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On Banach subalgebras of the Dirichlet
Hardy algebra H ∞ consisting of lacunary
Dirichlet series

Amol Sasane

Abstract. Let H ∞ be the set of all Dirichlet series f =
∞∑

n=1

ann
−s (where

an ∈ C for all n ∈ N = {1, 2, 3, · · · }) that converge at each s in the
half-plane C0 := {s ∈ C : Re(s) > 0}, such that ‖f‖∞ = sups∈C0

|f(s)| <
∞. Then H ∞ is a Banach algebra with pointwise operations and the
supremum norm ‖·‖∞, and has been studied in earlier works. The article
introduces a new family of Banach subalgebras H ∞

S of H ∞. For S⊂N,

let H ∞
S be the set of all elements

∞∑

n=1

ann
−s ∈ H ∞ such that for all

n ∈ N\S, an =0. Then H ∞
S is a unital Banach subalgebra of H ∞ with

the ‖ · ‖∞ norm if and only if S is a multiplicative subsemigroup of N
containing 1. It is shown that for such S, H ∞

S is the multiplier algebra
of H 2

S , where H 2
S is the Hilbert space of all f =

∑

n∈S

ann
−s such that

‖f‖2 :=(
∑

n∈S

|an|2) 1
2 <∞. A characterisation of the group of units in H ∞

S

is given, by showing an analogue of the Wiener 1/f theorem for H ∞
S .

If S has an infinite set of generators allowing a unique representation of
each element of S, then it is shown that the Bass stable rank of H ∞

S is
infinite.
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1. Introduction

The aim of this article is to introduce and study some algebraic-analytic
properties of a particular family H ∞

S (defined in §1.2) of Banach algebras
that are contained in the Hardy algebra H ∞ of Dirichlet series (recalled in
§1.1). The motivation is twofold: there has been old and recent interest in
studying various Banach algebras of Dirichlet series (see, e.g., [10], [14]), and
the Banach algebras H ∞

S we study are also the ‘Dirichlet series analogue’ of
the previously studied (see, e.g., [8]) Banach subalgebra H∞

1 = {f ∈ H∞ :
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f ′(0) = 0} of H∞ (the classical Hardy algebra consisting of bounded and
holomorphic functions on D := {z ∈ C : |z| < 1}, with pointwise operations
and the supremum norm, ‖f‖∞ = supz∈D |f(z)| for f ∈ H∞).

1.1. The Banach algebra H ∞

Let H ∞ be the set of all Dirichlet series f =
∞∑

n=1
ann−s (where an ∈ C for

each n ∈ N) that converge at each s ∈ C0 := {s ∈ C : Re s > 0}, such
that ‖f‖∞ := sups∈C0

|f(s)| < ∞. We call an the nth coefficient of f . With
pointwise operations and the supremum norm, H ∞ is a Banach algebra
(introduced in [10]). Multiplication in H ∞ is also given by

(
∞∑

n=1
ann−s) · (

∞∑

n=1
bnn−s) =

∞∑

n=1
( ∑

(N�)d|n
adbn

d
)n−s,

where the notation d | n means d ∈ Z divides n ∈ Z. The unit element is
1 :=

∞∑

n=1
δn1n

−s, where δn1=0 for n �=1 and δ11=1. The Banach algebra H ∞

is precisely the multiplier space of the Hilbert space H 2, where

H 2 =
{
f =

∞∑

n=1

ann−s : such that ‖f‖2 :=
√ ∞∑

n=1
|an|2<∞}

(see [10, Thm. 3.1]). The inner product in H 2 is given by 〈f, g〉 =
∞∑

n=1
anbn,

where f =
∞∑

n=1
ann−s and g=

∞∑

n=1
bnn−s ∈ H 2. Each element f ∈ H 2 defines a

holomorphic function in C 1
2
= {s ∈ C : Re s > 1

2}. If ζ denotes the Riemann
zeta function, ζ(s) =

∞∑

n=1
n−s, (Re s > 1), then for each a ∈ C such that

Rea> 1
2 , ζa(s)=

∞∑

n=1
n−an−s belongs to H 2. For f =

∞∑

n=1
ann−s ∈ H ∞, we have

‖f‖2≤‖f‖∞ (so that H ∞ ⊂H 2), and in particular, |an| ≤ ‖f‖∞ for all n ∈
N (see, e.g., [7, Prop. 1.19]). The set {en :=n−s :n ∈N} forms an orthonormal
basis for H 2. For a ∈ C 1

2
, with Ka(s) :=

∞∑

n=1
en(s)en(a)= ζa(s)= ζ(s + a), we

have f(a)= 〈f,Ka〉 for all f ∈ H 2. The Hilbert space H 2 is a reproducing
kernel Hilbert space with kernel function given by KH 2(s, a)= ζ(s + a), for
s, a ∈ C 1

2
.

1.2. The set H ∞
S

For S ⊂ N, define H ∞
S to be the set of all elements f =

∞∑

n=1
ann−s ∈ H ∞

such that for all n ∈ N \ S, an =0.

1.3. Organisation of the article

We show in Section 2 that H ∞
S is a unital Banach subalgebra of H ∞ with

the supremum norm if and only if S is a multiplicative subsemigroup of N

containing 1. In Section 3, we show that just as H ∞ is exactly the multiplier
algebra of H 2, the Banach algebra H ∞

S is exactly the multiplier algebra
of a certain Hilbert subspace H 2

S of H 2. In Section 4, we characterise the
group of units in H ∞

S . In Section 5 we relate H ∞
S to a natural Banach sub-

algebra of the Hardy algebra H∞(Bc0) on the unit ball Bc0 of c0 (space of



IEOT On Banach subalgebras of the Dirichlet Hardy algebra. . .Page 3 of 14     3 

complex sequences converging to 0 with termwise operations and the supre-
mum norm), with vanishing derivatives of certain orders at 0 ∈ c0. Finally,
in Section 6, we prove that if S has an infinite set of generators allowing a
unique representation of each element of S, then the Bass stable rank of H ∞

S

is infinite, and also state a related conjecture.

2. When is H ∞
S an algebra?

We show that H ∞
S is a unital Banach subalgebra of H ∞ with the ‖·‖∞ norm

if and only if S is a multiplicative subsemigroup of N containing 1. A subset
S of a semigroup Σ is a subsemigroup of Σ if SS :={s1s2 :s1, s2 ∈S}⊂S. By
a subalgebra B of a complex algebra A (see, e.g., [15, Def. 10.1]), we simply
mean that B is closed under the algebraic operations inherited from A.

Proposition 2.1. The following are equivalent :
(1) S is a multiplicative subsemigroup of N.
(2) H ∞

S is a subalgebra of H ∞.
(3) H ∞

S is a Banach algebra with the supremum norm.

Proof. (1)⇒(2): Let S be a multiplicative subsemigroup of N. We just show
closure under multiplication. Let f =

∞∑

n=1
ann−s ∈H ∞

S and g=
∞∑

n=1
bnn−s ∈H ∞

S .

The nth coefficient of fg is given by cn := ∑

d|n
adbn

d
. If cn �= 0, then at least

one of the summands, say adbn
d

is nonzero, implying that d, n
d ∈ S, and so

n = dn
d ∈ S. Thus fg ∈ H ∞

S . Consequently, H ∞
S is a subalgebra of H ∞.

(2)⇒(1): Let H ∞
S be a subalgebra of H ∞. If m,n ∈ S, then since for f =n−s

and g=m−s in H ∞
S , we have (nm)−s = fg ∈ H ∞

S , we get nm ∈ S. Thus S

is a multiplicative subsemigroup of N.
(3)⇒(2) is trivial. We now show (2)⇒(3), i.e., H ∞

S is a closed subset of H ∞.
Let (fm)m∈N be Cauchy in H ∞

S . Write fm =
∞∑

n=1
a(m)

n n−s. Then (fm)m∈N is

Cauchy in H ∞, and so converges to some f =
∞∑

n=1
ann−s ∈H ∞. Let n ∈ N\S.

Then a(m)
n =0 for all m ∈ N. So |an|= |an − a(m)

n |≤‖f − fm‖∞ for all m ∈ N.
Passing to the limit as m → ∞, |an|≤0, i.e., an =0. So f ∈ H ∞

S .

For a multiplicative subsemigroup S of N, H ∞
S is unital if and only if 1 ∈ S.

Example 2.2. We list some multiplicative subsemigroups of N containing 1.

(1) For a prime p, let S :={pk :k ∈ N ∪ {0}}.
(H ∞

S 
 ∞∑

n=1
ann−s �→ ∞∑

n=1
anzn ∈ H∞ is then a Banach algebra isomor-

phism from H ∞
S to H∞.)

More generally, for any n ∈ N, define S := {nk : k ∈ N ∪ {0}}.
(2) For primes pi1 < · · ·< pim

, let S ={pk1
i1

· · · pkm
im

: k1, · · · , km ∈ N ∪ {0}}.
(3) Let χ0 be the principal Dirichlet character of modulus m ∈ N, i.e.,

χ0(n)=1 if gcd(n,m)=1, and χ(n)=0 if gcd(n,m)>1, where gcd(n,m)
denotes the greatest common divisor of n,m∈N.
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Then Sm = {n ∈ N : χ0(n) �= 0} is a multiplicative subsemigroup of
N containing 1. Let p1 < p2 < p3 < · · · be all the prime numbers. For
n ∈ N, the fundamental theorem of arithmetic gives a unique compactly
supported sequence (νk(n))k∈N in N ∪ {0} such that n =

∞∏

k=1

p
νk(n)
k . As

gcd(n,m)=
∞∏

k=1

p
min{νk(n),νk(m)}
k , gcd(n,m)=1 if and only if for all k∈N,

min{νk(n), νk(m)}=0.

So Sm = {n =
∞∏

k=1

p
νk(n)
k : for all k ∈ N, νk(n) = 0 if νk(m) > 0}. Since

the intersection of multiplicative subsemigroups of N is a multiplicative
subsemigroup of N, for any subset F ⊂ N, SF :=

⋂
m∈FSm is a multi-

plicative subsemigroup of N containing 1. If F is a finite nonempty set
F = {m1, · · · ,mn} ⊂ N, then SF :=

⋂
m∈FSm = Slcm(m1,··· ,mn), where

lcm(m1, · · · ,mn) is the least common multiple of m1, · · · ,mn.
(5) S = N. (Then H ∞

S = H ∞.)
(6) S = {1}. (Then H ∞

S is isomorphic to the Banach algebra C.)
(7) For m ∈ N, S := {nm : n ∈ N}. (E.g. for m = 2, S is the set of all

squares.)
(8) The set S ={1} ∪ {n∈N : there exist x, y∈N such that n=x2 + y2} is a

multiplicative subsemigroup of N containing 1. The sum of two squares
theorem (see, e.g., [6, Thm. 7, §3, Chap. IV]) provides an alternative
description of S: n ∈ S if and only if in the prime factorisation of n, all
prime factors of the form 4k+3 (k∈N∪{0}) have an even exponent. ♦

3. H ∞
S as the multiplier algebra of H 2

S

It was shown in [10] that H ∞ is the multiplier algebra of H 2, i.e., a function
f : C 1

2
→ C satisfies fg ∈ H 2 for all g ∈ H 2 if and only if f has an extension

to C0 which is an element of H ∞. Moreover, ‖f‖∞ =supg∈H 2,‖g‖2≤1 ‖fg‖2.
Analogously, we will now show that more generally, H ∞

S is exactly the
multiplier algebra of H 2

S , where for any subset S ⊂ N, we define H 2
S to be

the set of all f =
∞∑

n=1
ann−s ∈ H 2 such that for all n ∈ N\S, an =0. Then H 2

S

is a closed subspace of H 2, and {n−s : n ∈ S} forms an orthonormal basis
for H 2

S . Define lacunary zeta function ζS by ζS(s) = ∑

n∈S

n−s, (Re s > 1). For

a ∈ C 1
2
, ∑

n∈S

en(s)en(a) = ζS(s + a), and we have f(a) = 〈f, ζS(· + a)〉 for all

f ∈ H 2
S . The Hilbert space H 2

S is a reproducing kernel Hilbert space with
kernel function given by KH 2

S
(s, a)=ζS(s+ a) for s, a ∈ C 1

2
. In particular, in

Example 2.2(2), H ∞
Sm

is a reproducing kernel Hilbert space with the kernel
given by KH ∞

Sm
(s, a) = L(s + a, χ0), where L is the Dirichlet L-series given

by L(s, χ0)=
∞∑

n=1
χ0(n)n−s for Res>1. (Peripherally, a natural question is: Is

there a characterisation of the multiplicative subsemigroups S of N containing
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1, for which the lacunary zeta functions ζS arise from modular forms? See,
e.g., [1], for background on modular forms and their link to Dirichlet series.)
We have the following (shown along the same lines as the proof for H ∞-H 2

case given in [14, Theorem 6.4.7]).

Proposition 3.1. Let S be a multiplicative subsemigroup of N containing 1.
Then H ∞

S is exactly the multiplier algebra of H 2
S , that is, a function f de-

fined on C 1
2
satisfies fg ∈ H 2

S for all g ∈ H 2
S if and only if f has an extension

to C0 which is an element of H ∞
S . Moreover, ‖f‖∞ =supg∈H 2

S ,‖g‖2≤1 ‖fg‖2.
Let P denote the set of all Dirichlet polynomials (namely, f =

∞∑

n=1
ann−s for

which there exists an N ∈ N such that for all n>N , an =0). For r ∈ N, let
Nr = {n = pk1

1 · · · pkr
r : k1, · · · , kr ∈ N ∪ {0}}. Define Pr to be the set of all

f = ∑

n∈Nr

ann−s ∈ P, where for all n ∈ Nr, an ∈ C. We recall [14, Lemma 6.4.9].

Lemma 3.2. For all s ∈ C0, and for all r ∈ N, there exists a constant Cs,r >0
such that for all f ∈ Pr, we have |f(s)| ≤ Cs,r‖f‖2.
For ϕ ∈ L1(R), let ϕ̂ be the Fourier transform of ϕ: ϕ̂(ξ)=

∫
R

ϕ(t)e−iξtdt for
all ξ ∈ R. Let E = {ϕ ∈ L1(R) : ϕ̂ has compact support}. If f =

∞∑

n=1
ann−s ∈

H 2, and ϕ ∈ E, then following ‘vertical convolution identity’ holds (see, e.g.,
[14, Proof of Theorem 6.4.7]):

∞∑

n=1
anϕ̂(log n)n−s =

∫
R

f(s + it)ϕ(t)dt, s ∈ C 1
2
.

Proof of Proposition 3.1. If f ∈ H ∞
S , and g ∈ H 2

S , then fg ∈ H 2, and
‖ϕf‖2 ≤ ‖ϕ‖∞‖f‖2. Let f =

∞∑

n=1
ann−s ∈ H ∞

S and g =
∞∑

n=1
bnn−s ∈ H 2

S .

The nth coefficient of fg is cn = ∑

d|n
adbn

d
. If cn �= 0, then at least one of the

summands, say adbn
d

is nonzero, implying d, n
d ∈ S, and so n=dn

d ∈ S. Thus
if n �∈ S, then cn =0. So fg ∈ H 2

S . Hence if f ∈ H ∞
S , then the multiplication

map H 2
S 
 g �→ Mfg :=fg ∈ H 2

S is well-defined, and ‖Mf‖≤‖f‖∞.
Next, let f :C 1

2
→ C be such that fg∈H 2

S for all g∈H 2
S . Let Mf :H 2

S →H 2
S

be the linear map of pointwise multiplication by f . As 1 ∈ H 2
S , we have

f =Mf (1) ∈ H 2
S . By the closed graph theorem, Mf is a bounded operator.

Denote the operator norm of Mf by ‖Mf‖. Let f =
∞∑

n=1
ann−s for all s ∈ C 1

2
.

Step 1. First let f be a Dirichlet polynomial. We claim ‖f‖∞ = ‖Mf‖. Fix
r ∈ N such that f ∈ Pr and let s ∈ C0. By induction, for all k ∈ N, ‖fk‖2 ≤
‖Mf‖k. Lemma 3.2 applied to fk ∈Pr gives |f(s)|k ≤Cs,r‖fk‖2≤Cs,r‖Mf‖k

for s ∈ C0, and so |f(s)| ≤ C
1
k
s,r‖Mf‖. Passing to the limit that k → ∞

now yields |f(s)| ≤ 1‖Mf‖. As s ∈ C0 was arbitrary, ‖f‖∞ ≤ ‖Mf‖. Also,
as f ∈ H 2

S is a Dirichlet polynomial and ‖f‖∞ < ∞, f ∈ H ∞
S . Then f

is a multiplier on H 2
S and ‖Mf‖ ≤ ‖f‖∞ by the first part of the proof. So

‖f‖∞ =‖Mf‖.
Step 2. Now consider the general case when f need not be Dirichlet polyno-
mial. For a function ϕ ∈ E, we define Pϕ(s) =

∞∑

n=1
anϕ̂(log n)n−s. As ϕ̂ has
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compact support, and log n → ∞ as n → ∞, it follows that Pϕ is a Dirichlet
polynomial. We claim that ‖MPϕ

‖ ≤ ‖Mf‖‖ϕ‖1. For a t ∈ R, define the ver-
tical translation operator Tt by (Ttg)(s) = g(s+ it) for all g ∈ H 2

S . Then Tt :
H 2

S → H 2
S is a linear isometry on H 2

S , and Ttf is a multiplier on H 2
S satis-

fying ‖MTtf‖ = ‖Mf‖. Indeed, for all g ∈ H 2
S , we have (Ttf)g=Tt(f(T−tg)),

and ‖(Ttf)g‖2 = ‖Tt(f(T−tg))‖2 = ‖f(T−tg)‖2 ≤ ‖Mf‖‖T−tg‖2 = ‖Mf‖‖g‖2,
giving ‖MTtf‖≤‖Mf‖. Then also ‖Mf‖=‖MT−t(Ttf)‖≤‖MTtf‖. The verti-
cal convolution formula yields for s ∈ C 1

2
and g ∈ H 2

S that:

(Pϕg)(s)=(
∫
R
f(s + it)ϕ(t)dt)g(s)=

∫
R
(Ttf)(s)g(s)ϕ(t)dt=

∫
R
((Ttf)g)(s)ϕ(t)dt.

We have Pϕg =
∫
R
((Ttf)g)(·)ϕ(t)dt in H 2

S , where the right-hand side is a
vector-valued Pettis integral in H 2

S , and

‖MPϕ
g‖2 = ‖Pϕg‖2≤∫

R
‖(Ttf)g‖2|ϕ(t)|dt ≤ ∫

R
‖MTtf‖‖g‖2|ϕ(t)|dt

= ‖Mf‖‖g‖2
∫
R
|ϕ(t)|dt=‖Mf‖‖g‖2‖ϕ‖1.

Hence ‖MPϕ
‖ ≤ ‖Mf‖‖ϕ‖1.

Step 3. Define the sequence (ϕm)m∈N in L1(R) by ϕm(t)= m

2π
( sin mt

2
mt
2

)2, t∈R.

Then ϕ̂m(ξ) = max{1− |ξ|
m, 0}, and as ϕ̂m has compact support, ϕm ∈ E for

all m∈N. Since ϕm ≥0, 1= ϕ̂m(0)=
∫
R

ϕm(t)dt=
∫
R

|ϕm(t)|dt=‖ϕm‖1. Then
Pϕm

(s)=
∞∑

n=1
anϕ̂m(log n)n−s =

∫
R
(Ttf)(s)ϕm(t)dt for all s∈C. Steps 1 and 2

give ‖Pϕm
‖∞=‖MPϕm

‖≤‖Mf‖‖ϕm‖1=‖Mf‖1=‖Mf‖ for all m∈N. Taking a
subsequence if necessary, one may assume, thanks to Montel’s theorem, that
Pϕm

tends to some F uniformly on compact subsets of C0, with ‖F‖∞ :=
sups∈C0

|F (s)|≤‖Mf‖. Let σ> 1
2 , t ∈R, and s=σ + it ∈C 1

2
. By the Cauchy-

Schwarz inequality,
∞∑

n=1
|an|n−σ≤(

∞∑

n=1
|an|2) 1

2 (
∞∑

n=1
n−2σ)

1
2 <∞. Also ϕ̂m(log n)→1

as m → ∞, and 0 ≤ ϕ̂m(log n) ≤ 1. Given ε > 0, let N ∈ N be such that
∞∑

n=N+1

|an|n−σ < ε
4 . Let mn, n ∈ {1, · · · , N} be such that

|ϕ̂mn
(log n) − 1| ≤ ε(2N(

N∑

n=1
|an|n−σ + 1))−1.

Then for m > max{m1, · · · ,mN}, we have

|Pϕm
(s)− ∞∑

n=1
ann−s| = | ∞∑

n=1
an(ϕ̂mn

(log n) − 1)n−s|
≤ N∑

n=1
|an||ϕ̂mn

(log n) − 1|n−σ+
∞∑

n=N+1

|an|2n−σ≤N ε
2N 1+2 ε

4 =ε.

Thus for each s ∈ C 1
2
, we have Pϕm

(s) → ∞∑

n=1
ann−s =f(s) as m→∞. Hence

f = F on C 1
2
. But f ∈ H 2

S , and so it is a Dirichlet series. We have shown
that f has a Dirichlet series which converges in C 1

2
, and this f admits a

bounded holomorphic extension F to C0. Thus it follows that f ∈ H ∞. As
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f ∈ H 2
S ∩ H ∞, we get f ∈ H ∞

S . Moreover, ‖f‖∞ = ‖F‖∞ ≤ ‖Mf‖. Since
also ‖Mf‖≤‖f‖∞, we obtain ‖f‖∞ =‖Mf‖.

�

4. Characterisation of the group of units

In this section we will show that f ∈ H ∞
S is invertible in H ∞

S if and only
if infs∈C0 |f(s)| > 0. Below, for a unital commutative complex Banach A, we
denote by A−1 the multiplicative group of all invertible elements of A. For σ ∈
R, let Cσ :={s ∈ C : Res>σ}. Recall that for a Dirichlet series D=

∞∑

n=1
ann−s,

the abscissa of convergence is σc(D) = inf{σ ∈ R : D converges in Cσ} ∈
[−∞,∞]. Similarly, the abscissa of absolute convergence of the Dirichlet series
D is defined by σa(D)= inf{σ ∈R :D converges absolutely in Cσ}. Then we
have −∞ ≤ σc(D) ≤ σa(D) ≤ ∞. Also, σa(D) ≤ σc(D) + 1, see, e.g., [7,
Prop. 1.3].

Theorem 4.1. Let S be a multiplicative subsemigroup of N.
Then (H ∞

S )−1 = {f ∈ H ∞
S : infs∈C0 |f(s)| > 0}.

Proof. If f ∈ (H ∞
S )−1, then there exists a g ∈ H ∞

S such that for all s ∈ C0,
f(s)g(s)=1. In particular, g �= 0, and so ‖g‖∞ >0. Thus

infs∈C0 |f(s)| = infs∈C0 |g(s)|−1 = (sups∈C0
|g(s)|)−1 = ‖g‖−1

∞ > 0.

Conversely, let f = ∑

n∈S

ann−s ∈ H ∞
S be such that δ :=infs∈C0 |f(s)|>0. By [5,

Thm. 2.6], it can be seen that f ∈ (H ∞)−1, i.e., 1
f ∈ H ∞. It remains to show

1
f ∈ H ∞

S . Let ε>0. As σa(f)−σc(f)≤1, and σc(f)≤0, we get σa(f)≤1. Thus
the Dirichlet series given by f1+ε(s) :=

∑

n∈S
ann−(1+ε+s) =

∑

n∈S
ann−(1+ε)n−s

converges absolutely for all s ∈ C with Res≥0. In particular, if s ∈ C0 and
σ := Res, then

|f1+ε(s) − a1| ≤ ∑

n∈S\{1}
|an|
n1+ε

n−σ ≤ (
∑

n∈S\{1}
|an|2) 1

2 (
∑

n∈S\{1}
n−2σ

n2(1+ε)
)

1
2

≤ 1
2σ

‖f‖2( ∞∑

n=1

1
n2

)
1
2

σ→∞−→ 0.

If a1 = 0, then δ = infs∈C0 |f(s)| > 0 and the above implies 0 < δ ≤ 0, a
contradiction. Thus a1 �= 0. The above also shows that there exists a σ0 > 0
such that for all s ∈ Cσ0 , we have with σ :=Res that

|f1+ε(s) − a1| = | ∑

n∈S\{1}
an

n1+ε
n−s| ≤ ∑

n∈S\{1}
|an|
n1+ε

n−σ < |a1|
2

. (∗)

In the half-plane Cσ0 ,

1
f1+ε(s)

=(a1+
∑

n∈S\{1}
an

n1+ε
n−s)−1=a−1

1 (((1+
∞∑

m=1
(−1)m(a−1

1

∑

n∈S\{1}
an

n1+ε
n−s)m))), (�)

where the geometric series converges on account of (*). Thanks to the in-

equality
∞∑

m=1
(|a1|−1 ∑

n∈S\{1}
|an|
n1+ε

n−σ)m ≤ ∞∑

m=1

1
2m

< ∞, it follows that we can
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rearrange the terms in (�), and obtain a sequence (cn)n∈N in C such that for

all s ∈ Cσ0 , we have 1
f1+ε(s)

=
∑

n∈S
cnn−s. Note that we used the semigroup

property of S here, since for n ∈ S, (n−s)m = (nm)−s, and nm ∈ S. But if

the Dirichlet series for 1
f ∈ H ∞ is given by 1

f(s)
=

∞∑

n=1
bnn−s for s ∈ C0, then

we obtain from the above that for s ∈ Cσ0 ,
∞∑

n=1

bn

n1+ε
n−s = 1

f(1 + ε + s)
= 1

f1+ε(s)
=

∑

n∈S
cnn−s.

In particular, for n ∈ N \ S, by the uniqueness of Dirichlet series coefficients

(see, e.g., [6, Thm. 7, §5, Chap. X]), bn

n1+ε
= 0, and so bn =0. This shows that

1
f(s)

=
∞∑

n=1
bnn−s = ∑

n∈S

bnn−s, and so 1
f ∈ H ∞

S , as wanted.

�

Let Au be the subset of H ∞ of Dirichlet series that are uniformly continuous
in C0. Alternatively, Au is precisely the closure of Dirichlet polynomials in
the ‖ · ‖∞ norm (see [2, Thm. 2.3]). For a multiplicative subsemigroup S of N

containing 1, we introduce Au,S =Au ∩ H ∞
S . Then Au,S is a unital Banach

algebra with pointwise operations and the ‖·‖∞ norm. Let W denote the set of
all Dirichlet series f =

∞∑

n=1
ann−s such that ‖f‖1 :=

∞∑

n=1
|an|<∞. With pointwise

operations and the ‖ · ‖1 norm, W is a Banach algebra. Then W ⊂Au ⊂H ∞.

In the case of W , an analogue of the classical Wiener 1/f lemma ([17, p.91])
for the unit circle holds, i.e., if f ∈ W is such that infs∈C+ |f(s)| > 0, then
1
f ∈ W (see, e.g., [11, Thm. 1], and also [9] for an elementary proof). For a
multiplicative subsemigroup S of N containing 1, we introduce WS =W∩H ∞

S .
Then WS is a unital Banach algebra with pointwise operations and the ‖ · ‖1
norm. We have WS ⊂ Au,S ⊂ H ∞

S .

Corollary 4.2. Let S be a multiplicative subsemigroup of N containing 1, and
A ∈ {Au,S ,WS}. Then f ∈ A−1 if and only if δ := infs∈C0 |f(s)| > 0.

Proof. If f ∈ A−1, then f ∈ (H ∞
S )−1. So infs∈C0 |f(s)| > 0 holds by Theo-

rem 4.1. Conversely, let f ∈ A satisfy δ := infs∈C0 |f(s)| > 0. Theorem 4.1
implies 1

f ∈ H ∞
S . For A=WS , the Wiener 1/f theorem for W gives 1

f ∈ W ,
and so 1

f ∈ W ∩H ∞
S =WS . For A=Au,S , as Au,S ⊂ H ∞

S , 1
f ∈ H ∞

S . Also, 1
f

is uniformly continuous in C0: | 1f (w)− 1
f (z)| = |f(z)−f(w)|

|f(z)||f(w)| ≤ 1
δ2 |f(w)−f(z)|,

for all z, w ∈ C0, and f is uniformly continuous in C0. Thus 1
f ∈ Au, and so

1
f ∈ Au ∩ H ∞

S =Au,S . �
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5. The image of H ∞
S under the Bohr transform

In this section, we relate H ∞
S to a natural Banach subalgebra of the Hardy

algebra H∞(Bc0) on the unit ball Bc0 of c0 (space of complex sequences
converging to 0 with termwise operations and the supremum norm), with
vanishing derivatives of certain orders at 0 ∈ c0. We first introduce some
notation. The Banach space �∞ is the set of all bounded complex sequences
with termwise defined operations and the supremum norm: for (an)n∈N ∈ �∞,
‖(an)n∈N‖∞ := supn∈N |an|. We denote by c0 the Banach subspace of �∞ of
all sequences converging to 0, and c00 is the subset of c0 of all sequences in
�∞ with compact support. Let Bc0 be the open unit ball of c0 with centre 0.
Let N be the set of all compactly supported sequences that take values in the
set of nonnegative integers, i.e., N is the subset of c00 consisting of sequences
whose terms belong to N∪{0}. If ν =(nk)k∈N ∈ N and K ∈ N is such that for
all k >K, nk =0, then zν := zn1

1 · · · znK

K for all z ∈ Bc0 , ∂ν := ∂n1
z1

· · · ∂nK
zK

,
|ν| := n1 + · · · + nK , and ν! := n1! · · · nK !. If α=(αk)k∈N,β=(βk)k∈N ∈ N ,
then β�α if for all k ∈ N, βk ≤αk. If α,β ∈ N satisfy β�α then

(
α
β

)
:= α!

β!(α − β)!
.

By the fundamental theorem of arithmetic, for all n∈N, n=
∞∏

k=1

p
νk(n)
k , where

νk(n) ∈ N∪{0} and (pk)k∈N is the sequence of primes in ascending order. We
have ν(n) := (νk(p))k∈N ∈ N . A seminal observation by H. Bohr [4], is that
by putting z1 = 2−s, z2 = 3−s, · · · , zn = p−s

n , · · · , a Dirichlet series in H ∞

can be formally considered as a power series of infinitely many variables. So
f(s) =

∞∑

n=1
ann−s ∈ H ∞ gives the formal power series F (z) =

∞∑

n=1
an

∞∏

k=1

z
νk(n)
k ,

where z = (z1, z2, z3, · · · ). We recall the precise result below.
Let H∞(Bc0) be the complex Banach algebra of bounded holomorphic

(i.e., complex Fréchet differentiable) functions F : Bc0 → C, with point-
wise operations, and the supremum norm. A function P : c0 → C is an m-
homogeneous polynomial if there exists a continuous m-linear form A :cm

0 → C,
such that P (z)=A(z, . . . ,z) for every z ∈ c0. The 0-homogeneous polynomi-
als are constant functions. We first recall that for a holomorphic F : D

N → C,
we have

F (z) =
∞∑

m=0

∑

α∈(N∪{0})N , |α |=m

cα (F )zα for all z ∈ D
N ,

where for each α=(α1, · · · , αN ) ∈ (N ∪ {0})N , |α|=α1 + · · · + αN , and

cα (F ) = 1
(2πi)N

∫

|ζ1|=r1

· · ·
∫

|ζN |=rN

f(ζ1, · · · , ζN )
ζα1+1
1 · · · ζαN+1

N

dζN · · · dζ1,

and arbitrary r1, · · · , rN ∈ (0, 1). Also,

cα (F ) = (∂αF )(0)
α!

.

Then for every m, the function Pm : C
N → C given by

Pm(z) = ∑

α∈(N∪{0})N , |α |=m

cα (F )zα ,



    3 Page 10 of 14 A. Sasane IEOT

is an m-homogeneous polynomial, and we have F =
∞∑

m=0
Pm pointwise on D

N .

It was shown in [7, Prop. 2.28] that for a bounded function F : Bc0 → C,
F ∈ H∞(Bc0) if and only if there exists a unique sequence (Pm)m∈N0 of
m-homogeneous polynomials on c0, such that F =

∞∑

m=0
Pm pointwise on Bc0 .

Moreover, in this case,

Pm(z) = ∑

α∈(N∪{0})N , |α |=m

cα (F )zα

for all z ∈ Bc00 , f =
∞∑

m=0
Pm uniformly on rBc0 for every 0 < r < 1, and

‖Pm‖∞ ≤‖F‖∞. We also recall from [10]:

Proposition 5.1. The map sending F ∈H∞(Bc0) to f =
∞∑

n=1

1
(ν(n))!

(∂ν (n)F )(0)n−s,

is a Banach algebra isometric isomorphism from H∞(Bc0) to H ∞.

The set N is an additive semigroup with termwise addition. If S is an ad-
ditive subsemigroup of N containing the zero sequence 0 :=(0)k∈N, then let
H∞

S (Bc0) be the subalgebra of H∞(Bc0) consisting of all F ∈ H∞(Bc0) such
that for all ν ∈ N \S, (∂ν F )(0)=0. The fact that H∞

S (Bc0) is an algebra fol-
lows immediately from the multivariable Leibniz rule, as follows. If α ∈ N \S

and β � α, then either β �∈ S or α−β �∈ S (otherwise α = β+(α−β) ∈ S,
a contradiction), and so either (∂βF )(0) = 0 or (∂α−βG)(0) = 0, showing
that (∂α (FG))(0) = ∑

β�α

(
α
β

)
(∂βF )(0) · (∂α−βG)(0) = 0, since each summand

on the right-hand side is zero. The completeness is a consequence of the Tay-
lor series expansion recalled above ([7, Proposition 2.28]). Thus H∞

S (Bc0) is
a unital Banach subalgebra of H∞(Bc0) with the supremum norm.

If S is a multiplicative subsemigroup of N containing 1, then the map
S 
 n �→ ν(n) := (νk(n))k∈N ∈ N is an injective semigroup homomorphism,
and we denote its image by ν(S). An immediate corollary of Proposition 5.1
is the following.

Corollary 5.2. Let S be a multiplicative subsemigroup of N containing 1, and
let ν(S) be the image of S under the map S 
 n �→ ν(n).
The map sending elements F ∈ H∞

ν (S)(Bc0) to f =
∞∑

n=1

1
(ν(n))!

(∂ν (n)F )(0)n−s,

is a Banach algebra isometric isomorphism from H∞
ν (S)(Bc0) to H ∞

S .

Let A be a commutative unital complex semisimple Banach algebra. The dual
space A∗ of A consists of all continuous linear complex-valued maps on A. The
maximal ideal space M(A) of A is the set of all nonzero multiplicative elements
in A∗ (the kernels of which are then in one-to-one correspondence with the
maximal ideals of A). As M(A) ⊂ A∗, it inherits the weak-∗ topology of A∗.
The topological space M(A) is a compact Hausdorff space, and is contained
in the unit sphere of the Banach space A∗ with the operator norm, ‖ϕ‖ =
supa∈A,‖a‖≤1 |ϕ(a)| for all ϕ ∈ A∗. Let C(M(A)) be the Banach algebra of
complex-valued continuous maps on M(A) with pointwise operations and the
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norm ‖f‖∞ where ‖f‖∞ = supϕ∈M(A) |f(ϕ)| for f ∈ C(M(A)). The Gelfand
transform â ∈ C(M(A)) of a ∈ A is defined by â(ϕ)=ϕ(a) for ϕ ∈ M(A).

For z∗ ∈ Bc0 , the map ϕz∗ : H∞
ν (S)(Bc0) → C defined by ϕz∗(f) = f(z∗)

for all f ∈ H∞
ν (S)(Bc0) is an element of M(H∞

ν (S)(Bc0)). We will use this
observation to prove Theorem 6.2 in the next and final section.

6. Bass stable rank

In algebraic K-theory, the notion of ‘stable rank’ of a ring was introduced to
facilitate K-theoretic computations (see [3]). We recall the pertinent defini-
tions below.

Let A be a unital commutative ring with unit element denoted by 1.
An element (a1, · · · , an) ∈ An is unimodular if there exist b1, · · · , bn ∈ A
such that b1a1 + · · · + bnan = 1. The set of all unimodular elements of An is
denoted by Un(A). We call (a1, · · · , an+1) ∈ Un+1(A) reducible if there exist
x1, · · · , xn ∈A such that (a1+x1an+1, · · · , an+xnan+1)∈Un(A). The Bass
stable rank of A is the least n ∈ N for which every element in Un+1(A) is
reducible. The Bass stable rank of A is infinite if there is no such n.

What is the Bass stable rank of H ∞
S ?

• If S ={1}, then H ∞
S is C as a ring, and the Bass stable rank is 1.

• If S = {pk : k ∈ N ∪ {0}}, p a prime, then H ∞
S is isomorphic as a

Banach algebra to the Hardy algebra H∞, whose Bass stable rank is 1
(see [16]).

• If S =N, the Bass stable rank of H ∞
S =H ∞ is infinite ([13, Thm. 1.6]).

It is natural to expect that the Bass stable rank of H ∞
S ought to be related to

an appropriate notion of ‘rank/dimension’ of the semigroup S, which perhaps
gives lower or upper bounds on the Bass stable rank. There are several notions
of the rank of a semigroup. For instance, we recall below the notion of ‘lower
rank’ and the notion of ‘upper rank’ introduced in [12]. For every subset S of
a semigroup Σ, there is at least one subsemigroup of Σ containing S, namely
Σ itself. So the intersection of all the subsemigroups of Σ containing S is a
subsemigroup of Σ containing S, and we denote it by 〈S〉. For ∅ �= S ⊂ Σ,
the subsemigroup 〈S〉 consists of all elements of Σ that can be expressed as
finite products of elements of S. Let |S| denote the cardinal number of S.
The lower rank of Σ is r(Σ) := inf{|S| : S ⊂ Σ, and 〈S〉 = Σ}. A subset S
of a semigroup Σ is independent if for all s ∈ S, we have s �∈ 〈S \ {s}〉. The
upper rank of Σ is R(Σ) := sup{|S| : S ⊂ Σ, and S is independent}. It was
shown in [12] that r(S)≤R(S). We have the following:

Conjecture 6.1. Let S be a multiplicative subsemigroup of N such that 1 ∈ S,
and R(S)=∞. Then the Bass stable rank of H ∞

S is infinite.

Let S be a multiplicative subsemigroup of N containing 1, Q ⊂ S be infinite,
and 〈Q〉 = S. As Q ⊂ N, Q must be countable. Arrange its members in
strictly increasing order as q1< q2< q3< · · · . We have the following.
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Theorem 6.2. Let S be a multiplicative subsemigroup of N containing 1, and
let q1< q2< q3< · · · be a sequence in S such that for all n ∈ S, n =

∞∏

k=1

q
αk(n)
k

for a unique compactly supported sequence (αk(n))k∈N of nonnegative inte-
gers. Then the Bass stable rank of H ∞

S is infinite.

Proof. We follow an approach similar to the one from [13, Thm. 1.6], except
that the role of the primes is now replaced by (qk)k∈N. Fix n ∈ N. Define
f1, · · · , fn+1 ∈ H ∞

S by f1 = q−s
1 , · · · , fn = q−s

n , fn+1 =
n∏

j=1

(1 − (qjqn+j)−s).

Then (f1, · · · , fn+1) ∈ Un+1(H ∞
S ) since expanding the product defining fn+1

gives fn+1=1 − q−s
1 · g1 − · · · − q−s

n · gn = 1 − f1g1 − · · · − fngn, for suitable
g1, · · · , gn ∈H ∞

S , and so with gn+1 :=1, we get f1g1+· · ·+fngn+fn+1gn+1=
1. Let (f1, · · · , fn+1) be reducible, and the elements x1, · · · , xn ∈ H ∞

S be
such that (q−s

1 + x1fn+1, · · · , q−s
n + xnfn+1) ∈ Un(H ∞

S ). Let y1, · · · , yn ∈
H ∞

S be such that (q−s
1 + x1fn+1)y1 + · · · + (q−s

n + xnfn+1)yn = 1. Denote
the isomorphism from Corollary 5.2 by ι : H ∞

S → H∞
ν (S)(Bc0). Then we have

(ι(q−s
1 ) + ι(x1)ι(fn+1))ι(y1) + · · · + (ι(q−s

n ) + ι(xn)ι(fn+1))ι(yn) = 1. Taking
the Gelfand transform, we obtain

( ̂ι(q−s
1 ) + ι̂(x1) ̂ι(fn+1))ι̂(y1) + · · · + ( ̂ι(q−s

n ) + ι̂(xn) ̂ι(fn+1))ι̂(yn) = 1. (�)

For z=(z1, · · · , zn) ∈ C
n, let z∗ =(z1, · · · , zn, z1, · · · , zn, 0, · · · ) ∈ Bc0 , and

Φ(z)=

{
− n∏

j=1

(1−|zj |2)(((ι̂(x1)(ϕz∗), · · ·, ι̂(xn)(ϕz∗)))) if |zj |<1, j =1, · · ·, n,

0 (∈ C
n) otherwise.

Then Φ is a continuous map from C
n into C

n. We have that Φ vanishes
outside D

n, and so maxz ∈Dn ‖Φ(z)‖2 = supz ∈Cn ‖Φ(z)‖2, where ‖ · ‖2 de-
notes the usual Euclidean norm in C

n. This implies that there must exist
an r � 1 such that Φ maps K := rD

n
into K. Since the set K is com-

pact and convex, by Brouwer’s Fixed Point Theorem (see, e.g., [15, The-
orem 5.28]), it follows that there exists a ζ ∈ K such that Φ(ζ) = ζ.

Since Φ is zero outside D
n, we see that ζ ∈ D

n. Let ζ = (ζ1, · · · , ζn), and
ζ∗ = (ζ1, · · · , ζn, ζ1, · · · , ζn, 0, · · · ) ∈ Bc0 . Then for each j ∈ {1, · · · , n},

0 = ζj +
n∏

k=1

(1−|λk|2)ι̂(xj)(ϕζ∗)
n∏

k=1

(1−|λk|2)
= ζj + (ι̂(xj) ̂ι(fn+1))(ϕζ∗). (��)

But from (�), we have
n∑

j=1

( ̂ι(q−s
j )+ ι̂(xj) ̂ι(fn+1))ι̂(yj)

∣
∣
ϕζ ∗

= 1, which together

with (��) yields 0 = 1, a contradiction. As n ∈ N was arbitrary, it follows
that the Bass stable rank of H ∞

S is infinite. �

E.g., consider S = {1} ∪ {n : there exist x, y ∈ N such that n = x2 + y2}
from Example 2.2(8). Then the Bass stable rank of H ∞

S is infinite, as S is
generated by P ∪ Q, where P consists of primes p that are not of the form



IEOT On Banach subalgebras of the Dirichlet Hardy algebra. . .Page 13 of 14     3 

4k + 3 for some k ∈ N∪ {0}, and Q is the set of elements q = p2, where p is
a prime of the form 4k + 3 for some k ∈ N∪ {0}.
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