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Abstract. Let H 8 be the set of all Dirichlet series f “
8
ř

n“1

an

ns

(where an P C for each n) that converge at each s P C`, such

that }f}8 :“ supsPC`
|fpsq| ă 8. Let B Ă H 8 be a Banach

algebra containing the Dirichlet polynomials (Dirichlet series with

finitely many nonzero terms) with a norm } ¨ }B such that the in-

clusion B Ă H 8 is continuous. For m P N “ t1, 2, 3, ¨ ¨ ¨ u, let

B´mB denote the Banach algebra consisting of all f P B such

that f 1, ¨ ¨ ¨ , f pmq P B, with pointwise operations and the norm

}f}B´mB “
m
ř

`“0

1
`!}f

p`q}B. Assuming that the Wiener 1{f property

holds for B (that is, infsPC`
|fpsq| ą 0 implies 1

f P B), it is shown

that for all m P N, the maximal ideal space MpB´mBq of B´mB

is homeomorphic to DN
, where D “ tz P C : |z| ď 1u. Examples

of such Banach algebras are H 8, the subalgebra Au of H 8 con-

sisting of uniformly continuous functions in C`, and the Wiener

algebra W of Dirichlet series with }f}W :“
8
ř

n“1
|an| ă 8. Some

consequences (existence of logarithms, projective freeness, infinite

Bass stable rank) are given as applications.

1. Introduction

The aim of this article is to determine the maximal ideal space of
a particular family tB´mBumPN (defined below) of Banach algebras
that are contained in the Hardy algebra H 8 of Dirichlet series. The
motivation is twofold: there has been old and recent interest in studying
various Banach algebras of Dirichlet series (see e.g. [6], [10], [21]),
and the Banach algebras B´mB we study are also the ‘Dirichlet series
analogue’ of the Banach algebras B´mH8 previously studied in [19] in
the context of the classical Hardy algebra H8 of the disc.
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Set C` :“ ts P C : Repsq ą 0u. Let H 8 be the set of all Dirichlet series

f “
8
ř

n“1

an

ns
, where an P C for each n P N, that converge for all s P C`,

such that }f}8 :“ supsPC`
|fpsq| ă 8. With pointwise operations and

the supremum norm, H 8 is a Banach algebra.

The Banach algebras B´mB. Throughout, B Ă H 8 will denote
a Banach algebra with a norm } ¨ }B. For m P N “ t1, 2, 3, ¨ ¨ ¨ u, let
B´mB denote the Banach algebra consisting of all f P B such that
f 1, ¨ ¨ ¨ , f pmq P B, with pointwise operations and the norm

}f}B´mB“
m
ř

`“0

1

`!
}f p`q}B.

We note that if f “
8
ř

n“1

an

ns
converges for all s P C`, then it converges

uniformly on compact sets contained in C`, and hence by Weierstrass’s

theorem on uniform limits of holomorphic functions, f p`q is obtained by

termwise differentiation, so that for all ` P N, we have

f p`q “
8
ř

n“1

p´1q`plog nq`
an

ns
in C`.

Let P denote the set of Dirichlet polynomials, that is, Dirichlet series
with finite support,

P “
 

p “
N
ř

n“1

an

ns
: N P N, a1, ¨ ¨ ¨ , aN P C

(

Ă H 8.

Let Au be the subset of H 8 of Dirichlet series that are uniformly
continuous in C`. Another description of Au is that it is the closure of
Dirichlet polynomials in the } ¨ }8-norm, see, e.g., [1, Theorem 2.3].

Let W denote the set of all Dirichlet series f “
8
ř

n“1

an

ns
such that

}f}1 :“
8
ř

n“1

|an| ă 8.

With pointwise operations and the } ¨ }1 norm, W is a Banach algebra.
It is clear that

W Ă Au Ă H 8.

In the case of W , an analogue of the classical Wiener 1{f lemma
([20, p.91]) for the unit circle holds, that is, if f P W is such that
infsPC`

|fpsq| ą 0, then 1
f
P W (see, e.g., [12, Thm. 1], and also [9] for

an elementary proof).
We say that a Banach algebra B Ă H 8 has the Wiener property if

(W ) For all f P B satisfying infsPC`
|fpsq| ą 0, we have 1

f
P B.
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The Banach algebra H 8 also possesses the Wiener property pW q (see,
e.g., [3, Theorem 2.6]).

Lemma 1.1. Au possesses the Wiener property pW q.

Proof. Let f P Au satisfy d :“ infsPC`
|fpsq| ą 0. As Au Ă H 8, it

follows that 1
f
P H 8. Moreover, 1

f
is uniformly continuous in C`: for

all z, w P C`, we have

| 1
f
pwq ´ 1

f
pzq| “ |fpzq´fpwq|

|fpzq||fpwq|
ď 1

d2
|fpwq ´ fpzq|,

and f is uniformly continuous in C`. �

Let A be a commutative unital complex semisimple Banach algebra.
The dual space A˚ of A consists of all continuous linear complex-valued
maps defined on A. The maximal ideal space MpAq of A is the set of
all nonzero multiplicative elements in A˚ (the kernels of which are then
in one-to-one correspondence with the maximal ideals of A). As MpAq
is a subset of A˚, it inherits the weak-˚ topology of A˚, called the
Gelfand topology on MpAq. The topological space MpAq is a compact
Hausdorff space, and is contained in the unit sphere of the Banach space
A˚ with the operator norm, }ϕ} “ supaPA, }a}ď1 |ϕpaq| for all ϕ P A˚.
Let CpMpAqq denote the Banach algebra of complex-valued continuous
functions on MpAq with pointwise operations and the supremum norm,
}f}8 “ supϕPM(A) |fpϕq| for all f P CpMpAqq. The Gelfand transform
pa P CpMpAqq of an element a P A is defined by papϕq “ ϕpaq for all
ϕ P MpAq.

Main result. The main result in this article is the following.

Theorem 1.2. Let m P N, and let the Banach algebra B be such that

‚ P Ă B Ă H 8

‚ there exists a C ą 0 such that for all f P B, }f}8 ď C}f}B
‚ B possess the Wiener property pW q.

Then the maximal ideal space of B´mB is homeomorphic to DN
.

Here each factor D has the usual Euclidean topology inherited from C,

and DN
is given the product topology.

In [19, Proposition 1.3], it was shown that the maximal ideal space of
the Banach algebra B´mH8 is homeomorphic to D form P N, whereH8

is the classical Hardy algebra of bounded and holomorphic functions
on the open unit disk D, and B´mH8 “ tf P H8 : f 1, ¨ ¨ ¨ , f pmq P H8u.
Theorem 1.2 is the ‘Dirichlet series analogue’ of this result.
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Examples. Examples of such Banach algebras B are H 8,Au and W .
Given a subset S Ă iR, the Banach algebra

H 8
S :“ tf P H 8 : f has a continuous extension to Su,

with pointwise operations and the norm } ¨ }8, is also one that satisfies
the assumptions of Theorem 1.2. The Wiener property pW q for H 8

S

is an immediate consequence of that for H 8.

Organisation of the article. In Section 2, we will prove Theorem 1.2,
and in Section 3, some corollaries (existence of logarithms, projective
freeness, infinite Bass stable rank) are given as applications.

2. Proof of the main result

We first show the following, which will be used to prove Theorem 1.2.

Lemma 2.1. If m P N, then B´mB Ă Au.

Proof. Let f P B´mB. As m ě 1, f 1 P B Ă H 8. For z, w P C`,
let rz, ws denote the straight line segment joining z to w. By the fun-
damental theorem of contour integration, fpwq ´ fpzq “

ş

rz,ws
f 1pζqdζ.

By the ML-inequality,

|fpwq ´ fpzq| ď |w ´ z| max
ζPrz,ws

|f 1pζq| ď |w ´ z|}f 1}8.

Thus f is uniformly continuous in C`. Also f P H 8. So f P Au. �

Let p1 ă p2 ă p3 ă ¨ ¨ ¨ be the sequence of all primes arranged in
increasing order. By the fundamental theorem of arithmetic, every
n P N can be written uniquely in the form

n “
8
ś

k“1

p
νpkpnq

k ,

where νpkpnq P N Y t0u denotes the largest integer m such that pmk
divides n.

Proof of Theorem 1.2. For λ“pλ1, λ2, ¨ ¨ ¨ qP D
N
, define ϕλ :PÑ C by

ϕλppq “
N
ř

n“1

an
8
ś

k“1

λ
νpkpnq

k , for p “
N
ř

n“1

an

ns
P P.

For each n P N˚, since

|
8
ś

k“1

λ
νpkpnq

k | ď 1

we have that |ϕλppq| ď }p}1 ď }p}8. As m ě 1, it follows from
Lemma 2.1 that B Ă Au. So P is dense in B´mB in the } ¨ }8-
norm. Given f P B´mB, let ppnqnPN be a sequence in P that converges
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to f in the } ¨ }8-norm. Then pϕλppnqqnPN is a Cauchy sequence in C
(as |ϕλppnq ´ ϕλppmq| ď }pn ´ pm}8), and hence convergent. Define

ϕλpfq “ lim
nÑ8

ϕλppnq.

Then ϕλ : B´mB Ñ C is well-defined: if prpnqnPN is another sequence of
approximating Dirichlet polynomials, then

|ϕλprpnq´ϕλppnq| ď }rpn´pn}8 ď }rpn´f}8`}f´pn}8 Ñ 0 as nÑ 8,

and so lim
nÑ8

ϕλprpnq “ lim
nÑ8

ϕλppnq ` lim
nÑ8

ϕλprpn´ pnq “ lim
nÑ8

ϕλppnq ` 0.

We claim that the map ϕλ is a complex homomorphism. It is enough
to show linearity and multiplicativity on P, since it then extends to
B´mB by the algebra of limits, and the continuity of addition, scalar
multiplication and multiplication on P in the } ¨ }8-norm. Linearity is
clear, so we just show multiplicativity:

ϕλppqq “
N
ř

n“1

p
ř

d|n

adbn
d
q
8
ś

k“1

λ
νpkpnq

k “
N
ř

n“1

p
ř

d|n

adbn
d
q
8
ś

k“1

λ
νpkpdq`νpkp

n
d
q

k

“ p
N
ř

d“1

ad
8
ś

k“1

λ
νpkpdq

k qp
N
ř

rd“1

b
rd

8
ś

k“1

λ
νpkp

rdq

k q “ ϕλppqϕλpqq

for all p “
N
ř

n“0

an

ns
, q “

N
ř

n“0

bn

ns
P P. Finally, ϕλ is bounded, because

|ϕλpfq| “
ˇ

ˇ lim
nÑ8

ϕλppnq| “ lim
nÑ8

|ϕλppnq| ď lim
nÑ8

}pn}8 “ }f}8

ď C}f}B ď C}f}B´mB,

where f P B´mB, and ppnqnPN is an approximating sequence in P for
f in the } ¨ }8-norm. Note that in particular, we have }ϕλpfq| ď }f}8.

Let λ “ pλ1, λ2, ¨ ¨ ¨ q,µ “ pµ1, µ2, ¨ ¨ ¨ q be distinct elements of DN
.

Then there exists an k˚ P N such that λk˚
‰ µk˚

. As B´mB contains
1
2s
, 1
3s
, ¨ ¨ ¨ P P, we have

ϕλp
1

psk˚

q “ 1 ¨ λ01 ¨ ¨ ¨λ
0
k˚´1

λ1k˚
λ0k˚`1

¨ ¨ ¨ “ λk˚
‰ µk˚

“ ϕµp
1

psk˚

q.

Thus λ ÞÑ ϕλ embeds DN
in the maximal ideal space of B´mB.

We claim that the inclusion DN
Ă MpB´mBq is continuous. Let

pλiqiPI be a net in DN
which is convergent to λ P DN

. Let ε ą 0 and

f P B´mB. Then there exists a

p “
N
ř

n“0

bn

ns
P P,

such that }f ´ p}8 ă ε
4
. Let p1, ¨ ¨ ¨ , pkN be the only primes which

appear in the prime factorisation of 1, ¨ ¨ ¨ , N . If < denotes the order
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on the directed set I, then there exists an i˚ P I such that for all i < i˚,

N
ř

n“1

|bn|
ˇ

ˇ

kN
ś

k“1

λ
νpkpnq

i,k ´
kN
ś

k“1

λ
νpkpnq

i˚,k

ˇ

ˇ ă ε
2
,

and so |ϕλi
ppq ´ ϕλppq| ď

N
ř

n“1

|bn|
ˇ

ˇ

kN
ś

k“1

λ
νpkpnq

i,k ´
kN
ś

k“1

λ
νpkpnq

i˚,k

ˇ

ˇ ă ε
2
. Thus

|ϕλi
pfq ´ ϕλpfq| ď |ϕλi

ppq ´ ϕλppq| ` |ϕλi
pf ´ pq| ` |ϕλpf ´ pq|

ď ε
2
` }f ´ p}8 ` }f ´ p}8 ď

ε
2
` ε

4
` ε

4
“ ε

for all i < i˚. Hence pϕλi
qiPI converges to ϕλ in the weak-˚ topology,

i.e., the Gelfand topology on the maximal ideal space of B´mB.
Next we will show that every complex homomorphism is of the form

ϕλ for some λ P DN
.

Let ϕ PMpB´mBq. Define

λ “ pppϕp
1

2s
q, ϕp

1

3s
q, ϕp

1

5s
q, ¨ ¨ ¨ qqq.

We first show that for all f P B´mB, we have

|ϕpfq| ď }f}8. p˚q

Suppose first that f also satisfies

inf
sPC`

|fpsq| ą 0.

As B possesses the Wiener property pW q, we have 1
f
P B. Differenti-

ating, we get successively that

p
1

f
q1 “ ´

f 1

f 2
, p

1

f
q2 “ ´

f2f 2 ´ 2fpf 1q2

f 4
, ¨ ¨ ¨ ,

and so (since f, f 1, ¨ ¨ ¨ , f pmq P B), we conclude that 1
f
P B´mB. So

we have shown that if 0 does not belong to the closure of the range of

f P B´mB, then 1
f
P B´mB, and in particular 1 “ ϕp1q “ ϕpfqϕp 1

f
q,

showing that ϕpfq ‰ 0. Replacing f by f´c, where c P C, we conclude

that if c does not belong to the closure of the range of f , then ϕpfq ‰ c.

Thus ϕpfq belongs to the closure of the range of f . In particular,

|ϕpfq| ď }f}8, as wanted.

Applying this to f :“ 1
psk

yields |λk| ď 1, k P N˚, and so λ P DN
.

Since B´mB Ă Au, any f P B´mB can be approximated in the } ¨ }8-
norm by a sequence ppnqnPN of Dirichlet polynomials. But (˚) shows
that ϕ is continuous in the } ¨ }8-norm, giving

ϕpfq“ϕp lim
nÑ8

pnq“ lim
nÑ8

ϕppnq“ lim
nÑ8

ϕλppnq“ϕλp lim
nÑ8

pnq“ϕλpfq.
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We have seen that the Gelfand topology of the maximal ideal space

of B´mB is weaker/coarser than the product topology of DN
. As the

Gelfand topology is Hausdorff, and DN
is compact (Tychonoff’s theo-

rem), the two topologies coincide (see, e.g., [18, 14, §3.8], stating that

if τ1 Ă τ2 are topologies on a set X, such that τ1 is Hausdorff and τ2 is

compact, then τ1 “ τ2). �

Remark 2.2. The theorem and its proof above also works for m “ 0

if B is Au or W . The description of the maximal ideal space of W as

being homeomorphic to DN
was shown in [21, Theorem 1.5].

3. Some consequences

Throughout this section, we will assume that m P N, and B is a Banach
algebra such that

‚ P Ă B Ă H 8

‚ there exists a C ą 0 such that for all f P B, }f}8 ď C}f}B
‚ B possess the Wiener property pW q.

Contractibility of MpB´mBq. Recall that a topological space X is
contractible if the identity map idX : X Ñ X is null-homotopic, i.e.,
there exist an element x˚ P X and a continuous map H : r0, 1sˆX Ñ X
such that Hp0, ¨q “ idX and Hp1, xq “ x˚ for all x P X.

Corollary 3.1. MpB´mBq is contractible.

Proof. It suffices to show DN
is contractible. Let x˚“0“ppp0, 0, ¨ ¨ ¨ qqqPDN

,

and Hpt,xq“p1´tqx“pppp1´tqx1, p1´tqx2, ¨ ¨ ¨ qqq for x “ pppx1, x2, ¨ ¨ ¨ qqq P D
N

and t P r0, 1s. Then H is continuous, Hp0, ¨q “ idX , and Hp1,xq “ x˚
for all x P DN

. �

Existence of logarithms. For a unital commutative complex Banach
algebra A, the multiplicative group of all invertible elements of A is
denoted by A´1. Then eA :“ tea : a P Au is a subgroup of A´1. By
the Arens-Royden theorem (see, e.g., [17, Theorem, p.295]), the group
A´1{eA is isomorphic to the first Čech cohomology group H1pMpAq,Zq
of MpAq with integer coefficients. For background on Čech cohomology,
see, e.g., [8]. For a contractible space, all cohomology groups are trivial
(see, e.g., [8, IX, Theorem 3.4]).

Corollary 3.2. pB´mBq´1 “ eB
´mB.
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Projective freeness. For a commutative unital ring A with unit el-
ement denoted by 1, Anˆn denotes the n ˆ n matrix ring over A, and
GLnpAq Ă Anˆn denotes the group of invertible matrices. A commuta-
tive unital ring A is projective free if every finitely generated projective
A-module is free. If A-modules M,N are isomorphic, then we write
M – N . If M is a finitely generated A-module, then (i) M is free if
M – Ak for some k P N Y t0u, and (ii) M is projective if there exists
an A-module N and an n P NY t0u such that M ‘N – An. In terms
of matrices (see, e.g., [7, Proposition 2.6]), the ring A is projective free
if and only if every idempotent matrix P is conjugate (by an invertible
matrix S) to a diagonal matrix with elements 1 and 0 on the diagonal,
i.e., for all n P N and every P P Anˆn satisfying P 2 “ P , there exists
an S P GLnpAq such that for some k P NY t0u, S´1PS “ r Ik 0

0 0 s.
In 1976, it was shown independently by Quillen and Suslin that if

F is a field, then the polynomial ring Frx1, . . . , xns is projective free,
settling Serre’s conjecture from 1955 (see [13]). In the context of a
commutative unital complex Banach algebra A, [5, Theorem 4.1] (see
also [4, Corollary 1.4]) says that the contractibility of the maximal ideal
space MpAq is sufficient for A to be projective free.

Corollary 3.3. B´mB is a projective free ring.

Bass stable rank. In algebraic K-theory, the notion of stable rank of
a ring was introduced to facilitate K-theoretic computations [2]. Let
A be a unital commutative ring with unit element denoted by 1. An
element pa1, ¨ ¨ ¨ , anqPA

n is unimodular if there exist b1, ¨ ¨ ¨ , bn P A such
that b1a1 ` ¨ ¨ ¨ ` bnan “ 1. The set of all unimodular elements of An is
denoted by UnpAq. We call pa1, ¨ ¨ ¨ , an`1q P Un`1pAq reducible if there
exist x1, ¨ ¨ ¨ , xn PA such that pa1`x1an`1, ¨ ¨ ¨ , an`xnan`1q PUnpAq.
The Bass stable rank of A is the least n P N for which every element in
Un`1pAq is reducible. The Bass stable rank of A is infinite if there is
no such n. The fact that the Bass stable rank of the infinite polydisc
algebra ApD8q is infinite was shown in [14, Proposition 1]. Analogously,
we show the following (see also [15, Theorem 1.6], where a similar idea
was used to show that the Bass stable rank of H 8 is infinite).

Corollary 3.4. The Bass stable rank of B´mB is infinite.

Proof. Fix n P N. Let f1, ¨ ¨ ¨ , fn`1 P P Ă B´mB be given by

f1“
1

2s
, ¨ ¨ ¨ , fn“

1

psn
, fn`1“

n
ś

j“1

`

1´
1

ppjpn`jqs

˘

.
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Then pf1, ¨ ¨ ¨ , fn`1q P Un`1pB
´mBq because by expanding the product

defining fn`1, we obtain

fn`1 “ 1´
1

2s
¨ g1 ´ ¨ ¨ ¨ ´

1

psn
¨ gn “ 1´ f1g1 ´ ¨ ¨ ¨ ´ fngn,

for suitably defined g1, ¨ ¨ ¨ , gn P P Ă B´mB, and so with gn`1 :“ 1,
we get f1g1`¨ ¨ ¨`fngn`fn`1gn`1 “ 1. Let pf1, ¨ ¨ ¨ , fn`1q be reducible,
and x1, ¨ ¨ ¨ , xn P B

´mB be such that
` 1

2s
` x1fn`1, ¨ ¨ ¨ ,

1

psn
` xnfn`1

˘

P UnpB
´mBq.

Let y1, ¨ ¨ ¨ , yn P B
´mB be such that

` 1

2s
` x1fn`1

˘

y1 ` ¨ ¨ ¨ `
` 1

psn
` xnfn`1

˘

yn “ 1.

Taking the Gelfand transform, and denoting the variable in the infinite

polydisc DN
by z “ pz1, z2, z3, ¨ ¨ ¨ q, we obtain

pz1`px1 pfn`1qpy1`¨ ¨ ¨`pzn`pxn pfn`1qpyn “ 1. p‹q

Let x :“ ppx1, ¨ ¨ ¨ , pxnq. For z “ pz1, ¨ ¨ ¨ , znq P Cn, we define

Φpzq“

"

´xpz1, ¨ ¨ ¨ , zn, z1, ¨ ¨ ¨ , zn, 0, ¨ ¨ ¨ q
n
ś

j“1

p1´|zj|
2q if |zj|ă1, j“1, ¨ ¨ ¨ , n,

0 pP Cnq otherwise.

Then Φ is a continuous map from Cn into Cn. We have that Φ vanishes
outside Dn, and so

max
zPDn

}Φpzq}2 “ sup
zPCn

}Φpzq}2,

where } ¨ }2 denotes the usual Euclidean norm in Cn. This implies that
there must exist an r ě 1 such that Φ maps K :“ rDn

into K. As K
is compact and convex, by Brouwer’s Fixed Point Theorem (see, e.g.,
[18, Theorem 5.28]) it follows that there exists a z˚ P K such that
Φpz˚q “ z˚. Since Φ is zero outside Dn, we see that z˚ P Dn. Let
z˚ “ pλ1, ¨ ¨ ¨ , λnq. Then for each j P t1, ¨ ¨ ¨ , nu, we obtain

0 “ λj ` pxjpλ1, ¨ ¨ ¨ , λn, λ1, ¨ ¨ ¨ , λn, 0, ¨ ¨ ¨ q
n
ś

k“1

p1´|λk|
2q

“ λj ` ppxj pfn`1qpλ1, ¨ ¨ ¨ , λn, λ1, ¨ ¨ ¨ , λn, 0, ¨ ¨ ¨ q. p‹‹q

But from (‹), we have
n
ř

j“1

pzj ` pxj pfn`1qpyj
ˇ

ˇ

pλ1,¨¨¨ ,λn,λ1,¨¨¨ ,λn,0,¨¨¨ q
“ 1,

which together with (‹‹) yields 0 “ 1, a contradiction. As n P N was
arbitrary, it follows that the Bass stable rank of B´mB is infinite. �
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Remarks 3.5.

(1) For Banach algebras, an analogue of the Bass stable rank, called
the topological stable rank, was introduced in [16]. Let A be a
commutative complex Banach algebra with unit element 1. The
least n P N for which UnpAq is dense in An is called the topolog-
ical stable rank of A. The topological stable rank of A is infinite
if there is no such n. For a commutative unital semisimple com-
plex Banach algebra, the Bass stable rank is at most equal to its
topological stable rank (see, e.g., [16, Corollary 2.4]). It follows
from Corollary 3.4 that the topological stable rank of B´mB is
infinite for all m P N.

(2) The Krull dimension of a commutative ring A is the supremum
of the lengths of chains of distinct proper prime ideals of A. If
a ring has Krull dimension d, then its Bass stable rank is at
most d ` 2 (see, e.g., [11]). It follows from Corollary 3.4 that
the Krull dimension of B´mB is infinite for all m P N.
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