MAXIMAL IDEAL SPACE OF SOME
BANACH ALGEBRAS OF DIRICHLET SERIES

AMOL SASANE

ABSTRACT. Let J#% be the set of all Dirichlet series f = i o
(where a, € C for each n) that converge at each s € (C+,n§1ch
that |[flo = supsec, [f(s)| < 0. Let Z = H# be a Banach
algebra containing the Dirichlet polynomials (Dirichlet series with
finitely many nonzero terms) with a norm | - |5 such that the in-
clusion & < H#* is continuous. For m € N = {1,2,3,---}, let

0% denote the Banach algebra consisting of all f € % such

that f/,---, f™ € 9%, with pointwise operations and the norm
[£llo=maa = 5 &7
holds for # (that is, infsec, |f(s)| > 0 implies % € A), it is shown
that for all m e N, the maximal ideal space M(0-"%) of 0-" A
is homeomorphic to D', where D = {z € C: |z| <1}. Examples
of such Banach algebras are %, the subalgebra o7, of J#* con-

sisting of uniformly continuous functions in C,, and the Wiener

2. Assuming that the Wiener 1/f property

algebra # of Dirichlet series with | f, = DZC] lan| < 0. Some
n=1
consequences (existence of logarithms, projective freeness, infinite

Bass stable rank) are given as applications.

1. INTRODUCTION

The aim of this article is to determine the maximal ideal space of
a particular family {0~ %},en (defined below) of Banach algebras
that are contained in the Hardy algebra #* of Dirichlet series. The
motivation is twofold: there has been old and recent interest in studying
various Banach algebras of Dirichlet series (see e.g. [6], [10], [21]),
and the Banach algebras 07 % we study are also the ‘Dirichlet series
analogue’ of the Banach algebras 0~™H® previously studied in [19] in
the context of the classical Hardy algebra H* of the disc.
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Set C, := {s € C: Re(s) > 0}. Let % be the set of all Dirichlet series
f= Z %, where a, € C for each n € N, that converge for all s € C,,
such that Iflo := supgec, |f(s)| < co. With pointwise operations and

the supremum norm, 77 * is a Banach algebra.

The Banach algebras 07"Z%. Throughout, & < J% will denote
a Banach algebra with a norm | - ||,. For m € N = {1,2,3,---}, let
0" A denote the Banach algebra consisting of all f € % such that
'y, f™ e B, with pointwise operations and the norm

m ]
|llea= 8 2

We note that if f = i Z—" converges for all s € C,, then it converges

n=1

uniformly on compact sets contained in C, , and hence by Weierstrass’s
theorem on uniform limits of holomorphic functions, f is obtained by

termwise differentiation, so that for all £ € N, we have

fO = 3 (=1)"(log n)e% in C,.
n=1

Let & denote the set of Dirichlet polynomials, that is, Dirichlet series
with finite support,

@:{p: a"'NEN Gl,",CLNEC}Ce%pOO.

Let o7, be the subset of J#% of Dirichlet series that are uniformly
continuous in C,. Another description of .7, is that it is the closure of
Dirichlet polynomials in the | - [ -norm, see, e.g., [1 Theorem 2.3].

Let # denote the set of all Dirichlet series [ = Z  such that

H.f”l Z |an’ < 0.

n=1

With pointwise operations and the || - [; norm, # is a Banach algebra.
It is clear that

W < o, c .
In the case of #, an analogue of the classical Wiener 1/f lemma

([20, p.91]) for the unit circle holds, that is, if f € # is such that
infeec, |f(s)] > 0, then % €W (see, e.g., [12, Thm. 1], and also [9] for

an elementary proof).
We say that a Banach algebra # < °* has the Wiener property if

(W) For all f e £ satistying infsc, |f(s)] > 0, we have % € A.
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The Banach algebra #* also possesses the Wiener property (W) (see,
g., [3, Theorem 2.6]).

Lemma 1.1. &7, possesses the Wiener property (W).

Proof. Let f € 4, satisfy d := infec, |f(s)] > 0. As &, < %, it
follows that % € . Moreover, % is uniformly continuous in C,: for
all z,w e C,, we have

L) — L(2)] = LWL < 3 p(w) - 1(2)],
and f is uniformly continuous in C, . U

Let A be a commutative unital complex semisimple Banach algebra.
The dual space A* of A consists of all continuous linear complex-valued
maps defined on A. The mazimal ideal space M(A) of A is the set of
all nonzero multiplicative elements in A* (the kernels of which are then
in one-to-one correspondence with the maximal ideals of A). As M(A)
is a subset of A* it inherits the weak-* topology of A*, called the
Gelfand topology on M(A). The topological space M(A) is a compact
Hausdorff space, and is contained in the unit sphere of the Banach space
A* with the operator norm, |¢| = sup,ca, joj<1 [#(a)] for all ¢ € A*.
Let C(M(A)) denote the Banach algebra of complex-valued continuous
functions on M(A) with pointwise operations and the supremum norm,
1flo = supgenmqay 1f ()| for all f e C(M(A)). The Gelfand transform
a € C(M(A)) of an element a € A is defined by a(p) = ¢(a) for all
v e M(A).

Main result. The main result in this article is the following.

Theorem 1.2. Let m € N, and let the Banach algebra % be such that

o P B < H?
o there exists a C' > 0 such that for all f € B, |f|o < C|fl2
o A possess the Wiener property (W).

Then the mazimal ideal space of 0~ is homeomorphic to D

Here each factor D has the usual Euclidean topology inherited from C,
and D is given the product topology.

In [19, Proposition 1.3], it was shown that the maximal ideal space of
the Banach algebra 0~ H* is homeomorphic to D for m € N, where H®
is the classical Hardy algebra of bounded and holomorphic functions
on the open unit disk D, and 0" H® = {f e H® : f',.-- , f(™ e H®}.
Theorem is the ‘Dirichlet series analogue’ of this result.
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Examples. Examples of such Banach algebras % are 5%, o7, and # .
Given a subset S < iR, the Banach algebra

H = {f e A" : f has a continuous extension to S},

with pointwise operations and the norm | - ||, is also one that satisfies
the assumptions of Theorem . The Wiener property (W) for J#5°
is an immediate consequence of that for .72%.

Organisation of the article. In Section[2] we will prove Theorem|[I.2]
and in Section , some corollaries (existence of logarithms, projective
freeness, infinite Bass stable rank) are given as applications.

2. PROOF OF THE MAIN RESULT
We first show the following, which will be used to prove Theorem [I.2]
Lemma 2.1. I[f me N, then 0™ %A < <7,.
Proof. Let f € 07™AB. Asm =1, f'e B < H#*. For z,w € C,,

let [z, w] denote the straight line segment joining z to w. By the fun-
damental theorem of contour integration, f(w) — f(z) = S[z ] f(¢)dc¢.
By the M L-inequality,

£0) = S < o = 2] s PO < = 217
Thus f is uniformly continuous in C,. Also f e 5. So f € «,. [

Let p1 < po < p3 < --- be the sequence of all primes arranged in
increasing order. By the fundamental theorem of arithmetic, every
n € N can be written uniquely in the form

pp(n)

0
n:Hpk; )
k=1

where v, (n) € N U {0} denotes the largest integer m such that p}’
divides n.

Proof of Theorem[1.3. For A= (A, g, -+ )€ D', define py: 2 — C by
N s ’/Pk('n’) N Qp,

ea(p) = L an [N, forp=3 "€ P

n=1 k=1 n=1MN

For each n € N, since
0 vp,(n)
[T A <1
k=1

we have that [px(p)] < |pli < |pllo. As m > 1, it follows from
Lemma that B < «f,. So & is dense in 0"™% in the | - |-

norm. Given f € 07™%, let (p,)nen be a sequence in &2 that converges
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to f in the | - [o-norm. Then (©x(pn))nen is a Cauchy sequence in C
(as |ox(Pn) — @a(Pm)] < ||Pn — Pm] ), and hence convergent. Define

PA(f) = lim ox(pn)-

Then @y : 07" % — C is well-defined: if (P, )nen is another sequence of
approximating Dirichlet polynomials, then

() = 2x(Pn)] < [Pn—Pale < |Pu— Flo 1 f =Pl — 0 25 2 = o,
and so lim ¢a(Pn) = Hm a(pa) + lm x(Dy —pa) = lm oa(pa) +0.

We claim that the map ) is a complex homomorphism. It is enough
to show linearity and multiplicativity on &2, since it then extends to
07" by the algebra of limits, and the continuity of addition, scalar

multiplication and multiplication on & in the | - |,-norm. Linearity is
clear, so we just show multiplicativity:

o N O l/pk(’ﬂ) - N o Vpk(d)+Vpk(%)
ealpg) = X (X agbs) [T A" = X (X agbz )T Ay
n=1 d|n k=1 n=1 d|71, k=1
N 2 )y X o\ vpy(d)
= (X aalT A2 6711 A7) = walp) wala)
d=1 k=1 d=1 k=1

N(L N
forallpzzn—’:,qzz]

%e . Finally, px is bounded, because
n=0 n=0

()l =1 lim @x(pa)| = lim [oa(pa)| < T pale = [f]ec
n n n—aoo
< CO|flls < C| fllo-ms

where f € 07 %A, and (p,)nen 1S an approximating sequence in & for
f in the | - |»-norm. Note that in particular, we have | (f)| < [|f]o0-

Let A = (A1, Ag, -+ ), = (1, o, - -+ ) be distinct elements of D
Then there exists an k, € N such that Ay, # pp,. As 07™Z contains

3,35, € P, we have

1 1
PAC) = T AT N A A e = Ak # i, = o)

D, Dk,

Thus A — @ embeds D' in the maximal ideal space of 07" A.

We claim that the inclusion D' < M(0-™%) is continuous. Let
(Ai)ier be a net in D" which is convergent to A € D" Let e > 0 and
f e 07™%. Then there exists a

p= % bii € ‘@7
n=0 T

such that ||f — plle < §. Let p1,---,pry be the only primes which

appear in the prime factorisation of 1,---, N. If > denotes the order
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on the directed set I, then there exists an 7, € I such that for all i = 7,,

S ol [T 45" =TT A < 5

N kn Vpkn Vpp(n) .
and so [, (p) = ea(®)| < 3 [bul [T NZ" H XY < €. Thus

lox. (f) — oa(H)] < lex(p) — ea@)] + lox. (f = )| + lea(f —p)
<5+ [f—plw Sgtiti=

for all ¢ %= i,. Hence (py,)ier converges to ¢y in the weak-= topology,
i.e., the Gelfand topology on the maximal ideal space of 07" %.
Next we will show that every complex homomorphism is of the form

y for some X\ € D.
Let ¢ € M(07™%). Define

1 1 1
A= (@(;% 90(§)> ¢(§)7 ).
We first show that for all f € 07" %, we have
(N < 1f]o- ()

Suppose first that f also satisfies
inf |f(s)| > 0.
SE(C+

As % possesses the Wiener property (W), we have % € %#. Differenti-
ating, we get successively that

W Ly _ P20

(?) - f27 (f) Iz ) )
and so (since f, f’,---, f™ e 2B), we conclude that % € 0"A. So
we have shown that if 0 does not belong to the closure of the range of

f e o ™%, then % € 0"™%, and in particular 1 = (1) = gp(f)(p(%),
showing that ¢(f) # 0. Replacing f by f —e¢, where ¢ € C, we conclude
that if ¢ does not belong to the closure of the range of f, then p(f) # c.
Thus ¢(f) belongs to the closure of the range of f. In particular,

lo(H)] < |Iflle, as wanted.
Applying this to f := 1% yields [M\;| < 1, ke N,, and so A e o
k:

Since 0" A < o, any f € 07" A can be approximated in the |- |-
norm by a sequence (p,)neny of Dirichlet polynomials. But () shows
that ¢ is continuous in the | - [-norm, giving

p(f)=(lim pn) = lim o (p,) = lim ox(pn) =@a(lim p,) = ex(f)-
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We have seen that the Gelfand topology of the maximal ideal space
of 07™% is weaker/coarser than the product topology of D'. As the
Gelfand topology is Hausdorff, and D is compact (Tychonoff’s theo-
rem), the two topologies coincide (see, e.g., [I8] 14, §3.8], stating that
if 3 © 1 are topologies on a set X, such that 71 is Hausdorff and 7 is
compact, then 7 = 73). 0

Remark 2.2. The theorem and its proof above also works for m = 0
if #1is a7, or # . The description of the maximal ideal space of # as
being homeomorphic to D' was shown in [21, Theorem 1.5].

3. SOME CONSEQUENCES

Throughout this section, we will assume that m € N, and 4 is a Banach
algebra such that

e P RBcH™”
o there exists a C' > 0 such that for all f € B, ||flle < C|f|2
o A possess the Wiener property (W).

Contractibility of M(07"%). Recall that a topological space X is
contractible if the identity map idy : X — X is null-homotopic, i.e.,
there exist an element z, € X and a continuous map H : [0, 1] x X — X
such that H(0,-) = idx and H(1,z) = z, for all x € X

Corollary 3.1. M(0""%) is contractible.

Proof. Tt suffices to show D" is contractible. Let @, =0=(0,0,--)eD
and H(t,z) = (1—-t)x = ((1—t)z1, (1=t)29, - - - ) for @ = (21, 29,---) €D
and t € [0,1]. Then H is continuous, H(0,-) = idx, and H(1,x) = «,
forallzeD . 0

Existence of logarithms. For a unital commutative complex Banach
algebra A, the multiplicative group of all invertible elements of A is
denoted by A~!. Then e? := {¢* : a € A} is a subgroup of A~!. By
the Arens-Royden theorem (see, e.g., [I7, Theorem, p.295]), the group
A~1/e? is isomorphic to the first Cech cohomology group H'(M(A),Z)
of M(A) with integer coefficients. For background on Cech cohomology,
see, e.g., [§]. For a contractible space, all cohomology groups are trivial
(see, e.g., [8, IX, Theorem 3.4]).

Corollary 3.2. (07"%B) ™1 =7 "%,
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Projective freeness. For a commutative unital ring A with unit el-
ement denoted by 1, A™*™ denotes the n x n matrix ring over A, and
GL,,(A) ¢ A™*" denotes the group of invertible matrices. A commuta-
tive unital ring A is projective free if every finitely generated projective
A-module is free. If A-modules M, N are isomorphic, then we write
M =~ N. If M is a finitely generated A-module, then (i) M is free if
M =~ A* for some k € N u {0}, and (ii) M is projective if there exists
an A-module N and an n € N u {0} such that M @ N =~ A". In terms
of matrices (see, e.g., [7, Proposition 2.6]), the ring A is projective free
if and only if every idempotent matrix P is conjugate (by an invertible
matrix S) to a diagonal matrix with elements 1 and 0 on the diagonal,
i.e., for all n € N and every P € A™*" satisfying P? = P, there exists
an S € GL,(A) such that for some k e Nu {0}, S71PS = [+ ?].

00
In 1976, it was shown independently by Quillen and Suslin that if
F is a field, then the polynomial ring F[z1, ..., x,] is projective free,

settling Serre’s conjecture from 1955 (see [13]). In the context of a
commutative unital complex Banach algebra A, [5, Theorem 4.1] (see
also [4, Corollary 1.4]) says that the contractibility of the maximal ideal
space M(A) is sufficient for A to be projective free.

Corollary 3.3. 07" % is a projective free ring.

Bass stable rank. In algebraic K-theory, the notion of stable rank of
a ring was introduced to facilitate K-theoretic computations [2]. Let
A be a unital commutative ring with unit element denoted by 1. An
element (ay,- - ,a,)€A™ is unimodular if there exist by, - - - , b, € A such
that bya; + -+ - + b,a,, = 1. The set of all unimodular elements of A™ is
denoted by U, (A). We call (a1, - ,ans1) € Upy1(A) reducible if there
exist 1, -+, 2, € A such that (ay +x1ap41, -+, QG +xpa,.1) € Uy (A).
The Bass stable rank of A is the least n € N for which every element in
Un+1(A) is reducible. The Bass stable rank of A is infinite if there is
no such n. The fact that the Bass stable rank of the infinite polydisc
algebra A(D®) is infinite was shown in [14] Proposition 1]. Analogously,
we show the following (see also [15, Theorem 1.6, where a similar idea
was used to show that the Bass stable rank of 7% is infinite).

Corollary 3.4. The Bass stable rank of 072 is infinite.

Proof. Fix ne N. Let fi, -+, foy1 € & < 07X be given by

n

1 1
flzf e fn:pf%, fn+1:H(1_M'

7=1



9

Then (f1, -, fat1) € Upny1(07™ZA) because by expanding the product
defining f,,.1, we obtain

1 1
fn+1:1_5'91_"'_1?'911:1_flgl_"'_fngna

for suitably defined ¢y, -+ ,g, € & < 0"™%A, and so with g, = 1,

we get flgl+' ’ '+fngn+fn+1gn+l = 1. Let (fh o 7fn+1) be reducible,
and z1,--- ,x, € 0°™% be such that

(k41 urr, o 2+ Tafurs) € U077 B),
Let 41, ,yn € 07 be such that

1 1
(g + xlfnJrl)yl +ot (PE + ajnfnJrl)yn = 1.
Taking the Gelfand transform, and denoting the variable in the infinite
polydisc D' by z = (21, 29, 23, - ), we obtain
(21+*{E\1fn+1)?[/\1+'"+(Zn+-/r\nfn+1):/y\n = 1. (*)

Let @ := (Z1, -+ ,Z,). For z = (21, -+, 2,) € C", we define

& { —iE(Zl,--' s s 21,0 72’07"')121(1_"2]"2) if |Zj|<17 j:l’... , 1,
z frnd .
0 (e C") otherwise.

Then @ is a continuous map from C" into C". We have that ® vanishes
outside D™, and so

max [@(2)[, = sup |®(z)]2,

zeDn zeCn

where | - ||z denotes the usual Euclidean norm in C". This implies that
there must exist an 7 > 1 such that ® maps K := rD" into K. As K
is compact and convex, by Brouwer’s Fixed Point Theorem (see, e.g.,
[18, Theorem 5.28]) it follows that there exists a z, € K such that
®(z,) = z.. Since ® is zero outside D", we see that z, € D". Let

Ze = (A1, -+, Ay). Then for each j € {1,--- ,n}, we obtain
0:)\j+§j<)\17"'>)\n7)\_17"'a>\n70a"') (1_‘)\]6‘2)
1
= )\J + ('&:\an+1)()\17 a)\na)\la'” 7An7 7) (**)

But from (%), we have

s

>
Il

n ~
S+ Ao a0 =

which together with (x*) yields 0 = 1, a contradiction. As n € N was
arbitrary, it follows that the Bass stable rank of 7% is infinite. [J
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Remarks 3.5.

11

12

}
}

(1) For Banach algebras, an analogue of the Bass stable rank, called
the topological stable rank, was introduced in [16]. Let A be a
commutative complex Banach algebra with unit element 1. The
least n € N for which U, (A) is dense in A™ is called the topolog-
ical stable rank of A. The topological stable rank of A is infinite
if there is no such n. For a commutative unital semisimple com-
plex Banach algebra, the Bass stable rank is at most equal to its
topological stable rank (see, e.g., [16, Corollary 2.4]). It follows
from Corollary that the topological stable rank of 07" % is
infinite for all m € N.

(2) The Krull dimension of a commutative ring A is the supremum
of the lengths of chains of distinct proper prime ideals of A. If
a ring has Krull dimension d, then its Bass stable rank is at
most d + 2 (see, e.g., [11]). It follows from Corollary that
the Krull dimension of 074 is infinite for all m € N.
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