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On Banach subalgebras of the Dirichlet
Hardy algebra .7Z°° consisting of lacunary
Dirichlet series

Amol Sasane

Abstract. Let > be the set of all Dirichlet series f= 2 ann”° (where

an € C for all n € N ={1,2,3,---}) that converge at each s in the
half-plane Co:={s € C: Re(s) > O}, such that || f]lcc = sup,ec, |f(s)] <
0. Then J#°° is a Banach algebra with pointwise operations and the
supremum norm ||-||«c, and has been studied in earlier works. The article
introduces a new family of Banach subalgebras Hs° of 7°°. For SCN,
let #5° be the set of all elements Zan —% € > such that for all
n € N\ S, a, =0. Then 5 is a umtal Banach subalgebra of s#°° with
the || - Hoo norm if and only if S is a multiplicative subsemigroup of N
containing 1. It is shown that for such S, J¢° is the multiplier algebra
of J2, where 2 is the Hilbert space of all f = S a,n~* such that

nes
Ifllz:=(2 |an\2)% < 00. A characterisation of the group of units in J25°
nes
is given, by showing an analogue of the Wiener 1/f theorem for J#5°.
If S has an infinite set of generators allowing a unique representation of
each element of S, then it is shown that the Bass stable rank of J#5° is
infinite.

Mathematics Subject Classification. Primary 30B50, Secondary 46J15.
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1. Introduction

The aim of this article is to introduce and study some algebraic-analytic
properties of a particular family J£5° (defined in §1.2) of Banach algebras
that are contained in the Hardy algebra 5#°°° of Dirichlet series (recalled in
§1.1). The motivation is twofold: there has been old and recent interest in
studying various Banach algebras of Dirichlet series (see, e.g., [10], [14]), and
the Banach algebras J£5° we study are also the ‘Dirichlet series analogue’ of
the previously studied (see, e.g., [8]) Banach subalgebra H® ={f € H*> :
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f'(0) =0} of H*® (the classical Hardy algebra consisting of bounded and
holomorphic functions on D := {z € C : |z] < 1}, with pointwise operations
and the supremum norm, ||f||s = sup,cp |f(2)] for f € H*).

1.1. The Banach algebra 27>

Let s be the set of all Dirichlet series f = Zan ¢ (where a,, € C for
each n € N) that converge at each s € Cy := {s € C: Re s > 0}, such
that | fllsc :=sup,ec, |f(s)] < 0o. We call a,, the n™ coefficient of f. With
pointwise operations and the supremum norm, JZ°° is a Banach algebra
(introduced in [10]). Multiplication in #*° is also given by
(iannis)'(ibnnis): i( > agbz ) %
n=1 n=1 n=1(N3)dln
where the notation d | n means d € Z divides n € Z. The unit element is
1:= 3 0,1n"*, where 8,,; =0 for n#1 and §;; =1. The Banach algebra J#>°

n=1

is precisely the multiplier space of the Hilbert space #2, where

— % —s . = /3 2
= {f_nZ:lann : such that || f||2:=, /ﬂ;|an| <oo}

(see [10, Thm. 3.1]). The inner product in #2 is given by (f,g) = 3 anby,
n=1
where f=3 a,n~° and g= ibnn_s € 2. Each element f € 2 defines a

n=1

holomorphic function in C; ={s € C : Res > $}. If ¢ denotes the Riemann
zeta function, ((s) = fn_s (Re s > 1), then for each a € C such that

Rea>1, (u.(s)= Zn ap~% belongs to 2. For f= 3 a,n~* € #>, we have

I fl2<|Iflleo (so that A C?), and in partlcula;, 1|an| < ||flleo for all n €
N (see, e.g., [7, Prop. 1.19]). The set {e,, :=n"%:n €N} forms an orthonormal
basis for #2. For a € C,, with K,(s):= Zen( Jen(a)=Ca(s)=C((s + @), we
have f(a)=(f, K,) for all f € 5#2. The Hllbert space J#2 is a reproducing
kernel Hilbert space with kernel function given by K 2(s,a)={(s + @), for
s,a € Cy.

1.2. The set J£5°

For S C N, define JZ5° to be the set of all elements f = Sapn~* € A
n=1

such that for all n € N\ S, a,,=0.

1.3. Organisation of the article

We show in Section 2 that JZ$° is a unital Banach subalgebra of J#°° with
the supremum norm if and only if S is a multiplicative subsemigroup of N
containing 1. In Section 3, we show that just as 7> is exactly the multiplier
algebra of 2, the Banach algebra J#5° is exactly the multiplier algebra
of a certain Hilbert subspace 2 of #72. In Section 4, we characterise the
group of units in J£5°. In Section 5 we relate 5 to a natural Banach sub-
algebra of the Hardy algebra H*(B,,) on the unit ball B., of ¢y (space of
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complex sequences converging to 0 with termwise operations and the supre-
mum norm), with vanishing derivatives of certain orders at 0 € ¢g. Finally,
in Section 6, we prove that if S has an infinite set of generators allowing a
unique representation of each element of .S, then the Bass stable rank of J#5*
is infinite, and also state a related conjecture.

2. When is 7 an algebra?

We show that J£5° is a unital Banach subalgebra of 7> with the ||-||o norm
if and only if S is a multiplicative subsemigroup of N containing 1. A subset
S of a semigroup ¥ is a subsemigroup of ¥ if S§:={s152:51,82 €S} CS. By
a subalgebra B of a complex algebra A (see, e.g., [15, Def. 10.1]), we simply
mean that B is closed under the algebraic operations inherited from A.

Proposition 2.1. The following are equivalent:

(1) S is a multiplicative subsemigroup of N.

(2) J5° is a subalgebra of F°.

(3) A5 is a Banach algebra with the supremum norm.

Proof. (1)=(2): Let S be a multiplicative subsemigroup of N. We just show
closure under multiplication. Let f= Sa,n s e J5° and g= ibnnfs € HE°.

n=1 n=

The n'® coefficient of fg is given by ¢, := Yagbz. If ¢, #0, then at least
one of the summands, say agbz is nonzero, ?;nplying that d, 5 € S, and so
n=d%5 € 5. Thus fg € 7#5°. Consequently, 7#¢° is a subalgebra of 2.
(2)=(1): Let S£5° be a subalgebra of 7. If m,n € S, then since for f=n""°
and g=m~° in J5°, we have (nm)~° = fg € JE°, we get nm € S. Thus S
is a multiplicative subsemigroup of N.

(3)=(2) is trivial. We now show (2)=-(3), i.e., J£5° is a closed subset of .

Let (fm)men be Cauchy in #5°. Write f,, = 3 al”n~°. Then (fm)men is
n=1
Cauchy in 7>, and so converges to some f= 3 a,n"*€.#>. Let n € N\ S.

1
<|If = fmlloo for all m € N.
Passing to the limit as m — o0, |a,| <0, i.e., a, =0. So f € H#L°.

Then a{” =0 for all m € N. So |a,|=|a, — al"

For a multiplicative subsemigroup S of N, J£§* is unital if and only if 1 € S.

Example 2.2. We list some multiplicative subsemigroups of N containing 1.
(1) For a prime p, let S:={p*:k € NU{0}}.
(H5° > zjlann* — néanz" € H® is then a Banach algebra isomor-
phism from J5° to H™.)
More generally, for any n € N, define S := {n* : k € NU {0}}.
(2) For primes p;, <---< p;, , let S:{pfl1 pf:; sk, Lk € NU{0}}.
(3) Let xo be the principal Dirichlet character of modulus m € N, i.e.,
Xo(n)=11if gcd(n,m)=1, and x(n) =0 if ged(n, m) > 1, where ged(n, m)
denotes the greatest common divisor of n, meN.

@ Springer



3 Page 4 of 14 A. Sasane IEOT

Then S,, = {n € N : xo(n) # 0} is a multiplicative subsemigroup of
N containing 1. Let p; < p2 < p3 < --- be all the prime numbers. For
n € N, the fundamental theorem of arithmetic gives a unique compactly
supported sequence (v;(n))geny in N U {0} such that n = kﬁlpzk("). As

min{vy (n),vi(m)}

ged(n, m) = I py

min{v(n), vig(m)}=0.

So Sy, ={n= ﬁpzk(") for all k € N, v(n) = 0if v (m) > 0}. Since
k=1

the intersection of multiplicative subsemigroups of N is a multiplicative

, ged(n,m)=1 if and only if for all k€N,

subsemigroup of N, for any subset ' C N, Sg := NuerSy, is a multi-

plicative subsemigroup of N containing 1. If F' is a finite nonempty set

F={my,--- ,m,} C N, then Sp := NuerSm = Siem(my, - ,mn)» Where

lem(my,- -+ ,my) is the least common multiple of my,--- ,m,,.

S = N. (Then J§° = H>.)

S = {1}. (Then J£5° is isomorphic to the Banach algebra C.)

For m € N, S := {n™ : n € N}. (E.g. for m =2, S is the set of all

squares.)

(8) The set S={1} U {neN:there exist x,y €N such that n=2% +y?} is a
multiplicative subsemigroup of N containing 1. The sum of two squares

—~ o~
N O Ot
—_ D

theorem (see, e.g., [6, Thm. 7, §3, Chap. IV]) provides an alternative
description of S: n € S if and only if in the prime factorisation of n, all
prime factors of the form 4k+3 (k€NU{0}) have an even exponent. ¢

3. A as the multiplier algebra of 72

It was shown in [10] that #° is the multiplier algebra of #2, i.e., a function
f:C, — Csatisfies fg € 22 for all g € 22 if and only if f has an extension
to Co which is an element of J#>°. Moreover, || f|lcc =Supge 2 |jg)<1 1 f9ll2-

Analogously, we will now show that more generally, J£5° is exactly the
multiplier algebra of J#Z, where for any subset S C N, we define J#Z to be
the set of all f= iann_s € % such that for all n € N\ S, a,, =0. Then 2
is a closed subsga;ce of 52, and {n=%:n € S} forms an orthonormal basis
for 2. Define lacunary zeta function (s by (s(s) :ngsn’s, (Res>1). For
a € Cy, Zsen(s)m:gs(s + @), and we have f(a) = (f,(s(- +@)) for all
fe %g.neThe Hilbert space 2 is a reproducing kernel Hilbert space with
kernel function given by K 2 (s,a)=(s(s+a) for s,a € C,. In particular, in
Example 2.2(2), 7#g° is a reproducing kernel Hilbert space with the kernel
given by Ky (s,a) = L(s +@, xo), where L is the Dirichlet L-series given
by L(s, x0) =3 xo(n)n~* for Res>1. (Peripherally, a natural question is: Is
there a characﬁu:elrisation of the multiplicative subsemigroups S of N containing
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1, for which the lacunary zeta functions (g arise from modular forms? See,
e.g., [1], for background on modular forms and their link to Dirichlet series.)
We have the following (shown along the same lines as the proof for J#°-#">
case given in [14, Theorem 6.4.7]).

Proposition 3.1. Let S be a multiplicative subsemigroup of N containing 1.
Then FE° is exactly the multiplier algebra of 32, that is, a function f de-

fined on C, satisfies fg € HE for all g € A2 if and only if f has an extension
to Co which is an element of #g°. Moreover, || f oo =sUPge 2, |igl.<1 | f9ll2-

Let P denote the set of all Dirichlet polynomials (namely, f = Zann s for
which there exists an N € N such that for all n> N, a, =0). For r €N, let

={n=p - pk ki, - k. € NU{0}}. Define P, to be the set of all
f= ¥ ayn—* € P, where for all n € N, a,, € C. We recall [14, Lemma 6.4.9].

nEN,

Lemma 3.2. For all s € Cy, and for all r € N, there exists a constant Cs . >0
such that for all f € Py, we have |f(s)] < Cs.||fll2-

For ¢ € L'(R), let & be the Fourier transform of ¢: @(£) = [, ¢(t)e~*tdt for
all £ € R. Let E={p € L*(R) : ¢ has compact support}. If f= zann s e

A2, and ¢ € E, then following ‘vertical convolution identity’ holds (see, e.g.,
[14, Proof of Theorem 6.4.7]): Zancp(logn = [o f(s+it)p(t)dt, s € Cy.

Proof of Proposition 3.1. If f € #%°, and g € H#Z, then fg € A2, and
o512 < lelkellflla- Let = Sam— € A= and g = Sbun* € 22,

The n'" coefficient of fg is ¢, = Zadbﬂ. If ¢, #0, then at least one of the

summands, say aqbz is nonzero, 1mp1y1ng d,5 €S,and son=d% € S. Thus
ifn € S, then ¢, =0. So fg € #Z. Hence if f 6 J£5°, then the multlphcatlon
map H#E > g Mrpg:=fg € #Z is well-defined, and || M| <|| f|lso-

Next, let f:C, — C be such that fge%”ﬁ for all ge%ﬂsz. Let Mf:e%”szﬂe%”sz
be the linear map of pointwise multiplication by f. As 1 € JZ, we have
f=M;(1) € 7#Z. By the closed graph theorem, M 5] is a bounded operator.
Denote the operator norm of My by || My||. Let f= Zann * for all s € C,.

Step 1. First let f be a Dirichlet polynomial. We clalm | flloo = || My]|. Fix
r € N such that f € P, and let s € Cy. By induction, for all k € N, || f¥||2 <
| M;||*. Lemma 3.2 applied to f*€P, gives |f(s)|¥ <Cs..||f*|l2 <Cs.
for s € Cp, and so |f(s)] < C’érHMfH. Passing to the limit that & — oo
now yields |f(s)| < 1||My|. As s € Cy was arbitrary, ||f|le < [|[My||. Also,
as [ € A2 is a Dirichlet polynomial and || f|s < oo, f € H#5°. Then f
is a multiplier on 2 and ||My|| <| |l by the first part of the proof. So

[[flloo = 1M ]l-
Step 2. Now consider the general case when f need not be Dirichlet polyno-

mial. For a function ¢ € E, we define P,(s) = 3 a,p(logn)n=°. As @ has
n=1
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compact support, and logn — oo as n — oo, it follows that P, is a Dirichlet
polynomial. We claim that ||[Mp_ || < ||[My|||[¢]]1. For at € R, define the ver-
tical translation operator T} by (T1g)(s) = g(s+it) for all g € #Z. Then T :
HE — HZ s alinear isometry on 2, and T} f is a multiplier on ¢ satis-
fying | Mr, || = || My||. Indeed, for all g € 7#Z, we have (T1f)g=T:(f(T-+9)),

and [[(T¢f)gll2 = [ITe(f (T-9)ll2 = I (T-2g)ll2 < |M[[[[T-egll2 = | My[l[[g]l2,
giving [|Mr, 7| <|| My Then also [|My ]| = || Mz, iz, p)l| < [ M, ]|. The verti-
cal convolution formula yields for s € C, and g € 2 that:

(Pog)(s)=(Jgf (s +it)p(t)dt)g(s) = [((Tf)(s)g(s)e(t)dt= [ (T:f)g)(s)p(t)dt.

We have P,g = [o((T;f)g)(-)e(t)dt in 3, where the right-hand side is a
vector-valued Pettis integral in 52, and

1Mp,glla = 1 Peglla < Jp I (Te)gll2le@)dE < f | Mr, £ llgll2](t)|dt
= [1M¢llllgllz Jele@®)ldt=[[M|[lgllzllell-
Hence [|Mp, || < [[M][[[#]:-

Step 3. Define the sequence (@, )men in L' (R) by @, ()= ;:( 0y )2 teR.

mt
2

Then @, (€) = max{l—%, 0}, and as @,, has compact support, @, € E for
all meN. Since ¢,,, >0, 1—95,\,, —ngom t)dt= [ |¢m(t)|dt=|¢m|1. Then
P, (s)= zangam(logn 5= [L(T;f)(s)pm(t)dt for all s€C. Steps 1 and 2
give || P = Mp,. || < 1Mol = 1M1= [ My] for all meN. Taking a
subsequence if necessary, one may assume, thanks to Montel’s theorem, that
P,, tends to some F uniformly on compact subsets of Cy, with ||F|loc :=
Supec, |F(s)] < ||Mf|| Let 0> 1, t €R, and s=o + it €C,. By the Cauchy-
Schwarz inequality, 3 |a,|n=7< ( S a2z ($n727)2 <oco. Also g (logn) —1
as m — oo, and 0 gl@\n(log n) "51. Give;{]e >0, let N € N be such that
Z+1|an|n_‘7<i. Let my, n € {1,---, N} be such that

n=N
|G, (logm) — 1] < €(2N (£ [an|n ™" +1))7!
Then for m > max{my,--- ,my}, we have

Pos)~ $02m~| = | 00(@, (05 m) — D=
< 2|an||<pmn(logn) —1n~ "—i— Z |an|2n T<NsG1+25=e

Thus for each s € C,, we have P, _(s) — > a,n"*=f(s) as m— oo. Hence
n=1

f=FonC,. But f € A2, and so it is a Dirichlet series. We have shown
that f has a Dirichlet series which converges in C,, and this f admits a
bounded holomorphic extension F' to Cy. Thus it follows that f € 2. As
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[ € HZNAH>®, we get [ € H5°. Moreover, ||flloc =||F|loo <||[Mf||. Since

also [ M || <[[flloo, we obtain [ fl[ec = [|M]]- -

4. Characterisation of the group of units

In this section we will show that f € J£§° is invertible in J£5° if and only
if infgec, [ f(s)| > 0. Below, for a unital commutative complex Banach A, we
denote by A~ the multiplicative group of all invertible elements of A. For o €
R, let C,:={s € C: Res>o}. Recall that for a Dirichlet series D= Z ann~ 3%,
the abscissa of convergence is o.(D) = inf{o € R : D converges in C,} €
[—00, 00]. Similarly, the abscissa of absolute convergence of the Dirichlet series
D is defined by 0,(D)=inf{oc € R: D converges absolutely in C,}. Then we
have —oco < 0.(D) < 04(D) < 00. Also, 04(D) < o.(D) + 1, see, eg., [7,
Prop. 1.3].

Theorem 4.1. Let S be a multiplicative subsemigroup of N.
Then ()~ = {f € A5t infec, | f(5)] > 0}.

Proof. If f € (#5°)71, then there exists a g € J#5° such that for all s € Co,
f(s)g(s)=1. In particular, g # 0, and so ||g||oo >0. Thus

infeco [£(s)] = infsec, [9(s)| ™" = (supyec, l9(s))) " = llgll" > 0.
Conversely, let f= Y a,n™* € H#g° be such that 6 :=inf,cc, | f(s)|>0. By [5,

nes

Thm. 2.6], it can be seen that f € ()71, i.e., + € A It remains to show
$ € 5% Let e>0. As 0o (f)—0.(f) <1, and o.(f) <0, we get 0, (f) <1. Thus
the Dirichlet series given by fii.(s) := Zann —(tets) — 2 ann —(te)p—s

converges absolutely for all s € C with Res > 0. In particular, if s € Cy and
o := Res, then

lan| ,,— 1 V3
|[free(s) —a] < neSz\:{l} n?“n - (nesm}| n| )2 (nesm} n2<1+€))2
< 5 £l 1) =0

If a; =0, then § = infsec, |f(s)] > 0 and the above implies 0 <6 <0, a
contradiction. Thus a; # 0. The above also shows that there exists a o9 >0
such that for all s € C,,, we have with 0:=Res that

[fire(s) —aa[ =] X —qwn[< ¥ ‘a"'|n7”<“12—1|. (%)

nes\{1} nite nes\{1} nlte

In the half-plane C,,,
1 :(a1+ > ’an n—s)—l:al—l(l_i_il(_l)m,(al—l S a n—s)m), (*)

fite(s) nes\(1}ntte nes\{1ynlte
where the geometric series converges on account of (*). Thanks to the in-
equality 3> (Jay| ™! "f”‘ n=)™ < 3 L < oo, it follows that we can
m=1 eS\m nite m=1 2"
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rearrange the terms in (%), and obtain a sequence (¢, )nen in C such that for

all s € C,,, we have = X cyn~°. Note that we used the semigroup

1
free(s) nes

property of S here, since for n € S, (n™%)" = (n™)"*%, and n™ € S. But if
the Dirichlet series for % € JC™ is given by ﬁ = i; b,n~? for s € Cy, then
we obtain from the above that for s € C,,,

S s 1 1 >
" T = — — Cr N~
n=1nlte f(l+e+s) fite(s)  nes ™

In particular, for n € N\ S, by the uniqueness of Dirichlet series coefficients

(see, e.g., [6 Thm. 7, §5, Chap. X]), = =0, and so b, =0. This shows that

1+E
f(l - byn”" = %Sbnn_s, and so ? € J5°, as wanted.

O

Let 7, be the subset of 7#°° of Dirichlet series that are uniformly continuous
in Cy. Alternatively, 7, is precisely the closure of Dirichlet polynomials in
the || - ||oc norm (see [2, Thm. 2.3]). For a multiplicative subsemigroup S of N
containing 1, we introduce <, g =7, N H#$°. Then o7, 5 is a unital Banach
algebra with pointwise operations and the [|+||o norm. Let # denote the set of
all Dirichlet series f = Z ann~® such that || f||1:= \an| < 0o0. With pointwise
operations and the || - Hl norm, # is a Banach algebra Then W C o, C .

In the case of #, an analogue of the classical Wiener 1/f lemma ([17, p.91])
for the unit circle holds, i.e., if f € # is such that infsec, |f(s)] >0, then
% €W (see, e.g., [11, Thm. 1], and also [9] for an elementary proof). For a
multiplicative subsemigroup S of N containing 1, we introduce #g=#NJ5°.
Then #5 is a unital Banach algebra with pointwise operations and the || - ||
norm. We have #s C o, 5 C J£5°.

Corollary 4.2. Let S be a multiplicative subsemigroup of N containing 1, and
Ae{d,s,#s}. Then f € A~ if and only if 6 := infsec, | f(s)| > 0.

Proof. If f € A™%, then f € (#5°)!. So infsec, | f(s)] > 0 holds by Theo-
rem 4.1. Conversely, let f € A satisfy ¢ := infsec, |f(s)| > 0. Theorem 4.1
implies § € H#g°. For A=%j, the Wiener 1/f theorem for W gives + € W,

and so 1 FEWNAHG=Ws. For A= szus,asduscjfs , G%OO Also,%

is uniformly continuous in Co: |?( w) — ( )| = Ilff(z))l% < 62 L1 f(w)— f(2)],

for all z,w € Cy, and f is uniformly contlnuous in Cq. Thus 1 7€ y,, and so
% € Ay N A=y 5. O
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5. The image of JZ° under the Bohr transform

In this section, we relate J#5° to a natural Banach subalgebra of the Hardy
algebra H*°(B,,) on the unit ball B., of ¢y (space of complex sequences
converging to 0 with termwise operations and the supremum norm), with
vanishing derivatives of certain orders at 0 € c¢y. We first introduce some
notation. The Banach space £°° is the set of all bounded complex sequences
with termwise defined operations and the supremum norm: for (a,)nen € £€°°,
|(an)nenlloo = sup,en lan|. We denote by ¢y the Banach subspace of £>° of
all sequences converging to 0, and cgg is the subset of ¢y of all sequences in
£°° with compact support. Let B, be the open unit ball of ¢y with centre 0.
Let IN be the set of all compactly supported sequences that take values in the
set of nonnegative integers, i.e., IN is the subset of ¢y consisting of sequences
whose terms belong to NU{0}. If v = (ny )xeny € IN and K € N is such that for
all k> K, np =0, then 2% := 27" --- 2/ for all z € B,,, 8" := 0 --- 9L,
V| :=n1+ - +ng, and v :=ny! gl If a=(ak)ken, 8= (Bk)ren € N,
then Bxaif for all k € N, Oy <ay. If o, 3 € N satisfy 8< a then

(3) = s ar

n)

By the fundamental theorem of arithmetic, for all n€N, n= ﬁpzk( , where
k=1

vi(n) € NU{0} and (pk)ken is the sequence of primes in ascending order. We
have v(n) := (v4(p))ken € IN. A seminal observation by H. Bohr [4], is that
by putting z1 =27%,20 =37°,--- ,2, =p,,°, -+, a Dirichlet series in J#*
can be formally considered as a power series of infinitely many variables. So

f(s) = Sa,n=° € A gives the formal power series F(2) = 3 ay II ng(n),
n=1 n=1 k=1

where z = (21, 29, 23, - - - ). We recall the precise result below.

Let H*°(B.,) be the complex Banach algebra of bounded holomorphic
(i.e., complex Fréchet differentiable) functions F' : B,, — C, with point-
wise operations, and the supremum norm. A function P:cy — C is an m-
homogeneous polynomial if there exists a continuous m-linear form A:cj* — C,
such that P(z)=A(z,..., z) for every z € ¢y. The 0-homogeneous polynomi-
als are constant functions. We first recall that for a holomorphic F : DV — C,
we have

F(z)= % ) ca(F)z™ for all z € DV,
M0 ae(NU{ON™, lal=m
where for each = (aq,--- ,an) € (NU{0}DY, |a|=a; + -+ + an, and
CalF) =y oo [ Ay dG,
(27”) [C1l=r1 [Cnl=rn S '”CN
and arbitrary r1,--- ,ry € (0,1). Also,
_ (9°F)(0)
ca(F) =7

Then for every m, the function P, : CN — C given by

P,(z) = ) ca (F)z%,

ae(NU{ODN, |a|=m
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is an m-homogeneous polynomial, and we have F' = 5* P,, pointwise on DY
It was shown in [7, Prop. 2.28] that for a boundedmf_unnction F: B, — C,
F € H*(B,,) if and only if there exists a unique sequence (Pp,)men, of
m-homogeneous polynomials on ¢g, such that F = 3 P,, pointwise on B.,.

m=0

Moreover, in this case,

P, (z) = ) ca(F)z®

ace(NU{ONN, |a|=m

for all z € Bg,,, f = Z P, uniformly on rB,., for every 0 < r < 1, and
1P ]lco <[] F|loo- We also recall from [10]:

DF)(0)n~

is a Banach algebra isometric isomorphism from H™(Be,) to .

Proposition 5.1. The map sending F' € H*(Be,)

The set N is an additive semigroup with termwise addition. If .S is an ad-
ditive subsemigroup of N containing the zero sequence 0:=(0)xcn, then let
HgZ(Be,) be the subalgebra of H>(B,,) consisting of all F' € H*(B,,) such
that for allv € N\ S, (8” F)(0)=0. The fact that HZ (B, ) is an algebra fol-
lows immediately from the multivariable Leibniz rule, as follows. If « € N'\ S
and B < «, then either 3 ¢ S or a— B ¢ S (otherwise a = 8+ (a— ) € S,
a contradiction), and so either (8°F)(0) =0 or (8*?@G)(0) = 0, showing
that (8% (FG))(0) = ¥ (g) (8°F)(0) - (8°PG)(0) = 0, since each summand
on the right-hand sidﬁeﬁcixs zero. The completeness is a consequence of the Tay-
lor series expansion recalled above ([7, Proposition 2.28]). Thus HZ®(B,,) is

a unital Banach subalgebra of H*(B,,) with the supremum norm.

If S is a multiplicative subsemigroup of N containing 1, then the map
Sanrvn) = (k(n))key € N is an injective semigroup homomorphism,
and we denote its image by v(S). An immediate corollary of Proposition 5.1
is the following.

Corollary 5.2. Let S be a multiplicative subsemigroup of N containing 1, and
let v(S) be the image of S under the map S > n — V(n)

The map sending elements F' € HJq, (Be,) to f= Z

u(n)) (ay(n)F)(O)n7

is a Banach algebra isometric isomorphism from HV(S)( o) to HS°.

Let A be a commutative unital complex semisimple Banach algebra. The dual
space A* of A consists of all continuous linear complex-valued maps on A. The
mazimal ideal space M(A) of A is the set of all nonzero multiplicative elements
in A* (the kernels of which are then in one-to-one correspondence with the
maximal ideals of A). As M(A) C A*, it inherits the weak-* topology of A*.
The topological space M(A) is a compact Hausdorfl space, and is contained
in the unit sphere of the Banach space A* with the operator norm, ||p| =
SUPgea,|jaf<1 |P(@)| for all ¢ € A*. Let C(M(A)) be the Banach algebra of
complex-valued continuous maps on M(A) with pointwise operations and the
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norm || f|lee Where || f|lco =supgyenma) [f ()] for f € C(M(A)). The Gelfand
transform a € C(M(A)) of a € A is defined by a(¢) =p(a) for ¢ € M(A).

For z, € Be,, themap ¢., : H{g (Be,) — C defined by ¢, (f) = f(z)
for all f € HJ{s (Be,) is an element of M(HJ{g)(Bc,)). We will use this
observation to prove Theorem 6.2 in the next and final section.

6. Bass stable rank

In algebraic K-theory, the notion of ‘stable rank’ of a ring was introduced to
facilitate K-theoretic computations (see [3]). We recall the pertinent defini-
tions below.

Let A be a unital commutative ring with unit element denoted by 1.
An element (aq,---,a,) € A™ is unimodular if there exist bq,--- ,b, € A
such that byja; + - - + b,a, = 1. The set of all unimodular elements of A™ is
denoted by U, (A). We call (a1, - ,an+1) € Unt1(A) reducible if there exist
Z1,-++ &y € A such that (a1 +z1an11, - -y an+2nant1) €U,(A). The Bass
stable rank of A is the least n € N for which every element in U, 41(A) is
reducible. The Bass stable rank of A is infinite if there is no such n.

What is the Bass stable rank of J5°7

o If S={1}, then J5° is C as a ring, and the Bass stable rank is 1.

o If S={p* : k € NU{0}}, p a prime, then J#° is isomorphic as a
Banach algebra to the Hardy algebra H*°, whose Bass stable rank is 1
(see [16]).

« If S=N, the Bass stable rank of J£5° = is infinite ([13, Thm. 1.6]).

It is natural to expect that the Bass stable rank of J5° ought to be related to
an appropriate notion of ‘rank/dimension’ of the semigroup S, which perhaps
gives lower or upper bounds on the Bass stable rank. There are several notions
of the rank of a semigroup. For instance, we recall below the notion of ‘lower
rank’ and the notion of ‘upper rank’ introduced in [12]. For every subset S of
a semigroup ¥, there is at least one subsemigroup of ¥ containing &, namely
Y itself. So the intersection of all the subsemigroups of ¥ containing S is a
subsemigroup of ¥ containing S, and we denote it by (S). For § # S C X,
the subsemigroup (S) consists of all elements of ¥ that can be expressed as
finite products of elements of S. Let |S| denote the cardinal number of S.
The lower rank of ¥ is r(X) :=inf{|S| : § C X, and (S) = X}. A subset S
of a semigroup ¥ is independent if for all s € S, we have s ¢ (S \ {s}). The
upper rank of ¥ is R(X) :=sup{|S] : § C ¥, and § is independent}. It was
shown in [12] that r(S) < R(S). We have the following;:

Conjecture 6.1. Let S be a multiplicative subsemigroup of N such that 1 € S,
and R(S)=o00. Then the Bass stable rank of F5° is infinite.

Let S be a multiplicative subsemigroup of N containing 1, ) C S be infinite,
and (@) = S. As Q@ C N, Q must be countable. Arrange its members in
strictly increasing order as g1 < g2 < g3 < ---. We have the following.
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Theorem 6.2. Let S be a multiplicative subsemigroup of N containing 1, and
ag(n)

let g1 < g2 < q3< --- be a sequence in S such that for alln € S, n = f‘o[qk,
k=1

for a unique compactly supported sequence (ay(n))ken of nonnegative inte-
gers. Then the Bass stable rank of J5° is infinite.

Proof. We follow an approach similar to the one from [13, Thm. 1.6], except
that the role of the primes is now replaced by (gx)ren. Fix n € N. Define

froo s farn € by fi=q% 0 fa=6," fatr :jﬁ[l(l = (@ @n+5)7%)-
Then (f1,- -, fat1) € Ung1(H5°) since expanding the product defining f,, 11
gives fui1=1—q7° 91— —=¢,° - gn =1 — fig1 — -+ — fugn, for suitable
g1, gn €H5°, and so with g, 11 :=1, we get fig1+ -+ fagn+ friiGni1=
1. Let (f1, -+, fn+1) be reducible, and the elements z1,--- ,z, € J5° be
such that (¢7° + z1fnt1, -, ¢,° +Tnfnt1) € Un(F5°). Let y1,- -+ ,yn €
J65° be such that (¢ ° + 21 fot1)yr + -+ (¢,° + Znfat1)yn = 1. Denote
the isomorphism from Corollary 5.2 by ¢ : #g° — H,Jg) (B¢, ). Then we have
(¢(ar®) + e(@1)e(frs1))e(yr) + - + (@) + t(zn)e(fas1))e(yn) = 1. Taking
the Gelfand transform, we obtain

(e(qr ) + vlzr)e(fran))eyr) + -+ (1(an®) + l@n)e(frs1))e(yn) = 1. (%)
For Z:(Zl,"' 7Zn) E(C'n,’ let Z*:(Zl,"' azn7717"' 7Z7Oa"') € BCO7 and

H(z)— —ﬁ1(1_|2]|2)(l/($1)(90z*), o 7L($n)(%02*)) if |Zj|<17 j:L N,
0 (¢ C") otherwise.

Then @ is a continuous map from C” into C"®. We have that ® vanishes
outside D", and so max, cpn [|®(2)||2 = sup, ccn [|®(2)]||2, where || - [|2 de-
notes the usual Euclidean norm in C™. This implies that there must exist
an r > 1 such that ® maps K := rD" into K. Since the set K is com-
pact and convex, by Brouwer’s Fixed Point Theorem (see, e.g., [15, The-
orem 5.28]), it follows that there exists a ¢ € K such that ®(¢) = (.
Since ® is zero outside D™, we see that ¢ € D". Let ¢ = ({1, ,Cn), and
¢, = (36, Clye o 3Gy 0,--) € Bg,. Then for each j € {1,---,n},

n

0=+ I (1=In)ile;) (e ) f (1= IAnf?)

= G+ (el )c): (4
But from (%), we have i(b(q/;\s) + @L@))@bé = 1, which together

with (xx) yields 0 = 1, a contradiction. As n € N was arbitrary, it follows
that the Bass stable rank of J#5° is infinite. O

E.g., consider S = {1} U {n : there exist x,5 € N such that n = 22 + y?}
from Example 2.2(8). Then the Bass stable rank of #%° is infinite, as S is
generated by P U @, where P consists of primes p that are not of the form
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4k + 3 for some k € NU {0}, and @ is the set of elements q = p?, where p is
a prime of the form 4k + 3 for some k& € NU {0}.
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