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A B S T R A C T

Objectives: To broadly map the research landscape to identify trends, gaps, and opportunities in 
data sets, methodologies, outcomes, and reporting standards for artificial intelligence (AI)-based 
healthcare utilization prediction.

Methods: We conducted a scoping review following the Joanna Briggs Institute methodology. We 
searched 3 major international databases (from inception to January 2025) for studies applying AI 
in predictive healthcare utilization. Extracted data were categorized into data sets characteristics, 
AI methods and performance metrics, predicted outcomes, and adherence to the Transparent 
Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 1 AI 
reporting guidelines.

Results: Among 1116 records, 121 met inclusion criteria. Most were conducted in the United States 
(62%). No study incorporated all 6 relevant variable groups: demographic, socioeconomic, health 
status, perceived need, provider characteristics, and prior utilization. Only 7 studies included 5 of 
these groups. The main data sources were electronic health records (60%) and claims (28%). 
Ensemble models were the most frequently used (66.9%), whereas deep learning models were less 
common (16.5%). AI methods were primarily used to predict future events (90.1%), with hospi-
talizations (57.9%) and visits (33.1%) being the most predicted outcomes. Adherence to general 
reporting standards was moderate; however, compliance with AI-specific TRIPOD 1 AI items was 
limited.

Conclusions: Future research should broaden predicted outcomes to include process- and logistics-
oriented events, extend applications beyond prediction—such as cohort selection and matching— 

and explore underused AI methods, including distance-based algorithms and deep neural 
networks. Strengthening adherence to TRIPOD-AI reporting guidelines is also essential to 
enhance the reliability and impact of AI in healthcare planning and economic evaluation.

Keywords: artificial intelligence, healthcare utilization outcomes, health economics, resource 
allocation, review.
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Introduction

Health economics and outcomes research (HEOR) is a discipline 
designed to complement traditional clinical development infor-
mation—such as efficacy, safety, and quality—by guiding decision 
makers on patient access to specific drugs and services. 1 HEOR 
encompasses various outcomes, including clinical events, disease 
incidence, treatment outcomes, healthcare utilization, disease 
progression, and symptoms. Among these, healthcare utilization 
refers to “the quantification or description of the use of services by 
persons for the purpose of preventing and curing health problems, 
promoting maintenance of health and well-being, or obtaining 
information about one’s health status and prognosis.” 2 

Developing research in the field of predicting healthcare uti-
lization offers potential benefits for policymakers, researchers, 
providers and health managers. It underpins the projection of

future healthcare
needs, such as facil-
ities, personnel, or
supplies, 2 and fosters a
more thorough under-
standing of healthcare utilization patterns, thereby allocating 
resources to those uses that have the greatest impact on health. 3 

Studies on healthcare utilization are diverse. Theoretical 
studies develop a conceptual framework to understand the fac-
tors determining healthcare utilization levels, such as Andersen’s 
healthcare utilization model. 4,5 It incorporates the complex 
interplay of individual, societal, and system-level factors that 
determine healthcare utilization into previous models. These 
factors are categorized into predisposing, enabling, and need and 
include the process of health care as a facet of health behavior, 
alongside the use of health services and personal health

Highlights

• Healthcare utilization outcomes 
remain underexplored within 
health economics and outcomes 
research (HEOR). This review 

explores artificial intelligence (AI) 
applications predicting healthcare 
utilization outcomes, identifying 
gaps and opportunities in datasets, 
methodologies, outcomes, and 
reporting standards.

• Most AI models focused on 
predicting hospitalizations or visits, 
whereas process-oriented 
outcomes—such as ambulance 
arrivals—remain underrepresented. 
None of the studies incorporated all 
the relevant variable groups. The 
use of AI was limited to prediction, 
with its potential contribution for 
causal analysis often overlooked. 
Deep learning algorithms were 
rarely used.

• This review provides a foundation 
for future research on specific 
outcomes, settings, methods, and 
theory-informed variable selection. 
These elements represent critical 
steps toward promoting equitable, 
efficient, and evidence-based 
decision making in healthcare 
planning and economic evaluation.
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practices. Similarly, Anderson’s framework described 5 distinct 
approaches for examining health services utilization: sociocul-
tural, sociodemographic, social-psychological, organizational, 
and social systems. 6 Empirical studies on healthcare utilization 
generally fall into 2 main categories: those analyzing disparities 
in the use of health services and those focused on predicting 
utilization levels. Disparities have been examined across a range 
of dimensions, including race/ethnicity, 7-9 sex, 10,11 age, 12 geog-
raphy, 13 financial constraints, 14,15 lack of insurance, 16 language 
barriers, 17 and experiences of discrimination. 18 Meanwhile, pre-
dictive studies have gained increasing prominence with the rise 
of artificial intelligence (AI) methods, which often outperform 

traditional statistical techniques in processing large and complex 
data sets. 19,20 Although prediction remains the primary applica-
tion of AI, these methods are increasingly being adapted for 
causal inference tasks. However, as Athey cautions, relying solely 
on off-the-shelf AI models is insufficient for guiding policy de-
cisions or resource allocation. To generate actionable insights, it 
is essential to integrate AI predictions with domain knowledge 
and rigorous theoretical frameworks, including causal analysis 
where appropriate. 21,22

Despite the advancements, predicting healthcare utilization 
outcomes using AI remains an area of ongoing research. Fewer 
studies focus on this topic compared with other areas of HEOR, 
such as clinical events or disease incidence. 23 Healthcare utili-
zation prediction present different challenges and potential 
benefits, 20 including the need to integrate multiple data sources. 
Studies from the provider perspective may encounter further 
barriers, such as the reluctance to share institutional data and the 
methodological requirement for a multilevel approach, often 
requiring the combination of multiple sources. Consequently, 
researchers face increased administrative and time burdens in 
preparing data for analysis. 24 Additionally, the sample size may 
be smaller, due to reliance on aggregated, may limit AI algorithm 

performance, whereas the type and frequency of available data 
can reduce model complexity.

Given these challenges, it is crucial to map the characteristics 
of studies on healthcare utilization and assess reporting stan-
dards, such as the Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis (TRIPOD 1 

AI) guidelines, to promote accuracy, reproducibility, and trust-
worthiness, thereby supporting the effective evaluation, valida-
tion, and implementation of AI models. 25

However, we have not identified any comprehensive reviews 
in scientific literature focusing mainly on the prediction of 
healthcare utilization by AI methods. Therefore, our aim was to 
broadly map the research landscape to identify trends, gaps, and 
opportunities in data sets, methodologies, outcomes, and 
reporting standards for AI-based healthcare utilization predic-
tion. Particularly, we addressed 5 questions: (1) which data sets 
are used, and what are their characteristics? (2) which AI 
methods are used, and what are their characteristics? (3) which 
performance metrics are used? (4) which healthcare utilization 
outcomes are predicted? and (5) what is the degree of adherence 
to the TRIPOD 1 AI guidelines? 25

Methods

This review followed the Joanna Briggs Institute methodology 
for scoping reviews, 26 and it is reported in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews. 27 The protocol was 
registered prospectively on the Open Science Framework platform 

(available at https://osf.io/udm76). An additional assessment of

adherence to the TRIPOD 1 AI guidelines was conducted for 
included studies, which was not described in the original protocol.

Eligibility Criteria

We defined the following eligibility criteria according to the 
Joanna Briggs Institute’s approach:

• Participants: no specific criteria for participants were applied.
• Concept: studies were eligible if they used AI methods at any 

stage to predict healthcare utilization outcomes. We defined 
healthcare utilization outcomes as “the quantification or 
description of the use of services by persons to preventing and 
curing health problems, promoting maintenance of health and 
well-being, or obtaining information about one’s health status 
and prognosis.” 2

We define AI as the field focused on the development of 
computer systems that mimic human intelligence. According to 
the National Library of Medicine, AI involves programs capable of 
adaptively improving their performance over time by processing 
and analyzing large data sets, recognizing patterns, and using 
those patterns to enhance problem solving and task execution 
(National Library of Medicine, 2025).

• Context: we included studies conducted in any healthcare 
setting.

• Type of evidence sources: eligible sources included journal 
publications, reviews, dissertations and theses, conference 
abstracts, and ongoing studies. No language restrictions were 
applied during the search or screening process.

Studies were excluded if they did not meet one or more of the 
above eligibility criteria (eg, they did not apply an AI method as 
defined, did not report a relevant healthcare utilization outcome, 
or were conducted outside healthcare contexts).

Information Sources

We searched the following databases from inception to 
January 2025: EconLit (via EBSCOhost), MEDLINE (Via PubMed), 
and Scopus. Reference lists of included studies and relevant re-
views were also manually scanned to identify additional studies. 

We applied no date restrictions, as our aim was to capture the 
full breadth of published evidence on the use of AI in predicting 
healthcare utilization. Although we anticipated that most rele-
vant studies would be from recent years, we considered it 
important to include earlier research to ensure completeness and 
to identify potentially foundational work within this emerging 
field.

Search Strategy

We conducted a preliminary search of MEDLINE (via PubMed) 
to identify relevant terms. A comprehensive search strategy was 
created using the text words identified in the titles and abstracts 
of relevant reports and the index terms. The final search strategy 
is provided in Appendix 1 in Supplemental Materials.

Selection of Sources of Evidence

Search results were imported to Rayyan software 28 for stor-
age, duplicate removal, and screening. Duplicates were auto-
matically removed in Rayyan and manually verified by a 
reviewer. Two reviewers independently screened the titles and 
abstracts against the eligibility criteria. Full texts of potentially
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relevant reports were obtained and examined by 2 reviewers. 
Reasons for exclusion of ineligible studies were documented. 29 

Disagreements were resolved by consensus or by consulting a 
third reviewer.

Data Charting and Items

Before data extraction, a data charting form was developed in 
Microsoft Excel and piloted on a small sample of included studies 
to assess its feasibility and suitability. The form was iteratively 
refined before final approval by all reviewers. Adherence to 
TRIPOD 1 AI guidelines was systematically assessed for each 
study. Two reviewers independently extracted and charted data, 
resolving disagreements through discussion or, if needed, a third 
reviewer.

Detailed definitions of each data item and their potential 
values are provided in Appendix 2 in Supplemental Materials.

Risk of Bias Across Studies

Because this scoping review aims to describe the existing 
research, studies were not excluded based on methodological 
quality standards. Therefore, critical appraisal or risk of bias 
assessment was not performed on the included studies. 26

Synthesis of Results

The extracted data were compiled into a unified spreadsheet 
and imported into Microsoft Excel for discrepancy resolution and 
validation. Fields were scrutinized to homogenize vocabulary and 
detect implausible values. These data were then exported to 
RStudio 4.3.0 for analysis. Descriptive statistics were used to 
summarize study characteristics. Results are presented in tables

and figures, with a narrative summary outlining main findings. 
Note that studies could fall into multiple categories—data 
collection types, groups of variables, groups of AI algorithms, 
intended uses of AI, or predicted healthcare utilization out-
comes—therefore, N may differ from 121 in these items. All items 
were described using frequencies and percentages of studies.

Results

After removing duplicates, 1116 references were identified 
from searches of electronic databases and citation searching. 
Based on titles and abstracts, 818 references were excluded, 
leaving 298 full-text articles for eligibility assessment. Of these, 
183 studies were excluded—177 for not meeting the eligibility 
criteria and 6 because of being unretrievable (details in Appendix
3 in Supplemental Materials). The remaining 126 studies—121 
original and 5 reviews—were included in this scoping review. 
Data extraction focused only on the original 121 studies. The 
review studies were used to identify additional studies not 
captured in the searches, labeled as “identification of studies via 
other methods” (see Fig. 1).

Description of Included Studies

Research activity was sparse between 1994 and 2015. A 
marked increase emerged from 2020 onward, reaching its peak in 
the most recent years, with 22 and 23 publications reported in 
2023 and 2024, respectively.

Geographically, 78 studies were conducted in North American 
countries (75 in the United States 30-104 and 3 in Canada 105-107 ), 20 in 
Asian countries (4 each in Taiwan 108-111 and Singapore, 112-115 3 in

Figure 1. PRISMA-ScR flow-diagram. 27 *The same study can be excluded for multiple reasons, so the sum of excluded studies for each 
reason does not add up to the total number of excluded estudies.
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China, 116-118 2 each in Indonesia 119,120 and India, 121,122 and 1 each in 
Qatar, 123 Saudi Arabia, 124 South Korea, 125 Malaysia, 126 and Israel 127 ), 
15 in European countries (3 each in The Netherlands, 128-130 the 
United Kingdom 131-133 and Germany, 134-136 and 1 each in France, 137 

Denmark, 138 Italy, 139 Finland, 140 Sweden, 141 and Switzerland 142 ), 
and 7 in other countries (3 in Australia, 143-145 2 in Brazil, 146,147 and 1 
each in Tanzania, 148 New Zealand, 149 and Chile 150 ).

Follow-up ranged from 2 months to 20 years, and sample sizes 
varied from 83 to 14 422 233. participants. Healthcare settings 
were notably diverse, with 37% conducted in hospitals, followed 
by the general healthcare system (16%), home and community 
care (12%), and emergency departments (9.1%).

Key charted data from each included study, aligned with the 
scoping review’s questions and aims, are described below 

(Table 1). The raw parameters of these studies are available in 
Appendix 4 in Supplemental Materials.

Data Sets Characteristics

Table 2 shows that nearly every study included health status 
(94%) and demographic (83%) variables, whereas provider (14%) 
and perceived-need (5.8%) factors were largely ignored. No study 
covered all 6 relevant variable groups (demographic, socioeco-
nomic, health status, perceived need for healthcare, provider 
characteristics, and prior healthcare utilization, which were 
derived from the Andersen’s Model, see Appendix 2 in 
Supplemental Materials for details), and only 7 included 5; just
2 of those 7 justified their choices with a theoretical 
framework. 82,101

The primary data source was electronic health records (EHRs), 
followed by claims and surveys, the latter being the only reported 
method that captured perceived need for healthcare. Some 
studies collected data specifically for the study, whereas other 
studies used other sources for monitoring purposes, such as 
predicting hospitalizations due to COVID-19 53,139,150 or social 
media data. 46 Studies using official statistics often combined this 
source with surveys, 148 claims, 97,113 surveillance, 139 or even 
multiple sources. 82 In contrast, most studies (75%) relied on a 
single data source.

Nine studies focused on aggregate-level predictions. Of these,
5 combined 2 or more data sources, compared with only 16.1% of 
the individual-level studies. Among the aggregate-level analyses,
3 relied on survey data and 2 used official statistics. Across all 
studies, the number of variables per data set ranged from 3 to 
5624, with a median of 51.

AI Methods and Performance Metrics

Figure 2 summarizes the AI methods and metrics reported. 
Most studies (90.1%) applied AI for predictive purposes. In 27.3% 
of studies AI was used for feature selection, predominantly 
alongside predictive modeling, with only 7 studies using it as a 
stand-alone aim. Other studies focused on cohort selection by 
clustering patients with similar characteristics. 64,81,92 In other 
cases, AI was used for matching patients with similar covariates 
by generating propensity scores, 63 sometimes integrating these 
approaches with difference-in-difference designs to strengthen 
causal inference by addressing unobserved confounding and 
temporal trends. 90,135

No data transformation was required or reported in 13.2% of 
the studies. Among transformation processes, handling outliers 
was the least common (9.9%), whereas dimensionality reduction 
was the most frequent (53.7%). Additionally, 84.3% of the studies 
reported the software used for analysis, with RStudio (37.2%) and

Python (29.8%) being the most common. Since 2020, the evolu-
tion of AI methods highlights a greater on the number of trans-
formation processes and metrics reported, dimensionality 
reduction, internal validation, hyperparameter tuning and feature 
importance (details in Appendix 5 in Supplemental Materials).

Table 1. Study details.

Parameter n = 121*
Publication year
2023-2025 (until January) 47 (39%)
2020-2022 50 (41%)
2015-2019 18 (15%)
1994-2014 6 (5.0%)

Country of study 
North America 78 (64.5%)
USA 75 (62%)
Canada 3 (2.5%)
Asia 20
Singapore 4 (3.3%)
Taiwan 4 (3.3%)
China 3 (2.5%)
Others 9 (7.4%)
Europe
Germany 3 (2.5%)
The Netherlands 3 (2.5%)
UK 3 (2.5%)
Others 6 (5.0%)
Oceania
Australia 3 (2.5%)
New Zealand 1 (0.8%)
South America 
Brazil 2 (1.7%)
Chile 1 (0.8%)
Africa
Tanzania 1 (0.8%)

Publication type
Journal article 114 (94%)
Conference proceedings 6 (5.0%)
Ongoing study 1 (0.8%)

Follow-up time, in years 
From 0 to 2 39 (35%)
From 2 to 4 21 (19%)
From 4 to 8 30 (27%)
.8 20 (18%)
Not reported 11

Sample size, both training and testing 
samples (n)
From 0 to 1000 20 (17%)
From 1001 to 10 000 35 (30%)
From 10 001 to 100 000 35 (30%)
.100 000 27 (23%)
Not reported 4

Healthcare setting
Hospital care 45 (37%)
Healthcare system 19 (16%)
Home and community care 14 (12%)
Emergency care 11 (9.1%)
Intensive care 10 (8.3%)
Primary/ambulatory care 7 (5.8%)
Others 15 (12.4%)

*n (%).
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AI Algorithms and Predicted Healthcare Utilization 
Outcomes

We identified 10 groups of AI algorithms across the included 
studies (Fig. 3). Ensemble models (eg, random forest, bagging, and 
boosting) were the most common (66.9%), followed by logistic re-
gressions and linear models (54.5%), including LASSO and Enet, and 
tree-based models (32.2%). Deep learning models and distance-
based algorithms appeared in only 16.5% and 9.1%, respectively. 
Nearly half of the studies (48.8%) used only 1 or 2 algorithm groups. 

Hospitalizations (57.9%) were the most frequently predicted 
healthcare utilization outcomes, followed by visits (33.1%) (see 
Fig. 3). Hospitalization outcomes included frequency, length of 
stay, and readmissions, either for any cause or for a specific 
reason. Visits outcomes mainly focused on unplanned visits to 
emergency departments, which were predicted alongside hos-
pitalizations in 20 studies. However, we also found visits related 
to pediatrics, 49 imaging utilization, 48 oncology, 63 low-back 
pain, 134 and psychotherapy, 73 among others. Devices or equip-
ment for treatment included renal replacement therapy, 103,108 

mechanical ventilation, 70,72,77,84,123,146 blood transfusion, 122 and 
intubation. 78 Diagnostic tests included radiology resource utili-
zation, 37 medical tests recommended for the management and 
monitoring of diabetes, 125 and low-dose computed tomogra-
phy. 47 Surgical procedures included

surgery duration, 120 elective surgery, 76 and bypass of health-
care facilities. 148 From our predefined list of outcomes, there were 
no studies on immunization/vaccinations and screening, and only
1 study on waiting times. 57 Some studies predicted outcomes that 
did not fit into predefined categories due to their specificity, which 
is reflected in their low frequency. Examples include predictions of 
nonattendance, 40,71,149 ambulance arrivals, 113 digital intervention 
utilization, 90,102,136,144 maternal healthcare utilization, 121,147 and 
mental healthcare utilization. 62,79,91,95,101,129

Hospitalizations and discharges were primarily studied in 
hospitals, intensive care, home and community care, and broader 
healthcare system settings. In contrast, visits were studied across 
a wider range of settings, including diagnostic imaging services, 
emergency care, healthcare facilities, mental healthcare, and 
primary/ambulatory care. Studies on devices and equipment for 
treatment were mainly concentrated in intensive care set-
tings, 70,72,77,78 but there were also studies conducted in hospital 
settings 123,146 and the entire healthcare system. 108

Adherence to TRIPOD 1 AI Guidelines

Adherence to core TRIPOD items was generally high, but AI-
specific items were poorly reported. This discrepancy resulted 
in a remarkable difference in adherence rates between the orig-
inal TRIPOD items (n = 24) and the newly introduced AI-specific 
items (n = 27).

Specifically, adherence statistics for the original items and the 
AI items were as follows: mean adherence (50.6% vs 24.1%), 
median adherence (54.1% vs 13.2%), first quartile (38.6% vs 1.7%), 
and third quartile (72.7% vs. 43.3%), respectively. Some critical AI-
related items, such as predictors measurement, model updating 
and evaluation, participant distribution, handling of poor-quality 
data, and the use of interaction and expertise, were not reported 
across all studies. These results are detailed in Figure 4.

Discussion

This scoping review presents a comprehensive synthesis of 
how AI research has been applied to predict healthcare utilization 
outcomes. The findings underscored the rapid expansion of

research in this area, which encompassed a wide range of 
healthcare settings, data sets, methodological approaches, and 
predicted outcomes. Despite this variability, certain patterns 
emerged. Most studies focused on predicting hospitalizations or 
visits, often using health status data from EHRs. However, data 
sets frequently lacked comprehensiveness, omitting broader 
factors influencing healthcare utilization. The primary AI appli-
cation was predicting future events, with ensemble techniques 
most used. Metric reporting requires improvement to enhance 
robustness. Although adherence to original TRIPOD items was 
strong, reporting on

AI-specific aspects—such as transparency, fairness, and public 
involvement—was weaker, with critical omissions.

There was a notable surge in publications from 2020 onward, 
reflecting the rapid growth of AI in HEOR, 20,23 likely driven by 
increased popularity of AI methodologies and the availability of 
larger data sets. The majority of studies were conducted in the 
United States (62%), likely due to broader access to healthcare 
data. 151 The predominance of hospital-based studies suggests 
easier data access but underscores gaps in primary care and 
preventive services, which remain underexplored.

Predicting healthcare utilization outcomes requires consid-
ering factors affecting demand for services and resources but also

Table 2. Data set characteristics.

Parameter n = 121*
Group of variables used
Health status 114 (94%)
Demographic 101 (83%)
Healthcare utilization 73 (60%)
Socioeconomic 52 (43%)
Provider characteristics 17 (14%)
Perceived need for 
healthcare

7 (5.8%)

Number of variable groups 
used
From 1 to 2 32 (27%)
From 3 to 4 82 (67%)
From 5 to 6 7 (5.8%)

Data collection type 
Electronic health records 73 (60%)
Claims 34 (28%)
Surveys 17 (14%)
Official statistics 6 (5.0%)
Primary data collection 5 (4.1%)
Surveillance data 4 (3.3%)
Social media data 1 (0.8%)

Number of data collection 
types
1 91 (92%)
2 21 (17%)
3 1 (0.8%)
4 1 (0.8%)
Not reported 7 (5.8%)

Level of analysis 
Individual data 111 (92%)
Aggregated data 9 (7.4%)
Not applicable 1 (0.8%)

Total variables before 
feature selection

84 (69.4%) 386 (1166), 50 [3, 7476]

Combined databases (Yes) 35 (29%)

Data set availability (Yes) 37 (31%)

*n (%); mean (SD), median (minimum, maximum).
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considering the supply side: the availability of these resources 
and aspects such as complementarity and substitution. 152 In our 
review, variables related to the demand side showed high vari-
ability. Most studies included health status variables (94%) and 
demographic data (83%), whereas socioeconomic variables (43%) 
and perceived healthcare need (5.8%) were underrepresented. 
The socioeconomic factors were often census based (eg, resi-
dence quintiles), overlooking aspects such as urbanization, 
employment status, neighborhood safety, and pollution. In 
contrast, supply-side factors captured through provider charac-
teristics group, such as management type (public or private), 
available resources, or quality of care, were notably underrepre-
sented (14%). These findings highlight the importance of careful 
variable selection when modeling healthcare utilization. As Athey 
and Imbens (2019) emphasize, AI models reward data sets 
adaptation: exploiting domain-specific context by sample split-
ting, orthogonalization, and theory-guided variable selection 
typically produces models that both explain and predict better 
than relying on off-the-shelf machine learning models. 153

Data set combination was used in 29% of studies but mainly to 
increase sample sizes by incorporating additional territories 
rather than to enable aggregate-level predictions. Similar to our 
findings, Lee et al 23 (2023) identified EHRs as the predominant 
data source, although we found greater use of claims data (28% 
vs. 9%), likely due to differences in inclusion criteria and temporal 
scope. The focus on hospital-based settings highlights gaps in 
primary and community care, limiting progress in these

healthcare settings. Addressing these gaps requires systematic 
data collection across healthcare settings, integrating diverse 
sources, and expanding theoretically grounded variables to 
enhance the accuracy of predictive models.

Consistent with Athey (2018), AI applications predominately 
focused on predictive purposes, often overlooking their potential 
contribution for causal studies. 22 However, AI alone cannot 
establish causal relationships or replace the strong statistical and 
econometric assumptions required for credible causal claims; 
rather, it assists in strengthening key technical components of the 
causal process. First, it supports feature selection: in high-
dimensional settings, techniques such as LASSO, decision trees, 
boosting, or random forests help identify the most relevant 
covariates for treatment assignment or outcome prediction, aid-
ing hypothesis generation. 154,155 Second, AI enhances cohort se-
lection by identifying patterns that group individuals with similar 
characteristics, also supporting hypothesis development. Third, it 
facilitates matching procedures, particularly in large datasets, by 
efficiently pairing individuals with similar covariates and 
improving propensity score models than traditional methods, 
thereby reducing omitted variable bias. 156

Regarding AI techniques, Ensemble and logistic/linear 
regression models dominated, whereas distance-based algo-
rithms were less common, reflecting the limited application of AI 
for cohort selection. This aligns with the findings by Jiang et al 157 

(2017) on the underuse of unsupervised learning in healthcare. 
Advanced methods, including deep learning, were also

Figure 2. Methodological practices in included studies (in %).
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infrequently used. Similarly, Lee et al 20 (2022) report the domi-
nance of tree-based models and logistic/linear regression, with 
limited use of neural networks. In contrast, some researchers 
found deep learning models are more prominent than machine 
learning methods for broader HEOR outcomes, such as disease 
progression, health status, or subsequent events. 158,159 This dis-
tribution suggests that the structure and complexity of data were 
adequately handled by simpler algorithms or reflects a shortage 
of AI expertise among healthcare managers and researchers. It 
may also reflect a preference for interpretable and user-friendly 
methods, especially when compared with studies predicting 
clinical outcomes, which often involve irregular time intervals 
and higher data complexity. Comparing studies before and after 
2020 revealed advancements in handling class imbalance, 
dimensionality reduction, and transformation processes, reflect-
ing increased sophistication in preprocessing. Greater internal 
validation and hyperparameter tuning suggest more rigorous 
model training, whereas the rise of feature importance methods 
emphasized interpretability.

Hospitalizations and visits were the most frequently predicted 
healthcare utilization outcomes, whereas other areas—screen-
ings, diagnostic tests, surgical procedures, treatment equipment 
and devices, nonattendance, ambulance arrivals, and waiting 
times metrics—were rarely modeled. These underrepresented 
outcomes often reflect process- or logistics-oriented events 
rather than direct clinical results. Their frequency prediction are 
further shaped by contextual factors: staffing ratios, clinic ca-
pacity, public holiday calendars, transport links, digital literacy, 
and policy shifts—requiring features beyond standard de-
mographic or morbidity data. Because they are typically recorded

in ancillary systems rather than core EHRs or claims data, labeled 
data sets for these outcomes are harder to obtain. This highlights 
the need for broader data integration and access to diverse var-
iables to better capture nonclinical influences and improve ser-
vice delivery. The absence of studies predicting vaccination 
uptake—even during the COVID-19—illustrates how data avail-
ability and contextual complexity, rather than clinical relevance, 
continue to drive research priorities.

Adherence to TRIPOD 1 AI guidelines revealed notable dif-
ferences between original TRIPOD items and new AI-specific 
ones. Only a small proportion of studies shared code (7.4%) or 
data (38.8%), highlighting transparency and reproducibility gaps. 
Overall, these findings suggest that, although the original items of 
TRIPOD were generally covered, AI-specific aspects, particularly 
those enhancing transparency and ethical integrity, were 
underreported.

Strengths and Limitations

A key strength of this scoping review is its comprehensive and 
theory-informed scope, offering what is, to our knowledge, the 
first broad synthesis of studies applying AI to predict healthcare 
utilization outcomes across all service types, populations, and 
healthcare settings. Whereas earlier reviews have addressed 
broad HEOR topics—occasionally touching on healthcare utiliza-
tion among other outcomes but without specific focus or dis-
cussion of its unique challenges and opportunities 20,23 —this 
scoping review uses a targeted conceptual framework, integrates 
diverse data sources, and systematically evaluates adherence to 
both general and AI-specific reporting standards (TRIPOD 1 AI),

Figure 3. Distribution of AI models (left; N = 270) and target outcomes (right; N = 154) (in % of included studies).
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thereby providing novel insights into current trends, methodo-
logical gaps, and underexplored areas in healthcare-utilization 
prediction. However, several limitations should be acknowl-
edged. Despite dissertations and theses were

considered eligible sources, a systematic search for gray 
literature was not conducted. This may have modestly con-
strained the comprehensiveness of the review, particularly 
regarding unpublished studies or technical reports. Furthermore, 
although we selected MEDLINE, EconLit, and Scopus for their 
extensive coverage of biomedical, health services, and multidis-
ciplinary research, the exclusion of other databases may have led 
to the omission of studies indexed elsewhere. However, MEDLINE 
and Scopus rank among the largest and most widely used 
bibliographic databases globally, and we believe that this com-
bination offers a robust and practical approach to capturing 
literature at the intersection of AI methods and healthcare utili-
zation. This approach was complemented by manual screening of 
reference lists to identify additional relevant sources. Our search 
strategy was designed to balance sensitivity and specificity while 
preserving conceptual relevance. It combined both controlled 
vocabulary (eg, MeSH terms) and free-text keywords. Although 
some expressions—such as “readmissions” or “ensemble 
learning”—were not explicitly included as free-text terms, their 
underlying concepts may have been retrieved through broader 
controlled vocabulary indexing (eg, MeSH hierarchies). None-
theless, we acknowledge the possibility that a small number of 
relevant studies may have been missed due to these omissions. 
Finally, there is an inherent bias in the intended uses of AI 
methods in our review because we specifically focused on

predictive studies. This focus might have led to the inclusion of 
studies in which AI was used during some stage of the prediction 
process but not necessarily for the prediction task itself.

Implications and Future Directions

The findings of this scoping review highlight key opportu-
nities to advance the development and application of AI-based 
predictive models for healthcare utilization outcomes. The 
recent surge in publications suggests that AI in this field of HEOR 
remains in an exploratory phase, but with a rising interest, driven 
by greater data availability and AI advances. However, the pre-
dominance of US-based studies (62%) limits generalizability to 
other healthcare systems, underscoring the need for research 
across more diverse settings. Expanding data collection in other 
regions could promote more equitable HEOR approaches and 
enable AI applications tailored to a wider range of healthcare 
settings.

The limited inclusion of key variables, particularly those 
affecting the supply side, suggests that current AI models rarely 
adopt an integrated approach, instead restricting inputs to 1 or a 
few variable groups. Given likely within-group collinearity, 
especially as the number of variables increases, it is plausible that 
breadth—ensuring at least minimal representation from each 
group—is more informative than adding many variables from a 
single group, for which the marginal returns diminish. These 
omissions expose important gaps that may undermine model 
accuracy and restrict the scope of predicted outcomes. Further-
more, the underrepresentation of equity-relevant variables and

Figure 4. Adherence of reporting original TRIPOD items versus new AI‑specific extensions (in % of included studies).
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population groups raises concerns about algorithmic bias. This 
includes critical dimensions, such as ethnicity, income, language, 
or geographic deprivation, whose omission may compromise 
fairness and limit the external validity of predictions across un-
derserved populations. Models trained on incomplete or biased 
data risk perpetuating structural inequities, especially when used 
to inform resource allocation or service planning. Integrating 
equity considerations in both model development and validation 
is therefore essential to ensure more just and inclusive AI ap-
plications in healthcare. 160

Unified databases integrating diverse data sources will be 
required to address these limitations. This will demand coordi-
nated, multidisciplinary efforts, aligning theoretical frameworks 
on healthcare utilization with AI expertise. These efforts should 
also include training for researchers and policymakers to 
encourage the adoption of integrated approaches of emerging 
literature at the intersection of AI and causal inference, which 
aims to harness the strengths of AI to solve causal inference 
processes. Moreover, the reliance on surveys as the main source 
for capturing user data reveals a gap that could hinder person-
centered care approaches. Strengthening data integration and 
increasing variable diversity are critical steps to improve the 
robustness and applicability of AI-based predictive models. 

Although ensemble models were the most used AI methods, 
advanced techniques, such as deep learning, were underutilized. 
This preference for simpler, more interpretable methods may 
reflect the relatively straightforward structure of data sets or user 
comfort with established techniques. However, exploring inno-
vative AI methods could yield deeper insights and further 
improve model performance. Initially, we extracted the AI models 
from each study exactly as reported by their authors (see 
Appendix 4 in Supplemental Materials for detailed informa-
tion). Given the considerable heterogeneity across studies, we 
subsequently grouped these models into broader families based 
on similarities in their methodological approach, thereby facili-
tating synthesis and comparability. Nonetheless, as methods and 
reporting standards evolve, future reviews may consider finer 
classifications.

Inconsistencies in reporting, particularly regarding hyper-
parameter tuning, model calibration, and performance metrics, 
highlight the need for stricter methodological standards. In 
addition, the lack of systematic reporting on data quality in-
dicators, such as completeness, missingness, or data provenance, 
limited our ability to assess how source limitations might affect 
model performance and generalizability. Encouraging authors to 
transparently report these attributes will be essential to under-
stand the robustness of AI-based models and guide their appro-
priate application in real-world healthcare settings.

Adherence to the original TRIPOD guideline (first published in 
2015) 161 was relatively high, but compliance with TRIPOD 1 AI 
remains limited, likely because of its recent introduction. Pro-
moting TRIPOD 1 AI could enhance both methodological rigor 
and ethical standards, aligning AI research with best practices in 
open science and person-centered care. Although the guideline 
was primarily designed for clinical prediction models, we found 
that many of its principles are equally relevant for studies 
focused on healthcare utilization. At the same time, some items 
may require contextual interpretation when applied to nonclin-
ical outcomes. This experience highlights the need to assess the 
broader applicability of TRIPOD 1 AI to health services research 
and may inform the development of complementary guidance 
tailored to these types of predictive models.

Studies primarily focused on predicting hospitalizations and 
visits, important for resource planning, but overlooked other

important aspects of healthcare utilization, including screenings, 
diagnostic tests, surgical procedures, treatment equipment and 
devices, nonattendance, and waiting times. Expanding the scope 
of predicted outcomes would provide a more holistic under-
standing of healthcare demand. Notably, the lack of studies pre-
dicting vaccination uptake, even during the COVID-19 pandemic, 
highlights a missed opportunity to inform public health pre-
paredness and response. Incorporating preventive services into 
predictive models is essential to address these gaps. This review 

identified only 1 study reporting the real-world implementation 
of AI models, 94 revealing a critical gap between model develop-
ment and practical application. Addressing this gap is essential to 
fully realize the potential of AI to improve healthcare delivery and 
system efficiency. As AI-based prediction tools become more 
robust and transparent, their integration into health technology 
assessment processes and resource planning frameworks could 
support more informed budgeting and policy decisions. 
Achieving this will require transparent methods, context-specific 
validation, and alignment with established standards of cost-
effectiveness and equity.

Moreover, looking ahead, ensuring the long-term value of 
predictive models will also require mechanisms for continuous 
monitoring, recalibration, and governance. As healthcare systems 
evolve, predictive tools must adapt to shifting population needs, 
care practices, and data ecosystems. Finally, this review could 
serve as a foundation for future systematic reviews focused on 
specific outcomes, healthcare settings, methodological advance-
ments, or predictor theoretical frameworks. Such efforts could 
further refine and shape future investigations, including scoping 
reviews in the area of healthcare utilization outcomes beyond 
predictive studies, and detailed temporal analyses of model 
characteristics over time. Future reviews could also explore how 

predictive AI models are distributed across clinical areas or dis-
ease groups, offering valuable insights into research priorities 
and unmet needs in disease-specific service planning.

Conclusions

By mapping the current use of AI in predicting healthcare 
utilization, this review identifies methodological trends and ev-
idence gaps in this HEOR field. Although AI is increasingly used to 
predict hospitalizations and visits, important areas such as 
diagnostic tests and surgical procedures remain underexplored. 
The findings highlight the need for diverse and integrated data-
sets, with stronger adherence to TRIPOD 1 AI guidelines to 
improve transparency, fairness, and reproducibility. Limited 
compliance with AI-specific items reflects ongoing challenges in 
adapting to recent methodological and ethical developments. 
Future research should broaden predicted outcomes to include 
process- and logistics-oriented events, such as ambulance ar-
rivals and waiting times, extend applications beyond prediction, 
such as cohort selection and matching, and explore underused AI 
methods, including distance-based algorithms and deep neural 
networks. Strengthening adherence to TRIPOD-AI reporting 
guidelines is also essential to enhance the reliability and impact 
of AI in healthcare planning and economic evaluation. By 
addressing these gaps, this review establishes a foundation for 
further investigations, including reviews focused on specific 
healthcare utilization outcomes, healthcare settings, methodo-
logical advances, and theory-informed variable selection. 

Strengthening these areas will be key to leveraging the full 
potential of AI in advancing equitable, efficient, and evidence-
based healthcare decision making.
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