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SUMMARY

We propose a test for the Kronecker product structure of a factor loading matrix implied
by a tensor factor model with Tucker decomposition in the common component. By defining
a Kronecker product structure set, we determine whether a tensor time series has a Kro-
necker product structure, equivalent to its ability to decompose the series according to a
tensor factor model. Our test is built on analysing and comparing the residuals from fitting
a full tensor factor model, and the residuals from fitting a factor model on a reshaped ver-
sion of the data. In the most extreme case, the reshaping is the vectorization of the tensor
data, and the factor loading matrix in such a case can be general if there is no Kronecker
product structure present. Our test is also generalized to the Khatri-Rao product structure
in a tensor factor model with canonical polyadic decomposition. Theoretical results are
developed through asymptotic normality results on estimated residuals. Numerical experi-
ments suggest that the size of the tests approaches the pre-set nominal value as the sample
size or the order of the tensor increases, while the power increases with mode dimensions
and the number of combined modes. We demonstrate our tests through extensive real data
examples.

Some key words: Factor-structured idiosyncratic error; Tensor refold; Tensor reshape; Weak factor.

1. INTRODUCTION

With rapid advances in information technology, high-dimensional time series data
observed in tensor form are becoming increasingly available for analysis in fields such as
finance, economics, bioinformatics and computer science, to name but a few areas. In many
cases, low-rank structures observed in the tensor time series can be exploited, facilitating
analysis and interpretation. The most commonly used devices are the canonical polyadic
(CP) decomposition and the multilinear/Tucker decomposition of a tensor, leading to CP
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tensor factor models (Chang et al., 2023; Han et al., 2024b) and Tucker tensor factor models
(Chen et al., 2022, 2024; Chen & Lam, 2024; Han et al., 2024a) for tensor time series factor
models, respectively. While tensor time series can be transformed back to vector time series
through vectorization and be analysed using traditional factor models for vector time series,
the tensor structure of the data is lost and hence any corresponding interpretations from it.
Moreover, vectorization significantly increases the dimension of the factor loading matrix
relative to the sample size, potentially leading to less accurate estimation and inferences
(Chen & Lam, 2024).

However, a tensor factor model comes with its assumptions. In using the Tucker decom-
position in particular, a tensor factor model assumes that the factor loading matrix for the
vectorized data is the Kronecker product of lower-dimensional factor loading matrices. For
instance, suppose that a mean-zero matrix Y; € R%1*% is observed ateacht = 1,..., T. Con-
sider a matrix factor model (first studied by Wanget al., 2019, and further extended/analysed
by, e.g., Yu et al., 2022a and Chen & Fan, 2023) of the form

Y, =A1F1A§+Ez, (1)

where F; € R"1*"2 is the core factor, Ay € R%* is the mode-k factor loading matrix, i.e.,
A1 and A; are respectively the row and column loading matrices, and E; is the noise. The
vectorization of (1) is

vec(Y;) = (Ar ® A1) vec(Fy) + vec(Er) = Ay vec(Fy) + vec(Ey), (2)

where Ay = A> ® A, which is a vector factor model for the time series data {vec(Y;)} with
factor loading matrix 4. Clearly, the implicit assumption of a Kronecker product structure
for Ay when using a matrix factor model for matrix-valued time series data should be the
first aspect to check before applying such a factor model.

Motivated by this simple example, we propose a test in this paper to primarily assess the
Kronecker product structure of the factor loading matrix implied in the vectorized data
when using a Tucker tensor factor model (TFM), and extend it to higher-order tensors.
He et al. (2023) also noted this implicit assumption in a Tucker matrix factor model and
proposed testing the boundary cases where each column (or row, respectively) of the data
follows a factor model with a common factor loading matrix, but possibly distinct factors,
or where the entire matrix is simply pure noise. Model (2) with a general Ay also implies a
vector factor model with potentially different factor loading matrices for each column (or
row, respectively) of the data, but with shared factors. To explore the data as a matrix, con-
nectedness through having a set of shared common factors rather than having the same
factor loading matrix with all distinct factors is more meaningful. Practically, (2) is an alter-
native model that fits the data more easily than the boundary cases of He et al. (2023), since
the data still follow a more general factor model, though the implied Kronecker product
structure in the factor loading matrix Ay is lost. This comes as no surprise, then, as in all of
the tests in He et al. (2023) for their real data analyses, they cannot reject the null hypothesis
of a matrix factor model. An easier alternative, such as (2) with just a general 4, can pro-
vide a more critical test for the null hypothesis of a matrix factor model. See our portfolio
return and macroeconomic indices examples in § 5.2 for cases where our test can reject the
null hypothesis of a matrix factor model, while He et al. (2023) cannot.

We also stress that our model is fundamentally different from those used to test for a Kro-
necker product structure in the covariance matrix of the data. For example, Yu et al. (2022b)
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and Guggenberger et al. (2023) both proposed tests for the Kronecker product structure of
the covariance matrix of vectorized matrix data. For model (1), even in the simplest hypo-
thetical case where E; and F; are independent and F; contains independent standard normal
random variables, we have

covivec(Y;)} = AZA}- ® AIAT + cov{vec(Ey)},

so the covariance matrix is never exactly of Kronecker product structure because of E;.
Moreover, even with E; = 0, both AlAI and AQAE are of low rank, which is different from
the full-rank component matrices in the two papers mentioned above.

Our contributions in this paper are three-fold. First, as a first in the literature, we propose
a test to assess a direct Tucker TFM against the alternative of a TFM in which the Kronecker
product structure lost in some of its factor loading matrices. As shown in § 3, for higher-
order tensors, testing against a TFM of a time series can be conducted on a TFM for the
reshaped data, but not necessarily on the vectorized data. Moreover, our test can be easily
generalized to test the Khatri-Rao product structure in CP TFM; see Appendix B within
the Supplementary Material and the real data analysis in § 5.2. All these features give rise to
flexibility and, in fact, statistical power in practical situations. Second, our analysis allows
for weak factors, and our theoretical results explicitly characterize the rates of convergence.
Last but not least, as a useful by-product, we developed tensor reshaping theorems that can
be insightful and useful in their own right.

2. NOTATION AND TENSOR RESHAPING
2.1. Notation

Throughout this paper, we use a lowercase letter, capital letter and calligraphic letter,
e, x, X, X, to denote a scalar or a vector, a scalar or a matrix and a tensor, respectively.
We also use x;, Xj;, X;., X.; to respectively denote the ith element of a vector x, the (i, /)th
element of X, the ith row vector (as a column vector) of X and the ith column vector of X.
We use ® to represent the Kronecker product, © the Khatri-Rao product, x the Hadamard
product and o the tensor outer product; see the Supplementary Material for more details.
By convention, the total Kronecker or Khatri-Rao product over an index set is computed
in descending index order. We use a < b to denote « = O(b) and b = O(a). Hereafter, given
a positive integer m, define [m] = {1, 2, ..., m}. The ith largest eigenvalue of a matrix X is
denoted by 4;(X). We denote by tr(X) the trace of X, and by XT the transpose of X . Define
d =Tl di» di = d/dy, r = TIh_, rx and r = r/ry.

Sets are also denoted by calligraphic letters. For a given set A, we denote by |.A4| and A;
its cardinality and the ith element, respectively. We use || - || to denote the spectral norm of a
matrix or the L, norm of a vector, and || - | 7 to denote the Frobenius norm of a matrix. We
use || - |lmax to denote the maximum absolute value of the elements in a vector, a matrix or a
tensor. The notation || - ||{ and || - ||oo denote the L and Lo, norms of a matrix, respectively,
defined by || X[l = max; ), |Xjj| and || X ||oc = max; Zj | Xj;|. Without loss of generality, we
always assume that the eigenvalues of a matrix are arranged in descending order, as are their
corresponding eigenvectors.

For the rest of this section, we briefly introduce the notation and operations for
tensor data. For more details on tensor manipulations and decompositions, we refer the
reader to the Supplementary Material. A multi-dimensional array with K dimensions
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is an order-K tensor, with its kth dimension termed mode k. For an order-K tensor
X=X, ... i) e RO*xdk 3 column vector (Xiy, oo ikorviyigets - ig)ied,] Tepresents a
mode-k fibre for tensor X'. We denote by maty (X)) e R%>dx (or sometimes X for con-
venience) the mode-k unfolding/matricization of a tensor, defined by placing all mode-k fibres

into a matrix. We denote by X' x ;4 the mode-k product of a tensor X’ with a matrix 4, defined
by

maty (X X A) = Amaty(X).

We use the notation vec(-) to denote the vectorization of a matrix or the vectorization
of the mode-1 unfolding of a tensor. The refoldingl/tensorization of a vector x € Rk
on {di,...,dx} is defined to be an order-K tensor fold(x, {d|, ...,dx}) € R1**dk guch
that x = vec[fold(x, {d1,...,dg})]. The refolding/tensorization of a matrix X € R%>*dk on
{di,...,dx} along mode k is defined to be foldi (X, {d|,...,dk}) e R4 xxdg guch that
X = maty[fold (X, {d1,...,dg})].

2.2. Introduction to tensor reshaping

In this subsection, we introduce tensor reshaping. Given an order-K tensor X € R xdk

and a set with ordered, strictly ascending elements {ay,...,ar} < [K], the reshape(-,-)
operator is defined as follows.
If ¢ =1,

reshape(X, {a1}) = foldg (maty, (X), {d1, ..., dy—1,day+1, ..., dk, du; });
if € =2,

reshape(X, {ay, az})
= fOldK*l(Xal’\'azs {dla v adalfls da1+1a R dazfla da2+1, ceey sz daldaz})a

where

matal [fOId(mataz (X)la {dla ] d£12—1, da2+17 st dK})]

2

Kyymay =
matal [fOId(mataz (X)duz" {dla cees d{lz—l: daz-i—la ] dK})]

if € >3,

reshape( X, {ai, ..., ar})
= reshape[reshape(X, {ar_1, ar}),{ai,...,ar—2, K — 1}].

Hence, reshaping an order-K tensor along {a1, ..., a} results in an order-(K — £ + 1) tensor.
A heuristic view of reshape(X, {a1, ..., ar}) is that all modes of X with indices {a1, ..., ar}
are merged into a single mode acting as the last mode as a result. One may recover X
from reshape(X, {ay,...,ar}), given the original dimension of X and {ay,...,a,}. To help
the reader understand the reshape operator, Fig. 1 is presented as a visualization, and we
refer the reader to the Supplementary Material for more details on tensor reshaping.
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Mode 4 didads
Mode 3
Mode-4 unfolding
Model | = - >
dy
Mode 2
di xdaxds xdy i
XYeR I MAT4(X)
Each row: fold and L7
mode-3 unfolding s
dids

p
( Merged mode (3,4)

Je
Fold

d3 d4 Mode 1

Mode 2
RESHAPE(X, {3,4}) € R¥1xd2x(dsda)

Each row: fold and
mode-2 unfolding

Each row: as a
vector and stack

************* > didadzds

dadsdy

[RESHAPE(X, {3,4})]2~3

Fold (transpose
in this case)

RESHAPE(X, {2, 3,4})]1~2 RESHAPE(X, {1,2,3,4}) € Riidzdads

RESHAPE(X, {2,3,4}) € R x(d2dsds)

Fig. 1. Illustration of the reshape operator for an order-4 tensor X’ along .A. The last step in the reshape with
A =1{3,4},{1,2,3,4} and {2, 3, 4} is respectively denoted by the first horizontal solid arrow, the second horizontal
solid arrow, and the vertical solid arrow.
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3. FACTOR MODEL AND TESTING ITS KRONECKER PRODUCT STRUCTURE

3.1. Factor model, Kronecker and Khatri—Rao product structures

This subsection introduces the concept of Tucker TFM and CP TFM with Kronecker
and Khatri-Rao product structures, respectively, and establishes the technical details for
the testing problem. For a more integrated reading experience, the reader can go straight
to § 3.2, where equations and terms are referred back to § 3.1 whenever necessary. For the
details on testing the Khatri-Rao product structure for CP TFM, we refer the reader to
Appendix B in the Supplementary Material. We begin by introducing sets that facilitate
describing our models.

DEFINITION 1 (KRONECKER AND KHATRI-RAO PRODUCT STRUCTURE SETS). Given an ordered
set of positive integers {by, ..., by}, the Kronecker product structure set is defined as

Kpx-oxb, =14 A=A, ® -+ ® Ay such that, for each j € [x],
Aj e R has rank U KL b;, ||Aj,.i||2 = bj}’i, 0j,i € 0, 17}.

The Khatri-Rao product structure set, denoted K'Ryp, x...xp,, is defined similarly except ®
is replaced by ©, and u; = - - - = uy.

The Kronecker product structure set defined in Definition 1 characterizes the factor load-
ing matrix in the Tucker TFM, while the Khatri—-Rao product structure set characterizes that
of the CP TFM. Requiring d;; > 0 is to ensure a certain factor strength in each loading
matrix. See Assumptions 1 and 2 in § 4.1 below for the technical details. The form of factor
models is depicted below, featuring either a Kronecker or Khatri—-Rao product structure.

DEFINITION 2 (FACTOR MODELS AND PRODUCT STRUCTURES). Given a time series of mean-
zero order-K tensors Y, € R4 % xdx for t€[T] and a set with ordered, ascending elements
A={ai,...,ac} C[K], we say that {),} follows a Tucker TFM along A if, for t € [T],

K—{(+1
reshape(Vr, A) = Creshape,t + greshape,t = ]:reshape,z ‘Xl AreshapeJ + greshape,t: 3)
]:

where reshape()y, A) € RPVXPK=t+1 (for some p1, . . ., pk—¢+1) IS the order-(K — € + 1) tensor
obtained by reshaping Y; along A; the common component Creshape,: consists of the core fac-

101 Freshape,s € R™V>FK=t+1 and loading matrices Areshape,j € RP*™, with rank n; < p; for
Je€K — €+ 1]; and Eeshape,; is the noise. We also make the following classifications.

(1) The series {YV} has a Kronecker product structure if Areshape K—¢+1 € ICda1 X xdgy
(i) The series {Y;} has no Kronecker product structure along A if Areshapek—c+1 ¢
Ky, x-xdy, -
al ar

Furthermore, we say that {Y;} follows a CP TFM along A if the core factor Fieshape,; is diagonal
such that my = -+ = wg_¢y1, and (Freshape,d)ii....ix_e1 F 0 0nly if iy = -+ = ixk_¢y1. The
classifications are similarly defined for a CP TFM, except the Kronecker product structure is
replaced by the Khatri—Rao product structure and Kdal X x g by ’CRdal XX gy

Definition 2 formally defines two forms of factor models, where testing the Kronecker
product structure for a Tucker TFM is the main focus of this paper. Our test can also
be directly extended to testing the Khatri-Rao product structure for a CP TFM as a
by-product; see the discussion in § 6 below and Appendix B in the Supplementary Material.
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A key piece of information in Definition 2(i) is that if the Kronecker product structure
holds along some A then it holds along any A; see the discussion below Theorem 1 for
details. If £ = 1 in Definition 2, i.e., A contains only one element (representing the mode
index), for each order-K tensor ), reshape(), {a1}) is the order-K tensor constructed from
YV, by treating mode a; as mode K. Hence, a Tucker TFM of ), along {a;} reduces to the
conventional Tucker TFM (Chen et al., 2022; Barigozzi et al., 2025) of ), but with the
mode indices changed. For instance, we may read (3) along A = {K} as

Vi = Creshape,t + greshape,t = ]:reshape,l >1< Areshape,l >2< T I>§ Areshape,K + greshape,t-

From the above, Definition 2(i) automatically describes {);} if £ = 1, and the Kronecker
product structure is only nontrivial for ¢ > 2 (hence, K > 2). To demystify Definition 2.1,
we next present Theorem 1, which, as a first in the literature, explicitly states the equivalence
of the Tucker TFM under tensor reshaping.

THEOREM 1 (TENSOR RESHAPING I). Using the notation in Definition 2, {);} following a
Tucker TFM along any given A = {ay,...,a¢} C [K], as in (3), with a Kronecker product
structure, is equivalent to {);} following a Tucker TFM such that

Vi=C+&E=F ?A1>2<"'1>§AK+51, 4)

where C; is the common component, F; € R"V>**'K s the core factor, each Ay € RAUXTk yith
re K dj is the mode-k loading matrix and &, is the noise. More importantly, with the definition
A* = [K]\ A, we have

Fi reshape,r = reshape(F;, A), greshape,z = reshape(&r, A),
Areshape,K—f—i—l = ® A;, AreshapeJ = AA;.* (ie [K —¢]).
ieA '

Moreover, (4) uniquely determines (3), and (3) determines (4) up to an arbitrary set {A;}ic A.
Using the same notation as above, {);} following a CP TFM along A with a Khatri-Rao
product structure is equivalent to {Y,} following a CP TFM as in (4) with diagonal F;. In this
case, the reshaped factor structure is the same as above except that Areshape. k—t+1 = ;e 4 Ai
and Freshape,; 18 the order-(K — € + 1) diagonal tensor with the same diagonal entries as F;.

Theorem 1 reveals that a Tucker TFM (CP TFM) on {))} along any .4 with Kro-
necker product structure (Khatri-Rao product structure) in Definition 2 is preserved under
the reshape operator. This forms the foundation for the hypothesis test design later. The
identifications of (3) and (4) are relegated to the Supplementary Material.

3.2. A test on the Kronecker product structure

For testing of the Khatri-Rao product structure for the CP TFM, we refer the reader
to Appendix B in the Supplementary Material. The testing problem on the Kronecker
product structure is formally defined in this subsection, with an example on an order-
2 tensor (i.e., a matrix) at the end. For each re€[T], we observe a mean-zero order-K
tensor ), € R4 xdk with K > 2 (otherwise, the test is trivial, as explained in § 3.1).
Without loss of generality, let v < K be a given positive integer and define A = {v, ..., K},
which contains the mode indices along which the Kronecker product structure might be lost;
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see the alternative hypothesis A below. Suppose that {);} follows a Tucker TFM along A
as in Definition 2, with the notation therein except that we now read (3) as

v

—1
reshape(), A) = Creshape,t + greshape,t = freshape,l kxl Ak >v< Ay + greshape,t, ®)

where 4; € RG> for je[v— 11 (f v > 1) and Ay e R >V with dy = ]_[lliv d;. Essentially,
the order-v tensor reshape();, A) follows a Tucker TFM. The set {ry,...,r,_1, 7y} is assumed
known and any consistent estimators (e.g., Han et al., 2022; Chen & Lam, 2024) can be used
in practice. With Ky «...x4, defined in Definition 1, we consider a hypothesis test as follows:

Hy: {V;} has a Kronecker product structure, i.e., Ay € Kg, x...xdx

Hj: {);} has no Kronecker product structure along A, i.e., Ay & Ky, x...xdy- (6)

Besides the complexity of being a composite testing problem, the difficulty with hypotheses
(6) is compounded by the fact that ); under the alternative has no explicit form without
reshaping along A. Fortunately, the factor structure in (5) is stable under both hypoth-
eses. That is, the estimation of {Freshape,r» 41, - - - » Ay—1, Ay} is always feasible. In particular,
thanks to Theorem 1, under Hy, we have

Vi=C+&E=F x Ay x -+ x Ay x Ay X -+ X Ax +&,, (7
1 2 v—1 v v+1 K

where Aj € R%*k for k e [K] (hence, the first v — 1 loading matrices are exactly those

in (5)),
reshape(F;, A) = freshape,ta reshape(&y, A) = greshape,t, Ak @ - @ A4y, = Ay.

Example 1. Let Y; € R4 %% be a matrix-valued observation at ¢ € [T]. For the set-up, we
can only specify A = {1, 2} (which is the only nontrivial case here, as discussed in § 3.1). The
hypothesis test (6) is simplified as follows, with A reflected by the vectorization:

Hy: Y, = AleAE + E;, Hy: vec(Yy) = Apvec(Fy) + vec(E;) with Ay ¢ Ky xdy-

3.3. Constructing the test statistic

Despite the obscure Ky, ... xd, 1n (6), we may resort to the Tucker TFM in (7) under Hj.
To construct the test, we first obtain estimators for the standardized loading matrices in
(5). For je[v — 1], Q; is defined as the eigenvector matrix corresponding to the r; largest
eigenvalues of

T
1
T Z reshape()/;, A) () reshape(Y;, A)q(})’

=1

where reshape();, A)(j) is the mode-j unfolding matrix of reshape();, A); see § 2.1. Similarly,
Oy is the eigenvector matrix corresponding to the - largest eigenvalues of

T
1
T Z reshape();, A)(v) reshape(r, .A){v).
t=1
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Then the estimators for Creshape, s and Ereshape, + are respectively defined by

Creshape t = reshape(yt, ) X (Q/QJ) X (QVQV)

o

reshape ¢ = reshape()s, A) reshape t- (8)

For (7), QJ forj e [v— ]is deﬁned as the eigenvector matrix corresponding to the r; largest
eigenvalues of 7~ Z =1 YL Y, (]) Next, let R be the set of all divisor combinations of rp,
ie.,

K—v+1
R = {(m, 72, ...,TK—y+1) such that 1_[ mj =ry and each 7; € Z1 with mi < djyy }
J=1

©)

Let the mth element of R be (wu1,...,Tmk—v+1). For ief{v,...,K}, we define
Qm, as the eigenvector matrix corresponding to the 7, ;—,+1 largest eigenvalues of

T~ Z, 1 YooY )- The common component and residual estimators are hence obtained
as

A v—1 =« AT K A A
Cm,t = yt f](Q]Qj) ifv (Qm,iQm, i)a
Em,t =Vt — Cm,t. (10)

Let EN[ be the order-K tensor with the same dimension as ); such that reshape(gt,A)
Ereshape - Define k* = argminy ¢ g,{dx} and denote the mode-k* unfolding of & and 5m ¢
as E, (k+) and Em 1, (k) respectively. Theorem 2 (in § 4.2 below) tells us that there exists
m € [|R]|] such that, for each ¢ € [T], j € [d/d}~], both series defined by

1 dk* dk*
~s
Xj = — E E7 s i (= E ,
/ dyx i=1 LD Y, d m, t, (k). f

are asymptotically distributed the same under Hy, and x; , in particular is distributed the
same under either Hy or H;. Let Py ; and P, ,, ;, respectively, denote the empirical prob-
ability measures induced by the empirical cumulative distribution functions for {x; }; (7

and {y,j, }re[1):

T T
1 1
IFx,j(c) = 7 E ]l{xj,t < ¢, IFy,m,j(c) = ? E ﬂ{ym,j,t < ). (11)
=1 =1

Let gy, j(a) = inf{c | Fy j(c) > 1 — a}. The intuition here is that if Hy is satisfied then, over
different j € [d/dy+], the cumulative distribution functions Fy ;(-) and ), ;(-) should be
similar. However, if Hj is true then we expect the residuals in Em, 1, (k*) to be inflated, so
that Py, i/{vm,j,+ = qx,j(a)} is expected to be larger than a; see the theoretical statement on
this in Theorem 3 below. To incorporate this across different j € [d/dy+], we compare the
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10 Z.CEN AND C. LAM

5% quantile of 7! Zthl U{ym,j,c = qx,j(a)} over j € [d/dy+] to a, and expect it to be larger
than a under H;.

Since, with the wrong number of factors, a particular m € [|R|] will in general inflate the
residuals yy,, ;,; further, in practice, to be on the conservative side, we reject H if

1 I
mren[i‘%u {5% quantile of T ;]l{ym,j,, > gy, j(a)} overje [d/dk*]} > a, (12)
noting that exactly one element in R represents the true number of factors on the modes
with indices in 4. We also point out that there are other possible ways to aggregate the
information from each j, but (12) empirically works well and circumvents possible issues
such as heavy-tailed noise, underestimation or overestimation on the number of factors and
insufficient data dimensions. See § 5.1 below.

Remark 1. 1t is possible to perform the test directly using the number of factors for
modes in A, i.e., R only contains the (either specified or estimated) number of factors
rj,j=v,...,K,in (7). This is guaranteed by the Tucker TFM under H) in (6). However, in
practice, we usually need to estimate the number of factors that would be invalid under H
in (6). This leads to unstable estimated ranks and hence an unstable test statistic, which we
address by introducing R in (9).

4. ASSUMPTIONS AND THEORETICAL RESULTS
4.1. Assumptions

This subsection presents all the assumptions for testing Hy against H; in (6). Another
version (differing only in notation) of Assumptions 1 and 2 for the identification of (3)
and (4) is included in the Supplementary Material.

Assumption 1. For each j € [v—1], we assume that 4; in (5) is of full rank and, as d; — oo,

~12 —12
4 AJTAJ-Z]. — 4 (13)

where X 4 ; is positive definite with all eigenvalues bounded away from 0 and infinity, and

Z; is a diagonal matrix with (Z;);, < d;)""h for h e [r;] and the ordered factor strengths 1/2 <
Jj, K < < di,1 < 1. We assume that 4y also has the above form with Zy and X4
in place of Z; and X 4 ;, respectively, except that only the maximum and minimum factor
strengths are ordered, i.e., 1/2 < dy ,, <y <dp,1 < lforanyhelry].

Assumption 2. With A = {v,..., K}, we assume that, for each i€ A, A4; in (7) is of full
rank and, as d; — oo,

~1/2 ~1/2

Z\PAT 4z > 5y,

where X 4 ; is positive definite with all eigenvalues bounded away from 0 and infinity, and
Z;is a diagonal matrix with (Z;);, < PR

" for h € [r;] and the ordered factor strengths 1/2 <
Oir; <+ <051 < 1.

Assumption 3 (TIME SERIES IN Freshape, /). There exists Xeshape, 7, Of the same dimension
as ]:reshape,t such that freshape,t = Zw>0 ar, ereshape,f, (—w- The time series {Xreshape,f,t}
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Kronecker product structure in tensor factor models 11

has independent and identically distributed elements with mean 0, variance 1 and uni-
formly bounded fourth-order moments. The coefficients ay ,, satisfy ZW>0 a> ,=1and

> w0 lar,wl < ¢ for some constant c.

Assumption 4 (Decomposition of &;). The noise & (such that Eeshape,; = reshape(Ey, A))
can be decomposed as

£I=Fe,ZX1Ae,1 é "'1>;Ae,K+E£*€ta (14)

where order-K tensors F, ;€ R'«1*"*"eK and ¢ € R4 % *dg contain independent mean-
zero elements with unit variance, with the two time series {¢;} and {F,} being independent.
The order-K tensor X. contains the standard deviations of the corresponding elements
in €;, and has elements uniformly bounded. Moreover, for each k € [K], 4, € R&U>Tek ig
approximately sparse such that || 4, «[l1 = O(1).

Assumption 5 (Time series in £). There exist X, ; of the same dimension as F, ; and X, ;
of the same dimension as ¢; such that F, ; = Zq>0 Ao, qXe,1—g and €, = Zq>0 e, qXe, 1—gs
with {X, } and {X; ;} independent of each other. Moreover, { X, ;} has independent elements
while { X, ;} has independent and identically distributed elements, and all elements are mean
zero with unit variance and uniformly bounded fourth-order moments. Both {&; ;} and
{AXe,:} are independent of {Xieshape, 7, } from Assumption 3. The coefficients a., ; and ac, , are

suchthat ) - a; , = 240 a; ,=land 2 g0 lae,gls D40 lae, ¢l < ¢ for some constant c.

Assumption 6 (Rate assumptions). With g = ]_[,’le dl(zk’l and y, = df/V’l ]_[Jv:_l1 df“, assume
that all of the following terms are o(1):

26 1= )+ S 1 =0k, —1/2
—2—1 k, 19k, ry —1 %17 %%,
dg,“T 'd, , dg; ' d, ,
21 20y 1=0v )+ —1 v 1=0v,r,—1/2
dy; “T ' dy, , dy; ' dy, .

. .. St.r
Assumption 7 (Further rate assumptions). With the definitions g,, = ]_[,Ile dkk’ ¥ and

oV » 1 O . —_
P = dVV’ 4 ]_[]Yzl1 di/ ’, we assume that all of the following terms are o(dk*l):

20 1= k.1, 1 1 d?
knel?%] {dk (Td 17(5/{,1 + 1+§k, ,.1 258w ’
-kd dk k SEW

k
265 1-0.. 1 1 d?
max {dj " Ll)( =7 T 110 ) }
jel—1] Tdd; ' d. 7% ) vsvw
J
206y 1—6y 1 1 d? d d
dV( s V)( i ) ’ o2 R
Tdd,™" a4, ") VsTw Vi e
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12 Z. CEN aND C. LaM

With Assumption 1, the standardized loading matrix defined by Q; = Aij_l/ ? satisfies

Q}Qj — Xy forje[v—1],and Qy = AVZI_/I/2 satisfies 0}, Qy — X4y A similar impli-
cation holds for Assumption 2, except that Assumption 2 is only valid under the null. Hence,
with Assumption 2, Zy and X 4 p in Assumption | satisfy

Zy =2k Q- Q Zy, TAV =ZAKQ - Q Ly (15)

The factor strength requirement for A4y in Assumption 1 is satisfied by Assumption 2, since,
from (15),

K
Oi r: .
(ZV)rVrV - Hdit,i', > d?/mm > d%//z’

=y

where dpin = min;—, _ x{d; r,}. Assumption I characterizes the loading matrix behaviour
generally for (6), and the additional Assumption 2 is specific for the null. Both assump-
tions allow for weak factors that are common features in the literature (Lam & Yao,
2012; Onatski, 2012; Cen & Lam, 2025). Under the assumption that all factors are per-
vasive, (13) can be interpreted as dj_lA]TAj — X4, aligning with Assumption 3 of
Chen & Fan (2023) for matrix time series.

Assumption 3 assumes that Fieshape, ; 18 @ general linear process with weak serial depen-
dence. Theorem 1 ensures that the core factor in (7) (under Hp) retains the structure of
Assumption 3 such that

Fir = Z ag, wa, t—w

w=0

with reshape(Xy, ;, A) = Xieshape, 1, - For each k € [K], as T — oo, we have the convergence
in probability that

T
1
7 O matg(Fy) mae (F)' — 1 Iy (16)

=1

where I, is the r; x ;. identity matrix, which is direct from Proposition 1.3 in the supplement
of Cen & Lam (2025). In comparison, Barigozzi et al. (2025) assumed the form of (16)
with 7 I, replaced by a positive definite matrix. This does not imply that Assumption 3 is
particularly stronger as our factor loading matrices have already incorporated all potential
correlations through Assumptions 1 and 2.

Assumptions 4 and 5 depict a general noise time series on the factor models (5) and (7).
The noise tensor &; is allowed to be weakly dependent across modes and time, regardless of

the existence of the Kronecker product structure. From (14), we have

-1
reshape(&;, A) = reshape(F, 1, A) le Aej x (Ak Q-+ ® A))
j= v

+ reshape(Z¢, A) * reshape(e,, A),
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Kronecker product structure in tensor factor models 13

so that the structure of Assumptions 4 and 5 are preserved by reshape(&;, A). Assumption 6
details the rate assumptions on factor strengths and is hence satisfied automatically when all
factors are pervasive. Assumption 7 also concerns factor strength and holds when all factors
are pervasive if v > 1; for v = 1, Assumption 7 holds when miny ¢ (g} dx = o(T') in addition
to pervasive factors.

Remark 2. When v = 1 and all factors are pervasive, Assumption 7 requires dj, =
miny ¢ k] dx = o(T), which seems restrictive. This condition was imposed to ensure asymp-
totic normality when aggregating dy., estimated residuals in x; ; and y;, ; ,in § 3.3. However,
from the proof of Theorem 2 in the Supplementary Material, it is feasible to aggregate d,f*
forany 0 < < 2 such that df* = o(T). Therefore, Assumption 7 is in fact arguably as mild
as Assumption B5 of He et al. (2023). We do not pursue such an aggregation scheme here
to keep the practical procedure as simple as possible, but we illustrate this with numerical
results in the Supplementary Material.

4.2. Main results and practical test design

We first present below the results for our residual estimators in (8) and (10), which inspired
the testing procedure in § 3.3. Following Theorem 2, the theoretical guarantee of the test is
also provided.

THEOREM 2. Let Assumptions 1-7 hold. Using the notation in § 3.3, under Hy, there exists
m € [|R|] such that, for each t € [T], j € [d/d}],

dyx ") 2 dyx 2
S B e — i) S E o~ Ze i)
22 kl Var(fz k), l])ze o), i) 12 22 kl Var(fz k), zj)ze k), ‘}1/2

- Zj 1,

in probability, where Z; , is asymptotically standard normal and Zy, ; is independent of Zy ; for
h # €. Under H\, the asymptotic result for E; ) ;; above still holds.

THEOREM 3. Let all the assumptions in Theorem 2 hold. In addition, each element in the time

series { Xreshape,f,i}, {Xe, ¢} and {Xe 1} has sub-Gaussian tail. Using the notation in § 3.3, for any
j €ld/di+] under Hy, there exists m € [|R|] such that, as min{T,d\,...,dg} — o0,

IP)y,m,j{)/'m,j,t > @x,j(a)} <o+ OP(p)a

where

|: ma {dak*lék”‘k< 1 n 1 ) d } n d1/2:|
p= X
0 (Td_kdl_ék’l)l/z d,il—k&k‘rk)/z (gsgw)!/? 8w

< log (T)<1—[10g (@),

T logX(T) log<dV)( I log(dk)> ( 1‘[ log <dk)) a2

k=1
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14 Z.CEN AND C. LAM

5 1—0i 1 1 d
x[ max {d.]’ /"’( - + 55 2) 12}
je—111"7 (Td_kdji .111)1/2 d~( +9r)/ (rsyw)/
J

Oy 1—0yr 1 1 d d1/2
+d, ( + . ) + .
4 (Tdd;él/’l)l/2 dS+bV""V)/2 (Vst)l/z Yw

Theorem 3 suggests that if some factors are weaker then the rate in the probability state-
ment above will be inflated. When all factors are pervasive, define dmax = maxy ¢ (x{dk},
and we may simplify p as

1 dk*dmax 172 dk*dV 1/2 vl 5 K )
p= dlifz + Td + Td log(dy) ﬂlog(dk) x log”(T) Elog (dy)).

Hence, p = o(1) as long as 7T, d|,...,dk are of the same order, but it appears that, when
dy =d, ie, A = [K], the current test requires dj+ log(d) logz(T) ]—[,]le logz(dk) =o(T).
However, this can be circumvented, as explained in Remark 2. Theorem 3 presents the
grounds for our construction of the test statistic in (12). For related explanations, see the
discussions immediately after (11), and before Remark 1.

The set-up of problem (6) specifies set A, which is only needed in H; due to (7) under
Hy. 1t is straightforward to specify A for a series of matrix-valued observations (i.e., an
order-2 tensor); see Example 1. However, for a general order-K tensor with K > 3, 4 might
be misspecified without any prior knowledge. To resolve this, we now present the second
theorem on tensor reshaping, for both the Tucker TFM and CP TFM for completeness.

THEOREM 4 (TENSOR RESHAPING II). Consider a tensor time series {);} and a set of mode
indices A. With Definition 2, the time series {reshape(Vy, A)} following a Tucker TFM has a
Kronecker product structure if and only if {V;} has either a Kronecker product structure or no
Kronecker product structure along a subset of A.

The above remains true upon replacing a Tucker TFM by a CP TFM and the Kronecker
product structure by the Khatri—-Rao product structure.

Suppose now that {);} has no Kronecker product structure along some .A*. Theorem 4
tells us that testing the Kronecker product structure of the reshaped series {reshape(), A)}
effectively tests if A* C A. In light of this, a testing design is feasible when .4 is unspeci-
fied, with a minimal assumption that reshape();, [K]) = vec())) has a factor structure,
1.e., the vectorized ); follows a standard vector factor model. For illustration, consider
reshape();, [KT\ {1}) = reshape(};, {2, ..., K}), which is an order-2 tensor. Using the property
of reshape(-, -) in Appendix A in the Supplementary Material, we have

reshape{reshape(, {2, ..., K}), {1, 2}} = reshape(Ds, {1, ..., K}) = vec().

According to Definition 2, {reshape(}, {2, ..., K})} follows a Tucker TFM along {1, 2}. This
is always correctly specified since {vec());)} follows a factor model (which also implies that
A* C [K]). By Theorem 4, reshape()s, {2, ..., K}) has no Kronecker product structure if
and only if 1 € A*. Hence, in testing (6) with ), replaced by {reshape(), {2,...,K})} and
A = {1, 2}, rejection of the null implies that 1 € .A*.
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Kronecker product structure in tensor factor models 15

By the fact that {vec()/;)} with any permutation on vec());) also follows a factor model, the
above scheme is in fact valid on reshape();, [K] \ {k}) for any k € [K]. Eventually, A* can be
identified, and the above procedure is summarized in the following algorithm.

Algorithm 1. A practical testing algorithm, given an order-K tensor time series {);} with
K > 2 and vec()) following a factor model with ryec known factors.

Set A* = ¢
Fork=1tok=K
Define a test as (6) with {);} replaced by {RESHAPE()/, [K] \ {k})} and A by {1, 2}
Test the problem in the previous line using the testing procedure in § 3.3 with ry-
replaced by ryec
If the null is rejected
A* — A* U (k)
Output A*

With the output from the algorithm, we conclude that {);} has no Kronecker product
structure along A*. In practice, A* being an empty set implies that {));} has a Kronecker
product structure.

5. NUMERICAL STUDIES
5.1. Simulations

In this subsection, we demonstrate the empirical performance of our test with respect to
hypothesis (6) using Monte Carlo simulations. As discussed in § 3.1, the test is only nontrivial
when the data order K is at least 2. We therefore consider K =2 to K = 4.

The data-generating processes adapt Assumptions 3, 4 and 5. Specifically, we set the
number of factors as r, = 2 for any k € [K], and first generate F; in (7) with each element
being an independent standardized autoregressive model of order 2 with autoregressive
coefficients 0.7 and —0.3. The elements in F, ; and ¢, are generated similarly, but their
autoregressive coefficients are (—0.5,0.5) and (0.4, 0.4), respectively. The standard devia-
tion of each element in ¢, is generated by independent and identically distributed |A(0, 1)].
Unless specified otherwise, all innovation processes in constructing J;, F._; and ¢, are inde-
pendent and identically distributed standard normal. For eachj € [v—1], each factor loading
matrix A; is generated independently with 4; = U;B;, where each entry of Uj; € RG> s
independent and identically distributed A/(0,1), and B; e R%*7 is diagonal with the Ath

G
2

diagonal entry being dj_ 0 < ¢gu < 0.5. Pervasive factors have ¢j;, = 0, while weak

factors have 0 < ¢;;, < 0.5. Each entry of 4, € R%*7ej is independent and identically dis-

tributed A/ (0, 1), but with a 0.95 probability of being set exactly to 0. We set r, ; = 2 for all
j €[v— 1] throughout all experiments. For any A (specified later), we obtain

reshape (7, A) = F reshape, t» reshape (&7, A) = greshape,t-

Lastly, similar to {4;};c[y—1], We generate {4,,...,Ax}andlet Ay = Ax ® --- ® A, under
Hy, or generate Ay directly under H;. Whenever ry is required, it is computed as ]_[j cal

which has 2 combinations since we set two factors for each mode. According to (5) and
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16 Z.CEN AND C. LAM

Table 1. Test performance under Hy for various settings

K=2 K=3 K=4
dp =15 dr =30 dy =15 dr = 30 dr =10 dp, =15

T a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=>5%

a 120 2 7.1 2 7.8 1.3 5.5 1.3 5.5 1.2 5.4 1.2 5.3
360 1.1 5.7 1.2 5.9 1 5.1 1 5.2 1 5.1 1 5.1
720 1.1 5.3 1.2 5.4 1 5.1 1 5.1 1 5 1 5.1

p 120 97.4 83.6 99.6 86 100 100 100 100 100 100 100 100
360 98.8 86.2 100 84.2 100 100 100 100 100 100 100 100
720 99.4 91.6 100 92 100 100 100 100 100 100 100 100

For each setting, dj, is the same for all k € [K]. Each cellis the average of a or p computed under the corresponding
setting over 500 runs. All values have been multiplied by 102.

(7), we then respectively construct reshape()s, 4A) (and hence the corresponding );) or )y
directly.

We consider a series of performance indicators and each simulation setting is repeated
500 times. Using the notation in § 3.3, with o € {0.01, 0.05}, we calculate

T
1
a= min {— 1 > gr1(a)}t, p=1{g, < a},
meuRu{Tt; m1e 2 gxa( )}} P =1{4a }

(17)

T
1
with g, = mgl[il%l] {5% quantile of T ; Wym,j,t = qx,j(@)} overje [d/dk*]},

where a is the significance level under measure P, ,, 1, taken as the minimum over m € [|R|],
and p is an indicator function of the decision rule (12) that leads to retaining Hy. Under Hy,
we expect a to be close to o and p to be 1 according to Theorem 3.

Consider first Hy with A containing the last two modes of ), i.e., A = {1,2} for K = 2,
A = {2,3} for K = 3 and A = {3,4} for K = 4. We experiment on all pervasive factors.
Table 1 presents the simulation results under various settings for K = 2, 3,4, and all of
them align well with Theorem 3. For K = 3,4, we have p = 1 throughout, and for K = 2,
the proportion of repetitions with p = 1 generally increases with dimensions and time. The
results under H; are presented in Table 2, which confirm the power of our test. While larger
dimensions generally improve the test performance, it is unsurprising from Table 2 that,
under the same (7, d}) setting, testing the Kronecker product structure along two modes
on ), is more difficult for higher order );. This is reasonable since the testing problem (6) is
genuinely harder when Ay plays a less significant role in a higher-order dataset. To demon-
strate this, suppose that K = 3, (T, d;,d»,d3) = (360, 10, 15, 20), and that all factors are
pervasive. We experiment through A = {1, 2},{1, 3}, {2, 3}, {1, 2, 3}. The results, reported in
Table 3, indeed show that, when the tested loading matrix 4 has a larger size, the test has
larger power in general. The setting with A = {2, 3} is an exception, suggesting a potential
issue with unbalanced spatial dimensions.

In the following, we fix K = 3 and A = {2, 3} to investigate the robustness of our test.
Consider settings I and II, each with four subsettings:

(Ia) T =180, dy = d; = d3 = 15 and all factors pervasive with ¢;; = 0,
(Ib) same as (Ia), but one factor is weak with ;1 = 0.1,
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Table 2. Test performance under Hy for various settings

K=2 K=3 K=4
dp =15 dr =30 dp, =15 dr = 30 dr =10 dp =15

T a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=>5%

a 120 83.9 89.8 92.8 95.6 67.4 74.2 79 834 583 65.5 64.9 71.2
360 81.8 88.8 91.7 95.1 65.9 73.8 77.6 83.2 57.1 65.3 63.6 70.9
720 81.7 88.5 91.8 95.1 65.2 73.1 78.7 83.7 559 64 62.9 70.1

p 120 0 0 0 0 0 0 0 0 1.2 0.2 0 0
360 0 0 0 0 0 0 0 0 0.2 0 0 0
720 0 0 0 0 0 0 0 0 0.2 0 0 0

See Table 1 for an explanation of each cell. All values have been multiplied by 102

Table 3. Test performance over different A with dimension (T, d1, d», d3) = (360, 15, 20, 25)

A=1{1,2} A=1{1,3} A=1{2,3} A=1{1,2,3}
a=1% o= 5% o= 1% a = 5% a=1% o = 5% oa=1% a=5%
H, a 1 5.1 1 5.2 1 5.2 1.4 6.3
V4 100 100 100 100 100 100 100 95.6
H, a 70.2 77.5 70.5 77.9 67.3 74.8 92.7 95.9
P 0 0 0 0 0 0 0 0

See Table 1 for an explanation of each cell. The number of rows of A4y in (6) is 300, 375, 500, 7500 for A =
(1,2}, {1,3},{2,3},{1, 2, 3}, respectively. All values have been multiplied by 10?.

(Ic) same as (Ia), but both factors are weak with ¢ | = {2 = 0.1,
(Id) same as (Ia), but all innovation processes in constructing F;, F. ; and ¢, are indepen-
dent and identically distributed ¢3,
(ITa)—(IId) same as (Ia)—(Id), respectively, except that rj- is randomly specified from 2—-6 with
equal probability.

Setting (Ia) is our benchmark and all other settings feature some defects from weak factors,
heavy-tailed noise or a misspecified number of factors. Table 4 reports the results for both
Hy and H. In contrast to (Ia), all other settings have lower test power to various extents.
However, the size of the test is hardly affected by weak factors or heavy-tailed noise, as
shown by the results for settings (Ib), (Ic) and (Id). Although misspecification of the number
of factors is detrimental, our decision rule p still performs satisfactorily.

On the practical testing algorithm that does not require A to be specified, we consider
settings III and IV with K = 3, each with three subsettings:

(IlIa) T = 360, d;. = 10, all factors are strong and the series has a Kronecker product
structure,

(I1Ib) same as (I1Ia), but the data have no Kronecker product structure along {2, 3},
(I1Ic) same as (II1a), but the data have no Kronecker product structure along {1, 2, 3},
(IVa)-(IVc) same as (II1a)—(I1lc), respectively, except that 7" = 720.

Table 5 verifies that our algorithm is able to test the Kronecker product structure of given
data without prespecifying .A. The performance improves with more observations, and the
level a = 0.01 works particularly well.
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18 Z. CeN AND C. Lam
Table 4. Test performance over the subsettings of settings I and I1

(Ia) (Ib) (Ic) (Id)
a=1% o= 5% oa=1% o= 5% oa=1% o= 5% oa=1% a = 5%
Hy a 0.8 5.4 0.8 5.3 0.8 5.3 0.8 5.3
P 100 100 100 100 100 100 100 100
H, a 69.1 76.5 59.3 68.4 44.1 55.3 51.9 69.3
D 0 0 1.4 0 34 0.4 7 0.2

(ITa) (ITb) (IIc) (I1d)
a=1% o = 5% oa=1% o= 5% a=1% o = 5% a=1% o = 5%
H, a 5.4 11.3 3.5 9.1 2.1 7.4 3 9.2
D 97.2 93.2 98.8 96.6 99.8 99.6 99.6 96.4
H, a 55.3 65.2 50.4 62 37.8 50.9 424 59.6
P 34 0 1.8 0.2 3.6 0.6 12.8 0.4

See Table 1 for an explanation of each cell. All values have been multiplied by 10.

Table 5. Performance of the practical testing algorithm over the subsettings of

settings III and 1V
(I1a) (I1Ib) (Ilc) (IVa) (IVb) (IVce)
a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5% a=1% a=5%
Mode 1 0 2.4 3 20.2 100 100 0 0 0.4 22.8 100 100
Mode 2 0 3.6 100 100 100 100 0 0.4 100 100 100 100
Mode 3 0 3.4 99.8 100 100 100 0 0.2 100 100 100 100

Each cell is the fraction, multiplied by 102, of the corresponding mode identified over 500 runs for the corres-
ponding subsettings.

5.2. Real data analysis
We apply our test on four real data examples, described as follows.

(i) New York City taxi traffic. The dataset includes all individual taxi rides operated by
Yellow Taxi within Manhattan Island of New York City; see https://wwwl.nyc.
gov/site/tlc/about/tlc-trip-record-data.page for further details. It
contains trip records for the period from 1 January 2018 to 31 December 2022. We
focus on the pick-up and drop-off dates/times, and the pick-up and drop-off loca-
tions that are coded according to 69 predefined zones in the dataset. Moreover, each
day is divided into 24 hourly periods to represent the pick-up and drop-off times,
with the first hourly period spanning from 12 a.m. to 1 a.m. Hence, each day we
have ), e R9*69%24 where y; ;, 1., is the number of trips from zone i to zone i
and the pick-up time is within the i3th hourly period on day . We consider busi-
ness days and nonbusiness days separately, so that we analyse two tensor time series.
The business-day series and the nonbusiness-day series are 1260 and 566 days long,
respectively.

(i1) Fama-French portfolio returns. This is a set of portfolio return data, where stocks are
respectively categorized into ten levels based on market equity and the book-to-equity
ratio, where the latter is defined as the book equity from the last fiscal year divided
by the end-of-year market equity; both criteria use NYSE deciles as breakpoints at
the end of June each year. See https://mba.tuck.dartmouth.edu/pages/
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faculty/ken.french/Data Library/det 100 port sz.html for further
details. The stocks in each of the 10 x 10 categories form exactly two portfolios: one
being value weighted and the other equally weighted. That is, we study two sets of
10 x 10 portfolios along with their time series. We use monthly data from January 2010
to June 2021, and hence, for both value-weighted and equally weighted portfolios, we
have each of our datasets is an order-2 tensor X; € R19*10 for r e [138].

(ii1) Image recognition. This is the testing set from the Modified National Institute of Stan-
dards and Technology dataset with 10000 samples and has also been analysed by
He et al. (2023). Each image ), contains 28 x 28 pixels and is grey scale to represent
handwritten digit numbers 0-9.

(iv) Macroeconomic indices from the Organization for Economic Cooperation and Develop-
ment database. We use the same dataset, kindly provided by the authors, as He et al.
(2023), which was also analysed by Yu et al. (2022a). The data include 10 macroeco-
nomic indicators for eight countries (the United States, the United Kingdom, Canada,
France, Germany, Norway, Australia and New Zealand) over 130 quarters from 1988-
QI to 2020-Q2. Each series is transformed and standardized according to Yu et al.
(2022a).

The two taxi series are order-3 tensor time series with the first two modes representing
locations and the third representing time; hence, for interpretability, we only test their Kro-
necker product (and Khatri-Rao product) structure along A = {1, 2}, i.e., we speculate that
there is a merged location factor instead of pick-up and drop-off factors along modes 1 and
2, respectively. On the other hand, all the remaining series are order-2 tensor time series, so
we test along A = {1,2}, as explained in § 3.1. Furthermore, we remove the market effect
via the capital asset pricing model (CAPM) as

vec(Xy) = VeC(-)E) 4+ (ry =1 + vec(Dy),

where vec(X;) e R1% is the vectorized returns at time ¢, vec(X) is the sample mean of
vec(Xy), f is the coefficient vector, r; is the return of the NYSE composite index at
time ¢, 7 is the sample mean of r; and vec()s) is the CAPM residual. The least-squares
solution is

b= tli% (re — P){vec(X;) — vee(X)}
IS {ORE

b

so that the estimated residual series {J;}; [138] with Y, e R1910 5 constructed as {vec(X;) —
vec(X) — (r; — 1) f}ie138]-

Hence, we study eight time series in total: business-day taxi series, nonbusiness-day taxi
series, value-weighted portfolio series, equally weighted portfolio series, value-weighted
residual series, equally weighted residual series, image recognition series and macroeco-
nomic index series. For each series, we perform the test described in § 3.3. We also added the
results for testing the Khatri-Rao product structure for a CP TFM in Table 6 for these eight
time series. To estimate the number of factors for a Tucker TFM, we use the approaches
BCorTh by Chen & Lam (2024), iTIP-ER by Han et al. (2022) and RTFA-ER by He et al.
(2022) directly on each time series due to their large dimensions. Each mode of the first six
series has one or two estimated factors. Since the test results are similar for those rank set-
tings, we present the results with two factors on each mode and, hence, 7y = 4. Hence, we
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Table 6. Test results for the studied series

Tucker TFM CP TFM Tests in
a G a G He et al. (2023)
1% 5% 1% 5% 1% 5% 1% 5%

Business-day taxi 1.8 9.3 0.2 0.3 1.8 9.3 0.2 0.4 -

Nonbusiness-day taxi 1.8 9.5 0.4 1.1 1.8 9.5 0.5 1.9 -
Value-weighted portfolio 3.6 8.7 1.1 5.3 5.8 12.3 14 6.8 Not rejected
Equally weighted portfolio 3.6 5.1 1.8 39 43 7.2 1.8 5.8 Not rejected
Value-weighted residual 2.2 6.5 1.1 4.7 2.2 11.6 1.4 5.4 Not rejected
Equally weighted residual 1.4 5.1 1.1 4.7 2.2 5.1 1.1 4.7 Not rejected
Image recognition 0.0 0.0 0.2 0.4 0.2 0.6 1.0 2.8 Not rejected
Macroeconomic indices 5.5 10.2 2.3 6.2 5.5 10.2 2.3 6.2 Not rejected

Columns 1-4 report the results for our hypothesis of interest (6), i.e., under the Tucker TFM, with A = {1, 2}.
Columns 5-8 report similar results, but for testing the Khatri-Rao product structure under the CP TFM. We
denote g, in bold if g, > a. The last column reports the test results according to He et al. (2023) for H, versus
either Hj ow Or H) co1, With significance levels 1% and 5% both experimented. All values have been multiplied
by 10

use two factors in the testing of the Khatri-Rao product for a CP TFM in the first six time
series in Table 6. Following Yu et al. (2022a) and He et al. (2023) for a direct comparison,
we use (71, 72) = (4, 5) for the image recognition series, whereas, for the economic indicator
series, we experiment with all combinations of 7| = 1,2 and 7, = 4, 5, and present the result
for (71,72) = (2,4) as the conclusions are similar.

In addition, we also conduct the hypotheses tests of He et al. (2023) on our matrix time
series datasets. To explain their hypotheses, for a matrix time series { Y;} with Y, € RA1*4%
under the null, (7) for K = 2, we have

Ho: Yt = AlFtAE + Et,
where F; € R"*"2, However, under their two alternatives, we test
Hiow: 12 =0, Hico:r1 =0,

where, according to He et al. (2023), r; > 0, = 0 (respectively r» > 0,r; = 0) denotes a
one-way factor model along the row dimension, so that Y; = 41 F) ; + E; with F; ; e R" xd,
(respectively the column dimension, so that Y, = Fz,,AE + E; with F>; € R4>2) and r| =
r» = 0 denotes the absence of any factor structure, so that Y; = E;. All hyperparameter
set-ups in Table 8§ and 9 of He et al. (2023) are experimented on and all conclusions are the
same.

Table 6 reports @ and g, defined in (17), with @ = 0.01,0.05, together with the corres-
ponding tests by He et al. (2023). For our hypothesis of interest, there is no evidence to reject
the null for the two taxi series, but there is mild evidence (especially at the 1% level, with a
observed to be mildly larger than 1%) to conclude that, for the Fama—French time series,
there is no Kronecker product structure along {1, 2}. In other words, there is evidence to
suggest that the portfolio return series have structures deviating from the low-rank structure
along their respective categorizations by market equity and book-to-equity ratio, implying
that the vectorized data may have a more distinct factor structure.

Unsurprisingly, the evidence for rejecting the null hypothesis of a Khatri-Rao product
structure when using the CP TFM for both portfolio time series is slightly stronger than
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that for rejecting the Kronecker product structure using the Tucker TFM. This is because,
at both a = 1%, 5%, the corresponding ¢, values under the CP TFM are larger than those
under the Tucker TFM. This should be expected as the CP TFM using two factors here is
a constrained version of the Tucker TFM using (71,7,) = (2,2). Although our procedure
does not directly test the choice between the Tucker TFM and CP TFM, it suggests using the
Tucker TFM on a dataset if its Khatri-Rao product structure is rejected, but the Kronecker
product structure is not. Otherwise, the CP TFM is preferred if neither structure is rejected,
e.g., the results for the taxi series in Table 6.

Furthermore, the comparisons between the portfolio and residual series justifies the
removal of the market effect, which is intuitive since the market effect should be pervasive
in financial return data and is irrelevant to our categorizations.

For the image recognition series, the null is not rejected, which seems reasonable as the
image alignment is important in recognizing digits. More interestingly, compared with all
previous test results, our null is significantly rejected on the macroeconomic index data with
a clearly higher than the test levels. This suggests that the phenomenon observed in, e.g.,
Chen & Fan (2023) and He et al. (2023), where the estimated ranks of the matrix factor
model fluctuate across different estimation methods, is likely due to pseudo ranks rather
than insufficient cross-sectional dimensions. Lastly, for all datasets, we cannot reject the
null by considering those alternative hypotheses considered in He et al. (2023).

6. DiIscUSSION

The factor models considered in Definition 2 are based on either a Tucker or CP decom-
position, and this paper focuses on the former since CP decomposition is a special case of
Tucker decomposition. Other tensor decompositions are possible, such as the low separation
rank decomposition (Taki et al., 2024), which generalizes Tucker decomposition further. It
is also easy to check that Theorem 1 holds for such a decomposition.

A more important remark is that, although this paper focuses on testing the Kronecker
product structure in a Tucker TFM, our test is readily applicable to testing the Khatri-Rao
product structure in a CP TFM; see the technical details in the Supplementary Material,
particularly Appendix B therein. Although a direct extension of our test exists, it certainly
merits developing more powerful tests by leveraging estimators specific to the CP TFM. This
should also shed light on testing the CP TFM against the Tucker TFM, as demonstrated
in the real data analyses, thereby addressing the problem of specifying the forms of tensor
factor models.

SUPPLEMENTARY MATERIAL

The Supplementary Material includes further details on the product notation, tensor
reshaping and model identification, additional remarks, details of testing the Khatri-Rao
product structure and proofs of all the theorems and auxiliary results. The testing pro-
cedures and tensor reshaping in this paper can be implemented with our R package KOFM
available on CRAN (R Development Core Team, 2025).
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