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We provide a comprehensive assessment of the economic benefits and costs of
global methane emissions abatement, anchored on the Global Methane Pledge.
We use an Integrated Assessment Model to estimate avoided climate damages at
the global and country levels, including quantification of tipping points and risk.
We further estimate air quality co-benefits and methane abatement costs. We find
global methane action would be highly beneficial, yielding a benefit-cost ratio of
at least six. It would provide larger benefits in lower-income countries, and it
would reduce tipping-point intensity and risk. We provide estimates of the social
cost of methane to compare with previous literature and show that they imply
key economies such as the US, EU and China should be self-interested to abate

methane emissions substantially.

Methane is a potent, short-lived climate pollutant (SLCP) that has contributed around one third of

the total warming from well-mixed greenhouse gases (GHGs) since the 19th century (/). Having



plateaued in the early 2000s, atmospheric concentrations of methane are once again increasing at a
rapid rate due to anthropogenic emissions from fossil fuel production and distribution, agriculture,
and waste, as well as anthropogenic/natural emissions from wetlands (2-6).

Because it is a major driver of current warming and its atmospheric concentration responds
rapidly to emissions reductions, methane abatement has been identified as “very likely to be the
most powerful lever in reducing near-term warming” (7). Moreover, substantial technical potential
has been identified to reduce methane emissions, much of which is argued to be negative-cost or
low-cost (7-11).

Previous work has argued that climate policy is too focused on long-term climate stability
(11, 12), for example on mid-century, net-zero CO, emissions as the key target to be adopted by
both state and non-state actors. Even the more near-term Nationally Determined Contributions to
the 2015 UN Paris Agreement have been found to contain variable, but generally low, coverage of
methane-focused mitigation measures (/3). In the background to policy-making, it has also been
argued that the accounting practice of converting methane into CO, equivalents using its 100-year
Global Warming Potential (GWP) contributes to overlooking the importance of methane, because
such a conversion understates the impact of methane in the short term (/2). The contrary view is that
methane abatement, alongside mitigation of other SLCPs, risks delaying efforts to abate CO,, and
can be “deferred without much harm” if the ultimate goal is controlling long-term warming (/4).

Policy-makers appear to be listening to arguments in favor of methane action. The Global
Methane Pledge, launched at COP26 in 2021, commits participating countries to take voluntary,
domestic actions in service of at least a 30 percent reduction in global methane emissions below
the 2020 level by 2030 (/5). At the time of writing, 159 countries have signed on (including the EU
and US, but not China, India or Russia), and some have reflected the global ambition of the Pledge
in domestic targets and plans (/3).

Understanding the role of methane abatement in climate policy can be aided by quantifying the
benefits of methane abatement and comparing them with the costs. Previous studies have quantified
the benefits of global methane abatement scenarios in terms of physical climate variables such as
carbon budgets (16, 17), global mean temperatures (9, 11, 18-23), and sea levels (24). The 2021
Global Methane Assessment extended the literature by quantifying selected economic and health

benefits of global methane abatement, including heat and ozone-related mortality, ozone-related



morbidity, lost labour productivity due to extreme heat, and crop yield losses via both climate
and ozone effects (7). (23) have provided a simple calculation of the overall economic benefits
of methane abatement by feeding global mean temperature pathways into an aggregate climate
damage function.

In addition to these studies on the benefits of global methane action scenarios, there is a literature
on the social cost of methane (SC-CHy), i.e., the discounted present value of the future stream of
damages from an incremental (marginal) emission of the gas (25-35). The literature on the SC-
CHy4 is much smaller than its counterpart on the social cost of carbon dioxide (SC-CO,), but it is
valuable because social/marginal costs provide a natural and consistent way of comparing GHGs
with different atmospheric lifetimes (36). As (/9) pointed out, “direct comparisons of the climate
influence of SLCPs and CO, require making a judgment about the relative importance of short
and long time scales”. Economics would compare the SC-CH4 with the SC-CO,, as doing so does
not depend on an arbitrary choice of time horizon unlike GWP (e.g., GWP20 versus GWP100),
although the discount rate becomes a key choice (37). The SC-CHy is also an important policy
quantity given its routine application in cost-benefit analyses (CBAs) of specific methane abatement
policies (e.g., rules on methane flaring in oil and gas). However, the standard practice in national
policy analysis of multiplying GHG emissions reductions by the social cost of a GHG cannot in
general be used to quantify large global emissions reductions brought about by agreements such as
the Global Methane Pledge. That is because the marginal approximation relied upon can be highly
inaccurate for large, non-marginal changes in emissions (38, 39). Therefore, an assessment of the
total economic benefits of global methane action should be based on running emissions scenarios
through an Integrated Assessment Model (IAM).

In this paper, we seek to advance the literature by providing a comprehensive assessment of
the economic benefits of global methane abatement, anchored on the Global Methane Pledge, and
comparing them with the costs. This includes a distributional analysis across countries, and an
analysis of how global methane abatement affects tipping points and macro-economic risk. We
proceed in three steps. First, we create a set of emissions scenarios, which simulate methane action
at the global level against a background of emissions of CO, and other GHGs/radiative forcing
agents. These scenarios are anchored on successful achievement in 2030 of the Global Methane

Pledge, followed by continued methane abatement post-2030.



The second step is to take the scenarios and run them through the META (Model for Economic
Tipping point Analysis) IAM (40, 41) to estimate total economic benefits. META has several useful
features for present purposes: (i) it incorporates a recent Simple Climate Model from the climate
science literature (42), thus producing global mean temperature projections consistent with observa-
tions and Earth System Models; (ii) it provides relatively comprehensive benefit/damage estimates,
including both market and non-market damages, via temperature and sea-level mechanisms; (iii) it
estimates damages at the country level for 179 countries, thus enabling the distributional effects of
emissions abatement to be analyzed; (iv) it can quantify the role of climate tipping points (including
methane-based tipping points) and climate tail risk in the overall benefits of methane action (though
it is important to bear in mind that the coverage of tipping point damage mechanisms is incomplete,
a reflection of the underlying literature).

The third step brings in methane abatement costs and air quality co-benefits. For the former, we
aggregate sectoral estimates of methane abatement costs from (43) and (/0), which were used in
the Global Methane Assessment (7), as well as using the methane marginal abatement cost (MAC)
curve estimated by (8). For the latter, we use data on premature deaths due to respiratory and
cardiovascular diseases, and on the Value of a Statistical Life (VSL), also from the Global Methane
Assessment (7).

In addition to quantifying the total benefits and costs of global methane action, we also include an
analysis of the SC-CHy4. This facilitates a comparison with previous literature, which as mentioned
has tended to be about marginal rather than total damages. In addition, with META we can provide
the first set of country-level estimates of the SC-CHy, to the best of our knowledge. In light of current
geopolitics, this enables us to evaluate incentives of countries to act in their own self-interest rather

than just in pursuit of a global agreement like the Global Methane Pledge.

Results

Methane emissions and effect on temperatures

Fig. 1 plots methane emissions and resulting global mean temperatures under our methane action

scenarios, of which there are three: central, low emissions and high emissions. The central scenario



contains a subset of 1.5°C scenarios that approximate the Global Methane Pledge’s 30% reduction.
The low and high emissions scenarios are subsets of 1.5°C scenarios that bracket the central
scenario and give, respectively, roughly 50% bigger and smaller cuts than the central scenario. The
scenario spread is intended to reflect uncertainty about technical abatement potential across IAMs,
and about policy implementation (within the context of methane action above current trends). Our
preferred specification chooses a background scenario of SSP2-4.5, which we take to be the Shared
Socioeconomic Pathway (SSP) scenario corresponding most closely to a current policies/trends
storyline (44). This sets both baseline methane emissions and emissions of other GHGs and forcing
agents. In Fig. S1 in the SM, we also show a high-emissions background scenario (SSP3-7.0) and a
1.5°C background scenario. The former amounts to a storyline where the Global Methane Pledge
is successfully implemented but the rest of the world’s climate agenda fails completely. This is a
less likely combination in our view, although we should point out that observations imply methane
emissions specifically are currently increasing faster than projected on SSP2-4.5 (45). The use of
a 1.5°C background scenario just assesses whether the Global Methane Pledge requires similar,
more or less methane abatement than the full suite of 1.5°C scenarios.

The central methane action scenario reduces methane emissions by 30% in 2030 relative to
2020 (implementation of the Global Methane Pledge), 47% in 2050 and 62% in 2100 (Fig. 1, left
panel). The methane action high-low scenario range is a 19-46% cut in 2030, 34-63% in 2050 and
52-72% in 2100, all relative to 2020. The SM shows that while the Global Methane Pledge is well
within the range of 1.5°C scenarios, it is actually less ambitious than the mean cut in 2030 across
1.5°C scenarios. Emissions are 4% higher under the Global Methane Pledge than in the mean 1.5°C
scenario.

The central methane action scenario reduces global mean surface temperature change by an
expected 0.02°C in 2030, 0.13°C in 2050 and 0.18°C in 2100 (Fig. 1, right panel). The temperature
reduction under the methane action scenarios flattens out after 2070 because baseline methane
emissions reductions under SSP2-4.5 follow a similar trajectory to the methane action scenarios,
albeit at an overall higher emissions level. The range of uncertainty in the expected temperature
response to the high-low methane scenario variants is 0.09-0.19°C in 2050. Temperature uncertainty
conditional on the central methane scenario is also 0.09-0.19°C in 2050. This comes from parametric

uncertainty in the FalR Simple Climate Model, as well as tipping points in META that affect



Figure 1: Methane emissions (left panel) and effect on global mean temperature (right panel)
of methane action scenarios. Background emissions scenario is SSP2-4.5. The shaded area is the
90% confidence interval of temperature outcomes pertaining to the central methane action scenario,
based on parametric uncertainty in META sampled by 1000 Monte Carlo runs. ’Methane action
- high’ and "Methane action - low’ describe methane action scenarios resulting in high and low

emissions, respectively. Specification includes tipping points.
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temperature, and is quantified as the 90% confidence interval. The expected 0.13°C of avoided
warming in 2050 on the central methane scenario is lower than the ~0.3°C of avoided warming
reported in the Global Methane Assessment (7) using similar emissions-temperature impulse-
response functions to those in FalR. The difference is presumably due to higher baseline emissions
in the Global Methane Assessment, more consistent with no policy than current policies. Fig. S2
in the SM shows that the temperature reduction is 0.2°C in 2050 relative to an SSP3-7.0 baseline.
This is still lower than the Global Methane Assessment but both scenario and temperature-response

uncertainty extend to ~0.3°C.

Total economic benefits of methane action

Fig. 2 plots the total economic benefits (avoided market damages) of the methane action scenarios
over the rest of this century. Under the SSP2-4.5 background scenario, climate change causes mean

damages equivalent to a 1.8% loss in global consumption in 2030, rising to 3.5% in 2050 and 6.1%



in 2100 (since savings rates are fixed in META, these percentages also apply to global GDP). These
are relative to counterfactual consumption along SSP2-4.5 without climate change. Focusing on
2050, the central methane action scenario reduces damages by 0.4 % points, from 3.5% of global
consumption to 3.1%. In absolute money terms, this reduction in damages — the gross benefit of
global methane action — equates to a little over $1 trillion per year in 2050 (in 2020 prices). The
range of uncertainty across the high-low methane scenario variants is a 0.3-0.6 % point reduction
in damages. The range of uncertainty (90% confidence interval) conditional on the central methane
scenario is larger than this, running from 0.2 to 0.7 % points. This comes from the joint effect of
many parametric uncertainties in META, including climate uncertainties in FalR, uncertainties in
the tipping point modules and in the interactions between tipping points, and uncertainties in the
temperature and sea-level damage functions. Further analysis in Fig. S3 in the SM shows that, as
expected, total climate damages are higher under the SSP3-7.0 background scenario and that the
reduction in damages due to methane action is around a quarter higher than under SSP2-4.5 (a
reduction in damages of 0.5 % points in 2050).

The above estimates of total economic benefits can only be properly understood when compared
to the total costs of methane action. It is also important to take into account non-market climate
damages and the direct health co-benefits of methane action via improved air quality. META
contains a non-market damages module, but, as a social-cost IAM focused on damages (46), META
does not include abatement costs or air quality co-benefits. Therefore, we bring in data on abatement
costs and air quality co-benefits from previous major studies (7, 8) (see Methods). Table 1 reports
the results of the CBA. Three out of five estimates of abatement costs are negative throughout,
thus the central methane action scenario would pay for itself irrespective of climate benefits. The
mechanism behind negative abatement costs is the opportunity for private profits, including revenue
from methane capture/use in the energy sector, reduced disposal costs and increased revenue from
waste recycling instead of landfilling, and yield increases from abatement measures in rice farming.
In these three cost scenarios, IIASA low/high and EPA low, the net present value (NPV) of the
central methane scenario ranges from $0.6-5.2trn without climate benefits, $7.0-11.5trn including
climate benefits (market and non-market), and $13.0-17.5trn additionally including air quality
co-benefits (2.5% discount rate).

Although “bottom-up” estimates of GHG abatement costs can yield substantial negative-cost



Figure 2: Reduction in total climate damages due to methane action. Left panel shows total
climate damages expressed as a percentage loss in consumption relative to a no-climate change
counterfactual. Right panel shows the gross monetary value of avoided damages, i.e., benefits of
methane action. The shaded area is the 90% confidence interval, based on parametric uncertainty

in META sampled by 1000 Monte Carlo runs. Specification includes market damages and tipping

points.
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potential (47), such measures face behavioral, financial, informational and structural barriers,
which prevent them from being realized. These can be conceptualized as hidden costs of adoption.
Especially the low-cost scenarios implicitly assume that implementation of the Global Methane
Pledge reduces the barriers to adoption of negative-cost measures. Alternatively, a conservative
approach would be to place particular emphasis on the two scenarios with positive abatement costs,
EPA high and Harmsen et al. (8). The latter scenario explicitly assumes there are no negative-cost
measures. However, here again the benefits of methane action far exceed the costs, giving an NPV
of $4.4-4.5trn ($10.4-10.5trn including air quality co-benefits), or equivalently a benefit-cost ratio
of 3.3-3.4 (6.5-6.7 including air quality co-benefits). As a further alternative, we can back-calculate
what constant stream of undiscounted abatement costs would be necessary to drive the NPV
of the central methane scenario to zero. This ‘switching value’ is $301.6bn/year ($589.0bn/year
including air quality co-benefits), much higher than any of the cost scenarios except for Harmsen

et al. (8) towards 2050 if air-quality co-benefits are ignored. The cost-benefit comparison is also



Table 1: Comparison of benefits and costs of central methane scenario. All values are in USD
2020 billions. Discount rate is 2.5%. Values for 2030, 2040, and 2050 are snapshots of benefits and
abatement costs in single years. Net present values (NPVs) represent the discounted sums for years

2020 through 2050.

2030 2040 2050 NPV

Climate benefits (market) 52.2  401.0 1008.5 | 5310.0
Climate benefits (non-market) 9.1 70.3 200.4 | 1001.8
Air quality co-benefits 298.8 3933 4446 | 6015.7
EPA low -340 -39.7 453 | -6383
EPA high 108.2 113.8 119.5 | 1885.2
Abatement costs ITASA low -226.6  -342.5 -458.4 | -5176.3
ITASA high -186.4 -123.1 -59.7 | -2387.7
Harmsen et al. (2019) | 18.3  130.9 437.6 | 1847.8
EPA low 744 311.8 5979 | 6950.1
Discounted net climate EPA high -36.6 2182 5194 | 4426.6
benefits (market and TIASA low 2249 4966 794.8 | 11488.1
non-market)
ITASA high 193.5 3627 604.8 | 8699.4
Harmsen et al. (2019) | 33.6  207.7 367.7 | 4464.0
EPA low 307.8  551.8  809.9 | 12965.7
Discounted net climate EPA high 196.7 4582 7314 | 10442.2
benefits (market and
non-market) and air quality ITASA low 458.3 736.6 1006.8 | 17503.7
co-benefits ITASA high 4269 602.7 816.8 | 14715.1

Harmsen et al. (2019) | 267.0 447.7 579.7 | 10479.6

conservative in the sense that we only consider costs and benefits in the period 2020-2050. Methane
has an atmospheric residence time of around nine years, so this approach omits benefits of abatement
towards 2050 that occur after the end of the horizon. Persistence of climate damages has a similar

effect.



Distributional effects of methane action

It is well known that climate damages are heterogeneous across the world for reasons of differential
exposure and sensitivity/adaptive capacity. META incorporates both of these sources of heterogene-
ity. Insofar as these are correlated with national income, so will be the benefits of methane action.
Fig. 3 explores the relationship between national income and benefits of methane action directly by
taking country-level avoided market damages from methane action and aggregating them according
to the World Bank’s four country groupings: low-income, lower-middle income, upper-middle in-
come and high-income. These damages are differences in consumption levels, before utility/welfare
valuation. Larger benefits from methane action are concentrated in low-, lower-middle and to a lesser
extent upper-middle income countries, while high-income countries, which tend to be located at
higher latitudes, benefit the least. With the exception of low-income versus lower-middle income
countries, group differences across countries are statistically significant at the 10% level or lower
for any pairwise comparison of World Bank income groups. Fig. S4 in the SM repeats this analysis
under the SSP3-7.0 background scenario, showing that the equity benefits of methane mitigation
are robust to switching to an emissions scenario with substantially higher emissions. Fig. S5 in
the SM also repeats this analysis on a scenario with rapid methane action plus action on COy, in
order to explore whether the effects of methane abatement on inequality are different from CO,
abatement. We find the effects are very similar, which indicates that action on methane and CO, are
equally pro-poor. Lastly, Fig. S6 in the SM repeats the analysis for avoided market and non-market
damages together. It shows that once again benefits are negatively correlated with income, but the
differences are now smaller and statistically insignificant, because non-market benefits increase

with income.

Effect of methane action on climate risk

Fig. 4 reports the effect of methane action on climate risk. Methane action reduces climate risks,
shifting the probability density function of damages in 2050 to the left (downward). Mean damages
(market) fall from 3.5 to 3.1% as mentioned above, and the standard deviation of damages decreases
from 1.5 to 1.4. As measures of tail risk, we compute Value at Risk (VaR) and Conditional VaR

(CVaR) at the 95% and 99% confidence levels. These are defined as damages at the 95th/99th

10



Figure 3: Change in climate damages in 2050 by central methane action scenario, disaggre-
gated by World Bank country income group. Violin plots combine a kernel density plot and a
box plot. Box plot contains estimates for the median (white dot), interquartile range (black box)
and +/- 1.5 times the interquartile range (range of thin dark gray line). Note negative values signify

avoided climate change damages. Specification includes market damages and tipping points.
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percentiles (VaR), and average damages above the 95th/99th percentiles (CVar). Methane action
reduces VaR at the 95% confidence level from 6.4 to 5.9%, and at the 99% confidence level
from 7.8% to 7.3%. CVaR at the 95% confidence level is reduced from 7.4% to 6.7%, and at the
99% confidence level from 8.9% to 8.0%. Thus, methane action reduces climate risk in general,
including tail risk. Without tipping points, the effects of methane action are very similar but if
anything they are slightly larger in relative terms, indicating that methane action is slightly more
effective in reducing damages from other channels. Additional analysis in Fig. S7 in the SM shows
that methane action similarly reduces climate risk under a SSP3-7.0 background scenario, albeit
on higher baseline climate damages.

This raises the question, what is the effect of methane action on tipping points themselves? As
explained in more detail in (40) and in the SM, economic models of tipping points synthesized
by META belong to two distinct classes. One class is process-based models, where each equation

directly represents an underlying geophysical process. The permafrost carbon feedback (PCF),
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Figure 4: Probability density functions for climate damages in 2050 with methane action
(red) and without (grey). Left panel includes tipping points, right panel omits tipping points.
Specification includes market damages. The height of each bar corresponds to the frequency
of observations in the corresponding bin. Table reports associated distribution statistics (% of

consumption lost in 2050 due to climate change).
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Baseline 35 1.5 6.4 7.8 7.4 8.9
Methane action | 3.1 1.4 5.9 7.3 6.7 8.0
No tipping points
Baseline 3.1 1.4 5.9 7.3 6.8 8.1
Methane action | 2.7 1.3 5.3 6.5 6.2 7.4

melting of the Antarctic and Greenland Ice Sheets (AIS and GIS, respectively), and variability
of the Indian Summer Monsoon (ISM) are modeled in this way. The other class uses survival
analysis, whereby the underlying geophysical processes are represented more abstractly by a hazard
event with an associated hazard rate. Slowdown of the Atlantic Meridional Overturning Circulation
(AMOC) and Amazon rainforest dieback (AMAZ) are modeled in this second way. Both classes of
model are probabilistic in META.

As a common measure of the extent to which different climate tipping elements have ‘tipped’,

12



Figure 5: Percentage change in tipping point intensity due to methane action, for six tipping
points. Background emissions scenario is SSP2-4.5. Tipping point indicators are described in the

methods section.
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here we report an indicator of tipping point intensity on a scale from zero to one (see SM). Zero
corresponds to tipping elements whose state has been completely unaltered by climate change, and
one corresponds to elements that have fully transitioned to an alternative state (as such it is similar
to the tipping state variable in (48)). An indicator value of 0.5 means half-transformed in the case of
process-based models (e.g., the Ice Sheets are half-melted), or a hazard event that is 50% likely in
the case of the survival-analysis models. Although it is damages from tipping points that ultimately
matter, one advantage of this physical indicator is that it focuses attention on tipping processes,
whose impacts are particularly poorly covered by existing economic studies. AMOC slowdown and
Amazon dieback are leading examples (40). As can be seen in Fig. 5, methane action takes time
to affect tipping point intensity. By 2050, however, the effect of methane action on tipping points
becomes more clear. AIS and GIS tipping intensity decreases by 2.5%, the likelihood of AMOC
slowdown decreases by 3%, the likelihood of Amazon dieback decreases by 8%, and ISM and PCF

tipping intensity falls by 13%. After 2050, the effect of methane action on tipping point intensity
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generally mimics the effect of methane action on global mean temperature by plateauing. The
exceptions are AIS and GIS tipping intensity, which are subject to considerable inertia. Therefore,
methane action has its largest effect on these by the end of the century, reducing tipping intensity
by ~5.5% (AIS) and 9.5% (GIS). Fig. S8 in the SM again repeats the analyses in this section under
the SSP3-7.0 background scenario, finding larger reductions in tipping point intensity than under

SSP2-4.5.

Social cost of methane, and non-cooperative action

The top panel of Fig. 6 shows probability density functions for the SC-CHy4 in 2020. These estimates
reflect the marginal damage (market and non-market) from one metric tonne of CH,4 emitted in
2020. The distribution has a strong positive skew with a mean of $7,381/tCHy, a median of $6,837
and a 90% confidence interval of $3,824-11,548. We also plot the corresponding PDF excluding
all tipping points, which has a mean of $6,307. Thus, the tipping points we include increase the
mean SC-CH4 by 17%. If the more speculative ocean methane hydrates tipping point is included,
the SC-CHy4 in 2020 is $23,319, which is 270% higher than the SC-CH4 without tipping points.
This is a far bigger impact of the ocean methane hydrates tipping point than on the SC-CO; (40). In
the SM, we report the results of Global Sensitivity Analysis of the SC-CH,4 with respect to climate,
damage and tipping-point parameters.

Table S1 in the SM reports values for the SC-CHy4 in future years. These increase due to rising
incomes and temperatures. For an emission in 2030, the mean SC-CHy4 in our preferred specification
is $9,988/tCHy, rising to $13,824 for an emission in 2050 and $27,044 for an emission in 2100. This
corresponds to a compound annual real growth rate of 1.6% between 2020 and 2100. The SM also
reports values for the SC-CO,. The mean SC-CO; in 2020, including tipping points, is $309/tCO,,
rising to $485 in 2050 and $688 in 2100, a compound annual real growth rate of 1%. The ratio
of the SC-CHy4 to the SC-CO; is 24 in 2020, rising to 39 in 2100. This ratio can be compared to
the GWP of methane, which is 27-30 when measured over 100 years and 81-83 when measured
over 20 years (49). Thus, using GWP100 would slightly overstate the value of methane abatement
in the short run and slightly understate it in the long run, with the crossover period being about

mid-century (SC-CH4/SC-CO,=28.5 in 2050). Using GWP20 would greatly overstate the value of
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Figure 6: Probability density function for the global SC-CH;, in 2020 (top panel) and map of
expected values of national SC-CHys (bottom panel). Social costs are reported in 2020 US dollars
for a 2020 emissions pulse in the SSP2-4.5 emissions scenario. Welfare changes are normalized to
global mean consumption per capita for global SC-CH4 and national mean consumption per capita
for national SC-CHys. Specification includes non-market damages, EMUC=1.05, and PRTP=0.5%.
Tipping points are included in map. Previous estimates of the global SC-CHy are superimposed on

the probability density function.
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methane abatement. The discount rate is a factor here. Building on the expert survey results of (50)
and recent changes in practice (5/), we set a pure rate of time preference of p = 0.5% and an
elasticity of marginal utility of consumption = 1.05. With global economic growth on SSP2-4.5
of g ~ 2%, this yields a discount rate of r = p + ng ~ 2.5% (as g varies over time, country and
Monte Carlo draw, this is approximate). Results from Table S2 in the SM show that if we instead
set p = 1% and n = 1.5, the ratio is 39 in 2020, higher than GWP100 but still much lower than
GWP20. GWP100 appears to be a reasonable approximation of the relative social value of methane
action, with two caveats: (i) it is a better approximation at low discount rates; (ii) these results are
obtained from META and are hence limited to an analysis of avoided climate damages, rather than
air quality co-benefits.

The bottom panel of Fig. 6 reports the SC-CHy at the national level. To the best of our knowledge,
we are the first to provide country-level estimates of the SC-CHy4. Previous studies such as (52)
have provided country-level estimates of the SC-CO,. Formally, the social cost of a GHG is the
change in social welfare from emitting one tonne of the GHG, divided by the marginal utility of
consumption to convert it into money units. The choice of consumption level for the denominator is
important. The higher this is, the smaller is the marginal utility of consumption under the standard
assumption of diminishing marginal utility, the smaller is the denominator in turn, and the higher
is the SC-GHG in money terms. Using global mean consumption per capita normalizes national
welfare changes to the same level and effectively disaggregates the global SC-GHG that each
country would refer to under full international cooperation into national shares. If instead each
country’s welfare change is normalized using its own national consumption per capita, this yields
an estimate of climate damages to that country valued at its own income level. This corresponds
to the SC-GHG that each country would use under non-cooperation. Since we already analyzed
the implications of cooperative global methane abatement for global inequality above, we take the
latter approach. Studying non-cooperative incentives is also highly relevant in current geopolitical
conditions.

Negative SC-CHys are reported for 20 primarily high-latitude countries, consistent with previous
results generated from non-linear temperature damage functions (53), even allowing for additional
damage channels in META. These countries would not have a private incentive to reduce methane

emissions at the margin today, assuming of course that META’s damage estimates are not biased
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towards being too small. 159 countries have a positive SC-CHy4 and 17 of these have a national
SC-CH4 above $100/tCHy4, The three highest national values are for China ($536/tCHy), India
($548/tCH4) and the United States ($1112/tCHy). The size of the US SC-CHy4 is notable as it
implies significant methane abatement would be optimal even if the US returned to the first Trump
administration practice of valuing only domestic damages from domestic methane abatement, as
seems highly likely. The European Union (EU27)’s SC-CHy4 — computed as the sum of its member
states’ national SC-CHys — is $631/tCHy, above China’s and India’s.

Discussion

The basic message of this paper is that the benefits of global methane action look so much larger
than the costs that the economic case for action is clear. Implementation of the Global Methane
Pledge might come at a negative cost, according to leading estimates from (43) and (/0). Even if
one is skeptical of negative abatement-cost estimates, our modeling suggests much higher benefits
from avoided climate damages and improved air quality. An important part of the global benefit
of methane abatement is that avoided climate damages are higher in low- and middle-income
countries, making the climate benefits of methane abatement pro-poor. Another important factor
is that methane abatement reduces climate risk to the economy, something the risk-averse social
planner values. Implementation of the Global Methane Pledge supposes a high degree of cooperation
between countries, but in a world of fracturing geopolitics it is worth asking how much methane
abatement countries should undertake in their own self-interest. We analyzed this by estimating
each country’s domestic marginal damages and found that methane abatement at marginal costs of
several hundred US$/tCHy is economical for several major players such as China, the EU, India
and the US (where the domestic SC-CHy is as high as US$1,112/tCHy). Lastly, while the best basis
for comparing methane and CO, abatement should be relative social costs, we have found that the
convention of using GWP100 is a reasonable approximation.

How do our estimates of climate benefits from methane abatement compare with previous
literature? Estimates of climate benefits are famously sensitive to the discount rate (albeit less so
for methane than CO,, due to its shorter atmospheric residence time), so any comparison needs to

control for the discount rate as far as possible. It also needs to adjust for inflation, so we inflate
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values reported in previous studies where necessary using the US GDP deflator. In terms of total
benefits of global methane action scenarios, the only point of comparison is (23). Using an aggregate
damage function from a meta-analysis (54), they estimate total benefits of somewhere in the range
of approximately US$3.5-10 trillion for discount rates of 2% and 3%. Our estimates overlap this
range significantly but are at the high end of it.

In terms of marginal damages, our global estimate of the 2020 SC-CH, (e.g., mean of
US$7,381/tCHy) can be compared with a wider range of studies. (32) calculate the SC-CH4 by
coupling a set of four Simple Climate Models to damages from the DICE and FUND IAMs. For a
discount rate of 2.5% and on a high-emissions scenario (RCP8.5), they report a multi-model mean
estimate of $1,414/tCH,4 and a 90% confidence interval of $678-2,454. But some model combi-
nations yield values close to $4,000, notably using DICE damages instead of FUND. The United
States Environmental Protection Agency (55) reports values of $470/tCH4 with damages from the
DSCIM 1AM, $1,600 with damages from the GIVE IAM and $1,700 with damages from (54), for
a near-term discount rate of 2.5%. Using an updated version of DICE (including FalR v2.0.0), (35)
estimate $4,360/tCHy, within a range of $959-8,829. Their central estimate is generated along the
optimal emissions path using a comparable discount rate to ours, and a damage function calibrated
on (54) like the US EPA meta-analysis variant (but choosing a different model variant in (54) with
higher damages for given temperature). Their SC-CH4 exhibits strong sensitivity to the emissions
path, however, and when it is calculated on a business-as-usual path it is at the high end of their
reported range, about 20% above our central estimate.

Overall, our estimated SC-CHy is higher than most of the existing literature, including estimates
provided in the latest US EPA guidance. In particular, it extends the uncertainty range well above
$10,000. Having controlled for the discount rate and with META using an almost identical climate
model to (55) and (35) (FalR), remaining differences in the SC-CH,4 most likely arise from different
socio-economic/emissions scenarios, different spatial disaggregation and different modeling of
damages (such as inclusion of tipping points in META). One point to note is that our mean estimate
looks consistent with (35) when one considers that we calculate the SC-CH4 on an emissions
path that is between their optimum and BAU. But the analysis in (35) is deterministic — we
add quantification of uncertainty, which naturally spreads the distribution of the SC-CHy to higher

values. Another point to note is that META combines spatial disaggregation to the country level with
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welfare valuation using diminishing marginal utility. Thus, SC-GHG estimates from META include
so-called “distributional/equity weighting”, unlike (55), or (23) for total benefits. The literature on
the SC-CO, shows that estimates can increase strongly after distributional weighting (56, 57),
because greater value is placed on damages in low-income countries, which are relatively higher.
This is not to be confused with the opposite role of diminishing marginal utility in normalizing
welfare changes discussed above when computing national SC-CHys.

There are several limitations to the current study. Like any IAM, META is affected by multiple
uncertainties ranging from what emissions/socio-economic scenario to choose, through how the
climate system responds to emissions, to, in particular, the damages climate change causes and
the welfare value of those damages. We have sought to quantify those uncertainties both through
scenario analysis and probabilistic modeling, but the resulting climate benefits could be mis-
estimated and uncertainty is likely under-estimated, on balance. On the other side of the ledger,
the abatement costs provided for (7) that we use could also be mis-estimated. Our analysis only
quantifies the impacts of methane emissions via climate damages and air pollution on health. But
methane emissions have other economic impacts, for example, via ground-level ozone reducing
agricultural productivity. Moreover, as is standard in economic benefit-cost analysis, we abstract

from political costs. Still, the economic case for methane action is clear.

Brief summary of methods

Our methods are described in detail in the Supplementary Materials. In summary, we proceed in
three steps.

First, we create a set of emissions scenarios, which simulate methane action at the global level.
These are anchored on successful achievement in 2030 of the 30% emissions reduction target in
the Global Methane Pledge, followed by continued methane abatement post-2030. They are built
using raw scenario data from the TAMC 1.5°C Scenario Explorer (58). These methane action
scenarios are then superposed on a set of background emissions scenarios, which (i) set baseline
methane emissions for comparison and (ii) set emissions of CO; and the other GHGs and radiative
forcing agents, which are held constant while methane emissions are varied. We consider a range of

background emissions/forcing scenarios: a low-emissions scenario that limits the increase in global
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mean temperature to 1.5°C above pre-industrial with low/no overshoot, a “middle-of-the-road”
emissions/socio-economic scenario (SSP2-4.5), and a higher emissions scenario characterized by
“regional rivalry” in economic/political relations (SSP3-7.0). This approach assumes that methane
action can be independent of action on other GHGs to a first-order approximation, which is supported
by evidence that targeted methane abatement measures, which would be sufficient to achieve the
Global Methane Pledge, do not also reduce CO, (e.g., improved leak detection and repair in oil
and gas infrastructure; landfill gas capture) (7). Note that the opposite is unlikely to be true: CO,
abatement would also reduce methane (e.g., switching to renewables reduces fossil fuel use, which
in turn reduces methane emissions from upstream fossil fuel production and distribution).

The second step is to take the scenarios and run them through the META IAM to project climate
and economic effects. For this paper, we implemented several improvements and updates to the
META model, including: converting the model to the open-source Mimi.jl platform; integrating the
FalRv2.0.0 climate model (42); re-estimating our downscaling functions from global to national
temperature on the CMIP6 dataset instead of CMIPS; replacing the original West Antarctic Ice Sheet
tipping point module with a new Antarctic Ice Sheet tipping point module (47), which replicates the
impulse responses of major Ice Sheet Models (59); revising hazard rates for the Atlantic Meridional
Overturning Circulation and Ocean Methane Hydrates tipping point modules; revising estimates
of the country-level temperature damage function parameters, still using (53); and improving the
representation of non-market damages using more up-to-date literature (54). These changes, as well
as the full set of equations comprising the META model, are described in the SM.

The third step brings in additional, scenario-consistent data on methane abatement costs and
air quality co-benefits. For the former, we use sectoral estimates of methane abatement costs
from (43) and (/0), which were used in the Global Methane Assessment (7), to construct streams
of undiscounted abatement costs from 2020 to 2050 that are compatible with the quantity of
abatement required to shift methane emissions from current trends to the central methane action
scenario. We also use the methane MAC curve estimated by (&) to construct a further stream of
undiscounted abatement costs over the same period. For the latter, we again use data from the Global
Methane Assessment (7), from which we obtain estimates of premature deaths from respiratory and
cardiovascular diseases due to tropospheric ozone generated by methane emissions. We convert

these to marginal economic damages using the VSL and assumptions about the income elasticity
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of a VSL. We then multiply this quantity by the emissions reductions from our methane action

scenarios, giving us a stream of undiscounted air-quality co-benefits.
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1 Materials and methods

1.1 Methane scenarios

We construct CH4 action scenarios that are anchored on achievement of the Global Methane Pledge’s
30% emissions reduction below the 2020 level in 2030, followed by continued CHy abatement post-
2030. Reducing CH4 emissions by 30% between 2020 and 2030 is in line with CH4 emissions
reductions in many 1.5°C scenarios with low/no overshoot. Therefore, we build our CHy action
scenarios using raw scenario data from the TAMC 1.5°C Scenario Explorer [58]. Although the
achievement of the Global Methane Pledge itself could be simulated as a simple linear reduction
of 30% from 2020, TAM-based scenarios provide an internally consistent projection of what further
emissions reductions might follow after 2030. The range of 1.5°C scenarios with low/no overshoot
also enables us to quantify uncertainty across IAMs in technical CHy abatement potential and in
policy implementation (within the context of CHy action beyond current trends). Only models
producing global emissions of CO,, CH4, NoO and SO, are chosen, so that a consistent set of
inputs is provided to META (SOq is an input to META’s Indian Summer Monsoon module).

1.5°C scenarios with low/no overshoot from the TAMC 1.5°C Scenario Explorer are first har-
monized to produce identical emissions in 2020. The central CHy scenario is then the average of
34 1.5°C scenarios with low/no overshoot that achieve approximately a 30% cut in CHy emissions
on the 2020 level in 2030. The low/high CH4 emissions scenarios are created from 19 and 5 of
the 1.5°C scenarios with low /no overshoot, respectively, which project CH, emissions reductions in
2030 that are higher/lower than the Global Methane Pledge target. CH4 emissions post-2100 are
projected based on SSP1-1.9.

Baseline CH4 emissions, and background emissions of COy and other GHGs/radiative forcing
agents are obtained from the SSP database [60] and the IAMC 1.5°C Scenario Explorer. These are
also harmonized to give identical emissions between 2010 and 2020. To extend baseline/background
emissions data beyond 2100, we use the extended SSP scenarios of [61, 62].

We abstract from the positive feedback on natural CH4 emissions from wetlands, which in-
creases as temperatures rise following the discussion in [2]. Other feedbacks, including from melting
permafrost and atmospheric chemistry, are included in META as described below. Regarding the
wetland feedback, according to [3], this feedback is expected to be 0.03 +/- 0.01 W/m?/°C, com-
pared with the roughly 2.6 W /m? forcing required to increase transient warming by 1°C. Accounting

for an additional positive feedback from atmospheric CO5 on wetland CH4 emissions increases the



range of the overall estimated feedback to 0.01-0.16 W/m?/°C, still relatively small. [63] provide
a more Tecent empirical estimate of the wetland feedback of 0.08 W/m?/°C. The strength of the
feedback can also be constrained using paleoclimate data. For example, the CH4 change during the
transition between the last glacial maximum and the Holocene was a response to climate change.
The feedback can be estimated based on the CH4 change of ~390-750 ppb over this time that ac-
companied a global mean warming of ~6°C [64], leading to a direct forcing of 0.3 W/m?, which is
increased by ~36% to 0.4 W/m? when accounting for the chemical responses of ozone, stratospheric
water vapor and COs to CHy emissions [65]. The feedback in this case is thus 0.07 W/m?/°C,

similar to the other estimates.

1.2 META IAM overview and settings for this study

META (Model for Economic Tipping point Analysis) is a modular IAM designed to estimate the
social cost of GHGs. It was designed primarily to incorporate various climate tipping points, each
as a module. The original set of tipping point modules replicated studies in the climate economics
literature, with the aim of providing a structural meta-analysis [40]. META can be run without
tipping points, in which case it functions as a standard TAM of the social-cost type (other social-cost
TAMs include DSCIM, https://github.com/ClimateImpactLab/dscim-epa, and GIVE, https:
//github.com/rffscghg/MimiGIVE. j1). The model is described in full detail in Section 3 and is

publicly available at https://github.com/openmodels/META. In brief, META’s main modules are:

« Emissions and socio-economic scenarios: these are exogenous and are normally taken
from the Shared Socio-Economic Pathway (SSP) database. Emissions scenarios are extended
beyond 2100 as in [40], while we developed a method of extending the corresponding paths for
economic growth and population that is described in Section 3. For this study, we developed

bespoke CHy4 scenarios, as explained above.

e GHG cycles and temperature change: GHG emissions drive atmospheric concentrations
and the change in global mean temperature using the FalR simple climate model, version 2.0.0
[42]. CO2 and CHy4 are modeled explicitly, while other GHGs and forcing agents are handled
via an exogenous radiative forcing term. An important feature of FalR is that GHG cycles
are state-dependent. In the case of CHy, this is calibrated on the dependency between atmo-

spheric CH4 removal and the atmospheric CHy concentration, tropospheric air temperature


https://github.com/ClimateImpactLab/dscim-epa
https://github.com/rffscghg/MimiGIVE.jl
https://github.com/rffscghg/MimiGIVE.jl
https://github.com/openmodels/META

and water vapor mixing ratio.

Country-level temperature damages: changes in global mean temperature are down-
scaled to the national level using a statistical relationship based on CMIP6 data. AMOC
slowdown also modulates the relationship between global and national temperatures. Changes
in national mean temperature are then fed into nonlinear, country-specific damage functions

calibrated on empirical evidence from [53].

Country-level damages from sea-level rise (SLR): changes in global mean temperature
drive global mean SLR via thermal expansion and melting of small ice caps and glaciers, plus
additional SLR from the Antarctic and Greenland Ice Sheet tipping point modules. Global
mean SLR is then mapped directly onto damages at the country level using a set of country
SLR damage functions calibrated on high-resolution coastal impact modeling [66]. Uncertainty
about how well countries will adapt to SLR is incorporated in the stochastic parameters of

the SLR damage functions.

Flood and drought due to the Indian Summer Monsoon: in India, GDP is additionally
affected by variability of the summer monsoon, which determines the occurrence of drought

or flood via a tipping point module.

Persistence of damages: we adopt a flexible specification allowing damages from temper-
ature and SLR (and in India from the summer monsoon) to affect either the short-term level
of GDP or long-term growth prospects. A persistence parameter modulates the extent to
which GDP in a given year depends on actual, post-damage GDP in the previous year, or
potential GDP in the previous year according to the exogenous growth scenario. Complete
dependence on the former corresponds to perfect persistence (pure growth damages), while

complete dependence on the latter corresponds to zero persistence (pure levels damages).

Non-market damages: to these sources of market damages can be added non-market dam-

ages using a set of country-level non-market damage functions from the MERGE IAM [67]



with an updated calibration on [54]. Non-market damages capture climate damages that af-
fect welfare through channels not governed by market activity and depend on both income
and temperature. Examples for such channels include mortality, as well as loss of species and

biodiversity.

e Consumption, welfare and the social cost of GHGs: National GDP per capita is con-
verted into national consumption per capita using country-specific exogenous savings rates,
estimated using World Bank data on savings over the period 2005 to 2015. Consumption
per capita is converted into utility per capita using an isoelastic utility function and this is
aggregated into social welfare using a utilitarian social welfare functional. To estimate the
social cost of a GHG, we run the model twice with consistent assumptions, the second time
with an additional pulse of emissions in the year 2020. The social cost is the difference in

welfare between the two runs per ton of GHG emissions, converted into dollar equivalents.

o Tipping point modules: META incorporates eight tipping point modules: (1) the PCF
results in additional CO2 and CH4 emissions, which flow back into their respective cycles;
(2) dissociation of ocean CHy hydrates results in additional CH4 emissions, which flow back
into the CHy cycle; (3) Arctic sea ice loss (also known as the surface albedo feedback) results
in changes in radiative forcing, which directly affect warming; (4) dieback of the Amazon
rainforest releases COg9, which flows back into the COq cycle; disintegration of the (5) AIS
and (6) GIS increases SLR; (7) slowdown of the AMOC modulates the relationship between
global mean temperature and national mean temperature; (8) variability of the Indian summer
monsoon directly affects GDP per capita in India. Thus, tipping points do not directly cause
damages (except for (8)). Instead, they affect temperatures or SLR, which in turn cause

damages.
For most of the results in this study, we run META with the following specific settings:

o Discounting: based on the expert survey results of [50], we set a pure rate of time preference
p = 0.5% and an elasticity of marginal utility of consumption n = 1.05. The former enters
the social welfare function, the latter the utility function — welfare changes are calculated
directly — but as an approximation one can think of the consumption/money discount rate as

r = p + ng, where g is the growth rate of consumption per capita.



o Persistence of damages: this is calibrated to 0.25 (75% weight on post-damage GDP in
the previous year) based on new results from macro-economics [68]. This implies a relatively

high degree of damage persistence.

o Tipping points: the surface albedo feedback is switched on in all cases including the no-
tipping-point runs, as the surface albedo feedback is conceptually part of the climate’s base
response to forcing. Runs with tipping points on include all featured tipping points except
the dissociation of ocean CH,4 hydrates, which are only used for sensitivity analysis given its

low likelihood.
e Non-market damages: these are switched on.

We run Monte Carlo simulations with a sample size of 1000 to ease computation. As shown in
Section 2, our testing of META found that calculations are robust to use of different random seeds

and to increasing the sample size by an order of magnitude.

1.3 Abatement costs and air quality co-benefits from the Global Methane As-

sessment

We constructed four streams of undiscounted abatement costs from 2020 to 2050 by aggregating
the sectoral estimates of [43] and ITASA [10]. We estimate a range of costs for both the EPA and
ITASA data by varying the contribution of behavior changes towards total emissions abatement
— the more is achieved by behavior change, the less is required of technical abatement measures,
particularly those at high marginal cost. For a fifth scenario/cost stream, we used the methane
marginal abatement cost (MAC) curve estimated by [8] (specifically their 2050 MAC curve). We
fit an exponential function MAC(AE) = a (ebAE — 1) to the data reported in [8], where AFE is the
percentage change in methane emissions relative to the baseline. The fitted parameter values are
a = 0.0184 and b = 0.2011 for units of 2010 US dollars per tonne of methane. We then integrate
the MAC function over the methane emissions reductions given by our central methane scenario to
generate total abatement costs.

We similarly constructed streams of undiscounted air quality co-benefits using data from the
Global Methane Assessment [7] on premature deaths due to respiratory and cardiovascular diseases
caused by tropospheric ozone formation attributable to methane. These air quality co-benefits
are available at the country level for the year 2018. While methane is a well-mixed greenhouse

gas, so that emissions from any location have virtually identical impacts on radiative forcing, the



tropospheric ozone response to methane is highly spatially variable. That photochemical response
depends upon levels of nitrogen oxides (NO,) and sunlight, as well as temperatures and levels
of other volatile hydrocarbons and carbon monoxide. The health impacts of the ozone changes
are in turn highly sensitive to population distributions and underlying health risks for specific
populations. This leads to very distinct geographical patterns of methane-driven ozone-attributable
health burdens.

Despite the highly inhomogeneous response to a specific methane change, population-weighted
ozone changes have been shown to be extremely linear across a range of methane increases and
decreases at the national level [7]. Our use of national level impacts therefore captures a large
part of the heterogeneity of the response to methane emissions changes (although within-country
heterogeneity adds complexity beyond the scope of our analysis). We note that the ozone response
does exhibit some sensitivity to background nitrogen oxide conditions, but this is a second-order
effect [7].

We aggregate these to the global level using assumptions about the value of a statistical life
(VSL) and its income elasticity taken from the Global Methane Assessment [7], and extrapolate
over the period 2020 to 2050 assuming a constant economic value of avoided health damages per
tonne of methane emitted. This extrapolation is conservative in the sense that it does not account
for an increasing VSL over time due to rising incomes in the socioeconomic scenarios we consider

in this study.

1.4 Tipping point intensity indicators

As a common measure of the extent to which different climate tipping elements have ‘tipped’, we
compute an indicator of tipping point intensity on a scale from zero to one. Zero corresponds to
tipping elements whose state has been completely unaltered by climate change, and one corresponds
to elements that have fully transitioned to an alternative state (as such it is similar to the tipping
state variable in 48). An indicator value of 0.5 means half-transformed in the case of process-based
models (e.g., the Ice Sheets are half-melted), or a hazard event that is 50% likely in the case of the
survival-analysis models.

For the cryospheric tipping points (PCF, AIS and GIS), tipping intensity is mapped onto the

proportion of ice mass that has melted. For PCF and GIS, the tipping point modules include a



variable that represents this directly:

IPCF(t) = 1- PFextent(t)a (1)

Igis(t) = 1-Vais(?), (2)

where PFytent(t) is the area of permafrost remaining at time t relative to time zero, and Virs(t)
is the volume of the GIS expressed as a fraction of the initial volume. Both have a range of zero
to one. For AIS, there is no single variable describing the proportion of initial ice volume that has
melted. There is a function mapping subsurface ocean temperatures into a flow of basal melting,
and a function mapping basal melt into SLR increase. [69] provide a definition of AIS tipping in
terms of SLR, which we can instead use to define the extent to which the AIS has tipped. Note
that [69] only consider the West AIS, therefore we constrain our analysis to the four regions of West
Antarctica accordingly. In their questionnaire, [69] define WAIS tipping as a state where “West
Antarctica becomes an archipelago when discharge exceeds accumulation for warmer temperatures”,
and associate this with “4-6 meters of total sea level rise at potentially high rates”. Accordingly, we

define WAIS tipping as

Iwais(t) = 1/5[S(Ross, t) + S(Amundsen, t) + S(Weddell, t) + S(Peninsula, t)] . (3)

The sum of SLR over the four regions of the WAIS is divided by 1/5 because the final state of the
system as defined by [69] is 5m SLR (midpoint of the 4-6m range).
For ISM, tipping intensity is a function of the strength of the Walker circulation, a key deter-

minant of ISM activity:

Iism(t) = min [10000 [1 — mNiNo3.4(t)/mNiNo3.4(0)], 1], (4)

where mNiNo3.4(t) is the strength of the Walker circulation, i.e., the Pacific Ocean atmospheric
circulation, in May.

For the tipping points modeled using survival analysis (AMAZ and AMOC), tipping intensity
can be more straightforwardly interpreted as the probability of occurrence of the hazard event,
corresponding to the indicator variables Ianaz(t) and Ianoc(t), respectively. Section 3 provides

further detail on how the variables on the right-hand sides of the above equations are determined.



2 Supplementary text

2.1 Results for alternative background scenarios
2.1.1 Methane action scenarios compared to alternative background scenarios

Figure S1 plots methane emissions on the methane action scenarios compared to alternative back-
ground scenarios (the main text uses SSP2-4.5, representative of a current trends and policies
storyline). The left panel shows that mean methane emissions across 1.5°C scenarios with low or
no overshoot from the IAMC 1.5°C Scenario Explorer fall within the range of our methane action
scenarios, but the central methane action scenario actually has slightly higher emissions than this
mean (4% higher in 2030). This just serves to put the Global Methane Pledge in the context of
1.5°C scenarios with low or no overshoot. The right panel compares the methane action scenarios
with an SSP3-7.0 background scenario, which is intended to be representative of no policies. The
central methane action scenario reduces emissions by 37% in 2030 relative to SSP3-7.0 (high-low
range 28-52%), 60% in 2050 (range 51-72%) and 79% in 2100 (range 74-85%). Naturally these

constitute larger cuts than if the background scenario is SSP2-4.5.

Figure S1: Methane emissions on the methane action scenarios compared to mean emis-
sions across 1.5°C scenarios with low/no overshoot from the IAMC 1.5°C Scenario
Explorer (left panel) and SSP3-7.0 (right panel). 'Methane action - high’ and "Methane
action - low’ describe high and low methane emissions outcomes to capture policy uncertainty.
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2.1.2 Temperature effect of methane action scenarios against an SSP3-7.0 background

scenario

Figure S2 plots the reduction in global mean temperature due to the methane action scenarios,
relative to an SSP3-7.0 background scenario. The central methane action scenario reduces warming
by 0.03°C in 2030, 0.20°C in 2050 and 0.53°C in 2100. The range of uncertainty due to methane
scenario uncertainty is 0.16-0.26°C in 2050. Temperature uncertainty conditional on the central
methane scenario is 0.13-0.29°C in 2050, generated as in the main text by quantifying parametric
uncertainty in META using Monte Carlo simulation. Unlike the comparison with SSP2-4.5, tem-
perature reductions from methane action do not flatten out towards the end of the century, because

under SSP3-7.0 emissions keep increasing.

Figure S2: Reduction in global mean temperature due to methane action, relative to
SSP3-7.0. The shaded area is the 90% confidence interval of temperature outcomes conditional on
the central methane action scenario, based on parametric uncertainty in META sampled by 1000
Monte Carlo runs. Specification includes tipping points.
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2.1.3 Avoided damages and total economic benefits of methane action relative to an

SSP3-7.0 background scenario

Figure S3 plots the total economic benefits of the methane action scenarios over the rest of this
century, relative to an SSP3-7.0 baseline. The top panel shows total climate damages expressed as

a percentage loss in consumption relative to a no-climate-change counterfactual. The bottom panel
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shows the gross monetary value of avoided damages, i.e., the benefits of methane action. Under the
SSP3-7.0 background scenario, climate change causes damages equivalent to a 1.8% loss in global
consumption in 2030, rising to 3.8% in 2050 and 10.2% in 2100 (since saving rates are fixed in
META, these percentages also apply to global GDP). Focusing on 2050, the central methane action
scenario reduces damages by 0.5 percentage points, from 3.8% of global consumption to 3.3%. In
relative terms, damages are 15% lower. In absolute money terms, this reduction in damages — the
gross benefit of global methane action — equates to a little over $2 trillion per year in 2050 (in
2020 prices), or double the economic benefits of methane action under SSP2-4.5. The range of
uncertainty across the high-low methane scenario variants is a 0.4-0.7 percentage point reduction
in damages. The range of uncertainty (90% confidence interval) conditional on the central methane
scenario is larger than this, running from 0.2 to 1.0 percentage points. This comes from climate

and economic parametric uncertainties.

Figure S3: Reduction in total climate damages due to methane action, relative to SSP3-
7.0. Top panel shows total climate damages expressed as a percentage loss in consumption relative
to a no-climate-change counterfactual. Bottom panel shows the gross monetary value of avoided
damages, i.e., benefits of methane action. The shaded area is the 90% confidence interval, based on
parametric uncertainty in META sampled by 1000 Monte Carlo runs. Specification includes market
damages and tipping points.
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2.1.4 Distributional effects of methane action

Firstly, we test whether the distributional effects of methane action differ when we assume a different
background scenario. To do so, Figure S4 disaggregates climate damages in 2050 avoided by the

central methane action scenario relative to an SSP3-7.0 baseline scenario into World Bank country
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income groups. Within each country income group, damages vary, and the four distributions are
overlapping. Nonetheless, avoided damages tend to be greater in low- and lower-middle income
countries relative to upper-middle and high-income countries. With the exception of low-income
versus lower-middle income countries, group differences across countries are statistically significant
at least at the 10% level for any pairwise comparison of World Bank income groups. This inequality

result is similar to our main analysis with an SSP2-4.5 background scenario.

Figure S4: Change in climate damages in 2050 by central methane action scenario,
disaggregated by World Bank country income group. Background scenario is SSP3-7.0.
Violin plots combine a kernel density plot and a box plot. Box plot contains estimates for the
median (white dot), interquartile range (black box) and +/- 1.5 times the interquartile range (range
of thin dark gray line). Note negative values signify avoided climate change damages. Specification
includes market damages and tipping points.
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Next, we ask whether the distributional effects of methane action alone differ from the dis-
tributional effects of methane action combined with strong action on carbon dioxide. To do so,
we make use of the 1.5°C scenario, which models a combination of ambitious mitigation of both
gases. Figure Sb disaggregates climate damages in 2050, avoided by moving to the 1.5°C scenario
from the SSP2-4.5 baseline scenario, into World Bank country income groups. As can be seen,
the relative inequality effect of methane and carbon dioxide action combined is nearly identical to
methane action alone. In other words, both types of climate policy are equally pro-poor. In absolute
terms, methane and carbon dioxide action combined deliver about four times the climate benefits

of methane action alone, however.
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Figure S5: Change in climate damages in 2050 by comprehensive climate action, disag-
gregated by World Bank country income group. Comparison is for SSP2-4.5 vs. the 1.5°C
scenario. Violin plots combine a kernel density plot and a box plot. Box plot contains estimates
for the median (white dot), interquartile range (black box) and +/- 1.5 times the interquartile
range (range of thin dark gray line). Note negative values signify avoided climate change damages.
Specification includes market damages and tipping points.
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Lastly, Figure S6 shows the distributional effects of methane action including both market and
non-market damages. The background scenario is SSP2-4.5. The effect of adding non-market
damages to the analysis is broadly speaking to shift all the distributions to the left (higher avoided
damages). The ordering of avoided damages across country-income groups is preserved, but because
avoided non-market damages are relatively higher in high-income countries, the differences between
groups are no longer statistically significant. This result derives from the positive income elasticity

of willingness to pay in META’s non-market damages function.
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Figure S6: Change in climate damages (market and non-market) in 2050 by central
methane action scenario, disaggregated by World Bank country income group. Back-
ground scenario is SSP2-4.5. Violin plots combine a kernel density plot and a box plot. Box plot
contains estimates for the median (white dot), interquartile range (black box) and +/- 1.5 times
the interquartile range (range of thin dark gray line). Note negative values signify avoided climate
change damages. Specification includes market and non-market damages, and tipping points.
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2.1.5 Effect of methane action on climate risk and tipping points relative to an SSP3-

7.0 background scenario

Figure S7 reports the effect of methane action on climate risk. Figure S7 shows probability dis-
tributions for global climate damages in 2050, with and without methane action, and with and
without tipping points. The baseline emissions/socio-economic scenario for these plots is SSP3-7.0.
Methane action reduces climate risks, shifting the probability density function of damages in 2050
to the left (down). Mean damages fall from 3.8 to 3.3% as mentioned above, and the standard
deviation of damages decreases from 1.6 to 1.5. Methane action reduces VaR at the 95% confidence
level from 7.0 to 6.1%, and at the 99% confidence level from 8.4% to 7.6%. CVaR at the 95%
confidence level is reduced from 8.1% to 7.0%, and at the 99% confidence level from 9.6% to 8.5%.
Thus, methane action reduces climate risk in general, including tail risk. Without tipping points,
the effects of methane action are very similar but if anything they are slightly larger in relative
terms, indicating that methane action is slightly more effective in reducing damages from other
channels. These results mirror those in our main analysis.

Figure S8 plots the effect of the central methane action scenario on tipping point intensity,

14



Figure S7: Probability density functions for climate damages in 2050 with methane
action (red) and without (grey), relative to an SSP3-7.0 baseline. Left panel includes
tipping points, right panel omits tipping points. Specification includes market damages. The height
of each bar corresponds to the frequency of observations in the corresponding bin. Table reports
associated distribution statistics (% of consumption lost in 2050 due to climate change).
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Mean Std. dev. VaR 95% VaR 99% CVaR 95% CVaR 99%
Tipping points

Baseline 3.8 1.6 7.0 8.4 8.1 9.6

Methane action 3.3 1.5 6.1 7.6 7.0 8.5
No tipping points

Baseline 3.4 1.5 6.3 8.0 7.5 8.8

Methane action 2.9 1.4 5.5 6.9 6.5 7.7

relative to an SSP3-7.0 baseline. Larger reductions in tipping point intensity are estimated for all
six tipping points, compared with an SSP2-4.5 background scenario. Higher background emissions
later in the century on SSP3-7.0 can be seen in most of the temporal profiles of tipping, where

tipping intensity is highest in 2100 (except AMOC).
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Figure S8: Bar charts depicting the percentage change in tipping point intensity due to
methane action. Background emissions scenario is SSP3-7.0. Tipping point indicators
are described in the methods section.
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2.2 Additional analysis of SC-GHGs
2.2.1 Global SC-CH,; and SC-CO; estimates over time

Table S1 reports global SC-CH4 and SC-CO. estimates for different years in which a marginal
emissions pulse is introduced. We report estimates both with and without tipping points. For an
emission in 2020, the mean SC-CHy including tipping points is $7,381.5/tCHy, rising to $9988.0
for an emission in 2030, $13823.5 for an emission in 2050 and $27043.6 for an emission in 2100.
The corresponding mean SC-COjy is $274.3/tCO2 in 2020, rising to $340.7 in 2030, $434.7 in 2050
and $646.8 in 2100. The SC-CHy4 grows at a compound real annual rate of 1.6% between 2020 and
2100, while the SC-CO4 grows at a compound real annual rate of 1% over the same period. Tipping
points add 17% to the SC-CHy in 2020 and 13% in 2100. They add 12% to the SC-CO4 in 2020 and
6% in 2100. These are lower than comparable estimates of the contribution of tipping points in [40]
due to the exclusion of the ocean methane hydrates tipping point compared to the previous paper.
However, it remains important to emphasise that the set of tipping points synthesised in META is

not comprehensive, being constrained by what has previously been modelled in the literature, and
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some tipping modules included in META omit impact channels that are likely to be important. See

[40] for further discussion.

Table S1: Global SC-CH,4 and SC-CO; estimates for pulse years from 2020 to 2010.
Specification includes non-market damages, damage persistence ¢ = 0.25, PRTP = 0.5% and EMUC
= 1.05. Estimates are based on a trimmed sample of 1000 Monte Carlo runs. Values reported are
in 2020 USD per ton of CH4 and COq, respectively. Ratio depicts SC-CH4/SC-CO3 for comparison
with Global Warming Potential.

With tipping points Without tipping points
Pulse year SC-CO2 SC-CH4 Ratio | SC-CO2 SC-CH4 Ratio
2020 308.5 7381.5 23.9 274.3 6306.5 23.0
2030 382.9 9988.0 26.1 340.7 8656.6 25.4
2040 444.8 12310.1  27.7 395.8 10669.8  27.0
2050 484.5 13823.5  28.5 434.7 12126.1  27.9
2080 611.9 21229.6  34.7 562.9 18497.2 329
2100 688.1 27043.6  39.3 646.8 23872.3  36.9

2.2.2 Sensitivity of global SC-CH4 and SC-CO2 estimates

Table S2 reports results of testing the sensitivity of the 2020 SC-CH4 and SC-CO» to different
assumptions regarding the persistence of damages to output, exclusion of non-market damages, and
alternative values for the elasticity of the marginal utility of consumption and the pure rate of time

preference, which together imply a higher discount rate.

Table S2: Global SC-CH,4 and SC-CO, estimates for our preferred specification versus
estimates with lower damage persistence, excluding non-market damages, and with
alternative welfare parameters amounting to a lower discount rate. Preferred specification
includes non-market damages, damage persistence ¢ = 0.25, PRTP = 0.5% and EMUC = 1.05.
Estimates are based on a trimmed sample of 1000 Monte Carlo runs. Values reported are in 2020
USD per ton of CHy and COa, respectively.

SC-CH4 in 2020

Preferred spec  Low persistence (¢ = 0.5) Non-market damages off EMUC=1.5 and PRTP=0.01
Mean 7381.5 4511.6 6119.5 5756.3
Std dev 3076.9 2059.2 2451.4 2181.6

SC-CO2 in 2020

Preferred spec  Low persistence (¢ = 0.5) Non-market damages of EMUC=1.5 and PRTP=0.01
Mean 308.5 2124 212.6 147.2
Std dev 121.9 91.8 81.8 54.2

Lowering the persistence of damages by increasing the parameter ¢ from our preferred, calibrated

value of 0.25 to 0.5 as in [40] lowers both SC-GHG estimates by around one third. This is consistent
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with other studies in the literature that have shown a large sensitivity of projected climate impacts
to the persistence of temperature damages [70, 71, 68].

Deactivation of META’s non-market damages module reduces the SC-CH4 by around one sixth
and the SC-CO2 by around one third. This effect is somewhat less than the importance of non-
market damage channels in DSCIM and GIVE — based on a 2030 emissions pulse, non-market
damages account for 50-75% of the SC-COz in these two models [34].

A higher discount rate lowers both social cost estimates. Given the relatively greater importance
of near-term warming from a methane pulse compared to a carbon dioxide pulse, raising the discount
rate reduces the SC-CHy4 by less than the SC-COs.

We test the consistency of our SC-CHy estimates across Monte Carlo samples and robustness to
sample size. Computational constraints limit the sample size in our main analyses to 1,000. Here
we take ten separate samples of size 1,000, estimating the SC-CHy for each sample, and then we
pool all ten samples plus the original sample to create a large sample of size 11,000.

Figure S9 reproduces the top panel of Figure 6 in the main text. As can be seen, the distribution
of our global SC-CH4 estimate for a 2020 pulse remains similar for different Monte Carlo seeds.
The original sample is depicted as the solid black line, while the ten alternative samples are shown
in light gray. The dashed black line shows the distribution of the global SC-CH4 pooled across all
eleven Monte Carlo seeds. Figure S9 therefore shows that an increase in the Monte Carlo sample size
by an order of magnitude does not change our estimate. Table S3 reports quantitative information
about the mean, standard deviation as well as minimum and maximum for each random seed as

well as for the pooled sample.
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Figure S9: Global SC-CH,4 estimate for a 2020 emissions pulse across different Monte
Carlo seeds. Specification includes non-market damages, damage persistence ¢ = 0.25, PRTP
= 0.5% and EMUC = 1.05. Values reported are in 2020 USD per ton of CH,. Estimates are based
on a trimmed sample of 1000 Monte Carlo runs for different random Monte Carlo seeds. Solid black
line indicates original Monte Carlo seed, light gray lines indicate alternative random seeds, and
dashed black line indicates the distribution pooling across all Monte Carlo seeds, thus representing
a Monte Carlo sample of size 11,000.
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Table S3: Robustness of global SC-CH, estimate for a 2020 emissions pulse to different
Monte Carlo seeds. Specification includes non-market damages, damage persistence ¢ = 0.25,
PRTP = 0.5% and EMUC = 1.05. Values reported are in 2020 USD per ton of CH4. Estimates are
based on a trimmed sample of 1000 Monte Carlo runs for different random Monte Carlo seeds. The
pooled sample represents the distribution pooling across all Monte Carlo seeds, thus representing a
Monte Carlo sample of size 11,000.

Random seed ‘ Mean Std. dev. Min. Max
Original seed ‘ 7381.5 3076.9 2150.6 18263.0

Alternative seed 1 | 7239.8 3244.9 1994.4 20002.8
Alternative seed 2 | 7346.7 3161.3 2040.2 20186.2
Alternative seed 3 | 7254.9 3100.8 2024.9 20031.6
Alternative seed 4 | 7429.9 3455.4 2143.4 23585.5
Alternative seed 5 | 7451.4 3130.4  2157.7 18386.4
Alternative seed 6 | 7161.9 3053.8 2259.4 20853.7
Alternative seed 7 | 7181.3 2888.8 2172.6 18837.3
Alternative seed 8 | 7428.7 3235.7 2394.2 21486.8
Alternative seed 9 | 7240.4 3101.3 1795.2  19005.1
Alternative seed 10 | 7277.1 3036.7 2063.1 18829.7

Pooled sample 7308.5 3138.2 1795.2 23585.5

2.2.3 National SC-CH, estimates

Table S4 reports national SC-CHy estimates as plotted in Fig. 6 in the main text. Tipping points
are included.
Table S4: National SC-CH, estimates. Specification includes tipping points, non-market damages,

damage persistence ¢ = 0.25, PRTP = 0.5% and EMUC = 1.05. Estimates are based on a trimmed
sample of 1000 Monte Carlo runs. Values reported are in 2020 USD per ton of CHy.

ISO3 | Name SC-CH4
AFG | Afghanistan 0.7

AGO | Angola 17.7
ALB | Albania 1.1

ARE | United Arab Emirates 116.0
ARG | Argentina 46.4
ARM | Armenia -0.4

ATG | Antigua and Barbuda 0.7

Continued on next page
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
AUS | Australia 97.3
AUT | Austria 1.5
AZE | Azerbaijan 3.3
BDI Burundi 0.7
BEL | Belgium 17.1
BEN | Benin 2.6
BFA | Burkina Faso 4.0
BGD | Bangladesh 40.5
BGR | Bulgaria 1.0
BHR | Bahrain 20.0
BHS | Bahamas 2.7
BIH Bosnia and Herzegovina -0.1
BLR | Belarus -3.3
BLZ Belize 0.4
BMU | Bermuda 0.5
BOL | Bolivia 1.9
BRA | Brazil 331.5
BRB | Barbados 0.8
BRN | Brunei 2.6
BTN | Bhutan 0.1
BWA | Botswana 3.1
CAF | Central African Republic 0.5
CAN | Canada -3.8
CHE | Switzerland 2.0
CHL | Chile 11.7
CHN | China 535.5
CIvV Cote d’Ivoire 8.4
CMR | Cameroon 15.5

Continued on next page
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
COD | Democratic Republic of the Congo | 5.5
COG | Republic of Congo 3.5
COL | Colombia 42.8
COM | Comoros 0.3
CPV | Cape Verde 0.8
CRI Costa Rica 5.1
CYP | Cyprus 3.7
CZE | Czech Republic -0.6
DEU | Germany 64.7
DJI Djibouti 0.5
DMA | Dominica 0.3
DNK | Denmark 13.6
DOM | Dominican Republic 10.9
DZA | Algeria 374
ECU | Ecuador 10.0
EGY | Egypt 153.8
ERI Eritrea 0.9
ESP Spain 94.1
EST | Estonia -0.8
ETH | Ethiopia 6.7
FIN Finland -5.9
FJI Fiji 1.1
FRA | France 83.3
FSM | Micronesia 1.0
GAB | Gabon 3.3
GBR | United Kingdom 112.2
GEO | Georgia 0.3
GHA | Ghana 12.4
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
GIN | Guinea 3.3
GMB | Gambia 0.9
GNB | Guinea-Bissau 0.5
GNQ | Equatorial Guinea 5.1
GRC | Greece 25.9
GRD | Grenada 0.3
GTM | Guatemala 8.3
GUY | Guyana 0.8
HKG | Hong Kong 52.9
HND | Honduras 3.2
HRV | Croatia 2.0
HTI | Haiti 1.6
HUN | Hungary 2.7
IDN Indonesia 265.6
IND | India 547.9
IRL Ireland 8.9
IRN | Iran 135.6
IRQ | Iraq 66.1
ISL Iceland -0.2
ISR Israel 17.5
ITA Italy 114.4
JAM | Jamaica 4.6
JOR | Jordan 8.8
JPN Japan 403.6
KAZ | Kazakhstan -5.4
KEN | Kenya 11.6
KGZ | Kyrgyzstan -0.6
KHM | Cambodia 4.9
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
KNA | Saint Kitts and Nevis 0.1
KOR | South Korea 96.9
KWT | Kuwait 37.2
LAO | Laos 3.3
LBN | Lebanon 14.6
LBR | Liberia 0.9
LBY | Libya 12.0
LKA | Sri Lanka 22.6
LSO | Lesotho 0.1
LTU | Lithuania -1.0
LUX | Luxembourg 0.7
LVA | Latvia -0.6
MAR | Morocco 28.2
MDA | Moldova -0.1
MDG | Madagascar 3.1
MEX | Mexico 150.6
MKD | Macedonia 0.1
MLI | Mali 5.9
MMR | Myanmar 21.9
MNE | Montenegro 0.2
MNG | Mongolia -2.6
MOZ | Mozambique 4.7
MRT | Mauritania 2.4
MUS | Mauritius 3.0
MWI | Malawi 1.9
MYS | Malaysia 92.3
NAM | Namibia 2.8
NER | Niger 2.6

Continued on next page
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
NGA | Nigeria 121.2
NIC Nicaragua 2.5
NLD | Netherlands 173.0
NOR | Norway -0.6
NPL | Nepal 3.3
NZL | New Zealand 14.3
OMN | Oman 30.5
PAK | Pakistan 100.5
PAN | Panama 5.8
PER | Peru 15.3
PHL | Philippines 61.9
PLW | Palau 0.1
PNG | Papua New Guinea 1.9
POL | Poland -3.5
PRI Puerto Rico 17.2
PRT | Portugal 17.8
PRY | Paraguay 5.5
QAT | Qatar 324
ROU | Romania 2.2
RUS | Russia -105.7
RWA | Rwanda 1.2
SAU | Saudi Arabia 219.9
SDN | Sudan 25.9
SEN | Senegal 9.8
SLB Solomon Islands 0.2
SLE Sierra Leone 2.7
SLV El Salvador 4.8
SMR | San Marino 0.1
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
SRB | Serbia 1.2
STP Sao Tomé and Principe 0.1
SUR | Suriname 0.8
SVK | Slovakia -0.2
SVN | Slovenia 0.6
SWE | Sweden -0.6
SWZ | Swaziland 1.0
TCD | Chad 3.6
TGO | Togo 1.3
THA | Thailand 144.8
TJK | Tajikistan 0.0
TKM | Turkmenistan 2.3
TLS Timor-Leste 0.8
TON | Tonga 0.3
TTO | Trinidad and Tobago 5.3
TUN | Tunisia 31.9
TUR | Turkey 38.0
TUV | Tuvalu 0.0
TZA | Tanzania 12.8
UGA | Uganda 5.4
UKR | Ukraine 0.1
URY | Uruguay 4.6
USA | United States 1111.5
UZB | Uzbekistan 3.2
VEN | Venezuela 54.0
VNM | Vietnam 62.7
VUT | Vanuatu 0.1
WSM | Samoa 0.2

Continued on next page
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Table S4 — continued from previous page

ISO3 | Name SC-CH4
YEM | Yemen 14.3

ZAF South Africa 71.0
ZMB | Zambia 4.8

ZWE | Zimbabwe 3.7

2.3 Global Sensitivity Analysis

Here we give an overview of our application of Global Sensitivity Analysis (GSA) to assess the
drivers of variation in the social cost of CO2 (SC-CO3) and the social cost of methane (SC-CHy).
GSA is used across various fields, including environmental economics, climate science, and risk
assessment, to evaluate how uncertainty in model inputs propagates through to model outputs [72,
73]. Sensitivity analysis can help identify key drivers of uncertainty and prioritize areas for further
research or data collection, ultimately aiming to improve the robustness of policy recommendations.

We implement GSA using the GlobalSensitivity.jl package in Julia, employing multiple meth-
ods to ensure the robustness of our findings. These methods include the Efficient Algorithm for
Sensitivity Indices (EASI) [74], the Delta moment-independent method [75], and regression tech-
niques using both Pearson and Spearman correlation coefficients [76]. All of these methods rely
upon Monte Carlo simulations, which we produce under the same configuration as the default in
the main paper.

We perform 1000 Monte Carlo (MC) simulations for the SC-COy and SC-CHy. For each MC
simulation, we extract a total of 17 parameters describing the Antarctic Ice Sheet (AIS) tipping
point, 2 parameters for Amazon dieback, 2 for Atlantic Meridional Overturning Circulation (AMOC)
slowdown, 2 for dissociation of ocean methane hydrates (OMH) when applicable, 2 for the Surface
Albedo Feedback (SAF), 1 for Indian Summer Monsoon (ISM) weakening, 20 for tipping point in-
teractions, 2 representing climate sensitivity, and 1 for Sea Level Rise (SLR) damages. Additionally,
we include 2 parameters for temperature damages, although this uncertainty is not included in the
standard results.

Certain parameters are not directly read from the model but are derived through specified

calculations:
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e The AIS model is represented by regional § and ¢ coefficients, and by the R functions summed

according to Y, R(t — 2010), which is a sufficient statistic under a linear SLR ramp.

« For ISM, an exogenous estimate of P is calculated using the same calculations as the normal
P, but holding the probability of a wet day constant at the baseline probability and the

precipitation of a wet day constant at its baseline value.

e For OMH and AMOC, an exogenous “year of triggering” is generated by applying the uniform
probability values to the constant probability of triggering from 2010, and a second “year of

triggering” parameter is generated by using a probability 10% of this 2010 probability.

e Since the probability of Amazon Dieback starts at 0, we instead specify a probability of

triggering of 0.5%, but otherwise use the same procedure as for OMH and AMOC.

o Climate sensitivity is represented by the first and second difference of GMST in 2010 (prior to

the endogenous effects of tipping points) — S0, T2010 *TQOOQ and (T2010 *TQQOQ) — (T2009 *Tgoog).

o The SLR damage coefficient parameter is >, L(7,2010)6(i), across countries ¢ with population
L(i), which is a sufficient statistic for SLR damages under the assumption of a log utility

function.

We use the GlobalSensitivity.jl package in Julia, which supports the following methods for GSA

when MC draws are already available:
o Efficient Algorithm for Sensitivity Indices (EASI);
e Delta moment-independent method;
e Regression methods using Pearson correlation or Spearman coefficient.

Each method provides a relative importance measure for the parameters considered.

Given that multiple parameters map on to individual sources of uncertainty (e.g., 17 AIS parame-
ters), we combine the importance measures using the sum of squared relative importance measures,
(/> r,%, for importance measure ry), which is more conservative in its assumptions about the
independence of these factors than a straight sum.

Finally, we normalize the resulting importance measures to sum to 1 for each method.

The results are shown in figure S10.
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Figure S10: Global Sensitivity Analysis on the SCC and SCCH4 in 2020, divided by
tipping point and climatic or damage parameters.
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3 META model description

This section provides a complete description of the META (Model for Economic Tipping point
Analysis) model, which is publicly available at https://github.com/openmodels/META. It largely
reproduces the description provided in [40], but includes the various updates since META-2021.
We have tagged the version of META used in this paper as META-2025 at https://github.com/
openmodels/META/releases/tag/META-2025.

Figures S11 and S12 provide an overview of the model structure. Figure S11 provides a schematic
diagram of the climate module. The inputs to the climate module are greenhouse gas (GHG)
emissions from exogenous scenarios; the output is the change in global mean surface temperature
(GMST). Three tipping points provide positive feedbacks from the increase in GMST to GHG
emissions (the permafrost carbon feedback, dissociation of ocean methane hydrates, and Amazon
rainforest dieback), while one provides a positive feedback from the increase in GMST to radiative
forcing (Arctic sea-ice loss/surface albedo feedback).

Figure S12 provides a schematic diagram of the damages/economic module. The input to
the damages/economic module is the change in GMST from the climate module. The output is
discounted utility/social welfare. Slowdown of the Atlantic Meridional Overturning Circulation
modulates the relationship between global and national mean temperature change. Disintegration
of the Greenland and Antarctic Ice Sheets increases sea level rise. Variability of the Indian summer

monsoon directly impacts GDP in India due to droughts and floods.
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Figure S11: Schematic diagram of the climate module. Blue boxes indicate variables; yellow boxes
indicate tipping point modules; orange boxes indicate other modules.

Figure S12: Schematic diagram of the damages/economic module. Blue boxes indicate variables;
yellow boxes indicate tipping point modules; orange boxes indicate other modules.

In India only
y(IND,t) = FUND, )1 — Dy5g(IND, )]
Dysu(IND, t) = f[P(1)]
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3.1 Tipping point modules
3.1.1 Permafrost carbon feedback

Our model of the permafrost carbon feedback (PCF) is taken from [77]. This is a tractable model
that mimics in reduced form the physical-science literature quantifying permafrost carbon release
by simulating two stages: (i) permafrost thaw as a function of rising temperatures and (ii) decom-
position of thawed permafrost, leading to the release of CO9 or CHy. Kessler built the model for
incorporation in DICE and, although we don’t use DICE, the level of abstraction from the underly-
ing physical processes is well suited to our approach. Despite the level of abstraction, however, the
model retains enough structure to be directly calibrated on estimates reported in the underlying
literature.

In the first stage, near-surface permafrost thaw is a linear function of warming relative to time

Z€ero:

PFexent(t) = 1 = Bpr [ATr(t) — ATar(0)] (5)

where PFoxtent (t) = PFarea(t)/PFarea(0), i.e., PFextent (t) is the area of permafrost remaining at time
t relative to time zero, ATt is the global mean surface air temperature relative to pre-industrial,
and Opr is a coefficient representing the sensitivity of permafrost thaw to temperature, which Kessler
calibrated by regressing estimates of thaw on temperature from the literature. ¢ = 0 in our model
is the year 2010.

The amount of carbon in freshly thawed permafrost at time ¢, CipawedPF, is then the product of
the total stock of carbon locked in the near-surface northern circumpolar permafrost region, Cpp,

and the area of permafrost freshly thawed:

CthawedPF (t) = _CPF [PFextent (t) - PFextent (t - 1)] . (6)

Once thawed, the principal way in which carbon is released to the atmosphere is microbial de-
composition and this happens slowly. Some of the carbon is released as COy and some as CHy.
Kessler’s model divides the stock of thawed carbon into a passive reservoir that releases no carbon
and an active reservoir that decomposes exponentially and releases COs and CHy in fixed propor-
tion. Therefore, cumulative CO9 emissions to the atmosphere from thawed permafrost, CCumpr,
are given by )

CCumprp(t) = Z CihawedrF () (1 — propPassive) (1 - e(_t_s)/T) , (7)

s=0
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Table S5: PCF model parameter values

Kessler main  Lower/upper Fit of Fit of

spec. bounds [78] [79]
15} 0.172 0/1 0.066 0.085
Cpr (GtC) 1035 885/1185 1160 1066
propPassive 0.40 0.29/0.51 0.37  0.41
T (years) 70 0/200 31 66

where propPassive is the proportion of thawed permafrost in the passive reservoir and 7 is the
e-folding time of permafrost decomposition in the active reservoir, which is multiple decades (see

below). The fluxes of CO and CHy are respectively given by

CO2 pp(t) = (1 —propCH,)[CCumpp(t) — CCumpp(t —1)], (8)

CH4 pr(t) = (propCH,)[CCumpp(t) — CCumpr(t —1)], (9)

where propCH, is the share of CH4 emissions in total carbon emissions.

We can directly reproduce the permafrost carbon emissions estimated by [77] just by imputing
her reported parameter values for Spp, Cpp, propPassive, 7 and propCH, into Equations (5)-(9).
In addition, we use this model to fit the results of the two other papers contributed to the IAM
literature on the PCF, namely [78] and [79]. [78] coupled the PAGE(09 IAM to the SIBCASA model
of the PCF. [79] developed a new version of the PAGE IAM called PAGE-ICE, which includes a
representation of the PCF calibrated both on SiBCASA and another PCF model called JULES. We
first obtain estimates of permafrost CO2 emissions from each paper as a function of temperature,
and then minimise the sum of squared residuals between these papers’ estimates and estimates from
Kessler’s model, using four of the free parameters in Kessler’s model, i.e. Spg, Cpr, propPassive,
and 7, each parameter restricted to lie within physically plausible bounds. Table S5 reports the
various parameter values. Figure S13 shows the fit to cumulative CO2 emissions from [78] and
[79]. CHy4 emissions for these two papers are obtained simply by using the fitted parameters in

combination with the fixed value of propCH, from [77].
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Figure S13: Fit of cumulative permafrost COy emissions from [78], top panel, and [79], bottom
panel
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3.1.2 Ocean methane hydrates

There have been two studies of the economic cost of destabilization of ocean methane clathrates/hydrates.

The first is [80], who implemented what-if scenarios in PAGEQ9, releasing a pulse of CH, emissions
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of fixed size and duration into the model at a given point in time. These scenarios were based on
the work of [81] on hydrates locked within subsea permafrost on the East Siberian Arctic shelf. [80]
implemented various scenarios. Most of their scenarios involved injecting 50GtCH4 in total over
periods of 10 to 30 years, starting at different times from 2015 to 2035.! The other study is [82].
They implemented three what-if scenarios, in which pulses of CHy emissions from the reservoir
of CHy distributed globally on continental shelves and slopes were released in the FUND TAM.
These emissions pulses all commence in 2050 and comprise permanent flows of 0.2GtCHy per year,
1.784GtCHy /yr and 7.8GtCH,/yr respectively.

In order to incorporate these studies in our analysis, their what-if scenarios need to be assigned
probabilities. To do this, we use the framework of survival analysis, treating each emissions pulse
as a hazard event and assigning it a hazard rate, i.e. the conditional probability that the event
will occur in a particular year, given the temperature in that year and that the event has not
occurred previously. This is both convenient, and conforms with the way some of the other studies
we synthesise treat tipping points, e.g., on Amazon rainforest dieback [83]. Once triggered, each
CH4 emissions pulse of given size lasts its pre-specified amount of time. In general, we can write

the flow of CH, emissions from dissociation of ocean methane hydrates at time ¢, CHy owmmu(t), as

CH470MH(t) = <A40MH> IOMH(t) <~ Z CH470MH(S) < CH470MH, (10)
OMH =
t—1

CHy omu(t) =0 <= > CHy omn(s) = CHy owmm, (11)
s=0

where CH, omp is the pre-specified total amount of methane released, e.g., 50Gt in the case of
the main specification of [80], and Aoy is the duration of the release, e.g., 10 years. Applying
this formalism to [82], CHy omu/Aomu € {0.2,1.784,7.8} and total CHy released from ocean
CHy4 hydrates is bounded only by the product of CHy onmu/Aomu and the model horizon, i.e. the
inequality constraint in Equations (10) and (11) does not bind. Iomm(t) is an indicator function
taking a value of zero before the hazard event is triggered and one thereafter. In general, its

transition function is

Town(t) = f [Towm(t = 1), ATar (1), (1) (12)

where £(¢) is an i.i.d. random shock. That is, in each period the value of Ioyy depends on its

own value in the previous period, the current atmospheric temperature, and the random shock.

!They also injected a smaller pulse of 25GtCH, between 2015 and 2025 in one scenario.
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Specifically, the probability transition matrix for Ionp(t) is

1 —pomu(t) pomu(t)
0 1

, (13)

where poump (t) is the probability that the CHy emissions pulse is triggered in year ¢. This is given
by

pomu(t) =1 —exp {_bOMHATH(t)} ; (14)

where boymp is the hazard rate.

In order to calibrate the hazard rate, we use the study of [84], which presents a global model of
CH,4 hydrates on continental shelves and slopes and the release of CHy4 as temperatures rise. Their
study shows the sensitive dependence of ocean CHy release on a critical bubble volume fraction
threshold. That is, when ocean CH,4 hydrates melt, it is uncertain whether the CH, escapes the
ocean sediment into the ocean.? Colder temperatures closer to the sea floor and chemical reactions
(anaerobic oxidation by bacteria and archaea) both effectively trap the CHy from escaping. The
more CHy is in bubbles, however, the more likely it is to escape. In the model of [84], the bubble
volume upon melting of the hydrates must exceed the critical bubble volume fraction in order for
the CHy to be released. Calibrating the hazard rate on [84] means that we re-interpret [80] in the
context of the global reservoir of CH4 hydrates on continental shelves and slopes, rather than the
reservoir of CHy4 locked in subsea permafrost in the Arctic region. This is justified, since other
research suggests a large release of CH4 from the Arctic subsea permafrost within the next two
centuries is extremely unlikely [85].3

According to [84], cumulative CHy released in very long-run equilibrium upon 1°C warming
varies hugely from about 10GtCHy4 to 541GtCHy for critical bubble fractions of 10% and 1% re-
spectively.* Upon 3°C warming the range increases to about 32-1084Gt. Moreover, [84] report
that there is next to no empirical evidence on the critical bubble fraction. In the absence of such
evidence, we try three alternative specifications of the probability distribution of equilibrium cumu-
lative CHy4 release as a function of the critical bubble fraction (Table S6). The uniform distribution

is an application of the principle of insufficient reason. The triangular and especially the beta dis-

2There is further uncertainty about whether the CHy4 that reaches the ocean bottom eventually escapes into the
atmosphere (it depends on aerobic oxidation of CH4 by bacteria in the water column), however this uncertainty is
thought to be smaller.

3Indeed, the scenarios in [80] were criticised at the time of publication for being unrealistic in the context of Arctic
subsea processes; see Nature volume 300, p529.

4Based on digitising Figure 7 in their paper.
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tribution are more conservative in the sense of assigning more probability mass to higher critical
bubble fractions and in turn lower equilibrium CH, releases.

Irrespective of the critical bubble fraction, CH,4 released from melting ocean hydrates is thought
to take a very long time to reach the atmosphere, much longer than permafrost carbon. Therefore,
in order to convert the equilibrium CHy4 release into a transient release, we conservatively assume
a release rate of just 0.2%, implying an e-folding time of 500 years and approximately 3,000 years
for equilibrium to be reached [also see 84].

The procedure for calibrating the hazard rate boyp has been modifed as part of the META
model update for this paper. For a given GMST scenario, the approach just described to represent
the modelling results of [84] gives us the probability of a cumulative CHy release of given volume
in a given year. For example, on the mid-range RCP4.5 scenario of the Intergovernmental Panel on
Climate Change (IPCC), fed into our climate module excluding tipping points, the middle scenario
from [80] of a cumulative release of 50GtCH, over 20 years from 2015 to 2035 has a probability of
24.4%, assuming a beta distribution over critical bubble fractions. The corresponding hazard rate
bommu is then the value that, given GMST of 1.07°C above pre-industrial in the initial release year
of 2015 (also on RCP4.5), triggers the 50GtCHy release with 24.4% probability. In this example,
bomm = 0.059. We follow the same procedure to assign hazard rates using the uniform and triangular
distributions, and apply it to different durations of emissions pulse investigated by [80], as well as the
scenarios in [82]. Table S6 reports all the estimated hazard rates. We prefer the beta distributions

except in sensitivity analysis, as they are more conservative.
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Table S6: Calibration of OMH hazard rate, boyg. Triangular distribution assumes modal critical
bubble fraction of 10%, supports of 1% and zero CH4 release. Beta distribution assigns cumulative
probabilities of 0.67, 0.9, 0.95, 0.99 and 1 to critical bubble fractions of 10%, 7.5%, 5%, 2.5% and

1% respectively.

uniform triangular  beta

[80] 50GtCH, by 2035 pomn  95.3%  90.2%  24.4%
bomu  0.648 0491  0.059
[80] 50GtCH, by 2025 poun  86.4% 8.9%  12.0%
bomu  0.422 0.020  0.027
[80] 50GtCH, by 2045 poun  97.7%  97.8%  33.0%
bomu  0.801 0811  0.084
82] 0.2GtCHy /yr 2050-2200  pomn  100% 100%  67.1%
bomu  0.133 0.205  0.019
[82] 1.784GtCH, /yr 2050-2200 pomn ~ 99.7% 100%  52.4%
bomu  0.096 0.131  0.013
[82] 7.8GtCHy /yr 2050-2200  pomu ~ 98.5%  99.2%  39.1%
bomu  0.071 0.081  0.008

3.1.3 Amazon rainforest dieback

Dieback of the Amazon rainforest was included in the study of [83] as a carbon-cycle feedback.
This is the study we incorporate in our analysis. Naturally a wide range of other economically
important consequences of Amazon rainforest dieback are thereby excluded, including those on
biodiversity, ecosystems, and precipitation patterns. These have yet to be incorporated in any
economic modelling study, to the best of our knowledge.

As mentioned above, [83] model tipping points through survival analysis. In the case of Amazon
rainforest dieback, 50GtC is released over 50 years upon triggering the hazard event. Using parallel
formalism to ocean methane hydrates, COs emissions from Amazon rainforest dieback at time t,

CO2 amaz(t), are given by

rars N t—1
COs amaz(t) = (W) Invaz(t) <= 3 COs amaz(s) < COs amaz,  (15)
s=0
t—1
COz amaz(t) =0 <= > COs amaz(s) = COz amaz,  (16)
s=0

where CO2 amaz = 50GtC and Aamaz = 50 years. The probability of the indicator function
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Ianiaz(t) transitioning from zero to one is
paviaz(t) = 1 — exp [—banazATar(t) - 1], (17)
where the hazard rate banaz = 0.00163 in [83] is taken from the expert elicitation study of [69].

3.1.4 Greenland Ice Sheet

Our model of disintegration of the Greenland Ice Sheet (GIS) is based on [86], which follows an
approach conceptually similar to Kessler’s [77] PCF model by building a simple, reduced-form
process model of GIS disintegration for incorporation in DICE.® The GIS model is calibrated on
results from the underlying literature modelling ice-sheet dynamics. At the heart of the GIS model
is the very long-run equilibrium relationship between atmospheric temperature and the volume of

the GIS. Assuming this is reversible, [86] specified
AT¢s(t) = ATais max [1 = Vais(®)] (18)

where A%(t) is defined as the atmospheric temperature increase relative to initial temperature
that is associated with a particular degree of melting of the GIS in equilibrium and Vgis(t) € [0, 1] is
the volume of the GIS expressed as a fraction of the initial volume.® In Nordhaus’ main specification,
Eq. (18) was calibrated on paleoclimatic data from [87], which gives ATgis max = 3.4 and implies
that the GIS is fully melted in equilibrium when the global mean surface temperature is 3.4°C above
pre-industrial. If [88] is used for calibration instead, ATgis max = 1.8.7 An alternative, cubic
specification of the equilibrium temperature-volume relationship allows for hysteretic behaviour.

Fitted on [87], this is given by
AT s(t) = ATars max — 20.51Vars(t) + 51.9 [Vars (1)) — 34.79 [Vars (1)) . (19)

Nordhaus [86] showed that the change in specification makes little difference on the optimal emis-
sions path, which involves relatively limited warming, but can make a difference on high-emissions

scenarios.

5The resulting model is called DICE-GIS and builds on DICE-2016R2.
6[86] also reports runs in which T¢s(t) = Tars wmax [1 — Vas(£)]°® and finds the results are very similar.
7Noting that the melt rate coefficient Sgrs below also needs to be recalibrated to -0.0000088 to fit [88].
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The difference equation for Vigig(t), i.e. the GIS melt rate, can be written as

Vais(t) = Vais(t—1) = Berssegn [Am(t — 1) = ATgs(t — 1)} X

_ . 2
x [ATur(t = 1) = ATgg(t = 1)] Vas(t — 1)°2, (20)

where Bgrs = —0.0000106 based on regression analysis of estimates from [88].® The basic idea
embodied in Eq. (20) is that melting of the GIS depends on the difference between the actual
atmospheric temperature and the equilibrium GIS temperature, as well as the volume of the GIS
at the time.

Sea level rises linearly in response to GIS melt,
SLRgis(t) =71 — Vais(t)] (21)

where SLRq1g is defined relative to the year 2000. This implies that complete disintegration of the

GIS would increase global mean sea level by 7 metres.

3.1.5 Antarctic Ice Sheet

In the latest version of META, melting of the Antarctic Ice Sheet (AIS) is based on a module
developed by [41]. This takes a process-based approach. The contribution of the AIS to SLR is
divided into the surface mass balance (SMB) contribution and the dynamic contribution. SMB is
the balance of surface mass accumulation (precipitation) and ablation (melting) on the ice sheet.
Dynamic contributions come from the physical transportation of grounded ice into the ocean through
glacier flow. Once afloat, this ice contributes to SLR through the displacement of water. Dynamic
contributions are much more important than SMB on the AIS [89].

SMB is modelled using a simple, adjusted linear relationship between SMB and global mean

temperature change. The unadjusted annual mass change ASMB is given by
ASMB = 7 (t — to) "1 AA(t), (22)

where ¢ is 2010 and v = 7.95mm/yr [90]. AA(t) is the change in continental-scale accumulation

8This corresponds with Nordhaus’ [86] reported value per five years divided by 5 to bring it into line with our
annual time step, then divided by 100 given that we define Vais(¢) as a fraction.
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from 2010, which is given by
AA(t) = pw [ATar(t) — ATar(0)] (23)

where ¢ is a temperature scaling coefficient of 1.2 that converts ATar(t) into continental-scale
temperature change based on the modelling of [89], and w is the change in continental accumulation
per degree of Antarctic warming, estimated by [90] at approximately 5 +/- 1% per degree warming.
We calibrate a normal distribution with a mean of 5% and a standard deviation of 0.4 percentage
points.

Equations (22) and (23) permit estimation of the snowfall-induced mass gain for any scenario
of global mean temperature change, without needing to rely on runs of a complex ice sheet model.
However, [90] only analysed the relationship for continental-scale warming of up to 5°C above pre-
industrial and temperatures could increase to the extent that SMB in Antarctica turns negative.
[89] report that the SMB of the ice sheet will turn negative at approx. 7°C warming. To account

for this, we model an evolving adjustment factor based on a generalized logistic function:

K — ASMB(#)

Adjustment(t) = ,
J ( ) (C’—|— Qe_B(t))l/V

(24)

where K, C, @ and V are constants, and B(t) = [Am(t) - 6.75}. K is calibrated so that the
SMB contribution approaches a maximum of 8mm/yr at very high temperatures. This value follows
the prognosis from [89] that, above c. 7°C warming, the AIS is committed to losing 70% of its mass
via the surface elevation feedback. Seventy percent of AIS mass is equivalent to c. 40m of SLR and
taking a rapid deglaciation of approximately 5,000 years yields a maximum of 8mm/yr SLR.
Combining (22) and (23) with the adjustment factor and cumulating over time yields the ad-
justed total mass change:
¢ K — ASMB(s)

SMB(t) = ASMB(s) +
(t) Sz:(:) (s) (C+ Qe_B(S))l/V

(25)

Dynamic contributions to SLR from the AIS are modelled using the reduced-form model of
[59], which is designed to emulate basal ice shelf melting and the resulting contribution of the
AIS to SLR in 16 state-of-the-art ice sheet models. The five major ice basins on the continent

are modelled separately: East Antarctica, the Ross Sea, the Amundsen Sea, the Weddell Sea, and
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the Antarctic Peninsula. This is because the dynamic discharge of one basin minimally affects the
dynamic discharge of another. The first step is to translate ATar into subsurface oceanic warming

at the mean depth of the ice shelf base in each of the five basins:

ATy(r,t) = B(r)ATar (t — 4(r))- (26)

[59] derived the scaling coefficients 3(r) and time-delays §(r) from 19 CMIP5 models. Each region
of Antarctica thus has 19 possible pairs of scaling coefficients and time delays, drawn at random
with equal probability. If ¢ = 2050 and 0(r) = 30 years, for example, then the input to Equation
(26) is ATt in 2020.

The second step is to map subsurface ocean warming into enhanced basal ice shelf melting:

AM(r,t) = MATy(r, t), (27)

where the basal melt sensitivity parameter X\ is randomly chosen from a uniform distribution with
lower and upper bounds of 7ma~'K~! and 16ma~'K~! respectively. This interval corresponds to
values from experimental observations.

The third step translates the enhanced basal ice shelf melting into ice loss/SLR. This utilises
reduced-form response functions, which [59] estimated on the behaviour of the 16 ice sheet models.
Each ice sheet model was initially subjected to a control run from 1900 to 2100. In this control run,
the models were forced with historically observed basal ice shelf melting until 2010 and constant
forcing thereafter. After the control run, each ice sheet model was then subjected to an artificial
external forcing experiment involving an additional stepwise increase of 8m/yr of basal ice shelf
melting. The difference in the dynamic contribution to SLR between the experiment and the control
run forms the basis of the response function for the particular model and region. The approach
assumes that increasing the magnitude of the forcing by a specific factor will increase the magnitude
of the response of the ice sheet by the same factor. However, the temporal evolution of the response
is not a linear function of time. Response functions can capture the irregular oscillations of ice
sheet dynamics in response to external forcing. One must also assume that over the forcing period
the five regions of Antarctica respond independently. [59] showed this is a good assumption. [59]
also subjected the 16 ice sheet models to forcing experiments of 4m/yr and 16m/yr of additional
basal melting and compared these responses to the main 8m/yr experiment. Generally, there was

good agreement between the responses to the step increases of different size. SLR from dynamic
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processes S is given by

5 ¢
S(r,t) = Z Z AM(r,s)R(r,s), (28)
r=1s=0

where R is the value of the response function at time s, drawn at random from the set of 16 models.
The total Antarctic SLR contribution is the sum of (25) and (28).

[59] derived response functions for the period 1900 to 2100. The period to 2100 is long enough
for many of our purposes in this paper, but not for estimating the social cost of CO3, as a large
portion of the current social cost of COs stems from damages after 2100. Therefore, we developed a
method of extrapolating the response functions to 2200 using time-series analysis techniques. This
makes tractable the extrapolation problem in the absence of being able to run the ice sheet models
themselves. We treat the dynamic contribution to SLR estimated by each ice sheet model over the
period 1900 to 2100 as a time series. This is first detrended to achieve stationarity and then the
properties of the series are estimated using a moving average function of the first or second order,
or an ARMA function of the first or second order, with the model being chosen based on best fit

under the Akaike Information Criterion.

3.1.6 Arctic sea-ice loss/surface albedo feedback

Changes in global ice and snow cover also affect the surface albedo feedback (SAF), increasing net
radiative forcing. While these effects are implicitly captured in the equilibrium climate sensitivity
(ECS) parameter in simple climate models, i.e., the steady-state increase in temperature in response
to a doubling of the atmospheric CO2 concentration, doing so assumes that the marginal forcing
from an increase in temperature is constant across temperatures. However, as the area of ice and
snow diminishes, the marginal response for further increases in temperature decreases. This SAF
dynamic has been modelled by [79] using PAGE-ICE and we replicate their model here.

[79] use a quadratic fit of the SAF observed across the CMIP5 models, shown in the top panel
of Figure S14. This falling SAF curve describes the weakening feedback loop between changes in
temperature and changes in albedo. For low levels of warming, the SAF is greater than the constant
value represented in the ECS; as sea-ice and land snow diminish, the feedback effect drops. When
sea ice and land snow are absent, the SAF effect is zero. The total radiative forcing due to albedo,
however, always increases with temperature, and reaches its maximum when sea ice and land snow
are absent.

Total SAF forcing is the integral of the SAF feedback effect across the change in temperature,
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Figure S14: Variation in surface albedo feedback (SAF) effects as a function of GMST. Top: SAF
as a function of temperature, in terms of marginal increases in forcing per degree Kelvin. Middle:
adjusted value of the ECS when SAF forcing is removed. Bottom: cumulative forcing from the
SAF, as a function of temperature, in Wm™2.
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reaching 2.67 Wm ™2 at warming of 10°C. The ECS follows a non-linear curve calculated as a function
of the ECS in the last period, and accounting for the different level of feedback compared to a
constant level. As a consequence, adding the SAF to the base climate model can result in lower
warming eventually.

The calculations for the SAF correction are shown below. The principle of the SAF model is
to correct temperatures calculated under the process used in PAGE-ICE, so we first reproduce this

temperature calculation. Global PAGE-ICE atmospheric temperature is calculated as

ATarn—pacel(t) =ATarym—pacei(t — 1)

+ (A(t = 1) = FRTB(t — 1) — ATara_pagmi(t - 1)) (1 e V/F5T)

+ B(t—1)
where
ECS
A(t—1) o 11qu(t -1)
ECS
B(t—-1)= " ln2(F(t —1)—F(t—2))

F(t) is the anthropogenic forcing in our model
Fy; s the forcing slope, 5.5 W/m2

FRT is the warming half-life, from a triangular distribution from 10 to 55 with mode of 20

The surface albedo feedback is then calculated using a quadratic approximation, where SAF
decreases more rapidly as temperature increases. The equations are described as an integral over

this quadratic:
SAF(t) = C(ATarm-pracei(t)) — FSAF
ATarr—pacEl(t) — ATarv—pacE1(2010)
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where

C(AT) = BoAT? /3 + B1AT? /2 + BoAT + yATS
By is the T? coefficient for the SAF quadratic (W/m?/K?)
B1 is the T coefficient for the SAF quadratic (W/m?/K?)
Bo is the TV coefficient for the SAF quadratic (W/m?/K)
7y is the standard deviation of the SAF quadratic (W/m?/K)
0 is the nonlinearity of SAF, drawn from a symmetric triangular distribution from -1 to 1

FSAF, is the base year SAF forcing (W/m?)
The adjustment to the SAF forcing is given by a two-segment correction

AFSAF(t) = — SAF(t)ATATM_PAGEQ(t — 1)

N C(ATarv-pagee(t — 1)) if ATary—pace2(t —1) < 10

D(ATarvm—-pace2(t — 1)) if ATarm—page2(t —1) > 10

where

D(AT) = ¢ + (AT — 10) + o(AT — 10)6
ATarn—page2(t) is defined below.
1 is the integration constant for SAF forcing at the segment switch point
« is the linear SAF segment mean

o is the linear SAF segment standard deviation

Also using SAF(t), the adjusted ECS and FRT values are calculated as

/ ECS (SAF(t) - SAF)\
ECS' =ECS [1- g
. —1
ECS (SAF(t) - SAF)
FRT' = FRT [ 1 -
Fyln?2
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where SAF is the constant approximation to the SAF (0.34959 W/m?/C).

Then ATarn— pacr2(t), the adjusted temperature time-series, is calculated identically to ATara—pagei(t),
but using ECS’, FRT’, and with the additional forcing AFSAF(¢). The temperature adjustment
produced by the SAF model, ATarn_page2(t) — ATary—pacei(t), is then added to the main

temperature in the model.

3.1.7 Slowdown of the Atlantic Meridional Overturning Circulation

Weakening of the Atlantic Meridional Overturning Circulation (AMOC) or thermohaline circula-
tion,” whether partial or full, has inspired a number of numerical modelling studies in climate
economics [91, 92, 93, 82, 94, 95, 96, 97, 98]. The majority of these take a stylised approach. Of
those aiming for realism, we choose to incorporate the results of [91] in our model, because of their
unique focus on the effects of AMOC slowdown at the national level. This is arguably central to the
economic evaluation of AMOC slowdown, because its physical effects would vary significantly across
the world, from a reduction in regional temperature of several degrees, all else being equal, to an
increase in regional temperature of a few tenths of a degree [see 91, fig. 1]. The basic logic is that
the ocean circulation redistributes heat, rather than creating or destroying it, and countries vary
in their exposure to this heat redistribution, as well as the effects of global warming more broadly,
depending on their physical location. AMOC slowdown is expected to have physical effects other
than temperature change, for instance effects on precipitation and regional sea levels [99], but these
have yet to be incorporated in economic studies.

[91] implement four what-if scenarios known in the context of AMOC slowdown as ‘hosing exper-
iments’. In these experiments, a large exogenous pulse of freshwater is added to the representation
of the North Atlantic in General Circulation Models — hence the term hosing — and the consequences
for the AMOC are simulated. Note this is additional to any gradual slowdown of AMOC captured
by the climate models of CMIP6, which our calibrated pattern scaling of global into national tem-
peratures already captures (see below). The four scenarios result in an AMOC slowdown of 7%,
24%, 27% and 67% respectively. This slowdown is assumed to be reached in the year 2085, after
being phased in linearly from a 2050 starting point. As is by now familiar, we convert these what-if

scenarios into hazard events and assign them probabilities. The national temperature delta arising

9We use these two terms interchangeably.
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from AMOC slowdown is hence given by

) ) AT, i
ATt amoc(i,t) = ATar amoc(i,t—1)+ ( AXAMOC( )> Invoc(t)
AMOC
t—1
< ) ATar amoc(i,s) < ATxr_amoc(i), (29)
s=0
ATat amoc(i,t) = ATar amoc(i)
t—1
<= ATar_amoc(i,s) = ATar_amoc(i), (30)
s=0

where ATar amoc(?) is the permanent difference in national annual average temperature as a result

of AMOC slowdown in country i. The data points corresponding to ATar amoc(i) were kindly
provided by Anthoff and colleagues for all countries they covered. Aamoc is the time taken for
AMOC slowdown to phase in, i.e. 35 years. Ianoc(t) is the indicator function, whose transition

probability from zero to one is

1—exp|—b ATar(t)| ift=1
pamoc(t) = [ AoeTA } (31)

(1 — exp {_bAMOCAm(t)}) — (1 — exp [_bAMOCAm(t — 1)}) ift>1

conditional on Ianoc(t —1) = 0.

To calibrate the hazard rate for each of the four scenarios in [91], we compile likelihoods as a
function of global mean temperature increase for distinct AMOC shutdown events ranging from a
weakening of 11% to a full shutdown. We obtain these from the IPCC Fifth Assessment Report [100],
its Special Report on Global Warming of 1.5°C [101], and [102]. Given the limited measurements
of AMOC intensity, these numbers reflect a combination of model-based estimates and expert
judgement. We proceed in two steps: (i) we take the convex combination of the AMOC shutdown
events from the literature that most closely resembles the what-if scenario at hand. To obtain a
hazard rate banoc, we then (ii) calibrate Equation (31) by minimizing the sum of squared differences
to the likelihoods obtained in step (i). We estimate bayoc = 1.6 for a 7% slowdown, 0.611 for a
24% slowdown, 0.54 for 27% and 0.135 for 67%.
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3.1.8 Weakening of the Indian Summer Monsoon

The first integrated assessment of the Indian Summer Monsoon (ISM) and its response to climate
change has recently been carried out by [103]. This is based on coupling a version of Nordhaus’
regionally disaggregated RICE IAM [104] to a model of the ISM [105]. The ISM is driven by greater
heating of the land surface relative to the ocean in summer, which creates a pressure gradient that
drives moist ocean air over the Indian subcontinent, where it rises and condenses. However, ISM
rainfall displays important year-to-year variation and the ISM has the potential to abruptly change
regime from wet to dry and wice versa. Schewe and Levermann’s model generates these dynamics
by incorporating reduced-form representations of two competing feedback processes. The first is
the so-called moisture advection feedback, a positive feedback whereby monsoon rains release latent
heat, which strengthens the monsoon circulation and brings more rainfall in turn. The second is
the dry-subsidence effect, a negative feedback whereby high pressure reduces rainfall, the decreased
rainfall leads to less latent heat being released, which in turn sustains the dry phase. High pressure
also deflects winds away from the monsoon region. In [103]’s model , rainfall depends on both
climate change, through multiple channels, and regional emissions of sulphur dioxide, which reflect
incoming solar radiation, reduce heating over the Indian subcontinent and weaken the ISM.

The key output of the ISM model that feeds into damages to India (see below) is average rainfall

over the Indian subcontinent over the summer monsoon season:

o 1 136
P(t)=-— ) P(d,1), (32)

136 =
where P(d,t) is rainfall on day d of year ¢t and there are 136 days in each monsoon season.'® Each

day is either wet or dry, depending on

Pt — Pyet(t),  Pr(d,t) <p(d,1), (33)

Pary Pr(d,t) > p(d,t),

where Pr(d,t) = U(0, 1), capturing random variation in day-to-day weather. There is no rainfall

on a dry day, whereas rainfall on a wet day is an increasing function of atmospheric temperature,

0For computational reasons, we use a four-day time step, so P(d,t) changes at most once every four days and there
are 136 days in the season, compared with 135 in [103].
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since a warmer atmosphere can hold more water:
Pyer(t) = p" [ATAT(t) = AThr(0)] + Pyer (0). (34)

The initial value of Pyet is 9mm per day and it increases by 0.42mm/day/°C of global warming.

The probability of a wet day during the first  days of the season — the onset — is

Pinit,1 (£),  Api(t) < Aplerit(t),
Pmit(t) = ’ ’ (35)

1-— Pm;, Apl(t) > Apl,crit (t)v

where pp, = 0.82 is the maximum probability of a wet day.!! The formulation in Eq. (35) makes
rainfall during the onset of the season a function of albedo Api(t), in particular its relation to a
critical albedo value Apj it (t). If the actual albedo exceeds the critical value, the probability of a

wet day is at its minimum. The critical albedo value is increasing in the atmospheric concentration

of COaq,

3
Apl,crit (t) = Qpl,1 In lz S; (t) + S|+ Qpl2- (36)
=0

?:o Si(t) + S gives the atmospheric COs concentration and its derivation is explained in the

following section. The actual albedo is given by
Apl(t) = Apl(O) + 2T§1(1 - AS)Qﬁplapl,ElBSOZl(t)? (37)

where T}, is the fraction of light transmitted by the aerosol layer, Ag is the present value of the
surface albedo, 3,1 and a3 are coefficients representing the backscatter fraction and mass scattering
efficiency respectively and Bgo4(t) is the regional sulphate burden over the Indian peninsula. This

last quantity depends on SO9 emissions in the region:
Bsoa(t) = SO2(t)Hgo2V/ 9. (38)

Emissions of SOj are exogenous and sourced from the Representative Concentration Pathway (RCP)
database [106]. The emissions scenarios we use are discussed in greater detail below. The RCP

database only disaggregates SO, emissions to the level of the Asian continent/region, so we down-

1By bounding the probability of a wet day during the onset of the monsoon season, the system does not become
irrevocably locked into either a wet or dry state.
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scale to the Indian level by assuming a constant ratio of Indian/Asian emissions, estimated based
on 2010 data [107]. The parameter Hgps is the fractional sulphate yield, V is the atmospheric
lifetime of sulphate and €2 is the land area. Thus the dependence of rainfall on albedo in the model
ultimately captures the local cooling effect of SO9 emissions in the region, which weakens the ISM.

Assuming the actual planetary albedo does not exceed the critical value, the probability of a

wet day during the first § days of the season is

Pinit,1 (£) = ' [mNinos.4(t) — mo] + po, (39)

where mNiNo3.4 is the strength of the Walker circulation, i.e., the Pacific Ocean atmospheric cir-
culation, in May. The subscript NINO indicates that the strength of this circulation depends on
whether there is an El Nifio or not. El Nifio suppresses the ISM. The parameters p’, mg and pg are
used to calibrate the response of pinit,1(t) to mnino3z.4. The strength of the Walker circulation in

May is in turn given by
mnivos.a(t) = m' [ATxr(t) — ATar(0)] + mamos.4(0). (40)

The probability of a wet day after the first § days of the season is

1/5 Zfl:_dl_(s P(Z7 t) - Pdry

p(d’ t) = vaet (t) _ Pdry b

(41)

where § = 16 days.!? The probability of a wet day depends positively on how wet the previous &

days were, a representation of the moisture advection and dry-subsidence feedbacks.

3.1.9 Tipping point interactions

Tipping points can interact with each other in multiple ways [83, 69]. Some of these interactions are
hardwired into the structure of our model. For example, the PCF increases GMST, which affects all
seven remaining tipping points in our study, because all of them depend on temperature. However,
the structure of our model can only capture a limited subset of all the possible interactions between
tipping points. To increase the number of interactions, we use the expert elicitation study of [69],
which attempted to quantify how the triggering of one tipping point can cause the hazard rates of

other tipping points to change, with a focus on mechanisms other than temperature.

12With a four-day time step, we set the memory period § = 16 days, rather than 17 days as in [103].
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We apply a hierarchical Bayesian analysis to obtain best estimates of the hazard rate changes
provided by the experts in [69]. The hazard rate changes — the interactions — are represented by a
range for expert ¢ from lower bound u; to upper bound n;. Each change/interaction is a multiplier
on the base hazard rate, so a value of 1 means no change. We posit a true, expert-specific hazard
rate change, 6;, and further assume that these true values are drawn from a normal distribution
with unknown mean and variance. This allows the expert opinions to be partially pooled to inform

the hyperparameters of the normal distribution:

01’ ~ N(/’La T)
0; ~ U(u;,n;)

We treat cases where experts were uncertain about the lower bound of the hazard rate change as
having a lower bound of 0, and cases where they were uncertain about the upper bound as an upper

bound of 10. Figure S15 presents the results.
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Figure S15: The posterior distribution of i, the mean of the hyperdistribution, for each interaction.
The error bars in each plot show the 95% credible interval on p for the given interaction. The light
grey lines show each expert’s upper and lower bounds (dots are used if the upper bound equals the
lower bound). Abbreviations are as follows: Atlantic Meridional Overturning Circulation (AMOC),
melt of the Greenland Ice Sheet (GIS), disintegration of the West Antarctic Ice Sheet (WAIS), and
dieback of the Amazon rainforest (AMAZ).
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The set of tipping point interactions included in our study is the union of the set of interactions
hardwired in our model and the set of interactions quantified by [69]. To aid understanding of
how many interactions are thereby included, as well as the direction of each interaction, Table S7

provides a matrix.
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Table S7: Interactions between tipping points included in this study. Each cell indicates the qual-
itative effect of the row tipping point on the column tipping point. Where the row tipping point
can increase or decrease the intensity/likelihood of the column tipping point, depending on time or
state, we write +/-. Parentheses indicate the interaction is calibrated on the expert elicitation study
by [69]. The absence of parenthesis indicates the interaction is hardwired in the model structure.
Zeros indicate an interaction that is included, but that has a statistical zero effect according to [69].
No int. means the interaction is not included at all. n.b. ISM affects other tipping points via ENSO,
implicit in the expert estimates of the relevant hazard rate changes. AIS interactions are calibrated

on the ice sheet responses of the four Western regions of Antarctica only, to match with the notion
of WAIS in [69].

PCF OMH SAF AMAZ GIS AIS AMOC ISM
PCF + + + + + + +/-
OMH + + + + + + +/-
SAF +/- +/- +/- +/- +/- +/- +/-
AMAZ + + + + (0) +0)  + (+/-) +/-
(+/-)
GIS noint.  mnoint.  mno int. (+/-) (+) (+) (0)
AIS no int. no int. no int. (0) (+/-) (+/-) (0)
AMOC  no int. no int. no int. (+/-) (-) (+/-) (0)
ISM no int. no int. no int. (+) (0) (0) (+/-)

3.2 Climate module
3.2.1 Emissions

The principal inputs to the climate model are global emissions of CO2 and CHy4. Other anthro-
pogenic and natural sources of radiative forcing, both positive and negative, are aggregated into an
exogenous residual radiative forcing series.!®> Anthropogenic emissions come from the scenarios de-
scribed in the scenario section above. The second source of emissions is the carbon-cycle feedbacks
described in the previous section, i.e., permafrost melting, dissociation of ocean methane hydrates,

and Amazon rainforest dieback.

13This is the sum of forcing from: (i) N2O; (ii) flourinated gases controlled under the Kyoto Protocol; (iii) ozone-
depleting substances controlled under the Montreal Protocol; (iv) total direct aerosol forcing; (v) the cloud albedo
effect; (vi) stratospheric and tropospheric ozone forcing; (vii) stratospheric water vapour from methane oxidisation;
(viii) land-use albedo; (ix) black carbon on snow.
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3.2.2 CO3 and CHy cycles

CO9 and CH4 emissions are mapped into atmospheric concentrations using the FalR simple climate
model, version 2.0.0 [42], specifically the Julia-Mimi implementation of the model available at
https://github.com/FrankErrickson/MimiFAIRv2.jl.git. This updates the CO5 and CHy cycles from
META-2021, which were based on FalRv1.0 [108] for CO2 and our own representation of the CHy
cycle.

In FalR, each gas cycle is represented by the following system of equations (sticking with discrete

time notation and following closely the Julia-Mimi implementation):

o) = C+yg ﬁlei(t—1)+§;Ri(t)], (42)
Ri(t) = E(t) 51;) [1— e 5O] 4 Ryt — 1), (43)
1) = e (44
o) = goexp (ro +ryGu(t —1) + TTA;;AT(L‘ —1) +7,Gq(t — 1)) | (45)

where
Gult) = SR (46)
Gu(t) = Szttjo E(s) — Ga(?), (47)

and

o = zn;am (1= (1+100/7;) 71007, (48)
o — e (_ S 4 [;1_ em100/%] ) | o

C(t) is the atmospheric stock/concentration of a given GHG, which is the sum of the pre-
industrial stock C and the stock above pre-industrial. This stock above pre-industrial comprises
i = n boxes/reservoirs R; (four for COg and one for CHy). Emissions E of the GHG in question
are apportioned to box i according to its uptake fraction a; and are removed at rate §;, which

itself is a function of the decay timescale of the box 7; and a state-dependent adjustment «, which
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links the removal rate of the GHG from the atmosphere to current cumulative uptake G, warming
ATy7, and the stock above pre-industrial G,. This state-dependent adjustment is a signature of
the FalR model and is capable of simulating positive and negative feedbacks in the gas cycle. rg is
the strength of pre-industrial uptake from the atmosphere. The constants go and ¢; are used for

calibration of the state-dependent adjustment.

3.2.3 Radiative forcing and temperature

We also use FalRv2.0.0 to convert atmospheric concentrations into effective radiative forcing and
temperature change. This is also an update on META-2021, which used FalRv1.0 [108] for CO4 and
[109] for CH4. In general, the FalR forcing equation includes logarithmic, square-root and linear
terms:

F) - forciniégents{fl . [Cw(t)} L O — CF] 4 fE [\/CT(t)— \/Cﬁ} } + P (50)

= cr

In META, the number of forcing agents x = 2, namely COs and CHy; Feyt is the sum of forcings
from all other agents. For CO,, the forcing relationship comprises the logarithmic and square-root
terms only; for CHy, just the square-root term [42].

From forcing, the increase in GMST is governed by a model comprising three heat boxes, which

is one more than FalRv1:

ATar(t) =

N =

iA i (t—1) (51)
i=1 i=1

AT(t) = ATj(t—1)e /% + P(t)g; (1- e*l/df) : (52)

where ATj is the temperature change for box j, e~ /4 is the thermal response decay factor, where

d; represents the thermal response timescale, and g; is a radiative forcing coefficient.

3.3 Damages/economic module
3.3.1 Sea level rise

Sea level rise comprises a contribution from thermal expansion and melt from glaciers and small ice

caps, SLRrugrM(t), as well as a contribution from disintegration of the GIS and AIS:

> SLR(t) = SLRrugrM(t) + SLRais(t) + SLRArs(t). (53)
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Sea level rise is defined relative to the year 2000 and > SLR(0) = 0.04m [110]. To model the
contribution from thermal expansion and melt from glaciers and small ice caps, we follow [111] in

specifying SLR as a linear function of warming;:

SLRruerM(t) = (rrE + rasic) ATar(t) + SLRrusrM(t — 1), (54)

where rrg = 0.00078 and rgsic = 0.00081 parameterise the rates of SLR from thermal expansion
and melt from glaciers and small ice caps respectively. Sea level rise from thermal expansion is
parameterised such that 1°C warming results in a very long-term equilibrium increase of 0.5m (i.e.,

over the course of approximately 1000 years).

3.3.2 National temperature

We convert the increase in GMST relative to pre-industrial into the increase in national mean surface
temperature using statistical downscaling. This procedure has been updated from META-2021 and
now uses data from CMIP6. We subsequently add the effect of AMOC slowdown.

For country i, the change in mean surface temperature relative to pre-industrial is estimated

using the following relationship:

ATpr(i,t) = a(i) + B(I)ATaT(t) + ATar_amoc(ist). (55)

The coefficients o and g are estimated by regressing national mean surface temperature change
from the CMIP6 dataset on corresponding GMST change. National mean surface temperature
is constructed from the gridded CMIP6 output using population weights. We pool all available
CMIP6 models and, for each model, we pool temperature changes from the historical runs with
future projections on RCP2.6, RCP4.5, RCP7.0 and RCP8.5. We also tested quadratic and cubic
specifications of the national-global temperature change relationship, but the linear model was

preferred based on the AIC and BIC; the relationship appears to be highly linear for all countries.

3.3.3 Damages and national income per capita

Income growth depends on exogenous drivers, as well as damages from changing temperatures and

SLR (and from the summer monsoon in India, only). Post-damage income per capita in country 4,
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y(i,t), grows according to

y(z', t) g( t— 1) [1 + gEx(i, t) + DTEMP(i, t)] [1 — DSLR(i, t)] R (56)

where grx(i,t) is an exogenous, country- and time-specific growth rate that is taken from the SSP
database [112].1* The SSP scenarios are only defined until 2100. To extend these scenarios until
2300, we follow a procedure described in Section 3.4.1.

Dremp(i,t) are temperature damages, which are given by
Drgnp (i, t) = Bi [Tar (i, t) — Tar(i,0)] + Ba [Tar(i,t) — Tar(i, 0)], (57)

where the coefficients $; and (2 are taken from the econometric analysis of [53].

Dgrr(i,t) are SLR damages, which are given by
Dsrr(ist) = 6(i) > SLR(t), (58)

where (i) parameterises the cost to country ¢ per unit SLR. We obtain SLR damages from Diaz’s
CIAM model [66]. We run CIAM to obtain estimates of national coastal damage/adaptation costs
as a function of SLR in two scenarios, (i) no adaptation and (ii) optimal adaptation. We treat each
country’s adaptation decisions as uncertain and obtain a symmetrical triangular distribution for
each 6(i) with a minimum corresponding to costs in (i) and a maximum corresponding to costs in
(ii). We use costs/SLR in 2050 for the calibration, a simple approach facilitated by the fact that
the relationship between the two is approximately linear over the 21st century [66].

In India, there is an additional damage multiplier Dign(IN D, t), so that national income per

capita is given by

y(IND,t) = F(IND,t—1)[L+ gpx(IND,t) + Drenp(IND, )]

x [1 = DsLr(IND,t)][1 — Dism(IND,t)]. (59)

“https://tntcat.iiasa.ac.at/SspDb
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Following [103], the ISM damage multiplier is given by

Ddroughta ?(t) < Pdroughta
DISM(t) = 0, ?drought < P(t) < Pﬂood) (60)

Dﬂ00d7 P(ﬂ Z Pﬂood-

This structure implies that only extremely wet monsoon seasons and extremely dry monsoon seasons
affect income in India, with the measure of precipitation being average rainfall for the monsoon
season P(t). The drought threshold Pgyought = 2.8667mm /day, while the equivalent flood threshold
Pood = 7.6667mm/day. Drought-related damages Dgrought = 3.5% of GDP, while flood-related
damages Dfgooq = 0.85%. All these parameter values are taken from [103].

The level of income per capita in the previous year, on which damages in the current year work,
is given by

g(i7t - 1) = SOyEX(iat - 1) + (1 - 90) y(iat - 1)7 (61)

where ypx (i,t — 1) is counterfactual income per capita, also taken from the SSP database, y(i,t—1)
is the actual post-damage income per capita experienced, and ¢ parameterises the weight given
to each. This specification enables us to explore two different interpretations of the empirical
evidence on temperature damages, as well as convex combinations of them. The first interpretation
is that temperatures impact the level of income in each year, in effect driving a wedge between
what output is feasible given implicit factors of production and productivity, and what output is
actually achieved. This has been the traditional approach in climate economics, e.g., in Nordhaus’
DICE model. The production possibilities frontier is assumed to evolve exogenously. Such ‘levels’
damages correspond with ¢ = 1. The second interpretation is that temperatures impact the growth
rate of income by directly impacting the accumulation of factors of production and/or by impacting
productivity growth [113]. Such ‘growth’ damages correspond with ¢ = 0. The persistence of
damages and the extent to which they impact growth/levels is an active area of debate in climate
economics [70, 71, 68]. We calibrate ¢ on the long-run projections of [68], which suggest that
warming on the RCP8.5 scenario would reduce global GDP by 11.5% by 2100. Given estimates of
temperature, SLR and ISM damages, this implies ¢ = 0.25.
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3.3.4 Utility and welfare

Post-damage national income per capita is first converted into consumption per capita using a

country-specific but time-invariant savings rate,

c(i,t) = [1 = s(@)]y(i, 1), (62)

where the country savings rates s(i) are calibrated on observed national savings rates averaged over
the period 2005-2015, using World Bank data. Savings data are missing for many countries, in which
case we impute the global average, also obtained from the World Bank. This specification assumes
savings are exogenous and do not respond to changing income prospects. Fully endogenous savings
are computationally infeasible in a model with this much complexity and detail. The limitations
of assuming constant/exogenous savings have been discussed in the literature, e.g., [114]. Small to
moderate climate damages do not appear to shift savings rates measurably.

Consumption is converted into utility using a standard, constant-elasticity-of-substitution rep-

resentation,
c(i, t)t="

u(i t) = T

; (63)

where 7 is the elasticity of marginal utility of consumption.
To compute overall welfare, we specify a discounted classical/total utilitarian social welfare

functional. We begin by calculating welfare for each country i:
T
W)= > (1L+p) " ui, t)L(i,1), (64)

t=2020

where p is the utility discount rate, a.k.a. the pure rate of time preference. Discounted, population-
adjusted current period utility is then summed over the whole modelling horizon to obtain total
welfare. Population data are exogenous and taken from the SSP scenarios.

Global welfare follows naturally as the sum of welfare across all countries i:
W => W() (65)
i

3.3.5 Non-market damages

The above damages from temperature, SLR and the ISM can be regarded as ‘market’ damages.

Market damages are those climate damages affecting economic activity mediated by money. Market
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damages do not include estimates of the welfare cost of climate change outside markets, for example
loss of human life [115] or damages to ecosystems that can be priced at people’s willingness to pay
(WTP) to preserve those ecosystems’ existence. ‘Non-market’ damages are more uncertain than
their market counterparts, but in many IAMs they occupy a substantial share of total welfare
damages from climate change [e.g. 116, 117].

We use the non-market damage module of the MERGE IAM [67], with an updated calibration
derived from [54]. The MERGE model places particular emphasis on the representation of non-
market damages, with a WTP measure that depends on both income and temperature. While
the parameters of the MERGE non-market damage module are speculative, its use of an S-shaped
elasticity of WTP with respect to income is theoretically coherent.

Like the MERGE model, the damage function meta-analysis by [54] assumes that damages
grow quadratically with warming from a pre-industrial baseline. Under their preferred model, total
damages as a percent of GDP (including market and non-market impacts) follow 0.595AT 47 (t)?.
Considering only damage functions that exclude non-market damages, their key coefficient is reduced
by 0.487.15 We use this as evidence that non-market damages follow 0.487ATa7r(t)?. As in [54],
we increase this coefficient by 25%, to 0.609, to account for potential omitted (non-catastrophic)
damages. This gives a 90% increase in WTP relative to [67]. At 2.5°C warming, WTP is 3.8% of
GDP, compared to 2.0% in the original MERGE calibration (see Figure S16).

This WTP applies at high incomes. MERGE provides a model to link WTP to income, which
we maintain. At $25k/capita, WTP to avoid 2.5°C warming is held at 1%. As income increases
above that level, WTP asymptotically approaches the non-market damages from [54]. WTP to
avoid warming as a function of income is shown in Figure S17.

We calculate this WTP measure at a national level. The non-market damage multiplier, or

economic loss function, is

[ ((aTaw)) (aTmo) )]
DNM(Z,t)— 1 AT AT . (66)

where TAp(0) is the temperature in the baseline period, which is taken to be 2010.
This is a hockey-stick function embodying the assumption that non-market damages can increase

rapidly as temperatures become more extreme. AT, is a catastrophic warming parameter set to

15This coefficient comes from table 2, column 3 of [54]. While their preferred model is column 4, that model has a
market-only reduction of 0.622, larger than the total damage coefficient. Columns 3 and 4 estimate identical values
for the total damage coefficient, so we use the more conservative value.
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12.82°C, which people are assumed to be willing to avoid at any cost'6. h(i,t) is the hockey-stick

parameter, which depends on country income per capita (y(i,t)):

Do
log |:1 B 1+100 exp [_VVfTPrefy(ivt)]}

h('l7 t) = min ) 1 ) (67)
log |:]_ — (ATYCf/ATcat)Z}
where
WTP,es = 0.143 WTP 1% of GDP to avoid reference warming at $25k/capita
Dot = 0.038 WTP loss at reference warming
AT =25C WTP reference warming

The non-market damage multiplier is applied to country-level utility:

u(i,t) = u (Dnm(, t)c(i, 1))

for utility function u(-) as specified above.

3.3.6 Marginal and total damages

The marginal damage cost/social cost of carbon or methane along a particular scenario of emis-
sions, income and population is the difference in welfare caused by a marginal emission of the gas,

normalised by the marginal welfare value of a unit of consumption in the base year:

OW/OE(t)

SCCW = /g

(68)

To calculate the numerator, we run the model twice with identical assumptions, the second time
with an additional pulse of emissions. Let 1, represent a vector of parameter values from the
model, representing in abstract form the many parameters described above. These are in most
cases random draws from a distribution, including individual tipping event realisations. Then we

calculate

OW 1 WIE(®) + Ap(t), ] — WE(), V]
[8E(t)}m B Ap(t) ’

where Ag is the emissions pulse. We focus on an emissions pulse in 2020.

(69)

16The catastrophic warming temperature is derived from the assumption that economic losses rise quadratically
according to the [54] calibration.
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The denominator of (68), W /dc(t), depends on the consumption level of the normalising agent.

We define this as the global average individual, i.e., global mean consumption per capita:

>oicliy t, V) L(3,t)

) =

(70)

Note that this is also uncertain and depends on the vector of random parameters. Differentiating

the utility function, we then have

{8W

8c(t)}m (it )", (71)

We focus on a base year of 2020. We then calculate the negative of the ratio of Equations (69) and
(71) for each draw of random parameters m and take expectations over all draws. The numeraire
in the model is year 2010 US dollars, corresponding to the year in which GDP is initialised. We
inflate our reported SCC values to year 2020 US dollars using a factor of 1.2, based on data from
[118].17

3.4 Supporting analysis

3.4.1 Extending the SSP scenarios beyond 2100

To estimate post-2100 income and population along the SSP scenarios, we fit a model to the available
pre-2100 SSP scenario data and use the fitted model to extrapolate. The same model is applied to
both income and population and is defined in terms of growth rates. The model postulates that
changes in pre-2100 income and population growth rates are explained by a rate of convergence and
a rate of decay.

The model is as follows:
Growth(i,t) = (1 — 5 — 0)Growth(i,t — 1) + dMeanGrowth(¢ — 1), (72)

where 0 is the rate of convergence, 3 is the decay rate and

Population(i, 2015)
>, Population(j, 2015)

MeanGrowth(t — 1) = Z

i

Growth(i,t —1). (73)

Below, we write this as Growth(-,¢ — 1) - w, where w is the vector of global population shares for

"The inflation factor is 1.2 whether one uses the Consumer Price Index or the GDP deflator.
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each country.
SSP data are not available in every year, so fitting Eq. (72) requires a model with dynamics.
We use a two-step approach, fitting the model using Stan, a computational Bayes system. The first

step uses the available data directly, fitting
Growth(z, s) ~ N ([1 — At(S + 9)]Growth(i, s — 1) + AtéMeanGrowth(s — 1), 0;), (74)

where s is a time step, At is the number of years between time steps, and country ¢ has uncertainty
o;. We apply a prior that both g and ¢ are between 0 and 0.5.

Next, we fit the full model, using the results of the simplified model to improve the Bayesian
model convergence. In this case, for a given Markov chain Monte Carlo draw of g and 4, we calculate

the entire time series:
Growth(i, £) ~ N (1 = 8 — 0)Growth(i, ¢ — 1) + 6 [Growth(t — 1) - w] ;) (75)

starting with Growth(i,2015) as reported in the SSP dataset.

The probability evaluation is over both the performance of the fit and the priors:

Growth(i, s NN( rowth (i,t(s )),Ui)
B~ N (up,0p)
6 ~ N (s, 05)
N(

IOgUz UZ7UUz)

where p is the mean estimate of the corresponding parameter and o is the standard deviation across
its uncertainty. The prior for ¢; is defined as a log-normal, centered on the mean of the estimates

of log 0;. The estimates for each SSP are shown in Table S8.
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Table S8: Estimated convergence and decay rates for extrapolation of growth of GDP per capita

and population in the SSP socio-economic scenarios beyond 2100

SSP

Variable

0

B

LU A W W N =

GDP per capita
Population
GDP per capita
Population
GDP per capita
Population
GDP per capita
Population
GDP per capita
Population

0.006205028
0.008967453
0.004190444
0.001276993
0.006273030
0.001064697
0.006895296
0.001867587
0.007766807
0.003470952

0.005930520
0.005215835
0.007228942
0.011064426
0.009597363
0.007688331
0.009651277
0.003461600
0.003843256
0.004305310
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