

REVIEW ARTICLE

OPEN ACCESS

The gatekeepers of global health knowledge: A systematic review of diversity in editorial boards

Salma El-Gamal^{a,1}, Aidan Desjardins^{b,1}, Sarah A. Savić Kallesøe^{c,1}, Blanca Paniello-Castillo^{d,e}, Salman F. Khan^{f,g,2}, Hoda K. Hassan^{h,2}, Razan Othman^{d,i,j}, Arthur Wyns^k, Galiya Chenault^l, Ahmad Abbadi^m, Bailey Atkinsonⁿ, Fajembola Azeezat^o, Awwalu Baba Usman^p, Katrina C. Ceballos^q, Andrew Chan^r, Shubham Gupta^s, Parnian Khorsand^t, Jiaqi Li^u, Rugma M^v, Sherifath Mama Chabi^w, Poorvaprabha Patil^{x,y,z}, Manon Pigeolet^{a,a}, Charlotte Rendina^{ab}, Mehr Muhammad Adeel Riaz^{ac}, Ander Santamarta-Zamorano^{ad,ae}, Pratishtha Singh^{af}, Lamed Tatah^{ag}, Meelan Thondoo^{ag}, Ahmed S. I. Oudah^{ah}, Kai-Ti Wu^{ai,aj}, Sara Dada^{ak,al} and Kim R. van Daalen^{am,an}

^aInternational Labour Organization, Geneva, Switzerland; ^bSchool of Biological Sciences, Queen's University Belfast, Belfast, UK; ^cEthox Centre, Department of Population Health, University of Oxford, Oxford, UK; ^dISGlobal, Barcelona, Spain; ^eUniversitat Pompeu Fabra (UPF), Barcelona, Spain; ^fJindal School of Public Health and Human Development, O.P. Jindal Global University, Sonipat, India; ^gReAct Asia Pacific, Global Institute of Public Health, Ananthapur Hospitals and Research Institute, Thiruvananthapuram, Kerala, India; ^hIndependent Public Health Consultant, Cairo, Egypt; ⁱUniversitat de Barcelona (UB), Barcelona, Spain; ^jThe National Ribat University, Khartoum, Khartoum, Sudan; ^kMelbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia; ^lDuke Global Health Institute, Durham, NC, US; ^mDepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden; ⁿMRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK; ^oWomen in Global Health, Abuja, Nigeria; ^pDepartment of Public health, Tuberculosis and Leprosy Control Program, Ministry of Health, Adamawa State, Yola, Nigeria; ^qPlanetary Health Philippines, Manila, Philippines; ^rUniversity Hospitals Sussex NHS Foundation Trust, Chichester, UK; ^sHealth, Nutrition and Population, The World Bank, New Delhi, India; ^tPeriod Futures, Wish for Wash, Atlanta, GA, US; ^uDepartment of Medicine, Stanford University School of Medicine, Stanford, CA, US; ^vIndependent Researcher, India Health Policy and System Research, New Delhi, India; ^wIndependent Researcher, Public Health Nutrition, Health System Research, Cotonou, Benin; ^xDepartment of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India; ^yChildren, Cities and Climate Action Lab, London School of Hygiene and Tropical Medicine, University of London, London, UK; ^zWorld Health Organization Collaborating Centre for Emergency, Critical and Operative Care, Program for Global Surgery & Trauma, The George Institute for Global Health, New Delhi, India; ^{aa}The Program in Global Surgery and Social Change, Department of Global Health and Social Medicine, Harvard Medical School, Boston, US; ^{ab}Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; ^{ac}London School of Economics and Political Sciences, London, United Kingdom; ^{ad}The Coombe Women and Infants University Hospital, Dublin, Ireland; ^{ae}Michael Smurfit Graduate Business School, University College Dublin, Dublin, Ireland; ^{af}The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; ^{ag}MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK; ^{ah}Faculty of Medicine, Zagazig University, Zagazig, Egypt; ^{ai}Department of Geography, Faculty of Mathematics and Natural Science, Humboldt University of Berlin, Berlin, Germany; ^{aj}European Citizen Science Association, Berlin, Germany; ^{ak}School of Nursing, Midwifery and Health Systems, University College Dublin, Dublin, Ireland; ^{al}School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; ^{am}Department of Public Health and Primary Care, British Heart Foundation Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK; ^{an}Heart and Lung Research Institute, University of Cambridge, Cambridge, UK

ABSTRACT

Editorial boards (EBs) can shape global health research by determining what is published, which methods are legitimised, and whose knowledge is prioritised. The persistent underrepresentation of scholars from minoritised backgrounds raises concerns about which researchers and types of knowledge may be systemically disregarded. This review consolidates all evidence on EB diversity, highlighting how power and representation are distributed in global health publishing. Five databases were searched from inception to 30 July 2025, with no language restrictions. Eligible studies included primary, peer-reviewed, quantitative studies examining diversity among EB members in global health journals. Of the 266,669 records screened, 226 specifically

ARTICLE HISTORY

Received 30 July 2025
Accepted 6 December 2025

KEYWORDS

Diversity; academia; global health; medicine

CONTACT Kim R. van Daalen krv22@cam.ac.uk Victor Phillip Dahdaleh Heart & Lung Research Institute, Cambridge Biomedical Campus, Papworth Road, Cambridge, UK; Salma El-Gamal salma.elgamal234@gmail.com International Labour Organization, Rue des Morillons 4, Geneva, Switzerland

¹These authors contributed equally as first authors.

²These authors contributed equally as third authors.

 Supplemental data for this article can be accessed online at <https://doi.org/10.1080/17441692.2025.2602342>.

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

addressed EBs, analysing a median of 15 (IQR: 5.0, 41.0) journals and 859 (IQR: 374.0, 2754.0) editors. Most studies examined gender ($n=213$) and geographic representation ($n=53$), with limited assessment of race and ethnicity ($n=16$), academic rank ($n=12$), sexual orientation ($n=3$), and disability ($n=1$). Despite incremental gains, EB members and editors-in-chief were predominantly men based in high-income countries, particularly the US. A supplementary analysis of 603 studies on global health authorship found similar patterns. The composition of EBs reflects and may perpetuate systemic epistemic inequities. Addressing this requires structural reform beyond improving representation to ensure meaningful inclusion, accountability, and equitable governance.

Introduction

Editorial Boards (EBs) manage and shape manuscript submissions, implying their ability to influence scientific research by deciding what is published, which methods are legitimised, and whose knowledge is prioritised. As so-called '*gatekeepers*' of academic publishing, their composition substantially influences the direction of research, knowledge dissemination, and the establishment of potential collaborative networks and funding flows (Crane, 1967). Diverse editorial expertise and epistemic perspectives are essential for upholding rigorous and contextually relevant scientific processes. Conversely, skewed EB participation risks reinforcing systemic disparities in knowledge production and dissemination and perpetuating a status quo that benefits more privileged scholars over those from minoritised backgrounds (Abimbola, 2019; Espin et al., 2017; Pike et al., 2017). At a structural level, academic influence remains concentrated among a relatively homogenous minority of institutions, regions, and individuals. Meanwhile, those most affected by global health inequities - whose contexts often serve as sites of data extraction and *parachute science* - are routinely marginalised in knowledge production, despite the key expertise, perspectives, and lived experiences they hold. This persistent underrepresentation, along with the exclusion of diverse epistemologies, is rooted in legacies of colonialism, global disparities in resource allocation, and unequal socio-economic advancements (Abraham et al., 2020; Busse & August, 2020).

As a discipline, global health is committed to advancing health equity through inclusive, interdisciplinary, and collaborative approaches. Yet, academic global health often falls short of these ideals, with knowledge production, dissemination, and learning typically shaped by a '*White, Western*' lens. This has been well documented by studies exploring diversity across aspects of academic global health. Illustratively, analyses of 591 public health and environmental sciences EBs found that 75.5% were majority men (>55% men), and 84% of 27,772 editors were based in high-income countries (HICs) (Dada et al., 2022). Comparable patterns have been observed in authorship, funding allocation, and academic conference participation (Abraham et al., 2020; Busse & August, 2020). In response, there is a growing movement to redress power asymmetries and decolonise academic spaces (Bhakuni & Abimbola, 2021; Sheikh et al., 2017). Transforming EB structures and practices is a crucial step towards driving this process. Such reform is not merely a matter of representational justice, but a necessary condition to improve the impact of global health research (Perez-Sepulveda et al., 2025).

To date, no study has systematically synthesised the available evidence on EB diversity across global health journals. This Review addresses that gap by analysing the full body of literature on EB composition within the field. It examines a broad range of individual and demographic characteristics, including sex, gender identity, race, ethnicity, location of residence (or affiliation), sexual orientation, and disability. In doing so, this review maps patterns of representation, and further contextualises findings by discussing the extent to which EBs could reflect or reproduce broader structural inequities in knowledge production and dissemination.

Methods

The protocol was prospectively registered with OSF (CODE) (El-Gamal et al., 2023). As described, this review initially intended to synthesise literature on EB diversity as well as authorship diversity. Due to the large volume of relevant publications, this work focuses primarily on EB diversity publications and provides

supplementary analyses on authorship diversity. Findings were reported following the PRISMA guidelines (**Supplementary Table 1**) (Moher et al., 2009; Page et al., 2021).

Search strategy

Five electronic databases were searched (PubMed, EMBASE, SciELO via WoS, Global Health via CABI, WHO Global Index Medicus including AIM, IMEMR, IMSEAR, LILACS), using search terms related to 'global health', 'diversity', and 'academic research'. The database was initially searched from inception to 16 March 2023 and subsequently updated to 30 July 2025. All EB data were updated accordingly, while the supplementary authorship dataset remains based on the 2023 search. The full search strategy for each database is included in **Supplementary Table 2**. Forward and backward screening of included records in full-text screening was conducted to identify additional records meeting the inclusion criteria.

Study selection and definitions

After deduplication in Endnote, titles and abstracts were independently double-screened in Covidence following the selection criteria by 30 researchers (given the volume of search results), and subsequently in full-text. Conflicts at any stage were resolved by a third arbitrator. The key definitions (El-Gamal et al., 2023) are described in **Supplementary Table 3**. In the title-abstract and full-text screening, we included primary peer-reviewed quantitative studies that report on diversity in EBs and authorship in the field of global health academic research. We excluded studies (1) on diversity in participation in global health in areas other than academic research, such as global health programme implementation, global health policy, or the clinical global health workforce, (2) in non-academic settings such as pharmaceutical companies' reports, and (3) on diversity in the participation in terms of research participants (e.g. diversity in a cohort, case-control study and randomised control trials). We further excluded studies with (4) only a qualitative component, (5) a secondary study design or that reported on data already included in another study, and (6) conference proceedings, and (7) studies that lacked access to the full text after contacting the authors. Given the large number of studies included after full-text screening, this publication focuses on EBs, and briefly summarises findings related to authorship diversity. All non-English records were reviewed by a fluent speaker from our research team, which included members proficient in Arabic, Catalan, Dutch, English, Farsi, French, German, Hindi, Italian, Kannada, Kazakh, Malayalam, Mandarin Chinese, Marathi, Spanish, and Russian.

Study quality assessment

The quality of the studies was appraised using a bespoke quality appraisal tool developed by the authors, based on pre-existing tools (CASP UK, 2024; Sterne et al., 2016; Wells et al., 2021). This tool included elements relating to the study objectives, methodology, data collection and analysis, ethical considerations, and reporting to contextualise the evidence presented in the included studies. No summary scores were presented, as they can oversimplify important differences between studies in bias, contextual factors, and quality.

Data extraction and synthesis

A piloted data extraction form was developed to facilitate the extraction of relevant information in Covidence. Data were independently extracted and subsequently checked by two researchers. Discrepancies were adjudicated by consensus. Extracted information included: author, title, study design, study methods, time period, journals included, number of EB members, field of EBs, diversity outcomes assessed, methods of individual characteristic ascertainment, and results. Studies were categorised as cross-

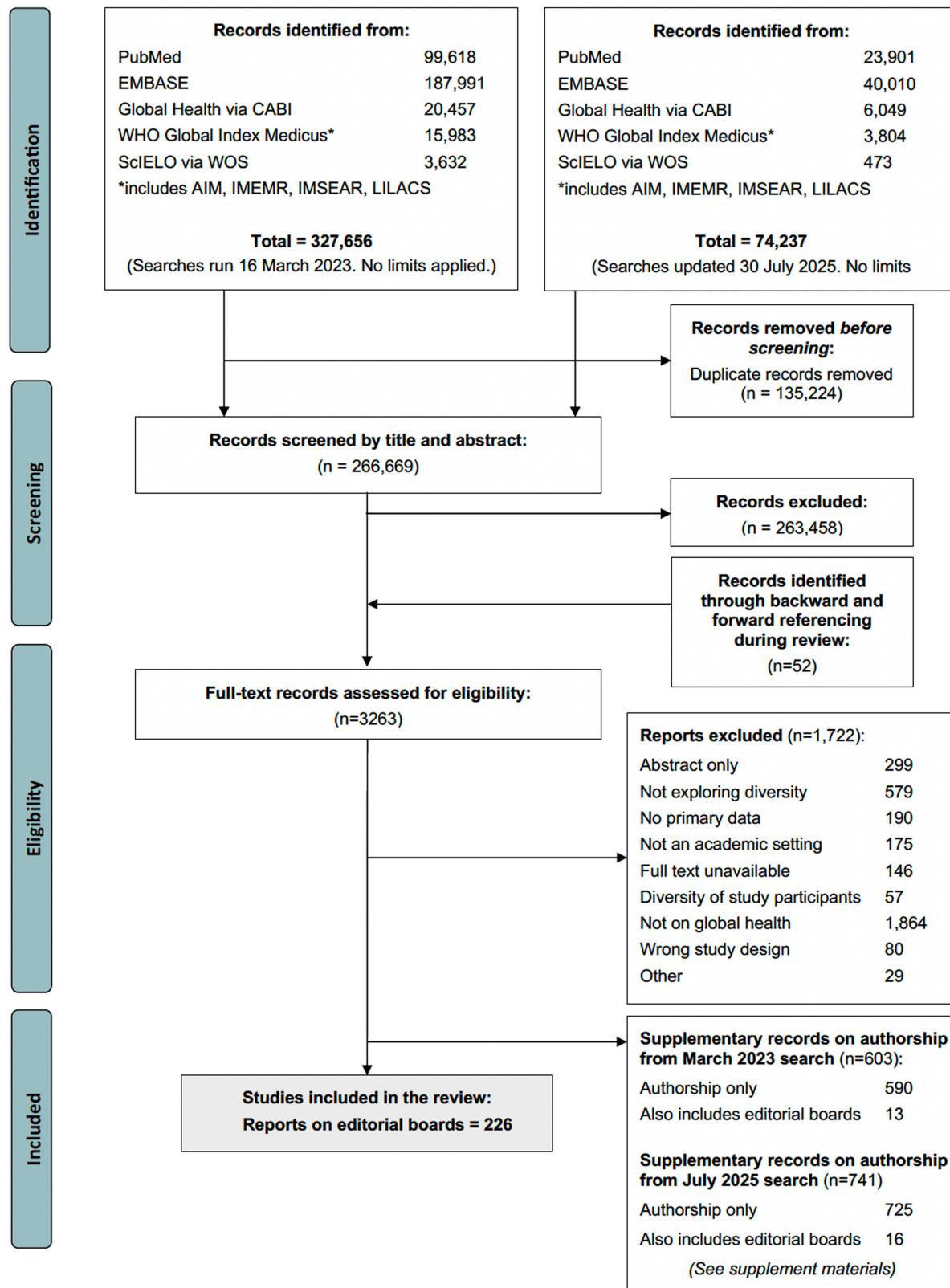
sectional or longitudinal based on their methodologies. An open field to record additional relevant information was also available.

Due to heterogeneity (in outcome definition, methodology, study design) evidence was synthesised narratively. In the descriptive analysis, groups were classified as 'minority' if they accounted for less than 45% of the EB. This applied to gender, race and ethnicity (Black et al., 2023; JAMA Network, 2023), and geographic location.

Inferring gender and geographic diversity in the authorship of included studies

The first and last author names and institutional affiliations (including city and country) of each included publication were extracted. Each country was assigned to their corresponding 2024–25 World Bank country region and income group (World Bank Data, 2024). Of the 226 included publications, one was excluded due to equal group authorship, yielding 236 first and 225 last authors. Following previously described methods, gender was inferred through gendered language in online biographies (Dada et al., 2022; van Daalen et al., 2024). When gendered language was not available, a name-to-gender algorithm (genderize.io) was used with a cut-off probability of >95%; for 28.3% ($n = 67$) of first authors and 19.1% ($n = 43$) of last authors. Given their poor performance for non-Western names and inability to recognise non-binary identities, such algorithms were used only as a last resort (Lockhart et al., 2023; Sebo, 2022). The gender of 5.1% ($n = 12$) first authors and 2.7% ($n = 6$) last authors, and country of 0.4% ($n = 1$) first authors and 0.4% ($n = 1$) last authors could not be inferred.

Research team


The research team is an internationally diverse group of researchers from different socio-cultural backgrounds (Australia, Belgium, Benin, Cameroon, Canada, Egypt, Germany, India, Ireland, Italy, Jordan, Kazakhstan, Mauritius, Netherlands, Pakistan, Palestine, Philippines, Spain, Sudan, Taiwan, United Kingdom, United States). The team includes anthropologists, biomedical scientists, epidemiologists, global health researchers, health financing specialists, library and information science professionals, midwives, ophthalmologists, orthopaedic surgeons, physicians, social workers, veterinarians, and those in training for these professions (i.e. students). Several members brought experience in examining diversity in global health scholarship or governance (Dada et al., 2022; Gabster et al., 2020; Krithi et al., 2021; Singh et al., 2024; van Daalen et al., 2020, van Daalen et al., 2022, van Daalen et al., 2024).

All analyses and data visualisation were conducted in R version 4.4.1 (www.r-project.org), using tidyverse, dplyr, patchwork, sf, rnaturalearth, and ggplot packages among others.

Results

The database search identified 401,893 publications (Figure 1). After deduplication, 266,669 publications were screened by title and abstract, with 3,263 undergoing full-text screening. 1,540 described diversity in EBs, authorship or both. Among those, 226 publications examined EBs, and formed the primary focus of this review. Table 1 provides a summary of the included studies' characteristics, while Supplementary Table 4 describes each publication and its key findings. The 603 authorship-related publications identified in the first screening round (up to March 2023) are briefly discussed to contextualise broader patterns in global health scholarship.

Most included publications were cross-sectional ($n = 166$), of which 150 had one time point and 15 (Alkhawani et al., 2021; Amering et al., 2011; Bibbins-Domingo et al., 2024; Hsu et al., 2025; Jacobs et al., 2023; James et al., 2023; Keiser et al., 2003; Mathee et al., 2021; McMullen et al., 2022; Nguyen et al., 2022; Olive et al., 2020; Schacher et al., 2025; Starchl et al., 2023; Toney et al., 2023; Ural et al., 2024) had two time points. The remaining publications ($n = 60$) were longitudinal with time-series analyses, of which eight had only three time points (Bissing et al., 2019; Harris et al., 2019; Henderson et al., 2019; Mah et al., 2022; Ravioli et al., 2021; Rynecki et al., 2020; Schrager et al., 2011; Théard et al., 2020). Records were published between 1976 and 2025, with the median year of publication being 2022 (Interquartile Range [IQR]: 2020, 2023). Publications examined a median of 15 (IQR: 5.0, 41.0) journals, 859 (IQR: 374.0, 2754.0) editors, and 39.5

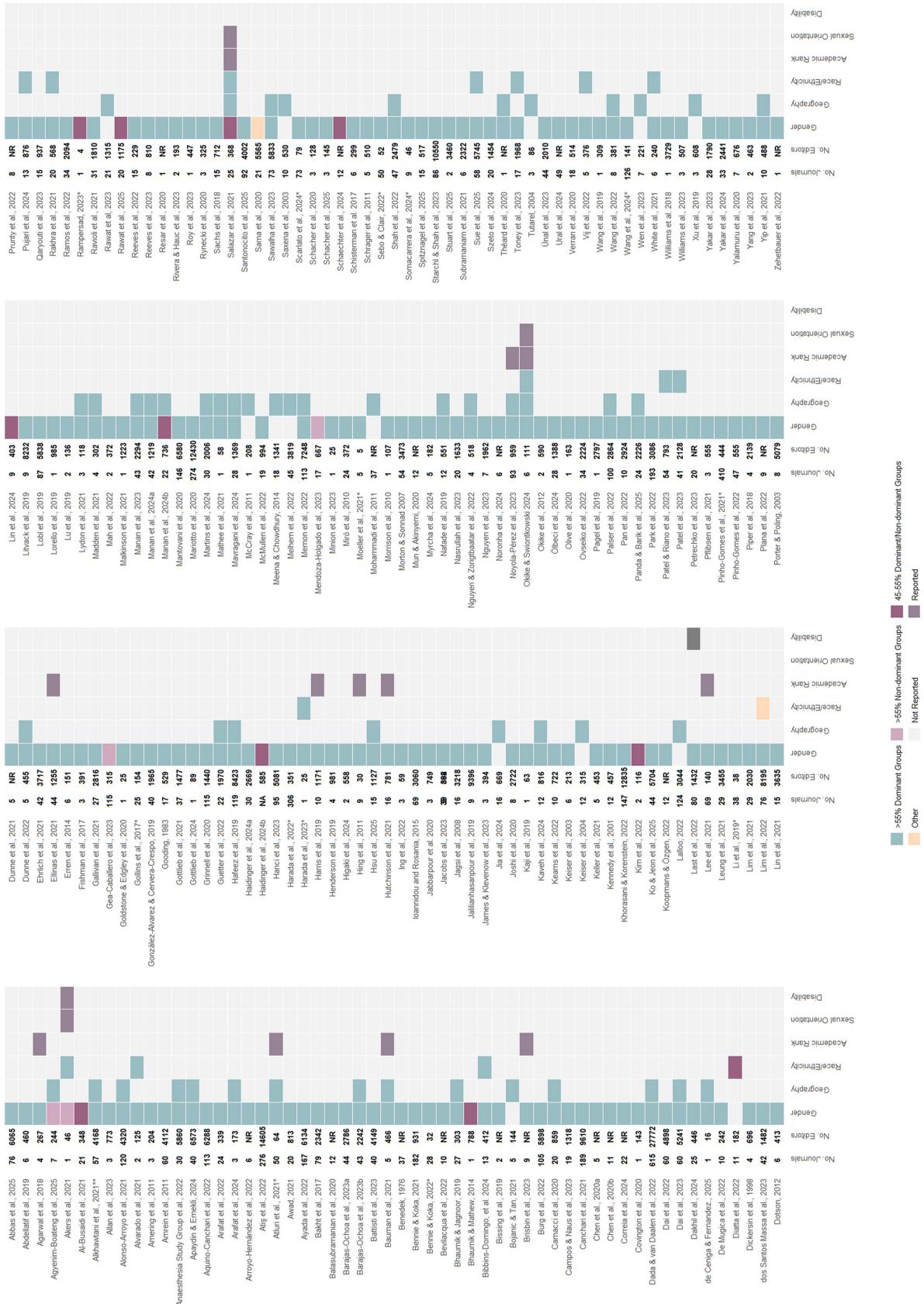
Figure 1. Flow diagram illustrating selection process of included studies.

Table 1. Summary of included studies.

Median no. of journals in study	15 (IQR: 5.0, 41.0) journals
Median no. of editors in study	859 (IQR: 374.0, 2754.0) editors 39.5 (IQR: 16.3, 84.8) editors-in-chief
Study design (n = 226)	Cross-sectional 166 (73.5%) Longitudinal 60 (26.5%)
Diversity focus (n = 226)	Gender 213 (94.2%) Geography 53 (23.4%) Ethnicity or race 16 (7.1%) Academic rank 12 (5.3%) Sexual orientation 3 (1.3%) Disability 1 (0.4%)
Global health disciplines (n = 226)	60 subdisciplines, e.g. General medicine 32 (14.2%) General surgery 14 (6.2%) Psychiatry 12 (5.3%) Orthopaedics 12 (5.3%)
Method(s) of diversity ascertainment (n = 226)	Name inspection 124 (54.9%) Online profiles 134 (59.3%) Language 76 (33.6%) Photo inspection 96 (42.5%) Algorithm 65 (28.8%) Affiliation 44 (19.5%) Survey 9 (4.0%) Contact with editors or EiCs 30 (13.3%) None specified 1 (0.4%) Ethical approval was considered, but not needed. 105 (46.5%) Ethical approval was obtained. 26 (11.5%) Ethical approval is not mentioned. 95 (42.0%)
Does the study mention ethical approval, if relevant?	Majority men 197 (93.4%) Gender parity 10 (4.7%) Majority women 4 (1.9%)
Gender results (n = 213) - Editorial boards	No women 25 (15.8%) Majority men 146 (90.6%) Gender parity 5 (3.2%) Majority women 3 (1.9%)
Gender results (n = 161) - Editors-in-chief	<i>Majority country income group</i> Majority HICs 53 (100%)
Geography results (n = 53) - Editorial boards	<i>Most common country of affiliation (n = 29)</i> United States of America 27 (95.0%) United Kingdom 3 (10.6%) HIC or majority HICs 15 (88.2%)
Geography results (n = 17) - Editors-in-chief	

(IQR: 16.3, 84.8) EiCs. Journals included in each study are listed in **Supplementary Table 5**. Sixty subdisciplines within global health were examined, with most focusing on general medicine (n = 32), general surgery (n = 14) (Abbas et al., 2025; Battisti et al., 2023; Bevilacqua et al., 2022; Campos et al., 2023; De Mugica et al., 2022; Ehrlich, 2021; Gallivan et al., 2021; Harris et al., 2019; Lin et al., 2021; Melhem et al., 2022; Myrcha et al., 2024; Sue et al., 2025; Toney et al., 2023; White et al., 2021) psychiatry (n = 12) (Arafat et al., 2022; Benedek, 1976; González-Alvarez & Cervera-Crespo, 2019; Hafeez et al., 2019; Koopmans & Özgen, 2022; Melhem et al., 2022; Mun & Akinyemi, 2020; Porter et al., 2003; Salazar et al., 2021; Saxena et al., 2003), and orthopaedics (n = 12) (Brisbin et al., 2023; Hing et al., 2011; Meena & Chowdhury, 2014; Okike & Swionkowski, 2024; Okike et al., 2012; Pujari et al., 2023; Ramos et al., 2022; Ravioli et al., 2021; Reeves et al., 2023; Rynecki et al., 2020; Vij et al., 2022; Wen et al., 2023).

Diversity on editorial boards


Publications explored different personal/demographic characteristics, including gender (94.2%; 213/226), geography (23.4%; 53/226), academic rank (5.3%; 12/226) (Agarwal et al., 2018; Atluri et al., 2021; Bauman et al., 2021; Brisbin et al., 2023; Ellinas et al., 2021; Harris et al., 2019; Hing et al., 2011; Hutchinson et al., 2021; Lee et al., 2021; Noyola-Pérez et al., 2023; Okike & Swionkowski, 2024; Salazar et al., 2021), race or ethnicity (7.1%; 16/226) (Akers et al., 2021; Alvarado et al., 2021; Bibbins-Domingo et al., 2024; Diatta et al., 2022; Harada et al., 2023; Lim et al., 2022; Okike & Swionkowski, 2024; Patel et al., 2023; Patel et al., 2023; Pujari et al., 2023; Rakhra et al., 2021; Salazar et al., 2021; Sue et al., 2025; Toney et al., 2023; Vij et al., 2022; White et al., 2021), sexual orientation (1.3%; 3/226) (Akers et al., 2021; Okike & Swionkowski, 2024;

Salazar et al., 2021), and disability (0.4%; 1/226) (Akers et al., 2021), with some exploring multiple dimensions (26.9%; 61/226). The primary combination was gender and geography ($n=41$). Few publications ($n=16$) provided options for editors to self-identify individual characteristics (Akers et al., 2021; Benedek, 1976; Bibbins-Domingo et al., 2024; Dickersin et al., 1998; Gallivan et al., 2021; Hing et al., 2011; Ing et al., 2022; James et al., 2023; Lee et al., 2021; Okike & Swiontkowski, 2024; Okike et al., 2012; Porter et al., 2003; Rawat et al., 2025; Salazar et al., 2021; Ural et al., 2024; White et al., 2021), whilst most publications ($n=85$) used proxy self-identification methods (e.g. based on online biographies) or inference (manual and/or algorithmic) of personal characteristics based on names or photos ($n=130$).

Gender was assessed in 213 (94.2%) publications, with nearly all studies using a binary definition of gender (man/woman). Gender was inferred based on online profiles ($n=132$), first name inspection ($n=122$), photos ($n=94$), gendered language ($n=75$), gender-to-name algorithms ($n=65$), contact with a representative from the EB ($n=30$), or use of a personal survey ($n=9$) (Akers et al., 2021; Benedek, 1976; Bibbins-Domingo et al., 2024; Hing et al., 2011; Lee et al., 2021; Okike & Swiontkowski, 2024; Salazar et al., 2021; Ural et al., 2024; White et al., 2021). Nearly all publications ($n=197$) found that EBs were majority men (>55% men) (Figure 2), whilst few found gender parity (45-55% women) ($n=10$) (Al-Busaidi et al., 2021; Bhaumik & Mathew, 2014; Haidinger et al., 2024; Kim et al., 2022; Lin et al., 2024; Manan et al., 2024; Rampersad, 2025; Rawat et al., 2025; Salazar et al., 2021; Schaechter et al., 2024), and almost none were majority women ($n=4$) (Agyenim-Boateng et al., 2025; Akers et al., 2021; Gea-Caballero et al., 2023; Mendoza-Holgado et al., 2023). Likewise, most publications on EiCs found a majority of men (90.6%, 146/161), with some (15.3%) reporting no woman serving as with EiCs at all (Figure 3) (Agarwal et al., 2018; Bhaumik & Mathew, 2014; Bissing et al., 2019; Covington et al., 2020; De Mugica et al., 2022; Dotson, 2012; Dunne et al., 2022; Goldstone et al., 2020; Gooding, 1983; Henderson et al., 2019; Kaji et al., 2019; McMullen et al., 2022; Moeller et al., 2021; Morrison et al., 2010; Nguyen et al., 2022; Olive et al., 2020; Pagel et al., 2019; Pan et al., 2022; Piper et al., 2018; Plana et al., 2022; Prunty et al., 2022; Resar et al., 2020; Rynecki et al., 2020; Schisterman et al., 2017; Williams et al., 2018). Whilst longitudinal studies indicated modest improvements over the last two decades, substantial disparities remain, particularly in senior roles. Exceptions to these patterns were rare; select paediatrics, occupational health, mental health, and medical education journals demonstrated higher levels of women's representation, which occasionally approached or surpassed parity.

Geographic diversity was assessed in 53 (23.4%) publications. Most reported on multiple levels (country, region, income group) of geographic diversity ($n=31$), whilst others only reported on either country ($n=10$) (Agyenim-Boateng et al., 2025; Alkhawtani et al., 2021; Alonso-Arroyo et al., 2021; Atluri et al., 2021; Barajas-Ochoa et al., 2023; Camacci et al., 2020; Hafeez et al., 2019; Laloo, 2022; Nguyen et al., 2022; Théard et al., 2020), country income level ($n=6$) (Bojanic & Tan, 2021; Guetter et al., 2022; Keiser et al., 2004; Nafade et al., 2019; Rawat et al., 2023; Saxena et al., 2003), or world region ($n=6$) (Bauman et al., 2021; de Céniga & Fernández, 2025; Kaveh et al., 2024; Lydon et al., 2021; Madden et al., 2021; McCray et al., 2011). Geographic location was determined by listed affiliation ($n=44$), or survey ($n=2$) (Okike & Swiontkowski, 2024; Salazar et al., 2021). EBs were overwhelmingly composed of a majority of scholars based in HICs (100%; 53/53), particularly in the United States, Canada, and the United Kingdom. Scholars based in LMICs were often nearly absent, even in journals focused on LMIC-specific health issues. Few studies (16; 7.1%) systematically collected data on race and ethnicity, highlighting a substantial evidence gap. Race or ethnicity were usually inferred by online profiles ($n=9$) (Alvarado et al., 2021; Harada et al., 2023; Lim et al., 2022; Patel et al., 2023; Patel et al., 2023; Pujari et al., 2023; Rakhra et al., 2021; Sue et al., 2025; Vij et al., 2022), personal survey ($n=5$) (Akers et al., 2021; Bibbins-Domingo et al., 2024; Okike & Swiontkowski, 2024; Salazar et al., 2021; White et al., 2021), last names ($n=5$) (Diatta et al., 2022; Harada et al., 2023; Lim et al., 2022; Patel et al., 2023; Pujari et al., 2023), photos ($n=5$) (Diatta et al., 2022; Harada et al., 2023; Patel et al., 2023; Pujari et al., 2023; Rakhra et al., 2021), language(s) spoken ($n=1$) (Rakhra et al., 2021), and a photo-processing-algorithm ($n=1$) (Toney et al., 2023). Findings consistently demonstrated severe underrepresentation of racially and ethnically minoritised scholars (Akers et al., 2021; Alvarado et al., 2021; Rakhra et al., 2021; Salazar et al., 2021; Toney et al., 2023; Vij et al., 2022; White et al., 2021).

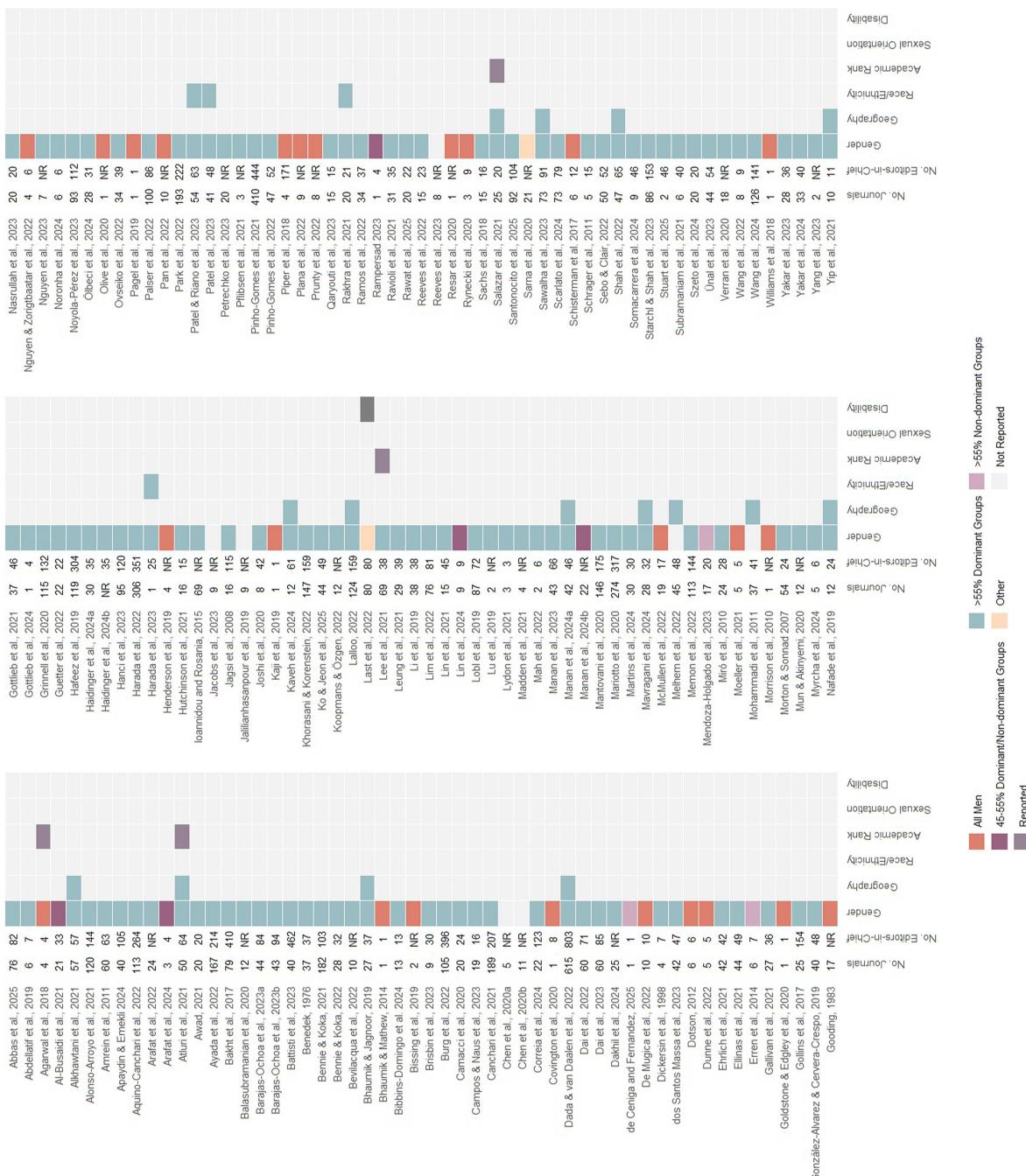

Other individual/demographic characteristics, such as disability and sexual orientation, were hardly examined across the included studies. When included, findings pointed to homogeneity across multiple intersecting dimensions of identity. Diversity in academic rank (i.e. the seniority of editors) was examined in 12 (5.3%) publications, which inspected online (academic) profiles ($n=7$) (Agarwal et al., 2018; Atluri et al., 2021; Bauman et al., 2021; Brisbin et al., 2023; Ellinas et al., 2021; Harris et al., 2019; Hutchinson et al., 2021)

Figure 2. Summary of the individual study results on diversity in EBs ($n = 226$). Dominant groups refer to those typically most represented in global health scholarship- namely, men, scholars based in HICs and white scholars. In contrast, non-dominant groups include those historically underrepresented, such as women, scholars based in LMICs, and individuals

(Caption on next page)

from minoritised racial or ethnic backgrounds. 'Other' was used for Lim et al. (2022) because the study compared the race and ethnicity of EBs identifying as Asian with those identifying as non-Asian, and for Sarna et al. (2020) because the study reported on the underrepresented gender (either women or men) dependent on a specific subdiscipline.

Figure 3. Summary of the individual study results on diversity in editors-in-chief ($n = 163$). Dominant groups refer to those typically most represented in global health scholarship- namely, men, scholars based in HICs and white scholars. In contrast, non-dominant groups include those historically underrepresented, such as women, scholars based in LMICs, and individuals from minoritised racial or ethnic backgrounds.

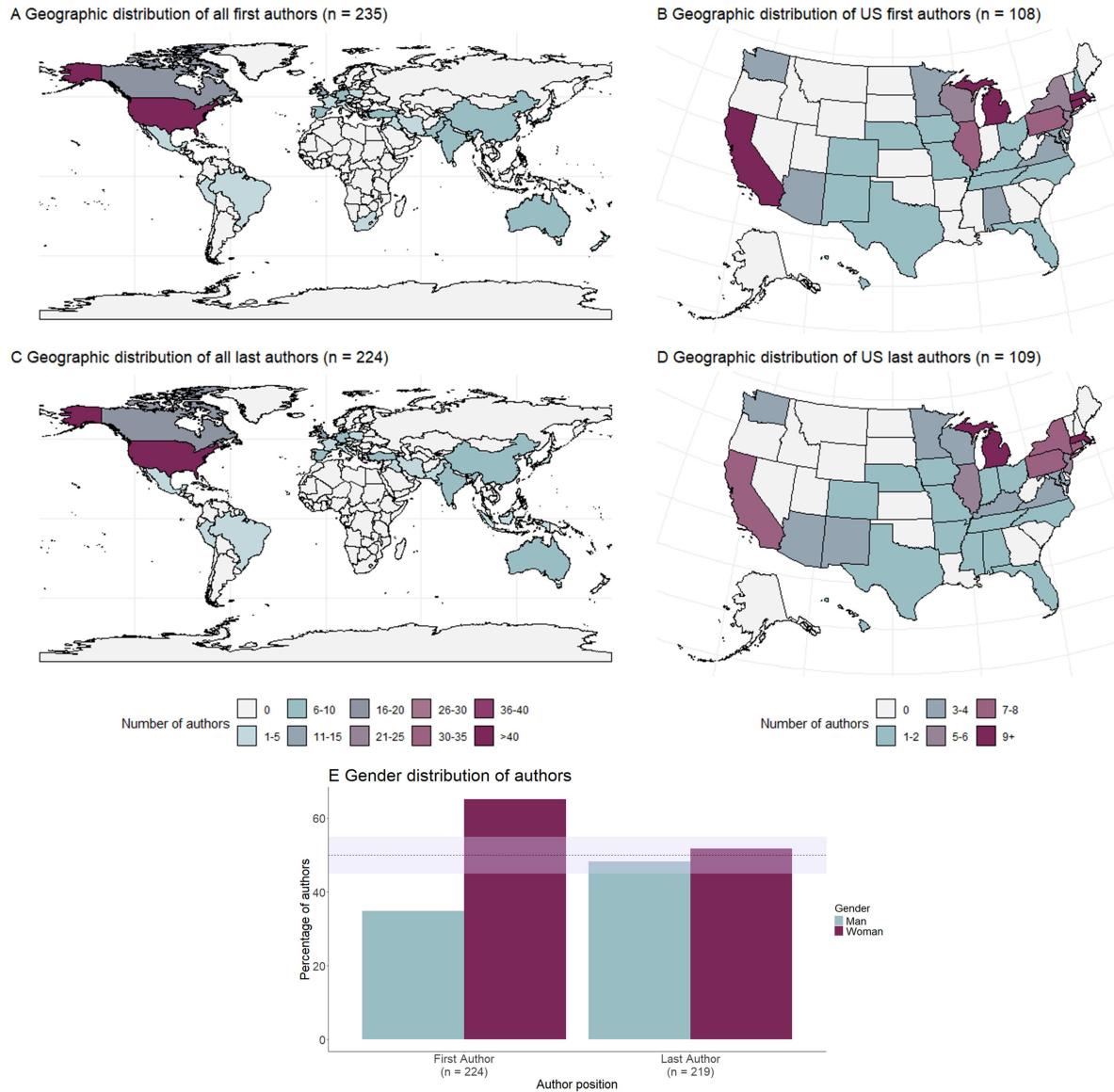
or personal surveys ($n = 4$) (Hing et al., 2011; Lee et al., 2021; Okike & Swiontkowski, 2024; Salazar et al., 2021). Personal surveys were also used to examine sexual orientation (1.3%) (Akers et al., 2021; Salazar et al., 2021) and disability (0.4%) (Akers et al., 2021).

Ethics and study quality

Roughly half of included publications either received ethical approval ($n = 26$) (Bennie & Koka, 2021; Bissing et al., 2019; Brisbin et al., 2023; Chen et al., 2020; Ellinas et al., 2021; Gottlieb et al., 2021; Grinnell et al., 2020; Hancı et al., 2023; Harada et al., 2022; Harada et al., 2023; Higaki et al., 2024; Ing et al., 2022; Kaveh et al., 2024; Kim et al., 2022; Lee et al., 2021; Malkinson et al., 2021; Nguyen et al., 2022; Patel et al., 2023; Salazar et al., 2021; Sawalha et al., 2023; Ünal & Çeçen, 2023; White et al., 2021; Xu et al., 2019; Yakar et al., 2023, Yakar et al., 2024; Yip & Rashid, 2021), or mentioned that it was not required ($n = 105$). Few publications ($n = 7$) addressed potential privacy concerns regarding the generated data, or provided details on data management and storage (Hing et al., 2011; Ing et al., 2022; Lee et al., 2021; Patel et al., 2023; Patel et al., 2023; Rawat et al., 2025; White et al., 2021; Zehetbauer et al., 2022). Most publications were of reasonable methodological quality, with individual study quality assessments provided in **Supplementary Table 6**, and a summary across all studies provided in **Supplementary Table 7**.

Gender and geographic diversity in authors writing about editorial boards

After removing unidentifiable authors, 65.2% (146/224) of first authors were inferred as women, and 80.4% (189/235) were affiliated with HIC institutions (Figure 4). Similarly, 50.7% (111/219) were inferred as women, and 83.9% (188/224) HIC-affiliated among the last authors. Most authors were affiliated with institutions in North America (55.1%, 253/459) or Europe and Central Asia (23.7%, 109/459), whilst few were with the Middle East and North Africa (2.0%, 9/459) or Sub-Saharan Africa (0.4%, 2/459). Overall, authors were affiliated with only 31 distinct countries, with the U.S. overwhelmingly emerging as the most dominant country (especially from Massachusetts [$n = 21$], Michigan [$n = 19$], and California [$n = 18$]).


Diversity in global health authorship

Study descriptions/findings from the 603 publications on authorship diversity can be found in Supplementary Table 8. A median of 1,671 (IQR: 505, 6,421) articles, and 3,274 (IQR: 877, 10,531) authors were included in the analyses. Studies explored authorship gender (56.9%, 343/603), geography (54.9%, 331), academic rank (3.8%, 23), race or ethnicity (2.0%, 12), sexual orientation (0.3%, 2), and disability (0.2%, 1), with some (16.1%, 97) exploring multiple of these factors. These findings were similar as those for EBs (Supplementary Figure 1), with most studies reporting authorship to be dominated by men (85.1%, 292/343), authors from HICs (83.4%, 266/331), and white authors (83.3%, 10/12).

Discussion

To our knowledge, this is the first study to systematically assess all available evidence on EB diversity across global health publishing. Among the 226 included studies, a consistent pattern emerged: EBs were disproportionately composed of men affiliated with HIC-based institutions (particularly the U.S.), a pattern even more pronounced among EiCs. Whilst some progress has been made toward gender parity and broader geographic diversity (e.g. increased representation from Asia) in certain sub-disciplines, significant disparities persist, especially in senior editorial positions. A supplementary analysis of 603 studies on global health authorship revealed similarly skewed patterns. This observed homogeneity of EBs and authorship may reflect, as well as perpetuate, the persistent inequities in global health scholarship. Beyond gender and geographic diversity, other demographic characteristics, including race, ethnicity, disability and sexual orientation, were scarcely addressed in the included studies.

The findings of this work are consistent with broader evidence indicating that global health is largely embedded in power imbalances originating from patriarchal and colonial structures, in which male, HIC-based experts, and researchers dominate (Nafade et al., 2019). Not only are HIC scholars the predominant recipients of global health research funding, but global health conferences and agendas remain largely guided by HIC scholars (Abimbola et al., 2017; Global Health 50/50, 2024; Sheikh et al., 2016; van Daalen et al., 2022). Although our dataset does not include direct evidence about editorial decision-making,

Figure 4. Gender and geographic diversity first and last authors of the included publications (226) on diversity in editorial board members. A-D represents geographic diversity, and E represents gender diversity. The gender of 5.1% ($n = 12$) first authors and 2.7% ($n = 6$) last authors, and country of 0.4% ($n = 1$) first authors and 0.4% ($n = 1$) last authors could not be inferred.

peer review judgments, or topic selection, several studies consistently demonstrate correlations between the social and geographic composition of editorial boards and the authorship patterns within the journals they steward. For example, multiple studies describe how journals led by women Editors-in-Chief tend to have more diverse editorial boards overall, suggesting that diversity at the highest level of editorial leadership may help shape the composition and inclusiveness of the broader editorial structure (Dai et al., 2022; Ioannidou & Rosania, 2015; Mauleón et al., 2013). Other evidence presents how greater gender and/or geographic diversity on editorial boards is correlated with increased representation of marginalised groups among authors (Leung et al., 2021; Martins et al., 2025; Melhem et al., 2022). Few studies directly examine how editorial composition shapes subject matter or epistemic agendas. Thus, while the available evidence indicates that editorial board diversity can contribute to reproducing or mitigating inequities in who gets published, the impact of editorial diversity on the subject matter and broader intellectual direction remains an important area for future study.

To be truly rigorous, global health research should also be just, centring the lived experiences of the populations it seeks to serve, and embracing diverse perspectives, knowledge systems, and knowledge translation (Abimbola et al., 2025; Abimbola, 2024). Whilst our study does not empirically investigate the causes of EB composition disparities, it is likely that both intrinsic factors (e.g. historically embedded biases within global health that reduce the likelihood of their nomination to such roles) and extrinsic factors (e.g. disproportionate academic/institutional service, equity-related service, or care-giver responsibilities) contribute to persistent underrepresentation of minoritised scholars (Gabster et al., 2020). Moreover, EB recruitment often relies on insular networks and informal nomination, which favours candidates already embedded in dominant academic circles (Kwiek & Roszka, 2021).

The ways populations prioritise or create knowledge, and the ways they experience health, illness and social systems, are influenced by different socio-economic and institutional realities that do not always reflect the Western, Educated, Industrialised, Rich, Democratic (WEIRD) paradigms which often predominate academic discourse (Bhaumik, 2024; Henrich et al., 2021). Illustratively, Indigenous knowledge, feminist frameworks, and qualitative or community-based participatory research are often discounted and under-represented in favour of biomedical, positivist approaches (Chilisa, 2024). Homogeneous EBs are less likely to identify these epistemic gaps or to value alternative ways of knowing. Consequently, they may inadvertently overlook the lived realities, needs, and priorities of local populations, or contribute to marginalising entire areas of enquiry. Diversity in EBs not only promotes a range of perspectives in conducting, submitting, peer reviewing and publishing research, but can also improve equity and fairness in global health scholarship in the present and future (Bhaumik & Jagnoor, 2019; Wing et al., 2010; Xue & Xu, 2024). For example, when the Journal of Vascular Surgery appointed an Editor of Diversity, Equity and Inclusion on the EB in 2020, the number of women first or senior authors nearly doubled, invited commentaries authored by women and distinguished peer reviewers (reviewers completing more than five reviews) increased, and research articles on topics related to equity increased (Weaver et al., 2023).

The role of EB membership in advancing research careers

EB membership is often regarded as prestigious, indicating an individual's disciplinary leadership and recognition (Xue & Xu, 2024). Yet, even when minoritised groups (e.g. women in science research) are well represented in early academic stages (e.g. doctoral candidates, early career researchers), their presence diminishes significantly in more senior roles, including EB positions (European Commission: Directorate-General for Research and Innovation, 2025). Evidence also indicates that women often possess higher academic qualifications than men occupying equivalent EB roles, suggesting that women - and likely other minoritised scholars- face elevated thresholds for career advancement (Agarwal et al., 2018). Given that EBs not only influence what/whose research is published, but also whose career is advanced, their demographic homogeneity contributes to the reinforcement of structural inequities in global health academia (Dada et al., 2022). Conversely, the inclusion of scholars from minoritised backgrounds in EB roles not only fosters a more inclusive community, but also supports their career trajectories. This, in turn, can create a virtuous cycle in which increased EB diversity promotes broader participation, and improved equity in research leadership (Dada et al., 2022; Xue & Xu, 2024). Notably, despite the persistent underrepresentation of women on EBs in the studies included here, women (albeit from HIC) were disproportionately represented as first and last authors of those same studies. This pattern aligns with a broader dynamic of 'cultural taxation,' in which, for example, women and racially minoritised scholars frequently lead (or are expected to lead) equity-focused scholarship or initiatives, and disproportionately undertake labour aimed at advancing institutional inclusion (e.g. mentoring, committee service, and advocacy) (Gabster et al., 2020). Whilst such initiatives are essential to advancing structural change within academia, they are frequently undervalued within conventional metrics of academic productivity, and career advancement.

Editorial inclusion beyond the numbers game

Although studies included in this Review focused on quantifying the imbalance in EB representation, the mere inclusion of a critical mass of minoritised scholars does not, in itself, ensure the advancement of more

equitable scholarship, global health practice, and recognition of diverse epistemologies (Ahmed, 2012; Davies et al., 2019). Even when formally included, participation of minoritised scholars may be constrained by social norms, implicit biases, and structural barriers in otherwise homophilic institutions, which often fail to recognise or value methodologies and worldviews falling outside dominant epistemological frameworks. A recurring concern is the tendency to select certain individuals or groups to represent specific communities or regions, often conflating their perspectives with the needs and views of the entire population they are presumed to represent, despite the inherent heterogeneity within communities (e.g. treating women as a singular, uniform category despite their embodiment of multiple intersecting identities) (Sheikh et al., 2017). Only focusing on numerical representation risks overshadowing efforts to challenge underlying systems of oppression that shape global health scholarship and practise. It may also foster tokenistic forms of 'inclusion' that preserve existing power hierarchies and maintain a narrow definition of expertise and knowledge (van Daalen et al., 2024). Whilst 'improving the numbers' is important, meaningful progress requires reimagining global health through inclusive and just approaches that not only invite diverse expert voices but also give them real influence over decision-making and priority-setting (Sheikh et al., 2017).

Strategies to improve diversity in global health scholarship

Several recommendations have been proposed to address the power disparities, lack of diversity, and broader inequities within global health publishing. Advancing these reforms requires coordinated action from research institutions, funders, publishers, and researchers by embedding equity principles in governance structures, incentivising inclusive leadership, and fostering transparent, accountable editorial appointment processes. For example, by reporting institutional data on self-reported demographics, publishers (and other academic institutions) can enhance transparency and accountability for their leadership decisions (Clark & Horton, 2019). This practice has already been adopted by several journals, such as the *Lancet* family (The Lancet Group, 2025), which have introduced self-reporting fields to their article submission platforms to give authors, peer-reviewers, and EB members the opportunity to self-report gender identity, race, and ethnicity. Second, it is essential to identify and address structural, implicit, and unconscious biases within EBs and publication processes. This includes the establishment of robust accountability mechanisms to ensure safe and equitable work environments, and fair acknowledgement of contributions among colleagues. Recruitment and selection processes must also be transparent and acknowledge the influence of networks and privilege, which often favour individuals who are similar or already known to decision-makers. Wider collaborative networks, more inclusive sponsorship, and greater geographic and socio-economic diversity can further reinforce these efforts. An approach may be to appoint a diversity, equity, and inclusion role focused on promoting inclusive practices, tracking progress, and supporting institutional accountability (Weaver et al., 2023), or creating 'counterspaces' that work to challenge and reduce epistemic oppression (Cianciolo & Andon, 2024). Third, exposure to relevant professional experience through administrative support, mentorship, dedicated resources, targeted internships or fellowships (Wyatt et al., 2023), and clear advancement pipelines to support minoritised scholars can contribute to increasing diversity in senior roles among minoritised scholars. Fourth, there is a substantial disconnect between the value generated by the unpaid academic labour of editors and peer reviewers and the profits accrued by commercial publishers. Providing financial compensation for this labour (particularly for scholars from minoritised groups) may help incentivise more equitable participation (Deanna et al., 2022).

EBs can likewise challenge broader systems of inequity within global health publishing. One key approach is to take a proactive stance against 'parachute' or 'parasitic' science by requiring equitable collaboration with local researchers, as well as the inclusion of reflexivity statements (Morton et al., 2021). Such measures help ensure that global health research is contextually appropriate, ethically grounded, and more accurately interpreted within the setting it investigates. Journals such as *The Lancet Global Health* and *PLOS Global Public Health* and *Nature Medicine* have already introduced such measures, signalling commitment to just and inclusive research practices (Nature medicine, 2023; Saleh et al., 2022; The Lancet Global Health, 2018). To address the dominance of English, and promote more geographically and linguistically inclusive scholarship, EBs - and other academic institutions - can promote multilingual inclusion by broadening the range of accepted publication languages and providing editorial support for non-native English-speaking authors (Ramírez-Castañeda, 2020). Advancements in artificial intelligence -

especially language processing and translation technologies—also offer promising opportunities to support authors and facilitate fuller participation in scholarly dialogue. To foster epistemic diversity, EBs should create space for non-positivist forms of knowledge and expertise. For example, *BMJ Global Health*'s 'Practice' article type enables the publication of insights and experiential knowledge that fall outside traditional methodological studies.

Limitations in inferring or imputing individual characteristics

Overall, transparent standardised reporting of demographic characteristics for editorial boards and authors is largely absent. As a result, most studies included in this review employed proxy measures of self-identification, drawing on publicly available profiles (presumed to be authored or approved by the individual), or externally inferred individual characteristics from names or photographs, rather than using self-reported survey data. Although self-reported data should be considered the 'gold standard' for collecting demographic information, it can be difficult to obtain due to resource constraints and the methodological limitations of traditional survey approaches, including low response rates and non-response bias. Relying on non-self-reported data raises not only ethical, moral, privacy and data violence concerns, but also questions about reliability, potential misclassification, and the validity of inferred characteristics - particularly in the case of complex, non-normative, or marginalised identities (e.g. gender-diverse individuals, or those of mixed racial or ethnic background). Whilst the different inference/imputation methodologies have distinct advantages and limitations (e.g. name-to-gender algorithms may achieve up to 96% accuracy (VanHelene et al., 2024), whereas name-to-race algorithms demonstrate considerably lower accuracy), their respective trade-offs should be carefully considered in the interpretation of findings and the formulation of research standards. Furthermore, many dimensions of identity cannot be reliably externally inferred from publicly available information. (van Daalen et al., 2026) As a result, researchers generally avoid estimating characteristics such as race, ethnicity, sexuality, disability, or class from publicly available information, names, or photographs, given the risks of harmful misclassification and unwanted disclosure. This is clearly illustrated by the striking lack of studies exploring dimensions beyond gender, and geographic location. In contrast, gender, sex, and geographic location are more often estimated in this way. Going beyond gender and geography, is critical for understanding how intersecting systems shape power and perspectives within academic publishing.

Strengths and limitations

The primary strengths of this study are the comprehensive search strategy without language restriction, the inclusion of a broad range of global health sub-disciplines, and the supplementary analysis examining authorship diversity. Consequently, this work provides a holistic perspective of EB diversity in global health. However, beyond the methodological quality of the included studies, there are several limitations. First, the exclusion of qualitative research (albeit such evidence remains limited in this area) restricted our ability to explore the underlying structural dynamics, social norms, or intermediary mechanisms that affect or cause the documented patterns of homogeneity in EBs. Second, definitions of 'editorial boards' and the delineation of roles within them varied across studies (e.g. some included managerial or advisory roles, whilst others did not), limiting comparability and complicating analyses of diversity in roles beyond EiCs and total EBs. Third, the heterogeneity in time points, journal selection, definitions of EBs, and methods of inference precluded the possibility of conducting meta-analyses or longitudinal quantitative analyses. Lastly, as with other analyses, our assessment of geographic diversity in authorship (Figure 3) was based on scholars' institutional affiliations listed on their publications. However, such affiliations may not accurately capture authors' country of origin, academic training, or self-identification.

Conclusion

This work highlights the persistent concentration of EB roles among male, HIC-based scholars, with profound implications for the production and dissemination of scientific knowledge. However, the existing

literature relies heavily on quantitative, non-self-reported data, with limited exploration of dimensions of diversity beyond gender and geography, intersectionality, and lived experience. Future research should expand both the scope and depth of enquiry, including qualitative methodologies, prioritising self-reported demographic data, and direct engagement with minoritised scholars to better understand the structural barriers. Efforts to increase EB diversity require moving beyond numeric targets to critically examine structures of inclusion, knowledge valuation, and power distribution—paired with mechanisms to evaluate their long-term impact on academic scholarship. Without intentional and systematic reforms, the global health research community risks perpetuating the very inequities it seeks to address.

Acknowledgements

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector. KRvD is funded by the BHF Cambridge Centre for Research Excellence RE/24/130011. BPC gratefully acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 865564 (European Research Council Consolidator Grant EARLY-ADAPT, <https://www.early-adapt.eu/>), and the Swedish Research Council (FORMAS) under grant agreement No. 2022-01845 (project ADATES). BPC acknowledges support from the grant CEX2023-0001290-S funded by MCIN/AEI/10.13039/501100011033, and support from the Generalitat de Catalunya through the CERCA Programme. AW acknowledges support from an Australian Government Research Training Programme (RTP) Scholarship.

Author contributions

KRvD, SD, and SEG conceptualised the presented work and wrote the research protocol. SEG, SSK, and BPC, SFK, HKH, RO, GC, AA, BA, FA, ABU, PK, JL, PP, MP, CR, AR, ASZ, LT, MT, KW, SD, and KRvD contributed to the data screening or data extraction. SEG, AD, SSK, BPC, CR, SFK, HHH, RO, ASZ, SD, and KRvD contributed to creating the figures and tables in the main manuscript. SEG, AD, SSK, BPC, SFK, HKH, RO, AW, GC, AA, ABU, AC, PK, JL, AR, ASZ, LT, CR, AO, PP, KW, SD, and KRvD contributed to the figures and tables in the Appendix. SEG, AD, SSK, AW, SD, and KRvD draughted the manuscript, and all authors revised the manuscript and provided feedback before submission. SEG, AD, BPC, SK, GC, PS, SG, RM, KCC, SMC, SD, and KRvD contributed to updating the manuscript after the second search and participated in screening, data extraction, quality assessment, and full-manuscript review. All authors have made substantial, direct, and intellectual contributions to the work, approved it for publication, and their agreement to accountability of all aspects related to the manuscript. Salma El-Gamal up to Galiya Chenault are ordered based on contribution. Ahmad Abbadi up to Kai-Ti Wu are ordered alphabetically. Kim R. van Daalen and Sara Dada have provided the coordination, senior leadership and guidance for this project.

Disclosure statement

The views expressed in this article are solely those of the authors and its content does not necessarily represent the views or position of their employers. All authors declare no competing interests.

Data availability statement

All data analysed in this study is included in the publication.

References

- Abbas, A., Corey, B., & Chen, H. (2025). Representation of women as editors of the top surgery journals in the world. *Journal of Surgical Research (New York, NY)*, 313, 562–572. <https://doi.org/10.1016/j.jss.2025.04.052>
- Abdellatif, W., Shao, M., Jalal, S., Ding, J., Vijayasarathi, A., Sanelli, P. C., Castillo, M., Norbash, A., O'Neill, S. B., Nicolaou, S., & Khosa, F. (2019). Novel geographic thematic study of the largest radiology societies globally: How is gender structure biased within editorial boards? *American Journal of Roentgenology*, 213(1), 2–7. <https://doi.org/10.2214/AJR.18.20965>
- Abimbola, S. (2019). The foreign gaze: Authorship in academic global health. *BMJ Global Health*, 4(5), e002068. <https://doi.org/10.1136/bmjgh-2019-002068>
- Abimbola, S. (2024). The foreign gaze: Essays on global health. IRD Éditions. <https://books.openedition.org/irdeditions/60564?lang=en>

Abimbola, S., Negin, J., & Martiniuk, A. (2017). Charity begins at home in global health research funding. *The Lancet Global Health*, 5(1), e25–e27. [https://doi.org/10.1016/S2214-109X\(16\)30302-3](https://doi.org/10.1016/S2214-109X(16)30302-3)

Abimbola, S., Kyobutungi, C., & Jabr, S. (2025). Public lecture: Towards rigour and justice in research for health. <https://www.kcl.ac.uk/events/public-lecture-rigour-and-justice-in-research-for-health>

Bibbins-Domingo, K., Flanagin, A., Sietmann, C., Bonow, R. O., Navar, A. M., Shinkai, K., Roberson, M. L., Ayanian, J. Z., Ponce, N., Inouye, S. K., Durant, R. W., Simon, M. A., Rivara, F. P., Vela, M., Josephson, S. A., Rawls, A., Disis, M. L. N., Florez, N., Bressler, N. M., ... Backhus, L. M. (2024). Advancing equity at the JAMA network—self-reported demographics of editors and editorial board members. *JAMA : the Journal of the American Medical Association*, 331(10), 837–839. <https://doi.org/10.1001/jama.2024.1709>

Abraham, S., Hodgins, S., Saad, A., & Fabic, M. S. (2020). What is global health: Science and practice doing to address power imbalances in publishing? *Global Health: Science and Practice*, 8(3), 325–326. <https://doi.org/10.9745/GHSP-D-20-00453>

Agarwal, P. P., Balasubramanian, S., Levine, D., Kazerooni, E. A., & Oates, M. E. (2018). Letter to the editor: Women representation on radiology journal editorial boards. *Academic Radiology*, 26(1), 144–145. <https://doi.org/10.1016/j.acra.2018.06.027>

Agyenim-Boateng, O., Rogers, C., Hancock, A., & Akudjedu, T. N. (2025). Equality, diversity and inclusivity dynamics and commitment profiles of comparator clinical radiography and related medical radiation science journals. *Radiography*, 31(3), <https://pubmed.ncbi.nlm.nih.gov/40215749/>

Ahmed, S. (2012). On being included: Racism and diversity in institutional life. Duke University Press. <https://www.dukeupress.edu/on-being-included>

Akers, K. G., Pionke, J., Aaronson, E. M., Chambers, T., Cyrus, J. W., Eldermire, E. R. B., & Norton, M. J. (2021). Racial, gender, sexual, and disability identities of the Journal of the Medical Library Association's editorial board, reviewers, and authors. *Journal of the Medical Library Association*, 109(2), 167. <https://doi.org/10.5195/jmla.2021.1216>

Al-Busaidi, I. S., Sharif, K., & Hassan, A. (2021). Gender, geographic, and socioeconomic representation in medical student journals: A cross-sectional analysis. *Cureus*, 13(1). <https://doi.org/10.7759/cureus.12838>

Alkhawtani, R. H. M., Kwee, T. C., & Kwee, R. M. (2021). Gender diversity among editorial boards of radiology-related journals. *Clinical Imaging*, 75, 30–33. <https://doi.org/10.1016/j.clinimag.2021.01.007>

Allan, J. M., Jacobs, J. W., Spector, N. D., Armijo, P. R., Booth, G. S., & Silver, J. K. (2023). Gender representation among editors of major pediatric journals. *JAMA Network Open*, 6(7), e2321533. <https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2806837#:~:text=Between%202017%20and%202023%2C%20773,277%20of%20722%20were%20women>

Alonso-Arroyo, A., González De Dios, J., Aleixandre-Agulló, J., & Aleixandre-Benavent, R. (2021). Gender inequalities on editorial boards of indexed pediatrics journals. *Pediatric Research*, 90(2), 300–314. <https://doi.org/10.1038/s41390-020-01286-5>

Alvarado, S. M., Grant-Kels, J. M., Elston, D., & Feng, H. (2021). Diversity and dermatology journals. *Journal of the American Academy of Dermatology*, 85(6), 1407–1408. <https://doi.org/10.1016/j.jaad.2021.08.062>

Amering, M., Schrank, B., & Sibitz, I. (2011). The gender gap in high-impact psychiatry journals. *Academic Medicine*, 86(8), 946–952. <https://doi.org/10.1097/ACM.0b013e3182222887>

Amrein, K., Langmann, A., Fahrleitner-Pammer, A., Pieber, T. R., & Zollner-Schwetz, I. (2011). Women underrepresented on editorial boards of 60 major medical journals. *Gender Medicine*, 8(6), 378–387. <https://doi.org/10.1016/j.genm.2011.10.007>

Anaesthesia Journal Editorial Board Diversity and Representation Study Group. (2022). Trends in country and gender representation on editorial boards in anaesthesia journals: A pooled cross-sectional analysis. *Anaesthesia*, 77(9), 981–990. <https://doi.org/10.1111/anae.15733>

Apaydin, A. S., & Emekli, I. (2024). Gender inequality in leadership positions in neurology and neurosurgery journals and societies. *World Neurosurg*, 183, e304–e313. <https://doi.org/10.1016/j.wneu.2023.12.085>

Aquino-Canchari, C. R., Chávez-Bustamante, S. G., Benites-Ibarra, C. A., Quijano-Escate, R., & Arroyo-Hernández, H. (2022). Participación femenina en los comités editoriales de revistas médicas en Latinoamérica. *Biomédica*, 42(2), 355–363. <https://doi.org/10.7705/biomedica.6120>

Arafat, S. M. Y., Kar, S. K., & Amin, R. (2024). Gender and Geographical Distribution of Editorial Board Members of Three Leading Suicide Journals. *Crisis*, 45(2), 159–163.

Arafat, S. M. Y., Amin, R., Baminiwatta, A., Hussain, F., Singh, R., Kar, S. K., & Mubashir, A. S. (2022). Gender distribution of editors in psychiatry journals of South Asia. *Psychiatry Research*, 317, 114819. <https://doi.org/10.1016/j.psychres.2022.114819>

Arroyo-Hernández, H., & Ramírez-Soto, M. C. (2022). Gender equality in the editorial process of public health journals from the American continent. *Gaceta Sanitaria*, 36(1), 85–86. <https://doi.org/10.1016/j.gaceta.2020.11.002>

Atış, Ş. E., Bozan, Ö., Bildik, B., Çekmen, B., & Mistik, Y. (2022). Gender disparity in medicine and where are we now in emergency medicine? *The American Journal of Emergency Medicine*, 54, 17–21. <https://doi.org/10.1016/j.ajem.2022.01.040>

Atluri, S., Thompson, A. M., Hsiao, J. L., & Shi, V. Y. (2021). Editor-in-chief characteristics of dermatology journals. *International Journal of Dermatology and Venereology*, 4(4), 266–268. <https://doi.org/10.1097/JJD.0000000000000172>

Awad, N. I. (2021). Disparities in gender distribution within editorial boards of pharmacy journals. *JACCP: Journal of the American College of Clinical Pharmacy*, 4(5), 542–547. <https://doi.org/10.1002/jac5.1391>

Ayada, G., Huttner, A., Avni-Nachman, S., Karny-Epstein, N., Matsri, S., Buchrits, S., Atamna, A., Yahav, D., & Tau, N. (2022). Representation of women in editorial boards of infectious disease and microbiology journals—cross-sectional study. *Clinical Microbiology and Infection*, 28(7), 1017–1021. <https://doi.org/10.1016/j.cmi.2022.02.021>

Bakht, N., Arshad, S., & Zaidi, S. S. N. (2017). Under-representation of women in the editorial boards of medical and dental journals of Pakistan. *Journal of the Pakistan Medical Association*, 67(5), 722–724.

Balasubramanian, S., Saberi, S., Yu, S., Duvernoy, C. S., Day, S. M., & Agarwal, P. P. (2020). Women representation among cardiology journal editorial boards. *Circulation*, 141(7), 603–605. <https://doi.org/10.1161/CIRCULATIONAHA.119.042909>

Barajas-Ochoa, A., Ramirez-Trejo, M., Gradilla-Magaña, P., Dash, A., Raybould, J., & Bearman, G. (2023). Gender balance in infectious diseases and hospital epidemiology journals. *Antimicrobial Stewardship & Healthcare Epidemiology*, 3(1), e190. <https://www.cambridge.org/core/journals/antimicrobial-stewardship-and-healthcare-epidemiology/article/gender-balance-in-infectious-diseases-and-hospital-epidemiology-journals/2A7E665F1B544D152ACE6E30F99FC4BF>

Barajas-Ochoa, A., Peláez-Ballestas, I., Ramirez-Trejo, M., Gradilla-Magaña, P., Cisneros-Barrios, A., Manrique de Lara, A., Gastelum-Strozzi, A., & Ramos-Remus, C. (2023). Gender representation in rheumatology journals: An assessment of editors. *Editorial Boards, and Authors*, 43(10), 1811–1819.

Battisti, G., De Cassai, A., Capelli, G., Navalesi, P., & Spolverato, G. (2023). Gender distribution among editorial boards of surgical journals. *British Journal of Surgery*, 110(2), 273–274. <https://doi.org/10.1093/bjs/znac410>

Bauman, M. M. J., Wang, K., Bhandarkar, A. R., Scheitler, K. M., & Clarke, M. J. (2021). A step toward equal representation? A cross-sectional analysis of the gender composition of neurosurgical editorial boards from 2000 to 2020. *Journal of Neurosurgery*, 136(6), 1752–1759. <https://doi.org/10.3171/2021.6.JNS21474>

Benedek, E. (1976). Editorial practices of psychiatric and related journals: Implications for women. *American Journal of Psychiatry*, 133(1), 89–92. <https://doi.org/10.1176/ajp.133.1.89>

Bennie, K. R., & Koka, S. (2021). Leadership diversity in science: Women editors of dental journals are underrepresented compared to women editors of medical journals. *Journal of Dentistry*, 115, 103853. <https://doi.org/10.1016/j.jdent.2021.103853>

Bennie, K. R., & Koka, S. (2022). Leadership diversity in prosthodontics: Number and percentage of women chief editors of journals publishing prosthodontic science. *The Journal of Prosthetic Dentistry*, 128(3), 430–435. <https://doi.org/10.1016/j.jprosdent.2020.12.012>

Bevilacqua, L. A., Siena, N. M., Gardner, C. A., Tatarian, T., Madani, A., & Altieri, M. S. (2022). Gender disparities among leadership in academic surgical publishing over the past decade. *The American Journal of Surgery*, 223(1), 47–52. <https://doi.org/10.1016/j.amjsurg.2021.07.038>

Bhakuni, H., & Abimbola, S. (2021). Epistemic injustice in academic global health. *The Lancet Global Health*, 9(10), e1465–e1470. [https://doi.org/10.1016/S2214-109X\(21\)00301-6](https://doi.org/10.1016/S2214-109X(21)00301-6)

Bhaumik, S. (2024). On the nature and structure of epistemic injustice in the neglected tropical disease knowledge ecosystem. *PLOS Neglected Tropical Diseases*, 18(12), e0012781. <https://doi.org/10.1371/journal.pntd.0012781>

Bhaumik, S., & Mathew, R. J. (2014). Representation of women as editors in the Cochrane collaboration. *Journal of Evidence-Based Medicine*, 7(4), 249–251. <https://doi.org/10.1111/jebm.12123>

Bhaumik, S., & Jagnoor, J. (2019). Diversity in the editorial boards of global health journals. *BMJ Global Health*, 4(5), e001909. <https://doi.org/10.1136/bmjgh-2019-001909>

Bissing, M. A., Lange, E. M. S., Davila, W. F., Wong, C. A., McCarthy, R. J., Stock, M. C., & Toledo, P. (2019). Status of women in academic anesthesiology: A 10-year update. *Anesthesia & Analgesia*, 128(1), 137–143. <https://doi.org/10.1213/ANE.0000000000003691>

Black, C., Cerdeña, J. P., & Spearman-McCarthy, E. V. (2023). I am not your minority. *The Lancet Regional Health - Americas*, 19, 100464. <https://doi.org/10.1016/j.lana.2023.100464>

Bojanic, T., & Tan, A. C. (2021). International representation of authors, editors and research in neurology journals. *BMC Medical Research Methodology*, 21(1), 57. <https://doi.org/10.1186/s12874-021-01250-9>

Brisbin, A. K., Chen, W., Goldschmidt, E., Smith, B. T., & Bourne, D. A. (2023). Gender diversity in hand surgery leadership. *Hand (New York, NY)*, 18(7), 1200–1207. <https://doi.org/10.1177/15589447211038679>

Burg, M. L., Sholklapper, T., Kohli, P., Kaneko, M., Maria Autran, A., Teoh, J., Murphy, D. G., Sampinsky, M., Psutka, S. P., Loeb, S., Ribal, M. J., & Cacciamani, G. E. (2022). Gender disparities among editorial boards of international urology journals. *European Urology Focus*, 8(6), 1840–1846. <https://doi.org/10.1016/j.euf.2022.04.007>

Busse, C., & August, E. (2020). Addressing power imbalances in global health: Pre-publication support services (PREPSS) for authors in low-income and middle-income countries. *BMJ Global Health*, 5(2), e002323. <https://doi.org/10.1136/bmjgh-2020-002323>

Camacci, M. L., Lu, A., Lehman, E. B., Scott, I. U., Bowie, E., & Pantanelli, S. M. (2020). Association between sex composition and publication productivity of journal editorial and professional society board members in ophthalmology. *JAMA Ophthalmology*, 138(5), 451. <https://doi.org/10.1001/jamaophthalmol.2020.0164>

Campos, L. N., Naus, A., Rangel, A. G., Brandão, G. R., Faria, I., Pierre, T. A. J., Freire, C. V. S., Schliedwein, S. S., Feres, B., Wagemaker, S., Salgado, L. S., Ferreira, R., & Ferreira, J. L. (2023). Women representation on editorial boards in latin

America journals: Promoting gender equity in academic surgery, anesthesia, and obstetrics. *World Journal of Surgery*, 47(4), 845–853. <https://doi.org/10.1007/s00268-022-06872-8>

Canchari, C. R., Ojeda-Gómez, R., Merizalde-Ortega, N. I., & Rodríguez-Valladares, A. K. (2021). Proportion of women on the editorial committees of dental journals in the world. *Brazilian Dental Science*, 24(4 suppl 1), 1–7. <https://doi.org/10.4322/bds.2021.e3123>

CASP UK. (2024). CASP - Critical Appraisal Skills Programme. CASP - Critical Appraisal Skills Programme. <https://casp-uk.net>

Chen, W., Baron, M., Bourne, D. A., Kim, J. S., Washington, K. M., & De La Cruz, C. (2020). A report on the representation of women in academic plastic surgery leadership. *Plastic & Reconstructive Surgery*, 145(3), 844–852. <https://doi.org/10.1097/PRS.0000000000006562>

Chen, K., Ha, G., Schultz, B. D., Zhang, B., Smith, M. L., Bradley, J. P., Thorne, C. H., Kasabian, A. K., Pusic, A. L., & Tanna, N. (2020). Is there gender inequality in plastic surgery? Evaluation of society leadership and composition of editorial boards. *Plastic & Reconstructive Surgery*, 145(2), 433e–437e. <https://doi.org/10.1097/PRS.0000000000006503>

Chilisa, B. (2024). Relational ontologies and epistemologies that are informed by our philosophies: Inaugural ubuntu annual lecture 2022. *Ubuntu Lecture delivered on 25 November 2022. African Journal of Social Work*, 14(3), 158–165. <https://doi.org/10.4314/ajsw.v14i3.8>

Cianciolo, A. T., & Andon, A. (2024). Enacting a counterspace to advise TLM's global diversity, equity, and inclusion effort. *Teaching and Learning in Medicine*, 36(2), 107–110. <https://doi.org/10.1080/10401334.2024.2327767>

Clark, J., & Horton, R. (2019). What is the lancet doing about gender and diversity? *The Lancet*, 393(10171), 508–510. [https://doi.org/10.1016/S0140-6736\(19\)30289-2](https://doi.org/10.1016/S0140-6736(19)30289-2).

Correia, M. I. T., da Silva, B. R., Ayesh, W., Ballesteros-Pomar, M. D., Cardenas, D., de van der Schueren, M. A., Gonzalez, M. C., Kiss, N., Francisco, E. M. P., & Prado, C. M. (2024). Sex disparities in parenteral and enteral nutrition societies' leadership worldwide: A 20-year retrospective analysis. *The American Journal of Clinical Nutrition*, 119(1), 196–205.

Covington, E. L., Moran, J. M., & Paradis, K. C. (2020). The state of gender diversity in medical physics. *Medical Physics*, 47(4), 2038–2043. <https://doi.org/10.1002/mp.14035>

Crane, D. (1967). The gatekeepers of science: Some factors affecting the selection of articles for scientific journals. *The American Sociologist*, 2(4), 195–201.

Dada, S., van Daalen, K. R., Barrios-Ruiz, A., Wu, K. T., Desjardins, A., Bryce-Alberti, M., Castro-Varela, A., Khorsand, P., Santamarta Zamorano, A., Jung, L., Malolos, G., Li, J., Vervoort, D., Hamilton, N. C., Patil, P., El Omrani, O., Wangari, M.-C., Sibanda, T., Buggy, C., & Mogo, E. R. I. (2022). Challenging the "old boys club" in academia: Gender and geographic representation in editorial boards of journals publishing in environmental sciences and public health. *PLOS Global Public Health*, 2(6), e0000541. <https://doi.org/10.1371/journal.pgph.0000541>

Dai, N., Li, J., & Ren, L. (2023). Representation of women on editorial boards of quartile 2 oncology journals. *Clinical Oncology*, 35(5), e344–e346. <https://doi.org/10.1016/j.clon.2023.02.011>

Dai, N., Li, J., Ren, L., & Bu, Z. (2022). Gender representation on editorial boards of leading oncology journals. *ESMO Open*, 7(5), 100590. <https://doi.org/10.1016/j.esmoop.2022.100590>

Dakhil, Z. A., Marsool, M. D. M., Qasim, M. S., & Al-Jorani, M. S. (2024). Diversity in the editorial boards of medical journals: A perspective from the middle east. *Therapeutic Advances in Cardiovascular Disease*, 18, 1–5.

Davies, S. E., Harman, P. S., Manjoo, P. R., Tanyag, M., & Wenham, C. (2019). Why it must be a feminist global health agenda. *The Lancet*, 393(10171), 601–603. [https://doi.org/10.1016/S0140-6736\(18\)32472-3](https://doi.org/10.1016/S0140-6736(18)32472-3)

De Mugica, A. B. D., Reeves, S., Yassin, N., Eastwood, D., & Brennan, P. A. (2022). Gender representation amongst editorials boards in United Kingdom surgical specialty journals. *British Journal of Oral and Maxillofacial Surgery*, 60(10), 1321–1324. <https://doi.org/10.1016/j.bjoms.2022.10.003>

Deanna, R., Merkle, B. G., Chun, K. P., Navarro-Rosenblatt, D., Baxter, I., Oleas, N., Bortolus, A., Geesink, P., Diele-Viegas, L., Aschero, V., de Leone, M. J., Oliferuk, S., Zuo, R., Cosacov, A., Grossi, M., Knapp, S., Lopez-Mendez, A., Welchen, E., Ribone, P., & Auge, G. (2022). Community voices: The importance of diverse networks in academic mentoring. *Nature Communications*, 13, 1681. <https://doi.org/10.1038/s41467-022-28667-0>

de Céniga, M. V., & Fernández, J. (2025). Gender and geographical diversity in authorship, peer reviewing, and editorial roles in the european journal of vascular and endovascular surgery vascular forum. *EJVES Vascular Forum*, 63, 45–51. <https://doi.org/10.1016/j.ejvsvf.2024.12.003>

Diatta, F., Mellia, J. A., Morris, M. P., Murphy, A. I., Onyekaba, G., Mares, J., McAuliffe, P. B., Broach, R. B., Fischer, J. P., & Butler, P. D. (2022). Closing the gap: Training experiences and career outcomes for underrepresented minorities in plastic surgery. *Plastic and Reconstructive Surgery - Global Open*, 10(5), e4300. <https://doi.org/10.1097/GOX.0000000000004300>

Dickersin, K., Fredman, L., Flegal, K. M., Scott, J. D., & Crawley, B. (1998). Is there a sex bias in choosing editors?: Epidemiology journals as an example. *JAMA : the Journal of the American Medical Association*, 280(3), 260. <https://doi.org/10.1001/jama.280.3.260>

dos Santos Massa, G., Tonin, F. S., & De Mendonça Lima, T. (2023). Female representation among editorial boards of social, clinical, and educational pharmacy journals. *Research in Social and Administrative Pharmacy*, 19(6), 921–925. <https://doi.org/10.1016/j.sapharm.2023.02.018>

Dotson, B. (2012). Female representation on editorial boards of pharmacy journals. *American Journal of Health-System Pharmacy*, 69(7), 550–552. <https://doi.org/10.2146/ajhp110657>

Dunne, E., Zuhlke, L., Kumar, R. K., Casey, F. A., Penny, D. J., & McMahon, C. J. (2021). Editorial board composition among pediatric cardiology journals. *JACC: Advances*, 1(5), 100137. <https://doi.org/10.1016/j.jacadv.2022.100137>

Dunne, E., Zuhlke, L., Kumar, R. K., Casey, F. A., Penny, D. J., & McMahon, C. J. (2022). Editorial board composition among pediatric cardiology journals. *JACC: Advances*, 1(5). 100137. <https://doi.org/10.1016/j.jacadv.2022.100137>

Ehrlich, H., Nguyen, J., Sutherland, M., Ali, A., Gill, S., McKenney, M., & Elkbuli, A. (2021). Gender distribution among surgical journals' editorial boards: Empowering women surgeon scientists. *Surgery*, 169(6), 1346–1351.

El-Gamal, S., van Daalen, K. R., & Dada, S. (2023). Protocol: A systematic review of studies on diversity in the editorial boards and in the authorship of global health academic research. *OSF Registries*. <https://doi.org/10.17605/OSF.IO/HUVBA>

Ellinas, E. H., Best, J. A., Kowalski, A. M., Sharkey, K. M., Shillcutt, S. K., Al-Assi, K., & Silver, J. K. (2021). Representation of women on journal editorial boards affiliated with the association of American medical college's council of faculty and academic societies. *Journal of Women's Health*, 30(8), 1095–1106. <https://doi.org/10.1089/jwh.2020.8676>

Erren, T. C., Groß, J. V., Shaw, D. M., & Selle, B. (2014). Representation of women as authors, reviewers, editors in chief, and editorial board members at 6 general medical journals in 2010 and 2011. *JAMA Internal Medicine*, 174(4), 633. <https://doi.org/10.1001/jamainternmed.2013.14760>

Espin, J., Palmas, S., Carrasco-Rueda, F., Riemer, K., Allen, P. E., Berkebile, N., Hecht, K. A., Kastner-Wilcox, K., Núñez-Regueiro, M. M., Prince, C., Rios, C., Ross, E., Sangha, B., Tyler, T., Ungvari-Martin, J., Villegas, M., Cataldo, T. T., & Bruna, E. M. (2017). A persistent lack of international representation on editorial boards in environmental biology. *PLOS Biology*, 15(12), e2002760. <https://doi.org/10.1371/journal.pbio.2002760>

European Commission: Directorate-General for Research and Innovation. (2025). *She figures 2024 – Gender in research and innovation – Statistics and indicators*. Publications Office of the European Union. <https://data.europa.eu/doi/10.2777/592260>

Fishman, M., Williams, W. A., Goodman, D. M., & Ross, L. F. (2017). Gender differences in the authorship of original research in pediatric journals, 2001–2016. *The Journal of Pediatrics*, 191, 244–249. <https://doi.org/10.1016/j.jpeds.2017.08.044>

Gabster, B. P., van Daalen, K. R., Dhatt, R., & Barry, M. (2020). Challenges for the female academic during the COVID-19 pandemic. *The Lancet*, 395(10242), 1968–1970. [https://doi.org/10.1016/S0140-6736\(20\)31412-4](https://doi.org/10.1016/S0140-6736(20)31412-4)

Gallivan, E., Arshad, S., Skinner, H., Burke, J. R., & Young, A. L. (2021). Gender representation in editorial boards of international general surgery journals. *BJS Open*, 5(2), zraa064. <https://doi.org/10.1093/bjsopen/zraa064>

Gea-Caballero, V., Ruíz de Viñaspre-Hernández, R., Saus-Ortega, C., Celda-Belinchón, L., Santolalla-Arnedo, I., Marques-Sule, E., & Juárez-Vela, R. (2023). Gender equity in the scientific nursing journals indexed in journal citation reports: A cross-sectional study. *Frontiers in Public Health*, 11, 1119117. <https://doi.org/10.3389/fpubh.2023.1119117>

Global Health 50/50. (2024). Gaining ground? Analysis of the gender-related policies and practices of 201 global organisations active in health. https://global5050.org/wp-content/themes/global-health/reports/2024/media/Gaining%20Ground_GH5050%202024%20Report_Online.pdf

Goldstone, K., Edgley, C., Mehta, S., & Womersley, K. (2020). Peer review for the Canadian journal of anesthesia in 2016 and 2017: A retrospective analysis by reviewer and author gender. *Canadian Journal of Anesthesia/Journal Canadien d'anesthésie*, 67(3), 336–342. <https://doi.org/10.1007/s12630-019-01533-2>

Gollins, C. E., Shipman, A. R., & Murrell, D. F. (2017). A study of the number of female editors-in-chief of dermatology journals. *International Journal of Women's Dermatology*, 3(4), 185–188. <https://doi.org/10.1016/j.ijwd.2017.03.001>

González-Alvarez, J., & Cervera-Crespo, T. (2019). Psychiatry research and gender diversity: Authors, editors, and peer reviewers. *The Lancet Psychiatry*, 6(3), 200–201. [https://doi.org/10.1016/S2215-0366\(19\)30039-2](https://doi.org/10.1016/S2215-0366(19)30039-2)

Gooding, A. W. (1983). The status of women radiologists: Membership on editorial boards and participation in upper echelons of radiologic. *Radiology*, 147, 595–597. <https://doi.org/10.1148/radiology.147.2.6836141>

Gottlieb, R., Jozaghi, E., Chen, H., & Best, A. M. (2024). Gender equity in the journal of the American dental association: A review of the past 2 plus decades. *Journal of the American Dental Association*, 155(6), 504–513. <https://doi.org/10.1016/j.adaj.2024.02.012>

Gottlieb, M., Krzyzaniak, S. M., Mannix, A., Parsons, M., Mody, S., Kalantari, A., Ashraf, H., & Chan, T. M. (2021). Sex distribution of editorial board members among emergency medicine journals. *Annals of Emergency Medicine*, 77(1), 117–123. <https://doi.org/10.1016/j.annemergmed.2020.03.027>

Grinnell, M., Higgins, S., Yost, K., Ochuba, O., Lobl, M., Grimes, P., & Wysong, A. (2020). The proportion of male and female editors in women's health journals: A critical analysis and review of the sex gap. *International Journal of Women's Dermatology*, 6(1), 7–12. <https://doi.org/10.1016/j.ijwd.2019.11.005>

Guetter, C. R., Vervoort, D., Luc, J. G. Y., & Ouzounian, M. (2022). Female and country representation on editorial boards of cardiothoracic surgery journals. *Seminars in Thoracic and Cardiovascular Surgery*, 34(4), 1233–1235. <https://doi.org/10.1053/j.semcts.2021.08.015>

Hafeez, D. M., Waqas, A., Majeed, S., Naveed, S., Afzal, K. I., Aftab, Z., Zeshan, M., & Khosa, F. (2019). Gender distribution in psychiatry journals' editorial boards worldwide. *Comprehensive Psychiatry*, 94, 152119. <https://doi.org/10.1016/j.comppsych.2019.152119>

Haidinger, M., Ravioli, S., & Lindner, G. (2024). Gender distribution among editorial boards and authors of nephrology and urology journals. *Nefrología (English Edition)*, 44(5), 615–768. <https://doi.org/10.1016/j.nefro.2024.02.004>

Haidinger, M., Wechsler, P., Ravioli, S., Exadaktylos, A., & Lindner, G. (2024). Gender equality in palliative medicine editorial boards, authorships and national societies. *BMJ Support Palliat Care*, 14(2), 243–244. <https://doi.org/10.1136/spcare-2023-004293>

Hancı, V., Yakar, M. N., Shermatov, N., Kara, F., Ibisoglu, E., Oltulu, M., Köske, R. K., Bilge, D., & Geylani, B. (2023). The gender composition of the members of the editorial board of toxicology journals: Assessment of gender equality. *Basic & Clinical Pharmacology & Toxicology*, 134(3), 413–423. <https://doi.org/10.1111/bcpt.13968>

Harada, N. M., Kuzmichev, A., & Dean, H. D. (2023). Editors in chief of public health reports, 1878–2022: Men and women who shaped the discussion of public health practice from 1918 influenza to COVID-19. *Public Health Reports*, 138(5), 736–746. <https://doi.org/10.1177/00333549231176285>

Harada, K., Ozaki, A., Murayama, A., Tsuji, A., Miyachi, T., Yamamoto, K., Hamaki, T., Harada, M., Higuchi, A., Iwamatsu, R., Kobashi, Y., Murai, S., Oshima, K., Saito, H., Sonoda, Y., Tani, Y., & animoto T, T (2022). Woman editors-in-chief of english-language medical journals published by the Japanese professional medical associations. *Japan Medical Association Journal*, 5(1), 114–117. <https://doi.org/10.31662/jmaj.2021-0008>

Harris, C. A., Banerjee, T., Cramer, M., Manz, S., Ward, S. T., Dimick, J., & Telem, D. A. (2019). Editorial (Spring) board? Gender composition in high-impact general surgery journals over 20 years. *Annals of Surgery*, 269(3), 582–588. <https://doi.org/10.1097/SLA.0000000000002667>

Henderson, A. A., Murray, K. S., & Ahmed, H. (2019). Female representation on journal editorial boards—is urology behind the times? *Journal of Urology*, 201(2), 237–238. <https://doi.org/10.1016/j.juro.2018.09.044>

Henrich, J., Heine, S. J., & Norenzayan, A. (2021). The weirdest people in the world? *Behavioral and Brain Sciences*, 33(2–3), 61–83. <https://doi.org/10.1017/S0140525X0999152X>

Higaki, A. A., Papageorge, M. V., Waldron, C., Huggins, L., Brinker, M., Erez, E., Milewski, R. C., Woodard, G. A., Antonoff, M. B., & Lee, M. E. (2024). Gender representation trends in cardiothoracic surgery journal editorial boards. *The Journal of Thoracic and Cardiovascular Surgery*, 168(6), 1570–1580. <https://doi.org/10.1016/j.jtcvs.2024.06.019>

Hing, C. B., Higgs, D., Hooper, L., Donell, S. T., & Song, F. (2011). A survey of orthopaedic journal editors determining the criteria of manuscript selection for publication. *Journal of Orthopaedic Surgery and Research*, 6(1), 19. <https://doi.org/10.1186/1749-799X-6-19>

Hsu, R., Arter, Z. L., & Benjamin, D. J. (2025). Gender and geographic characteristics among thoracic, GI, and breast oncology editorial boards: Disparities and measures to address gaps. *JCO Glob Oncol*, 11, e2400656. <https://doi.org/10.1200/GO-24-00656>

Hutchinson, D., Das, P., Lall, M. D., Hill, J., Fares, S., & Khosa, F. (2021). Emergency medicine journal editorial boards: Analysis of gender, H-Index, publications, academic rank, and leadership roles. *Western Journal of Emergency Medicine*, 22(2), 353–359. <https://doi.org/10.5811/westjem.2020.11.49122>

Ing, E. B., Xu, Q(Alis), He, B., Tanya, S. M., & Tucker, N. A. (2022). Gender and editorship in oculoplastics societal publications. *Orbit*, 41(5), 581–584. <https://doi.org/10.1080/01676830.2021.1975771>

Ioannidou, E., & Rosania, A. (2015). Under-representation of women on dental journal editorial boards. *PLoS One*, 10(1), e0116630. <https://doi.org/10.1371/journal.pone.0116630>

Jabbarpour, Y., Wilkinson, E., Coffman, M., & Mieses, A. (2020). Has female authorship in family medicine research evolved over time? *Annals of Family Medicine*, 18(6), 496–502. <https://doi.org/10.1370/afm.2584>

Jacobs, J. W., Adkins, B. D., Woo, J. S., Lally, K., & Booth, G. S. (2023). Analysis of gender representation on transfusion medicine journal editorial boards: Comparison between 2019 and 2022. *Vox Sanguinis*, 118(1), 93–97. <https://doi.org/10.1111/vox.13371>

Jacobs, J. W., Fleming, T., Verduzco-Gutierrez, M., Spector, N. D., Booth, G. S., Armijo, P. R., & Silver, J. K. (2023). Gender representation of editors at journals affiliated with major U.S. medical societies. *Journal of Women's Health*, 32(12), 1208–1219. <https://doi.org/10.1089/jwh.2023.0376>

Jagsi, R. (2008). The representation of women on the editorial boards of major medical journals: A 35-year perspective. *Archives of Internal Medicine*, 168(5), 544. <https://doi.org/10.1001/archinte.168.5.544>

Jalilianhasanpour, R., Charkhchi, P., Mirbolouk, M., & Yousem, D. M. (2019). Underrepresentation of women on radiology editorial boards. *Journal of the American College of Radiology*, 16(1), 115–120. <https://doi.org/10.1016/j.jacr.2018.08.017>

JAMA Network. (2023). Inclusive Language for Reporting Demographic and Clinical Characteristics. <https://jamanetwork.com/pages/inclusive-language>

James, J. J., Klevens, E. A., Atkinson, M. A., Vosters, E. E., Bueckers, E. P., Quinn, M. E., Kindy, S. L., Mason, A. P., Nelson, S. K., Rainwater, K. A. H., Taylor, P. V., Zippel, E. P., & Hunter, S. K. (2023). Underrepresentation of women in exercise science and physiology research is associated with authorship gender. *Journal of Applied Physiology*, 135, 932–942. <https://doi.org/10.1152/japplphysiol.00377.2023>

Jia, Z., Liu, D., Li, X., Wen, T., Zhao, X., & Li, W. (2024). Analyzing the composition of the editorial boards in high-impact medical ethics journals: A survey study. *BMC Medical Ethics*, 25(14), 13. <https://doi.org/10.1186/s12910-024-01006-2>

Joshi, A., Kong, W., Yu, S., Balasubramanian, S., Jankharia, B., & Agarwal, P. P. (2022). Female representation on radiology journal editorial boards around the world: Geographical differences and temporal trends. *Academic Radiology*, 29(5), 755–762. <https://doi.org/10.1016/j.acra.2020.07.004>

Kaji, A. H., Meurer, W. J., Napper, T., Nigrovic, L. E., Mower, W. R., Schriger, D. L., Cooper, R. J., Houry, D. E., Delbridge, T. R., DeLorenzo, R. A., McCarthy, M. L., & Schenkel, S. (2019). State of the journal: Women first authors, peer reviewers, and editorial board members at annals of emergency medicine. *Annals of Emergency Medicine*, 74(6), 731–735. <https://doi.org/10.1016/j.annemergmed.2019.05.011>

Kaveh, R., Ashrafhesari, N., Mousavi, S. M., & Harandi, M. F. (2024). Narrowing gender gap in the research on echinococcosis and editorial contribution of women in parasitology journals. *Journal of Helminthology*, 98(66), 1–9. <https://doi.org/10.1017/S0022149X24000579>

Kearns, K. N., Rabinovich, E. P., Shabo, L., Shaffrey, M. E., Jane, J. A., & Park, M. S. (2022). Composition and gender distribution of editorial boards for top neurosurgical journals. *World Neurosurgery*, 176, 189–198. <https://doi.org/10.1016/j.wneu.2023.05.009>

Keiser, J., Utzinger, J., & Singer, B. H. (2003). Gender composition of editorial boards of general medical journals. *The Lancet*, 362(9392), 1336. [https://doi.org/10.1016/S0140-6736\(03\)14607-7](https://doi.org/10.1016/S0140-6736(03)14607-7)

Keiser, J., Utzinger, J., Tanner, M., & Singer, B. H. (2004). Representation of authors and editors from countries with different human development indexes in the leading literature on tropical medicine: Survey of current evidence. *BMJ (London)*, 328(7450), 1229–1232. <https://doi.org/10.1136/bmj.38069.518137.F6>

Keller, T., Wilson, M., Chung, K., Andrilla, C. H., Evans, D., & Cawse-Lucas, J. (2021). Gender differences in authorship of family medicine publications, 2002–2017. *Family Medicine*, 53(6), 416–422. <https://doi.org/10.22454/FamMed.2021.866524>

Kennedy, B. L., Lin, Y., & Dickstein, L. J. (2001). Women on the editorial boards of major journals. *Academic Medicine*, 76(8), 849–851. <https://doi.org/10.1097/00001888-200108000-00021>

Khorasani, A., & Korenstein, D. (2022). A seat at the table: Gender and medical journal editorial leadership. *Journal of General Internal Medicine*, 37(11), 2904–2907. <https://doi.org/10.1007/s11606-022-07425-4>

Kim, J. L., Allan, J. M., Fromme, H. B., Forster, C. S., Shaughnessy, E., & Ralston, S. (2022). Gender distribution of scholarship and measures of national recognition in hospital medicine. *Hospital Pediatrics*, 12(2), 117–124. <https://doi.org/10.1542/hpeds.2021-006278>

Ko, E., Jeon, H., Kim, Y. H., & Lim, C. H. (2025). Woman doctor leadership on the editorial board of the korean medical journals. *Journal of Korean Medical Science*, 40(14), e47. <https://doi.org/10.3346/jkms.2025.40.e47>

Koopmans, A. B., & Özgen, M. H. (2022). Man-vrouwverhouding in de Nederlandse academische psychiatrie. *Tijdschrift voor Psychiatrie*, 2022(8), 508–512.

Krithi, R., Bentounsi, Z., Tariq, A., Brazeal, A., Daudu, D., Back, F., Elhadi, M., Badwi, N., Hussein Shah, S. S. N., Bandyopadhyay, S., Khalil, H., Kimura, H., Sekyi-Djan, M. N., Abdelrahman, A., Shaheen, A., Mbonda Noula, A. G., Wong, A. T., Ndajiwo, A., Souadka, A., ... Hussein, N. A. (2021). Systematic analysis of authorship demographics in global surgery. *BMJ Global Health*, 6(10), e006672. <https://doi.org/10.1136/bmigh-2021-006672>

Kwiek, M., & Roszka, W. (2021). Gender-based homophily in research: A large-scale study of man-woman collaboration. *Journal of Informetrics*, 15(3), 101171. <https://doi.org/10.1016/j.joi.2021.101171>

Lalloo, R. (2022). 'You can't be what you can't see': Equity, diversity and inclusivity of editorial teams of dental journals. *British Dental Journal*, 5078. <https://doi.org/10.1038/s41415-022-5078-9>

Last, K., Hübsch, L., Cevik, M., Wolkewitz, M., Müller, S. E., Huttner, A., & Papan, C. (2022). Association between women's authorship and women's editorship in infectious diseases journals: A cross-sectional study. *The Lancet Infectious Diseases*, 22(10), 1455–1464. [https://doi.org/10.1016/S1473-3099\(22\)00367-X](https://doi.org/10.1016/S1473-3099(22)00367-X)

Lee, J. C. L., Watt, J., Kelsall, D., & Straus, S. E. (2021). Journal editors: How do their editing incomes compare? *F1000Research*, 9. <https://doi.org/10.12688/f1000research.25620.3>

Leung, K. K., Jawaid, N., & Bollegala, N. (2021). Gender differences in gastroenterology and hepatology authorship and editorial boards. *Gastrointestinal Endoscopy*, 94(4), 713–723. <https://doi.org/10.1016/j.gie.2021.05.019>

Li, J., De Souza, R., Esfandiari, S., & Feine, J. (2019). Have women broken the glass ceiling in north American dental leadership? *Advances in Dental Research*, 30(3), 78–84. <https://doi.org/10.1177/0022034519877397>

Lim, W. H., Quek, J., Tay, P. W. L., Ng, C. H., Vathsala, A., & Muthiah, M. D. (2021). Gender distribution among transplant journal editorial members: A call to empower women in academic medicine. *Transplant International*, 34(12), 2897–2898. <https://doi.org/10.1111/tri.14117>

Lim, O. Z. H., Chen, Y., Dimmeler, S., Yong, A. W. J., Singh, H., Sim, M. L. E., Kong, G., Lim, W. H., Low, T. T., Park, D.-W., Chew, N. W. S., & Foo, R. (2022). Disparity in female and Asian representation amongst cardiology journal editorial boards members: A call for empowerment. *QJM: An International Journal of Medicine*, 115(12), 830–836. <https://doi.org/10.1093/qjmed/hcac176>

Lin, J. S., Weber, K. L., & Samora, J. B. (2021). How does representation of women on editorial boards compare among orthopaedic, general surgery, and internal medicine journals? *Clinical Orthopaedics & Related Research*, 479(9), 1939–1946. <https://doi.org/10.1097/CORR.0000000000001735>

Lin, J. C., Hu, D. J., Scott, I. U., & Greenberg, P. B. (2024). Gender diversity and research productivity of journal editorial and professional society board members in medical education. *Medical Science Educator*, 34, 327–330. <https://doi.org/10.1007/s40670-024-02000-4>

Litvack, J. R., Wick, E. H., & Whipple, M. E. (2019). Trends in female leadership at high-profile otolaryngology journals, 1997–2017. *The Laryngoscope*, 129(9), 2031–2035. <https://doi.org/10.1002/lary.27707>

Lobl, M., Grinnell, M., Higgins, S., Yost, K., Grimes, P., & Wysong, A. (2019). Representation of women as editors in dermatology journals: A comprehensive review. *International Journal of Women's Dermatology*, 6(1), 20–24. <https://doi.org/10.1016/j.ijwd.2019.09.002>

Lockhart, J. W., King, M. M., & Munsch, C. (2023). Name-based demographic inference and the unequal distribution of misrecognition. *Nature Human Behavior*, 7, 1084–1095. <https://doi.org/10.1038/s41562-023-01587-9>

Lorello, G. R., Parmar, A., & Flexman, A. M. (2019). Representation of women on the editorial board of the Canadian journal of anesthesia: A retrospective analysis from 1954 to 2018. *Canadian Journal of Anesthesia/Journal Canadien d'anesthésie*, 66(8), 989–990. <https://doi.org/10.1007/s12630-019-01378-9>

Lu, D. J., Luu, M., Yashar, C. M., Klopp, A. H., & Kamrava, M. (2019). An evaluation of gender diversity in the American brachytherapy society. *Brachytherapy*, 18(6), 835–840. <https://doi.org/10.1016/j.brachy.2019.07.003>

Lydon, S., Madden, C., De Bhulbh, Á., Maher, S., Byrne, D., & O'Connor, P. (2021). Do gender-based disparities in authorship and editorship exist in healthcare simulation journals? A bibliometric review of the research. *Simulation in Healthcare*, 16(2), 136–141. <https://doi.org/10.1097/SIH.0000000000000453>

Madden, C., O'Malley, R., O'Connor, P., O'Dowd, E., Byrne, D., & Lydon, S. (2021). Gender in authorship and editorship in medical education journals: A bibliometric review. *Medical Education*, 55(6), 678–688. <https://doi.org/10.1111/medu.14427>

Mah, S. J., Makkar, M., Huang, K., Anpalagan, T., Reade, C. J., & Nguyen, J. M. V. (2022). Gender imbalance in gynecologic oncology authorship and impact of COVID-19 pandemic. *International Journal of Gynecological Cancer*, 32(5), 583–589. <https://doi.org/10.1136/ijgc-2021-003296>

Malkinson, T. S., Terhune, D. B., Kollamkulam, M., Guerreiro, M. J., Bassett, D. S., & Makin, T. R. (2021). Gender imbalance in the editorial activities of a researcher-led journal. *bioRxiv*, 2021:11. <https://doi.org/10.1101/2021.11.09.467796>

Manan, M. R., Nawaz, I., Rahman, S., & Manan, H. (2024). Diversity, equity, and inclusion in medical education journals: An evaluation of editorial board composition. *Medical Teacher*, 46(2), 280–288. <https://doi.org/10.1080/0142159X.2023.2249212>

Manan, M. R., Nawaz, I., Komer, L., Salam, A., Chiruță, I. I., & Abidin, Z. U. (2024). Diversity, equity, and inclusion on editorial boards of medical student journals. *Asian Bioethics Review*, 16, 545–562. <https://doi.org/10.1007/s41649-024-00297-2>

Manan, M. R., Nawaz, I., Rahman, S., Razzaq, A., Zafar, F., Qazi, A., & Liblik, K. (2023). Diversity, equity, and inclusion on editorial boards of global health journals. *Asian Bioethics Review*, 15(3), 209–239. <https://doi.org/10.1007/s41649-023-00243-8>

Mantovani, A., Rinaldi, E., & Zusi, C. (2020). Gender disparity in editorial boards of scientific journals in endocrinology. *Journal of Endocrinological Investigation*, 43(4), 549–550. <https://doi.org/10.1007/s40618-020-01190-z>

Mariotto, S., Beatrice, G., Carta, S., Bozzetti, S., & Mantovani, A. (2020). Gender disparity in editorial boards of journals in neurology. *Neurology*, 95(11), 489–491. <https://doi.org/10.1212/WNL.00000000000010500>

Martins, R. S., Umar, Z., Amir, M. A., Jogezai, Z. H., Ahmed, W., Barolia, M., Razi, S. S., Poulikidis, K., Latif, M. J., Martin, L. W., Molena, D., & Bhora, F. Y. (2025). Editorial diversity correlates with journal impact factor and author diversity in cardiothoracic surgery. *World Journal of Surgery*, 49(2), 429–436. <https://doi.org/10.1002/wjs.12359>

Mathee, K., Logan, H. F., & Fry, N. K. (2021). Journal of medical microbiology: Global footprint and appointment of a regional editorial board. *Journal of Medical Microbiology*, 70(6), 001391. <https://doi.org/10.1099/jmm.0.001391>

Mauleón, E., Hillán, L., Moreno, L., Gómez, I., & Bordons, M. (2013). Assessing gender balance among journal authors and editorial board members. *Scientometrics*, 95(1), 87–114. <https://doi.org/10.1007/s11192-012-0824-4>

Mavragani, A., Eysenbach, G., & Leung, T. I. (2024). Gender and geographical representation on editorial board members of medical informatics journals. *Digital Health and Informatics Innovations for Sustainable Health Care Systems*, 316, 142–146. <https://doi.org/10.3233/SHTI240364>

McCray, A. T., Gefeller, O., Aronsky, D., Leong, T. Y., Sarkar, I. N., Bergemann, D., Lindberg, D. A. B., Van Bemmel, J. H., & Haux, R. (2011). The birth and evolution of a discipline devoted to information in biomedicine and health care: As reflected in its longest running journal. *Methods of Information in Medicine*, 50(06), 491–507. <https://doi.org/10.3414/ME11-06-0001>

McMullen, K., Kraus, M. B., Kosiorek, H., & Harbell, M. W. (2022). Representation of women as editors in anesthesiology journals. *Anesthesia & Analgesia*, 134(5), 956–963. <https://doi.org/10.1213/ANE.0000000000005881>

Meena, S., & Chowdhury, B. (2014). How international are the leading orthopedic journals: A look at the composition of the editorial board members of the top orthopedic journals. *Archives of Orthopaedic and Trauma Surgery*, 134(5), 619–622. <https://doi.org/10.1007/s00402-014-1975-y>

Melhem, G., Rees, C. A., Sunguya, B. F., Ali, M., Kurpad, A., & Duggan, C. P. (2022). Association of international editorial staff with published articles from low- and middle-income countries. *JAMA Network Open*, 5(5), e2213269. <https://doi.org/10.1001/jamanetworkopen.2022.13269>

Memon, A. R., Ahmed, I., Ghaffar, N., Ahmed, K., & Sadiq, I. (2022). Where are female editors from low-income and middle-income countries? A comprehensive assessment of gender, geographical distribution and country's income group of editorial boards of top-ranked rehabilitation and sports science journals. *British Journal of Sports Medicine*, 56(8), 458–468. <https://doi.org/10.1136/bjsports-2021-105042>

Mendoza-Holgado, C., Cantero-Garlito, P. A., & Barrios-Fernandez, S. (2023). Gender composition in occupational therapy journals' editorial boards. *International Journal of Environmental Research and Public Health*, 20(4), 3458. <https://doi.org/10.3390/ijerph20043458>

Minion, S., Kiene, J., & Dellavalle, R. (2023). Dermatology journals' editorial boards require improved gender equity: JMIR dermatology's future directions. *JMIR Dermatology*, 23, e43256. <https://doi.org/10.2196/43256>

Miró, Ò., Burillo-Putze, G., Plunkett, P. K., & Brown, A. F. T. (2010). Female representation on emergency medicine editorial teams. *European Journal of Emergency Medicine*, 17(2), 84–88. <https://doi.org/10.1097/MEJ.0b013e32832e98f7>

Moeller, E., Riesel, J., Boms, O., Pompermaier, L., Pusic, A., & Corlew, S. (2021). Female leadership in academic plastic surgery: A comprehensive analysis. *Plastic & Reconstructive Surgery*, 148(6), 1408–1413. <https://doi.org/10.1097/PRS.00000000000008527>

Mohammadi, N. K., Zaree, F., de Leeuw, E., & Emamjomeh, M. (2011). Share of nations in 37 international public health journals: An equity and diversity perspective towards health research capacity building. *Iranian Journal of Public Health*, 40(4), 129.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ (London)*, 339, b2535–b2535. <https://doi.org/10.1136/bmj.b2535>

Morrison, J., Borrell, C., Marí-Dell'Olmo, M., Ruiz Cantero, M. T., Benach, J., Fernández, E., Pasarín, M. I., Pérez, G., Cascant, L., Álvarez-Dardet, C., Artazcoz, L., Pérez, K., del M. García-Calvente, M., & Ruiz, I. (2010). Desigualdades de género en la Sociedad Española de Salud Pública y Administración Sanitaria (2000-2009). *Gaceta Sanitaria*, 24(4), 334–338.

Morton, M. J., & Sonnad, S. S. (2007). Women on professional society and journal editorial boards. *Journal of the National Medical Association*, 99(7), 764.

Morton, B., Vercueil, R., Masekela, R., Heinz, E., Reimer, L., Saleh, S., Kalinga, C., Seekles, M., Biccard, B., Chakaya, J., Abimbola, S., Obasi, A., & Oriyo, N. (2021). Consensus statement on measures to promote equitable authorship in the publication of research from international partnerships. *Anaesthesia*, 77, 243–247. <https://doi.org/10.1111/anae.15597>

Mun, M., & Akinyemi, E. (2020). Representation on the editorial boards of academic psychiatry journals: The gender difference. *Academic Psychiatry*, 44(4), 506–506. <https://doi.org/10.1007/s40596-020-01249-2>

Myrcha, P., Siripurapu, V., Głowiczki, M., Dua, A., & Głowiczki, P. (2024). Women surgeons: Barriers and solutions. *Annals of Vascular Surgery*, 105, 325–333. <https://doi.org/10.1016/j.avsg.2024.02.024>

Nafade, V., Sen, P., & Pai, M. (2019). Global health journals need to address equity, diversity and inclusion. *BMJ Global Health*, 4(5), e002018. <https://doi.org/10.1136/bmjgh-2019-002018>

Nasrullah, A., Sharma, A., Hamza, A., Ramanujam, D., Shah, S., Virk, S., Shah, A., Javed, A., Garg, I., Saa, L., Verma, A., Faturous, A., Assaf, S., DiSilvio, B., & Sheikh, A. B. (2023). Gender differences in pulmonology and critical care authorship and editorial boards. *Current Medical Research and Opinion*, 39(3), 375–381. <https://doi.org/10.1080/03007995.2023.2174329>

Nature medicine. (2023). Striving for equitable partnerships in health research. *Nature Medicine*, 29(11), 2667–2668. <https://doi.org/10.1038/s41591-023-02680-2>

Nguyen, M. A., Yousef, S., Gupta, R., & McKenzie, C. (2023). Gender distribution in surgical pathology journal publications and editorial boards. *Clinical Pathology*, 77, 217–218. <https://doi.org/10.1136/jcp-2023-209293>

Nguyen, A. X.-L., Zorigbaatar, A., Bouhadana, D., Deyirmendjian, C., Nguyen, D.-D., Cox, A., & Bhojani, N. (2022). Gender disparity on editorial boards of major urology journals. *Canadian Urological Association Journal*, 16(6), E328. <https://doi.org/10.5489/cuaj.7690>

Noronha, V., Kolkur, M., Haridas, C., Bhagyavant, P., Das, R., Chittari, S. S., Vasudevan, L., Bafna, G., Menon, N., Shah, M., & Prabhash, K. (2024). Representation of female authors in oncology: The Indian perspective. *ecancermedicalscience*, 18(1755). <https://doi.org/10.3332/ecancer.2024.1755>

Noyola-Pérez, A., Gil-Flores, L., Martínez-Espinosa, H. A., Ramos-Barrera, E., Rodríguez-González, V., Sung, L., Guzman, M., Hamad, N., Colunga-Pedraza, P. R., Tarín-Arzaga, L., Cantú-Rodríguez, O. G., Gutiérrez-Aguirre, H., Jaime-Pérez, J. C., Gómez-Almaguer, D., & León, A. G.-D. (2023). Global representation among journal editors in haematology: Are we diverse, equitable, and inclusive? *The Lancet Haematology*, 10(4), e246–e247. [https://doi.org/10.1016/S2352-3026\(23\)00069-8](https://doi.org/10.1016/S2352-3026(23)00069-8)

Okike, K., & Swiontkowski, M. (2024). Assessing the diversity of the journal of bone and joint surgery editorial boards. *Journal of Bone and Joint Surgery*, 106(9), 757–759. <https://doi.org/10.2106/JBJS.24.00202>

Okike, K., Liu, B., Lin, Y. B., Torpey, J. L., Kocher, M. S., Mehlman, C. T., Bhandari, M., & Biermann, J. S. (2012). The Orthopedic Gender Gap: Trends in Authorship and Editorial Board Representation Over the Past 4 Decades. *The American Journal of Orthopedics (Belle Mead NJ)*, 41(7), 304–310.

Ölbeci, Ö., Ergün, B., Yakar, M. N., & Hancı, V. (2024). Gender Distribution of Editorial Board Members in Palliative Care Journals: Assessment of Gender Parity. *Journal of Palliative Care*, 41(1), 67–77. <https://doi.org/10.1177/0825859724129163>

Olive, J. K., Preventza, O. A., Blackmon, S. H., & Antonoff, M. B. (2020). Representation of women in the society of thoracic surgeons authorship and leadership positions. *The Annals of Thoracic Surgery*, 109(5), 1598–1604. <https://doi.org/10.1016/j.athoracsur.2019.07.069>

Ovseiko, P. V., Afsar, A. P., Fazal, Z. Z., Coates, L. C., & Gupta, L. (2022). Gender representation on editorial boards of rheumatology journals. *The Lancet Rheumatology*, 4(10), e663–e664. [https://doi.org/10.1016/S2665-9913\(22\)00157-6](https://doi.org/10.1016/S2665-9913(22)00157-6)

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ: British Medical Journal*, 372, 1–9.

Pagel, P. S., Freed, J. K., & Lien, C. A. (2019). Gender composition and trends of journal of cardiothoracic and vascular anesthesia editorial board membership: A 33-year analysis, 1987–2019. *Journal of Cardiothoracic and Vascular Anesthesia*, 33(12), 3229–3234. <https://doi.org/10.1053/j.jvca.2019.07.139>

Palser, E. R., Lazerwitz, M., & Fotopoulou, A. (2022). Gender and geographical disparity in editorial boards of journals in psychology and neuroscience. *Nature Neuroscience*, 25(3), 272–279. <https://doi.org/10.1038/s41593-022-01012-w>

Pan, S., Zheng, W., & Rong, L. Q. (2022). Gender representation on editorial boards of anaesthesiology journals from 2010 to 2020. *British Journal of Anaesthesia*, 129(3), e53–e55. <https://doi.org/10.1016/j.bja.2022.05.017>

Panda, S. N., Barik, M., Ratna, P., & Das, P. K. (2025). Power imbalances in tropical medicine journals: An analysis of editorial board representation. *Tropical Medicine and Health*, 53, 92. <https://doi.org/10.1186/s41182-025-00752-2>

Park, J., Xue, Y., Lim, M., Tretiakov, N., & Felfeli, T. (2022). Representation of women in ophthalmology journal editorial boards. *BMJ Open Ophthalmology*, 7(1), e001127. <https://doi.org/10.1136/bmjophth-2022-001127>

Patel, A., Suryavanshi, P., Madou, E., Dzioba, A., Strychowsky, J. E., Hu, A., Chan, Y., & Graham, M. E. (2023). Exploring diversity in otolaryngology-head and neck surgery journal editorial boards. *Ear, Nose & Throat Journal*. <https://doi.org/10.1177/01455613231178115>

Patel, S. R., Riano, I., Abuali, I., Ai, A., Geiger, G., Pimienta, J., Roggio, A. R., Dhawan, N., Dizman, N., Salinas, A. L., Pomares-Millan, H., & Florez, N. (2023). Race/ethnicity and gender representation in hematology and oncology editorial boards: What is the state of diversity? *Oncologist*, 28, 609–617. <https://doi.org/10.1093/oncolo/oyad103>

Perez-Sepulveda, B. M., Cunningham-Oakes, E., & Waters, E. V. (2025). Importance of diversity and representation in science: Benefits towards strengthening our response to global challenges. *Npj Antimicrobials and Resistance*, 3(1), 1–4. <https://doi.org/10.1038/s44259-025-00101-7>

Petrechko, O., Fatusos, A. S., Pal, S., Khan, U., Majeed, H., Sagheer, S., Khalid, S., Farook, S., Khan, S., Shuja, H., Zaidi, S. H., Wasty, N., Shekhar, R., & Sheikh, A. B. (2023). Gender parity in high impact cardiology journals. *Current Problems in Cardiology*, 48(3). 101549. <https://doi.org/10.1016/j.cpcardiol.2022.101549>

Pflibsen, L. R., Foley, B. M., Bernard, R. W., Lee, G. K., Neville, M. R., Almader-Douglas, D., & Noland, S. S. (2021). Representation of women on plastic surgery journal editorial boards in the United States. *Aesthetic Surgery Journal*, 41(7), NP914–NP920. <https://doi.org/10.1093/asj/sjab034>

Pike, K. M., Min, S., Poku, O. B., Reed, G. M., & Saxena, S. (2017). A renewed call for international representation in editorial boards of international psychiatry journals. *World Psychiatry : Official Journal of the World Psychiatric Association (WPA)*, 16(1), 106–107. <https://doi.org/10.1002/wps.20389>

Pinho-Gomes, A.-C., Vassallo, A., Woodward, M., & Peters, S. (2022). Cross-sectional study of the relationship between women's representation among editors and peer reviewers in journals of the British medical journal publishing group. *BMJ Open*, 12(5), e061054. <https://doi.org/10.1136/bmjopen-2022-061054>

Pinho-Gomes, A.-C., Vassallo, A., Thompson, K., Womersley, K., Norton, R., & Woodward, M. (2021). Representation of women among editors in chief of leading medical journals. *JAMA Network Open*, 4(9), e2123026. <https://doi.org/10.1001/jamanetworkopen.2021.23026>

Piper, C. L., Scheel, J. R., Lee, C. I., & Forman, H. P. (2018). Representation of women on radiology journal editorial boards. *Academic Radiology*, 25(12), 1640–1645. <https://doi.org/10.1016/j.acra.2018.03.031>

Plana, N. M., Smith, K. L., Hu, S., Xu, W., Broach, R. B., Butler, P. D., & Lin, I. C. (2022). Opportunity costs of internal promotions in plastic surgery: Are women given a fair shot? *Plastic and Reconstructive Surgery - Global Open*, 10(5), e4302. <https://doi.org/10.1097/GOX.00000000000004302>

Porter, C. L., Christian, L., & Poling, A. (2003). Participation of women as authors and editors in journals concerned with mental retardation and related topics. *Mental Retardation*, 41(1), 1–6. [https://doi.org/10.1352/0047-6765\(2002\)041<0001:POWAAA>2.0.CO;2](https://doi.org/10.1352/0047-6765(2002)041<0001:POWAAA>2.0.CO;2)

Prunty, M., Rhodes, S., Sun, H., Miller, A., Calaway, A., Kutikov, A., Plimack, E. R., Ponsky, L., Murray, K. S., & Bukavina, L. (2022). A seat at the table: The correlation between female authorship and urology journal editorial board membership. *European Urology Focus*, 8(6), 1751–1757. <https://doi.org/10.1016/j.euf.2022.04.009>

Pujari, A., Johnson, F., Little, M. T., Forsh, D. A., & Okike, K. (2023). Racial/ethnic and gender diversity of orthopaedic journal editorial boards. *JBJS*, 106(5), 460–465. <https://doi.org/10.2106/JBJS.23.00384>

Qaryouti, D., Jibril, O., Silva, F. D., Jain, P., Gangu, K., & Sheikh, A. B. (2023). Gender parity in high impact neurology journals. *Eurologicals*, 33, 100476. <https://doi.org/10.1016/j.euro.2023.100476>

Rakhra, A., Ogedegbe, G., Williams, O., Onakomaia, D., & Ovbiagele, B. (2021). Representation of Racial/Ethnic Minority Individuals in the Leadership of Major Medical Journals. *Journal of Health Disparities Research and Practice*, 14(4), 69–81.

Ramírez-Castañeda, V. (2020). Disadvantages in preparing and publishing scientific papers caused by the dominance of the English language in science: The case of Colombian researchers in biological sciences. *PLoS One*, 15(9), e0238372. <https://doi.org/10.1371/journal.pone.0238372>

Ramos, M. B., Criscuoli De Farias, F. A., Einstfeld Britz, J. P., De Quadros, F. W., Koch, K. B., Carobin, V. N., & Falavigna, A. (2022). Representation of women on editorial boards of medline-indexed spine, neurosurgery, and orthopedic journals. *International Journal of Spine Surgery*, 16(2), 404–411. <https://doi.org/10.14444/8223>

Rampersad, C. (2023). Female authorship trends in a high- impact Canadian medical journal: A 10- year cross-sectional series, 2013-2023. *BMJ open*, 15(5), e093157. <https://doi.org/10.1136/bmjopen-2024-093157>

Ravioli, S., Rupp, A., Exadaktylos, A. K., & Lindner, G. (2021). Gender distribution in emergency medicine journals: Editorial board memberships in top-ranked academic journals. *European Journal of Emergency Medicine*, 28(5), 380–385. <https://doi.org/10.1097/MEJ.0000000000000842>

Rawat, S., Kumar, P., & Wadhwa, L. (2025). Gender diversity in the editorial boards of global obstetrics and gynecology journals. *Asian Bioethics Review*, 17, 43–57. <https://doi.org/10.1007/s41649-024-00298-1>

Rawat, S., Mathe, P., Unnithan, V. B., Kumar, P., Abhishek, K., Praveen, N., & Guleria, K. (2023). Poor representation of developing countries in editorial boards of leading obstetrics and gynaecology journals. *Asian Bioethics Review*, 15(3258241). <https://doi.org/10.1007/s41649-023-00241-w>

Reeves, S., Loke, W. L., & Brennan, P. A. (2022). Gender representation within editorial leadership positions of oral and maxillofacial journals. *British Journal of Oral and Maxillofacial Surgery*, 60(5), 658–660. <https://doi.org/10.1016/j.bjoms.2021.11.011>

Reeves, S., Liu, C., & Mack, G. (2023). Gender representation amongst orthodontic editorial boards: Trends over time. *European Journal of Orthodontics*, 45, 491–495. <https://doi.org/10.1093/ejo/cjad027>

Resar, L. M. S., Jaffee, E. M., Armanios, M., Jackson, S., Azad, N. S., Horton, M. R., Kaplan, M. J., Laiho, M., Maus, M. V., Sumner, C. J., Wheelan, S. J., & Wills-Karp, M. (2020). Equity and diversity in academic medicine: A perspective from the JCI editors. *Journal of Clinical Investigation*, 129(10), 3974–3977. <https://doi.org/10.1172/JCI130902>

Rivera, J. C., Hauc, S. C., Juan, H. Y., Williams, M., Stögner, V. A., Najafali, D., Long, A. S., Almeida, M., Persing, J. A., & Alperovich, M. (2023). Assessment of Sex Diversity Among Craniofacial Academic Faculty. *Journal of Craniofacial Surgery*, 34(1), 202–205. <https://doi.org/10.1097/SCS.00000000000009109>

Roy, J. M., Segura, A., Skandalakis, G. P., Rumalla, K., Estes, E., Iqbal, J., Riaz, M. A., Sidebottom, R., Schmidt, M. H., & Bowers, C. A. (2022). Gender concordance and publication productivity within Neurosurgical Focus: A 10-year review (2013–2022). *Neurosurgical Focus*, 55(5), E4. <https://doi.org/10.3171/2023.8.FOCUS23461>

Rynecki, N. D., Krell, E. S., Potter, J. S., Ranpura, A., & Beebe, K. S. (2020). How well represented are women orthopaedic surgeons and residents on major orthopaedic editorial boards and publications? *Clinical Orthopaedics & Related Research*, 478(7), 1563–1568. <https://doi.org/10.1097/CORR.0000000000000824>

Sachs, B. C., Benitez, A., Buelow, M. T., Gooding, A., Schaefer, L. A., Sim, A. H., Tussey, C. M., & Shear, P. K. (2018). Women's leadership in neuropsychology: Historical perspectives, present trends, and future directions. *The Clinical Neuropsychologist*, 32(2), 217–234. <https://doi.org/10.1080/13854046.2017.1420234>

Salazar, J. W., Claytor, J. D., Habib, A. R., Guduguntla, V., & Redberg, R. F. (2021). Gender, race, ethnicity, and sexual orientation of editors at leading medical and scientific journals: A cross-sectional survey. *JAMA Internal Medicine*, 181(9), 1248–1251. <https://doi.org/10.1001/jamainternmed.2021.2363>

Saleh, S., Masekela, R., Heinz, E., Abimbola, S., Morton, B., Vercueil, A., Reimer, L., Kalinga, C., Seekles, M., Biccard, B., Chakaya, J., Obasi, A., & Oriyo, N. (2022). Equity in global health research: A proposal to adopt author reflexivity statements. *PLOS Global Public Health*, 2(3), e0000160. <https://doi.org/10.1371/journal.pgph.0000160>

Santonocito, C., Giambra, M. M., Lumia, M. G., Sanfilippo, F., Del Fabbro, V., Rubulotta, F., Bignami, E. G., Abelardo, D., Lefrant, J. Y., & Rello, J. (2025). Gender imbalance in critical care medicine journals. *Anaesthesia Critical Care and Pain Medicine*, 44(3), 101504. <https://doi.org/10.1016/j.accpm.2025.101504>

Sarna, K. V., Griffin, T., Tarlov, E., Gerber, B. S., Gabay, M. P., & Suda, K. J. (2020). Trends in gender composition on editorial boards in leading medicine, nursing, and pharmacy journals. *Journal of the American Pharmacists Association*, 60(4), 565–570. <https://doi.org/10.1016/j.japh.2019.12.018>

Sawalha, L., Kelkar, A. H., Mohyuddin, G. R., Goodman, A. M., Gagelmann, N., & Al Hadidi, S. (2023). Analysis of repeated roles in editorial boards at oncology focused journals. *Journal of Cancer Policy*, 35, 100380. <https://doi.org/10.1016/j.jcpo.2022.100380>

Saxena, S., Levav, I., Maulik, P. K., & Saraceno, B. (2003). How international are the editorial boards of leading psychiatry journals? *Lancet (London)*, 361, 609. [https://doi.org/10.1016/S0140-6736\(03\)12528-7](https://doi.org/10.1016/S0140-6736(03)12528-7)

Scarlato, R.-M., Wyburn, K., & Wyld, M. L. (2024). Is there an editorial glass ceiling? Editorial leadership in nephrology and transplantation journals. A gender-based cross-sectional analysis, 29(12), 895–899. <https://doi.org/10.1111/nep.14383>

Schacher, S., Hidas, C., & Derichs, D. (2020). Notfallmedizinische Tagungen und Zeitschriften in Deutschland – sag mir, wo die Frauen sind: Gründe für einen Kulturwandel. *Notfall + Rettungsmedizin*, 23(8), 611–617. <https://doi.org/10.1007/s10049-020-00687-7>

Schacher, S., Kuehl, M., Hottenbacher, L., & Spitznagel, N. (2025). Progress and challenges: Gender equality in emergency medicine conferences and journals 2020–2024. *Emergency + Rescue Medicine*, 1–7. <https://doi.org/10.1007/s10049-025-01474-y>

Schaechter, J. D., Jacobs, J. W., Booth, G. S., Dupont, W. D., & Silver, J. K. (2024). Gender representation on editorial boards of JAMA network journals. *Journal of Women's Health*, 33(4), 446–452. <https://doi.org/10.1089/jwh.2023.0685>

Schisterman, E. F., Swanson, C., Lu, Y.-L., & Mumford, S. L. (2017). The changing face of epidemiology: Gender disparities in citations? *Epidemiology (Cambridge, MA)*, 28(2), 159–168. <https://doi.org/10.1097/EDE.0000000000000593>

Schrager, S., Bouwkamp, C., & Mundt, M. (2011). Gender and first authorship of papers in family medicine journals 2006–2008. *Family Medicine - Kansas City*, 43(3), 155.

Sebo, P. (2022). How accurate are gender detection tools in predicting the gender for Chinese names? A study with 20,000 given names in Pinyin format. *Journal of the Medical Library Association*, 110(2), 205–211. <https://doi.org/10.5195/jmla.2022.1289>

Sebo, P., & Clair, C. (2022). Gender disparity in publication associated with editor-in-chief gender: A cross-sectional study of fifty high-impact medical journals. *Journal of General Internal Medicine*, 37(11), 2914–2917. <https://doi.org/10.1007/s11606-022-07626-x>

Shah, S., Shumway, N. B., Sarvis, E. W., Sena, J. A., Voice, A., Mumtaz, A., & Sheikh, A. B. (2022). Gender parity in geriatrics editorial boards. *Geriatrics (Middleburg, OH)*, 7(5), 90. <https://doi.org/10.3390/geriatrics7050090>

Sheikh, K., Bennett, S. C., el Jardali, F., & Gotsadze, G. (2016). Privilege and inclusivity in shaping Global Health agendas. *Health Policy and Planning*, 32(3), 303–304. <https://doi.org/10.1093/heapol/czw146>

Sheikh, K., Bennett, S. C., el Jardali, F., & Gotsadze, G. (2017). Privilege and inclusivity in shaping global health agendas. *Health Policy and Planning*, 32(3), 303–304. <https://doi.org/10.1093/heapol/czw146>

Singh, P., Sriram, V., Vaid, S., Nanda, S., & Keshri, V. R. (2024). Examining representation of women in leadership of professional medical associations in India. *PLOS Global Public Health*, 4(8), e0003587. <https://doi.org/10.1371/journal.pgph.0003587>

Somacarreraa, S. C., Rodríguez, C. A., del Val, L., del, C., Zufiría, L. O., & Carnero, P. R. (2024). Women in contemporary Spanish radiology: an analysis in perspective. *Radiology*, 66(2), 121–131. <https://doi.org/10.1016/j.rxeng.2023.04.009>

Spitznagel, N., Hidas, C., & Schacher, S. (2025). Repräsentation von Frauen in leitenden Positionen der Akut- und Notfallmedizin. *Medizinische Klinik - Intensivmedizin und Notfallmedizin*, 120, 411–418. <https://doi.org/10.1007/s00063-024-01181-5>

Starchl, C., Shah, V., Zollner-Schwetz, I., Knezevic, J., Geiger, S., & Amrein, K. (2023). A comparison of the representation of women in editor positions at major medical journals in 2021 vs 2011. *Academic Medicine*, 98(1), 75–79. <https://doi.org/10.1097/ACM.0000000000004964>

Stuart, C. M., Mott, N. M., Mungo, A. H., Meguid, R. A., Mitchell, J. D., Randhawa, S. K., Rove, J. Y., & David, E. A. (2025). Representation of women among cardiothoracic surgery editorial boards: Trends over the past 2 decades. *The Journal of Thoracic and Cardiovascular Surgery*, 169(3), 691–698. <https://doi.org/10.1016/j.jtcvs.2024.06.015>

Sterne, J. A., Hernán, M. A., Reeves, B. C., Savočić, J., Berkman, N. D., Viswanathan, M., Henry, D., Altman, D. G., Ansari, M. T., Boutron, I., Carpenter, J. R., Chan, A. W., Churchill, R., Deeks, J. J., Hróbjartsson, A., Kirkham, J., Jüni, P., Loke, Y. K., Pigott, T. D., ... Whiting, P. F. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. *BMJ (London)*, 355, i4919. <https://doi.org/10.1136/bmj.i4919>

Subramiam, M., Azad, N., Wasan, S. K., & Long, M. T. (2021). Equal opportunity: Women representation on editorial boards and authorship of editorials in gastroenterology and hepatology journals. *American Journal of Gastroenterology*, 116(3), 613–616. <https://doi.org/10.14309/ajg.0000000000001183>

Sue, T. C., Churchill, I. F., Mallity, C., Lau, R., Peters, D. A., Lampron, J., Phan, P., Stratton, A., Wai, E. K., & Tsai, E. C. (2025). Gender and racial diversity in leadership roles within academic surgery internationally: A retrospective cross-sectional study pre-COVID-19. *American Journal of Surgery*, 248, 116394. <https://doi.org/10.1016/j.amjsurg.2025.116394>

Szeto, M. D., Sivesind, T. E., Kim, L. S., O'Connell, K. A., Sprague, K. A., Nong, Y., Strock, D. M., Cao, A. L., Wu, J., Toledo, L. M., Wolfe, S. M., Boothby-Shoemaker, W., & Dellavalle, R. P. (2024). Gender parity analysis of the editorial boards of influential dermatology journals: Cross-sectional study. *JMIR Dermatology*, 7, e40819. <https://doi.org/10.2196/40819>

The Lancet Global Health. (2018). Closing the door on parachutes and parasites, *The Lancet Global Health*, 6(6), E593. [https://doi.org/10.1016/S2214-109X\(18\)30239-0](https://doi.org/10.1016/S2214-109X(18)30239-0)

The Lancet Group. (2025). Self-reported gender, ethnicity and race of authors and peer reviewers [Dataset]. <https://www.thelancet.com/equity-diversity-inclusion/commitments/self-reported-data>

Théard, M. A., Flexman, A. M., & Smith, M. (2020). Diversity, inclusion and equity in the journal of neurosurgical anesthesiology: A look to the future. *Journal of Neurosurgical Anesthesiology*, 32(4), 283–284. <https://doi.org/10.1097/ANA.0000000000000711>

Toney, C., Shroyer Mathis, M., & Martin, C. (2023). The use of facial recognition software and published manuscripts to examine trends in surgical editorial board diversity. *Journal of Surgical Research*, 286, 104–109. <https://doi.org/10.1016/j.jss.2022.11.057>

Tutarel, O. (2004). Composition of the editorial boards of leading medical education journals. *BMC Medical Research Methodology*, 4(1), 3. <https://doi.org/10.1186/1471-2288-4-3>

Ünal, A., & Çeçen, A. (2023). Promoting gender diversity in the editorial boards of major otorhinolaryngology journals: A call for inclusion and equal representation. *Laryngoscope Investigative Otolaryngology*, 8(5), 1184–1188. <https://doi.org/10.1002/lio2.1167>

Ural, D., Monsuez, J. J., & Undas, A. (2024). Female representation on editorial boards of the national societies of cardiology journals of the European society of cardiology. *European Heart Journal*, 45(37), 3782–3784. <https://doi.org/10.1093/eurheartj/ehae418>

van Daalen, K. R., Bajnoczki, C., Chowdhury, M., Dada, S., Khorsand, P., Socha, A., Lal, A., Jung, L., Alqodmani, L., Torres, I., Ouedraogo, S., Mahmud, A. J., Dhatt, R., Phelan, A., & Rajan, D. (2020). Symptoms of a broken system: The gender gaps in COVID-19 decision-making. *BMJ Global Health*, 5(10), e003549. <https://doi.org/10.1136/bmjgh-2020-003549>

van Daalen, K. R., Jung, L., Dada, S., Othman, R., Barrios-Ruiz, A., Malolos, G. Z., Wu, K. T., Garza-Salas, A., El-Gamal, S., Ezzine, T., Khorsand, P., Wyns, A., Paniello-Castillo, B., Gepp, S., Chowdhury, M., Santamarta Zamorano, A., Beagley, J., Oliver-Williams, C., Debnath, R., ... Phelan, A. (2024). Bridging the gender, climate, and health gap: The road to COP29. *The Lancet. Planetary Health*, 8(12), e1088–e1105. [https://doi.org/10.1016/S2542-5196\(24\)00270-5](https://doi.org/10.1016/S2542-5196(24)00270-5)

van Daalen, K. R., Dada, S., Abimbola, S., Bhaumik, S., Chilisa, B., Deerasinghe, G., Kyobutungi, C., Peters, S. A. E., Phelan, A., Rajeev, A., Redvers, N., Robinson, L., Stewart-Ibarra, A., Wyns, A., Zeinali, Z., & Zulu, J. M. (2026). Ethical and methodological considerations of inferred demographics in academic research. (under review).

van Daalen, K. R., Chowdhury, M., Dada, S., Khorsand, P., El-Gamal, S., Kaidarove, G., Jung, L., Othman, R., O'Leary, C. A., Ashworth, H. C., Socha, A., Olaniyan, D., Azeezat, F. T., Abouhala, S., Abdulkareem, T., Dhatt, R., & Rajan, D. (2022). Does

global health governance walk the talk? Gender representation in World Health assemblies, 1948–2021. *BMJ Global Health*, 7(8), e009312. <https://doi.org/10.1136/bmjgh-2022-009312>

VanHelene, A. D., Khatri, I., Hilton, B. C., Mishra, S., Uzun, E. D. G., & Warner, J. L. (2024). Inferring gender from first names: Comparing the accuracy of genderize, gender API, and the gender R package on authors of diverse nationality. *PLOS Digital Health*, 3(10), e0000456. <https://doi.org/10.1101/2024.01.30.24302027>

Verran, D., Dwyer, K., Hardstaff, R., Lawton, P., & Schultz, H. (2020). Gender parity remains to be achieved for the range of editorial roles associated with current australasian medical journals. *Cureus*, 12(4). <https://doi.org/10.7759/cureus.7879>

Vij, N., Singleton, I., Bisht, R., Lucio, F., Poon, S., & Belthur, M. V. (2022). Ethnic and sex diversity in academic orthopaedic surgery: A cross-sectional study. *JAAOS: Global Research & Reviews*, 6(3), e21. <https://doi.org/10.5435/JAAOSGlobal-D-21-00321>

Wang, M., Xue, Y., Wei, M., Jiang, H., & Zhang, X. (2022). Representation of women as editors in andrology journals. *Andrology*, 10(6), 1067–1072. <https://doi.org/10.1111/andr.13230>

Wang, M., Laguna, B., Koethe, Y., Lehrman, E., Kumar, V., & Kohi, M. P. (2019). Bridging the gender gap in the society of IR: A benchmark study. *Journal of Vascular and Interventional Radiology*, 30(4), 584–588.e2. <https://doi.org/10.1016/j.jvir.2018.09.007>

Wang, D. K., Clark, L. M., Stephens, L. D., Adkins, B. D., Khan, S. S., Booth, G. S., & Jacobs, J. W. (2024). Analysis of editor in chief gender and associated journal variables among 126 pathology journals. *American Journal of Clinical Pathology*, 162(1), 12–16. <https://doi.org/10.1093/ajcp/aqae018>

Weaver, M. L., Sorber, R. A., Holscher, C. M., Cox, M. L., Henry, B. V., Brooke, B. S., & Cooper, M. A. (2023). The measurable impact of a diversity, equity, and inclusion editor on diversifying content, authorship, and peer review participation in the journal of vascular surgery. *Journal of Vascular Surgery*, 77(2), 330–337. <https://doi.org/10.1016/j.jvs.2022.10.052>

Wells, G., Shea, B., O'Connell, D., Peterson, J., Welch, V., Losos, M., & Tugewell, P. (2021). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Wen, T., Liu, D., Li, X., Zhang, Y., Jia, Z., Wu, Y., & Li, W. (2023). How international are the editorial boards in the field of hand research? A cross-sectional study of leading subspecialty hand journals. *Journal of Orthopaedic Surgery and Research*, 18, 576. <https://doi.org/10.1186/s13018-023-04068-x>

White, E. M., Maduka, R. C., Ballouz, D., Chen, H., Wexner, S. D., Behrns, K. E., Lillemoe, K. D., LeMaire, S. A., Smink, D. S., & Sandhu, G. (2021). Surgical research journals - under review: An assessment of diversity among editorial boards and outcomes of peer review. *The American Journal of Surgery*, 222(6), 1104–1111. <https://doi.org/10.1016/j.amjsurg.2021.09.027>

Williams, W. A., Sundaresan, M. S., & Ross, L. F. (2023). Representation of women in published articles at 3 academic pediatric journals: 2001 to 2022. *Pediatrics*, 152(4), e2023062576. <https://doi.org/10.1542/peds.2023-062576>

Williams, W. A., Garvey, K. L., Goodman, D. M., Lauderdale, D. S., & Ross, L. F. (2018). The role of gender in publication in the journal of pediatrics 2015–2016: Equal reviews, unequal opportunities. *The Journal of Pediatrics*, 200, 254–260. <https://doi.org/10.1016/j.jpeds.2018.06.059>

Wing, D., Benner, R., Petersen, R., Newcomb, R., & Scott, J. (2010). Differences in editorial board reviewer behavior based on gender. *Journal Womens Health (Larchmt)*, 19(10), 1919–1923. <https://doi.org/10.1089/jwh.2009.1904>

World Bank Data. (2024). World bank country and lending groups. The World Bank. <https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups>

Wyatt, T. R., Bullock, J. L., Andon, A., Odukoya, E. J., Torres, C. G., Gingell, G., Han, H., Zaidi, Z., Mylona, E., Torre, D., & Cianciolo, A. T. (2023). Editors as gatekeepers: One medical education journal's efforts to resist racism in scholarly publishing. *Academic Medicine*, 98(12), 1406–1412. <https://doi.org/10.1097/ACM.00000000000005303>

Xu, B., Meng, H., Qin, S., Liu, Y., Li, Z., Cao, J., Lin, Y., Zhang, Y., & Wang, Z. (2019). How international are the editorial boards of leading spine journals? A STROBE-compliant study. *Medicine (Baltimore, MD)*, 98(5), e14304. <https://doi.org/10.1097/MD.00000000000014304>

Xue, Y., & Xu, Q. (2024). Gender and geographic representation in editorial boards of education journals. *Frontiers in Psychology*, 15, 1330316. <https://doi.org/10.3389/fpsyg.2024.1330316>

Yakar, M. N., Kosker, R. K., Ibisoglu, E., Kara, F., & Hancı, V. (2023). Gender distribution of editorial board members in critical care journals: Assessment of gender parity. *Journal of Critical Care*, 75, 154288. <https://doi.org/10.1016/j.jcrc.2023.154288>

Yakar, M. N., Bilge, D., Shermatov, N., Oltulu, M., & Hancı, V. (2024). Factors associated with gender disparity on editorial boards of anesthesiology journals: A cross-sectional study. *Journal of Clinical Practice and Research*, 46(6), 601–611. <https://doi.org/10.14744/cpr.2024.85820>

Yalamuru, B., Dexter, F., Silver, J. K., Moeschler, S. M., & Pearson, A. C. S. (2021). Representation of women as editors in major pain journals. *Regional Anesthesia & Pain Medicine*, 46(4), 356–357. <https://doi.org/10.1136/rappm-2020-101675>

Yang, S. C., Dosoudil, E., Gomes, M. M., Anderson, S., & Levine, M. H. (2023). Is female representation increasing in society and journal editorial boards in oral and maxillofacial surgery? *Journal of Oral and Maxillofacial Surgery*, 81(3), 370–375. <https://doi.org/10.1016/j.joms.2022.11.009>

Yip, S. W. L., & Rashid, M. A. (2021). Editorial diversity in medical education journals. *The Clinical Teacher*, 18(5), 523–528. <https://doi.org/10.1111/tct.13386>

Zehetbauer, R., Von Haugwitz, F., & Seifert, R. (2022). Gender-specific analysis of the authors and the editorial board of Naunyn-Schmiedeberg's archives of pharmacology from 2000 to 2020. *Naunyn-Schmiedeberg's Archives of Pharmacology*, 395(1), 39–50. <https://doi.org/10.1007/s00210-021-02166-3>