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Abstract

The rapid adoption of artificial intelligence (AI) poses new and poorly
understood threats to financial stability. We use a game-theoretic
model to analyse the stability impact of AI, finding that it amplifies ex-
isting financial system vulnerabilities — leverage, liquidity stress and
opacity — through superior information processing, common data,
speed and strategic complementarities. The consequence is crises be-
come faster and more severe, where the likelihood of a crisis is di-
rectly affected by how effectively the authorities engage with AI. In
response, we propose that the financial authorities develop their own
AI systems and expertise, establish direct AI-to-AI communication,
implement automated crisis facilities and monitor AI use.
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1 Introduction

The relationship between artificial intelligence (AI)1 and financial crises is
poorly understood, motivating our work. We use a game-theoretic frame-
work to identify how AI impacts financial stability, finding that it can both
stabilise and destabilise the financial system, depending on the severity of
the shocks it faces and how prepared the financial authorities are. As current
regulatory frameworks cannot effectively prevent and resolve such AI-induced
crises, we outline how the financial authorities can adapt to AI-driven risks
through upgraded supervisory tools, proactive intervention mechanisms and
institutional readiness.

While there is no universal definition of AI, the notion of it as a rational max-
imising agent2 is particularly useful for the analysis of financial stability since
it resonates with methodological approaches taken by most macroprudential
investigators. That implies standard frameworks for analysing financial sta-
bility are well-suited for studying the impact of AI provided they consider
AI’s speed and the particular strategic approaches it applies to tasks given
to it. To that end, we adopt a global games model (Morris and Shin, 1998)
and highlight three key mechanisms through which AI transforms market
dynamics: superior information processing that makes signals more precise,
common information sources that facilitate coordination and speed advan-
tages that give rise to preemption motives.

Our model yields specific predictions about AI’s impact on crisis dynamics.
First, AI makes transitions between stable and crisis states more abrupt.
Second, AI increases the likelihood of multiple equilibria and coordinated
runs due to the fundamental factors that have driven financial crises for
centuries, ever since the first modern one in 1763 (Schnabel and Shin, 2004;
Danielsson, 2022): Excessive leverage, liquidity preference during stress and
system opacity.

When we apply these theoretical predictions to a more practical institutional
structure of the financial system, we find four key areas of concern. First, the
malicious use of AI — whether to find loopholes, manipulate markets, orches-
trate terrorist attacks on financial infrastructure, or enable nation-states to

1Russel (2019) and Norvig and Russell (2021) are particularly useful for a general
overview of AI.

2One of the definitions given by Norvig and Russell (2021).
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engage in unconventional warfare — poses serious threats to stability. Even
a small, coordinated misinformation shock can push collective beliefs beyond
the tipping point and trigger a self-fulfilling crisis.

Second, wrong-way risk, which refers to a situation in which the volume of
risky activities increases in line with the riskiness of those activities. AI
gives rise to particularly dangerous forms of wrong-way risk because of how
it gains trust, implying that AI reliability is the lowest precisely when it
is needed for the most important decisions — the AI wrong-way risk. This
may occur when margins set by AI are downward biased, in turn encouraging
risky positions and their associated risks.

Third, there is the potential for synchronised behaviour — a consequence
of the complementarity of most consequential decisions, where the optimal
move of one market participant incentivises others to do the same. This cor-
related behaviour can be especially damaging during crises, amplifying both
market booms and busts. In other words, AI is procyclical. As signal corre-
lation rises, the stabilising heterogeneity of equilibrium behaviour vanishes,
increasing the risk of procyclical herd behaviour.

Finally, the increased use of AI affects the speed, intensity, and frequency
of crises. When faced with a shock, an AI engine — like a human decision-
maker — has a range of options it can deploy in response. But they all boil
down to two fundamental choices. Run or stay. Stabilise or destabilise. The
consequences of getting it wrong can be significant, including substantial
losses and even bankruptcy. AI’s superior ability to both quickly analyse
a complex evolving situation and make quick, firm decisions implies it will
make crises particularly quick and vicious. When it acts as a crisis amplifier,
what might have taken days or weeks to unfold can now happen in minutes
or hours. A greater price impact, combined with shorter reaction times,
shortens the adjustment window, shifting the crisis threshold into a state
space that was previously considered safe.

The financial authorities — central banks and regulators tasked with main-
taining system stability — find it challenging to effectively address the risks
arising from these four areas of concern. The problem for the authorities is
that they are already losing an arms race with the private sector.

To remain effective, we propose that the authorities focus on several key
areas: developing their own AI engines and expertise, establishing AI-to-AI
links, implementing automatic facilities, public-private partnerships and par-
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ticular monitoring of private sector AI use. While most authorities appear
to prefer a slow, deliberative and conservative approach to AI, several have
now recognised AI’s implications for financial stability; see recent publica-
tions from the IMF (International Monetary Fund, 2024), the BIS (Kiarelly
et al., 2024; Aldasoro et al., 2024), the FSB (Financial Stability Board, 2024),
the ECB (Leitner et al., 2024), and the Bank of England (Bank of England,
2025).

The organisation of the paper is as follows. After the introduction, we de-
velop our game-theoretic framework for analysing AI’s impact on financial
stability in Section 2. Section 3 examines the four key ways AI can under-
mine financial stability. We propose specific policy responses in Section 4.
Section 5 concludes.

2 A Game-Theoretic Framework for AI and

Financial Stability

To understand how AI affects financial stability, we develop a formal frame-
work that captures both the unique characteristics of AI and its implications
for coordination in financial markets. The key to understanding financial
crises lies in how financial institutions optimise — they aim to maximise
profits given acceptable risk. When translated into operational behaviour,
Roy’s (1952) criterion is particularly useful — stated succinctly, maximising
profits subject to not going bankrupt. When financial institutions prioritise
survival, their behaviour changes rapidly and drastically. They hoard liq-
uidity and choose the most secure and liquid assets, such as central bank
reserves. This leads to bank runs, fire sales, credit crunches and all the other
undesirable behaviours associated with crises.

Strategic complementarities play a key role in the rapid, strong shift in be-
haviour from short-term profit maximisation to survival. When financial
institutions find their counterparties are deciding on how to react to a shock,
they know the actions of one firm adversely affects the others, making it
paramount to react as fast as possible. It is optimal to preempt, that is, to
act early and strongly.

Three characteristics of AI engines particularly impact how AI affects sta-
bility. First, AI systems process data more efficiently than humans, likely
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giving them more precise signals about market fundamentals and reducing
uncertainty. Second, AI systems often rely on similar data, methodologies
and especially model architectures. Third, AI can execute transactions much
faster than human traders.

The interaction of these mechanisms yields specific predictions about how
the deployment of AI affects financial stability. More precise signals reduce
the grey area where fundamentals alone do not determine individual mar-
ket participants’ actions, making aggregate behaviour more binary: either
no one “runs” (e.g., sells assets or withdraws funding) or everyone does,
with transitions becoming sharper and more sudden as fundamentals deteri-
orate. Common information sources facilitate coordination among AI agents
through implicit learning rather than explicit communication, making multi-
ple equilibria more likely, particularly in markets with high AI penetration.
Speed advantages create strong preemption motives, with the presence of
slower human agents increasing the likelihood of AI-initiated runs. Strategic
complementarities amplify these effects through contagion to human agents.

To systematically analyse these dynamics, we adapt the global game’s frame-
work of Morris and Shin (1998), as it is particularly suitable for analysing
coordination problems with strategic uncertainties, where agents make deci-
sions without knowing others’ actions. This framework allows us to develop
theoretical predictions about how a putative AI crisis might unfold.

2.1 Setup

We adapt Sakovics and Steiner’s (2012) model setup to a financial market
with a unit mass of investors (AI and human) who must decide whether to
“run” or “stay” when faced with a shock that might lead to a crisis.

There is a continuum of investors of unit mass indexed by i ∈ [0, 1]. A
fraction µ of investors are AI while the rest are human. The fundamental
state θ ∈ [θ, θ̄] represents the underlying strength of the financial system,
with higher values indicating greater resilience. Let a ∈ [0, 1] denote the
mass of investors who decide to run, where, in particular, a crisis occurs if
the mass of investors running exceeds the system’s resilience: a ≥ θ.

5



An investor’s payoff from choosing to stay given a and θ is:

u(a, θ) =

{
b− c if a ≤ θ (no crisis),

−c if a > θ (crisis),
(1)

where c is the cost of staying (e.g., the cost of financing a position), and b > c
is the payoff if no crisis occurs. The payoff from running is normalised to 0
and does not depend on θ or a.

Table 1 summarizes this payoff structure:

crisis (a ≥ θ) no crisis (a < θ)

run 0 0
stay −c b− c

Table 1: Payoffs for run and stay depend on a and θ.

An investor faces two types of uncertainty when deciding on the optimal
strategy: fundamental uncertainty about how vulnerable the system is to
runs (θ) and strategic uncertainty about how other market participants will
act (a).

2.2 Information Structure and AI Mechanisms

Each investor receives two noisy signals about the fundamental state θ: a
private signal xi = θ + σηi and a public signal y = θ + σpu. All investors
observe y, but only investor i observes xi. The common noise term u and the
private noise terms ηi for all investors i ∈ [0, 1] are random variables with
continuous densities and support [−1/2, 1/2] and are mutually independent.
1/σ2 is the precision of the private signal and 1/σ2

p is the precision of the
public signal. A higher precision implies a more accurate signal about the
fundamental. Investors’ prior about θ is the uniform distribution on [θ, θ̄]
with θ < σ/2 and θ̄ > σ/2.

2.2.1 Mechanism 1: Superior Information Processing

Suppose for the moment that there are no public signals. In equilibrium,
investors follow threshold strategies, running if and only if their private signal
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falls below a threshold x∗:

ai(xi) =

{
0 if xi > x∗,

1 if xi ≤ x∗.
(2)

When all investors act according to these threshold strategies, a run occurs
whenever θ < θ⋆, where θ⋆ is the unique value satisfying3∫ 1

0

u(a, θ⋆)da = 0 ⇒ θ⋆ =
c

b
. (3)

AI systems typically process information more efficiently than humans,4 re-
sulting in more precise private signals (lower σ). While this does not affect
the probability of a successful run — θ⋆ does not depend on σ — it affects
equilibrium behaviour by reducing uncertainty about the fundamental state,
making the critical threshold θ⋆ for a crisis more sharply defined in terms
of the aggregate action. As the precision of the private signal increases (as
σ → 0), all investors coordinate on stay when θ ≥ θ⋆ and on run when θ < θ⋆.
This leads to fewer “unnecessary” individual run decisions when θ > θ⋆ but
increases the completeness of runs when θ < θ⋆.

2.2.2 Mechanism 2: Common Information Sources

When investors observe both private and public signals, they form beliefs
about the fundamentals by combining these information sources. Hellwig
(2002) shows that when public information is sufficiently precise relative to
private information, multiple equilibria can emerge. This happens because
the public signal y serves as a coordination device, allowing investors to
synchronise their actions.

AI systems are particularly susceptible to this synchronisation effect because
they draw on common training data and methodologies, share similar model

3At equilibrium, the investor with signal x∗ = θ∗ is indifferent between “stay” and
“run” because each investor best-responds to a uniform belief about their opponents’
action choices (Morris and Shin, 2003, see).

4Recent evidence suggests that AI systems can achieve superior signal precision in pre-
dicting financial crises (Fouliard et al., 2021; Hellwig, 2021; Batsuuri et al., 2024), though
this advantage may not extend to unprecedented crisis events with unique characteristics.
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architectures and objective functions and process similar market data in com-
parable ways. These factors enhance the public component of information in
AI systems, thereby increasing the weight placed on public signals relative
to private signals. Formally, this can be represented as AI agents having a
higher relative precision of public to private information (σ/σp).

The tendency toward common information sources in AI systems creates a
potential for coordinated behaviour, similar to the portfolio insurance mecha-
nisms analysed by Gennotte and Leland (1990). This coordination can occur
without explicit collusion through shared data sources and similar training
approaches. Calvano et al. (2020) provide an example of a market game
where Q-learning algorithms engage in collusive pricing using commonly ob-
served price data.

2.2.3 Mechanism 3: Speed Advantage and Preemption

To capture AI’s speed advantage, we introduce heterogeneity between AI
and human agents. Suppose the population consists of two groups: human
agents (group H) of measure 1− µ, and AI agents (group A) of measure µ.
The key difference is that AI agents have an advantage over humans when
deciding to run — they can execute transactions more quickly and efficiently,
avoiding the execution delays and price impact that humans might face.

While humans succeed with probability p < 1 when choosing to run, AI
agents succeed with probability 1. An unsuccessful run yields the same payoff
as a stay.

Following Sakovics and Steiner (2012), we can derive the equilibrium thresh-
old θ⋆ in this heterogeneous setup:5

θ⋆ =
c

b
[(1− µ)p+ µ]. (4)

Comparing this to a humans-only market (θ⋆ = p · c/b) reveals that the
presence of AI increases the critical threshold, making coordination on the
run equilibrium more likely. This occurs because AI agents can withdraw
liquidity more efficiently, imposing larger externalities on other market par-
ticipants by increasing their incentive to withdraw early. This mechanism

5For a detailed derivation, see Appendix A.
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demonstrates how AI can make financial markets more fragile even without
changes in preferences or information quality.

The preemption dynamics created by AI’s speed advantage parallel those
analysed by Abreu and Brunnermeier (2003) in the context of bubbles and
crashes. However, AI systems can act much more quickly than human
traders, potentially compressing the timeframe of market adjustments from
days to minutes, as seen in some market events (Kirilenko et al., 2017).

3 Channels of AI Impact on Financial Crises

Having established a theoretical framework for how AI affects financial sta-
bility, we now examine specific vulnerability channels in real-world financial
markets. The three theoretical mechanisms — superior information pro-
cessing, common information sources, and speed advantage — interact with
extant economic vulnerabilities and institutional structure to create four dis-
tinct channels of AI-induced financial risk: malicious use, wrong-way risk,
synchronisation and speed.

3.1 Malicious Use

Technology has always both helped improve the financial system and pro-
vided new ways to destabilise it. For instance, the telegram in 1858 was
quickly employed to transmit stock prices across the Atlantic, while algorith-
mic trading has been implicated in flash crashes (Kirilenko et al., 2017). AI
is the same but with important qualitative differences that relate to the three
mechanisms described in our framework. The model in the previous section
suggests that even a small, coordinated misinformation shock can push col-
lective beliefs past the run threshold and trigger a self-fulfilling crisis, similar
to the political manipulation strategies analysed in Edmond (2013).

Malicious use of AI in financial markets can occur through several channels.
First, bad-faith actors can exploit AI’s superior information processing ca-
pabilities to identify regulatory loopholes or engage in market manipulation.
Terrorist groups could leverage AI’s coordination capabilities and speed to
orchestrate synchronised attacks on financial infrastructure. Of particular
concern is nation-states recruiting AI for unconventional warfare to target
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vulnerabilities in adversaries’ financial systems while maintaining plausible
deniability.

These threats pose a particular challenge to those tasked with defending the
financial system — what we term the “defender’s dilemma”. The attackers
need only to find a single vulnerability, whereas the defenders must moni-
tor the entire system against potential attacks. The attackers consequently
require considerably fewer resources than the defenders, an asymmetry that
gets worse with the increasing ability of AI systems.

As a rational maximising agent, AI can also act maliciously without explicit
human direction. Scheurer et al. (2024) provide a telling example: a large
language model (LLM) was instructed to comply with securities laws and
maximise profits. The aim was to investigate how AI would address these
two potentially conflicting objectives. When given private information, the
LLM engaged in illegal insider trading and then lied to its human overseers.
This demonstrates a form of model risk that emerges from providing AI with
agency. It might find unexpected and potentially harmful paths to attain
the goals it is given.

AI’s speed advantage makes it difficult to guard against such behaviour. A
potential solution is to maintain humans in-the-loop to make decisions based
on AI recommendations, or humans on-the-loop to supervise AI. However,
human experts cannot effectively oversee AI operating at machine speeds,
and in competitive markets, those who remove humans from the loop can
gain the upper hand.

The existing regulatory structure struggles with AI-specific principal-agent
problems. Conventional incentive mechanisms which work well with human
agents, such as rewards and punishments, lose traction when the agent is an
optimisation algorithm that cares only about its objective function (Amodei
et al., 2016; Leike et al., 2017). Mis-specified goals invite reward hacking and
other forms of specification gaming (Krakovna et al., 2020), so the classic
one-sided principal-agent problem becomes a two-sided principal-agent-AI
problem in which supervisors must monitor both the human intermediaries
and the opaque learning system they control.
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3.2 Wrong-Way Risk

Wrong-way risk refers to situations where exposure to risk increases when
that risk is most severe. AI introduces particularly dangerous forms of wrong-
way risk, stemming from how it gains trust. AI builds trust incrementally
by excelling at simple, repetitive tasks, leveraging its information processing
advantages. As AI systems demonstrate competence in increasingly complex
tasks, financial institutions progressively entrust them with more consequen-
tial decisions. This may culminate in an AI version of the Peter principle,
where AI systems are promoted to increasingly critical roles until their ca-
pabilities no longer match the job requirements.

The typical response to such risks is to maintain that AI will not be used for
important decisions, ensuring humans will always remain in/on-the-loop, ex-
cept for the most innocuous tasks. However, such guarantees face credibility
problems in the competitive financial sector, where AI’s speed advantages
provide significant competitive benefits, as discussed above.

The most serious wrong-way risk arises from a fundamental mismatch be-
tween AI’s information processing strengths and the nature of financial crises.
AI excels at pattern recognition based on historical data but struggles with
unprecedented scenarios — the unknown unknowns that characterise finan-
cial crises. As Danielsson (2022) argues, every financial crisis is unique in
its specifics. While the same three fundamental vulnerabilities — excessive
leverage, liquidity preference, and system opacity — cause all crises, the pre-
cise mechanisms differ significantly from one crisis to the next. Consequently,
while AI can be a considerable aid in identifying stress and analysing crises
ex-post (Hellwig, 2021; Fouliard et al., 2021; Batsuuri et al., 2024), it will
not be very helpful in predicting and preventing crises.

The problem is exacerbated by the fact that we cannot predict how future
financial institutions, political leaders and regulators will react to stress.
Their reaction functions remain unknown because policymakers like to keep
strategic ambiguity, while rotating senior decision-makers. The legal and
political environment will be different, and they do not even know how they
will react without knowing the concrete circumstances. Consequently, these
reaction functions cannot be captured in historical datasets. Something that
is not in a dataset cannot be learned by neural networks, no matter how
sophisticated.
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This creates a particularly dangerous form of wrong-way risk where AI’s
decision quality is inversely proportional to the importance of the decision at
hand. In normal times, when decisions have relatively minor consequences,
AI performs well. But in crises, when decisions can determine the survival of
institutions or even the stability of the entire financial system, AI may make
catastrophic errors or, worse, coordinate on destabilising strategies across
institutions through common information channels. AI reliability is lowest
precisely when it is needed most — the AI wrong-way risk.

3.3 Procyclicality and Market Structure

AI deployment in financial markets creates a powerful drive to more syn-
chronised behaviour through two related channels: homogenisation of risk
assessment methodologies and consolidation of market structure. Both chan-
nels reduce diversity in financial decision-making — the first by promoting
similar analytical approaches across institutions regardless of size and the sec-
ond by concentrating market power among fewer, larger players. This twin
reduction in diversity significantly alters how markets absorb and respond
to shocks, inducing procyclicality with important implications for financial
stability. Technically, this can happen when the correlation of institutions’
signals rises, so the stabilising heterogeneity in equilibrium behaviour is re-
duced, increasing the risk of procyclical herd behaviour.

3.3.1 Risk Monoculture

The potential for synchronised behaviour is directly affected by two factors:
the strength of strategic complementarities and the similarity in market par-
ticipants’ understanding of the world. When they have diverse views, their
heterogeneous actions tend to absorb shocks — some sell while others buy.
Conversely, as information similarity increases, market participants become
more likely to act in concert, amplifying both bubbles and crashes.

AI amplifies both drivers of synchronous behaviour. Beginning with infor-
mation processing, while each AI system has its own neural network, the
most successful architectures are likely to see widespread adoption. Finan-
cial institutions may independently converge on similar AI approaches be-
cause they prove effective, leading to what Danielsson et al. (2022) term “risk
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monoculture” — a common view of risk that drives seemingly heterogeneous
institutions to make similar decisions.

The use of common information sources further strengthens this convergence.
Even when underlying network architectures differ across institutions, their
training data often overlaps significantly. Major financial data vendors like
Bloomberg, LSEG, and S&P Global provide standardised data to multiple
institutions. Financial regulations also create common data requirements,
further homogenising the information landscape. This common substrate
leads to similar interpretations of market conditions across different AI sys-
tems.

The speed advantage of AI may compound these effects by reducing the time
available for diversity to emerge through human intervention.

3.3.2 Market Concentration

The cost structure of AI development further concentrates decision-making.
As Gambacorta and Shreeti (2025) observe, developing state-of-the-art AI
systems requires significant investment in computing infrastructure, spe-
cialised talent and proprietary data — resources available primarily to the
largest financial institutions. This creates a tiered market structure where
globally systemically important banks (GSIBs) can afford to develop pro-
prietary AI engines, giving them significant competitive advantages in risk
management and trading, while mid-tier institutions with legacy systems and
traditional staff struggle to compete and must rely on off-the-shelf AI solu-
tions from a limited number of vendors. Meanwhile, nimble fintech startups
with modern technology stacks can leverage commodity AI tools creatively
but lack the resources for fully customised solutions.

This stratification drives market concentration, potentially entrenching the
dominance of GSIBs. Moreover, the competitive dynamics create a self-
reinforcing cycle. Institutions that successfully deploy AI gain advantages
that generate additional resources for AI investment, while laggards fall fur-
ther behind. This winner-takes-most dynamic disproportionately benefits
the largest institutions, further concentrating risk in systemically important
entities.
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3.4 Speed

The most immediate damage from financial crises stems from financial insti-
tutions’ instinct to protect themselves during stress periods. When shocks
occur, institutions must rapidly decide whether to run or to stay. This deci-
sion depends not only on fundamentals but critically on the action of others,
with severe consequences for wrong decisions.

If an institution perceives that a shock is manageable, staying is optimal —
either maintaining positions or even purchasing assets sold in panic. However,
if it concludes a crisis is imminent, running as quickly as possible becomes
rational — selling risky assets into falling markets and withdrawing liquid-
ity. The first to run secures better prices; the last risks bankruptcy. This
preemption dynamic creates powerful incentives for swift action once crisis
signals emerge.

AI’s speed advantage is crucial in this context. Our game-theoretic frame-
work demonstrates that heterogeneous withdrawal capabilities substantially
alter coordination thresholds. When some agents withdraw more effectively
than others, the system becomes inherently more fragile. AI excels pre-
cisely at rapidly processing information and executing transactions, giving
AI-powered institutions a significant edge during crises.

3.4.1 AI vs. High-Frequency Trading

While superficially similar to high-frequency trading (HFT), AI’s impact on
financial stability differs fundamentally. HFT algorithms typically operate
with narrowly defined objectives within single securities or highly correlated
asset pairs. As Kirilenko et al. (2017) document, even these simple algorithms
contributed to the 2010 Flash Crash when simultaneously withdrawing liq-
uidity.

AI systems, however, can operate with complex objective functions spanning
multiple asset classes and incorporating broader contextual information. Re-
inforcement learning dynamically adapts strategies based on changing market
conditions, learns from interactions with other participants, and even coor-
dinates implicitly on destabilising equilibria without explicit programming.

Conventional algorithmic trading generally improves liquidity under normal
conditions (Hendershott et al., 2011), though high-frequency market mak-
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ing struggles when multiple assets experience simultaneous shocks (Brogaard
et al., 2018). While sophisticated AI might better support liquidity in chal-
lenging situations through superior hedging strategies, its adaptive nature
could reverse these benefits during stress periods by learning to exploit weak-
nesses in other algorithms or engaging in predatory trading (Brunnermeier
and Pedersen, 2005).

Importantly, while circuit breakers and trading halts have effectively con-
tained HFT-driven volatility, such rule-based interventions may prove inad-
equate against AI systems that anticipate regulatory responses and develop
sophisticated cross-market strategies to circumvent them. This adaptation
capacity makes AI-driven synchronisation qualitatively different and poten-
tially more systemically threatening than previous technologies.

4 Optimal Policy Response

AI poses both opportunities and challenges for financial stability, and the
authorities must respond to it. If they do so effectively, they can leverage AI
to perform their mandate better. When they do not, they risk destabilising
the financial system. We outline four critical areas arising from the model
in Section 2 and the vulnerability channels in the previous Section, where
financial authorities will have to respond to AI.

4.1 Authority AI Systems

To begin with, the authorities can benefit from developing their own AI ca-
pabilities to design regulations and evaluate intervention effectiveness. When
AI first appeared on central banks’ radar, many centred their response around
divisions dealing with data, IT or innovation. However, given how AI can act
as a powerful agent for systemic risk, financial stability should play a central
role in AI policy. Model link: building in-house authority AI raises the ef-
fective cost of a hostile signal shift, reducing the probability that malicious
information pushes beliefs past the run threshold.

For authority AI systems to be effective, the data they train on is particu-
larly important. Current approaches to regulation rely on private sector firms
providing voluminous PDF reports and database dumps, augmented by su-
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pervisors talking to private sector staff. Such a setup does not easily allow
the authorities to gauge how the private sector would react to potential reg-
ulations and interventions. AI can significantly enhance this interaction by
opening a new dimension in authority-private sector communication, making
the supervisory process more robust and efficient. This requires developing
a communication framework — AI-to-AI links — that allows an authority’s
AI engine to directly communicate with those of other authorities and the
private sector.

AI-to-AI links allow real-time monitoring, allowing regulators to conduct
performance benchmarking of private AI systems, simulate market stress,
and evaluate their robustness and compliance with financial stability norms.
The authority AI can query private sector AI and other agencies’ AI on
potential responses to particular interventions, aggregate those responses,
and feed them back in an iterative process to find the ultimate impact of
intervention strategies. This is similar to the Bank of England’s System-
wide Exploratory Scenario (SWES) exercise (Bank of England, 2024), but
could be done considerably faster, involve more than two rounds and would
be less taxing for the private sector.

4.2 AI Monitoring Frameworks

Traditional oversight mechanisms focus on capital, liquidity, and conduct but
likely miss the unique systemic risks posed by AI. We propose developing
comprehensive AI monitoring frameworks that track how AI is used across
the financial system and assess potential coordination risks. To create an
effective AI monitoring framework, financial authorities can establish a stan-
dardised reporting system — an AI registry — where financial institutions
must document all AI systems deployed across their critical functions.

4.3 Crisis Facilities for AI-Driven Crises

Central banks’ standing facilities will likely become much more important
as AI use proliferates. Central banks traditionally prefer discretionary fa-
cilities. However, such a deliberative approach may prove too slow in an
AI-accelerated crisis. To address this temporal mismatch, automatic, pre-
committed liquidity facilities that activate without human intervention would
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be of benefit. This approach has the additional benefit of potentially ruling
out bad equilibria in our game-theoretic framework with public signals. If
AI knows central banks will intervene if prices drop by a certain amount,
they will not coordinate on strategies that are only profitable if prices drop
more. Automatic standing facilities cap the price drop and raise the cut-off,
discouraging the all-exit equilibrium that emerges when public signals are
sufficiently precise.

4.4 Public-Private Partnerships

The optimal authority response to AI outlined above depends on authorities
having access to AI engines that match the speed and complexity of private
sector AI. It seems unlikely they will develop their in-house engines, as this
would require considerable public investment and reorganisation. Instead, a
more likely outcome is public-private partnerships that have already become
common in financial regulation.

Another promising avenue is federated learning (McMahan et al., 2017), a
technique that enables institutions to train machine learning models locally
on sensitive or proprietary datasets without exposing the underlying data.
Instead of sharing raw data, only the trained model parameters or updates
are transmitted to a central authority or aggregator. This approach enhances
privacy and security while still allowing regulators to benefit from insights
across multiple institutions. Sharing model architectures and network pa-
rameters limits the private speed advantage and dampens the procyclical
rise in price impact that accelerates crises.

5 Conclusion

This paper examines the implications of artificial intelligence for financial
stability through a game-theoretic framework. We identify three key mecha-
nisms through which AI affects financial markets: superior information pro-
cessing, common information sources and speed advantages. These mecha-
nisms interact with endogenous system responses and strategic complemen-
tarities to create both stabilising and destabilising effects.

Our analysis suggests that AI will likely lower day-to-day volatility while
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increasing tail risk — smoothing out short-term fluctuations at the expense
of more extreme events. When faced with minor disturbances, AI can ab-
sorb shocks and stabilise markets. However, during genuine stress events, the
same capabilities that dampen small fluctuations may amplify extreme move-
ments, making crises faster and more intense than those we have experienced
previously.

The financial authorities face significant challenges in adapting to this new
landscape. Traditional regulatory frameworks designed for human decision-
making timeframes may prove inadequate in markets where critical decisions
unfold at machine speed. We propose specific policy responses, including au-
thority AI systems, AI-to-AI communication frameworks, triggered facilities,
public-private partnerships, and enhanced monitoring systems.

Ultimately, whether AI increases or decreases financial stability depends on
how effectively both private market participants and public authorities har-
ness its capabilities. If the financial authorities engage proactively with AI
technology — developing their capabilities, establishing direct communica-
tion channels with private sector AI, and designing appropriate automated
response mechanisms — they can leverage AI to enhance financial stability.
If they do not, the likelihood of AI-amplified financial crises will increase.
The key to financial stability in the age of AI lies not in resisting technolog-
ical change but in ensuring that our regulatory frameworks evolve alongside
it.
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Appendices

A Solution of the Heterogeneous Global Game

with AI and Human Agents

This appendix provides additional details on solving the heterogeneous global
game presented in Section 3, particularly the derivation of the equilibrium
threshold in the model with both human and AI agents. Our approach adapts
the framework developed by Sakovics and Steiner (2012).

A.1 Belief Constraint in Heterogeneous Agent Models

The key to solving the model is understanding what Sakovics and Steiner
(2012) call the “belief constraint,” which governs the equilibrium relationship
between the strategic beliefs of different types of agents and the distribution
of the aggregate action.

In our model with two groups (humans H and AI agents A), the belief
constraint states that the weighted average of the strategic beliefs is the
uniform distribution:

(1− µ)AH(a,∆) + µAA(a,∆) = a (5)

where Ag(a,∆) is the cumulative distribution function of the aggregate action
as perceived by the threshold type of group g, ∆ = (x∗

H - x∗
A)/σ is a function

of the threshold signals, and µ is the proportion of AI agents.

A.2 Deriving the Threshold Equilibrium

The equilibrium threshold θ∗ is derived as follows:

1. Each threshold type satisfies an indifference condition. For a threshold
type from group g, the expected payoff from investing must equal zero:

pg bg − cg = 0 (6)
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where pg = Pr(a ≤ θ∗|(x∗
g, g)) is the probability the threshold type

assigns to the absence of a crisis.

2. These probabilities can be expressed in terms of the strategic beliefs:

pg = Ag(θ
∗,∆) (7)

3. From the indifference conditions, we get pg = cg/bg for each group.

4. Applying the belief constraint and substituting for pg, we get:

(1− µ)AH(θ
∗,∆) + µAA(θ

∗,∆) = θ∗

(1− µ)
cH
bH

+ µ
cA
bA

= θ∗
(8)

5. In the special case where humans succeed with probability p < 1 when
choosing to run while AI agents succeed with probability 1, the analysis
from Sakovics and Steiner (2012) implies:

θ∗ =
c

b
[(1− µ)p+ µ] (9)

where c/b represents the common cost-benefit ratio when both groups
have identical preferences.

A.3 Speed Advantage and Strategic Uncertainty

The speed advantage of AI is modelled following the approach of Sakovics
and Steiner (2012) for heterogeneous withdrawal capabilities. In this setup,
the critical threshold θ∗ increases with the measure µ of AI agents, making
coordination on the run equilibrium more likely.

This happens because AI agents can execute transactions more quickly and
efficiently than humans, creating a preemption motive. Consider the strategic
uncertainty faced by threshold types:

• A human threshold type believes that AI agents are more likely to act
before them, increasing their incentive to run.

• An AI threshold type believes that it can act before humans, giving it
a strategic advantage.
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This asymmetry in strategic beliefs, while still satisfying the belief constraint,
leads to a higher critical threshold than in a humans-only market (where
θ∗ = p · c/b).
The externalities created by AI’s speed advantage can be calculated by dif-
ferentiating the critical threshold with respect to µ:

∂θ∗

∂µ
=

c

b
(1− p) > 0 (10)

This positive derivative indicates that increasing the proportion of AI agents
makes the system more fragile.
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