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Abstract: This paper describes a new public-access online database containing internationally 

comparable estimates of inequality of opportunity for seventy-two countries, 

covering two-thirds of the world’s population. The estimates were computed 

directly from the unit-record microdata for 196 household surveys, using a suite of 

machine-learning tools selected to minimize the omitted variable and overfitting 

biases discussed in the literature. Overall, differences in opportunities account for 

substantial shares of total income inequality (with the mean of our preferred 

estimate being 40.9%), but there is substantial variation across countries, with 

estimates ranging from 18.9% in Denmark (2011) to 76.7% in South Africa (2017). 

The latest US estimate of 41.6% places it among the most opportunity unequal high-

income countries. We also find strong support for the existence of a positive 

association between income inequality and relative inequality of opportunity, 

analogous to the “Great Gatsby Curve” for mobility and inequality. Similarly, there 

is evidence of an inverted-U “Opportunity Kuznets curve”. The database is available 

at www.geom.ecineq.org. 
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1. Introduction 

This paper introduces and describes a new public-access dataset containing summary 

estimates of inequality of opportunity and ancillary information for seventy-two countries 

over the last two to four decades. In line with the recent literature, inequality of opportunity 

(IOp) is defined as either the amount (absolute) or the share (relative) of the dispersion in the 

distribution of an outcome (such as household incomes) that can be predicted by differences 

in people’s “circumstances” – factors beyond their control which nonetheless shape and 

constrain their choice sets. 

This definition of inequality of opportunity draws on theoretical work by Roemer (1993, 1998), 

van de Gaer (1993), and Fleurbaey (1994), and has been used in an empirical literature that 

seeks to measure the extent of inequality of opportunity in different countries over the last 

two decades or so.2 It is a literature that draws explicitly on normative principles about 

distributional fairness, but it is also closely related to the literature on intergenerational 

persistence in individual outcomes, such as education, income, or wealth, and to the 

sociological analysis of social stratification.  

Björklund and Jäntti (2020), for example, include inequality of opportunity as one of four 

established approaches “to the study of how individuals’ income and education during 

adulthood are related to their family background” (p.1), with the other three being 

intergenerational mobility (IGM); causal intergenerational effects; and sibling correlations. 

Brunori et al. (2013) and Corak (2013) also highlight the connections between 

intergenerational (im)mobility and inequality of opportunity and illustrate how the two are 

correlated in practice.  

A key difference between these two approaches – IGM and IOp – is that, whereas mobility 

estimates are basically about quantifying or describing the bivariate associations between a 

parent’s outcome and that of their children, IOp takes a broader, multivariate approach: 

parental income is an excellent candidate circumstance variable, but so are parental education 

and occupation, place of birth, race, gender, and the neighborhood in which a person grows 

up, to mention only a few.3 IOp is then assessed as the level (or share) of inequality that can 

be predicted by all these circumstances together. In a recent study using administrative data 

for Sweden, Adermon, Brandén and Nybom (2025) find that, although IOp and IGM estimates 

correlate strongly, “the share of total inequality that can be attributed to family background 

factors is substantially higher for the sibling correlation and the IOp indices than what is 

implied by intergenerational estimates” (p.18). 

 
2 See Bourguignon et al. (2007) and Checchi and Peragine (2010) for some of the first empirical studies of 
inequality of opportunity. 
3 In that sense, it is closer to the sibling correlation approach, which estimates the share of dispersion in adult 
incomes that can be ‘explained’ by all factors shared by siblings. However, as Björklund and Jäntti (2020) note, 
IOp could in principle also include circumstances that differ among siblings, such as birth-order, different pre-
schools attended, or the siblings’ ages when certain exogenous shocks hit the family. 
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It is increasingly recognized that this kind of inequality matters both intrinsically and 

instrumentally. Evidence from both opinion surveys and behavioral experiments suggests that 

people object most strongly to inequality they see as arising from factors independent of 

people’s choices and efforts (e.g. Konow, 2000; Almås et al., 2010; Cappelen et al., 2010, 2013; 

Pew Research Center, 2012). Instrumentally, very different kinds of evidence indicate that 

unequal opportunities may reduce economic efficiency and growth (e.g., Hsieh et al., 2019; 

Marrero and Rodríguez, 2013).  

Yet, although there are now a few cross-country datasets that allow for international 

comparisons of intergenerational mobility estimates, particularly for educational attainment 

– e.g., Neidhöfer et al. (2018) and van der Weide et al. (2024) – we are not aware of any large 

comparable datasets for inequality of opportunity across countries.4 This is the gap the Global 

Estimates of Opportunity and Mobility Database (GEOM: www.geom.ecineq.org) seeks to fill. 

Drawing on the unit-record level data from 196 representative household surveys we estimate 

inequality of opportunity for 72 countries around the world, representing just over two-thirds 

of the world's population, over a period spanning up to 44 years.  

For each of our 196 country-year data points we provide estimates for two different IOp 

concepts – known as ex-ante and ex-post IOp and defined in Section 2 below – in each case 

using both the Gini coefficient and the mean logarithmic deviation (MLD) as scalar measures 

of inequality. While we report all these estimates below, we focus on the ex-ante results in 

this paper for brevity. For these ex-ante estimates and across the entire database, we find Gini 

coefficients ranging from 0.05 (for Denmark in 2011) to 0.48 (for South Africa in 2008). If we 

consider only the latest available year for each country, the range is from 0.07 in Denmark 

2019 to 0.47 in South Africa 2017. Relative to the country’s own income inequality, IOp 

accounts for as little as 18.9% of total inequality in Denmark (2011), to as much as 76.7% in 

South Africa (2017). There is considerable variation across regions, with Latin America 

substantially overrepresented at the top of the range, while Europe is overrepresented at the 

bottom. There is much more dispersion across Asia, and it is difficult to compare Africa to the 

rest of the world, since most African countries use consumption, rather than income, as the 

main measure of economic advantage. The latest estimate for the United States is 41.6% of 

total inequality, slightly above the mean value of 40.9% and quite a bit higher than the median 

(38.4%) 

We also find considerable variation in trends over time with, for example, a substantial 

increase in absolute IOp in the United States from 1978 to 2002 (followed by a slight decline), 

contrasting with a decline in Peru between 2007 and 2015. We are also able to confirm the 

existence of an opportunity “Great Gatsby Curve” – a positive association between IOp and 

cross-sectional inequality – much as found by Brunori et al. (2013) for a much smaller and less 

comparable earlier sample, and analogously to the original Gatsby Curve for intergenerational 

 
4 There is also less internationally comparable information on IGM in incomes than in education, although Muñoz 
and van der Weide (2025) begin to close that gap. 

http://www.geom.ecineq.org/
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mobility (Corak, 2013). Similarly, we explore whether an “Opportunity Kuznets Curve” may be 

discerned in the cross-sectional data. 

In addition to comparable headline IOp estimates, our estimation methods also allow us to 

report the relative descriptive importance of individual circumstance variables, such as 

mother’s education or ethnicity; and the population partitions selected for each country-year 

by our data-driven prediction algorithms – including the richest and poorest social groups as 

defined by circumstances. While there is no room in this paper to do justice to all these 

byproducts of the estimation strategy, individual country results are available from the online 

database.5  

The remainder of the paper is organized as follows. Section 2 briefly reviews the theoretical 

framework underpinning the IOp literature. Section 3 describes the data sources used for the 

analysis, as well as our treatment of the samples. It defines the income and circumstance 

variables employed and provides some broad summary statistics across the dataset. Section 

4 describes the methods used to predict current-generation incomes from circumstance 

variables, both from an ex-ante and from an ex-post perspective. Section 5 presents an 

overview of results, focusing on international comparisons. Section 6 concludes. 

 
2. Theoretical framework  

The canonical model used in the literature to measure IOp can be described as follows.6 

Consider a distribution of an outcome 𝑥 in a given population and suppose that all 

determinants of 𝑥 can be classified into either a set of circumstances 𝐶 that lie beyond 

individual control, or as responsibility characteristics, summarized by a variable 𝑒, denoting 

effort, belonging to the set 𝐄. Circumstances belong to a finite set 𝐂. The outcome of interest 

is then generated by a function 𝑔: 𝐂 × 𝐄 → ℝ, such that: 

 𝑥 = 𝑔(𝐶, 𝑒) (1) 

 

In this framework, each individual in the population is fully characterized by the triple (𝑥, 𝐶, 𝑒). 

The population can then be exhaustively partitioned in two ways: into types {𝑇1
𝐶 , 𝑇2

𝐶 , . . . 𝑇𝑛
𝐶}, 

which are groups of individuals that share the same circumstances, or into tranches 

{𝑇1
𝑒 , 𝑇2

𝑒 , . . . 𝑇𝑚
𝑒 }, which are groups within which everyone shares the same degree of effort. 

 
5 The interested reader can reproduce all graphs shown in the results section by downloading the data or 
interacting with the platform. Information about the team and institutions involved in the GEOM database, as 
well as a glossary and a documentation section are also available on the website, aimed at providing readers 
with the necessary tools to explore the complete results. 

6 Different variants of this model were proposed in theoretical contributions by Fleurbaey (1994), Roemer (1993), 

Van de Gaer (1993), Peragine (2002) and used in the first empirical analyses of inequality of opportunity: see 

Bourguignon et al. (2007), Checchi and Peragine (2010) and Ferreira and Gignoux (2011). See Ferreira and 

Peragine (2016) and Roemer and Trannoy (2016) for reviews of the literature.  
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This is a reduced-form model in which neither opportunities themselves, nor the structural 

process by which outcomes are determined, are explicitly modelled. The idea is to infer the 

differences in opportunities available to individuals by observing differences in the 

distributions of the outcome variable conditional on different combinations of circumstances 

– that is across type-specific outcome distributions. If circumstances ought not to influence 

outcomes – either directly or through their influence on efforts – any differences across 

conditional distributions are prima-facie evidence of inequality of opportunity (Ferreira and 

Peragine, 2016). 

 

The normative foundations of this opportunity egalitarian theory rest on two distinct and 

independent principles: the Compensation Principle, according to which all outcome 

inequalities due to circumstances are unfair and should be compensated by society; and the 

Reward Principle, which is concerned with the apportionment of outcomes to effort and, in 

some of its formulations, requires that outcome inequalities due to effort be respected. Two 

main versions of the compensation principle have been proposed, each yielding a different 

approach to the measurement of inequality of opportunity: the ex ante and the ex post 

approaches.  

 

According to the ex-ante approach, there is equality of opportunity if the values of the sets of 

opportunities available to individuals are the same for everyone, regardless of circumstances 

(ex-ante compensation). In the model introduced above, the support of a type’s (𝑇𝑖
𝐶) outcome 

distribution, which is the outcome distribution conditional on circumstances 𝐶𝑖, is interpreted 

as the opportunity set of all individuals with circumstances 𝐶𝑖. There are obviously many ways 

in which such a set could be valued – one of which is to take its expected value. Hence the 

focus is on the inequality between the types. This approach is ex ante with respect to the 

revelation of effort (van de Gaer, 1993).  

 

On the other hand, in the ex-post approach, there is equality of opportunity if and only if all 

those who exert the same degree of effort end up with the same outcome. Because effort is 

difficult to observe and because its absolute level is likely to be influenced by circumstances, 

Roemer’s identification assumption is commonly adopted. This assumption identifies the 

relative degree of an individual’s effort by the person’s rank in the type-specific outcome 

distribution. In this case, tranches (e.g., 𝑇𝑗
𝑒) are defined as sets of individuals who belong to 

the same quantiles in their respective type distributions, and the ex-post principle of 

compensation requires reducing outcome inequality within tranches (ex-post compensation). 

This means that inequality of opportunity within this approach is measured as inequality 

within tranches (Roemer, 1998).  

 

As far as the reward principle is concerned, different versions of the principle have been 

proposed in the literature, expressing different attitudes to the outcome inequality observed 
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within types, that is: among individuals endowed with the same circumstances. Among the 

many interpretations, the most common in empirical applications is utilitarian reward, 

according to which one should focus only on the sum (or the average) of the achievements 

obtained by each group of individuals sharing the same circumstances, and to remain neutral 

with respect to the way differences in effort are remunerated within these groups. Alternative 

formulations have been proposed, from inequality-averse reward (Ramos and Van de Gaer, 

2016; Fleurbaey et al. 2024) which incorporates some aversion to inequality even within 

types, to intermediate and agnostic positions (Peragine, 2002; Peragine and Serlenga, 2008; 

and Fleurbaey and Peragine 2013).    

 

Measuring IOp 

 

Once a version of the compensation and a version of the reward principle are adopted, the 

derivation of a scalar measure of inequality of opportunity follows a two-step procedure: first, 

the actual distribution, call it 𝒙, is transformed into a counterfactual distribution 𝒙̃, which 

reflects only and fully the unfair inequality in 𝒙, while all the fair inequality is removed. In the 

second step, a measure of inequality is applied to 𝒙̃. The first step is where the choice of 

compensation and reward principles matter. In fact, different versions of the counterfactual 

distribution, and hence different measures of inequality of opportunity, which are either 

consistent with the ex-ante or the ex-post compensation and with different versions of reward, 

have been proposed in the literature: they express different and sometimes conflicting views 

on equality of opportunity and the distributional rankings they generate may be different. See 

Ferreira and Peragine (2016) for a discussion.  

 

One measure extensively used in the literature is Between-Types inequality, which arises from 

the combination of ex-ante compensation with utilitarian reward. Taken together, these two 

versions of the principles imply valuing opportunity sets using their mean or expected value, 

and computing inequality on a counterfactual distribution 𝐱̃𝐵𝑇 that is obtained by replacing 

each individual outcome by the average outcome of the type the individual belongs to. This 

smoothing transformation is intended to remove all inequality within types, and different 

applications were implemented by Bourguignon et al. (2007), Checchi and Peragine (2010), 

Ferreira and Gignoux (2011), and others.7  

 

An alternative, ex-post measure, inspired by Roemer (1993) and implemented by Checchi and 

Peragine (2010) and Aaberge et al (2011), is based on the Within-Tranches counterfactual 

distribution (𝒙𝑊𝑇𝑅). This distribution is obtained by replacing each individual outcome in each 

tranche with the ratio between that outcome and the average outcome of the tranche. This 

 
7 Although the utilitarian reward principle implies the between-types approach directly, because of the use of 
average incomes to value type opportunity sets, the approach is also consistent with other reward principles, 
such as liberal reward, for example. 
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normalization procedure is intended to remove all inequalities between tranches and to leave 

unchanged the inequality within tranches.  

 

In both approaches, the fact that estimation typically occurs in samples, rather than entire 

populations, has important practical implications. Even with a relatively narrow set of 

circumstances – such as the one described in the next section – the interactions between the 

different categories across all variables routinely reach into the thousands, leading to the 

possibility of severely overfitted models. This gives rise to a tradeoff between two different 

kinds of bias in selecting a prediction model 𝑥̃𝑖 = 𝑓(𝐶𝑖)  to construct the counterfactual 

distribution 𝒙: Include too few variables and interactions, and the model will suffer from 

(downward) omitted variable bias. Include too many, and the model will suffer from (upward) 

overfitting bias.8  

In the past, different parametric and non-parametric prediction methods were used but, until 

recently, these generally relied on arbitrary or ad hoc specifications. We address this challenge 

by using a suite of data-driven supervised machine learning techniques to select optimal 

prediction models, in the sense that the algorithms select partitions to maximize out-of-

sample predictive power (following Brunori, Hufe and Mahler, 2023, and Brunori, Ferreira and 

Salas-Rojo, 2024). We use these approaches to partition country samples into empirical types 

and discuss them in more detail in Section 4. 

Once the counterfactual distribution has been obtained, either in the ex-ante or in the ex-post 

versions, the second step of the measurement procedure can take place. Here, a specific 

inequality index 𝐼(. ) is applied to the counterfactual matrix to obtain an estimate of inequality 

of opportunity. The Gini coefficient and the Mean Logarithmic Deviation (MLD) are commonly 

used in the literature and the GEOM database aligns with this practice. 

Two closely related versions of the IOp index are reported below. The first one is the absolute 

or level estimate of inequality of opportunity (IOA), given simply by the inequality measure 

computed over 𝒙̃, i.e. by 𝐼(𝒙). The second measure is the ratio of  IOA to overall inequality in 

the relevant outcome variable (e.g. income), which yields the relative measure,  IOR: 

 

       IOR =
I(x̃)

I(x)
      (2) 

 
8 Because of this trade-off, the choice of the empirical prediction model involves not only selecting a functional 
form and specification that adequately capture the desired principles of compensation and reward, but also 
selecting the partition into empirical types, which is generally coarser than the partition into theoretical types. 

As Ferreira and Brunori (2024) note: “The choice of the empirical partition ‖𝑇𝑖̂‖ is an important component of 

the model selection problem, and it involves a trade-off between two different kinds of bias that work in opposite 

directions. The first is an omitted variable bias: selecting a partition ‖𝑇𝑖̂‖ with too few empirical types (a low 

𝑛(𝑇̂𝑖)) leads to an underestimate of IOp or inherited inequality, relative to the true theoretical partition (Ferreira 

and Gignoux, 2011). On the other hand, overfitting the sample data and choosing too large a 𝑛(𝑇̂𝑖) can lead to 

an upward bias in estimates of IOp (Brunori, Peragine and Serlenga, 2018)” (p.16). 
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IOR can be interpreted as the share of total inequality that can be predicted by circumstances 

or inherited characteristics which people cannot be held responsible for. 

 

3. Data sources   

The sample of countries 

As noted in the Introduction, GEOM includes data from 72 countries, drawn from 196 

household surveys. These surveys were selected with a view to balancing two key desiderata, 

namely (i) broad country coverage and (ii) as much data and methodological comparability as 

possible. We therefore restrict our attention to household surveys containing basically the 

same set of circumstance variables, define the outcome variable in the same way, and treat 

the original samples identically regarding issues such as missing information, income outliers, 

age ranges, equivalence scales and so on.  

This pursuit of reasonable comparability across a wide range of countries inevitably has a cost 

in terms of the types of data and the range of circumstance variables that can be used in each 

country. In most developing countries, for example, large administrative datasets that 

combine social security records across generations and match parents to their children do not 

exist. Even in the rare instances where they do exist, they exclude, by definition, the typically 

large informal sectors of those economies. Even among surveys, the extent of information on 

circumstances available in detailed panel surveys, such as the Panel Study of Income Dynamics 

(PSID) in the US or the German Socioeconomic Panel (G-SOEP), is extremely rare among 

developing countries. Yet, as we will see, developing countries tend to have high levels of 

inequality of opportunity – higher than most developed countries. To exclude them based on 

data limitations would be a serious case of ‘looking where the light is, rather than where the 

problem is’. 

Table A1 in the Appendix lists all countries, time periods, and surveys included in GEOM, as 

well as the source from which we obtained access to the microdata.9 The time coverage varies 

significantly: for some countries, such as Armenia (2016), Colombia (2010), or Mali (2019), we 

only have data for a single point in time, while for others, like the USA, Peru or Australia, we 

have data for eight years or more. Since we use EU-SILC data for 2005, 2011, and 2019, most 

European countries have data for three points in time.10  

Table 1 summarizes the coverage information from Table A1 in more synthetic form. In Panel 

A we use the World Bank's geographical region classification and display the total number of 

countries in each region, the number of countries included in GEOM, the share as a 

 
9 Some microdata sets were obtained from or cleaned by institutional partners, such as the Centro de Estudios 
Distributivos, Laborales y Sociales (CEDLAS) at the University of La Plata, the Centro de Estudios Espinosa Yglesias 
(CEEY), Monash University and the Asian Development Bank (ADB). The list in Table A1 in the Appendix 
corresponds to the countries and time periods available in GEOM Version 1 (June 2024). Future updates are 
expected to include estimates for additional countries and time periods. 
10 A few European countries have fewer time points due to sample size or data limitations, such as Sweden (2019) 

and Malta (2011, 2019). 
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percentage of the total, and the share of the region's population covered.11 GEOM includes 

estimates of inequality of opportunity for 72 out of 217 countries globally, representing 66.9% 

of the world's population in 2022. While regions such as North America, South Asia, Latin 

America and Caribbean, and East Asia and Pacific have a broad coverage, encompassing more 

than 75% of their population, others, like the Middle East and North Africa (0.1%), have a 

much lower rate. In Panel B, countries are grouped by the World Bank’s income range 

classification. The high-income and upper-middle-income categories are well-covered in 

terms of population, with coverage rates reaching 78.4% and 82.3%, respectively. In contrast, 

GEOM covers only 22.9% of the population in low-income countries, highlighting the need for 

increased representation in these areas. 

Table 1: GEOM Coverage 

Panel A 

Macro Region 

(Geographical) 

Number of 

Countries (WB) 

Number of 

Countries (GEOM) 

Share of 

Countries (%) 

Share of 

Population (%) 

East Asia and 

Pacific 
37 6 16.22 75.26 

Europe and 

Central Asia 
58 36 62.07 65.96 

Latin America 

and Caribbean 
42 10 23.81 82.9 

Middle East and 

North Africa 
21 1 4.76 0.11 

North America12 3 1 33.33 89.53 

South Asia 8 2 25 75.43 

Sub-Saharan 

Africa 
48 16 33.33 49.34 

Total 217 72 33.18 66.89 

     

Panel B 

Macro Region 

(Economic) 

Number of 

Countries (WB) 

Number of 

Countries (GEOM) 

Share of 

Countries (%) 

Share of 

Population (%) 

High Income 82 35 42.68 78.4 

Upper-middle 

Income 
54 14 25.93 82.26 

Lower-middle 

Income 
54 14 25.93 59.36 

Low Income 26 9 34.62 22.93 

 
11 The classification of countries was retrieved from the World Bank Country and Lending Groups on the 1st of 
September 2023: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-
and-lending-groups. 
12 Mexico is included in Latin America and Caribbean. North America includes Canada, the United States and 
Bermuda. 

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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Total 217 72 33.18 66.89 

Source: Own elaboration. The classification of countries was retrieved from the World Bank Country and 

Lending Groups. The population data refers to 2022 and comes from the World Bank Open Data Repository 

(Variable SP.POP.TOTL). 

 

Country and survey selection for inclusion in GEOM followed four main criteria: First, the 

sample had to be representative of the entire country.13  Second, it must contain information 

on a money-metric wellbeing indicator, such as income or consumption expenditures, at the 

individual or household level.14 Third, it also had to contain individual-level information on at 

least five of the following seven “circumstance”, or inherited characteristic, variables: 

- Area or Region of Birth. 

- Sex.  

- Ethnicity. 15 

- Occupation of the Father and/or Mother. 

- Education of the Father and/or Mother. 

The fourth is a minimum sample size criterion: to be included in GEOM a sample must have a 

minimum of 1,500 individual observations with complete information and strictly positive 

outcomes. This sample size is based on the share of observations used in the resampling 

process for random forests and Shapley value decompositions, which is set at 0.632 (see the 

next section). To ensure that we retain at least 1,000 observations after each resampling, we 

calculate the required number of observations as 1,000/0.632 ≈ 1,500. 

Sample definitions within countries and key variables 

That is how our sample of countries was selected. Now we turn to how final analysis samples 

(FAS) were defined and constructed within countries. First, we restrict the sample to 

individuals aged 18 or older.16 Second, to be included in the FAS, observations must have 

complete information for the selected circumstances and the outcome. To simplify the 

analysis, categorical variables are limited to a maximum of 25 values, so if a circumstance 

variable has 26 or more categories, they are merged until 25 different values are reached. This 

merging process is country-specific and depends on the nature of the variable. For example, 

the Area of birth in China (2018) was initially provided in 32 categories, but we recoded 

 
13 The only exception to this is Argentina, where the 2014 ENES is representative only of the country’s urban 
areas. In 2022, the urban share of Argentina’s population was 92% (World Bank). 
14 This rules out, for example, the use of the Demographic and Health Surveys (DHS). 
15 In a few cases the “ethnicity” circumstance is proxied by religion, the language spoken at home, or similar 
definitions. These proxies are used when explicit ethnicity data is not available but other variables are sufficiently 
correlated with ethnic or cultural identity. 
16 This decision is based on the age of consent or responsibility, which is typically 18 in many countries and is 
associated with the legal right to vote and be tried as an adult. The dominant view in the literature is that any 
inequality observed among children younger than the age of consent is inequality of opportunity. See, e.g. Hufe 
et al. 2017. 
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provinces with fewer than 300 observations into an "Others" category. For each country and 

year, GEOM provides a dedicated file within the "Country Profile" section containing 

comprehensive data documentation. This includes information about the survey, sample 

characteristics, weights, outcome and circumstances definitions (including any merging of 

categories), main descriptive statistics, and a missing data analysis. 

The dependent (money-metric wellbeing) variable is defined to measure current monetary 

well-being and calculated as total household disposable income, or total household 

consumption expenditure, divided by the square root of household size to account for scale 

equivalence. The resulting equivalized household disposable income (income, henceforth) 

measure is preferred, but equivalized household consumption expenditure is used when 

appropriate income data is unavailable.17 The unit of analysis is the individual, so our analysis 

is of a distribution of equivalized household disposable income per individual. One implication 

of this is that any intrahousehold inequality is ignored, with evident implications for the 

importance of the sex circumstance variable. 

Before estimation we adjust equivalized household income (or consumption) to control for 

systematic correlations between life cycle and the outcome distribution (Solon 1992). We use 

a regression approach where, for each observation i, we subtract from the dependent variable 

yi the predictions obtained from the regression of (log) dependent variable on age and age 

squared (Brunori et al., 2023), as follows.18  

𝐿𝑛(𝑦𝑗) = 𝛼 + 𝛽𝑎𝑔𝑒𝑗 + 𝛾𝑎𝑔𝑒𝑗
2 + 𝜀𝑗    (4) 

𝑦𝑖
𝑎𝑑𝑗

= 𝑒𝑥 𝑝(𝐿𝑛(𝑦𝑖) − 𝛽̂𝑎𝑔𝑒𝑖 − 𝛾𝑎𝑔𝑒𝑖
2)                 (5) 

 
All inequality measures we report are scale-invariant, but the database does contain scale-

sensitive information, such as the mean incomes of different types. To enable cross-country 

and temporal comparisons in these variables, all monetary values are expressed in 2017 US 

dollars after adjusting by Purchasing Power Parity (PPP) and the Consumer Price Index (CPI). 

We use Stata to download the PIP (Poverty and Inequality Platform at the World Bank) series 

for CPI and PPP.19 If the CPI value from PIP is missing, we use the CPI series provided by the 

World Bank (Consumer Price Index (2010 = 100), downloaded on September 5th, 2023), after 

 
17 We use Equivalized Household Consumption Expenditure as a dependent variable for Benin, Burkina Faso, 
Ivory Coast, Ghana, Guinea-Bissau, Indonesia, Mali, Malawi, Niger, Nigeria, Senegal, Sierra Leone, Togo, Timor-
Leste, Tanzania, and Uganda. 
18 To avoid including young adults who may earn only a small share of the household income and thereby 
introduce biases in the adjustment, the age-adjustment regression is run on household heads, indexed by j in 
Equation (4). After running the regression and adjusting incomes for all individuals i, we rescale the adjusted 
incomes to match the sample mean. We use the household head as reported in the survey; if this information is 
unavailable, we treat the respondent as the household head. 
19 We use the PIP Stata command (“ssc install pip”) and execute “pip tables, table(ppp) clear” and “pip tables, 
table(cpi) clear” to obtain the PIP series for PPP and CPI (base 2017=100). The version used in GEOM was 
downloaded on September 5th, 2023. We thank Daniel Gerszon Mahler for his help. 
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modifying the base year to 2017. The PPP values come directly from PIP with no further 

modifications. The national currencies are adjusted in this manner: 

 
𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑢𝑟𝑟𝑒𝑛𝑐𝑦

𝑃𝑃𝑃2017∗(
𝐶𝑃𝐼𝑦𝑒𝑎𝑟

100
)

= 2017 𝑈𝑆𝐷     (3) 

 

As regards the circumstance variables, all are categorical in nature and the definition of 

specific categories is inevitably specific to each country. For instance, in Brazil (2014), the 

original Birth Area variable has 27 possible values, corresponding to the 26 states plus a 

"foreign" category, while in Belgium (2019), it is defined by the three values available in EU-

SILC data (Local, born in the European Union, and Other). A similar variation is found in the 

definition of parental occupation or education. In Senegal (2018), Mother’s Education is 

classified into five levels, whereas in Ecuador it is defined by the number of years of education 

attained, ranging from 0 to 15. The variable denoting the individual's Ethnicity is also defined 

to capture country idiosyncrasies. For example, in South Africa, it takes four values based on 

self-reported ethnicity (African, Asian, Coloured, and White), while in Peru it includes 5 

categories: White, Indigenous, Afro-descendent, mixed-race, and others. 

Any threat to comparability posed by these country idiosyncrasies is substantially mitigated 

by the data-driven nature of the algorithms we use to partition the sample. All three 

approaches discussed in the next section rely on (different versions of) recursive binary 

partitioning, where identical statistical criteria are used to divide the sample based on 

circumstance variables. This allows us to avoid ad-hoc partitions while combining respect for 

country specificities with methodological comparability. 

Finally, for certain countries, our different time periods come from panel data, where the same 

individuals or households are interviewed in multiple waves (e.g., Australia, South Africa and 

South Korea). In these cases, inconsistencies in responses regarding retrospective 

circumstances (such as a parent’s educational attainment) can occasionally arise. To resolve 

these inconsistencies, we set the value to that reported in the first available wave. For 

example, if an individual reports in 2012 that her mother was illiterate, but in 2018 reports 

that her mother attended primary school, we assume the information from 2012 is correct, 

as it is (i) less prone to recall bias, and (ii) more likely to have held when the respondent was 

a young child. Additionally, when missing observations are encountered for time-invariant 

circumstances where information is available for the same individual from other waves of the 

panel, we use this available information, always prioritizing the oldest information (i.e., from 

earlier waves). 

4. Estimation methods 

As noted in Section 2, we follow Brunori, Hufe and Mahler (2023) and Brunori, Ferreira and 

Salas-Rojo (2024) in using data-driven supervised machine learning techniques to select our 
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prediction models 𝑥̃𝑖 = 𝑓(𝐶𝑖), which are then used to generate the counterfactual 

distributions 𝒙, on which inequality of opportunity is calculated.  

Specifically, we employ regression trees and random forests, which have several advantages 

for the estimation of IOp from survey data. First, tree-based methods generate predictions by 

partitioning the regressor space into non-overlapping regions. This implies that individuals are 

assigned to mutually exclusive groups defined by the interaction of their circumstances. The 

use of trees is therefore quite consistent with the idea that the interaction of circumstances 

partitions the population into societal types that have access to different sets of opportunities 

(as discussed in Section 2).  

A second advantage stems from the flexibility of tree-based algorithms which can, by 

construction, handle many predictors without the risk of overfitting. The tuning of the 

algorithm prevents the model from becoming too complex, which would otherwise result in 

noisy predictions and upward-biased estimates (Chakravarty and Eichhorn, 1994; Brunori et 

al., 2018). At the same time, regression trees are grown to select the partition that maximizes 

the ability of observable circumstances to predict the variation in income out of sample. This 

approach minimizes the risk of the downward bias frequently highlighted by researchers (e.g., 

Ferreira and Gignoux, 2011).  

Among the many possible regression trees, we use conditional inference regression trees 

(Ctrees) and transformation trees (Trafotrees), introduced by Hothorn et al. (2006) and 

Hothorn and Zeileis (2021) respectively. The use of Ctrees and Trafotrees offers additional 

advantages. First, they address the bias inherent in standard recursive partitioning algorithms, 

which tend to overuse variables with many distinct values as splitting variables (Varian, 2014). 

Secondly, because they are based on a sequence of statistical tests, the resulting tree 

structures are more easily interpretable than standard trees and provide a formal test for the 

null hypothesis of equal opportunity in a population or subpopulations. 

The Ctree algorithm searches for the partition that maximizes the statistical significance of 

differences between the means of the two resulting subsamples. It is therefore especially well-

suited for the ex-ante approach to IOp – and the between-types version in particular – which, 

as discussed above, uses type means to construct the counterfactual distribution 𝐱̃𝐵𝑇. 

Conversely, the Trafotree algorithm recursively partitions the population into subsamples that 

differ most in terms of their full conditional distributions. It is therefore especially well-suited 

for the ex-post approach to IOp – and the within-tranches version in particular – which relies 

on estimates of each quantile of the conditional distributions to measure inequality within 

tranches. 

We briefly summarize our use of the ex-ante (Ctree) algorithm below, although the reader is 

referred to Brunori, Hufe and Mahler (2023) for details. An analogous summary of the ex-post 

(Trafotree) algorithm is provided in Appendix B1, and the reader is referred to Brunori, Ferreira 

and Salas-Rojo (2024) for details.  
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Ex-ante IOp estimates in GEOM 

The ex-ante Inequality of Opportunity (IOp) statistical approach adopted in GEOM was 

proposed by Brunori, Hufe and Mahler (2023). It employs the Conditional Inference regression 

Trees (Ctrees) and Conditional Inference Random Forests (CForest) developed by Hothorn, 

Hornik and Zeileis (2006). A Ctree is a supervised machine learning algorithm aimed at 

partitioning a regressor space to predict the variation of a dependent variable. The regression 

space is partitioned delivering a set of terminal nodes or leaves obtained by recursive binary 

splitting of the sample. The algorithm can be summarised as follows: 

1. Set a confidence level (1- α). 

2. Test the correlation between the dependent variable (outcome) and each regressor 

(circumstance). If for all observed regressors, the Bonferroni-adjusted p-value of the 

correlation test is higher than the chosen critical value α, exit. Otherwise, go to step 3. 

3.  Among all regressors in which the null hypothesis of independence is rejected, select 

the variable whose correlation with the outcome has the smallest p-value as splitting 

variable [c]. 

4. Consider how circumstance [c] can be used to partition the sample into two 

subsamples [𝑠𝑖, 𝑠−𝑖]. Let 𝑆𝑐 denote the set of all possible binary splits of the sample based 

on [c]. For each possible binary partition, compute the p-value for the null hypothesis that 

the mean in two sub-samples is the same (p[𝑠𝑖,𝑠−𝑖]). 

5. Choose [𝑠𝑖, 𝑠−𝑖]
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑆𝑐

  p[𝑠𝑗,𝑠−𝑗], ∀𝑗 as the most appropriate partition. 

6. Repeat steps 2 – 5 for each resulting node (sub-sample) until the null hypothesis of 

step 2 cannot be rejected in any resulting sub-sample.  

The output of this algorithm consists of an exhaustive partition of the sample into mutually 

exclusive groups. We treat these terminal nodes as types 𝑡 = {1, … , 𝑇}, for which we compute 

the respective population weighted share 𝑤̂𝑡 and the weighted mean 𝜇̂𝑡. Ex-ante IOp is 

estimated as 𝐼𝑂̂𝑎 = 𝐼(𝑦̃), where 𝑦̃ is a counterfactual distribution obtained by replacing the 

outcome of individual i belonging to type t with 𝑦̃𝑖,𝑡 = 𝜇̂𝑡 . We select the Gini coefficient as 

the reference inequality measure, but we also report mean logarithmic deviation (MLD) 

estimates.20   

 
20 We set 𝛼 = 0.01. We impose an additional requirement, namely that each terminal node must have a 

minimum of 1% of the observations in the sample (or 50 if the sample size is smaller than 5000). This country-
specific minimum is set to minimize the effect of different sample sizes on the depth of the tree.  See Brunori, 
Hufe and Mahler (2023) for a discussion of the effect of sample size on IOp estimation. All remaining parameters 
are the default values in the “ctree” R function in the package “partykit” (Hothorn, Seibold and Zeileis, 2023). 
We do not use weights to determine splits. Including sampling weights expands the sample size, such that 
individual observations turn into hundreds or thousands of identical values. As a result, the tree becomes very 
deep, as null hypothesis are easily rejected. Weights are used to calculate the values of the counterfactual 
distribution and to estimate IOp. 
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In addition to producing an estimate of ex-ante IOp, the Ctree approach has the significant 

added benefit that the partitioning process itself contains interesting information on the 

structure of inequality of opportunity within a particular observed population. Ctrees in the 

database are displayed as in Figure 1, which is an example from Sweden, 2019. For simplicity, 

we normalize the expected outcome in each node dividing it by the sample mean, so a value 

higher than 1 can be interpreted as an expected outcome higher than the expected outcome 

in the entire population (e.g., type 8 in Figure 1 has an expected outcome approximately twice 

as large as the sample average). 

 

Figure 1: Ctree example (Sweden, 2019). 

 

Source: GEOM. Data from EUSILC (2019) 

 

Like any other tree-based method, Ctrees are low-bias but high-variance learners, and 

therefore an aggregation procedure can improve the reliability of estimates. For this reason, 

we provide an alternative estimate of ex-ante IOp for each sample in the database, by 

aggregating 200 Ctrees into a random forest (Breiman, 2001; Hothorn, Hornik and Zeileis, 

2006).21 In the machine learning literature, when dealing with high variance learners, it is 

standard practice to use resampling methods. A random forest draws different subsamples of 

the original data and computes a tree on each one. Under the appropriate aggregation 

procedures, this process smooths sample dependency and generates robust IOp estimates.  

 
21 Following these authors, we use some default tuning parameters. In particular, we set alpha to 1 (mincriterion, 

1 – α = 0), such that each tree is free to grow as much as it can. We use the default 0.632 share of each subsample 
drawn in every iteration. The minimum number of observations that we allow in each terminal node is 0.1% of 
the sample size, with the aim of maximizing comparability across surveys with different sample size (or 10, if the 
sample size was smaller than 1000). All remaining tuning parameters are set to the default values in the “cforest” 
R function in “partykit” (Hothorn, Seibold and Zeileis, 2023). 
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The GEOM database therefore reports three different estimates of IOp for each country-year: 

an ex-ante tree (Ctree) measure; an ex-post tree (Trafotree) measure; and an ex-ante forest 

measure.22 Although these indices are quite strongly correlated (as we show in Section 5), 

they provide complementary information. Readers who are partial to the ex-post Principle of 

Compensation will naturally prefer our ex-post tree estimates.  Among the ex-ante results, we 

recommend focusing on the random forest estimates, which are the most robust, and using 

the tree-based results as sources of complementary information on the structure of 

opportunity in each sample. The online database contains full pictures of both ex-ante and ex-

post trees, analogous to Figure 1 above and to Figure B1 in Appendix B, for each country-year 

in the sample. 

The Role of Individual Circumstances 

In addition to the summary measures of IOp and the corresponding trees described above; 

the database also contains results for two different ways of assessing the relative predictive 

importance of individual circumstances in contributing to the total IOp estimate. The first way, 

which relies on Shapley-Shorrocks decompositions, provides an estimate of the average 

relative importance of each circumstance (and is therefore sensitive to its prevalence in the 

population), whereas the second relies on Partial Dependency Plots (PDPs) and provides an 

estimate of the marginal importance of each circumstance (to the person that has it, 

regardless of population prevalence). Neither estimate can be interpreted causally, of course: 

As with estimates of intergenerational mobility, omitted variables prevent any such 

interpretation. Nonetheless, quantifying the differences in the contributions of circumstances 

remains descriptively useful. 

The Shapley value method calculates each variable's contribution to predicting variation in the 

outcome by assessing the average decline in explained outcome variability when the variable 

is excluded. The procedure involves drawing sub-samples, estimating IOp using a deep 

Ctree/Trafotree, and then re-estimating IOp after systematically removing circumstances by 

replacing their values with a vector 1. These drops are assessed by considering the case in 

which only the variable of interest is neutralized, as well as all cases where each possible 

combination of variables including the variable of interest, is neutralized. A weighted average 

of these drops provides the Shapley value (Shapley, 1952; Shorrocks, 2013). To account for 

sample dependency, this process is repeated 100 times, and the results are averaged across 

iterations. 

Because the relative average importance of a control variable depends on its prevalence in 

the population (e.g., the relative importance of immigration background is inherently limited 

if there are few immigrants in the sample), we complement the analysis by plotting Partial 

Dependence Plots (PDPs) for each circumstance.23 PDPs, originally introduced by Friedman 

 
22 We are not aware of suitable methods to produce forest analogues for Trafotrees. See Appendix B3 and 
Brunori, Ferreira and Salas-Rojo (2024) for a discussion. 
23 This is only done for ex-ante random forest IOp measures, which are our preferred estimates. 
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(2001), are visual tools designed to aid in interpreting machine learning outputs. They show 

how changes in a specific predictor variable affect the predicted outcome while holding all 

other variables constant. For instance, the partial dependence function for a particular 

feature, say "having a mother in a high-skilled occupation," represents the average prediction 

if we were to force all data points to assume that feature value: What would the average 

outcome be if all students had a mother in a high-skilled occupation?  

This counterfactual exercise is implemented while keeping the distribution of all other 

features constant. It offers a valuable complement to Shapley values, as it focuses on the 

marginal importance of each characteristic, independent of their marginal distribution. Details 

of estimation algorithms for both Shapley values and PDPs may be found in Appendix B2.  

5. Overview of the GEOM database 

We can now provide an overview of the statistics and descriptive tools contained in the GEOM 

database. Space limitations prevent us from presenting all the evidence available online, and 

we invite the reader to visit and browse the site for themselves. Here we first present our six 

summary measures of IOp – absolute and relative estimates from ex-ante trees, random 

forests and ex-post trees – and explore how they co-vary. Then we focus more narrowly on 

our preferred estimates, namely those from ex-ante random forests, and showcase different 

ways to visualize both levels and trends across countries. Next, we investigate some empirical 

regularities in the relationships between IOp, on the one hand, and overall inequality and per 

capita GDP on the other. Finally, we describe some comparative results for the relative 

importance of individual characteristics.  

5.1. Summary measures of IOp 

Table 2 presents both absolute (IOA) and relative (IOR) estimates of inequality of opportunity 

for the latest available year for each of the 72 countries in GEOM, based on the Gini coefficient.  

Table A2 in Appendix A replicates this table using the mean logarithmic deviation (MLD). 

Column 3 indicates whether the estimates are based on equivalized household income or 

consumption, and column 4 presents total inequality in that variable. Columns 5-7 contain the 

absolute estimates, while columns 8-10 display the relative indices (in percentage terms).   

 

 

 

 



Table 2: GEOM main results from latest wave (Gini) 

Country Year Variable Sample Gini Tree  
(ex-ante) 

Random 
Forest  

(ex-ante) 

Tree  
(ex-post) 

Tree  
(ex-ante) 

Relative (%) 

Random 
Forest  

(ex-ante) 
Relative (%) 

Tree  
(ex-post) 

Relative (%) 

Argentina 2014 Income 0.388  0.167  0.179  0.177  42.997  45.984  45.649  
Armenia 2016 Income 0.412  0.116  0.179  0.184  28.114  43.554  44.720  
Australia 2019 Income 0.355  0.094  0.101  0.081  26.584  28.358  22.782  
Austria 2019 Income 0.280  0.096  0.099  0.091  34.130  35.235  32.382  

Belgium 2019 Income 0.243  0.097  0.104  0.107  39.786  42.875  44.110  
Benin 2018 Consumption 0.348  0.140  0.130  0.133  40.195  37.209  38.042  
Bolivia 2008 Income 0.500  0.278  0.294  0.341  55.631  58.772  68.114  
Brazil 2014 Income 0.488  0.322  0.320  0.339  66.010  65.703  69.600  

Bulgaria 2019 Income 0.407  0.222  0.198  0.190  54.613  48.708  46.740  
Burkina Faso 2018 Consumption 0.379  0.123  0.093  0.099  32.489  24.631  26.134  

Chile 2015 Income 0.492  0.239  0.248  0.309  48.537  50.346  62.764  
China 2018 Income 0.497  0.194  0.219  0.293  38.998  44.127  58.829  

Colombia 2010 Income 0.535  0.245  0.257  0.333  45.815  48.019  62.182  
Croatia 2011 Income 0.306  0.097  0.107  0.118  31.698  35.100  38.600  
Cyprus 2019 Income 0.315  0.157  0.160  0.171  49.984  50.937  54.465  

Czech Rep. 2019 Income 0.239  0.075  0.079  0.073  31.425  33.055  30.547  
Denmark 2019 Income 0.268  0.056  0.072  0.057  20.902  26.900  21.237  
Ecuador 2014 Income 0.455  0.227  0.229  0.273  49.890  50.308  60.000  
Estonia 2019 Income 0.280  0.072  0.083  0.081  25.820  29.636  29.030  
Finland 2019 Income 0.287  0.092  0.109  0.094  32.089  38.158  32.612  
France 2019 Income 0.287  0.111  0.123  0.119  38.883  42.897  41.361  

Gambia 2015 Income 0.576  0.199  0.195  0.234  34.544  33.797  40.573  
Georgia 2016 Income 0.469  0.122  0.211  0.178  26.062  45.016  37.951  

Germany 2019 Income 0.279  0.080  0.087  0.074  28.823  31.335  26.490  
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Country Year Variable Sample Gini Tree  
(ex-ante) 

Random 
Forest  

(ex-ante) 

Tree  
(ex-post) 

Tree  
(ex-ante) 

Relative (%) 

Random 
Forest  

(ex-ante) 
Relative (%) 

Tree  
(ex-post) 

Relative (%) 

Ghana 2017 Consumption 0.420  0.152  0.161  0.172  36.251  38.249  40.794  
Greece 2019 Income 0.306  0.110  0.117  0.126  36.078  38.268  41.209  

Guatemala 2011 Income 0.526  0.298  0.291  0.330  56.629  55.374  62.735  
Guinea 
Bissau 

2018 Consumption 0.312  0.142  0.134  0.137  45.548  43.017  43.946  

Hungary 2019 Income 0.275  0.071  0.089  0.080  25.744  32.353  29.085  
Iceland 2005 Income 0.263  0.055  0.081  0.075  20.935  30.775  28.343  

India 2012 Income 0.527  0.292  0.279  0.327  55.416  53.007  62.094  
Indonesia 2014 Consumption 0.428  0.116  0.126  0.101  27.043  29.472  23.681  

Ireland 2019 Income 0.281  0.105  0.125  0.117  37.269  44.275  41.714  
Italy 2019 Income 0.315  0.117  0.108  0.125  37.032  34.242  39.727  

Ivory Coast 2018 Consumption 0.325  0.123  0.103  0.101  37.927  31.529  31.129  
Kazakhstan 2016 Income 0.339  0.081  0.081  0.063  23.900  23.900  18.493  
Kyrgyzstan 2016 Income 0.448  0.078  0.143  0.176  17.408  31.911  39.240  

Latvia 2019 Income 0.337  0.086  0.107  0.104  25.541  31.652  30.703  
Lithuania 2019 Income 0.341  0.107  0.104  0.103  31.204  30.472  30.179  

Luxembourg 2019 Income 0.322  0.132  0.142  0.134  40.981  43.993  41.726  
Malawi 2020 Consumption 0.357  0.161  0.156  0.170  45.169  43.629  47.578  

Mali 2019 Consumption 0.344  0.125  0.114  0.122  36.303  33.217  35.429  
Malta 2019 Income 0.266  0.083  0.091  0.091  31.149  34.124  34.388  

Mexico 2017 Income 0.532 0.303  0.298 0.279  56.853 55.952 52.459 
Mongolia 2016 Income 0.471  0.144  0.181  0.176  30.563  38.533  37.492  

Nepal 2011 Income 0.538  0.219  0.216  0.263  40.692  40.115  48.931  
Netherlands 2019 Income 0.255  0.063  0.086  0.106  24.834  33.608  41.598  

Niger 2018 Consumption 0.311  0.082  0.079  0.082  26.397  25.273  26.429  
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Country Year Variable Sample Gini Tree  
(ex-ante) 

Random 
Forest  

(ex-ante) 

Tree  
(ex-post) 

Tree  
(ex-ante) 

Relative (%) 

Random 
Forest  

(ex-ante) 
Relative (%) 

Tree  
(ex-post) 

Relative (%) 

Nigeria 2019 Consumption 0.288  0.127  0.120  0.132  43.908  41.722  45.748  
Norway 2019 Income 0.273  0.099  0.112  0.107  36.177  41.011  39.290  
Panama 2003 Income 0.527  0.306  0.286  0.335  58.046  54.288  63.472  

Peru 2015 Income 0.423  0.260  0.267  0.287  61.633  63.266  67.811  
Poland 2019 Income 0.282  0.084  0.088  0.093  29.950  31.299  32.825  

Portugal 2019 Income 0.306  0.118  0.135  0.135  38.705  44.034  44.263  
Romania 2019 Income 0.341  0.151  0.144  0.198  44.245  42.161  58.133  
Senegal 2018 Consumption 0.314  0.107  0.093  0.102  34.001  29.580  32.538  

Sierra Leone 2018 Consumption 0.311  0.137  0.137  0.144  44.108  44.076  46.233  
Slovakia 2019 Income 0.232  0.070  0.075  0.086  30.207  32.100  37.091  
Slovenia 2019 Income 0.249  0.082  0.087  0.092  32.892  34.739  36.747  

South Africa 2017 Income 0.610  0.415  0.468  0.496  68.121  76.746  81.256  
South Korea 2019 Income 0.351  0.106  0.121  0.145  30.217  34.578  41.363  

Spain 2019 Income 0.329  0.151  0.145  0.159  45.897  44.164  48.328  
Sweden 2019 Income 0.276  0.104  0.094  0.099  37.786  34.047  36.080  

Switzerland 2019 Income 0.283  0.084  0.093  0.074  29.767  32.945  25.953  
Tajikistan 2016 Income 0.309  0.061  0.087  0.051  19.657  28.109  16.613  
Tanzania 2013 Consumption 0.373  0.162  0.173  0.171  43.313  46.261  45.805  

Timor Leste 2014 Consumption 0.282  0.117  0.101  0.113  41.341  35.877  40.099  
Togo 2018 Consumption 0.382  0.164  0.151  0.152  43.093  39.659  39.843  

Uganda 2014 Consumption 0.371  0.167  0.178  0.177  44.881  47.980  47.656  
United 

Kingdom 2011 Income 0.324  0.076  0.096  0.087  23.479  29.503  26.846  

United States 
of America 2014 Income 0.395  0.150  0.164  0.165  38.045  41.565  41.667  

Uzbekistan 2016 Income 0.460  0.095  0.182  0.092  20.753  39.548  19.948  



Figure 2 shows the correlations across the summary indices reported in the columns of Table 

2, although now using all years (the pooled cross-section), rather than just the latest year. The 

panels on the left show the association between absolute IOp estimates obtained with ex-

ante trees and forests (upper panel), ex-ante forest and ex-post trees (middle panel), and ex-

ante and ex-post trees (bottom panel).  The panels on the right show the association obtained 

with the same methods, now for relative IOp. At the bottom-right of each plot we report the 

correlation coefficients and the associated p-values.  

Figure 2 – Correlations across IOp estimates 

 

 Note: Pooled cross section data. Elaboration based on GEOM data. The correlation 

coefficient (c) and the associated p-value (p) are shown at the bottom-right. 

 

The literature (e.g., Fleurbaey and Peragine, 2013) has shown that the concepts of ex-ante 

and ex-post IOp represent distinct - and often incompatible - approaches to study unfairness. 

Yet, our estimates of ex-ante and ex-post IOp are strongly correlated. Since absolute IOp 
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estimates are mechanically correlated with total inequality, it is less surprising to observe a 

stronger correlation in the left panels. However, the high association between relative ex-ante 

and relative ex-post is particularly noteworthy. It suggests that, despite their theoretical 

differences, the two approaches yield highly consistent descriptions of inherited inequalities.  

Before turning to different ways in which these results can be viewed, it is useful to ask 

whether our sample definitions and treatment of the income and consumption data lead to 

large differences in the levels and ranks of income and consumption inequality relative to 

other publicly available compilations. There are two main sources of potential differences, 

namely: (i) the use of a √𝑛 equivalence scale to adjust all household incomes; and (ii) changes 

in the composition of the sample due to the exclusion of observations with missing 

information.24 Figure 3 plots our estimates against the corresponding figures published by the 

World Bank (World Development Indicators) – in Panel (a) for all countries and in Panel (b) 

only for those based on the same underlying concept of money-metric wellbeing – income or 

consumption.   

The main deviations from the 45-degree line in Panel (a) are mostly Asian countries - Armenia, 

China, Georgia, Indonesia, India, Kazakhstan, Kyrgyzstan, Mongolia, Nepal, Uzbekistan – and 

are due to the use of income as an outcome for those countries (in the GEOM database), as 

opposed to consumption (in the World Bank database). In Panel (b), differences should be 

mostly due to the equivalence scale and within-country sample composition. While there are 

clear differences – and, as expected, inequality in equivalized incomes is lower than in per 

capita incomes (see Coulter et al.,1992) – it is reassuring that the total inequality estimates in 

GEOM are closely correlated with those reported by the World Bank (𝜌 = 0.92, p-value=0.00).  

 

Figure 3 - Total inequality estimates: GEOM vs World Bank 

(a) Pooled estimates 

 

(b) Matching wellbeing concept 

 

Note: Pooled cross-section data. Elaboration based on GEOM and World Bank data. The distinction 
between Income and Consumption as outcome refers to GEOM only.  

 
24 The summary statistics reported here are before the age adjustment; see Section 3. 
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5.2. Visualizing levels and trends of (ex-ante) IOp around the world 

While Table 2 contains all our (Gini-based) summary IOp measures for the latest year available 

for each country, the database also allows for more intuitive ways to view results. Focusing on 

our preferred, random forest ex-ante Gini coefficient estimates, Figure 4 illustrates the kind of 

map available to GEOM website users. It reports estimates of relative IOp for the latest survey 

available, with the legend using a color scale where lower values are colored in yellow and 

higher values are colored in purple. Similar maps for total inequality or other definitions of 

IOp can be easily accessed via the interface in the website (https://geom.ecineq.org/world-

view/), which allows the user to change the inequality measure (Gini vs MLD), the IOp 

perspective (ex-ante vs. ex-post), the approach (absolute vs relative) and the dependent 

variable (income, consumption, or both). 

Figure 4 - Map of the Relative Ex Ante IOp estimates from GEOM (using Gini coefficients). 

 

Note: latest available estimate for each country.  Source: GEOM 
(https://geom.ecineq.org/world-view/). 

 

The relative measures in Table 2 (column 9) and Figure 4 range from 23.9% (Kazakhstan, 2016) 

to 76.8% (South Africa, 2017). There is considerable variation across regions, with Latin 

America substantially overrepresented at the top of the range, while Europe is 

overrepresented at the bottom. There is much more dispersion across Asia, with some 

countries like Kazakhstan and Indonesia at the bottom, and others like India or China reaching 

much higher values. It is difficult to compare Africa to the rest of the world since, as noted 

earlier, most African countries report consumption rather than income-based IOp. 

https://geom.ecineq.org/world-view/
https://geom.ecineq.org/world-view/
https://geom.ecineq.org/world-view/
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We emphasize this comparability limitation more clearly in the bar chart in Figure 5, where 

consumption-based estimates are shown separately to the left of the figure. These are all still 

ex-ante Gini coefficients from random forests for the latest available surveys, with absolute 

levels in the top panel and relative indices in the bottom.25 Both panels highlight the 

remarkable variation in IOp across the globe. This variability is, of course, higher when we look 

at absolute IOp, which is not normalized by the total inequality in the country.  Absolute and 

relative IOp are, unsurprisingly, highly correlated (𝜌 = 0.9) but comparing them provides 

some interesting insights. For example, by looking at absolute IOp in Denmark one may 

conclude that, with a Gini coefficient of 0.07, IOp is hardly a problem for this country. While 

this might be true when we compare it with other absolute values around the world, the 

bottom panel in Figure 5 shows that IOp in Denmark still accounts for more than a quarter 

(26.9%) of its (rather low level of) total inequality. On the other hand, some countries, like 

Australia, move from the middle to the bottom part of the IOp distribution when passing from 

absolute to relative measures. 

 

Figure 5 – Ex ante IOp Estimates from GEOM 

  

 

 

 
25 Naturally, the bottom panel of Figure 5 is an alternative graphical representation of the information 
contained in Figure 4. 
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Note: elaboration based on GEOM data, latest available estimate for each country. 

The GEOM database also allows users to follow the evolution of IOp over time for certain 

countries although, at present, time series are typically quite short and only available for a 

few countries. Figure 6 below reports IOp estimates for all countries that are observed for at 

least four years: Australia, Chile, China, South Korea, Peru, Uganda, the United States and 

South Africa. Once again, absolute (relative) estimates are on the top (bottom) panel. 

Figure 6 - Trends in IOp 
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Note:  Elaboration based on GEOM. The graph reports only countries that are observed for at 

least four years. 

 

There is considerable variation in trends over time, with a steady increase in absolute IOp in 

the United States from 1978 to 2002, then followed by a slight decline. Throughout the period 

of observation, IOp in the United States accounts for between 40 and 50% of total inequality, 

placing it among the highest values for high-income economies. Focusing on the last 10 years 

of the available data, Figure 6 shows that the United States are no longer the “land of 

opportunity”, in line with the conclusions in Chetty et al. (2014). Conversely, countries like 

Australia and South Korea display much lower levels of both absolute and relative IOp.26 Both 

China (the world’s largest country) and South Africa (the world’s most unequal) display U-

shaped patterns for both absolute and relative IOp. In China, absolute IOp fell sharply between 

2010 and 2012 but then rose steadily back to its original level by 2018. In South Africa, the 

decline lasted between 2008 and 2015, offset by a sharp rise in 2017.  

 

 
26 Our results on South Korea are also in line with Moramarco et. al (2020). 
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Figure 7 - Trends in IOp: Europe 

 

Note:  Elaboration based on GEOM. The graph reports a subset of European countries. 

 

Figure 7 zooms in on the evolution of IOp in Europe. As explained in Section 3, for most 

countries in this region GEOM draws information for only three years: 2005, 2011 and 2019. 

Figure 7 shows only those countries with the two lowest or highest estimates in 2005 and 

2019, which is sufficient to illustrate the variability in both levels and trends of IOp within the 

European region. It is interesting that only three of the countries selected in the top panel 



28 
 

appear also in the bottom one, highlighting again the importance of considering both absolute 

and relative measures of IOp when making these assessments. 

Some changes were substantial. Denmark, for example, experienced a large drop in absolute 

IOp from 2005 to 2011 followed by a slight increase, transitioning from having one of the 

highest relative IOp levels in 2005 to the lowest in 2019. Other countries like the Netherlands 

or Slovakia (top panel) or Estonia and Lithuania (bottom panel) display more stable trends. 

Overall, of the seven countries in the top panel, four experienced declines in absolute ex-ante 

IOp between 2005 and 2019, two experienced increases (Cyprus and Spain), and one (the 

Netherlands) was basically unchanged. In the bottom panel, the same number of countries 

(three) saw rises as declines in relative ex-ante IOp, with Lithuania basically unchanged. 

 

5.3. Empirical regularities: Opportunity “Great Gatsby” and Kuznets curves27 

It might be of interest to ask how our measures of IOp co-vary with other important variables, 

such as overall income inequality and GDP per capita. Given the close conceptual and 

empirical association between IOp and (inverse) intergenerational mobility, one might expect 

to find a positive association between IOp and total inequality, analogous to the Great Gatsby 

curve first plotted by Corak (2013). Indeed, such a relationship for IOp was first reported by 

Brunori et al. (2013). After observing how intergenerational income persistence was closely 

linked to IOp in their sample of countries, those authors also reported a clear positive 

empirical association between IOp and income inequality across countries.28 Our (more 

internally comparable) GEOM estimates confirm this positive association between IOp and 

inequality. Figure 8 displays pooled cross-sectional scatter plots, showing both absolute and 

relative (random forest) IOp estimates against total inequality.  

 

 
27 In this subsection, scatter plots draw on the full pooled cross-sectional data from GEOM, so that each point 

corresponds to a country-year observation. 
28 As mentioned in the Introduction, intergenerational income persistence can be interpreted as IOp under the 
simplifying assumption that parental income is the only circumstance beyond individual control. 
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Figure 8 - The Great Gatsby curve in GEOM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Pooled cross section data. Elaboration based on GEOM data.  

Of course, the positive association on the top panel of Figure 8 may be seen as at least partly 

mechanical, since absolute ex-ante IOp corresponds to the between-type component of total 

income inequality. However, there is no mechanical reason for this positive correlation to 

appear when looking at relative IOp (bottom panel). As Brunori et al. (2013) suggested, this 

relationship likely arises from the circular causation between the two concepts: today’s 

income differences among families translate into differences in opportunities for their 

children, and those opportunity gaps in turn shape income differences in adulthood for that 

generation.  



30 
 

It is interesting to notice that in Figure 8 (bottom panel) Latin American countries (blue dots) 

tend to cluster above the fitted line, confirming the high weight of IOp over total inequality in 

those countries.  Conversely, Asian countries (light green dots) fall consistently below the 

fitted line. The pink dots in the above figures all refer to the United States. So, inequality of 

opportunity is positively associated with current inequality, and the robust methodology used 

to construct the GEOM database makes it a unique source of data to verify this empirical 

regularity. 

How might IOp vary with a country’s development, or at least with development as proxied 

by per capita GDP? This question is of course reminiscent of the Kuznets hypotheses, which 

posits that inequality first tends to increase and then decrease as a country develops, leading 

to an inverted-U relationship between inequality and development. If the Kuznets hypothesis 

holds, then the positive association between IOp and overall income inequality documented 

above may be sufficient for an “Opportunity Kuznets Curve” to arise. Ferreira et al. (2025) 

argue that this dynamic is not only mechanical but can be explained by the interaction 

between economic development – which reduces the cost of accessing more productive 

technologies – and intergenerational transmission of incomes – which makes it less costly for 

the children of wealthy parents to invest in new productive sectors.  

The GEOM database is, once again, a unique source of data for investigating the existence of 

an Opportunity Kuznets Curve. Figure 9 plots our preferred estimates of ex-ante IOp against 

the logarithm of GDP per capita, as a proxy for the level of development of each country. We 

draw information on GDP per capita from the IMF database (World Economic Outlook, 

October 2024) and express values in US dollars PPP2017 to align them with those in GEOM. 

The fitted quadratic regression seems to confirm the hypothesis in Ferreira et al. (2025), with 

an 𝑅2 of 0.261 in the left panel, and 0.144 in the right one.29 

Figure 9 - The Opportunity Kuznets curve 

 

Note: Pooled cross section data. Elaboration based on GEOM and IMF data. GDP per capita 
expressed in US dollars PPP 2017.  

   

 
29 As a benchmark, the 𝑅2 for the fitted regression in Figure 8 (right panel) is 0.386. 
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5.4.  Important individual circumstances 

As discussed in Section 4, the methods we employ to estimate IOp also allow us to conduct a 

Shapley-Shorrocks decomposition to estimate the contribution of specific circumstances to 

IOp. In Figure 10 we plot, for each country, the circumstance with the highest contribution to 

ex-ante IOp. The interested reader can access the complete Shapley value decomposition for 

each country on the GEOM website (https://geom.ecineq.org/country-profile/, looking at ex-

ante and ex-post “Decomposition” format). 

Figure 10 - Most important circumstance contributing to IOp 

 

Note:  Elaboration based on GEOM. Ex ante IOp, latest available estimates for each country.  

 

Descriptively, parental occupation and educational levels appear to be the most important 

circumstances in most countries covered by GEOM. Father’s education accounts for the largest 

share of IOp in the United States, India, Indonesia, Australia, Brazil and Chile, for example. 

Interestingly, Europe seems rather neatly divided between the West, where father’s 

occupation dominates, and the East (including Sweden and Finland), whether the mother’s 

occupation has the largest share. Unsurprisingly, ethnicity is the most important contributor 

to IOp in South Africa. In China, as well as in Argentina, Kazakhstan, Tanzania and some other 

African countries, place of birth is descriptively the most relevant circumstance.  

6. Conclusions 

Not all forms of inequality are the same, and there is growing evidence that inequality of 

opportunity – which is mostly inherited and reflects factors beyond individual control – is 

https://geom.ecineq.org/country-profile/
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particularly harmful. This paper has introduced and described a novel public-access database 

containing internationally comparable estimates of IOp across seventy-two countries, which 

together account for just over two-thirds of the world’s population. Estimates for more than 

one period are available for most countries and were constructed from the household-level 

microdata from 196 different household surveys, following definitions and protocols designed 

for maximum comparability. 

The dataset contains a range of alternative measures, both absolute and relative, 

corresponding to the two main measurement approaches in the literature (ex-ante and ex-

post) and using two different inequality indices (the Gini coefficient and the mean logarithmic 

deviation). Although these different indices are highly correlated among themselves, this 

summary paper focused on our preferred estimates, the ex-ante opportunity Gini coefficients 

computed from random forests.  

There is considerable variation in this measure across countries, with absolute levels ranging 

from 0.05 (for Denmark in 2011), to 0.48 (for South Africa in 2008) and relative measures from 

19% of total inequality also in Denmark, 2011, to 77% in South Africa, 2017. Across the entire 

sample, IOp is positively correlated with overall income or consumption inequality, confirming 

earlier findings of an Opportunity Great Gatsby curve. With respect to per capita GDP, IOp first 

rises and then falls, describing an inverted-U curve rather like that postulated by the Kuznets 

hypothesis for income inequality. There are sharp regional differences in IOp, with European 

(and some Asian) countries displaying lower levels, while Latin American (and some African) 

countries are at the upper range. Among high-income countries, the United States stands out 

for its high relative and absolute levels of inequality of opportunity. 

Our use of data-driven machine learning tools to compute these indices was motivated by 

their superior properties in trading off upward (overfitting) and downward (omitted variable) 

estimation biases in the measurement of IOp. But the tree-based algorithms also generate 

interesting visualizations of the structure of inequality in different countries and allow users 

to compare income and population shares across types in informative ways. The approach 

also allows us to identify the most descriptively salient circumstances in each sample. 

Although family background variables such as parental education and occupation dominate in 

most cases, ethnic and geographical origins also play important roles in many countries. 

Space constraints limit the results we can summarize in this paper, but readers are encouraged 

to visit the online database (www.geom.ecineq.org) to download data and conduct their own 

analysis. Future research to expand and update this database would greatly benefit from the 

inclusion of family background variables, such as place of birth, parental education and 

occupation, in more household surveys by statistical agencies around the world and, in 

particular, in those countries for which that information is currently not available for recent 

years. 

 

http://www.geom.ecineq.org/
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Appendix A  

Table A1 provides information about the data sources used to construct GEOM. It includes 

the country name, the year, and the official name of each survey. The last column refers to 

the research team responsible for obtaining, cleaning, and harmonizing the data. 

 

ADB & Monash University team includes: Gaurav Datt, Arturo Martinez Jr., John Nguyen, 

Albert Park 

CEDLAS team includes: Matías Ciaschi  

CEEY team includes: Pedro Torres López 

LSE team includes: Luis Barajas, Paolo Brunori, Nancy Daza-Báez, Francisco H.G. Ferreira, 

Pedro Salas-Rojo, Louis Sirugue, Pedro Torres López 

University of Bari team includes: Teresa Barbieri, Vito de Sandi, Fabio Farella, Domenico 

Moramarco, Vito Peragine, Enza Simeone, Giorgia Zotti 

 

Table A1: Surveys used in GEOM 

Country Year/Years Covered Survey and Acronym Research team 

Argentina 2014 
Encuesta Nacional sobre la 

Estructura Social (ENES) 
CEDLAS 

Armenia 2016 Life in Transition Survey (LITS) ADB & Monash University 

Australia 
2005, 2007, 2009, 2011, 

2013, 2015, 2017, 2019 

Household, Income and 

Labour Dynamics in Australia 

(HILDA) 

ADB & Monash University 

Austria 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Belgium 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Benin 2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 

Bolivia 2008 Encuesta de Hogares (EH) CEDLAS 

Brazil 2014 

Pesquisa Nacional por 

Amostra de Domicilios 

Contínua Anual (PNAD) 

CEDLAS 

Bulgaria 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Burkina Faso 2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 
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Chile 2006, 2011, 2013, 2015 

Encuesta de Caracterización 

Socioeconómica Nacional 

(CASEN) 

CEDLAS 

China 
2010, 2012, 2014, 2016, 

2018 

China Family Panel Studies 

(CFPS) 
LSE 

Colombia 2010 
Encuesta Nacional de Calidad 

de Vida (ENCV) 
CEDLAS 

Croatia 2011 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Cyprus 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Czech 

Republic 
2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Denmark 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Ecuador 2006, 2014 
Encuesta Condiciones de Vida 

(ECV) 
CEDLAS 

Estonia 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Finland 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

France 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Gambia 2015 
Integrated Household Survey 

(HIS) 
University of Bari 

Georgia 2016 Life in Transition Survey (LITS) ADB & Monash University 

Germany 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Ghana 2013, 2017 
Ghana Living Standard Survey 

(GLSS) 
University of Bari 

Greece 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Guatemala 2000, 2006, 2011 
Encuesta Nacional sobre 

Condiciones de Vida (ENCOVI) 
CEDLAS 

Guinea 

Bissau 
2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 
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Hungary 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Iceland 2005 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

India 2005, 2012 
India Human Development 

Survey (IHDS) 
ADB & Monash University 

Indonesia 2000, 2014 
Indonesian Family Life Survey 

(IFLS) 
ADB & Monash University 

Ireland 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Italy 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Ivory Coast 2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 

Kazakhstan 2016 Life in Transition Survey (LITS) ADB & Monash University 

Kyrgyzstan 2016 Life in Transition Survey (LITS) ADB & Monash University 

Latvia 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Lithuania 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Luxembourg 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Malawi 2020 
Malawi Fifth Integrated 

Household Survey (MFIHS) 
University of Bari 

Mali 2019 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 

Malta 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Mexico 2017 
Encuesta de Movilidad Social 

(EMOVI) 
Provided by CEEY 

Mongolia 2016 Life in Transition Survey (LITS) ADB & Monash University 

Nepal 2003, 2011 
Nepal Living Standards Survey 

(NLSS) 
ADB & Monash University 

Netherlands 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 
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Niger 2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 

Nigeria 2019 
Nigeria Living Standards 

Survey (NLSS) 
University of Bari 

Norway 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Panama 2003 
Encuesta de Niveles de Vida 

(ENV) 
CEDLAS 

Peru 

2001, 2006, 2007, 2008, 

2009, 2010, 2011, 2012, 

2013, 2014, 2015 

Encuesta Nacional de Hogares 

sobre Condiciones de Vida y 

Pobreza (ENAHO) 

CEDLAS 

Poland 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Portugal 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Romania 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Senegal 2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 

Sierra Leone 2011, 2018 
Sierra Leone Integrated 

Household Survey (SLIHS) 
University of Bari 

Slovakia 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Slovenia 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

South Africa 2008, 2012, 2015, 2017 
National Income Dynamics 

Study (NIDS) 
LSE 

South Korea 

1999, 2001, 2003, 2005, 

2007, 2009, 2011, 2013, 

2015, 2017, 2019 

Korean Labour and Income 

Panel Study (KLIPS) 
ADB & Monash University 

Spain 2005, 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Sweden 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Switzerland 2011, 2019 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

Tajikistan 2016 Life in Transition Survey (LITS) ADB & Monash University 
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Tanzania 2009, 2011, 2013 National Panel Survey (NPS) University of Bari 

Timor-Leste 2007, 2014 
Timor-Leste Survey of Living 

Standards (TSLS) 
ADB & Monash University 

Togo 2018 

Enquete Harmonisee sur le 

Conditions de Vie des 

Menages (EHCVM) 

University of Bari 

Uganda 2010, 2011, 2012, 2014 National Panel Survey (NPS) University of Bari 

United 

Kingdom 

(UK) 

2005, 2011 

European Union Statistics on 

Income and Living Conditions 

(EU-SILC) 

LSE 

United 

States of 

America 

(USA) 

1970, 1972, 1974, 1976, 

1978, 1980, 1982, 1984, 

1986, 1988, 1990, 1992, 

1994, 1996, 1998, 2000, 

2002, 2004, 2006, 2008, 

2010, 2012, 2014 

Panel Study of Income 

Dynamics (PSID) 
LSE 

Uzbekistan 2016 Life in Transition Survey (LITS) ADB & Monash University 

Source: Own elaboration. 

 

 

 

 

 



Table A2: GEOM main results from latest wave (MLD results) 

Country Year Variable Sample MLD Tree  
(ex-ante) 

Random 
Forest  

(ex-ante 

Tree  
(ex-post) 

Tree (ex-
ante) 

Relative (%) 

Random 
Forest  

(ex-ante) 
Relative (%) 

Tree  
(ex-post) 

Relative (%) 

Argentina 2014 Income 0.276  0.044  0.050  0.051  15.875  18.086  18.340  
Armenia 2016 Income 0.309  0.032  0.056  0.091  10.395  18.102  29.501  
Australia 2019 Income 0.222  0.014  0.016  0.011  6.385  6.969  4.856  
Austria 2019 Income 0.156  0.017  0.016  0.016  10.740  10.289  10.096  

Belgium 2019 Income 0.106  0.018  0.019  0.021  16.823  17.951  20.113  
Benin 2018 Consumption 0.199  0.036  0.032  0.033  18.159  16.097  16.650  
Bolivia 2008 Income 0.505  0.131  0.144  0.238  25.971  28.566  47.048  
Brazil 2014 Income 0.427  0.165  0.163  0.191  38.725  38.115  44.843  

Bulgaria 2019 Income 0.296  0.081  0.062  0.058  27.193  20.884  19.669  
Burkina Faso 2018 Consumption 0.235  0.042  0.025  0.024  18.035  10.506  9.996  

Chile 2015 Income 0.458  0.089  0.095  0.232  19.423  20.843  50.710  
China 2018 Income 0.459  0.062  0.076  0.172  13.413  16.576  37.535  

Colombia 2010 Income 0.547  0.101  0.106  0.252  18.424  19.430  46.061  
Croatia 2011 Income 0.177  0.016  0.018  0.022  9.250  10.378  12.408  
Cyprus 2019 Income 0.169  0.041  0.041  0.049  23.964  24.438  28.935  

Czech Rep. 2019 Income 0.099  0.009  0.010  0.008  9.119  9.929  8.409  
Denmark 2019 Income 0.143  0.006  0.008  0.005  3.860  5.614  3.649  
Ecuador 2014 Income 0.377  0.081  0.082  0.142  21.497  21.815  37.712  
Estonia 2019 Income 0.151  0.009  0.011  0.011  5.781  7.110  7.442  
Finland 2019 Income 0.143  0.014  0.019  0.014  9.930  13.357  9.720  
France 2019 Income 0.145  0.020  0.028  0.025  13.941  19.255  17.046  

Gambia 2015 Income 0.670  0.066  0.058  0.112  9.885  8.705  16.694  
Georgia 2016 Income 0.381  0.041  0.069  0.053  10.738  18.089  13.941  

Germany 2019 Income 0.138  0.011  0.012  0.009  7.959  8.900  6.657  
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Country Year Variable Sample MLD Tree  
(ex-ante) 

Random 
Forest  

(ex-ante 

Tree  
(ex-post) 

Tree  
(ex-ante) 

Relative (%) 

Random 
Forest  

(ex-ante) 
Relative (%) 

Tree  
(ex-post) 

Relative (%) 

Ghana 2017 Consumption 0.314  0.039  0.042  0.052  12.460  13.225  16.412  
Greece 2019 Income 0.166  0.020  0.023  0.032  12.205  13.595  19.215  

Guatemala 2011 Income 0.519  0.142  0.136  0.251  27.395  26.258  48.429  
Guinea 
Bissau 

2018 Consumption 0.158  0.032  0.029  0.029  20.164  18.268  18.458  

Hungary 2019 Income 0.146  0.008  0.012  0.010  5.693  8.505  6.996  
Iceland 2005 Income 0.129  0.007  0.011  0.011  5.728  8.437  8.204  

India 2012 Income 0.518  0.135  0.123  0.207  26.144  23.711  39.988  
Indonesia 2014 Consumption 0.309  0.025  0.027  0.020  8.161  8.582  6.541  

Ireland 2019 Income 0.136  0.018  0.024  0.022  12.932  17.634  15.871  
Italy 2019 Income 0.207  0.022  0.019  0.026  10.516  9.214  12.590  

Ivory Coast 2018 Consumption 0.173  0.028  0.022  0.020  16.338  12.572  11.298  
Kazakhstan 2016 Income 0.203  0.011  0.011  0.008  5.170  5.170  4.037  
Kyrgyzstan 2016 Income 0.362  0.021  0.032  0.168  5.668  8.930  46.337  

Latvia 2019 Income 0.214  0.013  0.018  0.019  6.121  8.224  8.925  
Lithuania 2019 Income 0.220  0.018  0.017  0.018  8.330  7.601  8.375  

Luxembourg 2019 Income 0.194  0.031  0.032  0.031  15.866  16.486  16.021  
Malawi 2020 Consumption 0.208  0.054  0.051  0.057  25.830  24.579  27.177  

Mali 2019 Consumption 0.190  0.032  0.027  0.030  16.974  14.075  15.867  
Malta 2019 Income 0.126  0.012  0.013  0.014  9.192  10.301  11.252  

Mexico 2017 Income 0.495 0.152 0.142 0.126 30.662 28.643 25.454 
Mongolia 2016 Income 0.412  0.036  0.053  0.057  8.614  12.788  13.832  

Nepal 2011 Income 0.513  0.083  0.076  0.122  16.118  14.714  23.836  
Netherlands 2019 Income 0.115  0.007  0.012  0.031  6.092  10.183  27.241  

Niger  
2018 

 Consumption  0.160   0.029   0.027   0.027   17.955   16.584   16.584   
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Country Year Variable Sample MLD 
Tree  

(ex-ante) 

Random 
Forest  

(ex-ante 

Tree  
(ex-post) 

Tree  
(ex-ante) 

Relative (%) 

Random 
Forest  

(ex-ante) 
Relative (%) 

Tree  
(ex-post) 

Relative (%) 

Nigeria 2019 Consumption 0.138  0.025  0.023  0.027  18.083  16.412  19.390  
Norway 2019 Income 0.149  0.018  0.020  0.020  11.836  13.584  13.181  
Panama 2003 Income 0.636  0.156  0.132  0.209  24.595  20.711  32.851  

Peru 2015 Income 0.327  0.109  0.113  0.136  33.394  34.557  41.621  
Poland 2019 Income 0.147  0.011  0.012  0.013  7.645  8.328  9.147  

Portugal 2019 Income 0.172  0.024  0.030  0.030  14.095  17.401  17.459  
Romania 2019 Income 0.233  0.038  0.033  0.074  16.452  14.003  31.830  
Senegal 2018 Consumption 0.160  0.028  0.022  0.025  17.470  13.713  15.341  

Sierra Leone 2018 Consumption 0.158  0.035  0.036  0.036  21.984  22.615  22.552  
Slovakia 2019 Income 0.107  0.009  0.009  0.017  8.675  8.582  15.765  
Slovenia 2019 Income 0.110  0.011  0.012  0.013  10.154  10.789  12.149  

South Africa 2017 Income 0.690  0.288  0.360  0.413  41.707  52.108  59.844  
South Korea 2019 Income 0.224  0.022  0.025  0.062  9.772  11.111  27.622  

Spain 2019 Income 0.211  0.038  0.036  0.045  17.811  16.817  21.222  
Sweden 2019 Income 0.166  0.027  0.017  0.021  16.325  10.000  12.470  

Switzerland 2019 Income 0.145  0.011  0.015  0.009  7.634  10.110  6.465  
Tajikistan 2016 Income 0.160  0.008  0.012  0.008  5.240  7.361  5.240  
Tanzania 2013 Consumption 0.235  0.045  0.047  0.046  19.250  19.889  19.676  

Timor Leste 2014 Consumption 0.129  0.023  0.017  0.021  17.702  13.432  16.149  
Togo 2018 Consumption 0.242  0.044  0.037  0.037  18.249  15.400  15.153  

Uganda 2014 Consumption 0.229  0.051  0.053  0.056  22.451  23.239  24.464  
United 

Kingdom 2011 Income 0.187  0.011  0.015  0.016  5.678  7.874  8.516  

United States 
of America 2014 Income 0.290  0.039  0.044  0.054  13.542  15.196  18.470  

Uzbekistan 2016 Income 0.363  0.018  0.052  0.014  5.015  14.191  3.720  
Source: Own elaboration. 



Appendix B: Estimation methods 

 

B1 - Ex-post Inequality of Opportunity 

The approach to the estimation of ex-post Inequality of Opportunity (IOp) follows the method 

proposed by Brunori, Ferreira and Salas-Rojo (2024) based on the Transformation Trees 

(Trafotrees) introduced by Hothorn and Zeileis (2021) to define the most appropriate partition 

in Roemerian types.  

The Transformation Tree algorithm 

 

Trafotrees are analogous to Ctrees, but the sequence of tests used to grow the tree concerns 

the conditional distribution of the outcome instead of the sole conditional expectation. 

Trafotrees estimates distribution functions for each possible partition. Contrary to Ctree, for 

which the first step consists in a correlation test between the outcome and each circumstance, 

Trafotree first steps consists in a test on all possible ways of using values of each circumstance 

to partition the sample, making the algorithm substantially more computationally expensive. 

Then, the algorithm performs a binary splitting in the sample, sequentially creating two groups 

whose distribution functions are least likely to be the same. The population is therefore 

partitioned into an exhaustive and mutually exclusive set of subgroups (types). The algorithm 

can be summarized as follows: 

1. Set a confidence level (1 - α). 

2. Set a Bernstein polynomial order m. 

3. Approximate the shape of the unconditional distribution of the outcome using 

a Bernstein polynomial of order m. Store the m+1 parameter values. 

4. Run a test to assess the instability of the parameters conditional on the value 

of each circumstance.30 If the Bonferroni-adjusted p-value of the association test is 

higher than the chosen critical value α, exit. Otherwise, continue to step 5. 

5. Among all regressors in which the null hypothesis of independence is rejected, 

select the variable producing the smallest adjusted p-value as splitting variable [c]. 

6. Consider how circumstance [c] can be used to partition the sample into two 

subsamples [C]. Among all possible binary partitions, compute the p-value for the 

null hypothesis that the distribution in two sub-samples is the same (𝑝[𝐶]). 

7. Choose [C]∗ = {[C]: argmin  p[C]} as the most appropriate partition. 

 
30 This test can be understood as a test to detect a structural break in a time series (Chow, 1960). The cumulative 
sum of residuals is used to detect whether the parameters are unstable over time, while in this case the instability 
is investigated conditioning on the values or categories of each circumstance (see Hothorn and Zeileis, 2021) for 
details).  
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8. Repeat steps 3 – 7 for each resulting node (sub-sample) until the null 

hypothesis of step 3 cannot be rejected in any resulting sub-sample.  

We use the “trafotree” R function developed by Hothorn and Zeileis (2021). The output of the 

estimation consists of a partition in types, that allows us to obtain a parametric interpolation 

of each type’s cumulative income distribution function.31 These parametric conditional 

distributions can be inverted to yield the predicted type quantile functions  𝑦̂𝑞𝑐 =

𝐹−1 (𝑞, 𝜃(𝑐)), from which a measure of ex-post inequality of opportunity can be computed 

as  𝐼𝑂̂𝑝 = 𝐼𝑞 (
𝜇̂

𝜇̂𝑞
𝑦̂𝑞𝑐).  

Visualization of the results 

 

Same as Ctrees, Trafotrees can also be graphically represented, providing information on the 

structure of inequality of opportunity within a particular observed population, now based on 

differences on the outcome distributions. Trafotrees in the database are displayed as in Figure 

B1. The type-specific parametric CDFs obtained in Trafotree can be represented as in Figure 

B2. They can also be aggregated into the overall density function as a mixture of type 

distributions.  

Figure B1: Transformation Tree example (Denmark, 2011).  

Source: GEOM. Data from EUSILC 2011. 

 
31 The same interpolation was implemented in Brunori and Neidhöfer (2021) on a partition of types obtained 
with Ctree. 
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Figure B2: Type CDFs in South Africa (2017).  

 

Source: Brunori, Ferreira, Salas-Rojo (2024). 

As for the Ctrees described in the main text, we follow the convention and set 𝛼 = 0.01. We 

impose an additional requirement. Each terminal node must have a minimum of 1% of the 

observations in the sample (or 50 if the sample size is smaller than 5000). This country-specific 

minimum is set to minimize the effect of different sample sizes on the depth of the tree.  For 

robustness, we run a second tree relaxing the previous requirement, such that minimum 

observations imposed in each terminal node is 0.1%. If the types obtained are different from 

those with the node-size restriction, we store the plot for further inspection. All remaining 

parameters are the default set in the “ctree” R function in the package “partykit” (Hothorn, 

Seibold and Zeileis, 2023). 

We do not use weights to determine splits. Including sampling weights expands the sample 

size, such that individual observations are turn into hundreds or thousands of identical values. 

As a result, the tree becomes very deep, as null hypothesis are easily rejected. Weights are 

used to calculate the values of the counterfactual distribution and to estimate IOp. 

Unlike Ctrees, transformation trees require the practitioner to choose the order of the 

Bernstein polynomial used to approximate the type-specific conditional distribution 

functions. We choose that order by setting a minimum improvement in the aggregate out-of-

sample log-likelihood of 0.1%. All other parameters are the default parameters in the “Trtf” R 

function in the package “Trtf” (Hothorn, 2023). 

 

 



47 
 

 

B2. The role of individual circumstances: Shapley-Shorrocks decompositions and partial 

dependency plots 

 

Since there is no guarantee that the contributions of all circumstance variables are additively 

separable, a plausible approach to identifying individual contributions is through a Shapley 

value decomposition (See Shapley, 1952; and Shorrocks, 2013)). Intuitively, a Shapley value 

decomposition calculates the overall contribution of each variable c, included among 

explanatory variables, to the variability of some outcome y. The Shapley value of variable c is 

calculated as the average decline in the explained variability of y resulting from all possible 

combinations of ways in which it can be explained without including c among explanatory 

variables.32  

We follow Brunori, Ferreira and Salas-Rojo (2024) and obtain the Shapley value 

decompositions as follows: 

1. Draw a sub-sample of the full sample. To favor computational speed, the sub-

sample should consist of 5,000 observations, or 90% of the original sample size if it 

was smaller than 5,000. 

2. Estimate IOp in the sub-sample by estimating a Ctree, allowing the tree to 

overfit and get deep (α = 0.9), and minimum sample size in terminal nodes defined as 

in the random forest (0.1% of the sample size). 

3. Re-estimate IOp in the sub-sample for all possible elimination sequences of 

each circumstance. Elimination of one or more circumstances is obtained by replacing 

their values with a vector of 1.   

4. Estimate the difference between the overall IOp and the new IOp values 

obtained after different elimination sequences of each circumstance. Estimate the 

weighted average of these differences as the contribution of c.   

5. Accounting for possible data or sample dependencies, repeat steps 1-4 one 

hundred times.  

6. The final estimate of the contribution of c to IOp is the average contribution 

across 100 iterations.  

Note that contributions of each circumstance are reported in relative terms. Absolute values 

are not directly comparable with IOp estimated with a single tree, because the sample sizes 

are smaller and confidence level is lower. We perform the decomposition estimating 100 trees 

on different sub-samples and we calculate average values across iterations. This procedure 

 
32 Note that according to Shapley (1952) each elimination sequence has a different probability that is used as 
weight to obtain such average decline. 
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makes our estimates robust to the high variance typical of a single tree. Shapley value 

decompositions implemented in this fashion were discussed in Section 5.4.  

Partial Dependency Plots 

 

To overcome the limitations in the interpretation of trees we also derive partial dependence 

plots (PDPs) from random forests, who are conceptually similar to marginal effects from OLS 

regressions. The process for generating PDPs can be outlined as follows: 

1. Run the random forest regression, where the outcome variable y is predicted 

as a function of regressors X. Formally, 𝑦̂ = 𝑓(𝑋). 

2. Duplicate the original dataset and select a predictor variable, 𝑋𝑘.  

3. Take the initial value or category of the selected predictor variable, denoted as 

j. 

4. Replace all values in 𝑋𝑘 with j while leaving the remaining predictor variables 

unchanged. Utilize the random forest model estimated in the first step to predict 

𝑦̂𝑝𝑑𝑝, now using this modified dataset. Compute the average of 𝑦̂𝑝𝑑𝑝, which is the 

average outcome associated to all individuals in the dataset in the counterfactual 

situation in which they all have value j in regressor X, all else equal. 

5. Repeat steps 2-4 for all values j within each regressor X, and for all regressors. 

6. Plot all mean predictions of 𝑦̂𝑝𝑑𝑝. 

For discrete or categorical predictor variables, such as the circumstances we use in our 

analysis, the PDP typically displays all categories on the x-axis and presents the associated 

conditioned expected values (mean of 𝑦̂𝑝𝑑𝑝) on the y-axis. Figure B3 shows the results for 

Brazil 2014 as an example. The sample mean income is US$12,882 in 2017 prices. After 

running the random forest and obtaining the associated PDP, we find individuals born in 

Paraná to earn, on average, 5% more than the sample mean, while those born in Pará earn 

13% less. 

PDPs offer several advantages. They are derived from random forests, ensuring that each 

category receives the expected outcome by averaging across many trees. This property 

enhances their robustness, making their interpretation less dependent on specific data 

instances compared to single regression trees. Additionally, they are straightforward to 

interpret and complement Shapley value decompositions (see below), allowing for the 

interpretation of nonlinearities in the data-generating process beyond just average effects of 

predictor variables. 
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Figure B3: Partial Dependence Plot (PDP) for Brazil 2014. 

 

Source: Own Elaboration. Data from PNAD (2014). 

 

B3. Complementary analyses 

 

The high variance and sample dependence issues exposed in the Ctree explanation also apply 

in Trafotrees. However, the aggregation of multiple overfitted Trafotrees into a Trafo forest 

turns out to be problematic. As ex-post IOp is not measured as between-type inequality but 

by assigning individuals a rank in the type-specific distribution and then evaluating inequality 

within-quantile across the distribution, the aggregation of multiple draws appears to induce a 

severe downward bias in the estimation of IOp (see Brunori, Ferreira, Salas-Rojo, 2024) for a 

discussion).  For this reason, the GEOM database does not contain estimates of ex-post IOp 

based on Trafotree random forests.33 However, to provide robust evidence also about ex-post 

IOp, the relative importance of circumstances is addressed with a Shapley value 

decomposition identical to the one described for the ex-ante IOp. Shapley values are again 

reported in relative term to avoid interpreting their absolute value obtained on overfitted 

trees estimated on subsamples of the entire sample.  

Finally, since Ctrees and Trafotrees are different algorithms, that respectively consider the 

mean and the complete outcome distribution, GEOM also provides a visualization tool 

designed to compare the two kinds of partitions. These are Sankey (or alluvial) diagrams, like 

the one shown in Figure B4, which map the type to which each individual belongs across the 

two partitions: ex ante and ex post.   

  

 
33 Hothorn and Zeileis (2017) do propose a method to obtain prediction of a dependent variable from forest of 
transformation trees. However, this is conceptually different from estimating the counterfactual distribution 
needed to quantify ex-post IOp.  
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Figure B4: Sankey Diagram from Croatia (2019). 

 

Source: Own elaboration from GEOM. Original data from EUSILC 2019. 

 


