

1 Cortico-basal oscillations index naturalistic 2 movements during deep brain stimulation

3 Daryl Lawrence,¹ Guy Avraham,^{2,3} Jiaang Yao,¹ Lexin Li,⁴ Chengchun Shi,⁵ Philip A. Starr⁶ and
4 Simon J. Little³

5 Abstract

6 The basal ganglia and sensorimotor cortex are essential nodes of a network that supports
7 motor control. In Parkinson's disease, disruptions in this network lead to rigidity and
8 slowness during movement execution. Deep brain stimulation (DBS) of the basal ganglia
9 has proven effective in alleviating Parkinson's disease-related hypokinetic symptoms, and
10 sensing-enabled neurostimulators now afford the opportunity to detect cortico-basal
11 oscillations during motion. However, the specific contributions of these motor network
12 nodes to chronic, naturalistic movement and the effects of DBS on circuit dynamics are not
13 well understood.

14 To address these gaps, we recorded over 530 hours of cortical and subcortical signals from
15 15 Parkinson's disease patients (27 hemispheres) during unsupervised, unconstrained
16 daily activities and subthalamic or pallidal DBS. Synchronized wrist-worn accelerometers
17 tracked forearm speeds, supporting the evaluation of neural biomarkers related to motion.
18 Our study validated and extended the known relationship between cortical and subcortical
19 beta power (13 – 30 Hz) and movement. We show that cortical low (13 – 20 Hz) and high (21
20 – 30 Hz) beta movement-related desynchronization (MRD) effectively distinguished
21 between mobile and stationary states. In the subthalamic nucleus (STN) and globus
22 pallidus interna (GPi), high beta MRD and gamma (40 – 80 Hz) movement-related
23 synchronization (MRS) exhibited significant group-level correlations with movement
24 kinematics. When stimulated at 130 Hz, cortical stimulation-entrained gamma oscillations
25 at the half-harmonic (~65 Hz) were observed. Further, cortical entrained gamma MRS was a
26 stronger predictor of motion than broadband gamma MRS.

27 We developed machine learning (ML) models to predict naturalistic movement over
28 extended periods using spectral features from brief neural recordings (0.5 – 8 s epochs).
29 Cortical models outperformed subcortical models, although combining cortico-basal
30 signals yielded the highest model performance (AUC > 0.85 for binary movement state
31 classifiers; Pearson r statistic > 0.68 for continuous forearm speed regressors). Higher DBS

1 current amplitudes were associated with reduced beta MRD and low gamma (40 – 60 Hz)
2 MRS in the STN/GPi. This negatively impacted the accuracy of the subcortical models,
3 whereas cortical and cortico-basal model performance remained stable across
4 stimulation amplitudes.

5 Our study demonstrates that cortico-basal nodes of the motor network encode
6 complementary kinematic information, which can be integrated to enhance the accuracy
7 and stability of chronic, naturalistic movement decoding during deep brain stimulation.
8 These insights support the development and integration of therapeutic brain-computer
9 interfaces (BCIs) with closed-loop, adaptive DBS (aDBS) to leverage rapid and precise
10 movement-predictive models for the treatment of motor network disorders.

11

12 **Author affiliations:**

13 1 University of California, Berkeley – University of California, San Francisco Graduate
14 Program in Bioengineering, Berkeley, CA 94720, USA

15 2 Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA

16 3 Department of Neurology, University of California, San Francisco, San Francisco, CA
17 94143, USA

18 4 Department of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA

19 5 Department of Statistics, London School of Economics and Political Science, London,
20 WC2A 2AE, UK

21 6 Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
22 94143, USA

23

24 Correspondence to: Daryl Lawrence

25 UCSF Joan and Sanford I. Weill Neurosciences Building

26 University of California, San Francisco

27 1651 4th St, Room 383C

28 San Francisco, CA 94158, USA

29 E-mail: daryl.lawrence@ucsf.edu

30

1 **Running title:** Cortico-basal biomarkers of movement
2 **Keywords:** sensorimotor cortex; basal ganglia; intracranial electrodes; deep brain
3 stimulation; movement disorders; brain-computer interfaces

4

5 **Introduction**

6 Precise motor control is essential for executing autonomous and volitional movements.¹
7 The basal ganglia and sensorimotor cortex are integral nodes of the motor network that
8 operate together to enable accurate, well-coordinated movements.^{2,3} Within the basal
9 ganglia circuitry, the subthalamic nucleus (STN) and globus pallidus internus (GPi) regulate
10 movement by selecting amongst competing motor programs and relaying information to
11 the cortex.⁴⁻⁶ The sensorimotor cortex is generally responsible for planning and executing
12 voluntary movements via neuronal projections to the brainstem and spinal cord.^{7,8} The
13 basal ganglia and sensorimotor cortex may provide complementary information and
14 perform distinct roles in coordinating motor activity although the specific neural dynamics
15 underlying this relationship are not yet well-established.^{9,10}

16 Laboratory-based recordings of local field potentials (LFPs) from the basal ganglia and
17 sensorimotor cortex have identified potential neurophysiological biomarkers linked to
18 kinematic features.^{11,12} In the subthalamic nucleus (STN), a reduction in beta power (12 –
19 30 Hz) and an increase in broadband gamma power (55 – 90 Hz) are associated with
20 elevated motor vigor in constrained, ballistic motor tasks.¹³⁻¹⁶ In the sensorimotor cortex, a
21 decrease in alpha and beta power, along with an increase in broadband gamma power,
22 have been observed during motor planning and execution.^{17,18} While these findings provide
23 insights into movement-related spectral changes, they are primarily based on neural data
24 recorded during brief, supervised, highly-controlled tasks in perioperative settings. Reliable
25 long-term intracranial decoding of human motion, in naturalistic environments over
26 extended periods has not yet been achieved. Identifying the cortical and subcortical
27 biomarkers of real-time movement is essential for understanding the specific contributions
28 of each node of the motor network to the execution of selected motor plans.¹⁹

29 Impairment of the motor network leads to movement disorders, such as Parkinson's
30 disease and essential tremor, which are debilitating and often challenging to treat.²⁰ While
31 open-loop deep brain stimulation (DBS) has proven effective, particularly for Parkinson's
32 disease, its efficacy is limited by fluctuations in symptom severity and medication levels.²¹
33 New technological advancements, including brain-computer interfaces (BCI) and closed-
34 loop, adaptive deep brain stimulation (aDBS), present promising opportunities for

1 developing personalized treatments with greater therapeutic benefit. Historically, these
2 technologies have been developed independently, with BCIs focusing on precise neural
3 signal decoding and aDBS targeting clinically-defined states (e.g. fluctuations in
4 dopaminergic medication levels) or underlying physiology (e.g. beta bursts).^{22,23} However,
5 given the core deficit of movement disorders, we investigate an approach that integrates
6 these techniques, BCI-aDBS. The main concept here is to detect a patient's intention to
7 move from intracranial brain signals and rapidly ramp up DBS at that moment to support
8 motor execution.

9 Recently, our group demonstrated the proof-of-principle of this BCI-aDBS method in a
10 single Parkinson's disease patient.²⁴ We developed aDBS policies that targeted movement
11 during brief, constrained motor tasks. This study demonstrated accurate cortically-based
12 movement decoding and improved hand speeds during a keyboard typing task with a
13 reduction in involuntary, dyskinetic movements during rest. However, the neural
14 biomarkers of continuous, unconstrained movement remain undetermined, hindering the
15 development of personalized, movement-responsive BCI-aDBS therapies for disorders of
16 movement at scale.²⁵

17 A new generation of neurostimulators for DBS have been developed that can record neural
18 activity while delivering electrical current to the basal ganglia.^{22,26} These recordings can be
19 collected in naturalistic environments, providing an ideal platform to investigate the
20 complementary roles of the basal ganglia and cortex in movement. We recorded 539 hours
21 of cortical and subcortical signals from a cohort of Parkinson's disease patients (15
22 patients; 27 independent hemispheres) implanted with neurostimulators while they
23 performed unconstrained activities of daily living at home during therapeutic DBS. Wrist-
24 worn accelerometers were used to track forearm speeds of patients and synchronized to
25 neural recordings.^{27,28} We identified site-specific neural signals related to motion and
26 developed machine learning (ML) models for movement prediction. Furthermore, we
27 leveraged these findings to elucidate the effects of varying the stimulation amplitude on
28 movement decoding, ML performance and site-specific kinematic biomarkers.

29 Materials and methods

30 Participant selection and assessment

31 We enrolled 15 individuals (mean age: 63 ± 3 years) with idiopathic Parkinson's disease
32 from the movement disorders surgery clinic at the University of California, San Francisco
33 (UCSF) in accordance with the declaration of Helsinki (**Table 1**). The study was reviewed by
34 the UCSF Institutional Review Board (ClinicalTrials.gov: NCT03582891) under an

1 investigational device exemption (G180097/R003) for the Summit RC+S device (Medtronic,
2 Inc.).²¹ These patients presented with standard clinical indications for STN (12 patients) or
3 GPI (3 patients) deep brain stimulation as confirmed by a movement disorders neurologist
4 following the criteria outlined by the Movement Disorders Society for Parkinson's disease
5 diagnosis. The patients' motor function prior to implantation was assessed using the
6 Unified Parkinson's disease Rating Scale (UPDRS) Part III and their cognitive abilities were
7 evaluated through the Montreal Cognitive Assessment (MoCA). Participants with a MoCA
8 score of 20 or below, or those with an untreated mood disorder as determined by a
9 neuropsychologist, were excluded from the study.

10 **Surgical implantation**

11 Quadripolar depth leads were surgically inserted into either the subthalamic nucleus
12 (Medtronic 3389 lead) or the globus pallidus internus (Medtronic 3387 lead).²⁹
13 Electrocorticography (ECoG) strips, designed solely for sensing purposes, were positioned
14 along a parasagittal trajectory to ensure that at least one contact aligned with both the
15 precentral and the postcentral gyri.²² The precise locations of these electrodes were
16 determined intraoperatively using cone beam computed tomography (CT) fused to
17 preoperative MRI scans. The cortical and subcortical leads were connected to a Summit
18 RC+S implantable pulse generator (model B35300R) above the ipsilateral pectoralis
19 muscle via 60-cm lead extenders (model 37087).³⁰

20 **Intracranial data acquisition and preprocessing**

21 We collected over 530 hours of neural data while patients performed unsupervised
22 unconstrained activities of daily living at home (May 2020 – May 2023) (**Fig. 1A**).^{22,31}
23 Baseline recordings were performed in 7 of the 15 patients at a stimulation amplitude of 0
24 mA, prior to the initiation of DBS therapy, to establish the patients' initial motor symptom
25 profiles. As part of clinical care, a movement disorders specialist identified the optimal
26 DBS electrode contacts and stimulation amplitude to maximize therapeutic benefit while
27 minimizing side effects, such as dyskinesia. 11 patients were recorded at various
28 stimulation amplitudes during the DBS parameter optimization phase.

29 Throughout the study, participants continued taking their prescribed antiparkinsonian
30 medications as per clinical guidance from their treating neurologist. ECoG leads captured
31 neurophysiological data from the primary motor (M1) and somatosensory (S1) cortices,
32 while depth leads recorded signals from the STN or GPI. The precise locations of these
33 cortical and subcortical electrodes were reconstructed using the *Locate Electrodes*
34 *Graphical User Interface* toolbox (**Fig. 1B**) and *Lead-DBS* toolbox (**Fig. 1C**) respectively. The
35 neural data was recorded at a sampling frequency of 250 or 500 Hz and transmitted from

1 the RC+S neurostimulator devices to a nearby telemetry module then to a Microsoft
2 Windows tablet. The tablet was equipped with custom software, built on the Summit RC+S
3 application, developed in compliance with FDA regulations (CFR 820.30) and available
4 at <https://github.com/openmind-consortium>.

5 Cortical and subcortical local field potentials recorded by the RC+S devices were first
6 preprocessed in *MATLAB R2022b* using the *Analysis-rs-data* toolbox (**Fig. 1D**).³² They were
7 then filtered from 0.8 – 100 Hz with an infinite impulse response (IIR) elliptic bandpass filter
8 (1dB passband ripple; 100 dB attenuation). For artifact detection and removal, we squared
9 the magnitude of the neural signals and performed Gaussian smoothing over a moving 1-s
10 window. Amplitudes exceeding five times the median were identified as aberrant spikes
11 and the time series corresponding to these periods were removed. Removal of ECG
12 artifacts was carried out utilizing two *MATLAB* libraries, *Perceive* and *PerceptHammer*.^{33,34}
13 *Perceive* detected QRS-like patterns within 10-minute intervals (to accommodate
14 variations in ECG artifacts over time).³³ These patterns were then averaged within each
15 session and employed as initializations for the template subtraction pipeline from the
16 *PerceptHammer* library.³⁴ The initial template facilitated the identification of ECG artifact
17 locations within the underlying signal, and this template was continuously updated using
18 Woody's adaptive filter. However, this recursive process of artifact identification and
19 template updating had the potential to transform the template into one that matched non-
20 artifactual low-frequency spectral power, leading to inaccurate template subtraction. To
21 mitigate this issue, we constrained the transformation of the initial template by comparing
22 the updated and initial templates via normalized cross-correlation. If the cross-correlation
23 between templates fell below a threshold of 0.9, the initial template was utilized for the
24 entire artifact identification and subtraction process without iterative modification by the
25 adaptive filter.

26 Accelerometry data acquisition and preprocessing

27 Participants wore an Apple Watch (Apple Inc.) on the wrist contralateral to the hemisphere
28 where the RC+S device was implanted. For patients with bilateral implants, two watches
29 were worn to simultaneously record movement in both forearms at a sampling rate of 50
30 Hz.²⁴ Accelerometry data was transmitted from the watches to nearby iPhones through the
31 *StrivePD* iOS application (Rune Labs Inc.). Previously-validated external algorithms
32 generated tremor and dyskinesia scores at 1-minute intervals.³⁵ Accelerometry signals in
33 the x, y, and z directions were integrated to derive the respective velocity measurements,
34 filtered between 0.2 and 10 Hz using a fourth-order Butterworth bandpass filter. The
35 resulting x, y, and z velocities were used to compute absolute forearm speeds.

1 Statistics

2 For our statistical analyses, we utilized various *Python* (v3.9.17) packages, including *SciPy*
3 and *Statsmodels*. One-way analyses of variance (ANOVAs) were utilized to explore
4 significant differences between the means of two or more groups. Wilcoxon signed-rank
5 tests were employed for the non-parametric comparison of paired samples. All relevant *p*-
6 values underwent correction for multiple comparisons through the false discovery rate
7 (FDR) procedure.³⁶ Linear mixed models (LMMs) were constructed utilizing the *Pymer4*
8 library, with individual patients and hemispheres considered as random effects. These
9 LMMs were employed to examine the influence of stimulation current amplitude on neural
10 biomarkers and movement-predictive models' performance.

11 Power spectral analyses

12 Cortical and subcortical power spectra were computed from the preprocessed LFPs using
13 a one-dimensional Fourier Transform in the *NumPy* package (*numpy.fft.fft*) (**Fig. 1E**). The
14 neural signals were divided into non-overlapping 0.5-second epochs, and a Hann window
15 was applied to calculate power spectral densities (PSDs) ranging from 0 – 100 Hz and
16 spanning 2 Hz each (**Fig. 1F**). To eliminate the aperiodic component in each power
17 spectrum, the spectral parameterization (SpecParam) algorithm was employed across the
18 4 – 100 Hz range (**Fig. 1G**).^{37,38} To minimize the impact of involuntary movements on our
19 analyses, we excluded epochs that had a non-zero tremor or dyskinesia severity score, as
20 these scores indicated the presence of symptoms of significant severity.³⁵ The RC+S and
21 Apple watch devices were set to computer clock time based on the network time protocol
22 to synchronize the timestamps from both devices. As an added step, we identified the time
23 lag between their clocks that maximized the cross-correlation of their respective
24 accelerometry measurements.³⁹ Once the timestamps were aligned, we linearly
25 interpolated the wearable accelerometry data to determine the absolute forearm speed for
26 each 0.5-second segment.

27 We combined forearm speed measurements from all patients to produce a group-level
28 distribution and identified a local minimum to be used as a standardized threshold for
29 distinguishing between periods of movement (mobile states) and rest (stationary states)
30 (**Fig. 1H**). We labelled epochs based on their movement states and calculated Cohen's *d*
31 (*Cd*) effect sizes using their power spectral densities (PSDs), adjusting for class
32 imbalances with pooled standard deviations (**Fig. 1I**).⁴⁰ The *Cd* values provided a signed,
33 normalized metric to quantify the discriminative differences between the flattened PSDs in
34 the mobile or stationary states. Additionally, we computed Spearman's *p*, a non-parametric
35 measure that is robust to outliers, to examine the correlation between the PSDs from each
36 brain region and the contralateral absolute forearm speed measurements.

1 Machine learning model development and evaluation

2 We developed linear and non-linear classifiers and regressors using the *Python*-based
3 *scikit-learn (sklearn)* library to distinguish between mobile and stationary states or predict
4 absolute forearm speeds respectively. Prior to model training, we standardized the data by
5 removing the mean and scaling it to unit variance. To evaluate the performance of the
6 classifiers, we used the area under the receiver operating characteristic curve (AUC) as our
7 primary metric. AUC is robust to class imbalance making it particularly effective for
8 evaluating model performance across various decision thresholds.^{41,42} Moreover, we
9 calculated accuracies, F1-scores, and positive predictive values, as secondary metrics. To
10 balance our training datasets, we used the Synthetic Minority Over-sampling Technique
11 (SMOTE).⁴³ For the regression analysis, we assessed model performance using the Pearson
12 correlation coefficient (*r* statistic) to compare true and predicted speed values.⁴⁴ As a
13 secondary metric, we employed the mean squared error.⁴⁵

14 To reduce both multicollinearity and complexity, we calculated six canonical power bands
15 (PBs) to serve as features for our linear models: alpha (8 – 12 Hz), low beta (13 – 20 Hz),
16 high beta (21 – 30 Hz), low gamma (40 – 60 Hz), stimulation-entrained gamma (63 – 67 Hz),
17 and high gamma (70 – 90 Hz). In addition, we employed principal component analysis
18 (PCA) to generate subject-specific features. This approach enabled a direct comparison
19 between the effectiveness of canonical PBs versus personalized principal components
20 (PCs) for predicting movement. For more complex non-linear models, we utilized the
21 complete set of PSDs as features without any dimensionality reduction.

22 For the classifiers, we shuffled and stratified our data based on mobile and stationary state
23 labels before splitting the data into training (80 %) and test (20 %) sets. This ensured that
24 both sets preserved the class distribution of the original dataset, preventing folds from
25 having missing classes or imbalanced proportions, which could lead to biased model
26 evaluation. Recording sessions were generally conducted on different days, including
27 varying stimulation levels due to active titration by both patients and clinicians. Therefore,
28 stratification also ensured that the training and test sets had samples from various days
29 and stimulation amplitudes. In subsequent sections, we assessed the models'
30 performance when transferred across these different sessions and stimulation levels. For
31 the regressors, stratification was not used because we were predicting continuous forearm
32 speeds.

33 To determine the specific contributions of each feature to model performance, we
34 calculated the permutation feature importance for each PB and brain region.⁴⁶ This process
35 involved shuffling the sample values (10,000 permutations) to diminish the predictive
36 power of each feature, allowing us to measure the change in model performance when

1 predictions were made using the altered dataset. We also computed the conditional
2 mutual information between each PB and forearm speed measurements, as well as
3 between PBs in each brain region and movement speeds.⁴⁷ This analysis quantified the
4 reduction in uncertainty about forearm motion attributable to each PB and brain region,
5 while accounting for the contribution of movement-related information from other PBs.^{48,49}
6 To examine the effects of the varying DBS current amplitudes on kinematic biomarkers, we
7 computed movement-related Cohen's d effect sizes for each canonical power band and
8 brain region at each stimulation level. Additionally, we explored the influence of the time
9 interval between sessions on model performance. This was done by training models with
10 samples from one session and testing them with data from another session at different
11 time points. We also evaluated how stimulation amplitudes influenced our ability to
12 decode movement by employing 5-fold stratified cross-validation to measure model
13 performance at each stimulation level. We quantified the changes in Cohen's d values and
14 model AUCs across different stimulation levels using LMMs.

15

16 Results

17 Cortical and subcortical biomarkers of naturalistic movement

18 We recorded intracranial signals from the somatosensory (S1) and motor (M1) cortices, as
19 well as the subthalamic nucleus (STN; 22 hemispheres) or globus pallidus internus (GPI; 5
20 hemispheres) during deep brain stimulation (DBS) in patients with Parkinson's disease
21 (Mean \pm SEM duration of data collected per hemisphere: 4.2 ± 0.3 h). A total of 539 hours of
22 data were collected, comprising 213 hours at 0 mA and 326 hours at stimulation
23 amplitudes above 0 mA. Participants utilized wrist-worn accelerometers (Apple watches)
24 to record their forearm speeds during unconstrained everyday activities. The timestamps of
25 the RC+S and Apple watches were synchronized to correct for any time lags (Mean
26 absolute time lag before correction \pm standard error of the mean: 0.6 ± 0.2 s). Commencing
27 with the raw local field potentials (LFPs), we computed flattened power spectral densities
28 (PSDs) within 500-ms epochs. 65 % of these epochs (353 hours; 227 hours at stimulation
29 amplitudes above 0 mA and 126 hours at 0 mA) were free from tremor or dyskinesia based
30 on Apple watch scores. Using the local minimum of the group-level bimodal combined
31 forearm speed distribution (28th percentile) we distinguished between mobile and
32 stationary states.

33 Based on this distinction between movement states, we calculated Cohen's d (Cd) effect
34 sizes for frequencies ranging from 0 to 100 Hz for each subject and hemisphere (**Fig. 2A**).

1 Negative and positive Cd values indicated a decrease and increase in spectral power
2 during the mobile state compared to the stationary state respectively.⁵⁰ Frequency ranges
3 with contiguous PSDs showing negative Cd values were identified as movement-related
4 desynchronization (MRD) bands, while those with positive Cohen's d values were identified
5 as movement-related synchronization (MRS) bands.¹²⁻¹⁷ For our main analyses, we opted to
6 focus on the subset of hemispheres that were stimulated at 130 Hz (9 patients; 16 STNs
7 and 2 GPi's), to avoid interference from varying stimulation frequencies. Additionally,
8 analysis with all data, irrespective of stimulation frequency was also completed and
9 included in the Supplementary material.

10 Shifting the speed threshold between the 5th and 95th percentiles of the combined
11 forearm speed distribution, we computed the average Cohen's "d-gram" for each site (**Fig.**
12 **2B**). This represented the movement-discriminative ability of each PSD (within 0 – 100 Hz)
13 across a range of immobile/slower versus faster distributional splits. Significant MRD was
14 observed in the alpha, low beta, and high beta ranges in cortical areas. In contrast, in the
15 STN/GPi, high beta MRD, but not low beta MRD, reached significance at the group level
16 (FDR-corrected, $P < 0.05$). However, on an individual level, 6 patients (9 STNs and 2 GPi's)
17 also demonstrated significant MRD in the low beta frequency range, underscoring the
18 variability in the predictive power of canonical PBs across participants.

19 Significant MRS was found in the 40 – 80 Hz range for the STN/GPi and the 60 – 100 Hz range
20 for the S1 and M1 (FDR-corrected $P < 0.05$). These findings revealed significant predictive
21 power from both cortical and subcortical regions albeit within site-specific frequency
22 ranges.^{12,19,50} To assess the robustness of these findings across different dopaminergic
23 medication levels, we recreated the Cohen's d-grams within 15-minute intervals, during
24 which variations in medication levels were likely minimal, and averaged them (FDR-
25 corrected $P < 0.05$) (**Fig. S1A**). We also calculated the average group-level Cohen's d-gram
26 using the complete dataset, including periods with tremor or dyskinesia (**Fig. S1B**). These
27 group-level Cohen's d-grams revealed consistent alpha/beta MRD and gamma MRS bands,
28 despite variations in medication level over time or analysis of the full recording duration.⁵¹

29 We extracted several characteristics from the MRD and MRS bands in each Cohen's d plot
30 for comparison, including the peaks in Cohen's d (Cd_{PEAK}) and their respective frequencies
31 (f_{PEAK}). Specifically, we determined the highest Cd value in the MRS band (MRS Cd_{PEAK}) and
32 the most negative Cd value in the MRD band (MRD Cd_{PEAK}). There was no significant
33 difference in the MRD Cd_{PEAK} frequencies of cortical versus subcortical sites (Median \pm SEM
34 peak frequencies; STN/GPi: 24 ± 4 Hz, S1: 22 ± 1 Hz, M1: 23 ± 1 Hz, One-way ANOVA: $F =$
35 2.18 , $P = 0.13$) (**Fig. 2C**). However, cortical MRS Cd_{PEAK} frequencies were higher than those
36 in the STN/GPi (STN/GPi: 52 ± 4 Hz; S1: 64 ± 2 Hz; M1: 66 ± 2 Hz; $F = 12.16$, $P < 10^{-4}$; Post-

1 hoc one-sided Wilcoxon signed rank test: $W = 0.0, P < 0.002$). Cortical MRS Cd_{PEAK} were
 2 commonly around 65 Hz, suggesting a link between stimulation-entrained gamma power
 3 and volitional movement.^{19,21}

4 We also compared the MRD and MRS Cd_{PEAK} magnitudes in each brain region. Cortical beta
 5 MRD Cd_{PEAK} demonstrated a greater magnitude compared to cortical gamma MRS Cd_{PEAK} (W
 6 = 45.0, $P = 0.003$) (**Fig. 2D**). Additionally, cortical MRD Cd_{PEAK} ($W = 0.0, P = 0.002$) and MRS
 7 Cd_{PEAK} ($W = 6.0, P = 0.03$) exhibited higher magnitudes than those observed in the STN/GPi,
 8 indicating that cortical biomarkers were more predictive of naturalistic motion.^{19,24}
 9 Moreover, we calculated the full width at half maximum of the Cohen's d values (Cd_{FWHM})
 10 within each MRD and MRS band. The MRS Cd_{FWHM} was significantly wider than the MRD
 11 Cd_{FWHM} at each site (STN/GPi: $W = 2.0, P = 0.02$; S1: $W = 5.0, P = 0.03$; M1: $W = 8.0, P =$
 12 0.049) (**Fig. 2E**). To further examine the predictive capabilities of each brain region in
 13 estimating continuous forearm speed values, Spearman correlations between each PSD
 14 and absolute forearm speed were computed (**Fig. 2F**). We found that alpha MRD, beta MRD
 15 and gamma MRS encoded continuous forearm speeds in each brain region (FDR-corrected
 16 $P < 0.05$). These results emphasized the presence of site-specific biomarkers associated
 17 with naturalistic motion.⁸

18 Movement Decoding Using Multivariate Signals and Machine Learning

19 Converging evidence indicates that the nervous system encodes movement-related neural
 20 activity across several frequency ranges simultaneously.^{19,52} This suggests that combining
 21 neural features can potentially enhance the capacity to decode forearm movements.
 22 Therefore, we developed machine learning (ML) models with multiple features to classify
 23 stationary and mobile states or predict continuous forearm speeds during unconstrained,
 24 naturalistic motion. These models were developed using canonical PBs from an individual
 25 site (STN/GPi, S1 or M1) or by combining PB features from all three regions. Using Linear
 26 Discriminant Analysis (LDA) and 5-fold cross-validation on the training dataset, we
 27 identified the optimal epoch durations for each region by comparing the area under the
 28 receiver operating characteristic curve (AUC) scores (STN/GPi: 8 s, S1: 10 s, M1: 8 s, and
 29 Combined: 9 s) (**Fig. 3A**). These represented the epoch durations above which there was no
 30 improvement in model performance by more than 0.01.

31 Significant differences in AUC between single-site and combined classifiers were observed
 32 on the holdout dataset ($F = 5.35, P = 0.004$) (**Fig. 3B**). The combined classifier had the
 33 highest performance (Mean \pm SEM AUC: 0.84 ± 0.01 ; $W > 42.0, P < 0.002$).²² Cortical sites
 34 were more predictive of movement states compared to the STN/GPi ($W > 40.0, P < 0.03$)
 35 although there was no significant difference in performance between the S1 and M1
 36 models ($W = 24.0, P = 0.46$).^{53,54} To provide a comprehensive assessment of our models, we

1 also computed several other metrics, such as balanced accuracy, F1 score, sensitivity,
 2 specificity and positive predictive value, (Table 2).

3 Prior studies have demonstrated that customizing features for individual patients can
 4 enhance the performance of predictive models.^{22,28} Consequently, besides using canonical
 5 power bands, we employed principal component analysis (PCA) and identified the number
 6 of PC features for optimal classifier performance (STN/GPi: 8, S1: 4, M1: 5, Combined: 6)
 7 (Fig. 3C). We also computed the cumulative explained variance of these PCs (Mean \pm SEM
 8 variance: STN/GPi: $81 \pm 2\%$, S1: $59 \pm 2\%$, M1: $65 \pm 2\%$, Combined: $47 \pm 2\%$) (Fig. S2A) and
 9 the PC loadings of the first PC (FDR-corrected $P < 0.05$) (Fig. S2B). Like with canonical PBs,
 10 the combined classifiers yielded the highest AUC (Mean \pm SEM AUC: 0.83 ± 0.01 ; $F = 3.89$,
 11 $P = 0.02$; $W = 45.0$, $P = 0.002$) (Fig. 3D). We found no significant difference between linear
 12 models using personalized PCs and those using canonical PBs ($W = 20.0$, $P = 0.63$). This
 13 was likely due to the use of 6 canonical PB features per site. However, real-world devices
 14 may impose additional model restrictions (e.g. maximum 4 PBs for the Summit RC+S)
 15 which may lead to improved performance through personalization of features.²⁴

16 We determined the permutation feature importance of each site to quantify their specific
 17 contributions to movement decoding (Mean \pm SEM change in AUC; STN/GPi: -0.05 ± 0.01 ,
 18 S1: -0.12 ± 0.02 , M1: -0.10 ± 0.02 ; $W = 0.0$, $P = 0.004$) (Fig. 3E). The contribution from the S1
 19 was greater than that from the STN/GPi ($W = 41.0$, $P = 0.041$) but similar to that from the M1
 20 ($W = 19.0$, $P = 0.37$). These findings suggested that the basal ganglia and sensorimotor
 21 cortex encode distinct, non-redundant movement-related information.^{7,8,54} We examined
 22 the permutation feature importance of individual PBs in each brain region. Among these,
 23 cortical high beta power demonstrated the highest feature importance (Mean \pm SEM
 24 change in AUC: -0.10 ± 0.02), indicating that it was the most predictive biomarker of
 25 naturalistic movement amongst the PBs ($F = 2.74$, $P = 0.0005$; $W = 6.0$, $P = 0.027$) (Fig. 3F).¹⁴

26 Although simple linear classifiers can be embedded on current implantable
 27 neurostimulators, more advanced models may yield higher performance for real-time
 28 movement decoding.²³ Therefore, we evaluated the effectiveness of more complex models,
 29 including k-nearest neighbor (kNN), random forest (RF), and light gradient-boosting
 30 machine (LGBM) (Fig. 3G). We also included all 50 PSDs from each site as features for
 31 these non-linear models, rather than restricting them to the canonical PB features. The RF
 32 classifier achieved a small but significant improvement over linear models that used PB
 33 features (Mean \pm SEM AUC: 0.85 ± 0.01), with a difference in AUC of 0.016 ± 0.004 ($F = 3.25$,
 34 $P = 0.01$; $W = 0$, $P = 0.007$). These findings suggested that while canonical power bands
 35 were effective as kinematic biomarkers, employing complex classifiers could offer a slight
 36 enhancement in movement prediction.¹⁹

1 In addition to assessing binary movement states, we aimed to evaluate the utility of the
 2 multivariate signals in predicting absolute forearm speeds. To achieve this, we repeated
 3 our classifier analysis on linear regression models using canonical PBs from one or all sites
 4 and obtained similar results. Using Pearson's correlations between predicted and actual
 5 speeds (r statistic) as the primary metric, we determined the optimal epoch duration for
 6 each model (STN/GPi: 10 s, S1: 10 s, M1: 11 s, Combined: 10 s) (**Fig. 4A**). Combining
 7 cortico-basal signals yielded the highest-performing models (Mean r statistic \pm SEM: $0.64 \pm$
 8 0.03 ; $F = 6.35$, $P = 0.002$; $W = 45.0$, $P = 0.002$) (**Fig. 4B**). We also explored the use of
 9 personalized PCs as features. We identified the optimal number of PCs for each model
 10 (STN/GPi: 9, S1: 5, M1: 8, Combined: 8) (**Fig. 4C**) and found that integrating PC features
 11 from all sites improved model performance (Mean r statistic \pm SEM: 0.63 ± 0.03 ; $F = 4.69$, P
 12 $= 0.008$; $W = 45.0$, $P = 0.003$) (**Fig. 4D**), reinforcing the hypothesis that each site encodes
 13 distinct movement-related information.⁵²

14 To assess the marginal movement decoding ability of each brain region, we calculated their
 15 respective permutation feature importance. Each site made significant, unique
 16 contributions to movement prediction ($W = 0.0$, $P = 0.004$) although the S1 had higher
 17 feature importance than the STN/GPi ($W = 44.0$, $P = 0.01$) (**Fig. 4E**). Cortical high beta power
 18 had the highest feature importance (Mean \pm SEM change in r statistic: -0.19 ± 0.03)
 19 compared to other PBs, including cortical low beta ($W = 2.0$, $P = 0.006$) (**Fig. 4F**). This
 20 suggested significant differences between low and high cortical beta power in decoding
 21 forearm speed.¹⁴

22 As an additional measure of feature importance, we computed the conditional mutual
 23 information for each PB and brain region.⁴⁷⁻⁴⁹ Specifically, we calculated the marginal
 24 mutual information between each PB feature and forearm speed measurements,
 25 conditioned on the other cortical and subcortical PBs (**Fig. S5A**). We also assessed the
 26 joint mutual information between PBs in each brain region and movement speeds,
 27 conditioned on PBs from other brain regions (**Fig. S5B**). The conditional mutual information
 28 from the S1 was greater than that from the STN/GPi ($W = 3.0$, $P = 0.029$) but not significantly
 29 different from the M1 ($W = 38.0$, $P = 0.056$). Additionally, we found that cortical high beta
 30 power had the highest conditional mutual information (Mean \pm SEM MI: 0.020 ± 0.003).
 31 These findings corroborated our findings that the basal ganglia and sensorimotor cortex
 32 encode distinct, non-redundant movement-related information and that cortical high beta
 33 was the most predictive biomarker of naturalistic movement amongst the PBs ($F = 2.67$, $P =$
 34 8.1×10^{-4} ; $W = 2.0$, $P = 0.002$).

35 Due to the high multicollinearity among spectral features, canonical PBs were used for
 36 non-linear regression models (kNN, RF and LGBM). There was no significant variability in

1 performance amongst the models ($F = 0.28, P = 0.92$) (**Fig. 4G**). However, post-hoc analysis
 2 revealed that the LGBM (Mean \pm SEM r statistic: 0.69 ± 0.03) and RF (Mean \pm SEM r statistic:
 3 0.68 ± 0.03) regressors achieved significantly higher performance than the linear PB-based
 4 model ($W > 1.0, P < 0.033$). This further validated our finding that complex non-linear
 5 models could slightly improve model performance.^{19,23} For completeness, we re-ran our
 6 machine learning pipeline on the full patient cohort, including those with stimulation
 7 frequencies different from 130 Hz, and obtained similar results (**Table S1**) for both the
 8 classifiers (**Figs. S3A-D**) and regressors (**Figs. S4A-D**).

9 Effects of stimulation current amplitude on movement decoding

10 Previous studies have demonstrated that DBS can influence neural signals, such as
 11 reducing resting-state subcortical beta activity in patients with Parkinson's disease.^{12,20,55}
 12 However, the effects of varying stimulation levels on kinematic biomarkers and movement-
 13 predictive ML models have not previously been evaluated. Understanding this impact can
 14 also provide insights into the potential performance of movement-responsive BCI-aDBS
 15 systems, which decode neural signals in real-time at different stimulation current
 16 amplitudes.^{26,56} To address this gap, we investigated the effects of stimulation levels on
 17 movement-related changes in alpha, beta, and gamma PBs. An example of movement-
 18 related changes in STN spectral power for a single subject when DBS was at 0.0 mA or 2.0
 19 mA is shown in **Figs. 5A & 5B**.

20 Absolute Cohen's d effect sizes were used to quantify the movement-related
 21 desynchronization/synchronization of canonical PBs in each brain region. To evaluate the
 22 relationship between these effect sizes and stimulation amplitudes, we employed linear
 23 mixed models (LMMs) with stimulation amplitude modeled as a fixed effect, while
 24 individual patients and hemispheres were included as random effects. To visualize these
 25 relationships, we plotted the average absolute Cd values at each stimulation amplitude
 26 across all patients for the STN/GPi (**Fig. 5C**), S1 (**Fig. 5D**) and M1 (**Fig. 5E**). Increasing the
 27 stimulation amplitude was correlated with a decrease in the MRD of subcortical low beta
 28 (STN/GPi: $\beta = -0.078$; 95 % CI = $[-0.1221, -0.036]$, $P = 0.003$), high beta (STN/GPi: $\beta = -0.103$;
 29 95 % CI = $[-0.145, -0.060]$, $P < 10^{-4}$) and low gamma (STN/GPi: $\beta = -0.050$; 95 % CI = $[-0.083$,
 30 $-0.018]$, $P = 0.006$), as evidenced by a reduction in absolute Cd values. In contrast, cortical
 31 regions showed no significant effect on high beta MRD. There was, however, a stimulation-
 32 related decrease in alpha MRD (S1: $\beta = -0.034$; 95 % CI = $[-0.061, -0.007]$, $P = 0.045$) (M1: β
 33 = -0.035 ; 95 % CI = $[-0.061, -0.008]$, $P = 0.02$) and low beta MRD (S1: $\beta = -0.048$; 95 % CI = $[-$
 34 $0.085, -0.010]$, $P = 0.045$) (M1: $\beta = -0.072$; 95 % CI = $[-0.118, -0.026]$, $P = 0.009$), as well as
 35 an increase in M1 stimulation-entrained gamma MRS (M1: $\beta = 0.044$; 95 % CI = $[0.018,$

1 0.069], $P = 0.006$). This revealed that stimulation levels affected site-specific biomarkers of
2 naturalistic motion.

3 To examine how the time interval between recording sessions affected the performance of
4 movement-predictive classifiers, we trained the ML models on data from one session and
5 tested them on data from subsequent sessions conducted at the same stimulation
6 amplitude. We incorporated the duration between sessions as a fixed effect in our LMMs,
7 while treating individual patients and hemispheres as random effects (**Fig. 5F**). Further, we
8 explored the impact of stimulation levels on classifier performance by performing 5-fold
9 cross-validation on data collected from each session (**Fig. 5G**). We incorporated the
10 stimulation level as a fixed effect in our LMMs, with individual patients and hemispheres
11 treated as random effects. We then repeated this analysis to assess the effects of duration
12 between recording sessions (**Fig. 5H**) and stimulation amplitude (**Fig. 5I**) on regressor
13 performance. The performance of both the classifiers and regressors maintained stability
14 over time (Max duration: 83 days; Median \pm SEM duration: 6 \pm 2 days) ($\beta < 0.033$, $P > 0.34$).
15 STN/GPi classifiers ($\beta = -0.030$; 95 % CI = [-0.046, -0.013], $P = 0.004$) and regressors ($\beta = -$
16 0.054; 95 % CI = [-0.086, -0.023], $P = 0.004$) demonstrated lower performance at higher
17 stimulation amplitudes. Conversely, the S1, M1, and combined models were not
18 significantly affected by changes in stimulation levels ($\beta > -0.019$, $P > 0.05$). This was likely
19 due to the preserved predictive power of cortical high beta MRD at higher stimulation
20 amplitudes.

21

22 Discussion

23 We identified cortico-basal biomarkers of naturalistic forearm movement by analyzing over
24 530 hours of neural and accelerometry recordings from 15 patients with Parkinson's
25 disease during deep brain stimulation (DBS).^{21,44} Specifically, we observed beta movement-
26 related desynchronization (MRD) and gamma movement-related synchronization (MRS) in
27 both cortical and subcortical regions.^{13,50,51,57} Although we did not specifically track the
28 medication timings of our patient cohort, we repeated our biomarker analyses within 15-
29 minute windows, during which medication states were likely stable. This approach
30 demonstrated that these biomarkers remained predictive of movement across different
31 medication states, rather than merely decoding slow medication state fluctuations. Using a
32 multivariate machine learning (ML) approach, we revealed distinct contributions from each
33 brain region in predicting movement, with cortical high beta MRD being the most
34 discriminative signal.^{52,58} Consequently, ML models that incorporated both cortical and
35 subcortical signals demonstrated superior model performance compared to single-site

1 models. We also found that DBS amplitudes influenced the performance of these models,
2 with higher stimulation levels leading to a decrease in the accuracy of subcortical
3 models.^{26,55} Despite this, cortical and combined cortico-basal models continued to
4 perform well at higher stimulation levels. This sustained performance supports the future
5 potential of movement responsive BCI-aDBS.^{23,24}

6 Subcortical low and high beta power encode distinct movement-related 7 functions

8 Within the beta frequency range (12 – 30 Hz), we revealed group-level functional
9 distinctions between low (12 – 20 Hz) and high (20 – 30 Hz) subcortical beta rhythms, which
10 have both previously been associated with motor execution.¹³ Higher Parkinson's disease-
11 related bradykinesia severity has also been correlated with increased low beta power.¹²
12 Treatments, such as dopaminergic medication and DBS, have been found to suppress low
13 beta activity and reduce bradykinesia severity.^{58,59} In contrast, high beta has been linked to
14 physiological mechanisms, such as force generation and voluntary motor actions.⁶⁰ This
15 suggests that low beta may be functionally 'anti-kinetic' in the pathophysiology of
16 Parkinson's disease, whereas high beta might have a stronger association with the
17 execution of normal motor plans.¹⁴ Our study supports this difference in physiological roles
18 by demonstrating that MRD associated with naturalistic movement, irrespective of
19 dopaminergic state, was only observed within the high beta band.

20 Cortical stimulation-entrained gamma is associated with naturalistic 21 movement

22 Cortical and subcortical broadband gamma MRS has been linked to motor speed and
23 complexity in both healthy individuals and patients with Parkinson's disease.^{50,57} During
24 DBS, cortical and subcortical oscillations at subharmonics of the stimulation frequency
25 have also been observed.²¹ Specifically, entrainment at the half-harmonic (~65 Hz) of the
26 130 Hz stimulation frequency have been noted.⁶¹ Broadband gamma activity is non-
27 oscillatory and thought to represent asynchronous neuronal spiking activity across a wide
28 frequency range (30 – 200 Hz).⁶² In contrast, recent studies have shown that stimulation-
29 entrained gamma oscillations are associated with synchronized spiking and are influenced
30 by dopaminergic medication and sleep-wake cycles, indicating a non-artefactual,
31 physiological role for these neural signals.^{30,31} Consistent with these findings, we detected
32 broadband gamma movement-related synchronization within the cortical regions. In our
33 cohort of patients stimulated at 130 Hz, stimulation-entrained gamma MRS at ~65 Hz was
34 significantly greater than that at the other frequencies within the broadband gamma
35 range.⁶³ This suggests that entrained gamma power more effectively distinguishes between

1 movement states than broadband gamma and may serve as a valuable, kinematic
2 biomarker in the ON-stimulation state.⁶⁴

3 **Subcortical and cortical sites provide complementary information for**
4 **movement decoding**

5 The sensorimotor cortex is involved in motor planning and execution while the basal
6 ganglia plays a more implicit, regulatory role in selecting and initiating movements,
7 inhibiting unwanted actions, and refining motor skill.^{2,4,8,9} Furthermore, prior research by
8 our group revealed that combining spectral features from cortical and subcortical regions
9 can improve the accuracy of linear models in decoding Parkinson's disease-related
10 symptom states, such as severe bradykinesia or dyskinesia.²² These findings suggest that
11 cortical and subcortical signals encode specific information regarding naturalistic
12 motion. Consistent with these findings, this study demonstrates that integrating
13 subcortical and cortical signals yielded more accurate ML models for predicting movement
14 than using signals from individual sites alone indicating complementary encoding. Feature
15 importance analyses further confirmed the significant contributions of each brain region to
16 the performance of the combined models. Repeating our analysis on the full patient
17 cohort, we observed similar model performance and feature importance across different
18 stimulation frequencies (other than 130 Hz).

19 **DBS modulates movement-related cortico-basal biomarkers**

20 Movement-related changes in the spectral power of cortical and subcortical biomarkers
21 were influenced by DBS amplitudes. Specifically, increased stimulation levels were found
22 to correlate with lower subcortical beta MRD and gamma MRS, as evidenced by a
23 reduction in absolute Cohen's d effect size.²⁶ This reduction potentially impacted the
24 discriminative power of beta and gamma biomarkers at higher stimulation levels, thus
25 decreasing the accuracy of subcortical models for movement prediction. In the
26 sensorimotor cortex, higher DBS levels were associated with reduced low beta MRD,
27 suggesting that patients could achieve similar movement speeds with decreased beta
28 MRD. This aligns with previous findings showing higher cortical beta MRD in Parkinson's
29 disease patients than individuals with essential tremor or without movement disorders.^{17,65}
30 Moreover, dopaminergic medication is associated with a reduction in cortical beta MRD
31 and an improvement in motor speed.⁵¹ In contrast to our subcortical models, those using
32 cortical signals or integrating cortico-basal signals demonstrated greater stability. This was
33 likely due to the resilience of cortical high beta MRD, identified as the most discriminative
34 kinematic biomarker. Therefore, integrating cortico-basal signals could enhance the

1 accuracy and stability of movement prediction across varying stimulation conditions,
2 which is crucial for the development of BCI-aDBS systems to treat motor disorders.

3 **Implications for closed-loop DBS treatments**

4 Based on the gating theory of basal ganglia function, the basal ganglia excessively inhibits
5 the initiation and execution of motor plans, exacerbating these hypokinetic symptoms.²⁵ By
6 increasing stimulation amplitudes during movement, we may be able to disinhibit the
7 execution of these movements only when it is most needed and alleviate bradykinesia
8 severity.²⁴ However, ensuring the therapeutic efficacy of a movement-based adaptive DBS
9 policy requires careful optimization of both upper and lower stimulation levels. The upper
10 stimulation levels must be constrained to prevent excessive stimulation, which can lead to
11 side effects such as dyskinesia, particularly during medication-ON periods. Similarly, the
12 lower stimulation levels should not be set too low during rest periods to avoid breakthrough
13 tremor, especially during medication-OFF periods.

14 To be deployable for everyday use, such an adaptive DBS paradigm must be able to
15 accurately decode unconstrained, volitional motion from neural signals. However, previous
16 studies have primarily focused on decoding movement during short, constrained tasks,
17 such as finger-tapping and hand rotations. Our study is the first to demonstrate the
18 accurate prediction of unsupervised, naturalistic movements using chronic neural
19 recordings during DBS. (classifier AUC > 0.85 and regressor r statistic > 0.68). We also
20 highlight the importance of recording neural signals from both cortical regions and the
21 basal ganglia, as integrating these signals may improve the performance and stability of
22 movement-predictive models. With these findings, we support the development of an
23 integrated BCI-aDBS approach that combines the fast and precise motor-decoding
24 capabilities of emerging BCIs with the therapeutic neuromodulatory effects of aDBS.

25 **Conclusions**

26 Our findings demonstrate the complimentary contributions of cortico-basal neural circuits
27 and signals in naturalistic, unconstrained, movements. We identified multivariate
28 movement encoding particularly through cortico-basal beta and gamma oscillations, as
29 well as stimulation-entrained gamma, in the presence of DBS. We developed ML
30 techniques for fast and accurate decoding of unconstrained movement and identified
31 features which were resilient to changes in stimulation conditions. This validates the
32 potential feasibility of BCI-aDBS in naturalistic settings and opens a translational pipeline
33 for precise motor network re-tuning in disorders of movement, including Parkinson's
34 disease and stroke.

1

2 Data availability

3 De-identified, processed neural and accelerometry data can be provided upon request
4 according to the data-sharing policies of the National Institutes of Health (NIH).

5

6 Acknowledgements

7 We thank our patient cohort for their involvement in this study. We also gratefully
8 acknowledge Medtronic, Inc. for providing the Summit RC+S devices used in this study at
9 no cost.

10

11

12 Funding

13 Grant number: UH3NS100544, Funding body: National Institutes of Health; Grant number:
14 R01NS090913. Funding body: National Institutes of Health; Grant number: U24NS113637-
15 01. Funding body: National Institutes of Health.

16

17 Competing interests

18 P.A.S. receives funding from Medtronic, Inc. and Boston Scientific Inc. for salary support of
19 clinical fellows. P.A.S is a consultant for INBRAIN Neuroelectronics Inc. SJL is a consultant
20 for Iota Biosciences. PAS, SJL and DL are listed inventors on the patent US2024/041516
21 which relates to daytime decoding of movement for BCI-aDBS in neurological disorders,
22 including Parkinson's disease and stroke.

23

24 Supplementary material

25 Supplementary material is available at *Brain* online.

References

1. Bouton CE, Shaikhouni A, Annetta N V., et al. Restoring cortical control of functional movement in a human with quadriplegia. *Nature*. 2016;533:247-250. doi:10.1038/nature17435
2. McGregor MM, Nelson AB. Circuit Mechanisms of Parkinson's Disease. *Neuron*. 2019;101(6):1042-1056. doi:10.1016/j.neuron.2019.03.004
3. Cacciola A, Calamuneri A, Milardi D, et al. A connectomic analysis of the human basal ganglia network. *Front Neuroanat*. 2017;11. doi:10.3389/fnana.2017.00085
4. Nambu A, Tokuno H, Takada M. *Functional Significance of the Cortico-Subthalamic-Pallidal "hyperdirect" Pathway*. www.elsevier.com/locate/neures
5. Forstmann BU, Keuken MC, Jahfari S, et al. Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. *Neuroimage*. 2012;60(1):370-375. doi:10.1016/j.neuroimage.2011.12.044
6. Neumann WJ, Jha A, Bock A, et al. Cortico-pallidal oscillatory connectivity in patients with dystonia. *Brain*. 2015;138(7):1894-1906. doi:10.1093/brain/awv109
7. Park J, Phillips JW, Guo JZ, Martin KA, Hantman AW, Dudman JT. Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes. *Sci Adv*. 2022;8(10):5167. doi:10.1126/sciadv.abj5167
8. Hansen JY, Cauzzo S, Singh K, et al. Integrating brainstem and cortical functional architectures. *Nat Neurosci*. 2024;27(12):2500-2511. doi:10.1038/s41593-024-01787-0
9. Parent A, Hazrati LN. *Full-Length Review Functional Anatomy of the Basal Ganglia. II. The Place of Subthalamic Nucleus and External Pallidum in Basal Ganglia Circuitry.*; 1995.
10. Friedman AD, Yin HH. Selective activation of subthalamic nucleus output quantitatively scales movements. *Journal of Neuroscience*. 2023;43(47):7967-7981. doi:10.1523/JNEUROSCI.0734-23.2023
11. Kühn AA, Kupsch A, Schneider GH, Brown P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease.

1 *European Journal of Neuroscience*. 2006;23(7):1956-1960. doi:10.1111/j.1460-
2 9568.2006.04717.x

3 12. Mathiopoulou V, Lofredi R, Feldmann LK, et al. Modulation of subthalamic beta
4 oscillations by movement, dopamine, and deep brain stimulation in Parkinson's
5 disease. *NPJ Parkinsons Dis*. 2024;10(1). doi:10.1038/s41531-024-00693-3

6 13. Kühn AA, Williams D, Kupsch A, et al. Event-related beta desynchronization in human
7 subthalamic nucleus correlates with motor performance. *Brain*. 2004;127(4):735-
8 746. doi:10.1093/brain/awh106

9 14. Torrecillas F, He S, Kühn AA, Tan H. Average power and burst analysis revealed
10 complementary information on drug-related changes of motor performance in
11 Parkinson's disease. *NPJ Parkinsons Dis*. 2023;9(1). doi:10.1038/s41531-023-00540-
12 x

13 15. Fischer P, Pogosyan A, Herz DM, et al. Subthalamic nucleus gamma activity
14 increases not only during movement but also during movement inhibition. *eLife*.
15 2017;6. doi:10.7554/eLife.23947

16 16. Fischer P, Pogosyan A, Cheeran B, et al. Subthalamic nucleus beta and gamma
17 activity is modulated depending on the level of imagined grip force. *Exp Neurol*.
18 2017;293:53-61. doi:10.1016/j.expneurol.2017.03.015

19 17. Rowland NC, De Hemptinne C, Swann NC, et al. Task-related activity in sensorimotor
20 cortex in Parkinson's disease and essential tremor: Changes in beta and gamma
21 bands. *Front Hum Neurosci*. 2015;9(September). doi:10.3389/fnhum.2015.00512

22 18. Volkova K, Lebedev MA, Kaplan A, Ossadtchi A. Decoding Movement From
23 Electrocorticographic Activity: A Review. *Front Neuroinform*.Frontiers Media S.A.
24 2019;13. doi:10.3389/fninf.2019.00074

25 19. Merk T, Peterson V, Lipski WJ, et al. Electrocorticography is superior to subthalamic
26 local field potentials for movement decoding in Parkinson's disease. *eLife*. 2022;11.
27 doi:10.7554/eLife.75126

28 20. Little S, Brown P. *Parkinsonism and Related Disorders* 20S1 (2014) S44-S48 The
29 Functional Role of Beta Oscillations in Parkinson's Disease.; 2013.

30 21. Oehrni CR, Cernera S, Hammer LH, et al. Chronic adaptive deep brain stimulation
31 versus conventional stimulation in Parkinson's disease: a blinded randomized
32 feasibility trial. *Nat Med*. Published online November 1, 2024. doi:10.1038/s41591-
33 024-03196-z

1 22. Gilron R, Little S, Perrone R, et al. Long-term wireless streaming of neural recordings
2 for circuit discovery and adaptive stimulation in individuals with Parkinson's disease.
3 *Nat Biotechnol.* 2021;39(9):1078-1085. doi:10.1038/s41587-021-00897-5

4 23. Dong Y, Wang S, Huang Q, Berg RW, Li G, He J. Neural Decoding for Intracortical
5 Brain-Computer Interfaces. *Cyborg and Bionic Systems.* 2023;4.
6 doi:10.34133/cbsystems.0044

7 24. Dixon TC, Strandquist G, Zeng A, et al. Movement-responsive deep brain stimulation
8 for Parkinson's disease using a remotely optimized neural decoder. *Nat Biomed Eng.*
9 Published online June 27, 2025. doi:10.1038/s41551-025-01438-0

10 25. Darbin O, Hatanaka N, Takara S, et al. Subthalamic nucleus deep brain stimulation
11 driven by primary motor cortex γ 2 activity in parkinsonian monkeys. *Sci Rep.*
12 2022;12(1). doi:10.1038/s41598-022-10130-1

13 26. He S, Baig F, Merla A, et al. Beta-triggered adaptive deep brain stimulation during
14 reaching movement in Parkinson's disease. *Brain.* 2023;146(12):5015-5030.
15 doi:10.1093/brain/awad233

16 27. Cernera S, Alcantara JD, Opri E, et al. Wearable sensor-driven responsive deep brain
17 stimulation for essential tremor. *Brain Stimul.* 2021;14(6):1434-1443.
18 doi:10.1016/j.brs.2021.09.002

19 28. Opri E, Cernera S, Molina R, et al. *Chronic Embedded Cortico-Thalamic Closed-Loop*
20 *Deep Brain Stimulation for the Treatment of Essential Tremor.* Vol 12.; 2020.
21 <https://www.science.org>

22 29. Follett KA, Weaver FM, Stern M, et al. Pallidal versus Subthalamic Deep-Brain
23 Stimulation for Parkinson's Disease. *New England Journal of Medicine.*
24 2010;362(22):2077-2091. doi:10.1056/nejmoa0907083

25 30. Sermon JJ, Olaru M, Ansó J, et al. Sub-harmonic entrainment of cortical gamma
26 oscillations to deep brain stimulation in Parkinson's disease: Model based
27 predictions and validation in three human subjects. *Brain Stimul.* 2023;16(5):1412-
28 1424. doi:10.1016/j.brs.2023.08.026

29 31. Olaru M, Hahn A, Shcherbakova M, et al. Deep brain stimulation-entrained gamma
30 oscillations in chronic home recordings in Parkinson's disease. *Brain Stimul.*
31 2025;18(2):132-141. doi:10.1016/j.brs.2025.01.011

32 32. Sellers KK, Gilron R, Anso J, et al. Analysis-rccs-data: Open-Source Toolbox for the
33 Ingestion, Time-Alignment, and Visualization of Sense and Stimulation Data From

1 the Medtronic Summit RC+S System. *Front Hum Neurosci*. 2021;15.
2 doi:10.3389/fnhum.2021.714256

3 33. Neumann WJ, Memarian Sorkhabi M, Benjaber M, et al. The sensitivity of ECG
4 contamination to surgical implantation site in brain computer interfaces. *Brain
5 Stimul*. 2021;14(5):1301-1306. doi:10.1016/j.brs.2021.08.016

6 34. Hammer LH, Kochanski RB, Starr PA, Little S. Artifact Characterization and a
7 Multipurpose Template-Based Offline Removal Solution for a Sensing-Enabled Deep
8 Brain Stimulation Device. *Stereotact Funct Neurosurg*. 2022;100(3):168-183.
9 doi:10.1159/000521431

10 35. Powers R, Etezadi-Amoli M, Arnold EM, et al. *Smartwatch Inertial Sensors
11 Continuously Monitor Real-World Motor Fluctuations in Parkinson's Disease*. Vol 13.;
12 2021. <https://www.science.org>

13 36. Benjamini Y, Yekutieli D. *THE CONTROL OF THE FALSE DISCOVERY RATE IN
14 MULTIPLE TESTING UNDER DEPENDENCY*. Vol 29.; 2001.

15 37. McKeown DJ, Finley AJ, Kelley NJ, et al. Test-retest reliability of spectral
16 parameterization by 1/f characterization using SpecParam. *Cerebral Cortex*.
17 2024;34(1). doi:10.1093/cercor/bhad482

18 38. Donoghue T, Haller M, Peterson EJ, et al. Parameterizing neural power spectra into
19 periodic and aperiodic components. *Nat Neurosci*. 2020;23(12):1655-1665.
20 doi:10.1038/s41593-020-00744-x

21 39. Anjum MF, Smyth C, Zuzuárregui R, et al. Multi-night cortico-basal recordings reveal
22 mechanisms of NREM slow-wave suppression and spontaneous awakenings in
23 Parkinson's disease. *Nat Commun*. 2024;15(1). doi:10.1038/s41467-024-46002-7

24 40. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a
25 practical primer for t-tests and ANOVAs. *Front Psychol*. 2013;4.
26 doi:10.3389/fpsyg.2013.00863

27 41. Huang J, Ling CX. *Using AUC and Accuracy in Evaluating Learning Algorithms*.
28 <http://www.computer.org/publications/dlib>

29 42. Richardson E, Trevizani R, Greenbaum JA, Carter H, Nielsen M, Peters B. The receiver
30 operating characteristic curve accurately assesses imbalanced datasets. *Patterns*.
31 2024;5(6). doi:10.1016/j.patter.2024.100994

32 43. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. *SMOTE: Synthetic Minority Over-
33 Sampling Technique*. Vol 16.; 2002.

1 44. Olaru M, Cernera S, Hahn A, et al. Motor network gamma oscillations in chronic
2 home recordings predict dyskinesia in Parkinson's disease. *Brain*. 2024;147(6):2038-
3 2052. doi:10.1093/brain/awae004

4 45. Das K, Jiang J, Rao JNK. Mean squared error of empirical predictor. *The Annals of
5 Statistics*. 2004;32(2):818-840. doi:10.1214/009053604000000201

6 46. Altmann A, Tološi L, Sander O, Lengauer T. Permutation importance: A corrected
7 feature importance measure. *Bioinformatics*. 2010;26(10):1340-1347.
8 doi:10.1093/bioinformatics/btq134

9 47. Fleuret F. *Fast Binary Feature Selection with Conditional Mutual Information*. Vol 5.;
10 2004. <http://diwww.epfl.ch/>

11 48. Zhang Y, Zhang Z. Feature subset selection with cumulate conditional mutual
12 information minimization. *Expert Syst Appl*. 2012;39(5):6078-6088.
13 doi:10.1016/j.eswa.2011.12.003

14 49. Souza F, Premebida C, Araújo R. High-order conditional mutual information
15 maximization for dealing with high-order dependencies in feature selection. *Pattern
16 Recognit*. 2022;131. doi:10.1016/j.patcog.2022.108895

17 50. Crone NE, Miglioretti DL, Gordon B, Lesser RP. *Functional Mapping of Human
18 Sensorimotor Cortex with Electrocorticographic Spectral Analysis II. Event-Related
19 Synchronization in the Gamma Band*. Vol 121.; 1998.

20 51. Chung JW, Burciu RG, Ofori E, et al. Beta-band oscillations in the supplementary
21 motor cortex are modulated by levodopa and associated with functional activity in
22 the basal ganglia. *Neuroimage Clin*. 2018;19:559-571.
23 doi:10.1016/j.nicl.2018.05.021

24 52. Peterson V, Merk T, Bush A, et al. Movement decoding using spatio-spectral features
25 of cortical and subcortical local field potentials. *Exp Neurol*. 2023;359.
26 doi:10.1016/j.expneurol.2022.114261

27 53. Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of
28 distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's
29 disease. *eLife*. 2023;12. doi:10.7554/eLife.84135

30 54. Todorov D, Schnitzler A, Hirschmann J. Parkinsonian rest tremor can be distinguished
31 from voluntary hand movements based on subthalamic and cortical activity. *Clinical
32 Neurophysiology*. 2024;157:146-155. doi:10.1016/j.clinph.2023.10.018

1 55. Chen Y, Gong C, Tian Y, et al. Neuromodulation effects of deep brain stimulation on
2 beta rhythm: A longitudinal local field potential study. *Brain Stimul.* 2020;13(6):1784-
3 1792. doi:10.1016/j.brs.2020.09.027

4 56. Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced
5 Parkinson disease. *Ann Neurol.* 2013;74(3):449-457. doi:10.1002/ana.23951

6 57. Lofredi R, Neumann WJ, Bock A, et al. Dopamine-dependent scaling of subthalamic
7 gamma bursts with movement velocity in patients with Parkinson's disease. *eLife.*
8 2018;7. doi:10.7554/eLife.31895

9 58. Oswal A, Beudel M, Zrinzo L, et al. Deep brain stimulation modulates synchrony
10 within spatially and spectrally distinct resting state networks in Parkinson's disease.
11 *Brain.* 2016;139(5):1482-1496. doi:10.1093/brain/aww048

12 59. Lofredi R, Okudzhava L, Irmel F, et al. Subthalamic beta bursts correlate with
13 dopamine-dependent motor symptoms in 106 Parkinson's patients. *NPJ Parkinsons
14 Dis.* 2023;9(1). doi:10.1038/s41531-022-00443-3

15 60. Florin E, Dafisari HS, Reck C, et al. Modulation of local field potential power of the
16 subthalamic nucleus during isometric force generation in patients with Parkinson's
17 disease. *Neuroscience.* 2013;240:106-116. doi:10.1016/j.neuroscience.2013.02.043

18 61. Swann NC, De Hemptinne C, Miocinovic S, et al. Gamma oscillations in the
19 hyperkinetic state detected with chronic human brain recordings in parkinson's
20 disease. *Journal of Neuroscience.* 2016;36(24):6445-6458.
21 doi:10.1523/JNEUROSCI.1128-16.2016

22 62. Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential
23 power spectra are correlated with single-neuron spiking in humans. *Journal of
24 Neuroscience.* 2009;29(43):13613-13620. doi:10.1523/JNEUROSCI.2041-09.2009

25 63. Amengual JL, Vernet M, Adam C, Valero-Cabré A. Local entrainment of oscillatory
26 activity induced by direct brain stimulation in humans. *Sci Rep.* 2017;7.
27 doi:10.1038/srep41908

28 64. Mathiopoulou V, Habets J, Feldmann LK, et al. DBS-induced gamma entrainment as
29 a new biomarker for motor improvement with neuromodulation. Preprint posted
30 online April 26, 2024. doi:10.1101/2024.04.25.24306357

31 65. Kondylis ED, Randazzo MJ, Alhourani A, et al. Movement-related dynamics of cortical
32 oscillations in Parkinson's disease and essential tremor. *Brain.* 2016;139(8):2211-
33 2223. doi:10.1093/brain/aww144

1 66. Khawaldeh S, Tinkhauser G, Shah SA, et al. Subthalamic nucleus activity dynamics
2 and limb movement prediction in Parkinson's disease. *Brain*. 2020;143(2):582-586.
3 doi:10.1093/brain/awz417

4
5

6 **Figure legends**

7

8 **Figure 1 Anatomic localization of implanted electrodes and single-subject example of**
9 **processed neural and accelerometry data.** (A) Schematic of patient performing activity of
10 daily living while streaming data from implanted neurostimulators and wrist-worn
11 accelerometers. (B) Cortical electrodes represented on a template brain. Five of the fifteen
12 patients in our cohort used an overlapping sensing configuration (Electrode pairs: 1-3 and
13 2-4). The remaining ten subjects used a non-overlapping configuration (Electrode pairs: 1-2
14 and 3-4). (C) Subcortical electrodes represented on a template brain in the globus pallidus
15 externus (GPe), globus pallidus internus (GPI), subthalamic nucleus (STN) and red nucleus
16 (RN). (D) Neural and accelerometry data processing pipeline. (E) Single-subject (Pat-01)
17 spectrograms based on data streamed from the left STN, primary somatosensory cortex
18 (S1) and primary motor cortex (M1). Right forearm speeds were recorded simultaneously.
19 (F) Single-subject average power spectral densities (PSDs) were computed from the STN,
20 S1 and M1 signals and fitted with the Spectral Parameterization algorithm to compare
21 between mobile and stationary states. (G) The corresponding flattened PSD plots have
22 been displayed. The beta band (12 – 30 Hz) has been highlighted in green. (H) Forearm
23 speeds from all patients in our cohort were combined and displayed in a kernel density
24 estimate plot. A local minimum was identified at the 28th percentile of the distribution
25 (termed the movement state threshold) and used to distinguish between mobile and
26 stationary states. (I) Cohen's d (Cd) effect sizes based on the flattened PSDs from a single
27 subject were calculated and used to create a Cd plot. These values quantified the
28 differences in spectral power between movement states. The frequencies with positive Cd
29 values, indicating an increase in spectral power during mobile states compared to
30 stationary states, were highlighted in red. Several characteristics, such as the peak
31 frequency (f_{PEAK}), maximum Cohen's d (Cd_{PEAK}) and full width at half maximum (Cd_{FWHM}),
32 were extracted from this band. The frequencies with negative Cd values were highlighted in
33 blue.

34

1 **Figure 2 Cortical and subcortical biomarkers of naturalistic movement.** (A) Cohen's d
 2 (Cd) plots for each patient and hemisphere were computed using STN/GPi (left), S1
 3 (middle) and M1 (right) signals. Four out of fifteen patients in our cohort had a different
 4 stimulation frequency than 130 Hz and two of were recording while stimulation was OFF
 5 (marked by asterisks). The largest frequency range with contiguous positive Cd values
 6 (highlighted in red) was termed the movement-related synchronization (MRS) band while
 7 that with contiguous negative Cd values (highlighted in blue) was termed the movement-
 8 related desynchronization (MRD) band. In cases where a hemisphere exhibited multiple
 9 MRD or MRS bands, the band with the highest average absolute Cd value was selected for
 10 further analysis. (B) Each percentile (between the 5th and 95th percentiles) of the group-
 11 level forearm speed distribution (from Fig. 1H) was used as a threshold to produce one-
 12 dimensional Cd plots discriminating slower from faster movements. These plots were
 13 concatenated to create two-dimensional Cohen's "d-grams" (Cd -grams). The horizontal
 14 dotted line in each Cd -gram lies on the 28th percentile which distinguishes between
 15 mobile and stationary states. The grey masks indicate the regions that did not survive false
 16 discovery rate (FDR) correction ($P \geq 0.05$). (C) Using the 28th percentile threshold, we
 17 identified the frequencies with the lowest (most negative) and highest (most positive) Cd
 18 values from each hemisphere. These were termed the MRD and MRS Cd_{PEAK} frequencies
 19 respectively. Additionally, we calculated (D) the absolute Cd_{PEAK} magnitudes and (E) the full
 20 widths at half maximum (Cd_{FWHM}) of the MRD and MRS bands (based on the Cd plots in Fig.
 21 2A). (F) FDR-corrected average Spearman correlation (ρ) values between the PSDs and the
 22 absolute forearm speeds were computed. The resulting significant frequency bands have
 23 been highlighted by the color-coded bars above the respective plots. * $P \leq 0.05$, ** $P \leq 0.01$,
 24 *** $P \leq 0.001$, **** $P \leq 10^{-4}$.

25
 26 **Figure 3 Evaluating the performance of binary movement state classifiers.** We
 27 performed hyperparameter tuning on Linear discriminant analysis (LDA) classifiers using
 28 canonical power band (PB) features. (A) The optimal epoch durations were identified for
 29 single-site (STN/GPi, S1 or M1) and combined models using the area under the receiver
 30 operating characteristic (AUC). (B) These models were then tested on a holdout set for
 31 each patient. We also evaluated the performance of classifiers trained on personalized
 32 features. (C) We performed principal component analysis (PCA) and identified the optimal
 33 number of PC features for each classifier. (D) The AUCs of the personalized classifiers with
 34 PC features were computed on the holdout set. Permutation feature importance was
 35 performed to quantify the unique contributions of each (E) site (STN/GPi, S1 or M1) and (F)
 36 canonical PB to the performance of the combined model. (G) Additional linear and non-
 37 linear models – Gaussian naïve bayes (GNB), k-nearest neighbors (KNN), random forests

1 (RF) and light gradient boosted machines (LGBMs) – were developed using all PSD features
2 from each site, to avoid restricting the models to the six canonical PB features. * $P \leq 0.05$,
3 ** $P \leq 0.01$, *** $P \leq 0.001$, **** $P \leq 10^{-4}$.

4

5 **Figure 4 Evaluating the performance of forearm movement speed regressors.** Linear
6 regression (LR) models were trained to predict continuous forearm speeds. (A) The optimal
7 epoch durations were identified for single-site (STN/GPi, S1 or M1) and combined
8 regressors were identified using Pearson r statistic values. (B) Evaluation of these LR
9 models was performed on a holdout set. (C) Personalized features were developed using
10 principal component analysis (PCA) and the optimal number of PC features for each
11 regressor was determined. (D) The performance of the personalized single-site and
12 combined regressors with PC features was compared using the holdout set. Permutation
13 feature importance was computed for each (E) brain region and (F) canonical PB. (G)
14 Additional linear and non-linear models – Bayesian ridge regression (BR), stochastic
15 gradient descent (SGD), k-nearest neighbors (KNN), random forests (RF) and light gradient
16 boosted machines (LGBMs) – were developed using the canonical PB features. * $P \leq 0.05$,
17 ** $P \leq 0.01$, *** $P \leq 0.001$, **** $P \leq 10^{-4}$.

18

19 **Figure 5 Effects of stimulation on biomarkers of naturalistic movement.** We computed
20 the average normalized, flattened PSDs for the mobile and stationary states from the left
21 STN of a single subject at two stimulation levels: (A) 0.0 mA and (B) 2.0 mA. The differences
22 in spectral power across each canonical band were highlighted using different colors. We
23 employed linear mixed models (LMMs) to investigate how the absolute Cohen's d effect
24 size for each canonical power band varied across stimulation levels, which were treated as
25 fixed effects. To visualize these relationships, we plotted the average absolute Cohen's d
26 values across all patients for each stimulation amplitude in the following regions: (C)
27 STN/GPi, (D) S1, and (E) M1. Additionally, LMMs were used to analyze variations in the area
28 under the curve (AUC) for binary movement state classifiers, examining the effects of (F)
29 the duration between sessions and (G) stimulation level. We also assessed changes in the r
30 statistic for forearm movement speed regressors with respect to (H) the duration between
31 sessions and (I) stimulation level. Figs. 5F–5I illustrate these relationships by plotting the
32 average model performance across all patients against either the duration between
33 sessions or the stimulation level. For all analyses presented in Figs. 5C–5I, individual
34 patients and hemispheres were modeled as random effects in the respective LMMs.

35

Table I Patient demographics, stimulation settings and clinical information

Patient ID	Age, years; Sex	Dx, years	Stim target	Hem	Stim frequency, Hz	Stim levels, mA	UPDRS-III		Carbidopa- Levodopa (Daily dosage)
							OFF	ON	
Pat-01	60; M	13	STN	L	130	2.2–2.8	49	5	25–100 mg IR (5 times daily)
				R	130	2.7–3.5			
Pat-02	69; M	25	STN	L	130	1.9–2.5	45	22	50–200 mg CR (4 times daily)
				R	130	1.4–1.6			
Pat-03	46; M	10	STN	L	130	1.5–2.2	41	10	25–100 mg IR (2 times daily)
				R	130	1.5–2.2			
Pat-04	63; M	18	STN	L	130	2.9	44	11	25–100 mg IR (5 times daily)
				R	130	1.9–2.0			
Pat-05	76; M	13	STN	L	130	1.9–2.2	29	12	25–100 mg IR (4 times daily)
				R	130	1.0			
Pat-06	65; M	11	STN	L	130	0.0–2.9	35	12	24–95 mg ER (4 times daily)
				R	130	0.0–3.1			
Pat-07	48; M	17	STN	L	130	0.0–1.9	32	5	24–95 mg IR (5 times daily)
				R	130	0.0–1.9			
Pat-08	69; M	14	STN	L	130	0.0–2.6	30	7	24–95 mg ER (5 times daily)
				R	130	0.0–2.4			
Pat-09	62; M	16	STN	L	130	0.0	34	9	25–100 mg IR (5 times daily)
				R	130	0.0			
Pat-10	75; M	19	STN	L	130	0.0	31	10	49–195 mg ER (4 times daily)
				R	130	0.0			
Pat-11	79; M	14	STN	L	159	3.4	37	24	36–145 mg ER (4 times daily)
Pat-12	34; F	18	STN	R	167	1.2–2.2	61	16	25–100 mg IR (5 times daily)
Pat-13	53; M	14	GPi	L	130	0.0–1.1	49	19	49–195 mg ER (4 times daily)
				R	130	0.0–1.6			
Pat-14	71; M	15	GPi	L	179	3.7	66	24	25–100 mg IR (4 times daily)
				R	179	2.8			
Pat-15	69; M	10	GPi	L	149, 188	0.0–3.9	31	15	25–100 mg IR (5 times daily)

Dx = disease duration; STN = subthalamic nucleus; GPi = globus pallidus internus; L = left hemisphere; R = right hemisphere; PoG = post-central gyrus; PrG = pre-central gyrus; SFG = superior frontal gyrus; MFG = medial frontal gyrus; SPL = superior parietal lobe; UPDRS = Unified Parkinson's Disease Rating Scale; ER = extended release; IR = immediate release; CR = controlled release.

1

Table 2 Average group-level performance of linear models from each brain region

Metric	Combined	STN/GPi	SI	MI
Mean \pm SEM Classifier Performance				
AUC	0.84 \pm 0.01	0.72 \pm 0.02	0.80 \pm 0.02	0.80 \pm 0.02
Balanced Accuracy	0.76 \pm 0.01	0.66 \pm 0.02	0.73 \pm 0.01	0.73 \pm 0.02
F1 Score	0.80 \pm 0.02	0.71 \pm 0.02	0.77 \pm 0.02	0.78 \pm 0.02
PPV	0.86 \pm 0.03	0.79 \pm 0.04	0.84 \pm 0.03	0.84 \pm 0.03
Sensitivity	0.75 \pm 0.02	0.66 \pm 0.02	0.72 \pm 0.02	0.73 \pm 0.02
Specificity	0.77 \pm 0.01	0.67 \pm 0.02	0.74 \pm 0.01	0.74 \pm 0.02
Mean \pm SEM Regressor Performance				
r statistic	0.64 \pm 0.03	0.41 \pm 0.04	0.58 \pm 0.03	0.58 \pm 0.04
MSE	0.41 \pm 0.02	0.57 \pm 0.04	0.48 \pm 0.03	0.48 \pm 0.02

SEM = standard error of the mean; AUC = area under receiver operating characteristic curve; PPV = positive predictive value; r statistic = Pearson correlation coefficient between true and predicted values; MSE = mean squared error.

2
3
4
5

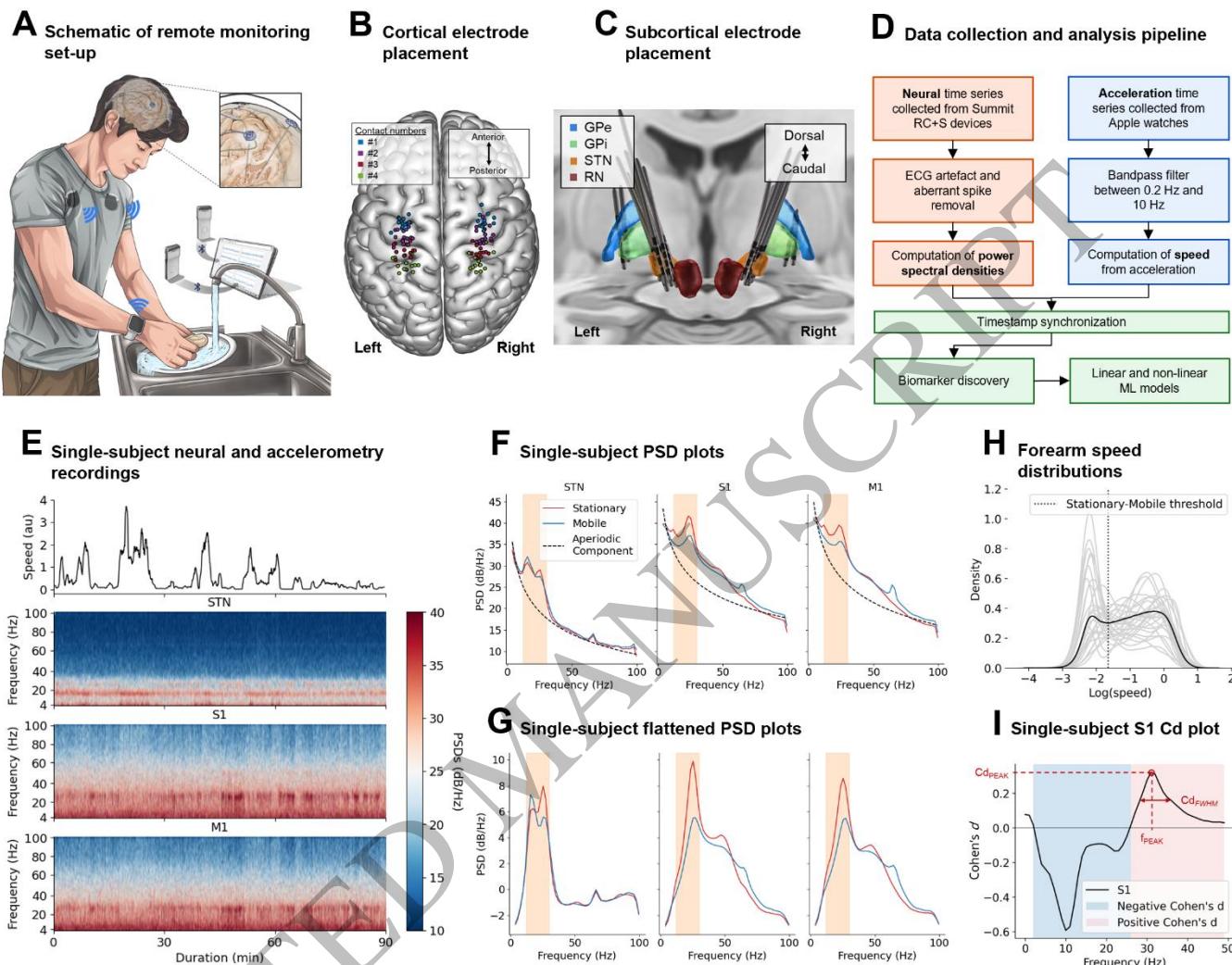


Figure 1
183x143 mm (x DPI)

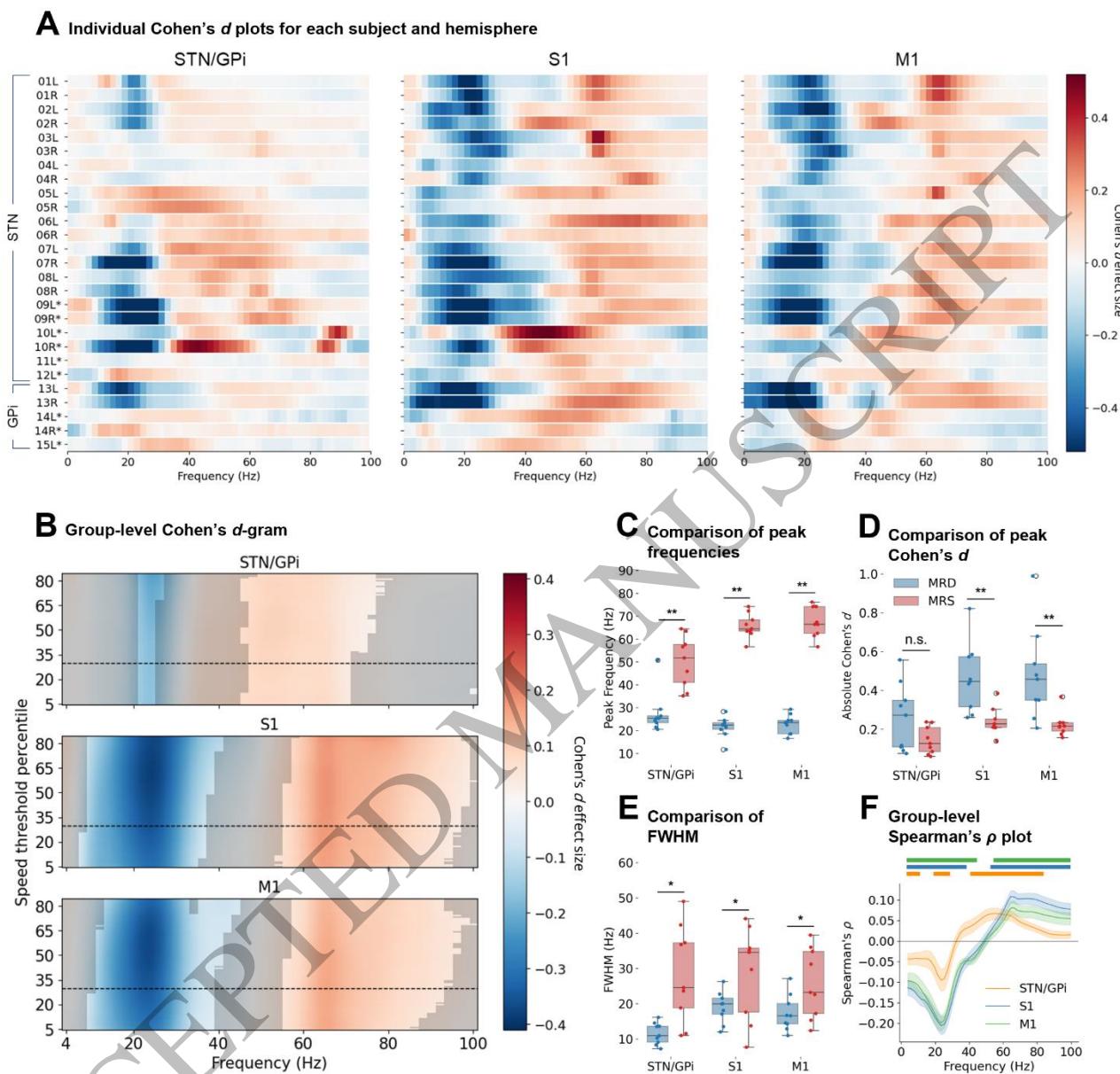


Figure 2
171x165 mm (x DPI)

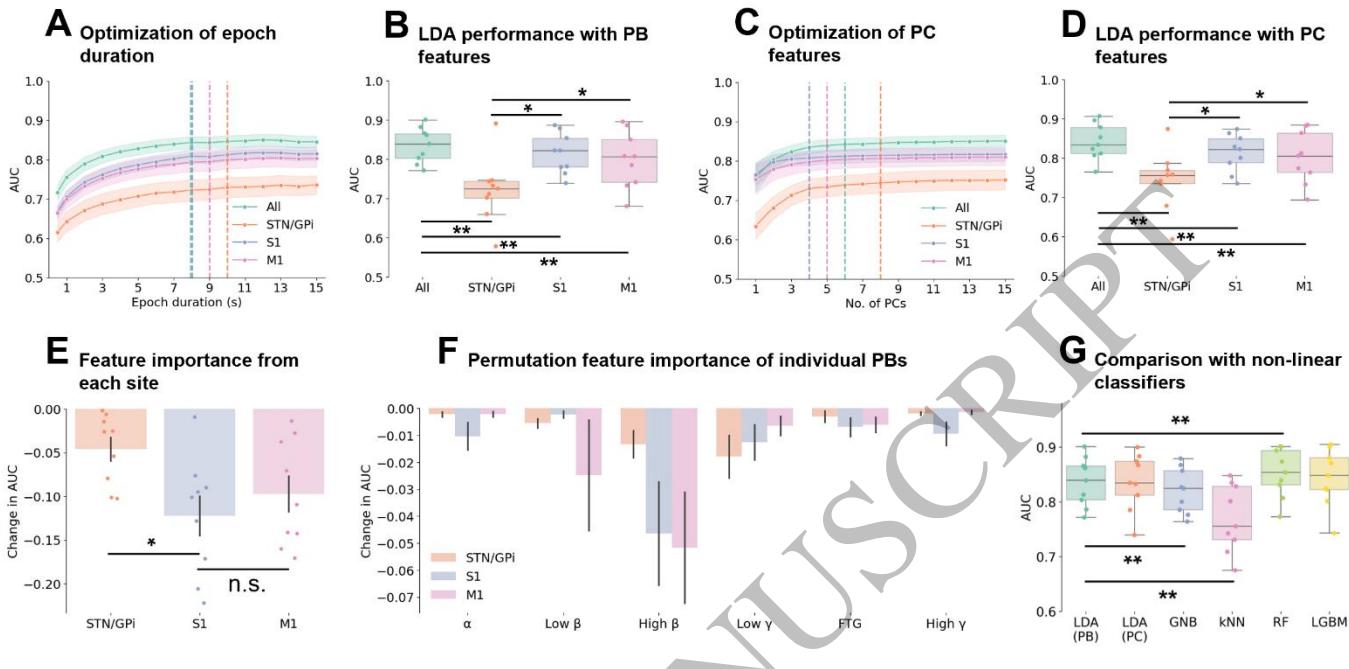


Figure 3
183x87 mm (x DPI)

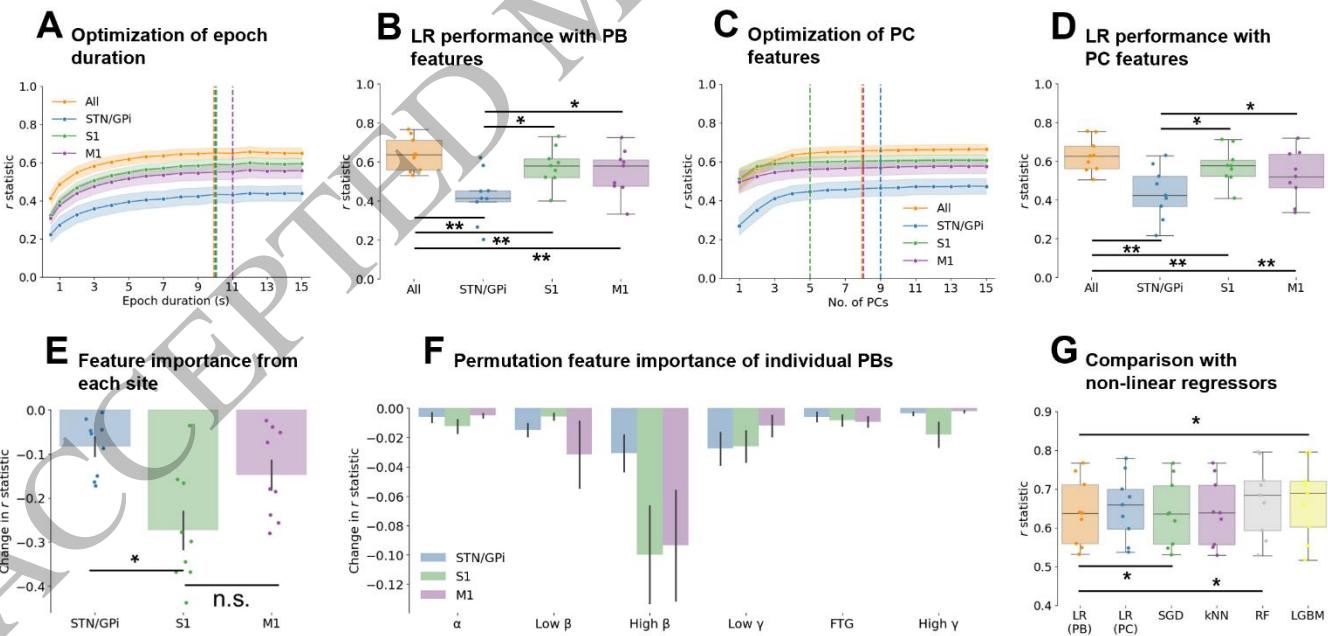


Figure 4
179x88 mm (x DPI)

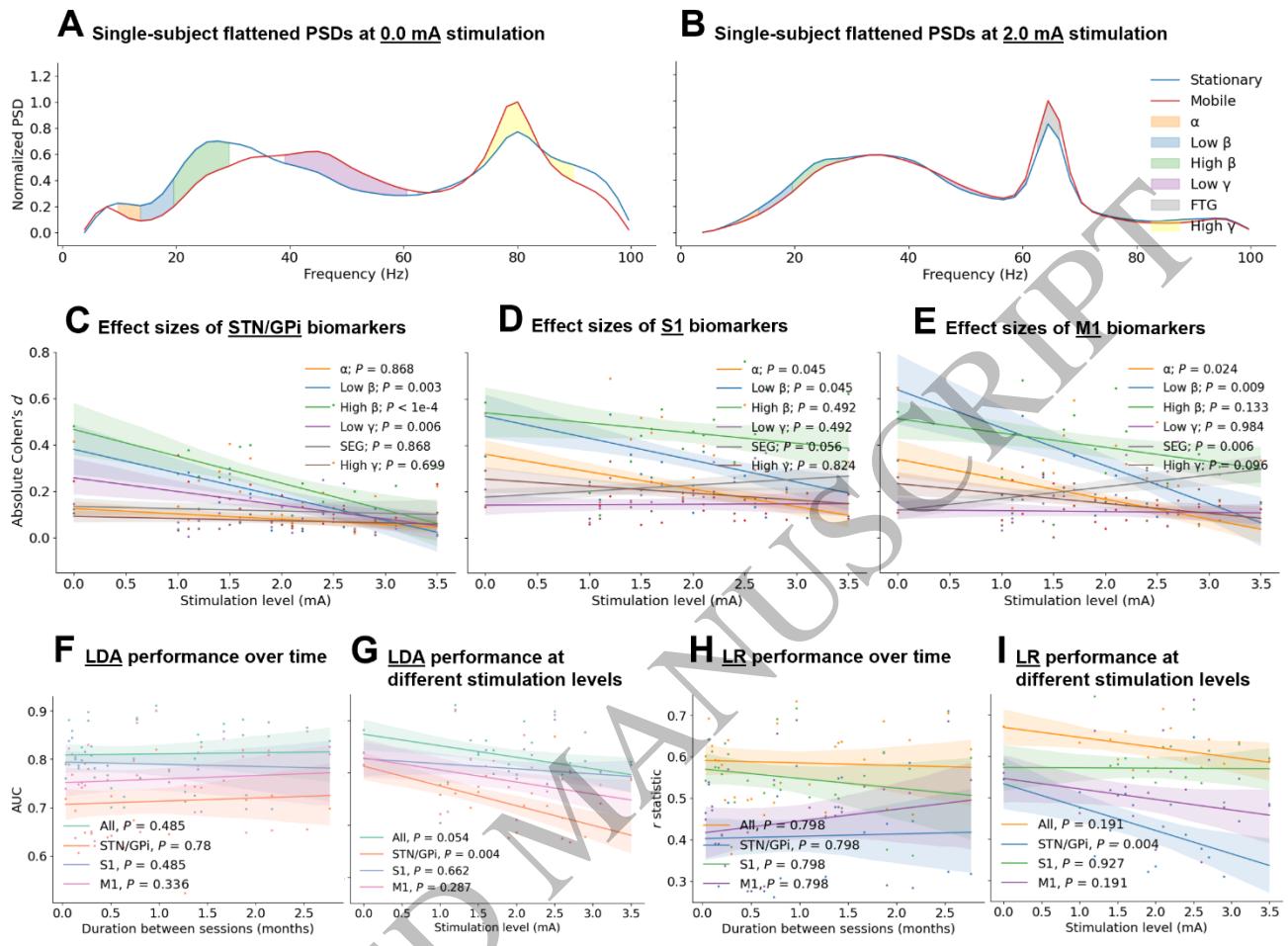


Figure 5
178x129 mm (x DPI)