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Abstract. On the one hand, rough volatility has been shown to provide a
consistent framework to capture the properties of stock price dynamics both

under the historical measure and for pricing purposes. On the other hand,

market price of volatility risk is a well-studied object in financial economics,
and empirical estimates show it to be stochastic rather than deterministic.

Starting from a rough volatility model under the historical measure, we take up

this challenge and provide an analysis of the impact of such a non-deterministic
risk for pricing purposes.
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Introduction. Rough volatility is a recent paradigm proposed by Gatheral, Jais-
son, and Rosenbaum [14], which has attracted the attention of many academics and
practitioners thanks to its numerous attractive properties [7]. Despite some debate
about whether volatility should be rough [1, 2, 16, 25], this class of models provides
a general framework to analyze both time series of the instantaneous volatility (un-
der the historical measure P) and prices of financial derivatives (under the pricing
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measure Q). Starting from a rough version of the Bergomi model [8] under P, Bayer,
Friz, and Gatheral [6] showed that a deterministic market price of risk preserved its
structure under Q (somehow akin to the Heston model [17] specification).

However, the financial economics literature has long shown that this market price
of risk, monitoring the transition from P to Q via Girsanov’s transform, is neither
constant nor deterministic, but instead stochastic. Its estimation has been the
source of long academic discussions, outside the scope of the present paper, and for
such discussions we refer the interested reader to [4, 9, 10, 12, 20, 22]. This of course
has serious practical implications for risk management, for which [15] is a fascinating
source of information. We focus here on this particular bridge between P and Q and
show, not surprisingly, that the required stochasticity of the market price of risk
unfortunately breaks the structure of the rough Bergomi model under Q. However,
we link the Hölder regularity of the volatility process (lower in this class of rough
models) with that of the change of measure, and design several specifications making
the model tractable under Q. While the rough Bergomi model tracks the behavior
of the historical volatility well, it is less powerful for option prices, especially when
considering VIX smiles (which are more or less flat under this model). Our new
setup allows for more flexibility there, while preserving the P-tractability of the
model.

Section 1 provides the technical setup and analysis of the market price of risk,
while the design of useful continuous-time rough stochastic volatility models with
non-deterministic market prices of risk are detailed in Section 2. Finally, in Sec-
tion 3, we perform an empirical analysis, estimating risk premia from historical
options data.

1. Rough volatility models and change of measure. Rough volatility models
are a natural extension of classical stochastic volatility models. Starting from such
a model under the historical measure P, we charaterize below its dynamics under
martingale measures Q equivalent to P, which then, by the fundamental theorem
of asset pricing, allows for arbitrage-free option pricing. Following [14] for example,
we consider a rather general class of (rough) stochastic volatility models under P,
where the stock price process admits the following dynamics:

dSt
St

= µtdt+
√
vt dW

P
t ,

vt = ψ(t, Yt),

Yt =

∫ t

0

k(t, s)dZP
s ,

(1.1)

starting from S0, v0 > 0, over a fixed time interval T := [0, T ], for T > 0. Here,
µ is a (Ft)t∈T-measurable process, ψ : T × R → (0,∞) a continuous function,

W P = (W P,W P,⊥) a two-dimensional standard Brownian motion on a given filtered

probability space (Ω,F ,P), with F := FW P∨FW P,⊥
and ZP := ρW P+ρW P,⊥, where

ρ ∈ [−1, 1] and ρ :=
√
1− ρ2. We assume that for each t ∈ T, the kernel k(t, ·)

is null on T \ [0, t], and
∫ ·
0
k(·, s)dZP

s is a well-defined continuous Gaussian process.

In particular, k(t, ·) ∈ L2([0, t]) for each t ∈ T ensures that the process is well
defined, and we refer to [Section 5][3] or [11, Section 3] for conditions of continuity
criteria. For example, the Gamma kernel, commonly used to model turbulence, and
pioneered by Barndorff-Nielsen and Schmiegel [5], is given by

k(t, s) = (t− s)H− 1
2 e−β(t−s)11{t≥s}, with H ∈ (0, 1), β ≥ 0.
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We further introduce the set Fb of P-bounded and (Ft)t∈T-progressively mea-
surable processes, namely X ∈ Fb, if there exists a constant c > 0 such that
P
(
supt≥0 |Xt| ≤ c

)
= 1, and recall the Doléans-Dade stochastic exponential of a

square integrable continuous process X:

E(X)t := exp

(
Xt −

1

2
⟨X⟩t

)
, for t ∈ T.

Finally, we introduce a progressively measurable interest rate process (rt)t∈T, define

the corresponding Sharpe ratio by χt :=
rt − µt√

vt
for t ∈ T, and consider the following

assumption.

Assumption 1.1. The processes χ and γ are (Ft)t∈T-adapted with càdlàg paths.

In order to state the main result, define the Radon-Nikodym derivative, for each
t ∈ T,

Dγ
t :=

dQ
dP

∣∣∣∣
FP

t

= E
(∫ ·

0

χudW
P
u +

∫ ·

0

γudW
P,⊥
u

)
t

. (1.2)

Proposition 1.2. Under Assumption 1.1, Dγ is a locally integrable P-local mar-
tingale on T.

Proof. Since W P and W P,⊥ are independent Brownian motions (and so locally
square-integrable local martingales), by [24, Section II, Theorem 20], the processes
X1 :=

∫ ·
0
χudW

P
u and X2 :=

∫ ·
0
γudW

P,⊥
u are locally square-integrable local mar-

tingales. The sum of two locally square-integrable local martingales is itself, and
hence so is X := X1 +X2. Finally, notice that the Radon-Nikodym derivative Dγ

defined in (1.2) is precisely the stochastic exponential of X, and thus a non-negative
local martingale itself. This implies that Dγ is a positive super-martingale, which
together with the fact that Dγ

0 = 1 yields Dγ
t ∈ L1 for all t ∈ T.

Finally, weconsider the following set of assumptions, in place for the rest of the
paper.

Assumption 1.3.

(i) The function ψ : T× R → (0,∞) is continuous, bounded, and bounded away
from the origin on T× (−∞, a] for each a > 0;

(ii) KT > 0 such that supt∈T

{∫ t
0
k(t, u)λudu

}
≤ KT, P-almost surely, where λ

denotes the market price of volatility risk defined by

λt := ρχt + ρ γt; (1.3)

(iii) The correlation is negative: ρ ≤ 0;
(iv) The Radon-Nikodym derivative satisfies E[Dγ

t ] = 1 for all t ∈ T.

Remark 1.4. Note that Assumption 1.3(ii) also implies that, for all n ∈ N,

sup
t∈T

{∫ t

0

k(t, u)λudu

}
≤ KT, P̂n-almost surely,

with

dP̂n
dP

∣∣∣∣
Ft

:= E
(∫ ·

0

χudW
P
u +

∫ ·

0

γudW
P,⊥
u

)
t∧τn

and τn := inf{t ≥ 0, Yt = n}.

(1.4)
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Indeed, given an event A such that P(A) = 1, the Cauchy-Schwarz inequality yields

1 = P(A) = E[1A] = Ên[1AE(X)−1]

≤ Ên[1A]
1
2 Ên[E(X)−2]

1
2 = P̂n(A)

1
2E[E(X)−2E(X)]

1
2

= P̂n(A)
1
2E[E(X)−1]

1
2 = P̂n(A)

1
2E
[
E(−X) exp

(∫ t∧τn

0

χ2
u + γ2udu

)] 1
2

≤ P̂n(A)
1
2 ,

where in the last step we have exploited the fact that E(−X) is a non-negative
supermartingale since −X is a continuous local martingale. Thus, we have proved

P̂n(A) = 1. An analogous argument shows that the same holds for Q.

Remark 1.5. Assumption 1.3(iv) is guaranteed under different sets of stronger
assumptions on γ, µ, χ, r and v, in particular,

• if E

[
exp

{
1

2

∫ T

0

|Xt|2dt

}]
<∞, namely X satisfies the Novikov condition;

• if Assumption 1.1 and 1.3(i)-(ii) hold and processes µ, γ, andr belong to Fb,
as detailed in Appendix A.

Proposition 1.2 justifies the use of a Doléans-Dade exponential in the definition
of Dγ .

Theorem 1.6. Under Assumptions 1.1 and 1.3, the following hold:

(I) the Radon-Nikodym derivative process Dγ in (1.2) is a true Q-martingale;
(II) under the (arbitrage-free) equivalent risk-neutral martingale measure Q,

dSt
St

= rtdt+
√
vt dW

Q
t ,

vt = ψ

(
t, Ŷt +

∫ t

0

k(t, s)λsds

)
,

Ŷt =

∫ t

0

k(t, s)dZQ
s ,

(1.5)

with S0, v0 > 0, λ is the market price of volatility risk in (1.3) and where WQ,
and ZQ are Q-Brownian motions defined as

WQ :=W P +

∫ ·

0

χudu and ZQ := ZP +

∫ ·

0

λudu; (1.6)

(III) the discounted stock price S̃ := S
B with dBt = rtBtdt, B0 = 1, is a true

Q-martingale.

Proof. To satisfy the no-arbitrage conditions, the change of measure for W P is
constrained by the martingale restriction on the discounted spot dynamics, while the
Brownian motion ZP gives freedom to the model and makes the market incomplete
by the free choice of the process γ. Consequently, the change of measure from P to Q
and the corresponding Radon-Nikodym derivative directly follow from Girsanov’s
Theorem via (1.2), provided that Dγ

t ∈ L1 and Dγ is a true martingale. Thus,
once we have shown (I), then (II) automatically follows. By Proposition 1.2, Dγ

t ∈
L1, and, being a non-negative local martingale, is a super-martingale, and a true
martingale on T if and only if E [Dγ

T ] = 1. This is guaranteed by Assumption 1.3(iv),
hence (I) holds, and therefore (II) as well.
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We now prove (III): The discounted price S̃ = S
B is a true martingale for ρ ≤ 0.

Itô’s formula under Q yields

dS̃t

S̃t
=

√
vt dW

Q
t ,

vt = ψ

(
t, Ŷt +

∫ t

0

k(t, s)λsds

)
,

Ŷt =

∫ t

0

k(t, s)dZQ
s .

Define the stopping time ιn := inf{t ≥ 0, Ŷt = n}. For any t ∈ T, the random

function g(x) := ψ
(
t, x+

∫ t
0
k(t, s)λsds

)
is bounded Q-almost surely on (−∞, a]

by Assumption 1.3(i)-(ii), with λ in (1.3), so that, since S̃ is a Q-local martingale,

S̃0 = EQ[S̃T∧ιn ] = EQ[S̃T 11{T<ιn}] + EQ[S̃ιn11{T>ιn}].

The first term converges to EQ[S̃T ] as n tends to infinity, hence

S̃0 − EQ[S̃T ] = lim
n↑∞

EQ[S̃ιn11{T>ιn}].

Girsanov’s theorem further gives EQ[S̃T 11{T>ιn}] = S̃0P̃n(T > ιn), where P̃n is such

that W̃n
t = WQ

t −
∫ t∧ιn
0

vsds is a P̃n-Brownian motion. Note that, for t < ιn,

Ŷt = Ỹt+ρ
∫ t
0
k(t, s)vsds, where Ỹt =

∫ t
0
k(t, s)dZ̃ns , and Z̃

n
t := ZQ

t −ρ
∫ t
0
k(t, s)vsds

is also a P̃n-Brownian motion. We conclude that if ρ ≤ 0, then Ŷt ≥ Ỹt and

lim
n↑∞

P̃n(ιn ≤ T ) ≤ lim
n↑∞

P̃n(ι̃n ≤ T ) = lim
n↑∞

P

(
sup
t∈[0,T ]

Yt ≤ n

)
= 0,

where ι̃n := inf{t ≥ 0, Ỹt = n}, and hence S̃ is a true martingale.

Remark 1.7. Under Assumption 1.3, consider ρ ≤ 0, some valid function ψ and
kernel k, and the constant values γs = γ and µ = µs ≤ rs = r for γ, µ, r ∈
R ensuring Assumption 1.3(iv) so that Theorem 1.6 applies. In this scenario, a
sufficient condition for the change of measure to be well defined is that the physical
drift must be smaller than the risk-free rate.

1.1. Rough volatility models via generalized fractional operators. Many
rough volatility models can be represented [18] in terms of generalized fractional
operators (GFOs), which are defined as follows [18, Definition 1.1]:

Definition 1.8. For any β ∈ (0, 1), α ∈ (−β, 1− β), and h ∈ C1
b ((0,∞)) such that

h′(·) ≤ 0, the GFO associated to the kernel k(x) := xαh(x) applied to f ∈ Cβ(R)
is defined as

(Gαf)(t) :=


∫ t

0

(f(s)− f(0))
d

dt
k(t− s)ds, if α ∈ [0, 1− β),

d

dt

∫ t

0

(f(s)− f(0))k(t− s)ds, if α ∈ (−β, 0).

To simplify future notation, we let H± := H ± 1
2 for H ∈ (0, 12 ). We now

introduce a specific setup that will drive the rest of our computations: Consider the
power-law kernel

kα(u) := uα11{u≥0}, (1.7)
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as well as the set

Λβ,H :=
{
λ ∈ Cβ for some β ∈ (0, 1] such that H− ∈ (−β, 0) and λ(0) = 0

}
. To

this particular power-law kernel, the GFO (from Definition 1.8, since H− ∈ (− 1
2 , 0))

reads

(GH−f)(t) =
d

dt

∫ t

0

(f(s)− f(0))kH−(t− s)ds.

Further, denote

K(t, s) :=

∫ t

0

kH−(u− s)du =
kH+

(t− s)

H+
,

so that the corresponding GFO is precisely 1
H+

GH+ . To streamline notations and

emphasize nice symmetries, we introduce the notations

G− := GH− and G+ :=
1

H+
GH+ .

From the properties of the GFO [18, Proposition 1.2], G+λ ∈ Cβ+H+ as soon as
λ ∈ Λβ,H .

Corollary 1.9 (GFO representation). With the kernel kH− in (1.7) and λ ∈ Λβ,H ,
system (1.5) under the risk-neutral measure Q can be rewritten as

dSt
St

= rtdt+
√
vtdW

Q
t ,

vt = ψ
(
t, (G−ZQ)(t) + (G+λ)(t)

)
.

Proof.

∫ ·

0

kH−(· − s)dZQ
s = G−ZQ is straightforward by the properties of GFO

in [18, Proposition 1.4]. Furthermore, for any λ ∈ Λβ,H and any t ∈ T,∫ t

0

kH−(t− s)λsds =

∫ t

0

d

dt
K(t, s)(λs − λ0)ds =

(
G+λ

)
(t).

Note that since G+λ ∈ Cβ+H+ , the risk premium has sample paths with Hölder
regularity greater than 1

2 regardless of the value of H.

2. Modeling the risk premium process: A practical approach. In practice,
the process λ is directly modeled without resorting to a change of measure starting
from γ. We now consider different modeling choices for the risk premium λ and
analyze some of its properties. In spite of the formal derivation of Theorem 1.6,

a numerical treatment of the integral
∫ t
0
• ds is rather intricate. To overcome this

issue, Bayer, Friz, and Gatheral [6] elegantly came up with the forward variance
form of rough volatility in the spirit of Bergomi [8]. We shall restrict ourselves
to this functional form (defined below in (2.1)) for the remainder of the section.
Consider (1.5) with ψ(t, x) = ξ0(t)e

νx, ξ0(t) := E[vt|F0], and ν > 0. Then, the
risk-neutral dynamics in forward variance form read

dSt
St

= rtdt+
√
vt dW

Q
t ,

vt = ξ0(t) exp

(
ν

(∫ t

0

kH−(t− s)dZQ
s +

∫ t

0

kH−(t− s)λsds

))
.

(2.1)

In the remainder of this section, the process XQ will denote a Q-Brownian motion
possibly correlated with WQ and ZQ.
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2.1. Risk premium driven by Itô diffusion. Generalized fractional operators
provide a natural framework to model risk premium processes driven by diffusions.
The statement below shows the details of such a construction. Recall that the Beta
function is defined as B(x, y) :=

∫ 1

0
sx−1(1− s)y−1ds, for x, y > 0.

Proposition 2.1. For H ∈ (0, 12 ), α ∈
(
− 1

2 , 0
)
, let λ := bGαY Q ∈ Cα+ 1

2 with

b := B(H+, α + 1)−1 and Y Q
t =

∫ t
0
b(s, Y Q

s )ds +
∫ t
0
σ(s, Y Q

s )dXQ
s , where b(·) and

σ(·, ·) satisfy the Yamada-Watanabe conditions [21, Section 5.2, Proposition 2.13]
for pathwise uniqueness ensuring a weak solution. Then, Gα+H+Y Q ∈ CH+α+1 and

vt = ξ0(t) exp
{
ν
(
(G−ZQ)(t) + (Gα+H+Y Q)(t)

)}
. (2.2)

Furthermore, if Y Q = XQ and d⟨Y Q, ZQ⟩t = ρdt with ρ ≤ 0, then

EQ [vt|Fs] = ξ0(t) exp
{
ν
[(
G−ZQ) (s, t) + (Gα+H+XQ) (s, t)] } (2.3)

× exp

{
ν2

2

(
k2H(t− s)

2H
+

k2(H+1)(t− s)

2H2
+(H + 1)

+ ρ
k2H+

(t− s)

H2
+

)}
,

where
(
GH−ZQ) (s, t) :=

∫ s
0
kH−(t − u)dZQ

u for 0 ≤ s ≤ t, and similarly for(
Gα+H+XQ) (s, t).
Proof. First, we prove (2.2), which follows from [18, Proposition 1.2] and the iden-
tities highlighted above in Corollary 1.9. Indeed, in view of Corollary 1.9, we only

need to show that
∫ t
0
kH−(t − s)λsds = (Gα+H+Y Q)(t). Replacing the expression

for λ in the integral and using the stochastic Fubini theorem, we obtain∫ t

0

kH−(t− s)λsds = b

∫ t

0

kH−(t− s)(GαY Q)(s)ds

= b

∫ t

0

kH−(t− s)

∫ s

0

kα(s− u)dY Q
u ds

= b

∫ t

0

∫ t

u

kH−(t− s)kα(s− u)dsdY Q
u .

Now, direct computations for the inner integral yield∫ t

u

kH−(t− s)kα(s− u)ds = kα+H+
(t− u)

∫ 1

0

(1− s)H−sαds

= B(α+ 1, H+)kα+H+(t− u).

Therefore, ∫ t

0

kH−(t− s)λsds = b

∫ t

0

B(α+ 1, H+)kα+H+
(t− u)dY Q

u

=

∫ t

0

kα+H+(t− u)dY Q
u = (Gα+H+Y Q)(t).

We now move to the proof of the identity (2.3). Exploiting the representation
of vt in this specific case and the measurability and independence properties of the
Brownian increments,

EQ [vt|Fs]
= ξ0(t)EQ

s

[
exp

{
ν
[(
GH−ZQ) (t) + (Gα+H+XQ) (t)]}]
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= ξ0(t)EQ
s

[
exp

{
ν

[∫ t

0

kH−(t− u)dZQ
u +

∫ t

0

kα+H+(t− u)dXQ
u

]}]
= ξ0(t) exp

{
ν

[∫ s

0

kH−(t− u)dZQ
u +

∫ s

0

kα+H+
(t− u)dXQ

u

]}
× EQ

s

[
exp

{
ν

[∫ t

s

kH−(t− u)dZQ
u +

∫ t

s

kα+H+
(t− u)dXQ

u

]}]
= ξ0(t) exp

{
ν

[∫ s

0

kH−(t− u)dZQ
u +

∫ s

0

kα+H+(t− u)dXQ
u

]}
× exp

{
ν2

2

(∫ t

s

k2H−(t− u)du+

∫ t

s

k2H+1(t− u)

H2
+

du+ ρ

∫ t

s

k2H(t− u)

H+
du

)}
= ξ0(t) exp

{
ν

[∫ s

0

kH−(t− u)dZQ
u +

∫ s

0

kα+H+(t− u)dXQ
u

]}
× exp

{
ν2

2

(
k2H(t− s)

2H
+

k2(H+1)(t− s)

2H2
+(H + 1)

+ ρ
k2H+

(t− s)

H2
+

)}
.

Thus, we only have to show that(
GH−ZQ) (s, t)=∫ s

0

kH−(t−u)dZQ
u and

(
Gα+H+XQ) (s, t)=∫ s

0

kα+H+(t−u)dXQ
u .

We prove the first identity, the second being analogous. It is a straightforward
consequence of the definitions and the properties of Brownian increments:(

GH−ZQ) (s, t) := EQ
s

[∫ t

0

kH−(t− u)dZQ
u

]
=

∫ s

0

kH−(t− u)dZQ
u + EQ

s

[∫ t

s

kH−(t− u)dZQ
u

]
=

∫ s

0

kH−(t− u)dZQ
u .

Remark 2.2. Since the instantaneous variance in this model is log-Normal, the
results in [19, Proposition 3.1] and numerical methods therein still apply for the
VIX with minimal changes.

2.2. A risk premium driven by a CIR process. A second natural choice is to
consider the Cox-Ingersoll-Ross (CIR) process

dY Q
s = κ(θ − Y Q

s )ds+ σ

√
Y Q
s dXQ

s , (2.4)

with κ, θ, σ > 0. As tempting as this approach might seem, it is not trivial at all to
compute the basic quantity EQ[vt] here, as the following proposition shows.

Proposition 2.3. Assume that the Brownian motions ZQ and XQ are independent
and consider λ = GαY Q ∈ Cα+ 1

2 , with Y Q defined in (2.4). Then, for any s ≤ t,

EQ
s [vt] = ξ0(t) exp

{
ν
[(
G−ZQ) (s, t) + (Gα+H+Y Q) (s, t)] }

exp

{
ν2

2

∫ t

s

kH−(t− u)2du− Y Q
s C(s, T )−A(s, T )

}
,
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where A(t, T ) := −κθ
∫ T
t
C(u, T )du, and C satisfies the Riccati equation

νkH−(T, t)− ∂tC(t, T ) + C(t, T )θ +
σ2

2
C2(t, T ) = 0,

for t ∈ [0, T ), with boundary condition C(T, T ) = 0.

Proof. By independence of the driving Brownian motions, we have, for any u ≤ t,

E[vt|Fu] = ξ0(t) exp
{
ν
((
G−ZQ) (u, t) + (Gα+H+Y Q) (u, t))}

× E
[
exp

{
ν
((
G−ZQ) (t)− (G−ZQ) (u, t))}]

× E
[
exp

{
ν
((
Gα+H+Y Q) (t)− (Gα+H+Y Q) (u, t))}] ,

where the first expected value is the MGF of a Gaussian random variable, hence

E
[
exp

{
ν
( (

G−ZQ) (t)− (G−ZQ) (u, t))}] = exp

{
ν2

2

∫ t

u

kH−(t, s)ds

}
.

We are now interested in computing the second expectation

E
[
exp

{
ν
((
Gα+H+Y Q) (t)− (Gα+H+Y Q) (u, t))}] ,

where
(
Gα+H+Y Q) (t) − (Gα+H+Y Q) (u, t) = ∫ t

u

kH−(t, s)Y
Q
s ds. This is, in spirit,

similar to computing a bond price in the CIR model. To do so, define

B(t, T ) := E

[
exp

(
ν

∫ T

t

kH−(T, s)Y
Q
s ds

)∣∣∣∣Ft
]
, (2.5)

where t ≤ T . We note that B(·, T ) is a semimartingale as T is fixed, therefore,
applying the conditional version of Feynman-Kac’s formula, we obtain(

νrkH−(T, t) + ∂t + κ(θ − y)∂r +
σ2

2
r∂yy

)
B(y, t, T ) = 0. (2.6)

where B(y, t, T ) is such that B(Y Q
t , t, T ) = B(t, T ) given in (2.5). With an ansatz

of the type B(y, t, T ) = exp{−yC(t, T )−A(t, T )}, we have at (y, t, T ),

∂tB(y, t, T ) = −(y∂tC(t, T ) + ∂tA(t, T ))B(y, t, T ),
∂yB(y, t, T ) = −C(t, T )B(y, t, T ), ∂yyB(y, t, T ) = C(t, T )2B(y, t, T ),

and the PDE (2.6) becomes, with r = Y Q
t ,(

νY Q
t kH−(T, t)−

(
Y Q∂tC + ∂tA+ κ

(
θ − Y Q

t

)
C
)
+
σ2

2
C2Y Q

t

)
B(Y Q

t , t, T ) = 0,

which further simplifies to(
νkH−(T, t)− ∂tC − κC +

σ2

2
C2

)
Y Q
t B(Y Q

t , t, T )− (κθC + ∂tA)B(Y Q
t , t, T ) = 0.

The last term cancels for A(t, T ) = −κθ
∫ T
t
C(u, T )dt, and the Riccati equation

νkH−(T, t) − ∂tC(t, T ) − κC(t, T ) + σ2

2 C
2(t, T ) = 0 remains, with

A(T, T ) = C(T, T ) = 0.
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In the uncorrelated case, the computation of EQ[vt] becomes very costly, having
to solve a quadratic ODE (with time-dependent coefficients) for each time t. In
the correlated case, there is no hope to obtain any semi-analytic result since one
would need to compute cross terms, and there is no tool coming from Itô’s calculus
available in that case. The approach in this section was essentially top-down,
meaning that we specified a form for the market price of volatility risk λ and deduced
the shape of the model with this specification. Unfortunately, our analysis showed
that this may ultimately not be so successful as the final form of the model is rather
intricate, probably too much so for practical purposes. Alternatively, one may first
infer some shape of λ from market data (short rate of interest, expected returns
and instantaneous volatility) and then use it to price options under Q.

3. Roughly extracting the risk premium from the market. We now consider
the risk premium process λ to be deterministic, and obtain a formula linking P andQ
market observable quantities. The following theorem shows how to infer the risk
premium from the market using forecasts under P and variance swap prices under Q.

Theorem 3.1. Consider the rough volatility model (1.1) under P. If ψ(t, x) =
ξ0(t)e

νx, µs = rs for all s ≥ 0, and (λs)s≥0 ∈ L2(R) is deterministic, then

νρ

∫ t

s

kH−(t, u)γudu = log

(
EQ[vt|Fs]
EP[vt|Fs]

)
= log

(
ξs(t)

EP[vt|Fs]

)
. (3.1)

Proof. If µ = r almost surely, the Radon-Nikodym derivative (1.2) in Theorem 1.6
reads Dγ = E

(∫ ·
0
γsdW

P⊥
s

)
, with λs = ργs, and the inverse Radon-Nikodym deriv-

ative is given by Dγ := 1
Dγ = E

(
−
∫ ·
0
γsdW

Q⊥
s

)
. Then, the conditional change of

measure formula yields

EP[vt|Fs] =
EQ [vt Dγt |Fs]
EQ [ Dγt |Fs]

. (3.2)

On the one hand, EQ [ Dγt |Fs] = E
(
−
∫ ·
0
γudW

Q⊥
u

)
s
by the properties of the stochas-

tic exponential and Gaussian moment generating functions. On the other hand,

since, for t ∈ T, ZQ
t = ZP

t +
∫ t
0
λsds and λ is deterministic, then

EQ [vt Dγt |Fs]

= EQ
[
exp

{
ν

(∫ t

0

kH−(t, u)dZ
Q
u +

∫ t

0

λukH−(t, u)du

)}
e−

∫ t
0
γudW

Q⊥
u − 1

2

∫ t
0
γ2
udu

∣∣∣∣Fs]

= eν
∫ t
0
λukH− (t,u)du− 1

2

∫ t
0
γ2
uduEQ

[
exp

{
ν

∫ t

0

kH−(t, s)dZ
Q
s −

∫ t

0

γsdW
Q⊥
s

}∣∣∣∣Fs] ,
where the second factor in the last term is just the conditional moment generating
function of a Gaussian random variable. Applying Itô’s isometry, then, condition-

ally on Fs, the random variable ν
∫ t
0
kH−(t, s)dZ

Q
s −

∫ t
0
γsdW

Q⊥
s is distributed as

N
(
µ, σ2

)
with

µ := ν

∫ s

0

kH−(t, u)dZ
Q
u −

∫ s

0

γudW
Q⊥
u ,

σ2 := ν2
∫ t

s

k2(t, u)du+

∫ t

s

γ2udu− 2νρ

∫ t

s

kH−(t, u)γudu,
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since ZQ = ρWQ + ρWQ⊥. Exploiting the identities above and reordering terms,

EQ [vt Dγt |Fs]

= exp

{
ν

∫ t

0

kH−(t, u)λudu+

µ︷ ︸︸ ︷
ν

∫ s

0

kH−(t, u)dZ
Q
u −

∫ s

0

γudW
Q⊥
u

+
1

2

(
ν2
∫ t

s

k2(t, u)du+

∫ t

s

γ2udu− 2νρ

∫ t

s

kH−(t, u)γudu︸ ︷︷ ︸
σ2

−
∫ t

0

γ2udu

)}

= exp

{
− νρ

∫ t

s

kH−(t, u)γudu

} EQ[ Dγt |Fs]︷ ︸︸ ︷
exp

{
−
∫ s

0

γudW
Q⊥
u − 1

2

∫ s

0

γ2udu

}

+exp

{
ν

∫ s

0

kH−(t, u)dZ
Q
u +

ν2

2

∫ t

s

k2H−
(t, u)du+ ν

∫ t

0

kH−(t, u)λudu

}
︸ ︷︷ ︸

EQ[vt|Fs]

,

by using the decomposition of σ2 as the sum of three terms, and so

EQ [vt Dγt |Fs] = EQ [ Dγt |Fs]EQ[vt|Fs] exp
{
−νρ

∫ t

s

kH−(t, u)γudu

}
. (3.3)

Finally, going back to (3.2) and exploiting the identity in (3.3), the result follows
from

EP[vt|Fs] = EQ[vt|Fs] exp
{
−νρ

∫ t

s

kH−(t, u)γudu

}
= EQ[vt|Fs] exp

{
−ν
∫ t

s

kH−(t, u)λudu

}
.

3.1. Estimating the risk premium in rough Bergomi. In this section, we
work with the rough Bergomi model under P and its Q-version:

(under P)


dSt
St

= µtdt+
√
vt dW

P
t ,

vt = exp
{
νZHt

}
,

(under Q)


dSt
St

= rtdt+
√
vt dW

Q
t ,

vt =ξ0(t) exp

{
ν

(∫ t

0

kH−(t− u)dZQ
u +

∫ t

0

kH−(t− u)λudu

)}
.

Assuming λ is deterministic, Theorem 3.1 gives an explicit procedure to compute
the risk premium. In practice however, we are only able to observe variance swap
quotes in discrete times, and hence it is natural to consider λ piecewise constant.

Assumption 3.2. Given a time partition {0 = T0 < T1, ..., < Tn = T}, the
deterministic process λ admits the piecewise constant representation

λ(t) :=

n∑
i=1

λi11{t∈[Ti−1,Ti)}, λi ∈ R for i = 1, . . . , n. (3.4)
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Similarly, the forward variance admits the piecewise constant representation
EQ
0 [vt] = ξ0(t) :=

∑n
i=1 ξi11{t∈[Ti−1,Ti)} with ξi ∈ R for i = 1, . . . , n, where

ξi :=
VTi

Ti−VTi−1
Ti−1

Ti−Ti−1
and VT := EQ

[
1
T

∫ T
0
vsds

]
is a market variance swap quote.

We now estimate {λ1, · · · , λn}. The dataset consists of daily Eurostoxx variance
swap quotes for maturities {1M, 3M, 6M, 1Y, 2Y} (Figures 1 and 2), while Figure 3
shows the daily realized volatility obtained from Oxford-Man institute data.

Figure 1. Variance swap volatility daily quotes on SX5E

Figure 2. Forward variances extracted from variance swap quotes
on SX5E
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Figure 3. Annualized daily realized volatility on SX5E

In order to apply formula (3.1), we need the following ingredients:

Parameters H, ν, ρ, EP[vt|F0], EQ[vt|F0]. (3.5)

So far we have obtained EQ[vt|F0] from variance swap market quotes. The next step
is to estimate (H, ν, ρ) using historical time-series. Gatheral, Jaisson, and Rosen-

baum [14] explain how to estimate Ĥ and ν̂ from daily volatility data (Figure 3),
and we follow their approach using a 100-day rolling window (Figure 4) and refer
the reader to the original paper for details.

Figure 4. Estimated Ĥ and ν̂ on SX5E.

To estimate the correlation parameter, we use Corr

(
ZHt − ZHs ,

∫ t

s

dWs

)
=

ρ
√
2H

H+
, which allows us to estimate the correlation with the proxy

ρ̂ =
Ĥ + 1

2√
2Ĥ

Ĉorr

(
log(Sti)− log(Sti−1)√

vti−1

, log(vti)− log(vti−1
)

)
.

Figure 5 below displays the historical estimates using an estimation window of 100
days.
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Figure 5. Daily correlation estimate on SX5E and realized volatil-
ity.

To forecast volatility and obtain EP[vt|F0], we proceed as in [14], and use the fore-
casting formula for the fractional Brownian motion due to Nuzman and Poor [23]:

ZHt+∆|Ft ∼ N
(
cos(Hπ)

π
∆H+

∫ t

0

ZHs ds

(t− s+∆)(t− s)H+
,
CH∆2H

2H

)
.

Finally, we orderly estimate λi for each i = 1, . . . , n using Theorem 3.1 and the
piecewise constant assumption (3.4), as

i∑
j=1

λj

∫ Tj

Tj−1

kH−(t, u)du =
1

ν(1− ρ2)
log

(
ξ0(Ti)

EP[vTi
|F0]

)
.

Figure 6 shows the historical evolution of the risk premium process.

Figure 6. Daily SX5E risk premia; dashed lines represent means.

Remark 3.3. We would like to emphasize that assessing the best method to es-
timate (3.5) is beyond the scope of this paper. However, as highlighted in the
introduction, we stress the importance of Theorem 3.1 toward which this empirical
work provides a first step.
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Appendix A. Proof of Remark 1.5. Following the ideas in [13, Proof of The-
orem 1.1], we show that Assumption 1.3(iv) is guaranteed provided that Assump-
tions 1.1 and 1.3(i)-(ii) hold and the processes µ, γ, andr belong to Fb. From the defi-

nition of the change of measure and the stopping time in (1.4), then Dγ
t∧τn = dP̂n

dP

∣∣∣∣
Ft

.

For any s ∈ T, the random function f(x) := rs−µs√
ψ(s,x)

is P-bounded on (−∞, a] for

any a > 0 since r and µ are P-bounded, and ψ(s, ·) is bounded away from zero
on intervals of the form (−∞, a] by Assumption 1.3(i) together with the additional
assumptions in Remark 1.5. Then, by Proposition 1.2,

1 = E
[
Dγ
T∧τn

]
= E

[
Dγ
T 11{T<τn}

]
+ E

[
Dγ
τn11{τn≤T}

]
. (A.1)

The first term in (A.1) converges to E [Dγ
T ] as n tends to infinity, yielding

1− E [Dγ
T ] = lim

n↑∞
E
[
Dγ
τn11{τn≤T}

]
.

Girsanov’s theorem implies E
[
Dγ
τn11{τn≤T}

]
= P̂n(τn ≤ T ), where P̂n is defined such

that Ŵn
t =W P

t −
∫ t∧τn
0

χudu is a P̂n-Brownian motion. Then, under P̂n, the process
Y becomes

Yt = Ŷ nt +

∫ t∧τn

0

k(t, s)
(
ρχu + ρ γu

)
du = Ŷ nt +

∫ t∧τn

0

k(t, s)λudu,

where Ŷ nt :=

∫ t

0

k(t, s)dẐns and

Ẑnt = ZP
t −

∫ t∧τn

0

(
ρχu + ρ γu

)
du = ZP

t −
∫ t∧τn

0

λudu,

for t ≥ 0, where Ẑn is a P̂n-Brownian motion. Furthermore, by Assumption 1.3(ii),
we have

P̂n
(
sup
t∈T

Yt ≥ n

)
= P̂n

(
sup
t∈T

{
Ŷ nt +

∫ t∧τn

0

k(t, u)λudu

}
≥ n

)
(A.2)

≤ P̂n
(
sup
t∈T

Ŷ nt + sup
t∈T

{∫ t∧τn

0

k(t, u)λudu

}
≥ n

)
≤ P̂n

(
sup
t∈T

Ŷ nt ≥ n−KT

)
,

Inequality (A.2), in turn, implies P̂n(τn ≤ T ) ≤ P̂n(τ̂n ≤ T ) for τ̂n := inf{t ≥
0, Ŷ nt = n−KT}. Finally, since Ẑn is a P̂n-Brownian motion, we obtain

lim
n↑∞

P̂n(τn ≤ T ) ≤ lim
n↑∞

P̂n(τ̂n ≤ T ) = lim
n↑∞

P
(
sup
t∈T

Yt ≥ n−KT

)
= 0,

and it follows that
dQ
dP

is indeed a true martingale and note that lim
n↑∞

P̂n = Q in

the sense that relation (1.6) holds between the P and Q Brownian motions.

Licence and Data Access statement. For the purpose of open access, the au-
thor(s) has applied a Creative Commons Attribution (CC BY) licence (where per-
mitted by UKRI, ‘Open Government Licence’ or ‘Creative Commons Attribution
No-derivatives (CC BY-ND) licence’ may be stated instead) to any Author Accepted
Manuscript version arising’
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The data underpinning this study were obtained from a combination of publicly
and commercially available sources:

• Oxford-Man Institute of Quantitative Finance Realized Library: Available for
academic research use at https://realized.oxford-man.ox.ac.uk/ upon registra-
tion and agreement to the terms of use.

• Yahoo Finance: Market data were retrieved from https://finance.yahoo.com,
a publicly accessible platform, under their data usage terms.

• Bloomberg Terminal: Data sourced from Bloomberg are subject to licensing
restrictions and cannot be shared publicly. Access to Bloomberg data requires
an institutional subscription.

Some components of the dataset are restricted due to commercial licensing agree-
ments, and therefore cannot be made openly available. The decision to restrict access
is to comply with the contractual obligations agreed with commercial data providers.
The present authors may be contacted for further information about the datasets
used here.
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[3] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes,

The Annals of Probability, 29 (2001), 766-801.

[4] R. Bansal and C. Lundblad, Market efficiency, asset returns, and the size of the risk premium
in global equity markets, Journal of Econometrics, 109 (2002), 195-237.

[5] O. E. Barndorff-Nielsen and J. Schmiege, Brownian semistationary processes and volatil-

ity/intermittency, Advanced Financial Modelling, 8 (2009), 1-25.
[6] C. Bayer, P. Friz and J. Gatheral, Pricing under rough volatility, Quantitative Finance, 16

(2016), 887-904.
[7] C. Bayer, P. K. Friz, M. Fukasawa, J. Gatheral, A. Jacquier and M. Rosenbaum, Rough

Volatility, SIAM, 2024.

[8] L. Bergomi, Smile dynamics II, Risk Magazine, October (2005).
[9] P. Carr and L. Wu, Analyzing volatility risk and risk premium in option contracts: A new

theory, Journal of Financial Economics, 120 (2016), 1-20.
[10] F. Chabi-Yo, Pricing kernels with stochastic skewness and volatility risk, Management Sci-

ence, 58 (2012), 624-640.

[11] L. Decreusefond, Stochastic integration with respect to Volterra processes, Ann. Inst. H.
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