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Abstract

Personnel selection represents a two-sided matching problem in which firms compete for
qualified candidates by designing job-offer packages. While traditional models assume
fully rational agents, real-world decision-makers often face bounded rationality due to
limited information and cognitive constraints. This study develops a matching framework
that incorporates bounded rationality through the Quantal Response Equilibrium, where
firms and candidates act as probabilistic rather than perfect optimizers under uncertainty.
Using Maximum Likelihood Estimation and organizational hiring data, we validate that
both sides display bounded rational behavior and that rationality increases as the selection
process advances. Building on these findings, we propose a two-stage stochastic optimiza-
tion approach to determine optimal job-offer packages that balance organizational policies
with candidate competencies. The optimization problem is solved using particle swarm
optimization, which efficiently explores the solution space under uncertainty. Data analysis
reveals that only 23.10% of low-level hiring decisions align with rational choice predic-
tions, compared to 64.32% for high-level positions. In our case study, bounded rationality
increases package costs by 26%, while modular compensation packages can reduce costs
by up to 25%. These findings highlight the cost implications of bounded rationality, the
advantages of flexible offers, and the systematic behavioral differences across job levels.
The framework provides theoretical contributions to matching under bounded rationality
and offers practical insights to help organizations refine their personnel selection strategies
and attract suitable candidates more effectively.

Keywords: two-sided matching; quantal response equilibrium; bounded rationality;
two-stage stochastic approach; particle swarm optimization

MSC: 90-10

1. Introduction
The core strength of any company lies in its human resources, which serve as the

foundation and driving force behind its achievements. Managers devote significant time to
recruiting skilled personnel, recognizing their pivotal role in the company’s success [1]. In
today’s competitive employment landscape, it is essential for companies to optimize their
job-offer packages, including salary, bonuses, remote work options, and other incentives,
to attract prospective employees. At the same time, organizations must strike a balance in
managing the costs of these packages to ensure long-term sustainability and profitability.
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Designing offers that are both competitive and cost-effective enables organizations to stand
out in attracting high-caliber candidates. Personnel selection is typically modeled as a
two-sided matching market, where organizations and candidates are assumed to act as
rational agents making decisions on opposite sides [2]. Organizations’ job-offer items
can affect their ranking among job seekers. However, the importance of these items may
vary for each candidate. Similarly, organizations assess each candidate’s competencies
differently, depending on their strategies. Nevertheless, due to insufficient understanding
of the decision environment and the physiological and psychological factors influencing
agents, achieving fully rational conditions is challenging. To quantify agents’ rationality
in two-sided matching, a model of bounded rationality using the logit quantal response
equilibrium (LQRE) can be employed. In this model, players are not perfect optimizers and
uncertainty regarding the actions of others [3].

Personnel selection is commonly modeled as a two-sided matching market, where
organizations and candidates are assumed to act as rational decision-makers. However, in
practice, this assumption rarely holds. Real-world hiring involves uncertainty, incomplete
information, and behavioral factors that prevent agents from being perfect optimizers.
Existing research has primarily approached job-offer optimization from the perspective of
post-hiring salary adjustments, leaving pre-hiring package design underexplored. More-
over, while the concept of bounded rationality has been studied extensively in economics
and operations research, its integration into matching theory for recruitment remains lim-
ited. Prior work has often focused on laboratory experiments or behavioral explanations,
rather than optimization frameworks that can guide practical decision-making in real
hiring contexts.

This gap motivates the present study. We develop a two-stage stochastic optimization
framework that incorporates bounded rationality, modeled through the Quantal Response
Equilibrium (QRE), into a two-sided matching setting for personnel selection. By empiri-
cally estimating bounded rationality parameters from organizational data and embedding
them into an optimization model, our approach provides actionable tools for designing
job-offer packages that balance cost efficiency with candidate preferences. In doing so,
the paper addresses the lack of integration between matching theory, bounded rationality
modeling, and pre-hiring package optimization, offering both theoretical contributions and
practical guidance for organizations.

2. Literature Review
Two-sided matching markets arise in many contexts, such as labor recruitment, mar-

riage, and university admissions. In these settings, agents are divided into two disjoint sets,
each ranking potential partners on the opposite side. A matching is deemed stable if no
pair of agents would both prefer to deviate from their assigned partners to match with each
other. Stability can be further refined to the side-optimal case for one side of the market,
where every agent on that side weakly prefers the resulting assignment to any alternative
stable matching.

Gale and Shapley [4] introduced a practical algorithm for finding optimal stable
matchings, laying the foundation for a vast literature. Roth and Sotomayor [5] provide a
comprehensive survey, and numerous studies have examined the problem from a computa-
tional perspective (Pu and Yuan [6]; Jiang and Guo [7]; Manlove, Irving, and Iwama [8];
Bansal and Gupta [9]; Ashlagi, Braverman, and Hassidim [10]; Hatfield and Kominers [11];
Manlove [12]). A central assumption in much of this literature is that participants behave
as fully rational decision-makers [13]. While analytically convenient, this assumption relies
on two strong premises: agents are perfect optimizers and possess complete knowledge of
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their counterparts’ decision models. In practice, particularly in personnel selection, these
assumptions often do not hold.

To address this, bounded rationality can be incorporated through quantal choice [14],
in which all potential matches are considered but alternatives yielding higher utility are
chosen with higher probability [15]. The concept of bounded rationality has been studied
for decades as a way to explain observed deviations from perfect rationality (Simon [16];
Nelson [17]; Rubinstein [18]). Among approaches to formalize bounded rationality, quantal-
response functions are widely used, particularly for deriving analytical results [19]. McK-
elvey and Palfrey [20] introduced these functions and their equilibrium properties for
normal-form games, and Goeree, Holt, and Palfrey [21] provide a detailed primer on
Quantal Response Equilibrium (QRE). Subsequent studies have explored properties such
as existence, uniqueness, and comparative statics for both discrete and continuous action
spaces (Chen, Friedman, and Thisse [22]; Anderson, Goeree, and Holt [23]).

The predictive power of QRE has been demonstrated across various game-theoretic
settings (Goeree and Holt [24]), including alternating-offer bargaining [25], coordination
games [26], auctions [27], traveler’s dilemma games [28], and pricing contracts (Lim and
Ho [29]; Ho and Zhang [30]). Quantal-response functions have also found applications in
operations management. For example, Su [31] applied them in a newsvendor setting; Liu,
Methapatara, and Wynter [32] in IT service revenue management; Shang and Liu [33] in
time-based capacity competition; Chen, Su, and Zhao [15] in capacity-allocation problems;
Di and Liu [34] in route choice behavior; Canbolat [19] in clearing service systems; and
Roemer, Müller, and Voigt [35] and Khanlarzade and Farughi [36] in supply chain contexts.

Despite this extensive literature, the integration of bounded rationality into matching
mechanisms remains limited. Most studies focus on experimental validation rather than
optimization for practical applications. Pais and Pintér [37] conducted one of the first
experimental studies on matching with boundedly rational agents, analyzing Deferred
Acceptance (DA), Boston, and Top Trading Cycles (TTC) mechanisms under varying
informational conditions. Echenique, Wilson, and Yariv [38] estimated a logit-QRE in a
two-sided matching market without deriving testable hypotheses. Dreyfuss, Heffetz, and
Rabin [39] showed that loss aversion can explain boundedly rational choices, with the LQRE
converging to truthful preference revelation in strategy-proof mechanisms. Alcalde-Unzu,
Klijn, and Vorsatz [40] further demonstrated that QRE accurately describes individual
behavior and resulting matchings in constrained settings.

While many studies address bounded rationality, relatively few examine the design
of job-offer items, and most focus on post-hiring adjustments. Wallace Jr and Steuer [41]
formulated a linear multi-objective model incorporating internal and external equity, re-
quiring iterative adjustments to achieve satisfactory salary structures. Kwak, Allen, and
Schniederjans [42] employed goal programming to analyze annual salary adjustments in
large organizations. Garcia-Diaz and Hogg [43] developed mixed-integer linear program-
ming models to assign executives to salary increase categories and schedule subsequent
raises. Kassa [44] proposed a goal programming model to determine minimum and maxi-
mum wages for grades, minimizing average structure wages relative to external markets
and costs. Tremblay, Piché-Meunier and Dubois [45] introduced a multi-objective a posteri-
ori optimization model to maximize equity dimensions while minimizing costs. Building
on Najafi-Zangeneh, Shams [46], who developed a two-stage MILP model for job-offer
optimization, this study extends their approach by incorporating bounded rationality in
decision-making.

Despite the breadth of this literature, key gaps remain. First, the integration of match-
ing theory and bounded rationality is limited, with existing work (Pais and Pintér [37];
Echenique, Wilson and Yariv [38]) focusing on experiments rather than practical opti-
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mization. Second, job-offer optimization research has largely addressed post-hiring salary
adjustments and assumed rational agents, neglecting pre-hiring package design and be-
havioral realities. Third, no prior work unifies matching theory, bounded rationality, and
job-offer optimization into a single framework, despite its relevance in real-world hiring
markets. Fourth, empirical calibration of bounded rationality parameters for hiring contexts
is lacking, limiting actionable guidance. Finally, although QRE has been applied success-
fully in operations management (Su [31]; Chen et al. [15]), its application to personnel
selection and job-offer optimization remains unexplored.

These gaps motivate the development of a two-stage stochastic optimization frame-
work that integrates QRE-based bounded rationality into matching theory, providing orga-
nizations with practical tools to design cost-efficient, behaviorally informed job packages.

Contributions of This Paper

To address the gaps highlighted earlier, the study presents six main contributions:

• Integrating Bounded Rationality into Matching: Extends classical two-sided matching
by incorporating Quantal Response Equilibrium (QRE) to account for incomplete
information in organizational hiring decisions.

• Empirical Estimation of Parameters: Provides the first empirical calibration of bounded
rationality in recruitment using three years of data, showing learning effects vary by
position level.

• Computational Framework: Introduces a two-stage stochastic optimization approach
to handle non-convexities from QRE, with particle swarm optimization outperforming
other heuristics.

• Quantifying Costs of Bounded Rationality: Demonstrates a measurable cost premium
(~26%) in optimal job packages due to bounded rationality, with implications for
HR budgeting.

• Actionable Decision Support: Offers insights on package design, showing single-item
packages are costlier and lower-priority roles rely more on bounded rational behavior,
sometimes reducing costs.

• Dynamic Matching with Learning Effects: Models evolving organizational expertise
across repeated hiring cycles through time-varying bounded rationality parameters.

3. Materials and Methods
This section presents the proposed methodology, integrating both qualitative and

quantitative analyses. We first define the problem, establish criteria and weights for
candidates and organizations, and formulate the corresponding utility functions within
a stepwise matching mechanism. Next, we analyze the case study data to formalize
bounded rationality and conduct comparative analyses. Parameters are then calibrated
using MLE, capturing decision-maker behavior over time, across job types, and under
varying rationality levels. The core two-stage optimization framework models selection
with bounded rational decision-makers via the Deferred Acceptance Algorithm (DAA)
and then identifies optimal hiring packages through a scenario-based stochastic approach.
Nonlinearities are addressed by generating multiple scenarios and applying PSO, chosen
for its efficiency in handling non-convex, mixed-variable problems. Although a number
of novel metaheuristics such as RFO, RSA, and COA have recently been introduced, the
no free lunch theorem [47] demonstrates that no single optimization method is best for
all problem types. We selected PSO because it is a proven and computationally efficient
algorithm for solving non-convex optimization problems with mixed variable types, as in
our model [48]. Moreover, PSO’s population-based search allows for effective exploration
and exploitation of the solution space [49]. To validate this choice, we compared PSO with
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genetic algorithms and simulated annealing under the same computational budget, and
the results showed that PSO achieved faster convergence and better solution quality in our
case study. The final package composition is then determined via Mixed-Integer Linear
Programming (MILP). The methodology is validated on a real case study, with results
analyzed through sensitivity analyses. Figure 1 summarizes the overall workflow.

 

Figure 1. General structure and the process of the proposed model.

3.1. Problem Definition and Two-Sided Matching

This paper addresses a two-sided matching problem in the recruitment context, where
a set of organizations I = {1, 2, . . . , m} and a set of candidates J = {1, 2, . . . , n} express
preferences for one another. We specifically examine a one-to-one matching scenario where
each candidate can only be paired with a single organization and vice versa, creating a
matching function µ:

µ : I ∪ J → I ∪ J Where µ(i) = j if and only if µ(j) = i (1)

Definition 1. Preference Relations: Each organization i ∈ I has preferences over candidates based
on their competencies, while each candidate j ∈ J has preferences over organizations based on job
offer packages. Under bounded rationality, these preferences are not deterministic orderings, but
follow probabilistic QRE distributions.

Definition 2. Stable Matching: A matching µ is stable if there exists no blocking pair ( i, j) where

both j ≻ iµ(i) and i ≻ jµ(j). (2)

In the final stage of hiring, organizations evaluate interested candidates using a
Deferred Acceptance Algorithm adapted to bounded rationality. The key challenge is
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to form stable matches under probabilistic choice behavior while optimizing job-offer
packages within budget constraints. Candidate selection depends on both candidate utility
and competing offers, with weights determined by role importance. Bounded rationality
turns this process into a stochastic optimization problem, where successful matching
probabilities depend on behavioral parameters estimated from real hiring data.

3.1.1. Deferred Acceptance Algorithm (DAA)

The Deferred Acceptance Algorithm (DAA) addresses the stable matching problem,
where participants aim to secure mutually preferred partners. In its basic form, the problem
involves two groups with ranked preferences, and a stable matching is achieved when
no pair of individuals prefer to match with each other rather than with their assigned
partners [4]. In the hiring context, the process begins with candidates applying to their
most preferred organizations, which, in turn, place the highest-utility candidate on a
waiting list while rejecting others. Rejected candidates then apply to their next preferred
choice in subsequent rounds, and organizations compare new applicants with those on their
waiting lists, retaining the candidate with the higher-utility score. This iterative process
continues until no further changes occur, resulting in a stable matching.

3.1.2. Identification of Desired Criteria

A comprehensive literature review was conducted to identify potential criteria, which
were then refined and prioritized using the Fuzzy Delphi Method through three rounds of
consultation with ten university professors and senior recruitment managers. The final set
of criteria reflects key organizational expectations of candidates: education level, ranging
from no high school diploma to doctorate; general skills, from basic to advanced in areas
such as interpersonal, organizational, and problem-solving abilities; English language
proficiency, from low to native; work experience, from none to more than twenty years;
and psychological test performance, from low to excellent. On the job-offer side, experts
highlighted four decisive items: competitive salary, bonus plans, remote work options, and
flexible working hours. While remote work and flexibility carry no direct financial cost,
they involve intangible organizational trade-offs. In this study, these factors are treated as
variables whose values are optimized for the selected organization.

To assess the relative importance of these criteria for both candidates and organiza-
tions, the Fuzzy Analytic Hierarchy Process (FAHP) was applied. This method employed
pairwise comparisons with triangular fuzzy numbers, and fuzzy weights were derived by
multiplying each criterion’s value in the pairwise comparison matrix by the inverse of the
sum of the other criteria’s values. Based on the evaluations of hiring managers in the case
study, this process yielded fuzzy weights that capture the importance of each criterion from
both perspectives.

3.1.3. Payoff Formulations

To capture preferences, we apply the concept of equivalent utility, where job-offer
package items generate utility for candidates and candidate competencies such as education,
work experience, language proficiency, general skills, and psychological tests, generate
utility for organizations, all measures are quantified and standardized on a common scale.

Cj =
[
Cj1, Cj2, . . . , Cjn

]
(3)

Candidates’ competencies generate utilities for organizations, calculated as the
weighted sum of these competencies.

W(i) =
[
W(i)

1 , W(i)
2 , . . . , W(i)

n

]
(4)
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Uij = ∑
∀ f

W(i)
f Cj f + ε (5)

For organization i, the competency weight vector determines the utility Uij of candi-
date j, with noise terms ε modeled as extreme-value distributed to capture unobserved
preferences. The job-offer package of organization i is represented as a vector including
salary, bonus plans, remote work options, and flexible hours.

Di =
[
di1, di2, . . . , di f

]
(6)

di fmin
≤ di f ≤ di fmax (7)

Dni = [dni1, dni2, . . . , dnim] (8)

Each item of the job-offer package is bounded and normalized, and the package
generates candidate utilities calculated as the inner product of the normalized offer vector
and the candidate’s weight vector.

W ′(j) =
[
W ′(j)

1 , W ′(j)
2 , . . . , W ′(j)

m

]
(9)

U′
ij = ∑

k≤ f
W ′(j)

k dnik + ε′ ∀i ∈ I − {q} (10)

W ′(j) represents the importance weights of job-offer items for candidate j, and U′
ij

denotes the utility of organization i for candidate j, excluding the target organization’s
utility, with a noise term ε′ analogous to ε.

3.2. Bounded Rationality Model

The Quantal Response Equilibrium (QRE) extends standard random utility models
and generalizes Nash equilibrium to account for noisy, boundedly rational behavior, where
choices are positively, but not perfectly, related to expected payoffs [50]. This framework is
next applied to model bounded rationality.

3.2.1. Data

The study analyzes personnel selection data from a large Iranian holding company
with three EPC subsidiaries (A, B, and C) over 36 months, covering 4400 final interviews.
Company A, the primary focus, conducted 1390 final interviews and hired 730 candidates,
with 660 chosen by hiring managers. Across all companies, 511 candidates were interviewed
for high-level (185) and low-level (316) positions. Data sources included resumes, interview
transcripts, evaluation scores, recruitment forms, offered packages, and hiring manager
interviews. Table 1 summarizes the study’s personnel selection data.

Table 1. Summary of data.

Company Final Interviews Hiring Manager
Recruits

Common
Interviewees High-Level Jobs Low-Level Jobs

A 1853 660 511 185 316
B 1358 539 427 142 282
C 1189 423 352 117 235

3.2.2. Bounded Rationality Based on QRE

The concept of bounded rationality, introduced by Simon [51], describes decision-
making under cognitive limitations due to constraints in information, knowledge, and
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computational capacity. While central to behavioral studies, perfect rationality is uncom-
mon in practical personnel selection. As shown in Figure 2, only 23.10% of hiring decisions
for low-level jobs align with rational choice predictions, compared to 64.32% for high-level
positions, which illustrates the limitations of rational choice theory in real-world hiring.

Figure 2. Distribution of choices in the high-level jobs (left) and low-level jobs (right), compared to
the rational choice prediction.

Our analysis highlights distinct patterns in personnel selection between job levels.
For high-level positions, the average chosen utility is 0.923, significantly higher than

0.750 for low-level roles. Moreover, 75.14% of high-level hires have utilities above 90,
compared to 32.91% for low-level hires, showing that managers prioritize higher-utility
candidates for senior roles. This behavior contrasts with rational choice theory, which
predicts that the highest-utility candidate will always be selected, regardless of position.

This systematic gap reflects the higher bounded rationality (β) observed in low-level
roles, where managers appear more willing to accept satisfactory candidates rather than
optimize fully. The result highlights the importance of modeling bounded rationality
explicitly, since standard rational models would fail to capture this discrepancy.

The data also reveals a learning effect over time. Over three years, managers’ hiring
decisions improve, as shown in Figure 3, which plots the average utilities chosen by
Organization A’s manager. Both low-level and high-level job graphs show an upward
trend, indicating that managers progressively select higher-utility candidates as they gain
experience, further deviating from static rational choice predictions. These trends are
consistent with the decreasing bounded rationality parameter (δ > 0) estimated in our
model, confirming that experience reduces randomness in decisions over repeated hiring
cycles. From a managerial perspective, this suggests that training and continuity of hiring
personnel can improve recruitment efficiency over time.

McKelvey and Palfrey [20] applied QRE to model bounded rationality in game theory,
where players choose based on relative expected utility. Using logit formulas, the probabil-
ity of selecting a candidate or organization incorporates bounded rationality parameters
(β), capturing the influence of biases on decisions. The probability of selecting candidate j
by organization i is given by the following formula.

Pij =
e

Uij
βi

ε + ∑∀k ϵ J

[
e

Uik
βi

] (11)
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Here, βi represents the bounded rationality parameter of organization i. Similarly, the
probability of candidate j selecting organization i is given by a corresponding formula.

Ṕij =
e

U′
ij

βj

ε + ∑∀ f ϵI

e
U′

f j
βj

 (12)

Figure 3. Time trends in the data for the high-level jobs (left) and low-level jobs (right).

The bounded rationality parameter β j represents candidate j’s level of bounded ratio-
nality, reflecting errors due to incomplete information about the other side’s utility. Each
agent’s utility includes explicit and implicit components, and lack of awareness of the
implicit part affects decision-making. β varies across agents to capture heterogeneity: as
β → ∞ , choices are random; as β → 0 , choices become fully rational, consistent with QRE.
Following Chen, Su, and Zhao [15], β can change over time, capturing the learning effect
observed in Figure 3, where managers’ choices increasingly align with rational predictions.
We, therefore, propose a time-dependent β(r) that decays exponentially with accumulated
decision-making experience.

β(r) = β + (α − β)e−δ(r−1) (13)

The bounded rationality parameter β(r) decreases exponentially over round r, from an
initial value α to a final value β, reflecting the manager’s learning at rate δ.

3.3. Maximum Likelihood Estimation (MLE)

This section fits the model to real-world data using MLE, following Chen, Su, and
Zhao [15]. It estimates key parameters, α, β, δ, and noise ε, and computes fij(r), the
probability that organization i selects candidate j at round r, based on the QRE model
(Equations (11) and (12)).

fij(r) =
e

Uij(r)
βi(r)

ε + ∑∀k ϵ J

[
e

Uik(r)
βi(r)

] (14)

Applying the natural logarithm (ln) to the likelihood function and simplifying yields
a log-likelihood expression:

L( (α, β, δ, ε
∣∣Û ) = R

∏
r=1

J

∏
j=1

(1 − ε)× fij(r) + ε × 1
Nr

∀i ∈ I (15)
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A uniform error term, ε, is included to account for random selections by managers,
occurring with probability ε and uniform likelihood 1

Nr
across candidates. In a perfect

fit, ε = 0, but practically it is expected to be small and positive. The model is fitted by
maximizing the log-likelihood function over parameters α, β, δ, and ε.

Ln(L
((

α, β, δ, ε
∣∣N̂)) = R

∑
r=1

J

∑
j=1

Ln

(1 − ε)× eUij(r)/βi(r)

∑k ϵ J

[
eUik(r)/βi(r)

] + ε × 1
Nr

 ∀i ∈ I (16)

The model incorporates all four parameters and is fitted using data from both high-
and low-level jobs. Numerical computations are performed with Python’s SciPy library,
and the resulting parameter estimates are detailed in Table 2.

Table 2. Estimation results for high-level and low-level jobs’ parameters.

Parameters α β δ ε Log-Likelihood

High-level job 8.2542 0.0432 0.0150 0.004 −166.20
Low-level job 10.248 0.1244 0.0047 0.005 −551.19

The bounded rationality parameters were estimated for both low- and high-level
jobs (Table 2). δ values, representing learning, are positive but small: δ = 0.0150 for high-
level jobs and δ = 0.0047 for low-level jobs, which indicates slower learning in low-level
jobs. β values remain positive: β = 0.0432 for high-level jobs and β = 0.1244 for low-level
jobs, indicating that some bounded rationality persists despite learning. Log-likelihood is
higher in high-level jobs, suggesting a better fit for this mode. Overall, the analysis shows
decision-makers deviate from perfect rationality, with stochastic behavior influenced by β

and learning dynamics captured by δ. High-level jobs exhibit lower bounded rationality
and faster learning, achieving 64.32% alignment with rational choice predictions, while low-
level jobs show higher bounded rationality and slower learning, with 23.10% alignment,
highlighting the importance of accounting for job-level differences in optimizing job offers.
To mitigate sensitivity to data imperfections, the same framework can be estimated with
(i) a robust log-likelihood that down-weights outliers, (ii) an ε—contaminated or heavy-
tailed error for the logit shock to reduce leverage, and (iii) EM with multiple imputation for
missing covariates. In practice, we also recommend nonparametric bootstrap confidence
intervals and leave-one-group-out sensitivity checks to assess stability.

4. Modeling and Computational Study
Incorporating bounded rationality through the QRE transforms the Deferred Accep-

tance process from a deterministic mechanism into a probabilistic one. In the classical
setting, agents are assumed to make perfectly rational choices, always selecting the highest-
utility option available. In practice, however, hiring decisions are often influenced by
incomplete information, uncertainty about competitors’ actions, and cognitive limitations.
QRE captures these realities by allowing both candidates and organizations to choose
with probabilities that increase with utility but still permit occasional deviations from
the optimal choice. As a result, the DAA retains its iterative structure, but the outcomes
reflect the behavioral imperfections observed in real hiring environments. This adjustment
preserves the theoretical logic of deferred acceptance while embedding a more realistic
representation of decision-making under uncertainty.

The process of reaching final hiring decisions involves two main steps. Figure 4
provides a clear overview of the entire process. First, the Deferred Acceptance Algo-
rithm (DAA) is applied to match organizations with candidates, incorporating bounded-
rationality adjustments (Sections 3.2 and 3.3). Second, the optimal job offer for each matched
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candidate is identified using particle swarm optimization (PSO) and refined with a linear
update. Figure 4 summarizes the workflow: Phase 1—data preparation, Phase 2—DAA
with QRE-based choice rules, and Phase 3—PSO and linear tuning to find the optimal
package, showing stable matches and associated offer costs.

 

Figure 4. Algorithm Flowchart.

4.1. First Stage: Two-Sided Matching and Equivalent Utility Based on Bounded Rationality

In the first stage, the model applies the Deferred Acceptance Algorithm (DAA) to form
stable matches between candidates and organizations, accounting for both preferences and
bounded rationality. The algorithm ensures that no participant has an incentive to break an
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existing match. Central to this stage is the concept of equivalent utility, which quantifies
the value of each candidate for organizations and informs both the matching process and
the creation of cost-efficient job-offer packages in the second stage.

MIN Z =U′
eqi

− revi ∗ E
(
αilast

)
(17)

Subject to:

Inijt =

{
0 ∑t′≤t ch′ ijt′s ̸= 1
1 ∑t′≤t ch′ ijt′s = 1

, ∀i ∈ I, ∀j ∈ J, ∀t ∈ T, ∀s ∈ S (18)

∑
∀t

Inijts ≤ 1 (19)

Pijts =
e

Uij(r)
βi(r) ∗ ch′ ijts

ε + ∑∀k ϵ J

[
e

Uik(r)
βi(r) ∗ ch′ izts

] (20)

Ṕijts =
e

U′
ij(r)

βj(r) ∗ ζijts

ε + ∑∀ f ϵI

e
U′

f j(r)
βj(r) ∗ ζijts

 (21)

ζijts = 1 −
(

∑
t′<t

Inijt′s

)
+ chij(t−1)s (22)

r′jts ∼ U(0, 1) (23)

n−1

∑
k=0

p′kjts ∗ ch′njts ≤ r′ jts ≤
n

∑
k=0

p′kjts ∗ ch′njts (24)

∑
∀i

ch′ ijts ≤ 1 (25)

∑
∀i

ch′ ijts = ∑
∀i

p′ ijts (26)

rits ∼ U(0, 1) (27)

m−1

∑
q=0

piqts ∗ chiqts ≤ rits ≤
m

∑
q=0

piqts ∗ chiqts (28)

ch′ ijts ≥ chijts (29)

αilasts = ∑ Uij.chij(tlast)s (30)

∑
∀i

chijts ≤ 1 (31)

∑
∀i

chijts = ∑
∀i

pijts (32)

U′
eqi

= ∑
∀j

chijtlastsU
′
ij (33)

E
(
αilast

)
= (∑∀s ∈ S αilasts)/n

S
(34)

Inij0s = 0 , chij0s = 0, ch′ ij0s = 0 (35)
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The objective function in Equation (17) aims to minimize the gap between the util-
ity required to attract candidates (U′

eqi
) and the utility the organization expects to gain,

weighted by the position sensitivity parameter (revi). Equations (18) and (19) enforce
interview constraints, ensuring that each candidate–organization pair can have at most one
interview. Equations (20) and (21) introduce bounded-rational choice probabilities based
on QRE, where β controls the degree of rationality: a smaller β implies choices driven
more strongly by utility, while a larger β allows greater randomness. Equation (22) ensures
candidates remain available only if they have not yet accepted another offer or remain on a
waiting list.

Equations (23)–(26) govern the stochastic selection process for candidates, and
Equations (27)–(32) extend this to organizations, enforcing two-sided consent where orga-
nizations may only select candidates who also chose them.

Finally, Equations (33)–(35) characterize the solution: (33) defines equivalent utility as
the bridge to stage two, (34) computes expected values over all stochastic scenarios, and
(35) specifies conditions so that the process begins with no prior matches or interviews.

4.2. Second Stage: Cost-Efficient Job Offer Design

In the second stage, the equivalent utility from stable matches is used to design cost-
efficient job-offer packages, optimizing salaries and benefits to minimize organizational
costs while keeping offers attractive to candidates.

in CostD = ∑∀ f Cost f d f + ∑∀ fint
Cost fint

d fint
+ ∑∀ fbin

Cost fbin
d fbin

(36)

U′
eqi

∗
= ∑∀ f w′

f dn f + ∑∀ fint
w′

fint
dn fint

+ ∑∀ fbin
w′

fbin
dn fbin

(37)

d f = dmin f +
(

dmax f − dmin f

)
dn f , ∀ f (38)

d fint
= dmin fint

+
(

dmax fint
− dmin fint

)
dn fint

, ∀ fint (39)

d fbin
= dn fbin

, ∀ fbin (40)

0 ≤ dn f ≤ 1, (41)

0 ≤ dn fint
≤ 1, (42)

dn fbin
∈ {0, 1} (43)

d f , d fint
≥ 0 , d fint

∈ Z (44)

The second stage begins with the objective function in Equation (36), which seeks
the lowest-cost job-offer package that meets the candidate’s required desirability while
maximizing organizational cost-effectiveness, as refined in Equation (37). Job-offer items
are treated as decision variables: continuous (salary, bonus), integer (work hours), and
binary (remote work). To normalize these items, Equations (38)–(40) are used according to
the variable type, while Equations (41)–(44) constrain them within the [0, 1] range. Table A1
(Appendix A) provides the full set of notations.

4.3. Particle Swarm Optimization

Since the first stage of the model is non-linear and probabilistic (Formulas (20) and (21)),
the optimization problem is solved using the particle swarm optimization (PSO) algorithm.
Originally introduced by Kennedy and Eberhart [52], PSO models the social behavior of
animals such as bird flocking and fish schooling. Each candidate solution is treated as a particle
with a velocity that updates iteratively, moving toward both its own best position (Pbest) and
the global best position (gbest) [53]. The overall search process is illustrated in Figure 5.
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Figure 5. Flowchart of PSO Algorithm.
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Here, l denotes the particle index, t the current iteration, f the objective function to be
minimized, x the position vector (candidate solution), and N the number of particles in the
swarm. At each iteration t + 1, the velocity v and position x of particle l are updated using
the following equations:

vt+1
l = ωvt

l + c1r1

(
Pt

bestl
− xt

l

)
+ c2r2

(
gt

bestl
− xt

l

)
, (47)

xt+1
l = xt

l + vt+1
l (48)

Here, v is the velocity vector, ω the inertia weight controlling the balance between
local exploitation and global exploration, r1 and r2 are random vectors uniformly dis-
tributed over [0, 1]D (with D denoting the problem’s dimensionality), and c1, c2 are positive
acceleration coefficients.

4.3.1. Algorithm Selection and Comparative Analysis

We conducted a comparative analysis of three metaheuristic algorithms, particle
swarm optimization (PSO), genetic algorithm (GA), and simulated annealing (SA), to de-
termine the most suitable method for our non-linear optimization problem with mixed
decision variables. All three algorithms were implemented under comparable computa-
tional budgets and tested on our case study data. To ensure robustness, each algorithm was
executed 30 times with different random seeds.

For the PSO, we used 50 particles with an inertia weight of ω = 0.5 and acceleration
coefficients c1 = c2 = 1.5. The GA was configured with a population size of 50, a crossover



Mathematics 2025, 13, 3173 15 of 26

rate of 0.8, a mutation rate of 0.1, and tournament selection with a size of 3. Finally, the
SA employed an initial temperature of 100, a geometric cooling schedule with a rate of
0.98, and adaptive neighborhood sizing. The outcomes of this comparison are reported
in Table 3.

Table 3. Comparative Performance of Metaheuristic Algorithms.

Performance Metrics PSO GA SA

Convergence Iteration 15 28 35
Final Objective Value −8.72 −8.68 −8.70
Initial Objective Value −7.20 −7.20 −7.20

Improvement Rate (First 10 Iterations) 1.32 0.85 0.72
Stability After Convergence High Medium Low
Oscillation During Search Minimal Moderate High

Average Final Value −8.71 −8.66 −8.67
Best Value Found −8.72 −8.70 −8.71

Worst Value Found −8.69 −8.58 −8.61
Standard Deviation 0.008 0.032 0.027

The empirical results highlight the superior performance of PSO. As shown in Figure 6,
PSO reaches the optimal value of −8.72 within just 15 iterations, with major improvements
occurring between iterations 2–8 (from −7.6 to −8.5). After iteration 15, it remains stable
with no oscillations. GA, in contrast, shows stepped convergence with improvements at
iterations 5, 12, 19, and 28, eventually reaching −8.68 but at a slower pace. SA exhibits
the most erratic path due to its temperature-dependent acceptance, stabilizing only after
35 iterations at −8.70. The strong performance of PSO can be attributed to its velocity-based
updates and continuous optimization nature, which enable efficient exploration early on
and effective exploitation in later rounds.

 

Figure 6. Convergence Comparison of Metaheuristic Algorithms.

To further illustrate the performance consistency of the algorithms, Figure 7 presents
box plots of the final objective values across 30 independent runs for PSO, GA, and SA.
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These results confirm the summary statistics reported in Table 3. PSO shows the narrowest
spread and highest stability, with almost no outliers, while GA and SA display greater
dispersion and variability.

 

Figure 7. Distribution of Objective Values Across 30 Runs.

4.3.2. Model Limitations and Parameter Analysis

The computational complexity of the framework is driven by the matching algorithm
with O(n2m) complexity, and the PSO with T iterations and P particles, leading to a total
complexity of O

(
TPn2m

)
. Empirical tests confirm that the framework performs efficiently

for problems up to 100 candidates and 20 organizations (under 5 min). Larger cases may
require decomposition or parallel computing. A sensitivity analysis of PSO parameters,
presented in Table 4, examines their effects on solution quality and convergence speed.

Table 4. PSO parameters sensitivity analysis.

Parameter Range Tested Optimal Value Impact on Performance

Inertia weight (ω) [0.2, 0.9] 0.5 Lower values (<0.4) cause premature convergence;
higher values (>0.7) slow convergence

Cognitive coefficient (c1 ) [0.5, 2.5] 1.5 Values outside [1.0, 2.0] significantly
degrade performance

Social coefficient (c2 ) [0.5, 2.5] 1.5 Similar to c1; balanced values (c1 ≈c2) work best

Population size [20, 100] 50 <30 particles insufficient for exploration; >70 offers
marginal improvement

Max iterations [50, 200] 100 95% of runs converge by iteration 50;
100 ensures robustness

The robustness of the parameter settings was confirmed through 30 independent
runs (Section 4.3.1), which demonstrated consistent performance and minimal variance in
solution quality.
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5. Discussion
5.1. Case Study

This section evaluates the model’s efficiency using a real-world case involving three
organizations and five candidates for high-level electrical engineering roles. Based on the
data from the left side of Figure 2, the decentralized recruitment processes of Organiza-
tions A, B, and C are analyzed. The relevant profiles and importance weight vectors are
summarized in Tables 5–7.

Table 5. Candidates’ Profiles.

# Education Language
Proficiency General Skills Work

Experience
Psychological

Test

Candidate 1 MSc native good 0–5 good
Candidate 2 PHD medium medium 10–15 low
Candidate 3 BSc good high 0–5 medium
Candidate 4 PHD advanced advanced 15–20 excellent
Candidate 5 BSc advanced high 0–5 good

Table 6. Competencies’ weight importance vector of organizations.

# Education Language
Proficiency General Skills Work

Experience
Psychological

Test

Organization A 0.40 0.10 0.10 0.25 0.15
Organization B 0.36 0.04 0.20 0.30 0.10
Organization C 0.31 0.14 0.16 0.14 0.25

Table 7. Items’ weight importance vector of candidates.

# Salary Level Bonus Plans Flexibility in
Working Hours

Ability to
Work Remotely Salary Level

Candidate 1 0.50 0.20 0.20 0.10 0.50
Candidate 2 0.40 0.20 0.15 0.25 0.40
Candidate 3 0.35 0.10 0.25 0.30 0.35
Candidate 4 0.60 0.10 0.20 0.10 0.60
Candidate 5 0.55 0.15 0.15 0.15 0.55

The objective function focuses on minimizing Organization A’s total package cost,
while keeping the package items of Organizations B and C fixed. The cost details of these
rival organizations are provided in Table 8.

Table 8. Organization B and C package items.

# Salary
($) Bonus ($) Flexibility in Working Hours (h) Working Remotely

Organization B 900 400 2 No
Organization C 800 500 1 Yes

We solve a case with three organizations and five candidates, where the decision
variables are Organization A’s package items. Two modes are tested: (i) both sides fully
rational, and (ii) Organizations are boundedly rational while candidates remain rational
(due to insufficient data to estimate candidate bounded rationality). Experiments ran on
an Intel Core i7-11700K 2.4 GHz, 16 GB RAM, Windows 10 Pro, using Python 3.9.7 (with
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NumPy 1.21.5), MIP and SciPy 1.7.3 for optimization, and Matplotlib 3.5.1 for visualization
purposes. The case serves as a proof of concept, showing how bounded rationality affects
matching outcomes and offer costs in a controlled setting; broader validation requires
larger, more diverse datasets.

5.2. Results
5.2.1. Rational Mode

Table 9 presents the first-mode results, where both organizations and candidates are
rational. With revA = 1 (average recruitment sensitivity), the optimal job-offer package for
Organization A and its corresponding stable match are reported.

Table 9. The optimal job offer package in first mode.

# Salary
($) Bonus ($) Flexibility in

Working Hours (h) Working Remotely Stable Match

Organization A 1300 500 - No Candidate 4
Organization B 900 400 2 No Candidate 2
Organization C 800 500 1 Yes Candidate 1

The first-mode matching results show that Organization A successfully hires Candi-
date 4 with a package of $1300 salary and $500 bonus, excluding flexibility and remote work.
This outcome highlights that direct income was the decisive factor for Candidate 4, who
also ranked Organization A as a top preference, confirming a mutual match. Concurrently,
Organization B matched with Candidate 2, and Organization C with Candidate 1, based on
their respective packages and priority weights. The detailed candidate utilities (U′

ij) and
organizational utilities (Uij) are provided in Tables 10 and 11, respectively.

Table 10. Utility of Candidates (U′
ij).

Organization A Organization B Organization C
Candidate 1 0.525 0.36 0.34
Candidate 2 0.46 0.30 0.54
Candidate 3 0.327 0.27 0.54
Candidate 4 0.42 0.30 0.339
Candidate 5 0.50 0.30 0.419

Table 11. Utility of Organizations (Uij).

# Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5
Organization A 0.38 0.54 0.14 0.90 0.20
Organization B 0.32 0.54 0.18 0.90 0.21
Organization C 0.47 0.42 0.22 0.92 0.31

The robustness of the first mode was assessed by varying model parameters and
assumptions to observe their impact on the outcomes. The results of these tests, specifically
regarding the optimization of Organization A’s job-offer package, are summarized in
Table 12, providing insight into the model’s sensitivity and stability.
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Table 12. Sensitivity analysis for organization A’s optimized package.

Scenarios Optimal Package

# Salary
($)

Bonus
($)

Flexibility
(Hours) Remote Work Match

1 revA = 1 1300 500 0 No {A,4}, {B,2}, {C,1}
2 revA = 0.5 500 0 0 No {A,2}, {B,4}, {C,1}

3 Reduced cost items 3 and 4
to 1/20, revA = 1 967 500 0 Yes {A,4}, {B,2}, {C,1}

4 Salary only,
revA = 1 1634 0 0 No {A,4}, {B,2}, {C,1}

When revA is reduced from 1 to 0.5, Organization A can still hire its preferred candidate,
but the package costs only $500, reflecting a lower willingness to invest in less critical roles.
Reducing the costs of flexibility and remote work benefits to one-twentieth of their original
values does not change the matching outcome, Organization A still chooses the same
candidate, though the total cost decreases, bringing the salary down from $1300 to $967. On
the other hand, if only salary is offered without any additional benefits, the organization
must pay $1634 to retain the same match, an increase of 25 percent, which shows the impact
of limiting options in the job package. These scenarios serve as a rational benchmark and
help illustrate how bounded rationality, discussed in the next section, can further increase
costs. The results emphasize the importance of designing flexible offers and considering
the overall value of the job when managing recruitment expenses.

5.2.2. Bounded Rational Mode

In this section, the objective is to minimize the total cost of package items for Organiza-
tion A, which is treated as a bounded rational decision-maker. This is done while keeping
the items for Organizations B and C fixed, as shown in Table 8. To capture Organization
A’s bounded rationality, we use the β(r) function and the data collected in Section 3.2
for high-level positions. Organizations B and C have their own β(r) functions, calculated
as described in Section 3.3. Because candidate-side behavioral data are insufficient for
identification, in the empirical implementation we model candidate choices as rational in
this case study. Here, bounded-rational parameters are estimated for the organization side
using maximum likelihood. Extending estimation to candidates would require richer, lon-
gitudinal microdata (e.g., sequential choice logs across rounds and offers, with timestamps
on accept/reject decisions). The theoretical framework is two-sided; future data collection
will enable full two-sided calibration.

Because the problem is non-linear and probabilistic, as defined by formulas 20 and 21,
the PSO algorithm is employed to find optimal solutions. The implementation follows the
setup and parameters listed in Table 13, as explained in Section 4.3.

Table 13. PSO Algorithm Parameters.

Parameters Values

Population size 50
Number of iterations 100

Inertia weight 0.5
Cognitive coefficient 1.5

Social coefficient 1.5
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The results of the second mode are presented in Table 14. They show the optimal
job-offer package for Organization A when revA = 1, along with the stable match obtained
for this organization.

Table 14. The optimal job offer package in second mode.

# Salary
($) Bonus ($) Flexibility in

Working Hours (h) Working Remotely Stable Match

Organization A 1636.8 500 - No Candidate 4
Organization B 900 400 2 No Candidate 2
Organization C 800 500 1 Yes Candidate 1

After running the matching algorithm and solving the optimization problem with PSO,
while accounting for bounded rationality for the organizations, Organization A successfully
hires Candidate 4 with a salary of $1636.8 and a bonus of $500, without offering flexibility
or remote work. This indicates that Candidate 4 remains the most preferred based on
their competencies and weights. The tables also indicate that Organization A was a high-
priority choice for Candidate 4, reflecting a mutual preference. Organization B is matched
to Candidate 2, and Organization C to Candidate 1, according to their respective packages
and desired weights. The corresponding utilities, U′

ij for the candidates and Uij for the
organizations, are summarized in Table 15.

Table 15. The utilities of Organizations and Candidates in second mode.

U
′
ij Candidate Organization Uij

0.39 Candidate 1 Organization C 0.47

0.35 Candidate 2 Organization B 0.52

0.40 Candidate 4 Organization A 0.88

Comparing the utility tables from both modes shows that Organization A’s utility
declines slightly from 0.90 to 0.88, while Candidate 4′s utility drops from 0.42 to 0.40. This
reduction reflects the impact of shifting Organization A’s behavior from fully rational
to bounded rational. The robustness of the bounded rational framework was confirmed
through additional testing: the PSO algorithm consistently converged across 30 indepen-
dent runs with different random seeds, producing a standard deviation of only 2.29% in fi-
nal objective values, as illustrated in Figure 6. This confirms that the observed 26% increase
in total cost when moving from rational to bounded rational matching is a genuine effect,
not an artifact of the algorithm. A sensitivity analysis, similar to the one performed in
the rational mode, was also conducted under bounded rationality, with results presented
in Table 16.

Table 16. Sensitivity analysis for organization A under bounded rationality.

Scenarios Optimal Package

# Salary
($)

Bonus
($)

Flexibility
(Hours)

Remote
Work Match Cost vs.

Rational

1 revA = 1 1636.8 500 0 No {A,4}, {B,2}, {C,1} +26%
2 revA = 0.5 380 0 0 No {A,2}, {B,4}, {C,1} −24%

3 Reduced cost items 3
and 4 to 1/20, revA = 1 875 420 2 Yes {A,2}, {B,4}, {C,1} −10%

4 Salary only,
revA = 1 1925 0 0 No {A,4}, {B,2}, {C,1} +18%
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Under bounded rationality, the impact of parameters is stronger than in the rational
model. When revA is reduced to 0.5, total costs decrease to $380 (compared to $500 in
the rational case) because lower job importance increases bounded rationality, leading
managers to accept a satisfactory option rather than the optimal one. Changes in intangible
costs also affect the matching outcome: Organization A chooses Candidate 2, who values
remote work more, as QRE probabilities shift toward candidates whose preferences align
better with the cheaper benefits. Imposing a salary-only constraint leads to a sharp cost
increase to $1925 (versus $1,634 in the rational case), since removing package flexibility
reduces the ability to differentiate candidates, forcing organizations to offer higher salary
offers to compensate for decision randomness. These results demonstrate that bounded
rationality not only increases costs but also significantly alters optimization strategies
depending on job importance and package design.

5.3. Further Discussion

We observed that the bounded rationality model based on QRE provides more nuanced
and realistic predictions for the matching problem compared to a purely rational choice
model. However, evaluating and interpreting the results in context is essential. The key
insights are as follows:

1. As shown in Sections 3.2 and 3.3, the behavior of the hiring manager, who serves as
the final decision layer after technical and behavioral interviews, follows the QRE
function. The collected data aligns well with this function, reflecting the manager’s
incomplete information about the candidate’s utility. A candidate’s utility has both
explicit and implicit components, and the manager’s rationality is constrained by
limited knowledge of the implicit component. Moreover, analysis of the estimated
beta functions shows evidence of a learning process over time, gradually reducing
bounded rationality, although it never disappears completely.

2. In organizations with bounded-rational decision-makers, perceived candidate utilities
tend to decrease. Managers often select candidates with lower normalized utility
rather than the optimal choice. This effect is more pronounced for lower-level or less
critical positions. Because bounded rationality has a random component, there are
occasional increases in perceived utility, but overall, a long-term decline is observed.

3. Comparing the matching outcomes under rational and bounded rational modes, the
organization’s utility fell slightly from 0.90 to 0.88. This minor change reflects the
learning and improvement in the hiring manager’s decisions over time. The final
match itself remained unchanged, but larger differences between rationality and
bounded rationality could lead to different matches.

4. The decline in utility translated into higher job-offer costs, rising from $1300 to $1636.8
to secure the best candidate. Essentially, the bounded rationality of decision-makers
imposes additional costs on the organization.

These findings suggest that organizations should acknowledge the bounded rationality
of their hiring managers and work to mitigate its effects through training and experience.
Doing so can reduce recruitment costs and improve the effectiveness of job-offer strategies.

6. Conclusions
This study presents a two-stage stochastic model to help organizations design job-

offer packages and match candidates while taking into account the bounded rationality of
decision-makers. By combining the Gale-Shapley matching mechanism, Quantal Response
Equilibrium for bounded rationality, Maximum Likelihood Estimation for parameter fitting,
and particle swarm optimization for offer design, the model captures both the strategic and
cognitive aspects of hiring decisions.
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From the case study, we observed that accounting for bounded rationality can in-
fluence both the outcomes and costs of matching. In our example, even though the final
matches remained the same, the total cost of the job-offer package increased under bounded
rationality. This shows that decision-makers’ limitations can subtly reduce efficiency and
increase costs.

The results highlight the importance of recognizing and addressing bounded ratio-
nality in hiring. Organizations can potentially reduce costs and improve decision quality
through training and experience, helping managers make more informed choices despite
cognitive limitations.

6.1. Managerial Implications

This study provides several actionable insights for managers aiming to improve
recruitment strategies under realistic constraints. First, the 26% cost premium we report
is specific to our case study. Sensitivity analyses indicate that this premium is not fixed:
when job importance is lower, the bounded-rational solution is actually cheaper than the
rational benchmark; under a salary-only constraint, it becomes more expensive. These
variations reflect how bounded rationality interacts with position value and package
flexibility. We, therefore, view the 26% as an informative point estimate for this context, not
a universal constant.

Second, the impact of bounded rationality varies across job levels. Senior roles benefit
from thorough evaluation and stable hiring teams, where careful judgment and experience
reduce randomness. For junior roles, simpler or streamlined selection processes are suffi-
cient, as decisions are more affected by bounded rationality and rotation of hiring team
members has less impact.

Third, flexible, modular compensation packages are cost-effective. Tailored offers,
including remote work, schedule flexibility, or other valued non-monetary items, can
reduce costs by up to 25 compared to salary-only packages, provided they match candidate
preferences. For HR managers, this suggests that offering a menu of non-monetary benefits
can serve as a substitute for high salaries, allowing budgets to be stretched further without
undermining candidate attractiveness.

Fourth, the learning curve of hiring managers presents a valuable opportunity. MLE
estimates show that managers approach near-optimal decision-making after roughly
20–25 recruitment cycles, highlighting the benefits of training programs and continuity
in hiring teams, especially for strategically important roles. This indicates that organiza-
tions can reduce costs not only by designing better packages but also by investing in the
decision-makers themselves through targeted training and experience accumulation.

Finally, in competitive labor markets, this approach offers a practical alternative to
salary-driven competition. By accounting for bounded rationality, organizations can design
job offers that remain competitive while aligning effectively with candidate preferences
in a probabilistic decision environment. Practically, this means budgeting should include
a contingency margin for bounded-rational costs and HR managers should anticipate
variation across job levels and market conditions when planning recruitment strategies.

6.2. Limitations and Future Research

Despite its contributions, this study has several limitations. First, the model assumes
complete and commonly known information about candidate preferences, organizational
importance weights, and competitors’ offers, which is rarely the case in practice. Decision-
makers often face partial or uncertain information. A useful extension would be to relax
this assumption by formulating the problem as an incomplete-information (Bayesian) game,
where firms and candidates hold beliefs about counterpart utilities and rival offers. This
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could be operationalized through a Bayesian-QRE with hierarchical priors on preference pa-
rameters and belief-based DA, estimated via hierarchical MLE or EM from observed choice
data. These extensions would align the mechanism more closely with real recruitment
settings, where information is partial, evolving, and asymmetric.

Second, the empirical evidence comes from a single holding company, with a limited
number of organizations and candidates, within a specific sector and regulatory environ-
ment. This scope constrains external validity, as institutional, cultural, and industry factors
may differ across settings. Cross-industry or cross-country applications would require
recalibration of the estimated parameters (α, β, δ, ε) and reweighting of competencies and
job-offer items to reflect sectoral and cultural conditions. Moreover, while the framework
allows bounded rationality on both sides, the case study estimates parameters only for
organizations; candidates are modeled as rational due to data limitations. These choices
narrow the empirical claim and underscore that full two-sided calibration awaits richer
candidate-side behavioral data. Taken together, these results underscore that measured cost
effects of bounded rationality are context-dependent: institutional, cultural, and industry
factors may shift magnitudes, and full two-sided calibration awaits richer candidate-side
behavioral data. Future work should (i) assemble larger, multi-industry and multi-country
datasets to test transferability, (ii) collect candidate-side behavioral traces to jointly estimate
bounded-rational parameters for both sides, and (iii) conduct out-of-sample validations
and sensitivity analyses across institutional regimes. To quantify candidates’ bounded ratio-
nality specifically, subsequent studies should gather candidate-side choice sequences over
multiple rounds and offers, implement discrete choice or conjoint designs that randomize
job attributes, and, where feasible, use field experiments or A/B tests on application portals.
These designs would identify candidate-side QRE parameters and allow full two-sided
estimation within our matching framework.

Third, the model treats competitors’ compensation packages as fixed, whereas in
reality, organizations dynamically adjust their offers in response to rivals’ strategies and
candidate reactions. Future research should, therefore, explore multi-agent dynamic game
formulations, where competing firms update their packages endogenously over repeated
interactions. Embedding bounded rationality into such a dynamic setting would allow
the simulation of realistic competitive adjustments and feedback effects. In addition,
incorporating candidate-side bounded rationality in this multi-agent context would further
improve realism and predictive power.

Fourth, our framework focuses on the final stage of hiring, after initial AI-based
filtering and preliminary interviews, where managers select among a smaller pool of
candidates. In larger-scale matching problems with thousands of candidates and hundreds
of organizations, computational efficiency could be challenged. Although the complexity is
O
(
TPn2m

)
, techniques such as decomposition, parallel/distributed PSO implementations,

or adaptive swarm structures could help maintain tractability in future applications.
Finally, the framework could extend beyond recruitment to other two-sided matching

problems involving bounded rational agents, such as supplier selection, project bidding, or
school choice. Future work could integrate learning algorithms or agent-based simulations
to capture more dynamic interactions.
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Appendix A

Table A1. Main notations used in the Model (Section 4), organized by sets, parameters, and variables.

Title 1 Title 2 Title 3

Maximum utility of organization i at time t αit Index of organizations i
Utility of candidate j for organization i Uij Index of candidates j
Utility of organization i for candidate j U′

ij Index of packages’ item k
Importance weights of competencies for

organization i W(i) Index of time t

Importance weights of package items for candidate j W ′(j) Second index of time t′

Equivalent utility of the target organization U′
eqi

Set of Time Indexes T
Cost of organization i’s package item f costi f Index of job-offer items f

f -th package item of organization i di f
Index variable for the organization

under investigation q

Index of package items of integer type fint Index of package items of binary type fbin
Set of Candidates J Set of Organizations I

Normalized value of the f’th package item of
organization i dni f Competencies of candidate j Cj

Upper bound of the f ’th item dmax f Lower bound of the f -th item dmin f

Binary variable for whether organization i
interviews candidate j at time t Inijt maximum utility of candidate j at time t α′ jt

Binary variable: organization i chooses candidate j
at time t chijt

Binary variable: candidate j chooses organization i
at time t ch′ ijt

Binary variable: candidate j can choose organization
i at time t ζijt Sensitivity of organization i’s position revi
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