
1

Embedding expert systems in semi-formal domains: Examining the

boundaries of the knowledge base

Edgar Albrecht Whitley

London School of Economics and Political Science

Submitted in fulfilment of the requirements for the award of the degree

of Doctor of Philosophy of the University of London.

April 1990.

2

ABSTRACT

This thesis examines the use of expert systems in semi-formal domains.

The research identifies the main problems with semi-formal domains and

proposes and evaluates a number of different solutions to them. The thesis

considers the traditional approach to developing expert systems, which sees

domains as being formal, and notes that it continuously faces problems that

result from informal features of the problem domain. To circumvent these

difficulties experience or other subjective qualities are often used but they are

not supported by the traditional approach to design.

The thesis examines the formal approach and compares it with a semi-

formal approach to designing expert systems which is heavily influenced by the

socio-technical view of information systems. From this basis it examines a

number of problems that limit the construction and use of knowledge bases in

semi-formal domains. These limitations arise from the nature of the problem

being tackled, in particular problems of natural language communication and

tacit knowledge and also from the character of computer technology and the role

it plays. The thesis explores the possible mismatch between a human user and

the machine and models the various types of confusion that arise.

The thesis describes a number of practical solutions to overcome the

problems identified. These solutions are implemented in an expert system shell

(PESYS), developed as part of the research.

The resulting solutions, based on non-linear documents and other

software tools that open up the reasoning of the system, support users of expert

systems in examining the boundaries of the knowledge base to help them avoid

and overcome any confusion that has arisen. In this way users are encouraged

to use their own skills and experiences in conjunction with an expert system to

successfully exploit this technology in semi-formal domains.

3

Fy annwyl rhieni

My dear parents

4

"Gewiß ist es zu bedauern, daß unter diesen Umständen manche

häufige und bemerkenswerte Art aus Mangel an Platz nicht genannt

werden konnte und vieles, was sicherlich eine eingehendere

Besprechung verdient hätte, nur mit knappen verallgemeinernden

Worten sich andeuten ließ".

"It is certainly regrettable, that under the circumstances many

frequent and notable species cannot be referred to due to lack of

space and a great number of them, which would definitely have been

worthy of further attention, can only be mentioned in general".

Richard Heymons. Berlin, Oktober 1915.

Vorwort "Brehms Tierleben - Die Vielfüßler, Insekten und Spinnenkerfe" -

Neubearbeitet von Richard Heymons unter Mitarbeit von Helene Heymons.

5

)@>" Jo fax J@ ,B4@LF4@<

6

ACKNOWLEDGEMENTS

This thesis would not have been possible without the encouragement and friendship of

my supervisor, Dr. Georgios Doukidis. Georgios has given me so many opportunities in the

years that I have known him that I cannot hope to ever repay him for what he has done for me.

In some small way, Georgios, I hope that this thesis will be able to say thank you for

everything that you have done for me. Special thanks are also due Georgios' fiancee Lina

Vantziou, who acted as messenger between Georgios and myself.

I am also indebted to Dr. Tony Cornford who became my `local supervisor' when

Georgios was required to go to Greece. Without his support and encouragement this thesis

would still be no more than hazy ideas rather than a properly presented argument. I have also

benefitted greatly from his views on my work and his friendship.

To my parents, who have given me so much love, I am dedicating my thesis. They, and

the rest of my family, have taught me the most important lessons about life, love and friendship.

My parents have made many sacrifices to enable me to do the work I enjoy so much. Thank

you.

The Information Systems department at the London School of Economics and Political

Science has been a wonderful place to work in - both as a student and, more recently, as a

member of staff. The friendship, encouragement and discussions I have enjoyed with the

lecturers, secretaries and students have shaped many of the ideas expressed in this thesis to such

an extent that I could never mention all the individuals concerned.

Last, but by no means least, I am grateful for the love and companionship of all my

friends who kept me happy and `sane' while I was researching my thesis. Their patience was

particularly appreciated when I became `anti-social' in the final stages of preparing the thesis.

Special thanks go to my mentor and friend, Scott Lucas who was the first PhD student I met at

university and who has been a dear, close friend ever since.

The first two years of this research were supported by an SERC research studentship no.

87307777.

7

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION . 29
a. ARTIFICIAL INTELLIGENCE . 29

i. Tasks that require intelligence . 31
b. EXPERT SYSTEMS . 35

i. The problem of knowledge representation and use 37
c. OVERVIEW OF THE RESEARCH IN THIS THESIS 39

i. Semi-formal domains . 40
ii. Some of the problems with semi-formal domains 40
iii. The research method of the thesis . 41
iv. Contributions of this research . 42

d. OVERVIEW OF THE THESIS . 44

CHAPTER 2 - TWO APPROACHES TO DESIGNING EXPERT
SYSTEMS . 46
a. FORMAL DOMAINS - A FUNCTIONALIST APPROACH 34

i. Extracting `jewels' from the minds of experts 35
 ii. The `control methodology' . 37

b. EXPERT SYSTEMS AND INFORMATION SYSTEMS 38
c. SEMI-FORMAL DOMAINS - A SOCIO-TECHNICAL APPROACH40

 i. Some lessons from socio-technical information systems . . . 42
d. THE COMMUNICATION OF KNOWLEDGE 45

i. Interpretation and the expert system development process . . 46
ii. The Dreyfus model of skill acquisition 48

e. EXPERT SYSTEM DEVELOPMENT FOR SEMI-FORMAL
DOMAINS . 50

CHAPTER 3 - SOME PROBLEMS WITH KNOWLEDGE IN SEMI-
FORMAL DOMAINS . 52
a. KNOWLEDGE REPRESENTATION AND THE SYMBOLIC

REPRESENTATION OF KNOWLEDGE 53
b. DESCRIPTIVE DEFINITIONS - THE PROBLEM OF

BOUNDARIES . 54
i. Examples of descriptive definitions . 56

c. SUBJECTIVE DEFINITIONS - DIFFERENT INTERPRETATIONS
OF THE SAME NAME . 57
i. Examples of subjective definitions . 57

d. HUMAN COMMUNICATION AND DESCRIPTIVE AND
SUBJECTIVE DEFINITIONS . 59
i. Example - the use of the term `race' . 61

e. NOTICING PROBLEMS . 63
i. Examples of noticing problems . 64

8

f. SEEING-AS . 65
i. Examples of seeing-as . 66

g. READINESS-TO-HAND AND `HIDDEN' KNOWLEDGE 67
h. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED 67

CHAPTER 4 - COMPUTER BASED SYSTEMS WITHIN SEMI-
FORMAL DOMAINS . 69
a. THE COMMUNICATIVE RESOURCES OF COMPUTER BASED

SYSTEMS . 70
i. The communicative resources of expert systems 74

b. SITUATED ACTIONS . 74
c. CONFUSION . 76

i. The commitment to resolving confusion 77
ii. Saying and doing . 78
iii. Speech acts and the noticing of confusion 79

d. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED 81

CHAPTER 5 - INTRODUCTION TO THE PESYS SYSTEM 82
a. AN OVERALL DESCRIPTION OF THE PESYS ENVIRONMENT82
b. THE STRUCTURE OF THE KNOWLEDGE BASE 83

i. The files in a knowledge base . 84
ii. The basic structure of a rule in PESYS 85
iii. Advanced features of rules . 86

c. ADVANCED RULE STRUCTURES . 88
d. THE RUNTIME ENVIRONMENT . 91

 i. The user interface . 92
ii. The inference engine . 96
iii. Commands in PESYS . 99

e. APPLICATIONS DEVELOPED USING PESYS 100
i. Effort estimation for software development 100
ii. An expert system to assist in filing tax returns 100
iii. Other applications developed using PESYS 101

CHAPTER 6 - SOLUTIONS TO THE PROBLEMS OF THE
KNOWLEDGE BASE . 103
a. A NATURAL LANGUAGE PATTERN MATCHING SYSTEM 103

i. A method to find the underlying idea in a clause 105
ii. Inheritance . 108
iii. Statements presented to the users . 111
iv. Implicit relations . 112
v. `Learning' about relations . 113
vi. A case study . 113
vii. A discussion of the problems with the method 115

9

b. PROVIDING ASSISTANCE WITH INTERPRETATIONS 119
i. The use of prompts . 119
ii. A case study . 123
iii. Discussion of the limitations of prompts 124

c. THE USE OF NON-LINEAR DOCUMENTS 125
i. Wittgenstein and the similarities between names 126
ii. Non-linear documents . 127
iii. Non-linear documents in PESYS . 128
iv. Implementing non-linear documents in PESYS 130
v. Using the non-linear documents in PESYS 132
vi. Non-linear documents and multiple interpretations 133
vii. Using non-linear documents to examine the boundaries of the

knowledge base . 135
viii. Non-linear documents and tacit skills 135

CHAPTER 7 - SOLUTIONS TO THE PROBLEMS OF COMPUTER
BASED KNOWLEDGE BASES . 137
a. USING EXISTING COMMUNICATIVE RESOURCES 137

i. Confusion and examining the design rationale 138
ii. Designing support for overcoming confusion 139
iii. Implementation of the support . 141
iv. Understanding the justification for the clauses 143
 v. Why-not justifications . 146
vi. Questions and requests . 148

b. RULE IDENTIFIERS AND MULTIPLE GOALS 150
 i. Multiple goals . 153
ii. Implementing multiple goals . 154

CHAPTER 8 - CONCLUDING DISCUSSION . 156
a. EMBEDDING EXPERT SYSTEMS IN SEMI-FORMAL DOMAINS156

i. The formal approach to expert system design 156
ii. The semi-formal domain approach to designing expert systems157
iii. Are formal domains really semi-formal? 158
iv. The benefits of considering domains as being semi-formal 159

b. EXAMINING THE BOUNDARIES OF THE KNOWLEDGE BASE 160
i. The limits to what can be stored in the knowledge base . . . 160
ii. Limits to the knowledge base arising from the use of

computers . 161
iii. Software tools to examine the boundaries of the knowledge

base . 162
iv. Examining the boundaries of a computer based knowledge

base . 163

10

c. IMPLICATIONS FOR THE DEVELOPMENT AND USE OF
EXPERT SYSTEMS . 165
i. The conceptual view of the user system interface 165
ii. The `interpretation bottleneck' . 166
iii. Reasons for design . 166

d. THE FINAL PESYS SYSTEM . 167
i. The different programs in the system 168
ii. The different files used . 168
iii. The important features of the PESYS expert system shell 170

e. FINAL SUMMARY AND FUTURE RESEARCH AREAS 172

APPENDIX I - EXPERT SYSTEMS . 174
I.1 WHAT IS AN EXPERT SYSTEM? . 174
I.2 WHAT DOES AN EXPERT SYSTEM DO? 174
I.3 WHERE DOES THE KNOWLEDGE FOR AN EXPERT SYSTEM

COME FROM? . 175
I.4 FEATURES OF AN EXPERT SYSTEM 175
I.5 HOW THE EXPERT SYSTEM WORKS 177
I.6 HOW AN EXPERT SYSTEM DIFFERS FROM OTHER

COMPUTER SYSTEMS? . 178

APPENDIX II - EXPERT SYSTEM DEVELOPMENT TOOLS 180
II.1 A PROPOSED CLASSIFICATION OF EXPERT SYSTEM

DEVELOPMENT TOOLS . 180
II.2 ARTIFICIAL INTELLIGENCE LANGUAGES 183

II.2.1 LISP . 184
II.2.2 PROLOG . 186

II.3 LANGUAGES SPECIFICALLY DESIGNED TO DEVELOP
RULE BASED SYSTEMS . 189

II.4 CONVENTIONAL PROGRAMMING LANGUAGES 190
II.4.1 High level languages . 191
II.4.2 High level languages with pre-written modules 192

II.5 OBJECT ORIENTED LANGUAGES . 193
II.6 EXPERT SYSTEM SHELLS . 194

II.6.1 XI+ . 195
II.6.2 LEONARDO . 196
II.6.3 CRYSTAL . 196

II.7 EXPERT SYSTEM TOOLKITS . 197
II.7.1 ART . 197
II.7.2 KEE . 198

II.8 THE CLASSIFICATION OF EXPERT SYSTEM
DEVELOPMENT TOOLS . 198

11

II.9 THE LIKELY FUTURE DIRECTION OF EXPERT SYSTEM
TOOLS . 199

II.10 THE CHOICE OF HARDWARE . 200
II.10.1 Specialist hardware . 200
II.10.2 Conventional hardware . 202
II.10.3 The choice made . 203

II.11 THE CHOICE OF DEVELOPMENT TOOL 205
II.11.1 Existing work . 206
II.11.2 The choice of high level language 206
II.11.3 The PASCAL compiler . 207
II.11.4 Pascal versus AI languages . 208
II.11.5 Pascal versus commercial expert system shells 210

APPENDIX III - THE PESYS EXPERT SYSTEM SHELL USER GUIDE212
III.1 THE PESYS EXPERT SYSTEM SHELL USER GUIDE 213
III.2 GETTING STARTED . 213
III.3 USING THE SELECTION MENUS . 214

III.3.1 THE TWO PARTS OF A SELECTION MENU 214
III.4 THE CONFIGURATION MENU . 215
III.5 SELECTING ITEMS BEFORE THE INFERENCE PROCESS

BEGINS . 216
III.5.1 SELECTING THE ITEMS . 216
III.5.2 FINISHING THE SELECTION 217
III.5.3 TO CONFIRM YOUR CHOICE AND ADD THE ITEMS

TO THE WORKING MEMORY 217
III.5.4 TO ABANDON YOUR CHOICE 217

III.6 ANSWERING QUESTIONS IN PESYS 218
III.7 ANSWERING YES/NO QUESTIONS 218

III.7.1 YES - THE CLAUSE IS TRUE 219
III.7.2 NO - THE CLAUSE IS FALSE 219
III.7.3 UNKNOWN - NO INFORMATION IS KNOWN ABOUT

THE CLAUSE . 219
III.7.4 EXPLAIN - TO PROVIDE A JUSTIFICATION FOR

THE QUESTION BEING ASKED 219
III.7.5 PROMPT - TO DISPLAY EXTRA INFORMATION

WHERE AVAILABLE . 219
III.8 NON-LINEAR DOCUMENTS . 220

III.8.1 HELP ABOUT THE SYSTEM 220
III.9 VALUE QUESTIONS . 220
III.10 RANGE QUESTIONS . 221
III.11 FORMS . 222
III.12 THE EXPLANATION FACILITY . 223

III.12.1 DURING AN INTERACTION 223

12

III.12.2 ONCE THE INTERACTION IS COMPLETE 223
III.13 HOW TO USE THE EXPLANATION FACILITY 223

III.13.1 OTHER CLAUSES . 225
III.14 HOW THE CLAUSE YOU CHOSE WILL BE EXPLAINED 225

III.14.1 THE WHY EXPLANATION 226
III.15 THE END OF THE INTERACTION . 226

III.15.1 THE SYSTEM ARRIVED AT A GOAL 226
III.16 OTHER OPTIONS . 227

III.16.1 PRINT LOG . 228
III.16.2 RUN AGAIN . 228
III.16.3 FINISH . 228

III.17 THE WHAT-IF FACILITY . 228
III.17.1 ALTERING THE EXISTING VALUES 228
III.17.2 ADD LOW LEVEL DATA . 229
III.17.3 SEE EFFECTS OF CHANGES 229
III.17.4 EXIT . 229

III.18 THE DEVELOPMENT ENVIRONMENT 229
III.19 THE FILENAME STRUCTURE USED 230
III.20 USING EDITOR . 232

III.20.1 FACILITIES WHEN EDITING A PARTICULAR LINE232
III.20.2 FACILITIES WHEN EDITING WITHIN THE FILE 234

III.21 USING PREPARE . 235
III.21.1 CONFIGURATION . 235
III.21.2 CONVERTING THE RULES 238

III.22 USING EXTRAS . 238
III.22.1 VARIABLES . 239
III.22.2 PROMPTS . 240

III.23 USING MAKEFORM . 240
III.23.1 CREATING A FORM . 240
III.23.2 THE OPTIONS AVAILABLE 241

III.24 USING MAKE_NLD . 243
III.25 WRITING A KNOWLEDGE BASE IN PESYS 245

III.25.1 PARTS OF THE RULE . 246
III.25.2 FIRING A RULE . 247

III.26 HOW THE SYSTEM FIRES RULES 248
III.26.1 FORWARD CHAINING . 248
III.26.2 INFORM LEVELS AND GOALS 248
III.26.3 BACKWARD CHAINING . 249

III.27 A SIMPLE EXAMPLE . 250
III.27.1 A FORWARD CHAINING EXAMPLE 251
III.27.2 A BACKWARD CHAINING EXAMPLE 252

III.28 ADVANCED FEATURES IN THE KNOWLEDGE BASE . . 254
III.28.1 META RULES . 254

13

III.28.2 TOP DOWN DESIGN . 255
III.28.3 USING FORMS TO ENTER DATA 255
III.28.4 COMMENTS . 255
III.28.5 OR CLAUSES . 255
III.28.6 VARIABLES . 257
III.28.7 COMPARISON OF VARIABLES 257
III.28.8 ATLEAST CLAUSES . 257
III.28.9 PROMPTS . 258
III.28.10 COMMANDS IN PESYS . 258

APPENDIX IV - THE MAIN DATA STRUCTURES USED BY PESYS261
IV.1 BINARY TREES . 258
IV.2 LINKED LISTS . 258
IV.3 THE WORKING MEMORY . 265
IV.4 NON-LINEAR DOCUMENTS . 268

APPENDIX V - CASE STUDIES . 269
V.1 CASE STUDY I - AN EXPERT SYSTEM FOR THE

COMPETITIVE USE OF INFORMATION SYSTEMS
TECHNOLOGY . 268

V.2 INTRODUCTION . 268
V.3 THE RULES USED . 270
V.4 THE INFORMATION FOR RELATIONS 271
V.5 CASE STUDY II - AN EXPERT SYSTEM TO ASSIST IN

FILING INCOME TAX RETURNS . 273
V.6 INTRODUCTION . 273
V.7 DETERMINING THE RESIDENTIAL STATUS OF ASSESSEES274
V.8 THE RULES FOR DETERMINING THE RESIDENTIAL

STATUS OF AN ASSESSEE . 275
V.9 THE PROMPTS FOR THE RULE FILE 278
V.10 THE INFORMATION ABOUT VARIABLES FOR THE RULE

FILE . 279

REFERENCES . 280

14

LIST OF FIGURES

Figure 1.1 - The main areas of research in artificial intelligence 19
Figure 1.2 - A sample dialogue with ELIZA (Weizenbaum 1976, pp. 3-4) 22
Figure 1.3 - The principle components of an expert system 25

Figure 2.1 - The expert system kept separate from the domain it models 35
Figure 2.2 - The relationship between formal systems, informal systems and

computer systems 38
Figure 2.3 - Expert systems and their relationship with formal and informal systems 39
Figure 2.4 - The expert system as part of the problem domain 40
Figure 2.5 - The communication flows in the development of an expert system 48
Figure 2.6 - Two contrasting approaches to the design of expert systems 52

Figure 3.1 - A simple semantic network 54
Figure 3.2 - The racial classification scheme used at Stanford University (Earnest

1989, p. 178) 63

Figure 4.1 - Suchman's framework for analyzing the communicative resources of
users and machines (Suchman 1987, p. 116) 72

Figure 4.2 - Sequence II (Suchman 1987, p. 126) 73
Figure 4.3 - Austin's three principles to prevent infelicity in speech acts 79

Figure 5.1 - The development and runtime components of PESYS 83
Figure 5.2 - The files used in PESYS 84
Figure 5.3 - A sample rule in PESYS 85
Figure 5.4 - The use of the or connective in a PESYS rule 88
Figure 5.5 - A diagrammatic representation of or-clauses 89
Figure 5.6 - An example rule using atleast clauses 90
Figure 5.7 - The principal components of PESYS 91
Figure 5.8 - A question in PESYS 93
Figure 5.9 - A request in PESYS 93
Figure 5.10 - Selecting the most likely value in PESYS 94
Figure 5.11 - An inform 2 statement in PESYS 95
Figure 5.12 - The What-if facility in PESYS 96
Figure 5.13 - The configuration menu in PESYS 99
Figure 5.14 - PESYS applications 102

Figure 6.1 - Three clauses about switching on 105
Figure 6.2 - More sets of parameters for the relation Likes 107
Figure 6.3 - Full text and encoded relations 108
Figure 6.4 - The `Nixon diamond' 110
Figure 6.5 - Porter's major competitive forces 114
Figure 6.6 - A sample ontology chart for books, authors and writing 117
Figure 6.7 - A question with a prompt 121
Figure 6.8 - Prompts within a request in PESYS 122
Figure 6.9 - A prompt in the Indian Income Tax application 124
Figure 6.10 - How various screens may be linked together 129

15

Figure 6.11 - How the screens and links are stored in a file 131
Figure 6.12 - A help screen in PESYS 132
Figure 6.13 - A screen from a non-linear document explaining `race' 133
Figure 6.14 - A Family Resemblance to `race' - skin colour 134
Figure 6.15 - A non-linear document providing assistance with tacit skills 135

Figure 7.1 - Winston's rule for identifying a tiger (Winston 1984, p. 282) 141
Figure 7.2 - An explanation in PESYS 142
Figure 7.3 - An explanation based on a long rule 143
Figure 7.4 - The same rule after scrolling 144
Figure 7.5 - The option to examine other goals or other clauses 147
Figure 7.6 - A negative explanation from the system described by Rousset and Safar

(1987) 148
Figure 7.7 - Meaningful rule names assist in the explanation 152
Figure 7.8 - It is possible to include a rule number in the rule description 152
Figure 7.9 - Some rules for multiple goals 153
Figure 7.10 - The display for the completion of the inference process 154
Figure 7.11 - The goals that could have been arrived at 155

Figure 8.1 - The components of the final PESYS runtime system 168
Figure 8.2 - The programs in the final PESYS system 169
Figure 8.3 - The files created by the final PESYS system 170

Figure I.1 - The main components of an expert system 176

16

Figure II.1 - The language-tool continuum (Harmon and King 1985, p. 83) 181
Figure II.2 - The potential for meta-systems (Boley 1990, p.3) 182
Figure II.3 - Examples of s-expressions in LISP 184
Figure II.4 - Basic functions in LISP 185
Figure II.5 - The LISP function DELETE 185
Figure II.6 - A simple argument in propositional logic 186
Figure II.7 - The same argument in predicate logic 187
Figure II.8 - Sample facts in PROLOG 188
Figure II.9 - A classification of expert system development tools 200
Figure II.10 - Hardware platforms for expert systems development tools 204
Figure II.11 - Reasons for the choice of hardware platform 206
Figure II.12 - A more efficient comparison method implemented using pointers in

PASCAL 211

Figure III.1 - The stages of the development process 229
Figure III.2 - The files in PESYS 230

Figure IV.1 - Linked lists in PESYS 259
Figure IV.2 - Creating a new list 260
Figure IV.3 - Elements added to the list 261
Figure IV.4 - A sentence list 262
Figure IV.5 - Moving through a linked list 263
Figure IV.6 - The tree used for the working memory 264
Figure IV.7 - A binary tree for the outer level 265
Figure IV.8 - The working memory as it is actually implemented in PESYS 266

17

CHAPTER 1 - INTRODUCTION

Scholarly inquiry is concerned with understanding and explaining the world. The

physical sciences such as chemistry, physics and biology attempt to explain the structure of

the world, whilst the social sciences such as economics, sociology and anthropology attempt

to explain social phenomena of the world. The field of inquiry that this thesis is concerned

with relates to understanding the human mind, as research for its own sake but more

importantly as a method of designing computer systems that perform useful tasks in a manner

similar to a human being. These tasks may be performed in situations where no human

expert is available or in areas where the environment is not amenable to human action. This

thesis will examine the limitations on this form of technology and will try to devise and

evaluate solutions that minimise the effects of these limitations so that the benefits of such

programs can be made more widely available.

a. ARTIFICIAL INTELLIGENCE

Metaphors have been used extensively throughout the history of science to help

understand and explain phenomena that have been discovered. For example, in trying to

understand the human mind, metaphors have often been used that were based on the current

technology of the time. Thus at the time when clockwork mechanisms were the dominant

technology the mind was thought to be an intricate clockwork mechanism, carefully regulated

using cogs and springs (Bolter 1984). Attempts were made to explain the behaviour of the

mind in terms of this metaphor; forgetting, for example, could possibly be `explained' in

terms of a spring loosing its tension. When the telephone became the dominant new

technology it too was used as a metaphor by which the human mind could be understood

(Searle 1984). Forgetting, in the telephone metaphor, could be described as a temporary

connection between two points (two pieces of data) being dropped. Inevitably, therefore,

when the digital computer was developed it too was used as a metaphor to understand the

human mind. Turkle (1984) gives an interesting insight into the way that young children can

be seen to alter their beliefs about artifacts being alive and having `intentions' in the light of

their experiences with computer games.

The field of Artificial Intelligence arose to examine this particular area of study and

can be broadly classified into two sections: the first is strong artificial intelligence which

18

believes that an "appropriately programmed computer is a mind" (Searle 1980, p. 417) whilst

the second view, weak artificial intelligence, believes that the computer can be successfully

used to help understand aspects of the mind and that there are many practical benefits to

designing machines that act in an `intelligent' manner. Both approaches to artificial

intelligence research benefit from the nature of computers since any theories that are devised

can be tested using the computers themselves.

The thought that a computer might, in some way, be `intelligent' provokes strong

reactions in many people. To some `intelligence' is the very thing that distinguishes us from

`lower' creatures and therefore cannot exist in a machine. Thus the use of the word `artificial'

as part of the title for the research area could be seen to imply forgery or deception. Others

hold that there is no fundamental difference between the human brain and a digital computer

and that with sufficient research this similarity can be successfully demonstrated.

In his seminal paper "Computing machinery and intelligence" (1950) the

mathematician Alan Turing considered how we might recognise a machine that demonstrated

`intelligence'. The question of what intelligence exactly is has perplexed philosophers for

centuries and Turing proposed a practical test which could be used to determine if a

computer had `intelligence'. If a person sitting at a teletype (which does not offer the

advantage of any visual clues) could not distinguish between statements made by a computer

and those made by a human then the computer would be deemed to have passed the test.

A number of authors have criticised the predictive ability of the Turing Test

(Gunderson 1985, Weizenbaum 1983) since it is a rather open-ended mechanism for

examining the claimed intelligence of a machine. Consider the case of a computer system

which, it is claimed, can understand natural language. If the person sitting at the teletype

enters "What is the time?" and the computer responds correctly but then fails to give a

sensible answer to the question "Could you tell me the correct time please?" then the system

would have been deemed to fail the Turing Test since it's responses could be distinguished

from those made by a human. The problems with the Turing test arise when the topics of

conversation become more advanced. How would a computer system which was asked

questions about thermodynamics be judged? These questions only differ from the previous

questions in the topic that they refer to. If the computer cannot respond appropriately to

these questions should it be judged to be intelligent?

i. Tasks that require intelligence

19

ARTIFICIAL INTELLIGENCE

Problem
Solving

Game
Playing

Natural
Language

Understanding

Robotics Vision
Systems

Knowledge
Based

Systems

Figure 1.1 - The main areas of research in artificial intelligence

Figure 1.1 shows the main areas of research in artificial intelligence. Of these areas,

game playing and natural language understanding probably best demonstrate the factors that

led to the development of expert systems and they will be described in more detail below.

Other areas of artificial intelligence research, such as problem solving, vision systems and

robotics, had less of an influence on the origins of expert systems although they made

important contributions to artificial intelligence in general. They are described in more detail

by Boden (1987) and McCorduck (1979).

Game playing

One of the first areas of intelligent behaviour to be considered by AI researchers was

the playing of games. If a computer could be programmed to play a game as well as a

human then it would be reasonable to assume that the program exhibited some `intelligence',

since intelligence is required to play games well. One of the earliest successful

20

implementations of computerised game playing was a computer program that was able to

play checkers (draughts). Arthur Samuel, working for IBM, developed a program that could

play checkers (Samuel 1983). As well as providing the program with a list of all the legal

moves that could be taken, Samuel also gave the program various heuristics or rules of

thumb which made suggestions as to which moves to take. In addition to these rules of

thumb, the checkers playing program was also given a basic ability to `learn' from the games

that it played. Each move that the program made was given a weight which was altered,

depending on whether the computer won the game or not. Those moves which caused the

computer to win were therefore more likely to be chosen again, whilst those that caused it to

lose were less likely to be chosen. After the program had played a number of games and had

built up considerable `experience' of the game, it actually beat Samuel on a number of

occasions (McCorduck 1979), an experience which, he confesses, was rather unnerving.

Chess is another game which has been very popular with AI researchers. Michie and

Johnston (1984, p. 21) report that there are 10120 possible games of chess. The number of

possible games dwarfs the total number of seconds that the universe has been in existence

and hence any computer program which tried to take into consideration all the possible

games would never come round to making a first move. This limitation also applies to

human chess players and it follows that human chess players do not consider all the possible

games either. Following from Samuel's work most chess programs combine the searching of

moves with rules of thumb which narrow down the number of possible moves to be

considered. The `intelligence' of chess programs is therefore dependent on the quality of

rules of thumb that can be incorporated into the program.

Whilst this method has been used in many successful programs that can play

reasonable to good games of chess, there is evidence to suggest that the use of rules of thumb

may not be a true representation of how human chess experts play. The world chess

champion, Gary Kasparov, recently played the chess program DEEP THOUGHT, developed

by Carnegie Mellon University (Ball 1989). The computer and human played two games,

with Kasparov winning both easily. The current version of DEEP THOUGHT is capable of

examining 760,000 positions per second in concert with its use of heuristics to guide the

search strategy. Despite the large number of positions searched, the performance of the

computer was far below that of the human expert although Kasparov conceded that the

computer may be able to win in 1994 when DEEP THOUGHT II is unveiled. However it is

expected that this program will be capable of examining 1 billion positions per second and

21

Patient : Well, my boyfriend made me come here.
ELIZA : Your boyfriend made you come here?
...
Patient : Perhaps I could learn to get along with my mother.
ELIZA : Tell me more about your family

Figure 1.2 - A sample dialogue with ELIZA (Weizenbaum 1976, pp. 3-4)

this suggests that the program would only be winning through the use of `brute force' rather

than `intelligence'.

Natural language understanding

Another area of artificial intelligence research is natural language understanding.

Natural language is normally used to refer to ordinary human languages "to distinguish them

from constructed formal languages, such as the predicate calculus and FORTRAN"

(Winograd and Flores 1986, p. 107). In addition to being a major area of research in artificial

intelligence, successful natural language processing offers a number of practical advantages

to the users of computer systems. Even the most modern and `user-friendly' computers are

still difficult to use, requiring many cognitive and tactile adjustments to be made by their

users. In almost all cases they must be used with a keyboard or possibly a desk based

pointing device in conjunction with a formal command language. Natural language

understanding systems therefore aim to assist the users of computers by allowing them to use

less restricted forms of input.

One of the earliest programs to offer a reasonable level of language `understanding'

was ELIZA, written by Professor Joseph Weizenbaum of the Massachusetts Institute of

Technology (Weizenbaum 1976). The program was written to mimic the behaviour of a

Rogerian psychiatrist. A Rogerian psychiatrist takes the responses made by patients and

redirects them to the patients, making the patients talk through the problems that they have

and allowing them to solve the problems for themselves.

The sample dialogue with ELIZA, shown in Figure 1.2, illustrates this process in

practice. It also demonstrates the method used by Weizenbaum to implement the system.

When the user enters a line of text like "Well, my boyfriend made me come here" a pattern

matching routine is used to convert this input into a related output line. In this case the

22

transformation is performed by dropping the "Well" from the beginning of the sentence,

replacing the "my" with "your" and "me" with "you" and presenting the user with the

transformed sentence. Other patterns that ELIZA searches for include topics such as mothers

and fathers which cause the system to request information about the more general topic of the

family. If the system is unable to find any pattern in the last sentence it will try and return to

the previous topic of conversation or suggest a new topic of conversation.

The dialogue produced by ELIZA can be quite convincing, indeed Weizenbaum

notes that his secretary once asked him to leave the office as she wanted to tell ELIZA about

a personal problem she was facing. Weizenbaum was greatly disturbed when computer

programmers, who knew the tricks that the program used, argued that ELIZA was a

demonstration of a computer program which "understood" natural language (Weizenbaum

1983).

Other attempts to "understand" natural language have been more sophisticated with

two of the most successful being Winograd's SHRDLU (Winograd 1972) and the work of

Schank and his colleagues (Schank (1984) is a good introduction to this research).

Winograd's program allowed users to "speak" to a computer which controlled a world made

up of a table top, blocks, boxes and cubes of differing sizes and colours. It was possible to

tell the program to pick up certain objects and place them in other positions and to ask the

system questions about the blocks world or the past actions performed by the system.

Because the system was only concerned with a very simple "micro-world" made up of blocks,

it was able to resolve most ambiguities that arose by referring to the previous actions that had

taken place within that world. Unfortunately both SHRDLU and the various programs

devised by Schank and his colleagues were only able to operate successfully if they were

restricted to very limited domains. Those attempts that were made to widen their field of

applicability, to allow the systems to operate in areas other than "blocks worlds", came up

against a major theoretical problem, namely how to represent common sense knowledge.

Common sense knowledge, for example, the knowledge that if an object is dropped it

will fall, that this falling object will break on impact if it is fragile or will bounce if the

surface is absorbent, has proved to be very difficult to formalise using existing techniques of

knowledge representation.

At the same time as it was realised that common sense knowledge was becoming a

major theoretical and practical problem some researchers, especially those working with

Professor Edward Feigenbaum at the Heuristic Programming Project in Stanford, California

(Feigenbaum and McCorduck 1983), began using the knowledge of human experts to create

23

computer based systems that operated at a similar level of competence to that of human

experts. These programs were called Expert Systems since they attempted to embody the

skills of a human expert.

b. EXPERT SYSTEMS

Expert systems, sometimes known as knowledge based systems, attempt to perform

tasks that are usually undertaken by human experts in specialised areas of skill. They attempt

to do these tasks in a similar way to human experts.

In the process of developing expert systems two important features were noted.

Firstly the skills of the human expert could often be approximated using heuristics or rules of

thumb in a similar manner to the rules of thumb used in the various game playing computer

programs (Feigenbaum et al. 1988). Secondly, and more importantly, it was noted that the

knowledge of the human expert was very often at a level far above the common sense

knowledge that was causing problems elsewhere in the field (Harmon and King 1985). The

expert would, for example, be concerned whether there was any power going through to the

lights rather than how electricity was passed through wires. Since the problems of common

sense knowledge were therefore effectively avoided it was possible to develop systems that

gave acceptable levels of performance in certain specialised domains.

Doukidis and Whitley (1988) provide the following definition of an expert system:

An expert system is a computer program that assists a user by providing

information about a particular domain. It does this by manipulating

information about the field that has been provided by a number of "experts"

in the field. Another important feature of an expert system is that it has the

facility to explain/justify the methods it used to provide the information. (p.

6)

This definition emphasises that expert systems are computer programs based on

technology that is available at the current time. These computer programs attempt to solve

problems by making use of `knowledge' that has been provided by various `experts' in the

problem area. For example, an expert system might be developed to diagnose faults in

electro-mechanical devices and to provide advice to human technicians, who may not have

24

had previous experience with this particular kind of device, in a similar way to human

experts. The method used to provide this assistance is based on the use of a stored

representation of `expert knowledge'. Figure 1.3 provides a diagrammatic representation of

the basic architecture of an expert system, highlighting the principal components used to

perform this task.

The most important feature of the architecture of an expert system is the knowledge

base, which is a stored representation of the expert knowledge. It is kept entirely separate

from the inference engine which examines and uses it. This has three important

implications. Firstly it means that the same inference engine can be used with widely

differing knowledge bases - provided the knowledge has been coded in a standard format, the

inference engine can manipulate knowledge about electro-mechanical devices, diseases or

electronic components without having to rewrite the entire system. Secondly it means that a

particular knowledge base could be used with different inference engines. For example, one

inference engine may simply see what goals can be arrived at whilst another may actively try

and pursue certain goals (Boley 1990). A third important implication of the separation of the

knowledge from the way that it is used is that it is relatively easy to update and maintain the

knowledge base. If the underlying knowledge changes, it is only necessary to change the

knowledge base - the inference engine will remain the same, allowing rapid prototyping of

the system and rapid adjustment to changing circumstances. The working memory is used

as a temporary store for any data that is known to the system about a particular problem and

the external interfaces are used for those applications which need to be linked to external

sensors or specialist packages such as databases, simulation models or graphics packages.

Finally, the user interface is used by the system to ask questions of the users and to obtain

responses from them. It is also the means by which the system can provide an explanation /

justification of its reasoning. A more detailed description of the architecture, use and

operation of expert systems is given in Appendix I.

25

User Interface

Inference Engine

Knowledge
Base

Working
Memory

External

Interfaces

Figure 1.3 - The principle components of an expert system

i. The problem of knowledge representation and use

Practical expert systems depend critically on the representation and use of knowledge

about the particular problem domain they are developed for. If some parts of the domain

cannot be represented within the knowledge base or are not taken into consideration in other

ways, or if the mechanisms for interrogating and using the stored knowledge do not offer the

functionality required to solve problems in the domain, then the systems developed will be of

little practical use.

One of the main areas of research in expert systems has been to devise suitable

knowledge representation and manipulation techniques and many claims have been made

about the effectiveness of the resulting systems:

There is only one language suitable for representing information - whether

declarative or procedural - and that is first order predicate logic. There is

26

only one intelligent way to process information and that is by applying

deductive inference methods" (Kowalski 1980).

This quotation (which was made at a time when the logic based programming

language PROLOG, developed in part by Kowalski, was first being introduced to the

artificial intelligence community) is representative of many researchers who believe that

suitably expressive knowledge base formalisms and inference methods have (already) been

developed. Kowalski believes that first order logic is such a formalism, a view that is also

held by Genesereth and Nilsson (1987) who propose the use of "first order predicate calculus

as a language in which to represent the knowledge possessed by a reasoning agent about its

world" (p. viii). They continue by imagining that "the agent exists in a world of objects,

functions and relations that form the basis for a model of the agent's predicate calculus

sentences" and propose that "deductive inference is the major reasoning technique employed

by an intelligent agent" (p. ix). Similar statements have been made in support of fuzzy logic

for knowledge representation: "[F]uzzy relations are a very flexible representation formalism

that can be used to model any knowledge formalism" (Hall and Kandel 1988, p. 241) and

similar claims have been made for most other artificial intelligence techniques used to

represent knowledge.

Other researchers in the field do not make such extravagant claims, for example,

Partridge (1987) in discussing the limitations of (current) expert systems technology focuses

on the limited ability of current systems to cope with "context sensitivity" and the updating of

knowledge bases. Although he believes that the problem of context-sensitivity will

eventually be overcome, Partridge feels that current expert systems technology will tend to

concentrate on those problem areas where "the necessary knowledge can be represented as a

collection of more or less independent rules". In addition expert systems are particularly

suitable for areas where "intelligent decision making can be implemented as a logical, truth-

derivation mechanism" and where the "knowledge is fairly static" (pp. 2-3). Successful

expert system applications have been developed in areas where these assumptions hold and

those areas where the assumptions are particularly weak have few, if any, reported systems.

In common with many researchers in the field of expert systems, Partridge draws a

distinction between formal domains and informal domains. Formal domains are made up of

objects which are readily identified and exist within a regulated, clearly bounded area.

Formal domains, therefore, satisfy the conditions set out by Partridge. In contrast, informal

domains are made up of things that need to be interpreted and are based on experience and

27

subjective, personal identification rather than the `objective' methods used in formal

domains. Informal domains do not satisfy Partridge's conditions and there are few, if any,

potential expert system applications in informal domains.

The move towards integration

The distinction between formal and informal domains of application can be seen to

become increasingly blurred when expert systems which are integrated with conventional

data processing equipment are considered. The most common form of such integration is to

link an expert system with a database.

The structure of a database is clearly defined and bounded and only certain

operations can be performed on it. When an expert system is integrated with a database,

however, the range of actions that can be performed by the two packages increases. The

nature of the expert system means that tasks that could not be performed within the tightly

controlled, formal structure of the database can be undertaken by the relatively less formal

expert system.

An example of such a case is provided by Feigenbaum et al. (1988) when they

describe an expert system developed by American Express to provide advice on whether to

grant particular levels of credit to holders of their credit cards (p. 92-114). American Express

cards have no preset spending limits and when an unusual purchase request is made, it was

normally passed to a special credit department who examined a number of databases to

obtain information about the customer concerned and made a decision as to whether to grant

the credit. An expert system was developed to take over much of this task and the expert

system automatically searches the necessary databases and comes up with a credit decision in

a far shorter time than the previous system. In this application, the expert system can be

considered to be the informal component in the overall system which enhances the

capabilities of the purely formal database systems.

c. OVERVIEW OF THE RESEARCH IN THIS THESIS

i. Semi-formal domains

28

This thesis will use the concept of semi-formal domains as a means to overcome the

distinction that is commonly made between formal domains and informal domains. Semi-

formal domains combine formal and informal aspects within a single problem area and it is

therefore not appropriate to speak of the domains being solely formal or solely informal.

 One obvious example of such a combination of formal structure with informal

aspects is legislation. Although the structure of legislation can be fairly complicated few, if

any, decisions in cases are based simply on whether the appropriate steps of the legal process

were applied correctly; most legal decisions are based on judgements of whether the terms of

the legislation apply to the particular case. Once this "informal" process has been undertaken

reaching a verdict is (relatively) straight forward. Thus Waterman et al. (1987) argue that

"[T]he legal domain has the unique property of being semi-formalized, i.e. there exists a large

body of formal rules that purport to define and regulate activity in the domain ... Concepts in

the legal domain tend to be open textured, i.e. in general one cannot state necessary and

sufficient conditions for applying legal predicates or have a program assess their applicability

in arbitrary factual situations. ... Complex, ill-defined concepts (e.g. strict liability) are

defined using new concepts that are just as ill-defined or vague (e.g. responsible, defective)

... This open textured nature of legal concepts makes it difficult to avoid subjective

considerations when performing legal reasoning" (p. 26). This thesis will show that the

property of being semi-formalised is not unique to legislation and that many domains show

characteristics of being semi-formal.

The remainder of this thesis will examine ways in which problems can arise in semi-

formal domains and will propose methods to minimise the effects of the problems. The

extent to which these solutions overcome the problems will also be discussed. In doing so

the thesis will suggest that most expert system applications are effectively semi-formal and

that viewing them as being semi-formal will improve the design of such systems by taking

into consideration factors that would be overlooked if the expert system was considered to be

operating in a formal domain.

ii. Some of the problems with semi-formal domains

The problems with semi-formal domains, as they relate to expert systems, arise in

two main areas. The first set of problems are a direct consequence of the knowledge that

29

needs to be stored in the knowledge base. In particular problems can arise with any

knowledge that is expressed in `natural' language. It will be argued that the social processes

involved in the use of language as a means of communication mean that much knowledge

cannot be formally defined without losing important parts of that knowledge, since no formal

basis ever existed for the language. A result of this is that it is possible for different people

to use the same terms to mean completely different things. This has a practical implication

for the design of expert systems since it means that the users of the system may form

different interpretations of the knowledge base to those intended by the designers of the

system.

Another kind of knowledge that is likely to cause problems in semi-formal domains

is tacit knowledge. This is knowledge which "cannot be told" and therefore existing

techniques are not able to represent it. Tacit knowledge is often used by human experts and

it may be expected of the users of an expert system. Its nature, however, means that it cannot

be represented within the knowledge base and this must be successfully conveyed to the users

of the system. Furthermore, if the users do not possess such knowledge then the system must

try and offer other ways for them to solve the difficulties that they are faced with.

Other problems of semi-formal domains arise from the nature of computers. Expert

systems are implemented on computers and must participate in a process that involves

informal social processes. Most computers, however, have very limited capabilities for

participating in such processes and the consequences of this must be considered.

iii. The research method of the thesis

The research method followed in this thesis can be broken into two distinct stages.

The first part is of a theoretical nature, whilst the second is practical, presenting solutions to

the problems raised in the first part of the thesis.

The thesis begins by examining semi-formal domains, paying special attention to the

implications of viewing domains in this way. In doing so a comparison is made with the

conventional approach to expert system design which considers domains as being formal.

Viewing domains as being semi-formal has many parallels to the socio-technical approach to

designing information systems and a number of important ideas are taken from research in

information systems.

30

The thesis continues by examining some examples of knowledge that cannot easily

be represented using conventional knowledge representation techniques and discusses the

extent to which these problems are a result of the domain being semi-formal. A proper

understanding of these problems, which gives due consideration to the informal, social

processes involved in the use of expert systems is necessary if effective solutions are to be

developed.

Furthermore, problems arise from the fact that expert systems are implemented on

computers. The ability of computers to become aware of, and deal with, problems of semi-

formal domains as they arise, especially confusion on the part of users, is shown to be

limited. The thesis then presents a theoretical model which can be used to deal with these

problems.

The second part of the thesis describes a number of practical solutions that are

developed to tackle some of the issues raised by the first part of the thesis and these are

implemented on an expert system development tool which was developed as part of the

research. The main features of the system, which was developed in a high level language, are

described.

After the development tool has been described a number of different solutions to the

problems raised are presented. As the solutions developed are evaluated a number of other

features of semi-formal domains become prominent and they are incorporated in the later

solutions.

The thesis ends by discussing the implications of the research on the design and

development of expert systems in domains that can be considered to be semi-formal. A

number of other issues that were raised by the research are also described and further

possible areas for research, which would aim to tackle some of the remaining problems of

semi-formal domains, are considered.

iv. Contributions of this research

The conventional approach to the design of expert systems considers the domain that

the system operates on as being formally defined and as such concentrates on the technical

efficiency of the underlying computer program. This thesis argues that the focus of this

approach is inappropriate since it fails to take into consideration a number of informal factors

that are present within any formal domain of application of expert systems and argues that

31

there are a number of examples of knowledge that cannot easily be represented using the

conventional approach to designing expert systems.

Furthermore, many of the problems arise as a result of the social nature of interaction

and consideration of the social environment must be a part of expert systems design. In

particular, special consideration must be given to the fact that a computer takes part in the

interaction. The limited capabilities of an expert system to, for example, notice that the users

of the system are confused, has significant implications for the design and use of the resulting

systems.

Although there has been some research into a few of the problems that arise from

semi-formal domains, there has been very little practical work undertaken to solve these

problems and this thesis contributes a number of software tools that are designed to tackle

these problems.

The solutions that are described in the thesis raise a number of important issues that

have not been adequately considered in the literature. The first of these is the distinction

between `synthetic' domains, which are based on problem areas that are the result of

purposeful action by a group of actors, and `organic' domains that arise as an indirect

consequence of social interaction between actors.

Another important result of the research relates to how the users are to be supported

when the features of the problem that appear most important to them differ from those

considered to be important by the developers of the expert system. If these alternative

interpretations are not taken into consideration then the usefulness of the resulting system

will be limited to that of confirming the opinions of some users and being unacceptable to

many others.

The question of interaction with a machine is also considered in detail and the thesis

provides an important perspective on the notion of confusion. It offers practical solutions to

overcome awareness of confusion that result from this perspective. The thesis also considers

how the users can become aware that confusion has arisen and describes a domain

independent model that can be used as a basis for improving the functionality and usefulness

of expert systems.

Many of the ideas presented in the thesis can be seen to offer methods which open up

the black box of expert systems, encouraging the users to examine the knowledge which is

contained within them for themselves, so that they can use this knowledge in conjunction

with their own particular skills to deal with those problem situations that arise.

32

The thesis also describes an expert system shell that was developed to support the

solutions described and the shell incorporates a number of features which prove to be very

useful for the development of expert system applications.

d. OVERVIEW OF THE THESIS

Chapter 2 describes in detail two approaches to developing expert systems. One

approach takes a formal, functionalist view of expert systems development, whilst the second

considers expert system as operating within semi-formal domains. This second approach

benefits from work on socio-technical information systems and the most important elements

of this work are described. The chapter ends by considering the social processes involved in

communicating knowledge.

Chapter 3 gives a number of examples of knowledge that cannot easily be

represented using conventional knowledge representation techniques. Many of these

problems arise from the use of natural language communication in expert systems

development. The use of tacit knowledge and tacit skills that may form an important part of

the problem domain are also considered in this chapter.

Chapter 4 discusses the problems of semi-formal domains that arise from the fact that

a computer system is involved in the interaction. It discusses the nature of confusion and

shows that confusion cannot normally be known at the time that it occurs and that computers

have very limited capabilities for becoming aware that the users of an application are

confused. It then proposes a theoretical model of the actions of an expert system which can

be used to determine the occasions when users can become aware that they are confused and

describes the underlying conditions that have not been satisfied when such a situation arises.

Chapter 5 describes the expert system shell developed for the thesis and many of its

advanced features are illustrated.

Chapter 6 documents the various solutions that were developed to overcome the

problems of knowledge in semi-formal domains. In the course of testing these solutions a

number of further problems were raised and these are discussed in the chapter.

Chapter 7 tackles the problems of a computer based knowledge base. It draws on the

theory described in Chapter 4 to provide solutions to the problems highlighted.

Finally Chapter 8 summarises the work described in the thesis, describing how the

various solutions provided allow the users of the expert system to examine the boundaries of

33

a knowledge base that is embedded in a semi-formal domain. It discusses the implications of

the thesis for the design of expert systems in general and proposes further areas for research.

34

CHAPTER 2 - TWO APPROACHES TO

DESIGNING EXPERT SYSTEMS

The discussion in the previous chapter has shown how the design and use of expert

system applications is often based on a formal view of the domains of application for such

systems. It was argued, however, that making the distinction between formal and informal

domains has little relevance to many such applications and that it would be far more

appropriate to consider these domains as being semi-formal, i.e. having elements that were

formally defined as well as elements which were less formally defined. This chapter will

summarise the two approaches to designing expert systems and highlight the differences in

basic beliefs that distinguish the formal domain viewpoint from the semi-formal domain

viewpoint.

a. FORMAL DOMAINS - A FUNCTIONALIST APPROACH

Many researchers in expert systems base their approach to developing applications

on what Hirschheim and Klein (1989) label as the functionalist paradigm. This approach to

designing information systems in general, and expert systems in particular, assumes that

"there is one reality that is measurable and essentially the same for every one" (Hirschheim

and Klein 1989, p. 1203) and this belief has a number of important implications for the

design of expert systems.

The functional design of an expert systems attempts to model a domain using

heuristics and rules of thumb, since expert systems are best suited for problems where no

algorithmic solution exists. Although such methods are normally non-deterministic, the

belief in a single measurable reality means that "it is often possible to codify true expertise in

a narrow domain using surprisingly few heuristics" (Keller 1987, p.3).

35

Expert
System

Problem
Domainmodels

Knowledge is
extracted

Figure 2.1 - The expert system kept separate from the domain it models

Since the domain being modelled by the expert system is "the same for everyone" the

conventional approach to design has the expert system separated from the domain itself, with

its knowledge base being considered as a heuristic model of the domain. This is shown

diagrammatically in Figure 2.1.

i. Extracting `jewels' from the minds of experts

Considering the expert system to be distinct from the domain it is modelling leads

directly to one of the most common indications of the formal view of expert systems

development. This arises during the process of knowledge elicitation in the knowledge

acquisition stage of expert systems development.

The term knowledge acquisition is normally used to refer to the process of obtaining

knowledge from a source (normally a human expert) and transferring it into a form that can

be used in an expert system. The first stage, of obtaining the knowledge from the knowledge

36

source, is referred to as knowledge elicitation. The knowledge that is elicited may be

knowledge of facts, of relations or knowledge of strategies for tackling problems in the

domain (Hart 1986).

By having the expert system "outside" the problem domain it is necessary to extract

the knowledge from the domain and represent it in the expert system. The idea of extracting

knowledge from the problem domain is extended through the use of metaphors based on the

extraction of valuable mineral resources. Thus Feigenbaum and McCorduck (1983) speak of

individual computer scientists working with individual experts "to explicate the experts'

heuristics - to mine those jewels of knowledge out of their heads one by one" (Feigenbaum

and McCorduck 1983, p. 80). Similarly Capper and Susskind (1988) speak of "extracting the

gold nuggets from the mine of information that the expert possesses" (Capper and Susskind

1988, p. 31). Michie and Johnston (1984) "foresee a whole industry arising to tackle the job

[of developing expert systems], based around a novel type of industrial plant, the `knowledge

refinery', which would take in specialist knowledge in its existing form and debug it, pull it

together, carry out creative gap-filling wherever the need becomes evident, and turn out

knowledge that is precise, tested and certified correct" (p. 132). Even a report by the Council

for Science and Society (1989) on the benefits and risks of expert systems considers

knowledge to be an extractable commodity that can be used with expert system shells: "In the

early days of research in expert systems it was predicted that such shells could be adapted to

a wide range of problems, by doing little more than pouring in new facts and rules ... [It is

now understood that] knowledge is not just poured into the mind; new data must be translated

into mental representations, from which knowledge can be extracted and then integrated with

existing skills or ideas" (Council for Science and Society 1989, pp. 10-11).

It could be argued that these metaphors are simply being used to describe the tasks

involved in knowledge elicitation. However, the choice of metaphor can have a significant, if

largely unconscious, effect on how the designers of such systems consider their domain. By

describing knowledge in terms of `jewels' or `nuggets' support is given to the belief that the

knowledge is "measurable" and has value irrespective of the context that it is used in. Indeed

there is even a suggestion that `removing' the knowledge from the expert increases its value

in the same way that refined gold is more valuable than gold deposits in rock. The metaphor

also encourages the idea that it is possible to improve the quality (or value) of the knowledge

by simply increasing its quantity.

37

ii. The `control methodology'

Another feature of the functionalist approach to designing expert systems is typified

by a system described by Roth et al. (1987). This expert system is designed to diagnose

faults in electromechanical devices and provide assistance to individual technicians who have

no experience in trouble shooting this particular device. The system is designed so that

"[T]he machine expert guides all problem solving activities dictating what observations and

actions the user is to take to solve the problem" (p. 480). The system contains all the

necessary knowledge about the domain and therefore assigns the user to the role of "data

gatherer and action implementer" (p. 480).

This approach to designing expert systems has been described by Lipscombe (1989)

as the control methodology and is a direct result of the belief in an observable, measurable

reality that is "essentially the same for every one". Once the knowledge about the domain

has been extracted, it is argued, the expert system has a better model of the domain than the

users and therefore is more able to determine what actions should be taken to solve the

problem. In most cases, however, the actions cannot be performed by the machine and the

users are instructed to undertake them instead. These actions include obtaining data about

the domain to assist in the decision making process and implementing any solutions that are

determined by the machine. All the actions undertaken by the users of the system are

carefully controlled by the system, based on its knowledge of the domain. "If the system

believes that the user has a misconception that is detrimental to achieving his/her goals then

... the system must ... make an attempt to bring the user's knowledge into line with its own"

(McCoy 1989, p. 163).

In controlling the actions of the users a distinction can be made between the expert

system which lies "outside" the domain and the users who act within it. By lying outside the

domain the system has `global' understanding of the domain and the problems that arise, an

understanding which is not influenced by the particular features of the problem. It can use

this information to control the actions of the users who do not have this knowledge. In

particular many of the problems that occur are a result of incomplete or incorrect information

on the part of the users -the users do not know enough about the domain. The system, which

has better knowledge about the domain, is able to solve problems by supplementing the

limited knowledge of the users.

The use of the `control methodology' to design expert systems also affects the

conceptual level of the user system interface (Smithson and Hirschheim 1989). The

38

INFORMAL ENVIRONMENT

FORMAL SYSTEM

COMPUTER SYSTEM

Figure 2.2 - The relationship between formal systems, informal systems and computer
systems

conceptual level is concerned with "the users' tasks, goals and knowledge, and, in particular,

the way that they are interpreted and represented by both the user and the system" (Smithson

and Hirschheim 1989, p. 9). The `control methodology' imposes a conceptual framework on

the interaction which places the system in the dominant position with respect to the users.

Regardless of its validity, this mode of interaction is likely to prove alien to most users of

expert systems.

b. EXPERT SYSTEMS AND INFORMATION SYSTEMS

The functionalist approach to computer system design considers the computer system

to be the central component that regulates, monitors and guides the flow of information

within an organisation. This emphasis on technology has often been misplaced, with undue

credence being given to the self proclaimed virtues of technology. In contrast information

systems approaches the problem with a rather different focus, viewing the organisational

information system as primarily a social system.

39

40

INFORMAL ENVIRONMENT

FORMAL SYSTEM

EXPERT

SYSTEMS

Figure 2.3 - Expert systems and their relationship with formal and informal systems

Thus while computer science devises efficient routines for combining and using

various symbols for a particular problem, information systems considers the effects that these

`abstract' symbols have on social situations. For example, the symbols may result in the

payment of a welfare benefit which has direct effects on individuals abilities to purchase

goods and services.

The focus of information systems research sees the computer system as one part of

the organisation. The main day to day operation of the organisation is informally structured.

Part of this informality is sufficiently regular or important to be formalised and computer

based systems are suitable for automating some of the repetitive, complex or time critical

components of the formal system (Backhouse and Liebenau 1990). It is necessary to design

computer systems that perform such tasks as efficiently and effectively as possible, but it is

important to re-emphasise that the computer system is only one component within the formal

system which is itself part of the wider informal environment. Figure 2.2 shows the

relationship between these three components. The diagram also demonstrates the possibility

of vastly increased complexity, leading to an incomprehensible electronic bureaucracy, that

can result from using computers in areas where they are not suitable.

41

Problem
Domain

Expert
System

is
part
of

Figure 2.4 - The expert system as part of the problem domain

Applying this information systems approach to expert systems (which are simply a

special kind of computer system) highlights the need to consider most expert systems as

operating within semi-formal domains. Expert systems are best suited to tasks where there is

no known algorithm (since more conventional software would be more appropriately used in

such cases) but there must be some structure to the problem area. Figure 2.3 illustrates the

area of application for semi-formal domains, showing how the formal and informal parts of

the problem domain are combined. Comparing this diagram with the previous one

immediately suggests that a formal expert system may not be sufficient to overcome all the

problems of semi-formal domains. The diagram also emphasises that the expert system is

part of the semi-formal domain, that it is embedded in the domain rather than being distinct

from it. This is shown diagrammatically in Figure 2.4.

c. SEMI-FORMAL DOMAINS - A SOCIO-TECHNICAL

APPROACH

42

An alternative paradigm for developing expert systems, which forms the basis for the

work in this thesis, can be described as a socio-technical approach. This approach views the

technical system as only one element in a wider "social environment". More particularly the

technical components only have meaning because of the social environment of which they

are a part. Instead of a single, observable reality this viewpoint considers reality to be

socially constructed, a product of `actors' (individuals, groups of individuals and

organisations) who give it meaning. It is the emphasis on these actors that is the primary

distinguishing factor between the socio-technical and the functionalist approach.

Taking reality to be determined by actors implies that there is not necessarily a single

`reality' but rather it is possible that different actors create widely differing versions of the

`same' domain. These differences arise because of the differing backgrounds and

circumstances of the actors. The versions of reality that are constructed by various actors

depend on their beliefs and knowledge at that time. Different beliefs and knowledge can

result in very different responses to a particular event. Generalising this idea slightly, it

becomes apparent that time is an important factor in the creation of versions of reality. For

example, the same actor may create different versions of reality at different periods of time.

When the actor is given some extra (or different) information about the domain the version of

the domain that is created by that actor may change.

Another factor that influences the version of the domain that is formed is the spatial

location of the actor. This is particularly important if the location of the domain affects the

sensory inputs of the actor. For example, a domain where it is too dark for the actor to see

clearly or too noisy to hear properly will have a different interpretation to the same domain

observed by an actor when these factors are not present. The other actors that are found in

the domain will also influence the versions created. In many situations norms are created

that seek to standardise the versions of reality between a number of different actors

(Backhouse and Liebenau 1990).

Semi-formal domains are best described within the socio-technical approach because

the lack of formal descriptions of some of the elements in semi-formal domains can be seen

to arise from the differing versions of reality created by the various actors in the domain.

The functionalist approach assumes a single, (formally) quantifiable reality and this does not

offer the suggestion of less formally defined aspects. They are, however, a possible

consequence of the socio-technical viewpoint on domains.

43

i. Some lessons from socio-technical information systems

Before examining the implications of the socio-technical approach on the design of

expert systems a number of important ideas that have come from the application of

socio-technical considerations to the design of information systems will be described. While

much work in systems analysis (the process of designing information systems) takes a

functionalist approach to the design of (normally) computer based systems, there is also a

significant body of work that has taken a socio-technical approach to the problem. This

design viewpoint has had a considerable influence on the work undertaken in this thesis and

it would be possible to argue that many of the problems discussed in this thesis are not

particular to expert systems; they are problems that are inherent to the design of any

computer system. The solutions to the problems that are described in this thesis, however,

are particular to expert systems; they utilise the nature and use of expert systems to provide

solutions that may not be applicable to, for example, conventional database applications.

The need for a socio-technical approach to computer system design

The socio-technical approach arose primarily to try and explain why `technically

excellent' software packages were often rejected by their users or were altered beyond

recognition. It became apparent that the potential users of the system played a very

significant role in determining whether or not the system was used successfully. Introducing

a computer system will almost inevitably alter the structure of the organisation that receives

it. This alteration will also change the allocation of power or perceived power within that

organisation. Some groups, for example, the data processing centre or the accounts

department, may become "more powerful" as a result of the new information system, whilst

others, perhaps the supplies department or local managers, may lose some of their "power" as

a result of this change. In most organisations data is seen as a "political resource" and any

attempts to alter the political structure of the organisation through changes in the control and

supply of data are likely to result in, at the very least, social inertia from those who see their

influence being reduced. In some cases active resistance to the new information system may

arise and counter-implementation techniques may be employed (Keen 1981). All of these

factors lie outside of and are independent of the actual technology being introduced; indeed

44

the change in technology itself may be insignificant yet the effects on the organisation and

hence on the success of the innovation may be considerable.

User participation

One well documented attempt to overcome some of this resistance, particularly when

the information system is seen as being "imposed" from above, has been to involve the

potential users of the system in the development process of the new system. In doing so the

users are ideally seen to be taking a stake in the project and so are less likely to reject it. The

ETHICS (Effective Technical and Human Implementation of Computer Systems) method

(Mumford and Weir 1979) is one systems analysis method which has incorporated user

involvement as one of its central tenets. Whilst the involvement of users in the development

process is more likely to result in the final system being accepted there are a number of

problems inherent in this approach. In large organisations there may be problems in finding a

suitable selection of representative users to participate in the development process (Cornford

and Farbey 1987). Some unions may view the involvement of users as a token gesture made

by management to win over support for the new system and the actual user input to the

design might be minimal. In other cases the users that take part in the design process may,

after learning to understand the terminology and practices of the systems analysts, become

too engrossed in the system to be able to provide a true "users" perspective on the system.

Human centred design

Cooley (1987) offers a different method of designing computer based systems. He is

particularly concerned with the long term skill loss that will arise if a system is designed as a

"machine" which "acts upon or absorbs [that] human competence" (Cooley 1988, p. 2).

Instead he suggests that we think of the system as a "tool" which "enhances human skill and

capability" (p. 2). In Japan, he notes, the move towards the workerless factory is slowly

being reversed. The problem is that "if you have a workerless system, then everything has

got to be highly synchronized. And if one part of the system goes down, that high level of

synchronization is suddenly transformed into its dialectical opposite - it becomes a high level

of desynchronization" (p. 10). To this end he proposes the design of human centred

45

systems. Such a system leaves the important, creative tasks to the human users allowing

them to make use of and develop their skills whilst the computer performs mundane

calculations and dangerous tasks. The users are therefore able (i.e. have the knowledge and

experience) to control the system when the unforseen occurs and are able to prevent

desynchronization from occurring. This human-centred design also encourages the use of

formal representations as "a means of communicating intentionality rather than a set of

instructions" (p. 12). Just as, in the past, architects used drawings to convey the general idea

of what was to be built, so the computer system should communicate the nature of the tasks

that are to be performed and not necessarily the actual steps involved in the task.

The role of communication

The importance of the act of communication rather than the details of what is

communicated has been raised by a number of researchers (Lyytinen 1987, Winograd and

Flores 1986). An example of this is the COED system described by Kaplan and Harandi

(1989). The system they describe is designed to capture "the complex and dynamic decisions

that go into the design of any software" (p. 498) since every part of the design process "must

be understood in terms of how earlier parts of the design have evolved" (p. 498). The

software supports the conversations that take place between the designers of the software and

uses the conversations to record the decisions made in the design process. For example, one

designer might decide to use a simple linked list to store a few data items and the

communication of this decision through conversation with other programmers will be

recorded by the system. When, some time later, the software is maintained, the original

reasons for the particular choice as well as the code used to implement it will still be

available in the system.

Winograd (1988) describes another software tool based on the notion of

communication acts, The Coordinator. This is also structured around the act of

communication rather than the details of what is communicated. One of the acts that is

supported by the system is the issuing of a request to another person. The nature of the act

(making a request) means that one of the following responses is expected: a promise to fulfil

the request, a counter offer to modify the request or a rejection of the request. The software

is designed to expect one of these further actions and acts accordingly.

46

d. THE COMMUNICATION OF KNOWLEDGE

As was stated above, the communication of knowledge within a semi-formal domain

is considered to be an important factor in the design of expert systems and the next two

chapters will highlight the problems that can arise when such communication takes place.

Much research in the social sciences is concerned with the problems of interaction and

communication and some of this work has been applied to artificial intelligence. The

research described by Bloomfield (1987), (1988), Born (1987), Gilbert and Heath (1985) and

Josefson (1987b), provides particularly useful insights into these problems.

The functionalist approach believes that the knowledge to be elicited is found in

easily handled chunks which, once they have been obtained from the expert, can be easily

communicated to the knowledge engineer and then used in the expert system. Much research

in the social sciences suggests, however, that communica-tion is a far more involved process.

Essentially it is argued that the person on the "receiving end" of the communication adds as

much to the interaction as the "sender" does (Collins et al. 1985). In relation to expert

systems this means that while an expert system may convey some of the important

information about the domain, not all the information needed can be communicated and some

will always exist outside the system, being added by the users.

Collins (1987) develops these ideas further and argues that "[T]echnical experts are

needed to show how the rules are to be applied where widespread technical competence

(common sense) do not make this clear" (p. 272). The representation techniques used by the

system need the "intervention of human experts" to clarify the terms used - a skill that is

located outside the system. Collins uses this analysis to classify expert systems into four

groups. Class I expert systems "do no more than encapsulate ready-coded knowledge" (p.

270). Although the knowledge is readily available, this does not guarantee that the systems

will be cheap and easy to build, or that they will be guaranteed to succeed. Class II expert

systems are largely made up of "rules of thumb" or "heuristics". These are rules elicited from

domain experts by detailed questioning. Class III expert systems have problems of a

different order of magnitude. "The knowledge base of this class may be founded on the

ready-coded rules of Class I or the esoteric heuristics of Class II, but differs in that there is an

attempt to do away with the need for interventions of human experts between system and lay

user" (p. 271). The final class, class IV, are expert systems which are effectively as capable

as human experts.

47

Collins seems to suggest that solution to the problems of communicating knowledge

are beyond the scope of formal computer systems. To some extent this is a valid argument

since, as the previous discussion has illustrated, every interaction involves the receivers

adding their own interpretations to the utterances made by the speakers. To imply, however,

that there is no possibility of providing any assistance to the users in interpreting the

communication, given the capabilities of today's computer systems, does seem rather

surprising.

i. Interpretation and the expert system development process

The users of the expert system add their own interpretations to the output of the

system and this is likely to be one area where problems can arise. However, there are also

other stages in the development of an expert system where problems of inappropriate

interpretation can occur.

This section will examine the typical stages involved in developing an expert system

application and will highlight the areas where problems of communication are likely to arise.

Once the decision to undertake an expert system application has been made, the first

step in the idealised model of the development process is a process of knowledge elicitation.

This normally involves the expert communicating with a knowledge engineer. From Collins'

model of communication it is apparent that the knowledge engineer will be adding to and

interpreting the utterances and actions made by the expert. In almost all cases, the process of

knowledge elicitation is an iterative task and the knowledge engineers have the opportunity

to present the expert with their interpretations of the utterances or actions performed by the

experts.

Gammack and Anderson (1990) examine some of the problems with this traditional

view of knowledge acquisition and note that "[T]he expert's utterances are actively

interpreted by the knowledge engineer, particularly when encoding the transcript, but also

during the ongoing interview" (p.21) and recommend that the knowledge engineer be made

aware of this since "the knowledge engineer's utterances and their interpretations will affect

the expert's choice of utterances and their interpretations" (p. 21). They continue by arguing

that the knowledge engineer's interpretation is verified by the expert so that the expert's

intentions can be better conveyed to an end user and this can help minimise the problems at

this stage of the development process.

48

Expert
System

Expert
Knowledge
Engineer

Knowledge
Programmer

Users

Communication Flow

Figure 2.5 - The communication flows in the development of an expert system

After the process of knowledge elicitation the knowledge must be represented using

computable formalisms. In many small scale systems the representation task is performed by

the same person that undertook the elicitation. However in larger scale systems, and as the

role of knowledge engineer becomes more refined, it becomes increasingly likely that the

representation of the knowledge will be undertaken by someone other than the knowledge

elicitor. In this case there is a second process of knowledge communication which again can

cause problems if the person responsible for representing the knowledge forms an

inappropriate interpretation of it. This problem is made worse because of two factors.

Firstly the representation techniques are often limited in the flexibility that they offer and

hence may require the knowledge to be consciously adapted to suit the knowledge

representation chosen. To some extent this problem can be minimised by choosing suitably

expressive knowledge representation techniques which do not require the knowledge to be

adapted too much, but the problem of communicating the knowledge still remains. A second

factor that may also increase the problems of communicating the knowledge is that the

person who must represent the knowledge is unlikely to have access to the expert and

therefore must, at best, make use of the interpretations of the knowledge elicitor which, as

has been shown above, may themselves be inaccurate.

49

Figure 2.5 shows the communication flows that occur in the development of expert

systems, highlighting the areas where problems of communication are most likely to arise. A

suitably designed knowledge elicitation phase, where there is continuous feedback and

verification of the knowledge engineer's interpretations will keep problems to a minimum in

this phase.

The final stage in this process is the interaction between the users and the computer

based expert system. In this case, the only feedback or confirmation of interpretations that

are available are those that may have been incorporated in the system. In conventional expert

systems, however, such assistance is minimal or non-existent, partly because the functionalist

approach to expert system design does not foresee such problems arising. The most

important aspect of the computer based intermediary in the communication process is that

there is a distinct spatial and temporal break between the expert and the knowledge in the

expert system. There is therefore a tendency for the knowledge to become disembodied from

the individuals who provided it and without a social environment to associate the knowledge

with, there is a great danger that it will become obsolete (Stamper 1988).

The work described in this thesis can be seen as an attempt to understand the

problems of communicating the knowledge of the expert to the users of expert systems

through a computer based intermediary. It is hypothesized that the problems that arise are

very much due to the social, informal nature of the domains that expert systems find

themselves in and that a proper understanding of the problems faced as well as solutions to

those problems can only come about by considering the wider social perspective as an

integral part of the process of expert system development.

ii. The Dreyfus model of skill acquisition

One example of the problems of communicating the knowledge of an expert is

provided by two of the fiercest critics of artificial intelligence - the philosopher Hubert

Dreyfus and his brother Stuart. They argue that expert systems will never perform as well as

human experts and that this a consequence of the nature of true expertise. They believe that

true expertise arises through practical experience and cannot be attained by simply following

rules (Dreyfus and Dreyfus 1986a). This has important implications for the communication

of an expert's knowledge. If expert knowledge cannot be represented in rule format (or in

some other formal representation) then it cannot easily be communicated to a knowledge

 1Marvin Minsky seems to arrive at the same conclusion, although for different theoretical
reasons, when he quotes Frank Lloyd Wright: "An expert is one who does not have to think. He
knows" (Minsky 1986, Section 13.5).

50

engineer or the users of an expert system. To explain how true expertise is achieved they

present a five stage model of skill acquisition which will be described in some detail.

Dreyfus and Dreyfus believe that when learning a skill a person normally passes

through five stages - novice, advanced beginner, competence, proficiency and expertise.

Each of these stages is "qualitatively different" (p. 19) from the previous stage.

The first stage of skill acquisition is the novice. In this stage the person learning a

skill is told to find certain context-free features and is told to act in a certain way when they

are found. Any other features, features that relate to the particular situation are ignored and

the novice may be concentrating on searching for the context-free features to such an extent

that other activities, such as maintaining a conversation, may be impossible.

By using real world examples the novice gains experience and begins to recognise

items immediately rather than having to use `information processing' techniques. This ability

of the advanced beginner to immediately recognise features means that situational factors

can be taken into account without always having to search for context-free features.

With more experience the advanced beginner will start to be overwhelmed by the

number of context-free and situational features and will need to sort them into some form of

hierarchy. In doing so the competent performer will have to take responsibility for the

choice of hierarchy created. This is in contrast to the novice and advanced beginner who

simply used the context-free and situational features that had been pointed out previously.

The proficient performer will usually be involved in the problem and will have a

certain perspective on it. From this perspective certain features of the whole will tend to

stand out, whilst others will tend to be less important. Although the importance of various

features may vary over time, the proficient performer will not be examining individual

features, instead the whole scene is examined. However, the proficient performer is still

following a goal.

The final stage of skill acquisition is expertise. "An expert generally knows what to

do based on mature and practised understanding" (p. 30). Through experience the expert

reaches a stage where decisions are no longer made consciously, the expert simply acts1.

Obviously if the decision is important, or if time permits, the expert will examine the

conclusions made. However this examination will tend to concentrate on the intuitions

behind the decision rather than being a conscious decision making process.

51

Implications for the design of expert systems

This analysis of skill acquisition has serious implications for the design of expert

systems. Current expert systems technology is rule based and the model just described

suggests that rules are used only up to the level of competence and play no part in true

expertise. Dreyfus and Dreyfus (1986b) use their model of skill acquisition to argue that

expert systems can only ever attain the level of competence and not true expertise and that

expertise cannot easily be communicated.

This model of skill acquisition also highlights the question of whether there is any

need to distinguish between expertise as it is defined in the Dreyfus model of skill acquisition

and `expertise' as `rule following behaviour' as it is used in much of the expert system

literature? Part of the answer to this question lies in there being no word in the English

language which means `more skilful' or `more experienced' than expertise. Therefore if the

term is used to signify what the Dreyfus model labels as competence then there will be a

tendency to devalue those skills, and the people that possess them, that cannot be articulated

and communicated - even if these are more advanced skills at the level of proficiency or

expertise. Josefson (1987a) notes that nurses feel that their skills are undervalued because

they do not to possess a sufficiently rich language to successfully communicate what they do,

whilst Cooley (1987) warns of the long term problems that will arise if true experts are

ignored in favour of competent performers who, despite being articulate, do not have the

practical experience that will be needed for long term development and the reproduction of

knowledge.

e. EXPERT SYSTEM DEVELOPMENT FOR SEMI-FORMAL

DOMAINS

Figure 2.6 summarises the two contrasting approaches to developing expert systems

that were described in this chapter. The first of these approaches considers the domain to be

formally defined, consisting of well defined "chunks" that can easily be communicated by the

expert system. It is assumed that the knowledge base of the expert system contains all the

necessary information about the domain and that the users are facing problems because they

do not know all the information required for the domain. The expert system controls the

interaction.

52

Figure 2.6 - Two contrasting approaches to the design of expert systems

The semi-formal domain approach, in contrast, does not consider there to be a single

reality, rather various realities exist which are socially constructed by various actors. Serious

consideration is given to problems that can arise in communication since the users may form

inappropriate interpretations of the communication performed by the system. The expert

system is not seen to control the interaction, rather it is designed to assist the users in coming

to an understanding of their problem and the methods that can be used to solve it.

The table presents, under the semi-formal domain approach, the main factors that

were taken into consideration during the development of the practical work described in this

thesis.

Approach used:

Relationship between
Expert System and domain

View of reality:

Conceptual view of system

The form of the knowledge

Problems arise because:

Communication involves:

Involvement of users:

FORMAL DOMAINS

"Functionalist"

Expert System models the
domain

Single, measurable reality

Designed as a machine

Machine centred

Expert System controls the
interaction

Knowledge is available in
"discrete chunks"

Users "do not know enough"

Simple transfer of knowledge

Little consideration given

SEMI-FORMAL
DOMAINS
"Socio-technical"

Expert System is integral
part of the domain

Many possible versions of
`reality'

Designed as a tool

Human centred

Expert System supports the
interaction

Knowledge is "socially
constructed"

Users "do not have an
appropriate understanding"

Users add to communication
process

Much consideration of
users, some use of
`participative' methods

53

CHAPTER 3 - SOME PROBLEMS WITH

KNOWLEDGE IN SEMI-FORMAL

DOMAINS

Semi-formal domains combine formal aspects of a problem domain with elements

that cannot easily be formalised. A number of examples of knowledge that cannot easily be

formalised are illustrated in this chapter, showing the semi-formal nature of many expert

system applications. The examples covered include the use of descriptive and subjective

definitions in language based communication and the likely problems that can arise with

them. It also considers some examples of what the philosopher Michael Polanyi describes as

tacit knowledge - knowledge that we know but cannot tell.

a. KNOWLEDGE REPRESENTATION AND THE

SYMBOLIC REPRESENTATION OF KNOWLEDGE

One immediate argument against the view that there is some knowledge that cannot

be formally stated comes from recent developments in neurophysiology (see, for example,

Blakemore and Greenfield 1987). Even the fiercest critics of artificial intelligence accept

that the brain probably has some form of knowledge representation based on the millions of

neurons found in the brain. However, contrary to early beliefs, it seems to be the rate at

which the neurons fire, rather than whether they fire or not, that determines what is `stored in

the brain' (Searle 1987). These different rates of neuron firings are used to represent

knowledge about the world.

It is sometimes argued, therefore, that since the rates at which various neurons fire

could be represented symbolically, all knowledge can be represented symbolically. Such an

argument, however, is based on a mistaken understanding of what is normally meant by the

symbolic representation of knowledge in artificial intelligence.

Most forms of declarative knowledge representation found in expert systems have

a direct one-to-one relation with things in the problem domain. A semantic network, for

example, is made up of nodes and links with each node being used to represent physical

objects, conceptual entities or descriptors (Harmon and King 1985, p. 35). Each node,

54

IBM Personal Computer

Micro-Computer

Computer

Is-A

Is-A

Colour-is

Light Grey

Is-A

Tool
Hammer

Is-A

Weight-is

Heavy

Weight-is

Heavy

Figure 3.1 - A simple semantic network

therefore, corresponds to something in the domain. In Figure 3.1 the nodes in the network

represent things such as computers, micro-computers, tools and hammers, all of which

correspond directly to features in the world.

In the human brain, however, there is nothing a priori to suggest that such a

correspondence between the rate at which particular neurons fire and any objects in the real

world exists. Dreyfus and Dreyfus (1988) report that to date, current research in neural

networks (computer systems which attempt to mimic the biological operation of the brain)

has not found any such correspondence.

b. DESCRIPTIVE DEFINITIONS - THE PROBLEM OF

BOUNDARIES

One of the fundamental problems with knowledge in semi-formal domains arises

from the use of language to describe the knowledge. As was described in the previous

55

chapter, the expert communicates with the knowledge engineer about the problem domain

and the knowledge engineer then communicates with the programmer responsible for

representing this knowledge in a computer based form. Finally the users interact with the

resulting expert system to try and solve problems in the domain.

In each of these cases the main component of the communication is normally natural

language, although other forms of communication are sometimes used as well. The most

common form of communication that does not use natural language is the use of diagrams.

The use of diagrams and graphics can often be more effective in conveying certain ideas than

large pieces of textual information. Diagrams are particular useful for describing the spatial

or structural layout of certain ideas. For example, they have been used successfully within

simulation modelling to show the progress of a simulation model (Crookes and Valentine

1982, Paul 1988). Graphical images are less useful for conveying other forms of information

such as causal links and there may also be problems associated with combining graphical

images with other forms of knowledge.

When natural language is used for communication things in the domain (objects,

concepts, entities, relationships) are given names in the language and there are two possible

ways in which names can be assigned to these things; the names can be defined either

prescriptively or descriptively. The distinction between these two methods of naming are

important and give rise to many of the problems found in semi-formal domains.

Prescriptive definitions entail that a thing has a particular name because it satisfies

clearly defined necessary and sufficient conditions. These conditions determine the

occasions when the name can be used legitimately. For example, marginal cost is defined as

"the increase in total cost resulting from raising the rate of production by one unit" (Lipsey

1989, p. 182). This means that for something to be legitimately called "marginal cost" it

must satisfy this prescriptive definition -i.e. it must be the increase in total cost resulting from

raising the rate of production by one unit. If the thing does not satisfy these conditions then,

prescriptively, it cannot be called marginal cost. Prescriptive definitions ideally have an

effective procedure to determine the appropriate use of a particular name.

In contrast, descriptive definitions arise when a thing is simply assigned a label; its

`name' is arrived at through use rather than from any predefined criteria or effective

procedure. For example, something is called "an expert system" because almost everybody

uses that name when describing an expert system, not because it satisfies some prescriptive

criteria for the use of the name "expert system".

56

Descriptive definitions can therefore be seen as one of the informal components of

semi-formal domains and, as such, can cause problems when these systems are designed

since it is possible that the users of the expert system will use different definitions of the

terms found in the knowledge base to those intended by the developers of the application.

i. Examples of descriptive definitions

The problem of descriptive definitions has been examined by Susskind (1987) in his

examination of the problems of applying expert systems to the field of law from the point of

view of jurisprudence (legal theory). His "argument from open texture and vagueness"

suggests that many words used in legislation are vague in the sense that they have no

"definite set of necessary and sufficient conditions governing their use and application" (p.

187). Terms such as "fair" and "reasonable" are in this sense vague, whereas the use of the

term "gold" (as a substance) for chemists seems to rest on "precise conditions governing our

use of that empirical concept" (p. 187).

Roth et al. (1987), in describing the protocols generated when using their expert

system, note that the knowledge engineer observing the experiment was frequently required

to "intervene to clarify terminology, locate test points, and disambiguate expert system

statements" (p. 494) so that the technician could proceed with the fault diagnosis. Their

approach to the design of the system does not anticipate such problems, however, and no

possible solutions are offered.

Kent (1978) describes a number of areas where descriptive definitions can cause

problems for the designers of computer systems, in particular database systems but also

expert systems. One of the examples he gives is the use of the name "street" asking whether

a street is terminated by a city, county, state or national boundary? Does a street imply that

motor vehicles can drive on it and does a street include motorways and dual carriageways?

Moreover, some streets coincide with highways so should a distinction be made between

them?

A contrast to this view of descriptive definitions is given by McCoy (1989). She

describes a system that attempts to deal with misconceptions that arise when users interact

with a computer system. She defines a misconception to be "some discrepancy between what

the system believes and what the user believes (as exhibited through the conversation)" (p.

163). The assumptions that she bases her work on fall readily into the formalist approach to

57

designing systems. For example, she assumes that the system's model of the world contains

an object taxonomy and the user's model of the world contains the same things, about which

misconceptions can arise (McCoy 1989). In her system, the world has already been broken

into readily identifiable pieces and hence the possibility of using different names for these

pieces (or alternatively breaking the domain into different pieces with different scopes, as the

examples discussed by Kent have shown) is not considered. The only problems that can arise

in her case, come about because the users have incorrectly placed these pieces in the object

taxonomy, and not because they use the terms in a different way.

c. SUBJECTIVE DEFINITIONS - DIFFERENT

INTERPRETATIONS OF THE SAME NAME

The previous section discussed the problems of descriptive definitions. These arise

because there is no set of necessary and sufficient conditions that can be used to determine

when a name has been appropriately used. Subjective definitions take the problem one step

further and arise when the same name is used with different interpretations.

The nature of descriptive definitions means that there are no necessary and sufficient

conditions that determine the appropriate use of a particular name, moreover there are not

even any guidelines as to which conditions should be used for a particular name. It is

therefore possible that different groups of actors will choose to use different sets of

conditions, with each group choosing the conditions on purely subjective grounds. In its

extreme form, this means that the same name can be used with completely different

interpretations.

Subjective definitions are a further illustration of knowledge that can cause problems

in semi-formal domains since they relate to the particular individuals using the terms and the

particular use to which they are being put. The meaning of the terms is "established with

respect to an encompassing frame of reference lying outwith (sic) the data structures, and this

background is never fully representable" (Gammack and Anderson 1990, p. 19).

i. Examples of subjective definitions

58

Stamper (1985, pp. 59-60) uses the term "unfit for habitation" to warn of the dangers

that may arise if the possibility of subjective definitions is not considered. To the local

welfare benefit office issuing cheques for building repairs on dilapidated properties "unfit for

habitation" has a clear interpretation relating to the eligibility of tenants to receive funds to

repair certain types of property. To the urban planning department, on the other hand, the

term "unfit for habitation" means properties that are suitable for compulsory purchase orders

and redevelopment since they are effectively derelict. So long as these two interpretations

are kept separate, problems relating to subjective definitions should be minimised. If they

come together however, for example, if the council combines all its data files in a central

database, no distinction will exist between the two interpretations of the term and the

planning department may act on property whose tenants are still receiving repair payments.

The idea that different actors in the domain have widely differing interpretations of a

domain has been used by Checkland in his Soft Systems Methodology (SSM) (see, for

example, Checkland 1981). Most conventional systems analysis techniques "assume that

what `the system' is is not problematical, that the system's objectives can be defined and that

alternative means of achieving them can be modelled and compared using some declared

criteria, enabling a suitable selection to be made of the most desirable form of the system"

(Checkland 1988, p. 242). SSM differs in that it considers defining what the problem is as

being a fundamental concern. Different groups of actors all have widely differing subjective

interpretations of the system and its problems. SSM tries to provide a framework for

considering and combining all these differing views so as to produce a problem description

which is acceptable to all the interested parties.

Subjective definitions can also arise from a particular intended use of a name, as well

as when a name is used by a particular group of actors. Winograd and Flores (1986, pp. 55-

56) use the question "Is there any water in the refrigerator?" to illustrate how the name

"water" can have different interpretations depending on the intended use of the name. The

response to the question depends on whether the question was asked to find a source of

humidity that damaged photographic plates that were stored in the refrigerator, if the question

was asked to find some water to drink (in which case the addition of a few drops of lemon

juice, to cover the taste of the pipes that the water came from, would be acceptable), or if the

water is required for a car radiator (in which case only `pure' water is acceptable).

Subjective definitions also arise in Roth et al.'s expert system and again the control

methodology they use offers no indication as to why such problems arise nor does it suggest

any solutions. They report problems of misinterpretation of questions that arose from an

59

"inability to assess the intentions of the machine expert" (Roth et al. 1987, p. 494). One

example of such a question was "whether the symptoms were observed at only one setting of

the device". The question was asked to test a hypothesis that a malfunction occurred at two

extreme settings of the device. One of the technicians using the system was not aware of this

particular choice of meaning of "observed at only one setting" and so tested the device at

only one point, noted that it occurred at this setting and reported that it arose at one setting

when in fact it arose at both settings.

d. HUMAN COMMUNICATION AND DESCRIPTIVE AND

SUBJECTIVE DEFINITIONS

A sociological argument against the problems of descriptive and subjective

definitions is given by Coulter (1985) who talks of the "disambiguation pseudo-problem" (pp.

12-13). From the belief that "any word, phrase or sentence or utterance can, with sufficient

ingenuity, be accorded more than one meaning" it is often argued that "everything said is

inherently ambiguous" (p. 12). In actual communication, Coulter argues, this `hypothetical

ambiguity' is not normally present. This section will attempt to explain this apparent paradox

by making use of the assumptions that underlie the semi-formal domain approach to

developing expert systems.

The semi-formal domain approach considers a domain as being made up of many

different actors and the consideration of descriptive and subjective definitions suggests that

there is no inherent reason why these actors should choose to use the same definitions for

names in the domain. However when these actors interact the potential ambiguity in the

names used has been minimised or removed entirely. Stamper (1988) suggests that this

precision and stability in the terminology used has been arrived at through "an often difficult

social process of negotiating agreement and arriving at a common view" (p. 4). The process

of interaction, and the need to communicate successfully, means that communities of actors

will often decide to use a particular name in some `stable' form. For example, scientists have

chosen to use the name "Gold" for the substance whose atomic number is 79. Once such

terms have been decided upon, they become a convention or norm for that particular group

for a certain period of time (Backhouse and Liebenau 1990).

The chosen use of the term becomes part of the `assumed background' of the actors

and no longer needs to be made explicit in communication activities. It is assumed that

everyone who takes part in communication within that particular community will base their

60

utterances on those assumptions. Thus "[O]bjective knowledge is not detachable from

people except for limited purposes within the domain of relevance for which the negotiated

agreement will stand" (Stamper 1988). Using this explanation, it is possible to see how

prescriptive definitions arise. A prescriptive definition is simply a descriptive definition

which has been accepted by a particular group of actors to prescribe the use of that term.

Marginal cost has a prescriptive definition because most economists use that term to describe

the increase in total cost resulting from raising the rate of production by one unit. Once the

term has a conventional use for a certain group of actors, in many cases it also becomes the

convention for other actors who were not involved in the negotiations over the use of the

term.

How problems can arise

By viewing the agreement on the meaning of names as the result of a social process it

is possible to see how the problems of descriptive and subjective definitions can lead to

actual ambiguity in particular activities. If two communities of actors are brought together

for the first time there is a reasonable likelihood that their `assumed backgrounds' and

conventions will differ and ambiguities will arise in communication between the two groups.

These will be resolved through the (social) use of negotiation, criticism, debate, discussion

and compromise. In many cases, the potential users of the expert system and the experts who

helped develop the knowledge base form different groups of actors and are quite likely to

differ in their use of terms. This is particularly likely if the expert system has been designed

for use by individuals who have little or no experience of a particular problem domain. They

would therefore be expected to undertake a process of negotiation once they realise that there

is a potential ambiguity in the names they use to describe the domain.

Introducing an expert system into this process, however, considerably alters the

arrangement. No current computer based system is able to take part in a process of

negotiation over the use of various names. The definitions used by the computer system,

whether descriptive, subjective or even prescriptive, cannot be easily altered through

interaction by the users. This is not to say that consideration of the users' perspectives should

not be an integral part of the design process, but rather that if (when) these problems of

ambiguity arise, the computer is unable to modify its approach to, and usage of, the

problematic terms. Furthermore, since the experts are removed from the use of the system

61

both temporally and spatially, it is unlikely that they will readily become aware of the need to

alter or explain the use of the terms used in the system in light of particular problems.

In addition to the suggestion that ambiguity in communication is minimised through

a social process of negotiation, the notion of unspecified `background assumptions' leads to

the possibility that the actors involved in communication may actually be using differing

definitions of the terms used and may not realise that a difference exists. For example, two

actors may refer to the "large wheel" when talking about a particular device, yet they may

both be referring to different large wheels. Both actors will have background assumptions

about the wheel being talked about and "[A]s long as it remains possible to interpret the ...

responses consistently with those assumptions, the speaker's image of his partner remains

unchanged, in particular, undamaged" (Weizenbaum 1983, p. 26). In such cases the users are

actually using differing definitions, based on different sets of background assumptions, yet

they are not aware of this discrepancy since their communication takes place without any

problems arising. They don't clarify the terms that they are using because they don't know

that the terms need to be clarified.

i. Example - the use of the term `race'

Many computer based applications that use data about individuals have a reference to

that individuals `race'. Data about race is sometimes used to record the "racial" make up of a

particular organisation (possibly to monitor and try and overcome problems of

discrimination) or it may be used to determine a person's eligibility for certain benefits (for

example, individuals claiming Aboriginal ancestry may be eligible for extra assistance

(Clarke 1988, p. 502)). Such tasks are often suitable for expert systems applications.

Earnest (1989) provides an interesting discussion of attempts to formalise the

concept of "race" for use in computer based applications. In doing so he highlights problems

of descriptive and subjective definitions and also demonstrates the way that norms and

conventions seek to standardise the concept, even if the concept cannot be formalised.

The first serious attempt to formalise race that Earnest came across arose when he

moved to Virginia, U.S.A. in the early 1960s. On all the official forms in this state the

second question, immediately after name, asked about race. In Virginia at this time, race was

classified as "W" (white) or "C" (coloured). Coloured was taken to refer to all dark-skinned

62

people, including both kinds of Indians. Earnest took to filling in this question with "C"

leaving it to the administrators to decide whether it meant "Coloured" or "Caucasian".

Sometime later Earnest was required to fill out a form for security clearance.

Previously he would have simply entered Caucasian, however, with his new "awareness" of

racial classification he considered his racial make up. He was aware that his ancestors were

predominantly European, although there was certainly some Middle Eastern blood present as

well. Given this combination of races, he decided to enter "Mongrel" as his race. After a

clarification that he had not misspelled "Mongol", the form was accepted for processing. As

the form was for special security clearance strict checks were undertaken into the private life

of this "mongrel".

Some time later, Earnest was asked to attend a meeting at the Air Force Office of

Special Investigations. After a number of routine questions, the investigators asked him why

he had entered mongrel. He replied that he thought this was the best answer to an ill-defined

question. He then asked them how they classified people who were mixtures of "races".

They too were unclear about this concept and it turned out that the whole problem had arisen

because their clearance database was not able to cope with mongrel. Everybody else, it

seemed, knew their race. It did seem rather short sighted, however, for the database designer

not to include "other" as a possible value.

In the late sixties bureaucrats attempted to identify minorities who might be

discriminated against. However, "[T]hey never bothered to define their terms because, like

the earlier racists, they had only a hazy notion of where the boundaries were" (p. 177). One

form introduced for this purpose had ethnic classes including "Spanish surname" and

"Black". How this was to cope with a person who was both black and had a Spanish surname

was not explained.

Another approach used at Stanford University provided the classification scheme

presented in Figure 3.2.

63

1) Black, not of Hispanic origin
2) Asian or Pacific Islander (persons having origins in any of the original peoples of
the Far East, South-East Asia, the Indian Subcontinent, or the Pacific Islands)
3) American Indian or Alaskan native
4) Hispanic (persons of Mexican, Puerto Rican, Cuban, Central or South American
or other Spanish culture or origin, regardless of race)
5) Non-minority (persons having origins in any of the original peoples of Europe,
North Africa, or the Middle East)

Figure 3.2 - The racial classification scheme used at Stanford University (Earnest 1989,
p. 178)

Whilst this scheme handles Hispanic blacks, it is not certain how the system would

cope with people from Spain. Should they be classified under group 4 or 5? The scheme

again has no option for "other" or "mongrel".

Race, as these instances have shown, is an example of a descriptive definition. There

is no prescriptive criteria for the use of the term and therefore different actors (the State

Legislators in Virginia, the Air Force Special Investigations Department, the administration

at Stanford University) each chose their own set of boundaries around the term. Some, such

as Virginia, simply used skin colour as the determining factor, whilst others attempted to

classify the person according to their "background". Each particular choice of classification

became the norm for that particular group at that particular time. A number of different

interpretations of the term "race" have been described and each one became the norm for a

particular group at a particular time. When these different groups came into contact with one

another, however, the differences between the interpretations were often not made explicit

since the need to do so often did not arise. For example, if one group chose to use the term

on the basis of skin colour and another chose to use "ethnic background" many occasions

would arise where communication between the two was successful. For example, different

actors would agree that a native northern European and an American Indian were of different

races, even though their reasons for making the distinction were completely different and

they would never think to explain the difference between the two uses of the same term.

e. NOTICING PROBLEMS

64

One of the main advocates of tacit knowledge is Michael Polanyi. He considers such

knowledge to be the basic term of a new epistemology (Prosch 1986, p. 52) and gives

numerous examples of tacit knowledge (see, for example, Polanyi 1967, 1969). One

example, which is of particular relevance to the use of expert systems, is the ability to notice

problems.

In almost all cases, the noticing of a problem, the realisation that "something is not as

it should be", occurs before a formal representation of the problem exists. The noticing of a

problem occurs before the nature of the problem can be determined. Once the nature of the

problem has been determined and formally specified it is simply a case of providing

appropriate resources to the problem to solve the problem that has been "noticed". In some

cases it is possible that the suggested solution may not actually work, however it is important

to realise that the attempted solution to the problem was only devised once the need for it was

noticed.

The noticing of problems involves tacit knowledge because many cases exist where

the specification of the solution involves complex skills that are not possessed by the actor

who first noticed the problems. Even if the noticing is done by someone who does possess

the skills to also define the problem, these skills are rarely used to determine that a problem

exists. This is particularly likely to be the case in those situations where finding a solution to

a problem is a costly and / or time consuming process. In these cases it is unusual for an

actor to be involved in examining a situation to see if a problem has arisen. A far more likely

occurrence is that these skills are brought in once a problem has been noticed.

i. Examples of noticing problems

Paul (1988) gives an example of this process in the field of computer based

simulation modelling. The traditional text book model of simulation, he argues, uses the

simulation model "as an operational model to produce some results, or some conclusions, or

for implementation after the operational model has been validated against the real world".

This view is "inadequate". He continues by stating that "[T]he construction of a logical

model representing the formulation of the problem is, in many instances, the most difficult

aspect of the problem. In fact, understanding what the problem is may be the object of the

whole exercise. ... It must be remembered that the simulation modelling process is not

65

designed to find the answer or answers. It is there ... to help decision makers gain an

understanding of their problem".

The decision maker has noticed that a problem exists and calls in the simulation

modeller. The modeller then makes use of the many tools that are available in simulation and

together with the decision maker attempts to fully understand the problem that was first

noticed by the decision maker. The process of using simulation modelling only takes place

after the problem was first noticed and it is only through the use of simulation techniques that

the problem can be understood and formalised.

The noticing of problems normally occurs before a formal representation of the

problem exists. This means that a problem can be noticed at any time; there is no

requirement for certain formal features to be present. In the context of expert systems the

most likely problem to be noticed will be that the system is "offtrack" (Roth et al. 1987, p.

497) in its reasoning path. The realisation that the expert system is following an

inappropriate reasoning path will often begin as nothing more than a suspicion that

something is wrong. The details of the problem, of how the system came to follow this

reasoning path, are likely to depend on choices made at an earlier part of the interaction.

Again the control methodology does not allow for the possibility that the system may be

wrong and the user must try and determine how it arose with a system that provides "virtually

no support for ... this role" (Roth et al. 1987, p. 499).

f. SEEING-AS

Another human skill that makes use of tacit knowledge is the ability to see something

as something else. Tilghman (1988) illustrates this by drawing a distinction between

interpreting and seeing-as in the case of a technical engineering drawing. To someone with

no previous experience of these diagrams they appear, at first, to be chaotic. After a while,

however, the person viewing such a diagram will start to make assumptions about it and will

start to interpret the drawing. For example, the person may decide that thick lines represent

the outside edge of the object and that dotted lines represent lines to be cut from it. The

person viewing the diagram forms hypotheses about the diagram and using these "interprets"

the diagram. With experience, however, the person "may come to see the drawing as the

machine it represents" and no longer has to "figure out what this is, or that line represents"

(p. 307). This behaviour of interpreting by a novice is contrasted with that of an experienced

engineer who see the drawing `correctly' all along. Tilghman draws his theory from

66

Wittgenstein who marked the difference between interpreting, which is an activity, and

seeing-as, which is a state (Wittgenstein 1953, Part II, section xi). Tilghman points out that

much of the difficulty with distinguishing between seeing-as and interpreting lies in the

identical description of what was "seen" that can come from both cases. If the novice

interprets certain lines as being the surface and others as representing lines to be cut from

that surface, the novice may come up with the same description as that given by the

experienced engineer.

Seeing-as is not restricted to high level tasks such as understanding technical

engineering drawings, it also occurs in everyday life. For example, legislation introduced in

early 1989 requires all petrol stations to display the price they charge for petrol on their

`main' road signs in litres rather than gallons (gallon equivalent prices may be displayed on

the pumps if necessary). At first drivers will interpret the price in litres by multiplying it by

4.5 to obtain an approximate price in gallons. With experience, however, they will cease to

interpret the price and will immediately see whether a price in litres is good value.

i. Examples of seeing-as

The tacit skill of seeing-as is often implicitly recognised - and avoided - in many

accounts of developing expert systems. This is frequently done through the use of the

"telephone heuristic" - "think about whether the problem can be described in words. Could it

be solved over the phone? If the expert needs to see or touch the data, the task may not be

well suited to an ES" (Leonard-Barton and Sviokla 1988, p. 95). Effectively, if the expert

makes use of the tacit skill of seeing-as then the task is not suitable for the development of

expert systems. Harmon and King (1985) and Twine (1988) make the same point.

In a limited number of cases problems are tackled which involve the expert seeing

things as other things. However, unless the possibility of seeing-as is considered, the

behaviour of the expert seems unusual. For example, Paris (1988) describes attempts to

create an expert system to assist a "pathologist in the differential diagnosis of Lymphoma /

Epithelial Tumour biopsies on slide evidence alone". He notes that the pathologist first gives

the diagnosis and secondly gives reasons for it. "In other words it appeared that the

pathologist simply saw the diagnosis and then attempted, maybe to please the observer, to

justify it" (Paris 1988).

67

g. READINESS-TO-HAND AND `HIDDEN' KNOWLEDGE

`Hidden' knowledge is another form of knowledge that cannot be formally

represented, however it is introduced primarily as an analytic concept for use in the next

chapter. The term `readiness-to-hand' was introduced by Heidegger in 1927 and it is a

different approach to considering knowledge of the world. Rather than considering things as

having certain characteristics and features, readiness-to-hand suggests that much of this

knowledge is `hidden' from a person until it becomes `unready-to-hand' and `visible'. A

hammer and a blind man's cane have been used extensively in the literature, so the use of a

"mouse" input device in a window based computer environment will be considered instead.

The mouse is used to move a pointer around on a screen. In doing so it can "point" to

icons, activate pull-down menus and select different items from the screen. However, when

using mouse devices the users do not actually consider any properties of the mouse, they

simply think about moving the pointer. The mouse itself is ready-to-hand, its properties are

not represented in any way; they are hidden to the users. They only "discover" the mouse

through its unusability or unreadiness-to-hand, when the interaction breaks down; only then

does the knowledge of the mouse become explicit.

It is only when the mouse does not move as expected - perhaps it causes the pointer

to move in the opposite direction to the mouse - that the users become aware of any of its

characteristics, it becomes unready for the task they wish to use it for. The features of the

mouse can also "reveal" themselves when a mouse is not present and a keyboard must be

used instead. In this case features of the mouse such as its speed and ease of use become

unhidden through the unreadiness-to-hand of the mouse. Finally the obtrusiveness of the

mouse may make it appear unready-to-hand. If the users want to make small, accurate

movements of the pointer, they may find that the design of the mouse hampers this activity.

Once again, it is only when the use of the mouse "breaks down" that they become aware of its

features.

h. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED

The first set of difficulties with knowledge in semi-formal domains arises from the

way in which things (objects, concepts, entities) are named. It was suggested that many

things in the domain have descriptive rather than prescriptive definitions that determine the

appropriateness of their name. Descriptive definitions are arrived at through negotiation and

68

compromise; a social process involving individuals and groups acting for a common purpose

in a common setting. It can be argued that prescriptive definitions are simply descriptive

definitions that a particular group has accepted for use in a certain purpose. Descriptive

definitions cause difficulties because clearly defined boundaries do not exist around the

concepts being described.

The difficulties with descriptive definitions are made worse when the choice of

which boundaries should apply to a name are made on the basis of subjective judgements.

Cases can arise where the subjective boundaries of the things being named are mutually

exclusive between different groups and unless those using the names are aware of the wide

disparity of meaning for the terms being used, unless they are aware of the differing

boundaries, serious problems may arise.

When expert systems are designed it is inevitable that some extra formality will be

introduced into the language used. Any proposed solutions cannot completely overcome

such considerations, however they can be designed with the problems in mind.

Another effective boundary to the amount of domain knowledge that can be stored in

the knowledge base is the extent to which the experts use tacit skills when solving the

problems. Although these tacit skills cannot be properly represented in a knowledge base,

the system should still be designed to take account of this knowledge.

The nature of the tacit skill of noticing problems means that the skill cannot be

switched on and off at will and so may arise when the users are using the system to solve a

problem. They may realise that the goal the system is trying to arrive at is obviously wrong,

whilst another goal may be far more appropriate. In this case, the users should be able to

make the system abandon its current line of reasoning and examine the alternative suggested

by the user.

70

CHAPTER 4 - COMPUTER BASED

SYSTEMS WITHIN SEMI-FORMAL

DOMAINS

The discussion of the two approaches to developing expert systems suggested that

the formal approach to design has the expert system operating on a (separate) model of the

domain. In contrast, the semi-formal domain approach considers the expert system as one of

the components of the social environment making up the domain. It is therefore necessary to

consider any implications that arise from embedding expert systems within such domains.

This chapter will argue that there are three important consequences that arise from a

computer based system being located within the domain. Firstly, it is shown that computer

based systems have very limited capabilities for considering situational factors that arise

within the domain. Secondly, this means that expert systems cannot become aware of

situated actions and hence it is not possible to `plan' for many of the problems that may

arise. Thirdly, the concept of confusion will be examined and it will be shown that computer

based systems cannot normally become aware that a state of confusion has arisen. A domain

independent understanding of how confusion can arise will then be considered.

a. THE COMMUNICATIVE RESOURCES OF COMPUTER

BASED SYSTEMS

In their discussion of knowledge engineering, Gammack and Anderson (1990)

highlight a number of important considerations that relate to the problems of communication

between experts and knowledge engineers. They suggest that any process of knowledge

elicitation takes place within the context of an unarticulated background and that both parties

need to be aware of this background if they are to minimise any possible misunderstandings

that may arise. Examples of such misunderstandings were discussed in the previous chapter.

Unfortunately, their work only covers the interaction between the human expert and the

human knowledge engineer. In particular, they do not consider the problems of human users

interacting with (computer based) expert systems (Figure 2.5 shows how these two

interactions are related). This is significant since there are many qualitative differences

 1Suchman uses "machine" to refer to the computer based system and as such does not
distinguish between "machines" and "tools".

71

between humans and computers that become increasingly important when they are combined

in a semi-formal domain.

Computer based systems differ from humans in that they are limited in the ways that

they can obtain information about the domain which they find themselves a part of. Humans,

on the other hand, have far more communicative resources available to them. They can see,

hear, touch, smell and taste. In addition their whole bodies provide information about the

domain.

Suchman (1987) undertakes a critical examination of the communicative resources of

computer based systems by considering an `expert help system' for a large and relatively

complicated photocopier. The help system is designed to provide assistance to the users and

help them operate the machine1. It would appear that the provision of such a help system

would be relatively simple given that the possible tasks being tackled are limited by the

functionality of the photocopier, that the structure of the interaction is procedural, partially

enforced and a criteria of adequacy for each action can be specified (Suchman 1987, p. 99).

For example, one of the possible tasks that can be undertaken is to make multiple copies of a

bound document. The structure of this task is well defined: a copy is made of the bound

document and this copy is then used to make further copies. The task has a partially enforced

structure which can be verified by the system: multiple copies can only be made once the first

copy of the bound document has been made and it is possible to have sensors that verify that

the Bound Document Aid has been used in the process.

When the photocopier was actually used, however, a number of problems arose. For

example, the users of the copier did not always realise that the single copy of the bound

document was used to make the remaining copies and in many cases the help system was not

able to respond to difficulties faced by the users.

Suchman's framework

72

THE USER THE MACHINE

Actions not

available to

the machine

Actions

available

to the machine

Effects

available

to the user

Design

rationale

Figure 4.1 - Suchman's framework for analyzing the communicative resources of users
and machines (Suchman 1987, p. 116)

Suchman suggests that these problems are a consequence of the limited

communicative resources of the photocopier and proposes a useful analytic framework,

shown in Figure 4.1, to help understand the problems.

The framework is made up of four columns, each of which describes part of the

interaction between the users and the machine. The columns are: actions not available to

the machine, actions available to the machine, effects available to the user and the

design rationale of the system. Only the two centre columns are directly available to the

users and the machine. The users can read the help screens and instructions provided by the

system but do not normally have access to the design rationale behind the display of those

screens. In a similar way, the machine has access to the menu items chosen by the users, but

not to the intentions of the users that led to that choice.

73

THE USER THE MACHINE
Actions not
available to
the machine

Actions
available
to the machine

Effects
available
to the user

Design
rationale

DISPLAY 1 Selecting
the
procedure

B: It’s supposed to -
it’ll tell "Start,"
in a minute
A: Oh. It will?
B: Well it did:
in the past
(pause)
A little start:
box will:

DISPLAY 4 Ready to
print

B: There it goes
A:"Press the Start button"

SELECTS START
STARTS PRINTING

Okay.

Figure 4.2 - Sequence II (Suchman 1987, p. 126)

In the example shown in Figure 4.2, the users are able to see the display screens

(DISPLAY 1 and DISPLAY 4) and can also tell when the machine starts making copies. The

design rationale behind the choice of displays shown, however, is not available to them.

Similarly the machine can only tell when the users select START but their deliberations

before doing so are not available to it.

Another of the examples described by Suchman (pp. 165-169) involves the users

making four copies of a document using the Recirculating Document Handler. In this case

when prompted by the system to place the document in the handler, only one sheet is

inserted. The limited access of the machine to the actions occurring in the rest of the domain

means that all that the sensors note is that "the document" has been inserted into the handler.

When the START option is then selected, the copier makes four copies of the "document"

(i.e. the single sheet). The system has completed its task and awaits the selection of the next

task. The users, however, who do not have access to the design rationale of the system, await

instructions to insert the next sheet - which are never displayed.

74

This problem cannot be overcome by simply adding more sensors to the photocopier.

No number of sensors could determine that the document to be copied was made up of more

than one sheet unless the copier had access to the conversations of the users (or, if there was

only one user, the thoughts of the user). One way for the copier to become aware of the

number of sheets in the document would be to explicitly ask the users to enter the number of

sheets to be copied, but this is a rather unusual and cumbersome approach. Alternatively the

designers of the machine may simply limit the possible factors that can influence its

operation. This, however, resorts to the belief that the "computer knows best", found in the

functionalist approach to design.

i. The communicative resources of expert systems

Expert systems, as a form of computer based system, have the same limited access to

the rest of the domain as the photocopier described previously. In most expert systems the

range of actions available are limited to the keys pressed by the users (in addition to any

selections made using other input devices such as a mouse). The system is only aware that a

particular fact is true because the users selected a certain option.

In some cases, the expert system has sensors that can be used as a direct source of

data about the domain. For example, a process control expert system may have access to

sensors informing it of the temperature of the material at various stages in the development

process. In these cases, however, the sensors are not normally used to check the responses of

the users, rather they are used as alternative input devices.

b. SITUATED ACTIONS

Planning is described by Cohen and Feigenbaum (1982) as "deciding on a course of

action before acting", with the implication that a plan is therefore "a representation of a

course of action" (p. 515). Plans are to be recommended otherwise "less than optimal

problem solving" will arise. A plan is therefore a precise, `prescriptive' model of future

actions that will efficiently achieve a particular goal. Plans are also sometimes used as post

hoc descriptions of actions used to achieve a goal. User-models are often used by expert

systems to understand the purposeful actions that may arise in an interaction since the models

 2Hubert Dreyfus was on Suchman's dissertation committee at the University of California at
Berkeley and was very enthusiastic about her project (Suchman 1987, p. xii).

75

can be used to determine what problems the users are going to face by determining their

likely cause of action, or if they have already arisen to determine what caused them.

Suchman's work, however, suggests that the conventional model of planning fails to

take into consideration the problems of the limited communicative resources of computer

based systems and, more significantly, mistakes the very nature of planning. Instead of being

based on planning, she argues, "purposeful actions are inevitably situated actions" (p. viii),

by which she means "simply actions taken in the context of particular, concrete

circumstances" (p. viii).

Suchman believes that the conventional view of planning mistakes the role that plans

play in purposeful action. The model assumes that "[M]utual intelligibility is a matter of

reciprocal recognizability of our plans, enabled by common conventions for the expression of

intent, and shared knowledge about typical situations and appropriate actions" (p. 27). That

is, it is only possible to understand an individual's actions by considering the plan that the

person is assumed to be following.

Plans suggest that the precise steps needed to achieve a particular goal are stated

before the event. In actuality many different actions can be taken to achieve the same goal;

the choice of which action depends critically on the particular circumstances that the action is

taking place in and cannot be predicted in precise terms in advance. For example, the actions

involved in actually posting a letter will depend on whether you meet someone who is going

to the post office, whether you pass an internal mail basket or if you actually go to the post

box yourself.

Another important feature of the planning model is the assumption that the content

and organisation of the background knowledge can be made explicit so that relevant features

can be identified and utilised. Suchman suggests that in reality such actions do not use a

knowledge of the situation, rather they take place in the situation, with features appearing

relevant to the individual in much the same way as they do for the proficient performer and

expert in the Dreyfus model of skill acquisition2.

The analysis presented by Suchman suggests that "[P]lans are a constituent of

practical action, but they are a constituent as an artifact of our reasoning about action, not as

a generative mechanism of action" (Suchman 1987, p. 39, emphasis in the original) and as

such are "best viewed as a weak resource for what is primarily ad hoc activity. It is only

when we are pressed to account for the rationality of our actions, given the biases of

76

European culture, that we invoke the guidance of a plan" (p. ix). Plans made in advance of

an action are necessarily vague because these situational factors cannot be determined in

advance, whilst those plans described in retrospect "filter out precisely the particularity of

detail that characterizes situated actions, in favour of those aspects of the actions that can be

seen to accord with the plan" (p. ix).

It is important to emphasize that the concept of situated actions is not arguing that

plans are unimportant, or that plans are not used, rather it is argued that plans have a different

role in action. In many cases it is beneficial to plan action so as to minimise risks or

maximise utility by highlighting important factors to be considered. Plans are used in such a

manner "to orient you in such a way that you can obtain the best possible position from

which to use those embodied skills on which, in the final analysis, your success depends" (p.

52).

When expert systems are embedded in semi-formal domains, situational factors

become increasingly important. Interpretations of the terms used, as well as the availability

and use of tacit knowledge / tacit skills will be affected by the particular circumstances of the

problem and the users of the system. It will therefore be very difficult to anticipate all the

likely problems that may arise in the use of the expert system.

c. CONFUSION

When the users of an expert system form an inappropriate interpretation of its output,

or when some other knowledge that could not be represented within the boundaries of the

knowledge base causes problems in the interaction, it is common to say that some confusion

has arisen, that the users are "confused". What precisely is meant by the term "confusion" is

rarely made clear and a closer examination of this concept will provide a useful analytical

technique for considering the problems of interacting with a computer based system.

To understand what "confusion" is, consider the case where an actor asks the

question "Is there any water in the refrigerator?" with the "water" in this question referring to

"pure water", suitable for use in a car radiator. On receiving an affirmative answer, the actor

proceeds to go to the refrigerator and finds only water with a twist of lemon in it. In this

case, the actor may well say that the response to the question was a result of confusion on the

part of the other actor, who did not properly understand the meaning of the question. To this

actor, confusion has arisen.

77

Now consider this same interaction from the perspective of the actor answering the

question who assumed that the speaker wanted some water to drink. To this actor there has

been no confusion. The appropriate response was given to the question asked. Thus whether

or not there is confusion in a situation depends critically on who is viewing the situation.

The actor asking the question believes that confusion has arisen, the actor answering does

not.

More significantly, neither actor was aware of the "confusion" at the time it "arose",

since if they did, they would have reacted immediately and clarified the situation. Even the

actor who (later) believed that confusion had arisen only realised this when the consequences

of the difference revealed themselves (became unhidden). Until this time, the questioner was

as "blissfully unaware" of the potential problems as the respondent.

This means that it is not possible to be aware of confusion at the time that it occurs.

At best it is possible to realise that confusion occurred in the past when its effects reveal

themselves in the current situation. Moreover, unless the effects do reveal themselves, none

of the participants in the interaction will ever realise that confusion has occurred.

To summarise, it is only possible to know about confusion when one of the

participants in the interaction becomes aware of a problem. Once the problem has been

noticed it may be possible to determine when the actual confusion arose however it is not

possible to be aware of confusion as it occurs. Once confusion has been noticed, however,

there is normally a commitment to clarify and resolve any ambiguity or misinterpretation or

to attempt to convey the missing tacit knowledge.

i. The commitment to resolving confusion

In human communication such clarifications to overcome confusion are normally

attempted and Winograd and Flores (1986) suggest this is due to the commitments formed by

speakers and hearers "by virtue of taking part in the conversation" (p. 58). These

commitments mean that whenever a problem arises "the speaker is committed to give an

account" (p. 60) to explain how the breakdown arose.

They suggest that many of these problems arise because of differences in the

"assumed backgrounds" (that domain knowledge that is assumed to be common to all

78

members of a particular community) of the participants. To resolve the problems, the

participants may decide that a particular utterance was simply inappropriate, or alternatively

they may "articulate part of the assumed background" (p. 60) and come to an understanding

about how the problem arose and how it is to be resolved.

Attempts to overcome problems associated with confusion can only be tackled once

that confusion is noticed and this process is based on the tacit skill of noticing problems.

This suggests that the circumstances for noticing a particular problem cannot be formally

specified in advance. However, the typical mode of operation of an expert system offers a

domain independent way of describing the situations when problems are likely to be noticed.

This approach does not determine which problems are going to be noticed, nor does it

determine when they are going to be noticed. It does, however, provide a theoretical

description of the possible actions of the system that can lead to noticing of problems, and

hence of confusion.

The following description is based on speech act theory which was introduced by

Austin and was later developed by his student, Searle. A brief introduction to speech act

theory will now be given.

ii. Saying and doing

Many of the utterances made in the course of a conversation do not relate to true or

false statements about the world, rather, as Austin (1962) points out, in many cases the

uttering of words may actually be performing a speech act. For example, when, in certain

circumstances, the words "I bet you ..." are uttered they are not describing what has been

done, they are not true or false statements about the world, rather by saying the words the bet

has been made. Similarly when requesting a particular action uttering "I request ...", in

certain circumstances actually performs the request. The "certain circumstances" that affect

the bet or request need to be specified in more detail and Austin hoped to discover what these

"circumstances" were by "looking at and classifying types of case in which something goes

wrong" (p. 14). He labels those things that go wrong as infelicities and describes three

general principles which need to apply if infelicities are not to occur:

79

1. There must be some conventional procedure which has a conventional effect, in
certain circumstances and that the particular persons and circumstances involved in
the speech act are appropriate for the procedure being invoked.
2. That the procedure must be executed by all participants correctly and completely.
3. That the procedure is designed for certain intentions, thoughts or feelings and that
those involved must have the appropriate intentions, thoughts or feelings.

Figure 4.3 - Austin's three principles to prevent infelicity in speech acts

To illustrate this point, for the utterance "I bet ..." to be felicitous (appropriate or

non-defective), there must be conventional procedures and circumstances that hold for

making bets and the particular case must conform to these circumstances. Thus bets can only

be placed before the outcome of the event being bet upon and formal bets can only be made

in a Bookmakers. Some acts may only be `appropriate' when performed by certain people,

for example, a formal bet can only be made with the employees of the Bookmaker who are

authorised to take bets, and not, for example, with the cleaners. It is also necessary for all the

participants to completely and correctly finish the procedure, thus even if the words "I bet ..."

are uttered, the bet will not actually be made until there is some response to it - either in the

form of a betting slip, or perhaps the verbal response "OK. The bet is on". Whilst the first

two conditions can affect the entire act, whether the act is valid or void, the third condition

affects the intentions behind it. If I say "I bet" knowing full well that I do not intend to keep

the bet if I lose, then the bet is still valid, but the person who bet against me would have

justified grievances.

iii. Speech acts and the noticing of confusion

Attempts to rectify confusion can only be made after that confusion has been noticed

and consideration of speech acts offers a theoretical basis for determining when this

confusion is likely to be noticed. In the course of assisting the users in solving a problem, an

expert system may request that certain information about the domain be provided, it may

question the users about the domain and it may make assertions about the domain. These

three things are speech acts and in performing them the expert system may cause the

interaction with the users to breakdown. Most commonly this is a result of the intentions

80

behind the act, for example, the expert system may assert a fact which the users do not feel it

is justified to assert. This means that their unstated background assumptions may be

challenged by the actions of the system. In discussing readiness-to-hand in the previous

chapter, three possible forms of breakdown or unreadiness-to-hand were described. The first

of these is when something unexpected occurs. The second is when something expected does

not occur and the third arises when the tool becomes obtrusive in the act it is performing.

These three causes of breakdown can be seen in terms of the felicity conditions of the speech

acts undertaken by an expert system.

This description of felicity conditions (Searle uses a related notion of a speech act

being non-defective) for these three acts is due to Searle (1969, ch. 3).

The conditions necessary for a request (for a future act of the hearer) not to be

defective include the ability of the hearer to perform the requested act. Also the speaker must

believe that the hearer can perform the requested act. It must also not be obvious to both the

speaker and the hearer that the act would be performed by the hearer in the normal course of

events if the request was not made. If the request is to be `sincere', the speaker must actually

want the hearer to perform the act and it is essential that the request must count as an attempt

to make the hearer perform the act.

The act of asking a question is similar to that of requesting an act, except that in

asking a question the speaker wants to know about the `truth' of a proposition (or

propositional function), as opposed to making the hearer perform an act. The question would

be defective if the speaker `knew the answer' and it must not be obvious to both parties that

the hearer would provide the information about the proposition at that time without being

asked. Obviously there are some questions, examination type questions, where the speaker

does `know the answer', but in these cases the speaker still wants to know if the hearer can

provide the answer and it is not expected that the hearer will provide the information without

the question being asked. If the question is to be sincere the speaker must want the

information asked about and the asking of the question must count as an attempt to elicit this

information from the hearer.

The final speech act that needs to be examined in relation to the functionality of

expert systems is the act of stating or asserting a particular proposition. For an assertion not

to be defective, the speaker must have evidence or reasons for the truth of the proposition and

it must not be obvious to both the speaker and the hearer that the hearer knows the

proposition (or that the hearer does not need to be reminded of the proposition). A sincere

81

statement requires that the speaker `believes' the proposition and the assertion must count as

an undertaking that the proposition represents an actual state of affairs.

d. TOWARDS SOLUTIONS TO THE PROBLEMS RAISED

The first part of the chapter discussed the ability of an expert system to become

aware of the domain it is in. In most cases, the communicative resources of a computer limit

this to an awareness of the key presses made by the users in addition to any direct sensor

readings taken from the domain.

In particular, the expert system is unlikely to be aware that the users of the system

have been confused and one consequence of this is that the users themselves must act to

overcome any confusion that they notice.

The three speech acts performed by an expert system: requesting, questioning and

asserting, are likely to cause the users of the expert system to become aware that confusion

has arisen if they believe that the felicity conditions of these acts have not been met. To

overcome these problems, the users must be shown that these conditions have actually been

met.

82

CHAPTER 5 - INTRODUCTION TO THE

PESYS SYSTEM

This chapter describes the expert system development tool that was chosen as the

basis for the practical work described in this thesis. A description of available expert system

development tools and the reasons for the particular choice made are described in Appendix

II. This chapter describes the main features of the development tool, highlighting those

additions found in the system that are not found in other tools. The structure of the

knowledge base, inference engine and user interface are also described in some detail.

Finally a number of applications that have been developed using the tool are described. It

should be noted, however, that the characterisation of the system given in this chapter is not

complete since it does not take into consideration those specific additions that relate to semi-

formal domains which are described in the next two chapters.

a. AN OVERALL DESCRIPTION OF THE PESYS

ENVIRONMENT

PESYS (Pascal Expert SYstem Shell) incorporates many useful features that allow

the developers and users of the system to maximise the potential of this technology in

semi-formal domains. This chapter outlines the facilities offered by PESYS other than those

described in the next two chapters. A user guide to the PESYS system, together with a

simple tutorial for developing expert systems is provided in Appendix III.

PESYS offers the developers of applications full control over the inference engine

used with a particular knowledge base. It is possible to select the inference method (or

combination of inference methods) that are to be used as well as whether a log is to be kept

of the actions performed and the accuracy to be used in numerical comparisons. The shell

also includes an implicit design method which encourages the proper, structured design of

the knowledge base and includes the use of "sub-knowledge bases" which can be used to

structure the application.

The implementation of the inference engine is very efficient and allows the users of

the system to rapidly arrive at solutions to their problems. Their interface with the system is

designed to be clear and consistent in use offering access to all the necessary functions of the

83

EDITOR

PREPARE

EXTRAS

(optional)

(optional)

The DEVELOPMENT PHASE

PESYS

The RUNTIME PHASE

Figure 5.1 - The development and runtime components of PESYS

system without any unnecessary inconvenience. A comprehensive What-if facility is also

available to allow the users to see the possible effects of changing certain data values.

However, despite providing considerable functionality, the system itself is very compact (the

executable file is less than 150K in size) and this leaves most of the computer's memory

available for the knowledge base and working memory.

The PESYS environment is made up of two components. The first component relates

to the development of expert system applications and supports the writing and preparation of

knowledge bases. The second is the runtime environment and it is this program that users

interact with when trying to solve problems in the domain. Figure 5.1 shows the programs in

these two components.

b. THE STRUCTURE OF THE KNOWLEDGE BASE

84

EDITOR

PREPARE

EXTRAS

(optional)

(optional)

The DEVELOPMENT PHASE

PESYS

The RUNTIME PHASE

.RUL

.RLC

.CFG

.SNS .LOG

Figure 5.2 - The files used in PESYS

The knowledge base in PESYS is made up of a number of related files. To assist in

the management of these files, all the files that relate to a particular knowledge base share the

same main name, for example, all the files in a knowledge base used to repair faults in a

photocopier might have the main name "COPIER". The various files that are created by the

different programs in the development stage of the environment have different extensions to

the main name that describe their contents. Figure 5.2 shows the files that are created at

each of the stages of the development process.

i. The files in a knowledge base

The first file to be created has the extension .RUL (RULe). This file contains the

original rules associated with the knowledge base. The rules are entered by the knowledge

base designer using a simple text editor such as the program EDITOR. All the files in

PESYS are stored in plain ASCII format. This allows them to be examined and edited using

any suitable editing program or word processor. Once the rules have been edited, the .RUL

85

RULE-1
IF
the first if-clause is true
and the second if-clause is true
THEN
the first then-clause is true
and the second then-clause is true

Figure 5.3 - A sample rule in PESYS

file is passed to the PREPARE program which precompiles the knowledge base and forms

the .RLC file (RuLe Coded). The PREPARE program also allows the designers of the

application to specify the configuration of the knowledge base, choosing which inferencing

methods are to be used as well as general system characteristics such as whether a log of the

interaction is kept and the accuracy used in mathematical comparisons. The configuration

information is stored in the file .CFG (ConFiGure).

The program EXTRAS allows the developers of an application to specify the text of

questions that are asked when the users are required to enter values for variables in the

knowledge base. The text of these questions is stored in the file .SNS (common SeNSe

information). When the knowledge base is used by the runtime system a log of the

interaction may be kept, this is stored in a numbered file with the extension .LOG.

ii. The basic structure of a rule in PESYS

The primary knowledge representation technique used in PESYS is the if-then or

production rule. This knowledge representation technique is very common in expert systems.

PESYS, however, includes a number of special features in its implementation of production

rules that need to be described further. A typical production rule is shown in Figure 5.3.

As this rule shows, a typical production rule is made up of three main components.

The first component is the rule identifier. This is followed by the keyword if and a number

86

of if-clauses. No limit is imposed on the number of if-clauses in a rule, there can be none,

one or as many as can fit in the memory of the system. After the if-clauses comes the

keyword then followed by the then-clauses. The number of then-clauses is also only

restricted by the available memory. The keywords if and then are written on separate lines to

improve the legibility of the knowledge base. Again there can be any number of then-clauses

which are separated from the next rule by at least one blank line. Due to the way that PESYS

stores all the words found in the knowledge base there is no restriction on the case of any of

the words in the knowledge base, including the keywords if and then.

iii. Advanced features of rules

Negation

The if-clauses of the rules may be used to ask the users questions about the domain.

Clauses that contain the word not, however, can be very difficult to answer in practice, often

causing many problems for the users. If the system asks the question "Is this true: you have

not put the cat out?" should the users select Yes signifying "Yes the cat has been put out" or

should Yes be selected to specify "Yes the cat has not been put out"? A far simpler question,

from the users' point of view, is "Is this true: you have put the cat out?". PESYS therefore

removes any occurrences of the word not in any of the clauses of a rule (this is performed by

the PREPARE program) and keeps track of the number of times it occurs. If not is found

once or, in general, an odd number of times then the clause is said to be negated. Zero or an

even number of nots means that the clause is unnegated. The negated status of the clause is

then stored separately in the .RLC file and is used by the system to determine how the users'

response to the (unnegated) question should be handled, i.e. if the users answer Yes to a

clause that was originally negated, then this is equivalent to denying the original clause.

Thus answering Yes to "The cat has been put out" means that the original clause "The cat has

not been put out" has been denied. This is a very simple step to implement in a computer

based system yet it makes the system considerably easier to use in practice. There is a minor

restriction in that it is not possible to accommodate abbreviations such as can't and hasn't

within this method.

87

Goals

Many expert system shells have a series of goals or hypothesis associated with the

rules in the knowledge base. The inference engine of the shell then tries to use the rules to

arrive at one of these goals or hypothesis. However, by keeping the goals separate from the

rules that they refer to, there is a strong possibility of problems of redundancy arising,

particularly if a large scale application is developed. Consider the case where a new (goal)

rule is added to the knowledge base. The then-clauses of this rule refer to a goal yet it is

possible that the developers of the system will forget to add the associated new goal to the

(separate) list of goals. If this happens the extra rule will never be used, or if it is used, will

never be recognised as a goal. Similarly if a goal rule is deleted without removing the

associated goal redundancy will occur and the system will try and arrive at that goal although

its associated rule no longer exists.

PESYS overcomes this problem by associating the goal status of a then-clause

directly with that clause. Any then-clauses which refer to goals are marked with the keyword

inform and an associated inform level of 1. This marks the clause as being something that

the users should be informed about and the level (1) tells the system that the clause is goal.

This approach avoids all the problems of redundancy that arise when the goals are kept

separate from the rules they are associated with. If a new rule is added with a then-clause

that is a goal, this is marked directly in the rule. Similarly if this rule is deleted from the

knowledge base, the associated goal is also deleted and it is therefore impossible for the list

of rules to be different from the list of goals. The PREPARE program removes the informs

and their levels from clauses of the rules and stores them separately in the .RLC file.

The use of inform statements and inform levels is used in other ways in a PESYS

knowledge base as well. During an interaction with the system, the users may find it useful

to be told certain pieces of information. These are normally `intermediate' results, possibly

informing the users about the current state of the problem solving process, and whilst they

are not goals they are still useful. These are implemented by attaching the keyword inform to

these statements and giving them a level of 2. The keyword inform tells the expert system

that the users should be informed about a particular piece of information and the level (2)

tells it that this is simply a useful piece of information and once the users have seen it the

system should continue to arrive at the final conclusion which is a statement marked with an

inform level of 1.

88

IF
it is raining
or someone throws a bucket of water over your head

Figure 5.4 - The use of the or connective in a PESYS rule

c. ADVANCED RULE STRUCTURES

In the example rule shown above the if-clauses of the rule are combined using the

logical connective and, i.e. the if-clauses are only true if all the if-clauses are true. In many

applications it is also useful to combine clauses using the logical connective or. Clauses

combined using the or connective require only one of the clauses to be true.

One method of implementing the or connective, found in many expert system shells

such as Xi+, allows an object to have more than one possible value. For example, a ball may

be one of a number of different colours as in: "the ball is red or white". This technique is

only applicable for multiple values of one object and cannot cope with clauses such as "it is

raining or someone pours a bucket of water over your head". In order to cope with this

second type of combination of clauses, in PESYS all clauses combined using or are assumed

to be separate clauses, so the first example would need to be rewritten as "the ball is red or

the ball is white" and each clause is written on a separate line of the rule.

Or-clauses are stored in the expert system as a list and each if-clause is, in fact, a list

of or-clauses. This is best understood using a diagram, Figure 5.5. In this diagram, the if-

clauses are shown vertically, whilst the or-clauses are shown horizontally. For a rule to fire,

each if-clause must be known to be true. Each if-clause is known to be true if one or-clause

is known to be true.

89

IF

A

or B

C

or D

or E

and F

and G

THEN

...

if-clause

if-clause

if-clause

if-clause

A B

C D E

F

G

Figure 5.5 - A diagrammatic representation of or-clauses

Or-clauses are formed as the knowledge base is read in. The first clause that is read

in is added to the start of an if-clause and the next clause is read in. If it begins with the

keyword OR, then it is added to the end of the previous or-clauses, otherwise a new if-clause

is created. This process continues until all the clauses of the rule have been read in. This

also shows how clauses combined with and are implemented. Clauses that begin with an and,

either explicitly or implicitly, do not begin with an or and are therefore stored as a new if-

clause. The list of or-clauses therefore only contains one element which must be true for the

if-clause to be true.

Atleast clauses

Designing the inference engine in such a way also allows the easy incorporation of

another very useful feature into the structure of a knowledge base. The rules that have been

described previously have either required all the if-clauses to be satisfied or, in the case of

90

IF

atleast 3 of

you enjoy working with people

or you are prepared to work long hours

or you want to serve the community

or you want a varied work load

THEN

...

If-clause atleast 3 of working

with

people

work

long

hours

serve

the

community

varied

work

load

and you do not mind the sight of blood

If-clause you do not mind the sight of blood

Figure 5.6 - An example rule using atleast clauses

or-clauses, one of each of the or-clauses to be satisfied. In some applications, however, a

compromise is required. For example, an application may require a rule to fire if a

combination of the clauses is known to be true. A careers selection knowledge base, for

example, may list a number of qualities associated with each career, however it is unlikely

that any person would have all the qualities for a particular job. It would therefore be useful

if the system could see how many of the attributes a person had and if these were more than

some preset level (perhaps 75%) the particular career could be suggested. In other cases, all

possibilities need to be considered before a choice can be made. A car repair system that

reported the first fault it came to and then halted would not be as useful as one that listed all

the faults before stopping.

The atleast command is designed to provide this facility by allowing the developers

of a knowledge base to specify a list of or-clauses all of which need to be tested but which

only returns true if a certain number of them are true.

In this case, the system will examine all the clauses found in the atleast statement but

will not stop as soon as one clause is found to be true. Instead a count is kept of all the

clauses that are found to be true and if this is found to be greater than or equal to the number

91

USER INTERFACE

KNOWLEDGE
BASE

INFERENCE
ENGINE

WORKING
MEMORY

EXPLANATION
FACILITY

COMMAND
MODULE

EXTERNAL
INTERFACE

Figure 5.7 - The principal components of PESYS

in the atleast statement then the if-clause is assumed to be true. Atleast clauses are stored in

the same way as or-clauses, with the first or-clause being the keyword atleast and the atleast

level. In all other ways atleast clauses are the same as or-clauses.

In the rules shown in Figure 5.6 the system will examine the four clauses of the rule

and the if-clauses that they are a part of will be true only if atleast 3 of them are true.

d. THE RUNTIME ENVIRONMENT

The program in the runtime environment is called PESYS and it is this program that

the users interact with when solving a problem in a domain. The program itself is made up of

a number of different components and these are shown in Figure 5.7. The programs in the

development phase of the system are described in the user guide, Appendix III. The structure

of the knowledge base has been described previously and the structure of the working

memory is described in more detail in Appendix IV.

92

i. The user interface

The user interface in PESYS is one of the largest components of the system and

provides the users of the system with a simple and consistent front end to the functionality

offered by the system. It is designed to be easy to use and easy to learn. It is through the

user interface that the users answer questions, are informed of any results and perform what-

if analyses. All these actions take place in special windows on the screen. The windows can

be moved around the screen by the users (by simply pressing the F4 function key and

selecting the new position) if, for example, the default position obscures some other

important information displayed on the screen. The system uses only two colours, normal

and highlight, and they are specified by the developers in the configuration stage of the

PREPARE program although they may be altered by the users at runtime. Only two colours

are used since the package may be used with displays that have a limited colour capabilities

(such as overhead projecting equipment) and by limiting the number of colours to two, it is

easy to rapidly customise the screen displays to a particular piece of display hardware.

Inputting information

The most commonly used part of the user interface is concerned with asking the

users questions and requesting information. PESYS has three main ways in which this can be

done: through the use of YES/NO questions, through the entering of values and through the

use of a `most likely' mechanism.

The simplest form of question is the YES/NO question. In this case, the users are

presented with a clause and are asked to indicate whether it is true or not. This choice is

done by moving a highlight to the appropriate value. If necessary, the users can also have a

simple explanation of the question that has been presented.

93

Figure 5.8 - A question in PESYS

Figure 5.10 - A request in PESYS

 64447
 5 Is this true 5
 5 The Large Wheel Is Spinning Freely 5
 5 5
 5 5
 5 Yes No Unknown Explain 5
 5 5
 5 5
 5 5
 94448

In other cases, the users are requested to enter values of certain variables. In these

cases a suitable prompt is displayed, describing what value is required and the users then

enter the value requested.

 64447
 5How Many Revolutions Per Second Is The System Operating At 5
 5 5
 5 5
 5 5
 94448

The final form of input that the users may come across allows them to enter

minimum and maximum values for a particular variable and they are then given a sliding

scale which allows them to mark the most likely value. The entry of the minimum and

maximum values is performed in the same way as requests, described above. The selection

of the most likely value involves the users moving the marker ("X") to the point on the scale

94

Figure 5.12 - Selecting the most likely value in PESYS

that corresponds to the most likely value. The value that the marker corresponds to is given

at the side of the window.

 64447
 51.00 +----+----X----+----+ 11.00 5
 5 ^ 6.00 5
 5To find the most likely position move the cursor "X" to the 5
 5appropriate part of the scale and press Return 5
 5 5
 94448

Informing the users of any information

The user interface also informs the users of any clauses that have an inform level of 1

or more. An inform level of 2 or more is simply some information that the users should be

told about and is displayed on the screen until they press any key, signifying that they have

acknowledged the information. The inference engine then continues with the interaction.

Inform 1 statements are goals and these are displayed in a different screen for the users to

see.

95

Figure 5.14 - An inform 2 statement in PESYS

 64447
 5 We have derived that: 5
 5 5
 5The Performance Of The System Appears To Be Stable 5
 5 5
 94448

Once a goal has been arrived at PESYS allows the users to perform a what-if analysis

to see the effects of changing certain values. The altering of existing values for the what-if

analysis is again handled by the user interface. The users are presented with a list of facts

that the system has determined when working through the knowledge base. Those that are

known to be true are marked with a tick %, those that are known to be false are marked with a

cross X, and those that are unknown are not marked. If the users want to alter any of the

clauses they can highlight the clause to be altered and press RETURN. For variables the

previous value is displayed and they are asked to enter a new value, whilst for other clauses

the truth of the clause cycles through the possible values. If there are more clauses than can

be shown on one screen, the words "More to follow ..." appear at the end of the list and using

the cursor keys it is possible to scroll the list to display these further elements. Finally, the

users press the CTRL and RETURN keys to accept the changes or the ESCAPE (Esc) key

to abandon the changes. The same process is performed when the users select the basic facts

before performing a forward chain (see below).

96

Figure 5.16 - The What-if facility in PESYS

The inferencing process is now complete
 64447
 5Select or alter the following facts % - TRUE X - FALSE BLANK - UNKNOWN 5
 5Ctrl and Return to accept the facts, Esc to abandon choices 5
 5 5
 5% Coefficient Value 0 5
 5% Error_range Value 4.45 5
 5% Parameter_1 Value 23.00 5
 5% Parameter_2 Value 45.00 5
 5% Parameter_3 Value 56.00 5
 5% Parameter_4 Value 67.00 5
 5% Result Value 0 5
 5% Revolutions Value 34.00 5
 5% Speed Value 40.00 5
 5% Speed_hi Value 45.00 5
 5% Speed_lo Value 35.00 5
 5% The Expressions Have Been Evaluated 5
 5% The Large Wheel Is Spinning Freely 5
 5% The Setting Of The Device Are Reasonable 5
 5% The System Is Operating At A Reasonable Temperature 5
 5% There Do Seem To Be Fumes Being Given Off By The System 5
 5 5
 5 5
 94448

ii. The inference engine

While the user interface is the part of the system that the users interact with, it is the

inference engine that actually manipulates the knowledge base to determine which questions

and requests are to be passed to the user interface and which results can be asserted. The

PESYS system offers two forms of inferencing, forward chaining and backward chaining,

and also supports specialised versions of these two approaches.

Forward chaining

Forward chaining, sometimes known as data driven inferencing, operates by taking a

list of facts that are known at the start of the interaction and uses these to see which goals can

be arrived at. A rule fires if all its if-clauses are known to be true, which in the case of

PESYS means that one of the or-clauses for each if-clause is known to be true (see above).

When the rule fires, the then-clauses of that rule are added to the list of known facts and the

process continues until a rule is fired which has an inform 1 then-clause. In this case, the

firing of the rule means that a goal has been arrived at and the system can stop. Alternatively

the forward chaining process continues until all of the rules have been examined once

without any of them firing. This means that it is not possible for any more rules to fire and

97

no more clauses will be added to the list of known facts and hence further inferencing has no

effect. It is important that all the rules must have been examined once and not fired before

forward chaining is abandoned since it is possible that the firing of the last rule may add a

clause which is required for the first rule to fire.

Forward chaining, therefore requires that some facts are already known to the system

otherwise no rules would ever fire and the forward chaining process would never arrive at

any goals. Whilst it is possible to ask the users to enter any facts that they know to be true at

the keyboard this is a rather cumbersome method and requires the users to use exactly the

same descriptions of the facts as the developers of the application. PESYS offers a different

approach to this problem. The if-clauses in the knowledge base rules are either found in the

then-clauses of other rules or are not. Those if-clauses that are not found in the then-clauses

of other rules are called low-level facts since they cannot be determined by firing rules and

can only be asked of the users. When PESYS loads up a knowledge base it automatically

creates a list of low-level facts and if the developers of the application configure the

knowledge base appropriately, it is possible for the users to be presented with this list of low-

level facts and for them to mark those that are known to be true or false and to enter them

into the working memory of the system before the forward chaining takes place.

Backward chaining

Backward chaining, also known as goal driven inferencing, takes a different

approach to arriving at goals. Forward chaining took the available data and found what goals

could be arrived at from that data. In contrast backward chaining takes a particular goal and

obtains the data that is necessary for that goal to be arrived at. In doing so, backward

chaining provides a more focused approach to inferencing than forward chaining.

The backward chaining algorithm begins by creating a list of rules that contain

inform 1 then-clauses. The inference engine then takes the first rule in this list. For the goal

(inform 1 clause) to be known the rule must fire. The rule can only fire if all the if-clauses

are known to be true. The system then examines each of the if-clauses, and hence each of the

or-clauses, in turn. In the simplest form the if/or-clause is already known. If this is the case

the system moves onto the next if/or-clause. If the clause is not already known, the system

then checks to see if the clause can be arrived at by firing another rule. This is done by

creating a list of all the rules that contain the if/or-clause in its then-clauses. If this list is

98

empty, then no rules exist which can fire and add the clause to the working memory and the

only option left to the system is to ask the users directly. If rules do exist then each is

examined to see if it would fire using the facts that are known at that time. If none fires

immediately then the first rule in this list is taken and the entire inference procedure is

repeated recursively. Once one of the rules has fired, the original if/or-clause is checked in

the working memory of the system and is used for the previous rule. This process continues

until either a rule with an inform 1 then-clause is fired or until no further rules can be fired.

Other forms of inferencing

In addition to having the two separate forms of inferencing, it is possible to combine

them using mixed chaining. The particular form of mixed chaining implemented in PESYS

has the inference engine perform a forward chain whenever any facts are added to the

working memory by the backward chaining mechanism.

The final form of inferencing supported by PESYS is known as pure forward

chaining and is concerned with commands. Commands in PESYS are executed and

assumed to be true. If the system is performing a forward chain, however, this may result in

spurious rule firings, i.e. rules firing simply because the commands in their if-clauses are

executed. In practice, therefore, commands are not normally executed when performing a

forward chain. Pure forward chaining, however, does allow commands to be executed.

The choice of which inference strategies to use is made by the developers of an

application in the PREPARE program and is stored in the configuration file. The predefined

choices can be altered by the users if necessary by selecting the configuration menu. This

allows, amongst other things, the users to alter the choice of inference strategies used for a

particular application.

99

Figure 5.18 - The configuration menu in PESYS

Loading test
 6447
 5Return to System Inference Engine File Operations Other Facilities 5
 9448

 64444444444444444444444444447
 5 CONFIGURATION 5
 5 ============= 5
 5 5
 5 Forward Chain First TRUE 5
 5 Do Backward Chain TRUE 5
 5 Mixed chaining TRUE 5
 5 Pure Forward chain FALSE 5
 5 5
 5 5
 94444444444444444444444444448

iii. Commands in PESYS

The functionality available in the knowledge base is increased by making various

commands available to the developers of applications. These commands are not intended to

form a special procedural language and only offer mathematical calculations and the use of

variables, input output control, external interfaces and the use of sub knowledge bases. The

available commands are described in more detail in the user guide and will only be briefly

outlined in this chapter.

PESYS supports elementary mathematical capabilities and allows the use of numeric

and text variables. The command LET is used to assign the result of an expression to a

variable. The expression can support the basic arithmetic operations and supports brackets to

alter precedence. The values of expressions can be used in comparisons and these are treated

like other rule clauses.

Considerable control over input and output is provided, with commands available to

display information on the screen (PRINT, CLS, PRESS_KEY). It is also possible to input

values from the keyboard or from a file using the ENTER, RE_ENTER and RANGE_OF

commands. It is also possible to create and use data files through the use of commands such

as OPEN_OUT, WRITE, WRITELN, CLOSE_OUT and OPEN_IN, READ, READLN,

CLOSE_IN.

100

Links to external applications are supported through the commands DOS and DOS_E

and sub-knowledge bases are supported by the command USE.

e. APPLICATIONS DEVELOPED USING PESYS

PESYS has been successfully used for three years in teaching students on the M.Sc.

in the Analysis, Design and Management of Information Systems at the London School of

Economics and Political Science about expert systems. It has also been used by another

researcher in the department as part of her doctoral research. The following sections

describes the main case studies that have been developed by other researchers using PESYS.

i. Effort estimation for software development

The process of software development is very complex and managers require accurate

estimates of the effort involved in this process. The research undertaken by Levy (see, for

example, Levy 1990) investigates effort estimation for the preliminary system design stage of

a project life cycle.

The research considers the tasks that are to be performed during this stage of the

project and uses these tasks to provide an estimate for the effort required. In addition to

developing an effort estimation model the research is examining a number of actual case

studies to examine the validity of the ideas presented.

PESYS is used as the main component of a software tool that can be used to

demonstrate the concepts of the effort estimation process. The expert system is used in a

number of stages including entering of data, the calculation of the effort and the presentation

of the results.

The system has been successfully demonstrated to a number of organisations and the

ease of data entry, presentation of results and explanation facilities have been favourably

commented upon. The system has also been used to analyze questionnaire results in the same

way.

ii. An expert system to assist in filing tax returns

101

PESYS was also used to develop an expert system that helped individuals file tax

returns without having to involve accountants and lawyers (Whitley et al. 1989). The system

was to be used in India where the tax laws are complicated yet the revenue generated is

relatively low. Computers were being introduced to simplify this process and so an expert

system was developed to see if it would be easier to use than other computer systems.

The application made use of many of the advanced features of PESYS described in

this chapter in addition to some of those described in the next two chapters. The resulting

system, although not perfect, was considerably more useful than other attempts to develop

systems for this domain.

iii. Other applications developed using PESYS

In addition to these two major applications developed using PESYS a number of

smaller applications have been developed by M.Sc. students over the past three years, each of

which made use of certain features of the PESYS system.

A number of applications have examined the use of PESYS in conjunction with other

pieces of software. The most common form of such a link has been with database

applications. The first attempt at this allowed PESYS to access a database by making use of

a compiled dBase III+ application. The database contained information about foreign

exchange rates and the values obtained from the database were used by an expert system

application.

PESYS was also used as an intelligent front end to a database application to assist in

data entry. In this case, the expert system was called from the database application.

The use of PESYS from within a different application has also been utilised by a

financial simulation model. In this case, the knowledge base is used to `reason about' the

choice of investments.

PESYS was successfully used to implement the rules of cricket in an expert system

and in an application designed to providing education so as to prevent collisions at sea. In

both these cases, extensive use was made of the explanation facilities and readable

knowledge base of PESYS.

Finally PESYS has also been used to identify Leptospires. In this application, the

student investigated the extent to which an expert system should be used as a support tool for

the users.

102

An expert system application for Area of PESYS examined
Foreign currency analysis Linking an expert system to

dBase III
The rules of cricket Using legislation in an expert

system
Preventing collisions at sea The use of explanation facilities

and multiple goals
Identification of Leptospires The extent to which users should

be able to co-operate with the
expert system in problem solving

Intelligent data entry for a database Links to database packages
Financial simulation modelling Using an expert system as part

of a simulation model

Figure 5.20 - PESYS applications

These projects are summarised in Figure 5.20.

103

CHAPTER 6 - SOLUTIONS TO THE

PROBLEMS OF THE KNOWLEDGE

BASE

Chapter 3 introduced a number of examples of knowledge that can cause problems

when expert systems are implemented in semi-formal domains. This chapter will describe

and evaluate a number of additions to the PESYS system that attempt to overcome or

minimise some of the problems raised in that chapter. The first method, which proved to

unsuccessful and was not used in the final system, attempts to combine the use of natural

language rule clauses with a knowledge representation technique based on the underlying

ideas expressed in the clauses. The second solution attempts to assist the users in forming

the appropriate interpretation of the clauses used in the knowledge base. This method is

extended through the use of non-linear documents as a third solution to the problems raised.

Non-linear documents provide a semi-formal approach to problems of differing

interpretations since they allow the users of the system to relate their own interpretations of a

situation to those used by the designers of the knowledge base. In doing so they can

determine whether or not their own situation lies within the boundaries of the knowledge

base.

a. A NATURAL LANGUAGE PATTERN MATCHING

SYSTEM

Many of the problems of knowledge in semi-formal domains that were discussed in

Chapter 3 arose because of the prominence placed on natural language communication

between the experts, knowledge engineers and users of the expert system. Other means of

communication, such as the use of diagrams may help overcome these problems, however the

dominant means of communication in the development and use of expert systems is still

natural language and therefore this chapter will concentrate on the problems that relate to this

area. It will also provide assistance with some of the problems of tacit knowledge described

in Chapter 3.

104

It can be argued that many of the problems of misinterpretation in semi-formal

domains are introduced when attempts are made to represent the linguistically expressed

knowledge of the human experts in some other formal representation. One way of

overcoming this problem, therefore, would be to keep the knowledge in the knowledge base

in a natural language format. In the case of the production rules found in PESYS this means

that the if-clauses and then-clauses of the rule are simply natural language clauses (plus the

predefined commands available in PESYS).

Doing this may, however, impose considerable restrictions on the developers of an

application. The matching algorithm that, for example, is used to compare the if-clauses of a

rule with the then-clauses of other rules, will only operate if the two clauses are exactly the

same and this forces the developers of an application to use exactly the same wording and

spelling if clauses are to match. In many cases a difference of wording will arise depending

on whether the clause is found amongst the if-clauses or then-clauses of a rule.

IF the machine was still warm THEN

and

IF ... THEN the machine is still warm

The problem becomes more acute when different rules are entered at different

periods of time and are heightened when different developers are involved in writing rules

for a particular knowledge base. These problems suggest that it is very unlikely that the same

phrasing will be used for all occurrences of a `particular' clause and therefore some solution

must be developed to overcome this problem.

Consider the clauses "An information system could be used to control the

distribution of resources" and "The distribution of resources could be controlled by an

information system". Most people who examine these two clauses will state that they are

basically the same because they both refer to the same `idea' with identical parameters. One

solution to the problem of matching clauses would be to represent the clauses in terms of

their underlying idea and use this representation in the matching process. The original rules

could still be written in natural language form and the PREPARE program would convert

each of the clauses into this new form, storing the results in the .RLC file. This coded

version of the knowledge base is likely to be more compact than the original and will

therefore operate more efficiently.

105

The computer is switched on
Someone has switched on the computer
The television has been switched on

Figure 6.1 - Three clauses about switching on

i. A method to find the underlying idea in a clause

Consider the three clauses shown in Figure 6.1.

The first two clauses have a very similar meaning (the extra information provided in

the second clause is unlikely to be significant to the operation of the expert system) and all

three clauses refer to the idea of something being switched on. In the first two clauses it is a

computer that is switched on, in the third it is a television. The underlying idea could be

taken to be the device (computer or television). However, as will be shown below, there are

advantages to associating the idea with the main `action', namely switching on. The terms

`idea' and `action' may limit the identification of what is being conveyed by a particular

clause and hence the term relation will be used to instead. Thus in a clause such as "The

patient's age is greater than 21" the relation is taken to be "greater-than".

In the previous examples, therefore, the relation would be "switched-on". However it

is still necessary to distinguish between a television that is switched on and a computer that is

switched on. This is done through the use of parameters. Every relation has associated

parameters which determine the kind of thing that the relation is concerned with. In the case

of "switched-on" only one parameter is needed, namely the thing that has been switched on.

In the examples, this thing is either a computer or a television; more generally it might be an

electrical device.

Defining relations

If this method is to be implemented in an expert system it is necessary for the

computer to identify the relation and the associated parameters. Current computer based

systems have no inherent `intelligence' and implementations of natural language

`understanding', in anything other than very restricted domains, are highly prone to error.

106

This means that the computer, per se, has no way of identifying the relation and parameters in

a particular clause. The only solution available, using current techniques, is for the system to

be explicitly told about such relations. The simplest way to do this, in a convenient,

computable form, would be to declare that

Switched-on Kind-of Relation

i.e., "switched on" is a kind of relation. To identify the relation in a clause, the system would

simply examine each word in the clause and determine whether it was a kind of relation, i.e.

it would look up the word in the knowledge base to see if it was marked as a kind of relation.

If the word was not, the system would move on to the next word and this process would

continue until a relation was found. Once the relation was found, the word would be marked

as being "in use" and the system would attempt to find the parameters for the relation.

Defining parameters

The parameters for the relation need to be defined in a similar manner to the relation,

however there must be some way of distinguishing between the parameters and incidental

words found in the clause. One common method used in artificial intelligence work is to give

the parameters a `type'. In the previous examples, the type of the parameter was electrical

device and so the parameter for switched on would be declared as

Switched-on Needs Electrical_device

i.e. "switched-on" needs a parameter which is an electrical device. It is possible to list the

types of certain words in a similar manner to the relation

Computer Kind-of Electrical_device

Television Kind-of Electrical_device

Thus to identify the parameters of a particular relation the system will simply

examine each word in the clause that has not been marked as being "in use" and will check to

107

Likes kind-of relation
Likes needs person person
John kind-of person
Rice-pudding kind-of food
Likes needs person food

Figure 6.2 - More sets of parameters for the relation Likes

see if it is a kind-of electrical device. This process is then repeated until all the parameters

for the relation have been identified.

Some problems

One problem that immediately becomes apparent arises when a relation has a number

of parameters of the same type. For example, the relation "likes" may have two parameters,

both of type person. The method, as described, would therefore take the clause "John likes

Mary" and, whilst it would correctly return the relation as "Likes", would incorrectly return

the parameters as John and John. This occurs because the system simply begins at the start

of the clause when finding the next parameter and John is the first thing which is a kind of

person that it comes across on both occasions. This problem can easily be overcome by

marking as in use any parameters found and hence the same word will not be considered for

two different parameters and therefore the system will return the correct parameters, namely

John and Mary.

Another practical limitation of the current method is that it only allows a relation to

have one set of parameters. In practice this is unlikely to be true and so imposes an artificial

limit on the operation of the system. It would be more natural for the system to allow many

sets of parameters for a particular relation. Each set of parameters is therefore examined

until values can be found for all of them. Thus the clause, "John likes rice-pudding", would

require the declarations in Figure 6.2 to be made.

In this example, the system will try the first set of parameters (person person) and

will find one of them (John), however a second person will not be found. Since all the

parameters have not been found, the system will then move onto the next set of parameters

(person food) for the relation likes, which in this case would be satisfied.

108

rule-1 rule-1
if if
the computer is switched-on switched-on computer
then then
the fault is not with the power supply not-faulty power supply

rule-2 rule-2
if if
there is a power-on-light shining shining power-on-light
then then
the computer was switched-on switched-on computer

Figure 6.3 - Full text and encoded relations

This automatic method of converting the clauses into a relation and parameters can

be implemented in the PREPARE stage of the development process and the clauses in the

.RLC file will be made up of the relation and its parameters rather than the original full text

clauses. This means that the comparison of clauses will be much more efficient, both

because it allows differently worded clauses to be compared and also because significantly

fewer words will normally need to be compared, see Figure 6.3.

ii. Inheritance

In the examples discussed so far, the actual parameters have had the same types as

the formal parameters; John was a person and rice-pudding was a kind of food. In many

cases, however, this direct relationship will not exist; the actual parameter will be an object

that has a particular type, which is itself an example of a more general type which matches

the formal parameter, i.e. rice pudding would be an example of a pudding, which is a kind of

food. Artificial intelligence researchers have developed inheritance mechanisms to deal

with such situations whereby an object can inherit properties from more general objects

(Winston 1984).

Using some form of inheritance has a number of useful computational features.

Firstly it is considerably more efficient in terms of storage space. Consider an expert system

that stores information about a number of people. Instead of storing all the attributes that

people can have with each person, they only need to be stored once as a `generic' person.

109

Individual people can then inherit these characteristics from the generic human. Inheritance

can be implemented in a manner consistent with the previous examples:

John kind-of male-human

Male-human kind-of person

When the system is searching for a person and finds John, it will determine that John

is a male-human. However, rather than stopping at this point, it will continue and use the

data from male-humans to determine that John is also a person. By implementing the

inheritance in this way, no limit is imposed on the number of stages involved in the

inheritance process.

This is performed in the system by obtaining a list of all the things that John is a kind

of from the knowledge base of the system. Each of these items is examined in turn and if it is

not of the required type then it too is examined further. This process continues until either

the correct parameter has been found or there are no more paths to be considered.

Some problems with inheritance

In many implementations of inheritance problems arise when more than one path can

be followed within the inheritance. In these cases a decision must be made as to which path

should be followed irrespective of the domain concerned. An example of this problem is

based on the former American President Richard Nixon. Nixon is a Quaker and Quakers are

pacifists. Therefore an inheritance system which has information about Nixon would, by

inheriting through his being a Quaker, determine that he would not be prepared to fight for

his country. However Nixon is also a Republican and Republicans believe that certain

things, such as one's country, are worth fighting for and hence inheritance through the fact

that Nixon is a Republican would determine that he would be prepared to fight for his

country. The choice of inheritance path is therefore crucial for deciding whether the system

returns that Nixon would or would not fight for his country, see Figure 6.4.

110

NIXON

QUAKER REPUBLICAN

FIGHT FOR COUNTRY?

Is a Is a

No Yes

Figure 6.4 - The `Nixon diamond'

A second problem found in inheritance mechanisms arises when default values are

used. Default values are often inherited from `generic' objects and are used when no specific

values can be found. Thus a generic computer may have a screen, a keyboard and a disk

drive and it is not necessary to specify that every particular computer has a disk drive since

this can be inherited as a default value from the generic computer. If a particular computer

does not have a disk drive, then this is stored as a fact associated with the particular computer

and the default values are not used. This general mechanism causes some problems,

however, when a particular object has attributes in addition to the default values. For

example, an Apple Macintosh has a mouse as well as a keyboard input device. If the mouse

is stored at the level of the Apple, the standard inheritance mechanism will not determine that

the Apple Macintosh has a keyboard.

To a large extent, these problems are avoided in the PESYS system since only the

type of a parameter is searched for, not the attributes of that type. In general, the problems of

default inheritance and multiple inheritance paths only lead to problems when the attributes

of these types are considered, for example, Nixon being both a Republican and a Quaker only

111

causes problems when inheriting whether he is prepared to fight for his country or not and

the inheritance mechanism operates successfully when simply determining whether he is a

Quaker or a Republican.

iii. Statements presented to the users

Although the converted clauses are now much shorter, leading to faster comparisons

and more compact storage, they are not particularly easy to read. If the users are presented

with the question "Is this true: Switched-on John Computer", they are unlikely to have a clear

indication of what the question actually means and the problems of misinterpretation, already

present in semi-formal domains, will be significantly worse.

Since the relation based form of the clause stores all the `significant' parameters of

each relation it is possible to `recreate' a more understandable version of the clause. This can

be done by defining a general pattern for the relation and parameters. For example, a pattern

for the switched-on relation with a person and a machine could be "Person switched the

machine on". When the pattern is used the actual parameters replace the formal parameters.

Thus the relation "Switched-on John Computer" would become "John switched the computer

on". Note that in the `recreated' version of the clause, the actual relation is not (necessarily)

displayed.

The pattern for a relation can be represented in a similar way to the rest of the data,

with the relation name being followed by the keyword and then the translation pattern with

the parameter types declared:

Switched-on Translates Person Switched The Machine On

and it is possible to define different patterns for different sets of parameters associated with a

relation. In a similar manner to finding the appropriate set of parameters, the system

examines each translation pattern until it finds one where all the parameters are present in the

pattern.

This method of recreating clauses is easily adapted to deal with questions which ask

the users to enter a particular value for the clause, rather than whether the whole clause is

true or false. For example, the system may ask "What thing did John switch on?" and then

112

present a list of possible answers, including a television and a computer. The users can then

choose those items that John switched on.

This can be implemented by using a pattern which includes the type of variable to be

varied. In the previous question the pattern was "What thing did person switch on ?

machine" where the last word indicates the item that varies. When the file is PREPAREd a

list of things that inherit the type "machine" can be created (since this is a computationally

intensive task) and this list can be used whenever the question is displayed.

iv. Implicit relations

Clauses such as "The ball is red" cannot easily be incorporated into the method as it

has been described. The problem begins when trying to find a relation in the clause. The

only obvious relation is the word "is". Selecting this as the relation requires the definition of

a set of parameters associated with the relation. One possible set of parameters would be a

spherical object and a colour. However, such an approach would lead to many sets of

parameters for the relation. The other possibility would be to define the parameters as

something and something. This approach removes all the benefits of the use of types for the

parameters and does not distinguish between the word "the" (which is a kind of determiner)

and the word "ball" (which is something to do with the relation).

Consider the clause "the ball is a red colour". Most people would agree that it

conveys the same idea as "the ball is red". Why is this so? The answer seems to be related to

the fact that "red" is a kind-of colour and "colour" is a kind-of relation. Thus the word red

seems to imply the relation colour. Thus the general inheritance principles discussed

previously could be adapted to work with relations as well as parameters.

The implied relation can be declared in the normal way:

Red Kind-of Implies

Red Implies Colour

Colour Kind-of Relation

The use of implicit relations means that the designers of an expert system application

are no longer required to use the same tense / phrases to describe the relations. Synonym

relations are possible and this is particularly useful for dealing with the different forms of

113

verbs. For example, the relations creates, created and creating are all variations of the

relation create and hence imply the relation create. By making use of the implied relation it

is only necessary to define one set of parameters and translations.

v. `Learning' about relations

For the system to operate successfully, it is necessary for the developers to provide

information about the various relations, parameters and translations that are used in the

clauses. This information should be provided in as simple and automatic a way as possible

and can best be implemented by making use of the method used by the system to convert the

clauses into this relation based form.

The method begins by taking a clause and searching for a relation. Therefore, if no

relation is found, the system needs to be told about the relation. This can either be done

explicitly, by stating that something is a relation, or implicitly, by showing how an

inheritance link arrives at a relation. The actual forming of the statements such as "... kind-

of relation" can be automatically performed once the name of the relation has been stated.

Whenever a new relation is specified, at least one set of parameters should also be entered by

the developers of the application.

After the relation has been successfully identified the system moves on to finding the

parameters of the relation. There are two ways in which this can fail. Either the existing sets

of parameters are not suitable for the given clause, in which case new parameters need to be

specified, or the types of things in the clause have not been fully described in which case

extra inheritance information needs to be entered.

Finally, the system can prompt the developers of the application for any translation

patterns for the relations, using either the statement or question form of the clause. The

system can then also automatically generate lists of things which inherit the type machine, for

example.

vi. A case study

A small demonstration knowledge base was created to test the usefulness of this

method. A domain was chosen where a substantial part of the knowledge base was described

114

The threat of new entrants
The intensity of rivalry among existing competitors
Pressure from substitute products
The bargaining power of buyers
The bargaining power of suppliers

Figure 6.5 - Porter's major competitive forces

in natural language clauses since, as was discussed in Chapter 3, descriptive definitions in

natural language are likely to be a major cause of problems in semi-formal domains. In this

particular knowledge base, no commands were used and therefore all the clauses were text

based clauses. Further details of the knowledge base are given in Appendix V.

The knowledge base was designed to provide advice to someone considering whether

or not to use information systems to obtain a competitive advantage in a particular business

situation. The underlying knowledge used was taken from the article "The information

system as a competitive weapon" (Ives and Learmonth 1984).

Ives and Learmonth define an application of information systems technology as

having a strategic role if "it changes a firm's product or the way a firm competes in an

industry" (p. 1193). They discuss the work of Porter who identified five major competitive

forces that affect a firm:

Thus to remain competitive the firms can aim for any of three major goals. They can

aim for overall cost leadership, whereby they use information systems to reduce the cost of

their product below that offered by other suppliers. They can use information systems to

differentiate their product from those supplied by their competitors, perhaps by offering

individual design services. Finally the firm can remain competitive by focusing on a

particular market niche and information systems can also be used to help with this task.

Information systems technology can also be used to prevent the threat of new entrants and

reduce the intensity of rivalry amongst existing competitors.

The model that Ives and Learmonth develop is based on the customer resource life

cycle, that is the life cycle of the customers' interactions with a firm from the initial selection

of suppliers, through the acquisition and use of the product to the final after sales service. By

concentrating on the customer throughout the life cycle, special attention can be paid to

enhancing customer services which will have a direct effect on customer loyalty and will

differentiate the firm from its competitors.

115

As well as describing the model in some detail Ives and Learmonth also provide a

number of examples of actual information systems in each of the thirteen stages of their

model. The knowledge base is designed to cover all thirteen possible areas where the

introduction of information systems technology may offer the company a competitive

advantage and includes a number of actual examples for each stage to provide guidance to the

user. Thus rather than asking "Can an information system be used to determine how much of

a resource is required?" the users are asked if a condition similar to one of the examples

exists in the organisation. If a similar example exists then information systems technology is

potentially useful for that stage of the customer resource life cycle.

vii. A discussion of the problems with the method

Although the system was implemented and operated satisfactorily, a number of

problems were noticed which suggested that there might be fundamental difficulties

associated with this method, difficulties that would prevent the adoption of the method in the

final system. In particular, these difficulties were associated with defining parameters for

relations and defining the types of parameters associated with various relations.

Problems identifying parameters

In most cases the relation in the clauses was identified without too many problems,

and it was only when the parameters were identified that problems arose. An example of this

arose from the clause "The resources required can be specified". In this case the relation is

easily identified as "specified", but problems arise when defining the parameter for the

relation. In this case, the parameter is something to do with the "resources required",

however it is difficult to determine what type "resources" are. In this particular case, they

were described as being of type "object".

Ideally the parameters chosen should be as general as possible, allowing a wide range

of cases to be covered by a single relation. In many cases, however, there are few clues as to

suitable parameters and the process often degenerates into an ad hoc process that depends

entirely on the particular clause being examined. Moreover, the choice of parameters also

becomes dependant on who is making the decision and the time that the decision is being

116

made. Effectively, the problem of subjective definitions is arising as the knowledge base

designers choose their own parameters according to their own backgrounds.

A possible solution based on semantics

Stamper et al. (1987) describe work that has been undertaken to try and arrive at a

semantic normal form. They argue that the various normal forms that exist in relational

databases approach the problem of normalisation from the point of view of the existing

database structure, not from the underlying domain that the database is trying to model. For

example, a database that is in third normal form has been designed so that valuable

information, such as the address of a warehouse, is not lost when certain data items are

removed. For example, if all the items in the warehouse are removed, the address of the

warehouse should still be accessible. Similarly the updating of information should be

performed without the risk of redundancy. Thus the telephone number of the warehouse

would ideally only be stored once in the database, so that only one field needs to be altered if

the phone number changes.

Whilst this approach is very useful for dealing with data once it has entered the

database, it provides no way of dealing with changes that occur in the underlying domain that

the database is trying to model. For example, the database may still be able to obtain the

address of the warehouse when there are no items stored in the warehouse, however it is not

able to cope with a change in the organisation whereby parts are no longer stored in the

warehouse but are instead delivered directly from third party suppliers on the basis of a

request from the company.

Stamper et al. propose the foundations for a semantic normal form which attempts

to make explicit the underlying semantics of the problem domain. The methods used to

perform this task are semantic analysis and ontology charting which are described in more

detail by Backhouse and Liebenau (1990). Semantic analysis involves examining a textual

description of a particular organisation or process and analyzing the main terms used. These

terms are classified according to the role that they play in the description, whether they

describe things, conditions or states. Once the basic terms have been obtained and classified

they are presented in an ontology chart. The ontology chart shows what things must exist

before other things can exist. This necessity is represented by having things on the right of

the diagram ontologically dependent on those to their left.

117

AUTHOR

BOOK

WRITES

Figure 6.6 - A sample ontology chart for books, authors and writing

Thus, for example, a book does not depend ontologically on its author, it can exist for

many years after the death of the author, after the author does not `exist' in any real sense.

However, the "writing" of a book depends on both the author and the book. The book cannot

be written without the author, see Figure 6.6. In the warehouse example, the delivery of

parts depends on the parts existing in a warehouse, but this warehouse does not have to be

owned by the company.

Ontology charting and semantic analysis may well prove to be useful in the

development of "stable" expert systems and further research in this area is needed. However

at the time when the problems of defining parameters were first noted research in semantic

analysis was not sufficiently well advanced so that it could be used in this thesis.

Furthermore, there were other problems associated with finding parameters that would still

cause problems, even if the knowledge base was in a semantic normal form.

Problems with type hierarchies

118

Defining type hierarchies in the development of the relations also caused

considerable problems. It was found that in many cases things were simply given the type

"object" as no more descriptive form could be found. This causes a number of problems. In

particular it removes the potential advantages associated with a strong typing of parameters.

If everything is called an object then no distinction can be made between "objects which have

motors in them" and "objects which can operate on abstract data". In those cases where

distinctions were attempted, they tended to result in ad-hoc combinations of terms, carefully

tied together using underlines. In the previous example, the clause "a round_the_clock

order_entry_system has been created" lead to round_the_clock being described as an object.

On a more practical level, having everything classified under a single type increases the

potential for the system to chose the `wrong' parameter when attempting to convert a

particular clause. This is particularly important when inheritance is used - everything may

eventually become an `object' through inheritance.

Synthetic and organic problems

This problem of defining types runs counter to more conventional work in expert

systems. The LEONARDO expert system shell, for example, includes frames and

inheritance in its basic knowledge representation format yet there are few problems reported

finding appropriate types for the inheritance mechanism. Did the problems with the example

application arise because of the particular implementation of the domain chosen, or were they

more fundamental?

One possible explanation relates to the semi-formal nature of the domain chosen. If

the knowledge base is written for a domain such as the repair of a mechanical device, then

problems with the inheritance of types are less likely to arise because some form of hierarchy

already exists in the device being repaired, in essence the problem is synthetic. The

designers of the device will have decided that, for example, the large wheel would be part of

the drive mechanism, whilst the array of lights is part of the display panel, which is itself part

of the control mechanism. The process of designing the device has lead to a prescriptive

definition of the components and their interrelationships. This prescriptive definition gives

each component a place in a prescribed hierarchy. Thus a wheel is part of the drive

mechanism because that is what it was designed for and, although there may be problems

119

associated with identifying the hierarchy created by the designers of the device, these

problems can be overcome.

If, however, the clauses describe social `creations' then they are likely to be

descriptively defined and there simply may be no underlying hierarchies that can be utilised,

the problems are organic. The clauses therefore describe things that were arrived at through

a process of social interaction between many different actors, operating with different beliefs,

desires and intentions and hence there is no purposeful, central principle which underlies the

process; there are no `designers'.

b. PROVIDING ASSISTANCE WITH INTERPRETATIONS

i. The use of prompts

After careful consideration of the limitations inherent in attempts to develop this

method for semi-formal domains, the decision was taken not to use the approach in later

versions of the PESYS system. Instead, it was decided that the clauses of the rules would be

kept in their full natural language form and attempts would not be made to try and formalise

them in any way. The problems of writing the `same' clauses in different ways were accepted

and it was decided that the developers would have to ensure that no mismatches arose. It is

possible to support the developers of an application by providing an editor that is designed to

make the repeating of certain clauses as simple as possible.

Despite the failed attempts at finding some representation for the knowledge in semi-

formal domains, the problem of conveying the appropriate interpretation to the users remains.

As the discussion on descriptive and subjective definitions showed, even a text clause that

has not been formalised in any way is liable to misinterpretation. The clause may also

attempt to describe the use of tacit knowledge or tacit skills. The system must therefore

provide some way of conveying to the users the particular interpretation used by the system.

This extra information should allow them to `understand' the question and provide an

appropriate response.

A very simple, but effective solution to this problem involves using prompts. These

prompts would be associated with individual clauses and would be displayed for the users if

they require assistance. The prompt could contain a more detailed explanation of the

question posed, it might provide some indication as to which interpretation was used, it may

120

suggest why that interpretation was chosen over other possible ones or it may be used to

attempt to convey the use of tacit knowledge.

Attaching prompts to the clauses in a knowledge base in PESYS is a relatively

straight forward process. All that is required is for the developers to include the keyword

prompt anywhere in the clause. On the next line, the name of the prompt is specified.

Problems of redundancy and retyping are minimised by using identifying names for the

prompts in the knowledge base and using these names to display the full text of the prompts.

This means that if the wording of the prompt needs to be altered, this can be done easily and

only needs to be done once. Moreover, the text of the prompt itself only needs to be entered

once.

The PREPARE program examines the rules and, in addition to the housekeeping

tasks described earlier, removes any occurrences of the keyword prompt from a clause and

interprets the next line as being the name of the clause rather than the next clause of the rule.

The program EXTRAS presents each of the prompt names to the developers of the

application and they can then enter the text associated with that particular prompt. The

actual prompts are stored in a file with extension .PRO (PROmpt).

When the users are presented with Yes/No questions and the clause in question has a

prompt associated with it, it is possible to add another option to the question display. If this

option is selected by the users the text of the prompt is displayed on the screen until the users

press a key. It is also possible to specify commands as prompts and if the prompt is

requested, the appropriate command is executed. This allows the developers of the system to

make use of other facilities to provide the prompts. For example, it would be possible to use

graphics to help explain the question.

121

Figure 6.7 - A question with a prompt

 64447
 5A Reasonable Temperature Is In The Range 20.00 To 30.00 Degrees Centigrade 5
 5 5
 5 5
 94448

 64447
 5 Is this true 5
 5The System Is Operating At A Reasonable Temperature 5
 5 5
 5 5
 5 Yes No Unknown Explain Prompt 5
 5 5
 5 5
 5 5
 94448

Prompts in requests

In addition to questions, however, the users may also require further assistance when

the system requests certain pieces of information. This causes problems when using the line

editor provided by the Pascal compiler. The line editor does not trap certain key presses that

can be used to indicate that the users want access to the prompt information. In PESYS

prompts are requested by pressing the ESCAPE (Esc) key. However when this is done in the

standard line editor, the result is simply an abandoning of the line currently being edited.

These problems were overcome by writing a new line editor. This editor provides all

the facilities offered by the default editor, such as control over cursor movement by a

character or a word and also allows text that is longer than the chosen window to be entered

as the line is scrolled to keep the edited text in the screen window. The most important

feature of the new editor, and the reason for it being written, is that it traps certain error

conditions such as when the users press ESCAPE (Esc). These error conditions can then be

used by the main program to allow the users the possibility of having a prompt displayed.

The option of making use of the explanation facility of the system is also provided at this

point.

It is possible that the users are half way through entering a value in response to a

request before they realise that they may be entering an inappropriate value. If they press

ESCAPE (Esc) and use the prompts provided, they may decide that their answer was in fact

122

Figure 6.9 - Prompts within a request in PESYS

correct and they want to continue editing it. In other cases, they may want to abandon their

previous answer and type in a new value. The default line editing routine does not allow the

re-editing of existing values, however this can easily be incorporated into the replacement

line editor. This has the added advantage of allowing the system make use of default values

which can be altered or replaced by the users. In common with the handling of default values

in most packages, if the first key pressed represents a `character', then this is taken to imply

that a new value is being entered and the previous value is deleted. Any other keypress, such

as a cursor key, is taken to indicate that the existing value is to be edited and the system acts

accordingly.

 64447
 5How Many Revolutions Per Second Is The System Operating At 5
 5 5
 5 5
 5 5
 94448

 64447
 5 5
 5Continue Restart Explain Prompt 5
 5 5
 94448

Forms

Normally once a request has been satisfied in the PESYS system, it is not possible to

alter the value entered. At best the system provides a What-if analysis facility to alter the

value after the inference process has been completed. In many applications, however, this is

insufficient and any facility that allows the users to alter values, no matter how limited,

would be useful.

A forms facility was developed in PESYS to provide some of the extra functionality

required. This is simply a method whereby a background text screen can be displayed with

slots which allows the users to enter values for variables and where the results of expressions

can be displayed. Variable slots contain the names of variables which the users can enter

 1This work was supervised by the author along the lines indicated in this thesis.

123

whilst expression slots contain expressions which are evaluated using the current data values

before being displayed on the form. The advantage of using forms is that the users have the

ability to cycle through all the variables on the screen making sure that they all have

appropriate values. The ability to re-edit existing values is particularly useful here. By

keeping a number of related variables on the same form, the users have the opportunity to

alter the values indefinitely until satisfactory values are chosen and the system can then

continue with the inference process.

The variable slots in PESYS call the variable inputting routines described in the

commands section of PESYS and therefore it is possible to enter strings and reals as values

for variables with specific questions being posed for each variable. It is also possible to enter

minimum, maximum and most likely values using the slider with the most likely value being

displayed on the form. The number of characters of the variable value that are displayed is

independent of the actual value stored. For example, a form may only display the first ten

characters of a name.

ii. A case study

The PESYS system was used by Ashwajit Singh to develop an expert system to assist

in filing income tax returns in India1 (Whitley et al. 1989). The system was designed to solve

a particular problem but also provided useful feedback on the usefulness of the system of

prompts provided. Further information about the application is provided in Appendix V.

Income taxes have long been the principal means of taxation in industrial countries.

They are able to generate a great deal of revenue and offer scope for income redistribution

with relatively few distortions. In developing countries such as India, however, they are

often difficult to administer, raise little revenue and offer little scope for income

redistribution. The Indian Income tax authorities undertook to simplify the tax legislation

and introduce computers to the process of filing tax returns. It was hoped that this would

reduce the burden on accountants, allowing them to undertake more rewarding work (Whitley

et al. 1989).

The expert system was designed to be used by someone who has no experience of

Income Tax Legislation and aimed to assist them in filing income tax returns. It was

124

Figure 6.11 - A prompt in the Indian Income Tax application

therefore decided that the system should present users with simplified questions which would

guide them through the process of filing their returns. This meant that the text of the

legislation was interpreted by the knowledge engineer / expert who provided simplified

versions to be presented to the user. During this process it was noticed that a significant

bottleneck arose when interpreting the legislation.

In some cases, however, the users of the system would require further information

about the interpretation of the clause and in this case it was decided to display the actual

legislation in the prompt. Thus the users were given a simplified version of the legislation

when answering questions and responding to requests whilst the full text of the legislation

was available if needed.
 64447
 5In The Case Of An Individual Being A Citizen Of India Who Being Outside 5
 5India Comes On A Visit To India In Any Previous Year 60.00 Days In 5
 5Subclause (c) Would Be Substituted By 90.00 Days. 5
 5 5
 94448

 64447
 5 Is this true 5
 5You Are An Indian Citizen Who Is Abroad, Comes On A Visit To India In The 5
 5Previous Year 5
 5 5
 5 5
 5 Yes No Unknown Explain Prompt 5
 5 5
 5 5
 5 5
 94448

iii. Discussion of the limitations of prompts

Although the prompts offered by the system provided information about the choice of

interpretation used in the system, also possibly explaining why that interpretation was

chosen, they do not convey to the users how other possible interpretations relate to those used

by the system. For example, the users might be told that if they had left India for the

purposes of employment outside India then their residential status might be altered, but this

would not be of much assistance if they had undertaken voluntary work outside India and

they wanted to know if they were still covered by this particular part of the legislation.

125

Thus the prompts are only really useful if the users' interpretations are closely related

to those of the developers of the system, if they lie within the boundaries of the system and

the prompts are used to confirm this belief. The nature of knowledge in semi-formal

domains, in particular when it is based on descriptive and subjective definitions suggests,

however, that the users are as likely to have interpretations that lie outside that explicitly

covered by the knowledge base. A prompt that is only useful for confirming a particular

interpretation is therefore not entirely satisfactory. What is needed is for the users to see how

their own particular interpretation relates to that used by the developers of the system.

Furthermore the use of prompts with tacit skills can do little more than convey to the

users that a certain skill is to be used and if they do not possess that skill no further assistance

is offered. Thus a prompt would simply state that the users are expected to view the

engineering drawing as the thing it represents and would, in general, not provide assistance

as to how this seeing-as could be attained by those users that did not have the necessary tacit

knowledge / tacit skills.

c. THE USE OF NON-LINEAR DOCUMENTS

This chapter has so far discussed two attempts to overcome the problems of

knowledge in semi-formal domains. The first of these was based on a method which tried to

find the basic ideas expressed in the clauses of rules in the knowledge base. It was found that

this method was not particularly suitable for domains where there was no predefined

structure. The second method attempted to provide information that described the intended

interpretations of the clauses found in the rules. Whilst this was a more successful attempt, it

was restricted in that it only provided information about the chosen interpretation and if the

users had formed other interpretations they could not easily relate their own interpretations to

those used by the system. What is required is some way of linking various interpretations

that is not based on a `deeper understanding' of the domain which may simply not exist. The

final solution examined in this chapter is based on the work of Wittgenstein and Searle on the

boundaries between different items.

i. Wittgenstein and the similarities between names

 2After Wittgenstein "Now you are only playing with words" (1953, §68).

126

Wittgenstein (1953, §65-69) examines descriptive definitions to see if any common

features exist between different examples of the same name, any features which could be

used to make the definitions prescriptive. He argues that "if you look at them you will not

see something that is common to all, [the things that share a descriptive definition] but

similarities, relationships and a whole series of them at that. ... And the result of this

examination is: we see a complicated network of similarities overlapping and criss-crossing:

sometimes overall similarities, sometimes similarities of detail" (§66). Wittgenstein suggests

that no similarities exist between all the things that use a particular name, rather that family

resemblances exist between different, overlapping parts of the things given a particular

name.

The term "expert system" is an example of a descriptive definition. Possible

similarities between expert systems that could be used as prescriptive definitions for the term

include:

! It is implemented in an artificial intelligence language - but the CATS expert system

(Harmon and King 1985) is implemented in the FORTH programming language.

! The knowledge base is represented as if-then production rules, but PROSPECTOR's

knowledge base is represented using semantic networks (Harmon and King 1985).

! The inference engine of the system is kept separate from the knowledge base - but "[A]ll

too often, expert system developers must alter a problem's logic to make rules fire in the right

order" (Vrba and Herrera 1989, p. 76).

! The system mimics the performance of a human expert - but accounting packages often

perform the same tasks as human experts, i.e. professional accountants, and are not normally

classified as expert systems.

! The system is based on the knowledge of a human expert - but the British Nationality Act

expert system (Sergot et al. 1986) was developed using only the published legislation and no

human experts (i.e. trained lawyers) were involved in the development process.

In fact the only similarities that exist between all expert systems seem to be that they

are computer programs (but then so are word processors, spreadsheets and databases and they

are not normally referred to as expert systems) and the fact that their developers use the name

expert systems for them!2

127

One possible attempt to overcome this problem would be to introduce some kind of

weighting system. This would mean that if something satisfied, say 70% or more of the

available criteria for a name, then it could legitimately use that name. By attempting to

impose a formal structure where none exists or is appropriate (which is the case with

descriptive definitions) an interesting paradox arises. Consider the case of adding grains of

sand, one by one, to a heap on the ground. Eventually this heap of grains will be called a pile

of sand. If the number of grains of sand in the pile are counted (say N), then a `formal

weighting' process, based on the number of grains, must imply that the addition of one extra

grain of sand to a heap of N-1 grains suddenly makes the resulting amount a pile. The

capabilities of this single extra grain of sand to take the sand beyond the boundary of a heap

and into a pile is counter-intuitive but only arises if a prescriptive definition of a pile is

attempted.

The problem, therefore, arises when attempts are made to try and prescriptively

specify boundaries where no formal boundary exists. Searle (1969, pp. 5-12) argues that the

problem of borderline cases does not show that we do not understand the concept being

considered, but rather that we recognise a borderline exists means that we have grasped the

concept concerned.

ii. Non-linear documents

The final solution to some of the problems of knowledge in semi-formal domains

discussed in this thesis makes use of non-linear documents (NLD) to implement a system

based on Wittgenstein's family resemblances. The term non-linear document technology is

similar in many ways to the notion of "hypertext" which is a glossy but uninformative term.

The standard way of moving through a computer based `document' has its origins in

the reading of paper documents in that the reader starts at the top of the document and then

moves linearly through the document until the end is reached. Of course paper documents do

allow reading to take place in a non-linear fashion. For example, when reading an academic

paper the reader may often jump to the list of references if the text mentions something that

the reader wishes to examine further. Once the references have been examined, the reader

continues reading the main text again. The use of footnotes has a similar effect of altering

the linear reading of the document.

128

The necessity of the reader to keep track of the previous position imposes a

significant limit on the amount of non-linear reading that is possible in a paper based

document. In the case of a computer system, however, such limits are less significant. By

implementing the movement through a NLD as a recursive procedure, a computer based

system can automatically return the reader to the previous part of the document as required.

Moreover this process can be repeated an indefinite number of times, limited only by the

available memory of the machine.

iii. Non-linear documents in PESYS

Non-linear documents within PESYS are made up of two main components. The

first of these is the text of the `document'. This is stored as a series of screens and each

screen holds text on a particular topic, idea or interpretation. On those occasions where there

is more text than can be held on a single screen it is possible to link a series of screens

together with the users simply pressing PageDown (PgDn) and PageUp (PgUp) to move

between the different screens. Each screen is given a unique name which can be used to

identify it, it also has an internal code number that is used to locate the screen in the NLD

file.

The second component of non-linear documents are the links that are used to allow

the users to move through the document in a non-linear manner. Each screen has a number of

links which are displayed in turn. When a particular link is selected the system displays the

new screen that is associated with that link. Figure 6.13 shows how a number of different

screens can be linked together. This new screen itself has its further links which allow the

users of the NLD system to move through the entire document in a non-linear manner. By

implementing this movement as a recursive procedure it is possible to automatically

backtrace through the screens examined.

129

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

this is a sample

screen in a

non-linear

document

which is linked

to many other

screens

Figure 6.13 - How various screens may be linked together

The NLD is entered by specifying a particular screen. An index to the NLD is kept

in an ordered file and this is used if access to the NLD is performed using the name of a

particular screen. The system uses this file to find the record that is associated with the

name. This record contains the number of the screen and the screen can then be displayed.

The alternative method of using the system involves providing the screen number

immediately. However, this is only possible if the number is known, as is the case in the

system help facility.

Creating a non-linear document is quite difficult to describe since it is necessary to

provide links to other screens which may not exist at a particular time. It is therefore

necessary to continuously update the information when a previously undefined screen is now

defined. When creating a new non-linear document, it is often advisable to layout the basic

structure of the different screens, describing where the links are to be made.

iv. Implementing non-linear documents in PESYS

130

Each non-linear document in PESYS is made up of three files. The first is simply an

ordered index containing the names of all the screens together with their identifying numbers.

These numbers are used to locate the records associated with the screens in the other files.

The main file is made up of records containing the textual information displayed in each of

the screens. In addition to containing the text associated with a particular screen, each record

also contains information as to where the links between screens are stored and also which

screens should be accessed should the users press PageUp (PgUp) or PageDown (PgDn).

The final file contains the links between screens and each record in this file is made up of the

text of the link, where this text appears on the screen, the location of the next link on that

screen and the screen that the link is directed to.

The records in the file are accessed using the random access file handling facilities

provided by the Pascal compiler. These are described in more detail in Boisgontier and

Donay (1988). Essentially the file is made up of a number of records each of which can be

accessed by setting the file pointer to the number of the required record. The first record is

number 0. In the non-linear documents, screen number 0 is used as a general help screen /

index that can be used by the users to move to any other screen in the file. The random

access file handling provided by Turbo Pascal allows both reading and writing of records at a

particular point in the file. This means that it is possible to edit or delete individual records

as necessary. It is important, however, that the individual links are properly maintained

otherwise it will be possible for users to move to previously defined screens only to find that

they no longer exist.

131

Screen file (.NLD)

12 13 14 15 16 17 18 19 20

50 51 52 53 54 55 56 57 58

NIL

Link file (.LNK)

Figure 6.14 - How the screens and links are stored in a file

Figure 6.14 shows how the two main files associated with non-linear documents

operate. In this example, the first link from the screen found at position 13 in the file is

found at position 52 in the link file. This link is to screen 17 and the next link on the screen

is found at position 54, which points to screen 15. The third, index file is simply used to find

the number of a given screen by using its name. This is done by performing a binary search

on the ordered file and reading the appropriate record number from the located file. As

Figure 6.14 shows, each screen contains links to a number of other screens and these are

marked by having the screen record contain the record number of the first link record. This

link record then contains the number of the next link record as well as the screen it links to.

Note that the use of random access means that it is not necessary for the links or screens to be

stored in any particular order.

Non-linear documents implemented as commands in PESYS can therefore be

included automatically in a knowledge base to provide information at a particular point in the

interaction. Moreover, since commands can be used as PESYS prompts, it is possible to

specify a particular screen in the command for a prompt and the system will immediately

132

Figure 6.15 - A help screen in PESYS

display this if the users select prompt when answering a question. This is the most likely way

of using NLD technology in PESYS.

NLDs are also used to provide help with the PESYS system in general and can be

selected by pressing the help key F1 at any time. Whenever this key is pressed, the system

provides the help about the current item. By carefully linking these help screens the users are

able to obtain assistance about the current option, other options available at that time and also

the overall use of the system.

 64447
 5 INFERENCE ENGINE 5
 5 5
 5 This option is used to alter the configuration 5
 5 of the inference engine of the expert system. 5
 5 5
 5 By selecting this option it is possible to 5
 5 use any combination of the following inference 5
 5 methods with a particular knowledge base. 5
 5 5
 5 Forward Chaining 5
 5 Backward Chaining 5
 5 Mixed Chaining 5
 5 Pure Forward Chaining 5
 5 5
 5 This option is part of the configuration menu 5
 5 5
 5 5
 94448

v. Using the non-linear documents in PESYS

The process of developing a NLD file for a particular application is rather difficult to

explain and is presented as part of the user guide in Appendix III. However, the use of non-

linear documents in the runtime part of the system is much less complicated and will now be

explained.

When the NLD is selected (either by pressing F1, by selecting a prompt or when the

NLD command is executed as part of the knowledge base) the chosen screen is displayed on

the screen. Also highlighted at this time will be the first link to another screen. By pressing

the TAB key it is possible to move the highlight through all the possible links on that screen.

If the RETURN key is pressed on any of these highlights then the system will move through

the link to the next screen. This process can continue indefinitely.

133

Pressing the CTRL and F1 keys at the same time retraces steps through the chosen

screens. This allows movement back through the available screens. Alternatively, pressing

ESCAPE (Esc) will immediately return the users to the main program. Pressing F1 whilst in

a NLD results in the index / help screen (screen 0) being displayed.

vi. Non-linear documents and multiple interpretations

Non-linear documents can be used to allow the users of a particular system to

examine multiple interpretations of a particular term. The initial screen presented to the

users on requesting assistance will convey the interpretation used in the application.

However links will be provided to other related interpretations. Those relations that have

direct family resemblances with the one used in the system will be linked to the initial screen,

whilst others may be linked less directly. The users of the system can then examine the

various screens that are available on the system until they decide that they have been able to

incorporate their own interpretations with those used by the system. When this has been

done, they can return to the questions or requests posed by the inference engine.

As an example of this process consider the use of non-linear documents with an

expert system that makes use of the idea of race as it was discussed Chapter 3. Suppose the

system asks the users to specify their race and they are unsure of what category they should

use. They use the NLD to provide assistance with this question and the system displays

information about the possible categories available as is shown in Figure 6.17, based on the

classification used in Stanford University.

134

Figure 6.17 - A screen from a non-linear document explaining `race'

Figure 6.19 - A Family Resemblance to `race' - skin colour

 64447
 5 The classification of race used by this 5
 5 University is 5
 5 5
 5 1) Black, not of Hispanic origin 5
 5 2) Asian, or Pacific Islander (persons having 5
 5 origins in any of the original peoples of the 5
 5 Far East, South-East Asia, the Indian 5
 5 Subcontinent or the Pacific Islands) 5
 5 3) American Indian or Alaskan Native 5
 5 4) Hispanic (persons of Mexican, Puerto Rican, 5
 5 Cuban, Central or South American or other 5
 5 Spanish culture or origin, regardless or race) 5
 5 5) Non-minority (persons having origins in any 5
 5 of the original peoples of Europe, North Africa 5
 5 or the Middle East) 5
 5 5
 5 See also Skin Colour, Country of Origin 5
 94448

However, the users of the system have an American Indian and Hispanic origin and

are therefore unsure as to which category they should use. One of the available links on the

screen is `skin colour' and when this is selected a new screen is presented, see Figure 6.19,

which explains that skin colour was only used to determine race in the early 1960s in states

like Virginia, where the only options available were white and coloured. In addition, the

system may provide some indication as to how skin colour relates to the categories available

in the system, perhaps suggesting that, for the purposes of the expert system, being an

American Indian takes precedence over any Hispanic origins.

 64447
 5 SKIN COLOUR 5
 5 5
 5 Skin colour is no longer considered the basis 5
 5 for determining race. 5
 5 5
 5 However, a dark skinned person may well be 5
 5 a Black (group 1) or American Indian / Alaskan 5
 5 native (group 3). 5
 5 5
 5 A lighter skinned person may be Asian or 5
 5 Pacific Islander (group 2) or Hispanic (group 5
 5 4) 5
 5 5
 5 All others are likely to be classified as non- 5
 5 minority (group 5) and this should be used for 5
 5 other groups 5
 5 5
 94448

135

vii. Using non-linear documents to examine the boundaries of

the knowledge base

Non-linear documents allow the users of the expert system to examine different

interpretations of the terms that cannot be accurately represented in the knowledge base. The

different interpretations are linked in various ways and by using Wittgenstein's family

resemblances it is possible to guide the users to other interpretations that are similar to the

one used by the developers of the system.

By viewing as many different interpretations as necessary, the users of the system are

able to examine the boundaries to the knowledge base. They can see the interpretations that

are within the scope of the application and they are also able to examine others that lie

outside the boundaries of the knowledge base. In doing so they are able to form a better

understanding of how their own interpretations are related to those of the developers. Even if

their own particular situation lies outside the boundaries of the knowledge base, they will be

able to determine precisely why they are outside the knowledge base.

viii. Non-linear documents and tacit skills

Non-linear documents can also be used to help convey some of the tacit knowledge

used by an application. Whilst the very nature of tacit knowledge means that it is not

possible to fully formalise this knowledge it is possible to provide more assistance to the

users than simply stating that tacit knowledge is used in a situation. For example, consider

the tacit knowledge used in seeing-as in the case of an engineering drawing. The previous

prompt approach would simply state that the users were expected to interpret the diagram.

By using non-linear documents, however, it would be possible to provide some

assistance to those users who do not possess the appropriate tacit knowledge. For example,

the system could display instructions stating that thick lines are used to indicate the outside

edges of the component and that these should be considered first so that the overall shape can

be determined, see Figure 6.21. It can then provide assistance with other parts of the

drawing as necessary.

136

Figure 6.21 - A non-linear document providing assistance with tacit skills

 64447
 5 Engineering drawings 5
 5 5
 5 To try and determine what the diagram 5
 5 represents, first consider the thick lines. 5
 5 These are likely to represent the outside 5
 5 of the object. You may also find it useful 5
 5 to draw this outline on a separate sheet of 5
 5 paper. 5
 5 5
 5 After you have done this and you have formed 5
 5 a rough impression of what the object looks 5
 5 like, consider the dotted lines. These 5
 5 represent parts which have been cut from the 5
 5 object. 5
 5 5
 5 Page Down (PgDn) for more help 5
 5 5
 94448

Whilst this approach will not be perfect, since the very nature of tacit knowledge

means that it cannot be specified, it will at least be of some assistance. In some cases, the

users of the system may possess some of the tacit knowledge required to solve the problem

but they may not feel confident enough to make use of it. If, however, the system can

provide some support in this role they may have the confidence to make use of the skills that

they do possess in conjunction with the functionality offered by the system.

137

CHAPTER 7 - SOLUTIONS TO THE

PROBLEMS OF COMPUTER BASED

KNOWLEDGE BASES

Chapter 4 discussed the problems that arise because a knowledge base is

implemented on a computer system. It was argued that a computer system cannot normally

become aware that the users of the expert system application are confused. This chapter

describes solutions to these problems based on the theory of speech acts that was presented in

that chapter.

a. USING EXISTING COMMUNICATIVE RESOURCES

Suchman's work on plans and situated actions, which was described in Chapter 4,

provides an excellent model for examining the interaction that takes place between humans

and computer systems. The conclusion of her thesis, however, seems to go to considerable

lengths not to state an implication which is present throughout her work. "Today's

machines", she argues, "rely on a fixed array of sensory inputs, mapped to a predetermined

set of internal states and responses. The result is an asymmetry that substantially limits the

scope of interaction between people and machines" (Suchman 1987, pp. 180-181). This part

of her analysis provides an important insight into the problem of human-machine

communication. Unfortunately, her analysis of the "problems for the design of interactive

machines" are overwhelmingly biased against an obvious theme of her research. The three

problems she states are, (emphasis added) "the problem of how to lessen the asymmetry by

extending the access of the machine to the actions and circumstances of the user. Secondly,

the problem of how to make clear to the user the limits on the machine's access to those basic

interactional resources. And finally, the problem of how to find ways of compensating for

the machine's lack of access to the user's situation with computationally available

alternatives" (p. 181).

A major theme of her work has been the fact that there are two parts of the

interaction that are not conventionally made available to the other participant in the

communication. The speech and intentions of the users are not conventionally available to

138

the machine, whilst the design rationale of the system is not available to the users.

Suchman's solutions, as emphasised above, seem simply to tackle the limited availability of

the user's actions to the machine and she ignores entirely the possibility of making the user

aware of the design rationale of the machine. In part, this is probably due to the fact that she

discusses the problems associated with operating a photocopier which is not the most obvious

candidate for allowing the user to examine the design rationale of the system, yet she is also

trying to find general areas for further research and her omission of this viewpoint is

surprising.

i. Confusion and examining the design rationale

The discussion of confusion and the means by which a computer system can become

aware that the users are confused suggests that it is impractical for the system to try and

anticipate or notice that the users are confused. The realisation that they are confused is

likely to be an action that cannot readily be made available to the machine and, just as

importantly, this realisation can occur at any time. The examination of speech act theory in

the context of expert systems proposes three occasions when this realisation is likely to

occur; three occasions when the differences in background assumptions and interpretations

between the users of the system and the developers of the knowledge base are likely to reveal

themselves. The occasions when the assumed background between the users and the

designers reveal themselves, when they become unready-to-hand, are when the system makes

an assertion, when it asks a question and when it makes a request.

If he does not make such and such a change, I'm going to ask him why. And

if he can explain to me something that's logical and based on sound data,

then I'll go ahead and do what he wants to do. (Benner 1984, p. 138).

This quotation describes how a nurse overcomes a discrepancy between a request

made by a doctor and the request that was expected by the nurse. Although taken from a

field (nursing) that has few apparent similarities with expert systems it offers a useful insight

into the domain independent nature of how the use of speech acts can help overcome any

uncertainty on the part of the users.

139

The nurse is similar to the users of an expert system in that she has an unarticulated

assumed background about the problem domain which does not seem to correspond to that

conveyed by the `expert' in the field as it is exhibited in the request made. When this occurs

she is prepared to accept the advice of the expert only if the expert is able to explain

"something that's logical and based on sound data", i.e. something that allows her to

understand why the expert's opinion is to be accepted, something indicating why the felicity

conditions for requests have, in fact, been satisfied. In the case of the nurse this will be done

by the doctor pointing out something that she has not considered or by the doctor offering a

different perspective on the problem. If this explanation is not satisfactory, however, the

nurse will not voluntarily accept the doctor's request.

The Dreyfus model of skill acquisition, discussed in Chapter 2, suggests that the

production rule formalism used in expert systems is not capable of describing true expertise.

It is, however, an excellent method for conveying competent skills and as such is ideally

suited to justify something to users who are prepared to be corrected so long as they can see

the reason why that alternative should be taken. In this case, in fact, the simplicity and

clarity of the description of the competent skill is a positive advantage.

ii. Designing support for overcoming confusion

In order to show how tools to support this process are implemented in PESYS, the

act of making an assertion, which arises when an expert system states a goal (or in the case of

PESYS an inform statement), will be considered. Those features that relate specifically to

requests and questions will be described later.

By asserting an inform statement the expert system may cause the users of the system

to realise that they may be confused. This can occur when the system asserts a result that is

not expected or alternatively when the system fails to make an assertion that is expected. The

users will therefore want to resolve the problem. In the PESYS system assertions are made

whenever a rule fires and one of the then-clauses is marked with an inform level of 1 (goal)

or above (useful information). If the assertion causes the users to realise that they are

confused, then in most cases the computer based expert system will not be aware of this and

the users will have to take the initiative to overcome the problem. The asserted clause is

displayed on the screen and the system waits for the users to press any key. By pressing the

140

RULE IDENTIFY-10
IF
animal is mammal
animal is carnivore
animal has tawny colour
animal has black stripes
THEN
animal is tiger

Figure 7.1 - Winston's rule for identifying a tiger (Winston 1984, p. 282)

SPACE bar the users can indicate that they believe that some confusion has arisen which

they want to resolve.

Upon determining that confusion has arisen, steps must be taken to try and resolve

the misunderstanding that arose. The nature of the confusion is not, in many cases, available

to the system and the system cannot therefore offer any automatically generated solutions.

The theory of speech acts, however, describes general conditions that are assumed (at least

on the part of the receiver of the act) to apply when an assertion is made. As was discussed

in Chapter 4, for a non-defective assertion the speaker is expected to have evidence or

reasons for the truth of the proposition being asserted. It must not be obvious to both the

speaker and the hearer that the hearer knows the proposition (or does not need reminding of

the proposition). Also, a sincere assertion is made if the speaker `believes' the proposition

and the assertion must count as an undertaking that the proposition represents an actual state

of affairs. The notion of commitment in the communication suggests that the speaker is

expected to be "willing and able to articulate why" the assertion is believed.

When the expert system makes an assertion about which the users are uncertain,

there is an implied commitment on the part of the speaker to explain why the assertion is

believed. The nature of computers means that this commitment to explain cannot be

generated automatically. The users of the system, however, can make use of tools that allow

them to determine the reasons why the assertion is believed.

In an expert system, the only evidence for the assertion being made is that a

particular rule fired. The expert system only `believes' in the assertion to the extent that its

working memory contains facts (entered by the user - i.e. indirectly believed) which were

used to fire that rule. Thus using Winston's animal recognition knowledge base (1984) the

only reason for asserting that "the animal is a tiger" is because the rule Identify-10 fired.

This rule only fired because of the facts entered by the user which were added to the working

memory.

141

In this case, the `belief' in the animal being a tiger follows directly from the facts that

are known to be true and the rule that was fired. The rules in the knowledge base can

therefore be seen as the means by which the experts and knowledge engineers convey their

belief in certain assertions. It is possible, however, that the eventual rules used may

misrepresent the intentions of the expert if there have been problems in the knowledge

acquisition or implementation stage of the development process. Such cases of

`unreasonable' rules leading to unjustifiable assertions would be observed and ignored by the

users of the system who can then use the system to follow other reasoning paths (see below).

iii. Implementation of the support

An assertion is made when a rule with an inform marked then-clause is fired. The

rule can only fire if all the if-clauses of the rule are known to be true (i.e. are found to be true

in the working memory of the system). It is therefore advisable to display the entire rule for

the users of the system indicating the if-clauses that are known to be true. In general,

however, some if-clauses may be known to be false and others may be unknown and all three

types should be displayed. In PESYS a %%%% is used to signify those clauses that are known to be

true, X is used to signify clauses that are known to be false and ? is used for clauses whose

truth is unknown. Commands, which are "true" by default, are marked with - to show their

special status. A typical rule is shown in Figure 7.2.

142

Figure 7.2 - An explanation in PESYS

 64447
 5 Explanation 5
 5We are trying to verify :The System Is Operating At A Reasonable 5
 5Temperature 5
 5 5
 5Rule 2.00 5
 5If 5
 5? The System Is Operating At A Reasonable Temperature 5
 5? It Is Not The Case That There Do Seem To Be Fumes Being Given Off By 5
 5Then 5
 5The Operating Environment Of The System Is Acceptable 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 64447
 5Exit to previous level How was this derived? Why ask this question? 5
 5Other Clause Scroll Rule 5
 5 5
 94448

When commands such as comparisons and variable manipulations are used it is

useful to have the actual values displayed on the screen rather than simply stating that the

commands were executed and the comparisons evaluated. Thus rather than just specifying

that Number_of_components > 20 was true, the actual value of the number of components

should also be shown. When commands such as Enter are used, it is possible to specify a

large number of variables that are to be requested from the users and their actual values may

be longer than one line. In such a case, the system only displays one screen line of values but

allows the users, through the scroll rule option, to highlight the particular line and scroll

through all the possible values. The scroll rule option is also used when the if-clauses and

then-clauses in the rule cannot all be shown on the screen at the same time and an example of

such a rule is shown in Figure 7.4, with the same rule in a scrolled form shown in Figure

7.6.

143

Figure 7.4 - An explanation based on a long rule

Figure 7.6 - The same rule after scrolling

 64447
 5 Explanation 5
 5We are trying to verify :The Expressions Have Been Evaluated 5
 5 5
 5Rule-4 5
 5If 5
 5- Let Result = 0 ----> 0 5
 5- Let Coefficient = .27 ----> 0 5
 5- Let Error_range = 4.45 ----> 4.45 5
 5- Form Descrip.frm 5
 5- Form Moreinfo.frm 5
 51.00 % The Setting Of The Device Are Reasonable 5
 52.00 % The Operating Environment Of The System Is Acceptable 5
 5- Enter Parameter_1 Parameter_2 Parameter_3 Parameter_4 ----> 23.00 5
 5? The Expressions Have Been Evaluated 5
 5Then 5
 5More to follow ... 5
 64447
 5Exit to previous level How was this derived? Why ask this question? 5
 5Other Clause Scroll Rule 5
 5 5
 94448

 64447
 5 Explanation 5
 5We are trying to verify :The Expressions Have Been Evaluated 5
 5 5
 5- Let Error_range = 4.45 ----> 4.45 5
 5- Form Descrip.frm 5
 5- Form Moreinfo.frm 5
 51.00 % The Setting Of The Device Are Reasonable 5
 52.00 % The Operating Environment Of The System Is Acceptable 5
 5_1 Parameter_2 Parameter_3 Parameter_4 ----> 23.00 45.00 56.00 67.00 5
 5? The Expressions Have Been Evaluated 5
 5Then 5
 5Form Result1.frm 5
 5Form Result2.frm 5
 5Form Result3.frm 5
 5There Should Be No Problems Operating The Device 5
 5 5
 64447
 5Exit to previous level How was this derived? Why ask this question? 5
 5Other Clause Scroll Rule 5
 5 5
 94448

iv. Understanding the justification for the clauses

In some cases, simply viewing the rule that was fired will be sufficient for the users

to accept that the assertion made was both reasonable and appropriate. This is particularly

likely to be the case when the users have forgotten or failed to consider a possible link

between various conditions and the assertion made.

144

In other cases, however, simply displaying the rule that fired will not be sufficient to

allow the users to resolve the confusion that has arisen. They may accept that if certain

conditions are true then a certain assertion can be made in good faith but they disagree that

the conditions for making the assertion have in fact been met. The users should, in these

circumstances, be able to see the rationale behind the if-clauses in the particular rule to see

how they have come to be known to the system, i.e. the justification for these if-clauses needs

to be made apparent.

Selecting the if-clauses

Since most rules will have more than one if-clause it is necessary to select the

particular if-clause that is being examined so that the justification or rationale for why that

clause is known to be true can be examined. It is possible to examine the rationale behind all

the known if-clauses, but each one needs to be examined separately. On machines that have

high resolution screens and mouse type pointing devices, the most appropriate method of

selecting a clause to be examined would be to move a pointer to the clause and pressing a

button on the mouse. On a standard IBM PC, without a mouse type input device, a more

feasible method would be to number the known if-clauses (i.e. those clauses that are not

commands and whose truth is true or false but not unknown). To examine a particular clause,

the users simply need to enter the number of that clause. Rules with only one known

if-clause will cause that clause to be automatically selected and only valid choices will be

accepted by the system. The clause chosen to be examined can be determined from its

number.

Once the clause has been identified, the means by which it was added to the working

memory needs to be found. The inference engine in PESYS only allows clauses to be added

to the working memory in two ways. They can be arrived at as a result of a rule firing or they

can be entered by the users in response to a question. It would be possible to store the rule

used to arrive at a clause with the clause in working memory, however this method is rather

wasteful of memory, particularly since many of the clauses may not need to be examined by

the users.

An alternative method would involve examining all the rules that contain the clause

in its then-clauses and seeing which of these rules fired. These rules could then be used to

provide the explanation. At first sight this seems to be a computationally intensive task,

145

however it should be borne in mind that only those rules that have fired need be examined

(since the clause can only be arrived at when a rule fires) and it is possible to mark those

rules that have fired with a boolean flag. Moreover, in most applications the number of rules

fired will only be a proportion of the total rules found in the knowledge base. If no fired

rules could be found which contain the clause in their then-clauses then it follows that the

clause must have been entered by the users.

Multiple rules that have fired

Some knowledge bases may have more than one rule which fires adding the

particular clause to the working memory and in these cases the users are asked to select the

rule which they wish to follow the reasoning through. Once the rule used has been selected,

it can be displayed to the user in the same way as before.

In some cases, displaying the rule that asserted this fact may be sufficient for the

users to accept the original assertion, in which case they can return to the previous level and

continue with the inference process. In other cases, however, they may still want to examine

the if-clauses of this rule further in which case the entire process is repeated again

recursively.

The resolution of the confusion depends very much on the tacit skill of noticing

problems which was discussed in Chapter 3. In addition to being a tacit skill, the noticing of

confusion is highly influenced by situational factors which cannot be determined in advance

by the designers of the expert system or the developers of the application and it is therefore

impossible to plan for it arising. There should therefore be no limits on the amount of

browsing in the knowledge base that the users can undertake and, indeed, they should be

encouraged to perform this task until they are completely satisfied that the felicity conditions

for the assertion have been satisfied.

In practice there is a slight memory limitation in the PESYS system as it stores the

previous screen image as each rule explanation is displayed. This is only likely to cause a

problem if a single line of reasoning is examined to a considerable depth. Differences in

interpretation are likely to reveal themselves at a far earlier stage than this however and so

problems are unlikely to arise in most applications.

146

v. Why-not justifications

The description that has been presented so far has concentrated on allowing the users

of the system to examine how the felicity conditions associated with making an assertion are

satisfied. The need to examine the felicity conditions of an assertion may also arise when a

particular assertion is not made. The realisation that something `ought' to have been asserted

can only come about when the system performs a particular act. From the discussion of

confusion, the users of the system can only realise that an assertion ought to have been made

when some other assertion is made instead (or when an unexpected question is asked or an

unexpected request is made - see below). In the case of assertions, therefore, it is only when

the system makes an assertion other than the one expected by the users that they will realise

that confusion has occurred.

Felicity conditions can again be used to help determine why a particular assertion has

not been made. For a rule to fire and make an assertion its if-clauses need to be known to be

true. One possibility, therefore, is that the responses made by the users have caused some of

the if-clauses of the particular rule to be entered as false when they would need to be entered

as true for the rule to fire and the assertion to be made.

The second possibility is a direct consequence of the way in which the inference

engine is implemented and used since it is possible that the required rule has not fired simply

because the truth of some of its if-clauses are not known; they have not been considered yet.

If the users are to examine the design rationale of the system, to follow the felicity conditions

of the assertions, then these cases must also be considered.

Expected assertions are not made

When the system fails to present an expected assertion the users must be able to

examine how this came about. Since the expected assertion has not been made, the rule that

didn't fire is not immediately available to the system and, more particularly, the system has

no way of determining which assertion was expected.

From the use of inform levels in PESYS knowledge bases two paths can be followed

to select the rule that would have fired to make the expected assertion. The users can choose

to examine a particular goal to see the reasoning that would need to be followed for that goal

to be arrived at. Alternatively the users may choose to start the examination from a particular

147

Figure 7.8 - The option to examine other goals or other clauses

inform 2 statement, particularly if the assertion was an intermediate statement. A list of rules

which contain inform 1 then-clauses (goals) and a list of rules containing inform 2 statements

are created when the knowledge base is loaded and they are used to allow the users to select

the reasoning path they want to follow and the choices available are shown in Figure 7.8.

Depending on the choice made, the appropriate list of clauses is shown and the users are

asked to select the reasoning that is to be examined.

 64447
 5Do you want to examine the reasoning path of 5
 51 - Another goal 5
 52 - Another inform clause 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 94448

The appropriate rule is then displayed in the same way as for assertions that have

been made. Once the rule is displayed, a second problem arises, one which is particularly

important for those occasions where a rule has not fired because the necessary information

has simply not been obtained. Previously all the if-clauses were known and the means by

which they were known could be examined. In the case of an assertion that has not been

made, however, not all the if-clauses are known, or they are known to be false. Assertions

that are known to be false can be tackled in the same way as those that are known to be true,

but those that are unknown need extra support to deal with them. Whereas previously the

system allowed the users to examine the reasoning through rules that fired, clauses that are

unknown can only be examined through rules that have not fired. In PESYS this is

performed by considering all the rules that could be used to assert the requested fact, not just

the ones that have fired. Another consequence of this is that the choice of clauses to be

examined must now include all the possible clauses rather than just those that are known to

be true.

148

Why-not bidding = diamonds?
- possible bidding = diamonds

- possible bidding = the longest
- two long suits hand

- biddable spades
- biddable diamonds
length1 <> length2

the longest = diamonds
but

bidding = the biddable major suit
- preferring major suit

We cannot then conclude on bidding = possible bidding

Figure 7.10 - A negative explanation from the system described by Rousset and Safar
(1987)

Rousset and Safar (1987) describe a system that provides negative and positive

explanations in an expert system. They give no indications, however, as to why such

explanations are required. The explanations generated are not particularly easy to understand

either, as is shown in Figure 7.10.

vi. Questions and requests

In many respects the way that the design rationale of the system is made available

when questions and requests cause the users to realise that confusion has arisen is very

similar to that for assertions. Questions and requests do, however, differ in that they are

made in order that a particular rule will fire rather than being a consequence of a rule having

fired. As in the case for assertions however, the sincerity for the acts is simply a

consequence of how the knowledge base was written and how the inference engine uses the

knowledge base.

When a question or request is being performed, therefore, it is being performed to

make a particular rule fire. This, again, is the extent of the sincerity behind asking the

question or making the request. If the rule that is being examined is then displayed for the

users it will provide information as to which clauses will be arrived at (and possibly asserted)

if the question is answered appropriately or if the response to the request satisfies a certain

condition.

149

In some cases, however, simply being told that a question is being asked to arrive at

certain then-clauses is insufficient to overcome the confusion that has been revealed. In these

cases the system must provide further information relating the clauses of the rule to other

rules in the knowledge base. Since the inference engine is simply manipulating the

knowledge base that was written by the knowledge base designers, the only reason for asking

a question or making a request is that it will allow a rule to fire which adds then-clauses to

the working memory of the system, which allows another rule to fire ... until a rule fires

which adds a goal (inform 1 statement) to the working memory. This is the rationale behind

performing the particular act when the inference engine is doing a backward chain and forms

the basis for the explanation provided. When forward chaining is taking place no further

explanation can be provided because no other rationale exists for the act to be performed.

The explanations for backward chaining can easily be generated from the backward

chaining system. Whenever the backward chaining algorithm recursively considers a new

rule, the current clause and the rule that it is found in are stored in a special stack. When the

explanation of the request or question is being created, the necessary information can be

found on this stack. This process can be repeated until the rule that will be fired to add a goal

clause to the working memory is found and the stack is therefore empty.

As well as providing assistance with the questions and requests that are asked on

some occasions it is beneficial to examine questions and requests that could have been made.

The system may ask the users about topic A when they are expecting to be asked about topic

B instead. In this case a why-not type explanation is required. However, the number of

possible questions or requests made by the system is normally large. PESYS, therefore uses

the previously described other clauses option instead and allows the users to examine other

goals or other inform 2 clauses. This particular choice is made because the questions or

requests are only considered to be significant in relation to the inform statements that they

are used to arrive at.

How this method differs from more conventional approaches

The method of explanation described above differs from more conventional

approaches in a number of respects which will now be summarised. One of the main

arguments that has been presented in this thesis has been that the users of the expert system

may form a different understanding of the system or may have different tacit knowledge to

150

that intended by the designers of a particular application. One important consequence of this

is that the users of the system may realise that this difference of interpretation may have

caused confusion to arise. The explanation facility is therefore needed to overcome the

resulting confusion.

The system described above makes use of speech act theory and considers the three

acts that are performed by the expert system, namely making an assertion, asking a question

and making a request. It was argued that for each speech act, the users of the system expect

certain felicity conditions to be met and that their confusion arises when these conditions are

not met. The explanation facility must therefore attempt to show the users why the

conditions were in fact met so that the confusion can be resolved.

In addition to the speech acts that have been performed, the noticing of confusion

may also arise when an expected speech act is not performed. The system therefore allows

the users to examine reasoning paths that could have been followed in addition to those that

were followed. Again this feature is not normally present in conventional explanation

facilities.

The limited communicative resources of computer based expert systems mean that it

is not possible for the expert system itself to be aware of most cases of confusion that have

arisen and it is therefore necessary for the users to initiate and control the use of the

explanation facility. The examination of these communicative resources suggests that the

conventional belief that the expert system can automatically generate the appropriate

explanation for any situation is infeasible.

b. RULE IDENTIFIERS AND MULTIPLE GOALS

In the previous discussion it was implicitly assumed that each inform clause was only

found in a single rule and that each known if-clause in a rule was only arrived at from one

other rule. In practice, however, this is not the case and the system needs to be able to

distinguish between the same clauses that were or could be arrived at using different rules.

In PESYS this is performed by using the rule identifier to allow the users to select

which rule they want to examine. For example, when examining how an if-clause was

arrived at there may be two rules which have (or could have) fired, adding the clause to the

working memory of the system. The rule identifiers of the two rules are then presented to the

users and they select the one which they want to use.

151

The rule identifiers that have been assumed so far are simple titles such as rule-one

or identify-10. When such a list is presented to the users they will have little indication as to

which rule they want to examine. They will either require a printed version of the knowledge

base which they can use or they will have to examine all the rules individually. This is not an

ideal situation.

Moreover, when a rule is presented to the users to enable them to examine the

rationale of the system, it has been assumed that the users are able to determine the intended

effect of the rule simply by examining the if-clauses and then-clauses of the rule. To some

extent the use of natural language clauses in the rules simplifies this matter, but it is likely

that the intended effect of many rules will not be readily conveyed simply by the clauses in

that rule. A description of the intended effect of the rule, which plays no part in how the rule

fires, would be sufficient to convey the intended effect.

Using rule identifiers

PESYS seeks to overcome these two problems by using the rule identifier as a

description of the intended effect of the rule. The rule identifier is already displayed with the

rule itself in the explanation screens and plays no part in the actual inference process yet is

normally sufficient to convey the intended effect of the rule to the users, see Figure 7.11.

The limit to the length of the rule description is 255 characters, which is the size limit for

strings in the Turbo Pascal compiler used.

152

Figure 7.11 - Meaningful rule names assist in the explanation

Figure 7.13 - It is possible to include a rule number in the rule description

 64447
 5 Explanation 5
 5We are trying to verify :The Fault Is Found At One Setting Of The Device 5
 5 5
 5To Check If The Fault Is Found At Two Extreme Settings Of The Device 5
 5If 5
 5? It Is Not The Case That The Fault Is Found At One Setting Of The Device 5
 5Then 5
 5The Problem Is With The Servo-mechanism 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 64447
 5Exit to previous level How was this derived? Why ask this question? 5
 5Other Clause Scroll Rule 5
 5 5
 94448

The only obvious disadvantage associated with replacing the rule identifier with a

free text description of the intended effect of the rule arises when the knowledge base is

being debugged since there is no longer a direct way to identify particular rules. However,

most editors now support sophisticated search facilities which enable particular rules to be

identified using their descriptions. Moreover, if required the description of the intended

effect of the rule can include the rule number as well, see Figure 7.13.

 64447
 5 Explanation 5
 5We are trying to verify :The Fault Is Found At One Setting Of The Device 5
 5 5
 5Rule 2: To Check If Fault Is Found At Two Extreme Settings Of The Device 5
 5If 5
 5? It Is Not The Case That The Fault Is Found At One Setting Of The Device 5
 5Then 5
 5The Problem Is With The Servo-mechanism 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 64447
 5Exit to previous level How was this derived? Why ask this question? 5
 5Other Clause Scroll Rule 5
 5 5
 94448

153

this rule fires if the drink is cola
if
the glass and liquid are cool
and the liquid is a dark colour
and the liquid has bubbles
then
inform 1 the liquid is cola

this is a rule to identify coffee
if
the glass and liquid are hot
and the liquid is a dark colour
and the liquid has milk
then
inform 1 the liquid is coffee

Figure 7.15 - Some rules for multiple goals

i. Multiple goals

The standard form of inference in PESYS, described in Chapter 5, suggests that the

system halts as soon as a goal clause has been arrived at. In some cases, however, it may be

desirable for the system to find a number of different goals rather than halting when the first

one is found. This means that multiple faults or hypothesis can be arrived at by the system

and this may be more useful than simply reporting one. Allowing multiple goals differs from

repeating the inference process a number of times since only those goals that are consistent

with the existing known facts are considered.

Multiple goals are of particular use when the facts of the case are not known with

any degree of certainty. Consider a simple expert system that has been developed to

distinguish between different drinks. Two of the drinks considered might be coffee and cola.

The rules associated with these drinks are given in Figure 7.15

Consider the case of users who are presented with a strange liquid which is neither

hot nor cold, but which is warm. The liquid is certainly dark and has something in it,

something which might be milk or which might be bubbles. By entering these facts and using

the inference engine to find more than one goal, the users are able to use the system to

examine the rationale behind the assertion that the drink is cola and the drink is coffee. The

assertion that the drink is coffee can only be made if the warm liquid is a hot liquid that has

154

Figure 7.16 - The display for the completion of the inference process

cooled down and the particles in the liquid are milk. Similarly the expert system can only

assert that the liquid is cola if the liquid is a cool liquid that has warmed up and the particles

are bubbles. By examining the reasons for making these different assertions, the users can

decide which of the two assertions best fits the problem situation.

ii. Implementing multiple goals

Multiple goals can be implemented in PESYS simply by allowing the users to choose

between pressing the SPACE bar when an inform 1 statement has been arrived at and

pressing any other key. By pressing the SPACE bar, the users are indicating that the

inference engine should continue and find any other goals that are consistent with the known

facts.
The inferencing process is now complete
 64447
 52 goals have been arrived at by the system 5
 5What do you want to do? 5
 51 - Examine goals that were arrived at 5
 52 - Examine goals that could have been arrived at 5
 53 - Move onto what-if analysis or finish 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 94448

When the inference process is complete, after the system has arrived at zero, one or

more goals, the users are offered the choice of examining the reasoning of the goals that have

been asserted or examining the reasoning of the goals that could have been asserted, see

Figure 7.16. If more than one inform 1 clause was asserted, the system presents a list of the

asserted statements and their associated rule descriptions and allows the users to select the

one that they want to examine, see Figure 7.18.

155

Figure 7.18 - The goals that could have been arrived at

 64447
 5Select one of the following 5
 5The System Is Can Be Operated Safely ----> Fired Rule-name: Rule 3.00 5
 5There Should Be No Problems Operating The Device ----> Rule-name: Rule-4 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 5 5
 94448

Since the assertion of a goal is identical to the assertion of an intermediate inform

statement, the system also allows the users to examine the reasoning of any of the possible

goals. Although it would be possible to restrict the choice to all those rules that have not

fired, a more general solution is to list all the possible goals and rules that could be arrived at

and to mark the rules that have been arrived at with the keyword Fired. This allows the users

to examine the goals that were not asserted as well as those that were.

156

CHAPTER 8 - CONCLUDING

DISCUSSION

This chapter summarises the research presented in this thesis and discusses the main

implications of the work. It also describes a number of further consequences of the practical

work described in the previous chapters, linking them to the ideas developed by this research.

The chapter describes the final version of PESYS and ends by discussing further areas for

research.

a. EMBEDDING EXPERT SYSTEMS IN SEMI-FORMAL

DOMAINS

i. The formal approach to expert system design

Chapter 2 of this thesis described two contrasting approaches to developing expert

systems. The first of these takes a functionalist approach to design and assumes that expert

systems operate within a regulated, clearly bounded area which is formally defined. Domains

that are not formal are considered to be informal and are not suitable for expert systems

development. Since formal domains consist of readily identifiable objects and concepts it is

possible to model the domains in an expert system knowledge base using heuristics or rules

of thumb to do this. The knowledge base is seen to lie outside the problem domain and is

often assumed to contain all the knowledge necessary to solve problems in the domain.

Those problems that do arise are assumed to be a result of insufficient knowledge on

the part of the users of the expert system. The expert system therefore takes control of the

interaction, guiding the users of the system in their attempts to solve the problems that they

face, providing them with the knowledge that they do not possess. In its extreme form, this

means that the users are simply considered to be the hands and eyes of the expert system,

performing those actions on the domain that are not possible by the expert system.

The expert system is used as a machine to solve problems and little consideration is

given to the needs or capabilities of the users. In particular, they are not expected to make

157

use of their own intuitions or skills when using the system. This means that minimal support

is provided for those users who, for example, may wish to examine other ways of solving the

problems because other factors in the problem appear to be more important.

ii. The semi-formal domain approach to designing expert

systems

The functionalist approach to designing expert systems emphasised the distinction

between domains which are formally defined and are therefore suitable for expert systems

developments and those which are informal and are unsuitable areas for using expert systems.

By taking an information systems perspective on this distinction, which considers formal

systems to be a part of informal environments, and computer systems as a suitable technology

for part of the formal system, the concept of semi-formal domains as spanning the boundary

can be seen. These are domains which combine formal and informal aspects in a single

problem area. For example, there may be a set structure to performing a certain task, but the

details of the individual elements in this structure are based on experience and other

subjective factors which would normally be classified as being informal. The domain

therefore comprises of both formal and informal aspects in a single area and therefore it can

be classified as a semi-formal domain.

Expert systems are computer systems and cannot be developed for domains where

there are no formalisable features whatsoever, i.e. for domains which are completely

amorphous, yet there are many domains that combine some formal structure with informal

elements and these are seen as suitable areas for expert systems development. The semi-

formal approach to designing expert systems can be seen to provide an alternative to the

functionalist method.

The functionalist approach to design considers the expert system to be distinct from

the domain that it is concerned with. In particular this means that the knowledge is

`extracted' from the domain (often using metaphors based on the extraction of mineral

deposits) and `refined' for use in the knowledge base of the expert system. The semi-formal

domain approach, in contrast, considers the expert system to be `embedded' in the domain,

forming one part of the ensemble concerned with solving the particular problem being faced.

Other important actors within this complex are the users of the system, the experts who

158

provided the original knowledge and the knowledge engineers who form it into structures that

can be used by the computer system.

Embedding expert systems in semi-formal domains emphasises the role that the users

of the system play. They are no longer considered to be simply individuals who do not know

about the domain, but are now considered to be intelligent actors using the expert system to

assist them in a task. The expert system is therefore used as a tool to help them solve

problems, and by using this tool appropriately, they are able to enhance their own skills and

capabilities. In particular, the system allows them to examine the consequences of their own

opinions about relevant factors in the domain. In doing so, the users may become more

confident both about using the system and accepting its results and they are more likely to

accept the solutions provided by the system.

Consideration of the informal part of semi-formal domains means that the social

processes involved in communication are taken into consideration. In particular this means

that consideration is given to the users of the system in terms of their interpretations of output

displayed by the expert system. Since this is an informal, social process the potential for

problems of communication are considerable, especially if the users of the expert system

have different beliefs and understandings of the problem domain from the designers of the

system. Such problems are made worse because one of the participants in the interaction is a

computer system. To date there has been little discussion of the prospects of programming

computers to take an active part in the negotiation and compromise necessary to overcome

problems of misinterpretation. The problems involved in communication between the expert

system and its users mean that it is not appropriate to talk of the users not knowing about the

domain, but that instead it is necessary to consider the different features of the two parties.

iii. Are formal domains really semi-formal?

Formal domains are made up of regulated objects and concepts and their recognition

and identification is normally independent of experience or subjective considerations. In

semi-formal domains, however, this agreement on terms is not necessarily present and

different individuals may choose to use terms in different ways. The discussion about human

communication and the disambiguation pseudo-problem presented in Chapter 3 suggested

that in practice groups of individuals, through a process of negotiation and compromise,

come to agree on certain usage of terms and concepts.

159

By using this analysis it is possible to see how `formal' domains are constructed. The

domain that is being modelled is not necessarily based on a single, measurable reality which

is originally identical for all possible actors, but is standardised by a group of individuals for

a certain purpose.

The formality of a domain can also often arise as a by product of a purposeful

activity. When, for example, an electromechanical device is designed it is done so to solve a

particular problem and it is constructed in a purposeful manner. A consequence of this is that

the domain has a formal basis that can be used for developing an expert system.

iv. The benefits of considering domains as being semi-formal

The considerations of semi-formal domains that have been described in this thesis

highlight a number of important factors which need to be considered when designing expert

systems, even if the domains themselves are not initially considered to be semi-formal.

Design based on semi-formal domains forces the designers of expert systems to

consider the wider social environment which the expert system is to be a part of. It

emphasizes the role of the users in interpreting and understanding displays provided by the

system and shows that many possible interpretations of a domain can be formed. Expert

systems need to be designed to take such factors into consideration and should offer support

to the users whenever the possibilities of misinterpretation or the lack of tacit knowledge

arise.

This thesis has also examined the problems that arise because a computer based

system is interacting with a human user in detail. When problems arise in this

communication, it is important to consider the functional capabilities of the expert system to

detect and resolve these problems. In particular, a computer system has limited access to

actions that are occurring in the rest of the domain, other than through the key presses made

by the users. Current systems are unable to participate in a process of negotiation and

compromise when differences arise between the model of the domain developed by the

experts and knowledge engineers and those formed by the users of the system.

b. EXAMINING THE BOUNDARIES OF THE KNOWLEDGE

BASE

160

i. The limits to what can be stored in the knowledge base

Chapter 3 examined a number of different examples of knowledge that cannot easily

be formalised and represented within the knowledge base of an expert system. The cases

presented suggest that there are important boundaries to the contents of knowledge bases.

One area of semi-formal domains that cannot easily be represented in a knowledge

base is the use of descriptive definitions. These are descriptions of terms used in natural

language that do not have necessary or sufficient conditions determining their use.

Descriptively defined terms are determined through use rather than from predefined

conditions. Since there is no effective procedure for determining the appropriate use of a

descriptively defined term, it is possible that different groups of actors (for example, the

experts and knowledge engineers and the users of the resulting expert system) will use the

terms for different purposes. It is not possible, therefore, to formally specify the knowledge

required for the domain so that it can be accurately represented within the knowledge base

since other actors may use differing interpretations of the same term.

Subjective definitions are a form of descriptive definition that arise when a particular

descriptive definition is used by a particular group of people, or when the term is used for a

particular purpose. In such situations the possibility of problems arising is heightened since

the intended use of the term is often not made explicit by the person using it. If the person

receiving the utterance is not aware of this intended use, it is possible that problems will

arise.

Tacit knowledge is knowledge that cannot be told, and by its very nature cannot be

represented in a knowledge base. One example of tacit knowledge which was described in

Chapter 3 is the knowledge required to notice problems before they can be specified. In

many cases a problem is noticed before it can be formally stated and it is often noticed by

someone who does not have the technical skills required to formulate the problem that exists.

Tacit knowledge is also used when things are seen as other things.

A final limit to the knowledge that can be represented in a knowledge base arises

because much knowledge about the domain is hidden when things are working as they

should. While no problems arise, the knowledge remains ready-to-hand and only reveals

itself when a problem arises, for example, if the object fails to act in the manner expected,

when it is not present or when its use hinders the task being performed.

161

ii. Limits to the knowledge base arising from the use of

computers

In addition to the problems of knowledge in semi-formal domains, there are a number

of important consequences of expert systems being implemented on a computer system as

described in Chapter 4.

Computer systems are very limited in the communicative resources that they have

available for accessing the semi-formal domain of which they are a part of. An expert system

normally only has access to the keys pressed by the users of the system and possibly sensors

that are linked to parts of the domain. However, many of the problems described in the

previous section arise because of situational factors, such as who the users are, what their

assumed backgrounds consist of and whether they possess the appropriate tacit knowledge

for the domain.

The role that these situational factors play in purposeful action in general, and in the

interaction with expert systems in particular, mean that it is often not possible to plan for all

the problems that may arise. At best, a plan can be used to point out certain factors that are

likely to be significant.

An important consequence of the computer's role in the interaction arises when

considering the notion of confusion. It is not normally possible to know of confusion at the

time that it arises, rather confusion only reveals itself at some later stage when the interaction

becomes unready-to-hand. In many situations, however, the computer will not be aware that

the interaction has broken down due to its limited communicative resources. In these cases,

therefore, it is up to the users to act when they become aware that confusion has arisen,

although it may be possible for the expert system to provide tools that assist them in this

process.

Confusion is only likely to be noticed when the interaction between the users and the

expert system breaks down. It is, however, possible to devise a domain independent theory

that suggests how the interaction is likely to fail. Expert systems perform three basic speech

acts: they can make requests, they can ask questions and they can make assertions. Each of

these acts has a number of associated conditions that determine whether or not the act has

been performed appropriately. Confusion may therefore be potentially identified if the users

feel that the acts have been performed inappropriately, that these conditions have not been

met.

162

iii. Software tools to examine the boundaries of the knowledge

base

Chapter 6 presented and evaluated a number of attempts to overcome the problems of

knowledge that arise when an expert system is embedded in a semi-formal domain. The main

problem faced by the developers of current expert systems arises from the use of natural

language as a medium of communication between the experts, the knowledge engineers and

the users of the resulting expert system.

The first solution presented involved attempting to represent a textual clause in terms

of the underlying idea it was attempting to convey. This idea is described in terms of a

relation, which describes the particular `action' in the clause, and associated parameters

which differentiate between versions of the same relation. When this method was used in a

practical case study, however, it was found that there were many problems associated with

the determining the parameters for the relations. In many cases it was not possible to

describe the parameters in any organised way and the result was an ad hoc process.

One possible solution to this problem, which could be the subject of further research,

would be the creation of specialised form of natural language for specifying the clauses. This

language could then be analyzed using a compiler, such as YACC (Yet Another Compiler

Compiler), which would automatically generate the compiled (i.e. relation) form of the

clauses. Since the language used would be artificially created, it may be possible to avoid

some of the problems, problems which emphasize the extent to which the informal aspects of

semi-formal domains are significant. The problems arise because the domain that was being

considered had been created through use rather than being constructed for a particular

purpose. There was therefore no underlying formality that could be made use of in the

development process.

In view of the problems with this method, it was decided that the emphasis of the

research should move away from attempting to represent knowledge in a different way and

that it was more advisable to provide assistance to the users of the expert system as to which

interpretations of the terms were intended by the developers of the application. This

assistance was implemented through the use of text prompts that could be displayed on the

screen if the users required assistance about the interpretation of a particular term.

When the prompts were evaluated using a case study that required many such

clarifications it was noted that, although the use of such prompts was suitable for confirming

163

that the interpretation of the users was similar to that intended by the developers of the expert

system, the prompts were of little use for those occasions where the interpretations of the

users appeared to differ significantly from those of the developers. These differences may

arise because the users' interpretations genuinely lie outside the boundaries of the knowledge

base, but in other cases it might be the case that the users' interpretations are still indirectly

within the scope of the knowledge base, but the users have no way of knowing this.

The final solution to these problems offered in this thesis is the use of non-linear

documents. These are pieces of textual information that can be linked in many non-linear

ways allowing readers to examine related pieces of text at will.

In addition to conveying the intended interpretations of various terms to the users of

the expert system, non-linear documents also allow the users to examine related

interpretations in an attempt to find an interpretation which matches their own. This

interpretation may lie within the boundaries of the knowledge base, or it may lie outside.

The use of non-linear documents allows the users to examine the various boundaries that

exist to the knowledge base to determine whether or not their particular interpretation lies

within it or not.

Non-linear documents can also be used to provide assistance with some problems

involving tacit knowledge. For example, although the skill of seeing-as is based on

experience, there are many occasions where assistance can be provided to help those users

who do not possess this knowledge. In these cases, the use of a non-linear document, which

allows the display of many related items, can be very useful.

iv. Examining the boundaries of a computer based knowledge

base

After allowing users to examine the boundaries of a knowledge base that has been

developed for a semi-formal domain, Chapter 7 describes and evaluates a number of

computer based tools that can be used to extend and open the boundaries of the knowledge

base.

The limited communicative resources of computer based systems mean that in most

cases the computer system will not be aware that the users of the system are uncertain or

confused. From the analysis of these communicative resources it is suggested that these

problems can be overcome by having the users of the system examine the design rationale of

164

the system. Relating this to the speech acts that are performed by an expert system, it

becomes apparent that the design rationale of these acts depends on the conditions that need

to be satisfied for these acts to be performed appropriately.

When one of the speech acts performed by the system causes the users to realise that

confusion may have arisen, it is because the conditions for the act may not have been

satisfied. The design rationale that needs to be examined, therefore, relates to how the

conditions for the act have been satisfied. In the case of making an assertion, for example,

the important condition to be satisfied is that the assertion is `believed'. In an expert system,

this belief is the result of a rule firing. Thus to examine the design rationale behind this

particular act it is necessary to examine the rule that was fired, and possibly indirectly, the

rationale behind the facts that are asserted in that rule. Similar conditions apply to the other

two acts of requesting and asking questions.

In addition to acts that are performed, it is also necessary for the users to be able to

examine those acts that are not performed. For example, when a particular assertion is not

made, it is necessary to determine whether this is a consequence of the knowledge base (does

the assertion lie outside the boundaries of what could be asserted given the known facts), or

is it simply a consequence of the way the inference engine operates in that the particular

assertion has not yet been considered.

When the rules that are used are examined by the users, the intended effect of the

rule is not always apparent. Although the clauses of the rule may be written in a natural

language form, the rationale behind the rule are not always easily identified. The thesis

describes a simple but effective solution to this problem that makes use of the identifier

associated with a rule. Instead of simply being a code number, the rule identifier is used to

describe and convey the intended effect of the rule to the users. When the rule is displayed

on the screen, the rule identifier is also displayed and this provides an indication as to what

the rule is supposed to do.

The solutions presented can be seen as attempts to both avoid and recover from the

problems of semi-formal domains and this might be considered to be inconsistent. Why is it

necessary to provide means of overcoming problems when the thesis also describes methods

that can minimise the possibility of confusion arising? To answer this question it is

necessary to refer back to how these facilities are used. The users will only make use of the

non-linear documents and prompts if they think there might be some problems with the use of

a particular term. If they feel confident about the use of the term then they will not make use

of any further assistance. If their use was, however, inappropriate for the expert system

165

application and they become aware of the confusion then they will have to recover from the

situation. Thus it is necessary to provide both sets of tools since the users tend to assume that

they know what they are doing until they realise they are confused, in which case they want

to recover from the problems they face.

c. IMPLICATIONS FOR THE DEVELOPMENT AND USE OF

EXPERT SYSTEMS

In addition to providing software tools that enable the users of expert systems to

examine the boundaries of the knowledge base, a number of other factors were noted that

have implications for the development and use of expert systems.

i. The conceptual view of the user system interface

One of the main points raised by the comparison of formal and semi-formal domains

is the conceptual view of the user system interface. The formal view considers the expert

system as taking the dominant role in the interaction, controlling the actions of the users in

solving problems. The examination of semi-formal domains provided by this thesis indicates

that there are many practical problems to this approach and proposes an alternative view of

the system.

The interface with expert systems in semi-formal domains is considered to be one

based on co-operation rather than control. This is necessary since the computer has limited

access to the domain and must therefore make use of the responses of the users. The users,

however, may form inappropriate interpretations of the domain, or may not possess certain

tacit skills required to handle a particular situation.

The point that needs to be emphasized is that the users are encouraged to actively

participate in the interaction and not to act simply as passive data gatherers and action

implementers. They should be encouraged to make use of their tacit skills, such as noticing

that a problem may have arisen with the interaction, in conjunction with the facilities offered

by the expert system.

166

By encouraging the users to participate in the interaction it will be possible for the

system to be of some assistance even if the particular situation cannot be resolved. By

examining the boundaries of the knowledge base, the users will at least be able to determine

precisely where their interpretation of the problem differs from that offered by the developers

of the expert system. If users do not take this active role in the interaction, they will at best

be able to determine that their situation is not covered by the knowledge base, without

knowing precisely why.

ii. The `interpretation bottleneck'

Such problems of misinterpretation that can arise mean that considerable effort must

be used in providing useful interpretations of the terms used in the knowledge base, even if

the original domain is reasonably well structured. In many cases, providing suitable

interpretations can become a major bottleneck in the expert system development process.

Domains that are based on some formal representation, such as legislation, may

appear to avoid the problem of knowledge acquisition since the domain knowledge is already

in a form that can be used to construct a knowledge base. However, such domains are

precisely the ones where interpretation is likely to be a significant problem, and it is likely

that the interpretation bottleneck will replace the knowledge acquisition bottleneck.

The need for appropriate interpretations is particularly relevant for areas such as

legislation, since the systems are designed to provide assistance to users who are unlikely to

be completely familiar with the terminology used. However, the interpretations must not

become so over-simplified that they miss out key points of the law. Reconciling these two

considerations is likely to be a time consuming process.

iii. Reasons for design

Many of the problems raised by this thesis, such as the possibility of

misinterpretation or the limited communicative resources of the computer could, in principle,

be overcome by using collaborative development techniques such as prototyping. Whenever

any of the problems discussed in this thesis arose, the prototype might be modified to

overcome the problem.

167

USER INTERFACE

KNOWLEDGE
BASE

INFERENCE
ENGINE

WORKING
MEMORY

COMMAND
MODULE

EXTERNAL
INTERFACE

EXPLANATION
FACILITY

NON-LINEAR
DOCUMENTS

PROMPTS SPEECH
ACTS

Figure 8.1 - The components of the final PESYS runtime system

Indeed prototyping is very common in expert systems development because the

requirements of an expert system application are rarely known in advance and are not

normally formally specified. Prototyping therefore offers a suitable means of arriving at an

operational set of specifications for the expert system. Expert systems can also be considered

to be very high level programming languages and as such support the prototyping process

well. Moreover the inference engine is kept separate from the knowledge base which further

improves this process.

Whilst many problems can be overcome by prototyping the expert system with the

users, the purpose of this thesis is to describe and anticipate these problems before they arise.

If most of the problems can be avoided before the expert system is developed, it will not be

necessary to involve the users in unnecessary prototyping of avoidable problems.

It is suggested that these problems are likely to arise in most applications and it is

therefore advisable to consider them in the feasibility or design stage of the expert system

rather than leaving them to be picked up in the implementation stage.

d. THE FINAL PESYS SYSTEM

168

The description of PESYS that was given in Chapter 5 was limited in that it did not

include those components of the system that were specifically designed to overcome the

problems of semi-formal domains which were described in Chapters 6 and 7. The final

version of the PESYS system is described below.

i. The different programs in the system

Although the runtime component of PESYS has been extended considerably, it is still

only a single program. However, it now contains a number of extra components in addition

to those described in Chapter 5 and they are shown in Figure 8.1. In particular, the system

now includes a component for making use of non-linear documents and the explanation

facility makes use of the speech act module which is used to help the users of the system

overcome any confusion that may have arisen. The system also provides prompts.

In the development phase, the functionality of the PREPARE program has been

extended to take into consideration the use of prompts. The EXTRAS program now also asks

for the text of any prompts that are to be displayed for the users.

Two extra programs have been added to the development phase, MAKEFORM and

MAKE_NLD. The MAKEFORM program is used to create any forms that are to be used

within an application and the MAKE_NLD program is used to create non-linear documents

to provided assistance for particular applications. Full details of how to use these programs

is provided in the user guide, see Appendix III.

ii. The different files used

169

EDITOR

PREPARE

EXTRAS

(optional)

(optional)

The DEVELOPMENT PHASE

PESYS

The RUNTIME PHASE

MAKEFORM

MAKE_NLD

(optional)

(optional)

Figure 8.2 - The programs in the final PESYS system

170

EDITOR

PREPARE

EXTRAS

(optional)

(optional)

The DEVELOPMENT PHASE

PESYS

The RUNTIME PHASE

MAKEFORM

MAKE_NLD

(optional)

(optional)

.rul

.rlc

.cfg

.sns

.pro

.frm

.nld

.ndx

.lnk

.log

Figure 8.3 - The files created by the final PESYS system

The additional programs in the PESYS system mean that a number of new files are

defined by the system. These files, and the programs that create them are shown in Figure

8.3. The new files are .PRO the prompts associated with a knowledge base, .FRM which

contain the forms created by the MAKEFORM program. Non-linear documents make use of

three new files and these are created by the program MAKE_NLD. The files are .NLD

which contains the text screens for the non linear document. The file .LNK contains the

information that links the different screens together and the .NDX file contains the index of

screen names and their associated positions in the .NLD file.

iii. The important features of the PESYS expert system shell

The PESYS system provides a number of special features which can benefit the

developers of expert systems. The developers of an expert system application have full

control over the choice of inferencing techniques used by the expert system and the inference

methods can vary between different knowledge bases. It is also possible to develop

171

applications that make use of a number of different sub-knowledge bases and each of these

can make use of a different form of inferencing. Thus the main application may use

backward chaining, whilst one sub-knowledge base may use forward chaining and another

may use mixed chaining.

The inference engine provided by PESYS is very efficient in terms of speed and size

and allows most of the available memory of the computer to be used to for the knowledge

base and working memory of the system. This means that large applications can be

developed with ease, especially if use is made of sub-knowledge bases. The performance of

the system is such that it is possible to run practical applications using an IBM AT machine

rather than the top-of-the-range machines required for many other expert system shells.

The user interface is consistent and simple to use, yet offers the functionality

required for serious expert system applications. Any specialised input / output facilities can

be provided by using external programs if necessary and the system provides a number of

commands which can be used to improve the appearance of the system.

PESYS also offers a number of special features for knowledge base developers. The

most important of these is the use of inform levels to mark both goals and general statements

that will be of interest to users of the system. The use of inform levels means that problems

of redundancy in the knowledge base, that can arise when the list of goals / hypothesis is kept

separate from the rules used to arrive at them, are avoided in PESYS. This considerably aids

the development of expert system applications.

A number of advanced structures, such as the use of or-clauses and atleast clauses,

are provided within the knowledge base and these can also aid the writing of practical

applications. In keeping with the aims of this thesis, the knowledge base is written in such a

way that it can be easily understood and altered as necessary.

The special features of PESYS that relate to semi-formal domains have already been

described in this chapter.

Applications developed using PESYS

172

The PESYS system has been successfully used by a number of researchers, other

than the applications used to evaluate the solutions described in this thesis and these

applications have all made use of various features of the PESYS shell.

One important application has been the use of PESYS to implement an effort

estimation model for software development. By creating the model using PESYS it has been

very easy to implement a version of the system which has been successfully demonstrated in

a number of organisations. The application has also been used to analyze the results of a

number of questionnaires that are based on this research.

PESYS has also been used to provide assistance with a piece of legislation, namely

filing income tax returns. Many of the features of PESYS, such as the use of prompts and

sub-knowledge bases where made use of in this application and the resulting system was far

more effective than more conventional approaches to the particular problem.

Other applications of PESYS have investigated the ease with which it can be

integrated with other software packages such as databases or simulation systems. These links

have either been performed by using the expert system to drive the application or by having

the application make use of the expert system. The open nature of PESYS has also been used

to investigate its use for training and to examine the extent to which expert systems should be

used to support rather than control users in particular domains.

e. FINAL SUMMARY AND FUTURE RESEARCH AREAS

The expert system described in this thesis has been developed to overcome a number

of the most significant problems that can arise when expert systems are embedded in semi-

formal domains. These solutions have arisen from an understanding of the nature of such

domains that gives due consideration to the social factors that give rise to such domains.

In doing so, the research has emphasised the need to design for the likely problems of

semi-formal domains, rather than simply responding to unexpected problems as and when

they arise.

The thesis has shown the importance of encouraging the users to participate in the

use of expert systems rather than accepting their output without question. One consequence

of this approach, which would benefit from further research, is that the process of

overcoming a problem situation is often more important than the answer that is obtained. By

allowing the users of the expert system to examine the boundaries of the knowledge base,

attempts have been made to encourage the users to understand the process involved in

173

arriving at an answer rather than simply accepting the answer provided. Moreover, users

who examine this process, and combine it with their own considerations of the domain, are

more likely to accept the results of the system.

In summary, therefore, this thesis has opened up the `black box' of expert systems in

semi-formal domains by paying particular attention to the needs and skills of the users of

such systems and allowing them to examine the boundaries of the knowledge base.

174

APPENDIX I - EXPERT SYSTEMS

I.1 WHAT IS AN EXPERT SYSTEM?

Doukidis and Whitley (1988) offer the following definition of an expert system:

An expert system is a computer program that assists a user by providing

information about a particular domain. It does this by manipulating

information about the field that has been provided by a number of `experts' in

the field. Another important feature of an expert system is that it has the

facility to explain/justify the methods it used to provide that information.

I.2 WHAT DOES AN EXPERT SYSTEM DO?

In the course of everyday life we often come across problems. In some cases we

have sufficient experience and understanding of these problems that we can solve them

ourselves without any difficulty. Other problems, however, are beyond our capabilities and

in these cases we turn to an `expert' who has experience in the problem field. For example,

we may be able to cope with cuts and bruises but for more difficult problems such as serious

illness we turn to the expert in this area, namely a doctor. Similarly we may be able to

replace a tyre on a car but a faulty ignition will be repaired by a skilled car mechanic.

Expert systems are designed to assist non-experts with problems that arise in a

particular domain when the expert is not available. They are also used to support experts by

performing routine tests and informing the expert of any unusual circumstances. As well as

trying to assist user with a particular problem an expert system will often try to solve the

problem in a similar way to a human expert.

In order to solve these problems an expert system makes use of a formal

representation of the knowledge of experts in the field. It uses this knowledge and combines

it with particular details about the problem. These facts are normally entered by the user of

the system. This combination of knowledge about the problem domain and the particular

facts of the case allow the system to come up with a solution to the problem faced by the

user. It can be seen that there are strong similarities between this approach and the human

175

situation it is trying to mimic, although some differences do exist mainly due to the formal

nature of the computer based system.

I.3 WHERE DOES THE KNOWLEDGE FOR AN EXPERT

SYSTEM COME FROM?

In order to solve problems for the user, an expert system must make use of

knowledge about the problem domain. This knowledge is obtained through a process known

as "knowledge acquisition" which is normally performed by a person known as a "knowledge

engineer". There are a number of different ways in which the knowledge acquisition process

can take place.

The most obvious method for doing this involves having the knowledge engineer ask

the expert how she solves problems. This may be done through actively interviewing the

expert. Alternatively it may be done by simply watching the expert as the problem is solved,

perhaps asking the expert to say the things that she is thinking about at the time. Another

technique that is used, especially when clarifying concepts in the domain, involves asking the

expert to sort the concepts according to various criteria.

Another technique that can be used in the knowledge acquisition process comes from

research into artificial intelligence and involves the use of induction. The expert is asked to

list a large number of examples under a number of different headings and to classify them.

For example, the expert may provide examples listed under weight, colour and taste and

classify the examples as suitable for use or not suitable. The induction algorithm will then

take all of these examples and use the principles of induction to find rules that will `explain'

the decisions made in the examples. Whilst this technique suffers from the possibility of

serious errors it often provides a good starting point for further discussion with the expert

who is then often able to correct the rules and to provide other rules.

A final technique, that can be used in conjunction with the other two, is simply a

good literature review. In many situations textbooks, guidebooks or company manuals will

exist which can provide some of the knowledge used in the expert system.

I.4 FEATURES OF AN EXPERT SYSTEM

176

EXPERT SYSTEM ARCHITECTURE

User Interface

Inference Engine

Knowledge
Base

Working
Memory

External

Interfaces

Figure 1.1 - The main components of an expert system

Figure 1.1 shows the typical architecture of an expert system. As can be seen from

the diagram the expert system is made up of a number of distinct components, each of which

contributes particular features to the functionality of the system.

The dominant component of the expert system is the knowledge base. It is this part

of the system that contains all the general knowledge about the problem area, the knowledge

that was obtained through the process of knowledge acquisition described above. The

knowledge base contains the formal representation of the knowledge of the expert, and the

next section describes some of the common forms of knowledge representation.

The knowledge base, by itself, is as useful as a good book without a reader. Just as a

book conveys no information until it is read, so a knowledge base is not able to solve any

problems unless it is manipulated. The part of the expert system that manipulates the

knowledge base is called the inference engine. The name derives from the logical inference

techniques that are often used to manipulate knowledge representations. The inference

engine makes use of the knowledge base in conjunction with particular facts about the

problem. These facts cannot be stored in the knowledge base as they relate to one particular

problem, rather the domain as a whole. A separate area of the expert system, known as the

177

working memory is set aside for this purpose. The working memory stores all the

knowledge that has been arrived at in the course of a particular interaction. This includes the

facts that are entered by the user as well as the facts that the inference engine arrives at.

Another significant component of the expert system is the user interface. This is the

part of the system that the user comes into contact with. It is this component that asks the

user questions about the domain, that presents the conclusions that the system arrives at and

it is the part of the system that provides the explanation / justification of the results arrived at

by the system.

In many applications the expert system must interact with the other software

packages and even with sensors in the problem domain. To this end, the final component of

the expert system comprises of external interfaces. These interfaces may be links to

spreadsheets, databases or graphics packages. The system may make use of statistical or

simulation packages or may take direct readings from the device it is monitoring.

I.5 HOW THE EXPERT SYSTEM WORKS

Production or if-then rules are the most common form of representing knowledge

found in expert systems. These rules are made up of two parts. The first are the if-clauses

which represent the conditions of the rule. The second part, the then-clauses, are the actions

that are to take place if the conditions are met.

IF

the liquid is cool and dark

and the liquid is thick and frothy

THEN

it is probably dangerous to drink

The clauses in the rule may be simple `facts' that are either true or false, they may be

statements that have a truth or `certainty factor' associated with them or they may even be

`active' rules which contain pieces of code that are executed when a particular clause is

examined. Thus a rule may have some facts in its if-clauses and if they are known to be true

an active then-clause may take a certain course of action.

In addition to the rules in the knowledge base, it is common to find "goals" or

"hypotheses" as well. These are certain facts that tell the system when to stop. As soon as

178

the system has determined that a goal is true, it does not need to perform any more actions -

the inference process is complete. The use of goals enables two different forms of

inferencing with the knowledge base to take place. One which starts from the data and sees

which goals are arrived at, the other takes a particular goal and examines the facts needed to

arrive at it.

Forward chaining, also known as data driven inferencing, takes a list of basic facts

(which are stored in the working memory of the system) and then examines each rule. If all

the if-clauses of the rule are known to be true (i.e. are found in the working memory) then the

rule is said to `fire' and the then-clauses of the rule are either added to the working memory

or are executed, depending on whether they are active or not. This process continues until

either a rule is fired which adds a goal clause to the working memory, in which case the

inference process can come to a halt, or until no more rules will fire, in which case the

system must announce failure and halt.

The alternative strategy, known as backward chaining or goal-driven inferencing,

takes a particular goal and sees which rules would have to fire for the goal to be added to the

working memory. It then tries to fire this rule. This can only be done if all the if-clauses in

the rule are known to be true. Three possible cases can arise, the if-clause is already known,

the if-clause can be added by firing another rule, or no rule can be found that will add the rule

to the working memory. In the first case the next if-clause is examined, in the second this

clause becomes the new choice and the process is repeated with it. If, however, no rule could

be found which would fire and add the clause to the working memory then the user must be

asked about the clause directly. This process continues until a rule is fired which adds a goal

to the working memory or until no goals can be inferred.

I.6 HOW AN EXPERT SYSTEM DIFFERS FROM OTHER

COMPUTER SYSTEMS?

The most fundamental difference between expert systems and other computer

systems lies in the fact that the inference engine, the part of the program that does the work,

is kept entirely separate from the knowledge base, the data that it uses. This is in contrast to

most conventional systems where the data and the programs that use them are inseparable.

This means that the knowledge base can be rapidly altered without affecting the overall

nature of the program. Indeed an inference engine may be used with a number of different

179

knowledge bases which could cover a diverse set of domains. The only limitation would be

that the knowledge base conformed to the syntax expected by the inference engine.

Expert systems also differ from conventional programs because they operate on a

symbolic rather than numeric level. The contents of the knowledge base are normally

symbols - perhaps pieces of text or lines of code - rather than numbers. The problems that

they tackle are often recursive or based on an indefinite number of elements. This is in

contrast with most conventional data processing applications which manipulate pre-

determined sets of numbers in a defined manner.

180

APPENDIX II - EXPERT SYSTEM

DEVELOPMENT TOOLS

This appendix classifies and describes the advantages and disadvantages of a wide

range of possible expert system development tools that can be used as the basis for the

practical work described in the second part of the thesis. The reasons for the particular tool

chosen for this thesis are also described. The main features of the chosen tool are described

in Chapter 5.

II.1 A PROPOSED CLASSIFICATION OF EXPERT SYSTEM

DEVELOPMENT TOOLS

There are many different kinds of development tool available for expert systems

(Harmon et al. 1988). These range from highly specific development packages which only

run on specialist hardware to conventional high and low level languages running on

conventional hardware. In order to differentiate between these different kinds of tool it is

common to use some form of comparative classification scheme. This section will discuss a

number of such schemes, and will develop a scheme which diagrammatically depicts the

tools available for the practical work undertaken in this thesis.

One popular form of classification is implicitly used when a new expert system

development tool is reviewed and the product is compared with other packages that offer

similar functionality or performance. This approach is used, for example, by Church (1989),

Rajan (1988), Nuttall (1988) and Florentin (1987). A variation on this approach, which is

commonly found in expert system journals involves a detailed comparison / evaluation of

similar packages. In such a case the development tools are compared item for item, often by

attempting to develop a simple application (Vedder 1989). Grouped evaluations make the

classification of the tools chosen more explicit ("This article examines five different PC-

based shells ..." (Vedder 1989, p. 28)). Comparative evaluations have been reported by

Hinde et al. (1985), van Koppen and Philips (1986), Massotte et al. (1986), Puppe (1987) and

Richer (1986) amongst others.

Although such evaluations offer useful insights into the functionality offered by

individual and related software packages, they offer little indication as to how different

181

High-level languages Environments Tools

LISP PROLOG OPS5 KEE EMYCIN

INTERLISP LOOPS S.1

ART M.1

TIMM

INSIGHT

FORTRAN

PASCAL

Figure II.1 - The language-tool continuum (Harmon and King 1985, p. 83)

groups of tools are related. For example, how similar are artificial intelligence languages to

expert system environments when it comes to developing actual expert system applications?

The Language-tool Continuum

Possibly the most common general classification scheme is the Language-Tool

Continuum presented by Harmon and King (1985, p. 83). This classification scheme has

high level languages which "are more flexible and more difficult to use to prototype a new

system rapidly" at one extreme of a continuous scale and specialist development tools at the

other. These tools are less flexible since many "knowledge engineering decisions have

already been incorporated into the tools" (p. 83). Different expert system development tools

are then classified by placing them on this continuum. Figure II.1 shows the Language-Tool

continuum.

182

1) If the inference engine is kept fixed and the knowledge base is varied a meta system
of expert systems for the same category in different domains can be constructed.
2) If the knowledge base is kept fixed and the inference engine is varied a meta system
of expert systems in the same domain for different categories can be constructed.

Figure II.2 - The potential for meta-systems (Boley 1990, p.3)

A two dimensional classification

Rapid developments in the overall functionality of expert system development tools

in the five years since the Harmon and King Continuum was introduced have severely limited

the usefulness of that classification. Simply classifying tools according to whether they are

languages or tools is no longer sufficiently discriminating to serve any useful analytic

purpose. Instead a two dimensional classification is proposed, based on the two most

important components of an expert system development tool. These are control and

inference strategies and data and knowledge representation. It is proposed, therefore,

that these factors are used to classify the various expert system development tools. Boley

(1990) proposes a similar classification based on the expert system category (the control and

inference strategies) and the domain dimension (data and knowledge representation). He

suggests that these categories are interesting since they allow two complimentary ways of

moving from individual expert systems to `meta systems' (see Figure II.2).

Rather than have a continuum on each of the axes it is more appropriate to define

three regions on each axis. These are rapid development, easy to use and user-definable.

Thus, for example, a tool may have its own particular knowledge representation technique

within the system which allows the rapid development of actual systems. The users simply

provide the knowledge in this given formalism and the expert systems can be used almost

immediately. Alternatively the tool may provide a number of different techniques which can

be easily integrated in an application and hence the representation is easy to use. These

techniques offer a number of different ways of representing knowledge and may therefore

allow for a better model of the problem domain. The wider choice of representation

techniques means that more attention must be given to deciding how to represent the

knowledge and so system development is less rapid. Finally the system may offer

user-definable representation techniques which allow the developers of the expert system to

create representations that are closely related to the application in question. However, much

183

more effort is involved in creating new knowledge representation techniques and so system

development will be much less rapid.

A similar classification exists on the control and inference strategy axis, whereby a

system which provides a single inference strategy allows rapid development, whilst another

system may offer a number of complimentary control and inference strategies which are easy

to use for differing applications. Finally the tool may allow the developer to create control

and inference strategies that accurately mimic the requirements of the domain.

Classifying the available tools in this manner offers a number of advantages. Firstly

it shows the relationship between different kinds of tools, thus permitting alternative systems

that offer similar degrees of functionality to be readily identified. Secondly, it can help guide

the developers of applications to a particular part of the classification, based on the

requirements of the chosen problem. For example, a project which must be implemented

rapidly but which has fairly sophisticated knowledge representation requirements would

benefit from using different tools from a problem which emphasises the need for accurate

representation of domain knowledge over the rapid development of a prototype system.

II.2 ARTIFICIAL INTELLIGENCE LANGUAGES

Historically, the first expert systems were developed by researchers in artificial

intelligence. Many artificial intelligence problems have a number of characteristics that are

not found in conventional programming environments: they are based primarily on the

symbolic representation of declarative knowledge and the manipulation of this knowledge

rather than the storage and use of numeric data. Artificial intelligence problems are often

recursive and make use of lists of indefinite length. These features are not found in many of

the problems tackled by conventional languages and those languages offer very limited

support for these features. Researchers in artificial intelligence therefore developed a

number of languages that were specifically designed to support symbol manipulation,

recursion and lists of indefinite length.

Two main approaches have been followed when developing artificial intelligence

languages. Firstly there are those based on functional languages such as lambda calculus

and, secondly, those based on first order logic. LISP is the prime example of the first

approach and PROLOG is the most common example of the second.

184

(THIS IS A LIST OF SYMBOLIC ATOMS)
(THIS IS A LIST (WHICH CONTAINS A LIST) AND OTHER ATOMS)

Figure II.3 - Examples of s-expressions in LISP

II.2.1 LISP

LISP (LISt Processor) was one of the first artificial intelligence languages to be

developed and is also one of the oldest programming languages still in use. It was developed

by Professor John McCarthy and is based on the mathematical theory of lambda calculus.

Lambda calculus describes the way in which input parameters to a function can be modified

to provide a result (Ramsey 1988). This means that LISP is a functional language; every

routine written in LISP is a function which returns a value.

There is only one data element in the LISP programming language and this is the

symbolic expression (s-expression). An s-expression can either be an atom (a single

element) or a list of atoms. An atom can either be a symbol or a number. A list of

s-expressions may itself contain further lists of s-expressions. All the lists in LISP are

enclosed within parenthesis (Winston and Horn 1984).

Since the only data element in LISP is the s-expression, this means that all LISP

programs are also s-expressions; no distinction is made between programs and data.

Programs can be manipulated as if they were data and vice versa. In particular this means

that programs can create data structures that can be executed; effectively programs can

automatically write other programs.

The LISP language is based on a few basic functions which perform tasks on

s-expressions. The names of these functions are based on the first computer that the

language was implemented on (Doukidis et al. 1988a) and are therefore not indicative of the

tasks they perform. The function CAR takes the first element of a list. Note that due to the

nature of s-expressions, the first element in a list may itself be a list.

185

(CAR '(A B C D)) returns A
(CAR '((A B) C D)) returns the list (A B)

(CDR '(A B C D)) returns the list (B C D)
(CDR '((A B) C D)) returns the list (C D)

(CONS A '(B C)) returns (A B C)

Figure II.4 - Basic functions in LISP

(DEFUN DELETE (ITEM LST)
(COND ((NULL LST) NIL)
((EQL (CAR LST) ITEM) (CDR LST))
(T (CONS (CAR LST) (DELETE ITEM (CDR LST))))))

Figure II.5 - The LISP function DELETE

The function CDR takes the remainder of the list, i.e. everything except for the CAR

of the list. The final function that forms the basis of LISP (apart from a few control functions

that actually evaluate the other functions) is CONS. This function constructs new lists out of

s-expressions.

In practice, however, most implementations of LISP have a far wider range of

functions. These are built up in terms of the previously defined functions. One immediate

effect of this small basic set of functions was a wide divergence in implementations of LISP.

Many different versions of the language were available which provided different pre-defined

functions. In many cases the functions were given different names or the ordering of the

parameters differed between versions. To some extent this problem has been removed

through the introduction of a standard - "Common Lisp". Many suppliers of LISP

interpreters, however, still provide their own versions of the language and then also supply a

library of functions that will allow their own versions to be compatible with Common Lisp.

 DELETE is a typical LISP function, which may form part of a larger program, and it

deletes the first occurrence of an item from a list.

186

All IBM computers have keyboards (P)
IBM-AT-1 is an IBM computer (Q)

Therefore IBM-AT-1 has a keyboard (R)

Figure II.6 - A simple argument in propositional logic

LISP supports the creation of many different forms of knowledge representation and

allows the programming of many different inference and control methods. In many cases,

they were originally developed in LISP.

II.2.2 PROLOG

LISP is very much the dominant programming language for artificial intelligence

research in the United States. In contrast, PROLOG is very popular in the United Kingdom,

the rest of Europe and Japan. It is based on a restricted form of first order predicate logic and

makes use of the analytic power of logical inference. It is a joint French / British

development with much of the initial research being undertaken at Edinburgh University

although it has also been heavily promoted by Imperial College and Professor Bob Kowalski.

One of the simplest forms of logical reasoning is based on propositional logic. In

this form of logic the complex sentences that are used in the reasoning process are broken

down into propositions. Each proposition may either be true or false. The simple

propositions can then be combined, using various logical operators, to arrive at the truth of

the combination. The most common logical combinators are AND, OR, NOT and IMPLIES.

Each logical operator has a truth table associated with it, showing how it combines the truth

or falsity of its component parts to arrive at a final result. If a combined sentence is always

true, no matter what the values of the constituent parts, then it is known as a tautology,

whilst if it is always false, no matter what the truth of the basic elements is, then it is a

contradiction. All other combinations are contingent on the truth or falsity of the basic

values; in some cases the combined sentence is true, in others it is false.

Consider the argument shown in Figure II.6

If this is represented using propositional logic then the basic propositions are "All

IBM computers have keyboards" (represented by P), "IBM-AT-1 is an IBM computer"

187

œx(is_an_IBM_computer(x) -> has_keyboard(x))
is_an_IBM_computer(IBM-AT-1)

Therefore has_keyboard(IBM-AT-1)

Figure II.7 - The same argument in predicate logic

(represented by Q) and "Therefore IBM-AT-1 has a keyboard" (represented by R). The form

of the argument is P and Q implies R. Intuitively the reasoning is valid, yet propositional

logic is not able to demonstrate this.

First order predicate logic is, however, able to demonstrate this and makes use of the

notion of predicates. Predicates in the previous example may include

"Is_an_IBM_computer" and "Has_keyboard". It is possible to specify the clauses of the

argument in this predicate form. For example, the first clause is effectively stating that "for

all things x, if x is an IBM computer then this implies that x has a keyboard". Stated more

formally this is:

Various rules of valid inference have been developed for first order logic that can be

used to determine whether a conclusion can be validly inferred from a particular set of

premises. The language PROLOG is based on a subset of first order logic and supports many

of the features of logical reasoning.

PROLOG takes a different approach to programming to that found in most

conventional languages. These languages are procedural in that the programmer specifies

how the computer is to solve the task; the procedures that are to be followed are specified

step-by-step. In contrast declarative languages, such as PROLOG, require the users to

declare what the problem is and to specify constraints that must be satisfied. These are

written using predicate logic clauses. The `execution' of the program is performed when the

users enter a query. The programming language then tries to solve this query whilst

satisfying the declared constraints. Any values which satisfy the query are then displayed as

the results of the program (Black 1986).

For example, the following facts can be declared as the constraints of a problem:

188

Likes (John, Mary)
Likes (John, Jane)
Likes (Richard, Amanda)
Likes (Simon, Cathy)
Likes (Sarah, John)

Figure II.8 - Sample facts in PROLOG

and the query Likes (John, X) entered with the system returning all the values of X

that satisfy the constraints of the program.

Mary

Jane

Further constraints can be added to the program, for example, it is possible to specify

that if X likes Y then Y likes X:

Likes (X,Y) :- Likes (Y,X)

On querying the system again, the value Sarah would also be returned as a value for

Likes (John, X).

In theory the entire programming process is performed through the writing of

constraints with the programming language doing all the work. This naturally means that the

performance of the system depends crucially on the efficiency of the implementation of the

language and various techniques have been developed to improve this area (Ramsey 1988).

In practice, however, even programmers using efficient PROLOG interpreters will often add

pieces of procedural code to improve the performance of their programs (Black 1986).

A possible limitation of PROLOG arises from the form of logic upon which it is

based. The facts stored in the PROLOG database are all assumed to be true and it is

therefore rather difficult to store false facts in the system. Another implication of this occurs

in the notion of "negation as failure". When the system is trying to prove a certain query it

tries to prove the negation of the query. If the negation of the query is not proved then its

opposite (i.e. the query) is assumed to be true. This process can only operate successfully if

the "closed world assumption" holds. In a closed world, everything that needs to be known to

189

determine a query, is known. Therefore if the negation of the query could not be proved then

this was not the result of insufficient information and its opposite must be true.

A standard PROLOG interpreter or compiler offers a number of knowledge

representation techniques, based on predicate clauses and lists. The language, however,

offers less flexibility in the control strategy it uses (although it is possible to overcome this

difficulty).

II.3 LANGUAGES SPECIFICALLY DESIGNED TO

DEVELOP RULE BASED SYSTEMS

One problem with using languages such as LISP or PROLOG to develop expert

systems is that while they do offer a wide range of possible methods for implementing

knowledge representation and control methods, none of these facilities are readily available

in the language. Instead, it is often necessary to expend a considerable amount of effort in

developing routines to implement them before any practical systems can be considered. As a

result of this problem, programming languages have been developed that provide the basic

features required to develop expert systems which often lie "on top of" versions of LISP or

PROLOG.

A typical example of such a language is OPS5 ("Official Production System version

5'). OPS5 adds extra functionality to the LISP language, functionality which is directly

related to the development of rule based systems. In particular OPS5 supports the creation

and use of frame-like objects. An object can have many identified attributes, however since

OPS5 is implemented in LISP there is no strict type checking on the contents of slots

(Brownston et al. 1985). To define an object the command Literalize is used.

(Literalize Person Name Age Weight Hair_colour Hobbies)

To add values to this object, a prefix operator (^) is used which refers to the

individual slots:

(Person ^Name John ^Hair_colour Brown)

190

To retrieve values from the list of facts, the prefix operator is again used and the

system supports multiple objects that match a particular test. For example, it is possible to

select all the people with brown hair using a single command.

(Person ^Hair_colour Brown)

The feature of OPS5 that makes it particularly suitable for developing expert systems

is that this selection of multiple objects can be used as part of the conditions and actions of

production rules. For example, it is possible to select all the objects whose size is greater

than 50 and mark them as requiring special assistance:

IF (Object ^Size) > 50 THEN (Object ^Attention Special)

Some applications, however, do not require all the possible objects to be selected and

altered and so OPS5 offers a number of useful conflict resolution strategies to choose

between objects. For example, the objects may be selected according to the time since they

were last used or the frequency of their use. Debugging facilities are provided to support the

development of large scale systems.

OPS5 offers easy to use knowledge representation techniques since it is possible to

create representations that match the particular problem being tackled. The choice of conflict

resolution strategies provided by the system also suggest that the control and inference

strategies are easy to use. Until recently OPS5 type languages have been restricted to

applications developed on specialist hardware. However versions of the language, for use on

IBM Personal Computers, have recently been introduced.

II.4 CONVENTIONAL PROGRAMMING LANGUAGES

The languages described above were designed with features that particularly match

the requirements of problems covered by artificial intelligence research. This does not mean,

however, that other programming languages cannot be used to tackle these same problems.

In many cases, it is possible to provide the facilities offered by artificial intelligence

languages using more conventional languages.

191

II.4.1 High level languages

An increasingly popular choice of development tool for the creation of expert

systems are high level languages. These are languages such as PASCAL, C, FORTRAN,

COBOL, PL/1 and BASIC which are commonly found in business environments. Santene

(1989) notes that most financial applications of expert systems are implemented in the

COBOL and BASIC programming languages. Perhaps most interestingly, expert systems

concepts are extending the range of possible applications that companies can tackle, whilst

still using their conventional hardware and programming languages. Expert systems

techniques are allowing these companies to view old problems from a new perspective, a

perspective which allows solutions to be developed. In a recent survey of the use of artificial

intelligence techniques by Operational Research practitioners, Doukidis and Paul (1990a)

found that conventional high level languages made up a quarter of the tools used to develop

artificial intelligence and expert systems applications in OR departments.

The use of conventional languages offers many advantages to the developers of

practical expert systems. High level languages have been available for a long time and their

compilers or interpreters are now very well understood and tested. This means that the code

they produce can be reasonably assumed to be `correct'. In addition, much work has been

done to optimise the resulting code, either in terms of code size or in terms of runtime speed.

Many compilers now support integrated development environments, combining editors,

compilers and debuggers which can immediately highlight the source of any errors as they

occur: at compile time (syntax or semantic errors) or at run time (where the errors are likely

to be based on incorrect program logic) (Borland 1987).

Another feature for any serious, large scale applications arises from the fact that the

company that has provided the high level language is likely to have been in existence for a

long period of time and will have developed a good working relationship with the users of its

products, a relationship which implies trust. Few, if any, data processing departments will be

willing to trust a major business application to software that has been developed by a newly

formed company with no track record of service and support (Butler et al. 1988).

High level languages run on conventional hardware platforms and often support full

links with other software packages such as the main databases of the organisation. Whilst it

is not impossible to link artificial intelligence languages to existing software packages it is

often a rather difficult process. Artificial intelligence languages often require specialist

192

hardware in order to run effectively and this may again cause problems for conventional data

processing departments as this will be an extra and different piece of hardware to maintain.

Most organisations will also have made a considerable investment in traditional

hardware and software, and will have used many resources in training their staff to be

familiar with this hardware and software. This is yet another reason for the popularity of

conventional high level languages for the development of expert systems (Butler et al. 1988).

High level languages do not have the basic symbol and list manipulating routines that

are commonly required for expert system applications and this means that routines must be

devised to implement the required functionality before actual expert systems can be

developed and hence high level languages are found in the user-definable regions of both

axes.

II.4.2 High level languages with pre-written modules

In a similar manner to OPS5 type systems, versions of high level languages have

been developed which offer pre-written modules that implement the low-level artificial

intelligence functionality that is not already part of the languages. These may be extended to

general libraries of routines which can simply be included and used in expert system

programs. These libraries contain routines that implement various knowledge representation

techniques and different inference methods.

An example of this approach is ASPES (A Skeletal Pascal Expert System) described

by Doukidis and Paul (1987). As its name suggests, ASPES provides libraries of routines

that can be used to create full scale expert system applications. Many expert system

development tools are based on existing expert systems and ASPES is no exception. It

differs from many other tools since it is not simply an existing expert system without a

knowledge base. Instead ASPES provides libraries of routines that support the various tasks

of an expert system such as knowledge representation, inference and explanation. Since

these tasks are implemented in libraries they can be used or replaced as necessary.

 ASPES was developed at the London School of Economics and Political Science for

use in teaching and research. The choice of programming language was therefore determined

by the predominant language used for teaching in the school, namely PASCAL. Specialist

artificial intelligence languages such as LISP or PROLOG are not as well supported as the

more commonly used high level programming languages, they are expensive to purchase and

193

new researchers often need to learn a new programming language in order to use them

(Doukidis and Paul 1987).

In order to provide the functionality required for programming expert systems, such

as the manipulation of lists of objects, a number of routines must be developed and these are

provided in one of the ASPES libraries. The use of the predefined modules is not

compulsory and APSES can be used for domains other than those explicitly supported by the

provided routines by making use of other libraries.

ASPES has been widely used for teaching and research at the school and has been

used as the basis for a number of existing expert systems. One such system is the PASCAL

DEBUGGING AID described by Doukidis et al. (1988b). This expert system attempts to

help students who have problems learning to program in PASCAL. The expert system

incorporates some ideas from intelligent tutoring systems which were easily incorporated

into the expert system developed by ASPES.

A second application developed using ASPES is SIPDES, a SImulation Programming

Debugging Expert System, which provides advice on program errors that arise when using a

simulation program generator (Doukidis and Paul 1990b). Students create models based on

the three phase simulation structure (Crookes et al. 1986) and use an interactive simulation

program generator to generate a PASCAL program based on their model. Errors may be

introduced into the program at this time and these may occur at run time when, for example,

an attempt is made to move an entity from an empty queue, or an entity may disappear

completely over time. The basis for the SIPDES program was again ASPES and the structure

of ASPES meant that it was possible to incorporate further routines into the expert system

that provide extra assistance in a format suitable for simulation modellers.

II.5 OBJECT ORIENTED LANGUAGES

Object oriented languages have become very popular for use in artificial intelligence

applications in recent years. These languages, such as SMALLTALK and C++, take a

different perspective on the programming task. Conventional programming languages are

based primarily on procedures through which data objects pass. This normally means that

separate routines must be written for different data types: it is not easy to re-use pieces of

program code. Object oriented languages, in contrast, consider the data objects to be the

primary part of the program and the program itself consists of messages being passed

between these objects.

194

When a particular object receives a message it checks to see whether it has a

procedure for undertaking the action described in the message. If it does, then the action is

performed, if it does not then the message is passed up to a more general type of object to see

if this object can perform the action. This process continues until the message is acted upon.

This can be demonstrated by comparing how the statement 3+4 is handled in a

conventional and object oriented language. In a conventional high level language the

expression is evaluated by a special part of the program that contains routines for calculating

the values of expressions. In object oriented programming, however, the message +4 is sent

to the object 3. This object takes the first part of the message (the plus sign) and sees if it can

perform the requested task. In this case it cannot, so the message is passed to the more

generic object, number. This object contains routines for dealing with the message + and

uses the rest of the message to perform this task.

Object oriented techniques have been widely used in graphical user interfaces, such

as that found on the Apple Macintosh, since messages about whether the mouse button has

been pressed can be passed to a particular icon which will act on it. For example, a menu

item or data file will know what actions are to be performed when a mouse button pressed

message is passed to it, such as selecting the highlighted item or running a particular

application.

In expert systems such techniques may be useful when developing causal networks

made up of many components which are interconnected and send messages to one another.

Object oriented techniques are also available in some advanced versions of Common Lisp.

II.6 EXPERT SYSTEM SHELLS

Expert system shells are pre-written expert systems that do not have any particular

knowledge base, instead the developers of an expert system can use any knowledge base with

the shell provided it follows the syntax used by the shell. This means that it is possible to

develop applications very rapidly. In addition, most shells provide a number of useful

features for developing applications such as editors, knowledge base checkers and debugging

facilities.

One interesting feature about the use of expert system shells, at least in the United

Kingdom, is the predominance of `home produced' systems (D'Agapeyeff and Hawkins

1987). This apparent `patriotism' is heavily influenced by the low cost of British expert

system shells which are designed to run on conventional hardware systems, often IBM

195

personal computers. Their low cost in comparison to American workstation based products

means that they are more acceptable to risk-averse UK management than their competitors

(D'Agapeyeff and Hawkins 1987). Having localised user-support is another influential factor

(Bodkin and Graham 1989).

II.6.1 XI+

One popular expert system shell is Xi+, developed by Expertech Ltd., a British firm

based in Slough. Expertech were one of the first companies to provide pre-written

knowledge bases for use with runtime versions of their shell. These knowledge bases, which

cover areas such as dismissal law and maternity leave, were designed to be used

"off-the-shelf" by companies who wanted advice in these areas.

Xi+ operates by trying to satisfy a query presented by the users. This is done by

using a number of knowledge bases which contain rules or the "know how" entered by an

expert. Xi+ allows knowledge bases to be structured so that, for example, one knowledge

base can call up another one, encouraging top down, structured programming. The system

allows the creation of help screens, reports and forms to aid the users of the final application.

It is also possible to interface Xi+ with other applications such as databases and spreadsheets

(Forsyth 1987).

The system operates by asking the users questions about the domain. These can be

questions that have YES/NO answers and also questions that allow the users to select values

from a list of possible values. Some of these questions may allow only one value, whilst

others allow the users to enter a number of different values. Once the query has been

satisfied the users are able to perform a what-if analysis, perhaps by volunteering extra

information.

Xi+ was previously implemented using a version of MICRO-PROLOG and this

caused the system's performance to be rather slow. The current version (release 3) is

implemented directly in the C programming language and so operates rather more quickly

(Church 1989).

II.6.2 LEONARDO

196

Leonardo, produced by Creative Logic, a British company located in the Brunel

Science Park, is another expert system shell. It differs from Xi+ in that it offers a particular

form of knowledge representation based on frames in addition to the production rule

formalism found in Xi+. There are three versions of Leonardo which offer differing amounts

of functionality in knowledge representation. The second level of the product offers better

control of inheritance and level three offers sophisticated routines for the use of certainty

factors using techniques based on fuzzy logic.

Everything that is mentioned in a Leonardo knowledge base has an associated frame.

These frames contain slots which may contain actual values, default values, inheritance links

or even program code as Leonardo has a small procedural language which is used for those

parts of an application that cannot be supported directly using inference techniques (Forsyth

1988).

Leonardo also has a sophisticated forms facility that is directly related to the frame

based representation of knowledge. Thus it is possible to have pieces of code attached to the

slots of a frame which determine how the users are to interact with the form.

The system is implemented in FORTRAN and is available on a wide range of

hardware platforms ranging from IBM personal computers to mini-computers. An

application created on one platform can easily be re-implemented on other platforms that

support the product (Roth 1988).

II.6.3 CRYSTAL

A third expert system shell is CRYSTAL, developed by Intelligence Environments

based in London. In contrast to the functionality provided by shells like Xi+ and

LEONARDO, CRYSTAL has a very limited number of options available, for example, it

only supports backward chaining (Wallsgrove 1988). However, it makes up for this by

providing a very fast inference engine.

CRYSTAL includes a number of facilities for improving the screen display of the

system including the use of graphics, forms and questions. It is possible for CRYSTAL to

access data from other programs such as dBase. The program can also read text and numbers

that are stored in ASCII format. Full calculations, including financial and boolean analysis

are provided by the system.

197

The rules in CRYSTAL are written in a slightly unusual format: "These conclusions

are true IF these conditions are true". The if statements may be combined using AND and

OR. Rule statements may contain system commands and it is possible to interface the system

to other packages by making use of the C programming language (Linderholm 1987).

The CRYSTAL expert system shell (version II) was used to develop the expert

system for the Latent Damage Act described by Capper and Susskind (1988). They chose the

shell because the performance of the system was not adversely affected by the number of

rules that was entered into the knowledge base, because the system supported the rapid

development of prototypes and because the software was available in a runtime only version,

allowing them to widely distribute their knowledge base at minimal cost.

II.7 EXPERT SYSTEM TOOLKITS

Expert system toolkits were conventionally implemented on specialist hardware,

normally LISP machines. They make use of high resolution graphics screens and

sophisticated windowing techniques. These toolkits are normally written in LISP and offer

many different knowledge representation techniques. The high cost of the underlying

hardware originally needed to run expert system toolkits means that expert systems were

often developed using such tools, making use of the sophisticated editing, tracing and

debugging facilities, and were then re-implemented on a more conventional platform.

II.7.1 ART

Art, developed by the American company Inference Corporation, is a rule based

system that is based on the OPS5 language. It offers the knowledge engineer frames, logic

programming and LISP for the development of applications. It also supports assumption

based reasoning, i.e. non-monotonic logic and time dependent reasoning. These logical

dependencies allow the system to handle constructs like:

While A is true, B is true

It is also possible to create different viewpoints and competing worlds. The system

supports the creation of different models of the world depending on which assumptions are

198

used. This allows for comparison between the implications of different views (Grégoire

1988).

The frame based representation supports multiple inheritance but does not support

active values and constraints. The performance of the system is improved by pre-compiling

the knowledge base and hence more advanced frame operations are not supported. A

distinction is made between inference rules - which add facts and objects to the working

memory of the system - and production rules - which alter the values of objects in a similar

manner to OPS5.

The system is written in C and is very fast in operation, aided by the knowledge base

compilation. The limited support for maintenance and control suggests, however, that there

may be problems developing large scale applications using Art.

II.7.2 KEE

The KEE toolkit is developed by the American company Intellicorp. It also uses

frames for storing information about object taxonomies, but frames are implemented more

effectively in KEE. For example, it is possible to include active values and methods

(procedural code) in the frames. It is even possible to represent rules within the slots of a

frame (Grégoire 1988).

The system is written in Common Lisp and is therefore slightly slower than Art

although this allows the knowledge base designer to make direct calls to the underlying LISP

language and user-defined conflict resolution strategies are permitted (Florentin 1987).

KEE uses object oriented techniques within the knowledge base and these are also

used to drive the screen displays. Thus it is possible to represent a dial on the screen and as

the setting on the dial is altered, the associated value in the frame is changed accordingly.

II.8 THE CLASSIFICATION OF EXPERT SYSTEM

DEVELOPMENT TOOLS

199

Data
and
knowledge
representation

Control and inference strategies
Rapid Development

Rapid
Development

Easy to use User-definable

Easy to use

User-definable

EXPERT SYSTEM DEVELOPMENT TOOLS

Lisp

Prolog

OPS5

Smalltalk

C, Pascal
Fortran
Basic

ASPES

Xi+

Art

Kee

Leonardo

C++

Smalltalk

Crystal

Figure II.9 - A classification of expert system development tools

Figure II.9 uses the classification of expert system development tools introduced in

this appendix to illustrate the various tools described above.

II.9 THE LIKELY FUTURE DIRECTION OF EXPERT

SYSTEM TOOLS

A number of trends in expert system development tools have been predicted (see, for

example, Land et al. 1988). These include the creation of generic systems and the

incorporation of intelligent elements in conventional data processing systems. Generic

systems are designed to tackle problems in a "domain of general interest". The most common

areas of such general interest are legislation and financial management and Expertech have

marketed runtime versions of the expert system shell Xi+ with pre-written knowledge bases

on areas such as maternity leave and employment law.

Another significant trend is the move to combine artificial intelligence functionality

with conventional data processing systems. Waller (1989) suggests that most current expert

200

system development tools have either a high artificial intelligence content or a high data

processing content. Those with a high AI content may support production rules, inheritance

and sophisticated frame based representations. They may also make use of object oriented

programming. In contrast tools with a high DP content are able to access other high level

languages and existing applications such as databases and report generators. Waller predicts

that in the future these two components will tend to become equally important.

One of the main reasons for this integration of the two components is the potential

size of the data processing market. The personal computer market for expert system

development tools is stagnating and hence developers are looking for new areas where their

products can be sold. The data processing community is such a market (Waller 1989). In

particular, data processing departments normally have large budgets and plan over longer

time periods than many user-departments. Data processing departments are now required to

tackle more complex problems, problems which may well be suitable for applying expert

systems techniques and they also need to be more flexible in their approach to changing

circumstances. In both these areas the successful use of expert systems tools can prove to be

beneficial (Land et al. 1988).

II.10 THE CHOICE OF HARDWARE

The choice of which development tool is to be used depends on the choice of

hardware platform that it is to be implemented on. Broadly speaking there are two main

types of hardware available for expert system development: specialist hardware which has

been developed to specifically run artificial intelligence languages and conventional

hardware platforms. The advantages and disadvantages of these two categories will now be

discussed.

II.10.1 Specialist hardware

Early research in artificial intelligence was often hampered because the hardware

being used to implement versions of LISP and PROLOG was not particularly suited to many

of the basic tasks required by these languages such as garbage collection and resolution. This

meant that the languages were relatively slow in operation. As a result of this, research was

undertaken to develop specialist hardware which directly supported AI languages.

201

The first commercially available specialist hardware platforms were Lisp machines,

so called because they were based on central processors which had been specifically designed

and optimised for implementing the LISP programming language. Since they were designed

for running LISP programs, the specialist hardware platforms (such as the Xerox 1100,

Symbolics 3600 and Texas Instrument Explorer workstations) offered considerable increases

in the run time efficiency of the programs. Lisp machines normally make use of high

resolution graphics screens and windowing interfaces. They also have tracing and debugging

facilities that simplify and support the process of program development. The early arrival of

Lisp machines is, in part, due to the dominance of LISP as the programming language for

artificial intelligence research in the United States. The alternative European language,

PROLOG, is gradually following the same path with ICL, for example, launching a Prolog

machine based on a central processor specially designed to support the PROLOG

programming language.

The sophistication of Lisp and Prolog machines, both in terms of their specialist

processing chips and the software environments they use, together with the limited market for

such machines, means that they are rather expensive. This has a number of important

implications. Firstly, it means that many universities do not have access to such machines (in

particular the London School of Economics and Political Science does not have such a

machine) although it is often possible to share resources with other universities or colleges.

Secondly, it means that few outside organisations have access to such hardware either. This

suggests that even if development work was undertaken on such machines, when the

applications developed are used in real life situations they will need to be converted to

different hardware platforms. It is interesting to note that many of the software packages that

were originally developed to run on Lisp machines are now being converted to run on more

conventional hardware such as Sun workstations and top-of-the-range IBM personal

computers (Waller 1989). Specialist hardware such as Lisp machines may also prove

difficult to interface with conventional hardware systems. Thus before the software can be

tested with the existing data processing facilities in an organisation it is necessary to convert

it into a form that can be executed by this hardware. If this is anything other than an

automatic process, considerable constraints will be imposed on the use of prototyping in the

development process.

II.10.2 Conventional hardware

202

The LSE does not have specialist hardware available for the development of expert

systems and therefore the development work would have to be done using conventional

hardware. Four possible platforms were available for this research work and they will now

be described.

The LSE has two mini-computers available for use by staff and students. These are

both Digital Equipment Corporation Vax 11/780 mini-computers operating under VMS.

Access to these machines is through terminals available around the school. The

programming languages available include PASCAL, C and FORTRAN. Artificial

intelligence languages such as LISP and PROLOG are not available. This central computing

facility has been optimised to support statistical packages analyzing large data sets

performing computationally intensive tasks such as regression analysis. This results in a

rather poor performance for programming tasks, both in compilation and execution. It was

expected that there would be many problems of portability if the system had to be

demonstrated at other locations. The Vax systems were upgraded and replaced by a single

Vax 6330 in the summer of 1989.

The Information Systems department has a Sun 3/160 workstation for use by

research students. It runs the UNIX operating system and despite being a multi-user system

only two dedicated terminals are available. At the current time the system only supports the

(pre ANSI standard) C programming language. Access to the machine is limited by the

number of terminals available and there may again be problems associated with

demonstrating any software developments in other organisations.

The LSE has decided on two standards for microcomputers. The first standard is

the IBM PC running the MS-DOS operating system. The school currently has three public

access rooms containing, in total, 80 IBM personal computers. Additionally the Information

Systems department has a number of machines available for use by research students.

Versions of the LISP and PROLOG artificial intelligence languages are available, in addition

to the PASCAL, C and MODULA 2 programming languages.

As well as providing a number of programming languages for use in the development

of expert systems, the IBM PC has become one of the de facto hardware standards for

microcomputers and this means that it is the most common platform for the developers of

expert system shells. Most of the available shells have, as a minimum, MS-DOS versions of

their software. When taken in combination with the large numbers of DOS machines on the

market this means that the unit price of much of this software is far lower than software for

203

Lisp Machines
Prolog Machines
Mini-computers (Vax 11/780)
Workstations (Sun 3/160)
Microcomputers (IBM PC / Apple Macintosh)

Figure II.10 - Hardware platforms for expert systems development tools

more specialised hardware. The relatively low price of such software meant that the

department was able to purchase copies of some of the more popular expert system

development tools available.

The second microcomputer standard adopted by the LSE is the Apple Macintosh.

When this research began there were no Macintosh computers available for student use.

However one year into the research approximately thirty machines were made available for

students to use. Although programming languages are available for the Macintosh, none are

available on the public access machines (except for Hypercard). The popularity of the

machines, especially when running software that takes advantage of the graphics facilities

offered, such as word processing and desk top publishing, means that access to the machines

available is often limited. Later in the second year of this research a number of Macintosh

computers were obtained by the Information Systems department for use by research students

and the PASCAL programming language was made available on them.

Figure II.10 summarises the hardware platforms that were considered.

II.10.3 The choice made

Very early on in the research a choice was made to use the IBM PC hardware

environment as the basis for the development work. The reasons for this choice will now be

described.

The availability of machines was an overriding factor in the choice of hardware

environment. The school and department have a large number of IBM PCs available for use

and it was possible to gain access to a machine as and when necessary. Although the Apple

Macintoshes and Sun workstation have better graphics and a far simpler user interface,

access to these machines is severely limited, posing a major constraint on the research being

undertaken. Although access to the Vax computers was also widely available, the relatively

204

poor performance when running non statistical packages would again influence the research

undertaken.

There is also a greater availability of software on the IBM PC environment as it

supports reasonably priced expert systems software in addition to a wide range of

programming languages. Both artificial intelligence languages (such as LISP and PROLOG)

and more conventional programming languages (such as PASCAL and C) are available on

IBM personal computers. Furthermore, the large number of machines (and compatibles)

means that considerable effort has been undertaken to write efficient compilers and

interpreters for these languages and they are generally available at a significantly lower cost

than software developed for specialist hardware.

From the outset of the research it was hoped that various versions of the software

could be shown to various other organisations. For example, the software may need to be

demonstrated at conferences or used in seminars and industrial presentations. Therefore the

widespread use of the hardware in other organisations was another important factor

influencing the choice made. Since IBM computers are widely used all that is often required

is the provision of suitably formatted floppy diskettes containing the appropriate software.

On those occasions where no machine was available for use it would still be possible

to use a portable IBM compatible machine to achieve the same results. Portable Apple

Macintoshes are also available and these would need to be used more often since fewer

organisations make use of Apple computers.

Mini-computers and workstations are not widely used and therefore the opportunities

for demonstrating the system would be severely limited. On those occasions when

comparable hardware would be available, there would still be significant problems associated

with transferring programs and data.

In addition to software that can be used to develop expert systems, IBM personal

computers offer a wide range of other software packages including databases, spreadsheets,

graphics packages and wordprocessors. Wordprocessing packages and graphics packages are

used in the preparation of articles and reports and this results in a familiarity with the

operating environment. As a result of this there is considerable inertia to be overcome

before a new operating environment is considered. For example, the UNIX operating system

(as is found on the Sun workstation) is generally considered to offer many useful facilities to

the users of the system. However the commands used within UNIX are very different from

those found under DOS and a significant learning curve would need to be overcome before it

could be used successfully. A similar argument applies to the Vax VMS operating system.

205

Availability of machines
Availability of software
Widespread use of the hardware in other organisations
Familiarity with the operating environment
User support

Figure II.11 - Reasons for the choice of hardware platform

The Apple Macintosh has a very attractive and simple to use graphical user interface,

however the operating system is based entirely on Object Oriented Programming techniques

and this determines the style of programs written on the Macintosh. Therefore any programs

that make use of the operating system to display characters or read the mouse would need to

be written in an Object Oriented style which again has a learning curve associated with it.

Finally, there is considerable user support available for the IBM PC since it is one

of the standard hardware platforms adopted by the school. This user support covers both

hardware and software and thus any problems arising in these areas could be addressed by

the microcomputer support staff who are able to provide assistance as necessary. Also, since

many members of staff and other students also used the IBM PC standard, other sources of

support were also available.

II.11 THE CHOICE OF DEVELOPMENT TOOL

Given the choice of development hardware three generic development tools were

available for consideration (the fourth, expert system toolkits, were not available on the

chosen hardware platform, and have only recently been introduced to top-of-the-range IBM

personal computers). These are the use of artificial intelligence languages, the use of a

conventional high level languages (with or without predefined modules) or the use of an

existing, commercially available, expert system shell.

The option chosen was to develop an expert system shell using a high level language.

The reasons for this approach and the choice of the high level language used (PASCAL) will

now be described.

II.11.1 Existing work

206

One of the problems associated with using a conventional programming language is

that the basic routines involved in implementing an expert system, such as symbol

manipulation and list handling, are not found in the standard version of the language. This

means that a considerable amount of work must be undertaken before the actual system can

be implemented. LSE, however, ran a course on symbolic computing which included simple

LISP programming and also the development of an expert system shell in the PASCAL

programming language following the high level language with prewritten modules approach

exemplified in ASPES (Doukidis and Paul 1987). PASCAL is the standard language for

teaching programming in the school and was therefore the natural choice for creating the

expert system shell. This choice was supported by the fact that LISP was not available on the

Vax mini-computers on which most programming was undertaken at that time.

As a consequence of this work considerable experience was gained in using the

PASCAL programming language, both in terms of general proficiency and also in terms of

the techniques involved in developing an expert system. Other high level languages, such as

C, were considered. However they were not readily available on the chosen hardware

platform and, since they were not used to teach programming, they were not well supported

by the school.

II.11.2 The choice of high level language

The main alternative to the PASCAL programming language for use in developing an

expert system shell is the C programming language. It has been claimed that C has a number

of advantages over PASCAL for writing computer programs (Crookes 1989).

C has provisions for writing programs in a modular manner, thus aiding debugging

and the reuse of code. In PASCAL this support is not a standard feature and the support

provided varies between compilers. C provides some data typing but this can be legally

overcome if required. Data types in PASCAL are much stronger and it is not possible to

(elegantly) overcome them. Most C compilers provide warnings about the use of variables

(especially pointers) before they are assigned values.

The C language supports very efficient movement through arrays and also supports

macros which can be used in conjunction with a precompiler to improve the runtime

207

efficiency of the program. It is also available on a wide range of hardware platforms and is

the language used to write the UNIX operating system.

Many of the advantages that C offers over PASCAL were insignificant for the design

of the expert system shell. The particular Pascal compiler used (see below) provides full

support for the modular design of programs and also includes a smart linker that only links in

those routines that are used in the final program, thus keeping the size of the compiled

program to a minimum. The problems of data typing were not important in the shell (except

for the storage of strings in the vocabulary tree, see the documentation provided in Appendix

III).

The expert system shell makes heavy use of linked lists and does not use arrays to

store any significant information. This means that the efficiency of C in dealing with arrays

was not missed. The linked lists were kept simple and a modular approach was taken to

ensure that every element in the list was properly initialised before use and therefore the

warnings about using variables before they were initialised were not so important.

In summary, therefore, the main advantages of C over PASCAL were not used in the

expert system shell and there was no incentive to explore a new programming language for

developing the software. With hindsight, the advantage of the wide range of hardware

platforms that support standard C might well have justified the use of C instead of PASCAL.

The program design, however, does not make considerable use of special features of

PASCAL and could be quite easily converted to this or any other high level language.

II.11.3 The PASCAL compiler

The first versions of the expert system shell were developed using Borland's Turbo

Pascal Compiler Version 3. This only produced COMmand files which had a 64K size limit

for programs and data. As the number of facilities offered by the system increased this size

limit became a serious constraint and an attempt was made to use the Microsoft Pascal

Compiler (Version 3.32). The documentation for this package was not particularly easy to

read and lacked the ease of use found with the Borland package. More importantly Microsoft

Pascal provided little support for the control of textual output on the screen. In contrast, the

Borland compiler offered routines to define screen windows, to position text at any point on

the screen and use whatever colours the programmer chose.

208

After two months working with the Microsoft Pascal compiler, Borland introduced

their Pascal Compiler Version 4. This was a considerably more advanced compiler than

Version 3 and offered a number of very useful facilities. These included a development

environment using pull down menus, on-line help facilities and special `hot keys' to speed up

the use of the menus.

Another very useful feature of the compiler is its use of units. These are effectively

program modules that allow programmers to practice structured programming techniques and

top down design. The program can be split up into a number of separate modules which can

be used selectively. For example, one unit may simply contain the type definitions used

within the program, another may contain the basic routines that deal with list manipulation, a

third may hold the routines that deal with knowledge representation techniques and other

modules may be assigned for different inferencing techniques. This approach means that it is

possible to write general purpose routines, for example concerned with screen handling and

windowing, which can be used in many different programs. Naturally the benefits of

structured design in the location of errors and maintenance are also realised.

The use of units also speeds up the compilation process as each unit is compiled only

once, with the compiled form used afterwards. It is only when the original pascal unit is

altered (i.e. the compiled version is no longer an accurate representation of the source code)

or if the programmer explicitly tells the compiler to re-compile all the units that a unit needs

to be recompiled. Furthermore, the compiler has a `smart linker' that only links in those

routines that are actually used by the program. This means that each unit can contain many

house keeping and debugging routines which if they are not used in the final program will not

be included in the final program. The use of units therefore generally improves the

compilation time of the program in addition to keeping the actual program size to a

minimum.

The Borland compiler provides a number of predefined Units which contain routines

for manipulating text as it is displayed on the screen, routines that implement a number of

high resolution graphics facilities and routines that provide direct access to the operating

system.

II.11.4 Pascal versus AI languages

209

NIL
Dictionary

The

Wheel

Is

Spinning

NIL

? ? ? ?

Figure II.12 - A more efficient comparison method implemented using pointers in
PASCAL

Many AI languages now offer similar development environments to those provided

by high level language compilers such as Turbo Pascal. Therefore PASCAL must be shown

to have advantages over artificial intelligence languages that do not relate to the development

environment available.

The PASCAL programmer has far better control over how the basic facilities found

in the expert system, such as knowledge representation, are implemented. This means that it

is possible for a proficient programmer to implement a number of techniques which can

improve the efficiency of the system both in terms of speed and size. One simple example

will demonstrate this point. The clauses in an expert system rule are conventionally based on

a series of words which are either natural language clauses or more formal representations.

These clauses often need to be compared by the inference engine, for example, when

searching for rules that contain a particular clause amongst their then-clauses. This

comparison is normally performed on a character by character basis, with care being taken

when considering the comparison between upper and lower case versions of the same letter.

Further problems arise when dealing with the white spaces between "words".

210

A more efficient approach, see Figure II.12, is adopted in the PASCAL shell

developed for the thesis. Every word used by the system is stored in a "dictionary" and

before a new word is added it is converted to a standard form (in this case the first letter is

capitalized, all the remaining ones are converted to lower case). The clauses in the rules then

contain pointers to words in the dictionary rather than the words themselves. Comparison of

the clauses then involves comparing two pointers - if they point to the same place then they

represent the same word - which is normally a very simple operation by the microprocessor.

Thus the comparisons are performed far more rapidly and the clauses also take up less

memory as each word is only stored once in full. The operation of the system can be made

even more efficient through the use of the dictionary and this is described in more detail in

Appendix III.

II.11.5 Pascal versus commercial expert system shells

Commercially available expert system shells offer many facilities that would require

considerable programming effort to implement in a high level language. The potential

benefits of writing an expert system shell in PASCAL rather than making use of the facilities

of an existing shell must therefore be discussed.

The advantages of `hand crafting' certain features in a high level language were

discussed above in relation to artificial intelligence languages. This is also an important

factor when considering expert system shells as many of these products are developed "on

top of" artificial intelligence languages. Early versions of Xi+ were implemented on top of

Micro-prolog (Forsyth 1987) and this considerably retarded the system's performance.

A second important factor relates to the ease with which additional functionality

could be incorporated into the basic shell. With commercial shells this is not particularly

easy, the additions would normally have to be separate programs that would be executed

from the knowledge base, rather than being available for use whenever necessary. Leonardo

attempts to minimise this problem by including a procedural language within the system,

however even this is limited in functionality.

External programs that are added to the expert system shell will generally not be able

to access the internal knowledge representation schemes used by the shell. Most

commercially available expert systems shells do not provide `hooks' for programmers to

access the knowledge representations found in the shells. Similarly various knowledge

211

manipulation routines are not easily accessed by external programs. It is not suggested that

such links are impossible, but only that the task of implementing them will be rather difficult.

In comparison, the creation of an expert system shell using a high level language

means that additional features can be added directly to the source code of the program, which

can then be recompiled. Also, since these features are part of the source code, they will be

able to directly make use of the knowledge representation techniques contained elsewhere in

the source code for the program.

213

Keys that are to be pressed are marked in bold, whilst text shown on the
screen will be shown in italic. Finally any commands that you must enter
are shown in underline.

APPENDIX III - THE PESYS EXPERT

SYSTEM SHELL USER GUIDE

III.1 THE PESYS EXPERT SYSTEM SHELL USER GUIDE

The following document is the user guide for the PESYS (Pascal Expert SYstem

Shell) expert system shell. The program runs on an IBM Personal Computer and any

compatible computer. The system makes use of standard memory and text graphics, however

computers with larger memory (up to 640K) can run larger knowledge bases.

The documentation comes in three main parts. The first describes how to consult an

existing application using the program PESYS. All the features of the system are described.

The second part of the user guide describes the programs that are used in the development

process and the final part provides technical details on how to write a knowledge base in the

form of a simple tutorial on the development process.

III.2 GETTING STARTED

To start consulting the expert system, you must have a copy of the program together

with the knowledge base you want to use. The program may be provided on a disk or may be

found on a network. Particular details of how to obtain a copy of the program are provided

separately. Suppose that program and knowledge base has been installed on drive C:. When

faced with the DOS prompt C:> type the name of the program (PESYS), a space and the

name of the knowledge base that you want to use, for example RICH, and then press

RETURN.

214

C:>PESYS RICH

If you do not specify the name of the knowledge base, the system will display a

prompt asking you to enter it at that time. The system will then display a title screen and wait

for you to press any key.

Once the knowledge base has been specified the system will start to load the files

associated with it. As this happens, a window is opened on the screen and the name of each

file is displayed on the screen as it is read in. After the files have been read in the screen

clears and the first selection menu in the system is displayed.

III.3 USING THE SELECTION MENUS

The user interface for PESYS is designed to be easy and consistent in use. In order

to do this the system uses selection menus for all interactions where the possible options can

be specified in advance. For example, when you have the choice between consulting the

system again and finishing the interaction, the set of possible choices is known in advance

and a selection menu will be available. In other instances, however, such as when the system

asks for your name, it is not possible to limit the available choices and so a selection menu is

not used.

III.3.1 THE TWO PARTS OF A SELECTION MENU

A selection menu consists of two main parts. Firstly there is the list of possible

options, these may be listed vertically or horizontally, or a combination of the two. The

second item is a highlight. The highlighted item is shown on screen in reversed colours. To

move the highlight around the available choices press the cursor (arrow) keys. If you keep

pressing the same key the highlight will loop round all the possible choices. To actually

select an item from the list, move the highlight to the item required and press RETURN. In

most of the selection menus, it is possible to press the ESCAPE (Esc) key and have a

configuration menu. This is itself a set of selection menus and allows you to alter the

configuration of the expert system inference engine. It is described in more detail below.

215

Return to System Inference Engine File Operations Other Facilities

At any time when using a selection menu (and also whenever a window is open and a

key must be pressed) pressing the function key F4 will allow you to move the current

window around the screen. Whenever the key is pressed a cursor appears on the screen. This

cursor marks the top left corner of a window and can be moved around the screen to

reposition the window by using the cursor keys. The cursor is only allowed to move to valid

positions, i.e. the window will always remain fully displayed on the screen. Once the new

position of the window has been selected, pressing RETURN will move the window to this

new place. This feature is particularly useful if the default window covers some important

information that is displayed on the screen.

III.4 THE CONFIGURATION MENU

The configuration menu has four items available for selection by the user of the

expert system. These items allow the user to check and alter the settings of the inference

engine, to save and load data that is stored in the working memory of the system and to view

and change the basic parameters of the system.

The first option on the list should be selected to continue with the use of the expert

system. The second element allows you to change the way that the inference engine operates

with the knowledge base. For example, you may want to use a different inference technique

with the knowledge base. On selecting this option, a further list of options is displayed,

allowing you to alter these values.

The third element on the menu allows you to load data from a file and store it in the

working memory of the system or to save the data that has been arrived at during an

interaction with the system.

Other facilities covers all the other options that can be set up for the system. This

includes whether or not a log is kept of the interactions, the accuracy used for mathematical

comparisons etc. A full description of all these items is given in the section on developing a

knowledge base.

III.5 SELECTING ITEMS BEFORE THE INFERENCE

PROCESS BEGINS

216

Select or alter the following facts % - TRUE X - FALSE BLANK - UNKNOWN
Ctrl and Return to accept the facts, Esc to abandon choices

The first clause
The second clause
The third clause
...

More to follow ...

Ordinarily a forward chaining inference engine will produce no conclusions unless

some information is provided for the system. In some applications this information may

come from external sensors or from some external file that specifies the problem. However,

in the sort of domains where PESYS would be best suited for, it is unlikely that either of

these will be the case. In order to allow for applications that work with only forward

chaining it is possible to configure the system so that it will provide a list of possible items

that can be chosen before the inference process begins.

This list consists of all those clauses that cannot be arrived at using any of the rules.

Effectively these are all the clauses that you could possibly be asked in order for the system

to arrive at a conclusion.

For example,

IF there are no clouds THEN the sky is blue

IF the sky is blue THEN the weather is good

In this case there are three possible clauses that could possibly be used - there are no

clouds, the sky is blue and the weather is good. However the last two of these can both be

arrived at using the rules given, thus in this case you would be given a list containing only the

first clause: "There are no clouds".

When the list is presented you have a number of options.

III.5.1 SELECTING THE ITEMS

217

If you want to select or deselect the available clauses you can move the highlight to

the appropriate clause. Pressing RETURN once will select the item (this is shown by

placing a tick % in front of the clause) - a selected item is considered to be known to be true,

pressing RETURN again will cause it to be deselected - known to be false (shown with a

cross X in front of the clause). Pressing RETURN a third time will unselect the clause -

suggesting that the truth or falsity of the clause is not known (this is shown by not having

anything in front of the clause).

The highlight, that shows which clause is being considered can be moved up and

down the screen using the cursor keys. If the display shows More to follow ... at the bottom

of the page then this means that there are more clauses than can be shown on one page. As

you scroll through the available options the remainder of the list will be displayed.

III.5.2 FINISHING THE SELECTION

Once the selection has been made you have two possible options, you can either

confirm your choice and add the items to the working memory of the system as you have

specified or you can abandon your choices.

III.5.3 TO CONFIRM YOUR CHOICE AND ADD THE ITEMS

TO THE WORKING MEMORY

To add the items press both the Control (CTRL) and RETURN keys at the same

time. There will be a slight pause as the system adds the clauses to the working memory and

the system will then proceed to continue with the inference process.

III.5.4 TO ABANDON YOUR CHOICE

If you decide that you do not want to keep the selection that you have made (or if you

do not want to select any of the items) then pressing the ESCAPE (Esc) key will cause the

218

Is this true
This clause is true

Yes No Unknown Explain Prompt

system to abandon all the previous choices you have made and continue with the inference

process.

III.6 ANSWERING QUESTIONS IN PESYS

In order for the system to arrive at a conclusion, it will, in most cases, be necessary

for the system to ask you questions that relate to the domain.

IT IS IMPORTANT TO REMEMBER THAT THE SYSTEM DOES NOT

UNDERSTAND THE QUESTIONS THAT IT ASKS, THESE QUESTIONS

ARE BASED ON THE KNOWLEDGE BASE THAT YOU ARE USING AND

HENCE ARE THE RESPONSIBILITY OF THE PERSON WHO WROTE

THE KNOWLEDGE BASE. IF THE QUESTIONS SEEM IRRELEVANT OR

IRRESPONSIBLE BLAME THE PERSON WHO CREATED THE

KNOWLEDGE BASE NOT THE SYSTEM AND IF NECESSARY IGNORE

THE QUESTIONS.

III.7 ANSWERING YES/NO QUESTIONS

The simplest form of question that the system can ask it the YES/NO question. In

this case the system will open a window on the screen and ask

Where "This clause is true" is the clause that the system is trying to arrive at, at that

time. You have four or five possible options. Not all questions have prompts available and

those that don't will not have the option prompt will not be shown, giving only four options.

Using the selection menus, you move the highlight to the answer you wish to choose.

III.7.1 YES - THE CLAUSE IS TRUE

219

If you have decided that the clause displayed is true then select this option from the

list. Once selected, the clause is added to the working memory as a true fact.

III.7.2 NO - THE CLAUSE IS FALSE

If the clause is known to be false then select this option from the list. Once selected,

the clause is added to the working memory as a false fact.

III.7.3 UNKNOWN - NO INFORMATION IS KNOWN ABOUT

THE CLAUSE

If you do not have enough information to decide whether the clause is true or not,

then it will be necessary to select the unknown option from the list. If this is chosen, the

clause is not added to the working memory and when the system tries to use the knowledge

of the clause to fire a rule, it will not be able to and will therefore have to try and use a

different rule or fail.

III.7.4 EXPLAIN - TO PROVIDE A JUSTIFICATION FOR

THE QUESTION BEING ASKED

This option allows you full access to the explanation facilities provided by PESYS.

These are described in full below. Once you have used the explanation facilities, you are

returned to the main menu and you can make a decision about the clause displayed.

III.7.5 PROMPT - TO DISPLAY EXTRA INFORMATION

WHERE AVAILABLE

220

In many cases the knowledge base will contain extra information that will assist you

in deciding about the truth of a particular clause. This extra information may take the form

of either a piece of text, for example it may contain the actual rules that the question is based

on, or it may execute a command for more advanced facilities. Once this option has been

selected, the appropriate information is shown on the screen and you must press any key.

Pressing F4 allows you to move the prompt window around the screen. This then returns you

to the main menu, and based on this extra information you can make a more informed

decision about the clause.

III.8 NON-LINEAR DOCUMENTS

One of the special features of PESYS is its use of non-linear documents. These are

simply documents that allow you to examine a number of related concepts as well as the one

presented by the designers of the system. When a non-linear document is displayed on the

screen you will be shown a screen of text relating to a particular topic. Within this screen

certain words will be highlighted. The highlight can be moved between these words by

pressing TAB. To select a particular keyword press RETURN. On doing this the displayed

screen will change to one related to the keyword that you have selected. Some screens take

up more space than is available on the screen. In such cases, you will be presented with the

option to move up or down the screen. Pressing PageUp (PgUp) or PageDown (PgDn) will

then move you through these various screens. Pressing Ctrl and F1 takes you back to the

previous screen, whilst pressing ESCAPE (Esc) takes you out of the non-linear document.

Finally pressing F1 from within the document will take you to the main index / help screen.

III.8.1 HELP ABOUT THE SYSTEM

Non-linear documents are used to provide help about the PESYS system and can be

obtained by pressing the F1 function key at any time.

III.9 VALUE QUESTIONS

221

Please enter your age (in years)

Continue Restart Explain Prompt

Please enter the min value for The Wear On The Device?
0
Please enter the max value for The Wear On The Device?
10

As well as asking you whether a fact is true or not, a particular knowledge base may

also request values for certain variables. PESYS supports two forms of variables, text

(strings) and numbers (reals). Whenever the system requests a value it will display a

question that explains what is required and then waits for you to enter a value. For example,

a knowledge base may need to know your age and might give a question like:

You are then able to enter an appropriate value at the keyboard and pressing

RETURN. Up to 255 characters may be used to enter values and the input line will scroll as

necessary. In some cases, however, you may require a clarification of the question before

entering a value. You may want an explanation or a prompt. These can be obtained by

pressing the ESCAPE (Esc) key at any time whilst entering a value (before pressing

RETURN). When this is done, the following selection menu is shown

As was the case with YES/NO questions, those questions that do not have an

associated prompt will not have the prompt option displayed. Selecting Continue will allow

you to continue editing the same line as before, Restart abandons the line and lets you type in

a new answer. Prompt and Explain operate as before.

III.10 RANGE QUESTIONS

In some cases, you may be asked to specify a range of values which are valid. For

example, you may be estimating the wear on a device and may enter the minimum possible

value, the maximum value and the most likely value. PESYS supports this form of input.

The system begins by asking you for the minimum value for the variable, and then the

maximum value.

222

0 |----+----X----+----| 10
 ^ 5
To find the most likely position, move the cursor "X" to the
appropriate part of the scale and press Return

The text of the question depends on the variable being input. After obtaining the

minimum and maximum values for the range, the system displays a sliding scale for the

possible range. You can move the slider (X) along the scale using the cursor keys until it

marks the most likely value.

III.11 FORMS

Forms are used when sets of related information need to be entered. Forms are made

up of three main sections. Firstly, there is the background to the form. This is the text that

appears on the form. This might be instructions, labels or a description of the information to

be input. The second part of the form, which is optional, is made up of expressions that are

evaluated and displayed on top of the background. Finally the form may have various slots

that can have values entered into them. Again these slots are optional in a form. If a form

does contain slots, however, the first of these will be displayed on the screen by the symbol

")". If you want to enter a value for this slot type in the value that you want. The process of

doing this is the same as value and range questions described earlier. Once the value has

been entered it is displayed on the form and the marker moves onto the next slot. If you want

to skip a particular slot, you can simply press the TAB key and the marker will automatically

move onto the next slot.

After the final slot has been reached, the system will then display "$" at the bottom

right corner of the form. This means that the form is "complete" and, if selected by pressing

RETURN, will cause the system to continue with the inference process. Alternatively, if

you press the TAB key again you will move to the first slot. This means that you can enter

new values for any of the values for the slots time and time again until you are completely

satisfied with them all. You can then press RETURN when the "$" element is highlighted.

223

The line editor used within PESYS means that you can alter or replace the previous

values of any slots. If you decide to press RETURN when the system is highlighting a slot

that already has a value, a window appears with the value displayed. You are then able to

edit it or replace it. If the first key you press represents a character which could be part of the

value then the old value is replaced and you can continue to type the new value in.

Alternatively, typing a cursor control key allows you to alter the current value. Access to the

explanation facility and prompts is available as described above, when entering values for the

slots.

III.12 THE EXPLANATION FACILITY

If an expert system is to be used in an organization, then the most important factor

affecting its use (after the quality of the user interface - a program that cannot be used easily

is unlikely to be used at all) is the explanation facility provided. The explanation facility of

PESYS can be used in one of two ways.

III.12.1 DURING AN INTERACTION

When the system asks you a question you may want to have some explanation of its

line of reasoning, you may also want to check how it has arrived at certain statements.

III.12.2 ONCE THE INTERACTION IS COMPLETE

When the interaction has been completed and the system has arrived at a conclusion,

it will be useful, in many cases, to examine the reasoning that the system has followed to

arrive at that particular answer.

III.13 HOW TO USE THE EXPLANATION FACILITY

224

Explanation
We are trying to verify : This statement

Rule To Prove This Statement
IF
1 % The First Clause Is True
2 X The Second Clause Is False
 - Enter Your_name$
 ? This Statement
 ? The Third Clause Is True
 {? The Fourth Clause Is True
 OR ? The Fifth Clause Is True
 }
THEN
We Have Finished

Exit to previous level How was this derived? Why ask this question?
Other Clause Scroll Rule

The explanation screen shows a lot of information. The first line tells you what

clause is currently being used. This is followed by the rule that is being considered. The

following indicators are used to show the truth of the clauses:

% This means that the clause is known to be true

X This means that the clause is known to be false

? This means that the clause is unknown

- This marks the clauses that are commands

{ and } mark the beginning and end of sets of related clauses that are either connected

with OR or ATLEAST. Details of both these constructs are given in the section on writing

applications.

After the rule has been displayed you are offered four possible choices, to exit from

this level of explanation, to explain how a statement was arrived at, to ask why the clause

needs to be arrived at or to examine other clauses. You are also able to scroll through the

rule, which is particularly useful if the rule is larger than the available screen. Note that if

you are using the explanation facility after the inference engine has finished working, the

WHY option will not be available. Also pressing ESCAPE (Esc) will give you access to the

225

configuration menu. Selecting the first option will take you back through the explanations

that you have made.

Selecting the How option causes the system to ask you which (numbered) clause you

want to examine. If no clauses in the current rule have been arrived at, then obviously you

cannot choose any of them and the system will inform you of this fact. Similarly if there is

only one clause that has been arrived at in the current rule, the system will automatically

select this one. If more than one clause has been arrived at in the current rule, you are asked

to enter the number corresponding to the clause you wish to examine. Thus using the

example above, if you wanted to know how This statement is true was arrived at, you would

select 1.

III.13.1 OTHER CLAUSES

The other clauses facility is used to examine the reasoning of clauses that have not

yet been arrived at. The available clauses are either goals or inform 2 clauses and you are

asked which you wish to examine. On choosing the appropriate list you are given the

opportunity to examine the available clauses and the rules that they are found in, plus an

indication as to whether the rule has fired. Select the rule that you wish to examine and it

will be displayed on the screen in the standard way. This allows you to examine an

alternative reasoning path and see why a particular goal was not arrived at.

III.14 HOW THE CLAUSE YOU CHOSE WILL BE

EXPLAINED

Once you have chosen the clause to be explained, there are a number of possible

paths. If the clause was arrived at using a rule, then this rule will be displayed in a similar

fashion to the first rule and the process will continue allowing you to explain the clauses in

that rule etc.

If the clause you chose was a comparison, then the system will inform you that the

comparison was made using known variables and the values of these variables will be shown

on the screen as necessary.

A third possible way for the system to have arrived at a particular clause, would be if

you told it that it was true directly. In this case the system would tell you.

226

These conclusions have been arrived at:

The system is ready

This conclusion has been arrived at using BACKWARD Chaining

Press <SPACE> to try and find another conclusion
Else press any key

III.14.1 THE WHY EXPLANATION

If you are using the explanation facility within an interaction, then provided that the

system is using backward chaining, then it will be possible to ask Why are you asking me this

question. Whilst the How facility examined those rules that had been used to arrive at a

clause, the Why facility allows you to examine those clauses that could be used to arrive at a

clause. The Why facility allows you to return all the way to the actual clause that is the

overall goal for the system.

III.15 THE END OF THE INTERACTION

Once an interaction has been completed, one of two things will have occurred.

Either the system has arrived at a goal, or no goals could be arrived at.

III.15.1 THE SYSTEM ARRIVED AT A GOAL

When the system has arrived at a goal, you will be shown something like:

In some circumstances, there may be a number of possible goals that would apply to

the problem situation you are examining and pressing SPACE allows you to examine them

all. This process continues using the runtime working memory that has already been arrived

at, thus the system will only try and arrive at conclusions that are still consistent with the

227

1 goal has been arrived at by the system
What do you want to do?

1 - Examine the goals that were arrived at
2 - Examine the goals that could have been arrived at
3 - Move onto the what-if analysis or finish

Select a possible goal whose reasoning you would like to examine

Select one of the following

This is a goal - Fired Rule-name: This rule will have fired
This is another goal - Rule-name: Note that this rule will not have fired

What IF Print Log Run Again Finish

current one. When you have finished using the inference process the system will tell you to

press any key to continue. This is done to allow you to check any displays before the final

steps are taken.

You are then asked to choose between:

Selecting the first option allows you to examine the reasoning of one of the goals that

was fired to arrive at a goal. The second option, however, allows you to examine the

reasoning behind any of the goal clauses, whether they were in a fired rule or not. The third

option allows you to move onto the what-if analysis described below.

If you choose one of the first two options, then you will either be presented with a

single goal (if there is only one) or a list of possible goals together with the rules that they are

associated with:

By selecting a particular goal it is possible to examine the actual or possible

reasoning behind that goal. Once the various reasoning paths have been examined, you can

move onto the what-if analysis.

III.16 OTHER OPTIONS

228

Selecting the What-if facility allows you the opportunity to alter values and clauses

that have been arrived at previously and then to see what effect the changes have on the

conclusions arrived at by the system. The What-if facility is described in more detail below.

III.16.1 PRINT LOG

The print log option allows you to print the log file automatically. Alternatively you

can copy the file to the printer when the interaction is complete.

III.16.2 RUN AGAIN

The run again facility simply allows you to run the knowledge base again, without

having to load it from disk.

III.16.3 FINISH

Finish clears out the memory of the program and returns you to the operating system.

III.17 THE WHAT-IF FACILITY

The What-if facility is fairly sophisticated in that it will allow you to alter any values

that you have entered and see what the effects of this are. When you enter the what-if facility

you have four options.

III.17.1 ALTERING THE EXISTING VALUES

The first option you have is to alter any existing values. In particular, those clauses

that cannot be arrived at using other rules are displayed as well as any variables that you have

used.

229

You have the facility to alter the truth of any of the clauses, whilst for variables you

can type in new values.

III.17.2 ADD LOW LEVEL DATA

This option allows you to add the low level clauses in a similar manner to that

described above.

III.17.3 SEE EFFECTS OF CHANGES

By selecting this option the system performs a forward chain with all the new data

and any results are displayed. Note that the system does not perform a backward chain as

this is likely to involve asking you questions again.

III.17.4 EXIT

Selecting this option leaves the What-if facility

III.18 THE DEVELOPMENT ENVIRONMENT

The development of an expert system application/knowledge base passes through a

number of different programs. These are shown in Figure III.1. This part of the user guide

describes these different programs.

230

EDITOR

PREPARE

EXTRAS

(optional)

(optional)

The DEVELOPMENT PHASE

PESYS

The RUNTIME PHASE

MAKEFORM

MAKE_NLD

(optional)

(optional)

Figure III.1 - The stages of the development process

III.19 THE FILENAME STRUCTURE USED

231

EDITOR

PREPARE

EXTRAS

(optional)

(optional)

The DEVELOPMENT PHASE

PESYS

The RUNTIME PHASE

MAKEFORM

MAKE_NLD

(optional)

(optional)

.rul

.rlc

.cfg

.sns

.pro

.frm

.nld

.ndx

.lnk

.log

Figure III.2 - The files in PESYS

All the files in a knowledge base share the same main FILENAME. Each of the

different files has its own extension to the main filename to identify the form that it takes.

The different programs in the development process create the different files, as is shown in

Figure III.2.

The extensions for the files are:

.RUL stands for the original rule file. This is the rule file that was entered by the knowledge

engineer / expert when the knowledge base was created.

.RLC is the coded form of the original rule file. This file is created by the PREPARE

program. All the development and runtime programs use the coded form of the rules rather

than the original .RUL form.

.SNS contains the common sense information that is needed by the system. For the current

version of PESYS this is primarily information about the variables used in the program - in

particular the questions that are to be asked when variables are input, which files the values

are to be found in, the valid ranges that may apply to numeric variables etc.

232

.PRO contains the text of any prompts that are presented to you when you require extra

information.

.CFG is the file for the configuration information about the knowledge base. It contains

information about the type of inferencing methods used in the knowledge base, what

information is logged to disk and other system features.

.LOG is created whenever a knowledge base is consulted. It keeps a record of the

information that has been derived by the system. According to the configuration the

information is either brief or detailed.

.NLD contains the screens for the non-linear documents.

.LNK contains the information linking the various screens in the non-linear document.

.NDX is the index of screen names that is used to access the individual screens in a non-

linear document by name rather than by number.

III.20 USING EDITOR

The PESYS development environment includes a full screen text editor (called

EDITOR) which can be used to write knowledge base files (.RUL). Also, since all the files

associated with a knowledge base are in plain ASCII format, it can also be used to edit any of

the files, for example to correct any typing errors. If you want to edit a new file then simply

run the program, whilst to edit an existing file give its full name when loading the program.

The editor supports a full range of editing features such as search, search and replace,

go to the top of the file, go to the bottom of the file etc. It also allows you to define and alter

preset keywords. This facility can be used if you are going to use a certain term many times

in the knowledge base.

III.20.1 FACILITIES WHEN EDITING A PARTICULAR

LINE

The facilities offered by the editor can be split into two main areas, those that refer to

each individual line of the file and those that refer to the file as a whole.

233

START OF LINE / END OF LINE

To automatically jump to the start of the line, press HOME. Similarly to move to

the end of the line press END.

CURSOR LEFT/CURSOR RIGHT

To move the cursor left and right use the cursor keys. Also CTRL S and CTRL D

will move the cursor one character to the left and right respectively. Note that if you move

beyond the end of the line or before the start of the line you will be moved down or up a line

as necessary, if that is possible. CTRL A and CTRL Cursor-left will move the cursor one

word to the left, whilst CTRL F and CTRL Cursor-right do the same to the right.

DELETING

To delete the last character entered, press BACKSPACE whilst to delete the next

character in the line press DEL. Again wrapping occurs if you reach the end of the line. To

delete a word press CTRL T, and to delete the current line press CTRL Y.

INSERT/OVERWRITE

To change between insert mode and overwrite mode, press INS.

PREDEFINED TEXT

The editor allows you to define up to 26 different sets of predefined text. These can

be inserted anywhere in the file by pressing an associated key. The clauses are found by

pressing ALT and one of the 26 alphabetic keys. Each key has its own phrase.

234

CHANGING THE PREDEFINED TEXT

To define your own predefined text, press CTRL F10 followed by the key that you

want to redefine. The previous value is shown, allowing you to alter it if necessary. Once

the key has been redefined, all further uses of it will result in the new text being used.

III.20.2 FACILITIES WHEN EDITING WITHIN THE FILE

NEW LINE

Pressing RETURN creates a new line in the file.

MOVING BETWEEN LINES

The Cursor-up and Cursor-down keys move you between the different lines of the

file. Similarly PageUp (PgUp) and PageDown (PgDn) moves you up or down a screen, if

that is possible.

MOVING TO THE TOP/BOTTOM OF THE FILE

To move to the top of the file press CTRL Q followed by R and to move to the

bottom of the file type CTRL Q followed by C.

FINDING TEXT

235

To find a piece of text press CTRL Q followed by F. You will then be asked to

enter the text to be found and then press RETURN. The system will then try and find the

required piece of text. If found, the cursor will be placed on it, otherwise you will be told

that it cannot be found. To find the next occurrence of the text press CTRL L.

REPLACING TEXT

It is also possible to replace a piece of text. This is done by pressing CTRL Q

followed by A. You are then asked for the text and its replacement. You are queried before

the replacement is made. Otherwise the operation is as for FINDING TEXT.

SAVING A FILE AND EXITING

To save the file press the ESCAPE (Esc) key. You are then asked to enter the name

of the file. If you are editing an existing file, the existing file's name is used as a default.

Press ESCAPE (Esc) if you do not want to save the file. You are then asked if you have

finished editing. Pressing Y will cause you to leave the editor, any other key returns you to

the file.

III.21 USING PREPARE

Once you have written the rules, using the editor, it is necessary to convert them into

a specially coded form for use by the main program. This process is undertaken

automatically by the program PREPARE. However, before this is done it is necessary to

configure the system for the particular knowledge base. This configuration can be altered

during the execution of the shell PESYS and so it will be described in detail here.

III.21.1 CONFIGURATION

236

The configuration process encompasses two areas - the configuration of the inference

engine and the setting up of other system values. To configure the inference engine you

switch on or off various inferencing strategies.

FORWARD CHAIN

When this is selected the system will perform a forward chain when the knowledge

base is loaded. Since forward chaining only works when known clauses match if-clauses of

rules and a newly loaded knowledge base will not contain any known clauses, the only rules

that will fire are those that have no if-clauses. By having such "empty" rules and selecting

forward chaining it is possible to add default clauses to the working memory.

BACKWARD CHAIN

Selecting backward chain makes the system try and arrive at conclusions using the

backward chaining mechanism. This method is described in more detail in the section on

inferencing methods in the tutorial.

MIXED CHAIN

Sometimes it may be necessary to allow rules to fire whenever their if-clauses are

true, regardless of whether they are currently being examined. This feature is often known as

"demons" and is implemented by selecting mixed chaining. This means that whenever a

clauses has been found using backward chaining the system performs a forward chain to see

if this clause allows new rules (demons) to fire. Obviously backward chaining must be on

before mixed chaining can have any effect.

PURE FORWARD CHAIN

237

This is an advanced form of forward chaining in that it will examine the if-clauses of

rules and if they are commands it will try and execute them.

LOG INFORMS ONLY

The system will automatically create a trace of the actions undertaken by the system

(such as what questions were asked, what answers were given, etc.). However by selecting

LOG INFORMS ONLY, it is possible to restrict this trace to only inform statements. By

deselecting this option all information will be logged.

SEND INFORMATION TO DISK

For some applications it may be desirable to prevent the logging of actions from

taking place. In this case SEND INFORMATION TO DISK is deselected.

RETURN EXPRESSION RESULTS

Whenever an expression is evaluated, it is possible to display the results (for

debugging purposes) by selecting this option.

SELECT FOR FORWARD CHAIN

By selecting this option, the user is presented with a list of all possible clauses that

cannot be arrived at by using other rules before inferencing begins. It is normally used with

forward chaining.

COMPARISON ACCURACY

238

Numeric comparisons are only available to a certain degree of accuracy. The value

of the accuracy (default 1e-6) specifies how close numbers must be for comparisons to be

valid.

DECIMAL PLACES

This option specifies the number of decimal places to be used when the system

displays any numbers. This is the default value used if a variable does not have an

alternative value of its own.

NORMAL COLOUR, REVERSE COLOUR

Alter the values for these options if different screen colours are required, for example

for use with projection equipment etc.

III.21.2 CONVERTING THE RULES

Once the configuration has been made, the system automatically converts all the

rules. A count is kept of the total number of rules converted.

III.22 USING EXTRAS

The program EXTRAS is a utility for getting the information about variables,

prompts and forms for display in the runtime unit PESYS. Variables must have a

specification for where they are to be obtained from and what prompts are to be displayed.

The variables used in any forms must also have this facility. Also the text of any prompts

must be found.

III.22.1 VARIABLES

239

Where from
From Keyboard From File From Range

Finish Decimal Places Valid Range 0 to infinity
1 to infinity

The system performs this task by examining each rule. If there is a command to enter

variables, use the range_of command or load a form, the system will find the variables used

and will check to see if the variables already have information associated with them. If no

information exists for the variables you will be asked:

Select where you want the variable to be read from. Once this has been done, you

must either type the prompt that is to be displayed (in the case of from keyboard or from

range) or you must enter the filename where the variable can be found.

If the variable is numeric, you will then be given a number of extra options

FINISH

Finish allows you to exit from this option

DECIMAL PLACES

This allows you to specify the number of decimal places to be used when the variable

is displayed.

VALID RANGE

240

In some applications it may be necessary to specify a certain range for the valid values

of a variable. For example, if asking for the month, you only want values from 1 to 12.

Selecting this option allows you to enter the minimum and maximum valid values.

0 TO INFINITY

In some cases the valid range is from 0 upwards. In this case, rather than simply

selecting the VALID RANGE and entering the values, use 0 to infinity to perform the task

automatically.

1 TO INFINITY

This option performs a similar task to the one above, except that it starts from 1.

III.22.2 PROMPTS

If the system comes across any prompts that have not yet been defined it will ask you

for details of the actual prompt.

III.23 USING MAKEFORM

The program MAKEFORM creates forms for the user interface of the runtime program.

Each form is a screen. These screens can have any of three components - a background text,

expressions to be displayed and variables to be entered. The position of the variables /

expressions and the number of characters to be displayed are specified using MAKEFORM.

III.23.1 CREATING A FORM

241

Add text Variables Expression Edit
Delete Redraw Exit

Specifying the name of the form when loading the system allows you to alter an existing

form. The extension .FRM is used to signify that the file is a form. Note that when you save the

form you are always asked for a filename and therefore you will not overwrite the file that you

read in unless you save it under the same name. This means that, for example, you can create

a standard background form (Standard.frm) and use it to create a number of different forms.

MAKEFORM standard.frm

(make alterations to form)

Save Screen1.frm

III.23.2 THE OPTIONS AVAILABLE

Once you have entered the program, you are shown the following menu:

EDIT BACKGROUND

Selecting this option places you in the main screen. Your position is indicated by the

cursor. Any text you type will be placed on the screen. Using the cursor keys you can move

around the screen to position text. To erase text either overwrite it with spaces or use the

BACKSPACE key.

For the system to work will all displays, there is no facility for altering the colour of the

text. To finish adding text press ESCAPE (Esc). This returns you to the main menu. You can

add more text simply by selecting this option from the list.

ADD VARIABLES

242

Expression
X Value
Y Value
Display Length
Finish

This option allows you to add variables to the display which the user may enter. Once

the option has been selected move the cursor to the position where the variable will be displayed

once it has been entered (it is advisable to leave one space after any text introduction as the

system displays a prompt for the user) and press RETURN. You will now be asked to enter the

name of the variable to be entered and the number of characters of the users response that are

to be displayed. Note that this is not the number of characters used to store the response, only

the number of characters shown. Once you have specified this the screen will show the area and

you can add more variables. Once again, pressing ESCAPE (Esc) takes you back to the main

menu. Selecting this option again allows you to add more variables.

ADD EXPRESSIONS

This option is identical to the one above, except that you can specify expressions to be

displayed rather than variables to be entered.

EDIT

In order to edit something you must first specify if you want to edit variables or

expressions (alternatively you can abandon this option). Once you have selected one of the two

lists a marker is placed by the first item in the list chosen. (If there are no items in the list you

are returned to the main menu). This marker is moved through the list by pressing TAB. Once

you have found the item you want to edit, press RETURN. ESCAPE (Esc) leaves this option.

The details of the variable/expression chosen are then shown:

Selecting one of the values allows you to enter a new value. Selecting finish lets you

edit another item in the list. It is important to note that any changes you make will not be shown

immediately, you must select the redraw option to see any changes.

243

DELETE

To delete an item you must first select the list from which it is to be deleted. Then, as

above, you select the item to be deleted. Pressing RETURN then deletes the item. Again no

changes to the display will become apparent until you select the redraw option. Since the delete

option cannot be undone, once an item has been deleted you must select the delete option again

to delete another item.

REDRAW

The redraw option redisplays all the background text and variables/expressions to be

displayed, showing any changes made by the edit and delete options.

FINISH

 When you have finished adding text and variables and expressions to the display,

selecting Finish will allow you to save the form. The system asks you for a filename for the data.

Use the extension .FRM to specify that the file is a form. The form is then saved in the named

file. A data compression routine is used to minimise storage requirements. If you do not specify

a file name the form and all the alterations are abandoned.

III.24 USING MAKE_NLD

The program MAKE_NLD creates a set of files for a non-linear document. It is only

necessary to specify the text of the document and the links between different screens. All the

house keeping tasks are performed automatically by the system.

Non-linear documents are made up of two main components. The first of these are the

screens in the document. These are simply pieces of text that are displayed on the screen. Each

screen is given a unique identifying name so that it can be referred to by other screens. The other

component of a non-linear document is the link that exists between different screens. Each link

244

is associated with a piece of text which is displayed on the screen and refers to a separate screen.

It is through these links that users are able to move through a non-linear document.

To create a non-linear document you must first specify its name. It is advisable to use

a name that is related to the knowledge base being designed. If the name is new you are

presented with a completely blank document, however if the non-linear document already exists

then you can edit it. The first element in a non-linear document is used as a help facility or

central index and so it is advisable that the first screen entered is used for this purpose. When

you are editing a non-linear document the following options are available to you:

CREATE A NEW SCREEN

This process allows you to create a new screen and also to link it with other screens. It

is effectively a combination of some of the other options.

SELECT A SCREEN

The remaining options operate on screens and links that have already been created.

Choosing this option, therefore, allows you to select an existing screen to modify. The system

presents you with a list of all the available screens and you can choose the one you want to alter.

Once the screen has been selected it is displayed in the main editing area.

EDIT SCREEN

This option is used to alter the text in an existing screen. A full on screen editor is

available for this purpose. To exit the editor, press ESCAPE (Esc).

EDIT LINK

This option allows you to edit an existing link, either by changing its text, its position

or the screen it points to.

245

ADD LINK

Instead of editing an existing link, this option allows you to add a new link to a particular

screen.

DELETE SCREEN

This option allows you to delete individual screens and their links to other screens.

QUIT

This option allows you to leave the application. When this is done, all the necessary

updating of files is performed automatically.

III.25 WRITING A KNOWLEDGE BASE IN PESYS

PESYS is a rule based expert system shell. This means that the representation of

knowledge in the system is in the form of if-then "production rules". Production rules are the

most common knowledge representation technique used in expert system shells. Some shells add

the facility to describe objects using techniques such as first order logic or frames. In many

cases, however, this is done by "forcing" the knowledge into unnatural formalisations which can

be both inappropriate and inefficient.

The rules in PESYS are designed to be as easy to understand as possible - this is done

by allowing them to be written in natural language (English) with only one or two minor

restrictions. A typical (simple rule) looks like this:

This rule considers the case of normal applications

if

the student is an ordinary applicant

then

we have found the status of the applicant

246

III.25.1 PARTS OF THE RULE

RULE NAME

The first line of the rule is the rule name. This can be anything (up to 255 characters).

One possibility is simply to number the rules, however this is not particularly useful. A far more

useful form is to use a descriptive rule name. A rule name that fully describes the actions of and

reasons for a rule will not only aid in debugging the knowledge base, it will also be particularly

useful in the explanation facility since it can convey the intentionality behind the rule.

IF

After the rule name is a line containing the keyword IF. Note that PESYS is completely

case independent - the word IF can be in upper or lower case, or a combination of the two. This

case independence occurs throughout the system.

IF-CLAUSES

After the IF line come the if-clauses. The if-clauses are a list of statements (zero or

more) that define the conditions necessary before the rule can be used. If-clauses can either be

clauses of text or they can be commands. The text clauses can be of any form. For example:

The ball is red

The animal has long hair

The person has attended the course for at least sixty days in the last year

We have got the basic information about the user

etc.

Negations are easily defined by adding the word NOT to the sentence. Thus the above clauses

could have negated forms of:

The ball is not red

The animal has not long hair

The person has not attended the course for at least sixty days in the last year

We have not got the basic information about the user

247

When the knowledge base is PREPAREd all the NOTs in the clauses are removed and

counted. The number determines whether the clause is negated or not. When you are asked

about the clause you are always asked to confirm a positive statement.

i.e. Is this true

You Have Done All The Work

rather than

Is this true

You Have Not Done All The Work

which has possible responses of

Yes - I have not done all the work or

No - I have done all the work?

This method can deal with double (or more negations). For example - "is it true that it

is not the case that you did not go to the concert" means the same as "Is it true that it is the case

that you did go to the concert". The only limitation is that sometimes the addition of the word

will not be natural. In these cases it is best to simply add the word NOT to the start of the clause.

THEN

The conditions of the rule (the if-clauses) are separated from the actions part of the rule

by a line containing the keyword THEN.

THEN-CLAUSES

The last part of the rule are the then-clauses. These have the same form as the if-clauses.

There can be zero or more then-clauses.

III.25.2 FIRING A RULE

248

A rule is said to "fire" when all its if-clauses are "true". In the case of commands, these

are "true" when they are executed. Comparisons between variables (both string and numeric)

are "true" only when the comparison is true (to the degree of accuracy specified). Finally text

clauses are "true" only when the working memory contains clauses whose known truth or falsity

matches that of the clause. When all the if-clauses are "true" (logically they are combined with

the AND connective) the rule "fires". The text clauses in the then part of the rule are then added

to the working memory and any commands are executed.

III.26 HOW THE SYSTEM FIRES RULES

There are two basic ways in which the system can fire rules: It can take whatever data

is available and see what "falls out", or alternatively it can try a particular path and see whether

the data supports it. Technically these two strategies are known as Forward chaining and

Backward chaining. The easiest way to understand these methods is to see how the inference

engine undertakes each strategy.

III.26.1 FORWARD CHAINING

The inference engine starts at the top of the rules. Consider the rules as being in a long

line attached with string. It then looks at each rule to see whether it has been fired already. If

the rule has not been fired the inference engine looks at all the if-clauses. If they are all true the

rule fires and the then-clauses are added to the working memory and the system continues by

examining the next rule. Once all the rules have been examined the system starts at the top of

the list of rules again. This process continues until no more rules can be fired or a goal has been

arrived at.

III.26.2 INFORM LEVELS AND GOALS

Every time a rule fires, it adds then-clauses to the working memory. Each then-clause

is potentially useful information for the user. In order to differentiate between clauses that the

user needs to know when they have been arrived at, and temporary clauses that are simply used

249

in the inference process, PESYS allows you to mark those clauses that the user needs to know

about with the keyword INFORM. Thus if the user needs to know that the animal is mammal,

the clause will have the keyword inform added to it. For example,

Inform 2 The animal is a mammal

Note that the inform keyword has a "level" associated with it - in this case level 2. Any

clauses which do not have the keyword inform are considered to be of level 0 and the user is not

informed when the clause is added to the working memory. Inform levels of 2 (and above) are

considered to be useful information that the user should be informed about, however they are not

the final result and once the user has seen the clause (and pressed a key) the system continues

to arrive at conclusions.

Inform clauses with a level of 1 are considered to be goals and whenever they are arrived

at the system stops inferencing. The main advantage of this approach is that it minimises the

possibility of data redundancy and the problems associated with this For example, the normal

way of specifying the goals that the system is trying to arrive at is to have a list of goals at, say,

the start of the knowledge base. However when you add or remove rules from the main

knowledge base there is no guarantee that you will remember to add or remove goals from the

list of goals. If, for example, a goal is not added when new rules are added the system will never

consider the rules for the (missing) goal and the system will be incomplete. By attaching the

"goal status" of a clause to the rule itself, this problem of redundancy will never arise. This

direct attachment also means that whenever a rule with inform 1 then-clauses is fired the system

will recognise that it has reached the end of the inference process and stop.

III.26.3 BACKWARD CHAINING

Backward chaining works in the opposite direction to forward chaining. Instead of

taking the data and seeing what comes out, backward chaining tries to fire a rule directly.

The first step is to list all the rules that have inform 1 then-clauses. The system will try

and fire each of these. To do this, it takes the first rule in this list. In order for this rule to fire,

it will need to check that all the if-clauses are in the working memory of the system. Assume

that there is no information in the working memory. This means that none of the if-clauses are

250

known. The system must therefore try and arrive at the if-clauses indirectly. The if-clause

becomes the new goal that the system is trying to verify.

Firstly, if the clause is a command the system executes it immediately and moves onto

the next if-clause. Similarly, if the clause is a comparison the system tries to evaluate it. If the

comparison is valid, the system moves onto the next if-clause.

Finally, if the clause is textual, the system checks to see whether it is in the working

memory (or if its negation is in the working memory if the clause is negated). If it is not, the

system must try and arrive at the answer. The first way to do this is to arrive at it, directly or

indirectly, from other rules and so the system makes a list of all the rules that contain the clause

in their then-clauses (i.e. rules that, if fired, would add the clause to the working memory). If

this list of rules is empty the clause cannot be arrived at by using rules and so the system must

ask the user about the clause.

If there are any rules that could arrive at the clause, the system sees if it can fire any

using the data that already exists in the working memory. If the rule fires (and the clause is

arrived at) the system moves onto the next if-clause. If none of the rules can be arrived at, the

system tries each rule indirectly, that is, each if-clause in this rule is checked using the same

method as described above. This process continues until either a goal is arrived at, or there are

no more rules to be tried.

III.27 A SIMPLE EXAMPLE

To demonstrate the two techniques we will consider a very simple example. The

knowledge base will try to decide which of three drinks you have before you. The three drinks

are milk, lemonade and coffee.

In order to identify each of these, a rule is needed for each and since our goal is to

identify the drink in question, the then-clauses in each rule will be marked with inform level 1.

First consider milk

This rule fires if the drink is milk - Note the meaningful rule name
if
the glass and liquid are cool to the touch
and the liquid is a white colour
then
inform 1 the drink that you have before you is milk

Next consider lemonade

251

this rule fires if the drink is lemonade
if
the glass and liquid are cool to the touch
and the liquid is clear
and the liquid is carbonated
then
inform 1 the drink you have before you is lemonade

finally for coffee

this rule is for coffee
if
the glass and liquid are hot
and the liquid is a dark colour
then
inform 1 you have a glass of coffee

Since the user may not understand the term carbonated, we can add the following rules:

carbonated drinks taste fizzy
if
the drink has a fizzy taste
then
the liquid is carbonated

carbonated liquids have bubbles
if
the drink has bubbles in it
then
the liquid is carbonated

III.27.1 A FORWARD CHAINING EXAMPLE

If we PREPARE this file with the following configuration (see the section on using

PREPARE).

Forward Chain True

Backward Chain False

Mixed Chain False

Pure Forward False

...

Select Items True

When you run the program you will first be shown a screen

252

 The drink has a "fizzy" taste

 The drink has bubbles in it

 The glass an liquid are cool to the touch

 The glass and liquid are hot

 The liquid is a dark colour

 The liquid is a white colour

 The liquid is clear

Select the following items

 The drink has a "fizzy" taste

% The drink has bubbles in it

% The glass an liquid are cool to the touch

 The glass and liquid are hot

 The liquid is a dark colour

 The liquid is a white colour

% The liquid is clear

Press CTRL and RETURN to start the inference process.

First cycle. The forward chain mechanism examines the first rule - the first clause

matches, the second doesn't. Second rule, the first and second clauses match, the third doesn't.

Third rule, the first clause doesn't match. Fourth rule, the first clause doesn't match. Fifth rule,

the first (and only) clause matches, the rules fires. "The liquid is carbonated" is added to the

working memory. End of first cycle.

Second cycle. First rule, first clause matches, second clause doesn't. Second rule, all

three clauses match and the rule fires. Then-clauses contain inform 1 clause and so inference

process stops. End of second cycle.

System completes forward chaining by informing you that the drink you have before you

is lemonade.

III.27.2 A BACKWARD CHAINING EXAMPLE

253

To see how the system works using backward chaining, PREPARE the rules with the

following configuration.

Forward Chain False

Backward Chain True

Mixed Chain False

Pure Forward False

...

Select items False

Firstly the system makes a list of all the rules which have inform 1 then-clauses.

This rule fires if the drink is milk

This rule fires if the drink is lemonade

This rule is for coffee

It considers the first rule in this list. In order to fire this it needs to know if the if-clauses

are true. First if-clause: "The glass and liquid are cool to the touch". This is not in the working

memory and so it must be verified. The system first finds any rules that contain the clause in

their then-clauses - there aren't any, so the user must be asked directly. Suppose the answer is

yes, the system then considers the second if-clause "The liquid is a white colour". Since this is

not in the working memory, it must again be verified. Once again there are no rules to arrive at

this so the user is asked directly. This time the answer is No. This means that the clause is not

true and so the rule cannot fire.

The system then considers the second Inform 1 rule. The first if-clause ("The glass and

liquid are cool to the touch") is already in the working memory and so the system can move onto

the next if-clause. Since this is not known and cannot be arrived at using any rules, the user is

again asked and answers Yes. The system then moves onto the third clause - "The liquid is

carbonated". This is not in working memory and must therefore be verified. The clause can be

arrived at by firing two rules :- "Carbonated liquids taste fizzy" and "carbonated liquids have

bubbles". The system will first see whether these rules can be fired using data in the working

memory - they can't. It then tries to fire them indirectly.

First rule: In order to fire the system needs to consider the clause "The drink has a fizzy

taste". This is not in the working memory and so it must be verified. There are no rules to arrive

254

at it so the user is asked. The answer is No, and this means that the rule cannot fire. The system

then moves onto the next rule. Again the if-clause must be verified by asking the user directly.

The answer this time is Yes and the rule fires, adding the clause "The liquid is carbonated" to

the working memory. The addition of this clause means that the rule "this rule fires if the drink

is lemonade" also fires, adding an inform 1 clause to the working memory. This means that the

system halts and informs the user that a goal has been arrived at.

III.28 ADVANCED FEATURES IN THE KNOWLEDGE BASE

A second knowledge base, Rich.rul, illustrates a number of more advanced features.

III.28.1 META RULES

A meta rule can be described as one which describes how other rules are to be used.

This is a useful facility when you do not want rules to fire at random, rather you want to control

the actions of the system. Effectively this means that meta rules can be used to "program" the

actions of the knowledge base.

For example, in the Rich knowledge base we are trying to determine what the likelihood

is of the user becoming rich. In order to do this we want the person to provide some personal

information before we can determine the possibility of becoming rich. The if-clauses for this

rule are therefore a statement checking that we have obtained the basic information and a

statement asking if we have considered the ways of becoming rich. Once these steps have been

taken, we can finish and inform (1) the user that the system has done its work

this rule controls the main actions
if
we have got the basic information about the user
and we have considered ways of getting rich
then
inform 1 the system has assessed your richness potential

III.28.2 TOP DOWN DESIGN

255

One of the most effective software design methods for minimising maintenance

problems is top down design. This principle can easily be applied to the writing of knowledge

bases. If the previous rule is considered as the top of the design, then by a top down breakdown,

the next rule to be considered will be one to get the basic information from the user.

III.28.3 USING FORMS TO ENTER DATA

One frequent difficulty with expert systems is the fact that once you have entered data,

because the system is often using a backward chaining technique, there is no way to go back and

alter values. PESYS partially overcomes this problem by allowing the designer of the knowledge

base to group a series of questions together in one form. The assumption being that if you want

to change a value, you will do so with recent answers, rather than earlier answers. A form for

entry allows you to alter the values until you select the end item.

III.28.4 COMMENTS

Comments may be inserted into the knowledge base by adding lines beginning with an

asterisk (*).

III.28.5 OR CLAUSES

The ability to combine clauses logically using OR as well as AND is also available in

PESYS. The if-clauses that we have seen so far can be considered as sets of OR clauses where

there is only one alternative - this OR nothing.

A simple rule with ORs and ANDs
If

256

A
Or B
Or C
And D

is represented by the system as

A simple rule with ORs and ANDs
If
A or B or C
D
then

Only one item from each line needs to be true for the rule to fire. See how this

corresponds to the simple if-clauses we saw earlier.

A simple rule with ANDs only
If
A
B
C
then

which is represented as

A simple rule with ANDs only
if
A
B
C
then

Where again each line needs only one true clause for the rule to fire.

Every if-clause is actually a list of or-clauses.
If
{
 this is true - an or clause
 or that is true - an or clause
}

Where the contents of the curly brackets is one if-clause. If the first or-clause is true the

whole if-clause is true. If it isn't the second clause is considered. This process continues until

one of the or-clauses is true, or there are no more or-clauses to be considered.

III.28.6 VARIABLES

257

PESYS allows you to use variables as part of the knowledge base. Both string and

numeric variables are supported with expression evaluation available for numeric variables.

Variable names can be any alphanumeric symbols and underline ("_"), provided that the first

character is alphabetic. String variables are marked by adding $ to the end of the variable name.

Meaningful variable names considerably aid the readability of knowledge bases.

First_name$ - a string variable age - a numeric variable

All numeric variables are reals.

III.28.7 COMPARISON OF VARIABLES

Numeric variables can be compared with one another or expressions. If the comparison

(to the defined level of accuracy) is valid, the clause returns true.

age > 21 returns true if the current value of age is greater than 21.

min_of_these <= a+(6*b) returns true if the comparison holds.

Comparison of string variables is also possible:

first_name$ = Edgar

Note that no quotation marks are required around string constants.

III.28.8 ATLEAST CLAUSES

A final control structure is the ATLEAST construct. The ATLEAST command is an

advanced form of the OR clauses described above. When the system was evaluating a list of

or-clauses, it moved onto the next if-clause as soon as one was found to be true. However in the

ATLEAST command, every clause is examined and a count is taken of the number of true ones.

If this count is more than or equal to the limit in the command the if-clause is set to true. In

addition a variable, how_many, is set to the number of true clauses.

258

III.28.9 PROMPTS

The user may be given useful information, in the form of prompts by adding the word

PROMPT to the end of the clause and then specifying the prompt name on the next line.

For example:

You keep your eyes open all the time prompt

Never_know

When you run the program EXTRAS, you will be asked for the text of the prompt

associated with the question.

III.28.10 COMMANDS IN PESYS

The following commands are available in PESYS.

LET This command is used to assign values to numeric and string variables. For

numeric variables a simple expression evaluator is available that allows the use of variables

within expressions.

DOS, The DOS and DOS_E commands are used to execute external DOS_E

programs from PESYS. DOS_E should be used if the parameters to be passed to the programs

are to be evaluated using variables known to the system, otherwise DOS should be used.

PRINT This command is used to output information onto the screen. Anything within

quotation marks is taken to be a constant and is displayed immediately, anything else is evaluated

and the result is displayed. Note that there are no separators between the different expressions

to be evaluated.

ENTER The enter and re_enter commands are used to input values from the RE_ENTER

keyboard. The commands differ in that enter only obtains a value if none exists

previously. Re_enter, on the other hand, always obtains a value. The values entered can either

259

be obtained from the keyboard, from a file or by use of a slider marking the minimum, maximum

and most likely values of the variable.

OPEN_IN PESYS is able to communicate with other programs through the use

OPEN_OUT of ASCII data files. The commands open_in and open_out are used to open files

for inputting data and for outputting data respectively and take the name of the file to be opened

as a parameter.

APPEND The append command is used to open an existing file so that values are written

at the end of it.

READLN The readln and read commands are used to obtain values from a file READ

that has been previously opened for input. The commands differ in whether the

items are expected to be one per line or not.

WRITELN Writeln and write are used to output data to the opened output file. WRITE

writeln adds an end of line character to each line of output.

CLOSE_IN Close_in and close_out perform the opposite actions to open_in and

CLOSE_OUT open_out.

CLS The cls command is used to clear the display screen.

PRESS_KEY When executing this command, the system waits for the users to press a key

before continuing.

RANGE_OF This can be used instead of enter or re_enter to force the users to enter a

minimum, maximum and most likely values of a variable.

USE The use command is used when a sub-knowledge base is to be used in the

inference process. The specified knowledge base is loaded and executed and once it is complete,

control returns to the previous knowledge base. The available memory of the system is the only

restriction on the depth of nesting of knowledge bases.

FORM The form command is used to display a particular form on the screen.

260

NLD This command is used to access the non-linear documents. Two parameters are

required namely the name of the file being used and either the location of the required screen or

its name.

258

APPENDIX IV - THE MAIN DATA

STRUCTURES USED BY PESYS

The PESYS system makes use of three basic data structures. These are binary trees,

linked lists and a special form of binary tree that is used to store facts about the domain - the

working memory of the system.

IV.1 BINARY TREES

Simple binary trees are used to sort data in the expert system. For example, when

presenting the users with a list of known facts to be altered in the what-if facility, they are added

to a binary tree and so are presented in alphabetical order.

A binary tree is also used to store all the words known in the system, effectively the

structure acts as a dictionary for the system. Words are represented in the rest of the expert

system as pointers to the actual word in the tree. Comparison of words, therefore, involves

comparing pointers to nodes in the tree. If two pointers point to the same node then, by

definition, they point to the same word. Comparison of words is then efficiently implemented

as a comparison of pointers rather than a lengthy character by character comparison.

The only problem with this tree arises when storing the words in the system using Turbo

Pascal strings. Each word in the tree is converted into a standard form (with the first character

in capitals and the remaining letters in lower case) and could be between 1 and 255 characters

in length. Allocating the maximum length (256 bytes) for every word is very wasteful of

memory and so a rather clumsy mechanism is introduced which makes use of a number of

different string types and pointers to them. This problem is a direct consequence of the way that

PASCAL handles strings and would be better implemented in C.

IV.2 LINKED LISTS

259

NIL

Head

Tail

The List Structure

Figure IV.1 - Linked lists in PESYS

PESYS uses linked lists to store most of the data in the system. Since the lists are used

without any particular ordering they are implemented using a very simple but effective

mechanism, see Figure IV.1.

When a list is being created two pointers are used, one which points to the head (first

element) and one which points to the tail (last element). For a new list, therefore, both head and

tail point to NIL.

260

Head

Tail

NIL

NIL
NIL

Data
Item

Step 1. An Empty List Step 2. A New Data Item

Figure IV.2 - Creating a new list

When a new element is to be added to the list it is first created dynamically. A special

function is used to create each element and this function explicitly initialises any pointers in the

element to NIL. Most of the problems with linked lists arise when pointers are not initialised

to NIL. By making this process explicit errors of moving beyond the end of a list cannot arise.

Any data is then added to the new element and it is placed at the end of the list. If the head of

the list is NIL then the list is empty and the head is made to point to this new element. The tail

also points to this element. When a second element is added to the list the head no longer points

to NIL and so the new element must be added to the end of the list. The end of the list is marked

by the tail pointer to tail^.next is made to point to the new element. This new element is now

the last element in the list and so the tail pointer is updated. This process is shown graphically

in Figure IV.1, Figure IV.2 and Figure IV.3.

261

Head

Tail
NIL

Step 3. After adding the first item
to a list

Head

Tail

NIL

Step 4. After adding the next item
to a list

Figure IV.3 - Elements added to the list

The Sent_ptr list

An example of such a list is the sent_ptr which is used to represent lines of text, such

as the clauses of rules. Each element contains a pointer to the dictionary and a number (real).

It also contains an indication as to whether the element represents a word or a number. If the

element represents a word then the pointer points to the word in the dictionary, otherwise it

points to NIL. The number is either the actual number represented or 0.

The type definitions for this list, together with the routines for creating and the list are

shown below:
TYPE
 sent_ptr = ^sent_rec;
 sent_rec = RECORD
 word_ptr : vocab_ptr; (*to dictionary*)
 numeric : boolean;
 number : real;
 next : sent_ptr; (*next element in the list*)
 END;

262

FUNCTION Make_sent_el : sent_ptr;

VAR
 tag : sent_ptr;

BEGIN
 NEW(tag);
 tag^.word_ptr := NIL;
 tag^.next := NIL;
 tag^.number := 0;
 tag^.numeric := FALSE;
 make_sent_el := tag;
END (*Make_sent_el*);

PROCEDURE Add_to_sent (VAR head, tail : sent_ptr; this_word : vocab_ptr; this_num : real; is_numeric : boolean);

VAR
 new_el : sent_ptr;

BEGIN
 new_el := make_sent_el;
 new_el^.word_ptr := this_word;
 new_el^.number := this_num;
 new_el^.numeric := is_numeric;

 IF head = NIL
 THEN BEGIN
 head := new_el;
 tail := new_el;
 END
 ELSE BEGIN
 tail^.next := new_el;
 tail := new_el;
 END;
END (*Add_to_sent*);

263

Value

NIL

NIL

Age

F
A

LS
E

F
A

LS
E

T
R

U
E0.0 0.0 23

Figure IV.4 - A sentence list

Moving through a list

Moving through a list is a very simple process. A variable is assigned to point to the

same element as the head. It then moves from the current element to the current^.next element

until either some condition is met or the pointer points to NIL, indicating that the end of the list

has been reached.

Most of the data structures in the knowledge base are based on these lists. For example,

the rules are stored in a list and each rule is made up of a list of if-clauses and a list of then-

clauses. Each if-clause is itself a list of or-clauses and the or-clauses and then-clauses make use

of the sent_ptr list described above.

264

NIL

Head

Tail

Moving through a list

TAG

Figure IV.5 - Moving through a linked list

265

The Ball Is Red

The

Ball

Is

Red

The Sky Is Blue

Sky

Is

Blue

Age Value 23

AgeAge

Value

23

Name$ Value Edgar Name$

Value

Edgar

Figure IV.6 - The tree used for the working memory

IV.3 THE WORKING MEMORY

The working memory of the expert system is effectively a binary tree, however it is

easier to visualise it in a slightly different way. Each node in the tree contains a pointer to the

dictionary and a number (in the same way that the sent_ptr did). The node also has two pointers

to the remainder of the tree. One of these pointers points "down", whilst the other points

"across".

The tree is used as follows. If the tree is empty, or the head of the tree matches the

current word in the clause being added, then follow the "down" branch, whilst if the words do

not match, use the "across" branch. This is shown in Figure IV.6.

One immediate disadvantage with this approach is that the first level of the tree will

become very congested since most words will not match the first word added to the tree and so

heavy use will be made of the first "across" link. It is therefore sensible to represent the outer

layer using an ordered binary tree to speed up access to the particular clause and this is shown

in Figure IV.7.

266

The

Ball

Is

Red

Sky

Is

Blue

Age

Value

23

Name$

Value

Edgar

Figure IV.7 - A binary tree for the outer level

The use of the dictionary and PASCAL pointers means, however, that it is possible to

improve this mechanism further. Each element in the dictionary tree can point directly to that

part of the knowledge base that begins with that word. Access to the knowledge base from, for

example, a sent_ptr clause will therefore involve no searching whatsoever. Instead two pointer

movements are performed. The first goes from the sent_ptr to the dictionary and the second goes

from the dictionary to the working memory tree at the point beginning with that word, this is

shown in Figure IV.8. If the second pointer is not present, then this means that there is no data

starting with that particular word.

In the PESYS system there are, in fact, two working memories. One which contains

"permanent" information, the other which contains "temporary" information generated by

running the knowledge base. This problem is overcome by simply having two pointers from the

dictionary, one to each working memory.

267

The

Ball

Is

Red

Sky

Is

Blue

Age

Value

23

Name$

Value

Edgar

The

Red

Blue

Name$
Age

NIL NIL

Dictionary

Figure IV.8 - The working memory as it is actually implemented in PESYS

Retrieving data from the working memory

The retrieval of data can be performed in two distinct ways. The first involves verifying

that a particular fact exists in the working memory. This is done by following the clause down

through the tree. If the complete clause is present then it is possible to obtain an indication of

whether it is known to be true or false.

The second retrieval method involves a partial move through the tree. By using the first

part of a clause, it is possible to determine all the possible endings to that clause since they will

be found in the remainder of the tree. Thus, for example, entering Television Kind-of as a query

will return a tree containing all the elements that a television is a kind-of. This tree can then be

converted into a linear linked list for use by the program.

Deleting and replacing data

268

Data can be deleted and replaced by removing all those elements of the tree, starting

from the bottom until an element is found which has another element "across" from it. Replacing

data, such as for the What-if analysis, then simply involves deleting data and adding new data.

IV.4 NON-LINEAR DOCUMENTS

Non-linear documents are stored as records in a file and two files are used. The first

stores the text of the screens and the second file is used to store information that links the various

screens together.

A record in the screen file is made up of the text of the screen, together with information

about whether the screen has been deleted and details about the first link associated with that

screen. This link information is simply the position of the link element in the second file. The

positions of screens that can be located using PageUp (PgUp) and PageDown (PgDn) are also

stored in this record.

The link record contains information about the name of the link and where it is

positioned on the screen. The location of the screen record that is being linked to is also stored,

as is the location of the next link record for the current screen. Any of these links may be

undefined and the end of a list of links is indicated by marking the link as being to NIL.

The final file used in non-linear documents is an index file and this is simply made up

of records containing the names of the screens and their associated positions in the screen file.

When non-linear documents are created, care must be taken to add the new records to

the appropriate position in the file. To this end, two arrays are maintained which keep track of

free positions in the file. Each element in the array corresponds to a record in the file and the

array is used to determine where the next free position in the file can be located.

268

APPENDIX V - CASE STUDIES

V.1 CASE STUDY I - AN EXPERT SYSTEM FOR THE

COMPETITIVE USE OF INFORMATION SYSTEMS

TECHNOLOGY

V.2 INTRODUCTION

The knowledge base is based on an article by Ives and Learmonth (1984) and is described by

Doukidis and Whitley (1987).

Ives and Learmonth define an application of information systems technology as

`strategic' if `it changes a firm's product or the way a firm competes in an industry' and they

suggest the use of the customer resource life cycle as a means of investigating potential areas for

using this technology. By concentrating on the needs of the customer, technology can be used

to enhance customer service. This leads to greater customer loyalty and hence differentiates the

firm from others in the market. The model they propose can be considered in four or thirteen

stages and is presented below:

269

The thirteen stage model presented by Ives and Learmonth (1984)

SIMPLE MODEL
Requirements

Acquisition

Stewardship

Retirement

EXTENDED MODEL
Establish requirements

Specify

Select source

Order

Authorize and pay for

Acquire

Test and accept

Integrate

Monitor

Upgrade

Maintain

Transfer or dispose

Account for

DESCRIPTION
To determine how much
of a resource is required
T o d e t e r mi n e t h e
attributes of the resource
To determine where
customers will buy the
resource
To order a quantity of the
resource
To transfer funds or
extend credit
To take possession of a
resource
To ensure that a resource
meets specification
To add to an existing
inventory
To control access and use
of a resource
To upgrade a resource if
conditions change
To repair a resource if
necessary
To move, return, or
dispose of inventory as
necessary
To monitor spending

The knowledge base was created by combining the model and the examples of

information system technology that Ives and Learmonth present in each of the thirteen stages of

the model. These examples were then converted into rules. The rules provided are by no means

exhaustive, but provide a basic idea as to the usefulness of information systems technology for

an organisation.

A number of rules from this knowledge base, together with information about the

relations in the clauses is presented below.

270

V.3 THE RULES USED

rule-1
if
there is a large customer_base
and the customers are homogenous
then
inform 2 it is possible to create a resource analyzer

rule-2
if
a resource analyzer has been created
then
inform 2 the system may also allow the preparation of sales_proposals

rule-3
if
there is a resource analyzer being created
then
inform 2 an information system can help establish the requirements for the resources

rule-4
if
the suppliers of a service are distributed randomly
then
inform 2 an information system can help in directing suppliers to empty_areas

rule-5
if
an information system can direct suppliers to empty_areas
then
inform 2 an information system can help establish the requirements for the resources

rule-6
if
there are many items available
then
inform 2 there is a possibility of creating an inventory handler

rule-7
if
an inventory handler has been created
and there are many suppliers
then
inform 2 the system can dispatch request_for_quotation notes

271

rule-8
if
an inventory handler system has been created
then
inform 2 the resources required can be specified

rule-9
if
a resource has been chosen
and there are many suppliers
then
inform 2 an information system may suggest similar alternatives
inform 2 an information system may display the available choices

rule-10
if
an information system can display the available choices
then
inform 2 an information system can help select suppliers for resources

rule-11
if
there is a large customer_base
and orders are easily specified
then
inform 2 there is a possibility to create a round_the_clock order_entry_system for users

rule-12
if
a round_the_clock order_entry_system has been created
then
inform 2 an information system can assist in ordering resources

rule-13
if
payments for resources require credit_authorization
and the customer_base is large
then
inform 2 an information system can be used to provide automatic credit_authorization

rule-14
if
an information system provides automatic credit_authorization
then
inform 2 there is a possibility for a system to allow payment of bills

V.4 THE INFORMATION FOR RELATIONS

272

Large Kind-of Size
Size Kind-of Implies
Size Implies Dimensions
Dimensions Kind-of Relation
Dimensions Needs Object Size
Customer_base Kind-of Object
Homogenous Kind-of Relation
Homogenous Needs Object
Customers Kind-of Object
Create Kind-of Relation
Create Needs Object Processor
Resource Kind-of Object
Analyzer Kind-of Processor
Created Kind-of Implies
Created Implies Create
Allow Kind-of Relation
Allow Needs Action Object
Preparation Kind-of Action
Sales_proposals Kind-of Object
Establish Kind-of Relation
Establish Needs Need Object
Requirements Kind-of Need
Resources Kind-of Object
Distribute Kind-of Relation
Distribute Needs Object Probability
Randomly Kind-of Probability
Distributed Kind-of Implies
Distributed Implies Distribute
Suppliers Kind-of Object
Direct Kind-of Relation
Direct Needs Object Place
Empty_areas Kind-of Place
Directing Kind-of Implies
Directing Implies Direct
Many Kind-of Multitude
Multitude Kind-of Implies
Multitude Implies Quantity
Quantity Kind-of Relation
Quantity Needs Object Multitude
Items Kind-of Object
Creating Kind-of Implies
Creating Implies Create
Inventory Kind-of Object
Handler Kind-of Processor
Dispatch Kind-of Relation
Dispatch Needs Format Letter
Notes Kind-of Letter
Request_for_quotation Kind-of Format
Specify Kind-of Relation
Specify Needs Object
Specified Kind-of Implies

273

Specified Implies Specify
Chose Kind-of Relation
Chose Needs Object
Chosen Kind-of Implies
Chosen Implies Chose
Suggest Kind-of Relation
Suggest Needs Substitute
Alternatives Kind-of Substitute
Display Kind-of Relation
Display Needs Option
Choices Kind-of Option
Select Kind-of Relation
Select Needs Object
Source Kind-of Object
Orders Kind-of Object
Order_entry_system Kind-of Processor
Round_the_clock Kind-of Object
Order Kind-of Relation
Order Needs Object
Ordering Kind-of Implies
Ordering Implies Order
Require Kind-of Relation
Require Needs Action Permission Object
Payments Kind-of Action
Credit_authorization Kind-of Permission
Provide Kind-of Relation
Provide Needs Permission
Provides Kind-of Implies
Provides Implies Provide
Bills Kind-of Object
Payment Kind-of Action

V.5 CASE STUDY II - AN EXPERT SYSTEM TO ASSIST IN

FILING INCOME TAX RETURNS

V.6 INTRODUCTION

The expert system to assist in filing tax returns for the Indian Income Tax authorities

is described by Whitley et al. (1989).

Income taxes have long been the principal means of taxation in industrial countries.

With relatively few distortions they can generate a great deal of revenue and leave scope for

income redistribution. Experience in developing countries, however, suggests that personal

income taxes are difficult to administer, raise little revenue, are weak in redistribution and

274

are often unfair. This has led to recent reforms of taxes on personal and company income

which will often be necessary to enhance the revenue and efficiency of a tax system.

Personal Income Taxes account for about a tenth of total tax revenue in developing

countries as against a higher proportion in the developed countries. The low yield reflects

limited coverage and poor design. Improving the yield requires changes in the base rate,

simplification in the procedure and law and more efficient administration and collection of

these taxes.

In a major legislation amendment the Income tax act has been amended by Tax Laws.

This is seen as an effort to simplify the tax laws and structure. Further, the use of computers

is being encouraged at various collection and assessment centres with a view to increased

efficiency in the filing and assessment of tax returns. Dependence on middlemen (experts -

accountants and lawyers) is being discouraged with a view to allowing the filing of returns by

the assessees themselves. Returns up to a specified amount are accepted without verification

in good faith and a small percentage of these returns are put to sample check every year.

There is thus a shift from avoidance of tax to tax planning.

In view of the shift in the expert's practice - stressing future tax planning instead of

filing routine returns - an expert system was designed that would enable the completion of

returns by the assessee himself or with the help of the junior staff of the expert. The overall

aim was to provide an accurate portrayal of the role of the expert in filing tax returns, without

requiring the expert to be present at the time.

V.7 DETERMINING THE RESIDENTIAL STATUS OF

ASSESSEES

One of the activities that needs to be performed by the expert system is determining

the residential status of the assessee. The piece of legislation relating to this is rather

complicated and is presented below:

Residence in India
SECTION 6
For the purposes of this Act, -
(1) An individual is said to be resident in India in any previous year, if he --

275

(a) is in India in that year for a period or periods amounting in all to one hundred and eighty-
two days or more; or
(b) 751[***]
(c) having within the four years preceding that year been in India for a period or periods
amounting in all to three hundred and sixty-five days or more, is in India for a period or
periods amounting in all to sixty days or more in that year.
762[Explanation : In the case of an individual, being a citizen of India, --
(a) who leaves India in any previous year for the purposes of employment outside India, the
provisions of sub-clause (c) shall apply in relation to that year as if for the words "sixty
days", occurring therein, the words "one hundred and eighty-two days" had been substituted;
(b) who being outside India, comes on a visit to India in any previous year, the provisions of
sub-clause (c) shall apply in relation to that year as if for the words "sixty days", occurring
therein, the words "ninety days" had been substituted.]

(2) Not applicable to the system.
(3) Not applicable to the system.
(4) Not applicable to the system.
(5) Not applicable to the system.

(6) A person is said to be "not ordinarily resident" in India in any previous year if such is --
(a) an individual who has not been resident in India in nine out of the ten previous years
preceding that year, or has not during the seven previous years preceding that year been in
India for a period of, or periods amounting to, seven hundred and thirty days or more;
(b) Not applicable to the system.

75 Omitted by the Finance Act, 1982, w.e.f. 1-4-1983
76 Substituted by the Finance Act, 1982, w.e.f. 1-4-1983. Original explanation was inserted
by the Finance Act, 1978, w.e.f. 1-4-1979.

V.8 THE RULES FOR DETERMINING THE RESIDENTIAL
STATUS OF AN ASSESSEE

control of residential status
if
* We must not have any mixed chaining for the system !!!!!
we have found the residential status
then
print 'Residential status is :' res_status$
writeln 'Residential status is :' res_status$
press_key
inform 1 we have residential status

rule for not ordinarily resident
if
we have found person is not ordinarily resident
then
let res_status$ = n o t ordinarily resident
we have found the residential status

276

rule for resident
if
we have found person is resident
then
let res_status$ = resident
we have found the residential status

rule for non resident
if
we have found the person is non resident
then
let res_status$ = non resident
we have found the residential status

rule for resident 0
if
we know person is resident
then
we have found person is resident

rule for resident 1
if
enter total_number_of_days_last_year_spent_in_india prompt
Q1
total_number_of_days_last_year_spent_in_india >= 182
then
we know person is resident

rule for resident 3
if
total_number_of_days_last_year_spent_in_india >= 182
person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2
and person has left
then
we know person is resident

rule for resident 4
if
total_number_of_days_last_year_spent_in_india >= 90
person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2
and person has visited
then
we know person is resident

277

rule for non resident
if
total_number_of_days_last_year_spent_in_india < 60
then
we have found the person is non resident

rule for non resident
if
total_number_of_days_last_year_spent_in_india >= 60
person has not been in India for a total of at least 365 days in the preceding 4 years prompt
Q2
then
we have found the person is non resident

rule for non resident since left
if
total_number_of_days_last_year_spent_in_india < 182
person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2
and person has left
then
we have found the person is non resident

rule for non resident since visit
if
total_number_of_days_last_year_spent_in_india < 90
person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2
and person has visited
then
we have found the person is non resident

rule for resident 2
if
total_number_of_days_last_year_spent_in_india >= 60
person has been in India for a total of at least 365 days in the preceding 4 years prompt
Q2
and person has not left
and person has not visited
then
we know person is resident

rule for person not ordinarily resident
if
we know person is resident

278

and person has not been resident for 9 out of 10 previous years prompt
Q5
or person has not been in India for 730 days in the previous 7 years prompt
Q6
then
we have found person is not ordinarily resident

rule to check for leaving
if
you are an Indian citizen who has left India in previous year for the purpose of employment
outside India prompt
Q3
then
person has left

rule to check for not leaving
if
you are an Indian citizen who has not left India in previous year for the purpose of
employment outside India prompt
Q3
then
person has not left

rule to check for visiting
if
you are an Indian citizen who is abroad, comes on a visit to India in the previous year prompt
Q4
then
person has visited

rule to check for not visiting
if
you are not an Indian citizen who is abroad, comes on a visit to India in the previous year
prompt
Q4
then
person has not visited

V.9 THE PROMPTS FOR THE RULE FILE

Q1 As per Sec 6(1)(a) An individual is said to be resident of India in any previous year if he
is in India in that year for a period or periods amounting in all to 182 days or more.
Q2 Sec 6(1)(c) Normally an Individual is a resident of India in any previous year if he has
within the 4 years preceding that year been in India for a period or periods of at least 365
days and is in India for at least 60 days in that year.

279

Q3 In the case of an individual being a citizen of India who leaves India for the purposes of
employment outside India 60 days, in subclause (c) would be substituted by 182 days.
Q4 In the case of an individual being a citizen of India who being outside India comes on a
visit to India in any previous year 60 days in subclause (c) would be substituted by 90 days.
Q5 Sec 6(6)(a) A person is said to be not ordinarily resident in India in any previous year if
such person is an individual who has not been resident in India in 9 out of 10 previous years
preceding that year Or Next Question.
Q6 Sec 6(6)(a) A person is said to be not ordinarily resident in India in any previous year if
such person is an individual who has not been resident in India for a period of or periods
amounting in all to 730 days or more.

V.10 THE INFORMATION ABOUT VARIABLES FOR THE
RULE FILE

Total_number_of_days_last_year_spent_in_india INPUT Please Enter The Total Number Of
Days Spent In India In The Previous Year
Total_number_of_days_last_year_spent_in_india Range 0.0 TO 366.0
Total_number_of_days_last_year_spent_in_india Dp 0.0

280

REFERENCES

Austin, J. L., How to do things with words: The William James lectures delivered at Harvard
University in 1955, London: Oxford University Press, 1962.

Backhouse, James and Jonathan Liebenau, Understanding information: An introduction,
London: Macmillan, 1990.

Ball, Ian, Man can still hold computer in check, The Daily Telegraph, (October 24th, 1989),
page 1.

Benner, Patricia, From novice to expert: excellence and power in clinical nursing practice,
Reading, MA:, Addison-Wesley, 1984.

Black, W. J., Intelligent knowledge based systems: An introduction, Wokingham: Van
Nostrand Reinhold, 1986.

Blakemore, Colin and Susan Greenfield (eds.) Mindwaves: Thoughts on intelligence, identity
and consciousness Oxford: Basil Blackwell, 1987.

Bloomfield, Brian P., The question of artificial intelligence: Philosophical and sociological
perspectives, London: Croom Helm, 1987.

Bloomfield, Brian P., Expert systems and human knowledge: A view from the sociology of
science, AI & Society, Volume 2, Number 1, (January - March 1988), pages 17-29.

Boden, Margaret A., Artificial intelligence and natural man (second edition, expanded), New
York: Basic Books, 1977, 1987.

Bodkin, Tim and Ian Graham, Case studies of expert systems development using
microcomputer software packages, Expert systems: the international journal of knowledge
engineering, Volume 6, Number 1, (February 1989), pages 12-16.

Boisgontier, J. and C. Donay, File handling in Turbo Pascal, London: Paradigm, 1988.

Boley, Harold, Expert system shells: very-high-level languages for artificial intelligence,
Expert systems: the international journal of knowledge engineering, Volume 7, Number 1,
(February 1990), pages 2-8.

Bolter, J. David, Turing's man: Western culture in the computer age, London: Duckworth,
1984.

Borland Inc., Turbo Pascal V3.0, 1985.

Borland Inc., Turbo Pascal V4.0, 1987.

Born, Rainer P. (Ed.), Artificial intelligence: The case against, London: Croom Helm, 1987.

281

Brownston, L., R. Farrell, E. Kant and N. Martin, Programming expert systems in OPS5,
Reading, MA: Addison-Wesley, 1985.

Butler, C., E. Hodil and G. Richardson, Building knowledge base systems with procedural
languages, IEEE Expert, Volume 3, Number 2, (Summer 1988), pages 47-59.

Capper, Phillip and Richard Susskind, Latent damage law: The expert system, London:
Butterworths, 1988.

Checkland, Peter, Systems thinking, systems practice, Chichester: John Wiley & Sons, 1981.

Checkland, P. B., Information systems and systems thinking: Time to unite?, International
Journal of Information Management, Volume 8, (1988), pages 239-248.

Church, Chas, Xi+ with the brakes off, Expert systems user, Volume 5, Number 3, (March
1989), pages 18-21.

Clarke, Roger A., Information technology and dataveillance, Communications of the ACM,
Volume 31, Number 5, (May 1988), pages 498-512.

Cohen, Paul R., and Edward A. Feigenbaum (Eds.), The handbook of artificial intelligence:
Volume III, Reading, MA: Addison-Wesley, 1982.

Collins, H. M., R. H. Green and R. C. Draper, Where's the expertise? Expert systems as a
medium of knowledge transfer, in Expert Systems 85 (ed. Martin Merry), Cambridge:
Cambridge University Press, 1985, pages 323-334.

Collins, H. M., Expert systems, artificial intelligence and the behavioural co-ordinates of
skill, in Bloomfield (1987), pages 258-281.

Cooley, Mike, Architect or Bee? The human price of technology, London: A Tigerstripe
book, Hogarth Press, 1987.

Cooley, Mike, The human use of expert systems, Aries at City, Quarterly Review No. 2,
(August 1988).

Cornford, Tony and Barbera Farbey, User representation in large systems: the case of the
DHSS (presented at the Unicom Seminar on Participation, London 1987), Working Paper 16,
Information Systems Department, London School of Economics and Political Science, 1989.

Coulter, J., On comprehension and `mental representation' in Gilbert and Heath (1985), pages
8-23.

Crookes, John G., and B. Valentine, Simulation in microcomputers, Journal of the
Operational Research Society, Volume 33, Number 9, (September 1982), pages 855-858.

Crookes, John G., David W. Balmer, Sew Tee Chew and Ray J. Paul, Journal of the
Operational Research Society, Volume 37, Number 6, (June 1986), pages 603-618.

Crookes, John G., Simulation using C, in Computer modelling for discrete simulation (ed.
Michael Pidd), Chichester: John Wiley and sons, 1989.

282

Report of a working party - Council for Science and Society, Benefits and risks of knowledge
based systems, Oxford: Oxford University Press, 1989.

D'Agapeyeff, A., and C. J. B. Hawkins, Expert systems in UK business: A critical
assessment, The knowledge engineering review, Volume 2, Number 3, (September 1987),
pages 185-201.

Doukidis, Georgios I., and Ray J. Paul, ASPES: A Skeletal Pascal Expert System, in Expert
systems and artificial intelligence in decision support systems (eds. H. G. Sol, C. A. Th.
Takkenberg, Robbe P. F. De Vries), The Netherlands: Reidel Publishing, 1987, pages 227-
246.

Doukidis, Georgios I., and Edgar A. Whitley, Developing and running expert systems with
PESYS, Future Generation Computer Systems, Volume 3, Number 3, (September 1987),
pages 189-199.

Doukidis, Georgios I., Marios C. Angelides and James L. Harlow, Towards an intelligent
tutoring system for Pascal programming, Education and Computing, Volume 4, (1988b),
pages 273-286.

Doukidis, Georgios I., Vijal P. Shah and Marios C. Angelides, Lisp: From foundations to
applications, Bromley: Chartwell-Bratt, 1988a.

Doukidis, Georgios I. and Edgar A. Whitley, Developing Expert Systems, Bromley:
Chartwell-Bratt, 1988.

Doukidis, Georgios I., and Ray J. Paul, A survey of the application of artificial intelligence
techniques within the OR society, forthcoming in Journal of the Operational Research
Society, 1990a.

Doukidis, Georgios I., and Ray J. Paul, SIPDES: A simulation program debugger using an
expert system, Internal report, CASM group, Information Systems Department, London
School of Economics and Political Science, 1990b.

Dreyfus, Hubert L. and Stuart E. Dreyfus with Tom Athanasiou, Mind over machine: The
power of human intuition and expertise in the era of the computer (updated, paperback
edition), New York: The Free Press, 1986a.

Dreyfus, Hubert L. and Stuart E. Dreyfus, Competent systems: the only future for inference
making computers, Future Generation Computer Systems, Volume 2, Number 4, (December
1986b), pages 233-244.

Dreyfus, Hubert L. and Stuart E. Dreyfus, Making a mind versus modelling the brain:
Artificial intelligence back at a branch point, Dædalus, Winter 1988, pages 15-43.

Earnest, Les, Can computer cope with human races, Communications of the ACM, Voume
32, Number 2, (February 1989), pages 174-182.

Feigenbaum, Edward A. and Pamela McCorduck, The fifth generation: Artificial intelligence
and Japan's computer challenge to the world, Reading, MA: Addison-Wesley, 1983.

283

Feigenbaum, Edward A., Pamela McCorduck and H. Penny Nii, The rise of the expert
company: How visionary companies are using artificial intelligence to achieve higher
productivity and profits, London: Macmillan, 1988.

Florentin, J. J., Software review: KEE, Expert systems: the international journal of
knowledge engineering, Volume 4, Number 2, (May 1987), pages 118-120.

Forsyth, Richard, Software review: Xi+, Expert systems: the internation journal of
knowledge engineering, Volume 4, Number 1, (February 1987), pages 48-51.

Forsyth, Richard, Software review: Leonardo, Expert systems: the international journal of
knowledge engineering, Volume 5, Number 2, (May 1988), pages 160-164.

Gammack, John G., and Anthony Anderson, Constructive interaction in knowledge
engineering, Expert systems: the international journal of knowledge engineering, Volume 7,
Number 1, (February 1990), pages 19-26.

Genesereth, Michael R., and Nils J Nilsson, Logical foundations of artificial intelligence,
Los Altos, CA: Morgan Kaufman, 1987.

Gilbert, G. N. and C. Heath, (eds.) Social actions and artificial intelligence: Surrey
conference on sociological theory and method; 3, Aldershot: Gower Publishing, 1985.

Grégoire, E., Evaluation of the expert system tools KEE and ART, Applied artificial
intelligence, an international journal, Volume 2, Number 1, (1988), pages 1-23.

Gunderson, Keith, Mentality and machines (second edition), London: Croom Helm, 1971,
1985.

Hall, Lawrence O., and Abraham Kandel, Toward a methodology for building expert systems
for imprecise domains, International journal of expert systems, Volume 1, Number 3, (1988),
pages 237-251.

Harmon, Paul and David King, Expert systems: Artificial intelligence in business, Chichester:
John Wiley & Sons, 1985.

Harmon, Paul, R. Maus and W. Morrissey, Expert systems, tools and applications,
Chichester: John Wiley and sons, 1988.

Hart, Anna, Knowledge acquisition for expert systems, London: Kogan Page, 1986.

Heidegger, Martin, Being and time (translated by John Macquarrie and Edward Robinson),
Oxford: Basil Blackwell, 1962.

Hinde, C., R. Allwood, D. Steward and B. Negus, Evalutaion of expert system shells for
construction industry applications, Department of Civil Engineering, Loughborough
University of Technology, August 1985.

Hirschheim, Rudy and Heinz K. Klein, Four paradigms of information systems development,
Communications of the ACM, Volume 32, Number 10, (October 1989), pages 1199-1216.

284

Ives, Blake and Gerald P. Learmonth, The information system as a competitive weapon,
Communications of the ACM, Volume 27, Number 12, (December 1984), pages 1193-1201.

Josefson, Ingela, The nurse as an engineer, AI & Society, Volume 1, Number 2, (October -
December 1987a), pages 115-126.

Josefson, Ingela, Knowledge and experience, Applied artificial intelligence, an international
journal, Volume 1, Number 2, (1987b), pages 173-180.

Kaplan, Simon M. and Medhi T. Harandi, Expert assistance in conversational design tools,
Proceedings of CASE '89, The 3rd Annual Workshop on CASE (July 17-21), BCS/IEEE,
London, 1989.

Keen, Peter G. W., Information systems and organizational change, Communications of the
ACM, Volume 24, Number 1, (January 1981), pages 24-33.

Keller, R., Expert system technology, Hemel Hempstead: Yourdon Press, Prentice Hall, 1987.

Kent, William, Data and reality: Basic assumptions in data processing reconsidered,
Amsterdam: North-Holland, 1978.

Kowalski, Robert, Position statement, Sigart Newsletter, Number 70, (February 1980), page
44.

Land, Frank F., Tony Cornford and Georgios I. Doukidis, In search of the expert systems
product (presented at the IFIP Joint International Symposium on Information Systems,
Sydney, March 1988), Working Paper 17, Information Systems Department, London School
of Economics and Political Science, 1989.

Leonard-Barton, Dorothy and John J. Sviokla, Putting expert systems to work, Harvard
Business Review, Volume 66, Number 2, (March-April 1988), pages 91-98.

Levy, Zeeva, The software estimation process, a small step forward, Working Paper 23,
Information Systems Department, London School of Economics and Political Science, 1990.

Linderholm, Owen, Screentest: Crystal & VP-Expert, Personal Computer World, Volume 10,
Number 4, (April 1987), pages 142-146.

Lipscombe, Barrie, Expert Systems and computer controlled decision making in medicine, AI
& Society, Volume 3, Number 3, (July - September 1989), pages 184-197

Lipsey, Richard G., An introduction to positive economics (7th edition), London: Wiedenfeld
and Nicholson, 1989.

Lyytinen, Kalle, Two views of information modelling, Information and Management,
Volume 12, Number 1, (1987), pages 9-19.

Massotte, A-M, M. Maury and H. Betaille, An experience in knowledge engineering, in The
proceedings of the second international expert systems conference, London, 1986, pages
229-235.

285

McCorduck, Pamela, Machines who think: A personal inquiry into the history and prospects
of Artificial Intelligence, New York: W. H. Freeman and Co., 1979.

McCoy, Kathleen F., Generating context-sensitive responses to object-related
misconceptions, Artificial Intelligence, Volume 45, Number 2, (December 1989), pages 157-
195.

Michie, Donald and Rory Johnston, The creative computer: Machine intelligence and human
knowledge, Harmondsworth: Viking, 1984.

Microsoft Inc., Pascal V3.32, 1986.

Minsky, Marvin, The society of mind, New York: Simon and Schuster, 1986. BF431 M66

Mumford, Enid and Mary Weir, Computer systems in work design: The ETHICS method.
Effective Technical and Human Implementation of Computer Systems, London: Associated
Business Press, 1979.

Nuttall, S., Nexpert makes an expert of you, Expert systems user, Volume 4, Number 5, (July
1988), pages 12-13.

Paris, Jeff, Advice to those about to work on inexact reasoning, Lecture Notes for the SERC
Logic for IT seminar, Glasgow, September 1988.

Partridge, Derek, The scope and limitation of first generation expert systems, Future
Generation Computer Systems, Volume 3, Number 1, (February 1987), pages 1-10.

Paul, Ray J., Simulation Modelling: The CASM project (presented at The Annual Operational
Research Symposium of Yugoslavia, Brioni, Yugoslavia, 11-14 October 1988 and at the 2nd
Brazilian Workshop on Simulation, Sao Jose dos Campos, Sao Paulo, Brazil, 1-2 September
1988), Working Paper 18, Information Systems Department, London School of Economics
and Political Science, 1989.

Polanyi, Michael, The tacit dimension, London: Routledge & Kegan Paul, 1967.

Polanyi, Michael, Knowing and being: Essays by Michael Polanyi (edited by Marjorie
Grene), London: Routledge & Kegan Paul, 1969.

Prosch, Harry, Michael Polanyi: A critical exposition, Albany, NY: State University of New
York Press, 1986.

Quinlan, J. Ross, Applications of Expert Systems, The proceedings of the second Australian
conference: Volume one, Reading, MA: Addison-Wesley/Turing Institute Press, 1987.

Rajan, Tim, Goldhill finds the midas touch, Expert systems user, Volume 4, Number 3, (May
1988), pages 14-16.

Ramsay, Allan, Formal methods in artificial intelligence, Cambridge: Cambridge University
Press, 1988.

286

Richer, Mark H., An evaluation of expert system development tools, Expert Systems: the
international journal of knowledge engineering, Volume 3, Number 3, (July 1986), pages
166-183.

Roth, Alan, Bridging the gap?, Expert systems user, Volume 4, Number 1, (March 1988),
pages 10-12.

Roth, E. M., K. B. Bennett and D. D. Woods, Human interaction with an "intelligent"
machine, International Journal of Man-Machine Studies, Volume 27, Number 5/6,
(November/December 1987), pages 479-525.

Rousset, Marie-Christine and Brigitte Safar, Negative and positive explanations in expert
systems, Applied artificial intelligence, an international journal, Volume 1, Number 1,
(1987), pages 25-38.

Samuel, Arthur L., AI, Where it has been and where it is going, Proceedings of the 8th
International Joint Conference on Artificial Intelligence, 1983, Volume 2, pages 1152-1157.

Santene, Ano, The impact of expert systems in financial institutions, M.Sc. report,
Information Systems Department, London School of Economics and Political Science, 1989.

Schank, Roger C. with Peter G Childers, The cognitive computer: On language, learning and
artificial intelligence, Reading, MA: Addison-Wesley, 1984.

Searle, John R., Speech Acts: An essay in the philosophy of language, Cambridge: Cambridge
University Press, 1969.

Searle, J. R., Minds, brains and programs (with commentary and author's response), The
Behavioral and Brain Sciences, Volume 3, Number 3, (September 1980), pages 417-457.

Searle, John R., Minds, brains and science: The 1984 Reith lectures, London: British
Broadcasting Corporation, 1984.

Searle, J. R., Minds and brains without programs, in Blakemore and Greenfield (1987), pages
209-233.

Sergot, M. J., F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond and H. T. Cory, The
British Nationality Act as a logic program, Communications of the ACM, Volume 29,
Number 5, (May 1986), pages 370-386.

Smithson, Steve and Rudy Hirschheim, End-user computing: a debate on the user-system
interface (revised version of a paper presented to IFIP TC 8.2 Working Conference on
Desktop Technology, Cornell, June 1989), Working Paper 14, Information Systems
Department, London School of Economics and Political Science, 1989.

Stamper, Ronald, Management epistemology: Garbage in, garbage out (and what about
deontology and axiology), in Knowledge representation for decision support systems (eds. L.
B. Methlie and R. H. Sprague), Amsterdam: North-Holland, 1985, pages 55-77.

287

Stamper, Ronald, James Backhouse, Sunny Marche and Karl Althaus, Meaning: The frontier
of Informatics - Semantic Normal Form?, Proceedings of the Aslib Conference Informatics-9,
1987.

Stamper, Ronald, Pathologies of AI: Responsible use of artificial intelligence in professional
work, AI & Society, Volume 2, Number 1, (January - March 1988), pages 3-16.

Suchman, Lucy A., Plans and situated actions: The problem of human machine
communication, Cambridge: Cambridge University Press, 1987.

Susskind, Richard E., Expert systems in law: A jurisprudential inquiry, Oxford: Clarendon
Press, 1987.

Tilghman, B. R., Seeing and seeing-as, AI & Society, Volume 2, Number 4, (October -
December 1988), pages 303-313.

Turing, A. M., Computing machinery and intelligence, Mind, Volume LIX, Number 236,
(October 1950), pages 433-460.

Turkle, Sherry, The second self: Computers and the human spirit, New York: Simon and
Schuster, 1984.

Twine, Steven, Towards a knowledge engineering procedure, in Expert systems V (eds. B.
Kelly and A. Rector), Cambridge: Cambridge University Press, 1989, pages 90-102.

van Koppen, J. and C. Philips, A survey of expert system development tools, in The
proceedings of the second international expert systems conference, London, 1986, pages
157-173.

Vedder, Richard G., PC-based expert system shells: some desirable and less desirable
characteristics, Expert systems: the international journal of knowledge engineering, Volume
6, Number 1, (February 1989), pages 28-42.

Vrba, Joseph A., and Juan A. Herrera, Expert system tools: The next generation, IEEE
Expert, Volume 4, Number 1, (Spring 1989), pages 75-76.

Waller, Paul, General purpose expert system tools sold in Britain, presented at a meeting of
the OR society study group on aritifical intelligence and expert systems, London School of
Economics and Political Science, October 25th, 1989.

Wallsgrove, Ruth, Screentest: Crystal, Personal Computer World, Volume 11, Number 11,
(November 1988), pages 172-175.

Waterman, Donald A., Jody Paul and Mark Peterson, Expert Systems for legal decision
making, in Quinlan (1987), pages 23-47.

Weizenbaum, Joseph, Computer power and human reason: From judgement to calculation,
San Francisco: W. H. Freeman and co., 1976.

288

Weizenbaum, Joseph, ELIZA a computer program for the study of natural language
communication between man and machine, Communications of the ACM, Volume 26,
Number 1, (January 1983), pages 23-28.

Whitley, Edgar A., Ashwajit Singh and Georgios I. Doukidis, An expert system to assist in
filing tax returns: The case of Indian income tax, in The proceedings of the fifth international
expert systems conference, London, 1989, pages 115-129.

Winograd, Terry, Understanding natural language, Edinburgh: Edinburgh University Press,
1972.

Winograd, Terry and Fernando Flores, Understanding computers and cognition: A new
foundation for design, Reading, MA: Addison-Wesley, 1986.

Winograd, Terry, Where the action is, Byte, Volume 13, Number 13, (December 1988), pages
256A-258.

Winston, Patrick H. and Berthold K. P. Horn, Lisp (second edition), Reading, MA: Addison-
Wesley, 1984.

Winston, Patrick H., Artificial intelligence (second edition), Reading, MA: Addison-Wesley,
1984.

Wittgenstein, Ludwig, Philosophical Investigations (trans. G. E. M. Anscombe), Oxford:
Basil Blackwell, 1953.

