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Abstract 5 

The basal ganglia and sensorimotor cortex are essential nodes of a network that supports 6 
motor control. In Parkinson’s disease, disruptions in this network lead to rigidity and 7 
slowness during movement execution. Deep brain stimulation (DBS) of the basal ganglia 8 
has proven effective in alleviating Parkinson’s disease-related hypokinetic symptoms, and 9 
sensing-enabled neurostimulators now afford the opportunity to detect cortico-basal 10 
oscillations during motion. However, the specific contributions of these motor network 11 
nodes to chronic, naturalistic movement and the effects of DBS on circuit dynamics are not 12 
well understood. 13 

To address these gaps, we recorded over 530 hours of cortical and subcortical signals from 14 
15 Parkinson’s disease patients (27 hemispheres) during unsupervised, unconstrained 15 
daily activities and subthalamic or pallidal DBS. Synchronized wrist-worn accelerometers 16 
tracked forearm speeds, supporting the evaluation of neural biomarkers related to motion. 17 
Our study validated and extended the known relationship between cortical and subcortical 18 
beta power (13 – 30 Hz) and movement. We show that cortical low (13 – 20 Hz) and high (21 19 
– 30 Hz) beta movement-related desynchronization (MRD) effectively distinguished 20 
between mobile and stationary states. In the subthalamic nucleus (STN) and globus 21 
pallidus interna (GPi), high beta MRD and gamma (40 – 80 Hz) movement-related 22 
synchronization (MRS) exhibited significant group-level correlations with movement 23 
kinematics. When stimulated at 130 Hz, cortical stimulation-entrained gamma oscillations 24 
at the half-harmonic (~65 Hz) were observed. Further, cortical entrained gamma MRS was a 25 
stronger predictor of motion than broadband gamma MRS.  26 

We developed machine learning (ML) models to predict naturalistic movement over 27 
extended periods using spectral features from brief neural recordings (0.5 – 8 s epochs). 28 
Cortical models outperformed subcortical models, although combining cortico-basal 29 
signals yielded the highest model performance (AUC > 0.85 for binary movement state 30 
classifiers; Pearson r statistic > 0.68 for continuous forearm speed regressors). Higher DBS 31 
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current amplitudes were associated with reduced beta MRD and low gamma (40 – 60 Hz) 1 
MRS in the STN/GPi. This negatively impacted the accuracy of the subcortical models, 2 
whereas cortical and cortico-basal model performance remained stable across 3 
stimulation amplitudes. 4 

Our study demonstrates that cortico-basal nodes of the motor network encode 5 
complementary kinematic information, which can be integrated to enhance the accuracy 6 
and stability of chronic, naturalistic movement decoding during deep brain stimulation. 7 
These insights support the development and integration of therapeutic brain-computer 8 
interfaces (BCIs) with closed-loop, adaptive DBS (aDBS) to leverage rapid and precise 9 
movement-predictive models for the treatment of motor network disorders.  10 
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 4 

Introduction 5 

Precise motor control is essential for executing autonomous and volitional movements. 1 6 
The basal ganglia and sensorimotor cortex are integral nodes of the motor network that 7 
operate together to enable accurate, well-coordinated movements.2,3 Within the basal 8 
ganglia circuitry, the subthalamic nucleus (STN) and globus pallidus internus (GPi) regulate 9 
movement by selecting amongst competing motor programs and relaying information to 10 
the cortex.4–6 The sensorimotor cortex is generally responsible for planning and executing 11 
voluntary movements via neuronal projections to the brainstem and spinal cord. 7,8 The 12 
basal ganglia and sensorimotor cortex may provide complementary information and 13 
perform distinct roles in coordinating motor activity although the specific neural dynamics 14 
underlying this relationship are not yet well-established.9,10 15 

Laboratory-based recordings of local field potentials (LFPs) from the basal ganglia and 16 
sensorimotor cortex have identified potential neurophysiological biomarkers linked to 17 
kinematic features.11,12 In the subthalamic nucleus (STN), a reduction in beta power (12 – 18 
30 Hz) and an increase in broadband gamma power (55 – 90 Hz) are associated with 19 
elevated motor vigor in constrained, ballistic motor tasks.13–16 In the sensorimotor cortex, a 20 
decrease in alpha and beta power, along with an increase in broadband gamma power, 21 
have been observed during motor planning and execution.17,18 While these findings provide 22 
insights into movement-related spectral changes, they are primarily based on neural data 23 
recorded during brief, supervised, highly-controlled tasks in perioperative settings. Reliable 24 
long-term intracranial decoding of human motion, in naturalistic environments over 25 
extended periods has not yet been achieved. Identifying the cortical and subcortical 26 
biomarkers of real-time movement is essential for understanding the specific contributions 27 
of each node of the motor network to the execution of selected motor plans. 19 28 

Impairment of the motor network leads to movement disorders, such as Parkinson’s 29 
disease and essential tremor, which are debilitating and often challenging to treat. 20 While 30 
open-loop deep brain stimulation (DBS) has proven effective, particularly for Parkinson’s 31 
disease, its efficacy is limited by fluctuations in symptom severity and medication levels. 21 32 
New technological advancements, including brain-computer interfaces (BCI) and closed-33 
loop, adaptive deep brain stimulation (aDBS), present promising opportunities for 34 
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developing personalized treatments with greater therapeutic benefit. Historically, these 1 
technologies have been developed independently, with BCIs focusing on precise neural 2 
signal decoding and aDBS targeting clinically-defined states (e.g. fluctuations in 3 
dopaminergic medication levels) or underlying physiology (e.g. beta bursts). 22,23 However, 4 
given the core deficit of movement disorders, we investigate an approach that integrates 5 
these techniques, BCI-aDBS. The main concept here is to detect a patient's intention to 6 
move from intracranial brain signals and rapidly ramp up DBS at that moment to support 7 
motor execution. 8 

Recently, our group demonstrated the proof-of-principle of this BCI-aDBS method in a 9 
single Parkinson’s disease patient.24 We developed aDBS policies that targeted movement 10 
during brief, constrained motor tasks. This study demonstrated accurate cortically-based 11 
movement decoding and improved hand speeds during a keyboard typing task with a 12 
reduction in involuntary, dyskinetic movements during rest. However, the neural 13 
biomarkers of continuous, unconstrained movement remain undetermined, hindering the 14 
development of personalized, movement-responsive BCI-aDBS therapies for disorders of 15 
movement at scale.25 16 

A new generation of neurostimulators for DBS have been developed that can record neural 17 
activity while delivering electrical current to the basal ganglia. 22,26 These recordings can be 18 
collected in naturalistic environments, providing an ideal platform to investigate the 19 
complementary roles of the basal ganglia and cortex in movement. We recorded 539 hours 20 
of cortical and subcortical signals from a cohort of Parkinson’s disease patients (15 21 
patients; 27 independent hemispheres) implanted with neurostimulators while they 22 
performed unconstrained activities of daily living at home during therapeutic DBS. Wrist-23 
worn accelerometers were used to track forearm speeds of patients and synchronized to 24 
neural recordings.27,28 We identified site-specific neural signals related to motion and 25 
developed machine learning (ML) models for movement prediction. Furthermore, we 26 
leveraged these findings to elucidate the effects of varying the stimulation amplitude on 27 
movement decoding, ML performance and site-specific kinematic biomarkers. 28 

Materials and methods 29 

Participant selection and assessment 30 

We enrolled 15 individuals (mean age: 63 ± 3 years) with idiopathic Parkinson’s disease 31 
from the movement disorders surgery clinic at the University of California, San Francisco 32 
(UCSF) in accordance with the declaration of Helsinki (Table 1). The study was reviewed by 33 
the UCSF Institutional Review Board (ClinicalTrials.gov: NCT03582891) under an 34 
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investigational device exemption (G180097/R003) for the Summit RC+S device (Medtronic, 1 
Inc.).21 These patients presented with standard clinical indications for STN (12 patients) or 2 
GPi (3 patients) deep brain stimulation as confirmed by a movement disorders neurologist 3 
following the criteria outlined by the Movement Disorders Society for Parkinson’s disease 4 
diagnosis. The patients' motor function prior to implantation was assessed using the 5 
Unified Parkinson’s disease Rating Scale (UPDRS) Part III and their cognitive abilities were 6 
evaluated through the Montreal Cognitive Assessment (MoCA). Participants with a MoCA 7 
score of 20 or below, or those with an untreated mood disorder as determined by a 8 
neuropsychologist, were excluded from the study.  9 

Surgical implantation 10 

Quadripolar depth leads were surgically inserted into either the subthalamic nucleus 11 
(Medtronic 3389 lead) or the globus pallidus internus (Medtronic 3387 lead). 29 12 
Electrocorticography (ECoG) strips, designed solely for sensing purposes, were positioned 13 
along a parasagittal trajectory to ensure that at least one contact aligned with both the 14 
precentral and the postcentral gyri.22 The precise locations of these electrodes were 15 
determined intraoperatively using cone beam computed tomography (CT) fused to 16 
preoperative MRI scans. The cortical and subcortical leads were connected to a Summit 17 
RC+S implantable pulse generator (model B35300R) above the ipsilateral pectoralis 18 
muscle via 60-cm lead extenders (model 37087).30 19 

Intracranial data acquisition and preprocessing 20 

We collected over 530 hours of neural data while patients performed unsupervised 21 
unconstrained activities of daily living at home (May 2020 – May 2023) (Fig. 1A).22,31 22 
Baseline recordings were performed in 7 of the 15 patients at a stimulation amplitude of 0 23 
mA, prior to the initiation of DBS therapy, to establish the patients’ initial motor symptom 24 
profiles. As part of clinical care, a movement disorders specialist identified the optimal 25 
DBS electrode contacts and stimulation amplitude to maximize therapeutic benefit while 26 
minimizing side effects, such as dyskinesia. 11 patients were recorded at various 27 
stimulation amplitudes during the DBS parameter optimization phase.  28 

Throughout the study, participants continued taking their prescribed antiparkinsonian 29 
medications as per clinical guidance from their treating neurologist. ECoG leads captured 30 
neurophysiological data from the primary motor (M1) and somatosensory (S1) cortices, 31 
while depth leads recorded signals from the STN or GPi. The precise locations of these 32 
cortical and subcortical electrodes were reconstructed using the Locate Electrodes 33 
Graphical User Interface toolbox (Fig. 1B) and Lead-DBS toolbox (Fig. 1C) respectively. The 34 
neural data was recorded at a sampling frequency of 250 or 500 Hz and transmitted from 35 
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the RC+S neurostimulator devices to a nearby telemetry module then to a Microsoft 1 
Windows tablet. The tablet was equipped with custom software, built on the Summit RC+S 2 
application, developed in compliance with FDA regulations (CFR 820.30) and available 3 
athttps://github.com/openmind-consortium. 4 

Cortical and subcortical local field potentials recorded by the RC+S devices were first 5 
preprocessed in MATLAB R2022b using the Analysis-rcs-data toolbox (Fig. 1D).32 They were 6 
then filtered from 0.8 – 100 Hz with an infinite impulse response (IIR) elliptic bandpass filter 7 
(1dB passband ripple; 100 dB attenuation). For artifact detection and removal, we squared 8 
the magnitude of the neural signals and performed Gaussian smoothing over a moving 1-s 9 
window. Amplitudes exceeding five times the median were identified as aberrant spikes 10 
and the time series corresponding to these periods were removed. Removal of ECG 11 
artifacts was carried out utilizing two MATLAB libraries, Perceive and PerceptHammer.33,34 12 
Perceive detected QRS-like patterns within 10-minute intervals (to accommodate 13 
variations in ECG artifacts over time).33 These patterns were then averaged within each 14 
session and employed as initializations for the template subtraction pipeline from the 15 
PerceptHammer library.34 The initial template facilitated the identification of ECG artifact 16 
locations within the underlying signal, and this template was continuously updated using 17 
Woody’s adaptive filter. However, this recursive process of artifact identification and 18 
template updating had the potential to transform the template into one that matched non-19 
artifactual low-frequency spectral power, leading to inaccurate template subtraction. To 20 
mitigate this issue, we constrained the transformation of the initial template by comparing 21 
the updated and initial templates via normalized cross-correlation. If the cross-correlation 22 
between templates fell below a threshold of 0.9, the initial template was utilized for the 23 
entire artifact identification and subtraction process without iterative modification by the 24 
adaptive filter. 25 

Accelerometry data acquisition and preprocessing 26 

Participants wore an Apple Watch (Apple Inc.) on the wrist contralateral to the hemisphere 27 
where the RC+S device was implanted. For patients with bilateral implants, two watches 28 
were worn to simultaneously record movement in both forearms at a sampling rate of 50 29 
Hz.24 Accelerometry data was transmitted from the watches to nearby iPhones through the 30 
StrivePD iOS application (Rune Labs Inc.). Previously-validated external algorithms 31 
generated tremor and dyskinesia scores at 1-minute intervals.35 Accelerometry signals in 32 
the x, y, and z directions were integrated to derive the respective velocity measurements, 33 
filtered between 0.2 and 10 Hz using a fourth-order Butterworth bandpass filter. The 34 
resulting x, y, and z velocities were used to compute absolute forearm speeds.  35 
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Statistics 1 

For our statistical analyses, we utilized various Python (v3.9.17) packages, including SciPy 2 
and Statsmodels. One-way analyses of variance (ANOVAs) were utilized to explore 3 
significant differences between the means of two or more groups. Wilcoxon signed-rank 4 
tests were employed for the non-parametric comparison of paired samples. All relevant p-5 
values underwent correction for multiple comparisons through the false discovery rate 6 
(FDR) procedure.36 Linear mixed models (LMMs) were constructed utilizing the Pymer4 7 
library, with individual patients and hemispheres considered as random effects. These 8 
LMMs were employed to examine the influence of stimulation current amplitude on neural 9 
biomarkers and movement-predictive models' performance. 10 

Power spectral analyses 11 

Cortical and subcortical power spectra were computed from the preprocessed LFPs using 12 
a one-dimensional Fourier Transform in the NumPy package (numpy.fft.fft) (Fig. 1E). The 13 
neural signals were divided into non-overlapping 0.5-second epochs, and a Hann window 14 
was applied to calculate power spectral densities (PSDs) ranging from 0 – 100 Hz and 15 
spanning 2 Hz each (Fig. 1F). To eliminate the aperiodic component in each power 16 
spectrum, the spectral parameterization (SpecParam) algorithm was employed across the 17 
4 – 100 Hz range (Fig. 1G).37,38 To minimize the impact of involuntary movements on our 18 
analyses, we excluded epochs that had a non-zero tremor or dyskinesia severity score, as 19 
these scores indicated the presence of symptoms of significant severity. 35 The RC+S and 20 
Apple watch devices were set to computer clock time based on the network time protocol 21 
to synchronize the timestamps from both devices. As an added step, we identified the time 22 
lag between their clocks that maximized the cross-correlation of their respective 23 
accelerometry measurements.39 Once the timestamps were aligned, we linearly 24 
interpolated the wearable accelerometry data to determine the absolute forearm speed for 25 
each 0.5-second segment. 26 

We combined forearm speed measurements from all patients to produce a group-level 27 
distribution and identified a local minimum to be used as a standardized threshold for 28 
distinguishing between periods of movement (mobile states) and rest (stationary states) 29 
(Fig. 1H). We labelled epochs based on their movement states and calculated Cohen’s d 30 
(Cd) effect sizes using their power spectral densities (PSDs), adjusting for class 31 
imbalances with pooled standard deviations (Fig. 1I).40 The Cd values provided a signed, 32 
normalized metric to quantify the discriminative differences between the flattened PSDs in 33 
the mobile or stationary states. Additionally, we computed Spearman’s ρ, a non-parametric 34 
measure that is robust to outliers, to examine the correlation between the PSDs from each 35 
brain region and the contralateral absolute forearm speed measurements.  36 
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Machine learning model development and evaluation  1 

We developed linear and non-linear classifiers and regressors using the Python-based 2 
scikit-learn (sklearn) library to distinguish between mobile and stationary states or predict 3 
absolute forearm speeds respectively. Prior to model training, we standardized the data by 4 
removing the mean and scaling it to unit variance. To evaluate the performance of the 5 
classifiers, we used the area under the receiver operating characteristic curve (AUC) as our 6 
primary metric. AUC is robust to class imbalance making it particularly effective for 7 
evaluating model performance across various decision thresholds. 41,42 Moreover, we 8 
calculated accuracies, F1-scores, and positive predictive values, as secondary metrics. To 9 
balance our training datasets, we used the Synthetic Minority Over-sampling Technique 10 
(SMOTE).43 For the regression analysis, we assessed model performance using the Pearson 11 
correlation coefficient (r statistic) to compare true and predicted speed values.44 As a 12 
secondary metric, we employed the mean squared error.45 13 

To reduce both multicollinearity and complexity, we calculated six canonical power bands 14 
(PBs) to serve as features for our linear models: alpha (8 – 12 Hz), low beta (13 – 20 Hz), 15 
high beta (21 – 30 Hz), low gamma (40 – 60 Hz), stimulation-entrained gamma (63 – 67 Hz), 16 
and high gamma (70 – 90 Hz). In addition, we employed principal component analysis 17 
(PCA) to generate subject-specific features. This approach enabled a direct comparison 18 
between the effectiveness of canonical PBs versus personalized principal components 19 
(PCs) for predicting movement. For more complex non-linear models, we utilized the 20 
complete set of PSDs as features without any dimensionality reduction.  21 

For the classifiers, we shuffled and stratified our data based on mobile and stationary state 22 
labels before splitting the data into training (80 %) and test (20 %) sets. This ensured that 23 
both sets preserved the class distribution of the original dataset, preventing folds from 24 
having missing classes or imbalanced proportions, which could lead to biased model 25 
evaluation. Recording sessions were generally conducted on different days, including 26 
varying stimulation levels due to active titration by both patients and clinicians. Therefore, 27 
stratification also ensured that the training and test sets had samples from various days 28 
and stimulation amplitudes. In subsequent sections, we assessed the models’ 29 
performance when transferred across these different sessions and stimulation levels.  For 30 
the regressors, stratification was not used because we were predicting continuous forearm 31 
speeds. 32 

To determine the specific contributions of each feature to model performance, we 33 
calculated the permutation feature importance for each PB and brain region. 46 This process 34 
involved shuffling the sample values (10,000 permutations) to diminish the predictive 35 
power of each feature, allowing us to measure the change in model performance when 36 
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predictions were made using the altered dataset. We also computed the conditional 1 
mutual information between each PB and forearm speed measurements, as well as 2 
between PBs in each brain region and movement speeds.47 This analysis quantified the 3 
reduction in uncertainty about forearm motion attributable to each PB and brain region, 4 
while accounting for the contribution of movement-related information from other PBs.48,49 5 
To examine the effects of the varying DBS current amplitudes on kinematic biomarkers, we 6 
computed movement-related Cohen’s d effect sizes for each canonical power band and 7 
brain region at each stimulation level. Additionally, we explored the influence of the time 8 
interval between sessions on model performance. This was done by training models with 9 
samples from one session and testing them with data from another session at different 10 
time points. We also evaluated how stimulation amplitudes influenced our ability to 11 
decode movement by employing 5-fold stratified cross-validation to measure model 12 
performance at each stimulation level. We quantified the changes in Cohen’s d values and 13 
model AUCs across different stimulation levels using LMMs.  14 

 15 

Results 16 

Cortical and subcortical biomarkers of naturalistic movement 17 

We recorded intracranial signals from the somatosensory (S1) and motor (M1) cortices, as 18 
well as the subthalamic nucleus (STN; 22 hemispheres) or globus pallidus internus (GPi; 5 19 
hemispheres) during deep brain stimulation (DBS) in patients with Parkinson’s disease 20 
(Mean ± SEM duration of data collected per hemisphere: 4.2 ± 0.3 h). A total of 539 hours of 21 
data were collected, comprising 213 hours at 0 mA and 326 hours at stimulation 22 
amplitudes above 0 mA. Participants utilized wrist-worn accelerometers (Apple watches) 23 
to record their forearm speeds during unconstrained everyday activities. The timestamps of 24 
the RC+S and Apple watches were synchronized to correct for any time lags (Mean 25 
absolute time lag before correction ± standard error of the mean: 0.6 ± 0.2 s). Commencing 26 
with the raw local field potentials (LFPs), we computed flattened power spectral densities 27 
(PSDs) within 500-ms epochs. 65 % of these epochs (353 hours; 227 hours at stimulation 28 
amplitudes above 0 mA and 126 hours at 0 mA) were free from tremor or dyskinesia based 29 
on Apple watch scores. Using the local minimum of the group-level bimodal combined 30 
forearm speed distribution (28th percentile) we distinguished between mobile and 31 
stationary states. 32 

Based on this distinction between movement states, we calculated Cohen’s d (Cd) effect 33 
sizes for frequencies ranging from 0 to 100 Hz for each subject and hemisphere (Fig. 2A). 34 
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Negative and positive Cd values indicated a decrease and increase in spectral power 1 
during the mobile state compared to the stationary state respectively. 50 Frequency ranges 2 
with contiguous PSDs showing negative Cd values were identified as movement-related 3 
desynchronization (MRD) bands, while those with positive Cohen’s d values were identified 4 
as movement-related synchronization (MRS) bands.12–17 For our main analyses, we opted to 5 
focus on the subset of hemispheres that were stimulated at 130 Hz (9 patients; 16 STNs 6 
and 2 GPi’s), to avoid interference from varying stimulation frequencies. Additionally, 7 
analysis with all data, irrespective of stimulation frequency was also completed and 8 
included in the Supplementary material. 9 

Shifting the speed threshold between the 5th and 95th percentiles of the combined 10 
forearm speed distribution, we computed the average Cohen’s “d-gram” for each site (Fig. 11 
2B). This represented the movement-discriminative ability of each PSD (within 0 – 100 Hz) 12 
across a range of immobile/slower versus faster distributional splits.  Significant MRD was 13 
observed in the alpha, low beta, and high beta ranges in cortical areas. In contrast, in the 14 
STN/GPi, high beta MRD, but not low beta MRD, reached significance at the group level 15 
(FDR-corrected, P < 0.05). However, on an individual level, 6 patients (9 STNs and 2 GPi’s) 16 
also demonstrated significant MRD in the low beta frequency range, underscoring the 17 
variability in the predictive power of canonical PBs across participants.  18 

Significant MRS was found in the 40 – 80 Hz range for the STN/GPi and the 60 – 100 Hz range 19 
for the S1 and M1 (FDR-corrected P < 0.05). These findings revealed significant predictive 20 
power from both cortical and subcortical regions albeit within site-specific frequency 21 
ranges.12,19,50 To assess the robustness of these findings across different dopaminergic 22 
medication levels, we recreated the Cohen’s d-grams within 15-minute intervals, during 23 
which variations in medication levels were likely minimal, and averaged them (FDR-24 
corrected P < 0.05) (Fig. S1A). We also calculated the average group-level Cohen’s d-gram 25 
using the complete dataset, including periods with tremor or dyskinesia (Fig. S1B). These 26 
group-level Cohen’s d-grams revealed consistent alpha/beta MRD and gamma MRS bands, 27 
despite variations in medication level over time or analysis of the full recording duration. 51 28 

We extracted several characteristics from the MRD and MRS bands in each Cohen’s d plot 29 
for comparison, including the peaks in Cohen’s d (CdPEAK) and their respective frequencies 30 
(fPEAK). Specifically, we determined the highest Cd value in the MRS band (MRS CdPEAK) and 31 
the most negative Cd value in the MRD band (MRD CdPEAK). There was no significant 32 
difference in the MRD CdPEAK frequencies of cortical versus subcortical sites (Median ± SEM 33 
peak frequencies; STN/GPi: 24 ± 4 Hz, S1: 22 ± 1 Hz, M1: 23 ± 1 Hz, One-way ANOVA: F = 34 
2.18, P = 0.13) (Fig. 2C). However, cortical MRS CdPEAK frequencies were higher than those 35 
in the STN/GPi (STN/GPi: 52 ± 4 Hz; S1: 64 ± 2 Hz; M1: 66 ± 2 Hz; F = 12.16, P < 10-4; Post-36 
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hoc one-sided Wilcoxon signed rank test: W = 0.0, P < 0.002). Cortical MRS CdPEAK were 1 
commonly around 65 Hz, suggesting a link between stimulation-entrained gamma power 2 
and volitional movement.19,21 3 

We also compared the MRD and MRS CdPEAK magnitudes in each brain region. Cortical beta 4 
MRD CdPEAK demonstrated a greater magnitude compared to cortical gamma MRS CdPEAK (W 5 
= 45.0, P = 0.003) (Fig. 2D). Additionally, cortical MRD CdPEAK (W = 0.0, P = 0.002) and MRS 6 
CdPEAK (W = 6.0, P = 0.03) exhibited higher magnitudes than those observed in the STN/GPi, 7 
indicating that cortical biomarkers were more predictive of naturalistic motion. 19,24 8 
Moreover, we calculated the full width at half maximum of the Cohen’s d values (CdFWHM) 9 
within each MRD and MRS band. The MRS CdFWHM was significantly wider than the MRD 10 
CdFWHM at each site (STN/GPi: W = 2.0, P = 0.02; S1: W = 5.0, P = 0.03; M1: W = 8.0, P = 11 
0.049) (Fig. 2E). To further examine the predictive capabilities of each brain region in 12 
estimating continuous forearm speed values, Spearman correlations between each PSD 13 
and absolute forearm speed were computed (Fig. 2F). We found that alpha MRD, beta MRD 14 
and gamma MRS encoded continuous forearm speeds in each brain region (FDR-corrected 15 
P < 0.05). These results emphasized the presence of site-specific biomarkers associated 16 
with naturalistic motion.8 17 

Movement Decoding Using Multivariate Signals and Machine Learning 18 

Converging evidence indicates that the nervous system encodes movement-related neural 19 
activity across several frequency ranges simultaneously.19,52 This suggests that combining 20 
neural features can potentially enhance the capacity to decode forearm movements. 21 
Therefore, we developed machine learning (ML) models with multiple features to classify 22 
stationary and mobile states or predict continuous forearm speeds during unconstrained, 23 
naturalistic motion. These models were developed using canonical PBs from an individual 24 
site (STN/GPi, S1 or M1) or by combining PB features from all three regions. Using Linear 25 
Discriminant Analysis (LDA) and 5-fold cross-validation on the training dataset, we 26 
identified the optimal epoch durations for each region by comparing the area under the 27 
receiver operating characteristic curve (AUC) scores (STN/GPi: 8 s, S1: 10 s, M1: 8 s, and 28 
Combined: 9 s) (Fig. 3A). These represented the epoch durations above which there was no 29 
improvement in model performance by more than 0.01.  30 

Significant differences in AUC between single-site and combined classifiers were observed 31 
on the holdout dataset (F = 5.35, P = 0.004) (Fig. 3B). The combined classifier had the 32 
highest performance (Mean ± SEM AUC: 0.84 ± 0.01; W > 42.0,  P < 0.002).22 Cortical sites 33 
were more predictive of movement states compared to the STN/GPi (W > 40.0, P < 0.03) 34 
although there was no significant difference in performance between the S1 and M1 35 
models (W = 24.0, P = 0.46).53,54 To provide a comprehensive assessment of our models, we 36 
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also computed several other metrics, such as balanced accuracy, F1 score, sensitivity, 1 
specificity and positive predictive value, (Table 2). 2 

Prior studies have demonstrated that customizing features for individual patients can 3 
enhance the performance of predictive models.22,28 Consequently, besides using canonical 4 
power bands, we employed principal component analysis (PCA) and identified the number 5 
of PC features for optimal classifier performance (STN/GPi: 8, S1: 4, M1: 5, Combined: 6) 6 
(Fig. 3C). We also computed the cumulative explained variance of these PCs (Mean ± SEM 7 
variance: STN/GPi: 81 ± 2 %, S1: 59 ± 2 %, M1: 65 ± 2 %, Combined: 47 ± 2 %) (Fig. S2A) and 8 
the PC loadings of the first PC (FDR-corrected P < 0.05) (Fig. S2B). Like with canonical PBs, 9 
the combined classifiers yielded the highest AUC (Mean ± SEM AUC: 0.83 ± 0.01; F = 3.89, 10 
P = 0.02; W = 45.0, P = 0.002) (Fig. 3D). We found no significant difference between linear 11 
models using personalized PCs and those using canonical PBs (W = 20.0, P = 0.63). This 12 
was likely due to the use of 6 canonical PB features per site. However, real-world devices 13 
may impose additional model restrictions (e.g. maximum 4 PBs for the Summit RC+S) 14 
which may lead to improved performance through personalization of features. 24 15 

We determined the permutation feature importance of each site to quantify their specific 16 
contributions to movement decoding (Mean ± SEM change in AUC; STN/GPi: -0.05 ± 0.01, 17 
S1: -0.12 ± 0.02, M1: -0.10 ± 0.02; W = 0.0, P = 0.004) (Fig. 3E). The contribution from the S1 18 
was greater than that from the STN/GPi (W = 41.0, P = 0.041) but similar to that from the M1 19 
(W = 19.0, P = 0.37). These findings suggested that the basal ganglia and sensorimotor 20 
cortex encode distinct, non-redundant movement-related information.7,8,54 We examined 21 
the permutation feature importance of individual PBs in each brain region. Among these, 22 
cortical high beta power demonstrated the highest feature importance (Mean ± SEM 23 
change in AUC: -0.10 ± 0.02), indicating that it was the most predictive biomarker of 24 
naturalistic movement amongst the PBs (F = 2.74, P = 0.0005; W = 6.0, P = 0.027) (Fig. 3F).14 25 

Although simple linear classifiers can be embedded on current implantable 26 
neurostimulators, more advanced models may yield higher performance for real-time 27 
movement decoding.23 Therefore, we evaluated the effectiveness of more complex models, 28 
including k-nearest neighbor (kNN), random forest (RF), and light gradient-boosting 29 
machine (LGBM) (Fig. 3G). We also included all 50 PSDs from each site as features for 30 
these non-linear models, rather than restricting them to the canonical PB features. The RF 31 
classifier achieved a small but significant improvement over linear models that used PB 32 
features (Mean ± SEM AUC: 0.85 ± 0.01), with a difference in AUC of 0.016 ± 0.004 (F = 3.25, 33 
P = 0.01; W = 0, P = 0.007). These findings suggested that while canonical power bands 34 
were effective as kinematic biomarkers, employing complex classifiers could offer a slight 35 
enhancement in movement prediction.19 36 
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In addition to assessing binary movement states, we aimed to evaluate the utility of the 1 
multivariate signals in predicting absolute forearm speeds. To achieve this, we repeated 2 
our classifier analysis on linear regression models using canonical PBs from one or all sites 3 
and obtained similar results. Using Pearson’s correlations between predicted and actual 4 
speeds (r statistic) as the primary metric, we determined the optimal epoch duration for 5 
each model (STN/GPi: 10 s, S1: 10 s, M1: 11 s, Combined: 10 s)  (Fig. 4A). Combining 6 
cortico-basal signals yielded the highest-performing models (Mean r statistic ± SEM: 0.64 ± 7 
0.03; F = 6.35, P = 0.002; W = 45.0, P = 0.002) (Fig. 4B). We also explored the use of 8 
personalized PCs as features. We identified the optimal number of PCs for each model 9 
(STN/GPi: 9, S1: 5, M1: 8, Combined: 8) (Fig. 4C) and found that integrating PC features 10 
from all sites improved model performance (Mean r statistic ± SEM: 0.63 ± 0.03; F = 4.69, P 11 
= 0.008; W = 45.0, P = 0.003) (Fig. 4D), reinforcing the hypothesis that each site encodes 12 
distinct movement-related information.52 13 

To assess the marginal movement decoding ability of each brain region, we calculated their 14 
respective permutation feature importance. Each site made significant, unique 15 
contributions to movement prediction (W = 0.0, P = 0.004) although the S1 had higher 16 
feature importance than the STN/GPi (W = 44.0, P = 0.01) (Fig. 4E). Cortical high beta power 17 
had the highest feature importance (Mean ± SEM change in r statistic: -0.19 ± 0.03) 18 
compared to other PBs, including cortical low beta (W = 2.0, P = 0.006) (Fig. 4F). This 19 
suggested significant differences between low and high cortical beta power in decoding 20 
forearm speed.14 21 

As an additional measure of feature importance, we computed the conditional mutual 22 
information for each PB and brain region.47–49 Specifically, we calculated the marginal 23 
mutual information between each PB feature and forearm speed measurements, 24 
conditioned on the other cortical and subcortical PBs (Fig. S5A). We also assessed the 25 
joint mutual information between PBs in each brain region and movement speeds, 26 
conditioned on PBs from other brain regions (Fig. S5B). The conditional mutual information 27 
from the S1 was greater than that from the STN/GPi (W = 3.0, P = 0.029) but not significantly 28 
different from the M1 (W = 38.0, P = 0.056). Additionally, we found that cortical high beta 29 
power had the highest conditional mutual information (Mean ± SEM MI: 0.020 ± 0.003). 30 
These findings corroborated our findings that the basal ganglia and sensorimotor cortex 31 
encode distinct, non-redundant movement-related information and that cortical high beta 32 
was the most predictive biomarker of naturalistic movement amongst the PBs (F = 2.67, P = 33 
8.1 x 10-4; W = 2.0, P = 0.002). 34 

Due to the high multicollinearity among spectral features, canonical PBs were used for 35 
non-linear regression models (kNN, RF and LGBM). There was no significant variability in 36 
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performance amongst the models (F = 0.28, P = 0.92) (Fig. 4G). However, post-hoc analysis 1 
revealed that the LGBM (Mean ± SEM r statistic: 0.69 ± 0.03) and RF (Mean ± SEM r statistic: 2 
0.68 ± 0.03) regressors achieved significantly higher performance than the linear PB-based 3 
model (W > 1.0, P < 0.033). This further validated our finding that complex non-linear 4 
models could slightly improve model performance.19,23 For completeness, we re-ran our 5 
machine learning pipeline on the full patient cohort, including those with stimulation 6 
frequencies different from 130 Hz, and obtained similar results (Table S1) for both the 7 
classifiers (Figs. S3A-D) and regressors (Figs. S4A-D). 8 

Effects of stimulation current amplitude on movement decoding 9 

Previous studies have demonstrated that DBS can influence neural signals, such as 10 
reducing resting-state subcortical beta activity in patients with Parkinson’s disease. 12,20,55 11 
However, the effects of varying stimulation levels on kinematic biomarkers and movement-12 
predictive ML models have not previously been evaluated. Understanding this impact can 13 
also provide insights into the potential performance of movement-responsive BCI-aDBS 14 
systems, which decode neural signals in real-time at different stimulation current 15 
amplitudes.26,56 To address this gap, we investigated the effects of stimulation levels on 16 
movement-related changes in alpha, beta, and gamma PBs. An example of movement-17 
related changes in STN spectral power for a single subject when DBS was at 0.0 mA or 2.0 18 
mA is shown in Figs. 5A & 5B. 19 

Absolute Cohen’s d effect sizes were used to quantify the movement-related 20 
desynchronization/synchronization of canonical PBs in each brain region.  To evaluate the 21 
relationship between these effect sizes and stimulation amplitudes, we employed linear 22 
mixed models (LMMs) with stimulation amplitude modeled as a fixed effect, while 23 
individual patients and hemispheres were included as random effects. To visualize these 24 
relationships, we plotted the average absolute Cd values at each stimulation amplitude 25 
across all patients for the STN/GPi (Fig. 5C), S1 (Fig. 5D) and M1 (Fig. 5E). Increasing the 26 
stimulation amplitude was correlated with a decrease in the MRD of subcortical low beta 27 
(STN/GPi: β = -0.078; 95 % CI = [-0.1221, -0.036], P = 0.003), high beta (STN/GPi: β = -0.103; 28 
95 % CI = [-0.145, -0.060], P < 10-4) and low gamma (STN/GPi: β = -0.050; 95 % CI = [-0.083, 29 
-0.018], P = 0.006), as evidenced by a reduction in absolute Cd values. In contrast, cortical 30 
regions showed no significant effect on high beta MRD. There was, however, a stimulation-31 
related decrease in alpha MRD (S1: β = -0.034; 95 % CI = [-0.061, -0.007], P = 0.045) (M1: β 32 
= -0.035; 95 % CI = [-0.061, -0.008], P = 0.02) and low beta MRD (S1: β = -0.048; 95 % CI = [-33 
0.085, -0.010], P = 0.045) (M1: β = -0.072; 95 % CI = [-0.118, -0.026], P = 0.009), as well as 34 
an increase in M1 stimulation-entrained gamma MRS (M1: β = 0.044; 95 % CI = [0.018, 35 
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0.069], P = 0.006). This revealed that stimulation levels affected site-specific biomarkers of 1 
naturalistic motion. 2 

To examine how the time interval between recording sessions affected the performance of 3 
movement-predictive classifiers, we trained the ML models on data from one session and 4 
tested them on data from subsequent sessions conducted at the same stimulation 5 
amplitude. We incorporated the duration between sessions as a fixed effect in our LMMs, 6 
while treating individual patients and hemispheres as random effects (Fig. 5F). Further, we 7 
explored the impact of stimulation levels on classifier performance by performing 5-fold 8 
cross-validation on data collected from each session (Fig. 5G). We incorporated the 9 
stimulation level as a fixed effect in our LMMs, with individual patients and hemispheres 10 
treated as random effects. We then repeated this analysis to assess the effects of duration 11 
between recording sessions (Fig. 5H) and stimulation amplitude (Fig. 5I) on regressor 12 
performance. The performance of both the classifiers and regressors maintained stability 13 
over time (Max duration: 83 days; Median ± SEM duration: 6 ± 2 days) (β < 0.033, P > 0.34). 14 
STN/GPi classifiers (β = -0.030; 95 % CI = [-0.046, -0.013], P = 0.004) and regressors (β = -15 
0.054; 95 % CI = [-0.086, -0.023], P = 0.004) demonstrated lower performance at higher 16 
stimulation amplitudes. Conversely, the S1, M1, and combined models were not 17 
significantly affected by changes in stimulation levels (β > -0.019, P > 0.05). This was likely 18 
due to the preserved predictive power of cortical high beta MRD at higher stimulation 19 
amplitudes. 20 

 21 

Discussion 22 

We identified cortico-basal biomarkers of naturalistic forearm movement by analyzing over 23 
530 hours of neural and accelerometry recordings from 15 patients with Parkinson’s 24 
disease during deep brain stimulation (DBS).21,44 Specifically, we observed beta movement-25 
related desynchronization (MRD) and gamma movement-related synchronization (MRS) in 26 
both cortical and subcortical regions.13,50,51,57 Although we did not specifically track the 27 
medication timings of our patient cohort, we repeated our biomarker analyses within 15-28 
minute windows, during which medication states were likely stable. This approach 29 
demonstrated that these biomarkers remained predictive of movement across different 30 
medication states, rather than merely decoding slow medication state fluctuations. Using a 31 
multivariate machine learning (ML) approach, we revealed distinct contributions from each 32 
brain region in predicting movement, with cortical high beta MRD being the most 33 
discriminative signal.52,58 Consequently, ML models that incorporated both cortical and 34 
subcortical signals demonstrated superior model performance compared to single-site 35 
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models. We also found that DBS amplitudes influenced the performance of these models, 1 
with higher stimulation levels leading to a decrease in the accuracy of subcortical 2 
models.26,55 Despite this, cortical and combined cortico-basal models continued to 3 
perform well at higher stimulation levels. This sustained performance supports the future 4 
potential of movement responsive BCI-aDBS.23,24 5 

Subcortical low and high beta power encode distinct movement-related 6 

functions 7 

Within the beta frequency range (12 – 30 Hz), we revealed group-level functional 8 
distinctions between low (12 – 20 Hz) and high (20 – 30 Hz) subcortical beta rhythms, which 9 
have both previously been associated with motor execution.13 Higher Parkinson’s disease-10 
related bradykinesia severity has also been correlated with increased low beta power. 12 11 
Treatments, such as dopaminergic medication and DBS, have been found to suppress low 12 
beta activity and reduce bradykinesia severity.58,59 In contrast, high beta has been linked to 13 
physiological mechanisms, such as force generation and voluntary motor actions. 60 This 14 
suggests that low beta may be functionally ‘anti-kinetic’ in the pathophysiology of 15 
Parkinson’s disease, whereas high beta might have a stronger association with the 16 
execution of normal motor plans.14 Our study supports this difference in physiological roles 17 
by demonstrating that MRD associated with naturalistic movement, irrespective of 18 
dopaminergic state, was only observed within the high beta band.  19 

Cortical stimulation-entrained gamma is associated with naturalistic 20 

movement 21 

Cortical and subcortical broadband gamma MRS has been linked to motor speed and 22 
complexity in both healthy individuals and patients with Parkinson’s disease. 50,57 During 23 
DBS, cortical and subcortical oscillations at subharmonics of the stimulation frequency 24 
have also been observed.21 Specifically, entrainment at the half-harmonic (~65 Hz) of the 25 
130 Hz stimulation frequency have been noted.61 Broadband gamma activity is non-26 
oscillatory and thought to represent asynchronous neuronal spiking activity across a wide 27 
frequency range (30 – 200 Hz).62 In contrast, recent studies have shown that stimulation-28 
entrained gamma oscillations are associated with synchronized spiking and are influenced 29 
by dopaminergic medication and sleep-wake cycles, indicating a non-artefactual, 30 
physiological role for these neural signals.30,31 Consistent with these findings, we detected 31 
broadband gamma movement-related synchronization within the cortical regions. In our 32 
cohort of patients stimulated at 130 Hz, stimulation-entrained gamma MRS at ~65 Hz was 33 
significantly greater than that at the other frequencies within the broadband gamma 34 
range.63 This suggests that entrained gamma power more effectively distinguishes between 35 
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movement states than broadband gamma and may serve as a valuable, kinematic 1 
biomarker in the ON-stimulation state.64 2 

Subcortical and cortical sites provide complementary information for 3 

movement decoding 4 

The sensorimotor cortex is involved in motor planning and execution while the basal 5 
ganglia plays a more implicit, regulatory role in selecting and initiating movements, 6 
inhibiting unwanted actions, and refining motor skill.2,4,8,9 Furthermore, prior research by 7 
our group revealed that combining spectral features from cortical and subcortical regions 8 
can improve the accuracy of linear models in decoding Parkinson’s disease-related 9 
symptom states, such as severe bradykinesia or dyskinesia.22 These findings suggest that 10 
cortical and subcortical signals encode specific information regarding naturalistic 11 
motion. Consistent with these findings, this study demonstrates that integrating 12 
subcortical and cortical signals yielded more accurate ML models for predicting movement 13 
than using signals from individual sites alone indicating complementary encoding. Feature 14 
importance analyses further confirmed the significant contributions of each brain region to 15 
the performance of the combined models. Repeating our analysis on the full patient 16 
cohort, we observed similar model performance and feature importance across different 17 
stimulation frequencies (other than 130 Hz).  18 

DBS modulates movement-related cortico-basal biomarkers 19 

Movement-related changes in the spectral power of cortical and subcortical biomarkers 20 
were influenced by DBS amplitudes. Specifically, increased stimulation levels were found 21 
to correlate with lower subcortical beta MRD and gamma MRS, as evidenced by a 22 
reduction in absolute Cohen’s d effect size.26 This reduction potentially impacted the 23 
discriminative power of beta and gamma biomarkers at higher stimulation levels, thus 24 
decreasing the accuracy of subcortical models for movement prediction. In the 25 
sensorimotor cortex, higher DBS levels were associated with reduced low beta MRD, 26 
suggesting that patients could achieve similar movement speeds with decreased beta 27 
MRD. This aligns with previous findings showing higher cortical beta MRD in Parkinson’s 28 
disease patients than individuals with essential tremor or without movement disorders. 17,65 29 
Moreover, dopaminergic medication is associated with a reduction in cortical beta MRD 30 
and an improvement in motor speed.51 In contrast to our subcortical models, those using 31 
cortical signals or integrating cortico-basal signals demonstrated greater stability. This was 32 
likely due to the resilience of cortical high beta MRD, identified as the most discriminative 33 
kinematic biomarker. Therefore, integrating cortico-basal signals could enhance the 34 
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accuracy and stability of movement prediction across varying stimulation conditions, 1 
which is crucial for the development of BCI-aDBS systems to treat motor disorders. 2 

Implications for closed-loop DBS treatments 3 

Based on the gating theory of basal ganglia function, the basal ganglia excessively inhibits 4 
the initiation and execution of motor plans, exacerbating these hypokinetic symptoms. 25 By 5 
increasing stimulation amplitudes during movement, we may be able to disinhibit the 6 
execution of these movements only when it is most needed and alleviate bradykinesia 7 
severity.24 However, ensuring the therapeutic efficacy of a movement-based adaptive DBS 8 
policy requires careful optimization of both upper and lower stimulation levels. The upper 9 
stimulation levels must be constrained to prevent excessive stimulation, which can lead to 10 
side effects such as dyskinesia, particularly during medication-ON periods. Similarly, the 11 
lower stimulation levels should not be set too low during rest periods to avoid breakthrough 12 
tremor, especially during medication-OFF periods.  13 

To be deployable for everyday use, such an adaptive DBS paradigm must be able to 14 
accurately decode unconstrained, volitional motion from neural signals. However, previous 15 
studies have primarily focused on decoding movement during short, constrained tasks, 16 
such as finger-tapping and hand rotations. Our study is the first to demonstrate the 17 
accurate prediction of unsupervised, naturalistic movements using chronic neural 18 
recordings during DBS. (classifier AUC > 0.85 and regressor r statistic > 0.68). We also 19 
highlight the importance of recording neural signals from both cortical regions and the 20 
basal ganglia, as integrating these signals may improve the performance and stability of 21 
movement-predictive models. With these findings, we support the development of an 22 
integrated BCI-aDBS approach that combines the fast and precise motor-decoding 23 
capabilities of emerging BCIs with the therapeutic neuromodulatory effects of aDBS.  24 

Conclusions 25 

Our findings demonstrate the complimentary contributions of cortico-basal neural circuits 26 
and signals in naturalistic, unconstrained, movements. We identified multivariate 27 
movement encoding particularly through cortico-basal beta and gamma oscillations, as 28 
well as stimulation-entrained gamma, in the presence of DBS. We developed ML 29 
techniques for fast and accurate decoding of unconstrained movement and identified 30 
features which were resilient to changes in stimulation conditions. This validates the 31 
potential feasibility of BCI-aDBS in naturalistic settings and opens a translational pipeline 32 
for precise motor network re-tuning in disorders of movement, including Parkinson’s 33 
disease and stroke. 34 
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 5 

Figure legends 6 

 7 

Figure 1 Anatomic localization of implanted electrodes and single-subject example of 8 
processed neural and accelerometry data. (A) Schematic of patient performing activity of 9 
daily living while streaming data from implanted neurostimulators and wrist-worn 10 
accelerometers. (B) Cortical electrodes represented on a template brain. Five of the fifteen 11 
patients in our cohort used an overlapping sensing configuration (Electrode pairs: 1-3 and 12 
2-4). The remaining ten subjects used a non-overlapping configuration (Electrode pairs: 1-2 13 
and 3-4). (C) Subcortical electrodes represented on a template brain in the globus pallidus 14 
externus (GPe), globus pallidus internus (GPi), subthalamic nucleus (STN) and red nucleus 15 
(RN). (D) Neural and accelerometry data processing pipeline. (E) Single-subject (Pat-01) 16 
spectrograms based on data streamed from the left STN, primary somatosensory cortex 17 
(S1) and primary motor cortex (M1). Right forearm speeds were recorded simultaneously. 18 
(F) Single-subject average power spectral densities (PSDs) were computed from the STN, 19 
S1 and M1 signals and fitted with the Spectral Parameterization algorithm to compare 20 
between mobile and stationary states. (G) The corresponding flattened PSD plots have 21 
been displayed. The beta band (12 – 30 Hz) has been highlighted in green. (H) Forearm 22 
speeds from all patients in our cohort were combined and displayed in a kernel density 23 
estimate plot. A local minimum was identified at the 28 th percentile of the distribution 24 
(termed the movement state threshold) and used to distinguish between mobile and 25 
stationary states. (I) Cohen’s d (Cd) effect sizes based on the flattened PSDs from a single 26 
subject were calculated and used to create a Cd plot. These values quantified the 27 
differences in spectral power between movement states. The frequencies with positive Cd 28 
values, indicating an increase in spectral power during mobile states compared to 29 
stationary states, were highlighted in red. Several characteristics, such as the peak 30 
frequency (fPEAK), maximum Cohen’s d (CdPEAK) and full width at half maximum (CdFWHM), 31 
were extracted from this band. The frequencies with negative Cd values were highlighted in 32 
blue. 33 

 34 
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Figure 2 Cortical and subcortical biomarkers of naturalistic movement.  (A) Cohen’s d 1 
(Cd) plots for each patient and hemisphere were computed using STN/GPi (left), S1 2 
(middle) and M1 (right) signals. Four out of fifteen patients in our cohort had a different 3 
stimulation frequency than 130 Hz and two of were recording while stimulation was OFF 4 
(marked by asterisks). The largest frequency range with contiguous positive Cd values 5 
(highlighted in red) was termed the movement-related synchronization (MRS) band while 6 
that with contiguous negative Cd values (highlighted in blue) was termed the movement-7 
related desynchronization (MRD) band. In cases where a hemisphere exhibited multiple 8 
MRD or MRS bands, the band with the highest average absolute Cd value was selected for 9 
further analysis. (B) Each percentile (between the 5 th and 95th percentiles) of the group-10 
level forearm speed distribution (from Fig. 1H) was used as a threshold to produce one-11 
dimensional Cd plots discriminating slower from faster movements. These plots were 12 
concatenated to create two-dimensional Cohen’s “d-grams” (Cd-grams).  The horizontal 13 
dotted line in each Cd-gram lies on the 28th percentile which distinguishes between 14 
mobile and stationary states. The grey masks indicate the regions that did not survive false 15 
discovery rate (FDR) correction (P ≥ 0.05). (C) Using the 28th percentile threshold, we 16 
identified the frequencies with the lowest (most negative) and highest (most positive) Cd 17 
values from each hemisphere. These were termed the MRD and MRS CdPEAK frequencies 18 
respectively. Additionally, we calculated (D) the absolute CdPEAK magnitudes and (E) the full 19 
widths at half maximum (CdFWHM) of the MRD and MRS bands (based on the Cd plots in Fig. 20 
2A). (F) FDR-corrected average Spearman correlation (ρ) values between the PSDs and the 21 
absolute forearm speeds were computed. The resulting significant frequency bands have 22 
been highlighted by the color-coded bars above the respective plots. *P ≤ 0.05, **P ≤ 0.01, 23 
***P ≤ 0.001, ****P ≤ 10-4. 24 

 25 

Figure 3 Evaluating the performance of binary movement state classifiers.  We 26 
performed hyperparameter tuning on Linear discriminant analysis (LDA) classifiers using 27 
canonical power band (PB) features. (A) The optimal epoch durations were identified for 28 
single-site (STN/GPi, S1 or M1) and combined models using the area under the receiver 29 
operating characteristic (AUC). (B) These models were then tested on a holdout set for 30 
each patient. We also evaluated the performance of classifiers trained on personalized 31 
features. (C) We performed principal component analysis (PCA) and identified the optimal 32 
number of PC features for each classifier. (D) The AUCs of the personalized classifiers with 33 
PC features were computed on the holdout set. Permutation feature importance was 34 
performed to quantify the unique contributions of each (E) site (STN/GPi, S1 or M1) and (F) 35 
canonical PB to the performance of the combined model. (G) Additional linear and non-36 
linear models – Gaussian naïve bayes (GNB), k-nearest neighbors (KNN), random forests 37 
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(RF) and light gradient boosted machines (LGBMs) – were developed using all PSD features 1 
from each site, to avoid restricting the models to the six canonical PB features. *P ≤ 0.05, 2 
**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 10-4. 3 

 4 

Figure 4 Evaluating the performance of forearm movement speed regressors.  Linear 5 
regression (LR) models were trained to predict continuous forearm speeds. (A) The optimal 6 
epoch durations were identified for single-site (STN/GPi, S1 or M1) and combined 7 
regressors were identified using Pearson r statistic values. (B) Evaluation of these LR 8 
models was performed on a holdout set. (C) Personalized features were developed using 9 
principal component analysis (PCA) and the optimal number of PC features for each 10 
regressor was determined. (D) The performance of the personalized single-site and 11 
combined regressors with PC features was compared using the holdout set. Permutation 12 
feature importance was computed for each (E) brain region and (F) canonical PB. (G) 13 
Additional linear and non-linear models – Bayesian ridge regression (BR), stochastic 14 
gradient descent (SGD), k-nearest neighbors (KNN), random forests (RF) and light gradient 15 
boosted machines (LGBMs) – were developed using the canonical PB features. *P ≤ 0.05, 16 
**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 10-4. 17 

 18 

Figure 5 Effects of stimulation on biomarkers of naturalistic movement.  We computed 19 
the average normalized, flattened PSDs for the mobile and stationary states from the left 20 
STN of a single subject at two stimulation levels: (A) 0.0 mA and (B) 2.0 mA. The differences 21 
in spectral power across each canonical band were highlighted using different colors. We 22 
employed linear mixed models (LMMs) to investigate how the absolute Cohen’s d effect 23 
size for each canonical power band varied across stimulation levels, which were treated as 24 
fixed effects. To visualize these relationships, we plotted the average absolute Cohen’s d 25 
values across all patients for each stimulation amplitude in the following regions: (C) 26 
STN/GPi, (D) S1, and (E) M1. Additionally, LMMs were used to analyze variations in the area 27 
under the curve (AUC) for binary movement state classifiers, examining the effects of (F) 28 
the duration between sessions and (G) stimulation level. We also assessed changes in the r 29 
statistic for forearm movement speed regressors with respect to (H) the duration between 30 
sessions and (I) stimulation level. Figs. 5F–5I illustrate these relationships by plotting the 31 
average model performance across all patients against either the duration between 32 
sessions or the stimulation level. For all analyses presented in Figs. 5C–5I, individual 33 
patients and hemispheres were modeled as random effects in the respective LMMs.  34 

  35 
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Table 1 Patient demographics, stimulation settings and clinical information 1 
Patient 
ID 

Age, years; 
Sex 

Dx, 
years 

Stim 
target 

Hem Stim 
frequency, 

Hz 

Stim 
levels, 

mA 

UPDRS-III  Carbidopa-
Levodopa 

(Daily dosage) 
OFF ON 

Pat-01 60; M 13 STN L 130 2.2–2.8 49 5 25–100 mg IR 
(5 times daily) R 130 2.7–3.5 

Pat-02 69; M 25 STN L 130 1.9–2.5 45 22 50–200 mg CR 

(4 times daily) R 130 1.4–1.6 

Pat-03 46; M 10 STN L 130 1.5–2.2 41 10 25–100 mg IR 

(2 times daily) R 130 1.5–2.2 

Pat-04 63; M 18 STN L 130 2.9 44 11 25–100 mg IR 
(5 times daily) R 130 1.9–2.0 

Pat-05 76; M 13 STN L 130 1.9–2.2 29 12 25–100 mg IR 

(4 times daily) R 130 1.0 

Pat-06 65; M 11 STN L 130 0.0–2.9 35 12 24–95 mg ER 

(4 times daily) R 130 0.0–3.1 

Pat-07 48; M 17 STN L 130 0.0–1.9 32 5 24–95 mg IR 
(5 times daily) R 130 0.0–1.9 

Pat-08 69; M 14 STN L 130 0.0–2.6 30 7 24–95 mg ER 

(5 times daily) R 130 0.0–2.4 

Pat-09 62; M 16 STN L 130 0.0 34 9 25–100 mg IR 

(5 times daily) R 130 0.0 

Pat-10 75; M 19 STN L 130 0.0 31 10 49–195 mg ER 
(4 times daily) R 130 0.0 

Pat-11 79; M 14 STN L 159 3.4 37 24 36–145 mg ER 

(4 times daily) 

Pat-12 34; F 18 STN R 167 1.2–2.2 61 16 25–100 mg IR 
(5 times daily) 

Pat-13 53; M 14 GPi L 130 0.0–1.1 49 19 49–195 mg ER 
(4 times daily) 

R 130 0.0–1.6 

Pat-14 71; M 15 GPi L 179 3.7 66 24 25–100 mg IR 

(4 times daily) R 179 2.8 

Pat-15 69; M 10 GPi L 149, 188 0.0–3.9 31 15 25–100 mg IR 
(5 times daily) 

Dx = disease duration; STN = subthalamic nucleus; GPi = globus pallidus internus; L = left hemisphere; R = right hemisphere; PoG = post-2 
central gyrus; PrG = pre-central gyrus; SFG = superior frontal gyrus; MFG = medial frontal gyrus; SPL = superior parietal lobe; UPDRS = 3 
Unified Parkinson’s Disease Rating Scale; ER = extended release; IR = immediate release; CR = controlled release. 4 
 5 
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Table 2 Average group-level performance of linear models from each brain region 1 
Metric Combined STN/GPi S1 M1 

Mean ± SEM Classifier Performance 

AUC 0.84 ± 0.01 0.72 ± 0.02 0.80 ± 0.02 0.80 ± 0.02 

Balanced Accuracy 0.76 ± 0.01 0.66 ± 0.02 0.73 ± 0.01 0.73 ± 0.02 

F1 Score 0.80 ± 0.02 0.71 ± 0.02 0.77 ± 0.02 0.78 ± 0.02 

PPV 0.86 ± 0.03 0.79 ± 0.04 0.84 ± 0.03 0.84 ± 0.03 

Sensitivity 0.75 ± 0.02 0.66 ± 0.02 0.72 ± 0.02 0.73 ± 0.02 

Specificity 0.77 ± 0.01 0.67 ± 0.02 0.74 ± 0.01 0.74 ± 0.02 

Mean ± SEM Regressor Performance 

r statistic 0.64 ± 0.03 0.41 ± 0.04 0.58 ± 0.03 0.58 ± 0.04 

MSE 0.41 ± 0.02 0.57 ± 0.04 0.48 ± 0.03 0.48 ± 0.02 

SEM = standard error of the mean; AUC = area under receiver operating characteristic curve; PPV = positive predictive value; r statistic = 2 
Pearson correlation coefficient between true and predicted values; MSE = mean squared error. 3 
 4 
  5 
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Figure 3 2 
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Figure 4 6 
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