

Cohort Profile: Brazilian High-Risk Cohort for Mental Health Conditions (BHRC)

Giovanni A. Salum^{*1,2,3,4}, Carina de Giusti^{1,2}, Laila Souza^{1,2}, Juliana Juk^{1,2,5}, Rosângela Costa^{1,2,5}, Luisa Sugaya^{1,2,5}, Arthur Caye^{1,2,3,5}, André Simioni^{1,2}, Paula B. Rocha^{1,2,3}, Gisele G. Manfro^{1,2,3}, Lucas T. Ito^{1,2,6}, Francisco Da Silva-Jr^{1,2,6}, Igor Duarte^{1,2,5}, Nathalia Esper^{1,2,4}, Mauricio Anés^{1,2,3}, Rodolfo F. Damiano^{1,2,5}, Theodore D. Satterthwaite⁷, Carolina M. Carvalho^{1,2,6}, Patricia Bado^{1,2}, Maurício S. Hoffmann^{1,2,3,8,9}, Julia L. Schafer^{1,2,4}, Caio B. Casella⁴, Sara Evans-Lacko⁹, Carolina Ziebold^{1,2,9}, Rudi Rocha¹⁰, André Zugman^{1,2,11}, Andrea Jackowski^{1,6}, Ary Gadelha^{1,2,6}, Marcelo Q. Hoexter^{1,2,5}, Clarice Madruga^{2,6}, Rodrigo Grassi-Oliveira¹², Annamaria Cattaneo¹³, Audrey Tyrka¹⁴, Tomas Paus¹⁵, Daniel S. Pine¹¹, Ellen Leibenluft¹¹, Argyris Stringaris¹⁶, Kathleen R. Merikangas^{11,4}, Michael P. Milham^{4,17}, Alexandre Franco^{4,17,18}, Marcos Santoro^{1,2,6}, João R. Sato^{1,2,19}, Vanessa Ota^{1,2,6}, Guilherme V. Polanczyk^{1,2,5}, Jair de J. Mari^{1,2,6}, Rodrigo A. Bressan^{1,2,6}, Eurípedes C. Miguel^{1,2,5}, Luis A. Rohde^{1,2,3,5}, Sintia Belanger^{1,2,6}, Pedro M. Pan^{1,2,5,6}

Affiliations

1 National Institute of Developmental Psychiatry (INPD), São Paulo - Brazil

2 Center for Research and Innovation in Mental Health (CISM), São Paulo - Brazil

3 Universidade Federal do Rio Grande do Sul & Hospital de Clínicas de Clínicas de Porto Alegre, Porto Alegre - Brazil

4 Child Mind Institute (CMI), New York - United States of America

5 Universidade de São Paulo (USP), São Paulo - Brazil

6 Universidade Federal de São Paulo (UNIFESP), São Paulo - Brazil

7 University of Pennsylvania (UPenn), Pennsylvania - United States of America

8 Universidade Federal de Santa Maria (UFSM), Santa Maria - Brazil

9 London School of Economics and Political Sciences (LSE), London - United Kingdom

10 Instituto de Educação para Políticas de Saúde (IEPS), São Paulo - Brazil

11 National Institutes of Health (NIMH), Bethesda - United States of America;

12 Aarhus University, Aarhus - Denmark

13 University of Milan, Milan, Department of Pharmacological And Biomolecular Sciences;
Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli,
Brescia, Italy.

14 Brown University, Rhode Island - United States of America

15 University of Montreal, Montreal - Canada

16 University College London (UCL), London - United Kingdom

17 Nathan Kline Institute for Psychiatric Research, Orangeburg - United States of America

18 New York University Grossman School of Medicine, New York - United States of America

19 Universidade Federal do ABC (UFABC), São Paulo - Brazil

* Corresponding author

Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul. 90035-003, Brazil Tel: +55 51 3359 8094; fax: +55 51 3359 8094

gsalum@hcpa.edu.br

Key words: Cohorts; Mental Health; Neuroscience; Brain imaging; Genetics

Word count: 2493 (out of 2500 words) for the main paper

Key features

- The Brazilian High-Risk Cohort for Mental Health Conditions (BHRC) was established in 2009 to investigate the developmental trajectories of mental health conditions, integrating clinical, social, genetic, neuroimaging, and environmental assessments. It is unique as one of the most comprehensive population neuroscience studies from a middle-income country.
- Participant screening was performed in 2009-10 across 57 public schools in Porto Alegre and São Paulo, Brazil, with 8,012 caregivers reporting information on 9,937 children aged 6–12 years.
- A total of 2,511 participants were selected for genotyping and deep phenotyping, 958 by random and 1,553 selected by having high risk of mental health conditions based on symptoms and family history.
- Participants received a baseline assessment in 2010-11 and were followed up at regular intervals, including four key waves, in 2013–14, 2018–19, 2019–20 (COVID-19), and 2023–25, with an 83% retention rate after 15 years.
- Currently, the cohort expanded to include three generations: parents, probands and proband's offspring, enabling transgenerational analyses of mental health and cognitive development across three generations.
- Data and resources are available through open-science platforms, with collaboration opportunities accessible via proposal submission (<https://osf.io/ktz5h/overview>).

Why was the cohort set up?

The "Brazilian High Risk Cohort for Mental Health Conditions (BHRC)", formerly "High risk cohort study for psychiatric disorders in childhood (HRC)"¹, was established to advance the understanding of the developmental trajectories of pediatric mental health conditions by integrating information about behaviors, genes, environments and brain development. BHRC has an accelerated school-based longitudinal design in which children born between 1996 and 2004 were recruited at school in 2009 and 2010 and assessed every two to four years. BHRC is one of the few population neuroscience studies from a middle-income country, integrating in-depth clinical assessments with data on environmental influences, genetics, imaging, cognition, and ecological momentary assessment (EMA), among others².

The cohort was established as a collaborative effort among three Brazilian universities: Universidade de São Paulo (USP), Universidade Federal do Rio Grande do Sul (UFRGS) and Universidade Federal de São Paulo (UNIFESP). This was possible through a networking grant from the Brazilian Science and Technology Ministry, which created the National Institute of Developmental Psychiatry for Children and Adolescents (in Portuguese, "Instituto Nacional de Psiquiatria do Desenvolvimento para a Infância e Adolescência", INPD). Participants were recruited at state-funded schools of two Brazilian metropolitan areas: Porto Alegre (South, 1.5 million inhabitants, metropolitan area 4.4 million inhabitants) and São Paulo (Southeast, 11.4 million inhabitants, metropolitan area 22.8 million inhabitants).

Over the past 15 years, the study was funded by multiple sources including Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), European Research Council (ERC), UK Medical Research Council (MRC), Banco Industrial do Brasil S/A., and Brazilian Ministry of Health.

Additionally, the harmonization between the BHRC and other cohorts has been funded by the National Institutes of Mental Health (NIMH). NIMH also provided support by mentorship

from researchers from the Intramural Research Program to students working with BHRC data.

Who is in the cohort?

The BHRC enrolled participants from 57 state-funded schools (22 in Porto Alegre, 35 in São Paulo), during compulsory registration days, when at least one caregiver must attend by law. Of the approximately 12,500 eligible caregivers, 8,012 enrolled, providing information on 9,937 children (participation: Porto Alegre, 65.1% and São Paulo, 63%). Inclusion criteria were registration in a state-funded school by a biological parent able to provide behavioral information, and child aged 6–12 years. Parents were interviewed in person or by telephone, with a modified Family History Screen (FHS), administered by trained interviewers ^{1,3}. The FHS was used to generate a family liability index that expresses the percentage of family members who screened positive for a mental health condition, adjusted for degree of relatedness (mother, father and sibling counts as 1.0, half sibling is 0.5). Most interviews involved biological mothers (87.3%), with the remainder completed by biological fathers. Based on the information reported at screening (n=9,937), we recruited two subgroups: random (n=958) and high-risk (n=1,553) samples. Only one child per family was included. The high-risk sample was selected based on the presence of early mental health symptoms and high levels of symptoms in the family as assessed by the family liability index¹. Recruitment occurred from September 28, 2009, to April 15, 2010.

How often have they been followed up?

Participants have been reassessed over 15 years. Screening was in 2009–2010, followed by baseline (Wave 0: August 2010–June 2011), Wave 1 (October 2013–November 2014), Wave

2 (November 2018–December 2019), and Wave 3 (2023–2025). A special follow-up (Wave C, April 2020–March 2021) evaluated the impact of COVID-19 (Figure 1).

What has been measured?

The BHRC collected a broad, harmonized set of measures to capture psychopathology, development, and context:

- Mental health data assessed via diagnostic interviews, rating scales, parent, self and teacher-reports about psychopathology, temperament, and personality (Supplementary Table S1).
- Exposure to tobacco, alcohol, drugs, screen time, pornography, and addictive behaviors, along with their impact on health and functioning via both self-reports and toxicological hair assays (Supplementary Table S2).
- Cognitive assessments including intelligence quotient, executive function, memory, attention, and attention bias to threats and rewards (Supplementary Table S3).
- Learning assessments including reading speed, accuracy and comprehension, writing, and mathematics (Supplementary Table S4).
- Life events, functioning, and lifestyle including friendship, sleep patterns, well-being, religiosity, physical health, traffic accidents, exposure to violence, and medical diagnosis (Supplementary Table S5).
- Perinatal factors, stressful events and environments, bullying, stigma, and discrimination (Supplementary Table S6).
- Service use including inpatient admission, outpatient services, help-seeking behavior, treatments, and barriers encountered in accessing care (Supplementary Table S7).
- Genetic assessment from biospecimens (saliva and blood) including genomics, transcriptomics, and epigenomics (Supplementary Table S8).

- Neuroimaging assessment including diverse modalities of structural and functional magnetic resonance imaging (Supplementary Table S9).
- Ecological Momentary Assessment including mood, activities, step counts, GPS location and time spent in nature (Supplementary Table S10).

Quality control

From 8-year follow-up onward (Wave 2), all interviews were audio-recorded (Supplementary Table S11) and reviewed for quality control. At the 15-year follow-up, the protocol was further enhanced by including an additional psychiatric interview tailored to severe conditions i.e., intellectual disability, imprisonment, or psychotic disorder (Supplementary Tables S12 and S13).

Assessing biological parents (G1)

Biological parents (Generation 1, G1) initially served as informants about their children (G2). As the cohort matured and G2 participants reached adulthood, G1 participation was expanded: parents were interviewed about their own health, education, and functioning using the same core protocol employed with their offspring. Including both biological parents where possible effectively tripled the number of assessed individuals and enabled family-based analyses (e.g., triads) crucial for disentangling genetic, environmental, and intergenerational mechanisms.

Adding a third generation (G3)

The 15-year follow-up introduced the third generation (G3): the children of the original G2 participants. By November 2024, 458 G2 participants had at least one child, yielding 574 G3 children enrolled. Initial contact identified the child's main caregiver to complete an online

sociodemographic and perinatal questionnaire, followed by a recorded online interview by a trained psychologist focused on the child's emotions, behaviors, and environment (Table S17). Adding G3 allows the cohort to investigate transgenerational associations and inherited susceptibilities with direct measures across three generations.

What has it found?

Mental health conditions are frequent, fluctuate over time, and most Brazilian children with such conditions do not receive needed care. One in five children in the studied cities experience a mental disorder¹, yet only 20% of those receive any form of treatment^{4,5}, with parental stigma acting as a major barrier to accessing care⁶. Trajectories show waxing and waning patterns of symptoms, with both homotypic and heterotypic transitions. Externalizing conditions, such as Attention-Deficit Hyperactivity Disorder (ADHD) and disruptive behavior disorder, were more prevalent in earlier waves, whereas anxiety and depression were more prevalent in later waves.

Not only symptoms, but positive traits have an important role in educational outcomes. Problems such as low test performance, age-grade distortion, and retention were associated with psychopathology⁷. Positive traits such as eagerness to learn, affection, and caring play a significant role in mitigating negative educational outcomes⁸. They buffer the effects of lower intelligence on learning and reduce the impact of psychopathology on academic performance.

Social determinants and childhood adversity influence mental health, brain activity and development. Poverty, affecting 12% of the sample, is associated with externalizing conditions⁹ and later-life criminal convictions⁹. Socioeconomic correlated with spontaneous activity in the right superior temporal gyrus, part of the extended language network¹⁰. Adversity showed distinct effects: threat-related experiences were tied to psychopathology, while deprivation impaired executive function¹¹. Traumatic events with intentional harm were

more strongly associated with psychotic experiences than non-intentional trauma¹². Parental job loss worsens children's mental health, increasing clinical diagnoses¹³.

ADHD involves deficient information processing; biased attention orienting to threats characterizes both anxiety and irritability; and executive functions relate to general psychopathology. While deficits in basic information processing (e.g., processing speed and stimulus discriminability) were specific to the ADHD¹⁴, they were also present in children with subclinical inattention symptoms, providing support for ADHD dimensionality¹⁵. Impaired basic information processing mediated the relationship between ADHD symptoms and poor reading ability, particularly in younger children¹⁶. Biases in attention orienting were associated with irritability in children and adolescents¹⁷, beyond their association with anxiety. Finally, impairments in executive function were linked to general psychopathology,¹⁷ rather than specific disorders.

Psychopathology has many dimensions with distinct external correlates. We found psychopathology to have a hierarchical structure, with general and specific dimensions¹⁹. For example, anxiety disorders can be divided into fear and distress disorders, with distinct cognitive underpinnings¹⁹ and familial transmission patterns¹⁸. Oppositionality comprises three main dimensions: irritability, headstrong behavior, and hurtfulness, each associated with unique familial and developmental outcomes²⁰. Mania has two dimensions: exuberant and undercontrolled, with the latter linked to the most detrimental outcomes²¹.

Data-driven classifications of executive function have strong predictive validity. We proposed a data-driven classification of executive dysfunction using cognitive tasks assessing inhibitory control, working memory, and temporal processing²². Participants with executive dysfunction reported symptoms spanning several domains of psychopathology and exhibited impairment in multiple settings, including more adverse school events. They also exhibited smaller intracranial volumes and reduced cortical surface areas.

Alzheimer's genetic risk has implications for early development. Genetic risk for Alzheimer's disease may affect early life cognition and hippocampal volumes, supporting previous evidence that some forms of late-life dementia could have developmental roots²³. We also showed that this genetic risk influences functional connectivity among brain regions susceptible to tau pathology during childhood and adolescence²⁴.

Aggregated genetic risks have small but consistent effects, which are dependent on the environment. Although the effects of individual genetic variants are modest, their aggregation holds substantial predictive power, especially when moderated by environmental risks²⁵. Different polygenic scores appear to impact cognition and brain volume in early development²³, as well as functional connectivity²⁴, and inhibitory control²², among other traits. In addition, we found that parents' genetics influence the cognition and educational performance of the offspring, a relationship likely mediated by the parents' phenotypes²⁶.

Neurodevelopmental correlates of psychopathology include delayed Default Mode Network (DMN) maturation, cerebellum volumes smaller than expected for age, and aberrant ventral striatum connectivity. General child psychopathology was associated with delayed maturation of the Default Mode Network (DMN) using resting state functional connectivity²⁷, while smaller-than-expected cerebellar volumes for a given age and sex were associated with higher externalizing psychopathology and worse executive function²⁸. Aberrant ventral striatum functional connectivity predicted future risk for depressive disorder²⁹, a finding replicated in an independent sample³⁰. Nevertheless, imaging studies revealed relatively low effect sizes, with an aggregate measure of structural brain measures explaining no more than 1–3% of the variance in behavioral traits³¹.

Aggregating data is critical for scientific exploration. BHRC data have contributed to numerous important consortia, addressing key gaps in mental health and neurodevelopmental research. For example, it contributed to showing that the diagnosis of ADHD in younger

children within a classroom is no more likely to be disconfirmed over time than that of older children³²; to the discovery of genes related to PTSD³³; and to charting brain trajectories of typical development across the lifespan³⁴. This is particularly important because most genetic and imaging studies originate from high-income countries, leaving populations from low- and middle-income countries underrepresented. By contributing data to large consortia such as the Psychiatric Genomics Consortium (PGC), Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA), Reproducible Brain Charts (RBC)³⁵, The Methylation, Imaging and NeuroDevelopment (MIND)³⁶ and others (Supplementary Table S17), BHRC has ensured that findings from Brazil add diversity and depth to global datasets (Figure 2).

What are the main strengths and weaknesses?

Strengths: The BHRC is notable for its comprehensive assessment of mental health phenotypes, encompassing dimensional and diagnostic approaches. Its long-term longitudinal design allows for the study of both typical and atypical neurodevelopmental trajectories, leveraging a wide range of data modalities. These include biological samples (hair, blood, and saliva), genomic (SNP-array, whole genome sequencing, and telomere length), transcriptomic (RNA sequencing) and epigenetic data (DNA methylation array), along with environmental, neuroimaging, physical health, cognitive, and educational assessments. This cohort is particularly notable for its depth of phenotyping within the context of environmental and genomic diversity, reflecting Brazil's highly mixed genetic population³⁷. As one of the few extensive cohorts from a low- and middle-income country, the BHRC has achieved a high retention rate of 83%. Analyses of baseline characteristics indicated that attrition across waves was generally limited: respondents and non-respondents did not differ substantially in socioeconomic status or school grade, although maternal education consistently predicted non-response, with children of less educated mothers more likely to be lost to follow-up (Supplementary Table S18). Attrition was also higher among participants with baseline anxiety disorders, whereas other baseline psychiatric conditions did not show consistent

differences. Additionally, at wave 3, a higher proportion of non-respondents were male compared to baseline participants. Importantly, potential selection biases at study entry were previously examined and reported¹, with some differences observed in the high-risk stratum but no systematic biases in the random selection group. This suggests that selection bias is unlikely to have substantially influenced results overall, although the differential attrition by sex, maternal education, and anxiety should be acknowledged.

The cohort has generated 147 publications as of August 2025. A complete list of publications is available at <https://osf.io/ktz5h/wiki/Bibliographic%20repository/>. Most importantly, the study contributed to capacity building and human resources, with many publications led by students and early-career researchers, including 13 by master's students, 65 by PhD students, 11 by undergraduate research assistants, and 12 by post-doctoral fellows.

Weaknesses: The sample is non-probabilistic and based on urban state-funded schools, which limits the generalizability of findings to the broader population. Additionally, while the BHRCS' primary focus on mental health has enabled in-depth study of psychiatric conditions, this emphasis limits investigations into physical health. Finally, our functional neuroimaging protocol used in waves 0, 1, and 2 (established in 2009) may not meet the current reliability standards required for functional analyses.

Can I get hold of the data? Where can I find out more?

The BHRC is committed to open science. De-identified data can be requested via a brief proposal through the project's Open Science Framework (OSF) page (<https://osf.io/ktz5h/>). Upon approval by the principal investigators (PIs), data are shared securely. A detailed data dictionary, protocol documentation, wikis, and data-cleaning code are available to facilitate secondary analyses. Researchers interested in collaborating on the project are encouraged to contact Giovanni A. Salum (gsalumjr@gmail.com) and Pedro M. Pan

(pedromariopan@gmail.com). Part of our imaging data is also readily available at <https://reprobrainchart.github.io>.

Ethics approval

The study was approved by the Brazilian National Ethics in Research Commission (CAAE 13852413010015327 and 74563817.7.1001.5327). For Screening, Wave 0, Wave 1, and Wave 2, written consent was obtained from parents and, when appropriate, assent or consent from participating children. For those unable to read or write, verbal agreement was documented after a researcher explained procedures and answered questions. Families could schedule appointments with study psychologists and social workers to receive results and referrals when indicated. By Wave 3, participants had reached the legal age of consent; consent was obtained directly from them. For participants lacking legal capacity, consent was obtained from parents/guardians with verbal assent from the participant. Situations involving risk of harm received special attention consistent with ethical guidelines.

Acknowledgments

The authors would like to thank the participants of this study who really made this research possible. We would also like to thank the multiple contributors to this study who, during those past 15 years, have been contributing as part of the team of evaluators, scientific mentors, funders, and overall supporters of the cohort.

We also would like to thank Amazon Web Services and Datarain for their support with data storage and processing; and Dianósticos da America S.A. (DASA) and Chomatox for their support with hair toxicological analysis.

Author contributions

Conceptualization: Giovanni Abrahão Salum, Luis Augusto Rohde, Eurípedes Constantino Miguel, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Data Curation: André Simioni, Andre Zugman, Lucas Toshio Ito, Marcos Santoro

Formal Analysis: André Simioni

Funding Acquisition: Giovanni Abrahão Salum, Michael P. Milham, Theodore Satterthwaite, Sara Evans-Lacko, Andrea Jackowski, Clarice Madruga, Rodrigo Grassi-Oliveira, Annamaria Cataneo, Audrey Tyrka, Marcos Santoro, Luis Augusto Rohde, Jair Mari, Eurípedes Constantino Miguel, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Investigation: Giovanni Abrahão Salum, Luis Augusto Rohde, Eurípedes Constantino Miguel, Jair Mari, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Methodology: Giovanni Abrahão Salum, Luis Augusto Rohde, Eurípedes Constantino Miguel, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Project Administration: Giovanni Abrahão Salum, Carina de Giusti, Laila Souza, Juliana Juk, Rosângela Costa, Luisa Sugaya, Arthur Caye, André Simioni, Paula Blaya Rocha, Sintia Belangero, Rodrigo A. Bressan, Luis Augusto Rohde, Eurípedes Constantino Miguel, Pedro M. Pan

Resources: Giovanni Abrahão Salum, Michael P. Milham, Theodore Satterthwaite, Sara Evans-Lacko, Andrea Jackowski, Clarice Madruga, Rodrigo Grassi-Oliveira, Annamaria Cataneo, Audrey Tyrka, Marcos Santoro, Luis Augusto Rohde, Eurípedes Constantino Miguel, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Software: André Simioni, Marcos Santoro, Lucas Toshio Ito

Supervision: Giovanni Abrahão Salum, Luis Augusto Rohde, Eurípedes Constantino Miguel, Jair Mari, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Validation: Giovanni Abrahão Salum, Carina de Giusti, Laila Souza, Luisa Sugaya, Arthur

Caye, André Simioni, Paula Blaya Rocha, Lucas Toshio Ito, Francisco Da Silva-Jr, Maurício Scopel Hoffmann, Sara Evans-Lacko, Carolina Ziebold, Clarice Madruga, Rodrigo Grassi-Oliveira, Marcos Santoro, Vanessa Ota, Sintia Belangero, Pedro M. Pan

Visualization: Andre Simioni, Lucas Toshio Ito

Writing – Original Draft Preparation: Giovanni Abrahão Salum, Carina de Giusti, Laila Souza, Luisa Sugaya, Arthur Caye, André Simioni, Paula Blaya Rocha, Lucas Toshio Ito, Francisco Da Silva-Jr, Maurício Scopel Hoffmann, Sara Evans-Lacko, Carolina Ziebold, Clarice Madruga, Rodrigo Grassi-Oliveira, Marcos Santoro, Vanessa Ota, Sintia Belangero, Pedro M. Pan

Writing – Review & Editing: Giovanni Abrahão Salum, Carina de Giusti, Laila Souza, Juliana Juk, Rosângela Costa, Luisa Sugaya, Arthur Caye, André Simioni, Paula Blaya Rocha, Gisele Gus Manfro, Lucas Toshio Ito, Francisco Da Silva-Jr, Igor Duarte, Nathalia Esper, Mauricio Anés, Rodolfo Furlan Damiano, Michael P. Milham, Alexandre Franco, Theodore Satterthwaite, Carolina Muniz Carvalho, Patricia Bado, Maurício Scopel Hoffmann, Julia L. Schafer, Caio B. Casella, Sara Evans-Lacko, Carolina Ziebold, Rudi Rocha, André Zugman, Andrea Jackowski, Ary Gadelha, Marcelo Q. Hoexter, Clarice Madruga, Rodrigo Grassi-Oliveira, Annamaria Cataneo, Audrey Tyrka, Tomas Paus, Daniel Pine, Ellen Leibenluft, Argyris Stringaris, Kathleen Merikangas, Marcos Santoro, João Ricardo Sato, Vanessa Ota, Guilherme V. Polanczyk, Jair Mari, Luis Augusto Rohde, Eurípedes Constantino Miguel, Rodrigo A. Bressan, Sintia Belangero, Pedro M. Pan

Guarantor of the paper: Giovanni Abrahão Salum

Conflict of Interest:

AC declares receiving consulting fees from Knight Therapeutics and EMS pharmaceuticals in the last three years, unrelated to the current study.

AZ is supported by the National institute of mental health intramural research program (ZIA-MH002781); this manuscript was prepared or accomplished by AZ in his personal capacity; the opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

GVP has served as a speaker and or consultant to Abbott, Ache, Adium, Apsen, EMS, Libbs, Medice, and receives authorship royalties from Manole Editors.

LAR has received grant or research support from, served as a consultant to, and served on the speakers' bureau of Abdi Ibrahim, Abbott, Aché, Adium, Apsen, Bial, Cellera, EMS, Hypera Pharma, Knight Therapeutics, Libbs, Medice, Novartis/Sandoz, Pfizer/Upjohn/Viatris, Shire/Takeda, and Torrent in the last three years. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by LAR have received unrestricted educational and research support from the following pharmaceutical companies in the last three years: Novartis/Sandoz and Shire/Takeda. LAR has received authorship royalties from Oxford Press and ArtMed.

PMP received payment or honoraria for lectures and presentations in educational events for Abbot, Libbs, Germed Pharma, Instituto Israelita de Pesquisa e Ensino Albert Einstein, Instituto D'Or de Pesquisa e Ensino.

All the other authors declare no conflict of interest.

Funding

The study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant numbers 573974/2008-0 and 465550/2014-2), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant numbers: 2008/57896-8, 2013/08531-5, 2014/50917-0, 2020/06172-1, 2021/05332-8, 2021/12901-9), European Research Council (ERC grant

numbers: 337673 and 101057390), UK Medical Research Council (MRC grant number: MR/R022763/1), Ministério da Saúde (Decit/SECTICS/MS Grant number: 888379/2019 - Portaria N° 1.949, 04/08/2020) and Banco Industrial do Brasil S/A (CISM grant). Scholarship received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CAPES). Collaboration between the BHRC and other cohorts has been funded by the National Institutes of Health (NIMH grant number: R01MH120482-01). Involvement of NIMH Intramural investigators has been funded by NIMH-Intramural Research Program Project MH 002782.

Supplementary material

Supplementary material is available at IJE online

Use of Artificial Intelligence (AI) tools

AI tools were not used in this manuscript.

References

1. Salum GA, Gadelha A, Pan PM, et al. High risk cohort study for psychiatric disorders in childhood: rationale, design, methods and preliminary results. *International Journal of Methods in Psychiatric Research*. 2014 Dec 3; **24**(1):58.
2. Paus T. Population neuroscience: why and how. *Hum Brain Mapp*. 2010 Jun; **31**(6):891–903.
3. Weissman MM, Wickramaratne P, Adams P, Wolk S, Verdelli H, Olfson M. Brief screening for family psychiatric history: the family history screen. *Arch Gen Psychiatry*. 2000 Jul; **57**(7):675–682.
4. Fatori D, Salum GA, Rohde LA, et al. Use of Mental Health Services by Children With Mental Disorders in Two Major Cities in Brazil. *Psychiatr Serv*. 2019 Apr 1; **70**(4):337–341.
5. Ziebold C, Silva-Ribeiro W, King D, et al. Utilisation and costs of mental health-related service use among adolescents. *PLoS One*. 2022; **17**(9):e0273628.
6. Paula CS, Ziebold C, Ribeiro WS, et al. The influence of caregiver attitudes and socioeconomic group on formal and informal mental health service use among youth. *Eur Psychiatry*. 2022 Jun 10; **65**(1):e34.
7. Hoffmann MS, McDaid D, Salum GA, et al. The impact of child psychiatric conditions on future educational outcomes among a community cohort in Brazil. *Epidemiol Psychiatr Sci*. 2021 Oct 28; **30**:e69.
8. Hoffmann MS, Leibenluft E, Stringaris A, et al. Positive Attributes Buffer the Negative Associations Between Low Intelligence and High Psychopathology With Educational Outcomes. *J Am Acad Child Adolesc Psychiatry*. 2016 Jan; **55**(1):47–53.
9. Ziebold C, Evans-Lacko S, Andrade MCR, et al. Childhood poverty and mental health disorders in early adulthood: evidence from a Brazilian cohort study. *Eur Child Adolesc Psychiatry*. 2023 May; **32**(5):903–914.
10. Biazoli CE, Salum GA, Gadelha A, et al. Socioeconomic status in children is associated with spontaneous activity in right superior temporal gyrus. *Brain Imaging Behav*. 2020 Aug; **14**(4):961–970.
11. Schäfer JL, McLaughlin KA, Manfro GG, et al. Threat and deprivation are associated with distinct aspects of cognition, emotional processing, and psychopathology in children and adolescents. *Dev Sci*. 2023 Jan; **26**(1):e13267.
12. Moriyama TS, Drukker M, Gadelha A, et al. The association between psychotic experiences and traumatic life events: the role of the intention to harm. *Psychol Med*. 2018 Oct; **48**(13):2235–2246.
13. Fontes LF, Mrejen M, Rache B, Rocha R. Economic Distress and Children's Mental Health: Evidence from the Brazilian High-Risk Cohort Study for Mental Conditions. *The Economic Journal*. 2024 May 1; **134**(660):1701–1718.
14. Salum GA, Sergeant J, Sonuga-Barke E, et al. Specificity of basic information processing and inhibitory control in attention deficit hyperactivity disorder. *Psychol Med*. 2014 Feb; **44**(3):617–631.
15. Salum GA, Sonuga-Barke E, Sergeant J, et al. Mechanisms underpinning inattention and hyperactivity: neurocognitive support for ADHD dimensionality. *Psychol Med*. 2014 Nov; **44**(15):3189–3201.
16. Lúcio PS, Salum GA, Rohde LA, et al. Poor stimulus discriminability as a common neuropsychological deficit between ADHD and reading ability in young children: a moderated mediation model. *Psychol Med*. 2017 Jan; **47**(2):255–266.
17. Salum GA, Mogg K, Bradley BP, et al. Association between irritability and bias in attention orienting to threat in children and adolescents. *J Child Psychol Psychiatry*. 2017 May; **58**(5):595–602.

18. Martel MM, Pan PM, Hoffmann MS, et al. A general psychopathology factor (P factor) in children: Structural model analysis and external validation through familial risk and child global executive function. *J Abnorm Psychol.* 2017 Jan; **126**(1):137–148.
19. Salum GA, Mogg K, Bradley BP, et al. Threat bias in attention orienting: evidence of specificity in a large community-based study. *Psychol Med.* 2013 Apr; **43**(4):733–745.
20. Krieger FV, Polanczyk VG, Goodman R, et al. Dimensions of oppositionality in a Brazilian community sample: testing the DSM-5 proposal and etiological links. *J Am Acad Child Adolesc Psychiatry.* 2013 Apr; **52**(4):389–400.e1.
21. Pan PM, Salum GA, Gadelha A, et al. Manic symptoms in youth: dimensions, latent classes, and associations with parental psychopathology. *J Am Acad Child Adolesc Psychiatry.* 2014 Jun; **53**(6):625–634.e2.
22. Manfro AG, Pine DS, Polanczyk GV, et al. Testing the Stability and Validity of an Executive Dysfunction Classification Using Task-Based Assessment in Children and Adolescents. *J Am Acad Child Adolesc Psychiatry.* 2021 Dec; **60**(12):1501–1512.
23. Axelrud LK, Santoro ML, Pine DS, et al. Polygenic Risk Score for Alzheimer’s Disease: Implications for Memory Performance and Hippocampal Volumes in Early Life. *Am J Psychiatry.* 2018 Jun 1; **175**(6):555–563.
24. Axelrud LK, Sato JR, Santoro ML, et al. Genetic risk for Alzheimer’s disease and functional brain connectivity in children and adolescents. *Neurobiol Aging.* 2019 Oct; **82**:10–17.
25. Leffa DT, Caye A, Belanger SI, et al. The synergistic effect of genetic and environmental factors in the development of attention-deficit/hyperactivity disorder symptoms in children and adolescents. *Dev Psychopathol.* 2023 Apr 24; **1**:1–11.
26. Axelrud LK, Hoffmann MS, Vosberg DE, et al. Disentangling the influences of parental genetics on offspring’s cognition, education, and psychopathology via genetic and phenotypic pathways. *J Child Psychol Psychiatry.* 2023 Mar; **64**(3):408–416.
27. Sato JR, Salum GA, Gadelha A, et al. Default mode network maturation and psychopathology in children and adolescents. *J Child Psychol Psychiatry.* 2016 Jan; **57**(1):55–64.
28. Borges MS, Hoffmann MS, Simioni A, et al. Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes. *Psychol Med.* 2023 Sep; **53**(12):5698–5708.
29. Pan PM, Sato JR, Salum GA, et al. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample. *Am J Psychiatry.* 2017 Nov 1; **174**(11):1112–1119.
30. Pan PM, Sato JR, Paillère Martinot M-L, et al. Longitudinal Trajectory of the Link Between Ventral Striatum and Depression in Adolescence. *Am J Psychiatry.* 2022 Jul; **179**(7):470–481.
31. Axelrud LK, Simioni AR, Pine DS, et al. Neuroimaging Association Scores: reliability and validity of aggregate measures of brain structural features linked to mental disorders in youth. *Eur Child Adolesc Psychiatry.* 2021 Dec; **30**(12):1895–1906.
32. Synergy for the Influence of the Month of Birth in ADHD (SIMBA) study group. Association between relative age at school and persistence of ADHD in prospective studies: an individual participant data meta-analysis. *Lancet Psychiatry.* 2023 Dec; **10**(12):922–933.
33. Nievergelt CM, Maihofer AX, Atkinson EG, et al. Discovery of 95 PTSD loci provides insight into genetic architecture and neurobiology of trauma and stress-related disorders. *medRxiv.* 2023 Sep 2; 2023.08.31.23294915.
34. Bethlehem RA, Seidlitz J, White SR, et al. Brain charts for the human lifespan. *Nature.* Nature Publishing Group; 2022; **604**(7906):525–533.
35. [Mehta K, Golia Shafiei, Salo T. Reproducible Brain Charts: An Open Data Resource for](#)

[Mapping the Developing Brain and Mental Health. OSF; 2024; \(https://osf.io/er248/\); 9](https://osf.io/er248/)
November 2024, date last accessed)

36. Schuurmans IK, Mulder RH, Baltramaityte V, et al. Consortium Profile: The Methylation, Imaging and NeuroDevelopment (MIND) Consortium. *medRxiv*. 2024 Jun 25;2024.06.23.24309353.
37. Rose-Clarke K, Bitta M, Evans-Lacko S, et al. Centring youth mental health discourse on low-income and middle-income countries. *Lancet Psychiatry*. 2024 Sep;11(9):671–672.

Figure captions

Figure 1 - Study Design

Abbreviations:

A. Locations and Sampling

RS – Rio Grande do Sul (Porto Alegre)
SP – São Paulo

B. Instruments and Scales

ABCL – Adult Behavior Checklist
ASR – Adult Self-Report
CAPE – Community Assessment of Psychic Experiences
CBCL – Child Behavior Checklist
CRISIS – The Coronavirus Health Impact Survey
CSSRS – Columbia-Suicide Severity Rating Scale
DAWBA – Development and Well-Being Assessment
ECDI-30 – Early Childhood Development Index (30 items)
EMA – Ecological Momentary Assessment
GAD-7 – Generalized Anxiety Disorder 7-item Scale
GSED – Global Scale for Early Development
K6 – Kessler Distress 6-Item Scale
M-CHAT – Modified Checklist for Autism in Toddlers
MINI – Mini International Neuropsychiatric Interview
m-IPIP – Mini International Personality Item Pool
PHQ-9 – Patient Health Questionnaire-9
SCARED – Screen for Child Anxiety Related Emotional Disorders
SDQ – Strengths and Difficulties Questionnaire
WEMWBS / WEMWB – Warwick-Edinburgh Mental Well-Being Scale
YSR – Youth Self-Report

C. Biological and Digital Measures

EEG – Electroencephalography
GPS – Global Positioning System
MRI – Magnetic Resonance Imaging

Alt text:

Schematic summary of the Brazilian High-Risk Cohort for Mental Conditions (BHRCS). Panel A shows a map of Brazil indicating the two cities from which participants were selected and depicts the selection process, combining high-risk and random selections. Panel B outlines longitudinal design across four waves (2010 to ongoing), indicating generations assessed, questionnaires, biological collections, and neuroimaging. Panel C presents cohort age distribution, MRI scan counts, and retention rates over time.

Figure 2 - Milestones and major findings

Alt text:

Timeline summarizing the development of the Brazilian High-Risk Cohort for Mental Conditions (BHRCS) from 2009 to 2024. It depicts major milestones including cohort creation, partnerships, data collection waves, and key research focuses such as childhood

adversity, brain development, education, depression, anxiety, poverty, and measurement of mental health. The figure highlights institutional collaborations, methodological expansions, and ongoing longitudinal follow-ups leading to the fourth wave of data collection between 2023 and 2024.