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Abstract

We analyse how post-trade netting in over-the-counter derivatives markets affects sys-
temic risk. In particular, we focus on two post-trade netting services that rely on multilat-
eral netting techniques: portfolio rebalancing and portfolio compression. First, we provide
mathematical characterisations of their netting mechanisms and explain their relationship.
Then, we analyse the effects of post-trade netting from a network perspective by considering
contagion arising from defaults on variation margin payments. We provide sufficient condi-
tions for post-trade netting to reduce systemic risk and show that post-trade netting can be
harmful. We also explore the implications particularly when institutions strategically react
to liquidity stress by delaying their payments.

1 Introduction

In the last decade, regulatory reforms to enhance the resilience of over-the-counter (OTC)
derivatives markets provide incentives for market participants to use post-trade risk reduction
(PTRR) services, which apply multilateral netting techniques to help mitigate risks and manage
collateral obligations efficiently.1 More recently, the European Securities and Markets Authority
(ESMA) summarises that “PTRR transactions are successfully undertaken today and have
reduced a considerable amount of risks in the market”, (ESMA, 2020b, p. 3).

The main services used in this context are portfolio compression and portfolio rebalancing,
see IOSCO (2024)2. Portfolio compression consists of replacing, removing or adding new trades
usually with the aim to reduce gross positions while keeping net positions for each counterparty
unchanged. Portfolio rebalancing, also known as counterparty risk rebalancing and counterparty
risk optimisation, consists of adding new trades usually with the aim to reduce bilaterally netted
gross positions while keeping net positions for each counterparty unchanged.

PTRR services typically consist of the following three steps (see ESMA (2020b)): First,
participants submit their portfolio information to a third-party service provider (not a party
to the transactions) and specify risk tolerances. Second, the service provider runs its optimisa-
tion algorithms and informs each participant of their new portfolio positions. Third, the new
positions are established once all participants agree (otherwise, the exercise is void).

These services aim to mitigate operational and counterparty risks in existing derivatives
portfolios while not materially changing the market risk. They reduce the complexity of the
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1The incentives are partly attributable to the Uncleared Margin Rules and the Leverage Ratio requirements.
See Duffie (2018) for an overview of the post-crisis regulatory reforms.

2Recently, a third service has been considered in this context, namely basis risk mitigation (IOSCO, 2024)
which is also called basis risk optimisation (FCA, 2024). Since, basis risk optimisation is concerned with risks
such as strike risk and fixing risk (IOSCO, 2024) which are different types of risk, we will not consider it here.

1

mailto:l.veraart@lse.ac.uk
mailto: y.zhang300@lse.ac.uk.


intermediation chains (ESRB, 2020), a crucial factor affecting contagion. But this does not au-
tomatically imply that they reduce systemic risk. We will use a network approach to investigate
the consequences of these services for systemic risk.

The main contributions of this paper are twofold. First, we define the notion of a post-trade
netting (PTN-) exercise and then show that portfolio rebalancing and portfolio compression are
special cases of a PTN-exercise. To be able to provide this unifying perspective, we propose what
we believe is the first formal mathematical characterisation of portfolio rebalancing. We also
formally characterise the relationship between portfolio rebalancing and portfolio compression
(Theorem 2.10).

Second, we extend the existing literature on the relationship between post-trade netting
services and systemic risk in several dimensions. Our analysis is based on the clearing framework
of Veraart (2020), a generalisation of the framework of Eisenberg & Noe (2001) and Rogers &
Veraart (2013). We consider variation margin (VM) payment networks in OTC derivatives
markets as e.g. in Paddrik et al. (2020); Veraart (2022). Previous literature has focused on
portfolio compression and implications for systemic risk (Veraart, 2022). We provide what we
believe are the first results on the consequences of a general PTN-exercise that includes both
portfolio rebalancing and portfolio compression for systemic risk. A key insight is that several
implications for systemic risk are solely driven by the fact that PTN-exercises do not change the
net positions of individual counterparties. We also discuss the implications of adding additional
constraints (such as a reduction in gross positions, or a reduction in bilaterally netted positions,
or a reduction in total payment obligations, etc.) for systemic risk.

Another extension of our work is that we consider the implications of PTN-exercises for
systemic risk both from an ex post and an ex ante perspective. The ex post analysis compares
the outcome in the original and in the PTN-network after a shock; the ex ante analysis considers
both networks prior to a shock and investigates the resilience of the networks to a potential
future shock.

Our ex post analysis builds on Veraart (2022) and extends some results to general PTN-
exercises and to general fixed points that characterise the equilibrium (i.e., fixed points that are
not necessarily the greatest fixed point). Our main result, Theorem 4.1, shows that no defaults
among participants of a PTN-exercise is sufficient for reducing systemic risk when considering
the greatest fixed point. We show that this result carries over to the least fixed point only
under some additional conditions. We also show that no defaults among participants in the
PTN-network is also a sufficient condition for systemic risk reduction (Proposition 4.3).

It has been shown in Veraart (2022) that under zero recovery rates, portfolio compression
with certain constraints always leads to a reduction in systemic risk in the compressed system
compared to the original system when considering the greatest fixed point. We show that this
result carries over to the least fixed point under the same conditions, but it does not carry over
to general PTN-exercises, in which case they can be harmful, i.e., lead to a default caused by
contagion that only arises in the PTN-network but not in the original network (Theorem 4.4).

The consideration of other fixed points (not restricted to the greatest) is another contribution
of our work. The least fixed point is of particular interest here. It has been shown by Csóka
& Herings (2018) that decentralised clearing procedures usually result in the least fixed point.
Also, Bardoscia et al. (2019) develop a framework in the spirit of decentralised clearing, in
which institutions react strategically to liquidity stress by delaying their payments. We show
that the approach by Bardoscia et al. (2019) is mathematically equivalent to considering the
least clearing vector in the Rogers & Veraart (2013) model under zero recovery rates (Theorem
4.6).

Our ex ante analysis builds on the work by Glasserman & Young (2015) and applies it to
both the original and the PTN-network. Specifically, we show that if the sufficient conditions
identified by Glasserman & Young (2015) for contagion to be impossible or weak hold in the
original network, then they also hold in the PTN-network that satisfies an additional condition
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(Proposition 4.7).
The rest of the paper is organised as follows. In the remainder of this section, we discuss the

related literature. Section 2 introduces a unifying mathematical characterisation of post-trade
netting exercises and provides a novel mathematical characterisation of a portfolio rebalancing
exercise. It then shows that both portfolio rebalancing and portfolio compression are special
types of a post-trade netting exercise and we establish the mathematical relationship between
portfolio rebalancing and portfolio compression. Section 3 describes the framework for assessing
systemic risk. Section 4 presents the main results on when post-trade netting exercises reduce
systemic risk. Section 5 concludes. The Appendix contains all the proofs of the results as well
as some additional discussions and examples.

1.1 Related literature

Post-trade netting mechanisms have been developed throughout Europe since the thirteenth
century—they were used by merchants in the early modern fairs to clear bills of exchange; we
refer to Börner & Hatfield (2017) for some historical background.

The literature on recent multilateral netting activities has mainly been focused on centralised
netting via the central counterparties (CCPs). For example, Duffie & Zhu (2011) provide a
framework for multilateral netting by CCPs to point out a trade-off in netting efficiency between
central clearing and bilateral clearing; Glasserman et al. (2016) analyse illiquidity associated
with netting by multiple CCPs; and Amini et al. (2016) show that partial multilateral netting
can have adverse effects on network contagion. Meanwhile, there has not been much literature
on post-trade netting services. We are not aware of any work that examines the effects of
portfolio rebalancing and possible implications for systemic risk.

For portfolio compression, there are two strands of literature. The first mainly focuses
on compression algorithms. O’Kane (2017) proposes several optimisation-based algorithms for
portfolio compression and analyses their performance on exposure reduction. Similarly, D’Errico
& Roukny (2021) study the efficiency of portfolio compression with different levels of preference
and use a transaction-level data set to learn empirically how much market excess portfolio
compression can eliminate.

The second strand explores the risk implications of portfolio compression using network
modelling. Veraart (2022) derives necessary conditions for portfolio compression to be harmful
to the system and shows how the potential harmfulness can arise. Schuldenzucker & Seuken
(2020) apply the Rogers & Veraart (2013) model to investigate the compression incentives and
when compression can bring negative effects to the detriment of the system. Amini & Feinstein
(2023) consider an optimal network compression problem where systemic risk measures are
adopted in the objective function. Amini & Minca (2020) have looked further into the change
of seniority structure of claims that implicitly occurs when networks are changed either by
central clearing or portfolio compression.

2 A unifying characterisation of post-trade netting exercises

2.1 The financial market

We consider a financial system comprised of financial institutions N = {1, 2, ..., N} with N ≥ 3,
which are typically major dealer banks that are active in the global derivatives markets. For
simplicity, we refer to them as “banks”. A wide range of non-banks that trade in derivatives
markets use post-trade netting services,3 and all our results also apply to them.

Banks are connected by derivatives contracts, described by a graph represented by the
corresponding notional matrix C ∈ [0,∞)N×N , where the ij-th entry Cij denotes the notional

3See https://osttra.com/news/trioptima-named-best-compression-and-optimization-service/.
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amount of liabilities from bank i to bank j that arise from trading derivatives, and Cii = 0 for
all i ∈ N . The bilaterally netted notional matrix corresponding to C is given by Cbi, where
Cbi
ij = max (Cij − Cji, 0) for all i, j ∈ N . The net exposures of C are given by C⊤1−C1 ∈ RN ,

where 1 is the column vector containing only 1s, and the gross exposures of C are C⊤1 + C1.
In particular, the net exposures of C and Cbi coincide for all C (but the same does not usually
hold for the gross exposures).

We assume that the derivative contracts are traded over-the-counter (OTC) and are fungible,
such as single-name Credit Default Swap (CDS) contracts written on the same reference entity
with the same maturity date—in which case Cij represents the notional amount that bank i
has promised to bank j if a credit event of the underlying reference entity occurs.4

2.2 Mathematical characterisation of post-trade netting exercises

We now introduce the mathematical characterisation of post-trade netting exercises, which
embed the main features of PTRR services. In particular, we will see that both portfolio
rebalancing and portfolio compression can be interpreted as a post-trade netting exercise.

Definition 2.1 (Post-trade netting exercise). Let L,LP ∈ [0,∞)N×N and P ⊆ N . We refer
to (L,P, LP) as a post-trade netting exercise (PTN-exercise) and to the elements of P as the
participants if they satisfy LP

ij = Lij ∀ (i, j) /∈ P × P and∑
j∈P

(LP
ji − LP

ij) =
∑
j∈P

(Lji − Lij) ∀ i ∈ P. (1)

We refer to (1) as the PTN-contraint.

Derivatives positions can only change between pairs where both parties are participants; the
PTN-constraint ensures that the net positions remain the same after the PTN-exercise.

Remark 2.2. (L,P, LP) is a PTN-exercise if and only if (LP ,P, L) is a PTN-exercise.

While post-trade netting takes place on notional positions, it is mathematically convenient
to define the PTN-exercise for matrices that are not necessarily notional matrices but represent
the associated liabilities that arise from these notional positions, e.g., variation margin payment
obligations. We will discuss this mapping from notional positions to liabilities in Section 3.

Often additional constraints are imposed on PTN-exercises. The following constraints will
later be important for our theoretical results.

Definition 2.3. Let (L,P, LP) be a post-trade netting exercise. We refer to the PTN-matrix
LP as super-conservative, if

(LP)ij ≤ Lbi
ij ∀i, j ∈ N , (2)

conservative, if

(LP)ij ≤ Lij ∀i, j ∈ N , (3)

aggregate-conservative, if ∑
j∈N

LP
ij ≤

∑
j∈N

Lij ∀i ∈ N , (4)

4The derivative contracts are comparable in the sense that they have the same fundamental characteristics
such as maturity and underlying. CDS contracts have been standardised in terms of coupons and maturity dates;
trade positions on these contracts can be bucketed by the reference entity (single name or index) and maturity.
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system-conservative, if ∑
i∈N

∑
j∈N

LP
ij ≤

∑
i∈N

∑
j∈N

Lij , (5)

net-conservative, if

(LP)biij ≤ Lbi
ij ∀i, j ∈ N . (6)

Here, the super-conservative constraint (2) implies the conservative constraint (3) which im-
plies the aggregate-conservative constraint (4) which implies the system-conservative constraint
(5). The net-conservative constraint (6), however, does not imply any of the constraints (3),
(4), (5).

A conservative PTN-matrix is in line with the constraint used in the notion of conservative
compression introduced by D’Errico & Roukny (2021). The idea is that individual position sizes
can only be decreased by a PTN-exercise. An aggregate-conservative PTN-exercise ensures that
total payment obligations of each institution can only decrease by the PTN-exercise. We will
look into this in more detail in Section 4.2.

A system-conservative PTN-exercise can only decrease the total payment obligations in the
system. The system-conservative approach can also be considered as part of an optimisation
problem, that uses the total payment obligations as the objective function.

Definition 2.4 (Optimal post-trade netting exercise). Let L ∈ [0,∞)N×N and P ⊆ N . The
PTN-optimisation problem is given by

min
LP

∑
i,j∈P

LP
ij

subject to∑
j∈P

(LP
ji − LP

ij) =
∑
j∈P

(Lji − Lij) ∀ i ∈ P,

LP
ij ≥ 0 ∀ (i, j) ∈ P × P,

LP
ij = Lij ∀ (i, j) /∈ P × P.

Let (LP)∗ be a solution to the PTN-optimisation problem. We refer to the triple (L,P, (LP)∗)
as an optimal PTN-exercise.

Note that the PTN-optimisation problem is a linear programming problem, and it admits
a solution since the feasible region is non-empty (since the matrix L satisfies all constraints
and the objective function is bounded from below by 0). Also, note that the PTN-optimisation
problem is identical to the non-conservative compression problem in D’Errico & Roukny (2021)
if L = C and P = N .

Post-trade netting services can include other constraints as well. For example, constraints
could be linked to information from credit ratings or other external sources. And it is likely that
in practice, a bank imposes a stricter requirement on individual positions for some counterparties
but not for all of them. This is beyond the scope of our paper, see ESMA (2020a) for further
discussion.

2.3 Portfolio rebalancing and portfolio compression

We now move from the general mathematical characterisation to the concrete examples in the
real world, namely, portfolio rebalancing and portfolio compression.
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2.3.1 Portfolio rebalancing

We first provide what we believe is the first mathematical characterisation of portfolio rebal-
ancing. Portfolio rebalancing, also known as counterparty risk rebalancing and counterparty
risk optimisation, consists of injecting market risk-neutral transactions such that for each par-
ticipant, the net exposures remain unchanged. Usually, the objective is to reduce the gross
exposures of the bilaterally netted positions at the same time.

Definition 2.5 (Portfolio rebalancing). 1. A rebalancing exercise (C,P, C +R) consists of
a notional matrix C, a non-empty set of participants P, and a rebalancing notional matrix
R ∈ [0,∞)N×N such that ∑

j∈P
Rji =

∑
j∈P

Rij ∀ i ∈ P,

Rij = 0 ∀ (i, j) /∈ P × P.
(7)

We refer to CP = C +R as the rebalanced notional matrix.

2. If the rebalancing matrix R satisfies

(C +R)biij ≤ Cbi
ij ∀i, j ∈ N , (8)

then we refer to (C,P, C +R) as a net-conservative rebalancing exercise.

3. We refer to the optimisation problem that minimises
∑

i∈P
∑

j∈P(C + R)biij over all R ∈
[0,∞)N×N subject to (7) as the rebalancing optimisation problem and if the additional
constraint (8) is included, we refer to it as the net-conservative rebalancing optimisation
problem.

It follows directly from this definition, that a rebalancing exercise is a PTN-exercise. Since
rebalancing can only add new trades, R ≥ 0 and in particular CP = C +R ≥ C.

The rebalancing constraint captures the fact that “new transactions are entered into to
reduce counterparty risk by reducing the exposure between two counterparties”, (ESMA, 2020a,
p. 7). To see how the net exposures are maintained, note that condition (7) requires that the
net exposures of injected transactions are zero, i.e., R⊤1 − R1 = 0, where 0 is the column
vector containing only 0s. The net-conservative constraint (8) requires that bilaterally netted
positions do not increase by the exercise. It reflects the notion that counterparty relationships
should be preserved in the manner that if a bank i is a net-seller to (or a net-buyer from) bank
j then, this remains after the exercise. The following example gives an illustration of portfolio
rebalancing. It is similar to an example provided in ESMA (2020a, Section 3.2).

Example 2.6 (Portfolio rebalancing). Figure 1 illustrates an example of portfolio rebalancing
in a network of three banks. The notional matrix C, the rebalancing notional matrix R, the
rebalanced notional matrix C + R, and the bilaterally netted notional matrix (C + R)bi are
given, respectively, by

C =

 0 8 0
0 0 10
9 0 0

 , R =

 0 0 8
8 0 0
0 8 0

 ,

C +R =

 0 8 8
8 0 10
9 8 0

 , (C +R)bi =

 0 0 0
0 0 2
1 0 0

 .
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(a) C (b) R (c) C +R (d) (C +R)bi

Figure 1: Example of portfolio rebalancing.

Note. Starting from the notional matrix C (Figure 1(a)), injecting the rebalancing notional matrix R (Figure
1(b)) results in the rebalanced notional matrix C +R (Figure 1(c)). The bilaterally netted positions after
rebalancing are (C+R)bi (Figure 1(d)). Here, the bilaterally netted positions prior to rebalancing are Cbi = C.

Two observations are in order. First, the net exposures of the three banks in the original
network are given by C⊤1− C1 = (1,−2, 1)⊤, and they coincide with the net exposures (C +
R)⊤1− (C +R)1 after portfolio rebalancing.

Second, portfolio rebalancing increases the gross exposures of the notional positions from
1⊤(C⊤1 + C1) = 54 to 1⊤((C + R)⊤1 + (C + R)1) = 102, but it decreases the gross expo-
sures of the bilaterally netted positions from 1⊤((Cbi)⊤1 + Cbi1) = 54 to 1⊤((C + R)bi)⊤1 +
((C +R)bi)1) = 6. In this sense, portfolio rebalancing can decrease aggregate variation margin
requirements, since these are bilaterally netted.

We provide an additional example comparing optimal rebalancing and net-conservative op-
timal rebalancing in the Appendix (Example C.1).

2.3.2 Portfolio compression

Next, we define formally portfolio compression. It consists of one or more of the following:
injecting, removing, and replacing positions such that for each participant, the net exposures
remain unchanged. Usually, the objective is to reduce the gross exposures of the positions at
the same time.

Definition 2.7 (Portfolio compression). 1. A compression exercise (C,P,K) consists of a
notional matrix C, a non-empty set of participants P, and a compressed notional matrix
K ∈ [0,∞)N×N such that∑

j∈P
(Kji −Kij) =

∑
j∈P

(Cji − Cij) ∀ i ∈ P,

Kij = Cij ∀ (i, j) /∈ P × P.
(9)

2. If the compression matrix K satisfies

0 ≤ Kij ≤ Cbi
ij ∀i, j ∈ N , (10)

then we refer to K as super-conservative compression matrix and to (C,P,K) as a super-
conservative compression exercise.

3. We refer to the optimisation problem that minimises
∑

i∈P
∑

j∈P Kij over all K ∈ [0,∞)N×N

subject to (9) as the compression optimisation problem and if the additional constraint
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(10) is included, we refer to it as the super-conservative compression optimisation prob-
lem.

It is clear from the definition that a compression exercise is a PTN-exercise. Since, com-
pression can add, remove and replace trades, Kij can be greater, equal, or less than Cij for
i, j ∈ P.

The compression optimisation problem captures the fact that portfolio compression “aims
to reduce the number of contracts and/or the notional amounts of derivatives contracts in
a particular asset class/product without changing the market risk of the portfolio”, (ESMA,
2020a, p. 7).

Our notion of a compression optimisation problem is the same as the notion of non-conservative
compression by D’Errico & Roukny (2021) if P = N . If the additional condition 0 ≤ Kij ≤ Cij

∀i, j ∈ N is included in the optimisation problem (which is weaker than (10)), this is conser-
vative compression (again for P = N ) considered by D’Errico & Roukny (2021). We will refer
to any compression matrix satisfying 0 ≤ Kij ≤ Cij ∀i, j ∈ N as a conservative compression
matrix (even if it is not included in an optimisation problem). D’Errico & Roukny (2021) also
suggest that one could consider an additional lower bound on compression by requiring that
Kij ≥ Γij , for some Γij ≥ 0, meaning that the derivatives positions between banks i and j
are not compressed too much. Condition (10) will be useful to establish a relationship to a
bilaterally netted rebalancing matrix later (Theorem 2.10).

Example 2.8 (Portfolio compression). To provide intuition about the idea of compression, we
present two examples in Figure 2. The example in Figure 2(a) follows the idea of compression
that eliminates cycles considered in D’Errico & Roukny (2021) and Veraart (2022). In contrast
to rebalancing, which can only add positions, compression can also remove and replace positions.
Here, a cycle with an edge weight of 8 is removed. Therefore, the edge from N1 to N2 is
eliminated by compression, and the weights along the edges from N2 to N3 and from N3 to N1
are reduced. The example in Figure 2(b) shows that compression can also add new positions in
addition to deleting or replacing positions.

(a) Compression satisfying 0 ≤ K ≤ C. (b) Compression satisfying 0 ≤ K ≰ C.

Figure 2: Two examples of portfolio compression for the same notional matrix C given by
C12 = 8, C23 = 10, C31 = 9 and Cij = 0 otherwise.

Note. Dashed edges indicate that contracts are replaced, dotted edges indicate that contracts are deleted, solid
edges indicate that new contracts are injected. The numbers in rectangles indicate the changes in the notional
positions. In the example in Figure 2(a), all changes are in (−∞, 0], so notional positions are only reduced. In
the example in Figure 2(b), the changes are in R, so some notional positions are reduced and some are
increased.

We provide an additional example of the compression optimisation problem and compression
that follows the idea of O’Kane (2017), who proposes a loop compression algorithm by finding
and eliminating all closed loops on the bilaterally netted notional matrix, in the Appendix
(Example C.2).
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2.4 Relationship between portfolio rebalancing and portfolio compression

Having introduced the mathematical characterisation of post-trade netting and its real-world
counterparts, we provide more details about the relationship between portfolio rebalancing and
portfolio compression.

Definition 2.9 (Rebalancing-compression-parity). Let C be a notional matrix, P ⊆ N , and
let K be a compression matrix. The K-compression-rebalancing-parity-matrix is the matrix
R ∈ [0,∞)N×N given by

Rij = max{0, (Kij −Kji)− (Cij − Cji)} ∀i, j ∈ N . (11)

The next theorem establishes that the K-compression-rebalancing-parity-matrix is indeed a
rebalancing matrix. It also formalises the relationship between (net-conservative) rebalancing
and (super-conservative) compression.

Theorem 2.10. Let C ∈ [0,∞)N×N be a notional matrix and let P ⊆ N .

1. If K ∈ [0,∞)N×N is a compression matrix, then the K-compression-rebalancing-parity-
matrix R is a rebalancing matrix and satisfies

(C +R)biij = Kbi
ij ∀i, j ∈ N . (12)

Furthermore, if K is a super-conservative compression matrix, then the corresponding
K-compression-rebalancing-parity-matrix is a net-conservative rebalancing matrix.

2. If R ∈ [0,∞)N×N is a rebalancing matrix, then K = (C + R)bi ∈ [0,∞)N×N is a
compression matrix. Furthermore, if R is a net-conservative rebalancing matrix, then
K = (C +R)bi is a super-conservative compression matrix.

3. If K∗ ∈ [0,∞)N×N is a solution to the (super-conservative) compression optimisation
problem, then the K∗-compression-rebalancing-parity-matrix denoted by R∗ is a solution
to the (net-conservative) rebalancing optimisation problem and∑

i∈P

∑
j∈P

(C +R∗)biij =
∑
i∈P

∑
j∈P

K∗
ij .

4. If R∗ ∈ [0,∞)N×N is a solution to the (net-conservative) rebalancing optimisation prob-
lem, then K∗ = (C + R∗)bi is a solution to the (super-conservative) compression optimi-
sation problem and ∑

i∈P

∑
j∈P

(C +R∗)biij =
∑
i∈P

∑
j∈P

K∗
ij .

Hence, we see that there is a strong mathematical connection between portfolio rebalancing
and portfolio compression. Theorem 2.10 shows that there are situations in which portfolio
rebalancing combined with bilateral netting achieves the same outcome as portfolio compression,
i.e., both services are then mathematically equivalent. This, however, does not mean that they
are used interchangeably in practice.

Portfolio compression and portfolio rebalancing are applied to different types of underlying
portfolios (ESMA, 2020b, p. 14). In particular, portfolio compression is typically used for homo-
geneous portfolios whereas portfolio rebalancing is typically used for heterogeneous portfolios.
In particular, portfolio compression is available for portfolios that are either fully non-centrally
cleared or fully centrally cleared (IOSCO, 2024, p. 14). Portfolio rebalancing is typically used
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in situations where the underlying portfolio is of a mixed type5, i.e., only partially centrally
cleared or centrally cleared at more than one CCP, see ISDA et al. (2018, p. 11–12). In such
a situation, portfolio rebalancing allows one to adjust positions across different parts of the
portfolio.6 For portfolio rebalancing to work, however, it is essential that the trades that are
added as part of the rebalancing exercise remain in the correct part of the portfolio, i.e., “the
rebalancing transaction needs to remain in the portfolio it manages the risk, hence to manage
risk in the uncleared portfolio the rebalancing trade would need to remain in the uncleared
portfolio, i.e. it cannot be cleared and novated to the CCP”, (ESMA, 2020b, p. 14). These
considerations recently lead to the recommendation that trades resulting from post-trade risk
reduction services should not be subject to the central clearing obligation (ESMA, 2020b).

An example for portfolio rebalancing for a portfolio that is partially centrally cleared and
partially non-centrally cleared is provided in ESMA (2020b, Appendix 1) and we report it in
the Appendix B. We also provide an additional example in the Appendix (Example C.3).

The key idea is that the rebalancing exercise adds trades both to the non-centrally cleared
and to the centrally cleared part of the portfolio and then after bilateral netting achieves a
reduction in counterparty exposures. Portfolio compression would typically only be applied
to a subset of the network, i.e., the centrally cleared or the non-centrally cleared part or two
separate exercises would be applied to the two different parts of the portfolio which imposes
additional constraints on the exercise compared to applying portfolio rebalancing to the whole
portfolio. Hence, in such a situation portfolio rebalancing could achieve a larger reduction in
bilaterally netted positions compared to running two separate compression exercises.

3 Assessing systemic risk for PTN-exercises

In this section, we explain how we will apply the contagion model of Veraart (2020) to the
PTN-exercise characterised in Section 2 building on Veraart (2022).

To analyse systemic risk implications from a network perspective, we consider payment obli-
gations in the form of variation margins, as in Paddrik et al. (2020).7 We define the liabilities ma-
trix L associated with the notional matrix C by L = f(C), where f : [0,∞)N×N → [0,∞)N×N

and either f(C) = ψ · Cbi or f(C) = ψ · C, i.e., the liabilities matrix is either proportional to
the bilaterally netted notional matrix or to the notional matrix, where ψ > 0.8 Typically, vari-
ation margin payment obligations are bilaterally netted, but since our results also hold for the
non-bilaterally netted case, we consider both cases.9 The proportionality parameter ψ allows
for simple modelling of different magnitudes of variation margin payment obligations that are

5Portfolio rebalancing can also be used for uncleared portfolios, see IOSCO (2024, p. 14).
6As outlined in ESMA (2020b, p. 14), “ESMA understands that rebalancing has been developed to manage

risks across cleared and non-cleared portfolios as today (after the clearing obligation was introduced) parties may
no longer offset their risks in the non-cleared part of the market and the cleared part of the market i.e. the credit
exposure of cleared trades can no longer be netted against bilateral trades across different asset classes that are
not eligible for clearing.

7Variation margins arise due to mark-to-market valuations of contracts and are exchanged on short notice to
protect counterparties from the current exposures (BCBS & IOSCO, 2020). We have in mind, for example, the
case of American International Group, Inc. (AIG) in the CDS market during the Global Financial Crisis. The
protection seller faced tremendous pressure on the margin calls from the protection buyers after a sudden shock
to the credit markets.

8Our analysis could be extended to situations with k > 1 assets, for example, CDSs on the same reference
entity but with different maturity dates, and corresponding notional matrices C1, . . . , Ck. Then, a liabilities
matrix could be constructed by L = f(C1, . . . , Ck), where f : [0,∞)N×N × . . . × [0,∞)N×N → [0,∞)N×N is a
suitable function that maps the notional positions to variation margin payment obligations. One simple example
would be that f is again a linear function in all k arguments.

9Our results are formulated for a PTN-exercise (L,P, LP). For the special case of portfolio rebalancing or
compression, note that if (C,P, C+R) is a rebalancing exercise then both (ψCbi,P, ψ(C+R)bi) and (ψC,P, ψ(C+
R)) are PTN-exercises for all ψ ≥ 0; similarly, if (C,P,K) is a compression exercise, then both (ψCbi,P, ψKbi)
and (ψC,P, ψK) are PTN-exercises for all ψ ≥ 0, see the Appendix (Corollary A.1).
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caused by changes in the underlying market conditions. So, larger changes in underlying market
conditions will lead to larger variation margin payment obligations which can be captured by
larger values of ψ.

In the following, we consider a PTN-exercise (L,P, LP) and compare systemic risk associated
with the liabilities matrix L to systemic risk associated with the other liabilities matrix LP .
Examples for LP include LP = f(CP), where CP = K for a compression exercise (C,P,K) or
CP = C +R for a rebalancing exercise (C,P, C +R).

It will sometimes be of interest, to consider not just liabilities between banks, but also
liabilities from banks to an external node, which in our context could be interpreted as variation
margin payments to banks’ customers. Specifically, this can be captured by our setting by
assuming that the notional matrix C satisfies CNj = 0 for all j ∈ N , i.e., we use the index N
to represent the external node. In other words, there are no obligations from N to any bank in
the network, but banks in N \ {N} can have obligations to N ; hence, N can be interpreted as
an external node. When adopting this interpretation, we assume that the external node cannot
participate in a PTN-exercise, i.e., N ∈ N \ P.

Besides the derivatives contracts, each bank i ∈ N holds a liquidity buffer Ab
i ≥ 0, which

may represent cash or high-quality liquid assets to the extent, they can be readily exchanged
as variation margins. We summarise banks’ liquidity buffers in the N -dimensional vector Ab =
(Ab

1, . . . , A
b
N )⊤. We shall typically refer to the pair (L,Ab) as the original network and to the

pair (LP , Ab) as the PTN-network.

3.1 Clearing equilibrium

To examine the contagion effects of PTN-exercises, we need to characterise the network equi-
librium formally. We use a quantity referred to as re-evaluated equity introduced in Veraart
(2020) and used in the context of portfolio compression in Veraart (2022), which intuitively
represents the difference between actual assets and payment obligations in equilibrium. Below,
we describe the model of Veraart (2020), which generalises the clearing mechanisms introduced
in Eisenberg & Noe (2001) and Rogers & Veraart (2013).

Definition 3.1. A valuation function V : R → [0, 1] is defined by V(y) = I{y≥1+k}+I{y<1+k}r(y),
where k ≥ 0, I{·} denotes the indicator function, and r : (−∞, 1+k) → [0, 1] is a non-decreasing
and right-continuous function.

A valuation function summarises various types of valuation rules for assets. The zero recov-
ery rate valuation function is defined in Veraart (2022) as Vzero (y) = I{y≥1+k}. As discussed
in Veraart (2020, 2022), the model specification conveniently nests several network clearing
models as special cases via taking particular functional forms of V.10 For example, the clearing
vector in the Eisenberg & Noe (2001) model can be recovered from the re-evaluated equity if
V = VEN, and vice versa, where VEN(y) = 1∧ y+. Since we often use a valuation function V to
assess systemic risk associated with (L,P, LP), we also call (L,Ab;V) the original network and
(LP , Ab;V) the PTN-network.

Definition 3.2 (Re-evaluated equity in the original and in the PTN-network). Let (L,Ab;V)
and (LP , Ab;V) be the original and the PTN-network, respectively.

10Veraart (2022) shows how a suitable choice of V can model collateralised payment obligations that are
(partially) protected by initial margins. Hence, by considering a general valuation function in our analysis, we
can capture these characteristics of derivatives markets as well.
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1. Define the function Φ = Φ(·;V) : E → E as

Φi(E) = Φi(E;V) = Ab
i+∑

j∈N :L̄j>0

LjiV
(
Ej + L̄j

L̄j

)
− L̄i ∀ i ∈ N ,

(13)

where E = [−L̄, Ab + Ā − L̄], L̄i =
∑N

j=1 Lij, and Āi =
∑N

j=1 Lji. We refer to a vector
E ∈ E satisfying E = Φ(E) as a re-evaluated equity in the original network.

2. Define the function ΦP = ΦP(·;V) : EP → EP as

ΦP
i (E) = ΦP

i (E;V) = Ab
i+∑

j∈N :L̄P
j >0

LP
jiV

(
Ej + L̄P

j

L̄P
j

)
− L̄P

i ∀ i ∈ N ,
(14)

where EP = [−L̄P , Ab + ĀP − L̄P ], L̄P
i =

∑N
j=1 L

P
ij, and Ā

P
i =

∑N
j=1 L

P
ji. We refer to a

vector E ∈ EP satisfying E = ΦP(E) as a re-evaluated equity in the PTN-network.

The idea behind the equilibrium is that the actual assets of each bank—the liquidity buffer
plus the incoming payments from its counterparties—depend on the payments that other banks
in the network can make. Because of this, the re-evaluated equity is characterised as a fixed
point.

As discussed in Veraart (2020), (E ,≤) and (EP ,≤) are complete lattices and the functions
Φ and ΦP are non-decreasing. Hence, the existence of a re-evaluated equity is guaranteed by
Tarksi’s fixed-point theorem (Tarski, 1955, Theorem 1). Moreover, there exist a greatest and a
least re-evaluated equity. In Section 4, we will discuss in detail the implications of post-trade
netting for these fixed points.

The equilibria derived above provide ways of assessing systemic risk. We first define the
fundamental default set, which characterises the set of all banks that default even if all banks
in the system make their payments in full. For this, we need a notion of initial equity.

Definition 3.3 (Fundamental default). Consider a PTN-exercise (L,P, LP). We define the
initial equity in the original network (L,Ab;V) and the PTN-network (LP , Ab;V), respectively,
by

E
(0)
i = Ab

i +
∑
j∈N

Lji − L̄i,

E
P(0)
i = Ab

i +
∑
j∈N

LP
ji − L̄P

i , ∀ i ∈ N .
(15)

The fundamental default set for this PTN-exercise is F(L,Ab;V) = {i ∈ N |E(0)
i < 0} = {i ∈

N |EP(0)
i < 0}.

We show in the Appendix (Lemma A.4) that E(0) = EP(0), so the fundamental default sets
are the same in both networks. We next define defaults more generally, in particular contagious
defaults which depend on the fixed points.

Definition 3.4 (Default and contagious default). Let F(L,Ab;V) be the fundamental default
set. Let Ẽ be a fixed point of Φ and ẼP be a fixed point of ΦP . We define (i) D(Ẽ, L,Ab;V) =
{i ∈ N | Ẽi < 0} and D(ẼP , LB, Ab;V) = {i ∈ N | ẼP

i < 0} as the default set in the original and
in the PTN-network, respectively; and (ii) D(Ẽ, L,Ab;V) \ F(L,Ab;V) and D(ẼP , LB, Ab;V) \
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F(L,Ab;V) as the contagious default set in the original network and in the PTN-network,
respectively.

We show in the Appendix (Lemma A.5) that the fundamental default set is a subset of the
default set.

3.2 Measuring contagion

We now describe how we assess the consequences of a PTN-exercise on systemic risk. While
many different measures for systemic risk have been proposed in the literature (see, e.g., Bisias
et al. (2012) for a survey), there is no commonly accepted choice. A possible criterion to
distinguish between different risk measures is to consider the time dimension; for example, Bisias
et al. (2012, Section 2.5) consider three temporal categories: “pre-event”, “contemporaneous”,
and “post-event.” In the following, we will consider two of these categories, the pre-event and
post-event categories that we refer to as ex ante and ex post, respectively.

In both cases, we assume that the PTN-exercise takes place before a shock and we consider
what happens both to the original network and to the PTN-network. In the ex post analysis, we
study the outcome of the two networks after the shock. The underlying modelling framework is
deterministic and follows Veraart (2022). In the ex ante analysis, we compare the vulnerabilities
of the two networks prior to the shock. In particular, we include a random shock vector in our
framework. This analysis is based on Glasserman & Young (2015).

We emphasise that our analysis in this paper is based on the re-evaluated equities, from
which we derive risk measures that receive attention in the literature. Since PTN-exercises can
increase or decrease total payment obligations in a network, we need to ensure that our risk
measures are suitably normalised.

First, we derive the default sets in the original and the PTN-network as in Veraart (2022).11

For any re-evaluated equities Ẽ and ẼP in the original and the PTN-network, we say that
the PTN-exercise (i) reduces systemic risk (with respect to these re-evaluated equities) if
D(ẼP , LB, Ab;V) ⊆ D(Ẽ, L,Ab;V); (ii) strongly reduces systemic risk (with respect to these
re-evaluated equities) if D(ẼP , LB, Ab;V) ⊊ D(Ẽ, L,Ab;V); and (iii) is harmful (with respect to
these re-evaluated equities) if D(ẼP , LB, Ab;V) \ D(Ẽ, L,Ab;V) ̸= ∅. Since there can be more
than one fixed point of Φ and ΦP , a cautionary note is that these notions make sense only if the
re-evaluated equities in the original and the PTN-network are comparable; this is for example
the case if both re-evaluated equities correspond to the greatest fixed points or both correspond
to the least fixed points.

The advantage of considering default sets is that they are indeed normalised and allow
for a meaningful comparison between two networks associated with potentially different gross
positions. They also capture who defaults and not just how many banks default; this is in
line with taking a Pareto view on systemic risk measurement. As already discussed in Veraart
(2022), a strong reduction in systemic risk can be interpreted as a Pareto improvement because
it reflects the fact that a PTN-exercise does not cause any new defaults and at least one bank
is no longer in default in the PTN-network compared to the original network. Similarly, we
say that a PTN-exercise is harmful if at least one non-defaulting bank in the original network
defaults in the PTN-network. In particular, we do not allow for a trade-off between banks in
the sense that we would accept a new default with a small loss so that the aggregate loss in the
system is smaller. Since, market participants choose which post-trade netting services they use
and which new proposals they accept, we believe that a risk measure that is in the spirit of a
Pareto improvement is suitable for this purpose.

11We note that Veraart (2022) defines the default set in (L,Ab;V) as {i ∈ N |E∗
i < kL̄i}, where k ≥ 0 coincides

with that used in the valuation function. In what follows, we set k = 0. We interpret this choice as primarily
modelling illiquidity in the case of variation margin payments instead of solvency contagion; the total assets of
each bank consist of its liquidity buffer and received margin payments, which are highly liquid assets. We refer
Veraart (2020, Remark A.1) for further discussions about the role of k.
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Second, as an alternative risk measure, we will also sometime consider the actual payments
made to the external node (see, e.g., Amini & Feinstein (2023)). This measure does not just
consider the number of defaults but also accounts indirectly for the magnitude of losses in the
system. Since the external node does not participate in a PTN-exercise, the total liabilities
to the external node cannot change, therefore the payments it receives can also be used as a

normalised measure. Mathematically, this boils down to comparing V
(
Ẽi+L̄i

L̄i

)
, which models

the proportion of its debt that bank i repays in the original network under re-evaluated equity

Ẽ, to V
(
ẼP

i +L̄P
i

L̄P
i

)
which models the proportion of its debt that bank i repays in the PTN-

network under re-evaluated equity ẼP ; see Veraart (2020, 2022). Correspondingly, the total

payments made to the external node are
∑

i∈N :L̄i>0V
(
Ẽi+L̄i

L̄i

)
LiN in the original network and∑

i∈N :L̄P
i >0V

(
ẼP

i +L̄P
i

L̄P
i

)
LP
iN =

∑
i∈N :L̄P

i >0V
(
ẼP

i +L̄P
i

L̄P
i

)
LiN in the PTN-network.

One could consider other risk measures as well. For example, building on the concept of
monetary risk measures, see Artzner et al. (1999); Föllmer & Weber (2015) and extensions
thereof to measures of systemic risk, see e.g., Feinstein et al. (2017); Biagini et al. (2019), one
could introduce a stochastic cash flow model associated with a financial system and define a
suitable acceptance criterion so that then systemic risk is quantified by “the set of allocations of
additional capital that lead to acceptable outcomes” (Feinstein et al., 2017). These extensions,
however, are beyond the scope of the current analysis.

4 Consequences of post-trade netting for contagion

We now analyse when post-trade netting reduces systemic risk, first from an ex post perspective
and then from an ex ante perspective.

4.1 An ex post analysis of post-trade netting and contagion

We begin with two results that identify sufficient conditions for post-trade netting to reduce
systemic risk ex post, consistent with those in Veraart (2022). The first condition assumes that
no participant defaults in the original network.

Theorem 4.1 (No participant defaults in the original network). Consider a PTN-exercise
(L,P, LP). Let Ẽ be a fixed point of Φ that satisfies

{i ∈ P | Ẽi < 0} = ∅, (16)

i.e., no participant defaults according to this fixed point in the original network.

1. Then, Ẽ is a fixed point of ΦP . In particular, considering Ẽ in both the original network
and the PTN-network leads to the same defaults in the original and in the PTN-network
and a reduction of systemic risk, but not a strong reduction of systemic risk.

2. If Ẽ is the greatest fixed point of Φ, then Ẽ is also the greatest fixed point of ΦP .

3. If Ẽ is the least fixed point of Φ, then Ẽ does not have to be the least fixed point of ΦP .

4. Suppose LP is conservative, i.e., it satisfies (3) and V = Vzero. If Ẽ is the least fixed point
of Φ, then Ẽ is the least fixed point of ΦP .

Veraart (2022) has shown that condition (16) is a sufficient condition for a reduction of
systemic risk for conservative portfolio compression and the greatest fixed points, i.e., statement
2. above for condition (3). Theorem 4.1 establishes that the statement holds for general post-
trade netting exercises. It also says that this result does not necessarily carry over to the least
fixed point (statement 3.) except under special circumstances (statement 4.).
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The fact that no participants’ defaults in the original network implies that a PTN-exercise
cannot be harmful is a reassuring result. It means that as long as only sound financial institu-
tions engage in a PTN-exercise, such an exercise cannot be harmful.

The next corollary provides intuition about what Theorem 4.1 implies for the payments
made in the financial system. Recall from Veraart (2020), that the payments made from bank i
to bank j in a system with payment obligations L corresponding to a re-evaluated equity Ẽ are

pij = V

(
Ẽi − L̄i

L̄i

)
Lij ∀i, j ∈ N .

Corollary 4.2. Consider a post-trade netting exercise (L,P, LP). Let Ẽ be a fixed point of Φ
that satisfies (16). Then, the actual payments made from i to j corresponding to this fixed point
in the original and the PTN-network that are given, respectively, by

pij(Ẽ) = V

(
Ẽi + L̄i

L̄i

)
Lij ,

pPij(Ẽ) = V

(
Ẽi + L̄P

i

L̄P
i

)
LP
ij ∀i, j ∈ N ,

satisfy

pP(Ẽ) + (L− LP) = p(Ẽ).

The corollary says, that for any fixed point that does not lead to defaults among participants
in the original network, the clearing payments in the PTN-network can be obtained by clearing
the original network and then subtracting L − LP from the clearing payments in the original
network. This essentially means that under condition (16) clearing the original network first
and then adjusting the networks gives the same outcome as adjusting the network first and then
clearing it.

Another direct implication of the corollary is that under condition (16) for a situation with
an external node, the payments to the external node are the same in the original and the
PTN-network. In particular, if N is the external node, then N /∈ P and

pPiN (Ẽ) = piN (Ẽ) ∀i ∈ N .

Theorem 4.1 also conveys a more subtle point. Under the condition of the theorem, the
equilibria in both networks are the same, so the systemic risk is not strongly reduced. Theorem
4.1 therefore implies that if a PTN-exercise strongly reduces systemic risk, then at least one
participant defaults in the original network.

We now consider a second sufficient condition for systemic risk reduction. It states that no
participant defaults in the PTN-network.

Proposition 4.3 (No participant defaults in the PTN-network). Consider a PTN-exercise
(L,P, LP). Let ẼP be a fixed point of ΦP that satisfies

{i ∈ P | ẼP
i < 0} = ∅, (17)

i.e., no participant defaults according to this fixed point in the PTN-network.

1. Then, ẼP is a fixed point of Φ. In particular, considering ẼP in both the original network
and the PTN-network leads to the same defaults in the original and in the PTN-network
and a reduction of systemic risk, but not a strong reduction of systemic risk.
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2. If ẼP is the greatest fixed point of ΦP , then ẼP is also the greatest fixed point of Φ.

3. If ẼP is the least fixed point of ΦP , then ẼP does not have to be the least fixed point of Φ.

Note that (L,P, LP) is a PTN-exercise if and only if (LP ,P, L) is a PTN-exercise (Remark
2.2). Proposition 4.3 therefore follows immediately by applying Theorem 4.1 to (LP ,P, L), i.e.,
using (LP , Ab;V) as the original network and (L,Ab;V) as the PTN-network. We, therefore,
omit the proof.12

Proposition 4.3 implies that if the post-trade netting exercise is harmful, then there has to
be at least one participant that defaults in the post-trade netted network. In particular, no
post-trade netting exercise exists that results in no defaults among the participants but at least
one default among the non-participants only in the PTN-network.

We next investigate PTN-exercises under zero recovery rates. It has been shown in Veraart
(2022, Proposition 4.12), that a PTN-exercise that satisfies (3) always reduces systemic risk
under zero recovery rates when considering the greatest re-evaluated equity. We now show that
this statement remains true when considering the least re-evaluated equity. Furthermore, we
show that there exists a PTN-exercise that does not satisfy (3) and is harmful under both the
greatest and the least re-evaluated equity.

Theorem 4.4 (Zero recovery rates). Let (L,Ab;V) be a financial network with V = Vzero.
Then,

1. for any conservative PTN-exercise (L,P, LP) (i.e., it satisfies (3)), it holds that

E∗
i ≤ EP;∗

i ∀i ∈ N , (18)

(E∗)i ≤ (EP
∗ )i ∀i ∈ N , (19)

where E∗, EP;∗ are the greatest fixed points and E∗, E
P
∗ are the least fixed points of Φ

and ΦP , respectively. In particular, the PTN-exercise reduces systemic risk under both the
greatest and the least re-evaluated equity.

2. There exists a PTN-exercise that does not satisfy (3), for which neither (18) nor (19)
hold. In particular, there exists a PTN-exercise that does not satisfy (3) that is harmful
under both the greatest and the least re-evaluated equity.

Finally, the next Proposition shows that an optimal PTN-exercise in which all banks in the
system participate, i.e., P = N , eliminates all contagion. In practice, this is unlikely to happen
but the result is useful to provide intuition about the underlying mechanisms of post-trade
netting.

Proposition 4.5. Consider an optimal PTN-exercise with P = N . Let Ẽ be a fixed point
of the corresponding Φ and let ẼP be a fixed point of the corresponding ΦP . Then, F =
D(ẼP , LB, Ab;V) ⊆ D(Ẽ, L,Ab;V).

Hence, the proposition says that any default in the PTN-network (if it exists) is a funda-
mental default and hence this optimal PTN-exercise reduces systemic risk for all possible fixed
points.

To prove the proposition, we exploit a result of D’Errico & Roukny (2021), who show that
the graph corresponding to networks attaining the minimum gross exposures is bipartite (i.e.,
the situation in which bank i should pay bank j and bank j should pay a different bank k does
not exist).

Proposition 4.5 assumes that P = N , i.e., all banks participate in the PTN-exercise. If
we consider the interpretation of bank N as an external node, then this external node cannot

12In practice, the situation L ≤ LP does not arise, therefore we do not formulate the result corresponding to
statement 4. in Theorem 4.1.
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participate in the PTN-exercise and Proposition 4.5 cannot be applied. In particular, after an
optimal PTN-exercise with P = N \{N}, banks that are not in fundamental default can default
on payments to the external node due to contagion.

Similarly, Figure 3 provides a stylised comparison between an original network and a PTN-
network in which only parts of the nodes participate in an optimal PTN-exercise. In particular,
we assume that the nodes consist of dealers and end-users and all dealers participate in an op-
timal PTN-exercise, but the end-users do not participate. The direction of the arrows indicates
the net variation margin owed between counterparties. In Figure 3(a), feedback loops in the
dealers’ section may amplify default cascades, whereas they disappear in Figure 3(b) since this
specific PTN-exercise breaks up possible contagion channels among dealers. Still, the conta-
gious default of a dealer remains a possibility, since only the sub-network of dealers is bipartite,
but not the whole network. So a dealer can default on payments to an end-user because they
were hit by a shock from another end-user, from a dealer, or from both.

(a) Original network. (b) Optimal PTN-network.

Figure 3: Stylised networks of variation margin flows in the derivatives market.

Note. In this example, only the dealers are participants.

4.1.1 Economic interpretation of the greatest and the least fixed points

We have seen that in situations where the fixed point is not unique, not all results that hold
for the greatest fixed point also hold for the least fixed point. It is therefore of interest to know
under which circumstances a system might settle either on the greatest or the least fixed point.

Often, the literature focuses on the greatest fixed point, since it reflects the best possible
outcome for the system. It can be derived by considering a fixed point iteration starting with
the assumption that every bank satisfies its payment obligations in full, and then tracking
whether there are any fundamental defaults that then might cause contagious defaults. Hence,
the greatest fixed point is the outcome of a spread of insolvency that started from the best
possible situation (Rogers & Veraart, 2013). If one starts, however, with the assumption that
initially no banks receive any payments from other nodes, then they can only use their liquidity
buffers to make payments. If these are enough to satisfy the payment obligations, then solvency
starts to spread through the network and potentially some banks can avoid default. Hence, the
least fixed point is the outcome of a spread of solvency that started from the worst possible
situation, see Rogers & Veraart (2013) for more details.

Another interesting interpretation for the occurrence of least fixed points has been provided
by Csóka & Herings (2018). They show that decentralised clearing procedures usually result
in the least fixed point. Also, Bardoscia et al. (2019); Paddrik et al. (2020); Bardoscia et al.
(2021) discuss how financial institutions may take defensive actions not to fulfill their payment
obligations on a timely basis when under stress. This can also be interpreted as a decentralised
approach.

In particular, Bardoscia et al. (2019) introduce the Full Payment Algorithm (FPA) to embed
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the phenomenon of sequential payments in a realistic setting with strategic behaviours. They
assume that banks with insufficient liquidity buffers wait for potential payments from their
counterparties and only make payments in full once they receive enough liquid assets; this
dictates that even if a bank can obtain extra liquidity (such as through repo borrowing) to
fulfill its obligations, it would do nothing but wait. As a result, the payments are made in
sequence: at each iteration, each bank either pays in full or pays nothing. The algorithm
terminates if no more banks can make any payment, and the vector of cumulative payments of
each bank is the output of the FPA. For completeness, we provide the formal definitions in the
Appendix A.2.3.

It is possible to relate the outcome of the FPA to the least clearing vector in the model by
Rogers & Veraart (2013) under zero recovery rates:

Theorem 4.6. For any given financial network, the output of the FPA is the least clearing
vector in the Rogers & Veraart (2013) model with default cost parameters equal to zero.

We can interpret the least fixed point in the Rogers & Veraart (2013) model with zero
recovery rates as the worst equilibrium. Theorem 4.6 implies that the worst equilibrium can
arise from a strategic response to stress. Moreover, the corresponding worst re-evaluated equity,
i.e., the least fixed point of Φ with V = Vzero, denoted by E0, is given by E0

i = Φi(E
0;Vzero) =

Ab
i +

∑
j:L̄j>0 Lji

L∗
j

L̄j
− L̄i ∀ i ∈ N , where L∗ is the output of the FPA.13

Theorem 4.4 has shown that under zero recovery rates, any conservative PTN-exercise re-
duces systemic risk under both the greatest and the least fixed point, but this does not need
to hold for non-conservative PTN-exercises. Combining this with the statement of Theorem
4.6 then implies, that even in networks where banks react strategically to liquidity stress by
delaying their payments as described in Bardoscia et al. (2019), conservative PTN-exercises will
reduce systemic risk. For non-conservative PTN-exercises this is not necessarily the case. The
proof of Theorem 4.4 contains an example illustrating this point.

4.2 An ex ante analysis of post-trade netting and contagion

In the following, we consider a PTN-exercise (L,P, LP) and analyse contagion from an ex ante
perspective. Throughout this subsection, we will assume that the PTN-exercise is aggregate-
conservative, i.e., condition (4) holds, so the PTN-exercise can only reduce the total liabilities
of every bank. Our ex ante analysis is based on the framework by Glasserman & Young (2015)
which we apply to both the original and the PTN-network.

This framework considers a generalised Eisenberg & Noe (2001) model with a random shock
X = (X1, . . . , XN )⊤ to what we refer to as liquidity buffers Ab, where 0 ≤ X ≤ Ab. Hence,
the shocked liquidity buffers are Ab −X. Given a realisation of shocks x = (x1, . . . , xN )⊤, we
can then compute an equilibrium in the original and in the PTN-network as before but with Ab

replaced by Ab − x. We will set V = VEN, to compute the equilibrium and assume that we are
in a situation where the re-evaluated equity is unique.14 Hence, we will consider the original
network (L,Ab − x;VEN) and the PTN-network (LP , Ab − x;VEN).

The framework by Glasserman & Young (2015) considers explicitly the payment obligations
of banks to counterparties external to the network, which in our context could be interpreted as
variation margin payments to banks’ customers. As mentioned before, this can be incorporated

13We omit the proof of this result, which is a minor variation on the proof of Veraart (2020, Theorem 2.9).
14Eisenberg & Noe (2001) show that the clearing vector is unique if the financial system is regular (Eisenberg &

Noe, 2001, Definition 5). A sufficient condition for regularity here is that every bank has strictly positive (shocked)
liquidity buffers. An alternative sufficient condition for uniqueness is provided by Glasserman & Young (2015,
p. 386) who show that the clearing vector is unique if “from every node i there exists a chain of positive obligations
to some node k that has positive obligations to the external sector”. For the details on the relationship between
the clearing vector and the re-evaluated equity we refer to Veraart (2020).
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into our setting by assuming that the notional matrix C satisfies CNj = 0 for all j ∈ N . We
assume that N ∈ N \ P for any PTN-exercise considered in this Subsection.

Glasserman & Young (2015) develop a framework for estimating or bound contagion and
amplification effects based on three key characteristics of each node i ∈ N in the financial

network: the net worth (which coincides with our initial equity) wi = E
(0)
i = Ab

i+
∑

j∈N Lji−L̄i,

the outside leverage λi = Ab
i/wi , and the financial connectivity θi = L̄i−LiN

L̄i
. The financial

connectivity captures the proportion of bank i’s total liabilities to other banks in the network.
We assume that θi > 0 for all i ∈ N \ {N} and θN = 0, so each bank (excluding the external
node) has payment obligations to banks (excluding the external node); wi > 0 ∀i ∈ N \ {N},
i.e., no defaults prior to the shock; and wi < Ab

i ∀i ∈ N \ {N}, i.e., every bank can in principle
suffer a fundamental default caused by the shock to the liquidity buffers.15

The financial connectivity is the only characteristic among the three that can be changed by
a PTN-exercise, since the net worth is the same in the original and the PTN-network.16 Since
we assume that (4) holds and LP

iN = LiN for all i ∈ N since N /∈ P, the financial connectivities
in the original and in the PTN-network denoted by θ and θP , respectively, satisfy

θPi =
L̄P
i − LP

iN

L̄P
i

= 1− LiN

L̄P
i

≤ 1− LiN

L̄i
= θi

for all i ∈ N with L̄P
i > 0. For all i ∈ N with L̄P

i = 0 we set θPi = 0 which clearly satisfies
θPi ≤ θi.

This reduction in the financial connectivity also results in a smaller contagion index for
all banks in the aggregate-conservative PTN-network compared to the original network. The
contagion index of a bank in the original network is defined by Glasserman & Young (2015) as
wiθi(λi − 1), i ∈ N . Hence, ∀i ∈ N

wiθ
P
i (λi − 1) ≤ wiθi(λi − 1). (20)

The following result is then an immediate consequence of Glasserman & Young (2015, Propo-
sition 1).

Proposition 4.7. Consider a shock X = (X1, . . . , XN )⊤ such that for only one i ∈ N \ {N}
Xi > 0 and Xj = 0 for all j ̸= i ∈ N . Fix a set S ⊆ N with i,N /∈ S. Consider an aggregate-
conservative PTN-exercise (L,P, LP), i.e., (4) holds. Suppose that F(L,Ab;VEN) = ∅ and the
following holds ∑

j∈S
wj > wiθi(λi − 1). (21)

Then,

1. P(D(E∗, L,Ab − X;VEN) ∩ S = ∅) = 1, i.e., contagion from i to S is impossible in
(L,Ab −X;VEN).

2. P(D(EP;∗, LP , Ab − X;VEN) ∩ S = ∅) = 1, i.e., contagion from i to S is impossible in
(LP , Ab −X;VEN).

Statement 1 of the proposition corresponds to the second part of Glasserman & Young
(2015, Proposition 1). The key insight in our setting is that if condition (21) is satisfied which
guarantees that there are no contagious defaults in the original network, this also implies that

15These assumptions correspond to the assumptions by Glasserman & Young (2015) but reflect our notation
where the external node is part of the set N .

16See the corresponding lemma in the Appendix (Lemma A.4).
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there are no contagious defaults in the aggregate-conservative PTN-network. This result makes
no distributional assumption on the shock vector X.

For specific shock distributions, Glasserman & Young (2015) have additional results that also
carry over to the aggregate-conservative PTN-networks. In particular, according to Glasserman
& Young (2015), contagion from a bank i to a set S is called weak, if the banks in S “are more
likely to default through independent shocks than through contagion from i”. Furthermore, the
probability to default through independent shocks is P(Xi > wi)Πi∈SP(Xj > wj) Glasserman &
Young (2015, equation (16)), which corresponds to the probability that banks in {i} ∪ S are in
fundamental default through independent shocks. This probability is the same in the original
and in the PTN-network.

For i.i.d. Beta distributed shocks and under the assumption that the net worth of all nodes
prior to the shock is nonnegative, Glasserman & Young (2015, Theorem 1) states that contagion
from a bank i to a set S that does not contain i (and we additional assume that it does not
containN due to our slightly different notation for the external node) is weak in (L,Ab−X;VEN)
if

λ̃Sw̄S ≥ wiθi(λi − 1), (22)

where λ̃S =
(

1
|S|
∑

j∈S
1
λj

)−1
is the harmonic mean of the outside leverage ratios and w̄S =

1
|S|
∑

j∈S wj is the average net worth. Hence, we see immediately if condition (22) is satisfied,

then due to (20), contagion from i to S is then also weak in the aggregate-conservative PTN-
network (LP , Ab−X;VEN). Glasserman & Young (2015, Theorem 2) provides a slightly stricter
condition that implies that contagion is weak for any increasing failure rate distribution. Using
the same arguments as before, it follows directly that if this stricter condition is satisfied in the
original network then it is also satisfied in the aggregate-conservative PTN-network.

Hence, if the sufficient conditions derived in Glasserman & Young (2015) for contagion to be
impossible or weak are satisfied in the original network, they are also satisfied in the aggregate-
conservative PTN-network. These findings only use the aggregate information of the network
and not the individual position sizes of the network.

5 Conclusion

We have provided a unifying mathematical characterisation of a post-trade netting (PTN-)
exercise, that includes portfolio rebalancing and portfolio compression as special cases. We
have established the mathematical link between portfolio rebalancing and portfolio compression
(Theorem 2.10). We have then used our framework to analyse the consequences of a PTN-
exercise for contagion in financial networks.

Our key result (Theorem 4.1) states that PTN-exercises with no defaults among the partic-
ipants do not impose contagion risk to the system when considering the greatest fixed point.
For the least fixed point, this statement only holds under additional assumptions.

As discussed before, the equilibrium associated with the least fixed point can be understood
economically as the outcome of a decentralised clearing mechanism. In particular, we show that
the situation in which banks respond strategically to liquidity stress and only make sequential
payments corresponds to the least fixed point (Theorem 4.6). In this case, we show that
conservative post-trade netting always reduces systemic risk, but this is not true for general
PTN-exercises (Theorem 4.4).

We also show that if some sufficient conditions for contagion to be impossible or weak ex
ante are satisfied in the original network, then they are also satisfied in the PTN-network.

The results in this paper have several implications for systemic risk in derivatives markets.
Our analysis has focused on illiquidity propagation triggered by defaults on variation margin
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calls. While these margin calls are intended to reduce counterparty risk, the fact that they
are inherently procyclical can increase the stress on market participants in adverse market
conditions (ESRB, 2017). With this in mind, PTN-exercises might be used for macropruden-
tial purposes to mitigate the procyclicality of margin requirements and address systemic risk.
Notably, these services can reduce the variation margins that must be exchanged between coun-
terparties when market conditions move. In this sense, they already mitigate the procyclical
effect by reducing the overall magnitude of variation margins. Recently, in March 2020, the
COVID-19 pandemic caused significant liquidity stress in financial markets, with considerable
variation margins becoming due precisely when liquidity was already under strain (ISDA, 2022).
Our analysis implies that PTN-exercises could reduce parts of these pressures without increasing
contagion risk.

In addition, although regulatory reforms promote central clearing where possible, it can
depend on the mandatory clearing obligation, standardisation of the product, and interests
of market participants on a voluntary basis; therefore, institutions will inevitably have both
centrally-cleared and non-centrally cleared portfolios. As pointed out by ESRB (2020), post-
trade netting services designed for risk mitigation purposes could complement central clearing
in the uncleared space. Our analysis supplements this view from the perspective of contagion.
More specifically, the sufficient condition for systemic risk reduction in Theorem 4.1 suggests
that post-trade netting services are not likely to increase contagion risk in normal times. De-
spite the potential benefits of reducing operational and counterparty risks, however, post-trade
netting can lead to different loss propagation and hence is not guaranteed to reduce systemic
risk.

A Proofs

A.1 Proofs for Section 2

Corollary A.1. Let (C,P, C + R) be a rebalancing exercise, then (ψC,P, ψ(C + R)) and
(ψCbi,P, ψ(C +R)bi) are PTN-exercises for all ψ ≥ 0.

Proof of Corollary A.1. Let L = ψC and LP = ψCP = ψ(C +R). Then,∑
j∈P

(LP
ji − LP

ij) = ψ
∑
j∈P

(Cji +Rji − Cij −Rij) = ψ
∑
j∈P

(Cji − Cij) + ψ
∑
j∈P

(Rji −Rij)︸ ︷︷ ︸
=0(by(7))

=
∑
j∈P

(Lji − Lij).

Similarly, for the bilaterally netted case we set L = ψCbi and LP = ψ(CP)bi = ψ(C +R)bi and
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then

∑
j∈P

(LP
ji − LP

ij) = ψ
∑
j∈P

(
(CP)biji − (CP)biij

)
= ψ

 ∑
j∈P:CP

ji≥CP
ij

(CP
ji − CP

ij )−
∑

j∈P:CP
ji<CP

ij

(CP
ij − CP

ji)


= ψ

∑
j∈P

(CP
ji − CP

ij ) = ψ

∑
j∈P

(Cji − Cij) +
∑
j∈P

(Rji −Rij)


= ψ

∑
j∈P

(Cji − Cij) = ψ

 ∑
j∈P:Cji≥Cij

(Cji − Cij)−
∑

j∈P:Cji<Cij

(Cij − Cji)


= ψ

∑
j∈P

(Cbi
ji − Cbi

ij ) =
∑
j∈P

(Lji − Lij),

where the third line again uses (7).

Proof of Theorem 2.10. 1. First, we show that theK-compression-rebalancing-parity-matrix
R is indeed a rebalancing matrix. By construction, we have Rij ≥ 0 ∀ i, j ∈ N . Next, we
show that R satisfies ∑

j∈P
Rji =

∑
j∈P

Rij ∀ i ∈ P.

By the definition of R it holds for all i, j ∈ N that

Rij = max{0, (Kij −Kji)− (Cij − Cji)},
Rji = max{0, (Kji −Kij)− (Cji − Cij)]} = max{0,−[(Kij −Kji)− (Cij − Cji)]}.

Therefore,

Rij = r+ij = max{0, rij}, (23)

Rji = r−ij = max{0,−rij}, (24)

rij = (Kij −Kji)− (Cij − Cji). (25)

Hence, for all i ∈ P,∑
j∈P

(Rij −Rji) =
∑
j∈P

(r+ij − r−ij) =
∑
j∈P

rij =
∑
j∈P

(Kij −Kji)−
∑
j∈P

(Cij − Cji) = 0,

where the last equality follows from (9). Also, note that for all (i, j) /∈ P ×P it holds that
Rij = Rji = 0 since rij = 0.

The statement that (C+R)biij = Kbi
ij follows directly from the definition of R. In particular,

for all (i, j) ∈ N ×N

(C +R)biij = max{0, Cij +Rij − Cji −Rji} = max{0, (Cij − Cji) + (Rij −Rji)}
= max{0, (Cij − Cji) + rij} = max{0, (Cij − Cji) + (Kij −Kji)− (Cij − Cji)}
= max{0,Kij −Kji} = Kbi

ij .

Finally, let K be a super-conservative compression matrix, i.e., 0 ≤ Kij ≤ Cbi
ij ∀ i, j ∈ N .

From (12) we obtain that the corresponding K-compression-rebalancing-parity-matrix R
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satisfies

(CP)biij = (C +R)biij = Kbi
ij ≤ Cbi

ij ∀ i, j ∈ N

and hence, R is a net-conservative rebalancing matrix.

2. Let R be a rebalancing matrix. We show that K = (C +R)bi is a compression matrix. K
is clearly nonnegative. We only need to check that for all i ∈ P,∑

j∈P
(Kji −Kij) =

∑
j∈P

(Cji − Cij).

Let i ∈ P. Then,∑
j∈P

(Kji −Kij) =
∑
j∈P

(
(C +R)biji − (C +R)biij

)
=
∑
j∈P

(max{0, Cji +Rji − Cij −Rij} −max{0, Cij +Rij − Cji −Rji})

=
∑
j∈P

(Cji +Rji − Cij −Rij)

=
∑
j∈P

(Rji −Rij)︸ ︷︷ ︸
=0(by (7))

+
∑
j∈P

(Cji − Cij)

=
∑
j∈P

(Cji − Cij).

If R is a net-conservative rebalancing matrix, then it follows from above thatK = (C+R)bi

is a compression matrix. Furthermore, since R is a net-conservative rebalancing matrix
we obtain that

Kij = (C +R)biij ≤ Cbi
ij ∀i, j ∈ P.

Hence, K is a super-conservative compression matrix.

3. Let K∗ be a solution to the compression optimisation problem. We show that the K∗-
compression-rebalancing-parity-matrix denoted by R∗ is a solution to the rebalancing
optimisation problem.

We denote the set of feasible points for the compression optimisation problem by

FComp = {K ∈ [0,∞)N×N | K satisfies (9)}.

Hence, it holds that

min
K∈FComp

∑
i∈P

∑
j∈P

Kij =
∑
i∈P

∑
j∈P

K∗
ij =

∑
i∈P

∑
j∈P

(K∗)biij =
∑
i∈P

∑
j∈P

(C +R∗)biij ,

where the last equality follows from part 1. of this theorem and the second equality follows
from the fact that if K∗ solves the compression optimisation problem, then K∗

ij = (K∗)biij
for all i, j ∈ P. Suppose this does not hold, then K∗

ijK
∗
ji > 0 for some fixed i, j ∈ P.

We define a new matrix K̂ ∈ [0,∞)N×N by setting K̂νµ = K∗
νµ for all (ν, µ) ∈ P ×

P \ {(i, j), (j, i)} and we set K̂ij = Kbi
ij and K̂ji = Kbi

ji . It follows that K̂ ∈ FComp

and
∑

i,j∈P K̂ij <
∑

i,j∈P K
∗
ij , so K

∗ is not a solution to the compression optimisation
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problem. Therefore, we must have K∗
ij = (K∗)biij for all i, j ∈ P.

From part 1. of this theorem we know that R∗ is a rebalancing matrix and hence a feasible
point of the rebalancing optimisation problem. We need to show that

min
R∈FRebal

∑
i∈P

∑
j∈P

(C +R)biij =
∑
i∈P

∑
j∈P

(C +R∗)biij , (26)

where
FRebal = {R ∈ [0,∞)N×N | R satisfies (7) }

is the set of feasible points for the rebalancing optimisation problem. We prove (26) by
contradiction. Suppose there exists an R̃ ∈ FRebal with∑

i∈P

∑
j∈P

(C + R̃)biij <
∑
i∈P

∑
j∈P

(C +R∗)biij .

Then, K̃ = (C + R̃)bi ∈ FComp by part 2. of this theorem. Furthermore,∑
i∈P

∑
i∈P

K̃ij =
∑
i∈P

∑
j∈P

(C + R̃)biij <
∑
i∈P

∑
j∈P

(C +R∗)biij = min
K∈F

∑
i∈P

∑
j∈P

Kij

which is a contradiction. Hence, (26) holds.

It remains to show the statement for the super-conservative case. Let K∗ be a solution
to the super-conservative compression optimisation problem, then by part 1. of this theo-
rem, the K∗-compression-rebalancing-parity-matrix R∗ is a net-conservative rebalancing
matrix. We can use exactly the same argument as before together with the feasible sets
for the super-conservative compression optimisation problem and the net-conservative re-
balancing optimisation problem given by

F SC Comp = {K ∈ [0,∞)N×N | K satisfies (9) and (10)},
FNC Rebal = {R ∈ [0,∞)N×N | R satisfies (7) and (8)}.

(27)

Then, it follows that R∗ is a solution to the net-conservative rebalancing optimisation
problem.

4. Let R∗ be a solution to the rebalancing optimisation problem. Then, from part 2. of this
theorem K∗ = (C +R∗)bi is a compression matrix. Furthermore,

min
R∈FRebal

∑
i∈P

∑
j∈P

(C +R)biij =
∑
i∈P

∑
j∈P

(C +R∗)biij =
∑
i∈P

∑
j∈P

K∗
ij =

∑
i∈P

∑
j∈P

(K∗)biij .

We show that

min
K∈FComp

∑
i∈P

∑
j∈P

Kij =
∑
i∈P

∑
j∈P

K∗
ij . (28)

We prove this by contradiction. Suppose there exists a K̃ ∈ FComp such that∑
i∈P

∑
j∈P

K̃ij <
∑
i∈P

∑
j∈P

K∗
ij .

Then, the corresponding K̃-compression-rebalancing-parity-matrix R̃ ∈ FRebal satisfies by
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part 1. of this theorem∑
i∈P

∑
j∈P

(C + R̃)biij =
∑
i∈P

∑
j∈P

K̃bi
ij ≤

∑
i∈P

∑
j∈P

K̃ij <
∑
i∈P

∑
j∈P

K∗
ij = min

R∈FRebal

∑
i∈P

∑
j∈P

(C +R)biij .

This is a contradiction and hence such a K̃ does not exist and (28) holds.

Now, let R∗ be a solution to the net-conservative rebalancing optimisation problem. Then,
from part 2. of this theorem K∗ = (C +R∗)bi is a super-conservative compression matrix.
We can then use the same argument as for the general case using the feasible sets for the
net- and super-conservative case F SC Comp and FNC Rebal defined in (27).

A.2 Proofs for Section 4

A.2.1 Additional properties of a PTN-exercise

We use the following lemmas to prove the main results in Section 4.

Lemma A.2. Let (L,P, LP) be a PTN-exercise. Then,

1. L̄i = L̄P
i for all i ∈ N \ P;

2. for all i ∈ N , ∑
j∈P

Lji − L̄i =
∑
j∈P

LP
ji − L̄P

i . (29)

Proof of Lemma A.2. 1. This is a direct consequence of Definition 2.1.

2. This also follows directly from Definition 2.1, since ∀i ∈ N∑
j∈P

(Lji − Lij) =
∑
j∈P

(LP
ji − LP

ij)

⇔
∑
j∈P

Lji − L̄i +
∑

j∈N\P

Lji =
∑
j∈P

LP
ji − L̄P

i +
∑

j∈N\P

LP
ji︸︷︷︸

=Lji

⇔
∑
j∈P

Lji − L̄i =
∑
j∈P

LP
ji − L̄P

i .

Lemma A.3. Let (L,P, LP) be a PTN-exercise. Set

M = {i ∈ N | L̄i > 0}, MP = {i ∈ N | L̄P
i > 0}.

Let j ∈ M \MP . Then, j ∈ P and Lji = 0 ∀ i ∈ N \ P.

Proof of Lemma A.3. Let j ∈ M\MP . It follows that L̄j > 0 and L̄P
j = 0. Therefore, L̄j ̸= L̄P

j ,
which implies that j ∈ P by Lemma A.2.

Now suppose there exists an i ∈ N \P such that Lji > 0. Then L̄P
j =

∑
k∈N LP

jk ≥ Lji > 0,

which contradicts the assumption that j /∈ MP .

A.2.2 Proofs of the main results in Section 4

We first introduce some additional notation useful for later proofs.
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Lemma A.4. For all i ∈ N , let E
(0)
i and E

P(0)
i be the initial equities defined in (15). For

n ∈ N, we define two sequences recursively by

E(n) = Φ
(
E(n−1)

)
,

EP(n) = ΦP
(
EP(n−1)

)
,

(30)

where the functions Φ and ΦP are defined in (13) and (14), respectively. Then

1. E
(0)
i = E

P(0)
i ∀ i ∈ N ;

2. the sequences
(
E(n)

)
and

(
EP(n)

)
are non-increasing, i.e., for all i ∈ N and for all n ∈ N0,

it holds that
E

(n)
i ≥ E

(n+1)
i , E

P(n)
i ≥ E

P(n+1)
i ;

3. for all i ∈ N , the sequences
(
E

(n)
i

)
and

(
E

P(n)
i

)
converge to the greatest fixed points of

Φ and ΦP , respectively, i.e.,

lim
n→∞

E
(n)
i = E∗

i , lim
n→∞

E
P(n)
i = EP;∗

i .

Proof of Lemma A.4. 1. We can rewrite the initial equities as

E
(0)
i = Ab

i +
∑

j∈N\P

(Lji − Lij) +
∑
j∈P

(Lji − Lij),

E
P(0)
i = Ab

i +
∑

j∈N\P

(LP
ji − LP

ij) +
∑
j∈P

(LP
ji − LP

ij) = Ab
i +

∑
j∈N\P

(Lji − Lij) +
∑
j∈P

(LP
ji − LP

ij).

Finally, it follows directly from Definition 2.1 that
∑

j∈P(Lji − Lij) =
∑

j∈P(L
P
ji − LP

ij).

2. We know from Veraart (2020, Lemma A.1) that the functions Φ and ΦP are non-decreasing,
so the statement follows from Veraart (2020, Theorem 2.6).

3. The convergence of the two sequences defined by (30) to the greatest re-evaluated equities
in the corresponding network follows from Theorem 2.6 in Veraart (2020).

Proof of Theorem 4.1. Let

M = {i ∈ N | L̄i > 0},
MP = {i ∈ N | L̄P

i > 0}.
(31)

1. Recall that for the financial networks (L,Ab;V) and (LP , Ab;V) we consider the functions

Φi(E) = Ab
i +

∑
j∈M

LjiV
(
Ej + L̄j

L̄j

)
− L̄i ∀ i ∈ N ,

ΦP
i (E) = Ab

i +
∑

j∈MP

LP
jiV

(
Ej + L̄P

j

L̄P
j

)
− L̄P

i ∀ i ∈ N

on E = [−L̄, Ab + Ā− L̄], and EP = [−L̄P , Ab + ĀP − L̄P ], respectively.

It holds that Ẽ ∈ E . Before we show that Ẽ is a fixed point of ΦP we show that Ẽ ∈ EP .
First, note that since LP is a PTN-exercise, the PTN-contraint (1) implies that EP =
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[−L̄P , Ab + Ā − L̄]. Hence, E and EP have the same upper bound but different lower
bounds. To see that Ẽ ∈ EP , note that for all i ∈ N \ P it holds that L̄i = L̄P

i and hence
the corresponding lower bound for Ẽi is the same in E and EP . Furthermore, for all i ∈ P
by assumption (16) Ẽi ≥ 0 and hence the lower bound does not matter. Hence, indeed
Ẽ ∈ EP .

Since Ẽ is a fixed point of Φ it holds that for all i ∈ N

Ẽi = Φi(Ẽ) = Ab
i +

∑
j∈M

LjiV

(
Ẽj + L̄j

L̄j

)
− L̄i.

We show that Ẽ is also a fixed point of ΦP . Let i ∈ N \ P. Then,

Ẽi = Ab
i +

∑
j∈M

LjiV

(
Ẽj + L̄j

L̄j

)
− L̄i

= Ab
i +

∑
j∈M

LP
jiV

(
Ẽj + L̄j

L̄j

)
− L̄P

i (since i ∈ N \ P)

= Ab
i +

∑
j∈M\P

LP
jiV

(
Ẽj + L̄j

L̄j

)
+

∑
j∈M∩P

LP
ji V

(
Ẽj + L̄j

L̄j

)
︸ ︷︷ ︸

=1(no defaults in P)

−L̄P
i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈M∩P

LP
ji − L̄P

i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈MP∩P

LP
ji V

(
Ẽj + L̄P

j

L̄P
j

)
︸ ︷︷ ︸
=1(no defaults in P)

−L̄P
i

= Ab
i +

∑
j∈MP

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
− L̄P

i

= ΦP
i (Ẽ).
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Let i ∈ P. Then,

Ẽi = Ab
i +

∑
j∈M

LjiV

(
Ẽj + L̄j

L̄j

)
− L̄i

= Ab
i +

∑
j∈M\P

Lji︸︷︷︸
=LP

ji

V

(
Ẽj + L̄j

L̄j

)
+

∑
j∈M∩P

Lji V

(
Ẽj + L̄j

L̄j

)
︸ ︷︷ ︸

=1(no defaults in P)

−L̄i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈P

Lji − L̄i︸ ︷︷ ︸
=
∑

j∈P LP
ji−L̄P

i (by (29))

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈MP∩P

LP
ji − L̄P

i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈MP∩P

LP
ji V

(
Ẽj + L̄P

j

L̄P
j

)
︸ ︷︷ ︸
=1(no defaults in P)

−L̄P
i

= Ab
i +

∑
j∈MP

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
− L̄P

i

= ΦP
i (Ẽ).

Hence, Ẽ is also a fixed point of ΦP .

Furthermore, D(Ẽ, L,Ab;V) = {i ∈ N | Ẽi < 0} = D(Ẽ, LB, Ab;V) and hence
D(Ẽ, LB, Ab;V) ⊆ D(Ẽ, L,Ab;V), i.e., systemic risk is reduced but D(Ẽ, LB, Ab;V) ̸⊊
D(Ẽ, L,Ab;V), i.e., there is no strong reduction of systemic risk.

2. Let Ẽ be the greatest fixed point of Φ satisfying (16). We show that it is also the greatest
fixed point of ΦP . By part 1. of this theorem, Ẽ is also a fixed point of ΦP . Let ẼP be
the greatest fixed point of ΦP . Since Ẽ is a fixed point of ΦP , we have Ẽ ≤ ẼP and in
particular 0 ≤ Ẽi ≤ ẼP

i for all i ∈ P by (16) and hence {i ∈ P | ẼP
i < 0} = ∅. Therefore,

it follows from part 1. of Proposition 4.3 that ẼP is also a fixed point of Φ, implying
ẼP ≤ Ẽ. This leads to Ẽ = ẼP .

3. We consider the network presented in Figure 4 for V = VRV with β = 0.1, where

VRV(y) =

{
1, if y ≥ 1,
βy+, if y < 1,

which corresponds to a special case of the model by Rogers & Veraart (2013).

In particular, here N = 4, P = {1, 2, 3}, and

Ab =


0.5
5
1.5
0.5

 , L =


0 3 0 0
0 0 5 0
2 0 0 3
1 0 0 0

 , LP =


0 0 2 0
1 0 1 0
0 0 0 3
1 0 0 0

 .

One can check that E∗ = (0.5, 3.5, 1.5, 2.5)⊤ = E∗ is the greatest and least fixed point in
the original network, hence there are no defaults in the original network. Furthermore,
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(a) The original network. (b) The rebalanced network.

Figure 4: Networks of variation margin payments corresponding to the least fixed point.

Note. The figure shows a harmful rebalancing exercise with respect to the least fixed point. The liabilities are
next to the arrows, and the numbers in boxes and brackets represent the liquid assets and actual payments,
respectively. The dashed lines indicate the liabilities that are not settled.

EP;∗ = E∗ is the greatest fixed point in the PTN-network (no defaults). But the least fixed
point in the PTN-network is given by EP

∗ = (−47/111, 3.5,−38/111,−26/111)⊤ ≱ E∗, i.e.,
banks 1, 3, 4 default and hence under the least fixed point this PTN-exercise is harmful.

4. Let Ẽ be the least fixed point of Φ. Let EP
∗ be the least fixed point of ΦP . Since the

conditions of Theorem 4.4 are satisfied, we can conclude with Theorem 4.4 result (19)
that Ẽ ≤ EP

∗ . From part 1. of this theorem it follows that Ẽ is also a fixed point of ΦP

and since EP
∗ is the least fixed point of ΦP it follows that Ẽ = EP

∗ .

Proof of Corollary 4.2. Since (16) holds, Ẽi ≥ 0 ∀i ∈ P, and hence,

V

(
Ẽi + L̄i

L̄i

)
= 1 = V

(
Ẽi + L̄P

i

L̄P
i

)
∀i ∈ P. (32)

The payments in the original network are

pij(Ẽ) = V

(
Ẽi + L̄i

L̄i

)
Lij ∀i, j ∈ N ,

and because of (32)

pij(Ẽ) = Lij ∀i ∈ P,∀j ∈ N .

The payments in the PTN-network are

pPij(Ẽ) = V

(
Ẽi + L̄P

i

L̄P
i

)
LP
ij ∀i, j ∈ N ,

which reduces to (using the fact that nonparticipants have the same payment obligations in
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both networks and (32))

pPij(Ẽ) = V

(
Ẽi + L̄i

L̄i

)
Lij ∀i ∈ N \ P, ∀j ∈ N ,

pPij(Ẽ) = LP
ij ∀i ∈ P,∀j ∈ N .

Hence,

pij(Ẽ)− pPij(Ẽ) = 0 = Lij − LP
ij , ∀i ∈ N \ P,∀j ∈ N ,

pij(Ẽ)− pPij(Ẽ) = Lij − LP
ij ∀i ∈ P,∀j ∈ N .

We use Lemma A.5 (whose second and third statements are similar to Veraart (2022, Lemma
B.4)) to prove Proposition 4.5.

Lemma A.5. Let F = {i ∈ N |E(0)
i < 0} and FP = {i ∈ N | EP(0)

i < 0} be the fundamental
default set in the original network and in the PTN-network, respectively. Let Ẽ be a fixed point
of Φ and let ẼP be a fixed point of ΦP .
Then 1.) FP = F , 2.) F ⊆ D(Ẽ, L,Ab;V), and 3.) FP ⊆ D(ẼP , LB, Ab;V).

Proof of Lemma A.5. 1. First, note that the definition of F is indeed the same as our earlier

Definition 3.3. We have F = {i ∈ N |E(0)
i < 0} and FP = {i ∈ N |EP(0)

i < 0}. Since

E
(0)
i = E

P(0)
i for all i ∈ N by Lemma A.4, we obtain FP = F .

2. We consider the sequences
(
E(n)

)
and

(
EP(n)

)
defined by (30). Fix i ∈ F . Lemma

A.4 implies that ∀m ∈ N, 0 > E
(0)
i ≥ E

(m)
i ≥ limn→∞E

(n)
i = E∗

i . Therefore, i ∈
D(E∗, L,Ab;V) where E∗ is the greatest fixed point of Φ. Since, Ẽi ≤ E∗

i < 0, this
implies that i ∈ D(Ẽ, L,Ab;V).

3. Fix i ∈ FP . Again by Lemma A.4, ∀m ∈ N, 0 > E
P(0)
i ≥ E

P(m)
i ≥ limn→∞E

P(n)
i =

EP;∗
i , hence i ∈ D(EP;∗, LB, Ab;V), where EP;∗ is the greatest fixed point of ΦP . Since,

ẼP
i ≤ EP;∗

i < 0, this implies that i ∈ D(ẼP , LB, Ab;V).

Proof of Proposition 4.5. Let Ẽ be a fixed point of Φ and let ẼP be a fixed point of ΦP . We
know from Lemma A.5 that FP ⊆ D(ẼP , L,Ab;V). We prove FP = D(ẼP , L,Ab;V) by showing
that D(ẼP , L,Ab;V) ⊆ FP . Let i ∈ D(ẼP , L,Ab;V). Then

0 > ẼP
i = Ab

i +
∑

j∈MP

LP
jiV

(
ẼP

j + L̄P
j

L̄P
j

)
− L̄P

i .

Hence, L̄P
i > 0. Since the graph corresponding to the optimal PTN-network (when P = N ) is

bipartite by D’Errico & Roukny (2021, Lemma 1), this implies that LP
ji = 0 for all j ∈ MP .

To be more precise, we can apply D’Errico & Roukny (2021, Lemma 1) because the optimal
PTN-optimisation problem is identical to the non-conservative compression problem in D’Errico
& Roukny (2021) when P = N . It follows that

∑
j∈MP

LP
jiV

(
ẼP

j + L̄P
j

L̄P
j

)
= 0 =

∑
j∈MP

LP
ji,
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and hence
0 > ẼP

i = Ab
i − L̄P

i = E
P(0)
i .

This implies that i ∈ FP , therefore FP = D(ẼP , LB, Ab;V). Hence, FP = D(ẼP , LB, Ab;V) ⊆
D(Ẽ, L,Ab;V) by Lemma A.5.

We will use Lemma A.6 to prove Theorem 4.4. The statement of the Lemma and its proofs
is only a small modification of ideas used in the proof of Veraart (2022, Proposition 4.12).

Lemma A.6. Consider a PTN-exercise (L,P, LP) that satisfies (3). Let the valuation function
be V = Vzero. Let E(n) ∈ E , EP(n) ∈ EP be such that EP(n) ≥ E(n). Then,

Φi(E
P(n)) = Φi(E

P(n);Vzero) ≥ ΦP
i (E

(n);Vzero) = ΦP
i (E

(n)) ∀i ∈ N .

Proof of Lemma A.6. Let EP(n) ≥ E(n) and V = Vzero. Then, for any L̄, L̄P ∈ [0,∞)N

Vzero

(
E

P(n)
j + L̄P

j

L̄P
j

)
= I{

E
P(n)
i ≥0

} ≥ I{
E

(n)
i ≥0

} = Vzero

(
E

(n)
j + L̄j

L̄j

)
. (33)

First, let i ∈ N \ P. Then,

ΦP
i (E

P(n)) = ΦP
i (E

P(n);Vzero) = Ab
i +

∑
j∈N :L̄P

j >0

LP
jiVzero

(
E

P(n)
j + L̄P

j

L̄P
j

)
− L̄P

i

= Ab
i +

∑
j∈N :L̄P

j >0

LjiVzero

(
E

P(n)
j + L̄P

j

L̄P
j

)
− L̄i (since i /∈ P)

= Ab
i +

∑
j∈N

LjiI{EP(n)
i ≥0

} − L̄i

≥ Ab
i +

∑
j∈N

LjiI{E(n)
i ≥0

} − L̄i (by (33))

= Ab
i +

∑
j∈N :L̄j>0

LjiVzero

(
E

(n)
j + L̄j

L̄j

)
− L̄i

= Φi(E
(n);Vzero) = Φi(E

(n)).
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Second, let i ∈ P. Then,

ΦP
i (E

P(n)) = ΦP
i (E

P(n);Vzero) = Ab
i +

∑
j∈N :L̄P

j >0

LP
jiVzero

(
E

P(n)
j + L̄P

j

L̄P
j

)
− L̄P

i

= Ab
i +

∑
j∈N

LP
jiI{EP(n)

i ≥0
} − L̄P

i

≥ Ab
i +

∑
j∈N

LP
jiI{E(n)

i ≥0
} − L̄P

i (by(33))

= Ab
i +

∑
j∈N\P

LP
ji︸︷︷︸

=Lji

I{
E

(n)
i ≥0

} +
∑
j∈P

LP
jiI{E(n)

i ≥0
} − L̄P

i

= Ab
i +

∑
j∈N\P

LjiI{E(n)
i ≥0

} +
∑
j∈P

LP
jiI{E(n)

i ≥0
} − L̄i +

∑
j∈P

Lji −
∑
j∈P

LP
ji (by(29))

= Ab
i +

∑
j∈N

LjiI{E(n)
i ≥0

} −
∑
j∈P

LjiI{E(n)
i ≥0

} +
∑
j∈P

LP
jiI{E(n)

i ≥0
} − L̄i

+
∑
j∈P

Lji −
∑
j∈P

LP
ji

= Ab
i +

∑
j∈N

LjiI{E(n)
i ≥0

} − L̄i +
∑
j∈P

(Lji − LP
ji)︸ ︷︷ ︸

≥0(by (3))

(1− I{
E

(n)
i ≥0

})︸ ︷︷ ︸
≥0

≥ Ab
i +

∑
j∈N

LjiI{E(n)
i ≥0

} − L̄i =
∑

j∈N :L̄j>0

LjiVzero

(
E

(n)
j + L̄j

L̄j

)
− L̄i

= Φi(E
(n);Vzero) = Φi(E

(n)).

Proof of Theorem 4.4. 1. The result for the greatest fixed points, i.e., (18) has already been
shown in Veraart (2022, Proposition 4.12, Proposition 4.13). As shown there, one can
again consider a fixed point iteration. For the sequences

(
E(n)

)
and

(
EP(n)

)
defined by

(30) one can show by induction that if V = Vzero, then E
P(n)
i ≥ E

(n)
i ∀ i ∈ N holds for

all n ∈ N0. In particular, the statement for n = 0, E
P(0)
i = E

(0)
i for all i ∈ N holds by

Lemma A.4. If we assume that E
P(n)
i ≥ E

(n)
i holds for a fixed n ∈ N0, then, by Lemma

A.6 E
P(n+1)
i = ΦP

i

(
EP(n);Vzero

)
≥ ΦP

i

(
EP(n);Vzero

)
= E

P(n+1)
i which completes the

proof by induction. Therefore, EP;∗
i = limn→∞E

P(n)
i ≥ limn→∞E

(n)
i = E∗

i ∀ i ∈ N by
Lemma A.4 which proves (18).

Next, we prove the result for the least fixed point, i.e., that (19) holds. We set

(E(0))i = Ab
i − L̄i, ∀i ∈ N ,

(EP(0))i = Ab
i − L̄P

i ∀i ∈ N ,

and we define the sequences

(E(n+1))i = Φi(E(n);Vzero) ∀i ∈ N ,

(EP(n+1))i = ΦP
i (EP(n);Vzero) ∀i ∈ N ,

for n ≥ 0. We show by induction that (E(n))n∈N0 and (EP(n))N0 are non-decreasing
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sequences, i.e.,

(E(n+1))i ≥ (E(n))i, ∀i ∈ P
(EP(n+1))i ≥ (EP(n))i ∀i ∈ P.

Let n = 0. It follows directly from the definition of Φ and ΦP that ∀i ∈ N

(E(1))i = Φi(E(0);Vzero) = Ab
i +

∑
j∈N :L̄i>0

LijVzero

(
(E(0))j + L̄j

L̄j

)
︸ ︷︷ ︸

≥0

−L̄i

≥ Ab
i − L̄i = (E(0))i

(EP(1))i = ΦP
i (EP(0);Vzero) = Ab

i +
∑

j∈N :L̄P
i >0

LP
ijVzero

(
(EP(0))j + L̄P

j

L̄P
j

)
︸ ︷︷ ︸

≥0

−L̄P
i

≥ Ab
i − L̄P

i = (EP(0))i.

Now fix n ∈ N0 and assume that E(n) ≥ E(n−1) and EP(n) ≥ EP(n−1) holds. Then,

(E(n+1))i = Φi(E(n);Vzero) = Ab
i +

∑
j∈N :L̄i>0

Lij Vzero

(
(E(n))j + L̄j

L̄j

)
︸ ︷︷ ︸
≥Vzero

(
(E(n−1))j+L̄j

L̄j

)
−L̄i

≥ Φi(E(n−1);Vzero) = (E(n))i

(EP(n+1))i = ΦP
i (EP(n);Vzero) = Ab

i +
∑

j∈N :L̄P
i >0

LP
ij Vzero

(
(EP(n))j + L̄P

j

L̄P
j

)
︸ ︷︷ ︸
≥Vzero

(
(EP(n−1))j+L̄P

j

L̄P
j

)
−L̄P

i

≥ ΦP
i (EP(n−1);Vzero) = (EP(n))i

which completes the proof by induction.

Hence, (E(n))n∈N0 and (E(n))N0 are non-decreasing sequences. They are also bounded from

above, since for all i ∈ N (E(n))i ≤ Ab
i+
∑

j∈N Lij−L̄i and (EP(n))i ≤ Ab
i+
∑

j∈N LP
ij−L̄P

i .
Hence, both sequences converge to a limit.

Next, we show that ∀i ∈ N and ∀n ∈ N0

(EP(n))i ≥ (E(n))i. (34)

This follows directly by induction. For n = 0, since (L,P, LP) satisfies (3) it holds that

(EP(0))i = Ab
i − L̄P

i ≥ Ab
i − L̄i = (E(0))i ∀i ∈ N

and the induction step follows directly with Lemma A.6.

Hence, we obtain that

lim
n→∞

(EP(n))i ≥ lim
n→∞

(E(n))i ∀i ∈ N .

33



If limn→∞(EP(n)) is a fixed point of ΦP and limn→∞(E(n)) is a fixed point of ΦP , then
there is nothing left to show.

But since Vzero is not left-continuous, there is no guarantee that limn→∞(E(n)) is a fixed

point of Φ or that limn→∞(EP(n)) is a fixed point of ΦP . Then, as discussed in Rogers
& Veraart (2013, Section 3.1), if at least one of these limits is not a fixed point, then one
will need to restart the iteration from these limits, i.e., set for n ∈ N0

Ê(0) = lim
m→∞

(E(m)), Ê(n+1) = Φ(Ê(n)),

ÊP(0) = lim
m→∞

(EP(m)), ÊP(n+1) = Φ(ÊP(n)),

and repeat the previous arguments. If the initial vector of such a sequence is a fixed point,
then the sequence is just constant.

The situation that the limit is not a fixed point can only occur at a point where a bank
just becomes solvent in the limit. This can happen at most N times since there are N
banks, meaning at most N−1 restarts of this fixed point iteration could become necessary
as discussed in Rogers & Veraart (2013). Then, after at most N − 1 restarts, the limits
of the iterations are indeed the least fixed points. If we need to restart the iteration, the
same argument can be used to show the equivalence of (34) for the next two sequences.
This sequence of arguments can be repeated until the fixed points are obtained.

2. In the following we provide an example for the situation mentioned in the statement. We
consider a PTN-exercise with

L =


0 5 0 0
0 0 10 0
0 0 0 7
0 0 0 0

 , LP =


0 0 5 0
0 0 5 0
0 0 0 7
0 0 0 0

 ,

and Ab = (1, 10, 1, 0)⊤. An illustration is provided in Figure 5.

One can check that E∗ = (−4, 0, 4, 7)⊤ = E∗, E
P;∗ = (−4, 5,−1, 0)⊤ = EP

∗ . Hence,
neither (18) nor (19) are satisfied and this PTN-exercise is harmful under the greatest
and the least re-evaluated equity. In particular, in the original network, bank N1 is the
only bank in fundamental default, which does not trigger further defaults. In the PTN-
network, bank N1 remains the only one in fundamental default, but it now triggers the
contagious default of bank N3. This difference is due to the fact that bank N3 now faces
bank N1 directly and receives no payment from N1.

(a) The original network. (b) The PTN-network.

Figure 5: Harmful PTN-exercise for zero recovery rates.

Note. The figure shows a harmful PTN-exercise (that does not satisfy (3)) for V = Vzero. The liquidity buffers
are Ab = (1, 10, 1, 0)⊤. The liabilities Lij and LP

ij are next to the arrows.
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A.2.3 Clearing algorithms

Before proceeding to the proof of Theorem 4.6, we first introduce the clearing equilibrium for
the Rogers & Veraart (2013) model. Given a financial network (L,Ab), the relative liabilities
matrix Π is defined by Πij = Lij/L̄i if L̄i > 0, and Πij = 0 otherwise for all i, j ∈ N . A clearing
vector in the Rogers & Veraart (2013) model is a vector L ∈ [0, L̄] satisfying

L = ΨRV (L),

where the function ΨRV : [0, L̄] → [0, L̄] is given by

ΨRV
i (L) =

{
L̄i, if Ab

i +
∑

j∈N ΠjiLj ≥ L̄i,

αAb
i + β

∑
j∈N ΠjiLj , otherwise,

with default cost parameters α, β ∈ [0, 1].
In Figure 6, we present the two clearing algorithms that are related to the modelling as-

sumption in Section 4.1.1.
Algorithm 1 corresponds to the Full Payment Algorithm (FPA) by Bardoscia et al. (2019).

It computes a vector l̃∗ that corresponds to the payments made by all banks in the network.
The mechanism in the algorithm can be understood as follows. At the time t, e(t) consists of
the available liquid assets including received payments, and A(t) comprises banks that can pay
in full. The assumption that banks either make full payment or pay nothing is incorporated into
step 7. Note that an important difference between the FPA and the hard default in Paddrik
et al. (2020) is that in the former setting, it is assumed that—unlike the Eisenberg & Noe (2001)
model in finding an equilibrium payment vector—there is no coordination among banks in the
FPA to determine the payments. Therefore, the modelling assumption results in a sequence of
payments, and banks can only pay in full if they have received sufficient liquidity.

Algorithm 2 considers the least clearing vector in the Rogers & Veraart (2013) model with
α = β = 0. It corresponds to the case in which the defaulting banks make zero payments. We
refer to Algorithm 2 as the Least Clearing Vector Algorithm (LA). The algorithm starts by
assuming that initially there is no solvent bank that would be able to make any payment. S(0)

is the set of banks that would be able to pay liabilities in full even if all other banks did not
meet their obligations. Similar to the construction in Rogers & Veraart (2013, Theorem 3.7),
as the algorithm terminates, the output is the least clearing vector.

We use Lemma A.7 to prove Theorem 4.6.

Lemma A.7. Consider the FPA (Algorithm 1) and the LA (Algorithm 2) described in Figure
6. Fix an iteration t ∈ N0. Then

t+1⋃
s=0

A(s) = S(t). (39)

In particular, the banks that make payments in the FPA up to time t+ 1 are identical to those
that make payments in the LA up to time t+ 1.

Proof of Lemma A.7. We prove the result by induction. Let t = 0. By plugging the initial
values of Algorithm 1 into (35) and (36), we obtain that

⋃1
s=0A(s) = A(0) ∪ (A(1) \ A(0)) =

A(1) = {i ∈ N | ei(1) ≥ L̄i} = {i ∈ N |Ab
i ≥ L̄i} and S(0) = {i ∈ N |Ab

i − L̄i ≥ 0}. Therefore,⋃1
s=0A(s) = S(0).
Now suppose (39) holds for a fixed t. We show that it also holds for t+1, i.e.,

⋃t+2
s=0A(s) =

35



Figure 6: Clearing algorithms.

Algorithm 1 Full Payment Algorithm (FPA) in Bardoscia et al. (2019)

1: Set e(0) := Ab, l(0) := 0, and A(0) := ∅. Set t = 1.
2: For all i ∈ N , set

ei(t) = ei(t− 1) +
∑
j∈N

lj(t− 1)Πji − li(t− 1). (35)

3: Determine

A(t) = {i ∈ N | ei(t) ≥ L̄i} \
t−1⋃
s=0

A(s). (36)

4: if A(t) ≡ ∅ then

5: return l̃∗ =
∑t−1

s=0 l(s).
6: else
7: set li(t) = L̄i for all i ∈ A(t), and li(t) = 0 otherwise.
8: end if
9: Set t = t+ 1 and go back to step 2.

Algorithm 2 Least Clearing Vector Algorithm (LA) for Rogers & Veraart (2013)
model with α = β = 0

1: Set t = 0, l(0) := 0, and D(−1) := N .
2: For all i ∈ N , determine

v
(t)
i := Ab

i +
∑
j∈N

l
(t)
j Πji − L̄i. (37)

3: Define
D(t) := {i ∈ N | v(t)i < 0} and S(t) := {i ∈ N | v(t)i ≥ 0}. (38)

4: if D(t) ≡ D(t−1) then
5: return l∗ = l(t−1).
6: else
7: set l

(t+1)
i = L̄i for all i ∈ S(t), and l

(t+1)
i = 0 for all i ∈ D(t).

8: end if
9: Set t = t+ 1 and go back to step 2.
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S(t+1). We rewrite

t+2⋃
s=0

A(s) =

t+1⋃
s=0

A(s) ∪ A(t+ 2) and S(t+1) = S(t) ∪
(
S(t+1) \ S(t)

)
,

so it is sufficient to prove that A(t+ 2) = S(t+1) \ S(t).
First, note that according to the definition of Algorithm 1, for all i ∈ N , we can write

ei(t+ 1) as

ei(t+ 1) = ei(t) +
∑
j∈N

lj(t)Πji − li(t)

= ei(t− 1) +
∑
j∈N

lj(t− 1)Πji − li(t− 1)︸ ︷︷ ︸
=ei(t)

+
∑
j∈N

lj(t)Πji − li(t)

= · · ·

= Ab
i︸︷︷︸

=ei(0)

+
∑
j∈N

Πji

t∑
s=0

lj(s)−
t∑

s=0

li(s)

(⋆)
= Ab

i +
∑

j∈
⋃t

s=0 A(s)

Πji

t∑
s=0

lj(s)−
t∑

s=0

li(s)

(⋆⋆)
= Ab

i +
∑

j∈
⋃t

s=0 A(s)

L̄jΠji −
t∑

s=0

li(s),

(40)

where (⋆) follows from the fact that
∑t

s=0 lj(s) > 0 implies j ∈
⋃t

s=0A(s) (see step 3-7 in
Algorithm 1), and (⋆⋆) holds since

∑t
s=0 lj(s) = L̄j for all j ∈

⋃t
s=0A(s).

In addition, we can rewrite (37) at t+ 1 as

v
(t+1)
i = Ab

i +
∑
j∈N

l
(t+1)
j Πji − L̄i = Ab

i +
∑

j∈S(t)

L̄jΠji − L̄i. (41)

First, we show that S(t+1) \ S(t) ⊆ A(t + 2). Let i ∈ S(t+1) \ S(t), then i /∈
⋃t+1

s=0A(s) by
the induction hypothesis S(t) =

⋃t+1
s=0A(s). From the definition of li(s), s ∈ {0, . . . , t+ 1}, this

implies that
∑t+1

s=0 li(s) = 0. Combining this with equation (41) gives

0 ≤ v
(t+1)
i = Ab

i +
∑

j∈S(t)

L̄jΠji − L̄i + 0︸︷︷︸
=
∑t+1

s=0 li(s)

= Ab
i +

∑
j∈
⋃t+1

s=0 A(s)

L̄jΠji +

t+1∑
s=0

li(s)− L̄i

= ei(t+ 2)− L̄i.

Hence, i ∈ A(t+ 2).
Second, we show that A(t+ 2) ⊆ S(t+1) \ S(t). Let i ∈ A(t+ 2), then

L̄i ≤ ei(t+ 2) = Ab
i +

∑
j∈
⋃t+1

s=0 A(s)

L̄jΠji −
t+1∑
s=0

li(s)
ind.hyp.
= Ab

i +
∑

j∈S(t)

L̄jΠji −
t+1∑
s=0

li(s)︸ ︷︷ ︸
(⋄)
= 0

= Ab
i +

∑
j∈S(t)

L̄jΠji,

(42)
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where (⋄) holds because the definition of A(t+ 2) implies that i /∈
⋃t+1

s=0A(s)
ind.hyp
= S(t), which

implies that
∑t+1

s=0 li(s) = 0. Combining this with (42) implies that 0 ≤ Ab
i+
∑

j∈S(t) L̄jΠji−L̄i =

v
(t+1)
i and hence i ∈ S(t+1) \ S(t).

Now we can prove the result that the outcomes of Algorithms 1 and 2 in Figure 6 coincide.

Proof of Theorem 4.6. Suppose for a fixed t > 0 at one iteration it holds that A(t) = ∅. Then
l̃⋆ =

∑t−1
s=0 l(s), where l̃⋆,i = L̄i if i ∈

⋃t−1
s=0A(s) and 0 otherwise. In addition, since

⋃t−1
s=0A(s) =

S(t−2) by Lemma A.7, A(t) = ∅ is equivalent to D(t) = D(t−1) in the LA. Furthermore, the LA
returns l⋆ = l(t−1), where l⋆,i = L̄i if i ∈ S(t− 2) and 0 otherwise.

Therefore, both algorithms terminate when the same banks are selected, and all their pay-
ments are identical. According to Rogers & Veraart (2013), the LA generates a sequence of
vectors increasing to the least clearing vector, so the statement follows immediately.

B More background on PTRR services

This section provides more background on post-trade netting services drawn from various
sources. It is worth highlighting that the services develop fast and update frequently; we
refer interested readers to the website of service providers such as OSTTRA17 for the latest
information. At the time of writing, CME’s TriOptima—a leading PTRR service provider—is
part of OSTTRA, a joint venture formed on 1st September 2021 between IHS Markit and CME
Group. (IHS Markit was acquired by S&P Global on 1st March 2022.)

We split the development into three stages (which may have some overlapping). First, before
the Global Financial Crisis, the volumes of outstanding derivatives contracts grew rapidly. In
particular, concerns about counterparty risk drove the increase in the CDS market near the
crisis; the notional amount then fell significantly, which according to Vause (2010), can be
partly attributed to portfolio compression. The second stage follows the mandatory clearing
of standardised derivatives contracts. For example, TriOptima introduced its triReduce service
in 2003 for the interest rate swap (IRS) market, which now compresses bilateral swaps as
well as products in centrally cleared markets. TriOptima collaborates with LCH.Clearnet on
SwapClear.18 ISDA (2012) reports that the progress on eliminating outstanding IRS notional
positions since 2011 is significant.

While regulatory reforms are intended to make the financial markets more resilient, the
implementation is costly. As a result, the most recent stage contributing to the development
of post-trade netting services is attributable to those reforms that introduce higher costs, such
as the Uncleared Margin Rules (UMRs), capital requirements (for example, the SA-CCR and
G-SIBs’ capital surcharges), Leverage Ratio (LR) requirements, and so on. 19 With the leverage
ratio that uses gross exposures being an exception, margin and capital costs are often aligned
with risk metrics based on net exposures. Therefore, portfolio rebalancing that optimises coun-
terparty exposures could potentially reduce the all-in cost of trading derivatives.20 Figure 7
shows the example of portfolio rebalancing provided in ESMA (2020b, Annex 1).

In summary, the regulatory regime spurs the development of post-trade netting services.
Which feature leads to the wide use of post-trade netting services today, in addition to incentives
from regulations? One answer is technology. Equipped with advanced optimisation techniques
and data processing skills, the Fintech vendors who have access to all information submitted by

17See https://osttra.com/.
18See https://www.lch.com/services/swapclear/enhancements/compression.
19See https://osttra.com/press_releases/

osttras-compression-service-unlocks-additional-compression-potential-for-g-sibs/.
20For OSTTRA’s triBalance, see https:

//osttra.com/articles/managing-ccr-to-reduce-the-all-in-cost-of-otc-derivatives-portfolios/.
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(a) The original notional matrix
C.

(b) The rebalancing notional ma-
trix R.

(c) The bilaterally netted rebal-
anced matrix (C +R)bi.

Figure 7: An illustration of portfolio rebalancing given in ESMA (2020b, Annex 1) with three
counterparties and a CCP.

Note. Note that the initial network in the example only involves a portfolio for risk reduction purposes (i.e., a
subset of all transactions) made up of four counterparties. Therefore, the CCP does not need to have a matched
book.

a large network of market participants could, in principle, achieve desirable outcomes more effi-
ciently21 compared to the fairs in preindustrial Europe which rely on the decentralised searching
and matching procedure, see the descriptions in Börner & Hatfield (2017).

C Additional examples

Example C.1 ((Optimal) portfolio rebalancing). Figure 8 illustrates an example of portfolio
rebalancing in a network of three banks. The notional matrix C, the rebalancing notional
positions R, the rebalanced notional matrix C+R, and the bilaterally netted notional matrices
Cbi and (C +R)bi are given, respectively, by

C =

 0 8 7
5 0 10
9 5 0

 , R =

 0 0 4
4 0 0
0 4 0

 , C +R =

 0 8 11
9 0 10
9 9 0

 ,

Cbi =

 0 3 0
0 0 5
2 0 0

 , (C +R)bi =

 0 0 2
1 0 1
0 0 0

 .

In line with the definition of rebalancing, the net exposures of the three banks in the original
network are given by C⊤1 − C1 = (−1,−2, 3)⊤, and they coincide with the net exposures
(C +R)⊤1− (C +R)1 after portfolio rebalancing.

Furthermore, portfolio rebalancing increases the gross exposures of the notional positions
from 1⊤(C⊤1+C1) = 88 to 1⊤((C+R)⊤1+(C+R)1) = 112, but it decreases the gross exposures
of the bilaterally netted positions from 1⊤((Cbi)⊤1 + Cbi1) = 20 to 1⊤((C + R)bi)⊤1 + ((C +
R)bi)1) = 8.

This rebalancing exercise is not an optimal rebalancing exercise. It is easy to check that
an optimal rebalancing exercise can be attained by choosing R such that R13 = R21 = R32 =
3, and Rij = 0 otherwise. In this case, the sum of the gross exposures in the resulting network

21See https://osttra.com/press_releases/

osttra-streamlines-trade-reconciliation-with-connectivity-between-markitwire-and-triresolve/.
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(a) C (b) R (c) C +R (d) Cbi (e) (C +R)bi

Figure 8: Example of portfolio rebalancing.

Note. Starting from the notional matrix C (Figure 8(a)), injecting the rebalancing notional matrix R (Figure
8(b)) results in the rebalanced notional matrix C +R (Figure 8(c)). The bilaterally netted positions prior to
rebalancing are Cbi (Figure 8(d)) and the bilaterally netted positions after rebalancing are (C +R)bi (Figure
8(e)).

is equal to 6, which is strictly less than the previous outcome. We also see that this matrix R
is not a net-conservative rebalancing matrix since for example 1 = (C +R)bi13 > Cbi

13 = 0.
It is easy to check that an optimal net-conservative rebalancing exercise can be attained by

choosing R such that R13 = R21 = R32 = 2, and Rij = 0 otherwise. In this case, the sum of the
bilaterally netted gross exposures in the resulting network is equal to 8, which is the same as in
Figure 8(e) where R was such that R13 = R21 = R32 = 4 and Rij = 0 otherwise. The difference
now is that counterparty relationships are controlled, which was not the case in Figure 8 where
for example bank N1 was a net borrower from bank N2 before rebalancing but became a net
lender to bank N2 after the exercise.

Example C.2 ((Optimal) portfolio compression). To provide intuition about the idea of com-
pression, we present an example in Figure 9. This example follows the idea of O’Kane (2017),
who proposes a loop compression algorithm by finding and eliminating all closed loops on the
bilaterally netted notional matrix. Here, Figure 9(a) shows the original network which is the
same as in Figure 8(a), Figure 9(b) shows the bilaterally compressed network and Figure 9(c)
is then the outcome after removing all closed loops in the bilaterally compressed network which
is in this example a solution to the super-conservative compression optimisation problem.

Example C.3 (Different use cases of portfolio compression and rebalancing). We illustrate in
Figure 10 different use cases of portfolio compression and portfolio rebalancing. In particular, it
shows how a portfolio that can be compressed in the non-centrally cleared space (Figure 10(a)),
can no longer be compressed in the partially centrally cleared space (Figure 10(d)). Still,
portfolio rebalancing (Figure 10(f)) can achieve a comparable outcome to portfolio compression
(Figure 10(c)) if new trades established as part of the rebalancing exercise are not subject to
central clearing. Otherwise, Figure 10(i) shows that novation prevents the netting benefit in
the non-cleared part of the portfolio and hence the overall netting benefit.
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(a) C (b) K = Cbi (c) K optimised

Figure 9: Examples of portfolio compression.

Note. The numbers in the figures represent notional positions. Figure 9(a) shows an illustration of the notional
matrix C. Figure 9(b) shows an illustration of K = Cbi, i.e., the network obtained by removing cycles between
pairs of counterparties. Figure 9(c) shows another example of multilateral compression where the cycle in Cbi

between all three counterparties has been removed. This is also a solution to the super-conservative
compression optimisation problem.
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(a) Before compression. (b) Portfolio compression. (c) After compression.

(d) Before rebalancing. (e) Portfolio rebalancing without
novation of new trades.

(f) After rebalancing.

(g) Before rebalancing. (h) Portfolio rebalancing with no-
vation of new trades.

(i) After rebalancing.

Figure 10: Different use cases of portfolio compression and portfolio rebalancing.

Note. The first row shows a portfolio that is not centrally cleared and subject to portfolio compression. The
second and third row show the same positions under partial-central clearing and subject to portfolio
rebalancing. The second row assumes that new trades are not novated to the CCP and the third row assumes
that they are novated to the CCP.
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Code and data disclosure

No empirical or simulated data were used in this paper. All data for the stylised examples are
provided in the paper. The proofs of all theoretical results can be found in the Appendix.
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