

TEAM CONFLICT AND TEAM PERFORMANCE

The Paradox of Team Conflict Revisited: An Updated Meta-Analysis of the Team Conflict– Team Performance Relationships

Zhenyu Yuan,¹ Jingfeng Yin,² Jiaqing Sun³

¹ Department of Managerial Studies, College of Business Administration, University of Illinois
Chicago

² Department of Management and Marketing, Faculty of Business, The Hong Kong Polytechnic
University

³ Department of Management, London School of Economics and Political Science

Author Note

Zhenyu Yuan <https://orcid.org/0000-0002-7971-887X>

Jingfeng Yin <https://orcid.org/0000-0003-2562-7259>

Jiaqing Sun <https://orcid.org/0000-0002-7896-5860>

A previous version of this article was presented at the 37th Annual Conference of the
International Association for Conflict Management, Singapore.

Correspondence concerning this article should be addressed to Zhenyu Yuan, Department of
Managerial Studies, College of Business Administration, University of Illinois Chicago, 601
South Morgan Street, Chicago, IL 60607. E-mail: zyuan19@uic.edu

The Paradox of Team Conflict Revisited: An Updated Meta-Analysis of the Team Conflict–Team Performance Relationships**Abstract**

The possibility that team conflict, especially task conflict, might improve team performance has stimulated a large body of empirical research that continues to grow to this day. Nevertheless, 12 years has passed since de Wit et al.'s (2012) comprehensive meta-analysis. To synthesize the even larger body of empirical evidence now available, we provide an updated meta-analysis of the team conflict–team performance relationships by revisiting the population average estimates and their effect size heterogeneity. Given the recent developments in the team conflict literature, we also incorporate status conflict into our synthesis. Moreover, to shed light on the contextual factors that may help explain the heterogeneous team conflict–team performance relationships, we examine a host of moderators pertaining to national culture, team features, and research methods. Our results based on psychometric meta-analysis indicate that all four team conflict dimensions (i.e., task conflict, relationship conflict, process conflict, and status conflict) are negatively related to team performance. Moreover, the relationships of task conflict and relationship conflict with team performance have substantial cross-situation heterogeneity. Examining the contingencies of these heterogeneous relationships, our meta-regression analyses reveal that national culture (e.g., individualism), team features (e.g., team performance facet), and methodological factors (e.g., team conflict scale) all play important roles in helping to explain the mixed effects of team conflict on team performance. Based on our quantitative synthesis, we discuss the implications for the next waves of team conflict research.

Keywords: task conflict, relationship conflict, process conflict, status conflict, meta-analysis, team performance

The Paradox of Team Conflict Revisited: An Updated Meta-Analysis of the Team Conflict–Team Performance Relationships

The increasing prevalence of teams in organizations has produced an unavoidable problem associated with teamwork—team conflict, defined as incompatibilities and disagreements among team members (De Dreu & Gelfand, 2008). Notwithstanding the negative connotations generally associated with the word “conflict,” early theorists astutely pointed out that conflict can be beneficial for team performance under certain circumstances (e.g., Coser, 1956; Ponds, 1967). Accordingly, scholars have distinguished between task conflict and relationship conflict in an attempt to isolate the functional and dysfunctional aspects of team conflict, respectively (Amason, 1996; Amason & Schweiger, 1994; Guetzkow & Gyr, 1954; Jehn, 1994, 1995; Pelled, 1996; Pinkley, 1990; Priem & Price, 1991; Wall & Nolan, 1986). Task conflict refers to disagreements over task-related aspects of teamwork (i.e., content and goals), whereas relationship conflict entails interpersonal incompatibilities. Subsequent research identified a third dimension, process conflict, which refers to disagreements among team members over the process used to carry out team tasks (Jehn, 1997; Shah & Jehn, 1993). Finally, recognizing that the internal structure of a team may be inherently hierarchical, later scholars introduced a fourth dimension, status conflict (i.e., conflict over relative within-team status), into the conflict literature (Bendersky & Hays, 2012).

The tripartite conceptualization of team conflict by Jehn and colleagues (Jehn, 1994, 1995, 1997; Jehn & Mannix, 2001), as well as the most recent addition of status conflict (Bendersky & Hays, 2012) to this conceptualization, has stimulated a stream of empirical research that continues to grow even today. To date, scholars have conducted three meta-analytic reviews to synthesize the performance implications of team conflict (De Dreu & Weingart, 2003; de Wit et al., 2012; O’Neill et al., 2013). In the earliest meta-analysis (De Dreu & Weingart,

2003), task conflict—the conflict dimension that held the great promise for improving team functioning and hence ignited team conflict research—was found to have a negative relationship with team performance ($\rho = -.23$, 95% CI $[-.26, -.20]$, $k = 25$, $N = 1726$). Nine years later, de Wit and colleagues (2012) provided a meta-analytic update by including more than 80 new studies conducted since De Dreu and Weingart (2003) published their work. Their findings showed that the relationship between task conflict and team performance was near-zero ($\rho = -.01$, 95% CI $[-.06, .04]$, $k = 95$, $N = 7201$).

As this case illustrates, the accumulating body of empirical evidence has continuously informed and updated the performance implications of team conflict, which have in turn shaped subsequent conflict research and influenced business education related to workplace conflict. Given that more than a decade has passed since de Wit et al.'s (2012) review, it is important to further consolidate scholarly understanding of team conflict. Furthermore, the concept of status conflict (Bendersky & Hays, 2012) was introduced into the field after de Wit et al.'s (2012) meta-analysis. Incorporating this conflict dimension in an updated meta-analysis can help provide clarity to this emergent body of conflict research.

In addition, conflict scholars have long emphasized that the effects of team conflict on team performance may vary across contexts (Jehn, 1995; Jehn & Bendersky, 2003). Indeed, the team conflict–team performance relationships have demonstrated substantial cross-situation heterogeneity in past meta-analytic reviews (De Dreu & Weingart, 2003; de Wit et al., 2012; O'Neill et al., 2013). As accurately estimating effect size heterogeneity may require a large number of studies (Brannick et al., 2019; Cafri et al., 2010), it is critical to refine scholarly understanding of the heterogeneity of the team conflict–team performance relationships based on the ever-growing body of empirical evidence. Moreover, considering the multitude of conflict

dimensions, it is important to investigate which of those dimensions are most prone to having substantial effect size heterogeneity across situations, as these distinctions can lead to a more refined understanding of team conflict.

Relatedly, the existence of cross-situation heterogeneity calls for a continuous stream of research efforts to identify the various contextual factors that can moderate the team conflict–team performance relationships. In that regard, Jehn and Bendersky (2003) advanced a contingency model of team conflict, though they mainly focused on within-study moderators. At the between-study level, de Wit et al. (2012) provided a preliminary meta-analytic test of situational moderators by exploring group contextual (e.g., group task type) and methodological (e.g., study setting) factors. Nevertheless, there has since been a dearth of research efforts to build on and expand their work, which renders scholarly understanding of the between-study contingencies of conflict somewhat fragmented. Importantly, the growing body of literature on team conflict provides a welcome opportunity to further broaden the search for meaningful situational moderators. In the current study, we expand upon previous conflict research by considering both national culture (distal factor) and team features (proximal factor) as contextual influences that may potentially moderate the team conflict–team performance relationships. Additionally, we examine a host of methodological factors. As team conflict research stands at a crossroads (Cronin & Bezrukova, 2019; Shah et al., 2021), such a systematic synthesis can advance scholarly understanding of the pertinent contingencies of team conflict, which may prove useful in directing the next waves of conflict research.

In this study, we aim to provide an updated quantitative review of the performance implications of team conflict. Capitalizing on the larger body of empirical evidence available to today's scholars, we seek to update the previous meta-analytic findings regarding the overall

effects of team conflict on team performance and the associated effect size heterogeneity.

Moreover, we carry out an expanded search for situational moderators to account for the heterogeneous team conflict–team performance relationships. Lastly, by incorporating status conflict in our meta-analysis, we provide a timely synthesis of an important team conflict dimension that has attracted increasing scholarly attention.

Team Conflict and Team Performance

The overall population-level team conflict–team performance relationships and their heterogeneity are both integral components of a meta-analytic synthesis (Borenstein et al., 2009; Schmidt & Hunter, 2015; Whitener, 1990). The population average estimates provide a bird’s-eye view of the direction and the strength of the team conflict–team performance relationships, whereas effect size heterogeneity sheds light on the variation of these relationships across situations. Accordingly, we first turn to the population estimates of the team conflict–team performance relationships, then discuss effect size heterogeneity. Subsequently, we explicate the various contextual influences that can potentially explain the heterogeneous team conflict–team performance relationships.

Population Average of Team Conflict–Team Performance Relationships

From a research synthesis standpoint, understanding the population average of the team conflict–team performance relationships has crucial theoretical implications. As mentioned earlier, the negative relationship between task conflict and team performance identified in De Dreu and Weingart’s (2003) meta-analysis led the authors to conclude that “both task and relationship conflict interferes with team performance” (p. 747), which quelled the then-optimistic view of conflict in the research community. Later, the substantively different findings of de Wit et al. (2012) regarding the same relationship, whereby “for task conflict, the overall

association with group performance is neither negative nor positive" (p. 372), again shifted scholarly consensus regarding the performance implications of task conflict.¹ Attesting to the impact of these meta-analytic findings, subsequent reviews have since drawn from de Wit et al. (2012) to formulate their conclusions (e.g., Bradley et al., 2015; Cronin & Bezrukova, 2019; Loughry & Amason, 2014; O'Neill & McLarnon, 2018) or conduct secondary analyses (e.g., DeChurch et al., 2013). Considering their theoretical importance, we seek to update the population estimates of the team conflict–team performance relationships.

Heterogeneity of Team Conflict–Team Performance Relationships

In addition to determining the population average of the team conflict–team performance relationships, estimating their heterogeneity is important, especially when one considers the sizeable heterogeneity found in previous meta-analyses (De Dreu & Weingart, 2003; de Wit et al., 2012; O'Neill et al., 2013). From a theoretical standpoint, this finding suggests that contextual moderators may underlie these heterogeneous relationships across situations (Whitener, 1990) and, therefore, provides support for the theoretical premise of the contingency model of team conflict (Jehn & Bendersky, 2003). Moreover, more accurate estimates of effect size heterogeneity based on a larger body of empirical evidence can pave the way for the correct identification of such contextual moderators. As such, in addition to updating the population average of the team conflict–team performance relationships, we pay special attention to estimating effect size heterogeneity in the current meta-analysis.

Moderators of Team Conflict–Team Performance Relationships

The substantial effect size heterogeneity in the team conflict–team performance relationships calls for systematic efforts to identify contextual moderators (Cortina, 2003). Jehn

¹ Unlike de Wit et al. (2012), who searched multiple databases, O'Neill et al. (2013) searched only in PsycINFO. We mainly discuss the findings of de Wit et al. (2012), as their meta-analysis is the most comprehensive to date.

and Bendersky (2003) put forward the contingency model of team conflict to help identify the circumstances under which team conflict may be beneficial for team functioning. Although their model provided valuable insights, it mainly focused on moderators at the within-study level. To account for effect size heterogeneity between studies, a contingency perspective that delineates the contextual moderators at the between-study level is warranted. Adopting such a viewpoint is important because “context is often a constant within a study … but can vary between studies” (Johns, 2018, p. 22). De Wit et al. (2012) made an important first step in this direction by exploring a host of group contextual factors and methodological factors. Building upon the theoretical richness and empirical growth of the conflict literature, we expand the search for the situational moderators in the team conflict–team performance relationships (Figure 1).

In addition to recognizing contextual influences, the tripartite conceptualization (Jehn, 1995, 1997; Jehn & Mannix, 2001) was put forward to reconcile, explain, and predict the mixed effects of team conflict, with task conflict theorized to be the most beneficial dimension for team performance (Jehn & Bendersky, 2003). In other words, the heterogeneous team conflict–team performance relationships may (at least partly) depend on “the type of conflict that exists” (Jehn & Bendersky, 2003, p. 197). Accordingly, it is important to differentiate the various conflict dimensions in an updated meta-analysis. Therefore, we first review the differences among the various conflict dimensions and then theorize the contextual influences.

Team Conflict Dimensions

As work teams are tasked with mobilizing team members’ collective efforts toward their goals (Ilgen et al., 2005), their ability to capitalize on the members’ uniquely valuable perspectives so as to benefit teamwork becomes a crucial consideration (Pelled, 1996). Owing to the informational and cognitive diversity among team members (Amason, 1996; Jehn et al.,

1999; Pelled et al., 1999), task conflict invites the sharing of divergent, nonredundant task-related information and facilitates deliberation on task-related matters by team members (Baron, 1984; Todorova et al., 2014). In this way, task conflict may protect team members from groupthink (Janis, 1982) and potentially enhance aspects of team performance such as creativity (Jehn & Bendersky, 2003). In contrast to task conflict, relationship conflict instills a sense of threat and anxiety among team members, which in turn inhibits their cognitive processing of task-related information (Pelled, 1996; Staw et al., 1981). Its interpersonal nature breeds hostility among team members (Jehn, 1995), lowers morale (Jehn et al., 1999), and makes it less likely that team members will work interdependently (Thiel et al., 2019). As a result, relationship conflict distracts team members from their team tasks, debilitates effective work relationships, and undermines team performance.

Whereas the distinction between task conflict and relationship conflict is a long-standing feature of the literature (e.g., Guetzkow & Gyr, 1954), process conflict emerged from inductive, qualitative work by Jehn (1997; cf. Shah & Jehn, 1993). In their subsequent review, Jehn and Bendersky (2003) offered competing hypotheses regarding the process conflict–team performance relationship, which relied heavily on the overlap between process conflict and the other two dimensions. Specifically, “process-related debates” (i.e., overlap between process conflict and task conflict) have been theorized to improve team processes and resource delegation, whereas “process loss” stemming from interpersonal struggles over who should be doing what (i.e., overlap between process conflict and relationship conflict) purportedly harms team performance. In other words, from a theoretical standpoint, the process conflict–team performance relationship may be either positive or negative (cf., Behfar et al., 2011).

Compared to the other three dimensions, status conflict was more recently introduced into the conflict literature. It entails team members' struggles and clashes over the contested within-group hierarchy—an important aspect overlooked in the tripartite conceptualization of team conflict (Bendersky & Hays, 2012). As status conflict centers on power and influence that are unrelated to team goals, "it should serve as a distraction and harm group performance" (Bendersky & Hays, 2012, p. 332). That is, if team members are vying for relative status and influence within the team, they may be less likely to share information with one another, which may ultimately impede team goal accomplishments.

Taken together, the four team conflict dimensions capture theoretically distinct aspects of disagreements and incompatibilities within the team. This implies that examining team conflict in an undifferentiated manner runs the risk of further contributing to the mixed effects observed in past research. Accordingly, we examine the team conflict–team performance relationships and the associated effect size heterogeneity and investigate the impact of contextual moderators separately for each conflict dimension.

Contextual Moderators of the Team Conflict–Team Performance Relationships

In light of their substantial cross-situation heterogeneity, a systematic examination of the contextual moderators of the team conflict–team performance relationships can greatly advance scholarly understanding of team conflict. Building upon previous research (de Wit et al., 2012), we consider both distal (i.e., national culture) and proximal (i.e., team features) moderators.

National Culture

To the extent that teams are embedded in the broader organizational and societal context (Kozlowski & Bell, 2003), national culture may serve as a distal source of influence and inform the corresponding norms for handling interpersonal disagreements and clashes at work (Gelfand

et al., 2008; House et al., 2004). Following previous research (de Wit et al., 2012), we operationalize these cultural dimensions as a contextual variable that reflects aspects of the national culture where the sample is collected. In other words, across samples collected from different cultures, team members may react in systematically different ways, which in turn may influence the strength and/or direction of the team conflict–team performance relationships. To provide a comprehensive test of national culture, we examine the moderating effects of Hofstede's (2001) cultural dimensions: power distance, masculinity–femininity, individualism–collectivism, uncertainty avoidance, and long-term versus short-term orientation. In light of recent developments in cross-cultural research (Gelfand et al., 2006, 2021), we also incorporate the tightness–looseness dimension to furnish a comprehensive test of national culture.

First, in high-power-distance cultures, team members are more accepting of the social hierarchy and inequalities (Hofstede, 2001). As team members openly clash with one another owing to power struggles and/or interpersonal differences, team conflict (e.g., status and relationship conflict) may be seen as normalized. Moreover, team members may view arguments over task-related details and processes as a necessary way to establish and maintain inequalities of power (Caputo et al., 2018; Gunkel et al., 2016). Conversely, in low-power-distance cultures where individuals value equality, interpersonal disagreements and incompatibilities may prove very disruptive for teamwork. Consequently, the detrimental impact of team conflict on team performance may be more pronounced in low-power-distance cultures compared to high-power-distance cultures.

Hypothesis 1: The negative team conflict–team performance relationships are weaker in studies conducted in high-power-distance (versus low-power-distance) cultures.

In highly masculine cultures, people place great emphasis on material success and achievement by being very direct, competitive, and assertive (Hofstede, 2001). In turn, they may

have greater tolerance of interpersonal friction (Gelfand et al., 2008). In this context, team members may value the expression of divergent opinions and accept disagreements and arguments as the preferred way to get ahead (Gunkel et al., 2016). Therefore, teams in highly masculine cultures may be more likely to benefit from conflict. In feminine cultures that value interpersonal harmony, team members may be very concerned with accommodating one another at the expense of fully taking in the informational value of different opinions (Gabrielidis et al., 1997). Moreover, interpersonal frictions and clashes may prove highly aversive in feminine cultures, thereby accentuating the negative effect of team conflict on team performance.

Hypothesis 2: The negative team conflict–team performance relationships are weaker in studies conducted in masculine (versus feminine) cultures.

Owing to the interdependent self-construal associated with collectivism (Markus & Kitayama, 1991), team members in collectivistic cultures may hold negative beliefs about conflict (Sanchez-Burks et al., 2008) and, therefore, rely on indirect and passive ways to express and handle team conflict (Gelfand et al., 2001; Ren & Gray, 2009). Consequently, they may be less likely to reap the benefits associated with task-related disagreement, which hinge upon direct idea exchanges and information sharing (Tsai & Bendersky, 2016). Moreover, as interpersonal frictions and clashes over power are believed to be fundamentally harmful for group well-being (Hofstede, 2001), teams in collectivistic cultures may be especially vulnerable to the disruptive effect of team conflict compared to their counterparts in individualistic cultures. As such, the negative team conflict–team performance relationships may be stronger in collectivistic cultures than in individualistic cultures.

Hypothesis 3: The negative team conflict–team performance relationships are weaker in studies conducted in individualistic (versus collectivistic) cultures.

In high-uncertainty-avoiding cultures, people prefer structured solutions to problems (Hofstede, 2001). In this context, team members may be ill equipped to deal with the uncertainty

instilled by task-related conflict, which entails the expression of divergent ideas. Moreover, interpersonal clashes and incompatibilities may threaten established routines and norms.

Consequently, team members in high-uncertainty-avoiding cultures may find the disruptive effect of team conflict especially distressing, such that it interferes with their team functioning.

In contrast, in low-uncertainty-avoiding cultures, as team members are more at ease with uncertainty and unpredictability, they may be more receptive to opinions that differ from the established routines and thus invite the exchange of different ideas (Gunkel et al., 2016).

Consequently, team conflict is more likely to prove detrimental to team performance for teams in high-uncertainty-avoiding cultures than in low-uncertainty-avoiding cultures.

Hypothesis 4: The negative team conflict–team performance relationships are weaker in studies conducted in low-uncertainty-avoiding (versus high-uncertainty-avoiding) cultures.

Moreover, in cultures characterized by a long-term orientation, individuals tend to be tenacious, because they generally believe their hard work will be rewarded in the future (Hofstede, 2001). In contrast, in short-term-oriented cultures, individual behaviors are primarily motivated by quick results. Indeed, cross-cultural research indicates that individuals from long-term-oriented cultures are more likely to be persistent in their attempts to solve disagreements (Caputo et al., 2018; Gunkel et al., 2016). Considering that effectively dealing with disagreements and incompatibilities calls for sustained efforts from team members (e.g., Jehn & Mannix, 2001), team members in long-term-oriented cultures are more likely to benefit from conflict, whereas their counterparts in short-term-oriented cultures may struggle when faced with conflict. Thus, the negative team conflict–team performance relationships may be stronger in short-term-oriented cultures than in long-term-oriented cultures.

Hypothesis 5: The negative team conflict–team performance relationships are weaker in studies conducted in long-term-oriented (versus short-term-oriented) cultures.

Lastly, compared to loose cultures, tight cultures greatly value social norms and sanction deviance from such established norms (Gelfand et al., 2006). In tight cultures, the expression of divergent ideas and incompatibilities may be viewed as less socially acceptable and even aberrant. In turn, team members may quickly shun any potential sign of conflict and suppress and even sanction those who voice different opinions. Thus, cultural tightness may create an environment where team conflict is either frowned upon or dealt with in a very passive way (Gelfand et al., 2008). When team members' limited attention is diverted toward suppressing conflict and sanctioning dissenters, team performance may deteriorate. In contrast, in loose cultures, team members may feel encouraged to voice and listen to different opinions. Consequently, the team conflict–team performance relationships are less likely to be negative among teams in loose cultures than in tight cultures.

Hypothesis 6: The negative team conflict–team performance relationships are weaker in studies conducted in loose (versus tight) cultures.

Team Features

Team features represent proximal situational moderators in the team conflict–team performance relationships. To provide a comprehensive test of such influences, we examine four factors: team performance facet, the intercorrelations among conflict dimensions, the sample mean of team conflict, and team conflict symmetry.

First, as different team performance facets are not interchangeable (Mathieu et al., 2008), the multifaceted nature of team performance may contribute to the heterogeneity of team conflict–team performance relationships. The same work team may, for example, be expected to meet multiple, yet not completely congruent, goals. As a result, the team may rely on a proven successful way of doing things in pursuit of efficiency at the cost of being innovative (O'Reilly & Tushman, 2008). In this case, task disagreements may hurt team efficiency but nonetheless

promote team creativity. Given that not all facets of team performance may benefit from conflict, the team conflict–team performance relationships may depend on the specific facet of team performance under investigation (De Dreu, 2008; Mathieu et al., 2008). As such, it is important to consider the potential differences among team performance facets as a moderator in the team conflict–team performance relationships (de Wit et al., 2012; O’Neill et al., 2013). In the preceding example, the task conflict–team performance relationship may be more positive for team creativity than for team efficiency, which is a key moderator according to Jehn and Bendersky’s (2003) contingency model of conflict. However, de Wit et al. (2012) did not find empirical support for this notion in their meta-analysis. In light of the inconclusive evidence in the literature, we seek to further explore the moderating role of team performance facet.

Research Question 1: Does team performance facet moderate the team conflict–team performance relationships?

Second, given the multidimensional nature of team conflict (Jehn, 1995), the empirical overlap among conflict dimensions can shed light on an important aspect of the team conflict phenomenon (De Dreu & Weingart, 2003; de Wit et al., 2012). Specifically, the correlation among conflict dimensions may indicate the co-occurrence of conflict (Choi & Cho, 2011; Greer et al., 2008; Mooney et al., 2007; Pelled et al., 1999). As the burden of dealing with co-occurring conflict may exceed the team’s information processing capacity (de Wit et al., 2013), it may eradicate any benefits of team conflict, resulting in negative team conflict–team performance relationships. Moreover, when team members experience both task and relationship conflict, they may misattribute benign, task-based disagreement to interpersonal clashes (Simons & Peterson, 2000; Yang & Mossholder, 2004). When divergent task-related ideas are interpreted with a hostile intent, team members are much less likely to appreciate the informational value of task conflict. In turn, task conflict is more likely to hinder (rather than boost) team performance.

Thus, in samples with higher levels of correlation among conflict dimensions, the effects of team conflict on team performance may be more destructive (i.e., negative).

Hypothesis 7: The negative team conflict–team performance relationships are weaker in studies with lower (versus higher) levels of correlation among conflict dimensions.

Third, the sample mean of team conflict, which captures the overall level of conflict in a given context, may represent a moderating influence (e.g., Schneider et al., 2017). In a study context characterized by an overall lower level of conflict, team members may have become accustomed to uniformity. Under this circumstance, when disagreements and incompatibilities arise, team members may be ill equipped to handle what they perceive as a threatening situation. In turn, team conflict is likely to prove disruptive for the team, resulting in a strong, negative relationship with team performance. However, in a context characterized by an overall higher level of conflict, team members may have overcome inertia and developed a collective capacity to work through disagreements (e.g., De Dreu, 2006; Farh et al., 2010). In this situation, different ideas and opinions can quickly mobilize team members and spark collaborative efforts to solve such disagreements. As a result, team members are more likely to reap the benefits rather than the detriments associated with team conflict. In turn, the negative team conflict–team performance relationships will be attenuated. Taken together, we posit that if an overall higher (versus lower) level of team conflict is present in a given study, the negative relationships between team conflict (e.g., task conflict) and team performance may be much weaker.

Hypothesis 8: The negative team conflict–team performance relationships are weaker in studies with an overall higher (versus lower) level of conflict.

Lastly, in recognition of the limitations of the consensus-based team conflict conceptualization (Jehn, 1995), researchers have started to incorporate conflict asymmetry (i.e., the degree to which team members have divergent conflict experiences; Jehn et al., 2010) into their research in this area. To wit, among work teams that report the same level of mean conflict,

members in some teams may have more divergent experiences than their counterparts in other teams. Notably, to the extent that seeing eye to eye allows team members to develop shared team cognitions (DeChurch & Mesmer-Magnus, 2010), conflict symmetry, compared to asymmetry, may be conducive to effective team processes and make it more likely that the team will benefit from conflict. That is, the performance benefits associated with team conflict may be more pronounced in samples with higher (versus lower) levels of conflict symmetry.

Hypothesis 9: The negative team conflict–team performance relationships are weaker in studies with higher (versus lower) levels of conflict symmetry.

Methodological Factors

Additionally, we consider a series of methodological factors that may help explain the heterogeneous team conflict–team performance relationships. Specifically, we examine (1) whether the study sampled top management teams, (2) whether the study sampled student teams, (3) average team tenure, (4) average team size, (5) team task type, (6) the team conflict scale, (7) the performance measurement method, and (8) whether the study used a cross-sectional design. Accounting for their potential influences can help disentangle their effects from the substantive contextual moderators. Figure 1 summarizes the moderators examined in this research.

Method

Transparency and Openness

In this section, we describe our literature search, inclusion criteria, coding process, and meta-analytic procedure. While conducting our research, we adhered to the *Journal of Applied Psychology*'s methodological checklist. The complete *R* syntax is available upon request from the first author. The study hypotheses and data analysis plan were not preregistered. The complete coding file can be found in the Supplemental Material.

Literature Search

We first identified empirical studies to be considered for inclusion in the current meta-analysis by searching ABI/INFORM Global, PsycINFO, and ProQuest Dissertations and Theses up to January 2023, using “conflict” in combination with “team,” “task,” “relationship,” “process,” “status,” “cognitive,” and “affective” as keywords. To supplement this search, we closely examined the reference lists of previous meta-analyses (De Dreu & Weingart, 2003; de Wit et al., 2012; O’Neill et al., 2013) to identify additional studies that we could access. To ensure we covered the studies conducted since the publication of de Wit et al.’s (2012) comprehensive meta-analysis, we carried out a backward search by going through all the studies that cited de Wit et al. (2012). Additionally, we searched the Academy of Management Annual Meeting proceedings and the conference programs of the Society for Industrial and Organizational Psychology (2012–2022) for relevant studies. Upon identification of such studies, we emailed the author(s) to request a copy of the paper. In an effort to identify other unpublished research, we made requests for unpublished studies and datasets via email listservs to members of the Conflict Management, Human Resources, and Organizational Behavior Divisions of the Academy of Management and the International Association for Conflict Management.

Inclusion Criteria

Given the focus of our research, each independent sample needed to have measured at least one of the four conflict dimensions and team performance to be included in our meta-analysis. Complete information regarding the sample size (i.e., number of teams) as well as the respective correlation between team conflict dimension(s) and team performance must be available from the study. Team performance should be measured either concurrently with or after team conflict. Similar to previous reviews (de Wit et al., 2012), we excluded studies that were not at the team level (e.g., individual experiences of task conflict) or that did not report team-

level correlation between conflict and team performance. Likewise, we excluded studies that did not differentiate conflict dimensions but simply collapsed them into one composite. Following Jehn's (1995) conceptualization, we focused on team conflict as team members' reported experience of disagreement and incompatibilities, so we did not include studies that inferred team conflict via an external rater (e.g., observer rating). To ensure the independence of the included samples, we followed the screening heuristic advocated by Wood (2008) to detect studies that used the same dataset, and upon their identification, included only one study. Using these criteria (see Figure 2), we identified a total of 268 independent samples (i.e., 211 for the task conflict–team performance relationship, 204 for the relationship conflict–team performance relationship, 40 for the process conflict–team performance relationship, and 15 for the status conflict–team performance relationship) from 251 papers.

Coding of Studies

We first coded sample size (i.e., number of teams), the correlation between team conflict dimension(s) and team performance, the intraclass correlation coefficient [ICC] (2) of the team conflict dimensions, and coefficient alpha of team performance from each independent sample. This information was used to conduct psychometric meta-analyses of the team conflict–team performance relationships.

Next, we coded information pertaining to study-level moderators whenever such information was available in the study. Regarding culture, we coded the country/region where the sample was collected and then used the corresponding country-level scores of national cultural dimensions (i.e., power distance, masculinity–femininity, individualism–collectivism, uncertainty avoidance, and long-term versus short-term orientation) from Hofstede (2001). For tightness–looseness, we used the country-level scores validated by Eriksson et al. (2021).

To code team performance, we followed Mathieu et al.'s (2008) suggestion to clearly differentiate various team performance facets. Specifically, we coded indicators of the extent to which the team worked effectively to meet their goals as team effectiveness, whereas performance aspects related to team decision-making were coded as decision quality. Objective financial outcomes were coded as financial performance, and performance components dealing with the creativeness and innovativeness of team output were coded as innovativeness. Moreover, we distinguished between grades and simulation results among student team samples. If raters (e.g., course instructors, judges) provided subjective performance evaluations of student team projects, those ratings were coded as grades. If student team performance was captured through established simulation exercises and activities (i.e., no raters were involved), we coded them as simulation results. Lastly, in studies that examined multiple team performance facets, we created performance composites and coded them as team effectiveness.

When a study included more than one team conflict dimension, we recorded the intercorrelation(s) among conflict dimensions. We recorded the reported sample mean of team conflict dimensions, as well as the scale range and the starting point of the scale, and converted the sample mean into a 0 to 1 metric (Cohen et al., 1999). Moreover, we used r_{WG} (James et al., 1984, 1993) to capture team conflict symmetry at the between-study level. Compared to other indices that tap into either interrater reliability (e.g., ICCs) or interrater dispersion (e.g., standard deviation), r_{WG} provides a measure of interrater agreement (LeBreton & Senter, 2008). Hence, it is most closely aligned with the theoretical underpinning of conflict symmetry (Jehn et al., 2010), with greater r_{WG} values indicating higher levels of conflict symmetry. As the distribution of r_{WG} values is often skewed, we recorded the median r_{WG} (rather than the mean r_{WG}) from each study whenever possible.

As for methodological factors, we recorded whether the teams studied were top management teams (1) or not (0). Similar to de Wit et al. (2012), if a study relied on student teams in a classroom setting, we coded it as “not applicable” and excluded it when analyzing the organizational level of teams, as the sample was not from an organizational setting. Next, we coded whether the study sampled student teams (yes = 1; no = 0). When doing so, we considered both undergraduate and professional student samples (e.g., Master of Business Administration students) to be student teams, as the nature and environment of these teams are substantially different from intact teams in the workplace (Poitras, 2012). Based on the information available from each study, we recorded the average team tenure (in months) and average team size. Whenever possible, we relied on sample descriptions in the research report to code the average team size. In studies where this information was not available, we calculated the average team size using the number of individuals divided by the number of teams.² Following previous meta-analyses (e.g., De Dreu & Weingart, 2003; de Wit et al., 2012), we drew from McGrath’s (1984) group task circumplex and distinguished four types of tasks: creativity tasks (i.e., generating and developing new ideas, solutions, and/or products), decision-making tasks (i.e., reaching consensus for dynamic and complex tasks that do not have a right answer), production and service tasks (i.e., manufacturing products and/or delivering services to meet certain standards), and project tasks (i.e., engaging in problem-solving for specific assignments). If teams completed a combination of different tasks, we coded the task type as mixed.

In terms of conflict scales, Jehn’s instruments (Jehn, 1995; Jehn & Mannix, 2001) continue to have a dominant role in research, though some scholars have used alternative

² As pointed out by a reviewer, the calculated team size may be a conservative estimate due to imperfect response rates from team members. In turn, this may potentially affect the robustness of our findings (e.g., Hirschfeld et al., 2013). Therefore, we reran the analyses while excluding those studies that did not report the average team size ($k = 48$) and observed largely convergent findings. These findings are included in the Supplemental Material.

measures. Among them, Behfar et al. (2011) provided the most substantial revision to the measurements of task and process conflict. Therefore, for task and process conflict, we coded whether the study used Jehn's scales, Behfar et al.'s (2011) scale, or other scales (i.e., three categories). For relationship conflict, we differentiated between studies that used Jehn's scales and those that did not. Moreover, we distinguished between the rating source of performance as team members' self-rating (1) versus non-self-rating (0). Finally, we coded whether the team conflict–team performance relationship was cross-sectional (1) or time-separated (0).

All members of the author team took part in coding. We first developed a detailed coding scheme, with which we test-coded several articles to calibrate our shared understanding of the coding processes. After the coding training, each author coded a subset of the included studies. Next, a different coder was assigned to the subset of studies to cross-check the previous coding and identify coding inconsistencies and errors (interrater agreement = 98%). The team then met and discussed the reasons for inconsistencies to ensure the accuracy of coding. Prior to performing the data analyses, we conducted a final round of cross-checking (see the Supplemental Material for the complete coding file).

Meta-Analytic Procedure

Psychometric Meta-Analysis

To examine the overall team conflict–team performance relationships and their heterogeneity, we conducted psychometric meta-analyses (Schmidt & Hunter, 2015). For team performance facets that were based on objective measurements (i.e., financial performance, simulation results), we used 1 for their reliability estimates; for performance facets that relied on subjective ratings, we conducted reliability generalization analyses (Rodriguez & Maeda, 2006) and used the mean estimate (.88) for the small number of studies that did not report reliability

information. Compared to sample-size weighted averages of reliability estimates, reliability generalization estimates are more accurate because they take into account the precision of reliability estimates from different samples (Greco et al., 2018). As many studies did not report ICC(2) for the team conflict dimensions, we performed psychometric meta-analyses based on artifact distributions³ using the open-source *R* package “psychmeta” (Dahlke & Wiernik, 2019).

When a study included more than one team performance indicator, we first created the composite score correlation (Nunnally, 1978; Schmidt & Hunter, 2015).⁴ This correlation was then used to analyze the team conflict–team performance relationship for that study. Similar to the case of multiple performance indicators, some studies had multiple effect sizes available for the same team conflict–team performance relationship because more than one entity (e.g., team members and team leader) rated team performance and/or study variables were measured at multiple time points. Accordingly, we also created composite score correlations in these cases.

Meta-Regression Analyses

Although psychometric meta-analysis is suitable for testing the overall population-level team conflict–team performance relationships and their heterogeneity, meta-regression offers

³ ICC(2) distribution statistics: *Mean* = .57, *SD* = .17 for task conflict; *Mean* = .62, *SD* = .19 for relationship conflict; *Mean* = .59, *SD* = .10 for process conflict; *Mean* = .62, *SD* = .12 for status conflict. We tested the availability of ICC(2) as a potential moderator and found that its effect was negligible (see the Supplemental Material).

⁴ As an example, in a study that measured task conflict and two team performance facets, the correlation between task conflict and the team performance composite was calculated as r_{xy} , where r_{xy_i} = the correlation between task conflict and each of the two team performance facets, and $\bar{r}_{y_iy_j}$ = the average correlation between the two team performance facets:

$$r_{xy} = \frac{\sum r_{xy_i}}{\sqrt{n + n(n-1)\bar{r}_{y_iy_j}}}$$

Relatedly, the reliability of the team performance (r_{yy}) composite was calculated using the Spearman–Brown formula, where \bar{r}_{yy} = the average correlation between the two team performance facets:

$$r_{yy} = \frac{n\bar{r}_{yy}}{1 + (n-1)\bar{r}_{yy}}$$

many advantages when it comes to moderator testing (e.g., Gonzalez-Mulé & Aguinis, 2018; Steel & Kammeyer-Mueller, 2002). Thus, to examine the effects of the proposed moderators, we conducted a set of random-effects meta-regression analyses (Hedges & Olkin, 1985; Hedges & Vevea, 1998) with the open-source *R* package “metafor” (Viechtbauer, 2010). We used the restricted maximum-likelihood estimator in our analyses, as it provides a good balance between estimation efficiency and unbiasedness (Viechtbauer, 2005). Considering the uncertainty that arises when estimating effect size heterogeneity in random-effects meta-regression, it is important to mitigate Type I errors when testing the effects of moderators (Viechtbauer et al., 2015). Therefore, we followed the recommended practices regarding meta-regression and incorporated the Knapp and Hartung (2003) adjustment (Gonzalez-Mulé & Aguinis, 2018; Viechtbauer, 2010). Prior to conducting the meta-regression analyses, we corrected the effect sizes for reliability.⁵

To enhance the robustness of the meta-regression findings, we first tested the effect of each moderator individually by regressing the observed effect sizes on the respective moderator. For moderators that contained more than two categories (i.e., task type, team performance facet, and task and process conflict scales), we created a set of dummy variables for the corresponding categories (e.g., four dummy variables for the five task types). When testing their effects, we entered the whole set of dummy variables and interpreted the results of the omnibus test first (i.e., Q_M). Upon finding a significant omnibus test, we carried out paired comparisons by changing the reference group for the dummy variables, retesting the whole set of dummy

⁵ Consistent with our psychometric meta-analyses, we used ICC(2) and coefficient alpha when performing the psychometric corrections of team conflict and team performance, respectively. For studies that did not report ICC(2), we imputed the sample-size weighted mean of ICC(2). To triangulate the robustness of our findings (e.g., Yuan et al., 2020), we ran meta-regression analyses using the observed effect sizes and the effect sizes corrected for measurement error of team conflict based on coefficient alpha, which led to largely convergent findings (see the Supplemental Material).

variables, interpreting the significance of the dummy variables, and so on. This approach allowed us to comprehensively explore the nuanced differences among different categories. Next, we incorporated all significant moderators in a single meta-regression model. The individual tests helped us rule out the possibility that the significant effects of certain moderators in the simultaneous test were simply due to suppressor effects. Moreover, given that moderators may be correlated with one another to some extent, testing their effects simultaneously can reveal the unique explanatory power of each moderator while accounting for empirical overlaps (Steel & Kammeyer-Mueller, 2002; Viswesvaran & Sanchez, 1998). We did not include the nonsignificant moderators from the individual tests in the simultaneous model, as they should be considered impotent controls that would only reduce statistical power if entered into the model (Becker, 2005; Becker et al., 2016).

Our methodological choices (i.e., combining the psychometric meta-analyses and meta-regression analyses, the coding procedure of study-level moderators) are consistent with those from de Wit et al. (2012). This allows us to attribute the substantively different findings (if any) to the enlarged body of evidence instead of to divergent research practices.

Results

Population Average and Heterogeneity of Team Conflict–Team Performance Relationships

We report the psychometric meta-analysis results in Table 1. Across the four team conflict dimensions, their overall relationships with team performance were all negative (task conflict, $\rho = -.09$, 95% CI $[-.14, -.04]$; relationship conflict, $\rho = -.28$, 95% CI $[-.32, -.24]$; process conflict, $\rho = -.33$, 95% CI $[-.41, -.24]$; status conflict, $\rho = -.38$, 95% CI $[-.50, -.26]$). Moreover, the task conflict–team performance relationship had substantial cross-situation heterogeneity ($SD_{\rho} = .30$), with its 80% credibility interval (CV) containing zero $[-.48, .30]$.

Similarly, the relationship between relationship conflict and team performance was heterogeneous ($SD_p = .26$; 80% CV $[-.61, .05]$). As for process conflict ($SD_p = .22$; 80% CV $[-.61, -.04]$) and status conflict ($SD_p = .17$; 80% CV $[-.61, -.15]$), their relationships with team performance were less heterogeneous, with their 80% CVs excluding zero.

Moderators of Team Conflict–Team Performance Relationships

Moderators of the Task Conflict–Team Performance Relationship

Meta-regression results for the moderators of the task conflict–team performance relationship are reported in Table 2. Individualism weakened the negative task conflict–team performance relationship ($b = .005$, $t = 2.77$, $p < .01$, $k = 180$), whereas uncertainty avoidance strengthened this relationship ($b = -.005$, $t = 3.34$, $p < .01$, $k = 180$).⁶ However, other cultural dimensions did not moderate the task conflict–team performance relationship (power distance: $b = .001$, $t = .56$, $p = .58$, $k = 180$; masculinity: $b = .000$, $t = .12$, $p = .91$, $k = 180$; long-term orientation: $b = -.001$, $t = .50$, $p = .62$, $k = 180$; tightness: $b = .10$, $t = .57$, $p = .57$, $k = 169$).

Regarding team features, omnibus tests indicated team performance facet $[F(5, 202) = 6.56, p < .01, k = 208]$ moderated the task conflict–team performance relationship. Paired comparisons⁷ revealed that the team effectiveness category was the primary reason for the significant omnibus tests, as it was significantly different from the other categories. Accordingly, we report meta-regression results using this category as the reference group for the analyses in Table 2 and summarize these findings in Figure 3 (upper panel). Specifically, the negative task conflict–team performance relationship was stronger for team effectiveness than for the other performance facets. Additionally, the results of subgroup analyses based on performance facet

⁶ For the countries included in the current meta-analysis, these five cultural dimensions ranged from 8 to 104. In light of how they were scored, we report the results for cultural dimensions to three decimal places.

⁷ For the sake of completeness, complete paired comparison results are reported in the Supplemental Material.

are reported in Table 1. Moreover, when task conflict was more strongly related to relationship conflict ($b = -.40$, $t = 4.73$, $p < .01$, $k = 163$) and process conflict ($b = -.45$, $t = 3.60$, $p < .01$, $k = 33$) in a given sample, the negative task conflict–team performance relationship was stronger. The sample mean of task conflict weakened the negative task conflict–team performance relationship ($b = .61$, $t = 3.43$, $p < .01$, $k = 172$). Nevertheless, the moderating effect of task conflict symmetry ($b = .49$, $t = 1.25$, $p = .22$, $k = 110$) did not receive support.

Lastly, we examined all of the significant moderators from the individual tests simultaneously ($k = 116$).⁸ The moderating effects of individualism ($b = .004$, $t = 2.01$, $p = .05$) and the correlation between task conflict and relationship conflict ($b = -.24$, $t = 2.07$, $p = .04$) were still consistent with the results from the individual tests. Team performance facet continued to moderate the task conflict–team performance relationship, as evidenced by the significant effects of the dummy variables. However, the effects of uncertainty avoidance ($b = .000$, $t = .12$, $p = .90$) and the sample mean of task conflict ($b = .26$, $t = 1.13$, $p = .26$) became nonsignificant, indicating their influence was less robust in the simultaneous test.

Moderators of the Relationship Conflict–Team Performance Relationship

We report the meta-regression results for the moderators in the relationship conflict–team performance relationship in Table 3. Several national cultural dimensions emerged as pertinent moderators. In cultures that were more masculine ($b = .002$, $t = 2.81$, $p < .01$, $k = 173$) and individualistic ($b = .005$, $t = 3.16$, $p < .01$, $k = 173$), the negative relationship conflict–team performance relationship was weaker, whereas this relationship was stronger in more long-term-oriented cultures ($b = -.002$, $t = 3.04$, $p < .01$, $k = 173$). The moderating effects of power

⁸ As including the correlation between task conflict and process conflict would greatly reduce the sample size and hence the statistical power, we did not include it in the simultaneous test. Given that its theoretical implication is similar to the correlation between task conflict and relationship conflict (which was included in the simultaneous test), we believe this decision should be considered an acceptable trade-off to ensure adequate statistical power.

distance ($b = -.002, t = 1.70, p = .09, k = 173$), uncertainty avoidance ($b = -.001, t = 1.16, p = .25, k = 173$), and tightness ($b = -.14, t = .93, p = .35, k = 163$) were not significant.

Moreover, team performance facet moderated the relationship conflict–team performance relationship [$F(5, 195) = 3.80, p < .01, k = 201$]. In paired comparisons, we found that the team effectiveness category was the main driver for the significant omnibus test, as the effect size from this group was significantly smaller than that for decision quality and simulation results. Therefore, we report the meta-regression results using team effectiveness as the reference group and summarize these findings in Figure 3 (lower panel).⁹ Additionally, we report the results of subgroup analyses based on this categorical moderator in Table 1. With higher (versus lower) levels of relationship symmetry, the negative relationship between relationship conflict and team performance was weaker ($b = .70, t = 2.63, p < .01, k = 110$). Nevertheless, the moderating effects of the correlation between task conflict and relationship conflict ($b = -.06, t = .80, p = .42, k = 162$), the correlation between relationship conflict and process conflict ($b = -.04, t = .17, p = .87, k = 33$), and the sample mean of relationship conflict ($b = -.07, t = .44, p = .66, k = 167$) were not supported.

When significant moderators from the individual tests were examined simultaneously ($k = 97$), the moderating effect of individualism was consistent with the result from the individual test ($b = .003, t = 2.02, p = .05$). Team performance facets still played a role, evidenced by the significant effects of the dummy variables. However, the moderating effects of masculinity ($b = .001, t = .95, p = .35$), long-term orientation ($b = -.002, t = 1.12, p = .27$) and relationship conflict symmetry ($b = .30, t = 1.06, p = .29$) became nonsignificant.

Moderators of the Process Conflict–Team Performance Relationship

⁹ Complete paired comparison results are reported in the Supplemental Material.

The meta-regression results for the moderators of the process conflict–team performance relationship are reported in Table 4. National cultural dimensions did not moderate the negative process conflict–team performance relationship (power distance: $b = -.002$, $t = .56$, $p = .58$, $k = 31$; masculinity: $b = .001$, $t = .60$, $p = .55$, $k = 31$; individualism ($b = .006$, $t = 1.97$, $p = .06$, $k = 31$; uncertainty avoidance: $b = -.002$, $t = .91$, $p = .37$, $k = 31$; long-term orientation: $b = -.001$, $t = .48$, $p = .64$, $k = 31$; tightness: $b = -.17$, $t = .52$, $p = .61$, $k = 29$). The moderating effects of team features received very little empirical support, as none of them were significant [team performance facet: $F(4, 34) = 1.85$, $p = .14$, $k = 39$; correlation between task conflict and process conflict: $b = -.16$, $t = 1.31$, $p = .20$, $k = 32$; correlation between relationship conflict and process conflict: $b = -.24$, $t = 1.30$, $p = .20$, $k = 32$; sample mean of process conflict: $b = -.15$, $t = .37$, $p = .71$, $k = 33$; process conflict symmetry: $b = -.03$, $t = .04$, $p = .97$, $k = 19$]. Nevertheless, for the sake of completeness, we conducted subgroup analyses for team performance facet (see Table 1).

The status conflict–team performance relationship demonstrated the smallest amount of heterogeneity (see Table 1). Moreover, the number of independent samples for this relationship was too small to yield robust meta-regression results (Gonzalez-Mulé & Aguinis, 2018), so we did not examine moderators of the status conflict–team performance relationship.

In summary (see Table 5), regarding culture, we found support for individualism (Hypothesis 3), partial support for masculinity (Hypothesis 2) and uncertainty avoidance (Hypothesis 4), and no support for power distance (Hypothesis 1) or tightness (Hypothesis 6). The moderating impact of long-term orientation on the relationship conflict–team performance relationship was contrary to Hypothesis 5. As for our Research Question, the negative team conflict–team performance relationship was stronger for team effectiveness than for other performance facets for both task conflict and relationship conflict. The moderating impact of the

correlation among conflict dimensions (Hypothesis 7) and the sample mean of conflict (Hypothesis 8) received support for task conflict. Conflict symmetry weakened the relationship conflict–team performance relationship—a finding that supported Hypothesis 9.

Methodological Factors

Among teams that were larger ($b = -.02$, $t = 2.79$, $p < .01$, $k = 207$) and teams that were handling production and service tasks (compared to other types of tasks) [$F(4, 203) = 3.30$, $p = .01$, $k = 208$], the negative relationship between task conflict and team performance was more pronounced. The scale of task conflict also played a role [$F(2, 205) = 5.01$, $p < .01$, $k = 208$]. Specifically, studies that used Behfar et al.’s (2011) scale had more positive effect sizes ($b = .29$, $t = 2.85$, $p < .01$) than those that used Jehn’s (1995) scale. Furthermore, when team members self-reported team performance (compared to non-self-report), the negative relations between task conflict and team performance ($b = -.18$, $t = 3.01$, $p < .01$, $k = 208$) and between relationship conflict and team performance ($b = -.17$, $t = 3.32$, $p < .01$, $k = 201$) were stronger. The use of a cross-sectional design (compared to a time-separated design) strengthened the negative relationship between task conflict and team performance ($b = -.14$, $t = 2.74$, $p < .01$, $k = 208$). Other methodological factors, including top management team sample, student team sample, and average team tenure, did not have any noticeable moderating influences on the team conflict–team performance relationships. Detailed results of the subgroup psychometric analyses based on categorical methodological moderators can be found in the Supplemental Material.

Supplemental Analyses

Although not the main focus of this research, we also explored (1) the intercorrelations among conflict dimensions, (2) the moderators of the task conflict–relationship conflict relationship, and (3) the temporal dynamics of team conflict. Due to space constraints, we

summarize our notable findings here and report the complete results in the Supplemental Material. First, we conducted psychometric meta-analyses and found that the intercorrelations among team conflict dimensions were strong (ρ ranged from .49 to .79). Moreover, some of these intercorrelations demonstrated substantial heterogeneity; for example, the 80% CV of the correlation between task conflict and relationship conflict was wide [.06, 1.00]. Second, in light of the robust moderating role of the sample correlation between task conflict and relationship conflict, we explored which factors might explain its variation across samples. Of note, studies that used Behfar et al.'s (2011) task conflict scale reported weaker correlations between task conflict and relationship conflict compared to those that used Jehn's scales ($b_{\text{dif}} = -.60$, $t = 6.37$, $p < .01$, $k = 164$). The sample mean of task conflict weakened the positive correlation between task conflict and relationship conflict ($b = -.96$, $t = 5.34$, $p < .01$, $k = 136$). Third, we carried out a preliminary test of the temporal dynamics of team conflict using studies that measured conflict two or more times. The results indicated that the negative relationship conflict–team performance correlation became stronger as more time passed. Lastly, to evaluate the robustness of our meta-regression findings, we screened for statistical outliers (Aguinis et al., 2013), which had very limited effects in our study. We also tested for publication bias using the trim-and-fill method (Duval & Tweedie, 2000a, 2000b) and cumulative meta-analysis (Borenstein et al., 2009). Overall, we did not identify any discernible, severe publication bias (see the Supplemental Material for detailed results).

Discussion

Theoretical Implications and Extension of de Wit et al. (2012)

Population Average of Team Conflict–Team Performance Relationships

The performance ramifications of team conflict, especially task conflict, have been a key driver of the continuous growth of this research domain. Improved understanding of the team conflict–team performance relationships has crucial implications for organizational scholars and practitioners alike. Using a much larger set of independent samples ($k = 268$) compared to de Wit et al. (2012) ($k = 116$), we found that the overall team conflict–team performance relationships were negative for all four team conflict dimensions, including task conflict. Moreover, compared to de Wit et al. (2012), the population average estimates for task conflict ($\rho = -.09$ versus $-.01$), relationship conflict ($\rho = -.28$ versus $-.16$), and process conflict ($\rho = -.33$ versus $-.15$) were stronger (ρ_{dif} ranges from $-.08$ to $-.18$). Overall, this suggests the negative performance implications of team conflict may be more pronounced than previously believed.

In particular, the current meta-analysis reveals that, on average, the population relationship between task conflict and team performance was negative, not near-zero as in de Wit et al.'s (2012) meta-analysis. As such, it is warranted to update scholarly understanding of the overall impact of task conflict on team performance. Moreover, we provided the first empirical synthesis of the effect of status conflict on team performance, which substantiates its detrimental impact on team functioning (Bendersky & Hays, 2012). Consistent with de Wit et al. (2012), we found that relationship conflict is a destructive aspect of team conflict, evidenced by its moderate, negative relationship with team performance. Similarly, the negative process conflict–team performance relationship identified by de Wit et al. (2012) received support in the current meta-analysis. In light of the convergent evidence, perhaps it is time to shift away from the two-sided view of process conflict (Jehn & Bendersky, 2003) and instead recognize it as a dysfunctional aspect of team conflict in general (Behfar et al., 2011).

Heterogeneity of Team Conflict–Team Performance Relationships

Importantly, our characterization of the overall performance implications of team conflict should be qualified by their effect size heterogeneity, especially for task conflict and relationship conflict, as their 80% CVs were wide and crossed zero. These results, which are consistent with de Wit et al.'s findings (2012), highlight that both task conflict and relationship conflict have heterogeneous effects on team performance across situations. Although there is broad consensus regarding the mixed effects of task conflict, the current research reveals that the performance implications of relationship conflict may also depend on the context. Furthermore, the current meta-analysis extends de Wit et al. (2012) by showing that both process conflict and status conflict have less heterogeneous relationships with team performance, as evidenced by the narrower 80% CVs that did not include zero.

When viewed together, our results regarding the population average and heterogeneity of the team conflict–team performance relationships deepen scholarly understanding of the nature of team conflict. Specifically, considering their negative and relatively homogenous effects on team performance, both process conflict and status conflict may be understood as destructive aspects of team conflict. Meanwhile, task conflict and relationship conflict appear to be more paradoxical aspects of intrateam conflict, as their detrimental influence on team performance varies across contexts.

Contextual Moderators of the Team Conflict–Team Performance Relationships

National Culture. Our expanded investigation of contextual moderators revealed the systematic influence of cultural dimensions (Gelfand et al., 2008; Hofstede, 2001; House et al., 2004). Specifically, in cultures that more strongly seek to avoid uncertainty, team members may react very poorly to task conflict, augmenting its negative impact on team performance. In highly masculine and individualistic cultures, where conflict may be viewed as socially acceptable, such

tolerance (and even preference) for disagreements may buffer the negative team conflict–team performance relationships. Contrary to our hypothesis, we found that long-term orientation accentuates the negative impact of relationship conflict on team performance. This may indicate that interpersonal frictions are especially troublesome in cultures that emphasize sustained efforts to achieve long-term goals. Of note, individualism emerged as the most potent moderator, as it consistently buffered the negative team conflict–team performance relationships for both task conflict and relationship conflict. This suggests that interpersonal disagreements and clashes may be fundamentally at odds with the strong emphasis on unity and interpersonal harmony in collectivistic cultures (Hofstede, 2001).

Although the distal influence of national culture received very little support in de Wit et al. (2012), our expanded analyses highlight that culture merits attention in future conflict research. Collectively, these findings suggest that researchers may need to pay close attention to how conflict is viewed and interpreted in the respective culture in which they are conducting their studies (e.g., Gelfand et al., 2001). Moreover, cross-cultural research aimed at illuminating the impact of cultural differences is warranted (e.g., Gunkel et al., 2016). Relatedly, the influence of national culture suggests that its more proximal counterpart—organizational conflict culture (Gelfand et al., 2008, 2012)—might potentially play an even bigger role. Therefore, we encourage scholars to devote more attention to this important topic as well.

Team Features. We utilized a more systematic way of operationalizing team performance facets compared to de Wit et al. (2012). Notably, we found largely convergent moderating effects of team performance facet across task conflict and relationship conflict, thereby bringing clarity to the conflict literature. Specifically, the negative team conflict–team performance relationship was stronger for team effectiveness compared to other team

performance facets. Moreover, the team conflict–team effectiveness relationship itself was negative. Thus, as far as team effectiveness is concerned, both task conflict and relationship conflict may be detrimental. Given that team effectiveness is a broadly relevant performance criterion for work teams (Mathieu et al., 2008), this finding underscores that the potential benefits associated with team conflict may be extremely circumscribed (De Dreu, 2008). In turn, this requires future theorizing about the performance benefits of team conflict to be very precise—that is, to clearly specify the performance facets of interest. Failure to do so runs the risk of contradicting the large body of empirical evidence accumulated in the literature.

Similar to what de Wit et al. (2012) found, our analysis showed that the correlation between task conflict and relationship conflict strengthened the negative task conflict–team performance relationship. Considering the robust effect of this factor, conflict scholars may want to further investigate ways to mitigate the strong correlation between task conflict and relationship conflict (de Wit et al., 2012). Notably, the substantial heterogeneity of their intercorrelation identified in our supplemental analyses underscored the urgency of addressing this research question. We think there are at least two promising avenues to do so. First, as our supplemental analyses indicated, focusing on concrete conflict expressions such as debates and discussions (as in Behfar et al.’s [2011] task conflict scale), compared with the general notion of conflicts and disagreements (as in Jehn’s [1995] task conflict scale), may help reduce the magnitude of the correlation between task conflict and relationship conflict. It is also worth noting that studies that used Behfar et al.’s (2011) scale reported more positive task conflict–team performance relationships than those that used Jehn’s (1995) instrument. On these grounds, we recommend using Behfar et al.’s (2011) task conflict scale in future research. Moreover, this finding points to the need to further refine the conceptualization and measurement of task

conflict by explicitly considering the role of conflict communication and expression (Barki & Hartwick, 2004; Bendersky et al., 2014; Brykman & O'Neill, 2023; Todorova et al., 2014; Tsai & Bendersky, 2016; Weingart et al., 2015). Second, the empirical overlap between the two conflict dimensions calls for a continuous stream of research on ways to de-escalate conflict (e.g., Greer et al., 2008) and minimize misattribution of conflict (e.g., Simons & Peterson, 2000).

The task conflict–process conflict correlation played a moderating role similar to that of the overlap between task conflict and relationship conflict. This new finding from the current meta-analysis underscores the insidious impact of co-occurring conflict in accentuating the detrimental impact of task conflict on team performance. Furthermore, in response to a reviewer's inquiry, we explored the moderating role of average team conflict (i.e., the average correlation among task conflict, relationship conflict, and process conflict) and observed a similar pattern (for detailed results, see the Supplemental Material). Therefore, it may be fruitful to further investigate the situation of “all-out” conflict, in which teams are fraught with all types of conflict. This line of inquiry can extend conflict research by revealing the best and/or worst configurations of team conflict (e.g., O'Neill, McLarnon, Hoffart, Woodley, et al., 2018).

In the current meta-analysis, we heeded the research call by de Wit et al. (2012) to consider the issue of conflict (a)symmetry. The empirical support for conflict symmetry's ability to buffer the negative relationship conflict–team performance relationship is noteworthy, as it indicates that the mixed effects of relationship conflict may partly depend on whether team members see eye to eye regarding their interpersonal chasm. As scholars have started to address the limitations associated with the predominant consensus-based team conflict conceptualization (Jehn et al., 2010; Korsgaard et al., 2014; Shah et al., 2021), our analyses suggest conflict (a)symmetry may provide a useful theoretical lens.

Lastly, our exploration of the effect of the sample mean of task conflict showed that it weakened both the negative task conflict–team performance relationship and the positive task conflict–relationship conflict relationship. These findings suggest that in a context characterized by an overall higher level of task conflict, this type of conflict is more likely to be beneficial than harmful.¹⁰ In other words, an overall higher level of task conflict in a given context may overcome team members' inertia and activate its beneficial potential (e.g., Farh et al., 2010).

Taken together, these findings regarding team features echo the notion that "conflict within groups is not an 'all or nothing' event" (Korsgaard et al., 2014, p. 51). That is, researchers need to carefully consider the various team features, including the nature of team performance, the co-occurrence of team conflict, the symmetry of team members' conflict experiences, and the overall level of conflict, in the respective context to enhance the precision of their theorizing.

Methodological Moderators of the Team Conflict–Team Performance Relationships

Our meta-analysis provides the most comprehensive examination of methodological moderators of the team conflict–team performance relationships undertaken to date. These results are important from the standpoint of research design, as they illuminate how methodological choices may affect the relationship between team conflict and team performance. Notably, the relationship between task conflict and team performance depended on the type of team task. Specifically, production and service tasks that rely on routine coordination among team members may be especially vulnerable to the disruptive effect of task disagreements. In samples with a larger (versus smaller) average team size, the negative task conflict–team performance relationship was stronger. Together, the moderating effects of these factors suggest

¹⁰ Given that a lower level of sample mean may also indicate a restricted range of team conflict, we further explored its effect by controlling for the sample standard deviation. Additionally, we tested the curvilinear effect of sample mean. The complete results are reported in the Supplemental Material.

conflict scholars may need to pay close attention to the characteristics of teams that they recruit for their research. Furthermore, the negative effect sizes were stronger when team performance was self-rated by team members (versus non-self-rated) and when the study was cross-sectional (versus time-separated). In light of these findings, we encourage conflict scholars to continue to improve their research rigor by using non-self-rated team performance and adopting either a time-separated or longitudinal design. Parsing out the potential influence of these methodological factors can help researchers correctly identify the pertinent theoretical moderators for the team conflict–team performance relationships.

Practical Implications

In the past, the idea that task conflict might be beneficial for team performance has heavily shaped practitioner-oriented writings and conflict-related business education (e.g., Gallo, 2018; George & Jones, 2005; McShane & Von Glinow, 2000; Robbins, 2000; Rollinson, 2002). Our meta-analytic findings provide a good opportunity to update the evidence-based guidance for managerial practices regarding team conflict, especially task conflict. Considering the overall negative relationship between task conflict and team performance, we would caution against adopting a stance of unreserved optimism—that is, the view that task conflict is always beneficial for team functioning (De Dreu, 2008). Moreover, among the various team performance facets, team effectiveness demonstrated the most negative relationship with task conflict. Meanwhile, task conflict did not have any significant, positive relationships with any other team performance facets. Thus, it appears that task conflict is more damaging for team effectiveness than for other team performance aspects. However, this should not necessarily be taken as evidence that task conflict is more beneficial for other team performance aspects than for team effectiveness. Furthermore, given that all four team conflict dimensions were negatively

related to team performance and that the intercorrelations among the conflict dimensions were strong, we worry that truly “good types” of team conflict may be hard to come by. As De Dreu (2008) suggested, a more realistic goal for organizations may be to seek to minimize the harmful impacts of team conflict rather than to aim to maximize its potential benefits.

Toward that end, we encourage organizations operating in cultures that are highly uncertainty-avoiding, long-term oriented, collectivistic, and feminine to devote resources to helping their work teams handle conflict, as the effects of team conflict may be especially negative in these cultures. Moreover, teams that are larger in size and those that are working to meet production and service goals may be especially prone to the disruptive effects of conflict. In these kinds of teams, managers may want to prioritize establishing effective intrateam processes over encouraging divergent opinions and ideas among team members. Furthermore, conflict may spiral out of control when team members escalate task disagreements into interpersonal clashes and/or misinterpret differences of opinion as interpersonal incompatibilities. This situation calls for timely managerial intervention so that team members can work through their task disagreements without taking things personally. Relatedly, teams that experience more than one type of conflict may require special attention, as they are especially vulnerable to its detrimental impacts. Otherwise, with the onset of entrenched, “all-out” conflict, effective teamwork may come to a standstill as the team descends into total chaos. Lastly, when team members do not see eye to eye regarding their conflict, this discordance can compound the disruptive effects of relationship conflict. In this situation, managers are encouraged to help team members by “bringing conflicts into the open” (Jehn et al., 2010, p. 610) so that they can establish convergent conflict experiences and minimize any potential misunderstandings.

Research Limitations

The current meta-analysis has several limitations worth noting. First, given the nature of our synthesis, the level of analysis for all moderators was the between-study level. Although it can reveal meaningful contextual factors that might be otherwise masked at the within-study level (Johns, 2018; Yuan, 2021), capturing certain moderating influences at the between-study level has some inherent limitations. For example, we relied on the sample mean to test the effect of team tenure and team size, which may have limited utility, especially if the within-sample distribution is non-normal (e.g., Yuan et al., 2023). Relatedly, some moderators could be examined only when the sample was homogeneous in that respect. For example, if a sample consists of teams from multiple countries, it would be difficult to include it in analyses of national cultural dimensions. Nevertheless, given the expanded scope of our analyses, the current meta-analysis should be considered an important step toward illuminating the broader impact of context on the team conflict–team performance relationships.

Second, the statistical power for some of the meta-regression analyses may be somewhat low. Specifically, for the moderator analyses involving process conflict, the number of independent studies ranged from 20 to 40. Given that some of these analyses may have been somewhat underpowered, their results should be viewed with caution (Gonzalez-Mulé & Aguinis, 2018). Similarly, as status conflict is the dimension most recently introduced into the literature, the number of independent studies of the status conflict–team performance relationship was very small. Consequently, the psychometric meta-analytic results regarding status conflict may not be very stable (e.g., Cafri et al., 2010). In a similar vein, the results (e.g., CVs; Brannick et al., 2019) in our subgroup psychometric meta-analyses that were based on a small number of independent samples may be prone to estimation error. As the conflict literature continues to grow, we encourage researchers to provide meta-analytic updates in the future, especially for

process conflict and status conflict. That said, for the analyses involving task conflict and relationship conflict, we do not think statistical power was a great concern, as the number of independent studies far exceeded the benchmarks commonly reported in past meta-regression research (Gonzalez-Mulé & Aguinis, 2018). Furthermore, our systematic analytic approach, whereby we conducted both individual and simultaneous tests, screened for outliers, and tested for publication bias, further enhanced the robustness of our findings.

Third, as meta-analytic findings are based on a quantitative synthesis of primary studies, the quality of the included studies may directly affect the validity of the meta-analytic conclusions (Hunt, 1997). Toward that end, although we considered some prominent study design features, other extraneous factors may have contributed to the mixed effects of team conflict on team performance (Schmidt & Hunter, 2015). We call for more scientific rigor and transparency in future conflict research, which can improve the robustness of the cumulative body of empirical findings and facilitate the identification of additional moderators.

Lastly, we emphasize that our findings related to team conflict should not be erroneously over-generalized to other levels (e.g., the dyad level). Although the vast majority of conflict research has been conducted at the team level, conflict at other levels also warrants attention in future research. We hope that by offering a comprehensive account of the team conflict–team performance relationships, the current meta-analysis joins conflict research at other levels (Humphrey et al., 2017; Park et al., 2020; Shah et al., 2021; Sinha et al., 2016) to support a truly multilevel view of conflict (Korsgaard et al., 2008). Relatedly, although we operationalized team conflict as team members' reported conflict experiences (Jehn, 1995), there may be value in investigating conflict in other ways, such as via behavioral coding (e.g., Park et al., 2024) and/or experimental manipulations (Minson et al., 2023).

References

References marked with * are studies included in the meta-analysis; references marked with ** are only cited in the Supplemental Material.

*Abraham, E. K., McCusker, M. E., & Foti, R. J. (2019). Competing conversations: An examination of competition as intrateam interactions. *Frontiers in Psychology*, 10, Article 970. <https://doi.org/10.3389/fpsyg.2019.00970>

*Acuña, S. T., Gómez, M., & Juristo, N. (2009). How do personality, team processes and task characteristics relate to job satisfaction and software quality? *Information and Software Technology*, 51(3), 627–639. <https://doi.org/10.1016/j.infsof.2008.08.006>

*Adair, W. L., Liang, L. H., & Hideg, I. (2017). Buffering against the detrimental effects of demographic faultlines: The curious case of intragroup conflict in small work groups. *Negotiation and Conflict Management Research*, 10(1), 28–45. <https://doi.org/10.1111/ncmr.12087>

Aguinis, H., Gottfredson, R. K., & Joo, H. (2013). Best-practice recommendations for defining, identifying, and handling outliers. *Organizational Research Methods*, 16(2), 270–301. <https://doi.org/10.1177/1094428112470848>

*Ahmad, R. (2014). *Perceived faultline impact in temporary distributed teams: Examining the role of norms of technology use* [Unpublished doctoral dissertation]. University of Maryland, Baltimore County.

*Alipour, K. K., Mohammed, S., & Raghuram, S. (2018). Differences in the valuing of power among team members: A contingency approach toward examining the effects of power values diversity and relationship conflict. *Journal of Business and Psychology*, 33(2), 231–247. <https://doi.org/10.1007/s10869-017-9488-7>

*Altaf, S., Iqbal, M. Z., van Prooijen, J. W., & Ikramullah, M. (2021). The mechanism behind employee agreeableness and group performance ratings: A Pakistani study. *International Journal of Productivity and Performance Management*, 70(4), 743–768. <https://doi.org/10.1108/IJPPM-03-2019-0120>

*Alves, M. P., Dimas, I. D., Lourenço, P. R., Rebelo, T., Peñarroja, V., & Gamero, N. (2022). Can virtuality be protective of team trust? Conflict and effectiveness in hybrid teams. *Behaviour & Information Technology*, 42(7), 851–868. <https://doi.org/10.1080/0144929X.2022.2046163>

*Amason, A. C. (1996). Distinguishing the effects of functional and dysfunctional conflict on strategic decision making: Resolving a paradox for top management teams. *Academy of Management Journal*, 39(1), 123–148. <https://doi.org/10.5465/256633>

*Amason, A. C., Liu, J., & Fu, P. (2018). Value heterogeneity: An overlooked and important antecedent of TMT conflict and effectiveness. *Journal of Managerial Issues*, 30(2), 155–182.

*Amason, A. C., & Mooney, A. C. (1999). The effects of past performance on top management team conflict in strategic decision making. *International Journal of Conflict Management*, 10(4), 340–359. <https://doi.org/10.1108/eb022829>

Amason, A. C., & Schweiger, D. M. (1994). Resolving the paradox of conflict, strategic decision making, and organizational performance. *International Journal of Conflict Management*, 5(3), 239–253. <https://doi.org/10.1108/eb022745>

*Antino, M., Rico, R., & Thatcher, S. M. (2019). Structuring reality through the faultlines lens: The effects of structure, fairness, and status conflict on the activated faultlines—

performance relationship. *Academy of Management Journal*, 62(5), 1444–1470. <https://doi.org/10.5465/amj.2017.0054>

*Auh, S., Bowen, D. E., Aysuna, C., & Menguc, B. (2016). A search for missing links: Specifying the relationship between leader–member exchange differentiation and service climate. *Journal of Service Research*, 19(3), 260–275. <https://doi.org/10.1177/1094670516648385>

*Auh, S., Spyropoulou, S., Menguc, B., & Uslu, A. (2014). When and how does sales team conflict affect sales team performance? *Journal of the Academy of Marketing Science*, 42(6), 658–679. <https://doi.org/10.1007/s11747-014-0368-7>

*Ayoko, O. B., & Konrad, A. M. (2012). Leaders' transformational, conflict, and emotion management behaviors in culturally diverse workgroups. *Equality, Diversity and Inclusion*, 31(8), 694–724. <https://doi.org/10.1108/02610151211277581>

*Bachrach, D. G., Hood, A. C., Lewis, K., & Bendoly, E. (2014). The other side of the coin: Transactional memory systems and the prevention of resource losses. *Academy of Management Annual Meeting Proceedings*, 2014(1). <https://doi.org/10.5465/ambpp.2014.272>

*Bang, H., & Park, J. G. (2015). The double-edged sword of task conflict: Its impact on team performance. *Social Behavior and Personality*, 43(5), 715–728. <https://doi.org/10.2224/sbp.2015.43.5.715>

Barki, H., & Hartwick, J. (2004). Conceptualizing the construct of interpersonal conflict. *International Journal of Conflict Management*, 15(3), 216–244. <http://dx.doi.org/10.1108/eb022913>

Baron, R. A. (1984). Reducing organizational conflict: An incompatible response approach. *Journal of Applied Psychology*, 69(2), 272–279. <https://doi.org/10.1037/0021-9010.69.2.272>

*Barsade, S. G., Ward, A. J., Turner, J. D., & Sonnenfeld, J. A. (2000). To your heart's content: A model of affective diversity in top management teams. *Administrative Science Quarterly*, 45(4), 802–836. <https://doi.org/10.2307/2667020>

*Bayazit, M., & Mannix, E. A. (2003). Should I stay or should I go? Predicting team members' intent to remain in the team. *Small Group Research*, 34(3), 290–321. <https://doi.org/10.1177/1046496403034003002>

Becker, T. E. (2005). Potential problems in the statistical control of variables in organizational research: A qualitative analysis with recommendations. *Organizational Research Methods*, 8(3), 274–289. <https://doi.org/10.1177/1094428105278021>

Becker, T. E., Atinc, G., Breaugh, J. A., Carlson, K. D., Edwards, J. R., & Spector, P. E. (2016). Statistical control in correlational studies: 10 essential recommendations for organizational researchers. *Journal of Organizational Behavior*, 37(2), 157–167. <https://doi.org/10.1002/job.2053>

*Beersma, B., Hollenbeck, J. R., Conlon, D. E., Humphrey, S. E., Moon, H., & Ilgen, D. R. (2009). Cutthroat cooperation: The effects of team role decisions on adaptation to alternative reward structures. *Organizational Behavior and Human Decision Processes*, 108(1), 131–142. <https://doi.org/10.1016/j.obhdp.2008.07.002>

*Behfar, K. J., Mannix, E. A., Peterson, R. S., & Trochim, W. M. (2011). Conflict in small groups: The meaning and consequences of process conflict. *Small Group Research*, 42(2), 127–176. <https://doi.org/10.1177/1046496410389194>

Bendersky, C., Bear, J., Behfar, K., Weingart, L. R., Todorova, G., & Jehn, K. (2014). Identifying gaps between the conceptualization of conflict and its measurement. In O. B. Ayoko, N. M. Ashkanasy, & K. A. Jehn (Eds.), *Handbook of conflict management research* (pp. 79–89). Edward Edgar Publishing.

*Bendersky, C., & Hays, N. A. (2012). Status conflict in groups. *Organization Science*, 23(2), 323–340. <https://doi.org/10.1287/orsc.1110.0734>

*Bendersky, C., & Hays, N. A. (2017). The positive effects of status conflicts in teams where members perceive status hierarchies differently. *Social Psychological and Personality Science*, 8(2), 124–132. <http://dx.doi.org/10.1177/1948550616667614>

**Bliese, P. D., & Halverson, R. R. (1998). Group consensus and psychological well-being: A large field study. *Journal of Applied Social Psychology*, 28(7), 563–580. <https://doi.org/10.1111/j.1559-1816.1998.tb01720.x>

*Boone, S., Andries, P., & Clarysse, B. (2020). Does team entrepreneurial passion matter for relationship conflict and team performance? On the importance of fit between passion focus and venture development stage. *Journal of Business Venturing*, 35(5), Article 105984. <https://doi.org/10.1016/j.jbusvent.2019.105984>

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). *Introduction to meta-analysis*. Wiley. <http://dx.doi.org/10.1002/9780470743386>

*Boroş, S., Van Gorp, L., Cardoen, B., & Boute, R. (2017). Breaking silos: A field experiment on relational conflict management in cross-functional teams. *Group Decision and Negotiation*, 26(2), 327–356. <https://doi.org/10.1007/s10726-016-9487-5>

Bradley, B. H., Anderson, H. J., Baur, J. E., & Klotz, A. C. (2015). When conflict helps: Integrating evidence for beneficial conflict in groups and teams under three perspectives. *Group Dynamics: Theory, Research, and Practice*, 19(4), 243–272. <https://doi.org/10.1037/gdn0000033>

*Bradley, B. H., Klotz, A. C., Postlethwaite, B. E., & Brown, K. G. (2013). Ready to rumble: How team personality composition and task conflict interact to improve performance. *Journal of Applied Psychology*, 98(2), 385–392. <https://doi.org/10.1037/a0029845>

Brannick, M. T., Potter, S., & Teng, Y. (2019). Quantifying uncertainty in the meta-analytic lower bound estimate. *Psychological Methods*, 24(6), 754–773. <https://doi.org/10.1037/met0000217>

*Bruvoll, I. C., & Børresen, V. G. (2021). *The effect of relationship conflict on management team performance: The mediating effect of psychological safety* [Unpublished master's thesis]. University of Oslo.

*Brykman, K. M., & O'Neill, T. A. (2021). Beyond aggregation: How voice disparity relates to team conflict, satisfaction, and performance. *Small Group Research*, 52(3), 288–315. <http://dx.doi.org/10.1177/1046496420956391>

Brykman, K. M., & O'Neill, T. A. (2023). How conflict expressions affect recipients' conflict management behaviors. *Organizational Behavior and Human Decision Processes*, 174, 104208. <https://doi.org/10.1016/j.obhdp.2022.104208>

*Buchholtz, A. K., Amazon, A. C., & Rutherford, M. A. (2005). The impact of board monitoring and involvement on top management team affective conflict. *Journal of Managerial Issues*, 17(4), 405–422.

*Bunderson, J. S., Van Der Vegt, G. S., Cantimur, Y., & Rink, F. (2016). Different views of hierarchy and why they matter: Hierarchy as inequality or as cascading influence.

Academy of Management Journal, 59(4), 1265–1289.
<https://doi.org/10.5465/amj.2014.0601>

*Burmann, K., & Semrau, T. (2022). The consequences of social category faultlines in high- and low-context cultures: A comparative study of Brazil and Germany. *Frontiers in Psychology*, 13, Article 1082870. <https://doi.org/10.3389/fpsyg.2022.1082870>

Cafri, G., Kromrey, J. D., & Brannick, M. T. (2010). A meta-meta-analysis: Empirical review of statistical power, Type I error rates, effect sizes, and model selection of meta-analyses published in psychology. *Multivariate Behavioral Research*, 45(2), 239–270.
<https://doi.org/10.1080/00273171003680187>

*Cai, L., Liu, Q., & Yu, X. (2013). Effects of top management team heterogeneous background and behavioural attributes on the performance of new ventures. *Systems Research and Behavioral Science*, 30(3), 354–366. <https://doi.org/10.1002/sres.2176>

*Camelo-Ordaz, C., García-Cruz, J., & Sousa-Ginel, E. (2015). The influence of top management team conflict on firm innovativeness. *Group Decision and Negotiation*, 24(6), 957–980. <https://doi.org/10.1007/s10726-014-9424-4>

*Campana, K. L. (2009). *Leader incivility and its effect on group processes and performance* [Unpublished doctoral dissertation]. University of Minnesota.

*Cantimur, Y., Rink, F., & van der Vegt, G. S. (2016). When and why hierarchy steepness is related to team performance. *European Journal of Work and Organizational Psychology*, 25(5), 658–673. <https://doi.org/10.1080/1359432X.2016.1148030>

Caputo, A., Ayoko, O. B., & Amoo, N. (2018). The moderating role of cultural intelligence in the relationship between cultural orientations and conflict management styles. *Journal of Business Research*, 89, 10–20. <https://doi.org/10.1016/j.jbusres.2018.03.042>

**Carter, E. C., Schönbrodt, F. D., Gervais, W. M., & Hilgard, J. (2019). Correcting for bias in psychology: A comparison of meta-analytic methods. *Advances in Methods and Practices in Psychological Science*, 2(2), 115–144.
<https://doi.org/10.1177/2515245919847196>

*Chen, C. C., Ünal, A. F., Leung, K., & Xin, K. R. (2016). Group harmony in the workplace: Conception, measurement, and validation. *Asia Pacific Journal of Management*, 33(4), 903–934. <https://doi.org/10.1007/s10490-016-9457-0>

*Chen, X., Liu, J., Yuan, Y., & Cui, X. (2019). The curvilinear effect of task conflict on idea generation: The mediating role of reflexivity and the moderating role of task complexity. *International Journal of Conflict Management*, 30(2), 158–179.
<https://doi.org/10.1108/IJCMA-02-2018-0029>

*Chen, Z. J., Qin, X., & Vogel, D. (2012). Is cooperation a panacea? The effect of cooperative response to task conflict on team performance. *Systems Research and Behavioral Science*, 29(2), 163–178. <https://doi.org/10.1002/sres.2104>

*Choi, D., Kraimer, M. L., & Seibert, S. E. (2020). Conflict, justice, and inequality: Why perceptions of leader–member exchange differentiation hurt performance in teams. *Journal of Organizational Behavior*, 41(6), 567–586. <https://doi.org/10.1002/job.2451>

Choi, K., & Cho, B. (2011). Competing hypotheses analyses of the associations between group task conflict and group relationship conflict. *Journal of Organizational Behavior*, 32(8), 1106–1126. <https://doi.org/10.1002/job.733>

*Choi, S. B., Jung, K. B., & Kang, S. W. (2022). What hinders team innovation performance? Three-way interaction of destructive leadership, intra-team conflict, and organizational

diversity. *Frontiers in Psychology*, 13, Article 879412. <https://doi.org/10.3389/fpsyg.2022.879412>

*Chun, J. S., & Choi, J. N. (2014). Members' needs, intragroup conflict, and group performance. *Journal of Applied Psychology*, 99(3), 437–450. <https://doi.org/10.1037/a0036363>

Cohen, P., Cohen, J., Aiken, L. S., & West, S. G. (1999). The problem of units and the circumstance for POMP. *Multivariate Behavioral Research*, 34(3), 315–346. https://doi.org/10.1207/S15327906MBR3403_2

*Collewaert, V., & Sapienza, H. J. (2016). How does angel investor–entrepreneur conflict affect venture innovation? It depends. *Entrepreneurship Theory and Practice*, 40(3), 573–597. <https://doi.org/10.1111/etap.12131>

*Cooper, D., & Watson, W. (2011). Conflict and performance in US and Mexican learning teams: The influence of team behaviors and cultural context. *Cross Cultural Management: An International Journal*, 18(4), 426–442. <https://doi.org/10.1108/13527601111179500>

Cortina, J. M. (2003). Apples and oranges (and pears, oh my!): The search for moderators in meta-analysis. *Organizational Research Methods*, 6(4), 415–439. <https://doi.org/10.1177/1094428103257358>

Coser, L. A. (1956). *The functions of social conflict*. Free Press.

*Costa, P. L., Passos, A. M., & Bakker, A. B. (2015). Direct and contextual influence of team conflict on team resources, team work engagement, and team performance. *Negotiation and Conflict Management Research*, 8(4), 211–227. <https://doi.org/10.1111/ncmr.12061>

Cronin, M. A., & Bezrukova, K. (2019). Conflict management through the lens of system dynamics. *Academy of Management Annals*, 13(2), 770–806. <https://doi.org/10.5465/annals.2017.0021>

*Crucke, S., & Knockaert, M. (2016). When stakeholder representation leads to faultlines: A study of board service performance in social enterprises. *Journal of Management Studies*, 53(5), 768–793. <https://doi.org/10.1111/joms.12197>

*Cunningham, G. B., & Waltemyer, D. S. (2007). The moderating effect of outcome interdependence on the relationship between task conflict and group performance. *International Journal of Sport Psychology*, 38(2), 163–177.

*Curșeu, P. L., Pluut, H., Boroș, S., & Meslec, N. (2015). The magic of collective emotional intelligence in learning groups: No guys needed for the spell! *British Journal of Psychology*, 106(2), 217–234. <https://doi.org/10.1111/bjop.12075>

*Curșeu, P. L., & Schrijver, S. G. L. (2010). Does conflict shatter trust or does trust obliterate conflict? Revisiting the relationships between team diversity, conflict, and trust. *Group Dynamics: Theory, Research, and Practice*, 14(1), 66–79. <https://doi.org/10.1037/a0017104>

*Dahlan, M., Al-Atwi, A. A., Alshaibani, E., Bakir, A., & Maher, K. (2023). Diverse group effectiveness: Co-occurrence of task and relationship conflict, and transformational leadership. *International Journal of Productivity and Performance Management*, 72(4), 1051–1076. <https://doi.org/10.1108/IJPPM-01-2021-0025>

Dahlke, J. A., & Wiernik, B. M. (2019). *psychmeta*: An R package for psychometric meta-analysis. *Applied Psychological Measurement*, 43(5), 415–416. <https://doi.org/10.1177/0146621618795933>

*Darling, B. (2013). *Conflict in virtually distributed teams* [Unpublished master's thesis]. University of Central Florida.

*Dawkins, S., Martin, A., Scott, J., Sanderson, K., & Schüz, B. (2021). A cross-level model of team-level psychological capital (PsyCap) and individual- and team-level outcomes. *Journal of Management & Organization*, 27(2), 397–416. <https://doi.org/10.1017/jmo.2018.27>

*DeChurch, L. A., & Marks, M. A. (2001). Maximizing the benefits of task conflict: The role of conflict management. *International Journal of Conflict Management*, 12(1), 4–22. <https://doi.org/10.1108/eb022847>

DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). The cognitive underpinnings of effective teamwork: A meta-analysis. *Journal of Applied Psychology*, 95(1), 32–53. <https://doi.org/10.1037/a0017328>

DeChurch, L. A., Mesmer-Magnus, J. R., & Doty, D. (2013). Moving beyond relationship and task conflict: Toward a process-state perspective. *Journal of Applied Psychology*, 98(4), 559–578. <https://doi.org/10.1037/a0032896>

*De Dreu, C. K. W. (2006). When too little or too much hurts: Evidence for a curvilinear relationship between task conflict and innovation in teams. *Journal of Management*, 32(1), 83–107. <https://doi.org/10.1177/0149206305277795>

De Dreu, C. K. W. (2008). The virtue and vice of workplace conflict: Food for (pessimistic) thought. *Journal of Organizational Behavior*, 29(1), 5–18. <https://doi.org/10.1002/job.474>

De Dreu, C. K. W., & Gelfand, M. J. (2008). Conflict in the workplace: Sources, functions, and dynamics across multiple levels of analysis. In C. K. W. De Dreu & M. J. Gelfand (Eds.), *The psychology of conflict and conflict management in organizations* (pp. 3–54). Erlbaum.

*De Dreu, C. K. W., & Van Vianen, A. E. (2001). Managing relationship conflict and the effectiveness of organizational teams. *Journal of Organizational Behavior*, 22(3), 309–328. <https://doi.org/10.1002/job.71>

De Dreu, C. K. W., & Weingart, L. R. (2003). Task versus relationship conflict, team performance, and team member satisfaction: A meta-analysis. *Journal of Applied Psychology*, 88(4), 741–749. <https://doi.org/10.1037/0021-9010.88.4.741>

*De Dreu, C. K. W., & West, M. A. (2001). Minority dissent and team innovation: The importance of participation in decision making. *Journal of Applied Psychology*, 86(6), 1191–1201. <https://doi.org/10.1037/0021-9010.86.6.1191>

*de Jong, R., Schalk, R., & Curșeu, P. L. (2008). Virtual communicating, conflicts and performance in teams. *Team Performance Management: An International Journal*, 14(7–8), 364–380. <https://doi.org/10.1108/13527590810912331>

*Deng, Y., Lin, W., & Li, G. (2022). When and how does team task conflict spark team innovation? A contingency perspective. *Journal of Business Ethics*, 181, 745–761. <https://doi.org/10.1007/s10551-021-04953-7>

*Derban, G. (2017). *The structure and function of task conflict: An investigation of quality and frequency* [Unpublished master's thesis]. University of Calgary.

*Derdowski, L., Øgaard, T., Marnburg, E., & Mathisen, G. E. (2018). Creative and innovative behaviours of corporate directors: An elusive role of task-related conflicts. *Journal of Management and Governance*, 22(4), 1045–1069. <https://doi.org/10.1007/s10997-018-9419-7>

*Desivilya, H. S., Somech, A., & Lidgoster, H. (2010). Innovation and conflict management in work teams: The effects of team identification and task and relationship conflict.

Negotiation and Conflict Management Research, 3(1), 28–48.
<https://doi.org/10.1111/j.1750-4716.2009.00048.x>

de Wit, F. R. C., Greer, L. L., & Jehn, K. A. (2012). The paradox of intragroup conflict: A meta-analysis. *Journal of Applied Psychology*, 97(2), 360–390.
<https://doi.org/10.1037/a0024844>

de Wit, F. R. C., Jehn, K. A., & Scheepers, D. (2013). Task conflict, information processing, and decision-making: The damaging effect of relationship conflict. *Organizational Behavior and Human Decision Processes*, 122(2), 177–189.
<https://doi.org/10.1016/j.obhdp.2013.07.002>

*Dimas, I. D., & Lourenço, P. R. (2015). Intragroup conflict and conflict management approaches as determinants of team performance and satisfaction: Two field studies. *Negotiation and Conflict Management Research*, 8(3), 174–193.
<https://doi.org/10.1111/ncmr.12054>

*Downes, P. E., Gonzalez-Mulé, E., Seong, J. Y., & Park, W. W. (2021). To collaborate or not? The moderating effects of team conflict on performance-prove goal orientation, collaboration, and team performance. *Journal of Occupational and Organizational Psychology*, 94(3), 568–590. <https://doi.org/10.1111/joop.12360>

*Drescher, A. J. (2015). *Worth fighting for: Investigating the impact of contextual factors on task conflict and creativity* [Unpublished master's thesis]. Pennsylvania State University.

**Duval, S. J. (2005). The “trim and fill” method. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), *Publication bias in meta-analysis: Prevention, assessment, and adjustments* (pp. 127–144). Wiley.

Duval, S. J., & Tweedie, R. L. (2000a). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. *Journal of the American Statistical Association*, 95(449), 89–98. <https://doi.org/10.2307/2669529>

Duval, S. J., & Tweedie, R. L. (2000b). Trim and fill: A simple funnel plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*, 56(2), 455–463. <https://doi.org/10.1111/j.0006-341X.2000.00455.x>

*Elron, E. (1997). Top management teams within multinational corporations: Effects of cultural heterogeneity. *Leadership Quarterly*, 8(4), 393–412. [https://doi.org/10.1016/S1048-9843\(97\)90021-7](https://doi.org/10.1016/S1048-9843(97)90021-7)

*Engels, R. (2016). *The validation of a measurement instrument for pro-diversity leadership* [Unpublished master's thesis]. Eindhoven University of Technology.

*Ensley, M. D., & Hmieleski, K. M. (2005). A comparative study of new venture top management team composition, dynamics and performance between university-based and independent start-ups. *Research Policy*, 34(7), 1091–1105.
<https://doi.org/10.1016/j.respol.2005.05.008>

*Ensley, M. D., Pearson, A. W., & Amason, A. C. (2002). Understanding the dynamics of new venture top management teams: Cohesion, conflict, and new venture performance. *Journal of Business Venturing*, 17(4), 365–386. [https://doi.org/10.1016/S0883-9026\(00\)00065-3](https://doi.org/10.1016/S0883-9026(00)00065-3)

*Ensley, M. D., Pearson, A. W., & Sardeshmukh, S. R. (2007). The negative consequences of pay dispersion in family and non-family top management teams: An exploratory analysis of new venture, high-growth firms. *Journal of Business Research*, 60(10), 1039–1047.
<https://doi.org/10.1016/j.jbusres.2006.12.012>

Eriksson, K., Strimling, P., Gelfand, M., Wu, J., Abernathy, J., Akotia, C. S., Aldashev, A., Andersson, P. A., Andrijghetto, G., Anum, A., Arikan, G., Aycan, Z., Bagherian, F., Barrera, D., Basnight-Brown, D., Batkeyev, B., Belaus, A., Berezina, E., Björnstjerna, M., . . . Van Lange, P. A. M. (2021). Perceptions of the appropriate response to norm violation in 57 societies. *Nature Communications*, 12(1), 1481. <https://doi.org/10.1038/s41467-021-21602-9>

*Espedalen, L. E. (2016). *The effect of team size on management team performance: The mediating role of relationship conflict and team cohesion* [Unpublished master's thesis]. University of Oslo.

*Evans, J. B. (2020). *Leader curiosity and team intellectual stimulation* [Unpublished doctoral dissertation]. University of Arizona.

*Fairchild, J., & Hunter, S. T. (2014). "We've got creative differences": The effects of task conflict and participative safety on team creative performance. *Journal of Creative Behavior*, 48(1), 64–87. <https://doi.org/10.1002/jocb.41>

*Farh, C. I. C., & Chen, Z. (2014). Beyond the individual victim: Multilevel consequences of abusive supervision in teams. *Journal of Applied Psychology*, 99(6), 1074–1095. <https://doi.org/10.1037/a0037636>

*Farh, J. L., Lee, C., & Farh, C. I. C. (2010). Task conflict and team creativity: A question of how much and when. *Journal of Applied Psychology*, 95(6), 1173–1180. <https://doi.org/10.1037/a0020015>

*Ferguson, A. J., & Peterson, R. S. (2015). Sinking slowly: Diversity in propensity to trust predicts downward trust spirals in small groups. *Journal of Applied Psychology*, 100(4), 1012–1024. <http://dx.doi.org/10.1037/apl0000007>

*Ferguson, A. J., Peterson, R. S., & Hu, X. (2018, August 10–14). The elusive effects of personality composition: Task and relationship conflict mediate the effects of Big Five personality on group performance. In T. Kelemen, S. Matthews, & C. Bendersky (Chairs), *Roll with the punches: An exploration of team conflict from multiple perspectives* [Symposium]. Academy of Management 78th Annual Meeting, Chicago, IL. <https://doi.org/10.5465/AMBPP.2018.15124symposium>

*Foncubierta-Rodríguez, M. J., Martín-Alcázar, F., & Perea-Vicente, J. L. (2022). Conflict and performance in research teams: How principal investigator can influence this relationship. *R&D Management*, 52(4), 755–767. <https://doi.org/10.1111/radm.12519>

*Foo, M. D. (2011). Teams developing business ideas: How member characteristics and conflict affect member-rated team effectiveness. *Small Business Economics*, 36(1), 33–46. <https://doi.org/10.1007/s11187-009-9176-8>

*Franke, H., Eckerd, S., & Foerstl, K. (2022). Rising to the top: Motivational forces influencing status conflict in sourcing teams. *Production and Operations Management*, 31(3), 963–983. <http://dx.doi.org/10.1111/poms.13590>

*Franke, H., & Foerstl, K. (2020). Goals, conflict, politics, and performance of cross-functional sourcing teams: Results from a social team experiment. *Journal of Business Logistics*, 41(1), 6–30. <https://doi.org/10.1111/jbl.12225>

Gabrielidis, C., Stephan, W. G., Ybarra, O., dos Santos Pearson, V. M., & Villareal, L. (1997). Preferred styles of conflict resolution: Mexico and the United States. *Journal of Cross-Cultural Psychology*, 28(6), 661–677. <https://doi.org/10.1177/0022022197286002>

Gallo, A. (2018). Why we should be disagreeing more at work. *Harvard Business Review*. <https://hbr.org/2018/01/why-we-should-be-disagreeing-more-at-work>

Gelfand, M. J., Jackson, J. C., Pan, X., Nau, D., Pieper, D., Denison, E., Dagher, M., Van Lange, P. A. M., Chiu, C.-Y., & Wang, M. (2021). The relationship between cultural tightness–looseness and COVID-19 cases and deaths: A global analysis. *Lancet Planetary Health*, 5(3), e135–e144. [https://doi.org/10.1016/S2542-5196\(20\)30301-6](https://doi.org/10.1016/S2542-5196(20)30301-6)

Gelfand, M. J., Leslie, L. M., & Keller, K. M. (2008). On the etiology of conflict cultures. *Research in Organizational Behavior*, 28, 137–166. <https://doi.org/10.1016/j.riob.2008.06.001>

Gelfand, M. J., Leslie, L. M., Keller, K., & de Dreu, C. (2012). Conflict cultures in organizations: How leaders shape conflict cultures and their organizational-level consequences. *Journal of Applied Psychology*, 97(6), 1131–1147. <https://doi.org/10.1037/a0029993>

Gelfand, M. J., Nishii, L. H., Holcombe, K. M., Dyer, N., Ohbuchi, K.-i., & Fukuno, M. (2001). Cultural influences on cognitive representations of conflict: Interpretations of conflict episodes in the United States and Japan. *Journal of Applied Psychology*, 86(6), 1059–1074. <https://doi.org/10.1037/0021-9010.86.6.1059>

Gelfand, M. J., Nishii, L. H., & Raver, J. L. (2006). On the nature and importance of cultural tightness–looseness. *Journal of Applied Psychology*, 91(6), 1225–1244. <https://doi.org/10.1037/0021-9010.91.6.1225>

George, J. M., & Jones, G. R. (2005). *Organizational behavior* (3rd ed.). Prentice Hall.

*Goh, K. (2004). *The role of cognition and emotion regulation in conflict: A study of the impact on organizational and virtual teams* [Unpublished doctoral dissertation]. University of Southern California.

*Gokhman, I. (2020). *Ripening or rotting? Examining the temporal dynamics of team discussion and decision making in long-term teams* [Unpublished doctoral dissertation]. Northwestern University.

*Gommel, A. I. D. H. A. (2016). *The impact of team orientation on teamwork engagement: Having intragroup conflict as moderator* [Unpublished master's thesis]. University of Lisbon.

*Goncalo, J. A., Polman, E., & Maslach, C. (2010). Can confidence come too soon? Collective efficacy, conflict and group performance over time. *Organizational Behavior and Human Decision Processes*, 113(1), 13–24. <https://doi.org/10.1016/j.obhdp.2010.05.001>

Gonzalez-Mulé, E., & Aguinis, H. (2018). Advancing theory by assessing boundary conditions with meta-regression: A critical review and best-practice recommendations. *Journal of Management*, 44(6), 2246–2273. <https://doi.org/10.1177/0149206317710723>

*González-Romá, V., & Hernández, A. (2014). Climate uniformity: Its influence on team communication quality, task conflict, and team performance. *Journal of Applied Psychology*, 99(6), 1042–1058. <https://doi.org/10.1037/a0037868>

*Graebner, R. I. (2012). *The effects of communication media and team composition in virtual and face-to-face teams* [Unpublished doctoral dissertation]. George Washington University.

Greco, L. M., O'Boyle, E. H., Cockburn, B. S., & Yuan, Z. (2018). Meta-analysis of coefficient alpha: A reliability generalization study. *Journal of Management Studies*, 55(4), 583–618. <https://doi.org/10.1111/joms.12328>

*Greer, L. L., Caruso, H. M., & Jehn, K. A. (2011). The bigger they are, the harder they fall: Linking team power, team conflict, and performance. *Organizational Behavior and*

Human Decision Processes, 116(1), 116–128.
<https://doi.org/10.1016/j.obhdp.2011.03.005>

Greer, L. L., Jehn, K. A., & Mannix, E. A. (2008). Conflict transformation: A longitudinal investigation of the relationships between different types of intragroup conflict and the moderating role of conflict resolution. *Small Group Research*, 39(3), 278–302.
<https://doi.org/10.1177/1046496408317793>

*Greer, L. L., Jehn, K. A., Thatcher, S., & Mannix, E. A. (2007). *The effect of trust on conflict and performance in groups split by demographic faultlines* [Paper presentation]. International Association for Conflict Management 20th Annual Conference, Budapest, Hungary. <http://dx.doi.org/10.2139/ssrn.1100580>

*Guenter, H., van Emmerik, H., Schreurs, B., Kuypers, T., van Iterson, A., & Notelaers, G. (2016). When task conflict becomes personal: The impact of perceived team performance. *Small Group Research*, 47(5), 569–604.
<https://doi.org/10.1177/1046496416667816>

Guetzkow, H., & Gyr, J. (1954). An analysis of conflict in decision-making groups. *Human Relations*, 7(3), 367–382. <https://doi.org/10.1177/001872675400700307>

Gunkel, M., Schlaegel, C., & Taras, V. (2016). Cultural values, emotional intelligence, and conflict handling styles: A global study. *Journal of World Business*, 51(4), 568–585.
<https://doi.org/10.1016/j.jwb.2016.02.001>

*Guo, H., Zhang, L., Huo, X., & Xi, G. (2019). When and how cognitive conflict benefits cross-functional project team innovation: The importance of knowledge leadership. *International Journal of Conflict Management*, 30(4), 514–537.
<https://doi.org/10.1108/IJCMA-02-2019-0031>

*Hansen, R. (2015). *The relationship between task conflict, task performance and team member satisfaction: The mediating role of relationship conflict* [Unpublished master's thesis]. University of Oslo.

*Harvey, D. L. (2010). *A team process and emergent states approach to understanding team conflict and outcomes* [Unpublished doctoral dissertation]. Pennsylvania State University.

Hedges, L. V., & Olkin, I. (1985). *Statistical methods for meta-analysis*. Academic Press.

Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. *Psychological Methods*, 3(4), 486–504. <https://doi.org/10.1037/1082-989X.3.4.486>

*Heuser, A. E. (2009). *An examination of the use of synchronous computer-mediated communication technology in work teams* [Unpublished doctoral dissertation]. Ohio State University.

*Hewitt, B. A. (2008). “*Why differences make a difference*” redux: *A field study of the effect of conflict, diversity, and knowledge sharing on the performance of information technology project teams* [Unpublished doctoral dissertation]. University of Texas at San Antonio.

*Hill, K. (2011). *Agreeing to disagree ... or not: A multi-level examination of conflict spillover in diverse groups* [Unpublished doctoral dissertation]. University of Toronto.

*Hinds, P. J., & Mortensen, M. (2005). Understanding conflict in geographically distributed teams: The moderating effects of shared identity, shared context, and spontaneous communication. *Organization Science*, 16(3), 290–307.
<https://doi.org/10.1287/orsc.1050.0122>

Hirschfeld, R. R., Cole, M. S., Bernerth, J. B., & Rizzuto, T. E. (2013). Voluntary survey completion among team members: Implications of noncompliance and missing data for

multilevel research. *Journal of Applied Psychology*, 98(3), 454–468.
<https://doi.org/10.1037/a0031909>

*Hoandră, M. G. (2017). The mediating role of task conflict and cross-understanding in the relation between transactional leadership and team adaptive performance. *Psihologia Resurselor Umane*, 15(1), 56–68. <https://hrp-journal.com/index.php/pru/article/view/61>

Hofstede, G. (2001). *Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations*. Sage.

*Hon, A. H., & Chan, W. W. (2013). The effects of group conflict and work stress on employee performance. *Cornell Hospitality Quarterly*, 54(2), 174–184.
<https://doi.org/10.1177/1938965513476367>

*Hood, A. C., Cruz, K. S., & Bachrach, D. G. (2017). Conflicts with friends: A multiplex view of friendship and conflict and its association with performance in teams. *Journal of Business and Psychology*, 32(1), 73–86. <https://doi.org/10.1007/s10869-016-9436-y>

House, R. J., Hanges, P. M., Javidan, M., Dorfman, P., & Gupta, V. (2004). *Culture, leadership and organizations: The GLOBE study of 62 societies*. Sage.

*Hu, N., Chen, Z., Gu, J., Huang, S., & Liu, H. (2017). Conflict and creativity in inter-organizational teams: The moderating role of shared leadership. *International Journal of Conflict Management*, 28(1), 74–102. <https://doi.org/10.1108/IJCM-01-2016-0003>

*Hua, L. A. (2013). *Diversity in conscientiousness and team composition: Their relationships with team conflict, performance, and satisfaction* [Unpublished doctoral dissertation]. Alliant International University.

*Huang, J. C. (2012). The relationship between conflict and team performance in Taiwan: The moderating effect of goal orientation. *International Journal of Human Resource Management*, 23(10), 2126–2143. <https://doi.org/10.1080/09585192.2012.664961>

*Huang, L., Gibson, C. B., Kirkman, B. L., & Shapiro, D. L. (2017). When is traditionalism an asset and when is it a liability for team innovation? A two-study empirical examination. *Journal of International Business Studies*, 48(6), 693–715.
<https://doi.org/10.1057/s41267-017-0075-y>

*Humphrey, S. E., Aime, F., Cushenberry, L., Hill, A. D., & Fairchild, J. (2017). Team conflict dynamics: Implications of a dyadic view of conflict for team performance. *Organizational Behavior and Human Decision Processes*, 142, 58–70.
<https://doi.org/10.1016/j.obhdp.2017.08.002>

Hunt, M. (1997). *How science takes stock*. Russell Sage Foundation.

Ilgen, D. R., Hollenbeck, J. R., Johnson, M., & Jundt, D. (2005). Teams in organizations: From input–process–output models to IMOI models. *Annual Review of Psychology*, 56, 517–543. <https://doi.org/10.1146/annurev.psych.56.091103.070250>

*Imai, R. L. (2012). *Promotion-focused and prevention-focused? Regulatory focus ambidexterity and its effects on team processes and outcomes* [Unpublished doctoral dissertation]. University of Maryland, College Park.

**James, L. R., Demaree, R. G., Mulaik, S. A., & Ladd, R. T. (1992). Validity generalization in the context of situational models. *Journal of Applied Psychology*, 77(1), 3–14.
<https://doi.org/10.1037/0021-9010.77.1.3>

James, L. R., Demaree, R. G., & Wolf, G. (1984). Estimating within-group interrater reliability with and without response bias. *Journal of Applied Psychology*, 69(1), 85–98.
<https://doi.org/10.1037/0021-9010.69.1.85>

James, L. R., Demaree, R. G., & Wolf, G. (1993). r_{wg} : An assessment of within-group interrater agreement. *Journal of Applied Psychology*, 78(2), 306–309. <https://doi.org/10.1037/0021-9010.78.2.306>

Janis, I. L. (1982). *Victims of groupthink* (2nd ed.). Houghton Mifflin.

*Jehn, K. A. (1994). Enhancing effectiveness: An investigation of advantages and disadvantages of value-based intragroup conflict. *International Journal of Conflict Management*, 5(3), 223–238. <https://doi.org/10.1108/eb022744>

*Jehn, K. A. (1995). A multimethod examination of the benefits and detriments of intragroup conflict. *Administrative Science Quarterly*, 40(2), 256–282. <https://doi.org/10.2307/2393638>

Jehn, K. A. (1997). A qualitative analysis of conflict types and dimensions in organizational groups. *Administrative Science Quarterly*, 42(3), 530–557. <https://doi.org/10.2307/2393737>

Jehn, K. A., & Bendersky, C. (2003). Intragroup conflict in organizations: A contingency perspective. *Research in Organizational Behavior*, 25, 189–244. [https://doi.org/10.1016/S0191-3085\(03\)25005-X](https://doi.org/10.1016/S0191-3085(03)25005-X)

*Jehn, K. A., Chadwick, C., & Thatcher, S. M. (1997). To agree or not to agree: The effects of value congruence, individual demographic dissimilarity, and conflict on workgroup outcomes. *International Journal of Conflict Management*, 8(4), 287–305. <https://doi.org/10.1108/eb022799>

*Jehn, K. A., Greer, L., Levine, S., & Szulanski, G. (2008). The effects of conflict types, dimensions, and emergent states on group outcomes. *Group Decision and Negotiation*, 17(6), 465–495. <https://doi.org/10.1007/s10726-008-9107-0>

*Jehn, K. A., Jonsen, K., & Rispens, S. (2014). Relationships at work: Intragroup conflict and the continuation of task and social relationships in workgroups. *Current Topics in Management*, 17, 1–22.

Jehn, K. A., & Mannix, E. A. (2001). The dynamic nature of conflict: A longitudinal study of intragroup conflict and group performance. *Academy of Management Journal*, 44(2), 238–251. <https://doi.org/10.5465/3069453>

Jehn, K. A., Northcraft, G. B., & Neale, M. A. (1999). Why differences make a difference: A field study of diversity, conflict and performance in workgroups. *Administrative Science Quarterly*, 44(4), 741–763. <https://doi.org/10.2307/2667054>

*Jehn, K. A., Rispens, S., & Thatcher, S. M. (2010). The effects of conflict asymmetry on work group and individual outcomes. *Academy of Management Journal*, 53(3), 596–616. <https://doi.org/10.5465/amj.2010.51468978>

*Jiang, J. Y., Zhang, X., & Tjosvold, D. (2013). Emotion regulation as a boundary condition of the relationship between team conflict and performance: A multi-level examination. *Journal of Organizational Behavior*, 34(5), 714–734. <https://doi.org/10.1002/job.1834>

Johns, G. (2018). Advances in the treatment of context in organizational research. *Annual Review of Organizational Psychology and Organizational Behavior*, 5, 21–46. <https://doi.org/10.1146/annurev-orgpsych-032117-104406>

*Johnson, A. R., Van de Schoot, R., Delmar, F., & Crano, W. D. (2015). Social influence interpretation of interpersonal processes and team performance over time using Bayesian model selection. *Journal of Management*, 41(2), 574–606. <https://doi.org/10.1177/0149206314539351>

*Jordan, P. J., & Troth, A. C. (2004). Managing emotions during team problem solving: Emotional intelligence and conflict resolution. *Human Performance*, 17(2), 195–218. https://doi.org/10.1207/s15327043hup1702_4

*Joyce, C. K. (2009). *The blank page: Effects of constraint on creativity* [Unpublished doctoral dissertation]. University of California, Berkeley.

*Jules, C. (2007). *Diversity of member composition and team learning in organizations* [Unpublished doctoral dissertation]. Case Western Reserve University.

*Karaca, A. (2016). *Conflict about conflict: Antecedents, consequences, and moderators of conflict asymmetry in teams* [Unpublished doctoral dissertation]. Wayne State University.

*Kaufman, J. D. (2013). *Measuring the impact of the micronegotiation technique on team member satisfaction and team performance* [Unpublished doctoral dissertation]. Southern Illinois University at Carbondale.

**Kepes, S., Banks, G. C., McDaniel, M., & Whetzel, D. L. (2012). Publication bias in the organizational sciences. *Organizational Research Methods*, 15(4), 624–662. <https://doi.org/10.1177/1094428112452760>

*Khan, M. K., Shafi, M., Khan, S., & Khan, W. (2020). Why does task conflict influence team creativity? The role of team reflexivity. *International Journal of Research in Business and Social Science*, 9(2), 50–58. <https://doi.org/10.20525/ijrbs.v9i2.631>

*Khan, M. S., Breitenecker, R. J., Gustafsson, V., & Schwarz, E. J. (2015). Innovative entrepreneurial teams: The give and take of trust and conflict. *Creativity and Innovation Management*, 24(4), 558–573. <https://doi.org/10.1111/caim.12152>

*Kim, J., & Song, C. (2021). The relationship between R&D team diversity and team creativity. *Management Decision*, 59(2), 175–189. <https://doi.org/10.1108/MD-12-2019-1727>

*Kim, M. J., Choi, J. N., & Park, O. S. (2012). Intuitiveness and creativity in groups: Cross-level interactions between group conflict and individual cognitive styles. *Social Behavior and Personality*, 40(9), 1419–1434. <https://doi.org/10.2224/sbp.2012.40.9.1419>

Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-regression with a single covariate. *Statistics in Medicine*, 22(17), 2693–2710. <https://doi.org/10.1002/sim.1482>

**Köhler, T., Cortina, J. M., Kurtessis, J. N., & Gölz, M. (2015). Are we correcting correctly? Interdependence of reliabilities in meta-analysis. *Organizational Research Methods*, 18(3), 355–428. <https://doi.org/10.1177/1094428114563617>

*Kollmann, T., Stöckmann, C., & Linstaedt, J. W. (2019). Task conflict, narcissism and entrepreneurial capability in teams planning a business: A moderated moderation approach to explaining business planning performance. *Journal of Small Business Management*, 57(4), 1399–1423. <https://doi.org/10.1111/jsbm.12418>

*Kollmann, T., Stöckmann, C., Meves, Y., & Kensbok, J. M. (2017). When members of entrepreneurial teams differ: Linking diversity in individual-level entrepreneurial orientation to team performance. *Small Business Economics*, 48(4), 843–859. <https://doi.org/10.1007/s11187-016-9818-6>

*Konradt, U., Andreßen, P., & Ellwart, T. (2009). Self-leadership in organizational teams: A multilevel analysis of moderators and mediators. *European Journal of Work and Organizational Psychology*, 18(3), 322–346. <https://doi.org/10.1080/13594320701693225>

Korsgaard, M. A., Jeong, S. S., Mahony, D. M., & Pitariu, A. H. (2008). A multilevel view of intragroup conflict. *Journal of Management*, 34(6), 1222–1252.
<https://doi.org/10.1177/0149206308325124>

Korsgaard, M. A., Ployhart, R. E., & Ulrich, M. D. (2014). The emergence of intragroup conflict: Variations in conflict configurations. In O. B. Ayoko, N. M. Ashkanasy, & K. A. Jehn (Eds.), *Handbook of conflict management research* (pp. 51–65). Edward Elgar Publishing. <http://dx.doi.org/10.4337/9781781006948.00010>

*Kostopoulos, K. C., & Bozionelos, N. (2011). Team exploratory and exploitative learning: Psychological safety, task conflict, and team performance. *Group & Organization Management*, 36(3), 385–415. <https://doi.org/10.1177/105960111405985>

Kozlowski, S. W. J., & Bell, B. S. (2003). Work groups and teams in organizations. In W. C. Borman, D. R. Ilgen, & R. J. Klimoski (Eds.), *Handbook of psychology: Industrial and organizational psychology* (Vol. 12, pp. 333–375). John Wiley & Sons.

*Kramer, M. (2013). *Investigating the double-edged sword: Two forms of cultural diversity and their effects on team processes and effectiveness* [Unpublished doctoral dissertation]. Dublin City University.

*Kramer, W. S. (2018). *Traversing the digital frontier: Culture's impact on faultline emergence in virtual teams* [Unpublished doctoral dissertation]. Clemson University.

*Langfred, C. W. (2007). The downside of self-management: A longitudinal study of the effects of conflict on trust, autonomy, and task interdependence in self-managing teams. *Academy of Management Journal*, 50(4), 885–900.
<https://doi.org/10.5465/amj.2007.26279196>

*Larson, N. (2015). *The temporal transition of team exploratory and exploitative learning* [Unpublished master's thesis]. University of Calgary.

*Lau, D. C., & Murnighan, J. K. (2005). Interactions within groups and subgroups: The effects of demographic faultlines. *Academy of Management Journal*, 48(4), 645–659.
<https://doi.org/10.5465/amj.2005.17843943>

LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and interrater agreement. *Organizational Research Methods*, 11(4), 815–852.
<https://doi.org/10.1177/1094428106296642>

*Lee, C., & Wong, C. S. (2019). The effect of team emotional intelligence on team process and effectiveness. *Journal of Management & Organization*, 25(6), 844–859.
<https://doi.org/10.1017/jmo.2017.43>

*Lee, E. K., Avgar, A. C., Park, W. W., & Choi, D. (2019). The dual effects of task conflict on team creativity: Focusing on the role of team-focused transformational leadership. *International Journal of Conflict Management*, 30(1), 132–154.
<https://doi.org/10.1108/IJCMA-02-2018-0025>

*Lee, E. K., Chung, W., & Hong, W. (2022). Task conflict and team performance: Roles of expertise disparity and functional background diversity. *International Journal of Conflict Management*, 33(4), 668–683. <https://doi.org/10.1108/IJCMA-08-2021-0130>

*Lee, H. W., Choi, J. N., & Kim, S. (2018). Does gender diversity help teams constructively manage status conflict? An evolutionary perspective of status conflict, team psychological safety, and team creativity. *Organizational Behavior and Human Decision Processes*, 144, 187–199. <https://doi.org/10.1016/j.obhdp.2017.09.005>

*Lee, S. T., & Park, G. (2020). Does diversity in team members' agreeableness benefit creative teams? *Journal of Research in Personality*, 85, Article 103932. <https://doi.org/10.1016/j.jrp.2020.103932>

*Leslie, L. M. (2007). *Putting differences in context: Incorporating the role of status and cooperation into work unit ethnic composition research* [Unpublished doctoral dissertation]. University of Maryland, College Park.

*Li, B., Chen, W., He, C., & Zhang, Y. (2022). Team autonomy, information exchange and team innovation performance: The moderating role of team conflict. *International Journal of Conflict Management*, 33, 860–881. <https://doi.org/10.1108/IJCMA-01-2022-0012>

*Li, J., & Hambrick, D. C. (2005). Factional groups: A new vantage on demographic faultlines, conflict, and disintegration in work teams. *Academy of Management Journal*, 48(5), 794–813. <https://doi.org/10.5465/amj.2005.18803923>

*Li, R., Wang, H., & Huang, M. (2018). From empowerment to multilevel creativity: The role of employee self-perceived status and feedback-seeking climate. *Journal of Leadership & Organizational Studies*, 25(4), 430–442. <https://doi.org/10.1177/1548051818760998>

*Li, Y., Wei, F., Chen, S., & Yan, Y. (2020). Effects of CEO humility and relationship conflict on entrepreneurial performance. *International Journal of Conflict Management*, 31(3), 489–508. <https://doi.org/10.1108/IJCMA-09-2019-0154>

*Liang, T. P., Liu, C. C., Lin, T. M., & Lin, B. (2007). Effect of team diversity on software project performance. *Industrial Management & Data Systems*, 107(5), 636–653. <https://doi.org/10.1108/02635570710750408>

*Liao, H. (2021). *Does the leader know what is happening? An examination of a leader's perception accuracy of the team relationship conflict network* [Unpublished doctoral dissertation]. University of Iowa.

**Lindell, M. K., & Brandt, C. J. (2000). Climate quality and climate consensus as mediators of the relationship between organizational antecedents and outcomes. *Journal of Applied Psychology*, 85(3), 331–348. <https://doi.org/10.1037/0021-9010.85.3.331>

*Lira, E. M., Ripoll, P., Peiró, J. M., & González, P. (2007). The roles of group potency and information and communication technologies in the relationship between task conflict and team effectiveness: A longitudinal study. *Computers in Human Behavior*, 23(6), 2888–2903. <https://doi.org/10.1016/j.chb.2006.06.004>

*Liu, H. Y. (2022). The moderating role of team conflict on teams of nursing students. *International Journal of Environmental Research and Public Health*, 19(7), Article 4152. <https://doi.org/10.3390/ijerph19074152>

*Liu, J., Fu, P., & Liu, S. (2009). Conflicts in top management teams and team/firm outcomes: The moderating effects of conflict-handling approaches. *International Journal of Conflict Management*, 20(3), 228–250. <https://doi.org/10.1108/10444060910974867>

*Liu, S., Liu, X. L., Wang, H., & Wang, Y. (2022). Humble leader behavior and its effects on performance at the team and individual level: A multi-perspective study. *Group & Organization Management*, 47(5), 1008–1041. <https://doi.org/10.1177/10596011211024429>

*Liu, S., Wei, H., Xin, H., & Cheng, P. (2021). Task conflict and team creativity: The role of team mindfulness, experiencing tensions, and information elaboration. *Asia Pacific Journal of Management*, 39, 1367–1398. <https://doi.org/10.1007/s10490-021-09771-z>

*Liu, S., Xiao, Y., & Wang, X. (2022). How does feedback valence improve team creativity by influencing team relationship conflict? *Psychology Research and Behavior Management*, 15, 2391–2407. <https://doi.org/10.2147/PRBM.S373350>

Loughry, M. L., & Amazon, A. C. (2014). Why won't task conflict cooperate? Deciphering stubborn results. *International Journal of Conflict Management*, 25(4), 333–358. <https://doi.org/10.1108/ijcma-01-2014-0005>

*Lovelace, K., Shapiro, D. L., & Weingart, L. R. (2001). Maximizing cross-functional new product teams' innovativeness and constraint adherence: A conflict communications perspective. *Academy of Management Journal*, 44(4), 779–793. <https://doi.org/10.5465/3069415>

*Luksysyte, A., Avery, D. R., Parker, S. K., Wang, Y., Johnson, L. U., & Crepeau, L. (2022). Age diversity in teams: Examining the impact of the least agreeable member. *Journal of Organizational Behavior*, 43(3), 546–565. <https://doi.org/10.1002/job.2570>

*Ma, L., Yang, B., Wang, X., & Li, Y. (2017). On the dimensionality of intragroup conflict: An exploratory study of conflict and its relationship with group innovation performance. *International Journal of Conflict Management*, 28(5), 538–562. <https://doi.org/10.1108/IJCMA-07-2016-0061>

*Malтарich, M. A., Kukenberger, M., Reilly, G., & Mathieu, J. (2018). Conflict in teams: Modeling early and late conflict states and the interactive effects of conflict processes. *Group & Organization Management*, 43(1), 6–37. <https://doi.org/10.1177/1059601116681127>

*Manata, B. (2021). Investigating the impact of racial diversity in decision-making groups: The moderating role of relationship conflict. *Negotiation and Conflict Management Research*, 14(1), 40–50. <https://doi.org/10.1111/ncmr.12173>

*Mannes, A. E. (2009). *An integrative solution to the conflict over conflict* [Unpublished doctoral dissertation]. Duke University.

*Mărcuț, C. M., Rus, C. L., Oțoiu, C., & Rațiu, L. (2022). From intra-team learning behaviors to team performance: Contribution conflict and team shared mental models as mechanisms: A time-lagged study. *Cognition, Brain, Behavior*, 26(2), 101–119. <https://doi.org/10.24193/cbb.2022.26.06>

Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. *Psychological Review*, 98(2), 224–253. <https://doi.org/10.1037/0033-295X.98.2.224>

*Martínez-Moreno, E., González-Navarro, P., Zornoza, A., & Ripoll, P. (2009). Relationship, task and process conflicts on team performance: The moderating role of communication media. *International Journal of Conflict Management*, 20(3), 251–268. <https://doi.org/10.1108/10444060910974876>

*Martins, L. L., Schilpzand, M. C., Kirkman, B. L., Ivanaj, S., & Ivanaj, V. (2013). A contingency view of the effects of cognitive diversity on team performance: The moderating roles of team psychological safety and relationship conflict. *Small Group Research*, 44(2), 96–126. <https://doi.org/10.1177/1046496412466921>

Mathieu, J., Maynard, M. T., Rapp, T., & Gilson, L. (2008). Team effectiveness 1997–2007: A review of recent advancements and a glimpse into the future. *Journal of Management*, 34(3), 410–476. <https://doi.org/10.1177/0149206308316061>

**McDaniel, M. A., Rothstein, H. R., & Whetzel, D. L. (2006). Publication bias: A case study of four test vendors. *Personnel Psychology*, 59(4), 927–953. <https://doi.org/10.1111/j.1744-6570.2006.00059.x>

McGrath, J. E. (1984). *Groups: Interaction and performance*. Prentice-Hall.

*McLarnon, M. J., Larson, N. L., & O'Neill, T. A. (2018, April 19–21). *A latent transition analysis of team conflict profiles* [Poster presentation]. Society for Industrial and Organizational Psychology 33rd Annual Meeting, Chicago, IL.

McShane, S. L., & Von Glinow, M. (2000). *Organizational behavior*. McGraw-Hill.

Minson, J. A., Bendersky, C., de Dreu, C., Halperin, E., & Schroeder, J. (2023). Experimental studies of conflict: Challenges, solutions, and advice to junior scholars. *Organizational Behavior and Human Decision Processes*, 177, 104257. <https://doi.org/10.1016/j.obhdp.2023.104257>

*Miron-Spektor, E., Erez, M., & Naveh, E. (2011). The effect of conformist and attentive-to-detail members on team innovation: Reconciling the innovation paradox. *Academy of Management Journal*, 54(4), 740–760. <https://doi.org/10.5465/amj.2011.64870100>

*Mitchell, R., Boyle, B., & Von Stieglitz, S. (2019). Professional commitment and team effectiveness: A moderated mediation investigation of cognitive diversity and task conflict. *Journal of Business and Psychology*, 34(4), 471–483. <https://doi.org/10.1007/s10869-018-9550-0>

*Mittal, S. (2019). Talent without power: Status and power dynamics of performance and intragroup conflicts in engineering teams. *International Journal of Conflict Management*, 30(4), 566–587. <https://doi.org/10.1108/IJCMA-12-2018-0138>

*Mohammed, S., & Angell, L. C. (2004). Surface- and deep-level diversity in workgroups: Examining the moderating effects of team orientation and team process on relationship conflict. *Journal of Organizational Behavior*, 25(8), 1015–1039. <https://doi.org/10.1002/job.293>

Mooney, A. C., Holahan, P. J., & Amason, A. C. (2007). Don't take it personally: Exploring cognitive conflict as a mediator of affective conflict. *Journal of Management Studies*, 44(5), 733–758. <https://doi.org/10.1111/j.1467-6486.2006.00674.x>

*Mortensen, M. (2004). Antecedents and consequences of team boundary disagreement. *Academy of Management Annual Meeting Proceedings*, 2004(1). <https://doi.org/10.5465/ambpp.2004.13862426>

*Mortensen, M., & Hinds, P. J. (2001). Conflict and shared identity in geographically distributed teams. *International Journal of Conflict Management*, 12(3), 212–238. <https://doi.org/10.1108/eb022856>

*Moye, N. A., & Langfred, C. W. (2004). Information sharing and group conflict: Going beyond decision making to understand the effects of information sharing on group performance. *International Journal of Conflict Management*, 15(4), 381–410. <https://doi.org/10.1108/eb022919>

*Myrtveit, R. B. (2016). *The relationship between team leadership and team performance in management teams: The mediating effect of constructive controversy* [Unpublished master's thesis]. University of Oslo.

*Ng, K. Y., & Van Dyne, L. (2005). Antecedents and performance consequences of helping behavior in work groups: A multilevel analysis. *Group & Organization Management*, 30(5), 514–540. <https://doi.org/10.1177/1059601104269107>

*Nguyen, R. V. (2006). *Conflict in functionally diverse teams* [Unpublished doctoral dissertation]. Claremont Graduate University.

*Nibler, R., & Harris, K. L. (2003). The effects of culture and cohesiveness on intragroup conflict and effectiveness. *Journal of Social Psychology*, 143(5), 613–631. <https://doi.org/10.1080/00224540309598467>

*Nicholls, C. E. (2000). *The role of personality in organizational groups: A theoretical integration and empirical study in two task contexts* [Unpublished doctoral dissertation]. University of Western Ontario.

*Nieto-Guerrero, M., Antino, M., & Leon-Perez, J. M. (2019). Validation of the Spanish version of the Intragroup Conflict Scale (ICS-14): A multilevel factor structure. *International Journal of Conflict Management*, 30(1), 24–44. <https://doi.org/10.1108/IJCMA-11-2017-0139>

Nunnally, J. C. (1978). *Psychometric theory* (2nd ed.). McGraw-Hill.

*Olson, B. J., Parayitam, S., & Bao, Y. (2007). Strategic decision making: The effects of cognitive diversity, conflict, and trust on decision outcomes. *Journal of Management*, 33(2), 196–222. <https://doi.org/10.1177/0149206306298657>

*O'Neill, T. A., & Allen, N. J. (2014). Team task conflict resolution: An examination of its linkages to team personality composition and team effectiveness outcomes. *Group Dynamics: Theory, Research, and Practice*, 18(2), 159–173. <https://doi.org/10.1037/gdn0000004>

O'Neill, T. A., Allen, N. J., & Hastings, S. E. (2013). Examining the “pros” and “cons” of team conflict: A team-level meta-analysis of task, relationship, and process conflict. *Human Performance*, 26(3), 236–260. <https://doi.org/10.1080/08959285.2013.795573>

*O'Neill, T. A., Hancock, S. E., Zivkov, K., Larson, N. L., & Law, S. J. (2016). Team decision making in virtual and face-to-face environments. *Group Decision and Negotiation*, 25(5), 995–1020. <https://doi.org/10.1007/s10726-015-9465-3>

O'Neill, T. A., & McLarnon, M. J. (2018). Optimizing team conflict dynamics for high performance teamwork. *Human Resource Management Review*, 28(4), 378–394. <https://doi.org/10.1016/j.hrmr.2017.06.002>

*O'Neill, T. A., McLarnon, M. J., Hoffart, G. C., Onen, D., & Rosehart, W. (2018). The multilevel nomological net of team conflict profiles. *International Journal of Conflict Management*, 29(1), 24–46. <https://doi.org/10.1108/IJCMA-05-2016-0038>

*O'Neill, T. A., McLarnon, M. J., Hoffart, G. C., Woodley, H. J., & Allen, N. J. (2018). The structure and function of team conflict state profiles. *Journal of Management*, 44(2), 811–836. <https://doi.org/10.1177/0149206315581662>

O'Reilly, C. A. III, & Tushman, M. L. (2008). Ambidexterity as a dynamic capability: Resolving the innovator's dilemma. *Research in Organizational Behavior*, 28, 185–206. <https://doi.org/10.1016/j.riob.2008.06.002>

*O'Toole, J., Ciuchta, M. P., Neville, F., & Lahiri, A. (2023). Transactive memory systems, temporary teams, and conflict: Innovativeness during a hackathon. *Journal of Management*, 49(5), 1633–1661. <https://doi.org/10.1177/01492063221102397>

*Ouslis, N. E. (2021). *Finding teams that fight fair: Exploring trajectories of team conflict over time* [Unpublished doctoral dissertation]. University of Western Ontario.

*Parayitam, S., & Dooley, R. S. (2007). The relationship between conflict and decision outcomes: Moderating effects of cognitive- and affect-based trust in strategic decision-

making teams. *International Journal of Conflict Management*, 18(1), 42–73. <https://doi.org/10.1108/10444060710759318>.

*Parayitam, S., & Papenhausen, C. (2016). Agreement-seeking behavior, trust, and cognitive diversity in strategic decision making teams: Process conflict as a moderator. *Journal of Advances in Management Research*, 13(3), 292–315. <https://doi.org/10.1108/JAMR-10-2015-0072>

Park, S., Luciano, M. M., Mathieu, J. E., & Fenters, V. W. (2024). Intra-individual conflict and task performance in a multiteam context: Examining the structural elements of conflict experience. *Academy of Management Journal*, 67(1), 33–60. <https://doi.org/10.5465/amj.2021.0285>

Park, S., Mathieu, J. E., & Grosser, T. J. (2020). A network conceptualization of team conflict. *Academy of Management Review*, 45(2), 352–375. <https://doi.org/10.5465/amr.2016.0472>

*Passos, A. M., & Caetano, A. (2005). Exploring the effects of intragroup conflict and past performance feedback on team effectiveness. *Journal of Managerial Psychology*, 20(3–4), 231–244. <https://doi.org/10.1108/02683940510589028>

*Patrick, R. R. (1997). *Teams and conflict management style: The moderating effect of conflict management style on the relationship between the type of conflict and team effectiveness in continuous work teams* [Unpublished doctoral dissertation]. University of Nebraska–Lincoln.

*Pazos, P., Pérez-López, M. C., & González-López, M. J. (2022). Examining teamwork competencies and team performance in experiential entrepreneurship education: Emergent intragroup conflict as a learning triggering event. *Education + Training*, 64(4), 461–475. <https://doi.org/10.1108/ET-06-2021-0208>

Pelled, L. H. (1996). Demographic diversity, conflict, and work group outcomes: An intervening process theory. *Organization Science*, 7(6), 615–631. <https://doi.org/10.1287/orsc.7.6.615>

*Pelled, L. H., Eisenhardt, K. M., & Xin, K. R. (1999). Exploring the black box: An analysis of work group diversity, conflict and performance. *Administrative Science Quarterly*, 44(1), 1–28. <https://doi.org/10.2307/2667029>

*Perl, R. (2014). *Family conflict and the family business: The antecedents of family task conflict and its effects on top management team dynamics* [Unpublished doctoral dissertation]. University of Pennsylvania.

*Peterson, R. S., & Behfar, K. J. (2003). The dynamic relationship between performance feedback, trust, and conflict in groups: A longitudinal study. *Organizational Behavior and Human Decision Processes*, 92(1–2), 102–112. [https://doi.org/10.1016/S0749-5978\(03\)00090-6](https://doi.org/10.1016/S0749-5978(03)00090-6)

**Pinheiro, J., Bates, D., & R Core Team. (2022). *nlme: Linear and nonlinear mixed effects models* (version 3.1-157) [Computer software]. <https://CRAN.R-project.org/package=nlme>

Pinkley, R. L. (1990). Dimensions of conflict frame: Disputant interpretations of conflict. *Journal of Applied Psychology*, 75(2), 117–126. <https://doi.org/10.1037/0021-9010.75.2.117>

Poitras, J. (2012). Meta-analysis of the impact of the research setting on conflict studies. *International Journal of Conflict Management*, 23(2), 116–132. <http://dx.doi.org/10.1108/10444061211218249>

*Polzer, J. T., Milton, L. P., & Swarm, W. B. Jr. (2002). Capitalizing on diversity: Interpersonal congruence in small work groups. *Administrative Science Quarterly*, 47(2), 296–324. <https://doi.org/10.2307/3094807>

Pondy, L. R. (1967). Organizational conflict: Concepts and models. *Administrative Science Quarterly*, 12, 296–320. <https://doi.org/10.2307/2391553>

*Porter, T. W., & Lilly, B. S. (1996). The effects of conflict, trust, and task commitment on project team performance. *International Journal of Conflict Management*, 7(4), 361–376. <https://doi.org/10.1108/eb022787>

Priem, R. L., & Price, K. H. (1991). Process and outcome expectations for the dialectical inquiry, devil's advocacy, and consensus techniques of strategic decision making. *Group & Organization Studies*, 16(2), 206–225. <https://doi.org/10.1177/105960119101600207>

*Purvanova, R. K. (2008). *Linking personality judgment accuracy and the sense of feeling known to team effectiveness in face-to-face and virtual project teams: A longitudinal investigation* [Unpublished doctoral dissertation]. University of Minnesota.

*Quigley, N. R., Tekleab, A. G., & Tesluk, P. E. (2007). Comparing consensus- and aggregation-based methods of measuring team-level variables: The role of relationship conflict and conflict management processes. *Organizational Research Methods*, 10(4), 589–608. <https://doi.org/10.1177/1094428106286853>

*Ratasuk, A., & Charoensukmongkol, P. (2019). The role of team trust and team conflict on innovative performance of multicultural teams in the restaurant. *Thammasat Review*, 22(2), 1–18.

*Rau, D. (2005). The influence of relationship conflict and trust on the transactive memory: Performance relation in top management teams. *Small Group Research*, 36(6), 746–771. <https://doi.org/10.1177/1046496405281776>

*Raver, J. L., & Gelfand, M. J. (2005). Beyond the individual victim: Linking sexual harassment, team processes, and team performance. *Academy of Management Journal*, 48(3), 387–400. <https://doi.org/10.5465/amj.2005.17407904>

*Razinskas, S., Weiss, M., Hoegl, M., & Baer, M. (2022). Illuminating opposing performance effects of stressors in innovation teams. *Journal of Product Innovation Management*, 39(3), 351–370. <https://doi.org/10.1111/jpim.12622>

*Ren, H. (2008). *Surface and deep level faultlines and network ties in multicultural teams* [Unpublished doctoral dissertation]. Pennsylvania State University.

Ren, H., & Gray, B. (2009). Repairing relationship conflict: How violation types and culture influence the effectiveness of restoration rituals. *Academy of Management Review*, 34(1), 105–126. <https://doi.org/10.5465/amr.2009.35713307>

*Rezvani, A., Barrett, R., & Khosravi, P. (2019). Investigating the relationships among team emotional intelligence, trust, conflict and team performance. *Team Performance Management: An International Journal*, 25(1–2), 120–137. <https://doi.org/10.1108/TPM-03-2018-0019>

*Rispens, S., Greer, L. L., & Jehn, K. A. (2007). It could be worse: A study on the alleviating roles of trust and connectedness in intragroup conflicts. *International Journal of Conflict Management*, 18(4), 325–344. <https://doi.org/10.1108/10444060710833450>

*Rispens, S., Jehn, K. A., & Steinel, W. (2021). Conflict management style asymmetry in short-term project groups. *Small Group Research*, 52(2), 220–242. <https://doi.org/10.1177/1046496419894637>

Robbins, S. P. (2000). *Managing organizational conflict: A nontraditional approach* (9th ed.). Prentice Hall.

Rodriguez, M. C., & Maeda, Y. (2006). Meta-analysis of coefficient alpha. *Psychological Methods*, 11(3), 306–322. <https://doi.org/10.1037/1082-989X.11.3.306>

Rollinson, D. (2002). *Organisational behavior*. Addison Wesley.

**Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analyses. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), *Publication bias in meta-analysis: Prevention, assessment, and adjustments* (pp. 1–7). Wiley.

Sanchez-Burks, J., Neuman, E. J., Ybarra, O., Kopelman, S., Park, H., & Goh, K. (2008). Folk wisdom about the effects of relationship conflict. *Negotiation and Conflict Management Research*, 1(1), 53–76. <https://doi.org/10.1111/j.1750-4716.2007.00004.x>

*Santos, C. M. (2016). *Shared mental models and shared temporal cognitions: Contributions to team processes and team effectiveness* [Unpublished doctoral dissertation]. ISCTE-Instituto Universitario de Lisboa (Portugal).

*Santos, C. M., & Passos, A. M. (2013). Team mental models, relationship conflict and effectiveness over time. *Team Performance Management*, 19(7–8), 363–385. <https://doi.org/10.1108/TPM-01-2013-0003>

*Santos, C. M., Uitdewilligen, S., & Passos, A. M. (2015). Why is your team more creative than mine? The influence of shared mental models on intra-group conflict, team creativity and effectiveness. *Creativity and Innovation Management*, 24(4), 645–658. <https://doi.org/10.1111/caim.12129>

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings*. Sage.

Schneider, B., González-Romá, V., Ostroff, C., & West, M. A. (2017). Organizational climate and culture: Reflections on the history of the constructs in the *Journal of Applied Psychology*. *Journal of Applied Psychology*, 102(3), 468–482. <https://doi.org/10.1037/apl0000090>

*Schoenherr, T., Bendoly, E., Bachrach, D. G., & Hood, A. C. (2017). Task interdependence impacts on reciprocity in IT implementation teams: Bringing out the worst in us, or driving responsibility? *Production and Operations Management*, 26(4), 667–685. <https://doi.org/10.1111/poms.12671>

*Schreurs, T. W. J. (2013). *Examining the effects of team membership change on team processes and team effectiveness* [Unpublished master's thesis]. Eindhoven University of Technology.

*Sessa, V. I. (1993). *Conflict within small decision-making and problem-solving teams: A process model* [Unpublished doctoral dissertation]. New York University.

Shah, P. P., & Jehn, K. A. (1993). Do friends perform better than acquaintances? The interaction of friendship, conflict, and task. *Group Decision and Negotiation*, 2(2), 149–165. <https://doi.org/10.1007/BF01884769>

*Shah, P. P., Peterson, R. S., Jones, S. L., & Ferguson, A. J. (2021). Things are not always what they seem: The origins and evolution of intragroup conflict. *Administrative Science Quarterly*, 66(2), 426–474. <https://doi.org/10.1177/0001839220965186>

*Shaw, J. D., Zhu, J., Duffy, M. K., Scott, K. L., Shih, H. A., & Susanto, E. (2011). A contingency model of conflict and team effectiveness. *Journal of Applied Psychology*, 96(2), 391–400. <https://doi.org/10.1037/a0021340>

**Siegel, M., Eder, J. S. N., Wicherts, J. M., & Pietschnig, J. (2022). Times are changing, bias isn't: A meta-meta-analysis on publication bias detection practices, prevalence rates, and predictors in industrial/organizational psychology. *Journal of Applied Psychology*, 107(11), 2013–2039. <https://doi.org/10.1037/apl0000991>

*Simons, T. L., Pelled, L. H., & Smith, K. A. (1999). Making use of difference: Diversity, debate, and decision comprehensiveness in top management teams. *Academy of Management Journal*, 42(6), 662–673. <https://doi.org/10.5465/256987>

Simons, T. L., & Peterson, R. S. (2000). Task conflict and relationship conflict in top management teams: The pivotal role of intragroup trust. *Journal of Applied Psychology*, 85(1), 102–111. <https://doi.org/10.1037/0021-9010.85.1.102>

*Sinha, R., Chiu, C. Y., & Srinivas, S. B. (2021). Shared leadership and relationship conflict in teams: The moderating role of team power base diversity. *Journal of Organizational Behavior*, 42(5), 649–667. <https://doi.org/10.1002/job.2515>

*Sinha, R., Janardhanan, N. S., Greer, L. L., Conlon, D. E., & Edwards, J. R. (2016). Skewed task conflicts in teams: What happens when a few members see more conflict than the rest? *Journal of Applied Psychology*, 101(7), 1045–1055. <https://doi.org/10.1037/apl0000059>

*Spoelma, T. M., Mai, K. M., & Wei, W. (2022). Understanding the effects of cheating configurations on team creative performance: A social impact theory perspective. *Personnel Psychology*, 77(2), 595–620. <https://doi.org/10.1111/peps.12563>

Staw, B. M., Sandelands, L. E., & Dutton, J. E. (1981). Threat rigidity effects in organizational behavior: A multilevel analysis. *Administrative Science Quarterly*, 26(4), 501–524. <https://doi.org/10.2307/2392337>

Steel, P. D., & Kammeyer-Mueller, J. D. (2002). Comparing meta-analytic moderator estimation techniques under realistic conditions. *Journal of Applied Psychology*, 87(1), 96–111. <https://doi.org/10.1037/0021-9010.87.1.96>

*Stegh, W. (2015). *Conflict at work: An expansion of the conflict-outcome moderated model: Effects of political skill and team reflexivity* [Unpublished doctoral dissertation]. Ruhr-University Bochum.

*Su, Q. (2019). *Emergent power-based faultlines and team outcomes* [Unpublished doctoral dissertation]. Chinese University of Hong Kong.

*Sung, S. Y., & Choi, J. N. (2021). Leader status behaviors and team creativity: The role of collective interactions and status conflict among members. *Journal of Organizational Behavior*, 42(8), 1120–1133. <https://doi.org/10.1002/job.2551>

*Szabo, K. (2022). *Examining the I in team: The relationship between narcissism and team decision-making* [Unpublished master's thesis]. University of Central Florida.

*Tekleab, A. G., Quigley, N. R., & Tesluk, P. E. (2009). A longitudinal study of team conflict, conflict management, cohesion, and team effectiveness. *Group & Organization Management*, 34(2), 170–205. <https://doi.org/10.1177/1059601108331218>

*Thatcher, S., Jehn, K. A., & Zanutto, E. (2003). Cracks in diversity research: The effects of diversity faultlines on conflict and performance. *Group Decision and Negotiation*, 12(3), 217–241. <https://doi.org/10.1023/A:1023325406946>

*Thiel, C. E., Harvey, J., Courtright, S., & Bradley, B. (2019). What doesn't kill you makes you stronger: How teams rebound from early-stage relationship conflict. *Journal of Management*, 45(4), 1623–1659. <https://doi.org/10.1177/0149206317729026>

*Tjosvold, D., Law, K. S., & Sun, H. (2006). Effectiveness of Chinese teams: The role of conflict types and conflict management approaches. *Management and Organization Review*, 2(2), 231–252. <https://doi.org/10.1111/j.1740-8784.2006.00040.x>

*Todorova, G. (2011). *Resolving the conflict-creativity tension in functionally diverse innovation teams* [Unpublished doctoral dissertation]. Carnegie Mellon University.

Todorova, G., Bear, J. B., & Weingart, L. R. (2014). Can conflict be energizing? A study of task conflict, positive emotions, and job satisfaction. *Journal of Applied Psychology*, 99(3), 451–467. <https://doi.org/10.1037/a0035134>

*Trimmer, K. J. (2000). *Cross-functional teams, conflict and information systems development* [Unpublished doctoral dissertation]. University of South Florida.

Tsai, M. H., & Bendersky, C. (2016). The pursuit of information sharing: Expressing task conflicts as debates vs. disagreements increases perceived receptivity to dissenting opinions in groups. *Organization Science*, 27(1), 141–156. <https://doi.org/10.1287/orsc.2015.1025>

*Tu, Y., & Zhang, L. (2021). Relationship between team conflict and performance in green enterprises: A cross-level model moderated by leaders' political skills. *Complexity*, Article 6635426. <https://doi.org/10.1155/2021/6635426>

*Valls, V., Tomás, I., González-Romá, V., & Rico, R. (2021). The influence of age-based faultlines on team performance: Examining mediational paths. *European Management Journal*, 39(4), 456–466. <https://doi.org/10.1016/j.emj.2020.10.008>

*van As, D. H. (2014). *Don't stick to your gun, bite the bullet: A field study to escalation of commitment in new product development teams* [Unpublished master's thesis]. Eindhoven University of Technology.

*van den Elsen, R. M. A. (2015). *How can innovation teams become more successful in their tasks? The role of logistical conflict on the innovativeness of teams* [Unpublished master's thesis]. Eindhoven University of Technology.

*Van Woerkom, M., & Van Engen, M. L. (2009). Learning from conflicts? The relations between task and relationship conflicts, team learning and team performance. *European Journal of Work and Organizational Psychology*, 18(4), 381–404. <https://doi.org/10.1080/13594320802569514>

*Varela, O. E. (2003). *Personality, conflict, and effectiveness in project groups* [Unpublished doctoral dissertation]. Tulane University.

**Vevea, J. L., & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. *Psychological Methods*, 10(4), 428–443. <https://doi.org/10.1037/1082-989X.10.4.428>

Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. *Journal of Educational and Behavioral Statistics*, 30(3), 261–293. <https://doi.org/10.3102/10769986030003261>

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, 36(3), 1–48. <https://doi.org/10.18637/jss.v036.i03>

Viechtbauer, W., López-López, J. A., Sánchez-Meca, J., & Marín-Martínez, F. (2015). A comparison of procedures to test for moderators in mixed-effects meta-regression models. *Psychological Methods*, 20(3), 360–374. <https://doi.org/10.1037/met0000023>

*Vigil-King, D. C. (1999). *Team conflict, integrative conflict-management strategies, and team effectiveness: A field study* [Unpublished doctoral dissertation]. University of Tennessee.

Viswesvaran, C., & Sanchez, J. I. (1998). Moderator search in meta-analysis: A review and cautionary note on existing approaches. *Educational and Psychological Measurement*, 58(1), 77–87. <https://doi.org/10.1177/0013164498058001007>

*Vodosek, M. (2007). Intragroup conflict as a mediator between cultural diversity and work group outcomes. *International Journal of Conflict Management*, 18(4), 345–375. <https://doi.org/10.1108/10444060710833469>

*Wakefield, R. L., Leidner, D. E., & Garrison, G. (2008). Research note: A model of conflict, leadership, and performance in virtual teams. *Information Systems Research*, 19(4), 434–455. <https://doi.org/10.1287/isre.1070.0149>

Wall, V. D. Jr., & Nolan, L. L. (1986). Perceptions of inequity, satisfaction, and conflict in task-oriented groups. *Human Relations*, 39(11), 1033–1051. <https://doi.org/10.1177/001872678603901106>

*Wang, F. (2022). *The (dys-) functionality of within-team social hierarchy: The role of power and status as hierarchical bases* [Unpublished doctoral dissertation]. Hong Kong Polytechnic University.

*Wang, S., Mannix, E. A., & Cronin, M. A. (2016). *The influence of representational gaps on team processes and performance*. SSRN. <http://dx.doi.org/10.2139/ssrn.2789851>

*Wang, Y., Zhou, M., Zhu, H., & Wu, X. (2022). The impact of abusive supervision differentiation on team performance in team competitive climates. *Personnel Review*, 52(4), 901–915. <https://doi.org/10.1108/PR-04-2021-0281>

*Wei, X., Liu, Y., & Allen, N. J. (2016). Measuring team emotional intelligence: A multimethod comparison. *Group Dynamics: Theory, Research, and Practice*, 20(1), 34–50. <https://doi.org/10.1037/gdn0000039>

Weingart, L. R., Behfar, K. J., Bendersky, C., Todorova, G., & Jehn, K. A. (2015). The directness and oppositional intensity of conflict expression. *Academy of Management Review*, 40(2), 235–262. <https://doi.org/10.5465/amr.2013.0124>

*Weingart, L. R., Todorova, G., & Cronin, M. A. (2010). Task conflict, problem-solving, and yielding: Effects on cognition and performance in functionally diverse innovation teams. *Negotiation and Conflict Management Research*, 3(4), 312–337. <https://doi.org/10.1111/j.1750-4716.2010.00063.x>

Whitener, E. M. (1990). Confusion of confidence intervals and credibility intervals in meta-analysis. *Journal of Applied Psychology*, 75(3), 315–321. <https://doi.org/10.1037/0021-9010.75.3.315>

*Wills, K. S. (2022). *An examination of team humility on the decision-making quality of high-level strategic teams: A moderated mediation study* [Unpublished doctoral dissertation]. Eastern University.

*Windeler, J., Maruping, L. M., Robert, L. P., & Riemenschneider, C. K. (2015). E-profiles, conflict, and shared understanding in distributed teams. *Journal of the Association for Information Systems*, 16(7), 608–645. <https://doi.org/10.17705/1jais.00401>

*Woehr, D. J., Arciniega, L. M., & Poling, T. L. (2013). Exploring the effects of value diversity on team effectiveness. *Journal of Business and Psychology*, 28(1), 107–121. <https://doi.org/10.1007/s10869-012-9267-4>

Wood, J. A. (2008). Methodology for dealing with duplicate study effects in a meta-analysis. *Organizational Research Methods*, 11(1), 79–95. <https://doi.org/10.1177/1094428106296638>

*Wu, W., Ni, D., Wu, S., Lu, L., Zhang, X., & Hao, S. (2021). Envy climate and group performance in full-service hotels: The roles of intragroup relationship conflict and competitive climate. *International Journal of Contemporary Hospitality Management*, 33(10), 3494–3513. <https://doi.org/10.1108/IJCHM-09-2020-1042>

*Xie, X. Y., Wang, W. L., & Luan, K. (2014). It is not what we have, but how we use it: Reexploring the relationship between task conflict and team innovation from the resource-based view. *Group Processes & Intergroup Relations*, 17(2), 240–251. <https://doi.org/10.1177/1368430213502559>

*Xu, H., Wayne, S. J., Wang, L. C., & Pan, J. (2022). LMX differentiation as a double-edged sword: A social hierarchy perspective for understanding the beneficial and detrimental effects of LMX differentiation on team performance. *Personnel Psychology*, 77(2), 713–745. <https://doi.org/10.1111/peps.12564>

*Xu, J. (2018). *Not just being an autocrat or an empowerer: Investigating hierarchical-decentralization and its effects on team outcomes* [Unpublished doctoral dissertation]. Hong Kong Baptist University.

Yang, J., & Mossholder, K. W. (2004). Decoupling task and relationship conflict: The role of intragroup emotional processing. *Journal of Organizational Behavior*, 25(5), 589–605. <https://doi.org/10.1002/job.258>

*Ye, Z., Liu, H., Gu, J., & Yang, J. (2022). Is relationship conflict totally detrimental to team creativity? Mediating role of team learning and moderating role of transformational leadership. *Current Psychology*, 41, 6154–6165. <https://doi.org/10.1007/s12144-020-01106-3>

*Yi, Y., Chen, Y., & He, X. (2022). CEO leadership, strategic decision comprehensiveness, and firm performance: The moderating role of TMT cognitive conflict. *Management and Organization Review*, 18(1), 131–166. <https://doi.org/10.1017/mor.2021.10>

*Yong, K., Sauer, S. J., & Mannix, E. A. (2014). Conflict and creativity in interdisciplinary teams. *Small Group Research*, 45(3), 266–289. <https://doi.org/10.1177/1046496414530789>

*Yousofpourfard, H. (2010). *Cultural intelligence: A new approach to manage teamwork in culturally diverse teams* [Unpublished doctoral dissertation]. McMaster University.

*Yu, S., & Greer, L. L. (2022). The role of resources in the success or failure of diverse teams: Resource scarcity activates negative performance-deterring resource dynamics in social category diverse teams. *Organization Science*, 34(1), 24–50. <https://doi.org/10.1287/orsc.2021.1560>

*Yu, S., Kilduff, G. J., & West, T. (2023). Status acuity: The ability to accurately perceive status hierarchies reduces status conflict and benefits group performance. *Journal of Applied Psychology*, 108(1), 114–137. <https://doi.org/10.1037/apl0001024>

Yuan, Z. (2021). The power of the plural: Toward a better appreciation of Table 1s in meta-analytic inquiries. *Industrial and Organizational Psychology*, 14(4), 478–480. <https://doi.org/10.1017/iop.2021.98>

Yuan, Z., Morgeson, F. P., & LeBreton, J. M. (2020). Maybe not so independent after all: The possibility, prevalence, and consequences of violating the independence assumptions in psychometric meta-analysis. *Personnel Psychology*, 73(3), 491–516. <https://doi.org/10.1111/peps.12372>

Yuan, Z., Sun, U. Y., Effinger, A. L., & Zhang, J. (2023). Being on the same page matters: A meta-analytic investigation of leader–member exchange (LMX) agreement. *Journal of Applied Psychology*, 108(9), 1540–1558. <https://doi.org/10.1037/apl0001089>

*Zhang, L. L., & Farh, J. L. (2019). Separating truth from error: A closer look at the effect of grouped versus intermixed questionnaire format. *Asia Pacific Journal of Management*, 36(3), 881–901. <https://doi.org/10.1007/s10490-018-9586-8>

*Zhang, Y., & Hou, L. (2012). The romance of working together: Benefits of gender diversity on group performance in China. *Human Relations*, 65(11), 1487–1508. <https://doi.org/10.1177/0018726712453931>

*Zhang, Y., & Zhang, W. (2020). How does the team expertise heterogeneity improve entrepreneurial performance? Analysis from the perspective of academic social network. *Library Hi Tech*, 38(2), 434–445. <https://doi.org/10.1108/LHT-11-2018-0180>

*Zhao, H. (2015). Leader–member exchange differentiation and team creativity: A moderated mediation study. *Leadership & Organization Development Journal*, 36(7), 798–815. <https://doi.org/10.1108/LODJ-12-2013-0172>

*Zhong, M., Wu, J., Wei, W., & Zhao, H. (2022). *Too many multi-taskers: Why and when does team polychronicity elevation hurt team performance?* [Manuscript submitted for publication]. Department of Organization and Management, Xi'an Jiaotong University. <http://dx.doi.org/10.2139/ssrn.4074854>

Table 1*Psychometric Meta-Analysis Results of Team Conflict–Team Performance Relationships*

Variable	<i>k</i>	<i>N</i>	<i>r</i>	<i>SD_r</i>	ρ	<i>SD_p</i>	80% CV	95% CI
Task conflict (overall effect)	211	17,667	−.06	.21	−.09	.30	[−.48, .30]	[−.14, −.04]
Team performance facet								
Decision quality	8	528	.13	.38	.19	.54	[−.58, .96]	[−.29, .67]
Financial performance	8	719	.08	.19	.12	.28	[−.27, .51]	[−.14, .39]
Grades	44	3545	−.01	.20	−.02	.28	[−.39, .35]	[−.12, .08]
Innovativeness	35	3134	.04	.13	.05	.19	[−.19, .30]	[−.03, .14]
Simulation results	17	1345	−.03	.12	−.04	.17	[−.27, .19]	[−.16, .08]
Team effectiveness	99	8396	−.15	.20	−.21	.29	[−.59, .16]	[−.28, −.15]
Relationship conflict (overall effect)	204	17,792	−.20	.19	−.28	.26	[−.61, .05]	[−.32, −.24]
Team performance facet								
Decision quality	7	522	−.03	.26	−.04	.36	[−.56, .48]	[−.41, .33]
Financial performance	9	767	−.16	.17	−.21	.24	[−.55, .12]	[−.43, .00]
Grades	39	3187	−.16	.16	−.22	.22	[−.51, .07]	[−.31, −.13]
Innovativeness	29	3022	−.18	.15	−.24	.20	[−.51, .02]	[−.34, −.15]
Simulation results	23	1822	−.09	.13	−.12	.18	[−.36, .11]	[−.23, −.02]
Team effectiveness	97	8472	−.27	.19	−.37	.26	[−.71, −.03]	[−.43, −.31]
Process conflict (overall effect)	40	3136	−.23	.16	−.33	.22	[−.61, −.04]	[−.41, −.24]
Team performance facet								
Financial performance	1	107	−.04	—	−.06	—	—	[−.32, .21]
Grades	11	953	−.23	.16	−.32	.23	[−.63, −.01]	[−.50, −.14]
Innovativeness	4	334	−.04	.00	−.05	.00	[−.05, −.05]	[−.15, .05]
Simulation results	3	157	−.24	.17	−.34	.24	[−.79, .12]	[−1.00, .42]
Team effectiveness	21	1585	−.29	.15	−.41	.21	[−.69, −.13]	[−.53, −.29]
Status conflict (overall effect)	15	1264	−.29	.13	−.38	.17	[−.61, −.15]	[−.50, −.26]

Note. *k* = number of independent samples; *N* = total sample size; *r* = population estimate corrected for sampling error; ρ = population estimate corrected for sampling error and unreliability; CV = credibility interval of ρ ; CI = confidence interval of ρ . For process conflict, no studies measured decision quality. Subgroup analyses not conducted for status conflict due to the small number of independent studies.

Table 2*Meta-Regression Results of Moderators of the Task Conflict–Team Performance Relationship*

Variable	<i>b</i>	<i>S.E.</i>	<i>t</i>	<i>p</i>	<i>k</i>	τ^2	<i>R</i> ²	<i>Q_M</i>
Cultural context								
Intercept	-.14	.09	1.67	.10	180	.124	.00%	<i>F</i> (1, 178) = .31, <i>p</i> = .58
Power distance	.001	.00	.56	.58				
Intercept	-.09	.06	1.47	.14	180	.125	.00%	<i>F</i> (1, 178) = .01, <i>p</i> = .91
Masculinity	.000	.00	.12	.91				
Intercept	-.37	.10	3.67	<.01	180	.119	3.67%	<i>F</i> (1, 178) = 7.69, <i>p</i> < .01
Individualism	.005	.00	2.77	<.01				
Intercept	.14	.08	1.84	.07	180	.117	5.39%	<i>F</i> (1, 178) = 11.14, <i>p</i> < .01
Uncertainty avoidance	-.005	.00	3.34	<.01				
Intercept	-.07	.06	1.33	.18	180	.124	.00%	<i>F</i> (1, 178) = .25, <i>p</i> = .62
Long-term orientation	-.001	.00	.50	.62				
Intercept	-.28	.32	.87	.38	169	.120	.00%	<i>F</i> (1, 167) = .32, <i>p</i> = .57
Tightness	.10	.17	.57	.57				
Team features								
Team performance facet					208	.105	12.75%	<i>F</i> (5, 202) = 6.56, <i>p</i> < .01
Intercept (team effectiveness)	-.24	.03	7.19	<.01				
Decision quality	.42	.12	3.40	<.01				
Financial performance	.27	.12	2.22	.03				
Grades	.16	.06	2.67	<.01				
Innovativeness	.29	.07	4.43	<.01				
Simulation results	.25	.09	2.77	<.01				
Intercept	.07	.05	1.46	.15	163	.104	12.35%	<i>F</i> (1, 161) = 22.40, <i>p</i> < .01
Correlation between task and relationship conflict	-.40	.08	4.73	<.01				
Intercept	.10	.08	1.25	.22	33	.067	29.97%	<i>F</i> (1, 31) = 12.98, <i>p</i> < .01
Correlation between task and process conflict	-.45	.12	3.60	<.01				
Intercept	-.39	.08	5.14	<.01	172	.098	6.41%	<i>F</i> (1, 170) = 11.79, <i>p</i> < .01
Sample mean of task conflict	.61	.18	3.43	<.01				
Intercept	-.52	.33	1.57	.12	110	.113	.50%	<i>F</i> (1, 108) = 1.55, <i>p</i> = .22
Task conflict symmetry	.49	.40	1.25	.22				
Methodological factors								
Intercept	-.17	.04	4.37	<.01	117	.139	.00%	<i>F</i> (1, 115) = .90, <i>p</i> = .34
Top management team sample	.08	.09	.95	.34				
Intercept	-.16	.03	4.75	<.01	208	.119	1.25%	<i>F</i> (1, 206) = 3.70, <i>p</i> = .06
Student team sample	.10	.05	1.92	.06				

Intercept	-.06	.04	1.33	.19	107	.119	.74%	$F(1, 105) = 1.62, p = .21$
Team tenure	.00	.00	1.27	.21				
Intercept	.01	.05	.28	.78	207	.117	3.31%	$F(1, 205) = 7.81, p < .01$
Team size	-.02	.01	2.79	<.01				
Task type					208	.115	4.65%	$F(4, 203) = 3.30, p = .01$
Intercept (production and service)	-.34	.08	4.30	<.01				
Creativity	.24	.10	2.33	.02				
Decision making	.29	.10	3.05	<.01				
Mixed	.16	.10	1.65	.10				
Project	.28	.09	3.16	<.01				
Task conflict scale					208	.115	4.02%	$F(2, 205) = 5.01, p < .01$
Intercept (Jehn)	-.12	.03	4.71	<.01				
Behfar et al. (2011)	.29	.10	2.85	<.01				
Other	-.10	.09	1.16	.25				
Intercept	-.08	.03	2.86	<.01	208	.115	3.86%	$F(1, 206) = 9.05, p < .01$
Performance measurement method	-.18	.06	3.01	<.01				
Intercept	-.03	.04	.62	.53	208	.116	3.17%	$F(1, 206) = 7.50, p < .01$
Cross-sectional design	-.14	.05	2.74	<.01				
Simultaneous test					116	.063	39.56%	$F(18, 97) = 4.74, p < .01$
Intercept	-.67	.24	2.73	<.01				
Individualism	.004	.00	2.01	.05				
Uncertainty avoidance	.000	.00	.12	.90				
Team performance facet								
Decision quality	.58	.16	3.61	<.01				
Financial performance	-.15	.21	.70	.48				
Grades	.06	.10	.61	.54				
Innovativeness	.18	.08	2.17	.03				
Simulation results	.22	.10	2.23	.03				
Correlation between task and relationship conflict	-.24	.12	2.07	.04				
Sample mean of task conflict	.26	.23	1.13	.26				
Team size	.01	.02	.80	.43				
Task type								
Creativity	.18	.15	1.21	.23				
Decision making	.20	.11	1.75	.08				
Mixed	.21	.09	2.35	.02				
Project	.27	.11	2.42	.02				
Task conflict scale								
Behfar et al. (2011)	.09	.16	.59	.56				
Other	-.02	.11	.15	.88				
Performance measurement method	-.24	.08	3.00	<.01				

Cross-sectional design	-.03	.06	.47	.64
------------------------	------	-----	-----	-----

Note. As Hofstede's (2001) cultural dimensions ranged from 8 to 104, we report results to three decimal places for these dimensions. Top management team sample: 1 = top management team sample; 0 = non-top management team sample. Student team sample: 1 = student team sample; 0 = non-student team sample. For task type, team performance facet, and task conflict scale, the reference group is indicated in the parentheses following the intercept, whereas other categories were dummy coded such that 1 = yes, 0 = no. Performance measurement method: 1 = team members' self-report; 0 = non-self-report. Cross-sectional design: 1 = cross-sectional design; 0 = time-separated design. k = number of independent samples; *S.E.* = standard error; τ^2 = estimated amount of residual heterogeneity; R^2 = amount of total heterogeneity accounted for by all moderators included in the model; Q_M = omnibus test of all moderators included in the model. Unstandardized coefficients (*b*) are reported.

Table 3*Meta-Regression Results of Moderators of the Relationship Conflict–Team Performance Relationship*

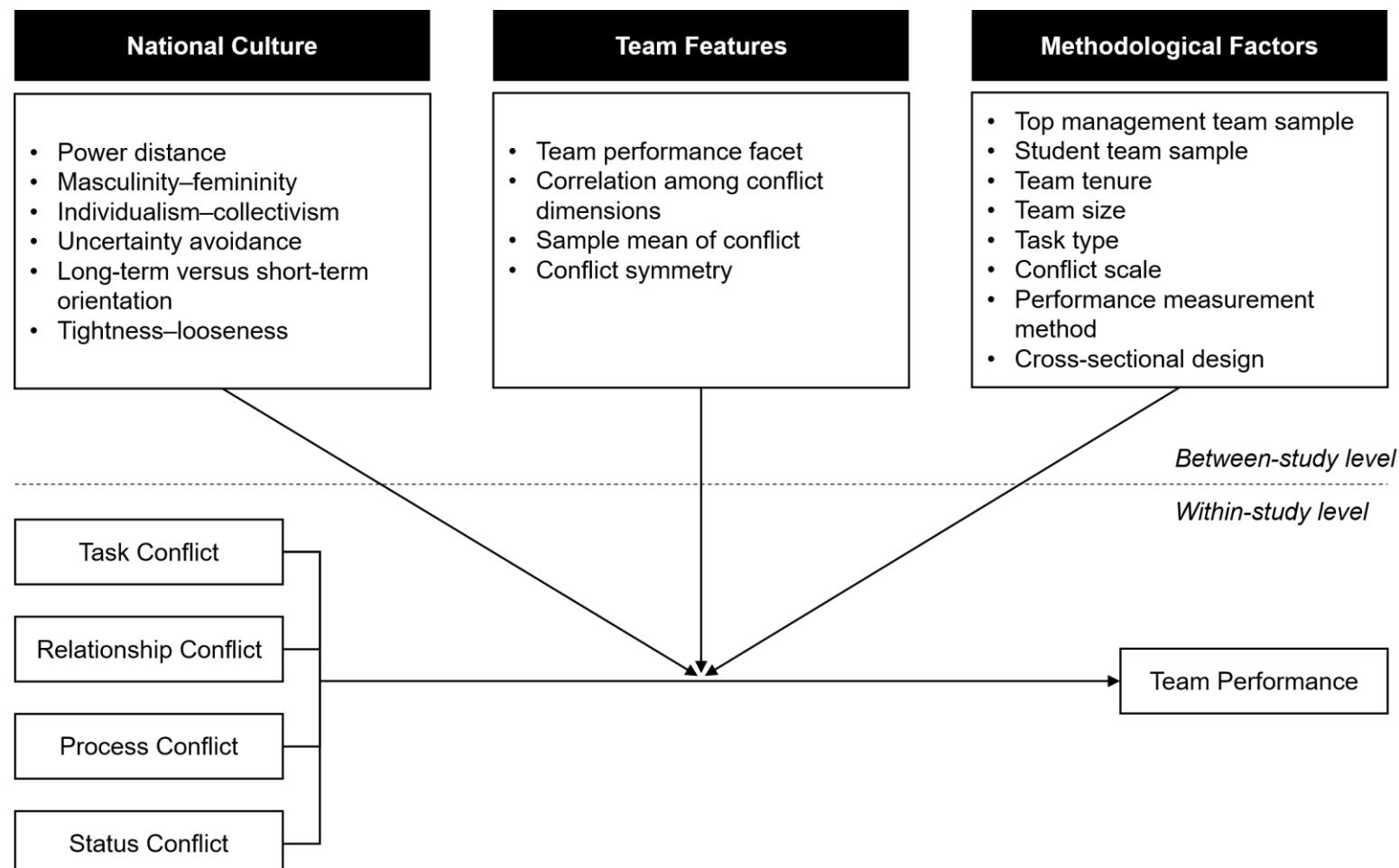
Variable	<i>b</i>	<i>S.E.</i>	<i>t</i>	<i>p</i>	<i>k</i>	τ^2	<i>R</i> ²	<i>Q_M</i>
Cultural context								
Intercept	-.16	.07	2.29	.02	173	.073	1.22%	<i>F</i> (1, 171) = 2.88, <i>p</i> = .09
Power distance	-.002	.00	1.70	.09				
Intercept	-.39	.05	8.26	<.01	173	.071	4.39%	<i>F</i> (1, 171) = 7.89, <i>p</i> < .01
Masculinity	.002	.00	2.81	<.01				
Intercept	-.52	.08	6.38	<.01	173	.069	5.95%	<i>F</i> (1, 171) = 9.96, <i>p</i> < .01
Individualism	.005	.00	3.16	<.01				
Intercept	-.20	.06	3.24	<.01	173	.074	.19%	<i>F</i> (1, 171) = 1.34, <i>p</i> = .25
Uncertainty avoidance	-.001	.00	1.16	.25				
Intercept	-.15	.04	3.36	<.01	173	.070	5.33%	<i>F</i> (1, 171) = 9.24, <i>p</i> < .01
Long-term orientation	-.002	.00	3.04	<.01				
Intercept	.00	.28	.00	1.00	163	.077	.00%	<i>F</i> (1, 161) = .87, <i>p</i> = .35
Tightness	-.14	.15	.93	.35				
Team context								
Team performance facet					201	.077	7.26%	<i>F</i> (5, 195) = 3.80, <i>p</i> < .01
Intercept (team effectiveness)	-.35	.03	11.87	<.01				
Decision quality	.32	.12	2.75	<.01				
Financial performance	.09	.10	.85	.40				
Grades	.10	.06	1.84	.07				
Innovativeness	.11	.06	1.71	.09				
Simulation results	.24	.07	3.51	<.01				
Intercept	-.23	.04	5.58	<.01	162	.070	.00%	<i>F</i> (1, 160) = .65, <i>p</i> = .42
Correlation between task and relationship conflict	-.06	.07	.80	.42				
Intercept	-.24	.14	1.75	.09	33	.103	.00%	<i>F</i> (1, 31) = .03, <i>p</i> = .87
Correlation between relationship and process conflict	-.04	.21	.17	.87				
Intercept	-.27	.05	5.60	<.01	167	.082	.00%	<i>F</i> (1, 165) = .20, <i>p</i> = .66
Sample mean of relationship conflict	-.07	.16	.44	.66				
Intercept	-.90	.22	4.01	<.01	110	.066	5.33%	<i>F</i> (1, 108) = 6.89, <i>p</i> < .01
Relationship conflict symmetry	.70	.27	2.63	<.01				
Methodological factors								
Intercept	-.32	.03	10.35	<.01	112	.083	.22%	<i>F</i> (1, 110) = 1.10, <i>p</i> = .30
Top management team sample	.08	.07	1.05	.30				
Intercept	-.31	.03	10.83	<.01	201	.082	.91%	<i>F</i> (1, 199) = 3.05, <i>p</i> = .08
Student team sample	.07	.04	1.75	.08				

Intercept	-.27	.04	7.10	<.01	92	.072	.02%	$F(1, 90) = .89, p = .35$
Team tenure	.00	.00	.94	.35				
Intercept	-.19	.06	3.42	<.01	200	.082	.85%	$F(1, 198) = 2.63, p = .11$
Team size	-.02	.01	1.62	.11				
Task type					201	.082	.78%	$F(4, 196) = 1.38, p = .24$
Intercept (mixed)	-.29	.05	6.31	<.01				
Creativity	.03	.08	.41	.68				
Decision making	.07	.06	1.04	.30				
Production and service	-.12	.08	1.48	.14				
Project	.01	.06	.25	.80				
Relationship conflict scale					201	.083	.00%	$F(1, 199) = .65, p = .42$
Intercept (Jehn)	-.28	.02	12.75	<.01				
Other	.07	.08	.81	.42				
Intercept	-.24	.02	10.37	<.01	201	.079	4.63%	$F(1, 199) = 11.03, p < .01$
Performance measurement method	-.17	.05	3.32	<.01				
Intercept	-.26	.03	7.60	<.01	201	.083	.00%	$F(1, 199) = .52, p = .47$
Cross-sectional design	-.03	.04	.72	.47				
Simultaneous test					97	.048	26.86%	$F(10, 86) = 3.97, p < .01$
Intercept	-.70	.26	2.74	<.01				
Masculinity	.001	.00	.95	.35				
Individualism	.003	.00	2.02	.05				
Long-term orientation	-.002	.00	1.12	.27				
Team performance facet								
Decision quality	.38	.13	2.99	<.01				
Financial performance	-.24	.14	1.74	.09				
Grades	-.03	.08	.35	.73				
Innovativeness	.08	.07	1.09	.28				
Simulation results	.12	.10	1.15	.25				
Relationship conflict symmetry	.30	.28	1.06	.29				
Performance measurement method	-.15	.08	1.93	.06				

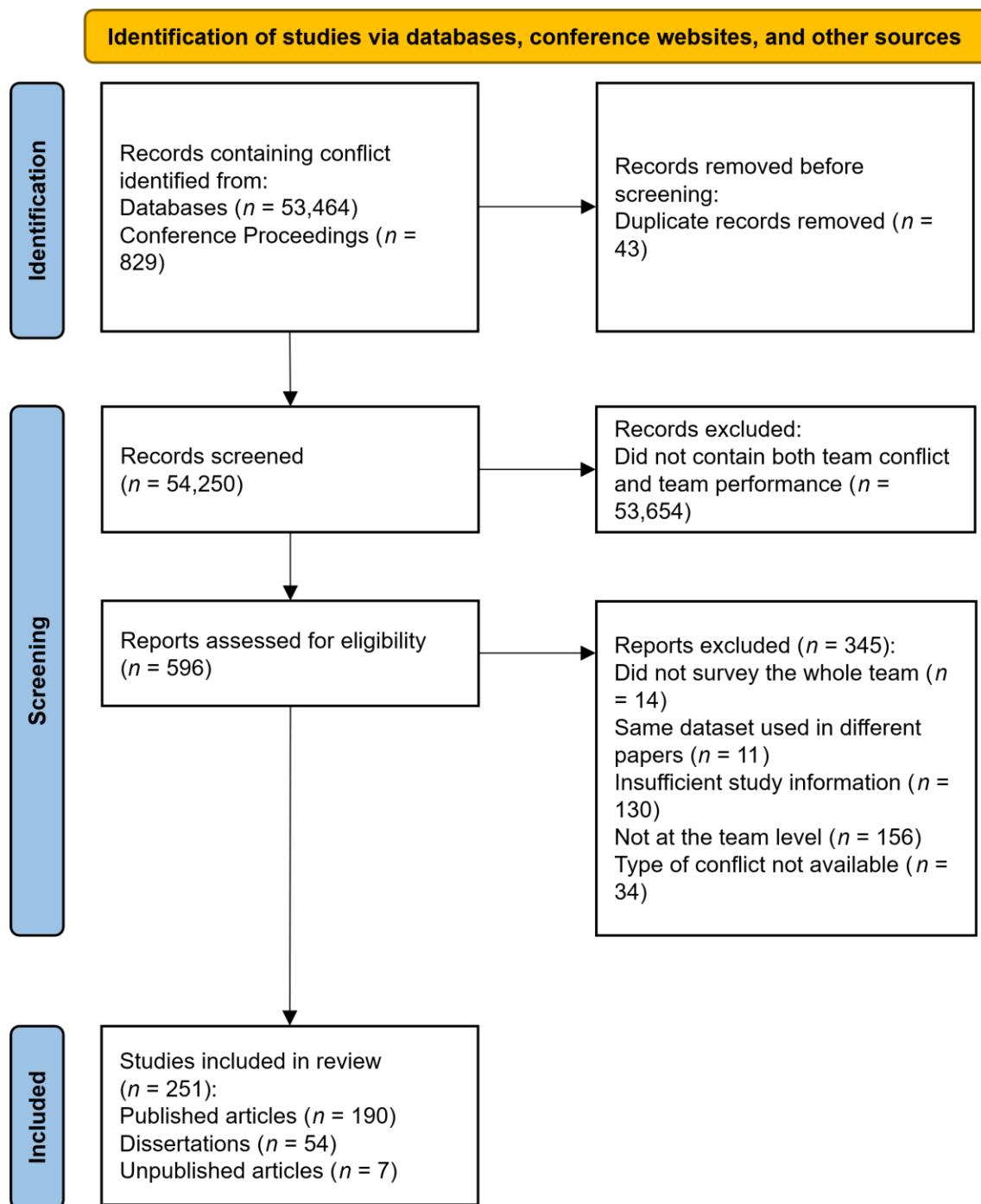
Note. As Hofstede's (2001) cultural dimensions ranged from 8 to 104, we report results to three decimal places for these dimensions. Top management team sample: 1 = top management team sample; 0 = non-top management team sample. Student team sample: 1 = student team sample; 0 = non-student team sample. For task type, team performance facet, and relationship conflict scale, the reference group is indicated in the parentheses following the intercept, whereas other categories were dummy coded such that 1 = yes, 0 = no. Performance measurement method: 1 = team members' self-report; 0 = non-self-report. Cross-sectional design: 1 = cross-sectional design; 0 = time-separated design. k = number of independent samples; $S.E.$ = standard error; τ^2 = estimated amount of residual heterogeneity; R^2 = amount of total heterogeneity accounted for by all moderators included in the model; Q_M = omnibus test of all moderators included in the model. Unstandardized coefficients (b) are reported.

Table 4*Meta-Regression Results of Moderators of the Process Conflict–Team Performance Relationship*

Variable	<i>b</i>	<i>S.E.</i>	<i>t</i>	<i>p</i>	<i>k</i>	τ^2	<i>R</i> ²	<i>Q_M</i>
Cultural context								
Intercept	-.25	.17	1.46	.16	31	.077	.00%	<i>F</i> (1, 29) = .31, <i>p</i> = .58
Power distance	-.002	.00	.56	.58				
Intercept	-.43	.15	2.86	<.01	31	.077	.00%	<i>F</i> (1, 29) = .36, <i>p</i> = .55
Masculinity	.001	.00	.60	.55				
Intercept	-.67	.17	3.95	<.01	31	.069	8.37%	<i>F</i> (1, 29) = 3.88, <i>p</i> = .06
Individualism	.006	.00	1.97	.06				
Intercept	-.22	.15	1.40	.17	31	.076	.00%	<i>F</i> (1, 29) = .83, <i>p</i> = .37
Uncertainty avoidance	-.002	.00	.91	.37				
Intercept	-.30	.12	2.47	.02	31	.077	.00%	<i>F</i> (1, 29) = .23, <i>p</i> = .64
Long-term orientation	-.001	.00	.48	.64				
Intercept	-.06	.60	.09	.93	29	.078	.00%	<i>F</i> (1, 27) = .27, <i>p</i> = .61
Tightness	-.17	.32	.52	.61				
Team context								
Team performance facet					39	.059	9.60%	<i>F</i> (4, 34) = 1.85, <i>p</i> = .14
Intercept (team effectiveness)	-.42	.06	7.13	<.01				
Financial performance	.37	.26	1.38	.18				
Grades	.12	.10	1.21	.24				
Innovativeness	.35	.15	2.40	.02				
Simulation results	.07	.16	.45	.66				
Intercept	-.26	.08	3.26	<.01	32	.066	3.41%	<i>F</i> (1, 30) = 1.71, <i>p</i> = .20
Correlation between task and process conflict	-.16	.13	1.31	.20				
Intercept	-.20	.12	1.72	.10	32	.066	2.52%	<i>F</i> (1, 30) = 1.70, <i>p</i> = .20
Correlation between relationship and process conflict	-.24	.18	1.30	.20				
Intercept	-.29	.12	2.52	.02	33	.062	.00%	<i>F</i> (1, 31) = .14, <i>p</i> = .71
Sample mean of process conflict	-.15	.40	.37	.71				
Intercept	-.30	.69	.43	.67	19	.044	.00%	<i>F</i> (1, 17) = .00, <i>p</i> = .97
Process conflict symmetry	-.03	.82	.04	.97				
Methodological factors								
Intercept	-.42	.06	6.71	<.01	39	.061	6.42%	<i>F</i> (1, 37) = 3.54, <i>p</i> = .07
Student team sample	.16	.09	1.88	.07				
Intercept	-.31	.07	4.49	<.01	28	.075	.62%	<i>F</i> (1, 26) = 1.40, <i>p</i> = .25
Team tenure	.00	.00	1.18	.25				
Intercept	-.12	.15	.81	.42	39	.063	2.82%	<i>F</i> (1, 37) = 2.17, <i>p</i> = .15

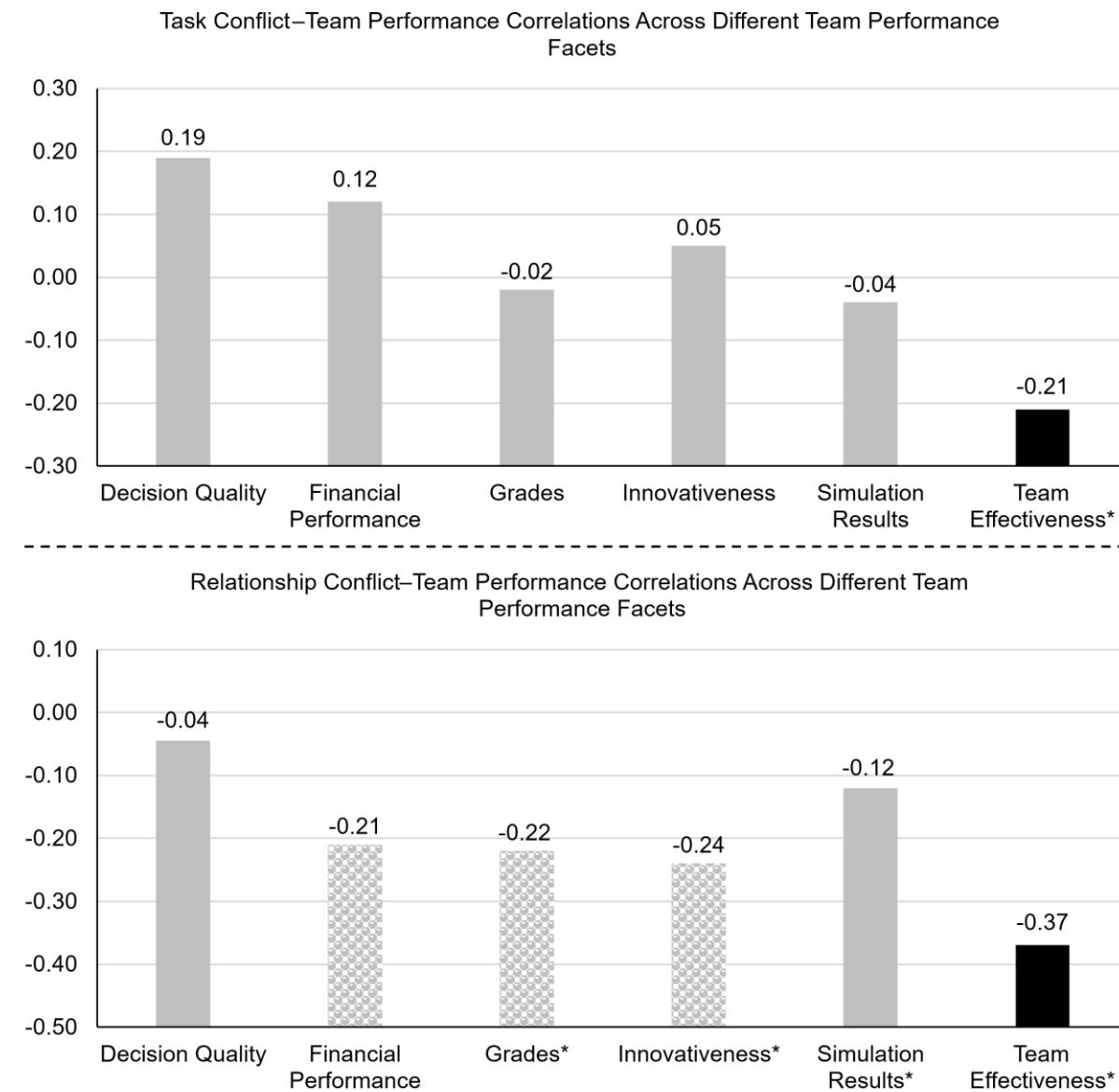

Team size	−.04	.03	1.47	.15				
Task type					39	.063	3.22%	$F(4, 34) = 1.56, p = .21$
Intercept (project)	−.24	.06	4.10	<.01				
Creativity	−.06	.14	.45	.66				
Decision making	−.23	.16	1.39	.17				
Mixed	−.23	.10	2.26	.03				
Production and service	−.21	.27	.79	.44				
Process conflict scale					39	.060	7.73%	$F(2, 36) = 2.18, p = .13$
Intercept (Jehn)	−.39	.05	7.67	<.01				
Behfar et al. (2011)	.20	.11	1.85	.07				
Other	.18	.14	1.27	.21				
Intercept	−.31	.05	6.18	<.01	39	.065	.91%	$F(1, 37) = 1.42, p = .24$
Performance measurement method	−.13	.11	1.19	.24				
Intercept	−.24	.07	3.68	<.01	39	.060	7.73%	$F(1, 37) = 3.41, p = .07$
Cross-sectional design	−.16	.09	1.85	.07				

Note. As Hofstede's (2001) cultural dimensions ranged from 8 to 104, we report results to three decimal places for these dimensions. Student team sample: 1 = student team sample; 0 = non-student team sample. For task type, team performance facet, and process conflict scale, the reference group is indicated in the parentheses following the intercept, whereas other categories were dummy coded such that 1 = yes, 0 = no. Performance measurement method: 1 = team members' self-report; 0 = non-self-report. Cross-sectional design: 1 = cross-sectional design; 0 = time-separated design. k = number of independent samples; *S.E.* = standard error; τ^2 = estimated amount of residual heterogeneity; R^2 = amount of total heterogeneity accounted for by all moderators included in the model; Q_M = omnibus test of all moderators included in the model. Unstandardized coefficients (b) are reported. The effects of top management team sample and decision quality (for team performance facet) were not tested, as they were both constants.


Table 5*Summary of Main Findings*

	Task conflict	Relationship conflict	Process conflict	Status conflict
<i>Psychometric meta-analysis results</i>				
Population average (ρ)	-.09, 95% CI [-.14, -.04]	-.28, 95% CI [-.32, -.24]	-.33, 95% CI [-.41, -.24]	-.38, 95% CI [-.50, -.26]
Effect size heterogeneity	80% CV [-.48, .30]	80% CV [-.61, .05]	80% CV [-.61, -.04]	80% CV [-.61, -.15]
<i>Meta-regression results</i>				
Moderators				
1. National culture				
[H1] Power distance				
[H2] Masculinity				
[H3] Individualism	••		•	
[H4] Uncertainty avoidance	•			
[H5] Long-term orientation			○	
[H6] Tightness				
2. Team features				
[RQ1] Team performance facet	••		••	
[H7] Correlation among conflict dimensions	••			
[H8] Sample mean of conflict	•			
[H9] Conflict symmetry			•	
3. Methodological factors				
Top management team sample				
Student team sample				
Team tenure				
Team size	•			
Task type	••			
Conflict scale	•			
Performance measurement method	••		•	
Cross-sectional design	•			

Note. ρ = population estimate corrected for sampling error and unreliability; CV = credibility interval of ρ ; CI = confidence interval of ρ . A single dot (•; ○) indicates a moderator was significant only in the individual test; double dots (••) indicate a moderator was significant in both the individual and the simultaneous tests. For national culture dimensions and team features, black dots (•) indicate the results supported the hypotheses; white dots (○) indicate the results were contrary to the hypotheses. Moderators were not tested for the status conflict–team performance relationship due to the small number of independent studies and hence inadequate statistical power.


Figure 1*Overall Research Model*

Note. All contextual moderators are at the between-study level. Within-study level relationships are included in the figure for the sake of completeness.

Figure 2*Flow Diagram of Identification and Inclusion Process of Primary Studies*

Figure 3

Team Performance Facet Moderating the Team Conflict–Team Performance Relationship

Note. For task conflict, the effect size for team effectiveness (the black bar) was significantly different from the effect size for the other five team performance facets (the gray bars). For relationship conflict, the effect size for team effectiveness (the black bar) was significantly different from the effect size for decision quality and simulation results (the solid gray bars), but not significantly different from that for financial performance, grades, and innovativeness (the dotted gray bars). The effect size that was significantly different from zero is indicated with *.