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Abstract: This paper describes a new public-access online database containing internationally
comparable estimates of inequality of opportunity for seventy-two countries,
covering two-thirds of the world’s population. The estimates were computed
directly from the unit-record microdata for 196 household surveys, using a suite of
machine-learning tools selected to minimize the omitted variable and overfitting
biases discussed in the literature. Overall, differences in opportunities account for
substantial shares of total income inequality (with the mean of our preferred
estimate being 40.9%), but there is substantial variation across countries, with
estimates ranging from 18.9% in Denmark (2011) to 76.7% in South Africa (2017).
The latest US estimate of 41.6% places it among the most opportunity unequal high-
income countries. We also find strong support for the existence of a positive
association between income inequality and relative inequality of opportunity,
analogous to the “Great Gatsby Curve” for mobility and inequality. Similarly, there
is evidence of an inverted-U “Opportunity Kuznets curve”. The database is available
at www.geom.ecineg.org.
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1. Introduction

This paper introduces and describes a new public-access dataset containing summary
estimates of inequality of opportunity and ancillary information for seventy-two countries
over the last two to four decades. In line with the recent literature, inequality of opportunity
(I0p) is defined as either the amount (absolute) or the share (relative) of the dispersion in the
distribution of an outcome (such as household incomes) that can be predicted by differences
in people’s “circumstances” — factors beyond their control which nonetheless shape and
constrain their choice sets.

This definition of inequality of opportunity draws on theoretical work by Roemer (1993, 1998),
van de Gaer (1993), and Fleurbaey (1994), and has been used in an empirical literature that
seeks to measure the extent of inequality of opportunity in different countries over the last
two decades or so.? It is a literature that draws explicitly on normative principles about
distributional fairness, but it is also closely related to the literature on intergenerational
persistence in individual outcomes, such as education, income, or wealth, and to the
sociological analysis of social stratification.

Bjorklund and Jantti (2020), for example, include inequality of opportunity as one of four
established approaches “to the study of how individuals’ income and education during
adulthood are related to their family background” (p.1l), with the other three being
intergenerational mobility (IGM); causal intergenerational effects; and sibling correlations.
Brunori et al. (2013) and Corak (2013) also highlight the connections between
intergenerational (im)mobility and inequality of opportunity and illustrate how the two are
correlated in practice.

A key difference between these two approaches — IGM and |0p — is that, whereas mobility
estimates are basically about quantifying or describing the bivariate associations between a
parent’s outcome and that of their children, I0p takes a broader, multivariate approach:
parental income is an excellent candidate circumstance variable, but so are parental education
and occupation, place of birth, race, gender, and the neighborhood in which a person grows
up, to mention only a few.3 10p is then assessed as the level (or share) of inequality that can
be predicted by all these circumstances together. In a recent study using administrative data
for Sweden, Adermon, Brandén and Nybom (2025) find that, although I0Op and IGM estimates
correlate strongly, “the share of total inequality that can be attributed to family background
factors is substantially higher for the sibling correlation and the 10p indices than what is
implied by intergenerational estimates” (p.18).

2 See Bourguignon et al. (2007) and Checchi and Peragine (2010) for some of the first empirical studies of
inequality of opportunity.

3 In that sense, it is closer to the sibling correlation approach, which estimates the share of dispersion in adult
incomes that can be ‘explained’ by all factors shared by siblings. However, as Bjorklund and Jantti (2020) note,
I0p could in principle also include circumstances that differ among siblings, such as birth-order, different pre-
schools attended, or the siblings’ ages when certain exogenous shocks hit the family.
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It is increasingly recognized that this kind of inequality matters both intrinsically and
instrumentally. Evidence from both opinion surveys and behavioral experiments suggests that
people object most strongly to inequality they see as arising from factors independent of
people’s choices and efforts (e.g. Konow, 2000; Alm3s et al., 2010; Cappelen et al., 2010, 2013;
Pew Research Center, 2012). Instrumentally, very different kinds of evidence indicate that
unequal opportunities may reduce economic efficiency and growth (e.g., Hsieh et al., 2019;
Marrero and Rodriguez, 2013).

Yet, although there are now a few cross-country datasets that allow for international
comparisons of intergenerational mobility estimates, particularly for educational attainment
—e.g., Neidhofer et al. (2018) and van der Weide et al. (2024) — we are not aware of any large
comparable datasets for inequality of opportunity across countries.? This is the gap the Global
Estimates of Opportunity and Mobility Database (GEOM: www.geom.ecineg.org) seeks to fill.

Drawing on the unit-record level data from 196 representative household surveys we estimate
inequality of opportunity for 72 countries around the world, representing just over two-thirds
of the world's population, over a period spanning up to 44 years.

For each of our 196 country-year data points we provide estimates for two different 10p
concepts — known as ex-ante and ex-post I0p and defined in Section 2 below — in each case
using both the Gini coefficient and the mean logarithmic deviation (MLD) as scalar measures
of inequality. While we report all these estimates below, we focus on the ex-ante results in
this paper for brevity. For these ex-ante estimates and across the entire database, we find Gini
coefficients ranging from 0.05 (for Denmark in 2011) to 0.48 (for South Africa in 2008). If we
consider only the latest available year for each country, the range is from 0.07 in Denmark
2019 to 0.47 in South Africa 2017. Relative to the country’s own income inequality, 10p
accounts for as little as 18.9% of total inequality in Denmark (2011), to as much as 76.7% in
South Africa (2017). There is considerable variation across regions, with Latin America
substantially overrepresented at the top of the range, while Europe is overrepresented at the
bottom. There is much more dispersion across Asia, and it is difficult to compare Africa to the
rest of the world, since most African countries use consumption, rather than income, as the
main measure of economic advantage. The latest estimate for the United States is 41.6% of
total inequality, slightly above the mean value of 40.9% and quite a bit higher than the median
(38.4%)

We also find considerable variation in trends over time with, for example, a substantial
increase in absolute I0p in the United States from 1978 to 2002 (followed by a slight decline),
contrasting with a decline in Peru between 2007 and 2015. We are also able to confirm the
existence of an opportunity “Great Gatsby Curve” — a positive association between 10p and
cross-sectional inequality — much as found by Brunori et al. (2013) for a much smaller and less
comparable earlier sample, and analogously to the original Gatsby Curve for intergenerational

4There is also less internationally comparable information on IGM in incomes than in education, although Mufioz
and van der Weide (2025) begin to close that gap.
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mobility (Corak, 2013). Similarly, we explore whether an “Opportunity Kuznets Curve” may be
discerned in the cross-sectional data.

In addition to comparable headline IOp estimates, our estimation methods also allow us to
report the relative descriptive importance of individual circumstance variables, such as
mother’s education or ethnicity; and the population partitions selected for each country-year
by our data-driven prediction algorithms — including the richest and poorest social groups as
defined by circumstances. While there is no room in this paper to do justice to all these
byproducts of the estimation strategy, individual country results are available from the online
database.’

The remainder of the paper is organized as follows. Section 2 briefly reviews the theoretical
framework underpinning the IOp literature. Section 3 describes the data sources used for the
analysis, as well as our treatment of the samples. It defines the income and circumstance
variables employed and provides some broad summary statistics across the dataset. Section
4 describes the methods used to predict current-generation incomes from circumstance
variables, both from an ex-ante and from an ex-post perspective. Section 5 presents an
overview of results, focusing on international comparisons. Section 6 concludes.

2. Theoretical framework

The canonical model used in the literature to measure 10p can be described as follows.®
Consider a distribution of an outcome x in a given population and suppose that all
determinants of x can be classified into either a set of circumstances C that lie beyond
individual control, or as responsibility characteristics, summarized by a variable e, denoting
effort, belonging to the set E. Circumstances belong to a finite set C. The outcome of interest
is then generated by a function g: C X E — R, such that:

x=g(C,e) (1)

In this framework, each individual in the population is fully characterized by the triple (x, C, e).
The population can then be exhaustively partitioned in two ways: into types {T£,TS,... T},
which are groups of individuals that share the same circumstances, or into tranches
{T¢,Ts,... T2}, which are groups within which everyone shares the same degree of effort.

5 The interested reader can reproduce all graphs shown in the results section by downloading the data or
interacting with the platform. Information about the team and institutions involved in the GEOM database, as
well as a glossary and a documentation section are also available on the website, aimed at providing readers
with the necessary tools to explore the complete results.

b Different variants of this model were proposed in theoretical contributions by Fleurbaey (1994), Roemer (1993),
Van de Gaer (1993), Peragine (2002) and used in the first empirical analyses of inequality of opportunity: see
Bourguignon et al. (2007), Checchi and Peragine (2010) and Ferreira and Gignoux (2011). See Ferreira and
Peragine (2016) and Roemer and Trannoy (2016) for reviews of the literature.



This is a reduced-form model in which neither opportunities themselves, nor the structural
process by which outcomes are determined, are explicitly modelled. The idea is to infer the
differences in opportunities available to individuals by observing differences in the
distributions of the outcome variable conditional on different combinations of circumstances
— that is across type-specific outcome distributions. If circumstances ought not to influence
outcomes — either directly or through their influence on efforts — any differences across
conditional distributions are prima-facie evidence of inequality of opportunity (Ferreira and
Peragine, 2016).

The normative foundations of this opportunity egalitarian theory rest on two distinct and
independent principles: the Compensation Principle, according to which all outcome
inequalities due to circumstances are unfair and should be compensated by society; and the
Reward Principle, which is concerned with the apportionment of outcomes to effort and, in
some of its formulations, requires that outcome inequalities due to effort be respected. Two
main versions of the compensation principle have been proposed, each yielding a different
approach to the measurement of inequality of opportunity: the ex ante and the ex post
approaches.

According to the ex-ante approach, there is equality of opportunity if the values of the sets of
opportunities available to individuals are the same for everyone, regardless of circumstances
(ex-ante compensation). In the model introduced above, the support of a type’s (TiC) outcome
distribution, which is the outcome distribution conditional on circumstances C;, is interpreted
as the opportunity set of all individuals with circumstances C;. There are obviously many ways
in which such a set could be valued — one of which is to take its expected value. Hence the
focus is on the inequality between the types. This approach is ex ante with respect to the
revelation of effort (van de Gaer, 1993).

On the other hand, in the ex-post approach, there is equality of opportunity if and only if all
those who exert the same degree of effort end up with the same outcome. Because effort is
difficult to observe and because its absolute level is likely to be influenced by circumstances,
Roemer’s identification assumption is commonly adopted. This assumption identifies the
relative degree of an individual’s effort by the person’s rank in the type-specific outcome
distribution. In this case, tranches (e.g., Y}e) are defined as sets of individuals who belong to
the same quantiles in their respective type distributions, and the ex-post principle of
compensation requires reducing outcome inequality within tranches (ex-post compensation).
This means that inequality of opportunity within this approach is measured as inequality
within tranches (Roemer, 1998).

As far as the reward principle is concerned, different versions of the principle have been
proposed in the literature, expressing different attitudes to the outcome inequality observed



within types, that is: among individuals endowed with the same circumstances. Among the
many interpretations, the most common in empirical applications is utilitarian reward,
according to which one should focus only on the sum (or the average) of the achievements
obtained by each group of individuals sharing the same circumstances, and to remain neutral
with respect to the way differences in effort are remunerated within these groups. Alternative
formulations have been proposed, from inequality-averse reward (Ramos and Van de Gaer,
2016; Fleurbaey et al. 2024) which incorporates some aversion to inequality even within
types, to intermediate and agnostic positions (Peragine, 2002; Peragine and Serlenga, 2008;
and Fleurbaey and Peragine 2013).

Measuring 10p

Once a version of the compensation and a version of the reward principle are adopted, the
derivation of a scalar measure of inequality of opportunity follows a two-step procedure: first,
the actual distribution, call it x, is transformed into a counterfactual distribution ¥, which
reflects only and fully the unfair inequality in x, while all the fair inequality is removed. In the
second step, a measure of inequality is applied to X. The first step is where the choice of
compensation and reward principles matter. In fact, different versions of the counterfactual
distribution, and hence different measures of inequality of opportunity, which are either
consistent with the ex-ante or the ex-post compensation and with different versions of reward,
have been proposed in the literature: they express different and sometimes conflicting views
on equality of opportunity and the distributional rankings they generate may be different. See
Ferreira and Peragine (2016) for a discussion.

One measure extensively used in the literature is Between-Types inequality, which arises from
the combination of ex-ante compensation with utilitarian reward. Taken together, these two
versions of the principles imply valuing opportunity sets using their mean or expected value,
and computing inequality on a counterfactual distribution Xgr that is obtained by replacing
each individual outcome by the average outcome of the type the individual belongs to. This
smoothing transformation is intended to remove all inequality within types, and different
applications were implemented by Bourguignon et al. (2007), Checchi and Peragine (2010),
Ferreira and Gignoux (2011), and others.’

An alternative, ex-post measure, inspired by Roemer (1993) and implemented by Checchi and
Peragine (2010) and Aaberge et al (2011), is based on the Within-Tranches counterfactual
distribution (Xy,rg). This distribution is obtained by replacing each individual outcome in each
tranche with the ratio between that outcome and the average outcome of the tranche. This

7 Although the utilitarian reward principle implies the between-types approach directly, because of the use of
average incomes to value type opportunity sets, the approach is also consistent with other reward principles,
such as liberal reward, for example.



normalization procedure is intended to remove all inequalities between tranches and to leave
unchanged the inequality within tranches.

In both approaches, the fact that estimation typically occurs in samples, rather than entire
populations, has important practical implications. Even with a relatively narrow set of
circumstances — such as the one described in the next section — the interactions between the
different categories across all variables routinely reach into the thousands, leading to the
possibility of severely overfitted models. This gives rise to a tradeoff between two different
kinds of bias in selecting a prediction model X; = f(C;) to construct the counterfactual
distribution X: Include too few variables and interactions, and the model will suffer from
(downward) omitted variable bias. Include too many, and the model will suffer from (upward)
overfitting bias.?

In the past, different parametric and non-parametric prediction methods were used but, until
recently, these generally relied on arbitrary or ad hoc specifications. We address this challenge
by using a suite of data-driven supervised machine learning techniques to select optimal
prediction models, in the sense that the algorithms select partitions to maximize out-of-
sample predictive power (following Brunori, Hufe and Mahler, 2023, and Brunori, Ferreira and
Salas-Rojo, 2024). We use these approaches to partition country samples into empirical types
and discuss them in more detail in Section 4.

Once the counterfactual distribution has been obtained, either in the ex-ante or in the ex-post
versions, the second step of the measurement procedure can take place. Here, a specific
inequality index I(.) is applied to the counterfactual matrix to obtain an estimate of inequality
of opportunity. The Gini coefficient and the Mean Logarithmic Deviation (MLD) are commonly
used in the literature and the GEOM database aligns with this practice.

Two closely related versions of the I0p index are reported below. The first one is the absolute
or level estimate of inequality of opportunity (I0,), given simply by the inequality measure
computed over X, i.e. by I(X). The second measure is the ratio of 10, to overall inequality in
the relevant outcome variable (e.g. income), which yields the relative measure, 10g:

_I®
[0g = o0 (2)

8 Because of this trade-off, the choice of the empirical prediction model involves not only selecting a functional
form and specification that adequately capture the desired principles of compensation and reward, but also
selecting the partition into empirical types, which is generally coarser than the partition into theoretical types.
As Ferreira and Brunori (2024) note: “The choice of the empirical partition ||T'L|| is an important component of
the model selection problem, and it involves a trade-off between two different kinds of bias that work in opposite
directions. The first is an omitted variable bias: selecting a partition ||TL|| with too few empirical types (a low
n(ﬁ-)) leads to an underestimate of I0p or inherited inequality, relative to the true theoretical partition (Ferreira
and Gignoux, 2011). On the other hand, overfitting the sample data and choosing too large a n(Ti) can lead to
an upward bias in estimates of 10p (Brunori, Peragine and Serlenga, 2018)” (p.16).
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[0 can be interpreted as the share of total inequality that can be predicted by circumstances
or inherited characteristics which people cannot be held responsible for.

3. Data sources
The sample of countries

As noted in the Introduction, GEOM includes data from 72 countries, drawn from 196
household surveys. These surveys were selected with a view to balancing two key desiderata,
namely (i) broad country coverage and (ii) as much data and methodological comparability as
possible. We therefore restrict our attention to household surveys containing basically the
same set of circumstance variables, define the outcome variable in the same way, and treat
the original samples identically regarding issues such as missing information, income outliers,
age ranges, equivalence scales and so on.

This pursuit of reasonable comparability across a wide range of countries inevitably has a cost
in terms of the types of data and the range of circumstance variables that can be used in each
country. In most developing countries, for example, large administrative datasets that
combine social security records across generations and match parents to their children do not
exist. Even in the rare instances where they do exist, they exclude, by definition, the typically
large informal sectors of those economies. Even among surveys, the extent of information on
circumstances available in detailed panel surveys, such as the Panel Study of Income Dynamics
(PSID) in the US or the German Socioeconomic Panel (G-SOEP), is extremely rare among
developing countries. Yet, as we will see, developing countries tend to have high levels of
inequality of opportunity — higher than most developed countries. To exclude them based on
data limitations would be a serious case of ‘looking where the light is, rather than where the
problem is’.

Table Al in the Appendix lists all countries, time periods, and surveys included in GEOM, as
well as the source from which we obtained access to the microdata.’ The time coverage varies
significantly: for some countries, such as Armenia (2016), Colombia (2010), or Mali (2019), we
only have data for a single point in time, while for others, like the USA, Peru or Australia, we
have data for eight years or more. Since we use EU-SILC data for 2005, 2011, and 2019, most
European countries have data for three points in time.1°

Table 1 summarizes the coverage information from Table Al in more synthetic form. In Panel
A we use the World Bank's geographical region classification and display the total number of
countries in each region, the number of countries included in GEOM, the share as a

9 Some microdata sets were obtained from or cleaned by institutional partners, such as the Centro de Estudios
Distributivos, Laborales y Sociales (CEDLAS) at the University of La Plata, the Centro de Estudios Espinosa Yglesias
(CEEY), Monash University and the Asian Development Bank (ADB). The list in Table Al in the Appendix
corresponds to the countries and time periods available in GEOM Version 1 (June 2024). Future updates are
expected to include estimates for additional countries and time periods.

10 A few European countries have fewer time points due to sample size or data limitations, such as Sweden (2019)
and Malta (2011, 2019).



percentage of the total, and the share of the region's population covered.!* GEOM includes
estimates of inequality of opportunity for 72 out of 217 countries globally, representing 66.9%
of the world's population in 2022. While regions such as North America, South Asia, Latin
America and Caribbean, and East Asia and Pacific have a broad coverage, encompassing more
than 75% of their population, others, like the Middle East and North Africa (0.1%), have a
much lower rate. In Panel B, countries are grouped by the World Bank’s income range
classification. The high-income and upper-middle-income categories are well-covered in
terms of population, with coverage rates reaching 78.4% and 82.3%, respectively. In contrast,
GEOM covers only 22.9% of the population in low-income countries, highlighting the need for
increased representation in these areas.

Table 1: GEOM Coverage

Panel A
Macro Region Number of Number of Share of Share of
(Geographical) Countries (WB) Countries (GEOM) Countries (%) Population (%)
East Asia and
. 37 6 16.22 75.26
Pacific
Europe and
. 58 36 62.07 65.96
Central Asia
Latin America
. 42 10 23.81 82.9
and Caribbean
Middle East and
_ 21 1 4.76 0.11
North Africa
North America®? 3 1 33.33 89.53
South Asia 8 2 25 75.43
Sub-Saharan
. 48 16 33.33 49.34
Africa
Total 217 72 33.18 66.89
Panel B
Macro Region Number of Number of Share of Share of
(Economic) Countries (WB) Countries (GEOM) Countries (%) Population (%)
High Income 82 35 42.68 78.4
Upper-middle
54 14 25.93 82.26
Income
Lower-middle
54 14 25.93 59.36
Income
Low Income 26 9 34.62 22.93

11 The classification of countries was retrieved from the World Bank Country and Lending Groups on the 1st of
September 2023: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-
and-lending-groups.

12 Mexico is included in Latin America and Caribbean. North America includes Canada, the United States and
Bermuda.
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Total 217 72 33.18 66.89

Source: Own elaboration. The classification of countries was retrieved from the World Bank Country and
Lending Groups. The population data refers to 2022 and comes from the World Bank Open Data Repository
(Variable SP.POPTOTL).

Country and survey selection for inclusion in GEOM followed four main criteria: First, the
sample had to be representative of the entire country.!®> Second, it must contain information
on a money-metric wellbeing indicator, such as income or consumption expenditures, at the
individual or household level.'* Third, it also had to contain individual-level information on at
least five of the following seven “circumstance”, or inherited characteristic, variables:

- Area or Region of Birth.

- Sex.

- Ethnicity. ¥

- Occupation of the Father and/or Mother.
- Education of the Father and/or Mother.

The fourth is a minimum sample size criterion: to be included in GEOM a sample must have a
minimum of 1,500 individual observations with complete information and strictly positive
outcomes. This sample size is based on the share of observations used in the resampling
process for random forests and Shapley value decompositions, which is set at 0.632 (see the
next section). To ensure that we retain at least 1,000 observations after each resampling, we
calculate the required number of observations as 1,000/0.632 = 1,500.

Sample definitions within countries and key variables

That is how our sample of countries was selected. Now we turn to how final analysis samples
(FAS) were defined and constructed within countries. First, we restrict the sample to
individuals aged 18 or older.'® Second, to be included in the FAS, observations must have
complete information for the selected circumstances and the outcome. To simplify the
analysis, categorical variables are limited to a maximum of 25 values, so if a circumstance
variable has 26 or more categories, they are merged until 25 different values are reached. This
merging process is country-specific and depends on the nature of the variable. For example,
the Area of birth in China (2018) was initially provided in 32 categories, but we recoded

13 The only exception to this is Argentina, where the 2014 ENES is representative only of the country’s urban
areas. In 2022, the urban share of Argentina’s population was 92% (World Bank).

14 This rules out, for example, the use of the Demographic and Health Surveys (DHS).

15 In a few cases the “ethnicity” circumstance is proxied by religion, the language spoken at home, or similar
definitions. These proxies are used when explicit ethnicity data is not available but other variables are sufficiently
correlated with ethnic or cultural identity.

16 This decision is based on the age of consent or responsibility, which is typically 18 in many countries and is
associated with the legal right to vote and be tried as an adult. The dominant view in the literature is that any
inequality observed among children younger than the age of consent is inequality of opportunity. See, e.g. Hufe
et al. 2017.
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provinces with fewer than 300 observations into an "Others" category. For each country and
year, GEOM provides a dedicated file within the "Country Profile" section containing
comprehensive data documentation. This includes information about the survey, sample
characteristics, weights, outcome and circumstances definitions (including any merging of
categories), main descriptive statistics, and a missing data analysis.

The dependent (money-metric wellbeing) variable is defined to measure current monetary
well-being and calculated as total household disposable income, or total household
consumption expenditure, divided by the square root of household size to account for scale
equivalence. The resulting equivalized household disposable income (income, henceforth)
measure is preferred, but equivalized household consumption expenditure is used when
appropriate income data is unavailable.!” The unit of analysis is the individual, so our analysis
is of a distribution of equivalized household disposable income per individual. One implication
of this is that any intrahousehold inequality is ignored, with evident implications for the
importance of the sex circumstance variable.

Before estimation we adjust equivalized household income (or consumption) to control for
systematic correlations between life cycle and the outcome distribution (Solon 1992). We use
a regression approach where, for each observation i, we subtract from the dependent variable
yi the predictions obtained from the regression of (log) dependent variable on age and age
squared (Brunori et al., 2023), as follows.!8

Ln(y;) = a + Page; + yage] + ¢ (4)
'Y = exp(Ln(y;) — Bage; — 7age?) (5)

All inequality measures we report are scale-invariant, but the database does contain scale-
sensitive information, such as the mean incomes of different types. To enable cross-country
and temporal comparisons in these variables, all monetary values are expressed in 2017 US
dollars after adjusting by Purchasing Power Parity (PPP) and the Consumer Price Index (CPI).
We use Stata to download the PIP (Poverty and Inequality Platform at the World Bank) series
for CPl and PPP.2? If the CPI value from PIP is missing, we use the CPI series provided by the
World Bank (Consumer Price Index (2010 = 100), downloaded on September 5th, 2023), after

17 We use Equivalized Household Consumption Expenditure as a dependent variable for Benin, Burkina Faso,
Ivory Coast, Ghana, Guinea-Bissau, Indonesia, Mali, Malawi, Niger, Nigeria, Senegal, Sierra Leone, Togo, Timor-
Leste, Tanzania, and Uganda.

18 To avoid including young adults who may earn only a small share of the household income and thereby
introduce biases in the adjustment, the age-adjustment regression is run on household heads, indexed by j in
Equation (4). After running the regression and adjusting incomes for all individuals i, we rescale the adjusted
incomes to match the sample mean. We use the household head as reported in the survey; if this information is
unavailable, we treat the respondent as the household head.

1% We use the PIP Stata command (“ssc install pip”) and execute “pip tables, table(ppp) clear” and “pip tables,
table(cpi) clear” to obtain the PIP series for PPP and CPI (base 2017=100). The version used in GEOM was
downloaded on September 5th, 2023. We thank Daniel Gerszon Mahler for his help.
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modifying the base year to 2017. The PPP values come directly from PIP with no further
modifications. The national currencies are adjusted in this manner:

National Currency

Prear) = 2017 USD (3)

PPP2017*( T0o

As regards the circumstance variables, all are categorical in nature and the definition of
specific categories is inevitably specific to each country. For instance, in Brazil (2014), the
original Birth Area variable has 27 possible values, corresponding to the 26 states plus a
"foreign" category, while in Belgium (2019), it is defined by the three values available in EU-
SILC data (Local, born in the European Union, and Other). A similar variation is found in the
definition of parental occupation or education. In Senegal (2018), Mother’s Education is
classified into five levels, whereas in Ecuador it is defined by the number of years of education
attained, ranging from 0 to 15. The variable denoting the individual's Ethnicity is also defined
to capture country idiosyncrasies. For example, in South Africa, it takes four values based on
self-reported ethnicity (African, Asian, Coloured, and White), while in Peru it includes 5
categories: White, Indigenous, Afro-descendent, mixed-race, and others.

Any threat to comparability posed by these country idiosyncrasies is substantially mitigated
by the data-driven nature of the algorithms we use to partition the sample. All three
approaches discussed in the next section rely on (different versions of) recursive binary
partitioning, where identical statistical criteria are used to divide the sample based on
circumstance variables. This allows us to avoid ad-hoc partitions while combining respect for
country specificities with methodological comparability.

Finally, for certain countries, our different time periods come from panel data, where the same
individuals or households are interviewed in multiple waves (e.g., Australia, South Africa and
South Korea). In these cases, inconsistencies in responses regarding retrospective
circumstances (such as a parent’s educational attainment) can occasionally arise. To resolve
these inconsistencies, we set the value to that reported in the first available wave. For
example, if an individual reports in 2012 that her mother was illiterate, but in 2018 reports
that her mother attended primary school, we assume the information from 2012 is correct,
as it is (i) less prone to recall bias, and (ii) more likely to have held when the respondent was
a young child. Additionally, when missing observations are encountered for time-invariant
circumstances where information is available for the same individual from other waves of the
panel, we use this available information, always prioritizing the oldest information (i.e., from
earlier waves).

4. Estimation methods

As noted in Section 2, we follow Brunori, Hufe and Mahler (2023) and Brunori, Ferreira and
Salas-Rojo (2024) in using data-driven supervised machine learning techniques to select our
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prediction models X; = f(C;), which are then used to generate the counterfactual
distributions X, on which inequality of opportunity is calculated.

Specifically, we employ regression trees and random forests, which have several advantages
for the estimation of IOp from survey data. First, tree-based methods generate predictions by
partitioning the regressor space into non-overlapping regions. This implies that individuals are
assigned to mutually exclusive groups defined by the interaction of their circumstances. The
use of trees is therefore quite consistent with the idea that the interaction of circumstances
partitions the population into societal types that have access to different sets of opportunities
(as discussed in Section 2).

A second advantage stems from the flexibility of tree-based algorithms which can, by
construction, handle many predictors without the risk of overfitting. The tuning of the
algorithm prevents the model from becoming too complex, which would otherwise result in
noisy predictions and upward-biased estimates (Chakravarty and Eichhorn, 1994; Brunori et
al., 2018). At the same time, regression trees are grown to select the partition that maximizes
the ability of observable circumstances to predict the variation in income out of sample. This
approach minimizes the risk of the downward bias frequently highlighted by researchers (e.g.,
Ferreira and Gignoux, 2011).

Among the many possible regression trees, we use conditional inference regression trees
(Ctrees) and transformation trees (Trafotrees), introduced by Hothorn et al. (2006) and
Hothorn and Zeileis (2021) respectively. The use of Ctrees and Trafotrees offers additional
advantages. First, they address the bias inherent in standard recursive partitioning algorithms,
which tend to overuse variables with many distinct values as splitting variables (Varian, 2014).
Secondly, because they are based on a sequence of statistical tests, the resulting tree
structures are more easily interpretable than standard trees and provide a formal test for the
null hypothesis of equal opportunity in a population or subpopulations.

The Ctree algorithm searches for the partition that maximizes the statistical significance of
differences between the means of the two resulting subsamples. It is therefore especially well-
suited for the ex-ante approach to I0p — and the between-types version in particular — which,
as discussed above, uses type means to construct the counterfactual distribution Xgr.
Conversely, the Trafotree algorithm recursively partitions the population into subsamples that
differ most in terms of their full conditional distributions. It is therefore especially well-suited
for the ex-post approach to 10p — and the within-tranches version in particular — which relies
on estimates of each quantile of the conditional distributions to measure inequality within
tranches.

We briefly summarize our use of the ex-ante (Ctree) algorithm below, although the reader is
referred to Brunori, Hufe and Mahler (2023) for details. An analogous summary of the ex-post
(Trafotree) algorithm is provided in Appendix B1, and the reader is referred to Brunori, Ferreira
and Salas-Rojo (2024) for details.
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Ex-ante I0p estimates in GEOM

The ex-ante Inequality of Opportunity (IOp) statistical approach adopted in GEOM was
proposed by Brunori, Hufe and Mahler (2023). It employs the Conditional Inference regression
Trees (Ctrees) and Conditional Inference Random Forests (CForest) developed by Hothorn,
Hornik and Zeileis (2006). A Ctree is a supervised machine learning algorithm aimed at
partitioning a regressor space to predict the variation of a dependent variable. The regression
space is partitioned delivering a set of terminal nodes or leaves obtained by recursive binary
splitting of the sample. The algorithm can be summarised as follows:

1. Set a confidence level (1- a).

2. Test the correlation between the dependent variable (outcome) and each regressor
(circumstance). If for all observed regressors, the Bonferroni-adjusted p-value of the
correlation test is higher than the chosen critical value a, exit. Otherwise, go to step 3.

3. Among all regressors in which the null hypothesis of independence is rejected, select
the variable whose correlation with the outcome has the smallest p-value as splitting
variable [c].

4. Consider how circumstance [c] can be used to partition the sample into two
subsamples [s;, s_;]. Let S, denote the set of all possible binary splits of the sample based
on [c]. For each possible binary partition, compute the p-value for the null hypothesis that

the mean in two sub-samples is the same (plsis-il).
5. Choose [s;,s_;]" = argming_ p[sf’s-f],‘v’j as the most appropriate partition.

6. Repeat steps 2 — 5 for each resulting node (sub-sample) until the null hypothesis of
step 2 cannot be rejected in any resulting sub-sample.

The output of this algorithm consists of an exhaustive partition of the sample into mutually
exclusive groups. We treat these terminal nodes as types t = {1, ..., T}, for which we compute
the respective population weighted share w; and the weighted mean fi;. Ex-ante IOp is
estimated as Toa = [(¥), where j is a counterfactual distribution obtained by replacing the
outcome of individual i belonging to type t with J; . = [i; . We select the Gini coefficient as
the reference inequality measure, but we also report mean logarithmic deviation (MLD)
estimates.?®

20 Wwe set a = 0.01. We impose an additional requirement, namely that each terminal node must have a
minimum of 1% of the observations in the sample (or 50 if the sample size is smaller than 5000). This country-
specific minimum is set to minimize the effect of different sample sizes on the depth of the tree. See Brunori,
Hufe and Mahler (2023) for a discussion of the effect of sample size on IOp estimation. All remaining parameters
are the default values in the “ctree” R function in the package “partykit” (Hothorn, Seibold and Zeileis, 2023).
We do not use weights to determine splits. Including sampling weights expands the sample size, such that
individual observations turn into hundreds or thousands of identical values. As a result, the tree becomes very
deep, as null hypothesis are easily rejected. Weights are used to calculate the values of the counterfactual
distribution and to estimate 10p.
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In addition to producing an estimate of ex-ante 10p, the Ctree approach has the significant
added benefit that the partitioning process itself contains interesting information on the
structure of inequality of opportunity within a particular observed population. Ctrees in the
database are displayed as in Figure 1, which is an example from Sweden, 2019. For simplicity,
we normalize the expected outcome in each node dividing it by the sample mean, so a value
higher than 1 can be interpreted as an expected outcome higher than the expected outcome
in the entire population (e.g., type 8 in Figure 1 has an expected outcome approximately twice
as large as the sample average).

Figure 1: Ctree example (Sweden, 2019).
{1

' /Mother_Occ\.‘
s _p<0001_/
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7 ™~ T
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y ~ A4 / S~ 19—
/ ' >Mother_Edm‘ / ,/>Father_Edu N
/ \_p=0004_/ / \_p<0001_/
/ X~ / T~
/ 0,1 2, 3\ /’ 0,1 2,3
// /_/ / /_/ \7
3] (5] {6} 8] 10} 1]
Rel. Type Mean Rel. Type Mean Rel. Type Mean Rel. Type Mean Rel. Type Mean Rel. Type Mean
0.95 0.585 0.764 2.021 0.933 1.075
Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%) Pop. Share (%)
39.05 6.99 3.08 4.8 7.88 38.2

Source: GEOM. Data from EUSILC (2019)

Like any other tree-based method, Ctrees are low-bias but high-variance learners, and
therefore an aggregation procedure can improve the reliability of estimates. For this reason,
we provide an alternative estimate of ex-ante I0p for each sample in the database, by
aggregating 200 Ctrees into a random forest (Breiman, 2001; Hothorn, Hornik and Zeileis,
2006).%! In the machine learning literature, when dealing with high variance learners, it is
standard practice to use resampling methods. A random forest draws different subsamples of
the original data and computes a tree on each one. Under the appropriate aggregation
procedures, this process smooths sample dependency and generates robust |Op estimates.

21 Following these authors, we use some default tuning parameters. In particular, we set alpha to 1 (mincriterion,
1-a=0), such that each tree is free to grow as much as it can. We use the default 0.632 share of each subsample
drawn in every iteration. The minimum number of observations that we allow in each terminal node is 0.1% of
the sample size, with the aim of maximizing comparability across surveys with different sample size (or 10, if the
sample size was smaller than 1000). All remaining tuning parameters are set to the default values in the “cforest”
R function in “partykit” (Hothorn, Seibold and Zeileis, 2023).
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The GEOM database therefore reports three different estimates of 10p for each country-year:
an ex-ante tree (Ctree) measure; an ex-post tree (Trafotree) measure; and an ex-ante forest
measure.?? Although these indices are quite strongly correlated (as we show in Section 5),
they provide complementary information. Readers who are partial to the ex-post Principle of
Compensation will naturally prefer our ex-post tree estimates. Among the ex-ante results, we
recommend focusing on the random forest estimates, which are the most robust, and using
the tree-based results as sources of complementary information on the structure of
opportunity in each sample. The online database contains full pictures of both ex-ante and ex-
post trees, analogous to Figure 1 above and to Figure B1 in Appendix B, for each country-year
in the sample.

The Role of Individual Circumstances

In addition to the summary measures of 10p and the corresponding trees described above;
the database also contains results for two different ways of assessing the relative predictive
importance of individual circumstances in contributing to the total IOp estimate. The first way,
which relies on Shapley-Shorrocks decompositions, provides an estimate of the average
relative importance of each circumstance (and is therefore sensitive to its prevalence in the
population), whereas the second relies on Partial Dependency Plots (PDPs) and provides an
estimate of the marginal importance of each circumstance (to the person that has it,
regardless of population prevalence). Neither estimate can be interpreted causally, of course:
As with estimates of intergenerational mobility, omitted variables prevent any such
interpretation. Nonetheless, quantifying the differences in the contributions of circumstances
remains descriptively useful.

The Shapley value method calculates each variable's contribution to predicting variation in the
outcome by assessing the average decline in explained outcome variability when the variable
is excluded. The procedure involves drawing sub-samples, estimating IOp using a deep
Ctree/Trafotree, and then re-estimating |0p after systematically removing circumstances by
replacing their values with a vector 1. These drops are assessed by considering the case in
which only the variable of interest is neutralized, as well as all cases where each possible
combination of variables including the variable of interest, is neutralized. A weighted average
of these drops provides the Shapley value (Shapley, 1952; Shorrocks, 2013). To account for
sample dependency, this process is repeated 100 times, and the results are averaged across
iterations.

Because the relative average importance of a control variable depends on its prevalence in
the population (e.g., the relative importance of immigration background is inherently limited
if there are few immigrants in the sample), we complement the analysis by plotting Partial
Dependence Plots (PDPs) for each circumstance.?? PDPs, originally introduced by Friedman

22 \We are not aware of suitable methods to produce forest analogues for Trafotrees. See Appendix B3 and
Brunori, Ferreira and Salas-Rojo (2024) for a discussion.
2 This is only done for ex-ante random forest IOp measures, which are our preferred estimates.
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(2001), are visual tools designed to aid in interpreting machine learning outputs. They show
how changes in a specific predictor variable affect the predicted outcome while holding all
other variables constant. For instance, the partial dependence function for a particular
feature, say "having a mother in a high-skilled occupation," represents the average prediction
if we were to force all data points to assume that feature value: What would the average
outcome be if all students had a mother in a high-skilled occupation?

This counterfactual exercise is implemented while keeping the distribution of all other
features constant. It offers a valuable complement to Shapley values, as it focuses on the
marginal importance of each characteristic, independent of their marginal distribution. Details
of estimation algorithms for both Shapley values and PDPs may be found in Appendix B2.

5. Overview of the GEOM database

We can now provide an overview of the statistics and descriptive tools contained in the GEOM
database. Space limitations prevent us from presenting all the evidence available online, and
we invite the reader to visit and browse the site for themselves. Here we first present our six
summary measures of IOp — absolute and relative estimates from ex-ante trees, random
forests and ex-post trees — and explore how they co-vary. Then we focus more narrowly on
our preferred estimates, namely those from ex-ante random forests, and showcase different
ways to visualize both levels and trends across countries. Next, we investigate some empirical
regularities in the relationships between 10p, on the one hand, and overall inequality and per
capita GDP on the other. Finally, we describe some comparative results for the relative
importance of individual characteristics.

5.1.  Summary measures of 10p

Table 2 presents both absolute (I04) and relative (IOg) estimates of inequality of opportunity
for the latest available year for each of the 72 countries in GEOM, based on the Gini coefficient.
Table A2 in Appendix A replicates this table using the mean logarithmic deviation (MLD).
Column 3 indicates whether the estimates are based on equivalized household income or
consumption, and column 4 presents total inequality in that variable. Columns 5-7 contain the
absolute estimates, while columns 8-10 display the relative indices (in percentage terms).
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Table 2: GEOM main results from latest wave (Gini)

Random
Tree Random Tree Tree Forest Tree
Country Year Variable Sample Gini Forest (ex-ante) (ex-post)
(ex-ante) (ex-ante) (ex-post) Relative (%) (ex-?nte) Relative (%)
Relative (%)

Argentina 2014 Income 0.388 0.167 0.179 0.177 42.997 45.984 45.649
Armenia 2016 Income 0.412 0.116 0.179 0.184 28.114 43.554 44.720
Australia 2019 Income 0.355 0.094 0.101 0.081 26.584 28.358 22.782
Austria 2019 Income 0.280 0.096 0.099 0.091 34.130 35.235 32.382
Belgium 2019 Income 0.243 0.097 0.104 0.107 39.786 42.875 44.110
Benin 2018 Consumption 0.348 0.140 0.130 0.133 40.195 37.209 38.042
Bolivia 2008 Income 0.500 0.278 0.294 0.341 55.631 58.772 68.114
Brazil 2014 Income 0.488 0.322 0.320 0.339 66.010 65.703 69.600
Bulgaria 2019 Income 0.407 0.222 0.198 0.190 54.613 48.708 46.740
Burkina Faso 2018 Consumption 0.379 0.123 0.093 0.099 32.489 24.631 26.134
Chile 2015 Income 0.492 0.239 0.248 0.309 48.537 50.346 62.764
China 2018 Income 0.497 0.194 0.219 0.293 38.998 44.127 58.829
Colombia 2010 Income 0.535 0.245 0.257 0.333 45.815 48.019 62.182
Croatia 2011 Income 0.306 0.097 0.107 0.118 31.698 35.100 38.600
Cyprus 2019 Income 0.315 0.157 0.160 0.171 49.984 50.937 54.465
Czech Rep. 2019 Income 0.239 0.075 0.079 0.073 31.425 33.055 30.547
Denmark 2019 Income 0.268 0.056 0.072 0.057 20.902 26.900 21.237
Ecuador 2014 Income 0.455 0.227 0.229 0.273 49.890 50.308 60.000
Estonia 2019 Income 0.280 0.072 0.083 0.081 25.820 29.636 29.030
Finland 2019 Income 0.287 0.092 0.109 0.094 32.089 38.158 32.612
France 2019 Income 0.287 0.111 0.123 0.119 38.883 42.897 41.361
Gambia 2015 Income 0.576 0.199 0.195 0.234 34.544 33.797 40.573
Georgia 2016 Income 0.469 0.122 0.211 0.178 26.062 45.016 37.951
Germany 2019 Income 0.279 0.080 0.087 0.074 28.823 31.335 26.490




Random

Tree Random Tree Tree Forest Tree
Country Year Variable Sample Gini Forest (ex-ante) (ex-post)
(ex-ante) (ex-ante) (ex-post) Relative (%) (ex-?nte) Relative (%)
Relative (%)

Ghana 2017 Consumption 0.420 0.152 0.161 0.172 36.251 38.249 40.794
Greece 2019 Income 0.306 0.110 0.117 0.126 36.078 38.268 41.209
Guatemala 2011 Income 0.526 0.298 0.291 0.330 56.629 55.374 62.735
(;:J;;‘aes 2018 Consumption 0.312 0.142 0.134 0.137 45.548 43.017 43.946
Hungary 2019 Income 0.275 0.071 0.089 0.080 25.744 32.353 29.085
Iceland 2005 Income 0.263 0.055 0.081 0.075 20.935 30.775 28.343
India 2012 Income 0.527 0.292 0.279 0.327 55.416 53.007 62.094
Indonesia 2014 Consumption 0.428 0.116 0.126 0.101 27.043 29.472 23.681
Ireland 2019 Income 0.281 0.105 0.125 0.117 37.269 44.275 41.714
Italy 2019 Income 0.315 0.117 0.108 0.125 37.032 34.242 39.727
Ivory Coast 2018 Consumption 0.325 0.123 0.103 0.101 37.927 31.529 31.129
Kazakhstan 2016 Income 0.339 0.081 0.081 0.063 23.900 23.900 18.493
Kyrgyzstan 2016 Income 0.448 0.078 0.143 0.176 17.408 31.911 39.240
Latvia 2019 Income 0.337 0.086 0.107 0.104 25.541 31.652 30.703
Lithuania 2019 Income 0.341 0.107 0.104 0.103 31.204 30.472 30.179
Luxembourg 2019 Income 0.322 0.132 0.142 0.134 40.981 43.993 41.726
Malawi 2020 Consumption 0.357 0.161 0.156 0.170 45.169 43.629 47.578
Mali 2019 Consumption 0.344 0.125 0.114 0.122 36.303 33.217 35.429
Malta 2019 Income 0.266 0.083 0.091 0.091 31.149 34.124 34.388
Mexico 2017 Income 0.532 0.303 0.298 0.279 56.853 55.952 52.459
Mongolia 2016 Income 0.471 0.144 0.181 0.176 30.563 38.533 37.492
Nepal 2011 Income 0.538 0.219 0.216 0.263 40.692 40.115 48.931
Netherlands 2019 Income 0.255 0.063 0.086 0.106 24.834 33.608 41.598
Niger 2018 Consumption 0.311 0.082 0.079 0.082 26.397 25.273 26.429
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Random

Tree Random Tree Tree Forest Tree
Country Year Variable Sample Gini Forest (ex-ante) (ex-post)
(ex-ante) (ex-ante) (ex-post) Relative (%) (ex-?nte) Relative (%)
Relative (%)
Nigeria 2019 Consumption 0.288 0.127 0.120 0.132 43.908 41.722 45.748
Norway 2019 Income 0.273 0.099 0.112 0.107 36.177 41.011 39.290
Panama 2003 Income 0.527 0.306 0.286 0.335 58.046 54.288 63.472
Peru 2015 Income 0.423 0.260 0.267 0.287 61.633 63.266 67.811
Poland 2019 Income 0.282 0.084 0.088 0.093 29.950 31.299 32.825
Portugal 2019 Income 0.306 0.118 0.135 0.135 38.705 44.034 44.263
Romania 2019 Income 0.341 0.151 0.144 0.198 44.245 42.161 58.133
Senegal 2018 Consumption 0.314 0.107 0.093 0.102 34.001 29.580 32.538
Sierra Leone 2018 Consumption 0.311 0.137 0.137 0.144 44.108 44.076 46.233
Slovakia 2019 Income 0.232 0.070 0.075 0.086 30.207 32.100 37.091
Slovenia 2019 Income 0.249 0.082 0.087 0.092 32.892 34.739 36.747
South Africa 2017 Income 0.610 0.415 0.468 0.496 68.121 76.746 81.256
South Korea 2019 Income 0.351 0.106 0.121 0.145 30.217 34.578 41.363
Spain 2019 Income 0.329 0.151 0.145 0.159 45.897 44.164 48.328
Sweden 2019 Income 0.276 0.104 0.094 0.099 37.786 34.047 36.080
Switzerland 2019 Income 0.283 0.084 0.093 0.074 29.767 32.945 25.953
Tajikistan 2016 Income 0.309 0.061 0.087 0.051 19.657 28.109 16.613
Tanzania 2013 Consumption 0.373 0.162 0.173 0.171 43.313 46.261 45.805
Timor Leste 2014 Consumption 0.282 0.117 0.101 0.113 41.341 35.877 40.099
Togo 2018 Consumption 0.382 0.164 0.151 0.152 43.093 39.659 39.843
Uganda 2014 Consumption 0.371 0.167 0.178 0.177 44.881 47.980 47.656
pnlted 2011 Income 0.324 0.076 0.096 0.087 23.479 29.503 26.846
Kingdom

Ug';t:riiﬁfaes 2014 Income 0.395 0.150 0.164 0.165 38.045 41.565 41.667
Uzbekistan 2016 Income 0.460 0.095 0.182 0.092 20.753 39.548 19.948
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Figure 2 shows the correlations across the summary indices reported in the columns of Table

2, although now using all years (the pooled cross-section), rather than just the latest year. The

panels on the left show the association between absolute |I0Op estimates obtained with ex-

ante trees and forests (upper panel), ex-ante forest and ex-post trees (middle panel), and ex-

ante and ex-post trees (bottom panel). The panels on the right show the association obtained

with the same methods, now for relative 10p. At the bottom-right of each plot we report the

correlation coefficients and the associated p-values.
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Figure 2 — Correlations across |0p estimates

Exante Forest (X—axis) vs Exante Tree (Y-axis)

Absolute 10p Relative I0p
= 701 -
9 %0 e N g
J”. ‘ N o
P 40 b w °
\n’ 30 4
E cor = 0.98 .wf. cor=0.94
p=0000 |09 - _ % p=0.000
0.1 0.2 03 0.4 0.5 20 40 60
Exante Forest (X-axis) vs Expost Tree (Y-axis)
Absolute 10p Relative I0p
.| 801
- .-
.- ) 604 - 1 P "-’.. ]
-y -~ ) " o &
~ “.‘—’g‘ .
i .o 40 «
-
cor = 0.98 e cor=0.93
7 p = 0.000 201 .--"@ © p=0.000
0.1 02 03 04 0.5 20 40 60
Exante Tree (X-axis) vs Expost Tree (Y—-axis)
Absolute 10p Relative I0p
80 -
o -]
- e Y-
- 50 4 u:- ? -=
P oL -- _ e%yg
g _,"' B s LU q'ﬁ‘.!r.' *
i’ B 401 ik ¥ - S f
’ cor =0.96 P 5?, v cor = 0.90
P p= 0000 0] & - g p = 0.000
01 02 03 0.4 20 30 40 50 60 70
Region Africa Asia + Oceania Europe LATAM North America

Note: Pooled cross section data. Elaboration based on GEOM data. The correlation

coefficient (c) and the associated p-value (p) are shown at the bottom-right.

The literature (e.g., Fleurbaey and Peragine, 2013) has shown that the concepts of ex-ante

and ex-post |0p represent distinct - and often incompatible - approaches to study unfairness.

Yet, our estimates of ex-ante and ex-post I0p are strongly correlated. Since absolute 10p



estimates are mechanically correlated with total inequality, it is less surprising to observe a
stronger correlation in the left panels. However, the high association between relative ex-ante
and relative ex-post is particularly noteworthy. It suggests that, despite their theoretical
differences, the two approaches yield highly consistent descriptions of inherited inequalities.

Before turning to different ways in which these results can be viewed, it is useful to ask
whether our sample definitions and treatment of the income and consumption data lead to
large differences in the levels and ranks of income and consumption inequality relative to
other publicly available compilations. There are two main sources of potential differences,
namely: (i) the use of a vn equivalence scale to adjust all household incomes; and (ii) changes
in the composition of the sample due to the exclusion of observations with missing
information.?* Figure 3 plots our estimates against the corresponding figures published by the
World Bank (World Development Indicators) — in Panel (a) for all countries and in Panel (b)
only for those based on the same underlying concept of money-metric wellbeing —income or
consumption.

The main deviations from the 45-degree line in Panel (a) are mostly Asian countries - Armenia,
China, Georgia, Indonesia, India, Kazakhstan, Kyrgyzstan, Mongolia, Nepal, Uzbekistan — and
are due to the use of income as an outcome for those countries (in the GEOM database), as
opposed to consumption (in the World Bank database). In Panel (b), differences should be
mostly due to the equivalence scale and within-country sample composition. While there are
clear differences — and, as expected, inequality in equivalized incomes is lower than in per
capita incomes (see Coulter et al.,1992) — it is reassuring that the total inequality estimates in
GEOM are closely correlated with those reported by the World Bank (p = 0.92, p-value=0.00).

Figure 3 - Total inequality estimates: GEOM vs World Bank
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Note: Pooled cross-section data. Elaboration based on GEOM and World Bank data. The distinction
between Income and Consumption as outcome refers to GEOM only.

24 The summary statistics reported here are before the age adjustment; see Section 3.
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5.2.  Visualizing levels and trends of (ex-ante) IOp around the world

While Table 2 contains all our (Gini-based) summary IOp measures for the latest year available
for each country, the database also allows for more intuitive ways to view results. Focusing on
our preferred, random forest ex-ante Gini coefficient estimates, Figure 4 illustrates the kind of
map available to GEOM website users. It reports estimates of relative 10p for the latest survey
available, with the legend using a color scale where lower values are colored in yellow and
higher values are colored in purple. Similar maps for total inequality or other definitions of
IOp can be easily accessed via the interface in the website (https://geom.ecineq.org/world-
view/), which allows the user to change the inequality measure (Gini vs MLD), the I0p
perspective (ex-ante vs. ex-post), the approach (absolute vs relative) and the dependent

variable (income, consumption, or both).

Figure 4 - Map of the Relative Ex Ante I0p estimates from GEOM (using Gini coefficients).
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Note: latest available estimate for each country. Source: GEOM
(https://geom.ecineq.org/world-view/).

The relative measures in Table 2 (column 9) and Figure 4 range from 23.9% (Kazakhstan, 2016)
to 76.8% (South Africa, 2017). There is considerable variation across regions, with Latin
America substantially overrepresented at the top of the range, while Europe is
overrepresented at the bottom. There is much more dispersion across Asia, with some
countries like Kazakhstan and Indonesia at the bottom, and others like India or China reaching
much higher values. It is difficult to compare Africa to the rest of the world since, as noted
earlier, most African countries report consumption rather than income-based 10p.
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We emphasize this comparability limitation more clearly in the bar chart in Figure 5, where
consumption-based estimates are shown separately to the left of the figure. These are all still
ex-ante Gini coefficients from random forests for the latest available surveys, with absolute
levels in the top panel and relative indices in the bottom.?> Both panels highlight the
remarkable variation in IOp across the globe. This variability is, of course, higher when we look
at absolute 10p, which is not normalized by the total inequality in the country. Absolute and
relative 10p are, unsurprisingly, highly correlated (p = 0.9) but comparing them provides
some interesting insights. For example, by looking at absolute IOp in Denmark one may
conclude that, with a Gini coefficient of 0.07, IOp is hardly a problem for this country. While
this might be true when we compare it with other absolute values around the world, the
bottom panel in Figure 5 shows that I0p in Denmark still accounts for more than a quarter
(26.9%) of its (rather low level of) total inequality. On the other hand, some countries, like
Australia, move from the middle to the bottom part of the 10p distribution when passing from
absolute to relative measures.

Figure 5 — Ex ante IOp Estimates from GEOM
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25 Naturally, the bottom panel of Figure 5 is an alternative graphical representation of the information
contained in Figure 4.
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Note: elaboration based on GEOM data, latest available estimate for each country.

The GEOM database also allows users to follow the evolution of IOp over time for certain
countries although, at present, time series are typically quite short and only available for a
few countries. Figure 6 below reports |I0p estimates for all countries that are observed for at
least four years: Australia, Chile, China, South Korea, Peru, Uganda, the United States and
South Africa. Once again, absolute (relative) estimates are on the top (bottom) panel.

Figure 6 - Trends in I0p
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Note: Elaboration based on GEOM. The graph reports only countries that are observed for at
least four years.

There is considerable variation in trends over time, with a steady increase in absolute 10p in
the United States from 1978 to 2002, then followed by a slight decline. Throughout the period
of observation, I0p in the United States accounts for between 40 and 50% of total inequality,
placing it among the highest values for high-income economies. Focusing on the last 10 years
of the available data, Figure 6 shows that the United States are no longer the “land of
opportunity”, in line with the conclusions in Chetty et al. (2014). Conversely, countries like
Australia and South Korea display much lower levels of both absolute and relative 10p.%¢ Both
China (the world’s largest country) and South Africa (the world’s most unequal) display U-
shaped patterns for both absolute and relative 10p. In China, absolute |Op fell sharply between
2010 and 2012 but then rose steadily back to its original level by 2018. In South Africa, the
decline lasted between 2008 and 2015, offset by a sharp rise in 2017.

26 Our results on South Korea are also in line with Moramarco et. al (2020).
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Figure 7 - Trends in I0p: Europe
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Note: Elaboration based on GEOM. The graph reports a subset of European countries.

Figure 7 zooms in on the evolution of I0p in Europe. As explained in Section 3, for most
countries in this region GEOM draws information for only three years: 2005, 2011 and 2019.
Figure 7 shows only those countries with the two lowest or highest estimates in 2005 and
2019, which is sufficient to illustrate the variability in both levels and trends of I0p within the
European region. It is interesting that only three of the countries selected in the top panel
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appear also in the bottom one, highlighting again the importance of considering both absolute
and relative measures of IOp when making these assessments.

Some changes were substantial. Denmark, for example, experienced a large drop in absolute
I0p from 2005 to 2011 followed by a slight increase, transitioning from having one of the
highest relative I0p levels in 2005 to the lowest in 2019. Other countries like the Netherlands
or Slovakia (top panel) or Estonia and Lithuania (bottom panel) display more stable trends.
Overall, of the seven countries in the top panel, four experienced declines in absolute ex-ante
I0p between 2005 and 2019, two experienced increases (Cyprus and Spain), and one (the
Netherlands) was basically unchanged. In the bottom panel, the same number of countries
(three) saw rises as declines in relative ex-ante 10p, with Lithuania basically unchanged.

5.3.  Empirical regularities: Opportunity “Great Gatsby” and Kuznets curves®’

It might be of interest to ask how our measures of I0p co-vary with other important variables,
such as overall income inequality and GDP per capita. Given the close conceptual and
empirical association between 10p and (inverse) intergenerational mobility, one might expect
to find a positive association between I0p and total inequality, analogous to the Great Gatsby
curve first plotted by Corak (2013). Indeed, such a relationship for I0p was first reported by
Brunori et al. (2013). After observing how intergenerational income persistence was closely
linked to 10p in their sample of countries, those authors also reported a clear positive
empirical association between 10p and income inequality across countries.?® Our (more
internally comparable) GEOM estimates confirm this positive association between 10p and
inequality. Figure 8 displays pooled cross-sectional scatter plots, showing both absolute and
relative (random forest) I0Op estimates against total inequality.

27 In this subsection, scatter plots draw on the full pooled cross-sectional data from GEOM, so that each point
corresponds to a country-year observation.

28 As mentioned in the Introduction, intergenerational income persistence can be interpreted as 10p under the
simplifying assumption that parental income is the only circumstance beyond individual control.
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Of course, the positive association on the top panel of Figure 8 may be seen as at least partly
mechanical, since absolute ex-ante |0p corresponds to the between-type component of total
income inequality. However, there is no mechanical reason for this positive correlation to
appear when looking at relative 10p (bottom panel). As Brunori et al. (2013) suggested, this
relationship likely arises from the circular causation between the two concepts: today’s
income differences among families translate into differences in opportunities for their
children, and those opportunity gaps in turn shape income differences in adulthood for that



It is interesting to notice that in Figure 8 (bottom panel) Latin American countries (blue dots)
tend to cluster above the fitted line, confirming the high weight of I0p over total inequality in
those countries. Conversely, Asian countries (light green dots) fall consistently below the
fitted line. The pink dots in the above figures all refer to the United States. So, inequality of
opportunity is positively associated with current inequality, and the robust methodology used
to construct the GEOM database makes it a unique source of data to verify this empirical
regularity.

How might IOp vary with a country’s development, or at least with development as proxied
by per capita GDP? This question is of course reminiscent of the Kuznets hypotheses, which
posits that inequality first tends to increase and then decrease as a country develops, leading
to an inverted-U relationship between inequality and development. If the Kuznets hypothesis
holds, then the positive association between 10p and overall income inequality documented
above may be sufficient for an “Opportunity Kuznets Curve” to arise. Ferreira et al. (2025)
argue that this dynamic is not only mechanical but can be explained by the interaction
between economic development — which reduces the cost of accessing more productive
technologies — and intergenerational transmission of incomes — which makes it less costly for
the children of wealthy parents to invest in new productive sectors.

The GEOM database is, once again, a unique source of data for investigating the existence of
an Opportunity Kuznets Curve. Figure 9 plots our preferred estimates of ex-ante IOp against
the logarithm of GDP per capita, as a proxy for the level of development of each country. We
draw information on GDP per capita from the IMF database (World Economic Outlook,
October 2024) and express values in US dollars PPP2017 to align them with those in GEOM.
The fitted quadratic regression seems to confirm the hypothesis in Ferreira et al. (2025), with
an R? of 0.261 in the left panel, and 0.144 in the right one.?®

Figure 9 - The Opportunity Kuznets curve
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Note: Pooled cross section data. Elaboration based on GEOM and IMF data. GDP per capita
expressed in US dollars PPP 2017.

2 As a benchmark, the R? for the fitted regression in Figure 8 (right panel) is 0.386.
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5.4. Important individual circumstances

As discussed in Section 4, the methods we employ to estimate 10p also allow us to conduct a
Shapley-Shorrocks decomposition to estimate the contribution of specific circumstances to
I0p. In Figure 10 we plot, for each country, the circumstance with the highest contribution to
ex-ante |I0p. The interested reader can access the complete Shapley value decomposition for
each country on the GEOM website (https://geom.ecineq.org/country-profile/, looking at ex-

ante and ex-post “Decomposition” format).

Figure 10 - Most important circumstance contributing to I0p
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Note: Elaboration based on GEOM. Ex ante I0Op, latest available estimates for each country.

Descriptively, parental occupation and educational levels appear to be the most important
circumstances in most countries covered by GEOM. Father’s education accounts for the largest
share of I0p in the United States, India, Indonesia, Australia, Brazil and Chile, for example.
Interestingly, Europe seems rather neatly divided between the West, where father’s
occupation dominates, and the East (including Sweden and Finland), whether the mother’s
occupation has the largest share. Unsurprisingly, ethnicity is the most important contributor
to 10p in South Africa. In China, as well as in Argentina, Kazakhstan, Tanzania and some other
African countries, place of birth is descriptively the most relevant circumstance.

6. Conclusions

Not all forms of inequality are the same, and there is growing evidence that inequality of
opportunity — which is mostly inherited and reflects factors beyond individual control — is
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particularly harmful. This paper has introduced and described a novel public-access database
containing internationally comparable estimates of I0Op across seventy-two countries, which
together account for just over two-thirds of the world’s population. Estimates for more than
one period are available for most countries and were constructed from the household-level
microdata from 196 different household surveys, following definitions and protocols designed
for maximum comparability.

The dataset contains a range of alternative measures, both absolute and relative,
corresponding to the two main measurement approaches in the literature (ex-ante and ex-
post) and using two different inequality indices (the Gini coefficient and the mean logarithmic
deviation). Although these different indices are highly correlated among themselves, this
summary paper focused on our preferred estimates, the ex-ante opportunity Gini coefficients
computed from random forests.

There is considerable variation in this measure across countries, with absolute levels ranging
from 0.05 (for Denmark in 2011), to 0.48 (for South Africa in 2008) and relative measures from
19% of total inequality also in Denmark, 2011, to 77% in South Africa, 2017. Across the entire
sample, I0p is positively correlated with overall income or consumption inequality, confirming
earlier findings of an Opportunity Great Gatsby curve. With respect to per capita GDP, IOp first
rises and then falls, describing an inverted-U curve rather like that postulated by the Kuznets
hypothesis for income inequality. There are sharp regional differences in IOp, with European
(and some Asian) countries displaying lower levels, while Latin American (and some African)
countries are at the upper range. Among high-income countries, the United States stands out
for its high relative and absolute levels of inequality of opportunity.

Our use of data-driven machine learning tools to compute these indices was motivated by
their superior properties in trading off upward (overfitting) and downward (omitted variable)
estimation biases in the measurement of 10p. But the tree-based algorithms also generate
interesting visualizations of the structure of inequality in different countries and allow users
to compare income and population shares across types in informative ways. The approach
also allows us to identify the most descriptively salient circumstances in each sample.
Although family background variables such as parental education and occupation dominate in
most cases, ethnic and geographical origins also play important roles in many countries.

Space constraints limit the results we can summarize in this paper, but readers are encouraged
to visit the online database (www.geom.ecineg.org) to download data and conduct their own

analysis. Future research to expand and update this database would greatly benefit from the
inclusion of family background variables, such as place of birth, parental education and
occupation, in more household surveys by statistical agencies around the world and, in
particular, in those countries for which that information is currently not available for recent
years.
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Appendix A

Table Al provides information about the data sources used to construct GEOM. It includes
the country name, the year, and the official name of each survey. The last column refers to

the research team responsible for obtaining, cleaning, and harmonizing the data.

ADB & Monash University team includes: Gaurav Datt, Arturo Martinez Jr., John Nguyen,

Albert Park

CEDLAS team includes: Matias Ciaschi

CEEY team includes: Pedro Torres Lopez

LSE team includes: Luis Barajas, Paolo Brunori, Nancy Daza-Baez, Francisco H.G. Ferreira,

Pedro Salas-Rojo, Louis Sirugue, Pedro Torres Lopez

University of Bari team includes: Teresa Barbieri, Vito de Sandi, Fabio Farella, Domenico

Moramarco, Vito Peragine, Enza Simeone, Giorgia Zotti

Table Al: Surveys used in GEOM

Country Year/Years Covered Survey and Acronym Research team
. Encuesta Nacional sobre la
Argentina 2014 . CEDLAS
Estructura Social (ENES)
Armenia 2016 Life in Transition Survey (LITS) ADB & Monash University
Household, Income and
Australia 2005, 2007, 2009, 2011, Labour Dynamics in Australia ADB & Monash University
2013, 2015, 2017, 2019
(HILDA)
European Union Statistics on
Austria 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Belgium 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Enguete Harmonisee sur le
Benin 2018 Conditions de Vie des University of Bari
Menages (EHCVM)
Bolivia 2008 Encuesta de Hogares (EH) CEDLAS
Pesquisa Nacional por
Brazil 2014 Amostra de Domicilios CEDLAS
Continua Anual (PNAD)
European Union Statistics on
Bulgaria 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Enquete Harmonisee sur le
Burkina Faso 2018 Conditions de Vie des University of Bari

Menages (EHCVM)
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Encuesta de Caracterizacion

Chile 2006, 2011, 2013, 2015 Socioecondmica Nacional CEDLAS
(CASEN)
. 2010, 2012, 2014, 2016, China Family Panel Studies
China LSE
2018 (CFPS)
. Encuesta Nacional de Calidad
Colombia 2010 . CEDLAS
de Vida (ENCV)
European Union Statistics on
Croatia 2011 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Cyprus 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Czech European Union Statistics on
zec
. 2005, 2011, 2019 Income and Living Conditions LSE
Republic
(EU-SILC)
European Union Statistics on
Denmark 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Encuesta Condiciones de Vida
Ecuador 2006, 2014 CEDLAS
(ECV)
European Union Statistics on
Estonia 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Finland 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
France 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
. Integrated Household Survey . . .
Gambia 2015 University of Bari
(HIS)
Georgia 2016 Life in Transition Survey (LITS) ADB & Monash University
European Union Statistics on
Germany 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Ghana Living Standard Survey . . .
Ghana 2013, 2017 University of Bari
(GLSS)
European Union Statistics on
Greece 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Encuesta Nacional sobre
Guatemala 2000, 2006, 2011 o . CEDLAS
Condiciones de Vida (ENCOVI)
. Enguete Harmonisee sur le
Guinea . . . . .
. 2018 Conditions de Vie des University of Bari
Bissau

Menages (EHCVM)
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European Union Statistics on

Hungary 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Iceland 2005 Income and Living Conditions LSE
(EU-SILC)
. India Human Development . .
India 2005, 2012 ADB & Monash University
Survey (IHDS)
. Indonesian Family Life Survey . .
Indonesia 2000, 2014 (IFLS) ADB & Monash University
European Union Statistics on
Ireland 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Italy 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Enguete Harmonisee sur le
Ivory Coast 2018 Conditions de Vie des University of Bari
Menages (EHCVM)
Kazakhstan 2016 Life in Transition Survey (LITS) ADB & Monash University
Kyrgyzstan 2016 Life in Transition Survey (LITS) ADB & Monash University
European Union Statistics on
Latvia 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Lithuania 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Luxembourg 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
. Malawi Fifth Integrated N .
Malawi 2020 University of Bari
Household Survey (MFIHS)
Enquete Harmonisee sur le
Mali 2019 Conditions de Vie des University of Bari
Menages (EHCVM)
European Union Statistics on
Malta 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
. Encuesta de Movilidad Social .
Mexico 2017 Provided by CEEY
(EMOVI)
Mongolia 2016 Life in Transition Survey (LITS) ADB & Monash University
Nepal Living Standards Survey . .
Nepal 2003, 2011 ADB & Monash University

(NLSS)

Netherlands

2005, 2011, 2019

European Union Statistics on
Income and Living Conditions
(EU-SILC)

LSE
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Enquete Harmonisee sur le

Niger 2018 Conditions de Vie des University of Bari
Menages (EHCVM)
o Nigeria Living Standards . . .
Nigeria 2019 University of Bari
Survey (NLSS)
European Union Statistics on
Norway 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Encuesta de Niveles de Vida
Panama 2003 CEDLAS
(ENV)
2001, 2006, 2007, 2008, Encuesta Nacional de Hogares
Peru 2009, 2010, 2011, 2012, sobre Condiciones de Vida 'y CEDLAS
2013, 2014, 2015 Pobreza (ENAHO)
European Union Statistics on
Poland 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Portugal 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Romania 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
Enguete Harmonisee sur le
Senegal 2018 Conditions de Vie des University of Bari
Menages (EHCVM)
. Sierra Leone Integrated . . .
Sierra Leone 2011, 2018 University of Bari

Household Survey (SLIHS)

European Union Statistics on

Slovakia 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
European Union Statistics on
Slovenia 2005, 2011, 2019 Income and Living Conditions LSE
(EU-SILC)
. National Income Dynamics
South Africa 2008, 2012, 2015, 2017 LSE

Study (NIDS)

South Korea

1999, 2001, 2003, 2005,
2007, 2009, 2011, 2013,
2015, 2017, 2019

Korean Labour and Income
Panel Study (KLIPS)

ADB & Monash University

Spain

2005, 2011, 2019

European Union Statistics on
Income and Living Conditions
(EU-SILC)

LSE

Sweden

2019

European Union Statistics on
Income and Living Conditions
(EU-SILC)

LSE

Switzerland

2011, 2019

European Union Statistics on
Income and Living Conditions
(EU-SILC)

LSE

Tajikistan

2016

Life in Transition Survey (LITS)

ADB & Monash University
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Tanzania 2009, 2011, 2013 National Panel Survey (NPS) University of Bari
. Timor-Leste Survey of Living . .
Timor-Leste 2007, 2014 ADB & Monash University
Standards (TSLS)
Enquete Harmonisee sur le
Togo 2018 Conditions de Vie des University of Bari
Menages (EHCVM)
Uganda 2010, 2011, 2012, 2014 National Panel Survey (NPS) University of Bari
United European Union Statistics on
Kingdom 2005, 2011 Income and Living Conditions LSE
(UK) (EU-SILC)
1970, 1972, 1974, 1976,
United 1978, 1980, 1982, 1984,
States of 1986, 1988, 1990, 1992, Panel Study of Income LSE
America 1994, 1996, 1998, 2000, Dynamics (PSID)
(USA) 2002, 2004, 2006, 2008,
2010, 2012, 2014
Uzbekistan 2016 Life in Transition Survey (LITS) ADB & Monash University

Source: Own elaboration.
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Table A2: GEOM main results from latest wave (MLD results)

Random
Tree Random Tree Tree (ex- Forest Tree
Country Year Variable Sample MLD Forest ante) (ex-post)
(ex-ante) (ex-ante (ex-post) Relative (%) (ex-?nte) Relative (%)
Relative (%)

Argentina 2014 Income 0.276 0.044 0.050 0.051 15.875 18.086 18.340
Armenia 2016 Income 0.309 0.032 0.056 0.091 10.395 18.102 29.501
Australia 2019 Income 0.222 0.014 0.016 0.011 6.385 6.969 4.856
Austria 2019 Income 0.156 0.017 0.016 0.016 10.740 10.289 10.096
Belgium 2019 Income 0.106 0.018 0.019 0.021 16.823 17.951 20.113
Benin 2018 Consumption 0.199 0.036 0.032 0.033 18.159 16.097 16.650
Bolivia 2008 Income 0.505 0.131 0.144 0.238 25.971 28.566 47.048
Brazil 2014 Income 0.427 0.165 0.163 0.191 38.725 38.115 44.843
Bulgaria 2019 Income 0.296 0.081 0.062 0.058 27.193 20.884 19.669
Burkina Faso 2018 Consumption 0.235 0.042 0.025 0.024 18.035 10.506 9.996
Chile 2015 Income 0.458 0.089 0.095 0.232 19.423 20.843 50.710
China 2018 Income 0.459 0.062 0.076 0.172 13.413 16.576 37.535
Colombia 2010 Income 0.547 0.101 0.106 0.252 18.424 19.430 46.061
Croatia 2011 Income 0.177 0.016 0.018 0.022 9.250 10.378 12.408
Cyprus 2019 Income 0.169 0.041 0.041 0.049 23.964 24.438 28.935
Czech Rep. 2019 Income 0.099 0.009 0.010 0.008 9.119 9.929 8.409
Denmark 2019 Income 0.143 0.006 0.008 0.005 3.860 5.614 3.649
Ecuador 2014 Income 0.377 0.081 0.082 0.142 21.497 21.815 37.712
Estonia 2019 Income 0.151 0.009 0.011 0.011 5.781 7.110 7.442
Finland 2019 Income 0.143 0.014 0.019 0.014 9.930 13.357 9.720
France 2019 Income 0.145 0.020 0.028 0.025 13.941 19.255 17.046
Gambia 2015 Income 0.670 0.066 0.058 0.112 9.885 8.705 16.694
Georgia 2016 Income 0.381 0.041 0.069 0.053 10.738 18.089 13.941
Germany 2019 Income 0.138 0.011 0.012 0.009 7.959 8.900 6.657




Random

Tree Random Tree Tree Forest Tree
Country Year Variable Sample MLD Forest (ex-ante) (ex-post)
(ex-ante) (ex-ante (ex-post) Relative (%) (ex-?nte) Relative (%)
Relative (%)
Ghana 2017 Consumption 0.314 0.039 0.042 0.052 12.460 13.225 16.412
Greece 2019 Income 0.166 0.020 0.023 0.032 12.205 13.595 19.215
Guatemala 2011 Income 0.519 0.142 0.136 0.251 27.395 26.258 48.429
(;:J;;‘aes 2018 Consumption 0.158 0.032 0.029 0.029 20.164 18.268 18.458
Hungary 2019 Income 0.146 0.008 0.012 0.010 5.693 8.505 6.996
Iceland 2005 Income 0.129 0.007 0.011 0.011 5.728 8.437 8.204
India 2012 Income 0.518 0.135 0.123 0.207 26.144 23.711 39.988
Indonesia 2014 Consumption 0.309 0.025 0.027 0.020 8.161 8.582 6.541
Ireland 2019 Income 0.136 0.018 0.024 0.022 12.932 17.634 15.871
Italy 2019 Income 0.207 0.022 0.019 0.026 10.516 9.214 12.590
Ivory Coast 2018 Consumption 0.173 0.028 0.022 0.020 16.338 12.572 11.298
Kazakhstan 2016 Income 0.203 0.011 0.011 0.008 5.170 5.170 4.037
Kyrgyzstan 2016 Income 0.362 0.021 0.032 0.168 5.668 8.930 46.337
Latvia 2019 Income 0.214 0.013 0.018 0.019 6.121 8.224 8.925
Lithuania 2019 Income 0.220 0.018 0.017 0.018 8.330 7.601 8.375
Luxembourg 2019 Income 0.194 0.031 0.032 0.031 15.866 16.486 16.021
Malawi 2020 Consumption 0.208 0.054 0.051 0.057 25.830 24.579 27.177
Mali 2019 Consumption 0.190 0.032 0.027 0.030 16.974 14.075 15.867
Malta 2019 Income 0.126 0.012 0.013 0.014 9.192 10.301 11.252
Mexico 2017 Income 0.495 0.152 0.142 0.126 30.662 28.643 25.454
Mongolia 2016 Income 0.412 0.036 0.053 0.057 8.614 12.788 13.832
Nepal 2011 Income 0.513 0.083 0.076 0.122 16.118 14.714 23.836
Netherlands 2019 Income 0.115 0.007 0.012 0.031 6.092 10.183 27.241
Niger 2018 Consumption 0.160 0.029 0.027 0.027 17.955 16.584 16.584

42




Random
Tree Random Tree Tree Forest Tree
Country Year Variable Sample MLD Forest (ex-ante) (ex-post)
(ex-ante) (ex-ante (ex-post) Relative (%) (ex-é nte) Relative (%)
Relative (%)

Nigeria 2019 Consumption 0.138 0.025 0.023 0.027 18.083 16.412 19.390
Norway 2019 Income 0.149 0.018 0.020 0.020 11.836 13.584 13.181
Panama 2003 Income 0.636 0.156 0.132 0.209 24.595 20.711 32.851
Peru 2015 Income 0.327 0.109 0.113 0.136 33.394 34.557 41.621

Poland 2019 Income 0.147 0.011 0.012 0.013 7.645 8.328 9.147
Portugal 2019 Income 0.172 0.024 0.030 0.030 14.095 17.401 17.459
Romania 2019 Income 0.233 0.038 0.033 0.074 16.452 14.003 31.830
Senegal 2018 Consumption 0.160 0.028 0.022 0.025 17.470 13.713 15.341
Sierra Leone 2018 Consumption 0.158 0.035 0.036 0.036 21.984 22.615 22.552
Slovakia 2019 Income 0.107 0.009 0.009 0.017 8.675 8.582 15.765
Slovenia 2019 Income 0.110 0.011 0.012 0.013 10.154 10.789 12.149
South Africa 2017 Income 0.690 0.288 0.360 0.413 41.707 52.108 59.844
South Korea 2019 Income 0.224 0.022 0.025 0.062 9.772 11.111 27.622
Spain 2019 Income 0.211 0.038 0.036 0.045 17.811 16.817 21.222
Sweden 2019 Income 0.166 0.027 0.017 0.021 16.325 10.000 12.470

Switzerland 2019 Income 0.145 0.011 0.015 0.009 7.634 10.110 6.465

Tajikistan 2016 Income 0.160 0.008 0.012 0.008 5.240 7.361 5.240
Tanzania 2013 Consumption 0.235 0.045 0.047 0.046 19.250 19.889 19.676
Timor Leste 2014 Consumption 0.129 0.023 0.017 0.021 17.702 13.432 16.149
Togo 2018 Consumption 0.242 0.044 0.037 0.037 18.249 15.400 15.153
Uganda 2014 Consumption 0.229 0.051 0.053 0.056 22.451 23.239 24.464

l.Jmted 2011 Income 0.187 0.011 0.015 0.016 5.678 7.874 8.516

Kingdom

Ug';t:riiﬁfaes 2014 Income 0.290 0.039 0.044 0.054 13.542 15.196 18.470

Uzbekistan 2016 Income 0.363 0.018 0.052 0.014 5.015 14.191 3.720

Source: Own elaboration.
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Appendix B: Estimation methods

B1 - Ex-post Inequality of Opportunity

The approach to the estimation of ex-post Inequality of Opportunity (IOp) follows the method
proposed by Brunori, Ferreira and Salas-Rojo (2024) based on the Transformation Trees
(Trafotrees) introduced by Hothorn and Zeileis (2021) to define the most appropriate partition
in Roemerian types.

The Transformation Tree algorithm

Trafotrees are analogous to Ctrees, but the sequence of tests used to grow the tree concerns
the conditional distribution of the outcome instead of the sole conditional expectation.
Trafotrees estimates distribution functions for each possible partition. Contrary to Ctree, for
which the first step consists in a correlation test between the outcome and each circumstance,
Trafotree first steps consists in a test on all possible ways of using values of each circumstance
to partition the sample, making the algorithm substantially more computationally expensive.
Then, the algorithm performs a binary splitting in the sample, sequentially creating two groups
whose distribution functions are least likely to be the same. The population is therefore
partitioned into an exhaustive and mutually exclusive set of subgroups (types). The algorithm
can be summarized as follows:

1. Seta confidence level (1 - a).
2. Set a Bernstein polynomial order m.

3. Approximate the shape of the unconditional distribution of the outcome using
a Bernstein polynomial of order m. Store the m+1 parameter values.

4. Run a test to assess the instability of the parameters conditional on the value
of each circumstance.?° If the Bonferroni-adjusted p-value of the association test is
higher than the chosen critical value a, exit. Otherwise, continue to step 5.

5. Among all regressors in which the null hypothesis of independence is rejected,
select the variable producing the smallest adjusted p-value as splitting variable [c].

6. Consider how circumstance [c] can be used to partition the sample into two
subsamples [C]. Among all possible binary partitions, compute the p-value for the

null hypothesis that the distribution in two sub-samples is the same (p[C]).

7. Choose [C]* = {[C]: argmin pl®} as the most appropriate partition.

30 This test can be understood as a test to detect a structural break in a time series (Chow, 1960). The cumulative
sum of residuals is used to detect whether the parameters are unstable over time, while in this case the instability
is investigated conditioning on the values or categories of each circumstance (see Hothorn and Zeileis, 2021) for
details).



8. Repeat steps 3 — 7 for each resulting node (sub-sample) until the null
hypothesis of step 3 cannot be rejected in any resulting sub-sample.

We use the “trafotree” R function developed by Hothorn and Zeileis (2021). The output of the
estimation consists of a partition in types, that allows us to obtain a parametric interpolation
of each type’s cumulative income distribution function.3! These parametric conditional
distributions can be inverted to yield the predicted type quantile functions 9, =

F1 (q, é(c)), from which a measure of ex-post inequality of opportunity can be computed

op=1,(%% )
as I0p = I, (ﬁq Vac
Visualization of the results

Same as Ctrees, Trafotrees can also be graphically represented, providing information on the
structure of inequality of opportunity within a particular observed population, now based on
differences on the outcome distributions. Trafotrees in the database are displayed as in Figure
B1. The type-specific parametric CDFs obtained in Trafotree can be represented as in Figure
B2. They can also be aggregated into the overall density function as a mixture of type
distributions.

Figure B1: Transformation Tree example (Denmark, 2011).

Type 5
|n=145 Pop. = 6.73%
[ y=083

2,3

n=2153
Birth_Area. | 8 10 12
p <0.001

Type 4
Pop. = 44.96%
1 410 =968 y=1.08

31 Mother_Edu | 8 10
n=2008p < 0.001

Type 3
Pop. = 48.3%
y=095

3/ =1040

10 12

Source: GEOM. Data from EUSILC 2011.

31 The same interpolation was implemented in Brunori and Neidhéfer (2021) on a partition of types obtained
with Ctree.
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Figure B2: Type CDFs in South Africa (2017).

1.00 1

0.754

ECDF
o
3

0.254
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(Log) Income

Ethnicity Types — African — Coloured/Asian/Indian Coloured/Asian/Indian/African — White
Source: Brunori, Ferreira, Salas-Rojo (2024).

As for the Ctrees described in the main text, we follow the convention and set & = 0.01. We
impose an additional requirement. Each terminal node must have a minimum of 1% of the
observations in the sample (or 50 if the sample size is smaller than 5000). This country-specific
minimum is set to minimize the effect of different sample sizes on the depth of the tree. For
robustness, we run a second tree relaxing the previous requirement, such that minimum
observations imposed in each terminal node is 0.1%. If the types obtained are different from
those with the node-size restriction, we store the plot for further inspection. All remaining
parameters are the default set in the “ctree” R function in the package “partykit” (Hothorn,
Seibold and Zeileis, 2023).

We do not use weights to determine splits. Including sampling weights expands the sample
size, such that individual observations are turn into hundreds or thousands of identical values.
As a result, the tree becomes very deep, as null hypothesis are easily rejected. Weights are
used to calculate the values of the counterfactual distribution and to estimate 10p.

Unlike Ctrees, transformation trees require the practitioner to choose the order of the
Bernstein polynomial used to approximate the type-specific conditional distribution
functions. We choose that order by setting a minimum improvement in the aggregate out-of-
sample log-likelihood of 0.1%. All other parameters are the default parameters in the “Trtf’ R
function in the package “Trtf” (Hothorn, 2023).
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B2. The role of individual circumstances: Shapley-Shorrocks decompositions and partial
dependency plots

Since there is no guarantee that the contributions of all circumstance variables are additively
separable, a plausible approach to identifying individual contributions is through a Shapley
value decomposition (See Shapley, 1952; and Shorrocks, 2013)). Intuitively, a Shapley value
decomposition calculates the overall contribution of each variable ¢, included among
explanatory variables, to the variability of some outcome y. The Shapley value of variable c is
calculated as the average decline in the explained variability of y resulting from all possible
combinations of ways in which it can be explained without including ¢ among explanatory
variables.??

We follow Brunori, Ferreira and Salas-Rojo (2024) and obtain the Shapley value
decompositions as follows:

1. Draw a sub-sample of the full sample. To favor computational speed, the sub-
sample should consist of 5,000 observations, or 90% of the original sample size if it
was smaller than 5,000.

2. Estimate |Op in the sub-sample by estimating a Ctree, allowing the tree to
overfit and get deep (a = 0.9), and minimum sample size in terminal nodes defined as
in the random forest (0.1% of the sample size).

3. Re-estimate 10p in the sub-sample for all possible elimination sequences of
each circumstance. Elimination of one or more circumstances is obtained by replacing
their values with a vector of 1.

4. Estimate the difference between the overall I0p and the new I0p values
obtained after different elimination sequences of each circumstance. Estimate the
weighted average of these differences as the contribution of c.

5. Accounting for possible data or sample dependencies, repeat steps 1-4 one
hundred times.

6. The final estimate of the contribution of c to I0p is the average contribution
across 100 iterations.

Note that contributions of each circumstance are reported in relative terms. Absolute values
are not directly comparable with 10p estimated with a single tree, because the sample sizes
are smaller and confidence level is lower. We perform the decomposition estimating 100 trees
on different sub-samples and we calculate average values across iterations. This procedure

32 Note that according to Shapley (1952) each elimination sequence has a different probability that is used as
weight to obtain such average decline.
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makes our estimates robust to the high variance typical of a single tree. Shapley value
decompositions implemented in this fashion were discussed in Section 5.4.

Partial Dependency Plots

To overcome the limitations in the interpretation of trees we also derive partial dependence
plots (PDPs) from random forests, who are conceptually similar to marginal effects from OLS
regressions. The process for generating PDPs can be outlined as follows:

1. Run the random forest regression, where the outcome variable y is predicted

as a function of regressors X. Formally, § = f(X).
2. Duplicate the original dataset and select a predictor variable, X,.

3. Take the initial value or category of the selected predictor variable, denoted as
J.

4. Replace all values in X, with j while leaving the remaining predictor variables
unchanged. Utilize the random forest model estimated in the first step to predict
Ypap, NOW using this modified dataset. Compute the average of J,,4,,, which is the

average outcome associated to all individuals in the dataset in the counterfactual
situation in which they all have value j in regressor X, all else equal.

5. Repeat steps 2-4 for all values j within each regressor X, and for all regressors.
6. Plot all mean predictions of ¥4,

For discrete or categorical predictor variables, such as the circumstances we use in our
analysis, the PDP typically displays all categories on the x-axis and presents the associated
conditioned expected values (mean of ¥,4,) on the y-axis. Figure B3 shows the results for
Brazil 2014 as an example. The sample mean income is US$12,882 in 2017 prices. After
running the random forest and obtaining the associated PDP, we find individuals born in
Parana to earn, on average, 5% more than the sample mean, while those born in Pard earn
13% less.

PDPs offer several advantages. They are derived from random forests, ensuring that each
category receives the expected outcome by averaging across many trees. This property
enhances their robustness, making their interpretation less dependent on specific data
instances compared to single regression trees. Additionally, they are straightforward to
interpret and complement Shapley value decompositions (see below), allowing for the
interpretation of nonlinearities in the data-generating process beyond just average effects of
predictor variables.
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Figure B3: Partial Dependence Plot (PDP) for Brazil 2014.

Birth Area Ethnicity

® & A N O N A O ®
T T T M S T T S

3
I

A
i)
L

Source: Own Elaboration. Data from PNAD (2014).

B3. Complementary analyses

The high variance and sample dependence issues exposed in the Ctree explanation also apply
in Trafotrees. However, the aggregation of multiple overfitted Trafotrees into a Trafo forest
turns out to be problematic. As ex-post |0p is not measured as between-type inequality but
by assigning individuals a rank in the type-specific distribution and then evaluating inequality
within-quantile across the distribution, the aggregation of multiple draws appears to induce a
severe downward bias in the estimation of IOp (see Brunori, Ferreira, Salas-Rojo, 2024) for a
discussion). For this reason, the GEOM database does not contain estimates of ex-post |I0p
based on Trafotree random forests.33 However, to provide robust evidence also about ex-post
IOp, the relative importance of circumstances is addressed with a Shapley value
decomposition identical to the one described for the ex-ante I0p. Shapley values are again
reported in relative term to avoid interpreting their absolute value obtained on overfitted
trees estimated on subsamples of the entire sample.

Finally, since Ctrees and Trafotrees are different algorithms, that respectively consider the
mean and the complete outcome distribution, GEOM also provides a visualization tool
designed to compare the two kinds of partitions. These are Sankey (or alluvial) diagrams, like
the one shown in Figure B4, which map the type to which each individual belongs across the
two partitions: ex ante and ex post.

33 Hothorn and Zeileis (2017) do propose a method to obtain prediction of a dependent variable from forest of
transformation trees. However, this is conceptually different from estimating the counterfactual distribution
needed to quantify ex-post |Op.
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Figure B4: Sankey Diagram from Croatia (2019).
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Source: Own elaboration from GEOM. Original data from EUSILC 2019.

50



