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We provide a comprehensive assessment of the economic benefits and costs of

global methane emissions abatement, anchored on the Global Methane Pledge.

We use an Integrated Assessment Model to estimate avoided climate damages at

the global and country levels, including quantification of tipping points and risk.

We further estimate air quality co-benefits and methane abatement costs. We find

global methane action would be highly beneficial, yielding a benefit-cost ratio of

at least six. It would provide larger benefits in lower-income countries, and it

would reduce tipping-point intensity and risk. We provide estimates of the social

cost of methane to compare with previous literature and show that they imply

key economies such as the US, EU and China should be self-interested to abate

methane emissions substantially.

Methane is a potent, short-lived climate pollutant (SLCP) that has contributed around one third of

the total warming from well-mixed greenhouse gases (GHGs) since the 19th century (1). Having
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plateaued in the early 2000s, atmospheric concentrations of methane are once again increasing at a

rapid rate due to anthropogenic emissions from fossil fuel production and distribution, agriculture,

and waste, as well as anthropogenic/natural emissions from wetlands (2–6).

Because it is a major driver of current warming and its atmospheric concentration responds

rapidly to emissions reductions, methane abatement has been identified as “very likely to be the

most powerful lever in reducing near-term warming” (7). Moreover, substantial technical potential

has been identified to reduce methane emissions, much of which is argued to be negative-cost or

low-cost (7–11).

Previous work has argued that climate policy is too focused on long-term climate stability

(11, 12), for example on mid-century, net-zero CO2 emissions as the key target to be adopted by

both state and non-state actors. Even the more near-term Nationally Determined Contributions to

the 2015 UN Paris Agreement have been found to contain variable, but generally low, coverage of

methane-focused mitigation measures (13). In the background to policy-making, it has also been

argued that the accounting practice of converting methane into CO2 equivalents using its 100-year

Global Warming Potential (GWP) contributes to overlooking the importance of methane, because

such a conversion understates the impact of methane in the short term (12). The contrary view is that

methane abatement, alongside mitigation of other SLCPs, risks delaying efforts to abate CO2, and

can be “deferred without much harm” if the ultimate goal is controlling long-term warming (14).

Policy-makers appear to be listening to arguments in favor of methane action. The Global

Methane Pledge, launched at COP26 in 2021, commits participating countries to take voluntary,

domestic actions in service of at least a 30 percent reduction in global methane emissions below

the 2020 level by 2030 (15). At the time of writing, 159 countries have signed on (including the EU

and US, but not China, India or Russia), and some have reflected the global ambition of the Pledge

in domestic targets and plans (13).

Understanding the role of methane abatement in climate policy can be aided by quantifying the

benefits of methane abatement and comparing them with the costs. Previous studies have quantified

the benefits of global methane abatement scenarios in terms of physical climate variables such as

carbon budgets (16, 17), global mean temperatures (9, 11, 18–23), and sea levels (24). The 2021

Global Methane Assessment extended the literature by quantifying selected economic and health

benefits of global methane abatement, including heat and ozone-related mortality, ozone-related
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morbidity, lost labour productivity due to extreme heat, and crop yield losses via both climate

and ozone effects (7). (23) have provided a simple calculation of the overall economic benefits

of methane abatement by feeding global mean temperature pathways into an aggregate climate

damage function.

In addition to these studies on the benefits of global methane action scenarios, there is a literature

on the social cost of methane (SC-CH4), i.e., the discounted present value of the future stream of

damages from an incremental (marginal) emission of the gas (25–35). The literature on the SC-

CH4 is much smaller than its counterpart on the social cost of carbon dioxide (SC-CO2), but it is

valuable because social/marginal costs provide a natural and consistent way of comparing GHGs

with different atmospheric lifetimes (36). As (19) pointed out, “direct comparisons of the climate

influence of SLCPs and CO2 require making a judgment about the relative importance of short

and long time scales”. Economics would compare the SC-CH4 with the SC-CO2, as doing so does

not depend on an arbitrary choice of time horizon unlike GWP (e.g., GWP20 versus GWP100),

although the discount rate becomes a key choice (37). The SC-CH4 is also an important policy

quantity given its routine application in cost-benefit analyses (CBAs) of specific methane abatement

policies (e.g., rules on methane flaring in oil and gas). However, the standard practice in national

policy analysis of multiplying GHG emissions reductions by the social cost of a GHG cannot in

general be used to quantify large global emissions reductions brought about by agreements such as

the Global Methane Pledge. That is because the marginal approximation relied upon can be highly

inaccurate for large, non-marginal changes in emissions (38, 39). Therefore, an assessment of the

total economic benefits of global methane action should be based on running emissions scenarios

through an Integrated Assessment Model (IAM).

In this paper, we seek to advance the literature by providing a comprehensive assessment of

the economic benefits of global methane abatement, anchored on the Global Methane Pledge, and

comparing them with the costs. This includes a distributional analysis across countries, and an

analysis of how global methane abatement affects tipping points and macro-economic risk. We

proceed in three steps. First, we create a set of emissions scenarios, which simulate methane action

at the global level against a background of emissions of CO2 and other GHGs/radiative forcing

agents. These scenarios are anchored on successful achievement in 2030 of the Global Methane

Pledge, followed by continued methane abatement post-2030.
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The second step is to take the scenarios and run them through the META (Model for Economic

Tipping point Analysis) IAM (40,41) to estimate total economic benefits. META has several useful

features for present purposes: (i) it incorporates a recent Simple Climate Model from the climate

science literature (42), thus producing global mean temperature projections consistent with observa-

tions and Earth System Models; (ii) it provides relatively comprehensive benefit/damage estimates,

including both market and non-market damages, via temperature and sea-level mechanisms; (iii) it

estimates damages at the country level for 179 countries, thus enabling the distributional effects of

emissions abatement to be analyzed; (iv) it can quantify the role of climate tipping points (including

methane-based tipping points) and climate tail risk in the overall benefits of methane action (though

it is important to bear in mind that the coverage of tipping point damage mechanisms is incomplete,

a reflection of the underlying literature).

The third step brings in methane abatement costs and air quality co-benefits. For the former, we

aggregate sectoral estimates of methane abatement costs from (43) and (10), which were used in

the Global Methane Assessment (7), as well as using the methane marginal abatement cost (MAC)

curve estimated by (8). For the latter, we use data on premature deaths due to respiratory and

cardiovascular diseases, and on the Value of a Statistical Life (VSL), also from the Global Methane

Assessment (7).

In addition to quantifying the total benefits and costs of global methane action, we also include an

analysis of the SC-CH4. This facilitates a comparison with previous literature, which as mentioned

has tended to be about marginal rather than total damages. In addition, with META we can provide

the first set of country-level estimates of the SC-CH4, to the best of our knowledge. In light of current

geopolitics, this enables us to evaluate incentives of countries to act in their own self-interest rather

than just in pursuit of a global agreement like the Global Methane Pledge.

Results

Methane emissions and effect on temperatures

Fig. 1 plots methane emissions and resulting global mean temperatures under our methane action

scenarios, of which there are three: central, low emissions and high emissions. The central scenario
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contains a subset of 1.5◦C scenarios that approximate the Global Methane Pledge’s 30% reduction.

The low and high emissions scenarios are subsets of 1.5◦C scenarios that bracket the central

scenario and give, respectively, roughly 50% bigger and smaller cuts than the central scenario. The

scenario spread is intended to reflect uncertainty about technical abatement potential across IAMs,

and about policy implementation (within the context of methane action above current trends). Our

preferred specification chooses a background scenario of SSP2-4.5, which we take to be the Shared

Socioeconomic Pathway (SSP) scenario corresponding most closely to a current policies/trends

storyline (44). This sets both baseline methane emissions and emissions of other GHGs and forcing

agents. In Fig. S1 in the SM, we also show a high-emissions background scenario (SSP3-7.0) and a

1.5◦C background scenario. The former amounts to a storyline where the Global Methane Pledge

is successfully implemented but the rest of the world’s climate agenda fails completely. This is a

less likely combination in our view, although we should point out that observations imply methane

emissions specifically are currently increasing faster than projected on SSP2-4.5 (45). The use of

a 1.5◦C background scenario just assesses whether the Global Methane Pledge requires similar,

more or less methane abatement than the full suite of 1.5◦C scenarios.

The central methane action scenario reduces methane emissions by 30% in 2030 relative to

2020 (implementation of the Global Methane Pledge), 47% in 2050 and 62% in 2100 (Fig. 1, left

panel). The methane action high-low scenario range is a 19-46% cut in 2030, 34-63% in 2050 and

52-72% in 2100, all relative to 2020. The SM shows that while the Global Methane Pledge is well

within the range of 1.5◦C scenarios, it is actually less ambitious than the mean cut in 2030 across

1.5◦C scenarios. Emissions are 4% higher under the Global Methane Pledge than in the mean 1.5◦C

scenario.

The central methane action scenario reduces global mean surface temperature change by an

expected 0.02◦C in 2030, 0.13◦C in 2050 and 0.18◦C in 2100 (Fig. 1, right panel). The temperature

reduction under the methane action scenarios flattens out after 2070 because baseline methane

emissions reductions under SSP2-4.5 follow a similar trajectory to the methane action scenarios,

albeit at an overall higher emissions level. The range of uncertainty in the expected temperature

response to the high-low methane scenario variants is 0.09-0.19◦C in 2050. Temperature uncertainty

conditional on the central methane scenario is also 0.09-0.19◦C in 2050. This comes from parametric

uncertainty in the FaIR Simple Climate Model, as well as tipping points in META that affect
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Figure 1: Methane emissions (left panel) and effect on global mean temperature (right panel)

of methane action scenarios. Background emissions scenario is SSP2-4.5. The shaded area is the

90% confidence interval of temperature outcomes pertaining to the central methane action scenario,

based on parametric uncertainty in META sampled by 1000 Monte Carlo runs. ’Methane action

- high’ and ’Methane action - low’ describe methane action scenarios resulting in high and low

emissions, respectively. Specification includes tipping points.
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temperature, and is quantified as the 90% confidence interval. The expected 0.13◦C of avoided

warming in 2050 on the central methane scenario is lower than the ∼0.3◦C of avoided warming

reported in the Global Methane Assessment (7) using similar emissions-temperature impulse-

response functions to those in FaIR. The difference is presumably due to higher baseline emissions

in the Global Methane Assessment, more consistent with no policy than current policies. Fig. S2

in the SM shows that the temperature reduction is 0.2◦C in 2050 relative to an SSP3-7.0 baseline.

This is still lower than the Global Methane Assessment but both scenario and temperature-response

uncertainty extend to ∼0.3◦C.

Total economic benefits of methane action

Fig. 2 plots the total economic benefits (avoided market damages) of the methane action scenarios

over the rest of this century. Under the SSP2-4.5 background scenario, climate change causes mean

damages equivalent to a 1.8% loss in global consumption in 2030, rising to 3.5% in 2050 and 6.1%
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in 2100 (since savings rates are fixed in META, these percentages also apply to global GDP). These

are relative to counterfactual consumption along SSP2-4.5 without climate change. Focusing on

2050, the central methane action scenario reduces damages by 0.4 % points, from 3.5% of global

consumption to 3.1%. In absolute money terms, this reduction in damages – the gross benefit of

global methane action – equates to a little over $1 trillion per year in 2050 (in 2020 prices). The

range of uncertainty across the high-low methane scenario variants is a 0.3-0.6 % point reduction

in damages. The range of uncertainty (90% confidence interval) conditional on the central methane

scenario is larger than this, running from 0.2 to 0.7 % points. This comes from the joint effect of

many parametric uncertainties in META, including climate uncertainties in FaIR, uncertainties in

the tipping point modules and in the interactions between tipping points, and uncertainties in the

temperature and sea-level damage functions. Further analysis in Fig. S3 in the SM shows that, as

expected, total climate damages are higher under the SSP3-7.0 background scenario and that the

reduction in damages due to methane action is around a quarter higher than under SSP2-4.5 (a

reduction in damages of 0.5 % points in 2050).

The above estimates of total economic benefits can only be properly understood when compared

to the total costs of methane action. It is also important to take into account non-market climate

damages and the direct health co-benefits of methane action via improved air quality. META

contains a non-market damages module, but, as a social-cost IAM focused on damages (46), META

does not include abatement costs or air quality co-benefits. Therefore, we bring in data on abatement

costs and air quality co-benefits from previous major studies (7, 8) (see Methods). Table 1 reports

the results of the CBA. Three out of five estimates of abatement costs are negative throughout,

thus the central methane action scenario would pay for itself irrespective of climate benefits. The

mechanism behind negative abatement costs is the opportunity for private profits, including revenue

from methane capture/use in the energy sector, reduced disposal costs and increased revenue from

waste recycling instead of landfilling, and yield increases from abatement measures in rice farming.

In these three cost scenarios, IIASA low/high and EPA low, the net present value (NPV) of the

central methane scenario ranges from $0.6-5.2trn without climate benefits, $7.0-11.5trn including

climate benefits (market and non-market), and $13.0-17.5trn additionally including air quality

co-benefits (2.5% discount rate).

Although “bottom-up” estimates of GHG abatement costs can yield substantial negative-cost
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Figure 2: Reduction in total climate damages due to methane action. Left panel shows total

climate damages expressed as a percentage loss in consumption relative to a no-climate change

counterfactual. Right panel shows the gross monetary value of avoided damages, i.e., benefits of

methane action. The shaded area is the 90% confidence interval, based on parametric uncertainty

in META sampled by 1000 Monte Carlo runs. Specification includes market damages and tipping

points.
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potential (47), such measures face behavioral, financial, informational and structural barriers,

which prevent them from being realized. These can be conceptualized as hidden costs of adoption.

Especially the low-cost scenarios implicitly assume that implementation of the Global Methane

Pledge reduces the barriers to adoption of negative-cost measures. Alternatively, a conservative

approach would be to place particular emphasis on the two scenarios with positive abatement costs,

EPA high and Harmsen et al. (8). The latter scenario explicitly assumes there are no negative-cost

measures. However, here again the benefits of methane action far exceed the costs, giving an NPV

of $4.4-4.5trn ($10.4-10.5trn including air quality co-benefits), or equivalently a benefit-cost ratio

of 3.3-3.4 (6.5-6.7 including air quality co-benefits). As a further alternative, we can back-calculate

what constant stream of undiscounted abatement costs would be necessary to drive the NPV

of the central methane scenario to zero. This ‘switching value’ is $301.6bn/year ($589.0bn/year

including air quality co-benefits), much higher than any of the cost scenarios except for Harmsen

et al. (8) towards 2050 if air-quality co-benefits are ignored. The cost-benefit comparison is also
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Table 1: Comparison of benefits and costs of central methane scenario. All values are in USD

2020 billions. Discount rate is 2.5%. Values for 2030, 2040, and 2050 are snapshots of benefits and

abatement costs in single years. Net present values (NPVs) represent the discounted sums for years

2020 through 2050.

2030 2040 2050 NPV

Climate benefits (market) 52.2 401.0 1008.5 5310.0

Climate benefits (non-market) 9.1 70.3 200.4 1001.8

Air quality co-benefits 298.8 393.3 444.6 6015.7

Abatement costs

EPA low -34.0 -39.7 -45.3 -638.3

EPA high 108.2 113.8 119.5 1885.2

IIASA low -226.6 -342.5 -458.4 -5176.3

IIASA high -186.4 -123.1 -59.7 -2387.7

Harmsen et al. (2019) 18.3 130.9 437.6 1847.8

Discounted net climate
benefits (market and

non-market)

EPA low 74.4 311.8 597.9 6950.1

EPA high -36.6 218.2 519.4 4426.6

IIASA low 224.9 496.6 794.8 11488.1

IIASA high 193.5 362.7 604.8 8699.4

Harmsen et al. (2019) 33.6 207.7 367.7 4464.0

Discounted net climate
benefits (market and

non-market) and air quality
co-benefits

EPA low 307.8 551.8 809.9 12965.7

EPA high 196.7 458.2 731.4 10442.2

IIASA low 458.3 736.6 1006.8 17503.7

IIASA high 426.9 602.7 816.8 14715.1

Harmsen et al. (2019) 267.0 447.7 579.7 10479.6

conservative in the sense that we only consider costs and benefits in the period 2020-2050. Methane

has an atmospheric residence time of around nine years, so this approach omits benefits of abatement

towards 2050 that occur after the end of the horizon. Persistence of climate damages has a similar

effect.
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Distributional effects of methane action

It is well known that climate damages are heterogeneous across the world for reasons of differential

exposure and sensitivity/adaptive capacity. META incorporates both of these sources of heterogene-

ity. Insofar as these are correlated with national income, so will be the benefits of methane action.

Fig. 3 explores the relationship between national income and benefits of methane action directly by

taking country-level avoided market damages from methane action and aggregating them according

to the World Bank’s four country groupings: low-income, lower-middle income, upper-middle in-

come and high-income. These damages are differences in consumption levels, before utility/welfare

valuation. Larger benefits from methane action are concentrated in low-, lower-middle and to a lesser

extent upper-middle income countries, while high-income countries, which tend to be located at

higher latitudes, benefit the least. With the exception of low-income versus lower-middle income

countries, group differences across countries are statistically significant at the 10% level or lower

for any pairwise comparison of World Bank income groups. Fig. S4 in the SM repeats this analysis

under the SSP3-7.0 background scenario, showing that the equity benefits of methane mitigation

are robust to switching to an emissions scenario with substantially higher emissions. Fig. S5 in

the SM also repeats this analysis on a scenario with rapid methane action plus action on CO2, in

order to explore whether the effects of methane abatement on inequality are different from CO2

abatement. We find the effects are very similar, which indicates that action on methane and CO2 are

equally pro-poor. Lastly, Fig. S6 in the SM repeats the analysis for avoided market and non-market

damages together. It shows that once again benefits are negatively correlated with income, but the

differences are now smaller and statistically insignificant, because non-market benefits increase

with income.

Effect of methane action on climate risk

Fig. 4 reports the effect of methane action on climate risk. Methane action reduces climate risks,

shifting the probability density function of damages in 2050 to the left (downward). Mean damages

(market) fall from 3.5 to 3.1% as mentioned above, and the standard deviation of damages decreases

from 1.5 to 1.4. As measures of tail risk, we compute Value at Risk (VaR) and Conditional VaR

(CVaR) at the 95% and 99% confidence levels. These are defined as damages at the 95th/99th
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Figure 3: Change in climate damages in 2050 by central methane action scenario, disaggre-

gated by World Bank country income group. Violin plots combine a kernel density plot and a

box plot. Box plot contains estimates for the median (white dot), interquartile range (black box)

and +/- 1.5 times the interquartile range (range of thin dark gray line). Note negative values signify

avoided climate change damages. Specification includes market damages and tipping points.
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Delta annual consumption loss (in perc. points)

percentiles (VaR), and average damages above the 95th/99th percentiles (CVar). Methane action

reduces VaR at the 95% confidence level from 6.4 to 5.9%, and at the 99% confidence level

from 7.8% to 7.3%. CVaR at the 95% confidence level is reduced from 7.4% to 6.7%, and at the

99% confidence level from 8.9% to 8.0%. Thus, methane action reduces climate risk in general,

including tail risk. Without tipping points, the effects of methane action are very similar but if

anything they are slightly larger in relative terms, indicating that methane action is slightly more

effective in reducing damages from other channels. Additional analysis in Fig. S7 in the SM shows

that methane action similarly reduces climate risk under a SSP3-7.0 background scenario, albeit

on higher baseline climate damages.

This raises the question, what is the effect of methane action on tipping points themselves? As

explained in more detail in (40) and in the SM, economic models of tipping points synthesized

by META belong to two distinct classes. One class is process-based models, where each equation

directly represents an underlying geophysical process. The permafrost carbon feedback (PCF),
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Figure 4: Probability density functions for climate damages in 2050 with methane action

(red) and without (grey). Left panel includes tipping points, right panel omits tipping points.

Specification includes market damages. The height of each bar corresponds to the frequency

of observations in the corresponding bin. Table reports associated distribution statistics (% of

consumption lost in 2050 due to climate change).

0 2 4 6 8 10
Global climate damages in 2050 (% of consumption lost)

0 2 4 6 8 10
Global climate damages in 2050 (% of consumption lost)

Mean Std. dev. VaR 95% VaR 99% CVaR 95% CVaR 99%

Tipping points

Baseline 3.5 1.5 6.4 7.8 7.4 8.9

Methane action 3.1 1.4 5.9 7.3 6.7 8.0

No tipping points

Baseline 3.1 1.4 5.9 7.3 6.8 8.1

Methane action 2.7 1.3 5.3 6.5 6.2 7.4

melting of the Antarctic and Greenland Ice Sheets (AIS and GIS, respectively), and variability

of the Indian Summer Monsoon (ISM) are modeled in this way. The other class uses survival

analysis, whereby the underlying geophysical processes are represented more abstractly by a hazard

event with an associated hazard rate. Slowdown of the Atlantic Meridional Overturning Circulation

(AMOC) and Amazon rainforest dieback (AMAZ) are modeled in this second way. Both classes of

model are probabilistic in META.

As a common measure of the extent to which different climate tipping elements have ‘tipped’,
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Figure 5: Percentage change in tipping point intensity due to methane action, for six tipping

points. Background emissions scenario is SSP2-4.5. Tipping point indicators are described in the

methods section.

-6

-4

-2

0

D
el

ta
 A

IS
 (%

 o
f b

as
el

in
e)

2030 2050 2100

Antarctic
ice sheet

-8

-6

-4

-2

0

D
el

ta
 A

M
AZ

 (%
 o

f b
as

el
in

e)

2030 2050 2100

Amazon
dieback

-3

-2

-1

0

D
el

ta
 A

M
O

C
 (%

 o
f b

as
el

in
e)

2030 2050 2100

Atlantic meridional
overturning circulation

-10

-8

-6

-4

-2

0

D
el

ta
 G

IS
 (%

 o
f b

as
el

in
e)

2030 2050 2100

Greenland
ice sheet

-15

-10

-5

0

D
el

ta
 IS

M
 (%

 o
f b

as
el

in
e)

2030 2050 2100

India summer
monsoon

-15

-10

-5

0

D
el

ta
 P

C
F 

(%
 o

f b
as

el
in

e)

2030 2050 2100

Permafrost
carbon feedback

here we report an indicator of tipping point intensity on a scale from zero to one (see SM). Zero

corresponds to tipping elements whose state has been completely unaltered by climate change, and

one corresponds to elements that have fully transitioned to an alternative state (as such it is similar

to the tipping state variable in (48)). An indicator value of 0.5 means half-transformed in the case of

process-based models (e.g., the Ice Sheets are half-melted), or a hazard event that is 50% likely in

the case of the survival-analysis models. Although it is damages from tipping points that ultimately

matter, one advantage of this physical indicator is that it focuses attention on tipping processes,

whose impacts are particularly poorly covered by existing economic studies. AMOC slowdown and

Amazon dieback are leading examples (40). As can be seen in Fig. 5, methane action takes time

to affect tipping point intensity. By 2050, however, the effect of methane action on tipping points

becomes more clear. AIS and GIS tipping intensity decreases by 2.5%, the likelihood of AMOC

slowdown decreases by 3%, the likelihood of Amazon dieback decreases by 8%, and ISM and PCF

tipping intensity falls by 13%. After 2050, the effect of methane action on tipping point intensity
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generally mimics the effect of methane action on global mean temperature by plateauing. The

exceptions are AIS and GIS tipping intensity, which are subject to considerable inertia. Therefore,

methane action has its largest effect on these by the end of the century, reducing tipping intensity

by ∼5.5% (AIS) and 9.5% (GIS). Fig. S8 in the SM again repeats the analyses in this section under

the SSP3-7.0 background scenario, finding larger reductions in tipping point intensity than under

SSP2-4.5.

Social cost of methane, and non-cooperative action

The top panel of Fig. 6 shows probability density functions for the SC-CH4 in 2020. These estimates

reflect the marginal damage (market and non-market) from one metric tonne of CH4 emitted in

2020. The distribution has a strong positive skew with a mean of $7,381/tCH4, a median of $6,837

and a 90% confidence interval of $3,824-11,548. We also plot the corresponding PDF excluding

all tipping points, which has a mean of $6,307. Thus, the tipping points we include increase the

mean SC-CH4 by 17%. If the more speculative ocean methane hydrates tipping point is included,

the SC-CH4 in 2020 is $23,319, which is 270% higher than the SC-CH4 without tipping points.

This is a far bigger impact of the ocean methane hydrates tipping point than on the SC-CO2 (40). In

the SM, we report the results of Global Sensitivity Analysis of the SC-CH4 with respect to climate,

damage and tipping-point parameters.

Table S1 in the SM reports values for the SC-CH4 in future years. These increase due to rising

incomes and temperatures. For an emission in 2030, the mean SC-CH4 in our preferred specification

is $9,988/tCH4, rising to $13,824 for an emission in 2050 and $27,044 for an emission in 2100. This

corresponds to a compound annual real growth rate of 1.6% between 2020 and 2100. The SM also

reports values for the SC-CO2. The mean SC-CO2 in 2020, including tipping points, is $309/tCO2,

rising to $485 in 2050 and $688 in 2100, a compound annual real growth rate of 1%. The ratio

of the SC-CH4 to the SC-CO2 is 24 in 2020, rising to 39 in 2100. This ratio can be compared to

the GWP of methane, which is 27-30 when measured over 100 years and 81-83 when measured

over 20 years (49). Thus, using GWP100 would slightly overstate the value of methane abatement

in the short run and slightly understate it in the long run, with the crossover period being about

mid-century (SC-CH4/SC-CO2=28.5 in 2050). Using GWP20 would greatly overstate the value of
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Figure 6: Probability density function for the global SC-CH4 in 2020 (top panel) and map of

expected values of national SC-CH4s (bottom panel). Social costs are reported in 2020 US dollars

for a 2020 emissions pulse in the SSP2-4.5 emissions scenario. Welfare changes are normalized to

global mean consumption per capita for global SC-CH4 and national mean consumption per capita

for national SC-CH4s. Specification includes non-market damages, EMUC=1.05, and PRTP=0.5%.

Tipping points are included in map. Previous estimates of the global SC-CH4 are superimposed on

the probability density function.
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methane abatement. The discount rate is a factor here. Building on the expert survey results of (50)

and recent changes in practice (51), we set a pure rate of time preference of 𝜌 = 0.5% and an

elasticity of marginal utility of consumption 𝜂 = 1.05. With global economic growth on SSP2-4.5

of 𝑔 ∼ 2%, this yields a discount rate of 𝑟 = 𝜌 + 𝜂𝑔 ∼ 2.5% (as 𝑔 varies over time, country and

Monte Carlo draw, this is approximate). Results from Table S2 in the SM show that if we instead

set 𝜌 = 1% and 𝜂 = 1.5, the ratio is 39 in 2020, higher than GWP100 but still much lower than

GWP20. GWP100 appears to be a reasonable approximation of the relative social value of methane

action, with two caveats: (i) it is a better approximation at low discount rates; (ii) these results are

obtained from META and are hence limited to an analysis of avoided climate damages, rather than

air quality co-benefits.

The bottom panel of Fig. 6 reports the SC-CH4 at the national level. To the best of our knowledge,

we are the first to provide country-level estimates of the SC-CH4. Previous studies such as (52)

have provided country-level estimates of the SC-CO2. Formally, the social cost of a GHG is the

change in social welfare from emitting one tonne of the GHG, divided by the marginal utility of

consumption to convert it into money units. The choice of consumption level for the denominator is

important. The higher this is, the smaller is the marginal utility of consumption under the standard

assumption of diminishing marginal utility, the smaller is the denominator in turn, and the higher

is the SC-GHG in money terms. Using global mean consumption per capita normalizes national

welfare changes to the same level and effectively disaggregates the global SC-GHG that each

country would refer to under full international cooperation into national shares. If instead each

country’s welfare change is normalized using its own national consumption per capita, this yields

an estimate of climate damages to that country valued at its own income level. This corresponds

to the SC-GHG that each country would use under non-cooperation. Since we already analyzed

the implications of cooperative global methane abatement for global inequality above, we take the

latter approach. Studying non-cooperative incentives is also highly relevant in current geopolitical

conditions.

Negative SC-CH4s are reported for 20 primarily high-latitude countries, consistent with previous

results generated from non-linear temperature damage functions (53), even allowing for additional

damage channels in META. These countries would not have a private incentive to reduce methane

emissions at the margin today, assuming of course that META’s damage estimates are not biased
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towards being too small. 159 countries have a positive SC-CH4 and 17 of these have a national

SC-CH4 above $100/tCH4, The three highest national values are for China ($536/tCH4), India

($548/tCH4) and the United States ($1112/tCH4). The size of the US SC-CH4 is notable as it

implies significant methane abatement would be optimal even if the US returned to the first Trump

administration practice of valuing only domestic damages from domestic methane abatement, as

seems highly likely. The European Union (EU27)’s SC-CH4 – computed as the sum of its member

states’ national SC-CH4s – is $631/tCH4, above China’s and India’s.

Discussion

The basic message of this paper is that the benefits of global methane action look so much larger

than the costs that the economic case for action is clear. Implementation of the Global Methane

Pledge might come at a negative cost, according to leading estimates from (43) and (10). Even if

one is skeptical of negative abatement-cost estimates, our modeling suggests much higher benefits

from avoided climate damages and improved air quality. An important part of the global benefit

of methane abatement is that avoided climate damages are higher in low- and middle-income

countries, making the climate benefits of methane abatement pro-poor. Another important factor

is that methane abatement reduces climate risk to the economy, something the risk-averse social

planner values. Implementation of the Global Methane Pledge supposes a high degree of cooperation

between countries, but in a world of fracturing geopolitics it is worth asking how much methane

abatement countries should undertake in their own self-interest. We analyzed this by estimating

each country’s domestic marginal damages and found that methane abatement at marginal costs of

several hundred US$/tCH4 is economical for several major players such as China, the EU, India

and the US (where the domestic SC-CH4 is as high as US$1,112/tCH4). Lastly, while the best basis

for comparing methane and CO2 abatement should be relative social costs, we have found that the

convention of using GWP100 is a reasonable approximation.

How do our estimates of climate benefits from methane abatement compare with previous

literature? Estimates of climate benefits are famously sensitive to the discount rate (albeit less so

for methane than CO2, due to its shorter atmospheric residence time), so any comparison needs to

control for the discount rate as far as possible. It also needs to adjust for inflation, so we inflate
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values reported in previous studies where necessary using the US GDP deflator. In terms of total

benefits of global methane action scenarios, the only point of comparison is (23). Using an aggregate

damage function from a meta-analysis (54), they estimate total benefits of somewhere in the range

of approximately US$3.5-10 trillion for discount rates of 2% and 3%. Our estimates overlap this

range significantly but are at the high end of it.

In terms of marginal damages, our global estimate of the 2020 SC-CH4 (e.g., mean of

US$7,381/tCH4) can be compared with a wider range of studies. (32) calculate the SC-CH4 by

coupling a set of four Simple Climate Models to damages from the DICE and FUND IAMs. For a

discount rate of 2.5% and on a high-emissions scenario (RCP8.5), they report a multi-model mean

estimate of $1,414/tCH4 and a 90% confidence interval of $678–2,454. But some model combi-

nations yield values close to $4,000, notably using DICE damages instead of FUND. The United

States Environmental Protection Agency (55) reports values of $470/tCH4 with damages from the

DSCIM IAM, $1,600 with damages from the GIVE IAM and $1,700 with damages from (54), for

a near-term discount rate of 2.5%. Using an updated version of DICE (including FaIR v2.0.0), (35)

estimate $4,360/tCH4, within a range of $959–8,829. Their central estimate is generated along the

optimal emissions path using a comparable discount rate to ours, and a damage function calibrated

on (54) like the US EPA meta-analysis variant (but choosing a different model variant in (54) with

higher damages for given temperature). Their SC-CH4 exhibits strong sensitivity to the emissions

path, however, and when it is calculated on a business-as-usual path it is at the high end of their

reported range, about 20% above our central estimate.

Overall, our estimated SC-CH4 is higher than most of the existing literature, including estimates

provided in the latest US EPA guidance. In particular, it extends the uncertainty range well above

$10,000. Having controlled for the discount rate and with META using an almost identical climate

model to (55) and (35) (FaIR), remaining differences in the SC-CH4 most likely arise from different

socio-economic/emissions scenarios, different spatial disaggregation and different modeling of

damages (such as inclusion of tipping points in META). One point to note is that our mean estimate

looks consistent with (35) when one considers that we calculate the SC-CH4 on an emissions

path that is between their optimum and BAU. But the analysis in (35) is deterministic – we

add quantification of uncertainty, which naturally spreads the distribution of the SC-CH4 to higher

values. Another point to note is that META combines spatial disaggregation to the country level with
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welfare valuation using diminishing marginal utility. Thus, SC-GHG estimates from META include

so-called “distributional/equity weighting”, unlike (55), or (23) for total benefits. The literature on

the SC-CO2 shows that estimates can increase strongly after distributional weighting (56, 57),

because greater value is placed on damages in low-income countries, which are relatively higher.

This is not to be confused with the opposite role of diminishing marginal utility in normalizing

welfare changes discussed above when computing national SC-CH4s.

There are several limitations to the current study. Like any IAM, META is affected by multiple

uncertainties ranging from what emissions/socio-economic scenario to choose, through how the

climate system responds to emissions, to, in particular, the damages climate change causes and

the welfare value of those damages. We have sought to quantify those uncertainties both through

scenario analysis and probabilistic modeling, but the resulting climate benefits could be mis-

estimated and uncertainty is likely under-estimated, on balance. On the other side of the ledger,

the abatement costs provided for (7) that we use could also be mis-estimated. Our analysis only

quantifies the impacts of methane emissions via climate damages and air pollution on health. But

methane emissions have other economic impacts, for example, via ground-level ozone reducing

agricultural productivity. Moreover, as is standard in economic benefit-cost analysis, we abstract

from political costs. Still, the economic case for methane action is clear.

Brief summary of methods

Our methods are described in detail in the Supplementary Materials. In summary, we proceed in

three steps.

First, we create a set of emissions scenarios, which simulate methane action at the global level.

These are anchored on successful achievement in 2030 of the 30% emissions reduction target in

the Global Methane Pledge, followed by continued methane abatement post-2030. They are built

using raw scenario data from the IAMC 1.5◦C Scenario Explorer (58). These methane action

scenarios are then superposed on a set of background emissions scenarios, which (i) set baseline

methane emissions for comparison and (ii) set emissions of CO2 and the other GHGs and radiative

forcing agents, which are held constant while methane emissions are varied. We consider a range of

background emissions/forcing scenarios: a low-emissions scenario that limits the increase in global
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mean temperature to 1.5◦C above pre-industrial with low/no overshoot, a “middle-of-the-road”

emissions/socio-economic scenario (SSP2-4.5), and a higher emissions scenario characterized by

“regional rivalry” in economic/political relations (SSP3-7.0). This approach assumes that methane

action can be independent of action on other GHGs to a first-order approximation, which is supported

by evidence that targeted methane abatement measures, which would be sufficient to achieve the

Global Methane Pledge, do not also reduce CO2 (e.g., improved leak detection and repair in oil

and gas infrastructure; landfill gas capture) (7). Note that the opposite is unlikely to be true: CO2

abatement would also reduce methane (e.g., switching to renewables reduces fossil fuel use, which

in turn reduces methane emissions from upstream fossil fuel production and distribution).

The second step is to take the scenarios and run them through the META IAM to project climate

and economic effects. For this paper, we implemented several improvements and updates to the

META model, including: converting the model to the open-source Mimi.jl platform; integrating the

FaIRv2.0.0 climate model (42); re-estimating our downscaling functions from global to national

temperature on the CMIP6 dataset instead of CMIP5; replacing the original West Antarctic Ice Sheet

tipping point module with a new Antarctic Ice Sheet tipping point module (41), which replicates the

impulse responses of major Ice Sheet Models (59); revising hazard rates for the Atlantic Meridional

Overturning Circulation and Ocean Methane Hydrates tipping point modules; revising estimates

of the country-level temperature damage function parameters, still using (53); and improving the

representation of non-market damages using more up-to-date literature (54). These changes, as well

as the full set of equations comprising the META model, are described in the SM.

The third step brings in additional, scenario-consistent data on methane abatement costs and

air quality co-benefits. For the former, we use sectoral estimates of methane abatement costs

from (43) and (10), which were used in the Global Methane Assessment (7), to construct streams

of undiscounted abatement costs from 2020 to 2050 that are compatible with the quantity of

abatement required to shift methane emissions from current trends to the central methane action

scenario. We also use the methane MAC curve estimated by (8) to construct a further stream of

undiscounted abatement costs over the same period. For the latter, we again use data from the Global

Methane Assessment (7), from which we obtain estimates of premature deaths from respiratory and

cardiovascular diseases due to tropospheric ozone generated by methane emissions. We convert

these to marginal economic damages using the VSL and assumptions about the income elasticity
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of a VSL. We then multiply this quantity by the emissions reductions from our methane action

scenarios, giving us a stream of undiscounted air-quality co-benefits.
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J. A. Filar, eds. (Birkhäuser Boston, Boston, MA, 1995), pp. 89–105.

27. R. S. Tol, The marginal costs of greenhouse gas emissions, The energy journal 20, 61 (1999).

28. C. Hope, The marginal impact of co2 from page2002: An integrated assessment model

incorporating the ipcc’s five reasons for concern, Integrated Assessment 6 (2006).

29. A. L. Marten, S. C. Newbold, Estimating the social cost of non-co2 ghg emissions: Methane

and nitrous oxide, Energy Policy 51, 957 (2012).

30. D. Shindell, J. Fuglestvedt, W. Collins, The social cost of methane: theory and applications,

Faraday Discussions 200, 429 (2017).

31. M. C. Sarofim, S. T. Waldhoff, S. C. Anenberg, Valuing the ozone-related health benefits of

methane emission controls, Environmental and Resource Economics 66, 45 (2017).

32. F. C. Errickson, K. Keller, W. D. Collins, V. Srikrishnan, D. Anthoff, Equity is more important

for the social cost of methane than climate uncertainty, Nature 592, 564 (2021).

33. J. Sampedro, S. Waldhoff, M. Sarofim, R. Van Dingenen, Marginal damage of methane

emissions: ozone impacts on agriculture, Environmental and Resource Economics 84, 1095

(2023).

24



34. U.S. Environmental Protection Agency, Report on the Social Cost of Greenhouse Gases:

Estimates Incorporating Recent Scientific Advances. November 2023, Tech. rep. (2023).

35. C. Azar, J. G. Martı́n, D. J. Johansson, T. Sterner, The social cost of methane, Climatic Change

176, 71 (2023).

36. R. Schmalensee, Comparing greenhouse gases for policy purposes, The Energy Journal 14

(1993).

37. D. S. Mallapragada, B. K. Mignone, A theoretical basis for the equivalence between physical

and economic climate metrics and implications for the choice of global warming potential

time horizon, Climatic Change 158, 107 (2020).

38. N. Stern, The Economics of Climate Change: the Stern Review (Cambridge University Press,

2007).

39. S. Dietz, C. Hepburn, Benefit–cost analysis of non-marginal climate and energy projects,

Energy Economics 40, 61 (2013).

40. S. Dietz, J. Rising, T. Stoerk, G. Wagner, Economic impacts of tipping points in the climate

system, Proceedings of the National Academy of Sciences 118, e2103081118 (2021).

41. S. Dietz, F. Koninx, Economic impacts of melting of the Antarctic Ice Sheet, Nature Com-

munications 13, 5819 (2022).

42. N. J. Leach, et al., Fairv2.0.0: a generalized impulse response model for climate uncertainty

and future scenario exploration, Geoscientific Model Development 14, 3007 (2021).

43. U.S. Environmental Protection Agency, Global Non-CO2 Greenhouse Gas Emission Projec-

tions & Marginal Abatement Cost Analysis: Methodology Documentation. EPA-430-R-19-

012., Tech. rep. (2019).

44. United Nations Environment Programme, Executive summary. Emissions Gap Report 2023:

Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again). (2023).

45. X. Lan, K. Thoning, E. Dlugokencky, Trends in globally-averaged CH4, N2O, and SF6 deter-

mined from NOAA Global Monitoring Laboratory measurements. version 2024-02 (2022).

25



46. S. Dietz, Handbook of the Economics of Climate Change (Elsevier, 2024), vol. 1, pp. 1–51.

47. M. J. Kotchen, J. A. Rising, G. Wagner, The costs of “costless” climate mitigation, Science

382, 1001 (2023).

48. Y. Cai, T. S. Lontzek, The Social Cost of Carbon with Economic and Climate Risks, Journal

of Political Economy 127, 2684 (2019). Publisher: The University of Chicago Press.

49. P. Forster, et al., Climate Change 2021: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,

V. Masson-Delmotte, et al., eds. (Cambridge University Press, Cambridge, UK and New York,

NY, USA, 2021), book section 7.

50. M. Drupp, M. Freeman, B. Groom, F. Nesje, Discounting disentangled, American Economic

Journal: Economic Policy 10, 109 (2018).

51. United States Office of Management and Budget, Circular No. A-4 (November 9, 2023), Tech.

rep. (2023).

52. K. Ricke, L. Drouet, K. Caldeira, M. Tavoni, Country-level social cost of carbon, Nature

Climate Change 8, 895 (2018).

53. M. Burke, S. M. Hsiang, E. Miguel, Global non-linear effect of temperature on economic

production, Nature 527, 235 (2015).

54. P. H. Howard, T. Sterner, Few and not so far between: a meta-analysis of climate damage

estimates, Environmental and Resource Economics 68, 197 (2017).

55. U.S. Environmental Protection Agency, Report on the Social Cost of Greenhouse Gases:

Estimates Incorporating Recent Scientific Advances, Tech. rep. (2022).

56. F. Dennig, M. B. Budolfson, M. Fleurbaey, A. Siebert, R. H. Socolow, Inequality, climate

impacts on the future poor, and carbon prices, Proceedings of the National Academy of

Sciences 112, 15827 (2015).

57. D. Anthoff, J. Emmerling, Inequality and the social cost of carbon, Journal of the Association

of Environmental and Resource Economists 6, 243 (2019).

26



58. D. Huppmann, et al., IAMC 1.5C Scenario Explorer and Data hosted by IIASA, Integrated

Assessment Modeling Consortium & International Institute for Applied Systems Analysis

(2018).

59. A. Levermann, et al., Projecting Antarctica’s contribution to future sea level rise from basal

ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth

System Dynamics 11, 35 (2020).

60. K. Riahi, et al., The Shared Socioeconomic Pathways and their energy, land use, and green-

house gas emissions implications: An overview, Global Environmental Change 42, 153

(2017).

61. Z. R. J. Nicholls, et al., Reduced complexity model intercomparison project phase 1: introduc-

tion and evaluation of global-mean temperature response, Geoscientific Model Development

13, 5175 (2020).

62. M. Meinshausen, et al., The Shared Socio-economic Pathway (SSP) greenhouse gas concen-

trations and their extensions to 2500, Geoscientific Model Development 13, 3571 (2020).

63. C.-H. Cheng, S. A. Redfern, Impact of interannual and multidecadal trends on methane-

climate feedbacks and sensitivity, Nature communications 13, 3592 (2022).

64. S. Gulev, et al., Climate Change 2021: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,

V. Masson-Delmotte, et al., eds. (Cambridge University Press, Cambridge, UK and New York,

NY, USA, 2021), book section 2, pp. 287–422.

65. S. Szopa, et al., Climate Change 2021: The Physical Science Basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,

V. Masson-Delmotte, et al., eds. (Cambridge University Press, Cambridge, UK and New York,

NY, USA, 2021), book section 6, pp. 817–921.

66. D. B. Diaz, Estimating global damages from sea level rise with the coastal impact and

adaptation model (ciam), Climatic Change 137, 143 (2016).

27



67. A. S. Manne, R. G. Richels, Energy and environment (Springer, 2005), pp. 175–189.

68. P. Klenow, I. Nath, V. Ramey, How Much Will Global Warming Cool Global Growth?, Tech.

rep., Working paper (2023).

69. E. Kriegler, J. W. Hall, H. Held, R. Dawson, H. J. Schellnhuber, Imprecise probability

assessment of tipping points in the climate system, Proceedings of the National Academy of

Sciences 106, 5041 (2009).

70. R. G. Newell, B. C. Prest, S. E. Sexton, The gdp-temperature relationship: implications for

climate change damages, Journal of Environmental Economics and Management 108, 102445

(2021).

71. G. Casey, S. Fried, E. Goode, Projecting the impact of rising temperatures: The role of

macroeconomic dynamics, IMF Economic Review pp. 1–31 (2023).

72. A. Saltelli, et al., Global sensitivity analysis: the primer (John Wiley & Sons, 2008).

73. B. Anderson, E. Borgonovo, M. Galeotti, R. Roson, Uncertainty in climate change modeling:

can global sensitivity analysis be of help?, Risk Analysis 34, 271 (2014).

74. E. Plischke, An effective algorithm for computing global sensitivity indices (easi), Reliability

Engineering & System Safety 95, 354 (2010).

75. P. Wei, Z. Lu, X. Yuan, Monte carlo simulation for moment-independent sensitivity analysis,

Reliability Engineering & System Safety 110, 60 (2013).

76. A. Saltelli, I. M. Sobol, About the use of rank transformation in sensitivity analysis of model

output, Reliability Engineering & System Safety 50, 225 (1995).

77. L. Kessler, Estimating the economic impact of the permafrost carbon feedback, Climate

Change Economics 8, 1750008 (2017).

78. C. Hope, K. Schaefer, Economic impacts of carbon dioxide and methane released from

thawing permafrost, Nature Climate Change 6, 56 (2016).

28



79. D. Yumashev, et al., Climate policy implications of nonlinear decline of arctic land permafrost

and other cryosphere elements, Nature Communications 10, 1900 (2019).

80. G. Whiteman, C. Hope, P. Wadhams, Climate science: vast costs of arctic change, Nature

499, 401 (2013).

81. N. Shakhova, V. Alekseev, I. Semiletov, Predicted methane emission on the east siberian shelf,

Doklady Earth Sciences 430, 190 (2010).

82. M. Ceronsky, D. Anthoff, C. Hepburn, R. S. Tol, Checking the price tag on catastrophe:

the social cost of carbon under non-linear climate response, Tech. rep., ESRI working paper

(2011).

83. Y. Cai, T. M. Lenton, T. S. Lontzek, Risk of multiple interacting tipping points should

encourage rapid co2 emission reduction, Nature Climate Change 6, 520 (2016).

84. D. Archer, B. Buffett, V. Brovkin, Ocean methane hydrates as a slow tipping point in the

global carbon cycle, Proceedings of the National Academy of Sciences 106, 20596 (2009).

85. D. Archer, A model of the methane cycle, permafrost, and hydrology of the Siberian conti-

nental margin, Biogeosciences 12, 2953 (2015).

86. W. Nordhaus, Economics of the disintegration of the greenland ice sheet, Proceedings of the

National Academy of Sciences 116, 12261 (2019).

87. R. B. Alley, et al., History of the greenland ice sheet: paleoclimatic insights, Quaternary

Science Reviews 29, 1728 (2010).

88. A. Robinson, R. Calov, A. Ganopolski, Multistability and critical thresholds of the greenland

ice sheet, Nature Climate Change 2, 429 (2012).

89. J. Garbe, T. Albrecht, A. Levermann, J. F. Donges, R. Winkelmann, The hysteresis of the

antarctic ice sheet, Nature 585, 538 (2020).

90. K. Frieler, et al., Consistent evidence of increasing antarctic accumulation with warming,

Nature Climate Change 5, 348 (2015).

29



91. D. Anthoff, F. Estrada, R. S. Tol, Shutting down the thermohaline circulation, American

Economic Review: Papers and Proceedings 106, 602 (2016).

92. O. Bahn, N. R. Edwards, R. Knutti, T. F. Stocker, Energy policies avoiding a tipping point in

the climate system, Energy Policy 39, 334 (2011).

93. M. Belaia, M. Funke, N. Glanemann, Global warming and a potential tipping point in the

atlantic thermohaline circulation: the role of risk aversion, Environmental and Resource

Economics 67, 93 (2017).

94. K. Keller, B. M. Bolker, D. F. Bradford, Uncertain climate thresholds and optimal economic

growth, Journal of Environmental Economics and Management 48, 723 (2004).

95. R. J. Lempert, A. H. Sanstad, M. E. Schlesinger, Multiple equilibria in a stochastic imple-

mentation of dice with abrupt climate change, Energy Economics 28, 677 (2006).

96. P. M. Link, R. S. Tol, Possible economic impacts of a shutdown of the thermohaline circulation:

an application of fund, Portuguese Economic Journal 3, 99 (2004).

97. P. M. Link, R. S. Tol, Estimation of the economic impact of temperature changes induced by a

shutdown of the thermohaline circulation: an application of fund, Climatic Change 104, 287

(2011).

98. M. E. Schlesinger, et al., Avoiding Dangerous Climate Change (Cambridge University Press,

Cambridge, UK, 2006), pp. 37–47.

99. T. M. Lenton, J.-C. Ciscar, Integrating tipping points into climate impact assessments, Climatic

Change 117, 585 (2013).

100. T. Stocker, et al., Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,

T. Stocker, et al., eds. (Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA, 2013), pp. 33–115.

101. O. Hoegh-Guldberg, et al., Global Warming of 1.5◦C. An IPCC Special Report on the impacts

of global warming of 1.5◦C above pre-industrial levels and related global greenhouse gas

30



emission pathways, in the context of strengthening the global response to the threat of climate

change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte, et al.,

eds. (in press, 2018).

102. S. N. Gosling, The likelihood and potential impact of future change in the large-scale climate-

earth system on ecosystem services, Environmental Science & Policy 27, S15 (2013).

103. M. Belaia, Integrated assessment of climate tipping points, Ph.D. thesis, Universität Hamburg

Hamburg (2017).

104. M. Ikefuji, J. R. Magnus, H. Sakamoto, The effect of health benefits on climate change

mitigation policies, Climatic Change 126, 229 (2014).

105. J. Schewe, A. Levermann, A statistically predictive model for future monsoon failure in india,

Environmental Research Letters 7, 044023 (2012).

106. R. H. Moss, et al., The next generation of scenarios for climate change research and assessment,

Nature 463, 747 (2010).

107. C. Li, et al., India is overtaking china as the world’s largest emitter of anthropogenic sulfur

dioxide, Scientific Reports 7, 14304 (2017).

108. R. J. Millar, Z. R. Nicholls, P. Friedlingstein, M. R. Allen, A modified impulse-response rep-

resentation of the global near-surface air temperature and atmospheric concentration response

to carbon dioxide emissions, Atmospheric Chemistry and Physics 17, 7213 (2017).

109. G. Myhre, et al., Climate Change 2013: The Physical Science Basis. Contribution of Working

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,

T. Stocker, et al., eds. (IPCC, 2013), pp. 8SM–1–8SM–44.

110. J. A. Church, N. J. White, Sea-level rise from the late 19th to the early 21st century, Surveys

in Geophysics 32, 585 (2011).

111. D. Diaz, K. Keller, A potential disintegration of the west antarctic ice sheet: implications for

economic analyses of climate policy, American Economic Review: Papers and Proceedings

106, 607 (2016).

31



112. B. C. O’Neill, et al., A new scenario framework for climate change research: the concept of

Shared Socioeconomic Pathways, Climatic Change 122, 387 (2014).

113. S. Dietz, N. Stern, Endogenous growth, convexity of damages and climate risk: how nordhaus’

framework supports deep cuts in carbon emissions, Economic Journal 125, 574 (2015).

114. M. Golosov, J. Hassler, P. Krusell, A. Tsyvinski, Optimal taxes on fossil fuel in general

equilibrium, Econometrica 82, 41 (2014).

115. E. E. McDuffie, et al., The social cost of ozone-related mortality impacts from methane

emissions, Earth’s Future 11, e2023EF003853 (2023).

116. W. D. Nordhaus, J. Boyer, Warming the World: Economic Models of Global Warming (MIT

Press (MA), 2000).

117. K. Rennert, et al., Comprehensive evidence implies a higher social cost of CO2, Nature 610,

687 (2022).

118. World Bank, World development indicators (2020).

119. T. Stoerk, J. Rising, D. Shindell, S. Dietz, Replication package for ”Global methane action

pays for itself at least six times over” (2025).

Acknowledgments

We thank Tamma Carleton for detailed discussant’s comments, Zeb Nicholls for sharing emissions

data, as well as audiences at the Asian Development Bank, Barcelona School of Economics,

Environmental Defense Fund, European Commission, IE Business School, LSE, NOVA Business

School, Oxford, Resources for the Future, ASSA, AERE, AERNA, the Atlantic Workshop on

Energy and Environmental Economics, CEPR Paris Symposium and EAERE for their helpful

feedback. This work does not necessarily represent the views of the National Bank of Belgium or

the Eurosystem.

Funding: D.S. acknowledges the financial support of the Global Methane Hub. S.D. acknowl-

edges the financial support of the Grantham Foundation for the Protection of the Environment.

32



Author contributions: S.D., J.R., and T.S. conceived the study. D.S. and T.S. constructed the

scenarios with input from J.R. and S.D.. S.D., J.R., and T.S. adapted the model, with J.R. leading on

software development and implementation. S.D., J.R., and T.S. produced the results and analyzed

the data. S.D., J.R., D.S., and T.S. wrote the manuscript.

Competing interests: There are no competing interests to declare.

Data and materials availability: All data underlying the Model for Economic Tipping point

Analysis (META) used in this study is fully documented in the SM and draws on public sources.

The version of META used in this study is freely available on Github under the following tag:

https://github.com/openmodels/META/releases/tag/META-2025. All climate data and

code necessary to reproduce the analytical steps and results in this work is available from the

following permanent public repository: https://zenodo.org/records/15363212 (119).

Supplementary Materials: Materials and methods

Supplementary text

META model description

Figs. S1 to S10

Tables S1 to S4

References (60-119).

33



 

 

1 

 

 
 

 

Supplementary Materials for 
 

Global methane action pays for itself at least six times over 

 
Thomas Stoerk, James Rising, Drew Shindell, Simon Dietz 

 

Corresponding author: Thomas Stoerk, t.a.stoerk@lse.ac.uk 

 

 

The PDF file includes: 

 

Materials and methods 

Supplementary text 

META model description 

Figs. S1 to S10 

Tables S1 to S4 

References (60-119) 

 

 

 

  

 

mailto:t.a.stoerk@lse.ac.uk


1 Materials and methods

1.1 Methane scenarios

We construct CH4 action scenarios that are anchored on achievement of the Global Methane Pledge’s

30% emissions reduction below the 2020 level in 2030, followed by continued CH4 abatement post-

2030. Reducing CH4 emissions by 30% between 2020 and 2030 is in line with CH4 emissions

reductions in many 1.5◦C scenarios with low/no overshoot. Therefore, we build our CH4 action

scenarios using raw scenario data from the IAMC 1.5◦C Scenario Explorer [58]. Although the

achievement of the Global Methane Pledge itself could be simulated as a simple linear reduction

of 30% from 2020, IAM-based scenarios provide an internally consistent projection of what further

emissions reductions might follow after 2030. The range of 1.5◦C scenarios with low/no overshoot

also enables us to quantify uncertainty across IAMs in technical CH4 abatement potential and in

policy implementation (within the context of CH4 action beyond current trends). Only models

producing global emissions of CO2, CH4, N2O and SO2 are chosen, so that a consistent set of

inputs is provided to META (SO2 is an input to META’s Indian Summer Monsoon module).

1.5◦C scenarios with low/no overshoot from the IAMC 1.5◦C Scenario Explorer are first har-

monized to produce identical emissions in 2020. The central CH4 scenario is then the average of

34 1.5◦C scenarios with low/no overshoot that achieve approximately a 30% cut in CH4 emissions

on the 2020 level in 2030. The low/high CH4 emissions scenarios are created from 19 and 5 of

the 1.5◦C scenarios with low/no overshoot, respectively, which project CH4 emissions reductions in

2030 that are higher/lower than the Global Methane Pledge target. CH4 emissions post-2100 are

projected based on SSP1-1.9.

Baseline CH4 emissions, and background emissions of CO2 and other GHGs/radiative forcing

agents are obtained from the SSP database [60] and the IAMC 1.5◦C Scenario Explorer. These are

also harmonized to give identical emissions between 2010 and 2020. To extend baseline/background

emissions data beyond 2100, we use the extended SSP scenarios of [61, 62].

We abstract from the positive feedback on natural CH4 emissions from wetlands, which in-

creases as temperatures rise following the discussion in [2]. Other feedbacks, including from melting

permafrost and atmospheric chemistry, are included in META as described below. Regarding the

wetland feedback, according to [3], this feedback is expected to be 0.03 +/- 0.01 W/m2/◦C, com-

pared with the roughly 2.6 W/m2 forcing required to increase transient warming by 1◦C. Accounting

for an additional positive feedback from atmospheric CO2 on wetland CH4 emissions increases the
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range of the overall estimated feedback to 0.01-0.16 W/m2/◦C, still relatively small. [63] provide

a more recent empirical estimate of the wetland feedback of 0.08 W/m2/◦C. The strength of the

feedback can also be constrained using paleoclimate data. For example, the CH4 change during the

transition between the last glacial maximum and the Holocene was a response to climate change.

The feedback can be estimated based on the CH4 change of ∼390-750 ppb over this time that ac-

companied a global mean warming of ∼6◦C [64], leading to a direct forcing of 0.3 W/m2, which is

increased by ∼36% to 0.4 W/m2 when accounting for the chemical responses of ozone, stratospheric

water vapor and CO2 to CH4 emissions [65]. The feedback in this case is thus 0.07 W/m2/◦C,

similar to the other estimates.

1.2 META IAM overview and settings for this study

META (Model for Economic Tipping point Analysis) is a modular IAM designed to estimate the

social cost of GHGs. It was designed primarily to incorporate various climate tipping points, each

as a module. The original set of tipping point modules replicated studies in the climate economics

literature, with the aim of providing a structural meta-analysis [40]. META can be run without

tipping points, in which case it functions as a standard IAM of the social-cost type (other social-cost

IAMs include DSCIM, https://github.com/ClimateImpactLab/dscim-epa, and GIVE, https:

//github.com/rffscghg/MimiGIVE.jl). The model is described in full detail in Section 3 and is

publicly available at https://github.com/openmodels/META. In brief, META’s main modules are:

• Emissions and socio-economic scenarios: these are exogenous and are normally taken

from the Shared Socio-Economic Pathway (SSP) database. Emissions scenarios are extended

beyond 2100 as in [40], while we developed a method of extending the corresponding paths for

economic growth and population that is described in Section 3. For this study, we developed

bespoke CH4 scenarios, as explained above.

• GHG cycles and temperature change: GHG emissions drive atmospheric concentrations

and the change in global mean temperature using the FaIR simple climate model, version 2.0.0

[42]. CO2 and CH4 are modeled explicitly, while other GHGs and forcing agents are handled

via an exogenous radiative forcing term. An important feature of FaIR is that GHG cycles

are state-dependent. In the case of CH4, this is calibrated on the dependency between atmo-

spheric CH4 removal and the atmospheric CH4 concentration, tropospheric air temperature
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and water vapor mixing ratio.

• Country-level temperature damages: changes in global mean temperature are down-

scaled to the national level using a statistical relationship based on CMIP6 data. AMOC

slowdown also modulates the relationship between global and national temperatures. Changes

in national mean temperature are then fed into nonlinear, country-specific damage functions

calibrated on empirical evidence from [53].

• Country-level damages from sea-level rise (SLR): changes in global mean temperature

drive global mean SLR via thermal expansion and melting of small ice caps and glaciers, plus

additional SLR from the Antarctic and Greenland Ice Sheet tipping point modules. Global

mean SLR is then mapped directly onto damages at the country level using a set of country

SLR damage functions calibrated on high-resolution coastal impact modeling [66]. Uncertainty

about how well countries will adapt to SLR is incorporated in the stochastic parameters of

the SLR damage functions.

• Flood and drought due to the Indian Summer Monsoon: in India, GDP is additionally

affected by variability of the summer monsoon, which determines the occurrence of drought

or flood via a tipping point module.

• Persistence of damages: we adopt a flexible specification allowing damages from temper-

ature and SLR (and in India from the summer monsoon) to affect either the short-term level

of GDP or long-term growth prospects. A persistence parameter modulates the extent to

which GDP in a given year depends on actual, post-damage GDP in the previous year, or

potential GDP in the previous year according to the exogenous growth scenario. Complete

dependence on the former corresponds to perfect persistence (pure growth damages), while

complete dependence on the latter corresponds to zero persistence (pure levels damages).

• Non-market damages: to these sources of market damages can be added non-market dam-

ages using a set of country-level non-market damage functions from the MERGE IAM [67]
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with an updated calibration on [54]. Non-market damages capture climate damages that af-

fect welfare through channels not governed by market activity and depend on both income

and temperature. Examples for such channels include mortality, as well as loss of species and

biodiversity.

• Consumption, welfare and the social cost of GHGs: National GDP per capita is con-

verted into national consumption per capita using country-specific exogenous savings rates,

estimated using World Bank data on savings over the period 2005 to 2015. Consumption

per capita is converted into utility per capita using an isoelastic utility function and this is

aggregated into social welfare using a utilitarian social welfare functional. To estimate the

social cost of a GHG, we run the model twice with consistent assumptions, the second time

with an additional pulse of emissions in the year 2020. The social cost is the difference in

welfare between the two runs per ton of GHG emissions, converted into dollar equivalents.

• Tipping point modules: META incorporates eight tipping point modules: (1) the PCF

results in additional CO2 and CH4 emissions, which flow back into their respective cycles;

(2) dissociation of ocean CH4 hydrates results in additional CH4 emissions, which flow back

into the CH4 cycle; (3) Arctic sea ice loss (also known as the surface albedo feedback) results

in changes in radiative forcing, which directly affect warming; (4) dieback of the Amazon

rainforest releases CO2, which flows back into the CO2 cycle; disintegration of the (5) AIS

and (6) GIS increases SLR; (7) slowdown of the AMOC modulates the relationship between

global mean temperature and national mean temperature; (8) variability of the Indian summer

monsoon directly affects GDP per capita in India. Thus, tipping points do not directly cause

damages (except for (8)). Instead, they affect temperatures or SLR, which in turn cause

damages.

For most of the results in this study, we run META with the following specific settings:

• Discounting: based on the expert survey results of [50], we set a pure rate of time preference

ρ = 0.5% and an elasticity of marginal utility of consumption η = 1.05. The former enters

the social welfare function, the latter the utility function – welfare changes are calculated

directly – but as an approximation one can think of the consumption/money discount rate as

r = ρ+ ηg, where g is the growth rate of consumption per capita.
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• Persistence of damages: this is calibrated to 0.25 (75% weight on post-damage GDP in

the previous year) based on new results from macro-economics [68]. This implies a relatively

high degree of damage persistence.

• Tipping points: the surface albedo feedback is switched on in all cases including the no-

tipping-point runs, as the surface albedo feedback is conceptually part of the climate’s base

response to forcing. Runs with tipping points on include all featured tipping points except

the dissociation of ocean CH4 hydrates, which are only used for sensitivity analysis given its

low likelihood.

• Non-market damages: these are switched on.

We run Monte Carlo simulations with a sample size of 1000 to ease computation. As shown in

Section 2, our testing of META found that calculations are robust to use of different random seeds

and to increasing the sample size by an order of magnitude.

1.3 Abatement costs and air quality co-benefits from the Global Methane As-

sessment

We constructed four streams of undiscounted abatement costs from 2020 to 2050 by aggregating

the sectoral estimates of [43] and IIASA [10]. We estimate a range of costs for both the EPA and

IIASA data by varying the contribution of behavior changes towards total emissions abatement

– the more is achieved by behavior change, the less is required of technical abatement measures,

particularly those at high marginal cost. For a fifth scenario/cost stream, we used the methane

marginal abatement cost (MAC) curve estimated by [8] (specifically their 2050 MAC curve). We

fit an exponential function MAC(∆E) = a
(
eb∆E − 1

)
to the data reported in [8], where ∆E is the

percentage change in methane emissions relative to the baseline. The fitted parameter values are

a = 0.0184 and b = 0.2011 for units of 2010 US dollars per tonne of methane. We then integrate

the MAC function over the methane emissions reductions given by our central methane scenario to

generate total abatement costs.

We similarly constructed streams of undiscounted air quality co-benefits using data from the

Global Methane Assessment [7] on premature deaths due to respiratory and cardiovascular diseases

caused by tropospheric ozone formation attributable to methane. These air quality co-benefits

are available at the country level for the year 2018. While methane is a well-mixed greenhouse

gas, so that emissions from any location have virtually identical impacts on radiative forcing, the
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tropospheric ozone response to methane is highly spatially variable. That photochemical response

depends upon levels of nitrogen oxides (NOx) and sunlight, as well as temperatures and levels

of other volatile hydrocarbons and carbon monoxide. The health impacts of the ozone changes

are in turn highly sensitive to population distributions and underlying health risks for specific

populations. This leads to very distinct geographical patterns of methane-driven ozone-attributable

health burdens.

Despite the highly inhomogeneous response to a specific methane change, population-weighted

ozone changes have been shown to be extremely linear across a range of methane increases and

decreases at the national level [7]. Our use of national level impacts therefore captures a large

part of the heterogeneity of the response to methane emissions changes (although within-country

heterogeneity adds complexity beyond the scope of our analysis). We note that the ozone response

does exhibit some sensitivity to background nitrogen oxide conditions, but this is a second-order

effect [7].

We aggregate these to the global level using assumptions about the value of a statistical life

(VSL) and its income elasticity taken from the Global Methane Assessment [7], and extrapolate

over the period 2020 to 2050 assuming a constant economic value of avoided health damages per

tonne of methane emitted. This extrapolation is conservative in the sense that it does not account

for an increasing VSL over time due to rising incomes in the socioeconomic scenarios we consider

in this study.

1.4 Tipping point intensity indicators

As a common measure of the extent to which different climate tipping elements have ‘tipped’, we

compute an indicator of tipping point intensity on a scale from zero to one. Zero corresponds to

tipping elements whose state has been completely unaltered by climate change, and one corresponds

to elements that have fully transitioned to an alternative state (as such it is similar to the tipping

state variable in 48). An indicator value of 0.5 means half-transformed in the case of process-based

models (e.g., the Ice Sheets are half-melted), or a hazard event that is 50% likely in the case of the

survival-analysis models.

For the cryospheric tipping points (PCF, AIS and GIS), tipping intensity is mapped onto the

proportion of ice mass that has melted. For PCF and GIS, the tipping point modules include a
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variable that represents this directly:

IPCF(t) = 1 − PFextent(t), (1)

IGIS(t) = 1 − VGIS(t), (2)

where PFextent(t) is the area of permafrost remaining at time t relative to time zero, and VGIS(t)

is the volume of the GIS expressed as a fraction of the initial volume. Both have a range of zero

to one. For AIS, there is no single variable describing the proportion of initial ice volume that has

melted. There is a function mapping subsurface ocean temperatures into a flow of basal melting,

and a function mapping basal melt into SLR increase. [69] provide a definition of AIS tipping in

terms of SLR, which we can instead use to define the extent to which the AIS has tipped. Note

that [69] only consider the West AIS, therefore we constrain our analysis to the four regions of West

Antarctica accordingly. In their questionnaire, [69] define WAIS tipping as a state where “West

Antarctica becomes an archipelago when discharge exceeds accumulation for warmer temperatures”,

and associate this with “4-6 meters of total sea level rise at potentially high rates”. Accordingly, we

define WAIS tipping as

IWAIS(t) = 1/5 [S(Ross, t) + S(Amundsen, t) + S(Weddell, t) + S(Peninsula, t)] . (3)

The sum of SLR over the four regions of the WAIS is divided by 1/5 because the final state of the

system as defined by [69] is 5m SLR (midpoint of the 4-6m range).

For ISM, tipping intensity is a function of the strength of the Walker circulation, a key deter-

minant of ISM activity:

IISM(t) = min [10000 [1 −mNINO3.4(t)/mNINO3.4(0)] , 1] , (4)

where mNINO3.4(t) is the strength of the Walker circulation, i.e., the Pacific Ocean atmospheric

circulation, in May.

For the tipping points modeled using survival analysis (AMAZ and AMOC), tipping intensity

can be more straightforwardly interpreted as the probability of occurrence of the hazard event,

corresponding to the indicator variables IAMAZ(t) and IAMOC(t), respectively. Section 3 provides

further detail on how the variables on the right-hand sides of the above equations are determined.
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2 Supplementary text

2.1 Results for alternative background scenarios

2.1.1 Methane action scenarios compared to alternative background scenarios

Figure S1 plots methane emissions on the methane action scenarios compared to alternative back-

ground scenarios (the main text uses SSP2-4.5, representative of a current trends and policies

storyline). The left panel shows that mean methane emissions across 1.5◦C scenarios with low or

no overshoot from the IAMC 1.5◦C Scenario Explorer fall within the range of our methane action

scenarios, but the central methane action scenario actually has slightly higher emissions than this

mean (4% higher in 2030). This just serves to put the Global Methane Pledge in the context of

1.5◦C scenarios with low or no overshoot. The right panel compares the methane action scenarios

with an SSP3-7.0 background scenario, which is intended to be representative of no policies. The

central methane action scenario reduces emissions by 37% in 2030 relative to SSP3-7.0 (high-low

range 28-52%), 60% in 2050 (range 51-72%) and 79% in 2100 (range 74-85%). Naturally these

constitute larger cuts than if the background scenario is SSP2-4.5.

Figure S1: Methane emissions on the methane action scenarios compared to mean emis-
sions across 1.5◦C scenarios with low/no overshoot from the IAMC 1.5◦C Scenario
Explorer (left panel) and SSP3-7.0 (right panel). ’Methane action - high’ and ’Methane
action - low’ describe high and low methane emissions outcomes to capture policy uncertainty.
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2.1.2 Temperature effect of methane action scenarios against an SSP3-7.0 background

scenario

Figure S2 plots the reduction in global mean temperature due to the methane action scenarios,

relative to an SSP3-7.0 background scenario. The central methane action scenario reduces warming

by 0.03◦C in 2030, 0.20◦C in 2050 and 0.53◦C in 2100. The range of uncertainty due to methane

scenario uncertainty is 0.16-0.26◦C in 2050. Temperature uncertainty conditional on the central

methane scenario is 0.13-0.29◦C in 2050, generated as in the main text by quantifying parametric

uncertainty in META using Monte Carlo simulation. Unlike the comparison with SSP2-4.5, tem-

perature reductions from methane action do not flatten out towards the end of the century, because

under SSP3-7.0 emissions keep increasing.

Figure S2: Reduction in global mean temperature due to methane action, relative to
SSP3-7.0. The shaded area is the 90% confidence interval of temperature outcomes conditional on
the central methane action scenario, based on parametric uncertainty in META sampled by 1000
Monte Carlo runs. Specification includes tipping points.
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2.1.3 Avoided damages and total economic benefits of methane action relative to an

SSP3-7.0 background scenario

Figure S3 plots the total economic benefits of the methane action scenarios over the rest of this

century, relative to an SSP3-7.0 baseline. The top panel shows total climate damages expressed as

a percentage loss in consumption relative to a no-climate-change counterfactual. The bottom panel

10



shows the gross monetary value of avoided damages, i.e., the benefits of methane action. Under the

SSP3-7.0 background scenario, climate change causes damages equivalent to a 1.8% loss in global

consumption in 2030, rising to 3.8% in 2050 and 10.2% in 2100 (since saving rates are fixed in

META, these percentages also apply to global GDP). Focusing on 2050, the central methane action

scenario reduces damages by 0.5 percentage points, from 3.8% of global consumption to 3.3%. In

relative terms, damages are 15% lower. In absolute money terms, this reduction in damages – the

gross benefit of global methane action – equates to a little over $2 trillion per year in 2050 (in

2020 prices), or double the economic benefits of methane action under SSP2-4.5. The range of

uncertainty across the high-low methane scenario variants is a 0.4-0.7 percentage point reduction

in damages. The range of uncertainty (90% confidence interval) conditional on the central methane

scenario is larger than this, running from 0.2 to 1.0 percentage points. This comes from climate

and economic parametric uncertainties.

Figure S3: Reduction in total climate damages due to methane action, relative to SSP3-
7.0. Top panel shows total climate damages expressed as a percentage loss in consumption relative
to a no-climate-change counterfactual. Bottom panel shows the gross monetary value of avoided
damages, i.e., benefits of methane action. The shaded area is the 90% confidence interval, based on
parametric uncertainty in META sampled by 1000 Monte Carlo runs. Specification includes market
damages and tipping points.
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2.1.4 Distributional effects of methane action

Firstly, we test whether the distributional effects of methane action differ when we assume a different

background scenario. To do so, Figure S4 disaggregates climate damages in 2050 avoided by the

central methane action scenario relative to an SSP3-7.0 baseline scenario into World Bank country

11



income groups. Within each country income group, damages vary, and the four distributions are

overlapping. Nonetheless, avoided damages tend to be greater in low- and lower-middle income

countries relative to upper-middle and high-income countries. With the exception of low-income

versus lower-middle income countries, group differences across countries are statistically significant

at least at the 10% level for any pairwise comparison of World Bank income groups. This inequality

result is similar to our main analysis with an SSP2-4.5 background scenario.

Figure S4: Change in climate damages in 2050 by central methane action scenario,
disaggregated by World Bank country income group. Background scenario is SSP3-7.0.
Violin plots combine a kernel density plot and a box plot. Box plot contains estimates for the
median (white dot), interquartile range (black box) and +/- 1.5 times the interquartile range (range
of thin dark gray line). Note negative values signify avoided climate change damages. Specification
includes market damages and tipping points.
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-2 -1 0 1 2
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Next, we ask whether the distributional effects of methane action alone differ from the dis-

tributional effects of methane action combined with strong action on carbon dioxide. To do so,

we make use of the 1.5◦C scenario, which models a combination of ambitious mitigation of both

gases. Figure S5 disaggregates climate damages in 2050, avoided by moving to the 1.5◦C scenario

from the SSP2-4.5 baseline scenario, into World Bank country income groups. As can be seen,

the relative inequality effect of methane and carbon dioxide action combined is nearly identical to

methane action alone. In other words, both types of climate policy are equally pro-poor. In absolute

terms, methane and carbon dioxide action combined deliver about four times the climate benefits

of methane action alone, however.
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Figure S5: Change in climate damages in 2050 by comprehensive climate action, disag-
gregated by World Bank country income group. Comparison is for SSP2-4.5 vs. the 1.5◦C
scenario. Violin plots combine a kernel density plot and a box plot. Box plot contains estimates
for the median (white dot), interquartile range (black box) and +/- 1.5 times the interquartile
range (range of thin dark gray line). Note negative values signify avoided climate change damages.
Specification includes market damages and tipping points.
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Lastly, Figure S6 shows the distributional effects of methane action including both market and

non-market damages. The background scenario is SSP2-4.5. The effect of adding non-market

damages to the analysis is broadly speaking to shift all the distributions to the left (higher avoided

damages). The ordering of avoided damages across country-income groups is preserved, but because

avoided non-market damages are relatively higher in high-income countries, the differences between

groups are no longer statistically significant. This result derives from the positive income elasticity

of willingness to pay in META’s non-market damages function.
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Figure S6: Change in climate damages (market and non-market) in 2050 by central
methane action scenario, disaggregated by World Bank country income group. Back-
ground scenario is SSP2-4.5. Violin plots combine a kernel density plot and a box plot. Box plot
contains estimates for the median (white dot), interquartile range (black box) and +/- 1.5 times
the interquartile range (range of thin dark gray line). Note negative values signify avoided climate
change damages. Specification includes market and non-market damages, and tipping points.

2.1.5 Effect of methane action on climate risk and tipping points relative to an SSP3-

7.0 background scenario

Figure S7 reports the effect of methane action on climate risk. Figure S7 shows probability dis-

tributions for global climate damages in 2050, with and without methane action, and with and

without tipping points. The baseline emissions/socio-economic scenario for these plots is SSP3-7.0.

Methane action reduces climate risks, shifting the probability density function of damages in 2050

to the left (down). Mean damages fall from 3.8 to 3.3% as mentioned above, and the standard

deviation of damages decreases from 1.6 to 1.5. Methane action reduces VaR at the 95% confidence

level from 7.0 to 6.1%, and at the 99% confidence level from 8.4% to 7.6%. CVaR at the 95%

confidence level is reduced from 8.1% to 7.0%, and at the 99% confidence level from 9.6% to 8.5%.

Thus, methane action reduces climate risk in general, including tail risk. Without tipping points,

the effects of methane action are very similar but if anything they are slightly larger in relative

terms, indicating that methane action is slightly more effective in reducing damages from other

channels. These results mirror those in our main analysis.

Figure S8 plots the effect of the central methane action scenario on tipping point intensity,
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Figure S7: Probability density functions for climate damages in 2050 with methane
action (red) and without (grey), relative to an SSP3-7.0 baseline. Left panel includes
tipping points, right panel omits tipping points. Specification includes market damages. The height
of each bar corresponds to the frequency of observations in the corresponding bin. Table reports
associated distribution statistics (% of consumption lost in 2050 due to climate change).
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Global climate damages in 2050 (% of consumption lost)

0 2 4 6 8 10
Global climate damages in 2050 (% of consumption lost)

Mean Std. dev. VaR 95% VaR 99% CVaR 95% CVaR 99%
Tipping points

Baseline 3.8 1.6 7.0 8.4 8.1 9.6
Methane action 3.3 1.5 6.1 7.6 7.0 8.5

No tipping points
Baseline 3.4 1.5 6.3 8.0 7.5 8.8

Methane action 2.9 1.4 5.5 6.9 6.5 7.7

relative to an SSP3-7.0 baseline. Larger reductions in tipping point intensity are estimated for all

six tipping points, compared with an SSP2-4.5 background scenario. Higher background emissions

later in the century on SSP3-7.0 can be seen in most of the temporal profiles of tipping, where

tipping intensity is highest in 2100 (except AMOC).
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Figure S8: Bar charts depicting the percentage change in tipping point intensity due to
methane action. Background emissions scenario is SSP3-7.0. Tipping point indicators
are described in the methods section.
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2.2 Additional analysis of SC-GHGs

2.2.1 Global SC-CH4 and SC-CO2 estimates over time

Table S1 reports global SC-CH4 and SC-CO2 estimates for different years in which a marginal

emissions pulse is introduced. We report estimates both with and without tipping points. For an

emission in 2020, the mean SC-CH4 including tipping points is $7,381.5/tCH4, rising to $9988.0

for an emission in 2030, $13823,5 for an emission in 2050 and $27043.6 for an emission in 2100.

The corresponding mean SC-CO2 is $274.3/tCO2 in 2020, rising to $340.7 in 2030, $434.7 in 2050

and $646.8 in 2100. The SC-CH4 grows at a compound real annual rate of 1.6% between 2020 and

2100, while the SC-CO2 grows at a compound real annual rate of 1% over the same period. Tipping

points add 17% to the SC-CH4 in 2020 and 13% in 2100. They add 12% to the SC-CO2 in 2020 and

6% in 2100. These are lower than comparable estimates of the contribution of tipping points in [40]

due to the exclusion of the ocean methane hydrates tipping point compared to the previous paper.

However, it remains important to emphasise that the set of tipping points synthesised in META is

not comprehensive, being constrained by what has previously been modelled in the literature, and

16



some tipping modules included in META omit impact channels that are likely to be important. See

[40] for further discussion.

Table S1: Global SC-CH4 and SC-CO2 estimates for pulse years from 2020 to 2010.
Specification includes non-market damages, damage persistence ϕ = 0.25, PRTP = 0.5% and EMUC
= 1.05. Estimates are based on a trimmed sample of 1000 Monte Carlo runs. Values reported are
in 2020 USD per ton of CH4 and CO2, respectively. Ratio depicts SC-CH4/SC-CO2 for comparison
with Global Warming Potential.

With tipping points Without tipping points
Pulse year SC-CO2 SC-CH4 Ratio SC-CO2 SC-CH4 Ratio

2020 308.5 7381.5 23.9 274.3 6306.5 23.0
2030 382.9 9988.0 26.1 340.7 8656.6 25.4
2040 444.8 12310.1 27.7 395.8 10669.8 27.0
2050 484.5 13823.5 28.5 434.7 12126.1 27.9
2080 611.9 21229.6 34.7 562.9 18497.2 32.9
2100 688.1 27043.6 39.3 646.8 23872.3 36.9

2.2.2 Sensitivity of global SC-CH4 and SC-CO2 estimates

Table S2 reports results of testing the sensitivity of the 2020 SC-CH4 and SC-CO2 to different

assumptions regarding the persistence of damages to output, exclusion of non-market damages, and

alternative values for the elasticity of the marginal utility of consumption and the pure rate of time

preference, which together imply a higher discount rate.

Table S2: Global SC-CH4 and SC-CO2 estimates for our preferred specification versus
estimates with lower damage persistence, excluding non-market damages, and with
alternative welfare parameters amounting to a lower discount rate. Preferred specification
includes non-market damages, damage persistence ϕ = 0.25, PRTP = 0.5% and EMUC = 1.05.
Estimates are based on a trimmed sample of 1000 Monte Carlo runs. Values reported are in 2020
USD per ton of CH4 and CO2, respectively.

SC-CH4 in 2020
Preferred spec Low persistence (φ = 0.5) Non-market damages off EMUC=1.5 and PRTP=0.01

Mean 7381.5 4511.6 6119.5 5756.3
Std dev 3076.9 2059.2 2451.4 2181.6

SC-CO2 in 2020
Preferred spec Low persistence (φ = 0.5) Non-market damages off EMUC=1.5 and PRTP=0.01

Mean 308.5 212.4 212.6 147.2
Std dev 121.9 91.8 81.8 54.2

Lowering the persistence of damages by increasing the parameter ϕ from our preferred, calibrated

value of 0.25 to 0.5 as in [40] lowers both SC-GHG estimates by around one third. This is consistent
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with other studies in the literature that have shown a large sensitivity of projected climate impacts

to the persistence of temperature damages [70, 71, 68].

Deactivation of META’s non-market damages module reduces the SC-CH4 by around one sixth

and the SC-CO2 by around one third. This effect is somewhat less than the importance of non-

market damage channels in DSCIM and GIVE – based on a 2030 emissions pulse, non-market

damages account for 50-75% of the SC-CO2 in these two models [34].

A higher discount rate lowers both social cost estimates. Given the relatively greater importance

of near-term warming from a methane pulse compared to a carbon dioxide pulse, raising the discount

rate reduces the SC-CH4 by less than the SC-CO2.

We test the consistency of our SC-CH4 estimates across Monte Carlo samples and robustness to

sample size. Computational constraints limit the sample size in our main analyses to 1,000. Here

we take ten separate samples of size 1,000, estimating the SC-CH4 for each sample, and then we

pool all ten samples plus the original sample to create a large sample of size 11,000.

Figure S9 reproduces the top panel of Figure 6 in the main text. As can be seen, the distribution

of our global SC-CH4 estimate for a 2020 pulse remains similar for different Monte Carlo seeds.

The original sample is depicted as the solid black line, while the ten alternative samples are shown

in light gray. The dashed black line shows the distribution of the global SC-CH4 pooled across all

eleven Monte Carlo seeds. Figure S9 therefore shows that an increase in the Monte Carlo sample size

by an order of magnitude does not change our estimate. Table S3 reports quantitative information

about the mean, standard deviation as well as minimum and maximum for each random seed as

well as for the pooled sample.
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Figure S9: Global SC-CH4 estimate for a 2020 emissions pulse across different Monte
Carlo seeds. Specification includes non-market damages, damage persistence ϕ = 0.25, PRTP
= 0.5% and EMUC = 1.05. Values reported are in 2020 USD per ton of CH4. Estimates are based
on a trimmed sample of 1000 Monte Carlo runs for different random Monte Carlo seeds. Solid black
line indicates original Monte Carlo seed, light gray lines indicate alternative random seeds, and
dashed black line indicates the distribution pooling across all Monte Carlo seeds, thus representing
a Monte Carlo sample of size 11,000.

0 5000 10000 15000 20000 25000

Original seed Pooled across MC seeds
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Table S3: Robustness of global SC-CH4 estimate for a 2020 emissions pulse to different
Monte Carlo seeds. Specification includes non-market damages, damage persistence ϕ = 0.25,
PRTP = 0.5% and EMUC = 1.05. Values reported are in 2020 USD per ton of CH4. Estimates are
based on a trimmed sample of 1000 Monte Carlo runs for different random Monte Carlo seeds. The
pooled sample represents the distribution pooling across all Monte Carlo seeds, thus representing a
Monte Carlo sample of size 11,000.

Random seed Mean Std. dev. Min. Max

Original seed 7381.5 3076.9 2150.6 18263.0

Alternative seed 1 7239.8 3244.9 1994.4 20002.8
Alternative seed 2 7346.7 3161.3 2040.2 20186.2
Alternative seed 3 7254.9 3100.8 2024.9 20031.6
Alternative seed 4 7429.9 3455.4 2143.4 23585.5
Alternative seed 5 7451.4 3130.4 2157.7 18386.4
Alternative seed 6 7161.9 3053.8 2259.4 20853.7
Alternative seed 7 7181.3 2888.8 2172.6 18837.3
Alternative seed 8 7428.7 3235.7 2394.2 21486.8
Alternative seed 9 7240.4 3101.3 1795.2 19005.1
Alternative seed 10 7277.1 3036.7 2063.1 18829.7

Pooled sample 7308.5 3138.2 1795.2 23585.5

2.2.3 National SC-CH4 estimates

Table S4 reports national SC-CH4 estimates as plotted in Fig. 6 in the main text. Tipping points

are included.

Table S4: National SC-CH4 estimates. Specification includes tipping points, non-market damages,
damage persistence ϕ = 0.25, PRTP = 0.5% and EMUC = 1.05. Estimates are based on a trimmed
sample of 1000 Monte Carlo runs. Values reported are in 2020 USD per ton of CH4.

ISO3 Name SC-CH4

AFG Afghanistan 0.7

AGO Angola 17.7

ALB Albania 1.1

ARE United Arab Emirates 116.0

ARG Argentina 46.4

ARM Armenia -0.4

ATG Antigua and Barbuda 0.7

Continued on next page

20



Table S4 – continued from previous page

ISO3 Name SC-CH4

AUS Australia 97.3

AUT Austria 1.5

AZE Azerbaijan 3.3

BDI Burundi 0.7

BEL Belgium 17.1

BEN Benin 2.6

BFA Burkina Faso 4.0

BGD Bangladesh 40.5

BGR Bulgaria 1.0

BHR Bahrain 20.0

BHS Bahamas 2.7

BIH Bosnia and Herzegovina -0.1

BLR Belarus -3.3

BLZ Belize 0.4

BMU Bermuda 0.5

BOL Bolivia 1.9

BRA Brazil 331.5

BRB Barbados 0.8

BRN Brunei 2.6

BTN Bhutan 0.1

BWA Botswana 3.1

CAF Central African Republic 0.5

CAN Canada -3.8

CHE Switzerland 2.0

CHL Chile 11.7

CHN China 535.5

CIV Côte d’Ivoire 8.4

CMR Cameroon 15.5

Continued on next page
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Table S4 – continued from previous page

ISO3 Name SC-CH4

COD Democratic Republic of the Congo 5.5

COG Republic of Congo 3.5

COL Colombia 42.8

COM Comoros 0.3

CPV Cape Verde 0.8

CRI Costa Rica 5.1

CYP Cyprus 3.7

CZE Czech Republic -0.6

DEU Germany 64.7

DJI Djibouti 0.5

DMA Dominica 0.3

DNK Denmark 13.6

DOM Dominican Republic 10.9

DZA Algeria 37.4

ECU Ecuador 10.0

EGY Egypt 153.8

ERI Eritrea 0.9

ESP Spain 94.1

EST Estonia -0.8

ETH Ethiopia 6.7

FIN Finland -5.9

FJI Fiji 1.1

FRA France 83.3

FSM Micronesia 1.0

GAB Gabon 3.3

GBR United Kingdom 112.2

GEO Georgia 0.3

GHA Ghana 12.4

Continued on next page

22



Table S4 – continued from previous page

ISO3 Name SC-CH4

GIN Guinea 3.3

GMB Gambia 0.9

GNB Guinea-Bissau 0.5

GNQ Equatorial Guinea 5.1

GRC Greece 25.9

GRD Grenada 0.3

GTM Guatemala 8.3

GUY Guyana 0.8

HKG Hong Kong 52.9

HND Honduras 3.2

HRV Croatia 2.0

HTI Haiti 1.6

HUN Hungary 2.7

IDN Indonesia 265.6

IND India 547.9

IRL Ireland 8.9

IRN Iran 135.6

IRQ Iraq 66.1

ISL Iceland -0.2

ISR Israel 17.5

ITA Italy 114.4

JAM Jamaica 4.6

JOR Jordan 8.8

JPN Japan 403.6

KAZ Kazakhstan -5.4

KEN Kenya 11.6

KGZ Kyrgyzstan -0.6

KHM Cambodia 4.9

Continued on next page
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Table S4 – continued from previous page

ISO3 Name SC-CH4

KNA Saint Kitts and Nevis 0.1

KOR South Korea 96.9

KWT Kuwait 37.2

LAO Laos 3.3

LBN Lebanon 14.6

LBR Liberia 0.9

LBY Libya 12.0

LKA Sri Lanka 22.6

LSO Lesotho 0.1

LTU Lithuania -1.0

LUX Luxembourg 0.7

LVA Latvia -0.6

MAR Morocco 28.2

MDA Moldova -0.1

MDG Madagascar 3.1

MEX Mexico 150.6

MKD Macedonia 0.1

MLI Mali 5.9

MMR Myanmar 21.9

MNE Montenegro 0.2

MNG Mongolia -2.6

MOZ Mozambique 4.7

MRT Mauritania 2.4

MUS Mauritius 3.0

MWI Malawi 1.9

MYS Malaysia 92.3

NAM Namibia 2.8

NER Niger 2.6

Continued on next page
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Table S4 – continued from previous page

ISO3 Name SC-CH4

NGA Nigeria 121.2

NIC Nicaragua 2.5

NLD Netherlands 173.0

NOR Norway -0.6

NPL Nepal 3.3

NZL New Zealand 14.3

OMN Oman 30.5

PAK Pakistan 100.5

PAN Panama 5.8

PER Peru 15.3

PHL Philippines 61.9

PLW Palau 0.1

PNG Papua New Guinea 1.9

POL Poland -3.5

PRI Puerto Rico 17.2

PRT Portugal 17.8

PRY Paraguay 5.5

QAT Qatar 32.4

ROU Romania 2.2

RUS Russia -105.7

RWA Rwanda 1.2

SAU Saudi Arabia 219.9

SDN Sudan 25.9

SEN Senegal 9.8

SLB Solomon Islands 0.2

SLE Sierra Leone 2.7

SLV El Salvador 4.8

SMR San Marino 0.1

Continued on next page
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Table S4 – continued from previous page

ISO3 Name SC-CH4

SRB Serbia 1.2

STP São Tomé and Príncipe 0.1

SUR Suriname 0.8

SVK Slovakia -0.2

SVN Slovenia 0.6

SWE Sweden -0.6

SWZ Swaziland 1.0

TCD Chad 3.6

TGO Togo 1.3

THA Thailand 144.8

TJK Tajikistan 0.0

TKM Turkmenistan 2.3

TLS Timor-Leste 0.8

TON Tonga 0.3

TTO Trinidad and Tobago 5.3

TUN Tunisia 31.9

TUR Turkey 38.0

TUV Tuvalu 0.0

TZA Tanzania 12.8

UGA Uganda 5.4

UKR Ukraine 0.1

URY Uruguay 4.6

USA United States 1111.5

UZB Uzbekistan 3.2

VEN Venezuela 54.0

VNM Vietnam 62.7

VUT Vanuatu 0.1

WSM Samoa 0.2

Continued on next page
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Table S4 – continued from previous page

ISO3 Name SC-CH4

YEM Yemen 14.3

ZAF South Africa 71.0

ZMB Zambia 4.8

ZWE Zimbabwe 3.7

2.3 Global Sensitivity Analysis

Here we give an overview of our application of Global Sensitivity Analysis (GSA) to assess the

drivers of variation in the social cost of CO2 (SC-CO2) and the social cost of methane (SC-CH4).

GSA is used across various fields, including environmental economics, climate science, and risk

assessment, to evaluate how uncertainty in model inputs propagates through to model outputs [72,

73]. Sensitivity analysis can help identify key drivers of uncertainty and prioritize areas for further

research or data collection, ultimately aiming to improve the robustness of policy recommendations.

We implement GSA using the GlobalSensitivity.jl package in Julia, employing multiple meth-

ods to ensure the robustness of our findings. These methods include the Efficient Algorithm for

Sensitivity Indices (EASI) [74], the Delta moment-independent method [75], and regression tech-

niques using both Pearson and Spearman correlation coefficients [76]. All of these methods rely

upon Monte Carlo simulations, which we produce under the same configuration as the default in

the main paper.

We perform 1000 Monte Carlo (MC) simulations for the SC-CO2 and SC-CH4. For each MC

simulation, we extract a total of 17 parameters describing the Antarctic Ice Sheet (AIS) tipping

point, 2 parameters for Amazon dieback, 2 for Atlantic Meridional Overturning Circulation (AMOC)

slowdown, 2 for dissociation of ocean methane hydrates (OMH) when applicable, 2 for the Surface

Albedo Feedback (SAF), 1 for Indian Summer Monsoon (ISM) weakening, 20 for tipping point in-

teractions, 2 representing climate sensitivity, and 1 for Sea Level Rise (SLR) damages. Additionally,

we include 2 parameters for temperature damages, although this uncertainty is not included in the

standard results.

Certain parameters are not directly read from the model but are derived through specified

calculations:
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• The AIS model is represented by regional β and δ coefficients, and by the R functions summed

according to
∑

tR(t− 2010), which is a sufficient statistic under a linear SLR ramp.

• For ISM, an exogenous estimate of P̄ is calculated using the same calculations as the normal

P̄ , but holding the probability of a wet day constant at the baseline probability and the

precipitation of a wet day constant at its baseline value.

• For OMH and AMOC, an exogenous “year of triggering” is generated by applying the uniform

probability values to the constant probability of triggering from 2010, and a second “year of

triggering” parameter is generated by using a probability 10% of this 2010 probability.

• Since the probability of Amazon Dieback starts at 0, we instead specify a probability of

triggering of 0.5%, but otherwise use the same procedure as for OMH and AMOC.

• Climate sensitivity is represented by the first and second difference of GMST in 2010 (prior to

the endogenous effects of tipping points) – so, T2010−T2009 and (T2010−T2009)−(T2009−T2008).

• The SLR damage coefficient parameter is
∑

i L(i, 2010)θ(i), across countries i with population

L(i), which is a sufficient statistic for SLR damages under the assumption of a log utility

function.

We use the GlobalSensitivity.jl package in Julia, which supports the following methods for GSA

when MC draws are already available:

• Efficient Algorithm for Sensitivity Indices (EASI);

• Delta moment-independent method;

• Regression methods using Pearson correlation or Spearman coefficient.

Each method provides a relative importance measure for the parameters considered.

Given that multiple parameters map on to individual sources of uncertainty (e.g., 17 AIS parame-

ters), we combine the importance measures using the sum of squared relative importance measures,

(
√∑

k r
2
k, for importance measure rk), which is more conservative in its assumptions about the

independence of these factors than a straight sum.

Finally, we normalize the resulting importance measures to sum to 1 for each method.

The results are shown in figure S10.
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Figure S10: Global Sensitivity Analysis on the SCC and SCCH4 in 2020, divided by
tipping point and climatic or damage parameters.

SCC Sensitivity Analysis SCCH4 Sensitivity Analysis
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3 META model description

This section provides a complete description of the META (Model for Economic Tipping point

Analysis) model, which is publicly available at https://github.com/openmodels/META. It largely

reproduces the description provided in [40], but includes the various updates since META-2021.

We have tagged the version of META used in this paper as META-2025 at https://github.com/

openmodels/META/releases/tag/META-2025.

Figures S11 and S12 provide an overview of the model structure. Figure S11 provides a schematic

diagram of the climate module. The inputs to the climate module are greenhouse gas (GHG)

emissions from exogenous scenarios; the output is the change in global mean surface temperature

(GMST). Three tipping points provide positive feedbacks from the increase in GMST to GHG

emissions (the permafrost carbon feedback, dissociation of ocean methane hydrates, and Amazon

rainforest dieback), while one provides a positive feedback from the increase in GMST to radiative

forcing (Arctic sea-ice loss/surface albedo feedback).

Figure S12 provides a schematic diagram of the damages/economic module. The input to

the damages/economic module is the change in GMST from the climate module. The output is

discounted utility/social welfare. Slowdown of the Atlantic Meridional Overturning Circulation

modulates the relationship between global and national mean temperature change. Disintegration

of the Greenland and Antarctic Ice Sheets increases sea level rise. Variability of the Indian summer

monsoon directly impacts GDP in India due to droughts and floods.
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Figure S11: Schematic diagram of the climate module. Blue boxes indicate variables; yellow boxes
indicate tipping point modules; orange boxes indicate other modules.

Figure S12: Schematic diagram of the damages/economic module. Blue boxes indicate variables;
yellow boxes indicate tipping point modules; orange boxes indicate other modules.
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3.1 Tipping point modules

3.1.1 Permafrost carbon feedback

Our model of the permafrost carbon feedback (PCF) is taken from [77]. This is a tractable model

that mimics in reduced form the physical-science literature quantifying permafrost carbon release

by simulating two stages: (i) permafrost thaw as a function of rising temperatures and (ii) decom-

position of thawed permafrost, leading to the release of CO2 or CH4. Kessler built the model for

incorporation in DICE and, although we don’t use DICE, the level of abstraction from the underly-

ing physical processes is well suited to our approach. Despite the level of abstraction, however, the

model retains enough structure to be directly calibrated on estimates reported in the underlying

literature.

In the first stage, near-surface permafrost thaw is a linear function of warming relative to time

zero:

PFextent(t) = 1 − βPF
[
∆TAT(t) − ∆TAT(0)

]
, (5)

where PFextent(t) ≡ PFarea(t)/PFarea(0), i.e., PFextent(t) is the area of permafrost remaining at time

t relative to time zero, ∆TAT is the global mean surface air temperature relative to pre-industrial,

and βPF is a coefficient representing the sensitivity of permafrost thaw to temperature, which Kessler

calibrated by regressing estimates of thaw on temperature from the literature. t = 0 in our model

is the year 2010.

The amount of carbon in freshly thawed permafrost at time t, CthawedPF, is then the product of

the total stock of carbon locked in the near-surface northern circumpolar permafrost region, CPF,

and the area of permafrost freshly thawed:

CthawedPF(t) = −CPF [PFextent(t) − PFextent(t− 1)] . (6)

Once thawed, the principal way in which carbon is released to the atmosphere is microbial de-

composition and this happens slowly. Some of the carbon is released as CO2 and some as CH4.

Kessler’s model divides the stock of thawed carbon into a passive reservoir that releases no carbon

and an active reservoir that decomposes exponentially and releases CO2 and CH4 in fixed propor-

tion. Therefore, cumulative CO2 emissions to the atmosphere from thawed permafrost, CCumPF,

are given by

CCumPF(t) =
t∑

s=0
CthawedPF(s) (1 − propPassive)

(
1 − e(−t−s)/τ

)
, (7)
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Table S5: PCF model parameter values

Kessler main Lower/upper Fit of Fit of
spec. bounds [78] [79]

β 0.172 0/1 0.066 0.085
CPF (GtC) 1035 885/1185 1160 1066
propPassive 0.40 0.29/0.51 0.37 0.41
τ (years) 70 0/200 31 66

where propPassive is the proportion of thawed permafrost in the passive reservoir and τ is the

e-folding time of permafrost decomposition in the active reservoir, which is multiple decades (see

below). The fluxes of CO2 and CH4 are respectively given by

CO2_PF(t) = (1 − propCH4) [CCumPF(t) − CCumPF(t− 1)] , (8)

CH4_PF(t) = (propCH4) [CCumPF(t) − CCumPF(t− 1)] , (9)

where propCH4 is the share of CH4 emissions in total carbon emissions.

We can directly reproduce the permafrost carbon emissions estimated by [77] just by imputing

her reported parameter values for βPF, CPF, propPassive, τ and propCH4 into Equations (5)-(9).

In addition, we use this model to fit the results of the two other papers contributed to the IAM

literature on the PCF, namely [78] and [79]. [78] coupled the PAGE09 IAM to the SiBCASA model

of the PCF. [79] developed a new version of the PAGE IAM called PAGE-ICE, which includes a

representation of the PCF calibrated both on SiBCASA and another PCF model called JULES. We

first obtain estimates of permafrost CO2 emissions from each paper as a function of temperature,

and then minimise the sum of squared residuals between these papers’ estimates and estimates from

Kessler’s model, using four of the free parameters in Kessler’s model, i.e. βPF, CPF, propPassive,

and τ , each parameter restricted to lie within physically plausible bounds. Table S5 reports the

various parameter values. Figure S13 shows the fit to cumulative CO2 emissions from [78] and

[79]. CH4 emissions for these two papers are obtained simply by using the fitted parameters in

combination with the fixed value of propCH4 from [77].
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Figure S13: Fit of cumulative permafrost CO2 emissions from [78], top panel, and [79], bottom
panel
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3.1.2 Ocean methane hydrates

There have been two studies of the economic cost of destabilization of ocean methane clathrates/hydrates.

The first is [80], who implemented what-if scenarios in PAGE09, releasing a pulse of CH4 emissions
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of fixed size and duration into the model at a given point in time. These scenarios were based on

the work of [81] on hydrates locked within subsea permafrost on the East Siberian Arctic shelf. [80]

implemented various scenarios. Most of their scenarios involved injecting 50GtCH4 in total over

periods of 10 to 30 years, starting at different times from 2015 to 2035.1 The other study is [82].

They implemented three what-if scenarios, in which pulses of CH4 emissions from the reservoir

of CH4 distributed globally on continental shelves and slopes were released in the FUND IAM.

These emissions pulses all commence in 2050 and comprise permanent flows of 0.2GtCH4 per year,

1.784GtCH4/yr and 7.8GtCH4/yr respectively.

In order to incorporate these studies in our analysis, their what-if scenarios need to be assigned

probabilities. To do this, we use the framework of survival analysis, treating each emissions pulse

as a hazard event and assigning it a hazard rate, i.e. the conditional probability that the event

will occur in a particular year, given the temperature in that year and that the event has not

occurred previously. This is both convenient, and conforms with the way some of the other studies

we synthesise treat tipping points, e.g., on Amazon rainforest dieback [83]. Once triggered, each

CH4 emissions pulse of given size lasts its pre-specified amount of time. In general, we can write

the flow of CH4 emissions from dissociation of ocean methane hydrates at time t, CH4_OMH(t), as

CH4_OMH(t) =
(

CH4_OMH
∆OMH

)
IOMH(t) ⇐⇒

t−1∑
s=0

CH4_OMH(s) < CH4_OMH, (10)

CH4_OMH(t) = 0 ⇐=
t−1∑
s=0

CH4_OMH(s) = CH4_OMH, (11)

where CH4_OMH is the pre-specified total amount of methane released, e.g., 50Gt in the case of

the main specification of [80], and ∆OMH is the duration of the release, e.g., 10 years. Applying

this formalism to [82], CH4_OMH/∆OMH ∈ {0.2, 1.784, 7.8} and total CH4 released from ocean

CH4 hydrates is bounded only by the product of CH4_OMH/∆OMH and the model horizon, i.e. the

inequality constraint in Equations (10) and (11) does not bind. IOMH(t) is an indicator function

taking a value of zero before the hazard event is triggered and one thereafter. In general, its

transition function is

IOMH(t) = f
[
IOMH(t− 1),∆TAT(t), ε(t)

]
, (12)

where ε(t) is an i.i.d. random shock. That is, in each period the value of IOMH depends on its

own value in the previous period, the current atmospheric temperature, and the random shock.
1They also injected a smaller pulse of 25GtCH4 between 2015 and 2025 in one scenario.
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Specifically, the probability transition matrix for IOMH(t) is

 1 − pOMH(t) pOMH(t)

0 1

 , (13)

where pOMH(t) is the probability that the CH4 emissions pulse is triggered in year t. This is given

by

pOMH(t) = 1 − exp
[
−bOMH∆TAT(t)

]
, (14)

where bOMH is the hazard rate.

In order to calibrate the hazard rate, we use the study of [84], which presents a global model of

CH4 hydrates on continental shelves and slopes and the release of CH4 as temperatures rise. Their

study shows the sensitive dependence of ocean CH4 release on a critical bubble volume fraction

threshold. That is, when ocean CH4 hydrates melt, it is uncertain whether the CH4 escapes the

ocean sediment into the ocean.2 Colder temperatures closer to the sea floor and chemical reactions

(anaerobic oxidation by bacteria and archaea) both effectively trap the CH4 from escaping. The

more CH4 is in bubbles, however, the more likely it is to escape. In the model of [84], the bubble

volume upon melting of the hydrates must exceed the critical bubble volume fraction in order for

the CH4 to be released. Calibrating the hazard rate on [84] means that we re-interpret [80] in the

context of the global reservoir of CH4 hydrates on continental shelves and slopes, rather than the

reservoir of CH4 locked in subsea permafrost in the Arctic region. This is justified, since other

research suggests a large release of CH4 from the Arctic subsea permafrost within the next two

centuries is extremely unlikely [85].3

According to [84], cumulative CH4 released in very long-run equilibrium upon 1◦C warming

varies hugely from about 10GtCH4 to 541GtCH4 for critical bubble fractions of 10% and 1% re-

spectively.4 Upon 3◦C warming the range increases to about 32-1084Gt. Moreover, [84] report

that there is next to no empirical evidence on the critical bubble fraction. In the absence of such

evidence, we try three alternative specifications of the probability distribution of equilibrium cumu-

lative CH4 release as a function of the critical bubble fraction (Table S6). The uniform distribution

is an application of the principle of insufficient reason. The triangular and especially the beta dis-
2There is further uncertainty about whether the CH4 that reaches the ocean bottom eventually escapes into the

atmosphere (it depends on aerobic oxidation of CH4 by bacteria in the water column), however this uncertainty is
thought to be smaller.

3Indeed, the scenarios in [80] were criticised at the time of publication for being unrealistic in the context of Arctic
subsea processes; see Nature volume 300, p529.

4Based on digitising Figure 7 in their paper.
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tribution are more conservative in the sense of assigning more probability mass to higher critical

bubble fractions and in turn lower equilibrium CH4 releases.

Irrespective of the critical bubble fraction, CH4 released from melting ocean hydrates is thought

to take a very long time to reach the atmosphere, much longer than permafrost carbon. Therefore,

in order to convert the equilibrium CH4 release into a transient release, we conservatively assume

a release rate of just 0.2%, implying an e-folding time of 500 years and approximately 3,000 years

for equilibrium to be reached [also see 84].

The procedure for calibrating the hazard rate bOMH has been modifed as part of the META

model update for this paper. For a given GMST scenario, the approach just described to represent

the modelling results of [84] gives us the probability of a cumulative CH4 release of given volume

in a given year. For example, on the mid-range RCP4.5 scenario of the Intergovernmental Panel on

Climate Change (IPCC), fed into our climate module excluding tipping points, the middle scenario

from [80] of a cumulative release of 50GtCH4 over 20 years from 2015 to 2035 has a probability of

24.4%, assuming a beta distribution over critical bubble fractions. The corresponding hazard rate

bOMH is then the value that, given GMST of 1.07◦C above pre-industrial in the initial release year

of 2015 (also on RCP4.5), triggers the 50GtCH4 release with 24.4% probability. In this example,

bOMH = 0.059. We follow the same procedure to assign hazard rates using the uniform and triangular

distributions, and apply it to different durations of emissions pulse investigated by [80], as well as the

scenarios in [82]. Table S6 reports all the estimated hazard rates. We prefer the beta distributions

except in sensitivity analysis, as they are more conservative.

37



Table S6: Calibration of OMH hazard rate, bOMH. Triangular distribution assumes modal critical
bubble fraction of 10%, supports of 1% and zero CH4 release. Beta distribution assigns cumulative
probabilities of 0.67, 0.9, 0.95, 0.99 and 1 to critical bubble fractions of 10%, 7.5%, 5%, 2.5% and
1% respectively.

uniform triangular beta

[80] 50GtCH4 by 2035 pOMH 95.3% 90.2% 24.4%
bOMH 0.648 0.491 0.059

[80] 50GtCH4 by 2025 pOMH 86.4% 8.9% 12.0%
bOMH 0.422 0.020 0.027

[80] 50GtCH4 by 2045 pOMH 97.7% 97.8% 33.0%
bOMH 0.801 0.811 0.084

[82] 0.2GtCH4/yr 2050-2200 pOMH 100% 100% 67.1%
bOMH 0.133 0.205 0.019

[82] 1.784GtCH4/yr 2050-2200 pOMH 99.7% 100% 52.4%
bOMH 0.096 0.131 0.013

[82] 7.8GtCH4/yr 2050-2200 pOMH 98.5% 99.2% 39.1%
bOMH 0.071 0.081 0.008

3.1.3 Amazon rainforest dieback

Dieback of the Amazon rainforest was included in the study of [83] as a carbon-cycle feedback.

This is the study we incorporate in our analysis. Naturally a wide range of other economically

important consequences of Amazon rainforest dieback are thereby excluded, including those on

biodiversity, ecosystems, and precipitation patterns. These have yet to be incorporated in any

economic modelling study, to the best of our knowledge.

As mentioned above, [83] model tipping points through survival analysis. In the case of Amazon

rainforest dieback, 50GtC is released over 50 years upon triggering the hazard event. Using parallel

formalism to ocean methane hydrates, CO2 emissions from Amazon rainforest dieback at time t,

CO2_AMAZ(t), are given by

CO2_AMAZ(t) =
(

CO2_AMAZ
∆AMAZ

)
IAMAZ(t) ⇐⇒

t−1∑
s=0

CO2_AMAZ(s) < CO2_AMAZ, (15)

CO2_AMAZ(t) = 0 ⇐=
t−1∑
s=0

CO2_AMAZ(s) = CO2_AMAZ, (16)

where CO2_AMAZ = 50GtC and ∆AMAZ = 50 years. The probability of the indicator function
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IAMAZ(t) transitioning from zero to one is

pAMAZ(t) = 1 − exp
[
−bAMAZ∆TAT(t) − 1

]
, (17)

where the hazard rate bAMAZ = 0.00163 in [83] is taken from the expert elicitation study of [69].

3.1.4 Greenland Ice Sheet

Our model of disintegration of the Greenland Ice Sheet (GIS) is based on [86], which follows an

approach conceptually similar to Kessler’s [77] PCF model by building a simple, reduced-form

process model of GIS disintegration for incorporation in DICE.5 The GIS model is calibrated on

results from the underlying literature modelling ice-sheet dynamics. At the heart of the GIS model

is the very long-run equilibrium relationship between atmospheric temperature and the volume of

the GIS. Assuming this is reversible, [86] specified

∆T ∗
GIS(t) = ∆TGIS_MAX [1 − VGIS(t)] , (18)

where ∆T ∗
GIS(t) is defined as the atmospheric temperature increase relative to initial temperature

that is associated with a particular degree of melting of the GIS in equilibrium and VGIS(t) ∈ [0, 1] is

the volume of the GIS expressed as a fraction of the initial volume.6 In Nordhaus’ main specification,

Eq. (18) was calibrated on paleoclimatic data from [87], which gives ∆TGIS_MAX = 3.4 and implies

that the GIS is fully melted in equilibrium when the global mean surface temperature is 3.4◦C above

pre-industrial. If [88] is used for calibration instead, ∆TGIS_MAX = 1.8.7 An alternative, cubic

specification of the equilibrium temperature-volume relationship allows for hysteretic behaviour.

Fitted on [87], this is given by

∆T ∗
GIS(t) = ∆TGIS_MAX − 20.51VGIS(t) + 51.9 [VGIS(t)]2 − 34.79 [VGIS(t)]3 . (19)

Nordhaus [86] showed that the change in specification makes little difference on the optimal emis-

sions path, which involves relatively limited warming, but can make a difference on high-emissions

scenarios.
5The resulting model is called DICE-GIS and builds on DICE-2016R2.
6[86] also reports runs in which T ∗

GIS(t) = TGIS_MAX [1 − VGIS(t)]0.5 and finds the results are very similar.
7Noting that the melt rate coefficient βGIS below also needs to be recalibrated to -0.0000088 to fit [88].

39



The difference equation for VGIS(t), i.e. the GIS melt rate, can be written as

VGIS(t) − VGIS(t− 1) = βGISsgn
[
∆TAT(t− 1) − ∆T ∗

GIS(t− 1)
]

×

×
[
∆TAT(t− 1) − ∆T ∗

GIS(t− 1)
]2
VGIS(t− 1)0.2, (20)

where βGIS = −0.0000106 based on regression analysis of estimates from [88].8 The basic idea

embodied in Eq. (20) is that melting of the GIS depends on the difference between the actual

atmospheric temperature and the equilibrium GIS temperature, as well as the volume of the GIS

at the time.

Sea level rises linearly in response to GIS melt,

SLRGIS(t) = 7 [1 − VGIS(t)] , (21)

where SLRGIS is defined relative to the year 2000. This implies that complete disintegration of the

GIS would increase global mean sea level by 7 metres.

3.1.5 Antarctic Ice Sheet

In the latest version of META, melting of the Antarctic Ice Sheet (AIS) is based on a module

developed by [41]. This takes a process-based approach. The contribution of the AIS to SLR is

divided into the surface mass balance (SMB) contribution and the dynamic contribution. SMB is

the balance of surface mass accumulation (precipitation) and ablation (melting) on the ice sheet.

Dynamic contributions come from the physical transportation of grounded ice into the ocean through

glacier flow. Once afloat, this ice contributes to SLR through the displacement of water. Dynamic

contributions are much more important than SMB on the AIS [89].

SMB is modelled using a simple, adjusted linear relationship between SMB and global mean

temperature change. The unadjusted annual mass change ∆SMB is given by

∆SMB = γ (t− t0)−0.1 ∆A(t), (22)

where t0 is 2010 and γ = 7.95mm/yr [90]. ∆A(t) is the change in continental-scale accumulation
8This corresponds with Nordhaus’ [86] reported value per five years divided by 5 to bring it into line with our

annual time step, then divided by 100 given that we define VGIS(t) as a fraction.
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from 2010, which is given by

∆A(t) = φω
[
∆TAT(t) − ∆TAT(0)

]
, (23)

where φ is a temperature scaling coefficient of 1.2 that converts ∆TAT(t) into continental-scale

temperature change based on the modelling of [89], and ω is the change in continental accumulation

per degree of Antarctic warming, estimated by [90] at approximately 5 +/- 1% per degree warming.

We calibrate a normal distribution with a mean of 5% and a standard deviation of 0.4 percentage

points.

Equations (22) and (23) permit estimation of the snowfall-induced mass gain for any scenario

of global mean temperature change, without needing to rely on runs of a complex ice sheet model.

However, [90] only analysed the relationship for continental-scale warming of up to 5◦C above pre-

industrial and temperatures could increase to the extent that SMB in Antarctica turns negative.

[89] report that the SMB of the ice sheet will turn negative at approx. 7◦C warming. To account

for this, we model an evolving adjustment factor based on a generalized logistic function:

Adjustment(t) = K − ∆SMB(t)(
C +Qe−B(t))1/V

, (24)

where K, C, Q and V are constants, and B(t) =
[
∆TAT(t) − 6.75

]
. K is calibrated so that the

SMB contribution approaches a maximum of 8mm/yr at very high temperatures. This value follows

the prognosis from [89] that, above c. 7◦C warming, the AIS is committed to losing 70% of its mass

via the surface elevation feedback. Seventy percent of AIS mass is equivalent to c. 40m of SLR and

taking a rapid deglaciation of approximately 5,000 years yields a maximum of 8mm/yr SLR.

Combining (22) and (23) with the adjustment factor and cumulating over time yields the ad-

justed total mass change:

ŜMB(t) =
t∑

s=0

∆SMB(s) + K − ∆SMB(s)(
C +Qe−B(s))1/V

 . (25)

Dynamic contributions to SLR from the AIS are modelled using the reduced-form model of

[59], which is designed to emulate basal ice shelf melting and the resulting contribution of the

AIS to SLR in 16 state-of-the-art ice sheet models. The five major ice basins on the continent

are modelled separately: East Antarctica, the Ross Sea, the Amundsen Sea, the Weddell Sea, and
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the Antarctic Peninsula. This is because the dynamic discharge of one basin minimally affects the

dynamic discharge of another. The first step is to translate ∆TAT into subsurface oceanic warming

at the mean depth of the ice shelf base in each of the five basins:

∆T0(r, t) = β(r)∆TAT (t− δ(r)) . (26)

[59] derived the scaling coefficients β(r) and time-delays δ(r) from 19 CMIP5 models. Each region

of Antarctica thus has 19 possible pairs of scaling coefficients and time delays, drawn at random

with equal probability. If t = 2050 and δ(r) = 30 years, for example, then the input to Equation

(26) is ∆TAT in 2020.

The second step is to map subsurface ocean warming into enhanced basal ice shelf melting:

∆M(r, t) = λ∆T0(r, t), (27)

where the basal melt sensitivity parameter λ is randomly chosen from a uniform distribution with

lower and upper bounds of 7ma−1K−1 and 16ma−1K−1 respectively. This interval corresponds to

values from experimental observations.

The third step translates the enhanced basal ice shelf melting into ice loss/SLR. This utilises

reduced-form response functions, which [59] estimated on the behaviour of the 16 ice sheet models.

Each ice sheet model was initially subjected to a control run from 1900 to 2100. In this control run,

the models were forced with historically observed basal ice shelf melting until 2010 and constant

forcing thereafter. After the control run, each ice sheet model was then subjected to an artificial

external forcing experiment involving an additional stepwise increase of 8m/yr of basal ice shelf

melting. The difference in the dynamic contribution to SLR between the experiment and the control

run forms the basis of the response function for the particular model and region. The approach

assumes that increasing the magnitude of the forcing by a specific factor will increase the magnitude

of the response of the ice sheet by the same factor. However, the temporal evolution of the response

is not a linear function of time. Response functions can capture the irregular oscillations of ice

sheet dynamics in response to external forcing. One must also assume that over the forcing period

the five regions of Antarctica respond independently. [59] showed this is a good assumption. [59]

also subjected the 16 ice sheet models to forcing experiments of 4m/yr and 16m/yr of additional

basal melting and compared these responses to the main 8m/yr experiment. Generally, there was

good agreement between the responses to the step increases of different size. SLR from dynamic

42



processes S is given by

S(r, t) =
5∑

r=1

t∑
s=0

∆M(r, s)R(r, s), (28)

where R is the value of the response function at time s, drawn at random from the set of 16 models.

The total Antarctic SLR contribution is the sum of (25) and (28).

[59] derived response functions for the period 1900 to 2100. The period to 2100 is long enough

for many of our purposes in this paper, but not for estimating the social cost of CO2, as a large

portion of the current social cost of CO2 stems from damages after 2100. Therefore, we developed a

method of extrapolating the response functions to 2200 using time-series analysis techniques. This

makes tractable the extrapolation problem in the absence of being able to run the ice sheet models

themselves. We treat the dynamic contribution to SLR estimated by each ice sheet model over the

period 1900 to 2100 as a time series. This is first detrended to achieve stationarity and then the

properties of the series are estimated using a moving average function of the first or second order,

or an ARMA function of the first or second order, with the model being chosen based on best fit

under the Akaike Information Criterion.

3.1.6 Arctic sea-ice loss/surface albedo feedback

Changes in global ice and snow cover also affect the surface albedo feedback (SAF), increasing net

radiative forcing. While these effects are implicitly captured in the equilibrium climate sensitivity

(ECS) parameter in simple climate models, i.e., the steady-state increase in temperature in response

to a doubling of the atmospheric CO2 concentration, doing so assumes that the marginal forcing

from an increase in temperature is constant across temperatures. However, as the area of ice and

snow diminishes, the marginal response for further increases in temperature decreases. This SAF

dynamic has been modelled by [79] using PAGE-ICE and we replicate their model here.

[79] use a quadratic fit of the SAF observed across the CMIP5 models, shown in the top panel

of Figure S14. This falling SAF curve describes the weakening feedback loop between changes in

temperature and changes in albedo. For low levels of warming, the SAF is greater than the constant

value represented in the ECS; as sea-ice and land snow diminish, the feedback effect drops. When

sea ice and land snow are absent, the SAF effect is zero. The total radiative forcing due to albedo,

however, always increases with temperature, and reaches its maximum when sea ice and land snow

are absent.

Total SAF forcing is the integral of the SAF feedback effect across the change in temperature,
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Figure S14: Variation in surface albedo feedback (SAF) effects as a function of GMST. Top: SAF
as a function of temperature, in terms of marginal increases in forcing per degree Kelvin. Middle:
adjusted value of the ECS when SAF forcing is removed. Bottom: cumulative forcing from the
SAF, as a function of temperature, in Wm−2.
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reaching 2.67 Wm−2 at warming of 10◦C. The ECS follows a non-linear curve calculated as a function

of the ECS in the last period, and accounting for the different level of feedback compared to a

constant level. As a consequence, adding the SAF to the base climate model can result in lower

warming eventually.

The calculations for the SAF correction are shown below. The principle of the SAF model is

to correct temperatures calculated under the process used in PAGE-ICE, so we first reproduce this

temperature calculation. Global PAGE-ICE atmospheric temperature is calculated as

∆TAT M−P AGE1(t) = ∆TAT M−P AGE1(t− 1)

+
(
A(t− 1) − FRTB(t− 1) − ∆TAT M−P AGE1(t− 1)

) (
1 − e−1/FRT

)
+B(t− 1)

where

A(t− 1) = ECS
Fsl ln 2F (t− 1)

B(t− 1) = ECS
Fsl ln 2(F (t− 1) − F (t− 2))

F (t) is the anthropogenic forcing in our model

Fsl is the forcing slope, 5.5 W/m2

FRT is the warming half-life, from a triangular distribution from 10 to 55 with mode of 20

The surface albedo feedback is then calculated using a quadratic approximation, where SAF

decreases more rapidly as temperature increases. The equations are described as an integral over

this quadratic:

SAF(t) = C(∆TAT M−P AGE1(t)) − FSAF0

∆TAT M−P AGE1(t) − ∆TAT M−P AGE1(2010)
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where

C(∆T ) = β2∆T 3/3 + β1∆T 2/2 + β0∆T + γ∆Tδ

β2 is the T 2 coefficient for the SAF quadratic (W/m2/K3)

β1 is the T 1 coefficient for the SAF quadratic (W/m2/K2)

β0 is the T 0 coefficient for the SAF quadratic (W/m2/K)

γ is the standard deviation of the SAF quadratic (W/m2/K)

δ is the nonlinearity of SAF, drawn from a symmetric triangular distribution from -1 to 1

FSAF0 is the base year SAF forcing (W/m2)

The adjustment to the SAF forcing is given by a two-segment correction

∆FSAF(t) = − SAF(t)∆TAT M−P AGE2(t− 1)

+


C(∆TAT M−P AGE2(t− 1)) if ∆TAT M−P AGE2(t− 1) < 10

D(∆TAT M−P AGE2(t− 1)) if ∆TAT M−P AGE2(t− 1) ≥ 10

where

D(∆T ) = ψ + α(∆T − 10) + σ(∆T − 10)δ

∆TAT M−P AGE2(t) is defined below.

ψ is the integration constant for SAF forcing at the segment switch point

α is the linear SAF segment mean

σ is the linear SAF segment standard deviation

Also using SAF (t), the adjusted ECS and FRT values are calculated as

ECS′ = ECS

1 −
ECS

(
SAF(t) − SAF

)
Fsl ln 2

−1

FRT′ = FRT

1 −
ECS

(
SAF(t) − SAF

)
Fsl ln 2

−1
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where SAF is the constant approximation to the SAF (0.34959 W/m2/C).

Then ∆TAT M−P AGE2(t), the adjusted temperature time-series, is calculated identically to ∆TAT M−P AGE1(t),

but using ECS′, FRT′, and with the additional forcing ∆FSAF(t). The temperature adjustment

produced by the SAF model, ∆TAT M−P AGE2(t) − ∆TAT M−P AGE1(t), is then added to the main

temperature in the model.

3.1.7 Slowdown of the Atlantic Meridional Overturning Circulation

Weakening of the Atlantic Meridional Overturning Circulation (AMOC) or thermohaline circula-

tion,9 whether partial or full, has inspired a number of numerical modelling studies in climate

economics [91, 92, 93, 82, 94, 95, 96, 97, 98]. The majority of these take a stylised approach. Of

those aiming for realism, we choose to incorporate the results of [91] in our model, because of their

unique focus on the effects of AMOC slowdown at the national level. This is arguably central to the

economic evaluation of AMOC slowdown, because its physical effects would vary significantly across

the world, from a reduction in regional temperature of several degrees, all else being equal, to an

increase in regional temperature of a few tenths of a degree [see 91, fig. 1]. The basic logic is that

the ocean circulation redistributes heat, rather than creating or destroying it, and countries vary

in their exposure to this heat redistribution, as well as the effects of global warming more broadly,

depending on their physical location. AMOC slowdown is expected to have physical effects other

than temperature change, for instance effects on precipitation and regional sea levels [99], but these

have yet to be incorporated in economic studies.

[91] implement four what-if scenarios known in the context of AMOC slowdown as ‘hosing exper-

iments’. In these experiments, a large exogenous pulse of freshwater is added to the representation

of the North Atlantic in General Circulation Models – hence the term hosing – and the consequences

for the AMOC are simulated. Note this is additional to any gradual slowdown of AMOC captured

by the climate models of CMIP6, which our calibrated pattern scaling of global into national tem-

peratures already captures (see below). The four scenarios result in an AMOC slowdown of 7%,

24%, 27% and 67% respectively. This slowdown is assumed to be reached in the year 2085, after

being phased in linearly from a 2050 starting point. As is by now familiar, we convert these what-if

scenarios into hazard events and assign them probabilities. The national temperature delta arising
9We use these two terms interchangeably.
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from AMOC slowdown is hence given by

∆TAT_AMOC(i, t) = ∆TAT_AMOC(i, t− 1) +
(

∆TAT_AMOC(i)
∆AMOC

)
IAMOC(t)

⇐⇒
t−1∑
s=0

∆TAT_AMOC(i, s) < ∆TAT_AMOC(i), (29)

∆TAT_AMOC(i, t) = ∆TAT_AMOC(i)

⇐⇒
t−1∑
s=0

∆TAT_AMOC(i, s) = ∆TAT_AMOC(i), (30)

where ∆TAT_AMOC(i) is the permanent difference in national annual average temperature as a result

of AMOC slowdown in country i. The data points corresponding to ∆TAT_AMOC(i) were kindly

provided by Anthoff and colleagues for all countries they covered. ∆AMOC is the time taken for

AMOC slowdown to phase in, i.e. 35 years. IAMOC(t) is the indicator function, whose transition

probability from zero to one is

pAMOC(t) =


1 − exp

[
−bAMOC∆TAT(t)

]
if t = 1

(1 − exp
[
−bAMOC∆TAT(t)

]
) − (1 − exp

[
−bAMOC∆TAT(t− 1)

]
) if t > 1

,(31)

conditional on IAMOC(t− 1) = 0.

To calibrate the hazard rate for each of the four scenarios in [91], we compile likelihoods as a

function of global mean temperature increase for distinct AMOC shutdown events ranging from a

weakening of 11% to a full shutdown. We obtain these from the IPCC Fifth Assessment Report [100],

its Special Report on Global Warming of 1.5◦C [101], and [102]. Given the limited measurements

of AMOC intensity, these numbers reflect a combination of model-based estimates and expert

judgement. We proceed in two steps: (i) we take the convex combination of the AMOC shutdown

events from the literature that most closely resembles the what-if scenario at hand. To obtain a

hazard rate bAMOC, we then (ii) calibrate Equation (31) by minimizing the sum of squared differences

to the likelihoods obtained in step (i). We estimate bAMOC = 1.6 for a 7% slowdown, 0.611 for a

24% slowdown, 0.54 for 27% and 0.135 for 67%.
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3.1.8 Weakening of the Indian Summer Monsoon

The first integrated assessment of the Indian Summer Monsoon (ISM) and its response to climate

change has recently been carried out by [103]. This is based on coupling a version of Nordhaus’

regionally disaggregated RICE IAM [104] to a model of the ISM [105]. The ISM is driven by greater

heating of the land surface relative to the ocean in summer, which creates a pressure gradient that

drives moist ocean air over the Indian subcontinent, where it rises and condenses. However, ISM

rainfall displays important year-to-year variation and the ISM has the potential to abruptly change

regime from wet to dry and vice versa. Schewe and Levermann’s model generates these dynamics

by incorporating reduced-form representations of two competing feedback processes. The first is

the so-called moisture advection feedback, a positive feedback whereby monsoon rains release latent

heat, which strengthens the monsoon circulation and brings more rainfall in turn. The second is

the dry-subsidence effect, a negative feedback whereby high pressure reduces rainfall, the decreased

rainfall leads to less latent heat being released, which in turn sustains the dry phase. High pressure

also deflects winds away from the monsoon region. In [103]’s model , rainfall depends on both

climate change, through multiple channels, and regional emissions of sulphur dioxide, which reflect

incoming solar radiation, reduce heating over the Indian subcontinent and weaken the ISM.

The key output of the ISM model that feeds into damages to India (see below) is average rainfall

over the Indian subcontinent over the summer monsoon season:

P (t) = 1
136

136∑
d=1

P (d, t), (32)

where P (d, t) is rainfall on day d of year t and there are 136 days in each monsoon season.10 Each

day is either wet or dry, depending on

P (d, t) =


Pwet(t), P r(d, t) < p(d, t),

Pdry Pr(d, t) ≥ p(d, t),
(33)

where Pr(d, t) = U(0, 1), capturing random variation in day-to-day weather. There is no rainfall

on a dry day, whereas rainfall on a wet day is an increasing function of atmospheric temperature,
10For computational reasons, we use a four-day time step, so P (d, t) changes at most once every four days and there

are 136 days in the season, compared with 135 in [103].
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since a warmer atmosphere can hold more water:

Pwet(t) = p′′
[
∆TAT(t) − ∆TAT(0)

]
+ Pwet(0). (34)

The initial value of Pwet is 9mm per day and it increases by 0.42mm/day/◦C of global warming.

The probability of a wet day during the first δ days of the season – the onset – is

pinit(t) =


pinit,1(t), Apl(t) < Apl,crit(t),

1 − pm, Apl(t) ≥ Apl,crit(t),
(35)

where pm = 0.82 is the maximum probability of a wet day.11 The formulation in Eq. (35) makes

rainfall during the onset of the season a function of albedo Apl(t), in particular its relation to a

critical albedo value Apl,crit(t). If the actual albedo exceeds the critical value, the probability of a

wet day is at its minimum. The critical albedo value is increasing in the atmospheric concentration

of CO2,

Apl,crit(t) = αpl,1 ln
[ 3∑

i=0
Si(t) + S

]
+ αpl,2. (36)

∑3
i=0 Si(t) + S gives the atmospheric CO2 concentration and its derivation is explained in the

following section. The actual albedo is given by

Apl(t) = Apl(0) + 2T 2
pl(1 −As)2βplαpl,3BSO4(t), (37)

where Tpl is the fraction of light transmitted by the aerosol layer, As is the present value of the

surface albedo, βpl and αpl,3 are coefficients representing the backscatter fraction and mass scattering

efficiency respectively and BSO4(t) is the regional sulphate burden over the Indian peninsula. This

last quantity depends on SO2 emissions in the region:

BSO4(t) = SO2(t)HSO2V/Ω. (38)

Emissions of SO2 are exogenous and sourced from the Representative Concentration Pathway (RCP)

database [106]. The emissions scenarios we use are discussed in greater detail below. The RCP

database only disaggregates SO2 emissions to the level of the Asian continent/region, so we down-
11By bounding the probability of a wet day during the onset of the monsoon season, the system does not become

irrevocably locked into either a wet or dry state.
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scale to the Indian level by assuming a constant ratio of Indian/Asian emissions, estimated based

on 2010 data [107]. The parameter HSO2 is the fractional sulphate yield, V is the atmospheric

lifetime of sulphate and Ω is the land area. Thus the dependence of rainfall on albedo in the model

ultimately captures the local cooling effect of SO2 emissions in the region, which weakens the ISM.

Assuming the actual planetary albedo does not exceed the critical value, the probability of a

wet day during the first δ days of the season is

pinit,1(t) = p′ [mNINO3.4(t) −m0] + p0, (39)

where mNINO3.4 is the strength of the Walker circulation, i.e., the Pacific Ocean atmospheric cir-

culation, in May. The subscript NINO indicates that the strength of this circulation depends on

whether there is an El Niño or not. El Niño suppresses the ISM. The parameters p′, m0 and p0 are

used to calibrate the response of pinit,1(t) to mNINO3.4. The strength of the Walker circulation in

May is in turn given by

mNINO3.4(t) = m′
[
∆TAT(t) − ∆TAT(0)

]
+mNINO3.4(0). (40)

The probability of a wet day after the first δ days of the season is

p(d, t) =
1/δ

∑d−1
i=d−δ P (i, t) − Pdry

Pwet(t) − Pdry
, (41)

where δ = 16 days.12 The probability of a wet day depends positively on how wet the previous δ

days were, a representation of the moisture advection and dry-subsidence feedbacks.

3.1.9 Tipping point interactions

Tipping points can interact with each other in multiple ways [83, 69]. Some of these interactions are

hardwired into the structure of our model. For example, the PCF increases GMST, which affects all

seven remaining tipping points in our study, because all of them depend on temperature. However,

the structure of our model can only capture a limited subset of all the possible interactions between

tipping points. To increase the number of interactions, we use the expert elicitation study of [69],

which attempted to quantify how the triggering of one tipping point can cause the hazard rates of

other tipping points to change, with a focus on mechanisms other than temperature.
12With a four-day time step, we set the memory period δ = 16 days, rather than 17 days as in [103].
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We apply a hierarchical Bayesian analysis to obtain best estimates of the hazard rate changes

provided by the experts in [69]. The hazard rate changes – the interactions – are represented by a

range for expert i from lower bound ui to upper bound ni. Each change/interaction is a multiplier

on the base hazard rate, so a value of 1 means no change. We posit a true, expert-specific hazard

rate change, θi, and further assume that these true values are drawn from a normal distribution

with unknown mean and variance. This allows the expert opinions to be partially pooled to inform

the hyperparameters of the normal distribution:

θi ∼ N (µ, τ)

θi ∼ U(ui, ni)

We treat cases where experts were uncertain about the lower bound of the hazard rate change as

having a lower bound of 0, and cases where they were uncertain about the upper bound as an upper

bound of 10. Figure S15 presents the results.
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Figure S15: The posterior distribution of µ, the mean of the hyperdistribution, for each interaction.
The error bars in each plot show the 95% credible interval on µ for the given interaction. The light
grey lines show each expert’s upper and lower bounds (dots are used if the upper bound equals the
lower bound). Abbreviations are as follows: Atlantic Meridional Overturning Circulation (AMOC),
melt of the Greenland Ice Sheet (GIS), disintegration of the West Antarctic Ice Sheet (WAIS), and
dieback of the Amazon rainforest (AMAZ).
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The set of tipping point interactions included in our study is the union of the set of interactions

hardwired in our model and the set of interactions quantified by [69]. To aid understanding of

how many interactions are thereby included, as well as the direction of each interaction, Table S7

provides a matrix.
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Table S7: Interactions between tipping points included in this study. Each cell indicates the qual-
itative effect of the row tipping point on the column tipping point. Where the row tipping point
can increase or decrease the intensity/likelihood of the column tipping point, depending on time or
state, we write +/-. Parentheses indicate the interaction is calibrated on the expert elicitation study
by [69]. The absence of parenthesis indicates the interaction is hardwired in the model structure.
Zeros indicate an interaction that is included, but that has a statistical zero effect according to [69].
No int. means the interaction is not included at all. n.b. ISM affects other tipping points via ENSO,
implicit in the expert estimates of the relevant hazard rate changes. AIS interactions are calibrated
on the ice sheet responses of the four Western regions of Antarctica only, to match with the notion
of WAIS in [69].

PCF OMH SAF AMAZ GIS AIS AMOC ISM

PCF + + + + + + +/-

OMH + + + + + + +/-

SAF +/- +/- +/- +/- +/- +/- +/-

AMAZ + + + + (0) + (0) + (+/-) +/-
(+/-)

GIS no int. no int. no int. (+/-) (+) (+) (0)

AIS no int. no int. no int. (0) (+/-) (+/-) (0)

AMOC no int. no int. no int. (+/-) (-) (+/-) (0)

ISM no int. no int. no int. (+) (0) (0) (+/-)

3.2 Climate module

3.2.1 Emissions

The principal inputs to the climate model are global emissions of CO2 and CH4. Other anthro-

pogenic and natural sources of radiative forcing, both positive and negative, are aggregated into an

exogenous residual radiative forcing series.13 Anthropogenic emissions come from the scenarios de-

scribed in the scenario section above. The second source of emissions is the carbon-cycle feedbacks

described in the previous section, i.e., permafrost melting, dissociation of ocean methane hydrates,

and Amazon rainforest dieback.
13This is the sum of forcing from: (i) N2O; (ii) flourinated gases controlled under the Kyoto Protocol; (iii) ozone-

depleting substances controlled under the Montreal Protocol; (iv) total direct aerosol forcing; (v) the cloud albedo
effect; (vi) stratospheric and tropospheric ozone forcing; (vii) stratospheric water vapour from methane oxidisation;
(viii) land-use albedo; (ix) black carbon on snow.
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3.2.2 CO2 and CH4 cycles

CO2 and CH4 emissions are mapped into atmospheric concentrations using the FaIR simple climate

model, version 2.0.0 [42], specifically the Julia-Mimi implementation of the model available at

https://github.com/FrankErrickson/MimiFAIRv2.jl.git. This updates the CO2 and CH4 cycles from

META-2021, which were based on FaIRv1.0 [108] for CO2 and our own representation of the CH4

cycle.

In FaIR, each gas cycle is represented by the following system of equations (sticking with discrete

time notation and following closely the Julia-Mimi implementation):

C(t) = C + 1
2

[
n∑

i=1
Ri(t− 1) +

n∑
i=1

Ri(t)
]
, (42)

Ri(t) = E(t) ai

δi(t)
[
1 − e−δi(t)

]
+Ri(t− 1)e−δi(t), (43)

δi(t) = 1
α(t)τi

, (44)

α(t) = g0 exp
(
r0 + ruGu(t− 1) + rT ∆TAT (t− 1) + raGa(t− 1)

g1

)
, (45)

where

Ga(t) =
n∑

i=1
Ri(t), (46)

Gu(t) =
t∑

s=t0

E(s) −Ga(t), (47)

and

g1 =
n∑

i=1
aiτi

[
1 − (1 + 100/τi) e−100/τi

]
, (48)

g0 = exp

−
∑n

i=1 aiτi

[
1 − e−100/τi

]
g1

 . (49)

C(t) is the atmospheric stock/concentration of a given GHG, which is the sum of the pre-

industrial stock C and the stock above pre-industrial. This stock above pre-industrial comprises

i = n boxes/reservoirs Ri (four for CO2 and one for CH4). Emissions E of the GHG in question

are apportioned to box i according to its uptake fraction ai and are removed at rate δi, which

itself is a function of the decay timescale of the box τi and a state-dependent adjustment α, which
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links the removal rate of the GHG from the atmosphere to current cumulative uptake Gu, warming

∆TAT , and the stock above pre-industrial Ga. This state-dependent adjustment is a signature of

the FaIR model and is capable of simulating positive and negative feedbacks in the gas cycle. r0 is

the strength of pre-industrial uptake from the atmosphere. The constants g0 and g1 are used for

calibration of the state-dependent adjustment.

3.2.3 Radiative forcing and temperature

We also use FaIRv2.0.0 to convert atmospheric concentrations into effective radiative forcing and

temperature change. This is also an update on META-2021, which used FaIRv1.0 [108] for CO2 and

[109] for CH4. In general, the FaIR forcing equation includes logarithmic, square-root and linear

terms:

F (t) =
forcing agents∑

x

{
fx

1 ln
[
Cx(t)
Cx

]
+ fx

2 [Cx(t) − Cx] + fx
3

[√
Cx(t) −

√
Cx

]}
+ Fext. (50)

In META, the number of forcing agents x = 2, namely CO2 and CH4; Fext is the sum of forcings

from all other agents. For CO2, the forcing relationship comprises the logarithmic and square-root

terms only; for CH4, just the square-root term [42].

From forcing, the increase in GMST is governed by a model comprising three heat boxes, which

is one more than FaIRv1:

∆TAT (t) = 1
2

 3∑
j=1

∆Tj(t) +
3∑

j=1
∆Tj(t− 1)

 , (51)

∆Tj(t) = ∆Tj(t− 1)e−1/dj + F (t)qj

(
1 − e−1/dj

)
, (52)

where ∆Tj is the temperature change for box j, e−1/dj is the thermal response decay factor, where

dj represents the thermal response timescale, and qj is a radiative forcing coefficient.

3.3 Damages/economic module

3.3.1 Sea level rise

Sea level rise comprises a contribution from thermal expansion and melt from glaciers and small ice

caps, SLRTHERM(t), as well as a contribution from disintegration of the GIS and AIS:

∑
SLR(t) = SLRTHERM(t) + SLRGIS(t) + SLRAIS(t). (53)
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Sea level rise is defined relative to the year 2000 and
∑
SLR(0) = 0.04m [110]. To model the

contribution from thermal expansion and melt from glaciers and small ice caps, we follow [111] in

specifying SLR as a linear function of warming:

SLRTHERM(t) = (rTE + rGSIC) ∆TAT(t) + SLRTHERM(t− 1), (54)

where rTE = 0.00078 and rGSIC = 0.00081 parameterise the rates of SLR from thermal expansion

and melt from glaciers and small ice caps respectively. Sea level rise from thermal expansion is

parameterised such that 1◦C warming results in a very long-term equilibrium increase of 0.5m (i.e.,

over the course of approximately 1000 years).

3.3.2 National temperature

We convert the increase in GMST relative to pre-industrial into the increase in national mean surface

temperature using statistical downscaling. This procedure has been updated from META-2021 and

now uses data from CMIP6. We subsequently add the effect of AMOC slowdown.

For country i, the change in mean surface temperature relative to pre-industrial is estimated

using the following relationship:

∆TAT(i, t) = α(i) + β(i)∆TAT(t) + ∆TAT_AMOC(i, t). (55)

The coefficients α and β are estimated by regressing national mean surface temperature change

from the CMIP6 dataset on corresponding GMST change. National mean surface temperature

is constructed from the gridded CMIP6 output using population weights. We pool all available

CMIP6 models and, for each model, we pool temperature changes from the historical runs with

future projections on RCP2.6, RCP4.5, RCP7.0 and RCP8.5. We also tested quadratic and cubic

specifications of the national-global temperature change relationship, but the linear model was

preferred based on the AIC and BIC; the relationship appears to be highly linear for all countries.

3.3.3 Damages and national income per capita

Income growth depends on exogenous drivers, as well as damages from changing temperatures and

SLR (and from the summer monsoon in India, only). Post-damage income per capita in country i,
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y(i, t), grows according to

y(i, t) = y(i, t− 1) [1 + gEX(i, t) +DTEMP(i, t)] [1 −DSLR(i, t)] , (56)

where gEX(i, t) is an exogenous, country- and time-specific growth rate that is taken from the SSP

database [112].14 The SSP scenarios are only defined until 2100. To extend these scenarios until

2300, we follow a procedure described in Section 3.4.1.

DTEMP(i, t) are temperature damages, which are given by

DTEMP(i, t) = β1 [TAT(i, t) − TAT(i, 0)] + β2 [TAT(i, t) − TAT(i, 0)]2 , (57)

where the coefficients β1 and β2 are taken from the econometric analysis of [53].

DSLR(i, t) are SLR damages, which are given by

DSLR(i, t) = θ(i)
∑

SLR(t), (58)

where θ(i) parameterises the cost to country i per unit SLR. We obtain SLR damages from Diaz’s

CIAM model [66]. We run CIAM to obtain estimates of national coastal damage/adaptation costs

as a function of SLR in two scenarios, (i) no adaptation and (ii) optimal adaptation. We treat each

country’s adaptation decisions as uncertain and obtain a symmetrical triangular distribution for

each θ(i) with a minimum corresponding to costs in (i) and a maximum corresponding to costs in

(ii). We use costs/SLR in 2050 for the calibration, a simple approach facilitated by the fact that

the relationship between the two is approximately linear over the 21st century [66].

In India, there is an additional damage multiplier DISM(IND, t), so that national income per

capita is given by

y(IND, t) = y(IND, t− 1) [1 + gEX(IND, t) +DTEMP(IND, t)] ×

× [1 −DSLR(IND, t)] [1 −DISM(IND, t)] . (59)
14https://tntcat.iiasa.ac.at/SspDb
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Following [103], the ISM damage multiplier is given by

DISM(t) =


Ddrought, P (t) ≤ P drought,

0, P drought < P (t) < P flood,

Dflood, P (t) ≥ P flood.

(60)

This structure implies that only extremely wet monsoon seasons and extremely dry monsoon seasons

affect income in India, with the measure of precipitation being average rainfall for the monsoon

season P (t). The drought threshold P drought = 2.8667mm/day, while the equivalent flood threshold

P flood = 7.6667mm/day. Drought-related damages Ddrought = 3.5% of GDP, while flood-related

damages Dflood = 0.85%. All these parameter values are taken from [103].

The level of income per capita in the previous year, on which damages in the current year work,

is given by

y(i, t− 1) = φyEX(i, t− 1) + (1 − φ) y(i, t− 1), (61)

where yEX(i, t−1) is counterfactual income per capita, also taken from the SSP database, y(i, t−1)

is the actual post-damage income per capita experienced, and φ parameterises the weight given

to each. This specification enables us to explore two different interpretations of the empirical

evidence on temperature damages, as well as convex combinations of them. The first interpretation

is that temperatures impact the level of income in each year, in effect driving a wedge between

what output is feasible given implicit factors of production and productivity, and what output is

actually achieved. This has been the traditional approach in climate economics, e.g., in Nordhaus’

DICE model. The production possibilities frontier is assumed to evolve exogenously. Such ‘levels’

damages correspond with φ = 1. The second interpretation is that temperatures impact the growth

rate of income by directly impacting the accumulation of factors of production and/or by impacting

productivity growth [113]. Such ‘growth’ damages correspond with φ = 0. The persistence of

damages and the extent to which they impact growth/levels is an active area of debate in climate

economics [70, 71, 68]. We calibrate φ on the long-run projections of [68], which suggest that

warming on the RCP8.5 scenario would reduce global GDP by 11.5% by 2100. Given estimates of

temperature, SLR and ISM damages, this implies φ = 0.25.
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3.3.4 Utility and welfare

Post-damage national income per capita is first converted into consumption per capita using a

country-specific but time-invariant savings rate,

c(i, t) = [1 − s(i)] y(i, t), (62)

where the country savings rates s(i) are calibrated on observed national savings rates averaged over

the period 2005-2015, using World Bank data. Savings data are missing for many countries, in which

case we impute the global average, also obtained from the World Bank. This specification assumes

savings are exogenous and do not respond to changing income prospects. Fully endogenous savings

are computationally infeasible in a model with this much complexity and detail. The limitations

of assuming constant/exogenous savings have been discussed in the literature, e.g., [114]. Small to

moderate climate damages do not appear to shift savings rates measurably.

Consumption is converted into utility using a standard, constant-elasticity-of-substitution rep-

resentation,

u(i, t) = c(i, t)1−η

1 − η
, (63)

where η is the elasticity of marginal utility of consumption.

To compute overall welfare, we specify a discounted classical/total utilitarian social welfare

functional. We begin by calculating welfare for each country i:

W (i) =
T∑

t=2020
(1 + ρ)−t u(i, t)L(i, t), (64)

where ρ is the utility discount rate, a.k.a. the pure rate of time preference. Discounted, population-

adjusted current period utility is then summed over the whole modelling horizon to obtain total

welfare. Population data are exogenous and taken from the SSP scenarios.

Global welfare follows naturally as the sum of welfare across all countries i:

W =
∑

i

W (i) (65)

3.3.5 Non-market damages

The above damages from temperature, SLR and the ISM can be regarded as ‘market’ damages.

Market damages are those climate damages affecting economic activity mediated by money. Market
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damages do not include estimates of the welfare cost of climate change outside markets, for example

loss of human life [115] or damages to ecosystems that can be priced at people’s willingness to pay

(WTP) to preserve those ecosystems’ existence. ‘Non-market’ damages are more uncertain than

their market counterparts, but in many IAMs they occupy a substantial share of total welfare

damages from climate change [e.g. 116, 117].

We use the non-market damage module of the MERGE IAM [67], with an updated calibration

derived from [54]. The MERGE model places particular emphasis on the representation of non-

market damages, with a WTP measure that depends on both income and temperature. While

the parameters of the MERGE non-market damage module are speculative, its use of an S-shaped

elasticity of WTP with respect to income is theoretically coherent.

Like the MERGE model, the damage function meta-analysis by [54] assumes that damages

grow quadratically with warming from a pre-industrial baseline. Under their preferred model, total

damages as a percent of GDP (including market and non-market impacts) follow 0.595∆TAT (t)2.

Considering only damage functions that exclude non-market damages, their key coefficient is reduced

by 0.487.15 We use this as evidence that non-market damages follow 0.487∆TAT (t)2. As in [54],

we increase this coefficient by 25%, to 0.609, to account for potential omitted (non-catastrophic)

damages. This gives a 90% increase in WTP relative to [67]. At 2.5◦C warming, WTP is 3.8% of

GDP, compared to 2.0% in the original MERGE calibration (see Figure S16).

This WTP applies at high incomes. MERGE provides a model to link WTP to income, which

we maintain. At $25k/capita, WTP to avoid 2.5◦C warming is held at 1%. As income increases

above that level, WTP asymptotically approaches the non-market damages from [54]. WTP to

avoid warming as a function of income is shown in Figure S17.

We calculate this WTP measure at a national level. The non-market damage multiplier, or

economic loss function, is

DNM(i, t) =

1 −

(∆TAT(t)
∆Tcat

)2

−
(

∆TAT(0)
∆Tcat

)2
h(i,t)

. (66)

where TAT(0) is the temperature in the baseline period, which is taken to be 2010.

This is a hockey-stick function embodying the assumption that non-market damages can increase

rapidly as temperatures become more extreme. ∆Tcat is a catastrophic warming parameter set to
15This coefficient comes from table 2, column 3 of [54]. While their preferred model is column 4, that model has a

market-only reduction of 0.622, larger than the total damage coefficient. Columns 3 and 4 estimate identical values
for the total damage coefficient, so we use the more conservative value.
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12.82◦C, which people are assumed to be willing to avoid at any cost16. h(i, t) is the hockey-stick

parameter, which depends on country income per capita (y(i, t)):

h(i, t) = min

 log
[
1 − Dref

1+100 exp [−W T Prefy(i,t)]

]
log

[
1 − (∆Tref/∆Tcat)2

] , 1

, (67)

where

WTPref = 0.143 WTP 1% of GDP to avoid reference warming at $25k/capita

Dref = 0.038 WTP loss at reference warming

∆Tref = 2.5 C WTP reference warming

The non-market damage multiplier is applied to country-level utility:

u(i, t) = u (DNM(i, t)c(i, t))

for utility function u(·) as specified above.

3.3.6 Marginal and total damages

The marginal damage cost/social cost of carbon or methane along a particular scenario of emis-

sions, income and population is the difference in welfare caused by a marginal emission of the gas,

normalised by the marginal welfare value of a unit of consumption in the base year:

SCC(t) = ∂W/∂E(t)
∂W/∂c(t) . (68)

To calculate the numerator, we run the model twice with identical assumptions, the second time

with an additional pulse of emissions. Let ϑm represent a vector of parameter values from the

model, representing in abstract form the many parameters described above. These are in most

cases random draws from a distribution, including individual tipping event realisations. Then we

calculate [
∂W

∂E(t)

]
m

= W [E(t) + ∆E(t), ϑm] −W [E(t), ϑm]
∆E(t) , (69)

where ∆E is the emissions pulse. We focus on an emissions pulse in 2020.
16The catastrophic warming temperature is derived from the assumption that economic losses rise quadratically

according to the [54] calibration.
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The denominator of (68), ∂W/∂c(t), depends on the consumption level of the normalising agent.

We define this as the global average individual, i.e., global mean consumption per capita:

c̄(t, θm) =
∑

i c(i, t, ϑm)L(i, t)∑
i L(i, t) . (70)

Note that this is also uncertain and depends on the vector of random parameters. Differentiating

the utility function, we then have

[
∂W

∂c(t)

]
m

= c̄(i, t, θm)−η. (71)

We focus on a base year of 2020. We then calculate the negative of the ratio of Equations (69) and

(71) for each draw of random parameters m and take expectations over all draws. The numeraire

in the model is year 2010 US dollars, corresponding to the year in which GDP is initialised. We

inflate our reported SCC values to year 2020 US dollars using a factor of 1.2, based on data from

[118].17

3.4 Supporting analysis

3.4.1 Extending the SSP scenarios beyond 2100

To estimate post-2100 income and population along the SSP scenarios, we fit a model to the available

pre-2100 SSP scenario data and use the fitted model to extrapolate. The same model is applied to

both income and population and is defined in terms of growth rates. The model postulates that

changes in pre-2100 income and population growth rates are explained by a rate of convergence and

a rate of decay.

The model is as follows:

Growth(i, t) = (1 − β − δ)Growth(i, t− 1) + δMeanGrowth(t− 1), (72)

where δ is the rate of convergence, β is the decay rate and

MeanGrowth(t− 1) =
∑

i

Population(i, 2015)∑
j Population(j, 2015)Growth(i, t− 1). (73)

Below, we write this as Growth(·, t − 1) · w, where w is the vector of global population shares for
17The inflation factor is 1.2 whether one uses the Consumer Price Index or the GDP deflator.
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each country.

SSP data are not available in every year, so fitting Eq. (72) requires a model with dynamics.

We use a two-step approach, fitting the model using Stan, a computational Bayes system. The first

step uses the available data directly, fitting

Growth(i, s) ∼ N ([1 − ∆t(β + δ)]Growth(i, s− 1) + ∆tδMeanGrowth(s− 1), σi) , (74)

where s is a time step, ∆t is the number of years between time steps, and country i has uncertainty

σi. We apply a prior that both β and δ are between 0 and 0.5.

Next, we fit the full model, using the results of the simplified model to improve the Bayesian

model convergence. In this case, for a given Markov chain Monte Carlo draw of β and δ, we calculate

the entire time series:

̂Growth(i, t) ∼ N
(
(1 − β − δ) ̂Growth(i, t− 1) + δ

[ ̂Growth(·, t− 1) · w·
]
, σi

)
(75)

starting with ̂Growth(i, 2015) as reported in the SSP dataset.

The probability evaluation is over both the performance of the fit and the priors:

Growth(i, s) ∼ N
( ̂Growth(i, t(s)), σi

)
β ∼ N (µβ, σβ)

δ ∼ N (µδ, σδ)

log σi ∼ N (µσ,i, σσ,i)

where µ is the mean estimate of the corresponding parameter and σ is the standard deviation across

its uncertainty. The prior for σi is defined as a log-normal, centered on the mean of the estimates

of log σi. The estimates for each SSP are shown in Table S8.
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Table S8: Estimated convergence and decay rates for extrapolation of growth of GDP per capita
and population in the SSP socio-economic scenarios beyond 2100

SSP Variable δ β

1 GDP per capita 0.006205028 0.005930520
1 Population 0.008967453 0.005215835
2 GDP per capita 0.004190444 0.007228942
2 Population 0.001276993 0.011064426
3 GDP per capita 0.006273030 0.009597363
3 Population 0.001064697 0.007688331
4 GDP per capita 0.006895296 0.009651277
4 Population 0.001867587 0.003461600
5 GDP per capita 0.007766807 0.003843256
5 Population 0.003470952 0.004305310
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