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As climate change intensifies, adaptation is essential. This Perspective explores how space-based
Earth Observation (EO) data can support tracking progress under the Paris Agreement's Global Goal
on Adaptation. Focusing on agriculture, biodiversity, extreme events, and health, it highlights EO’s
strengths and challenges. The paper offers recommendations for integrating EO in indicator
development, drawing parallels with the Sustainable Development Goals and emphasising the need
for standardised, operational EO-based adaptation indicators.

As climate change impacts are unfolding at greater speed, frequency and
intensity, climate adaptation has become a necessary strategy for preventing
degradation, averting disasters, and continuing improvement in the quality
of life worldwide. The need for further action was acknowledged by gov-
ernmentsduring the twenty eighthConferenceof theParties (COP28)of the
United Nations Framework Convention on Climate Change (UNFCCC)
convened at the United Arab Emirates (UAE) in the context of the Global
Goal on Adaptation (GGA). The adoption of the UAE Framework for
Global Climate Resilience at COP28 was accompanied by a mandate to
develop a robust suite of adaptation indicators for tracking the imple-
mentation of the targets of the Framework. Yet, questions remainwhat data
the indicators, once selected, should draw on, how these can be global in
scale, and best serve the needs of the Parties to the Paris Agreement.

This Perspective is the result of a forum ‘Using Earth Observations
Systems to Improve Climate Adaptation Policy andAction’, held from June
25 through June 28, 2024, in Bern, Switzerland, and hosted by the Inter-
national Space Science Institute (ISSI, https://forum.issibern.ch/climate-
adaptation/). The forumwas co-convened by ISSI, European SpaceAgency,
NASA, World Adaptation Science Programme, and Griffith University,
with participants from research, policy, and space agencies. It explored the
use and availability of space-based EarthObservations (EO) data in relation
to the needs of the current UAE-Belem work programme on indicators
under the GGA to assess the targets of the GGA framework. Considering

global asymmetries in terms of the spatial coverage and temporal continuity
of in-situ direct observations, such data sources were not discussed at the
Forum. This paper aims to inform the ongoing UNFCCC process by
highlighting the potential contributions of the EO community and the data
it provides. We argue that EO data should be considered as an integral part
of the GGA indicators under the UAE Framework for Global Climate
Resilience. Reflecting themultidisciplinary expertise gathered at the Forum,
we provide a set of recommendations to multiple stakeholders on how EO
data can be further enhanced to support adaptation action and monitoring
at scale. In particular, this paper focuses on four broad themes that span
many aspects of the GGA targets: agriculture (which also integrates aspects
of water), biodiversity, extreme events (which integrates aspects of water,
infrastructure, and poverty) and health.

Adaptation
Adaptation is the process of adjustment to actual or expected climate and its
effects, in order to moderate harm or exploit beneficial opportunities1.
Adaptation covers a wide range of reactive and proactive actions that can
reduce exposure and vulnerability to climate hazards while also identifying
effective ways to increase adaptive capacity. While climate adaptation has
long been understood as mainly a local issue2, it is increasingly clear that it
needs tobe effectively addressed atmultiple scales, including the global level,
owing to the transboundary and cascading nature of climate risks3. This
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increasingly calls attention to the goals of adaptation and the benefits that
adaptation can deliver4. Indeed, there is an international push towards
enhancing the prominence given to climate adaptation actions, as the need
to prepare for the already experienced, committed, and projected climatic
and meteorological changes has become evident5, 6.

At the core of adaptation is the definition of risk from climate hazards
and reducing exposure and vulnerability. Risk is the “potential for adverse
consequences for human or ecological systems, recognising the diversity of
values and objectives associated with such systems, which can arise from
potential impacts of climate change as well as human responses to climate
change”7. It requires the assessment of the potential consequences of a
response to climate change failing to achieve its intended outcome; or the
intended action creating an adverse outcome elsewhere, to avoid creating a
new risk or exacerbating an existing one, leading to maladaptation.

Despite overall progress, we are not collectively on track towards
achieving climate goals8, and the breaches of 1.5°C for a month and even a
year (2024) are early signs of getting perilously close to exceeding the long-
term temperature goal of the Paris Agreement. This serves as a clarion call
for increasing ambition and accelerating climate action9.

Global adaptation efforts and the Global Goal on Adaptation
Under the UNFCCC and the Paris Agreement, major advancements have
occurred in recent years that highlight the importance of adaptation10. The
Paris Agreement’s Article 7 on Adaptation outlines the GGA (Art. 7.1) of
“enhancing adaptive capacity, strengthening resilience and reducing vul-
nerability to climate change, with a view to contributing to sustainable
development and ensuring an adequate adaptation response in the context
of the temperature goal”11. Article 7 also encourages countries to plan for
adaptation through National Adaptation Plans (NAPs), to report on
adaptation efforts via Adaptation Communications (ADCOMs) and
Biennial Transparency Reports under Article 13, while integrating adap-
tation into Nationally Determined Contributions (NDCs). Together, these
documents outline the national level actions that countries commit to
undertake in progressing climate adaptation.

Since then, the commonunderstandingof theGGAhasevolved through
subsequent Conferences of the Parties (COPs)within their Conference of the
Parties to the Paris Agreement meetings (CMAs) including through the
adoption a framework for the GGA was adopted that comprises 11 global
targets (Decision 2/CMA5 at COP28). They include seven theme or sectoral
targets covering Water (9a), Food & Agriculture (9b), Health (9c), Ecosys-
tems and Biodiversity (9d), Infrastructure and Human Settlements (9e),
Poverty eradication and Livelihoods (9f), and Cultural heritage (9 g) (Table
1). Four other targets (10a-10d) refer to the policy cycle: 1. Impact, Vulner-
ability and Risk Assessment, 2. Planning, 3. Implementation, 4. Monitoring,
Evaluation and Learning (Fig. 1). These GGA targets refer to a 2030 and
beyond timeframe and governments are now establishing adaptation indi-
cators to track progress towards the GGA framework. These indicators are
expected to be adopted by Parties in COP30 in November 2025.

As a first step, existing indicators for measuring progress towards
achieving the GGA targets were proposed by governments and observer
organisations in July and August 2024 and compiled by the UNFCCC
Secretariat, resulting in over 7500 indicators. Selected technical experts have
reduced this list to 490 indicators, and then again to a preliminary 100
indicators, which forms the basis for an agreement by Parties at COP3012–15.
The criteria for assessing the indicators are based loosely on the following
specifications coming from UNFCCC SB60 meeting (June, 2024):
(a) adaptation-relevance;
(b) quantitative/qualitative aspects;
(c) data availability;
(d) capacity to reflect local/national/regional circumstances;
(e) applicability across contexts;
(f) ease of interpretation;
(g) clarity of methods;
(h) aggregability and dis-aggregability across social dimensions;
(i) basis in science;

The focus is on adaptation relevance and adaptation-specific indi-
cators, enabling factors for implementation, and quantitative indicators
complemented with qualitative narratives where possible, with several
exclusions (mitigation, climate impacts and hazards). This increased
global focus on adaptation via the adoption of global targets and the
subsequent development of indicators provides a much-needed frame-
work upon which action can be informed, focused and guided, that has
otherwise been lacking compared to mitigation efforts. However, global
scale methods and data are needed to answer questions on how such
progress could be tracked, which should be sufficiently generalisable to be
adopted at scale across different geographic contexts16, 17. This is where
EO could be increasingly critical, as it is able to offer global spatio-
temporal continuity of observations. For example, Target 9d (Ecosystems
and Biodiversity) could benefit from efforts in implementing ecosystem-
based adaptationmeasures at global scale that could be observed through
EO data to showcase progress.

Earth Observation-Based Adaptation Indicators
Although adaptation is a complex and often location specific issue, and
tracking implementation progress at the global level requires the inte-
gration of multiple and diverse sources of data18, EO still has many
capabilities that can make it a valuable input for creating adaptation
indicators. In this paper, EO refers to satellite observations rather than
other types of EO such as drones, sonde data, surface-based data etc. We
note that satellite-based EO requires reference-quality in-situ data for
“ground truthing” to calibrate and validate their measurements. The
strength of satellite-based EO datasets are manifold:
• Objectivity: Satellite-based measurements and derived data products

follow strict quality standards. Products are generated using multiple
instruments, or sensors, and the data is centrally curated, calibrated,
validated, and publicised.

• Repeatability: The nature of satellite-based EO, where orbital position
of the satellite and the field of view of the instrument are well-
controlled, means that they are repeatable and comparable over time
and location, thus facilitating the standardisation of global statistics on
climate impacts and adaptation.

• Coverage: EO satellites have a range of configurations which enable
them to provide local, national, regional to near-global coverage and
measurements can be retrieved over remote and inaccessible areas
which would otherwise be difficult to monitor through ground-based
techniques.

• Data continuity and long-term archive: The satellite era of data now
spans several decades up to60years (Fig. 2)with someclimate variables
being monitored by multiple sensors over space and time. Data con-
tinuity (across different satellite instruments) is an essential aspect of
satellite missions despite being a non-trivial task to do. This allows the
scientific community time to build experience with the systems and to
develop and refine approaches for indicator methodologies with EO
data. A long-term continuous data archive is particularly important for
climate change studies, as it allows for quantifying trends in surface
property changes at climatologically significant time scales in addition
to observing interannual variability, thus establishing the baseline for
monitoring change under historical and future adaptationmeasures. It
should be noted that the cost of privately owned EO data may be
prohibitive for large-scale assessment.

• Availability: EO data are collected by a large fleet of satellites operated
by numerous national and intergovernmental space agencies and
a rapidly growing number of privately owned small-sat
constellations. Agency examples such as the Copernicus Sentinel
missions are within the open science domain and are publicly
available with unrestricted access to the global community can
equally bridge the data gaps.

• Thematic diversity and detail: Satellite sensors can survey the Earth’s
surface and its atmosphere across multiple ranges of the electro-
magnetic spectrum.As a result, they provide unique information about
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physical, biological, and chemical characteristics of the Earth’s surface
and atmosphere and their changes.

Multiple examples of EO data used across all stages of the adaptation
process exist (particularly Stages 1 and 4), but the extent to which EO
supports each stage strongly differs with context. Historically, EO data has
mostly been used to monitor and understand changes and variability in the
climate system and assess their impacts on humans and nature. Essential
Climate Variables (ECVs, https://gcos.wmo.int/en/essential-climate-
variables), as defined by the Global Climate Observing System (GCOS),
are the key indicators that describeEarth’s changing climate.Of the 55ECVs
currently specified, around two-thirds are able to bemonitoredwith satellite
data19. Figure 2 summarises these ECVs and provides an overview of the
length of the climate data record per ECV and an indication of the available
spatial and temporal resolutions of the EO datasets. This figure shows the
earliest date when a specific ECVproduct/quantity was first measured from
space. Most ECVs have multiple ECV products/quantities (measurable
components of ECVs that, together, identify how the ECV changes over
time) which each have different start dates. For example, the Sea Ice ECV
comprises multiple ECV products/quantities, of which, Sea Ice Con-
centration has been monitored since the 1970s but Sea Ice Thickness has
only beenmonitored since the 1990s. It should also be noted that trade-offs
often existwith high spatial resolution and global coverage,many of the very
high spatially resolved satellite sensors are geostationary sensors, meaning
they remain over a specific region of theworld rather than circumnavigating
around the globe. As adaptation is primarily a local issue, there can be a
challenge to obtaining sufficiently high resolution (both spatially and tem-
porally) for some adaptation applications (Fig. 2 below). For example,
monitoring changes to flooding impacts after implementing adaptation
actions in urban environments could require up to metre-scale resolution.

Alternatively, looking at adaptation actions on thefield-level for agricultural
purposes, resolutions of dozens or hundreds of metres could be required.
Rarely would kilometre scale resolution be sufficient for monitoring adap-
tation. Additionally, although many ECVs have data records continuing
over decades (Fig. 2 top), many of the early satellite missions were coarser
resolution. This Figure, created using the Committee on Earth Observation
Satellites (CEOS) ECV inventory20, also does not include many of the pri-
vately fundedmissions that often provide higher resolution data but can be
paywalled. EO datasets are available through a variety of different channels,
e.g., through space agencywebsites, data repositories such asCEDA(https://
archive.ceda.ac.uk/), and via climate services such as the Copernicus Cli-
mate Change Service (https://cds.climate.copernicus.eu/).

Figure 3 shows some examples together with the IPCC-defined Risk
Framework shown for context.Within the IPCC risk framework, ECVs are
routinely used to characterise the climate hazard, exposure, and vulner-
ability components. In particular, the need to map climate hazards, defined
as climate-induced events that lead to negative effects (e.g., loss of human
lives, injuries, infrastructure damage, ecosystems and environmental dis-
ruptions), substantially benefit from EO capacity, inheriting decades of
systematic geospatial time series from which to derive the aforementioned
ECVs to establish baseline climatologies, quantify anomalies, and detect
extreme events (including frequency, duration and intensity). The exposure
component of the Risk Framework refers to the presence of people; liveli-
hoods; species or ecosystems; environmental functions, services, and
resources; infrastructure; or economic, social, or cultural assets in places and
settings that could be adversely affected1,21. EO data is now routinely used to
develop gridded estimates of global population density22, characterise urban
environments, infer primary occupation through land use mapping, and
develop proxies for economic development metrics using night-time lights
observations. Finally, the vulnerability component refers to the propensity

Table 1 | Summary of SDGs that were identified as having the most indicators which already use (green) or can benefit from
(amber) EO37

SDG indicators that are in bold also appear in the UAE – Belém work programme on indicators in the 2024 synthesis of submissions.
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or predisposition of exposed elements to suffer adverse effects when
impacted by hazard events1. It encompasses various concepts and elements,
including sensitivity or susceptibility to harm and lack of capacity to cope
and adapt and is impacted by such dimensions as culture, knowledge,
resource access, andgovernance that contribute todifferential vulnerability1.
Few facets of the vulnerability component lend themselves readily to EO
data-based metrics development - nevertheless, its elements have, more
often than not, strong spatial signatures that can potentially be linked with
EO-based proxy data. For example, vulnerable neighbourhoods such as
slums or informal settlements have typical physical patterns such as dense
buildings coupledwithnarrowand irregular streets.OverlayingEO imagery
withfloodmodels can help identify whether such informal neighbourhoods
aremore at risk offlooding thannearby “planned”neighbourhoods around.
Such analyses can give contextual information - but one must never forget
that this is a proxy and does not exactly represent the situation on the
ground, where gentrification could mean a neighbourhood is not as vul-
nerable as it may appear or “planned” neighbourhoods are actually more
vulnerable than expected.

Going beyond the risk assessment and Stage 1 of the adaptation
cycle, EO allows us to identify geographical and environmental settings
where adaptationmeasures aremost needed and support themonitoring
of their implementation (Stages 2 and 3). Furthermore, by offering
consistent and long timeseries of several ECVs together with the cor-
responding extreme events/risk indicators and past disaster outcomes, it
allows us to model causal effects of climate hazards and infer which are
the most effective adaptation measures. As a result, both the observed
and modelled reduction of impacts or risks can serve as adaptation
outcome indicators if linked to interventions (Stage 4). Therefore, EO
has great potential to support the GGA framework by providing indi-
cator information for monitoring changes or avoided impacts before,
during and after adaptation interventions have been implemented, for
example, EO can be used to monitor the effectiveness of adaptation

interventions during implementation, especially as extreme climate
events and slow onset climate hazards impact adaptation.

Whether ametric serves as an indicator of adaptation tracking depends
on the application context. For example, the indicator ‘cubic metres of
freshwater saved’ would only be an effective indicator of adaptation if it is
used to assess the outcomes of a known adaptation intervention23. Similarly,
EO-based indicators may or may not be deemed as adaptation indicators
depending on the context of their application. Understanding the
assumptions under which an indicator is linked to adaptation is key to
determining its usage and usefulness for adaptation tracking. Furthermore,
although all stages of the adaptation cycle can contain indicators based on
EO data, many adaptation indicators, which rely on socio-economic or
other sources of information, cannot be derived or supported by EO. To
create a comprehensive picture of adaptation progress, it is essential to use
multiple indicators that draw from various lines of evidence (for global level
adaptation tracking18). This should also include consideration of optimal
values and threshold values for the indicators to define what successful
implementation means. For example, using percentages e.g., “% of at-risk
sites with adaptation measures implemented” where 100% is the optimal
value and other values can be determined for thresholds13. This links also to
the diversity of data needed where EO data can play an important role.

Nevertheless, a lesson can be learned from the history of the GCOS
ECVs that could enhance EO’s role across the Adaptation Process. As
mandated by the UN, GCOS has regularly published ECV requirement
assessments, and dictated the needed measurement resolution, stability,
uncertainty, and timeliness to bemet by the totality of the observing system
(in-situ and satellite) in order to have robust and usable data24. Through
mandated governance, together with adequate funding support, the
climate research and development community has established robust
monitoring networks and high-quality EO observations of the ECVs
after decades of effort. If a similar organisation can be established to
regularly assess the requirements needed for the resulting Adaptation

Fig. 1 | The Global Goal on Adaptation framework policy cycle targets. Of the 11
Targets, four are organised around the policy cycle: 1. Impact, Vulnerability andRisk
Assessment, 2. Planning, 3. Implementation, 4. Monitoring, Evaluation and
Learning; and the remaining seven are theme or sector related: Water (9a), Food &

Agriculture (9b), Health (9c), Ecosystems and Biodiversity (9d), Infrastructure and
Human Settlements (9e), Poverty eradication and Livelihoods (9f), and Cultural
heritage (9g). Figure drafted by Timo Leiter based on Decision 2/CMA.517).
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Fig. 2 | Satellite-based Essential Climate Variable (ECV) data from the Com-
mittee on Earth Observation Satellites (CEOS) ECV Inventory20. (top) Timeline
of ECV monitoring over the satellite era. (below) Scatterplot of ECV quantities
showing the minimum temporal and spatial resolution stated in the CEOS

Inventory. Panel B is a log scale. ECVs are colour coded to indicate their earth system
component. Orange = Atmosphere. Grey = Cryosphere. Green = Land.
Blue = Ocean.
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Indicators from the GGA framework, then this can provide a basis
upon which funding agencies can establish targets for research and
development activities.

Associated challenges for using EO to assess adaptation
outcomes
Despite the potential for EO to more systematically support the adaptation
cycle, several key challenges must be overcome to ensure an effective
approach. This section describes four key challenges: Attribution, Max-
imizing data utility, Data disaggregation, and Integrating past and
future data.

Attribution—establishing an accurate baseline
If EO is to more substantially contribute to the Monitoring and Evaluation
part of the adaptation process (Stage 4), then rigorous methods to attribute
resultingpost-intervention changesandavoided impactsmust be ensured to
properly assess the efficacy of the adaptation action. Our ability to monitor
and attribute changes in outcomes of any implemented adaptationmeasure
strongly depends on establishing accurate baseline conditions. While long-
term EO baselines exist for some ECVs, spanning decades, the establish-
ment of a baseline for a given adaptation indicator is context specific and
best done independent of satellite data availability. Frequently EO are
combined with other data (e.g., socio-economic, in-situ observations,
modelling) to interpret the causes of the observed change, identify climate
related risks, and monitor the progress or effectiveness of an adaptation
action targeting the specific risk. Often, defining a baseline is a complex
activity where EO could play an essential role in its establishment. The
‘EXHAUSTION’ (https://www.exhaustion.eu/) project, which seeks to
establish the exposure-response relationship between heat stress and daily
mortality with themodifying effect of air pollutants, relies on satellite-based
observations of land surface temperature (LST) and aerosol optical depth
(AOD) in combination with station-data for temperature and air pollutants
and a range of spatial predictors, including vegetation greenness, share of
urbanbuild-up, elevation, populationdensity, night light intensity, and road
network density25. Additional non-EO data reflecting socio-economic

characteristicswere included in the analyses as potential effectmodifiers26,27.
The methodology was used to quantify current excess deaths (a deviation
from baseline conditions) resulting from extreme heat and various effect
modifiers28. Metrics like the number of deaths or disease cases alone cannot
reliably indicate whether policies and interventions are successful, as
demographic changes can affect the initial baseline.

Maximising data utility
The abundance of EO data presents both opportunities and challenges.
While numerous satellite data and derived products are openly available to
the global community, resources for storage, management, and processing
are required - as well as resources and understanding for prioritisation and
assessing the appropriateness of each for different approaches. Cloud-based
data analysis environments, such as Google Earth Engine (https://
earthengine.google.com/) and Destination Earth Platform (https://
platform.destine.eu/), pave the way toward eliminating limitations arising
from the lack of local IT infrastructure. However, reliance on single cor-
porate portals can raise concerns about both short- and long-term varia-
bility of availability and long-term stability and access, in particular, if these
are concentrated in specific regions or under specific government control.

To maximise interoperability and usability, it is crucial to agree on
variable-agnostic formats, standardised data structures, and well-
characterised quality assurance to enhance comparability and transpar-
ency of results. In addition, this allows a broader group of developers, data
providers, and users to adopt a common data standard to improve
interoperability.

In times of crisis, such as immediately following an extreme event, EO
data frequently serves as the timeliest and readily available source of
information about the extent of impact and the environmental settings (e.g.,
through the InternationalCharter ‘Space andMajorDisasters’) constraining
the response of the operational agencies. Decision-makers within opera-
tional agencies without the support from geospatial data experts can
sometimes struggle to both identify data sources which best serve the
operational response needs, as well as face challenges to prioritise various
data sourceswhen theyhavebeenclearly identifiedandmadeavailable. Both

Fig. 3 | Earth observation examples that support the Global Goal on Adaptation
(GGA) framework's policy cycle targets.An overview of the adaptation process as
described in the GGA framework, how it relates to the IPCC Risk Framework

(centre), and examples of the potential for EO to support possible indicators of the
four policy cycle targets. Figure adapted from Figure 1.5 from the AR6 IPCC7 WG2
by authors.
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lead to delays that can be costly in terms of both time and lives. Effective
incorporation of EOdata in operational response ormonitoring, thus, relies
on capacity building. A substantial investment in end-user training and
embedding geospatial data science experts within operational agencies,
especially in vulnerable regions, is essential for effectively utilising EO data
for adaptation solutions.

Data disaggregating to understand vulnerability
Data Disaggregation refers to the process of breaking down or separating
aggregated data into smaller, more specific groups to reveal patterns or
disparities that may be hidden within a larger dataset4. Improving data
disaggregation is fundamental for implementing indicator frameworks and
ensuring no one is left behind in adaptation efforts, particularly as more
vulnerable groups are disproportionately impacted by climate change.
Differential vulnerability exists due to a range of factors but can relate to
resource access, culture, knowledge, and governance systems in place that
mediate power and decision-making29. EO-based indicators must be dis-
aggregated to account for asymmetric vulnerability due to social inequalities
and biases or simplifications in related models. But the challenge remains
that EO will never be able to capture all aspects of vulnerability. Any data
analytics workflow will contain biases due to various reasons30. Firstly, it is
based on observed data which by nature is historical. This is particularly
important in the context of climate change,wherehistorical recordsmaynot
be relevant for the expected changes (the ‘out of sample’-problem). Sec-
ondly, there are biases due tohow thepopulation is sampled, andwhether all
sub-groups of the population are represented in this sampling. Thirdly,
biases are introduced when defining how a certain target is measured.
Qualitative targets are divided into quantitative indicators, which cannot
reflect all the nuances. Fourthly, data models introduce biases in the way
they are trained and evaluated. Finally, biases are introduced in the
deployment of model results, indicating how and whether the decision
makers use the data.

When using EO to calculate adaptation indicators, biases may also be
introduced. That is why it is important to evaluate indicators in a dis-
aggregated way for vulnerable groups of the population to ensure that they
are not disproportionately impacted. There are documented methods on

how to audit processes or calculated indices for biases31. Such methods
should be established and implemented to ensure that climate adaptation
also contributes to reducing the disproportionate impacts of climate change
to different social groups, with particular emphasis on vulnerable sub-
populations.

Integrating past data with future projections
As previously stated, while EO provides access to historical data, it does not
offer a forward-looking perspective that is required for risk assessments and
evaluating potential adaptation actions. Drawing lessons from the earth
system modelling community, a coordinated approach for climate adap-
tation projections research and development can be established. This could
complement existing initiatives like the Baseline Variables for Earth System
Modelling Project supported by the Coupled Model Intercomparison
Project (CMIP), in which a subset of priority variables is scoped, specifically
for impact and adaptation assessments32.

With Digital Twin Earth systems now emerging—especially through
the Destination Earth Initiative https://destination-earth.eu/)—EO and
cloud computing are enabling large-scale, AI/ML-drivenmodels to simulate
“what if” scenarios based on integrated observational data.While these EO-
based weather and climate prediction examples are gaining traction33–36,
further development is needed to enhance their maturity and scalability,
with EO remaining vital both as a predictive input and as an unbiased
validation source. Using Digital Twins could however unlock new insights
for potential future scenarios and assist adaptation decision-making.

Parallels with the SDG indicators
The GGA is not the first time that global indicators are sought to reflect
progress at the global scale. In September 2015, the United Nations General
Assembly adopted the Agenda 2030 for Sustainable Development. In 2017,
the UN Statistical Commission endorsed a Global Indicator Framework
comprising 232 indicators for countries to measure progress towards 169
targets of the 17 Sustainable Development Goals (SDGs). One of the greatest
challenges faced is access to regular, systematic, and authoritative data for all
of the SDG indicators. An ESA-funded study in 202037 investigated the
potential of satellite-based EO in meeting the observational requirements of

Table 2 | Examples of EO-derived indicators relevant for GGA

Relevant Global Goal on Adaptation
(GGA) Target

EO ECV quantity Example adaptation application(s)

Biodiversity, Food & Agriculture Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Crop yield estimation, Drought monitoring, Vegetation
photosynthetic capacity.

Biodiversity, Food & Agriculture Leaf Area Index (LAI) Crop yield estimation, Biomass amount.

Biodiversity, Food & Agriculture Normalised Difference Vegetation Index (NDVI) - Often used to
estimate Net Primary Production (NPP)

Vegetation presence and relative density.

Biodiversity, Food&Agriculture, Health Burned Area / Active Fires Wildfires

Biodiversity, Food & Agriculture Surface soil Moisture Drought monitoring.

Health Surface Radiation and Turbulent Heat Fluxes (Sensible, Latent and
Storage Heat Fluxes)

Assessment of excessive heat storage and human heat
exposure.

Health Mole Fraction or Tropospheric Column Air quality monitoring (ozone, NOx, formaldehyde).

Health Aerosol Optical Depth (AOD) Air quality monitoring (particulate matter, combustion).

Health Land Surface Temperature (LST) Assessment of heat exposure.

Health Earth surface albedo Radiation exposure, urban greening.

Biodiversity, Health Ocean Colour coral bleaching / marine protection, species migration,
water quality monitoring.

Water River Discharge (derived from altimetry and near-infrared) Flooding.

Water Terrestrial Water storage Flooding, drought monitoring, aquifer over abstraction.

Infrastructure Ground subsidence Coastal flood risk monitoring.

All GGA themes Land Cover (derived from radar and optical image) Multiple uses for mapping changes in area over time.

Variables are mostly orientated around stages 1 and 4 of the adaptation process, e.g., monitoring avoided impacts, reduced impacts after an adaptation intervention. Many of the listed indicators are also
GCOS ECVs (https://gcos.wmo.int/en/essential-climate-variables).
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the SDG indicators and targets. This section is a summary of that publication.
Based on literature review and expert consultation, a “traffic light” system of
red, amber, green (RAG) colourswas applied across the indicator suite to flag
the relevanceofEO.Theoverall EOrelevancewasdeduced fromeight criteria
describing the readiness and adequacy of EO to the indicator methodology.

The study found that only seventeen out of the 232 SDG indicators
either currently use EO as a major source of data or EO would make a
definite contribution to their methodological development (green). EO was
identified as a potential source of data and/or information for another 17
indicatorswhich currently do not use it (amber). EO could not contribute to
the indicatormethodology of any of the remaining 193 red indicators (red).

Surprisingly, SDG 13 (Climate Action), has only one indicator which
couldpotentially benefit fromEO-SDGIndicator 13.1.1 (People affected by
disasters; this indicator also appears in SDG 1 - Poverty Eradication -
indicator 1.5.1 - and SDG 11 Cities - indicator 11.5.1). This is notable
because EO iswidely recognised as amajor source of systematic observation
for the GCOS ECVs (see section above). The emphasis of SDG 13 on
“ClimateAction”, i.e., to instigate a collective societal response to the climate
crisis, rather than climate observation is a major factor in the limited use of
EO for climate-relatedmonitoring in the SDG Indicator Framework. There
seems to bemissing opportunities here for EO support to some of the SDGs
within this Framework.

Of the other goals, SDG6 (water), 11 (cities), and 15 (life on land) were
identified as having the most indicators which already use (green) or can
benefit from EO (amber) with 6 indicators across each goal (Table 1).
Generally, these indicators share common observable properties which are
suited to EO, namely, one or more bio(geo)physical targets which are
directly and readily observable from space viamulti or hyperspectral optical
imaging, synthetic aperture radar or other physical remote sensing tech-
nologies, e.g., radar altimetry. In some cases, there are indirectly observable
properties of the indicator. For example, the current SDG indicator 6.1.1
(safe drinking water) methodology is based on household surveys and
censuses. While this indicator cannot be directly evaluated from EO, it can
be potentially inferred from the change in surface water quality before and
after treatment, the former coming from EO-derived water quality maps
and the latter from in-situ sampling.

Two SDG indicatorswhich serve as excellent examples of the use of EO
for indicatormonitoring and reporting and also appear in theUAE –Belém
work programme on indicators (in the synthesis of submissions) are:
• SDG Indicator 15.3.1: Proportion of degraded land over total land area.

This uses three EO-based sub-indicators: land cover change, land
productivity dynamics and soil organic carbon stocks (based on a
hybrid method of combining EO-derived land cover changes with
IPCC-derived land use change factors). These three are considered to
be a minimum set of essential variables to capture the spatial and
temporal changes in land degradation globally. Put simply, any
significant reduction or negative change in one of the three sub-
indicators is considered to comprise land degradation (one-out-all-out
rule). The result is a binary assessmentwhere a landunit (pixel) is either
degraded or not degraded.

• SDG Indicator 6.6.1: Change in the extent of water-related ecosystems
over time. This comprises five sub-indicators, two of which are
completely derived from EO data - (i) Sub-indicator 1: the extent of
water related ecosystems over time and (ii) Sub-indicator 2: the water
quality of lakes and artificial water bodies. For sub-Indicator 1, water
related ecosystems are further subdivided into 3 categories: open and
natural surface waters, artificial water bodies and vegetated wetlands,
whichareobservedusing a combinationof optical and radar time series
imagery. For sub-Indicator 2, the EO methods are focused on
chlorophyll and total suspended solids within lakes and artificial water
bodies globally.

Learning from what is already happening
This sectionbuilds on thedevelopments fromtheEOcommunity relating to
climate adaptation for agriculture and biodiversity, extreme events, and

health.Table 2 lists someexample variables that are commonlyderived from
EO and how they are relevant for some of the GGA thematic goals.

Developments relating to agriculture
As climate change increasingly impacts the water cycle, efficient irrigation
becomes essential for agricultural adaptation. EO serves as a significant
source of data for water-based adaptation indicators. The FAO’s Remote
Sensing for Water Productivity (WaPOR) project38 provides a compre-
hensive database of water productivity, utilising EO-derived variables such
as evapotranspiration and soil moisture. It provides data at global to field
scale (300–20m), with 200m resolution data covering Northern and sub-
Saharan Africa as well as the Near East and 20m resolution focussing on
specific sub-basins in these regions.

Surface water storage, such as lakes and reservoirs, is actively mon-
itored using Synthetic Aperture Radar (SAR) and optical satellite imagery,
with the Global WaterWatch (GWW) platform providing over 40 years of
data on surface and volume estimates for reservoirs worldwide. However,
obtaining groundwater estimates through EO data remains challenging.
Promising advancements include gravity dynamic measurements from the
GRACE mission, which offers regional groundwater estimates39. Future
missions, such as MAGIC, are expected to enhance our ability to monitor
groundwater dynamics at a finer spatial resolution40.

Transitioning from traditional irrigation to more efficient drip
irrigation requires inventorying current irrigation systems, achievable
through remotely sensed soil moisture and actual evapotranspiration
data and supported by machine learning classification schemes41. The
Biomass Climate Adaptation Index (Biomass CAI) uses deep learning to
assess climate resilience in agricultural areas, comparing observed and
predicted Vegetation Index (VI) measures to identify increased resi-
lience or degradation42.

Climate change affects agricultural pests with rising temperatures
enabling their migration into higher latitudes and increasing their number
of generations within a growing season43, 44. Additionally, the intensification
and increased frequency of extreme events like heavy rainfall are con-
tributing to increased pest risk, for example as a driver of locust outbreaks in
North Africa45 and fall armyworm in Eastern Africa46, having devastating
impacts onagriculture.WhileEOsatellites cannotdirectly identify and track
swarms and infestations (although with the launch of EarthCARE in 2024
this may change), they can monitor the conditions favouring these phe-
nomena, namely rainfall, green vegetation extent and soil moisture47.
Leveraging data provided by Meteosat satellites, MODIS, Sentinel-3, and
SMOS, the FAODesert Locust Information Service (DLIS, https://www.fao.
org/locust-watch/activities/dlis-home/dlis/en) monitors ecological condi-
tions and locust infestations at the global level and, combined with models,
produces forecasts of the locust situation up to six weeks into the future,
thereby providing an early warning mechanism.

Climate change also causes shifts in agro-climatic indices like aridity,
growing season length and growing degree days and therefore affects agri-
cultural land suitability for crops and other land uses. Crop migration, i.e.,
the movement of growing areas to more favourable conditions, is one
solution to adapting to these adverse effects on crop suitability and yields48.
EO can track changes in agriculturally used areas by using a combination of
SARandoptical time series data anddeep learning techniques. For example,
ESA’s Climate Change Initiative High Resolution Land Cover project
(https://climate.esa.int/en/projects/high-resolution-land-cover/) provides
land cover changemaps at 30m spatial resolution, reporting changed pixels
every 5 years. Changes in the distribution of specific crop species can also be
monitored, as is done in seasonally updated global maps at 10m resolution
within the ESA WorldCereal project (https://esa-worldcereal.org/en).

Developments relating to biodiversity
Ecosystem-based adaptation is a strategy that leverages nature-based solu-
tions and ecosystem services to address the impacts of climate change49. It is
highlighted in the GGA framework's Biodiversity Target (Target 9d) and is
recognised as a key adaptation strategy by the IPCC.
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EO has proven effective for planning ecosystem-based interventions
and for monitoring their implementation. The Global Mangrove Watch
(GMW, https://www.globalmangrovewatch.org/), developed under JAXA’s
Kyoto & Carbon initiative, offers geospatial information on mangrove
extent and changes. This data is crucial for Ramsar Convention national
wetland practitioners, decision-makers, andNGOs, providing data for SDG
indicators (6.6.1, 13.1, 15.1.1, 15.1.2). EOplatforms likeGlobal ForestWatch
(GFW, https://www.globalforestwatch.org/) provide access to geospatial
datasets on forest cover, allowing for themonitoring of changes in tree cover
globally.

Adaptation actions in the forestry sector against pests, droughts and
wildfires, threats exacerbated by climate change, are crucial to protecting
forests’ diverse environmental and socio-economic functions, e.g., delivery
of raw materials for the bioeconomy, wildlife habitat, soil erosion preven-
tion, and carbon sequestration. TheEU’s Forest Strategy for 2030 focuses on
effective monitoring through the proposed new forest monitoring law50.
This includes plans for a forest data collection framework that combines EO
data (Copernicus satellites) and national forest inventories from EU
member states. Additionally, a forest data sharing framework is proposed to
ensure data is accessible for all. Currently, EO data can provide information
on forest biodiversity, disturbances, characteristics, and productivity51.

Finally, rangelands, encompassing diverse ecosystems like drylands
and savannahs, cover over 50% of the Earth’s land surface and are vital for
achieving GGA Targets related to Food and Agriculture and Biodiversity.
However, many global rangelands are degraded. A recent UNCCD study
advocates for enhanced monitoring of rangeland conditions using EO and
other data sources to improve adaptive management strategies52. EO is
increasingly utilised in rangeland assessments, including studies on land
degradation, employing remote sensing technologies and open-access data
archives.

Developments relating to extreme events
Extreme events such as floods, droughts, heatwaves, storm surges, con-
vective storms, and hurricanes pose significant challenges to communities
worldwide. EO technologies offer a powerful tool for monitoring such
events, providing insights across the different stages of the disaster risk
management cycle, ranging from pre-event assessment to post-event
recovery53.

EO-derived data and products are nowadays instrumental in the
understanding andmapping of risk profiles associated with extreme events.
Satellite data allow characterisation of land use and geographical char-
acteristics, from globally available high-resolution altimetry data (Coper-
nicus GLO-30) to the classification of in-land use types54, 55 or coastal type
areas56, 57. These are relevant variables to inform physics-based models for
describing extreme processes (e.g., flood models, coastal erosion, and other
climate-driven hazards).

EO is also a key source of data for the quantification of vulnerability,
through themapping of inhabited areas58, building footprints59, 60, roads61 to
the mapping of critical infrastructure such as dams62. The construction of
resilient infrastructure, management of essential resources systems (e.g.,
watermanagement plans) or risk assessments often relate to extreme events
through probabilistic analysis63. This involves informing mathematical
models that relate probability, return periods, and intensity of events.Often,
probabilities involved in the design of critical systems relate to orders of
magnitude of 1/100s-1/10,000s64. Characterising such extreme events
requires both formal observations (i.e., monitoring) and historical con-
textual data (e.g., paleohydrology, paleodendrology or historical non-formal
records), and yet the tails of extreme probability distributions remain
uncertain. This is further exacerbated by climate change and system change
(e.g., temporal changes in land-use or regulation of systems, such as dam-
ming of rivers) which result in non-stationary processes. Under such con-
ditions, past observations may not be fully representative of the present
probability distributions. EO data provides a much denser and often fre-
quent set of observations covering approximately 40-60 years (meteor-
ological satellites and Landsat), and on a growing number of monitored

variables more recently (e.g., high resolution optical data, interferometric
aperture radar deformation monitoring, precipitation and cloud patterns,
wildfire etc.) in the last decade. These observations are an invaluable source
of data on climate processes that help refine extreme probability estimates
and quantify the short to medium term variability.

Space-borne thermal sensors allow resolving surface temperatures at a
much broader spatial scale than point meteorological stations, filling in the
spatial gaps in sparsely covered areas and offering an alternative for urban
heat island quantification65, 66. The reach of flooding events is also often
characterised based on SAR or optical monitoring67, along with drought
anomalies, and many relevant processes on water quality and quantity68.

Finally,meteorological satellite constellations canmonitor and support
forecastingmajor storms and cyclone events. Through initiatives such as the
EPS-Aeolus programme (https://www.eumetsat.int/eps-aeolus), oper-
ationalised direct measurements of winds using doppler wind lidars will
significantly improve understanding and forecasting of extreme events such
as hurricanes and dust storms. However, new EPS-Aeolusmissions will not
be launched until 2034, demonstrating the long lead up time required for
launching new satellite missions.

Developments relating to health
The impacts of climate change on health are of increasing concern, parti-
cularly regarding heat extremes (e.g., heatwaves, hot days, tropical warm
nights), infectious diseases (e.g., vector-borne and waterborne), and air
pollution fromwildfires. EO products are instrumental in monitoring these
health-related hazards, especially in contexts where mapping at scale is
challenging without EO data69–71.

In environmental health applications, EO is frequently used as a source
of input variables integrated into models to produce hazard or exposure
maps. While EO does not directly capture health outcomes, it provides
critical proxies that inform health assessments at various levels: individual,
household, cohort, or administrative. Therefore, it may help in disen-
tangling less clear patterns of health impacts, when compared to the spatial
incidence of the hazard72.

Health outcomes arise from complex interactions among environ-
mental, socio-demographic, economic, and genetic factors73–75. Therefore,
measuring the success of adaptation-focused policies requires a compre-
hensive approach that synthesises various components. For instance, poli-
cies targetingmorbidity andmortality associated with heat stress may focus
on modifying environmental conditions (e.g., improving urban infra-
structure, increasing vegetation cover) and can be supported by EO
observations. However, the final health outcomes (e.g., rates of heat-related
morbidity andmortality)maynot correlatedirectlywithhow the adaptation
strategies affect the landscape morphology and local climate, due to con-
founding factors such as socio-economic status and access to healthcare.

Adaptation strategies concerning health can takemany forms76. Urban
greening initiatives, such as planting trees and creating green spaces, help
mitigate the urban heat island (UHI) effect and can be measured through
EO data. Satellite-derived vegetation indices (e.g., Normalised Difference
Vegetation Index, NDVI) enable the assessment of changes in green cover
over time, providing insights into the effectiveness of these interventions. In
contrast, human behavioural changes (e.g., hydration practices, increased
use of air conditioning, preventive measures against vector-borne diseases)
necessitate assessments at the individual or community level.

EO is well integrated into climate-sensitive health outcome assess-
ments, including heat stress, infectious diseases, and wildfire-related health
impacts. Remote sensing data on air temperature, relative humidity, and
land surface temperature (LST) can be used to assess the heat exposure of
populations, especially in dense urban environments subject to the UHI
effect77. Additionally, EO-derived data can track the spread of vector-borne
diseases by mapping the geographical distribution of mosquito breeding
sites and their correlation with environmental conditions such as tem-
perature and precipitation78. EO and machine learning techniques have
been combined to forecast some disease outbreaks, for example, forecasting
the dengue incidence rate in Brazil79.
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Finally, EO can indirectly enhance vulnerability and exposure assess-
ments by providing data on population density, housing quality, and the
presence of green spaces. For example, the Green Transition Information
Factory Project (GTIF) in Austria exemplifies how EOdata is used to assess
urban greening initiatives, such as identifying green roofs and calculating a
Green Roof Index to highlight areas for further development (https://gtif.
esa.int/).

Concluding remarks and recommendations
EO has great potential for supporting climate action across all stages of the
adaptation process, greater than what is already being achieved today. This
paper focuses on four broad themes that connect closely with GGA targets:
agriculture (which also integrated water aspects), biodiversity, extreme
events (which integrates aspects of water, infrastructure, and poverty) and
health. It examines how EO can contribute to all stages of the adaptation
process, from risk assessment to monitoring and evaluation of adaptation
measures.

The paper highlights EO’s strengths in providing objective, repeatable,
and globally consistent data, while also acknowledging challenges related to
data disaggregation, integration with socio-economic factors, and the need
for long-term, robust baselines. Drawing parallels with the SDGs, we urge
the GGA process to take the opportunity to leverage EO data effectively by
integrating it into its process. Indeed, one of the considerations of the GGA
indicators is data availability and/or exploration of potential data.One of the
critical benefits of EO is accessibility andwidespread availability of data and
potential to combine multiple data.

The following recommendations are for the GGA process, EO agen-
cies, and the scientific community to consider. These recommendations
hope to encourage communities and stakeholders to establish amechanism
to leverage further action to more systematically support those who are
vulnerable to climate change.

Recommendations to the GGA process. The GGA process should
consider EO data and expertise in the decision-making process when
selecting adaptation indicators. As argued in this paper, EO information,
being only one line of evidence, must be used in combination with other
data sources to create a comprehensive understanding of adaptation
action. The experience with the SDG indicator framework suggests the
need to take the opportunity to ensure, at their inception, a subset of
indicators that can be derived using EO methods for targets with strong
links to EO. This would provide global information accessible to all
countries that would wish to use it, as it might be harder to introduce EO
later on. If not done at inception, then the GGA process should be fluid
enough to adapt the methodological and theoretical basis of adaptation
indicators where and when needed.

Having EO scientists and space agencies participate in an expert
capacity in the furtherdiscussions onhow the indicators for theGGAtargets
are developed provides one possible channel to provide EO solutions to the
UNFCCC work on indicators. The modalities for this work are now in
progress, with experts from UN agencies, international and regional orga-
nisations, academic and research institutions, as well as Indigenous and
Local Knowledge holders included as technical experts, based, i.e., on
recommendations by governments and by these organisations. The tech-
nical work programme on indicators will certainly benefit from under-
standing the diverseways inwhichEOdata and agencies, those involved can
help track progress on adaptation towards the seven thematic GGA targets.
Tracking the four policy related targets of the GGA framework including
potential data sources, is beginning to be discussed80.

Recommendations to EO agencies. There exists a landscape for EO-
based agencies to catalyse how EO can be used to support adaptation
action more systematically. Efforts should be focused on how to oper-
ationalise EO-based adaptation data and information to support end
users’ needs. Lessons can and should be learned from past initiatives and
where similar processes have existed, such as the development of essential

climate variables by GCOS, defining their requirements (or minimum
standards), and their eventual uptake into climate services, such as but
not limited to the Copernicus Climate Change Service (C3S). New
initiatives should be established once the final GGA indicators are agreed
that develop standardised and operationalised resources for the indica-
tors that are most supported by EO.

Developing operationalised adaptation indicators could be done in
conjunction with developing a series of exemplar case studies within which
adaptation responses are identified,monitored, and their impact quantified.
Once the experimental contexts have been resolved, this then forms a basis
around which to coordinate the development of context relevant, but
inherently modular analytic workflows within a commonly agreed com-
putational ecosystem (ideally open source). Whilst differing input EO data
and climate data are likely to feature for each spatially and temporally
distinct adaptation context, the same common processing steps would be
involved, and the collective andmodular nature of the development of these
computational tools would ensure portability in terms of access/use, and
transparency, and so trust in the user and consumer communities.

Recommendations to the research community. This paper highlights
many knowledge gaps and barriers that limit EO’s current efficacy to
support adaptation action to the fullest. These gaps and challenges pro-
vide opportunities for the scientific research community and funding
agencies alike to address these issues and further scientific knowledge and
development. These research needs include, but are not limited to:
• Increase the development, availability, and accessibility to very high

spatial and temporal resolution (with full uncertainty characterisation)
products for local-scale applications and individualised exposure
assessment, ideally for historical (pre-Sentinel era) time periods for
baseline setting but also for future missions.

• Ensure continuity of satellite-based ECV observations to continue to
record the long-term climate data record.

• Consider novel satellite missions that put adaptation at the centre of
their objective.

• Develop new indicators ormetrics that can be developed from existing
satellite data records, for example, through high resolution imagery, to
track adaptation progress.

• Include the disaggregation of indicators according to socio-economic
and other groups in order to assess biases and ensure that vulnerable
populations are not left behind.

• Develop decision support applications customised for countries/ end
users that aid making practical choices from the abundant sources of
data products available. These tools must be developed by EO-experts
together with end users and run by data stewards and knowledge
brokers to ensure that the most appropriate, disaggregated data can be
used by individuals who need it.

• Develop new methods that combine EO data and digital twins that
enable new forward-looking methods to project ideal climate
adaptation progress.

Data availability
The datasets generated and/or analysed during the current study (Fig. 2) are
available in theCommittee onEarthObservationSatellites (CEOS)Essential
Climate Variables Inventory, https://climatemonitoring.info/ecvinventory.

Received: 18 November 2024; Accepted: 30 September 2025;
Published online: 11 November 2025

References
1. IPCC. Annex II: Glossary. in Climate Change 2022: Impacts,

Adaptation and Vulnerability. Contribution of Working Group II to the
Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (eds Pörtner, H.-O. et al.) 2897–2930 (Cambridge University
Press, Cambridge, UK andNewYork, NY, USA, 2022) https://doi.org/
10.1017/9781009325844.029.

https://doi.org/10.1038/s41612-025-01251-1 Perspective

npj Climate and Atmospheric Science | (2025)8:359 10

https://gtif.esa.int/
https://gtif.esa.int/
https://climatemonitoring.info/ecvinventory
https://doi.org/10.1017/9781009325844.029
https://doi.org/10.1017/9781009325844.029
https://doi.org/10.1017/9781009325844.029
www.nature.com/npjclimatsci


2. Nalau, J., Preston, B. L. & Maloney, M. C. Is adaptation a local
responsibility?. Environ. Sci. Policy 48, 89–98 (2015).

3. IPCC. Summary for Policymakers. in Climate Change 2022: Impacts,
Adaptation, and Vulnerability. Contribution of Working Group II to the
Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (eds Pörtner, H.-O. et al.) 3–33 (Cambridge University Press,
Cambridge, UK and New York, NY, USA, 2022). https://doi.org/10.
1017/9781009325844.001.

4. Carr, E. R. &Nalau, J. Adaptation rationales andbenefits: a foundation
for understanding adaptation impact. Clim. Risk Manag. 39, 100479
(2023).

5. United Nations Environment Programme. Adaptation Gap Report
2023: Underfinanced. Underprepared (United Nations Environment
Programme, Nairobi, 2023). https://doi.org/10.59117/20.500.11822/
43796.

6. United Nations Environment Programme. Adaptation Gap Report 2024:
Come Hell and High Water (United Nations Environment Programme,
Nairobi, 2024). https://doi.org/10.59117/20.500.11822/46497.

7. Reisinger, A.TheConcept of Risk in the IPCCSixthAssessmentReport:
A Summary of Cross-Working Group Discussions (Intergovernmental
Panel on Climate Change, Geneva, Switzerland, 2020).

8. UNFCCC Glasgow–Sharm el-Sheikh work programme on the global
goal on adaptation referred to in decision 7/CMA.3. (United Nations
Framework Convention on Climate Change, 2023).

9. United Nations Environment Programme. Emissions Gap Report
2024: No More Hot Air… Please! With a Massive Gap between
Rhetoric and Reality, Countries Draft New Climate Commitments
(United Nations Environment Programme, Nairobi, 2024). https://doi.
org/10.59117/20.500.11822/46404.

10. Leiter, T. Too little, too slow?Climate adaptation at theUnitedNations
Climate Change Negotiations Since the Adoption of the Paris
Agreement. Carbon Clim. Law Rev. 243–258 https://doi.org/10.
21552/cclr/2022/4/5.(2022)

11. UNFCCC. Conference of the Parties Serving as the Meeting of the
Parties to the Paris Agreement 5 Agenda Item 8(a). Matters Relating to
Adaptation. Glasgow–Sharm El-Sheikh Work Programme on the
Global Goal on Adaptation Referred to in Decision 7/CMA.3 (United
Nations Framework Convention on Climate Change, 2023).

12. UNFCCC. FCCC/SB/2025/L.4Matters Relating to the Global Goal on
Adaptation. Draft Conclusions Proposed by the Chairs (United
Nations Framework Convention on Climate Change, Bonn, Germany,
2025).

13. UNFCCC. Technical Report on Indicators for Measuring Progress
Achieved towards the Targets Referred to in Paragraphs 9–10 of
Decision2/CMA.5 (UnitedNationsFrameworkConventiononClimate
Change, Bonn, Germany, 2025). https://unfccc.int/documents/
649630.

14. UNFCCC. Final List of Potential Indicators. UAE–Belém Work
Programme on Indicators (United Nations Framework Convention on
Climate Change, Bonn, Germany, 2025). https://unfccc.int/
documents/649629.

15. UNFCCC. Technical Report on Indicators for Measuring Progress
Achieved towards the Targets Referred to in Paragraphs 9–10 of
Decision 2/CMA.5. Prepared by the Expert Group Convened by the
Chairs of the Subsidiary Bodies, 8th September 2025 (United Nations
Framework Convention on Climate Change, Bonn, Germany, 2025).

16. Nalau, J., Gilmore, E. & Howden, M. Improving adaptation
assessment in the IPCC. Npj Clim. Action 3, 76 (2024).

17. UNFCCC. Report of the Conference of the Parties serving as the
meeting of the Parties to the Paris Agreement on its fifth session, held
in the United Arab Emirates from 30November to 13 December 2023.
Addendum. Part two: Action taken by the Conference of the Parties
serving as the meeting of the Parties to the Paris Agreement at its fifth
session (United Nations Framework Convention on Climate Change).
(2024).

18. Garschagen, M. et al. Cross-chapter box PROGRESS: Approaches
and challenges to assess adaptation progress at the global level. in
Intergovernmental Panel on Climate Change (IPCC) (2022). Climate
Change2022. Impacts, Adaptation andVulnerability.WorkingGroup II
contribution to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change 2610–2613 (Cambridge University Press,
Cambridge, UK and NY, USA, 2022).

19. CEOS & ESA. Earth Observation Handbook 2023: Space Data for the
Global Stocktake. (Committee on Earth Observation Satellites and
European Space Agency, 2023).

20. Committee on Earth Observation Satellites (CEOS). ECV Inventory
v5.00. http://climatemonitoring.info/ecvinventory/.

21. Ara Begum,R. et al. Figure 1.5 in point of departure and key concepts.
in Climate Change 2022: Impacts, adaptation, and vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O.
et al.) (Cambridge University Press, Cambridge, UK and New York,
NY, USA, 2022).

22. Lloyd, C. T. Global spatio-temporally harmonised datasets for
producing high-resolution gridded population distribution datasets.
Big Earth Data 3, 108–139 (2019).

23. Leiter, T. & Pringle, P. Pitfalls and potential of measuring climate
changeadaptation throughadaptationmetrics. InAdaptationMetrics:
Perspectives on Measuring, Aggregating and Comparing Adaptation
Results (eds Christiansen, L., Martinez, G. & Naswa, P.) 29–47 (UNEP
DTUPartnership, 2018). http://unepccc.org/publications/adaptation-
metrics-perspectives-on-measuring-aggregating-and-comparing-
adaptation-results/.

24. World Meteorological Organization (WMO), United Nations
Environment Programme (UNEP), International ScienceCouncil (ISC),
Intergovernmental Oceanographic Commission (IOC) of the
UNESCO,&CopernicusProgrammeof theEuropeanUnion. The2022
GCOS ECVs Requirements. (WMO, Geneva, 2022).

25. Zhang, S. Effect modification of air pollution on the association
between heat and mortality in five European countries. Environ. Res.
263, 120023 (2024).

26. Zhang, S. Assessment of short-term heat effects on cardiovascular
mortality and vulnerability factors using small area data in Europe.
Environ. Int. 179, 108154 (2023).

27. Zafeiratou, S. Assessing heat effects on respiratory mortality and
location characteristics as modifiers of heat effects at a small area
scale in Central-Northern Europe. Environ. Epidemiol. 7, 269 (2023).

28. Masselot, P. Excess mortality attributed to heat and cold: a health
impact assessment study in 854 cities in Europe. Lancet Planet.
Health 7, 271–281 (2023).

29. Thomas, K., Hardy, R. D. & Lazrus, H. Explaining differential
vulnerability to climate change: a social science review.Wiley
Interdiscip. Rev. Clim. Change 10, e565 (2019).

30. Suresh, H. & Guttag, J. A framework for understanding sources of
harm throughout themachine learning life cycle. EAAMO2021 Equity
Access Algorithms Mech. Optim. https://doi.org/10.48550/arXiv.
1901.10002 (2021).

31. Gevaert, C. M., Buunk, T. & van den Homberg, M. J. C. Auditing
geospatial datasets for biases: using global building datasets for
disaster risk management. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 17, 12579–12590 (2024).

32. Juckes, M. Baseline climate variables for earth system modelling.
EGUsphere https://doi.org/10.5194/egusphere-2024-2363 (2024).

33. Blunn, L. P. Machine learning bias correction and downscaling of
urban heatwave temperature predictions from kilometre to
hectometre scale.Meteorol. Appl. 31, 2200 (2024).

34. Oliveira, A., Lopes, A., Correia, E., Niza, S. & Soares, A. An urban
climate-based empirical model to predict present and future
patterns of theUrbanThermal Signal.Sci. Total Environ.790, 147710
(2021).

https://doi.org/10.1038/s41612-025-01251-1 Perspective

npj Climate and Atmospheric Science | (2025)8:359 11

https://doi.org/10.1017/9781009325844.001
https://doi.org/10.1017/9781009325844.001
https://doi.org/10.1017/9781009325844.001
https://doi.org/10.59117/20.500.11822/43796
https://doi.org/10.59117/20.500.11822/43796
https://doi.org/10.59117/20.500.11822/43796
https://doi.org/10.59117/20.500.11822/46497
https://doi.org/10.59117/20.500.11822/46497
https://doi.org/10.59117/20.500.11822/46404
https://doi.org/10.59117/20.500.11822/46404
https://doi.org/10.59117/20.500.11822/46404
https://doi.org/10.21552/cclr/2022/4/5
https://doi.org/10.21552/cclr/2022/4/5
https://doi.org/10.21552/cclr/2022/4/5
http://unfccc.int/documents/649630
http://unfccc.int/documents/649630
http://unfccc.int/documents/649630
http://unfccc.int/documents/649629
http://unfccc.int/documents/649629
http://unfccc.int/documents/649629
http://climatemonitoring.info/ecvinventory/
http://climatemonitoring.info/ecvinventory/
http://unepccc.org/publications/adaptation-metrics-perspectives-on-measuring-aggregating-and-comparing-adaptation-results/
http://unepccc.org/publications/adaptation-metrics-perspectives-on-measuring-aggregating-and-comparing-adaptation-results/
http://unepccc.org/publications/adaptation-metrics-perspectives-on-measuring-aggregating-and-comparing-adaptation-results/
http://unepccc.org/publications/adaptation-metrics-perspectives-on-measuring-aggregating-and-comparing-adaptation-results/
https://doi.org/10.48550/arXiv.1901.10002
https://doi.org/10.48550/arXiv.1901.10002
https://doi.org/10.48550/arXiv.1901.10002
https://doi.org/10.5194/egusphere-2024-2363
https://doi.org/10.5194/egusphere-2024-2363
www.nature.com/npjclimatsci


35. Oliveira, A., Leal, V., Galamba, M. & Cunha, R. AI for urban climate:
an EO-based approach for high-resolution mapping of human
exposure to heatwaves. In IGARSS 2022 - 2022 IEEE International
Geoscience and Remote Sensing Symposium 4475–4478 (Kuala
Lumpur, Malaysia, https://doi.org/10.1109/IGARSS46834.2022.
9883071 (2022).

36. Lang, S. et al. AIFS: a new ECMWF forecasting system. ECMWF
Newsletter Number 178. https://www.ecmwf.int/en/newsletter/178/
news/aifs-new-ecmwf-forecasting-system (2024).

37. O’Connor, B. et al. Earth observation for SDG: Compendium of Earth
Observation Contributions to the SDG Targets and Indicators.
European Space Agency. (2020). https://eo4society.esa.int/wp-
content/uploads/2021/01/EO_Compendium-for-SDGs.pdf

38. FAO.WaPORdatabasemethodology: Version2 release. (FAO,Rome,
2020). https://doi.org/10.4060/ca9894en.

39. Richey, A. S. Quantifying renewable groundwater stresswithGRACE.
Water Resour. Res. 51, 5217–5237 (2015).

40. Daras, I. Mass-change and Geosciences International Constellation
(MAGIC) expected impact on science and applications. Geophys. J.
Int. 236, 1288–1308 (2024).

41. Paolini, G., Escorihuela, M. J., Merlin, O., Sans, M. P. & Bellvert, J.
Classification of different irrigation systems at field scale using time-
series of remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 15, 10055–10072 (2022).

42. Fionnagáin, D.Ó. et al. Assessing climate resilience in rice production:
measuring the impact of the Millennium Challenge Corporation’s
IWRM scheme in the Senegal River Valley using remote sensing and
machine learning. Environ. Res. Lett. 19, 074075 (2024).

43. Skendžić, S., Zovko,M.,Živković, I. P., Lešić, V. & Lemić, D. The impact
of climate change on agricultural insect pests. Insects 12, 440 (2021).

44. Subedi, B., Poudel, A. & Aryal, S. The impact of climate change on
insect pest biology and ecology: implications for pest management
strategies, crop production, and food security. J. Agric. FoodRes. 14,
100733 (2023).

45. Meynard, C. N., Lecoq, M., Chapuis, M.-P. & Piou, C. On the relative
role of climate change and management in the current desert locust
outbreak in East Africa. Glob. Change Biol. 26, 3753–3755 (2020).

46. Paudel Timilsena, B. Potential distribution of fall armyworm in Africa
and beyond, considering climate change and irrigation patterns. Sci.
Rep. 12, 539 (2022).

47. Abd El-Ghany, N. M., Abd El-Aziz, S. E. & Marei, S. S. A review:
application of remote sensing as a promising strategy for insect pests
and diseases management. Environ. Sci. Pollut. Res. 27,
33503–33515 (2020).

48. Sloat, L. L. Climate adaptation by crop migration. Nat. Commun. 11,
1243 (2020).

49. United Nations Environment Programme. A Decade of Ecosystem-
based Adaptation: Lessons from the United Nations Environment
Programme. https://doi.org/10.59117/20.500.11822/45028 (2024).

50. European Commission. Forest Monitoring Law: A Monitoring
Framework for Resilient European Forests (European Commission:
Directorate-General for Environment, 2023). https://doi.org/10.2779/
058575.

51. Massey, R., Berner, L. T., Foster, A. C., Goetz, S. J. & Vepakomma, U.
Remote sensing tools for monitoring forests and tracking their
dynamics. in Boreal Forests in the Face of Climate Change (eds
Girona, M. M., Morin, H., Gauthier, S. & Bergeron, Y.) Vol. 74 637–655
(Springer).

52. UNCCD. Global Land Outlook. in 246–269 (UNCCD, Bonn, Germany,
2017).

53. Le Cozannet, G. Space-based earth observations for disaster risk
management. Surv. Geophys. 41, 1209–1235 (2020).

54. Zanaga, D. ESAWorldCover 10m2020V100.Zenodohttps://doi.org/
10.5281/zenodo.5571936 (2021).

55. Brown, C. F. DynamicWorld, near real-time global 10m land use land
cover mapping. Sci. Data 9, 251 (2022).

56. Luijendijk, A. The state of the world’s beaches. Sci. Rep. 8, 6641
(2018).

57. Hulskamp,R. Global distribution anddynamics ofmuddy coasts.Nat.
Commun. 14, 8259 (2023).

58. Carioli, A., Schiavina, M., Freire, S. & MacManus, K. GHS-POP
R2023A - GHS Population GridMultitemporal (1975-2030) (European
Commission, Joint Research Centre (JRC), 2023). https://doi.org/10.
2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE.

59. Sirko, W. et al. Continental-scale building detection from high
resolution satellite imagery. https://doi.org/10.48550/arXiv.2107.
12283 (2021).

60. Microsoft. Building Footprints Dataset. https://github.com/microsoft/
GlobalMLBuildingFootprints (2023).

61. Microsoft. Road Detections Dataset. https://github.com/microsoft/
RoadDetections (2022).

62. Soesbergen, A., Chu, Z., Shi, M. & Mulligan, M. Dam reservoir
extraction from remote sensing imagery using tailoredmetric learning
strategies. IEEE Trans. Geosci. Remote Sens. 60, 4207414 (2022).

63. Nauman, C. Perspectives on flood forecast-based early action and
opportunities for Earth observations. J. Appl. Remote Sens. 15,
032002 (2021).

64. Moreno-Rodenas, A., Mantilla-Jones, J. D. & Valero, D. Age, climate
and economic disparities drive the current state of global dam safety.
Nat. Water 3, 284–295 (2025).

65. Hemmati, M., Kornhuber, K. & Kruczkiewicz, A. Enhanced urban
adaptation efforts needed to counter rising extreme rainfall risks.NPJ
Urban Sustain 2, 16 (2022).

66. Almeida, C. R. D., Teodoro, A. C. & Goncalves, A. Study of the urban
heat island (UHI) using remote sensing data/techniques: a systematic
review. Environments 8, 105 (2021).

67. Mayer, T. et al. Deep learning approach for Sentinel-1 surface water
mapping leveraging Google Earth Engine. ISPRS Open J.
Photogramm. Remote Sens. 2, 100005 (2021).

68. Chawla, I., Karthikeyan, L. & Mishra, A. K. A review of remote sensing
applications for water security: Quantity, quality, and extremes. J.
Hydrol. Amst. 585, 124826 (2020).

69. Gasparrini, A. et al. Small-area assessment of temperature-related
mortality risks in England and Wales: a case time series analysis.
Lancet Planet. Health 6, 557–564 (2022).

70. Chowdhury, S., Hänninen, R., Sofiev,M. & Aunan, K. Fires as a source
of annual ambient PM2.5 exposure and chronic health impacts in
Europe. Sci. Total Environ. 922, 171314 (2024).

71. Naserikia, M. et al. Land surface and air temperature dynamics: The role
of urban form and seasonality. Sci. Total Environ. 905, 167306 (2023).

72. Alho, A. M., Oliveira, A. P., Viegas, S. & Nogueira, P. Effect of
heatwaves on daily hospital admissions in Portugal, 2000-18: an
observational study. Lancet Planet. Health 8, 318–326 (2024).

73. Chen, K. et al. Impact of population aging on future temperature-
relatedmortality at different global warming levels.Nat. Commun. 15,
1796 (2024).

74. Urban, A. et al. Evaluation of the ERA5 reanalysis-based universal
thermal climate index on mortality data in Europe. Environ. Res. 198,
111227 (2021).

75. Lo, Y. T. E. et al. Optimal heat stressmetric for modelling heat-related
mortality varies from country to country. Int. J. Climatol. 43,
5553–5568 (2023).

76. Wu, Y. et al. Temperature frequency and mortality: assessing
adaptation to local temperature. Environ. Int. 187, 108691 (2024).

77. Oliveira, A., Lopes, A., Niza, S. & Soares, A. An urban energy balance-
guided machine learning approach for synthetic nocturnal surface
Urban Heat Island prediction: a heatwave event in Naples. Sci. Total
Environ. 805, 150130 (2022).

https://doi.org/10.1038/s41612-025-01251-1 Perspective

npj Climate and Atmospheric Science | (2025)8:359 12

https://doi.org/10.1109/IGARSS46834.2022.9883071
https://doi.org/10.1109/IGARSS46834.2022.9883071
https://doi.org/10.1109/IGARSS46834.2022.9883071
https://www.ecmwf.int/en/newsletter/178/news/aifs-new-ecmwf-forecasting-system
https://www.ecmwf.int/en/newsletter/178/news/aifs-new-ecmwf-forecasting-system
https://www.ecmwf.int/en/newsletter/178/news/aifs-new-ecmwf-forecasting-system
http://eo4society.esa.int/wp-content/uploads/2021/01/EO_Compendium-for-SDGs.pdf
http://eo4society.esa.int/wp-content/uploads/2021/01/EO_Compendium-for-SDGs.pdf
http://eo4society.esa.int/wp-content/uploads/2021/01/EO_Compendium-for-SDGs.pdf
https://doi.org/10.4060/ca9894en
https://doi.org/10.4060/ca9894en
https://doi.org/10.59117/20.500.11822/45028
https://doi.org/10.59117/20.500.11822/45028
https://doi.org/10.2779/058575
https://doi.org/10.2779/058575
https://doi.org/10.2779/058575
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
https://doi.org/10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
https://doi.org/10.48550/arXiv.2107.12283
https://doi.org/10.48550/arXiv.2107.12283
https://doi.org/10.48550/arXiv.2107.12283
https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/GlobalMLBuildingFootprints
https://github.com/microsoft/RoadDetections
https://github.com/microsoft/RoadDetections
https://github.com/microsoft/RoadDetections
www.nature.com/npjclimatsci


78. Colón-González, F. J. et al. Projecting the future incidenceandburden
of dengue in Southeast Asia. Nat. Commun. 14, 5439 (2023).

79. Sebastianelli, A. et al. A reproducible ensemble machine learning
approach to forecast dengue outbreaks. Sci. Rep. 14, 3807 (2024).

80. Leiter, T. Considerations for the development of indicators under the
framework for the Global Goal on Adaptation. https://www4.unfccc.
int/sites/SubmissionsStaging/Documents/202408271544---
Submission%20on%20the%20indicator%20work%20programme
%20-%20Timo%20Leiter%20LSE%202024.pdf (2024).

Acknowledgements
We would like to thank Belén Martín Míguez (GCOS Secretariat) and Peter
Thorne (Maynooth University) for their comments on the manuscript and
Arthur Zielinski (Cranfield University) for his support in reformatting the
CEOS ECV Inventory dataset used in Figure 2. This paper is an outcome of
the Forum “Using Earth Observation Systems to Improve Climate
AdaptationPolicyandAction”, heldatand fundedby the International Space
Science Institute (ISSI) in Bern, Switzerland on 25–28 of June 2024.

Author contributions
All authors wrote the main manuscript text and reviewed the manuscript.
T.L., S.C., and S.F., and S.C. prepared figures 1-3, respectively.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Sarah Connors.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025, modified publication 2025

1European Space Agency, Didcot, UK. 2Australian Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia. 3World Adaptation Science Program
(WASP), UnitedNations Environment Programme (UNEP), Nairobi, Kenya. 4National Aeronautics and Space Administration,Washington, D.C., USA. 5Université Paris-
Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France. 6International Space Science Institute, Bern, Switzerland. 7CICERO Center for International Climate
Research, Oslo, Norway. 8European Environment Agency, Copenhagen, Denmark. 9European Commission Joint Research Centre, Ispra, Italy. 10Collecte Localisation
Satellites (France), Ramonville-Saint-Agne, France. 11TheWorldBankGroup,NWWashington,D.C.,USA. 12Faculty ofGeo-InformationScienceandEarthObservation,
University of Twente, Enschede, The Netherlands. 13Woodwell Climate Research Center, Falmouth, MA, USA. 14University of Galway, Galway, Ireland. 15Columbia
University, New York, NY, USA. 16University of Twente, Enschede, the Netherlands. 17Global Climate Observing System, Geneva, Switzerland. 18Grantham Research
Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK. 19University of Maryland, Baltimore, MD, USA.
20University of Nairobi, Nairobi, Kenya. 21Deltares, Delft, TheNetherlands. 22South AfricanNational Space Agency, Pretoria, South Africa. 23UnitedNationsConvention
to Combat Desertification (UNCCD), Bonn, Germany. 24+ATLANTIC, Lisbon, Portugal. 25Bioversity International, Parc Scientifique Agropolis II, Montpellier, France.
26Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland. 27African Synthesis Centre for Climate Change, Environment and Development,
Cape Town, South Africa. 28Technology Executive Committee UNFCCC, Santiago, Chile. 29Sustainability Agency of CORFO, Santiago, Chile.

e-mail: sarahconnors745@gmail.com

https://doi.org/10.1038/s41612-025-01251-1 Perspective

npj Climate and Atmospheric Science | (2025)8:359 13

http://www4.unfccc.int/sites/SubmissionsStaging/Documents/202408271544--Submission%20on%20the%20indicator%20work%20programme%20-%20Timo%20Leiter%20LSE%202024.pdf
http://www4.unfccc.int/sites/SubmissionsStaging/Documents/202408271544--Submission%20on%20the%20indicator%20work%20programme%20-%20Timo%20Leiter%20LSE%202024.pdf
http://www4.unfccc.int/sites/SubmissionsStaging/Documents/202408271544--Submission%20on%20the%20indicator%20work%20programme%20-%20Timo%20Leiter%20LSE%202024.pdf
http://www4.unfccc.int/sites/SubmissionsStaging/Documents/202408271544--Submission%20on%20the%20indicator%20work%20programme%20-%20Timo%20Leiter%20LSE%202024.pdf
http://www4.unfccc.int/sites/SubmissionsStaging/Documents/202408271544--Submission%20on%20the%20indicator%20work%20programme%20-%20Timo%20Leiter%20LSE%202024.pdf
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
mailto:a4.3d
www.nature.com/npjclimatsci

	Earth observations for climate adaptation: tracking progress towards the Global Goal on Adaptation through satellite-derived indicators
	Outline placeholder
	Adaptation
	Global adaptation efforts and the Global Goal on Adaptation
	Earth Observation-Based Adaptation Indicators
	Associated challenges for using EO to assess adaptation outcomes
	Attribution—establishing an accurate baseline
	Maximising data utility
	Data disaggregating to understand vulnerability
	Integrating past data with future projections
	Parallels with the SDG indicators
	Learning from what is already happening
	Developments relating to agriculture
	Developments relating to biodiversity
	Developments relating to extreme events
	Developments relating to health
	Concluding remarks and recommendations
	Recommendations to the GGA process
	Recommendations to EO agencies
	Recommendations to the research community


	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




