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Abstract
This paper develops two mathematical models to understand subjects’ behavior in
response to the urgency of a change and inputs from governments e.g., (subsides)
in the context of the diffusion of the solar photovoltaic in Italy. The first model is a
Markov model of interacting particle systems. The second one, instead, is a Mean-
Field Game model. In both cases, we derive the scaling limit deterministic dynamics,
and we compare the latter to the Italian solar photovoltaic data. We identify peri-
ods where the first model describes the behavior of domestic data well and a period
where the second model captures a particular feature of data corresponding to com-
panies. The comprehensive analysis, integrated with a philosophical inquiry focusing
on the conceptual vocabulary and correlative implications, leads to the formulation of
hypotheses about the efficacy of different forms of governmental subsidies.

Keywords Green Energy Transition · Solar Photovoltaic · Individual based
modeling · Procrastination · Markov model · Mean-Field Games

Mathematics Subject Classification 60K35 · 91A16 · 60J27

1 Introduction

Green Energy Transition (GET, henceforth) has, in general, many facets. One is the
problem of understanding subjects’ reactions to the urgency of a change and inputs
from governments (e.g., subsidies). The latter is a fascinating question at the inter-
section of several cultural fields. This paper investigates this interrogative through the
lens of mathematicians and philosophers by examining a specific case study, namely
the diffusion of solar photovoltaic panels in Italy, to identify concrete issues and have
some data comparing our proposed models; Section A in Appendix gives a short
description of the development of solar photovoltaic in Italy. More precisely, in the
present paper, the term “subjects" indicates either individual people and householders
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or companies. The purpose is to understand which type of structural modeling – to be
detailed below – better captures the behavior of these subjects in order to formulate a
hypothesis about the efficacy of different forms of governmental subsidies. We stress
right away that we are not interested in investigating the ability of models to simulate
emerging behaviors, and we postpone this latter problem to future research. Here, the
validation of models consists of the latter’s capability to fit specific empirical data. In
particular, we construct two mathematical models aiming to describe different (struc-
tural) features of the considered GET and see the consequences of these choices; we
now describe the characteristics of these models from a behavioral and a mathematical
perspective.

From a behavioral perspective, the first model comprises subjects with a clear ori-
entation who favor installing solar photovoltaic panels but often do not complete the
action; individual people or householders inspire thismodel. The subjects’ assessment,
influenced by, e.g., personal experiences, perceived social norms, and beliefs about
the technology’s benefits and drawbacks, of the likelihood of various outcomes asso-
ciated with adopting solar PV, is related to what is known in the literature as subjective
probabilities; see, e.g., Suppes (1969). In particular, several studies have found that
many householders do not invest in energy-efficient technologies, even if cost-benefit
analyses have consistently shown that such technologies provide a high internal rate of
return and are socially beneficial (e.g., Chapmanet al. (2009);Clinch andHealy (2001);
Webber et al. (2015)). Reasons for the just-mentioned energy-efficiency gap com-
prise investment inefficiencies and behavioral factors, such as imperfect information,
uncertainty about the benefits of the investments, and decision-making biases. One of
these decision-making biases is the so-called “bounded rationality". Human beings are
bounded rational: they have limited cognitive resources, which naturally constrains
optimal decision-making; see, e.g., Frederiks et al. (2015). In particular, empirical evi-
dence from psychology and behavioral economics shows that consumer choices and
actions often deviate systematically from the neoclassical economic assumptions of
rationality, and certain fundamental and persistent biases in human decision-making
regularly produce behavior that these assumptions cannot account for; see, e.g., Wil-
son and Dowlatabadi (2007); Pollitt and Shaorshadze (2013). There exist a plethora of
cognitive biases and behavioral anomalies influencing consumer’s patterns of energy
usage, with the status quo bias, loss and risk aversion, sunk-cost effects, temporal and
spatial discounting, and the availability bias being the most powerful and pervasive
ones; see Frederiks et al. (2015), Page 1386, for a nice description. Because a com-
prehensive review and modeling of these cognitive biases and behavioral anomalies
are beyond the scope of the present paper, for the sake of presentation only, we will
speak about procrastination, a behavioural bias that occurs in the subsequent situation.
Perceive things as less valuable or significant if further away in time (temporal dis-
counting) or space (spatial discounting), even if such things afford long-term benefits.
For instance, many people prefer $100 in six years rather than $50 in four years – the
discount rate of future utility, in other words, makes the value of $100 two years later
lower than the value of $50 two years earlier, but not so lower as to be lower than the
value of $50 two years earlier. As many people, however, prefer $50 today to $100
two years from now. This means that the choice between the two options is not only
influenced by the utility units and their temporal detachment, but also by how close the
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option with the closer gains is to us. This tendency to be short-sighted and make time-
inconsistent judgements often leads indeed to procrastination1, inertia and decreased
cooperation in group settings; see, e.g., Jacquet et al. (2013). In particular, we sum-
marize the previous cognitive biases in a state named Deliberating, which indicates
individual people or householders that can articulate a complex process lying behind
the assumption of a specific pattern of action, namely the solar panels’ installation,
but that they have not done the latter action yet. The second model, instead, comprises
subjects who make more rational decisions based on optimization rules. This model
is more inspired by the behavior of companies/firms. Indeed, some existing research
works in the literature treat firms as economic agents with a rational maximization
behavior; among these, we cite here Judd and Petersen (1986); Berck and Perloff
(1988); Gotoh (2021); Semmler et al. (2022), and Chan and Sircar (2017).

Despite these differences, both models hinge on the existence of an interaction
among subjects. The present paper summarizes this interaction as dependence on spe-
cific rules of the mathematical models on the fraction of subjects that have already
installed the solar photovoltaic panels at time t , out of a population of size N ; in
order not to introduce too many concepts here, only in this section, we will denote the
previous quantity by NG (t)

N . How the term NG (t)
N enters is very different between the

two models. More precisely, in the first model, the motivation for introducing NG (t)
N

is a sort of imitation, the orientation to participate more confidently in the GET when
we observe that more people have done it. Indeed, attitudes and behaviours of oth-
ers influences people, which tend to follow norms reflecting what is socially approved
(i.e., injunctive norms,whichmotivate byproviding social rewards/punishment) and/or
common (i.e., descriptive norms,whichmotivate by providing suggestions about effec-
tive and adaptive behaviour); see, e.g., Feldman (1984); Cialdini and Trost (1998). In
the second model, instead, there are subsidies to participate in the GET with a limited
global amount, and when more companies have installed the panel, less accessible to
get the subsidy.

From amathematical point of view, in the first model, we end up with an interacting
particle system of Markov type, in which the randomness corresponds to the uncer-
tainty that an individual installs solar photovoltaic panels due to bounded rationality.
We analyze its scaling limit when the number of subjects goes to infinity and get certain
deterministic differential equations. Notice that this type ofmodeling is also confirmed
by the extensive literature on opinion dynamics in which the evolution of opinions
in society is modeled through Markov chains; see, e.g., Holley and Liggett (1975);
Lewenstein et al. (1992); Sîrbu et al. (2017). In the second model, we end up with
a game, precisely a Mean-Field Game (MFG, henceforth) since it is an optimization
problem where certain elements depend on the global mean quantity NG (t)

N . We defer
the interested reader to the nice books of Carmona et al. (2018) for a presentation of
the MFG theory. Here, we get a backward-forward system of differential equations in
the scaling limit. MFG models linked to GET can be found in, e.g., Aid et al. (2021);
Dumitrescu et al. (2024), and references therein.

1 Notice that procrastination is distinguished from two other psychological phenomena: hypocrisy and
akrasia.
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We compare the twomodels – precisely, their scaling limits deterministic equations
– with a fit of the parameters on data of solar photovoltaic taken from GSE (2020).
It is essential to observe that the solar photovoltaic cumulative capacity of the Italian
time-series is the sum of four time-series, corresponding to “Domestic", “Industry",
“Services", and “Agriculture" sectors. We focus on the “Domestic" and the “Industry"
time-series, where our individual-based modeling looks more appropriate (together,
they represent around 70% of the total, so their interpretation is a substantial prob-
lem). These time-series immediately display a subdivision into two periods, separated
roughly speaking by the year 2012. Before this year, Italy had a firm subsidy policy, the
so-called Feed-in-Tariff (FiT, henceforth), which was of moderate-size before 2011
and of substantial size around 2011. After 2012, the firm subsidy policy was weaker
than the one before 2012. In particular, both the time-series of “Domestic" and “Indus-
try" show, roughly speaking, a relatively exponential solid increase (clearly identified
by linear trends on a logarithmic scale) in the period before 2012 and a weaker expo-
nential increase after 2012. In addition, the “Industry" time-series had a linear increase
around 2011, essentially absent in the “Domestic" time-series. Therefore, we find it
interesting to explain, by mathematical models, the following two issues:

(I) the periods of exponential increase;
(II) the single period of a linear trend, with a large derivative, around 2011, for

companies.

The Markov model easily fits the exponential increase periods. Still, it is not natu-
ral for an explanation of the solid linear increase of 2011. On the contrary, the MFG
model, totally unsuitable for the exponential increase periods, explains well the linear
increase of 2011 observed for companies. This empirical evidence leads to the follow-
ing conclusion. Companies, around 2011, underwent a game, in contrast to all other
periods and individual people or householders. The planning ability of companies is
superior to that of domestic ones. Hence, using control theory arguments to explain

company behaviour is more natural. Nevertheless, the cost function depended on NG (t)
N

because the global amount of subsidies was limited. Therefore, the structure of the
problem is a game, not simply of control.

It is important to emphasize a structural element of the game (or control) theory,
opposite to a Markov model: the presence of a “time zero”, an initial instant of time.
In theMarkov model, any time is a new starting time due to memory loss. In a game or
control problem, there is a functional to be minimized: at time zero, the agent should
plan the future activity to minimize the functional. This planning is not repeated as
in a Markov model that continuously restarts. So, why 2011? As said above and by
looking at the documents (GSE 2020), 2011 came after some years of moderate-size
FiT subsidies, which prepared the ground and alerted the companies. In 2011, Italy
proposed a much more substantial FiT subsidy. Companies were prepared and acted
in a game, with the initial time of the subsidy call as the initial time of the game.
Householders were not prepared; slowly, they reacted but not with the game’s logic.
Also, it is essential to make clear that we do not propose two models for the same
period and the same type of subjects, but we propose the idea that around the year
2011 the “Industry” compartment, having a more rational attitude towards investment
with respect the other compartments, entered the modality of a game, while the others

123



Structural properties in the diffusion of the solar photovoltaic…

did not. Admittedly, the boundary is very vague since we always live in a game and
outside a game, depending on how much we stress certain factors. In particular, what
we are claiming is that around the year 2011 and for the “Industry” compartment
the behaviour is better described by a game. In contrast, outside that period, for the
other compartments and the “Industry” compartment the game logic is not the driving
force as far as the data shows. Nevertheless, some fraction of game dynamics always
exists. Finally, we would like to stress that a subject can decide to enter a game in
a certain period of her/his/its life but stay outside in others; being part of a game is
a decision anyone can take. In particular, we notice that there is nothing ad-hoc for
using different models for different periods, although this approach is not orthodox
since it is not coherent with the modelling approach usually adopted in the literature.
To insist on this element, one possibility would be to introduce an extra jump process
in our model with values in {0, 1} with a rate. A value 0 means that we are outside
the game logic but that with a probability rate, the process may jump to the game
logic state 1 and remain there until another rate moves it back to zero. In other words,
the subject behaves over her/his/its entire life in some way, and this way contains the
probability of making the transition of being more or less a player and the rate of
transition can be governed by an external input, like the number of subsidies. Put in
this way, it is a single model, where being within the game or not is just an internal part
of the state. Another possibility would be to consider the so-called regime switching
modelling approach. However, the period of time we are considering is so short and
the occurrence of the game state is so rare that this over-structure looks exaggerate.

The solar photovoltaic, as an example of GET has been investigated by many
authors in the literature through the lenses of different approaches. We here mention
the following works, which do not represent a comprehensive list. (i) The agent-bases
approach of, e.g., Zhao et al. (2011); Palmer et al. (2015) and Peralta et al. (2022).
The Agent-based approach offers a framework to explicitly model the adoption deci-
sion process of the agent of a heterogeneous social system based on their individual
preferences, behavioral rules, and interaction/communication within a social network.
(ii) Versions of the popular Bass model (Bass 1969); see, e.g., da Silva et al. (2020),
which state that the knowledge about such a system highly influences the diffusion of
solar photovoltaic systems in Brazil. (iii) Finite element methods to account for spatial
heterogeneity; see, e.g., Karakaya (2016), which applies the finite element methods to
forecast the diffusion of solar photovoltaic systems in southern Germany. (iv) Survey-
based analysis; see, e.g., Colasante et al. (2021). Interestingly, some references in
the literature analyze whether localized imitation drives the adoption of photovoltaic
systems (a phenomenon captured by the ratio NG (t)

N in our model); see, e.g., Rode
and Weber (2016); Baranzini et al. (2017); Chadwick et al. (2022); Copiello and Gril-
lenzoni (2017); Curtius et al. (2018), among (many) others. This issue and modeling
related to interacting agents can be found in more general literature, like Humphreys
(2010). However, we have not found a comparison between a Markov modeling and
a MFG one to understand certain differences observed in solar photovoltaic data.

The paper is organized as follows. In Section 2, we describe some data which
motivate the mathematical models presented in Section 3 (the Markov model) and 4
(the MFG model). Section 5 concludes.
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Fig. 1 Global photovoltaic power in Italy, Germany and France

Fig. 2 Decomposition of Italy time-series in main sectors

2 Examples of time-series

To gain a better understanding visually, let us start by looking at the time series of Italy,
which is our main focus, and also Germany and France for a brief comparison. This
will cover the period from 2006 to 2020 and show the overall power of photovoltaic
installation without any specific categorization. Figure 1 shows the three time series in
both linear and logarithmic scales. One common observation is the change of regime
around2012, as discussed inSectionA.Again,wenotice that the term change of regime
must be understood as the presence of strong and innovative incentives opening the
possibility of a game logic, possibility that would not have occurred without such
incentives. The second common aspect is the approximate exponential growth in each
of the two periods, which is more evident in the logarithmic scale. The focus on Figure
1 is to emphasize the similarities, indicating that a mathematical model based on a
two-period exponential growth is natural. The differences between the three countries
are not the focus here, except for some comments in the conclusions section.

The second important image for our analysis is the breakdown of total power in
Italy into four categories, based on data from GSE (2020). These categories are:
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“Industry" (which makes up more than half of Italian power), “Domestic", “Services",
and “Agriculture". The time-series data are shown inFigure 2. In the following sections,
as discussed in the Introduction, we will focus on “Industry" and “Domestic".

3 TheMarkovmodel

This section presents the Markov model capturing the dynamics of the “Domestic"
time-series in Figure 2. We aim to capture the idea that the “Domestic" compartment
answers to incentives in the following way: it just increases incrementally its atti-
tude to use them, and it does not enter into a game logic, as done by the “Industry"
compartment.

Toward this aim, let N ∈ N be the number of individual people in our system, each
one characterized by a state Xi

t , i ∈ {1, . . . , N }, at time t taking one of the following
two qualitative values: Xi

t ∈ {D,G} The state D stands for Deliberating, whereas G
forGreen. The former term comprises individual people or householders interested in
installing solar panel photovoltaics; in principle, they want to participate but have not
done so yet. In particular, we are assuming that such individual people can articulate
a complex process lying behind the assumption of a specific (pattern of) action, in
this case, the installation of solar photovoltaic panels. They assess specific starting
conditions, the appropriateness of the time for acting and the effective means at their
disposal, in addition to an overall and, at the same time, analytical evaluation of the
consequences that the adoption of – or the refusal of adopting – that specific (pattern
of) action may produce. Notice that a complete model of the whole population should
include other classes, like those who do not have in mind solar panels or are even
against it; e.g., one can think of the so-called Sinus-Milieus® categories mentioned in
Palmer et al. (2015). The state G, instead, means Green, namely that the subject has
installed the solar photovoltaic panels. The state G is absorbing: a subject may jump
from D to G but cannot jump back from G to D.

One possible way to describe the jump from the state D to either the state G or D
could be the usageof a discrete-timeMarkov chainwith suitable transition probabilities
pD→D or pD→G , where pD→D = 1 − pD→G . However, since we will look for
equations satisfied in the limitwhen the number of individual people N tends to infinity,
which we will call, with a slightly abuse of language, “mean-field" equations, we opt
for the usage of continuous-time Markov models since they have better analytical
rules like the so-called Dynkin formula. In an attempt to make this paper more self-
contained, SectionB in theAppendix reviews someaspects of continuous-timeMarkov
models; rates of transitions will replace the transition probabilities.

To describe the rates of transitions, let SN := {D,G}N be the state-space of the full
system and xN = (x1, . . . , xN ) ∈ SN := {D,G}N be a configuration of the latter,
namely an element of the state space. We suppose that the rate of transition from D to
G of a single individual is a deterministic function λN (·, ·) of an element of the full
state space and time t , because we shall include in the model the possibility that the
transition rules change in time, for instance as a consequence of new governmental
policy about solar panels. We select the following straightforward but specific form
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for the rate of transition:

λN (xN , t) = a (t)
NG (xN )

N
, where NG (xN ) =

N∑

j=1

1{x j=G} (1)

is the number of green individual people at time t ; in particular, our Markov chain
is a non-homogeneous Markov chain (NHMC). We now explain the intuition behind
the previous choice. The Markov nature, without any decision/optimization aspect,
reflects, in the simplest possible modelling way, the idea of bounded rationality; as
said in the introduction, for the sake of presentation only, in what follows, we will
speak about procrastination. Each subject, at every time instant t , has a rate to install
solar photovoltaic panels instead of procrastinating. The dependence of λN (xN , t)
from NG (xN )

N corresponds either to the idea that we have a tendency to imitate the
others, or to the more impersonal fact that, when a larger number of Greens exist, the
Market is more developed – maybe lower prices, better distribution network, more
information and experience – and the probability of installation increases. Instead, the
factor a(t)modulates the rate to give importance to external factors like subsidies. We
will see in Subsection 3.3 that a(t) will be modified over the period under scrutiny
in a way that is proportional to the number of incentives, to capture the “Domestic"
attitude to use incentives described at the beginning of the present section.

Remark 1 At an abstract level, we can incorporate additional elements into the model,
such as personal characteristics of the individual that may influence the decision
to install panels. This could include an additive term structured like λN (xN , t) =
a (t) NG (xN )

N + b (t) in the rate, or a stochastic process representing external inputs,
which would reflect a dynamic rather than simply being captured by the time-
dependence of a (t) and b (t). Another idea for enhancing the model’s realism and
introducing intriguing mathematical complexities would be to allow the characteris-
tics of individuals—specifically, whether they are players or not—to evolve over time.
This could be modeled using a jump process that takes values in {0, 1} (see Blume
(1993); Sandholm (2010)). However, we opted for the simpler model, as it is sufficient
to successfully fit the data.

Now, we define the infinitesimal generator of the continuous-time Markov process
introduced above. To this end, let F2 be a real-valued test function on SN which there-
fore depends only on a finite number N of coordinates, F = F(xN ) = F(x1, . . . , xN )

with xi ∈ {D,G}. The time-dependent infinitesimal generator is given by:

(Lt,N
)
(xN ) =

N∑

i=1

1{xi=D}λN (xN , t)
(
F

(
xi→G
N

)
− F (xN )

)
, (2)

where λN (xN , t) has been defined in Equation (1) and xi→G
N is the configuration

xN where we have imposed xi = G. The intuition behind the generator in Equation

2 In order to avoid burdening the notation, we omit the dependence of F by the number of individual people
N in the present section.
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(2) is that each subject i which is Deliberating (the sum is restricted to Deliberating
ones by the factor 1{xi=D}) has a rate λN (xN , t) to become Green. Heuristically, we
could write in the limit as �t → 0:

Prob (Xt+�t = G|Xt = G, xN ) ∼ λN (xN , t) · �t,

where Prob denotes the probability. Now, in the next subsection we derive the Dynkin
equations, whereas in Subsection 3.2 the limit model.

3.1 Dynkin equations

One of the advantages of the continuous-time modelling is the possibility to write an
identity, similar to an integral equation, for the percentage of green subject at time t ,
i.e.

pNG (t) := NG(XN
t )

N
, (3)

where XN
t := (X1

t , . . . , X
N
t ); we are aware of a clash in the notation but it will be

clear from the context when referring to the last entry of XN
t . This is the content of

the next proposition.

Proposition 2 Let N ∈ N, and assume that (XN
t )t≥0 is the continuous-time Markov

process with time-dependent infinitesimal generator given in Equation (2). Then, the
percentage of green subject pNG (t) at time t in Equation (3) satisfies the following
equation:

pNG (t) = pNG (0) +
∫ t

0
a (s)

(
1 − pNG (s)

)
pNG (s) ds + Mt/N , (4)

where (Mt )t≥0 is a zero-mean martingale with a variance bounded above by
N

∫ t
0 a(s) ds.

Proof Let Lt F(xN ) be the infinitesimal generator in Equation (2) when we consider
as F the test function F(xN ) = NG(xN ), with NG(xN ) defined in Equation (1). We
have:

Lt,N NG(xN ) =
N∑

i=1

1{xi=D}λN (xN , t)
(
NG(xi→G

N ) − NG(xN )
)

=
N∑

i=1

1{xi=D}λN (xN , t) = a(t)
(N − NG(xN ))NG(xN )

N
,

where we have used the fact that, for each configuration xN ∈ SN and each i ∈
{1, . . . , N }, we have that 1{xi=D}

(
NG(xi→G

N ) − NG(xN )
) = 1{xi=D}. By the first
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Dynkin’s formula (see the Appendix, Section B, Equation (B2)) we have that:

NG

(
XN
t

)
= NG

(
XN
0

)
+

∫ t

0
a (s)

(
N − NG

(
XN
s

))
NG

(
XN
s

)

N
ds + Mt

where Mt is a martingale; we have omitted the explicit dependence upon the test
function. Equation (4) follows by dividing both sides of the previous equation by N .
In order to estimate the variance of the martingale Mt , we make use of the second
Dynkin’s formula (see, again, the Appendix, Section B, Equation (B2)). In particular,
we need to compute (Lt,N F2

N −2FNLt,N FN )(xN )with FN (xN ) = NG(xN ). We have

(Lt,N F2
N − 2FNLt,N FN )(xN ) =

N∑

i=1

1{xi=D}λN (xN , t)(NG(xi→G) − NG(xN ))2

=
N∑

i=1

1{xi=D}λN (xN , t) = a(t)
(N − NG(xN ))NG(xN )

N
.

Therefore, |(Lt,N F2
N − 2FNLt,N FN )(x)| ≤ a(t)N . Thus:

E[M2
t ] = E

[∫ t

0
(Ls F

2
N − 2FNLs FN )(XN

s ) ds

]
≤ N

∫ t

0
a(s) ds.

This concludes the proof of the proposition. ��
Equation (4) states that the change pNG (t) − pNG (0) in a time interval [0, T ], of the

percentage of green individual people is given by the time-integral of a logistic term,
(1 − pNG (s))pNG (s), modulated by the factor a(t), plus a reminder Mt/N , where Mt

is a martingale.
Finally, in the next subsection, we describe the limit system for the N -subject

system introduced above.

3.2 Limit model

Wenowprove the convergence of the stochastic process (pNG (t))t≥0 to the unique solu-
tion of a deterministic Cauchy problem. Notice that for most scaling limit problems,
this target is achieved by a series of steps:

(i) First one proves a tightness criteria for pNG (t); this easily follows from Proposi-
tion 6 in Appendix, Section B.

(ii) Then, by Prohorov’s theorem, there exist subsequences of the family (PN )N∈N of
laws of pNG (·) which converge in the sense of weak convergence of measures on
a suitable path space; in our case the path space is the Skorohod space D(0, T ).

(iii) Via classical arguments – one of them based on Skorohod representation theo-
rem, the other one based on the method illustrated in Kipnis and Landim (1998),
Page 56 – one proves that the limit points of (PN )N∈N are concentrated on
solutions of the deterministic Cauchy problem.
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(iv) By a classical result of uniqueness for the deterministic Cauchy problem, all limit
points of (PN )N∈N are the same delta Dirac measures δp at the above mentioned
unique solution.

(v) Therefore, the entire sequence (PN )N∈N convergence to δp; this follows from
the fact that the weak convergence is a metric convergence.

(vi) Finally, the weak convergence is upgraded to a convergence in probability since
the weak limit point is deterministic.

It is important to notice that the strategy above works well in our case, but it provides
only a convergence in probability. In the next proposition, we will manage to prove
that pNG (·) converges locally uniformly in t , in a mean square (whence in probability)
to pG(t) with a special trick, which is, however, not a universal one.

Proposition 3 Let N ∈ N, and pG(t) be the unique solution of the following Cauchy
problem

dpG(t)

dt
= a(t)(1 − pG(t))pG(t),

pG(0) = p0G,

(5)

for a given initial condition p0G ∈ [0, 1]. Moreover, assume that the sequence of
randomvariables (pNG (0))N∈N converges to p0G inmean square; let cN be the following
quantity

cN := E[
∣∣∣pNG (0) − p0G

∣∣∣
2].

Then, pNG (·) converges locally uniformly in t , in amean square (whence in probability)
to pG(t). Precisely, we have

E

[
sup

t∈[0,T ]
|pNG (t) − pG(t)|2

]
≤ 2e4A(T )

(
cN + 4A(T )

N

)
,

where A(t) = ∫ t
0 a(s) ds.

Proof First, we rewrite the differential equation in 5 in integral form. We have:

pG(t) = p0G +
∫ t

0
a(s)(1 − pG(s))pG(s) ds.
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Then, we compare the previous equation with the Dynkin’s identity in Equation (4)
by estimating the following difference:

qN (t) :=
∣∣∣pNG (t) − pG(t)

∣∣∣

≤ qN (0) + |Mt |/N +
∫ t

0
a(s)

∣∣∣(1 − pNG (s))pNG (s) − (1 − pG(s))pG(s)
∣∣∣ ds

≤ qN (0) + |Mt |/N
+

∫ t

0
a(s)

∣∣∣(pG(s) − pNG (s))pNG (s)
∣∣∣ ds

+
∫ t

0
a(s)

∣∣∣(1 − pG(s))(pNG (s) − pG(s))
∣∣∣ ds

≤ qN (0) + |Mt |/N
+

∫ t

0
a(s)qN (s)pNG (s) ds +

∫ t

0
a(s)(1 − pG(s))qN (s) ds

≤ qN (0) + |Mt |/N +
∫ t

0
2a(s)qN (s) ds.

By the Gronwall’s lemma we have

qN (t) ≤ e
∫ t
0 2a(s) ds(qN (0) + |Mt |/N ).

In particular,

E

[
sup

t∈[0,T ]
qnN (t)

]
≤ 2e

∫ T
0 4a(s) ds

(
E

[∣∣∣p0G − pG(0)
∣∣∣
2
]

+ E[|Mt |2]/N 2
)

.

The claims of the proposition follow from the estimate on E[|Mt |2] as in Proposition
2 together with the Doob’s inequality for martingales. ��

3.3 Simulations

Asdescribed in the section Introduction,we apply theMarkovmodel to the “Domestic"
data, since it is natural to conjecture that procrastination, which is at the foundation
of the choice to use a Markov chain, is proper of individual people or householders
(instead of companies, as discussed below in Section 4.)

The Domestic time-series requires a specification of the way we have obtained
the data, from GSE (2020). In the period 2010-2020 we have explicit values of the
Domestic data; the total national data is divided in the four categories described in
Section 2. In 2009 there is a different subdivision in categories from which we deduce
that Domestic is approximately given by a certain percentage p2009 of the total; we
have used this datum in the plot. Concerning 2006-2008 we do not even have the
percentage.
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Fig. 3 Mean-Field model (MF) is the continuous curve in green, over the data (small circles)

We have used the limit system, i.e. the mean-field, derived in the previous section,
namely the ordinary differential equation for the quantity pG (t), with the following
values:

a (t) = 0.627 for t ≤ 2012

a (t) = 0.0637 for t ≥ 2014

and a constant connection in between, in absence of a better understanding of the
intermediate period between the two different subsidy regimes. The result is shown
in Figure 3. The values of a (t) have been fitted, by an exponential fit with minimum
mean square error, considering the two separate time periods; then they have been
used in the differential equation model, with suitable initial condition. Since the fit in
the period 2009-2012 may look arbitrary due to the smallness of the time series (only
4 values), we extrapolated values of the Domestic time series by using the proportion
coefficient p2009 also in the years 2006-2008. The fit of the first period is surprisingly
the same (first three digits) hence it looks particularly stable. The result is shown in
Figure 4. If we rely on this stable fit, we may guess that the increase of Domestic in
the next few years would lead to an excellent performance, as the green extrapolation
line of Figure 4 shows. Unfortunately, it was decided to change the structure of the
subsidies.

4 TheMean-Field Game approach

This section presents the mean-field game system capturing the dynamics of the
“Industry" time-series in Figure 2. The mean-field game we are going to present
is a continuous-time finite state mean-field game. We will use the narrative and the
formalism used in Gomes et al. (2013). In particular, we first describe, in Subsection
4.1, amean-fieldmodel which corresponds to the limit as the number of players – com-
panies or firms will be called players in this context – tends to infinity of a symmetric
dynamic games with a finite number of players, which will be presented in Subsection
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Fig. 4 The fit of the first period, based on extrapolated initial data, and its potential continuation

4.2. Instead, we refer to Gomes et al. (2013), Theorem 7 in Section 4, for the proof of
the convergence, as the number of players N → ∞ in L2 of the N + 1−player model
to the mean field model of Subsection 4.1. Admittedly, a more realistic setting would
be to add to our model common noise events at fixed points in time as in Belak et al.
(2021), which would lead to a system of random forward-backward ODEs foe the
mean field equilibrium. However, this would be an additional technicality that would
not add to the present work’s conceptual advancements.

4.1 Themean-field model

We begin by presenting a mean-field model for a continuous-time dynamic game
between many rational agents, represented by firms or companies, which, as said,
we call players. These players are allowed to switch to the state G, which stands
for Green, if they are in the state D, which stands for Deliberating. We assume that
they look forward to optimizing a specific functional, which depends on the statistical
distribution of the other players. The state G, instead, is absorbing. We suppose that
all players are identical, so the game is symmetric concerning the permutation of the
players. Players in a particular state only know their state and the fraction of players
in each of the two considered states. In particular, each player in state D can control
the transition rate from D to G and incurs a running cost which depends on its own
state, on the state of the other players (through its distribution among states but not on
individual player’s states), as well as on the control the player chooses.

We now fix one of the players which will be called the reference player; because the
game is symmetric, the player’s identity is not important, and all other players have
access to similar information. As said, we further assume the mean-field hypothesis,
that is, since the number of players is huge, the only information available to the
reference player is the distribution of the other players. In particular, we suppose
that the players’ distribution among states is given by a probability vector θ(t) =
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(pG(t), pD(t)) ∈ I2, where I2 is the probability simplex

{
pG(t) + pD(t) = 1,

pG(t) ≥ 0, pD(t) ≥ 0.

Let �(t) ∈ R
2×2 represent a transition rate matrix depending on the time t , where

�D→G(t) ≥ 0, �G→D(t) ≥ 0, �G→G(t) = −�G→D(t) and �D→D(t) =
−�D→G(t). We assume that the players switch from state to state according to a
continuous-time (non homogeneous) Markov process with transition rate matrix �.
In the mean-field limit, the fraction of players in each state θ satisfies a Kolmogorov
equation, which is complemented by an initial condition from which the evolution of
the distribution of players θ� : [0, T ] → I2 is completely determined.

4.1.1 Running costs, and single player control problem: the value function

Wefix now a reference player and consider the running cost in an optimization problem
according to its point of view. In general, the running cost is a function c : {D,G} ×
I2 × (R+

0 )2 → R, c(si , θ, λ) where R
+
0 is the set of real numbers greater or equal

than zero, θ ∈ I2 is the probability distribution of players among states, and λsi→s j
is the transition rate the reference player uses to change from state si to state s j . In
particular, we are interested in the running cost of the reference player whose state at
the initial time is D; if the state at the initial time is G, instead, the reference player
does not incur any cost. Suppose the players are distributed among the state D and G
according to the distribution probability θ : [0, T ] → I2, which for now we assume
to be known by the reference player. Let

vD
θ (t, λ) = E

λ
Xt=D

[∫ T

t
c(Xs, θ(s), λ(s)) ds

]

= E
λ
Xt=D

[∫ T

t
(h(λD→G(s)) + pG(s)) 1{Xs=D} ds

]
, (6)

where Eλ
Xt=D is the expectation conditioned on the event {Xt = D}, given the tran-

sition rate λ. We now comment on the meaning of the functional in Equation (6).
As regards the first part of the running cost h(λD→G(s))1{Xs=D}, we suppose that
h(·) ≥ 0 is an increasing function with h(0) = 0. We interpret it as being symp-
tomatic of the fact that choosing a transition rate λD→G(s) ≥ 0 has a psychological
cost h(λD→G(s)); this produces a tendency to procrastinate. Notice that the represen-
tative player pays this cost until it makes the transition to G. Once it is in the state G,
the just-mentioned psychological cost is no longer present; admittedly, in this way,
we are neglecting other types of costs that the representative agent can incur once
that it makes the transition; e.g. maintenance costs of solar panels. Instead, the term

E
λ
Xt=D

[∫ T
t pG(s)1{Xs=D} ds

]
can be interpreted in the following way. Assume there

is a limited amount of resources for a certain subsidy. If pG(s) is high, meaning that
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several subjects have already utilized the subsidy, it becomes more challenging to
obtain it, resulting in a higher cost. On the other hand, vGθ (t, λ) = 0.

We now define the value functions associated to θ , denoted by vθ : [0, T ] ×
{D,G} → R, namely the costs incurred by the representative player corresponding
to the two initial conditions (t, D) and (t,G). In particular, we will study only the
function vD

θ . We have that:

vD
θ (t) = min

λ
vD
θ (t, λ), (7)

where the minimization is performed over Markovian controls λ(s) = λ(Xs, s), with
(Xs)s≥0 a continuous-time Markov chain controlled by λ which corresponds to the
state of the reference player at time s. More precisely Prob(Xs+�t = G|Xs = D) ∼
λD→G(Xs, s) · �t .

By continuing to assume that θ is given, as in the classical optimal control, we
introduce now the Hamilton-Jacobi-Bellman ODE for vD

θ . In general, the latter equa-
tion written for a value function vθ (t, x), where t ∈ [0, T ] and x ∈ {D,G} is given
by:

min
λ≥0

{∂tvθ (t, x) + Lλ
t vθ (t, x) + (h(λ(t)) + pG(t))1{x=D}} = 0, (8)

where Lλ
t is the λ-dependent infinitesimal generator of the continuous-time Markov

process (Xs)s≥0 with state-space {D,G}. Moreover, vθ (T ) = 0. In the particular case
of the function vD

θ we have that the previous equation is given by

min
λD→G≥0

{∂tvD
θ (t) + Lλ

t v
D
θ (t) + (h(λD→G(t)) + pG(t))} = 0, (9)

with vD
θ (T ) = 0; in particular, we need to solve a terminal value problem. We now

specialize the previous Equation (9) in the simple choice that h(λ) = σ 2λ2, where
σ 2 > 0 is a positive constant. Considering a more general form for the cost h(λ)

would be an additional technicality that would not add to the present work’s conceptual
advancements. The infinitesimal generator of the process (Xs)s≥0 associated to the
value function vθ is given by

Lλ
t vθ (t, x) = 1{x=D}λD→G(t) (vθ (t,G) − vθ (t, x)) ,

which means that if the state of representative player is G, then it remains G; if it is
D, then the rate of transition to G is λD→G(t). In particular, we have that Lλ

t v
D
θ (t) =

−λD→G(t)vD
θ (t). Therefore, the Hamilton-Jacobi-Bellmann terminal value problem

in Equation (8) becomes
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∂tv
D
θ (t) + pG(t) + min

λD→G (t)≥0
{h(λD→G(t)) − λD→G(t)vD

θ (t)} = 0.

In our case h(λ) = σ 2λ2. Then, the minimum of the function λ → σ 2λ2 − λvD
θ (t) =

λ(σ 2λ − vD
θ (t)) is the solution of 2σ 2λ = vD

θ (t). Whence, we obtain:

λ∗
D→G(Xt , t) = λ∗

D→G(vD
θ , θ(t), D) = 1

2σ 2 vD
θ (t),

which will be the optimal control. The minimum value of the function λ → σ 2λ2 −
λvD

θ (t) in correspondence of such control is equal to − 1
4σ 2 v

D
θ (t). In particular, the

Hamilton-Jacobi-Bellmann ODE equation for vD
θ (t) is given by

{
∂tv

D
θ (t) + pG(t) − 1

4σ 2 v
D
θ (t) = 0

vD
θ (T ) = 0.

We have just proved the following Theorem.

Theorem 4 Suppose vD
θ : [0, T ] → R is a solution on [0, T ] of the following

Hamilton-Jacobi-Bellmann ODE :
{

∂tv
D
θ (t) + pG(t) − 1

4σ 2 v
D
θ (t) = 0

vD
θ (T ) = 0.

Then λ∗
D→G(Xt , t) = λ∗

D→G(vD
θ , θ(t), D) = 1

2σ 2 v
D
θ (t) is the optimal Markovian

transition rate from D to G.

4.1.2 Mean-field Nash equilibrium

The mean field Nash equilibrium occurs when the background players are using a
strategy � for which the best response of the reference player is � itself. It means
that each background player, say X1 wants to solve the same problem in the previous
subsection but where pG(t) is replaced by the probability p̃G(t) that the player X1 is
in the state G at time t , when the optimal strategy is chosen. Hence, the dynamics of
the subject X1 is given by the following time-dependent infinitesimal generator:

L̃t F(x1) = 1{x1=D}
1

2σ 2 ṽD(t)(F(x1→G) − F(x1)),

where the function ṽD(t) solves Hamilton-Jacobi- Bellmann ODE in Theorem 4 asso-
ciated to p̃G(t), and F is a test-function. We now apply the first Dynkin’s formula (see
Appendix, Section B, Equation (B2)) to the test function F(x1) = 1{x1=G}. We have
that:

1{X1
t =G} = 1{X1

0=G} +
∫ t

0
L̃s F(Xs) ds + Mt ,
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where Mt is a martingale. Because L̃t F(x1) = 1{x1=D} 1
2σ 2 ṽD(t), we have that:

1{X1
t =G} = 1{X1

0=G} +
∫ t

0
1{X1

s =D}
1

2σ 2 ṽD(s) ds + Mt .

By taking the expected value on both sides, we obtain:

p̃G(t) = p̃G(0) +
∫ t

0
(1 − p̃G(s))

1

2σ 2 ṽD(s) ds.

We have just proved the following Theorem

Theorem 5 The mean-field Nash equilibrium is characterized by the following system
of Kolmogorov and Hamilton-Jacobi-Bellman ODE equations:

{
∂t ṽD(t) + p̃G(t) − 1

4σ 2 ṽ
2
D(t) = 0

d
dt p̃G(t) = (1 − p̃G(t)) 1

2σ 2 ṽD(t)

together with the initial-terminal conditions p̃G(0) = p0 ∈ [0, 1] and ṽD(T ) = 0.

4.2 N-player game

This subsection consider a game between N + 1-players which is symmetric under
permutation of players. As in the previous subsection, we assume that each player can
be in one of the two states D or G, and knows, in addition to its state, the number
of players in each of the states. We remind that D stands for Deliberating, and G
stands for Green, and we assume that each player in state D controls the transition
rate from D to G by incurring a running cost which depends on its own state, on the
state of the other players, as well as on the control the player chooses. Players follow
a Markovian dynamics, the state G is absorbing, and all players are identical, so the
game is symmetric concerning the permutation of the players. In particular, we adopt
the point of view of a reference player, which could be chosen as any of the players.
We choose the first one.

Let S = {D,G} and N 2
N = {(nD, nG) ∈ Z

2 | nD + nG = N , nD ≥ 0, nG ≥ 0}.
The N -player game is characterized by two controlled Markov chains. The first one
is the state of the reference player, say the first player, whereas the second one, taking
values inN 2

N , records the number of the remaining players (distinct from the reference
player) that are in any of the two states at any given time. Each player knows its own
state, as well as the number of remaining players that are in any of the two states. No
further information is available to any individual player.

We analyze the interesting case in which the reference player is in state D and
it switches from the state D to the state G according to a switching Markov rate
λD→G(n, t) which it would like to optimize upon. Besides, for the purpose of the
present paper, we explicitly describe the transition probabilities of the state of the
players, and we refer to Gomes et al. (2013), Section 3.1, for the ones relates to the
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second controlled Markov chain. Let Nt be Nt = (NG(XN
t ), N − NG(XN

t )) ∈ N 2
N ,

where XN
t = (X1

t , . . . , X
N
t ). We suppose

Prob(X1
t+�t = G|Nt = n, X1

t = D) ∼ λ1D→G(n, t) · �t,

and that the the players distinct from the reference player that are in the state D follow
controlled Markov process with transition rates from state D to state G given by
�D→G(n, t). We suppose that λ1G→D(n, t) = −λ1D→G(n, t) and λ1D→G(n, t) ≥ 0,
and that the same properties hold for �. Also we assume that they are bounded and
continuous as function of time.

The reference player would like to choose its transition rate λD→G , possibly dif-
ferent from �, in order to minimize

vD
n (t,�, λ) = E

�,λ
At (D,n)

[∫ T

t
c

(
X1
s ,

Ns

N
, λ(s)

)
ds

]

= E
�,λ
At (D,n)

[∫ T

t

(
σ 2λ2D→G(n, s) + NG(XN

s )

N

)
1{X1

s =D} ds
]

where the subscript At (D, n) means we are considering the expectation conditioned
on Xt = D and Nt = n. That is, the reference player looks for the control λ which is
a solution to the following minimization problem

vD
n (t;�) = inf

λ
vD
n (t,�, λ),

where the minimization is performed over the set of all admissible controls λ. In par-
ticular, the function vD

n (t;�) is the value function for the reference player associated
to the strategy � of the remaining N players. The control that attains the minimum
above can be called the best response (for the reference player) to a control �.

We conclude this section with the following important remarks:

(i) In the Markov model (without control) in Section 3, with Green-transition rate

λN (xN , t) = a (t)
NG (xN )

N

subjects react time-by-time, based on observed environment NG (xN )
N .

(ii) In the game model with payoff, agents are asked to make a decision at the same

initial time depending on an unknown future environment NG (XN
s )

N .
(iii) In the first case, the consequence is a slow (but exponential) adaptation to the

environment.
(iv) Opposite, in the second case, the consequence is a fast reaction to a potential

environment.
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Fig. 5 Sudden increase in 2011 of the Industrial compartment

4.3 Simulations

Simulating the mean-field Nash equilibrium in Theorem 5 is less straightforward
than a usual initial value problem since from the ODE point of view this problem is
somewhat non-standard as variable has initial conditions whereas the other variable
have prescribed terminal data. We have used a shooting method, namely looking for
the initial condition of the variable ṽD (t) which, along with the initial condition p0,
solving forward the system, we get ṽD (T ) = 0.

The result, illustrated in Figure 5 is that the curve p̃G (t) is concave. Namely,
the result is completely different from the exponential growth of the Markov model.
Tuning the parameters, it may fit the data, as shown in the figure.

Let us stress the intuitive reason for the concavity, opposite to exponential growth: it
stands in the intimate structure of a game, opposite to aMarkovmechanism. In a game,
agents have a tendency to act in advance, to anticipate the move of the other players.
The reason is the limited amount of subsidies, which does not allow to get them if
they are exhausted by other players before. This is the opposite of procrastination, in
a sense.

5 Conclusions

The conclusion drawn from this analysis, considering the effectiveness of the 2011
governmental action, is that a similar structure should be applied to the domestic
sector in the future to stimulate a stronger increase in domestic photovoltaic usage,
which is currently stagnating. To motivate homeowners to take action, it is essential to
enhance their planning abilities and prepare for a defined starting point, ensuring that
individuals are aware of thismoment. This can potentially be achieved through targeted
advertisements and guidance for homeowners. Additionally, a more comprehensive
approach could involve enhancing consumers’ ability to make informed decisions,
or “deliberate" effectively. Educational initiatives aimed at this objective could be
offered by public authorities in various formats, such as free cultural and educational
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programs for adults or engaging activities for school-aged children. However, it is
important to be cautious against simplistic recommendations. A comparison of the
time series data from Italy and Germany (see Figure 1 in Section 2) reveals that
both countries experienced two periods of exponential growth at different rates, with
Italy experiencing a significant surge around 2011. Ultimately, while both the rate of
exponential increase and the imitation coefficient a(t) are crucial, it remains a question
for further research whether it is more effective to focus on increasing the coefficient
or to trigger a dramatic event similar to the one in 2011.

Appendix A: A brief overview on the development of the photovoltaic
systems in Italy

In this subsection, for the sake of completeness, we briefly review the initiatives
implemented by the Italian government encouraged the diffusion of solar photovoltaic
systems (PVs, henceforth) from 2005 until today. These initiatives are called “Conto
Energia” (CE); each CE guarantees contracts with fixed conditions for 20 years for
grid-connected PVs with at least 1kW of peak power. Local electricity providers are
required by law to buy the electricity that is generated by PVs. The first CE started in
2005, and it was a netmetering plan (“scambio sul posto”) designed for small PVs. The
plan was meant to favor the direct use of self-produced electricity. Besides payment
for each produced kWh of electricity, the consumer received additional rewards for
directly consuming the self-generated energy. The CE2 was available to all PVs, but it
was designed for larger plants with no or limited direct electricity self-consumption.
The electricity produced was sold to the local energy supplier, for which the CE
guarantees an additional FiT. It is essential to mention that in each new version of
the CE, the FiT was decreased (from 0.36 e/kWh in 2006 to 0.20 e/kWh in 2012).
With the introduction of CE4 (2011) direct consumption was rewarded financially.
The CE5, unlike the CE4, provided incentives based on the energy fed into the grid
and a premium rate for self-consumed energy.

After the end of the fifth CE program, FiT and premium schemes were dropped, and
a tax credit programwas implemented in 2013.After six years, in 2019, a new incentive
decree for photovoltaic systems (RES1) was reintroduced, reserved for systems with
a more than 20 kW capacity but not more than 1 MW. Subsidies are paid based on net
electricity produced and fed into the grid. The unit incentive varies according to the
size of the plant. An incentive is provided for plants that replace asbestos or eternity
roofing, and a bonus on self-consumption of energy (provided it is more significant
than 40%and the building is on a roof) is issued. For residential customers, a subsidized
tax deduction is set at 50% instead of 36%.

However, inMay 2020, the Italian government issued the “Revival Decree” (Decree
Law 34/2020), introducing a further increase to 110%. Depending on whether the
installation is connected to energy-saving measures or not, the 110% tax deduction
can be applied to the entire investment (max 2400 e/kW) or only to a part of it (max
1600e/kW). In addition, the energy not consumed directly is transferred free of charge
to the grid. Moreover, the Revival Decree provides for the subsidized tax at 110% and
also for the implementation of battery energy storage systems up to an amount of 1000
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e/kWh. In addition, the Relaunch Decree provides for the subsidized tax at 110% and
the implementation of storage systems up to 1000 e/kWh.

Finally, an additional policy measure was introduced by the Ministerial Decree
of September 16, 2020, which provides incentives for the configuration of collective
self-consumption and renewable energy communities equal to 100 e/MWh and 110
e/MWh, respectively. The incentive lasts for 20 years, does not apply to plants exceed-
ing a power of 200 kW, and has a duration of 60 days from the entry into force of the
decree.

Appendix B: Dynkin’s formula and Aldous criterium

This section reviews some aspects of non-homogeneous continuous-timeMarkov pro-
cesses. We start this presentation by considering a non-homogeneous Markov process
in continuous-time with finite state-space S. Then, we will consider a sequence of
Markov processes (XN

t )t≥0 on state-spaces SN : this is the case analyzed in the present
article.

Let (Xt )t≥0 be a non-homogeneous continuous-time Markov process with finite
state-space S. It is described by the time-dependent transition rates λ(x, y, t) from a
state x to a state y in S and the associated infinitesimal generator

(Lt F)(x) =
∑

y �=x
x,y∈S

λ(x, y, t)(F(y) − F(x)),

with F a test function. Now, denote by (Xx
t )t≥0 the Markov process indexed by the

initial condition x at time zero. The content of Dynkin’s formulas in this particular
framework – the result holds in higher generality, which, however, is not needed here –
is given by the fact that for every test function F : S → R the following two processes
(MF

t ) and (NF
t ) are martingales:

MF
t := F(Xx

t ) − F(X0
t ) −

∫ t

0
(Ls F)(Xx

s ) ds,

NF
t := (MF

t )2 −
∫ t

0
(Ls F

2 − 2FLs F)(Xx
s ) ds;

(B1)

see Kipnis and Landim (1998), Appendix 1, Section 53. The quantities in Equation
(B1) are defined as

(Ls F
2 − 2FLs F)(x) =

∑

y �=x
x,y∈S

λ(x, y, s)(F(y) − F(x))2

3 Notice that the theory presented in Kipnis and Landim (1998) is for homogeneous continuous-time
Markov processes. However, starting from it, one can derive analogous results for the non-homogeneous
case.
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where (Ls F
2)(x) =

∑

y �=x
x,y∈S

λ(x, y, s)(F2(y) − F2(x)),

2F(x)(Ls F)(x) =
∑

y �=x
x,y∈S

λ(x, y, s)(2F(x)F(y) − 2F2(x)).

In particular, the difference between the last two equations is indeed given by∑
y �=x
x,y∈S

λ(x, y, s)(F(y) − F(x))2 and, being the average of MF
t and NF

t equal to

zero, Equation (B1) implies:

E[F(Xx
t )] = E[F(Xx

0 )] + E

[∫ t

0
(Ls F)(Xx

s ) ds,

]

E[(MF
t )2] = E

[∫ t

0
(Ls F

2 − 2FLs F)(Xx
s ) ds

]
.

(B2)

The first equation is the so-called first Dynkin’s formula, whereas the second one is
the so-called second Dynkin’s formula.

Instead, when we have a sequence of Markov processes (XN
t )t≥0 on state spaces

SN with generators Lt,N and we are interested in the convergence of a real-valued
summary FN (XN

t ) with (FN )N∈N a sequence of functions, FN : SN → R, Aldous
criteria is more practical; see Kipnis and Landim (1998), Chapter 4, Proposition 1.6. In
what follows, we give for granted the definition of Skorohod spaceD(0, T ) (see, e.g.,
Kipnis and Landim (1998)). Aldous criteria – particularized to our case – states that
the laws PN of FN (XN· ) on Borel sets of D(0, T ) are tight if the following condition
holds: for every ε > 0 we have that

lim
γ→0

lim sup
N→∞

sup
τ∈�

θ∈[0,γ ]
P(|FN (XN

τ+θ ) − FN (XN
τ )| > ε) = 0, (B3)

where � is the family of stopping times less or equal than T , and where, in order not
to burden the notation, we omitted the dependence on the initial condition. By the first
Dynkin’s formula we have that

FN (XN
τ+θ ) − FN (XN

τ ) =
∫ τ+θ

τ

(Ls,N FN )(XN
s ) ds + MFN

τ+θ − MFN
τ ,

where MFN
τ is a martingale. Since

P(|FN (XN
τ+θ ) − FN (XN

τ )| > ε) ≤ P

(∣∣∣∣
∫ τ+θ

τ

(Ls,N FN )(XN
s ) ds

∣∣∣∣ >
ε

2

)

+ P

(∣∣∣MFN
τ+θ − MFN

τ

∣∣∣ >
ε

2

)
,
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it is sufficient to prove the analog of condition (B3) for each one of the two terms
on the right-hand side of the previous inequality. In many cases it happens that there
exists a constant C1 > 0 such that

sup
s∈[0,T ]
xN∈SN

∣∣(Ls,N FN )(xN )
∣∣ ≤ C1, (B4)

so that
∣∣∣
∫ τ+θ

τ
(Ls,N FN )(XN

s ) ds
∣∣∣ ≤ Cθ . Whence, for γ small enough it happens that

θ ∈ [0, γ ] satisfies Cθ ≤ ε
2 ; therefore P

(∣∣∣
∫ τ+θ

τ
(Ls,N FN )(XN

s ) ds
∣∣∣ > ε

2

)
= 0. It

remains to bound the second term. We have:

P

(∣∣∣MFN
τ+θ − MFN

τ

∣∣∣ >
ε

2

)
≤ 4

ε2
E

[∣∣∣MFN
τ+θ − MFN

τ

∣∣∣
2
]

= 4

ε2

(
E

[∣∣∣MFN
τ+θ

∣∣∣
2 −

∣∣∣MFN
τ

∣∣∣
2
])

= 4

ε2
E

[∫ τ+θ

τ

(Ls,N F
2
N − 2FNLs,N FN )(XN

s ) ds

]
,

where in the first equality we have used the martingale properties with respect to the
σ -algebra associated to τ , whereas in the second one the second Dyinkin’s formula.
Again, in many cases it happens that there exists a constant C2 > 0 such that

sup
s∈[0,T ]
xN∈SN

∣∣∣(Ls,N F
2
N − 2FNLs,N FN )(xN )

∣∣∣ ≤ C2. (B5)

In this case we have that

P

(∣∣∣MFN
τ+θ − MFN

τ

∣∣∣ >
ε

2

)
≤ 4C2

ε2
θ,

and therefore the limit in Equation (B3) is equal to zero. Summarizing, as a conse-
quence of Aldous condition, we have the following

Proposition 6 Suppose that conditions (B4) and (B4) hold. Then the laws PN of
FN (XN· ) on Borel sets of D(0, T ) are tight.
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