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1. Introduction
Epidemiological surveillance is an essential tool for detecting, monitoring and controlling the spread of
infectious diseases [1]. It plays a fundamental role in public health by enabling the collection, analysis
and dissemination of information on the occurrence and trends of diseases.

The increase in human mobility has considerably amplified epidemiological risks [2]. The contempo‑
rary world is highly interconnected, as evidenced by extensive and diversified transportation networks
(land, air and sea), which continue to expand in reach, speed and volume of passengers and goods [2].
Recent research indicates that human movement plays an important role in the dissemination of infec‑
tious diseases [3–7]. A notable example is the recent COVID‑19 pandemic, marked by the emergence
and rapid global spread of successive SARS‑CoV‑2 variants. In Brazil, the emerging virus spread rapidly
throughout the country, reaching remote regions far from themajor urban centres in a fewweeks [8]. This
scenario highlights the need for accurate and timely epidemiological surveillance to guide effective pub‑
lic health responses. Thus, the development of systems focused on early warning tools is a fundamental
requirement to improve pandemic preparedness and response [9,10].

In recent years, data science has played a crucial role in improving surveillance methods and systems
[11,12]. There has been a rapid increase in the availability of large health‑related datasets that include, for
example, clinical diagnostics, molecular characterization of pathogens, healthcare attendance data and
social media publications [11]. Consequently, methods for analysing diverse data types have evolved,
shifting from traditional techniques based on control charts to advanced artificial intelligence algorithms
[13,14]. Variousmethods can be applied to collect and analyse real‑world temporal data and alert author‑
ities about diseases as early as possible, enabling evidence‑based decision‑making and risk assessment
[15]. However, some classical methods designed to detect temporal outbreak do not adequately integrate
spatial data [16], limiting their ability to assess disease spread. For instance, partial differential equation
(PDE) models often rely solely on diffusive terms to represent mobility, which oversimplifies spatial
dynamics [17].

Public health authorities routinelymonitor trends in disease incidence and public health events linked
to emerging diseases. This is typically achieved through sentinel surveillance networks, which consist
of selected healthcare units that monitor or test specific diseases more intensively [18]. By prioritizing
locations where diseases are particularly relevant, these networks provide precise data and enable early
interventions. The task of choosing specific regions and healthcare units is a key step to set up a sentinel
surveillance network [18–22]. In Europe, North America, Brazil and inmany other countries [23–27], sen‑
tinel surveillance networks have been essential in detecting emerging viruses, guiding the adaptation of
seasonal influenza vaccines and monitoring endemic respiratory diseases.

Despite these efforts and successes, ongoing research is necessary to address persistent challenges
in current systems, such as sparse geographical coverage of sentinel units, suboptimal locations, low‑
quality datasets and inadequate infrastructure [7,18,28].Methodologically, the study of infectious disease
spread, primarily driven by human interactions, has increasingly incorporated ideas from network sci‑
ence, metapopulation models [7,21,29,30], and the inclusion of long displacement terms in PDEs [31]. In
particular, this work aligns with the objectives of the Alert‑Early System of Outbreaks with Pandemic
Potential (ÆSOP) initiative [10,32,33], which has already made relevant contributions to the mobility
influence on disease spread and sentinel network design [7].

Most existingmethods for selecting sentinel units rely onmodelling infectious disease spread through
human interactions [7,21,29,30]. A natural way to modelling these interactions is through mobility net‑
works, where nodes represent regions and edges represent interactions, usually weighted by the number
of peoplemoving between regions [34]. Topological properties and key networkmetrics can be extracted
and used to inform sentinel site selection. Additionally, mobility networks can structuremetapopulation
models to estimate each region’s contribution to new infections or healthcare visits in other regions [6],
aiding sentinel unit selection by assessing disease exportation risk.

This work aligns with this extended framework, proposing a novel integration between network sci‑
ence and metapopulation models to optimize sentinel systems design. While broadly applicable, we
tested and evaluated the reliability of this framework using population mobility and primary health
care (PHC) attendance data obtained for the state of Bahia, Brazil.
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Figure 1. Overview of the methodological framework to disclose sentinel sites in a mobility network. Mobility patterns and PHC syn-
dromic data are integrated using network science methods and an underlying SIR metapopulation model. Key analyses include com-
munity (or module) detection, betweenness centrality and estimation of potential respiratory infection transmission. These analyses
generate numerical outputs combined into a proposed sentinel index, which identifies critical sentinel nodes for monitoring and con-
trolling respiratory disease spread.

2. Data and methods
The developedmethodology combines two rather independent pillars. One of them is based on the study
of the road mobility network, which amounts to projecting a weighted network onto a one‑parameter
set of unweighted networks, selecting the adequate parameter values to infer and detect node com‑
munities (or modules), and performing a betweenness centrality analysis. The second pillar consists of
the estimation of potential transmission between network nodes through a metapopulation susceptible–
infected–recovered (SIR) model based on syndromic data. In both cases, network nodes represent isolated
municipalities (or small clusters of such strongly interconnected units). The values of the sentinel index,
which supports the design of the sentinel network, strongly result from an integrated analysis of the out‑
puts of these two pillars, as illustrated in figure 1. To attest the reliability, robustness and vulnerabilities
of the developed approach to design an adequate sentinel surveillance network system, a case studywas
conducted focusing on the state of Bahia.

2.1. Data
We collected and processed large‑scale mobility data from official government sources to analyse in‑
termunicipal mobility across road and waterway networks. The mobility dataset at the intermunicipal
scale, covering the entire Brazilian territory for the year 2016, was provided by the Brazilian Institute of
Geography and Statistics (IBGE). Among other information, it includes the average weekly frequencies
of passenger transport vehicle traffic. For our case study, we considered mobility data between munici‑
palities of the state of Bahia. Bahia is Brazil’s fifth‑largest state, the largest in the Northeast region, with
an area exceeding 564 000 km2 (7% of the national territory). It is also the fourth most populous state in
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Brazil, with over 14 million inhabitants according to the 2022 IBGE Census [35] and is divided into 417
municipalities.

IBGE groups Brazilian municipalities into immediate geographic regions (IGRs) using well‑defined
criteria (electronic supplementary material, S1.3). IGRs are organized around a local urban centre, serv‑
ing immediate population needs such as employment, healthcare, education and public services. In
Bahia, the 417 municipalities are clustered into 34 IGRs, which serve as the independent population
units in the analyses presented here.

In addition to mobility data, we used syndromic data from PHC at the municipal level, focusing on
50 upper respiratory tract infection (URTI) conditions. These conditions were coded using the Interna‑
tional Classification of Diseases (ICD‑10) and the International Classification of Primary Care (ICPC‑2),
globally recognized standards for nomenclature of signs and symptoms of diseases [1] and adopted in
Brazil’s Health Information System for Primary Care (SISAB database). The data, collected by epidemi‑
ological week from 2017 to 2023, are available from SISAB (Ministry of Health, Brazil). The list of ICD‑10
and ICPC‑2 codes, along with documentation of this dataset, is provided in electronic supplementary
material, S1.2.

2.2. Pillars of methodology
As clearly indicated in figure 1, the methodology adopted in this work is based on two quite specific
pillars involving, respectively, selected network methods and metapopulation models. For this reason,
they are discussed separately in §§2.2.1 and 2.2.2.

2.2.1. Network methods

The network pillar starts by constructing a weighted mobility network𝒲, where nodes represent IGRs,
and edges are defined by road transport data. The elements wij of the corresponding weight matrix W
are proportional to the total number of people moving between nodes i and j. Once the mobility network
is constructed, we disclose its modular structure in a two‑step procedure. First, we employ the concepts
of neighbourhood matrix and dissimilarity between unweighted networks [36] to identify the proper
range of weight values for a reliable modular detection. Then, the well‑known Newman–Girvan (NG)
algorithm for detecting communities based on betweenness centrality values is applied [37]. Finally, the
most significant IGRs to disease spread are identified by this metric. A brief discussion of these key steps
follows.

To ensure symmetry, the total flow between two IGRs was calculated as the sum of flows from i to j
and from j to i. The model assumes a one‑week commuting flow, excluding permanent relocations but
capturing frequent and temporary displacements that reflect bidirectional interactions between IGRs.

The dissimilarity d(A,Z) between any two unweighted networks A and Z is defined as the sum of
positive differences between the elements of the two corresponding neighbourhood matrices V(A) and
V(Z), as

d2(A,Z) = 1
n(n − 1)

n∑

i=1

n∑

j=1
(
vij(A)
DA

−
vij(Z)
DZ

)
2

. (2.1)

Here, the elements vij of the neighbourhood matrix V indicate the distance between nodes i and j, i.e. the
smallest number of steps along connected nodes necessary to reach j starting from node i. n and DA(Z)
indicate, respectively, the number of network nodes and the respective network diameter, i.e. the largest
value of the shortest paths between all pairs of network nodes.

This approach to identify modular structures in weighted networks has been successfully applied
to different systems in several studies [38–42]. To use equation (2.1) within the current study, we must
project the weighted network𝒲 onto a set of unweighted networks 𝒰(𝜎), depending on a parameter 𝜎.
Each 𝒰(𝜎) is obtained from𝒲 after erasing all edges (i, j) that indicate a number of people moving from
node i to node j smaller than 𝜎. Therefore, the elements u(𝜎)ij of the adjacencymatrixU(𝜎) corresponding
to 𝒰(𝜎) are obtained according to the rule

u(𝜎)ij =
⎧

⎨
⎩

1 if wij ≥ 𝜎,
0 otherwise.

(2.2)
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Figure 2. Dissimilarity between two networks at successive values𝜎 and𝜎 + 𝛿𝜎, where𝜎 represents the number of people moving
from one IGR to another one. The main peaks occur at𝜎th1

= 280, 𝜎th2
= 540 and𝜎th3

= 640.

After that, we let the networks A and Z be obtained by making the correspondences A↔U(𝜎) and
Z↔U(𝜎 + 𝛿𝜎), where 𝛿𝜎∕𝜎≪ 1.

The analysis of the dependence of the dissimilarity d(U(𝜎),U(𝜎 + 𝛿𝜎)) as a function of 𝜎 provides
valuable information on the best values of 𝜎 that are likely to reliably uncover the modular structure of
the network 𝒲. Indeed, a plot of d(U(𝜎),U(𝜎 + 𝛿𝜎)) as a function of 𝜎 usually contains isolated sharp
peaks (large dissimilarity resulting from important changes in the network topology) immersed within
an otherwise flat landscape corresponding to only small changes in the topology (see figure 2 where
the results obtained in this work and discussed in §3 are illustrated). The positions 𝜎thk of these peaks
indicate where the NG algorithm or any other community detection method should be used to group
together IGRs with a greater risk of propagating the infection to one another.

The NG method focuses on identifying communities within single‑layer networks using the edge be‑
tweenness centrality for each edge in the network [37]. This metric, which quantifies how frequently an
edge acts as a bridge on the set of all shortest paths between pairs of nodes, is defined by

bek𝓁 =
∑

i≠j

𝜁ek𝓁(i, j)

𝜁(i, j)
, (2.3)

where 𝜁(i, j) is the total number of shortest (geodesic) paths between nodes i and j, and 𝜁ek𝓁(i, j) is the
number of shortest paths that pass through the edge k𝓁. The node betweenness centrality bnk is defined
in a similar way as in equation (2.3), whereby 𝜁ek𝓁(i, j) is replaced by 𝜁nk (i, j), the number of shortest paths
that pass through node k.

The NG algorithm begins with the calculation of betweenness centrality for all edges in the network,
followed by the removal of the edge with the highest centrality. This step is repeated iteratively, leading
to a gradual disconnection of the network until all edges have been removed. As a result, a dendrogram
can be constructed to display the complete splitting process of the network. The effect of each edge re‑
moval step is used to draw a hierarchical graph, where each splitting event indicates the formation of
a new community. Thus, the dendrogram illustrates how communities emerge along the sequence of
iterations, with each level of the graph corresponding to the way the network nodes are grouped after
the removal of specific edges.
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This result is crucial to understand the community structure of the network and to identify the

points where the network splits significantly. The quality of the detected structures for the unweighted
networks is assessed by the modularity function Q [37], defined as

Q= 1
2m

∑

i,j
[aij −

kikj
2m ] 𝛿(ci, cj). (2.4)

As stated above, aij is the adjacency matrix element indicating the presence (1) or absence (0) of an edge
between nodes i and j, ki and kj are the corresponding node degrees,m is the totalweight of all edges in the
network, and the Kronecker delta function 𝛿(ci, cj) equals 1 if nodes i and j belong to the same community
(ci = cj) or 0 otherwise. This measure evaluates howwell the network is partitioned into communities by
comparing the observed edge density within communities to the expected density in a random network.

The last step of the network pillar is the identification of IGRs playing a significant role in disease
spread, which amounts to evaluating the node betweeness centrality bnk defined before. This selected se‑
quence of specific network methods provides key insights into the overall structure of the network [43]
and of key IGRs for disease spread.

2.2.2. Metapopulation modelling

In a parallel but otherwise independent process, a metapopulation SIR model was applied to the data of
the 34 IGRs [6], integrating PHC URTI syndromic data with mobility data. This approach enabled the
analysis of the potential action of an IGR to export infections to others, using the flow of individuals
between IGRs via roadways as a transmission channel.

The metapopulation SIR model for n metapopulations can be expressed by incorporating flow‑
emergent transmission rates, as follows:

dSi
dt

=−
n∑

j=1
𝜆ij(t)Ij(t)Si(t), (2.5)

dIi
dt

=
n∑

j=1
𝜆ij(t)Ij(t)Si(t) − 𝛾Ii(t), (2.6)

dRi
dt

= 𝛾Ii(t). (2.7)

Here, each metapopulation i represents an IGR. The model describes the evolution of the number of
susceptible (Si), infected (Ii) and recovered (Ri) individuals in each IGR i. We assume a uniform recov‑
ery rate 𝛾 across all metapopulations as well as time‑independent mobility, in accordance with the used
IBGE mobility data that are based on the weekly average values over the whole period. From now on,
we will consider that, for all ij pairs, the number of new infections in i due to j are intermediated by time
independent constants (i.e. 𝜆ij(t)→ 𝜆ij), which can be expressed as [6]

𝜆ii =
𝛽i
Ni

⎛
⎜
⎝
1 −

∑

j
𝛷ij
⎞
⎟
⎠

2

+
∑

j

𝛽j
Nj
𝛷2
ij (2.8)

and

𝜆ij =
𝛽i
Ni
𝛷ji (1 −

∑

k
𝛷ik) +

𝛽j
Nj
𝛷ij (1 −

∑

k
𝛷jk) +

∑

k

𝛽k
Nk

𝛷ik𝛷jk. (2.9)

Here, 𝛽i is the transmission rate within a metapopulation i and Ni is the corresponding population size.
𝛷ij represents the density of individual flow betweenmetapopulations, i.e. the total movement between i
and j divided by origin’s population sizeNi [6]. 𝜆ii represents the disease transmission between individu‑
als ofmetapopulation i, i.e. between infected and susceptible individuals from the same IGR i. In (2.8), the
first term is related to when this transmission happens inside i, while the second one to when it happens
inside of any other metapopulation j. 𝜆ij represents the transmission from an infected individual from
metapopulation j to a susceptible individual frommetapopulation i. In (2.9), the terms represent, respec‑
tively, the transmissions inside i, j, or any other metapopulation k (when both individuals are outside of
their own IGRs).

Using the next‑generationmethod (detailed in [6]), we can estimate the time‑dependent reproduction
number, Rij(t). This reproduction number represents the average number of new infections, during their
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infectious period, caused by an infected individual from j to a susceptible individual from i, expressed
by

Rij(t) =
Si(t)𝜆ij
𝛾 . (2.10)

Within the next‑generation method, we also obtain the generation interval distribution [6]:

gij(𝜏) = g(𝜏) = 𝛾e−𝛾𝜏, (2.11)

which allows us to estimate the average time between an individual’s infection and the subsequent sec‑
ondary infection. Note that the relationship gij(𝜏) = g(𝜏) arises naturally from the assumption in equation
(2.6) that all metapopulations share the same recovery dynamics.

Finally, we obtain𝒯ij(t), the discrete number of new infections in i due to j between t and t + 𝛥t, which
represents the rate of new infections in i due to previously infected individuals in j:

𝒯ij(t) =Rij(t)
t∑

𝜏=0
g(𝜏)Bj(t − 𝜏)𝛥t, (2.12)

where Bj(t) represents the number of new infections (cases) in a metapopulation between t and t + 𝛥t,
implying that Bi(t) =

∑n
j 𝒯ij. All expressions presented for the metapopulation SIR model are detailed in

the work of Jorge et al. [6].
Although the framework developed in [6] was applied to confirmed infection cases, some adaptations

discussed further in this work allow us to extend this formalism to work with PHC syndromic data, in‑
dicated by P(t). With the purpose of identifying metapopulations that function as central transmission
points for potential respiratory infections, we define

𝒯ij(t) = R̂ij(t)
t∑

𝜏=0
g(𝜏)Pj(t − 𝜏)𝛥t, (2.13)

where P(t) represents the number of potential new infections in a metapopulation between t and t + 𝛥t,
such that Pi(t) =

∑n
j 𝒯ij. In this formulation, 𝒯ij(t) represents an estimated transmission rate of potential

respiratory infections between i and j, using syndromic data P(t) as a proxy for confirmed cases (B(t)).

2.3. Sentinel index and integrated surveillance analysis
Let us now turn our attention to the main contribution of this work: given a set of interconnected pop‑
ulation centres (municipalities, IGRs, states, etc.) we introduce a new metric, named sentinel index (SI),
to evaluate the suitability SIj of each element j of this set to host a sentinel unit for the purpose of an
optimized health surveillance.We assume that SIj depends on a combination of quantitative results intro‑
duced in the previous subsections. Thus SI, which aims to involve key features that would be necessary
for a urban centre to support threatened populations, depends on the identification of proper network
communities, the betweenness centrality of the chosen centre, and the information from the metapopu‑
lation model. More specifically, its value depends on three measures: the node betweenness centrality
value (bnj ), the normalized population (pj) and the time average of normalized total number of exported

infections ⟨
∑

i𝒯ij(t)⟩. These three concepts and derived tools lead not only to the design of a sentinel net‑
work, but also to an evaluation of the current design of existing sentinel networks, possibly suggesting
new guidelines for its expansion and/or redesign.

Since the sentinel units should preferably have high scores in all three measures, and not in just one
or two of them, we chose the simplest expression that meets such a criterion to express SIj, namely the
geometrical mean [44] among them:

SIj = ((bnj )(pj)
⟨∑

i
T̂ij(t)

⟩
)
1∕3

. (2.14)

The suitability of each population centre as a sentinel unit can be evaluated by taking into account
the resulting ranking and a chosen threshold. Since the average number of IGRs in each community
is approximately 10, we assumed that the indication of approximately 4 units in each community is a
reasonable number compared to the current one, which suggests to refrain the indication to units above
the 60th percentile. As already announced in §1, in the next sections, we present our results based on
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Figure 3. (a) Dendrogram of the road mobility network in Bahia obtained at𝜎th1
= 280, showing four identified communities C1, C2,

C3 and C4, with two subcommunities in C2 and C3. Community C4 contains just the isolated node 24, corresponding to the Paulo Afonso
IGR. (b) Geographic map representation of Bahia, highlighting the spatial localization of the referred communities and subcommunities,
as well as the location of the currently operating units. The network structure presents modularity Q= 0.39.

Table 1. Distribution of sentinel units in Bahia.

RHC sentinel municipality units

northeast Alagoinhas 1

west Barreiras 1

central-east Feira de Santana 1

south Ilhéus 1

north Juazeiro 1

far south Porto Seguro 1

east Salvador 5

east Santo Antônio de Jesus 1

quantitative measures using an actual dataset. As a case study, we consider the set of IGRs in the state
of Bahia, and compare the proposed sentinel units with those units already established in the sentinel
network for influenza‑like syndrome in the same state. All codes and input dataset files necessary to
reproduce the results in the next section are available at GitHub [45].

3. Results
3.1. Sentinel network for influenza-like syndrome in Bahia
The first sentinel unit in the state of Bahia was established in 2013, in the municipality of Salvador. Since
then, the network, which is a subnetwork of Brazil’s national sentinel surveillance network for influenza‑
like syndrome, has been continuously expanded. In 2022, the number of sentinel units in Bahia increased
from 5 to 12, distributed across eight regional health centres (RHCs), as indicated in table 1 and shown
in figure 3. This expansion improved the epidemiological surveillance of viral circulation in different
regions of Bahia [46].
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The sentinel surveillance of influenza‑like syndrome (ILS) in Bahia evaluates the proportion of ILS

cases relative to the total number of encounters in healthcare units, and identifies seasonal variations as
well as the distribution of viruses by age group. Additionally, the network seeks to provide viral strains
for the formulation of influenza vaccines, deliver timely and high‑quality information for planning and
adapting treatments and establish prevention and control measures related to ILS.

The criteria used by the responsible authorities for selecting sentinel units range from population pa‑
rameters, such as areas with high population density and humanmobility, strategic for monitoring local
events like the introduction of new infectious agents or influenza subtypes, to specific characteristics of
the healthcare services [46]. These criteria include:

— Locations with high population density.
— Healthcare services with walk‑in demand and 24‑hour availability (e.g. urgent care, emergency

departments and outpatient clinics).
— Healthcare services that cater to all age groups without prioritizing specific specialities.
— Locations relevant to surveillance due to populations of workers in poultry and swine farming

or slaughterhouses.
— Number of ILS consultations with epidemiological significance.
— Public and private healthcare units.
— Hospitals with epidemiology centres.

In spite of these adequate criteria, the first of which is also used in the definition of the proposed SIj
(see equation (2.14)), the certification that all of them are actually satisfied may not be based on in‑depth
scientific studies but rather on basic and operational parameters. While practical, this approach may
limit the effectiveness of surveillance by overlooking a more detailed analysis of the epidemiological
and social factors influencing disease spread. In the next sections, we present our results based on quan‑
titative measures, and comment on possible ways they may contribute to enhance the effectiveness of
surveillance.

3.2. Network structure of road mobility in the state of Bahia
First, we obtained the modular configuration of the network based on optimal thresholds 𝜎thk to define
the minimal connection between vertices, where 𝜎 represents the number of people moving from an IGR
to another. The peaks, observed in figure 2, occur when there are significant changes in the modular
structure of the network. We considered 𝛿𝜎 = 20, which satisfies the required condition 𝛿𝜎∕𝜎≪ 1 for the
largest part of the whole range of values of 𝜎. For a smaller range of 𝜎 < 100 values, we carried out an
analysis with 𝛿𝜎 = 2 but no large peaks emerged, which justifies using 𝛿𝜎 = 20 for the entire range. In
this case, three optimal threshold values were identified: 𝜎th1 = 280, 𝜎th2 = 540 and 𝜎th3 = 640, as shown
in figure 2. Given that 20∕𝜎th1 ∼ 0.07 and for the purpose of verifying the reliability of our results when
the condition 𝛿𝜎∕𝜎≪ 1 is satisfied under more stringent conditions, we also extended the dissimilarity
analysis for 𝛿𝜎 = 2 when 𝜎 ∈ (260, 280). However, no other peak as high as the one at 𝜎th1 was found,
which grants higher confidence to our results

It was observed that, at 𝜎th2 and 𝜎th3 , the network has already become highly disconnected, with
the presence of many isolated nodes. However, it was noted that, for the networks obtained at 𝜎th1
and slightly below, all but one node were still connected by approximately 226 edges, offering a sat‑
isfactory condition to proceed with our analysis. Four communities and two robust subcommunities
were identified, with spatial characteristics corresponding to the real‑world scenario, as illustrated in
the dendrogram and on the Bahia map in figure 3. The two panels in figure 3 clearly indicate that the
communities obtained by the network approach reproduce the geographic division of the state of Bahia.

The results for the betweenness centrality analysis are shown in figure 4, which indicates all nodes
and edges of the network. The nodeswith highest betweenness values are highlighted in red,while edges
with larger betweenness are indicated by greater thickness. The most significant nodes (29, 01, 07, 11, 13,
14, and 18), with highest centrality values, are in line with the real importance of these IGRs as central
hubs for traffic and interaction in the state. The remaining nodes presentedmuch lower centrality values,
emphasizing the relevance of the former ones.
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Figure 4. Mobility network centred on the geographical map of Bahia for 𝜎 = 280, when the network has 34 nodes and 226 edges.
The figure highlights the betweenness centrality of the nodes, emphasizing the most critical regions. Nodes marked in red—Feira de
Santana (29), Salvador (1), Ilhéus/Itabuna (7), Vitória da Conquista (11), Brumado (13), Ipiaú (14), Barreiras (18)—exhibit higher be-
tweenness centrality values (bnj > 0.05) compared to the others.

3.3. Potential of transmission of respiratory diseases based on SIR metapopulation model
To deepen and complement our analysis, the application of the metapopulation SIR model to each one
of the communities, which leads to 𝒯ij(t), allows us to assess the contribution of each IGR to the spread
of respiratory syndromes within each community. After dividing 𝒯ij(t) by Pi(t) at each time step, we
obtained a time series for the fraction of total infections in i possibly exported by j. This allows us to eval‑
uate the relative impact an IGR j has on the total number of infections in another IGR j. The time average
of 𝒯ij(t) is shown in figure 5 for three different communities identified by the NG algorithm. In order to
get a better visualization, figure 5a–c only displays the non‑autochthonous contribution between IGRs
in the same community if it is above 0.7%. A similar analysis including the complete matrix of influence
rates among the 34 IGRs for the spread of respiratory diseases is available in electronic supplementary
material, S1.4.

We also analysed, for each IGR, the estimates of the total number of potential respiratory infections
exported in comparison to the total movement of people within that IGR, as shown in figure 6. We found
a strong Spearman correlation (𝜌= 0.89) between the two variables, in spite of the presence of deviations
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Figure 5. Influence on the number of potential respiratory infections caused by one IGR over another, analysed for T̂ij∕Pi. The chord dia-
gram provides a visualization of mutual influences between IGRs. For the sake of clearly identifying the major contributions among pairs
of IGRs, we avoid the presence of a much larger number of less important cords by including in the diagrams only non-autochthonous
influences above 0.7%.

observed in some IGRs, where similar total flows resulted in significantly different numbers of potential
exported respiratory infections. The results suggest that other factors also influence the observed dynam‑
ics. More details on the correlation among the data are available in electronic supplementary material,
S1.5.

3.4. Integrated surveillance analysis and sentinel network in Bahia
We start the comparison of our results by noting that the 12 units of the operational sentinel network in
Bahia are placed in 8 IGRs, distributed among the three communities as follows: 4 IGRs in C1 (Salvador
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Figure 6. Comparison between total movement of people and potential exported respiratory infections in weekly frequency for each
IGR. The blue bars represent the total weekly passenger movement (sum of all inbound and outbound flows) for each IGR, while the
orange bars indicate the estimated number of potential respiratory infections exported during the same period.

(5 units), Feira de Santana, Alagoinhas e Juazeiro), 3 IGRs in C2 (Ilheús‑Itabuna, Santo Antônio de Jesus,
Eunápolis‑Porto Seguro), 1 IGR in C3 (Barreiras) and none in C4, as marked in brown, in figure 7. Nine
out of these 12 units are compatible with the results of our analysis: in C1, 5 units in Salvador (node 01),
and 1 unit Feira de Santana (node 29); in C2, the units in Ilhéus‑Itabuna (node 07) and Santo Antônio
de Jesus (node 03); in C3, the unit in Barreiras (node 18), as shown in figure 8. Detection failure for the
other three units probably stems from border effects that restrict IGRs to the state of Bahia. The IGRs
of Juazeiro (node 22), Alagoinhas (node 02), and Eunápolis‑Porto Seguro (node 09) have large mobility
involving IGRs in neighbouring states. Moreover, due to their location, they intermediate a quite small
number of shortest paths among other nodes. Thus, two out of the three measures used to evaluate the
SI are artificially reduced, which may explain their exclusion from our analysis.

However, our analysis suggests that eight other IGRs may be candidates for new sentinel units. The
identified IGRs are: Senhor do Bonfim (node 23) and Ribeira do Pombal (node 25) in C1; Cruz das Almas
(node 4) and Ipiaú (node 14) in C2; Vitória da Conquista (node 11), Brumado (node 13) and Irecê (node
20) in C3, as indicated in figure 8. Finally, community C4, characterized by its isolated position in the
network, requires at least one sentinel unit, which was assigned to the Paulo Afonso IGR (node 24).

4. Analysis of the results
The integrated surveillance analysis identified four IGRswith high SI values inC1. Two of them, Salvador
and Feira de Santana, already host operational units and, due to their role as major hubs of transit and
social interaction within the state, are primary contributors to the export of potential infections within
C1. The other two operational units within C1 in the IGRs Alagoinhas and Juazeiro play crucial roles in
ensuring comprehensive coverage, functioning as local hubs. As mentioned before, their relative low SI
values can be traced back to the choice of restricting the network to IGRs inside Bahia. We conjecture
that similar effects may arise to nodes placed close to the geographic border in other networks. How‑
ever, among the five new IGRs with high SI values identified by our method to host units, two of them
are placed in C1 (Ribeira do Pombal and Senhor do Bonfim). We understand that these newly identified
IGRs may be a valuable contribution to complementing the surveillance efforts in C1 and in two other
communities.

Three sentinel units are currently operating in C2. However, the SI based analysis suggests a cover‑
age based on four IGRs. Ilhéus‑Itabuna has the highest SI value, being the largest exporter of potential
respiratory infections in C2, with a large mobility with Salvador, and a betweenness centrality within
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Figure 7. Map of the state of Bahia, highlighting the communities C1 in green, C2 in shades of grey, C3 in shades of blue, C4 in yellow
and also showing the location of sentinel units within the state. Red triangles indicate IGRs with existing operational sentinels, while
orange squares indicate new sentinel locations by our approach.

the network (see figure 4), which reinforces its strategic position in the network. Similar features are ob‑
served in the Santo Antônio de Jesus IGR with operational sentinel unit: adequate SI, being the fourth
IGR in volume of exports of possible respiratory infections. In turn, Eunápolis‑Porto Seguro, the third
current operational unit, has a smaller SI, has few edges to other network nodes, and was missed in the
integrated surveillance selection. However, located in subcommunity C2.2, it helps to provide compre‑
hensive coverage within C2 (see figure 6). Our method identified two further IGRs to host sentinel units
in C2: Ipiaú (node 14) and Cruz das Almas (node 04). The first one has the second highest SI in C2, a large
betweenness centrality, large volume of possible exports of respiratory infections, and a strong connec‑
tion with Feira de Santana (node 29 in C1) (see figure 4). Similar, but somewhat weaker, features are also
observed for Cruz das Almas.

The integrated surveillance analysis identified a shortage of sentinel units in C3, where a single op‑
erational sentinel is currently located at the Barreiras IGR. Our results confirm it as an essential unit: its
SI ranks in second place within C3, the same happening to its betweenness centrality and to its position
as potential exporter of respiratory infections, besides its strong connections to Feira de Santana (in C1).
In addition, our analysis identifies three further IGRs where sentinel units should be established: Vitória
da Conquista and Brumado, both located in C3.2, and one in Irecê, placed in C3.1.

Within C3, Vitória da Conquista has the largest SI and betweenness centrality, and has the largest
potential to export respiratory infections. It also stands out for its relevance in the southwest region as an
important hub for social circulation and convergence within the state and has strong connections with
Salvador and Feira de Santana. Brumado has the third‑highest SI in C3, with strong connections to Feira
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Figure 8. Sentinel index (SI) values for each IGR in the three distinct communities C1 (a), C2 (b) and C3 (c). The bars represent the index
obtained for each IGR. The red dashed line marks the 60th percentile suitability threshold, and the IGRs that satisfy this condition are
highlighted in yellow.

de Santana and Ilhéus‑Itabuna. It serves as a direct link between C2 and C3, with a high potential for the
transmission of respiratory infections in that subregion. The third indication, Irecê, presents an adequate
SI, and its inclusion in the sentinel networkwill ensure comprehensive surveillance coverage across both
subcommunities C3.1 and C3.2.

Finally, C4 has its origin in the low connectivity of its unique IGR (Paulo Afonso) with other IGRs
in Bahia. In fact, as its largest connection with Jeremoabo (28) reaches 267< 𝜎th1 , it would be part of C1
if we exceptionally include this edge in the network. For the purpose of keeping adherence to the pro‑
posed framework, our method suggests a new sentinel unit in this IGR to complete the coverage over all
communities Ci, i= 1,… , 4. It is worth noting this new sentinel unit would reinforce the surveillance in
the border with two much smaller states located in the northeast of Bahia.

It is also important to emphasize that, as shown in figure 5 and in electronic supplementary material,
figure S1, the export of infections is more effective among IGRs within a same community, while the
influence of one IGR on another, located in different communities, is much lower.

5. Concluding remarks
The proposed combination of network methods and dynamical analysis of metapopulation SIR model
provides an integrated surveillance framework to set up and/or validate sentinel networks.Wemade use
of mobility and PHC data on respiratory syndromes to exemplarily demonstrate its reliability in the case
of influenza‑like syndrome sentinel surveillance network in the state of Bahia, Brazil. Based on these
datasets, and also on the population magnitude in the involved urban agglomerations, our approach
proposes a quantitative SI, which basically identifies priority network nodes to host sentinel units.

Sentinel unit selection based on specific network properties has been previously suggested [30]. The
network methods applied in this work have shown potential for predicting epidemiological risks and
identifying optimal sentinel units [47]. They are in line with the work by Colman et al. [21], who found
that a surveillance strategy distributing sentinels across different regions is more effective in networks
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with highmodularity or defined spatial structure. In networkswith high‑degree heterogeneity, choosing
highly connected nodes may be more appropriate.

Our approach not only reinforces the utility of network analysis techniques in sentinel surveillance
but also introduces an innovative methodology for identifying preferential regions for implementing
sentinel units making local surveillance more efficient. Indeed, the integration of network methods with
the metapopulationmodel created a robust and adaptable methodology valid for general networks, pro‑
moting a more precise sentinel surveillance system. This approach ensures that data‑driven decisions
are made more effectively, strengthening public health strategies.

Our results evidence that the mobility network reflected a modular structure consistent with the ge‑
ography of the state, favouring the selection of sentinel units by IGR within communities. Although
the responsible authorities organize sentinel units by RHC, focusing specifically on health management
aspects, the 34 IGRs are mostly aligned with the RHC, distributed among 28 Health Regions that are
grouped into nine macro‑regions. This distribution provides a broader context that can influence public
health, demonstrating that health is integrated with other aspects.

Given the inherent challenges of installing sentinel units, such as resource and infrastructure avail‑
ability, this study proposes a quantitatively grounded, data‑driven prioritization approach. The selection
is based on two key network science metrics and concepts (betweenness centrality and module/commu‑
nity structure), and on the dynamics of a metapopulation model, whereby the SIR model was used to
obtain the specific results discussed above.

Oliveira et al. [7] recently proposed a design for an influenza‑like syndrome surveillance network
over all Brazilian states using mobility data. By incorporating new methodological tools, our study con‑
tributes to this discussion and corroborates the findings in [7] using the state of Bahia as case study. We
observed that most of the newmunicipalities suggested in [7] are also included in the set of IGRs we pro‑
pose as sentinel units, while 4 of the 11 newmunicipalities suggested differ between the methods, which
could be a result of using different techniques. Our proposed sentinel network also partially agrees with
the current design of the influenza‑like syndrome sentinel surveillance subnetwork in Bahia. However,
as previously shown [7], data‑ and model‑driven strategies can help inform re‑design and expansion of
these networks, resulting in more effective and strategic configurations of sentinel networks. The com‑
parison among the three designs highlights the influence of mobility across the borders of the different
states. Our work also shows that a national or a state design will mostly differ by the presence or absence
of units placed close to state borders.

Additionally, our results attested to the twofold utility of PHC syndromic data, which were used in
the design of the sentinel network, but can be further used to timely detect increased risk of epidemic
outbreaks. In such cases, our framework can be used to early identify hotspots with a sudden increase in
potential transmission of infections, supporting public health interventions, even in contextswith limited
data or no confirmed diagnoses.

Furthermore, it is important to consider that, for the purpose of early detection surveillance, the PHC
data may capture events that do not necessarily result in large outbreaks, potentially introducing uncer‑
tainties into the estimates of potential infection exports. We conjecture that the use of PHC can also be
used in the context of recent efforts to improve surveillance systems at urban level [48].

Some limitations were identified in our study including, for instance, the roadmobility data, the latest
update for which by IBGE occurred in 2016. More up‑to‑date data could provide a more accurate repre‑
sentation of road mobility patterns in the country. Additionally, private transport was not included in
the analysis, and mobility records between municipalities with shared borders were underestimated or
poorly documented. Data related to air mobility were also not explored.

However, strategies developed in this work can be expanded and applied to improve sentinel surveil‑
lance networks for infectious diseases in different contexts. Health authorities can strategically configure
the sentinel network, taking into account regional mobility dynamics and disease propagation patterns
when selecting locations for implementing sentinel units. This approach not only optimizes surveil‑
lance coverage but also strengthens the capacity to detect and respond to outbreaks more swiftly and
effectively, ultimately safeguarding public health.

Finally, we briefly comment on our intention to perform a sensitivity analysis in a future work, which
was not addressed here due to the complexity of the proposed approach. As our final results integrate
different methods and datasets, a reliable sensitivity study should properly warrant the introduction of
comparable random perturbations in both sets and resulting cross effects. Once we test the methodology
in just one case study, the sensitivity analysis might suffer the effect of bias in the data. We will turn our
attention to this work when expanding the current analysis to include other Brazilian states.
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