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Abstract

Evaluating financial products with early-termination clauses, in particular those with
path-dependent structures, is challenging. This paper focuses on Asian options, look-back
options, and callable certificates. We will compare regression methods for pricing and com-
puting sensitivities, highlighting modern machine learning techniques against traditional
polynomial basis functions. Specifically, we will analyze randomized recurrent and feed-
forward neural networks, along with a novel approach using signatures of the underlying
price process. For option sensitivities like Delta and Gamma, we will incorporate Chebyshev
interpolation. Our findings show that machine learning algorithms often match the accu-
racy and efficiency of traditional methods for Asian and look-back options, while randomized
neural networks are best for callable certificates. Furthermore, we apply Chebyshev inter-
polation for Delta and Gamma calculations for the first time in Asian options and callable
certificates.
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1 Introduction
Financial products with early-termination features have become increasingly popular. These
products allow investors to participate in the performance of underlying assets while granting
them the flexibility to exit their positions before the maturity date. The investor or the issuer
may have the right to terminate the contract, subject to specific conditions. These products
are commonly structured as derivatives contracts or certificates. The early-termination options
within these products allow for swift liquidation triggered by factors such as asset performance
or specific events.

Evaluating and calculating sensitivities for financial products with early-termination clauses
presents significant challenges, especially when these products have path-dependent structures.
Traditional techniques, such as least-squares Monte Carlo (LSMC) simulations, can struggle with
the “curse of dimensionality." LSMC relies on ordinary least-squares (OLS) approximation, which
requires the selection of appropriate basis functions. As the dimensionality of the regression basis
increases, the performance of LSMC deteriorates, growing polynomially or even exponentially
with the number of risk factors, as discussed in Section 2.2 of Longstaff et al. (2001). Therefore,
the selection of the basis function is crucial for the analysis in this paper.

The aim of this paper is to examine the performance of various regression methods in pricing
and computing sensitivities. We will discuss the advantages and limitations of modern approaches
made possible by recent advances in machine learning, which serve as alternatives to traditional
polynomial basis functions. Specifically, we will enhance regression-based methods by introducing
alternative basis function choices derived from randomized neural networks and signatures, and we
will analyze whether this approach offers a promising solution to the challenges posed by path-
dependent early-terminating financial products such as Asian options, look-back options, and
callable certificates. Instead, for computing option sensitivities, particularly Delta and Gamma,
this paper complements these techniques with Chebyshev interpolation.

Asian and look-back options are usually traded in over-the-counter markets, providing in-
vestors with opportunities to capitalize on the average or extreme values of underlying asset
prices over a predetermined period. The time window associated with these options can either
be fixed, where the average or extreme value is calculated over a specific period, or rolling, where
the calculation period continuously updates as time progresses. In certain cases, these contracts
may also incorporate early-termination features, allowing investors to exit the position before
expiration, as described in Kao et al. (2003), Bernard et al. (2014), and Goudenège et al. (2022).
In the context of commodity markets, these types of options can be regarded as exemplifying
Swing contracts. Swing contracts allow the holder to adjust the quantity of the underlying asset
delivered or received within a specified time frame. We refer to Thompson (1995), Barrera-Esteve
et al. (2006), and Daluiso et al. (2024) for further details.

The dimensionality issue, mentioned above, is especially pronounced in the presence of path
dependence. Alternative approaches explored in the literature include partial differential equation
methods (e.g., Dai et al. (2010) and Federico et al. (2015)) and lattice-based techniques (e.g.,
Bernhart et al. (2011) and Lelong (2019)), with the latter often applied to price options on
averages. However, such methods are typically constrained to settings with limited complexity,
for instance, moving-average options with a monitoring window of at most ten observations (e.g.,
Bernhart et al. (2011) and Lelong (2019)).

Recently, the problem of pricing early-terminating products via LSMC has been addressed
by replacing the traditional basis functions with neural networks and employing gradient descent
instead of OLS; see, for example, Kohler et al. (2010), Becker et al. (2020), and Lapeyre et al.
(2021). However, since neural networks are non-convex functions with respect to their trainable
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parameters, gradient descent does not necessarily converge to a global minimum under typical
training procedures (e.g., finite training time, explicit regularization). In contrast, OLS minimiza-
tion of linear systems guarantees global convergence. This lack of convergence guarantees is a
significant drawback of these methods, as they often rely on strong and unrealistic assumptions
to establish theoretical results. Additionally, these approaches necessitate an off-line training
phase that must be repeated whenever market conditions change or a different payoff structure is
considered, further complicating their practical implementation.

A tentative to overcome these problems is proposed in Herrera et al. (2024), where randomized
neural networks are employed as a linear regression basis. A randomized neural network can
be viewed as a linear combination of random basis functions. In this approach (e.g., Cao et al.
(2018)), instead of training all layers of the neural network, the parameters of the hidden layers are
randomly initialized and kept fixed, while only the parameters of the output layer are optimized.
This significantly accelerates the training process, enabling it to be performed on-line whenever
a price is required.

In the present paper, as a first contribution, we adapt the approach of Herrera et al. (2024)
to deal with the previously discussed payoffs, and we compare the results with an alternative
original formulation based on signature methods. In particular, we employ both non-randomized
signatures and randomized signatures. The former are novel mathematical tools that have been
developed to study complex and irregular paths and functions. They represent a path in terms
of its iterated integrals, hence capturing essential information about path roughness and regular-
ity. In the present context, non-randomized signature methods offer a unique advantage as they
provide a way to express the state path dependency in terms of a linear function of a limited
number of risk factors so that we can apply standard regression techniques. However, they may
suffer from similar disadvantages as polynomials, such as the “curse of dimensionality”, which
can be overcome by randomized signatures, i.e. algorithms that try to approximate input/output
systems without the need of a full calibration of the system itself.

The literature on non-randomized signature methods with applications in finance is huge, so
that, in this contribution, we limit ourselves to cite only the most recent research papers on
the topic focusing, to the best of our knowledge, on the pricing of financial derivatives. Sabate-
Vidales et al. (2020) use a combination of recurrent neural network and signature methods to
design efficient algorithms for solving parametric families of path-dependent partial differential
equations (PDE) that arise in pricing and hedging of path-dependent derivatives or from use of
non-Markov models. A path-dependent PDE solver, based on signature kernels, is also proposed
in Pannier et al. (2024). On the other hand, the pricing of exotic vanilla derivatives is covered
in T. Lyons et al. (2019). Finally, methods based on signatures for pricing path-dependent options
can be found also in Feng et al. (2021) and Bayraktar et al. (2022), where signatures are used as
features for either feed-forward or recurrent neural networks. We claim that the use of deep neural
networks here is not strictly necessary, whence the novelty of our approach when using signatures
as basis functions, because of the ability of the signature by itself to represent data using a small
set of features, by capturing the most important properties of data in a non-parametric way. On
the other hand, examples of applications of randomized signatures can be found in Akyildirim
et al. (2022), where they are used to identify pump-and-dump attempts in the crypto market in an
unsupervised learning settings, and in Akyildirim et al. (2023), where randomized signatures are
utilized as a non-parametric and non-linear drift estimator to find an optimal allocation a long-
only portfolio. Non-randomized and randomized signature methods, along with the corresponding
relevant mathematical literature, are discusses and reported in Section 3.3

As a second contribution, we then analyze algorithms to compute sensitivities, particularly
Delta and Gamma. As shown in Herrera et al. (2024), second-order sensitivities are quite noisy
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when regression methods are used for pricing, and they require particular care to be calculated
in a robust way. We investigate the regression-based method by Létourneau et al. (2023) and
the Chebyshev interpolation techniques developed in Maran et al. (2022). To the best of our
knowledge, it is the first time that this analysis is performed for American-style Asian and look-
back options and for callable certificates.

Our numerical results indicate that machine learning-based algorithms achieve accuracy and
computational efficiency that are comparable to traditional algorithms when pricing Asian and
look-back options. In contrast, we find that randomized neural networks are the most effective
choice of basis functions for pricing callable certificates. Finally, we discovered that Chebyshev
interpolation techniques can be successfully applied, for the first time, to Delta and Gamma
calculations for both Asian options and callable certificates.

The paper is organized as follows. In Section 2 we discuss the payoffs under investigation,
namely American-style Asian and look-back options. In Section 3, we present the pricing algo-
rithms. We start by introducing the standard approach based on the LSMC; then we continue with
the randomized neural networks, and the signature methods. We end the section by discussing
how to compute sensitivities. In Section 5 we present the numerical details of the algorithms and
we perform investigations on the different payoffs we have presented. As a last contribution we
discuss the case of callable certificates in Section 6. Then, in Section 7 we summarize the paper
and we hint at future developments. The paper concludes with different appendices that should
deepen some theoretical aspects of the employed algorithms (Appendix A and B), the theory of
other derivatives with similar features, such as Snowball and Lock-in callable certificates (Ap-
pendix C), the numerical methods of sensitivity calculations (Appendix D), and provide more
numerical results on the proposed methods for the interested reader (Appendix E).

1.1 Notation
For the sake of the reader, we collect and define here some notations that we will use in the rest
of the paper, and we indicate the exact point where the first appearance of a symbol occurs:

1. M : the length of the moving window over which the average, minimum or maximum of the
price process is computed when pricing Asian and look-back payoffs; 2.1.

2. {T0, . . . , TN}, where T0 := 0 and TN := T : observation dates; 2.1.

3. VTi
: value function at Ti; Equation (6); CTi

: continuation value at Ti; Equation (8). BTi
:

bank-account process at Ti; Equation (6).

4. {φ1, . . . , φB}: set of B basis functions; just below Equation (10).

5. h: hidden size of random neural networks; Subsection 3.2.

6. d: dimension of the state process at each observation date Ti; Subsections 3.2 and 3.3, and
also Appendix B.

7. n: order of the truncation of the signature; Subsection 3.3 and Appendix B.

8. k⋆: dimension of the reservoir system in the randomized signature approach; Equation (13).

9. ς: variance of the independent normal random variables used to populate the random ma-
trices in the randomized signature approach; Subsection 3.3.2.
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10. P and Q: number of discrete paths for the price process via Gaussian Process Regression
and number of points employed in the Gauss Hermite Quadrature; Subsection 5.1.

11. Rρ with ρ ∈ {1, 2, 3, 4}: sets of risk factors; 5.1.

2 Financial products with early termination
In the present paper, we discuss numerical algorithms to price path-dependent financial products
with early-termination clauses. In this section, we describe the selection of payoffs considered in
our main analysis: Asian and look-back options.

2.1 Asian and look-back payoffs
In many markets, ranging from equity to commodity exchanges, other-the-counter options are
typically sold with early-termination clauses. Call and put options, as well as Asian and look-
back options may share such clauses.

In general, we consider options up to a maturity date T written on an underlying asset, whose
price process we term St with t ∈ [0, T ]. These options are written either on the average, minimum
or maximum of the price process over a moving window of M days. In order to write their payoff,
we first introduce a grid of daily observation dates {T0, . . . , TN}, where T0 := 0 and TN := T , and
the following random variables

Aavg
Ti

(M) := 1
M

i∑
j=i−M+1

STj
, (1)

along with
Amin

Ti
(M) := min

j∈[i−M+1,i]
STj

, Amax
Ti

(M) := max
j∈[i−M+1,i]

STj
, (2)

defined for M − 1 ≤ i ≤ N .
Then, we can define the option payoff we wish to discuss. We start with the fixed-strike and

floating-strike put Asian payoffs, respectively given by

ΨA1
Ti

(M ;K) := max
(
K − Aavg

Ti
(M), 0

)
, ΨA2

Ti
(M) := max

(
STi

− Aavg
Ti

(M), 0
)
, (3)

where K > 0 is the strike price. Moreover, we introduce the corresponding look-back payoffs,
given by

ΨL1
Ti

(M ;K) := max
(
K − Amax

Ti
(M), 0

)
, ΨL2

Ti
(M) := max

(
STi

− Amin
Ti

(M), 0
)
. (4)

In the following, we will use the symbol ΨTi
(M) to denote them if it is clear from the context

to which payoff we are referring. We observe that since we consider that the first available
underlying value is S0, the payoff function cannot be evaluated before time TM−1. Our option can
be exercised at any time instant Ti, for i = M, . . . , N . It is worth noticing that, following Bernhart
et al. (2011), Lelong (2019) and Goudenège et al. (2022), the first time the option can be exercises
is TM , but other choices are possible. In the above definitions we follow Bernhart et al. (2011) and
we always assume that M − 1 < i ≤ N , so that we never consider payoffs with moving windows
in the past.



Gambara, Livieri, Pallavicini, American-style path-dependent contracts 9

2.2 Early exercise and early termination
The payoffs described in the previous subsection are paid by financial products which can be
terminated before the contract maturity date T by the option buyer.

In this section, we setup the pricing framework for this products. We choose a risk-neutral pric-
ing model (Ω,F ,Q), with a filtration (Ft)t∈[0,T ] representing all the observable market quantities.
Thus, the price processes St are adapted to such a filtration.

We consider that the options can be exercised on any date in the time grid {TM , . . . , TN}
previously defined. We setup the pricing problem by starting from the last exercise date TN , and
we introduce the FTN

-measurable value function VN , defined as

VTN
:= ΨTN

, (5)

where Ψ is one of the Asian or look-back payoffs introduced in the previous Subsection 2.1 (see
Equations (3) and (4)); here we have not made explicit the dependence on the parameters M and
K in Ψ, for the ease of notation. On the previous dates Ti, with M − 1 < i < N the option buyer
may decide to exercise the option, by choosing the maximum between the immediate exercise and
the continuation value of the contract, precisely defined below. Thus, we can write

VTi
:= max

{
ΨTi

, BTi
E

[
VTi+1

BTi+1

∣∣∣∣∣FTi

]}
, (6)

where Bt is the bank-account process, and the expectation is taken under the pricing measure Q.
We assume that ΨTi

is square integrable for all M − 1 < i ≤ N .
The price of the option can be calculated by applying the above recursion up to TM , before

taking the expectation under Q.

V0 := E

[
VTM

BTM

]
. (7)

3 Pricing techniques
This section presents the different pricing techniques we will investigate in our numerical ex-
periments later on in Section 4. In the case of floating-strike Asian options we will use also
two methods proposed in Goudenège et al. (2022). The former is based on Gaussian Process
Regression and Gauss-Hermite quadrature, and it is named GPR-GHQ. The latter is based on
the construction of a binomial Markov chain. It is beyond the scope of the present article to
adapt their methodologies to other payoffs. We refer to Appendix A for a description of the main
features of the two methodologies.

In the dynamic problem of Equation (6) a choice is made between an intrinsic value, ΨTi
, and

a continuation value, the latter being defined by a conditional expectation as

CTi
:= BTi

E

[
VTi+1

BTi+1

∣∣∣∣∣FTi

]
(8)

with M −1 < i < N ; the continuation value is, in general, not trivial to calculate. In addition, we
notice that it is not only a function of the last stock price, say STi

, but a function that potentially
depends on the entire history STM

, . . . , STi
. In what follows, it may happen that we will denote

explicitly the dependence of the continuation value on the information set if necessary.
Now, we proceed by describing how we approximate the continuation values CTi

given by
Equation (8).
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3.1 Least-square Monte Carlo
A standard way to approximate the continuation values given by Equation (8) is the LSMC
described by Tilley (1993), Barraquand et al. (1995), and Longstaff et al. (2001). The LSMC
method re-writes the dynamic problem given by Equation (6) as

VTi
= 1{ΨTi

>CTi
}ΨTi

+ 1{ΨTi
<CTi

}CTi
. (9)

First, we approximate the continuation values occurring within the indicator functions as

CTi
≈ Cθ

Ti
:=

B∑
b=1

θbφb(ST1 , . . . , STi
) (10)

where {φ1, . . . , φB} is a set of B basis functions and θ ∈ RB are the trainable weights, which can
be estimated by standard linear regression. Then, if we expand the recursion, we notice that the
extant conditional expectation at time Ti is evaluated within expectations conditioned at previous
times, up to time TM . Thus, the dynamic problem can be formulated in an equivalent way, thanks
to the tower rule, as

V0 ≈ E

[
V θ

TM

BTM

]
, V θ

Ti
:= 1{ΨTi

>Cθ
Ti

}ΨTi
+ 1{ΨTi

<Cθ
Ti

}
BTi

BTi+1

V θ
i+1, V θ

TN
:= ΨTN

. (11)

We warn the reader that V θ
Ti

does not represent the option value at time Ti since it depends on
future realization of the price process. The option value is its expectation conditioned at time Ti.

Different types of basis functions have been proposed in the literature so far. In the original
paper of Longstaff et al. (2001), the authors discuss Laguerre, Hermite, Legendre, Chebyshev,
Gegenbauer, and Jacobi polynomials. A Laguerre polynomial approximation is used also in Bern-
hart et al. (2011) to price a continuously monitored moving average options. In his Ph.D. thesis,
Grau (2008) employs a sparse polynomial basis for the regression in order to attenuate the numeri-
cal inefficiency of the LSMC method. However, the latter does not easily scale to high-dimensional
problems. Dirnstorfer et al. (2013) use sparse grid basis functions based on polynomials or piece-
wise linear functions. Lelong (2019) replaces the standard least-square regression with a Wiener
chaos expansion. Finally, we mention the Ph.D. thesis of Bilger (2003), where polynomials of the
underlying index and the average are employed. We will see in Section 4 that the choice of the
basis functions will have a non-negligible impact on the pricing performances.

3.2 Randomized neural networks
We employ two types of approximations of the continuation value based on randomized neural
networks. The use of randomized neural networks for computing the price of American options
has been firstly introduced in Herrera et al. (2024), with impressive results in terms of speed and
accuracy.

In fact, this method allows to build a random basis that is rich enough for a good fit at a
cheap computational cost, and just train the last layer for the network, which amounts to just
solve a linear regression (at most with regularization). In this way, randomized neural networks
can be viewed as an alternative to the polynomial bases, usually adopted when implementing the
LSMC method, which can better represent non-linearity and path-dependency of the continuation
value. The first type of randomized neural network approximates the continuation function via
a randomized feed-forward neural network; we call this type of networks R-FFNN. On the other
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hand, the second type employs a randomized recurrent neural network for the approximation of
the continuation value; we call this type of network R-RNN.

In the upcoming subsections, we follow the presentation by Herrera et al. (2024) for the
description of the two methodologies; in particular we present them with a fully-connected shallow
neural network.

3.2.1 R-FFNN

We start by introducing the activation function σ : R → R acting on each component of the
network, for instance a rectified linear unit (ReLU) or an hyperbolic tangent (tanh) activation
function. Let M̃, h ∈ N>0, we define σ : Rh−1 → Rh−1 as the activation function acting
component-wise, in the sense that σ(x) = (σ(x1), . . . , σ(xh−1))⊤, where x ∈ Rh−1. The natural
number M̃ depends on the choice of the information set used for the construction of the random
basis. For instance, in case of Asian options (see Subsection 2.1), one possibility is to use the
values of the stock price over the time window of length M ; in this case M̃ = M .

Then, let d ∈ N≥1 be the dimension of of the state process at each observation date, we
introduce the parameters of the hidden layer ϑ := (A, b) ∈ R(h−1)×(dM̃) × Rh−1, namely the
weight matrix A and the bias vector b, whose elements are randomly and identically sampled and
not optimized in any training procedure (we will specify their distribution at the beginning of
Section 4). Furthermore, we introduce the function ϕ : RdM̃ → Rh, x 7→ ϕ(x) = (σ(Ax+ b)⊤, 1)⊤

and the parameters θi := ((Ai)⊤, bi) ∈ Rh−1 × R to be optimized. We notice that the element 1
in ϕ which is the constant element that is added for standard linear regressions.

Finally, we are able to formulate the approximation of the the continuation value. We can
write for each i

Cθ
i (x) := θ⊤

i ϕ(x) = A⊤
i σ(Ax+ b) + bi.

where θi can be estimated via OLS because the approximation function Cθ
i is linear in the pa-

rameters θi; see Theorems 5 and 6 of Herrera et al. (2024).
We can exemplify the above construction by analyzing a specific case. For instance, for the sake

of exposition only, we suppose that M = 1, and that we have access to m realizations of the stock
price paths, where the ℓ-th realization is denoted by S0, S

(ℓ)
T1 , S

(ℓ)
T2 , . . . , S

(ℓ)
TN

with the fixed initial
value S0. Then, the parameters θi of the last layer are found by minimizing the squared error
of the difference between conditional expectation of the discounted future price of the financial
derivative, say BTi

BTi+1
V

θ,(ℓ)
Ti+1

and the approximation of the continuation value evaluated at S(ℓ)
Ti

. The
minimizer has the following closed form expression:

θi = BTi

BTi+1

NMC∑
ℓ=1

ϕ
(
S

(ℓ)
Ti

)
ϕT
(
S

(ℓ)
Ti

)−1

·

NMC∑
ℓ=1

ϕ
(
S

(ℓ)
Ti

)
V

θ,(ℓ)
Ti+1


The fact that the training of the previous model (more generally, of all the models described in
the present paper) can be performed in a single analytical step, that is implemented efficiently
in most linear algebra libraries, is the major advantage of these methods. The computational
complexity of the least square method is mostly influenced by the h × h matrix inversion in the
previous equation.

One limitation of the R-FFNN is that all the points in the information set have the same
relevance, in the sense that the fact that the input may be a stream of data is not captured by
the R-FFNN. The R-RNN in the next paragraph takes into account this information.
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3.2.2 R-RNN

In the case of a R-RNN the parameters of the hidden layer, which are randomly and identically
sampled and not optimized, are given by ϑ := (Ax, Aξ, b) ∈ R(h−1)×(dM̃) × R(h−1)×(h−1) × R(h−1).
We notice that, in this case, the tuning parameters are more important, as they determine the
interplay between past and new information.

We start by defining ϕ : RdM̃ ×Rh → Rh+1, (x, ξ) 7→ ϕ(x, ξ) = (σ(Axx+ Aξξ + b)⊤, 1)⊤, and
θi := ((Ai)⊤, bi) ∈ Rh−1 ×R the parameters to be optimized. For each i the continuation value is
approximated by ξi = σ(Axxi + Aiξi−1 + b),

Cθ
i (x) = θ⊤

i ϕ(x) = A⊤
i σ(Ax+ b) + bi = θ⊤

i ϕ(xi, ξi−1),

where ξ−1 = 0. As for the R-FFNN the parameters θi are estimated via OLS, and so the compu-
tational complexity of the algorithm is mostly influenced by the inversion of a (h − 1) × (h − 1)
matrix.

There are a number of hyper-parameters for both R-FFNN and R-RNN that can be tuned,
namely the size of the neural network hidden state, the number of layers in the neural network,
the activation function, and the distribution of the parameters of the hidden layer. For the R-
RNN, we consider one layer in time for every fixing date. From a practical point of view, the
main difference between R-FFNN and R-RNN is that for the former we construct a new neural
network in which the number of layers coincides with the number of fixing dates, whereas for the
R-RNN we construct a unique (random) neural network in which we train each time only the
readout map. In particular, the dimension of the R-RNN decreases going backward in time.

3.3 Signature methods
We propose a novel alternative algorithm to R-FFNN and R-RNN based on signatures. We
design the algorithm to preserve the linear regression on which is based the LSMC method, so
that we can consider also the following algorithm as an alternative definition of the basis function.
More precisely, we analyze two versions of the algorithm: the former one based on the truncated
signature of a suitable transformation of the time series of observed asset prices, the second one on
the randomized signature. Non-randomized signatures are, roughly speaking, a tool that allows to
extract features and summarize a stream of information over a time interval. However, they may
suffer from similar disadvantages as polynomials, such as the “curse of dimensionality”, which can
be overcome by randomized signatures.

3.3.1 Truncated signature

The signature process was first studied by Chen (1957, 1977), and plays a prominent role in rough-
path theory introduced in the T. J. Lyons (1998). In an effort to keep the paper as self-contained
as possible we provide for convenience in Appendix B, Section B.1, a self-supporting although
minimalist account of key concepts and results on signatures. Here, instead, we give some results
on signatures, related to the present work, within a univariate time series framework; they can
be easily generalized to a multi-dimensional time series. The material is based on Levin et al.
(2013), Section 4, and Gyurkó et al. (2013).

For any 0 ≤ i1 < i2 ≤ N , and i2, i1 ∈ N, in general the signature of {(Tj, STj
)}i2

j=i1 is computed
via the following two steps:

(i) embed a time series {(Tj, STj
)}i2

j=i1 into a continuous path R;
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(ii) compute the signature of this transformed continuous path R.

We add time as one of the variables in the time series {(Tj, STj
)}N

j=0 to preserve the temporal struc-
ture; this also ensures that signatures are unique. This procedure is known as time augmentation
in Hambly et al. (2010) (see Section B.2 for more details).

There are several choices for embedding a time series into a continuous path. For instance, one
can rely directly on a simple piece-wise linear interpolation technique. However, the signature is
an infinite sequence, whence in practice some finite collection of terms must be selected. Because
the magnitude of the terms exhibit factorial decay, it is usual, as in T. Lyons (2014), to simply
choose the first n terms of the sequence and consider the so-called truncated signature of depth n.
Yet, if the function to be learned depends non-trivially on the higher degree terms, then crucial
information has nonetheless been lost. A remedy might be using embedding techniques which,
roughly speaking, apply a point-wise augmentation to the original stream of data before taking the
signature. Then, the first n terms of the signature may better encode the necessary information.

On a first glance, the embedding transformation could be seen as not strictly necessary, since
it duplicates the (spatial) dimension of the time-series. In order to answer this question, in our
numerical Section 4, we compare the performance of the signature method with and without
embedding transformations.

In the present paper, we employ, sequentially, two embedding techniques that we define in the
following: (a) the Hoff lead-lag transformation (Hoff (2006) and Flint et al. (2016)), and (b) the
time-joined path.

Definition 1 (Hoff lead-lag transformation). Let {(Tj, STj
)}N

j=0 be a univariate time series. Let
Z : [0, 2N ] → R+ × R be a 2-dimensional lead-lag transformation of {(Tj, STj

)}N
j=0, which is

defined as follows:

Z(t) :=


STj

e1 + STj+1e2 if t ∈ [2j, 2j + 1)
STj

e1 + [STj+1 + 2(t− (2j + 1))(STj+2 − STj+1)] if t ∈ [2j + 1, 2j + 3
2)

[STj
+ 2

(
t−

(
2i+ 3

2

)) (
STj+1 − STj

)
]e1 + STj+2e2 if t ∈ [2j + 3

2 , 2j + 2)
(12)

for t ∈ [0, 2N ], and where {ei}i=1,2 is an orthonormal basis of R2.

Definition 2 (Time-joined transformation). Let {(Tj, STj
)}N

j=0 be a univariate time series. Let
R : [0, 2N +1] → R+ ×R be a 2-dimensional time-joining path of {(Tj, STj

)}N
j=0, which is defined

as follows:

R(t) :=


T0e1 + ST0te2, if t ∈ [0, 1);
[Tj + (Tj+1 − Tj)(t− 2j − 1)]e1 + STj

e2 if t ∈ [2j + 1, 2j + 2);
Tj+1e1 + [STj

+ (STj+1 − STj
)(t− 2j − 2)]e2, if t ∈ [2j + 2, 2j + 3);

where 0 ≤ j ≤ N − 1, t ∈ [0, 2N + 1] and {ei}i=1,2 is an orthonormal basis of R2.

In particular, the signature of {(Tj, STj
)}N

j=0 is defined to be the signature of its time-joined
transformation R(t). There also exists a more intuitive and straightforward definition of a lead-
lag transformation. Yet, we decide to consider the so-called Hoff lead-lag transformation because
its good performance has been already noticed in the literature across different data sets and
algorithms; see, for instance, Fermanian (2021).

An advantage of the lead-lag transformation is that one can read the volatility of the path
directly from the second term of the signature; see Remark 4.1 of Levin et al. (2013). On the
other hand, the time-joined transformation, is such that the resulting continuous path exhibits a
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causal dependence on the data, being an hybrid between a linear and a rectilinear interpolation;
see Moor et al. (2020).

In the present work, we use truncated signatures as non-linear basis on which we can estimate
linear regressions to have theoretically sounded results (see Theorem B.5). In particular, for each
realization of the stock price over the time window T0, . . . , TN , we first apply, sequentially, the
lead-lag transformation and the time-joined transformation to {(Tj, STj

)}Ti2
j=Ti1

, then we apply the
truncated signature of order n to the latter. We notice that by performing such transformations,
every transformed path is enriched with other dimensions: the lead-lag transform will double the
dimension of the original time series, while time-addition will increase it by one. In particular,
the previous two transformations, applied in sequence, transform a univariate time series in a
d = 3 dimensional time series. Only afterwards, one computes the signature. The output of the
truncated signature is a vector of dimension sd(n) = dn+1−1

d−1 ; see Appendix B. We use this vector,
by eventually enlarging it with, for instance, the average of the stock price over the considered time
window, as linear regression basis for the approximation of the continuation value; a regularization
can be applied to the linear regression.

The approach explained in this section for American-style Asian options has been used in Feng
et al. (2021) and Bayraktar et al. (2022), but, in this case, the signature transformation is applied
to the path and then fed to a feed-forward neural network, which should not be strictly necessary.

The drawback of using the truncated signature of order n is that for a sample consisting of
N points in Rd it has an O(Ndn) computational complexity, which becomes intractable for high-
dimensional systems and/or for large values of n aimed at encoding a richer information of the
function to be learned; the complexity is, however, linear in the number of sampled points. In
order to cope with the just-mentioned issue, instead of calculating the signature of a time series,
one can extract a new quantity, called randomized signature, which is easier to compute and
inherits the expressiveness of the signature. This is the content of the next subsection.

3.3.2 Randomized signature

Randomized signature has been proposed as a flexible and easily implementable alternative to
the well-established path signature. Despite the name, the concept of randomized signature is
strictly connected to that of reservoir computing, an area of machine learning where random,
possibly recurrent neural networks are used to efficiently construct regression basis on path space.
In what follow, we give a brief overview of reservoir based on the randomized path signature; we
first explain the notion of reservoir system, then we present signatures as reservoirs.

Randomized signatures emerged by considering signatures as reservoir systems, that is al-
gorithms that try to approximate input/output systems without the need of a full calibration
of the system itself; see, for more details, Cuchiero et al. (2022) and the references therein. A
universal approximation property is granted also in this case. This intuition was first developed
in Cuchiero et al. (2022) and then in Cuchiero et al. (2021), obtaining what the authors called
“randomized signatures”, where the approximation property relies on the Johnson-Lindenstrauss
Lemma (see Johnson et al. (1984)), consisting in a random projection of the system on a space
with smaller dimension that is able to preserve its geometric structure: distortion will be at most
1+ϵr for arbitrary ϵr, and the embedded space will also have dimension that depends on the same
ϵr.

One notable drawback of considering signatures as reservoirs is that the computation of the
iterated integrals needed to form the basis of the path is rather lengthy and computationally
intense. This problem becomes even more relevant in high dimensions or for very long time
series. It is indeed in such cases that randomized signatures, leveraging a random construction,
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can make a difference. The idea behind randomized signature is compressing information of the
signature through the Johnson-Lindenstrauss (JL) Lemma and consider a dynamical system for
this projected signature-transformed stream.
Lemma 3.1 (Johnson et al. (1984)). For every 0 < ϵr < 1, an N point set Q in some arbitrary
(scalar product) space H ⊆ Rd can be embedded into a metric space Rk⋆, where k⋆ = 24 log(N)

3ϵ2
r−2ϵ3

r
=

O( log N
ϵ2

r
) in an almost isometric manner, i.e. there is a linear map g : H → Rk⋆ such that

(1 − ϵr)∥p1 − p2∥2 ≤ ∥g(p1) − g(p2)∥2 ≤ (1 + ϵr)∥p1 − p2∥2 for any couple of points p1 and p2 in
Q. The map g can be chosen to be random.

We have the following definition (see, e.g., Compagnoni et al. (2023)):
Definition 3 (Randomized signature). Given k⋆ ∈ N and random matrices A1, . . . , Ad ∈ Rk⋆×k⋆ ,
random shifts b1, . . . , bd in Rk⋆ , and any fixed activation function σ, the randomized signature
of a continuous and piece-wise smooth path X : [0, T ] → Rd+1 is the solution of the following
differential equation

dRS(X)t =
d∑

i=0
σ(AiRS(X)t + bi) dX i

t , RS(X)0 ∈ Rk⋆

. (13)

Notice that we typically take X0
t = t.

In particular, Ai and bi can be sampled from a normal distribution and are fixed once for
all before applying the Euler scheme to Equation (13). More precisely, once that a dimension
k⋆ ∈ N is fixed, every entry of the random matrices can be chosen independently from a normal
distribution N (0, ς2). We also notice that the function σ, which might remind the reader to the
activation function of neural networks, does not need to be non-linear and can be chosen to be
the identity. Most importantly, the activation function needs to be injective to obtain a non-
singular σ(AiRS(X)t + bi) for any i = 1, . . . , d. For a discussion on the possible assumptions on
the activation functions, we refer the reader to Akyildirim et al. (2022) and Biagini et al. (2024).
This is not the only viable definition of randomized signatures based on the JL lemma. Another
possible definition is present in the work by Cuchiero and Möller (Cuchiero et al. (2022), Definition
3.8) where the distinction between the application of randomized linear functionals from the JL
lemma to truncated signature coefficients is seen as an alternative to considering randomized
signatures as solution to Equation (13). The former are thus called JL-signatures, while the latter
randomized signatures. The definition we give here is more in line with the reservoir systems’
literature outlined in previous paragraphs.

Examples of applications of randomized signatures can be found, for example, in Akyildirim
et al. (2022), where they are used to identify pump and dump attempts in the crypto market in
an unsupervised learning settings, and in Akyildirim et al. (2023), where randomized signatures
are utilized as a non-parametric and non-linear drift estimator to find an optimal allocation a
long-only portfolio.

The computational complexity for calculating RS in Equation (13) is O(k⋆2
d) and at any time

its dimension is O(k⋆) (when solving Equation (13) numerically, the dimension is also proportional
to the number of time steps used for the Euler scheme). In practice, k⋆ ∈ N is normally chosen
as a parameter of the method and its value must be commensurate with the expressiveness we
require from the algorithm. In Section 4 we show experimentally that, in order to match the
pricing capabilities of the truncated signature of order n, the number k⋆ of required randomized
signatures is fairly small, thus leading to a dimension that is way smaller than the dimension of
the standard signature sd(n) introduced in the previous section. This confirms that working with
randomized signatures is often less computationally demanding.
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3.4 Sensitivity computation
The pricing algorithm we are discussing for early-termination products require the computation of
a regression at each time step of the simulation algorithm. This calculation introduces additional
noise in the results, so that the numerical evaluation of sensitivities to market parameters could
be unstable. In particular, this can be the case for second-order sensitivities.

We consider the case of calculating first and second order sensitivities with respect to the initial
spot price (namely we are interested in the so-called Delta and Gamma), and we start to analyze
the simpler case of American put options, since in this case we have the possibility to check our
methods against a standard (and reliable) implementation based on a binomial tree. We start by
discussing the problems of finite-difference schemes, then we introduce two alternative methods:
(i) the regression method proposed in Létourneau et al. (2023), and later used in Herrera et al.
(2024), and (ii) the proposal of Maran et al. (2022) based on Chebyshev interpolation. We extend
the latter on to our specific payoff case.

3.4.1 Finite-difference method

The simplest, and more direct, approach for sensitivities is the discretization of derivative oper-
ators in term of finite differences. If we consider a positive number ϵ, we can approximate Delta
and Gamma as given by

∂V

∂S
≈ V (S(1 + ϵ)) − V (S(1 − ϵ))

2ϵ ,
∂2V

∂S2 ≈ V (S(1 + ϵ)) − V (S) + V (S(1 − ϵ))
ϵ2 (14)

for small values of ϵ, where V (s) is the option price calculated with spot price equal to s.

3.4.2 Regression method

We briefly describe the regression method applied to our case, but we address the reader to the
original paper by Létourneau et al. (2023) for more details and for a more general exposition.
We assume that for a given positive ϵ the initial spot price Sϵ of the Monte Carlo simulation is
distributed according to a normal random variable N (S, ϵ2), where S is the market spot price, so
that the derivative price can be written as

V = E[ V (Sϵ) ] ≈ 1
Ns

Ns∑
k=1

V̂ (S(k)
ϵ ) , Sϵ ∼ N (S, ϵ2), (15)

where Ns is the number of simulation paths and S(k)
ϵ is the k-th extraction of the random variable

Sϵ. Such extraction is used as initial spot price for the Monte Carlo approximation V̂ (S(k)
ϵ ) of the

derivative price made with Ns simulation paths.
The previous decomposition allows us not only to calculate the derivative price, but also its

sensitivities. Indeed, we can consider the Taylor’s approximation

V̂ (x) ≈
B∑

b=0
β

(ϵ,B)
b (x− S)b, (16)

where the coefficients β can be calculated by means of an OLS algorithm on the data set
{(S(k)

ϵ , V̂ (S(k)
ϵ ))}Ns

k=1. Then, the sensitivities can be calculated as given by

∂V

∂S
≈ β

(ϵ,B)
1 ,

∂2V

∂S2 ≈ 2β(ϵ,B)
2 (17)
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3.4.3 Chebyshev method

The method of Maran et al. (2022), hereafter termed Chebyshev method, consists in approximat-
ing the option price, view as a function of the spot price, by means of a Chebyshev interpolator.
Then, sensitivities are calculated by taking the derivative of the interpolator with respect to the
spot price. The technique relies on the fact that for analytical functions the rate of convergence
of the derivatives of the interpolator to the original derivatives is exponential. The strength of
the method relies on the fact that, thanks to the previous property, we can increase the size of
the interpolation interval to stabilize the sensitivity computation without introducing additional
biases. More details on using Chebyshev interpolation techniques in option pricing can be found
in Gaß et al. (2016).

Here, we present our procedure in details. For the sake of clarity we skip the technical part of
dealing with Gamma discontinuities, which we will analyze in Appendix D. For a given positive ϵ
we select a number Nc of spot prices {S0

ϵ , . . . , S
Nc−1
ϵ } where we evaluate the corresponding Monte

Carlo approximations {V̂ (S0
ϵ ), . . . , V̂ (SNc−1

ϵ )} of the derivative price. Such spot prices can be
defined as

Sℓ
ϵ := S

(
1 + ϵ cos

(
ℓπ

Nc − 1

))
, (18)

where S is the market spot price. The set of points {(Sℓ
ϵ , V̂ (Sℓ

ϵ))}Nc−1
ℓ=0 will be used to train a

polynomial interpolator given by

V̂ϵ(S) :=
Nc−1∑
ℓ=0

V̂ (Sℓ
ϵ)

Nc−1∏
ȷ̸=ℓ

S − Sȷ
ϵ

Sℓ
ϵ − Sȷ

ϵ
, (19)

The interpolator allows us not only to calculate the derivative price, but also its sensitivities by
explicit calculation of the derivatives with respect to the spot price.

3.4.4 Algorithm comparison for American put Gamma

We wish to assess the performance of these methods on early-termination products before pro-
ceeding with their use in the in the numerical Section 4. We consider as a typical playground the
calculation of the second derivative with respect to the spot price (Gamma) for American put
options. All the calculations are made according to the Black and Scholes model, later described
in Section 4.1.

Each method to compute the sensitivities may require a different number of Monte Carlo
simulations; for instance, as shown above, finite differences require three different simulations to
compute Gamma. Thus, in order to compare the resulting sensitivities, keeping fixed the compu-
tational time, we consider the same number of simulated paths for each approach, irrespectively
of how they are distributed among the required simulations.

We list in Table 1 the results obtained for Gamma computation for the three methods for
three different choices the spot price, while keeping K = 100 in all calculations. We compare
these results with the Gamma calculations made by means of a binomial tree. We can see, as the
number of simulation paths increases, that the regression method quickly deteriorates by showing
a significative bias. The other two methods perform with greater accuracy. In particular, the
Chebyshev method shows a smaller bias.

These results suggest us to discard the regression method, and focus only on finite-difference
and Chebyshev methods, in the numerical investigations we are going to illustrate in the following
sections.
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American put option: Gamma

Γ = 0.0235, S0 = 85 Γ = 0.0308, S0 = 100 Γ = 0.0131, S0 = 115
MC Path F.Diff. Regr. Cheb. F.Diff. Regr. Cheb. F.Diff. Regr. Cheb.

1.5 · 103 0.0188 0.0224 0.0192 0.0306 0.0296 0.0310 0.0121 0.0126 0.0143
7.5 · 103 0.0246 0.0250 0.0233 0.0298 0.0303 0.0325 0.0133 0.0117 0.0128
1.5 · 104 0.0247 0.0243 0.0254 0.0304 0.0302 0.0340 0.0130 0.0121 0.0127
7.5 · 104 0.0240 0.0241 0.0249 0.0299 0.0295 0.0310 0.0131 0.0121 0.0132
1.5 · 105 0.0247 0.0242 0.0233 0.0300 0.0293 0.0300 0.0133 0.0122 0.0131
7.5 · 105 0.0241 0.0241 0.0236 0.0301 0.0294 0.0304 0.0132 0.0123 0.0131
1.5 · 106 0.0239 0.0241 0.0236 0.0299 0.0294 0.0305 0.0132 0.0122 0.0130

Table 1: Gamma for an American put option with maturity T = 0.2, strike K = 100 and time
steps N = 50. The first column is the total number of simulation paths used by each algorithm.
Then, there are three groups, each of three columns, for different spot prices S0. In each group,
the first column is the result of the finite-difference method (ϵ = 1/16), the second one of the
regression method (ϵ = 1/8, B = 9) and the third one of the Chebyshev method (ϵ = 1/8). In
the second line Γ is the result of the binomial tree.

4 Numerical techniques
This section describe the ingredients common to all the payoffs and algorithms. In particular, we
discuss the underlying asset dynamics, the input features of the regression basis functions, and
the configuration of the random networks and signature methods.

4.1 Price dynamics
Since our contribution is focused on analyzing the performance of selecting different basis functions
in the LSMC algorithm, and how this selection depends on the specific payoff we consider, we
think that assuming a simple setting for asset price dynamics is preferable. In particular, we
evaluate the different algorithms by assuming a Black-Scholes dynamics for underlying assets.
Admittedly, we could have used more complicated dynamics, such as stochastic volatility models
or rough volatility models. Moreover, we only consider synthetic data, and not real market data.
However, these extensions would not add to the present work’s conceptual advancements

The Black-Scholes model (see Black et al. (1973)) is characterized by the following stochastic
differential equation:

dSt = (r − q)St dt+ σSt dWt, (20)

where t ∈ [0, T ], S0 = s0, and (Wt)t≥0 is a standard Brownian motion. Besides, r is the risk-free
rate, q is the dividend rate, and σ is the volatility, and we assume that all these three quantities
are deterministic constants.

In our numerical investigation we use the following values: S0 = 100, r = 0.05, q = 0, σ = 0.3.
Such values are used also in Bernhart et al. (2011) and (later on) in Goudenège et al. (2022).

4.2 Risk factors and features
In the following, we compare four different types of basis functions for the LSMC algorithm: (i)
polynomials, (ii) R-FFNN, (iii) R-RNN, (iv) signatures (either randomized or not).
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As shown in Equation (10) the notation φb(ST1 , . . . , STi
), with 1 ≤ b ≤ B, is used to state

that basis functions can depend on any value of the price process up to regression time Ti < TN .
However, depending on the payoff under consideration and on the choice of the basis functions,
we can refine this statement.

In our case of Asian and look-back payoffs, we should consider at each regression time Ti the
observations of the underlying asset on all the previous M − 1 days, where M is the number of
days of the moving window. Thus, at each regression time Ti we should consider basis functions
of the form φb(STi−M+1 , . . . , STi

). This can be simply accommodated in the polynomial case by
considering monomials within a given degree in the arguments. Yet, these methods have in
principle the limitation that they assign the same relevance to all the points in the information
set, in the sense that they do not capture, for instance, the fact that they are a stream of data,
namely there is temporal dependence among the observation of the price process. On the other
hand, R-RNN and signature methods take into account this fact.

In the case of polynomial and R-FFNN basis functions when the length M of the moving
window increases the performance of the algorithm deteriorates, since we need either to increase
the number of basis functions or of features of the network. As a possible solution to this problem
we can reduce the number of observations needed to characterize the input and we can check
empirically the impact on options prices.

With this considerations in mind we proceed as following for the polynomial and R-FFNN
cases. As denoted above, let M be the number of observed underlying values included in the
window-average (specific to the option derivative) and Ti the evaluation time of the regression.
We build our basis functions by starting from four different choices of sets of risk factors, which
we denote Rρ with ρ ∈ {1, 2, 3, 4}. Each risk factor set contains F ρ

i random variables according
to the following rules.

• [R1] We consider only one risk factor, namely the value of the stock price STi
at time Ti.

This choice is a strong approximation, since it discards all path-dependency effect. On the
other way, is the maximum speed up we can obtain.

• [R2] We consider two risk factors (only for M > 1, in case M = 1 we revert to R1): the
value of the stock price STi

at time Ti and the arithmetic moving average computed over the
interval [Ti−M+1, Ti]. Also this choice is a strong approximation, but it tries to synthesize
all the path-dependency effects in a single risk factor, by preserving a good speed up of the
algorithm.

• [R3] We consider M − 1 risk factors (only for M > 1, in case M = 1 we revert to R1):
the values of the stock price STi−M+2 , . . . , STi

. We do not consider STi−M+1 because the
continuation value does not depend on it, since it does not contribute to the future averages.
This should be the target choice if we want to consider all the relevant risk factors without
introducing any approximation.

• [R4] We consider n risk factors: the value of the stock price from the first available date up
to time Ti. This choice considers any risk factor, not only what is required. We introduce
this choice for the risk factors to understand how the LSMC method can be deceived by the
presence of too many risk factors.

In Table 2 we report the number of basis functions calculated for different values of M in the
worst case (when the regression date is just before the maturity date).

We recall that for the R-RNN and signature cases all the observations of the underlying asset
are included in the basis functions. Loosely speaking we could say that we use the risk-factor set
R4 for such cases.
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ρ 2 3 4 5 10 20 30

1 3 3 3 3 3 3 3
2 6 6 6 6 6 6 6
3 3 6 10 15 55 210 465
4 1275 1275 1275 1275 1275 1275 1275

Table 2: Number of polynomial basis functions of second degree for different values of M in the
worst case (when the regression date is just before the maturity date).

Once we have selected a specific set of risk factors we define the basis functions in the following
way

φb(ST1 , . . . , STi
) := fb(Xρ

1 , . . . , X
ρ
F ρ

i
) (21)

where fb is either a polynomial, a random neural network or an element of the truncated signature.
The random variables {Xρ

1 , . . . , X
ρ
F ρ

i
} are defined as

Xρ
j :=

Zρ
j − Z̄ρ

j

Std
[
Zρ

j

] , Zρ
j := logRρ

j (22)

with 1 ≤ j ≤ F ρ
i , where Rρ

j is the j-th risk factor of the set Rρ, which, in turn, depends on the
realization of the price process St. Moreover, we denote the empirical mean with a bar over a
random variable and the empirical standard deviation with the operator Std[ · ]. The normalization
of the risk factor is introduced to improve the numerical stability of the linear regression performed
in the LSMC method. In the following sections we use the term “basis function” also to refer to
fb, and not only to φb.

Finally, in order to significantly increase the efficiency of the algorithms and decrease the
computational time, we include in the various regressions only paths for which the options are in
the money; see Longstaff et al. (2001).

4.3 Configuration of random networks
We continue the presentation of the algorithms by discussing the architectures of the randomized
neural networks, in particular the type of activation function and the distribution from which the
parameters are sampled. The number of hidden layers and nodes per layers for all the algorithms
will be discussed later on.

We use the leaky ReLU activation function for the R-FFNN and the tanh for the R-RNN; see,
also, the choice in Herrera et al. (2024).

The parameters (A, b) of the R-FFNN are sampled using a standard normal distribution with
mean 0 and standard deviation 1, which is the standard choice. In general, A and b can be sampled
from different distributions that are continuous and have support R. Different hyper-parameters
were tested but they did not have a big influence on the results, so we kept the standard choice.

For the R-RNN we use a standard deviation of 0.0001 for Ax and 0.3 for Ah. Also here
different hyper-parameters were tested, and the best performing were chosen and used to present
the results. In particular, these values are the values in output of a cross-validation procedure, in
the sense that we test also different hyper-parameters and the best performing were chosen and
used to present the results.
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2 3 4 5

12 39 120 363

Table 3: Number of signature basis functions for different values of n, where n denotes the order of
the truncated signature, for path of dimension d = 3. The results are independent of the windows
length and of the risk factor set. The formula for the number of signature basis functions is given
by Equation (28).

The parameters θi in R-FFNN and R-RNN are determined using 20% of the sampled paths
(training data). Given θi, the remaining 80% of the sampled paths (evaluation data) are used
to compute the option price. Indeed, if the data set was not split, it might happen that the
continuation value CTi

depends on future value of the underlying asset, and the neural network
can suffer from over-fitting to the training data, by memorizing the paths, instead of learning the
continuation value. More precisely, on the training data the approximation of the continuation
value CTi

can depend on the future values of paths, since it is trained with them and therefore
might remember them. However, by splitting the data into the training and the independent
evaluation set, CTi

evaluated on the evaluation set is independent of the future values of paths of
the evaluation set. Since the price is only computed on the evaluation set, this effectively prevents
this “look into the future" when computing the price. It is, however, possible that methods over-fit
on the training data leading to worse results on the evaluation set.

4.4 Configuration of signature methods
For the signature method, we use a truncated signature of order two, three and five. Indeed, the
components of the signatures have factorial decay (see Appendix B, Proposition B.3), which means
that it is common to choose only the first terms since these will typically be the largest. How-
ever, whilst such a truncation captures the largest components, it nevertheless loses information
captured by the higher order terms.

For this reason, as explained in Subsection 3.3, we use a suitable augmentation of the dataset
before taking the truncated signature. More precisely, we first perform the time-augmentation
(Hambly et al. (2010)) by adding time as one of the variables, which ensures that the resulting path
is uniquely determined by its signatures. Then, we apply the lead-lag transformation followed by
the time-joined transformation in order to embed the time-augmented time series into a continuous
path (see Subsection 3.3). In this case, the resulting time series in input of the truncated signature
is a d = 3 dimensional time time series, whereas in output we have a vector of dimension sd(n) =
(dn+1 − 1)/(d − 1), opportunely augmented depending on the payoff under consideration. In
Subsection 5.1.4, we will comment on the advantages (or not) of the employed techniques to
augment the dataset.

In Table 3 we report the number of basis functions calculated for different values of n, the
degree of the truncated signature. Although we show its basis dimensionality, note that we did not
employ degree n = 4 in our numerical experiments. We show results for dimension d = 3, because
of the application of the time-augmentation and lead-lag transformation embedding techniques.

As regards the randomized signatures, the different parameters considered in the pricing pro-
cedure are the following:

1. ς, which is the variance of the independent normal random variables used to populate the
random matrices Ai and biases bi of Equation (13) used in the algorithm;
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2. k⋆, which is the dimension of reservoir system, i.e the same matrices and biases found in
Equation (13);

3. ‘normalization’ (shortened to ‘norm’ in the tables), which defines whether the matrices are
normalized, i.e. every entry of the random matrices Ai in Equation (13) is divided by the
Frobenius norm of the matrix itself.

5 Numerical investigations
This section reports and discusses the results of the numerical experiments. We investigate the
performance of the LSMC method for different choices of basis functions when evaluating prices
and sensitivities of Asian and look-back payoffs, the payoffs we introduced in Sections 2.1. We
add after this section a further numerical section with a complementary discussion on callable
certificates to understand how our results can be extended in a more challenging setting.

The evaluation of all the algorithms is performed on the same computer, equipped with an
Apple M1 Pro processor and 16 Gigabyte of RAM. Statistical uncertainties are reported at one-
sigma confidence level. Computational times do not include the time for generating the stock
paths (around 9 seconds per 106 paths), since it is the same for all methods. Indeed, the main
interest is in the actual time needed by the algorithms to compute prices from different bases with
linear regression, while paths can be generated offline and stored. Numerical procedures, unless
specified otherwise, have been implemented in Python.

5.1 Asian options
We go on with discusses the pricing of Asian options with early termination features with both
floating and fixed-strike payoff (see Equation (3)), as well as numerical results for sensitivity
computation only for the fixed-strike versions of the payoff since the floating-strike ones have
trivial Delta and Gamma.

In particular, Table 4 (resp. Table 6) lists option prices obtained for different lengths M of
the moving window, obtained via the LSMC method with different choices of basis functions,
namely polynomials, R-FFNN, R-RRN, and signatures methods, for Asian options with floating-
strike (resp. fixed-strike) payoff. Table 17 (resp. Table 18) and Table 5 (resp. Table 5) report the
corresponding uncertainties of Monte Carlo simulations and computational times, respectively.

In all the computations the option maturity is T = 0.2 and the number of time steps is N = 50.
The LSMC results are obtained by batches of simulations with overall 8 · 105 paths to train the
regression and 3.2 · 106 to calculate the price.

We continue the analysis by discussing the benchmark models, then we go on with the LSMC
algorithm with polynomials, random networks and signatures as basis functions. The numerical
results (prices and computational times) can be found for floating-strike options in Tables 4 and 5,
while for fixed-strike options in Tables 6 and 7. In Appendix E we display also the corresponding
statistical uncertainties in Tables 17 and 18.

5.1.1 Benchmarks

We search the literature for benchmark models. We found three papers focusing on fixed-strike
Asian options with observations performed in a moving window: Bernhart et al. (2011), Lelong
(2019) and Goudenège et al. (2022). In the first five rows in Tables 4, 5 and 17 we list their
results.
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Floating-strike Asian option: prices
Model 2 3 4 5 10 20 30

GPR, P = 250, Q = 8 1.812 2.676 3.185 3.531 4.319 4.474 4.142
GPR, P = 1000, Q = 16 1.873 2.683 3.185 3.535 4.325 4.469 4.141
Binomial Chain 0.940 1.868 2.752 3.323 4.278 4.488 4.163
Bernhart et al. (2011) 1.890 2.684 3.183 3.773 4.268
Lapeyre et al. (2019) 3.531 4.302
Polynomial, ρ = 1, deg = 2 1.889 2.682 3.179 3.515 4.225 4.297 3.962
Polynomial, ρ = 2, deg = 2 1.888 2.685 3.191 3.540 4.331 4.468 4.140
Polynomial, ρ = 3, deg = 2 1.889 2.685 3.191 3.540 4.329 4.453 4.108
Polynomial, ρ = 4, deg = 2 1.885 2.679 3.179 3.526 4.295 4.412 4.074
R-FFNN, ρ = 1, h = 10 1.889 2.682 3.178 3.515 4.225 4.300 3.965
R-FFNN, ρ = 2, h = 10 1.888 2.685 3.190 3.538 4.316 4.448 4.128
R-FFNN, ρ = 3, h = 10 1.889 2.685 3.189 3.535 4.247 4.147 3.683
R-FFNN, ρ = 4, h = 10 1.888 2.680 3.177 3.514 4.215 4.110 3.666
R-FFNN, ρ = 1, h = 40 1.889 2.681 3.177 3.514 4.224 4.301 3.963
R-FFNN, ρ = 2, h = 40 1.888 2.684 3.190 3.538 4.327 4.468 4.143
R-FFNN, ρ = 3, h = 40 1.888 2.684 3.190 3.538 4.310 4.311 3.715
R-FFNN, ρ = 4, h = 40 1.888 2.682 3.180 3.521 4.240 4.146 3.678
R-FFNN, ρ = 1, h = 120 1.887 2.680 3.176 3.512 4.223 4.299 3.961
R-FFNN, ρ = 2, h = 120 1.887 2.682 3.188 3.535 4.325 4.465 4.136
R-FFNN, ρ = 3, h = 120 1.887 2.682 3.188 3.537 4.315 4.401 4.003
R-FFNN, ρ = 4, h = 120 1.887 2.682 3.182 3.525 4.252 4.217 3.854
R-FFNN, ρ = 1, h = 250 1.886 2.679 3.173 3.510 4.220 4.293 3.959
R-FFNN, ρ = 2, h = 250 1.884 2.679 3.183 3.535 4.325 4.465 4.121
R-FFNN, ρ = 3, h = 250 1.886 2.679 3.184 3.537 4.315 4.401 4.076
R-FFNN, ρ = 4, h = 250 1.886 2.680 3.180 3.525 4.252 4.217 4.002
R-RNN, ρ = 4, h = 10 1.885 2.673 3.171 3.507 4.224 4.295 3.935
R-RNN, ρ = 4, h = 40 1.883 2.676 3.169 3.505 4.230 4.327 4.005
R-RNN, ρ = 4, h = 120 1.881 2.671 3.165 3.502 4.230 4.340 4.029
R-RNN, ρ = 4, h = 150 1.883 2.673 3.167 3.502 4.225 4.321 3.992
Signature, ρ = 4, n = 2 1.869 2.652 3.159 3.494 4.162 4.105 3.686
Signature, ρ = 4, n = 3 1.888 2.682 3.178 3.517 4.232 4.312 4.088
Signature, ρ = 4, n = 5 1.885 2.679 3.178 3.522 4.293 4.429 4.134
RandSig, ς = 0.3, k⋆ = 20, norm=True 1.896 2.694 3.195 3.537 4.277 4.345 4.019
RandSig, ς = 0.05, k⋆ = 20, norm=True 1.896 2.694 3.196 3.539 4.289 4.376 4.055
RandSig, ς = 0.05, k⋆ = 40, norm=True 1.896 2.694 3.196 3.542 4.302 4.410 4.064
RandSig, ς = 0.05, k⋆ = 40, norm=False 1.896 2.694 3.194 3.536 4.267 4.306 3.957
RandSig, ς = 0.3, k⋆ = 20, norm=False 1.889 2.686 3.188 3.532 4.275 4.384 4.092
RandSig, ς = 0.3, k⋆ = 10, norm=False 1.893 2.691 3.191 3.533 4.266 4.336 4.015

Table 4: Prices of floating-strike American-style Asian options with maturity T = 0.2 and time
steps N = 50 for different lengths of the moving window. Comparison between different models
(see text). Benchmark models: GPR-GHQ and binomial Markov chain of Goudenège et al.
(2022), Bernhart et al. (2011), Lelong (2019). LSMC models: polynomial bases, randomized
neural networks (R-FFNN and R-RNN), signature and randomized signature (RandSig) based
methods.
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Floating-strike Asian option: computational times
Model 2 3 4 5 10 20 30

GPR, P = 250, Q = 8 0 13 11 10 10 10 7
GPR, P = 1000, Q = 16 0 320 291 207 203 153 135
Binomial Chain 0 0 0 0 0 0 750
Bernhart et al. (2011)
Lapeyre et al. (2019)
Polynomial, ρ = 1, deg = 2 6 6 6 6 6 4 4
Polynomial, ρ = 2, deg = 2 6 8 8 8 7 5 4
Polynomial, ρ = 3, deg = 2 6 52 70 89 179 334 548
Polynomial, ρ = 4, deg = 2 1875 3289 3226 3011 2550 3348 3289
R-FFNN, ρ = 1, h = 10 9 10 9 9 9 7 5
R-FFNN, ρ = 2, h = 10 9 10 10 10 9 8 6
R-FFNN, ρ = 3, h = 10 9 57 76 90 161 254 273
R-FFNN, ρ = 4, h = 10 549 554 569 576 593 485 360
R-FFNN, ρ = 1, h = 40 18 18 18 18 16 14 9
R-FFNN, ρ = 2, h = 40 17 22 19 19 17 13 10
R-FFNN, ρ = 3, h = 40 22 66 84 102 170 264 284
R-FFNN, ρ = 4, h = 40 588 584 566 567 552 506 346
R-FFNN, ρ = 1, h = 120 64 36 72 57 36 25 27
R-FFNN, ρ = 2, h = 120 63 40 64 65 34 26 28
R-FFNN, ρ = 3, h = 120 61 91 131 145 193 267 287
R-FFNN, ρ = 4, h = 120 623 617 704 577 567 490 395
R-FFNN, ρ = 1, h = 250 154 149 151 143 132 101 66
R-FFNN, ρ = 2, h = 250 143 158 166 65 140 121 73
R-FFNN, ρ = 3, h = 250 137 217 213 232 302 352 332
R-FFNN, ρ = 4, h = 250 769 901 890 704 677 582 425
R-RNN, ρ = 4, h = 10 24 24 24 23 20 17 13
R-RNN, ρ = 4, h = 40 50 51 52 53 45 36 28
R-RNN, ρ = 4, h = 120 183 170 162 156 151 119 93
R-RNN, ρ = 4, h = 150 203 211 204 191 175 145 104
Signature, ρ = 4, n = 2 1861 1880 1897 1787 1811 1584 1228
Signature, ρ = 4, n = 3 2089 2042 1890 2044 2170 1790 1274
Signature, ρ = 4, n = 5 4092 4641 4129 4028 3834 3191 2446
RandSig, ς = 0.3, k⋆ = 20, norm=True 64 62 61 62 59 55 52
RandSig, ς = 0.05, k⋆ = 20, norm=True 61 62 62 61 57 53 50
RandSig, ς = 0.05, k⋆ = 40, norm=True 176 173 181 171 172 142 137
RandSig, ς = 0.05, k⋆ = 40, norm=False 160 156 157 162 159 144 142
RandSig, ς = 0.3, k⋆ = 20, norm=False 60 58 58 60 58 52 49
RandSig, ς = 0.3, k⋆ = 10, norm=False 32 31 30 31 29 27 26

Table 5: Algorithm computational time (in seconds) to price floating-strike American-style Asian
options with maturity T = 0.2 and time steps N = 50 for different lengths of the moving window.
Comparison between different models (see text). Benchmark models: GPR-GHQ and binomial
Markov chain of Goudenège et al. (2022), Bernhart et al. (2011), Lelong (2019). LSMC models:
polynomial bases, randomized neural networks (R-FFNN and R-RNN), signature and randomized
signature (RandSig) based methods.
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Fixed-strike Asian option: prices
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 5.314 5.481 5.559 5.573 5.365 4.545 3.740
Polynomial, ρ = 2, deg = 2 5.313 5.492 5.580 5.624 5.548 4.935 4.186
Polynomial, ρ = 3, deg = 2 5.314 5.492 5.579 5.624 5.545 4.935 4.197
Polynomial, ρ = 4, deg = 2 5.232 5.417 5.514 5.565 5.511 4.926 4.195
R-FFNN, ρ = 1, h = 10 5.334 5.508 5.586 5.604 5.380 4.539 3.739
R-FFNN, ρ = 2, h = 10 5.330 5.512 5.601 5.642 5.554 4.928 4.182
R-FFNN, ρ = 3, h = 10 5.334 5.512 5.595 5.623 5.358 4.783 4.106
R-FFNN, ρ = 4, h = 10 3.664 3.861 4.082 4.307 4.920 4.699 4.057
R-FFNN, ρ = 1, h = 40 5.329 5.504 5.582 5.601 5.378 4.539 3.739
R-FFNN, ρ = 2, h = 40 5.326 5.510 5.599 5.642 5.561 4.944 4.194
R-FFNN, ρ = 3, h = 40 5.329 5.509 5.603 5.644 5.547 4.898 4.151
R-FFNN, ρ = 4, h = 40 4.197 4.436 4.623 4.818 5.116 4.716 4.054
R-FFNN, ρ = 1, h = 120 5.312 5.492 5.570 5.589 5.371 4.537 3.738
R-FFNN, ρ = 2, h = 120 5.298 5.489 5.576 5.624 5.553 4.942 4.194
R-FFNN, ρ = 3, h = 120 5.312 5.487 5.583 5.631 5.553 4.925 4.187
R-FFNN, ρ = 4, h = 120 4.954 5.237 5.399 5.478 5.471 4.884 4.170
R-FFNN, ρ = 1, h = 250 5.284 5.467 5.550 5.571 5.358 4.532 3.737
R-FFNN, ρ = 2, h = 250 5.268 5.453 5.550 5.596 5.534 4.933 4.192
R-FFNN, ρ = 3, h = 250 5.284 5.456 5.553 5.602 5.544 4.931 4.191
R-FFNN, ρ = 4, h = 250 5.166 5.389 5.501 5.556 5.504 4.909 4.185
R-RNN, ρ = 4, h = 10 5.354 5.524 5.607 5.625 5.421 4.583 3.767
R-RNN, ρ = 4, h = 40 5.349 5.524 5.600 5.615 5.393 4.553 3.749
R-RNN, ρ = 4, h = 120 5.340 5.514 5.596 5.613 5.392 4.554 3.749
R-RNN, ρ = 4, h = 150 5.340 5.518 5.595 5.614 5.389 4.552 3.749
Signature, ρ = 4, n = 2 5.156 5.246 5.395 5.458 5.335 4.532 3.823
Signature, ρ = 4, n = 3 5.320 5.483 5.560 5.576 5.403 4.785 4.149
Signature, ρ = 4, n = 3, no lead-lag 5.266 5.471 5.543 5.573 5.381 4.776 4.146
Signature, ρ = 4, n = 5 5.288 5.465 5.561 5.583 5.518 4.899 4.185
RandSig, ς = 0.3, k⋆ = 20, norm=True 5.319 5.489 5.561 5.579 5.387 4.723 4.046
RandSig, ς = 0.05, k⋆ = 20, norm=True 5.318 5.489 5.561 5.579 5.388 4.732 4.063
RandSig, ς = 0.05, k⋆ = 40, norm=True 5.315 5.485 5.558 5.580 5.422 4.824 4.150
RandSig, ς = 0.05, k⋆ = 40, norm=False 5.286 5.461 5.538 5.560 5.373 4.687 3.970
RandSig, ς = 0.3, k⋆ = 20, norm=False 4.574 4.510 4.437 4.357 3.934 3.311 3.022
RandSig, ς = 0.3, k⋆ = 10, norm=False 4.728 4.749 4.746 4.723 4.469 3.829 3.297

Table 6: Prices of fixed-strike American-style Asian options with strike K = 100, maturity T = 0.2
and time steps N = 50 for different lengths of the moving window. Comparison between different
models (see text). LSMC models: polynomial bases, randomized neural networks (R-FFNN and
R-RNN), signature and randomized signature (RandSig) based methods.
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Fixed-strike Asian option: computational times
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 6 8 6 6 7 4 4
Polynomial, ρ = 2, deg = 2 6 7 7 7 7 6 4
Polynomial, ρ = 3, deg = 2 5 51 71 15 55 210 465
Polynomial, ρ = 4, deg = 2 4719 1275 1275 87 194 368 674
R-FFNN, ρ = 1, h = 10 8 10 9 9 10 8 5
R-FFNN, ρ = 2, h = 10 9 9 10 9 9 7 6
R-FFNN, ρ = 3, h = 10 9 55 73 90 164 255 265
R-FFNN, ρ = 4, h = 10 576 566 559 575 536 492 372
R-FFNN, ρ = 1, h = 40 31 15 14 15 13 10 8
R-FFNN, ρ = 2, h = 40 17 16 17 16 15 11 8
R-FFNN, ρ = 3, h = 40 15 56 74 86 145 221 229
R-FFNN, ρ = 4, h = 40 505 508 498 492 473 403 302
R-FFNN, ρ = 1, h = 120 60 55 55 54 52 37 25
R-FFNN, ρ = 2, h = 120 57 55 55 54 53 39 26
R-FFNN, ρ = 3, h = 120 55 100 114 130 186 261 245
R-FFNN, ρ = 4, h = 120 552 545 547 544 518 428 321
R-FFNN, ρ = 1, h = 250 126 114 113 114 101 72 51
R-FFNN, ρ = 2, h = 250 126 128 117 122 106 77 54
R-FFNN, ρ = 3, h = 250 125 167 180 190 244 301 280
R-FFNN, ρ = 4, h = 250 619 604 616 603 555 484 371
R-RNN, ρ = 4, h = 10 26 25 30 28 25 21 17
R-RNN, ρ = 4, h = 40 60 52 54 53 50 40 34
R-RNN, ρ = 4, h = 120 160 163 152 154 141 103 81
R-RNN, ρ = 4, h = 150 213 197 211 191 207 163 106
Signature, ρ = 4, n = 2 1955 1901 1887 1884 1856 1527 1111
Signature, ρ = 4, n = 3 2068 2057 1937 1941 1920 1587 1281
Signature, ρ = 4, n = 3, no lead-lag 437 440 420 411 362 278 190
Signature, ρ = 4, n = 5 4160 3897 3863 4043 3732 3290 2503
RandSig, ς = 0.3, k⋆ = 20, norm=True 70 66 64 60 62 55 50
RandSig, ς = 0.05, k⋆ = 20, norm=True 67 61 59 60 56 54 50
RandSig, ς = 0.05, k⋆ = 40, norm=True 176 170 168 165 160 150 142
RandSig, ς = 0.05, k⋆ = 40, norm=False 169 170 168 164 159 146 143
RandSig, ς = 0.3, k⋆ = 20, norm=False 63 58 58 59 56 52 51
RandSig, ς = 0.3, k⋆ = 10, norm=False 31 31 30 30 30 27 26

Table 7: Algorithm computational time (in seconds) to price fixed-strike American-style Asian
options with strike K = 100, maturity T = 0.2 and time steps N = 50 for different lengths of
the moving window. Comparison between different models (see text). LSMC models: polynomial
bases, randomized neural networks (R-FFNN and R-RNN), signature and randomized signature
(RandSig) based methods.
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In Goudenège et al. (2022) the authors present an efficient method for pricing American-style
moving average options based on Gaussian Process Regression and Gauss-Hermite quadrature,
thus named GPR-GHQ method (GPR in our tables, for short); P denotes the number of discrete
paths for the price process to compute the GPR, whereas Q the number of points employed in the
GHQ. Moreover, by exploiting the positive homogeneity of the continuation value, they develop
a binomial Markov chain to deal efficiently with medium-long windows (Binomial Chain in our
tables). We review both methods in Appendix A. In their numerical investigation, they compare
their two methodologies primarily with LSMC. We refer the readers to the authors’ original papers
for a discussion of the other two contributions.

In detail, among the benchmark models we present GPR-GPQ by Goudenège et al. (2022)
with two different choices for parameters P and Q, the method of Bernhart et al. (2011) and the
one of Lelong (2019). In our analysis we compare the LSMC method with the benchmark models
and we discuss the impact of selecting different sets of basis functions.

5.1.2 Polynomials

The simplest choice of basis functions are polynomials. Longstaff et al. (2001) proposed to use the
first three weighted Laguerre polynomials, the first three Hermite polynomials, three trigonometric
functions, and simple powers of the underline as basis function obtaining results that are virtually
identical to each others. In particular, classical polynomial basis functions up to the second order
are the the easiest way to include coupling terms in the basis. The results obtained with the
classical polynomials up to degree two were better than with the weighted Laguerre polynomials,
therefore we only present these results in our Tables 4 and 6 (in the Tables deg refers to the
maximum degree of the polynomial). Considerations on the results are consistent for the two
types of payoffs.

Empirically, the risk set R2 is preferred to the risk set R3, although the latter should contain
the best set of information to compute the option prices. In particular, it seems that the choice of
R3 loses effectiveness in case of large values of M . In the case of floating-strike Asian options, the
risk set R2 can beat in some cases also the results obtained with our benchmark model GPR-GPQ.
We notice also, by looking at Table 5, that the LSMC with risk set R2 is to be preferred also in
term of calculation speed, especially when compared with the GPR-GPQ method with P = 1000
and Q = 16. We notice that Goudenège et al. (2022) employ R3 in their work, thus leading to
the wrong conclusion that the continuation value provided by GPR-GPQ is more accurate than
that provided by the LSMC method.

In the R4 case the ability to approximate the continuation value, especially for large values of
M is limited by the use of a polynomial of degree two, a limitation imposed by the large size of
the problem (1275 in this case).

5.1.3 Randomized neural networks

The choice of polynomials as basis functions may be too simple to catch the non-linear behavior
of the continuation value. Thus, we investigate the possibility to replace them by means of a
neural network.

We start by discussing R-FFNN basis functions. In order to compare them with polynomials,
for a fixed set of risk factors (or features if we wish to use a machine learning terminology), we
only change the number of nodes per layer. Indeed, similarly to what found in Herrera et al.
(2024), we observed that one hidden layer was sufficient to have a good accuracy (an increase
of the number of the hidden layers did not leas to better accuracy). Tables 4 and 6 reports the
results.
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Quite remarkably, also for the R-FFNN, the results obtained by means of R2 are slightly higher
than those obtained through other risk-factors sets, which indicates that R2 is more effective than
the other bases; this fact is confirmed for every employed value of the hidden size. By comparing
the results with polynomial basis functions, we can see that a hidden size equals to 40 is necessary
in order to reach the same pricing accuracy. For such value of the hidden size, the computational
times of the two pricing techniques are comparable.

Tables 4 and 6 display the results for R-RNNs. We formulate the following observations. First,
the hidden size does not seem to affect the results. Second, the computational times grow linearly
with the hidden size, and there is a tangible reduction in time with respect to the others methods,
when applied to risk set R4. However, the results obtained with the R-FFNN and polynomials
with risk-factor set R2 are higher than those obtained with R-RNNs.

5.1.4 Signature and randomized signature methods

Tables 4 and 6 display the results. For signatures methods there are relevant gains in the effec-
tiveness if we truncate the signature at order five instead of order two or three. However, similarly
to what happens with the R-RNNs, the results obtained with the R-FFNN and polynomials with
risk-factor set R2 are higher.

Before proceeding, the following remark is in order. As said in Section 3.3, one may wonder if
the lead-lag transformation is strictly necessary since it duplicates the (spatial) dimension of the
time-series. We thus compute prices of fixed-strike American-style options in the same setting of
Table 4, with n = 3 and without the lead-lag transformation. As you can see the prices obtained
with the lead-lag transformation are statistically higher than the ones without such embedding;
however, the computational time is much higher.

In the same Tables 4 and 6 we also include randomized signatures, for which a light introduction
is provided in Section 3.3.2. We tried this algorithm only for floating-strike and fixed-strike
American-style Asian options.

Results show a promising performance for floating-strike options for short-time windows, with
respect to standard signature methods, where one can observe that the advantage of using this
technique deteriorates while increasing the window length. For the chosen parameters, its promi-
nence decreases for window lengths higher than 5. Results are less clear, but quite similar, for
fixed-strike options, although the difference with the polynomial and other methods is less evident.
In both cases, it is possible to see that normalization can help the stability of the method and
improves pricing results. Computational times are quite high if compared with polynomials on R2

or low-dimensional neural networks, but much lower when compared with standard signatures.
For this reason and the higher calculated derivative prices, randomized signatures are preferred
over standard signatures.

5.1.5 Sensitivity computation

The discussion in Section 3.4 show us that finite-difference and Chebyshev methods can be ef-
fectively used to calculate sensitivities, although the former method suffers biases, while the
regression method seems less reliable. In this section we repeat the analysis for fixed-strike Asian
options, by limiting ourself to the first two methods. In Table 8 we can see the results, which are
qualitatively similar to the ones of the American put case. In Appendix D we extend the analysis.

The previous results lead us to confirm the use of the Chebyshev method for sensitivity com-
putations. Figure 1 shows the results for Delta and Gamma sensitivities. We calculate option
sensitivities for different lengths M of the moving-window by means of the LSMC method with
polynomials basis functions with risk factor set R3. In all the computations the option maturity
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Fixed-Strike Asian option: Gamma

S0 = 85 S0 = 115

Finite Difference Chebyshev Finite Difference Chebyshev
MC Path Polyn. FFNN Polyn. FFNN Polyn. FFNN Polyn. FFNN

1.5 · 103 0.0523 0.0144 0.0246 0.0195 0.0189 0.0131 0.0183 0.0123
7.5 · 103 0.0101 0.0152 0.0108 0.0219 0.0142 0.0129 0.0131 0.0133
1.5 · 104 0.0145 0.0141 0.0166 0.0179 0.0121 0.0129 0.0153 0.0126
7.5 · 104 0.0197 0.0189 0.0159 0.0157 0.0150 0.0138 0.0144 0.0121
1.5 · 105 0.0179 0.0190 0.0165 0.0165 0.0143 0.0153 0.0144 0.0140
7.5 · 105 0.0163 0.0159 0.0166 0.0168 0.0144 0.0147 0.0144 0.0146
1.5 · 106 0.0172 0.0174 0.0161 0.0161 0.0145 0.0145 0.0144 0.0147

Table 8: Gamma for a fixed-strike Asian option with moving window M = 2, maturity T = 0.2,
strike K = 100 and time steps N = 50. The first column is the total number of simulation paths
used by each algorithm. Then, there are two groups each of four columns for different spot prices
S0. In each group the first two columns is the result of the finite-difference method (ϵ = 1/8)
with polynomials or R-FFNN basis functions, the last two columns of the Chebyshev method
(ϵ = 5/8).

is T = 0.2, number of time steps is N = 50, the number of paths is 2.5 · 105 both to train the
regression and to calculate the price. The sensitivities are calculated by means of the Chebyshev
interpolation with an adaptive interpolation interval of ten percent of the spot price according to
the algorithm described in Maran et al. (2022).

We can see that the Gamma function is not discontinuous, as in the American put case
described in Section 3.4, since in the present case we wait for M − 1 days to start the early-
termination period, as described in Section 2.1. However, its value abruptly increases spot price
around 80% to decrease back to zero at higher spot prices. We notice minor noisy area in
calculating the Gamma sensitivity, while Delta is always very smooth.

5.2 Look-back options
We repeat the analysis done in the previous Subsections 5.1 on Asian payoffs in the case of floating-
strike and fixed-strike look-back ones. We notice that in this case we replace the arithmetic moving
average computed over the interval [Ti−M+1, Ti] with the re-scaled minimum or maxima of the
asset price when computing the risk factor R2.

Here, we do not have a comparison with benchmark models in the literature, but we can still
compare the results of our LSMC approach based on different choices of the basis functions.

Tables 9 and 11 display the results, while uncertainties of Monte Carlo simulations are reported
in Appendix E in Tables 19 and 20. In Tables 10 and 12 are listed the computational times.

First, we can observe that, as for the Asian options, the empirical qualitative results for the
fixed-strike payoff and for the floating-strike payoff are very similar. However, in this case, for
polynomials results obtained with the risk factor set R3 are higher than those of R2, especially
for large value of M . For R-FFNN, instead, the risk factor set R2 is preferred to the risk set
R3; again, a hidden size equals to 40 is necessary in order to reach the same pricing accuracy of
polynomials. The result obtained with R-RNNs are smaller than those obtained with the R-FFNN
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Figure 1: Delta (left panel) and Gamma (right panel) of fixed-strike American-style Asian options
with strike K = 100, maturity T = 0.2 and time steps N = 50 for different lengths of the moving
window. LSMC model with polynomial base with risk-factor set R3. On the left axis is reported
the window length M , while on the right axis the spot price.

and polynomials. Finally, for the signature methods an order equal to 5 is necessary to achieve
the same pricing accuracy of polynomials, at a cost of a very high computational time.

5.2.1 Sensitivity computation

Figure 2 shows the results for Delta and Gamma sensitivities for the fixed-strike version of the
payoff. We calculate option sensitivities for different lengths M of the moving-window by means
of the LSMC method with polynomials basis functions with risk factor set R3 with the same
settings used for the fixed-strike Asian payoff.

We can see that the Gamma function is continuous, as in the fixed-strike Asian option case,
see Section 5.1.5. As in such case we notice minor noisy area in calculating the Gamma sensitivity,
while Delta is always very smooth.
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Floating-strike look-back option: prices
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 1.889 2.682 3.179 3.515 4.225 4.297 3.962
Polynomial, ρ = 2, deg = 2 1.888 2.685 3.191 3.540 4.331 4.468 4.140
Polynomial, ρ = 3, deg = 2 1.889 2.685 3.191 3.540 4.329 4.453 4.108
Polynomial, ρ = 4, deg = 2 1.885 2.679 3.179 3.526 4.295 4.412 4.074
R-FFNN, ρ = 1, h = 10 1.889 2.682 3.178 3.515 4.225 4.299 3.963
R-FFNN, ρ = 2, h = 10 1.888 2.684 3.190 3.537 4.309 4.418 4.098
R-FFNN, ρ = 3, h = 10 1.889 2.685 3.189 3.536 4.256 4.070 3.637
R-FFNN, ρ = 4, h = 10 1.887 2.680 3.176 3.515 4.230 4.174 3.736
R-FFNN, ρ = 1, h = 40 1.888 2.681 3.177 3.515 4.225 4.300 3.964
R-FFNN, ρ = 2, h = 40 1.888 2.684 3.189 3.537 4.454 4.454 4.132
R-FFNN, ρ = 3, h = 40 1.888 2.684 3.189 3.537 4.313 4.389 3.809
R-FFNN, ρ = 4, h = 40 1.888 2.682 3.182 3.525 4.252 4.163 3.656
R-FFNN, ρ = 1, h = 120 1.887 2.681 3.176 3.512 4.223 4.298 3.961
R-FFNN, ρ = 2, h = 120 1.887 2.682 3.187 3.535 4.318 4.456 4.134
R-FFNN, ρ = 3, h = 120 1.887 2.682 3.187 3.535 4.312 4.428 4.074
R-FFNN, ρ = 4, h = 120 1.887 2.682 3.183 3.528 4.281 4.355 3.996
R-FFNN, ρ = 1, h = 250 1.886 2.678 3.173 3.510 4.219 4.294 3.960
R-FFNN, ρ = 2, h = 250 1.884 2.679 3.183 3.530 4.309 4.444 4.121
R-FFNN, ρ = 3, h = 250 1.886 2.679 3.184 3.531 4.307 4.430 4.093
R-FFNN, ρ = 4, h = 250 1.886 2.680 3.182 3.527 4.286 4.394 4.064
R-RNN, ρ = 4, h = 10 1.889 2.683 3.182 3.520 4.244 4.269 3.905
R-RNN, ρ = 4, h = 40 1.888 2.682 3.177 3.514 4.226 4.297 3.958
R-RNN, ρ = 4, h = 120 1.888 2.681 3.176 3.513 4.227 4.297 3.960
R-RNN, ρ = 4, h = 150 1.888 2.682 3.176 3.514 4.224 4.298 3.956
Signature, ρ = 4, n = 2 1.869 2.652 3.159 3.494 4.162 4.105 3.686
Signature, ρ = 4, n = 3 1.888 2.682 3.178 3.517 4.232 4.312 4.088
Signature, ρ = 4, n = 5 1.885 2.679 3.176 3.522 4.293 4.429 4.134

Table 9: Prices of floating-strike American-style look-back options with maturity T = 0.2 and
time steps N = 50 for different lengths of the moving window. Comparison between different
models (see text). LSMC models: polynomial bases, randomized neural networks (R-FFNN and
R-RNN), signature based methods.
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Floating-strike look-back option: computational times
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 5 5 5 5 5 4 3
Polynomial, ρ = 2, deg = 2 6 7 7 7 7 6 4
Polynomial, ρ = 3, deg = 2 5 47 67 81 167 310 493
Polynomial, ρ = 4, deg = 2 4018 4192 3076 5542 6111 5410 4255
R-FFNN, ρ = 1, h = 10 8 8 8 8 7 6 5
R-FFNN, ρ = 2, h = 10 10 9 8 9 8 6 5
R-FFNN, ρ = 3, h = 10 8 49 69 157 150 232 227
R-FFNN, ρ = 4, h = 10 529 569 635 646 495 429 319
R-FFNN, ρ = 1, h = 40 19 20 17 20 18 14 9
R-FFNN, ρ = 2, h = 40 21 22 20 17 16 13 9
R-FFNN, ρ = 3, h = 40 16 59 74 95 159 239 238
R-FFNN, ρ = 4, h = 40 504 543 533 526 496 432 337
R-FFNN, ρ = 1, h = 120 65 61 63 61 57 42 31
R-FFNN, ρ = 2, h = 120 71 77 73 71 76 47 34
R-FFNN, ρ = 3, h = 120 66 100 118 129 196 262 330
R-FFNN, ρ = 4, h = 120 552 539 555 547 540 455 337
R-FFNN, ρ = 1, h = 250 147 137 129 132 116 90 57
R-FFNN, ρ = 2, h = 250 151 130 120 120 118 81 56
R-FFNN, ρ = 3, h = 250 125 171 193 203 252 317 285
R-FFNN, ρ = 4, h = 250 631 643 670 647 598 528 398
R-RNN, ρ = 4, h = 10 14 14 15 14 14 13 12
R-RNN, ρ = 4, h = 40 39 37 36 37 35 28 22
R-RNN, ρ = 4, h = 120 136 136 136 129 116 104 78
R-RNN, ρ = 4, h = 150 209 186 190 181 177 120 101
Signature, ρ = 4, n = 2 1639 1592 1615 1598 4 1288 951
Signature, ρ = 4, n = 3 1830 1750 1766 1674 1581 1346 1000
Signature, ρ = 4, n = 5 4534 3724 179 3517 3264 2811 2053

Table 10: Algorithm computational time (in seconds) to price floating-strike American-style look-
back options with maturity T = 0.2 and time steps N = 50 for different lengths of the moving
window. Comparison between different models (see text). LSMC models: polynomial bases,
randomized neural networks (R-FFNN and R-RNN), signature based methods.
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Fixed-strike look-back option: prices
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 4.780 4.684 4.574 4.459 3.827 2.430 1.355
Polynomial, ρ = 2, deg = 2 4.779 4.681 4.574 4.464 3.879 2.633 1.540
Polynomial, ρ = 3, deg = 2 4.780 4.681 4.575 4.467 3.884 2.656 1.571
Polynomial, ρ = 4, deg = 2 4.726 4.630 4.515 4.405 3.844 2.647 1.568
R-FFNN, ρ = 1, h = 10 4.796 4.692 4.587 4.474 3.835 2.431 1.358
R-FFNN, ρ = 2, h = 10 4.794 4.693 4.587 4.477 3.890 2.638 1.544
R-FFNN, ρ = 3, h = 10 4.796 4.693 4.582 4.466 3.714 2.526 1.499
R-FFNN, ρ = 4, h = 10 3.725 3.746 3.779 3.773 3.436 2.470 1.480
R-FFNN, ρ = 1, h = 40 4.784 4.687 4.583 4.470 3.834 2.429 1.358
R-FFNN, ρ = 2, h = 40 4.787 4.686 4.582 4.476 3.895 2.655 1.553
R-FFNN, ρ = 3, h = 40 4.784 4.689 4.584 4.478 3.887 2.615 1.519
R-FFNN, ρ = 4, h = 40 4.067 3.995 3.995 3.969 3.554 2.489 1.478
R-FFNN, ρ = 1, h = 120 4.768 4.671 4.568 4.457 3.826 2.425 1.355
R-FFNN, ρ = 2, h = 120 4.769 4.672 4.565 4.459 3.888 2.654 1.552
R-FFNN, ρ = 3, h = 120 4.768 4.672 4.567 4.464 3.887 2.647 1.554
R-FFNN, ρ = 4, h = 120 4.564 4.496 4.413 4.325 3.791 2.577 1.522
R-FFNN, ρ = 1, h = 250 4.752 4.653 4.550 4.440 3.814 2.419 1.351
R-FFNN, ρ = 2, h = 250 4.745 4.651 4.541 4.437 3.869 2.647 1.550
R-FFNN, ρ = 3, h = 250 4.751 4.647 4.544 4.439 3.874 2.653 1.568
R-FFNN, ρ = 4, h = 250 4.751 4.678 4.589 4.490 3.814 2.597 1.541
R-RNN, ρ = 4, h = 10 4.813 4.712 4.599 4.488 3.857 2.454 1.372
R-RNN, ρ = 4, h = 40 4.806 4.705 4.597 4.486 3.848 2.438 1.366
R-RNN, ρ = 4, h = 120 4.793 4.698 4.596 4.485 3.845 2.437 1.365
R-RNN, ρ = 4, h = 150 4.788 4.695 4.592 4.478 3.844 2.437 1.364
Signature, ρ = 4, n = 2 4.702 4.591 4.432 4.353 3.787 2.419 1.404
Signature, ρ = 4, n = 3 4.778 4.679 4.567 4.454 3.803 2.553 1.500
Signature, ρ = 4, n = 5 4.754 4.654 4.544 4.430 3.867 2.634 1.563

Table 11: Prices of fixed-strike American-style look-back options with strike K = 100, maturity
T = 0.2 and time steps N = 50 for different lengths of the moving window. Comparison between
different models (see text). LSMC models: polynomial bases, randomized neural networks (R-
FFNN and R-RNN), signature based methods.
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Fixed-strike look-back option: computational times
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 4 4 4 4 4 3 3
Polynomial, ρ = 2, deg = 2 5 6 6 6 6 5 3
Polynomial, ρ = 3, deg = 2 4 45 62 79 164 303 474
Polynomial, ρ = 4, deg = 2 9360 6870 6076 7441 5328 5463 5315
R-FFNN, ρ = 1, h = 10 7 7 6 6 6 5 4
R-FFNN, ρ = 2, h = 10 9 8 7 7 7 5 4
R-FFNN, ρ = 3, h = 10 7 47 66 78 149 223 229
R-FFNN, ρ = 4, h = 10 514 529 515 505 492 422 335
R-FFNN, ρ = 1, h = 40 18 17 15 16 13 10 7
R-FFNN, ρ = 2, h = 40 17 18 17 16 15 11 7
R-FFNN, ρ = 3, h = 40 16 59 74 92 166 229 229
R-FFNN, ρ = 4, h = 40 510 524 524 514 493 415 303
R-FFNN, ρ = 1, h = 120 54 50 46 44 37 23 15
R-FFNN, ρ = 2, h = 120 56 53 50 47 39 26 16
R-FFNN, ρ = 3, h = 120 51 93 108 120 174 251 227
R-FFNN, ρ = 4, h = 120 553 549 554 539 501 438 338
R-FFNN, ρ = 1, h = 250 104 106 91 89 81 49 34
R-FFNN, ρ = 2, h = 250 105 103 103 98 76 55 32
R-FFNN, ρ = 3, h = 250 116 161 157 168 232 269 258
R-FFNN, ρ = 4, h = 250 112 583 583 616 567 467 347
R-RNN, ρ = 4, h = 10 19 20 19 18 17 14 11
R-RNN, ρ = 4, h = 40 43 39 37 39 31 28 20
R-RNN, ρ = 4, h = 120 140 124 123 115 95 69 47
R-RNN, ρ = 4, h = 150 176 162 150 141 121 89 63
Signature, ρ = 4, n = 2 1656 1843 1791 1569 1506 1247 972
Signature, ρ = 4, n = 3 1776 1721 1677 1667 1557 1346 981
Signature, ρ = 4, n = 5 3438 3497 3466 3411 3139 2668 1984

Table 12: Algorithm computational time (in seconds) to price fixed-strike American-style look-
back options with strike K = 100, maturity T = 0.2 and time steps N = 50 for different lengths of
the moving window. Comparison between different models (see text). LSMC models: polynomial
bases, randomized neural networks (R-FFNN and R-RNN), signature based methods.
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Figure 2: Delta (left panel) and Gamma (right panel) of fixed-strike American-style look-back
options with strike K = 100, maturity T = 0.2 and time steps N = 50 for different lengths of the
moving window. LSMC model with polynomial base with risk-factor set R3. On the left axis is
reported the window length M , while on the right axis the spot price.

6 Callable certificates
In the previous numerical section we have seen that polynomial basis functions or random net-
works, in particular the R-FFNN architecture, seem the best choices whenever we can prune the
input features of unnecessary information, as we do when we choose the risk factor R2.

However, we must exploit the specific form tof the payoff to devise the right risk-factor set. In
general, if we deal with more complex situations, we could not introduce such simplifications. In
order to understand the challenge of this cases we analyze a class of investment products actively
traded in the market: callable certificates.

6.1 Product description
Certificates are structured investment products which usually contains optional features automat-
ically triggered based on a specific event. A common type of equity certificate is the auto-callable
product. These products are triggered on predetermined observation dates if an underlying asset
or reference portfolio reaches or surpasses a barrier. Upon termination, the investor receives the
principal investment amount plus a coupon. If the product is not terminated early, the investor
receives the principal amount, or a portion thereof, along with an optional payoff on the matu-
rity date. This feature is frequently offered in low-yield markets, providing the investor with the
potential for an above-market yield, albeit with the risk of not receiving a coupon. We refer the
readers to Deng et al. (2016), Alm et al. (2013), and Farkas et al. (2022) and references therein
for a description of this product.

In this study, we analyze equity certificates that feature an early-termination clause instead
of an auto-callable feature. This allows the issuer to terminate the product on predetermined
observation dates at their discretion, making them “callable certificates.” This enables the issuer
to have greater control over the marking of their funding benefits, while the investor still has the
opportunity to re-enter a high-yield structure on termination dates. There is a limited literature
on these new products. We refer the readers to Agrawal et al. (2022) and references therein for
further details.

In this section we present the numerical results for “snowball” and “lock-in” callable certifi-
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Certificate: prices Snowball Lock-in
Model 1y 2y 5y 1y 2y 5y

Polynomial, deg = 2 1.00025 1.00006 1.00448 1.00019 0.99998 1.00021
Polynomial, deg = 3 1.00025 0.99921 0.99600 1.00023 0.99897 0.99652
Polynomial, deg = 5 1.00025 1.00017 1.00019 0.99859
R-FFNN, h = 10 1.00025 0.99998 1.00382 1.00019 0.99843 0.99555
R-FFNN, h = 50 0.99987 0.99876 0.99934 1.00019 0.99759 0.99240
R-FFNN, h = 120 0.99924 0.99896 0.99650 1.00019 0.99743 0.99176
R-RNN, h = 10 1.00025 0.99918 1.00409 0.99291 0.99862 0.99547
R-RNN, h = 50 1.00025 0.99887 1.00374 0.99302 0.99819 0.99498
R-RNN, h = 120 1.00025 0.99888 1.00319 0.99287 0.99825 0.99568
Signature, n = 2 1.00022 0.99964 0.99942 1.00019 1.00022 1.00052
Signature, n = 3 1.00024 1.00015 1.00060 1.00032 1.00010 0.99821
Signature, n = 5 1.00026 0.99987 1.00271 1.00028 1.00016 0.99814

Table 13: Prices of snowball and lock-in certificates with maturity of 1, 2 and 5 years (other
characteristics described in the text). Comparison between different models (see text). LSMC
models: polynomial bases, randomized neural networks (R-FFNN and R-RNN), signature based
methods.

cates. The specifics of the payoffs and the corresponding dynamic programming problem are
presented in Appendix C. In this numerical section we assume that the underlying asset follows
the dynamics described in Section 4.1.

We perform all the numerical investigations by using a LSMC method with different choices
of the basis functions. As risk factors we use at regression date Ti, with 1 ≤ i ≤ N and TN = T ,
a set formed by the observations of the underlying price processes on all the coupon dates up to
the regression date.

6.2 Snowball payoff
We consider a snowball payoff with different maturities which pays quarterly a coupon if the
underlying asset performance is above 100%. In particular we choose the following characteristics:
(i) maturity of one year with coupon equal to 2.3% and capital barrier at 35%, (ii) maturity of
two years with coupon equal to 2.4% and capital barrier at 30%, (iii) maturity of five years with
coupon equal to 2.85% and capital barrier at 30%. The characteristics of the product are chosen
so that the initial price is approximately at par, when evaluated with the LSMC method with
polynomial basis on the risk set described at the beginning of Section 6.

In the first three columns of Table 13 we report the prices of the snowball certificates defined
above by changing the basis functions used in the LSMC method to price the products. We
can see that the prices are closely aligned, and within the Monte Carlo uncertainties, reported
in appendix in Table 21. In Table 14 are listed the computational times. We can see the best
choice of basis functions is R-FFNN and R-RNN (in particular for longer maturities), followed by
polynomials. In particular, the last ones become unfeasible for many dates and larger degrees (in
the Tables deg refers to the maximum degree of the polynomial).

Then, we investigate also the performance of finite-difference and Chebyshev methods in com-
puting sensitivities. In Table 15 we list the results. We analyze different algorithms, even if we
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Certificate: times Snowball Lock-in
Model 1y 2y 5y 1y 2y 5y

Polynomial, deg = 2 1 3 27 1 3 30
Polynomial, deg = 3 1 5 310 1 6 363
Polynomial, deg = 5 2 54 2 37
R-FFNN, h = 10 1 2 10 1 2 8
R-FFNN, h = 50 3 4 18 3 5 17
R-FFNN, h = 120 5 10 36 5 12 36
R-RNN, h = 10 1 2 8 1 2 8
R-RNN, h = 50 3 8 31 3 9 32
R-RNN, h = 120 8 23 100 8 27 99
Signature, n = 2 30 94 299 44 136 434
Signature, n = 3 32 96 309 47 144 461
Signature, n = 5 55 189 1066 73 253 1145

Table 14: Algorithm computational time (in seconds) to price snowball and lock-in certificates
with maturity of 1, 2 and 5 years (other characteristics described in the text). Comparison between
different models (see text). LSMC models: polynomial bases, randomized neural networks (R-
FFNN and R-RNN), signature based methods.

have seen in Table 13 that prices are not in perfect agreement, to understand the stability of sensi-
tivities. Polynomials basis function are taken up to third order; random neural networks have 120
inner nodes; signature methods are truncated at third degree with lead-lag and time embedding.
We can see that, for snowball certificates, both finite-difference and Chebyshev methods seem
lead to similar results in term of stability. In Appendix D we extend the analysis.

6.3 Lock-in payoff
We consider a lock-in payoff with different maturities which pays quarterly a coupon if the under-
lying asset performance is above different coupon barriers. In particular we choose the following
characteristics: (i) maturity of one year with coupon equal to 2.8%, coupon barrier at 100% and
capital barrier at 40%, (ii) maturity of two years with coupon equal to 2.4%, coupon barrier at
90% and capital barrier at 30%, (iii) maturity of five years with coupon equal to 3%, coupon
barrier at 90% and capital barrier at 30%. The characteristics of the product are chosen so that
the initial price is approximately at par, when evaluated with the LSMC method with polynomial
basis on the risk set described at the beginning of Section 6.

In the last three columns of Table 13 we report the prices of the lock-in certificates defined
above by changing the basis functions used in the LSMC method to price the products. We can
see that the prices are closely aligned, and within the Monte Carlo uncertainties, reported in
appendix in Table 21. In Table 14 are listed the computational times. We can see that the best
choices of basis functions are R-FFNN and R-RNN, the former being faster for shorter maturities
but less accurate, followed by polynomials, although the last ones become unfeasible for many
dates and larger degrees. Here, we consider more accurate a price which is lower than the others,
since the dynamic program terminates the options to minimize the price.

Then, we investigate also the performance of finite-difference and Chebyshev methods in com-
puting sensitivities. In Table 16 we list the results. Polynomials basis function are taken up to
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Snowball certificate: Gamma

S0 = 85 S0 = 115

Finite Difference Chebyshev Finite Difference Chebyshev
MC Path Polyn. FFNN Polyn. FFNN Polyn. FFNN Polyn. FFNN

1.5 · 103 −0.7805 −0.2597 0.6228 0.5144 −0.2670 −0.3402 −0.3270 −0.5175
7.5 · 103 −0.1612 −0.2667 −1.0934 −0.5321 −0.4461 −0.4960 −0.4202 −0.4462
1.5 · 104 −0.6732 −0.5665 −0.2835 −0.3754 −0.5005 −0.4743 −0.3645 −0.3401
7.5 · 104 −0.7944 −0.7627 −0.7459 −0.7057 −0.3579 −0.3502 −0.4184 −0.3662
1.5 · 105 −0.6740 −0.6673 −0.8766 −0.8066 −0.3287 −0.3504 −0.3843 −0.3882
7.5 · 105 −0.7060 −0.6997 −0.5815 −0.5753 −0.3956 −0.3801 −0.3904 −0.3923
1.5 · 106 −0.6721 −0.6454 −0.6724 −0.6656 −0.3774 −0.3698 −0.3999 −0.3835

MC Path RNN Sign. RNN Sign. RNN Sign. RNN Sign.

1.5 · 103 0.1463 −0.8456 −0.0644 0.4109 −0.1973 −0.2991 −0.2242 −0.3014
7.5 · 103 −0.1632 −0.2044 −1.1572 −1.0406 −0.4577 −0.5115 −0.5001 −0.5467
1.5 · 104 −0.7240 −0.6948 −0.2780 −0.3029 −0.4466 −0.5901 −0.3914 −0.3985
7.5 · 104 −0.8369 −0.7635 −0.7245 −0.7360 −0.3346 −0.3849 −0.3717 −0.4568
1.5 · 105 −0.7406 −0.6527 −0.9293 −0.8558 −0.3273 −0.3956 −0.3519 −0.4479
7.5 · 105 −0.7535 −0.6895 −0.6401 −0.5684 −0.3702 −0.4545 −0.3659 −0.4553
1.5 · 106 −0.7159 −0.6578 −0.7314 −0.6569 −0.3590 −0.4396 −0.3660 −0.4763

Table 15: Gamma for a snowball certificate with maturity of two years (multiplied by 104). The
first column is the total number of simulation paths used by each algorithm. Then, there are two
groups each of four columns for different spot prices S0. In each group the first two columns is
the result of the finite-difference method (ϵ = 1/4) with different basis functions, the last two
columns of the Chebyshev method (ϵ = 3/4).
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Lock-in certificate: Gamma

S0 = 85 S0 = 115

Finite Difference Chebyshev Finite Difference Chebyshev
MC Path Polyn. FFNN Polyn. FFNN Polyn. FFNN Polyn. FFNN

1.5 · 103 −1.2744 −0.5865 −0.2483 0.7709 −0.3120 −0.2653 −0.0435 0.4992
7.5 · 103 −1.0049 −0.7238 −0.5390 −0.1646 −0.3930 −0.3901 −0.2683 −0.3205
1.5 · 104 −0.5322 −0.3719 −0.8770 −0.5917 −0.4126 −0.4536 −0.2543 −0.3525
7.5 · 104 −0.6925 −0.6738 −0.6965 −0.6852 −0.3510 −0.3871 −0.2889 −0.3793
1.5 · 105 −0.7210 −0.6625 −0.7761 −0.7591 −0.3529 −0.3937 −0.3092 −0.3912
7.5 · 105 −0.6939 −0.6155 −0.6865 −0.5694 −0.3452 −0.3903 −0.2991 −0.3768

MC Path RNN. Sign. RNN Sign. RNN Sign. RNN Sign.

1.5 · 103 −0.6832 −1.3537 −0.0323 −0.0599 −0.2726 −0.1899 0.2069 −0.0256
7.5 · 103 −0.7030 −1.0818 −0.0838 −0.6224 −0.3542 −0.2844 −0.2192 −0.1320
1.5 · 104 −0.5318 −0.5833 −0.3691 −0.8535 −0.4088 −0.3204 −0.2782 −0.1588
7.5 · 104 −0.7744 −0.7500 −0.8087 −0.6655 −0.3687 −0.2103 −0.3562 −0.1806
1.5 · 105 −0.7341 −0.7082 −0.8590 −0.7330 −0.3776 −0.2132 −0.3623 −0.1909
7.5 · 105 −0.6806 −0.6533 −0.6509 −0.5739 −0.3688 −0.2080 −0.3495 −0.1620

Table 16: Gamma for a lock-in certificate with maturity of two years (multiplied by 104). The
first column is the total number of simulation paths used by each algorithm. Then, there are two
groups each of four columns for different spot prices S0. In each group the first two columns is
the result of the finite-difference method (ϵ = 1/4) with different basis functions, the last two
columns of the Chebyshev method (ϵ = 3/4).

third order; random neural networks have 120 inner nodes; signature methods are truncated at
third degree with lead-lag and time embedding. As in the previous case of snowball certificates, we
obtain a similar behavior in term of stability both for finite-difference and Chebyshev algorithms.
In Appendix D we extend the analysis.

7 Conclusion and Further Developments
In the present paper, we studied state of the art algorithms, that are now classified under the
name of machine learning, to price Asian, look-back products, and callable certificates with early-
termination features. More precisely, we adapted the approach of Herrera et al. (2024) to the
case of path-dependent payoffs with early-termination features, and we compare the results with
alternative original formulations based on signature methods. All the experiments are run under
a Black-Scholes dynamics for a single stock price.

We observed that, at least for the type of payoffs and the dynamics we considered, these algo-
rithms have a performance, in terms of accuracy and computational efficiency, often comparable
to that of more traditional algorithms, such as the ones based on polynomial basis functions. In
particular, we observed that a careful selection of the risk factors in traditional approaches may
lead to relevant improvement in computational time by saving the accuracy of the results, at
least when pricing Asian and look-back products with early-termination features. On the other



Gambara, Livieri, Pallavicini, American-style path-dependent contracts 40

hand, when pricing callable certificates, the best choices of basis functions are random networks
(R-FFNN and R-RNN); in this case, polynomials become unfeasible for many dates and larger de-
grees. In this context, signatures do not emerge as strictly necessary algorithms. Although prices
obtained from truncated signatures are among the highest for look-back options and certificates,
these are matched by R-FFNNs which, moreover, have much lower computational times. Further,
more investigations would be needed to address the computational issues (inversion of the regres-
sion basis) which turns out to be (almost) singular1 with regularization techniques (e.g. Lasso or
Ridge regularization). Such problems can be avoided using randomized signatures, as alluded to
in Section 3.3.2, for which we can obtain similar, though not equal, results. Standard signatures
show their abilities as feature extractors particularly well for high truncations, and that is where
advantages compared to randomized signatures become more apparent, but the latter have the
advantage of being able to offer similar expressiveness at lower computational costs.

As a second contribution, we analyzed algorithms to compute sensitivities; in particular, we
found that Chebyshev interpolation techniques are an effective choice for Delta and Gamma calcu-
lations. The strength of the method relies in decoupling the selection of the interpolation interval
from the computation of the derivatives, so that a larger size of the interval, required to stabilize
the sensitivity computation, does not introduce biases. To the best of our knowledge, it is the
first time that first and second order Greeks are computed for Amerasian derivatives and callable
certificates.

As further developments, we plan to investigate the performance of machine learning based
methods for more complicated, e.g., non-Markov dynamics, and in higher dimensional settings.
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A The GPR-GHQ algorithm and the binomial Markov
chain method

We discuss both the GPR-GHQ algorithm and the binomial Markov chain method presented
in Goudenège et al. (2022). We start with the description of the GPR-GHQ algorithm. We remind
that GPR stands for Gaussian Process Regression and GHQ for Gauss-Hermite quadrature. It
is a backward induction algorithm that employs the GHQ to compute the continuation value of
the option only for some particular path of the underlying and the GPR to extrapolate the whole
continuation value from those observations.

A.1 Details on the GPR-GHQ algorithm
Precisely, letN be the number of time steps and Ti as in Subsection 2.1. In addition, let (Ai)M≤i≤N

and (Bi)M≤i≤N be the following two processes:

Ai = (Ai,1, . . . ,Ai,dA
i
)T = (Ai

i−M+1, A
i
i−M+2, . . . , A

i
min{i−1,N−M+1}, A

i
i)T

and
Bi = (Bi,1, . . . ,Bi,dB

i
)T = (Ai

i−M+2, A
i
i−M+3, . . . , A

i
min{i−1,N−M+1}, A

i
i)T .

In the previous equations, Ai2
i1 , with i1 and i2 two natural numbers, denotes a quantity closely

related to the quantity introduced in Equation (1)

Ai2
i1 := 1

i2 − i1 + 1

i2∑
j=i1

STj
.

In particular, Bi can be obtained from Ai by dropping the first component Ai,1. Let Vi be the
option value at time Ti, which is determined by the process of partial averages Ai in the following
way

Vi(Ai) = max(ΨA
i (Ai), Ci(Bi)),

with Ci the continuation value function of the moving average option at time Ti, where we ex-
plicitly write the dependence upon the process Bi. The latter is given by the following relation:

Ci(Bi) := ETi,Bi

[
e−r∆tVi+1(Ai+1)

]
,

where ETi,Bi
represents the expectation at time Ti given that Bi is the value of the process B at

time Ti. Moreover, ΨA
Ti

denotes the payoff as a function of the process Ai

ΨA
Ti

(Ai) := max(0, Ai
i − Ai

i−M+1).

Then, the dynamic programming problem of the function C is given by (cfr. Equation (4.10)
of Goudenège et al. (2022)):

CN(BN) = 0,
CN−1(BN−1) = Call

(
tN−1, tN , A

N−1
N−1,

MAi
i−M+1−Ai

i

M−1

)
,

Ci(Bi) = ETi,Bi

[
e−r∆t max

(
ΨA

i+1(Ai+1), Ci+1(Bi+1)
)]
,

where N − 2 ≤ i ≤ M and Call(t0, T, S0, K) is the price of a European call option on S with
inception time t0, maturity T , spot value S0, and strike K. At this point, Goudenège et al. (2022)
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exploit GPR to learn Ci from a few observed values. Toward this aim, they consider a set X i of
P points whose elements are the simulated values for Bi. More precisely:

X i = {xi,p = (xi,p
1 , . . . , x

i,p

dB
i

), p = 1, . . . , P} ⊆ Rdi .

The GPR-GHQ method determines Ci(xi,p) for each xi,p ∈ X i through Q-points GHQ by
exploiting the following relation

CGHQ
i (xi,p) = e−r∆t

Q∑
q=1

wq max
(
ΨA

i+1(x̃
i,p,q
0 , x̃i,p,q), Ci+1(x̃i,p,q)

)
,

where x̃i,p,q
di+1

= Si,p,q, x̃n,p,q
i = (M−i−1)xn,q

i+1+Sn,p,q

M−i
, and x̃n,p,q

0 = (M−1)xn,q
1 +Sn,p,q

M
. In particular, the

vector (x̃i,p,q
0 , x̃i,p,q) is a possible outcome for Ai+1|Bi = xi,p. The above equation, can be evaluated

only if the quantities Ci+1(x̃i,p,q) are known for all the future points x̃i,p,q. In order to do so,
Goudenège et al. (2022) employ the GPR method by leading to the subsequent equation:

CGP R−GHQ
i (xi,p) = e−r∆t

Q∑
q=1

wq max
(
ΨA

i+1(x̃
i,p,q
0 , x̃i,p,q), CGP R

i+1 (x̃n,p,q)
)
, p ∈ {1, . . . , P}. (23)

Once the function CGP R−GHQ
Ti

has been estimated, the option price V0 at inception can be
computed by discounting the expected option value at time TM , which is the first time step the
option can be exercised; Goudenège et al. (2022) employ a Monte Carlo approach with antithetic
variables to estimate the expected value involved in the latter step.

A.2 Details on the binomial Markov chain method
Now, we describe the binomial chain. Goudenège et al. (2022) consider a Markov chain defined
on a Cox-Ross-Rubinstein (CRR, henceforth) binomial tree. The set of all possible states at time
Ti for M ≤ i is given by

{(sp, STi,k), p = 1, . . . , 2M−1, k = 0, . . . , i},

where sp = (sp,1, . . . , sp,M−1)T and STi,k = S0e
(2k−i)σ

√
∆t. In particular, the payoff for a state

(sp, STi,k) becomes:

ΨCRR(sp, STi,k) = max
STi,k − 1

M

M∑
j=1

Sj,k exp
−σ

√
∆t

M−1∑
ℓ=M−j

(2sp,ℓ − 1
 . (24)

In particular, if the process state at time Ti is (sp, STi,k), then the possible next states are
denoted with (sup

p , S
up
Ti,k

) and (sup
p , S

dw
Ti,k

); option evaluation is performed by moving backward
along the tree. By exploiting the positive homogeneity of the continuation value, denoted by
CCRR

Ti
, Goudenège et al. (2022) arrive at the following recursive formula:

CBC
N (sp) = 0,

CBC
N (sp) = e−r∆t

[
pupe

σ
√

∆t max(ΨCRR(sup
p , 1), CBC

i+1(sup
p ))

+ pdwe
−σ

√
∆t max(ΨCRR(sdw

p , 1), CBC
i+1(sdw

p ))
]
.

(25)

Finally, once the continuation value is available at time step M the option value at inception
is obtained by averaging the option value at the various states of the binomial chain at time TM .
The total number of possible states is O(N2M) and the computational cost is O(N2M+1).
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B Signatures methods
This section collects some basic concepts and definitions on signatures. In particular, Subsec-
tion B.1 provides background material on signatures, with an adaptation of the signature trans-
form to the space of streams of data, and Subsection B.2 discusses some numerical aspects of
signatures.

B.1 Background material on signatures
We start with the definition of the signature of a path. Let X : J → Rd be a d-dimensional path
where J is a compact interval. A path X is of finite p-variation for certain p ≥ 1 if the p-variation
of X, defined by

∥X∥p,J =
(

sup
DJ ⊂J

∑
i

∥XTi
−XTi−1∥p

)1/p

is finite. In the previous equation, the supremum is taken over all possible finite partitions
DJ = {Ti}i of the interval J . We let Vp(J,E), with E ⊆ Rd, be the set of any continuous path
X : J → E of finite p-variation.
Definition 4 (The signature of a path). Let J be a compact interval and X ∈ Vp(J,E) such that
the integration in Equation (26) makes sense. The signature S(X) of X over the time interval J
is defined as follows

S(X) = XJ = (1, X1, . . . , Xn, . . .),
where for each integer n ≥ 1,

Xn =
(∫

. . .
∫

u1<...<un
u1,...,un∈J

dXu1 ⊗ . . .⊗ dXun

)
∈ E⊗n, (26)

with ⊗ denoting the tensor product.
Let us now take E = Rd for simplicity. We notice that the n = 0 term is 1 ∈ (Rd)⊗0 = R,

the first term belongs to Rd, the second term belongs to Rd ⊗R (that is, the space of matrices of
size d× d), and, in general, the kth term belongs to (Rd)⊗k = Rd ⊗ . . .⊗Rd, k times (that is, the
space of tensors of shape (d, . . . , d), k times. In particular, it turns out that the signature of X is
an element of the tensor algebra space T ((Rd)), which is also the “free” algebra on Rd, defined as

T ((Rd)) :=
{
(a0, a1, . . . , an, . . .) | ∀n ≥ 0, an ∈ (Rd)⊗n

}
. (27)

We notice that (27) can also be written as

T ((Rd)) := {a | a =
+∞∑
k=0

d∑
i1,...,ik=1

ai1...ik
ei1 · · · eik

},

where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith position, are elements of the basis of Rd.

B.2 Numerical aspects of signatures
The truncated signature of X of order n is denoted by Sn(X), i.e., Sn(X) = (1, X1, . . . , Xn), for
every integer n ≥ 1. The truncated signatures of X of order n lies in T n((Rd)) := ⊗n

i=0 E
⊗i. In

particular, the signature truncated at order n is a vector of dimension

sd(n) =
n∑

k=0
dk = dn+1 − 1

d− 1 , (28)
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if d ≥ 2, sd(n) = n + 1 if d = 1. The Python software iisignature that we used for our calcu-
lations ignores the constant number 1 (first element of any signature) and, thus, the dimension
reduces to sd(n) − 1.

Given a path X ∈ Vp(J,E), with p ≥ 1, we know that the signature of the path uniquely
defines (up to tree-like equivalence) the path itself. This explains why it can be so convenient
to “summarize” a path in terms of its signatures coefficients: essentially, no information is lost.
This result for paths of bounded variation is due to Hambly et al. (2010) and has been extended
by Boedihardjo et al. (2016) to geometric rough paths, to which we refer for the definition of
tree-like equivalence as well.

Theorem B.1 (Uniqueness of Signature). Let X ∈ Vp([0, T ],Rd), p ≥ 1. Then S(X) determines
X up to the tree-like equivalence.

To avoid having degenerate paths (in a tree-like sense), it has become customary to define
the so-called time-augmented path version of a path by X̂t = (t,Xt), which is a path in R × E.
Indeed, the following proposition holds true.

Proposition B.2 (Uniqueness of signatures). Let X ∈ Vp(J,E) and X̂ its time-augmented ver-
sion. Then S(X̂) uniquely determines X up to translation.

A relevant property of signatures is given by the following Proposition, which states that the
terms of the signature decay in size in a factorial way; see Lemma 2.1.1 in T. J. Lyons (1998).

Proposition B.3 (Decay of signature terms). Let X ∈ Vp(J,E). Then

∥Xn∥ ≤ C(X)n

n! ,

where Xn is defined in Equation (26), C(X) is a constant depending on X and ∥ · ∥ is any tensor
norm on (Rd)⊗n.

Furthermore, we have to cite another relevant property of signatures, namely that the signature
is invariant to time reparametrization; see T. J. Lyons (1998).

Proposition B.4 (Invariance to time reparametrization). Let X ∈ Vp(J,E). Let ψ : E → E be
continuously differentiable, increasing, and surjective. Then S(X) = S(X ◦ψ), where “◦” denotes
the composition.

In practice, we interpret a stream of data as a discretization of a path. The space of streams
of data is defined as:

Str(E) = {x = (x1, x2, . . . , xN) : xi ∈ Rd, N ∈ N}.

Given x ∈ Str(E), the integer N is called the length of x. Furthermore, for a, b ∈ R such that
a < b, fix

a = u1 < u2 < . . . < uN−1 < uN = b.

Let J = [a, b] and X = (X1, . . . , Xd) : J → E be in Vp(J,E) such that Xui
= xi for all i,

and interpolated in continuously differentiable, increasing, and surjective way on the intervals in
between. Then X is called interpolation of x. We have the following definition.

Definition 5 (Signature of the interpolating path). Let x ∈ Str(E). Let X be an interpolation
of x. Then the signature of x is defined as S(x) = S(X) and similarly the truncated signature.
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In particular, thanks to Proposition B.4 the previous definition is well defined and independent
of the interpolation choice.

Finally, one of the most important properties of signatures is being universal approximators,
that is continuous functions on paths can be approximated on compact spaces by linear functions
on the signature of the path; see, for instance, Király et al. (2019).

Theorem B.5 (Universal approximators). Let K be a compact set in Vp([0, T ],Rd) and f ∈
C(K,Rd) be an Rd-valued continuous function on such compact. Then, for any ϵ > 0, there exists
a linear function l such that supX∈K ∥f(X) − ⟨l, S(X̂)⟩∥ < ϵ.

C Snowball and lock-in payoffs
A certificate is a financial instrument issued by a financial intermediary that allows to take a
position on one or many underlying assets. Here, we focus on certificates with maturity date T
written on a single traded assets, whose price process is St, and paying coupons γi on payment
dates Ti with 1 ≤ i ≤ N , T1 > 0 and TN := T . On the certificate maturity date the whole
principal amount, or a fraction of it, is redeemed according to the performance of the underlying
asset. The principal-amount redemption is defined as

ϕ(s,H) := 1{P (s)>H} + 1{P (s)<H}P (s), (29)

where P is the basket worst performance and it is given by

P (s) := s

s0
(30)

with respect to a level s0 usually read from the market before issuing the certificate.
In case the contract is terminated before the maturity the whole principal amount is redeemed.

This case may happen if the contract contains early-termination features, as discussed in the next
section. For later convenience, we define the principal-amount redemption on maturity date or
on early-termination date as following

ΨC
Ti

(N ;H) := 1 − 1{i=N} (1 − ϕ(STN
, H)) . (31)

The coupon amounts paid by the certificate can be fixed at inception or they can depend on
the asset performances. We wish to investigate the latter case, and, in particular, the case of
coupons with “snowball” and “lock-in” features.

We start by discussing the “snowball” version. At each payment date the certificate pays
a coupon only if the basket worst performance is above a barrier level K. When the payment
occurs, the quantity of cash paid is equal to the sum of the cash flows not yet paid. We can
write this feature in the following way. First, we introduce the set J (i) of indices less than i such
that a coupon can be paid on the corresponding payment date without taking into account if the
product is early terminated. In formulae we have

J (i) := {j ∈ {1, . . . , i− 1} : P (Stj
) > K}. (32)

We can now define the coupon as

γi := 1{P (Sti )>K}

i∑
j=1+sup J (i)

cj (33)
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with the convention that the supremum of J (i) is 0 when the set is empty. In the previous
equation {c1, . . . , cN} is a pre-determined set of non-negative cash flows.

Then, we discuss the “lock-in” version. At each payment date the certificate pays a coupon
only if the basket worst performance at such date, or at any of the previous payment dates, is
above a barrier level K. We can define the coupon as

γi := max
j∈[1,i]

1{P (Stj )>K} CTi
. (34)

We can evaluate certificates with the possibility of an early exercise by the issuer. Again, we
consider that the certificate can be exercised on any date in the time grid {T1, . . . , TN} previously
defined. We setup the pricing problem by starting from the last exercise date TN , and we introduce
the FTN

-measurable value function V C
N , defined as

V C
TN

:= ΨC
TN
. (35)

On the previous dates Ti, with 0 < i < N the option buyer may decide to exercise the option,
by choosing the minimum between the immediate redemption of the principal amount and the
continuation value of the contract. Thus, we can write

V C
Ti

:= γi + min
{

ΨC
Ti
, BTi

E

[
V C

Ti+1

BTi+1

∣∣∣∣∣FTi

]}
, (36)

The price of the certificate can be calculated by applying the above recursion up to T1 and by
calculating the certificate price as given by

V C
0 := E

[
V C

T1

BT1

]
. (37)

D Technical insights on sensitivity computations
Here, we describe in more details the problem of dealing with discontinuous sensitivities. In
particular, we expand the discussion on the Chebyshev method presented in Section 3.4.3 in the
main text of the paper. Then, we conclude this section by presenting more numerical evidences
supporting our choice for the Chebyshev method.

D.1 Discontinuous sensitivities in the Chebyshev method
In the case of American put options the buyer may exercise the option on contract inception. As a
consequence the function S 7→ V (S) has a discontinuous second derivative. In our specific settings
of positive interest rates and zero dividend yield (see Section 4.1), we know that the immediate
exercise occurs when the spot price is less than a critical value S⋆, which depends on market and
contract data. Moreover, when it occurs, the option price is equal to its intrinsic value, a linear
function of the underlying spot price, leading to a Gamma equal to zero.

We should perform the numerical calculation only when the spot price is greater than S⋆.
In the case of the Chebyshev method we can achieve this by redefining the grid of spot prices,
previously defined in (18), as

Sℓ
ϵ := max

{
S,

S⋆

1 − ϵ

}(
1 + ϵ cos

(
ℓπ

Nc − 1

))
, (38)

where S > S⋆ is the market spot price.
The above derivation requires the knowledge of S⋆. However, if the value of S⋆ is not known

in advance, we can implement a simple heuristic.



Gambara, Livieri, Pallavicini, American-style path-dependent contracts 50

60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

Spot Price

D
el

ta

ϵ = 1/32

ϵ = 1/16

ϵ = 1/8
BT

60 80 100 120 140

0

1

2

3

·10−2

Spot Price

G
am

m
a

Figure 3: Delta and Gamma risk matrices for American put options with maturity T = 0.2, strike
K = 100 and time steps N = 50. Orange dots are calculated with a standard binomial tree
implementation, while blue lines with the finite difference method.

1. We choose Nc to be odd, namely Nc := 2Kc + 1 for a positive integer Kc, and we set
S⋆ := S(1 − ϵ) in equation (38), so that SKc

ϵ = S.

2. We calculate the corresponding Monte Carlo prices and we check if on SKc
ϵ an immediate

exercise occurs. If it is the case we return zero for the Gamma, otherwise we go on.

3. We check if an immediate exercise occurs for some Sℓ
ϵ with ℓ < Kc. If this is the case we

discard such points from the interpolator training set.

4. We train the interpolator on the remaining points, and we calculate the sensitivity.

D.2 Numerical investigations on American put sensitivities
We start by presenting the results in Figure 3 Delta and Gamma in the case of the finite difference
method for American put options at different spot prices. We can see that increasing ϵ the noise
is reduced, but a bias in the sensitivity arises, since only in the limit of vanishing ϵ we recover the
true derivative values.

Then, we continue with the regression method and we show in Figure 4 the calculation of
Gamma for American put options at different spot prices by varying both ϵ and B. We can see
that a delicate fine tuning is required to properly select these variables to reduce noise without
introducing a bias. In particular, we notice that higher terms in the Taylor’s approximation are
required to correctly learn the dependency of the derivative price with respect to the spot price,
but they increase the sensitivity noise. In order to reduce the noise we can increase the variance
of the spot-price density, but in this way we introduce a bias. Moreover, we can see that the
discontinuity of Gamma cannot be reproduced with this method, since the approximating form
for the derivative price is continuous in the spot price.

Finally, we analyze the Chebyshev method and we present in Figure 5 the calculation of
Gamma for American put options at different spot prices by varying ϵ. We can see that, by
increasing the range of spot prices used to train the interpolator, the noise decreases without
generating biases.
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Figure 4: Gamma risk matrices for American put options with maturity T = 0.2, strike K = 100
and time steps N = 50. Orange dots are calculated with a standard binomial tree implementation,
while blue lines with the regression method. Left panel: different choices of ϵ for B = 9. Right
panel: different choices of B for ϵ = 1/8.
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Figure 5: Delta and Gamma risk matrices for American put options with maturity T = 0.2, strike
K = 100 and time steps N = 50. Orange dots are calculated with a standard binomial tree
implementation, while blue lines with the Chebyshev method.
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Figure 6: Gamma risk matrices for fixed-strike Asian options with moving window of M = 2 days,
maturity T = 0.2, strike K = 100 and time steps N = 50. LSMC method with polynomial basis
functions. Left panel: finite-difference method with different choices of ϵ. Right panel: Chebyshev
method with different choices of ϵ.

D.3 Numerical investigations on fixed-strike Asian sensitivities
We continue the analysis on sensitivity computations by going beyond the simple, but relevant,
case of American options. We find that the Chebyshev method seems a good candidate as target
method. Anyway, we prefer to check again our findings also in the case of other payoffs.

In the case of fixed-strike asian payoffs we can see in Figure 6 the behavior of Gamma sensitivity
for a moving window of length M = 2 with different choices of ϵ when using polynomials for the
regression. We obtain the same pattern depicted in the case of American put options. The finite-
difference method stabilizes as we increase ϵ, but a visible bias arises, as we can see by comparing
the two panels of the Figure.

For the same fixed-strike Asian payoff we repeat the exercise with R-FFNNs as basis functions.
We obtain a very similar result, and we do not notice an increase in noise.

D.4 Numerical investigations on certificate sensitivities
We continue the analysis on sensitivity computations with the certificate case. We start with
the snowball version, whose characteristics are described in Section 6.2. We show the results for
different regression basis functions in Figure 8 and 9. Polynomials basis function are taken up to
third order; random neural networks have 120 inner nodes; signature methods are truncated at
third degree with lead-lag and time embedding. Again we can see that the Chebyshev method,
although a little noisier than before, does not show the bias of the finite difference method, which
is smoother, but we can see from the diagrams that it moves away from the other curves as soon
as the shift ϵ increases.

We continue with the lock-in version, whose characteristics are described in Section 6.3. We
show the results for different regression basis functions in Figure 10 and 11. Polynomials basis
function are taken up to third order; random neural networks have 120 inner nodes; signature
methods are truncated at third degree with lead-lag and time embedding. We can see that the
finite-difference method is quite biased, while the Chebyshev method seems working well.
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Figure 7: Gamma risk matrices for fixed-strike Asian options with moving window of M = 2 days,
maturity T = 0.2, strike K = 100 and time steps N = 50. LSMC method with R-FFNN basis
functions. Left panel: finite-difference method with different choices of ϵ. Right panel: Chebyshev
method with different choices of ϵ.
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Figure 8: Gamma risk matrices for snowball certificates, maturity T = 2. LSMC method with
polynomial basis functions (left panel), R-FFNN basis functions (right panel). Finite difference
method in red, Chebyshev method in blue.
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Figure 9: Gamma risk matrices for snowball certificates, maturity T = 2. LSMC method with R-
RNN basis functions (left panel), signature basis functions (right panel). Finite difference method
red, Chebyshev method in blue.
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Figure 10: Gamma risk matrices for lock-in certificates, maturity T = 2. LSMC method with
polynomial basis functions (left panel), R-FFNN basis functions (right panel). Finite difference
method in red, Chebyshev method in blue.
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Figure 11: Gamma risk matrices for lock-in certificates, maturity T = 2. LSMC method with R-
RNN basis functions (left panel), signature basis functions (right panel). Finite difference method
red, Chebyshev method in blue.

E Supplemental material
We collect in this section further numerical results, which support the discussion of the main body
of the paper. In Tables 17, 18, 19, 20 and 21 we report the statistical uncertainties of Monte Carlo
simulations used to price all the contracts discussed in the main body of the paper. Statistical
uncertainties are reported at one-sigma confidence level.
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Floating-strike Asian option: statistical uncertainties
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 0.001 0.002 0.002 0.002 0.003 0.005 0.007
Polynomial, ρ = 2, deg = 2 0.001 0.002 0.002 0.003 0.004 0.006 0.007
Polynomial, ρ = 3, deg = 2 0.001 0.002 0.002 0.003 0.004 0.006 0.007
Polynomial, ρ = 4, deg = 2 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 1, h = 10 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 10 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 10 0.001 0.002 0.002 0.002 0.004 0.005 0.007
R-FFNN, ρ = 4, h = 10 0.001 0.002 0.002 0.002 0.004 0.005 0.006
R-FFNN, ρ = 1, h = 40 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 40 0.001 0.002 0.002 0.002 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 40 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 4, h = 40 0.001 0.002 0.002 0.002 0.004 0.005 0.006
R-FFNN, ρ = 1, h = 120 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 120 0.001 0.002 0.002 0.002 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 120 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 4, h = 120 0.001 0.002 0.002 0.002 0.004 0.005 0.007
R-FFNN, ρ = 1, h = 250 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 250 0.001 0.002 0.002 0.002 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 250 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 4, h = 250 0.001 0.002 0.002 0.002 0.004 0.005 0.008
R-RNN, ρ = 4, h = 10 0.001 0.002 0.002 0.003 0.004 0.007 0.009
R-RNN, ρ = 4, h = 40 0.001 0.002 0.002 0.003 0.004 0.007 0.005
R-RNN, ρ = 4, h = 120 0.001 0.002 0.002 0.003 0.004 0.007 0.009
R-RNN, ρ = 4, h = 150 0.001 0.002 0.002 0.003 0.004 0.007 0.009
Signature, ρ = 4, n = 2 0.001 0.002 0.002 0.002 0.003 0.005 0.007
Signature, ρ = 4, n = 3 0.001 0.002 0.002 0.002 0.004 0.006 0.007
Signature, ρ = 4, n = 5 0.001 0.002 0.002 0.002 0.004 0.006 0.007
RandSig, ς = 0.3, k⋆ = 20, norm=True 0.001 0.002 0.002 0.002 0.004 0.006 0.007
RandSig, ς = 0.05, k⋆ = 20, norm=True 0.001 0.002 0.002 0.002 0.004 0.006 0.008
RandSig, ς = 0.05, k⋆ = 40, norm=True 0.001 0.002 0.002 0.002 0.004 0.006 0.008
RandSig, ς = 0.05, k⋆ = 40, norm=False 0.001 0.002 0.002 0.002 0.004 0.006 0.007
RandSig, ς = 0.3, k⋆ = 20, norm=False 0.001 0.002 0.002 0.002 0.004 0.005 0.007
RandSig, ς = 0.3, k⋆ = 10, norm=False 0.001 0.002 0.002 0.002 0.003 0.005 0.007

Table 17: Statistical uncertainties of the Monte Carlo simulation used to price floating-strike
American-style Asian options with strike K = 100, maturity T = 0.2 and time steps N = 50
for different lengths of the moving window. Comparison between different models (see text).
Benchmark models: GPR-GHQ and binomial Markov chain of Goudenège et al. (2022), Bernhart
et al. (2011), Lelong (2019). LSMC models: polynomial bases, randomized neural networks (R-
FFNN and R-RNN), signature and randomized signature (RandSig) based methods.
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Fixed-strike Asian option: statistical uncertainties
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 0.011 0.011 0.011 0.115 0.011 0.010 0.009
Polynomial, ρ = 2, deg = 2 0.011 0.012 0.012 0.012 0.011 0.011 0.010
Polynomial, ρ = 3, deg = 2 0.011 0.012 0.012 0.012 0.011 0.011 0.010
Polynomial, ρ = 4, deg = 2 0.011 0.011 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 1, h = 10 0.011 0.011 0.011 0.011 0.011 0.010 0.009
R-FFNN, ρ = 2, h = 10 0.011 0.012 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 3, h = 10 0.011 0.012 0.012 0.012 0.011 0.010 0.010
R-FFNN, ρ = 4, h = 10 0.006 0.007 0.007 0.008 0.010 0.010 0.010
R-FFNN, ρ = 1, h = 40 0.011 0.011 0.011 0.011 0.011 0.010 0.009
R-FFNN, ρ = 2, h = 40 0.011 0.012 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 3, h = 40 0.011 0.012 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 4, h = 40 0.008 0.008 0.009 0.009 0.010 0.010 0.010
R-FFNN, ρ = 1, h = 120 0.011 0.011 0.011 0.011 0.011 0.010 0.009
R-FFNN, ρ = 2, h = 120 0.011 0.011 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 3, h = 120 0.011 0.012 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 4, h = 120 0.010 0.011 0.011 0.011 0.011 0.011 0.010
R-FFNN, ρ = 1, h = 250 0.011 0.011 0.011 0.011 0.011 0.010 0.009
R-FFNN, ρ = 2, h = 250 0.011 0.011 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 3, h = 250 0.011 0.011 0.012 0.012 0.011 0.011 0.010
R-FFNN, ρ = 4, h = 250 0.011 0.011 0.011 0.011 0.011 0.011 0.010
R-RNN, ρ = 4, h = 10 0.014 0.015 0.014 0.014 0.014 0.012 0.011
R-RNN, ρ = 4, h = 40 0.014 0.015 0.014 0.014 0.014 0.012 0.011
R-RNN, ρ = 4, h = 120 0.014 0.014 0.014 0.014 0.014 0.012 0.011
R-RNN, ρ = 4, h = 150 0.014 0.014 0.014 0.014 0.014 0.012 0.011
Signature, ρ = 4, n = 2 0.010 0.011 0.011 0.011 0.011 0.010 0.009
Signature, ρ = 4, n = 3 0.011 0.011 0.011 0.011 0.011 0.010 0.010
Signature, ρ = 4, n = 3, no lead-lag 0.011 0.011 0.011 0.011 0.011 0.010 0.010
Signature, ρ = 4, n = 5 0.011 0.011 0.011 0.011 0.011 0.011 0.010
RandSig, ς = 0.3, k⋆ = 20, norm=True 0.011 0.011 0.011 0.011 0.011 0.010 0.009
RandSig, ς = 0.05, k⋆ = 20, norm=True 0.011 0.011 0.011 0.011 0.011 0.010 0.009
RandSig, ς = 0.05, k⋆ = 40, norm=True 0.011 0.011 0.011 0.011 0.011 0.010 0.010
RandSig, ς = 0.05, k⋆ = 40, norm=False 0.011 0.011 0.011 0.011 0.011 0.010 0.009
RandSig, ς = 0.3, k⋆ = 20, norm=False 0.009 0.008 0.008 0.008 0.007 0.007 0.007
RandSig, ς = 0.3, k⋆ = 10, norm=False 0.009 0.009 0.009 0.009 0.009 0.008 0.007

Table 18: Statistical uncertainties of the Monte Carlo simulation used to price fixed-strike
American-style Asian options with strike K = 100, maturity T = 0.2 and time steps N = 50
for different lengths of the moving window. Comparison between different models (see text).
LSMC models: polynomial bases, randomized neural networks (R-FFNN and R-RNN), signature
and randomized signature (RandSig) based methods.
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Floating-strike look-back option: statistical uncertainties
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 0.001 0.002 0.002 0.002 0.003 0.005 0.007
Polynomial, ρ = 2, deg = 2 0.001 0.002 0.002 0.003 0.004 0.006 0.007
Polynomial, ρ = 3, deg = 2 0.001 0.002 0.002 0.003 0.004 0.006 0.007
Polynomial, ρ = 4, deg = 2 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 1, h = 10 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 10 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 10 0.001 0.002 0.002 0.003 0.004 0.005 0.007
R-FFNN, ρ = 4, h = 10 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 1, h = 40 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 40 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 40 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 4, h = 40 0.001 0.002 0.002 0.002 0.004 0.006 0.007
R-FFNN, ρ = 1, h = 120 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 120 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 120 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 4, h = 120 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 1, h = 250 0.001 0.002 0.002 0.002 0.003 0.005 0.007
R-FFNN, ρ = 2, h = 250 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 3, h = 250 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-FFNN, ρ = 4, h = 250 0.001 0.002 0.002 0.003 0.004 0.006 0.007
R-RNN, ρ = 4, h = 10 0.001 0.003 0.002 0.003 0.004 0.007 0.009
R-RNN, ρ = 4, h = 40 0.001 0.002 0.002 0.003 0.004 0.007 0.009
R-RNN, ρ = 4, h = 120 0.001 0.002 0.002 0.003 0.004 0.007 0.009
R-RNN, ρ = 4, h = 150 0.001 0.002 0.002 0.003 0.004 0.007 0.009
Signature, ρ = 4, n = 2 0.001 0.002 0.002 0.002 0.003 0.005 0.007
Signature, ρ = 4, n = 3 0.001 0.002 0.002 0.002 0.004 0.006 0.007
Signature, ρ = 4, n = 5 0.001 0.002 0.002 0.002 0.004 0.006 0.007

Table 19: Statistical uncertainties of the Monte Carlo simulation used to price floating-strike
American-style look-back options with maturity T = 0.2 and time steps N = 50 for different
lengths of the moving window. Comparison between different models (see text). LSMC models:
polynomial bases, randomized neural networks (R-FFNN and R-RNN), signature based methods.
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Fixed-strike look-back option: statistical uncertainties
Model 2 3 4 5 10 20 30

Polynomial, ρ = 1, deg = 2 0.011 0.011 0.011 0.010 0.009 0.007 0.005
Polynomial, ρ = 2, deg = 2 0.011 0.011 0.011 0.011 0.010 0.008 0.006
Polynomial, ρ = 3, deg = 2 0.011 0.011 0.011 0.011 0.010 0.008 0.006
Polynomial, ρ = 4, deg = 2 0.011 0.011 0.011 0.011 0.010 0.008 0.006
R-FFNN, ρ = 1, h = 10 0.011 0.011 0.010 0.010 0.009 0.001 0.005
R-FFNN, ρ = 2, h = 10 0.011 0.011 0.011 0.010 0.010 0.008 0.006
R-FFNN, ρ = 3, h = 10 0.011 0.011 0.011 0.011 0.001 0.008 0.006
R-FFNN, ρ = 4, h = 10 0.006 0.007 0.008 0.008 0.009 0.008 0.006
R-FFNN, ρ = 1, h = 40 0.011 0.010 0.010 0.010 0.009 0.007 0.005
R-FFNN, ρ = 2, h = 40 0.011 0.011 0.011 0.010 0.010 0.008 0.006
R-FFNN, ρ = 3, h = 40 0.011 0.011 0.010 0.010 0.010 0.008 0.006
R-FFNN, ρ = 4, h = 40 0.008 0.009 0.010 0.009 0.009 0.008 0.006
R-FFNN, ρ = 1, h = 120 0.010 0.010 0.010 0.010 0.009 0.007 0.005
R-FFNN, ρ = 2, h = 120 0.010 0.010 0.010 0.010 0.010 0.008 0.006
R-FFNN, ρ = 3, h = 120 0.010 0.010 0.010 0.010 0.010 0.008 0.006
R-FFNN, ρ = 4, h = 120 0.010 0.010 0.010 0.010 0.010 0.008 0.006
R-FFNN, ρ = 1, h = 250 0.010 0.010 0.010 0.010 0.009 0.007 0.006
R-FFNN, ρ = 2, h = 250 0.010 0.010 0.010 0.010 0.010 0.008 0.006
R-FFNN, ρ = 3, h = 250 0.010 0.010 0.010 0.010 0.010 0.008 0.006
R-FFNN, ρ = 4, h = 250 0.010 0.010 0.010 0.010 0.010 0.008 0.006
R-RNN, ρ = 4, h = 10 0.013 0.013 0.013 0.013 0.012 0.009 0.006
R-RNN, ρ = 4, h = 40 0.013 0.013 0.013 0.013 0.012 0.009 0.006
R-RNN, ρ = 4, h = 120 0.013 0.013 0.013 0.013 0.012 0.009 0.006
R-RNN, ρ = 4, h = 150 0.013 0.013 0.013 0.013 0.012 0.009 0.006
Signature, ρ = 4, n = 2 0.010 0.010 0.010 0.010 0.009 0.007 0.005
Signature, ρ = 4, n = 3 0.010 0.011 0.010 0.010 0.010 0.008 0.006
Signature, ρ = 4, n = 5 0.010 0.010 0.010 0.010 0.010 0.008 0.006

Table 20: Statistical uncertainties of the Monte Carlo simulation used to price fixed-strike
American-style look-back options with strike K = 100, maturity T = 0.2 and time steps N = 50
for different lengths of the moving window. Comparison between different models (see text).
LSMC models: polynomial bases, randomized neural networks (R-FFNN and R-RNN), signature
based methods.
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Certificate: uncert. Snowball Lock-in
Model 1y 2y 5y 1y 2y 5y

Polynomial, deg = 2 0.00006 0.00011 0.00028 0.00006 0.00008 0.00019
Polynomial, deg = 3 0.00006 0.00011 0.00027 0.00006 0.00008 0.00018
Polynomial, deg = 5 0.00006 0.00011 0.00006 0.00008
R-FFNN, h = 10 0.00006 0.00011 0.00030 0.00006 0.00007 0.00018
R-FFNN, h = 50 0.00006 0.00011 0.00030 0.00006 0.00007 0.00017
R-FFNN, h = 120 0.00006 0.00011 0.00029 0.00006 0.00007 0.00017
R-RNN, h = 10 0.00006 0.00011 0.00030 0.00006 0.00007 0.00017
R-RNN, h = 50 0.00006 0.00011 0.00030 0.00006 0.00007 0.00017
R-RNN, h = 120 0.00006 0.00011 0.00030 0.00006 0.00007 0.00017
Signature, n = 2 0.00006 0.00011 0.00022 0.00006 0.00007 0.00014
Signature, n = 3 0.00006 0.00011 0.00026 0.00006 0.00008 0.00017
Signature, n = 5 0.00006 0.00011 0.00025 0.00006 0.00008 0.00016

Table 21: Statistical uncertainties of the Monte Carlo simulation used to price snowball and
lock-in certificates with maturity of 1, 2 and 5 years (other characteristics described in the text).
Comparison between different models (see text). LSMC models: polynomial bases, randomized
neural networks (R-FFNN and R-RNN), signature based methods.
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