of knowledge representationand use 37

c. OVERVIEW OF THE RESEARCH IN THISTHESIS 39
I. Semi-formaldomains 40

ii. Some of the problems with semi-formal domains 40

Iii. The research method of the thesis 41

Iv. Contributions of thisresearch 42

d. OVERVIEWOF THETHESISo 44

CHAPTER 2 - TWO APPROACHES TO DESIGNING EXPERT

SYSTEMS .. 46
a. FORMAL DOMAINS - A FUNCTIONALIST APPROACH 34
I. Extracting “jewels' from the minds of experts 35
ii. The “control methodology' 37
b. EXPERT SYSTEMS AND INFORMATION SYSTEMS 38

c. SEMI-FORMAL DOMAINS - A SOCIO-TECHNICAL APPROACH)
i. Some lessons from socio-technical information systems ... 42

d. THE COMMUNICATION OF KNOWLEDGE 45
I. Interpretation and the expert system development process .. 46
ii. The Dreyfus model of skill acquisition 48
e. EXPERT SYSTEM DEVELOPMENT FOR SEMI-FORMAL
DOMAINS ... 50
CHAPTER 3 - SOME PROBLEMS WITH KNOWLEDGE IN SEMI-
FORMAL DOMAINS ... e 52
a. KNOWLEDGE REPRESENTATION AND THE SYMBOLIC
REPRESENTATION OF KNOWLEDGE 53
b. DESCRIPTIVE DEFINITIONS - THE PROBLEM OF
BOUNDARIES e 54
I. Examples of descriptive definitions 56
c. SUBJECTIVE DEFINITIONS - DIFFERENT INTERPRETATIONS
OF THESAMENAME i 57
I. Examples of subjective definitions S7
d. HUMAN COMMUNICATION AND DESCRIPTIVE AND
SUBJECTIVEDEFINITIONS 59
i. Example - the use of the term “race’ 61
e. NOTICINGPROBLEMS i 63
I. Examples of noticing problems 64

7

f.SEEING-AS ... 65

I. Examplesof seeing-as i, 66
g. READINESS-TO-HAND AND "HIDDEN' KNOWLEDGE 67
h. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED 67

CHAPTER 4 - COMPUTER BASED SYSTEMS WITHIN SEMI-

FORMAL DOMAINS ... e 69
a. THE COMMUNICATIVE RESOURCES OF COMPUTER BASED

SYSTEMS . . 70

I. The communicative resources of expert systems 74

b. SITUATED ACTIONS e 74

C.CONFUSION ... e 76

I. The commitment to resolving confusion 77

ii.Sayinganddoing 78

iii. Speech acts and the noticing of confusion 79

d. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED 81

CHAPTER 5 - INTRODUCTION TO THE PESYSSYSTEM 82

a. AN OVERALL DESCRIPTION OF THE PESYS ENVIRONMENB2

b. THE STRUCTURE OF THE KNOWLEDGE BASE 83

I. The filesinaknowledge base 84

ii. The basic structure of arule inPESYS 85

lii. Advanced featuresofrules 86

c. ADVANCED RULE STRUCTURES 88

d. THE RUNTIME ENVIRONMENT 91

i. Theuserinterface 92

ii. Theinferenceengine iinin... 96

lii. Commands iNnPESYS 99

e. APPLICATIONS DEVELOPED USING PESYS 100

I. Effort estimation for software development 100

Ii. An expert system to assist in filing tax returns 100

iii. Other applications developed using PESYS 101

CHAPTER 6 - SOLUTIONS TO THE PROBLEMS OF THE

KNOWLEDGE BASE i 103

a. ANATURAL LANGUAGE PATTERN MATCHING SYSTEM 103

I. A method to find the underlying ideainaclause 105

. Inheritance 108

Iii. Statements presented totheusers 111

iv. Implicitrelations 112

v. Learning' aboutrelations, 113

VILACASESIUTY ...t 113

vii. A discussion of the problems with the method 115

b. PROVIDING ASSISTANCE WITH INTERPRETATIONS 119

I. Theuseofprompts, 119
LAcCaseStUdY . ..o 123
iii. Discussion of the limitations of prompts 124
c. THE USE OF NON-LINEAR DOCUMENTS 125
I. Wittgenstein and the similarities between names 126
ii. Non-linear documents 127
iii. Non-linear documents in PESYS 128
Iv. Implementing non-linear documents in PESYS 130
v. Using the non-linear documents in PESYS 132
vi. Non-linear documents and multiple interpretations 133
vii. Using non-linear documents to examine the boundaries of the
knowledgebase i, 135

viii. Non-linear documents and tacitskills 135

CHAPTER 7 - SOLUTIONS TO THE PROBLEMS OF COMPUTER

BASED KNOWLEDGEBASES, 137
a. USING EXISTING COMMUNICATIVE RESOURCES 137
I. Confusion and examining the design rationale 138

ii. Designing support for overcoming confusion 139

iii. Implementation of the support 141

iv. Understanding the justification for the clauses 143

v. Why-not justifications 146

vi. Questionsand requests 148

b. RULE IDENTIFIERS AND MULTIPLE GOALS 150
I. Multiplegoals 153

ii. Implementing multiplegoals 154
CHAPTER 8 - CONCLUDING DISCUSSION 156
a. EMBEDDING EXPERT SYSTEMS IN SEMI-FORMAL DOMAINS
I. The formal approach to expert system design 156

ii. The semi-formal domain approach to designing expert systehis/

iii. Are formal domains really semi-formal? 158

iv. The benefits of considering domains as being semi-formal 159
b. EXAMINING THE BOUNDARIES OF THE KNOWLEDGE BASEO

I. The limits to what can be stored in the knowledge base ... 160
Ii. Limits to the knowledge base arising from the use of
COMPULEIS .t e 161
iii. Software tools to examine the boundaries of the knowledge
DasSe .. 162
iv. Examining the boundaries of a computer based knowledge
DasSe .. 163

c. IMPLICATIONS FOR THE DEVELOPMENT AND USE OF

EXPERT SYSTEMS s 165
I. The conceptual view of the user system interface 165
ii. The interpretation bottleneck' 166
lii. Reasons fordesign i, 166
d. THE FINAL PESYSSYSTEM i, 167
I. The different programs in the system 168
Ii. The different filesused 168
Iii. The important features of the PESYS expert system shell 170
e. FINAL SUMMARY AND FUTURE RESEARCH AREAS 172
APPENDIX I -EXPERT SYSTEMS i 174
.1 WHAT ISAN EXPERT SYSTEM? 174
I.2 WHAT DOES AN EXPERT SYSTEMDO? 174
I.3 WHERE DOES THE KNOWLEDGE FOR AN EXPERT SYSTEM
COME FROMY? ... e 175
I.4 FEATURES OF AN EXPERT SYSTEM 175
1.5 HOW THE EXPERT SYSTEMWORKS 177
1.6 HOW AN EXPERT SYSTEM DIFFERS FROM OTHER
COMPUTER SYSTEMS? e 178
APPENDIX Il - EXPERT SYSTEM DEVELOPMENT TOOLS...... 180
1.1 A PROPOSED CLASSIFICATION OF EXPERT SYSTEM
DEVELOPMENT TOOLS 180
1.2 ARTIFICIAL INTELLIGENCE LANGUAGES 183
IL2.LLISP .. 184
[L22PROLOG e 186
1.3 LANGUAGES SPECIFICALLY DESIGNED TO DEVELOP
RULE BASED SYSTEMS 189
1.4 CONVENTIONAL PROGRAMMING LANGUAGES 190
I1.4.1 High level languages 191
11.4.2 High level languages with pre-written modules 192
1.5 OBJECT ORIENTED LANGUAGES 193
1.6 EXPERT SYSTEM SHELLS 194
6.1 XI+ o 195
[1.L6.2LEONARDO 196
6. 3CRYSTAL ...t e 196
1.7 EXPERT SYSTEM TOOLKITSo 197
L7 L ART 197
L72KEE 198
1.8 THE CLASSIFICATION OF EXPERT SYSTEM
DEVELOPMENT TOOLS 198

10

1.9 THE LIKELY FUTURE DIRECTION OF EXPERT SYSTEM

TOOLS . 199
[1.10 THE CHOICEOF HARDWARE 200
11.10.1 Specialisthardware 200
11.10.2 Conventional hardware 202
[1.10.3 Thechoicemade 203
11.11 THE CHOICE OF DEVELOPMENT TOOL 205
111 Existingwork ... 206
[1.11.2 The choice of high level language 206
11.11.3 The PASCAL compiler 207
11.11.4 Pascal versus Al languages 208
I1.11.5 Pascal versus commercial expert system shells 210

APPENDIX 11l - THE PESYS EXPERT SYSTEM SHELL USER GUI2E2

1.1 THE PESYS EXPERT SYSTEM SHELL USER GUIDE 213
[.2GETTING STARTED 213
1.3 USING THE SELECTION MENUS 214
[11.3.1 THE TWO PARTS OF A SELECTION MENU 214
1.4 THE CONFIGURATIONMENU 215
[11.5 SELECTING ITEMS BEFORE THE INFERENCE PROCESS
BEGINS ... 216
M.5.1SELECTINGTHEITEMS 216
11.5.2 FINISHING THE SELECTION 217
111.5.3 TO CONFIRM YOUR CHOICE AND ADD THE ITEMS
TO THE WORKING MEMORY 217
[11.5.4 TO ABANDON YOURCHOICE 217
[11.6 ANSWERING QUESTIONS INPESYS 218
1.7 ANSWERING YES/NO QUESTIONS 218
M.71YES-THECLAUSEISTRUE 219
.72 NO - THE CLAUSE ISFALSE 219
111.7.3 UNKNOWN - NO INFORMATION IS KNOWN ABOUT
THE CLAUSE 219
[11.7.4 EXPLAIN - TO PROVIDE A JUSTIFICATION FOR
THE QUESTION BEING ASKED 219
[11.7.5 PROMPT - TO DISPLAY EXTRA INFORMATION
WHERE AVAILABLE 219
[11.8 NON-LINEAR DOCUMENTS 220
[11.8.1 HELP ABOUT THE SYSTEM 220
L9 VALUE QUESTIONS 220
IMLI0 RANGE QUESTIONS 221
HLIITFORMS .. 222
11.12 THE EXPLANATION FACILITY oo 223
[11.12.1 DURING AN INTERACTION 223

11

[11.13 HOW TO USE THE EXPLANATION FACILITY 223
1.13.1 OTHER CLAUSES 225
[11.14 HOW THE CLAUSE YOU CHOSE WILL BE EXPLAINED 225
11.14.1 THE WHY EXPLANATION 226
[11.15 THE END OF THE INTERACTION 226
[11.15.1 THE SYSTEM ARRIVED AT AGOAL 226
[11.L16 OTHER OPTIONS 227
NL16.1PRINTLOG ... 228
11.16.2 RUN AGAIN 228
MLI6.3FINISH ... 228
.17 THE WHAT-IF FACILITY 228
[11.17.1 ALTERING THE EXISTING VALUES 228
[11.17.2 ADD LOW LEVEL DATA 229
[11.17.3 SEE EFFECTS OF CHANGES 229
HLI7AEXIT o 229
111.18 THE DEVELOPMENT ENVIRONMENT 229
[11.19 THE FILENAME STRUCTUREUSED 230
IML20USING EDITOR 232

111.20.1 FACILITIES WHEN EDITING A PARTICULAR LIRE
111.20.2 FACILITIES WHEN EDITING WITHIN THE FILE 234

.21 USING PREPARE 235
[11.21.1 CONFIGURATION 235
[11.21.2 CONVERTING THERULES 238

.22 USING EXTRAS ... 238
M.22.1 VARIABLES 239
[11.22.2 PROMPTS .. e 240

[11.23 USING MAKEFORM 240
[11.23.1 CREATINGAFORM 240
[11.23.2 THE OPTIONS AVAILABLE 241

[11.24 USING MAKE_NLD 243

111.25 WRITING A KNOWLEDGE BASE INPESYS 245
.25 1 PARTSOF THERULE 246
MN.252FIRINGARULE L, 247

11.26 HOW THE SYSTEM FIRESRULES 248
111.26.1 FORWARD CHAINING 248
111.26.2 INFORM LEVELS AND GOALS 248
111.26.3 BACKWARD CHAINING 249

.27 ASIMPLE EXAMPLE 250
111.27.1 A FORWARD CHAINING EXAMPLE 251
111.27.2 A BACKWARD CHAINING EXAMPLE 252

111.28 ADVANCED FEATURES IN THE KNOWLEDGE BASE .. 254
M.28.1 METARULES L. 254

[11.28.2 TOP DOWNDESIGN 255

[11.28.3 USING FORMS TO ENTER DATA 255
[11.28.4 COMMENTS, 255
M.2850R CLAUSES i, 255
11.28.6 VARIABLES L. 257
[11.28.7 COMPARISON OF VARIABLES 257
11.28.8 ATLEAST CLAUSES 257
[11.28.9 PROMPTS e 258
111.28.10 COMMANDS INPESYS L. 258

IV.IBINARY TREES 258
IV2LINKED LISTS ... 258
IV.3 THE WORKING MEMORY 265
IV.4 NON-LINEAR DOCUMENTS 268
APPENDIXV -CASESTUDIES 269

V.1 CASE STUDY I - AN EXPERT SYSTEM FOR THE
COMPETITIVE USE OF INFORMATION SYSTEMS

TECHNOLOGY ... 268
V.2INTRODUCTION e 268
V3THERULESUSED 270
V.4 THE INFORMATION FOR RELATIONS 271
V.5 CASE STUDY Il - AN EXPERT SYSTEM TO ASSIST IN

FILING INCOME TAXRETURNS 273
V.6 INTRODUCTION e 273

V.7 DETERMINING THE RESIDENTIAL STATUS OF ASSESSER34
V.8 THE RULES FOR DETERMINING THE RESIDENTIAL

STATUSOF AN ASSESSEE 275
V.9 THE PROMPTS FOR THE RULEFILE 278
V.10 THE INFORMATION ABOUT VARIABLES FOR THE RULE
FILE . 279
REFERENCES 280

13

LIST OF FIGURES

Figure 1.1 - The main areas of research in artificial intelligence
Figure 1.2 - A sample dialogue with ELIZA (Weizenbaum 1976, pp. 3-4)
Figure 1.3 - The principle components of an expert system

Figure 2.1 - The expert system kept separate from the domain it models

Figure 2.2 - The relationship between formal systems, informal systems and
computer systems

Figure 2.3 - Expert systems and their relationship with formal and informal systems

Figure 2.4 - The expert system as part of the problem domain

Figure 2.5 - The communication flows in the development of an expert system

Figure 2.6 - Two contrasting approaches to the design of expert systems

Figure 3.1 - A simple semantic network
Figure 3.2 - The racial classification scheme used at Stanford University (Earnest
1989, p. 178)

Figure 4.1 - Suchman's framework for analyzing the communicative resources of
users and machines (Suchman 1987, p. 116)

Figure 4.2 - Sequence Il (Suchman 1987, p. 126)

Figure 4.3 - Austin's three principles to prevent infelicity in speech acts

Figure 5.1 - The development and runtime components of PESYS
Figure 5.2 - The files used in PESYS

Figure 5.3 - A sample rule in PESYS

Figure 5.4 - The use of the or connective in a PESYS rule
Figure 5.5 - A diagrammatic representation of or-clauses
Figure 5.6 - An example rule using atleast clauses

Figure 5.7 - The principal components of PESYS

Figure 5.8 - A question in PESYS

Figure 5.9 - A request in PESYS

Figure 5.10 - Selecting the most likely value in PESYS
Figure 5.11 - An inform 2 statement in PESYS

Figure 5.12 - The What-if facility in PESYS

Figure 5.13 - The configuration menu in PESYS

Figure 5.14 - PESYSS applications

Figure 6.1 - Three clauses about switching on

Figure 6.2 - More sets of parameters for the relation Likes

Figure 6.3 - Full text and encoded relations

Figure 6.4 - The "Nixon diamond'

Figure 6.5 - Porter's major competitive forces

Figure 6.6 - A sample ontology chart for books, authors and writing
Figure 6.7 - A question with a prompt

Figure 6.8 - Prompts within a request in PESYS

Figure 6.9 - A prompt in the Indian Income Tax application

Figure 6.10 - How various screens may be linked together

14

19
22
25

35

38
39
40
48
52

54

63

72
73
79

83
84
85
88
89
90
91
93
93
94
95
96
99
102

105
107
108
110
114
117
121
122
124
129

Figure 6.11 - How the screens and links are stored in a file

Figure 6.12 - A help screen in PESYS

Figure 6.13 - A screen from a non-linear document explaining “race'
Figure 6.14 - A Family Resemblance to “race' - skin colour

Figure 6.15 - A non-linear document providing assistance with tacit skills

Figure 7.1 - Winston's rule for identifying a tiger (Winston 1984, p. 282)

Figure 7.2 - An explanation in PESYS

Figure 7.3 - An explanation based on a long rule

Figure 7.4 - The same rule after scrolling

Figure 7.5 - The option to examine other goals or other clauses

Figure 7.6 - A negative explanation from the system described by Rousset and Safar
(1987)

Figure 7.7 - Meaningful rule names assist in the explanation

Figure 7.8 - It is possible to include a rule number in the rule description

Figure 7.9 - Some rules for multiple goals

Figure 7.10 - The display for the completion of the inference process

Figure 7.11 - The goals that could have been arrived at

Figure 8.1 - The components of the final PESY'S runtime system
Figure 8.2 - The programs in the final PESY'S system
Figure 8.3 - The files created by the final PESY'S system

Figure 1.1 - The main components of an expert system

15

131
132
133
134
135

141
142
143
144
147

148
152
152
153
154
155

168
169
170

176

Figure 11.1 - The language-tool continuum (Harmon and King 1985, p. 83)
Figure 11.2 - The potential for meta-systems (Boley 1990, p.3)

Figure 11.3 - Examples of s-expressions in LISP

Figure 11.4 - Basic functions in LISP

Figure 1.5 - The LISP function DELETE

Figure 11.6 - A simple argument in propositional logic

Figure 11.7 - The same argument in predicate logic

Figure 11.8 - Sample facts in PROLOG

Figure 11.9 - A classification of expert system development tools

Figure 11.10 - Hardware platforms for expert systems development tools
Figure 11.11 - Reasons for the choice of hardware platform

Figure 11.12 - A more efficient comparison method implemented using pointers in

PASCAL

Figure 111.1 - The stages of the development process
Figure 111.2 - The files in PESY'S

Figure IV.1 - Linked lists in PESYS

Figure 1V.2 - Creating a new list

Figure 1V.3 - Elements added to the list

Figure 1V.4 - A sentence list

Figure IV.5 - Moving through a linked list

Figure 1V.6 - The tree used for the working memory

Figure IV.7 - A binary tree for the outer level

Figure 1V.8 - The working memory as it is actually implemented in PESYS

16

181
182
184
185
185
186
187
188
200
204
206

211

229
230

259
260
261
262
263
264
265
266

CHAPTER 1 - INTRODUCTION

Scholarly inquiry is concerned with understanding and explaining the world. The
physical sciences such as chemistry, physics and biology attempt to explain the structure of
the world, whilst the social sciences such as economics, sociology and anthropology attempt
to explain social phenomena of the world. The field of inquiry that this thesis is concerned
with relates to understanding the human mind, as research for its own sake but more
importantly as a method of designing computer systems that perform useful tasks in a manner
similar to a human being. These tasks may be performed in situations where no human
expert is available or in areas where the environment is not amenable to human action. This
thesis will examine the limitations on this form of technology and will try to devise and
evaluate solutions that minimise the effects of these limitations so that the benefits of such

programs can be made more widely available.

a. ARTIFICIAL INTELLIGENCE

Metaphors have been used extensively throughout the history of science to help
understand and explain phenomena that have been discovered. For example, in trying to
understand the human mind, metaphors have often been used that were based on the current
technology of the time. Thus at the time when clockwork mechanisms were the dominant
technology the mind was thought to be an intricate clockwork mechanism, carefully regulated
using cogs and springs (Bolter 1984). Attempts were made to explain the behaviour of the
mind in terms of this metaphor; forgetting, for example, could possibly be “explained' in
terms of a spring loosing its tension. When the telephone became the dominant new
technology it too was used as a metaphor by which the human mind could be understood
(Searle 1984). Forgetting, in the telephone metaphor, could be described as a temporary
connection between two points (two pieces of data) being dropped. Inevitably, therefore,
when the digital computer was developed it too was used as a metaphor to understand the
human mind. Turkle (1984) gives an interesting insight into the way that young children can
be seen to alter their beliefs about artifacts being alive and having “intentions' in the light of
their experiences with computer games.

The field of Artificial Intelligence arose to examine this particular area of study and

can be broadly classified into two sections: the first is strong artificial intelligence which

17

believes that an "appropriately programmed computer is a mind" (Searle 1980, p. 417) whilst
the second view, weak artificial intelligence, believes that the computer can be successfully
used to help understand aspects of the mind and that there are many practical benefits to
designing machines that act in an “intelligent' manner. Both approaches to artificial
intelligence research benefit from the nature of computers since any theories that are devised
can be tested using the computers themselves.

The thought that a computer might, in some way, be “intelligent' provokes strong
reactions in many people. To some “intelligence' is the very thing that distinguishes us from
“lower' creatures and therefore cannot exist in a machine. Thus the use of the word artificial’
as part of the title for the research area could be seen to imply forgery or deception. Others
hold that there is no fundamental difference between the human brain and a digital computer
and that with sufficient research this similarity can be successfully demonstrated.

In his seminal paper "Computing machinery and intelligence" (1950) the
mathematician Alan Turing considered how we might recognise a machine that demonstrated
“intelligence’. The question of what intelligence exactly is has perplexed philosophers for
centuries and Turing proposed a practical test which could be used to determine if a
computer had “intelligence'. If a person sitting at a teletype (which does not offer the
advantage of any visual clues) could not distinguish between statements made by a computer
and those made by a human then the computer would be deemed to have passed the test.

A number of authors have criticised the predictive ability of the Turing Test
(Gunderson 1985, Weizenbaum 1983) since it is a rather open-ended mechanism for
examining the claimed intelligence of a machine. Consider the case of a computer system
which, it is claimed, can understand natural language. If the person sitting at the teletype
enters "What is the time?" and the computer responds correctly but then fails to give a
sensible answer to the question "Could you tell me the correct time please?" then the system
would have been deemed to fail the Turing Test since it's responses could be distinguished
from those made by a human. The problems with the Turing test arise when the topics of
conversation become more advanced. How would a computer system which was asked
guestions about thermodynamics be judged? These questions only differ from the previous
questions in the topic that they refer to. If the computer cannot respond appropriately to

these questions should it be judged to be intelligent?

I. Tasks that require intelligence

18

Figure 1.1 shows the main areas of research in artificial intelligence. Of these areas,
game playing and natural language understanding probably best demonstrate the factors that
led to the development of expert systems and they will be described in more detail below.
Other areas of artificial intelligence research, such as problem solving, vision systems and
robotics, had less of an influence on the origins of expert systems although they made
important contributions to artificial intelligence in general. They are described in more detail
by Boden (1987) and McCorduck (1979).

ARTIFICIAL INTELLIGENCE

Problem Game Natural Robotics Vision Knowledge
Solving Playing Language Systems Based
Understanding Systems

Figure 1.1 - The main areas of research in artificial intelligence

Game playing

One of the first areas of intelligent behaviour to be considered by Al researchers was
the playing of games. If a computer could be programmed to play a game as well as a
human then it would be reasonable to assume that the program exhibited some “intelligence’,

since intelligence is required to play games well. One of the earliest successful

19

implementations of computerised game playing was a computer program that was able to
play checkers (draughts). Arthur Samuel, working for IBM, developed a program that could
play checkers (Samuel 1983). As well as providing the program with a list of all the legal
moves that could be taken, Samuel also gave the program various heuristics or rules of
thumb which made suggestions as to which moves to take. In addition to these rules of
thumb, the checkers playing program was also given a basic ability to “learn' from the games
that it played. Each move that the program made was given a weight which was altered,
depending on whether the computer won the game or not. Those moves which caused the
computer to win were therefore more likely to be chosen again, whilst those that caused it to
lose were less likely to be chosen. After the program had played a number of games and had
built up considerable “experience’ of the game, it actually beat Samuel on a number of
occasions (McCorduck 1979), an experience which, he confesses, was rather unnerving.

Chess is another game which has been very popular with Al researchers. Michie and
Johnston (1984, p. 21) report that there are 10'% possible games of chess. The number of
possible games dwarfs the total number of seconds that the universe has been in existence
and hence any computer program which tried to take into consideration all the possible
games would never come round to making a first move. This limitation also applies to
human chess players and it follows that human chess players do not consider all the possible
games either. Following from Samuel's work most chess programs combine the searching of
moves with rules of thumb which narrow down the number of possible moves to be
considered. The “intelligence’ of chess programs is therefore dependent on the quality of
rules of thumb that can be incorporated into the program.

Whilst this method has been used in many successful programs that can play
reasonable to good games of chess, there is evidence to suggest that the use of rules of thumb
may not be a true representation of how human chess experts play. The world chess
champion, Gary Kasparov, recently played the chess program DEEP THOUGHT, developed
by Carnegie Mellon University (Ball 1989). The computer and human played two games,
with Kasparov winning both easily. The current version of DEEP THOUGHT is capable of
examining 760,000 positions per second in concert with its use of heuristics to guide the
search strategy. Despite the large number of positions searched, the performance of the
computer was far below that of the human expert although Kasparov conceded that the
computer may be able to win in 1994 when DEEP THOUGHT Il is unveiled. However it is

expected that this program will be capable of examining 1 billion positions per second and

20

this suggests that the program would only be winning through the use of “brute force' rather

than “intelligence'.

Natural language understanding

Another area of artificial intelligence research is natural language understanding.
Natural language is normally used to refer to ordinary human languages "to distinguish them
from constructed formal languages, such as the predicate calculus and FORTRAN"
(Winograd and Flores 1986, p. 107). In addition to being a major area of research in artificial
intelligence, successful natural language processing offers a number of practical advantages
to the users of computer systems. Even the most modern and “user-friendly' computers are
still difficult to use, requiring many cognitive and tactile adjustments to be made by their
users. In almost all cases they must be used with a keyboard or possibly a desk based
pointing device in conjunction with a formal command language. Natural language
understanding systems therefore aim to assist the users of computers by allowing them to use
less restricted forms of input.

One of the earliest programs to offer a reasonable level of language “understanding'
was ELIZA, written by Professor Joseph Weizenbaum of the Massachusetts Institute of
Technology (Weizenbaum 1976). The program was written to mimic the behaviour of a
Rogerian psychiatrist. A Rogerian psychiatrist takes the responses made by patients and
redirects them to the patients, making the patients talk through the problems that they have

and allowing them to solve the problems for themselves.

Patient : Well, my boyfriend made me come here.

ELIZA : Your boyfriend made you come here?

Patient : Perhaps I could learn to get along with my mother.
ELIZA : Tell me more about your family

Figure 1.2 - A sample dialogue with ELIZA (Weizenbaum 1976, pp. 3-4)

The sample dialogue with ELIZA, shown in Figure 1.2, illustrates this process in
practice. It also demonstrates the method used by Weizenbaum to implement the system.
When the user enters a line of text like "Well, my boyfriend made me come here" a pattern

matching routine is used to convert this input into a related output line. In this case the

21

transformation is performed by dropping the "Well" from the beginning of the sentence,
replacing the "my" with "your" and "me" with "you" and presenting the user with the
transformed sentence. Other patterns that ELIZA searches for include topics such as mothers
and fathers which cause the system to request information about the more general topic of the
family. If the system is unable to find any pattern in the last sentence it will try and return to
the previous topic of conversation or suggest a new topic of conversation.

The dialogue produced by ELIZA can be quite convincing, indeed Weizenbaum
notes that his secretary once asked him to leave the office as she wanted to tell ELIZA about
a personal problem she was facing. Weizenbaum was greatly disturbed when computer
programmers, who knew the tricks that the program used, argued that ELIZA was a
demonstration of a computer program which "understood” natural language (Weizenbaum
1983).

Other attempts to "understand" natural language have been more sophisticated with
two of the most successful being Winograd's SHRDLU (Winograd 1972) and the work of
Schank and his colleagues (Schank (1984) is a good introduction to this research).
Winograd's program allowed users to "speak” to a computer which controlled a world made
up of a table top, blocks, boxes and cubes of differing sizes and colours. It was possible to
tell the program to pick up certain objects and place them in other positions and to ask the
system questions about the blocks world or the past actions performed by the system.
Because the system was only concerned with a very simple "micro-world" made up of blocks,
it was able to resolve most ambiguities that arose by referring to the previous actions that had
taken place within that world. Unfortunately both SHRDLU and the various programs
devised by Schank and his colleagues were only able to operate successfully if they were
restricted to very limited domains. Those attempts that were made to widen their field of
applicability, to allow the systems to operate in areas other than "blocks worlds", came up
against a major theoretical problem, namely how to represent common sense knowledge.

Common sense knowledge, for example, the knowledge that if an object is dropped it
will fall, that this falling object will break on impact if it is fragile or will bounce if the
surface is absorbent, has proved to be very difficult to formalise using existing techniques of
knowledge representation.

At the same time as it was realised that common sense knowledge was becoming a
major theoretical and practical problem some researchers, especially those working with
Professor Edward Feigenbaum at the Heuristic Programming Project in Stanford, California

(Feigenbaum and McCorduck 1983), began using the knowledge of human experts to create

22

computer based systems that operated at a similar level of competence to that of human
experts. These programs were called Expert Systems since they attempted to embody the

skills of a human expert.

b. EXPERT SYSTEMS

Expert systems, sometimes known as knowledge based systems, attempt to perform
tasks that are usually undertaken by human experts in specialised areas of skill. They attempt
to do these tasks in a similar way to human experts.

In the process of developing expert systems two important features were noted.
Firstly the skills of the human expert could often be approximated using heuristics or rules of
thumb in a similar manner to the rules of thumb used in the various game playing computer
programs (Feigenbaum et al. 1988). Secondly, and more importantly, it was noted that the
knowledge of the human expert was very often at a level far above the common sense
knowledge that was causing problems elsewhere in the field (Harmon and King 1985). The
expert would, for example, be concerned whether there was any power going through to the
lights rather than how electricity was passed through wires. Since the problems of common
sense knowledge were therefore effectively avoided it was possible to develop systems that

gave acceptable levels of performance in certain specialised domains.

Doukidis and Whitley (1988) provide the following definition of an expert system:

An expert system is a computer program that assists a user by providing
information about a particular domain. It does this by manipulating
information about the field that has been provided by a number of "experts”
in the field. Another important feature of an expert system is that it has the
facility to explain/justify the methods it used to provide the information. (p.
6)

This definition emphasises that expert systems are computer programs based on
technology that is available at the current time. These computer programs attempt to solve
problems by making use of "knowledge' that has been provided by various “experts' in the
problem area. For example, an expert system might be developed to diagnose faults in

electro-mechanical devices and to provide advice to human technicians, who may not have

23

had previous experience with this particular kind of device, in a similar way to human
experts. The method used to provide this assistance is based on the use of a stored
representation of “expert knowledge'. Figure 1.3 provides a diagrammatic representation of
the basic architecture of an expert system, highlighting the principal components used to
perform this task.

The most important feature of the architecture of an expert system is the knowledge
base, which is a stored representation of the expert knowledge. It is kept entirely separate
from the inference engine which examines and uses it. This has three important
implications. Firstly it means that the same inference engine can be used with widely
differing knowledge bases - provided the knowledge has been coded in a standard format, the
inference engine can manipulate knowledge about electro-mechanical devices, diseases or
electronic components without having to rewrite the entire system. Secondly it means that a
particular knowledge base could be used with different inference engines. For example, one
inference engine may simply see what goals can be arrived at whilst another may actively try
and pursue certain goals (Boley 1990). A third important implication of the separation of the
knowledge from the way that it is used is that it is relatively easy to update and maintain the
knowledge base. If the underlying knowledge changes, it is only necessary to change the
knowledge base - the inference engine will remain the same, allowing rapid prototyping of
the system and rapid adjustment to changing circumstances. The working memory is used
as a temporary store for any data that is known to the system about a particular problem and
the external interfaces are used for those applications which need to be linked to external
sensors or specialist packages such as databases, simulation models or graphics packages.
Finally, the user interface is used by the system to ask questions of the users and to obtain
responses from them. It is also the means by which the system can provide an explanation /
justification of its reasoning. A more detailed description of the architecture, use and

operation of expert systems is given in Appendix I.

24

User Interface

Inference Engine

Knowledge Working External
Base Memory Interfaces

Figure 1.3 - The principle components of an expert system

I. The problem of knowledge representation and use

Practical expert systems depend critically on the representation and use of knowledge
about the particular problem domain they are developed for. If some parts of the domain
cannot be represented within the knowledge base or are not taken into consideration in other
ways, or if the mechanisms for interrogating and using the stored knowledge do not offer the
functionality required to solve problems in the domain, then the systems developed will be of
little practical use.

One of the main areas of research in expert systems has been to devise suitable
knowledge representation and manipulation techniques and many claims have been made

about the effectiveness of the resulting systems:

There is only one language suitable for representing information - whether

declarative or procedural - and that is first order predicate logic. There is

25

only one intelligent way to process information and that is by applying

deductive inference methods" (Kowalski 1980).

This quotation (which was made at a time when the logic based programming
language PROLOG, developed in part by Kowalski, was first being introduced to the
artificial intelligence community) is representative of many researchers who believe that
suitably expressive knowledge base formalisms and inference methods have (already) been
developed. Kowalski believes that first order logic is such a formalism, a view that is also
held by Genesereth and Nilsson (1987) who propose the use of "first order predicate calculus
as a language in which to represent the knowledge possessed by a reasoning agent about its
world" (p. viii). They continue by imagining that "the agent exists in a world of objects,
functions and relations that form the basis for a model of the agent's predicate calculus
sentences" and propose that "deductive inference is the major reasoning technique employed
by an intelligent agent™ (p. ix). Similar statements have been made in support of fuzzy logic
for knowledge representation: "[F]uzzy relations are a very flexible representation formalism
that can be used to model any knowledge formalism" (Hall and Kandel 1988, p. 241) and
similar claims have been made for most other artificial intelligence techniques used to
represent knowledge.

Other researchers in the field do not make such extravagant claims, for example,
Partridge (1987) in discussing the limitations of (current) expert systems technology focuses
on the limited ability of current systems to cope with "context sensitivity" and the updating of
knowledge bases. Although he believes that the problem of context-sensitivity will
eventually be overcome, Partridge feels that current expert systems technology will tend to
concentrate on those problem areas where "the necessary knowledge can be represented as a
collection of more or less independent rules”. In addition expert systems are particularly
suitable for areas where "intelligent decision making can be implemented as a logical, truth-
derivation mechanism" and where the "knowledge is fairly static” (pp. 2-3). Successful
expert system applications have been developed in areas where these assumptions hold and
those areas where the assumptions are particularly weak have few, if any, reported systems.

In common with many researchers in the field of expert systems, Partridge draws a
distinction between formal domains and informal domains. Formal domains are made up of
objects which are readily identified and exist within a regulated, clearly bounded area.
Formal domains, therefore, satisfy the conditions set out by Partridge. In contrast, informal

domains are made up of things that need to be interpreted and are based on experience and

26

subjective, personal identification rather than the “objective' methods used in formal
domains. Informal domains do not satisfy Partridge's conditions and there are few, if any,

potential expert system applications in informal domains.

The move towards integration

The distinction between formal and informal domains of application can be seen to
become increasingly blurred when expert systems which are integrated with conventional
data processing equipment are considered. The most common form of such integration is to
link an expert system with a database.

The structure of a database is clearly defined and bounded and only certain
operations can be performed on it. When an expert system is integrated with a database,
however, the range of actions that can be performed by the two packages increases. The
nature of the expert system means that tasks that could not be performed within the tightly
controlled, formal structure of the database can be undertaken by the relatively less formal
expert system.

An example of such a case is provided by Feigenbaum et al. (1988) when they
describe an expert system developed by American Express to provide advice on whether to
grant particular levels of credit to holders of their credit cards (p. 92-114). American Express
cards have no preset spending limits and when an unusual purchase request is made, it was
normally passed to a special credit department who examined a number of databases to
obtain information about the customer concerned and made a decision as to whether to grant
the credit. An expert system was developed to take over much of this task and the expert
system automatically searches the necessary databases and comes up with a credit decision in
a far shorter time than the previous system. In this application, the expert system can be
considered to be the informal component in the overall system which enhances the

capabilities of the purely formal database systems.

c. OVERVIEW OF THE RESEARCH IN THIS THESIS

I. Semi-formal domains

27

This thesis will use the concept of semi-formal domains as a means to overcome the
distinction that is commonly made between formal domains and informal domains. Semi-
formal domains combine formal and informal aspects within a single problem area and it is
therefore not appropriate to speak of the domains being solely formal or solely informal.

One obvious example of such a combination of formal structure with informal
aspects is legislation. Although the structure of legislation can be fairly complicated few, if
any, decisions in cases are based simply on whether the appropriate steps of the legal process
were applied correctly; most legal decisions are based on judgements of whether the terms of
the legislation apply to the particular case. Once this "informal" process has been undertaken
reaching a verdict is (relatively) straight forward. Thus Waterman et al. (1987) argue that
"[T]he legal domain has the unique property of being semi-formalized, i.e. there exists a large
body of formal rules that purport to define and regulate activity in the domain ... Concepts in
the legal domain tend to be open textured, i.e. in general one cannot state necessary and
sufficient conditions for applying legal predicates or have a program assess their applicability
in arbitrary factual situations. ... Complex, ill-defined concepts (e.g. strict liability) are
defined using new concepts that are just as ill-defined or vague (e.g. responsible, defective)

... This open textured nature of legal concepts makes it difficult to avoid subjective
considerations when performing legal reasoning” (p. 26). This thesis will show that the
property of being semi-formalised is not unique to legislation and that many domains show
characteristics of being semi-formal.

The remainder of this thesis will examine ways in which problems can arise in semi-
formal domains and will propose methods to minimise the effects of the problems. The
extent to which these solutions overcome the problems will also be discussed. In doing so
the thesis will suggest that most expert system applications are effectively semi-formal and
that viewing them as being semi-formal will improve the design of such systems by taking
into consideration factors that would be overlooked if the expert system was considered to be

operating in a formal domain.

1. Some of the problems with semi-formal domains

The problems with semi-formal domains, as they relate to expert systems, arise in

two main areas. The first set of problems are a direct consequence of the knowledge that

28

needs to be stored in the knowledge base. In particular problems can arise with any
knowledge that is expressed in “natural’ language. It will be argued that the social processes
involved in the use of language as a means of communication mean that much knowledge
cannot be formally defined without losing important parts of that knowledge, since no formal
basis ever existed for the language. A result of this is that it is possible for different people
to use the same terms to mean completely different things. This has a practical implication
for the design of expert systems since it means that the users of the system may form
different interpretations of the knowledge base to those intended by the designers of the
system.

Another kind of knowledge that is likely to cause problems in semi-formal domains
is tacit knowledge. This is knowledge which "cannot be told" and therefore existing
techniques are not able to represent it. Tacit knowledge is often used by human experts and
it may be expected of the users of an expert system. Its nature, however, means that it cannot
be represented within the knowledge base and this must be successfully conveyed to the users
of the system. Furthermore, if the users do not possess such knowledge then the system must
try and offer other ways for them to solve the difficulties that they are faced with.

Other problems of semi-formal domains arise from the nature of computers. Expert
systems are implemented on computers and must participate in a process that involves
informal social processes. Most computers, however, have very limited capabilities for

participating in such processes and the consequences of this must be considered.

iii. The research method of the thesis

The research method followed in this thesis can be broken into two distinct stages.
The first part is of a theoretical nature, whilst the second is practical, presenting solutions to
the problems raised in the first part of the thesis.

The thesis begins by examining semi-formal domains, paying special attention to the
implications of viewing domains in this way. In doing so a comparison is made with the
conventional approach to expert system design which considers domains as being formal.
Viewing domains as being semi-formal has many parallels to the socio-technical approach to
designing information systems and a number of important ideas are taken from research in

information systems.

29

The thesis continues by examining some examples of knowledge that cannot easily
be represented using conventional knowledge representation techniques and discusses the
extent to which these problems are a result of the domain being semi-formal. A proper
understanding of these problems, which gives due consideration to the informal, social
processes involved in the use of expert systems is necessary if effective solutions are to be
developed.

Furthermore, problems arise from the fact that expert systems are implemented on
computers. The ability of computers to become aware of, and deal with, problems of semi-
formal domains as they arise, especially confusion on the part of users, is shown to be
limited. The thesis then presents a theoretical model which can be used to deal with these
problems.

The second part of the thesis describes a number of practical solutions that are
developed to tackle some of the issues raised by the first part of the thesis and these are
implemented on an expert system development tool which was developed as part of the
research. The main features of the system, which was developed in a high level language, are
described.

After the development tool has been described a number of different solutions to the
problems raised are presented. As the solutions developed are evaluated a number of other
features of semi-formal domains become prominent and they are incorporated in the later
solutions.

The thesis ends by discussing the implications of the research on the design and
development of expert systems in domains that can be considered to be semi-formal. A
number of other issues that were raised by the research are also described and further
possible areas for research, which would aim to tackle some of the remaining problems of

semi-formal domains, are considered.

iv. Contributions of this research

The conventional approach to the design of expert systems considers the domain that
the system operates on as being formally defined and as such concentrates on the technical
efficiency of the underlying computer program. This thesis argues that the focus of this
approach is inappropriate since it fails to take into consideration a number of informal factors

that are present within any formal domain of application of expert systems and argues that

30

there are a number of examples of knowledge that cannot easily be represented using the
conventional approach to designing expert systems.

Furthermore, many of the problems arise as a result of the social nature of interaction
and consideration of the social environment must be a part of expert systems design. In
particular, special consideration must be given to the fact that a computer takes part in the
interaction. The limited capabilities of an expert system to, for example, notice that the users
of the system are confused, has significant implications for the design and use of the resulting
systems.

Although there has been some research into a few of the problems that arise from
semi-formal domains, there has been very little practical work undertaken to solve these
problems and this thesis contributes a number of software tools that are designed to tackle
these problems.

The solutions that are described in the thesis raise a number of important issues that
have not been adequately considered in the literature. The first of these is the distinction
between “synthetic' domains, which are based on problem areas that are the result of
purposeful action by a group of actors, and “organic' domains that arise as an indirect
consequence of social interaction between actors.

Another important result of the research relates to how the users are to be supported
when the features of the problem that appear most important to them differ from those
considered to be important by the developers of the expert system. If these alternative
interpretations are not taken into consideration then the usefulness of the resulting system
will be limited to that of confirming the opinions of some users and being unacceptable to
many others.

The question of interaction with a machine is also considered in detail and the thesis
provides an important perspective on the notion of confusion. It offers practical solutions to
overcome awareness of confusion that result from this perspective. The thesis also considers
how the users can become aware that confusion has arisen and describes a domain
independent model that can be used as a basis for improving the functionality and usefulness
of expert systems.

Many of the ideas presented in the thesis can be seen to offer methods which open up
the black box of expert systems, encouraging the users to examine the knowledge which is
contained within them for themselves, so that they can use this knowledge in conjunction

with their own particular skills to deal with those problem situations that arise.

31

The thesis also describes an expert system shell that was developed to support the
solutions described and the shell incorporates a number of features which prove to be very

useful for the development of expert system applications.

d. OVERVIEW OF THE THESIS

Chapter 2 describes in detail two approaches to developing expert systems. One
approach takes a formal, functionalist view of expert systems development, whilst the second
considers expert system as operating within semi-formal domains. This second approach
benefits from work on socio-technical information systems and the most important elements
of this work are described. The chapter ends by considering the social processes involved in
communicating knowledge.

Chapter 3 gives a number of examples of knowledge that cannot easily be
represented using conventional knowledge representation techniques. Many of these
problems arise from the use of natural language communication in expert systems
development. The use of tacit knowledge and tacit skills that may form an important part of
the problem domain are also considered in this chapter.

Chapter 4 discusses the problems of semi-formal domains that arise from the fact that
a computer system is involved in the interaction. It discusses the nature of confusion and
shows that confusion cannot normally be known at the time that it occurs and that computers
have very limited capabilities for becoming aware that the users of an application are
confused. It then proposes a theoretical model of the actions of an expert system which can
be used to determine the occasions when users can become aware that they are confused and
describes the underlying conditions that have not been satisfied when such a situation arises.

Chapter 5 describes the expert system shell developed for the thesis and many of its
advanced features are illustrated.

Chapter 6 documents the various solutions that were developed to overcome the
problems of knowledge in semi-formal domains. In the course of testing these solutions a
number of further problems were raised and these are discussed in the chapter.

Chapter 7 tackles the problems of a computer based knowledge base. It draws on the
theory described in Chapter 4 to provide solutions to the problems highlighted.

Finally Chapter 8 summarises the work described in the thesis, describing how the

various solutions provided allow the users of the expert system to examine the boundaries of

32

a knowledge base that is embedded in a semi-formal domain. It discusses the implications of

the thesis for the design of expert systems in general and proposes further areas for research.

33

CHAPTER 2 - TWO APPROACHES TO
DESIGNING EXPERT SYSTEMS

The discussion in the previous chapter has shown how the design and use of expert
system applications is often based on a formal view of the domains of application for such
systems. It was argued, however, that making the distinction between formal and informal
domains has little relevance to many such applications and that it would be far more
appropriate to consider these domains as being semi-formal, i.e. having elements that were
formally defined as well as elements which were less formally defined. This chapter will
summarise the two approaches to designing expert systems and highlight the differences in
basic beliefs that distinguish the formal domain viewpoint from the semi-formal domain

viewpoint.
a. FORMAL DOMAINS - A FUNCTIONALIST APPROACH

Many researchers in expert systems base their approach to developing applications
on what Hirschheim and Klein (1989) label as the functionalist paradigm. This approach to
designing information systems in general, and expert systems in particular, assumes that
"there is one reality that is measurable and essentially the same for every one™ (Hirschheim
and Klein 1989, p. 1203) and this belief has a number of important implications for the
design of expert systems.

The functional design of an expert systems attempts to model a domain using
heuristics and rules of thumb, since expert systems are best suited for problems where no
algorithmic solution exists. Although such methods are normally non-deterministic, the
belief in a single measurable reality means that "it is often possible to codify true expertise in

a narrow domain using surprisingly few heuristics" (Keller 1987, p.3).

34

Knowledge is

extracted
Expert ~ Problem

System models Domaln

Figure 2.1 - The expert system kept separate from the domain it models

Since the domain being modelled by the expert system is “the same for everyone" the
conventional approach to design has the expert system separated from the domain itself, with
its knowledge base being considered as a heuristic model of the domain. This is shown

diagrammatically in Figure 2.1.

I. Extracting “jewels’ from the minds of experts

Considering the expert system to be distinct from the domain it is modelling leads
directly to one of the most common indications of the formal view of expert systems
development. This arises during the process of knowledge elicitation in the knowledge
acquisition stage of expert systems development.

The term knowledge acquisition is normally used to refer to the process of obtaining
knowledge from a source (normally a human expert) and transferring it into a form that can

be used in an expert system. The first stage, of obtaining the knowledge from the knowledge

35

source, is referred to as knowledge elicitation. The knowledge that is elicited may be
knowledge of facts, of relations or knowledge of strategies for tackling problems in the
domain (Hart 1986).

By having the expert system "outside" the problem domain it is necessary to extract
the knowledge from the domain and represent it in the expert system. The idea of extracting
knowledge from the problem domain is extended through the use of metaphors based on the
extraction of valuable mineral resources. Thus Feigenbaum and McCorduck (1983) speak of
individual computer scientists working with individual experts "to explicate the experts'
heuristics - to mine those jewels of knowledge out of their heads one by one" (Feigenbaum
and McCorduck 1983, p. 80). Similarly Capper and Susskind (1988) speak of "extracting the
gold nuggets from the mine of information that the expert possesses™ (Capper and Susskind
1988, p. 31). Michie and Johnston (1984) "foresee a whole industry arising to tackle the job
[of developing expert systems], based around a novel type of industrial plant, the “knowledge
refinery', which would take in specialist knowledge in its existing form and debug it, pull it
together, carry out creative gap-filling wherever the need becomes evident, and turn out
knowledge that is precise, tested and certified correct” (p. 132). Even a report by the Council
for Science and Society (1989) on the benefits and risks of expert systems considers
knowledge to be an extractable commodity that can be used with expert system shells: "In the
early days of research in expert systems it was predicted that such shells could be adapted to
a wide range of problems, by doing little more than pouring in new facts and rules ... [It is
now understood that] knowledge is not just poured into the mind; new data must be translated
into mental representations, from which knowledge can be extracted and then integrated with
existing skills or ideas" (Council for Science and Society 1989, pp. 10-11).

It could be argued that these metaphors are simply being used to describe the tasks
involved in knowledge elicitation. However, the choice of metaphor can have a significant, if
largely unconscious, effect on how the designers of such systems consider their domain. By
describing knowledge in terms of “jewels' or “nuggets' support is given to the belief that the
knowledge is "measurable" and has value irrespective of the context that it is used in. Indeed
there is even a suggestion that “removing' the knowledge from the expert increases its value
in the same way that refined gold is more valuable than gold deposits in rock. The metaphor
also encourages the idea that it is possible to improve the quality (or value) of the knowledge

by simply increasing its quantity.

36

ii. The “control methodology"

Another feature of the functionalist approach to designing expert systems is typified
by a system described by Roth et al. (1987). This expert system is designed to diagnose
faults in electromechanical devices and provide assistance to individual technicians who have
no experience in trouble shooting this particular device. The system is designed so that
"[TThe machine expert guides all problem solving activities dictating what observations and
actions the user is to take to solve the problem" (p. 480). The system contains all the
necessary knowledge about the domain and therefore assigns the user to the role of "data
gatherer and action implementer" (p. 480).

This approach to designing expert systems has been described by Lipscombe (1989)
as the control methodology and is a direct result of the belief in an observable, measurable
reality that is "essentially the same for every one". Once the knowledge about the domain
has been extracted, it is argued, the expert system has a better model of the domain than the
users and therefore is more able to determine what actions should be taken to solve the
problem. In most cases, however, the actions cannot be performed by the machine and the
users are instructed to undertake them instead. These actions include obtaining data about
the domain to assist in the decision making process and implementing any solutions that are
determined by the machine. All the actions undertaken by the users of the system are
carefully controlled by the system, based on its knowledge of the domain. "If the system
believes that the user has a misconception that is detrimental to achieving his/her goals then
... the system must ... make an attempt to bring the user's knowledge into line with its own"
(McCoy 1989, p. 163).

In controlling the actions of the users a distinction can be made between the expert
system which lies "outside" the domain and the users who act within it. By lying outside the
domain the system has “global’ understanding of the domain and the problems that arise, an
understanding which is not influenced by the particular features of the problem. It can use
this information to control the actions of the users who do not have this knowledge. In
particular many of the problems that occur are a result of incomplete or incorrect information
on the part of the users -the users do not know enough about the domain. The system, which
has better knowledge about the domain, is able to solve problems by supplementing the
limited knowledge of the users.

The use of the “control methodology' to design expert systems also affects the

conceptual level of the user system interface (Smithson and Hirschheim 1989). The

37

conceptual level is concerned with "the users' tasks, goals and knowledge, and, in particular,
the way that they are interpreted and represented by both the user and the system" (Smithson
and Hirschheim 1989, p. 9). The “control methodology' imposes a conceptual framework on
the interaction which places the system in the dominant position with respect to the users.
Regardless of its validity, this mode of interaction is likely to prove alien to most users of

expert systems.

b. EXPERT SYSTEMS AND INFORMATION SYSTEMS

The functionalist approach to computer system design considers the computer system
to be the central component that regulates, monitors and guides the flow of information
within an organisation. This emphasis on technology has often been misplaced, with undue
credence being given to the self proclaimed virtues of technology. In contrast information
systems approaches the problem with a rather different focus, viewing the organisational

information system as primarily a social system.

INFORMAL ENVIRONMENT

FORMAL SYSTEM

COMPUTER SYSTEM

Figure 2.2 - The relationship between formal systems, informal systems and computer
systems

38

39

Thus while computer science devises efficient routines for combining and using
various symbols for a particular problem, information systems considers the effects that these
“abstract' symbols have on social situations. For example, the symbols may result in the
payment of a welfare benefit which has direct effects on individuals abilities to purchase

goods and services.

INFORMAL ENVIRONMENT

EXPERT

SYSTEMS

FORMAL SYSTEM

Figure 2.3 - Expert systems and their relationship with formal and informal systems

The focus of information systems research sees the computer system as one part of
the organisation. The main day to day operation of the organisation is informally structured.
Part of this informality is sufficiently regular or important to be formalised and computer
based systems are suitable for automating some of the repetitive, complex or time critical
components of the formal system (Backhouse and Liebenau 1990). It is necessary to design
computer systems that perform such tasks as efficiently and effectively as possible, but it is
important to re-emphasise that the computer system is only one component within the formal
system which is itself part of the wider informal environment. Figure 2.2 shows the
relationship between these three components. The diagram also demonstrates the possibility
of vastly increased complexity, leading to an incomprehensible electronic bureaucracy, that

can result from using computers in areas where they are not suitable.

40

Applying this information systems approach to expert systems (which are simply a
special kind of computer system) highlights the need to consider most expert systems as
operating within semi-formal domains. Expert systems are best suited to tasks where there is
no known algorithm (since more conventional software would be more appropriately used in
such cases) but there must be some structure to the problem area. Figure 2.3 illustrates the
area of application for semi-formal domains, showing how the formal and informal parts of
the problem domain are combined. Comparing this diagram with the previous one
immediately suggests that a formal expert system may not be sufficient to overcome all the
problems of semi-formal domains. The diagram also emphasises that the expert system is
part of the semi-formal domain, that it is embedded in the domain rather than being distinct

from it. This is shown diagrammatically in Figure 2.4.

Problem
Domain

is
part
of

Expert
System

Figure 2.4 - The expert system as part of the problem domain

c. SEMI-FORMAL DOMAINS - A SOCIO-TECHNICAL
APPROACH

41

An alternative paradigm for developing expert systems, which forms the basis for the
work in this thesis, can be described as a socio-technical approach. This approach views the
technical system as only one element in a wider "social environment”. More particularly the
technical components only have meaning because of the social environment of which they
are a part. Instead of a single, observable reality this viewpoint considers reality to be
socially constructed, a product of “actors' (individuals, groups of individuals and
organisations) who give it meaning. It is the emphasis on these actors that is the primary
distinguishing factor between the socio-technical and the functionalist approach.

Taking reality to be determined by actors implies that there is not necessarily a single
“reality’ but rather it is possible that different actors create widely differing versions of the
“same' domain. These differences arise because of the differing backgrounds and
circumstances of the actors. The versions of reality that are constructed by various actors
depend on their beliefs and knowledge at that time. Different beliefs and knowledge can
result in very different responses to a particular event. Generalising this idea slightly, it
becomes apparent that time is an important factor in the creation of versions of reality. For
example, the same actor may create different versions of reality at different periods of time.
When the actor is given some extra (or different) information about the domain the version of
the domain that is created by that actor may change.

Another factor that influences the version of the domain that is formed is the spatial
location of the actor. This is particularly important if the location of the domain affects the
sensory inputs of the actor. For example, a domain where it is too dark for the actor to see
clearly or too noisy to hear properly will have a different interpretation to the same domain
observed by an actor when these factors are not present. The other actors that are found in
the domain will also influence the versions created. In many situations norms are created
that seek to standardise the versions of reality between a number of different actors
(Backhouse and Liebenau 1990).

Semi-formal domains are best described within the socio-technical approach because
the lack of formal descriptions of some of the elements in semi-formal domains can be seen
to arise from the differing versions of reality created by the various actors in the domain.

The functionalist approach assumes a single, (formally) quantifiable reality and this does not
offer the suggestion of less formally defined aspects. They are, however, a possible

consequence of the socio-technical viewpoint on domains.

42

I. Some lessons from socio-technical information systems

Before examining the implications of the socio-technical approach on the design of
expert systems a number of important ideas that have come from the application of
socio-technical considerations to the design of information systems will be described. While
much work in systems analysis (the process of designing information systems) takes a
functionalist approach to the design of (normally) computer based systems, there is also a
significant body of work that has taken a socio-technical approach to the problem. This
design viewpoint has had a considerable influence on the work undertaken in this thesis and
it would be possible to argue that many of the problems discussed in this thesis are not
particular to expert systems; they are problems that are inherent to the design of any
computer system. The solutions to the problems that are described in this thesis, however,
are particular to expert systems; they utilise the nature and use of expert systems to provide

solutions that may not be applicable to, for example, conventional database applications.

The need for a socio-technical approach to computer system design

The socio-technical approach arose primarily to try and explain why “technically
excellent' software packages were often rejected by their users or were altered beyond
recognition. It became apparent that the potential users of the system played a very
significant role in determining whether or not the system was used successfully. Introducing
a computer system will almost inevitably alter the structure of the organisation that receives
it. This alteration will also change the allocation of power or perceived power within that
organisation. Some groups, for example, the data processing centre or the accounts
department, may become "more powerful" as a result of the new information system, whilst
others, perhaps the supplies department or local managers, may lose some of their "power" as
a result of this change. In most organisations data is seen as a "political resource" and any
attempts to alter the political structure of the organisation through changes in the control and
supply of data are likely to result in, at the very least, social inertia from those who see their
influence being reduced. In some cases active resistance to the new information system may
arise and counter-implementation techniques may be employed (Keen 1981). All of these

factors lie outside of and are independent of the actual technology being introduced; indeed

43

the change in technology itself may be insignificant yet the effects on the organisation and

hence on the success of the innovation may be considerable.

User participation

One well documented attempt to overcome some of this resistance, particularly when
the information system is seen as being "imposed" from above, has been to involve the
potential users of the system in the development process of the new system. In doing so the
users are ideally seen to be taking a stake in the project and so are less likely to reject it. The
ETHICS (Effective Technical and Human Implementation of Computer Systems) method
(Mumford and Weir 1979) is one systems analysis method which has incorporated user
involvement as one of its central tenets. Whilst the involvement of users in the development
process is more likely to result in the final system being accepted there are a number of
problems inherent in this approach. In large organisations there may be problems in finding a
suitable selection of representative users to participate in the development process (Cornford
and Farbey 1987). Some unions may view the involvement of users as a token gesture made
by management to win over support for the new system and the actual user input to the
design might be minimal. In other cases the users that take part in the design process may,
after learning to understand the terminology and practices of the systems analysts, become

too engrossed in the system to be able to provide a true "users™ perspective on the system.

Human centred design

Cooley (1987) offers a different method of designing computer based systems. He is
particularly concerned with the long term skill loss that will arise if a system is designed as a
"machine™ which "acts upon or absorbs [that] human competence” (Cooley 1988, p. 2).
Instead he suggests that we think of the system as a "tool" which "enhances human skill and
capability” (p. 2). In Japan, he notes, the move towards the workerless factory is slowly
being reversed. The problem is that "if you have a workerless system, then everything has
got to be highly synchronized. And if one part of the system goes down, that high level of
synchronization is suddenly transformed into its dialectical opposite - it becomes a high level

of desynchronization™ (p. 10). To this end he proposes the design of human centred

44

systems. Such a system leaves the important, creative tasks to the human users allowing
them to make use of and develop their skills whilst the computer performs mundane
calculations and dangerous tasks. The users are therefore able (i.e. have the knowledge and
experience) to control the system when the unforseen occurs and are able to prevent
desynchronization from occurring. This human-centred design also encourages the use of
formal representations as "a means of communicating intentionality rather than a set of
instructions™ (p. 12). Just as, in the past, architects used drawings to convey the general idea
of what was to be built, so the computer system should communicate the nature of the tasks

that are to be performed and not necessarily the actual steps involved in the task.

The role of communication

The importance of the act of communication rather than the details of what is
communicated has been raised by a number of researchers (Lyytinen 1987, Winograd and
Flores 1986). An example of this is the COED system described by Kaplan and Harandi
(1989). The system they describe is designed to capture "the complex and dynamic decisions
that go into the design of any software" (p. 498) since every part of the design process "must
be understood in terms of how earlier parts of the design have evolved" (p. 498). The
software supports the conversations that take place between the designers of the software and
uses the conversations to record the decisions made in the design process. For example, one
designer might decide to use a simple linked list to store a few data items and the
communication of this decision through conversation with other programmers will be
recorded by the system. When, some time later, the software is maintained, the original
reasons for the particular choice as well as the code used to implement it will still be
available in the system.

Winograd (1988) describes another software tool based on the notion of
communication acts, The Coordinator. This is also structured around the act of
communication rather than the details of what is communicated. One of the acts that is
supported by the system is the issuing of a request to another person. The nature of the act
(making a request) means that one of the following responses is expected: a promise to fulfil
the request, a counter offer to modify the request or a rejection of the request. The software

is designed to expect one of these further actions and acts accordingly.

45

d. THE COMMUNICATION OF KNOWLEDGE

As was stated above, the communication of knowledge within a semi-formal domain
is considered to be an important factor in the design of expert systems and the next two
chapters will highlight the problems that can arise when such communication takes place.
Much research in the social sciences is concerned with the problems of interaction and
communication and some of this work has been applied to artificial intelligence. The
research described by Bloomfield (1987), (1988), Born (1987), Gilbert and Heath (1985) and
Josefson (1987b), provides particularly useful insights into these problems.

The functionalist approach believes that the knowledge to be elicited is found in
easily handled chunks which, once they have been obtained from the expert, can be easily
communicated to the knowledge engineer and then used in the expert system. Much research
in the social sciences suggests, however, that communica-tion is a far more involved process.
Essentially it is argued that the person on the "receiving end" of the communication adds as
much to the interaction as the "sender" does (Collins et al. 1985). In relation to expert
systems this means that while an expert system may convey some of the important
information about the domain, not all the information needed can be communicated and some
will always exist outside the system, being added by the users.

Collins (1987) develops these ideas further and argues that "[T]echnical experts are
needed to show how the rules are to be applied where widespread technical competence
(common sense) do not make this clear” (p. 272). The representation techniques used by the
system need the "intervention of human experts" to clarify the terms used - a skill that is
located outside the system. Collins uses this analysis to classify expert systems into four
groups. Class I expert systems "do no more than encapsulate ready-coded knowledge" (p.
270). Although the knowledge is readily available, this does not guarantee that the systems
will be cheap and easy to build, or that they will be guaranteed to succeed. Class Il expert
systems are largely made up of "rules of thumb" or "heuristics". These are rules elicited from
domain experts by detailed questioning. Class Il expert systems have problems of a
different order of magnitude. "The knowledge base of this class may be founded on the
ready-coded rules of Class | or the esoteric heuristics of Class Il, but differs in that there is an
attempt to do away with the need for interventions of human experts between system and lay
user" (p. 271). The final class, class IV, are expert systems which are effectively as capable

as human experts.

46

Collins seems to suggest that solution to the problems of communicating knowledge
are beyond the scope of formal computer systems. To some extent this is a valid argument
since, as the previous discussion has illustrated, every interaction involves the receivers
adding their own interpretations to the utterances made by the speakers. To imply, however,
that there is no possibility of providing any assistance to the users in interpreting the
communication, given the capabilities of today's computer systems, does seem rather

surprising.

I. Interpretation and the expert system development process

The users of the expert system add their own interpretations to the output of the
system and this is likely to be one area where problems can arise. However, there are also
other stages in the development of an expert system where problems of inappropriate
interpretation can occur.

This section will examine the typical stages involved in developing an expert system
application and will highlight the areas where problems of communication are likely to arise.

Once the decision to undertake an expert system application has been made, the first
step in the idealised model of the development process is a process of knowledge elicitation.
This normally involves the expert communicating with a knowledge engineer. From Collins'
model of communication it is apparent that the knowledge engineer will be adding to and
interpreting the utterances and actions made by the expert. In almost all cases, the process of
knowledge elicitation is an iterative task and the knowledge engineers have the opportunity
to present the expert with their interpretations of the utterances or actions performed by the
experts.

Gammack and Anderson (1990) examine some of the problems with this traditional
view of knowledge acquisition and note that "[T]he expert's utterances are actively
interpreted by the knowledge engineer, particularly when encoding the transcript, but also
during the ongoing interview" (p.21) and recommend that the knowledge engineer be made
aware of this since "the knowledge engineer's utterances and their interpretations will affect
the expert's choice of utterances and their interpretations"” (p. 21). They continue by arguing
that the knowledge engineer's interpretation is verified by the expert so that the expert's
intentions can be better conveyed to an end user and this can help minimise the problems at

this stage of the development process.

47

After the process of knowledge elicitation the knowledge must be represented using
computable formalisms. In many small scale systems the representation task is performed by
the same person that undertook the elicitation. However in larger scale systems, and as the
role of knowledge engineer becomes more refined, it becomes increasingly likely that the
representation of the knowledge will be undertaken by someone other than the knowledge
elicitor. In this case there is a second process of knowledge communication which again can
cause problems if the person responsible for representing the knowledge forms an
inappropriate interpretation of it. This problem is made worse because of two factors.
Firstly the representation techniques are often limited in the flexibility that they offer and
hence may require the knowledge to be consciously adapted to suit the knowledge
representation chosen. To some extent this problem can be minimised by choosing suitably
expressive knowledge representation techniques which do not require the knowledge to be
adapted too much, but the problem of communicating the knowledge still remains. A second
factor that may also increase the problems of communicating the knowledge is that the
person who must represent the knowledge is unlikely to have access to the expert and
therefore must, at best, make use of the interpretations of the knowledge elicitor which, as

has been shown above, may themselves be inaccurate.

Knowledge
Expert :
Engineer
Knowledge
Users Expert
System Programmer

B Communication Flow

Figure 2.5 - The communication flows in the development of an expert system

48

Figure 2.5 shows the communication flows that occur in the development of expert
systems, highlighting the areas where problems of communication are most likely to arise. A
suitably designed knowledge elicitation phase, where there is continuous feedback and
verification of the knowledge engineer's interpretations will keep problems to a minimum in
this phase.

The final stage in this process is the interaction between the users and the computer
based expert system. In this case, the only feedback or confirmation of interpretations that
are available are those that may have been incorporated in the system. In conventional expert
systems, however, such assistance is minimal or non-existent, partly because the functionalist
approach to expert system design does not foresee such problems arising. The most
important aspect of the computer based intermediary in the communication process is that
there is a distinct spatial and temporal break between the expert and the knowledge in the
expert system. There is therefore a tendency for the knowledge to become disembodied from
the individuals who provided it and without a social environment to associate the knowledge
with, there is a great danger that it will become obsolete (Stamper 1988).

The work described in this thesis can be seen as an attempt to understand the
problems of communicating the knowledge of the expert to the users of expert systems
through a computer based intermediary. It is hypothesized that the problems that arise are
very much due to the social, informal nature of the domains that expert systems find
themselves in and that a proper understanding of the problems faced as well as solutions to
those problems can only come about by considering the wider social perspective as an

integral part of the process of expert system development.

Ii. The Dreyfus model of skill acquisition

One example of the problems of communicating the knowledge of an expert is
provided by two of the fiercest critics of artificial intelligence - the philosopher Hubert
Dreyfus and his brother Stuart. They argue that expert systems will never perform as well as
human experts and that this a consequence of the nature of true expertise. They believe that
true expertise arises through practical experience and cannot be attained by simply following
rules (Dreyfus and Dreyfus 1986a). This has important implications for the communication
of an expert's knowledge. If expert knowledge cannot be represented in rule format (or in

some other formal representation) then it cannot easily be communicated to a knowledge

49

engineer or the users of an expert system. To explain how true expertise is achieved they
present a five stage model of skill acquisition which will be described in some detail.

Dreyfus and Dreyfus believe that when learning a skill a person normally passes
through five stages - novice, advanced beginner, competence, proficiency and expertise.
Each of these stages is "qualitatively different” (p. 19) from the previous stage.

The first stage of skill acquisition is the novice. In this stage the person learning a
skill is told to find certain context-free features and is told to act in a certain way when they
are found. Any other features, features that relate to the particular situation are ignored and
the novice may be concentrating on searching for the context-free features to such an extent
that other activities, such as maintaining a conversation, may be impossible.

By using real world examples the novice gains experience and begins to recognise
items immediately rather than having to use “information processing' techniques. This ability
of the advanced beginner to immediately recognise features means that situational factors
can be taken into account without always having to search for context-free features.

With more experience the advanced beginner will start to be overwhelmed by the
number of context-free and situational features and will need to sort them into some form of
hierarchy. In doing so the competent performer will have to take responsibility for the
choice of hierarchy created. This is in contrast to the novice and advanced beginner who
simply used the context-free and situational features that had been pointed out previously.

The proficient performer will usually be involved in the problem and will have a
certain perspective on it. From this perspective certain features of the whole will tend to
stand out, whilst others will tend to be less important. Although the importance of various
features may vary over time, the proficient performer will not be examining individual
features, instead the whole scene is examined. However, the proficient performer is still
following a goal.

The final stage of skill acquisition is expertise. "An expert generally knows what to
do based on mature and practised understanding” (p. 30). Through experience the expert
reaches a stage where decisions are no longer made consciously, the expert simply acts™.
Obviously if the decision is important, or if time permits, the expert will examine the
conclusions made. However this examination will tend to concentrate on the intuitions

behind the decision rather than being a conscious decision making process.

Marvin Minsky seems to arrive at the same conclusion, although for different theoretical
reasons, when he quotes Frank Lloyd Wright: "An expert is one who does not have to think. He
knows" (Minsky 1986, Section 13.5).

50

Implications for the design of expert systems

This analysis of skill acquisition has serious implications for the design of expert
systems. Current expert systems technology is rule based and the model just described
suggests that rules are used only up to the level of competence and play no part in true
expertise. Dreyfus and Dreyfus (1986b) use their model of skill acquisition to argue that
expert systems can only ever attain the level of competence and not true expertise and that
expertise cannot easily be communicated.

This model of skill acquisition also highlights the question of whether there is any
need to distinguish between expertise as it is defined in the Dreyfus model of skill acquisition
and “expertise’ as “rule following behaviour' as it is used in much of the expert system
literature? Part of the answer to this question lies in there being no word in the English
language which means "more skilful' or “'more experienced' than expertise. Therefore if the
term is used to signify what the Dreyfus model labels as competence then there will be a
tendency to devalue those skills, and the people that possess them, that cannot be articulated
and communicated - even if these are more advanced skills at the level of proficiency or
expertise. Josefson (1987a) notes that nurses feel that their skills are undervalued because
they do not to possess a sufficiently rich language to successfully communicate what they do,
whilst Cooley (1987) warns of the long term problems that will arise if true experts are
ignored in favour of competent performers who, despite being articulate, do not have the
practical experience that will be needed for long term development and the reproduction of
knowledge.

e. EXPERT SYSTEM DEVELOPMENT FOR SEMI-FORMAL
DOMAINS

Figure 2.6 summarises the two contrasting approaches to developing expert systems
that were described in this chapter. The first of these approaches considers the domain to be
formally defined, consisting of well defined "chunks" that can easily be communicated by the
expert system. It is assumed that the knowledge base of the expert system contains all the
necessary information about the domain and that the users are facing problems because they
do not know all the information required for the domain. The expert system controls the

interaction.

51

The semi-formal domain approach, in contrast, does not consider there to be a single

reality, rather various realities exist which are socially constructed by various actors. Serious

consideration is given to problems that can arise in communication since the users may form

inappropriate interpretations of the communication performed by the system. The expert

system is not seen to control the interaction, rather it is designed to assist the users in coming

to an understanding of their problem and the methods that can be used to solve it.

The table presents, under the semi-formal domain approach, the main factors that

were taken into consideration during the development of the practical work described in this

thesis.

Approach used:

Relationship between
Expert System and domain

View of reality:

Conceptual view of system

The form of the knowledge

Problems arise because:

Communication involves:

Involvement of users:

FORMAL DOMAINS
"Functionalist"

Expert System models the
domain

Single, measurable reality

Designed as a machine
Machine centred

Expert System controls the
interaction

Knowledge is available in
"discrete chunks"

Users "do not know enough"

Simple transfer of knowledge

Little consideration given

SEMI-FORMAL
DOMAINS
"Socio-technical”

Expert System is integral
part of the domain

Many possible versions of
“reality’

Designed as a tool
Human centred

Expert System supports the
interaction

Knowledge is "socially
constructed"

Users "do not have an
appropriate understanding"

Users add to communication
process

Much consideration of
users, some use of
“participative' methods

Figure 2.6 - Two contrasting approaches to the design of expert systems

52

CHAPTER 3 - SOME PROBLEMS WITH
KNOWLEDGE IN SEMI-FORMAL
DOMAINS

Semi-formal domains combine formal aspects of a problem domain with elements
that cannot easily be formalised. A number of examples of knowledge that cannot easily be
formalised are illustrated in this chapter, showing the semi-formal nature of many expert
system applications. The examples covered include the use of descriptive and subjective
definitions in language based communication and the likely problems that can arise with
them. It also considers some examples of what the philosopher Michael Polanyi describes as

tacit knowledge - knowledge that we know but cannot tell.

a. KNOWLEDGE REPRESENTATION AND THE
SYMBOLIC REPRESENTATION OF KNOWLEDGE

One immediate argument against the view that there is some knowledge that cannot
be formally stated comes from recent developments in neurophysiology (see, for example,
Blakemore and Greenfield 1987). Even the fiercest critics of artificial intelligence accept
that the brain probably has some form of knowledge representation based on the millions of
neurons found in the brain. However, contrary to early beliefs, it seems to be the rate at
which the neurons fire, rather than whether they fire or not, that determines what is “stored in
the brain' (Searle 1987). These different rates of neuron firings are used to represent
knowledge about the world.

It is sometimes argued, therefore, that since the rates at which various neurons fire
could be represented symbolically, all knowledge can be represented symbolically. Such an
argument, however, is based on a mistaken understanding of what is normally meant by the
symbolic representation of knowledge in artificial intelligence.

Most forms of declarative knowledge representation found in expert systems have
a direct one-to-one relation with things in the problem domain. A semantic network, for
example, is made up of nodes and links with each node being used to represent physical

objects, conceptual entities or descriptors (Harmon and King 1985, p. 35). Each node,

53

therefore, corresponds to something in the domain. In Figure 3.1 the nodes in the network
represent things such as computers, micro-computers, tools and hammers, all of which

correspond directly to features in the world.

Hammer
Tool =—Is-A ="

Computer

\ Weight-is
* :
Heavy /

Micro- Computer Heavy

T / Ay
Weight-is COIOU&
\ / Light Grey

IBM Personal Computer

Figure 3.1 - A simple semantic network

In the human brain, however, there is nothing a priori to suggest that such a
correspondence between the rate at which particular neurons fire and any objects in the real
world exists. Dreyfus and Dreyfus (1988) report that to date, current research in neural
networks (computer systems which attempt to mimic the biological operation of the brain)

has not found any such correspondence.

b. DESCRIPTIVE DEFINITIONS - THE PROBLEM OF
BOUNDARIES

One of the fundamental problems with knowledge in semi-formal domains arises

from the use of language to describe the knowledge. As was described in the previous

54

chapter, the expert communicates with the knowledge engineer about the problem domain
and the knowledge engineer then communicates with the programmer responsible for
representing this knowledge in a computer based form. Finally the users interact with the
resulting expert system to try and solve problems in the domain.

In each of these cases the main component of the communication is normally natural
language, although other forms of communication are sometimes used as well. The most
common form of communication that does not use natural language is the use of diagrams.
The use of diagrams and graphics can often be more effective in conveying certain ideas than
large pieces of textual information. Diagrams are particular useful for describing the spatial
or structural layout of certain ideas. For example, they have been used successfully within
simulation modelling to show the progress of a simulation model (Crookes and Valentine
1982, Paul 1988). Graphical images are less useful for conveying other forms of information
such as causal links and there may also be problems associated with combining graphical
images with other forms of knowledge.

When natural language is used for communication things in the domain (objects,
concepts, entities, relationships) are given names in the language and there are two possible
ways in which names can be assigned to these things; the names can be defined either
prescriptively or descriptively. The distinction between these two methods of naming are
important and give rise to many of the problems found in semi-formal domains.

Prescriptive definitions entail that a thing has a particular name because it satisfies
clearly defined necessary and sufficient conditions. These conditions determine the
occasions when the name can be used legitimately. For example, marginal cost is defined as
"the increase in total cost resulting from raising the rate of production by one unit" (Lipsey
1989, p. 182). This means that for something to be legitimately called "marginal cost" it
must satisfy this prescriptive definition -i.e. it must be the increase in total cost resulting from
raising the rate of production by one unit. If the thing does not satisfy these conditions then,
prescriptively, it cannot be called marginal cost. Prescriptive definitions ideally have an
effective procedure to determine the appropriate use of a particular name.

In contrast, descriptive definitions arise when a thing is simply assigned a label; its
‘name' is arrived at through use rather than from any predefined criteria or effective
procedure. For example, something is called "an expert system" because almost everybody
uses that name when describing an expert system, not because it satisfies some prescriptive

criteria for the use of the name "expert system".

55

Descriptive definitions can therefore be seen as one of the informal components of
semi-formal domains and, as such, can cause problems when these systems are designed
since it is possible that the users of the expert system will use different definitions of the

terms found in the knowledge base to those intended by the developers of the application.

I. Examples of descriptive definitions

The problem of descriptive definitions has been examined by Susskind (1987) in his
examination of the problems of applying expert systems to the field of law from the point of
view of jurisprudence (legal theory). His "argument from open texture and vagueness"
suggests that many words used in legislation are vague in the sense that they have no
"definite set of necessary and sufficient conditions governing their use and application™ (p.
187). Terms such as "fair" and "reasonable" are in this sense vague, whereas the use of the
term "gold" (as a substance) for chemists seems to rest on "precise conditions governing our
use of that empirical concept™ (p. 187).

Roth et al. (1987), in describing the protocols generated when using their expert
system, note that the knowledge engineer observing the experiment was frequently required
to "intervene to clarify terminology, locate test points, and disambiguate expert system
statements" (p. 494) so that the technician could proceed with the fault diagnosis. Their
approach to the design of the system does not anticipate such problems, however, and no
possible solutions are offered.

Kent (1978) describes a number of areas where descriptive definitions can cause
problems for the designers of computer systems, in particular database systems but also
expert systems. One of the examples he gives is the use of the name "street" asking whether
a street is terminated by a city, county, state or national boundary? Does a street imply that
motor vehicles can drive on it and does a street include motorways and dual carriageways?
Moreover, some streets coincide with highways so should a distinction be made between
them?

A contrast to this view of descriptive definitions is given by McCoy (1989). She
describes a system that attempts to deal with misconceptions that arise when users interact
with a computer system. She defines a misconception to be "some discrepancy between what
the system believes and what the user believes (as exhibited through the conversation)" (p.

163). The assumptions that she bases her work on fall readily into the formalist approach to

56

designing systems. For example, she assumes that the system’'s model of the world contains
an object taxonomy and the user's model of the world contains the same things, about which
misconceptions can arise (McCoy 1989). In her system, the world has already been broken
into readily identifiable pieces and hence the possibility of using different names for these
pieces (or alternatively breaking the domain into different pieces with different scopes, as the
examples discussed by Kent have shown) is not considered. The only problems that can arise
in her case, come about because the users have incorrectly placed these pieces in the object

taxonomy, and not because they use the terms in a different way.

c. SUBJECTIVE DEFINITIONS - DIFFERENT
INTERPRETATIONS OF THE SAME NAME

The previous section discussed the problems of descriptive definitions. These arise
because there is no set of necessary and sufficient conditions that can be used to determine
when a name has been appropriately used. Subjective definitions take the problem one step
further and arise when the same name is used with different interpretations.

The nature of descriptive definitions means that there are no necessary and sufficient
conditions that determine the appropriate use of a particular name, moreover there are not
even any guidelines as to which conditions should be used for a particular name. It is
therefore possible that different groups of actors will choose to use different sets of
conditions, with each group choosing the conditions on purely subjective grounds. In its
extreme form, this means that the same name can be used with completely different
interpretations.

Subjective definitions are a further illustration of knowledge that can cause problems
in semi-formal domains since they relate to the particular individuals using the terms and the
particular use to which they are being put. The meaning of the terms is "established with
respect to an encompassing frame of reference lying outwith (sic) the data structures, and this

background is never fully representable” (Gammack and Anderson 1990, p. 19).

I. Examples of subjective definitions

57

Stamper (1985, pp. 59-60) uses the term "unfit for habitation"” to warn of the dangers
that may arise if the possibility of subjective definitions is not considered. To the local
welfare benefit office issuing cheques for building repairs on dilapidated properties "unfit for
habitation™ has a clear interpretation relating to the eligibility of tenants to receive funds to
repair certain types of property. To the urban planning department, on the other hand, the
term "unfit for habitation™ means properties that are suitable for compulsory purchase orders
and redevelopment since they are effectively derelict. So long as these two interpretations
are kept separate, problems relating to subjective definitions should be minimised. If they
come together however, for example, if the council combines all its data files in a central
database, no distinction will exist between the two interpretations of the term and the
planning department may act on property whose tenants are still receiving repair payments.

The idea that different actors in the domain have widely differing interpretations of a
domain has been used by Checkland in his Soft Systems Methodology (SSM) (see, for
example, Checkland 1981). Most conventional systems analysis techniques "assume that
what “the system' is is not problematical, that the system's objectives can be defined and that
alternative means of achieving them can be modelled and compared using some declared
criteria, enabling a suitable selection to be made of the most desirable form of the system"
(Checkland 1988, p. 242). SSM differs in that it considers defining what the problem is as
being a fundamental concern. Different groups of actors all have widely differing subjective
interpretations of the system and its problems. SSM tries to provide a framework for
considering and combining all these differing views so as to produce a problem description
which is acceptable to all the interested parties.

Subjective definitions can also arise from a particular intended use of a name, as well
as when a name is used by a particular group of actors. Winograd and Flores (1986, pp. 55-
56) use the question "Is there any water in the refrigerator?" to illustrate how the name
"water" can have different interpretations depending on the intended use of the name. The
response to the question depends on whether the question was asked to find a source of
humidity that damaged photographic plates that were stored in the refrigerator, if the question
was asked to find some water to drink (in which case the addition of a few drops of lemon
juice, to cover the taste of the pipes that the water came from, would be acceptable), or if the
water is required for a car radiator (in which case only “pure’ water is acceptable).

Subjective definitions also arise in Roth et al.'s expert system and again the control
methodology they use offers no indication as to why such problems arise nor does it suggest

any solutions. They report problems of misinterpretation of questions that arose from an

58

"inability to assess the intentions of the machine expert” (Roth et al. 1987, p. 494). One
example of such a question was "whether the symptoms were observed at only one setting of
the device". The question was asked to test a hypothesis that a malfunction occurred at two
extreme settings of the device. One of the technicians using the system was not aware of this
particular choice of meaning of "observed at only one setting™ and so tested the device at
only one point, noted that it occurred at this setting and reported that it arose at one setting

when in fact it arose at both settings.

d. HUMAN COMMUNICATION AND DESCRIPTIVE AND
SUBJECTIVE DEFINITIONS

A sociological argument against the problems of descriptive and subjective
definitions is given by Coulter (1985) who talks of the "disambiguation pseudo-problem™ (pp.
12-13). From the belief that "any word, phrase or sentence or utterance can, with sufficient
ingenuity, be accorded more than one meaning™ it is often argued that “everything said is
inherently ambiguous™ (p. 12). In actual communication, Coulter argues, this “hypothetical
ambiguity' is not normally present. This section will attempt to explain this apparent paradox
by making use of the assumptions that underlie the semi-formal domain approach to
developing expert systems.

The semi-formal domain approach considers a domain as being made up of many
different actors and the consideration of descriptive and subjective definitions suggests that
there is no inherent reason why these actors should choose to use the same definitions for
names in the domain. However when these actors interact the potential ambiguity in the
names used has been minimised or removed entirely. Stamper (1988) suggests that this
precision and stability in the terminology used has been arrived at through "an often difficult
social process of negotiating agreement and arriving at a common view" (p. 4). The process
of interaction, and the need to communicate successfully, means that communities of actors
will often decide to use a particular name in some “stable' form. For example, scientists have
chosen to use the name "Gold" for the substance whose atomic number is 79. Once such
terms have been decided upon, they become a convention or norm for that particular group
for a certain period of time (Backhouse and Liebenau 1990).

The chosen use of the term becomes part of the “assumed background' of the actors
and no longer needs to be made explicit in communication activities. It is assumed that

everyone who takes part in communication within that particular community will base their

59

utterances on those assumptions. Thus "[O]bjective knowledge is not detachable from
people except for limited purposes within the domain of relevance for which the negotiated
agreement will stand™ (Stamper 1988). Using this explanation, it is possible to see how
prescriptive definitions arise. A prescriptive definition is simply a descriptive definition
which has been accepted by a particular group of actors to prescribe the use of that term.
Marginal cost has a prescriptive definition because most economists use that term to describe
the increase in total cost resulting from raising the rate of production by one unit. Once the
term has a conventional use for a certain group of actors, in many cases it also becomes the
convention for other actors who were not involved in the negotiations over the use of the

term.

How problems can arise

By viewing the agreement on the meaning of names as the result of a social process it
is possible to see how the problems of descriptive and subjective definitions can lead to
actual ambiguity in particular activities. If two communities of actors are brought together
for the first time there is a reasonable likelihood that their "assumed backgrounds' and
conventions will differ and ambiguities will arise in communication between the two groups.
These will be resolved through the (social) use of negotiation, criticism, debate, discussion
and compromise. In many cases, the potential users of the expert system and the experts who
helped develop the knowledge base form different groups of actors and are quite likely to
differ in their use of terms. This is particularly likely if the expert system has been designed
for use by individuals who have little or no experience of a particular problem domain. They
would therefore be expected to undertake a process of negotiation once they realise that there
is a potential ambiguity in the names they use to describe the domain.

Introducing an expert system into this process, however, considerably alters the
arrangement. No current computer based system is able to take part in a process of
negotiation over the use of various names. The definitions used by the computer system,
whether descriptive, subjective or even prescriptive, cannot be easily altered through
interaction by the users. This is not to say that consideration of the users' perspectives should
not be an integral part of the design process, but rather that if (when) these problems of
ambiguity arise, the computer is unable to modify its approach to, and usage of, the

problematic terms. Furthermore, since the experts are removed from the use of the system

60

both temporally and spatially, it is unlikely that they will readily become aware of the need to
alter or explain the use of the terms used in the system in light of particular problems.

In addition to the suggestion that ambiguity in communication is minimised through
a social process of negotiation, the notion of unspecified "background assumptions' leads to
the possibility that the actors involved in communication may actually be using differing
definitions of the terms used and may not realise that a difference exists. For example, two
actors may refer to the "large wheel" when talking about a particular device, yet they may
both be referring to different large wheels. Both actors will have background assumptions
about the wheel being talked about and "[A]s long as it remains possible to interpret the ...
responses consistently with those assumptions, the speaker's image of his partner remains
unchanged, in particular, undamaged" (Weizenbaum 1983, p. 26). In such cases the users are
actually using differing definitions, based on different sets of background assumptions, yet
they are not aware of this discrepancy since their communication takes place without any
problems arising. They don't clarify the terms that they are using because they don't know

that the terms need to be clarified.

i. Example - the use of the term “race’

Many computer based applications that use data about individuals have a reference to
that individuals “race'. Data about race is sometimes used to record the "racial" make up of a
particular organisation (possibly to monitor and try and overcome problems of
discrimination) or it may be used to determine a person's eligibility for certain benefits (for
example, individuals claiming Aboriginal ancestry may be eligible for extra assistance
(Clarke 1988, p. 502)). Such tasks are often suitable for expert systems applications.

Earnest (1989) provides an interesting discussion of attempts to formalise the
concept of "race" for use in computer based applications. In doing so he highlights problems
of descriptive and subjective definitions and also demonstrates the way that norms and
conventions seek to standardise the concept, even if the concept cannot be formalised.

The first serious attempt to formalise race that Earnest came across arose when he
moved to Virginia, U.S.A. in the early 1960s. On all the official forms in this state the
second question, immediately after name, asked about race. In Virginia at this time, race was

classified as "W" (white) or "C" (coloured). Coloured was taken to refer to all dark-skinned

61

people, including both kinds of Indians. Earnest took to filling in this question with "C"
leaving it to the administrators to decide whether it meant "Coloured" or "Caucasian”.

Sometime later Earnest was required to fill out a form for security clearance.
Previously he would have simply entered Caucasian, however, with his new "awareness" of
racial classification he considered his racial make up. He was aware that his ancestors were
predominantly European, although there was certainly some Middle Eastern blood present as
well. Given this combination of races, he decided to enter "Mongrel"” as his race. After a
clarification that he had not misspelled "Mongol", the form was accepted for processing. As
the form was for special security clearance strict checks were undertaken into the private life
of this "mongrel”.

Some time later, Earnest was asked to attend a meeting at the Air Force Office of
Special Investigations. After a number of routine questions, the investigators asked him why
he had entered mongrel. He replied that he thought this was the best answer to an ill-defined
question. He then asked them how they classified people who were mixtures of "races".
They too were unclear about this concept and it turned out that the whole problem had arisen
because their clearance database was not able to cope with mongrel. Everybody else, it
seemed, knew their race. It did seem rather short sighted, however, for the database designer
not to include "other" as a possible value.

In the late sixties bureaucrats attempted to identify minorities who might be
discriminated against. However, "[T]hey never bothered to define their terms because, like
the earlier racists, they had only a hazy notion of where the boundaries were" (p. 177). One
form introduced for this purpose had ethnic classes including "Spanish surname™ and
"Black". How this was to cope with a person who was both black and had a Spanish surname
was not explained.

Another approach used at Stanford University provided the classification scheme

presented in Figure 3.2.

62

1) Black, not of Hispanic origin

2) Asian or Pacific Islander (persons having origins in any of the original peoples of
the Far East, South-East Asia, the Indian Subcontinent, or the Pacific Islands)

3) American Indian or Alaskan native

4) Hispanic (persons of Mexican, Puerto Rican, Cuban, Central or South American
or other Spanish culture or origin, regardless of race)

5) Non-minority (persons having origins in any of the original peoples of Europe,
North Africa, or the Middle East)

Figure 3.2 - The racial classification scheme used at Stanford University (Earnest 1989,
p. 178)

Whilst this scheme handles Hispanic blacks, it is not certain how the system would
cope with people from Spain. Should they be classified under group 4 or 5? The scheme
again has no option for "other" or "mongrel".

Race, as these instances have shown, is an example of a descriptive definition. There
is no prescriptive criteria for the use of the term and therefore different actors (the State
Legislators in Virginia, the Air Force Special Investigations Department, the administration
at Stanford University) each chose their own set of boundaries around the term. Some, such
as Virginia, simply used skin colour as the determining factor, whilst others attempted to
classify the person according to their "background”. Each particular choice of classification
became the norm for that particular group at that particular time. A number of different
interpretations of the term "race" have been described and each one became the norm for a
particular group at a particular time. When these different groups came into contact with one
another, however, the differences between the interpretations were often not made explicit
since the need to do so often did not arise. For example, if one group chose to use the term
on the basis of skin colour and another chose to use "ethnic background™ many occasions
would arise where communication between the two was successful. For example, different
actors would agree that a native northern European and an American Indian were of different
races, even though their reasons for making the distinction were completely different and

they would never think to explain the difference between the two uses of the same term.

e. NOTICING PROBLEMS

63

One of the main advocates of tacit knowledge is Michael Polanyi. He considers such
knowledge to be the basic term of a new epistemology (Prosch 1986, p. 52) and gives
numerous examples of tacit knowledge (see, for example, Polanyi 1967, 1969). One
example, which is of particular relevance to the use of expert systems, is the ability to notice
problems.

In almost all cases, the noticing of a problem, the realisation that "something is not as
it should be", occurs before a formal representation of the problem exists. The noticing of a
problem occurs before the nature of the problem can be determined. Once the nature of the
problem has been determined and formally specified it is simply a case of providing
appropriate resources to the problem to solve the problem that has been "noticed". In some
cases it is possible that the suggested solution may not actually work, however it is important
to realise that the attempted solution to the problem was only devised once the need for it was
noticed.

The noticing of problems involves tacit knowledge because many cases exist where
the specification of the solution involves complex skills that are not possessed by the actor
who first noticed the problems. Even if the noticing is done by someone who does possess
the skills to also define the problem, these skills are rarely used to determine that a problem
exists. This is particularly likely to be the case in those situations where finding a solution to
a problem is a costly and / or time consuming process. In these cases it is unusual for an
actor to be involved in examining a situation to see if a problem has arisen. A far more likely

occurrence is that these skills are brought in once a problem has been noticed.

I. Examples of noticing problems

Paul (1988) gives an example of this process in the field of computer based
simulation modelling. The traditional text book model of simulation, he argues, uses the
simulation model "as an operational model to produce some results, or some conclusions, or
for implementation after the operational model has been validated against the real world".
This view is "inadequate". He continues by stating that "[T]he construction of a logical
model representing the formulation of the problem is, in many instances, the most difficult
aspect of the problem. In fact, understanding what the problem is may be the object of the

whole exercise. ... It must be remembered that the simulation modelling process is not

64

designed to find the answer or answers. It is there ... to help decision makers gain an
understanding of their problem®.

The decision maker has noticed that a problem exists and calls in the simulation
modeller. The modeller then makes use of the many tools that are available in simulation and
together with the decision maker attempts to fully understand the problem that was first
noticed by the decision maker. The process of using simulation modelling only takes place
after the problem was first noticed and it is only through the use of simulation techniques that
the problem can be understood and formalised.

The noticing of problems normally occurs before a formal representation of the
problem exists. This means that a problem can be noticed at any time; there is no
requirement for certain formal features to be present. In the context of expert systems the
most likely problem to be noticed will be that the system is "offtrack™ (Roth et al. 1987, p.
497) in its reasoning path. The realisation that the expert system is following an
inappropriate reasoning path will often begin as nothing more than a suspicion that
something is wrong. The details of the problem, of how the system came to follow this
reasoning path, are likely to depend on choices made at an earlier part of the interaction.
Again the control methodology does not allow for the possibility that the system may be
wrong and the user must try and determine how it arose with a system that provides "virtually
no support for ... this role” (Roth et al. 1987, p. 499).

f. SEEING-AS

Another human skill that makes use of tacit knowledge is the ability to see something
as something else. Tilghman (1988) illustrates this by drawing a distinction between
interpreting and seeing-as in the case of a technical engineering drawing. To someone with
no previous experience of these diagrams they appear, at first, to be chaotic. After a while,
however, the person viewing such a diagram will start to make assumptions about it and will
start to interpret the drawing. For example, the person may decide that thick lines represent
the outside edge of the object and that dotted lines represent lines to be cut from it. The
person viewing the diagram forms hypotheses about the diagram and using these "interprets”
the diagram. With experience, however, the person "may come to see the drawing as the
machine it represents” and no longer has to "figure out what this is, or that line represents”
(p. 307). This behaviour of interpreting by a novice is contrasted with that of an experienced

engineer who see the drawing “correctly' all along. Tilghman draws his theory from

65

Wittgenstein who marked the difference between interpreting, which is an activity, and
seeing-as, which is a state (Wittgenstein 1953, Part Il, section xi). Tilghman points out that
much of the difficulty with distinguishing between seeing-as and interpreting lies in the
identical description of what was "seen" that can come from both cases. If the novice
interprets certain lines as being the surface and others as representing lines to be cut from
that surface, the novice may come up with the same description as that given by the
experienced engineer.

Seeing-as is not restricted to high level tasks such as understanding technical
engineering drawings, it also occurs in everyday life. For example, legislation introduced in
early 1989 requires all petrol stations to display the price they charge for petrol on their
‘main’ road signs in litres rather than gallons (gallon equivalent prices may be displayed on
the pumps if necessary). At first drivers will interpret the price in litres by multiplying it by
4.5 to obtain an approximate price in gallons. With experience, however, they will cease to

interpret the price and will immediately see whether a price in litres is good value.

I. Examples of seeing-as

The tacit skill of seeing-as is often implicitly recognised - and avoided - in many
accounts of developing expert systems. This is frequently done through the use of the
"telephone heuristic" - "think about whether the problem can be described in words. Could it
be solved over the phone? If the expert needs to see or touch the data, the task may not be
well suited to an ES" (Leonard-Barton and Sviokla 1988, p. 95). Effectively, if the expert
makes use of the tacit skill of seeing-as then the task is not suitable for the development of
expert systems. Harmon and King (1985) and Twine (1988) make the same point.

In a limited number of cases problems are tackled which involve the expert seeing
things as other things. However, unless the possibility of seeing-as is considered, the
behaviour of the expert seems unusual. For example, Paris (1988) describes attempts to
create an expert system to assist a "pathologist in the differential diagnosis of Lymphoma /
Epithelial Tumour biopsies on slide evidence alone”. He notes that the pathologist first gives
the diagnosis and secondly gives reasons for it. "In other words it appeared that the
pathologist simply saw the diagnosis and then attempted, maybe to please the observer, to
justify it" (Paris 1988).

66

g. READINESS-TO-HAND AND "HIDDEN' KNOWLEDGE

"Hidden' knowledge is another form of knowledge that cannot be formally
represented, however it is introduced primarily as an analytic concept for use in the next
chapter. The term “readiness-to-hand' was introduced by Heidegger in 1927 and it is a
different approach to considering knowledge of the world. Rather than considering things as
having certain characteristics and features, readiness-to-hand suggests that much of this
knowledge is "hidden' from a person until it becomes “unready-to-hand' and “visible'. A
hammer and a blind man's cane have been used extensively in the literature, so the use of a
"mouse" input device in a window based computer environment will be considered instead.

The mouse is used to move a pointer around on a screen. In doing so it can "point™ to
icons, activate pull-down menus and select different items from the screen. However, when
using mouse devices the users do not actually consider any properties of the mouse, they
simply think about moving the pointer. The mouse itself is ready-to-hand, its properties are
not represented in any way; they are hidden to the users. They only "discover" the mouse
through its unusability or unreadiness-to-hand, when the interaction breaks down; only then
does the knowledge of the mouse become explicit.

It is only when the mouse does not move as expected - perhaps it causes the pointer
to move in the opposite direction to the mouse - that the users become aware of any of its
characteristics, it becomes unready for the task they wish to use it for. The features of the
mouse can also "reveal" themselves when a mouse is not present and a keyboard must be
used instead. In this case features of the mouse such as its speed and ease of use become
unhidden through the unreadiness-to-hand of the mouse. Finally the obtrusiveness of the
mouse may make it appear unready-to-hand. If the users want to make small, accurate
movements of the pointer, they may find that the design of the mouse hampers this activity.
Once again, it is only when the use of the mouse "breaks down" that they become aware of its

features.

h. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED

The first set of difficulties with knowledge in semi-formal domains arises from the
way in which things (objects, concepts, entities) are named. It was suggested that many
things in the domain have descriptive rather than prescriptive definitions that determine the

appropriateness of their name. Descriptive definitions are arrived at through negotiation and

67

compromise; a social process involving individuals and groups acting for a common purpose
in a common setting. It can be argued that prescriptive definitions are simply descriptive
definitions that a particular group has accepted for use in a certain purpose. Descriptive
definitions cause difficulties because clearly defined boundaries do not exist around the
concepts being described.

The difficulties with descriptive definitions are made worse when the choice of
which boundaries should apply to a name are made on the basis of subjective judgements.
Cases can arise where the subjective boundaries of the things being named are mutually
exclusive between different groups and unless those using the names are aware of the wide
disparity of meaning for the terms being used, unless they are aware of the differing
boundaries, serious problems may arise.

When expert systems are designed it is inevitable that some extra formality will be
introduced into the language used. Any proposed solutions cannot completely overcome
such considerations, however they can be designed with the problems in mind.

Another effective boundary to the amount of domain knowledge that can be stored in
the knowledge base is the extent to which the experts use tacit skills when solving the
problems. Although these tacit skills cannot be properly represented in a knowledge base,
the system should still be designed to take account of this knowledge.

The nature of the tacit skill of noticing problems means that the skill cannot be
switched on and off at will and so may arise when the users are using the system to solve a
problem. They may realise that the goal the system is trying to arrive at is obviously wrong,
whilst another goal may be far more appropriate. In this case, the users should be able to
make the system abandon its current line of reasoning and examine the alternative suggested

by the user.

68

CHAPTER 4 - COMPUTER BASED
SYSTEMS WITHIN SEMI-FORMAL
DOMAINS

The discussion of the two approaches to developing expert systems suggested that
the formal approach to design has the expert system operating on a (separate) model of the
domain. In contrast, the semi-formal domain approach considers the expert system as one of
the components of the social environment making up the domain. It is therefore necessary to
consider any implications that arise from embedding expert systems within such domains.
This chapter will argue that there are three important consequences that arise from a
computer based system being located within the domain. Firstly, it is shown that computer
based systems have very limited capabilities for considering situational factors that arise
within the domain. Secondly, this means that expert systems cannot become aware of
situated actions and hence it is not possible to “plan’ for many of the problems that may
arise. Thirdly, the concept of confusion will be examined and it will be shown that computer
based systems cannot normally become aware that a state of confusion has arisen. A domain

independent understanding of how confusion can arise will then be considered.

a. THE COMMUNICATIVE RESOURCES OF COMPUTER
BASED SYSTEMS

In their discussion of knowledge engineering, Gammack and Anderson (1990)
highlight a number of important considerations that relate to the problems of communication
between experts and knowledge engineers. They suggest that any process of knowledge
elicitation takes place within the context of an unarticulated background and that both parties
need to be aware of this background if they are to minimise any possible misunderstandings
that may arise. Examples of such misunderstandings were discussed in the previous chapter.
Unfortunately, their work only covers the interaction between the human expert and the
human knowledge engineer. In particular, they do not consider the problems of human users
interacting with (computer based) expert systems (Figure 2.5 shows how these two

interactions are related). This is significant since there are many qualitative differences

70

between humans and computers that become increasingly important when they are combined
in a semi-formal domain.

Computer based systems differ from humans in that they are limited in the ways that
they can obtain information about the domain which they find themselves a part of. Humans,
on the other hand, have far more communicative resources available to them. They can see,
hear, touch, smell and taste. In addition their whole bodies provide information about the
domain.

Suchman (1987) undertakes a critical examination of the communicative resources of
computer based systems by considering an “expert help system' for a large and relatively
complicated photocopier. The help system is designed to provide assistance to the users and
help them operate the machine. It would appear that the provision of such a help system
would be relatively simple given that the possible tasks being tackled are limited by the
functionality of the photocopier, that the structure of the interaction is procedural, partially
enforced and a criteria of adequacy for each action can be specified (Suchman 1987, p. 99).
For example, one of the possible tasks that can be undertaken is to make multiple copies of a
bound document. The structure of this task is well defined: a copy is made of the bound
document and this copy is then used to make further copies. The task has a partially enforced
structure which can be verified by the system: multiple copies can only be made once the first
copy of the bound document has been made and it is possible to have sensors that verify that
the Bound Document Aid has been used in the process.

When the photocopier was actually used, however, a number of problems arose. For
example, the users of the copier did not always realise that the single copy of the bound
document was used to make the remaining copies and in many cases the help system was not

able to respond to difficulties faced by the users.

Suchman's framework

'Suchman uses "machine" to refer to the computer based system and as such does not
distinguish between "machines” and "tools".

71

Suchman suggests that these problems are a consequence of the limited
communicative resources of the photocopier and proposes a useful analytic framework,

shown in Figure 4.1, to help understand the problems.

THE USER THE MACHINE
Actions not Actions Effects Design
available to available available rationale
the machine to the machine to the user

Figure 4.1 - Suchman's framework for analyzing the communicative resources of users
and machines (Suchman 1987, p. 116)

The framework is made up of four columns, each of which describes part of the
interaction between the users and the machine. The columns are: actions not available to
the machine, actions available to the machine, effects available to the user and the
design rationale of the system. Only the two centre columns are directly available to the
users and the machine. The users can read the help screens and instructions provided by the
system but do not normally have access to the design rationale behind the display of those
screens. In a similar way, the machine has access to the menu items chosen by the users, but

not to the intentions of the users that led to that choice.

72

THE USER THE MACHINE

Actions not Actions Effects Design
available to available available rationale
the machine to the machine to the user
DISPLAY 1 Selecting
the
procedure
B: It's supposed to -
it'll tell "Start,"
in a minute
A: Oh. It will?
B: Well it did:
in the past
(pause)
A little start:
box will:
DISPLAY 4 Ready to
print

B: There it goes

A:"Press the Start button”

SELECTS START
STARTS PRINTING

Okay.

Figure 4.2 - Sequence Il (Suchman 1987, p. 126)

In the example shown in Figure 4.2, the users are able to see the display screens
(DISPLAY 1 and DISPLAY 4) and can also tell when the machine starts making copies. The
design rationale behind the choice of displays shown, however, is not available to them.
Similarly the machine can only tell when the users select START but their deliberations
before doing so are not available to it.

Another of the examples described by Suchman (pp. 165-169) involves the users
making four copies of a document using the Recirculating Document Handler. In this case
when prompted by the system to place the document in the handler, only one sheet is
inserted. The limited access of the machine to the actions occurring in the rest of the domain
means that all that the sensors note is that "the document™ has been inserted into the handler.
When the START option is then selected, the copier makes four copies of the "document"
(i.e. the single sheet). The system has completed its task and awaits the selection of the next
task. The users, however, who do not have access to the design rationale of the system, await

instructions to insert the next sheet - which are never displayed.

73

This problem cannot be overcome by simply adding more sensors to the photocopier.
No number of sensors could determine that the document to be copied was made up of more
than one sheet unless the copier had access to the conversations of the users (or, if there was
only one user, the thoughts of the user). One way for the copier to become aware of the
number of sheets in the document would be to explicitly ask the users to enter the number of
sheets to be copied, but this is a rather unusual and cumbersome approach. Alternatively the
designers of the machine may simply limit the possible factors that can influence its
operation. This, however, resorts to the belief that the "computer knows best", found in the

functionalist approach to design.

I. The communicative resources of expert systems

Expert systems, as a form of computer based system, have the same limited access to
the rest of the domain as the photocopier described previously. In most expert systems the
range of actions available are limited to the keys pressed by the users (in addition to any
selections made using other input devices such as a mouse). The system is only aware that a
particular fact is true because the users selected a certain option.

In some cases, the expert system has sensors that can be used as a direct source of
data about the domain. For example, a process control expert system may have access to
sensors informing it of the temperature of the material at various stages in the development
process. In these cases, however, the sensors are not normally used to check the responses of

the users, rather they are used as alternative input devices.

b. SITUATED ACTIONS

Planning is described by Cohen and Feigenbaum (1982) as "deciding on a course of
action before acting”, with the implication that a plan is therefore "a representation of a
course of action™ (p. 515). Plans are to be recommended otherwise "less than optimal
problem solving” will arise. A plan is therefore a precise, “prescriptive’ model of future
actions that will efficiently achieve a particular goal. Plans are also sometimes used as post
hoc descriptions of actions used to achieve a goal. User-models are often used by expert

systems to understand the purposeful actions that may arise in an interaction since the models

74

can be used to determine what problems the users are going to face by determining their
likely cause of action, or if they have already arisen to determine what caused them.

Suchman's work, however, suggests that the conventional model of planning fails to
take into consideration the problems of the limited communicative resources of computer
based systems and, more significantly, mistakes the very nature of planning. Instead of being
based on planning, she argues, "purposeful actions are inevitably situated actions” (p. viii),
by which she means "simply actions taken in the context of particular, concrete
circumstances™ (p. viii).

Suchman believes that the conventional view of planning mistakes the role that plans
play in purposeful action. The model assumes that "[M]utual intelligibility is a matter of
reciprocal recognizability of our plans, enabled by common conventions for the expression of
intent, and shared knowledge about typical situations and appropriate actions"” (p. 27). That
is, it is only possible to understand an individual's actions by considering the plan that the
person is assumed to be following.

Plans suggest that the precise steps needed to achieve a particular goal are stated
before the event. In actuality many different actions can be taken to achieve the same goal,
the choice of which action depends critically on the particular circumstances that the action is
taking place in and cannot be predicted in precise terms in advance. For example, the actions
involved in actually posting a letter will depend on whether you meet someone who is going
to the post office, whether you pass an internal mail basket or if you actually go to the post
box yourself.

Another important feature of the planning model is the assumption that the content
and organisation of the background knowledge can be made explicit so that relevant features
can be identified and utilised. Suchman suggests that in reality such actions do not use a
knowledge of the situation, rather they take place in the situation, with features appearing
relevant to the individual in much the same way as they do for the proficient performer and
expert in the Dreyfus model of skill acquisition?.

The analysis presented by Suchman suggests that "[P]lans are a constituent of
practical action, but they are a constituent as an artifact of our reasoning about action, not as
a generative mechanism of action™ (Suchman 1987, p. 39, emphasis in the original) and as
such are "best viewed as a weak resource for what is primarily ad hoc activity. It is only

when we are pressed to account for the rationality of our actions, given the biases of

“Hubert Dreyfus was on Suchman's dissertation committee at the University of California at
Berkeley and was very enthusiastic about her project (Suchman 1987, p. xii).

75

European culture, that we invoke the guidance of a plan” (p. ix). Plans made in advance of
an action are necessarily vague because these situational factors cannot be determined in
advance, whilst those plans described in retrospect "filter out precisely the particularity of
detail that characterizes situated actions, in favour of those aspects of the actions that can be
seen to accord with the plan” (p. ix).

It is important to emphasize that the concept of situated actions is not arguing that
plans are unimportant, or that plans are not used, rather it is argued that plans have a different
role in action. In many cases it is beneficial to plan action so as to minimise risks or
maximise utility by highlighting important factors to be considered. Plans are used in such a
manner "to orient you in such a way that you can obtain the best possible position from
which to use those embodied skills on which, in the final analysis, your success depends" (p.
52).

When expert systems are embedded in semi-formal domains, situational factors
become increasingly important. Interpretations of the terms used, as well as the availability
and use of tacit knowledge / tacit skills will be affected by the particular circumstances of the
problem and the users of the system. It will therefore be very difficult to anticipate all the

likely problems that may arise in the use of the expert system.

c. CONFUSION

When the users of an expert system form an inappropriate interpretation of its output,
or when some other knowledge that could not be represented within the boundaries of the
knowledge base causes problems in the interaction, it is common to say that some confusion
has arisen, that the users are “"confused”. What precisely is meant by the term "confusion" is
rarely made clear and a closer examination of this concept will provide a useful analytical
technique for considering the problems of interacting with a computer based system.

To understand what "confusion” is, consider the case where an actor asks the
question "Is there any water in the refrigerator?" with the "water" in this question referring to
"pure water", suitable for use in a car radiator. On receiving an affirmative answer, the actor
proceeds to go to the refrigerator and finds only water with a twist of lemon in it. In this
case, the actor may well say that the response to the question was a result of confusion on the
part of the other actor, who did not properly understand the meaning of the question. To this

actor, confusion has arisen.

76

Now consider this same interaction from the perspective of the actor answering the
guestion who assumed that the speaker wanted some water to drink. To this actor there has
been no confusion. The appropriate response was given to the question asked. Thus whether
or not there is confusion in a situation depends critically on who is viewing the situation.

The actor asking the question believes that confusion has arisen, the actor answering does
not.

More significantly, neither actor was aware of the "confusion™ at the time it "arose",
since if they did, they would have reacted immediately and clarified the situation. Even the
actor who (later) believed that confusion had arisen only realised this when the consequences
of the difference revealed themselves (became unhidden). Until this time, the questioner was
as "blissfully unaware™ of the potential problems as the respondent.

This means that it is not possible to be aware of confusion at the time that it occurs.
At best it is possible to realise that confusion occurred in the past when its effects reveal
themselves in the current situation. Moreover, unless the effects do reveal themselves, none
of the participants in the interaction will ever realise that confusion has occurred.

To summarise, it is only possible to know about confusion when one of the
participants in the interaction becomes aware of a problem. Once the problem has been
noticed it may be possible to determine when the actual confusion arose however it is not
possible to be aware of confusion as it occurs. Once confusion has been noticed, however,
there is normally a commitment to clarify and resolve any ambiguity or misinterpretation or

to attempt to convey the missing tacit knowledge.

I. The commitment to resolving confusion

In human communication such clarifications to overcome confusion are normally
attempted and Winograd and Flores (1986) suggest this is due to the commitments formed by
speakers and hearers "by virtue of taking part in the conversation” (p. 58). These
commitments mean that whenever a problem arises "the speaker is committed to give an
account” (p. 60) to explain how the breakdown arose.

They suggest that many of these problems arise because of differences in the

"assumed backgrounds" (that domain knowledge that is assumed to be common to all

77

members of a particular community) of the participants. To resolve the problems, the
participants may decide that a particular utterance was simply inappropriate, or alternatively
they may "articulate part of the assumed background™ (p. 60) and come to an understanding
about how the problem arose and how it is to be resolved.

Attempts to overcome problems associated with confusion can only be tackled once
that confusion is noticed and this process is based on the tacit skill of noticing problems.
This suggests that the circumstances for noticing a particular problem cannot be formally
specified in advance. However, the typical mode of operation of an expert system offers a
domain independent way of describing the situations when problems are likely to be noticed.
This approach does not determine which problems are going to be noticed, nor does it
determine when they are going to be noticed. It does, however, provide a theoretical
description of the possible actions of the system that can lead to noticing of problems, and
hence of confusion.

The following description is based on speech act theory which was introduced by
Austin and was later developed by his student, Searle. A brief introduction to speech act

theory will now be given.

Ii. Saying and doing

Many of the utterances made in the course of a conversation do not relate to true or
false statements about the world, rather, as Austin (1962) points out, in many cases the
uttering of words may actually be performing a speech act. For example, when, in certain
circumstances, the words "I bet you ..." are uttered they are not describing what has been
done, they are not true or false statements about the world, rather by saying the words the bet
has been made. Similarly when requesting a particular action uttering "l request ...", in
certain circumstances actually performs the request. The "certain circumstances" that affect
the bet or request need to be specified in more detail and Austin hoped to discover what these
"circumstances" were by "looking at and classifying types of case in which something goes
wrong" (p. 14). He labels those things that go wrong as infelicities and describes three

general principles which need to apply if infelicities are not to occur:

78

1. There must be some conventional procedure which has a conventional effect, in
certain circumstances and that the particular persons and circumstances involved in
the speech act are appropriate for the procedure being invoked.

2. That the procedure must be executed by all participants correctly and completely.
3. That the procedure is designed for certain intentions, thoughts or feelings and that
those involved must have the appropriate intentions, thoughts or feelings.

Figure 4.3 - Austin's three principles to prevent infelicity in speech acts

To illustrate this point, for the utterance "I bet ..." to be felicitous (appropriate or
non-defective), there must be conventional procedures and circumstances that hold for
making bets and the particular case must conform to these circumstances. Thus bets can only
be placed before the outcome of the event being bet upon and formal bets can only be made
in a Bookmakers. Some acts may only be “appropriate’ when performed by certain people,
for example, a formal bet can only be made with the employees of the Bookmaker who are
authorised to take bets, and not, for example, with the cleaners. It is also necessary for all the
participants to completely and correctly finish the procedure, thus even if the words "I bet ..."
are uttered, the bet will not actually be made until there is some response to it - either in the
form of a betting slip, or perhaps the verbal response "OK. The bet is on". Whilst the first
two conditions can affect the entire act, whether the act is valid or void, the third condition
affects the intentions behind it. If I say "I bet" knowing full well that I do not intend to keep
the bet if | lose, then the bet is still valid, but the person who bet against me would have

justified grievances.

Iii. Speech acts and the noticing of confusion

Attempts to rectify confusion can only be made after that confusion has been noticed
and consideration of speech acts offers a theoretical basis for determining when this
confusion is likely to be noticed. In the course of assisting the users in solving a problem, an
expert system may request that certain information about the domain be provided, it may
question the users about the domain and it may make assertions about the domain. These
three things are speech acts and in performing them the expert system may cause the

interaction with the users to breakdown. Most commonly this is a result of the intentions

79

behind the act, for example, the expert system may assert a fact which the users do not feel it
is justified to assert. This means that their unstated background assumptions may be
challenged by the actions of the system. In discussing readiness-to-hand in the previous
chapter, three possible forms of breakdown or unreadiness-to-hand were described. The first
of these is when something unexpected occurs. The second is when something expected does
not occur and the third arises when the tool becomes obtrusive in the act it is performing.
These three causes of breakdown can be seen in terms of the felicity conditions of the speech
acts undertaken by an expert system.

This description of felicity conditions (Searle uses a related notion of a speech act
being non-defective) for these three acts is due to Searle (1969, ch. 3).

The conditions necessary for a request (for a future act of the hearer) not to be
defective include the ability of the hearer to perform the requested act. Also the speaker must
believe that the hearer can perform the requested act. It must also not be obvious to both the
speaker and the hearer that the act would be performed by the hearer in the normal course of
events if the request was not made. If the request is to be “sincere’, the speaker must actually
want the hearer to perform the act and it is essential that the request must count as an attempt
to make the hearer perform the act.

The act of asking a question is similar to that of requesting an act, except that in
asking a question the speaker wants to know about the “truth' of a proposition (or
propositional function), as opposed to making the hearer perform an act. The question would
be defective if the speaker "knew the answer' and it must not be obvious to both parties that
the hearer would provide the information about the proposition at that time without being
asked. Obviously there are some questions, examination type questions, where the speaker
does "know the answer', but in these cases the speaker still wants to know if the hearer can
provide the answer and it is not expected that the hearer will provide the information without
the question being asked. If the question is to be sincere the speaker must want the
information asked about and the asking of the question must count as an attempt to elicit this
information from the hearer.

The final speech act that needs to be examined in relation to the functionality of
expert systems is the act of stating or asserting a particular proposition. For an assertion not
to be defective, the speaker must have evidence or reasons for the truth of the proposition and
it must not be obvious to both the speaker and the hearer that the hearer knows the

proposition (or that the hearer does not need to be reminded of the proposition). A sincere

80

statement requires that the speaker “believes' the proposition and the assertion must count as

an undertaking that the proposition represents an actual state of affairs.

d. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED

The first part of the chapter discussed the ability of an expert system to become
aware of the domain it is in. In most cases, the communicative resources of a computer limit
this to an awareness of the key presses made by the users in addition to any direct sensor
readings taken from the domain.

In particular, the expert system is unlikely to be aware that the users of the system
have been confused and one consequence of this is that the users themselves must act to
overcome any confusion that they notice.

The three speech acts performed by an expert system: requesting, questioning and
asserting, are likely to cause the users of the expert system to become aware that confusion
has arisen if they believe that the felicity conditions of these acts have not been met. To
overcome these problems, the users must be shown that these conditions have actually been

met.

81

CHAPTER 5 - INTRODUCTION TO THE
PESYS SYSTEM

This chapter describes the expert system development tool that was chosen as the
basis for the practical work described in this thesis. A description of available expert system
development tools and the reasons for the particular choice made are described in Appendix
I. This chapter describes the main features of the development tool, highlighting those
additions found in the system that are not found in other tools. The structure of the
knowledge base, inference engine and user interface are also described in some detail.
Finally a number of applications that have been developed using the tool are described. It
should be noted, however, that the characterisation of the system given in this chapter is not
complete since it does not take into consideration those specific additions that relate to semi-

formal domains which are described in the next two chapters.

a. AN OVERALL DESCRIPTION OF THE PESYS
ENVIRONMENT

PESYS (Pascal Expert SYstem Shell) incorporates many useful features that allow
the developers and users of the system to maximise the potential of this technology in
semi-formal domains. This chapter outlines the facilities offered by PESY'S other than those
described in the next two chapters. A user guide to the PESYS system, together with a
simple tutorial for developing expert systems is provided in Appendix Ill.

PESYSS offers the developers of applications full control over the inference engine
used with a particular knowledge base. It is possible to select the inference method (or
combination of inference methods) that are to be used as well as whether a log is to be kept
of the actions performed and the accuracy to be used in numerical comparisons. The shell
also includes an implicit design method which encourages the proper, structured design of
the knowledge base and includes the use of "sub-knowledge bases" which can be used to
structure the application.

The implementation of the inference engine is very efficient and allows the users of
the system to rapidly arrive at solutions to their problems. Their interface with the system is

designed to be clear and consistent in use offering access to all the necessary functions of the

82

system without any unnecessary inconvenience. A comprehensive What-if facility is also
available to allow the users to see the possible effects of changing certain data values.
However, despite providing considerable functionality, the system itself is very compact (the
executable file is less than 150K in size) and this leaves most of the computer's memory

available for the knowledge base and working memory.

EDITOR
(optional)

|

PREPARE PESYS

|

EXTRAS
(optional)

The DEVELOPMENT PHASE The RUNTIME PHASE

Figure 5.1 - The development and runtime components of PESY'S

The PESY'S environment is made up of two components. The first component relates
to the development of expert system applications and supports the writing and preparation of
knowledge bases. The second is the runtime environment and it is this program that users
interact with when trying to solve problems in the domain. Figure 5.1 shows the programs in

these two components.

b. THE STRUCTURE OF THE KNOWLEDGE BASE

83

The knowledge base in PESYS is made up of a number of related files. To assist in
the management of these files, all the files that relate to a particular knowledge base share the
same main name, for example, all the files in a knowledge base used to repair faults in a
photocopier might have the main name "COPIER". The various files that are created by the
different programs in the development stage of the environment have different extensions to
the main name that describe their contents. Figure 5.2 shows the files that are created at

each of the stages of the development process.

EDITOR
(optional)

#.RUL

PREPARE

.RLC
.CFG
EXTRAS

(optional)
SNS .LOG

PESYS

LA

The DEVELOPMENT PHASE The RUNTIME PHASE

Figure 5.2 - The files used in PESYS

I. The files in a knowledge base

The first file to be created has the extension .RUL (RULe). This file contains the
original rules associated with the knowledge base. The rules are entered by the knowledge
base designer using a simple text editor such as the program EDITOR. All the files in
PESYS are stored in plain ASCII format. This allows them to be examined and edited using

any suitable editing program or word processor. Once the rules have been edited, the .RUL

84

file is passed to the PREPARE program which precompiles the knowledge base and forms
the .RLC file (RuLe Coded). The PREPARE program also allows the designers of the
application to specify the configuration of the knowledge base, choosing which inferencing
methods are to be used as well as general system characteristics such as whether a log of the
interaction is kept and the accuracy used in mathematical comparisons. The configuration
information is stored in the file .CFG (ConFiGure).

The program EXTRAS allows the developers of an application to specify the text of
questions that are asked when the users are required to enter values for variables in the
knowledge base. The text of these questions is stored in the file .SNS (common SeNSe
information). When the knowledge base is used by the runtime system a log of the

interaction may be kept, this is stored in a numbered file with the extension .LOG.

ii. The basic structure of a rule in PESYS

The primary knowledge representation technigque used in PESYS is the if-then or
production rule. This knowledge representation technique is very common in expert systems.
PESYSS, however, includes a number of special features in its implementation of production

rules that need to be described further. A typical production rule is shown in Figure 5.3.

RULE-1

IF

the first if-clause is true

and the second if-clause is true
THEN

the first then-clause is true

and the second then-clause is true

Figure 5.3 - A sample rule in PESYS

As this rule shows, a typical production rule is made up of three main components.

The first component is the rule identifier. This is followed by the keyword if and a number

85

of if-clauses. No limit is imposed on the number of if-clauses in a rule, there can be none,
one or as many as can fit in the memory of the system. After the if-clauses comes the
keyword then followed by the then-clauses. The number of then-clauses is also only
restricted by the available memory. The keywords if and then are written on separate lines to
improve the legibility of the knowledge base. Again there can be any number of then-clauses
which are separated from the next rule by at least one blank line. Due to the way that PESYS
stores all the words found in the knowledge base there is no restriction on the case of any of

the words in the knowledge base, including the keywords if and then.

iii. Advanced features of rules

Negation

The if-clauses of the rules may be used to ask the users questions about the domain.
Clauses that contain the word not, however, can be very difficult to answer in practice, often
causing many problems for the users. If the system asks the question "Is this true: you have
not put the cat out?" should the users select Yes signifying "Yes the cat has been put out"” or
should Yes be selected to specify "Yes the cat has not been put out"? A far simpler question,
from the users' point of view, is "Is this true: you have put the cat out?". PESYS therefore
removes any occurrences of the word not in any of the clauses of a rule (this is performed by
the PREPARE program) and keeps track of the number of times it occurs. If not is found
once or, in general, an odd number of times then the clause is said to be negated. Zero or an
even number of nots means that the clause is unnegated. The negated status of the clause is
then stored separately in the .RLC file and is used by the system to determine how the users'
response to the (unnegated) question should be handled, i.e. if the users answer Yes to a
clause that was originally negated, then this is equivalent to denying the original clause.
Thus answering Yes to "The cat has been put out" means that the original clause "The cat has
not been put out” has been denied. This is a very simple step to implement in a computer
based system yet it makes the system considerably easier to use in practice. There is a minor
restriction in that it is not possible to accommodate abbreviations such as can't and hasn't

within this method.

86

Goals

Many expert system shells have a series of goals or hypothesis associated with the
rules in the knowledge base. The inference engine of the shell then tries to use the rules to
arrive at one of these goals or hypothesis. However, by keeping the goals separate from the
rules that they refer to, there is a strong possibility of problems of redundancy arising,
particularly if a large scale application is developed. Consider the case where a new (goal)
rule is added to the knowledge base. The then-clauses of this rule refer to a goal yet it is
possible that the developers of the system will forget to add the associated new goal to the
(separate) list of goals. If this happens the extra rule will never be used, or if it is used, will
never be recognised as a goal. Similarly if a goal rule is deleted without removing the
associated goal redundancy will occur and the system will try and arrive at that goal although
its associated rule no longer exists.

PESYS overcomes this problem by associating the goal status of a then-clause
directly with that clause. Any then-clauses which refer to goals are marked with the keyword
inform and an associated inform level of 1. This marks the clause as being something that
the users should be informed about and the level (1) tells the system that the clause is goal.
This approach avoids all the problems of redundancy that arise when the goals are kept
separate from the rules they are associated with. If a new rule is added with a then-clause
that is a goal, this is marked directly in the rule. Similarly if this rule is deleted from the
knowledge base, the associated goal is also deleted and it is therefore impossible for the list
of rules to be different from the list of goals. The PREPARE program removes the informs
and their levels from clauses of the rules and stores them separately in the .RLC file.

The use of inform statements and inform levels is used in other ways in a PESYS
knowledge base as well. During an interaction with the system, the users may find it useful
to be told certain pieces of information. These are normally “intermediate’ results, possibly
informing the users about the current state of the problem solving process, and whilst they
are not goals they are still useful. These are implemented by attaching the keyword inform to
these statements and giving them a level of 2. The keyword inform tells the expert system
that the users should be informed about a particular piece of information and the level (2)
tells it that this is simply a useful piece of information and once the users have seen it the
system should continue to arrive at the final conclusion which is a statement marked with an

inform level of 1.

87

c. ADVANCED RULE STRUCTURES

In the example rule shown above the if-clauses of the rule are combined using the
logical connective and, i.e. the if-clauses are only true if all the if-clauses are true. In many
applications it is also useful to combine clauses using the logical connective or. Clauses
combined using the or connective require only one of the clauses to be true.

One method of implementing the or connective, found in many expert system shells
such as Xi+, allows an object to have more than one possible value. For example, a ball may
be one of a number of different colours as in: "the ball is red or white". This technique is
only applicable for multiple values of one object and cannot cope with clauses such as "it is
raining or someone pours a bucket of water over your head". In order to cope with this
second type of combination of clauses, in PESYS all clauses combined using or are assumed
to be separate clauses, so the first example would need to be rewritten as "the ball is red or

the ball is white" and each clause is written on a separate line of the rule.

IF
it is raining
or someone throws a bucket of water over your head

Figure 5.4 - The use of the or connective in a PESYS rule

Or-clauses are stored in the expert system as a list and each if-clause is, in fact, a list
of or-clauses. This is best understood using a diagram, Figure 5.5. In this diagram, the if-
clauses are shown vertically, whilst the or-clauses are shown horizontally. For a rule to fire,
each if-clause must be known to be true. Each if-clause is known to be true if one or-clause

is known to be true.

88

IF ‘

A if-clause —A —B

orB *

C if-clause —C —D —E
orD %

orE if-clause —F

and F

and G if-clause —G

THEN

Figure 5.5 - A diagrammatic representation of or-clauses

Or-clauses are formed as the knowledge base is read in. The first clause that is read
in is added to the start of an if-clause and the next clause is read in. If it begins with the
keyword OR, then it is added to the end of the previous or-clauses, otherwise a new if-clause
is created. This process continues until all the clauses of the rule have been read in. This
also shows how clauses combined with and are implemented. Clauses that begin with an and,
either explicitly or implicitly, do not begin with an or and are therefore stored as a new if-
clause. The list of or-clauses therefore only contains one element which must be true for the

if-clause to be true.

Atleast clauses

Designing the inference engine in such a way also allows the easy incorporation of

another very useful feature into the structure of a knowledge base. The rules that have been

described previously have either required all the if-clauses to be satisfied or, in the case of

89

or-clauses, one of each of the or-clauses to be satisfied. In some applications, however, a
compromise is required. For example, an application may require a rule to fire if a
combination of the clauses is known to be true. A careers selection knowledge base, for
example, may list a number of qualities associated with each career, however it is unlikely
that any person would have all the qualities for a particular job. It would therefore be useful
if the system could see how many of the attributes a person had and if these were more than
some preset level (perhaps 75%) the particular career could be suggested. In other cases, all
possibilities need to be considered before a choice can be made. A car repair system that
reported the first fault it came to and then halted would not be as useful as one that listed all
the faults before stopping.

The atleast command is designed to provide this facility by allowing the developers
of a knowledge base to specify a list of or-clauses all of which need to be tested but which

only returns true if a certain number of them are true.

IF

atleast 3 of

you enjoy working with people

or you are prepared to work long hours
or you want to serve the community

or you want a varied work load

and you do not mind the sight of blood

THEN
If-clause ——atleast 3 of —working work serve varied
with long the work
people hours community load

If-clause ——you do not mind the sight of blood

Figure 5.6 - An example rule using atleast clauses

In this case, the system will examine all the clauses found in the atleast statement but
will not stop as soon as one clause is found to be true. Instead a count is kept of all the

clauses that are found to be true and if this is found to be greater than or equal to the number

90

in the atleast statement then the if-clause is assumed to be true. Atleast clauses are stored in
the same way as or-clauses, with the first or-clause being the keyword atleast and the atleast
level. In all other ways atleast clauses are the same as or-clauses.

In the rules shown in Figure 5.6 the system will examine the four clauses of the rule

and the if-clauses that they are a part of will be true only if atleast 3 of them are true.

d. THE RUNTIME ENVIRONMENT

The program in the runtime environment is called PESYS and it is this program that
the users interact with when solving a problem in a domain. The program itself is made up of
a number of different components and these are shown in Figure 5.7. The programs in the
development phase of the system are described in the user guide, Appendix Ill. The structure
of the knowledge base has been described previously and the structure of the working

memory is described in more detail in Appendix IV.

USER INTERFACE

INFERENCE EXPLANATION COMMAND
ENGINE FACILITY MODULE

KNOWLEDGE WORKING EXTERNAL
BASE MEMORY INTERFACE

Figure 5.7 - The principal components of PESYS

91

I. The user interface

The user interface in PESYS is one of the largest components of the system and
provides the users of the system with a simple and consistent front end to the functionality
offered by the system. It is designed to be easy to use and easy to learn. It is through the
user interface that the users answer questions, are informed of any results and perform what-
if analyses. All these actions take place in special windows on the screen. The windows can
be moved around the screen by the users (by simply pressing the F4 function key and
selecting the new position) if, for example, the default position obscures some other
important information displayed on the screen. The system uses only two colours, normal
and highlight, and they are specified by the developers in the configuration stage of the
PREPARE program although they may be altered by the users at runtime. Only two colours
are used since the package may be used with displays that have a limited colour capabilities
(such as overhead projecting equipment) and by limiting the number of colours to two, it is

easy to rapidly customise the screen displays to a particular piece of display hardware.

Inputting information

The most commonly used part of the user interface is concerned with asking the
users questions and requesting information. PESYS has three main ways in which this can be
done: through the use of YES/NO questions, through the entering of values and through the
use of a ‘'most likely' mechanism.

The simplest form of question is the YES/NO question. In this case, the users are
presented with a clause and are asked to indicate whether it is true or not. This choice is
done by moving a highlight to the appropriate value. If necessary, the users can also have a

simple explanation of the question that has been presented.

92

Is this true |
The Large Wheel Is Spinning Freely ||

Yes No Unknown Explain

Figure 5.8 - A question in PESYS

In other cases, the users are requested to enter values of certain variables. In these
cases a suitable prompt is displayed, describing what value is required and the users then

enter the value requested.

1l
How Many Revolutions Per Second Is The System Operating At ||

Figure 5.10 - A request in PESYS

The final form of input that the users may come across allows them to enter
minimum and maximum values for a particular variable and they are then given a sliding
scale which allows them to mark the most likely value. The entry of the minimum and
maximum values is performed in the same way as requests, described above. The selection

of the most likely value involves the users moving the marker ("X") to the point on the scale

93

that corresponds to the most likely value. The value that the marker corresponds to is given

at the side of the window.

1.00 +---—+-=--X---—+---—+ 11,00 |

A 6.00 |
To find the most likely position move the cursor "X" to the |
appropriate part of the scale and press Return

Figure 5.12 - Selecting the most likely value in PESYS

Informing the users of any information

The user interface also informs the users of any clauses that have an inform level of 1
or more. An inform level of 2 or more is simply some information that the users should be
told about and is displayed on the screen until they press any key, signifying that they have
acknowledged the information. The inference engine then continues with the interaction.
Inform 1 statements are goals and these are displayed in a different screen for the users to

SEe.

94

L
We have derived that: |

I
The Performance Of The System Appears To Be Stable |
I

Figure 5.14 - An inform 2 statement in PESYS

Once a goal has been arrived at PESYS allows the users to perform a what-if analysis
to see the effects of changing certain values. The altering of existing values for the what-if
analysis is again handled by the user interface. The users are presented with a list of facts
that the system has determined when working through the knowledge base. Those that are
known to be true are marked with a tick +, those that are known to be false are marked with a
cross X, and those that are unknown are not marked. If the users want to alter any of the
clauses they can highlight the clause to be altered and press RETURN. For variables the
previous value is displayed and they are asked to enter a new value, whilst for other clauses
the truth of the clause cycles through the possible values. If there are more clauses than can
be shown on one screen, the words "More to follow ..." appear at the end of the list and using
the cursor keys it is possible to scroll the list to display these further elements. Finally, the
users press the CTRL and RETURN keys to accept the changes or the ESCAPE (Esc) key
to abandon the changes. The same process is performed when the users select the basic facts

before performing a forward chain (see below).

95

The inferencing process is now complete

1l

Select or alter the following facts + - TRUE X - FALSE BLANK - UNKNOWN |
Ctrl and Return to accept the facts, Esc to abandon choices

+ Coefficient Value 0 |

+ Error_range Value 4.45 |

+ Parameter_1 Value 23.00

v Parameter_2 Value 45.00

+ Parameter_3 Value 56.00

v Parameter_4 Value 67.00

7 Result Value 0 |

7 Revolutions Value 34.00 |

7 Speed Value 40.00 |

+ Speed_hi Value 45.00

v+ Speed_lo Value 35.00

7 The Expressions Have Been Evaluated |

s The Large Wheel Is Spinning Freely |

+ The Setting Of The Device Are Reasonable |

¢+ The System Is Operating At A Reasonable Temperature ||
s There Do Seem To Be Fumes Being Given Of‘f|| By The System |

H
Figure 5.16 - The What-if facility in PESYS

1|

Ii. The inference engine

While the user interface is the part of the system that the users interact with, it is the
inference engine that actually manipulates the knowledge base to determine which questions
and requests are to be passed to the user interface and which results can be asserted. The
PESYS system offers two forms of inferencing, forward chaining and backward chaining,

and also supports specialised versions of these two approaches.

Forward chaining

Forward chaining, sometimes known as data driven inferencing, operates by taking a
list of facts that are known at the start of the interaction and uses these to see which goals can
be arrived at. A rule fires if all its if-clauses are known to be true, which in the case of
PESYS means that one of the or-clauses for each if-clause is known to be true (see above).
When the rule fires, the then-clauses of that rule are added to the list of known facts and the
process continues until a rule is fired which has an inform 1 then-clause. In this case, the
firing of the rule means that a goal has been arrived at and the system can stop. Alternatively
the forward chaining process continues until all of the rules have been examined once

without any of them firing. This means that it is not possible for any more rules to fire and

96

no more clauses will be added to the list of known facts and hence further inferencing has no
effect. It is important that all the rules must have been examined once and not fired before
forward chaining is abandoned since it is possible that the firing of the last rule may add a
clause which is required for the first rule to fire.

Forward chaining, therefore requires that some facts are already known to the system
otherwise no rules would ever fire and the forward chaining process would never arrive at
any goals. Whilst it is possible to ask the users to enter any facts that they know to be true at
the keyboard this is a rather cumbersome method and requires the users to use exactly the
same descriptions of the facts as the developers of the application. PESY'S offers a different
approach to this problem. The if-clauses in the knowledge base rules are either found in the
then-clauses of other rules or are not. Those if-clauses that are not found in the then-clauses
of other rules are called low-level facts since they cannot be determined by firing rules and
can only be asked of the users. When PESYS loads up a knowledge base it automatically
creates a list of low-level facts and if the developers of the application configure the
knowledge base appropriately, it is possible for the users to be presented with this list of low-
level facts and for them to mark those that are known to be true or false and to enter them

into the working memory of the system before the forward chaining takes place.

Backward chaining

Backward chaining, also known as goal driven inferencing, takes a different
approach to arriving at goals. Forward chaining took the available data and found what goals
could be arrived at from that data. In contrast backward chaining takes a particular goal and
obtains the data that is necessary for that goal to be arrived at. In doing so, backward
chaining provides a more focused approach to inferencing than forward chaining.

The backward chaining algorithm begins by creating a list of rules that contain
inform 1 then-clauses. The inference engine then takes the first rule in this list. For the goal
(inform 1 clause) to be known the rule must fire. The rule can only fire if all the if-clauses
are known to be true. The system then examines each of the if-clauses, and hence each of the
or-clauses, in turn. In the simplest form the if/or-clause is already known. If this is the case
the system moves onto the next if/or-clause. If the clause is not already known, the system
then checks to see if the clause can be arrived at by firing another rule. This is done by

creating a list of all the rules that contain the if/or-clause in its then-clauses. If this list is

97

empty, then no rules exist which can fire and add the clause to the working memory and the
only option left to the system is to ask the users directly. If rules do exist then each is
examined to see if it would fire using the facts that are known at that time. If none fires
immediately then the first rule in this list is taken and the entire inference procedure is
repeated recursively. Once one of the rules has fired, the original if/or-clause is checked in
the working memory of the system and is used for the previous rule. This process continues

until either a rule with an inform 1 then-clause is fired or until no further rules can be fired.

Other forms of inferencing

In addition to having the two separate forms of inferencing, it is possible to combine
them using mixed chaining. The particular form of mixed chaining implemented in PESY'S
has the inference engine perform a forward chain whenever any facts are added to the
working memory by the backward chaining mechanism.

The final form of inferencing supported by PESY'S is known as pure forward
chaining and is concerned with commands. Commands in PESYS are executed and
assumed to be true. If the system is performing a forward chain, however, this may result in
spurious rule firings, i.e. rules firing simply because the commands in their if-clauses are
executed. In practice, therefore, commands are not normally executed when performing a
forward chain. Pure forward chaining, however, does allow commands to be executed.

The choice of which inference strategies to use is made by the developers of an
application in the PREPARE program and is stored in the configuration file. The predefined
choices can be altered by the users if necessary by selecting the configuration menu. This
allows, amongst other things, the users to alter the choice of inference strategies used for a

particular application.

98

|_oading test

Return to System Inference Engine File Operations Other Facilities ||

1l

CONFIGURATION [
|
Forward Chain First TRUE |
Do Backward Chain TRUE |
Mixed chaining TRUE ||
Pure Forward chain FALSE ||

1|

Figure 5.18 - The configuration menu in PESYS

iii. Commands in PESYS

The functionality available in the knowledge base is increased by making various
commands available to the developers of applications. These commands are not intended to
form a special procedural language and only offer mathematical calculations and the use of
variables, input output control, external interfaces and the use of sub knowledge bases. The
available commands are described in more detail in the user guide and will only be briefly
outlined in this chapter.

PESYS supports elementary mathematical capabilities and allows the use of numeric
and text variables. The command LET is used to assign the result of an expression to a
variable. The expression can support the basic arithmetic operations and supports brackets to
alter precedence. The values of expressions can be used in comparisons and these are treated
like other rule clauses.

Considerable control over input and output is provided, with commands available to
display information on the screen (PRINT, CLS, PRESS_KEY). It is also possible to input
values from the keyboard or from a file using the ENTER, RE_ENTER and RANGE_OF
commands. It is also possible to create and use data files through the use of commands such
as OPEN_OUT, WRITE, WRITELN, CLOSE_OUT and OPEN_IN, READ, READLN,
CLOSE_IN.

99

Links to external applications are supported through the commands DOS and DOS_E

and sub-knowledge bases are supported by the command USE.

e. APPLICATIONS DEVELOPED USING PESYS

PESYS has been successfully used for three years in teaching students on the M.Sc.
in the Analysis, Design and Management of Information Systems at the London School of
Economics and Political Science about expert systems. It has also been used by another
researcher in the department as part of her doctoral research. The following sections

describes the main case studies that have been developed by other researchers using PESYS.

I. Effort estimation for software development

The process of software development is very complex and managers require accurate
estimates of the effort involved in this process. The research undertaken by Levy (see, for
example, Levy 1990) investigates effort estimation for the preliminary system design stage of
a project life cycle.

The research considers the tasks that are to be performed during this stage of the
project and uses these tasks to provide an estimate for the effort required. In addition to
developing an effort estimation model the research is examining a number of actual case
studies to examine the validity of the ideas presented.

PESYS is used as the main component of a software tool that can be used to
demonstrate the concepts of the effort estimation process. The expert system is used in a
number of stages including entering of data, the calculation of the effort and the presentation
of the results.

The system has been successfully demonstrated to a number of organisations and the
ease of data entry, presentation of results and explanation facilities have been favourably
commented upon. The system has also been used to analyze questionnaire results in the same

way.

Ii. An expert system to assist in filing tax returns

100

PESY'S was also used to develop an expert system that helped individuals file tax
returns without having to involve accountants and lawyers (Whitley et al. 1989). The system
was to be used in India where the tax laws are complicated yet the revenue generated is
relatively low. Computers were being introduced to simplify this process and so an expert
system was developed to see if it would be easier to use than other computer systems.

The application made use of many of the advanced features of PESY'S described in
this chapter in addition to some of those described in the next two chapters. The resulting
system, although not perfect, was considerably more useful than other attempts to develop

systems for this domain.

ii. Other applications developed using PESYS

In addition to these two major applications developed using PESYS a number of
smaller applications have been developed by M.Sc. students over the past three years, each of
which made use of certain features of the PESYS system.

A number of applications have examined the use of PESY'S in conjunction with other
pieces of software. The most common form of such a link has been with database
applications. The first attempt at this allowed PESYS to access a database by making use of
a compiled dBase Il1+ application. The database contained information about foreign
exchange rates and the values obtained from the database were used by an expert system
application.

PESYS was also used as an intelligent front end to a database application to assist in
data entry. In this case, the expert system was called from the database application.

The use of PESYS from within a different application has also been utilised by a
financial simulation model. In this case, the knowledge base is used to “reason about' the
choice of investments.

PESYS was successfully used to implement the rules of cricket in an expert system
and in an application designed to providing education so as to prevent collisions at sea. In
both these cases, extensive use was made of the explanation facilities and readable
knowledge base of PESYS.

Finally PESY'S has also been used to identify Leptospires. In this application, the
student investigated the extent to which an expert system should be used as a support tool for

the users.

101

These projects are summarised in Figure 5.20.

An expert system application for
Foreign currency analysis

The rules of cricket
Preventing collisions at sea
Identification of Leptospires

Intelligent data entry for a database
Financial simulation modelling

Area of PESYS examined
Linking an expert system to
dBase Il
Using legislation in an expert
system
The use of explanation facilities
and multiple goals
The extent to which users should
be able to co-operate with the
expert system in problem solving
Links to database packages
Using an expert system as part
of a simulation model

Figure 5.20 - PESYS applications

102

CHAPTER 6 - SOLUTIONS TO THE
PROBLEMS OF THE KNOWLEDGE
BASE

Chapter 3 introduced a number of examples of knowledge that can cause problems
when expert systems are implemented in semi-formal domains. This chapter will describe
and evaluate a number of additions to the PESY'S system that attempt to overcome or
minimise some of the problems raised in that chapter. The first method, which proved to
unsuccessful and was not used in the final system, attempts to combine the use of natural
language rule clauses with a knowledge representation technique based on the underlying
ideas expressed in the clauses. The second solution attempts to assist the users in forming
the appropriate interpretation of the clauses used in the knowledge base. This method is
extended through the use of non-linear documents as a third solution to the problems raised.
Non-linear documents provide a semi-formal approach to problems of differing
interpretations since they allow the users of the system to relate their own interpretations of a
situation to those used by the designers of the knowledge base. In doing so they can
determine whether or not their own situation lies within the boundaries of the knowledge

base.

a. ANATURAL LANGUAGE PATTERN MATCHING
SYSTEM

Many of the problems of knowledge in semi-formal domains that were discussed in
Chapter 3 arose because of the prominence placed on natural language communication
between the experts, knowledge engineers and users of the expert system. Other means of
communication, such as the use of diagrams may help overcome these problems, however the
dominant means of communication in the development and use of expert systems is still
natural language and therefore this chapter will concentrate on the problems that relate to this
area. It will also provide assistance with some of the problems of tacit knowledge described
in Chapter 3.

103

It can be argued that many of the problems of misinterpretation in semi-formal
domains are introduced when attempts are made to represent the linguistically expressed
knowledge of the human experts in some other formal representation. One way of
overcoming this problem, therefore, would be to keep the knowledge in the knowledge base
in a natural language format. In the case of the production rules found in PESYS this means
that the if-clauses and then-clauses of the rule are simply natural language clauses (plus the
predefined commands available in PESYYS).

Doing this may, however, impose considerable restrictions on the developers of an
application. The matching algorithm that, for example, is used to compare the if-clauses of a
rule with the then-clauses of other rules, will only operate if the two clauses are exactly the
same and this forces the developers of an application to use exactly the same wording and
spelling if clauses are to match. In many cases a difference of wording will arise depending

on whether the clause is found amongst the if-clauses or then-clauses of a rule.

IF the machine was still warm THEN
and

IF ... THEN the machine is still warm

The problem becomes more acute when different rules are entered at different
periods of time and are heightened when different developers are involved in writing rules
for a particular knowledge base. These problems suggest that it is very unlikely that the same
phrasing will be used for all occurrences of a “particular' clause and therefore some solution
must be developed to overcome this problem.

Consider the clauses "An information system could be used to control the
distribution of resources" and "The distribution of resources could be controlled by an
information system". Most people who examine these two clauses will state that they are
basically the same because they both refer to the same “idea’ with identical parameters. One
solution to the problem of matching clauses would be to represent the clauses in terms of
their underlying idea and use this representation in the matching process. The original rules
could still be written in natural language form and the PREPARE program would convert
each of the clauses into this new form, storing the results in the .RLC file. This coded
version of the knowledge base is likely to be more compact than the original and will

therefore operate more efficiently.

104

I. A method to find the underlying idea in a clause

Consider the three clauses shown in Figure 6.1.

The computer is switched on
Someone has switched on the computer
The television has been switched on

Figure 6.1 - Three clauses about switching on

The first two clauses have a very similar meaning (the extra information provided in
the second clause is unlikely to be significant to the operation of the expert system) and all
three clauses refer to the idea of something being switched on. In the first two clauses it is a
computer that is switched on, in the third it is a television. The underlying idea could be
taken to be the device (computer or television). However, as will be shown below, there are
advantages to associating the idea with the main “action’, namely switching on. The terms
“idea’ and “action' may limit the identification of what is being conveyed by a particular
clause and hence the term relation will be used to instead. Thus in a clause such as "The
patient's age is greater than 21" the relation is taken to be "greater-than".

In the previous examples, therefore, the relation would be "switched-on". However it
is still necessary to distinguish between a television that is switched on and a computer that is
switched on. This is done through the use of parameters. Every relation has associated
parameters which determine the kind of thing that the relation is concerned with. In the case
of "switched-on" only one parameter is needed, namely the thing that has been switched on.
In the examples, this thing is either a computer or a television; more generally it might be an

electrical device.

Defining relations

If this method is to be implemented in an expert system it is necessary for the
computer to identify the relation and the associated parameters. Current computer based
systems have no inherent “intelligence’ and implementations of natural language

“understanding’, in anything other than very restricted domains, are highly prone to error.

105

This means that the computer, per se, has no way of identifying the relation and parameters in
a particular clause. The only solution available, using current techniques, is for the system to
be explicitly told about such relations. The simplest way to do this, in a convenient,

computable form, would be to declare that

Switched-on Kind-of Relation

i.e., "switched on" is a kind of relation. To identify the relation in a clause, the system would
simply examine each word in the clause and determine whether it was a kind of relation, i.e.
it would look up the word in the knowledge base to see if it was marked as a kind of relation.
If the word was not, the system would move on to the next word and this process would
continue until a relation was found. Once the relation was found, the word would be marked

as being "in use™ and the system would attempt to find the parameters for the relation.
Defining parameters

The parameters for the relation need to be defined in a similar manner to the relation,
however there must be some way of distinguishing between the parameters and incidental
words found in the clause. One common method used in artificial intelligence work is to give
the parameters a “type'. In the previous examples, the type of the parameter was electrical
device and so the parameter for switched on would be declared as

Switched-on Needs Electrical_device

i.e. "switched-on" needs a parameter which is an electrical device. It is possible to list the

types of certain words in a similar manner to the relation

Computer Kind-of Electrical_device

Television Kind-of Electrical_device

Thus to identify the parameters of a particular relation the system will simply

examine each word in the clause that has not been marked as being "in use" and will check to

106

see if it is a kind-of electrical device. This process is then repeated until all the parameters

for the relation have been identified.

Some problems

One problem that immediately becomes apparent arises when a relation has a number
of parameters of the same type. For example, the relation "likes" may have two parameters,
both of type person. The method, as described, would therefore take the clause "John likes
Mary" and, whilst it would correctly return the relation as "Likes", would incorrectly return
the parameters as John and John. This occurs because the system simply begins at the start
of the clause when finding the next parameter and John is the first thing which is a kind of
person that it comes across on both occasions. This problem can easily be overcome by
marking as in use any parameters found and hence the same word will not be considered for
two different parameters and therefore the system will return the correct parameters, namely
John and Mary.

Another practical limitation of the current method is that it only allows a relation to
have one set of parameters. In practice this is unlikely to be true and so imposes an artificial
limit on the operation of the system. It would be more natural for the system to allow many
sets of parameters for a particular relation. Each set of parameters is therefore examined
until values can be found for all of them. Thus the clause, "John likes rice-pudding”, would

require the declarations in Figure 6.2 to be made.

Likes kind-of relation
Likes needs person person
John kind-of person
Rice-pudding kind-of food
Likes needs person food

Figure 6.2 - More sets of parameters for the relation Likes

In this example, the system will try the first set of parameters (person person) and
will find one of them (John), however a second person will not be found. Since all the
parameters have not been found, the system will then move onto the next set of parameters

(person food) for the relation likes, which in this case would be satisfied.

107

This automatic method of converting the clauses into a relation and parameters can
be implemented in the PREPARE stage of the development process and the clauses in the
.RLC file will be made up of the relation and its parameters rather than the original full text
clauses. This means that the comparison of clauses will be much more efficient, both
because it allows differently worded clauses to be compared and also because significantly

fewer words will normally need to be compared, see Figure 6.3.

rule-1 rule-1

if if

the computer is switched-on switched-on computer

then then

the fault is not with the power supply not-faulty power supply
rule-2 rule-2

if if

there is a power-on-light shining shining power-on-light
then then

the computer was switched-on switched-on computer

Figure 6.3 - Full text and encoded relations

ii. Inheritance

In the examples discussed so far, the actual parameters have had the same types as
the formal parameters; John was a person and rice-pudding was a kind of food. In many
cases, however, this direct relationship will not exist; the actual parameter will be an object
that has a particular type, which is itself an example of a more general type which matches
the formal parameter, i.e. rice pudding would be an example of a pudding, which is a kind of
food. Artificial intelligence researchers have developed inheritance mechanisms to deal
with such situations whereby an object can inherit properties from more general objects
(Winston 1984).

Using some form of inheritance has a number of useful computational features.
Firstly it is considerably more efficient in terms of storage space. Consider an expert system
that stores information about a number of people. Instead of storing all the attributes that

people can have with each person, they only need to be stored once as a “generic' person.

108

Individual people can then inherit these characteristics from the generic human. Inheritance

can be implemented in a manner consistent with the previous examples:

John kind-of male-human

Male-human kind-of person

When the system is searching for a person and finds John, it will determine that John
is a male-human. However, rather than stopping at this point, it will continue and use the
data from male-humans to determine that John is also a person. By implementing the
inheritance in this way, no limit is imposed on the number of stages involved in the
inheritance process.

This is performed in the system by obtaining a list of all the things that John is a kind
of from the knowledge base of the system. Each of these items is examined in turn and if it is
not of the required type then it too is examined further. This process continues until either

the correct parameter has been found or there are no more paths to be considered.

Some problems with inheritance

In many implementations of inheritance problems arise when more than one path can
be followed within the inheritance. In these cases a decision must be made as to which path
should be followed irrespective of the domain concerned. An example of this problem is
based on the former American President Richard Nixon. Nixon is a Quaker and Quakers are
pacifists. Therefore an inheritance system which has information about Nixon would, by
inheriting through his being a Quaker, determine that he would not be prepared to fight for
his country. However Nixon is also a Republican and Republicans believe that certain
things, such as one's country, are worth fighting for and hence inheritance through the fact
that Nixon is a Republican would determine that he would be prepared to fight for his
country. The choice of inheritance path is therefore crucial for deciding whether the system

returns that Nixon would or would not fight for his country, see Figure 6.4.

109

FIGHT FOR COUNTRY?

S

QUAKER REPUBLICAN

A

NIXON

Figure 6.4 - The "Nixon diamond'

A second problem found in inheritance mechanisms arises when default values are
used. Default values are often inherited from “generic' objects and are used when no specific
values can be found. Thus a generic computer may have a screen, a keyboard and a disk
drive and it is not necessary to specify that every particular computer has a disk drive since
this can be inherited as a default value from the generic computer. If a particular computer
does not have a disk drive, then this is stored as a fact associated with the particular computer
and the default values are not used. This general mechanism causes some problems,
however, when a particular object has attributes in addition to the default values. For
example, an Apple Macintosh has a mouse as well as a keyboard input device. If the mouse
is stored at the level of the Apple, the standard inheritance mechanism will not determine that
the Apple Macintosh has a keyboard.

To a large extent, these problems are avoided in the PESY'S system since only the
type of a parameter is searched for, not the attributes of that type. In general, the problems of
default inheritance and multiple inheritance paths only lead to problems when the attributes

of these types are considered, for example, Nixon being both a Republican and a Quaker only

110

causes problems when inheriting whether he is prepared to fight for his country or not and
the inheritance mechanism operates successfully when simply determining whether he is a

Quaker or a Republican.

Iii. Statements presented to the users

Although the converted clauses are now much shorter, leading to faster comparisons
and more compact storage, they are not particularly easy to read. If the users are presented
with the question "Is this true: Switched-on John Computer", they are unlikely to have a clear
indication of what the question actually means and the problems of misinterpretation, already
present in semi-formal domains, will be significantly worse.

Since the relation based form of the clause stores all the “significant' parameters of
each relation it is possible to “recreate’ a more understandable version of the clause. This can
be done by defining a general pattern for the relation and parameters. For example, a pattern
for the switched-on relation with a person and a machine could be "Person switched the
machine on". When the pattern is used the actual parameters replace the formal parameters.
Thus the relation "Switched-on John Computer" would become "John switched the computer
on". Note that in the “recreated’ version of the clause, the actual relation is not (necessarily)
displayed.

The pattern for a relation can be represented in a similar way to the rest of the data,
with the relation name being followed by the keyword and then the translation pattern with

the parameter types declared:
Switched-on Translates Person Switched The Machine On

and it is possible to define different patterns for different sets of parameters associated with a
relation. In a similar manner to finding the appropriate set of parameters, the system
examines each translation pattern until it finds one where all the parameters are present in the
pattern.

This method of recreating clauses is easily adapted to deal with questions which ask
the users to enter a particular value for the clause, rather than whether the whole clause is

true or false. For example, the system may ask "What thing did John switch on?" and then

111

present a list of possible answers, including a television and a computer. The users can then
choose those items that John switched on.

This can be implemented by using a pattern which includes the type of variable to be
varied. In the previous question the pattern was "What thing did person switch on ?
machine" where the last word indicates the item that varies. When the file is PREPAREd a
list of things that inherit the type "machine™ can be created (since this is a computationally

intensive task) and this list can be used whenever the question is displayed.

iv. Implicit relations

Clauses such as "The ball is red" cannot easily be incorporated into the method as it
has been described. The problem begins when trying to find a relation in the clause. The
only obvious relation is the word "is". Selecting this as the relation requires the definition of
a set of parameters associated with the relation. One possible set of parameters would be a
spherical object and a colour. However, such an approach would lead to many sets of
parameters for the relation. The other possibility would be to define the parameters as
something and something. This approach removes all the benefits of the use of types for the
parameters and does not distinguish between the word "the" (which is a kind of determiner)
and the word "ball" (which is something to do with the relation).

Consider the clause "the ball is a red colour”. Most people would agree that it
conveys the same idea as "the ball is red". Why is this so? The answer seems to be related to
the fact that "red" is a kind-of colour and "colour" is a kind-of relation. Thus the word red
seems to imply the relation colour. Thus the general inheritance principles discussed
previously could be adapted to work with relations as well as parameters.

The implied relation can be declared in the normal way:

Red Kind-of Implies
Red Implies Colour

Colour Kind-of Relation

The use of implicit relations means that the designers of an expert system application
are no longer required to use the same tense / phrases to describe the relations. Synonym

relations are possible and this is particularly useful for dealing with the different forms of

112

verbs. For example, the relations creates, created and creating are all variations of the
relation create and hence imply the relation create. By making use of the implied relation it

is only necessary to define one set of parameters and translations.

v. Learning’ about relations

For the system to operate successfully, it is necessary for the developers to provide
information about the various relations, parameters and translations that are used in the
clauses. This information should be provided in as simple and automatic a way as possible
and can best be implemented by making use of the method used by the system to convert the
clauses into this relation based form.

The method begins by taking a clause and searching for a relation. Therefore, if no
relation is found, the system needs to be told about the relation. This can either be done
explicitly, by stating that something is a relation, or implicitly, by showing how an
inheritance link arrives at a relation. The actual forming of the statements such as "... kind-
of relation" can be automatically performed once the name of the relation has been stated.
Whenever a new relation is specified, at least one set of parameters should also be entered by
the developers of the application.

After the relation has been successfully identified the system moves on to finding the
parameters of the relation. There are two ways in which this can fail. Either the existing sets
of parameters are not suitable for the given clause, in which case new parameters need to be
specified, or the types of things in the clause have not been fully described in which case
extra inheritance information needs to be entered.

Finally, the system can prompt the developers of the application for any translation
patterns for the relations, using either the statement or question form of the clause. The
system can then also automatically generate lists of things which inherit the type machine, for

example.

vi. A case study

A small demonstration knowledge base was created to test the usefulness of this

method. A domain was chosen where a substantial part of the knowledge base was described

113

in natural language clauses since, as was discussed in Chapter 3, descriptive definitions in
natural language are likely to be a major cause of problems in semi-formal domains. In this
particular knowledge base, no commands were used and therefore all the clauses were text
based clauses. Further details of the knowledge base are given in Appendix V.

The knowledge base was designed to provide advice to someone considering whether
or not to use information systems to obtain a competitive advantage in a particular business
situation. The underlying knowledge used was taken from the article "The information
system as a competitive weapon" (Ives and Learmonth 1984).

Ives and Learmonth define an application of information systems technology as
having a strategic role if "it changes a firm's product or the way a firm competes in an
industry" (p. 1193). They discuss the work of Porter who identified five major competitive

forces that affect a firm:

The threat of new entrants

The intensity of rivalry among existing competitors
Pressure from substitute products

The bargaining power of buyers

The bargaining power of suppliers

Figure 6.5 - Porter's major competitive forces

Thus to remain competitive the firms can aim for any of three major goals. They can
aim for overall cost leadership, whereby they use information systems to reduce the cost of
their product below that offered by other suppliers. They can use information systems to
differentiate their product from those supplied by their competitors, perhaps by offering
individual design services. Finally the firm can remain competitive by focusing on a
particular market niche and information systems can also be used to help with this task.
Information systems technology can also be used to prevent the threat of new entrants and
reduce the intensity of rivalry amongst existing competitors.

The model that Ives and Learmonth develop is based on the customer resource life
cycle, that is the life cycle of the customers' interactions with a firm from the initial selection
of suppliers, through the acquisition and use of the product to the final after sales service. By
concentrating on the customer throughout the life cycle, special attention can be paid to
enhancing customer services which will have a direct effect on customer loyalty and will

differentiate the firm from its competitors.

114

As well as describing the model in some detail Ives and Learmonth also provide a
number of examples of actual information systems in each of the thirteen stages of their
model. The knowledge base is designed to cover all thirteen possible areas where the
introduction of information systems technology may offer the company a competitive
advantage and includes a number of actual examples for each stage to provide guidance to the
user. Thus rather than asking "Can an information system be used to determine how much of
a resource is required?" the users are asked if a condition similar to one of the examples
exists in the organisation. If a similar example exists then information systems technology is

potentially useful for that stage of the customer resource life cycle.

vii. A discussion of the problems with the method

Although the system was implemented and operated satisfactorily, a number of
problems were noticed which suggested that there might be fundamental difficulties
associated with this method, difficulties that would prevent the adoption of the method in the
final system. In particular, these difficulties were associated with defining parameters for

relations and defining the types of parameters associated with various relations.

Problems identifying parameters

In most cases the relation in the clauses was identified without too many problems,
and it was only when the parameters were identified that problems arose. An example of this
arose from the clause "The resources required can be specified”. In this case the relation is
easily identified as "specified", but problems arise when defining the parameter for the
relation. In this case, the parameter is something to do with the "resources required",
however it is difficult to determine what type "resources™ are. In this particular case, they
were described as being of type "object".

Ideally the parameters chosen should be as general as possible, allowing a wide range
of cases to be covered by a single relation. In many cases, however, there are few clues as to
suitable parameters and the process often degenerates into an ad hoc process that depends
entirely on the particular clause being examined. Moreover, the choice of parameters also

becomes dependant on who is making the decision and the time that the decision is being

115

made. Effectively, the problem of subjective definitions is arising as the knowledge base

designers choose their own parameters according to their own backgrounds.

A possible solution based on semantics

Stamper et al. (1987) describe work that has been undertaken to try and arrive at a
semantic normal form. They argue that the various normal forms that exist in relational
databases approach the problem of normalisation from the point of view of the existing
database structure, not from the underlying domain that the database is trying to model. For
example, a database that is in third normal form has been designed so that valuable
information, such as the address of a warehouse, is not lost when certain data items are
removed. For example, if all the items in the warehouse are removed, the address of the
warehouse should still be accessible. Similarly the updating of information should be
performed without the risk of redundancy. Thus the telephone number of the warehouse
would ideally only be stored once in the database, so that only one field needs to be altered if
the phone number changes.

Whilst this approach is very useful for dealing with data once it has entered the
database, it provides no way of dealing with changes that occur in the underlying domain that
the database is trying to model. For example, the database may still be able to obtain the
address of the warehouse when there are no items stored in the warehouse, however it is not
able to cope with a change in the organisation whereby parts are no longer stored in the
warehouse but are instead delivered directly from third party suppliers on the basis of a
request from the company.

Stamper et al. propose the foundations for a semantic normal form which attempts
to make explicit the underlying semantics of the problem domain. The methods used to
perform this task are semantic analysis and ontology charting which are described in more
detail by Backhouse and Liebenau (1990). Semantic analysis involves examining a textual
description of a particular organisation or process and analyzing the main terms used. These
terms are classified according to the role that they play in the description, whether they
describe things, conditions or states. Once the basic terms have been obtained and classified
they are presented in an ontology chart. The ontology chart shows what things must exist
before other things can exist. This necessity is represented by having things on the right of

the diagram ontologically dependent on those to their left.

116

AUTHOR

WRITES

BOOK

Figure 6.6 - A sample ontology chart for books, authors and writing

Thus, for example, a book does not depend ontologically on its author, it can exist for
many years after the death of the author, after the author does not “exist' in any real sense.
However, the "writing" of a book depends on both the author and the book. The book cannot
be written without the author, see Figure 6.6. In the warehouse example, the delivery of
parts depends on the parts existing in a warehouse, but this warehouse does not have to be
owned by the company.

Ontology charting and semantic analysis may well prove to be useful in the
development of "stable™ expert systems and further research in this area is needed. However
at the time when the problems of defining parameters were first noted research in semantic
analysis was not sufficiently well advanced so that it could be used in this thesis.
Furthermore, there were other problems associated with finding parameters that would still

cause problems, even if the knowledge base was in a semantic normal form.

Problems with type hierarchies

117

Defining type hierarchies in the development of the relations also caused
considerable problems. It was found that in many cases things were simply given the type
"object" as no more descriptive form could be found. This causes a number of problems. In
particular it removes the potential advantages associated with a strong typing of parameters.
If everything is called an object then no distinction can be made between "objects which have
motors in them" and "objects which can operate on abstract data”. In those cases where
distinctions were attempted, they tended to result in ad-hoc combinations of terms, carefully
tied together using underlines. In the previous example, the clause "a round_the_clock
order_entry_system has been created" lead to round_the_clock being described as an object.
On a more practical level, having everything classified under a single type increases the
potential for the system to chose the “wrong' parameter when attempting to convert a
particular clause. This is particularly important when inheritance is used - everything may

eventually become an “object' through inheritance.

Synthetic and organic problems

This problem of defining types runs counter to more conventional work in expert
systems. The LEONARDO expert system shell, for example, includes frames and
inheritance in its basic knowledge representation format yet there are few problems reported
finding appropriate types for the inheritance mechanism. Did the problems with the example
application arise because of the particular implementation of the domain chosen, or were they
more fundamental?

One possible explanation relates to the semi-formal nature of the domain chosen. If
the knowledge base is written for a domain such as the repair of a mechanical device, then
problems with the inheritance of types are less likely to arise because some form of hierarchy
already exists in the device being repaired, in essence the problem is synthetic. The
designers of the device will have decided that, for example, the large wheel would be part of
the drive mechanism, whilst the array of lights is part of the display panel, which is itself part
of the control mechanism. The process of designing the device has lead to a prescriptive
definition of the components and their interrelationships. This prescriptive definition gives
each component a place in a prescribed hierarchy. Thus a wheel is part of the drive

mechanism because that is what it was designed for and, although there may be problems

118

associated with identifying the hierarchy created by the designers of the device, these
problems can be overcome.

If, however, the clauses describe social “creations' then they are likely to be
descriptively defined and there simply may be no underlying hierarchies that can be utilised,
the problems are organic. The clauses therefore describe things that were arrived at through
a process of social interaction between many different actors, operating with different beliefs,
desires and intentions and hence there is no purposeful, central principle which underlies the

process; there are no “designers'.

b. PROVIDING ASSISTANCE WITH INTERPRETATIONS

I. The use of prompts

After careful consideration of the limitations inherent in attempts to develop this
method for semi-formal domains, the decision was taken not to use the approach in later
versions of the PESY'S system. Instead, it was decided that the clauses of the rules would be
kept in their full natural language form and attempts would not be made to try and formalise
them in any way. The problems of writing the “same' clauses in different ways were accepted
and it was decided that the developers would have to ensure that no mismatches arose. It is
possible to support the developers of an application by providing an editor that is designed to
make the repeating of certain clauses as simple as possible.

Despite the failed attempts at finding some representation for the knowledge in semi-
formal domains, the problem of conveying the appropriate interpretation to the users remains.
As the discussion on descriptive and subjective definitions showed, even a text clause that
has not been formalised in any way is liable to misinterpretation. The clause may also
attempt to describe the use of tacit knowledge or tacit skills. The system must therefore
provide some way of conveying to the users the particular interpretation used by the system.
This extra information should allow them to “understand' the question and provide an
appropriate response.

A very simple, but effective solution to this problem involves using prompts. These
prompts would be associated with individual clauses and would be displayed for the users if
they require assistance. The prompt could contain a more detailed explanation of the

question posed, it might provide some indication as to which interpretation was used, it may

119

suggest why that interpretation was chosen over other possible ones or it may be used to
attempt to convey the use of tacit knowledge.

Attaching prompts to the clauses in a knowledge base in PESYS is a relatively
straight forward process. All that is required is for the developers to include the keyword
prompt anywhere in the clause. On the next line, the name of the prompt is specified.
Problems of redundancy and retyping are minimised by using identifying names for the
prompts in the knowledge base and using these names to display the full text of the prompts.
This means that if the wording of the prompt needs to be altered, this can be done easily and
only needs to be done once. Moreover, the text of the prompt itself only needs to be entered
once.

The PREPARE program examines the rules and, in addition to the housekeeping
tasks described earlier, removes any occurrences of the keyword prompt from a clause and
interprets the next line as being the name of the clause rather than the next clause of the rule.
The program EXTRAS presents each of the prompt names to the developers of the
application and they can then enter the text associated with that particular prompt. The
actual prompts are stored in a file with extension .PRO (PROmpt).

When the users are presented with Yes/No questions and the clause in question has a
prompt associated with it, it is possible to add another option to the question display. If this
option is selected by the users the text of the prompt is displayed on the screen until the users
press a key. It is also possible to specify commands as prompts and if the prompt is
requested, the appropriate command is executed. This allows the developers of the system to
make use of other facilities to provide the prompts. For example, it would be possible to use

graphics to help explain the question.

120

1l

A Reasonable Temperature Is In The Range 20.00 To 30.00 Degrees Centigrade ||

1|

Is this true |
The System Is Operating At A Reasonable Temperature ||

Yes No Unknown Explain Prompt |

Figure 6.7 - A question with a prompt

Prompts in requests

In addition to questions, however, the users may also require further assistance when
the system requests certain pieces of information. This causes problems when using the line
editor provided by the Pascal compiler. The line editor does not trap certain key presses that
can be used to indicate that the users want access to the prompt information. In PESYS
prompts are requested by pressing the ESCAPE (Esc) key. However when this is done in the
standard line editor, the result is simply an abandoning of the line currently being edited.

These problems were overcome by writing a new line editor. This editor provides all
the facilities offered by the default editor, such as control over cursor movement by a
character or a word and also allows text that is longer than the chosen window to be entered
as the line is scrolled to keep the edited text in the screen window. The most important
feature of the new editor, and the reason for it being written, is that it traps certain error
conditions such as when the users press ESCAPE (Esc). These error conditions can then be
used by the main program to allow the users the possibility of having a prompt displayed.
The option of making use of the explanation facility of the system is also provided at this
point.

It is possible that the users are half way through entering a value in response to a
request before they realise that they may be entering an inappropriate value. If they press

ESCAPE (Esc) and use the prompts provided, they may decide that their answer was in fact

121

correct and they want to continue editing it. In other cases, they may want to abandon their
previous answer and type in a new value. The default line editing routine does not allow the
re-editing of existing values, however this can easily be incorporated into the replacement
line editor. This has the added advantage of allowing the system make use of default values
which can be altered or replaced by the users. In common with the handling of default values
in most packages, if the first key pressed represents a “character', then this is taken to imply
that a new value is being entered and the previous value is deleted. Any other keypress, such
as a cursor key, is taken to indicate that the existing value is to be edited and the system acts

accordingly.

How Many Revolutions Per Second Is The System Operating At ||

]|

Continue Restart Explain Prompt ||

Figure 6.9 - Prompts within a request in PESYS

Forms

Normally once a request has been satisfied in the PESY'S system, it is not possible to
alter the value entered. At best the system provides a What-if analysis facility to alter the
value after the inference process has been completed. In many applications, however, this is
insufficient and any facility that allows the users to alter values, no matter how limited,
would be useful.

A forms facility was developed in PESY'S to provide some of the extra functionality
required. This is simply a method whereby a background text screen can be displayed with
slots which allows the users to enter values for variables and where the results of expressions

can be displayed. Variable slots contain the names of variables which the users can enter

122

whilst expression slots contain expressions which are evaluated using the current data values
before being displayed on the form. The advantage of using forms is that the users have the
ability to cycle through all the variables on the screen making sure that they all have
appropriate values. The ability to re-edit existing values is particularly useful here. By
keeping a number of related variables on the same form, the users have the opportunity to
alter the values indefinitely until satisfactory values are chosen and the system can then
continue with the inference process.

The variable slots in PESY'S call the variable inputting routines described in the
commands section of PESYS and therefore it is possible to enter strings and reals as values
for variables with specific questions being posed for each variable. It is also possible to enter
minimum, maximum and most likely values using the slider with the most likely value being
displayed on the form. The number of characters of the variable value that are displayed is
independent of the actual value stored. For example, a form may only display the first ten

characters of a name.

Ii. A case study

The PESY'S system was used by Ashwaijit Singh to develop an expert system to assist
in filing income tax returns in India® (Whitley et al. 1989). The system was designed to solve
a particular problem but also provided useful feedback on the usefulness of the system of
prompts provided. Further information about the application is provided in Appendix V.

Income taxes have long been the principal means of taxation in industrial countries.
They are able to generate a great deal of revenue and offer scope for income redistribution
with relatively few distortions. In developing countries such as India, however, they are
often difficult to administer, raise little revenue and offer little scope for income
redistribution. The Indian Income tax authorities undertook to simplify the tax legislation
and introduce computers to the process of filing tax returns. It was hoped that this would
reduce the burden on accountants, allowing them to undertake more rewarding work (Whitley
et al. 1989).

The expert system was designed to be used by someone who has no experience of

Income Tax Legislation and aimed to assist them in filing income tax returns. It was

This work was supervised by the author along the lines indicated in this thesis.

123

therefore decided that the system should present users with simplified questions which would
guide them through the process of filing their returns. This meant that the text of the
legislation was interpreted by the knowledge engineer / expert who provided simplified
versions to be presented to the user. During this process it was noticed that a significant
bottleneck arose when interpreting the legislation.

In some cases, however, the users of the system would require further information
about the interpretation of the clause and in this case it was decided to display the actual
legislation in the prompt. Thus the users were given a simplified version of the legislation
when answering questions and responding to requests whilst the full text of the legislation

was available if needed.

In The Case Of An Individual Being A Citizen Of India Who Being Outside ||
India Comes On A Visit To India In Any Previous Year 60.00 Days In |
Subclause (c) Would Be Substituted By 90.00 Days. |

1|

Is this true
You Are An Indian Citizen Who Is Abroad, Comes On A Visit To India In The ||
Previous Year |

Yes No Unknown Explain Prompt |

Figure 6.11 - A prompt in the Indian Income Tax application

1ii. Discussion of the limitations of prompts

Although the prompts offered by the system provided information about the choice of
interpretation used in the system, also possibly explaining why that interpretation was
chosen, they do not convey to the users how other possible interpretations relate to those used
by the system. For example, the users might be told that if they had left India for the
purposes of employment outside India then their residential status might be altered, but this
would not be of much assistance if they had undertaken voluntary work outside India and

they wanted to know if they were still covered by this particular part of the legislation.

124

Thus the prompts are only really useful if the users' interpretations are closely related
to those of the developers of the system, if they lie within the boundaries of the system and
the prompts are used to confirm this belief. The nature of knowledge in semi-formal
domains, in particular when it is based on descriptive and subjective definitions suggests,
however, that the users are as likely to have interpretations that lie outside that explicitly
covered by the knowledge base. A prompt that is only useful for confirming a particular
interpretation is therefore not entirely satisfactory. What is needed is for the users to see how
their own particular interpretation relates to that used by the developers of the system.

Furthermore the use of prompts with tacit skills can do little more than convey to the
users that a certain skill is to be used and if they do not possess that skill no further assistance
is offered. Thus a prompt would simply state that the users are expected to view the
engineering drawing as the thing it represents and would, in general, not provide assistance
as to how this seeing-as could be attained by those users that did not have the necessary tacit

knowledge / tacit skills.

c. THE USE OF NON-LINEAR DOCUMENTS

This chapter has so far discussed two attempts to overcome the problems of
knowledge in semi-formal domains. The first of these was based on a method which tried to
find the basic ideas expressed in the clauses of rules in the knowledge base. It was found that
this method was not particularly suitable for domains where there was no predefined
structure. The second method attempted to provide information that described the intended
interpretations of the clauses found in the rules. Whilst this was a more successful attempt, it
was restricted in that it only provided information about the chosen interpretation and if the
users had formed other interpretations they could not easily relate their own interpretations to
those used by the system. What is required is some way of linking various interpretations
that is not based on a "deeper understanding' of the domain which may simply not exist. The
final solution examined in this chapter is based on the work of Wittgenstein and Searle on the

boundaries between different items.

I. Wittgenstein and the similarities between names

125

Wittgenstein (1953, §65-69) examines descriptive definitions to see if any common
features exist between different examples of the same name, any features which could be
used to make the definitions prescriptive. He argues that "if you look at them you will not
see something that is common to all, [the things that share a descriptive definition] but
similarities, relationships and a whole series of them at that. ... And the result of this
examination is: we see a complicated network of similarities overlapping and criss-crossing:
sometimes overall similarities, sometimes similarities of detail” (866). Wittgenstein suggests
that no similarities exist between all the things that use a particular name, rather that family
resemblances exist between different, overlapping parts of the things given a particular
name.

The term "expert system™ is an example of a descriptive definition. Possible
similarities between expert systems that could be used as prescriptive definitions for the term
include:

I It is implemented in an artificial intelligence language - but the CATS expert system
(Harmon and King 1985) is implemented in the FORTH programming language.

I The knowledge base is represented as if-then production rules, but PROSPECTOR's
knowledge base is represented using semantic networks (Harmon and King 1985).

I The inference engine of the system is kept separate from the knowledge base - but "[A]ll
too often, expert system developers must alter a problem's logic to make rules fire in the right
order” (Vrba and Herrera 1989, p. 76).

I The system mimics the performance of a human expert - but accounting packages often
perform the same tasks as human experts, i.e. professional accountants, and are not normally
classified as expert systems.

I The system is based on the knowledge of a human expert - but the British Nationality Act
expert system (Sergot et al. 1986) was developed using only the published legislation and no
human experts (i.e. trained lawyers) were involved in the development process.

In fact the only similarities that exist between all expert systems seem to be that they
are computer programs (but then so are word processors, spreadsheets and databases and they
are not normally referred to as expert systems) and the fact that their developers use the name

expert systems for them!?

ZAfter Wittgenstein "Now you are only playing with words" (1953, §68).

126

One possible attempt to overcome this problem would be to introduce some kind of
weighting system. This would mean that if something satisfied, say 70% or more of the
available criteria for a name, then it could legitimately use that name. By attempting to
impose a formal structure where none exists or is appropriate (which is the case with
descriptive definitions) an interesting paradox arises. Consider the case of adding grains of
sand, one by one, to a heap on the ground. Eventually this heap of grains will be called a pile
of sand. If the number of grains of sand in the pile are counted (say N), then a “formal
weighting' process, based on the number of grains, must imply that the addition of one extra
grain of sand to a heap of N-1 grains suddenly makes the resulting amount a pile. The
capabilities of this single extra grain of sand to take the sand beyond the boundary of a heap
and into a pile is counter-intuitive but only arises if a prescriptive definition of a pile is
attempted.

The problem, therefore, arises when attempts are made to try and prescriptively
specify boundaries where no formal boundary exists. Searle (1969, pp. 5-12) argues that the
problem of borderline cases does not show that we do not understand the concept being
considered, but rather that we recognise a borderline exists means that we have grasped the

concept concerned.

ii. Non-linear documents

The final solution to some of the problems of knowledge in semi-formal domains
discussed in this thesis makes use of non-linear documents (NLD) to implement a system
based on Wittgenstein's family resemblances. The term non-linear document technology is
similar in many ways to the notion of "hypertext" which is a glossy but uninformative term.

The standard way of moving through a computer based “document' has its origins in
the reading of paper documents in that the reader starts at the top of the document and then
moves linearly through the document until the end is reached. Of course paper documents do
allow reading to take place in a non-linear fashion. For example, when reading an academic
paper the reader may often jump to the list of references if the text mentions something that
the reader wishes to examine further. Once the references have been examined, the reader
continues reading the main text again. The use of footnotes has a similar effect of altering

the linear reading of the document.

127

The necessity of the reader to keep track of the previous position imposes a
significant limit on the amount of non-linear reading that is possible in a paper based
document. In the case of a computer system, however, such limits are less significant. By
implementing the movement through a NLD as a recursive procedure, a computer based
system can automatically return the reader to the previous part of the document as required.
Moreover this process can be repeated an indefinite number of times, limited only by the

available memory of the machine.

iii. Non-linear documents in PESYS

Non-linear documents within PESY'S are made up of two main components. The
first of these is the text of the "document’. This is stored as a series of screens and each
screen holds text on a particular topic, idea or interpretation. On those occasions where there
is more text than can be held on a single screen it is possible to link a series of screens
together with the users simply pressing PageDown (PgDn) and PageUp (PgUp) to move
between the different screens. Each screen is given a unique name which can be used to
identify it, it also has an internal code number that is used to locate the screen in the NLD
file.

The second component of non-linear documents are the links that are used to allow
the users to move through the document in a non-linear manner. Each screen has a number of
links which are displayed in turn. When a particular link is selected the system displays the
new screen that is associated with that link. Figure 6.13 shows how a number of different
screens can be linked together. This new screen itself has its further links which allow the
users of the NLD system to move through the entire document in a non-linear manner. By
implementing this movement as a recursive procedure it is possible to automatically

backtrace through the screens examined.

128

Y

this is a sample this is a sample this is a sample this is a sample

screen in a screenin a screenin a screen in a

non-linear non-linear non-linear non-linear
document document document document
which is linked which is linked which is linked which is linked

to many other - to many other B to many other - to many other
screens screens screens screens

this is a sample this is a sample this is a sample this is a sample
screen in a — screenin a screen in a screen in a
non-linear non-linear non-linear non-linear
document document document document
which is linked which is linked which is linked which is linked
to many other to many other r-g— to many other - to many other
screens screens screens screens

!

Figure 6.13 - How various screens may be linked together

The NLD is entered by specifying a particular screen. An index to the NLD is kept
in an ordered file and this is used if access to the NLD is performed using the name of a
particular screen. The system uses this file to find the record that is associated with the
name. This record contains the number of the screen and the screen can then be displayed.
The alternative method of using the system involves providing the screen number
immediately. However, this is only possible if the number is known, as is the case in the
system help facility.

Creating a non-linear document is quite difficult to describe since it is necessary to
provide links to other screens which may not exist at a particular time. It is therefore
necessary to continuously update the information when a previously undefined screen is now
defined. When creating a new non-linear document, it is often advisable to layout the basic

structure of the different screens, describing where the links are to be made.

iv. Implementing non-linear documents in PESYS

129

Each non-linear document in PESYS is made up of three files. The first is simply an
ordered index containing the names of all the screens together with their identifying numbers.
These numbers are used to locate the records associated with the screens in the other files.
The main file is made up of records containing the textual information displayed in each of
the screens. In addition to containing the text associated with a particular screen, each record
also contains information as to where the links between screens are stored and also which
screens should be accessed should the users press PageUp (PgUp) or PageDown (PgDn).
The final file contains the links between screens and each record in this file is made up of the
text of the link, where this text appears on the screen, the location of the next link on that
screen and the screen that the link is directed to.

The records in the file are accessed using the random access file handling facilities
provided by the Pascal compiler. These are described in more detail in Boisgontier and
Donay (1988). Essentially the file is made up of a number of records each of which can be
accessed by setting the file pointer to the number of the required record. The first record is
number 0. In the non-linear documents, screen number 0 is used as a general help screen /
index that can be used by the users to move to any other screen in the file. The random
access file handling provided by Turbo Pascal allows both reading and writing of records at a
particular point in the file. This means that it is possible to edit or delete individual records
as necessary. It is important, however, that the individual links are properly maintained
otherwise it will be possible for users to move to previously defined screens only to find that

they no longer exist.

130

Screen file (.NLD)

12 13\ 14 15" g

1617 18 19 20

50 51 52 53

54 55 56 57 58

Link file (.LNK)

Figure 6.14 - How the screens and links are stored in a file

Figure 6.14 shows how the two main files associated with non-linear documents
operate. In this example, the first link from the screen found at position 13 in the file is
found at position 52 in the link file. This link is to screen 17 and the next link on the screen
is found at position 54, which points to screen 15. The third, index file is simply used to find
the number of a given screen by using its name. This is done by performing a binary search

on the ordered file and reading the appropriate record number from the located file. As

Figure 6.14 shows, each screen contains links to a number of other screens and these are

marked by having the screen record contain the record number of the first link record. This

link record then contains the number of the next link record as well as the screen it links to.
Note that the use of random access means that it is not necessary for the links or screens to be
stored in any particular order.

Non-linear documents implemented as commands in PESY'S can therefore be

included automatically in a knowledge base to provide information at a particular point in the
interaction. Moreover, since commands can be used as PESYS prompts, it is possible to

specify a particular screen in the command for a prompt and the system will immediately

131

display this if the users select prompt when answering a question. This is the most likely way
of using NLD technology in PESYS.

NLDs are also used to provide help with the PESYS system in general and can be
selected by pressing the help key F1 at any time. Whenever this key is pressed, the system
provides the help about the current item. By carefully linking these help screens the users are
able to obtain assistance about the current option, other options available at that time and also

the overall use of the system.

INFERENCE ENGINE |
This option is used to alter the configuration ||
of the inference engine of the expert system. |
By selecting this option it is possibleto |
use any combination of the following inference |
methods with a particular knowledge base. |
Forward Chaining [
Backward Chaining [
Mixed Chaining |
Pure Forward Chaining [

This option is part of the configuration menu ||

Figure 6.15 - A help screen in PESYS

v. Using the non-linear documents in PESYS

The process of developing a NLD file for a particular application is rather difficult to
explain and is presented as part of the user guide in Appendix Ill. However, the use of non-
linear documents in the runtime part of the system is much less complicated and will now be
explained.

When the NLD is selected (either by pressing F1, by selecting a prompt or when the
NLD command is executed as part of the knowledge base) the chosen screen is displayed on
the screen. Also highlighted at this time will be the first link to another screen. By pressing
the TAB key it is possible to move the highlight through all the possible links on that screen.
If the RETURN key is pressed on any of these highlights then the system will move through

the link to the next screen. This process can continue indefinitely.

132

Pressing the CTRL and F1 keys at the same time retraces steps through the chosen
screens. This allows movement back through the available screens. Alternatively, pressing
ESCAPE (Esc) will immediately return the users to the main program. Pressing F1 whilst in

a NLD results in the index / help screen (screen 0) being displayed.

vi. Non-linear documents and multiple interpretations

Non-linear documents can be used to allow the users of a particular system to
examine multiple interpretations of a particular term. The initial screen presented to the
users on requesting assistance will convey the interpretation used in the application.
However links will be provided to other related interpretations. Those relations that have
direct family resemblances with the one used in the system will be linked to the initial screen,
whilst others may be linked less directly. The users of the system can then examine the
various screens that are available on the system until they decide that they have been able to
incorporate their own interpretations with those used by the system. When this has been
done, they can return to the questions or requests posed by the inference engine.

As an example of this process consider the use of non-linear documents with an
expert system that makes use of the idea of race as it was discussed Chapter 3. Suppose the
system asks the users to specify their race and they are unsure of what category they should
use. They use the NLD to provide assistance with this question and the system displays
information about the possible categories available as is shown in Figure 6.17, based on the

classification used in Stanford University.

133

The classification of race used by this |
University is

1) Black, not of Hispanic origin |

2) Asian, or Pacific Islander (persons having |
origins in any of the original peoples of the ||
Far East, South-East Asia, the Indian |
Subcontinent or the Pacific Islands) |

3) American Indian or Alaskan Native [
4) Hispanic (persons of Mexican, Puerto Rican, ||
Cuban, Central or South American or other |
Spanish culture or origin, regardless or race) ||

5) Non-minority (persons having origins in any |
of the original peoples of Europe, North Africa ||
or the Middle East) [

See also Skin Colour, Country of Origin

Figure 6.17 - A screen from a non-linear document explaining “race’'

However, the users of the system have an American Indian and Hispanic origin and
are therefore unsure as to which category they should use. One of the available links on the
screen is “skin colour' and when this is selected a new screen is presented, see Figure 6.19,
which explains that skin colour was only used to determine race in the early 1960s in states
like Virginia, where the only options available were white and coloured. In addition, the
system may provide some indication as to how skin colour relates to the categories available
in the system, perhaps suggesting that, for the purposes of the expert system, being an

American Indian takes precedence over any Hispanic origins.

SKIN COLOUR |
I
Skin colour is no longer considered the basis ||
for determining race.
I

However, a dark skinned person may well be |
a Black (group 1) or American Indian / Alaskan
native (group 3). |

I
A lighter skinned person may be Asian or |
Pacific Islander (group 2) or Hispanic (group |
4) ||||
All others are likely to be classified as non- |
minority (group 5) and this should be used for ||
other groups |

Figure 6.19 - A Family Resemblance to “race’ - skin colour

134

vii. Using non-linear documents to examine the boundaries of

the knowledge base

Non-linear documents allow the users of the expert system to examine different
interpretations of the terms that cannot be accurately represented in the knowledge base. The
different interpretations are linked in various ways and by using Wittgenstein's family
resemblances it is possible to guide the users to other interpretations that are similar to the
one used by the developers of the system.

By viewing as many different interpretations as necessary, the users of the system are
able to examine the boundaries to the knowledge base. They can see the interpretations that
are within the scope of the application and they are also able to examine others that lie
outside the boundaries of the knowledge base. In doing so they are able to form a better
understanding of how their own interpretations are related to those of the developers. Even if
their own particular situation lies outside the boundaries of the knowledge base, they will be

able to determine precisely why they are outside the knowledge base.

viii. Non-linear documents and tacit skills

Non-linear documents can also be used to help convey some of the tacit knowledge
used by an application. Whilst the very nature of tacit knowledge means that it is not
possible to fully formalise this knowledge it is possible to provide more assistance to the
users than simply stating that tacit knowledge is used in a situation. For example, consider
the tacit knowledge used in seeing-as in the case of an engineering drawing. The previous
prompt approach would simply state that the users were expected to interpret the diagram.

By using non-linear documents, however, it would be possible to provide some
assistance to those users who do not possess the appropriate tacit knowledge. For example,
the system could display instructions stating that thick lines are used to indicate the outside
edges of the component and that these should be considered first so that the overall shape can
be determined, see Figure 6.21. It can then provide assistance with other parts of the

drawing as necessary.

135

Engineering drawings | [
To try and determine what the diagram |
represents, first consider the thick lines. ||
These are likely to represent the outside ||
of the object. You may also find it useful ||
to draw this outline on a separate sheet of ||
paper. | I
After you have done this and you have formed |
a rough impression of what the object looks ||
like, consider the dotted lines. These |
represent parts which have been cut from the |
object. | |

Page Down (PgDn) for more help |

Figure 6.21 - A non-linear document providing assistance with tacit skills

Whilst this approach will not be perfect, since the very nature of tacit knowledge
means that it cannot be specified, it will at least be of some assistance. In some cases, the
users of the system may possess some of the tacit knowledge required to solve the problem
but they may not feel confident enough to make use of it. If, however, the system can
provide some support in this role they may have the confidence to make use of the skills that

they do possess in conjunction with the functionality offered by the system.

136

CHAPTER 7 - SOLUTIONS TO THE
PROBLEMS OF COMPUTER BASED
KNOWLEDGE BASES

Chapter 4 discussed the problems that arise because a knowledge base is
implemented on a computer system. It was argued that a computer system cannot normally
become aware that the users of the expert system application are confused. This chapter
describes solutions to these problems based on the theory of speech acts that was presented in

that chapter.
a. USING EXISTING COMMUNICATIVE RESOURCES

Suchman's work on plans and situated actions, which was described in Chapter 4,
provides an excellent model for examining the interaction that takes place between humans
and computer systems. The conclusion of her thesis, however, seems to go to considerable
lengths not to state an implication which is present throughout her work. "Today's
machines", she argues, "rely on a fixed array of sensory inputs, mapped to a predetermined
set of internal states and responses. The result is an asymmetry that substantially limits the
scope of interaction between people and machines” (Suchman 1987, pp. 180-181). This part
of her analysis provides an important insight into the problem of human-machine
communication. Unfortunately, her analysis of the "problems for the design of interactive
machines" are overwhelmingly biased against an obvious theme of her research. The three
problems she states are, (emphasis added) "the problem of how to lessen the asymmetry by
extending the access of the machine to the actions and circumstances of the user. Secondly,
the problem of how to make clear to the user the limits on the machine's access to those basic
interactional resources. And finally, the problem of how to find ways of compensating for
the machine's lack of access to the user's situation with computationally available
alternatives” (p. 181).

A major theme of her work has been the fact that there are two parts of the
interaction that are not conventionally made available to the other participant in the

communication. The speech and intentions of the users are not conventionally available to

137

the machine, whilst the design rationale of the system is not available to the users.

Suchman's solutions, as emphasised above, seem simply to tackle the limited availability of
the user’s actions to the machine and she ignores entirely the possibility of making the user
aware of the design rationale of the machine. In part, this is probably due to the fact that she
discusses the problems associated with operating a photocopier which is not the most obvious
candidate for allowing the user to examine the design rationale of the system, yet she is also
trying to find general areas for further research and her omission of this viewpoint is

surprising.

I. Confusion and examining the design rationale

The discussion of confusion and the means by which a computer system can become
aware that the users are confused suggests that it is impractical for the system to try and
anticipate or notice that the users are confused. The realisation that they are confused is
likely to be an action that cannot readily be made available to the machine and, just as
importantly, this realisation can occur at any time. The examination of speech act theory in
the context of expert systems proposes three occasions when this realisation is likely to
occur; three occasions when the differences in background assumptions and interpretations
between the users of the system and the developers of the knowledge base are likely to reveal
themselves. The occasions when the assumed background between the users and the
designers reveal themselves, when they become unready-to-hand, are when the system makes

an assertion, when it asks a question and when it makes a request.

If he does not make such and such a change, I'm going to ask him why. And
if he can explain to me something that's logical and based on sound data,
then I'll go ahead and do what he wants to do. (Benner 1984, p. 138).

This quotation describes how a nurse overcomes a discrepancy between a request
made by a doctor and the request that was expected by the nurse. Although taken from a
field (nursing) that has few apparent similarities with expert systems it offers a useful insight
into the domain independent nature of how the use of speech acts can help overcome any

uncertainty on the part of the users.

138

The nurse is similar to the users of an expert system in that she has an unarticulated
assumed background about the problem domain which does not seem to correspond to that
conveyed by the “expert' in the field as it is exhibited in the request made. When this occurs
she is prepared to accept the advice of the expert only if the expert is able to explain
"something that's logical and based on sound data", i.e. something that allows her to
understand why the expert's opinion is to be accepted, something indicating why the felicity
conditions for requests have, in fact, been satisfied. In the case of the nurse this will be done
by the doctor pointing out something that she has not considered or by the doctor offering a
different perspective on the problem. If this explanation is not satisfactory, however, the
nurse will not voluntarily accept the doctor's request.

The Dreyfus model of skill acquisition, discussed in Chapter 2, suggests that the
production rule formalism used in expert systems is not capable of describing true expertise.
It is, however, an excellent method for conveying competent skills and as such is ideally
suited to justify something to users who are prepared to be corrected so long as they can see
the reason why that alternative should be taken. In this case, in fact, the simplicity and

clarity of the description of the competent skill is a positive advantage.

Ii. Designing support for overcoming confusion

In order to show how tools to support this process are implemented in PESYS, the
act of making an assertion, which arises when an expert system states a goal (or in the case of
PESYS an inform statement), will be considered. Those features that relate specifically to
requests and questions will be described later.

By asserting an inform statement the expert system may cause the users of the system
to realise that they may be confused. This can occur when the system asserts a result that is
not expected or alternatively when the system fails to make an assertion that is expected. The
users will therefore want to resolve the problem. In the PESY'S system assertions are made
whenever a rule fires and one of the then-clauses is marked with an inform level of 1 (goal)
or above (useful information). If the assertion causes the users to realise that they are
confused, then in most cases the computer based expert system will not be aware of this and
the users will have to take the initiative to overcome the problem. The asserted clause is

displayed on the screen and the system waits for the users to press any key. By pressing the

139

SPACE bar the users can indicate that they believe that some confusion has arisen which
they want to resolve.

Upon determining that confusion has arisen, steps must be taken to try and resolve
the misunderstanding that arose. The nature of the confusion is not, in many cases, available
to the system and the system cannot therefore offer any automatically generated solutions.
The theory of speech acts, however, describes general conditions that are assumed (at least
on the part of the receiver of the act) to apply when an assertion is made. As was discussed
in Chapter 4, for a non-defective assertion the speaker is expected to have evidence or
reasons for the truth of the proposition being asserted. It must not be obvious to both the
speaker and the hearer that the hearer knows the proposition (or does not need reminding of
the proposition). Also, a sincere assertion is made if the speaker “believes' the proposition
and the assertion must count as an undertaking that the proposition represents an actual state
of affairs. The notion of commitment in the communication suggests that the speaker is
expected to be "willing and able to articulate why" the assertion is believed.

When the expert system makes an assertion about which the users are uncertain,
there is an implied commitment on the part of the speaker to explain why the assertion is
believed. The nature of computers means that this commitment to explain cannot be
generated automatically. The users of the system, however, can make use of tools that allow
them to determine the reasons why the assertion is believed.

In an expert system, the only evidence for the assertion being made is that a
particular rule fired. The expert system only “believes' in the assertion to the extent that its
working memory contains facts (entered by the user - i.e. indirectly believed) which were
used to fire that rule. Thus using Winston's animal recognition knowledge base (1984) the
only reason for asserting that "the animal is a tiger" is because the rule Identify-10 fired.
This rule only fired because of the facts entered by the user which were added to the working

memory.

RULE IDENTIFY-10
IF

animal is mammal
animal is carnivore
animal has tawny colour
animal has black stripes
THEN

animal is tiger

Figure 7.1 - Winston's rule for identifying a tiger (Winston 1984, p. 282)

140

In this case, the “belief' in the animal being a tiger follows directly from the facts that
are known to be true and the rule that was fired. The rules in the knowledge base can
therefore be seen as the means by which the experts and knowledge engineers convey their
belief in certain assertions. It is possible, however, that the eventual rules used may
misrepresent the intentions of the expert if there have been problems in the knowledge
acquisition or implementation stage of the development process. Such cases of
“unreasonable’ rules leading to unjustifiable assertions would be observed and ignored by the

users of the system who can then use the system to follow other reasoning paths (see below).

Ii. Implementation of the support

An assertion is made when a rule with an inform marked then-clause is fired. The
rule can only fire if all the if-clauses of the rule are known to be true (i.e. are found to be true
in the working memory of the system). It is therefore advisable to display the entire rule for
the users of the system indicating the if-clauses that are known to be true. In general,
however, some if-clauses may be known to be false and others may be unknown and all three
types should be displayed. In PESYS a v is used to signify those clauses that are known to be
true, X is used to signify clauses that are known to be false and ? is used for clauses whose
truth is unknown. Commands, which are "true" by default, are marked with - to show their

special status. A typical rule is shown in Figure 7.2.

141

Ll
Explanation

We are trying to verify :The System Is Operating At A Reasonable ||
Temperature |

Rule 2.00 |

If I

2 The System Is Operating At A Reasonable Temperature |

2 It Is Not The Case That There Do Seem To Be Fumes Being Given Off By ||
Then |

The Operating Environment Of The System Is Acceptable ||

Exit to previous level How was this derived? Why ask this question? ||
Other Clause Scroll Rule |
|

Figure 7.2 - An explanation in PESYS

When commands such as comparisons and variable manipulations are used it is
useful to have the actual values displayed on the screen rather than simply stating that the
commands were executed and the comparisons evaluated. Thus rather than just specifying
that Number_of _components > 20 was true, the actual value of the number of components
should also be shown. When commands such as Enter are used, it is possible to specify a
large number of variables that are to be requested from the users and their actual values may
be longer than one line. In such a case, the system only displays one screen line of values but
allows the users, through the scroll rule option, to highlight the particular line and scroll
through all the possible values. The scroll rule option is also used when the if-clauses and
then-clauses in the rule cannot all be shown on the screen at the same time and an example of
such a rule is shown in Figure 7.4, with the same rule in a scrolled form shown in Figure
7.6.

142

Explanation
We are trying to verify :The Expressions Have Been Evaluated ||

Rule-4 |

If I

- Let Result =0 ---->0 |

- Let Coefficient = .27 ----> 0 [

- Let Error_range = 4.45 ----> 4.45 |

- Form Descrip.frm [

- Form Moreinfo.frm |

1.00 « The Setting Of The Device Are Reasonable |

2.00 v The Operating Environment Of The System Is Acceptable ||
- Enter Parameter_1 Parameter_2 Parameter_3 Parameter_4 ----> 23.00 ||
? The Expressions Have Been Evaluated

Then |

More to follow ... |

1l

Exit to previous level How was this derived? Why ask this question? ||
Other Clause Scroll Rule |
|

Figure 7.4 - An explanation based on a long rule

Explanation
We are trying to verify :The Expressions Have Been Evaluated

- Let Error_range = 4.45 ----> 4.45 [

- Form Descrip.frm |

- Form Moreinfo.frm |

1.00 + The Setting Of The Device Are Reasonable |

2.00 » The Operating Environment Of The System Is Acceptable |
_1 Parameter_2 Parameter_3 Parameter_4 ----> 23.00 45.00 56.00 67.00 ||
? The Expressions Have Been Evaluated

Then |

Form Resultl.frm

Form Result2.frm

Form Result3.frm

There Should Be No Problems Operating The Device |

Exit to previous level How was this derived? Why ask this question? |
Other Clause Scroll Rule |
|

1l

1|

Figure 7.6 - The same rule after scrolling

Iv. Understanding the justification for the clauses

In some cases, simply viewing the rule that was fired will be sufficient for the users

to accept that the assertion made was both reasonable and appropriate. This is particularly

likely to be the case when the users have forgotten or failed to consider a possible link

between various conditions and the assertion made.

143

In other cases, however, simply displaying the rule that fired will not be sufficient to
allow the users to resolve the confusion that has arisen. They may accept that if certain
conditions are true then a certain assertion can be made in good faith but they disagree that
the conditions for making the assertion have in fact been met. The users should, in these
circumstances, be able to see the rationale behind the if-clauses in the particular rule to see
how they have come to be known to the system, i.e. the justification for these if-clauses needs

to be made apparent.

Selecting the if-clauses

Since most rules will have more than one if-clause it is necessary to select the
particular if-clause that is being examined so that the justification or rationale for why that
clause is known to be true can be examined. It is possible to examine the rationale behind all
the known if-clauses, but each one needs to be examined separately. On machines that have
high resolution screens and mouse type pointing devices, the most appropriate method of
selecting a clause to be examined would be to move a pointer to the clause and pressing a
button on the mouse. On a standard IBM PC, without a mouse type input device, a more
feasible method would be to number the known if-clauses (i.e. those clauses that are not
commands and whose truth is true or false but not unknown). To examine a particular clause,
the users simply need to enter the number of that clause. Rules with only one known
if-clause will cause that clause to be automatically selected and only valid choices will be
accepted by the system. The clause chosen to be examined can be determined from its
number.

Once the clause has been identified, the means by which it was added to the working
memory needs to be found. The inference engine in PESYS only allows clauses to be added
to the working memory in two ways. They can be arrived at as a result of a rule firing or they
can be entered by the users in response to a question. It would be possible to store the rule
used to arrive at a clause with the clause in working memory, however this method is rather
wasteful of memory, particularly since many of the clauses may not need to be examined by
the users.

An alternative method would involve examining all the rules that contain the clause
in its then-clauses and seeing which of these rules fired. These rules could then be used to

provide the explanation. At first sight this seems to be a computationally intensive task,

144

however it should be borne in mind that only those rules that have fired need be examined
(since the clause can only be arrived at when a rule fires) and it is possible to mark those
rules that have fired with a boolean flag. Moreover, in most applications the number of rules
fired will only be a proportion of the total rules found in the knowledge base. If no fired
rules could be found which contain the clause in their then-clauses then it follows that the

clause must have been entered by the users.

Multiple rules that have fired

Some knowledge bases may have more than one rule which fires adding the
particular clause to the working memory and in these cases the users are asked to select the
rule which they wish to follow the reasoning through. Once the rule used has been selected,
it can be displayed to the user in the same way as before.

In some cases, displaying the rule that asserted this fact may be sufficient for the
users to accept the original assertion, in which case they can return to the previous level and
continue with the inference process. In other cases, however, they may still want to examine
the if-clauses of this rule further in which case the entire process is repeated again
recursively.

The resolution of the confusion depends very much on the tacit skill of noticing
problems which was discussed in Chapter 3. In addition to being a tacit skill, the noticing of
confusion is highly influenced by situational factors which cannot be determined in advance
by the designers of the expert system or the developers of the application and it is therefore
impossible to plan for it arising. There should therefore be no limits on the amount of
browsing in the knowledge base that the users can undertake and, indeed, they should be
encouraged to perform this task until they are completely satisfied that the felicity conditions
for the assertion have been satisfied.

In practice there is a slight memory limitation in the PESYS system as it stores the
previous screen image as each rule explanation is displayed. This is only likely to cause a
problem if a single line of reasoning is examined to a considerable depth. Differences in
interpretation are likely to reveal themselves at a far earlier stage than this however and so

problems are unlikely to arise in most applications.

145

v. Why-not justifications

The description that has been presented so far has concentrated on allowing the users
of the system to examine how the felicity conditions associated with making an assertion are
satisfied. The need to examine the felicity conditions of an assertion may also arise when a
particular assertion is not made. The realisation that something “ought' to have been asserted
can only come about when the system performs a particular act. From the discussion of
confusion, the users of the system can only realise that an assertion ought to have been made
when some other assertion is made instead (or when an unexpected question is asked or an
unexpected request is made - see below). In the case of assertions, therefore, it is only when
the system makes an assertion other than the one expected by the users that they will realise
that confusion has occurred.

Felicity conditions can again be used to help determine why a particular assertion has
not been made. For a rule to fire and make an assertion its if-clauses need to be known to be
true. One possibility, therefore, is that the responses made by the users have caused some of
the if-clauses of the particular rule to be entered as false when they would need to be entered
as true for the rule to fire and the assertion to be made.

The second possibility is a direct consequence of the way in which the inference
engine is implemented and used since it is possible that the required rule has not fired simply
because the truth of some of its if-clauses are not known; they have not been considered yet.
If the users are to examine the design rationale of the system, to follow the felicity conditions

of the assertions, then these cases must also be considered.

Expected assertions are not made

When the system fails to present an expected assertion the users must be able to
examine how this came about. Since the expected assertion has not been made, the rule that
didn't fire is not immediately available to the system and, more particularly, the system has
no way of determining which assertion was expected.

From the use of inform levels in PESYS knowledge bases two paths can be followed
to select the rule that would have fired to make the expected assertion. The users can choose
to examine a particular goal to see the reasoning that would need to be followed for that goal

to be arrived at. Alternatively the users may choose to start the examination from a particular

146

inform 2 statement, particularly if the assertion was an intermediate statement. A list of rules
which contain inform 1 then-clauses (goals) and a list of rules containing inform 2 statements
are created when the knowledge base is loaded and they are used to allow the users to select
the reasoning path they want to follow and the choices available are shown in Figure 7.8.
Depending on the choice made, the appropriate list of clauses is shown and the users are

asked to select the reasoning that is to be examined.

Do you want to examine the reasoning path of ||
1 - Another goal
2 - Another inform clause |

1|

Figure 7.8 - The option to examine other goals or other clauses

The appropriate rule is then displayed in the same way as for assertions that have
been made. Once the rule is displayed, a second problem arises, one which is particularly
important for those occasions where a rule has not fired because the necessary information
has simply not been obtained. Previously all the if-clauses were known and the means by
which they were known could be examined. In the case of an assertion that has not been
made, however, not all the if-clauses are known, or they are known to be false. Assertions
that are known to be false can be tackled in the same way as those that are known to be true,
but those that are unknown need extra support to deal with them. Whereas previously the
system allowed the users to examine the reasoning through rules that fired, clauses that are
unknown can only be examined through rules that have not fired. In PESYS this is
performed by considering all the rules that could be used to assert the requested fact, not just
the ones that have fired. Another consequence of this is that the choice of clauses to be
examined must now include all the possible clauses rather than just those that are known to

be true.

147

Rousset and Safar (1987) describe a system that provides negative and positive
explanations in an expert system. They give no indications, however, as to why such
explanations are required. The explanations generated are not particularly easy to understand

either, as is shown in Figure 7.10.

Why-not bidding = diamonds?
- possible bidding = diamonds
- possible bidding = the longest
- two long suits hand
- biddable spades
- biddable diamonds
lengthl <> length2
the longest = diamonds
but
bidding = the biddable major suit
- preferring major suit
We cannot then conclude on bidding = possible bidding

Figure 7.10 - A negative explanation from the system described by Rousset and Safar
(1987)

vi. Questions and requests

In many respects the way that the design rationale of the system is made available
when questions and requests cause the users to realise that confusion has arisen is very
similar to that for assertions. Questions and requests do, however, differ in that they are
made in order that a particular rule will fire rather than being a consequence of a rule having
fired. As in the case for assertions however, the sincerity for the acts is simply a
consequence of how the knowledge base was written and how the inference engine uses the
knowledge base.

When a question or request is being performed, therefore, it is being performed to
make a particular rule fire. This, again, is the extent of the sincerity behind asking the
question or making the request. If the rule that is being examined is then displayed for the
users it will provide information as to which clauses will be arrived at (and possibly asserted)
if the question is answered appropriately or if the response to the request satisfies a certain

condition.

148

In some cases, however, simply being told that a question is being asked to arrive at
certain then-clauses is insufficient to overcome the confusion that has been revealed. In these
cases the system must provide further information relating the clauses of the rule to other
rules in the knowledge base. Since the inference engine is simply manipulating the
knowledge base that was written by the knowledge base designers, the only reason for asking
a question or making a request is that it will allow a rule to fire which adds then-clauses to
the working memory of the system, which allows another rule to fire ... until a rule fires
which adds a goal (inform 1 statement) to the working memory. This is the rationale behind
performing the particular act when the inference engine is doing a backward chain and forms
the basis for the explanation provided. When forward chaining is taking place no further
explanation can be provided because no other rationale exists for the act to be performed.

The explanations for backward chaining can easily be generated from the backward
chaining system. Whenever the backward chaining algorithm recursively considers a new
rule, the current clause and the rule that it is found in are stored in a special stack. When the
explanation of the request or question is being created, the necessary information can be
found on this stack. This process can be repeated until the rule that will be fired to add a goal
clause to the working memory is found and the stack is therefore empty.

As well as providing assistance with the questions and requests that are asked on
some occasions it is beneficial to examine questions and requests that could have been made.
The system may ask the users about topic A when they are expecting to be asked about topic
B instead. In this case a why-not type explanation is required. However, the number of
possible questions or requests made by the system is normally large. PESYS, therefore uses
the previously described other clauses option instead and allows the users to examine other
goals or other inform 2 clauses. This particular choice is made because the questions or
requests are only considered to be significant in relation to the inform statements that they

are used to arrive at.

How this method differs from more conventional approaches

The method of explanation described above differs from more conventional

approaches in a number of respects which will now be summarised. One of the main

arguments that has been presented in this thesis has been that the users of the expert system

may form a different understanding of the system or may have different tacit knowledge to

149

that intended by the designers of a particular application. One important consequence of this
is that the users of the system may realise that this difference of interpretation may have
caused confusion to arise. The explanation facility is therefore needed to overcome the
resulting confusion.

The system described above makes use of speech act theory and considers the three
acts that are performed by the expert system, namely making an assertion, asking a question
and making a request. It was argued that for each speech act, the users of the system expect
certain felicity conditions to be met and that their confusion arises when these conditions are
not met. The explanation facility must therefore attempt to show the users why the
conditions were in fact met so that the confusion can be resolved.

In addition to the speech acts that have been performed, the noticing of confusion
may also arise when an expected speech act is not performed. The system therefore allows
the users to examine reasoning paths that could have been followed in addition to those that
were followed. Again this feature is not normally present in conventional explanation
facilities.

The limited communicative resources of computer based expert systems mean that it
is not possible for the expert system itself to be aware of most cases of confusion that have
arisen and it is therefore necessary for the users to initiate and control the use of the
explanation facility. The examination of these communicative resources suggests that the
conventional belief that the expert system can automatically generate the appropriate

explanation for any situation is infeasible.

b. RULE IDENTIFIERS AND MULTIPLE GOALS

In the previous discussion it was implicitly assumed that each inform clause was only
found in a single rule and that each known if-clause in a rule was only arrived at from one
other rule. In practice, however, this is not the case and the system needs to be able to
distinguish between the same clauses that were or could be arrived at using different rules.

In PESYS this is performed by using the rule identifier to allow the users to select
which rule they want to examine. For example, when examining how an if-clause was
arrived at there may be two rules which have (or could have) fired, adding the clause to the
working memory of the system. The rule identifiers of the two rules are then presented to the

users and they select the one which they want to use.

150

The rule identifiers that have been assumed so far are simple titles such as rule-one
or identify-10. When such a list is presented to the users they will have little indication as to
which rule they want to examine. They will either require a printed version of the knowledge
base which they can use or they will have to examine all the rules individually. This is not an
ideal situation.

Moreover, when a rule is presented to the users to enable them to examine the
rationale of the system, it has been assumed that the users are able to determine the intended
effect of the rule simply by examining the if-clauses and then-clauses of the rule. To some
extent the use of natural language clauses in the rules simplifies this matter, but it is likely
that the intended effect of many rules will not be readily conveyed simply by the clauses in
that rule. A description of the intended effect of the rule, which plays no part in how the rule

fires, would be sufficient to convey the intended effect.

Using rule identifiers

PESY'S seeks to overcome these two problems by using the rule identifier as a
description of the intended effect of the rule. The rule identifier is already displayed with the
rule itself in the explanation screens and plays no part in the actual inference process yet is
normally sufficient to convey the intended effect of the rule to the users, see Figure 7.11.
The limit to the length of the rule description is 255 characters, which is the size limit for

strings in the Turbo Pascal compiler used.

151

Ll
Explanation

We are trying to verify :The Fault Is Found At One Setting Of The Device ||

To Check If The Fault Is Found At Two Extreme Settings Of The Device |
If I

2 It Is Not The Case That The Fault Is Found At One Setting Of The Device ||
Then |

The Problem Is With The Servo-mechanism |

Exit to previous level How was this derived? Why ask this question? ||
Other Clause Scroll Rule |
|

Figure 7.11 - Meaningful rule names assist in the explanation

The only obvious disadvantage associated with replacing the rule identifier with a
free text description of the intended effect of the rule arises when the knowledge base is
being debugged since there is no longer a direct way to identify particular rules. However,
most editors now support sophisticated search facilities which enable particular rules to be
identified using their descriptions. Moreover, if required the description of the intended

effect of the rule can include the rule number as well, see Figure 7.13.

Ll
Explanation

We are trying to verify :The Fault Is Found At One Setting Of The Device ||

Rule 2: To Check If Fault Is Found At Two Extreme Settings Of The Device ||
If I

2 It Is Not The Case That The Fault Is Found At One Setting Of The Device ||
Then |

The Problem Is With The Servo-mechanism |

Exit to previous level How was this derived? Why ask this question? ||
Other Clause Scroll Rule |
|

Figure 7.13 - It is possible to include a rule number in the rule description

152

I. Multiple goals

The standard form of inference in PESY'S, described in Chapter 5, suggests that the
system halts as soon as a goal clause has been arrived at. In some cases, however, it may be
desirable for the system to find a number of different goals rather than halting when the first
one is found. This means that multiple faults or hypothesis can be arrived at by the system
and this may be more useful than simply reporting one. Allowing multiple goals differs from
repeating the inference process a number of times since only those goals that are consistent
with the existing known facts are considered.

Multiple goals are of particular use when the facts of the case are not known with
any degree of certainty. Consider a simple expert system that has been developed to
distinguish between different drinks. Two of the drinks considered might be coffee and cola.

The rules associated with these drinks are given in Figure 7.15

this rule fires if the drink is cola
if

the glass and liquid are cool
and the liquid is a dark colour
and the liquid has bubbles

then

inform 1 the liquid is cola

this is a rule to identify coffee
if

the glass and liquid are hot
and the liquid is a dark colour
and the liquid has milk

then

inform 1 the liquid is coffee

Figure 7.15 - Some rules for multiple goals

Consider the case of users who are presented with a strange liquid which is neither
hot nor cold, but which is warm. The liquid is certainly dark and has something in it,
something which might be milk or which might be bubbles. By entering these facts and using
the inference engine to find more than one goal, the users are able to use the system to
examine the rationale behind the assertion that the drink is cola and the drink is coffee. The

assertion that the drink is coffee can only be made if the warm liquid is a hot liquid that has

153

cooled down and the particles in the liquid are milk. Similarly the expert system can only
assert that the liquid is cola if the liquid is a cool liquid that has warmed up and the particles
are bubbles. By examining the reasons for making these different assertions, the users can

decide which of the two assertions best fits the problem situation.

Ii. Implementing multiple goals

Multiple goals can be implemented in PESYS simply by allowing the users to choose
between pressing the SPACE bar when an inform 1 statement has been arrived at and
pressing any other key. By pressing the SPACE bar, the users are indicating that the
inference engine should continue and find any other goals that are consistent with the known

facts.

The inferencing process is now complete

2 goals have been arrived at by the system |
What do you want to do? |

1 - Examine goals that were arrived at |

2 - Examine goals that could have been arrived at |
3 - Move onto what-if analysis or finish |

1|

Figure 7.16 - The display for the completion of the inference process

When the inference process is complete, after the system has arrived at zero, one or
more goals, the users are offered the choice of examining the reasoning of the goals that have
been asserted or examining the reasoning of the goals that could have been asserted, see
Figure 7.16. If more than one inform 1 clause was asserted, the system presents a list of the
asserted statements and their associated rule descriptions and allows the users to select the

one that they want to examine, see Figure 7.18.

154

Ll
Select one of the following |

The System Is Can Be Operated Safely ----> Fired Rule-name: Rule 3.00 ||

There Should Be No Problems Operating The Device ----> Rule-name: Rule-4 |

Figure 7.18 - The goals that could have been arrived at

Since the assertion of a goal is identical to the assertion of an intermediate inform
statement, the system also allows the users to examine the reasoning of any of the possible
goals. Although it would be possible to restrict the choice to all those rules that have not
fired, a more general solution is to list all the possible goals and rules that could be arrived at
and to mark the rules that have been arrived at with the keyword Fired. This allows the users

to examine the goals that were not asserted as well as those that were.

155

CHAPTER 8 - CONCLUDING
DISCUSSION

This chapter summarises the research presented in this thesis and discusses the main
implications of the work. It also describes a number of further consequences of the practical
work described in the previous chapters, linking them to the ideas developed by this research.
The chapter describes the final version of PESYS and ends by discussing further areas for

research.

a. EMBEDDING EXPERT SYSTEMS IN SEMI-FORMAL
DOMAINS

I. The formal approach to expert system design

Chapter 2 of this thesis described two contrasting approaches to developing expert
systems. The first of these takes a functionalist approach to design and assumes that expert
systems operate within a regulated, clearly bounded area which is formally defined. Domains
that are not formal are considered to be informal and are not suitable for expert systems
development. Since formal domains consist of readily identifiable objects and concepts it is
possible to model the domains in an expert system knowledge base using heuristics or rules
of thumb to do this. The knowledge base is seen to lie outside the problem domain and is
often assumed to contain all the knowledge necessary to solve problems in the domain.

Those problems that do arise are assumed to be a result of insufficient knowledge on
the part of the users of the expert system. The expert system therefore takes control of the
interaction, guiding the users of the system in their attempts to solve the problems that they
face, providing them with the knowledge that they do not possess. In its extreme form, this
means that the users are simply considered to be the hands and eyes of the expert system,
performing those actions on the domain that are not possible by the expert system.

The expert system is used as a machine to solve problems and little consideration is

given to the needs or capabilities of the users. In particular, they are not expected to make

156

use of their own intuitions or skills when using the system. This means that minimal support
is provided for those users who, for example, may wish to examine other ways of solving the

problems because other factors in the problem appear to be more important.

Ii. The semi-formal domain approach to designing expert

systems

The functionalist approach to designing expert systems emphasised the distinction
between domains which are formally defined and are therefore suitable for expert systems
developments and those which are informal and are unsuitable areas for using expert systems.
By taking an information systems perspective on this distinction, which considers formal
systems to be a part of informal environments, and computer systems as a suitable technology
for part of the formal system, the concept of semi-formal domains as spanning the boundary
can be seen. These are domains which combine formal and informal aspects in a single
problem area. For example, there may be a set structure to performing a certain task, but the
details of the individual elements in this structure are based on experience and other
subjective factors which would normally be classified as being informal. The domain
therefore comprises of both formal and informal aspects in a single area and therefore it can
be classified as a semi-formal domain.

Expert systems are computer systems and cannot be developed for domains where
there are no formalisable features whatsoever, i.e. for domains which are completely
amorphous, yet there are many domains that combine some formal structure with informal
elements and these are seen as suitable areas for expert systems development. The semi-
formal approach to designing expert systems can be seen to provide an alternative to the
functionalist method.

The functionalist approach to design considers the expert system to be distinct from
the domain that it is concerned with. In particular this means that the knowledge is
“extracted' from the domain (often using metaphors based on the extraction of mineral
deposits) and “refined' for use in the knowledge base of the expert system. The semi-formal
domain approach, in contrast, considers the expert system to be “embedded' in the domain,
forming one part of the ensemble concerned with solving the particular problem being faced.

Other important actors within this complex are the users of the system, the experts who

157

provided the original knowledge and the knowledge engineers who form it into structures that
can be used by the computer system.

Embedding expert systems in semi-formal domains emphasises the role that the users
of the system play. They are no longer considered to be simply individuals who do not know
about the domain, but are now considered to be intelligent actors using the expert system to
assist them in a task. The expert system is therefore used as a tool to help them solve
problems, and by using this tool appropriately, they are able to enhance their own skills and
capabilities. In particular, the system allows them to examine the consequences of their own
opinions about relevant factors in the domain. In doing so, the users may become more
confident both about using the system and accepting its results and they are more likely to
accept the solutions provided by the system.

Consideration of the informal part of semi-formal domains means that the social
processes involved in communication are taken into consideration. In particular this means
that consideration is given to the users of the system in terms of their interpretations of output
displayed by the expert system. Since this is an informal, social process the potential for
problems of communication are considerable, especially if the users of the expert system
have different beliefs and understandings of the problem domain from the designers of the
system. Such problems are made worse because one of the participants in the interaction is a
computer system. To date there has been little discussion of the prospects of programming
computers to take an active part in the negotiation and compromise necessary to overcome
problems of misinterpretation. The problems involved in communication between the expert
system and its users mean that it is not appropriate to talk of the users not knowing about the

domain, but that instead it is necessary to consider the different features of the two parties.

iii. Are formal domains really semi-formal?

Formal domains are made up of regulated objects and concepts and their recognition
and identification is normally independent of experience or subjective considerations. In
semi-formal domains, however, this agreement on terms is not necessarily present and
different individuals may choose to use terms in different ways. The discussion about human
communication and the disambiguation pseudo-problem presented in Chapter 3 suggested
that in practice groups of individuals, through a process of negotiation and compromise,

come to agree on certain usage of terms and concepts.

158

By using this analysis it is possible to see how “formal' domains are constructed. The
domain that is being modelled is not necessarily based on a single, measurable reality which
is originally identical for all possible actors, but is standardised by a group of individuals for
a certain purpose.

The formality of a domain can also often arise as a by product of a purposeful
activity. When, for example, an electromechanical device is designed it is done so to solve a
particular problem and it is constructed in a purposeful manner. A consequence of this is that

the domain has a formal basis that can be used for developing an expert system.

iv. The benefits of considering domains as being semi-formal

The considerations of semi-formal domains that have been described in this thesis
highlight a number of important factors which need to be considered when designing expert
systems, even if the domains themselves are not initially considered to be semi-formal.

Design based on semi-formal domains forces the designers of expert systems to
consider the wider social environment which the expert system is to be a part of. It
emphasizes the role of the users in interpreting and understanding displays provided by the
system and shows that many possible interpretations of a domain can be formed. Expert
systems need to be designed to take such factors into consideration and should offer support
to the users whenever the possibilities of misinterpretation or the lack of tacit knowledge
arise.

This thesis has also examined the problems that arise because a computer based
system is interacting with a human user in detail. When problems arise in this
communication, it is important to consider the functional capabilities of the expert system to
detect and resolve these problems. In particular, a computer system has limited access to
actions that are occurring in the rest of the domain, other than through the key presses made
by the users. Current systems are unable to participate in a process of negotiation and
compromise when differences arise between the model of the domain developed by the

experts and knowledge engineers and those formed by the users of the system.

b. EXAMINING THE BOUNDARIES OF THE KNOWLEDGE
BASE

159

I. The limits to what can be stored in the knowledge base

Chapter 3 examined a number of different examples of knowledge that cannot easily
be formalised and represented within the knowledge base of an expert system. The cases
presented suggest that there are important boundaries to the contents of knowledge bases.

One area of semi-formal domains that cannot easily be represented in a knowledge
base is the use of descriptive definitions. These are descriptions of terms used in natural
language that do not have necessary or sufficient conditions determining their use.
Descriptively defined terms are determined through use rather than from predefined
conditions. Since there is no effective procedure for determining the appropriate use of a
descriptively defined term, it is possible that different groups of actors (for example, the
experts and knowledge engineers and the users of the resulting expert system) will use the
terms for different purposes. It is not possible, therefore, to formally specify the knowledge
required for the domain so that it can be accurately represented within the knowledge base
since other actors may use differing interpretations of the same term.

Subjective definitions are a form of descriptive definition that arise when a particular
descriptive definition is used by a particular group of people, or when the term is used for a
particular purpose. In such situations the possibility of problems arising is heightened since
the intended use of the term is often not made explicit by the person using it. If the person
receiving the utterance is not aware of this intended use, it is possible that problems will
arise.

Tacit knowledge is knowledge that cannot be told, and by its very nature cannot be
represented in a knowledge base. One example of tacit knowledge which was described in
Chapter 3 is the knowledge required to notice problems before they can be specified. In
many cases a problem is noticed before it can be formally stated and it is often noticed by
someone who does not have the technical skills required to formulate the problem that exists.
Tacit knowledge is also used when things are seen as other things.

A final limit to the knowledge that can be represented in a knowledge base arises
because much knowledge about the domain is hidden when things are working as they
should. While no problems arise, the knowledge remains ready-to-hand and only reveals
itself when a problem arises, for example, if the object fails to act in the manner expected,

when it is not present or when its use hinders the task being performed.

160

Ii. Limits to the knowledge base arising from the use of

computers

In addition to the problems of knowledge in semi-formal domains, there are a number
of important consequences of expert systems being implemented on a computer system as
described in Chapter 4.

Computer systems are very limited in the communicative resources that they have
available for accessing the semi-formal domain of which they are a part of. An expert system
normally only has access to the keys pressed by the users of the system and possibly sensors
that are linked to parts of the domain. However, many of the problems described in the
previous section arise because of situational factors, such as who the users are, what their
assumed backgrounds consist of and whether they possess the appropriate tacit knowledge
for the domain.

The role that these situational factors play in purposeful action in general, and in the
interaction with expert systems in particular, mean that it is often not possible to plan for all
the problems that may arise. At best, a plan can be used to point out certain factors that are
likely to be significant.

An important consequence of the computer's role in the interaction arises when
considering the notion of confusion. It is not normally possible to know of confusion at the
time that it arises, rather confusion only reveals itself at some later stage when the interaction
becomes unready-to-hand. In many situations, however, the computer will not be aware that
the interaction has broken down due to its limited communicative resources. In these cases,
therefore, it is up to the users to act when they become aware that confusion has arisen,
although it may be possible for the expert system to provide tools that assist them in this
process.

Confusion is only likely to be noticed when the interaction between the users and the
expert system breaks down. It is, however, possible to devise a domain independent theory
that suggests how the interaction is likely to fail. Expert systems perform three basic speech
acts: they can make requests, they can ask questions and they can make assertions. Each of
these acts has a number of associated conditions that determine whether or not the act has
been performed appropriately. Confusion may therefore be potentially identified if the users
feel that the acts have been performed inappropriately, that these conditions have not been

met.

161

Ii. Software tools to examine the boundaries of the knowledge

base

Chapter 6 presented and evaluated a number of attempts to overcome the problems of
knowledge that arise when an expert system is embedded in a semi-formal domain. The main
problem faced by the developers of current expert systems arises from the use of natural
language as a medium of communication between the experts, the knowledge engineers and
the users of the resulting expert system.

The first solution presented involved attempting to represent a textual clause in terms
of the underlying idea it was attempting to convey. This idea is described in terms of a
relation, which describes the particular “action' in the clause, and associated parameters
which differentiate between versions of the same relation. When this method was used in a
practical case study, however, it was found that there were many problems associated with
the determining the parameters for the relations. In many cases it was not possible to
describe the parameters in any organised way and the result was an ad hoc process.

One possible solution to this problem, which could be the subject of further research,
would be the creation of specialised form of natural language for specifying the clauses. This
language could then be analyzed using a compiler, such as YACC (Yet Another Compiler
Compiler), which would automatically generate the compiled (i.e. relation) form of the
clauses. Since the language used would be artificially created, it may be possible to avoid
some of the problems, problems which emphasize the extent to which the informal aspects of
semi-formal domains are significant. The problems arise because the domain that was being
considered had been created through use rather than being constructed for a particular
purpose. There was therefore no underlying formality that could be made use of in the
development process.

In view of the problems with this method, it was decided that the emphasis of the
research should move away from attempting to represent knowledge in a different way and
that it was more advisable to provide assistance to the users of the expert system as to which
interpretations of the terms were intended by the developers of the application. This
assistance was implemented through the use of text prompts that could be displayed on the
screen if the users required assistance about the interpretation of a particular term.

When the prompts were evaluated using a case study that required many such

clarifications it was noted that, although the use of such prompts was suitable for confirming

162

that the interpretation of the users was similar to that intended by the developers of the expert
system, the prompts were of little use for those occasions where the interpretations of the
users appeared to differ significantly from those of the developers. These differences may
arise because the users' interpretations genuinely lie outside the boundaries of the knowledge
base, but in other cases it might be the case that the users' interpretations are still indirectly
within the scope of the knowledge base, but the users have no way of knowing this.

The final solution to these problems offered in this thesis is the use of non-linear
documents. These are pieces of textual information that can be linked in many non-linear
ways allowing readers to examine related pieces of text at will.

In addition to conveying the intended interpretations of various terms to the users of
the expert system, non-linear documents also allow the users to examine related
interpretations in an attempt to find an interpretation which matches their own. This
interpretation may lie within the boundaries of the knowledge base, or it may lie outside.
The use of non-linear documents allows the users to examine the various boundaries that
exist to the knowledge base to determine whether or not their particular interpretation lies
within it or not.

Non-linear documents can also be used to provide assistance with some problems
involving tacit knowledge. For example, although the skill of seeing-as is based on
experience, there are many occasions where assistance can be provided to help those users
who do not possess this knowledge. In these cases, the use of a non-linear document, which

allows the display of many related items, can be very useful.

iv. Examining the boundaries of a computer based knowledge

base

After allowing users to examine the boundaries of a knowledge base that has been
developed for a semi-formal domain, Chapter 7 describes and evaluates a number of
computer based tools that can be used to extend and open the boundaries of the knowledge
base.

The limited communicative resources of computer based systems mean that in most
cases the computer system will not be aware that the users of the system are uncertain or
confused. From the analysis of these communicative resources it is suggested that these

problems can be overcome by having the users of the system examine the design rationale of

163

the system. Relating this to the speech acts that are performed by an expert system, it
becomes apparent that the design rationale of these acts depends on the conditions that need
to be satisfied for these acts to be performed appropriately.

When one of the speech acts performed by the system causes the users to realise that
confusion may have arisen, it is because the conditions for the act may not have been
satisfied. The design rationale that needs to be examined, therefore, relates to how the
conditions for the act have been satisfied. In the case of making an assertion, for example,
the important condition to be satisfied is that the assertion is "believed'. In an expert system,
this belief is the result of a rule firing. Thus to examine the design rationale behind this
particular act it is necessary to examine the rule that was fired, and possibly indirectly, the
rationale behind the facts that are asserted in that rule. Similar conditions apply to the other
two acts of requesting and asking questions.

In addition to acts that are performed, it is also necessary for the users to be able to
examine those acts that are not performed. For example, when a particular assertion is not
made, it is necessary to determine whether this is a consequence of the knowledge base (does
the assertion lie outside the boundaries of what could be asserted given the known facts), or
is it simply a consequence of the way the inference engine operates in that the particular
assertion has not yet been considered.

When the rules that are used are examined by the users, the intended effect of the
rule is not always apparent. Although the clauses of the rule may be written in a natural
language form, the rationale behind the rule are not always easily identified. The thesis
describes a simple but effective solution to this problem that makes use of the identifier
associated with a rule. Instead of simply being a code number, the rule identifier is used to
describe and convey the intended effect of the rule to the users. When the rule is displayed
on the screen, the rule identifier is also displayed and this provides an indication as to what
the rule is supposed to do.

The solutions presented can be seen as attempts to both avoid and recover from the
problems of semi-formal domains and this might be considered to be inconsistent. Why is it
necessary to provide means of overcoming problems when the thesis also describes methods
that can minimise the possibility of confusion arising? To answer this question it is
necessary to refer back to how these facilities are used. The users will only make use of the
non-linear documents and prompts if they think there might be some problems with the use of
a particular term. If they feel confident about the use of the term then they will not make use

of any further assistance. If their use was, however, inappropriate for the expert system

164

application and they become aware of the confusion then they will have to recover from the
situation. Thus it is necessary to provide both sets of tools since the users tend to assume that
they know what they are doing until they realise they are confused, in which case they want

to recover from the problems they face.

c. IMPLICATIONS FOR THE DEVELOPMENT AND USE OF
EXPERT SYSTEMS

In addition to providing software tools that enable the users of expert systems to
examine the boundaries of the knowledge base, a number of other factors were noted that

have implications for the development and use of expert systems.

I. The conceptual view of the user system interface

One of the main points raised by the comparison of formal and semi-formal domains
is the conceptual view of the user system interface. The formal view considers the expert
system as taking the dominant role in the interaction, controlling the actions of the users in
solving problems. The examination of semi-formal domains provided by this thesis indicates
that there are many practical problems to this approach and proposes an alternative view of
the system.

The interface with expert systems in semi-formal domains is considered to be one
based on co-operation rather than control. This is necessary since the computer has limited
access to the domain and must therefore make use of the responses of the users. The users,
however, may form inappropriate interpretations of the domain, or may not possess certain
tacit skills required to handle a particular situation.

The point that needs to be emphasized is that the users are encouraged to actively
participate in the interaction and not to act simply as passive data gatherers and action
implementers. They should be encouraged to make use of their tacit skills, such as noticing
that a problem may have arisen with the interaction, in conjunction with the facilities offered

by the expert system.

165

By encouraging the users to participate in the interaction it will be possible for the
system to be of some assistance even if the particular situation cannot be resolved. By
examining the boundaries of the knowledge base, the users will at least be able to determine
precisely where their interpretation of the problem differs from that offered by the developers
of the expert system. If users do not take this active role in the interaction, they will at best
be able to determine that their situation is not covered by the knowledge base, without

knowing precisely why.

ii. The “interpretation bottleneck’

Such problems of misinterpretation that can arise mean that considerable effort must
be used in providing useful interpretations of the terms used in the knowledge base, even if
the original domain is reasonably well structured. In many cases, providing suitable
interpretations can become a major bottleneck in the expert system development process.

Domains that are based on some formal representation, such as legislation, may
appear to avoid the problem of knowledge acquisition since the domain knowledge is already
in a form that can be used to construct a knowledge base. However, such domains are
precisely the ones where interpretation is likely to be a significant problem, and it is likely
that the interpretation bottleneck will replace the knowledge acquisition bottleneck.

The need for appropriate interpretations is particularly relevant for areas such as
legislation, since the systems are designed to provide assistance to users who are unlikely to
be completely familiar with the terminology used. However, the interpretations must not
become so over-simplified that they miss out key points of the law. Reconciling these two

considerations is likely to be a time consuming process.

Iii. Reasons for design

Many of the problems raised by this thesis, such as the possibility of
misinterpretation or the limited communicative resources of the computer could, in principle,
be overcome by using collaborative development techniques such as prototyping. Whenever
any of the problems discussed in this thesis arose, the prototype might be modified to

overcome the problem.

166

Indeed prototyping is very common in expert systems development because the
requirements of an expert system application are rarely known in advance and are not
normally formally specified. Prototyping therefore offers a suitable means of arriving at an
operational set of specifications for the expert system. Expert systems can also be considered
to be very high level programming languages and as such support the prototyping process
well. Moreover the inference engine is kept separate from the knowledge base which further
improves this process.

Whilst many problems can be overcome by prototyping the expert system with the
users, the purpose of this thesis is to describe and anticipate these problems before they arise.
If most of the problems can be avoided before the expert system is developed, it will not be
necessary to involve the users in unnecessary prototyping of avoidable problems.

It is suggested that these problems are likely to arise in most applications and it is
therefore advisable to consider them in the feasibility or design stage of the expert system

rather than leaving them to be picked up in the implementation stage.

d. THE FINAL PESYS SYSTEM

USER INTERFACE

NON-LINEAR PROMPTS SPEECH
DOCUMENTS ACTS

INFERENCE EXPLANATION COMMAND
ENGINE FACILITY MODULE

KNOWLEDGE WORKING EXTERNAL
BASE MEMORY INTERFACE

Figure 8.1 - The components of the final PESYS runtime system

167

The description of PESYS that was given in Chapter 5 was limited in that it did not
include those components of the system that were specifically designed to overcome the
problems of semi-formal domains which were described in Chapters 6 and 7. The final

version of the PESY'S system is described below.

I. The different programs in the system

Although the runtime component of PESYS has been extended considerably, it is still
only a single program. However, it now contains a number of extra components in addition
to those described in Chapter 5 and they are shown in Figure 8.1. In particular, the system
now includes a component for making use of non-linear documents and the explanation
facility makes use of the speech act module which is used to help the users of the system
overcome any confusion that may have arisen. The system also provides prompts.

In the development phase, the functionality of the PREPARE program has been
extended to take into consideration the use of prompts. The EXTRAS program now also asks
for the text of any prompts that are to be displayed for the users.

Two extra programs have been added to the development phase, MAKEFORM and
MAKE_NLD. The MAKEFORM program is used to create any forms that are to be used
within an application and the MAKE_NLD program is used to create non-linear documents
to provided assistance for particular applications. Full details of how to use these programs

is provided in the user guide, see Appendix 1.

ii. The different files used

168

EDITOR
(optional)

'

PREPARE

'

EXTRAS PESYS

(optional)

'

MAKEFORM
(optional)

'

MAKE_NLD
(optional)

The DEVELOPMENT PHASE The RUNTIME PHASE

Figure 8.2 - The programs in the final PESYS system

169

The additional programs in the PESYS system mean that a number of new files are
defined by the system. These files, and the programs that create them are shown in Figure
8.3. The new files are .PRO the prompts associated with a knowledge base, .FRM which
contain the forms created by the MAKEFORM program. Non-linear documents make use of
three new files and these are created by the program MAKE_NLD. The files are .NLD
which contains the text screens for the non linear document. The file .LNK contains the
information that links the different screens together and the .NDX file contains the index of

screen names and their associated positions in the .NLD file.

Iii. The important features of the PESYS expert system shell

EDITOR
(optional)

% l

PREPARE
.rlc >
.cfg

EXTRAS PESYS
(optional)
.sns
.pro
MAKEFORM
(optional) .|Og

% frm

.nid

MAKE_NLD .ndx
(optional) Ink

The DEVELOPMENT PHASE The RUNTIME PHASE

Figure 8.3 - The files created by the final PESYS system

The PESY'S system provides a number of special features which can benefit the
developers of expert systems. The developers of an expert system application have full
control over the choice of inferencing techniques used by the expert system and the inference

methods can vary between different knowledge bases. It is also possible to develop

170

applications that make use of a number of different sub-knowledge bases and each of these
can make use of a different form of inferencing. Thus the main application may use
backward chaining, whilst one sub-knowledge base may use forward chaining and another
may use mixed chaining.

The inference engine provided by PESYS is very efficient in terms of speed and size
and allows most of the available memory of the computer to be used to for the knowledge
base and working memory of the system. This means that large applications can be
developed with ease, especially if use is made of sub-knowledge bases. The performance of
the system is such that it is possible to run practical applications using an IBM AT machine
rather than the top-of-the-range machines required for many other expert system shells.

The user interface is consistent and simple to use, yet offers the functionality
required for serious expert system applications. Any specialised input / output facilities can
be provided by using external programs if necessary and the system provides a number of
commands which can be used to improve the appearance of the system.

PESYS also offers a number of special features for knowledge base developers. The
most important of these is the use of inform levels to mark both goals and general statements
that will be of interest to users of the system. The use of inform levels means that problems
of redundancy in the knowledge base, that can arise when the list of goals / hypothesis is kept
separate from the rules used to arrive at them, are avoided in PESYS. This considerably aids
the development of expert system applications.

A number of advanced structures, such as the use of or-clauses and atleast clauses,
are provided within the knowledge base and these can also aid the writing of practical
applications. In keeping with the aims of this thesis, the knowledge base is written in such a
way that it can be easily understood and altered as necessary.

The special features of PESYS that relate to semi-formal domains have already been

described in this chapter.

Applications developed using PESYS

171

The PESY'S system has been successfully used by a number of researchers, other
than the applications used to evaluate the solutions described in this thesis and these
applications have all made use of various features of the PESYS shell.

One important application has been the use of PESYS to implement an effort
estimation model for software development. By creating the model using PESYS it has been
very easy to implement a version of the system which has been successfully demonstrated in
a number of organisations. The application has also been used to analyze the results of a
number of questionnaires that are based on this research.

PESYS has also been used to provide assistance with a piece of legislation, namely
filing income tax returns. Many of the features of PESY', such as the use of prompts and
sub-knowledge bases where made use of in this application and the resulting system was far
more effective than more conventional approaches to the particular problem.

Other applications of PESY'S have investigated the ease with which it can be
integrated with other software packages such as databases or simulation systems. These links
have either been performed by using the expert system to drive the application or by having
the application make use of the expert system. The open nature of PESYS has also been used
to investigate its use for training and to examine the extent to which expert systems should be

used to support rather than control users in particular domains.

e. FINAL SUMMARY AND FUTURE RESEARCH AREAS

The expert system described in this thesis has been developed to overcome a number
of the most significant problems that can arise when expert systems are embedded in semi-
formal domains. These solutions have arisen from an understanding of the nature of such
domains that gives due consideration to the social factors that give rise to such domains.

In doing so, the research has emphasised the need to design for the likely problems of
semi-formal domains, rather than simply responding to unexpected problems as and when
they arise.

The thesis has shown the importance of encouraging the users to participate in the
use of expert systems rather than accepting their output without question. One consequence
of this approach, which would benefit from further research, is that the process of
overcoming a problem situation is often more important than the answer that is obtained. By
allowing the users of the expert system to examine the boundaries of the knowledge base,

attempts have been made to encourage the users to understand the process involved in

172

arriving at an answer rather than simply accepting the answer provided. Moreover, users
who examine this process, and combine it with their own considerations of the domain, are
more likely to accept the results of the system.

In summary, therefore, this thesis has opened up the “black box' of expert systems in
semi-formal domains by paying particular attention to the needs and skills of the users of

such systems and allowing them to examine the boundaries of the knowledge base.

173

APPENDIX | - EXPERT SYSTEMS

.1 WHAT IS AN EXPERT SYSTEM?

Doukidis and Whitley (1988) offer the following definition of an expert system:

An expert system is a computer program that assists a user by providing
information about a particular domain. It does this by manipulating
information about the field that has been provided by a number of “experts' in
the field. Another important feature of an expert system is that it has the

facility to explain/justify the methods it used to provide that information.
1.2 WHAT DOES AN EXPERT SYSTEM DO?

In the course of everyday life we often come across problems. In some cases we
have sufficient experience and understanding of these problems that we can solve them
ourselves without any difficulty. Other problems, however, are beyond our capabilities and
in these cases we turn to an “expert' who has experience in the problem field. For example,
we may be able to cope with cuts and bruises but for more difficult problems such as serious
illness we turn to the expert in this area, namely a doctor. Similarly we may be able to
replace a tyre on a car but a faulty ignition will be repaired by a skilled car mechanic.

Expert systems are designed to assist non-experts with problems that arise in a
particular domain when the expert is not available. They are also used to support experts by
performing routine tests and informing the expert of any unusual circumstances. As well as
trying to assist user with a particular problem an expert system will often try to solve the
problem in a similar way to a human expert.

In order to solve these problems an expert system makes use of a formal
representation of the knowledge of experts in the field. It uses this knowledge and combines
it with particular details about the problem. These facts are normally entered by the user of
the system. This combination of knowledge about the problem domain and the particular
facts of the case allow the system to come up with a solution to the problem faced by the

user. It can be seen that there are strong similarities between this approach and the human

174

situation it is trying to mimic, although some differences do exist mainly due to the formal

nature of the computer based system.

1.3 WHERE DOES THE KNOWLEDGE FOR AN EXPERT
SYSTEM COME FROM?

In order to solve problems for the user, an expert system must make use of
knowledge about the problem domain. This knowledge is obtained through a process known
as "knowledge acquisition" which is normally performed by a person known as a "knowledge
engineer”. There are a number of different ways in which the knowledge acquisition process
can take place.

The most obvious method for doing this involves having the knowledge engineer ask
the expert how she solves problems. This may be done through actively interviewing the
expert. Alternatively it may be done by simply watching the expert as the problem is solved,
perhaps asking the expert to say the things that she is thinking about at the time. Another
technique that is used, especially when clarifying concepts in the domain, involves asking the
expert to sort the concepts according to various criteria.

Another technique that can be used in the knowledge acquisition process comes from
research into artificial intelligence and involves the use of induction. The expert is asked to
list a large number of examples under a number of different headings and to classify them.
For example, the expert may provide examples listed under weight, colour and taste and
classify the examples as suitable for use or not suitable. The induction algorithm will then
take all of these examples and use the principles of induction to find rules that will “explain’
the decisions made in the examples. Whilst this technique suffers from the possibility of
serious errors it often provides a good starting point for further discussion with the expert
who is then often able to correct the rules and to provide other rules.

A final technique, that can be used in conjunction with the other two, is simply a
good literature review. In many situations textbooks, guidebooks or company manuals will

exist which can provide some of the knowledge used in the expert system.

1.4 FEATURES OF AN EXPERT SYSTEM

175

Figure 1.1 shows the typical architecture of an expert system. As can be seen from
the diagram the expert system is made up of a number of distinct components, each of which

contributes particular features to the functionality of the system.

User Interface

Inference Engine

Knowledge Working External
Base Memory Interfaces

EXPERT SYSTEM ARCHITECTURE

Figure 1.1 - The main components of an expert system

The dominant component of the expert system is the knowledge base. It is this part
of the system that contains all the general knowledge about the problem area, the knowledge
that was obtained through the process of knowledge acquisition described above. The
knowledge base contains the formal representation of the knowledge of the expert, and the
next section describes some of the common forms of knowledge representation.

The knowledge base, by itself, is as useful as a good book without a reader. Just as a
book conveys no information until it is read, so a knowledge base is not able to solve any
problems unless it is manipulated. The part of the expert system that manipulates the
knowledge base is called the inference engine. The name derives from the logical inference
techniques that are often used to manipulate knowledge representations. The inference
engine makes use of the knowledge base in conjunction with particular facts about the
problem. These facts cannot be stored in the knowledge base as they relate to one particular

problem, rather the domain as a whole. A separate area of the expert system, known as the

176

working memory is set aside for this purpose. The working memory stores all the
knowledge that has been arrived at in the course of a particular interaction. This includes the
facts that are entered by the user as well as the facts that the inference engine arrives at.

Another significant component of the expert system is the user interface. This is the
part of the system that the user comes into contact with. It is this component that asks the
user questions about the domain, that presents the conclusions that the system arrives at and
it is the part of the system that provides the explanation / justification of the results arrived at
by the system.

In many applications the expert system must interact with the other software
packages and even with sensors in the problem domain. To this end, the final component of
the expert system comprises of external interfaces. These interfaces may be links to
spreadsheets, databases or graphics packages. The system may make use of statistical or

simulation packages or may take direct readings from the device it is monitoring.

1.5 HOW THE EXPERT SYSTEM WORKS

Production or if-then rules are the most common form of representing knowledge
found in expert systems. These rules are made up of two parts. The first are the if-clauses
which represent the conditions of the rule. The second part, the then-clauses, are the actions

that are to take place if the conditions are met.

IF

the liquid is cool and dark

and the liquid is thick and frothy
THEN

it is probably dangerous to drink

The clauses in the rule may be simple “facts' that are either true or false, they may be
statements that have a truth or “certainty factor' associated with them or they may even be
“active' rules which contain pieces of code that are executed when a particular clause is
examined. Thus a rule may have some facts in its if-clauses and if they are known to be true
an active then-clause may take a certain course of action.

In addition to the rules in the knowledge base, it is common to find "goals" or

"hypotheses" as well. These are certain facts that tell the system when to stop. As soon as

177

the system has determined that a goal is true, it does not need to perform any more actions -
the inference process is complete. The use of goals enables two different forms of
inferencing with the knowledge base to take place. One which starts from the data and sees
which goals are arrived at, the other takes a particular goal and examines the facts needed to
arrive at it.

Forward chaining, also known as data driven inferencing, takes a list of basic facts
(which are stored in the working memory of the system) and then examines each rule. If all
the if-clauses of the rule are known to be true (i.e. are found in the working memory) then the
rule is said to “fire' and the then-clauses of the rule are either added to the working memory
or are executed, depending on whether they are active or not. This process continues until
either a rule is fired which adds a goal clause to the working memory, in which case the
inference process can come to a halt, or until no more rules will fire, in which case the
system must announce failure and halt.

The alternative strategy, known as backward chaining or goal-driven inferencing,
takes a particular goal and sees which rules would have to fire for the goal to be added to the
working memory. It then tries to fire this rule. This can only be done if all the if-clauses in
the rule are known to be true. Three possible cases can arise, the if-clause is already known,
the if-clause can be added by firing another rule, or no rule can be found that will add the rule
to the working memory. In the first case the next if-clause is examined, in the second this
clause becomes the new choice and the process is repeated with it. If, however, no rule could
be found which would fire and add the clause to the working memory then the user must be
asked about the clause directly. This process continues until a rule is fired which adds a goal

to the working memory or until no goals can be inferred.

1.6 HOW AN EXPERT SYSTEM DIFFERS FROM OTHER
COMPUTER SYSTEMS?

The most fundamental difference between expert systems and other computer
systems lies in the fact that the inference engine, the part of the program that does the work,
is kept entirely separate from the knowledge base, the data that it uses. This is in contrast to
most conventional systems where the data and the programs that use them are inseparable.
This means that the knowledge base can be rapidly altered without affecting the overall

nature of the program. Indeed an inference engine may be used with a number of different

178

knowledge bases which could cover a diverse set of domains. The only limitation would be
that the knowledge base conformed to the syntax expected by the inference engine.

Expert systems also differ from conventional programs because they operate on a
symbolic rather than numeric level. The contents of the knowledge base are normally
symbols - perhaps pieces of text or lines of code - rather than numbers. The problems that
they tackle are often recursive or based on an indefinite number of elements. This is in
contrast with most conventional data processing applications which manipulate pre-

determined sets of numbers in a defined manner.

179

APPENDIX Il - EXPERT SYSTEM
DEVELOPMENT TOOLS

This appendix classifies and describes the advantages and disadvantages of a wide
range of possible expert system development tools that can be used as the basis for the
practical work described in the second part of the thesis. The reasons for the particular tool
chosen for this thesis are also described. The main features of the chosen tool are described

in Chapter 5.

11.1 APROPOSED CLASSIFICATION OF EXPERT SYSTEM
DEVELOPMENT TOOLS

There are many different kinds of development tool available for expert systems
(Harmon et al. 1988). These range from highly specific development packages which only
run on specialist hardware to conventional high and low level languages running on
conventional hardware. In order to differentiate between these different kinds of tool it is
common to use some form of comparative classification scheme. This section will discuss a
number of such schemes, and will develop a scheme which diagrammatically depicts the
tools available for the practical work undertaken in this thesis.

One popular form of classification is implicitly used when a new expert system
development tool is reviewed and the product is compared with other packages that offer
similar functionality or performance. This approach is used, for example, by Church (1989),
Rajan (1988), Nuttall (1988) and Florentin (1987). A variation on this approach, which is
commonly found in expert system journals involves a detailed comparison / evaluation of
similar packages. In such a case the development tools are compared item for item, often by
attempting to develop a simple application (Vedder 1989). Grouped evaluations make the
classification of the tools chosen more explicit ("This article examines five different PC-
based shells ..." (Vedder 1989, p. 28)). Comparative evaluations have been reported by
Hinde et al. (1985), van Koppen and Philips (1986), Massotte et al. (1986), Puppe (1987) and
Richer (1986) amongst others.

Although such evaluations offer useful insights into the functionality offered by

individual and related software packages, they offer little indication as to how different

180

groups of tools are related. For example, how similar are artificial intelligence languages to

expert system environments when it comes to developing actual expert system applications?

The Language-tool Continuum

Possibly the most common general classification scheme is the Language-Tool
Continuum presented by Harmon and King (1985, p. 83). This classification scheme has
high level languages which "are more flexible and more difficult to use to prototype a new
system rapidly" at one extreme of a continuous scale and specialist development tools at the
other. These tools are less flexible since many "knowledge engineering decisions have
already been incorporated into the tools" (p. 83). Different expert system development tools
are then classified by placing them on this continuum. Figure 11.1 shows the Language-Tool

continuum.

High-level languages Environments Tools

- e

LISP PROLOG OPS5 KEE EMYCIN
INTERLISP LOOPS S.1
ART M.1
FORTRAN TIMM
PASCAL INSIGHT

Figure 11.1 - The language-tool continuum (Harmon and King 1985, p. 83)

181

A two dimensional classification

Rapid developments in the overall functionality of expert system development tools
in the five years since the Harmon and King Continuum was introduced have severely limited
the usefulness of that classification. Simply classifying tools according to whether they are
languages or tools is no longer sufficiently discriminating to serve any useful analytic
purpose. Instead a two dimensional classification is proposed, based on the two most
important components of an expert system development tool. These are control and
inference strategies and data and knowledge representation. It is proposed, therefore,
that these factors are used to classify the various expert system development tools. Boley
(1990) proposes a similar classification based on the expert system category (the control and
inference strategies) and the domain dimension (data and knowledge representation). He
suggests that these categories are interesting since they allow two complimentary ways of

moving from individual expert systems to "meta systems' (see Figure 11.2).

1) If the inference engine is kept fixed and the knowledge base is varied a meta system
of expert systems for the same category in different domains can be constructed.
2) If the knowledge base is kept fixed and the inference engine is varied a meta system
of expert systems in the same domain for different categories can be constructed.

Figure 11.2 - The potential for meta-systems (Boley 1990, p.3)

Rather than have a continuum on each of the axes it is more appropriate to define
three regions on each axis. These are rapid development, easy to use and user-definable.
Thus, for example, a tool may have its own particular knowledge representation technique
within the system which allows the rapid development of actual systems. The users simply
provide the knowledge in this given formalism and the expert systems can be used almost
immediately. Alternatively the tool may provide a number of different techniques which can
be easily integrated in an application and hence the representation is easy to use. These
techniques offer a number of different ways of representing knowledge and may therefore
allow for a better model of the problem domain. The wider choice of representation
techniques means that more attention must be given to deciding how to represent the
knowledge and so system development is less rapid. Finally the system may offer
user-definable representation techniques which allow the developers of the expert system to

create representations that are closely related to the application in question. However, much

182

more effort is involved in creating new knowledge representation techniques and so system
development will be much less rapid.

A similar classification exists on the control and inference strategy axis, whereby a
system which provides a single inference strategy allows rapid development, whilst another
system may offer a number of complimentary control and inference strategies which are easy
to use for differing applications. Finally the tool may allow the developer to create control
and inference strategies that accurately mimic the requirements of the domain.

Classifying the available tools in this manner offers a number of advantages. Firstly
it shows the relationship between different kinds of tools, thus permitting alternative systems
that offer similar degrees of functionality to be readily identified. Secondly, it can help guide
the developers of applications to a particular part of the classification, based on the
requirements of the chosen problem. For example, a project which must be implemented
rapidly but which has fairly sophisticated knowledge representation requirements would
benefit from using different tools from a problem which emphasises the need for accurate

representation of domain knowledge over the rapid development of a prototype system.

11.2 ARTIFICIAL INTELLIGENCE LANGUAGES

Historically, the first expert systems were developed by researchers in artificial
intelligence. Many artificial intelligence problems have a number of characteristics that are
not found in conventional programming environments: they are based primarily on the
symbolic representation of declarative knowledge and the manipulation of this knowledge
rather than the storage and use of numeric data. Artificial intelligence problems are often
recursive and make use of lists of indefinite length. These features are not found in many of
the problems tackled by conventional languages and those languages offer very limited
support for these features. Researchers in artificial intelligence therefore developed a
number of languages that were specifically designed to support symbol manipulation,
recursion and lists of indefinite length.

Two main approaches have been followed when developing artificial intelligence
languages. Firstly there are those based on functional languages such as lambda calculus
and, secondly, those based on first order logic. LISP is the prime example of the first

approach and PROLOG is the most common example of the second.

183

11.2.1 LISP

LISP (LISt Processor) was one of the first artificial intelligence languages to be
developed and is also one of the oldest programming languages still in use. It was developed
by Professor John McCarthy and is based on the mathematical theory of lambda calculus.
Lambda calculus describes the way in which input parameters to a function can be modified
to provide a result (Ramsey 1988). This means that LISP is a functional language; every
routine written in LISP is a function which returns a value.

There is only one data element in the LISP programming language and this is the
symbolic expression (s-expression). An s-expression can either be an atom (a single
element) or a list of atoms. An atom can either be a symbol or a number. A list of
s-expressions may itself contain further lists of s-expressions. All the lists in LISP are

enclosed within parenthesis (Winston and Horn 1984).

(THIS IS A LIST OF SYMBOLIC ATOMS)
(THIS IS A LIST (WHICH CONTAINS A LIST) AND OTHER ATOMS)

Figure 11.3 - Examples of s-expressions in LISP

Since the only data element in LISP is the s-expression, this means that all LISP
programs are also s-expressions; no distinction is made between programs and data.
Programs can be manipulated as if they were data and vice versa. In particular this means
that programs can create data structures that can be executed; effectively programs can
automatically write other programs.

The LISP language is based on a few basic functions which perform tasks on
s-expressions. The names of these functions are based on the first computer that the
language was implemented on (Doukidis et al. 1988a) and are therefore not indicative of the
tasks they perform. The function CAR takes the first element of a list. Note that due to the

nature of s-expressions, the first element in a list may itself be a list.

184

(CAR'(ABCD)) returns A
(CAR'((AB)CD)) returnsthe list (A B)

(CDR'(ABCD)) returns the list (B C D)
(CDR'((AB)CD)) returnsthe list (C D)

(CONS A'(BCQC)) returns (A B C)

Figure 11.4 - Basic functions in LISP

The function CDR takes the remainder of the list, i.e. everything except for the CAR
of the list. The final function that forms the basis of LISP (apart from a few control functions
that actually evaluate the other functions) is CONS. This function constructs new lists out of
S-expressions.

In practice, however, most implementations of LISP have a far wider range of
functions. These are built up in terms of the previously defined functions. One immediate
effect of this small basic set of functions was a wide divergence in implementations of LISP.
Many different versions of the language were available which provided different pre-defined
functions. In many cases the functions were given different names or the ordering of the
parameters differed between versions. To some extent this problem has been removed
through the introduction of a standard - "Common Lisp"”. Many suppliers of LISP
interpreters, however, still provide their own versions of the language and then also supply a
library of functions that will allow their own versions to be compatible with Common Lisp.

DELETE is a typical LISP function, which may form part of a larger program, and it

deletes the first occurrence of an item from a list.

(DEFUN DELETE (ITEM LST)
(COND ((NULL LST) NIL)
((EQL (CAR LST) ITEM) (CDR LST))
(T (CONS (CAR LST) (DELETE ITEM (CDR LST))))))

Figure 11.5 - The LISP function DELETE

185

LISP supports the creation of many different forms of knowledge representation and
allows the programming of many different inference and control methods. In many cases,

they were originally developed in LISP.

11.2.2 PROLOG

LISP is very much the dominant programming language for artificial intelligence
research in the United States. In contrast, PROLOG is very popular in the United Kingdom,
the rest of Europe and Japan. It is based on a restricted form of first order predicate logic and
makes use of the analytic power of logical inference. It is a joint French / British
development with much of the initial research being undertaken at Edinburgh University
although it has also been heavily promoted by Imperial College and Professor Bob Kowalski.

One of the simplest forms of logical reasoning is based on propositional logic. In
this form of logic the complex sentences that are used in the reasoning process are broken
down into propositions. Each proposition may either be true or false. The simple
propositions can then be combined, using various logical operators, to arrive at the truth of
the combination. The most common logical combinators are AND, OR, NOT and IMPLIES.
Each logical operator has a truth table associated with it, showing how it combines the truth
or falsity of its component parts to arrive at a final result. If a combined sentence is always
true, no matter what the values of the constituent parts, then it is known as a tautology,
whilst if it is always false, no matter what the truth of the basic elements is, then it is a
contradiction. All other combinations are contingent on the truth or falsity of the basic

values; in some cases the combined sentence is true, in others it is false.

All IBM computers have keyboards (P)
IBM-AT-1 is an IBM computer Q)
Therefore IBM-AT-1 has a keyboard (R)

Figure 11.6 - A simple argument in propositional logic

Consider the argument shown in Figure 11.6
If this is represented using propositional logic then the basic propositions are "All

IBM computers have keyboards" (represented by P), "IBM-AT-1 is an IBM computer"

186

(represented by Q) and "Therefore IBM-AT-1 has a keyboard" (represented by R). The form
of the argument is P and Q implies R. Intuitively the reasoning is valid, yet propositional
logic is not able to demonstrate this.

First order predicate logic is, however, able to demonstrate this and makes use of the
notion of predicates. Predicates in the previous example may include
"Is_an_IBM_computer" and "Has_keyboard". It is possible to specify the clauses of the
argument in this predicate form. For example, the first clause is effectively stating that "for
all things X, if x is an IBM computer then this implies that x has a keyboard". Stated more

formally this is:

vx(is_an_IBM_computer(x) -> has_keyboard(x))
is_an_IBM_computer(IBM-AT-1)

Therefore has_keyboard(IBM-AT-1)

Figure 11.7 - The same argument in predicate logic

Various rules of valid inference have been developed for first order logic that can be
used to determine whether a conclusion can be validly inferred from a particular set of
premises. The language PROLOG is based on a subset of first order logic and supports many
of the features of logical reasoning.

PROLOG takes a different approach to programming to that found in most
conventional languages. These languages are procedural in that the programmer specifies
how the computer is to solve the task; the procedures that are to be followed are specified
step-by-step. In contrast declarative languages, such as PROLOG, require the users to
declare what the problem is and to specify constraints that must be satisfied. These are
written using predicate logic clauses. The “execution' of the program is performed when the
users enter a query. The programming language then tries to solve this query whilst
satisfying the declared constraints. Any values which satisfy the query are then displayed as
the results of the program (Black 1986).

For example, the following facts can be declared as the constraints of a problem:

187

Likes (John, Mary)

Likes (John, Jane)

Likes (Richard, Amanda)
Likes (Simon, Cathy)
Likes (Sarah, John)

Figure 11.8 - Sample facts in PROLOG

and the query Likes (John, X) entered with the system returning all the values of X
that satisfy the constraints of the program.
Mary

Jane

Further constraints can be added to the program, for example, it is possible to specify
that if X likes Y then Y likes X:

Likes (X,Y) :- Likes (Y,X)

On querying the system again, the value Sarah would also be returned as a value for
Likes (John, X).

In theory the entire programming process is performed through the writing of
constraints with the programming language doing all the work. This naturally means that the
performance of the system depends crucially on the efficiency of the implementation of the
language and various techniques have been developed to improve this area (Ramsey 1988).
In practice, however, even programmers using efficient PROLOG interpreters will often add
pieces of procedural code to improve the performance of their programs (Black 1986).

A possible limitation of PROLOG arises from the form of logic upon which it is
based. The facts stored in the PROLOG database are all assumed to be true and it is
therefore rather difficult to store false facts in the system. Another implication of this occurs
in the notion of "negation as failure”. When the system is trying to prove a certain query it
tries to prove the negation of the query. If the negation of the query is not proved then its
opposite (i.e. the query) is assumed to be true. This process can only operate successfully if

the "closed world assumption™ holds. In a closed world, everything that needs to be known to

188

determine a query, is known. Therefore if the negation of the query could not be proved then
this was not the result of insufficient information and its opposite must be true.

A standard PROLOG interpreter or compiler offers a number of knowledge
representation techniques, based on predicate clauses and lists. The language, however,
offers less flexibility in the control strategy it uses (although it is possible to overcome this
difficulty).

1.3 LANGUAGES SPECIFICALLY DESIGNED TO
DEVELOP RULE BASED SYSTEMS

One problem with using languages such as LISP or PROLOG to develop expert
systems is that while they do offer a wide range of possible methods for implementing
knowledge representation and control methods, none of these facilities are readily available
in the language. Instead, it is often necessary to expend a considerable amount of effort in
developing routines to implement them before any practical systems can be considered. As a
result of this problem, programming languages have been developed that provide the basic
features required to develop expert systems which often lie "on top of" versions of LISP or
PROLOG.

A typical example of such a language is OPS5 ("Official Production System version
5'). OPS5 adds extra functionality to the LISP language, functionality which is directly
related to the development of rule based systems. In particular OPS5 supports the creation
and use of frame-like objects. An object can have many identified attributes, however since
OPS5 is implemented in LISP there is no strict type checking on the contents of slots

(Brownston et al. 1985). To define an object the command Literalize is used.

(Literalize Person Name Age Weight Hair_colour Hobbies)

To add values to this object, a prefix operator (*) is used which refers to the

individual slots:

(Person “Name John ~Hair_colour Brown)

189

To retrieve values from the list of facts, the prefix operator is again used and the
system supports multiple objects that match a particular test. For example, it is possible to

select all the people with brown hair using a single command.

(Person ~Hair_colour Brown)

The feature of OPS5 that makes it particularly suitable for developing expert systems
is that this selection of multiple objects can be used as part of the conditions and actions of
production rules. For example, it is possible to select all the objects whose size is greater

than 50 and mark them as requiring special assistance:

IF (Object *Size) > 50 THEN (Object “Attention Special)

Some applications, however, do not require all the possible objects to be selected and
altered and so OPS5 offers a number of useful conflict resolution strategies to choose
between objects. For example, the objects may be selected according to the time since they
were last used or the frequency of their use. Debugging facilities are provided to support the
development of large scale systems.

OPSS5 offers easy to use knowledge representation techniques since it is possible to
create representations that match the particular problem being tackled. The choice of conflict
resolution strategies provided by the system also suggest that the control and inference
strategies are easy to use. Until recently OPS5 type languages have been restricted to
applications developed on specialist hardware. However versions of the language, for use on

IBM Personal Computers, have recently been introduced.

11.4 CONVENTIONAL PROGRAMMING LANGUAGES

The languages described above were designed with features that particularly match
the requirements of problems covered by artificial intelligence research. This does not mean,
however, that other programming languages cannot be used to tackle these same problems.

In many cases, it is possible to provide the facilities offered by artificial intelligence

languages using more conventional languages.

190

11.4.1 High level languages

An increasingly popular choice of development tool for the creation of expert
systems are high level languages. These are languages such as PASCAL, C, FORTRAN,
COBOL, PL/1 and BASIC which are commonly found in business environments. Santene
(1989) notes that most financial applications of expert systems are implemented in the
COBOL and BASIC programming languages. Perhaps most interestingly, expert systems
concepts are extending the range of possible applications that companies can tackle, whilst
still using their conventional hardware and programming languages. Expert systems
techniques are allowing these companies to view old problems from a new perspective, a
perspective which allows solutions to be developed. In a recent survey of the use of artificial
intelligence techniques by Operational Research practitioners, Doukidis and Paul (1990a)
found that conventional high level languages made up a quarter of the tools used to develop
artificial intelligence and expert systems applications in OR departments.

The use of conventional languages offers many advantages to the developers of
practical expert systems. High level languages have been available for a long time and their
compilers or interpreters are now very well understood and tested. This means that the code
they produce can be reasonably assumed to be “correct'. In addition, much work has been
done to optimise the resulting code, either in terms of code size or in terms of runtime speed.
Many compilers now support integrated development environments, combining editors,
compilers and debuggers which can immediately highlight the source of any errors as they
occur: at compile time (syntax or semantic errors) or at run time (where the errors are likely
to be based on incorrect program logic) (Borland 1987).

Another feature for any serious, large scale applications arises from the fact that the
company that has provided the high level language is likely to have been in existence for a
long period of time and will have developed a good working relationship with the users of its
products, a relationship which implies trust. Few, if any, data processing departments will be
willing to trust a major business application to software that has been developed by a newly
formed company with no track record of service and support (Butler et al. 1988).

High level languages run on conventional hardware platforms and often support full
links with other software packages such as the main databases of the organisation. Whilst it
is not impossible to link artificial intelligence languages to existing software packages it is

often a rather difficult process. Artificial intelligence languages often require specialist

191

hardware in order to run effectively and this may again cause problems for conventional data
processing departments as this will be an extra and different piece of hardware to maintain.
Most organisations will also have made a considerable investment in traditional
hardware and software, and will have used many resources in training their staff to be
familiar with this hardware and software. This is yet another reason for the popularity of
conventional high level languages for the development of expert systems (Butler et al. 1988).
High level languages do not have the basic symbol and list manipulating routines that
are commonly required for expert system applications and this means that routines must be
devised to implement the required functionality before actual expert systems can be
developed and hence high level languages are found in the user-definable regions of both

axes.

11.4.2 High level languages with pre-written modules

In a similar manner to OPS5 type systems, versions of high level languages have
been developed which offer pre-written modules that implement the low-level artificial
intelligence functionality that is not already part of the languages. These may be extended to
general libraries of routines which can simply be included and used in expert system
programs. These libraries contain routines that implement various knowledge representation
techniques and different inference methods.

An example of this approach is ASPES (A Skeletal Pascal Expert System) described
by Doukidis and Paul (1987). As its name suggests, ASPES provides libraries of routines
that can be used to create full scale expert system applications. Many expert system
development tools are based on existing expert systems and ASPES is no exception. It
differs from many other tools since it is not simply an existing expert system without a
knowledge base. Instead ASPES provides libraries of routines that support the various tasks
of an expert system such as knowledge representation, inference and explanation. Since
these tasks are implemented in libraries they can be used or replaced as necessary.

ASPES was developed at the London School of Economics and Political Science for
use in teaching and research. The choice of programming language was therefore determined
by the predominant language used for teaching in the school, namely PASCAL. Specialist
artificial intelligence languages such as LISP or PROLOG are not as well supported as the

more commonly used high level programming languages, they are expensive to purchase and

192

new researchers often need to learn a new programming language in order to use them
(Doukidis and Paul 1987).

In order to provide the functionality required for programming expert systems, such
as the manipulation of lists of objects, a number of routines must be developed and these are
provided in one of the ASPES libraries. The use of the predefined modules is not
compulsory and APSES can be used for domains other than those explicitly supported by the
provided routines by making use of other libraries.

ASPES has been widely used for teaching and research at the school and has been
used as the basis for a number of existing expert systems. One such system is the PASCAL
DEBUGGING AID described by Doukidis et al. (1988b). This expert system attempts to
help students who have problems learning to program in PASCAL. The expert system
incorporates some ideas from intelligent tutoring systems which were easily incorporated
into the expert system developed by ASPES.

A second application developed using ASPES is SIPDES, a SImulation Programming
Debugging Expert System, which provides advice on program errors that arise when using a
simulation program generator (Doukidis and Paul 1990b). Students create models based on
the three phase simulation structure (Crookes et al. 1986) and use an interactive simulation
program generator to generate a PASCAL program based on their model. Errors may be
introduced into the program at this time and these may occur at run time when, for example,
an attempt is made to move an entity from an empty queue, or an entity may disappear
completely over time. The basis for the SIPDES program was again ASPES and the structure
of ASPES meant that it was possible to incorporate further routines into the expert system

that provide extra assistance in a format suitable for simulation modellers.

11.5 OBJECT ORIENTED LANGUAGES

Object oriented languages have become very popular for use in artificial intelligence
applications in recent years. These languages, such as SMALLTALK and C++, take a
different perspective on the programming task. Conventional programming languages are
based primarily on procedures through which data objects pass. This normally means that
separate routines must be written for different data types: it is not easy to re-use pieces of
program code. Object oriented languages, in contrast, consider the data objects to be the
primary part of the program and the program itself consists of messages being passed

between these objects.

193

When a particular object receives a message it checks to see whether it has a
procedure for undertaking the action described in the message. If it does, then the action is
performed, if it does not then the message is passed up to a more general type of object to see
if this object can perform the action. This process continues until the message is acted upon.

This can be demonstrated by comparing how the statement 3+4 is handled in a
conventional and object oriented language. In a conventional high level language the
expression is evaluated by a special part of the program that contains routines for calculating
the values of expressions. In object oriented programming, however, the message +4 is sent
to the object 3. This object takes the first part of the message (the plus sign) and sees if it can
perform the requested task. In this case it cannot, so the message is passed to the more
generic object, number. This object contains routines for dealing with the message + and
uses the rest of the message to perform this task.

Object oriented techniques have been widely used in graphical user interfaces, such
as that found on the Apple Macintosh, since messages about whether the mouse button has
been pressed can be passed to a particular icon which will act on it. For example, a menu
item or data file will know what actions are to be performed when a mouse button pressed
message is passed to it, such as selecting the highlighted item or running a particular
application.

In expert systems such techniques may be useful when developing causal networks
made up of many components which are interconnected and send messages to one another.

Object oriented techniques are also available in some advanced versions of Common Lisp.

11.6 EXPERT SYSTEM SHELLS

Expert system shells are pre-written expert systems that do not have any particular
knowledge base, instead the developers of an expert system can use any knowledge base with
the shell provided it follows the syntax used by the shell. This means that it is possible to
develop applications very rapidly. In addition, most shells provide a number of useful
features for developing applications such as editors, knowledge base checkers and debugging
facilities.

One interesting feature about the use of expert system shells, at least in the United
Kingdom, is the predominance of "home produced' systems (D'Agapeyeff and Hawkins
1987). This apparent “patriotism' is heavily influenced by the low cost of British expert

system shells which are designed to run on conventional hardware systems, often IBM

194

personal computers. Their low cost in comparison to American workstation based products
means that they are more acceptable to risk-averse UK management than their competitors
(D'Agapeyeff and Hawkins 1987). Having localised user-support is another influential factor
(Bodkin and Graham 1989).

11.6.1 X1+

One popular expert system shell is Xi+, developed by Expertech Ltd., a British firm
based in Slough. Expertech were one of the first companies to provide pre-written
knowledge bases for use with runtime versions of their shell. These knowledge bases, which
cover areas such as dismissal law and maternity leave, were designed to be used
"off-the-shelf" by companies who wanted advice in these areas.

Xi+ operates by trying to satisfy a query presented by the users. This is done by
using a number of knowledge bases which contain rules or the "know how" entered by an
expert. Xi+ allows knowledge bases to be structured so that, for example, one knowledge
base can call up another one, encouraging top down, structured programming. The system
allows the creation of help screens, reports and forms to aid the users of the final application.
It is also possible to interface Xi+ with other applications such as databases and spreadsheets
(Forsyth 1987).

The system operates by asking the users questions about the domain. These can be
questions that have YES/NO answers and also questions that allow the users to select values
from a list of possible values. Some of these questions may allow only one value, whilst
others allow the users to enter a number of different values. Once the query has been
satisfied the users are able to perform a what-if analysis, perhaps by volunteering extra
information.

Xi+ was previously implemented using a version of MICRO-PROLOG and this
caused the system's performance to be rather slow. The current version (release 3) is
implemented directly in the C programming language and so operates rather more quickly
(Church 1989).

11.6.2 LEONARDO

195

Leonardo, produced by Creative Logic, a British company located in the Brunel
Science Park, is another expert system shell. It differs from Xi+ in that it offers a particular
form of knowledge representation based on frames in addition to the production rule
formalism found in Xi+. There are three versions of Leonardo which offer differing amounts
of functionality in knowledge representation. The second level of the product offers better
control of inheritance and level three offers sophisticated routines for the use of certainty
factors using techniques based on fuzzy logic.

Everything that is mentioned in a Leonardo knowledge base has an associated frame.
These frames contain slots which may contain actual values, default values, inheritance links
or even program code as Leonardo has a small procedural language which is used for those
parts of an application that cannot be supported directly using inference techniques (Forsyth
1988).

Leonardo also has a sophisticated forms facility that is directly related to the frame
based representation of knowledge. Thus it is possible to have pieces of code attached to the
slots of a frame which determine how the users are to interact with the form.

The system is implemented in FORTRAN and is available on a wide range of
hardware platforms ranging from IBM personal computers to mini-computers. An
application created on one platform can easily be re-implemented on other platforms that
support the product (Roth 1988).

11.6.3 CRYSTAL

A third expert system shell is CRYSTAL, developed by Intelligence Environments
based in London. In contrast to the functionality provided by shells like Xi+ and
LEONARDO, CRYSTAL has a very limited number of options available, for example, it
only supports backward chaining (Wallsgrove 1988). However, it makes up for this by
providing a very fast inference engine.

CRYSTAL includes a number of facilities for improving the screen display of the
system including the use of graphics, forms and questions. It is possible for CRYSTAL to
access data from other programs such as dBase. The program can also read text and numbers
that are stored in ASCII format. Full calculations, including financial and boolean analysis

are provided by the system.

196

The rules in CRYSTAL are written in a slightly unusual format: "“These conclusions
are true IF these conditions are true”. The if statements may be combined using AND and
OR. Rule statements may contain system commands and it is possible to interface the system
to other packages by making use of the C programming language (Linderholm 1987).

The CRYSTAL expert system shell (version II) was used to develop the expert
system for the Latent Damage Act described by Capper and Susskind (1988). They chose the
shell because the performance of the system was not adversely affected by the number of
rules that was entered into the knowledge base, because the system supported the rapid
development of prototypes and because the software was available in a runtime only version,

allowing them to widely distribute their knowledge base at minimal cost.

1.7 EXPERT SYSTEM TOOLKITS

Expert system toolkits were conventionally implemented on specialist hardware,
normally LISP machines. They make use of high resolution graphics screens and
sophisticated windowing techniques. These toolkits are normally written in LISP and offer
many different knowledge representation techniques. The high cost of the underlying
hardware originally needed to run expert system toolkits means that expert systems were
often developed using such tools, making use of the sophisticated editing, tracing and

debugging facilities, and were then re-implemented on a more conventional platform.

11.7.1 ART

Art, developed by the American company Inference Corporation, is a rule based
system that is based on the OPS5 language. It offers the knowledge engineer frames, logic
programming and LISP for the development of applications. It also supports assumption
based reasoning, i.e. non-monotonic logic and time dependent reasoning. These logical

dependencies allow the system to handle constructs like:

While A is true, B is true

It is also possible to create different viewpoints and competing worlds. The system

supports the creation of different models of the world depending on which assumptions are

197

used. This allows for comparison between the implications of different views (Grégoire
1988).

The frame based representation supports multiple inheritance but does not support
active values and constraints. The performance of the system is improved by pre-compiling
the knowledge base and hence more advanced frame operations are not supported. A
distinction is made between inference rules - which add facts and objects to the working
memory of the system - and production rules - which alter the values of objects in a similar
manner to OPSS.

The system is written in C and is very fast in operation, aided by the knowledge base
compilation. The limited support for maintenance and control suggests, however, that there

may be problems developing large scale applications using Art.

11.7.2 KEE

The KEE toolkit is developed by the American company Intellicorp. It also uses
frames for storing information about object taxonomies, but frames are implemented more
effectively in KEE. For example, it is possible to include active values and methods
(procedural code) in the frames. It is even possible to represent rules within the slots of a
frame (Grégoire 1988).

The system is written in Common Lisp and is therefore slightly slower than Art
although this allows the knowledge base designer to make direct calls to the underlying LISP
language and user-defined conflict resolution strategies are permitted (Florentin 1987).

KEE uses object oriented techniques within the knowledge base and these are also
used to drive the screen displays. Thus it is possible to represent a dial on the screen and as

the setting on the dial is altered, the associated value in the frame is changed accordingly.

11.8 THE CLASSIFICATION OF EXPERT SYSTEM
DEVELOPMENT TOOLS

198

EXPERT SYSTEM DEVELOPMENT TOOLS
Data
and C, Pascal
knowledge Fortran
representation Basic
User-definable CH++
Lisp
Smalltalk
Kee
Prolog ASPES
Easy to use
OPS5
Leonardo
Art Smalltalk
Xi+
Rapid
Development Crystal
Rapid Development Easy to use User-definable
Control and inference strategies

Figure 11.9 - A classification of expert system development tools

Figure 11.9 uses the classification of expert system development tools introduced in

this appendix to illustrate the various tools described above.

11.9 THE LIKELY FUTURE DIRECTION OF EXPERT
SYSTEM TOOLS

A number of trends in expert system development tools have been predicted (see, for
example, Land et al. 1988). These include the creation of generic systems and the
incorporation of intelligent elements in conventional data processing systems. Generic
systems are designed to tackle problems in a "domain of general interest”. The most common
areas of such general interest are legislation and financial management and Expertech have
marketed runtime versions of the expert system shell Xi+ with pre-written knowledge bases
on areas such as maternity leave and employment law.

Another significant trend is the move to combine artificial intelligence functionality

with conventional data processing systems. Waller (1989) suggests that most current expert

199

system development tools have either a high artificial intelligence content or a high data
processing content. Those with a high Al content may support production rules, inheritance
and sophisticated frame based representations. They may also make use of object oriented
programming. In contrast tools with a high DP content are able to access other high level
languages and existing applications such as databases and report generators. Waller predicts
that in the future these two components will tend to become equally important.

One of the main reasons for this integration of the two components is the potential
size of the data processing market. The personal computer market for expert system
development tools is stagnating and hence developers are looking for new areas where their
products can be sold. The data processing community is such a market (Waller 1989). In
particular, data processing departments normally have large budgets and plan over longer
time periods than many user-departments. Data processing departments are now required to
tackle more complex problems, problems which may well be suitable for applying expert
systems techniques and they also need to be more flexible in their approach to changing
circumstances. In both these areas the successful use of expert systems tools can prove to be
beneficial (Land et al. 1988).

11.10 THE CHOICE OF HARDWARE

The choice of which development tool is to be used depends on the choice of
hardware platform that it is to be implemented on. Broadly speaking there are two main
types of hardware available for expert system development: specialist hardware which has
been developed to specifically run artificial intelligence languages and conventional
hardware platforms. The advantages and disadvantages of these two categories will now be

discussed.

11.10.1 Specialist hardware

Early research in artificial intelligence was often hampered because the hardware
being used to implement versions of LISP and PROLOG was not particularly suited to many
of the basic tasks required by these languages such as garbage collection and resolution. This
meant that the languages were relatively slow in operation. As a result of this, research was

undertaken to develop specialist hardware which directly supported Al languages.

200

The first commercially available specialist hardware platforms were Lisp machines,
so called because they were based on central processors which had been specifically designed
and optimised for implementing the LISP programming language. Since they were designed
for running LISP programs, the specialist hardware platforms (such as the Xerox 1100,
Symbolics 3600 and Texas Instrument Explorer workstations) offered considerable increases
in the run time efficiency of the programs. Lisp machines normally make use of high
resolution graphics screens and windowing interfaces. They also have tracing and debugging
facilities that simplify and support the process of program development. The early arrival of
Lisp machines is, in part, due to the dominance of LISP as the programming language for
artificial intelligence research in the United States. The alternative European language,
PROLOG, is gradually following the same path with ICL, for example, launching a Prolog
machine based on a central processor specially designed to support the PROLOG
programming language.

The sophistication of Lisp and Prolog machines, both in terms of their specialist
processing chips and the software environments they use, together with the limited market for
such machines, means that they are rather expensive. This has a number of important
implications. Firstly, it means that many universities do not have access to such machines (in
particular the London School of Economics and Political Science does not have such a
machine) although it is often possible to share resources with other universities or colleges.
Secondly, it means that few outside organisations have access to such hardware either. This
suggests that even if development work was undertaken on such machines, when the
applications developed are used in real life situations they will need to be converted to
different hardware platforms. It is interesting to note that many of the software packages that
were originally developed to run on Lisp machines are now being converted to run on more
conventional hardware such as Sun workstations and top-of-the-range IBM personal
computers (Waller 1989). Specialist hardware such as Lisp machines may also prove
difficult to interface with conventional hardware systems. Thus before the software can be
tested with the existing data processing facilities in an organisation it is necessary to convert
it into a form that can be executed by this hardware. If this is anything other than an
automatic process, considerable constraints will be imposed on the use of prototyping in the

development process.

11.10.2 Conventional hardware

201

The LSE does not have specialist hardware available for the development of expert
systems and therefore the development work would have to be done using conventional
hardware. Four possible platforms were available for this research work and they will now
be described.

The LSE has two mini-computers available for use by staff and students. These are
both Digital Equipment Corporation Vax 11/780 mini-computers operating under VMS.
Access to these machines is through terminals available around the school. The
programming languages available include PASCAL, C and FORTRAN. Artificial
intelligence languages such as LISP and PROLOG are not available. This central computing
facility has been optimised to support statistical packages analyzing large data sets
performing computationally intensive tasks such as regression analysis. This results in a
rather poor performance for programming tasks, both in compilation and execution. It was
expected that there would be many problems of portability if the system had to be
demonstrated at other locations. The Vax systems were upgraded and replaced by a single
Vax 6330 in the summer of 1989.

The Information Systems department has a Sun 3/160 workstation for use by
research students. It runs the UNIX operating system and despite being a multi-user system
only two dedicated terminals are available. At the current time the system only supports the
(pre ANSI standard) C programming language. Access to the machine is limited by the
number of terminals available and there may again be problems associated with
demonstrating any software developments in other organisations.

The LSE has decided on two standards for microcomputers. The first standard is
the IBM PC running the MS-DOS operating system. The school currently has three public
access rooms containing, in total, 80 IBM personal computers. Additionally the Information
Systems department has a number of machines available for use by research students.
Versions of the LISP and PROLOG artificial intelligence languages are available, in addition
to the PASCAL, C and MODULA 2 programming languages.

As well as providing a number of programming languages for use in the development
of expert systems, the IBM PC has become one of the de facto hardware standards for
microcomputers and this means that it is the most common platform for the developers of
expert system shells. Most of the available shells have, as a minimum, MS-DOS versions of
their software. When taken in combination with the large numbers of DOS machines on the

market this means that the unit price of much of this software is far lower than software for

202

more specialised hardware. The relatively low price of such software meant that the
department was able to purchase copies of some of the more popular expert system
development tools available.

The second microcomputer standard adopted by the LSE is the Apple Macintosh.
When this research began there were no Macintosh computers available for student use.
However one year into the research approximately thirty machines were made available for
students to use. Although programming languages are available for the Macintosh, none are
available on the public access machines (except for Hypercard). The popularity of the
machines, especially when running software that takes advantage of the graphics facilities
offered, such as word processing and desk top publishing, means that access to the machines
available is often limited. Later in the second year of this research a number of Macintosh
computers were obtained by the Information Systems department for use by research students
and the PASCAL programming language was made available on them.

Figure 11.10 summarises the hardware platforms that were considered.

Lisp Machines

Prolog Machines

Mini-computers (Vax 11/780)

Workstations (Sun 3/160)

Microcomputers (IBM PC / Apple Macintosh)

Figure 11.10 - Hardware platforms for expert systems development tools

11.10.3 The choice made

Very early on in the research a choice was made to use the IBM PC hardware
environment as the basis for the development work. The reasons for this choice will now be
described.

The availability of machines was an overriding factor in the choice of hardware
environment. The school and department have a large number of IBM PCs available for use
and it was possible to gain access to a machine as and when necessary. Although the Apple
Macintoshes and Sun workstation have better graphics and a far simpler user interface,
access to these machines is severely limited, posing a major constraint on the research being

undertaken. Although access to the Vax computers was also widely available, the relatively

203

poor performance when running non statistical packages would again influence the research
undertaken.

There is also a greater availability of software on the IBM PC environment as it
supports reasonably priced expert systems software in addition to a wide range of
programming languages. Both artificial intelligence languages (such as LISP and PROLOG)
and more conventional programming languages (such as PASCAL and C) are available on
IBM personal computers. Furthermore, the large number of machines (and compatibles)
means that considerable effort has been undertaken to write efficient compilers and
interpreters for these languages and they are generally available at a significantly lower cost
than software developed for specialist hardware.

From the outset of the research it was hoped that various versions of the software
could be shown to various other organisations. For example, the software may need to be
demonstrated at conferences or used in seminars and industrial presentations. Therefore the
widespread use of the hardware in other organisations was another important factor
influencing the choice made. Since IBM computers are widely used all that is often required
is the provision of suitably formatted floppy diskettes containing the appropriate software.

On those occasions where no machine was available for use it would still be possible
to use a portable IBM compatible machine to achieve the same results. Portable Apple
Macintoshes are also available and these would need to be used more often since fewer
organisations make use of Apple computers.

Mini-computers and workstations are not widely used and therefore the opportunities
for demonstrating the system would be severely limited. On those occasions when
comparable hardware would be available, there would still be significant problems associated
with transferring programs and data.

In addition to software that can be used to develop expert systems, IBM personal
computers offer a wide range of other software packages including databases, spreadsheets,
graphics packages and wordprocessors. Wordprocessing packages and graphics packages are
used in the preparation of articles and reports and this results in a familiarity with the
operating environment. As a result of this there is considerable inertia to be overcome
before a new operating environment is considered. For example, the UNIX operating system
(as is found on the Sun workstation) is generally considered to offer many useful facilities to
the users of the system. However the commands used within UNIX are very different from
those found under DOS and a significant learning curve would need to be overcome before it

could be used successfully. A similar argument applies to the Vax VMS operating system.

204

The Apple Macintosh has a very attractive and simple to use graphical user interface,
however the operating system is based entirely on Object Oriented Programming techniques
and this determines the style of programs written on the Macintosh. Therefore any programs
that make use of the operating system to display characters or read the mouse would need to
be written in an Object Oriented style which again has a learning curve associated with it.

Finally, there is considerable user support available for the IBM PC since it is one
of the standard hardware platforms adopted by the school. This user support covers both
hardware and software and thus any problems arising in these areas could be addressed by
the microcomputer support staff who are able to provide assistance as necessary. Also, since
many members of staff and other students also used the IBM PC standard, other sources of

support were also available.

Availability of machines

Availability of software

Widespread use of the hardware in other organisations
Familiarity with the operating environment

User support

Figure 11.11 - Reasons for the choice of hardware platform

11.11 THE CHOICE OF DEVELOPMENT TOOL

Given the choice of development hardware three generic development tools were
available for consideration (the fourth, expert system toolkits, were not available on the
chosen hardware platform, and have only recently been introduced to top-of-the-range IBM
personal computers). These are the use of artificial intelligence languages, the use of a
conventional high level languages (with or without predefined modules) or the use of an
existing, commercially available, expert system shell.

The option chosen was to develop an expert system shell using a high level language.
The reasons for this approach and the choice of the high level language used (PASCAL) will

now be described.

11.11.1 Existing work

205

One of the problems associated with using a conventional programming language is
that the basic routines involved in implementing an expert system, such as symbol
manipulation and list handling, are not found in the standard version of the language. This
means that a considerable amount of work must be undertaken before the actual system can
be implemented. LSE, however, ran a course on symbolic computing which included simple
LISP programming and also the development of an expert system shell in the PASCAL
programming language following the high level language with prewritten modules approach
exemplified in ASPES (Doukidis and Paul 1987). PASCAL is the standard language for
teaching programming in the school and was therefore the natural choice for creating the
expert system shell. This choice was supported by the fact that LISP was not available on the
Vax mini-computers on which most programming was undertaken at that time.

As a consequence of this work considerable experience was gained in using the
PASCAL programming language, both in terms of general proficiency and also in terms of
the techniques involved in developing an expert system. Other high level languages, such as
C, were considered. However they were not readily available on the chosen hardware
platform and, since they were not used to teach programming, they were not well supported

by the school.

11.11.2 The choice of high level language

The main alternative to the PASCAL programming language for use in developing an
expert system shell is the C programming language. It has been claimed that C has a number
of advantages over PASCAL for writing computer programs (Crookes 1989).

C has provisions for writing programs in a modular manner, thus aiding debugging
and the reuse of code. In PASCAL this support is not a standard feature and the support
provided varies between compilers. C provides some data typing but this can be legally
overcome if required. Data types in PASCAL are much stronger and it is not possible to
(elegantly) overcome them. Most C compilers provide warnings about the use of variables
(especially pointers) before they are assigned values.

The C language supports very efficient movement through arrays and also supports

macros which can be used in conjunction with a precompiler to improve the runtime

206

efficiency of the program. It is also available on a wide range of hardware platforms and is
the language used to write the UNIX operating system.

Many of the advantages that C offers over PASCAL were insignificant for the design
of the expert system shell. The particular Pascal compiler used (see below) provides full
support for the modular design of programs and also includes a smart linker that only links in
those routines that are used in the final program, thus keeping the size of the compiled
program to a minimum. The problems of data typing were not important in the shell (except
for the storage of strings in the vocabulary tree, see the documentation provided in Appendix
).

The expert system shell makes heavy use of linked lists and does not use arrays to
store any significant information. This means that the efficiency of C in dealing with arrays
was not missed. The linked lists were kept simple and a modular approach was taken to
ensure that every element in the list was properly initialised before use and therefore the
warnings about using variables before they were initialised were not so important.

In summary, therefore, the main advantages of C over PASCAL were not used in the
expert system shell and there was no incentive to explore a new programming language for
developing the software. With hindsight, the advantage of the wide range of hardware
platforms that support standard C might well have justified the use of C instead of PASCAL.
The program design, however, does not make considerable use of special features of

PASCAL and could be quite easily converted to this or any other high level language.

11.11.3 The PASCAL compiler

The first versions of the expert system shell were developed using Borland's Turbo
Pascal Compiler Version 3. This only produced COMmand files which had a 64K size limit
for programs and data. As the number of facilities offered by the system increased this size
limit became a serious constraint and an attempt was made to use the Microsoft Pascal
Compiler (Version 3.32). The documentation for this package was not particularly easy to
read and lacked the ease of use found with the Borland package. More importantly Microsoft
Pascal provided little support for the control of textual output on the screen. In contrast, the
Borland compiler offered routines to define screen windows, to position text at any point on

the screen and use whatever colours the programmer chose.

207

After two months working with the Microsoft Pascal compiler, Borland introduced
their Pascal Compiler Version 4. This was a considerably more advanced compiler than
Version 3 and offered a number of very useful facilities. These included a development
environment using pull down menus, on-line help facilities and special “hot keys' to speed up
the use of the menus.

Another very useful feature of the compiler is its use of units. These are effectively
program modules that allow programmers to practice structured programming techniques and
top down design. The program can be split up into a number of separate modules which can
be used selectively. For example, one unit may simply contain the type definitions used
within the program, another may contain the basic routines that deal with list manipulation, a
third may hold the routines that deal with knowledge representation techniques and other
modules may be assigned for different inferencing techniques. This approach means that it is
possible to write general purpose routines, for example concerned with screen handling and
windowing, which can be used in many different programs. Naturally the benefits of
structured design in the location of errors and maintenance are also realised.

The use of units also speeds up the compilation process as each unit is compiled only
once, with the compiled form used afterwards. It is only when the original pascal unit is
altered (i.e. the compiled version is no longer an accurate representation of the source code)
or if the programmer explicitly tells the compiler to re-compile all the units that a unit needs
to be recompiled. Furthermore, the compiler has a “smart linker' that only links in those
routines that are actually used by the program. This means that each unit can contain many
house keeping and debugging routines which if they are not used in the final program will not
be included in the final program. The use of units therefore generally improves the
compilation time of the program in addition to keeping the actual program size to a
minimum.

The Borland compiler provides a number of predefined Units which contain routines
for manipulating text as it is displayed on the screen, routines that implement a number of
high resolution graphics facilities and routines that provide direct access to the operating

system.

11.11.4 Pascal versus Al languages

208

Many Al languages now offer similar development environments to those provided
by high level language compilers such as Turbo Pascal. Therefore PASCAL must be shown
to have advantages over artificial intelligence languages that do not relate to the development
environment available.

The PASCAL programmer has far better control over how the basic facilities found
in the expert system, such as knowledge representation, are implemented. This means that it
is possible for a proficient programmer to implement a number of techniques which can
improve the efficiency of the system both in terms of speed and size. One simple example
will demonstrate this point. The clauses in an expert system rule are conventionally based on
a series of words which are either natural language clauses or more formal representations.
These clauses often need to be compared by the inference engine, for example, when
searching for rules that contain a particular clause amongst their then-clauses. This
comparison is normally performed on a character by character basis, with care being taken
when considering the comparison between upper and lower case versions of the same letter.

Further problems arise when dealing with the white spaces between "words".

R

Dictionary

The
Wheel
Is

Spinning

S

Rt

PO

Figure 11.12 - A more efficient comparison method implemented using pointers in
PASCAL

209

A more efficient approach, see Figure 11.12, is adopted in the PASCAL shell
developed for the thesis. Every word used by the system is stored in a "dictionary" and
before a new word is added it is converted to a standard form (in this case the first letter is
capitalized, all the remaining ones are converted to lower case). The clauses in the rules then
contain pointers to words in the dictionary rather than the words themselves. Comparison of
the clauses then involves comparing two pointers - if they point to the same place then they
represent the same word - which is normally a very simple operation by the microprocessor.
Thus the comparisons are performed far more rapidly and the clauses also take up less
memory as each word is only stored once in full. The operation of the system can be made
even more efficient through the use of the dictionary and this is described in more detail in

Appendix Ill.

11.11.5 Pascal versus commercial expert system shells

Commercially available expert system shells offer many facilities that would require
considerable programming effort to implement in a high level language. The potential
benefits of writing an expert system shell in PASCAL rather than making use of the facilities
of an existing shell must therefore be discussed.

The advantages of “hand crafting' certain features in a high level language were
discussed above in relation to artificial intelligence languages. This is also an important
factor when considering expert system shells as many of these products are developed "on
top of" artificial intelligence languages. Early versions of Xi+ were implemented on top of
Micro-prolog (Forsyth 1987) and this considerably retarded the system's performance.

A second important factor relates to the ease with which additional functionality
could be incorporated into the basic shell. With commercial shells this is not particularly
easy, the additions would normally have to be separate programs that would be executed
from the knowledge base, rather than being available for use whenever necessary. Leonardo
attempts to minimise this problem by including a procedural language within the system,
however even this is limited in functionality.

External programs that are added to the expert system shell will generally not be able
to access the internal knowledge representation schemes used by the shell. Most
commercially available expert systems shells do not provide "hooks' for programmers to

access the knowledge representations found in the shells. Similarly various knowledge

210

manipulation routines are not easily accessed by external programs. It is not suggested that
such links are impossible, but only that the task of implementing them will be rather difficult.
In comparison, the creation of an expert system shell using a high level language
means that additional features can be added directly to the source code of the program, which
can then be recompiled. Also, since these features are part of the source code, they will be
able to directly make use of the knowledge representation techniques contained elsewhere in

the source code for the program.

211

APPENDIX Il - THE PESYS EXPERT
SYSTEM SHELL USER GUIDE

111.1 THE PESYS EXPERT SYSTEM SHELL USER GUIDE

The following document is the user guide for the PESYS (Pascal Expert SYstem
Shell) expert system shell. The program runs on an IBM Personal Computer and any
compatible computer. The system makes use of standard memory and text graphics, however
computers with larger memory (up to 640K) can run larger knowledge bases.

The documentation comes in three main parts. The first describes how to consult an
existing application using the program PESYS. All the features of the system are described.
The second part of the user guide describes the programs that are used in the development
process and the final part provides technical details on how to write a knowledge base in the

form of a simple tutorial on the development process.

Keys that are to be pressed are marked in bold, whilst text shown on the
screen will be shown in italic. Finally any commands that you must enter
are shown in underline.

111.2 GETTING STARTED

To start consulting the expert system, you must have a copy of the program together
with the knowledge base you want to use. The program may be provided on a disk or may be
found on a network. Particular details of how to obtain a copy of the program are provided
separately. Suppose that program and knowledge base has been installed on drive C:. When
faced with the DOS prompt C:> type the name of the program (PESYS), a space and the
name of the knowledge base that you want to use, for example RICH, and then press

RETURN.

213

C:>PESYS RICH

If you do not specify the name of the knowledge base, the system will display a
prompt asking you to enter it at that time. The system will then display a title screen and wait
for you to press any key.

Once the knowledge base has been specified the system will start to load the files
associated with it. As this happens, a window is opened on the screen and the name of each
file is displayed on the screen as it is read in. After the files have been read in the screen

clears and the first selection menu in the system is displayed.

111.3 USING THE SELECTION MENUS

The user interface for PESYS is designed to be easy and consistent in use. In order
to do this the system uses selection menus for all interactions where the possible options can
be specified in advance. For example, when you have the choice between consulting the
system again and finishing the interaction, the set of possible choices is known in advance
and a selection menu will be available. In other instances, however, such as when the system
asks for your name, it is not possible to limit the available choices and so a selection menu is

not used.

111.3.1 THE TWO PARTS OF A SELECTION MENU

A selection menu consists of two main parts. Firstly there is the list of possible
options, these may be listed vertically or horizontally, or a combination of the two. The
second item is a highlight. The highlighted item is shown on screen in reversed colours. To
move the highlight around the available choices press the cursor (arrow) keys. If you keep
pressing the same key the highlight will loop round all the possible choices. To actually
select an item from the list, move the highlight to the item required and press RETURN. In
most of the selection menus, it is possible to press the ESCAPE (Esc) key and have a
configuration menu. This is itself a set of selection menus and allows you to alter the

configuration of the expert system inference engine. It is described in more detail below.

214

At any time when using a selection menu (and also whenever a window is open and a
key must be pressed) pressing the function key F4 will allow you to move the current
window around the screen. Whenever the key is pressed a cursor appears on the screen. This
cursor marks the top left corner of a window and can be moved around the screen to
reposition the window by using the cursor keys. The cursor is only allowed to move to valid
positions, i.e. the window will always remain fully displayed on the screen. Once the new
position of the window has been selected, pressing RETURN will move the window to this
new place. This feature is particularly useful if the default window covers some important

information that is displayed on the screen.

111.4 THE CONFIGURATION MENU

The configuration menu has four items available for selection by the user of the
expert system. These items allow the user to check and alter the settings of the inference
engine, to save and load data that is stored in the working memory of the system and to view

and change the basic parameters of the system.

Return to System Inference Engine File Operations Other Facilities

The first option on the list should be selected to continue with the use of the expert
system. The second element allows you to change the way that the inference engine operates
with the knowledge base. For example, you may want to use a different inference technique
with the knowledge base. On selecting this option, a further list of options is displayed,
allowing you to alter these values.

The third element on the menu allows you to load data from a file and store it in the
working memory of the system or to save the data that has been arrived at during an
interaction with the system.

Other facilities covers all the other options that can be set up for the system. This
includes whether or not a log is kept of the interactions, the accuracy used for mathematical
comparisons etc. A full description of all these items is given in the section on developing a

knowledge base.

111.5 SELECTING ITEMS BEFORE THE INFERENCE
PROCESS BEGINS

215

Ordinarily a forward chaining inference engine will produce no conclusions unless
some information is provided for the system. In some applications this information may
come from external sensors or from some external file that specifies the problem. However,
in the sort of domains where PESY'S would be best suited for, it is unlikely that either of
these will be the case. In order to allow for applications that work with only forward
chaining it is possible to configure the system so that it will provide a list of possible items
that can be chosen before the inference process begins.

This list consists of all those clauses that cannot be arrived at using any of the rules.
Effectively these are all the clauses that you could possibly be asked in order for the system
to arrive at a conclusion.

For example,

IF there are no clouds THEN the sky is blue
IF the sky is blue THEN the weather is good

In this case there are three possible clauses that could possibly be used - there are no
clouds, the sky is blue and the weather is good. However the last two of these can both be
arrived at using the rules given, thus in this case you would be given a list containing only the

first clause: "There are no clouds".

Select or alter the following facts - TRUE X - FALSE BLANK - UNKNOWN
Ctrl and Return to accept the facts, Esc to abandon choices

The first clause

The second clause
The third clause

More to follow ...

When the list is presented you have a number of options.

111.5.1 SELECTING THE ITEMS

216

If you want to select or deselect the available clauses you can move the highlight to
the appropriate clause. Pressing RETURN once will select the item (this is shown by
placing a tick ~in front of the clause) - a selected item is considered to be known to be true,
pressing RETURN again will cause it to be deselected - known to be false (shown with a
cross X in front of the clause). Pressing RETURN a third time will unselect the clause -
suggesting that the truth or falsity of the clause is not known (this is shown by not having
anything in front of the clause).

The highlight, that shows which clause is being considered can be moved up and
down the screen using the cursor keys. If the display shows More to follow ... at the bottom
of the page then this means that there are more clauses than can be shown on one page. As

you scroll through the available options the remainder of the list will be displayed.

111.5.2 FINISHING THE SELECTION

Once the selection has been made you have two possible options, you can either
confirm your choice and add the items to the working memory of the system as you have

specified or you can abandon your choices.

111.5.3 TO CONFIRM YOUR CHOICE AND ADD THE ITEMS
TO THE WORKING MEMORY

To add the items press both the Control (CTRL) and RETURN keys at the same
time. There will be a slight pause as the system adds the clauses to the working memory and

the system will then proceed to continue with the inference process.

111.5.4 TO ABANDON YOUR CHOICE

If you decide that you do not want to keep the selection that you have made (or if you

do not want to select any of the items) then pressing the ESCAPE (Esc) key will cause the

217

system to abandon all the previous choices you have made and continue with the inference

process.

111.6 ANSWERING QUESTIONS IN PESYS

In order for the system to arrive at a conclusion, it will, in most cases, be necessary

for the system to ask you questions that relate to the domain.

IT ISIMPORTANT TO REMEMBER THAT THE SYSTEM DOES NOT
UNDERSTAND THE QUESTIONS THAT IT ASKS, THESE QUESTIONS
ARE BASED ON THE KNOWLEDGE BASE THAT YOU ARE USING AND
HENCE ARE THE RESPONSIBILITY OF THE PERSON WHO WROTE
THE KNOWLEDGE BASE. IF THE QUESTIONS SEEM IRRELEVANT OR
IRRESPONSIBLE BLAME THE PERSON WHO CREATED THE
KNOWLEDGE BASE NOT THE SYSTEM AND IF NECESSARY IGNORE
THE QUESTIONS.

111.7 ANSWERING YES/NO QUESTIONS

The simplest form of question that the system can ask it the YES/NO question. In

this case the system will open a window on the screen and ask

Is this true
This clause is true

Yes No Unknown Explain Prompt

Where "This clause is true™ is the clause that the system is trying to arrive at, at that
time. You have four or five possible options. Not all questions have prompts available and
those that don't will not have the option prompt will not be shown, giving only four options.

Using the selection menus, you move the highlight to the answer you wish to choose.

111.7.1 YES - THE CLAUSE IS TRUE

218

If you have decided that the clause displayed is true then select this option from the

list. Once selected, the clause is added to the working memory as a true fact.

111.7.2 NO - THE CLAUSE IS FALSE

If the clause is known to be false then select this option from the list. Once selected,

the clause is added to the working memory as a false fact.

111.7.3 UNKNOWN - NO INFORMATION IS KNOWN ABOUT
THE CLAUSE

If you do not have enough information to decide whether the clause is true or not,
then it will be necessary to select the unknown option from the list. If this is chosen, the
clause is not added to the working memory and when the system tries to use the knowledge
of the clause to fire a rule, it will not be able to and will therefore have to try and use a

different rule or fail.

111.7.4 EXPLAIN - TO PROVIDE A JUSTIFICATION FOR
THE QUESTION BEING ASKED

This option allows you full access to the explanation facilities provided by PESYS.
These are described in full below. Once you have used the explanation facilities, you are

returned to the main menu and you can make a decision about the clause displayed.

111.7.5 PROMPT - TO DISPLAY EXTRA INFORMATION
WHERE AVAILABLE

219

In many cases the knowledge base will contain extra information that will assist you
in deciding about the truth of a particular clause. This extra information may take the form
of either a piece of text, for example it may contain the actual rules that the question is based
on, or it may execute a command for more advanced facilities. Once this option has been
selected, the appropriate information is shown on the screen and you must press any key.
Pressing F4 allows you to move the prompt window around the screen. This then returns you
to the main menu, and based on this extra information you can make a more informed

decision about the clause.

111.8 NON-LINEAR DOCUMENTS

One of the special features of PESYS is its use of non-linear documents. These are
simply documents that allow you to examine a number of related concepts as well as the one
presented by the designers of the system. When a non-linear document is displayed on the
screen you will be shown a screen of text relating to a particular topic. Within this screen
certain words will be highlighted. The highlight can be moved between these words by
pressing TAB. To select a particular keyword press RETURN. On doing this the displayed
screen will change to one related to the keyword that you have selected. Some screens take
up more space than is available on the screen. In such cases, you will be presented with the
option to move up or down the screen. Pressing PageUp (PgUp) or PageDown (PgDn) will
then move you through these various screens. Pressing Ctrl and F1 takes you back to the
previous screen, whilst pressing ESCAPE (Esc) takes you out of the non-linear document.

Finally pressing F1 from within the document will take you to the main index / help screen.

111.8.1 HELP ABOUT THE SYSTEM

Non-linear documents are used to provide help about the PESYS system and can be

obtained by pressing the F1 function key at any time.

111.9 VALUE QUESTIONS

220

As well as asking you whether a fact is true or not, a particular knowledge base may
also request values for certain variables. PESYS supports two forms of variables, text
(strings) and numbers (reals). Whenever the system requests a value it will display a
question that explains what is required and then waits for you to enter a value. For example,

a knowledge base may need to know your age and might give a question like:

Please enter your age (in years)

You are then able to enter an appropriate value at the keyboard and pressing
RETURN. Up to 255 characters may be used to enter values and the input line will scroll as
necessary. In some cases, however, you may require a clarification of the question before
entering a value. You may want an explanation or a prompt. These can be obtained by
pressing the ESCAPE (Esc) key at any time whilst entering a value (before pressing

RETURN). When this is done, the following selection menu is shown

Continue Restart Explain Prompt

As was the case with YES/NO questions, those questions that do not have an
associated prompt will not have the prompt option displayed. Selecting Continue will allow
you to continue editing the same line as before, Restart abandons the line and lets you type in

a new answer. Prompt and Explain operate as before.

111.10 RANGE QUESTIONS

In some cases, you may be asked to specify a range of values which are valid. For
example, you may be estimating the wear on a device and may enter the minimum possible
value, the maximum value and the most likely value. PESY'S supports this form of input.
The system begins by asking you for the minimum value for the variable, and then the

maximum value.

Please enter the min value for The Wear On The Device?
0

Please enter the max value for The Wear On The Device?
10

221

The text of the question depends on the variable being input. After obtaining the
minimum and maximum values for the range, the system displays a sliding scale for the
possible range. You can move the slider (X) along the scale using the cursor keys until it

marks the most likely value.

0 |----+----X----+----| 10

A 5
To find the most likely position, move the cursor "X" to the
appropriate part of the scale and press Return

111.11 FORMS

Forms are used when sets of related information need to be entered. Forms are made
up of three main sections. Firstly, there is the background to the form. This is the text that
appears on the form. This might be instructions, labels or a description of the information to
be input. The second part of the form, which is optional, is made up of expressions that are
evaluated and displayed on top of the background. Finally the form may have various slots
that can have values entered into them. Again these slots are optional in a form. If a form
does contain slots, however, the first of these will be displayed on the screen by the symbol
"A". If you want to enter a value for this slot type in the value that you want. The process of
doing this is the same as value and range questions described earlier. Once the value has
been entered it is displayed on the form and the marker moves onto the next slot. If you want
to skip a particular slot, you can simply press the TAB key and the marker will automatically
move onto the next slot.

After the final slot has been reached, the system will then display l at the bottom
right corner of the form. This means that the form is "complete™ and, if selected by pressing
RETURN, will cause the system to continue with the inference process. Alternatively, if
you press the TAB key again you will move to the first slot. This means that you can enter
new values for any of the values for the slots time and time again until you are completely

satisfied with them all. You can then press RETURN when the l element is highlighted.

222

The line editor used within PESYS means that you can alter or replace the previous
values of any slots. If you decide to press RETURN when the system is highlighting a slot
that already has a value, a window appears with the value displayed. You are then able to
edit it or replace it. If the first key you press represents a character which could be part of the
value then the old value is replaced and you can continue to type the new value in.
Alternatively, typing a cursor control key allows you to alter the current value. Access to the
explanation facility and prompts is available as described above, when entering values for the

slots.

111.12 THE EXPLANATION FACILITY

If an expert system is to be used in an organization, then the most important factor
affecting its use (after the quality of the user interface - a program that cannot be used easily
is unlikely to be used at all) is the explanation facility provided. The explanation facility of

PESYS can be used in one of two ways.

111.12.1 DURING AN INTERACTION

When the system asks you a question you may want to have some explanation of its

line of reasoning, you may also want to check how it has arrived at certain statements.

111.12.2 ONCE THE INTERACTION IS COMPLETE

When the interaction has been completed and the system has arrived at a conclusion,
it will be useful, in many cases, to examine the reasoning that the system has followed to

arrive at that particular answer.

111.13 HOW TO USE THE EXPLANATION FACILITY

223

Explanation
We are trying to verify : This statement

Rule To Prove This Statement
IF
1 ,The First Clause Is True
2 X The Second Clause Is False
- Enter Your_name$
? This Statement
? The Third Clause Is True
{? The Fourth Clause Is True
OR ? The Fifth Clause Is True
}
THEN
We Have Finished

Exit to previous level How was this derived? Why ask this question?
Other Clause Scroll Rule

The explanation screen shows a lot of information. The first line tells you what
clause is currently being used. This is followed by the rule that is being considered. The

following indicators are used to show the truth of the clauses:

»This means that the clause is known to be true

X This means that the clause is known to be false

? This means that the clause is unknown

- This marks the clauses that are commands

{ and } mark the beginning and end of sets of related clauses that are either connected
with OR or ATLEAST. Details of both these constructs are given in the section on writing
applications.

After the rule has been displayed you are offered four possible choices, to exit from
this level of explanation, to explain how a statement was arrived at, to ask why the clause
needs to be arrived at or to examine other clauses. You are also able to scroll through the
rule, which is particularly useful if the rule is larger than the available screen. Note that if
you are using the explanation facility after the inference engine has finished working, the

WHY option will not be available. Also pressing ESCAPE (Esc) will give you access to the

224

configuration menu. Selecting the first option will take you back through the explanations
that you have made.

Selecting the How option causes the system to ask you which (humbered) clause you
want to examine. If no clauses in the current rule have been arrived at, then obviously you
cannot choose any of them and the system will inform you of this fact. Similarly if there is
only one clause that has been arrived at in the current rule, the system will automatically
select this one. If more than one clause has been arrived at in the current rule, you are asked
to enter the number corresponding to the clause you wish to examine. Thus using the
example above, if you wanted to know how This statement is true was arrived at, you would

select 1.

111.13.1 OTHER CLAUSES

The other clauses facility is used to examine the reasoning of clauses that have not
yet been arrived at. The available clauses are either goals or inform 2 clauses and you are
asked which you wish to examine. On choosing the appropriate list you are given the
opportunity to examine the available clauses and the rules that they are found in, plus an
indication as to whether the rule has fired. Select the rule that you wish to examine and it
will be displayed on the screen in the standard way. This allows you to examine an

alternative reasoning path and see why a particular goal was not arrived at.

111.14 HOW THE CLAUSE YOU CHOSE WILL BE
EXPLAINED

Once you have chosen the clause to be explained, there are a number of possible
paths. If the clause was arrived at using a rule, then this rule will be displayed in a similar
fashion to the first rule and the process will continue allowing you to explain the clauses in
that rule etc.

If the clause you chose was a comparison, then the system will inform you that the
comparison was made using known variables and the values of these variables will be shown
on the screen as necessary.

A third possible way for the system to have arrived at a particular clause, would be if

you told it that it was true directly. In this case the system would tell you.

225

111.14.1 THE WHY EXPLANATION

If you are using the explanation facility within an interaction, then provided that the
system is using backward chaining, then it will be possible to ask Why are you asking me this
question. Whilst the How facility examined those rules that had been used to arrive at a
clause, the Why facility allows you to examine those clauses that could be used to arrive at a
clause. The Why facility allows you to return all the way to the actual clause that is the

overall goal for the system.

111.15 THE END OF THE INTERACTION

Once an interaction has been completed, one of two things will have occurred.

Either the system has arrived at a goal, or no goals could be arrived at.

111.15.1 THE SYSTEM ARRIVED AT A GOAL

When the system has arrived at a goal, you will be shown something like:

These conclusions have been arrived at:
The system is ready
This conclusion has been arrived at using BACKWARD Chaining

Press <SPACE> to try and find another conclusion
Else press any key

In some circumstances, there may be a number of possible goals that would apply to
the problem situation you are examining and pressing SPACE allows you to examine them
all. This process continues using the runtime working memory that has already been arrived

at, thus the system will only try and arrive at conclusions that are still consistent with the

226

current one. When you have finished using the inference process the system will tell you to
press any key to continue. This is done to allow you to check any displays before the final
steps are taken.

You are then asked to choose between:

1 goal has been arrived at by the system
What do you want to do?

1 - Examine the goals that were arrived at
2 - Examine the goals that could have been arrived at
3 - Move onto the what-if analysis or finish

Selecting the first option allows you to examine the reasoning of one of the goals that
was fired to arrive at a goal. The second option, however, allows you to examine the
reasoning behind any of the goal clauses, whether they were in a fired rule or not. The third
option allows you to move onto the what-if analysis described below.

If you choose one of the first two options, then you will either be presented with a
single goal (if there is only one) or a list of possible goals together with the rules that they are

associated with:

Select a possible goal whose reasoning you would like to examine
Select one of the following

This is a goal - Fired Rule-name: This rule will have fired
This is another goal - Rule-name: Note that this rule will not have fired

By selecting a particular goal it is possible to examine the actual or possible
reasoning behind that goal. Once the various reasoning paths have been examined, you can

move onto the what-if analysis.

What IF Print Log Run Again Finish

111.16 OTHER OPTIONS

227

Selecting the What-if facility allows you the opportunity to alter values and clauses
that have been arrived at previously and then to see what effect the changes have on the

conclusions arrived at by the system. The What-if facility is described in more detail below.

111.16.1 PRINT LOG

The print log option allows you to print the log file automatically. Alternatively you

can copy the file to the printer when the interaction is complete.

111.16.2 RUN AGAIN

The run again facility simply allows you to run the knowledge base again, without

having to load it from disk.

111.16.3 FINISH

Finish clears out the memory of the program and returns you to the operating system.

111.17 THE WHAT-IF FACILITY

The What-if facility is fairly sophisticated in that it will allow you to alter any values
that you have entered and see what the effects of this are. When you enter the what-if facility

you have four options.

111.17.1 ALTERING THE EXISTING VALUES

The first option you have is to alter any existing values. In particular, those clauses
that cannot be arrived at using other rules are displayed as well as any variables that you have

used.

228

You have the facility to alter the truth of any of the clauses, whilst for variables you

can type in new values.

111.17.2 ADD LOW LEVEL DATA

This option allows you to add the low level clauses in a similar manner to that

described above.

111.17.3 SEE EFFECTS OF CHANGES

By selecting this option the system performs a forward chain with all the new data
and any results are displayed. Note that the system does not perform a backward chain as

this is likely to involve asking you questions again.

11.17.4 EXIT

Selecting this option leaves the What-if facility

111.18 THE DEVELOPMENT ENVIRONMENT

The development of an expert system application/knowledge base passes through a
number of different programs. These are shown in Figure 111.1. This part of the user guide

describes these different programs.

229

EDITOR
(optional)

'

PREPARE

'

EXTRAS PESYS

(optional)

'

MAKEFORM
(optional)

'

MAKE_NLD
(optional)

The DEVELOPMENT PHASE The RUNTIME PHASE

Figure 111.1 - The stages of the development process

111.19 THE FILENAME STRUCTURE USED

230

EDITOR
(optional)
% .rul
PREPARE
.rlc
% .cfg ™
EXTRAS PESYS
(optional)
.sns
% .pro
MAKEFORM
(optional) .|Og
% frm
.nid
MAKE_NLD ndx
(optional) Ink
The DEVELOPMENT PHASE The RUNTIME PHASE

Figure 111.2 - The files in PESYS

All the files in a knowledge base share the same main FILENAME. Each of the
different files has its own extension to the main filename to identify the form that it takes.
The different programs in the development process create the different files, as is shown in

Figure 111.2.

The extensions for the files are:

.RUL stands for the original rule file. This is the rule file that was entered by the knowledge
engineer / expert when the knowledge base was created.

.RLC is the coded form of the original rule file. This file is created by the PREPARE
program. All the development and runtime programs use the coded form of the rules rather
than the original .RUL form.

.SNS contains the common sense information that is needed by the system. For the current
version of PESYS this is primarily information about the variables used in the program - in
particular the questions that are to be asked when variables are input, which files the values

are to be found in, the valid ranges that may apply to numeric variables etc.

231

.PRO contains the text of any prompts that are presented to you when you require extra
information.

.CFG is the file for the configuration information about the knowledge base. It contains
information about the type of inferencing methods used in the knowledge base, what
information is logged to disk and other system features.

.LOG is created whenever a knowledge base is consulted. It keeps a record of the
information that has been derived by the system. According to the configuration the
information is either brief or detailed.

.NLD contains the screens for the non-linear documents.

.LNK contains the information linking the various screens in the non-linear document.
.NDX is the index of screen names that is used to access the individual screens in a non-

linear document by name rather than by number.

111.20 USING EDITOR

The PESY'S development environment includes a full screen text editor (called
EDITOR) which can be used to write knowledge base files (RUL). Also, since all the files
associated with a knowledge base are in plain ASCII format, it can also be used to edit any of
the files, for example to correct any typing errors. If you want to edit a new file then simply
run the program, whilst to edit an existing file give its full name when loading the program.

The editor supports a full range of editing features such as search, search and replace,
go to the top of the file, go to the bottom of the file etc. It also allows you to define and alter
preset keywords. This facility can be used if you are going to use a certain term many times

in the knowledge base.

111.20.1 FACILITIES WHEN EDITING A PARTICULAR
LINE

The facilities offered by the editor can be split into two main areas, those that refer to

each individual line of the file and those that refer to the file as a whole.

232

START OF LINE / END OF LINE

To automatically jump to the start of the line, press HOME. Similarly to move to

the end of the line press END.

CURSOR LEFT/CURSOR RIGHT

To move the cursor left and right use the cursor keys. Also CTRL Sand CTRL D

will move the cursor one character to the left and right respectively. Note that if you move

beyond the end of the line or before the start of the line you will be moved down or up a line

as necessary, if that is possible. CTRL A and CTRL Cursor-left will move the cursor one

word to the left, whilst CTRL F and CTRL Cursor-right do the same to the right.

DELETING

To delete the last character entered, press BACKSPACE whilst to delete the next

character in the line press DEL. Again wrapping occurs if you reach the end of the line. To

delete a word press CTRL T, and to delete the current line press CTRL Y.

INSERT/OVERWRITE

To change between insert mode and overwrite mode, press INS.

PREDEFINED TEXT
The editor allows you to define up to 26 different sets of predefined text. These can

be inserted anywhere in the file by pressing an associated key. The clauses are found by

pressing ALT and one of the 26 alphabetic keys. Each key has its own phrase.

233

CHANGING THE PREDEFINED TEXT

To define your own predefined text, press CTRL F10 followed by the key that you
want to redefine. The previous value is shown, allowing you to alter it if necessary. Once

the key has been redefined, all further uses of it will result in the new text being used.

111.20.2 FACILITIES WHEN EDITING WITHIN THE FILE

NEW LINE

Pressing RETURN creates a new line in the file.

MOVING BETWEEN LINES

The Cursor-up and Cursor-down keys move you between the different lines of the
file. Similarly PageUp (PgUp) and PageDown (PgDn) moves you up or down a screen, if

that is possible.

MOVING TO THE TOP/BOTTOM OF THE FILE

To move to the top of the file press CTRL Q followed by R and to move to the
bottom of the file type CTRL Q followed by C.

FINDING TEXT

234

To find a piece of text press CTRL Q followed by F. You will then be asked to
enter the text to be found and then press RETURN. The system will then try and find the
required piece of text. If found, the cursor will be placed on it, otherwise you will be told

that it cannot be found. To find the next occurrence of the text press CTRL L.

REPLACING TEXT

It is also possible to replace a piece of text. This is done by pressing CTRL Q
followed by A. You are then asked for the text and its replacement. You are queried before

the replacement is made. Otherwise the operation is as for FINDING TEXT.

SAVING A FILE AND EXITING

To save the file press the ESCAPE (Esc) key. You are then asked to enter the name
of the file. If you are editing an existing file, the existing file's name is used as a default.
Press ESCAPE (Esc) if you do not want to save the file. You are then asked if you have
finished editing. Pressing Y will cause you to leave the editor, any other key returns you to
the file.

111.21 USING PREPARE

Once you have written the rules, using the editor, it is necessary to convert them into
a specially coded form for use by the main program. This process is undertaken
automatically by the program PREPARE. However, before this is done it is necessary to
configure the system for the particular knowledge base. This configuration can be altered

during the execution of the shell PESY'S and so it will be described in detail here.

111.21.1 CONFIGURATION

235

The configuration process encompasses two areas - the configuration of the inference
engine and the setting up of other system values. To configure the inference engine you

switch on or off various inferencing strategies.

FORWARD CHAIN

When this is selected the system will perform a forward chain when the knowledge
base is loaded. Since forward chaining only works when known clauses match if-clauses of
rules and a newly loaded knowledge base will not contain any known clauses, the only rules
that will fire are those that have no if-clauses. By having such "empty" rules and selecting

forward chaining it is possible to add default clauses to the working memory.

BACKWARD CHAIN

Selecting backward chain makes the system try and arrive at conclusions using the
backward chaining mechanism. This method is described in more detail in the section on

inferencing methods in the tutorial.

MIXED CHAIN

Sometimes it may be necessary to allow rules to fire whenever their if-clauses are
true, regardless of whether they are currently being examined. This feature is often known as
"demons" and is implemented by selecting mixed chaining. This means that whenever a
clauses has been found using backward chaining the system performs a forward chain to see
if this clause allows new rules (demons) to fire. Obviously backward chaining must be on

before mixed chaining can have any effect.

PURE FORWARD CHAIN

236

This is an advanced form of forward chaining in that it will examine the if-clauses of

rules and if they are commands it will try and execute them.

LOG INFORMS ONLY

The system will automatically create a trace of the actions undertaken by the system

(such as what questions were asked, what answers were given, etc.). However by selecting

LOG INFORMS ONLY, it is possible to restrict this trace to only inform statements. By

deselecting this option all information will be logged.

SEND INFORMATION TO DISK

For some applications it may be desirable to prevent the logging of actions from

taking place. In this case SEND INFORMATION TO DISK is deselected.

RETURN EXPRESSION RESULTS

Whenever an expression is evaluated, it is possible to display the results (for

debugging purposes) by selecting this option.

SELECT FOR FORWARD CHAIN

By selecting this option, the user is presented with a list of all possible clauses that

cannot be arrived at by using other rules before inferencing begins. It is normally used with

forward chaining.

COMPARISON ACCURACY

237

Numeric comparisons are only available to a certain degree of accuracy. The value

of the accuracy (default 1e-6) specifies how close numbers must be for comparisons to be

valid.

DECIMAL PLACES

This option specifies the number of decimal places to be used when the system

displays any numbers. This is the default value used if a variable does not have an

alternative value of its own.

NORMAL COLOUR, REVERSE COLOUR

Alter the values for these options if different screen colours are required, for example

for use with projection equipment etc.

111.21.2 CONVERTING THE RULES

Once the configuration has been made, the system automatically converts all the

rules. A count is kept of the total number of rules converted.

111.22 USING EXTRAS

The program EXTRAS is a utility for getting the information about variables,
prompts and forms for display in the runtime unit PESYS. Variables must have a
specification for where they are to be obtained from and what prompts are to be displayed.
The variables used in any forms must also have this facility. Also the text of any prompts

must be found.

111.22.1 VARIABLES

238

The system performs this task by examining each rule. If there is a command to enter
variables, use the range_of command or load a form, the system will find the variables used
and will check to see if the variables already have information associated with them. If no

information exists for the variables you will be asked:

Where from
From Keyboard From File From Range

Select where you want the variable to be read from. Once this has been done, you
must either type the prompt that is to be displayed (in the case of from keyboard or from
range) or you must enter the filename where the variable can be found.

If the variable is numeric, you will then be given a number of extra options

Finish Decimal Places Valid Range 0 to infinity
1 to infinity

FINISH

Finish allows you to exit from this option

DECIMAL PLACES

This allows you to specify the number of decimal places to be used when the variable

is displayed.

VALID RANGE

239

In some applications it may be necessary to specify a certain range for the valid values

of a variable. For example, if asking for the month, you only want values from 1 to 12.

Selecting this option allows you to enter the minimum and maximum valid values.

0 TO INFINITY

In some cases the valid range is from O upwards. In this case, rather than simply

selecting the VALID RANGE and entering the values, use 0 to infinity to perform the task

automatically.

1TO INFINITY

This option performs a similar task to the one above, except that it starts from 1.

111.22.2 PROMPTS

If the system comes across any prompts that have not yet been defined it will ask you

for details of the actual prompt.

111.23 USING MAKEFORM

The program MAKEFORM creates forms for the user interface of the runtime program.
Each form is a screen. These screens can have any of three components - a background text,
expressions to be displayed and variables to be entered. The position of the variables /

expressions and the number of characters to be displayed are specified using MAKEFORM.

111.23.1 CREATING A FORM

240

Specifying the name of the form when loading the system allows you to alter an existing
form. The extension .FRM is used to signify that the file is a form. Note that when you save the
form you are always asked for a filename and therefore you will not overwrite the file that you
read in unless you save it under the same name. This means that, for example, you can create

a standard background form (Standard.frm) and use it to create a number of different forms.

MAKEFORM standard.frm
(make alterations to form)

Save Screenl.frm

111.23.2 THE OPTIONS AVAILABLE

Once you have entered the program, you are shown the following menu:

Add text Variables Expression Edit
Delete Redraw Exit

EDIT BACKGROUND

Selecting this option places you in the main screen. Your position is indicated by the
cursor. Any text you type will be placed on the screen. Using the cursor keys you can move
around the screen to position text. To erase text either overwrite it with spaces or use the
BACKSPACE key.

For the system to work will all displays, there is no facility for altering the colour of the
text. To finish adding text press ESCAPE (Esc). This returns you to the main menu. You can

add more text simply by selecting this option from the list.

ADD VARIABLES

241

This option allows you to add variables to the display which the user may enter. Once
the option has been selected move the cursor to the position where the variable will be displayed
once it has been entered (it is advisable to leave one space after any text introduction as the
system displays a prompt for the user) and press RETURN. You will now be asked to enter the
name of the variable to be entered and the number of characters of the users response that are
to be displayed. Note that this is not the number of characters used to store the response, only
the number of characters shown. Once you have specified this the screen will show the area and
you can add more variables. Once again, pressing ESCAPE (Esc) takes you back to the main

menu. Selecting this option again allows you to add more variables.

ADD EXPRESSIONS

This option is identical to the one above, except that you can specify expressions to be

displayed rather than variables to be entered.

EDIT

In order to edit something you must first specify if you want to edit variables or
expressions (alternatively you can abandon this option). Once you have selected one of the two
lists a marker is placed by the first item in the list chosen. (If there are no items in the list you
are returned to the main menu). This marker is moved through the list by pressing TAB. Once
you have found the item you want to edit, press RETURN. ESCAPE (Esc) leaves this option.

The details of the variable/expression chosen are then shown:

Expression

X Value

Y Value
Display Length
Finish

Selecting one of the values allows you to enter a new value. Selecting finish lets you
edit another item in the list. It is important to note that any changes you make will not be shown

immediately, you must select the redraw option to see any changes.

242

DELETE

To delete an item you must first select the list from which it is to be deleted. Then, as
above, you select the item to be deleted. Pressing RETURN then deletes the item. Again no
changes to the display will become apparent until you select the redraw option. Since the delete
option cannot be undone, once an item has been deleted you must select the delete option again

to delete another item.

REDRAW

The redraw option redisplays all the background text and variables/expressions to be

displayed, showing any changes made by the edit and delete options.

FINISH

When you have finished adding text and variables and expressions to the display,
selecting Finish will allow you to save the form. The system asks you for a filename for the data.
Use the extension .FRM to specify that the file is a form. The form is then saved in the named
file. A datacompression routine is used to minimise storage requirements. If you do not specify

a file name the form and all the alterations are abandoned.

111.24 USING MAKE_NLD

The program MAKE_NLD creates a set of files for a non-linear document. It is only
necessary to specify the text of the document and the links between different screens. All the
house keeping tasks are performed automatically by the system.

Non-linear documents are made up of two main components. The first of these are the
screens in the document. These are simply pieces of text that are displayed on the screen. Each
screen is given a unique identifying name so that it can be referred to by other screens. The other

component of a non-linear document is the link that exists between different screens. Each link

243

is associated with a piece of text which is displayed on the screen and refers to a separate screen.
It is through these links that users are able to move through a non-linear document.

To create a non-linear document you must first specify its name. It is advisable to use
a name that is related to the knowledge base being designed. If the name is new you are
presented with a completely blank document, however if the non-linear document already exists
then you can edit it. The first element in a non-linear document is used as a help facility or
central index and so it is advisable that the first screen entered is used for this purpose. When

you are editing a non-linear document the following options are available to you:

CREATE A NEW SCREEN

This process allows you to create a new screen and also to link it with other screens. It

is effectively a combination of some of the other options.

SELECT A SCREEN

The remaining options operate on screens and links that have already been created.

Choosing this option, therefore, allows you to select an existing screen to modify. The system

presents you with a list of all the available screens and you can choose the one you want to alter.

Once the screen has been selected it is displayed in the main editing area.

EDIT SCREEN

This option is used to alter the text in an existing screen. A full on screen editor is

available for this purpose. To exit the editor, press ESCAPE (Esc).

EDIT LINK

This option allows you to edit an existing link, either by changing its text, its position

or the screen it points to.

244

ADD LINK

Instead of editing an existing link, this option allows you to add a new link to a particular

screen.

DELETE SCREEN

This option allows you to delete individual screens and their links to other screens.

QUIT

This option allows you to leave the application. When this is done, all the necessary

updating of files is performed automatically.

111.25 WRITING A KNOWLEDGE BASE IN PESYS

PESYS is a rule based expert system shell. This means that the representation of
knowledge in the system is in the form of if-then "production rules”. Production rules are the
most common knowledge representation technique used in expert system shells. Some shells add
the facility to describe objects using techniques such as first order logic or frames. In many
cases, however, this is done by "forcing" the knowledge into unnatural formalisations which can
be both inappropriate and inefficient.

The rules in PESY'S are designed to be as easy to understand as possible - this is done
by allowing them to be written in natural language (English) with only one or two minor

restrictions. A typical (simple rule) looks like this:

This rule considers the case of normal applications
if

the student is an ordinary applicant

then

we have found the status of the applicant

245

111.25.1 PARTS OF THE RULE

RULE NAME

The first line of the rule is the rule name. This can be anything (up to 255 characters).
One possibility is simply to number the rules, however this is not particularly useful. A far more
useful form is to use a descriptive rule name. A rule name that fully describes the actions of and
reasons for a rule will not only aid in debugging the knowledge base, it will also be particularly

useful in the explanation facility since it can convey the intentionality behind the rule.

IF
After the rule name is a line containing the keyword IF. Note that PESYS is completely
case independent - the word IF can be in upper or lower case, or a combination of the two. This

case independence occurs throughout the system.

IF-CLAUSES
After the IF line come the if-clauses. The if-clauses are a list of statements (zero or
more) that define the conditions necessary before the rule can be used. If-clauses can either be

clauses of text or they can be commands. The text clauses can be of any form. For example:

The ball is red

The animal has long hair

The person has attended the course for at least sixty days in the last year
We have got the basic information about the user

etc.

Negations are easily defined by adding the word NOT to the sentence. Thus the above clauses

could have negated forms of:

The ball is not red
The animal has not long hair
The person has not attended the course for at least sixty days in the last year

We have not got the basic information about the user

246

When the knowledge base is PREPAREd all the NOTs in the clauses are removed and
counted. The number determines whether the clause is negated or not. When you are asked

about the clause you are always asked to confirm a positive statement.

i.e. Is this true
You Have Done All The Work

rather than

Is this true
You Have Not Done All The Work

which has possible responses of
Yes - | have not done all the work or

No - | have done all the work?

This method can deal with double (or more negations). For example - "is it true that it
is not the case that you did not go to the concert" means the same as "Is it true that it is the case
that you did go to the concert”. The only limitation is that sometimes the addition of the word

will not be natural. Inthese cases it is best to simply add the word NOT to the start of the clause.

THEN
The conditions of the rule (the if-clauses) are separated from the actions part of the rule

by a line containing the keyword THEN.

THEN-CLAUSES
The last part of the rule are the then-clauses. These have the same form as the if-clauses.

There can be zero or more then-clauses.

111.25.2 FIRING A RULE

247

Arule is said to "fire" when all its if-clauses are "true". In the case of commands, these
are "true"” when they are executed. Comparisons between variables (both string and numeric)
are "true" only when the comparison is true (to the degree of accuracy specified). Finally text
clauses are "true” only when the working memory contains clauses whose known truth or falsity
matches that of the clause. When all the if-clauses are "true" (logically they are combined with
the AND connective) the rule "fires". The text clauses in the then part of the rule are then added

to the working memory and any commands are executed.

111.26 HOW THE SYSTEM FIRES RULES

There are two basic ways in which the system can fire rules: It can take whatever data
is available and see what "falls out", or alternatively it can try a particular path and see whether
the data supports it. Technically these two strategies are known as Forward chaining and
Backward chaining. The easiest way to understand these methods is to see how the inference

engine undertakes each strategy.

111.26.1 FORWARD CHAINING

The inference engine starts at the top of the rules. Consider the rules as being in a long
line attached with string. It then looks at each rule to see whether it has been fired already. If
the rule has not been fired the inference engine looks at all the if-clauses. If they are all true the
rule fires and the then-clauses are added to the working memory and the system continues by
examining the next rule. Once all the rules have been examined the system starts at the top of
the list of rules again. This process continues until no more rules can be fired or a goal has been

arrived at.

111.26.2 INFORM LEVELS AND GOALS

Every time a rule fires, it adds then-clauses to the working memory. Each then-clause
is potentially useful information for the user. In order to differentiate between clauses that the

user needs to know when they have been arrived at, and temporary clauses that are simply used

248

in the inference process, PESY'S allows you to mark those clauses that the user needs to know
about with the keyword INFORM. Thus if the user needs to know that the animal is mammal,

the clause will have the keyword inform added to it. For example,

Inform 2 The animal is a mammal

Note that the inform keyword has a "level” associated with it - in this case level 2. Any
clauses which do not have the keyword inform are considered to be of level 0 and the user is not
informed when the clause is added to the working memory. Inform levels of 2 (and above) are
considered to be useful information that the user should be informed about, however they are not
the final result and once the user has seen the clause (and pressed a key) the system continues
to arrive at conclusions.

Inform clauses with a level of 1 are considered to be goals and whenever they are arrived
at the system stops inferencing. The main advantage of this approach is that it minimises the
possibility of data redundancy and the problems associated with this For example, the normal
way of specifying the goals that the system is trying to arrive at is to have a list of goals at, say,
the start of the knowledge base. However when you add or remove rules from the main
knowledge base there is no guarantee that you will remember to add or remove goals from the
list of goals. If, for example, a goal is not added when new rules are added the system will never
consider the rules for the (missing) goal and the system will be incomplete. By attaching the
"goal status” of a clause to the rule itself, this problem of redundancy will never arise. This
direct attachment also means that whenever a rule with inform 1 then-clauses is fired the system

will recognise that it has reached the end of the inference process and stop.

111.26.3 BACKWARD CHAINING

Backward chaining works in the opposite direction to forward chaining. Instead of
taking the data and seeing what comes out, backward chaining tries to fire a rule directly.

The first step is to list all the rules that have inform 1 then-clauses. The system will try
and fire each of these. To do this, it takes the first rule in this list. In order for this rule to fire,
it will need to check that all the if-clauses are in the working memory of the system. Assume

that there is no information in the working memory. This means that none of the if-clauses are

249

known. The system must therefore try and arrive at the if-clauses indirectly. The if-clause
becomes the new goal that the system is trying to verify.

Firstly, if the clause is a command the system executes it immediately and moves onto
the next if-clause. Similarly, if the clause is a comparison the system tries to evaluate it. If the
comparison is valid, the system moves onto the next if-clause.

Finally, if the clause is textual, the system checks to see whether it is in the working
memory (or if its negation is in the working memory if the clause is negated). If it is not, the
system must try and arrive at the answer. The first way to do this is to arrive at it, directly or
indirectly, from other rules and so the system makes a list of all the rules that contain the clause
in their then-clauses (i.e. rules that, if fired, would add the clause to the working memory). If
this list of rules is empty the clause cannot be arrived at by using rules and so the system must
ask the user about the clause.

If there are any rules that could arrive at the clause, the system sees if it can fire any
using the data that already exists in the working memory. If the rule fires (and the clause is
arrived at) the system moves onto the next if-clause. If none of the rules can be arrived at, the
system tries each rule indirectly, that is, each if-clause in this rule is checked using the same
method as described above. This process continues until either a goal is arrived at, or there are

no more rules to be tried.

111.27 A SIMPLE EXAMPLE

To demonstrate the two techniques we will consider a very simple example. The
knowledge base will try to decide which of three drinks you have before you. The three drinks
are milk, lemonade and coffee.

In order to identify each of these, a rule is needed for each and since our goal is to
identify the drink in question, the then-clauses in each rule will be marked with inform level 1.

First consider milk

This rule fires if the drink is milk - Note the meaningful rule name
if

the glass and liquid are cool to the touch

and the liquid is a white colour

then

inform 1 the drink that you have before you is milk

Next consider lemonade

250

this rule fires if the drink is lemonade

if

the glass and liquid are cool to the touch

and the liquid is clear

and the liquid is carbonated

then

inform 1 the drink you have before you is lemonade

finally for coffee

this rule is for coffee

if

the glass and liquid are hot

and the liquid is a dark colour

then

inform 1 you have a glass of coffee

Since the user may not understand the term carbonated, we can add the following rules:

carbonated drinks taste fizzy
if

the drink has a fizzy taste
then

the liquid is carbonated

carbonated liquids have bubbles
if
the drink has bubbles in it

then
the liquid is carbonated

111.27.1 A FORWARD CHAINING EXAMPLE

If we PREPARE this file with the following configuration (see the section on using
PREPARE).

Forward Chain True

Backward Chain False
Mixed Chain False
Pure Forward False
Select Items True

When you run the program you will first be shown a screen

251

The drink has a "fizzy" taste

The drink has bubbles in it

The glass an liquid are cool to the touch
The glass and liquid are hot

The liquid is a dark colour

The liquid is a white colour

The liquid is clear

Select the following items

The drink has a "fizzy" taste
»The drink has bubbles in it
~The glass an liquid are cool to the touch
The glass and liquid are hot
The liquid is a dark colour
The liquid is a white colour

~The liquid is clear

Press CTRL and RETURN to start the inference process.

First cycle. The forward chain mechanism examines the first rule - the first clause
matches, the second doesn't. Second rule, the first and second clauses match, the third doesn't.
Third rule, the first clause doesn't match. Fourth rule, the first clause doesn't match. Fifth rule,

the first (and only) clause matches, the rules fires. "The liquid is carbonated" is added to the

working memory. End of first cycle.

Second cycle. First rule, first clause matches, second clause doesn't. Second rule, all

three clauses match and the rule fires. Then-clauses contain inform 1 clause and so inference

process stops. End of second cycle.

System completes forward chaining by informing you that the drink you have before you

is lemonade.

111.27.2 A BACKWARD CHAINING EXAMPLE

252

To see how the system works using backward chaining, PREPARE the rules with the

following configuration.

Forward Chain False

Backward Chain True
Mixed Chain False
Pure Forward False
Select items False

Firstly the system makes a list of all the rules which have inform 1 then-clauses.

This rule fires if the drink is milk
This rule fires if the drink is lemonade

This rule is for coffee

It considers the first rule in this list. In order to fire this it needs to know if the if-clauses
are true. Firstif-clause: "The glass and liquid are cool to the touch”. This is not in the working
memory and so it must be verified. The system first finds any rules that contain the clause in
their then-clauses - there aren't any, so the user must be asked directly. Suppose the answer is
yes, the system then considers the second if-clause "The liquid is a white colour". Since this is
not in the working memory, it must again be verified. Once again there are no rules to arrive at
this so the user is asked directly. This time the answer is No. This means that the clause is not
true and so the rule cannot fire.

The system then considers the second Inform 1 rule. The first if-clause ("The glass and
liquid are cool to the touch") is already in the working memory and so the system can move onto
the next if-clause. Since this is not known and cannot be arrived at using any rules, the user is
again asked and answers Yes. The system then moves onto the third clause - "The liquid is
carbonated". This is not in working memory and must therefore be verified. The clause can be
arrived at by firing two rules :- "Carbonated liquids taste fizzy" and "carbonated liquids have
bubbles”. The system will first see whether these rules can be fired using data in the working
memory - they can't. It then tries to fire them indirectly.

First rule: In order to fire the system needs to consider the clause "The drink has a fizzy

taste”. This isnot in the working memory and so it must be verified. There are no rules to arrive

253

at it so the user is asked. The answer is No, and this means that the rule cannot fire. The system
then moves onto the next rule. Again the if-clause must be verified by asking the user directly.
The answer this time is Yes and the rule fires, adding the clause "The liquid is carbonated" to
the working memory. The addition of this clause means that the rule "this rule fires if the drink
is lemonade™ also fires, adding an inform 1 clause to the working memory. This means that the

system halts and informs the user that a goal has been arrived at.

111.28 ADVANCED FEATURES IN THE KNOWLEDGE BASE

A second knowledge base, Rich.rul, illustrates a number of more advanced features.

111.28.1 META RULES

A meta rule can be described as one which describes how other rules are to be used.
This is a useful facility when you do not want rules to fire at random, rather you want to control
the actions of the system. Effectively this means that meta rules can be used to "program" the
actions of the knowledge base.

For example, in the Rich knowledge base we are trying to determine what the likelihood
is of the user becoming rich. In order to do this we want the person to provide some personal
information before we can determine the possibility of becoming rich. The if-clauses for this
rule are therefore a statement checking that we have obtained the basic information and a
statement asking if we have considered the ways of becoming rich. Once these steps have been

taken, we can finish and inform (1) the user that the system has done its work

this rule controls the main actions

if

we have got the basic information about the user

and we have considered ways of getting rich

then

inform 1 the system has assessed your richness potential

111.28.2 TOP DOWN DESIGN

254

One of the most effective software design methods for minimising maintenance
problems is top down design. This principle can easily be applied to the writing of knowledge
bases. If the previous rule is considered as the top of the design, then by a top down breakdown,

the next rule to be considered will be one to get the basic information from the user.

111.28.3 USING FORMS TO ENTER DATA

One frequent difficulty with expert systems is the fact that once you have entered data,
because the system is often using a backward chaining technique, there is no way to go back and
alter values. PESY S partially overcomes this problem by allowing the designer of the knowledge
base to group a series of questions together in one form. The assumption being that if you want
to change a value, you will do so with recent answers, rather than earlier answers. A form for

entry allows you to alter the values until you select the end item.

111.28.4 COMMENTS

Comments may be inserted into the knowledge base by adding lines beginning with an

asterisk (*).

111.28.5 OR CLAUSES

The ability to combine clauses logically using OR as well as AND is also available in
PESYS. The if-clauses that we have seen so far can be considered as sets of OR clauses where

there is only one alternative - this OR nothing.

A simple rule with ORs and ANDs
If

255

A
OorB
OorC
And D

is represented by the system as

A simple rule with ORs and ANDs
If

AorBorC

D

then

Only one item from each line needs to be true for the rule to fire. See how this

corresponds to the simple if-clauses we saw earlier.

A simple rule with ANDs only
If

A

B

C

then

which is represented as

A simple rule with ANDs only
if

A

B

C

then

Where again each line needs only one true clause for the rule to fire.

Every if-clause is actually a list of or-clauses.
If

{

this is true - an or clause
or that is true - an or clause

¥

Where the contents of the curly brackets is one if-clause. If the first or-clause is true the
whole if-clause is true. If it isn't the second clause is considered. This process continues until

one of the or-clauses is true, or there are no more or-clauses to be considered.

111.28.6 VARIABLES

256

PESYS allows you to use variables as part of the knowledge base. Both string and
numeric variables are supported with expression evaluation available for numeric variables.
Variable names can be any alphanumeric symbols and underline ("_"), provided that the first
character is alphabetic. String variables are marked by adding $ to the end of the variable name.

Meaningful variable names considerably aid the readability of knowledge bases.

First_name$ - a string variable age - a numeric variable

All numeric variables are reals.

111.28.7 COMPARISON OF VARIABLES

Numeric variables can be compared with one another or expressions. If the comparison

(to the defined level of accuracy) is valid, the clause returns true.

age > 21 returns true if the current value of age is greater than 21.

min_of these <= a+(6*b) returns true if the comparison holds.

Comparison of string variables is also possible:

first_name$ = Edgar

Note that no quotation marks are required around string constants.

111.28.8 ATLEAST CLAUSES

A final control structure is the ATLEAST construct. The ATLEAST command is an
advanced form of the OR clauses described above. When the system was evaluating a list of
or-clauses, it moved onto the next if-clause as soon as one was found to be true. However in the
ATLEAST command, every clause is examined and a count is taken of the number of true ones.
If this count is more than or equal to the limit in the command the if-clause is set to true. In

addition a variable, how_many, is set to the number of true clauses.

257

111.28.9 PROMPTS

The user may be given useful information, in the form of prompts by adding the word

PROMPT to the end of the clause and then specifying the prompt name on the next line.

For example:
You keep your eyes open all the time prompt

Never_know

When you run the program EXTRAS, you will be asked for the text of the prompt

associated with the question.

111.28.10 COMMANDS IN PESYS

The following commands are available in PESYS.

LET This command is used to assign values to numeric and string variables. For
numeric variables a simple expression evaluator is available that allows the use of variables

within expressions.

DOS, The DOS and DOS_E commands are used to execute external DOS_E
programs from PESYS. DOS_E should be used if the parameters to be passed to the programs

are to be evaluated using variables known to the system, otherwise DOS should be used.

PRINT This command is used to output information onto the screen. Anything within
guotation marks is taken to be a constant and is displayed immediately, anything else is evaluated
and the result is displayed. Note that there are no separators between the different expressions

to be evaluated.

ENTER Theenterandre_enter commands are used to input values fromthe RE_ENTER
keyboard. The commands differ in that enter only obtains a value if none exists

previously. Re_enter, on the other hand, always obtains a value. The values entered can either

258

be obtained from the keyboard, from a file or by use of a slider marking the minimum, maximum

and most likely values of the variable.

OPEN_IN PESYS is able to communicate with other programs through the use
OPEN_OUT of ASCll datafiles. The commands open_inand open_outare used to open files
for inputting data and for outputting data respectively and take the name of the file to be opened

as a parameter.

APPEND The append command is used to open an existing file so that values are written

at the end of it.

READLN The readln and read commands are used to obtain values from a file READ
that has been previously opened for input. The commands differ in whether the

items are expected to be one per line or not.

WRITELN Writeln and write are used to output data to the opened output file. WRITE

writeln adds an end of line character to each line of output.

CLOSE_IN Close_in and close_out perform the opposite actions to open_in and
CLOSE_OUT open_out.

CLS The cls command is used to clear the display screen.

PRESS_KEY When executing this command, the system waits for the users to press a key

before continuing.

RANGE_OF This can be used instead of enter or re_enter to force the users to enter a

minimum, maximum and most likely values of a variable.

USE The use command is used when a sub-knowledge base is to be used in the
inference process. The specified knowledge base is loaded and executed and once it is complete,
control returns to the previous knowledge base. The available memory of the system is the only
restriction on the depth of nesting of knowledge bases.

FORM The form command is used to display a particular form on the screen.

259

NLD This command is used to access the non-linear documents. Two parameters are
required namely the name of the file being used and either the location of the required screen or

its name.

260

APPENDIX IV - THE MAIN DATA
STRUCTURES USED BY PESYS

The PESYS system makes use of three basic data structures. These are binary trees,
linked lists and a special form of binary tree that is used to store facts about the domain - the

working memory of the system.
IV.1 BINARY TREES

Simple binary trees are used to sort data in the expert system. For example, when
presenting the users with a list of known facts to be altered in the what-if facility, they are added
to a binary tree and so are presented in alphabetical order.

A binary tree is also used to store all the words known in the system, effectively the
structure acts as a dictionary for the system. Words are represented in the rest of the expert
system as pointers to the actual word in the tree. Comparison of words, therefore, involves
comparing pointers to nodes in the tree. If two pointers point to the same node then, by
definition, they point to the same word. Comparison of words is then efficiently implemented
as a comparison of pointers rather than a lengthy character by character comparison.

The only problem with this tree arises when storing the words in the system using Turbo
Pascal strings. Each word in the tree is converted into a standard form (with the first character
in capitals and the remaining letters in lower case) and could be between 1 and 255 characters
in length. Allocating the maximum length (256 bytes) for every word is very wasteful of
memory and so a rather clumsy mechanism is introduced which makes use of a number of
different string types and pointers to them. This problem is a direct consequence of the way that
PASCAL handles strings and would be better implemented in C.

IV.2 LINKED LISTS

258

—NIL

Head

Tail

The List Structure

Figure IV.1 - Linked lists in PESYS

PESYS uses linked lists to store most of the data in the system. Since the lists are used
without any particular ordering they are implemented using a very simple but effective
mechanism, see Figure 1V.1.

When a list is being created two pointers are used, one which points to the head (first
element) and one which points to the tail (last element). For a new list, therefore, both head and

tail point to NIL.

259

Head —» NIL
IData —=NIL
Tail — »NIL tem
Step 1. An Empty List Step 2. A New Data Item

Figure I1V.2 - Creating a new list

When a new element is to be added to the list it is first created dynamically. A special
function is used to create each element and this function explicitly initialises any pointers in the
element to NIL. Most of the problems with linked lists arise when pointers are not initialised
to NIL. By making this process explicit errors of moving beyond the end of a list cannot arise.
Any data is then added to the new element and it is placed at the end of the list. If the head of
the list is NIL then the list is empty and the head is made to point to this new element. The tail
also points to this element. When a second element is added to the list the head no longer points
to NIL and so the new element must be added to the end of the list. The end of the list is marked
by the tail pointer to tail*.next is made to point to the new element. This new element is now
the last element in the list and so the tail pointer is updated. This process is shown graphically
in Figure 1V.1, Figure 1V.2 and Figure 1V.3.

260

—=NIL

Step 3. After adding the first item
to a list

Head ~a
- —=NIL

Tail

Step 4. After adding the next item
to a list

Figure 1V.3 - Elements added to the list

The Sent_ptr list

An example of such a list is the sent_ptr which is used to represent lines of text, such
as the clauses of rules. Each element contains a pointer to the dictionary and a number (real).
It also contains an indication as to whether the element represents a word or a number. If the
element represents a word then the pointer points to the word in the dictionary, otherwise it
points to NIL. The number is either the actual number represented or 0.

The type definitions for this list, together with the routines for creating and the list are

shown below:

TYPE

sent_ptr = ~sent_rec;

sent_rec = RECORD
word_ptr : vocab_ptr; (*to dictionary*)
numeric : boolean;
number : real;
next : sent_ptr; (*next element in the list*)

END;

261

FUNCTION Make_sent_el : sent_ptr;

VAR
tag : sent_ptr;

BEGIN
NEW(tag);
tag™.word_ptr := NIL;
tag”.next := NIL;
tag™.number :=0;
tag™.numeric := FALSE;
make_sent_el := tag;

END (*Make_sent_el*);

PROCEDURE Add_to_sent (VAR head, tail : sent_ptr; this_word : vocab_ptr; this_num : real; is_numeric : boolean);

VAR
new_el : sent_ptr;

BEGIN
new_el := make_sent_el;
new_el*.word_ptr := this_word;
new_el*.number := this_num;
new_el*.numeric := is_numeric;

IF head = NIL
THEN BEGIN
head := new_el;
tail := new_el,
END
ELSE BEGIN
tail™.next := new_el;
tail := new_el,
END;
END (*Add_to_sent*);

262

0.0—m 0.0 g

3Svd
INdL

3Svd

= "NIL

-

Age Value

Figure IV.4 - A sentence list

Moving through a list

Moving through a list is a very simple process. A variable is assigned to point to the
same element as the head. It then moves from the current element to the current”.next element
until either some condition is met or the pointer points to NIL, indicating that the end of the list
has been reached.

Most of the data structures in the knowledge base are based on these lists. For example,
the rules are stored in a list and each rule is made up of a list of if-clauses and a list of then-
clauses. Each if-clause is itself a list of or-clauses and the or-clauses and then-clauses make use

of the sent_ptr list described above.

263

TAG

Head

Tail

Moving through a list

=NIL

Figure IV.5 - Moving through a linked list

264

The Ball Is Red

The Sky Is Blue
Age Value 23
Name$ Value Edgar The »Age ——»Name$-—»

v '

Ball —»Sky —» Value —» Value

ooy ' '

IS — IS —f 23 > Edgar—s

oy 1 1

Red-—»f Blue —»

| |

Figure 1V.6 - The tree used for the working memory

IV.3 THE WORKING MEMORY

The working memory of the expert system is effectively a binary tree, however it is
easier to visualise it in a slightly different way. Each node in the tree contains a pointer to the
dictionary and a number (in the same way that the sent_ptr did). The node also has two pointers
to the remainder of the tree. One of these pointers points "down", whilst the other points
""across".

The tree is used as follows. If the tree is empty, or the head of the tree matches the
current word in the clause being added, then follow the "down" branch, whilst if the words do
not match, use the "across" branch. This is shown in Figure 1V.6.

One immediate disadvantage with this approach is that the first level of the tree will
become very congested since most words will not match the first word added to the tree and so
heavy use will be made of the first "across" link. It is therefore sensible to represent the outer
layer using an ordered binary tree to speed up access to the particular clause and this is shown

in Figure 1V.7.

265

;
P

~ Age ~a Ball —»Sky
Name$
Vilue ’ . Ij Ij
* Value % %
23 ; Red Blue
Edgar

Figure IV.7 - A binary tree for the outer level

The use of the dictionary and PASCAL pointers means, however, that it is possible to
improve this mechanism further. Each element in the dictionary tree can point directly to that
part of the knowledge base that begins with that word. Access to the knowledge base from, for
example, a sent_ptr clause will therefore involve no searching whatsoever. Instead two pointer
movements are performed. The first goes from the sent_ptr to the dictionary and the second goes
from the dictionary to the working memory tree at the point beginning with that word, this is
shown in Figure 1V.8. If the second pointer is not present, then this means that there is no data
starting with that particular word.

In the PESYS system there are, in fact, two working memories. One which contains
"permanent” information, the other which contains "temporary" information generated by
running the knowledge base. This problem is overcome by simply having two pointers from the

dictionary, one to each working memory.

266

Dictionary

The
Name$
Age
Red
Blue

N|LF The
I

s Agie \Name$ Ball —Sky
g 4
Value Is Is
% Value % %
23 ‘ Red Blue
Edgar

Figure 1V.8 - The working memory as it is actually implemented in PESYS

Retrieving data from the working memory

The retrieval of data can be performed in two distinct ways. The first involves verifying

that a particular fact exists in the working memory. This is done by following the clause down

through the tree. If the complete clause is present then it is possible to obtain an indication of

whether it is known to be true or false.

The second retrieval method involves a partial move through the tree. By using the first

part of a clause, it is possible to determine all the possible endings to that clause since they will

be found in the remainder of the tree. Thus, for example, entering Television Kind-of as a query

will return a tree containing all the elements that a television is a kind-of. This tree can then be

converted into a linear linked list for use by the program.

Deleting and replacing data

267

Data can be deleted and replaced by removing all those elements of the tree, starting
from the bottom until an element is found which has another element “across™ fromit. Replacing

data, such as for the What-if analysis, then simply involves deleting data and adding new data.

IV.4 NON-LINEAR DOCUMENTS

Non-linear documents are stored as records in a file and two files are used. The first
stores the text of the screens and the second file is used to store information that links the various
screens together.

Arecord in the screen file is made up of the text of the screen, together with information
about whether the screen has been deleted and details about the first link associated with that
screen. This link information is simply the position of the link element in the second file. The
positions of screens that can be located using PageUp (PgUp) and PageDown (PgDn) are also
stored in this record.

The link record contains information about the name of the link and where it is
positioned on the screen. The location of the screen record that is being linked to is also stored,
as is the location of the next link record for the current screen. Any of these links may be
undefined and the end of a list of links is indicated by marking the link as being to NIL.

The final file used in non-linear documents is an index file and this is simply made up
of records containing the names of the screens and their associated positions in the screen file.

When non-linear documents are created, care must be taken to add the new records to
the appropriate position in the file. To this end, two arrays are maintained which keep track of
free positions in the file. Each element in the array corresponds to a record in the file and the

array is used to determine where the next free position in the file can be located.

268

APPENDIX V - CASE STUDIES

V.1 CASE STUDY I - AN EXPERT SYSTEM FOR THE
COMPETITIVE USE OF INFORMATION SYSTEMS
TECHNOLOGY

V.2 INTRODUCTION

The knowledge base is based on an article by Ives and Learmonth (1984) and is described by
Doukidis and Whitley (1987).

Ives and Learmonth define an application of information systems technology as
“strategic' if "it changes a firm's product or the way a firm competes in an industry' and they
suggest the use of the customer resource life cycle as a means of investigating potential areas for
using this technology. By concentrating on the needs of the customer, technology can be used
to enhance customer service. This leads to greater customer loyalty and hence differentiates the
firm from others in the market. The model they propose can be considered in four or thirteen

stages and is presented below:

268

The thirteen stage model presented by Ives and Learmonth (1984)

SIMPLE MODEL
Requirements

Acquisition

Stewardship

Retirement

EXTENDED MODEL
Establish requirements

Specify

Select source

Order
Authorize and pay for
Acquire

Test and accept

Integrate
Monitor

Upgrade
Maintain

Transfer or dispose

Account for

DESCRIPTION

To determine how much
of a resource is required

To determine the
attributes of the resource
To determine where
customers will buy the
resource

To order a quantity of the
resource

To transfer funds or
extend credit

To take possession of a
resource

To ensure that a resource
meets specification

To add to an existing
inventory

To control access and use
of a resource

To upgrade a resource if
conditions change

To repair a resource if
necessary

To move, return, or
dispose of inventory as
necessary

To monitor spending

The knowledge base was created by combining the model and the examples of

information system technology that Ives and Learmonth present in each of the thirteen stages of

the model. These examples were then converted into rules. The rules provided are by no means

exhaustive, but provide a basic idea as to the usefulness of information systems technology for

an organisation.

A number of rules from this knowledge base, together with information about the

relations in the clauses is presented below.

269

V.3 THE RULES USED

rule-1

if

there is a large customer_base

and the customers are homogenous

then

inform 2 it is possible to create a resource analyzer

rule-2

if

a resource analyzer has been created

then

inform 2 the system may also allow the preparation of sales_proposals

rule-3

if

there is a resource analyzer being created

then

inform 2 an information system can help establish the requirements for the resources

rule-4

if

the suppliers of a service are distributed randomly

then

inform 2 an information system can help in directing suppliers to empty_areas

rule-5

if

an information system can direct suppliers to empty_areas

then

inform 2 an information system can help establish the requirements for the resources

rule-6

if

there are many items available

then

inform 2 there is a possibility of creating an inventory handler

rule-7

if

an inventory handler has been created

and there are many suppliers

then

inform 2 the system can dispatch request_for_quotation notes

270

rule-8

if

an inventory handler system has been created
then

inform 2 the resources required can be specified

rule-9

if

a resource has been chosen

and there are many suppliers

then

inform 2 an information system may suggest similar alternatives
inform 2 an information system may display the available choices

rule-10

if

an information system can display the available choices

then

inform 2 an information system can help select suppliers for resources

rule-11

if

there is a large customer_base

and orders are easily specified

then

inform 2 there is a possibility to create a round_the_clock order_entry_system for users

rule-12

if

a round_the_clock order_entry_system has been created

then

inform 2 an information system can assist in ordering resources

rule-13

if

payments for resources require credit_authorization

and the customer_base is large

then

inform 2 an information system can be used to provide automatic credit_authorization

rule-14
if
an information system provides automatic credit_authorization

then
inform 2 there is a possibility for a system to allow payment of bills

V.4 THE INFORMATION FOR RELATIONS

271

Large Kind-of Size

Size Kind-of Implies

Size Implies Dimensions
Dimensions Kind-of Relation
Dimensions Needs Object Size
Customer_base Kind-of Object
Homogenous Kind-of Relation
Homogenous Needs Object
Customers Kind-of Object
Create Kind-of Relation
Create Needs Object Processor
Resource Kind-of Object
Analyzer Kind-of Processor
Created Kind-of Implies
Created Implies Create

Allow Kind-of Relation

Allow Needs Action Object
Preparation Kind-of Action
Sales_proposals Kind-of Object
Establish Kind-of Relation
Establish Needs Need Object
Requirements Kind-of Need
Resources Kind-of Object
Distribute Kind-of Relation
Distribute Needs Object Probability
Randomly Kind-of Probability
Distributed Kind-of Implies
Distributed Implies Distribute
Suppliers Kind-of Object
Direct Kind-of Relation

Direct Needs Object Place
Empty_areas Kind-of Place
Directing Kind-of Implies
Directing Implies Direct

Many Kind-of Multitude
Multitude Kind-of Implies
Multitude Implies Quantity
Quantity Kind-of Relation
Quantity Needs Object Multitude
Items Kind-of Object

Creating Kind-of Implies
Creating Implies Create
Inventory Kind-of Object
Handler Kind-of Processor
Dispatch Kind-of Relation
Dispatch Needs Format Letter
Notes Kind-of Letter
Request_for_quotation Kind-of Format
Specify Kind-of Relation
Specify Needs Object
Specified Kind-of Implies

272

Specified Implies Specify

Chose Kind-of Relation

Chose Needs Object

Chosen Kind-of Implies

Chosen Implies Chose

Suggest Kind-of Relation
Suggest Needs Substitute
Alternatives Kind-of Substitute
Display Kind-of Relation
Display Needs Option

Choices Kind-of Option

Select Kind-of Relation

Select Needs Object

Source Kind-of Object

Orders Kind-of Object
Order_entry_system Kind-of Processor
Round_the_clock Kind-of Object
Order Kind-of Relation

Order Needs Object

Ordering Kind-of Implies
Ordering Implies Order

Require Kind-of Relation
Require Needs Action Permission Object
Payments Kind-of Action
Credit_authorization Kind-of Permission
Provide Kind-of Relation
Provide Needs Permission
Provides Kind-of Implies
Provides Implies Provide

Bills Kind-of Object

Payment Kind-of Action

V.5 CASE STUDY Il - AN EXPERT SYSTEM TO ASSIST IN
FILING INCOME TAX RETURNS

V.6 INTRODUCTION

The expert system to assist in filing tax returns for the Indian Income Tax authorities
is described by Whitley et al. (1989).

Income taxes have long been the principal means of taxation in industrial countries.
With relatively few distortions they can generate a great deal of revenue and leave scope for
income redistribution. Experience in developing countries, however, suggests that personal

income taxes are difficult to administer, raise little revenue, are weak in redistribution and

273

are often unfair. This has led to recent reforms of taxes on personal and company income
which will often be necessary to enhance the revenue and efficiency of a tax system.

Personal Income Taxes account for about a tenth of total tax revenue in developing
countries as against a higher proportion in the developed countries. The low yield reflects
limited coverage and poor design. Improving the yield requires changes in the base rate,
simplification in the procedure and law and more efficient administration and collection of
these taxes.

In a major legislation amendment the Income tax act has been amended by Tax Laws.
This is seen as an effort to simplify the tax laws and structure. Further, the use of computers
is being encouraged at various collection and assessment centres with a view to increased
efficiency in the filing and assessment of tax returns. Dependence on middlemen (experts -
accountants and lawyers) is being discouraged with a view to allowing the filing of returns by
the assessees themselves. Returns up to a specified amount are accepted without verification
in good faith and a small percentage of these returns are put to sample check every year.
There is thus a shift from avoidance of tax to tax planning.

In view of the shift in the expert's practice - stressing future tax planning instead of
filing routine returns - an expert system was designed that would enable the completion of
returns by the assessee himself or with the help of the junior staff of the expert. The overall
aim was to provide an accurate portrayal of the role of the expert in filing tax returns, without

requiring the expert to be present at the time.

V.7 DETERMINING THE RESIDENTIAL STATUS OF
ASSESSEES

One of the activities that needs to be performed by the expert system is determining
the residential status of the assessee. The piece of legislation relating to this is rather

complicated and is presented below:

Residence in India

SECTION 6

For the purposes of this Act, -

(1) Anindividual is said to be resident in India in any previous year, if he --

274

(a) is in India in that year for a period or periods amounting in all to one hundred and eighty-
two days or more; or

(b) 751[***]

(c) having within the four years preceding that year been in India for a period or periods
amounting in all to three hundred and sixty-five days or more, is in India for a period or
periods amounting in all to sixty days or more in that year.

76°[Explanation : In the case of an individual, being a citizen of India, --

(a) who leaves India in any previous year for the purposes of employment outside India, the
provisions of sub-clause (c) shall apply in relation to that year as if for the words "sixty
days", occurring therein, the words "one hundred and eighty-two days™ had been substituted,;
(b) who being outside India, comes on a visit to India in any previous year, the provisions of
sub-clause (c) shall apply in relation to that year as if for the words "sixty days", occurring
therein, the words "ninety days™ had been substituted.]

(2) Not applicable to the system.
(3) Not applicable to the system.
(4) Not applicable to the system.
(5) Not applicable to the system.

(6) A person is said to be "not ordinarily resident” in India in any previous year if such is --
(a) an individual who has not been resident in India in nine out of the ten previous years
preceding that year, or has not during the seven previous years preceding that year been in
India for a period of, or periods amounting to, seven hundred and thirty days or more;

(b) Not applicable to the system.

75 Omitted by the Finance Act, 1982, w.e.f. 1-4-1983
76 Substituted by the Finance Act, 1982, w.e.f. 1-4-1983. Original explanation was inserted
by the Finance Act, 1978, w.e.f. 1-4-1979.

V.8 THE RULES FOR DETERMINING THE RESIDENTIAL
STATUS OF AN ASSESSEE

control of residential status
if

we have found the residential status

then

print ‘Residential status is :' res_status$
writeln 'Residential status is :' res_status$
press_key

inform 1 we have residential status

rule for not ordinarily resident

if

we have found person is not ordinarily resident
then

let res_status$ = n o t ordinarily resident

we have found the residential status

275

rule for resident

if

we have found person is resident
then

let res_status$ = resident

we have found the residential status

rule for non resident

if

we have found the person is non resident
then

let res_status$ = non resident

we have found the residential status

rule for resident O

if

we know person is resident

then

we have found person is resident

rule for resident 1

if

enter total_number_of_days_last_year_spent_in_india prompt
Q1

total_number_of_days_last_year_spent_in_india >= 182

then

we know person is resident

rule for resident 3

if

total_number_of_days_last_year_spent_in_india >= 182

person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2

and person has left

then

we know person is resident

rule for resident 4

if

total_number_of_days_last_year_spent_in_india >= 90

person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2

and person has visited

then

we know person is resident

276

rule for non resident

if

total_number_of_days_last_year_spent_in_india < 60
then

we have found the person is non resident

rule for non resident

if

total_number_of_days_last_year_spent_in_india >= 60

person has not been in India for a total of at least 365 days in the preceding 4 years prompt
Q2

then

we have found the person is non resident

rule for non resident since left

if

total_number_of_days_last_year_spent_in_india < 182

person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2

and person has left

then

we have found the person is non resident

rule for non resident since visit

if

total_number_of_days_last_year_spent_in_india < 90

person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2

and person has visited

then

we have found the person is non resident

rule for resident 2

if

total_number_of_days_last_year_spent_in_india >= 60

person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2

and person has not left

and person has not visited

then

we know person is resident

rule for person not ordinarily resident
if
we know person is resident

277

and person has not been resident for 9 out of 10 previous years prompt

Q5

or person has not been in India for 730 days in the previous 7 years prompt
Q6

then

we have found person is not ordinarily resident

rule to check for leaving

if

you are an Indian citizen who has left India in previous year for the purpose of employment
outside India prompt

Q3

then

person has left

rule to check for not leaving

if

you are an Indian citizen who has not left India in previous year for the purpose of
employment outside India prompt

Q3

then

person has not left

rule to check for visiting

if

you are an Indian citizen who is abroad, comes on a visit to India in the previous year prompt
Q4

then

person has visited

rule to check for not visiting

if

you are not an Indian citizen who is abroad, comes on a visit to India in the previous year
prompt

Q4

then

person has not visited

V.9 THE PROMPTS FOR THE RULE FILE

Q1 As per Sec 6(1)(a) An individual is said to be resident of India in any previous year if he
is in India in that year for a period or periods amounting in all to 182 days or more.

Q2 Sec 6(1)(c) Normally an Individual is a resident of India in any previous year if he has
within the 4 years preceding that year been in India for a period or periods of at least 365
days and is in India for at least 60 days in that year.

278

Q3 In the case of an individual being a citizen of India who leaves India for the purposes of
employment outside India 60 days, in subclause (c) would be substituted by 182 days.

Q4 In the case of an individual being a citizen of India who being outside India comes on a
visit to India in any previous year 60 days in subclause (c) would be substituted by 90 days.
Q5 Sec 6(6)(a) A person is said to be not ordinarily resident in India in any previous year if
such person is an individual who has not been resident in India in 9 out of 10 previous years
preceding that year Or Next Question.

Q6 Sec 6(6)(a) A person is said to be not ordinarily resident in India in any previous year if
such person is an individual who has not been resident in India for a period of or periods
amounting in all to 730 days or more.

V.10 THE INFORMATION ABOUT VARIABLES FOR THE
RULE FILE

Total_number_of_days_last_year_spent_in_india INPUT Please Enter The Total Number Of
Days Spent In India In The Previous Year

Total_number_of_days_last_year_spent_in_india Range 0.0 TO 366.0
Total_number_of_days_last_year_spent_in_india Dp 0.0

279

REFERENCES

Austin, J. L., How to do things with words: The William James lectures delivered at Harvard
University in 1955, London: Oxford University Press, 1962.

Backhouse, James and Jonathan Liebenau, Understanding information: An introduction,
London: Macmillan, 1990.

Ball, lan, Man can still hold computer in check, The Daily Telegraph, (October 24th, 1989),
page 1.

Benner, Patricia, From novice to expert: excellence and power in clinical nursing practice,
Reading, MA:, Addison-Wesley, 1984.

Black, W. J., Intelligent knowledge based systems: An introduction, Wokingham: Van
Nostrand Reinhold, 1986.

Blakemore, Colin and Susan Greenfield (eds.) Mindwaves: Thoughts on intelligence, identity
and consciousness Oxford: Basil Blackwell, 1987.

Bloomfield, Brian P., The question of artificial intelligence: Philosophical and sociological
perspectives, London: Croom Helm, 1987.

Bloomfield, Brian P., Expert systems and human knowledge: A view from the sociology of
science, Al & Society, Volume 2, Number 1, (January - March 1988), pages 17-29.

Boden, Margaret A., Artificial intelligence and natural man (second edition, expanded), New
York: Basic Books, 1977, 1987.

Bodkin, Tim and lan Graham, Case studies of expert systems development using
microcomputer software packages, Expert systems: the international journal of knowledge
engineering, Volume 6, Number 1, (February 1989), pages 12-16.

Boisgontier, J. and C. Donay, File handling in Turbo Pascal, London: Paradigm, 1988.
Boley, Harold, Expert system shells: very-high-level languages for artificial intelligence,
Expert systems: the international journal of knowledge engineering, Volume 7, Number 1,
(February 1990), pages 2-8.

Bolter, J. David, Turing's man: Western culture in the computer age, London: Duckworth,
1984.

Borland Inc., Turbo Pascal V3.0, 1985.
Borland Inc., Turbo Pascal V4.0, 1987.

Born, Rainer P. (Ed.), Artificial intelligence: The case against, London: Croom Helm, 1987.

280

Brownston, L., R. Farrell, E. Kant and N. Martin, Programming expert systems in OPS5,
Reading, MA: Addison-Wesley, 1985.

Butler, C., E. Hodil and G. Richardson, Building knowledge base systems with procedural
languages, |IEEE Expert, Volume 3, Number 2, (Summer 1988), pages 47-59.

Capper, Phillip and Richard Susskind, Latent damage law: The expert system, London:
Butterworths, 1988.

Checkland, Peter, Systems thinking, systems practice, Chichester: John Wiley & Sons, 1981.

Checkland, P. B., Information systems and systems thinking: Time to unite?, International
Journal of Information Management, VVolume 8, (1988), pages 239-248.

Church, Chas, Xi+ with the brakes off, Expert systems user, Volume 5, Number 3, (March
1989), pages 18-21.

Clarke, Roger A., Information technology and dataveillance, Communications of the ACM,
Volume 31, Number 5, (May 1988), pages 498-512.

Cohen, Paul R., and Edward A. Feigenbaum (Eds.), The handbook of artificial intelligence:
Volume 11, Reading, MA: Addison-Wesley, 1982.

Collins, H. M., R. H. Green and R. C. Draper, Where's the expertise? Expert systems as a
medium of knowledge transfer, in Expert Systems 85 (ed. Martin Merry), Cambridge:
Cambridge University Press, 1985, pages 323-334.

Collins, H. M., Expert systems, artificial intelligence and the behavioural co-ordinates of
skill, in Bloomfield (1987), pages 258-281.

Cooley, Mike, Architect or Bee? The human price of technology, London: A Tigerstripe
book, Hogarth Press, 1987.

Cooley, Mike, The human use of expert systems, Aries at City, Quarterly Review No. 2,
(August 1988).

Cornford, Tony and Barbera Farbey, User representation in large systems: the case of the
DHSS (presented at the Unicom Seminar on Participation, London 1987), Working Paper 16,
Information Systems Department, London School of Economics and Political Science, 1989.

Coulter, J., On comprehension and “mental representation’ in Gilbert and Heath (1985), pages
8-23.

Crookes, John G., and B. Valentine, Simulation in microcomputers, Journal of the
Operational Research Society, Volume 33, Number 9, (September 1982), pages 855-858.

Crookes, John G., David W. Balmer, Sew Tee Chew and Ray J. Paul, Journal of the
Operational Research Society, Volume 37, Number 6, (June 1986), pages 603-618.

Crookes, John G., Simulation using C, in Computer modelling for discrete simulation (ed.
Michael Pidd), Chichester: John Wiley and sons, 1989.

281

Report of a working party - Council for Science and Society, Benefits and risks of knowledge
based systems, Oxford: Oxford University Press, 1989.

D'Agapeyeff, A., and C. J. B. Hawkins, Expert systems in UK business: A critical
assessment, The knowledge engineering review, Volume 2, Number 3, (September 1987),
pages 185-201.

Doukidis, Georgios I., and Ray J. Paul, ASPES: A Skeletal Pascal Expert System, in Expert
systems and artificial intelligence in decision support systems (eds. H. G. Sol, C. A. Th.
Takkenberg, Robbe P. F. De Vries), The Netherlands: Reidel Publishing, 1987, pages 227-
246.

Doukidis, Georgios 1., and Edgar A. Whitley, Developing and running expert systems with
PESYS, Future Generation Computer Systems, VVolume 3, Number 3, (September 1987),
pages 189-199.

Doukidis, Georgios I., Marios C. Angelides and James L. Harlow, Towards an intelligent
tutoring system for Pascal programming, Education and Computing, Volume 4, (1988b),
pages 273-286.

Doukidis, Georgios 1., Vijal P. Shah and Marios C. Angelides, Lisp: From foundations to
applications, Bromley: Chartwell-Bratt, 1988a.

Doukidis, Georgios I. and Edgar A. Whitley, Developing Expert Systems, Bromley:
Chartwell-Bratt, 1988.

Doukidis, Georgios I., and Ray J. Paul, A survey of the application of artificial intelligence
techniques within the OR society, forthcoming in Journal of the Operational Research
Society, 1990a.

Doukidis, Georgios I., and Ray J. Paul, SIPDES: A simulation program debugger using an
expert system, Internal report, CASM group, Information Systems Department, London
School of Economics and Political Science, 1990b.

Dreyfus, Hubert L. and Stuart E. Dreyfus with Tom Athanasiou, Mind over machine: The
power of human intuition and expertise in the era of the computer (updated, paperback
edition), New York: The Free Press, 1986a.

Dreyfus, Hubert L. and Stuart E. Dreyfus, Competent systems: the only future for inference
making computers, Future Generation Computer Systems, Volume 2, Number 4, (December
1986b), pages 233-244.

Dreyfus, Hubert L. and Stuart E. Dreyfus, Making a mind versus modelling the brain:
Acrtificial intelligence back at a branch point, Daedalus, Winter 1988, pages 15-43.

Earnest, Les, Can computer cope with human races, Communications of the ACM, Voume
32, Number 2, (February 1989), pages 174-182.

Feigenbaum, Edward A. and Pamela McCorduck, The fifth generation: Artificial intelligence
and Japan's computer challenge to the world, Reading, MA: Addison-Wesley, 1983.

282

Feigenbaum, Edward A., Pamela McCorduck and H. Penny Nii, The rise of the expert
company: How visionary companies are using artificial intelligence to achieve higher
productivity and profits, London: Macmillan, 1988.

Florentin, J. J., Software review: KEE, Expert systems: the international journal of
knowledge engineering, Volume 4, Number 2, (May 1987), pages 118-120.

Forsyth, Richard, Software review: Xi+, Expert systems: the internation journal of
knowledge engineering, Volume 4, Number 1, (February 1987), pages 48-51.

Forsyth, Richard, Software review: Leonardo, Expert systems: the international journal of
knowledge engineering, Volume 5, Number 2, (May 1988), pages 160-164.

Gammack, John G., and Anthony Anderson, Constructive interaction in knowledge
engineering, Expert systems: the international journal of knowledge engineering, Volume 7,
Number 1, (February 1990), pages 19-26.

Genesereth, Michael R., and Nils J Nilsson, Logical foundations of artificial intelligence,
Los Altos, CA: Morgan Kaufman, 1987.

Gilbert, G. N. and C. Heath, (eds.) Social actions and artificial intelligence: Surrey
conference on sociological theory and method; 3, Aldershot: Gower Publishing, 1985.

Grégoire, E., Evaluation of the expert system tools KEE and ART, Applied artificial
intelligence, an international journal, Volume 2, Number 1, (1988), pages 1-23.

Gunderson, Keith, Mentality and machines (second edition), London: Croom Helm, 1971,
1985.

Hall, Lawrence O., and Abraham Kandel, Toward a methodology for building expert systems
for imprecise domains, International journal of expert systems, Volume 1, Number 3, (1988),
pages 237-251.

Harmon, Paul and David King, Expert systems: Artificial intelligence in business, Chichester:
John Wiley & Sons, 1985.

Harmon, Paul, R. Maus and W. Morrissey, Expert systems, tools and applications,
Chichester: John Wiley and sons, 1988.

Hart, Anna, Knowledge acquisition for expert systems, London: Kogan Page, 1986.

Heidegger, Martin, Being and time (translated by John Macquarrie and Edward Robinson),
Oxford: Basil Blackwell, 1962.

Hinde, C., R. Allwood, D. Steward and B. Negus, Evalutaion of expert system shells for
construction industry applications, Department of Civil Engineering, Loughborough
University of Technology, August 1985.

Hirschheim, Rudy and Heinz K. Klein, Four paradigms of information systems development,
Communications of the ACM, Volume 32, Number 10, (October 1989), pages 1199-1216.

283

Ives, Blake and Gerald P. Learmonth, The information system as a competitive weapon,
Communications of the ACM, Volume 27, Number 12, (December 1984), pages 1193-1201.

Josefson, Ingela, The nurse as an engineer, Al & Society, Volume 1, Number 2, (October -
December 1987a), pages 115-126.

Josefson, Ingela, Knowledge and experience, Applied artificial intelligence, an international
journal, Volume 1, Number 2, (1987b), pages 173-180.

Kaplan, Simon M. and Medhi T. Harandi, Expert assistance in conversational design tools,
Proceedings of CASE '89, The 3rd Annual Workshop on CASE (July 17-21), BCS/IEEE,
London, 1989.

Keen, Peter G. W., Information systems and organizational change, Communications of the
ACM, Volume 24, Number 1, (January 1981), pages 24-33.

Keller, R., Expert system technology, Hemel Hempstead: Yourdon Press, Prentice Hall, 1987.

Kent, William, Data and reality: Basic assumptions in data processing reconsidered,
Amsterdam: North-Holland, 1978.

Kowalski, Robert, Position statement, Sigart Newsletter, Number 70, (February 1980), page
44,

Land, Frank F., Tony Cornford and Georgios I. Doukidis, In search of the expert systems
product (presented at the IFIP Joint International Symposium on Information Systems,
Sydney, March 1988), Working Paper 17, Information Systems Department, London School
of Economics and Political Science, 1989.

Leonard-Barton, Dorothy and John J. Sviokla, Putting expert systems to work, Harvard
Business Review, Volume 66, Number 2, (March-April 1988), pages 91-98.

Levy, Zeeva, The software estimation process, a small step forward, Working Paper 23,
Information Systems Department, London School of Economics and Political Science, 1990.

Linderholm, Owen, Screentest: Crystal & VVP-Expert, Personal Computer World, VVolume 10,
Number 4, (April 1987), pages 142-146.

Lipscombe, Barrie, Expert Systems and computer controlled decision making in medicine, Al
& Society, Volume 3, Number 3, (July - September 1989), pages 184-197

Lipsey, Richard G., An introduction to positive economics (7th edition), London: Wiedenfeld
and Nicholson, 1989.

Lyytinen, Kalle, Two views of information modelling, Information and Management,
Volume 12, Number 1, (1987), pages 9-19.

Massotte, A-M, M. Maury and H. Betaille, An experience in knowledge engineering, in The

proceedings of the second international expert systems conference, London, 1986, pages
229-235.

284

McCorduck, Pamela, Machines who think: A personal inquiry into the history and prospects
of Artificial Intelligence, New York: W. H. Freeman and Co., 1979.

McCoy, Kathleen F., Generating context-sensitive responses to object-related
misconceptions, Artificial Intelligence, Volume 45, Number 2, (December 1989), pages 157-
195.

Michie, Donald and Rory Johnston, The creative computer: Machine intelligence and human
knowledge, Harmondsworth: Viking, 1984.

Microsoft Inc., Pascal V3.32, 1986.

Minsky, Marvin, The society of mind, New York: Simon and Schuster, 1986. BF431 M66
Mumford, Enid and Mary Weir, Computer systems in work design: The ETHICS method.
Effective Technical and Human Implementation of Computer Systems, London: Associated

Business Press, 1979.

Nuttall, S., Nexpert makes an expert of you, Expert systems user, Volume 4, Number 5, (July
1988), pages 12-13.

Paris, Jeff, Advice to those about to work on inexact reasoning, Lecture Notes for the SERC
Logic for IT seminar, Glasgow, September 1988.

Partridge, Derek, The scope and limitation of first generation expert systems, Future
Generation Computer Systems, Volume 3, Number 1, (February 1987), pages 1-10.

Paul, Ray J., Simulation Modelling: The CASM project (presented at The Annual Operational
Research Symposium of Yugoslavia, Brioni, Yugoslavia, 11-14 October 1988 and at the 2nd
Brazilian Workshop on Simulation, Sao Jose dos Campos, Sao Paulo, Brazil, 1-2 September
1988), Working Paper 18, Information Systems Department, London School of Economics
and Political Science, 1989.

Polanyi, Michael, The tacit dimension, London: Routledge & Kegan Paul, 1967.

Polanyi, Michael, Knowing and being: Essays by Michael Polanyi (edited by Marjorie
Grene), London: Routledge & Kegan Paul, 1969.

Prosch, Harry, Michael Polanyi: A critical exposition, Albany, NY: State University of New
York Press, 1986.

Quinlan, J. Ross, Applications of Expert Systems, The proceedings of the second Australian
conference: Volume one, Reading, MA: Addison-Wesley/Turing Institute Press, 1987.

Rajan, Tim, Goldhill finds the midas touch, Expert systems user, Volume 4, Number 3, (May
1988), pages 14-16.

Ramsay, Allan, Formal methods in artificial intelligence, Cambridge: Cambridge University
Press, 1988.

285

Richer, Mark H., An evaluation of expert system development tools, Expert Systems: the
international journal of knowledge engineering, Volume 3, Number 3, (July 1986), pages
166-183.

Roth, Alan, Bridging the gap?, Expert systems user, Volume 4, Number 1, (March 1988),
pages 10-12.

Roth, E. M., K. B. Bennett and D. D. Woods, Human interaction with an "intelligent"
machine, International Journal of Man-Machine Studies, Volume 27, Number 5/6,
(November/December 1987), pages 479-525.

Rousset, Marie-Christine and Brigitte Safar, Negative and positive explanations in expert
systems, Applied artificial intelligence, an international journal, VVolume 1, Number 1,
(1987), pages 25-38.

Samuel, Arthur L., Al, Where it has been and where it is going, Proceedings of the 8th
International Joint Conference on Artificial Intelligence, 1983, Volume 2, pages 1152-1157.

Santene, Ano, The impact of expert systems in financial institutions, M.Sc. report,
Information Systems Department, London School of Economics and Political Science, 1989.

Schank, Roger C. with Peter G Childers, The cognitive computer: On language, learning and
artificial intelligence, Reading, MA: Addison-Wesley, 1984.

Searle, John R., Speech Acts: An essay in the philosophy of language, Cambridge: Cambridge
University Press, 1969.

Searle, J. R., Minds, brains and programs (with commentary and author's response), The
Behavioral and Brain Sciences, VVolume 3, Number 3, (September 1980), pages 417-457.

Searle, John R., Minds, brains and science: The 1984 Reith lectures, London: British
Broadcasting Corporation, 1984.

Searle, J. R., Minds and brains without programs, in Blakemore and Greenfield (1987), pages
209-233.

Sergot, M. J., F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond and H. T. Cory, The
British Nationality Act as a logic program, Communications of the ACM, Volume 29,
Number 5, (May 1986), pages 370-386.

Smithson, Steve and Rudy Hirschheim, End-user computing: a debate on the user-system
interface (revised version of a paper presented to IFIP TC 8.2 Working Conference on
Desktop Technology, Cornell, June 1989), Working Paper 14, Information Systems
Department, London School of Economics and Political Science, 1989.

Stamper, Ronald, Management epistemology: Garbage in, garbage out (and what about

deontology and axiology), in Knowledge representation for decision support systems (eds. L.
B. Methlie and R. H. Sprague), Amsterdam: North-Holland, 1985, pages 55-77.

286

Stamper, Ronald, James Backhouse, Sunny Marche and Karl Althaus, Meaning: The frontier
of Informatics - Semantic Normal Form?, Proceedings of the Aslib Conference Informatics-9,
1987.

Stamper, Ronald, Pathologies of Al: Responsible use of artificial intelligence in professional
work, Al & Society, Volume 2, Number 1, (January - March 1988), pages 3-16.

Suchman, Lucy A., Plans and situated actions: The problem of human machine
communication, Cambridge: Cambridge University Press, 1987.

Susskind, Richard E., Expert systems in law: A jurisprudential inquiry, Oxford: Clarendon
Press, 1987.

Tilghman, B. R., Seeing and seeing-as, Al & Society, Volume 2, Number 4, (October -
December 1988), pages 303-313.

Turing, A. M., Computing machinery and intelligence, Mind, Volume L1X, Number 236,
(October 1950), pages 433-460.

Turkle, Sherry, The second self: Computers and the human spirit, New York: Simon and
Schuster, 1984.

Twine, Steven, Towards a knowledge engineering procedure, in Expert systems V (eds. B.
Kelly and A. Rector), Cambridge: Cambridge University Press, 1989, pages 90-102.

van Koppen, J. and C. Philips, A survey of expert system development tools, in The
proceedings of the second international expert systems conference, London, 1986, pages
157-173.

Vedder, Richard G., PC-based expert system shells: some desirable and less desirable
characteristics, Expert systems: the international journal of knowledge engineering, VVolume
6, Number 1, (February 1989), pages 28-42.

Vrba, Joseph A., and Juan A. Herrera, Expert system tools: The next generation, IEEE
Expert, Volume 4, Number 1, (Spring 1989), pages 75-76.

Waller, Paul, General purpose expert system tools sold in Britain, presented at a meeting of
the OR society study group on aritifical intelligence and expert systems, London School of
Economics and Political Science, October 25th, 1989.

Wallsgrove, Ruth, Screentest: Crystal, Personal Computer World, Volume 11, Number 11,
(November 1988), pages 172-175.

Waterman, Donald A., Jody Paul and Mark Peterson, Expert Systems for legal decision
making, in Quinlan (1987), pages 23-47.

Weizenbaum, Joseph, Computer power and human reason: From judgement to calculation,
San Francisco: W. H. Freeman and co., 1976.

287

Weizenbaum, Joseph, ELIZA a computer program for the study of natural language
communication between man and machine, Communications of the ACM, Volume 26,
Number 1, (January 1983), pages 23-28.

Whitley, Edgar A., Ashwajit Singh and Georgios I. Doukidis, An expert system to assist in
filing tax returns: The case of Indian income tax, in The proceedings of the fifth international
expert systems conference, London, 1989, pages 115-129.

Winograd, Terry, Understanding natural language, Edinburgh: Edinburgh University Press,
1972.

Winograd, Terry and Fernando Flores, Understanding computers and cognition: A new
foundation for design, Reading, MA: Addison-Wesley, 1986.

Winograd, Terry, Where the action is, Byte, Volume 13, Number 13, (December 1988), pages
256A-258.

Winston, Patrick H. and Berthold K. P. Horn, Lisp (second edition), Reading, MA: Addison-
Wesley, 1984.

Winston, Patrick H., Artificial intelligence (second edition), Reading, MA: Addison-Wesley,
1984.

Wittgenstein, Ludwig, Philosophical Investigations (trans. G. E. M. Anscombe), Oxford:
Basil Blackwell, 1953.

288

