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Edge Isoperimetry of Lattices
Cameron Strachan® and Konrad Swanepoel

Abstract. We present two results related to an edge isoperimetric ques-
tion for Cayley graphs on the integer lattice asked by Barber and Erde
(Discrete Anal Paper no. 7:16, 2018). For any (undirected) graph G, the
edge boundary of a subset of vertices S is the number of edges between S
and its complement in G. Barber and Erde asked whether for any Cayley
graph on Z%, there is always an ordering of Z% such that for each n, the
first n terms minimize the edge boundary among all subsets of size n.
First, we present an example of a Cayley graph G4 on Z% (for all d > 2)
for which there is no such ordering. Furthermore, we show that for all n
and any optimal n-vertex subset S, of G4, there is no infinite sequence
Sp € Snt1 € Snia € - of optimal sets S;, where |S;| = ¢ for ¢ > n. This is to
be contrasted with the positive result in Z' shown by Joseph Briggs and
Chris Wells [arXiv:2402.14087]. Our second result is a positive example
for the unit-length triangular lattice (which is isomorphic to Z2) where
two vertices are connected by an edge if their distance is 1 or v/3. We
show that this graph has such an ordering. This is the most complicated
example known to us of a two-dimensional Cayley graph for which an
ordering exists.

1. Introduction

Definition 1. Given a graph G, the edge boundary of S € V(Q) is
A(S) :=|{uv e BE(G) :ueSv¢S}H.

The edge isoperimetric problem (EIP) of a graph G is, for a given n, to
minimize 9(S) over all S € V(G) where |S| = n. We call such minimizing sets
solutions to the EIP of G. This classical problem has been extensively studied
since the 1960s (see [12]). Although it is NP-hard in general, some special cases
are known. One aspect that has received particular attention is whether nested
solutions exist. A nested solution for the EIP of G is an ordering vy, v, ... of
the vertex set V(G) such that for each n, the set {vi,va,...,v,} is a solution
to the EIP of G.
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One of the first cases of the EIP that has been solved is the d-dimensional
cube graph, which has nested solutions, and where the optimal shapes include
subcubes [3,10,13,14].

For p = 1, 00, denote by (Z%,¢,) the graph with vertex set Z? where pairs
of vertices have an edge if their ¢, distance is 1. Bollobds and Leader [4] solved
the EIP for (Z%,¢;) and proved that the solutions include cubes. Moreover,
they showed that this graph has nested solutions.

Bollobds and Leader [4] also considered the EIP on finite grids
{1,2,...,k}¢, considered as induced subgraphs of (Z<,/;). It turned out that
there are two types of solutions: cubes if n is small relative to the size of the
grid and half-grids for large n. Furthermore, they showed the transition be-
tween these two types of solutions is not smooth, giving the first example of a
graph without nested solutions.

If G is an undirected k-regular graph, for any S ¢ V(G), we have
|E(G[S])| = w. If G is a directed k-regular graph, then for any S ¢ V(G),
we have |[E(G[S])| = k|S|-0(S). Thus, for regular graphs, the problem of min-
imizing 9(.5) over all subsets with size n is the same as maximizing |E(G[S])]
over all subsets of size n.

In terms of this formulation, Brass [5] solved the EIP of (Z?,{,), where
the optimal shapes include certain octagons. In addition, he showed (Z?, ()
has nested solutions. For d > 3, the EIP of (Z%, () remains open.

Let g1 = (1,0) and g5 = (1/2,V/3/2). The triangular lattice is the set

A:={mgs +ngs :m,n € Z}.

We can turn A into a graph by joining a pair of vertices if their Euclidean
distance is 1. For this graph, the EIP is solved [9] (see also [8,11]) with solutions
that include regular hexagons. Again, the graph has nested solutions. This
graph is isomorphic to Z?, where two vertices are joined if their difference is
in {(£1,0), (0,+1),+(1,1)}; hence, it can be thought of as a graph between
(Z%,¢1) and (Z2,0s).

The above examples are all special cases of Cayley graphs on the group
z.

Definition 2. Let U be a finite set that generates Z¢ as a group and does not
contain the identity. The (directed) Cayley graph ZdU is the graph on the vertex
set Z® where (u,v) is an edge whenever v —u € U. When U is symmetric (that
is, —u € U for all uw € U), we consider Z‘,ij to be undirected.

Given a generating set U of Z¢, let Z ¢ R? be the zonotope ¥,;7[0, u]
generated by the line segments [0,u], u € U. Barber and Erde [1] showed that
the edge boundary of tZnZ for large t, asymptotically approximates the edge
boundary of solutions to the EIP of Z‘Ijj. Barber, Erde, Keevash and Roberts
[2] showed that additionally, tZ n Z? asymptotically approximates the shape
of solutions to the EIP of ZdU.

Barber and Erde [1] asked if every Cayley graph of Z? has nested solu-
tions. Despite the positive examples already given, Briggs and Wells [6] gave
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FIGURE 1. Generating set of Theorem 2

counterexamples for the case d = 1. On the other hand, they also gave a par-
tial positive answer: for any Cayley graph of Z, there exists an m € N and an
ordering vy,vs ... of Z such that for any n > m, the set {vy,vq,...,v,} is a
solution to the EIP. In other words, they showed that any Cayley graph on Z
has nested solutions starting at a sufficiently large size.

We give a negative answer to the question of Barber and Erde for all
d > 2 by giving an explicit example of a Cayley graph without nested solutions.
Furthermore, we show this example does not have nested solutions regardless
of any starting point. Thus, in dimensions 2 and higher, there are stronger
counterexamples than in Z!.

Theorem 1. The EIP for Z‘g,, where U is the generating set {+e; :i=1,...,d}U
{+2e,} of Z¢, does not have nested solutions starting at any size. In other
words, for all n and each n-element subset S, of Z for which 0(S,) is the
minimum among all n-element subsets of Z‘li], there does not exist a sequence
Sy C Spi1 C Spya C - of i-element subsets S; of Z.%, such that for each i > n,
d(S;) is the minimum among all i-element subsets of Z;.

Our second result is a solution of the EIP for another Cayley graph on Z?
with nested solutions. The generating set for this graph is U = {(£1,0), (0, 1),
+(1,1),+(1,-1),+(-1,2),+(-2,1)}. Thus, it contains (Z?, /) as a subgraph.
In fact, it is more suitable to consider this to be the graph on the triangular
lattice with edges for all pairs at distance 1 or /3. As a Cayley graph on A,
the generating set is depicted in Fig. 1. We denote it by Ay.

Theorem 2. Let Ay be the undirected Cayley graph with vertex set A and sym-
metric generating set U = {xg1,+(g1 + ¢2), 292, (292 — 1), (92 — 91), (g2 —
291)}, where g, = (1,0) and g2 = (1/2,7/3/2). The mazimum number of edges
of a subgraph of Ay (necessarily induced) with n > 3 vertices is

(n) 6n — 4vV6n — 6 if n = 24k? — 24k + 7 for some k € N
e(n) :=
|6n —/96n — 63| otherwise.
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FIGURE 2. The extremal subgraph of Ay with 24k% — 24k +7
vertices (k = 2)

In addition, the EIP of Ay has nested solutions.

The first few values of n where e(n) = 6n—4v/6n - 6 are n = 7,55, 151, 295,
487 and 727. In Fig. 2, we depict the unique (up to translation) extremal
subgraph of Ay with 55 vertices.

The subgraphs of Ay with n vertices and e(n) edges are candidate ex-
tremal graphs for a problem of Erdés and Vesztergombi [7] on the maximum
number of occurrences of the smallest and second smallest distances in a set
of n points in the plane. Let S be a set of n points in the plane, and denote
by m1(S) and mz(.S) the number of occurrences of the smallest and second
smallest distance in S. Let f(n) be the maximum value of my(S) + ma(S5),
where the maximum is taken over all sets S of n points. Vesztergombi [16]
showed that f(n) < 6n. (See also Csizmadia [7] for further results.) Theorem 2
implies that f(n) > e(n), with the lower bound being given by subsets of the
triangular lattice, with smallest distance 1 and second smallest distance V3.

Conjecture 3. For any sufficiently large n, f(n) = e(n), with the only sets S
of n points attaining f(n) =my(S) +mao(S) being geometrically similar to the
extremal sets on the triangular lattice.

2. Non-existence of an Ordering

Proof of Theorem 1. Let eq,...,eq denote the standard unit basis of Z%, and
U= {xe; :i=1,...,d} u{£2e;}. Then, in the graph Z¢, two vertices z =
(z1,%2,...,24) and y = (y1,¥y2,-.-,yq) are joined when either |z —y[; =1 or
|21 —y1] = 2.

Let n € N be arbitrary, and let S be an n-element subset of Z¢ for which
the number of edges of the subgraph Z?][S] induced by S is the maximum
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among all n-element subsets of Z¢. We will show that there does not exist a
sequence S;, i > n, of subsets of Z? such that S =S, |S;| =14, S; ¢ Si;1 for all
i >n, and each S; maximizes the number of edges in the subgraph Z&[S;].

Suppose then that there is such a sequence. Without loss of general-
ity, we may assume that n > 2971 Let m; = min{z; : (21,72,...,74) € S}
and M; = max{z; : (x1,22,...,2q4) € S} for each j = 2,...,d. Let C =
Z x H?:Q{mj, ..., M;}. We will prove by induction that S; c C for all i > n,
which will subsequently lead to a contradiction.

The basis case is trivial, since S, = .S ¢ C' by the definition of C. As an
induction hypothesis we assume that for fixed m > n, S, ¢ C. We have to
show that S,,,1 c C.

Note that for any x € Z% \ C, there is at most one edge from z to an
element of C'. Thus, to show that S,,,1 c C, it is sufficient to prove that there
exists x € C'\ S, such that = has at least two neighbours in S,,,, since this will
imply that the number of neighbours between the point x in S,,4+1\ 5, and S,
has to be at least 2, hence cannot be outside C'. We prove this by considering
three mutually exclusive and exhaustive possibilities for the induced subgraph
on Sy,.

First, if Z%[Sm] contains an edge xy where y — x = e1, then we may, by
repeatedly adding e; to both = and y, obtain x,y € S, such that y —x = ey,
and z:=y+e; ¢.5,. However, then z has at least the two neighbours x and y
in Z‘(i].

Second, if Z¢[S,,] does not contain any edge xy where y — x = e1, but
does contain an edge xy where y — x = 2eq, then z:=xz+e; =y —ey ¢ S, has
neighbours x and y in Z‘é.

Third, if Z¢[S,,] does not contain any edge xy where z -y € {xe1, +2e; },
then all its edges are in the directions {+es, ..., +es}. In this case, the subgraph
decomposes into connected components that can be embedded into (Z471, ¢;),
which can be considered to be the subgraph induced by the coordinate hyper-
plane x; = 0. However, it follows from [4] that no optimal set for (Z%,¢;) can
be contained in a coordinate hyperplane, unless m < 2971, Thus, if m > 2971,
then S,, is not optimal for this supergraph of (Z<,/;) either.

This finishes the induction step. We then have that all S,,, m > n, are
contained in C. In order to obtain a contradiction, we now switch to considering
the edge boundary of S,,, which we bound from below using the Loomis—
Whitney inequality [15]. This will then be compared to a construction with a
smaller edge boundary for large m, which will give the required contradiction.

Let m:Z% — Z% 1 i = 1,...,d, be the projection that deletes the i-th
coordinate. For each i = 1,...,d, let P; = w(S,,). Note that for each y € Py,
the element  in S,, N 77! (y) with smallest 1st coordinate has that x — e,z —
2e; ¢ Sy, hence contributes 2 to 9(.9,,). Similarly, the element in S, N 77! (y)
with largest 1st coordinate contributes an additional 2 to 9(.S,,). Thus there
is a contribution of 4|P;| to 9(S,,). In the same way, for each i = 2,...,d,
there is a contribution of 2|P;| to A(S,,). Thus A(S,,) > 4P| + ¥4, 2|P,|.
The Loomis-Whitney inequality states that [T%, [Pi| > |Sm|? ! = m9~!. Since
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P c H;-l=2{mj, ..., M;}, its cardinality is bounded: |P;| < H?=2(Mj -mj+1) =
M. Tt follows that [1%, |P;| > m*'/M, and applying the AM-GM inequality,
we obtain -4 Y4, 1P| = (TTL, [P YD > /MY @D hence 9(S,y,) > em,
where ¢ = (d - 1)/MY(%1 is a constant.

On the other hand, since S, is optimal, it cannot have a larger edge
boundary than any other set of m elements. If we choose m = k¢ for some k,
then we have for S = [TL,{1,...,k} that 9(S") = 2(d+1)k*" = 2(d+1)m! /4.
Therefore, em < d(Sy,) < 9(S") = 2(d + 1)m' "¢ which is a contradiction for
large m. O

3. Proof Outline of Theorem 2

Let Ay be the Cayley graph of A with generating set U stated in Theorem 2.
We refer to edges in Ay as short edges if they have unit length, and long edges
if they have length /3. Since Ay is a 12-regular graph, we have for any S ¢ A
with n vertices

(S]] = 6n - 2. )

To prove Theorem 2, we first show in Sect. 4 that any subgraph of Ay
with n > 3 vertices has at most e(n) edges. In Sect. 5, we then give an ordering
v1,v2,... of A such that for each n, the graph Ay[{vi,ve,...,v,}] has e(n)
many edges. This ordering, together with the upper bound, proves that Ay
has nested solutions.

To show that e(n) is an upper bound for the number of edges of an n-
vertex subgraph of Ay, we first show this upper bound for a particular class of
subgraphs of Ay that can be thought of as (possibly degenerate) completely
filled-up lattice 12-gons. We define these as follows.

Definition 3. For any finite S € A, the hull of S, denoted as hull(S) € A, is the
intersection of the 12 supporting half-planes of S parallel to an element of U.
Denote & = {Ay[hull(S)]:S c A,|S| < oo},

Figure 3 depicts an example of hull(S) for a particular S ¢ A. We use
induction on n to show that any P € & with n vertices has at most e(n)
edges. The base case of this induction goes up to n = 30 and involves a Python
computation (Algorithm 1). In the inductive step, we rearrange the points of
P to make P “rounder”. This potentially leads to constructing a new P* ¢ &
with more vertices, where we can either apply the inductive hypothesis after
removing its boundary, or for a certain range of polygons very close to optimal,
we need to do some exact symbolic computations using sympy (Algorithm 2).

Once we have shown the upper bound for all sets in &2, the general case
is straightforward. We again use induction on n to show that any subgraph of
Ay with n vertices has at most e(n) edges. During this process, we will prove
additionally that when n = 24k? - 24k +7 for some k € N, the n-vertex subgraph
of Ay with e(n) edges is unique up to a translation. This enables us to define
an ordering of A by interpolating between the unique extremal subgraph Pj
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F1GURE 3. The hull of the black points is the set of black and
red points

when n = 24k? - 24k +7 for some k € N, and the unique extremal subgraph Py,
when n = 24(k +1)? -24(k +1) + 7. This interpolation entails finding a specific
sequence of length 48 of the 12 orientations of sides that have to be added to
Py, to get to Piy1 (Table 2). This sequence is found using Breadth-First Search
in an auxiliary directed graph that represents all ways of adding sides.

4. The Upper Bound for Theorem 2
4.1. The Upper Bound for Polygons

We start this section by uniquely associating, up to a translation, each P € &
with a set of 12 parameters. The boundary of P is a convex polygon with 12
possibly degenerate sides, each parallel to an element of U. Direct each side of
P in a counterclockwise manner.

Definition 4. Let u; denote the number of edges in the side of P in the direction
g1 (i-e. the length of the side of P in the direction of g;1). Let t; denote the
number of edges in the side of P in the direction g1 +go (i.e. the length divided
by \/3 of the side of P in the direction of g, +g2). Let uy denote the number of
edges in the side of P in the direction go. Let to denote the number of edges in
the side of P in the direction 2g5 — g;. Continue in this way counterclockwise
around the boundary of P, alternating between u; and t;. Figure 4 depicts an
example of which sides of P correspond to which parameters.

Theorem 4. An n-vertex P € & has at most |6n — /96n — 63| edges, unless
w; =k andt;=k-1 for eachi=1,...,6 and some k € N, in which case P has

at most 6n —4\/6n — 6 edges.

This statement is a stronger version of Theorem 2 restricted to the class
Z. Before proving this theorem by induction on n, first we prove three lemmas.
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FIGURE 4. What sides of P correspond to the parameters u;
and t; (i=1,...,6)

Lemma 5. For any n-vertex P € &2, we have

n:(t2+2t3+t4+U3+U4+1)(t1 +2t2+t3+U2+U3+1)

_(tg+t3+U3+1)_(t5+t6+u6+1)_26:(t,»+1)
2 2 2 )

i=1

Proof. The intersection of the four supporting half-planes of P that are par-
allel to the directions g1 and g, form a possibly degenerate circumscribed
parallelogram of P. This is depicted in blue for a particular P in Fig. 5.

The number of vertices contained in the parallelogram is easily seen to be
(to+2t3+tg+ug+us+1)(t1+2ta+t3+us+uz+1). Now, intersect this parallelogram
with the two supporting half-planes of P parallel to g; — ¢g1. Figure 5 depicts
this in red. This creates a possibly degenerate hexagon by cutting off two
triangular corners of the parallelogram. This removes (tﬁt:‘;““l) + (t”tﬁ;u“l)
many vertices.

Lastly, we intersect this hexagon with the six supporting half-planes of
P parallel to the long edges of Ay. Figure 5 depicts this in grey. This forms
P by cutting off each corner of the hexagon. The corner that forms the side ¢;
has (t”l) many vertices. o

2
Lemma 6. For any P € &2, the parameters u; and t; (i=1,...,6) satisfy
O=uy —ug +t1 —tg —ta +t5 —us + ug — 2t3 + 2tg
and 0=ty —ts+ug —us + 2ty — 2t5 + ug — ug + t3 — tg.
Proof. Since P is a closed polygon, we obtain the following equation:
0= (ur —usg)g1 + (t1 —t1)(g1 + g2) + (u2 —us)g2 + (t2 — t5)(292 — 91)
+ (u3 —ug)(g2 = g1) + (t3 —t6) (g2 — 291)-
By separating the coefficients of the linearly independent g; and g5, we obtain
the statement of the lemma. ]
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FIGURE 5. Circumscribed parallelogram (blue) and hexagon
(red) of P (grey)

Lemma 7. For any P € &2, let b denote the number of boundary edges of P,
and let b, = 2?;1 u; and by = Z?zl t;. If the interior angle of each boundary
vertex of P is at least 90°, then

A(V(P)) = 6by, + 10b, + 12 = 6b + 4b, + 12.

Proof. The deficit of a vertex v of P is def(v) :=|{uv e E(Ay) :u¢ V(P)}. It
is easy to see that
AV(P))= > def(v).
veV (P)

It is immediate that the sum of the deficit over all boundary vertices of P is
5b + 12. Now, we calculate the sum of the deficit over all vertices not on the
boundary. Let v be a vertex not on the boundary of P with a deficit of d > 0.
This means v must be incident with d edges in Ay which are not in P. Since P
is an induced subgraph on the vertices contained within its boundary, each of
these edges must cross the boundary of P. These edges must cross the relative
interior of a boundary edge of P since all edge crossings in Ay occur in the
relative interior of edges.

Furthermore, every edge of Ay that crosses a boundary edge of P must
be incident to a vertex in P. Suppose there was an edge of Ay that crossed the
boundary of P and was not incident with a vertex of P. Such an edge must
cross two boundary edges of P, implying the edge must be long. If the two
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FIGURE 6. P after removal of a degenerate side remains in &

boundary edges are incident with the same vertex, that vertex must have an
interior angle of 60°. If the two boundary edges are vertex disjoint they must
be parallel long edges corresponding to opposite sides of P. It is easy to see
that such a P must have a boundary vertex with interior angle less than 90°.

Therefore, to count the deficit of vertices not on the boundary, we only
need to count the number of edges in Ay that cross boundary edges of P.
Observe that each short boundary edge is crossed once, and each long boundary
edge is crossed 5 times. This implies the deficit of the vertices not on the
boundary of P is b, + 5b;, which together with the deficit of 5b + 12 coming
from boundary vertices, implies the lemma. O

4.2. Proof of Theorem 4

4.2.1. Base Cases. We prove Theorem 4 by induction on n, starting with the
following base cases.

Claim 8. For any P € & with n vertices and e edges, if n € {3,4,...,30} then
e<e(n).

Proof. First, we claim P must have a vertex of degree at most 5 in its boundary.
If all boundary vertices had a degree of at least 6, then the boundary of P would
have no degenerate sides. This implies P contains a 12-gon with u; = t¢; = 1
(i=1,...,6), which implies n > 31.

We now prove the claim by finite induction. The case n equals 3 or 4
is trivial. If e(n) —e(n-1) > 5 we are done, as by removing the boundary
vertex of degree 5, we shift at least one supporting half-plane corresponding
to this degenerate side inward. It is a simple case analysis to confirm the
resulting graph is in &. One case is depicted in Fig. 6. Applying the inductive
hypothesis after removing this vertex, we obtain e < e(n-1) +5 < e(n).

It is easy to check e(n) —e(n—1) > 5 for all n > 3 except when n e
{3,4,5,6,8,9,11,13,15,20}. Since n equals 3 or 4 is done, we just have the
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remaining eight cases to check. n =5 and 6 are easy. For the remaining cases,
we have e(n)—e(n-1) > 3, so if we have a boundary vertex with degree at most
3 we are done by induction. Therefore, suppose each boundary vertex of P has
a minimum degree of 4, this implies the interior angle of each boundary vertex
is at least 90° allowing us to use Lemma 7. For each n € {8,9,11,13, 15,20},
we compute the side lengths of each P ¢ & with n vertices using Lemma 5
and Lemma 6. For each P, we compute the edge boundary using Lemma 7
and confirm 9(V(P)) > 2[v/96n — 63] which implies e < e(n). Algorithm 1
states the pseudocode for this computation. The Python implementation can
be found attached to this publication under the file name Base_case.py.

Algorithm 1 The algorithm that computes the remaining base cases
for n in [8,9,11,13,15,20] do
0_bound « 2[\/96n — 63]
> Want to show for all n-vertex P e &2, 9(V(P)) > d_bound.
b-bound « [(d_bound - 12)/6]
> By Lemma 7, 9(V(P)) > d-bound if b > b_bound.
cases < [(u1,usg,...,ug, t1,ta,...,ts) : satisfying 1, 2, 3, 4, 5 and 6]
u;, t; >0, (Z = 1,...,6).
Z?zl u; + t; < b_bound.
O=wup —uyg +t1 —tyg —to +1t5 — ug + ug — 2t3 + 2tg.
0=t1 —t4+u2—u5+2t2—2t5+u3—u6+t3—t6.
n= (t2+2t3 +t4+U3+U4+1)(t1 +2t2+t3+u2+u3+1)
t2+t3+U,3+1 (t5+t6+u6+1 6 t1+1
( 2 ) 2 ) 2; ( 2 )
6. Aie{l,...,6} where 0=1u; =t; = U(i+1 mod 6) O 0 =1; = U(i+1 mod 6) =
L(i+1 mod 6)-
> Conditions 1 and 2 ensures P has non-negative sides and

Al ol

b < b_bound.
> Conditions 3, 4 and 5 ensures P satisfies Lemmas 5 and 6.
> Condition 6 ensures interior angles on the boundary are at least 90°.
for (uy,us,...,ug,t1,ta,...,ts) in cases do
A(V(P)) < X5, (6u; +10t;) + 12
> Computes (V' (P)) according to Lemma 7.
if 9(V(P)) < 0-bound then return (uy,us,...,us, t1,t2,...,t)
end if
end for
end for

O

4.2.2. Inductive Step. With the base cases done, we are set to prove Theorem
4 by induction on n. For the rest of this subsection, let P € & have n > 31
vertices, e edges, and b boundary edges. In addition, suppose P has the greatest
number of edges out of all n-vertex members of &. The inductive hypothesis
is that any P’ € & with n' vertices, where 3 <n' < n, has at most e(n’) edges.
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Claim 9. If P has a degenerate side, then e < 6n —+/96n — 63.

Proof. Suppose P has a degenerate side, then P has a boundary vertex with
degree at most 5. The resulting graph after removal of this vertex remains
in &, which we can then apply the inductive hypothesis to. Since n > 31,
6n — v/96n — 63 —e(n—1) > 5 which implies e <e(n—1) +5 < 6n — v/96n — 63.

O

Therefore, we may assume P does not have a degenerate side. Moreover,
we may assume there is no n-vertex P’ € & with a degenerate side and e edges.
Since P does not have a degenerate side, u;,t; >1 (i =1,...,6).

Claim 10. There exists an n*-vertex P* € & with e* edges and parameters
wi,tt 21 (i=1,...,6) with the following properties:
max{uj,us,...,us} —3 <min{t],t3,...,t5},
n* <n+max{uj,ul,...,us},

and if e* <e(n*) then e < e(n).

Proof. Tf P has the property max{uy,usa,...,us}—3 < min{ty,ta,...,ts}, we de-
fine P* = P. Otherwise, denote wu; = max{uj,us,...,ug} and
t; = min{t1,%2,...,ts} and suppose u; —4 > t;. As t; > 1 we must have u; > 5.
Our approach is to first move the vertices of P around without decreasing the
number of edges. We start by removing each vertex of P that makes up the
side t;. There are t; + 1 such vertices which when removed delete 6(¢; +1) -1
edges. We add these vertices back to P on the side u;. There are u; —2 vertices
on this side to add and since we assumed u; —4 > t; we can add each of the
t; +1 vertices to the side u;, which creates 6(t; +1) — 1 edges. Figure 7 depicts
this process.

By removing the vertices on side t;, we have increased t; by 1 and de-

creased the two adjacent sides, u; and u;.1, by 1. By adding vertices to the

(a) Generic P (b) P after

FIGURE 7. Removing vertices of ¢; = t» and adding them to
Ui = Ug
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F1cure 8. Updated parameters of P that is missing part of
a side

side u;, if the side was filled in completely, we would have decreased the side
u; by 3 and increased the two adjacent sides, ¢;-1 and t;, by 1. The only
case we completely fill in the side w;, is when u; and ¢; are adjacent, and
u; = t; — 4. Even though in most cases we will not completely fill in the side
u;, when we complete the process described above, we update our parameters
ui, t; (i=1,...,6) as if we had completely filled in the side u;. Namely

tj th+1,Uj =Uj —1,’U,j+1 :ujﬂ—l,ui =u; —3,t;i1=t;1+1,t; =t + 1.

Notice by updating these parameters, we have strictly decreased 22:1 Uk
and strictly increased 22:1 ti.. Therefore, if we repeat this process, after a finite
number of times, we will obtain max{ui,us,...,us} — 3 < min{ty,to,...,ts}.
The only problem is that when we do this process once, we may have trans-
formed P so that one of its sides is partially filled, implying P ¢ &?. Figure 8
depicts the updated parameters where P has a side only partially filled.

This is surprisingly not a problem at the moment. When we repeat this
process where P is a 12-gon with one side only partially filled, we identify
t; = min{ti,te,...,t¢} and u; = max{u;,us,...,us}. We remove the vertices
on the side ¢;, then add these vertices to the partially filled side to complete it
before adding vertices to the side u;. By adding vertices to the partially filled
side, we add six edges per vertex so we still add at least 6(¢; + 1) — 1 edges
back to P. This is depicted in Fig. 9. Note if ¢; is adjacent to the partially
filled side, we shift the vertices of the partially filled side so that ¢; really has
t; many edges.

There is one more issue this process might run into. In the process of doing
this rearrangement, we may create a degenerate side. Since each of the sides
of P corresponding to the positive parameters tq,ts,...,ts can only increase,
this only happens for sides corresponding to the parameters uy,us, ..., ug.

Since 5 < u; = max{uy,us,...,us} and u; is decreased by at most 4, u;
will never be 0. Therefore, we can only form a degenerate side by removing the
vertices of ¢; = min{ty,%a,...,ts} where u; =1 or uj,q =1 or both. In any case,
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(a) Removal of t; = t2 (b) completing the side u4 then adding
to u; = u1

FIGURE 9. Process when there is a partially filled side

uy =0

u =1

(a) P with one degenerate side and one (b) Removal of the degenerate side and
partially filled side adding it to the partially filled side

F1GURE 10. Depiction of process when a degenerate side is
created

we add the vertices of ¢; to u;. At this stage, we have transformed P without
decreasing its edges, into a 12-gon with at least one degenerate side, and at
most one side that is partially filled. Figure 9b depicts an example of this.

We claim that at this point in the process, P must have one side that
is only partially filled. If there is no partially filled side, then P € &2. This is
a contradiction as we supposed there was no n-vertex member of & with a
degenerate side and e edges.

Therefore, there is a partially filled side of P. We remove the degree at
most 5 vertex corresponding to a degenerate side, and add it to the partially
filled side which creates 6 edges. Notice that the edges in P have strictly
increased, and since P can have at most 6n edges, this case happens only a
finite number of times. This is depicted in Fig. 10.
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After removing a degenerate side corresponding to the parameter uy, ug
is increased by 3, and its adjacent sides t;_; and t; have decreased by 1. This
may form new degenerate sides, but then we repeat this process: Consider a de-
generate side. Just as before there must be some other side that is half filled, so
remove the vertex of degree at most 5 corresponding to the degenerate side, and
add it to the partially filled side strictly increasing the number of edges. The

only way this process stops is when max{u,us,...,us}—-3 < min{ty,to,...,tg}.
Let P’ denote the end result of this process, with n vertices, e’ > e edges,
and parameters u;,t; >1 (i=1,...,6) satisfying
max{uj,us, ..., ug} — 3 <min{t], t, ..., 5}

Since P’ may have an incomplete side, it may not be in Z. If P’ € &2,
we let P* = P’ with n* = n vertices and e* = ¢’ edges. Otherwise, let P* ¢ &
be P’ with the incomplete side filled in, with n* > n vertices and e* edges.
We add at most max{uj,u3,...,us} vertices to fill in this side. If we can show
that P* satisfies Theorem 4 then we are done as ¢* = ¢’ + 6(n* —n) and so if
e* <e(n*) then

e<e' <e*—6(n" —n)<e(n’)-6(n"—n)<e(n).

|

Continuing with the proof of Theorem 4, let P* € & have n* vertices, ¢*

edges, and b* boundary edges, be the 12-gon associated to P given by Claim

10. By Claim 10, to complete the inductive step for P, it suffices to prove

e* < e(n*). Note that, also by Claim 10, the inductive hypothesis applies for
all

n' <n* —max{uj,u,...,us} <n.
Definition 5. Let k = max{u},u3,...,us}. Let pf = k—u; and 7,* = ¢} — (k- 3)
(i=1,...,6), and
6 6
dy=> p; and df =) 7).
i=1 i=1

By Claim 10, we have that u,7 >0 (¢ = 1,...,6), hence d;, and dj
are non-negative. An intuitive way to view these parameters is that p; and
7, measure how far away u; and t; are from their respective maximum and
minimum. Let b = Y5, u* and bf = ¥°_, ¢*.

Claim 11. b} = b}, + d}, + d; — 18.

Proof.

6 6
br =St =6k —18+d; = Y ul +d — 18+ d} = b’ +d’ +d; - 18.

i=1 =1

Claim 12. ¢* = 6n* — 4b* — d7, — d} +12.
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Proof. By Lemma 7 and Claim 11, we have
O(V(P*))=6b" +4b; +12=6b" +2(b" +d, + d; — 18) + 12
=8b* +2(d} +d; —12).
Therefore,
.0V (P))
2

e* =6n =6n" —4b* —d; - d; +12.

O

Claim 13. Suppose b* > ¥1=63_3 jf q* 4+ 47 > 18 then e* < 6n*—\/96n* - 63.

Proof. Using Claim 12, we obtain
e =6n" -4b" - d; —d; +12

V96n =63 3
§6n*—4(n4—2)—18+12:6n*—\/96n*—63.

O

Now, we handle the inductive step if the boundary is sufficiently small.
Let r* be the number of edges in P* incident to a boundary vertex of P*,
and let d; be the number of boundary vertices of P* having degree i. The
minimum interior angle between two edges incident with the same vertex is
30°, which together with the angle sum formula for polygons applied to the
boundary of P*, implies that 30°r* =30° ¥, d7 (i —1) < 180°(b* —2) giving us

r* < 6b* —12. (2)
Claim 14. [f b* < ¥9022=63 _ 3 yhen e* < 6n* - \/96n* - 63.

Proof. Remove each boundary vertex from P* to form an n’-vertex graph P’
with e’ edges. Since each u},t7 > 1, P* contains the 12-gon with u; = ¢; = 1
(i=1,...,6), implying that P’ has at least 8 vertices. Removing the boundary
of P* shifts each half-plane defining P* inwards, which gives P’ € P*. Since
n' =n*-b* <n*—max{uj,us,...,us}, we may apply the inductive hypothesis
to P’. There are two cases: either P’ has parameters u; = k and t; = k-1
(i=1,...,6) for some k € N or P’ does not.

In the case where P’ has parameters u; =k and t; =k-1 (i=1,...,6) for
some k € N, we see that P* must be the graph where all v =k-1and t; =k
(removing the boundary of P* decreases each t; by one and increases each u}
by one) which implies b; = b; + 6, which by Lemma 7 implies

O(V(P*)) =6b" +4b; +12=6b" +2(b; + b}, +6) + 12 = 8b" + 24.

Using Lemma 5, we obtain n* = 24k? — 12k + 1. Thus, k = i + Vf\’/gl, hence
b* =12k — 6 = \/6n + 3 — 3, which gives us (V(P*)) = 8/6n + 3 implying by
(1) that e* =6n —4v6n +3 < e(n*).

In the second case, we obtain by (2):

e =e +r*<6(n* -b") —/96(n* - b*) - 63 +6b* - 12
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=6n" —\/96(n* - b*) - 63 -

Therefore, to complete this case, it remains to be shown that

6n* —/96(n* —b*) - 63 - 12 < 6n* - v/96n* — 63. However, this inequality is

algebraically equivalent to the given b* < 7“96?_63 - % O

4.2.3. Remaining Cases in the Inductive Step. We have proven the inductive

step of Theorem 4 for all cases except when ¥20%°=63 _ 3 < p* and 47 +d; < 18.
For each k € N, there is only a finite number of cases the 12 parameters p; and

77 (1=1,...,6) can take as their sum is less than 18. First, we substitute the
parameters k, i1, 7;° into Lemma 6 to obtain the following condition on the p
and 7 (i=1,...,6) in order for them to be the parameters of a 12-gon:

* * * * * * * * * *

0= —py + g +710 =Ty =Ty +75 + i3 = fig = 273 + 275
* * * * * * * * * *
O=7] =74 — o + g + 279 =275 — pi3 + [lg + T3 — Tg -

We can also make this substitution into Lemma 5 to obtain the following
formula for n* in terms of k, u} and 7 (i=1,...,6):

n* = (6k—11+75 + 275 + 74 — 5 — py ) (6k = 11 + 77 + 279 + 75 + 5 + p3)

_(3k—5+7’2”+7§+/,L§)_(3/€—5+7‘5*+7'6*+ug)
2 2

_Z(k 2+r)

This simplifies to
n* = 24k% + L(T 75 T T T T W s s ) K
+Q(T1,73,73, T4 5 Tg » M3, M3 4 g
where L is a linear function and @ is a quadratic function. This gives
-L++/L?-96(Q -n*)
= IR .
We can also obtain b* in terms of k& p and 777 (i=1,...,6).

(4)
6 6 6 6
b =by +bf =Y uf+ Yy by =6k—> pl+6k-18+) 7 =12k - 18 - d +d;.
i=1 i=1 i=1 i=1
(5)

Substituting (4) and (5) into Claim 12, we obtain

* * _L+ L2_96(Q_n*) * * * *
et =6n"—4(12. v 18— d* +d |- d - d +12,

48

which simplifies to

" =6n" —\/96n* + L2 - 96Q + L + 3d;, - 5d; + 84. (6)
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We start by classifying which values of puf and 7 correspond to 12-
gons and have a sum less than 18. Since k = max{uj,...,us} and P* has a
rotationally symmetry, we may assume pq = 0. For each case, we compute e*
in terms of n* using (6) and verify that e* < 6n* — /96n* — 63 unless u; =0
and 77 =2 (i = 1,...,6), in which case e* = 6n* — 4/6n* — 6 and using (3)
n* = 24k? — 24k + 7. Algorithm 2 is the pseudocode for this computation. The
Python implementation can be found attached to this publication under the
file name Inductive_step.py.

Algorithm 2 Algorithm for outstanding cases in inductive step

cases < [(1y, 13, .oy 1g, T s To s+ .-, To ) satisfying 1,2,3 and 4]

1opf,7r20,(i=1,...,6) and pu7 =0

2. Y8 preTi <18

3. 0=—p] +puy+70 —7) =Ty + T2 + p3 — g — 274 + 275
4. 0=7 —7f —p5 + 5 + 275 =275 —pus + pug + 75 — 76

> Conditions 1 and 2 come from Claim 10 and Claim 13.
> Conditions 3 and 4 come from Lemma 6.
for (pi,p3, ... pg,s 7175, ..., 7¢) in cases do
L« L(7{ 75,75, T To TG s sy 145, 1, ig) > Comes from equation (3).
Q< QUr] 73, 74, Tf T2 T8 15y 145, iy, 4 ) D> Comes from equation (3).
< Y0 1
di < Z?=1 et
edge_formula < 6n* —/96n* + L2 - 96Q + L + 3d;, — 5d; + 84
> Comes from equation (6).
if edge_formula > 6n* —+/96n* — 63 then return (ui,...,us, 77 ,...,7¢)
end if
end for

4.3. Proof of Upper Bound of Theorem 2

We aim to prove Theorem 2 by induction n. Clearly, it is enough to show
Theorem 2 for all induced subgraphs of Ay;. The base cases are when n < 7,
which are easily verified. For the inductive step, suppose n > 8 and Ay[S] is
an n-vertex subgraph of Ay with e edges. In addition, suppose Ay [S] has the
maximum number of edges out of all n-vertex subgraphs of Ay. The inductive
hypothesis is that all n’-vertex subgraphs of Ay, where 3 < n’ < n, have at
most e(n’) edges.

Claim 15. We may assume Ay [S] is 2-connected.

Proof. Ay[S] must be connected, otherwise we could translate a connected
component of Ay [S] to form additional edges contradicting the maximality of
Ay[S]. Suppose Ay[S] had a cut vertex v. When we remove v from Ay [S] we
create two connected components Gy = Ay[S1] and G2 = Ay[S2] with ny and
ny vertices, and e; and ey edges.

Case 1: n; < 4 or ny < 4. Without loss of generality suppose n; < 3. If
ny = 1, there is 1 edge removed when deleting S; from Ay [S]. Applying the
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inductive hypothesis to the remaining graph we obtain e < e(n—-1) +1 < e(n).
Therefore, supposing that nq € {2,3}, then there are at most 6 edges removed
when deleting G; from Ay. Then, the inductive hypothesis implies

e<6(n-n1)-4/6(n-n1)-6+6<6n-v996n-63 for ny =2,3 if n >6.

Case 2: ny,ny > 4. Applying the inductive hypothesis to G; and G35, we
obtain

€ <6ny —4/6n; — 6+ 6ng — 4v/6ny — 6 + deg(v)
<6n-6-4/6(n-5)—6-4v18 + deg(v).

We can bound the degree of v by noticing the neighbourhood of v must be
disconnected. It is easy to see through Menger’s theorem that the neighbour-
hood of v in Ay is 4-connected, which implies that the degree of v in Ay[S]
is at most 8, hence

e<bn-6-4/6(n-5)-6-4v24+8<6n-96n—63 for n > 7.

O

Claim 16. We may assume there is no line parallel to an element in U inter-
secting A but disjoint from S, and with vertices from S on either side of the
line.

Proof. Suppose there is such a line L. Since Ay[S] is 2-connected, there must
be at least two edges of Ay [S] that cross L. If L is parallel to a short edge (say
parallel to g1), the only edges of Ay[S] that can cross L will be long edges
perpendicular to L (in direction g; — 2g2). We shift a set of vertices on one
side of the line towards L along one of the directions in U. This is depicted in
Fig. 11, where the part of S above L is shifted by —gs. Notice that each edge
that crossed L is maintained after this shift, so the edges of Ay[S] can only
increase. This process must stop after a finite number of shifts as the area of
Ay [S] strictly decreases.

Now, suppose L is parallel to a long edge (say parallel to 2¢g; — g2 as in
Fig. 12a). We apply a unit shift perpendicular to L (direction —gs in Fig. 12b)
to the set of vertices on one side of L. After this shift vertices may overlap and

N
<
Ve

(a) L parallel to a short edge (b) Translate vertices above L by
—gs

F1GURE 11. Process depicting shift when L is parallel to a
short edge
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/
vy V4

v1

(a) L parallel to a long edge (b) Translate vertices above line by
—ga, red vertices represent overlaps

FIGURE 12. Process depicting shift when L is parallel to a
long edge

edges may be lost. We claim there are at most 4m edges lost during this shift,
where m is the number of vertices that overlap. We will show this by deleting
edges before the shift so that the remaining edges are not lost after the shift.

A pair of vertices in S overlap if they lie on different sides of L and
are connected by a short edge perpendicular to L. There are three types of
edges we need to delete. The first type are edges connecting pairs of vertices
that overlap. The second type is when a pair of vertices, v; and vy (Fig. 12a),
overlap and a vertex v is adjacent to both of them (for example, vs or vy in
Fig. 12a). Since after the shift the edges v1v and vov overlap, we will delete one
of these edges. The third type is when v] and vj are another pair of vertices
that overlap and are adjacent to v; and vg, respectively, by a long edge parallel
to L. In this case, the edges viv] and vyvf overlap after the shift so we will
delete one of them.

For each pair of vertices that overlap, we delete one edge of the first
type, which implies m edges of this type are deleted. A pair of vertices that
overlap have at most 4 vertices adjacent to both of them. Each of these vertices
correspond to one edge that must be deleted, which implies at most 4 edges
of this type are deleted per overlap. It is a simple case analysis to confirm in
the case 4 edges of this type are deleted at an overlap, there are at least two
new edges created after the shift. Similarly, if 3 edges of this type are deleted,
then at least 1 new edge will be created after the shift. In all cases, in total,
we only lose at most 2 edges of this type per overlap, implying 2m edges of
this type are lost after the shift. Since each pair of vertices that overlap has
at most two other overlapping pairs connected by long edges parallel to L, it
is easily seen that at most m edges of the third type are lost.

All together this shows that at most 4m edges are lost during this shift.
If m = 0 then all edges that cross L are maintained, and since the area of
Ay [S] strictly decreases, this process must stop after a finite number of shifts.
If m > 1 we apply the inductive hypothesis to the resulting graph after the
shift and obtain

e<6(n-m)-4/6(n-m)—-6+4m
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<6n-+v96n - 63 for all n > max{2m,10}.

If no edges of the third type are lost, we lose at most 3m edges from the
shift. Applying the inductive hypothesis to the resulting graph, we obtain

e<6(n-m)-4/6(n-m)—-6+3m
< 6n - V96n - 63 for all n > max{2m,7}.

To finish the proof when L is parallel to a long edge, it remains to be
shown: if there are edges lost of the third type (implying m > 2), and n =8 or
9, then e < e(n). Since in this case there are edges lost of the third type, there
exists two overlapping pairs of vertices vy, ve and v}, v} that are connected by
long edges parallel to L. This implies v; is not adjacent to v} and ve is not
adjacent to v]. It is easily seen from Fig. 12a, there are exactly two elements
of AN L, say vz and vy, that are adjacent to all vy, ve,v] and v4. Every other
element of A\ L is adjacent to at most two of vy, vy, v] and v5.

We distinguish between three cases:

S contains v3 and vy. Then, vy, vg,v3,v5,v] and vy form the vertices of
a regular unit hexagon. Place a vertex at the centre of the hexagon creating
at least 6 new edges. Since n + 1 < 12, there is a vertex with degree at most 5
which when deleted results in an n-vertex graph with more edges then Ay [S],
so Ay [S] was not extremal.

S does not contain vz and vs. This implies in the case n = 8 that e <
(g)—2—4><2 =18 < ¢(8). In the case n = 9, we obtain e < (g)—2—5><2 =24 <e(n).

S contains vz or vy but not both. Without loss of generality, we may as-
sume it contains vs. From Fig. 12a, it is easily verified that in ANL U {v4}, there
are only three vertices adjacent with three out of the five vertices vy, vs,v], v}
and v3. The rest are adjacent with at most two. This implies in the case
n = 8 that e < (g) -2-3x2=20< e(8), and in the case n = 9, we obtain

e<()-2-3x2-3=25=¢(9). =

Claim 17. 9(hull(S)) < 9(S).

Proof. To show this, we create an injection from the set By = {uv € E(Ay) :u €
hull(S),v ¢ hull(S)} to Bs = {uv € E(Ay) :ue S,v ¢ S}. Consider an element
w € hull(S) with wv € E(Ay) and v ¢ hull(S). Let L be the line containing
this edge. Since the boundary of Ay[hull(S)] is convex, this line will contain
exactly two edges in B;. By Claim 16, L must intersect a vertex of Ay. This
implies L must contain at least two edges in Bs.

The injection will map the two edges contained in L in the set By to some
choice of two edges contained in L in the set By. This map will be injective
as no two disjoint lines each containing an element in B; have an intersection
that contains an element in Bs. O

Claim 18. If Ay[S] ¢ &, then e < 6n —/96n — 63.

Proof. Suppose Ay[S] ¢ &7 which implies Ay [S] # Ay[hull(S)]. Suppose that
Ay [hull(S)] has n' vertices and e’ edges. By Theorem 4, we have e’ < 6n' —
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FIGURE 13. The first 55 terms in the ordering of A

4+/6n’ — 6 which implies by (1) that d(hull(S)) > 8V/6n’ - 6. By Claim 17 we
have d(hull(S)) < 9(S) which implies

ez6n—@£6n—%g6n—4\/6n’—6

<6n-4\/6(n+1)—-6=06n-4v6n<6n-+96n-63.

Theorem 4 and Claim 18 complete the proof of Theorem 2.

5. Existence of an Ordering

In Sect. 4, we proved that the only 12-gon in & that has 6n —4v/6n — 6 edges
when n = 24k — 24k + 7 for some k > 2, is where u; = k and t; = k -1
(i=1,...,6). Furthermore, we showed that any subgraph of Ay not in & has
at most [6n — /96n — 63| edges. Since 6n — 4/6n -6 > |[6n — /96n — 63| for
n = 24k? — 24k + 7 for all k > 2, at these special values of n, the 12-gon with
u;=kand ¢t;=k-1(i=1,...,6) is the unique extremal graph.

To obtain an ordering of A that attains e(n) edges for each n, we start off
by giving an ordering of the first 55 points constituting the unique extremal
12-gon for which u; =2 and t; =1 (i = 1,...,6). Then, we give, for any k > 3,
an ordering from the (unique) extremal 12-gon with w; =k -1 and ¢; = k-2
(i=1,...,6), to the next 12-gon with u; =k and t; =k-1 (i=1,...,6). For
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any k > 3, we call the former 12-gon the initial 12-gon, and the latter 12-gon
the terminal 12-gon.

Figure 13 shows an ordering of 55 vertices of Ay that, for each n, attain
e(n) many edges from the subgraph of Ay induced by the first n terms. One
can verify this using Table 1.

From now on, we assume k > 3 and give a construction of a way to
add vertices starting with the initial 12-gon, that builds up to the terminal
12-gon. The sequence of vertices we add generates a sequence of how many
edges we add per vertex. This will have to be a sequence of 5’s and 6’s since
e(n) —e(n—-1) = 5,6 for all n > 56. This means that if the graph we have
built so far has n vertices and e(n) edges, and we add a vertex which creates
6 edges, then this (n + 1)-vertex graph has at least e(n + 1) edges. In fact, the
graph will have exactly e(n+1) edges as we have already established the upper
bound. Therefore, for the sequence of vertices we construct, we only need to
justify that the graph has e(n) many edges when we obtained that graph by
adding a vertex with degree 5.

Note that the ordering we construct must be greedy for it to have e(n)
many edges at each step. When we add a vertex to a side of a 12-gon, we
create 5 edges. If we want to add another vertex to this graph, the only way
in which we can add 6 edges, is by placing this vertex next to the previously
added vertex. This continues until the whole side is completely filled.

Thus, it is sufficient to find a sequence of sides from the initial 12-gon
to fill up in a way that builds up to the terminal 12-gon. The only vertices
added that create 5 edges are the ones added to a full 12-gon. Let f(n) be the
number of edges in terms of n for such a 12-gon. It is then sufficient to show
that f(n)+5>e(n+1).

If f(n)=6n-+/96n + a, then it is enough to show a < 33 as

6n—/96n +a+5>|6(n+1)—/96(n+1) - 63]
< [V96n +33] - V96n +a> 1.
Since V96n + a is an integer, the latter is equivalent to
V96n +33 > V96n +a < 33> a.

Therefore, if we can find a sequence of 12-gons, starting and ending at the
initial and terminal 12-gon, where each term in the sequence has an edge
formula in the form 6n — \/96n + a where a < 33, and each subsequent term
adds a complete side from the previous term, then we would have obtained
the desired construction.

When adding a side to a 12-gon, we can add onto a t; or a u; for some
i=1,...,6. When we add onto a t; side, we decrease t; by 1 and increase the
adjacent u; and wu;1 sides by 1. When we add onto a u; side, we decrease it
by 3 and increase the adjacent ¢;-; and t¢; sides by 1. Table 2 presents such
a sequence of sides with confirmation that their edge-number formulas satisfy
a < 33. (Note that since k > 3, all sides in the construction are non-negative.)

We found this sequence of length 48 presented in Table 2 by constructing
an auxiliary directed graph where each node represents a 12-gon. First, we
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TABLE 2. Building up to the next 12-gon

Side

f(n)

(5 us Uy us Ug tl tg t3 t4 t5 ta

uy

6m —v/96mn — 96

k-2

tq

6m —/96n — 47

k-2

to

6n —96n +4

k-2

k+1

[ B
3

6n —v96n — 39

k-2

96n + 16

6n —

k-2

k+1

6n —96n — 23 Uy

k-1

te
ta
us
t3

96n - 60

6n —

k-2

96n + 1

6n —

k-2

6n —v96n — 32

k-2

96n - 63

6m —

k-2

tq

6n —/96n + 4
U2

k-2

6m —v96n — 23

k-2

6m —/96n — 48 ta

k-2

tq

uy

k-2 6m — V96m + 25

k-2

k+1

96n + 4

6mn —

k-1

te

96n — 48

6n —

k-1

6mn —v96n — 23 to

k-1

6n —\/96n + 4 u3

k-1

t3
t1

96n - 63

6mn —

k-1

6m —v96n — 32

k-1

Uz

6mn —v96n +1

k-1




TABLE 2. continued

Side

f(n)

U9 us Uy us Ug tl tQ t3 t4 t5 tﬁ

w1

ta
ty

96n — 60

6n —

k-1

96n - 23

6n —

k-1

k+1

3}

96n + 16

6n —

te

6n —v/96n — 39

6n

k-1

96n + 4

ts

96n — 47

6n —

tg

96n — 96

6n —

k-1
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create a node representing the initial 12-gon, and then we generate the neigh-
bourhood of this node to be all 12-gons obtained from the initial 12-gon with a
side added onto it, and continuing in this manner until we reach the terminal
12-gon. We only add 12-gons with parameter a < 33 to the auxiliary graph. We
then apply a standard Breadth-First Search algorithm to this graph to find a
path from the initial to the terminal 12-gon. The auxiliary directed graph has
1152 vertices and 2550 edges. The Python implementation is attached to this
publication under the file name Sequence_solutions.py.

6. Conclusion

We presented two examples related to the question of Barber and Erde [1] of
whether there is always a nested sequence of optimal solutions in a Cayley
graph Z‘[jj.

Our first example (Theorem 2) shows that d = 1 is special in the sense
that the positive result of Briggs and Wells [6] cannot be extended to higher
dimensions. In this example, the generating set has vectors that are positive
multiples of each other. It would be interesting to find an example where this
does not happen.

Our second example (Theorem 4) is a positive result in dimension 2 and
is proved using some computation. The proof method has some potential to
be generalized to other special cases, and it would be worth exploring this
direction. It seems that many more examples, both positive and negative, will
be needed to understand for which U there exists a nested sequence.
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