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 a b s t r a c t

This paper derives limit properties of nonparametric kernel regression estimators without re-
quiring existence of density for regressors in ℝ𝑞 . In functional regression limit properties are 
established for multivariate functional regression. The rate and asymptotic normality for the 
Nadaraya–Watson (NW) estimator is established for distributions of regressors in ℝ𝑞 that allow 
for mass points, factor structure, multicollinearity and nonlinear dependence, as well as fractal 
distribution; when bounded density exists we provide statistical guarantees for the standard rate 
and the asymptotic normality without requiring smoothness. We demonstrate faster convergence 
associated with dimension reducing types of singularity, such as a fractal distribution or a factor 
structure in the regressors. The paper extends asymptotic normality of kernel functional regression 
to multivariate regression over a product of any number of metric spaces. Finite sample evidence 
confirms rate improvement due to singularity in regression over ℝ𝑞 . For functional regression 
the simulations underline the importance of accounting for multiple functional regressors. We 
demonstrate the applicability and advantages of the NW estimator in our empirical study, which 
reexamines the job training program evaluation based on the LaLonde data .

1.  Introduction

This paper extends nonparametric kernel regression to more general regressor settings than those considered in the literature. The 
general regression model

𝑌 = 𝑚(𝑋) + 𝑢, 𝐸(𝑢|𝑋) = 0, (1)

is free from the difficulty of choosing a parametric specification. We focus on the Nadaraya–Watson (NW) estimator, introduced 
by Nadaraya (1965) and Watson (1964), which recognizes that a continuous regression function can be estimated pointwise by a 
weighted average that attaches higher weights to close-by observations.

Here we emphasize the fact that the regressor 𝑋 can be a vector in ℝ𝑞 , or alternatively 𝑋 may belong to a function space, a more 
general metric space, or comprise of components from several such metric spaces. In fact, the components of 𝑋 do not necessarily 
have to belong to spaces of vectors or functions but could be intervals, graphs, or networks, as long as a metric (or even a semi-metric) 
can be defined for each space. 𝑌  represents a scalar dependent variable, 𝑢 denotes an unobserved error, and the conditional mean 
function 𝑚 satisfies some smoothness assumptions.

The NW estimator has been used extensively with 𝑋 ∈ ℝ𝑞 (see e.g. the textbook Li and Racine, 2007, for discussion and examples) 
and has recently been introduced to functional regression by Ferraty and Vieu (2004). Well known limit distributional results for 
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\begin {equation}\int E\left ( \widehat {m}\left ( x\right ) -m\left ( x\right ) \right ) ^{2}M\left ( x\right ) dF_X=\int \left [ var\left ( \widehat {m}\left ( x\right )\right ) +bias^{2}\left ( \widehat {m}\left ( x\right ) \right ) \right ] M\left ( x\right ) dF_X. \label {WIMSE}\end {equation}


$h$


$h^{0}$


\begin {equation*}CV=n^{-1}\sum _{i=1}^{n}\left ( Y_{i}-\widehat {m}_{-i}\left ( X_{i}\right ) \right ) ^{2}M\left ( X_{i}\right )\end {equation*}


$\widehat {m}_{-i}$


$h_{cv}$


$\mathbb {R}^{q}$


$d$


$h^{o}=n^{-\frac {1}{4+rd}}a^{o}$


$a^{o}$


$\beta $


$\left \{ x,y\right \}$


$X\in \mathbb {R}^{q}$


$V\left ( r\right ) \subset \mathbb {R}^{q}$


$r<q$


$V\left ( r\right )$


$V\left ( r\right )$


$r$


$\tilde {h}$


$\hat {f}_{X}$


$h\left ( X_{i}\right ) =\tilde {h}\left ( \frac {\hat {f}_{X}\left ( X_{i}\right ) }{G}\right ) ^{-\alpha }$


$G=\left ( \prod \hat {f}_{X}\left ( X_{j}\right ) \right ) ^{1/n}$


$\alpha $


$1/2$


$\hat {f} _{X}(x)$


$\ $


$P(C(x,\tilde {h}))$


$\tilde {h}$


$x$


\begin {equation*}F_{X}(x)=pF^{d}(x)+(1-p)\Phi (x)\quad \text {with }p=.2,\end {equation*}


$F^{d}$


$D=\{-1,0,1\}$


$\Phi $


$\{(Y_{i},X_{i})\}_{i=1}^{n}$


\begin {equation*}Y_i=\sin (2.5X_i)+\sigma \varepsilon _i ,\end {equation*}


$\{\varepsilon _{i}\}_{i=1}^{n}$


$\sigma $


$snr$


$K(u)=\frac { 3}{4}(1-{u^{2}})1(u^{2}\leq 1)$


$n$


$\log (RMSE)$


$\log (n)$


$\log (n)$


$RMSE\propto n^{-2/5}$


$\log (RMSE)=\alpha _{0}+\alpha _{1}\log (n)$


$\alpha _{1}$


$-0.4$


$-\alpha _1$


$O(n^{-\alpha _1})$


$_a$


$-$


$-$


$m(X)=\log (X_{1})+\log (X_{2})$


$X_{1}$


$X_{2}$


$X_{1}+X_{2}=d(k)$


$d(k)$


$k=1,2,3$


$X_{1}$


$X_{2}$


$d(k)$


$m(X)=\log (X_{1})+\log (D-X_{1})$


$D=d(k)$


$\{(Y_{i},X_{1i},X_{2i}\}_{i=1}^{n}$


\begin {equation*}Y_i=\log (X_{1i})+\log (X_{2i})+\sigma \varepsilon _i\end {equation*}


$k=1,2,3$


$0.5$


$0.3$


$0.2$


$d(1)=4,d(2)=6,d(3)=7$


$X_{1}$


$U[1,3]$


$X_{1}$


$X_{2}$


$X_{1}$


$D$


$D$


$-0.40$


$-0.33$


$q=2$


$m(X)=m(X_{1},X_{2})$


$X_{1}$


$X_{2}\in \mathbb {R}$


$m_{1}(X_{1})$


\begin {equation*}Y_i=m_{1}(X_{1i})+X_{2i}+\sigma \varepsilon _i.\end {equation*}


\begin {equation*}X_{1i}(t)=\sin (w_it)+(a_i+2\pi )t+b_i,\quad t\in (-1,1)\end {equation*}


$a_i$


$b_i$


$U(-1,1)$


$w_i$


$U(-\pi ,\pi )$


\begin {equation*}m_{1}(X_{1i})=\int _{-1}^{1}|X_{1i}^{\prime }(t)|(1-\cos (\pi t))dt.\end {equation*}


$X_{2}$


$X_{1}$


$X_{2}=m_{1}(Z)$


$Z(t)$


$X_{1}(t)$


$(a_i,b_i,w_i)$


$(a_i^{\prime },b_i^{\prime },w_i^{\prime })$


$(a_i^{\prime },b_i^{\prime },w_i^{\prime })$


$(a_i,b_i,w_i)$


$\rho $


$0$


$0.8$


$X_{1}$


$\left \Vert x_{1}-X_{1}\right \Vert _{1}=\sqrt { \int _{-1}^{1}\left ( x_{1}^{\prime }(t)-X_{1}^{\prime }(t)\right ) ^{2}dt}$


$K(u)=1-u^{2}$


$[0,1]$


$[-1,1]$


$X_{2}$


$X_1$


$n=250$


$_1$


$X_2$


$_2$


$Y$


$T$


$X$


\begin {equation*}m(x,j)=E(Y|X=x,T=j)\text { for }j=0,1\end {equation*}


\begin {equation*}\hat {\tau }_T(x_i)= \widehat {m}(x_i,1) - \widehat {m}(x_i,0) \quad i=1,\ldots ,n_T\end {equation*}


$n_T$


$X$


$X$


$K((d-d_{i})/h)=1-h$


$d=d_{i}$


$h$


$h\in \lbrack 0,1/2]$


$re78$


$\$920$


$(T,X)$


$\$936$


$23$


$\widehat {m}(x,1)$


$\widehat {m}(x,0)$


$X$


$\$1,045$


$(T,X)$
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the NW estimator were derived in ℝ𝑞 under restrictions requiring existence and smoothness of the density. For functional regression 
(where there is no density) the limit distributional results were derived in a univariate context only.

In this paper we establish asymptotic normality of the NW estimator for regression in the presence of a general regressor 𝑋 that 
could have a multivariate singular distribution in ℝ𝑞 or is comprised of any number of functional and vector regressors. A singular 
distribution does not admit a density function that integrates to it.

In settings where data has both discrete and continuous components (Li and Racine, 2007) obtained asymptotic normality of the 
NW estimator without having to deal with the singularity by treating the discrete and (absolutely) continuous components separately. 
However, sometimes the distinction between discrete and continuous variables is not straightforward; continuous variables could be 
discretized with different levels of discretization. When data with both discrete and continuous components is viewed as a vector 
in a Euclidean space, 𝑋 ∈ ℝ𝑞 , the distribution of 𝑋 is singular. In our simulations we demonstrate that there may be no gain from 
avoiding the singularity by considering the discrete regressors separately.

The presence of latent factors in the continuous regressors, common in macroeconomic and finance models (e.g., Bai et al., 2006, 
for portfolio, stock returns and macroeconomic data) could also imply a singular distribution. For example, if the regressor is a 𝑞 × 1
vector 𝑋 ∼ 𝑁(0,Σ) with Σ a singular matrix of rank 𝑟 < 𝑞, the distribution is singular. Similarly, non-linear common factors, such as 
in Hotelling (1929) spatial model of horizontal differentiation which assumes that each consumer has an ‘ideal’ variety identified 
by his location on the unit circle (see also Desmet and Parente, 2010, imply a smaller effective dimension for the regressor space, 
resulting in a singular distribution over ℝ𝑞 . This also is true when there exists a functional relation between the regressors (e.g., with 
exact collinearity that can arise in production functions, Ackerberg et al., 2015).

Singularity also originates from a fractal structure in the data; examples in economics include the daily prices in the cotton market 
(Mandelbrot, 1997), financial markets, and networks (see Takayasu and Takaysu, 2009). Fractals are common to many geographic 
features, including coastlines, river networks and landforms, and have been used in urban growth studies (e.g., Shen, 2002) and 
spatial econometrics in general. Furthermore, singularities also result when continuously distributed variables exhibit mass points 
(e.g. Arulampalam et al., 2017, for neonatal mortality and Olson, 1998, for weekly hours worked).

We demonstrate the benefit of extending the NW estimator to regression with singular data by applying it to the data from a 
randomized experiment in a job training program evaluation study by Lalonde (1986). Following the work by Rosenbaum and Rubin 
(1983), Dehejia and Wahba (1999, 2002) applied propensity score methods to the LaLonde data for estimation of causal treatment 
effects in an attempt to generalize the experimental results to nonexperimental data. The propensity score matching was used instead 
of a multivariate nonparametric model with matching on individual characteristics which was deemed impractical because of the 
high dimensionality of the regressors. The benefits of kernel regression were analyzed in Heckman et al. (1997, 1998) (without 
allowing for singularity). The LaLonde data and methodologies were discussed by Angrist and Pischke (2009) and in a recent review 
by Imbens and Xu (2024). As shown here the discreteness of most of the regressors implies reduced dimension of the support of the 
joint distribution; for continuous variables existence of continuous density is not imposed and mass at zero in income is accounted 
for. Our asymptotic results provide the validity of the NW estimator for this singular distribution. The kernel estimators we employ 
give new insights into the heterogeneous effects of the program, based on a variety of individual characteristics and compare quite 
well with random forest estimates of the conditional average treatment effect on the treated (CATT) (Wager and Athey, 2018).

Our results also extend to functional regression (see, e.g. Ramsay and Silverman, 2005) where estimation and inference techniques 
have been developed by Ferraty and Vieu (2004) and pointwise asymptotic normality was established in regression for a Banach or 
metric space by Ferraty and Vieu (2006), Ferraty et al. (2007) and Geenens (2015) in the i.i.d. case. Masry (2005) derived the limit 
distribution for a strongly mixing process. Recently Kurisu et al. (2025) made a case for extending the univariate set-up of functional 
regression by considering jointly a random vector and a function to obtain an estimate for the propensity score used in evaluating 
the average treatment effect. We establish asymptotic normality in multivariate functional regression with regressors in any number 
of heterogeneous metric spaces. This provides a basis for simultaneously evaluating the impact of the different predictors rather than 
comparing their performance in distinct models, as in Caldeira et al. (2020) and Ferraty and Nagy (2022).1 Our simulations show 
that using multivariate rather than univariate functional regression can improve the fit of the kernel estimator.

We derive asymptotic normality results for a random regressor 𝑋 supported on some domain in a vector space, ℝ𝑞 , or metric, semi-
metric space, Ξ[1], or a product of such spaces Ξ[𝑞] ≡ Ξ[1]

1 ×… × Ξ[1]
𝑞 . The metrics on Ξ[1]

𝑙 , ‖.‖𝑙, may differ for each of the 𝑞 components 
of function spaces, thus as in Kurisu et al. (2025) one may be the ℝ1 space and the other one a function space. A key ingredient in 
our technical derivations is small cube probability, which characterizes local properties of 𝑋 in the general multivariate case in place 
of the density. We introduce this concept here.

In the univariate metric space, Ξ = Ξ[1], the probability measure is characterized by the small ball probability (e.g., see Ferraty 
and Vieu, 2006): for the ball 𝐵(𝑥, ℎ) = {𝑋 ∶ ‖𝑥 −𝑋‖ ≤ ℎ} centered at 𝑥 in Ξ[1] the probability measure is denoted 𝑃𝑋 (𝐵(𝑥, ℎ)). Char-
acterizing the measure locally via a ball is insufficient when we wish to examine heterogeneous regressors in ℝ𝑞 or, in general, in 
product metric spaces Ξ[𝑞].

Kankanala and Zinde-Walsh (2024) introduced small cube probability for a cuboid. A cuboid 𝐶(𝑥, ℎ) centered 
around 𝑥 =

(

𝑥1,… , 𝑥𝑞
)

∈ ℝ𝑞 for a vector ℎ =
(

ℎ1,…ℎ𝑞
)′ with positive finite components is defined as the set 𝐶(𝑥, ℎ) =

{

𝑋 ∈ ℝ𝑞 ∶ |

|

𝑋𝑙 − 𝑥𝑙|
|

≤ ℎ𝑙 , 𝑙 = 1,… , 𝑞
}

. With the distribution function of 𝑋 given by 𝐹𝑋 the corresponding probability measure is 

1 E.g., Caldeira et al. (2020) compares the model forecasting aggregate stock market excess return on a function representing the history of returns 
with regression models based on traditional predictors. Ferraty and Nagy (2022) compare the performance of separate models for predicting adult 
height with functional regressors (one being growth velocity profiles from ages 1–10 and the other for 5–8).
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𝑃𝑋 (𝐶(𝑥, ℎ)) = ∫𝐶(𝑥,ℎ) 𝑑𝐹𝑋 . The small cube probability permits us to extend the regression on univariate metric spaces to Ξ[𝑞] where 
the probability measure 𝑃𝑋 is defined. For the cuboid

𝐶(𝑥, ℎ) =
{

𝑋 ∶ ‖

‖

‖

𝑋𝑙 − 𝑥𝑙‖‖
‖𝑙

≤ ℎ𝑙 , 𝑙 = 1,… , 𝑞
}

=
{

𝑋 ∶ 𝑋𝑙 ∈ 𝐵𝑙(𝑥𝑙 , ℎ𝑙
)

, 𝑙 = 1,… , 𝑞
}

. (2)

the corresponding small cube probability is also denoted 𝑃𝑋 (𝐶(𝑥, ℎ)).
One of our contributions is the derivation of auxiliary technical results that express moments for the multivariate kernels and 

related functions in terms of the small cube probabilities without appealing to differentiability on which previous multivariate deriva-
tions relied. The moments and moment bounds are derived for general multivariate local functions under arbitrary distributions over 
ℝ𝑞 or probability measures over Ξ[𝑞]. Bounds on a moment functional expressed via power of small cube probability pinpoint the 
rate of growth of the functional. These results generalize the derivations for the univariate kernel used in functional regression to 
the multivariate setting. The full details of these auxiliary technical results are presented in the supplemental material (Appendix A). 
The moment expressions could find use in other contexts, for instance for local linear and local polynomial estimation in ℝ𝑞 or in 
products of suitable metric spaces, Ξ[𝑞], kernel estimation of distribution functions and conditional distributions in ℝ𝑞 as well as to 
kernel regression of objects in metric spaces on objects in products of spaces.

Implementation of the NW estimator relies on a tuning bandwidth parameter. We show that in ℝ𝑞 a popular cross-validation 
method of choosing a bandwidth with properties that were worked out for the absolutely continuous (a.c.) case, has similar prop-
erties in some empirically relevant classes of singular distributions with dimension-reducing singularity. We also examine adaptive 
bandwidth selection for regressor distributions that are represented by a mixture of a continuous distribution with some mass points.

We provide simulation evidence on some important features of the behavior of the NW estimator under possible singularity of 
the distribution of regressors, 𝐹𝑋 , in ℝ𝑞 , in particular on the pointwise rate of convergence and specific impact of mass points. We 
examine the behavior of the NW estimator for models with dependence on both a functional object in Ξ[1] and a random variable.

The structure of the paper is as follows. Section 2 provides the set-up suitable for the multivariate vector and functional regression 
highlighting the probability measure for the regressor. Section 3 gives the asymptotic normality results under the most general 
distributional assumptions. Section 4 discusses implementation, in particular, bandwidth selection. Section 5 provides a sketch of the 
simulation results and Section 6 is devoted to the empirical study. The supplementary material collects various auxiliary results and 
the proofs as well as the details of the Monte Carlo simulations and the empirical study.

2.  The set-up and assumptions

This section provides the formula for the Nadaraya–Watson (NW) kernel estimator over Ξ[𝑞], introduces some useful notation and 
gives formal assumptions. The distributional assumptions are very general in that they do not restrict the distribution over ℝ𝑞 to have 
absolutely continuous components, and apply to the probability measure over the multivariate metric space Ξ[𝑞] for an arbitrary 𝑞.
Assumption 1  (Probability Measure). Given the metric measure spaces Ξ[1]

𝑙 , 𝑙 = 1,… , 𝑞 with corresponding sigma-algebras and 
probability measures 𝑃𝑋𝑙  assume that the sigma-algebra for Ξ[𝑞] =

∏𝑞
𝑙=1 Ξ

[1]
𝑙  is generated by the products of sets from sigma algebras 

for Ξ[1]
𝑙  and a probability measure 𝑃𝑋 is defined on this sigma algebra; the mapping of 𝑋 =

(

𝑋1,… , 𝑋𝑞) into each of the components 
𝑋𝑙 ∈ Ξ[1]

𝑙  is measurable (𝑃𝑋𝑙
) with respect to the joint measure.

In the product space Ξ[𝑞] we define a vector 𝑤 as (𝑤1,… , 𝑤𝑞)𝑇  where each component is in the corresponding space, thus for 
Ξ = ℝ𝑞 , 𝑤 is a 𝑞 -dimensional vector of reals, in Ξ = Ξ[𝑞] each 𝑤𝑙 ∈ Ξ[1]

𝑙 , 𝑙 = 1,… , 𝑞. The bandwidth vector is ℎ =
(

ℎ1,… , ℎ𝑞
)

∈ ℝ𝑞

with 0 < ℎ = min
{

ℎ1,… , ℎ𝑞
}

> 0 and ℎ̄ = max
{

ℎ1,… , ℎ𝑞
}

. We use the same notation ‖⋅‖ for the absolute value of a scalar in ℝ1, the 
Euclidean norm for a vector in ℝ𝑞 or norm for a function in Ξ = Ξ[1], with Ξ[1] a Banach space, or metric (semi-metric) in a metric 
space Ξ[1]; where the meaning is not clear from the context we shall specify.

2.1.  The Nadaraya–Watson (NW) estimator

The NW estimator, 𝑚̂(𝑥), for a sample {(𝑌𝑖, 𝑋𝑖
)}𝑛

𝑖=1 generated by (1) is defined below. Generically the argument of the kernel 
function is 

𝑊𝑋 (𝑥) =

⎧

⎪

⎨

⎪

⎩

ℎ−1(𝑥 −𝑋) =
(

(

ℎ1
)−1(𝑥1 −𝑋1),… , (ℎ𝑞)−1(𝑥𝑞 −𝑋𝑞)

)

on Ξ = ℝ𝑞

ℎ−1‖𝑥 −𝑋‖ =
(

(

ℎ1
)−1‖

‖

‖

𝑥1 −𝑋1‖
‖

‖1
,… , (ℎ𝑞)−1‖𝑥𝑞 −𝑋𝑞

‖𝑞

)

on Ξ = Ξ[𝑞].
(3)

The NW estimator is given by
𝑚̂(𝑥) = 𝐵−1

𝑛 (𝑥)𝐴𝑛(𝑥),  with (4)

𝐵𝑛(𝑥) =
1
𝑛

𝑛
∑

𝑖=1
𝐾
(

𝑊𝑖(𝑥)
)

; 𝐴𝑛(𝑥) =
1
𝑛

𝑛
∑

𝑖=1
𝐾
(

𝑊𝑖(𝑥)
)

𝑌𝑖. (5)

where 𝐾(𝑊𝑖(𝑥)) = 𝐾(𝑊𝑋𝑖
(𝑥)) is a multivariate (non-negative) kernel function and ℎ usually depends on 𝑛; 𝑥 such that at least for 

some 𝑖 we have that 𝐾(

𝑊𝑖(𝑥)
)

> 0. The kernel function 𝐾 and bandwidth vector ℎ determine the properties for the NW estimator. 
In the metric space Ξ = Ξ[1] the kernel function 𝐾 is defined for a univariate non-negative argument; in the case Ξ = Ξ[𝑞] with 𝑞 > 1
different bandwidths could appear for the different components 𝑊 𝑙

𝑋 (𝑥), 𝑙 = 1,… , 𝑞. With a symmetric kernel on ℝ𝑞 we can just write 
𝑊𝑋 (𝑥) = ℎ−1‖𝑥 −𝑋‖ for any Ξ.
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2.2.  The kernel

We restrict the multivariate kernel functions on ℝ𝑞 to have bounded support and be suitably differentiable in the interior.
Let 𝐼𝜉 denote any subset of the set {1,… , 𝑞}  of consecutive non-negative integers; there are 2𝑞 such subsets including the empty 

set ∅; denote by 𝑞(𝜉) the cardinality of the set 𝐼𝜉 =
{

𝑗1,… , 𝑗𝑞(𝜉)
} with 𝑗1 < … < 𝑗𝑞(𝜉). We use 

∏

𝑗∈𝐼𝜉

(

𝜕𝑗
) to denote an operator that, 

when applied to a differentiable function 𝑔(𝑧) = 𝑔
(

𝑧1,… , 𝑧𝑞
) at 𝑧, maps it to its partial derivative for 𝑗1 < … < 𝑗𝑞(𝜉), that is

⎛

⎜

⎜

⎝

∏

𝑗∈𝐼𝜉

(

𝜕𝑗
)

⎞

⎟

⎟

⎠

𝑔(𝑧) = 𝜕𝑞(𝜉)

𝜕𝑗1 … 𝜕𝑗𝑞(𝜉)
𝑔(𝑧).

We call a function 𝑔(𝑧) “sufficiently differentiable” if for any set 𝐼𝜉 the derivative 
(

∏

𝑗∈𝐼𝜉

(

𝜕𝑗
)

)

𝑔(𝑧) exists and is continuous at any 
point on the interior of its support.

The following assumption is made on the kernel function.
Assumption 2  (Kernel). 

(a) The kernel function 𝐾(𝑤) = 𝐾
(

𝑤1,… , 𝑤𝑞) is a sufficiently differentiable density function.
(b) 𝐾(𝑤) is non-negative; 𝐾(𝑤) is non-increasing for 𝑤 ∶ 𝑤𝑗 ≥ 0, 𝑗 = 1,… , 𝑞.
(c) 𝐾(𝑤) is either symmetric (with respect to zero) with support on [−1, 1]𝑞 or 𝐾(𝑤) is supported on [0, 1]𝑞 .
(d) 𝐾(𝑤) satisfies 𝐾(𝜄) > 0 where 𝜄 = (1,… , 1)′.

Assumption 2(a–c) are satisfied by the commonly employed product kernels of Epanechnikov or quartic kernels. Assumption 2(d) 
is not usual for kernel regression on ℝ𝑞 ; in the context of univariate functional regression it is satisfied by a Type I kernel defined in 
Ferraty and Vieu (2006) as 𝐾 ∶ 𝐶1𝐼[0,1] ≤ 𝐾 ≤ 𝐶2𝐼[0,1] with some 0 < 𝐶1 ≤ 𝐶2 < ∞. Condition (d) in conjunction with (a–c) provides 
the same type of univariate kernel. Extended to a multivariate setting it can be said that a kernel that satisfies Assumption 2(a–d) 
is a type I kernel. The uniform kernel is an example. The functional regression literature demonstrates that with kernels of type I 
asymptotic normality can be established in more general univariate settings. As commonly used in ℝ𝑞 kernels are not of type I, the 
asymptotic normality results are given separately to apply under Assumption 2(a–c) and under the full Assumption 2.

2.3.  Additional assumptions

Consider the process {(𝑋𝑖, 𝑌𝑖
)}

𝑖∈ℕ. An i.i.d sequence would provide the simplest characterization, but strong mixing makes it 
possible to extend the results to time series data. Denote by 𝑏

𝑎  the sigma algebra generated by 
{(

𝑋𝑖, 𝑌𝑖
)}𝑏

𝑖=𝑎. Define
𝛼(𝑙) = sup

𝑡
sup

𝐴∈ 𝑡
−∞;𝐵∈∞

𝑡+𝑙

|𝑃 (𝐴𝐵) − 𝑃 (𝐴)𝑃 (𝐵)|.

Recall that the process is strong mixing if 𝛼(𝑙) → 0 as 𝑙 → ∞.

Assumption 3  (Data Generating Process and Moments). 

(a) The sequence {(𝑌𝑖, 𝑋𝑖)
} for 𝑖 = 1,… , 𝑛 with 𝑌𝑖 ∈ ℝ;𝑋𝑖 ∈ Ξ[𝑞] is stationary and strong mixing with 𝛼(𝑙) that satisfies for some 𝜁 > 0

𝛼(𝑙) < 𝐶𝑙−𝜅 ; 𝜅 >
2(2 + 𝜁 )

𝜁
.

(b) 𝐸(𝑢|𝑋 = 𝑥) = 0; 𝜇2(𝑥) = 𝐸
(

𝑢2|𝑋 = 𝑥
) satisfies 0 < 𝐿𝜇2 < 𝜇2(𝑥) < 𝑀𝜇2 < ∞, 𝜇2(𝑥) is continuous in the neighborhood of 𝑥.

(c) 𝐸|

|

𝑌𝑖||
2+𝜁 < ∞ and 𝐸(|𝑢|2+𝜁 |𝑋 = 𝑥) < ∞.

(d) For 𝑥 ∈ Ξ[𝑞] and 𝑖 ≠ 𝑗 the bivariate function

𝜇
(

𝑥1, 𝑥2
)

= 𝐸
(

|

|

|

𝑢𝑖𝑢𝑗
|

|

|

|𝑋𝑖 = 𝑥1, 𝑋𝑗 = 𝑥2
)

is continuous in a neighborhood of the point (𝑥, 𝑥) ∈ Ξ[𝑞] × Ξ[𝑞].
(e) The conditional expectation 𝐸

(

|

|

|

𝑌𝑖𝑌𝑗
|

|

|

|𝑋𝑖, 𝑋𝑗

)

≤ 𝐶 < ∞ for all 𝑖, 𝑗.

The assumption requires a polynomial bound on the rate of decline of the mixing coefficient with a link to the moment of 𝑌 ; it is 
similar to those in Masry (2005) and Hong and Linton (2020).
Assumption 4  (Conditional mean). The function 𝑚(𝑥) on the space Ξ[𝑞] is such that

|𝑚(𝑥) − 𝑚(𝑧)| ≤ 𝑀Δ𝑚max
𝑙
‖

‖

‖

𝑥𝑙 − 𝑧𝑙‖‖
‖

𝛿

𝑙
; 𝛿 > 0.

Assumption 4 requires Holder continuity of 𝑚(𝑥); it would follow from differentiability or Lipschitz continuity in ℝ𝑞 with 𝛿 = 1. 
In the above assumptions, and below, 𝐿 and 𝑀 denote lower and upper bounds of functions where the subscript typically denotes 
the function whose bounds are provided. The bounds could depend on the point 𝑥.
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2.4.  The probability measures

For the probability measure 𝑃𝑋 on a generic space Ξ, that could coincide with ℝ𝑞 , Ξ[1], or Ξ[𝑞], any point 𝑥 ∈ Ξ is a point of support 
if for ℎ > 0 the measure 𝑃𝑋

(

𝐶
(

𝑥, ℎ
))

> 0.

2.4.1.  Measures on ℝ𝑞

By the Lebesgue decomposition, the distribution 𝐹𝑋 on ℝ𝑞 can be represented as a mixture of an absolutely continuous distribution, 
𝐹 𝑎.𝑐., a singular distribution (the distribution function is continuous but there is no function that integrates to it), 𝐹 𝑠, and a discrete 
distribution, 𝐹 𝑑 ∶

𝐹𝑋 (𝑥) = 𝛼1𝐹
𝑎.𝑐.(𝑥) + 𝛼2𝐹

𝑠(𝑥) + 𝛼3𝐹
𝑑 (𝑥); 𝛼𝑙 ≥ 0, 𝑙 = 1, 2, 3;

∑3
𝑙=1

𝛼𝑙 = 1.

In a multivariate setting as soon as at least one variable is continuously distributed, mass points do not arise and the joint 
distribution is a continuous function, but with some discrete components or mass points in some of the continuous components the 
distribution can no longer be absolutely continuous and is singular. In many applications at least one of the variables is assumed 
continuous and in a semiparametric regression often an index model is assumed (single index in Ichimura, 1993; multiple index 
in Donkers and Schafgans, 2008) to avoid singularity as well as to reduce dimensionality of the model. In a general multivariate 
distribution the presence of singularity achieves reduction of dimension (see, e.g. examples 2–4 in Kankanala and Zinde-Walsh, 
2024) that will have a similar beneficial effect on the convergence of the kernel estimator.

2.4.2.  Measures on metric spaces and products
The discussion in this section applies to the space ℝ𝑞 as a special case. Particular classes of probability measures considered in 

univariate functional regression (e.g. Ferraty and Vieu, 2006; Ferraty et al., 2007) have a small ball probability centered at a point 
𝑥 of support either with a polynomial (fractal) rate of decline 𝑃𝑋 (𝐵(𝑥, ℎ)) ∼ 𝐶(𝑥)ℎ𝜏 > 0 (𝜏 > 0), or with an exponential type rate of 
decline 𝑃𝑋 (𝐵(𝑥, ℎ)) ∼ 𝐶(𝑥) exp(−ℎ−𝜏1 logℎ−𝜏2 ) (𝜏1 > 0, 𝜏2 > 0) as ℎ → 0. This characterization can be applied to the multivariate setting 
by replacing 𝐵(𝑥, ℎ) with the cuboid and the univariate bandwidth in the rate with ℎ̄. The exponential rate of decay of the small ball 
probability requires a type I kernel and leads to slow convergence for the estimators (curse of dimensionality). There are ways to 
mitigate the curse of dimensionality arising from such exponential decay. It is common to apply finite dimensional approximation of 
these functionals as suggested in Gasser et al. (1998). Indeed, the case where functional data can be accurately approximated in a 
finite dimensional space is not rare (corresponds to observation of smooth curves with common shape) as noted by Ferraty and Nagy 
(2022).

Kernels of type I play an important role in establishing pointwise asymptotic normality in the absence of any restrictions on the 
decline of the small cube measure. For kernels that may not be of type I sufficient conditions on the shrinkage of the probability 
measure as ℎ → 0 were proposed in Assumption 𝐻3 in Ferraty et al. (2007), Ferraty and Vieu (2006) and were referred to in various 
subsequent papers on functional regression, e.g. Hong and Linton (2020). The assumption below generalizes these conditions to apply 
to 𝐶(𝑥, ℎ) on Ξ[𝑞]; the assumption is both necessary for the conditions to hold (see the supplementary material, Appendix B) and at 
the same time sufficient for the convergence results.
Assumption 5  (Small ball probability measure). Given any point 𝑥 ∈ Ξ[𝑞] in the support of the probability measure 𝑃𝑋 for all ℎ with 
ℎ > 0 and for some 0 < 𝜀 < 1, there is a constant 1 < 𝐶𝜀 < ∞ such that

𝑃𝑋 (𝐶(𝑥, ℎ))
𝑃𝑋 (𝐶(𝑥, 𝜀ℎ))

< 𝐶𝜀 < ∞. (6)

Definition 1.  is the class of probability measures that satisfies (6).2

A polynomial decay condition places a measure into class . Indeed if the small cube probability satisfies
0 < 𝐿𝑃 (𝑥)(2ℎ)𝑠(𝑥)𝑞 ≤ 𝑃𝑋 (𝐶(𝑥, ℎ)) ≤ 𝑀𝑃 (𝑥)

(

2ℎ̄
)𝑠(𝑥)𝑞 < ∞ (7)

where for some 𝑐, 𝐻(𝑥), 1 ≤ 𝑐 < ∞, 0 < 𝐻(𝑥) < ∞ and ℎ̄ = 𝑐ℎ < 𝐻(𝑥), 0 ≤ 𝑠(𝑥) ≤ 1 and 𝑀𝐹 (𝑥)∕𝐿𝐹 (𝑥) < 𝐵 < ∞ at all points of support 
𝑥, (6) holds with 𝐶𝜀 = 𝐵(𝑐∕𝜀)𝑞 .

Condition (7) applies quite widely and holds for many distributions of regressors used in econometric models. In ℝ𝑞 it is satisfied 
by any absolutely continuous distribution with a positive bounded density function 𝑓𝑋 (𝑥) where 𝑀𝑃 (𝑥) ≥ sup

𝑥̃∈𝐶(𝑥,𝐻)
𝑓𝑋 (𝑥̃); 𝐿𝐹 (𝑥) =

inf
𝑥̃∈𝐶(𝑥,𝐻∕𝑐)

𝑓𝑋 (𝑥̃) and 𝑠(𝑥) = 1. If 𝑥 is an isolated mass point then (7) applies with 𝑠 = 0. If 𝑋 has a linear structure with 𝑟 common 
factors, the probability measure is singular and satisfies (7) with 𝑠(𝑥) = 𝑠 = 𝑞

𝑟 . For a fractal distribution that is singular with constant 
𝑠, 0 < 𝑠 < 1, the bounds also apply.

Condition (7) is satisfied by the general class of Ahlfors (1966) regular (A-r) distributions common in statistics, where for this 
class 𝑠(𝑥) = 𝑠, and 𝐿𝑃 (𝑥) = 𝐿 and 𝑀𝑃 (𝑥) = 𝑀 are constants, as well as by a finite mixture of such distributions (as proved in the 

2 Condition (6) is equivalent to the doubling property (e.g. Vol’berg and Konyagin, 1988) that states that (6) applies with 𝜀 = 1∕2. Indeed for any 
𝜀 there are positive integers 𝜅1, 𝜅2 ∶ 𝜀 ≥ 2−𝜅1  and 2−1 ≥ 𝜀𝜅2 . If the measure is doubling for constant 𝐶1∕2, then (6) holds for 𝐶𝜀 = 𝐶𝜅1

1∕2; if (6) holds, 
then the constant for doubling is 𝐶1∕2 = 𝐶𝜅2

𝜀 . We introduce the form (6) in case there is a preference for some 𝜀.
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supplementary material, Appendix B). Thus an absolutely continuous distribution (𝑠 = 1) or, more generally, a measure given by a 
continuous possibly singular distribution function that satisfies (7) contaminated with some mass points (𝑠 = 0) is in  ; this applies 
to the empirical example examined here, ensuring the pointwise asymptotic normality of the NW estimator with standard kernels.

2.4.3.  Joint measure
Consider the product space Ξ[2𝑞] = Ξ[𝑞] × Ξ[𝑞]; the measure on this product space has marginals 𝑃𝑋 on each Ξ[𝑞] (see, e.g., Pollard, 

2001). The joint measure 𝑃𝑠,𝑡(𝐶(𝑥, ℎ) × 𝐶(𝑥, ℎ)), defined as Pr (𝑋𝑡 ∈ 𝐶(𝑥, ℎ), 𝑋𝑠 ∈ 𝐶(𝑥, ℎ)
)

, is a product of the measures of the cuboid 
in the case of independency. With dependence an additional assumption is made on how the joint measure relates to the small cuboid 
measure. We provide the same assumption as in e.g. Masry (2005) and Hong and Linton (2020) for the small cube probability.
Assumption 6  (Joint Measure). The joint measure 𝑃𝑠,𝑡(𝐶(𝑥, ℎ) × 𝐶(𝑥, ℎ)) is such that for some 0 < 𝑀𝐹𝐹 < ∞

sup
𝑡≠𝑠

𝑃𝑠,𝑡(𝐶(𝑥, ℎ) × 𝐶(𝑥, ℎ)) ≤ 𝑀𝐹𝐹

( .
𝑃𝑋 (𝐶(𝑥, ℎ))

)2
. (8)

3.  Asymptotic normality of the NW estimator

Consider the NW estimator as given by (4), (5). As the sample size increases the bandwidths are assumed go to zero. For Ξ = ℝ𝑞

the denominator, 𝐵𝑛(𝑥) is proportional to the usual kernel density estimator, given by ℎ−𝑞𝐵𝑛(𝑥), at point 𝑥. When the density, 𝑓𝑋 (𝑥), 
exists and is continuous, the estimator ℎ−𝑞𝐵𝑛(𝑥) consistently estimates 𝑓𝑋 (𝑥), but if the density does not exist, ℎ−𝑞𝐵𝑛(𝑥) diverges 
to infinity. Consistency of the NW estimator 𝑚̂(𝑥) over a univariate metric space was established in Györfi et al. (2002), the limit 
distribution in Masry (2005), Ferraty et al. (2007) and Geenens (2015).

The key to the asymptotic normality result is the derivation of the moments for multivariate functions of the form 
𝑔(𝑋)𝐾𝑚(ℎ−1‖𝑥 −𝑋‖

) for general probability measures and establishing lower and upper bounds (derivations in the supplementary 
material, Appendix B). The bounds provide expressions in terms of the small cube probability:

𝐿𝐸𝑔𝐾𝑚 (𝑥)𝑃𝑋 (𝐶(𝑥, ℎ)) ≤ |

|

|

𝐸
[

𝑔(𝑋)𝐾𝑚(ℎ−1‖𝑥 −𝑋‖

)]

|

|

|

≤ 𝑀𝐸𝑔𝐾𝑚 (𝑥)𝑃𝑋 (𝐶(𝑥, ℎ)) (9)

with constants 𝐿𝐸𝑔𝐾𝑚 (𝑥) and 𝑀𝐸𝑔𝐾𝑚 (𝑥) at 𝑥. Most important, (9) provides a lower bound on 𝐸𝐵𝑛(𝑥) = 𝐸𝐾
(

𝐾𝑚(ℎ−1‖𝑥 −𝑋‖

))

, given by 
𝐿𝐸𝐾𝑃𝑋 (𝐶(𝑥, ℎ)), with appropriate conditions for 𝐿𝐸𝐾 to be strictly positive to ensure that the denominator of the NW estimator is such 
that it exists and the limit does not blow up. Type I kernel automatically entails that 𝐿𝐸𝐾 > 0, but for kernels such as Epanechnikov 
the bound requires Assumption 5. With 𝑔(𝑋) that is continuous at 𝑥

𝐸
[

𝑔(𝑋)𝐾𝑚(ℎ−1‖𝑥 −𝑋‖

)]

= 𝑔(𝑥)𝐸
[

𝐾𝑚(ℎ−1‖𝑥 −𝑋‖

)]

(1 + 𝑜(1)).

These moment expressions for distributions over ℝ𝑞 hold under the standard assumptions of existence and continuity of (bounded) 
density 𝑓𝑋 , and the function 𝑔, where

𝐸
[

𝑔(𝑋)𝐾𝑚(ℎ−1‖𝑥 −𝑋‖

)]

=
𝑞
∏

𝑖=1

(

−ℎ𝑖
)

𝑔(𝑥)𝑓𝑋 (𝑥)∫ 𝐾𝑚(𝑣)𝑑𝑣(1 + 𝑜(1)), (10)

with more details about the 𝑜(1) term under smoothness of 𝑓𝑋 (see, e.g. derivations in Li and Racine, 2007). Once the moments and 
the bounds are derived, the proofs of asymptotic normality proceed along similar lines to those in Masry (2005).

The point-wise limit normality is provided in the next theorem under two alternative types of conditions: (i) with type I kernel 
without imposing further constraints on 𝐹𝑋 , and (ii) not imposing the type I kernel but with the distributional Assumption 5. Denote 
the bias of the estimator given 𝑥, 𝐸(

𝑚̂(𝑥)
)

− 𝑚(𝑥), by 𝑏𝑖𝑎𝑠(𝑚̂(𝑥)). The difference 𝑚̂(𝑥) − 𝑚(𝑥) is delivered by 𝐴
𝑐
𝑛(𝑥)

𝐵𝑛(𝑥)
 with the “centered” 

𝐴𝑐
𝑛(𝑥) = 𝐴𝑛(𝑥) − 𝑚(𝑥)𝐵𝑛(𝑥).

Theorem 1. Under either of the following sets of assumptions (i) Assumptions 1–4 and 6 or (ii) Assumptions 1, 2(a–c), 3– 6  for ℎ → 0 as 
𝑛 → ∞ such that 𝑛𝑃𝑋 (𝐶(𝑥, ℎ)) → ∞

(a)
√

𝑛𝐸
[

𝐾
(

ℎ−1‖𝑥 −𝑋‖

)]

√

𝜇2(𝑥)𝐸
[

𝐾2
(

ℎ−1‖𝑥 −𝑋‖

)]

(

𝑚̂(𝑥) − 𝑚(𝑥) − 𝑏𝑖𝑎𝑠(𝑚̂(𝑥)
)

→𝑑 𝑍 ∼ 𝑁(0, 1);

(b) the rates are
𝑏𝑖𝑎𝑠(𝑚̂(𝑥) = 𝑂(ℎ̄𝛿) + 𝑂

(

𝑛𝑃𝑋 (𝐶(𝑥, ℎ))
)−1;

√

𝑛𝐸
[

𝐾
(

ℎ−1‖𝑥 −𝑋‖

)]

√

𝜇2(𝑥)𝐸
[

𝐾2
(

ℎ−1‖𝑥 −𝑋‖

)]

≃ 𝑂
(

(𝑛𝑃𝑋 (𝐶(𝑥, ℎ))1∕2
)

.

(c) for ℎ such that ℎ̄2𝛿(𝑛𝑃𝑋 (𝐶(𝑥, ℎ))
)

→ 0
√

𝑛𝐸
[

𝐾
(

ℎ−1‖𝑥 −𝑋‖

)]

√

𝜇2(𝑥)𝐸
[

𝐾2
(

ℎ−1‖𝑥 −𝑋‖

)]

(

𝑚̂(𝑥) − 𝑚(𝑥)
)

→𝑑 𝑍 ∼ 𝑁(0, 1).
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Remarks.

1. A sequence of bandwidths at 𝑥 that satisfy the conditions of the theorem always exists. Indeed, whatever the rate of monotonic 
decline in 𝑃𝑋 (𝐶(𝑥, ℎ)) as ℎ → 0 for 𝑛 → ∞ a sequence of ℎ that depends on 𝑛 such that 𝑛𝑃𝑋 (𝐶(𝑥, ℎ)) → ∞ always exists. The rate for 
the bias of 𝑚̂(𝑥) in Ξ[𝑞] is established in the theorem as 𝑂(

ℎ̄𝛿
)

+ 𝑂
(

(

𝑛𝑃𝑋 (𝐶(𝑥, ℎ))
)−1

)

. For the bias (squared) to disappear in the 
limit ℎ̄2𝛿𝑃𝑋 (𝐶(𝑥, ℎ))𝑛 needs to go to zero. If 𝑃𝑋 (𝐶(𝑥, ℎ)) → 0 a bandwidth sequence that simultaneously satisfies 𝑛𝑃𝑋 (𝐶(𝑥, ℎ)) → ∞
and ℎ̄2𝛿𝑃𝑋 (𝐶(𝑥, ℎ))𝑛 → 0 can always be found; when 𝑥 is a mass point 𝑃𝑋 (𝐶(𝑥, ℎ)) will be bounded from below, but selecting 
ℎ = 𝑜

(

𝑛−1∕2𝛿
) for such a point makes the bias term go to zero.

2. The assumptions of Theorem 1 and the moment computations in the supplementary material (Appendix B) imply that 
𝐸
[

𝐾
(

ℎ−1‖𝑥 −𝑋‖

)] has the same rate as 𝑃𝑋 (𝐶(𝑥, ℎ)) while 𝑣𝑎𝑟𝐴𝑐
𝑛(𝑥) declines at the rate 𝑃𝑋 (𝐶(𝑥, ℎ))∕𝑛. The rate for the asymp-

totic variance for 𝑚̂(𝑥) equals (𝑛𝑃𝑋 (𝐶(𝑥, ℎ))
)−1 (this goes to zero).

3. The limit result shows that when density exists for a distribution on ℝ𝑞 , the standard convergence rate 𝑛1∕2ℎ𝑞∕2 applies since then 
𝑃𝑋 (𝐶(𝑥, ℎ)) = 𝑂(ℎ𝑞). This rate holds even when the density is discontinuous. Without the usual smoothness assumptions made in 
the literature, statistical guarantees for the rate and for asymptotic normality are thus shown to hold.

4. If there is singularity at the point 𝑥 that satisfies (7) with 𝑠 < 1, then the rate is 𝑛1∕2ℎ𝑠𝑞∕2, which is faster than in the absolutely 
continuous case (𝑛1∕2ℎ𝑠𝑞∕2 > 𝑛1∕2ℎ𝑞∕2

)

, mitigating somewhat the “curse of dimensionality”. When 𝑥 is an isolated mass point then 
at that point the parametric rate 𝑛1∕2 holds.

5. Under continuous differentiability the rate of the bias can be reduced by employing a local linear estimator (see, e.g. the standard 
derivations in Li and Racine, 2007, and for univariate functional regression in Ferraty and Nagy, 2022). Establishing the distribu-
tional properties of the local linear estimator with arbitrary probability distributions in ℝ𝑞 and multivariate probability measures 
in a metric space can proceed similarly, but requires stronger assumptions.

The convergence rate in (c) of Theorem 1 is 𝑂(

(𝑛𝑃𝑋 (𝐶(𝑥, ℎ))−1∕2
)

.3 Existence of a limit variance 𝜎2𝑚̂(𝑥) requires that 
(

𝑛𝑃𝑋 (𝐶(𝑥, ℎ))
)

[

𝐸𝐾
(

ℎ−1‖𝑥−𝑋‖

)]2

𝜇2(𝑥)𝐸
[

𝐾2(ℎ−1‖𝑥−𝑋‖

)]  converges. Without additional assumptions it is possible that the ratio does not converge; see ex-
ample in the supplementary material (Appendix B) that provides a case when convergence does not hold; this happens when the 
small cube probability declines very rapidly and the kernel is not uniform. Suitable additional assumptions on the distribution, such 
as 𝐻3 in Ferraty et al. (2007) and Condition 3(i) in Masry (2005) and similar ones in subsequent papers provide restrictions on the 
probability measure on Ξ[1] that are sufficient for the convergence. Generally, one needs to ensure that the limits given below on the 
expectation of the kernel function and its square hold.4

Assumption 7. As 𝑛 → ∞, ℎ → 0
(

𝑃𝑋 (𝐶(𝑥, ℎ))
)−1𝐸

[

𝐾𝑠(ℎ−1‖𝑥 −𝑋‖

)]

→ 𝐵̄𝑠(𝑥); 𝑠 = 1, 2.

This assumption holds quite widely. From the moment expressions it can easily be shown that it holds for the uniform kernel 
without any additional distributional assumptions. In the case of continuous density it holds by virtue of (10) with

𝐵̄1(𝑥) = 𝑓𝑋 (𝑥)∫ 𝐾(𝑣)𝑑𝑣, 𝐵̄2(𝑥) = 𝑓𝑋 (𝑥)∫ 𝐾2(𝑣)𝑑𝑣. (11)

Suppose that singularity arises, because of combining discrete and continuous variables in ℝ𝑞 or functional dependence between the 
regressors, that restrict the support of the distribution to be in some subspace of dimension 𝑟 < 𝑞, 𝑉 (𝑟) ⊂ ℝ𝑞 . If the distribution on 
𝑉 (𝑟) is absolutely continuous with a continuous density, then derivations provide similar limits to (11) with integration over 𝑉 (𝑟)
and density restricted to 𝑉 (𝑟).

Define now

𝛼(𝑛, ℎ) = 𝑛𝑃𝑋 (𝐶(𝑥, ℎ)); 𝜎2𝑚̂(𝑥) = 𝜇2(𝑥)𝐵̄2(𝑥)∕(𝐵̄1(𝑥))2.

Theorem 2. Under the conditions of Theorem 1 and Assumption 7 with 𝛼(𝑛, ℎ) → ∞ and for ℎ such that 𝛼(𝑛, ℎ)ℎ̄2𝛿 → 0

√

𝛼(𝑛, ℎ)
(

𝑚̂(𝑥) − 𝑚(𝑥)
)

→𝑑 𝑁
(

0, 𝜎2𝑚̂(𝑥)
)

.

This limit extends the results that were obtained in the literature on kernel estimation in ℝ𝑞 under smoothness assumptions on 
the distribution 𝐹𝑋 . For functional regression our assumptions are comparable to those of Ferraty et al. (2007), Masry (2005), and 
subsequent papers while they make the extension to multivariate functional regression possible. 

3 This convergence rate obtains under ℎ → 0. In the presence of an irrelevant regressor, say 𝑥(2), such that 𝑚(𝑥) = 𝑚
(

𝑥(1)
) for all 𝑥 =

(

𝑥(1), 𝑥(2)
)

, 
this requirement can be restricted to the function 𝑚(𝑥(1)) with the irrelevant 𝑥(2) eliminated. For the estimator this elimination can be achieved by 
setting the bandwidth on components of 𝑥(2) to be larger than the range of those variables, possibly infinite.
4 This implies that the extra condition is also required for the Corollary 1 of Hong and Linton (2020).
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4.  Implementation and bandwidth selection

Estimation of 𝑚(𝑥) requires a selection of the kernel, 𝐾, and bandwidth, ℎ. As may be clear from the results here and the literature, 
type I kernel (such as the uniform) is preferred but other kernels can also deliver asymptotic rates provided the small cube probability 
does not decline exponentially fast. Aside from the estimator of the conditional mean, estimators of variance and mean squared error 
are needed to evaluate the performance of the estimator. While in the literature on kernel regression on ℝ𝑞 , the leading term of the 
limit variance is expressed via the density function, often in the actual implementation the corresponding estimators do not make 
use of plug-in expressions, instead estimating the variance directly from the data and possibly with bootstrap (see Hall and Horowitz, 
2013).

Cross-validation procedures in popular statistical packages (such as R) provide a single bandwidth (vector) that was shown to be 
consistent for the “optimal” bandwidth: minimizer of weighted integrated mean squared error, WIMSE, (e.g. Li and Racine, 2007). 
The proofs of consistency relied on absolute continuity of the regressors. The consistency results extend to some classes of singular 
distributions.

WIMSE is defined for an absolutely continuous distribution with density function 𝑓𝑋 (𝑥) as

∫ 𝐸
(

𝑚̂(𝑥) − 𝑚(𝑥)
)2𝑀(𝑥)𝑓𝑋 (𝑥)𝑑𝑥

with some weighting function 𝑀(𝑥) chosen to mitigate boundary effects. The expression can be written with 𝑑𝐹𝑋 replacing 𝑓𝑋 (𝑥)𝑑𝑥
(valid in the case of singularity):

∫ 𝐸
(

𝑚̂(𝑥) − 𝑚(𝑥)
)2𝑀(𝑥)𝑑𝐹𝑋 = ∫

[

𝑣𝑎𝑟
(

𝑚̂(𝑥)
)

+ 𝑏𝑖𝑎𝑠2
(

𝑚̂(𝑥)
)]

𝑀(𝑥)𝑑𝐹𝑋 . (12)

This function depends on the bandwidth vector ℎ used in the estimator (see the review of bandwidth selection methods, including 
cross-validation and plug-in in Köhler et al., 2014). The “optimal” bandwidth vector ℎ0 is a minimizer of the WIMSE criterion function 
based on a trade-off between the variance and bias of the NW estimator.

In the cross-validation procedure the finite sample analogue of WIMSE replaces the expectation by

𝐶𝑉 = 𝑛−1
𝑛
∑

𝑖=1

(

𝑌𝑖 − 𝑚̂−𝑖
(

𝑋𝑖
))2𝑀

(

𝑋𝑖
)

employing the leave-one-out kernel estimator, 𝑚̂−𝑖, and provides the bandwidth vector ℎ𝑐𝑣 by minimizing the CV criterion.
Hall et al. (2007) gave a general result about consistency of the cross-validated bandwidth for regression over ℝ𝑞 with discrete and 

continuous regressors, with some of the regressors possibly being irrelevant. Their general result in Theorem 2.1 was obtained under 
a set of assumptions that required independent identically distributed observations, restrictions on the support of the probability 
measure, two continuous derivatives for density, the regression function, and the conditional variance of the error; in addition, for 
the 𝑑 continuous relevant regressors ℎ𝑜 = 𝑛−

1
4+𝑟𝑑 𝑎𝑜 holds with the vector 𝑎𝑜 having unique, positive and finite components. This result 

was extended to weakly dependent data by Li et al. (2009) under assumptions that replaced the i.i.d. assumption by requiring strict 
stationarity and 𝛽-mixing in the process for {𝑥, 𝑦} and martingale difference error, with suitable restrictions on the mixing parameters.

The result on the cross-validated bandwidth applies more widely. For instance, consider a singular distribution of 𝑋 ∈ ℝ𝑞 , where 
there is a functional dependence among the continuous variables in the presence of possibly some discrete covariates such that the 
support of the distribution is restricted to a subspace 𝑉 (𝑟) ⊂ ℝ𝑞 of dimension 𝑟 < 𝑞 represented by a union of affine subspaces. If, 
restricted to 𝑉 (𝑟), the distribution function is such that the conditions of Theorem 2.1 of Hall et al. (2007) or Theorem 1 of Li et al. 
(2009) are satisfied (Assumption CV) then the conclusions of those theorems are valid and the consistency of the bandwidth and 
automatic dimension reduction by smoothing out irrelevant regressors hold for this singular distribution. More details are provided 
in the supplementary material (Appendix B).

Importantly, no knowledge of 𝑉 (𝑟) or 𝑟 is required. This implies that for functionally dependent continuous regressors the knowl-
edge of the number of factors is not required for the consistency of the cross-validated bandwidth or the automatic dimension 
reduction. We conjecture that in many other cases with possible singularity the cross-validation procedure will facilitate dimension 
reduction by smoothing out irrelevant variables.

Bandwidth selection could benefit from adaptation to different types of singularity. The treatment of adaptive bandwidth selection 
in the literature (Fan and Gijbels, 1996; Sain, 1994; Demir and Toktamis, 2010) typically focuses on adjusting the smoothing parameter 
to accommodate the varying data density, but not dealing with singularity or mass points. Adaptive bandwidths can provide a better fit 
of the criterion function by increasing the number of observations used to estimate the function at a point of sparsity.5 Such bandwidths 
can similarly be constructed for cases of singular distributions. But these adaptation procedures still need to be investigated in the case 
of general mixtures of singular distributions. However, singularity adaptation simplifies considerably for the empirically important 
case of a mixture of an absolutely continuous distribution with mass points, where the two levels of singularity can be separated. The 
approach is detailed in the supplementary material (Appendix B).

5 Given some initial bandwidth ℎ̃ and density estimate at this bandwidth, 𝑓𝑋 , an adaptive bandwidth is defined for each point as ℎ
(

𝑋𝑖
)

=

ℎ̃
(

𝑓𝑋
(

𝑋𝑖
)

𝐺

)−𝛼
 where 𝐺 =

(
∏

𝑓𝑋
(

𝑋𝑗
))1∕𝑛 is the geometric mean of the densities and 𝛼 is typically selected to be 1∕2. One could construct 𝑓𝑋 (𝑥)

with a uniform kernel in which case it is identical to an estimate of 𝑃 (𝐶(𝑥, ℎ̃)) by the proportion of observations in the ̃ℎ cuboid around 𝑥.
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Table 1 
Empirical rate of convergence (i.e., −𝛼1 for 𝑂(𝑛−𝛼1 )) 
in the mass point and high derivative setting.
𝐹𝑋 (𝑥) = 0.2𝐹 𝑑 (𝑥) + 0.8Φ(𝑥) 𝐹𝑋 (𝑥) = trinormal (𝑥)
 X  NW  NW𝑎  X  NW
 0.00 −0.455 −0.515  0.00 −0.449
 0.10 −0.186 −0.443  0.50 −0.381
 0.20 −0.411 −0.438  0.75 −0.416
 0.30 −0.465 −0.431  1.00 −0.413
 0.40 −0.461 −0.425

Note: The column labeled NW𝑎 contains the re-
sults implementing the adaptive bandwidth selec-
tion procedure in the presence of masspoints.

5.  Simulations

This section provides the highlights of various simulations that show features of the finite sample performance of the NW estimator 
under singularity. Additional details and features are in the supplementary material (Appendix C).

5.1.  Univariate (point mass example)

In this example we consider the regression distribution with mass points. Alongside we examine the trinormal mixture considered 
in Kotlyarova et al. (2016), an a.c. distribution which represents features (high density derivatives) that makes it comparable to a 
singular distribution.

The distribution with mass points, following Jun and Song (2019), is given by
𝐹𝑋 (𝑥) = 𝑝𝐹 𝑑 (𝑥) + (1 − 𝑝)Φ(𝑥) with 𝑝 = .2,

where 𝐹 𝑑 is the discrete uniform distribution function with 𝐷 = {−1, 0, 1} the set of mass points; Φ is the standard Gaussian distribution 
function.

We simulated 500 random samples {(𝑌𝑖, 𝑋𝑖)}𝑛𝑖=1 using the model
𝑌𝑖 = sin(2.5𝑋𝑖) + 𝜎𝜀𝑖,

for different sample sizes. The error {𝜀𝑖}𝑛𝑖=1 is drawn independently of the regressor and has a standard Gaussian distribution; 𝜎 is 
selected to yield a given signal to noise ratio, 𝑠𝑛𝑟, here selected to equal one. We use the Epanechnikov kernel 𝐾(𝑢) = 3

4 (1 − 𝑢2)1(𝑢2 ≤ 1)
and obtain the leave-one-out cross-validated bandwidth.

We analyze the pointwise RMSE at a coarse grid of points across samples of size 𝑛 equal to 50, 100, 200, 400, 800, 1600, 3200 
based on 500 replications from the above DGP. To obtain empirical rates of convergence we regress log(𝑅𝑀𝑆𝐸) on log(𝑛) and a 
constant. The coefficient on log(𝑛) is the “realized” rate of convergence; for example if 𝑅𝑀𝑆𝐸 ∝ 𝑛−2∕5 (univariate kernel regression 
with smooth density and second order kernel) then log(𝑅𝑀𝑆𝐸) = 𝛼0 + 𝛼1 log(𝑛) and 𝛼1 should be close to −0.4.6

In Table 1, illustrative results are provided for the regressor distribution with mass points and the trinormal distribution on a set 
of support points.

For the distribution with mass points, the NW estimator with cross-validated bandwidth performs remarkably well at points 
sufficiently far from our mass points (faster than the expected rate of −0.4). The empirical rate at mass points is close to −0.5 when 
the bandwidth is set equal to zero. The empirical convergence rate is slow for points close to the mass points (within the small 
ball probability measure under cross validated bandwidth) due to the boundary weight associated with mass in the neighborhood. 
Bandwidth adaptive to masspoints improves the rate. The convergence rates for the trinormal distribution, are reflective of usual 
smooth nonparametric regression although are somewhat faster at points with high derivatives.

5.2.  Bivariate (with effective dimension 1)

We consider a model where 𝑚(𝑋) = log(𝑋1) + log(𝑋2) with regressors 𝑋1 and 𝑋2 satisfying 𝑋1 +𝑋2 = 𝑑(𝑘), with fixed 𝑑(𝑘) corre-
sponding to 𝑘 = 1, 2, 3.7 This is equivalent to a model with one continuous and one discrete regressor 𝑚(𝑋) = log(𝑋1) + log(𝐷 −𝑋1), 
with 𝐷 = 𝑑(𝑘).

We simulated 500 random samples {(𝑌𝑖, 𝑋1𝑖, 𝑋2𝑖}𝑛𝑖=1 using the model
𝑌𝑖 = log(𝑋1𝑖) + log(𝑋2𝑖) + 𝜎𝜀𝑖

6 The authors thank Jeff Racine for suggesting this insightful exercise. See also Hall and Racine (2015).
7 An example could be where 𝑋1 and 𝑋2 represent earnings of the husband and wife and, for tax purposes, their combined income is set at some 

𝑑(𝑘).
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Table 2 
Empirical Rates of the NW.c and NW.d estimators.
𝑋1 𝑋2 𝑑(𝑘)  NW.c  NW.d

(𝑋1 , 𝑋2) (𝑋1 , 𝑑(𝑘))

 ordered  unordered
 1.5  2.5  4 −0.451 −0.422 −0.419
 2.0  2.0  4 −0.436 −0.429 −0.426
 2.5  1.5  4 −0.429 −0.406 −0.404
 1.5  4.5  6 −0.457 −0.410 −0.422
 1.5  5.5  7 −0.445 −0.392 −0.410

Note: The column labeled “ordered” contains the NW.d 
estimator where the discrete kernel is used for the dis-
crete regressor; the column labeled “unordered” uses 
the Epanechnikov kernel.

Table 3 
RMSE of the NW estimator in the presence of functional regres-
sor 𝑋1 at cross validated bandwidth, 𝑛 = 250.

𝑋2 = 𝑁(0, 1) 𝑋2 = 𝑚1(𝑍)

𝜌 = 0.0 𝜌 = 0.8

 In-sample
 RMSE  0.746  0.915  1.058
 Misspecification:
 RMSE1  1.140  1.918  2.099
 RMSE2  1.833  1.854  1.746
 Out-of-sample
 RMSE  0.915(4)  1.026(19)  1.210(18)

Note: RMSE1 stands for the RMSE where the 𝑋2 regressor 
is excluded and RMSE2 stands for the RMSE when ignoring 
the functional regressor. The number in brackets indicates 
the number of simulations (out of 500) where at the cross-
validation bandwidth no neighbor to the out-of-sample obser-
vation exists.

for different sample sizes with the additive error chosen as in the previous simulation. The probability of an observation belonging 
to a sub-population with 𝑘 = 1, 2, 3 is set equal to 0.5, 0.3, and 0.2 respectively and 𝑑(1) = 4, 𝑑(2) = 6, 𝑑(3) = 7; 𝑋1 is drawn from the 
uniform distribution: 𝑈 [1, 3].

We implement the NW estimator first using 𝑋1 and 𝑋2 as regressors (NW.c) and second using 𝑋1 and 𝐷 as regressors (NW.d) and 
obtain the leave-one-out cross-validated bandwidths. For the discrete regressor 𝐷 we use special discrete kernel weights proposed by 
Wang and Ryzin (1981) in accordance with Racine and Li (2004).

In Table 2 we provide illustrative results comparing the empirical rate of convergence of the NW.c and NW.d at a grid of points.
The reduced dimensionality is reflected in the estimates of the pointwise rate of convergence which are around −0.40 rather than 

the slower rate of −0.33 the presence of two continuous regressors would suggest (𝑞 = 2). The estimate of the empirical rate for NW.c is 
slightly faster than NW.d, moreover, indicating that there is no gain from separate treatment of discrete regressors. With the reduced 
dimension structure here therefore one gets the rate corresponding to the Hausdorf dimension of the regressor space automatically 
without the need to recognize that it is possible to transform the regressors to one discrete, and one continuous variable.

5.3.  Bivariate (in the presence of a functional regressor)

Here we examine a functional regressor in a multivariate setting. Consider a bivariate conditional mean function 𝑚(𝑋) = 𝑚(𝑋1, 𝑋2), 
where 𝑋1 is a functional regressor and 𝑋2 ∈ ℝ  may be correlated with some 𝑚1(𝑋1). Let

𝑌𝑖 = 𝑚1(𝑋1𝑖) +𝑋2𝑖 + 𝜎𝜀𝑖.

Following (Ferraty et al., 2007), the functional regressor is defined as

𝑋1𝑖(𝑡) = sin(𝑤𝑖𝑡) + (𝑎𝑖 + 2𝜋)𝑡 + 𝑏𝑖, 𝑡 ∈ (−1, 1)

with 𝑎𝑖 and 𝑏𝑖 drawn from 𝑈 (−1, 1), 𝑤𝑖 drawn from 𝑈 (−𝜋, 𝜋) and

𝑚1(𝑋1𝑖) = ∫

1

−1
|𝑋′

1𝑖(𝑡)|(1 − cos(𝜋𝑡))𝑑𝑡.
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Fig. 1. Nonparametric fit of the conditional expectation by pre-treatment earnings and treatment status (cross validated bandwidth, Epanechnikov 
kernel).
Note: All graphs related to the empirical application are rescaled with all numbers denoted in ’000$s.

Fig. 2. Nonparametric fit of the conditional expectation by years of education, race, and treatment status with median pre-treatment earnings and 
age) (cross validated bandwidth, Epanechnikov kernel).
Note: The median pre-treatment earnings equals $936 and the median age is 23. The estimates are rescaled and are denoted in ’000$.

For 𝑋2 we consider two possibilities: (a) a N(0,1) random variable independent of 𝑋1; (b) 𝑋2 = 𝑚1(𝑍) where 𝑍(𝑡) is a functional 
regressor similar to 𝑋1(𝑡) with (𝑎𝑖, 𝑏𝑖, 𝑤𝑖) replaced by (𝑎′𝑖 , 𝑏′𝑖 , 𝑤′

𝑖) where the correlation between (𝑎′𝑖 , 𝑏′𝑖 , 𝑤′
𝑖) and (𝑎𝑖, 𝑏𝑖, 𝑤𝑖) is given by 𝜌

(and set equal to either 0 or 0.8).
For the functional regressor 𝑋1 we use the same metric as in Ferraty et al. (2007), that is ‖‖𝑥1 −𝑋1

‖

‖1 =
√

∫ 1
−1

(

𝑥′1(𝑡) −𝑋′
1(𝑡)

)2𝑑𝑡. 
We use a product kernel with kernel 𝐾(𝑢) = 1 − 𝑢2 defined on [0, 1] for the functional regressor and the Epanechnikov kernel defined 
on [−1, 1] for 𝑋2.

Table 3 shows RMSE of the NW estimator at the cross-validated bandwidths as well as RMSE where either the functional or scalar 
regressor is dropped. The loss from misspecifying the functional regression as univariate can be substantial.

6.  Empirical study

The causal inference literature has made extensive use of the Lalonde (1986) data on the National Supported Work Demonstration 
(NSW) program following the release of that data by Dehejia and Wahba (1999, 2002). Their finding, that propensity score-based 
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Fig. 3. Box-plots of the CATT estimates (NW and RF). Note: The estimates are rescaled and are denoted in ’000$.

methods provide a way to generalize the experimental results on the impact of training to nonexperimental data, was influential 
and led to significant methodological advances and practical changes as discussed in the review by Imbens and Xu (2024). Here, we 
consider the experimental sample to analyze potential heterogeneous treatment effects using multivariate kernel estimation. Kernel-
based matching on individual characteristics, advocated in Heckman et al. (1997, 1998), was not considered due to the claimed high 
dimensionality of the regressors. We show that it is both feasible and insightful for this data due to the dimension reduction implied 
by the presence of several discrete, discretized and categorical regressors. The mass point of the regressor on pre-treatment earnings 
at zero further contributes to the regressor singularity and we do not require continuity or indeed existence of density over positive 
values, thus kinks or mass at positive values are not excluded. The kernel estimator is applicable to such singular distributions.

We focus here on the full LaLonde NSW male sample which contains 297 treated individuals and 425 controls where the pre-
intervention variables are well-matched.8

With 𝑌  denoting the post-treatment outcome, 𝑇  the treatment and 𝑋 the individual pre-treatment characteristic(s), we use the 
nonparametric regression model

𝑚(𝑥, 𝑗) = 𝐸(𝑌 |𝑋 = 𝑥, 𝑇 = 𝑗) for 𝑗 = 0, 1

to evaluate the heterogeneous effects of the treatment as 
𝜏(𝑥) = 𝑚(𝑥, 1) − 𝑚(𝑥, 0).

The heterogeneous effect of treatment on the treated, also known as the conditional average treatment effect, CATT, is given by 
𝜏𝑇 (𝑥) = 𝐸(𝑚(𝑥, 1) − 𝑚(𝑥, 0)|𝑇 = 1)

Focusing on the latter, we use the NW estimates to evaluate
𝜏𝑇 (𝑥𝑖) = 𝑚̂(𝑥𝑖, 1) − 𝑚̂(𝑥𝑖, 0) 𝑖 = 1,… , 𝑛𝑇

for all treated individuals 𝑛𝑇  (i.e., we use both the actual and the counterfactual treatment for our estimates).
First, we consider a bivariate kernel regression model where we only use the pre-treatment earnings (re75) as regressor 𝑋. 

Following that, we estimate the multivariate model with the full set of variables 𝑋, where in addition to the pre-treatment earnings 
we include years of education, high school “no degree” status, race, age, marital status, and pre-treatment unemployment status, u75. 
It is not unreasonable to attempt nonparametric estimation for this problem where the only truly continuous regressor is earnings 
(and possibly age and education) as singularity provides dimension reduction.

As with our simulations, we use the np package in R for the nonparametric estimation where we consider the Epanechnikov (e), 
Uniform (u) and discrete (d) kernel.9 Bandwidth selection is based on cross validation and we consider the adaptive bandwidth selec-
tion approach that accounts for the masspoint. As was shown in our simulations the rate improvement associated with singularities 
does not require special attention to discrete variables to benefit from it.

Estimation results are reported in detail in the supplementary material (Appendix D). Below the main findings are summarized.
For the bivariate regression model, the cross validated bandwidths confirm that we should not smooth across treated and untreated 

observations and that local heterogeneous treatment effects as related to pre-treatment earnings are present. Fig. 1, displays estimates 
of the conditional expectation using the Epanechnikov kernel by treatment status and pre-treatment earnings together with the 
bootstrapped confidence bounds. It suggests that treatment for individuals at low levels of pre-treatment earnings, in particular, is 
beneficial.

The adaptive bandwidth results in a slightly better in-sample correlation between the post-treatment outcome, 𝑟𝑒78, and its fit 
(increasing from 0.2098 to 0.2116 (for OLS the correlation is 0.1697)); bandwidths obtained using non-masspoint-observations only 
are quite similar to those obtained when including the masspoints in this case. The NW estimates with the adaptive bandwidth 

8 In the sub-sample with 1974 earnings data in Dehejia and Wahba (1999) the distribution of 1975 earnings exhibits a significantly different mass 
at zero between the treated (68%) and untreated (60%).
9 We use the discrete kernel proposed by Aitchison and Aitkin (1976), where 𝐾((𝑑 − 𝑑𝑖)∕ℎ) = 1 − ℎ if 𝑑 = 𝑑𝑖, else ℎ where ℎ ∈ [0, 1∕2].
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provide values of CATT that on average equal $920 (76), $920 (76), and $906 (80) (standard error in brackets) for the (e,e), (d,e), 
(d,u) kernels on (𝑇 ,𝑋), respectively.10 For comparison, the local linear kernel based estimates on average equal $822 (49) with the 
(e,e) kernel, while the average of the CATT estimates based on random forest (RF) equal $848 (52). The CATT results of the kernel 
regression based approach are more variable than those obtained using the random forest approach. For observations at mass points, 
CATT estimates using adaptive bandwidth are closer to those obtained using the random forest based approach.

For the multivariate model the cross-validated bandwidths provide important insights. Firstly, even though pre-treatment earnings 
is still relevant, the bandwidth is much larger than in the baseline model for all kernels, suggesting a reduction of the heterogeneous 
impact with individual’s pre-treatment earnings. The bandwidths selected for nodegree, hispanic and married are large, signaling that 
these variables are not relevant (these regressors are automatically smoothed out from the regression function). At the same time, 
the bandwidths for education and age imply a heterogeneous impact associated with those characteristics, although the size of the 
bandwidth for age is fairly large.

The inclusion of additional controls yields an improvement in the in-sample correlation between the post-treatment outcome and 
its fit. For the (e,e) kernel we see an increase in correlation from 0.210 in the bivariate model to 0.338 (for comparison, for OLS the 
correlation equals 0.209 when age squared is included as well); the results for the (d,e) and (d,u) kernel are comparable.

To highlight the heterogeneity of the treatment effect of education and its interplay with race, we display in Fig. 2 estimates of 
the conditional expectation by treatment status, years of education, and race for an individual with median age and pre-treatment 
earnings together with the bootstrapped confidence bounds.

The graph reflects a heterogeneity of the impact of treatment whereby the more educated individuals identified as black appear 
to benefit more from treatment than their nonblack counterparts. Gains of treatment arise where the confidence band around the 
estimated nonparametric fit 𝑚̂(𝑥, 1) lies above that of 𝑚̂(𝑥, 0); for non-black individuals this is at the middle range of education, for 
black individuals this starts around 10 years of education and is rising over that range. These results are further supported when 
evaluating the average CATT for black individuals across different levels of education (see supplemental material, Appendix D).

Box-plots of the CATT estimates for the multivariate model using the NW regression estimate and the RF estimates are presented 
in Fig. 3. The limit distributional results of Wager and Athey (2018) do not apply here as many components of 𝑋 are not continuously 
distributed.

The kernel based regression CATT results remain more variable than those provided by the random forest approach, but their 
interquartile range is comparable. The NW kernel based estimates of the CATT on average exceed the RF based estimates: $1, 045
(107), $1,018 (108), and $1,019 (104) for the (e,e), (d,e) and (d,u) kernel on (𝑇 ,𝑋) against $794 (54) based on the random forest.

The NW based results are stable across kernel, give interpretable insights and with cross-validation make it possible to detect 
irrelevant regressors.
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