
Academic Editor: Julie Le Gallo

Received: 30 June 2025

Revised: 26 September 2025

Accepted: 29 September 2025

Published: 23 October 2025

Citation: Young, A. (2025).

Consistency of the OLS Bootstrap for

Independently but Not-Identically

Distributed Data: A Permutation

Perspective. Econometrics, 13(4), 41.

https://doi.org/10.3390/

econometrics13040041

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Consistency of the OLS Bootstrap for Independently but
Not-Identically Distributed Data: A Permutation Perspective
Alwyn Young

Department of Economics, London School of Economics, Houghton St., London WC2A 2AE, UK;
a.young@lse.ac.uk

Abstract

This paper introduces a new approach to proving bootstrap consistency based upon the
distribution of permutation statistics, using it to derive results covering fundamentally
not-identically distributed groups of data, in which average moments do not converge to
anything, with moment conditions that are less demanding than earlier results for either
identically distributed or not-identically distributed data.
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1. Introduction
Data are often drawn from dissimilar environments which render the independent

and identically distributed (iid) assumption that underlies many results on the bootstrap
suspect.1 This paper extends results concerning the consistency of the pairs and wild OLS
bootstraps, which have mostly been derived for iid data, to general regression frameworks
with independently but not-necessarily identically distributed (inid) data. Instead of con-
sidering the sampling distribution of the bootstraps, the usual approach, it notes that any
permutation of the pairs bootstrap vector of sampling frequencies or the realization of the
external variable used by the wild bootstrap to transform residuals is equally likely. Using
results on the asymptotic distribution of permutation statistics by Wald and Wolfowitz
(1944), Noether (1949), and Hoeffding (1951), these equally likely permutations can be
used to characterize the bootstrap distributions conditional on the data as normal given
restrictions on sample moments of the data. White’s (1980a) conditions for the asymptotic
normality of OLS coefficients with clustered/heteroskedastic residuals and inid data guar-
antee these restrictions almost surely, ensuring that the asymptotic distribution of pairs
and wild bootstrapped coefficients and Wald statistics conditional on the data matches the
unconditional distribution of the original OLS estimates.

While proofs of bootstrap consistency typically require the existence of at least fourth
moments of the regressors with iid data, the permutation distribution allows this paper
to prove consistency with no more than second regressor moments and inid data. For
iid data, Mammen (1993) proved consistency of the wild OLS bootstrap coefficient and
homoskedasticity-based Wald test distributions with bounded expectations of the product
of the fourth power of the regressors with the squared errors and an additional Lindeberg
condition. Similarly, for the pairs OLS bootstrap with iid data Freedman (1981) showed
that bounded fourth moments of both regressors and errors are sufficient for consistency
of the pairs bootstrap coefficient distribution2 and that of the Wald statistic based upon
the (potentially incorrect) assumption of homoskedastic errors. Stute (1990) tightened
the result for the coefficient distribution alone, showing it is sufficient for the squared
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regressors and the product of the squared regressors with the squared errors to have
finite expectation. This paper proves consistency of both the coefficient and clustered
heteroskedasticity robust Wald statistic distribution in a broader inid environment for both
the pairs and wild bootstraps with finite expectations of only slightly more than second
powers of the regressors and of the product of the second powers of the regressors with
the second power of the errors. These are much less demanding assumptions than those
used by Freedman and Mammen, requiring only slightly higher moments than used by
Stute for the proof of only the pairs bootstrap coefficient distribution in a narrower iid
environment. Moreover, when residuals are heteroskedastic or interrelated within clusters,
the homoskedasticity-based Wald test is not guaranteed to be asymptotically accurate,
as recognized by Freedman (1981) and Mammen (1993). In such cases, practitioners are
likely to prefer clustered/heteroskedasticity robust covariance estimates and Wald statistics
as these are asymptotically accurate and pivotal, respectively, ensuring the asymptotic
accuracy of the conventional test and higher order accuracy and faster convergence of
rejection probabilities to the nominal value in the bootstrap (Singh, 1981; Hall, 1992).

For OLS models with inid data, the salient contribution is Liu (1988), who showed
that the wild bootstrap provides consistent estimates of the second central moment of a
linear combination of coefficients in an OLS regression model with bounded regressors,
provided the first and second moments of the wild bootstrap external variable are 0 and 1,
respectively. Liu’s result regarding the second central moment is easily extended to the case
of the multivariate second central moments of coefficients for unbounded inid regressors
without any additional restrictions on the moments of the external variable, as shown below.
Our interest here, however, is in the full distribution of wild bootstrap coefficient and Wald
statistic estimates, where our proof requires the existence of higher moments of the wild
bootstrap external variable to ensure the convergence of higher moments to the normal. As
the external variable is selected by the practitioner, and not an exogenous characteristic of
the data, these additional moment conditions pose no obstacle. The two-point distribution
proposed by Mammen (1993) and the Rademacher distribution, both often used in practical
applications (e.g., Davidson & Flachaire, 2008), have moments of all orders.

Liu’s consideration of inid data has largely not been extended, as the OLS bootstrap
literature has since focused on time series dependent data, where the absence of random
sampling of independent observations raises different statistical issues and the use of differ-
ent bootstrap methods (see the review in Hardle et al., 2003). Djogbenou et al. (2019), who
prove consistency of the wild bootstrap t-statistic distribution for independently distributed
cluster groupings of data, are a notable exception. With the moment assumptions used
here, plus the additional requirement of bounded slightly higher than fourth moments
of the regressors, their proof allows for heterogeneity in the distribution of data across
clusters. However, they limit that heterogeneity in requiring that the cross product of
the regressors and the covariance matrix of coefficient estimates converge to matrices of
constants, a condition that in other papers is typically motivated by an iid assumption.3

The data-generating process examined in this paper is more fully inid in that there is no
restriction that such matrices converge to anything, and the proof requires only slightly
higher than second moments of the regressors. In sum, by emphasizing the permutation
distribution, this paper lowers typical fourth moment restrictions on regressors to second
moments, allows a fully inid data process in which average moments do not converge, and
highlights the conceptual similarity between the wild and pairs bootstraps, proving results
for both in a unified framework.

The paper proceeds as follows: Section 2 reviews the OLS model, White’s assumptions
and results regarding OLS with inid data, and pairs and wild bootstrap methods for
clustered/heteroskedastic data. Section 3 presents the foundational theorems regarding
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the asymptotic normality of permutation distributions that motivate the results. Section 4
then combines these with White’s (1980a) result to derive sufficient conditions for pairs
and wild OLS bootstrap consistency with inid data and potentially cluster interdependent
heteroskedastic residuals. Section 5 more fully contrasts the assumptions and results herein
with those found in the papers cited above. Section 6 provides Monte Carlo evidence of
the consistency of the bootstrap in a challenging environment with an inid data process
where average moments do not converge, regressors have barely second moments, and
residuals are bounded, varyingly skewed, sometimes bi-modal, and otherwise generally
highly non-normal. The Appendix provides proofs of the main theorems, while the on-line
Appendix extends the pair results to sub-sampling and provides lengthy technical proofs
of otherwise minor lemmas and extensions of the theorems.

2. Framework and Notation
Our interest is in inference for the linear model where, with i = 1 . . . N observations,

y = Xβ + ε (1)

where y represents the N × 1 matrix of observations on the dependent (outcome) variable,
X the N × K matrix of observations of independent variables, β the K × 1 vector of
unobserved parameters of interest, and ε the N × 1 matrix of unobserved disturbances.
The ordinary least squares (OLS) estimates β̂ of β minimize the sum of squared estimated
residuals ε̂′ ε̂, where ε̂ = y − Xβ̂, producing the estimates

β̂ = (X′X)−1X′y. (2)

If the disturbances εi are homoskedastic with common variance σ2
i = σ2, one can use

the homoskedastic variance estimate of β̂, (X′X)−1ε̂′ ε̂/(N − K), but we focus on more
general inference where the εi are heteroskedastic and possibly interdependent within
C ≤ N “cluster” groupings of observations, using the clustered/heteroskedasticity robust
covariance estimate

V̂(β̂) = (X′X)−1

(
C

∑
g=1

X′
g ε̂g ε̂′gXg

)
(X′X)−1, (3)

where we use the subscript g to denote the rows of matrices and vectors associated with
the observations in cluster grouping g. As will be seen later, we assume that the regressors
and disturbances (Xg, εg) are independent across cluster groupings. When observations
themselves are independent, each grouping g equals an individual observation i, C = N,
and (3) is White’s (1980a) heteroskedasticity robust covariance estimate. The clustered
extension, however, is often used to allow for unspecified grouped dependence, and so
we present the results within a more general framework. In describing limits, we use the
subscript C, as in β̂C and V̂(β̂C), to emphasize that the estimated coefficients and covariance
estimates are functions of C realized observation groupings.

White (1980a) provided conditions for valid OLS inference when the row vector of
random variables associated with each observation is independently but not necessarily
identically distributed (inid). With xgj denoting the jth column of Xg, we extend these to
allow for grouped dependence:

Theorem I (extending White, 1980a). If there exist strictly positive finite constants γ, ∆, and η,
such that
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(Ia) (Xg, εg) is a sequence of independent but not necessarily identically distributed random matrices,
such that E(X′

gεg) = 0K;

(Ib) For all g E(|x′gjxgk
|1+γ) < ∆ for all j, k = 1 . . . K, and for all C sufficiently large

MC = C−1∑C
g=1 E(X′

gX
g
) is non-singular with determinant (MC) > η;

(Ic) For all i, E(|x′gjεgε′gxgk|1+γ) < ∆ for all j, k = 1 . . . K, and for all C sufficiently

large VC = C−1∑C
g=1 E(X′

gεgε′gXg) is non-singular with determinant (VC) > η;

then

(i) β̂C
as(X,ε)→ β;

(ii) V−1/2
C MC

√
C
(

β̂C − β
) d(X,ε)→ nK;

(iii) MC, Vc, and their inverses are uniformly bounded for all C sufficiently large

(iv) CV̂
(

β̂C

)
− M−1

C VCM−1
c

as(X,ε)→ 0KxK;

(v) (β̂C − β)′V̂(β̂C)
−1(β̂C − β)

d(X,ε)→ χ2
K;

where
as(X,ε)→ and

d(X,ε)→ denote convergence almost surely and in distribution across (X,ε),
respectively, A1/2 the “square root” of symmetric positive definite matrix A,4 nK the K dimensional
standard normal, χ2

K the central chi-squared with K degrees of freedom, and 0K and 0KxK vectors
and matrices of zeros of the indicated dimensions.

Remark 1. White’s covariance estimate often motivates inference with heteroskedasticity or
clustering in an otherwise iid setting where each observation or cluster grouping is a draw from a
fixed distribution. However, V̂(β̂C) allows for asymptotically accurate inference in the much more
general inid setting given the above, where MC, VC, and CV̂(β̂C) do not necessarily converge to
matrices of constants, as illustrated in Monte Carlos further below.

Remark 2. White (1980a) used (Ia)–(Ic) to prove (i), (ii), and parts of (iii) and added the
assumption E(|x′gjxgjx′gkxgl |1+γ) to prove (iv), (v), and other results. As reviewed below, a similar
fourth moment condition on the regressors is also used in prior proofs of bootstrap consistency.
However, (Ia)–(Ic), with only slightly higher than second regressor moments, suffice to prove (i)–(v)
and ensure bootstrap consistency, as shown in proofs and Monte Carlos below.

Remark 3. In practical application, moment restrictions on the data-generating process can be
tested using techniques suggested by Meerschaert and Scheffler (1998), Fedotenkov (2013), and
Trapani (2016), among others.

In this paper, we examine two bootstrap techniques commonly used for OLS inference
with heteroskedastic and clustered disturbances and prove the asymptotic consistency of
their distributions for general inid data. Wu’s (1986) external bootstrap, now commonly
known as the wild bootstrap, holds the design matrix X constant and generates new
realizations of the outcome vector y by multiplying the estimated residuals of each cluster
grouping by an independently and identically distributed external random variable δw

g , so
that the dependent variable for grouping g is now given by yw

g = Xg β̂C + ε̂gδw
g . Selecting

β̂w
C so as to minimize the sum of squared residuals for this new data yields coefficient and

covariance estimates expressed in terms of the original data and its estimates as

β̂w
C = β̂C + (X′X)−1

(
C
∑

g=1
X′

g ε̂gδw
g

)

and V̂(β̂w
C) = (X′X)−1

(
C
∑

g=1
X′

g ε̂w
g ε̂w′

g Xg

)
(X′X)−1,

where ε̂w
g = Xg

(
β̂C − β̂w

C

)
+ ε̂gδw

g .

(4)
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Repeated draws of the Cx1 vector δw of iid variables are made and the resulting distribution
of coefficients β̂w

C − β̂C and Wald statistics (β̂w
C − β̂C)

′V̂(β̂w
C)

−1(β̂w
C − β̂C) used to evaluate

the statistical significance of corresponding measures for tests of the null hypothesis β = β0

in the original sample, i.e., β̂C − β0 and (β̂C − β0)
′V̂(β̂C)

−1(β̂C − β0). All permutations
of any given realization of δw are equally likely, a fact that plays a prominent role in the
results of this paper.

The pairs bootstrap samples with replacement C cluster groupings of “pairs” of
dependent and independent variables (yg, Xg) from the rows of the original data (y, X),
producing a new data set composed of h = 1 . . . C cluster groups of observations (yh, Xh),
with each h corresponding to one of the original g groupings.5 Selecting β̂

p
C so as to minimize

the sum of squared residuals for this new data, the resulting coefficient and covariance
estimates can be expressed in terms of the original data, its estimates, and its indices g = 1
. . . C as

β̂
p
C = β̂C +

(
C
∑

g=1
X′

gXgδ
p
g

)−1(
C
∑

g=1
X′

g ε̂gδ
p
g

)

and V̂
(

β̂
p
C

)
=

(
C
∑

g=1
X′

gXgδ
p
g

)−1(
C
∑

g=1
X′

g ε̂
p
g ε̂

p′
g Xgδ

p
g

)(
C
∑

g=1
X′

gXgδ
p
g

)−1

,

where ε̂
p
g = Xg

(
β̂C − β̂

p
C

)
+ ε̂g,

(5)

where δ
p
g denotes the number of times (possibly 0) cluster grouping g was drawn. Repeated

bootstrap samples are made and the resulting distribution of coefficients β̂
p
C − β̂C and

Wald statistics (β̂
p
C − β̂C)

′V̂(β̂
p
C)

−1(β̂
p
C − β̂C) once again used to evaluate the statistical

significance of corresponding measures for tests of the null hypothesis β = β0 in the original
sample. As in the case of the wild bootstrap, all permutations of any given realization of
the Cx1 sampling frequency vector δp are equally likely. Consequently, we use the common
notation δ, distinguished by superscripted p or w, for seemingly dissimilar objects because
these operate identically in the theorems and proofs below.

Our interest is in deriving sufficient conditions for the conditional consistency of
the bootstrap distributions in an inid framework. Specifically, we show that White’s
(1980a) assumptions are sufficient to ensure that for the bootstrapped coefficient and
clustered/heteroskedasticity robust covariance estimates, with b (both) denoting p (pairs)
or w (wild), (

C
∑

g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
X′X

C

)√
C(β̂b

C − β̂C)
d(δb)|as(X,ε)→ nK

and
√

C(β̂b
C − β̂C)

′[CV̂(β̂b
C)]

−1(β̂b
C − β̂C)

√
C

d(δb)|as(X,ε)→ χ2
K,

(6)

where
d(δ)|as(X,ε)→ denotes convergence in distribution across δ almost surely across real-

izations of (X,ε). These results show that the asymptotic conditional distribution given
the data (X,ε) of the bootstrap equals the asymptotic distribution of the OLS estimates
across (X,ε), allowing for valid inference using the percentiles of bootstrapped coefficient
estimates or Wald statistics.6

The key characteristic exploited in the proofs below is that any of the row permuta-
tions of the vectors δ are equally likely. Consequently, the distribution of the bootstraps
can be thought of as the distribution across permutations of δ integrated across the or-
dered realizations of δ. Permutation theorems characterize this permutation distribution as
asymptotically normal with covariance matrix CV̂(β̂C) provided (X,ε) and δ have certain
moment properties. White’s (1980a) assumptions ensure that these properties hold almost
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surely for (X,ε), while the properties of the multinomial sampling frequencies δp and mo-
ment assumptions on the iid elements of δw ensure the requisite conditions on δ also hold
almost surely. Consequently, almost surely conditional on the data (X,ε), the distributions
of the bootstraps across the draws δ that determine their coefficient estimates and Wald
statistics converge to the distribution of their OLS counterparts for the original sample (X,ε)
across its data-generating process.

3. Foundational Permutation Theorems
The proofs in this paper rely on a theorem first proven by Wald and Wolfowitz

(1944) and later refined by Noether (1949) and Hoeffding (1951) concerning the asymptotic
distribution of root-C times the correlation of a permuted sequence with another sequence:

Theorem II: Let z’ = (z1, . . ., zC) and δ’ = (δ1, . . ., δC) denote sequences of real numbers, not all
equal, and d’ = (d1, . . ., dC) denote any of the C! equally likely permutations of δ. Then, as C → ∞
the distribution across the realizations of d of the random variable

vC =
C
∑

g=1

[zg−m(zg)][dg−m(dg)]
s(zg)s(dg)C1/2 ,[

where f or h = z or d, m(hg) =
C
∑

g=1

hg
C & s(hg)2 =

C
∑

g=1

[hg−m(hg)]2

C

] (IIa)

converges to that of the standard normal if for all integer τ > 2

lim
C→∞

C
τ
2 −1∑C

g=1
[
zg − m(zg)]τ ∑C

g=1
[
δg − m(δg)]τ(

∑C
g=1
[
zg − m(zg)]2

)τ/2(
∑C

g=1
[
δg − m(δg)]2

)τ/2 = 0. (IIb)

The proof is based on showing that the moments of vC converge to those of the standard
normal. A simple multivariate extension, proven in the on-line Appendix, is

Theorem IIm: Let O = ICxC − 1C1′C/C denote the centering matrix,7 Z′ = (z1, . . . , zC) a
sequence of K x 1 vectors such that Z′OZ is positive definite, δ’ = (δ1, . . ., δC) a sequence of real
numbers not all equal, and d’ = (d1, . . ., dC) any of the C! equally likely permutations of δ. Then, as
C → ∞ the distribution across the realizations of d of the random variable

vC =

(
Z′OZ

C
d′Od

C

)−1/2
(Z′Od)√

C
(IIc)

converges to that of the multivariate iid standard normal if (IIb) holds for each element in the vector
sequence zg.

Theorem II is easily extended to a probabilistic environment by noting the following
result due to Ghosh (1950) that translates the almost-sure or in probability characteristics of
an infinite number of moment conditions into similar statements regarding a distribution:

Theorem III: If all the moments of the cumulative distribution function FC(x) converge al-
most surely (in probability) to those of F(x), which possesses a density function, and for which,
with νk+1 denoting the absolute moment of order k + 1,

lim
k→∞

αk+2νk+1
k + 2!

= 0 for any given value of α, (IIIa)

then FC(x) converges almost surely (in probability) to F(x).
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Condition (IIIa) is of course true for the normal distribution. Hoeffding (1952) generalized
the result by showing that condition (IIIa) is not even needed for convergence in probability
at all points of continuity of any F(x) that is uniquely determined by its moments. By
virtue of the Cramér–Wold device, Theorem III covers the multivariate case given in (IIc)
above, as for all λ, such that λ′λ = 1, all moments of λ′vC converge to those of the
standard normal. In light of Theorem III, in applying Theorem II below, we use the notation
d(d)|as(δ,X,ε)→ , i.e., almost surely across the realizations of (δ,X,ε), the distribution of vC across
permutations d of δ converges to the multivariate standard normal. Theorems II and III are
used to characterize the asymptotic distribution of ∑C

g=1 X′
g ε̂gdb

g/C, which appears in the
expressions for the bootstrapped coefficient estimates in (4) and (5) above.

A less demanding form of Theorem II, proven in Appendix B below, provides a weaker
condition under which the mean of products converges in probability across permutations
to the product of means:

Theorem IV: Let z’ = (z1, . . ., zC) and δ’ = (δ1, . . ., δC) denote sequences of real numbers, possibly
all equal, and d’ = (d1, . . ., dC) any of the C! equally likely permutations of δ. Then, as C → ∞,
across permutations d of δ,

m
(
zgdg

)
− m

(
zg
)
m
(
δg
)
=

C

∑
g=1

zgdg

C
−

C

∑
g=1

zg

C

C

∑
g=1

δg

C
p→ 0, (IVa)

if

lim
C→∞

C
∑

g=1

[zg−m(zg)]2

C ∑C
g=1

[δg−m(δg)]2

C

C
= 0. (IVb)

Theorem IV is used in proofs to make statements regarding the convergence in probability of
terms such as ∑C

g=1 X′
g ε̂g ε̂′gXg(d

w
g )

2/C, ∑C
g=1 X′

g ε̂
p
g ε̂

p′
g Xgdp

g/C, and ∑C
g=1 X′

gXgdp
g/C, which

appear in (4) and (5) above. As the satisfaction of (IVb) depends on the realized sample

moments of (X,ε) and δ, we use the notation
p(d)|as(δ,X,ε)→ , i.e., almost surely across the

realizations of (δ,X,ε) m(zgdg) converges in probability across the permutations d of δ to
m(zg)m(δg).

4. Results: Bootstrap Consistency with INID Data
The following result is proven in Appendix C, further below:

Theorem V: Assume that for the wild bootstrap E
[
δw

g

]
= 0, E

[
(δw

g )
2
]
= 1 and E

[
(δw

g )
2(1+θ1)

]
<

∆ for some finite ∆ and θ1 > 1/γ, with γ as given in Theorem I earlier. Assumptions (Ia)–(Ic)
given in Theorem I in combination with the properties of δ are sufficient to ensure that across the
permutations d of δb, for b = p (pairs) or w (wild),(

C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
X′X

C

)(
δb′Oδb

C

)−1/2√
C
(

β̂b
C − β̂C

) d(d)|as(δb ,X,ε)→ nK, (Va)

CV̂(β̂b
C)− CV̂(β̂C)

p(d)|as(δb ,X,ε)→ 0KxK . (Vb)

Bounded higher moments of δw
g are needed to ensure that conditions (IIb) and (IVb) in

Theorems II and IV are satisfied.
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Let δ* denote the ordered values of δ. Across permutations d of δ* (Va) and (Vb)
hold. These permutations, integrated across the distribution of δ*, characterize the entire
distribution of δ. Adding the result8

δp′Oδp

C
p(δp)→ 1 and

δw′Oδw

C
as(δw)→ 1, (7)

implies that (
C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
X′X

C

)√
C(β̂b

C − β̂C)
d(δb)|as(X,ε)→ nK. (8a)

CV̂(β̂b
C)− CV̂(β̂C)

p(δb)|as(X,ε)→ 0KxK, (8b)

where the convergence in distribution in this case is across the bootstrap realizations of δb

that determine the bootstrap coefficient and covariance estimates, as in (4) and (5) above.
When combined with White’s (1980a) result in Theorem I regarding the asymptotic distri-
bution of OLS coefficient and covariance estimates, this establishes that almost surely the
conditional (on the data) distributions of the bootstrapped coefficients and Wald statistics
converge to the unconditional distributions of their OLS regression counterparts.

5. Comparison of Bootstrap Consistency Results
This section contrasts the assumptions and results of this paper with other papers

on bootstrap consistency. These usually assume independent observations, with moment
conditions given at that level. To simplify the comparison of moment conditions, where
possible I use the i = 1 . . . N notation, taking each cluster g as composed of one observation
and using the implied observational level assumptions in the theorems given above. Table 1
below summarizes key elements of the discussion that follows.

Table 1. Comparison of assumptions and results.

Mammen
(1993)

Freedman
(1981) Stute (1990) Liu (1988) Djogbenou

et al. (2019)
This

Paper

type of bootstrap wild pairs pairs wild wild both
type of data iid iid iid inid inid inid

bounded moments
x4

ijε
2

i
& x4

ij

xa
ijε

b
i

a + b = 4
x2

ijε
2

i
& x2

ij

ε2
i &

all xn
ij

(x2
ijε

2

i
)

1+γ

& (x4
ij)

1+γ

(x2
ijε

2

i
)

1+γ

& (x2
ij)

1+γ

avg. moments converge yes yes yes no yes no
maximum cluster size unbounded bounded

distribution of coefficients
. . . and Wald statistics

yes
homo.

yes
homo.

yes
no

no
no

yes
cl/hetero.

yes
cl/hetero.

sub-sampling M of N M → ∞ M → ∞ M/N → 0
lim
in f

M
Nγ* > 0

moments of coefficients yes yes (wild)

Notes: Wald statistics based upon homoskedastic (homo.) or clustered/heteroskedasticity robust (cl/hetero.)
covariance estimates.

1. Assumptions on regressors and errors

For an OLS model with iid data and potentially heteroskedastic residuals, Mammen
(1993) showed that for a fixed number of regressors the wild bootstrap distributions of
linear combinations of the coefficients and Wald statistics based upon the homoskedastic
covariance estimate are in probability consistent, given sup∥c∥=1E

[
(c′xi)

4(1 + ε2
i )
]

< ∞ and
the Lindeberg type condition E

[
(c′xi)

2ε2
i I
[
(c′xi)

2ε2
i ≥ γN

]
→ 0 for every fixed γ > 0. For
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the same model, Freedman (1981) proved almost-sure consistency of pairs bootstrap coef-
ficients and homoskedastic-based Wald tests if the row vectors (x′i, yi) are independently
and identically distributed and E

[
((x′i, yi)(x′i, yi)

′)2] < ∞. Stute (1990) tightened part of
the result, showing that almost-sure convergence of the pairs bootstrap coefficients alone
for iid data only requires E(xijxik) and E(xijxikε2

i ) to be finite. By adopting a permutation
approach, this paper proves almost-sure consistency of both coefficients and Wald statistics
based upon the clustered/heteroskedasticity robust covariance estimate with inid obser-
vations for both the pairs and wild bootstrap with the existence of only slightly higher
moments than required by Stute (1990), i.e., E|xijxik|1+γ < ∞ and E|xijxikε2

i |1+γ < ∞ for
some γ > 0. It should be noted, however, that Mammen’s result was part of a broader
framework that allowed for a growing number of regressors.

For inid data, Liu (1988) proved consistency in probability of the second central
moment of the wild OLS bootstrap coefficient distribution with bounded regressors (with
all moments) and finite second moments of εi. This paper proves almost-sure consistency
of the wild bootstrap distribution for inid data with unbounded regressors using the
additional moment conditions described above.

Djogbenou et al. (2019) prove consistency in probability of the distribution of the
wild bootstrap t-statistic for within-cluster correlated but cross-cluster independent but not
identically distributed data. Their assumptions on the existence of moments are those used
in this paper, plus the addition of the fourth moment restriction E|x4

ij|1+γ < ∞ for some
γ > 0. They also impose asymptotic homogeneity of the data-generating process in the form
of assuming that X′X/N converges to a matrix of constants, while for any vector α, such
that α′α = 1, there exists a finite scalar vα > 0 and non-random sequence µN → ∞, such that
µNα′(X′X)−1∑C

g=1 E(X′
gεgε′gXg)(X′X)−1α → vα. Thus, while papers usually use the iid

assumption to motivate the convergence of key matrices to matrices of constants, Djogbenou
et al. (2019) avoid the iid assumption but assume that the data nevertheless converge to
such matrices. This paper, using clustered versions of White’s (1980a) assumptions, requires
no such convergence of the asymptotic regressor cross product and covariance matrix of
coefficient estimates and as such covers more fundamentally inid data without the addition
of the fourth moment condition E|x4

ij|1+γ < ∞ .
This paper makes no explicit assumptions regarding maximum cluster size, but in

practice the assumption that the expectation of vector products of the regressors are uni-
formly bounded for all g, i.e., E(|x′gjxgk

|1+γ) < ∆, implies that either the maximum cluster

size is bounded or, as seems less likely, the expectation of individual observations shrinks
with cluster size. In contrast, Djogbenou et al.’s (2019) proof of consistency allows the
maximum cluster size to increase with the sample size in an unbounded fashion at a rate
determined by the form of dependency (albeit unknown) within clusters. All proofs of
consistency necessarily require that asymptotically individual observations or clusters
exert a negligible influence on coefficient and variance estimates, although ironically it is
often the strong influence of outlier observations or groupings in finite samples that makes
conventional tests less accurate relative to the bootstrap (c.f. Davidson & Flachaire, 2008;
Young, 2019, and the simulations below).

2. Type of consistency proven

Aside from consistency of the coefficient distribution, Freedman (1981) and Mammen
(1993) prove consistency of the Wald statistic for the pairs and wild bootstrap, respectively,
based upon the covariance estimate with homoskedastic errors. Djogbenou et al. (2019)
prove consistency of the Wald statistic using the cluster/heteroskedasticity robust covari-
ance estimate, which is also asymptotically accurate with homoskedastic errors. This test
statistic is asymptotically pivotal and hence provides higher-order asymptotic bootstrap
accuracy (Singh, 1981; Hall, 1992). This paper does the same for both the pairs and wild
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bootstrap using weaker moment conditions and a unified permutation framework that
highlights a similarity between the two methods.

Freedman and Stute allowed for sub-sampling M < N observations in the pairs boot-
strap and proved convergence in distribution if M and N both go to infinity. As shown in
the on-line Appendix, at the expense of complicating the proofs, the permutation-based
pairs bootstrap consistency results can be extended to sub-sampling, with and without
replacement, if M/N → 0 and for some γ* > (1 + γ)−1, M is such that liminf M/Nγ∗ > 0.
The requirement that M not fall too rapidly relative to N is needed to ensure the existence
and convergence of higher moments to the normal, as the proof of Theorem II is based
upon the method of moments.

Liu (1988) proves consistency of the wild bootstrap second central moment with
bounded regressors. Proving such consistency with the unbounded regressors of this paper
is trivial. If we assume, as did Liu (1988), that E[δw] = 0C and E[δwδ′w] = ICxC (the identity
matrix), then taking the expectation with respect to this variable for a given realization of X
and ε, we have

E[ β̂w
C |X, ε] = β̂C + (X′X)−1

C
∑

g=1
X′

g ε̂gE[δw
g ] = β̂C

[
as

C
∑

g=1
X′

g ε̂g = 0K

]
E[(β̂w

C − E[β̂w
C ])(β̂w

C − E[β̂w
C ])

′|X, ε] =

(X′X)−1

(
C
∑

g=1

C
∑

h=1
X′

g ε̂g ε̂′hXhE[δw
g δw

h ]

)
(X′X)−1

= (X′X)−1

(
C
∑

g=1
X′

g ε̂g ε̂′gXg

)
(X′X)−1 = V

(
β̂C

)
,

(9)

where we make use of the fact that ∑C
g=1 X′

g ε̂g = X
′
ε̂ = 0K as the OLS estimates β̂C in (2)

above minimize ε̂′C ε̂C. Thus, for any sample size the variance of wild bootstrap coefficient
estimates equals White’s clustered/heteroskedasticity robust covariance estimate for the
sample. Since under White’s conditions given in Theorem I, CV̂(β̂C) is a consistent esti-
mator of the asymptotic variance of

√
C(β̂C − β), it follows that for such general inid data

the wild bootstrap coefficient variance is a consistent estimator as well, reproducing Liu’s
result in a more general framework.

A similar result for the pairs bootstrap is more problematic. The first two moments of
the multinomial sampling frequencies (δp) for C draws with replacement from C cluster
groups are E[δp] = 1C (a vector of ones) and E[δpδ′p] = ICxC − C−11C1′C. Examining the

moments of the latter half of β̂
p
C − β̂C =

(
∑C

g=1 X′
gXgδ

p
g

)−1(
∑C

g=1 X′
g ε̂gδ

p
g

)
, we see:

E

[
C
∑

g=1
X′

g ε̂gδ
p
g |X, ε

]
=

C
∑

g=1
X′

g ε̂gE
[
δ

p
g

]
=

C
∑

g=1
X′

g ε̂g = 0K,

& E

[(
C
∑

g=1
X′

g ε̂gδ
p
g

)(
C
∑

g=1
X′

g ε̂gδ
p
g

)′

|X, ε

]
=

C
∑

g=1

C
∑

h=1
X′

g ε̂g ε̂′hXhE[δp
g δ

p
h ]

=
C
∑

g=1
X′

g ε̂g ε̂′gXg − C−1
C
∑

g=1

C
∑

h=1
X′

g ε̂g ε̂′hXh =
C
∑

g=1
X′

g ε̂g ε̂′gXg= (X′X)V
(

β̂C

)
(X′X).

(10)

Were ∑C
g=1 X′

g ε̂gδ
p
g multiplied by (X′X)−1, this would prove consistency of the second

central moment of pairs bootstrap coefficients, but unfortunately it is multiplied by
(∑C

g=1 X′
gXgδ

p
g )

−1. However, it is easy to show that (∑C
g=1 X′

gXgδ
p
g )

−1 converges in prob-
ability to (X′X)−1 (see Appendix C below). Using this fact, Shao and Tu (1995) prove
consistency of the second central moment using the artifice of assuming that when the
minimum eigenvalue of (∑C

g=1 X′
gXgδ

p
g )

−1 is less than 1/2 of the minimum eigenvalue of
(X′X)−1, an event whose probability converges to zero, β̂

p
C is set equal to β̂C.
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It is well known that convergence in distribution does not imply convergence of
moments, but the fact that the proof of Theorem II regarding the asymptotic permutation
distribution of root-C correlation coefficients is based upon the method of moments (see
Hoeffding, 1951 and the on-line Appendix of this paper) might lead to the erroneous
conclusion that the results here imply consistency of all moments. They do not, as already
implied by the discussion of the second moment of the pairs bootstrap. In Appendix C
below, Theorem II is used to prove that across the equally likely permutations d of a given
δb, for b (both) = p (pairs) or w (wild)(

C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
δ′bOδb

C

)−1/2
∑C

g=1 X′
g ε̂gδb

g√
C

d(d)|as(δb ,X,ε)→ nK, (11)

signifying, by the method of proof, that the moments across permutations d of δ of the
left-hand side converge to those of the multivariate standard normal. Since this is true for
all δ, such that δ′bOδb > 0, which almost surely holds (see (L2) in Appendix C), we can
equally say that across the distribution of δ, the moments of (11) converge to those of the
multivariate standard normal. For the wild bootstrap

√
C(β̂w

C − β̂C) consists of (11) mul-

tiplied by (X′X/C)−1(δ′wOδw/C)1/2(∑C
g=1 X′

g ε̂g ε̂′gXg/C)1/2, and as δ′wOδw/C
as(δw)→ 1, we

can say that all the moments of
√

C(β̂w
C − β̂C) converge to those of the multivariate normal

with covariance matrix CV̂(β̂C), although these need not be the asymptotic moments of the
sample coefficients

√
C(β̂C − β). In the case of the pairs bootstrap,

√
C(β̂

p
C − β̂C) equals

(11) multiplied by (∑C
g=1 X′

gXgδ
p
g /C)−1(δ′bOδb/C)1/2(∑C

g=1 X′
g ε̂g ε̂′gXg/C)1/2, and as both

∑C
g=1 X′

gXgδ
p
g /C and δ′bOδb/C are only shown to converge in probability, nothing can be

said about the asymptotic moments of
√

C(β̂
p
C − β̂C) without the use of an artifice such as

that of Shao and Tu (1995) mentioned above.

3. Assumptions on the wild bootstrap external variable

Liu (1988) proves the consistency of the second central moment of the wild bootstrap
coefficients, assuming that the first and second moments of the wild bootstrap external
variable δw

i are 0 and 1, respectively.9 This paper extends the proof to consistency in

distribution by additionally requiring that E
[
(δw

i )
2(1+θ1)

]
< ∞ for θ1 > 1/γ, where γ > 0

is such that E|xijxik|1+γ < ∞ and E|xijxikε2
i |1+γ < ∞ . As the proof of Theorem II is

based on the method of moments, depending upon the existence of higher moments for
the regressors higher moments on δw

i are needed to ensure that all moments of (11) above
exist and converge to the normal. Proofs of the consistency of wild bootstrap distributions
typically assume that the external variable δw

i comes from a particular distribution, such as
the Rademacher, with moments of all orders (e.g., Mammen, 1993; Canay et al., 2021). A
notable exception is Djogbenou et al. (2019), where the proof of convergence in distribution
merely requires that |δw

i |2+λ < ∞ for some λ > 0. The wild bootstrap external variable,
however, is under the control of the practitioner (i.e., not a characteristic of the given data)
and, at this time, there appear to be no known advantages to using an external variable
without higher moments.

6. Monte Carlo Illustration with INID Data
To illustrate the properties and consistency of the bootstraps with fully inid data, I use

a data-generating process that departs strongly from the independently and identically
distributed ideal. To ensure average moments do not even begin to converge in finite
samples, I model underlying distributional parameters as following a random walk across
the data. To stress test the theorems above, I use regressors with heavy-tailed distributions
that barely satisfy the specified moment conditions. Finally, to further hinder convergence
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to the normal, I choose an error distribution that departs strongly from the shape of
that ideal.

To begin with unclustered data, for i = 1 . . . N independent observations, I assume that:

yi = εi, εi = B(|aεi|, |bεi|)− |aεi |
|aεi |+|bεi |

, xi = t(2.01 + B(|axi|, |bxi|))
aεi = aεi−1 + U[−.5, .5], bεi = bεi−1 + U[−.5, .5], aε0 = bε0 = U[−.5, .5],

axi = axi−1 + U[−.5, .5], bxi = bxi−1 + U[−.5, .5],& ax0 = bx0 = U[−.5, .5],

(12)

where B(a, b) denotes an independent draw from the Beta distribution with parameters a
and b (and expectation a/(a + b)), t(v) an independent draw from the t-distribution with v
degrees of freedom, and U[−.5, .5] an independent draw from the uniform distribution on
[−0.5, 0.5]. The random walks a and b (separate for ε and x) with their expanding variances
ensure that the moments of the data do not meaningfully converge in simulation.10 These
random walks can be thought of as an underlying population characteristic that develops,
say, geographically or intertemporally. Observations, however, are drawn independently
from these otherwise related distributions. Beta random variables are bounded on [0, 1]
and, depending upon a and b, can be heavily skewed toward 0 or 1, symmetric unimodally
around 0.5, or bimodally concentrated at both 0 and 1, to name just a few possibilities.
This departs strongly from the symmetric unimodal normal distribution on the real line.
Random variables drawn from a t-distribution only have finite moments up to their degrees
of freedom. Thus, the regressors xi only have moments between 2.01 and 3.01, approaching
the limits of the assumptions in Theorem I.

For a clustered data-generating process, with dependence within clusters, I gener-
ate g = 1 . . . C clusters with cluster effects that follow (12) above (substituting g for i
everywhere in those equations), and observation level data:

yi = εi, εi = εg(i) + B
(∣∣∣aεg(i)

∣∣∣, ∣∣∣bεg(i)

∣∣∣)− |aεg(i)|
|aεg(i)|+|bεg(i)|

,

and xi = xg(i) + t(2.01 + B
(∣∣∣axg(i)

∣∣∣, ∣∣∣bxg(i)

∣∣∣)), (13)

where g(i) denotes the cluster to which observation i belongs. Thus, each regressor and
disturbance observation within a cluster is composed of a common cluster effect plus
a similarly, but independently, distributed observation effect. The estimated regression
model is:

yi = α + βxi + εi, where α = β = 0. (14)

Table 2 reports Monte Carlo results for tests of the true null of β = 0 in the OLS
regression (14) for the data-generating processes described in (12) and (13) with 10, 100,
1000, 10,000, 100,000, and 1,000,000 observations or clusters (and five observations per
cluster). For the conventional test, I report the p-value of the two-sided test using the
squared sample t-statistic based upon the clustered/heteroskedasticity robust covariance
estimate evaluated using its asymptotic chi-squared distribution. For the bootstraps, I
report p-values based upon the bootstrap-c, evaluating the squared coefficient deviation
from the null using the percentiles of the squared coefficient deviations of the bootstraps
from the mean of their data-generating processes, and the bootstrap-t, evaluating the
sample squared t-statistic using the corresponding squared bootstrap test statistics, i.e.,

Bootstrap − c :
(

β̂ − β
)2

evaluated using
(

β̂b − β̂
)2

,

Bootstrap − t : (
β̂−β)

2

V̂(β̂)
evaluated using (β̂b−β̂)

2

V̂(β̂b)
.

(15)



Econometrics 2025, 13, 41 13 of 27

99 draws are used for each bootstrap, and an exact test relative to the bootstrap distribution
is achieved using a p-value given by (G + (T + 1) U[0,1])/100, where G and T are the number
of bootstrap test statistics greater than and equal to, respectively, that of the sample and
U[0,1] is a draw from the uniform distribution on [0.1].11 For the wild bootstrap, δw

c is
drawn from the Rademacher distribution, which equals ±1 with equal probability and
appears to perform better than alternatives (Davidson & Flachaire, 2008). 1000 realizations
of the data-generating process are used for each specification.

As can be seen in panel (A) of the table, rejection rates using both the conventional chi-
squared distribution and those of the bootstraps differ substantially from nominal value in
small samples, but converge to the 0.01, 0.05, and 0.10 levels as the number of observations
or clusters increases. The central 95 percentiles of the binomially distributed Monte Carlo
rejection probability in 1000 independent draws are 0.004 to 0.016 at the 0.01 level, 0.037
to 0.063 at the 0.05 level, and 0.082 to 0.118 at the 0.1 level. With 1,000,000 independent
observations or clusters, most rejection rates lie within those bounds. As shown in panel (B)
of the table, the Kolmogorov–Smirnov test statistic for the null that the p-value distributions
are uniform, i.e., the maximum absolute difference between the cumulative distribution
function of each set of 1000 p-values from that of the uniform distribution, is less than or
equal to 0.028 in all cases, with the p-value of the null that the distributions are uniform on
[0,1] exceeding 0.41 in each instance.

Theorem V asserts conditional consistency, i.e., the asymptotic distribution of the
bootstraps is normal with a covariance matrix equal to that of the conventional estimate.
If so, evaluating the conventional test statistic with the full distribution of each bootstrap
should asymptotically yield a p-value identical to that found by evaluating the same using
the chi-squared distribution.12 Panel (C) of Table 2 reports the correlation between the
bootstrap and conventional p-values with 1,000,000 observations or clusters. As can be seen,
this is at least 0.9889 in all cases. As the bootstrap p-values are based upon only a sample
from their distribution, while exact relative to that distribution, they cannot be expected
to equal the conventional chi-squared p-value. Their correlation with the conventional
p-value, however, should be the same as that found when evaluating the conventional
test statistic using 99 independent draws from the chi-squared distribution and the same
formula p = (G + (T + 1) U[0,1])/100.

Panel (C) of Table 2 reports that the probability that a correlation less than or equal
to that found between the bootstraps and the conventional p-value would be found when
evaluating a squared t-statistic using 99 draws from the chi-squared vs. the full chi-squared
distribution itself. “p-value1” evaluates the correlation using the distribution conditional
on the realized conventional squared t-statistics, i.e., is a test of conditional consistency
alone and does not assume consistency of the conventional test. While most p-values
are very large, two of the eight are near zero, indicating that the correlation is not yet
quite up to the level that would be expected from completed conditional convergence.13

“p-value2” evaluates the correlations using the distribution across random draws of the
initial conventional test statistics from the chi-squared, i.e., a joint test of convergence
of the conventional test statistic and conditional consistency of the bootstraps. Here the
smallest p-value is 0.045, which, given any adjustment for multiple testing, can be taken as
indicating that the tests do not reject the joint null implied by the theorems above at the
0.05 level.

Table 2 illustrates the consistency of bootstrap procedures with a highly challenging
data-generating process. While previous results cited above require the existence of at least
fourth moments of the regressors for convergence of both coefficients and Wald statistics in
environments with iid data or inid data with convergent average moments, no more than
slightly higher than second regressor moments are actually sufficient for fully inid data
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whose moments need not converge to anything, as specified in the theorems above and
illustrated in these Monte Carlos.

Table 2. Monte Carlo’s illustrating consistency (1000 data sets per data-generating process, 99 boot-
strap draws per data set).

Conventional Pairs Pairs Wild Wild
Chi-Squared Bootstrap-c Bootstrap-t Bootstrap-c Bootstrap-t

(A) empirical rejection rates at .01, .05 and .10 levels
.01 .05 .10 .01 .05 .10 .01 .05 .10 .01 .05 .10 .01 .05 .10

observations independent observations
10

100
1000

10,000
100,000

1,000,000

.108

.043

.022

.015

.016

.012

.200

.100

.072

.067

.063

.065

.272

.173

.137

.124

.127

.113

.003

.012

.008

.006

.017

.009

.038

.047

.051

.050

.059

.050

.098

.105

.108

.103

.123

.104

.020

.033

.018

.020

.017

.012

.069

.082

.067

.062

.060

.056

.126

.142

.125

.116

.126

.111

.203

.053

.021

.020

.011

.013

.268

.110

.075

.073

.070

.068

.308

.178

.141

.122

.124

.113

.084

.062

.030

.024

.017

.014

.146

.108

.076

.067

.068

.069

.205

.159

.135

.115

.121

.110
clusters independent clusters of observations

10
100
1000

10,000
100,000

1,000,000

.096

.030

.015

.023

.015

.018

.169

.076

.062

.070

.058

.053

.227

.136

.116

.125

.110

.101

.022

.007

.005

.005

.012

.016

.073

.045

.045

.050

.048

.048

.126

.095

.094

.103

.104

.093

.023

.018

.012

.016

.014

.018

.081

.059

.061

.062

.060

.053

.139

.104

.109

.119

.109

.094

.149

.037

.018

.023

.014

.015

.208

.088

.060

.076

.055

.059

.245

.131

.118

.131

.116

.098

.083

.037

.020

.026

.019

.014

.127

.084

.053

.069

.057

.055

.171

.118

.108

.124

.109

.095

(B) Kolmogorov–Smirnov test statistics and p-values (1,000,000 observations or clusters)
obs. clusters obs. clusters obs. clusters obs. clusters obs. clusters

statistic .021 .024 .023 .028 .020 .027 .025 .021 .022 .022
p-value .744 .616 .678 .413 .815 .437 .573 .747 .697 .720

(C) Correlation of p-values with conventional and p-values of said correlations (1,000,000 obs. or cl.)
obs. clusters obs. clusters obs. clusters obs. clusters

correlation .9907 .9889 .9905 .9895 .9901 .9910 .9891 .9900
p-value1
p-value2

.466

.870
.001
.045

.287

.778
.027
.243

.092

.573
.849
.940

.000

.087
.162
.502

Notes: Author’s calculations using Stata version 18.0 code provided in on-line materials. Conventional test
incorporates Stata’s HC1 correction of the covariance estimate, which substantially reduces the rejection rate
in samples with 10 observations. Kolmogorov–Smirnov tests are of the null that each set of 1000 p-values is
drawn from the uniform distribution, with the distribution under the null calculated using 100,000 draws of
1000 uniform random variables. p-values of correlations in panel (C) are the likelihood of a smaller correlation in
100,000 instances of using 99 independent draws from the chi-squared to evaluate each of the 1000 chi-squared
statistics vs. using the chi-squared distribution itself. As explained in the text, p-value1 calculates the correlation
distribution conditional on the realized conventional squared t-statistics, while p-value2 calculates the correlation
distribution based on conventional test statistics which are random draws from the chi-squared.

As can also be seen in Table 2, in small samples with heavy-tailed regressors the con-
ventional clustered/heteroskedasticity robust test statistic performs poorly, with rejection
probabilities far above the nominal value. In such environments, the bootstraps often
perform better (Davidson & Flachaire, 2008; Young, 2019). In the simulations of Table 2, this
is clearly the case for the pairs bootstrap and, to a lesser degree, with the wild bootstrap
using the asymptotically pivotal t-statistic.14 Thus, while providing the same asymptotic
assurances as conventional inference methods, the bootstraps often provide a better ap-
proximation to the distribution of test statistics in small finite sample environments. It
should be noted, however, that other methods also exist for improving the finite sample
performance of the conventional test, such as the HC bias corrections of MacKinnon and
White (1985) and the effective degrees of freedom corrections of Bell and McCaffrey (2002),
Pustejovsky and Tipton (2018), and Young (2016).15
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7. Conclusions
This paper characterizes the pairs and wild bootstraps as realizations of a permutation

distribution and uses previously unexploited permutation theorems to derive less restrictive
moment conditions for their conditional consistency. While prior work requires at least
fourth moments of the regressors for consistency of distributions in an iid framework or inid
framework where average moments converge to constants, only slightly more than second
moments on the regressors are actually needed for consistency in a fully inid environment
where average moments need never converge. The use of the same permutation theorems
to characterize and derive new results for the asymptotic distributions of other techniques,
such as bootstraps for time series, the jackknife, randomization inference, and conventional
estimates on exchangeable data, is the subject of ongoing research.
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Appendices
In the proofs below, corollaries to Markov’s Law of Large Numbers and the Continuous

Mapping Theorem given in White (1984), as well as a Borel–Cantelli type corollary by
Galambos (1987), will be useful:

Markov’s Law Corollary. Let zg be a sequence of independent random variables such
that E(|zg|1+γ) < ∆ < ∞ for some γ > 0 and all g. Then m(zg)− m(E(zg))

as→ 0.

Continuous Mapping Theorem Corollary. Let g: R k →R l be continuous on a compact set
D ⊂ R k. Suppose that bC(ω) and dC are kx1 vectors such that bC(ω)–dC

as→ 0, and for all C
sufficiently large, dC is interior to D, uniformly in C. Then g (bC(ω))–g (dC) as→ 0.

Borel–Cantelli Corollary. Let x1, x2, . . . be an infinite sequence of random variables, Fg(x) the
cumulative distribution function of xg (i.e., Prob(xg < x ), and uC a nondecreasing sequence of
real numbers such that for all g Prob(xg < supC uC) = 1. Then,

∞

∑
C=1

[1 − FC(uC)] < ∞ ⇒ Prob(max
g≤C

xg ≥ uC infinitely often) = 0.

Appendix A. Proof of Theorem I

This appendix references assumptions (Ia)–(Ic) and results (i)–(v) in Theorem I and
uses the notation therein. By (Ib) and (Ic) MC and VC are nonsingular with determinant
> η for all C sufficiently large and their elements uniformly bounded as from Jensen’s
Inequality:

E(|x′gjxgk
|) ≤

(
E(|x′gjxgk

|1+γ
)

)1/(1+γ)

≤ ∆1/(1+γ)

E
(∣∣∣x′gjεgε′gxgk

∣∣∣) ≤
(

E(|x′gjεgε′gxgk|
1+γ)

) 1
1+γ ≤ ∆

1
1+γ .

(A1)

https://www.mdpi.com/article/10.3390/econometrics13040041/s1
https://www.mdpi.com/article/10.3390/econometrics13040041/s1
https://personal.lse.ac.uk/YoungA/
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As the sum of the eigenvalues of a matrix equals its trace and the product its determinant,
their maximum eigenvalues are less than K∆1/(1+γ) and their minimum eigenvalues are
greater than η/(K∆1/(1+γ))K−1 for all C that are sufficiently large. The minimum and
maximum eigenvalues of their inverses are the inverses of these. Consequently, for all
sufficiently large C, the determinants of their inverses are greater than (K∆1/(1+γ))−K > 0
and, by the spectral decomposition of a real symmetric matrix, the absolute value of their
elements is bounded by (K∆1/(1+γ))K−1/η.16 This establishes result (iii) in Theorem I.

Using Jensen’s Inequality and (Ic),

E(|x′gjεg|1+γ) ≤
√

E(|x′gjεgε′gxgj|1+γ) <
√

∆, (A2)

so, by the Markov Corollary, (Ib), (Ic) and the independence of (Xg, εg) across cluster
groups (Ia):

X′ε
C − 0 =

C
∑

g=1

X′
gεg
C −

C
∑

g=1

E(X′
gεg)

C =
as(X,ε)→ 0Kx1

X′X
C − MC =

C
∑

g=1

X′
gXg
C −

C
∑

g=1

E(X′
gXg)
C

as(X)→ 0KxK

C
∑

g=1

X′
gεgε′gXg

C − VC =
C
∑

g=1

X′
gεgε′gXg

C −
C
∑

g=1

E(X′
gεgε′gXg)

C
as(X,ε)→ 0KxK(

X′X
C

)−1
− M−1

C
as(X)→ 0KxK,

(A3)

where the last follows from the Continuous Mapping Theorem Corollary. These results,
combined with the boundedness of M−1

C , establish result (i) in Theorem I:

β̂C =

(
X′X

C

)−1 X′y
C

= β +

(
X′X

C

)−1 X′ε

C
as(X,ε)→ β. (A4)

X′ε/
√

C is a vector with expectation and variance:

E
(

X′ε√
C

)
=

C

∑
g=1

E(X′
gεg)

√
C

= 0Kx1, E
(

X′εε′X
C

)
=

C

∑
g=1

E(X′
gεgε′gXg)

C
= VC. (A5)

As noted in White (1980a, p. 829—see also White, 1980b; Hoadley, 1971), given (A5), a
multivariate Liapounov Central Limit theorem implies that V−1/2

C X′ε/
√

C is asymptotically
distributed multivariate standard normal, nK, provided that for all κ in RK and some δ > 0:

C

∑
g=1

E(|κ′V−1/2
C X′

gεg|
2+δ

)

C(2+δ)/2
→ 0. (A6)

Define φ = κ′V−1/2
C , and note that by the properties of the Rayleigh quotient φ′φ ≤

κ′κ/λmin, where λmin = η/(K∆1/(1+γ))K−1 is the lower bound on the minimum eigenvalue
of VC (1/λmin the upper bound on the maximum eigenvalue of V−1

C ) given earlier above.
Keeping in mind then that the kth element of φ, φk, is bounded, and noting that from (Ic)
E(|x′gjεgε′gxgj|1+γ) = E(|x′gjεg|2+2γ) < ∆ , we apply Minkowski’s Inequality:

E
(
|κ′V−1/2

C X′
gεg|

2+2γ
)
= E

(∣∣∣∣ K
∑

k=1
φkx′gkεg

∣∣∣∣2+2γ
)

≤
(

K
∑

k=1

[
E(|φkx′gkεg|2+2γ)

] 1
2+2γ

)2+2γ

<

(
K
∑

k=1

[
|φk|

2+2γ∆
] 1

2+2γ

)2+2γ

< ∞,

(A7)
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so (A6) holds with δ = 2γ. Consequently, we can say that

V−1/2
C MC

√
C
(

β̂C − β
)
= V−1/2

C MC

(
X′X

C

)−1 X′ε√
C

d(X,ε)→ nK , as MC

(
X′X

C

)−1
as(X,ε)→ IK . (A8)

This establishes result (ii) in Theorem I.
As ε̂g = εg + Xg(β − β̂C), the jkth element of ∑C

g=1 X′
gεgε′gXg/C equals:

C
∑

g=1

x′gj ε̂gx′gk ε̂g

C =
K
∑

r=1

K
∑

s=1

(βr−β̂r)

C(θ−1)/2
(βs−β̂s)

C(θ−1)/2

C
∑

g=1

x′gjxgrx′gkxgs

C2−θ

+
K
∑

r=1

(βr−β̂r)

C(θ−1)/2

(
C
∑

g=1

x′gjxgrx′gkεg

C1+(1−θ)/2 +
C
∑

g=1

x′gkxgrx′gjεg

C1+(1−θ)/2

)
+

C
∑

g=1

x′gjεgx′gkεg

C ,
(A9)

where we select θ such that γ/(1 + γ) > θ > 0, with γ as in (Ib) and (Ic). Repeatedly applying
the Cauchy–Schwarz Inequality, we have∣∣∣∣∣ C

∑
g=1

x′gjxgrx′gkxgs

C2−θ

∣∣∣∣∣ ≤
√√√√ C

∑
g=1

(
x′gjxgr

)2

C2−θ

C
∑

g=1

(
x′gkxgs

)2

C2−θ ≤√
C
∑

g=1

(x′gjxgj)(x′grxgr)

C2−θ

C
∑

g=1

(x′gkxgk)(x′gsxgs)

C2−θ ≤
√

∏
i=j,k

max
g≤C

x′gixgi

C1−θ ∏
i=r,s

C
∑

g=1

x′gixgi

C∣∣∣∣∣ C
∑

g=1

x′gjxgrx′gkεg

C1+(1−θ)/2

∣∣∣∣∣ ≤
√

max
g≤C

x′gjxgj

C1−θ

C
∑

g=1

x′grxgr
C

C
∑

g=1

(x′gkεg)
2

C

(A10)

Using Markov’s Inequality and E(|x′gjxgk
|1+γ) < ∆ in (Ib), we can state that for any

δ > 1/(1 + γ) but < 1 − θ

∞

∑
C=1

Prob(x′CjxCj) ≥ Cδ) ≤
∞

∑
C=1

E(|x′CjxCj|1+γ)

Cδ(1+γ)
<

∞

∑
C=1

∆
Cδ(1+γ)

< ∞. (A11)

So, by the Borel–Cantelli Corollary, maxg≤Cx′gjxgj is asymptotically almost surely less than

Cδ and hence maxg≤Cx′gjxgj/C1−θ almost surely converges to zero for 1-θ > 1/(1+γ), i.e., 0 <

θ < γ/(1+γ). Together with (A3)’s results, that ∑C
g=1 x′gpxgr/C and ∑C

g=1 (x
′
gkεg)

2/C almost
surely converge to bounded elements of MC and VC, this establishes that both left-hand
side terms in (A10) almost surely converge to 0. Results (i)–(iii) show that

√
C(βr − β̂r) is

asymptotically normally distributed with mean zero and bounded variance less than some
σ2 > 0. Hence, asymptotically, the probability

∣∣∣√C(βr − β̂r)
∣∣∣ > Cδ for any δ > 0 and < θ can

be bounded by

2√
2πσ2

∫ ∞

Cδ
exp
(
−x2

2σ2

)
dx <

2√
2πσ2

∫ ∞

Cδ

x
Cδ

exp
(
−x2

2σ2

)
dx =

2σ2
√

2πσ2

1
Cδ

exp

(
−C2δ

2σ2

)
, (A12)

which is less than 1/C1+δ for all C that are sufficiently large. So,

∞

∑
C=1

Prob(|
√

C(βr − β̂r)| ≥ Cδ) < ∞ (A13)
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and by the Borel–Cantelli Lemma,
√

C(βr − β̂r)/Cθ as(X,ε)→ 0. From (A3), the last
∑C

g=1 x′gjεgx′gkεg/C term in (A9) almost surely converges to the jkth term of VC. Putting all
of the above together, we see that

C
∑

g=1

X′
g ε̂g ε̂′gXg

C − VC
as(X,ε)→ 0KxK and

(
X′X

C

)−1
− M−1

C
as(X)→ 0KxK[(A3) above],

so CV̂
(

β̂C

)
− M−1

N VNM−1
N

as(X,ε)→ 0KxK,
(A14)

establishing (iv) in Theorem I. Result (v) follows from (i)–(iv).

Appendix B. Proof of Theorem IV

If either the zg or δg are all identical (zg = z or δg = δ), Theorem IV follows immediately.
Assuming this is not the case, we use the symmetry and equal likelihood of permutations
to calculate the expectation of dg and products of dg across the row permutations d of δ:

Ed(dg) =
C
∑

g=1

δg
C = m(δg), Ed(d2

g) =
C
∑

g=1

δ2
g

C = m(δ2
g)

& Ed(dgdh ̸=g) =
C
∑

g=1

C
∑

h=1

δgδh
C(C−1) −

C
∑

g=1

δ2
g

C(C−1) =
m(δg)2C

C−1 − m(δ2
g)

C−1 .
(B1)

The mean and variance of m(zgdg)− m(zg)m(dg) across realizations of d are given by:

Ed(m(zgdg)− m(zg)m(dg)) =
C
∑

g=1

zgEd(dg)
C − m(zg)m(δg) = 0,

Ed
(
(m(zgdg)− m(zg)m(dg))2)

=
C
∑

g ̸=h=1

zgzhEd(dgdh)

C2 +
C
∑

g=1

z2
gEd(d2

g)

C2 − m(zg)2m(δg)2

=

(
m(δg)2C

C−1 − m(δ2
g)

C−1

)(
C
∑

g=1

C
∑

h=1

zgzh
C2 −

C
∑

g=1

z2
g

C2

)
+ m(δ2

g)
C
∑

g=1

z2
g

C2 −m(zg)2m(δg)2

=

(
m(δg)2C

C−1 − m(δ2
g)

C−1

)(
m(zg)2 − m(z2

g)

C

)
+ m(δ2

g)
m(z2

g)

C − m(zg)2m(δg)2

=
[m(z2

g)−m(zg)2][m(δ2
g)−m(δg)2]

C−1 ,

(B2)

where Σg ̸=h denotes the summation across the two indices, excluding ties between
them. The last line shows that if (IVb) holds, then across the permutations d of
δ m

(
zgdg

)
− m

(
zg
)
m
(
dg
)

converges in mean square and hence in probability to 0, as
stated in Theorem IV.

Appendix C. Proof of Theorem V

We begin by noting the following Lemma, proven in Appendix D further below.

Lemma 1. Let
as(δ)→ or

p(δ)→ denote convergence almost surely or in probability across the
distribution of δ, τ any integer greater than 2, b (both) = p (pairs) or w (wild), γ > 0 be as given in
Theorem I, θ1 > 0 as in Theorem V, and η1 and κ constants > 0. For all θ such that γ/(1 + γ) > θ

> 0 (pairs) or γ/(1 + γ) > θ > 1/(1 + θ1) (wild):

m(δw
g )

as(δw)→ 0, m((δw
g )

2)
as(δw)→ 1 & C−θm((δw

g )
4)

as(δw)→ 0 (L1w)

m(δ
p
g ) = 1, m((δ

p
g )

2)
p(δp)→ 2, & C−θm((δ

p
g )

2)
as(δp)→ 0 (L1p)
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almost surely for all C sufficiently large∑C
g=1

[δb
g − m(δb

g)]
2

C
> κ > 0 (L2)

C(1−θ)( τ
2 −1)∑C

g=1[δ
b
g − m(δb

g)]
τ(

∑C
g=1[δ

b
g − m(δb

g)]
2
)τ/2

as(δb)→ 0 (L3)

almost surely for all C sufficiently large X′X/C, ∑C
g=1 X′

g ε̂g ε̂′gXg/C,
and their inverses are bounded and positive definite with determinant > η1 > 0

(L4)

∀ k & τ :
Cθ( τ

2 −1)
∣∣∣∑C

g=1 (x
′
gk ε̂g)

τ
∣∣∣(

∑C
g=1 (x

′
gk ε̂g)

2
)τ/2

as(X,ε)→ 0 (L5)

∀ j, k :
m((x′gjxgk)

2
)

C1−θ

as(X)→ 0 (L6)

∀ j, k :
m((x′gjxgk)

4
)

C3−3θ

as(X)→ 0 (L7)

Use of θ, θ1, and γ below follows the bounds and definitions in Lemma 1 and Theorems I
and V earlier.

For a permutation d of δw or δp, the coefficient estimates of the pairs and wild bootstrap
are, following (4) and (5) in the text, given by

√
C
(

β̂
p
C − β̂C

)
= A−1a and

√
C(β̂w

C − β̂C) = (X′X/C)−1a,

where A = ∑C
g=1

X′
gX

g
C dg and a = ∑C

g=1
X′

g ε̂
g√

C
dg.

(C1)

Our objective is to describe the distribution of these objects across permutations d given
the realization of conditions on δ, X, and ε. When results apply to both bootstraps, we use
the notation d; when they apply to only one bootstrap, we use the notation dw or dp.

Regarding the jkth element of A, given by ∑C
g=1 x′gjxgkdp

g/C, we can apply Theorem IV
with zg = x′gjxgk. Condition IVb in this case requires that:m((x′gjxgk)

2)− m(x′gjxgk)
2

C1−θ

[m((δ
p
g )

2)− m(δ
p
g )

2

Cθ

]
as(δp ,X,ε)→ 0, (C2)

which is guaranteed by (L1p), (L4), and (L6) above. So,

A − X′X
C

m(δ
p
g )︸ ︷︷ ︸

=1

p(d)|as(δp ,X,ε)→ 0KxK, (C3)

and by the corollary to the Continuous Mapping Theorem given above, A−1 converges in
probability to bounded positive definite (X′X/C)−1 (as in L4).

Regarding a, we apply Theorem IIm in the text with Z′ = {z1, . . . , zC} and zg = X′
g ε̂

g
.

Since Z′1C = X′ ε̂ = X′
(

y − Xβ̂
)
= X′y − X′y = 0K, the mean of zg is zero, and so we have

Z′OZ = ∑C
g=1 X′

g ε̂g ε̂′gXg and Z′Od = ∑C
g=1 X′

gε̂
g
dg. From (L2) we know that almost surely

d′Od/C = δ′bOδb/C > κ > 0, while (L4) ensures that Z′OZ/C is positive definite with
determinant > η1 > 0. Hence, following Theorems II and III, the distribution across d of(

C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
d′Od

C

)−1/2 C

∑
g=1

X′
g ε̂gdg√

C
(C4)
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converges almost surely (across δb,X,ε) to that of the iid multivariate standard normal, as
by (L3) and (L5) condition (IIb) in Theorem II, holds for all elements zgk in zg.

Using (L4) and the fact that δ′bOδb/C = d′Od/C is a scalar, we then have:(
C
∑

g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
X′X

C

)(
δp ′Oδp

C

)−1/2√
C
(

β̂
p
C − β̂C

)
=

(
C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
X′X

C

)
A−1

(
C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)1/2

︸ ︷︷ ︸
p(d)|as(δp ,X,ε)→ IKxK

∗
(

C

∑
g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
dp′Odp

C

)−1/2
a︸ ︷︷ ︸

d(d)|as(δp ,X,ε)→ nK

d(d)|as(δp ,X,ε)→ nK,

(
C
∑

g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
X′X

C

)(
δw ′Oδw

C

)−1/2√
C
(

β̂w
C − β̂C

)
=

(
C
∑

g=1

X′
g ε̂g ε̂′gXg

C

)−1/2(
dw ′Odw

C

)−1/2
a

d(d)|as(δw ,X,ε)→ nK,

(C5)

thereby establishing the claim in (Va).
Regarding the wild bootstrap clustered/heteroskedasticity robust covariance esti-

mates, for a permutation dw of δw, we have

CV̂
(

β̂w
C

)
=

(
X′X

C

)−1

W
(

X′X
C

)−1

, where W =
C

∑
g=1

X′
g ε̂w

g ε̂w′
g Xg

C
. (C6)

Using ε̂w
g = Xg

(
β̂C − β̂w

C

)
+ ε̂gdw

g , from (4) in the text, the jkth element of W is given by:

C
∑

g=1

x′gj ε̂
w
g x′

gk
ε̂w

g

C = m
(

x′gj ε̂gx′gk ε̂g

(
dw

g

)2
)

︸ ︷︷ ︸
”a”

+
K
∑

r=1

K
∑

s=1

δw ′Oδw

C1+θ η̂r η̂sm

(
x′gjxgrx′gkxgs

C1−θ

)
︸ ︷︷ ︸

”c”

−
K
∑

r=1

√
δw ′Oδw

C1+θ η̂p

m

(
x′gjxgrx′gk ε̂gdw

g

C(1/2)(1−θ)

)
+ m

(
x′gkxgrx′gj ε̂gdw

g

C(1/2)(1−θ)

)
︸ ︷︷ ︸

”b”

[
where η̂ =

(
d′Od

C

)−1/2√
C(β̂w

C − β̂C)

]
.

(C7)

For “a”, we note that
(

dw
g

)2
is the permutation of

(
δw

g

)2
and apply Theorem IV

with zg = x′gj ε̂gx′gk ε̂g. Condition (IVb) requires that:m((x′gj ε̂gx′gk ε̂g)
2)− m(x′gj ε̂gx′gk ε̂g)2

C1−θ

[m((δw
g )

4)− m((δw
g )

2)2

Cθ

]
as(δw ,X,ε)→ 0. (C8)
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From (L1w) and (L4), we know that [m((δw
g )

4) − m((δw
g )

2)2]/Cθ and m(x′gj ε̂gx′gk ε̂g)2/

C1−θ as(δw ,X,ε)→ 0. Applying the Cauchy–Schwarz Inequality (here, and frequently below),

m((x′gj ε̂gx′gk ε̂g)
2)

C1−θ
=

C

∑
g=1

(x′gj ε̂gx′gk ε̂g)
2

C2−θ
≤

√√√√√∏
i=j,k

C

∑
g=1

(
x′gi ε̂g

)4

C2−θ

as(X,ε)→ 0, (C9)

where the last is guaranteed by (L4) and (L5) as

C

∑
g=1

(x′gi ε̂g)
4

C2−θ
=

as(X,ε)→ 0 (L5 with τ=4)︷ ︸︸ ︷
Cθ( 4

2−1)
C
∑

g=1
(x′gi ε̂g)

4

(
C
∑

g=1
(x′gi ε̂g)

2

)4/2

as bounded (L4)︷ ︸︸ ︷ C

∑
g=1

(x′gi ε̂g)
2

C

2
as(X,ε)→ 0. (C10)

So, by Theorem IV,

“a” : m(x′gj ε̂gx′gk ε̂g

(
dw

g

)2
)− m(x′gj ε̂gx′gk ε̂g) m((δ w

g )
2)︸ ︷︷ ︸

as(δw)→ 1 (L1w)

p(d)|as(δw ,X,ε)→ 0. (C11)

For “b”, we apply Theorem IV with zg = x′gjx̂grx′gk ε̂g/C(1/2)(1−θ), so condition (IVb)
requires that

m((x′gjxgrx′gk ε̂g)
2
/C1−θ)− m(x′gjxgrx′gk ε̂g/C(1/2)(1−θ))2

C1−θ

[
m(δw2

i )− m(δw
i )

2

Cθ

]
as(δw ,X,ε)→ 0. (C12)

Using (L1w) and

∣∣∣∣∣m
(

x′gjxgrx′gk ε̂g

C(1/2)(1−θ)

)∣∣∣∣∣ =
∣∣∣∣∣ C

∑
g=1

x′gjxgrx′gk ε̂g

C1+(1/2)(1−θ)

∣∣∣∣∣ ≤
√√√√√ C

∑
g=1

(x′gjxgr)
2

C2−θ︸ ︷︷ ︸
as(X,ε)→0 (L6)

√√√√√ C

∑
g=1

(x′gk ε̂g)
2

C︸ ︷︷ ︸
as bounded (L4)

as(X,ε)→ 0, (C13)

m((x′gjxgrx′gk ε̂g)
2
/C1−θ)

C1−θ
=

C

∑
g=1

(x′gjxgrx′gk ε̂g)
2

C3−2θ
≤

√√√√√ C

∑
g=1

(x′gjxgr)
4

C4−3θ︸ ︷︷ ︸
as(X,ε)→0 (L7)

√√√√√ C

∑
g=1

(
x′gk ε̂g

)4

C2−θ︸ ︷︷ ︸
as(X,ε)→0 (C10)

as(X,ε)→ 0, (C14)

we see that condition (IVb) is met and by Theorem IV we then have

b” : m

(
x′gjxgrx′gk ε̂gdw

g

C(1/2)(1−θ)

)
− m

(
x′gjxgrx′gk ε̂g

C(1/2)(1−θ)

)
︸ ︷︷ ︸

as(X,ε)→0(C13)

m(δw
i )︸ ︷︷ ︸

as(δw)→0 (L1w)

p(d)|as(δw ,X,ε)→ 0. (C15)

Finally, for “c”, we note that

∣∣∣∣∣m
(

x′gjxgrx′gkxgs

C1−θ

)∣∣∣∣∣ ≤
√

m(x′gjxgr)
2

C1−θ

m(x′gkxgs)
2

C1−θ

as(X,ε)→ 0︸ ︷︷ ︸
by (L6)

. (C16)
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From the above, we see that the η̂r in (C7) are multiplied by
√

δw′Oδw/C1+θ which
from (L1w) converges almost surely (across δw) to 0, “c” terms which almost surely (across
X, ε) converge to 0, and “b” terms which also almost surely (across δw, X, ε) converge in
probability across permutations dw to zero. As the η̂r, from (L4) and (C5) almost surely
(across δw, X, ε) converge in distribution across permutations dw of δw to normal variables
with bounded variance, it follows that when so multiplied they converge in probability
across permutations dw to zero. This leaves only the “a” term, and consequently, using
(C10), we see that

W −
C

∑
g=1

X′
g ε̂g ε̂′gXg

C
p(d)|as(δw ,X,ε)→ 0KxK and so CV̂

(
β̂w

C

)
− CV̂

(
β̂C

) p(d)|as(δw ,X,ε)→ 0KxK , (C17)

which establishes (Vb) for the wild bootstrap.
For the pairs bootstrap clustered/heteroskedasticity robust covariance estimates, for a

permutation dp of δp, we have from (5),

V̂
(

β̂
p
C

)
= A−1PA−1, A = ∑C

g=1

X′
gX

g

C
dp

gand P = ∑C
g=1

X′
g ε̂

p
g ε̂

p′
g Xg

C
dp

g . (C18)

Using ε̂
p
g = Xg

(
β̂C − β̂

p
C

)
+ ε̂g given in (5) earlier, the jkth element of P is given by

C
∑

g=1

x′gj ε̂
p
gx

′
gk ε̂

p
g dp

g

C = m
(

x′gj ε̂gx′gk ε̂gdp
g

)
︸ ︷︷ ︸

”d”

+
K
∑

r=1

K
∑

s=1

δp ′Oδp

C1+θ η̂r η̂sm

(
x′gjxgrx′gkxgsdp

g

C1−θ

)
︸ ︷︷ ︸

” f ”

−
K
∑

r=1

√
δp ′Oδp

C1+θ η̂r

m

(
x′gjxgrx′gk ε̂gdp

g

C(1/2)(1−θ)

)
+ m

(
x′gkxgrx′gj ε̂gdp

g

C(1/2)(1−θ)

)
︸ ︷︷ ︸

”e”

[
where η̂ =

(
d′Od

C

)−1/2√
C(β̂

p
C − β̂C)

]
.

(C19)

For “d”, we apply Theorem IV with zg = x′gj ε̂gx′gk ε̂g and, as by (L1p), (L4), and (C10)

[m((δp
g)

2
) − m(δ

p
g )

2]/Cθ , m(x′gj ε̂gx′gk ε̂g)2/C1−θ and m((x′gj ε̂gx′gk ε̂g)
2
)/C1−θ all

as(δp ,X,ε)→ 0,
condition (IVb) is met, so

“d” : m(x′gj ε̂gx′gk ε̂gdp
g)− m(x′gj ε̂gx′gk ε̂g) m(δ

p
g )︸ ︷︷ ︸

=1 (L1p)

p(d)|as(δp ,X,ε)→ 0. (C20)

For “e”, we apply Theorem IV with zg = x′gjxgrx′gkε̂g/C(1/2)(1−θ) and, as by (L1p), (C13), and

(C14) [m((δp
g)

2
)−m(δ

p
g)

2]/Cθ, m(x′gjxgrx′gkε̂g/C(1/2)(1−θ))2/C1−θ and m((x′gjxgrx′gkε̂g)
2
/C1−θ)/

C1−θ all
as(δp ,X,ε)→ 0, condition (IVb) is met, so

“e” : m(x′gjxgrx′gk ε̂gdp
g)− m(x′gjxgrx′gk ε̂g) m(δ

p
g )︸ ︷︷ ︸

=1 (L1p)

p(d)|as(δp ,X,ε)→ 0. (C21)

For “f “, we apply Theorem IV with zg = x′gjxgrx′gkxgs/C1−θ and see that condition (IVb)

holds as by (L1p) and (C16) [m((δp
g)

2
) − m(δ

p
g )

2]/Cθ and m(x′gjxgrx′gkxgs/C1−θ)2/C1−θ

as(δp ,X,ε)→ 0, while by the Cauchy–Schwarz Inequality and (L7),
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m((x′gjxgrx′gkxgs)
2
/C2(1−θ))

C1−θ
≤

√√√√√ C

∑
g=1

(x′gjxgr)
4

N4−3θ

C

∑
g=1

(x′gkxgs)
4

N4−3θ

as(X,ε)→ 0, (C22)

so
“ f ” : m(x′gjxgrx′gkxgsdp

g)− m(x′gjxgrx′gkxgs) m(δ
p
g )︸ ︷︷ ︸

=1 (L1p)

p(d)|as(δp ,X,ε)→ 0. (C23)

Similar to the case of the wild bootstrap, the η̂r in (C19), which from (L4) and (C5)
almost surely (across δp,X,ε) converge in distribution across permutations dp of δp to
normal variables with bounded variance, are multiplied by

√
δp′Oδp/C1+θ , which from

(L1p) converges almost surely (across δp) to 0 and “e” and “f ” terms, which almost surely
(across δp,X,ε) converge in probability across permutations dp to zero, and hence, when so
multiplied, converge in probability across permutations dp to zero. This leaves only the “d”
term, and so, using (C3) earlier,

P −
C
∑

g=1

X′
g ε̂g ε̂′gXg

C
p(d)|as(δp ,X,ε)→ 0KxK & A−1 −

(
X′X

C

)−1 p(d)|as(δp ,X,ε)→ 0KxK,

and hence CV̂
(

β̂
p
C

)
− CV̂

(
β̂C

) p(d)|as(δb ,X,ε)→ 0KxK,

(C24)

which establishes (Vb) for the pairs bootstrap.

Appendix D. Proof of Lemma 1 in Appendix B

(L1), (L2), (L3): We prove these for the wild bootstrap, placing the more involved proofs
for the pairs in the on-line appendix. From the assumptions E

[
δw

g

]
= 0 & E

[
(δw

g )
2
]
= 1

(Theorem V) and the Strong Law of Large Numbers, we know that m(δw
g )

as(δw)→ 0 and

m((δw
g )

2)
as(δw)→ 0. Markov’s Inequality, E

[
(δw

g )
2(1+θ1)

]
< ∆ (Theorem V), and θ > 1/(1 +

θ1) (Lemma 1) imply that there exists a v in (1/(1 + θ1),θ) such that

∞

∑
C=1

Prob((δw
C)

2 ≥ Cν) ≤
∞

∑
C=1

E((δw
C)

2(1+θ1))

Cv(1+θ1)
<

∞

∑
C=1

∆
Cv(1+θ1)

< ∞, (D1)

and thus, by the Borel–Cantelli Corollary given above, maxg≤C(δ
w
g )

2/Cθ as(δw)→ 0, and so,

m((δw
g )

4
)

Cθ
=

C

∑
g=1

(δw
g )

4

C1+θ
≤ max

g≤C

(δw
g )

2

Cθ
m((δw

g )
2
)

as(δw)→ 0. (D2)

This establishes (L1w). As δ′wOδw/C
as(δw)→ 1, for all C that are sufficiently large, δ′wOδw/C

is almost surely greater than some κ > 0, as stated in (L2). Regarding (L3), as for τ > 2,∣∣∣∣∣ C
∑

g=1
[δw

g − m(δw
g )]

τ

∣∣∣∣∣ ≤ C
∑

g=1

∣∣∣δw
g − m

(
δw

g

)∣∣∣τ
≤
(

max
g≤C

[δw
g − m(δw

g )]
2
) τ

2 −1 C
∑

g=1
[δw

g − m(δw
g )]

2,
(D3)
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we have

0 <
C(1−θ)( τ

2 −1)
∣∣∣∑C

g=1[δ
w
g − m(δw

g )]
τ
∣∣∣(

∑C
g=1[δ

w
g − m(δw

g )]
2
)τ/2 ≤

 max
g≤C

[δw
g −m(δw

g )]
2

Cθ

∑C
g=1

[δw
g −m(δw

g )]2

C


τ
2 −1

. (D4)

From the above, we know the denominator of the last almost surely converges to 1, while

as for the numerator, using (L1w) and the result from (D1) maxg≤C(δ
w
g )

2/Cθ as(δw)→ 0:

max
g≤C

[δw
g − m(δw

g )]
2

Cθ
≤ max

g≤C

(δw
g )

2

Cθ
+ 2

∣∣∣∣∣m(δw
g )

C(1/2)θ

∣∣∣∣∣max
g≤C

(
(δw

g )
2

Cθ

)1/2

+
m(δw

g )
2

Cθ

as(δw)→ 0. (D5)

Consequently, (D4) almost surely converges to 0 for θ > 1/(1 + θ1), proving (L3).

(L4): In the proof of Theorem I in Appendix A, we saw that X′X/C − MC
as(X,ε)→ 0KxK

and ∑C
g=1 X′

g ε̂g ε̂′gXg/C − VC
as(X,ε)→ 0KxK, where the determinants of MC and VC are > η > 0

for all sufficiently large C and the absolute values of their elements are uniformly bounded
by ∆1/(1+γ). By the Continuous Mapping Theorem Corollary given above, (X′X/C)−1 −
M−1

C
as(X,ε)→ 0KxK and (∑C

g=1 X′
g ε̂g ε̂′gXg/C)

−1 − V−1
C

as(X,ε)→ 0KxK, where for all C sufficiently

large the determinants of M−1
C and V−1

C are greater than (K∆1/(1+γ))−K > 0 and the
absolute values of their elements bounded by (K∆1/(1+γ))K−1/η, as proven earlier. It
follows that almost surely for all C sufficiently large, X′X/C, ∑C

g=1 X′
g ε̂g ε̂′gXg/C and their

inverses have the same properties.
(L5), (L6), and (L7): Following the same logic used in (D3) and (D4) and using the

Cauchy–Schwarz Inequality, we note that:

Cθ( τ
2 −1)

∣∣∣∑C
g=1 (x

′
gk ε̂g)

τ
∣∣∣(

∑C
g=1 (x

′
gk ε̂g)

2
)τ/2 ≤

Cθ( τ
2 −1)∑C

g=1

∣∣∣(x′gk ε̂g)
τ
∣∣∣(

∑C
g=1 (x

′
gk ε̂g)

2
)τ/2 ≤

max
g≤C

(x′gk ε̂g)
2
/C1−θ

∑C
g=1 (x

′
gk ε̂g)

2
/C


τ
2 −1

(D6a)

C

∑
g=1

(x′gjxgk)
2

C2−θ
≤

C

∑
g=1

x′gjxgjx′gkxgk

C2−θ
≤

max
g≤C

x′gjxgj

C1−θ
m(x′gkxgk) (D6b)

C

∑
g=1

(x′gjxgk)
4

C4−3θ
≤

max
g≤C

x′gjxgj

C1−θ

2 max
g≤C

x′gkxgk

C1−θ
m
(

x′gkxgk

)
. (D6c)

So, to prove (L5)–(L7) it is sufficient to show that the right-hand sides of these inequalities
converge to zero. In Appendix A, we already showed that almost surely m(x′gkxgk) is

bounded and maxg≤Cx′gjxgj/C1−θ converges to 0, which establishes this for (D6b) and (D6c).

Turning to the right-hand side of (D6a), as shown in Appendix A m((x′gk ε̂g)
2
) almost

surely converges to the diagonal element of VC in Theorem (Ic), whose smallest eigenvalue
is greater than η/(K∆1/(1+γ))K−1 for all sufficiently large C. From the Schur–Horn Theorem,
we know that the smallest diagonal element of VC is greater than or equal to its smallest

eigenvalue, and hence the term m((x′gk ε̂g)
2
) in the denominator of (D6a) is almost surely

greater than η/(K∆1/(1+γ))K−1> 0 for all C sufficiently large. Regarding the max term in
the numerator, using ε̂g = εg + Xg(β-β̂C) and the Cauchy–Schwarz Inequality we have
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(x′gk ε̂g)
2

C1−θ =
(x′gkεg)

2

C1−θ +
K
∑

r=1

K
∑

s=1

(βr−β̂r)

C(1/2)(θ−1)
(βs−β̂s)

C(1/2)(θ−1)

x′gkxgrx′gkxgs

C2−2θ

+2
K
∑

r=1

(βr−β̂r)

C(1/2)(θ−1)

x′gkxgrx′gkεg

C(3/2)(1−θ) ≤
(

x′gkεg

)2

C1−θ +

K
∑

r=1

K
∑

s=1

∣∣∣ βr−β̂r
C(1/2)(θ−1)

∣∣∣∣∣∣ βs−β̂s
C(1/2)(θ−1)

∣∣∣ ∏
i=j,k,p,q

√
x′gixgi

C1−θ + 2
K
∑

r=1

∣∣∣ βr−β̂r
C(1/2)(θ−1)

∣∣∣√ (x′gkεg)
2

C1−θ ∏
i=k,r

√
x′gixgi

C1−θ .

(D7)

It was shown in Appendix A that maxg≤Cx′gjxgj/C1−θ as(X,ε)→ 0 and
√

C(βr − β̂r)/Cδ is

asymptotically almost surely less than 1 for all δ > 0, so that (βr − β̂r)/C(1/2)(θ−1) as(X,ε)→ 0.

Consequently, to prove that maxg≤C(x
′
gk ε̂g)

2
/C1−θ converges almost surely to zero, it is

sufficient to show that maxg≤C(x
′
gkεg)

2
/C1−θ converges almost surely to zero. However,

E(|x′gjεgε′gxgk|1+γ) < ∆ in Theorem I (Ic), by the same argument used in (A11) above,
ensures that this is the case for 0 < θ < γ/(1+γ). In sum, (D6a)–(D6c) converge to 0 for all θ

in (0,γ/(1+ γ)), proving (L5)–(L7). As θ1 > 1/γ in Theorem V, the condition θ > 1/(1 + θ1)

for the wild bootstrap in Lemma 1 and the proof of (L3) above can also be met without
contradiction.

Notes
1 As examples: (i) Thornton (2008) used a randomized experiment to investigate the demand for and effects of learning HIV

status across north, central, and south Malawi, which differ systematically in their ethnicity and religion. (ii) Cai et al. (2009)
investigated saliency by randomly assigning restaurant arrivals in China to tables with different menu setups; not surprisingly,
the total bill paid varies systematically with the time of day.

2 With independent homoskedastic errors, the bootstrap resampling of estimated residuals (rather than the data itself) always
yields consistent estimates of the coefficient distribution for a fixed number of OLS regressors (Bickel & Freedman, 1983).

3 Canay et al. (2021), who examine wild bootstrap consistency when the number of independent cluster groupings is fixed, similarly
allow for heterogeneity across clusters while assuming convergence of the full sample cross-product and covariance matrices
to matrices of constants and, additionally, convergence of the projection of regressors on each other within each cluster to a
common matrix.

4 With E equal to the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues of A, A1/2 = EΛ1/2E’, where Λ1/2 is the
diagonal matrix with entries equal to the square root of those of Λ.

5 The on-line Appendix proves consistency for sub-sampling, with and without replacement, M < C groupings.
6 Although, as noted by Cavaliere and Georgiev (2020), even when conditional consistency does not hold, valid inference using the

bootstrap is still possible if the unconditional limit distribution of the sample test statistic equals the average of the random limit
distribution of the bootstrap given the data.

7 Where 1c denotes a Cx1 vector of ones and ICxC the CxC identity matrix.
8 For the wild bootstrap, (7) follows immediately from the assumptions on moments. The proof for the pairs bootstrap is lengthy

and is given in the on-line Appendix.
9 Liu (1988) also advocated selecting E((δg

w)3) = 1 to correct for skewness in the Edgeworth expansion. However, Monte
Carlos find that forms of δg

w that make this assumption perform less well than those that do not (Davidson & Flachaire, 2008;
MacKinnon, 2015)

10 To illustrate, the average skewness (i.e., standardized third central moment) of the first 1,000,000 Beta data-generating processes
in 1000 runs of (12) ranges from −0.41 to 0.43, with a standard deviation of 0.14. A single run of 2 billion observations also shows
no sign of converging, as the average skewness of the first 200, 400, 600, . . ., 2000 million Beta data-generating processes is .018,
.021, .018, .014, .013, .024, .028, .031, .029, and .026, respectively.

11 Hope (1968) noted that with k an integer and M draws from a continuous bootstrap distribution, an exact test relative to that
distribution at level α = k/(M + 1) is achieved when the null is rejected if k−1 or fewer draws are greater than the sample test
statistic. Jockel (1986) showed the same is true for draws from an arbitrary distribution, if (G + (T + 1) U) is less than α(M + 1). As
ties in these samples are exceedingly rare and αx100 is an integer, in the Table U plays no role and the test rejects when G = 0, ≤ 4
or ≤ 9 at the 0.01, 0.05 and 0.1 levels, respectively.
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12 This should be apparent for the bootstrap-t in (13), while in the case of the bootstrap-c, evaluating
(

β̂ − β
)2 using

(
β̂b − β̂

)2
is

identical to evaluating
(

β̂ − β
)2/V(β̂) using

(
β̂b − β̂

)2
/V(β̂).

13 These instances are for the bootstrap-c, which is not based upon an asymptotically pivotal test statistic and hence does not
provide the higher-order asymptotic accuracy of the bootstrap-t (Singh, 1981; Hall, 1992).

14 The performance of the wild bootstrap is considerably improved if one imposes the null in the estimation of the residuals in the
initial OLS regression (Davidson & Flachaire, 2008; Djogbenou et al., 2019). However, the same can be said for the conventional
test, which raises the question of the correct benchmark comparison.

15 The estimates in Table 1 incorporate Stata’s default HC1 correction of the conventional covariance estimate, which reduces
the rejection rate in the smallest samples. Without this correction, rejection rates at the 0.01 level are 0.134 and 0.107 with 10
observations or clusters, respectively.

16 Let E denote the eigenvectors, Λ the diagonal matrix of eigenvalues, λmax the maximum eigenvalue of the symmetric positive
definite matrix A, aij the ijth element, and αi a vector of 0s with a 1 in the ith position. By the Cauchy–Schwarz Inequality and
properties of the Rayleigh quotient, a2

ij = (α′
iEΛE′αj)

2 ≤ (α′
iEΛE′αi)(α

′
jEΛE′αj) ≤ λ2

max.
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