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Achieving low-latency consensus in geographically distributed systems remains a key challenge for blockchain

and distributed database applications. To this end, there has been significant recent interest in State-Machine-

Replication (SMR) protocols that achieve 2-round finality under the assumption that 5𝑓 + 1 ≤ 𝑛, where 𝑛 is

the number of processors and 𝑓 bounds the number of processors that may exhibit Byzantine faults. In these

protocols, instructions are organised into views, each led by a different designated leader, and 2-round finality

means that a leader’s proposal can be finalised after just a single round of voting, meaning two rounds overall

(one round for the proposal and one for voting).

We introduce Minimmit, a Byzantine-fault-tolerant SMR protocol with lower latency than previous 2-round

finality approaches. Our key insight is that view progression and transaction finality can operate on different

quorum thresholds without compromising safety or liveness. Experiments simulating a globally distributed

network of 50 processors, uniformly assigned across ten virtual regions, show that the approach leads to a

23.1% reduction in view latency and a 10.7% reduction in transaction latency compared to the state-of-the-art.

1 Introduction
Protocols for State-Machine-Replication (‘blockchain’ protocols) are commonly designed to tolerate

periods of unreliable message delivery. Formally, this means that protocols are required to satisfy

consistency (all correct processors agree on the sequence of finalised transactions) and liveness
(transactions are eventually finalised by correct processors) in the partially synchronous setting. In
this setting, it is known [13] that satisfying both liveness and consistency is possible precisely if

𝑛 ≥ 3𝑓 + 1, where 𝑛 is the number of processors and 𝑓 bounds the number of processors that may

exhibit Byzantine faults.

A key metric when considering the efficiency of State-Machine-Replication (SMR) protocols is

transaction latency, i.e., the time it takes for transactions to be finalised. Most protocols organise

operations into views, led by designated leaders, making the number of communication rounds per

view a crucial consideration in analysing latency. Under the standard assumption that 𝑛 ≥ 3𝑓 + 1, it

is known [3] that ‘3-round’ finality is optimal: here 3-round finality means that a leader’s proposal

can be finalised after two further rounds of voting (this gives three communication rounds overall:

round 1 for the proposal and rounds 2 and 3 for voting). Accordingly, standard protocols such as

PBFT [10] and Tendermint [7, 8] have 3-round finality. On the other hand, it has been known for

some time [26] that 2-round finality (one round for the proposal and one further round of voting)

is possible under the assumption that 𝑛 ≥ 5𝑓 + 1. Recent research has seen a significant renewed

interest in approaches to 2-round finality: In the last year, Matter Labs released ChonkyBFT [14],

Offchain Labs released Kudzu [30], Anza Labs and Solana released Alpenglow [18], and Supra

Research and Espresso Systems released Hydrangea [31]. In part, the motivation for this focus on

the𝑛 ≥ 5𝑓 +1 assumption is driven by the scale of modern blockchain systems.When SMR protocols

were first deployed in the 1980s, 𝑛 was small. Today, a typical blockchain system may consist of

thousands of processors, meaning that Byzantine attacks on more than a third of participants would

be extremely costly, and are deemed unlikely. This makes it appropriate to shift the resilience

requirement from 𝑛 ≥ 3𝑓 + 1 to 𝑛 ≥ 5𝑓 + 1, since doing so allows for a significant reduction in

latency.

This paper describes Minimmit, which differs from previous protocols with 2-round finality by

foregoing the slow path that is used by most previous protocols when 2-round finality fails, and by

allowing processors to proceed to the next view after receiving only 2𝑓 + 1 votes. The idea behind
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this tradeoff is that, in a globally distributed network of processors with a range of connection

speeds, receiving a smaller quorum of votes will often take significantly less time than waiting for

a larger quorum of votes. Requiring the smallest possible quorum for view progression therefore

reduces view latency (time between views). This also reduces transaction latency, i.e., the time it

takes to finalise transactions, since transactions wait for less time before being included in a block.

1.1 Evidence for reduced latency
To evaluate the performance of Minimmit, we implemented a network simulator

1
that runs custom

workloads over configurable network topologies. This simulator provides each participant the

opportunity to drive the simulation (i.e. propose a block) while collecting telemetry by region and

role. To model realistic network conditions, we apply latency and jitter to message broadcasts using

empirical measurements of AWS inter-region performance over the public internet from the past

year.

We distinguish view latency (time between views), block latency (time to finalise blocks), and

transaction latency (time to finalise transactions). To analyse how different protocols compare across

these metrics, we tested Simplex [11], Kudzu [30], and Minimmit on a globally distributed network

of 50 processors uniformly assigned across ten “virtual” regions: us-west-1, us-east-1, eu-west-1,

ap-northeast-1, eu-north-1, ap-south-1, sa-east-1, eu-central-1, ap-northeast-2, and ap-southeast-2.

While we implemented Simplex specifically, finalisation times will be similar for other standard

3-round finality protocols that employ ‘all-to-all’ message sending, such as PBFT and Tendermint,

since they use the same structure of leader proposal, followed by two rounds of voting. Likewise,

Kudzu is representative of other 2-round finality protocols that employ ‘all-to-all’ message sending

and a fast path mechanism, such as Alpenglow
2
and Hydrangea. Under these conditions, Simplex

achieves view latency 194ms (with standard deviation 𝜎=30ms) and block latency 299ms (𝜎=26ms).

Kudzu achieves view latency 190ms and block latency 220ms (𝜎=29ms). Minimmit achieves view

latency 146ms (𝜎=21ms) and block latency 220ms (𝜎=28ms). Minimmit reduces view latency by

25% compared to Simplex and 23% compared to Kudzu. Minimmit reduces block latency by 26%

compared to Simplex, equivalent to Kudzu.

For fixed sized blocks, decreased view latency clearly translates into increased throughput.

However, it also produces reduced transaction latency for users. Consider a transaction submitted

immediately after block construction at ‘height’
3 ℎ. This transaction must await inclusion in a

block of height ℎ + 1 and for that block’s subsequent finalisation. In recently proposed protocols

operating under the 𝑛 ≥ 5𝑓 + 1 assumption—such as Kudzu, Alpenglow, and Hydrangea — view

progression requires 𝑛 − 2𝑓 votes. Consequently, transaction finalisation requires waiting for both

the completion of the current view (190ms) and the finalisation of the subsequent block containing

the transaction (220ms), totalling 410ms in this model. In contrast, Minimmit’s view progression

threshold of 2𝑓 + 1 enables the same transaction to achieve finalisation in 146ms + 220ms = 366ms,

representing a 10.7% reduction in end-to-end latency.

1.2 Our contributions
Our contributions are as follows:

(1) We describe a novel view-change mechanism to reduce view latency;

1
https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/examples/estimator

2
As discussed in Section 7, direct comparisons with Alpenglow are complicated by the fact that Alpenglow incorporates a

scheme for disseminating erasure-coded block data during fixed 400ms slots, and so is non-responsive. The fixed 400ms

window causes significantly increased view latency for Alpenglow for the parameters considered in our experiments.

3
The height of a block is its number of ancestors. Ancestors are formally defined in Section 2.

https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/examples/estimator
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(2) We give formal proofs of safety, liveness and optimistic responsiveness,
4
under the 𝑛 ≥ 5𝑓 + 1

assumption;

(3) We carry out experimental evaluations, showing roughly a 23% reduction in view latency

and an 11% reduction in transaction latency compared to the state-of-the-art.

(4) In Section 6, we describe (along with other optimisations) a mechanism that uses aggregate

signatures to bound the communication required to achieve liveness after periods of asyn-

chrony. This approach may also be applied to improve efficiency for other protocols in the

‘Simplex mould’.

1.3 Dropping the slow path
Many 2-round finality protocols implement a ‘slow path’ to be used when 2-round finality fails:

generally, this slow path just requires an extra round of voting. Since Minimmit achieves improved

latency by foregoing the ‘slow path’, it is interesting to analyse any resulting sacrifice in resilience,

when compared to other leading protocols.

Alpenglow. Alpenglow is formally analysed under the same assumption that 𝑛 ≥ 5𝑓 + 1. While

there is some consideration of circumstances in which the protocol can tolerate a further 𝑓 crash

failures, the required assumptions for this case (essentially that Byzantine leaders cannot carry out

a form of proposal equivocation) do not hold under partial synchrony.

Kudzu. Kudzu makes the more general assumption that 𝑛 ≥ 3𝑓 + 2𝑝 + 1 for a tunable parameter 𝑝 .

Of course, in the case that 𝑝 = 𝑓 , this corresponds to the same assumption that 𝑛 ≥ 5𝑓 + 1. The

protocol guarantees liveness and consistency so long as at most 𝑓 processors display Byzantine

faults. It also guarantees that, during synchrony, a correct leader can finalise a block after a single

round of voting, so long as the number of faulty processors is ≤ 𝑝 . For a correct leader during

synchrony, the ‘slow path’ (requiring two rounds of voting) is therefore only relevant if the number

of faulty processors is strictly between 𝑝 and 𝑓 . In this case, the quorum required for finality after

a single round of voting is also larger than for Minimmit (𝑛 − 𝑝 rather than 𝑛 − 𝑓 ). Kudzu therefore

gives no strict ‘like-for-like’ improvement in resilience compared to Minimmit, although the tunable

parameter that Kudzu provides is beneficial.

Hydrangea. Compared to Minimmit, Alpenglow, and Kudzu, Hydrangea has improved resilience

to crash failures. As before, consider the case of a correct leader during synchrony. For a parameter

𝑘 ≥ 0, and for a system of 𝑛 = 3𝑓 + 2𝑐 + 𝑘 + 1 processors, Hydrangea achieves finality after 1 round

of voting, so long as the number of faulty processors (Byzantine or crash) is at most 𝑝 = ⌊ 𝑐+𝑘
2
⌋. In

the case that 𝑐 = 0, this aligns precisely with the bounds provided by Kudzu. However, in more

adversarial settings with up to 𝑓 Byzantine faults and 𝑐 crash faults, Hydrangea also obtains finality

after two rounds of voting. Of course, the benefit of Minimmit is that it achieves reduced transaction

latency in the case that 𝑛 ≥ 5𝑓 + 1.

1.4 Paper structure
The remainder of the paper is structured as follows:

• Section 2 describes the formal setup.

• Section 3 describes the intuition behind Minimmit.

• Section 4 formally specifies the Minimmit protocol.

• Section 5 gives formal proofs of consistency and liveness.

4
Optimistic responsiveness will be defined in Section 5.3.
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• Section 6 describes a number of optimisations, such as the use of threshold signatures, erasure

coding, and the use of aggregate signatures to speed up message dissemination and fast

recovery after periods of asynchrony.

• Section 7 describes our experiments and results.

• Section 8 describes related work.

• Section 9 contains some final comments and conclusions.

2 The Setup
We consider a set Π = {𝑝0, . . . , 𝑝𝑛−1} of𝑛 processors. For 𝑓 such that 5𝑓 +1 ≤ 𝑛, at most 𝑓 processors

may become corrupted by the adversary during the course of the execution, and may then display

Byzantine (arbitrary) behaviour. Processors that never become corrupted by the adversary are

referred to as correct.

Cryptographic assumptions. Our cryptographic assumptions are standard for papers on this

topic. Processors communicate by point-to-point authenticated channels. We use a cryptographic

signature scheme, a public key infrastructure (PKI) to validate signatures, and a collision resistant

hash function 𝐻 .
5
We assume a computationally bounded adversary. Following a common standard

in distributed computing and for simplicity of presentation (to avoid the analysis of negligible error

probabilities), we assume these cryptographic schemes are perfect, i.e., we restrict attention to

executions in which the adversary is unable to break these cryptographic schemes.

The partial synchrony model. As noted above, processors communicate using point-to-point

authenticated channels. We consider the standard partial synchrony model, whereby the execution

is divided into discrete timeslots 𝑡 ∈ N≥0 and a message sent at time 𝑡 must arrive at time 𝑡 ′ > 𝑡

with 𝑡 ′ ≤ max{GST, 𝑡} + Δ. While Δ is known, the value of GST is unknown to the protocol.

The adversary chooses GST and also message delivery times, subject to the constraints already

defined. Correct processors begin the protocol execution before GST and are not assumed to have

synchronised clocks. For simplicity, we do assume that the clocks of correct processors all proceed

in real time, meaning that if 𝑡 ′ > 𝑡 then the local clock of correct 𝑝 at time 𝑡 ′ is 𝑡 ′ − 𝑡 in advance

of its value at time 𝑡 . Using standard arguments, our protocol and analysis can be extended in a

straightforward way to the case in which there is a known upper bound on the difference between

the clock speeds of correct processors.

Transactions. Transactions are messages of a distinguished form, signed by the environment. Each
timeslot, each processor may receive some finite set of transactions directly from the environment.

We make the standard assumption that transactions are unique (repeat transactions can be produced

using an increasing ‘ticker’ or timestamps [10]).

State machine replication. If 𝜎 and 𝜏 are sequences, we write 𝜎 ⪯ 𝜏 to denote that 𝜎 is a prefix of

𝜏 . We say 𝜎 and 𝜏 are compatible if 𝜎 ⪯ 𝜏 or 𝜏 ⪯ 𝜎 . If two sequences are not compatible, they are

incompatible. If 𝜎 is a sequence of transactions, we write tr ∈ 𝜎 to denote that the transaction tr

belongs to the sequence 𝜎 . Each processor 𝑝𝑖 is required to maintain an append-only log, denoted

log𝑖 , which at any timeslot is a sequence of distinct transactions. We also write log𝑖 (𝑡) to denote the
value log𝑖 at the end of timeslot 𝑡 . The log being append-onlymeans that for 𝑡 ′ > 𝑡 , log𝑖 (𝑡) ⪯ log𝑖 (𝑡 ′).
We require the following conditions to hold in every execution:

Consistency. If 𝑝𝑖 and 𝑝 𝑗 are correct, then for any timeslots 𝑡 and 𝑡 ′, log𝑖 (𝑡) and log𝑗 (𝑡 ′) are
compatible.

5
In Section 6, we will also consider optimisations of the protocol that use threshold signatures, aggregate signatures, and

erasure codes.
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Liveness. If 𝑝𝑖 and 𝑝 𝑗 are correct and if 𝑝𝑖 receives the transaction tr then, for some 𝑡 , tr ∈ log𝑗 (𝑡).

Blocks, parents, ancestors, and finalisation. We specify a protocol that produces blocks of
transactions. Among other values, each block 𝑏 specifies a value 𝑏.Tr, which is a sequence of

transactions. There is a unique genesis block 𝑏gen, which is considered finalised at the start of the

protocol execution. Each block 𝑏 other than the genesis block has a unique parent. The ancestors
of 𝑏 are 𝑏 and all ancestors of its parent (while the genesis block has only itself as ancestor), and

each block has the genesis block as an ancestor. Each block 𝑏 thus naturally specifies an extended

sequence of transactions, denoted 𝑏.Tr∗, given by concatenating the values 𝑏′ .Tr for all ancestors 𝑏′

of 𝑏, removing any duplicate transactions. When a processor 𝑝𝑖 finalises 𝑏 at timeslot 𝑡 , this means

that, upon obtaining all ancestors of 𝑏, it sets log𝑖 (𝑡) to extend 𝑏.Tr∗. Two blocks are inconsistent if
neither is an ancestor of the other.

3 The intuition
In this section, we give an informal account of the intuition behind the protocol design.

One round of voting. We aim to specify a standard form of view-based protocol, in which each

view has a designated leader. If a view has a correct leader and begins after GST, the leader should

send a block 𝑏 to all other processors, who will then send a signed vote for 𝑏 to all others. Upon

receipt of 𝑛 − 𝑓 votes for 𝑏 (by distinct processors), our intention is that processors should then be

able to immediately finalise 𝑏: this is called 2-round finality [26] (one round to send the block and

one round for voting). 5𝑓 − 1 ≤ 𝑛 is necessary and sufficient
6
for 2-round finality: we make the

assumption that 5𝑓 + 1 ≤ 𝑛 for simplicity. We’ll call a set of 𝑛 − 𝑓 votes for a block an L-notarisation
(where ‘L’ stands for ‘large’).

When to enter the next view? We specified above that a single L-notarisation should suffice for

finality. However, as well as achieving 2-round finality, we also wish processors to proceed to the

next view immediately upon seeing a smaller set of votes, which we’ll call anM-notarisation (where

the ‘M’ stands for ‘mini’). As explained in Section 1, the rationale behind this is that, in realistic

scenarios, receiving 𝑛 − 𝑓 votes will generally take much longer than receiving a significantly

smaller set of votes (of size 2𝑓 + 1, say). Proceeding to view 𝑣 + 1 immediately upon seeing an

M-notarisation for 𝑏 in view 𝑣 therefore speeds up the process of block formation: processors can

begin view 𝑣 + 1 earlier, and then finalise 𝑏 upon later receiving the larger notarisation.

Howmany votes should we require for anM-notarisation? Note that, so long as correct processors

don’t vote for more than one block in a view, the following will hold:

(X1) If 𝑏 for view 𝑣 receives an L-notarisation, then no block 𝑏′ ≠ 𝑏 for view 𝑣 receives 2𝑓 + 1

votes.

To see this, suppose towards a contradiction that 𝑏 for view 𝑣 receives an L-notarisation and 𝑏′ ≠ 𝑏

for view 𝑣 receives 2𝑓 + 1 votes. Let 𝑃 be the set of processors that contribute to the L-notarisation

for 𝑏, and let 𝑃 ′
be the set of processors that vote for 𝑏′. Then |𝑃 ∩𝑃 ′ | ≥ (𝑛− 𝑓 ) + (2𝑓 +1) −𝑛 = 𝑓 +1.

So, 𝑃 ∩ 𝑃 ′
contains a correct processor, which contradicts the claim that correct processors don’t

vote for two blocks in one view.

So, if we set an M-notarisation to be a set of 2𝑓 + 1 votes for 𝑏, and allow processors to proceed

to view 𝑣 + 1 upon seeing an M-notarisation for 𝑏 in view 𝑣 , then any processor receiving an

M-notarisation for 𝑏 knows that no block 𝑏′ ≠ 𝑏 for view 𝑣 can receive an L-notarisation. In

particular, it is useful to see things from the perspective of the leader, 𝑝𝑖 say, of view 𝑣 + 1. If 𝑝𝑖 has

6
See [21] and https://decentralizedthoughts.github.io/2021-03-03-2-round-bft-smr-with-n-equals-4-f-equals-1/

https://decentralizedthoughts.github.io/2021-03-03-2-round-bft-smr-with-n-equals-4-f-equals-1/
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seen an M-notarisation for 𝑏 in view 𝑣 , and so long as 𝑝𝑖 resends this to other processors,
7 𝑝𝑖 can

be sure that all processors have proof that no block other than 𝑏 could have been finalised in view

𝑣 . So, 𝑝𝑖 can propose a block with 𝑏 as parent, and all correct processors will have evidence that it

is safe to vote for 𝑝𝑖 ’s proposal.

Nullifications. Since it may be the case that no block for view 𝑣 receives an M-notarisation (e,g.,

if the leader is Byzantine), processors must sometimes produce signed messages indicating that

they wish to move to view 𝑣 + 1 because of a lack of progress in view 𝑣 : we’ll call these nullify(𝑣)
messages.

8
We do not yet specify precisely when processors send nullify(𝑣) messages (we will do

so shortly). For now, we promise only that a statement analogous to (X1) will hold for nullify(𝑣)
messages:

(X2) If some block 𝑏 for view 𝑣 receives an L-notarisation, then it is not the case that 2𝑓 + 1

processors send nullify(𝑣) messages.

With the promise of (X2) in place, let’s define a nullification to be a set of 2𝑓 + 1 nullify(𝑣) messages

(signed by distinct processors). We specify that a processor should enter view 𝑣 + 1 upon receiving

either:

• An M-notarisation for view 𝑣 , or;

• A nullification for view 𝑣 .

So long as (X2) holds, any processor receiving a nullification for view 𝑣 knows that no block for

view 𝑣 can receive an L-notarisation.

Defining valid proposals so as to maintain consistency. Suppose 𝑝𝑖 is the leader of view 𝑣 :

(i) Upon entering view 𝑣 , 𝑝𝑖 finds the greatest 𝑣
′ < 𝑣 such that it has received an M-notarisation

for some block 𝑏 for view 𝑣 ′: since 𝑝𝑖 has entered view 𝑣 , it must have received nullifications

for all views in (𝑣 ′, 𝑣). Processor 𝑝𝑖 then proposes a block 𝑏′ with 𝑏 as parent.

(ii) Other processors will vote for 𝑏′, so long as they see nullifications for all views in (𝑣 ′, 𝑣)
and an M-notarisation for 𝑏: since all processors (including 𝑝𝑖 ) will resend notarisations and

nullifications upon first receiving them, if view 𝑣 begins after GST, 𝑝𝑖 can therefore be sure

that all correct processors will receive the messages they need in order to vote for 𝑏′.

It should also not be difficult to see that this will guarantee consistency (see Section 5 for the full

proof). Towards a contradiction, suppose that 𝑏1 for view 𝑣1 receives an L-notarisation, and that

there is a least view 𝑣2 ≥ 𝑣1 such that some block 𝑏2 for view 𝑣2 that does not have 𝑏1 as an ancestor

receives an M-notarisation. From (X1) it follows that 𝑣2 > 𝑣1. By our choice of 𝑣2, and since correct

processors will not vote for blocks until they see an M-notarisation for the parent, it follows that

the parent of 𝑏2 must be for a view < 𝑣1. This gives a contradiction, because correct processors

would not vote for 𝑏2 in view 𝑣2 without seeing a nullification for view 𝑣1. Such a nullification

cannot exist, by (𝑋2).

Ensuring liveness. To ensure liveness, we must first guarantee that if all correct processors enter

a view, then they all eventually leave the view. To this end we allow that, while correct processors

will not vote in any view 𝑣 after sending a nullify(𝑣) message, they may send nullify(𝑣) messages

after voting. More precisely, correct 𝑝𝑖 will send a nullify(𝑣) message while in view 𝑣 if either:

(a) Their ‘timer’ for view 𝑣 expires (time 2Δ passes after entering the view) before voting, or;
(b) They receive messages from 2𝑓 + 1 processors, each of which is either:

7
To reduce communication complexity, this could be done using a threshold signature scheme, but we defer such considera-

tions to Section 6.

8
Our approach here is somewhat similar to Simplex [11], but the reader need not have familiarity with that protocol to

follow the discussion.
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• A nullify(𝑣) message, or;

• A vote for a view 𝑣 block different than a view 𝑣 block that 𝑝𝑖 has already voted for.

Combined with the fact that correct processors will forward on nullifications and notarisations

upon receiving them, the conditions above achieve two things. First, they suffice to ensure that

(X2) is satisfied. If 𝑏 for view 𝑣 receives an L-notarisation, then let 𝑃 be the correct processors that

vote for 𝑏, let 𝑃 ′ = Π \ 𝑃 , and note that |𝑃 ′ | ≤ 2𝑓 . No processor in 𝑃 can send a nullify(𝑣) message

via (a) or vote for a view 𝑣 block other than 𝑏. It follows that no processor in 𝑃 can be caused to

send a nullify(𝑣) message via (b). So, at most 2𝑓 processors can send nullify(𝑣) messages.

The conditions above also suffice to ensure that if all correct processors enter a view 𝑣 , then they

all eventually leave the view. Towards a contradiction, suppose all correct processors enter view 𝑣 ,

but it is not the case that they all leave the view. Since correct processors forward nullifications

and notarisations upon receiving them, this means that no correct processor leaves view 𝑣 . Each

correct processor eventually receives, from at least 𝑛 − 𝑓 processors, either a vote for some block

for view 𝑣 or a nullify(𝑣) message. If any correct processor receives an M-notarisation for the

block they voted for, then we reach an immediate contradiction. So, suppose otherwise. If 𝑝𝑖 is a

correct processor that votes for a view 𝑣 block, it follows that 𝑝𝑖 receives messages from at least

(𝑛 − 𝑓 ) − (2𝑓 ) = 𝑛 − 3𝑓 ≥ 2𝑓 + 1 processors, each of which is either a nullify(𝑣) message or a vote

for a view 𝑣 block different than the view 𝑣 block that 𝑝𝑖 votes for. So, 𝑝𝑖 sends a nullify(𝑣) message

via (b). Any correct processor that does not vote for a view 𝑣 block also sends a nullify(𝑣) message,

so all correct processors send nullify(𝑣) messages, giving the required contradiction.

Adding an extra instruction to send votes. Once we have ensured that correct processors progress

through the views, establishing liveness amounts to showing that each correct leader after GST

finalises a new block. This now follows quite easily, using the reasoning outlined in (i) and (ii)

above, where we explained that (after GST) processors are guaranteed to receive all the messages

they need to verify the validity of a block proposed by a correct leader. However, a subtle issue

does require us to stipulate one further context in which correct processors should vote for a block.

Suppose view 𝑣 begins after GST and that the leader for view 𝑣 is correct. Since a correct processor

𝑝𝑖 proceeds to view 𝑣 + 1 immediately upon seeing an M-notarisation for a view 𝑣 block 𝑏, and

since it is possible that this is received before 𝑝𝑖 receives all nullifications required to verify that 𝑝𝑖
should vote for 𝑏, the possibility apparently remains that correct processors will proceed to view

𝑣 + 1 without 𝑏 receiving an L-notarisation, i.e., we do not yet have any guarantee that all correct

processors will vote for 𝑏. To avoid this, we stipulate that, if 𝑝𝑖 receives an M-notarisation for 𝑏

and has not previously sent a nullify(𝑣) message or voted during view 𝑣 , then 𝑝𝑖 should vote for

𝑏 before entering view 𝑣 + 1. In this case, the fact that 𝑏 has already received an M-notarisation

means that some correct processors have already voted for 𝑏, so it is safe for 𝑝𝑖 to do the same. The

formal proof appears in Section 5.

Intuition summary (informal):

• In each view, the leader proposes a block and all processors then vote (one round of voting).

Correct processors vote for at most one block in each view, which ensures (X1).

• An L-notarisation suffices for finalization, while an M-notarisation or a nullification suffices

to move to the next view.

• Processors only vote for the block 𝑏 for view 𝑣 , with parent 𝑏′ for view 𝑣 ′, if they have seen a

notarisation for 𝑏′ and nullifications for all views in (𝑣 ′, 𝑣). Using (X1) and (X2), this suffices

for safety.



Chou et al. 8

• To ensure progression through the views, processors send nullify(𝑣) messages upon timing

out (2Δ after entering the view) before voting, or upon receiving proof that no block for view

𝑣 will receive an L-notarisation. This ensures (X2) is satisfied.

• Once we are given that processors progress through views, liveness follows from the fact

that each correct leader after GST will finalise a new block: correct processors will vote for

the leader’s proposal because the leader themself will have sent all messages required to

verify the validity of the block. Since correct processors also vote for the leader’s block in

view 𝑣 upon seeing an M-notarisation for it (if they have not already voted in view 𝑣 , or sent

a nullify(𝑣) message), this ensures all correct processors vote for the block before leaving

view 𝑣 , and it receives an L-notarisation.

4 The formal specification
We initially give a specification aimed at simplicity. In Section 6, we will describe optimisations,

such as the use of threshold signatures to reduce communication complexity. In what follows, we

suppose that all messages are signed by the sender, and that, when a correct processor sends a

message to ‘all processors’, it regards that message as immediately received by itself. For the sake

of simplicity, we also initially assume (without explicit mention in the pseudocode) that correct

processors automatically send new transactions to all others upon first receiving them - we will

revisit this assumption in Section 6. The pseudocode uses a number of message types, local variables,

functions and procedures, detailed below.

The function lead(𝑣). The value lead(𝑣) specifies the leader for view 𝑣 . To be concrete, we set
9

lead(𝑣) := 𝑝 𝑗 , where 𝑗 = 𝑣 mod 𝑛.

Blocks. The genesis block is the tuple 𝑏gen := (0, 𝜆, 𝜆), where 𝜆 denotes the empty sequence (of

length 0). A block other than the genesis block is a tuple 𝑏 = (𝑣,Tr, ℎ), signed by lead(𝑣), where:
• 𝑣 ∈ N≥1 (thought of as the view corresponding to 𝑏);

• Tr is a sequence of distinct transactions;

• ℎ is a hash value (used to specify 𝑏’s parent).

We also write 𝑏.view, 𝑏.Tr and 𝑏.h to denote the corresponding entries of 𝑏. If 𝑏.view = 𝑣 , we also

refer to 𝑏 as a ‘view 𝑣 block’.

Votes. A vote for the block 𝑏 is a message of the form (vote, 𝑏).

M-notarisations. An M-notarisation for the block 𝑏 is a set of 2𝑓 + 1 votes for 𝑏, each signed by a

different processor. (By an M-notarisation, we mean an M-notarisation for some block.)

L-notarisations. An L-notarisation for the block 𝑏 is a set of 𝑛 − 𝑓 votes for 𝑏, each signed

by a different processor. We note that, since an L-notarisation is a larger set of votes than an

M-notarisation, if 𝑝𝑖 has received an L-notarisation for 𝑏, then it has necessarily received an

M-notarisation for 𝑏.

Nullify(𝑣) messages. For 𝑣 ∈ N≥1, a nullify(𝑣) message is of the form (nullify, 𝑣).

Nullifications. A nullification for view 𝑣 is a set of 2𝑓 + 1 nullify(𝑣) messages, each signed by a

different processor. (By a nullification, we mean a nullification for some view.)

The local variable S. This variable ismaintained locally by each processor 𝑝𝑖 and stores all messages

received. It is considered to be automatically updated, i.e., we do not give explicit instructions in

the pseudocode updating S. We say a set of messages𝑀 ′
is contained in S if𝑀 ′ ⊆ S. We also regard

9
Of course, leaders can also be randomly selected, if given an appropriate source of common randomness.
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S as containing a block 𝑏 whenever S contains any message (tuple) with 𝑏 as one of its entries.

Initially, S contains only 𝑏gen and an L-notarisation (and an M-notarisation) for 𝑏gen.

The local variable v. Initially set to 1, this variable specifies the present view of a processor.

The local timer T. Each processor 𝑝𝑖 maintains a local timer T, which is initially set to 0 and

increments in real-time. (Processors will be explicitly instructed to reset their timer to 0 upon

entering a new view.)

The local variables nullified, proposed, and notarised. These are used by 𝑝𝑖 to record whether
it has yet sent a nullify(v) message, whether it has yet proposed a block for view 𝑣 , and the block

it has voted for in the present view: nullified and proposed are initially set to false, while

notarised is initially set to ⊥ (a default value different than any block). These values will be

explicitly reset upon entering a new view.

The function SelectParent(S, v). This function is used by the leader of a view, 𝑝𝑖 say, to select the

parent block to build on. If 𝑣 ′ < v is the greatest view
10
such that S contains an M-notarisation for

some 𝑏 with 𝑏.view = 𝑣 ′, and if 𝑏 is the lexicographically least such block, the function outputs 𝑏.

The procedure ProposeChild(𝑏, 𝑣). This procedure is executed by the leader 𝑝𝑖 of view 𝑣 to

determine a new block. To execute the procedure, 𝑝𝑖 :

• Forms a sequence of distinct transactions Tr, containing all transactions received by 𝑝𝑖 and

not included in 𝑏′ .Tr for any 𝑏′ ∈ S which is an ancestor of 𝑏, and;

• Sends the block (𝑣,Tr, 𝐻 (𝑏)) to all processors.

When S contains a valid proposal for view 𝑣 . This condition is satisfied when S contains:

(i) Precisely one block 𝑏 of the form 𝑏 = (𝑣,Tr, ℎ) signed by lead(𝑣);
(ii) An M-notarisation for some 𝑏′ with 𝐻 (𝑏′) = ℎ, and with 𝑏′ .view = 𝑣 ′ (say), and;
(iii) A nullification for each view in the open interval (𝑣 ′, 𝑣).

When (i)–(iii) are satisfied w.r.t. 𝑏, we say S contains a valid proposal 𝑏 for view 𝑣 .

New nullifications and notarisations. Processors will be required to forward on all newly

received nullifications and M-notarisations. To make this precise, we must specify what is to count

as a ‘new’ nullification/notarisation. At timeslot 𝑡 , 𝑝𝑖 regards a nullification 𝑁 ⊆ S for some view 𝑣

(not necessarily equal to v) as new if:

• S (as locally defined) did not contain a nullification for view 𝑣 at any smaller timeslot, and;

• 𝑁 is lexicographically least amongst nullifications for view 𝑣 contained in S.

At timeslot 𝑡 , 𝑝𝑖 regards an𝑀-notarisation 𝑄 ⊆ S for block 𝑏 as new11
if:

• S did not contain an M-notarisation for 𝑏 at any smaller timeslot, and;

• 𝑄 is lexicographically least amongst M-notarisations for 𝑏 contained in S.

For ease of reference, message types and local variables are displayed in Tables 1 and 2. The

pseudocode appears in Algorithm 1.

10
There must exist such a view, since S always contains an M-notarisation for the genesis block.

11
Since it is not necessary for liveness, our pseudocode does not require processors to forward L-notarisations. One could

also require processors to forward L-notarisations, and the proofs of Section 5 would go through unchanged.
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Message type Description
𝑏gen The tuple (0, 𝜆, 𝜆), where 𝜆 is the empty string

block 𝑏 ≠ 𝑏gen A tuple (𝑣,Tr, ℎ), signed by lead(𝑣)
vote for 𝑏 A message (vote, 𝑏)
nullify(𝑣) A message of the form (nullify, 𝑣)
nullification for 𝑣 A set of 2𝑓 + 1 nullify(𝑣) messages, each signed by a different processor

M-notarisation for 𝑏 A set of 2𝑓 + 1 votes for 𝑏, each signed by a different processor

L-notarisation for 𝑏 A set of 𝑛 − 𝑓 votes for 𝑏, each signed by a different processor

Table 1. Messages

Variable Description
v Initially 1, specifies the present view

T Initially 0, a local timer reset upon entering each view

nullified Initially false, specifies whether already sent nullify(v) message

proposed Initially false, specifies whether already proposed a block for view 𝑣

notarised Initially set to ⊥, records block voted for in present view

S Records all received messages, automatically updated

Initially contains only 𝑏gen and M/L-notarisations for 𝑏gen
Table 2. Local variables

5 Protocol Analysis
5.1 Consistency
We say block 𝑏 receives an M-notarisation if 𝑏 = 𝑏gen or at least 2𝑓 + 1 processors send votes for 𝑏.

Similarly, we say 𝑏 receives an L-notarisation if 𝑏 = 𝑏gen or at least 𝑛 − 𝑓 processors send votes for

𝑏. View 𝑣 receives a nullification if at least 2𝑓 + 1 processors send nullify(𝑣) messages.

Lemma 5.1 (One vote per view). Correct processors vote for at most one block in each view, i.e., if
𝑝𝑖 is correct then, for each 𝑣 ∈ N≥1, there exists at most one 𝑏 with 𝑏.view = 𝑣 such that 𝑝𝑖 sends a
message (vote, 𝑏).

Proof. Recall that ⊥ is a default value, different than any block. Each correct processor’s local

value notarised is initially set to ⊥, and is also set to ⊥ upon entering any view (lines 17 and 21).

A correct processor 𝑝𝑖 will only vote for a block if notarised = ⊥ (lines 10 and 20). The claim of

the lemma holds because, upon voting for any block 𝑏, 𝑝𝑖 either sets notarised := 𝑏 (line 11) and

then does not redefine this value until entering the next view, or else immediately enters the next

view (lines 20 and 21). □

Lemma 5.2 ((X1) is satisfied). If 𝑏 receives an L-notarisation, then no block 𝑏′ ≠ 𝑏 with 𝑏′ .view =

𝑏.view receives an M-notarisation.

Proof. Given Lemma 5.1, this now follows as in Section 3. Towards a contradiction, suppose

that 𝑏 receives an L-notarisation and that 𝑏′ ≠ 𝑏 with 𝑏′ .view = 𝑏.view receives an M-notarisation.

Let 𝑃 be the set of processors that contribute to the L-notarisation for 𝑏, and let 𝑃 ′
be the set of

processors that vote for 𝑏′. Then |𝑃 ∩ 𝑃 ′ | ≥ (𝑛 − 𝑓 ) + (2𝑓 + 1) − 𝑛 = 𝑓 + 1. So, 𝑃 ∩ 𝑃 ′
contains a

correct processor, which contradicts Lemma 5.1. □
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Algorithm 1 : the instructions for 𝑝𝑖

1: At every timeslot 𝑡 :

2: Send new nullifications in S to all processors; ⊲ ‘new’ as defined in Section 4

3: Send new M-notarisations in S to all processors;

4:

5: If 𝑝𝑖 = lead(v) and proposed = false:

6: ProposeChild(SelectParent(S, v), v); ⊲ Send out a new block

7: Set proposed := true;

8:

9: If S contains a valid proposal 𝑏 for view v: ⊲ As defined in Section 4

10: If notarised = ⊥ and nullified = false:

11: Set notarised := 𝑏 and send (vote, 𝑏) to all processors; ⊲ Send vote

12:

13: If T = 2Δ, nullified = false and notarised = ⊥:
14: Set nullified :=true and send (nullify, v) to all processors; ⊲ Send nullify(𝑣)
15:

16: If S contains a nullification for v:
17: Set v := v + 1, nullified := false, proposed := false, notarised := ⊥, T := 0;

18: ⊲ Go to next view

19: If S contains an M-notarisation for some 𝑏 with 𝑏.view = v:
20: If notarised = ⊥ and nullified = false, send (vote, 𝑏) to all processors; ⊲ Send vote

21: Set v := v + 1, nullified := false, proposed := false, notarised := ⊥, T := 0;

22: ⊲ Go to next view

23:

24: If nullified = false, notarised ≠ ⊥ and S contains ≥ 2𝑓 + 1 messages, each signed by a

25: different processor, and each either:

26: (i) A message (nullify, v), or;
27: (ii) Of the form (vote, 𝑏) for some 𝑏 s.t. 𝑏.view = v and notarised ≠ 𝑏:

28: Set nullified := true and send (nullify, v) to all processors;

29: ⊲ Send nullify(v) message upon proof of no progress for v
30:

31: If S contains a new L-notarisation for any block 𝑏:

32: Finalise 𝑏; ⊲ Finalisation as specified in Section 2

Lemma 5.3 ((X2) is satisfied). If 𝑏 receives an L-notarisation and 𝑣 = 𝑏.view, then view 𝑣 does not
receive a nullification.

Proof. Towards a contradiction, suppose 𝑏 receives an L-notarisation, 𝑣 = 𝑏.view, and view 𝑣

receives a nullification. Let 𝑃 be the correct processors that vote for 𝑏, let 𝑃 ′ = Π \ 𝑃 , and note

that |𝑃 ′ | ≤ 2𝑓 . Since view 𝑣 receives a nullification, it follows that some processor in 𝑃 must send

a nullify(𝑣) message. So, let 𝑡 be the first timeslot at which some processor 𝑝𝑖 ∈ 𝑃 sends such a

message. Since 𝑝𝑖 cannot send a nullify(𝑣) message upon timeout (lines 13-14), 𝑝𝑖 must send the

nullify(𝑣) message at 𝑡 because the conditions of lines 24-27 hold for 𝑝𝑖 at 𝑡 , i.e., 𝑝𝑖 must have

received ≥ 2𝑓 + 1 messages, each signed by a different processor, and each of the form:

(i) (nullify, 𝑣), or;
(ii) (vote, 𝑏′) for some 𝑏′ ≠ 𝑏 with 𝑏′ .view = 𝑣 .
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By Lemma 5.1, no processor in 𝑃 sends a message of form (ii). By our choice of 𝑡 , no processor in 𝑃

sends a message of form (i) prior to 𝑡 . Combined with the fact that |𝑃 ′ | ≤ 2𝑓 , this gives the required

contradiction. □

Lemma 5.4 (Consistency). The protocol satisfies Consistency.

Proof. Towards a contradiction, suppose that two inconsistent blocks, 𝑏 and 𝑏′ say, both receive

L-notarisations. Without loss of generality suppose 𝑏.view ≤ 𝑏′ .view. Set 𝑏1 := 𝑏 and 𝑣1 := 𝑏1.view.

Then there is a least 𝑣2 ≥ 𝑣1 such that some block 𝑏2 satisfies:

(1) 𝑏2.view = 𝑣2;

(2) 𝑏1 is not an ancestor of 𝑏2, and;

(3) 𝑏2 receives an M-notarisation.

From Lemma 5.2, it follows that 𝑣2 > 𝑣1. According to clause (ii) from the definition of when S
contains a valid proposal for view 𝑣2, correct processors will not vote for 𝑏2 in line 11 until they

receive an M-notarisation for its parent, 𝑏0 say. Correct processors will not vote for 𝑏2 in line 20

until 𝑏2 has already received an M-notarisation, meaning that at least 𝑓 + 1 correct processors

must first vote for 𝑏2 via line 11, and 𝑏0 must receive an M-notarisation. By our choice of 𝑣2, it

follows that 𝑏0.view < 𝑣1. This gives a contradiction, because, by clause (iii) from the definition of

a valid proposal for view 𝑣2, correct processors would not vote for 𝑏2 in line 11 without receiving

a nullification for view 𝑣1. By Lemma 5.3, such a nullification cannot exist. So, block 𝑏2 cannot

receive an M-notarisation (and no correct processor votes for 𝑏2 via either line 11 or 20). □

5.2 Liveness
Lemma 5.5 (Progression through views). Every correct processor enters every view 𝑣 ∈ N≥1.

Proof. Towards a contradiction, suppose that some correct processor 𝑝𝑖 enters view 𝑣 , but never

enters view 𝑣 + 1. Note that correct processors only leave any view 𝑣 ′ upon receiving either a

nullification for the view, or else an M-notarisation for some view 𝑣 ′ block. Since correct processors
forward new nullifications and notarisations upon receiving them (lines 2 and 3), the fact that 𝑝𝑖
enters view 𝑣 but does not leave it means that:

• All correct processors enter view 𝑣 ;

• No correct processor leaves view 𝑣 .

Each correct processor eventually receives, from at least 𝑛 − 𝑓 processors, either a vote for

some view 𝑣 block, or a nullify(𝑣) message. If any correct processor receives an M-notarisation

for a view 𝑣 block, then we reach an immediate contradiction. So, suppose otherwise. If 𝑝 𝑗 is a

correct processor that votes for a view 𝑣 block 𝑏, it follows that 𝑝 𝑗 receives messages from at least

(𝑛 − 𝑓 ) − (2𝑓 ) = 𝑛 − 3𝑓 ≥ 2𝑓 + 1 processors, each of which is either:

(i) A nullify(𝑣) message, or;

(ii) A vote for a view 𝑣 block different than 𝑏.

So, the conditions of lines 24-27 are eventually satisfied, meaning that 𝑝 𝑗 sends a nullify(𝑣) message

(line 28). Any correct processor that does not vote for a view 𝑣 block also sends a nullify(𝑣)
message, so all correct processors send nullify(𝑣) messages. All correct processors therefore receive

a nullification for view 𝑣 and leave the view (line 17), giving the required contradiction. □

Lemma 5.6 (Correct leaders finalise blocks). If 𝑝𝑖 = lead(𝑣) is correct, and if the first correct
processor to enter view 𝑣 does so after GST, then 𝑝𝑖 sends a block to all processors and that block receives
an L-notarisation.
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Proof. Suppose 𝑝𝑖 = lead(𝑣) is correct and that the first correct processor 𝑝 𝑗 to enter view 𝑣

does so at timeslot 𝑡 ≥ GST. If 𝑣 > 1, processor 𝑝 𝑗 enters view 𝑣 upon receiving either a nullification

for view 𝑣 − 1, or else an M-notarisation for some view 𝑣 − 1 block. Since 𝑝 𝑗 forwards on all new

notarisations and nullifications that it receives (lines 2 and 3), it follows that all correct processors

enter view 𝑣 by 𝑡 + Δ (note that this also holds if 𝑣 = 1). Processor 𝑝𝑖 therefore sends a new block 𝑏

to all processors by 𝑡 + Δ, which is received by all processors by 𝑡 + 2Δ. Let 𝑏′ be the parent of 𝑏
and suppose 𝑏′ .view = 𝑣 ′. Then 𝑝𝑖 receives an M-notarisation for 𝑏′ by 𝑡 + Δ. Since 𝑝𝑖 forwards
on all new notarisations that it receives (line 3), all correct processors receive an M-notarisation

for 𝑏′ by 𝑡 + 2Δ. Since 𝑝𝑖 has entered view 𝑣 , it must also have received nullifications for all views

in the open interval (𝑣 ′, 𝑣) by 𝑡 + Δ, and all correct processors receive these by 𝑡 + 2Δ. All correct
processors therefore vote for 𝑏 (by either line 11 or 20)

12
before any correct processor sends a

nullify(𝑣) message. The block 𝑏 therefore receives an L-notarisation, as claimed. □

Lemma 5.7 (Liveness). The protocol satisfies Liveness.

Proof. Suppose correct 𝑝𝑖 receives the transaction tr. Let 𝑣 be a view with lead(𝑣) = 𝑝𝑖 and such

that the first correct processor to enter view 𝑣 does so after GST. By Lemma 5.6, 𝑝𝑖 will send a block

𝑏 to all processors, and 𝑏 will receive an L-notarisation. From the definition of the ProposeChild

procedure, it follows that tr will be included in 𝑏′ .Tr for some ancestor 𝑏′ of 𝑏, and all correct

processors will add tr to their log upon receiving all ancestors of 𝑏 (see the final paragraph of Section

2). Correct processors only vote for blocks whose parent has already received an M-notarisation.

All ancestors of 𝑏′ of 𝑏 must therefore receive M-notarisations, meaning that at least 𝑓 + 1 correct

processors send each such 𝑏′ to all processors, and correct processors receive all ancestors of 𝑏. □

5.3 Optimistic responsiveness
Let 𝛿 ≤ Δ be the actual (unknown) least upper bound on message delay after GST, and let 𝑓𝑎 ≤ 𝑓

be the actual (unknown) number of Byzantine processors. If a transaction tr is first received by a

correct processor at time 𝑡 , and is first finalised by all correct processors (i.e., appended to log𝑖 for

every correct 𝑝𝑖 ) at time 𝑡 + ℓ , then we say latency for tr is ℓ . We say a protocol is optimistically
responsive if latency is𝑂 (𝑓𝑎Δ+𝛿) for all transactions that are first received by any correct processor
after GST: in particular, this means latency after GST is 𝑂 (𝛿) when processors act correctly. In

this section we show that Minimmit is optimistically responsive. In fact, it satisfies the stronger

condition that latency after GST is 𝑂 (𝛿) when leaders act correctly.13

Lemma 5.8. Suppose lead(𝑣) is correct and that the first correct processor to enter view 𝑣 does so at
𝑡 ≥GST. Then all correct processors leave view 𝑣 and finalise a view 𝑣 block by 𝑡 +𝑂 (𝛿).

Proof. Proving the claim of the lemma just involves reviewing the proof of Lemma 5.6 and

observing that the leader’s block will actually be finalised by all correct processors within time

𝑂 (𝛿) of any correct processor entering the view.

As before, suppose first 𝑝𝑖 = lead(𝑣) is correct and that the first correct processor to enter

view 𝑣 does so at timeslot 𝑡 ≥ GST. Since correct processors forward on all new notarisations and

nullifications that they receive, it follows that all correct processors enter view 𝑣 by 𝑡 + 𝛿 . Processor

𝑝𝑖 therefore sends a new block 𝑏 to all processors by 𝑡 + 𝛿 , which is received by all processors by

𝑡 + 2𝛿 . Let 𝑏′ be the parent of 𝑏 and suppose 𝑏′ .view = 𝑣 ′. Then, from the definition of the function

12
The point of line 20 is to ensure this part of the proof goes through. As noted in Section 3, without it, there is the possibility

that correct processors move to the next view upon seeing an M-notarisation, before they are able to vote via line 11, thereby

failing to guarantee an L-notarisation.

13
Since the notion of leaders is protocol specific, we prefer to use the more general definition as stated, but the stronger

result also follows directly from the proofs given in this section.
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SelectParent, it follows that 𝑝𝑖 receives an M-notarisation for 𝑏′ by 𝑡 + 𝛿 . Since 𝑝𝑖 forwards on all

new notarisations that it receives (line 3), all correct processors receive an M-notarisation for 𝑏′ by
𝑡 + 2𝛿 . Since 𝑝𝑖 has entered view 𝑣 , it must also have received nullifications for all views in the open

interval (𝑣 ′, 𝑣) by 𝑡 + 𝛿 , and all correct processors receive these by 𝑡 + 2𝛿 . All correct processors

therefore vote for 𝑏 (by either line 11 or 20) by 𝑡 + 2𝛿 , and before any correct processor sends a

nullify(𝑣) message. All correct processors therefore receive 𝑏 together with an L-notarisation (and

an M-notarisation) for 𝑏 by 𝑡 + 3𝛿 , and also leave view 𝑣 by this time. This establishes the claim of

the lemma. □

Lemma 5.9. Suppose the first correct processor to enter view 𝑣 does so at 𝑡 ≥GST. Then, whether or
not lead(𝑣) is correct, all correct processors leave view 𝑣 by 𝑡 +𝑂 (Δ).

Proof. Suppose the first correct processor to enter view 𝑣 does so at 𝑡 ≥ GST. Towards a

contradiction, suppose some correct processor does not leave view 𝑣 by 𝑡 + 2Δ + 3𝛿 . As before, it

follows that all correct processors enter view 𝑣 by 𝑡 +𝛿 . By timeslot 𝑡 +𝛿 + 2Δ, all correct processors
have either voted for some view 𝑣 block, or else sent a nullify(𝑣) message. If any correct processor

receives an M-notarisation for a view 𝑣 block by 𝑡 + 2Δ+ 2𝛿 , then it forwards it on to all processors.

This means all correct processors leave the view by 𝑡 + 2Δ + 3𝛿 , giving an immediate contradiction.

So, suppose otherwise. If 𝑝 𝑗 is a correct processor that votes for a view 𝑣 block 𝑏, it follows that, by

𝑡 + 2Δ + 2𝛿 , 𝑝 𝑗 receives messages from at least (𝑛 − 𝑓 ) − (2𝑓 ) = 𝑛 − 3𝑓 ≥ 2𝑓 + 1 processors, each of

which is either:

(i) A nullify(𝑣) message, or;

(ii) A vote for a view 𝑣 block different than 𝑏.

So, the conditions of lines 24-27 are satisfied at this time, meaning that 𝑝 𝑗 sends a nullify(𝑣) message

(line 28). Any correct processor that does not vote for a view 𝑣 block also sends a nullify(𝑣) message

by this time. So, all correct processors receive a nullification for view 𝑣 by 𝑡 + 2Δ + 3𝛿 , giving the

required contradiction. □

Lemma 5.10. Minimmit is optimistically responsive.

Proof. Suppose tr is first received by a correct processor at 𝑡 ≥ GST. Since we assume correct

processors send new transactions to all other processors upon first receiving them, tr is received by

all correct processors by 𝑡 + 𝛿 . Let 𝑣0 be the greatest view that any correct processor is in at 𝑡 + 𝛿 ,

and let 𝑣1 be the least view > 𝑣0 such that lead(𝑣) is correct. From Lemmas 5.8 and 5.9, it follows

that all correct processors enter view 𝑣 by time 𝑡 +𝑂 (𝑓𝑎Δ + 𝛿), and that all correct processors also

finalise a view 𝑣1 block, 𝑏 say, by 𝑡 + 𝑂 (𝑓𝑎Δ + 𝛿). According to the definition of the procedure

ProposeChild(𝑏, 𝑣), tr will be included in an ancestor of 𝑏. Since all ancestors of 𝑏′ of 𝑏 must receive

M-notarisations prior to lead(𝑣) proposing 𝑏, at least 𝑓 + 1 correct processors send each such 𝑏′

to all processors, and correct processors receive all ancestors of 𝑏 by 𝑡 +𝑂 (𝑓𝑎Δ + 𝛿). All correct
processors therefore finalise tr by time 𝑡 +𝑂 (𝑓𝑎Δ + 𝛿). □

6 Optimisations
In Section 4, we gave a specification aimed at simplicity. In this section, we describe a number of

possible optimisations.

6.1 Progression through views
The specification of Section 4 requires correct processors to progress sequentially through views.

To recover quickly from periods of asynchrony, one can allow a correct processor that is presently

in view 𝑣 ′ to progress immediately to view 𝑣 + 1 > 𝑣 ′ upon seeing a nullification for view 𝑣 , or an

M-notarisation for view 𝑣 . This requires the following modifications:
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(1) If 𝑣 ′′ < 𝑣 and a correct processor 𝑝𝑖 in view 𝑣 receives an M-notarisation for some view 𝑣 ′′

block 𝑏, and if 𝑝𝑖 has not voted for any view 𝑣 ′′ block and has not sent a nullify(𝑣 ′′) message,

then 𝑝𝑖 must vote for 𝑏. This is now required to ensure that correct leaders finalise new blocks

after GST, i.e., that a correct leader’s block receives an L-notarisation.

(2) Upon entering view 𝑣 , and before running ProposeChild(SelectParent(S, 𝑣), 𝑣), lead(𝑣) must

now wait until there exists 𝑣 ′′ < 𝑣 such that it has received:

– An M-notarization for some view 𝑣 ′′ block, and;
– Nullifications for all views in (𝑣 ′′, 𝑣).
Lemmas 5.6 and 5.8 still go through with this change in place, since, if the first correct

processor to enter the view does so at 𝑡 ≥ GST, then lead(𝑣) will still receive these required
messages by 𝑡 + 𝛿 .

With these changes in place, the proofs of Sections 5.1–5.3 go through almost unchanged.

6.2 Reducing the size of votes
In Section 4, votes take the form (vote, 𝑏), and so include the entire block 𝑏. For constant-sized

blocks, this does not affect asymptotic communication complexity. However, when blocks are large,

a standard optimisation is to use votes of the form (vote, 𝐻 (𝑏)), containing only the block’s hash.

This optimisation introduces a data availability challenge, which is common to all protocols

using votes that only specify the block’s hash: a Byzantine leader might propose a block 𝑏 that

receives sufficient votes for finalisation, but fail to send 𝑏 itself to all correct processors. Since

correct processors need the actual block content to update their logs, they must have a mechanism

to retrieve missing blocks.

A standard solution exploits the fact that finalisation requires votes from many processors. If

a block is finalised, at least 𝑛 − 𝑓 processors (including many correct ones) must have received

and voted for it. Correct processors can therefore use a (potentially rate-limited) "pull" mechanism

to retrieve any missing finalised blocks from peers who possess them, ensuring data availability

without relying on potentially Byzantine leaders. An alternative approach, described in Section 6.3,

is to have leaders reliably broadcast blocks using erasure coding techniques.

6.3 Erasure coding
In Minimmit, as in all leader-based protocols, leaders must broadcast potentially large blocks to all

𝑛 processors. With large blocks or high transaction throughput, leader bandwidth can become a

bottleneck, limiting overall system performance. Following approaches used in recent SMR protocols

[18, 29, 30], we can apply erasure coding techniques [4, 9] to distribute the communication load.

The leader encodes each block into 𝑛 fragments such that any 𝑑 fragments suffice to reconstruct

the original block (where 𝑑 is a parameter, set as required).

Implementation for Minimmit:

- Set 𝑑 = 𝑓 + 1 (ensuring availability despite 𝑓 Byzantine failures).

- Leader sends one unique fragment to each processor.

- Communication overhead: 𝑛(block_size/𝑑) = 𝑛(block_size/(𝑓 + 1)) ≊ 5block_size.
- Processors vote only after receiving and validating their fragment.

- Each vote includes the processor’s fragment to enable block reconstruction.

Correctness guarantee. Since any notarization requires votes from at least 2𝑓 + 1 processors,

and at most 𝑓 are Byzantine, at least 𝑓 + 1 correct processors must contribute to each notarisation,

meaning that they send their fragment to all processors. This ensures sufficient fragments are

available for all processors to reconstruct any notarised block.
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Trade-offs. This optimisation reduces leader bandwidth requirements but adds fragment verifi-

cation overhead. The approach is most beneficial when block sizes are large relative to network

capacity. As noted in Section 6.2, a benefit of the approach is that it ensures correct processors

receive all finalised blocks, without requiring the use of a "pull" mechanism to retrieve any missing

finalised blocks from peers who possess them.

6.4 Threshold signatures and communication complexity
Section 4 assumes correct processors send newly received transactions to all others. In practice,

transactions are typically disseminated through gossip networks, where each processor forwards

transactions to a small, constant number of peers. If transactions are constant-bounded in size, this

approach maintains constant communication overhead per processor per transaction. Alternative

dissemination mechanisms like Narwhal [12] can also be employed. In our analysis here, we treat

transaction propagation as a black box and focus on the consensus layer. We assume blocks have

constant-bounded size and, following standard practice, analyse only the communication costs

required for consensus, taking mempool formation as given.

Message complexity. Per view, the protocol requires:
- Leader proposal: 𝑂 (𝑛) messages.

- Votes: 𝑂 (𝑛2) messages (each processor sends ≤ 1 vote to all others).

- Nullify messages: 𝑂 (𝑛2) messages.

- Forwarding notarisations/nullifications: 𝑂 (𝑛2) messages.

Communication complexity. Each notarisation and nullification contains Ω(𝑛) signatures,
resulting in communication complexity greater than 𝑂 (𝑛2) per view. The standard approach of

using threshold signatures [5, 28] can be used to ensure that the communication complexity per

view is 𝑂 (𝑛2). We redefine:

• An ‘M-notarisation’ for 𝑏 to be threshold signature (of constant-bounded length for a given

security parameter) formed from 2𝑓 + 1 votes for 𝑏 by different processors.

• A ‘nullification’ for view 𝑣 , to be a threshold signature formed from 2𝑓 +1 nullify(𝑣) messages

by different processors.

Threshold signature implemetation details. If 𝑝𝑖 has not already formed or received an M-notarisation

for𝑏, then, upon receipt of 2𝑓 +1 votes for𝑏 by different processors, 𝑝𝑖 combines the 2𝑓 +1 signatures
to form an M-notarisation (a single threshold signature). Rather than storing and forwarding the

2𝑓 + 1 votes, 𝑝𝑖 stores and forwards the M-notarisation. Similarly, 𝑝𝑖 stores and sends nullifications,

rather than storing and sending large collections of nullify(𝑣) messages. Since partial signatures for

any processor can be derived from 2𝑓 + 1 partial signatures, we must now stipulate that processors

finalise a block 𝑏 upon receiving 𝑛 − 𝑓 votes for 𝑏 directly from the corresponding processors.

We note that the pseudocode specified in Algorithm 1 does not require processors to forward

L-notarisations. If one wished to implement threshold signatures also for L-notarisations (requiring

the different threshold 𝑛 − 𝑓 ), then one would need to establish two separate threshold signature

schemes (two shared secrets), i.e., we require a separate shared secret for each threshold. This also

means that each vote requires two signatures: one corresponding to each threshold. Of course,

these two signatures can be computed/verified in parallel. Verification for the two signatures can

also be transformed into an aggregate signature verification because the two signatures are over

the same message payload.

Alternative approaches. We note that some protocols (e.g., Hotstuff [34]) achieve linear com-

munication complexity per view by relaying all messages via the leader. However, this approach
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significantly increases the number of communication rounds required, and the leader anyway acts

as a communication bottleneck (e.g., see [24]).

6.5 Compressed nullifications
The problem: nullification build-up during asynchrony. During extended periods of asyn-
chrony, processors may generate nullifications for many consecutive views without being able to

finalise new blocks. When synchrony is restored, correct processors must exchange all accumulated

nullifications before they can vote for new proposals. Since a processor requires nullifications for

all intermediate views between a block’s parent and the current view (see Section 4), this can create

substantial communication overhead.

Solution: nullification aggregation. For signature schemes supporting aggregation (e.g., BLS

[5]), we can compress consecutive nullifications. Given threshold signatures for views in the range

[𝑣, 𝑣 ′], we aggregate them into a single signature 𝜎 of constant size and send the tuple (𝑣, 𝑣 ′, 𝜎).

Verification. Aggregate signature verification requires specifying the message sequence and

corresponding public keys. Here, the message sequence is implicitly defined by the view range

[𝑣, 𝑣 ′], and each nullification uses the same shared public key from the threshold scheme.

7 Experiments
We test Minimmit against Simplex [11] and Kudzu [30] using a deterministic simulator that executes

protocol specifications on configurable network topologies. The simulator implementation and

experiment configurations are released under both MIT and Apache-2 licenses.
14
A step-by-step

guide for recreating every experiment appears in Appendix A.

Protocol selection. Simplex introduced state-of-the-art transaction latency among 3-round finality

protocols. Its design inspired Minimmit: both protocols decouple view iteration from finalisation,

shrinking the worst-case delay before a transaction is included in a block. This structural similarity

makes it a natural baseline against which to quantity the impact of Minimmit’s relaxed Byzantine

fault tolerance.

Kudzu (and the similarly constructed Alpenglow [18]) recently delivered state-of-the-art transac-

tion latency for 2-round finality protocols by concurrently evaluating fast and slow paths. Unlike

Alpenglow, which incorporates a scheme for disseminating erasure-coded block data during fixed

400ms slots
15
, Kudzu is responsive and serves as a better candidate for comparison to Minimmit.

We defer a comprehensive comparison to Alpenglow’s block dissemination to future work.

Simulation procedure. Each simulation iteration designates a leader and treats the remaining

processors as replicas. The leader initiates the view by broadcasting a payload of configurable

size to all replicas. Replicas process received payloads after at most a configurable number of

pending messages and broadcast their own protocol-specific messages. The simulator records

the time at which each processor reaches salient protocol milestones and reports the mean and

standard deviation over all processors. Because the runtime is deterministic, these measurements

are reproducible by re-running the same command.
16

14
https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/examples/estimator

15
A processor in Votor will not cast a vote for some block until it has recovered the entire block from Rotor.

16
https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/runtime/src/

deterministic.rs

https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/examples/estimator
https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/runtime/src/deterministic.rs
https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/runtime/src/deterministic.rs
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Latency and bandwidth model. For every message transmission we sample a delay from a

normal distribution with mean equal to the p50
17
AWS inter-region latency and standard deviation

(p90 − p50).18 Each processor has symmetric 1 Gbps (125,000,000 B/s) ingress and egress budgets,

so message delivery time is the sum of the sampled network delay and the bandwidth-limited trans-

mission time. We assume linear bandwidth usage and max-min fairness for bandwidth allocation,

yielding conservative latency estimates. In practice, burstable bandwidth and traffic prioritisation

provided by cloud operators would only decrease the reported latencies.

Uniform global deployment. We place 50 processors uniformly across ten AWS regions (us-

west-1, us-east-1, eu-west-1, ap-northeast-1, eu-north-1, ap-south-1, sa-east-1, eu-central-1, ap-

northeast-2, ap-southeast-2) and enable the “reducing the size of votes” optimisation from Section

6.2 for all protocols, so that the leader distributes full blocks (i.e. no erasure coding) while replicas

vote on digests. We assume instantaneous block production and begin broadcasting at time 𝑡 = 0.

Table 3 summarises the resulting latency when proposing 32 KB blocks, the block size at which

Minimmit processes 1,000 transactions per second
19
in this configuration.

Table 3. Uniform global deployment (50 processors, symmetric 1 Gbps links).

Protocol View Latency Block Latency Transaction Latency
Simplex 194.61 ± 30.34 ms 299.34 ± 25.98 ms 493.95 ± 7.50 ms

Kudzu 189.94 ± 29.32 ms 220.31 ± 28.58 ms 410.25 ± 7.61 ms

Minimmit 146.07 ± 21.33 ms 220.3 ± 28.57 ms 366.37 ± 7.06 ms

Minimmit reduces transaction latency by 25.8% relative to Simplex and by 10.7% relative to

Kudzu. The improvement stems from Minimmit’s ability to progress views after collecting 2𝑓 + 1

votes.

Region-centric deployment. We next cluster 25 processors in the United States (13 in us-west-1

and 12 in us-east-1) and place the remaining 25 uniformly across the other eight regions. Table 4

reports the resulting latencies for the same 32 KB blocks, increasing Minimmit’s effective processing

rate from 1,000 to 1,500 transactions per second at a lower transaction latency.

Table 4. Region-centric deployment (50 processors, symmetric 1 Gbps links).

Protocol View Latency Block Latency Transaction Latency
Simplex 149.95 ± 24.58 ms 222.32 ± 24.05 ms 372.27 ± 6.97 ms

Kudzu 139.77 ± 26.17 ms 185.16 ± 24.09 ms 324.93 ± 7.09 ms

Minimmit 104.93 ± 34.71 ms 187.67 ± 27.13 ms 292.6 ± 7.86 ms

Under this regional skew, Minimmit decreases transaction latency by 21.4% relative to Simplex

and by 9.95% relative to Kudzu. Kudzu attains slightly lower block latency because its slow path

races the fast path, and in this topology some leaders complete two rounds gathering 3𝑓 + 1 votes

before Minimmit collects 𝑛 − 𝑓 votes.

Large blocks. Larger blocks take longer to transmit: broadcasting a 1 MB block to 50 processors

over 1 Gbps links already requires roughly 400 ms of egress latency.
20
Table 5 reproduces the global

17
https://www.cloudping.co/api/latencies?percentile=p_50&timeframe=1Y

18
https://www.cloudping.co/api/latencies?percentile=p_90&timeframe=1Y

19
Assumes each transaction is 200 B.

20
Recall, we assume bandwidth allocation is max-min fair.

https://www.cloudping.co/api/latencies?percentile=p_50&timeframe=1Y
https://www.cloudping.co/api/latencies?percentile=p_90&timeframe=1Y


Chou et al. 19

deployment with 1 MB blocks, the block size at which Minimmit processes 10,000 transactions per

second
21
in this configuration.

Table 5. Uniform global deployment (50 processors, symmetric 1 Gbps links).

Protocol View Latency Block Latency Transaction Latency
Simplex 593.61 ± 30.34ms 698.34 ± 25.98 ms 1291.95 ± 7.50ms

Kudzu 588.94 ± 29.32 ms 619.31 ± 28.58 ms 1208.25 ± 7.61 ms

Minimmit 545.07 ± 21.33 ms 619.3 ± 28.57 ms 1164.37 ± 7.06 ms

Introducing a naïve Reed–Solomon erasure coding scheme reduces this bottleneck. We split

each block into 50 fragments, have the leader broadcast a fragment to every processor, and require

replicas to broadcast their fragment to all other processors when casting a vote. The fragment

size is determined by the quorum needed for view progression: Simplex targets 3𝑓 + 1 replicas

and therefore transmits 61.72 KB fragments so that any 𝑓 + 1 fragments suffice for reconstruction;

Minimmit targets 5𝑓 + 1 replicas and sends 104.86 KB fragments to ensure 𝑓 + 1 fragments suffice;

Kudzu also targets 5𝑓 + 1 replicas but requires 55.19 KB fragments to guarantee reconstruction

from 2𝑓 + 1 fragments. Table 6 reports the resulting latencies, increasing Minimmit’s effective

processing rate from 10,000 to 25,000 transactions per second at a lower transaction latency.

Table 6. Uniform global deployment with erasure coding (1 MB blocks).

Protocol View Latency Block Latency Transaction Latency
Simplex 230.62 ± 30.33 ms 335.36 ± 25.97 ms 565.98 ± 7.50 ms

Kudzu 220.94 ± 29.33 ms 251.29 ± 28.63 ms 472.23 ± 7.61 ms

Minimmit 216.0 ± 21.46 ms 290.32 ± 28.52 ms 506.28 ± 7.07 ms

With coding enabled, Minimmit achieves the lowest view latency but not the lowest transaction

latency, despite each processor only emitting a single vote message per view (rather than driving

concurrent paths). This result is a product of the smaller fragment size required by Kudzu (47.37%

smaller than Minimmit’s), which offsets Minimmit’s lower threshold for view progression. With

the lowest view latency, Minimmit still maximises throughput across all protocols, since blocks of a
fixed size are produced at a faster rate.

Our current implementation of Minimmit, however, uses conservative erasure coding parameters.

Since Minimmit requires only 2𝑓 + 1 messages to progress through views, we could potentially

require 2𝑓 + 1 valid fragments for view progression and design the erasure coding to allow recon-

struction from exactly 2𝑓 + 1 fragments rather than the 𝑓 + 1 fragments currently required. This

would reduce fragment sizes by approximately 50%, yielding lower transaction latency than Kudzu

by combining reduced communication overhead with our faster view progression mechanism. We

leave coding parameter optimization for future work.

Increasing per processor bandwidth from 1 Gbps to 10 Gbps under this naïve coding scheme,

as illustrated in Table 7, restores Minimmit’s outright transaction latency advantage over Kudzu

under this workload.

With more bandwidth to compensate for the larger fragment sizes, Minimmit decreases transac-

tion latency by 25.0% relative to Simplex and 9.07% relative to Kudzu. Increasing bandwidth and

reducing latency in this standardised environment, as illustrated in Table 7 and Table 4, consistently

21
Assumes each transaction is 200 B.
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Table 7. Uniform global deployment with increased bandwidth and erasure coding (10 Gbps per processor
and 1 MB blocks).

Protocol View Latency Block Latency Transaction Latency
Simplex 186.63 ± 30.35 ms 291.33 ± 26.0 ms 477.96 ± 7.51 ms

Kudzu 181.86 ± 29.31 ms 212.3 ± 28.6 ms 394.16 ± 7.61 ms

Minimmit 142.14 ± 21.36 ms 216.27 ± 28.58 ms 358.41 ± 7.07 ms

improves Minimmit’s performance relative to Simplex and Kudzu. This observation supports the

primary insight employed by Minimmit (and Simplex): faster-than-finality view progression is a

fundamental building block for minimising transaction latency.

8 Related work
Classical Byzantine Consensus. The study of protocols for reaching consensus in the presence

of Byzantine faults was introduced by Lamport, Shostak, and Pease [22]. Dwork, Lynch and

Stockmeyer [13] showed that 𝑛 ≥ 3𝑓 + 1 is optimal for partial synchrony. Standard protocols using

the assumption 𝑛 ≥ 3𝑓 + 1, such as PBFT [10] and Tendermint [7, 8], satisfy 3-round finality. As

shown by [3], this is optimal.

Optimistic Responsiveness. While many standard protocols, such as PBFT, satisfy forms of

optimistic responsiveness, a specific form of the concept was first discussed in [27]. Optimistic

responsiveness has been further studied in a number of papers (e.g., [2, 34]) and can be defined in a

number of ways [23, 25, 34].

Fast-Path Approaches. A long line of work [6, 15, 16, 20, 26, 32] considers protocols with a ‘fast

path’, which allows for quick termination/finalisation in certain ‘good’ scenarios. Kursawe [20]

describes an agreement protocol that runs with 3𝑓 + 1 processors, but is able to commit in two

steps when all processes act correctly and the network is synchronous, falling back to a randomised

asynchronous consensus protocol otherwise. FaB [26] extends Kursawe’s approach by more closely

integrating the fast path and the fall-back mechanism (the ‘slow path’), and by introducing a

parameterised model with 𝑛 ≥ 3𝑓 + 2𝑝 + 1 processors. Fast termination is achieved, so long as at

most 𝑝 processors are Byzantine. Unfortunately, the protocol suffers from a liveness bug [1]. FaB

also gives a proof that the assumed bound 𝑛 ≥ 3𝑓 + 2𝑝 + 1 is tight. However, it was pointed out in

[21] and [3] that the proof only applies to a specific form of protocol. Kuznetsov et al. [21] show

that, in fact, the bound 𝑛 ≥ 3𝑓 + 2𝑝 − 1 is optimal. Zyzzyva [19] also builds on FaB by (similarly)

integrating the fast and slow paths, and by describing an SMR protocol, rather than a protocol

for one-shot consensus. As pointed out in [1], the view-change mechanism in Zyzzyva does not

guarantee safety when leaders are faulty. SBFT [17] also builds on the ideas introduced in FaB in

order to allow the fast path to tolerate a small number of crash failures.

Modern 2-Round Protocols. Alpenglow [18] is formally analysed under the assumption that

𝑛 ≥ 5𝑓 + 1. The paper also considers circumstances in which the protocol can tolerate a further

𝑓 crash failures, but the required assumptions for this case (essentially that Byzantine leaders

cannot carry out a form of proposal equivocation) do not hold under partial synchrony. Banyan [33]

carries out the fast path in parallel with the slow path mechanism, but can suffer from unbounded

message complexity with faulty leaders. Kudzu (like FaB) makes the more general assumption that

𝑛 ≥ 3𝑓 + 2𝑝 + 1 for a tunable parameter 𝑝 . Kudzu and Alpenglow also describe the use of erasure

coding techniques to allow for significantly improved maximum throughput (such techniques were

also employed by SMR protocols in earlier papers, such as [29]).
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Compared to Minimmit, Alpenglow, and Kudzu, Hydrangea has improved resilience to crash

failures. For a parameter 𝑘 ≥ 0, and for a system of 𝑛 = 3𝑓 + 2𝑐 + 𝑘 + 1 processors, Hydrangea

achieves 2-round finality, so long as the number of faulty processors (Byzantine or crash) is at

most 𝑝 = ⌊ 𝑐+𝑘
2
⌋. In the case that 𝑐 = 0, this aligns precisely with the bounds provided by Kudzu.

However, in more adversarial settings with up to 𝑓 Byzantine faults and 𝑐 crash faults, Hydrangea

also obtains finality after two rounds of voting.

As for Minimmit, ChonkyBFT [14] assumes 𝑛 ≥ 5𝑓 + 1 and employs a single round of voting,

but does not have Minimmit’s mechanism for fast view progression.

Positioning of Minimmit. Minimmit assumes 𝑛 ≥ 5𝑓 + 1 and achieves 2-round finality. The

advantage of Minimmit over all previous approaches to 2-round finality is its fast view change

mechanism, which, as described in Sections 1 and 7, allows for decreased view and transaction

latency. While subjective, we also believe that the simplicity of the protocol will make it attractive

to practitioners.

9 Final comments
We have presented Minimmit, a Byzantine fault-tolerant SMR protocol that achieves reduced

transaction latency through a novel view-change mechanism. By decoupling view progression from

transaction finality—requiring only 2𝑓 + 1 votes for view changes while requiring 𝑛 − 𝑓 votes for

finalisation—Minimmit demonstrates that significant latency improvements are possible without

sacrificing safety or liveness guarantees.

Our experimental evaluation shows an approximately 23% reduction in view latency and an

11% reduction in transaction latency compared to existing approaches, achieved through faster

view progression in geographically distributed networks. The protocol’s simplicity, requiring no

complex slow-path mechanisms, may facilitate practical adoption in systems where low latency is

critical.
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A Reproducing Experiments
All experiments were executed with the commonware-estimator22. Each run combines one of the

protocol scripts below with a network distribution. The workflow is:

22
https://github.com/commonwarexyz/monorepo/tree/19f19d32760daf1d497295726ec92a1e6b84959f/examples/estimator
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(1) Save the desired script as <protocol>.lazy.
(2) Invoke commonware-estimator –distribution <distribution> <protocol>.lazy us-

ing one of the configurations listed at the end of this section.

Protocol scripts
The following schedules apply to experiments without erasure coding. Set <proposal_bytes> to
32768 for the 32 KB runs and to 1048576 for the 1 MB runs.

Simplex

# Simplex
propose{0, size=<proposal_bytes>}
wait{0, threshold=1}
broadcast{1, size=40}
wait{1, threshold=67%}
broadcast{2, size=40}
wait{2, threshold=67%}

Kudzu (no coding)

# Kudzu (no coding)
propose{0, size=<proposal_bytes>}
wait{0, threshold=1}
broadcast{1, size=40}
wait{1, threshold=61%}
broadcast{2, size=40}
wait{1, threshold=81%} || wait{2, threshold=61%}

Minimmit

# Minimmit
propose{0, size=<proposal_bytes>}
wait{0, threshold=1}
broadcast{1, size=40}
wait{1, threshold=41%}
wait{1, threshold=81%}

Use the erasure-coded variants below for Section 7’s coded experiments (message sizes already

include shard data).
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Simplex (erasure coded)

# Simplex (erasure coded)
propose{0, size=61682}
wait{0, threshold=1}
broadcast{1, size=61722}
wait{1, threshold=67%}
broadcast{2, size=40}
wait{2, threshold=67%}

Kudzu (erasure coded)

# Kudzu (erasure coded)
propose{0, size=55190}
wait{0, threshold=1}
broadcast{1, size=55230}
wait{1, threshold=61%}
broadcast{2, size=40}
wait{1, threshold=81%} || wait{2, threshold=61%}

Minimmit (erasure coded)

# Minimmit (erasure coded)
propose{0, size=104858}
wait{0, threshold=1}
broadcast{1, size=104898}
wait{1, threshold=41%}
wait{1, threshold=81%}

Network distributions
Pair the scripts with one of the following network distributionswhen calling commonware-estimator.
The Uniform global distribution is reused for both block sizes; only <proposal_bytes> changes.

Uniform global (1 Gbps links)

commonware-estimator --distribution \
us-west-1:5:125000000,us-east-1:5:125000000,\
eu-west-1:5:125000000,ap-northeast-1:5:125000000,\
eu-north-1:5:125000000,ap-south-1:5:125000000,\
sa-east-1:5:125000000,eu-central-1:5:125000000,\
ap-northeast-2:5:125000000,ap-southeast-2:5:125000000 \
<protocol>.lazy
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Region-centric (1 Gbps links)

commonware-estimator --distribution \
us-west-1:13:125000000,us-east-1:12:125000000,\
eu-west-1:3:125000000,ap-northeast-1:4:125000000,\
eu-north-1:3:125000000,ap-south-1:3:125000000,\
sa-east-1:3:125000000,eu-central-1:3:125000000,\
ap-northeast-2:3:125000000,ap-southeast-2:3:125000000 \
<protocol>.lazy

Uniform global (10 Gbps links)

commonware-estimator --distribution \
us-west-1:5:1250000000,us-east-1:5:1250000000,\
eu-west-1:5:1250000000,ap-northeast-1:5:1250000000,\
eu-north-1:5:1250000000,ap-south-1:5:1250000000,\
sa-east-1:5:1250000000,eu-central-1:5:1250000000,\
ap-northeast-2:5:1250000000,ap-southeast-2:5:1250000000 \
<protocol>.lazy
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