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Analysis of networks that evolve dynamically requires the joint
modelling of individual snapshots and time dynamics. This paper pro-
poses a new flexible two-way heterogeneity model towards this goal.
The new model equips each node of the network with two heterogene-
ity parameters, one to characterize the propensity to form ties with
other nodes statically and the other to differentiate the tendency to
retain existing ties over time. With n observed networks each having
p nodes, we develop a new asymptotic theory for the maximum like-
lihood estimation of 2p parameters when np → ∞. We overcome the
global non-convexity of the negative log-likelihood function by the
virtue of its local convexity, and propose a novel method of moment
estimator as the initial value for a simple algorithm that leads to the
consistent local maximum likelihood estimator (MLE). To establish
the upper bounds for the estimation error of the MLE, we derive a
new uniform deviation bound, which is of independent interest. The
theory of the model and its usefulness are further supported by ex-
tensive simulation and the analysis of some real network data sets.

1. Introduction. Network data featuring prominent interactions between subjects
arise in various areas such as biology, economics, engineering, medicine, and social
sciences [24, 19]. As a rapidly growing field of active research, statistical modelling of
networks aims to capture and understand the linking patterns in these data. A large
part of the literature has focused on examining these patterns for canonical, static
networks that are observed at a single snapshot. Due to the increasing availability of
networks that are observed multiple times, models for dynamic networks evolving in
time are of increasing interest now. These models typically assume, among others, that
networks observed at different time are independent [25, 1], independent conditionally
on some latent processes [4, 21], or drawn sequentially from an exponential random
graph model conditional on the previous networks [10, 9, 20].

One of the stylized facts of real-life networks is that their nodes often have different
tendencies to form ties and may evolve differently over time. The former is manifested
by the fact that the so-called hub nodes have many links while the peripheral nodes
have small numbers of connections in, for example, a big social network. The latter
becomes evident when some individuals are more active in seeking new ties/friends
than the others. In this paper, we refer to these two kinds of heterogeneity as static
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heterogeneity and dynamic heterogeneity respectively. Also known as degree hetero-
geneity in the static network literature, static heterogeneity has featured prominently
in several popular models widely used in practice including the stochastic block model
and its degree-corrected generalization [16]. See also [14, 26, 15, 18], and the references
therein. Another common and natural approach to capture the static heterogeneity is to
introduce node-specific parameters, one for each node. For single networks, this is often
conducted via modelling the logit of the link probability between each pair of nodes
as the sum of their heterogeneity parameters. Termed as the β-model [2], this model
and its generalizations have been extensively studied when a single static network is
observed [36, 17, 6, 32, 3, 28, 27].

The goal of this paper is two-fold: (i) We propose a dynamic network model named
the two-way heterogeneity model that captures both static heterogeneity and dynamic
heterogeneity, and develop the associate inference methodology; (ii) We establish new
generic asymptotic results that can be applied or extended to different models with a
large number of parameters (in relation to p). We focus on the scenario that the number
of nodes p goes to infinity. Our asymptotic results hold when np → ∞, though n may
be fixed. The main contributions of our paper can be summarized as follows.

• We propose a parsimonious formulation of the general autoregressive network model
[13] to accommodate heterogeneity in both node degree and dynamic fluctuation. Our
new model can also be viewed as an extension of the β-model [2] to a dynamic setting
– it contains two sets of heterogeneity parameters: one controls static heterogeneity,
similar to the set of parameters in the standard β-model; the other facilitates dynamic
heterogeneity. Different from the general model in [13], which requires the number of
network observations n to be large (i.e., n → ∞), we have shown that our formulation
is valid under the small n large p scenario.

• The formulation of our model gives rise to a high-dimensional non-convex loss func-
tion based on likelihood. By establishing the local convexity of the loss function in
a neighborhood of the true parameters, we compute the local MLE by a standard
gradient descent algorithm using a newly proposed method of moment estimator
(MME) as its initial value. To our best knowledge, this is the first result in network
data analysis for solving such a non-convex optimization problem with algorithmic
guarantees.

• Furthermore, to characterize the local MLE, we have derived its estimation error
bounds in the ℓ2 norm and the ℓ∞ norm when np → ∞ in which n ≥ 2 can be finite.
Due to the dynamic structure of the data, the Hessian matrix of the loss function
exhibits a complex structure. As a result, existing analytical approaches, such as the
interior point theorem [5, 34] developed for static networks, are no longer applicable;
see Section 3.1 for further elaboration. We derive a novel locally uniform deviation
bound in a neighborhood of the true parameters with a diverging radius. Based on
this we first establish ℓ2 norm consistency of the MLE, which paves the way for the
uniform consistency in ℓ∞ norm.

• In establishing the locally uniform deviation bound, we have provided a general
result for functions of the form L(θ) = 1

p

∑
1≤i ̸=j≤p li,j (θi, θj)Yi,j as defined in (4.11)

below. This result explores the sparsity structure of L(θ) in the sense that most of
its higher order derivatives are zero – the condition which our model satisfies, and
provides a new bound that substantially extends the scope of empirical processes for
the M-estimators [30] for the models with a fixed number of parameters to those with
a growing number of parameters. The result here is of independent interest as it can
be applied to any model with an objective function taking the form of L.
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The rest of the paper is organized as follows. We introduce in Section 2 the new two-
way heterogeneity model and present its properties. The estimation of its local MLE
in a neighborhood of the truth and the associated theoretical properties are presented
in Section 3. The development of these properties relies on new local deviation bounds
which are presented in Section 4. Simulation studies and an analysis of ants interaction
data are reported in Section 5. We conclude the paper in Section 6. All technical
proofs are relegated to Appendix A. Further numerical results on community detection
under stochastic block structures and the application to 12 dynamic protein-protein
interaction networks are presented in Appendix B.

2. Two-way Heterogeneity Model. Consider a dynamic network defined on p
nodes which are unchanged over time. Denote by a p×p matrix Xt = (Xt

i,j) its adjacency
matrix at time t, i.e. Xt

i,j = 1 indicates the existence of a connection between nodes i
and j at time t, and 0 otherwise. We focus on undirected networks without self-loops,
i.e., Xt

i,j = Xt
j,i for all (i, j) ∈ J ≡ {(i, j) : 1 ≤ i < j ≤ p}, and Xt

i,i = 0 for 1 ≤ i ≤ p,
though our approach can be readily extended to directed networks.

To capture the autoregressive pattern in dynamic networks, [13] proposed to model
the network process via the following stationary AR(1) framework:

Xt
i,j = Xt−1

i,j I(εt
i,j = 0) + I(εt

i,j = 1), t ≥ 1,

where I(·) denotes the indicator function, and the εt
i,j , (i, j) ∈ J are independent inno-

vations such that,
P (εt

i,j = 1) = αi,j , P (εt
i,j = −1) = βi,j , P (εt

i,j = 0) = 1 − αi,j − βi,j ,

for some positive parameters αi,j , βi,j . This general model opts to neglect the inherent
nature of the networks and chooses to estimate each pair (αi,j , βi,j) independently.
As a result, there are p(p − 1) parameters and consistent model estimation requires
n → ∞. On the opposite, in many real applications, it has been oftentimes observed
that the number of network observations n is small while the number of nodes p can be
much larger than n. The general model in [13] would no longer be appropriate under
this small-n-large-p scenario. To capture the inherent node heterogeneity in dynamic
networks and to be able to handle small-n-large-p networks we propose the following
parsimonious formulation for the general AR(1) model above, which also reduces the
number of parameters from p(p − 1) to 2p.

Definition 1. Two-way Heterogeneity Model (TWHM). The data generat-
ing process satisfies
(2.1) Xt

i,j = I(εt
i,j = 0) + Xt−1

i,j I(εt
i,j = 1), (i, j) ∈ J ,

where the εt
i,j , for (i, j) ∈ J and t ≥ 1 are independent innovations with their distribu-

tions satisfying
(2.2)

P (εt
i,j = r) = eβi,r+βj,r

1 +
∑1

k=0 eβi,k+βj,k
for r = 0,1, P (εt

i,j = −1) = 1
1 +

∑1
k=0 eβi,k+βj,k

.

TWHM defined above is a parsimonious formulation of the AR(1) network model
[13] as it reduces the total number of parameters from 2p2 therein to 2p. By Proposition
1 of [13], the matrix process {Xt, t ≥ 1} is strictly stationary with

(2.3) P (Xt
i,j = 1) = eβi,0+βj,0

1 + eβi,0+βj,0
= 1 − P (Xt

i,j = 0),
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Fig 1: A schematic depiction of TWHM: βi,0, i = 1, ...,4, are parameters to characterize
the static heterogeneity of nodes, while βi,1 characterize their dynamic heterogeneity.

provided that we activate the process with X0 = (X0
i,j) also following this stationary

marginal distribution.
Furthermore,

E(Xt
i,j) = eβi,0+βj,0

1 + eβi,0+βj,0
, Var(Xt

i,j) = eβi,0+βj,0

(1 + eβi,0+βj,0)2 ,

(2.4) ρi,j(|t − s|) ≡ Corr(Xt
i,j ,X

s
i,j) =

(
eβi,1+βj,1

1 +
∑1

r=0 eβi,r+βj,r

)|t−s|

.

Note that the connection probabilities in (2.3) depend on β0 = (β1,0, · · · , βp,0)⊤ only,
and are of the same form as the (static) β-model [2]. Hence we call β0 the static
heterogeneity parameter. Proposition 2.1 below confirms that means and variances of
node degrees in TWHM also depend on β0 only, and that different values of βi,0 reflect
the heterogeneity in the degrees of nodes.

Under TWHM, it holds that
(2.5)

P (Xt
i,j = 1|Xt−1

i,j = 0) = eβi,0+βj,0

1 +
∑1

k=0 eβi,k+βj,k
, P (Xt

i,j = 0|Xt−1
i,j = 1) = 1

1 +
∑1

k=0 eβi,k+βj,k
.

Hence the dynamic changes (over time) of network Xt depend on, in addition to β0,
β1 ≡ (β1,1, · · · , βp,1)⊤: the larger βi,1 is, the more likely Xt

i,j will retain the value of Xt−1
i,j

for all j. Thus we call β1 the dynamic heterogeneity parameter, as its components reflect
the different dynamic behaviours of the p nodes. A schematic description of the model
can be seen from Figure 1 where three snapshots of a dynamic network with four nodes
are depicted.

From now on, let {Xt} ∼ Pθ denote the stationary TWHM with parameters θ =
(β⊤

0 ,β⊤
1 )⊤, and dt

i =
∑p

j=1 Xt
i,j be the degree of node i at time t. The proposition below

lists some properties of the node degrees.

Proposition 2.1. Let {Xt} ∼ Pθ. Then {(dt
1, . . . , dt

p), t = 0,1,2, · · · } is a strictly
stationary process. Furthermore for any 1 ≤ i < j ≤ p and t, s ≥ 0,

E(dt
i) =

p∑
k=1, k ̸=i

eβi,0+βk,0

1 + eβi,0+βk,0
, Var(dt

i) =
p∑

k=1, k ̸=i

eβi,0+βk,0

(1 + eβi,0+βk,0)2 ,
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ρd
i,j(|t − s|) ≡ Corr(dt

i, d
s
j)

=

Ci,ρ
∑p

k=1, k ̸=i

(
eβi,1+βk,1

1+
∑1

r=0 eβi,r+βk,r

)|t−s|
eβi,0+βk,0

(1+eβi,0+βk,0 )2 if i = j,

0 if i ̸= j,

where Ci,ρ =
(∑p

k=1, k ̸=i
eβi,0+βk,0

(1+eβi,0+βk,0 )2

)−1
.

Proposition 2.1 implies that when there exist constants β0, β1 such that βi,0 ≈ β0 and
βi,1 ≈ β1 for all i, the degree sequence {dt

i, t = 1, . . . , n} is approximately AR(1).

3. Parameter Estimation. We introduce some notation first. Denote by Ip the
p × p identity matrix. For any s ∈ R, sp denotes the p × 1 vector with all its ele-
ments equal to s. For a = (a1, . . . , ap)⊤ ∈ Rp and A = (Ai,j) ∈ Rp×p, let ∥a∥q = (aq

i )1/q

for any q ≥ 1, ∥a∥∞ = maxi |ai|, and ∥A∥∞ = maxi
∑p

j=1 |Ai,j |. Furthermore, let
∥A∥2 denote the spectral norm of A which equals its largest eigenvalue. For a ran-
dom matrix W ∈ Rp×p with E(W) = 0, define its matrix variance as Var(W) =
max

{
∥E
(
WW⊤)∥2,∥E

(
W⊤W

)
∥2
}
. The notation x ≲ y means that there exists a

constant c1 > 0 such that |x| ≤ c1|y|, while notation x ≳ y means there exists a con-
stant c2 > 0 such that |x| ≥ c2|y|. Denote by B∞ (x, r) = {y : ∥y − x∥∞ ≤ r} the ball
centred at x with ℓ∞ radius r. Let c, c0, c1, . . . ,C,C0,C1, . . . denote some generic con-
stants that may be different in different places.

Let θ∗ = (β∗⊤
0 ,β∗⊤

1 )⊤ = (β∗
1,0, · · · , β∗

p,0, β∗
1,1, · · · , β∗

p,1)⊤ be the true unknown parame-
ters. We assume:

(A1) There exists a constant K such that for any i = 1,2, · · · , p the true parameters
satisfy β∗

i,1 − max
(
β∗

i,0,0
)

< K.

Condition (A1) above ensures that autocorrelation functions (ACFs) ρi,j in (2.4) are
bounded away from 1 for any (i, j) ∈ J . We note in particular that both β∗

i,1 and β∗
i,0

are allowed to depend on p such that sparse networks are included in our exploration.
In practice, the β∗

i,0 which captures the sparsity of the stationary network is usually
very small for large networks, and (A1) would hold when β∗

i,1 is bounded from above.

3.1. Maximum likelihood estimation. With the available observations X0, · · · ,Xn,
the log-likelihood function conditionally on X0 is of the form L(θ;Xn, · · · ,X1|X0) =∏n

t=1 L(θ;Xt|Xt−1). Note {Xt
i,j} for different (i, j) ∈ J are independent with each other.

By (2.5), a (normalized) negative log-likelihood admits the following form:

l(θ) = − 1
np

L(θ;Xn,Xn−1, · · · ,X1|X0)(3.6)

= −1
p

∑
1≤i<j≤p

log
(
1 + eβi,0+βj,0 + eβi,1+βj,1

)
+ 1

np

∑
1≤i<j≤p

{
(βi,0 + βj,0)

n∑
t=1

Xt
i,j

+ log
(
1 + eβi,1+βj,1

) n∑
t=1

(
1 − Xt

i,j

)(
1 − Xt−1

i,j

)

+ log
(
1 + eβi,1+βj,1−βi,0−βj,0

) n∑
t=1

Xt
i,jX

t−1
i,j

}
.
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For brevity, write

(3.7) ai,j =
n∑

t=1
Xt

i,j , bi,j =
n∑

t=1
Xt

i,jX
t−1
i,j , di,j =

n∑
t=1

(
1 − Xt

i,j

)(
1 − Xt−1

i,j

)
.

Then the Hessian matrix of l(θ) is of the form

V(θ) = ∂2l(θ)
∂θ∂θ⊤ =

 ∂2l(θ)
∂β0∂β⊤

0

∂2l(θ)
∂β0∂β⊤

1
∂2l(θ)

∂β1∂β⊤
0

∂2l(θ)
∂β1∂β⊤

1

 :=
[
V1(θ) V2(θ)
V2(θ) V3(θ)

]
,

where for i ̸= j,

∂2l(θ)
∂βi,0∂βj,0

= 1
p

eβi,0+βj,0(1 + eβi,1+βj,1)
(1 + eβi,0+βj,0 + eβi,1+βj,1)2 − 1

np
bi,j

eβi,0+βj,0+βi,1+βj,1

(eβi,0+βj,0 + eβi,1+βj,1)2 ,

∂2l(θ)
∂βi,0∂βj,1

= −1
p

eβi,0+βj,0+βi,1+βj,1

(1 + eβi,0+βj,0 + eβi,1+βj,1)2 + 1
np

bi,j
eβi,0+βj,0+βi,1+βj,1

(eβi,0+βj,0 + eβi,1+βj,1)2 ,

∂2l(θ)
∂βi,1∂βj,1

= 1
p

eβi,1+βj,1(1 + eβi,0+βj,0)
(1 + eβi,0+βj,0 + eβi,1+βj,1)2 − 1

np
di,j

eβi,1+βj,1

(1 + eβi,1+βj,1)2

− 1
np

bi,j
eβi,0+βj,0+βi,1+βj,1

(eβi,0+βj,0 + eβi,1+βj,1)2 .

Note that matrix V2(θ) is symmetric. Furthermore, the three matrices V1(θ),V2(θ)
and V3(θ) are diagonally balanced [11] in the sense that their diagonal elements are
the sums of their respective rows, namely,

(Vk(θ))i,i =
p∑

j=1, j ̸=i

(Vk(θ))i,j , k = 1,2,3.

Unfortunately the Hessian matrix V(θ) is not uniformly positive-definite. Hence l(θ)
is not convex; see Section 5.1 for an example. Therefore, finding the global MLE by
minimizing l(θ) would be infeasible, especially given the large dimensionality of θ. To
overcome the obstacle, we propose the following roadmap to search for the local MLE
over a neighbourhood of the true parameter values θ∗.

(1) First we show that l(θ) is locally convex in a neighbourhood of θ∗ (see Theorem
3.1 below). Towards this end, we first prove that E(V(θ)) is positive definite in a
neighborhood of θ∗. Leveraging on some newly proved concentration results, we show
that V(θ) converges to E(V(θ)) uniformly over the neighborhood.

(2) Denote by θ̂ the local MLE in the neighbourhood identified above. We derive the
bounds for θ̂ − θ∗ respectively in both ℓ2 and ℓ∞ norms (see Theorems 3.2 and 3.3
below). The ℓ2 convergence is established by providing a uniform upper bound for
the local deviation between l(θ) − E(l(θ)) and l(θ∗) − E(l(θ∗)) (see Corollary 4.1 in
Section 4). The ℓ∞ convergence of θ̂ is established by further exploiting the special
structure of the objective function.

(3) We propose a new method of moment estimator (MME) which is proved to lie
asymptotically in the neighbourhood specified in (1) above. With this MME as the
initial value, the local MLE θ̂ can be simply obtained via a gradient decent algorithm.

The main technical challenges in the roadmap above can be summarized as follows.
Firstly, to establish the upper bounds as stated in (2) above, we need to evaluate

the uniform local deviations of the loss function. While the theoretical framework for
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deriving similar deviations of M-estimators has been well established in, for example,
[30, 29], classical techniques in empirical process for establishing uniform laws [31] are
not applicable because the number of parameters in TWHM diverges.

Secondly, for the classical β-model, proving the existence and convergence of its
MLE relies strongly on the interior point theorem [5]. In particular, this theorem is
applicable only because the Hessian matrix of the β-model admits a nice structure, i.e.
it is diagonally dominant and all its elements are positive depending on the parameters
only [2, 36, 34, 7]. However the Hessian matrix of l(θ) for TWHM depends on random
variables Xt

i,j ’s in addition to the parameters, making it impossible to verify if the score
function is uniformly Fréchet differentiable or not, a key assumption required by the
interior point theorem.

Lastly, the higher order derivatives of l(θ) may diverge as the order increases. To
see this, notice that for any integer k, the k-th order derivatives of l(θ) is closely
related to the (k − 1)-th order derivatives of the Sigmoid function S(x) = 1

1+e−x in that
∂kS(x)

∂xk =
∑k−2

m=0 −A(k−1,m)(−ex)m+1

(1+ex)k , where A (k − 1,m) is the Eulerian number [23]. Some
of the coefficients A (k − 1,m) can diverge very quickly as k increases. Thus, loosely
speaking, l(θ) is not smooth. This non-smoothness and the need to deal with a growing
number of parameters make various local approximations based on Taylor expansions
highly non-trivial; noting that the consistency of MLEs in many finite-dimensional
models is often established via these approximations.

In our proofs, we have made great use of the special sparse structure of the loss
function in the form (4.11) below. This sparsity structure stems from the fact that
most of its higher order derivatives are zero. Based on the uniform local deviation
bound obtained in Section 4, we have established an upper bound for the error of the
local MLE under the l2 norm. Utilizing the structure of the marginalized functions of
the loss we have further established an upper bound for the estimation error under the
l∞ norm thanks to an iterative procedure stated in Section 3.3.

3.2. Existence of the local MLE. To establish the convexity of l(θ) in a neighbor-
hood of θ∗, we first show that such a local convexity holds for E(V(θ)).

Proposition 3.1. Let A be a 2p × 2p matrix defined as A =
[

A1 A2
A2 A3

]
, where

A1, A2, A3 are p × p symmetric matrices. Then A is positive (negative) definite if
−A2,A2 + A3,A2 + A1 are all positive (negative) definite.

Proof. Consider any nonzero x = (x⊤
1 ,x⊤

2 )⊤ ∈ R2p where x1,x2 ∈ Rp, we have:

xT Ax = x⊤
1 A1x1 + x⊤

2 A3x2 + 2x⊤
1 A2x2

= x⊤
1 (A1 + A2)x1 + x⊤

2 (A3 + A2)x2 − (x1 − x2)⊤A2(x1 − x2).

This proves the proposition.

Noting that −V2(θ),V2(θ) + V3(θ) and V2(θ) + V1(θ) are all diagonally balanced
matrices, with some routine calculations it can be shown that −EV2(θ∗),E(V2(θ∗) +
V3(θ∗)) and E(V2(θ∗) + V1(θ∗)) have only positive elements, and thus are all positive
definite. Therefore, EV(θ∗) is positive definite by Proposition 3.1. By continuity, when
θ is close enough to θ∗, EV(θ) is also positive definite, and hence El(θ) is strongly
convex in a neighborhood of θ∗. Next we want to show the local convexity of l(θ) whose
second order derivatives depend on the sufficient statistics bi,j =

∑n
t=1 Xt

i,jX
t−1
i,j , and
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di,j =
∑n

t=1

(
1−Xt

i,j

)(
1−Xt−1

i,j

)
. By noticing that the network process is α-mixing with

an exponential decaying mixing coefficient, we first obtain the following concentration
results for bi,j and di,j , which ensure element-wise convergence of V(θ) to EV(θ) for a
given θ when np → ∞.

Lemma 3.1. Suppose {Xt} ∼ Pθ for some θ = (β1,0, · · · , βp,0, β1,1, · · · , βp,1)⊤ satis-
fying condition (A1). Then for any (i, j) ∈ J , {Xt

i,j , t ≥ 1} is α-mixing with exponential
decaying rates. Moreover, for any positive constant c > 0, by choosing c1 > 0 to be large
enough, it holds with probability greater than 1 − (np)−c that

max
1≤i<j≤p

{
n−1

∣∣∣∣∣
n∑

t=1

{
Xt

i,j − E
(
Xt

i,j

)}∣∣∣∣∣ , n−1 |bi,j − E(bi,j)| , n−1 |di,j − E(di,j)|
}

≤ c1rn,p,

where rn,p =
√

n−1 log(np) + n−1 log (n) log log (n) log (np).

The following lemma provides a lower bound for the smallest eigenvalue of E(V(θ)).

Lemma 3.2. Let {Xt} ∼ Pθ∗ , B∞ (θ∗, r) := {θ : ∥θ − θ∗∥∞ ≤ r} and B (κ0, κ1) :=
{(β0,β1) : ∥β0∥∞ ≤ κ0,∥β1∥∞ ≤ κ1}. Under condition (A1), for any κ0, κ1 and r =
cre−4κ0−4κ1 with cr > 0 being a small enough constant, there exists a constant C > 0
such that

inf
θ∈B∞(θ∗,r)∩B(κ0,κ1);∥a∥2=1

a⊤E(V(θ))a ≥ Ce−4κ0−4κ1 .

Examining the proof indicates that the lower bound in Lemma 3.2 is attained
when β0 = (κ0, . . . , κ0)⊤ and β1 = (−κ1, . . . ,−κ1)⊤. Hence the smallest eigenvalue
of E (V(θ)) can decay exponentially in κ0 and κ1. Consequently, an upper bound for
the radius κ0 and κ1 must be imposed so as to ensure the positive definiteness of the
sample analog V(θ). Moreover, Lemma 3.2 also indicates that the positive definiteness
of E (V(θ)) can be guaranteed when θ is within the ℓ∞ ball B∞ (θ∗, r). To establish the
existence of the local MLE in the neighborhood, we need to evaluate the closeness of
E (V(θ)) and V(θ) in terms of the operator norm. Intuitively, for some appropriately
chosen κ0, κ1, if ∥E(V(θ)) − V(θ)∥2 has a smaller order than e−4κ0−4κ1 uniformly over
the parameter space {θ : ∥β0∥∞ ≤ κ0,∥β1∥∞ ≤ κ1 and θ ∈ B∞ (θ∗, r)}, the positive
definiteness of V(θ) can be concluded.

Note that V2(θ)−EV2(θ),V2(θ)+V3(θ)−E(V2(θ) + V3(θ)) and V2(θ)+V1(θ)−
E(V2(θ) + V1(θ)) are all centered and diagonally balanced matrices which can be
decomposed into sums of independent random matrices. The following lemma provides
a bound for evaluating the moderate deviations of these centered matrices.

Lemma 3.3. Let Z = (Zi,j)1≤i,j≤p be a symmetric p × p random matrix such that
the off-diagonal elements Zi,j ,1 ≤ i < j ≤ p are independent of each other and satisfy

Zi,i =
n∑

j=1, j ̸=i

Zi,j , E(Zi,j) = 0, Var (Zi,j) ≤ σ2, and Zi,j ≤ b almost surely.

Then it holds that

P (∥Z∥2 > ϵ) ≤ 2p exp
(

− ϵ2

2σ2(p − 1) + 4bϵ

)
.

Proposition 3.1, Lemma 3.2 and Lemma 3.3 imply the theorem below.
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Theorem 3.1. Let condition (A1) hold, assume {Xt} ∼ Pθ∗ , and κr := ∥β∗
r∥∞

where r = 0,1 with κ0 + κ1 ≤ c log(np) for some small enough constant c > 0. Then as
np → ∞ with n ≥ 2, we have that, with probability tending to 1, there exists a unique
MLE in the ℓ∞ ball B∞ (θ∗, r) = {θ : ∥θ − θ∗∥∞ ≤ r} for some r = cre−4κ0−4κ1 , where
cr > 0 is a constant.

In the proof of Theorem 3.1, we have shown that with probability tending to 1, l(θ)
is convex in the convex and closed set B∞ (θ∗, r). Consequently, we conclude that there
exists a unique local MLE in B∞ (θ∗, r). From Theorem 3.1 we can also see that when
κ0 + κ1 becomes larger, the radius r will be smaller, and when κ0 + κ1 is bounded away
from infinity, r has a constant order. From the proof we can also see that the constant
cr can be larger if the smallest eigenvalue of the expected Hessian matrix E(V(θ))
is larger. Further, by allowing the upper bound of ∥β∗

0∥∞ to grow to infinity, our
theoretical analysis covers the case where networks are sparse. Specifically, under the
condition that ∥β∗

0∥∞ ≤ κ0, from (2) we can obtain the following lower bound (which
is achievable when β∗

1,0 = . . . = β∗
p,0 = −κ0) for the density of the stationary network:

ρ := 2
p(p − 1)

∑
1≤i<j≤p

P
(
Xt

i,j = 1
)

≥ e−2κ0

1 + e−2κ0
= O

(
e−2κ0

)
.

In particular, when κ0 ≤ c log(np) for some constant c > 0, we have ρ ≥ 1
[1+(np)2c] .

Thus, compared to full dense network processes where the total number of edges for
each network is of the order p2, TWHM allows the networks with much fewer edges.

3.3. Consistency of the local MLE. In the previous subsection, we have proved that
with probability tending to one, l(θ) is convex in B∞ (θ∗, r), where r = cre−4κ0−4κ1 is
defined in Theorem 3.1. Denote by θ̂ the (local) MLE in B∞ (θ∗, r). We now evaluate
the ℓ2 and ℓ∞ distances between θ̂ and the true value θ∗.

Based on Theorem 4.1 we obtain a local deviation bound for l(θ) as in Corollary
4.1 in Section 4, from which we establish the following upper bound for the estimation
error of θ̂ under the ℓ2 norm:

Theorem 3.2. Let condition (A1) hold, assume {Xt} ∼ Pθ∗ , and κr := ∥β∗
r∥∞

where r = 0,1 with κ0 + κ1 ≤ c log(np) for some small enough constant c > 0. Then as
np → ∞ with n ≥ 2, it holds with probability converging to 1 that

1
√

p

∥∥∥θ̂ − θ∗
∥∥∥

2
≲ e4κ0+4κ1

√
log(np)

np

(
1 + log(np)

√
p

)
.

We discuss the implication of this theorem. When n → ∞ and p is finite, that is,
when we have a fixed number of nodes but a growing number of network snapshots,
Theorem 3.2 indicates that

∥∥∥θ̂ − θ∗
∥∥∥

2
= Op

(√
log3 n

n e4κ0+4κ1

)
= op(1) when c is small

enough. On the other hand, when n, κ0 and κ1 are finite, Theorem 3.2 indicates that
as the number of parameters p increases, the ℓ2 error bound of θ̂ increases at a much
slower rate O

(√
log p

)
.

Although Theorem 3.2 indicates that 1√
p

∥∥∥θ̂ − θ∗
∥∥∥

2
= op(1) as np → ∞, it does not

guarantee the uniform convergence of all the elements in θ̂. To prove the uniform
convergence in the ℓ∞ norm, we exploit a special structure of the loss function and the
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ℓ2 norm bound obtained in Theorem 3.2. Specifically, denote l(θ) in (3.6) as l(θ) =
l(θ(i),θ(−i)) where θ(i) := (βi,0, βi,1)⊤, and θ(−i) contains the remaining elements of θ
except θ(i). Using this notation, we can analogously define θ∗

(i) and θ∗
(−i) for the true

parameter θ∗, and θ̂(i) and θ̂(−i) for the local MLE θ̂. We then have that θ∗
(i) is the

mimizer of El
(
·,θ∗

(−i)

)
while θ̂(i) is the minimizer of l

(
·, θ̂(−i)

)
. The error of θ̂(i) in

estimating θ∗
(i) then relies on the distance between El

(
·,θ∗

(−i)

)
and l

(
·, θ̂(−i)

)
, which

on the other hand depends on both the ℓ2 bound of ∥θ̂ − θ∗∥2 and the uniform local
deviation bound of l

(
θ(i),θ(−i)

)
. Based on Theorem 3.2, Corollary 4.1 in Section 4,

and a sequential approach (see equations (A.12) and (A.13) in the appendix), we obtain
the following bound for the estimation error under the ℓ∞ norm.

Theorem 3.3. Let condition (A1) hold, assume {Xt} ∼ Pθ∗ , and κr := ∥β∗
r∥∞

where r = 0,1 with κ0 + κ1 ≤ c log(np) for some small enough constant c > 0. Then as
np → ∞, n ≥ 2, it holds with probability converging to 1 that∥∥∥θ̂ − θ∗

∥∥∥
∞
≲ e8κ0+8κ1 log log(np)

√
log(np)

np

(
1 + log(np)

√
p

)
.

Theorem 3.3 indicates that
∥∥∥θ̂ − θ∗

∥∥∥
∞

= op(1) as np → ∞. Thus all the components
of θ̂ converge uniformly. On the other hand, when κ = c log(np) for some small enough
positive constant c, we have e8κ0+8κ1 log log(np)

√
log(np)

np

(
1 + log(np)√

p

)
≤ o(cre−4κ0−4κ1).

Compared with Theorem 3.1, we observe that although the radius r in Theorem 3.1
already tends to zero when ∥β∗

0∥∞ ≤ κ0,∥β∗
1∥∞ ≤ κ1 and κ0 + κ1 ≤ c log(np) for some

small enough constant c > 0, the ℓ∞ error bound of θ̂ has a smaller order asymptotically
and thus gives a tighter convergence rate.

We remark that in the MLE, β∗
0 and β∗

1 are estimated jointly. As we can see from
the log-likelihood function, the information related to βi,0 is captured by Xt

i,j and
Xt

i,jX
t−1
i,j , t = 1, . . . , n, j ̸= i, while that related to βi,1 is captured by (1−Xt

i,j)(1−Xt−1
i,j )

and Xt
i,jX

t−1
i,j , t = 1, . . . , n, j ̸= i. This indicates that the effective “sample sizes” for

estimating βi,0 and βi,1 are both of the order O(np). While the theorems we have
established in this section is for θ̂ = (β̂⊤

0 , β̂
⊤
1 )⊤ jointly, we would expect β̂0 and β̂1 to

have the same rate of convergence.

3.4. A method of moment estimator. Having established the existence of a unique
local MLE in B∞ (θ∗, r) and proved its convergence, we still need to specify how to find
this local MLE. To this end, we propose an initial estimator lying in this neighborhood.
Consequently we can adopt any convex optimization method such as the coordinate
descent algorithm to locate the local MLE, thanks to the convexity of the loss function
in this neighborhood. Based on (2.3), an initial estimator of β0 denoted as β̃0 can be
found by solving the following method of moment equations

(3.8)
∑n

t=1
∑p

j=1, j ̸=i Xt
i,j

n
−

p∑
j=1, j ̸=i

eβi,0+βj,0

1 + eβi,0+βj,0
= 0, i = 1, · · · , p.

These equations can be viewed as the score functions of the pseudo loss function
f(β0) :=

∑
1≤i,j≤p log{1+eβi,0+βj,0}−n−1∑p

i=1{βi,0
∑n

t=1
∑p

j=1, j ̸=i Xt
i,j}. Since the Hes-

sian matrix of f(β0) is diagonally balanced with positive elements, the Hessian matrix
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is positive definite, and, hence, f(β0) is strongly convex. With the strong convexity,
the solution of (3.8) is the minimizer of f(·) which can be easily obtained using any
standard algorithms such as the gradient descent. On the other hand, note that

E(Xt
i,jX

t−1
i,j ) = eβi,0+βj,0

1 + eβi,0+βj,0

(
1 − 1

1 + eβi,0+βj,0 + eβi,1+βj,1

)
,

which motivates the use of the following estimating equations to obtain β̃1, the initial
estimator of β1,

(3.9)
n∑

t=1

p∑
j=1, j ̸=i

{
Xt

i,jX
t−1
i,j − eβ̃i,0+β̃j,0

1 + eβ̃i,0+β̃j,0

(
1 − 1

1 + eβ̃i,0+β̃j,0 + eβi,1+βj,1

)}
= 0,

with i = 1, · · · , p. Similar to (3.8), we can formulate a pseudo loss function such that
given β̃0, its Hessian matrix corresponding to the score equations (3.9) is positive
definite, and hence (3.9) can also be solved via the standard gradient descent algorithm.
Since θ̃ = (β̃⊤

0 , β̃
⊤
1 )⊤ is obtained by solving two sets of moment equations, we call it

the method of moment estimator (MME). An interesting aspect of our construction of
these moment equations is that the equations corresponding to the estimation of β0
and β1 are decoupled. While the estimator error in estimating β0 propagates clearly
in that of estimating β1, we have the following existence, uniqueness, and a uniform
upper bound for the estimation error of θ̃. Our results build on a novel application of
the classical interior mapping theorem [5, 35, 34].

Theorem 3.4. Let condition (A1) hold, and {Xt} ∼ Pθ∗ . The MME θ̃ defined
by equations (3.8) and (3.9) exists and is unique in probability. Further, assume that
κr := ∥β∗

r∥∞ where r = 0,1 with κ0 + κ1 ≤ c log(np) for some small enough constant
c > 0. Then as np → ∞ and n ≥ 2, it holds that∥∥∥θ̃ − θ∗

∥∥∥
∞

≤ Op

(
e14κ0+6κ1

√
log(n) log(p)

np

)
.

When np → ∞ and κ0, κ1 are finite, Theorem 3.4 gives
∥∥∥θ̃ − θ∗

∥∥∥
∞

= Op

(√
log(n) log(p)

np

)
.

When κ0 + κ1 ≍ log(np), we see that the upper bound for the local MLE in Theorem
3.3 is dominated by the upper bound of the MME in Theorem 3.4. Moreover, when
κ0 +κ1 ≤ c log(np) for some small enough constant c > 0, we have θ̃ ∈ B∞ (θ∗, r), where
r is defined in Theorem 3.1. Thus, θ̃ is in the small neighborhood of θ∗ as required.

3.5. The sparse case. Note that in the previous theoretical results, the estimation
error bounds depend on both κ0 and κ1, i.e., the upper bounds for ∥β∗

0∥∞ and ∥β∗
1∥∞.

Clearly, the larger κ0 is, the more sparse the networks could be, and the larger κ1 is,
the lag-one correlations (c.f. equation (2.4)) could be closer to one, indicating fewer
fluctuations in the network process. To further characterize the effect of network spar-
sity, in this section, we derive further properties under a relatively sparse scenario
where −κ0 ≤ β∗

i,0 ≤ Cκ and −κ1 ≤ β∗
i,1 ≤ κ1 for all i = 1, . . . , p and Cκ > 0 here is a

constant. Under this case we have, there exist constants C > 0 and C1 > 0, such that
Ce−2κ0 ≤ E

(
Xt

i,j

)
≤ C1 < 1. In the most sparse case where β0,i = −κ0, i = 1, . . . , p, the

density of the stationary network is of order O(e−2κ0). Similar to Lemma 3.2 and The-
orem 3.1, the following corollary provides a lower bound for the smallest eigenvalue of
E(V(θ)) and the existence of the MLE.
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Corollary 3.1. Let {Xt} ∼ Pθ∗ , B∞ (θ∗, r) = {θ : ∥θ − θ∗∥∞ ≤ r} for some
r = cre−2κ0−4κ1 where cr > 0 is a small enough constant. and denote B′ (κ0, κ1) :={

(β0,β1) : −κ0 ≤ βi,0 ≤ Cκ, i = 1, . . . , p,∥β1∥∞ ≤ κ1
}

for some constant Cκ > 0. Then,
under condition (A1), there exists a constant C > 0 such that:

inf
θ∈B∞(θ∗,r)∩B′(κ0,κ1);∥a∥2=1

a⊤E(V(θ))a ≥ Ce−2κ0−4κ1 .

Further, assume that θ∗ ∈ B′ (κ0, κ1) and κ0 +2κ1 < c log(np) for some positive constant
c < 1/6. Then, as np → ∞ with n ≥ 2, we have, with probability tending to 1, there
exists a unique MLE in B∞ (θ∗, r).

Corollary 3.2. Let condition (A1) hold, assume {Xt} ∼ Pθ∗ , ∥β∗
1∥∞ ≤ κ1, and

−κ0 ≤ β∗
i,0 ≤ Cκ for i = 1, . . . , p and some constant Cκ > 0. Then as np → ∞ with n ≥ 2,

it holds with probability converging to 1 that

1
√

p

∥∥∥θ̂ − θ∗
∥∥∥

2
≤ Ce2κ0+4κ1

√
log(np)

np

(
1 + log(np)

√
p

)
,

and
∥∥∥θ̂ − θ∗

∥∥∥
∞

≤ Ce4κ0+8κ1 log log(np)
√

log(np)
np

(
1 + log(np)

√
p

)
.

Corollary 3.3. Let condition (A1) hold, assume {Xt} ∼ Pθ∗ , ∥β∗
1∥∞ ≤ κ1, and

−κ0 ≤ β∗
i,0 ≤ Cκ for i = 1, . . . , p and some constant Cκ > 0. Then as np → ∞ with n ≥ 2,

it holds with probability converging to 1 that the MME θ̃ defined by equations (3.8)
and (3.9) exists uniquely, and when κ0 + 2κ1 < c log(np) for some constant c < 1/12, it
holds that ∥∥∥θ̃ − θ∗

∥∥∥
∞

≤ Op

(
e4κ0+6κ1

√
log(n) log(p)

np

)
.

From Corollary 3.2, we can see that when κ1 ≍ O(1), the MLE is consistent when
κ0 ≤ c log(np) for some positive constant c < 1/8, and the corresponding lower bound
for density is O(e−2c log(np)) ≻ O((np)−1/4). Similarly, from Corollary 3.3 we can see
that when κ1 ≍ O(1), the density of the networks can be as small as O(e−2c log(np))
for some constant c < 1/12, i.e., the density is having a larger order than (np)−1/6 for
the estimation of the MME. Further, when 6κ0 + 10κ1 ≤ c1 log(np) for some constant
c1 < 1/2, we have θ̃ ∈ B∞ (θ∗, r), where r is defined in Corollary 3.1. This implies the
validity of using θ̃ as an initial estimator for computing the local MLE.

4. A uniform local deviation bound under high dimensionality. As we
have discussed, a key to establish the consistency of the local MLE is to evaluate the
magnitude of

∣∣[l(θ) − El(θ)] − [l(θ∗) − El(θ∗)]
∣∣ for all θ ∈ B∞ (θ∗, r) with r specified in

Theorem 3.1. Such local deviation bounds are important for establishing error bounds
for general M-estimators in the empirical processes [30]. Note that

l(θ) − El(θ) = −1
p

∑
1≤i<j≤p

[
(βi,0 + βj,0)

(ai,j − E(ai,j)
n

)
(4.10)

+ log
(
1 + e(βi,1+βj,1)

)(di,j − E(di,j)
n

)
+log

(
1 + e(βi,1−βi,0)+(βj,1−βj,0)

)
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where ai,j , bi,j and di,j are defined in (3.7). The three terms on the right-hand side all
admit the following form

(4.11) L (θ) = 1
p

∑
1≤i ̸=j≤p

li,j (θi, θj)Yi,j ,

for some functions L : Rp → R, li,j : R2 → R, and centered random variables Yi,j (1 ≤
i, j ≤ p). Instead of establishing the uniform bound for each term in (4.10) separately,
below we will establish a unified result for bounding |L (θ) − L

(
θ′) | over a local ℓ∞

ball defined as θ ∈ B∞(θ′, ·) for a general L function as in (4.11). We remark that
in general without further assumptions on L, establishing uniform deviation bounds
is impossible when the dimension of the problem diverges. For our TWHM however,
the decomposition (4.10) is of a particularly appealing structure in the sense that only
two-way interactions between parameters θi exist. Based on this “sparsity” structure,
we develop a novel reformulation (c.f. equation (A.24)) for the main components of the
Taylor series of L(θ) satisfying the following two conditions.

(L-A1) There exists a constant α > 0, such that for any 1 ≤ i ̸= j ≤ p, any positive
integer k, and any non-negative integer s ≤ k, we have:

∂kli,j (θi, θj)
∂θs

i ∂θk−s
j

≤ (k − 1)!
αk

.

(L-A2) Random variables Yi,j ,1 ≤ i ̸= j ≤ p are independent satisfying E(Yi,j) = 0,
|Yi,j | ≤ b(p) and Var (Yi,j) ≤ σ2

(p) for any i and j, where b(p) and σ2
(p) are constants

depending on n and p but independent of i and j.

Loosely speaking, Condition (L-A1) can be seen as a smoothness assumption on the
higher order derivatives of li,j (θi, θj) so that we can properly bound these derivatives
when Taylor expansion is applied. On the other hand, the upper bound for these deriva-
tives is mild as it can diverge very quickly as k increases. For our TWHM, it can be
verified that (L-A1) holds for li,j(θi, θj) = θi + θj and li,j(θi, θj) = log(1 + eθi+θj ); see
(3.6). For the latter, note that the first derivative of function l(x) = log(1 + ex) is seen
as the Sigmoid function:

S (x) = ex

1 + ex
= 1

1 + e−x
.

By the expression of the higher order derivatives of the Sigmoid function [23], the k-th
order derivative of l is

∂kl (x)
∂xk

=
∑k−2

m=0 −A (k − 1,m) (−ex)m+1

(1 + ex)k
,

where k ≥ 2 and A (k − 1,m) is the Eulerian number. Now for any x, we have∣∣∣∣∣
∑k−2

m=0 −A (k − 1,m) (−ex)m+1

(1 + ex)k

∣∣∣∣∣≤
k−2∑
m=0

A (k − 1,m) = (k − 1)!.

Therefore, ∣∣∣∣∣∂kl (x)
∂xk

∣∣∣∣∣≤ (k − 1)!

holds for all x ∈ R and k ≥ 2. With extra arguments using the chain rule, this in return
implies that (L-A1) is satisfied with α = 1 when li,j(θ) = log

(
1 + eθi+θj

)
.
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Condition (L-A2) is a regularization assumption for the random variables Yi,j ,1 ≤
i, j ≤ p, and the bounds on their moments are imposed to ensure point-wise concentra-
tion. For our TWHM, from Lemma 1 and Lemma A.2, we have that there exist large
enough constants C > 0 and c > 0 such that with probability greater than 1 − (np)−c,
the random variables ai,j−E(ai,j)

n , bi,j−E(bi,j)
n and di,j−E(di,j)

n all satisfy condition (L-A2)
with b(p) = C

√
n−1 log(np) + Cn−1 log (n) log log (n) log (np) and σ2

(p) = Cn−1.
We present the uniform upper bound on the deviation of L(θ) below.

Theorem 4.1. Assume conditions (L-A1) and (L-A2). For any given θ′ ∈ Rp and
α0 ∈ (0, α/2), there exist large enough constants C > 0 and c > 0 which are independent
of θ′, such that, as np → ∞, with probability greater than 1 − (np)−c,

∣∣L (θ) − L
(
θ′)∣∣≤ C

b(p) log(np) + σ(p)
√

p log(np)
p

∥∥θ − θ′∥∥
1

holds uniformly for all θ ∈ B∞
(
θ′, α0

)
.

One of the main difficulties in analyzing L(θ) defined in (4.11) is that li,j(θi, θj) and
Yi,j are coupled, giving rise to complex terms involving both in the Taylor expansion
of L(θ). When Taylor expansion with order K is used, condition (L-A1) can reduce
the number of higher order terms from O(pK) to O(p22K). On the other hand, by
formulating the main terms in the Taylor series into a matrix form in (A.24), the
uniform convergence of the sum of these terms is equivalent to that of the spectral
norm of a centered random matrix, which is independent of the parameters. Further
details can be found in the proofs of Theorem 4.1.

Define the marginal functions of L (θ) as

Li (θ) = 1
p

p∑
j=1, j ̸=i

li,j (θi, θj)Yi,j , i = 1, . . . , p,

by retaining only those terms related to θi. Similar to Theorem 4.1, we state the fol-
lowing upper bound for these marginal functions. With some abuse of notation, let
θ−i := (θ1, · · · , θi−1, θi+1, · · · , θp)⊤ be the vector containing all the elements in θ except
θi.

Theorem 4.2. If conditions (L-A1) and (L-A2) hold, then for any given θ′ ∈ Rp and
α0 ∈ (0, α/2), there exist large enough constants C > 0 and c > 0 which are independent
of θ′, such that, as np → ∞, with probability greater than 1 − (np)−c,∣∣Li (θ) − Li

(
θ′)∣∣

≤ C
b(p)

p

∥∥θ−i − θ′
−i

∥∥
1 + C

(∥∥θ−i − θ′
−i

∥∥
1 + 1

)
|θi − θ′

i|
b(p) log(np) + σ(p)

√
p log(np)

p

holds uniformly for all θ ∈ B∞
(
θ′, α0

)
, and i = 1, · · · , p.

Similar to (4.10), we can also decompose l
(
θ(i),θ(−i)

)
− El

(
θ(i),θ(−i)

)
into the sum

of three components taking the form (4.11). Consequently, by setting θ′ in Theorems
4.1 and 4.2 to be the true parameter θ∗, we can obtain the following upper bounds.

Corollary 4.1. For any given 0 < α0 < 1/4, there exist large enough positive
constants c1, c2, and C such that
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(i) with probability greater than 1 − (np)−c1 ,

(4.12)
∣∣(l(θ) − l(θ∗)

)
−
(
El(θ) − El(θ∗)

)∣∣≤ C1

(
1 + log(np)

√
p

)√
log(np)

n
∥θ − θ∗∥2

holds uniformly for all θ ∈ B∞ (θ∗, α0) with some constant α0 < 1/2;
(ii) with probability greater than 1 − (np)−c2 ,

(4.13)
∣∣∣l(θ(i),θ

∗
(−i)

)
− l
(
θ∗

(i),θ
∗
(−i)

)
−
[
El
(
θ(i),θ

∗
(−i)

)
− El

(
θ∗

(i),θ
∗
(−i)

)]∣∣∣
≤ C2

(
1 + log(np)

√
p

)√
log(np)

n

∥∥∥θ(i) − θ∗
(i)

∥∥∥
2

holds uniformly for all θ(i) ∈ B∞
(
θ∗

(i), α0
)

with some constant α0 < 1/2.

In (4.12) and (4.13) we have replaced the ℓ1 norm based upper bounds in Theo-
rems 4.1 and 4.2 with ℓ2 norm based upper bounds using the fact that for all x ∈ Rp,
∥x∥1 ≤ √

p∥x∥2. We remark that networks are generally stylized by different features
such as dynamic change, node heterogeneity, homophily, transitivity, among others. In
this paper, we are mainly focusing on dealing with node heterogeneity in dynamic net-
works. When other stylized features are considered together with node heterogeneity,
the objective function can also take a similar form as the L(θ) defined in (4.12). On
the other hand, the log-likelihood functions of many other models accounting for node
heterogeneity can be written in a form similar to (4.11). For example, the general class
of network models with the edge formation probabilities in the form of f(αi, βj), where
f(·) is a density or probability mass function and (αi, βi) are the node-specific parame-
ters of node i. This includes for example, the p1 model [12], the directed β-model [33],
and the bivariate gamma model [7]). Further, in the analysis of ranking data, a common
formulation is also to introduce individual-specific parameters/scores for ranking; see
for example the classical Bradley-Terry model and its variations [8]. Our results here
can potentially be applied to the theoretical analysis of these models or their variations
when other stylized features are simultaneously considered with node heterogeneity.

5. Numerical study. In this section, we assess the performance of the local MLE.
We compute a regularized MME, which demonstrates enhanced numerical stability
compared to the vanilla MME presented in (3.9), for the purpose of comparative anal-
ysis. The regularized MME can be viewed as a special case of [27] with a shrinkage
towards 0 for the parameter β1. Specifically, for the former, we solve
(5.14)

−1
np

n∑
t=1

p∑
j=1, j ̸=i

{
Xt

i,jX
t−1
i,j − eβ̃i,0+β̃j,0

1 + eβ̃i,0+β̃j,0

(
1 − 1

1 + eβ̃i,0+β̃j,0 + eβi,1+βj,1

)}
+ λβi,1 = 0,

with i = 1, · · · , p, where λβi,1 can be seen as a ridge penalty with λ > 0 as the reg-
ularization parameter. Denote the regularized MME as θ̃λ. Similar to Theorem 3.4,
by choosing λ = Cλe2κ

√
log(np)

np for some constant Cλ, we can show that
∥∥∥θ̃λ − θ∗

∥∥∥
∞

≤

Op

(
e26κ

√
log(n) log(p)

np

)
. In our implementation we take λ =

√
log(np)

np . Following [27], one
may also apply a ridge penalty to the equation (3.8). This could result in a tighter error
bound for the estimation of β0. The MLE of TWHM is obtained via gradient descent
using θ̃λ as the initial value.
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Table 1
Signs of the smallest eigenvalues of the Hessian matrices of l(θ) and El(θ) evaluated at θ = θ∗ or

02p when different values of θ∗ = (β∗⊤
0 , β∗⊤

1 )⊤ are used to generate data.

Sign of the smallest eigenvalue of l(θ∗) Sign of the smallest eigenvalue of El(θ∗)
β∗

0= 0.2p β∗
0= 0.5p β∗

0= 1p β∗
0= 0.2p β∗

0= 0.5p β∗
0= 1p

β∗
1= 0.2p + + + β∗

1= 0.2p + + +
β∗

1= 0.5p + + + β∗
1= 0.5p + + +

β∗
1= 1p + + + β∗

1= 1p + + +
Sign of the smallest eigenvalue of l(02p) Sign of the smallest eigenvalue of El(02p)

β∗
0= 0.2p β∗

0= 0.5p β∗
0= 1p β∗

0= 0.2p β∗
0= 0.5p β∗

0= 1p

β∗
1= 0.2p + + − β∗

1= 0.2p + + −
β∗

1= 0.5p − − − β∗
1= 0.5p + + −

β∗
1= 1p − − − β∗

1= 1p − − −

5.1. Non-convexity of l(θ) and El(θ). Given the form of l(θ), it is intuitively true
that it may not be convex everywhere. We confirm this via a simple example. Take
(n, p) = (2,1000) and set β∗

0,β∗
1 to be 0.2p, 0.5p or 1p. We evaluate the smallest eigen-

value of the Hessian matrix of l(θ) and its expectation El(θ) at the true parameter
value θ∗ = (β∗⊤

0 ,β∗⊤
1 )⊤, or at θ = 02p in one experiment. From the top half of Table 1

we can see that, when evaluated at θ∗, the Hessian matrices are all positive definite.
However, when evaluated at θ = 02p, from the bottom half of the table we can see that
the Hessian matrices are no longer positive definite when θ∗ is far away from 02p. Even
when the Hessian matrix of El(θ) is so at θ = 02p with θ∗ = 0.52p, the corresponding
Hessian matrix of l(θ) at this point has a negative eigenvalue. Thus, El(θ) and l(θ) are
not globally convex.

5.2. Parameter estimation. We first evaluate the error rates of the MLE and
MME under different combinations of n and p. We set n = 2,5,10, or 20 and p ∈
⌊200 × 1.20:6⌋ = {200,240,288,346,415,498,598}, which results in a total of 28 differ-
ent combinations of (n, p). For each (n, p), the data are generated such that {Xt} ∼ Pθ∗

where the parameters β∗
i,0 and β∗

i,1(1 ≤ i ≤ p) are drawn independently from the uniform
distribution with parameters in (−1,1). Each experiment is repeated 100 times under
each setting. Denote the estimator (which is either the MLE or the MME) as θ̂, and
the true parameter value as θ∗. We report the average ℓ2 error ∥θ̂−θ∗∥2√

p and the average
ℓ∞ error ∥θ̂ − θ∗∥∞ in Figure 2. From this figure, we can see that the errors in terms
of the ℓ∞ norm and the ℓ2 norm decrease for MME and MLE as n or p increases, while
the errors of MLE are smaller across all settings. These observations are consistent with
our findings in the main theory.

Next, we provide more numerical simulation to evaluate the performance of MLE
and MME by imposing different structures on β∗

0 and β∗
1. In particular, we want to

evaluate how the estimation accuracy changes by varying the sparsity of the networks
as well as varying the correlations of the network sequence. Note that the expected
density of the stationary distribution of the network process is simply

1
p(p − 1)E

 ∑
1≤i ̸=j≤p

Xt
i,j

= 1
p(p − 1)

 ∑
1≤i ̸=j≤p

eβ∗
i,0+β∗

j,0

1 + eβ∗
i,0+β∗

j,0

 .

In the sequel, we will use two parameters a and b to generate β∗
r , r = 0,1, according to

the following four settings:

Setting 1. {a}: all the elements in β∗
r are set to be equal to a.
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n=2 n=5 n=10 n=20

l2
l∞

200 240 288 346 415 498 598 200 240 288 346 415 498 598 200 240 288 346 415 498 598 200 240 288 346 415 498 598
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1.0
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E
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estimator
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Fig 2: Mean errors of MME and MLE in terms of the ℓ2 and ℓ∞ norm.

Setting 2. {a, b}: the first 10% elements of β∗
r are set to be equal to a, while the other

elements are set to be equal to b.
Setting 3. L(a,b): the parameters take values in a linear form as β∗

i,r = a + (a − b) ∗ (i −
1)/(p − 1), i = 1, · · · , p.

Setting 4. U(a,b): the p elements in β∗
r are generated independently from the uniform

distribution with parameters a and b.

In Table 2, we generate β∗
1 using Setting 1 with a = 0, and generate β∗

0 using Setting 2
with different choices for a and b to obtain networks with different expected density. In
Table 3, we generate β∗

0 and β∗
1 using combinations of these four settings with different

parameters such that the resulting networks have expected density either around 0.05
(sparse) or 0.5 (dense). The number of networks in each process and the number of nodes
in each network are set as (n, p) = (20,200), (20,500), (50,200) or (50,500). The errors
for estimating θ∗ in terms of the ℓ∞ and ℓ2 norms are reported via 100 replications. To
further compare the accuracy for estimating β∗

0 and β∗
1, in Table 4, we have conducted

experiments under Settings 3 and 4, and reported the estimation errors for β∗
0 and β∗

1
separately. We summarize the simulation results below:

• The effect of (n, p). Similar to what we have observed in Figure 2, the estimation
errors become smaller when n or p becomes larger. Interestingly, from Tables 2–3 we
can observe that, under the same setting, the errors in ℓ2 norm when (n, p) = (50,200)
are very close to those when (n, p) = (20,500). This is to some degree consistent with
our finding in Theorem 3.2 where the upper bound depends on (n, p) through their
product np.

• The effect of sparsity. From Table 2 we can see that, as the expected density de-
creases, the estimation errors increase in almost all the cases. On the other hand,
even though the parameters take different values in Table 3, the errors in the sparse
cases are in general larger than those in the dense cases.

• The effect of κ0 := ∥β∗
0∥∞. In general, the estimation errors become larger when κ0

is larger as observed from Table 2. With the same overall sparsity level, larger κ0 is
associated with larger estimation errors as can be seen in Table 3.
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Table 2
The estimation errors of MME and MLE under Setting 1 and Setting 2 for β∗

0 by setting β∗
1 = 0p.

n p β∗
0 MME, ℓ2 MME, ℓ∞ MLE, ℓ2 MLE, ℓ∞

20 200 {0} 0.074 0.219 0.071 0.212
50 200 {0} 0.046 0.138 0.045 0.136
20 500 {0} 0.046 0.150 0.045 0.146
50 500 {0} 0.029 0.093 0.028 0.092
20 200 {0.5, −0.5} 0.092 0.222 0.091 0.217
50 200 {0.5, −0.5} 0.058 0.140 0.058 0.139
20 500 {0.5, −0.5} 0.058 0.154 0.057 0.148
50 500 {0.5, −0.5} 0.036 0.095 0.036 0.093
20 200 {1, −1} 0.120 0.305 0.117 0.284
50 200 {1, −1} 0.074 0.186 0.074 0.177
20 500 {1, −1} 0.075 0.200 0.073 0.190
50 500 {1, −1} 0.038 0.125 0.036 0.119
20 200 {1.5, −1.5} 0.164 0.436 0.156 0.397
50 200 {1.5, −1.5} 0.102 0.255 0.097 0.236
20 500 {1.5, −1.5} 0.103 0.287 0.097 0.262
50 500 {1.5, −1.5} 0.065 0.178 0.061 0.164

• MLE vs MME. In general, the estimation errors of the MLE are smaller than those
of the MME in most cases as can be seen in Tables 2 and Table 3. In Table 4 where
the estimation errors for β∗

0 and β∗
1 are reported separately, we can see that the

estimation errors of the MME of β∗
1 are generally larger than those of the MLE of

β∗
1, especially when n is large.

5.3. Real data. In this section, we apply our TWHM to a real dataset to examine an
insect interaction network process [22]. We focus on a subset of the data named insecta-
ant-colony4 that contains the social interactions of 102 ants in 41 days. In this dataset,
the position and orientation of all the ants were recorded twice per second to infer
their movements and interactions, based on which 41 daily networks were constructed.
More specifically, Xt

i,j is 1 if there is an interaction between ants i and j during day
t, and 0 otherwise. In the ACF and PACF plots of the degree sequences of selected
ants (c.f. Figure ?? in Appendix ??), we can observe patterns similar to those of a
first-order autoregressive model with long memory. This motivates the use of TWHM
for the analysis of this dataset.

In [22], the 41 daily networks were split into four periods with 11, 10, 10, and 10 days
respectively, because the corresponding days separating these periods were identified
as change-points. By excluding ants that did not interact with others, we are left with
p = 102 nodes in period one, p = 73 nodes in period two, p = 55 nodes in period three
and p = 35 nodes in period four. Thus we take the networks on day 1, day 12, day 22
and day 32 as the initial networks and fit four different TWHMs, one for each of the
four periods.

To appreciate how TWHM captures static heterogeneity, we present a subgraph of 10
nodes during the fourth period (t = 32–41), 5 of which have the largest and 5 have the
smallest fitted βi,0 values. The edges of this subgraph are drawn to represent aggregated
static connections defined as (X32 + · · · + X42)/10 between these ants. We can see
from the left panel of Figure 3 that the magnitudes of the fitted static heterogeneity
parameters agree in principle with the activeness of each ant making connections. On the
other hand, we examine how TWHM can capture dynamic heterogeneity. Towards this,
we plot a subgraph of the 10 nodes having the smallest fitted βi,0 values in Figure 3(b),
where edges represent the magnitude of

∑41
t=33 I

(
Xt

i,j = Xt−1
i,j

)
/9 which is a measure
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Table 3
The average estimation errors of MME and MLE under combinations of different settings

Density = 0.05
n p β∗

0 β∗
1 MME, ℓ2 MME, ℓ∞ MLE, ℓ2 MLE, ℓ∞

20 200 L(−4,0) U(−1,1) 0.419 1.833 0.392 1.8
50 200 L(−4,0) U(−1,1) 0.253 0.913 0.227 0.82
20 500 L(−4,0) U(−1,1) 0.246 1.119 0.218 0.9
50 500 L(−4,0) U(−1,1) 0.170 0.626 0.148 0.621
20 200 L(−4,0) {0} 0.275 1.452 0.280 1.516
50 200 L(−4,0) {0} 0.161 0.771 0.162 0.774
20 500 L(−4,0) {0} 0.160 0.892 0.162 0.904
50 500 L(−4,0) {0} 0.098 0.506 0.099 0.507
20 200 {−1.47} U(−1,1) 0.187 0.588 0.161 0.514
50 200 {−1.47} U(−1,1) 0.116 0.351 0.099 0.305
20 500 {−1.47} U(−1,1) 0.114 0.387 0.099 0.339
50 500 {−1.47} U(−1,1) 0.073 0.246 0.062 0.208
20 200 {−1.47} {0} 0.150 0.482 0.151 0.484
50 200 {−1.47} {0} 0.93 0.289 0.093 0.29
20 500 {−1.47} {0} 0.93 0.309 0.093 0.311
50 500 {−1.47} {0} 0.058 0.195 0.058 0.195

Density = 0.5
20 200 L(−2,2) U(−0.1,0.1) 0.132 0.415 0.012 0.318
50 200 L(−2,2) U(−0.1,0.1) 0.080 0.238 0.069 0.194
20 500 L(−2,2) U(−0.1,0.1) 0.080 0.272 0.068 0.217
50 500 L(−2,2) U(−0.1,0.1) 0.050 0.168 0.043 0.135
20 200 L(−1,1) U(−1,1) 0.107 0.324 0.095 0.264
50 200 L(−1,1) U(−1,1) 0.067 0.194 0.060 0.163
20 500 L(−1,1) U(−1,1) 0.071 0.267 0.061 0.205
50 500 L(−1,1) U(−1,1) 0.044 0.156 0.039 0.130
20 200 L(−2,2) U(−1,1) 0.137 0.478 0.112 0.329
50 200 L(−2,2) U(−1,1) 0.084 0.274 0.070 0.205
20 500 L(−2,2) U(−1,1) 0.087 0.352 0.071 0.250
50 500 L(−2,2) U(−1,1) 0.054 0.211 0.044 0.150

of the extent that an edge is preserved across the whole period and hence dynamic
heterogeneity. Again, we can see an agreement between the fitted β∗

1 and how likely
these nodes will preserve their ties.

To evaluate how TWHM performs when it comes to making prediction, we further
carry out the following experiments:

(i) From (1), given the MLE {β̂i,r, i = 1, . . . , p, r = 0,1} and the network at time t − 1,
we can estimate the conditional expectation of node i’s degree as

d̃t
i :=

p∑
j=1, j ̸=i

E
(
Xt

i,j

∣∣∣Xt−1
i,j , θ̂

)

=
p∑

j=1, j ̸=i

 eβ̂i,0+β̂j,0

1 + eβ̂i,0+β̂j,0 + eβ̂i,1+β̂j,1
+ eβ̂i,1+β̂j,1

1 + eβ̂i,0+β̂j, + eβ̂i,1+β̂j,1
Xt−1

i,j

 .

We can then compare the density of the estimated degree sequence {d̃t
i, i = 1, . . . , p}

with that of the observed degree sequence {dt
i, i = 1, . . . , p} at time t. As a compar-

ison, we treat the network observations from the same period as i.i.d. observations
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Table 4
The means and standard deviations of the errors of MME and MLE for estimating β∗

0 and β∗
1.

n 20 100 20 100
p 200 200 500 500

β∗
0 ∼ L(−1,1) and β∗

1 ∼ U(0,2)

MME, ℓ2
β∗

0 0.163(0.010) 0.096(0.006) 0.099(0.004) 0.057(0.002)
β∗

1 0.177(0.010) 0.084(0.005) 0.104(0.004) 0.050(0.002)

MME, ℓ∞
β∗

0 0.570(0.103) 0.367(0.085) 0.395(0.070) 0.241(0.042)
β∗

1 0.658(0.137) 0.421(0.079) 0.438(0.076) 0.214(0.037)

MLE, ℓ2
β∗

0 0.211(0.013) 0.091(0.006) 0.121(0.005) 0.054(0.002)
β∗

1 0.166(0.011) 0.072(0.005) 0.096(0.004) 0.043(0.002)

MLE, ℓ∞
β∗

0 0.809(0.180) 0.354(0.076) 0.532(0.098) 0.232(0.041)
β∗

1 0.617(0.116) 0.265(0.052) 0.399(0.065) 0.172(0.028)
β∗

0 ∼ L(−2,0) and β∗
1 ∼ U(0,2)

MME, ℓ2
β∗

0 0.133(0.012) 0.080(0.007) 0.081(0.004) 0.047(0.002)
β∗

1 0.093(0.006) 0.053(0.004) 0.056(0.003) 0.032(0.002)

MME, ℓ∞
β∗

0 0.568(0.104) 0.365(0.087) 0.394(0.071) 0.241(0.042)
β∗

1 0.387(0.069) 0.236(0.043) 0.258(0.037) 0.162(0.025)

MLE, ℓ2
β∗

0 0.176(0.016) 0.076(0.007) 0.100(0.006) 0.044(0.002)
β∗

1 0.116(0.009) 0.051(0.004) 0.068(0.003) 0.031(0.002)

MLE, ℓ∞
β∗

0 0.809(0.181) 0.351(0.078) 0.531(0.099) 0.232(0.041)
β∗

1 0.513(0.088) 0.227(0.047) 0.348(0.058) 0.158(0.024)

−1.84

−1.82

−0.55−0.45

−0.41

1.73

1.99

2.10 2.11

2.47

−7.96

−5.61

−1.29−0.75

−0.17

0.41

2.91

3 4.09

4.19

Fig 3: The aggregated networks of 10 selected ants during the fourth period reflect static
heterogeneity (Left) and dynamic heterogeneity (Right) respectively. The thickness of
each edge is proportional to the aggregation. The number in the nodes are the fitted
βi,0 (Left) and βi,1 (Right).

and modeled them using the classical β-model. This yielded four static static β-
model estimates, one for each of the four periods. The blue curves in Fig. 4 represent
the smoothed degree distributions derived from the degree sequences {ďt} of these
estimated β-models in the four periods.

The fitted degree distributions are presented in Figure 4, from which we can see
that the estimated densities follow the observed densities closely. This suggests that
the TWHM performs well for one-step-ahead prediction. To quantitatively evaluate
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the closeness between the estimated degree sequences {d̃t}, {ďt} and the true degree
sequence {dt}, we compute the Kolmogorov-Smirnov (KS) distance and conduct the
KS test at t = 2, · · · ,41. The mean and standard deviation of the KS distances,
the p-values of the KS test, and the rejection rate are summarized in Table 5. In
particular, with a significant level 0.05, out of the 40 KS tests, there are 38 times we
do not reject the null hypothesis that {d̃t} and {dt} are from the same distribution,
resulting in a rejection rate of 0.05 which is identical to the significance level. For the
β-model based degree sequence estimators {ďt}, 8 out of the 40 tests were rejected.
These results suggest that our model has very promising performance in recovering
the degree sequences.

Table 5
The mean and standard deviation of the KS distances, the p-values of KS test, and the rejection

rates between the true degree sequence {dt} and the estimators (i.e., {d̃t} based on the THWM, and
{ďt} the β-model for each period). These metrics are evaluated across the 40 networks

(t = 2, . . . , 41) in the ant dataset.

KS distance KS test p-value Rejection rate

d̃t vs dt 0.179(0.058) 0.361(0.267) 0.05

ďt vs dt 0.192(0.061) 0.298(0.246) 0.20

(ii) By incorporating network dynamics, TWHM naturally enables one-step-ahead link
prediction via

(5.15) P
(
X̂t

i,j = 1
∣∣∣Xt−1

i,j

)
= eβ̂i,0+β̂j,0

1 + eβ̂i,0+β̂j,0 + eβ̂i,1+β̂j,1
+ eβ̂i,1+β̂j,1

1 + eβ̂i,0+β̂j,0 + eβ̂i,1+β̂j,1
Xt−1

i,j .

To transform these probabilities into links, we threshold them by setting X̂t
i,j =

1 when P
(
X̂t

i,j = 1
)

≥ ci,j and X̂t
i,j = 0 when P

(
X̂t

i,j = 1
)

< ci,j for some cut-off
constants ci,j . As an illustration, we first consider simply setting ci,j = 0.5 for all
1 ≤ i < j ≤ p for predicting links. We shall denote this approach as TWHM0.5.

As an alternative, owing to the fact that networks may change slowly, for a given
parameter ω, we also consider the following adaptive approach for choosing ci,j :

(5.16) X̃t
i,j := I{ωP

(
X̂t

i,j = 1
)

+ (1 − ω)Xt−1
i,j > 0.5}.

It can be shown that the above estimator is equivalent to the prediction rule
I
{

P
(
X̂t

i,j = 1
)

> ci,j

}
with cut-off values specified as

ci,j = 0.5eβ̂i,1+β̂j,1 + (1 − w) eβ̂i,0+β̂j,0

(1 − w) + eβ̂i,1+β̂j,1 + (1 − w) eβ̂i,0+β̂j,0
, 1 ≤ i < j ≤ p.

This method is denoted as TWHMadaptive. Lastly, as a benchmark, we have also
considered a naive approach that simply predicts Xt as Xt−1.

In this experiment, we set the number of training samples to be ntrain = 2,5 or 8.
For a given training sample size ntrain and a period with n networks, we predict the
graph Xntrain+i based on the previous ntrain networks {Xt, t = i, . . . , ntrain + i − 1}
for i = 1, . . . , n − ntrain. That is, over the four periods in the data, we have predicted
33, 21 and 9 networks, with 5151 edges in each network in the first period, 2628
in the second period, 1485 in the third period, and 595 in the fourth period for
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Fig 4: The observed and estimated degree distributions. X-axis: the node degrees;
Red curves: the smoothed degree distributions of the estimated degree sequences from
TWHM; Blue curves: smoothed degree distributions of the degree sequences from the
estimated classical β-model for each of the four periods;

Black curves: the smoothed degree distributions of the observed degree sequences.
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Table 6
The prediction accuracy of TWHM with 0.5 as a cut-off point, TWHM with adaptive cut-off points,

and the naive estimator Xt−1.
ntrain Period TWHM0.5 TWHMadaptive Naive

2

One 0.773 0.800 0.749
Two 0.817 0.817 0.780

Three 0.837 0.837 0.806
Four 0.824 0.831 0.807

Overall 0.811 0.822 0.784

5

One 0.789 0.807 0.759
Two 0.826 0.823 0.779

Three 0.846 0.849 0.805
Four 0.833 0.842 0.805

Overall 0.822 0.829 0.786

8

One 0.795 0.800 0.759
Two 0.832 0.832 0.778

Three 0.855 0.845 0.823
Four 0.831 0.863 0.779

Overall 0.825 0.831 0.782

our choices of ntrain. The ω parameter employed in TWHMadaptive is selected as
follows. For prediction in each period, we choose the value in a sequence of ω values
that produces the highest prediction accuracy in predicting Xntrain+i−1 for predicting
Xntrain+i. For example, in the first period with n = 11 networks, when ntrain = 8, we
used {Xt, t = i, · · · , i + 7} to predict Xi+8 for i = 1,2,3. For each i, let X̃i+7 be
defined as in (5.16). A set of candidate values for ω were used to compute X̃i+7,
and the one that returns the smallest misclassification rate (in predicting Xi+7) was
used in TWHMadaptive for predicting Xi+8. The mean of the chosen ω is 0.936 when
n = 2, 0.895 when n = 5, and 0.905 when n = 8. The prediction accuracy of the
above-mentioned methods, defined as the percentages of correctly predicted links,
are reported in Table 6. We can see that TWHM0.5 and TWHMadaptive both perform
better than the naive approach in all the cases. On the other hand, TWHM coupled
with adaptive cut-off points can improve the prediction accuracy of TWHM with a
cur-off value 0.5 in most periods.

6. Summary and Discussion. We have proposed a novel two-way heterogeneity
model that utilizes two sets of parameters to explicitly capture static heterogeneity
and dynamic heterogeneity. In a high-dimension setup, we have provided the existence
and the rate of convergence of its local MLE, and proposed a novel method of moment
estimator as an initial value to find this local MLE. To the best of our knowledge,
this is the first model in the network literature that the local MLE is obtained for a
non-convex loss function. The theory of our model is established by developing new
uniform upper bounds for the deviation of the loss function.

While we have focused on the estimation of the parameters in this paper, how to
conduct statistical inference for the local MLE is a natural next step for research. In
our setup, we assume that the parameters are time invariant but this need not be the
case. A future direction is to allow the static heterogeneity parameter β0 and/or the
dynamic heterogeneity parameter β1 to depend on time, giving rise to non-stationary
network processes. In case when these parameters change smoothly over time, we may
consider estimating the parameters βτ

i,0, βτ
i,1 at time τ by kernel smoothing, that is, by

maximizing the following smoothed log-likelihood:
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L̃(τ,Xn,Xn−1, · · · ,X1|X0)

=
n∑

t=1
wt

∑
1≤i<j≤p

{
− log

(
1 + eβi,0+βj,0 + eβi,1+βj,1

)
+ (βi,0 + βj,0)Xt

i,j

(
1 − Xt−1

i,j

)

+
(
1 − Xt

i,j

)(
1 − Xt−1

i,j

)
log
(
1 + eβi,1+βj,1

)
+ Xt

i,jX
t−1
i,j log

(
eβi,0+βj,0 + eβi,1+βj,1

)}
,

with wt = K(h−1|t−τ |)∑n

t=1 K(h−1|t−τ |) , where K(·) is a kernel function and h is the bandwidth
parameter. As another line of research, note that TWHM is formulated as an AR(1)
process. We can extend it by including more time lags. For example, we can extend
TWHM to include lag-k dependence by writing

Xt
i,j = I(εt

i,j = 0) +
k∑

r=1
Xt−r

i,j I(εt
i,j = r),

where the innovations εt
i,j are independent such that

P (εt
i,j = r) = eβi,r+βj,r

1 +
∑k

s=0 eβi,s+βj,s
for r = 0, · · · , k; P (εt

i,j = −1) = 1
1 +

∑k
s=0 eβi,s+βj,s

,

with parameter β0 = (β1,0, . . . , βp,0)⊤ denoting node-specific static heterogeneity and
β = (βi,r)1≤i≤p;1≤r≤k ∈ Rp×k denoting lag-k dynamic fluctuation. Other future lines of
research include adding covariates to model the tendency of nodes making connections
[32], exploring additional structures such as sparsity by adding regularizations to the
negative likelihood function [3, 27].
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SUPPLEMENTARY MATERIAL
Supplement to "A two-way heterogeneity model for dynamic networks". In this sup-

plemental material, we present the proofs of lemmas, propositions and theorems.
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