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Abstract

The basal ganglia and sensorimotor cortex are essential nodes of a network that supports
motor control. In Parkinson’s disease, disruptions in this network lead to rigidity and
slowness during movement execution. Deep brain stimulation (DBS) of the basal ganglia
has proven effective in alleviating Parkinson’s disease-related hypokinetic symptoms, and
sensing-enabled neurostimulators now afford the opportunityto detect cortico-basal
oscillations during motion. However, the specific contributions of these motor network
nodes to chronic, naturalistic movement and the effects of DBS on circuit dynamics are not
well understood.

To address these gaps, we recorded over 530 hours of cortical and subcortical signals from
15 Parkinson’s disease patients (27 hemispheres) during unsupervised, unconstrained
daily activities and subthalamicorpallidal DBS. Synchronized wrist-worn accelerometers
tracked forearm speeds, supporting the evaluation of neural biomarkers related to motion.
Our study validated and extended the known relationship between cortical and subcortical
beta power (13 —30 Hz) and movement. We show that cortical low (13 —20 Hz) and high (21
— 30 Hz) beta movement-related desynchronization (MRD) effectively distinguished
between mobile andsstationary states. In the subthalamic nucleus (STN) and globus
pallidus interna (GPi); high beta MRD and gamma (40 — 80 Hz) movement-related
synchronization (MRS) exhibited significant group-level correlations with movement
kinematics. When stimulated at 130 Hz, cortical stimulation-entrained gamma oscillations
at the half-harmonic (~65 Hz) were observed. Further, cortical entrained gammaMRSwas a
strongerpredictor of motion than broadband gamma MRS.

We developed machine learning (ML) models to predict naturalistic movement over
extended periods using spectral features from brief neuralrecordings (0.5 -8 s epochs).
Cortical models outperformed subcortical models, although combining cortico-basal
signals yielded the highest model performance (AUC > 0.85 for binary movement state
classifiers; Pearson r statistic > 0.68 for continuous forearm speed regressors). Higher DBS
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current amplitudes were associated with reduced beta MRD and low gamma (40 — 60 Hz)
MRS in the STN/GPi. This negatively impacted the accuracy of the subcortical models,
whereas cortical and cortico-basal model performance remained stable across
stimulation amplitudes.

Our study demonstrates that cortico-basal nodes of the motor network encode
complementary kinematic information, which can be integrated to enhance theaccuracy
and stability of chronic, naturalistic movement decoding during deep brain stimulation.
These insights support the development and integration of therapeutic brain-computer
interfaces (BClIs) with closed-loop, adaptive DBS (aDBS) to leverage rapid and.precise
movement-predictive models for the treatment of motor network disorders.
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Introduction

Precise motor control is essential for executing autonomous and volitional movements.’
The basal ganglia and sensorimotor cortex are integral nodes of theimotor network that
operate together to enable accurate, well-coordinated movements.22 Within the basal
ganglia circuitry, the subthalamic nucleus (STN) and globus pallidus internus (GPi) regulate
movement by selecting amongst competing motor programs.and relaying information to
the cortex.*® The sensorimotor cortex is generally responsible for planning and executing
voluntary movements via neuronal projections to the brainstem and spinal cord.”® The
basal ganglia and sensorimotor cortex may provide complementary information and
perform distinct roles in coordinating motor activity.although the specific neural dynamics
underlying this relationship are not yet well-established.®°

Laboratory-based recordings of local field:potentials (LFPs) from the basal ganglia and
sensorimotor cortex have identified potential neurophysiological biomarkers linked to
kinematic features.''? In the. subthalamic nucleus (STN), a reduction in beta power (12 -
30 Hz) and anincrease in broadband gamma power (55 —90 Hz) are associated with
elevated motorvigorinconstrained, ballistic motor tasks."¢ In the sensorimotor cortex, a
decrease in alpha and beta power, along with an increase in broadband gamma power,
have been observed during motor planning and execution.:'® While these findings provide
insights into.movement-related spectral changes, they are primarily based on neural data
recorded.during brief, supervised, highly-controlled tasks in perioperative settings. Reliable
long-term intracranial decoding of human motion, in naturalistic environments over
extended periods has notyet been achieved. Identifying the cortical and subcortical
biomarkers of real-time movement is essential for understanding the specific contributions
of each node of the motor network to the execution of selected motor plans.™

Impairment of the motor network leads to movement disorders, such as Parkinson’s
disease and essential tremor, which are debilitating and often challenging to treat.?° While
open-loop deep brain stimulation (DBS) has proven effective, particularly for Parkinson’s
disease, its efficacy is limited by fluctuations in symptom severity and medication levels.?'
New technological advancements, including brain-computerinterfaces (BCI) and closed-
loop, adaptive deep brain stimulation (aDBS), present promising opportunities for
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developing personalized treatments with greater therapeutic benefit. Historically, these
technologies have been developed independently, with BCls focusing on precise neural
signal decoding and aDBS targeting clinically-defined states (e.g. fluctuations in
dopaminergic medication levels) or underlying physiology (e.g. beta bursts). 222 However,
given the core deficit of movement disorders, we investigate an approach that integrates
these techniques, BCI-aDBS. The main concept here is to detect a patient's intention to
move from intracranial brain signals and rapidly ramp up DBS at that momentto support
motor execution.

Recently, our group demonstrated the proof-of-principle of this BCl-aDBSmethod in a
single Parkinson’s disease patient.?* We developed aDBS policies that targeted movement
during brief, constrained motor tasks. This study demonstrated accurate cortically-based
movement decoding and improved hand speeds during a keyboard typing task with a
reduction in involuntary, dyskinetic movements during rest. However, the neural
biomarkers of continuous, unconstrained movement remain undetermined, hindering the
development of personalized, movement-responsive'BCl-aDBS therapies for disorders of
movement at scale.?®

A new generation of neurostimulators for DBS have been developed that can record neural
activity while delivering electrical current to the basal ganglia.?>2¢ These recordings can be
collected in naturalistic environments, providing an ideal platform to investigate the
complementary roles of the basal ganglia and cortexin movement. We recorded 539 hours
of cortical and subcortical signals from a cohort of Parkinson’s disease patients (15
patients; 27 independent hemispheres) implanted with neurostimulators while they
performed unconstrained activities of daily living at home during therapeutic DBS. Wrist-
worn accelerometers were used to track forearm speeds of patients and synchronized to
neuralrecordings.?+?® We identified site-specific neural signals related to motion and
developed machinelearning (ML) models for movement prediction. Furthermore, we
leveraged thesefindings to elucidate the effects of varying the stimulation amplitude on
movement decoding, ML performance and site-specific kinematic biomarkers.

Materials and methods

Participant selection and assessment

We enrolled 15 individuals (mean age: 63 * 3 years) with idiopathic Parkinson’s disease
from the movement disorders surgery clinic at the University of California, San Francisco
(UCSF) in accordance with the declaration of Helsinki (Table 1). The study was reviewed by
the UCSF Institutional Review Board (ClinicalTrials.gov: NCT03582891) under an
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investigational device exemption (G180097/R003) for the Summit RC+S device (Medtronic,
Inc.).?" These patients presented with standard clinicalindications for STN (12 patients) or
GPi (3 patients) deep brain stimulation as confirmed by a movement disorders neurologist
following the criteria outlined by the Movement Disorders Society for Parkinson’s disease
diagnosis. The patients' motor function priorto implantation was assessed using the
Unified Parkinson’s disease Rating Scale (UPDRS) Part lll and their cognitive abilities were
evaluated through the Montreal Cognitive Assessment (MoCA). Participants with a MoCA
score of 20 or below, orthose with an untreated mood disorder as determined by a
neuropsychologist, were excluded from the study.

Surgical implantation

Quadripolar depth leads were surgically inserted into either the subthalamic nucleus
(Medtronic 3389 lead) or the globus pallidus internus (Medtronic 3387 lead).?
Electrocorticography (ECoG) strips, designed solely for sensing purposes, were positioned
along a parasagittal trajectory to ensure that at least one.contact aligned with both the
precentral and the postcentral gyri.?? The precise locations of these electrodes were
determined intraoperatively using cone beam computed tomography (CT) fused to
preoperative MRl scans. The cortical and subcortical leads were connected to a Summit
RC+S implantable pulse generator (model B35300R) above the ipsilateral pectoralis
muscle via 60-cm lead extenders (model37087).%°

Intracranial data acquisition and preprocessing

We collected over 530 hours of neural data while patients performed unsupervised
unconstrained activities of daily living at home (May 2020 — May 2023) (Fig. 1A).2>*
Baseline recordings were performed in 7 of the 15 patients at a stimulation amplitude of 0
mA, prior to the initiation of DBS therapy, to establish the patients’ initial motor symptom
profiles. As part of clinical care, a movement disorders specialistidentified the optimal
DBS electrode,contacts and stimulation amplitude to maximize therapeutic benefit while
minimizing side effects, such as dyskinesia. 11 patients were recorded at various
stimulation amplitudes during the DBS parameter optimization phase.

Throughout the study, participants continued taking their prescribed antiparkinsonian
medications as per clinical guidance from their treating neurologist. ECoG leads captured
neurophysiological data from the primary motor (M1) and somatosensory (S1) cortices,
while depth leads recorded signals from the STN or GPi. The precise locations of these
cortical and subcortical electrodes were reconstructed using the Locate Electrodes
Graphical User Interface toolbox (Fig. 1B) and Lead-DBS toolbox (Fig. 1C) respectively. The
neural data was recorded at a sampling frequency of 250 or 500 Hz and transmitted from
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the RC+S neurostimulator devices to a nearby telemetry module then to a Microsoft
Windows tablet. The tablet was equipped with custom software, built on the Summit RC+S
application, developed in compliance with FDA regulations (CFR 820.30) and available
athttps://github.com/openmind-consortium.

Cortical and subcortical local field potentials recorded by the RC+S devices were first
preprocessed in MATLAB R2022b using the Analysis-rcs-data toolbox (Fig. 1D).%* They were
then filtered from 0.8 — 100 Hz with an infinite impulse response (lIR) elliptic bandpass filter
(1dB passband ripple; 100 dB attenuation). For artifact detection and removal, we squared
the magnitude of the neural signals and performed Gaussian smoothing overa- moving 1-s
window. Amplitudes exceeding five times the median were identified as aberrant spikes
and the time series corresponding to these periods were removed. Removal of ECG
artifacts was carried out utilizing two MATLAB libraries, Perceive and PerceptHammer.3%3*
Perceive detected QRS-like patterns within 10-minute intervals (to accommodate
variations in ECG artifacts over time).23 These patterns were then averaged within each
session and employed as initializations for the template.subtraction pipeline from the
PerceptHammer library.® The initial template facilitated the identification of ECG artifact
locations within the underlying signal, and thistemplate was continuously updated using
Woody’s adaptive filter. However, this recursive process of artifact identification and
template updating had the potential to transform the template into one that matched non-
artifactual low-frequency spectral'power, leading to inaccurate template subtraction. To
mitigate this issue, we constrained the transformation of the initial template by comparing
the updated and initial templates via normalized cross-correlation. If the cross-correlation
between templates fell'below a.threshold of 0.9, theinitial template was utilized for the
entire artifact identification and subtraction process without iterative modification by the
adaptive filter.

Accelerometry data acquisition and preprocessing

Participants wore an Apple Watch (Apple Inc.) on the wrist contralateral to the hemisphere
where the RC+S device was implanted. For patients with bilateral implants, two watches
were.worn to simultaneously record movement in both forearms at a sampling rate of 50
Hz.2* Accelerometry data was transmitted from the watches to nearby iPhones through the
StrivePD iOS application (Rune Labs Inc.). Previously-validated external algorithms
generated tremor and dyskinesia scores at 1-minute intervals.3® Accelerometry signals in
the x, y, and z directions were integrated to derive the respective velocity measurements,
filtered between 0.2 and 10 Hz using a fourth-order Butterworth bandpass filter. The
resulting x, y, and z velocities were used to compute absolute forearm speeds.
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Statistics

For our statistical analyses, we utilized various Python (v3.9.17) packages, including SciPy
and Statsmodels. One-way analyses of variance (ANOVASs) were utilized to explore
significant differences between the means of two or more groups. Wilcoxon signed-rank
tests were employed for the non-parametric comparison of paired samples. All relevant p-
values underwent correction for multiple comparisons through the false discovery rate
(FDR) procedure.® Linear mixed models (LMMs) were constructed utilizing the Pymer4
library, with individual patients and hemispheres considered as randomeffects. These
LMMs were employed to examine the influence of stimulation current amplitude on neural
biomarkers and movement-predictive models' performance.

Power spectral analyses

Cortical and subcortical power spectra were computed.from the preprocessed LFPs using
a one-dimensional Fourier Transform in the NumPy package (numpy.fft.fft) (Fig. 1E). The
neural signals were divided into non-overlapping 0.5-second epochs, and a Hann window
was applied to calculate power spectral densities (PSDs) ranging from 0 - 100 Hz and
spanning 2 Hz each (Fig. 1F). To eliminatethe aperiodic componentin each power
spectrum, the spectral parameterization (SpecParam) algorithm was employed across the
4 -100 Hz range (Fig. 1G).”*8 To minimize the impact of involuntary movements on our
analyses, we excluded epochs that'had a non-zero tremor or dyskinesia severity score, as
these scores indicated the presence of symptoms of significant severity.** The RC+S and
Apple watch devices were setto computer clock time based on the network time protocol
to synchronize the timestampsfrom both devices. As an added step, we identified the time
lag between their clocks that maximized the cross-correlation of their respective
accelerometry. measurements.®® Once the timestamps were aligned, we linearly
interpolated the wearable accelerometry data to determine the absolute forearm speed for
each 0.5<second segment.

We.combined forearm speed measurements from all patients to produce a group-level
distribution and identified a local minimum to be used as a standardized threshold for
distinguishing between periods of movement (mobile states) and rest (stationary states)
(Fig. 1H). We labelled epochs based on their movement states and calculated Cohen’s d
(Cd) effect sizes using their power spectral densities (PSDs), adjusting for class
imbalances with pooled standard deviations (Fig. 11).%° The Cd values provided a signed,
normalized metric to quantify the discriminative differences between the flattened PSDs in
the mobile or stationary states. Additionally, we computed Spearman’s p, a non-parametric
measure that is robust to outliers, to examine the correlation between the PSDs from each
brain region and the contralateral absolute forearm speed measurements.
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Machine learning model development and evaluation

We developed linear and non-linear classifiers and regressors using the Python-based
scikit-learn (sklearn) library to distinguish between mobile and stationary states or predict
absolute forearm speeds respectively. Prior to modeltraining, we standardized the data by
removing the mean and scaling itto unit variance. To evaluate the performance of the
classifiers, we used the area under the receiver operating characteristic curve (AUC) as our
primary metric. AUC is robust to class imbalance making it particularly effective for
evaluating model performance across various decision thresholds.*"42 Moreover, we
calculated accuracies, F1-scores, and positive predictive values, as secondary metrics. To
balance our training datasets, we used the Synthetic Minority Over-sampling Technique
(SMOTE).*® For the regression analysis, we assessed model performance using the Pearson
correlation coefficient (r statistic) to compare true and predicted speed values.** As a
secondary metric, we employed the mean squared error.*®

To reduce both multicollinearity and complexity, we calculated six canonical power bands
(PBs) to serve as features for our linear models: alpha (8 —12 Hz), low beta (13 -20 Hz),
high beta (21 - 30 Hz), low gamma (40 - 60 Hz), stimulation-entrained gamma (63 -67 Hz),
and high gamma (70 —-90 Hz). In addition, we employed principal component analysis
(PCA) to generate subject-specific features. This approach enabled a direct comparison
between the effectiveness of canonical PBs versus personalized principal components
(PCs) for predicting movement: For more complex non-linear models, we utilized the
complete set of PSDs as features:without any dimensionality reduction.

For the classifiers, we shuffled and stratified our data based on mobile and stationary state
labels before splitting the.data into training (80 %) and test (20 %) sets. This ensured that
both sets preserved the class distribution of the original dataset, preventing folds from
having missing classes orimbalanced proportions, which could lead to biased model
evaluation. Recording sessions were generally conducted on different days, including
varying stimulation levels due to active titration by both patients and clinicians. Therefore,
stratification also ensured that the training and test sets had samples from various days
and stimulation amplitudes. In subsequent sections, we assessed the models’
performance when transferred across these different sessions and stimulation levels. For
the regressors, stratification was not used because we were predicting continuous forearm
speeds.

To determine the specific contributions of each feature to model performance, we
calculated the permutation feature importance for each PB and brainregion.* This process
involved shuffling the sample values (10,000 permutations) to diminish the predictive
power of each feature, allowing us to measure the change in model performance when
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predictions were made using the altered dataset. We also computed the conditional
mutualinformation between each PB and forearm speed measurements, as well as
between PBs in each brain region and movement speeds.*” This analysis quantified the
reduction in uncertainty about forearm motion attributable to each PB and brain region,
while accounting for the contribution of movement-related information from other PBs.484°
To examine the effects of the varying DBS current amplitudes on kinematic biomarkers, we
computed movement-related Cohen’s d effect sizes for each canonical power band and
brain region at each stimulation level. Additionally, we explored the influenceof the time
interval between sessions on model performance. This was done by training models with
samples from one session and testing them with data from anothersession at different
time points. We also evaluated how stimulation amplitudes influenced our ability to
decode movement by employing 5-fold stratified cross-validationto measure model
performance at each stimulation level. We quantified the changes.in Cohen’s d values and
model AUCs across different stimulation levels using LMMs.

Results

Cortical and subcortical biomarkers of naturalistic movement

We recorded intracranial signals from the somatosensory (S1) and motor (M1) cortices, as
well as the subthalamic nucleus (STN; 22 hemispheres) or globus pallidus internus (GPi; 5
hemispheres) during deep brain.stimulation (DBS) in patients with Parkinson’s disease
(Mean = SEM duration of.data collected per hemisphere: 4.2+ 0.3 h). Atotal of 539 hours of
data were collected, comprising 213 hours at 0 mA and 326 hours at stimulation
amplitudes above 0 mA. Participants utilized wrist-worn accelerometers (Apple watches)
to record their forearm speeds during unconstrained everyday activities. The timestamps of
the RC+S and Apple watches were synchronized to correct for any time lags (Mean
absolute time lag before correction = standard error of the mean: 0.6 £ 0.2 s). Commencing
with the raw local field potentials (LFPs), we computed flattened power spectral densities
(PSDs) within 500-ms epochs. 65 % of these epochs (353 hours; 227 hours at stimulation
amplitudes above 0 mA and 126 hours at 0 mA) were free from tremor or dyskinesia based
on Apple watch scores. Using the local minimum of the group-level bimodal combined
forearm speed distribution (28th percentile) we distinguished between mobile and
stationary states.

Based on this distinction between movement states, we calculated Cohen’s d (Cd) effect
sizes for frequencies ranging from 0 to 100 Hz for each subject and hemisphere (Fig. 2A).
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Negative and positive Cd values indicated a decrease and increase in spectral power
during the mobile state compared to the stationary state respectively.® Frequency ranges
with contiguous PSDs showing negative Cd values were identified as movement-related
desynchronization (MRD) bands, while those with positive Cohen’s d values were identified
as movement-related synchronization (MRS) bands.’*"” For our main analyses, we opted to
focus on the subset of hemispheres that were stimulated at 130 Hz (9 patients; 16 STNs
and 2 GPi’s), to avoid interference from varying stimulation frequencies. Additionally,
analysis with all data, irrespective of stimulation frequency was also completed and
included in the Supplementary material.

Shifting the speed threshold between the 5th and 95th percentiles of the combined
forearm speed distribution, we computed the average Cohen’s“d-gram” for each site (Fig.
2B). This represented the movement-discriminative ability of each PSD (within 0 — 100 Hz)
across a range of immobile/slower versus faster distributionalsplits. Significant MRD was
observed in the alpha, low beta, and high beta ranges'in cortical areas. In contrast, in the
STN/GPi, high beta MRD, but not low beta MRD, reached significance at the group level
(FDR-corrected, P <0.05). However, on an individuallevel, 6 patients (9 STNs and 2 GPi’s)
also demonstrated significant MRD in the low beta frequency range, underscoring the
variability in the predictive power of canonical PBs across participants.

SignificantMRS was foundin the 40 — 80 Hz range for the STN/GPi and the 60 - 100 Hz range
forthe S1 and M1 (FDR-corrected P <0.05). These findings revealed significant predictive
power from both cortical and subcortical regions albeit within site-specific frequency
ranges.'?%%0 To assess therobustness of these findings across different dopaminergic
medication levels, we recreated the Cohen’s d-grams within 15-minute intervals, during
which variations in medication levels were likely minimal, and averaged them (FDR-
corrected P < 0.05)(Fig. S1A). We also calculated the average group-level Cohen’s d-gram
using the complete dataset, including periods with tremor or dyskinesia (Fig. S1B). These
group-level Cohen’s d-grams revealed consistent alpha/beta MRD and gamma MRS bands,
despite variations in medication level over time or analysis of the full recording duration. '

We extracted several characteristics from the MRD and MRS bands in each Cohen’s d plot
forcomparison, including the peaks in Cohen’s d (Cdreak) and their respective frequencies
(feeax). Specifically, we determined the highest Cd value in the MRS band (MRS Cdeeak) and
the most negative Cd value in the MRD band (MRD Cderea). There was no significant
difference in the MRD Cdeeak frequencies of cortical versus subcortical sites (Median + SEM
peak frequencies; STN/GPi: 24 + 4 Hz, S1: 22 = 1 Hz, M1: 23 £ 1 Hz, One-way ANOVA: F =
2.18, P=0.13) (Fig. 2C). However, cortical MRS Cdeeax frequencies were higher than those
inthe STN/GPi (STN/GPi: 52 £+ 4 Hz; S1: 64+ 2 Hz; M1: 66 + 2 Hz; F=12.16, P<10*; Post-
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hoc one-sided Wilcoxon signed rank test: W=0.0, P<0.002). Cortical MRS Cdpenx Were
commonly around 65 Hz, suggesting a link between stimulation-entrained gamma power
and volitional movement.'®?

We also compared the MRD and MRS Cdeeak magnitudes in each brain region. Cortical beta
MRD Cdreax demonstrated a greater magnitude compared to cortical gamma MRS .Cdpenx (W
=45.0, P=0.003) (Fig. 2D). Additionally, cortical MRD Cdpeac (W= 0.0, P=0.002) and MRS
Cdrenx (W=6.0, P=0.03) exhibited higher magnitudes than those observed.in the STN/GPi,
indicating that cortical biomarkers were more predictive of naturalistic motion. %%
Moreover, we calculated the full width at half maximum of the Cohen’s d values (Cdrwnm)
within each MRD and MRS band. The MRS Cdrwxm Was significantly wider than the MRD
Cdrwhm at each site (STN/GPi: W=2.0,P=0.02; S1: W=5.0,P=0.03; M1: W=8.0,P=
0.049) (Fig. 2E). To further examine the predictive capabilities of each brain region in
estimating continuous forearm speed values, Spearman correlations between each PSD
and absolute forearm speed were computed (Fig. 2F). We found that alpha MRD, beta MRD
and gamma MRS encoded continuous forearm speeds.in each brain region (FDR-corrected
P <0.05). These results emphasized the presence of site-specific biomarkers associated
with naturalistic motion.®

Movement Decoding Using Multivariate Signals and Machine Learning

Converging evidence indicates thatithe nervous system encodes movement-related neural
activity across several frequency ranges simultaneously.'®*? This suggests that combining
neural features can potentiallyenhance the capacity to decode forearm movements.
Therefore, we developed machine learning (ML) models with multiple features to classify
stationary and mobile states or predict continuous forearm speeds during unconstrained,
naturalistic motion. These models were developed using canonical PBs from an individual
site (STN/GPi, S1.0rM1) or by combining PB features from all three regions. Using Linear
Discriminant Analysis (LDA) and 5-fold cross-validation on the training dataset, we
identified the optimal epoch durations for each region by comparing the area under the
receiver operating characteristic curve (AUC) scores (STN/GPi: 8 s,S1:10s,M1: 8 s, and
Combined: 9 s) (Fig. 3A). These represented the epoch durations above which there was no
improvement in model performance by more than 0.01.

Significant differences in AUC between single-site and combined classifiers were observed
on the holdout dataset (F =5.35, P=0.004) (Fig. 3B). The combined classifier had the
highest performance (Mean + SEM AUC: 0.84 £0.01; W>42.0, P<0.002).22Cortical sites
were more predictive of movement states compared to the STN/GPi (W > 40.0, P<0.03)
although there was no significant difference in performance between the S1 and M1
models (W= 24.0, P=0.46).5% To provide a comprehensive assessment of our models, we
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also computed several other metrics, such as balanced accuracy, F1 score, sensitivity,
specificity and positive predictive value, (Table 2).

Prior studies have demonstrated that customizing features for individual patients can
enhance the performance of predictive models.?>2¢ Consequently, besides using canonical
power bands, we employed principal component analysis (PCA) and identified thenumber
of PC features for optimal classifier performance (STN/GPi: 8, S1: 4, M1: 5, Combined: 6)
(Fig. 3C). We also computed the cumulative explained variance of these PCs (Mean £ SEM
variance: STN/GPi: 81+ 2 %, S1:59 %2 %, M1:65 =2 %, Combined: 47 +2%) (Fig. S2A) and
the PC loadings of the first PC (FDR-corrected P < 0.05) (Fig. S2B). Likewith'canonical PBs,
the combined classifiers yielded the highest AUC (Mean = SEM AUC: 0.83+0.01; F=3.89,
P=0.02; W=45.0, P=0.002) (Fig. 3D). We found no significant difference between linear
models using personalized PCs and those using canonicalPBs(W=20.0, P=0.63). This
was likely due to the use of 6 canonical PB features per_site. However, real-world devices
may impose additional model restrictions (e.g. maximum 4 PBs for the Summit RC+S)
which may lead to improved performance through personalization of features.?

We determined the permutation feature importance of each site to quantify their specific
contributions to movement decoding (Mean + SEM change in AUC; STN/GPi: -0.05 = 0.01,
S$1:-0.12+0.02,M1:-0.10+0.02; W=0.0, P =0.004) (Fig. 3E). The contribution from the S1
was greater than that from the STN/GPi (W =41.0, P=0.041) but similar to that from the M1
(W=19.0, P=0.37). Thesefindings suggested that the basal ganglia and sensorimotor
cortex encode distinct, non<redundant movement-related information.”&%We examined
the permutation feature.importance of individual PBs in each brain region. Among these,
cortical high beta power demonstrated the highest feature importance (Mean = SEM
changein AUC: -0.10 = 0.02), indicating that it was the most predictive biomarker of
naturalistic movement amongstthe PBs (F=2.74,P=0.0005; W=6.0,P=0.027) (Fig. 3F).™

Although:simple linear classifiers can be embedded on current implantable
neurostimulators, more advanced models may yield higher performance for real-time
movement decoding.?® Therefore, we evaluated the effectiveness of more complex models,
including k-nearest neighbor (kNN), random forest (RF), and light gradient-boosting
machine (LGBM) (Fig. 3G). We also included all 50 PSDs from each site as features for
these non-linear models, rather than restricting them to the canonical PB features. The RF
classifier achieved a small but significantimprovement over linear models that used PB
features (Mean+ SEM AUC: 0.85+0.01), with adifference in AUC of 0.016+0.004 (F=3.25,
P=0.01; W=0, P=0.007). These findings suggested that while canonical power bands
were effective as kinematic biomarkers, employing complex classifiers could offer a slight
enhancement in movement prediction.™
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In addition to assessing binary movement states, we aimed to evaluate the utility of the
multivariate signals in predicting absolute forearm speeds. To achieve this, we repeated

our classifier analysis on linear regression models using canonical PBs from one or all sites
and obtained similar results. Using Pearson’s correlations between predicted and actual
speeds (r statistic) as the primary metric, we determined the optimal epoch duration for
each model (STN/GPi: 10s,S1:10s, M1: 11 s, Combined: 10 s) (Fig. 4A). Combining
cortico-basal signals yielded the highest-performing models (Mean r statistic=SEM: 0.64 +
0.03; F=6.35,P=0.002; W=45.0, P=0.002) (Fig. 4B). We also explored the use of
personalized PCs as features. We identified the optimal number of PCsfor each model
(STN/GPi: 9, S1: 5, M1: 8, Combined: 8) (Fig. 4C) and found that integrating PC features
from all sites improved model performance (Mean r statistic+ SEM: 0.63 + 0.03; F=4.69, P
=0.008; W=45.0, P=0.003) (Fig. 4D), reinforcing the hypothesisthat each site encodes
distinct movement-related information.>?

To assess the marginal movement decoding ability of each brain region, we calculated their
respective permutation feature importance. Each'sitemade significant, unique
contributions to movement prediction (W= 0.0,.P = 0.004) although the S1 had higher
feature importance thanthe STN/GPi (W=44.0,P=0.01) (Fig. 4E). Cortical high beta power
had the highest feature importance (Mean+ SEM change in r statistic: -0.19 £ 0.03)
compared to other PBs, including corticallow beta (W=2.0, P=0.006) (Fig. 4F). This
suggested significant differencesbetween low and high cortical beta power in decoding
forearm speed.™

As an additional measure of feature importance, we computed the conditional mutual
information for each.PB.and brain region.*-*° Specifically, we calculated the marginal
mutual information between each PB feature and forearm speed measurements,
conditioned on the.other cortical and subcortical PBs (Fig. S5A). We also assessed the
joint mutualinformation between PBs in each brain region and movement speeds,
conditioned on PBs from other brainregions (Fig. S5B). The conditional mutual information
fromthe S1 was greater than that from the STN/GPi (W =3.0, P =0.029) but not significantly
different from the M1 (W= 38.0, P=0.056). Additionally, we found that cortical high beta
powerhad the highest conditional mutualinformation (Mean + SEM MI: 0.020 = 0.003).
These findings corroborated our findings that the basal ganglia and sensorimotor cortex
encode distinct, non-redundant movement-related information and that cortical high beta
was the most predictive biomarker of naturalistic movement amongstthe PBs (F=2.67, P=
8.1x10%4 W=2.0,P=0.002).

Due to the high multicollinearity among spectral features, canonical PBs were used for
non-linear regression models (KNN, RF and LGBM). There was no significant variability in
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performance amongstthe models (F=0.28, P=0.92) (Fig. 4G). However, post-hoc analysis
revealed that the LGBM (Mean = SEM r statistic: 0.69+0.03) and RF (Mean + SEM r statistic:
0.68 = 0.03) regressors achieved significantly higher performance than the linear PB-based
model (W > 1.0, P<0.033). This further validated our finding that complex non-linear
models could slightly improve model performance.’®? For completeness, we re-ran-our
machine learning pipeline on the full patient cohort, including those with stimulation
frequencies different from 130 Hz, and obtained similar results (Table S1) forboth the
classifiers (Figs. S3A-D) and regressors (Figs. S4A-D).

Effects of stimulation current amplitude on movement.decoding

Previous studies have demonstrated that DBS can influence neural signals, such as
reducing resting-state subcortical beta activity in patients with Parkinson’s disease.'220:55
However, the effects of varying stimulation levels on kinematic biomarkers and movement-
predictive ML models have not previously been evaluated. Understanding this impact can
also provide insights into the potential performance of movement-responsive BCl-aDBS
systems, which decode neural signals in real-time atdifferent stimulation current
amplitudes.?%5¢ To address this gap, we investigated.the effects of stimulation levels on
movement-related changes in alpha, beta, and gamma PBs. An example of movement-
related changes in STN spectral power for a single subject when DBSwas at 0.0 mAor 2.0
mAis shown in Figs. 5A & 5B.

Absolute Cohen’s d effect sizes were used to quantify the movement-related
desynchronization/synchronization'of canonical PBs in each brain region. To evaluate the
relationship between these effect sizes and stimulation amplitudes, we employed linear
mixed models (LMMs) with stimulation amplitude modeled as a fixed effect, while
individual patients and hemispheres were included as random effects. To visualize these
relationships, we'plotted the average absolute Cd values at each stimulation amplitude
across all')patientsfor the STN/GPi (Fig. 5C), S1 (Fig. 5D) and M1 (Fig. 5E). Increasing the
stimulation amplitude was correlated with a decrease in the MRD of subcortical low beta
(STN/GPi: B=-0.078;95%CIl =[-0.1221,-0.036], P=0.003), high beta (STN/GPi: 3=-0.103;
95% Cl=1-0.145,-0.060], P<10*)and low gamma (STN/GPi: B =-0.050; 95 % Cl =[-0.083,
-0.018], P=0.006), as evidenced by a reduction in absolute Cd values. In contrast, cortical
regions showed no significant effect on high beta MRD. There was, however, a stimulation -
related decrease in alphaMRD (S1: 8=-0.034; 95 % Cl =[-0.061, -0.007], P=0.045) (M1: B
=-0.035;95% Cl =[-0.061,-0.008], P=0.02) and low beta MRD (S1: 8=-0.048; 95 % Cl = [-
0.085,-0.010], P=0.045) (M1: 3=-0.072; 95 % Cl=[-0.118, -0.026], P=0.009), as well as
anincreasein M1 stimulation-entrained gamma MRS (M1: 8=0.044; 95 % Cl=[0.018,
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0.069], P=0.006). This revealed that stimulation levels affected site-specific biomarkers of
naturalistic motion.

To examine how the time interval between recording sessions affected the performance of
movement-predictive classifiers, we trained the ML models on data from one session.and
tested them on data from subsequent sessions conducted at the same stimulation
amplitude. We incorporated the duration between sessions as a fixed effectin our LMMs,
while treating individual patients and hemispheres as random effects (Fig. 5F). Further, we
explored the impact of stimulation levels on classifier performance by performing 5-fold
cross-validation on data collected from each session (Fig. 5G). We incorporated the
stimulation level as a fixed effect in our LMMs, with individual patients and.hemispheres
treated as random effects. We then repeated this analysis to assess the'effects of duration
between recording sessions (Fig. 5H) and stimulation amplitude (Fig. 51) on regressor
performance. The performance of both the classifiers and regressors maintained stability
over time (Max duration: 83 days; Median + SEM duration: 6 + 2 days) (8<0.033, P> 0.34).
STN/GPi classifiers (8 =-0.030; 95 % Cl =[-0.046,-0.013]);, P =0.004) and regressors (B = -
0.054; 95 % Cl =[-0.086, -0.023], P=0.004) demonstrated lower performance at higher
stimulation amplitudes. Conversely, the S1, M1,.and combined models were not
significantly affected by changes in stimulation levels (8>-0.019, P> 0.05). This was likely
due to the preserved predictive power of cortical high beta MRD at higher stimulation
amplitudes.

Discussion

We identified cortico-basal biomarkers of naturalistic forearm movement by analyzing over
530 hours of neural. and accelerometry recordings from 15 patients with Parkinson’s
diseaseduring deep brain stimulation (DBS).2"#4 Specifically, we observed beta movement-
related desynchronization (MRD) and gamma movement-related synchronization (MRS) in
both cortical and subcortical regions. 3505157 Although we did not specifically track the
medication timings of our patient cohort, we repeated our biomarker analyses within 15-
minute windows, during which medication states were likely stable. This approach
demonstrated that these biomarkers remained predictive of movement across different
medication states, rather than merely decoding slow medication state fluctuations. Usinga
multivariate machine learning (ML) approach, we revealed distinct contributions from each
brain region in predicting movement, with cortical high beta MRD being the most
discriminative signal.®>% Consequently, ML models thatincorporated both cortical and
subcortical signals demonstrated superior model performance compared to single-site
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models. We also found that DBS amplitudes influenced the performance of these models,
with higher stimulation levels leading to a decrease in the accuracy of subcortical
models.?%% Despite this, cortical and combined cortico-basal models continued to
perform well at higher stimulation levels. This sustained performance supports the future
potential of movementresponsive BCl-aDBS.23:24

Subcortical low and high beta power encode distinct movement-related
functions

Within the beta frequency range (12 — 30 Hz), we revealed group-level functional
distinctions between low (12- 20 Hz) and high (20 — 30 Hz) subcortical beta rhythms, which
have both previously been associated with motor execution.'® Higher Parkinson’s disease-
related bradykinesia severity has also been correlated with.increased low beta power. 12
Treatments, such as dopaminergic medication and DBS, have been found to suppress low
beta activity and reduce bradykinesia severity.®®* In contrast, high beta has been linked to
physiological mechanisms, such as force generation-andvoluntary motor actions.® This
suggests that low beta may be functionally ‘anti-kinetic’ in the pathophysiology of
Parkinson’s disease, whereas high beta might have a'stronger association with the
execution of normal motor plans.™ Our study supports this difference in physiologicalroles
by demonstrating that MRD associated with naturalistic movement, irrespective of
dopaminergic state, was only observed within the high beta band.

Cortical stimulation-entrained gamma is associated with naturalistic
movement

Corticaland subcortical broadband gamma MRS has been linked to motor speed and
complexity in both healthy individuals and patients with Parkinson’s disease.®%%” During
DBS, corticaland subcortical oscillations at subharmonics of the stimulation frequency
have also been observed.?' Specifically, entrainment at the half-harmonic (~65 Hz) of the
130 Hz stimulation frequency have been noted.®' Broadband gamma activity is non-
oscillatory and thought to represent asynchronous neuronal spiking activity across a wide
frequency range (30 —200 Hz).%2 In contrast, recent studies have shown that stimulation-
entrained gamma oscillations are associated with synchronized spiking and are influenced
by dopaminergic medication and sleep-wake cycles, indicating a non-artefactual,
physiological role for these neural signals.3%3' Consistent with these findings, we detected
broadband gamma movement-related synchronization within the cortical regions. In our
cohort of patients stimulated at 130 Hz, stimulation-entrained gamma MRS at~65 Hz was
significantly greater than that at the other frequencies within the broadband gamma
range.® This suggests that entrained gamma power more effectively distinguishes between
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movement states than broadband gamma and may serve as a valuable, kinematic
biomarker in the ON-stimulation state.®

Subcortical and cortical sites provide complementary information for
movement decoding

The sensorimotor cortex is involved in motor planning and execution while the basal
ganglia plays a more implicit, regulatory role in selecting and initiating movements,
inhibiting unwanted actions, and refining motor skill.24#° Furthermore, prior research by
our group revealed that combining spectral features from cortical and'subcortical regions
can improve the accuracy of linear models in decoding Parkinson’s disease-related
symptom states, such as severe bradykinesia or dyskinesia.?? These findings suggest that
cortical and subcortical signals encode specific information regarding naturalistic

motion. Consistent with these findings, this study demonstrates'that integrating
subcortical and cortical signals yielded more accuratee ML models for predicting movement
than using signals from individual sites alone indicating complementary encoding. Feature
importance analyses further confirmed the significant contributions of each brain region to
the performance of the combined models. Repeating our analysis on the full patient
cohort, we observed similar model performance and feature importance across different
stimulation frequencies (other than 130 Hz).

DBS modulates movement-related cortico-basal biomarkers

Movement-related changes inthe spectral power of cortical and subcortical biomarkers
were influenced by DBS amplitudes. Specifically, increased stimulation levels were found
to correlate with lower subcortical beta MRD and gamma MRS, as evidenced by a
reduction in absolute Cohen’s d effect size.?® This reduction potentially impacted the
discriminative power.of beta and gamma biomarkers at higher stimulation levels, thus
decreasingthe accuracy of subcortical models for movement prediction. In the
sensorimotor cortex, higher DBS levels were associated with reduced low beta MRD,
suggesting that patients could achieve similar movement speeds with decreased beta
MRD. This aligns with previous findings showing higher cortical beta MRD in Parkinson’s
disease patients than individuals with essential tremor or without movement disorders. '7:¢5
Moreover, dopaminergic medication is associated with a reduction in cortical beta MRD
and an improvementin motor speed.®' In contrast to our subcortical models, those using
cortical signals orintegrating cortico-basal signals demonstrated greater stability. This was
likely due to the resilience of cortical high beta MRD, identified as the most discriminative
kinematic biomarker. Therefore, integrating cortico-basal signals could enhance the
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accuracy and stability of movement prediction across varying stimulation conditions,
which is crucial for the development of BCl-aDBS systems to treat motor disorders.

Implications for closed-loop DBS treatments

Based on the gating theory of basal ganglia function, the basal ganglia excessively inhibits
the initiation and execution of motor plans, exacerbating these hypokinetic symptoms.2® By
increasing stimulation amplitudes during movement, we may be able to disinhibitthe
execution of these movements only when it is most needed and alleviate bradykinesia
severity.?* However, ensuring the therapeutic efficacy of a movement-based adaptive DBS
policy requires careful optimization of both upper and lower stimulation levels. The upper
stimulation levels must be constrained to prevent excessive stimulation, which can lead to
side effects such as dyskinesia, particularly during medication-ON'periods. Similarly, the
lower stimulation levels should not be set too low during rest periods to avoid breakthrough
tremor, especially during medication-OFF periods.

To be deployable for everyday use, such an adaptive DBS paradigm mustbe able to
accurately decode unconstrained, volitionalmotion from neural signals. However, previous
studies have primarily focused on decoding movement during short, constrained tasks,
such as finger-tapping and hand rotations. Our study is the first to demonstrate the
accurate prediction of unsupervised, naturalistic movements using chronic neural
recordings during DBS. (classifier AUC > 0.85 and regressor r statistic > 0.68). We also
highlight the importance of recording neural signals from both cortical regions and the
basalganglia, as integrating these signals may improve the performance and stability of
movement-predictive-models. With these findings, we support the development of an
integrated BCl-aDBSapproach that combines the fast and precise motor-decoding
capabilities of emerging BCls with the therapeutic neuromodulatory effects of aDBS.

Conclusions

Our findings demonstrate the complimentary contributions of cortico-basal neural circuits
andsignals in naturalistic, unconstrained, movements. We identified multivariate
movement encoding particularly through cortico-basal beta and gamma oscillations, as
well as stimulation-entrained gamma, in the presence of DBS. We developed ML
techniques forfast and accurate decoding of unconstrained movement and identified
features which were resilient to changes in stimulation conditions. This validates the
potential feasibility of BCl-aDBS in naturalistic settings and opens a translational pipeline
for precise motor network re-tuning in disorders of movement, including Parkinson’s
disease and stroke.
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Figure legends

Figure 1 Anatomic localization of implanted electrodes and single-subject example of
processed neural and accelerometry data. (A) Schematic of patient performing activity of
daily living while streaming data from implanted neurostimulators and wrist-worn
accelerometers. (B) Cortical electrodes represented on atemplate brain. Five of the fifteen
patients in our cohort used an overlapping sensing configuration (Electrode pairs: 1-3 and
2-4). The remaining ten subjects used a non-overlapping configuration (Electrode pairs: 1-2
and 3-4). (C) Subcortical electrodes represented.on a template brain in the globus pallidus
externus (GPe), globus pallidus internus (GPi), subthalamic nucleus (STN) and red nucleus
(RN). (D) Neural and accelerometry data processing pipeline. (E) Single-subject (Pat-01)
spectrograms based on data streamed from the left STN, primary somatosensory cortex
(S1) and primary motor cortex(M1). Right forearm speeds were recorded simultaneously.
(F) Single-subject average power spectral densities (PSDs) were computed from the STN,
S1 and M1 signals andfitted with the Spectral Parameterization algorithm to compare
between mobile and stationary states. (G) The corresponding flattened PSD plots have
been displayed. The beta band (12 - 30 Hz) has been highlighted in green. (H) Forearm
speeds fromall patients in our cohort were combined and displayed in a kernel density
estimate plot. A local minimum was identified at the 28" percentile of the distribution
(termed the movement state threshold) and used to distinguish between mobile and
stationarystates. (I) Cohen’s d (Cd) effect sizes based on the flattened PSDs from a single
subject were calculated and used to create a Cd plot. These values quantified the
differences in spectral power between movement states. The frequencies with positive Cd
values, indicating an increase in spectral power during mobile states compared to
stationary states, were highlighted in red. Several characteristics, such as the peak
frequency (feeak), maximum Cohen’s d (Cdeeac) and full width at half maximum (Cdrwrm),
were extracted from this band. The frequencies with negative Cd values were highlighted in
blue.
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Figure 2 Cortical and subcortical biomarkers of naturalistic movement. (A) Cohen’s d
(Cd) plots for each patient and hemisphere were computed using STN/GPi (left), S1
(middle) and M1 (right) signals. Four out of fifteen patients in our cohort had a different
stimulation frequency than 130 Hz and two of were recording while stimulation was OFF
(marked by asterisks). The largest frequency range with contiguous positive Cd values
(highlighted in red) was termed the movement-related synchronization (MRS) band while
that with contiguous negative Cd values (highlighted in blue) was termed the movement-
related desynchronization (MRD) band. In cases where a hemisphere exhibited multiple
MRD or MRS bands, the band with the highest average absolute Cd value was selected for
further analysis. (B) Each percentile (between the 5" and 95 percentiles) of the group-
level forearm speed distribution (from Fig. 1H) was used as a threshold to produce one-
dimensional Cd plots discriminating slower from faster movements. These plots were
concatenated to create two-dimensional Cohen’s “d-grams” (Cd-grams). The horizontal
dotted line in each Cd-gram lies on the 28th percentile which distinguishes between
mobile and stationary states. The grey masks indicate the regions that did not survive false
discovery rate (FDR) correction (P = 0.05). (C) Usingthe 28 percentile threshold, we
identified the frequencies with the lowest (most negative) and highest (most positive) Cd
values from each hemisphere. These were termed the MRD and MRS Cdeeax frequencies
respectively. Additionally, we calculated. (D) the absolute Cdeeac magnitudes and (E) the full
widths at half maximum (Cdrwnm) of the MRD and MRS bands (based on the Cd plots in Fig.
2A). (F) FDR-corrected averageSpearman correlation (p) values between the PSDs and the
absolute forearm speeds were computed. The resulting significant frequency bands have
been highlighted by the color-coded bars above the respective plots. *P < 0.05, **P< 0.01,
***P < 0.001, ****P<10°.

Figure 3 Evaluating the performance of binary movement state classifiers. We
performed hyperparameter tuning on Linear discriminant analysis (LDA) classifiers using
canonical power band (PB) features. (A) The optimal epoch durations were identified for
single-site (STN/GPi, S1 or M1) and combined models using the area under the receiver
operating characteristic (AUC). (B) These models were then tested on a holdout set for
each patient. We also evaluated the performance of classifiers trained on personalized
features. (C) We performed principal component analysis (PCA) and identified the optimal
number of PC features for each classifier. (D) The AUCs of the personalized classifiers with
PC features were computed on the holdout set. Permutation feature importance was
performed to quantify the unique contributions of each (E) site (STN/GPi, S1 or M1) and (F)
canonical PB to the performance of the combined model. (G) Additional linearand non-
linear models — Gaussian naive bayes (GNB), k-nearest neighbors (KNN), random forests
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(RF) and light gradient boosted machines (LGBMs) —were developed using all PSD features
from each site, to avoid restricting the models to the six canonical PB features. *P< 0.05,
**P<0.01, ***P<0.001, ****P< 10“.

Figure 4 Evaluating the performance of forearm movement speed regressors. Linear
regression (LR) models were trained to predict continuous forearm speeds. (A) The optimal
epoch durations were identified for single-site (STN/GPi, S1 or M1) and combined
regressors were identified using Pearson r statistic values. (B) Evaluation of these LR
models was performed on a holdout set. (C) Personalized features were developed using
principalcomponent analysis (PCA) and the optimal number of PC features for each
regressor was determined. (D) The performance of the personalized single-site and
combined regressors with PC features was compared using the holdout set. Permutation
feature importance was computed for each (E) brain region and (F) canonical PB. (G)
Additionallinear and non-linear models — Bayesian ridge regression (BR), stochastic
gradient descent (SGD), k-nearest neighbors (KNN), random forests (RF) and light gradient
boosted machines (LGBMs) —were developed using the canonical PB features. *P < 0.05,
*P<0.01, ***P<0.001, ***P< 104,

Figure 5 Effects of stimulation'on biomarkers of naturalistic movement. We computed
the average normalized, flattened PSDs for the mobile and stationary states from the left
STN of a single subject at two'stimulation levels: (A) 0.0 mAand (B) 2.0 mA. The differences
in spectral power across each.canonical band were highlighted using different colors. We
employed linear mixed models (LMMs) to investigate how the absolute Cohen’s d effect
size for each canonical power band varied across stimulation levels, which were treated as
fixed effects. Towvisualize these relationships, we plotted the average absolute Cohen’s d
values across allpatients for each stimulation amplitude in the following regions: (C)
STN/GPi, (D) S1, and (E) M1. Additionally, LMMs were used to analyze variations in the area
under the curve (AUC) for binary movement state classifiers, examining the effects of (F)
the duration between sessions and (G) stimulation level. We also assessed changes inthe r
statistic for forearm movement speed regressors with respect to (H) the duration between
sessions and (l) stimulation level. Figs. 5F-5l illustrate these relationships by plotting the
average model performance across all patients against either the duration between
sessions or the stimulation level. For all analyses presented in Figs. 5C-5I, individual
patients and hemispheres were modeled as random effects in the respective LMMs.

28

920z Aienuep go uo 1senb Aq 99908£8/99IEME/UIRIC/SE0] "0 | /I0P/3]01IB-80UBAPR/UIRIG/WOD dNO-OIWapEo.//:sSd)Y WOol) papeojumoq



1

o OIRWN

Table | Patient demographics, stimulation settings and clinical information

Patient Age, years; Dx, Stim Hem Stim Stim UPDRS-III Carbidopa-
ID Sex years | target frequency, levels, Levodopa

Hz mA OFF ON (Daily dosage)

Pat-01 60; M 13 STN L 130 22-28 49 5 25-100 mg IR
R 30 37-35 (5 times daily)

Pat-02 69; M 25 STN L 130 1.9-25 45 22 50-200 mg CR
R 130 14-16 (4 times daily)

Pat-03 46; M 10 STN L 130 1.5-22 4] 10 25-100 mg IR
R 130 1522 (2 times daily)

Pat-04 63; M 18 STN L 130 29 44 I 25-100 mg IR
R 730 T9-2.0 (5 times daily)

Pat-05 76; M 13 STN L 130 19-22 29 12 25-100 mg IR
R 130 10 (4 times daily)

Pat-06 65; M I STN L 130 0.0-29 35 12 24-95 mg ER
R 130 0.03.1 (4 times daily)
Pat-07 48; M 17 STN L 130 00-1.9 32 5 24-95 mg IR
R 30 0.0-19 (5 times daily)

Pat-08 69; M 14 STN L 130 0.0-2.6 30 7 24-95 mg ER
R 130 0024 (5 times daily)

Pat-09 62; M 16 STN L 130 0.0 34 9 25-100 mg IR
R 130 00 (5 times daily)

Pat-10 75; M 19 STN L 130 0.0 31 10 49-195 mg ER
R 130 00 (4 times daily)

Pat-11 79; M 14 STN L 159 34 37 24 36—145 mg ER
(4 times daily)

Pat-12 34, F 18 STN R 167 12-2.2 61 16 25-100 mg IR
(5 times daily)

Pat-13 53; M 14 GPi L 130 0.0-1.1 49 19 49-195 mg ER
R 30 00-16 (4 times daily)

Pat- 14 715 M 15 GPi L 179 37 66 24 25-100 mg IR
R 179 28 (4 times daily)

Pat-15 69; M 10 GPi L 149, 188 0.0-39 31 ) 25-100 mg IR
(5 times daily)

Dx = disease duration; STN = subthalamic nucleus; GPi = globus pallidus internus; L = left hemisphere; R = right hemisphere; PoG = post-

central gyrus; PrG = pre-central gyrus; SFG = superior frontal gyrus; MFG = medial frontal gyrus; SPL = superior parietal lobe; UPDRS =
Unified Parkinson’s Disease Rating Scale; ER = extended release; IR = immediate release; CR = controlled release.
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Table 2 Average group-level performance of linear models from each brain region

Metric Combined STN/GPi Si Mi
Mean £ SEM Classifier Performance

AUC 084 +£001 0.72 £0.02 0.80 £0.02 0.80 £0.02
Balanced Accuracy 0.76 £ 001 0.66 £0.02 073 £001 0.73 £0.02
Fl Score 0.80 £0.02 0.71 £0.02 0.77 £0.02 0.78 £0.02
PPV 0.86 £0.03 0.79 £0.04 0.84 £ 0.03 0.84 £0.03
Sensitivity 0.75 £0.02 0.66 £0.02 0.72 £0.02 0.73:£ 0.02
Specificity 0.77 £ 001 0.67 £0.02 074 £001 0.74 £0.02
Mean * SEM Regressor Performance

r statistic 0.64 £0.03 041 £0.04 0.58 £ 0.03 0.58'+0.04
MSE 041 £0.02 0.57 £0.04 048 +£0.03 0.48 £ 0.02

SEM = standard error of the mean; AUC = area under receiver operating characteristic curve; PPV = positive predictive value; r statistic =
Pearson correlation coefficient between true and predicted values; MSE = mean squared error.
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A Individual Cohen’s d plots for each subject and hemisphere
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