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 a b s t r a c t

A Condorcet winning set is a set of candidates such that no other candidate is preferred by at least half the voters 
over all members of the set. The Condorcet dimension, which is the minimum cardinality of a Condorcet winning 
set, is known to be at most logarithmic in the number of candidates. We study the case of elections where voters 
and candidates are located in a 2-dimensional space with preferences based upon proximity voting. Our main 
result is that the Condorcet dimension is at most 3, under both the Manhattan norm and the infinity norm, which 
are natural measures in electoral systems. We also prove that any set of voter preferences can be embedded into 
a metric space of sufficiently high dimension for any 𝑝-norm, including the Manhattan and infinity norms.

1.  Introduction

Consider an election, that is, a set of candidates  of cardinality 𝑚
and a set of voters  of cardinality 𝑛, where each voter 𝑣 ∈  has strict 
preferences ≻𝑣 over all candidates. An ideal winner in such an election 
is a Condorcet winner, a candidate that “beats” any other candidate in 
a pairwise voting contest. Formally, 𝑖 ∈ 𝐶 is a Condorcet winner if, for 
every candidate 𝑗 ∈  ⧵ {𝑖}, more than half of the voters prefer 𝑖 over 𝑗. 
To avoid ties, we assume the number 𝑛 of voters is odd. Unfortunately, it 
is easy to construct elections where a Condorcet winner does not exist; 
indeed typically there is no Condorcet winner.

Given this, Elkind, Lang and Saffidine [1] proposed a relaxation 
where, rather than a single winning candidate, we desire a set of win-
ning candidates that collectively beats any other candidate. Specifically, 
a set of candidates 𝑆 ⊆  is a Condorcet winning set if, for every candidate 
𝑗 ∈  ⧵ 𝑆, more than half of the voters prefer some (voter-dependent) 
candidate in 𝑆 to 𝑗. That is,

∀𝑗 ∈  ⧵ 𝑆, #{𝑣 ∈  ∶ ∃𝑖 ∈ 𝑆, 𝑣 prefers 𝑖 over 𝑗} > 1
2 𝑛 (1)

where # denotes set cardinality. Elkind et al. [1] showed that a Con-
dorcet winning set always exists provided we allow it to be of logarith-
mic size in 𝑚. We give the short proof, which highlights the distinction 
between the graph interpretation of the problem and Condorcet winning 
sets.

To do so, though, we first need some basic graph definitions. A di-
rected graph 𝐺 = (𝑉 ,𝐴), or digraph, consists of a set 𝑉  of elements, called 
vertices, and a set 𝐴 of ordered pairs of vertices, called arcs. For each arc 
𝑎 = (𝑖, 𝑗) ∈ 𝐴, the vertex 𝑖 is the tail of 𝑎 and the vertex 𝑗 is the head of 𝑎. 
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Graphically, the arc (𝑖, 𝑗) is visualized as an arrow pointing from 𝑖 to 𝑗
and we say that 𝑖 is an in-neighbour of 𝑗 and that 𝑗 is an out-neighbour 
of 𝑖. The in-degree and out-degree of a vertex are the total number of its 
in-neighbours and out-neighbours, respectively. Finally, in a directed 
graph 𝐺 = (𝑉 ,𝐴) a dominating set 𝑇  is a subset of vertices with the prop-
erty that, for every vertex 𝑖 ∈ 𝑉 ⧵ 𝑇 , there exists 𝑗 ∈ 𝑇  such that (𝑖, 𝑗) is 
an arc in 𝐴.
Theorem 1  ([1]). In any election, there is a Condorcet winning set of size 
at most ⌈log𝑚⌉. 
Proof.  Consider the majority digraph which contains a vertex for each 
candidate 𝑖 ∈  and an arc (𝑗, 𝑖) if a majority of voters prefer 𝑖 over 𝑗. 
Since the number of voters is odd, the majority digraph is a tournament
(a digraph with exactly one arc between any two nodes). Megiddo and 
Vishkin [2] proved that any tournament contains a dominating set of 
size at most ⌈log𝑚⌉. To see this, simply select the vertex with the largest 
number of in-neighbours; remove this vertex and its in-neighbours and 
recurse. The selected set of vertices 𝑇  is a dominating set in the majority 
digraph and, thus, satisfies the property
∀𝑗 ∈  ⧵ 𝑇 , ∃𝑖 ∈ 𝑇 , #{𝑣 ∈  ∶ 𝑣 prefers 𝑖 over 𝑗} > 1

2 𝑛 (2)

Observe that (2) is a stronger property than (1). Consequently, 𝑇  is a 
Condorcet winning set of size at most ⌈log𝑚⌉. ∎

In this paper, we study the Condorcet dimension, the minimum cardi-
nality of a Condorcet winning set. Theorem 1 gives a logarithmic upper 
bound on the Condorcet dimension. In terms of lower bounds, Elkind et 
al. [1] conjectured that elections exist with arbitrarily high Condorcet 
dimension. Since a Condorcet winner need not exist, there are elections 
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with Condorcet dimension at least 2. Further, Elkind et al. [1] presented 
instances with Condorcet dimension 3; in addition, Geist [3] presented 
an instance with just six candidates and six voters of Condorcet dimen-
sion 3.

However, no instances with Condorcet dimension greater than 3 are 
currently known and we conjecture the Condorcet dimension is always 
at most 3. The main results we prove in this paper are that the Condorcet 
dimension is indeed at most 3 for two special cases of elections under 
the spatial model of voting.

We remark that, motivated by our work and conjecture, Charikar 
et al. [4] subsequently observed that the groundbreaking research 
on approximately stable committee selection by Jiang, Munagala and 
Wang [5] implies a constant upper bound of 16 on the Condorcet dimen-
sion in any election. Refining the techniques of [5], Charikar et al. [4] 
show how probabilistic sampling based upon the minimax theorem im-
plies the existence of a Condorcet winning set of size 6. This has recently 
been improved to 5 by Nguyen et al. [6]. Thus, the Condorcet dimension 
is at most 5 in any election.

1.1.  The spatial model of voting

Spurred by the conjecture that the Condorcet dimension is at most 
three in any election, we study Condorcet winning sets in the classical 
spatial model of voting where the voters and candidates are located in 
a metric space. We make the standard assumption of proximity voting, 
whereby each voter 𝑣 ranks the candidates based upon their distance to 
𝑣, with closer candidates more preferred. We assume strict preferences; 
specifically, we assume the candidates are in general position.

The spatial model of voting originates in the seminal works of 
Hotelling [7] and Black [8], and was formalized by Downs [9]. These 
works all considered one-dimensional metric spaces. Of particular inter-
est here is the median voter theorem, where Black [8] showed that the 
closest candidate to the median voter is a Condorcet winner. The study 
of higher dimensional metric spaces was instigated by Davis, Hinich, and 
Ordeshook [10], where Condorcet winners exist only under very restric-
tive conditions [11]. Furthermore, the absence of a Condorcet winner 
has serious consequences in terms of “agenda manipulation". For exam-
ple, in this situation, the McKelvey-Schofield Chaos Theorem [12,13] 
states that, starting from any proposed policy (candidate), any other 
policy can be implemented (elected) after a sequence of pairwise ma-
jority votes, given the addition of an appropriate set of intermediate 
policies for these votes.

The spatial model has since become ubiquitous in the study of voter 
and candidate behaviour, as illustrated by the books [14–18]. The spa-
tial model has also recently attracted huge interest in computer sci-
ence [19–25]. In particular, in computational social choice there has 
been much focus on the impact of spatial voting on impossibility theo-
rems, on the computational complexity of voting rules, and on informa-
tional aspects such as metric distortion; for details see the surveys given 
in [26,27].

In spatial models of dimension greater than one, a choice of dis-
tance measure can be made. In this paper, we focus on the 𝑝-norms, 
that is, for 𝐳 ∈ ℝ𝐷, the 𝑝-norm is defined as ||𝐳||𝑝 = 𝑝

√

𝑧𝑝1 + 𝑧𝑝2 +⋯ + 𝑧𝑝𝐷. 
Specifically, we study the Manhattan norm (𝑝 = 1) and the infinity norm 
(𝑝 = ∞). These two norms are most appropriate in political settings 
where each axis represents a distinct policy or characteristic [27,28]. 
Under the Manhattan norm, a voter prefers the candidate whose sum of 
policy differences over all policies is minimized; that is, the voter desires 
a candidate close to them on average over all policies. Under the infinity 
norm, a voter prefers the candidate whose maximum difference over all 
policies is minimized; that is, the voter desires a candidate close to them 
on every policy.

It is known that any set of voter preferences over candidates has a 
corresponding embedding in a metric space with proximity voting, for 
the Euclidean norms [29] and Manhattan norms [30]. However, this 

embedding may require the dimension 𝐷 of the metric space to be high, 
specifically, 𝐷 = min [𝑚 − 1, 𝑛]. We provide simple constructions that ex-
tends this conclusion to any 𝑝-norm, provided 𝐷 = min [𝑚, 𝑛].

This is in stark contrast to practice where the embedding is often 
in small dimension 𝐷; for example, [31] suggests that a small number 
of dimensions provide a good explanation for German electoral data. 
This observation motivates our study of low dimensional metric spaces, 
in particular 𝐷 = 2. Of course, if the dimension 𝐷 of the metric space is 
bounded then this does restrict the set of feasible preferences in the elec-
tion. Indeed we show that this restriction guarantees that the Condorcet 
dimension is at most 3 when 𝐷 = 2.

1.2.  Our results

We study metric spaces with bounded dimension 𝐷. Recall the me-
dian value theorem tell us that for 𝐷 = 1 a Condorcet winner always 
exists. What about the case 𝐷 = 2? In fact, Davis et al. [10] proved over 
half a century ago that a Condorcet winner need not exist in two dimen-
sional metric spaces for the Euclidean norm. Consequently, it makes 
sense to study the Condorcet dimension for 𝐷 ≥ 2. We prove the follow-
ing:

• In a 2-dimensional metric space (with Manhattan norm or infinity 
norm), the Condorcet dimension of any election is indeed at most 3
(Theorems 2 and 3).

• In a 2-dimensional metric space under the 𝑝-norm, there ex-
ist instances with Condorcet dimension at least 2, for any 𝑝 ≥ 1
(Lemma 4.1).

• Given 𝑚 candidates and 𝑛 voters, an embedding of dimension 𝐷 =
min [𝑚, 𝑛] can be computed in polynomial time, for any 𝑝-norm (The-
orems 4 and 5).
Our main technical result, presented in Sections 2 and 3, is that for 

two dimensions the Condorcet dimension is at most 3. In Section 4, we 
furthermore provide a lower bound of 2, for any 𝑝-norm, by formalizing 
and instantiating the construction of [10]. Finally, in Section 5 we ex-
tend the conclusions of [29] and [30] to any 𝑝-norm by showing that any 
set of voter preferences over candidates has a corresponding embedding 
in a metric space with proximity voting with 𝐷 = min [𝑚, 𝑛].

2.  An upper bound on the Condorcet dimension: Manhattan norm

We begin with the Manhattan norm, whose distance function is the 1-
norm. Thus, given two points 𝐩1 = (𝑥1, 𝑦1) and 𝐩2 = (𝑥2, 𝑦2), the distance 
between them is 𝑑1(𝐩1,𝐩2) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|. Throughout this sec-
tion, all notions of distance and closeness refer to the Manhattan norm; 
thus, we will omit the superscript and write 𝑑(𝐩1,𝐩2) = 𝑑1(𝐩1,𝐩2).

Let 𝑥̄ be the median 𝑥-coordinate of the 𝑛 voters. Similarly, let 
𝑦̄ be the median 𝑦-coordinate of the voters. Without loss of general-
ity, we may assume 𝑥̄ = 0 and 𝑦̄ = 0 by shifting all points accordingly. 
The 𝑥-axis and the 𝑦-axis divide the plane into four closed quadrants 
{𝑄1, 𝑄2, 𝑄3, 𝑄4}. We label the quadrants in standard counter-clockwise 
order starting with the all-nonnegative quadrant 𝑄1 (thus, 𝑄3 is the all-
nonpositive quadrant).

For each quadrant 𝑄𝑖, 1 ≤ 𝑖 ≤ 4, let 𝑐𝑖 be the candidate in 𝑄𝑖 closest 
to the origin (0, 0). If 𝑄𝑖 contains no candidates then 𝑐𝑖 does not exist; 
in this case, we define 𝑐𝑖 as a null element. Otherwise 𝑐𝑖 exists and is 
unique by the assumption that the candidates are in general position. 
However, at least one of the 𝑐𝑖 exists as there are 𝑚 ≥ 1 candidates. The 
𝑐𝑖 need not be distinct; for example, if 𝑐∗ = (0, 0) is a candidate then 𝑐1 =
𝑐2 = 𝑐3 = 𝑐4 = 𝑐∗. We claim that 𝑆 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}, where 𝑐𝑖 is omitted 
from 𝑆 if it does not exist, is a Condorcet winning set.
Lemma 2.1. If 𝑄𝑖 contains at least one candidate then at least half of all 
voters prefer 𝑐𝑖 in 𝑄𝑖 over any other 𝑐 in 𝑄𝑖.

Proof.  Take any candidate 𝑐 = (𝑥, 𝑦). Without loss of generality, let 𝑐 be 
in the positive quadrant 𝑄1. Then 𝑐1 = (𝑥1, 𝑦1) ∈ 𝑄1 exists. We may as-
sume 𝑐 ≠ 𝑐1. Since 𝑐1 is the closest candidate to the origin in the positive 
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Fig. 1. An illustration of the proof of Lemma 2.1, where the voters are circles and the candidates are squares (only candidates in quadrant 𝑄1 are shown). The 
candidate 𝑐1 ∈ 𝑄1 closest to the origin (see the thin solid line) is shown in black. Case (a) concerns any gray candidate 𝑐 ∈ 𝑄1 below the dashed line, while Case (b) 
concerns any gray candidate 𝑐 ∈ 𝑄1 above the dashed line. In Case (a), the voters in 𝑄2 ∪𝑄3, shown in white, prefer candidate 𝑐1 over the alternate candidate 𝑐. In 
Case (b), the voters in 𝑄3 ∪𝑄4, again in white, prefer candidate 𝑐1 over the alternate candidate 𝑐.

quadrant 𝑄1, we have that 𝑥 + 𝑦 ≥ 𝑥1 + 𝑦1. Equivalently, 𝑥 − 𝑥1 ≥ 𝑦1 − 𝑦. 
We consider two cases (see Fig. 1):

(a) 𝑥 − 𝑥1 ≥ 𝑦 − 𝑦1. We will show that at least half the voters prefer 
𝑐1 = (𝑥1, 𝑦1) over 𝑐 = (𝑥, 𝑦). Since 𝑥̄ = 0 is the median 𝑥-coordinate, 
at least half the voters have an 𝑥-coordinate at most zero. Take any 
such voter 𝑣 = (𝑥𝑣, 𝑦𝑣) with 𝑥𝑣 ≤ 0, that is, any voter 𝑣 ∈ 𝑄2 ∪𝑄3. 
We claim 𝑑(𝑐, 𝑣) ≥ 𝑑(𝑐1, 𝑣), that is, 𝑣 prefers 𝑐1 over 𝑐; in fact, the in-
equality will be strict here as the candidates are in general position. 
First, let 𝑣 ∈ 𝑄3, that is, 𝑥𝑣 ≤ 0 and 𝑦𝑣 ≤ 0. Then the following are 
equivalent:

𝑑(𝑐, 𝑣) ≥ 𝑑(𝑐1, 𝑣)

|𝑥 − 𝑥𝑣| + |𝑦 − 𝑦𝑣| ≥ |𝑥1 − 𝑥𝑣| + |𝑦1 − 𝑦𝑣|

𝑥 + |𝑥𝑣| + 𝑦 + |𝑦𝑣| ≥ 𝑥1 + |𝑥𝑣| + 𝑦1 + |𝑦𝑣|

𝑥 + 𝑦 ≥ 𝑥1 + 𝑦1

which holds by the choice of 𝑐1. Second, let 𝑣 ∈ 𝑄2, that is, 𝑥𝑣 ≤ 0 and 
𝑦𝑣 ≥ 0. Now 𝑥 − 𝑥1 ≥ 𝑦 − 𝑦1 by the case assumption. Furthermore, 
𝑥 − 𝑥1 ≥ 𝑦1 − 𝑦 by the choice of 𝑐1. Therefore, 𝑥 − 𝑥1 ≥ |𝑦1 − 𝑦|. Then 
we have the equivalences

𝑑(𝑐, 𝑣) ≥ 𝑑(𝑐1, 𝑣)

|𝑥 − 𝑥𝑣| + |𝑦 − 𝑦𝑣| ≥ |𝑥1 − 𝑥𝑣| + |𝑦1 − 𝑦𝑣|

𝑥 + |𝑥𝑣| + |𝑦 − 𝑦𝑣| ≥ 𝑥1 + |𝑥𝑣| + |𝑦1 − 𝑦𝑣|

𝑥 − 𝑥1 + |𝑦 − 𝑦𝑣| ≥ |𝑦1 − 𝑦𝑣|

where the latter holds because
𝑥 − 𝑥1 + |𝑦 − 𝑦𝑣| ≥ |𝑦1 − 𝑦| + |𝑦 − 𝑦𝑣| ≥ |𝑦1 − 𝑦𝑣|

by the triangle inequality. Consequently, voter 𝑣 prefers candidate 
𝑐1 over candidate 𝑐, as desired. Thus, any voter 𝑣 ∈ 𝑄2 ∪𝑄3 prefers 
𝑐1 over 𝑐 and these two quadrants contain at least half of the voters. 
An illustration of this proof is given in Fig. 1(a).

(b) 𝑦 − 𝑦1 ≥ 𝑥 − 𝑥1. Then the analogous argument (via the symmetry in 
𝑥 and 𝑦) applies with respect to voters of the form 𝑣 = (𝑥𝑣, 𝑦𝑣) with 
𝑦𝑣 ≤ 0. That is, any voter 𝑣 ∈ 𝑄3 ∪𝑄4 prefers 𝑐1 over 𝑐, and these 
two quadrants contain at least half of the voters. This is illustrated 
in Fig. 1(b). ∎

Corollary 2.1. The set 𝑆 = {𝑐1, 𝑐2, 𝑐3, 𝑐4} is a dominating set in the majority 
digraph, and hence a Condorcet winning set.

Proof.  By Lemma 2.1, each 𝑐𝑖 ∈ 𝑄𝑖, 1 ≤ 𝑖 ≤ 4, beats every other can-
didate in its quadrant if it exists. Thus every candidate outside of 
𝑆 = {𝑐1, 𝑐2, 𝑐3, 𝑐4} is beaten by a candidate in 𝑆. Thus 𝑆 satisfies con-
dition (2) and so is a dominating set in the majority digraph. ∎

From Corollary 2.1, the Condorcet dimension is at most 4. We im-
prove this by proving that there are three out of the (at most) four can-
didates in 𝑆 = {𝑐1, 𝑐2, 𝑐3, 𝑐4} that form a Condorcet winning set on their 
own.
Theorem 2. In a 2-dimensional metric space with Manhattan norm, the 
Condorcet dimension of any election is at most 3.
Proof.  We will show that at least one of the four sets 𝑆−𝑖 = 𝑆 ⧵ {𝑐𝑖}
for 𝑖 = 1, 2, 3, 4 is a Condorcet winning set. Suppose not. Then for all 
𝑖 = 1, 2, 3, 4, there exists a candidate 𝑏𝑖 that more than half the voters 
prefer over the candidates in 𝑆−𝑖. It must be the case that 𝑏𝑖 ∈ 𝑄𝑖; if 
𝑏𝑖 ∈ 𝑄𝑗 , for 𝑗 ≠ 𝑖, then at least half the voters prefer 𝑐𝑗 (which belongs 
to 𝑆−𝑖) over 𝑏𝑖 by Lemma 2.1, a contradiction.

We proceed by defining weights 𝑤𝑖 to each quadrant 𝑄𝑖 for 𝑖 =
1, 2, 3, 4 and 𝑤𝑗,𝑖 for each pair of quadrants (𝑄𝑗 , 𝑄𝑖). The weight 𝑤𝑖
is defined as the fraction of voters that rank 𝑐𝑖 highest in 𝑆. Hence, 
𝑤1 +𝑤2 +𝑤3 +𝑤4 = 1. The weight 𝑤𝑗,𝑖 for 𝑗 ≠ 𝑖 is defined as the frac-
tion of all voters that prefer 𝑐𝑗 given the candidates in 𝑆−𝑖 ∪ {𝑐𝑖}, but 
prefer 𝑏𝑖 when given the candidates 𝑆−𝑖 ∪ {𝑏𝑖}. For example, 𝑤1 is the 
fraction of all voters that fulfill 𝑐1 ≻ 𝑐2, 𝑐3, 𝑐4. Furthermore, 𝑤1,2 (note 
the swapped subscripts) is the fraction where, in addition, 𝑏2 ≻ 𝑐1 ≻
𝑐2, 𝑐3, 𝑐4 . Hence, 𝑤1 ≥ 𝑤1,2, and in general
𝑤𝑖 ≥ 𝑤𝑖,𝑗 . (3)

Note that 𝑤1 −𝑤1,2 is the fraction of voters such that 𝑐1 ≻ 𝑐2, 𝑐3, 𝑐4, 𝑏2. In 
particular, for all 𝑖 = 1, 2, 3, 4, at most a fraction 𝑤𝑖 +

∑

𝑗≠𝑖 𝑤𝑗,𝑖 of voters 
prefer 𝑏𝑖 over the candidates in 𝑆−𝑖 (not necessarily the entire fraction 
𝑤𝑖 of voters that prefer 𝑐𝑖 over 𝑆−𝑖 also prefer 𝑏𝑖 over 𝑆−𝑖). Therefore, 
by the assumption that 𝑆−𝑖 is not a Condorcet winning set, we have 
𝑤𝑖 +

∑

𝑗≠𝑖 𝑤𝑗,𝑖 >
1
2 , for all 𝑖.

Moreover, we claim that for each 𝑖, at most one of the three terms 
𝑤𝑗,𝑖 for 𝑗 ≠ 𝑖 is nonzero. In particular, for 𝑖 = 1, the only possibly nonzero 
weights are 𝑤2,1 or 𝑤4,1 but not both, and 𝑤3,1 = 0 where 𝑄3 is the quad-
rant diagonally opposite to 𝑄1. This follows from the proof of Lemma 2.1 
applied to 𝑐 = 𝑏1: In case (a) and Fig. 1(a), all the voters in 𝑄2 ∪𝑄3 pre-
fer 𝑐1 over 𝑐 = 𝑏1, and hence 𝑤2,1 = 𝑤3,1 = 0, because these voters clearly 
do not fulfill the condition 𝑏1 ≻ 𝑐2 ≻ 𝑐1, 𝑐3, 𝑐4 or 𝑏1 ≻ 𝑐3 ≻ 𝑐1, 𝑐2, 𝑐4. Sim-
ilarly, in case (b) and Fig. 1(b), all the voters in 𝑄3 ∪𝑄4 prefer 𝑐1 over 
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𝑐 = 𝑏1, and hence 𝑤3,1 = 𝑤4,1 = 0. The analogous reasoning applies to 
any other 𝑖.

For every 𝑖 = 1, 2, 3, 4, let 𝓁(𝑖) ≠ 𝑖 be such that (possibly) 𝑤𝓁(𝑖),𝑖 > 0
(if 𝑤𝑗,𝑖 = 0 for all 𝑗 ≠ 𝑖, let 𝓁(𝑖) be arbitrary), where 𝑄𝓁(𝑖) is a quadrant 
adjacent to 𝑄𝑖 as explained. It follows that

𝑤𝑖 +𝑤𝓁(𝑖),𝑖 >
1
2

for all 𝑖 = 1, 2, 3, 4. (4)

Since 𝑄𝓁(𝑖) is a quadrant adjacent to 𝑄𝑖, either 𝓁(1) = 2 or 𝓁(1) = 4. With-
out loss of generality, let 𝓁(1) = 2. We consider two cases.

1. 𝓁(3) = 4. Then 𝑤𝓁(𝑖) ≥ 𝑤𝓁(𝑖),𝑖 by (3) implies

𝑤1 +𝑤2 +𝑤3 +𝑤4 ≥ 𝑤1 +𝑤2,1 +𝑤3 +𝑤4,3

=
(

𝑤1 +𝑤2,1
)

+
(

𝑤3 +𝑤4,3
)

> 1
2
+ 1

2
= 1

where the strict inequality holds by (4). Thus we obtain a contradic-
tion because 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 1.

2. 𝓁(3) = 2. We break this case up into two subcases.
(a) 𝓁(4) = 1. Now

𝑤1 +𝑤2 +𝑤3 +𝑤4 ≥ 𝑤1,4 +𝑤2,3 +𝑤3 +𝑤4

=
(

𝑤3 +𝑤2,3
)

+
(

𝑤4 +𝑤1,4
)

> 1
2
+ 1

2
= 1,

a contradiction.
(b) 𝓁(4) = 3. Then

𝑤1 +𝑤2 +𝑤3 +𝑤4 ≥ 𝑤1 +𝑤2,1 +𝑤3,4 +𝑤4

=
(

𝑤1 +𝑤2,1
)

+
(

𝑤4 +𝑤3,4
)

> 1
2
+ 1

2
= 1,

a contradiction.

In each case, the contradiction implies that our initial assumption that 
none of the sets 𝑆−𝑖 is a Condorcet winning set is false. Hence at least 
one of the sets 𝑆−𝑖 is a Condorcet winning set of cardinality three; the 
Condorcet dimension is therefore at most 3. ∎

We remark that the Condorcet winning set 𝑆−𝑖 found in the proof 
of Theorem 2 need not be a dominating set in the majority digraph. 
Specifically, whilst condition (1) holds for 𝑆−𝑖, condition (2) may not 
hold. This is because, by Lemma 2.1, an alternate candidate 𝑐 ∈ 𝑄𝑖 was 
beaten by 𝑐𝑖 in 𝑆 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}. But without 𝑐𝑖 it is only collectively 
beaten by 𝑆−𝑖. This illustrates the advantage of searching Condorcet 
winning sets directly rather than indirectly via a dominating set in the 
majority digraph.

3.  An upper bound on the Condorcet dimension: Infinity norm

We now consider the infinity norm (or supremum norm). Given two 
points 𝐩1 = (𝑥1, 𝑦1) and 𝐩2 = (𝑥2, 𝑦2) in two dimensions, the distance 
between them is 𝑑∞(𝐩1,𝐩2) = max(|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|). The Manhattan 
norm and the infinity norm are closely related. Specifically, imagine 
that we rotate the axes of measurement by 45 degrees (say, clockwise 
as in Fig. 2). Let 𝐷∞ be the infinity norm using these new axes of 
measurement. The resulting distances are equivalent to the Manhattan
norm.

Claim 3.1. For any pair of points 𝐩1 and 𝐩2 in two dimensions, we have 
𝑑1(𝐩1,𝐩2) =

√

2 ⋅𝐷∞(𝐩1,𝐩2).

Proof.  Without loss of generality, we may assume that 𝐩1 = 𝟎 and that 
𝐩2 lies in the positive quadrant. Thus 𝑑1(𝟎,𝐩2) = |𝑥2| + |𝑦2| = 𝑥2 + 𝑦2. On 
the other hand, 𝐷∞(𝟎,𝐩2) =

1
√

2
⋅ (𝑥2 + 𝑦2). The claim follows. This proof 

is illustrated in Fig. 2. ∎

Theorem 3. In a 2-dimensional metric space with infinity norm, the Con-
dorcet dimension of any election is at most 3.
Proof.  Take any election instance. By Claim 3.1, there is a equivalent 
election with the Manhattan norm that induces identical preference lists. 
By Theorem 2, this election has Condorcet dimension at most 3. ∎

4.  A lower bound on the Condorcet dimension

In this section, we study lowers bounds on the Condorcet dimensions. 
Again, we focus on the case 𝐷 = 2 of metric spaces in two dimensions. 
Specifically, we prove that instances exist in two dimensions where a 
Condorcet winner does not exist. This result applies for any 𝑝-norm, 
including the infinity and Manhattan norms.
Lemma 4.1. In a 2-dimensional metric space under the 𝑝-norm, there exist 
instances with Condorcet dimension at least 2, for any 𝑝 ≥ 1. 
Proof.  Consider an election with three voters 𝐯1 = (9, 0), 𝐯2 = (0, 9)
and 𝐯3 = (−9, 0) and three candidates 𝐩1 = (1,−1),𝐩2 = (8, 10) and 𝐩3 =
(−9, 9). Using the 𝑝-norm, for any 𝑝 ≥ 1, the preferences rankings of the 
voters are 𝐯1 ∶ 𝐩1 ≻ 𝐩2 ≻ 𝐩3, 𝐯2 ∶ 𝐩2 ≻ 𝐩3 ≻ 𝐩1, and 𝐯3 ∶ 𝐩3 ≻ 𝐩1 ≻ 𝐩2. 
Hence there is a Condorcet cycle and so no Condorcet winner. ∎

5.  Embedding voter preferences in a high-dimensional metric 
space

After our study of bounding and finding a Condorcet winning set 
for instances that can be represented metrically equipped with some 
𝑝-norm, a natural question is the following: Can we test whether an 
instance has a representation in a metric space, and can we also find 
it? We answer these questions affirmatively. Already Bogomolnaia and 
Laslier [29] and Chen et al. [30] showed that any set of voter preferences 
over candidates has a corresponding embedding in a metric space with 
proximity voting, for the Euclidean norm (𝑝 = 2) and Manhattan norm 
(𝑝 = 1), respectively, for 𝐷 = min [𝑚 − 1, 𝑛]. We provide simple construc-
tions for general 𝑝-norms, giving 𝐷 = min[𝑚, 𝑛], in the subsequent two 
theorems.

Theorem 4. Consider an election with 𝑚 candidates and 𝑛 voters, each with 
a strict preference list ≻𝑣 per voter 𝑣 over the candidates. An embedding of 
dimension 𝐷 = 𝑚 can be computed in polynomial time for any 𝑝-norm, 𝑝 ≥ 0.

Proof.  In our construction we place voter 𝑗 at position 𝐲𝑗 and candi-
date 𝑖 at position 𝐱𝑖. First, we place the 𝑚 candidates at the corners 
of a simplex in 𝑚 dimensions. Specifically, let 𝐞𝑖 = (0,… , 0, 1, 0,… , 0), 
where the 𝑖th coordinate has value 1. Then we position candidate 𝑖 at 
𝐱𝑖 = 2𝑚 ⋅ 𝐞𝑖, for each 1 ≤ 𝑖 ≤ 𝑚. Next, consider voter 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛. 
Let 𝜌(𝑖, 𝑗) be the position of candidate 𝑖 in the preference list of voter 𝑗. 
Place voter 𝑗 at 𝐲𝑗 = (𝑚 − 𝜌(1, 𝑗), 𝑚 − 𝜌(2, 𝑗),… , 𝑚 − 𝜌(𝑚, 𝑗)). This embed-
ding can be computed in polynomial time as it suffices to compute all 
the 𝜌(𝑖, 𝑗); this be done by reading the preference lists of each voter and 
their combined length is the input size of the instance.

Now, for the infinity norm we have
𝑑∞(𝐲𝑗 , 𝐱𝑖) = max[(2𝑚 − (𝑚 − 𝜌(𝑖, 𝑗)),max

𝓁≠𝑖
(𝑚 − 𝜌(𝓁, 𝑗)]

= max[𝑚 + 𝜌(𝑖, 𝑗)),max
𝓁≠𝑖

(𝑚 − 𝜌(𝓁, 𝑗)]

= 𝑚 + 𝜌(𝑖, 𝑗)

Note that these distances are increasing with 𝜌(𝑖, 𝑗). Hence this position-
ing is consistent with the preference ranking of voter 𝑗. Moreover this 
construction works for any 𝑝-norm, with 0 ≤ 𝑝 < ∞. To see this, observe 
that

𝑑𝑝(𝐲𝑗 , 𝐱𝑖)𝑝 − 𝑑𝑝(𝐲𝑗 , 𝐱𝑘)𝑝

= (𝑚 + 𝜌(𝑖, 𝑗))𝑝 +
∑

𝓁≠𝑖
(𝑚 − 𝜌(𝓁, 𝑗))𝑝 − (𝑚 + 𝜌(𝑘, 𝑗))𝑝 −

∑

𝓁≠𝑘
(𝑚 − 𝜌(𝓁, 𝑗))𝑝

=
(

(𝑚 + 𝜌(𝑖, 𝑗))𝑝 − (𝑚 + 𝜌(𝑘, 𝑗)𝑝
)

+
(

(𝑚 − 𝜌(𝑘, 𝑗))𝑝 − (𝑚 − 𝜌(𝑖, 𝑗))𝑝
)

> 0
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Fig. 2. Using the Manhattan norm in (a), we have 𝑑1(𝟎,𝐩1) = 4, 𝑑1(𝟎,𝐩2) = 2 and 𝑑1(𝐩𝟏,𝐩2) = 6. Rotating the axis by 45 degrees and the applying the infinity norm 
gives 𝑑∞(𝟎,𝐩1) = 2

√

2 = 1
√

2
⋅ 4, 𝑑∞(𝟎,𝐩2) =

√

2 = 1
√

2
⋅ 2 and 𝑑∞(𝐩𝟏,𝐩2) = 3

√

2 = 1
√

2
⋅ 6.

where the strict inequality holds whenever 𝜌(𝑖, 𝑗) > 𝜌(𝑘, 𝑗). Thus the dis-
tances increase with 𝜌(𝑖, 𝑗). ∎
Theorem 5. Consider an election with 𝑚 candidates and 𝑛 voters, each with 
a strict preference list ≻𝑣 per voter 𝑣 over the candidates. An embedding of 
dimension 𝐷 = 𝑛 can be computed in polynomial time for any 𝑝-norm, 𝑝 > 1.

Proof.  In this construction, we place the 𝑛 voters, rather than the can-
didates, at 𝑛 corners of an 𝑛-dimensional simplex. Specifically, we may 
use the construction of Bogomolnaia and Laslier [29]. Place voter 𝑗 at 
𝐲𝑗 = 𝐵 ⋅ 𝐞𝑗 , for each 1 ≤ 𝑗 ≤ 𝑛, where 𝐵 (to be determined) is large. Next 
we position the 𝑚 candidates. Again, let 𝜌(𝑖, 𝑗) be the position of candi-
date 𝑖 in the preference list of voter 𝑗. Then we position each candidate 𝑖
at 𝐱𝑖 = (−𝜌(𝑖, 1),−𝜌(𝑖, 2),… ,−𝜌(𝑖, 𝑛)).

For the infinity norm, we then have

𝑑∞(𝐲𝑗 , 𝐱𝑖) = max
[

𝐵 + 𝜌(𝑖, 𝑗), max
𝓁≠𝑗

𝜌(𝑖,𝓁)
)

]

= 𝐵 + 𝜌(𝑖, 𝑗)

Here the second equality holds if 𝐵 ≥ 𝑚. These distances are then in-
creasing with 𝜌(𝑖, 𝑗), so they are consistent with the preference ranking 
of voter 𝑗.

Next consider any 𝑝-norm, with 1 < 𝑝 < ∞. Then
𝑑𝑝(𝐲𝑗 , 𝐱𝑖)𝑝 − 𝑑𝑝(𝐲𝑗 , 𝐱𝑘)𝑝

= (𝐵 + 𝜌(𝑖, 𝑗))𝑝 +
∑

𝓁≠𝑗
𝜌(𝑖,𝓁)𝑝 − (𝐵 + 𝜌(𝑘, 𝑗))𝑝 −

∑

𝓁≠𝑗
𝜌(𝑘,𝓁)𝑝

≤ (𝐵 + 𝜌(𝑖, 𝑗))𝑝 − (𝐵 + 𝜌(𝑘, 𝑗))𝑝 + (𝑛 − 1) ⋅ (𝑚𝑝 − 1)

< 0

because, since 𝑝 > 1, there exists a sufficiently large choice of 𝐵 such that 
the strict inequality holds whenever 𝜌(𝑖, 𝑗) < 𝜌(𝑘, 𝑗). Hence, the distances 
are increasing with 𝜌(𝑖, 𝑗) and are consistent with the preference ranking 
of voter 𝑗. ∎

6.  Conclusion

We presented bounds on the Condorcet dimension under the spatial 
model of voting. Several open problems remain. For the case 𝐷 = 2, we 
have shown the Condorcet dimension is at least 2 and at most 3. Do any 

instances exist with Condorcet dimension 3, or is the Condorcet dimen-
sion at most 2 for 2-dimensional metric spaces? Our upper bound holds 
for the Manhattan and infinity norms; does it extend to other distance 
norms? However, the outstanding open problem concerns whether or 
not the Condorcet dimension is at most 3 in the general case (equiva-
lently, instances where 𝐷 can be arbitrarily large). One current evidence 
for this is an observation by Bloks [32] that elections where the majority 
digraph defines a tournament with minimum dominating set of size four 
seem to be “random” enough to have very small Condorcet dimension.

CRediT authorship contribution statement

Alexandra Lassota: Writing – review & editing, Writing – original 
draft, Methodology, Formal analysis, Conceptualization; Adrian Vetta:
Writing – review & editing, Writing – original draft, Methodology, For-
mal analysis, Conceptualization; Bernhard von Stengel: Writing – re-
view & editing, Writing – original draft, Methodology, Formal analysis, 
Conceptualization.

Data availability

No data was used for the research described in the article.

Acknowledgements

We thank the referees for their thoughtful comments and sugges-
tions to improve this paper. We are also grateful to Jannik Peters for 
comments and for directing us to the papers [29] and [30]. This work 
was supported by NSERC grant 2022-04191.

References

[1] E. Elkind, J. Lang, A. Saffidine, Condorcet winning sets, Soc. Choice Welfare 44 (3) 
(2015) 493–517.

[2] N. Megiddo, U. Vishkin, On finding a minimum dominating set in a tournament, 
Theor. Comput. Sci. 61 (2–3) (1988) 307–316.

[3] C. Geist, Finding preference profiles of Condorcet dimension 𝑘 via SAT, 2014, 
arXiv:1402.4303.

[4] M. Charikar, A. Lassota, P. Ramakrishnan, A. Vetta, K. Wang, Six candidates suf-
fice to win a voter majority, in: Proceedings of the 57th Symposium on Theory of 
Computing (STOC), 2025.

Operations Research Letters 65 (2026) 107396 

5 

http://refhub.elsevier.com/S0167-6377(25)00157-9/sbref0001
http://refhub.elsevier.com/S0167-6377(25)00157-9/sbref0001
http://arxiv.org/abs/1402.4303
http://refhub.elsevier.com/S0167-6377(25)00157-9/sbref0003
http://refhub.elsevier.com/S0167-6377(25)00157-9/sbref0003
http://refhub.elsevier.com/S0167-6377(25)00157-9/sbref0003


A. Lassota, A. Vetta and B. von Stengel

[5] Z. Jiang, K. Munagala, K. Wang, Approximately stable committee selection, in: 
Proceedings of the 52nd Symposium on Theory of Computing (STOC), 2020,
pp. 463–472.

[6] T. Nguyen, H. Song, Y.S. Lin, A few good choices, 2025, arXiv:2506.22133.
[7] H. Hotelling, Stability in competition, Econ. J. 39 (153) (1929) 41–57.
[8] D. Black, On the rationale of group decision making, J. Polit. Econ. 56 (1) (1948) 

23–34.
[9] A. Downs, An Economic Theory of Democracy, Harper Collins, 1957.
[10] O. Davis, M. Hinich, P. Ordeshook, An expository development of a mathematical 

model of the electoral process, Am. Polit. Sci. Rev. 64 (2) (1970) 426–448.
[11] O. Davis, M. DeGroot, M. Hinich, Social preference orderings and majority rule, 

Econometrica 40 (1972) 147–157.
[12] R. McKelvey, Intransitivities in multidimensional voting models and some implica-

tions for agenda control, J. Econ. Theory 12 (3) (1976) 472–482.
[13] N. Schofield, Instability of simple dynamic games, Rev. Econ. Stud. 45 (3) (1988) 

575–594.
[14] J. Enelow, M. Hinich, The Spatial Theory of Voting: An Introduction, Cambridge 

University Press, 1984.
[15] J. Enelow, M. Hinich, Advances in the Spatial Theory of Voting, Cambridge Univer-

sity Press, 1990.
[16] S. Merrill, III, S. Merrill, B. Grofman, A Unified Theory of Voting: Directional and 

Proximity Spatial Models, Cambridge University Press, 1999.
[17] K. Poole, Spatial Models of Parliamentary Voting, Cambridge University Press, 2005.
[18] N. Schofield, The Spatial Models of Politics, Routledge, 2007.
[19] E. Anshelevitch, O. Bhardwaj, J. Postl, Approximating optimal social choice under 

metric preferences, in: Proceedings of the 29th Conference on Artificial Intelligence 
(AAAI), 2015, pp. 777–783.

[20] E. Anshelevitch, J. Postl, Randomized social choice functions under metric prefer-
ences, J. Artif. Intell. Res. 58 (1) (2017) 797–827.

[21] A. Borodin, O. Lev, N. Shah, T. Strangway, Primarily about primaries, in: Proceed-
ings of the 33rd Conference on Artificial Intelligence (AAAI), 2019, pp. 1804–1811.

[22] M. Charikar, P. Ramakrishnan, K. Wang, H. Wu, Breaking the metric voting distor-
tion barrier, in: Proceedings of the 35th Symposium on Discrete Algorithms (SODA), 
2024, pp. 1621–1640.

[23] M. Feldman, A. Fiat, I. Golumb, On voting and facility location, in: Proceedings of 
the 17th Conference on Economics and Computation (EC), 2016, pp. 269–286.

[24] V. Ghatzelis, D. Halpern, N. Shah, Resolving the optimal metric distortion conjec-
ture, in: Proceedings of the 61st Symposium on Foundations of Computer Science 
(FOCS), 2020, pp. 1427–1438.

[25] P. Skowron, E. Elkind, Social choice under metric preferences: scoring rules and 
STV, in: Proceedings of the 31st Conference on Artificial Intelligence (AAAI), 2017, 
pp. 1804–1811.

[26] E. Anshelevitch, A. Filos-Ratsikas, N. Shah, A. Voudouris, Distortion in social choice 
problems: the first 15 years and beyond, 2021, arXiv:2103.00911.

[27] E. Elkind, M. Lackner, D. Peters, Preference restrictions in computational social 
choice, 2025, arXiv:2205.09092.

[28] J. Eguia, Foundations of spatial preferences, J. Math. Econ. 47 (2) (2011) 200–205.
[29] A. Bogomolnaia, J.F. Laslier, Euclidean preferences, J. Math. Econ. 43 (2) (2007) 

87–98.
[30] J. Chen, M. Nöllenberg, S. Simola, A. Villedieu, M. Wallinger, Multidimensional 

Manhattan prefereces, in: Proceedings of the 15th Latin American Theoretical Infor-
matics Symposium (LATIN), 2022, pp. 273–289.
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