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Abstract

If labour markets are perfectly competitive, migration can only affect native
wages by changing marginal products. But under imperfect competition, firms
may also respond by imposing larger mark-downs – if they have greater monopsony
power over migrants than natives, but cannot perfectly wage-discriminate between
them. The marginal product effect will depend on how migration shifts relative
labour supply across different skill cells, whereas the mark-down effect depends on
migrant concentration within them. This insight can help account for empirical
violations of canonical migration models in US data. Under imperfect competi-
tion, migration will increase aggregate native income significantly more (as firms
capture rents from migrant labour). But the imposition of larger mark-downs also
redistributes income from native workers to firms; and based on our estimates, na-
tive labour loses out overall. Crucially though, policies which constrain monopsony
power over migrants can help eliminate these adverse wage effects.

1 Introduction

Much has been written on how migration affects native wages: see, for example, sur-
veys by Borjas (2014), Card and Peri (2016) and Dustmann, Schoenberg and Stuhler
(2016). These wage effects are difficult to identify empirically, as migration of one labour
type j may affect the marginal products of all other labour types k 6= j, through po-
tentially complicated patterns of substitutability and complementarity. To reduce the
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dimensionality of this problem, an influential strand of the literature, commonly known
as the “structural approach”, imposes an aggregate production function with nested CES
technology:

Y = F (L1, ..., LJ ;K) (1)

over labour skill types Lj and possibly capital K. See e.g. Borjas, Freeman and Katz
(1997); Borjas (2003); Card (2009); Manacorda, Manning and Wadsworth (2012); Otta-
viano and Peri (2012); Burstein et al. (2020); Monras (2020); Piyapromdee (2021). F can
be parameterised by a relatively small set of estimable parameters, measuring relative
productivities and elasticities of substitution. Armed with these estimates, the researcher
can then simulate how a migration shock (which increases labour of particular skill types
Lj) affects marginal products MPj across the skill distribution:

MPj = Fj (L1, ..., LJ ;K) (2)

Assuming competitive labour markets, these changes in MPj will then fully determine
the impact on wages Wj. We refer to this as the “canonical model”.

The canonical model severely restricts the wage effects of migration. Under perfect
competition, immigration can only affect wages by changing the relative supplies of skill
types j (or of factor inputs more generally); and conditional on these supplies, the com-
position of skill types (whether native or migrant) will make no difference. This has
important implications for the aggregate effects of immigration: in the canonical model,
an influx of migrants (holding their skill mix fixed) must increase the average native
wage, in a long run scenario where capital K is elastically supplied (see Borjas, 1995;
Dustmann, Frattini and Preston, 2012; Amior and Manning, 2024).1 Although this is a
theoretical result, it does have empirical implications: any structural model which im-
poses these assumptions will predict a surplus for native labour, whatever data is used
for estimation.

In this paper however, we show that the composition of skill types does become
relevant once the assumption of perfect competition is relaxed. Suppose the wage of
skill group j can differ from its marginal product by a mark-down φj, as in Bound and
Johnson (1992) or Katz and Autor (1999):

logWj = logMPj − φj (3)
1Borjas (1995) famously proved this result for a one-good economy with up to two labour types. But

Amior and Manning (2024) show it is much more general: it holds for any number of labour types,
and any number of (intermediate or final) goods, for any technology F with constant returns (CES or
otherwise).
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If this mark-down φj is fixed, the change in log wages is still equal to the change in
log marginal products. However, we argue that firms may respond to immigration by
increasing the mark-down φj – if firms have greater monopsony power over migrants
than natives (something we argue is plausible), but are unable to perfectly discriminate
in wage offers between them (as suggested by evidence from Arellano-Bover and San,
2020, Aslund et al., 2021, Dostie et al., 2023, and Amior and Stuhler, 2023). Under these
conditions, a larger migrant concentration within a skill type j will make the labour
market less competitive for natives and migrants alike – in violation of the canonical
model.2

This potential malleability of mark-downs has important implications for empirical
identification. We first show that the canonical framework is overidentified, even with
standard wage and employment data, and even if natives and migrants function as distinct
and imperfectly substitutable skill types (as in Manacorda, Manning and Wadsworth,
2012; Ottaviano and Peri, 2012). Intuitively, marginal productsMPj are fully determined
by an aggregation of skill-specific employment stocks (across natives and migrants), as
specified by the production technology. Therefore, conditional on this cell aggregator,
any sensitivity of wages to cell composition (the migrant share) implies a rejection of the
canonical model’s restrictions. However, such effects are consistent with the mark-downs
being affected by migration, in line with our monopsony framework.

We implement this test using variation across US skill cells, defined by education
and experience (as in e.g. Borjas, 2003; Ottaviano and Peri, 2012; Llull, 2018a; Monras,
2020), and allowing natives and migrants to be imperfect substitutes within skill cells.
To address concerns about endogeneity (as highlighted by e.g. Card and Peri, 2016, or
Llull, 2018a), we devise new instruments for the allocation of natives and migrants to skill
cells, driven by demographic shifts in the US and abroad. Using this variation, we reject
the restrictions of the canonical model; and we show this rejection cannot plausibly be
attributed to the specification of technology, the definition of skill cells, or the allocation
of migrants to these cells. However, the results are consistent with a mark-down effect.
Interpreted this way, our estimates suggest that a 1 pp increase in a cell’s migrant share
allows firms to mark down native wages by at least an additional 0.4-0.6%.

As further support for this interpretation, we explore heterogeneous effects by mi-
grants’ legal status. There is good reason to believe that firms have much greater market
power over undocumented migrants, and we offer supporting evidence from job separation
elasticities. One should therefore expect larger mark-down effects from undocumented

2This insight is closely related to Beaudry, Green and Sand (2012). They show that the wage bargain
in a given job (conditional on its productivity) depends on the labour market’s industrial composition,
since this affects the set of outside options. In their story, it is the composition of industries which
matters; while in ours, it is the composition of the labour force itself.

3



migration. To test this empirically, we disaggregate the migrant share into legal and
undocumented components (and construct distinct instruments for each): as our model
predicts, the impact of migrant share is mostly driven by undocumented migrants.

Quantitatively, the estimated mark-down effect is large: it more than offsets the
small increase in average native wages which arises from changes in marginal products.
However, our results also indicate that monopsony power significantly increases the total
income gains of natives (including profits), which are typically small in competitive models
(Borjas, 1995). This is because native-owned firms capture rents from migrants, even in a
“long run” scenario where capital is elastically supplied. The finding that firms profit from
migration is consistent with the observation that individual firms actively invest in foreign
recruitment (whether through political lobbying on visa rules, payment of visa fees, or
foreign employment agencies: see e.g. Rodriguez, 2004; Fellini, Ferro and Fullin, 2007;
Facchini, Mayda and Mishra, 2011; Gibbons et al., 2019). But just as the total native
surplus is larger, so too are the distributional effects: as mark-downs expand, rents are
transferred from workers to firms; and the surplus of native labour turns negative.

These insights matter not only for the design of structural models, but also for policy.
Any such mark-down effects may be offset through policies which constrain monopsony
power over migrants (such as minimum wages, as in e.g. Edo and Rapoport, 2019,
or regularisations, as in Monras, Vázquez-Grenno and Elias, forthcoming), rather than
by restricting migration itself. In fact, these objectives may come into conflict: for
example, limitations on access to permanent residency (designed to deter migration) may
deliver more market power to firms, and native labour may ultimately suffer. We use our
estimates to simulate the effects of a regularisation program: both native and migrant
labour (and especially the low skilled) stand to benefit substantially, at the expense of
firms. These results highlight the significance of our hypothesis: an understanding of
the origins (and not just the magnitude) of wage effects is crucial for designing effective
policy.

The paper proceeds as follows. Section 2 explains how immigration may reduce the
wages of natives through a mark-down effect. Section 3 explores empirical identification
in the canonical multi-skill model. In Section 4, we describe our empirical application
and data; and Section 5 presents our basic estimates, which reject the canonical model.
We argue that this rejection reflects the presence of mark-down effects: in support of this
interpretation, we explore heterogeneous effects by migrants’ legal status in Section 6.
And finally, Section 7 quantifies the impact of an immigration shock and regularisation
policy on wages and monopsony rents.
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2 Modeling imperfect competition

In this section, we present a simple model to explain how immigration can increase the
mark-downs φj on native wages. The idea is that if firms (i) have greater monopsony
power over migrants than natives, but (ii) cannot perfectly wage discriminate between
them, an influx of migrants can make the labour market less competitive.

There are a small number of papers which consider the impact of immigration in im-
perfect labour markets. Chassamboulli and Palivos (2013, 2014), Chassamboulli and Peri
(2015), Battisti et al. (2017) and Albert (2021) study matching models with individual
wage bargaining: if migrants have low reservation wages, they will stimulate job creation,
potentially to the benefit of natives. These models assume free creation of vacancies (and
hence zero profits in equilibrium), but this makes it hard to explain why employers ac-
tively lobby for more immigration. Additionally, there is growing evidence that firms
find it difficult to pay different wages to employees doing identical work (as individual
bargaining would imply), especially in low-skill markets (Caldwell and Harmon, 2019;
Lachowska et al., 2022; Di Addario et al., 2023). This suggests that wage-posting, rather
than bargaining, may often provide a more accurate description of wage-setting.

Malchow-Moller, Munch and Skaksen (2012), Naidu, Nyarko and Wang (2016), Amior
and Stuhler (2023), Borjas and Edo (2023) and Gyetvay and Keita (2023) assume, like
us, wage-posting by firms with some monopsony power.3 In these models, firms benefit
from immigration because marginal products exceed wages. Our key contribution is to
relax the assumption of perfect wage discrimination between equally skilled natives and
migrants: this is what causes market power over migrants to “spill over” to natives.

2.1 Labour supply to individual firms

Suppose there are many identical firms, which seek to hire labour of multiple skill types
j. Workers of each skill type may be either natives or migrants. We assume that natives
and migrants of skill j are productively identical (without loss of generality4), but they
may differ in their labour supply to firms.

3Malchow-Moller, Munch and Skaksen (2012) find that migrant employees depress native wages within
Danish firms, and they attribute this to differential outside options. Naidu, Nyarko and Wang (2016)
study a UAE reform which relaxed restrictions on migrants’ job mobility, and consider the implications
for incumbent migrants. Building on insights from our paper, Amior and Stuhler (2023) explore effects
across the firm pay distribution (rather than the aggregate-level impact, which is our focus here). Borjas
and Edo (2023) study the efficiency implications of market power over migrants, and Gyetvay and Keita
(2023) explore how segregation of migrants across firms can diminish the extent of wage competition.

4Any imperfect substitutability between natives and migrants can be characterised as reflecting differ-
ences in (possibly unobserved) skill j. Note this kind of skill segregation would limit wage competition
between natives and migrants, at the aggregate level: we elaborate on this point in Section 3.1 and
Appendix B.
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The supply of native labour (of skill j) to an individual firm takes the form proposed
by Card et al. (2018):

Nj (W ) = N0j (W −RNj)εN (4)

where N0j will depend on the wages offered by other firms and the number of natives in
the market. RNj is a reservation wage, below which natives will not work; and the supply
curve is iso-elastic in wages W above RNj. Card et al. (2018) motivate this upward-
sloping curve (the source of firms’ market power) by idiosyncratic preferences over firms,
but it might alternatively be rationalised by search frictions. The supply of migrants to
an individual firm takes the same form, but with possibly different reservation wage RMj

and elasticity εM :
Mj (W ) = M0j (W −RMj)εM (5)

There are several reasons why migrants’ reservation wages might be lower than equally
skilled natives’, i.e. RMj < RNj. First, migrants may use wages in their origin country as
a reference point (Constant et al., 2017; Akay, Bargain and Zimmermann, 2017), whether
for psychological reasons or due to remittances (Albert and Monras, 2022; Dustmann, Ku
and Surovtseva, 2024). They may also discount time in the host country more heavily, if
they intend to return eventually (Amior, 2017; Adda, Dustmann and Görlach, 2022) or
because of time-limited visas or deportation risk. And they may face restricted access to
out-of-work benefits. Using a structural model, Nanos and Schluter (2014) conclude that
migrants do indeed demand lower wages (for given productivity). Albert (2021) shows
that undocumented migrants exit unemployment relatively quickly, which is consistent
with lower reservation wages. Also, Aydemir and Skuterud (2008), De Matos (2017),
Arellano-Bover and San (2020), Aslund et al. (2021), Dostie et al. (2023) and Amior
and Stuhler (2023) find that migrant-native wage differentials are partly driven by firm
effects, which is consistent with migrants accepting offers from lower-paying firms.

There are also several reasons why migrants might have a smaller elasticity parameter:
εM < εN . They may be less efficient in job search, due to poor information, language
barriers, exclusion from social networks, undocumented status (Kossoudji and Cobb-
Clark, 2002; Orrenius and Zavodny, 2009; Brown, Hotchkiss and Quispe-Agnoli, 2013;
Hotchkiss and Quispe-Agnoli, 2013), the E-Verify program (which compels employers to
authenticate legal status: see e.g. Borjas and Cassidy, 2019, on wage effects), or visa-
related restrictions on labour mobility (see e.g. Matloff, 2003; Depew, Norlander and
Sørensen, 2017; Hunt and Xie, 2019; Wang, 2021; Doran, Gelber and Isen, 2022 on the
H-1B and L-1; see Gibbons et al., 2019, on other US guest worker programs). Consistent
with this, Hirsch and Jahn (2015) show that migrants’ job separations in Germany are
less sensitive to wages than natives’. In Appendix G, we offer similar evidence for the
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US (building on Biblarsh and De-Shalit, 2021), and show further that these differentials
are largely driven by undocumented migrants. Caldwell and Danieli (2024) also find that
migrants suffer from lower-quality outside job options.5

If migrants have low reservation wages and supply labour to firms inelastically, this
grants firms greater market power. We now explore how firms exercise this market power.

2.2 Optimal wage offers

Suppose firms produce a homogeneous output good, using the technology in (1). They
set wages for natives and migrants of each skill type j (WNj andWMj) to maximise profit,
subject to the labour supply curves (4) and (5). Profit is given by:

max
WN ,WM

π (WN ,WM) = F (L1, ..., LJ ;K)− rK −
∑
j

[WNjN (WNj) +WMjM (WMj)] (6)

where WN = (WN1, ...,WNJ)′ and WM = (WM1, ...,WMJ)′ are vectors of skill-specific
wages, and r is the rental price of capital.6 We will consider two wage-setting assumptions:
(i) perfect wage discrimination, where the firm is free to set distinct native and migrant
wages, and (ii) zero discrimination, where the firm must offer the same wage to all type
j workers (i.e. WNj = WMj = Wj).

(i) Perfect wage discrimination

Assuming perfect discrimination, and given the labour supply curves (4) and (5), the
marginal cost functions for native and migrant labour can be written as7:

MCQj (W ) = W + W −RQj

εQ
, Q = {N,M} (7)

It is convenient to express marginal costs in (7) as functions of wages, rather than the
more conventional quantities. But one form can be converted to the other using the
relationship MCQj (W ) = M̃CQj (Qj (W )), where M̃CQj (Qj) is the usual expression for
marginal costs in terms of quantities. Since firms are identical, they will all choose the
same wage; so the first order condition of individual firms also expresses the aggregate
equilibrium.

5There are some reasons why one might expect the reverse. For example, foreign-born workers may be
relatively mobile geographically (see e.g. Cadena and Kovak, 2016; Amior, forthcoming, on this question),
though this speaks to the elasticity of labour supply to regions and not to individual employers (which
is what matters for monopsony power).

6For simplicity, we abstract from the choice of capital here: this does not affect the basic argument.
7E.g. for natives: MCNj (W ) = W +N (W ) /N ′ (W ). Replacing Nj and N ′j (W ) with (4) yields (7).
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We also assume that the reservation wage RQj, while exogenous to each individual
firm, is proportional to the aggregate wage: i.e. the replacement ratio RQj/WQj is a fixed
parameter rQ. This is convenient for exposition, as it allows us to separate marginal
product and mark-down effects. But it is also an attractive assumption, as it ensures that
productivity growth does not mechanically make the labour market more competitive (by
reducing the value of RQj relative to wages). Equation (7) can then be written as:

MCQj (WQj) = WQj

(
1 + 1− rQ

εQ

)
= WQj

(
1 + 1

ε̃Q

)
, Q = {N,M} (8)

where ε̃Q = εQ/ (1− rQ) is an “adjusted” supply elasticity, which summarises the impact
of εQ and rQ (and is increasing in both). The marginal cost (8) is increasing in the wage
Wj, and it is decreasing in the adjusted elasticity ε̃Q. For illustration, we plot the MC

curves for natives and migrants against wages W in Figure 1, under the assumption that
ε̃M < ε̃N . Notice MCM lies above MCN : since migrants supply labour less elastically
(whether because of a lower rM or εM), the cost of raising wages for the infra-marginals
(with each new hire) is larger. Profit is maximised where these marginal costs equal the
marginal product MPj. After solving the first order conditions, the optimal native and
migrant mark-downs, i.e. φNj and φMj, are given by:

φQj = log MPj
WQj

= log
(

1 + 1
ε̃Q

)
, Q = {N,M} (9)

For a given skill type j, natives and migrants share the same marginal product. But if
employers have greater market power over migrants (i.e. if ε̃M < ε̃N , as illustrated), they
will pay them less than natives: i.e. mark-downs will be larger for migrants (φMj > φNj).
For simplicity, we illustrate this in Figure 1 for the case where the marginal product is
constant; but the result does not depend on this.

Notice also that the marginal cost function in (8), for given wageWj, does not depend
on the level of migration; and hence, migration can only affect native wages through the
marginal products (just as in the canonical model). Intuitively, the ability to perfectly
discriminate segregates the native and migrant labour markets; so there is no direct
competition between them.

To summarise, under perfect discrimination, native and migrant mark-downs may di-
verge (according to differences in market power), but these mark-downs will be insensitive
to changes in market-level migrant share.
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Figure 1: Optimal wages for discriminating and non-discriminating firms

This figure illustrates optimal wages for a firm employing workers of skill type j, assuming ε̃M < ε̃N . Skill j natives
and migrants deliver the same marginal product (MP ), which we take as given for the purposes of this diagram. For a
discriminating firm (which can offer distinct wages to natives and migrants), the marginal cost of native and migrant labour
are represented by MCN and MCM respectively; and the optimal wages will satisfy MCN = MP and MCM = MP . For
a non-discriminating firm, the marginal cost is represented by the dotted line; and the optimal wage will equate this dotted
line with the marginal product.

(ii) Zero wage discrimination

In practice, firms may find it difficult to pay different wages to migrants and natives
doing identical work. Several studies show empirically that similarly skilled natives and
migrants benefit equally (or close to equally) from working in higher-paying firms: e.g.
Arellano-Bover and San (2020); Aslund et al. (2021); Dostie et al. (2023); Amior and
Stuhler (2023).

If firms cannot discriminate, natives and migrants will compete directly; and mark-
downs will depend on the migrant share (as market power over one group “spills over”
to the other). In terms of Figure 1, the firm now faces a marginal cost curve (the dotted
line) which mixes natives and migrants (and lies between MCN and MCM). This curve
tends towards MCN as the wage rises (assuming natives supply labour more elastically,
they will comprise an ever larger share of the firm’s labour pool); and it tends towards
MCM as the wage declines. For a given marginal product, the optimal wage will lie
between what a discriminating firm pays to natives and migrants.8

Crucially, the MC curve’s position will depend on the migrant share: as this share
increases, the curve shifts monotonically towards MCM , and the optimal wage falls.

8Appendix A provides a formula for the equilibrium mark-down in the zero discrimination case.
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Intuitively, if firms enjoy greater market power over migrant labour, immigration will
make the labour market less competitive, allowing firms to extract greater rents from
natives and migrants alike. In this way, differential market power over migrants can
“spill over” to the wages of natives. If some firms can discriminate and others not, we
will have a mixture of the two extreme cases discussed here.

2.3 Mark-down functions

Our model shows that differential market power over migrants can manifest in two dif-
ferent ways: (i) unequal native and migrant mark-downs (if at least some firms can
discriminate) and/or (ii) sensitivity of mark-downs to migrant share (if at least some
firms cannot). To allow for all possibilities, we define distinct native and migrant mark
down functions, φNj (mj) and φMj (mj), which are permitted to vary monotonically with
the skill-specific migrant share mj ≡Mj/ (Nj +Mj). The range of possibilities can then
be summarised by two hypotheses, which will guide our empirical analysis below:

1. H1 (Equal mark-downs): Natives face the same mark-downs as migrants, i.e.
φNj (mj) = φMj (mj).

2. H2 (Independent mark-downs): Natives’ mark-downs are independent of mi-
grant share, i.e. φ′Nj (mj) = 0.

As Table 1 shows, these hypotheses admit four possible cases. The joint hypothesis of
H1 and H2 (top left) is of particular interest. This arises if ε̃M = ε̃N , i.e. firms have
identical monopsony power over natives and migrants. As shown above, this ensures that
the native and migrant mark-downs are identical and will not depend on the migrant
share. Perfect competition (as in the “canonical model”) is a special case of this joint
hypothesis, with infinite elasticities and both mark-downs fixed at zero.

Differential monopsony power will violate this joint hypothesis. This violation can
manifest in two different ways. Suppose for example that ε̃M < ε̃N , i.e. firms have
greater market power over migrants. If at least some firms can discriminate, H1 will
be violated: migrant mark-downs will be larger, i.e. φMj (mj) > φNj (mj). And if at
least some firms cannot discriminate, H2 will be violated: native mark-downs will be
increasing in migrant share, i.e. φ′Nj (mj) > 0.

The top-right quadrant of Table 1 represents the perfect discrimination case (i.e. fixed
but unequal mark-downs). The bottom-left represents zero discrimination (equal mark-
downs, which are increasing in mj). The bottom-right represents a more general case,
where some firms can discriminate and others not: both H1 and H2 are violated.
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Table 1: Mark-down function hypotheses

Equal mark-downs (H1)

Yes No

Yes ε̃M = ε̃N ε̃M 6= ε̃N
(Perf comp. is special case) + Perfect discrimination

Independent
mark-downs (H2)

No ε̃M 6= ε̃N ε̃M 6= ε̃N
+ Zero discrimination + Partial discrimination

3 Empirical identification in the skill cell model

In this section, we integrate the mark-down functions into the canonical model, by specify-
ing a production technology F . We then explore what can be identified with conventional
wage and employment data. Once we allow for mark-down effects, it is no longer possible
to point identify the technological parameters separately from the mark-down functions
– if observably similar natives and migrants are imperfect substitutes. However, we are
able to set identify key parameters, and to test the joint hypothesis of H1 and H2 (that
native and migrant mark-downs are equal and independent of migrant share). A rejection
of the joint hypothesis implies differential market power over natives and migrants.

To make progress, we first require some structure on F . We apply a nested CES
technology to education-experience cells, a strategy first implemented in the migration
literature by Borjas (2003), building on Card and Lemieux (2001), and later developed by
Card (2009), Manacorda, Manning and Wadsworth (2012), Ottaviano and Peri (2012),
Blau and Mackie (2017), Llull (2018a) and Monras (2020), among others.9

Though we mostly rely on a conventional CES structure, we will show below that our
results are robust to alternative technological assumptions, and to alternative assignments
of natives and migrants to skill cells. To address known concerns about endogeneity, we
will develop new instruments for both native and migrant employment. We will mostly
focus on national-level variation across skill cells: this makes sense if labour markets are
reasonably well-integrated across space (as in e.g. Borjas, 2006; Monras, 2020; Amior,
2024), but we will also estimate specifications which exploit spatial variation.

9An alternative tradition advocates using spatial variation and relying on natural experiments: see
Dustmann, Schoenberg and Stuhler (2016). Natural experiments can offer clean identification of the
overall impact of particular migration events (which bring particular skill mixes and labour market
competition effects); but without theoretical assumptions, one cannot extrapolate to other scenarios.
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3.1 Production technology

Following Ottaviano and Peri (2012), we assume that aggregate output at time t is given
by:

Yt = ALλtK
1−λ
t (10)

where Lt is a CES labour aggregate of education-specific inputs, Let:

Lt =
(∑

e

αetL
σE
et

) 1
σE

(11)

The αet are education-specific productivity shifters (which may vary with time), and
1/
(
1− σE

)
is the elasticity of substitution between education groups.

In turn, the education inputs Let depend on (education-specific) experience inputs
Lext:

Let =
(∑

x

αextL
σX
ext

) 1
σX

(12)

where the αext encapsulate the relative efficiency of the experience inputs x within each
education group e.

Finally, we model the education-experience stocks Lext as an aggregation
Zext (Next,Mext) of cell-level native and migrant inputs, Next and Mext, which are poten-
tially imperfect substitutes: see e.g. Card (2009), Manacorda, Manning and Wadsworth
(2012), Ottaviano and Peri (2012) or Piyapromdee (2021). For identification, we require
only that Zext has constant returns (see Appendix F.1). But in practice, we show below
that the conventional CES restriction (which all previous papers impose) provides a good
fit to the data. Specifically, we parameterise Zext as:

Lext = Zext (Next,Mext) = (NσZ
ext + αZextM

σZ
ext)

1
σZ (13)

where αZext is a migrant-specific productivity shifter (permitted to vary by cell and
time), and 1/

(
1− σZ

)
is the elasticity of substitution between natives and migrants

(within education-experience cells). Though we assume a fixed σZ here, we consider the
possibility of cell-level heterogeneity in σZ in Section 5.6.

The conventional interpretation of (13) is that the native and migrant labour inputs,
Next and Mext, are distinct skill types which are imperfect substitutes. But if natives
and migrants are indeed perfectly segregated by skill (within education-experience cells),
firms should be able to perfectly wage discriminate between them (following the logic of
Section 2.2). However, Appendix B shows that an alternative (and perhaps more realistic)
interpretation is possible, where Lext is an aggregation of many unobservable labour inputs
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j, within which natives and migrants are perfect substitutes. In this representation,
Next = ∑

j∈exNj and Mext = ∑
j∈exMj are the aggregate cell-level native and migrant

stocks (across unobservable skill types j); and the derivatives of Zext (with respect to
Next and Mext) identify the average cell-level marginal products. To the extent that
natives and migrants are segregated by skill (across the unobservable types j), they will
appear as imperfect substitutes to the researcher (at the observable cell level).10 But since
there is now direct competition between natives and migrants (within the unobservable
markets j), mark-downs may plausibly be sensitive to migrant share (in line with Section
2.2). One interesting implication is that skill segregation shelters natives from these
mark-down effects, in the same way as wage discrimination. See Appendix B for a more
formal exposition.

3.2 Cell-level specification of native and migrant wages

Using the model above, we can now derive empirical specifications for native and migrant
wages (at the level of education-experience cells), denoted WNext and WMext. Applying
the structure of equation (3), WNext is equal to the cell-level marginal product (i.e. the
derivative of output Yt with respect to cell-level native employment Next) minus the
cell-level native mark-down φNext:

logWNext = logAext − (1− σZ) logNext − (σZ − σX) log (NσZ
ext + αZextM

σZ
ext)

1
σZ − φNext (mext)

(14)
where the native mark-down φNext is permitted to depend on the cell migrant share, mext.
Aext is a cell-level productivity shifter, which summarises the impact of all other labour
market cells, as well as the general level of productivity and the influence of capital:

Aext = ∂Yt
∂Lt
· ∂Lt
∂Let

αextL
1−σX
et (15)

We can of course derive a parallel expression for the cell migrant wage WMext, but it is
convenient to summarise this relative to the native wage WNext:

log WMext

WNext

= logαZext − (1− σZ) log Mext

Next

− φMext (mext) + φNext (mext) (16)

The relative wage depends on both the relative marginal product and any difference be-
tween the native and migrant mark-downs, φNext and φMext. In line with Section 2,
we permit φNext and φMext to both differ from one another and to vary with cell mi-
grant share mext. Their shape depends in principle on differential monopsony power, pay

10This is in the spirit of Peri and Sparber (2009), who argue that comparative advantage of natives
over migrants in communication tasks (within observable skill cells) leads to imperfect substitutability.
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discrimination and skill segregation within cells; but we do not prejudge these questions.

3.3 Identification of technology and mark-down functions

We now show that we cannot point identify (i) the technological parameters in the bottom
nest Z and (ii) the mark-down functions (φN , φM), using standard wage and employment
data. But the model is overidentified under the joint hypothesis of H1 and H2 (equal
and independent mark-downs): this hypothesis, which implies equal monopsony power
over natives and migrants, can therefore be tested.

The identification argument can be appreciated by inspection of equations (14) and
(16). First, consider the equations’ intercepts. In the native wage equation (14), a
larger intercept can be attributed to the productivity shifter A or to an intercept in the
mark-down function φN ; and these cannot be disentangled.11 Similarly, in the relative
wage equation (16), a larger intercept may be attributed to either the migrant-native
productivity differential αZext or unequal mark-downs (i.e. φNext 6= φMext); and again, we
cannot disentangle the two. This means we are unable to test H1 (equal mark-downs).

We face the same problem in interpreting the equations’ slopes. Holding native em-
ployment Next fixed, variation in migrant employment Mext (and therefore migrant share
mext) may affect native and migrant wages in (14) and (16) in three different ways:
through technological substitutability (via the σZ parameter), and also through the re-
spective native and migrant mark-down slopes, φ′Next (mext) and φ′Mext (mext). But we
only have two wage equations, so we cannot identify the mark-down slopes without fur-
ther assumptions; and we therefore cannot test H2 (independent mark-downs).

However, we now show that the model is overidentified under the joint restriction
of H1 (equal mark-downs) and H2 (independent mark-downs). Our empirical strategy
consists of two steps:

Step 1: Conditional on H1, estimate the relative wage equation

Assuming equal mark-downs (H1), as Card (2009), Manacorda, Manning and Wadsworth
(2012) and Ottaviano and Peri (2012) implicitly do, the φ terms disappear from the
relative wage equation (16). We can then identify the technology parameters αZext and
σZ by regressing log (WMext/WNext) on log (Mext/Next), exploiting variation across skill
cells and over time.

11There may also be a price mark-up if the goods market is not competitive. Any such mark-up is
unlikely to depend on the cell-level migrant share, so it will be subsumed in the mark-down intercept.
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Step 2: Based on Step 1 coefficients, estimate the native wage equation

Rearranging (14), write the native wage equation as:

logWNext+(1− σZ) logNext = logAext−(σZ − σX) log (NσZ
ext + αZextM

σZ
ext)

1
σZ−φNext (mext)

(17)
Using our (αZext, σZ) estimates from Step 1 (i.e. conditional on H1), we can compute
(i) the left-hand side term (a linear combination of log native wages and employment12)
and (ii) the cell “Armington” aggregator (NσZ

ext + αZextM
σZ
ext)1/σZ . We can then test H2 by

regressing [logWNext + (1− σZ) logNext] on log (NσZ
ext + αZextM

σZ
ext)1/σZ and mext. Condi-

tional on H1, a significant effect of mext would imply a rejection of φ′Next (mext) = 0 (i.e.
independent native mark-downs, H2), and therefore a rejection of the joint hypothesis of
H1 and H2. Intuitively, the effect of immigration on the marginal products must enter
through the cell aggregator; so conditional on this aggregator, the cell composition mext

will pick up the mark-down effect.
We have framed our argument around a CES production technology, which is univer-

sally imposed in the literature. But in Section 5.6, we show that the joint hypothesis
can be tested under the weaker assumption that Z has constant returns. Also, note that
while the general model is not point identified, we can achieve set identification: for any
given set of (αZext, σZ) values, the coefficient on mext in the second step identifies the
linearised mark-down effect φ′Next (mext).13

4 Data

4.1 Samples and variable definitions

We construct our data in a similar way to Borjas (2003) and Ottaviano and Peri (2012),
but extend the time horizon. We use IPUMS census extracts of 1960, 1970, 1980, 1990
and 2000, and American Community Survey (ACS) samples of 2010 and 2019 (Ruggles
et al., 2023). Throughout, we exclude under-18s and those living in group quarters.

Like these earlier studies, we group individuals into four education groups in our main
specifications: (i) high school dropouts, (ii) high school graduates, (iii) some college and
(iv) college graduates14; and we divide each education group into eight categories of po-

12This type of measure has precedent in the technical change literature (Berman, Bound and Griliches,
1994). E.g. if Z is Cobb-Douglas (so σZ = 0), the left-hand side collapses to the log native wage bill.

13We show in Appendix E.4 that a linear approximation is both theoretically reasonable and empirically
robust.

14Borjas (2014) further divides college graduates into undergraduate and postgraduate degree-holders.
We choose not to account for this distinction, as there are very few postgraduates early in our sample.
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tential labour market experience15 (5-year intervals between 1 and 40 years). But we also
study specifications with two education groups and four 10-year experience categories.

We identify employment stocks with hours worked, and wages with log weekly earn-
ings of full-time civilian employees (at least 35 hours per week, and 40 weeks per year),
weighted by weeks worked – though we study robustness to using hourly wages in Ap-
pendix E.3. Like Borjas (2003, 2014), we exclude enrolled students from the wage sample.
And we also exclude the top and bottom 1% of wage observations in each cross-section.

In most specifications, we adjust cell-level wages for observable changes in demo-
graphic composition over time (separately for natives and migrants, and separately for
each of our 32 education-experience cells). Using census and ACS microdata, we purge
the effects of a quadratic in age, a postgraduate education indicator (for college graduate
cells only), race effects (Hispanic, Asian, black), 12 global regions of origin (for migrants
only), and an indicator for recent arrivals (also for migrants only): see Appendix D.1 for
details on implementation. This adjustment can help address concerns raised by Ruist
(2013) about cell-level changes in migrant workforce composition.

As explained above, we focus on national-level variation across skill cells. But in
Section 5.5, we also estimate specifications which exploit spatial variation.

4.2 Instruments

One may be concerned that both native and migrant employment (by education-
experience cell) are endogenous to wages. Unobserved cell-specific demand shocks may
affect the human capital choices of both natives (Card and Peri, 2016; Hunt, 2017; Llull,
2018b) and foreign-born residents, as well as the skill mix of new migrants from abroad
(Llull, 2018a; Monras, 2020). These shocks may also affect individuals’ labour supply
choices, even conditional on their education and experience. To address these concerns,
we construct instruments (by demographic cell) for each of three worker types: (i) natives,
(ii) “old” migrants (living in the US for more than ten years) and (iii) “new” migrants (up
to ten years), which are intended to exclude cell-specific innovations to labour demand.
Our strategy, which is new to the literature, is to predict the population of each cell using
the mechanical aging of cohorts (by education) over time, both in the US and abroad.
We discuss each of the three instruments in turn.

(i) Natives. The mechanical aging of native cohorts generates predictable changes
in cell population stocks over time, as younger (and better educated) cohorts replace
older ones (as in Card and Lemieux, 2001). For natives aged over 33, we predict cell
populations using cohort sizes (by education) ten years previously, separately by single-

15To predict experience, we assume high school dropouts begin work at 17, high school graduates at
19, those with some college at 21, and college graduates at 23.
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year age. For example, the stock of native college graduates aged 50 in 1980 is predicted
using the population of 40-year-old native graduates in 1970. This is not feasible for
18-33s: given our assumptions on graduation dates, some of them will not have reached
their final education status. In these cases, we allocate the total cohort population (by
single-year age) to education groups using the same shares as the preceding cohort (i.e.
from ten years earlier). Having constructed historical cohort population stocks (ten years
before observation year t) by single-year age and education, we then aggregate to 5-year
experience groups. We denote our instrument as Ñext, for each of 32 education-experience
cells (e, x) and 7 observation years t (between 1960 and 2019).

(ii) Old migrants. We construct our instrument for “old” migrants M̃ old
ext (with

more than ten years in the US) in an identical way. Specifically, for over-33s, we use
foreign-born cell populations within education cohorts ten years previously; and for 18-
33s, we allocate total historical cohort populations to education groups according to the
education choices of earlier cohorts.

(iii) New migrants. Analogously to our approach for existing US residents, we
predict “new” migrant inflows using historical cohort sizes (by education), but this time
in origin countries.16 This is motivated by Hanson, Liu and McIntosh (2017), who relate
the rise and fall of US low skilled immigration to changing fertility patterns in Latin
America. For each education-experience cell (e, x) and year t, we predict the population
of “new” immigrants (with up to ten years in the US) using a weighted aggregate of
historical cohort sizes in origin countries (ten years before t), based on data from Barro
and Lee (2013). The weights depend on origin-specific emigration propensities (since
demographic shifts in certain global regions matter more for immigration to the US)
and a time-invariant cell-specific index of geographical mobility (varying by education
and experience).17 See Appendix D.2 for further details. We denote the predicted new
migrant stocks (aggregated to cell-level) as M̃new

ext . Combining this with the old migrant
instrument, we can now predict the total migrant stock as M̃ext = M̃ old

ext + M̃new
ext .

To summarise, our instruments for natives and older migrants are constructed by
tracking education cohorts over time (note: they are not merely lags within education-
experience cells); and for new immigrants, we exploit changing education cohort sizes
abroad. The identifying assumption is that current cell-specific demand shocks are un-
correlated with historical demographic shifts and historical education choices, both in
the US (for natives and old migrants) and abroad (for new immigrants). Reassuringly,

16Llull (2018a) and Monras (2020) offer alternative instruments for cell-specific inflows of new migrants:
Monras exploits a natural experiment (the Mexican Peso crisis), while Llull bases his instrument on
interactions of origin-specific push factors, distance and skill-cell dummies. But for consistency with our
approach for existing residents, we instead exploit data on historical cohort sizes.

17In practice, our weights are the coefficient estimates from a regression of log population of new
migrants (by origin, education, experience and time) on origin fixed effects and the mobility index.
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we show in Appendix E.9 that conditioning on observable labour demand shocks (arising
from sectoral shifts and automation) does not affect our results. Also, the instruments of-
fer sufficient power to disentangle contemporaneous immigration shocks from those which
occurred ten years earlier (Appendix E.8), and to disentangle variation in new and old
migrant shares (Appendix E.6). These are demanding tests, which offer strong support
for the instruments’ validity.

4.3 Descriptive statistics

Table 2 sets out various statistics across our 32 education-experience cells. The average
migrant employment share, mext, was just 5% in 1960 (Panel A), but reached 18% by
2019. This expansion was disproportionately driven by high school dropouts (Panel B).
Note there may be some under-count of migrants in the census: this could cause us to
over-estimate the effects of migrant share (see Amior, 2024); but we do include a rich set
of fixed effects in our empirical models (see below), which will purge any measurement
error along these dimensions.

The remaining panels report variation in wages, adjusted for changes in demographic
composition. Panel C shows that native wages have declined most among the young
and low educated (these changes are normalised to have mean zero across all groups).
Panel D sets out the mean migrant-native wage differentials in each cell, averaged over
all sample years. In almost all cells, migrants earn less than natives, with wage penalties
varying from 0 to 15%, typically larger among high school workers and the middle-aged.
In the context of our model, these penalties may reflect differences in within-cell marginal
products or alternatively differential mark-downs.

5 Estimates of wage effects

We now turn to our empirical estimates. We begin in Section 5.1 by estimating the
relative wage equation (16), which identifies the (αZext, σZ) parameters under H1. This
allows us to construct the cell aggregator in Section 5.2, and to test the joint hypothesis
of H1 and H2 using the native wage equation (17). We ultimately reject this hypothesis:
interpreted through the lens of our model, this indicates that firms have greater market
power over migrants than natives. Based on a set identification exercise in Section 5.3,
we then conclude that firms exploit this differential market power to impose larger mark-
downs on natives and migrants alike.

In Section 5.4, we clarify how (and why) our results differ from the existing literature.
And finally, in Sections 5.5 and 5.6, we study the robustness of the estimated mark-down
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Table 2: Descriptive statistics

Experience groups
1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Panel A: Migrant share of employment hours, 1960

HS dropouts 0.035 0.037 0.040 0.045 0.045 0.053 0.083 0.127
HS graduates 0.016 0.017 0.024 0.031 0.030 0.046 0.074 0.115
Some college 0.027 0.033 0.041 0.045 0.042 0.058 0.073 0.094
College graduates 0.031 0.038 0.045 0.048 0.058 0.064 0.092 0.111

Panel B: Change in migrant share of employment hours, 1960-2019

HS dropouts 0.140 0.283 0.419 0.510 0.560 0.586 0.533 0.425
HS graduates 0.078 0.112 0.153 0.186 0.205 0.186 0.124 0.043
Some college 0.059 0.06 0.074 0.085 0.101 0.084 0.059 0.021
College graduates 0.083 0.119 0.139 0.156 0.144 0.119 0.079 0.039

Panel C: Change in log native wages, 1960-2019

HS dropouts -0.055 -0.113 -0.122 -0.136 -0.051 -0.066 -0.027 -0.015
HS graduates -0.229 -0.217 -0.213 -0.133 -0.100 -0.044 -0.022 -0.007
Some college -0.207 -0.178 -0.112 -0.049 0.013 0.068 0.106 0.132
College graduates 0.055 0.113 0.174 0.226 0.271 0.292 0.325 0.322

Panel D: Mean log migrant-native wage differential

HS dropouts -0.035 -0.114 -0.137 -0.134 -0.140 -0.141 -0.121 -0.088
HS graduates -0.049 -0.112 -0.123 -0.144 -0.140 -0.144 -0.145 -0.130
Some college -0.037 -0.075 -0.092 -0.095 -0.104 -0.121 -0.106 -0.079
College graduates 0.018 -0.037 -0.060 -0.074 -0.103 -0.132 -0.142 -0.133

Panel A reports migrant employment shares m ≡ M/ (M +N) in 1960, across the four
education and eight experience groups; and Panel B reports changes in this share over 1960-
2019. Panel C reports changes over 1960-2019 in composition-adjusted log native (weekly)
wages, normalised to mean zero across all groups. Panel D reports the mean composition-
adjusted log migrant-native wage differential, averaged over 1960-2019.

effects to numerous empirical choices and the specification of technology.

5.1 Estimates of relative wage equation under H1

We initially parameterise the relative migrant productivity αZext in the relative wage
equation (16) as: logαZext = log ᾱZ + uext, where log ᾱZ is the mean across education-
experience cells, and the deviations uext have mean zero. Inserting this into (16) and
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Table 3: Model for log relative migrant-native wages

Basic estimates FE: Edu*Exp, Year First differences FD + Year effects
OLS OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: OLS and IV estimates

log Mext
Next

-0.026*** 0.004 0.009 -0.015** -0.029*** -0.042*** -0.045*** -0.005 -0.003
(0.004) (0.004) (0.007) (0.007) (0.010) (0.007) (0.008) (0.007) (0.006)

Constant (or -0.122*** -0.094*** -0.084*** -0.126*** -0.153*** - - - -
mean intercept) (0.012) (0.013) (0.019) (0.013) (0.020)

Panel B: First stage estimates

log M̃ext

Ñext
- - 1.088*** - 1.102*** - 1.003*** - 1.047***
- - (0.049) - (0.072) - (0.053) - (0.048)

Adjusted wages N Y Y Y Y Y Y Y Y
Observations 224 224 224 224 224 192 192 192 192

Panel A reports estimates of equation (18), across 32 education-experience cells and 7 decadal observations (1960-2019). Wages in column
1 are based on raw means, but are adjusted for composition in remaining columns. Columns 1-3 include no fixed effects, while columns 4-5
control for interacted education-experience and year fixed effects (“FE”). The “constant” row in columns 4-5 reports the mean β0 intercept,
accounting for the fixed effects. Columns 6-9 are estimated in first differences (“FD”), with columns 8-9 controlling additionally for year
effects. Panel B reports first stage estimates. Robust standard errors, clustered by 32 education-experience cells, are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

imposing H1 (equal mark-downs) yields the following empirical specification:

log WMext

WNext

= β0 + β1 log Mext

Next

+ uext (18)

where WMext/WNext is the relative migrant to native wage in the education-experience
cell, and Mext/Next is relative employment. Under H1, β0 identifies log ᾱZ ; and β1 iden-
tifies − (1− σZ), the inverse elasticity of substitution.

We report estimates of (18) in Table 3. Like Ottaviano and Peri (2012), we cluster our
standard errors by the 32 education-experience cells; but following the recommendation
of Cameron and Miller (2015), we apply a small-sample correction to the cluster-robust
standard errors. Note the relevant 95% critical value of the T distribution is 2.04.18

In column 1, we present OLS estimates for “raw” wages (i.e. not adjusted for changes
in demographic composition): β0 takes a value of -0.12, and β1 is -0.026. These numbers
are comparable to Ottaviano and Peri (2012).19 Under H1 (equal mark-downs), β0 iden-
tifies the mean within-cell productivity differential log ᾱZ , and β1 identifies − (1− σZ),

18Specifically, we scale the standard errors by
√

[G/ (G− 1)] · [(N − 1) / (N −K)] and use T (G− 1)
critical values, where G is the number of clusters, and K the number of regressors and fixed effects. As
Cameron and Miller (2015) note, this adjustment does not entirely eliminate the bias. But even when
we use data with 16 clusters, bootstrapped estimates suggest the bias is small: see Appendix F.3.

19For full-time wages of men and women combined, with no fixed effects, Ottaviano and Peri estimate
a β1 of -0.044: see column 4 of their Table 2. The small difference is partly due to our extended year
sample (we include 2010 and 2019) and restricted wage sample (like Borjas, 2003, we exclude students).

20



implying a large elasticity of substitution of 1/ (1− σZ) = 38 between natives and mi-
grants. But in general, these parameters cannot be separately identified from differentials
in the mark-downs: a negative β0 may reflect larger migrant mark-downs (φM ≥ φN), and
a negative β1 a greater sensitivity of migrant mark-downs to immigration (φ′M ≥ φ′N).

Columns 2-9 report additional specifications, with composition-adjusted wages20, fixed
effects21, first differencing22 and IV. Our mean β0 varies from -0.09 to -0.15, and β1 from
zero to -0.045. In some columns, β1 is significantly different from zero (as in Ottaviano
and Peri, 2012), and in others not (as in Borjas, Grogger and Hanson, 2012). But these
differences are quantitatively small: underH1, our estimates suggest natives and migrants
are either perfect substitutes within education-experience cells (if β1 = 0) or very close
substitutes; and as we show below, this makes little difference to our estimates of the
native wage equation.

One may be concerned that relative migrant supply, Mext/Next, is endogenous to
demand shocks in the error, uext; though it is not possible to sign the bias.23 In the IV
columns, we instrument log (Mext/Next) with log

(
M̃ext/Ñext

)
, where M̃ext ≡ M̃new

ext +M̃ old
ext

is total predicted migrant employment (described above), and Ñext is predicted native
employment.24 In each case, the first stage has considerable power (Panel B); but again,
our estimates change little.

To summarise, under H1 (equal mark-downs), our estimates suggest that natives and
migrants are close substitutes within cells, irrespective of empirical specification.

5.2 Native wage equation: Test of joint hypothesis

We now test the joint hypothesis of equal and independent mark-downs (i.e. H1 and H2),
by estimating the native wage equation (17). We parameterise the cell-level productivity
shifter Aext in (15) as:

logAext = dex + det + dxt + vext (19)

where the dex are education-experience interacted fixed effects, the det are education-year
effects, and the dxt experience-year effects. Comparing to (15), notice the det pick up

20Adjusting wages for composition in column 2 attenuates our β1 estimate. This reflects shifts in the
composition of the migrant workforce, as highlighted by Ruist (2013).

21Following Ottaviano and Peri (2012), in columns 4-5, we respecify αZext to include interacted
education-experience and year fixed effects: αZext = αZex + αZt + uext. Instead of a constant, we
now report the mean β0 intercept across all observations (averaging the fixed effects).

22In first-differenced specifications (columns 6-7), we regress ∆ log (WMext/WNext) on
∆ log (Mext/Next). Columns 8-9 control additionally for year effects.

23If cell-level relative employment responds positively to relative migrant demand, our OLS estimates
may be be positively biased. However, if native and migrant labour supply elasticities differ (as our esti-
mates in Section E.12 suggest), a balanced cell-level demand shock could generate a negative correlation
between relative wages and employment – which would bias the OLS estimates negatively.

24In columns 7 and 9, the instrument is differenced – like the endogenous variable.
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productivity shocks αet and labour supply effects at the education nest level (i.e. Let),
as well as the influence of capital; and the dex and dxt account for components of the
education-specific experience effects αext. Any remaining variation in the αext (at the
triple interaction) falls into the idiosyncratic vext term. Our native wage equation (17)
can then be estimated linearly using the following specification:

[logWNext + (1− σZ) logNext] = γ0+γ1

[
log (NσZ

ext + αZextM
σZ
ext)

1
σZ

]
+γ2mext+dex+det+dxt+vext

(20)
which regresses the augmented wage variable (bracketed) on the cell aggregator (also
bracketed) and the migrant share mext, conditional on the fixed effects. We construct
the two bracketed terms using our αZext and σZ estimates from Table 3 (under H1).25

Based on (17), γ1 identifies σX −σZ , where σX is the substitutability between experience
groups, and σZ the substitutability between natives and migrants (within cells). And γ2

identifies a linearised mark-down response to the migrant share, mext. The joint null of
equal and independent mark-downs (H1 and H2) requires that γ2 = 0.

The functional form of the cell aggregator is predicated on a CES lower nest; but
in Appendix F.1, we show the CES restriction fits the data reasonably well. Similarly,
Appendix E.4 shows the linear approximation of the mark-down function (with mext on
the right-hand side) is both theoretically reasonable and empirically robust.

The two right-hand side variables in (20) rely on different sources of variation: native
employment Next increases the aggregator log (NσZ

ext + αZextM
σZ
ext)1/σZ but diminishes the

migrant share mext ≡ Mext/ (Next +Mext); whereas migrant employment Mext increases
both. However, there are endogeneity concerns. First, omitted demand shocks at the
interaction of education, experience and time (in vext in (19)) may generate unwanted
selection: through selective immigration (Llull, 2018a; Monras, 2020), the human capital
choices of existing residents (Hunt, 2017; Llull, 2018b), or labour supply choices. Second,
native employment Next appears on both the left and right-hand sides; so any mea-
surement error in Next or misspecification of the technology will mechanically threaten
identification. The direction of the bias is unclear: measurement error or misspecification
should bias OLS estimates of γ1 positively and γ2 negatively, but we cannot sign the
implications of omitted demand shocks (it depends whether native or migrant employ-
ment is more responsive). To address these challenges, we construct instruments for the
two right-hand side variables using our predicted native and migrant stocks, Ñext and
M̃ext. We instrument mext using m̃ext ≡ M̃ext/

(
Ñext + M̃ext

)
, i.e. the predicted migrant

share. And we instrument log (NσZ
ext + αZextM

σZ
ext)1/σZ using log

(
Ñext + M̃ext

)
, i.e. the log

25We use our β1 estimate from column 5 of Table 3, which implies σZ = 1−0.029; and we back out the
αZext in each labour market cell as the residual, i.e. logαZext = log (WMext/WNext)−β1 log (Mext/Next).
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Table 4: Model for native wages: First stage

Fixed effects First differences
Cell Mig share Cell Mig share

aggregator mext aggregator mext

(1) (2) (3) (4)

log
(
Ñext + M̃ext

)
1.103*** 0.029 0.876*** 0.045***
(0.073) (0.018) (0.092) (0.015)

Predicted share m̃ext 0.698** 1.090*** 1.098*** 0.995***
(0.283) (0.074) (0.335) (0.111)

SW F-stat 228.65 193.87 97.61 79.87
Observations 224 224 192 192

This table presents first stage estimates for the native wage equation (20), across
32 education-experience cells and 7 decadal observations (1960-2019). There
are two endogenous variables: the cell aggregator log (NσZ

ext + αZextM
σZ
ext)

1/σZ

and migrant share mext ≡ Mext/ (Next +Mext). We identify αZext and σZ
using the estimates from column 5 of Table 3 (i.e. assuming equal mark-
downs: H1). Columns 1-2 control for interacted education-year, experience-
year and education-experience fixed effects. In columns 3-4, all variables (and
instruments) are differenced and the education-experience effects eliminated.
Sanderson-Windmeijer F-statistics account for multiple endogenous variables.
Robust standard errors, clustered by 32 education-experience cells, are in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1.

of predicted cell-level employment.26

Table 4 presents our first stage estimates for equation (20), imposing equal mark-
downs (H1). Each instrument drives its corresponding endogenous variable with con-
siderable power: the Sanderson and Windmeijer (2016) conditional F-statistics, which
account for multiple endogenous variables, range from 80 to 230.27

In Panel A of Table 5, we present our second stage results (we return to Panel B
below). Throughout, we rely on composition-adjusted wages; and we consider different
combinations of right-hand side variables. Our estimates of γ1 are mostly positive (which
would imply σX > σZ) but close to zero. If σZ is close to 1 (as Table 3 suggests, at least
under H1), these γ1 estimates would then imply σX ≈ 1, i.e. experience groups are very
close substitutes within education nests. This appears to contradict the prevailing view
in the literature; but as we show below, our estimates closely match the seminal work of
Card and Lemieux (2001) when we use broader education groups.

The effect of migrant share, γ2, is universally negative. Its statistical significance in the
full specification (columns 3, 6, 7 and 8) leads us to reject the null of independent native
mark-downs (H2), conditional on equal mark-downs (H1). The IV estimates are close

26Note these instruments are not functions of the estimated σZ or αZext parameters, so the IV estimates
will be immune to any sampling issues arising from our two-step estimation procedure.

27These can be assessed against standard Stock and Yogo (2005) weak instrument critical values.
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Table 5: Model for native wages: OLS and IV

Fixed effects First differences
OLS OLS OLS IV IV IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Imposing equal mark-downs (H1)

Cell aggregator 0.086*** 0.058*** 0.115*** 0.055*** 0.037*** 0.052***
(0.021) (0.011) (0.031) (0.014) (0.010) (0.018)

Mig share mext -0.628*** -0.558*** -0.704*** -0.599*** -0.422*** -0.471***
(0.058) (0.037) (0.062) (0.062) (0.043) (0.079)

Panel B: Imposing αZext = σZ = 1

Cell aggregator 0.055*** 0.030** 0.082** 0.026* 0.011 0.025
(0.020) (0.011) (0.030) (0.014) (0.010) (0.018)

Mig share mext -0.542*** -0.508*** -0.599*** -0.550*** -0.371*** -0.418***
(0.049) (0.037) (0.057) (0.062) (0.043) (0.078)

Observations 224 224 224 224 224 224 192 192
This table presents estimates of the native wage equation (20), across 32 education-experience cells and 7 decadal observations
(1960-2019). The dependent variable is [logWNext + (1− σZ) logNext]. We use composition-adjusted wages throughout. The
two regressors are the cell aggregator log (NσZ

ext + αZextM
σZ
ext)

1/σZ and migrant share mext ≡Mext/ (Next +Mext). In Panel
A, we identify αZext and σZ using the estimates from column 5 of Table 3 (i.e. assuming equal mark-downs: H1); and in
Panel B, we impose that αZext = σZ = 1, so the dependent variable collapses to the log native wage, and the cell aggregator
to total employment, log (Next +Mext). Columns 1-6 control for interacted education-year, experience-year and education-
experience fixed effects. In columns 7-8, all variables (and instruments) are differenced and the education-experience effects
eliminated. Robust standard errors, clustered by 32 education-experience cells, are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1.

to OLS, which suggests selection is not a significant problem here.28 For illustration, our
IV estimate of γ2 is -0.60 (column 6 of Panel A), with a standard error of just 0.06. That
is, conditional on H1, a 1 pp expansion of the migrant share allows firms to mark down
native wages by 0.6% more. The first differenced estimates are similar: the equivalent
specification yields a γ2 of -0.47 (in column 8), with a similar standard error.

To summarise, interpreted through the lens of our model, the significant deviation of γ2

from zero allows us to reject the null of equal and independent mark-downs (i.e. the joint
hypothesis of H1 and H2). This rejected null represents the case of equal monopsony
power over natives and migrants: see Table 1. If we are willing to assume H1 (equal
mark-downs), the negative γ2 additionally indicates that a larger migrant share increases
the native mark-down. This is consistent with firms enjoying greater market power over
migrants, but being unable to perfectly wage discriminate; so that immigration makes
the native labour market less competitive.

28Llull’s (2018a) IV estimate of the migrant share effect is more than twice his OLS estimate, though
he uses a different instrument.
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5.3 Set identification of key parameters

The estimates of γ2 in Panel A are predicated on H1 (equal native and migrant mark-
downs). However, we cannot testH1 in isolation. If it is not satisfied, the true mark-down
effect may be entirely different: conceivably, even its sign may be incorrect.

Though the full model is not identified, it does imply restrictions on sets of parameters;
and this allows us to explore the robustness of our conclusions. For any given αZ and
σZ , we can use the native wage equation (20) to point identify the mark-down effect.
Our strategy is therefore to study how the estimated mark-down effect γ2 varies across
a broad range of αZ and σZ values. This offers a form of set identification, in the sense
that only some combinations of parameters are consistent with the data.

We begin with a specification where natives and migrants are productively identical
within education-experience cells (as in Borjas, 2003): i.e. αZext = σZ = 1. This case can
be interpreted as an opposite extreme to H1. While the H1 case attributes deviations
of β0 and β1 from zero (in the relative wage equation) entirely to the technology param-
eters (αZext and σZ), the alternative “equal productivity” case attributes them entirely
to native-migrant differentials in mark-downs. In the latter case, the left-hand side of
the native wage equation (20) collapses to the log native wage, and the cell aggregator
collapses to log total employment, i.e. log (Next +Mext). We offer estimates for this spec-
ification in Panel B of Table 5. As it happens, the results are very similar to Panel A:
this is because the αZext and σZ values implied by H1 are themselves close to 1.

In Figure 2, we now study how our estimated mark-down effect γ2 varies across a
broader range of (αZ , σZ) values.29 In Panel A, we focus on the IV fixed effect specifi-
cation (comparable with column 6 of Table 5), and Panel B repeats the exercise for first
differences (comparable with column 8). We offer more complete regression tables for a
selection of (αZ , σZ) values in Appendix Table E1.

Compared with other (αZ , σZ) values, our γ2 estimates in Table 5 (which hover around
-0.5) represent a lower bound. As σZ decreases from 1, the mark-down effect becomes
larger. Intuitively, for lower σZ , we are treating natives and migrants as more comple-
mentary in technology. This would imply that immigration is more beneficial for native
marginal products; and consequently, to rationalise the observable wage variation, we
require a more adverse mark-down effect. Notice also the effect of σZ diminishes as αZ
declines: if migrants contribute little to output, they will have less influence on native
marginal products, so the value of σZ becomes moot. In the limit, when αZ reaches zero,
the cell aggregator collapses to the native stock; so σZ has no influence.

29Note these calibrations permit the native-migrant mark-down differential (within cells) to have the
opposite sign to the productivity differential. In this exercise, we impose equal αZ values in every labour
market cell.
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Figure 2: Native mark-down effect γ2 for different (αZ , σZ)

This figure reports IV estimates of the mark-down effect γ2 in the native wage equation (20), for a range of (αZ , σZ)
values. The estimates for αZext = σZ = 1 are identical to columns 6 and 8 of Table 5 (Panel B). The shaded areas are
95% confidence intervals. See Appendix Table E1 for corresponding regression tables.

To summarise, these results suggest we can reject H2 (independent mark-downs) for
a broad range of parameter values. In particular, we find evidence that the native mark-
down is increasing in the cell migrant share. In terms of the model, this suggests that:
(i) firms have greater monopsony power over migrants than natives (whether because
migrants have lower reservation wages or supply labour less elastically to firms); and (ii)
firms cannot perfectly discriminate in their wage offers.

5.4 Comparison with existing empirical literature

We are not the first to estimate a native wage equation across education-experience cells.
The novelty here is to control simultaneously for both the cell aggregator (accounting
for imperfect substitutability) and cell composition (the migrant share); whereas other
studies just include one or the other. Empirically, we are able to include both because
the native stock Next and migrant stock Mext (both suitably instrumented) provide two
alternative sources of variation: as we explain above, Mext enters both the aggregator
and migrant share positively, but Next affects them in opposite directions.

Borjas (2003; 2014) and Ottaviano and Peri (2012) study a specification with the cell
aggregator alone, to estimate the substitutability σX between experience groups within
education nests (building on Card and Lemieux, 2001). Borjas (2003) estimates a co-
efficient γ1 of -0.29 on the cell aggregator (implying an elasticity of substitution of 3.4,
assuming σZ = 1), and Ottaviano and Peri’s preferred estimate is -0.16; whereas our
estimates of γ1 are close to zero. Both Borjas and Ottaviano and Peri instrument the cell
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aggregator using total migrant labour hours: this instrument will violate the exclusion
restriction if, as our model suggests, migrant composition enters wages independently
(through the mark-down effect). In contrast, we identify distinct effects of the cell aggre-
gator and cell composition, using two distinct instruments.

Borjas (2003) also estimates a version of equation (20) which excludes the cell aggre-
gator, implicitly imposing γ1 = 0. His motivation is to generate descriptive estimates
(i.e. without imposing theoretical structure) of the effect of immigration. The effect of
migrant share varies from -0.5 or -0.6, similar to our own estimates of γ2. Card and Peri
(2016) argue that Borjas is picking up the effect of the cell aggregator (which is omitted);
but this is not true of our specification, which directly conditions on the aggregator. Peri
and Sparber (2011) and Card and Peri (2016) also critique Borjas’ specification on the
grounds of endogeneity: since native employment Next appears in the denominator of the
migrant share Mext/ (Next +Mext), unobserved cell-specific demand shocks (which raise
wages and draw in natives) may generate a spurious negative relationship between wages
and migrant share. We address this concern by using instruments.

To summarise, relative to this empirical literature, we identify distinct effects of (i)
the cell aggregator and (ii) cell mix, using new instruments. And we offer a novel inter-
pretation of these distinct effects: while the aggregator captures the impact of marginal
products, cell mix captures the mark-down effects. Though we apply this insight to na-
tional skill cell variation, it has implications for the interpretation of structural migration
models more generally. It is also closely related to Beaudry, Green and Sand (2012): they
show that the wage bargain in a given job (conditional on its productivity) depends on
the labour market’s industrial composition, since this affects the set of outside options.
In their story, it is the composition of industries which matters; while in ours, it is the
composition of the labour force itself.

5.5 Robustness of migrant share effect

We now consider the robustness of the migrant share effect, γ2, in the native wage equation
(20). We briefly summarise our tests here, and offer greater detail and formal estimates in
the appendices. For simplicity, we impose αZext = σZ = 1 throughout; so the dependent
variable in (20) collapses to the log native wage, and the cell aggregator collapses to log
total employment: as Table 5 shows, this makes little difference to the results.

(i) Outliers (Appendix E.2). Figure E1 shows scatter plots of our γ2 estimates
(OLS and IV), after partialing out controls. The effects are visibly not driven by outliers.

(ii) Wage definition and weighting (Appendix E.3). In Table E2, we esti-
mate the effects of migrant share on male and female wages separately, and on hourly
instead of full-time weekly wages. Like Ottaviano and Peri (2012), we also try weighting
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observations by total cell employment. In each case, the γ2 estimates are little affected.
(iii) Functional form of mark-down function (Appendix E.4). We show that

a linear approximation of the mark-down function (which we implement above) is the-
oretically reasonable, and we explore this empirically in Table E3. Replacing the linear
approximation mext in (20) with an alternative functional form, the log relative migrant
supply log (mext/ (1−mext)), yields qualitatively similar results. But in a horse-race
between the two, the migrant share mext picks up the entire effect, just as our model
predicts.

(iv) Instrument specification (Appendix E.5). One may worry the power of
the migrant share instrument m̃ext ≡ M̃ext/

(
Ñext + M̃ext

)
comes from the native stock

predictor Ñext (in the denominator of m̃ext) rather than the migrant stock predictor M̃ext.
See Clemens and Hunt (2019) for a related criticism. Reassuringly though, when we use
M̃ext as an instrument instead of m̃ext, our γ2 estimates remain large and significant.

(v) New and old migrant instruments (Appendix E.6). Recall that our migrant
share instrument m̃ext aggregates distinct components for new migrants (up to ten years
in the US) and old migrants (more than ten). Reassuringly, it turns out each component
does individually elicit the migrants we intend; and we have sufficient power to identify
the wage effects of each group separately (at least conditional on fixed effects), after
breaking the instrument into two. As it happens, both new and old migrants have large
and negative effects on native wages.

(vi) Heterogeneity by education and experience (Appendix E.7). One may
wonder whether the migrant share effects are driven exclusively by certain parts of the
skill distribution. But in most specifications, we do not find significant evidence of het-
erogeneous effects by education or experience groups.

(vii) Dynamics (Appendix E.8). Another possible issue is serial correlation in the
migrant share. If wages adjust sluggishly, the lagged migrant share will be an omitted
variable; and in the presence of serial correlation, our γ2 estimate may be biased (Jaeger,
Ruist and Stuhler, 2018). However, our instruments have sufficient power to disentangle
the effects of contemporaneous and lagged immigration shocks; and at least in IV, these
dynamics are statistically insignificant (i.e. past shocks have no influence on current
wages). This supports our contention that we are identifying the long run effects of
immigration.

(viii) Robustness to observable demand shocks (Appendix E.9). In principle,
our instruments should exclude shifts in labour demand, conditional on the fixed effects.
In support of this restriction, we show that the native wage effects are robust to controlling
for a cell-specific Bartik industry shift-share (which captures the predictable effects of
the decline in manufacturing) and to initial cell-level routine and offshorable occupation
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shares (which capture vulnerability to technological change).
(ix) Robustness to minimum wage effects (Appendix E.10). The native

wage effects are also robust to controlling for changes in the real value of the minimum
wage. We implement this test by defining a cell-specific shift-share, which accounts for
differential exposure to changes in minimum wages.

(x) Spatial variation (Appendix E.11). Above, we study national-level skill
cell variation. But we find similar effects if we additionally exploit cross-state variation
in immigration intensity, within education-experience cells. Interestingly though, if we
include the original national-level shock in the same regression, this (and not the state-
specific shock) picks up the entire wage effect. This supports the view that, at least over
decadal intervals, labour markets are reasonably well-integrated nationally (e.g. Borjas,
2006; Monras, 2020; Amior, 2024).

(xi) Labour supply responses (Appendix E.12). Our estimates do not assume
labour supply is inelastic, since we use employment (suitably instrumented) and not pop-
ulation in our regressions. For completeness though, we estimate labour supply responses
in Table E13. We find that an a larger migrant share does reduce native employment
rates, as in e.g. Borjas (2003) or Monras (2020). Since these are responses to migrant
share (and not to total cell employment), we interpret them as arising from changes in
mark-downs rather than marginal products.

Given these labour supply effects, one might worry that our wage estimates are con-
flated with unobserved compositional changes (Bratsberg and Raaum, 2012; Borjas and
Edo, forthcoming), e.g. if the low-paid disproportionately exit employment. But it ap-
pears this is not a major concern here. As Table E13 shows, immigration only reduces
the employment rates of native women (consistent with French evidence from Borjas and
Edo, forthcoming); but despite this, the wage effects for women are very similar to men
(Table E2).

5.6 Sensitivity to specification of technology

Above, we reject the overidentifying restrictions of the canonical model, and we offer a
theory (of imperfect competition) which can account for this rejection. However, this
rejection may in principle also reflect a misspecification of the production technology. In
this section, we study the sensitivity of our estimates to various features of the production
technology. As above, we discuss each point briefly here, and offer greater detail and
regression tables in the marked appendices.

We focus our analysis on the specification of the education-experience cells, as this
is what matters for the estimates in Table 5. The influence of restrictions above these
cells (e.g. on the substitutability between education or experience groups) are absorbed
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by the fixed effects in equation (20), so they do not matter for this test – though such
restrictions will be important for the simulation exercises in Section 7 below.

(i) Assumption of CES technology (Appendix F.1). To estimate the native
wage equation (20), we need to construct a cell-level aggregator Z (N,M) over native
and migrant employment. Following the literature, we have assumed Z has CES form.
But our identification strategy can be generalised to any Z with constant returns. Under
constant returns, Appendix F.1 shows that the relative wage WMext/WNext (of migrants
to natives) can always be reduced to some function of the relative supply Mext/Next,
which can in principle be estimated (allowing us to construct Z). But this more flexible
approach is ultimately redundant. As equation (16) shows, CES implies this relationship
is log-linear; and we show graphically in Figure F1 that this restriction does indeed appear
reasonable.

(ii) Cross-cell heterogeneity in σZ (Appendix F.2). In the relative wage equa-
tion (18), we implicitly assume that σZ (the within-cell substitutability between natives
and migrants) is identical across cells. This restriction matters for the construction of the
cell aggregator, on the right-hand side of the native wage equation (20). But in Table F1,
we show there is little heterogeneity in the relative wage effect across college/non-college
cells and high/low experience cells.

(iii) Broad education groups (Appendix F.3). Our results are also robust to a
specification with two education groups (college and high school “equivalents”), instead
of four.30 Similar to Table 5, we estimate the native wage equation both under the
assumption of equal mark-downs (H1) and under αZext = σZ = 1. The γ2 estimates (on
migrant share) in the native wage equation are larger than before, exceeding -1 under fixed
effects, and ranging from -0.6 to -1.3 in first differences (Table F2). Interestingly, γ1 (the
elasticity to total cell employment) is now consistently negative in the αZext = σZ = 1
specification, taking a value of -0.1 under fixed effects. This implies an elasticity of
substitution between experience groups of 10, which matches Card and Lemieux (2001).31

(iv) Broad experience groups (Appendix F.3). We also re-estimate our model
using four 10-year experience groups (rather than eight 5-year groups). This makes little
difference to our coefficient estimates and standard errors.32 Teulings (2000) makes the
point that elasticities of substitution will be biased if skill types are too aggregated, and

30As Card (2009) notes, a four-group scheme implicitly constrains the elasticity of substitution between
any two groups to be identical; but there is evidence that high-school graduates and dropouts are closer
substitutes with each other than with college graduates.

31In their main specification, Card and Lemieux estimate an elasticity of substitution of 5 across age
(rather than experience) groups; but they also offer experience-based estimates which are similar to ours.

32The fact that the standard errors are unaffected is important. One may be concerned that statistical
dependence between the 5-year experience (by education) clusters in the baseline specification could bias
the standard errors, but the robustness of the standard errors to the 10-year grouping should reassure.
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proposes an alternative based on continuous skill types: this would be an interesting
extension, but very different from our approach here and in the broader literature.

(v) Allocation of migrants to native cells (Appendix F.4). Above, we allocate
migrants to native cells according to their education and experience. But if migrants
“downgrade” occupation and compete with natives of lower education or experience, this
would generate measurement error in the cell migrant stocks (Dustmann, Schoenberg and
Stuhler, 2016). In Appendix F.4, in the spirit of Card (2001) and Sharpe and Bollinger
(2020), we probabilistically allocate migrants (of given education and experience) to na-
tive cells according to their occupational distribution. Again, we continue to see large
effects of migrant share, in both the H1 and αZext = σZ = 1 specifications.

6 Heterogeneity by migrants’ legal status

Above, we have shown that cell mix affects natives wages independently of the cell aggre-
gator (even accounting for imperfect substitutability within cells), and we have argued
this is consistent with immigration making native labour markets less competitive. Our
model attributes this to differential market power over migrants, coupled with an inabil-
ity to perfectly wage discriminate. This differential power may be rationalised in various
ways (see Section 2.1), but the common thread is a migrant labour force which lacks cred-
ible outside options. This is especially true of the undocumented, due to deportation risk
and legal risk of firms: see e.g. Kossoudji and Cobb-Clark (2002); Orrenius and Zavodny
(2009); Brown, Hotchkiss and Quispe-Agnoli (2013); Borjas and Cassidy (2019); Albert
(2021).

Motivated by this insight, this section explores heterogeneity in wage effects by mi-
grants’ legal status. We first offer evidence that firms have significantly more market
power over undocumented migrants, based on separation elasticities. We should then ex-
pect undocumented migrants to have larger effects on native mark-downs, at least if firms
cannot wage discriminate disproportionately against them (i.e. pay them differently for
identical work, within the same workplace). We are not aware of evidence on differential
discrimination against undocumented migrants within firms. But in practice, we do find
that undocumented migrants generate larger mark-down effects for natives, suggesting a
limited ability to wage discriminate.

6.1 Heterogeneity in separation elasticities

In Appendix G, similar to Hotchkiss and Quispe-Agnoli (2013), Hirsch and Jahn (2015)
and Biblarsh and De-Shalit (2021), we estimate separation elasticities (to initial wages)
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for natives and migrants, using the Survey of Income and Program Participation (which
tracks individual workers over time). Separation elasticities offer a useful (and easily es-
timable) indicator of the elasticity of labour supply to a firm and hence monopsony power:
see Manning (2003). Though there may be biases in the estimated level of the separations
elasticity, the comparisons between demographic groups can still be informative.

Notably, the elasticities are significantly smaller for migrants, suggesting that firms
have greater wage-setting power over migrant labour. The differential is mostly driven
by non-college migrants, whose elasticity is just one third of natives. And for those low-
educated migrants without permanent residency (which, unusually, the SIPP reports),
many of whom are likely undocumented (Hall, Greenman and Farkas, 2010), the elasticity
is close to zero. Based on our model, we should then expect that undocumented migrants
generate larger mark-down effects for natives (subject to the wage discrimination caveat
above); and we now test this claim, using variation across education-experience cells.

6.2 Imputation of cell-level undocumented migrant shares

The first challenge is to measure undocumented migrant employment by education-
experience cell and year. Legal status is unobserved in the census, and our approach
is to probabilistically assign it by country of origin. The US Department of Homeland
Security (2003) produces “residual” estimates of the undocumented population by origin,
by subtracting official counts of legal migrants from census estimates of the foreign-born
population. Using these estimates, we impute the undocumented employment stock in
cell (e, x) at time t as: Mundoc

ext = ∑
o ψoMoext, where ψo is the estimated undocumented

share of origin o migrants (from the DHS), and Moext is the origin o migrant stock in the
cell at time t (computed in the census). We rely on a time-invariant measure of ψo (using
estimates for 2000), but these shares are very stable over time.33

Table 6 reports (imputed) undocumented shares of total migrant employment. On
average, between 1960 and 2019, 21% of migrant employment was undocumented. They
are heavily over-represented at low levels of education: this reflects the skill distribution of
Mexicans and other Latin Americans, who dominate the undocumented population. Our
estimates of undocumented shares by education are almost identical to Passel and Cohn
(2016) and Borjas (2017b), despite methodological differences (see Appendix D.4). Table
6 also reports wage differentials (within education-experience cells) relative to natives:
these are about twice as large for undocumented migrants. Again, these within-cell wage

33Consider the undocumented share of Mexican-born migrants, who account for about half of undocu-
mented migrants (Passel and Cohn, 2016). In 1980, 48.6% of Mexican migrants were undocumented (see
Table 2 of Warren and Passel, 1987). This rises to 52.4% in 2000 (Table 2 of Department of Homeland
Security, 2003), and falls back to 48% in 2014 (Passel and Cohn, 2016).
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Table 6: Employment and wages of legal and undocumented migrants

HS dropouts HS grads Some coll Coll grads Average

Undocumented share of migrant employment 0.334 0.230 0.174 0.107 0.207
Within-cell wage differentials:

Legal migrants v natives -0.094 -0.111 -0.062 -0.013 -0.067
Undocumented migrants v natives -0.182 -0.172 -0.152 -0.154 -0.165
Migrants are probabilistically assigned legal status by country of origin, using Department of Homeland Security (2003)
estimates. The top row reports the imputed undocumented share of migrant employment. The second reports dif-
ferentials in log wages between undocumented migrants and natives, and the third repeats for legal migrants. Wage
differentials are computed within education-experience cells, and then averaged across groups. Wages are adjusted
for cell-level changes in demographic composition, separately for natives, legal migrants and undocumented migrants,
according to the procedure of Appendix D.1. All statistics are averages over 1960-2019.

differentials are almost identical to Borjas (2017a): see his Table 2.

6.3 Heterogeneity in native wage effects

We now re-estimate the native wage equation (20), but decomposing the overall
migrant employment share mext into (i) the cell’s legal migrant share mlegal

ext ≡
M legal

ext / (Next +Mext) and (ii) the undocumented share mundoc
ext ≡ Mundoc

ext / (Next +Mext).
For IV, we require distinct instruments for each. Since Mexicans account for half the
undocumented population (Passel and Cohn, 2016), our chosen instruments are the pre-
dicted cell-level shares of (i) old Mexican migrants and (ii) old non-Mexican migrants.34

We exclude new migrants from our instruments: in practice, they dilute the instruments’
power. Table 7 shows the instruments perform well: the Mexican instrument positively
affects both the legal and undocumented shares, but the non-Mexican instrument only
positively affects the former. This makes sense: non-Mexican migrants mostly have legal
status. The F-statistics range from 20 to 40.

In Table 8, we turn to the wage equation itself. For simplicity, we impose αZext =
σZ = 1 throughout, so the dependent variable is simply the log native wage. In OLS and
IV, the undocumented share captures the entire effect, with coefficients between -0.6 and
-1.2 (and standard errors of 0.3 or 0.4). The dominant role of undocumented migrants
is remarkable, given they account for just 21% of migrant employment in our sample
(Table 6). One might worry about what the (multiple) instruments are doing, so we also
report reduced form estimates. Again, we see the same story: the instrument for old
Mexicans (which drives the undocumented share) picks up the entire effect (now with
much smaller standard errors), and the non-Mexican instrument is insignificant. These
results are consistent with Edo (2015), who finds that the wage effects of migration in

34We construct these by following the procedure for old migrants (i.e. with more than ten years in the
US) described in Section 4.2, but tracking cohorts of Mexicans and non-Mexicans respectively.
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Table 7: Effects of legal and undocumented migrants: First stage

Fixed effects First differences
log (Next +Mext) mlegal

ext mundoc
ext log (Next +Mext) mlegal

ext mundoc
ext

(1) (2) (3) (4) (5) (6)

log
(
Ñext + M̃ext

)
0.817*** -0.013* 0.006 0.658*** -0.007 0.009*
(0.087) (0.007) (0.007) (0.101) (0.007) (0.005)

m̃old,nonmex
ext -4.674*** 0.394** -0.327** -3.651*** 0.708*** -0.048

(1.120) (0.148) (0.154) (1.051) (0.143) (0.117)
m̃old,mex
ext 0.068 0.636*** 0.641*** 1.145** 0.668*** 0.687***

(0.423) (0.044) (0.054) (0.432) (0.069) (0.056)

SW F-stat 24.89 20.10 20.27 21.60 22.80 36.85
Observations 224 224 224 192 192 192

This table presents first stage estimates for the native wage equation (20), but accounting separately for
the cell employment shares of legal migrants mlegal

ext ≡ M legal
ext / (Next +Mext) and undocumented migrants

mundoc
ext ≡ Mundoc

ext / (Next +Mext). We asssume αZext = σZ = 1, so the cell aggregator (the third endogenous
variable) collapses to log (Next +Mext). Our instruments are (i) log total predicted employment, (ii) the predicted
employment share of old Mexican migrants m̃old,mex

ext ≡ M̃old,mex
ext /

(
Ñext + M̃ext

)
, and (iii) the predicted share of

old non-Mexicans m̃old,nonmex
ext ≡ M̃old,nonmex

ext /
(
Ñext + M̃ext

)
. Columns 1-3 control for interacted education-year,

experience-year and education-experience fixed effects. In columns 4-6, all variables (and instruments) are dif-
ferenced and the education-experience effects eliminated. Sanderson-Windmeijer F-statistics account for multiple
endogenous variables. Robust standard errors, clustered by 32 education-experience cells, are in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

Table 8: Effects of legal and undocumented migrants: OLS, IV and reduced form

Fixed effects First differences
OLS IV RF OLS IV RF
(1) (2) (3) (4) (5) (6)

log (Next +Mext) 0.057*** 0.057* 0.022 0.056
(0.017) (0.029) (0.017) (0.033)

mlegal
ext 0.048 0.062 -0.135 0.142

(0.268) (0.426) (0.240) (0.371)
mundoc
ext -1.081*** -1.193*** -0.638** -1.061**

(0.303) (0.401) (0.293) (0.403)
log

(
Ñext + M̃ext

)
0.038** 0.027*
(0.018) (0.016)

m̃old,nonmex
ext 0.151 -0.055

(0.198) (0.160)
m̃old,mex
ext -0.721*** -0.569***

(0.072) (0.094)

Observations 224 224 224 192 192 192
This table presents OLS, IV and reduced form estimates of the native wage equation (20), but
accounting separately for the cell employment shares of legal and undocumented migrants. We
assume αZext = σZ = 1, so the dependent variable collapses to the log native wage, and the cell
aggregator on the right-hand side collapses to log (Next +Mext). The reduced form specification
replaces the endogenous variables with their three instruments. Columns 1-3 control for interacted
education-year, experience-year and education-experience fixed effects. In columns 4-6, all vari-
ables (and instruments) are differenced and the education-experience effects eliminated. Robust
standard errors, clustered by 32 education-experience cells, are in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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France are driven by non-citizens (and not by naturalised migrants).
To summarise, our estimates of separation elasticities suggest that firms have signifi-

cantly more market power over undocumented migrants. Based on our model, we should
then expect that undocumented migrants generate larger mark-down effects; and this is
confirmed by Table 8.

7 Quantifying the immigration surplus

Under perfect competition, Borjas (1995) famously shows that immigration generates a
surplus for native workers (in a single-good economy with up to two labour types); and
Amior and Manning (2024) generalise this result to any number of labour types and
(intermediate or final) goods. But this surplus is commonly believed to be small: see
e.g. Borjas (1995) or Ottaviano and Peri (2012). We now show how the introduction of
monopsony affects wages and profits, based on our estimates above.

We consider two counterfactuals. The first is an immigration shock equal to 1% of total
employment in 2019, holding migrants’ skill mix fixed. And the second, motivated by the
discussion above, is a “regularisation” policy which transforms a portion of undocumented
migrants (equal to 1% of total employment, or 25% of undocumented employment) to
legal migrants, within education-experience cells.35

We simulate these counterfactuals in a “long run” scenario (where capital inputs are
supplied elastically) and assuming that workers supply labour to the market inelastically
(so the welfare effects can be summarised by changes in wages). This exercise requires
a calibration of the entire nested CES production technology. We restrict attention to
our baseline structure, with four education groups and eight experience groups. Our esti-
mates above focus only on the lowest nest, at the level of education-experience cells. For
comparability, we calibrate the upper nests using Ottaviano and Peri’s (2012) estimates
(based on their “Model A”): we set σE (the substitutability between composite education
inputs, Le) in equation (11) to 0.7, and σX (between experience inputs, Lex) to 0.84.36

We explain exactly how we compute the counterfactuals in Appendix C. For simplicity,
for the immigration shock counterfactual, we ignore any differences between legal and
undocumented migrants, and rely instead on our baseline IV mark-down effects from
Table 5.

35Our predictions can only be interpreted as first-order approximations, as they rely on linearised
estimates of mark-down effects. Hence we prefer to focus on small 1% shocks.

36Blau and Mackie (2017) report a similar exercise for several different scenarios reflecting different
assumptions about the elasticity of substitution (under perfect competition): see e.g. footnote 37 below.
But since the focus of our paper is the implications of monopsony power, we restrict attention to one set
of upper-nest elasticities. Importantly, the mark-down effects are independent of these assumptions.
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7.1 Immigration shock: Perfect competition

We begin with the 1% immigration shock: Table 9 presents our results. Column 1
reports estimates under perfect competition, the conventional case. Given zero mark-
downs, the within-cell substitutability between natives and migrants (σZ) and relative
migrant productivity (αZex) are identified by the relative wage equation (18). Using
estimates of (18) from Table 3 (column 5), we predict the change in native and migrant
wages (Panels A and B) and the change in output and its distribution (Panel C) following
the immigration shock. Appendix C.1 describes how these effects are computed: they
account for the effect of immigration in each cell on every other cell.

As the immigration surplus theorem requires, the average native wage rises in response
to the shock. The effect is small (0.04%), but this hides large distributional effects. The
wage of native high-school dropouts declines by 0.48% (as this is where migrants are con-
centrated), but this is offset by wage increases in other education groups.37 Migrant wages
contract in all groups (and especially among dropouts), because natives and migrants are
treated here as imperfect substitutes within cells.

Panel C predicts the % change in long run output (net of the costs of elastic capital
inputs) and its distribution. Net output rises because the labour force expands; but the
increase is a little less than 1%, due to diminishing returns to individual factors and
migrants’ over-representation in low-wage cells. Given perfect competition and constant
returns, net output is fully exhausted by wage income. Total migrant wage income rises,
but by less than proportionally to the 1% immigration shock (as their wages fall). And
total native wage income expands because their wages grow on average.

7.2 Immigration shock: Equal monopsony power

Column 2 introduces monopsony power. We begin by assuming equal market power over
natives and migrants. Hence, native and migrant mark-downs are equal (H1), and do not
depend on cell migrant share (H2). A crucial parameter here is the baseline mark-down
level. As we explain above, this is not identified by our model; and there is no commonly
accepted estimate in the literature. For illustrative purposes, we calibrate this to 10%
(i.e. φN = 0.1). This seems reasonable, perhaps on the conservative side: e.g. Lamadon,
Mogstad and Setzler (2022) estimate an average US mark-down of 15%, and Kroft et al.
(2020) find mark-downs of 20% in the construction sector. Since native and migrant

37Card (2009), Ottaviano and Peri (2012) and Blau and Mackie (2017) emphasise that these distri-
butional effects are much smaller if high school dropouts and graduates are treated as close substitutes.
In this case, wage effects will only materialise to the extent that natives and migrants differ in college
share; but differences in college share are known to be small. Our purpose in this paper is not to revisit
this debate, but rather to study the implications of monopsony power.

36



Table 9: Simulation of 1% immigration shock

Perfect Equal Differential
competition monopsony power monopsony power

(1) (2) (3) (4)

Impose equal mark-downs (H1)? Yes Yes Yes No
Impose αZex = σZ = 1? No No No Yes
Baseline native mark-down 0 0.1 0.1 0.1
Native mark-down response to migrant share 0 0 0.6 0.6

Panel A: Native wages (% changes)
HS dropouts -0.479 -0.479 -1.253 -1.358
HS graduates 0.035 0.035 -0.460 -0.506
Some college 0.114 0.114 -0.243 -0.264
College graduates 0.022 0.022 -0.459 -0.477
Average 0.038 0.038 -0.418 -0.444

Panel B: Migrant wages (% changes)
HS dropouts -0.681 -0.681 -1.480 -1.596
HS graduates -0.134 -0.134 -0.654 -0.703
Some college -0.050 -0.050 -0.415 -0.437
College graduates -0.144 -0.144 -0.636 -0.654
Average -0.185 -0.185 -0.693 -0.727

Panel C: Net long run output and distribution of gains
% change in net output 0.963 0.963 0.963 0.991
Decomposition:

(i) ∆ Migrant wage income (% net output) 0.931 0.843 0.764 0.754
(ii) ∆ Native wage income (% net output) 0.032 0.029 -0.313 -0.330
(iii) ∆ Monopsony rents (% net output) 0 0.092 0.513 0.568

Total native surplus (% net output) = (ii) + (iii) 0.032 0.120 0.199 0.238
∆ (Monopsony rents / net output) 0 0 0.359 0.398
This table quantifies the impact of an immigration shock equal to 1% of total employment in 2019, holding migrants’
skill mix fixed. Column 1 describes the perfect competition case, with zero mark-downs. Column 2 imposes a fixed
mark-down of 0.1 for all workers, natives and migrants alike. And columns 3-4 allow for differential market power
over natives and migrants: mark-downs are permitted to respond to migrant share, in line with our estimates in
Table 5. Panels A and B predict changes in native and migrant wages, in % terms. Panel C predicts the % change
in long run output (net of the costs of elastic inputs) and its distribution. The native surplus is the sum of changes
in native wage income and monopsony rents (i.e. assuming that all monopsony rents go to native-owned firms), as a
% of net output. The final row reports changes in the ratio of monopsony rents to net output.

37



mark-downs are equal in this specification, the σZ and αZex technology parameters are
again identified by the relative wage equation.

Column 2 shows the wage effects are identical to the competitive case: since the
mark-down is fixed, immigration only affects wages via the marginal products (which
adjust in the same way as in column 1). Similarly, the output response is identical,
since this depends only on the technological interaction between natives and migrants.
However, immigration now increases monopsony rents (commensurate with the baseline
mark-down level), as firms take a cut from the new migrants’ marginal product. If we
follow the convention that capital and firms are owned by natives38 (e.g. Borjas, 1995),
the total native surplus then expands to 0.12% of long-run output, most of which goes
to employers as monopsony rents. But as the final row shows, the share of monopsony
rents in output is unaffected (since rents are fixed at 10%).

7.3 Immigration shock: Differential monopsony power

In Section 5, we empirically rejected the joint hypothesis of H1 and H2 (equal and in-
dependent mark-downs). The direction of the rejection implies differential market power
over migrants relative to natives. We now explore the implications for the immigration
surplus, based on our estimates above.

In column 3, we allow mark-downs to vary with cell migrant share (i.e. relaxing
H2), but we continue to assume they are the same for natives and migrants (i.e. H1).
We calibrate the native mark-down response to 0.6 (based on column 6 of Table 5),
while maintaining a 10% share of monopsony rents at baseline. We now see universally
negative effects on native wages, averaging -0.4%. The mark-down effect is larger in cells
with larger migrant shares at baseline (so dropouts suffer especially). Overall, column
3 suggests the negative mark-down effects on native wages dominate the small positive
contribution from marginal products. This has important distributional implications:
while workers are worse off, the flip-side is larger growth of monopsony rents (0.5% of net
output). The total native surplus (0.2%) is larger than in column 2, because firms are
capturing even more rents from migrant labour.

In column 4, we allow native and migrant mark-downs to differ (a violation of H1).
Specifically, we impose αZex = σZ = 1 (so natives and migrants are productively identical
within cells); and we allow the relative wage equation to identify the differential mark-
down effects. The output response is now somewhat larger, since migrants are no longer
less productive than natives (within cells). Native wages decline more, since migrants
are now more productive (αZex = 1) and are perfect substitutes (σZ = 1); though the

38Clearly, some firms are migrant-owned, so one would expect some of the increase in profits to go to
migrants. But since we lack data on this, we do not explore it further.
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difference is small. Notice that monopsony rents expand more than in column 3 (even as
a share of output), because the new migrants are employed at larger mark-downs.

Overall, our results suggest that monopsony power has important implications for
the immigration surplus. On the one hand, it significantly expands the total surplus
going to natives: native-owned firms take a cut from new migrants’ marginal products
and capture additional rents from the existing migrant workforce. But the distributional
effects are also larger, with employers gaining and native labour losing (due to increasing
mark-downs). Indeed, our estimates suggest the entire surplus goes to firms, even in a
“long run” scenario with elastic capital; and this can explain why individual firms often
lobby for immigration.

7.4 Regularisation counterfactual

The results above suggest the adverse effects of immigration on native labour are mostly
a consequence of firms’ greater market power over migrants (coupled with an inability
to perfectly wage discriminate). Therefore, policies which directly target this market
power may help protect native workers from these effects. With this in mind, we now
turn to the “regularisation” counterfactual, which transforms a portion of undocumented
migrants (equal to 1% of total employment, or 25% of undocumented employment) into
legal migrants, within education-experience cells. Undocumented workers in every cell
are transformed with equal probability.

We assume here that all workers (natives, legal migrants and undocumented migrants)
are perfect substitutes within cells (i.e. σZ = 1).39 However, we permit productive
differences between these workers. Specifically, we write the cell-level input as: Lex =
Nex+αlegalZex M

legal
ex +αundocZex Mundoc

ex , whereM legal
ex is the employment stock of legal migrants,

Mundoc
ex is the stock of undocumented migrants, and αlegalZex and αundocZex are the relative

efficiencies of each migrant type (compared to natives).
We present our results in Table 10. We begin in column 1 by assuming the labour

market is fully competitive: mark-downs are fixed at zero for all workers. Any wage dif-
ferentials between natives, legal migrants and undocumented migrants (within education-
experience cells) are attributed entirely to productive differences (in the αlegalZex and αundoctZex

parameters); so the economic impact of the regularisation policy derives purely from an
increase in the productivity of formerly undocumented workers.40 This generates a 0.08%
increase in net output, the bulk of which goes to the migrants themselves. Natives do

39Recall from Table 9 that the limited amount of imperfect substitutability suggested by the data
makes little difference to the broad conclusions.

40We assume here that the wage differential between legal and undocumented migrants represents the
causal impact of regularisation on productivity. If instead it reflects unobserved heterogeneity, the policy
would have no effect on productivity – and therefore no economic effect at all under perfect competition.
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Table 10: Simulation of regularisation counterfactual

Perfect Differential
competition monopsony power

(1) (2) (3)

Impose equal mark-downs (H1)? Yes Yes No
Impose αlegalZex = αundocZex = 1? No No Yes
Baseline native mark-down 0 0.1 0.1
Mark-down response to undocumented share 0 1.193 1.193

Panel A: Native wages (% changes)
HS dropouts -0.099 5.817 5.916
HS graduates 0.006 1.497 1.491
Some college 0.008 0.757 0.749
College graduates 0.001 0.627 0.626
Average 0.002 0.917 0.916

Panel B: Migrant wages (% changes)
HS dropouts 0.715 7.300 7.409
HS graduates 0.362 1.954 1.949
Some college 0.454 1.218 1.210
College graduates 0.424 1.066 1.065
Average 0.450 1.902 1.911

Panel C: Net long run output and distribution of gains
% change in net output 0.079 0.079 0
Decomposition:

(i) ∆ Migrant wage income (% net output) 0.077 0.295 0.295
(ii) ∆ Native wage income (% net output) 0.002 0.688 0.682
(iii) ∆ Monopsony rents (% net output) 0 -0.904 -0.976

Total native surplus (% net output) = (ii) + (iii) 0.002 -0.217 -0.295
∆ (Monopsony rents / output) 0 -0.909 -0.976
This table quantifies the impact of a "regularisation" policy which transforms a portion of the
undocumented workforce (1% of total employment in 2019) into legal migrants, within education-
experience cells. Column 1 describes the perfect competition case, with zero mark-downs. Column
2 allows for differential monopsony power over undocumented migrants: we impose a baseline
native mark-down of 0.1, and permits mark-downs to respond to the undocumented (but not
legal migrant) cell employment share, in line with our Table 8 estimates. Column 3 maintains
the mark-down response, but attributes within-cell wage differentials entirely to unequal mark-
downs (rather than productivity). Panels A and B predict changes in native and migrant wages.
Panel C predicts the % change in net output and its distribution. The native surplus is the sum
of changes in native wage income and monopsony rents (i.e. we assume that all monopsony rents
go to native-owned firms), as a % of net output. The final row reports changes in the ratio of
monopsony rents to net output. See Appendix C.2 for computational details.
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benefit on average (the effect is very small), but there are distributional effects: the wages
of native dropouts contract by 0.1%, because this is where the newly regularised migrants
are concentrated (and where the increase in quality-adjusted labour supply is largest).

In column 2, we introduce differential monopsony power over undocumented migrants.
In line with our Section 6 estimates, we allow mark-downs to respond to the cell share
of undocumented workers (but not to the share of legal migrants). We set this effect
to 1.193, based on column 2 of Table 8. We continue to assume equal mark-downs for
all workers, so within-cell wage differentials are again attributed to αlegalZex and αundocZex .
The policy now has two effects: a change in migrant productivity (as in column 1)
and also a reduction in monopsony rents (as firms have less market power following
regularisation). Comparing columns 1 and 2, it is clear that the latter effect dominates
in the wage response. Native wages now increase substantially across all cells, especially
among dropouts. Since the mark-downs do not matter for net output, these wage increases
are absorbed by a contraction of monopsony rents (equal to 0.9% of net output).

Finally, in column 3, we maintain the mark-down response of column 2; but we now
attribute within-cell wage differentials to unequal mark-downs rather than productivity
(i.e. we assume αlegalZex = αundocZex = 1). There is no output effect here, since productivity
is unchanged; but the distributional effects are similar to column 2. Migrants still ben-
efit disproportionately, but now through access to lower mark-downs rather than higher
productivity. To summarise, these results suggest that a regularisation policy can benefit
both native and migrant labour substantially (at firms’ expense), due to a reduction in
monopsony power.

8 Conclusion

Under perfect competition, migration can only affect native wages by changing marginal
products. This assumption is routinely applied in structural models of migration. But
it severely restricts the set of possible outcomes, as migration can only affect marginal
products by shifting the relative supply of labour across skill types (or across factor inputs
more generally).

Once we allow for imperfect competition though, the composition of skill types
(whether native or migrant) also becomes relevant. If firms have greater monopsony
power over migrants than natives (a claim supported by a burgeoning empirical litera-
ture), but cannot perfectly wage discriminate between them (as recent evidence suggests),
this differential power over migrants can “spill over” to the wages of natives. In this way,
the labour market becomes less competitive, allowing firms to impose larger mark-downs
on both native and migrant wages (for any given change in marginal products).
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This insight can help account for empirical violations of the canonical labour market
model in US census data, namely that wages depend on migrant share independently
of the cell aggregator (even accounting for imperfect substitutability between observably
similar natives and migrants). To identify these migrant share effects, we develop new
instruments for native and migrant employment, driven by demographic shifts in the
US and abroad. Our estimates cannot plausibly be attributed to the specification of
technology, the delineation of skill cells, or the allocation of migrants to these cells.
Instead, we argue that they reflect an increase in mark-downs. Consistent with this
interpretation, we show that the effects are mostly driven by undocumented migrants.

Based on our estimates, the expansion of native mark-downs (in response to migration)
dominates the aggregate gains in marginal products. As a result, the average native
wage declines, even in a “long run” setting with elastic capital – in violation of the
classic “immigration surplus” result. Though aggregate native income grows (due to the
transfer of migrants’ rents), more than 100% of these gains go to profits, as the increased
mark-downs redistribute income from workers to firms.

However, one cannot conclude that immigration is generally harmful for native work-
ers. Adverse mark-down effects may be ameliorated through policies which constrain
monopsony power over migrants, such as minimum wages or regularisations. In partic-
ular, our estimates suggest that a regularisation policy may substantially benefit both
native and migrant labour, at the expense of firms. More generally, variation in labour
market institutions may help account for disparate empirical findings on the wage ef-
fects of immigration; and the role of these institutions may be a fruitful topic for further
investigation.
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A Optimal wage-setting of non-discriminating firm

A non-discriminating firm chooses a wage Wj for skill type j to maximise profits, under
the constraint that WNj = WMj = Wj. Its marginal cost of labour is given by:

MC (Wj) = Wj + N (W ) +M (W )
N ′ (W ) +M ′ (W ) (A1)

= Wj

1 +
[

N (Wj)
N (Wj) +M (Wj)

ε̃N + M (Wj)
N (Wj) +M (Wj)

ε̃M

]−1


where N (Wj) and M (Wj) are respectively the supply of native and migrant labour to
the firm, as defined by (4) and (5). As illustrated by Figure 1, this marginal cost curve
(the dotted line) will lie between the native and migrant MC curves of the discriminating
firm. The optimal wage will equate the marginal cost with the marginal product MPj,
so MC (Wj) = MPj. Imposing this condition, we have:

φj = log
{

1 + [(1−mj) ε̃N +mj ε̃M ]−1
}

(A2)

where φj = log (MPj/Wj) is the mark-down, and mj ≡ Mj/ (Nj +Mj) is the market
j migrant share. Equation (A2) implies that if ε̃M < ε̃N (so firms have greater market
power over migrants), the mark-down φj will be increasing in migrant share mj.

B Cell-level aggregation of native and migrant wages

Equation (13) in Section 3.1 shows the production nest Z (Next,Mext) at the level of
education-experience cells. The conventional interpretation of (13) is that native and
migrant labour (i.e. Next andMext) are distinct skill types which are imperfect substitutes.
But this makes it difficult to understand why employers cannot wage discriminate between
them (a key premise of our story). In this appendix, we offer an alternative interpretation
of education-experience cells: we treat Lext as an aggregation of many unobserved skill
inputs Lj, within which natives and migrants are perfect substitutes (i.e. Lj = Nj +Mj).
The set-up is illustrated in the left panel of Figure B1. In what follows, we show how
native and migrant wages can be aggregated (across skill types j) to the level of education-
experience (subscript ex) cells, as illustrated by the right panel. We begin by describing
the aggregation of marginal products, and then the aggregation of mark-downs.
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Figure B1: Aggregation of education-experience cells

B.1 Aggregating marginal products across skill types j

Suppose the education-experience composite Lex in equation (13) is a HoD1 function of
potentially many (unobserved) skill inputs Lj:

Lex = Z̃ (L1, .., LJ) (B1)

Within each skill type j, natives and migrants are perfect substitutes: i.e. Lj = Nj +Mj.
Suppose there are Nex natives (within a given education-experience cell), of whom

a fraction ηj ≡ Nj/Nex have skill j; and there are Mex migrants, of whom a fraction
µj ≡Mj/Mex have skill j. We can then rewrite (B1) as:

Lex = Z̃ (η1Nex + µ1Mex, .., ηJNex + µJMex) = Z (Nex,Mex)

where Z is a HoD1 function of the total cell-level native and migrant stocks (i.e. Nex =∑
j∈exNj and Mex = ∑

j∈exMj), which subsumes the native and migrant skill allocations
(ηj and µj).

The partial derivative of Z with respect to Nex is:

∂Z (Nex,Mex)
∂Nex

=
∑
j

ηj
∂Z̃ (L1, .., LJ)

∂Lj
(B2)

which is equal to the average marginal product of natives. Similarly, the partial derivative
with respect to Mex is:

∂Z (Nex,Mex)
∂Mex

=
∑
j

µj
∂Z̃ (L1, .., LJ)

∂Lj
(B3)

which is equal to the average marginal product of migrants. In this way, we have reduced
Lex to an aggregated production function over two composite inputs (Nex and Mex),
whose marginal products are equal to those of the average native and migrant (in the
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education-experience cell). Our approach here implements an aggregation trick from
Amior and Manning (2024), which builds on a long-standing literature on the aggregation
of production functions (Houthakker, 1955; Levhari, 1968; Jones, 2005; Growiec, 2008).
This literature offers a range of methods to achieve this where the two inputs are capital
and labour, rather than natives and migrants. Levhari (1968) in particular shows how
one can construct an underlying Z̃ from a desired Z, using as an example the case where
Z is CES.

If natives and migrants are allocated differently across the unobserved labour markets
j (i.e. ηj 6= µj), they will function as imperfect substitutes at the level of education-
experience cells: i.e. σ < 1 in equation (13).41 Conversely, as the skill allocations of
natives and migrants become more similar, they behave as closer substitutes at the cell-
level: i.e. σ goes to 1.

B.2 Aggregating mark-downs across skill types j

In this section, we derive expressions for the aggregated cell-level mark-downs,
φNex (mex) and φMex (mex), which are functions of the cell-level migrant share mex ≡
Mex/ (Nex +Mex). For the purposes of this exercise, we assume that firms cannot wage
discriminate between natives and migrants of the same skill type j. As a result, as equa-
tion (A2) shows, natives and migrants will face an identical mark-down φj = φ (mj)
within each skill type j. But if natives and migrants are distributed differently across
skill types j (as in Section B.1), their average mark-downs φNex and φMex (at the ex cell
level) may still differ.

Note first that the market j wage (for both natives and migrants) can be written as:

Wj = MPj exp (−φ (mj)) (B4)

where MPj is the marginal product. The aggregate native wage WNex (at the education-
experience cell level) is the average of these Wjs, weighted by the native market shares
ηj ≡ Nj/Nex. Its log can be written as:

logWNex = log
∑
j∈ex

ηjMPj − φNex (mex) (B5)

where φNex is the aggregate cell-level native mark-down, a function of the aggregate
41This is in the spirit of Peri and Sparber (2009), who argue that comparative advantage of natives

over migrants in communication tasks (within observable skill cells) leads to imperfect substitutability.
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migrant share mex:

φNex (mex) = log
∑
j∈ex ηjMPj∑

j∈ex ηjMPj exp
(
−φ

(
µjmex

ηj(1−mex)+µjmex

)) (B6)

which uses the fact that:
mj = µjmex

ηj (1−mex) + µjmex

(B7)

for markets j ∈ ex. By symmetry, we can write a similar expression for the aggregate
migrant mark-down:

φMex (mex) = log
∑
j∈ex µjMPj∑

j∈ex µjMPj exp
(
−φ

(
µjmex

ηj(1−mex)+µjmex

)) (B8)

It is worth briefly commenting on the role of marginal products in these mark-down
equations. In the main text, we permit the cell-level mark-downs (i.e. φNex and φMex) to
depend on the cell-level migrant share mex, but not on the cell-level marginal products.
Now, equations (B6) and (B8) show that the cell-level mark-downs do depend on the
marginal products of the underlying skill types j (within the cell); but these only enter
the mark-down formulae in the role of weights. Therefore, a change in the aggregate
cell-level marginal product will only affect the cell-level mark-down if this change is
accompanied by shifts in the relative marginal products of skill types j within the cell.
In applying H1 (the hypothesis of equal native and migrant mark-downs) to the level of
aggregated education-experience cells in the empirical model (in Section 3), we implicitly
rule out such changes in the these relative (within-cell) marginal products.

B.3 Skill segregation and the properties of aggregate cell-level
mark-downs

We now explore the properties of the aggregate cell-level mark-down functions, φNex (mex)
and φMex (mex). To ease notation, we will suppress the ex (education-experience cell)
subscripts in the discussion which follows. The extent of skill segregation (within cells)
will be crucial to the shape of these functions. We begin by considering the perfect
segregation case, and then turn to imperfect skill segregation.

(i) Perfect skill segregation

First, consider the special case where natives and migrants are perfectly segregated: i.e.
each skill type j consists of only natives or migrants, so µjηj = 0 for all j. Based on
(A2), this implies that φj = log (1 + 1/ε̃N) in all native skill types (where ηj > 0); so
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(a) ε̃M = ε̃N (b) ε̃M < ε̃N

Figure B2: Aggregate mark-down functions

the aggregate native mark-down φN (m) depends only on the adjusted supply elasticity
ε̃N . Similarly, perfect segregation implies that φj = log (1 + 1/ε̃M) in all migrant skill
types (where µj > 0), so the migrant mark-down φM (m) depends only on the migrant
replacement ratio, rM , and elasticity ε̃M . Thus, the mark-downs are identical to the
perfect discrimination case, described by equation (9).

(ii) Imperfect skill segregation

Now suppose that natives and migrants overlap across skill types j. The aggregate mark-
downs may now depend on migrant share, but only if firms have differential market
power over natives and migrants. If they have equal monopsony power (i.e. ε̃M = ε̃N),
equation (A2) shows that the skill j mark-downs φj will be independent of migrant share
m and invariant with skill j; so the aggregate mark-downs are again equal (φN = φM)
and independent of migrant share. In Figure B2a, we illustrate the φN (m) and φM (m)
functions for this equal monopsony power case.

In Figure B2b, we consider the case where firms have greater market power over mi-
grants, i.e. ε̃M < ε̃N . Skill-specific (and hence aggregate) mark-downs are now increasing
in migrant share m; and since migrants are necessarily concentrated in skill types j with
larger migrant shares, they must face larger aggregate mark-downs for any given m: i.e.
φM (m) ≥ φN (m). However, as (A2) shows, φM and φN must converge to equality as
m→ 0 or m→ 1. Intuitively, as the labour force becomes exclusively native or migrant,
the marginal cost curve facing firms converges to the pure native or migrant one (identical
to those of the discriminating case), in which case all workers will face the same mark-
down. Given the symmetry of the model, these results will be reversed if monopsony
power is greater over natives (i.e. ε̃M > ε̃N).
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Differential between mark-down functions

To conclude, we now derive a more formal expression for the differential between the
aggregate migrant and native mark-downs, φM and φN . Define η̃j ≡ ηjMPj/

∑
j ηjMPj

and µ̃j ≡ µjMPj/
∑
j µjMPj. From (B6) and (B8), we then have:

exp (−φM)− exp (−φN) =
∑
j

µ̃j exp (−φj)−
∑
j

η̃j exp (−φj) (B9)

=
∑
j

η̃j

(
µ̃j
η̃j

)
exp (−φj)−

∑
j

η̃j exp (−φj)

= Eη

[
µ̃j
η̃j

exp (−φj)
]
− Eη

[
µ̃j
η̃j

]
Eη [exp (−φj)]

= Covη

[
µ̃j
η̃j
, exp (−φj)

]

where the expectation Eη is weighted by the native shares η̃j, and we are using the fact
that Eη [µ̃j/η̃j] = 1. If ε̃M < ε̃N (i.e. greater monopsony power over migrants), the skill
j mark-down φj = φ (µjM/ηjN) is an increasing function of the ratio µ̃j/η̃j. As a result,
the covariance in the final line of (B9) will be negative, and the aggregate mark-down
will be larger for migrants. Intuitively, migrants will be disproportionately located in
migrant-intensive skill types (which are less competitive and have larger mark-downs).

C Computation of counterfactual effects

Here, we describe how we compute the impact of the immigration shock and regularisa-
tion counterfactuals in Section 7. We begin with the immigration shock in Section C.1
(ignoring the distinction between legal and undocumented migrants). And in Section
C.2, we describe what is different in the regularisation counterfactual.

C.1 Immigration shock

We begin by setting out the wage equations. Using (14) and (16), and expanding the
productivity shifter Aex with (15), cell-level native and migrant wages can be written as:

logWNex = log (αeαex) + (1− σE) log Ỹ + (σE − σX) logLe (C1)

+ (σX − σZ) logLex + (σZ − 1) logNex − φNex
logWMex = log (αeαexαZex) + (1− σE) log Ỹ + (σE − σX) logLe (C2)

+ (σX − σZ) logLex + (σZ − 1) logMex − φMex
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where Ỹ is long run output, net of the costs of the elastic capital inputs. Consider an
immigration shock equal to 1% of total employment, holding the skill mix of migrants
fixed. To assess the overall impact of this shock, we must consider the effect of migrant
inflows in any given cell (e, x) on the wages of every other cell (e′, x′): this yields a 32×32
matrix. For e′ 6= e pairs, the entire effect comes through the net output term, log Ỹ , in
(C1) and (C2). For pairs with e′ = e and x′ 6= x, we must also consider the impact on
the education aggregator, logLe. For same-cell pairs (i.e. e′ = e and x′ = x), we must
also consider the impact on the education-experience aggregator, logLex; and for migrant
wages in the same cell, we must also consider the effect via the logMex term in (C2).
Finally, workers in the same cell (e′ = e and x′ = x) will be subject to mark-down effects
via φNex and φMex.

Effect on wage equation components

How does the immigration shock affect the various components of (C1) and (C2)? Let
N ≡ ∑

e,xNex denote the aggregate native stock, and M ≡ ∑
e,xMex the aggregate

migrant stock. Notice first that, holding the native stock and migrant skill mixed fixed,
a 1% increase in the aggregate migrant stock M (relative to total employment, M +N),
i.e. dM/ (M +N), will cause the log migrant stock Mex in each cell (e, x) to expand by:

d logMex = 0.01 · N +M

M
(C3)

For a given change in Mex, the education-experience aggregator Lex will increase by:

d logLex
d logMex

= αZexM
σZ
ex

NσZ
ex + αZexMσZ

ex

= F̃MexMex

F̃MexMex + F̃NexNex

(C4)

where the second equality follows from (13), and where:

F̃Nex = exp (φNex)WNex (C5)

F̃Mex = exp (φMex)WMex (C6)

are the (long run) cell-specific marginal products of native and migrant labour respec-
tively. Notice that, under perfect competition (i.e. φNex = φMex = 0), F̃MexMex

F̃MexMex+F̃NexNex
will equal the migrant wage bill share (within the labour market cell).

For a given change in Lex in experience group x, the education aggregator Le increases
by:

d logLe
d logLex

= αexLex∑
x′ αex′Lex′

= F̃MexMex + F̃NexNex∑
x′

(
F̃Mex′Mex′ + F̃Nex′Nex′

) (C7)
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where the second equality follows from (12), and where F̃MexMex+F̃NexNex∑
x′(F̃Mex′Mex′ +F̃Nex′Nex′) will equal

the wage bill share of experience group x (within education group e) under perfect com-
petition.

And finally, for a given change in Le in some education group e, net output Ỹ increases
by:

d log Ỹ
d logLe

= αeLe∑
e′ αe′Le′

=
∑
x′

(
F̃Mex′Mex′ + F̃Nex′Nex′

)
∑
e′,x′

(
F̃Me′x′Me′x′ + F̃Ne′x′Ne′x′

) (C8)

where the second equality follows from (11), and where
∑

x′(F̃Mex′Mex′ +F̃Nex′Nex′)∑
e′,x′(F̃Me′x′Me′x′ +F̃Ne′x′Ne′x′) will

equal the wage bill share of education group e under perfect competition.

Mark-down effects

Next, consider the mark-down effects, which fall on workers in the same cell (i.e.
e′ = e and x′ = x). The change in the native mark-down φNex is given by
γ2 · d (Mex/ (Mex +Nex)), where γ2 is the estimated mark-down effect from equation
(20), and d (Mex/ (Mex +Nex)) is the change in migrant share. As a response to logMex

(holding native employment fixed), this is equal to:

dφNex
d logMex

=
γ2 · d

(
Mex

Mex+Nex

)
d logMex

= γ2
NexMex

(Nex +Mex)2 (C9)

The change in the migrant mark-down φMex depends on our identifying assumption.
Under equal mark-downs (H1), we simply have:

dφMex

d logMex

= dφNex
d logMex

(C10)

But under equal productivity (αZex = σZ = 1):

dφMex

d logMex

= dφNex
d logMex

+ β1 (C11)

where β1 is the coefficient on log (Mext/Next) in the relative wage equation (18). Intu-
itively, if we assume αZex = σZ = 1, we must attribute any change in relative wages (as
picked up by β1) to differential (migrant/native) mark-down effects.

Aggregation of wage change components

The equations above describe the effect of immigration in any given cell (e, x) on the
various aggregators (Lex, Le and Ỹ ), as well as the mark-downs (φNex and φMex). To

59



compute the overall response of wages in some education-experience cell, accounting for
immigration d logMex across the full distribution of cells (e, x), we simply aggregate over
all these effects. Using (C1) and (C2), we have:

d logWNex = (1− σE)
∑
e′,x′

d log Ỹ
d logLe′

· d logLe′

d logLe′x′
· d logLe′x′

d logMe′x′
· d logMe′x′ (C12)

+ (σE − σX)
∑
e,x′

d logLe
d logLex′

· d logLex′

d logMex′
· d logMex′

+ (σX − σZ) d logLex
d logMex

· d logMex − dφNex

and

d logWMex = (1− σE)
∑
e′,x′

d log Ỹ
d logLe′

· d logLe′

d logLe′x′
· d logLe′x′

d logMe′x′
· d logMe′x′ (C13)

+ (σE − σX)
∑
e,x′

d logLe
d logLex′

· d logLex′

d logMex′
· d logMex′

+ (σX − σZ) d logLex
d logMex

· d logMex − (1− σZ) d logMex − dφMex

Distributional effects and surplus

We now turn to Panel C of Table 9. The first row of Panel C reports the impact on total
migrant wage income, relative to net output. To derive this, we first compute the change
in migrant wage income in each labour market cell (e, x):

d (WMexMex) = WMexMex (d logWMex + d logMex) (C14)

Similarly, the change in native wage income in cell (e, x) can be written as:

d (WNexNex) = WMexNex · d logWNex (C15)

To compute the total change in migrant and native wage bills, we sum (C14) and (C15)
over cells (e, x). And we express these changes relative to net output Ỹ , where Ỹ can be
written as:

Ỹ =
∑
e,x

(
F̃MexMex + F̃NexNex

)
(C16)

given our assumption that production has constant returns. The change in monopsony
rents R (relative to Ỹ ) can be expressed as a residual, after subtracting changes in total
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wage income from total income growth:

dR

Ỹ
= d log Ỹ −

∑
e,x

d (WNexNex)
Ỹ

−
∑
e,x

d (WMexMex)
Ỹ

(C17)

Finally, if we assume that all monopsony rents go to natives, we can write the “immigra-
tion surplus” S (relative to net output) as:

S

Ỹ
= dR

Ỹ
+
∑
e,x

d (WNexNex)
Ỹ

(C18)

C.2 Regularisation counterfactual

The procedure for the regularisation counterfactual is similar to the immigration shock,
but not identical. We begin by disaggregating the cell-specific migrant employment stock,
Mex, into legal and undocumented components:

Mex ≡M legal
ex +Mundoc

ex (C19)

Let πex be the fraction of migrant employment in cell (e, x) which is undocumented:

πex ≡
Mundoc

ex

Mex

(C20)

In the regularisation counterfactual, we consider the impact of transforming a small (and
proportionally equal) number of undocumented migrants in every education-experience
cell to legal migrants. That is, we consider a small (and equal) decrease in log πex in
every cell. For a policy which regularises 1% of total employment, log πex decreases in
every (e, x) cell by:

d log πex = 0.01 · N +M

Mundoc
(C21)

We assume here that all workers (natives, legal migrants and undocumented migrants)
within education-experience cells are perfect substitutes: i.e. σZ = 1. However, we permit
productive differences between these workers. In place of (13), we therefore write the cell-
level input Lex as:

Lex = Nex + αlegalZex M
legal
ex + αundocZex Mundoc

ex (C22)

where αlegalZex and αundocZex are the relative efficiencies of each migrant type. The production
technology at higher nests is identical to before: i.e. (11) and (12) are unchanged.

In place of (C2), we now have distinct wage equations for legal and undocumented
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migrants:

logW legal
Mex = log

(
αeαexα

legal
Zex

)
+ (1− σE) log Ỹ + (σE − σX) logLe (C23)

− (1− σZ) logLex − φlegalMex

logW undoc
Mex = log

(
αeαexα

undoc
Zex

)
+ (1− σE) log Ỹ + (σE − σX) logLe (C24)

− (1− σZ) logLex − φundocMex

where φlegalMex and φundocMex are their respective cell-specific mark-downs.

Effect on wage equation components

Using (C22), we begin by consider the impact of a change in d log πex on logLex in a
given cell, in place of equation (C4) above:

d logLex
d log πex

=

(
F̃ undoc
Mex − F̃

legal
Mex

)
Mundoc

ex

F̃ legal
MexM

legal
ex + F̃ undoc

Mex Mundoc
ex + F̃NexNex

(C25)

where

F̃Nex = exp (φNex)WNex (C26)

F̃ legal
Mex = exp

(
φlegalMex

)
W legal
Mex (C27)

F̃ noncit
Mex = exp

(
φnoncitMex

)
W undoc
Mex (C28)

are the cell marginal products. Similarly to (C7) and (C8) above, we can then derive
changes in the education-level aggregator d logLe and net output d log Ỹ , but simply
replacing all occurrences of

{
F̃MexMex

}
with

{
F̃ legal
MexM

legal
ex + F̃ undoc

Mex Mundoc
ex

}
.

Mark-down effects

We now turn to the mark-down responses. Motivated by our empirical estimates, we sup-
pose the mark-downs respond only to the undocumented share of cell-specific employment
(and not to the share of legal migrants). For simplicity, we also assume this response
is identical (within cells) for natives, legal migrants and undocumented migrants alike.
The change in the mark-downs is given by γundoc2 · d

(
Mundoc

ex / (Mex +Nex)
)
, where γundoc2

is the estimated effect of the undocumented share in Table 8. As a response to logMex

(holding native and total migrant employment fixed), this can be expressed as:

dφNex
d log πex

= dφlegalMex

d log πex
= dφundocMex

d log πex
=
γundoc2 · d

(
Mundoc
ex

Mex+Nex

)
d log πex

= γundoc2
Mundoc

ex

Mex +Nex

(C29)
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Aggregation of wage change components

Using the various equations above, we can then aggregate over the components of the
wage equation, to derive wage changes in every education-experience cell, just as we do in
equations (C12) and (C13) for the immigration shock. Since we assume the mark-down
response is identical for all workers within cells, and that all workers are perfect substitutes
within cells, the wage response is identical across natives and migrants. Specifically:

d logWex = (1− σE)
∑
e′,x′

d log Ỹ
d logLe′

· d logLe′

d logLe′x′
· d logLe′x′

d log πe′x′
· d log πe′x′ (C30)

+ (σE − σX)
∑
e,x′

d logLe
d logLex′

· d logLex′

d log πex′
· d log πex′

+ (σX − σZ) d logLex
d logMex

· d log πex − dφNex

Distributional effects and surplus

Using (C30), we can then compute the distributional effects in the same way as before.
The only difference is the cell-specific migrant wage bill change in equation (C14), which
we now replace with:

d (WMexMex) = d
(
W legal
MexM

legal
ex +W undoc

Mex Mundoc
ex

)
(C31)

=
(
W undoc
Mex −W

legal
Mex

)
Mundoc

ex d log πex
+
(
W legal
MexM

legal
ex +W undoc

Mex Mundoc
ex

)
d logWex

D Further details on data

D.1 Adjusting cell-level wages for changes in composition

In most specifications, we adjust native and migrant wages for observable changes in
demographic composition over time. In this section, we explain how we implement this
adjustment.

For natives, we proceed as follows. We begin by pooling census and ACS microdata
from all observation years. Separately for each of our 32 education-experience cells, and
separately for native men and women, we regress log wages on a quadratic in age, a
postgraduate education indicator (for college graduate cells only), race effects (Hispanic,
Asian, black), and a full set of year effects.42 We then predict the mean male and female

42We have experimented with residualizing also by state, industry and occupation, but this makes
negligible difference to our results.
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wage for each year, for a distribution of worker characteristics identical to the multi-year
pooled sample (within education-experience cells). And we then compute a composition-
adjusted native wage in each cell-year by taking weighted averages of the predicted male
and female wages (using the gender ratios in the pooled sample as weights).

We follow identical steps for migrants, but replacing the race indicators with dummies
covering 12 global regions of origin43, and also including an indicator for recent arrivals
(up to five years in the US44).

D.2 Instrument for new immigrant stocks

In this section, we describe in greater detail how we construct the instrument for new
immigrant stocks, M̃new

ext . As we explain in Section 4.2 in the main text, this is a weighted
aggregate of historical cohort sizes in origin countries. We construct this weighted average
using the coefficient estimates of the following linear regression:

logMnew
oext = λMnew

0 +λMnew
1 logHistoricalCohortSizeoext+λMnew

2 Mobilityex+Regiono+εMnew
oext

(D1)
where Mnew

oext the US population of new migrants (up to ten years in the US) at each ob-
servation year t, for each of 164 origin countries o and 32 education-experience cells (e, x).
We take this information from our ACS and census samples. HistoricalCohortSizeoext is
the historical size of the relevant education cohort at origin o, ten years before t, which we
take from Barro and Lee (2013) and the World Population Prospects database (United
Nations, 2024).45 Of course, we cannot observe the historical sizes of education cohorts
aged 18-33 in year t, since many of them will not have reached their final education status
ten years previously: we assign these individuals to education groups in the same way
as we do for US natives (as described in Section 4.2), based on the education choices
of the previous cohort (in the relevant origin country). Conditional on cohort size, one
might expect more emigration to the US from more mobile demographic groups – espe-
cially the young. To account for this, we control in (D1) for a time-invariant index of
cell-specific residential mobility, Mobilityex, which we describe in the following section

43Specifically: North America, Mexico, Other Central America, South America, Western Europe,
Eastern Europe and former USSR, Middle East and North Africa, Sub-Saharan Africa, South Asia,
Southeast Asia, East Asia, Oceania.

44This category is available in all census years.
45The Barro-Lee data offer population counts by country, education and 5-year age category for indi-

viduals aged 15 or over. We identify Barro and Lee’s “complete tertiary” education category with college
graduates, “incomplete tertiary” with some college, “secondary complete” with high school graduates,
and all remaining categories with high school dropouts. We impute single-year age counts by dividing
the 5-year stocks equally across their single-year components. To predict historical cohort sizes of the
youngest groups, we also require counts of under-15s; and we take this information from the World
Population Prospects database.
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(Appendix D.3). And finally, we control for a set of 12 region of origin effects46, Regiono,
which account for the fact that demographic shifts in certain global regions matter more
for emigration to the US. As it turns out, origin cohort size delivers substantial predic-
tive power: we estimate a λMnew

1 of 0.49, with a standard error of 0.03 (clustered by
education-experience cells). The coefficient λMnew

2 on the mobility index is 1.21, with a
0.06 standard error.

Using our estimates of (D1), we then predict logMnew
oext for every origin o, education-

experience cell (e, x) and observation year t. And to generate our instrument M̃new
ext for

the cell-level (e, x) stock of new migrants, we sum the predicted Mnew
oext over origins o:

M̃new
ext =

∑
o

exp
(
λ̂Mnew

0 + λ̂Mnew
2 Mobilityex +Regiono

)
·HistoricalCohortSizeλ̂

Mnew
1
oext

(D2)
Effectively, this is a weighted aggregate of historical cohort sizes in origin countries (ten
years before t), where the weights depend on time-invariant origin-specific migration
propensities (as picked up by the Regiono effects) and cell mobility (as picked up by
the Mobilityex index). Notice we do not rely on e, x or t fixed effects in our predictive
regression (D1), as these may pick up migratory responses to unobserved cell-level demand
shocks; and the entire purpose of this instrument is to exclude such variation.

D.3 Mobility index for predicting new immigrant stocks

In this section, we describe our education-experience index of residential mobility
Mobilityex, which we use to predict new migrant stocks in equation (D1). One might
choose to measure mobility using cell-level (e, x) shares of new immigrants in the US
population. But of course, this may pick up demand effects at the education-experience
cell level, which we are attempting to exclude (as US cells with stronger demand may
attract more immigrants). Instead, we proxy mobility with cross-state migration within
the US rather than international migration.

More specifically, we use the log rate of cross-state migration, based on the 1960
census. We use the log rate to match the log migrant inflow on the left-hand side of (D1).
The census reports place of residence five years previously. But our dependent variable
is the stock of new immigrants who arrived in the last ten years. These differences may
matter, given we are studying mobility within fine 5-year experience cells. We address this
inconsistency in two steps. First, we compute internal mobility shares (i.e. the probability
of living in a different state five years previously) by education and 5-year experience cell

46Specifically: North America, Mexico, Other Central America, South America, Western Europe,
Eastern Europe and former USSR, Middle East and North Africa, Sub-Saharan Africa, South Asia,
Southeast Asia, East Asia, Oceania.
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Table D1: Residential mobility index

Experience groups
1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

HS dropouts -2.422 -2.064 -2.092 -2.399 -2.686 -2.938 -3.140 -3.263
HS graduates -2.137 -1.842 -2.007 -2.315 -2.520 -2.730 -2.888 -2.974
Some college -1.709 -1.480 -1.718 -1.985 -2.191 -2.466 -2.704 -2.843
College graduates -1.260 -1.138 -1.448 -1.764 -2.073 -2.392 -2.625 -2.752

This table sets out values of the residential mobility index,Mobilityex, described in Appendix
D.3. This index is essentially the log rate of cross-state mobility (within the US), based on
the 1960 census.

(denote these shares as ShareDiffState5yrex). And for each education-experience cell
(e, x), we then compute the mobility index as:

Mobilityex = log
[1
2 (ShareDiffState5yrex + ShareDiffState5yrex−1)

]
(D3)

i.e. the log average of internal mobility shares of cells (e, x) and (e, x−1), where the latter
predicts the mobility of the same education cohort five years previously. For example,
the mobility index of college graduates in experience group 8 (i.e. with 36-40 years
of experience) is computed as the log average of graduates’ 5-year mobility shares in
experience groups 8 (36-40 years of experience) and 7 (31-35 years).

The computation ofMobilityex for experience group 1 (1-5 years of experience) is more
challenging: we require a value of ShareDiffState5yrex for a hypothetical pre-career
experience group “0” (between -4 and 0 years of experience). We apply the following
strategy. For college graduates (who we assume leave school at age 23), we compute
ShareDiffState5yrex for experience group “0” as the migration probability of students
aged 19-23. Similarly, for the “some college” group in experience group 0, we use the
migration probability of students aged 17-21. For high school graduates, we use students
aged 15-19s; and for high school dropouts, we use students aged 13-17.

We set out the resulting mobility index Mobilityex in Table D1. As is well known,
cross-state mobility is highest among the young and highly educated.

D.4 Cross-validation of undocumented migrant stocks

As we explain in Section 6.3, we probabilistically assign migrants to legal status (in every
education-experience cell and year) using origin-specific undocumented shares from the
Department of Homeland Security (2003). In this appendix, we cross-validate our esti-
mates of undocumented migrant stocks, by education, against alternative methodologies.
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Since the 1980s, demographers have been estimating the undocumented population as
a residual, taking the difference between (i) the foreign-born population which appears
in surveys (corrected for undercoverage) and (ii) official statistics of the legal migrant
population: see Warren and Passel (1987). This is the source of the DHS origin-specific
estimates which we apply in our analysis. More recently, Jeffrey Passel and colleagues
at the Pew Research Center (e.g. Passel, 2006) have attempted to identify “likely” un-
documented migrants in the Current Population Survey (CPS), to facilitate richer demo-
graphic analysis. The first step is to identify migrants who are likely legal residents, based
on e.g. their country of origin, year of immigration, occupation, household composition,
and naturalisation status (though recent migrants and Central Americans are excluded
from this calculation, due to a known tendency to heavily over-report naturalisation). In
the second step, the remaining migrants are probabilistically assigned to undocumented
status, to match external “residual” estimates of the undocumented population by US
geography, country of origin, and other dimensions. This second step is complex and
difficult to replicate. However, Borjas (2017b) shows he can identify a population of un-
documented migrants in the CPS (based again on origin, year of immigration, occupation
and naturalisation), which closely matches the population from the Pew files (in terms
of size and characteristics), but without any probabilistic imputation.

Using the CPS-ASEC samples of 2012 and 2013, Borjas (2017b) describes the char-
acteristics of natives, legal and undocumented migrants, aged 20-64, based on the Pew
undocumented identifier (to which he was given access) and his own. As Borjas shows in
his Table 1, these are very similar. In Panels A and B of Table D2, we reproduce Borjas’
estimates of population size and education composition (for the two methodologies). And
in Panel C, we replicate this same exercise using our methodology (using CPS data from
IPUMS: Flood et al., 2018), where legal status is imputed probabilistically using country
of origin alone. Reassuringly, the estimates are very similar to both the Pew files and
Borjas’ reconstruction.

D.5 Disaggregation of 1960 migrant stocks by year of arrival

The 1960 census does not report migrants’ year of arrival, but we require this information
for the analysis in Appendix E.6. In particular, we need to know the employment stocks
of “old” migrants (i.e. in the US for more than ten years) by education-experience cell.
We impute these stocks using migrant cohort sizes ten years later. There are three steps:

1. For each education-experience stock of old migrants in 1960 (more than ten years in
US), predict the size of the same cohort in 1970 (i.e. migrants with more than twenty
years). We assume here that prospective high school graduates leave education at
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Table D2: Cross-validation of education shares by legal status: CPS-ASEC 2012-3

% of total Education shares (%)
population HS dropout HS grad Some coll Coll grad

Panel A: Pew CPS files

Natives 82.9 7.1 29.3 32.7 30.9
Legal migrants 12.4 19.2 24.0 21.0 35.8
Undocumented migrants 5.4 42.0 28.8 13.2 16.0

Panel B: Borjas (2017b) reconstruction

Natives 82.9 7.1 29.3 32.7 30.9
Legal migrants 11.5 19.9 25.2 21.2 33.8
Undocumented migrants 5.7 39.5 26.9 13.5 20.1

Panel C: Imputed by country of origin

Natives 82.8 7.1 29.3 32.7 30.9
Legal migrants 13.6 21.0 25.0 20.0 34.1
Undocumented migrants 4.8 43.4 28.0 14.4 14.2

This table reports estimated population and education composition of natives, legal migrants
and undocumented migrants, aged 20-64, in the Current Population Survey ASEC files of 2012
and 2013, based on various methodologies. The education shares are percentages of the native or
legal/undocumented migrant population. Panels A and B reproduce Table 1 of Borjas (2017b),
and Panel C is based on our own methodology (imputing legal status by country of origin).

19, those with some college at 21, and college graduates at 23. These assumptions
allow us to assign every immigrant in 1970 to a 1960 labour market cell.

2. Account for emigration. If foreign-born residents leave the US, the cohort size in
1970 should be smaller than in 1960. To account for this, we repeat step (1) for
the 1970 and 1980 census years; and we regress the log actual cohort size (in 1970)
on the log predicted size (based on 1980 census data). We then use the regression
estimates to predict the 1960 stocks of old migrants, based on the 1970 cohort size.
The regression coefficient is 1.11, which suggests about 10% of immigrants leave
the country each decade, which is consistent with Ahmed and Robinson (1994).

3. Convert from population to employment. Step (2) yields estimates of the old
migrant population in every education-experience cell in 1960. For our analysis
though, we require employment stocks. Our approach is to compute employment
rates for the total migrant population in each 1960 education-experience cell, and
then to apply these rates to the old migrant stocks. (Note the population and
employment stocks of “new” migrants can be computed as the residual, after sub-
tracting old migrants from the total migrant stock.)
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Table E1: IV estimates of native wage equation for selection of (αZ , σZ) values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Fixed effects (224 observations)

logZ (Next,Mext) 0.027* 0.026* 0.026* 0.527*** 0.542*** 0.560*** 1.027*** 1.103*** 1.020***
(0.016) (0.014) (0.015) (0.016) (0.018) (0.022) (0.016) (0.062) (0.098)

Mig share mext -0.502*** -0.550*** -0.568*** -0.502*** -1.551*** -1.970*** -0.502*** -3.022*** -3.976***
(0.082) (0.062) (0.058) (0.082) (0.064) (0.065) (0.082) (0.218) (0.242)

Panel B: First differences (192 observations)

logZ (Next,Mext) 0.026 0.025 0.025 0.526*** 0.544*** 0.568*** 1.026*** 1.139*** 1.072***
(0.020) (0.018) (0.019) (0.020) (0.023) (0.028) (0.020) (0.070) (0.084)

Mig share mext -0.369*** -0.418*** -0.435*** -0.369*** -1.448*** -1.891*** -0.369*** -2.982*** -3.964***
(0.076) (0.078) (0.083) (0.076) (0.083) (0.093) (0.076) (0.254) (0.319)

σZ 1 1 1 0.5 0.5 0.5 0 0 0
αZ 0 1 2 0 1 2 0 1 2

This table offers complete regression estimates (i.e. IV estimates of the native wage equation (20)) corresponding to a selection of (αZ , σZ)
values in Figure 2. These replicate the exercises of columns 6 and 8 of Table 5 (with the same instruments), but for different (αZ , σZ) values.
*** p<0.01, ** p<0.05, * p<0.1.

E Robustness of migrant share effect

E.1 Regression tables corresponding to Figure 2

In Table E1, we set out IV estimates of the native wage equation (20), corresponding to
a selection of (αZ , σZ) values in Figure 2. Notice that column 2 (with αZ = σZ = 1) is
identical to columns 6 and 8 of Table 5 (Panel B).

E.2 Graphical illustration of mark-down effects

One may be concerned that our γ2 estimates are driven by outliers. To address this,
Figure E1 graphically illustrates our OLS and IV estimates of γ2, both for fixed effects
and first differences, based on columns 3, 6, 7 and 8 of Table 5 (Panel B). These plots
partial out the effects of the controls (i.e. log total employment and the various fixed
effects) from both native wages (on the y-axis) and migrant share (on the x-axis).47 By
inspection of the plots, it is clear the slope coefficients (which identify the γ2 estimates
of Table 5) are not driven by outliers.

E.3 Robustness to wage definition and weighting

In Table E2, we confirm that our IV estimates of the native wage equation (20) are robust
to the choice of wage variable and weighting.

47For IV, we first replace both (i) log total employment and (ii) migrant share with their linear
projections on the instruments and fixed effects; and we then follow the same procedure as for OLS.
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Figure E1: Visualisation of native wage responses to migrant share

This figure graphically illustrates the OLS and IV effects of migrant employment share, mext, on native composition-
adjusted wages, based on columns 3, 6, 7 and 8 of Table 5 (Panel B).

In each specification, the right hand side is identical to columns 6 and 8 of Table 5
(Panel B), and we also use the same instruments. The only difference is the left hand
side variable and the choice of weighting. Odd columns study the wages of native men,
and even columns those of native women. Columns 1-2 and 5-6 study weekly wages of
full-time workers (as in the main text), and the remaining columns hourly wages of all
workers. All wage variables are adjusted for changes in demographic composition, in line
with the method described in Appendix D.1. The estimates in Panel A are unweighted
(as in Table 5); while in Panel B, we weight observations by total cell employment. It
turns out the estimates are similar across specifications.

E.4 Functional form of mark-down function

In the native wage equation (20), we implement a linear approximation of the mark-
down function, i.e. summarizing the mark-down effect with the migrant share mext on
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Table E2: Robustness of native IV estimates to wage variable and weighting

Fixed effects First differences
FT weekly wages Hourly wages FT weekly wages Hourly wages
Men Women Men Women Men Women Men Women
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Unweighted estimates

log (Next +Mext) 0.021 0.045** 0.018 0.024 0.005 0.050*** 0.005 0.043**
(0.013) (0.016) (0.013) (0.022) (0.022) (0.018) (0.024) (0.020)

Mig share mext -0.460*** -0.589*** -0.420*** -0.584*** -0.398*** -0.381*** -0.353*** -0.369***
(0.054) (0.081) (0.060) (0.084) (0.087) (0.109) (0.076) (0.086)

Panel B: Weighted by cell employment

log (Next +Mext) 0.025 0.057** 0.020 0.034 -0.013 0.051* -0.012 0.042
(0.018) (0.022) (0.018) (0.027) (0.030) (0.028) (0.033) (0.026)

Mig share mext -0.467*** -0.543*** -0.416*** -0.549*** -0.463*** -0.360** -0.404*** -0.339***
(0.054) (0.100) (0.064) (0.100) (0.116) (0.144) (0.108) (0.115)

Observations 224 224 224 224 192 192 192 192
This table assesses the robustness of our IV estimates of the native wage equation (20) to wage definition and choice of weighting.
The right-hand side is identical to columns 6 and 8 of Table 5 (Panel B), and we also use the same instruments. Robust standard
errors, clustered by 32 education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

the right-hand side. In this appendix, we show this linear approximation is theoretically
attractive and empirically robust. We contrast it against an alternative specification, the
log relative migrant supply log (Mext/Next), which appears elsewhere in our model (in
the relative wage equation). Though the log (Mext/Next) specification yield qualitatively
similar empirical results, the migrant share mext picks up the entire mark-down effect in
a horse-race regression, just as our model predicts.

Theoretical validity of linear approximation

We begin by showing that the skill j mark-down φj is much better approximated as a lin-
ear function of the migrant share mj than of the log relative migrant supply, log (Mj/Nj),
in a model with non-discriminating firms. The derivative of the mark-down φj in equation
(A2), with respect to the migrant share mj ≡Mj/ (Nj +Mj), is then:

dφj
dmj

=

(
eφj − 1

)2

eφj
· (ε̃N − ε̃M) (E1)

Notice the migrant share mj has no effect on the mark-down if ε̃N = ε̃M , but increases
the mark-down if migrants supply labour less elastically (ε̃M < ε̃N) even if the migrant
share is small.

However, this is not the case for the relationship between φj and the log relative
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supply of migrants, i.e. log (Mj/Nj) or equivalently log (mj/ (1−mj)). The derivative
can be written as:

dφj

d log
(
Mj

Nj

) = dφj
dmj

· dmj

d log
(
Mj

Nj

) =

(
eφj − 1

)2

eφj
·mj (1−mj) (ε̃N − ε̃M) (E2)

This goes to zero as the migrant share mj becomes small, even if ε̃N 6= ε̃M . Intuitively, if
mj is initially small, a very small increase inmj (which has little effect on φj) will mechan-
ically generate a large increase in log (Mj/Nj). Given this, a linear relationship between
φj and log (Mj/Nj) will offer a relatively poor approximation of the true relationship,
especially for small migrant share mj.

Empirical performance of linear approximation

In Table E3, we compare the empirical performance of the mj and log (Mj/Nj) approx-
imations in the native wage equation (20). To construct an instrument for the log rela-
tive supply, we apply this functional form to the predicted stocks: i.e. log

(
M̃ext/Ñext

)
.

Column 1 replicates our baseline estimates (in column 6 of Table 5), using the mext spec-
ification. Column 2 shows we get qualitatively similar results when we replace mext with
log (Mext/Next): both take large negative coefficients. However, in a horse-race between
the two, column 3 shows the mark-down effect is entirely picked up by the migrant share
mext: this is consistent with our model’s predictions. Notice the F-statistics are univer-
sally large in this column: i.e. our instruments offer sufficient power to disentangle the
effects of mext and log (Mext/Next). Columns 4-6 repeat this exercise in first differences:
the results are very similar.

E.5 Alternative specification for instrument

One may be concerned that our predictor for the migrant stock, M̃ext, is largely noise;
and that the first stage of our native wage equation is driven instead by the corre-
lation between native employment Next and its predictor Ñext – which appear in the
denominators of the migrant share, mext ≡ Mext/ (Next +Mext), and its instrument,
m̃ext ≡ M̃ext/

(
Ñext + M̃ext

)
. See Clemens and Hunt (2019) for a related criticism.

However, Table E4 shows the IV estimates are robust to replacing the migrant share
instrument m̃ext with its numerator M̃ext. We scale M̃ext by 10−6 to make the coefficients
visible in the table.

The instruments take the correct sign in the first stage: the migrant share is decreasing
in log

(
Ñext + M̃ext

)
but increasing in M̃ext; and the associated F-statistics are large,

especially in first differences. Comparing the second stage estimates to Table 5, the
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Table E3: Robustness of IV estimates to functional form of mark-down effect

Fixed effects First differences
(1) (2) (3) (4) (5) (6)

log (Next +Mext) 0.026* 0.006 0.023 0.025 0.010 0.034
(0.014) (0.025) (0.031) (0.018) (0.019) (0.027)

mext ≡ Mext
Next+Mext

-0.550*** -0.518** -0.418*** -0.514***
(0.062) (0.195) (0.078) (0.154)

log Mext
Next

-0.092*** -0.007 -0.055*** 0.021
(0.026) (0.052) (0.019) (0.034)

Instruments log
(
Ñext + M̃ext

)
log
(
Ñext + M̃ext

)
log
(
Ñext + M̃ext

)
log
(
Ñext + M̃ext

)
log
(
Ñext + M̃ext

)
log
(
Ñext + M̃ext

)
M̃ext

Ñext+M̃ext
log M̃ext

Ñext

M̃ext

Ñext+M̃ext
, log M̃ext

Ñext

M̃ext

Ñext+M̃ext
log M̃ext

Ñext

M̃ext

Ñext+M̃ext
, log M̃ext

Ñext

F-stat: log (Next +Mext) 251.14 120.49 110.42 97.10 88.90 49.29
F-stat: mext 202.13 64.83 80.04 75.67
F-stat log Mext

Next
54.35 57.45 74.69 48.67

Observations 224 224 224 192 192 192
In this table, we study the robustness of our IV estimates of the native wage equation (20) to the specification of the mark-down effect. Columns 1 and 4
replicates the baseline specifications of Table 5 (columns 6 and 8). Columns 2 and 5 replace the migrant share, mext, with the log relative migrant supply
log (Mext/Next); and columns 3 and 6 include both simultanoeusly. Robust standard errors, clustered by 32 education-experience cells, are in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.

Table E4: Alternative instrument specification for native wage equation

First stage Second stage
Fixed effects (FE) First differences (FD) FE FD

log (Next +Mext) mext log (Next +Mext) mext logWNext logWNext

(1) (2) (3) (4) (5) (6)

log
(
Ñext + M̃ext

)
1.001*** -0.070** 0.790*** -0.047***
(0.063) (0.027) (0.083) (0.013)

M̃ext × 10−6 -0.179* 0.240*** -0.257* 0.211***
(0.089) (0.049) (0.129) (0.024)

log (Next +Mext) 0.043* 0.027
(0.022) (0.025)

Mig share mext -0.386*** -0.387***
(0.111) (0.126)

SW F-stat 41.64 21.67 65.54 56.92 - -
Observations 224 224 192 192 224 192

This table replicates the first and second stage estimates of the native wage equation (20) in Tables 4 and 5, but
using an alternative instrument for migrant share. In the main text, our two instruments are log

(
Ñext + M̃ext

)
and

m̃ext ≡ M̃ext/
(
Ñext + M̃ext

)
; but here, we replace m̃ext with M̃ext × 10−6, the predicted migrant employment level

(which we have scaled to make the coefficients visible). *** p<0.01, ** p<0.05, * p<0.1.
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Table E5: Impact of new and old migrant shares: First stage

Fixed effects First differences
log (Next +Mext) Mold

ext
Next+Mext

Mnew
ext

Next+Mext
log (Next +Mext) Mold

ext
Next+Mext

Mnew
ext

Next+Mext

(1) (2) (3) (4) (5) (6)

log
(
Ñext + M̃ext

)
1.032*** 0.004 0.047*** 0.888*** -0.009 0.052***
(0.073) (0.011) (0.014) (0.089) (0.008) (0.014)

Predicted old mig share: M̃old
ext

Ñext+M̃ext
-0.006 1.387*** -0.102 0.403 1.089*** 0.151
(0.264) (0.079) (0.078) (0.484) (0.092) (0.098)

Predicted new mig share: M̃new
ext

Ñext+M̃ext
2.239*** 0.094 0.643*** 2.400*** 0.120 0.433**
(0.437) (0.110) (0.194) (0.573) (0.139) (0.180)

SW F-stat 94.00 435.22 16.63 4.01 8.34 2.40
Observations 224 224 224 192 192 192

This table presents first stage estimates for the native wage equation (20) (as in Table 4), but now accounting separately for the effect of
the new migrant share Mnew

ext / (Next +Mext), i.e. up to ten years in the US, and the old migrant share Mold
ext/ (Next +Mext), i.e. more

than ten years. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors, clustered by 32
education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

migrant share coefficients are somewhat smaller: both the fixed effect and first differenced
estimates are -0.39 (down from -0.55 and -0.42 respectively). The standard errors are
unsurprisingly larger, but both estimates remain statistically significant.

E.6 Heterogeneous effects of new and old migrants

Here, we study whether mark-downs respond differently to “new” migrants (up to ten
years in the US) and “old” migrants (more than ten years).48 Our approach is to con-
trol separately for the shares of new migrants Mnew

ext / (Next +Mext) and old migrants
Mold
ext/ (Next +Mext) in the native wage equation (20). We construct distinct instruments

for each, i.e. M̃new
ext /

(
Ñext + M̃ext

)
and M̃ old

ext/
(
Ñext + M̃ext

)
. Table E5 reports first stage

estimates: our instruments perform very well in fixed effects, but offer limited power in
first differences (F-statistics are all below 10).

Table E6 presents our OLS and IV estimates. Both the new and old migrant shares
command large and negative effects. In OLS, the effects of old migrants are somewhat
larger (columns 1 and 3); but they are similar in the IV fixed effect specification (column
2). In the first differenced IV specification, the standard error on the new immigrant
share is too large to make definitive claims.

48We cannot construct employment stocks of new and old migrants in the 1960 census (which does not
report year of arrival); so we impute the 1960 stocks using information on the same migrant cohorts, by
year of arrival, 10 years later. See Appendix D.5 for further details.
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Table E6: Impact of new and old migrants: OLS and IV

Fixed effects First differences
OLS IV OLS IV
(1) (2) (3) (4)

log (Next +Mext) 0.011 0.028 0.005 0.032
(0.013) (0.021) (0.010) (0.044)

Old mig share: Mold
ext

Next+Mext
-0.544*** -0.546*** -0.429*** -0.389***
(0.039) (0.048) (0.053) (0.116)

New mig share: Mnew
ext

Next+Mext
-0.304** -0.579** -0.273** -0.530
(0.111) (0.282) (0.110) (0.647)

Observations 224 224 192 192
This table presents OLS and IV estimates of the native wage equation (20), but now
accounting separately for the effect of the new migrant shareMnew

ext / (Next +Mext),
i.e. up to ten years in the US, and the old migrant share Mold

ext/ (Next +Mext),
i.e. more than ten years. The fixed effect and first differenced specifications are
otherwise identical to Table 5. Robust standard errors, clustered by 32 education-
experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

E.7 Heterogeneous wage effects by education and experience

Another pertinent question is whether the mark-down effects differ across labour market
cells. To study this heterogeneity, we alternately interact the migrant share in equation
(20) with a college dummy (taking 1 for cells with any college education) and a high-
experience dummy (for 20+ years). These interactions require additional instruments:
we use the interactions between the predicted migrant share and the college/experience
dummies.

We report OLS and IV estimates in Table E7. Looking at the Sanderson-Windmeijer
F-statistics (which account for multiple endogenous variables), the instruments appear to
perform well. We find no significant evidence of heterogeneity by education or experience
in IV, though the college interactions are imprecisely estimated.

In Section 6 in the main text, we show that the migrant share effect is driven by
undocumented workers. Motivated by this insight, we now repeat the exercise of Table
E7, but replacing the overall migrant share mext with the employment share of undoc-
umented migrants mundoc

ext . As instruments for the undocumented migrant share and its
interactions, we use (i) the share of old Mexican migrants and (ii) the share of new Mex-
ican migrants, each interacted with a college or high-experience dummy: see Section 6.3
for an explanation of these instruments. We report our estimates in Table E8. As be-
fore, the F-statistics suggest the instruments perform well. Similar to Table E7, we find
no significant evidence of heterogeneous effects by education – though again, the college
interactions are imprecisely estimated. However, we do find that wage effects are more
negative in high-experience cells – though only in the first differenced specifications.
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Table E7: Heterogeneous native wage effects by education and experience

Fixed effects First differences
OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

log (Next +Mext) 0.034*** 0.026* 0.026** 0.026 0.013 0.018 0.004 0.024
(0.011) (0.013) (0.012) (0.016) (0.010) (0.015) (0.010) (0.026)

Mig share mext -0.487*** -0.553*** -0.491*** -0.550*** -0.367*** -0.422*** -0.312*** -0.414***
(0.034) (0.072) (0.070) (0.092) (0.042) (0.081) (0.060) (0.138)

mext × College 0.242 -0.031 0.093 -0.188
(0.220) (0.299) (0.127) (0.241)

mext × (Exp ≥ 20) -0.023 0.001 -0.114** -0.006
(0.054) (0.062) (0.055) (0.116)

F-Stat: log (Next +Mext) 119.11 147.56 70.81 32.19
F-Stat: mext 100.89 171.18 74.68 47.13
F-Stat: mext × College 29.80 41.07
F-Stat: mext × (Exp ≥ 20) 85.18 33.03
Observations 224 224 224 224 192 192 192 192

This table presents OLS and IV estimates of the native wage equation (20), but now accounting for differential effects of migrant
share across college/non-college and high/low-experience cells. We implement this by interacting both the migrant share and (in IV
specifications) its instrument with either a college or high-experience (more than 20 years) dummy. The fixed effect and first differenced
specifications are otherwise identical to Table 5. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust
standard errors, clustered by 32 education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table E8: Heterogeneous wage effects of undocumented migration

Fixed effects First differences
OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

log (Next +Mext) 0.050*** 0.052*** 0.051*** 0.056*** 0.027** 0.036* 0.018 0.027
(0.009) (0.012) (0.013) (0.016) (0.010) (0.018) (0.011) (0.021)

Undoc mig share mundoc
ext -1.103*** -1.152*** -1.002*** -1.160*** -0.795*** -1.018*** -0.614*** -0.674***

(0.096) (0.107) (0.138) (0.120) (0.115) (0.161) (0.125) (0.165)
mundoc
ext × College -1.653 -0.615 -0.563 -1.990

(1.515) (1.789) (0.954) (1.269)
mundoc
ext × (Exp ≥ 20) -0.049 0.027 -0.339*** -0.291**

(0.098) (0.093) (0.094) (0.133)

F-Stat: log (Next +Mext) 38.12 100.43 49.95 24.58
F-Stat: mundoc

ext 42.48 110.65 36.36 15.72
F-Stat: mundoc

ext × College 20.74 29.22
F-Stat: mundoc

ext × (Exp ≥ 20) 157.37 27.80
Observations 224 224 224 224 192 192 192 192

This table replicates the specifications of Table E7, except we now replace the overall migrant share mext with the undocumented migrant
share mundoc

ext . As instruments for the undocumented migrant share and its interactions, we use (i) the share of old Mexican migrants and
(ii) the share of new Mexican migrants, each interacted with a college or high-experience dummy: see Section 6.3 for an explanation of
these instruments. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors, clustered by 32
education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table E9: Robustness of native wage effects to dynamics: First stage

Fixed effects First differences
log (Next +Mext) Mig share mext log (Next +Mext) Mig share mext

Current Lagged Current Lagged Current Lagged Current Lagged
(1) (2) (3) (4) (5) (6) (7) (8)

log
(
Ñext + M̃ext

)
0.890*** 0.278*** 0.023 0.021 0.784*** 0.445*** 0.038** 0.005
(0.101) (0.093) (0.017) (0.013) (0.094) (0.104) (0.017) (0.012)

log
(
Ñext + M̃ext

)
: Lagged 0.128* 0.850*** -0.025 0.018** 0.098 0.880*** 0.029 0.014

(0.074) (0.096) (0.018) (0.008) (0.086) (0.099) (0.022) (0.009)
Predicted share m̃ext -0.539 -1.886*** 0.973*** 0.084 0.784** -0.452 0.966*** -0.006

(0.617) (0.581) (0.112) (0.076) (0.356) (0.424) (0.130) (0.065)
m̃ext: Lagged 2.292*** 1.143* 0.156 0.808*** 2.335*** 0.371 0.407** 0.855***

(0.602) (0.641) (0.117) (0.081) (0.594) (0.434) (0.166) (0.079)

SW F-stat 58.67 43.16 17.94 29.76 29.36 108.91 43.45 28.73
Observations 192 192 192 192 160 160 160 160

This table presents first stage estimates for the native wage equation (20) (as in Table 4), but this time controlling additionally for the one-period
lagged cell aggregator and migrant share. Since we include lagged observations, we lose one period of data. As additional instruments, and we use
lags of our existing instruments. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors, clustered
by 32 education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

E.8 Dynamic wage adjustment

One possible concern is serial correlation in the migrant share, conditional on the various
fixed effects. If wages adjust sluggishly to immigration, the lagged migrant share will be
an omitted variable; and in the presence of serial correlation, our γ2 estimate in the native
wage equation (20) may be biased (Jaeger, Ruist and Stuhler, 2018). However, as we now
show, our instruments have sufficient power to disentangle the effect of contemporaneous
and lagged shocks (despite serial correlation); and at least in IV, we find these dynamics
are statistically insignificant (i.e. past shocks have no influence on current wages).

We take the native wage equation (20) as a point of departure, but now control
additionally for the one-period lagged cell aggregator (in this case, total employment)
and migrant share. The lag is 10 years at all observation years except for 2019 (where the
lagged outcome corresponds to 2010). For IV, this requires two additional instruments:
we use the lags of our existing instruments.

We present our first stage estimates in Table E9. Each instrument has a large positive
effect on its corresponding endogenous variable, whether contemporaneous or lagged; and
the F-statistics are universally large. This suggests the instruments offer sufficient power
to disentangle the effects of contemporaneous and lagged immigration shocks.

Table E10 reports OLS and IV estimates. Since we include lagged observations, we
lose one period of data; so for comparison, we report estimates of the basic specification
(without lags) using the shorter sample. These look very similar to the full-sample esti-
mates in Table 5. Turning to the dynamic specification, the lagged migrant share picks
up about half the negative wage effect in OLS (columns 2 and 6): this might suggest there
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Table E10: Robustness of native wage effects to dynamics: OLS and IV

Fixed effects First differences
OLS OLS IV IV OLS OLS IV IV
(1) (2) (3) (4) (5) (6) (7) (8)

log (Next +Mext) 0.035** 0.043*** 0.026* 0.026 0.010 0.029** 0.022 0.027
(0.013) (0.012) (0.014) (0.019) (0.012) (0.012) (0.018) (0.019)

log (Next +Mext): Lagged 0.016 0.017 0.030** 0.032**
(0.010) (0.015) (0.012) (0.014)

Mig share mext -0.495*** -0.356*** -0.551*** -0.443*** -0.379*** -0.323*** -0.455*** -0.359***
(0.029) (0.053) (0.035) (0.075) (0.043) (0.060) (0.061) (0.075)

Mig share mext: Lagged -0.213** -0.112 -0.210* -0.193
(0.100) (0.100) (0.120) (0.131)

Observations 192 192 192 192 160 160 160 160
This table presents OLS and IV estimates of the native wage equation (20), but controlling additionally for the one-period lagged
cell aggregator and migrant share. Since we include lagged observations, we lose one period of data. Odd-numberd columns report
estimates of the basic specification (without lags), for this shorter sample. Even-numbered columns focus on the dynamic specification.
For IV, this requires two additional instruments: we use the lags of our existing instruments. The fixed effect and first differenced
specifications are otherwise identical to Table 5. Robust standard errors, clustered by 32 education-experience cells, are in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.

is large serial correlation (even conditional on the fixed effects) and sluggish adjustment
to immigration shocks. However, once we apply the instruments in columns 4 and 8, the
lagged shocks become comparatively smaller and statistically insignificant. That is, once
we rely on variation which is more plausibly exogenous to cell-specific demand, we find
no significant evidence of sluggish wage adjustment.

E.9 Robustness to observable demand shocks

In this paper, we have sought to construct our instrument using plausibly exogenous
variation, which can exclude shifts in labour demand (conditional on the fixed effects).
As supporting evidence for this restriction, we show in Table E11 that the native wage
effects are robust to controlling for observable demand shocks. As our point of departure,
we use the first differenced IV specification in Panel B of Table 5: this specification is
most appropriate for this exercise, as our controls mostly predict changes in demand
(rather than levels).

We begin in column 1 by replicating the relevant first differenced IV specification
from Table 5: specifically column 8 of Panel B. In the remaining columns, we control
progressively for a range of cell-specific shocks.

In column 2, we condition on a Bartik industry shift-share. This predicts differen-
tial changes in sectoral labour demand, by weighting decadal industry-level employment
changes (the “shifters”) by cell-level industry shares at the beginning of the decade (the
“shares”). This shift-share will capture how labour market cells would be expected to
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Table E11: Robustness of native wage effects (first differenced IV) to observable shocks

(1) (2) (3) (4) (5)

log (Next +Mext) 0.025 0.020 0.024 0.022 0.023
(0.018) (0.017) (0.016) (0.017) (0.017)

Mig share mext -0.418*** -0.362*** -0.360*** -0.333*** -0.315***
(0.078) (0.073) (0.074) (0.079) (0.084)

Bartik industry shift-share 0.420** 0.377** 0.488*** 0.517***
(0.159) (0.158) (0.161) (0.158)

Initial routine share 0.107 0.053 0.061
(0.079) (0.105) (0.120)

Initial offshorable share 0.104 0.105
(0.085) (0.096)

Minimum wage shift-share 0.398
(0.425)

Observations 192 192 192 192 192
Column 1 replicates the baseline first-differenced IV specification of Table 5 (column 8 of Panel
B), for native wages. The remaining columns test sensitivity to conditioning on predictors of
various cell-level shocks. Specifications are otherwise identical to Panel B of Table 5. ***
p<0.01, ** p<0.05, * p<0.1.

be affected by e.g. the decline in manufacturing.49 The Bartik has a significant positive
effect on wages, and the coefficient on the migrant share does contract (compared to
column 1); but the difference is small. Thus, our conclusions are robust to conditioning
on predictable industry shocks.

In column 3, we control additionally for initial cell-level routine share. The idea is
to capture the potential for automation. This is the share of workers in each education-
experience cell (at the beginning of the decade) who work in occupations with top-tercile
routine task content (based on the index of Autor and Dorn, 2013). Conditional on our
fixed effects, the effect of the immigration shock is robust to this control.

In column 4, we repeat the same exercise for initial cell-level offshorability share. This
is the share of workers in each education-experience cell (at the beginning of the decade)
who work in occupations with top-tercile offshorable task content (again, based on the
index of Autor and Dorn, 2013). This also makes little difference.

E.10 Robustness to minimum wage effects

Another possible challenge is changes in the minimum wage, which may differentially
affect workers across education-experience cells (according to its bite). To control for
these effects, we construct a shift-share variable which predicts changes in the share of

49This speaks to Bohn and Sanders (2007), who raise concerns about correlation between cell-level
immigration shocks and sectoral shifts.
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workers (within each cell) who are paid the minimum wage. Our strategy is the following:
for each decadal interval, we hold the native wage distribution fixed at the initial year
(within education-experience cells), and then predict how changes in the state minimum
wage (deflated by national wage growth) affect the share of natives (in our wage sample)
earning the minimum wage or less. We borrow minimum wage data from Neumark (2020).
Looking at column 5 of Table E11, this shift-share has a large positive effect on wages,
though not statistically significant. The coefficient on migrant share does contract – but
again, the difference is small.

E.11 Spatial variation

In the main text, we study national-level skill cell variation, following long precedent
in the literature. But in this appendix, we additionally exploit cross-state variation in
immigration intensity, within education-experience cells. Building on the native wage
equation (20), and imposing αZext = σZ = 1 for simplicity, consider the following empir-
ical specification:

logWNsext = γ0 + γ1 log (Nsext +Msext) + γ2msext + dsex + dset + dsxt + vsext (E3)

where all variables now have an additional subscript s for state. State-level cell-specific
native wages WNsext are adjusted for demographic composition, following a similar pro-
cedure to that of Appendix D.1.50 We also interact all the original fixed effects from (20)
with a full set of state s dummies.

To construct our instruments, we again exploit historical cohort sizes in the US and
abroad, in a similar way to before. To predict the native and old migrant stocks by
state and cell (i.e. Ñsext and M̃ old

sext), we apply the procedure described in Section 4.2
(exploiting mechanical aging of cohorts, within education groups), but now using state-
specific samples. For new immigrants, we use a shift-share which takes the form:

M̃new
sext =

∑
o

φsot−1M̃
new
oext (E4)

Our “shifters” are the predicted origin/cell-specific inflows from our main analysis (which
50We take the following approach. Separately for each of our 32 education-experience cells, and

separately for native men and women, we regress log wages on a quadratic in age, a postgraduate
education indicator (for college graduate cells only), and race effects (Hispanic, Asian, black). But we
now also include a full set of state-year interacted fixed effects. We then predict the mean male and
female wage for each state-year combination, for a distribution of worker characteristics identical to
the multi-year pooled sample (within education-experience cells). And we then compute a composition-
adjusted native wage in each cell-state-year by taking weighted averages of the predicted male and female
wages.
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Table E12: State-level native wage effects

Fixed effects First differences
(1) (2) (3) (4)

log (Nsext +Msext): State-level 0.046*** -0.002 0.038*** 0.003
(0.007) (0.006) (0.006) (0.007)

Mig share msext: State-level -0.469*** -0.026 -0.261*** 0.033
(0.025) (0.045) (0.024) (0.038)

log (Next +Mext): National-level 0.032*** 0.022***
(0.006) (0.007)

Mig share mext: National-level -0.537*** -0.433***
(0.034) (0.025)

SW F-stats for:
log (Nsext +Msext): State 1222.98 79.69 690.71 59.12
Mig share msext: State 245.30 90.75 128.89 54.95
log (Next +Mext): National 310.12 75.11
Mig share mext: National 73.12 27.00

Observations 11,194 11,194 9,590 9,590
This table presents estimates of equation (E3), across 32 education-experience cells, 7
decadal observations (1960-2019), and 50 states (with Washington D.C. merged into Mary-
land). In principle, this should yield 11,200 observations in the basic fixed effect specifica-
tion; but 6 small cells are unrepresented in the sample. We include up to four endogenous
variables (the cell aggregator and cell migrant share, measured at state-level and national-
level respectively); and each has a corresponding instrument, described in Section E.11.
The fixed effect specifications in columns 1-2 include interacted state-education-experience,
state-education-year and state-experience-year fixed effects. In columns 3-4, all variables
and instruments are first differenced, and we condition on interacted state-education-year
and state-experience-year fixed effects. All observations are weighted by total state em-
ployment; and robust standard errors, clustered by 32 education-experience cells, are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.

exploit demographic shifts in the source country), denoted M̃new
oext for origin group o. We

allocate these shifters to states s, according to the initial spatial distribution of each
origin group o, where φsot−1 is the share of origin o immigrants living in state s at time
t − 1. This exploits the preference of new immigrants to cluster in co-patriot enclaves
(as in Altonji and Card, 1991; Card, 2001). As (E4) shows, we then sum these predicted
allocations across origin groups o.

Table E12 reports IV estimates of (E3). We instrument the state-level cell-specific mi-
grant sharemsext using m̃sext ≡ M̃sext/

(
Ñsext + M̃sext

)
, where M̃sext = M̃ old

sext+M̃new
sext is the

total predicted migrant stock; and we instrument the cell aggregator log (Nsext +Msext)
using log

(
Ñsext + M̃sext

)
. Throughout, we cluster errors by state, and weight each ob-

servation by the total state employment.51 Column 1 shows the basic fixed effect speci-
fication: the estimates look similar to the equivalent national-level specification (column
6 of Table 5), with the migrant share msext taking a coefficient of -0.5.

51Within states, we are therefore weighting each education-experience cell at period t equally: this
reflects our approach in the main empirical analysis.
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Table E13: IV labour supply responses

Log of average native hours Log of average migrant hours
Men Women Men Women

FE FD FE FD FE FD FE FD
(1) (2) (3) (4) (5) (6) (7) (8)

log (Next +Mext) 0.034** 0.034 0.035 0.065* 0.002 0.016 -0.126** -0.057
(0.016) (0.021) (0.028) (0.033) (0.016) (0.017) (0.048) (0.040)

Mig share mext -0.074 -0.085 -1.123*** -0.749*** -0.074 0.016 0.022 -0.533**
(0.151) (0.116) (0.174) (0.199) (0.067) (0.088) (0.301) (0.217)

Observations 224 192 224 192 224 192 224 192
This table re-estimates the native wage equation (20), but replacing the dependent variable with the log of average
annual employment hours (including individuals with zero hours) for various subgroups, adjusted for observable changes
in composition. The right-hand side of all specifications are identical to columns 6 and 8 of Table 5 (Panel B), for both
fixed effect (FE) and first differenced (FD) specifications. Robust standard errors, clustered by 32 education-experience
cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

A number of papers, e.g. Borjas (2006), Monras (2020) or Amior (2024), have argued
that labour markets are well-integrated nationally, at least over the decadal intervals we
study. This claim often serves as motivation for using national-level variation, which we
exploit in the main analysis. To address this idea empirically, column 2 controls addition-
ally for the national-level cell aggregator and migrant share (within education-experience
cells), i.e. log (Next +Mext) and mext. This requires two additional instruments: we
simply use the national-level predictors, m̃ext and log

(
Ñext + M̃ext

)
. These instruments

offer substantial power: see the F-statistics at the bottom of the table. Interestingly, the
national cell migrant share mext picks up the entire wage effect: this suggests that labour
markets are indeed well integrated nationally.

Finally, in columns 3 and 4, we estimate the same equations in first differences. In
doing so, we retain the interacted dset and dsxt fixed effects, but drop the dsex effects. At
least qualitatively, these estimates show similar patterns before.

E.12 Labour supply responses

In Table E13, we replace the left-hand side of the native wage equation with the log of
average annual employment hours (across all individuals, including those with zero hours).
Just as in our wage sample (and like Borjas, 2003), we exclude enrolled students when
computing annual hours; and we also adjust for changes in demographic composition52

(as we do for wages). We report IV estimates for both fixed effect and first differenced
52Our motivation for adjusting annual hours is the same as for wages: changes in either outcome

may be conflated with observable demographic shifts (within education-experience cells). We follow
identical steps to those described in Appendix D.1; but this time, we estimate linear regressions for
annual employment hours (including zeroes for individuals who do not work) rather than log wages.
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specifications, separately for the annual hours of men and women, and separately for
natives and migrants.

Consistent with Borjas (2003) and Monras (2020), who study similar skill-cell vari-
ation, we find that migrant share (suitably instrumented) does indeed reduce native
employment hours. It turns out this response is entirely driven by native women, which
matches the findings of Borjas and Edo (forthcoming) in France.

F Sensitivity to specification of technology

F.1 Robustness of CES assumption

To estimate the native wage equation (20), we need to construct a cell-level aggregator
Z (N,M) over native and migrant employment. Following the literature, we have assumed
Z has CES form. But our identification strategy can be generalised to any Z with constant
returns. This is because, assuming constant returns, the relative wage WMext/WNext

(of migrants to natives) can always be reduced to some function of the relative supply
Mext/Next, which can in principle be estimated (allowing us to construct Z). To see why,
notice that any constant returns Z can be expressed as:

Z (N,M) = Nz
(
M

N

)
(F1)

for some single-argument function z. Using (11)-(13), and accounting for the mark-downs,
the native and migrant wages can then be expressed as:

logWNext = logAext− (1− σX) logNext + log

zext
(
Mext

Next

)
− Mext

Next
z′ext

(
Mext

Next

)
zext

(
Mext

Next

)1−σX

− φN (mext)

(F2)

logWMext = logAext − (1− σX) logNext + log

 z′ext
(
Mext

Next

)
zext

(
Mext

Next

)1−σX

− φM (mext) (F3)

Under equal mark-downs (H1), the relative wage can then be written as:

log WMext

WNext

= log
 z′ext

(
Mext

Next

)
zext

(
Mext

Next

)
− Mext

Next
z′ext

(
Mext

Next

)
 (F4)

which is a function of the relative supply Mext/Next alone. In principle, this function can
be estimated non-parametrically, allowing us to construct Z. We can then replace the
(bracketed) CES aggregator in the native wage equation (20) with this more flexible Z,
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B. Reduced form

Figure F1: Visualisation of relative wage equation estimates

This figure graphically illustrates our preferred IV specification of the relative wage equation (18), i.e. the log relative
migrant-native wage log (wMext/wNext) on log relative supply log (Mext/Next). We focus on the specification of column 5
of Table 3, which controls for education-experience effects and year effects. In Panel A, we plot the first stage relationship,
i.e. the log relative supply on its instrument log

(
M̃ext/Ñext

)
, after partialing the fixed effects from both the left and

right-hand side variables. Panel B does the same for the reduced form, i.e. the log relative wage directly on the instrument
log
(
M̃ext/Ñext

)
.

and estimate equation (20) linearly as before. A rejection of γ2 = 0 (i.e. a significant
effect of migrant share) would then imply rejection of the joint hypothesis of H1 and H2
(equal and independent mark-downs).

However, this more flexible approach is ultimately redundant. As equation (16)
shows, CES implies the relationship between relative wages WM/WN and relative supply
Mext/Next is log-linear; and it turns out that log-linearity offers a reasonable description
of the data. To demonstrate this, we present scatter-plots which illustrate our preferred
IV specification of the relative wage equation (18): i.e. column 5 of Table 3 (which
controls for education-experience effects and year effects). In Panel A of Figure F1, we
plot the first stage relationship corresponding to this specification (i.e. the log relative
supply Mext/Next on its instrument), after partialing the fixed effects from both the left
and right-hand side variables. And in Panel B, we do the same for the reduced form (i.e.
the log relative wage WM/WN directly on the instrument). In each case, by inspection,
linearity appears a reasonable description of the data.

F.2 Cross-cell heterogeneity in σZ

In our relative wage model (equation (18)), we implicitly assume that σZ (the within-cell
substitutability between natives and migrants) is identical across education-experience
cells. But one may be concerned about heterogeneity in σZ : this would imply the Z
aggregator should be constructed differently (on the right-hand side of the native wage
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Table F1: Heterogeneity in relative wage estimates

Basic estimates Fixed effects: Edu*Exp, Yr First differences First diff + Yr effects
(1) (2) (3) (4) (5) (6) (7) (8)

log Mext
Next

0.009 0.000 -0.029*** -0.010 -0.045*** -0.057*** -0.003 -0.004
(0.007) (0.006) (0.010) (0.011) (0.008) (0.010) (0.006) (0.009)

log Mext
Next

× College -0.010** 0.046** 0.015 0.045**
(0.004) (0.018) (0.014) (0.018)

log Mext
Next

× (Exp ≥ 20) 0.017*** -0.004 0.015 -0.001
(0.004) (0.006) (0.010) (0.009)

F-Stat: log Mext
Next

493.81 1129.76 233.61 68.21 354.48 223.85 470.36 251.36
F-Stat: log Mext

Next
× College 2654.62 146.22 1753.95 1088.10

F-Stat: log Mext
Next

× (Exp ≥ 20) 5445.25 3060.78 830.03 549.35
Observations 224 224 224 224 192 192 192 192

This table tests for heterogeneity in our IV estimates of the relative wage equation (18), across college/non-college cells and high/low experience
cells. In odd-numbered columns, we report estimates without heterogeneity: these replicate the baseline estimates of Table 3. In even-numbered
columns, we include interactions between log relative employment and (i) a college dummy and (ii) a high-experience (more than 20 years) dummy.
Our instruments are the interactions between the predicted log relative employment and these dummies. Throughout, wages are adjusted for changes
in observable demographic composition. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors,
clustered by 32 education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

equation), and this may cause us to incorrectly estimate the mark-down effect.
In Table F1, we test for heterogeneity in IV estimates of the relative wage equations,

across college/non-college cells and high/low experience cells. In odd-numbered columns,
we report estimates without heterogeneity: these replicate the baseline estimates of Table
3. In even-numbered columns, we include interactions between log relative employment
and (i) a college dummy and (ii) a high-experience (more than 20 years) dummy. Our
instruments are the interactions between the predicted log relative employment and these
dummies. The F-statistics show the first stage is strong in each case. However, in the
second stage, the interactions are quantitatively small. This suggests that heterogeneity
in σZ across education-experience cells will not affect our conclusions.

F.3 Broad education and experience groups

We next study alternative specifications with two (instead of four) education groups, and
four (instead of eight) experience groups. For the two-group education specification, we
divide workers into “college-equivalents” (i.e. all college graduates, plus 0.8 times half
of the some-college stock) and “high-school equivalents” (high school graduates, plus 0.7
times the dropout stock, plus 1.2 times half of the some-college stock): the weights,
borrowed from Card (2009), have an efficiency unit interpretation. This leaves us with
just 16 clusters (since we cluster by labour market cell); but at least in this data, the bias
to the standard errors appears to be small.53

53For example, consider the OLS effect of mext in column 1 of Table F2. Since we have 16 clusters,
we apply the 95% critical value of the T (15) distribution (as recommended by Cameron and Miller,
2015), which is 2.13. The standard error in column 1 of Panel B then implies a confidence interval of
[−1.360,−0.656]. But the wild bootstrap recommended by Cameron, Gelbach and Miller (2008), which
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Table F2: Broad education and experience groups: OLS and IV

2 education groups 4 experience groups
Fixed effects First differences Fixed effects First differences

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Imposing equal mark-downs (H1)

Cell aggregator 0.004 -0.011 0.038 0.047 0.051*** 0.056*** 0.042*** 0.070***
(0.034) (0.050) (0.028) (0.057) (0.013) (0.017) (0.014) (0.023)

Mig share mext -1.123*** -1.621*** -0.754*** -1.348* -0.547*** -0.565*** -0.497*** -0.589***
(0.162) (0.460) (0.148) (0.634) (0.044) (0.079) (0.079) (0.096)

F-Stat: Cell aggregator - 142.02 - 8.48 - 76.13 - 72.86
F-Stat: Mig share mext - 24.66 - 14.83 - 77.67 - 23.58

Panel B: Imposing αZext = σZ = 1

Cell aggregator -0.088** -0.103* -0.050* -0.046 0.020 0.025 0.014 0.040*
(0.033) (0.048) (0.028) (0.056) (0.014) (0.017) (0.014) (0.023)

Mig share mext -1.008*** -1.511*** -0.635*** -1.236* -0.491*** -0.510*** -0.443*** -0.530***
(0.165) (0.462) (0.148) (0.630) (0.044) (0.079) (0.077) (0.096)

F-Stat: Cell aggregator - 141.91 - 8.85 - 85.93 - 75.12
F-Stat: Mig share mext - 24.51 - 14.59 - 82.04 - 22.91
Observations 112 112 96 96 112 112 96 96

This table presents OLS and IV estimates of the native wage equation (20), but this time across broader labour market cells. In columns
1-4, we use 2 broad education groups (college and high school equivalents) and the 8 original experience groups. And in columns 5-8,
we use the original 4 education groups, but this time 4 broad experience groups (1-10, 11-20, 21-30, 31-40 years). Specifications are
otherwise identical to Table 5. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors,
clustered by 16 education-experience cells, are in parentheses. We apply the same small-sample corrections as detailed in Table 3. The
relevant 95% critical value for the T distribution (with G− 1 = 15 degrees of freedom, where G is the number of clusters) is 2.13. ***
p<0.01, ** p<0.05, * p<0.1.

Similar to Table 5, we consider alternative specifications of the native wage equation
under equal mark-downs (H1) and equal productivities (αZext = σZ = 1). In the former
case, we impose a σZ of 0.907. This is estimated from an IV relative wage equation with
education-experience and year fixed effects (which we do not report in full here).54

We report OLS and IV estimates in columns 1-4 of Table F2, together with F-statistics.
Notice that γ1 (the elasticity to total cell employment) is now consistently negative in
the αZext = σZ = 1 specification. Under fixed effects, γ1 is about -0.1, which implies
an elasticity of substitution between experience groups (within education nests) of 10:
this is similar to Card and Lemieux (2001), who use an equivalent two-group education
classification.55 The migrant share effect γ2 now exceeds -1 under fixed effects (columns
1-2). In first differences (columns 3-4), it ranges from -0.6 to -1.3.

we implement with Roodman et al.’s (2019) “boottest” command, delivers a very similar interval of
[−1.317,−0.605].

54The β1 estimate in (18) is -0.093, with a standard error of 0.037.
55In their main specification, they estimate an elasticity of substitution of 5 across age (rather than

experience) groups. But they also offer estimates across experience groups, and these are quantitatively
similar to ours.
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In columns 5-8 of Table F2, we also re-estimate our model using four 10-year expe-
rience groups (rather than eight 5-year groups), while keeping the original four-group
education classification. This makes little difference to our baseline estimates in Table 5.
This result can also help address concerns over the independence of the detailed 5-year
education-experience clusters in the baseline specification: Table F2 shows the estimates
(and standard errors) are little affected after aggregating to larger 10-year groups.

F.4 Occupation-imputed migrant stocks

In this paper, we allocate migrants to native labour market cells according to their edu-
cation and experience, following the example of Borjas (2003), Ottaviano and Peri (2012)
and others. However, one important concern is that migrants may “downgrade” occupa-
tion and compete with natives of lower education or experience. If so, the migrant stocks
in native cells may be measured with error (Dustmann, Schoenberg and Stuhler, 2016).

To address this concern, we now probabilistically allocate migrants (of given education
and experience) to native cells according to their occupational distribution. Our strategy
is similar in spirit to Card (2001) and Sharpe and Bollinger (2020). Suppose there are O
occupations, denoted o, and EX education-experience cells, denoted ex. Let ΠM

O×EX be a
matrix, with O rows and EX columns, which allocates migrant education-experience cells
to occupations, where the (o, ex) element is the share of education-experience ex migrant
labour which is employed in occupation o (so the columns of ΠM

O×EX sum to 1). We base
these shares on averages across all sample years. Similarly, let ΠN

EX×O be an EX × O
matrix which allocates occupations to native education-experience cells, where the (ex, o)
element is the share of occupation o native labour which has education-experience ex (so
the columns of ΠN

EX×O sum to 1). Using these matrices, we can probabilistically allo-
cate migrant education-experience stocks to native cells, according to their occupational
distribution:

Mocc
EX×T = ΠN

EX×OΠM
O×EXMEX×T (F5)

where MEX×T is the matrix of actual migrant employment stocks by education-experience
cell and time, and Mocc

EX×T is the imputed allocation of migrants to native cells (based on
the occupational distributions). We use an identical strategy to construct instruments
for the occupation-imputed migrant stock:

M̃occ
EX×T = ΠN

EX×OΠM
O×EXM̃EX×T (F6)

where M̃occ
EX×T are our instruments for immigrant stocks by education and experience, as

described in Section 4.2. In practice, we rely on the time-consistent IPUMS classification
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Table F3: Occupation-imputed migrant stocks: OLS and IV

Fixed effects First differences
OLS OLS IV IV OLS OLS IV IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Imposing equal mark-downs (H1)

Cell aggregator 0.033 -0.089 0.013 -0.017
(0.023) (0.069) (0.015) (0.051)

Mig share: mocc
ext -0.569*** -0.764*** -1.494*** -0.971*** -0.361*** -0.436*** -0.843*** -0.742***

(0.170) (0.145) (0.484) (0.163) (0.111) (0.078) (0.300) (0.117)

F-Stat: Cell aggregator - - 21.35 - - - 10.93 -
F-Stat: Mig share mocc

ext - - 20.22 88.10 - - 12.89 96.38

Panel B: Imposing αZext = σZ = 1

Cell aggregator 0.012 -0.104 -0.001 -0.035
(0.022) (0.066) (0.014) (0.050)

Mig share: mocc
ext -0.542*** -0.613*** -1.426*** -0.819*** -0.297** -0.292*** -0.799*** -0.589***

(0.175) (0.143) (0.459) (0.164) (0.111) (0.082) (0.291) (0.123)

F-Stat: Cell aggregator - - 25.52 - - - 11.34 -
F-Stat: Mig share mocc

ext - - 23.32 88.10 - - 14.40 96.38

Observations 224 224 224 224 192 192 192 192
This table presents OLS and IV estimates of the native wage equation (20), but this time replacing education-experience migrant
stocks, Mext, with occupation-imputed stocks, Mocc

ext , when constructing the cell aggregator and migrant share: these are now
equal to log (NσZ

ext + αZextM
occ σZ
ext )1/σZ and mocc

ext ≡Mocc
ext/ (Next +Mocc

ext ) respectively. Similarly, when constructing our instruments,
we replace predicted migrant stock, M̃ext, with occupation-imputed equivalents, M̃occ

ext . Specifications are otherwise identical to
Table 5. Sanderson-Windmeijer F-statistics account for multiple endogenous variables. Robust standard errors, clustered by 32
education-experience cells, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

of occupations (based on the 1990 census scheme), aggregated to 81 groups.
We now re-estimate the native wage equation (20), but replacing education-experience

migrant stocks Mext with occupation-imputed stocks M occ
ext when constructing the re-

gression variables (and similarly for the instruments). Thus, the cell aggregator is now
log (NσZ

ext + αZextM
occ σZ
ext )1/σZ , the migrant share is mocc

ext ≡ M occ
ext/ (Next +M occ

ext ), and the
instruments are log

(
Ñext + M̃ occ

ext

)
and m̃occ

ext ≡ M̃ occ
ext/

(
Ñext + M̃ occ

ext

)
respectively. As in

Table 5, we report estimates both under equal mark-downs (H1) and under equal pro-
ductivities (αZext = σZ = 1). In the former case, we impose a σZ of 0.979. This is
estimated from an IV relative wage equation with education-experience and year fixed
effects (which we do not report in full here), based on the occupation-imputed stocks.56

We present OLS and IV estimates in Table F3. The OLS effects of migrant share
(columns 1 and 5) are similar to our baseline specifications in the main text (compare to
Table 5). The IV effects are much larger, with migrant share effects around -1.5 in fixed
effects and -0.8 in first differences. However, the standard errors are also large: about

56The β1 estimate in (18) is -0.021, with a standard error of 0.006.
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0.5 in fixed effects and 0.3 in first differences. This appears to stem from a collinearity
problem: once we drop the cell aggregator (whose coefficient is always insignificant) in
columns 4 and 8, the IV effects of migrant share are smaller (ranging from -0.6 to -1) and
more precise (with standard errors between 0.1 and 0.2). This suggests our estimates are
robust to concerns about occupational downgrading.

G Separation elasticities

In this appendix, we present estimates of job separation elasticities across workers with
different migrant status and education. We rely on data from the Survey of Income
and Program Participation (SIPP), which we access from National Bureau of Economic
Research (2019). Separation elasticities offer a useful (and easily estimable) proxy for
the elasticity of labour supply to a firm. Since the flow of separations from a firm must
equal the flow of recruits in equilibrium, the overall elasticity of labour supply to the
firm should be double the separation elasticity (Manning, 2003). We are not the first
to compare separation elasticities by migrant status: see Hotchkiss and Quispe-Agnoli
(2013), Hirsch and Jahn (2015) and Biblarsh and De-Shalit (2021).

The SIPP is a longitudinal dataset with large samples and frequent waves, just four
months apart. We rely on SIPP panels beginning 1996, 2001, 2004 and 2008 (which
cover the period 1996-2013). Our sample consists of individuals aged at least 18, with
1-40 years of potential labour market experience and no business income. Unusually,
the SIPP records whether migrants have legal permanent residency (i.e. a green card).
For an individual in employment at the end of wave t − 1, a separation occurs (by our
definition) if that individual leaves their “primary” job57 by the end of wave t. We use
hourly wages of civilian employees aged 18 or over, with 1-40 years of experience, and
who work at least 15 hours per week; and we exclude the top and bottom 1% of wage
observations. Wages are deflated by CPI, using data from Bureau of Labor Statistics
(2022).

Like Manning (2003), we estimate the elasticities using a complementary log-log
model. Suppose the instantaneous separation rate (denoted sit) for individual i is fixed
within the time interval t − 1 to t. The probability of separating within this interval is
then:

Pr (Sepit = 1) = 1− exp (−sit) (G1)

where Sepit is a binary variable taking 1 if the individual separates between t− 1 and t.
57Respondents report up to two jobs in each wave. If an individual reports two jobs in t − 1, the

primary job is the one which occupies the most weekly hours. Where both jobs have the same hours, we
define the primary job as the first one reported in the survey.
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Table G1: Separation elasticities

Full sample College Non-college
(1) (2) (3) (4) (5) (6) (7)

Lagged log wage -0.501*** -0.555*** -0.394*** -0.395*** -0.377*** -0.368*** -0.218***
(0.015) (0.018) (0.026) (0.026) (0.029) (0.028) (0.027)

Lagged log wage * Migrant 0.211*** 0.156*** 0.267*** 0.212*** 0.206*** 0.216*** 0.186***
(0.031) (0.041) (0.056) (0.060) (0.061) (0.060) (0.059)

Lagged log wage * Non-permanent 0.306** 0.281* 0.306** 0.257*
(0.143) (0.143) (0.144) (0.140)

Immigrant -0.332*** -0.182 -0.460*** -0.347** -0.349** -0.386*** -0.267*
(0.082) (0.116) (0.136) (0.147) (0.148) (0.147) (0.144)

Non-permanent status -0.633* -0.593* -0.646* -0.513
(0.331) (0.330) (0.333) (0.324)

Demographic controls Yes Yes Yes Yes Yes Yes Yes
Initial occupation controls No No No No Yes No No
Initial industry controls No No No No No Yes No
Initial tenure controls No No No No No No Yes
Observations 889,210 566,313 322,897 322,897 322,357 322,826 322,896

This table reports estimates of the elasticity of job separation to initial wages, based on the complementary log-log specification in
equation (G2). We rely on SIPP panels beginning 1996, 2001, 2004 and 2008 (which cover the period 1996-2013), whose waves are four
months apart. All specifications control for education, experience, gender, and various interactions. Column 1 is estimated for the full
sample, columns 2 for individuals with at least some college education, and columns 3-6 for those without. Robust standard errors,
clustered by individual, are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

This motivates our complementary log-log model:

Pr (Sepit = 1) = 1− exp (− exp (βW logWit−1 + β′XXit + βt)) (G2)

where we write sit as a function of the initial wageWit−1, human capital and demographic
indicators58 Xit, and a full set of wave effects βt. The coefficient of interest βW (which
we expect to be negative) can then be interpreted as the elasticity of the instantaneous
separation rate with respect to Wit−1. Assuming a constant hazard, this interpretation
is independent of the time interval between waves.

The purpose of the Xit controls is to purge, as much as possible, variation across
individuals in productivity. Ideally, this should allow us to interpret βW as the separa-
tion elasticity with respect toWit−1 for individuals of fixed marginal product: that is, the
elasticity of the separation rate to wage mark-downs. Of course, unobservable heterogene-
ity in individual productivity may confound this interpretation (and bias our elasticity
estimates towards zero); but comparisons of separation elasticities across demographic
groups can still be informative.

Table G1 presents our estimates of the separation elasticity βW by immigration status.
All variables which are interacted with the lag logged wage are included individually on

58Specifically: experience and experience squared; four education indicators (high school graduate,
some college, undergraduate and postgraduate), each interacted with a quadratic in experience; and a
gender dummy, interacted with education and the experience quadratic.
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the right-hand side (among the demographic controls). In column 1, we include both the
lagged wage and an interaction with a foreign-born dummy: on average, migrants have
significantly lower separation elasticities than natives: -0.29 compared to -0.50. Biblarsh
and De-Shalit (2021) reach similar conclusions using the US Current Population Survey.
In columns 2 and 3, we re-estimate this equation for college and non-college samples.
Notice first that the native separation elasticities vary little by education. However, the
native-migrant differential in separation elasticities is mostly driven by the low-educated:
in column 3, the migrant elasticity is just one third of the native elasticity.

In column 4, restricting to the low-educated sample, we also interact the lagged wage
with a dummy for non-permanent status: many low-educated migrants in this category
are likely undocumented (Hall, Greenman and Farkas, 2010). The elasticity for this group
is close to zero (to see this, sum the first three coefficients in column 4), and significantly
smaller than the elasticity of migrants with permanent residency. Of course, given the
evidence from Passel, Clark and Fix (1997) on self-reported naturalisation, one might
expect that some migrants without green cards will misreport their residency status. If
so, the true differential (in separation elasticities) between permanent and non-permanent
migrants may be even larger than column 4 suggests.

One possible concern is that migrants sort into less stable jobs, and this may explain
the differences in the elasticities. In an attempt to control for this, we condition in column
5 on fixed effects for initial occupation (in column 5: 321 categories) and initial industry
(column 6: 229 categories), in period t − 1: reassuringly, this makes little difference to
the results. In column 7, we then condition on initial job tenure (fixed effects for each
single-year category). As Manning (2003) notes, initial tenure may be a “bad control”:
longer tenure is expected to be an outcome of higher pay (and therefore part of the effect
we wish to estimate). Unsurprisingly then, the separation elasticity (in the top row)
becomes smaller in this specification; but despite this, the native-migrant differentials
(i.e. the interaction effects) are largely preserved.
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