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Abstract

The debate over the influence of weather on COVID-19 epidemiological dynamics remains
unsettled as multiple factors are conflated, including viral biology, transmission through social
interaction, and the probability of disease detection. Here we distinguish the distinct dynamics of
weather on detection and transmission with a multi-method approach combining econometric
techniques with epidemiological models, including an extension of a susceptible-exposed-
infectious-recovered model, to analyse data for over 4000 geographic units throughout the year
2020. We find distinct and significant effects of temperature, thermal comfort, solar radiation, and
precipitation on the growth of infections. We also find that weather affects the rates of both disease
transmission and detection. When we isolate transmission effects to understand the potential for
seasonal shifts, the instantaneous effects of weather are small, with R0 about 0.007 higher in winter
than in summer. However, the effects of weather compound over time, so that a region with a 5 °C
drop over three months in winter is expected to have 190% more confirmed cases at the end of that
90 days period, relative to a scenario with constant temperature. We also find that the contribution
of weather produces the largest effects in high-latitude countries. As the COVID-19 pandemic
continues to evolve and risks becoming endemic, these seasonal dynamics may play a crucial role
for health policy.

1. Introduction

The debate over the effect of weather on the spread of COVID-19 is still unsettled. In laboratory studies, the
survival rate of other coronavirus-related infections, such as MERS-CoV and SARS-CoV, has been confirmed
as affected by environmental conditions, particularly temperature and humidity (e.g. Chan et al (2011),
Leclercq et al (2014)). Because SARS-CoV-2, responsible for COVID-19, is expected to mirror such
environment-transmission dynamics, several experimental studies have modelled the relationship between
COVID-19 and weather. This effort, however, has resulted in inconsistent weather outcomes of interest and
lack of consensus of their relative importance to the spread of the disease (SI table 2). For example, various
studies suggest high sensitivity of the virus to temperature, humidity and solar radiation (Chin et al 2020,
Mecenas et al 2020, Seyer and Sanlidag 2020, Ganegoda et al 2021, Landier et al 2021, Majumder and Ray
2021). Yet, some of them suggest that temperature has a significant and negative effect on COVID-19 case
growth (Bukhari et al 2020, Huang et al 2020, Meyer et al 2020, Wu et al 2020, Ganegoda et al 2021, Wilson
2021), while others found that temperature is not as important as other environmental factors, such as
radiation (Carleton et al 2020, Walrand 2021, Xu ef al 2021, Yechezkel et al 2021). In addition, besides the
biology-environment dynamics, individual mobility and social interactions are likely responsive to weather
which can, in turn, affect the potential for transmission and detection of the disease (Wang et al 2022). For
instance, temperature has been found to be positively associated with human mobility, outdoor activities and

© 2023 The Author(s). Published by IOP Publishing Ltd
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travel decisions (Cools et al 2010, Nouvellet et al 2021, Shao et al 2021). Such environmentally driven social
behaviour could affect the seasonal cycle of the disease in a specific location as well as generate geographical
differences in outbreaks between locations (Carlson et al 2020). These complex channels have contributed to
our current poor understanding and low ability to model the effect of weather on COVID-19
epidemiological dynamics.

In this study, we use a multi-method approach to examine whether and how weather affects the
epidemiological dynamic of COVID-19. In the first part of the analysis, we use a panel regression model with
fixed effects (e.g. locality-specific and date-specific intercepts) and exploit the fact that random variation in
weather provides a natural experiment to identify the effect of weather on the infectious population and
confirmed cases. To isolate two major channels of these estimated effects, specifically transmission and
detection, we calibrate an environmentally extended susceptible-exposed-infectious-recovered (SEIR)
model, informed by our empirical estimates. In addition, we use this model for a set of idealised simulations
which allow us to explain further findings of the empirical analysis.

Our work contributes to the previous literature in several ways. Our main contribution is to demonstrate
the potential seasonal component of COVID-19 dynamics using day-to-day variation of weather for
identification and attribute estimated effects to alternative channels. In doing so, we address additional gaps
in existing literature by more accurately identifying the exposure of interest with high resolution data,
evaluating more comprehensively potentially relevant weather variables, by accounting for covariates that
vary across time and region, and by studying lag times and non-linear associations (Romero Starke et al
2021).

The remainder of the paper is structured as follows. In section 2, we present the data and methods. In
section 3, we show and interpret our results. We conclude with a discussion and conclusions in section 4.

2. Methods

2.1. Overview

To shed new light on the effect of weather on COVID-19, we integrate two complementary approaches and
leverage their individual strengths: econometric analysis with a panel regression model to empirically
identify effects of weather on the disease and SEIR modelling to distinguish otherwise conflated
epidemiological dynamics.

First, we use a panel regression model with distributed lags to identify effects of weather on COVID-19
dynamics. Similar to econometric studies on the effects of climate change that use random fluctuations of
weather from year to year to learn about the effect of gradual changes of temperature over several decades
(Hsiang 2016), our models uses random fluctuations of weather from day to day to learn about the effect of
gradual changes of weather between seasons. To do so, our model includes a variety of fixed effects that
absorb possibly confounding variation in the data, such as slow-moving trends, seasonality, and date-specific
events.

To properly represent the epidemiological dynamic within a regression setting, we translate reported
cases into a measure of instantaneous growth of the infectious population, derived from SIR dynamics,
which has the same long-term growth rate as confirmed cases. We also use this approach to understand the
effect of weather on mortality and to examine the role of mobility as a possible channel of the effect of
weather on COVID-19 dynamics.

The panel regression allows us to identify key weather variables that influence transmission, navigating
concerns of multicollinearity and omitted variable biases. The choice of influential weather variables and
multicollinearity are in detail discussed in the SI. Regarding causality and other possible biases, weather can
be considered exogeneous to the evolution of the disease, ruling out reverse causality. Furthermore, the
inclusion of a variety of fixed effects, including unit fixed effects and country-by-day fixed effects, rules out
that time-constant differences between units and variables that change from day to day at the country level
confound the estimated relationships. We also include unit-by-week fixed effects. These fixed effects will
absorb, for example, variation in epidemiological dynamics due to health policies at the country or
subnational level.

Second, we incorporate the weather variables identified by the regression model into an SEIR model,
based on Kucharski et al (2020) (see SI figure 1). We also use insights obtained from the regression analysis
on the role of mobility, the effect of weather on mortality, and the roughly linear association between weather
and the growth of infectious population to inform how weather enters the SEIR model. The SEIR model uses
both reported cases and deaths to simultaneously model an effect of weather on transmission and detection
of new cases and thus to disentangle these two channels. The model also allows us to explore regional
heterogeneity. The model is fit separately to each region, and a global average effect is obtained with a
Bayesian hierarchical meta-analysis.
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Figure 1. System diagram of the SEIR model, representing each region. Modelled populations flow between latent stocks (black)
as they are exposed, infectious, removed, and tested. Observed data (red) is used to calibrated parameters (blue), some of which
vary in time.

2.2. Data sources

We apply these methods to a high-resolution dataset with 4564 national and subnational units. These
subnational units correspond to the first and second administrative levels in most countries. We construct
this dataset based on several international and national epidemiological datasets, ERA5 reanalysis
(Hoffmann et al 2019), and Google’s Community Mobility report (Google 2020). Our dataset covers the year
2020, before the beginning of vaccinations and the dominance of new variants of the virus.

Our main source of epidemiological data is the repository maintained by John Hopkins University, which
includes national counts for most countries and subnational counts for Australia, Canada, China, and the
USA. We complement these data with several other sources of subnational counts of confirmed infections
and deaths. In total we use subnational data for 33 countries and national data for 130 countries, which
provides us with 4564 spatial units of observation (see SI section 1 for visualisations of the geographical and
temporal coverage of the dataset).

Daily mobility data is obtained from Google’s Community Mobility Report (Google 2020). We conduct a
principal component analysis to reduce dimensionality and use the first principal component of the mobility
categories unless stated otherwise. Data on governance indicators come from the GovData360 compendium
which contains 33 datasets with worldwide coverage and covering time spans of more than 10 years (WBG
2020).

Weather data is obtained as ERA5 reanalysis provided by the European Centre for Medium-Range
Weather Forecasts (Hoffmann et al 2019). The data consists of weather variables on a regular grid with a
horizontal resolution of 0.25° latitude by 0.25° longitude.

2.3. Synthetic infectious population

In our dataset confirmed infections of COVID-19 are recorded as cumulative confirmed cases C; reported up
to a specific date t. For the panel regression we use the disease growth rate as the dependent variable, but the
growth rate in confirmed cases loses statistically useful variation after a region’s first wave of infections.
Instead, we use the SIR model as a theoretical framework (SI section 2) to calculate the synthetic infectious
population J; as:

Jig1=Cip1 — Ci+ (1 =7)],

with a constant recovery rate y. We take the value of v from Kucharski et al (2020) as 1/8.1 days. The J
variable is an estimate of the currently infected population (cumulative confirmed cases minus the recovered
population). Importantly, in the case of continued growth, the value of v does not affect the estimated
growth rate, and the estimated growth rate equals the growth rate of confirmed cases.
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2.4. Panel regression model

We estimate a panel regression model with several lags of weather and mobility data. Because weather and
mobility are strongly serially correlated, we use averages over three consecutive days. That is, we predict the
growth rate of infectious population on day t with average weather and mobility over the time period
[t—1,t—3], [t —4,t—6],.... In our main specification, the dependent variable is the growth rate of
synthetic infectious population calculated as the first-difference of the logarithm of the number of synthetic
cases. Furthermore, we include a set of indicator variables to control for possible unobserved confounders.
The full model can be written as:

4 L

V=3 XijuoiBir+ Via+ iy + Yiw + € (1)
=1 I=1

with y;, =log(Ji ;) —log(Ji —1) and J; , the total number of synthetic infectious population of unit i at date ¢,
a vector of coefficients 3; and a matrix of observations X ; ; (including lagged averages of weather and
mobility) for every weather variable indexed by j, and unit-by-day-of-week fixed effects v; 4,
date-by-spatial-superset” fixed effects &) ,» and unit-by-week fixed effects 7; ,,. We include these fixed effects
to absorb any time-invariant variation between locations and to flexibly account for trends over time.
Equation (1) implicitly includes intercepts. For example, the unit-by-day-of-week fixed effects can be
interpreted as implicitly including unit-specific intercepts. The instantaneous effect is excluded (i.e. time lag
I=0) because we assume that in 2020 it took at least one day (or night) for a detected case to be reported and
hence to appear in our reported cases. Errors €;; are clustered by the unit of observation to account for
heteroskedasticity and serial correlation.

In order to reduce the non-stationarity of our dependent and explanatory variable, we estimate a
first-differenced version of this model, which also reduces multicollinearity below critical thresholds
(SI section 3.1).

We also use the estimated coefficients of the panel regression model to illustrate the effect of a persistent
change of temperature AT on the number of daily confirmed cases. To do so, we assume a constant
infectious population J; = Jo = 1 in the counterfactual scenario and set all coefficients except the coefficient
for temperature to zero:

L
Jes1 =Jeexp | > BAT . (2)

=0

We then calculate the number of confirmed cases as:

Cor1=CH+ 1 —L(1—7), (3)

using the definition of synthetic infectious population introduced above.

2.5. SEIR model

The SEIR model divides the population of each spatial unit into a susceptible population (S;), stages 1 and 2
exposed populations (E;; and Ey;), stages 1 and 2 infectious populations I;; and I;, and a removed
population. In this context, the attribute exposed describes an individual that has been infected by another
individual, but is not yet infectious. Initially, S,—y = N, the population of the spatial unit. The newly exposed
cases (entering stage 1 of exposure) on day ¢ is calculated as:

X; = exp (logBtA + X1,tmod7 + ¥ - Wz71)5r(11,t71 +5,:1)/N,

where 3, is a smoothly varying underlying transmission rate, x4 is a day-of-week effect, and 1) is a vector of
weather coefficients, and w; is a vector of weather values demeaned by spatial unit and scaled to a unit
variance globally. The underlying observation rate captures unexplained shifts in behaviour and policy not
driven by weather. The transition rate of populations from exposed to infectious is o, the inverse of the
incubation period, and the transition rate from infectious to removed is -, the inverse of the infectious
period.

4 In the case of a subnational observation, e.g. a city or a region, the spatial superset is the corresponding country. In case of a country,
the superset is the world.
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As individuals move from stage 1 to stage 2 of exposure, they also become ‘reportable’, and transition out
of the reportable classification at a rate «, the inverse of the pre-testing period. The portion of reportable
people who are tested is the observation rate,

w = exp (log@i—1 + X2,mod 7 + @ - Wi—1),

where &, is a smoothly varying underlying observation rate, capturing unexplained shifts in under-reporting.
The tested population is ultimately reported as confirmed cases at a rate of 6, the inverse of the reporting
delay.

We fit the model using the computational Bayesian MCMC system Stan (Gelman ef al 2015), in two
stages. The model above is calibrated to each spatial unit independently, producing an initial estimate of the
parameters. We then apply a Bayesian hierarchical model to meta-analyse these parameter values within each
country.

3. Results

3.1. Global effects of weather on COVID spread

Exploratory analysis with our panel regression model suggests that the effect of weather can be estimated well
using a model with four meteorological variables (SI section 3): air temperature, thermal comfort as
measured by the universal Thermal Climate Index (UTCI, which accounts for temperature, humidity, and
clothing choices adapted to weather), solar radiation, and precipitation. We also test models that include
alternative measures of humidity, but find that collinearity between temperature and humidity prevents
reliable identification of their individual effects (SI section 3.2).

We find statistically significant effects of weather (figure 2) on the growth of infectious population. These
effects of weather on disease growth are approximately linear in the level of the weather variables except for
temperature (SI section 3.4). For temperature, disease growth is lowest at intermediate levels. We estimate
models with 5 lags (15 days), 10 lags (30 days), and 20 lags (60 days). The estimated cumulative effects tend
to increase in magnitude as we add lags to the model (see also SI section 3.3). Simulations with our SEIR
model suggest that these long delays between a weather shock and its effect on the growth of confirmed cases
can be explained with the dynamics around testing (see below). Indeed, we find very similar temporal
structures of the response to a weather shock once we add testing to the model.

For temperature, the cumulative effect over the first 15 days increases slightly if we add additional lags (SI
figure 13), which we attribute to the relative persistence of this variable. Without the additional lags, the
results are more conservative. We hence focus on the effect over the first 15 days, as suggested also by previous
work on the effect of weather on COVID-19 (Carleton et al 2020). Further below, we examine the temporal
structure of the response to changes in weather in more detail using simulations with our SEIR model.

Precipitation has the largest and most statistically significant cumulative effect over 15 days. Cumulative
over 15 days an increase of temperature, UTCI, solar radiation, and precipitation by one unit (K, index point,
W m~2, mm d~!) changes the day-to-day growth rate of the infectious population by —0.24 [—0.0075,
0.0027] (point estimate and 95% CI), —0.13 [—0.0032, 0.0006], +0.01 [—0.0002, 0.0005], and —0.4
[—0.0063, —0.0017] percentage points, respectively.

These effects may appear small, but they accumulate over time if weather changes persistent. This can
result in large changes of the number of confirmed cases. For example, if temperature is lower by 5 °C over
90 days relative to a counterfactual scenario, at the end of the period the number of daily confirmed cases is
almost twice as large (190%) as the number in the counterfactual.

3.2. Distinct transmission and detection channels

We find that weather on a given day has a significant effect on disease growth on the immediately following 3
days, as well as growth rates up to at least 2 months into the future. The existence of both immediate and
long-lasting effects in figure 2 has implications for the transmission and detection channels. If weather only
affected transmission, its effect would not emerge until the second lag (days 4—6), while conversely effects on
detection should be more immediate.

To study these channels further, we incorporate the above four weather variables into an SEIR model. In
the calibrated model, detection effects are found to occur within 3 days of a weather shock and show a
rebound effect as additional (reduced) detections reduce (increase) the pool for later detection. Transmission
effects last longer, due to feedback dynamics and have no rebound effect (see SI figure 21).

Temperature, UTCI, solar radiation, and precipitation are all estimated to have statistically significant but
small effects on detection (figure 3(a)). A shift in these three weather variables by one unit (K, index point,
W m~2, mm d~!) results in an instantaneous change in the detection rate of 0.068 [0.031-0.11]%, 0.029

5
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Figure 2. Effect of weather on the growth of infectious population. (a) The cumulative effect of an increase of one standard
deviation of four weather variables (air temperate (t2m), thermal comfort (utci), solar radiation (ssrd), precipitation (tp)) on the
growth of infectious population for models over 15, 30, and 60 days. (b) The same as (a), but showing individual lagged
coefficients for the model with 15 days, where the coefficient on delay T describes the effect of weather T — 1 to T + 1 days before
the observed change in growth.
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Figure 3. Distinct effects for transmission and detection. (a) The marginal effect of a 1 standard deviation change in each weather
variable, in terms of log point change in transmission and detection rates. Panel regression coefficients are taken from the 15 day
model, with 95% confidence intervals shown. The displayed regression coefficients are identical across transmission and detection
panels, since the regression model is based on the growth rate of reported cases and cannot distinguish these effects. ‘SEIR global’
estimates show the mean, 50% credible interval, and 95% credible interval for the global-level hyper-parameter of the SEIR
model. ‘SEIR countries’ shows the distribution over country-level mean estimates. (b) The difference in RO attributable to
weather, between the hottest month and the coldest month for each region, using country-level parameters.

[0.0071-0.051]%, —0.011 [—0.02——0.0025]%, and —0.084 [—0.16——0.00 098] %, respectively. Temperature
and solar radiation also affect transmission, with an increase by one unit resulting in an instantaneous
change in the transmission rate of —0.22 [—0.27-—0.16]% and —0.025 [—0.033——0.018]%. While these
values are not equivalent to the estimates of the panel regression, as they reflect changes in underlying rate
parameters, the signs of these effects are consistent with the 15 day panel results.

There is considerable variation in the estimated effects across countries. The interquartile range across
countries of the estimated effect of a 1 K change in daily temperature on transmission rates is —0.039% to
0.0055%. Figure 3(b) combines this variation with weather variation to describe total seasonal changes in RO.
To summarize the magnitude of the effect of weather on local epidemiological dynamics, we calculate the
variation in transmission rates over time attributable only to weather. On average, the standard deviation of
weather-driven variation in transmission is 4.9% of the mean transmission rate, with a 95% interval across
countries from 1.7% to 9.6% (SI figure 22).

3.2.1. Mechanisms connecting weather with disease transmission

We use our estimated coefficients of the panel regression model and the SEIR model and conduct statistical
tests to compare the importance of individual channels (figure 4). By comparing model skill with and
without weather, we find significant effects of weather on both transmission and detection. These effects do

6
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Figure 4. Synthesis of the various channels through which weather affect disease dynamics. The arrows thickness represents the
significance level (see SI table 8). The arrows pointing from the Weather node describe the statistical significance of direct effects
of weather on mobility, growth in cases, mortality rate, and the transmission and detection parameters. The arrows from the
Climate and Governance nodes represent the statistical significance of factors intended to explain the heterogeneity in
transmission, detection, and mortality effects in the SEIR model.
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Figure 5. Estimates of the variance explained by various components. Variance is described for observation region area,
population density, average climate (represented as mean values of the linear and quadratic terms for each weather variable),
country-level income (included as log GDP per capita), country-level governance effectiveness (Kaufmann et al 2011), and all
other country-level variation. The analysis is performed on the direct estimates of each parameter and on the rank of each
parameter across the globe.

not reflect changes in mobility: while we do find statistically significant support for an effect of weather on
mobility, we do not find corresponding evidence for an effect of mobility on reported cases.

The SEIR model allows us to explore the geographical heterogeneity of the different channels.
Specifically, we focus on how climate and governance moderate the effect of weather on epidemiological
dynamics (see figure 5. The heterogeneity in weather effects can be partly explained by adaptation to annual
climate (up to 10% of the variation in weather effects), income levels and governance (up to 5% each). The
remaining variation is idiosyncratic to each country or region. Climate is a strong explanatory factor for
several other model parameters, with the strongest effect on reporting delays (pre-testing period and
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Figure 6. The effect of weather variation on COVID-19 reported cases. (a) For each selected city, arrayed across representative
latitudes, the difference in simulated cumulative cases including weather variation is compared to the simulated cases under
constant annual average weather. The values are reported as the percentage change from the end-of-year cases, with the axes
labelled on right (equally spaced, with one degree of latitude used to depict 1% change). (b) The distribution of the global
population according to the largest change in cases during 2020 due to weather variation. (c) As in (b), but for reported deaths.

Change in the absence of weather variation

pre-reporting period), explaining 15%—-20% of their global heterogeneity, although the majority of the
variance in these parameters is unexplained by climate, governance, or income.

We find that climate significantly moderates the effect of weather on detection (p < 0.05) but not on
transmission. This could point to differences between the effect of weather on transmission and detection,
with detection benefitting more from being modelled as a non-linear function of weather than transmission.
Regarding governance, we find highly significant moderation of both detection and transmission (p < 0.001).

3.2.2. Improvements in the predictiveness of disease dynamics

While the instantaneous effects of weather on transmission are small, the epidemiological process includes a
strong positive feedback loop which compounds them. As shown in figure 6 for cities selected across a range
of latitudes, weather can result in both increases and decreases of infections relative to a counter-factual in
which weather is kept constant. These effects occur in both tropical and temperate and in both rich and poor
countries. Some cities show a seasonal cycle (New York, Islamabad, Mexico City, Nairobi), while others show
little differences between the modelled dynamic and the counterfactual (Reykyavik, Bangkok, Cape Town).
The largest change is shown in Berlin, where cases are estimated to be 78% less due to weather. This kind of
‘run-away’ dynamic could reflect dynamic policy responses, which occur out-of-sync in the counterfactual
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simulation. The total effect of weather on confirmed cases is further complicated by the timing of chance
co-occurrence between weather changes and pandemic waves and lock-downs. On average, weather variation
is projected to have adjusted peak case numbers by 10%, while 10% of the global population experienced
increases greater than 20%.

The inclusion of weather data can also improve estimates of key epidemiological parameters, as models
that assume no weather variation misattribute this variation to other sources. We calibrate a version of our
SEIR model without weather variables and compare the estimates to our main model (SI 4.6). We find that
the detection rate of our main model is about 12% lower than the estimated parameter in the model without
weather, with the underlying reporting parameter 18 log points lower. This implies that considerably more
people may have been infected with COVID-19 than prior estimates suggest. The gradual adjustment rate,
which allows the underlying transmission rate to adjust over time to account for changes in policy and
behavior, is also considerably lower, reflecting the tendency to misattribute the variation due to weather to
policy changes.

4. Discussion

As the COVID-19 pandemic evolves from rapid outbreaks to cycles potentially adjusted by seasonality
(Charters and Heitman 2021), there is a need for comprehensive models to reliably inform health policy with
scenario analysis and predictions. This endemic scenario indicates that the future evolution of the virus will
depend on many unpredictable factors such as the emergence of new variants (Phillips 2021, Sonabend et al
2021). In contrast, its seasonal cycle due to weather variation may be comparatively predictable (Paraskevis
et al 2021). As susceptibility to the disease falls, the role of environmental factors is expected to increase, in a
way similar to influenza (Carlson et al 2020, Moriyama et al 2020, Kronfeld-Schor et al 2021).

In our study, random variation in weather provides a natural experiment to identify the effect of weather
on infectious population and confirmed cases. The empirical results of our panel regression model show that
weather has statistically and epidemiologically significant effects on the spread of COVID. While the
instantaneous effect of a day with unusual weather is small, our results suggest that seasonal shifts can be
important drivers of the number of infected individuals. We then use an SEIR model to isolate major
channels of these effects. Our results suggest that weather influences both transmission and detection, which
has important implication of the interpretation of the results of previous observational studies (e.g. Menebo
2020, Runkle et al 2020, Tosepu et al 2020) as the response of detection to weather can confound the
observed effect of weather on reported cases.

We find that higher temperatures and levels of solar radiation limit the spread of COVID-19. This
association with temperature conforms to other recent results (Ganslmeier et al 2021), although considerable
disagreement exists on the temporal dynamics, non-linearity, and universality of weather effects (Yao et al
2020, Islam et al 2021, Sera et al 2021). We show that the effects of a weather shock continue to build over
months, suggesting that current systems do not react to counter-balance these effects. Modest variations in
RO can lead to considerable shifts in cases, deaths, and strains on hospital facilities.

Attributing changes in the dynamic of the disease to fluctuations or gradual changes in weather is a
challenge for statistical analysis. Our results suggest that statistical attribution is difficult also because of long
time delays between a weather shock and the effect on the growth rate of confirmed cases. With simulations
with the SEIR model we can attribute such delays, which our analysis suggests can be up to several weeks
long, to the dynamics around testing and reporting of cases.

The COVID-19 pandemic has been influenced by weather variation across the globe. We also find that
there is considerable heterogeneity in the effects of weather, driven both by differences in the strength of the
seasonal cycle and the underlying sensitivity of transmission to weather. Furthermore, regional differences in
transmission sensitivity are partly explained by strength of governance and climate adaptation, but much of
the variation is idiosyncratic to each country. Our results therefore also suggest that global average estimates
of both the effect of weather and other epidemiological parameters can be misleading, highlighting the
importance of targeted, contextual policies.

Our results can be used to improve the timing of targeted interventions. A weather shock today will have
observable effects for 1 (temperature, rainfall) to 2 (thermal comfort, solar radiation) months. Accounting
for the effects of weather variation on detection and transmission can help explain shifts in RO and inform
expectations about future case loads.

Our results come with some important caveats. First, the data on COVID cases and deaths is incomplete
and suffers from several limitations. Most notably, our data has subnational coverage for only a few countries
and not for all countries we have data for all months of 2020, which limits the representativeness of our
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results for specific geographies and time periods. Furthermore, our results for countries with only national
data should be interpreted with caution. Second, we have not included the effect of vaccinations or variants
in our model since our data ends with the 2020 calendar year. The combined effect of new variants, new
policies, and new immune system reactions since 2020 could significantly affect both the magnitude of
weather effects and the contribution of different weather variables. Third, we do not account for different
demographic groups, occupations, or other risk factors. Fourth, we are describing the effect of weather on
reported cases, which include both false positive results and considerable missing data. Our estimate of the
effect of weather on detection encompasses all effects that weather has on the reliability of COVID data
(Cohen et al 2020).

Data availability statement

All code for reproduction is available at https://github.com/openmodels/coronaclimate. Input weather and
collated records data, and estimated model outputs are available at https://doi.org/10.5281/zenodo.7262562.
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