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A B S T R A C T

How does electricity consumption behavior change with different energy sources? We seek to understand how 
consumers change their consumption behaviors when they begin to use renewable electricity via a community 
solar program.

Previous research has found that consumers distinguish the power sources of electricity and even change their 
consumption behavior. Recent studies have explored changes in consumption associated with utility-run green 
electricity programs and rooftop solar, finding mixed results; however, studies on community solar programs are 
lacking. This study explores household-level consumption behavior after adopting solar electricity without panel 
installation.

We use household-level monthly electricity consumption data from a large electric co-op in Georgia, U.S., 
ranging from 2015 to 2023, for both community solar subscribers and non-subscribers. We use staggered 
difference-in-differences, along with matching, to compare consumption changes before and after the sub
scription. Findings reveal that the consumption does not change after subscription, but subscribers’ monthly bills 
increase by about 3–4 %, indicating they pay more to make the grid greener.

This study will broaden the understanding of electricity sources and consumer behavior by adding the analysis 
of prevalent but under-studied community solar electricity programs in the U.S. Southeast context. It will help 
utility planners understand the changing demand as a result of renewable energy adoption.

1. Introduction

Rapid growth in solar electricity is helping drive the clean energy 
transition. In 2023, cumulative solar installed capacity in the U.S. 
recorded a total of 177 GW (Wood Mackenzie, 2024), and solar 
comprised over 50 % of new electricity generation capacity added (SEIA, 
2024). Solar energy is also driving economic development by providing 
nearly 280,000 related jobs as of 2023 in the U.S. (IREC, 2024) and 
stimulating private investment, while costs of solar are declining (SEIA, 
2025). The significant growth in PV is rapidly changing the composition 
of the electricity sector with potential implications for when and how 
electricity is used by consumers.

Recent research suggests that the source of electricity consumers 
receive can impact their consumption patterns. Several studies suggest 
that the sources used to generate electricity impact consumers’ prefer
ences and willingness to pay (Bengart and Vogt, 2021; Borchers et al., 
2007; Kosenius and Ollikainen, 2013). Consumers might change their 

consumption after they opt into green electricity programs, and 
behavioral responses differ by consumer characteristics and environ
mental preferences (Jacobsen et al., 2012; Kotchen and Moore, 2008). 
One stream of emerging literature specifically focuses on solar electricity 
and finds consumers increase their electricity consumption after 
installing rooftop solar panels, often referred to as the ‘solar rebound’ 
effect (e.g., Aydın et al., 2023; Beppler et al., 2023; Kim and Trevena, 
2021; La Nauze, 2019; Qiu et al., 2019).

A change in consumption due to the source of electricity, and espe
cially electricity from renewable energy sources, has important impli
cations for consumers and grid planners. For consumers, it suggests a 
significant latent demand for electricity and that if presented with the 
opportunity to consume more renewable energy, consumers may 
significantly increase electricity demand (Beppler et al., 2023). For grid 
planners, this finding indicates that rooftop solar installations, and 
potentially renewable energy installations as a whole, are unlikely to 
displace fossil fuel electricity consumption as much as expected. 
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Research is needed to better understand the relationship between elec
tricity production decisions and how those impact consumption 
patterns.

Understanding how electricity generation affects consumption pat
terns can help explain human behavior and improve forecasting of 
electricity demand. In this study, we explore the relationship between 
community solar and household-level electricity consumption behavior. 
We seek to understand how consumers change their consumption after 
subscribing to a community solar program. Do community solar cus
tomers increase their electricity consumption? If so, this may help 
inform the mechanisms underlying the solar rebound in rooftop solar or 
consumption increase in green electricity programs, such as moral 
licensing. Alternatively, community solar customers may change their 
consumption behavior in other ways. For example, community solar 
subscribers might reduce overall consumption by committing to a more 
energy-conscious lifestyle, or due to price effects of purchasing expen
sive solar electricity.

Community solar programs share characteristics of existing renew
able electricity subscription programs. Community solar subscribers opt 
in to programs provided by utility companies or other third-party pro
viders,1 as in utility-run green electricity programs. However, in this 
type of program, customers know the source of renewable electricity (i. 
e., solar) and where it is generated (i.e., a solar project), similar to 
rooftop solar. The details of programs vary by utilities. For instance, 
some utility companies (for a cost premium) allow customers to choose 
the solar mix of their electricity (e.g., 50 % or 100 %). Others, including 
the electric cooperative in our study, allow customers to purchase “solar 
blocks”, representing a specific solar capacity purchase, with a monthly 
fixed fee. Through community solar programs, aggregate purchases of 
solar electricity allow customers to take advantage of economies of scale 
and potentially reduce the costs and other barriers of purchasing solar 
electricity, relative to installing panels at one’s home (Gai et al., 2021).

Community solar programs have rapidly expanded across the U.S., 
with around 1600 projects and an estimated more than 3 GW of capacity 
by the end of 2020 (Steele et al., 2021). These sorts of programs are also 
gaining popularity outside the U.S., such as in Spain. Community solar 
programs have been touted by researchers, advocacy organizations, and 
policymakers as a mechanism to increase access and alleviate equity 
concerns associated with access to solar electricity via panel installation 
(Lukanov and Krieger, 2019; Michaud, 2020). Community solar reduces 
infrastructure hurdles (e.g., home ownership requirements) and cost 
barriers that prevent lower-income customers from accessing solar 
(O’Shaughnessy et al., 2024).

This study uses household-level monthly electricity consumption 
data of 754 community solar program participants and 2726 non- 
participants from 2015 to 2023 from a rural electric co-op in Georgia, 
U.S. After matching adopters and non-adopters to account for electricity 
consumption differences pre-adoption, we leverage staggered timing of 
program subscription across households and employ the Callaway & 
Sant’Anna estimator (Callaway and Sant’Anna, 2021) as well as other 
difference-in-difference (DiD) models as robustness checks. In our 
analysis, we do not find a statistically significant consumption change 
induced by community solar participation. Our result adds empirical 
evidence to previous findings of small or no changes in electricity usage 
after voluntarily changing to green electricity sources (e.g., Jacobsen 
et al., 2012; Kotchen and Moore, 2008). However, our findings show an 
increase in monthly bills (about 3–4 %), indicating customers bear some 
costs to make the grid greener. Our findings also contribute to research 
on the solar rebound, suggesting that the solar rebound might be limited 

to consumer-sited rooftop solar, as opposed to grid-connected renewable 
energy.

In the remainder of the paper, we begin with previous literature on 
how adopting renewable electricity impacts consumption behavior in 
Section 2. Sections 3 and 4 describe our data collection and DiD methods 
used in this paper. Section 5 presents results estimated with additional 
analyses. Section 6 concludes with discussions of the results and equity 
concerns of community solar.

2. Background and literature review

2.1. The source of electricity generation and consumption behavior

How does the source of electricity generation impact household 
consumption of electricity? This question has gained attention as elec
tricity restructuring and distributed generation have provided con
sumers with multiple options to source their electricity. Consumers with 
green preferences might be concerned with the environmental impact of 
electricity generation, such as greenhouse gas emissions, and change 
electricity providers to purchase renewable energy or alter their elec
tricity consumption behavior (Bengart and Vogt, 2021; Byun and Lee, 
2017). Even across different renewable energy sources, preferences 
might be heterogeneous (e.g., Borchers et al., 2007; Kosenius and Olli
kainen, 2013). For instance, Bengart and Vogt (2021) found that cus
tomers in Germany are willing to pay a premium of more than €13per 
month for 2000 kWh of electricity sourced from renewable energy 
sources compared to non-renewable, and pay an additional premium if 
they are informed of a specific source of renewable energy. Utility 
companies’ generation portfolio is also differentiated by customers’ 
preference for electricity sources, generating more green electricity if 
customers have stronger environmental preferences (Delmas et al., 
2007).

Consumers might also alter consumption patterns when adopting 
renewable electricity. Several studies have explored utility-run green 
electricity programs and consumption responses with a green-tariff 
mechanism (Kotchen and Moore, 2007) and found modest or no 
changes in consumption, with an ambiguous direction of consumption 
change. For instance, Jacobsen et al. (2012) found that among partici
pants in a voluntary renewable electricity program, a subset of adopters 
increased electricity consumption by 2.5 %. In contrast, Kotchen and 
Moore (2008) found that those who do not care about the negative ex
ternalities associated with electricity generation decreased consumption 
after enrolling in the green electricity program with a price premium. 
However, the authors found that those who place greater value on 
environmental repercussions and community engagement do not 
change their consumption associated with renewably sourced 
electricity.

A body of recent research on the relationship between consumption 
behavior and electricity sources has specifically focused on solar elec
tricity production and consumer responses to the adoption of solar en
ergy via rooftop panel installation. The solar rebound describes a 
phenomenon in which households increase electricity consumption after 
they adopt solar electricity (Boccard and Gautier, 2021; Frondel et al., 
2023; Oliver Matthew et al., 2019), undermining some of the expected 
benefits of adoption. The change in usage is substantial with panel 
installation, with estimates that up to one-third of electricity generated 
from panels goes to new consumption, rather than displacing grid 
electricity (e.g., Aydın et al., 2023; Beppler et al., 2023; Boccard and 
Gautier, 2021; Deng and Newton, 2017; Kim and Trevena, 2021; Qiu 
et al., 2019; Toroghi and Oliver, 2019). This solar rebound is remarkable 
in its magnitude (especially relative to green electricity purchasing 
programs) and its implications for electricity consumption patterns, 
suggesting significant latent electricity demand and potential increases 
in electricity demand as distributed generation and other solar genera
tion increase.

1 A different type of community solar program lets customers purchase solar 
panel(s) installed in a solar farm by paying an upfront cost similar to rooftop 
solar. This is referred to as a ‘customer-owned model’ (Michaud, 2020). In this 
study, we focus on the model where customers can subscribe to the program, 
which has been referred to as a ‘rental model’ (Michaud, 2020).
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2.2. Community solar program and consumption behavior

In this study, we focus on a community solar program as a different 
way to adopt solar electricity to understand whether consumer behavior 
in this program aligns more closely with green electricity purchasing 
models or with the more recently identified solar rebound. In commu
nity solar programs, consumers subscribe to the program and receive a 
certain amount of solar electricity from utilities or other third-party 
organizations. In this model, solar electricity is sourced from solar 
farms or other off-site installations, but customers are typically told the 
specific solar farm or installation from which they are purchasing. 
Depending on program design, consumers choose a certain percentage 
of their total consumption (e.g., 50 %) or the amount produced by a solar 
block (e.g., 1 kW panel). In the latter case, which includes the one 
examined in this study, customers pay a fixed cost (e.g., $22) per block 
every month and receive the amount of electricity (kWh) generated from 
the assigned block(s), which is then deducted from their total con
sumption. Electricity generated in solar panels varies (due to weather 
and sunlight variability) while consumers pay a fixed price, meaning 
that the price of electricity (c/kWh) from community solar programs 
varies monthly. Programs typically provide guidance on the expected 
range or average of generation provided by the block. The amortized 
solar block price, per kWh price, represents a premium over the standard 
grid tariff; for instance, an average of 10.8 c/kWh (solar electricity) over 
an average of 7.7 c/kWh (traditional energy sources) in one electric co- 
op in Georgia.2

Community solar programs have a number of distinctive features 
that have the potential to influence electricity use patterns by customers. 
Further – given the advocacy of these programs by researchers and 
NGOs as an equitable solution to expand renewable energy – it is 
important to study the impact of community solar participation on 
electricity use. The consumption response following subscription to a 
community solar program may differ from that associated with a utility- 
run green electricity program. Unlike generic green electricity pro
grams, community solar participants know the specific source of their 
renewable electricity and its location, and are often purchasing capacity, 
rather than generation. As previous studies have shown (e.g., Bengart 
and Vogt, 2021; Kosenius and Ollikainen, 2013), consumers distinguish 
among different renewable energy sources and exhibit differentiated 
willingness-to-pay. Accordingly, they might display distinct consump
tion responses if they specifically choose to receive ‘solar’ electricity.

The impacts of community solar on electricity demand are uncertain 
and may differ substantially from those of rooftop solar, even though the 
programs both source solar electricity. In a community solar program, 
the consumers contract for a share of a solar farm or its output. The 
location of the solar is typically identifiable and is typically, although 
not always, located near the electricity consumer. However, unlike 
rooftop solar panels, a community solar electricity project may not be 
easily visible to the electricity consumer. When rooftop solar panels are 
installed in a home, consumers can see them, and this visibility of 
rooftop solar panels is likely to have an important impact on their 
behavior (Hondo and Baba, 2010). For example, panel visibility has 
been cited as a driver for peer diffusion (Bollinger and Gillingham, 2012; 
Graziano and Gillingham, 2015). Panel visibility might also impact 
customers’ consumption behavior as a reminder that the electricity 
consumed is solar or create the impression for consumers that the 
marginal cost of consumption is lower. When panels are located off-site, 
community solar consumers lack the visual cue that their electricity is 
solar, although they may have information about the specific location of 
the solar installation, making the source of electricity more salient than 
a renewable energy purchasing program. The only reminder that cus
tomers receive about their solar electricity usage is when they receive 

their monthly electricity bill.
Devices that monitor electricity generation from rooftop solar would 

be another source that could affect behavioral change in rooftop solar 
but are not present in community solar. Providing information on 
electricity consumption and generation, as well as the method of its 
delivery, is a key factor influencing changes in electricity consumption 
(e.g., Aydin et al., 2018; Bollinger and Hartmann, 2020; Martin and 
Rivers, 2018). While rooftop solar panel installation typically entails the 
installation of electricity consumption and/or generation monitors, 
community solar programs do not have these devices. Customers of 
community solar programs do not have as much information, except that 
they periodically get information about the amount of electricity 
generated from solar block(s) on their bills, potentially reducing their 
capacity to change behavior.

2.3. Behavior responses to community solar adoption

How does the adoption of community solar change a household’s 
electricity consumption? Community solar programs provide varying 
prices for solar electricity, often different from the retail rate of elec
tricity. In the case of a fixed monthly block price, the price of solar 
electricity fluctuates depending on the amount of electricity generated 
from the solar block. Consequently, the average price of electricity 
consumed may be altered. Changes in the average price of electricity can 
motivate shifts in consumption behavior and change electricity demand 
(e.g., Buchsbaum, 2022; Ito, 2014; Wichman, 2014). It is unclear 
whether consumers complete the complex calculations involved in 
calculating marginal prices (Bollinger and Hartmann, 2020), making 
them more likely to respond to lagged average prices (Ito, 2014).

Psychological and behavioral theories might explain potential 
changes in electricity demand after adopting community solar. For 
instance, the adoption of solar electricity might promote other pro- 
environmental behaviors as a positive spillover (Lacasse, 2016; Nash 
et al., 2017; Truelove et al., 2014); consumers might participate in other 
energy conservation behaviors such as reducing their electricity usage. 
Likewise, the adoption of solar panels or ‘green’ technologies might help 
shift consumer attitudes and behavior toward environmental-friendly 
behaviors and products (Hondo and Baba, 2010; Rai and McAndrews, 
2012).

An alternative hypothesis suggests that because the electricity 
sourced from community solar programs is renewable and clean, energy 
usage might increase following joining a community solar program. As 
in the case of the solar rebound,3 it is possible that consumers increase 
electricity consumption due to moral licensing or a willingness to use 
more electricity when electricity is produced renewably. Moral 
licensing, a behavioral effect associated with consumers occurs when 
people who have previously behaved ethically see their moral self-image 
heightened and become less worried about their image being seen as 
immoral, thus engage in ‘immoral’ behavior (Dütschke et al., 2018; 
Truelove et al., 2014). From this perspective, if consumers perceive that 
energy consumption is immoral due to pollution externalities after 
installing solar panels (a moral behavior), they then increase electricity 

2 More discussion of the prices of solar and traditional sources is in the last 
section.

3 Under most net metering policies, any electricity not instantaneously 
consumed by the customer is credited toward future electricity production at 
the retail rate of electricity. In the rebound effect associated with energy effi
ciency, the marginal cost of consumption is lowered by adopting an energy- 
efficient appliance. On the contrary, under a classic net metering policy, the 
opportunity cost and marginal cost of consumption are held fixed at the retail 
rate of electricity, while the average cost decreases. Thus, under a net metering 
policy and in case electricity generated from solar panels does not cover all the 
consumption, the solar rebound is fully behavioral – perhaps due to moral 
licensing, perhaps due to budget anchoring, where consumers allocate a fixed 
amount toward their electricity bills, or perhaps due to an incorrect perception 
by consumers that their cost of consumption is lower when they have solar 
panels.
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consumption. This new consumption likely represents latent energy 
demand. When consumers believed they were consuming electricity 
generated from fossil fuels, they suppressed their energy demand 
because they felt guilty about the negative externalities associated with 
it. After signing up for renewable energy sources, community solar 
program consumers may perceive their participation as ethically ‘good’ 
behavior and reduce concern about immoral behavior (energy con
sumption) after adoption.

If community solar customers do not have particularly environ
mental or climate-change related values, they have less incentive to 
reduce energy consumption (Dütschke et al., 2018). Alternatively, 
consumers might have a single-action bias, which refers to perceiving 
risk reduction after completing one action even though multiple actions 
are required (Weber, 1997). Consumers of community solar electricity 
who are motivated by climate change might become less concerned after 
community solar adoption and not feel the necessity to further engage in 
further energy conservation behavior. This might lead community solar 
customers to increase their electricity consumption after joining the 
community solar program.

3. Data

3.1. Electricity consumption data

The data in this study comes from an electric co-op in the state of 
Georgia, U.S., that provides service to eight counties west of metropol
itan Atlanta. Despite geographical adjacency, the socio-political envi
ronments in these countries are diverse. While three counties leaned 
toward Democrats in the 2022 U.S. Senate election, the rest strongly 
aligned with support for the Republican Party (AJC, 2022). The service 
areas4 of the co-op have an average median income of 78,674 USD (in 
2022 inflation rate adjusted, standard deviation 19,541) and an average 
population of 36,833 (standard deviation of 22,514) per zipcode (U.S. 
Census Bureau, 2022), including rural and suburban areas that are 
understudied in previous literature.

As one way to provide solar electricity, the co-op offers a community 
solar program where consumers opt to pay a fixed cost per solar panel 
block in a remotely located solar farm for electricity produced by the 
block(s). The program charges $22 ($25 before February 2018) per 
block, and each block produces 160–280 kWh depending on weather 
and seasonal factors. The amount of electricity generated from a solar 
block is then deducted from monthly total electricity consumption. 
Customers who are willing to subscribe to the program are informed of 
the fixed price of each block, how much energy credit (in kWh) will be 
typically awarded to their account, and what they can expect on their 
bills, as presented in Fig. 1. Customers who subscribe to the program via 
phone were informed of the same acknowledgments verbally.

In the dataset received from the utility provider, 915 community 
solar customers subscribed to the program from 2016 to 2023.5,6 A large 
share of subscriptions (more than 400) to the program happened in 
December 2016 when the program was launched and heavily marketed. 
The second wave of subscriptions happened in August 2017, when 111 
consumers joined the program. During the rest of the panel, from 
January 2017 to October 2023, new subscribers ranged from 0 to 27.

Most of the participants live in houses (893 out of 915). This differs 
from recently published survey results that claimed a high proportion of 
renters in community solar customers (O’Shaughnessy et al., 2024) 
across the country, though the geographical characteristics of our 

sample should be considered. Customers in the co-op in our data are 
primarily in rural and suburban areas where multi-family housing is 
uncommon and where, on average, more than 80 % of households are 
one-unit structures (U.S. Census Bureau, 2022). More than 500 cus
tomers end up signing up for two blocks, while 394 customers choose 
one block. The dataset also includes about 5000 customers who have not 
subscribed to the program (control group), with monthly consumption 
and billing data ranging from May 2015 to November 2023. The dataset 
also includes the date that each customer subscribed to the program,7

the number of blocks that they end up subscribing, and the electricity 
generated from each solar block per month. The subscribers to the 
community solar program are in five adjacent counties in Northern 
Georgia - Carroll, Cobb, Douglas, Fulton, and Paulding, as shown in 
Fig. 2.

From the original dataset, we exclude three community solar cus
tomers who subscribed twice (opted in, out, and in again) during the 
time period, nine customers who also adopted rooftop solar panels, and 
customers who were coded incorrectly. We also limit our sample to 
customers who subscribed before October 2022 to see a whole year of 
consumption after receiving solar electricity. Customers without county 
or service-type information are excluded. Also, we eliminate average 
usage data points from the top and bottom 1 % quantiles to remove 
outliers or other data entry errors.

Community solar customers consume more electricity on average 
than non-solar customers before opting into the community solar pro
gram. Fig. 3, panel A, shows the distributions of average annual usage of 
both community solar customers before subscription to the program and 
regular customers. For community solar customers, average annual 
consumption is calculated considering the differences in their sub
scription month and year.8,9 Table 1 presents descriptive statistics of 
adopters before they subscribe to the program and non-adopters of both 
monthly and annual electricity consumption. A difference of means test 
shows that on average those who subscribe to the program consume 
more (121.13kWh monthly)10 than those who do not before subscrip
tion. Panel B in Fig. 3 also shows that, on average, adopters’ monthly 
consumption is higher than that of non-adopters pre-adoption. We also 
test the differences among customers regarding the number of blocks 
they signed up for (1 or 2) and find that customers who signed up for two 
blocks were those who used more electricity (on average 199 kWh 
monthly) than those who signed up for one block. Higher consumption 
observed among community solar program participants and two-block 
subscribers, compared to non-participants and one-block subscribers, 
mirrors findings from a green electricity program in a neighboring state 
(Jacobsen et al., 2012).

The final dataset ends up with unbalanced panel data of 754 par
ticipants and 2726 non-participants, with 55 households who opted out 
of the community solar program during the study period, enabling us to 
further explore consumption behavior transitioning from solar elec
tricity to conventional electricity sources. We also include weather data 

4 The service areas are identified based on the zip code information provided 
by the Open Energy Data Initiative (Huggins, 2022).

5 Their monthly consumption data begins in 2015, providing a pre-period 
before subscription.

6 During that time period, the residential rate changed once in April 2016, 
several months before the program launch in December 2016.

7 For some subscribers, the first month in which they appear as “treated” 
(when they begin paying the solar block fee) may not align exactly with the 
month they enrolled in the program due to billing cycles. For example, if a 
household subscribed on December 25, 2016, and their billing date was 
January 10, 2017, they would be recorded as treated starting in January 2017. 
In contrast, if a household subscribed on July 3, 2019, with a billing date of July 
15, 2019, their treatment would begin in July 2019.

8 For instance, if customer A subscribed to the program in June 2019 and A’s 
billing data is available from March 2016, the average annual consumption is 
calculated for the three annual cycles of June 2016–May 2017, June 2017–May 
2018, and June 2018–May 2019.

9 Because of how we calculate the average annual consumption, solar elec
tricity adopters with less than a year-long monthly consumption data before 
subscription are excluded, which automatically removes someone who moves 
into a new house and subscribes to the program right after.
10 Switchers excluded.
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as a control variable to account for the high dependence of monthly 
consumption on the weather, by adding monthly degree days above and 
below 18◦C11 by county from the UC Davis weather data platform (Lee, 
2025) which uses PRISM and other geographical data.

3.2. Selection bias with solar electricity adopters

One of the crucial parts of the analysis is the comparison between the 
control group (untreated, non-solar electricity consumers) and the 
treatment group (community solar participants). Previous studies have 
found that the treatment group might have different consumption pat
terns before the adoption of solar electricity compared to the control 
group, potentially resulting in biased estimates (Beppler et al., 2023). 
Also, research on the adoption of rooftop solar panels has identified 
several factors, including socio-demographics, social norms, and envi
ronmental concerns, that differentiate rooftop solar adopters from non- 
adopters (Lukanov and Krieger, 2019; Palm, 2018; Wolske et al., 2017). 
In other words, it is not reasonable to assume community solar adopters 
are similar to non-adopters (e.g., O’Shaughnessy et al., 2024). Thus, 
finding an appropriate control group for the treated group is essential to 
obtain unbiased results of electricity consumption behavior change of 
community solar electricity adopters.

Previous researchers who studied the rebound effect of rooftop solar 
PV customers often used matching techniques by identifying non- 
adopters who are most similar to adopters. They employed criteria 
such as seasonal load profile, annual usage, socio-demographics such as 
income or race, or building characteristics (Beppler et al., 2023; Qiu 
et al., 2019) for matching. Following previous literature, we use coars
ened exact matching (CEM). In CEM, either analysts or the program 
selects cutpoints and bins for each covariate ex-ante and classifies each 
observation into strata, which can limit the maximum imbalance be
tween treated and control groups (Blackwell et al., 2009; Iacus et al., 
2008). Additionally, the CEM algorithm is computationally efficient and 
can bind the model dependence of the results (Blackwell et al., 2009; 
Iacus et al., 2008).

Matching has been done based on four factors: average annual con
sumption, county, service type, and monthly consumption pattern. Even 

Fig. 1. The screenshot of the subscription to the community solar program.

Fig. 2. The geographical distribution of community solar program participants.

11 Following the description by EIA (EIA, 2023).
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though the data collected in this study do not include household char
acteristics such as income or the number of family members, aggregate 
annual usage is correlated with household-level covariates (Bartusch 
et al., 2012; Nguyen-Van, 2010; Yohanis et al., 2008). The monthly 
consumption pattern is assigned based on clustering. Following Beppler 
et al. (2023), we calculate the average percentage of consumption in 
each month and cluster consumers based on their monthly shape, which 
results in four different clusters. Fig. 4 shows kernel density plots of 
average annual consumption of treated and control groups before (panel 
A) and after (panel B) matching.

4. Methodology

4.1. DiD under homogeneous treatment effect assumption12

We employ difference-in-differences (DiD) to measure how con
sumption changes after subscribing to a community solar program. This 
study starts with static two-way fixed effect (TWFE) DiD estimates,13

assuming the treatment effect (i.e., the effect of opting into a community 
solar program) is not heterogeneous across treated consumers. The 
specification of TWFE DiD model is in Eq. (1). 

usagei,t = αi + γt + βDiDCommi × Subt + θWi,t + ui,t (1) 

where Commi is an indicator for community solar customers and Subt is a 

dummy variable turning to 1 after the month and year they subscribe to 
the program. βDiD accounts for the treatment effect and the interest of 
this study. Wi,t represents weather including monthly heating degree 
days and cooling degree days in the county that a household resides in. αi 
and γt are household fixed effect and month-year indicators.

4.2. DiD under heterogeneous treatment effect assumption

Recent literature has found that TWFE DiD may not be appropriate in 
staggered treatment timing with heterogeneous treatment effects. In our 
dataset, customers opt into the program in different months and years, 
and the treatment effect may vary among them. For instance, as the 
diffusion of innovation theory (Rogers, 2003) reveals, early adopters 
could have different features compared to late adopters. Additionally, 
customers who decided to use solar electricity in the summer might be 
different from those who did so in the winter. When the treatment effect 
varies across groups and time, static or dynamic TWFE can result in a 
biased aggregate treatment effect estimate because of the negative 
weight problem and the characteristics of TWFE estimation that it is 
affected by each group size, the number of periods overall, and the 
timing of treatments (Callaway and Sant’Anna, 2021; Goodman-Bacon, 
2021).

As an alternative approach for staggered treatment timing, Callaway 
and Sant’Anna (2021)) introduced cohort and time-varying average 
treatment effect on treated, ATT(g,t). When we alleviate conditional 
parallel assumption by assuming parallel trend is unconditional to pre- 
treatment covariate, ATT(g,t) becomes. 

ATT(g, t) = E
[
Yt − Yg− 1|Gg = 1

]
= E

[
Yt − Yg− 1|C = 1

]
(2) 

Here, we assume there are no anticipation effects, and treated group 
is compared to the ‘never treated’ group.14 In Eq. (3), g is for each cohort 
(i.e., consumers who opted in the same month and year), and Gg is an 
indicator for each group. C is an indicator for the control group and Yt is 
the outcome at time t. The aggregation across cohort time is estimated 
with weight w(g,t) by. 

Fig. 3. Average annual usage (a) and average monthly usage (b) between community solar customers before subscription and control group customers.

Table 1 
Descriptive statistics of adopters (before adoption) and non-adopters.

Variable Mean Std. Dev. Min. Max. N

Monthly Consumption
Treated 1333.96 744.51 199 4093 14,729
Control 1212.83 706.75 35 3843 199,594

Annual Consumption
Treated 16,319.75 7697.92 1890 59,848
Control 15,029.50 7651.03 61 73,680

Data include both matched and non-matched households. Switchers are 
excluded.

12 In this section, we follow terms used in Roth et al. (2023).
13 Figure A1 shows a parallel trend before the adoption between the treated 

group (first and second adopters) and the matched control group.

14 The CSDiD estimate provides options to choose a comparison group, either 
‘never treated’ or ‘not yet treated’. In the study, since the data has a sizable 
group of non-participants who did not use solar electricity the whole time 
period and who are matched to participants, we use ‘never treated’ as a control 
group. As a robustness check, we also try ‘not yet treated’ as a comparison 
group excluding non-participants.
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θ =
∑

g∈G

∑T

t=2
w(g, t)×ATT(g, t) (3) 

We limit the panel to individuals without any missing value from 
January 2016 to December 202215 for Callaway and Sant’Anna (2021)
estimate (hereafter, CSDiD). In addition, the estimate assumes ‘irre
versible treatment’, i.e., once treated treatment remains, so we exclude 
those who opt out of the program in the middle of the period (i.e., 
‘switchers’) in our primary analysis.

As a robustness check, we also implement Stacked DiD (Wing et al., 
2024), another way to account for heterogeneous treatment timing. In 
Stacked DiD, we decide the size of the event window κ16 and create sub- 
experiments containing the adoption cohort (i.e., customers who 
adopted at time T) and clean controls. Clean controls can include both 
never-treated individuals and treated individuals who have not yet been 
exposed to the treatment during the time window (T-κ to T+κ) (Wing 
et al., 2024). After creating a stacked set of sub-experiments, we use a 
weighted regression approach similar to the TWFE model.

The alternative staggered DiD estimation method, including CSDiD 
estimate, has two main benefits compared to the traditional TWFE es
timate, according to Roth et al. (2023). First, even in cases when 
treatment effects are arbitrarily heterogeneous, it offers reasonable 
estimands since weights are specified by the researcher. Second, a 
comparison group is clearly indicated. For instance, in CSDiD estimate, 
either non-participants (‘never treated’) or later adopters who haven’t 
been treated yet at the time (‘not yet treated’) can be chosen to be a 
comparison group. Likewise, in Stacked DiD (Wing et al., 2024), a 
combination of both ‘never treated’ and ‘not yet treated’ becomes 
comparison group. However, in TWFE DiD, the comparison group for 
each treatment cohort is not clear.

5. Estimation and results

5.1. Consumption behavior after the adoption

Our findings show that total monthly consumption does not change 
after subscription, suggesting the absence of a rebound effect. However, 
the amount that consumers pay monthly increases by about 3.3–4 % on 
average, which is equivalent to an additional 1c/kWh in the average 
price. Traditional economic theory of price and demand predicts that 
demand would decrease once price increases, but this pattern does not 
apply to community solar customers.17 The finding could be a result of 
customers willing to pay a premium for their green consumption, a lack 
of information on higher electricity costs, or ‘stickiness’ of consumption 
habits. We cannot test these mechanisms with this dataset.

On average, using our preferred Callaway & Sant’Anna estimates, we 
find that average consumption, post-adoption of community solar pro
gram, decreases by less than 4 kWh/month (Table 2), which is less than 
1 % change in usage (considering the average monthly consumption of 
1318 kWh among participants in our dataset).18 These results are sta
tistically not discernible from zero at the 95 % confidence level, indi
cating the actual change would be negligible.

To estimate short-term effects of community solar subscription, we 
use a series of pooled samples that include data from 12 months before 
adoption up to 1 month after, then 2 months after, 3 months, 4 months, 
and so on. For each time window, we estimate the ATT separately. The 
results in Fig. 5 show a small but statistically significant increase in 
consumption shortly after subscription when employing the CSDiD 
estimator, around 45 kWh in the first one to two months post sub
scription (p < 0.1). Estimates including TWFE DiD do not reveal 

Fig. 4. (a) Average annual consumption before matching (b) Average annual consumption after matching.

15 Our data includes pre- and post-COVID years. Time indicator in our analysis 
covers yearly variation, but we also check similar consumption patterns in these 
periods among the control group, as in Figure A3.
16 Length of windows can differ before and after the adoption. For instance, 

one can choose four years pre-treatment and three years post-treatment.

17 The sign of average treatment effect on the treated (ATT) in Table 2 is 
negative across different estimation methods, which aligns with downward- 
sloping demand, although it is not statistically significant.
18 We also tested sample weights that are disproportionate to the number of 

participants in each subscription month, noting that half of the subscriptions 
occurred in December 2016; however, the long-term results remained consis
tent, with Callaway & Sant’Anna estimate of ATT of − 77.04 (95 % confident 
interval: − 161.29, 7.21).
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statistically significant increases across any of the pooled samples. In 
addition, even the CSDiD estimate diminishes quickly, becoming sta
tistically insignificant once at least three months are pooled. The short- 
term increase in consumption following adoption may be driven by 
psychological factors discussed in Section 2, such as moral licensing or 
the excitement of signing up for a clean energy program, calling for 
further investigation into the underlying mechanisms driving con
sumption change. We also present DiD event studies in Fig. A2. These 
reveal positive deviation immediately after subscription, consistent with 
the pattern observed in Fig. 5, but the estimates are not statistically 
significant.

Although consumers have not significantly changed their consump
tion patterns, findings show they are paying an average of $4.60 more 
per month (approximately 3.3 %, based on an average monthly bill of 
$138) after subscribing to the program, as shown in Table 3.19 This 
equates to an increase of 1 c/ kWh average price, which is calculated as a 

total bill divided by total usage.20 Even when excluding all fixed and 
time-varying fees, such as Service Charges, results stay consistent, as 
shown in Table A4, with monthly bills increasing by 4.1 %. Conse
quently, consumers are paying marginally more to adopt solar 
electricity.

In terms of the average electricity price that consumers are paying, 
solar electricity is found to be more expensive, explaining community 
solar adopters’ higher bills. In our case, the price paid by community 
solar customers was about 10.8 c/kWh, with the lowest amount being 
7.6 c/kWh (June 2022) and the highest being 17.2 c/kWh (January 
2022), as in Fig. 6. The average price of solar electricity from the pro
gram is higher than the price of traditional energy sources such as coal or 
natural gas (the average cost of electricity is about 7.7 c/kWh for 1300 
kWh in the electric co-op in this study).

Table 2 
Estimates of the treatment effect using different DiD methods.

(1) 
TWFE DiD

(2) 
CSDiD

(3) 
CSDiD2

(4) 
Stacked DiD

ATT − 16.01 − 3.86 − 3.13 − 18.11
[− 39.99, 
7.96]

[− 42.41, 
34.69]

[− 39.14, 
32.88]

[− 41.14, 
4.93]

N 99,721 53,256 53,256 63,499
Control Y Y Y Y
Matched Y Y Y Y
Balanced N Y Y Y

Column (3): ‘not yet treated’ as control. Column (4): 12 months of event win
dow.
Standard errors are clustered at the household level. 95 % confidence intervals 
are in brackets.
The results show no significant consumption change post-adoption across 
different estimations.

Fig. 5. Estimated ATT by cumulative months since adoption of community solar programs. 
(Note: 90 % confidence intervals are presented. CSDiD: ‘never treated’ as control group. CSDiD2: ‘not yet treated’ as control group).

Table 3 
Estimates of the treatment effect on monthly bill and average price using 
different DiD methods.

Monthly Bill ($) Average Price ($/kWh)

(1) 
TWFE DiD

(2) 
CSDiD

(3) 
TWFE DiD

(4) 
CSDiD

ATT 4.58*** 4.60* 0.01*** 0.01***
(1.15) (2.06) (0.00) (0.00)

N 99,721 53,256 99,721 53,256
Control Y Y Y Y
Matched Y Y Y Y
Balanced N Y N Y

Columns (2) and (4): ‘never treated’ as control.
Standard errors are clustered at the household level and in parentheses.
The results show consumers pay about $4.6 more post-adoption.
*p < 0.05, **p < 0.01, ***p < 0.001.

19 The co-op has not changed its marginal electricity price or service charges 
during the analyzed period, and the other fees remained largely unchanged as 
well.

20 This value does not represent the exact average price of electricity; the 
average price shown in Table A4 provides a more accurate reflection of elec
tricity cost, which also shows a 1c/kWh increase. As a comparison, the average 
price of control group is 10.8 c/kWh, and tier 3 pricing is 6.45 c/kWh in winter 
and 10.58 c/kWh in summer.
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5.2. Consumption responses during summer

We shift our attention to customers near the upper thresholds of the 
highest electricity tier particularly during the summer when solar elec
tricity becomes cheaper. In these months, with abundant solar radiation, 
customers could anticipate that electricity generated from solar blocks 
would be higher than usual.

Fig. 7 shows that the co-op in our study offers a three-tier, increasing 
block price rate schedule for residential customers, with different prices 
for tiers 2 (consumption range of 500 kWh – 1000 kWh) and 3 (over 
1000 kWh) for winter and summer. For those typically consuming just 
above tier 3 (10.58 cents/kWh in summer) at around 1000 kWh, ample 
solar generation during the summer can lower customers’ marginal cost 
of traditional electricity to tier 2 (9 cents/kWh) by deducting the solar 
generation so that electricity consumption is below the 1000 kWh 
threshold. As a result, they might be encouraged to increase their overall 
electricity consumption during the summer. To explore this behavioral 
response, we focus specifically on the summer months, limiting the 
analysis to adopters whose average monthly consumption was between 
950 and 1250 kWh prior to subscription, alongside a control group 
within the same range. Given the smaller sample size and unbalanced 
panel data, we employ the TWFE DiD model with household and year 
indicators for this subset analysis.

As expected, during the summer months, consumers who slightly 
exceeded the tier 3 threshold increased their total consumption by 47 to 
74 kWh (Table 4).21 With solar generation during these months aver
aging around 200 kWh, customers are still likely able to lower their 
overall usage enough to qualify for tier 2 rates and achieve savings even 
with a slight increase in total consumption. However, consumers may 
adjust their behavior in response to fluctuations in solar generation and 
changes in marginal electricity prices.

5.3. Heterogeneity analysis and switchers

We also examine whether treated individuals with different features 
respond heterogeneously to the adoption. We test different numbers of 
solar blocks and counties, which are included as a dummy variable Ri in 
Eq. (4). The results in Table A5 indicate that consumption does not vary 
across customers with different numbers of blocks. This contrasts with 
the findings of Jacobsen et al. (2012) that observed slightly varying 
behavioral responses among participants with minimum threshold 
levels (one block) and those who purchase more green electricity (two or 
more blocks). Additionally, the results show no meaningful variation in 
responses among different neighborhoods. 

usagei,t = αi + γt + βDiDCommi × Subt ×Ri + θWi,t + ui,t (4) 

We explore the consumption behavior of switchers (those who opt in 
and then out of the community program) separately, limiting the dataset 
to only switchers and a matched control group22 with static TWFE DiD. 
Table 5 shows that this subset of community solar customers did not 
alter their electricity consumption patterns when joining the community 
solar program; however, they experienced an increase in electricity 
consumption after opting out of the program. Different consumption 
responses between opt-in and opt-out are noticeable. Switchers might 
have different characteristics from non-switchers; for instance, they are 
more price-sensitive. They might realize the premium they are paying 
for solar electricity and decide to switch back to cheaper energy sources, 
which triggers their increased consumption after opting out.

5.4. Price change of solar block

In February 2018, the co-op reduced the price of one block of solar 

Fig. 6. Comparison between average monthly price of solar electricity ($/kWh) and electricity from traditional sources. 
(Note: Summer and Winter average rates are an average of the three tiers’ rates. In other words, it is the average price of electricity for those who consume 
1500 kWh.)

21 We also estimated the overall treatment effect for different threshold co
horts. The estimation results shows that the overall effect is not discernible from 
zero, which adds evidence for the summer effect, not the general tier-3 effect.

22 The control group here is matched to switchers, therefore, it is a subset of 
the control group used in the previous analyses.
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panels from $25 (on average 12.3 c/kWh) to $22 (on average 10.8 c/ 
kWh),23 with an announcement to customers via email and letter. For 
the treatment group, we test whether the price reduction of solar elec
tricity led to a change in consumption as in Eq. (5). 

usagei,t = αi + summert + θWi,t + βblockPDt + ui,t (5) 

In the model in Eq. (5), αi represents the household fixed effect and 
PDt is an indicator for months after the price changed, starting from 
February 2018. We also include weather variable Wi,t, and an indicator 
for summer summert (June to October, where summer rates apply) to 
account for high monthly variation and seasonality in consumption. We 
limit the sample to the treated group, those who subscribed at least 
seven months (one month before the six-month window) prior to the 
price changed, i.e., those who subscribed to the program before August 
2017.24

As expected, we find a slight increase in consumption after the price 
drop. Demonstrated in Table 6, for the six months after the price drop, 
consumers increased their consumption by about 24 kWh per month 
(less than 2 % given average monthly consumption of 1318 kWh).

Fig. 7. Rate schedule for residential customers in the co-op.

Table 4 
Estimates of the treatment effect on consumption in summer months among 
consumers in the tier 3 threshold.

(1) 
June

(2) 
July

(3) 
August

(4) 
September

(5) 
October

ATT 47.0+ 73.8+ 67.7+ 55.0 22.9
(26.1) (39.6) (40.0) (34.8) (25.3)

N 1755 702 1022 1388 1854
FE Y Y Y Y Y
Control Y Y Y Y Y

Standard errors are clustered at the household level and in parentheses.
Consumption behavior changes during summer times for those who consumed 
near the tier-3 price threshold.

+ p < 0.1.

Table 5 
The DiD estimates of switchers who opted in and out.

(1) 
Total

(2) 
Opting in

(3) 
Opting out

ATT 74.82** − 15.78 141.8***
(26.63) (35.01) (33.17)

N 7887 6284 6937
FE Y Y Y
Control Y Y Y

Standard errors are clustered at the household level and in parentheses.
While no consumption change is observed when they sign in to the community 
solar program, switchers increase consumption when they opt out of the pro
gram.
*p < 0.05, **p < 0.01, ***p < 0.001.

Table 6 
The result of regression discontinuity in time 
considering a block price change.

(1)

PDt 23.68+

(12.25)

N 3888
FE Y
Control Y

Standard errors are clustered at the house
hold level and in parentheses.
Consumers respond to price changes in solar 
blocks and increase consumption when 
block prices drop.

+ p < 0.1.

23 Average monthly electricity generation per block was 203kWh in 
2018–2023.

24 Data limited to a balanced panel, i.e., adopters who subscribed to the 
program prior to August 2017 and have monthly consumption dataset for 
August 2017 – July 2018.
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6. Discussion and conclusion

Consumption response to different electricity sources is a crucial but 
understudied area in the penetration of electricity generated from 
renewable energy sources such as solar or wind. This study investigates 
electricity consumption following participation in the community solar 
program, an alternative way to adopt solar electricity. We observe that 
customers do not change their consumption patterns after subscribing to 
the community solar program. In contrast to other research that shows a 
strong rebound effect when solar panels are installed, we do not observe 
this effect when solar energy is procured through a community solar 
program or green purchasing program. The finding suggests that this 
type of community solar program is not associated with an increase in 
demand for electricity. Further research should continue to explore the 
relationship between consumption behaviors and the design of pricing 
models to deliver renewable electricity.

Another avenue for future research is the relationship between 
consumption behavior and the share of electricity coming from renew
able energy sources. Compared to the average size of rooftop solar (e.g., 
6.6 kW in Qiu et al., 2019), the sizes of solar blocks in community solar 
are typically smaller (e.g., 1 kW per block in our study), resulting in a 
lower share of renewable electricity. By contrast, in certain community 
solar or green electricity programs, consumers can receive up to 100 % 
of their electricity from renewable energy sources. Previous studies have 
found varying behavioral responses with respect to the amount of 
renewable electricity generated. For instance, Aydın et al. (2023)
observe that households with higher solar production tend to exhibit a 
stronger rebound effect. Investigating how the proportion of renewable 
energy in total electricity consumption influences consumer behavior 
could provide valuable insights into the link between energy sources and 
consumption patterns.

We also find consumers pay about 3–4 % of their monthly bill on 
average, equivalent to a 1 c/kWh increase in the average price, sug
gesting the need to reconsider the argument that community solar 
projects are an equitable alternative to rooftop solar. Because of its 
accessibility and lower financial barriers (e.g., no cost to install panels), 
community solar has been considered a solution for equitable access to 
solar by reducing hurdles such as housing and cost barriers in rooftop 
solar panel installation (Michaud, 2020; O’Shaughnessy et al., 2024). 
However, our analysis shows, for this program, solar adopters bear the 
cost of adoption through their bills. In addition, the price of solar elec
tricity in community solar programs may cast doubt on its ability to 
serve as an equitable solution. As explained in Fig. 6, the average price of 
solar electricity is more expensive than the retail price of electricity from 
traditional energy sources in this co-op. This cost disparity could deter 
participation among those who might already be unable to install solar 
panels and access solar electricity due to financial and other barriers. It 
remains unclear whether other community solar programs have similar 
price premia associated with participation and this is an area for future 
investigation.

Considering the higher costs of solar electricity for community solar 
programs found in our analysis, the role of regulation and policy should 
be re-examined, especially among low-income households who have a 
high energy burden. A few states have taken steps to encourage their 
participation by implementing policies specifically targeting low and 
middle-income households. For instance, Maryland included 125 MW of 
carveout for low and middle-income households when the state intro
duced a community solar pilot program in 2017 (Fekete, 2020). 
Financial subsidies might be necessary to bridge the gap between solar 
electricity prices from community solar programs and those of other 
energy sources. Colorado has been awarded $156 million of funding and 
announced the Colorado Solar for All (COS4A) to support low-income 
residents with all varieties of solar electricity, from rooftop solar to 
community solar (Colorado Energy Office, 2024). Also, various pricing 
structures for solar electricity, such as flat rate or varying rates, could be 

considered.
This study bears several limitations, mostly due to data constraints. 

The most crucial drawback of analyzing solar electricity adoption and 
consumption data is selection bias. There might be several unobserved 
factors affecting both the decision to adopt and consumption behavior 
post-adoption, such as environmental awareness or customers’ pre
determined plan to increase their electricity consumption (Beppler et al., 
2023; Qiu et al., 2019). This study uses matching to find customers in the 
control group who show similar consumption behavior to the treatment 
group pre-adoption, on the assumption that consumption behavior post- 
adoption is correlated with pre-adoption patterns, though this approach 
cannot address anticipatory effects if adopters were already planning to 
increase electricity consumption.

Second, it is difficult to empirically test the underlying mechanism 
driving the behavioral change post-adoption. Even though several non- 
monetary drivers can potentially explain the behavioral change, proving 
their influence on actual consumers is impossible given data limitations. 
Additional data such as household-level characteristics or interviews 
with adopters, on top of appliance-level consumption data, might reveal 
mechanisms driving behavioral change.

Lastly, the external generalizability of the findings is unclear, as it 
focuses on one community solar program of an electric co-op in the 
Southeastern U.S., which may not be similar to the designs of other 
community solar programs. While we believe that this community solar 
program is a common type of community solar program in the U.S., 
consumption behaviors may differ depending on the design of commu
nity solar programs (e.g., fixed monthly block price or c/kWh price 
premium for solar electricity), the residential rate structure (e.g., 
increasing block pricing or dynamic pricing), regional factors (e.g., 
places with abundant solar radiation or not), and electricity regulations 
(e.g. places that allow third-party contracting for community solar). 
Further research on different community solar programs will enhance 
our understanding of consumption behavior with solar electricity.

Despite limitations, this study broadens the understanding of con
sumer behavior by analyzing prevalent but under-studied community 
solar electricity programs in the context of the Southeastern United 
States. This study contributes to an emerging literature on the rela
tionship between consumer behavior and different electricity sources, 
providing evidence that consumer response might differ even for the 
same solar electricity compared to rooftop solar. This research will help 
utility planners understand the changing demand due to renewable 
energy adoption. Also, this study provides implications for equity con
cerns in household solar adoptions, highlighting the rate structure of 
community solar programs that have been considered an equitable 
alternative to rooftop solar.
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Appendix A. Appendix

Fig. A1. Monthly consumption of the matched control group and treated group before and after the subscription. Panel A: first adopter (subscription in December 
2016), Panel B: second-wave adopter (subscription in August 2017).

Table A1 
Descriptive statistics.

Variable Mean Std. Dev. Min. Max. N

Monthly Consumption
Treated (excluding switchers) 1318.10 741.67 198 4100 58,612
Treated (switchers only) 1329.27 706.89 199 4095 4666
Control - total 1212.84 706.76 35 3843 199,594
Control - matched 1324.31 736.02 35 3841 52,437

Monthly Bill
Treated (excluding switchers) 138.74 72.58 24.82 522.48 58,612
Control - matched 137.36 77.17 15.2 493.92 52,437
Cooling Degree Days 104.58 98.50 0.1 305.15
Heating Degree Days 126.87 129.96 0.00 478.85

Table A2 
Estimation of treatment effect using static TWFE DID.

(1) 
without matching

(2) 
with matching

ATT − 15.78 − 16.03
[− 37.24, 5.68] [− 40.00, 7.95]

N 231,018 99,721
Control Y Y
FE Y Y

Standard errors are clustered at the household level.
95 % confidence intervals are in brackets.

Table A2 compares estimates with and without matching using the basic TWFE model. The table shows consistent results with and without limiting 
the dataset to matched samples via the CEM algorithm. 
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Fig. A2. Event studies result of different DiD estimates. (Note: 95 % confidence intervals are presented).

Table A3 
Regression results of event studies using different DID estimates. The results correspond to Fig. A2.

time before/after the adoption (1) 
CSDiD

(2) 
Stacked DiD

(3) 
TWFE DiD

− 6
− 13.94 
(16.60)

− 49.72 
(28.16)

− 47.77 
(23.71)

− 5 − 6.30 
(20.80)

− 38.03 
(31.46)

− 37.16 
(23.19)

− 4 − 2.89 
(18.09)

− 31.80 
(34.62)

− 21.70 
(21.55)

− 3
11.60 
(15.08)

− 39.86 
(31.15)

− 18.77 
(18.02)

− 2
− 5.29 
(16.81)

− 24.83 
(28.08)

− 5.70 
(13.85)

− 1 17.36 
(19.37)

. .

0 36.94 
(23.24)

− 2.27 
(28.64)

19.86 
(16.79)

1
56.30 
(32.06)

34.53 
(35.36)

28.12 
(22.11)

2
42.59 
(30.19)

9.65 
(32.44)

23.80 
(21.80)

3 37.11 
(28.91)

− 4.11 
(32.62)

1.29 
(22.41)

4 8.99 
(28.47)

− 39.79 
(30.31)

− 22.73 
(22.39)

5
− 17.73 
(26.32)

− 37.29 
(30.07)

− 50.66*
(23.33)

N 53,256 55,297 55,103
FE Y Y Y
Control Y Y Y

Column (2): 6 months of event window.
Standard errors are clustered at the household level and are in parentheses.

* p < 0.05.
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Table A4 
Estimates of the treatment effect on monthly bill and average electricity price 
excluding fixed charges.

Monthly Bill ($) Average Price ($/kWh)

ATT 5.74*** 0.01***
(0.88) (0.00)

N 92,192 92,192
Control Y Y
Matched Y Y

Standard errors are clustered at the household level and in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

The monthly bill for general customers of the co-op consists of four components: (1) an Energy Charge based on usage at a rate of cents per kWh, (2) 
a fixed Service Charge of $25 per month, (3) a Wholesale Power Cost Adjustment (WPCA) charge of cents per kWh to account for the difference 
between actual and projected electricity costs, and (4) a Wallet Watch Credit (WWC) of cents per kWh credited to customers. Table A4 presents 
monthly payments that exclude the Service Charge, WPCA, and WWC, only including the Energy Charge.

Table A5 
The treatment effect among customers with different numbers of blocks 
subscribed (column 1) and with counties (column 2).

(1) 
Num. of blocks

(2) 
County

One Block
− 14.21 
(14.30)

Two Blocks
− 17.57 
(16.92)

County 1 − 31.59 
(54.33)

County 2
− 9.16 
(21.49)

County 3
− 10.00 
(19.50)

County 4 − 54.59 
(32.32)

County 5 − 5.29 
(18.01)

N 99,721 99,721
FE Y Y
Control Y Y

Standard errors are clustered at the household level and in parentheses.
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Fig. A3. Monthly usage, bill, and average price before and after the adoption (first adopters only).

Fig. A4. Average monthly consumption before and after COVID among control group.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2025.109079.

Data availability

The data used in this study is confidential, though the authors are 
willing to share the code used in the analysis.
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