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Abstract

For governments procuring innovation, one choice is whether to specify desired
products (a “Conventional” approach) or allow firms to suggest ideas (an “Open” ap-
proach). Using a U.S. Air Force R&D grant program, where Open and Conventional
competitions were held simultaneously, we find that Open awards increase both com-
mercial innovation and technology adoption by the military. In contrast, Conventional
awards have no positive effects on new technology, but do create more program lock-in.
We present evidence that openness matters independently from inducing differential
selection, for example of less well-established firms. These results suggest benefits from
open approaches to innovation procurement.
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All material funding of any scale is derived via the requirements process; there are

people in the military who take in reports, they write requirements, and then a

program is formulated around those requirements. I’m reminded of the old saying

from Henry Ford: “If I asked people what they wanted they would say faster horses,”

vs. the entrepreneur who says, “Let me figure out what the best solution to your

problem is.”

– Doug Beck, Director of the Defense Innovation Unit1

1 Introduction

Amid concern about declining productivity growth, the role of innovation policy has become

ever more important (Decker et al. 2016, Syverson 2017, Goolsbee and Jones 2022). Although

the economics literature has paid much attention to the government’s role as a major funder of

R&D, there is much less study of how the public sector should design innovation procurement.

A key decision is whether to take a centralized approach where the desired innovation is tightly

specified or to take a more open, decentralized approach where applicants are given leeway to

suggest solutions. There are trade-offs. The open approach may result in too many suggestions

that are not useful to the funder, whereas the centralized approach may work poorly if there

is uncertainty about what opportunities exist and may result in insularity if a small group of

firms specializes in the specified projects.

We study these trade-offs in the context of a reform that took place in the Small Business

Innovation Research (SBIR) program at the U.S. Air Force. The “Conventional” approach

to this small business R&D grant program has been to hold competitions with highly specific

topics such as “Affordable, Durable, Electrically Conductive Coating or Material Solution for

Silver Paint Replacement on Advanced Aircraft.” After 2018, the Air Force also included an

“Open” competition which ran alongside the Conventional model, where firms could propose

developing any technology that they thought the Air Force might need.

Open was launched in response to a growing concern that amid consolidation in the tradi-

tional defense industrial base, American military innovation was in decline. We document that

this concern appears to be empirically justified. The Open reform represents one important

part of a broader strategy shift that has taken place since 2015, in which the Department of

1Quoted March, 2024 (a16z Podcast, 2024).
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Defense’s (DoD) innovation strategy now centers squarely around encouraging younger and

smaller firms to enter the defense industrial base.

The Air Force’s Open reform has proved not to be idiosyncratic; instead, it has become

an exemplar for similar programs across and beyond the DoD. By the end of 2022, among the

11 agencies that participate in SBIR, seven had Open topics, and at those agencies the Open

topics composed on average 40% of all awards between 2019 and 2021, totalling $4.1 billion

in Open topic awards. The Air Force is pursuing an 80%-20% budgetary split between Open

and Conventional (OSD, 2021). In 2022, Congress legislated that every part of the DoD must

conduct Open SBIR solicitations. Outside the SBIR, governments around the world, including

in the EU, UK, and other U.S. agencies such as DARPA, the NIH, and DoE, have sourced

innovative ideas from firms via open solicitations.2

To evaluate the Air Force’s Open program relative to the Conventional one, we use rich

administrative data between 2003 and 2019 on applications and evaluation scores to assess

the causal impact of winning an award on performance outcomes through early 2023. The

data include 21,365 proposals from 6,701 unique firms. We focus on outcomes identified as

the goals of DoD’s SBIR program historically, and that also form the agenda of the recent

legislation mandating Open topics. First, to measure the transition of commercial technology

into the DoD, we consider the firm’s subsequent non-SBIR DoD contracts. Second, to measure

expansion of the small business nontraditional industrial base and commercialization derived

from DoD investment, we use venture capital investment (VC) and patenting (both counts

and quality). This reflects DoD’s increasing interest in pursuing “dual-use” technologies that

are employed in both the defense and private sectors.

We identify the causal effects of winning with a sharp regression discontinuity design (RDD)

that compares winning and losing applicants around a cutoff for the award, estimating effects

for Open and Conventional in the same model in order to assess statistical differences between

the two. We focus on a sample of 2,283 firms that applied during the 2017-19 period when

Open and Conventional were run simultaneously and that had not previously won an SBIR

award, which provides a more homogeneous sample.3 Although the programs are not identical,

comparing them offers a first step towards assessing the impacts of bottom-up innovation pro-

2For example, the largest EU small business innovation funding program, the Horizon SME Instrument,
started using open topics in 2018 (EU, 2020). Other examples include the U.K.’s Defense and Security
Accelerator Open Call for Innovation, the U.S. Department of Energy’s ARPA-E (ARPA-E 2020), and the
National Institutes of Health, which funds both “investigator-initiated competitions,” similar to Open, as
well as more specific “requests for applications,” similar to Conventional (Myers 2020).

3We show that our results are robust to using all applicants and competitions as far back as 2003.
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curement. Our research design exploits the facts that (a) the review and selection process was

the same across the Open and Conventional programs; and (b) the RDD can be implemented

using the rank that determines the award decision as a running variable. This ranking is

constructed by the forced ordering of independent scores from three evaluators. The cutoff is

independent of the evaluation process, making the manipulation of any firm around the cutoff

extremely unlikely.4

Our main result is that winning an Open award significantly increases the measures of dual-

use commercialization. In our baseline model, we show that winning an Open award increases

the chances of the military adopting the new technology via non-SBIR DoD contracts by 11.4

pp (percentage points), 69% of the sample mean. It increases the probability of subsequent VC

investment by 12 pp (178% of the mean). Finally, it increases the chance of having a patent

by 8.9 pp and a high-originality patent by 7 pp (79% and 194% of their respective means).

By contrast, winning a Conventional award has no positive effects on any of these outcomes.

Furthermore, there were no causal impacts of winning a Conventional award before the Open

program was introduced, so it is not the case that Conventional projects require a longer time

horizon or were crowded out by Open ones. Where Conventional does have an effect is on the

chances of winning a future SBIR award of operation, while there is no effect on this outcome

in the Open program, at least in its first six years. This is considered an undesirable feature of

the Conventional program from a policymaker perspective, as it creates lock-in and insularity.

An example of a new entrant to the defense industrial base which came out of the Open

program is Anduril, a VC-backed startup founded in 2017 that builds software and hardware

for high-tech military applications. Anduril’s first contract with the U.S. government was an

Air Force Open SBIR award in 2019. It went on to obtain at least $756 million in contracts from

the Navy, Special Operations Command, and the Air Force through 2023. In 2024, Anduril

was among five firms competing to develop collaborative combat aircraft, a“large-build” drone

aircraft program at the Air Force worth $6 billon (Easley, 2024; Cameron, 2024). Anduril was

selected as one of two companies to go forward with manufacturing, beating out the traditional

prime defense contractors such as Boeing and Lockheed Martin (AF, 2024).

We find that the Open program reached new types of firms like Anduril, which was one

policymaker objective. Compared to firms applying to Conventional topics, Open topic appli-

4We document a smooth density around the cutoff and continuity in baseline covariates. One downside of
RDD is that the results are necessarily local. However, in our case, because the results are generally similar
when we use the whole sample or a narrow bandwidth, and with or without rank controls, they seem likely
to apply more broadly.
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cants are younger, less likely to have previous defense contracts, and more likely to be located

in high-tech entrepreneurial hubs like Silicon Valley. Although reaching new firms was one aim

of the reform, it raises the question of whether Open was more successful due to this kind of

selection. This would limit the implications of our results, because in many settings it is infea-

sible to alter applicant composition. In practice, we do not find that Open’s differential impact

depends on firm lifecycle factors. Specifically, our results are not driven by the subsamples of

younger or smaller firms.

In addition, we use three complementary research designs to show that the positive effects

of openness go beyond inducing a different composition of applicant firms. First, we control

for lifecycle covariates and narrow technology classes. Second, we characterize the degree of

specificity for each topic using a machine learning algorithm to classify application abstract

texts. We show that when a Conventional topic is less specific—and thus closer to the Open

program’s approach—winning an award in that topic does increase patent-based innovation

measures. Third, we find positive effects of Open even among the firms that previously applied

to the Conventional program. All three designs balance the characteristics of applicant firms

in different ways, but all three imply that the success of openness is in part due to the way it

incentivizes greater innovation from broadly the same pool of firms.

Why does Open work so well? Belenzon and Cioaca (2021) offer a useful starting point

for thinking about this. They point out that government R&D contracts implicitly promise

potential future public demand. DoD SBIR awards are R&D contracts with such an implicit

potential for subsequent downstream procurement, unlike the R&D grants studied in Howell

(2017) and elsewhere. Belenzon and Cioaca (2021) show that R&D contracts crowd-in private

R&D investment due to the potential for noncompetitive downstream procurement. Our evi-

dence indicates that the Open program allows firms to bring new technologies to the defense

market that are potentially useful to DoD but, crucially, about which DoD was not previously

aware (or was unaware of how they could be useful). This leads them to invest more in in-

novation, measured both with patents and VC. Startups with a successful Open Phase 1 can

bring evidence to VCs that large defense customers are interested in their commercially-driven

development efforts, which appears to improve their odds of raising funds. In other words,

the Open program seems to work in part because it provides firms with an avenue to identify

technological opportunities about which the government is not yet fully aware but that can

represent an entry point to much larger public sector contracts. The dual-use nature of the

Open technologies, where firms are encouraged to re-purpose something they are working on
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for private markets for the defense market, is central to this mechanism.

The U.S. DoD is the largest single investor in R&D in the world and comprises about 60%

of total U.S. federal government R&D (CRS 2018). DoD has historically been an important

financier and early customer for technology, both transformational and incremental (Mowery

and Rosenberg 1991, Mazzucato and Semieniuk 2017, Gross and Sampat 2020). Its investments

often have dual-use properties, generating opportunities for large private sector spillovers.

Contrary to popular belief, small firms make up a substantial part of DoD procurement in

general, and R&D in particular. This is often disguised by the large amount of defense sub-

contacting. Small firms constitute about a third of all DoD R&D dollars spent. Even within

“large build” programs such as Lockheed Martin’s F35, about a quarter of contract value goes

to smaller firms (see Appendix B for more details).

Our paper joins a small literature on economic dimensions of defense R&D. Defense is

unique because the buyer is a monopsonistic government agency providing a public good. This

implies a narrow market, but one with potentially high risk tolerance and—particularly in the

U.S.—immense buying power in the event of success. The defense setting enables us to study

the government as a customer rather than a regulator or financier. While there is extensive

literature on the latter two roles (e.g. Jaffe and Palmer 1997, Bloom et al. 2002, Denes et

al. 2020), the former is quantitatively important in the U.S. and even more so in many other

countries. The literature has also used military spending as an exogenous shock to demand

(Ramey 2011, Barro and Redlick 2011, Nakamura and Steinsson 2014), has studied the the

crowd-in effects of defense R&D on private R&D (Lichtenberg 1984; 1988; 1995, Middleton et

al. 2006, Draca 2013, Moretti et al. 2020), and finally has studied competition in procurement,

including Bhattacharya (2021) on the Navy’s SBIR program.

Our primary contribution is to offer the first study of top-down vs. bottom-up mechanisms

for innovation procurement. We show that decentralization and openness are relevant for

public R&D procurement. This joins work on how to motivate or procure innovation, such

as Manso (2011), Azoulay et al. (2011), Nanda et al. (2014), Halac et al. (2017), Krieger et

al. (2018) and Che et al. (2021). It is related to the large empirical literature on innovation

subsidies, which includes Goolsbee (1998), Atkeson and Burstein (2019), Bloom et al. (2019),

Pless (2019), Rathje and Katila (2020), and Akcigit et al. (2021). Work specifically on direct

R&D grants or contracts includes Lach (2002), Jacob and Lefgren (2011), and Azoulay et

al. (2019), with the SBIR program receiving particular attention (Lerner, 1999; Wallsten,

2000; Howell, 2017; Lanahan and Feldman, 2018). Santoleri et al. (2022) assess the impact
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of European R&D grants and find strong positive effects on investment and patenting, which

they show are driven by a funding mechanism rather than certification.

Open innovation connects to a literature about corporate innovation, the boundary of the

firm, and decentralization of decisions between principals and agents (Mowery, 1983; Cohen

et al., 1990; Aghion and Tirole, 1997; Gibbons et al., 2013). Settings where decentralization

likely has greater benefits have more uncertainty, are closer to the innovation frontier, and

face more information asymmetry (Bloom et al., 2010; Howell, 2024). R&D is an example of

this, especially in the frontier sectors relevant for defense. Chesbrough (2003) introduced the

idea of “open innovation” in the sense that large corporations were increasingly losing ideas to

startups but also acquiring ideas from them. Closely related to open innovation procurement is

the crowdsourcing of ideas or solutions to problems, which has pursued by institutions ranging

from Apple to LEGO to NASA (Tushman et al., 2012; Lakhani et al., 2013).5

One theme of this literature is that open innovation is better suited to tasks that are more

modular and in more widespread use (also see Baldwin and Von Hippel (2011)). Chesbrough

(2003) argues that faster product development cycles, foreign competition, and more mobile

skilled workers pave the way for a more open innovation system. These insights have parallels

in the defense context, where the frontier of military technology has shifted to some degree from

integrated, highly capital intensive and defense-specific platforms—such as nuclear submarines

or fighter jets—to technologies with strong civilian innovation ecosystems, lower barriers to

entry, and more modular architectures. For example, in discussing the new replacement for

the Bradley tank, an infantry fighting vehicle, Army Lt. Gen Ross Coffman noted that:

“A big difference will be its so-called open-systems architecture, in which it is built

in a modular way so that its software and hardware, from guns to engines, are easy

to swap out and so upgrade” (MacDonald and Sivorka, 2024).

Open innovation may have been successful in the Air Force SBIR program in part because

the organization increasingly needed technologies that are more widely used. Indeed, we

document larger relative effects of Open among firms in non-defense sectors. Establishing

general conditions for Open procurement to be successful is a fruitful avenue for future research.

The remainder of the paper is organized as follows. In Section 2 we provide institutional

context for the reform we study. In Sections 3 and 4 we describe the data and empirical

5There is also a large literature on open source innovation, which is distinct as it involves many people
working for free on a common project (Lakhani and Von Hippel, 2004; Lerner and Schankerman, 2013).
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strategy, respectively. The main results comparing the effects of the Open and Conventional

programs are in Section 5. We explore mechanisms for the larger effect of the Open program

in Section 6. Finally, supplementary and robustness tests are in Section 7.

2 Defense R&D Institutions and SBIR Reforms

Defense Policy Context. The addition of an Open program to the Air Force SBIR was

motivated by concerns among policymakers about declining innovativeness among prime de-

fense contractors as well as the SBIR program’s failure to generate useful technologies for

military and commercial purposes. As we could find no existing quantitative studies show-

ing that, in fact, defense innovation has declined, we describe the economic context for U.S.

military R&D and document innovation trends in Appendix A. The results of this exercise

reveal a dramatic consolidation among prime contractors in recent decades, accompanied by a

decline in innovation quality relative to the private sector (Figures A.1 and A.3 panel A). This

has occurred despite a substantial increase in prime contractors’ profits and assets (Figure A.5

panels C and D).

The prime contractors we study in Appendix A account for 30-40% of total defense contract

value across our sample period from 1976 to 2019. Outside of this subset, small firms have

long played a meaningful role in defense procurement. We document this in Appendix B.1.

We show that about a third of all DoD R&D dollars goes to smaller firms. The challenge

that DoD has identified is not that there are no small firms in the defense industrial base, but

rather that there has been a failure to bring in new firms with frontier technologies. These

stylized facts set the stage for the reform we study.

In response to these issues, a strategy shift has occurred over the past two decades in the

DoD, with a notable acceleration starting in 2015. Since 2015, DoD’s principal and explicit

innovation strategy has been to encourage new small businesses to enter the defense industrial

base (Kotila et al., 2022). This shift, which we describe in more detail in Appendix B.2,

represents an effort to go beyond the historical focus on small businesses towards a new focus

on innovative startups. For example, Secretary of Defense Ash Carter explained that:

“To invest in the most promising emerging technologies, the department needs the

creativity and innovation that comes from startups and small businesses. This is

particularly important, because startups are the leading edge of commercial inno-
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vation” (Pellerin, 2015).

The vehicles for the policy change are a series of new Defense Innovation Organizations (DIOs),

of which AFWERX is one.6 They aim to reduce barriers between defense field missions and

commercially focused companies that are not traditionally defense contractors. Among these

DIOs, more than 90% of innovation contracts are to small businesses.7

SBIR Context and Challenges. Congress first authorized the SBIR program in 1982 to

strengthen the U.S. high technology sector and support small firms. Today, the SBIR is among

the world’s largest and most influential small business R&D grant programs, spending $3.11

billion across 11 Federal agencies in 2018. Of this, the DoD accounted for $1.32 billion, and

the Air Force had the largest program among the military services. It is worth noting that

there are no classified (i.e. “secret”) SBIR projects. In being applied and not classified, SBIR

is representative of the vast majority of defense R&D. SBIR applicant firms are typically small

and high-tech, a firm type that is crucial to job creation and innovation, especially those that

receive VC backing.8

SBIR has two Phases. An initial, small Phase 1 award funds proof-of-concept work, after

which a firm may apply for a larger Phase 2 award to support later stage demonstration.9

SBIR at DoD funds applied R&D, as opposed to basic research. The SBIR is one of the only

ways that new firms enter the defense industrial base. Importantly for our study, the only

way for SBIR-funded technologies to be used within the DoD is via a subsequent non-SBIR

contract. The idea is that small contracts in the SBIR program can feed into the broader

defense industrial base when an SBIR awardee becomes a major contractor, as in the case of

Progeny or Qualcomm, or is acquired by a prime contractor (SBIR.gov 2011). Policymakers

have expressed concern about lock-in at the SBIR program, with repeat contracts awarded to

firms (so-called “SBIR mills”) that are interested neither in commercializing innovation nor

6The first was the Defense Innovation Unit (DIU) within the Office of the Secretary of Defense, established
in 2015. In the subsequent years, DoD added the Army Applications Lab, Naval X, AFWERX, SOFWERX
(part of the Special Operations Command), DEFENSEWERX, the National Security Innovation Network
(NSIN), the Army Venture Capital Initiative, and others.

7In part this is by construction since they primarily use SBIR to make direct awards. The figures are based
on the Federal Procurement Data System and conversations with DoD officials. These agencies’ spending
cannot be distinguished in the public contracts data.

8See Kortum and Lerner (2000), Foster et al. (2008), Haltiwanger et al. (2013), Arora et al. (2018), and
Howell et al. (2020).

9The Small Business Technology Transfer (STTR) program is an add-on to the SBIR program and requires
small businesses to collaborate with a research institution in the initial research phases. Our main findings
do not differ across SBIR and STTR, so we refer to them jointly as “SBIR.”
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in seeking scale in the defense market (Edwards, 2020). Since SBIR-funded technology has

no particular application without a subsequent contract, DoD wishes for SBIR to serve as a

stepping stone rather than a destination for contractors.

The concern about SBIR mills may be related to the decline in relative innovation that we

observe among winners in the Conventional SBIR program (Figure A.3 Panel B), paralleling the

decline among the prime contractors. Since firms must be small to participate, concentration

is not a primary concern in the SBIR. However, Figure A.2 panel A uses the Herfindahl-

Hirschman Index (HHI) to show that the DoD SBIR program has become more concentrated

over time, with more firms winning many awards in a single year.

This declining innovation and increasing lock-in at DoD may help to explain the difference

between our findings in the Conventional program and the strong positive effects of Department

of Energy (DoE) SBIR grants in Howell (2017). We show that the DoE SBIR program has a

much higher share of awardees who have not won in the past three years relative to DoD; for

example, in 2019, roughly 50% for DoE compared to 25% for DoD (Figure A.2 Panel B). The

greater lock-in at DoD might reflect the large size of DoD’s SBIR program and the many similar

types of R&D procurement contracts that DoD offers, which can be sustainably lucrative to a

small research firm. In Section 8 below, we also note that DoE topics are relatively more open

than those in the Conventional program we study.

SBIR Process at the Air Force. The Conventional and Open programs that we study

have a common administrative process. First, the Air Force issues a public solicitation for ap-

plications. The solicitation describes one or more “topics,” each of which represents a discrete

competition. Once applications are received, the evaluation process has three steps. In the first

step, ineligible applicants are disqualified. In the second step, multiple government evaluators

with expertise in the topic area independently evaluate the application. Evaluators produce

scores on three criteria: Technology, Team, and Commercialization.10 The commercialization

sub-score reflects the potential to sell any derived product or service within and outside the

government. Firms’ proposed cost is not a factor in the evaluation if the cost is below the

10The official description for the Conventional program of these criteria is: “(1) Technical Merit – The
soundness, technical merit, and innovation of the proposed approach and its incremental progress toward
topic or subtopic solution. (2) Qualifications of the Principal Investigator (and Team) – The qualifications
of the proposed principal/key investigators, supporting staff, and consultants. Qualifications include not
only the ability to perform the research and development but also the ability to commercialize the results.
(3) Potential for Commercial Application– The potential for commercial (Government or private sector)
application and the benefits expected to accrue from this commercialization.”

10



maximum amount identified in the solicitation; that is, firms are not more likely to win if they

submit a lower amount. This is different from an auction where firms compete on cost, which

is used elsewhere in DoD procurement.

The three sub-scores are summed, and the winners are those whose overall scores are above

a threshold determined by the amount of funding available. We will return to this point in

the empirical design in Section 4, but this process implies that treatment (award) is exogenous

to the running variable (score). While the overall score threshold is sometimes known to the

evaluator in advance, no single evaluator can manipulate a firm’s position around the cutoff

because each evaluator independently scores the proposal. In the final step, a contracting officer

awards the contract and administers the award. This step does not disqualify applicants based

on technical merit but does occasionally disqualify applicants for a business reason, such as

a cost that is found to be ineligible, or if the proposal is found unrelated to R&D. After the

awards are made, the winner identities are immediately public. The non-winner identities that

we use in this study are never public, and the scores are never released beyond the evaluation

team (i.e., no firms observe their own scores). After removing disqualified awardees, we obtain

data for a sharp regression discontinuity design within each topic.

Overall, the Open and Conventional programs have the same review process, metrics, and

selection mechanism. Indeed, sometimes the evaluators are the same Air Force Science and

Technology personnel. This makes them well-suited for a comparative evaluation.

SBIR Reforms: Open vs. Conventional. Conventional topics solicit highly specific

technologies. One example is: “Develop Capability to Measure the Health of High Impedance

Resistive Materials.” In contrast, Open topic solicitations contain no direction regarding

the technology that the applicant may propose.11 With an reference to seeking “unknown

unknowns” in the solicitation, Open topics are designed to let the private sector do the work

of identifying military applications for its technology. The firm’s objective is to demonstrate the

feasibility of developing a product or service with an Air Force partner interested in potentially

procuring the firm’s technology. The Phase 1 deliverable is a white paper or report describing

the outcomes of research. The idea behind Open is that if its approach is successful in this

context, it might be applied to the larger acquisition programs with the hope of garnering

interest in the defense market among the large tech firms. In Appendix C, we provide further

11The SBIR reforms have taken place within a new organization called Air Force Ventures. This is the
business division of AFWERX, an office that seeks to foster innovation within the Air Force. Conventional
topics are sourced primarily from the Air Force Research Laboratory (AFRL).
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details about the Open reform as well as additional examples of Conventional topics.

Open topics were first deployed in May 2018. In these and each subsequent year, there have

been three solicitations, each of which has many Conventional topics but only one Open topic.

All Open topics are the same; there are multiple topics because they are issued at different

points in time (i.e., in different solicitations). That is, there are three Open topics a year with

the same rubric. An applicant’s pool of competitors in an Open topic depends on when it

applies because scoring and ranking are within-topic. This creates a different distributional

structure in Open topics, as there are many more applicants but also far more winners. The

difference in topic structure should not bias the results towards favoring a stronger effect in

Open because we estimate the effect of winning within each program, and the cutoff point

for winning is lower in the score distribution for Open. We also show that the effects of the

program do not depend on the number or fraction of winners in any given competition.

The award amount for Phase 1 Open topics is about $50,000, while it is $150,000 for

Conventional. This should bias towards finding more positive effects in the Conventional

program. The Open program also has a shorter time frame, at 3 vs. 9 months. The Phase 2

awards of $300,000 to $2 million are intended to last 12-24 months and fund a prototype (we

focus on Phase 1; further details and analysis of Phase 2 is in Appendix F.1). In the later

Open topics, the Air Force sought to encourage Phase 1 winners to access outside funding from

private or government sources with a matching provision in Phase 2. We evaluate the impact

of match availability separately from openness in Appendix F.2.

Importance of the Open Program. The Air Force Open program represents a key

initial implementation of the broader policy pivot discussed above towards soliciting frontier

innovation from start-ups. Over time, this first Open program at DoD was replicated across

the department, at other U.S. government agencies, and beyond. The scope of Open topic

proliferation across U.S. agencies between 2019 and 2021 is summarized in Table E.1. For

example, 100% of NSF SBIR awards are made via Open topics. The overall share across all

agencies increased from 36% in 2019 to 46% in 2021 (GAO, 2023).

The perceived success of the Air Force Open program led Congress to legislate in 2022 that

every part of the DOD must conduct Open SBIR solicitations, with the Air Force version as

the model.12 Congress (2022) requires that each DoD component with an SBIR program have

12The assertion that the AFWERX Open program was the model is based on conversations with U.S.
Senate Committee on Small Business and Entrepreneurship staff, including Samantha Scoca.
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at least one Open topic per fiscal year, with the following four goals:

1. Increase the transition of commercial technology to DoD,

2. Expand the small business nontraditional industrial base,

3. Increase commercialization derived from DOD investments, and

4. Expand the ability for qualifying small business concerns to propose technology solutions

to meet DoD needs.

These Congressional policy aims correspond well with DoD’s stated goals and the outcome

measures we use in our study.

3 Data and Summary Statistics

This section summarizes our data sources, sample construction, and outcome variables. They

are described in detail in Appendix D. We begin with a dataset of applications and awards to

the Air Force SBIR program between 2003 and 2019. We observe complete evaluation data

between 2017 and 2019, and further evaluation data for Conventional topics in 2003-2007,

2015, and part of 2016 (the remaining years’ data were inadvertently destroyed in 2016). We

restrict the sample to the three years of 2017-2019 and to firms who have not won a previous

SBIR award, so that the relevant economic environment and defense procurement factors are

similar across the sample. As mentioned above, we focus on Phase 1. In this main analysis

sample, we observe proposals from 2,283 unique firms.

We collect outcome data through at least 37 months after the last award (through January

2023), providing sufficient time to observe effects. For all outcomes, we employ binary indi-

cators. The first outcome is technology adoption as measured by non-SBIR DoD contracts,

which we gather from the Federal Procurement Data System (FPDS). These represent success

in the sense that the research has led to a practical application for the military. The technology

in the subsequent, non-SBIR contract need not be the same as the one that was the subject of

the SBIR contract.13 What links them is the firm, not the technology. Since a key policy goal

13We cannot easily link these non-SBIR contracts to particular SBIR awards because summaries of the
contracts’ contents are not available. However, we can manually identify a number of examples. One from
the Open program is the firm Aevum, which designs drone-launched rockets in a former textile mill. After
winning a $50,000 Open Phase 1 award in July 2019, Aevum was awarded a $4.9 million Air Force launch
contract in September 2019. An example in the Conventional program is Ascendant Engineering Solutions.
After winning a $149,000 Conventional Phase 1 award in September 2016 to work on gimbals, Ascendant
Engineering Solutions was awarded a $7.5 million Air Force contract for its tactical gimbals in February
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was to bring new, innovative firms into the defense industrial base, the most important unit of

observation is the firm. Also, it is important to emphasize that there are no means for SBIR

technologies to “plug in” to the R&D apparatus or ultimately to impact operations without

a subsequent non-SBIR contract. Simply performing R&D and developing a prototype per se

within the confines of the SBIR program are not useful for the military unless these activities

lead to a non-SBIR contract. Therefore, this outcome is equivalent to technological adoption,

something that is often hard to observe in empirical studies.

The second outcome is VC investment. The Air Force leadership views commercial in-

novation as evidence of initial success, based on the idea that a strong U.S. industrial base

will ultimately enable strong defense, especially if its research has early-stage ties to DoD

(Williams 2020). From an economic perspective, VC is a useful proxy for high-growth innova-

tion potential (Lerner and Nanda 2020). Although VC-backed startups make up only 0.11%

of new firms, over 44% of public company R&D is performed by formerly VC-backed startups

(Puri and Zarutskie 2012, Gornall and Strebulaev 2015). We obtain VC deals mainly from

Pitchbook but also from from CB Insights, SDC VentureXpert, and Crunchbase.

The third outcome, patents, capture innovation with intent to commercialize. Patents are

especially useful for us because they are not subject to the same concern that VCs focus only on

young firms. Innovative firms wishing to protect new intellectual property generally consider

patenting, and patent-holding firms account for the lion’s share of private R&D spending

(Mezzanotti and Simcoe, 2023). We categorize patents as pre- or post-award depending on

their application date. A post-award patent is one applied for after the SBIR award date that

was ultimately granted by the USPTO.14 We also calculate patent citations and originality

(Jaffe and Trajtenberg 2002). A patent’s originality score is low if it cites previous patents in

a narrow set of technologies, and high if it cites previous patents in a wide range of fields.15

We split around the median originality and citation measures to construct indicators for high

originality and high citations.

The final outcome is all-agency SBIR awards (the results are similar using Air Force or

all-DoD SBIR awards). We obtain these from the Small Business Administration. We examine

whether winning one SBIR award causally increases the probability of winning more than one

2018. (A gimbal is a pivoting support that permits an object to rotate on a single axis.)
14Patenting involves some amount of disclosure, but all SBIR awardee technology abstracts are publicly

available, and no projects are classified. Therefore, secrecy orders on patent applications are unlikely to
affect our results.

15Originality for patent i is defined as 1 −
∑

j c
2
ij , where cij is the percentage of citations that patent i

makes that belong to patent class j.
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future SBIR awards, to assess lock-in to the SBIR program.

We make use of the text in proposal abstracts to assign proposals to technology clusters.

Employing a machine learning algorithm called “k-means clustering” (Forgy 1965, Bonhomme

and Manresa 2015), we classify each abstract based on its word embedding.16 Applications are

clustered into groups based on the similarity of the vectors (i.e. minimizing the total within-

cluster variance using their vector representation). We use a 25-cluster model to classify

proposals into granular technology classes. The top words in each cluster are listed in Table

E.14.17 Further details on this method are in Appendix D.3.

Table 1 contains descriptive statistics on applicant and competition characteristics for

Open and Conventional in the main analysis sample.18 Open applicant firms are younger than

Conventional ones (nine vs. twelve years old on average), although not significantly so. They

are also smaller (18 vs. 23 employees), although this difference is only significant at the 10%

level. Open applicants are more likely to be in on of the three VC hubs of San Francisco Bay,

greater Boston, and New York City.19 They are less likely to be in a county where there is an

Air Force base or to be owned by a women or minority, but are more likely to be owned by an

immigrant.

Looking at pre-award values in Table 1, Open applicants are more likely to have previous

VC financing, (9.7% vs. 2.3%) and to have patented (15.2% relative to 11.7%). However, Open

and Conventional applicants have similar originality and citations, with no statistical differ-

ences across the originality and citation outcomes. No firm has previous SBIR awards in this

analysis sample, because as noted we drop previous winners to generate a more homogeneous

(we relax this condition in extensions reported below).

Overall, the Open program seems to have attracted new types of firms into defense R&D

procurement, just as DoD policymakers wanted. In Section 6, we show that selection does not

explain our results and that there is an additional causal role for openness.

Table 1 also contains competition characteristics. As explained above, Open topics have

16The process essentially converts the text into vectors of numbers. Each application is represented by a
vector whose elements reflect the words used in the application.

17We also use a two-cluster model in a robustness test, which yields a clear dichotomy between software-
and hardware-based technologies. The word clouds of keywords for are in Figure E.2.

18This comparison using continuous outcome variables is in Table E.3. Table E.2 describes counts of
topics, firms, and proposals for all programs.

19To describe their geographic diversity, we map the location of applicants in Figure E.8, with larger
bubbles indicating more firms, and overlay the locations with VC activity. Some of the locations with high
applicant density are defense spending hubs such as Washington DC and Ohio, where the AFRL is located.
The same set of maps for awardees is in Figure E.9 and documents similar patterns.
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many more applicants and winners. While the number of applicants and share of winners is

different in Open, this stems from the fact that Open represents a single topic per solicitation

rather than the many specific topics in each solicitation for Conventional. The review process

is the same for Open and Conventional and we show below that the effect of winning does not

depend on the number of applicants or fraction of winners.

4 Empirical Design

We employ a regression discontinuity design (RDD) to assess the effect of winning in a Con-

ventional or Open topic. The RDD approximates the ideal experiment of randomly allocating

awards among applicants. The intuition is either a discontinuity at the cutoff (Hahn et al.

2001) or local randomization around the cutoff (Lee 2008). It is relevant in settings where

treatment assignment is based on an applicant’s location around a cutoff in a rating variable.

Our setting permits a sharp RDD because the running variable perfectly predicts award in all

topics in both Open and Conventional. This is shown for four representative topics in Figure

1; the probability of treatment jumps from zero to one at a cutoff.

A valid sharp RDD has four conditions (Lee and Lemieux 2010, Gelman and Imbens 2018).

First, the rating variable must be established before treatment is assigned (i.e., treatment

cannot cause the rating variable). This is the case in our setting, as evaluators score before

the award decision is made. Also, as mentioned above, the cutoff (i.e., threshold for winning)

is completely independent of the evaluation process and reflects budgets for the current SBIR

cycle. Second, treatment assignment must be based solely on the combination of the rating

variable and the cutoff. This is true for all the topics and, as mentioned above, is illustrated

in Figure 1. As the scores and the cutoff vary across topics, we normalize scores into a rank

around the cutoff, such that a rank of 1 is the lowest-scoring winner, and a rank of -1 is the

highest-scoring loser.

The third condition for a valid RDD is that the cutoff must be independent of the rating

variable. That is, the rating variable cannot be manipulated around the cutoff to ensure certain

applicants receive treatment. The most important test for manipulation, common to all RDD

settings, is to observe whether there is bunching around the cutoff. In Figure 2, we graph the

density of the rating variable around the cutoff within each program. There is no bunching,

consistent with no manipulation. The formal test also yields no evidence of manipulation,
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consistent with the figures (the p-value of the manipulation test is over 0.6 in both groups).

The second test is to assess the continuity of observable baseline covariates around the cutoff.

Figures E.3-E.6 show 11 baseline covariates, including all the outcome variables, observed at

the time of application. There are no discontinuities around the cutoff in any of the variables,

consistent with an absence of manipulation. In Table E.7 we formally confirm that there are

no significant differences around the cutoff among the baseline covariates.

There may be concern that evaluators could manipulate sub-scores based on an ex-ante

preference for which firms should win, potentially leading to scores that are not randomized

around the cutoff. An intended benefit of three independent evaluators for three sub-scores

is that this sort of manipulation is difficult. An individual evaluator cannot, in general, sys-

tematically sway applicants’ award status. To confirm this, we examine sub-score variation

within the topic. If the three sub-scores are usually correlated so that there is little variation

in sub-scores around the cutoff, it might be easier for an evaluator to nudge applicants below

or above the threshold. By contrast, if sub-scores exhibit substantial variation, such that often

a winning firm has at least one sub-score that is lower than a loser sub-score, and vice versa, it

will point to little scope for manipulation. Figure E.7 shows substantial variation in sub-scores

around the cutoff. The red bars to the right side of zero show that many unsuccessful appli-

cants (losers) have a sub-score that exceeds the lowest sub-score among winners. Similarly, the

blue bars to the left side of zero show that many winners have sub-scores that are lower than

the highest loser sub-score. Altogether, 81% of applicants have at least one sub-score that is

a “crossover.” This should make manipulation very unlikely. It is also worth noting that the

evaluators are Air Force government officials (military officers and civilians), and manipulation

would constitute a serious violation of acquisition rules.

The last condition for a valid RDD is to control for the rating variable in a well-specified

functional form. Our primary model includes all ranks with linear controls for rank on either

side of the cutoff. We use a triangular kernel to weight observations far from the cutoff less

than those close to the cutoff, following DiNardo and Tobias (2001). Specifically, we use the

formula KerneliT = 1− |RankiT |
maxj |RankiT |+(0.01) for application i in topic T .20 This kernel weighting

approach weakens the parallel trends assumption for awardees and non-awardees.

Our main estimation model is as follows:

20We add .01 so that the observations with the maximum absolute rank do not end up with a weight of
zero (which would cause them to drop out of the regression).
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Yi = α+ β1AwardiT + β2AwardiT ·OpenT (1)

+ γ1 [RankiT | RankiT > 0] + γ2 [RankiT | RankiT > 0] ·OpenT

+ γ3 [RankiT | RankiT < 0] + γ4 [RankiT | RankiT < 0] ·OpenT + δScoreiT +X′
iθ + αT + εiT .

Here, the dependent variable Yi is a post-award decision outcome such as DoD technology

adoption. We use ever-after outcomes, though the results are similar when restricting the

outcome variable to 12 or 24 months after the award decision. AwardiT is an indicator for

winning an award in topic T (we do not consider the award amount because it is co-linear

with winning). ScoreiT is the continuous score received by the applicant. This model includes

data from both Open and Conventional topics. OpenT is an indicator that takes a value of 1 if

the topic is Open, and zero if Conventional. The coefficients of interest are β1 which gives the

effect of winning in the Conventional program and and β2 which indicates whether the impact

of the Open program is statistically significantly different from the Conventional program.

We interact RankiT with OpenT on each side of the cutoff in case RankiT may represent

something different in the two types of competitions. The fixed effects for the topic (αT ) are

necessary for the RDD assumptions to hold, since rank and thus randomization conditional

on rank is defined within each topic. These fixed effects also control for the independent effect

of program type and the date of award. In some models, we include two sets of firm-level

controls X′
i. The first set are “Lifecycle” controls composed of the number of employees and

firm age at time of the application. The second set is a vector of 25 narrow technology fixed

effects based on natural language processing of application abstracts (described above). In

robustness checks we include a variety of additional controls.

Our primary models exclude applications after a firm’s first win, so that firms do not

appear more than once. But we also report results using all proposals, which dramatically

increases the sample but yields similar results. We show several further models in robustness

tests, including a narrow bandwidth around the cutoff. We cluster the errors, εiT by topic

(and also by firm in the extended models where firms can appear more than once). We also

conduct randomization inference tests following Cattaneo et al. (2015).
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5 Effects of the Open and Conventional Programs

This section describes the effects of winning Open and Conventional competitions on contract-

ing, investment, and innovation outcomes. We focus on binary indicators for success in each

domain for three reasons: (a) the outcome is zero for many firms; (b) the extensive margin is

more economically meaningful (for example, in the case of non-SBIR DoD contracts, we are

interested in entry into the defense industrial base and technology adoption); and (c) binary

outcomes makes the results easily interpretable and comparable. In Panel A of Table 2 we

report estimates of Equation 1 with no additional firm-level controls.

One goal of the SBIR reforms is to enable more firms to transition technologies out of the

SBIR program to operational programs of record. We therefore consider in column 1 the effect

of winning an award on an indicator for subsequent technology adoption in the form of non-

SBIR DoD contracts. In our baseline specification in panel A, winning a Conventional award

has an insignificant effect of negative 8.6 pp, suggesting that if anything, Conventional SBIR

awards crowd out other DoD contracts. In contrast, winning an Open award has an effect that

is significantly higher by 20 pp, implying an effect of Open of about 11.4 pp (= 0.200 - 0.086),

which is 69% of the overall sample mean.21 The confidence interval for this point estimate is

large, implying that we should have some caution in interpreting the magnitude. However,

we document below that the result is robust to a large variety of alternative specifications,

in which both the significance at the .05 level and the general magnitude are maintained.

Moreover, the linear effect of Open of 11.4 pp is significant at the 5% level (p-value 0.019).

Therefore, we are confident that the effect of Open is well above the effect for Conventional.

VC investment represents high-growth innovation potential and leads to spillovers, in ad-

dition to being a goal of the program. In column 2, we examine the effect of winning an award

on receiving any VC after the award decision.22 While winning a conventional award has no

effect, winning an Open award has an effect that is just over 12 pp larger, which is more than

the sample mean of 9.2%. This effect is also significantly different from the Conventional effect

at the 5% level.

We next turn to two patent-based outcomes as alternative measures of commercially-

oriented innovation. The first row of column 3 indicates a negative (and weakly statistically

significant) effect of winning a Conventional award on any subsequent patenting. To the degree

21Here and subsequently, the mean of the dependent variable is reported at the bottom of each panel.
22In unreported models, we find similar results using the level and log amount of VC funding.
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these firms are mostly focused on getting the next SBIR award, there is less reason to invest in

patents, which measure the intent to commercialize an invention. In contrast, winning an Open

award has a significantly larger effect than winning a Conventional award, suggesting an Open

effect of 8.9 pp which is 79% of the mean. The second patent outcome is originality. Winning

an Open award has a strong positive effect on producing an above-median originality patent

(defined among all the applicants in our sample) of 7 pp (194% of the mean), while winning

Conventional has no effect (column 4).23 These effects of Open on patenting are significantly

different from the Conventional effects at the 1% level.

Last, we consider the chances of subsequent SBIR contracts. The RDD helps us to over-

come the difficulty of separating state dependence (the causal impact of the lagged dependent

variable) from unobserved heterogeneity (e.g., if the best firms keep winning SBIR contracts).

The effect on this outcome is rather different than the previous columns. Column 5 of Table 2

shows that when we add the two coefficients, there is no effect of winning an Open award on

obtaining future SBIR contracts. In contrast, there is a positive effect of winning Conventional

awards on getting another SBIR award in the future, at roughly three times the mean. This

effect is only weakly significant, so it should be interpreted with caution, but it suggests a

“lock-in” effect of the Conventional competitions, but not the Open ones.

We next report graphically the effects by rank around the cutoff within each program.

A rank of 1 indicates that the applicant had the lowest score among winners, while a rank

of -1 indicates that the applicant had the highest score among losers.24 For our measure of

technological adoption (DoD non-SBIR contracts), the visual results are in Figure 3. There is

a clear level shift upwards to the right of the cutoff in Open (Panel A) but not in Conventional

(Panel B). Figure 4 shows similarly shows that subsequent VC investment rises just to the right

of the cutoff for Open. By contrast, we see no relationship for Conventional topics in Panel

B. For the patenting metrics, we again see a similar pattern in Figures 5 and 6, where there

are positive effects for Open but none for Conventional. Finally, Figure 7 shows the impact

on future Air Force SBIR awards, which has a positive and significant effect for Conventional

wins, but nothing for Open.

In sum, the visual effects by rank confirm the results in Table 2, showing a discontinuity

23We do not use citations as an outcome for the 2017-19 analysis sample, since there is little time after
the awards for citations to accrue. Below we do document citation effects when we have a longer time series
from 2003 onwards in Table 5.

24The estimating model is the same as Equation 1 but restricted to a single program (and thus without
the interaction coefficients), with separate coefficients for each rank, (with ranks below -4 and above +4
collapsed into a single indicator) and without the additional X controls.
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around the cutoff. They further point to external validity beyond the region immediately

around the cutoff, since the results are fairly flat in rank on either side.

6 Does Selection Explain the Larger Effects of Open?

Our conclusions from Section 5 are clear. Winning an Open award increases the chances of

supplying the DoD with future technologies, obtaining subsequent VC funding, and successfully

increasing the number and originality of patenting. In contrast, the only effect of winning a

Conventional SBIR contract is to increase the firm’s chances of winning another SBIR contract

in the future. Note that the causal effects are separate from different base rates. For example,

even though Conventional applicants have higher base rates of patenting and DoD contracting

across both winners and losers, the absence of a causal effect means firms would have these

higher rates even if they had not won a Conventional award. Since we are using first-time

winners only, it is not the case that the overall program is important for these firms and there

is some average effect of having many SBIR awards that we fail to capture with the RDD.

This is important for whether the program produces new, useful innovations.

We now explore whether the success of Open is due to the composition of applicants or

whether Open is more effective even for observationally identical firms. This matters for policy,

both within the specific program we study and for considering the implications of our findings

in other settings. For example, if certain effects require particular types of firms to select in,

the policymaker might consider encouraging those firms to apply without changing the nature

of the program. We examine the role of selection using three methods. The first focuses on

the role of firm characteristics in our main sample. The second subdivides the Conventional

program into more and less “open” topics. The third examines firms that applied to both

programs and thus are by definition not selecting into only one or the other.

6.1 Selection on Firm Characteristics

Does the effect of winning an Open award depend on applicant composition? We focus on two

dimensions. The first is whether the results rely on firms that are less well-established and

at an earlier stage in their lifecycle selecting into Open. The second is whether firms working

on different technologies explains the differentially higher effect of Open. In our first test of

this hypothesis, we repeat the analysis in Table 2 Panel A but add controls to assess whether
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the different causal effects in Open could reflect correlations with certain firm or technology

characteristics. The first set of controls are firm age and firm size (the number of employees)

as of the application. The second set comprises 25 narrow technology fixed effects.

The results, in Panel B of Table 2, are very similar to those in Panel A, which is reassuring

for the validity of our empirical design, since firm-level controls should not affect causal RDD

estimates. In Panel C we continue to employ the controls but use all application data, creating a

larger sample in which firms may appear more than once and from any year since 2003 (instead

of 2017-19 only). We find results that are slightly smaller in magnitude, but more precisely

estimated. The implied effect of Open is very similar across Panels A-C except for in column

5, where using all proposals in Panel C we observe a smaller positive effect of Conventional

on winning future SBIR contracts. In Appendix Table E.11, we show that the results remain

similar using alternative quadratic or dummy controls for age and employment.

If the more positive effect of Open reflects attracting younger or less well-established firms,

then the effects should be larger within this group. We assess this possibility by splitting

the sample around median employment as a proxy for size, and median age as a proxy for

lifecycle position (these values are five employees and four years, respectively). We then re-

estimate our main model (Equation 1) within these subsamples. The results are in Table 3.

They indicate somewhat differential effects within different groups, and these vary across the

outcomes. However, it is notable that contrary to the lifecycle hypothesis, it is not young or

small firms that explain our main results in Table 2. For example, the effects on technological

adoption (DoD contracts) and high-originality patents are found within the sample of older

firms (columns 2 and 8). While these two results are highly significant, many coefficients are

imprecise in these sample splits.

We further disaggregate the results in Appendix Figures E.12 and E.13. Here, we split the

sample into narrower bins identified by the y-axis label. Each marker represents the coefficient

on AwardiT ·OpenT from a single regression estimated within the identified sample. While we

lose precision (which is to be expected), they tell us exactly which groups are driving which

result. The results are consistent with Table 3, and are contrary to the hypothesis that the

large effects of Open reflect a sample of younger firms.

Finally, in Appendix F.3, we follow Altonji et al. (2005) and Oster (2019) to make inferences

about the maximum possible bias due to selection on unobservables, exploiting variation in

selection on observables. Using the most conservative assumptions in the literature, we find

that accounting for selection on unobservables could maximally attenuate the difference in
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treatment effect of winning an Open vs. Conventional award on future DoD and VC contracts

by about 50%, while it would increase this effect for any future patents, high-originality patents,

and SBIR contracts. We also show that selection on unobservables would have to be at least

twice as important as selection on observables to reduce our main results to zero for DoD

contracts and VC, and would have to move in the opposite direction of observables by many

factors to drive the effects for patents, high-originality patents, and SBIR contracts to zero.

Overall, this offers strong support for our conclusion that selection into applying to Open

does not fully explain its larger effects. Also, it is important to note that this is a worst-case

scenario bounding exercise and does not imply that our main findings are necessarily biased.

6.2 More “Open” topics in the Conventional Program.

Some Conventional topics are more specific than others in identifying the technology that DoD

wishes to procure. If openness is important, there should be larger positive effects of winning a

Conventional award when the topic is more technology-neutral, encouraging a broader range of

ideas. To develop a measure of topic specificity, we employ the machine learning algorithm for

proposal abstract text introduced in Section 3. After summarizing the text as a vector of word

embeddings, we measure the topic’s specificity based on the distribution of its applications.

Specifically, we calculate the cosine similarity between the two vectors representing the proposal

and the average (the centroid) for the topic. The nonspecificity index is the standard deviation

of these similarity scores. If a topic has a higher standard deviation of cosine similarity, there is

more diversity in the content of proposals, and thus the topic is more “open” and less specific.

To validate this approach, we measure the non-specificity of Open topics and find that they

are three times less specific than Conventional (0.65 vs. 0.21 in Table 1). Nevertheless, there is

considerable heterogeneity in the degree of specificity within the pool of Conventional topics,

and we exploit this in the following design.

We first check that observables are balanced across more and less specific topics in the

Conventional program in Table 4. We split at the 66th percentile, but results are similar for

other thresholds. The baseline characteristics and pre-award outcomes are very similar across

all 13 company characteristics and pre-award outcomes. There are 13.4 proposals on average

in the less specific topics, compared to 12.4 in the more specific topics. Since this difference

is significant, we ensure below that it does not confound our analysis by controlling for the

interaction between winning and the number of proposals.
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Table 5 restricts the sample to Conventional topics and employs all data from 2003 onwards.

We interact the indicator for winning an award with an indicator for being in a non-specific

topic. All columns include topic fixed effects, which absorb the specificity indicator. The

strongest results are for the patent-based innovation measures. Columns 3-5 of Panel A show

that number and quality (measured by originality in column 4 and citations in column 5) of

future patenting is significantly higher for winners of non-specific topics. In Panel B, we find

roughly similar results after including the controls for firm age and size, the 25 narrow technol-

ogy fixed effects, and an interaction between number of proposals in the topic and award.25 We

also observe a significantly negative effect of winning a specific Conventional award on patent

measures. This is important because patent output has been a central argument in favor of

retaining the Conventional SBIR structure (Glover, 2021). The results in Table 5 suggest that

the more specific Conventional awards in fact deter patenting.

Regarding the other outcomes, column 1 of Table 5 shows that winners of non-specific

Conventional topics more likely to have their technologies adopted by the DoD (although

this is only weakly significant in Panel A). Column 2 looks at VC, and although the Open

interaction is positive, it is insignificant. Since only potentially high-growth, young startups

are at hazard of receiving VC, this outcome appears to rely more on applicant selection. We

do not find any significant differences for future SBIR contracts in the last column.

In sum, the positive effects of the interaction between non-specificity and winning an award

indicates that more “open-style” Conventional topics yield a relatively larger positive effect of

winning on innovation within the Conventional sample. This suggests that the Conventional

program is more impactful when it takes a more open approach, consistent with openness being

important independently from selection or other characteristics of the Open reform program.

6.3 Firms that Applied to Both Programs.

We now examine the effect among firms that apply to both programs, whose unobservable

characteristics are tightly matched by construction. Specifically, we restrict the sample to

those firms which had previously applied to Conventional and then applied to Open. We

assess the effect of the Open award within this narrow sample of 507 unique firms. These firms

are described in Table E.4. In comparison to Table 1, we observe that their characteristics lie

25All results are qualitatively similar if we instead interact with the continuous measure of the non-
specificity index. We also find similar results when we control for the interaction between winning and other
topic characteristics such as topic competitiveness (winners per applicant).
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in between Open and Conventional for some variables such as being in a VC hub city or having

previously raised VC. However, they are also more established and larger, and are more likely

to have previous DoD contracts and patents. These

The results are reported in Table 6, with the no-controls model in Panel A and the full-

controls model in Panel B. We observe positive effects on all four performance outcomes, with

especially strong effects on non-SBIR DoD contracts and high-originality patents (columns 1

and 4). These two effects are, in the models with all controls, 15.1 percentage points and 10.7

percentage points, respectively, which are comparable to the magnitudes in the main model

counterpart from Table 2, though smaller as a percentage of the means. The effect on VC

(column 2) is positive, but becomes insignificant once controls are added in Panel B. This

again may reflect the fact that firms which are at hazard of raising VC may not select into

Conventional. As with all Open winners, there is no lock-in effect on future SBIR awards

(column 5).26 In sum, Table 6 offers compelling evidence against the hypothesis that the

effects of Open are solely an artifact of entry by new types of firms.

Summary. This section has used three alternative strategies to show that selection is

unlikely to explain Open’s success. In other words, if the Conventional program were just to

restrict itself to firms with “startup-like” characteristics and not move to less specific calls for

proposals, it would be unlikely to have the same large positive effects as Open.

7 Supplementary Tests

We have implemented a battery of robustness tests on our results, and summarize a few of

the more important ones in this section. In each of the panels of Table 7 and for each of the

outcome variables, the first column shows the effect without controls while the second column

reports effects with the lifecycle and technology area controls.

Additional Controls. In Panel A we add a vector of additional control variables to our

baseline specification of Panels A and B Table 2. We include all the pre-award outcome

variables; that is, any previous non-SBIR DoD contracts, VC, patents, and high-originality

patents. We also include two indicators for whether the firm is located in a VC hub city or

26Consistent with the positive causal effect only for Open, we observe near-zero and insignificant effects of
winning in Conventional within this population (Table E.5, and the same results for both groups in a pooled
specification, though the results become somewhat less precise (Table E.6).
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in a county with an Air Force base. Last, we add an indicator for whether the product is

software vs. hardware. Consistent with a valid RDD, the coefficients are very similar to the

main results and remain significant.

Local Effect. We next exploit the intuition of randomization around the cutoff and restrict

the sample to the ranks immediately on either side of the cutoff, in which case no control for

rank is needed. Specifically, in Panel B of Table 7 we use two ranks (to keep the sample size

reasonably large) above and below the threshold (±1,±2). The results remain robust. This

narrow bandwidth test also helps us understand the degree to which the results apply only

in the region around the cutoff. Because the key results are similar when we use the whole

sample or a narrow bandwidth, and are similar with and without rank controls, we believe

they seem likely to apply more broadly.

Randomization Inference. To ensure that the small number of observations do not bias

the RDD, we follow the randomization inference test of Cattaneo et al. (2015). The authors

propose a framework that permits exact finite-sample inference conducted on a small sample

in a narrow window around the cutoff within an RDD. We implement the test within a narrow

bandwidth of |Rank| ≤ 2 around the cutoff. We report the results in Table 7 Panel B, where the

row “randomization inference p-value” shows the p-values of the interaction term (1(Award) ×

1(Open)) from the randomization inference approach. The significance levels are very similar

to our baseline approach of clustering by topic. This provides some reassurance that the small

N and the nature of the outcome variables do not bias our standard errors.

Conventional Effects in the pre-Open period. The zero effects for Conventional in

the 2017-19 period might reflect the Open program crowding out good Conventional projects.

However, crowding out does not seem to play a role because we find no effect of Conventional

when we restrict to earlier periods when Open did not exist. Panel C of Table 7 uses the

2003-16 period and shows no positive significant effects except for subsequent SBIR as above.

Conventional Firms who did not Subsequently Apply to Open. In Table 6, we

showed that conditioning on firms who applied to both Open and Conventional (and so are

homogeneous by definition), we found the same pattern of results as we did in the baseline

results. Panel D of Table 7 presents the complement, looking at the outcomes for firms who
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applied for Conventional, but did not apply for Open. As expected, there are no positive effects

of winning in Conventional except on subsequent SBIR awards, as in the baseline results.

Intensive Margin Outcomes. Our primary outcome variables are binary. We also exam-

ined whether the results are robust to using intensive margin outcomes. The results are in

Appendix Table E.9. We use the total dollar amounts of non-SBIR DoD contracts and VC

investment (columns 1-3), the number of patents and highly original patents (column 4), and

the total dollar amount of SBIR contracts (column 5). All outcomes are logged. The effects

are similar to the main results, with no significant effects of winning in Conventional (in the

first row), but strongly positive and significant effects of winning in Open (in the second row).

Acquisition as an outcome. To examine whether winning an award affects exit via ac-

quisition, we obtained data from Pitchbook, Crunchbase, SDC Mergers and Acquisitions, and

CB Insights through January 10, 2023. We match firms to these datasets using the same pro-

cedure described in Appendix D. Appendix Table E.10 shows the results. The effect of Open

relative to Conventional on the chance of getting acquired is positive and large in magnitude

relative to the mean, but it is insignificant. The effect on the acquisition amount is also large

and positive, and significant at the 5% level with the full controls model. It suggests a roughly

20% increase in the acquisition amount. There is no effect of Conventional programs on getting

acquired (the coefficients for Conventional topics are small and negative).

Matching. As explained in Section 2, an additional reform in the Open topics was to offer

matching in Phase 2. Phase 2 applicants could request additional funds to match private

or government money that they secured during the Phase 1 period. Several features of the

program’s implementation facilitate evaluation, for example, that matching was not available

for the earlier Open topics. We discuss these factors and evaluate the role of matching in

Appendix F.2. The main finding is that while matching does increase the probability of

VC, winning an Open competition significantly increases VC even without the possibility of

matching. Hence, we conclude that something over and above matching in the structure of

Open made it more successful than Conventional.

Quality. There may be concern that quality, as measured by the evaluator ranks, differs

systematically across the two types of competitions. For example, it is possible that non-

marginal conventional winners were much better than the non-marginal Open winners. To
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test this, we interact winning with being in the right-tail of the rank distribution, defined as

the top 15% of winner scores within topic. In addition to addressing selection on the quality

distribution, this test offers a robustness test of our main results and supports our argument

that our findings are not strictly limited to the region around the cutoff. The results, reported

in Appendix Table E.8, show that there are no significantly different effects in the right tail.

We observe similar results using thresholds other than 15%.

Competition We next ask whether the differential effect of Open reflects tougher compe-

tition due to a larger number of applicants (or weaker competition due to a higher number of

winners). We interact our RDD treatment indicators with the topic’s number of applicants (or

number of winners) being above median (or above the 75th or 90th percentile). The interac-

tions are always small and insignificant. In other words, the effects are not because of a larger

number of applicants.

Further Specification Tests We conduct a number of additional unreported exercises.

We find that the effect of Open does not differ significantly by year, and that the results are

similar to the main model controlling for rank quadratically, omitting the kernel weighting,

using alternative vectors of controls for baseline characteristics, or using no controls at all. We

also find similar results scaling both the awards as well as the contracts or VC deals by dollar

amounts. The results are even stronger in favor of Open because the Open awards are smaller.

In a related test making use of one Open round in which the size of the award was increased

to $75,000 from $50,000, we assess whether the effects differ by award amount. We do not find

economically meaningful or statistically significant differences.

8 Implications for Innovation Procurement

In this section, we first discuss the main results and describe some key extensions. Then we

explain how our findings could be relevant for innovation procurement reform.

8.1 Mechanisms and Extensions of Main Results

Our analysis indicates that winning an Open award has strong, positive effects on the key mea-

sures that DoD believes represent success: technology adoption (non-SBIR DoD contracting),
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private investment (VC), and commercial innovation intent (patenting). These outcomes also

overlap with how technology innovation is often measured in the academic literature. This

suggests that overall the Open program has been successful. In contrast, there are no measur-

able effects of the Conventional program, except on repeat SBIR contracts. In this subsection,

we discuss mechanisms for each outcome.

Our evidence on non-SBIR DoD contracts indicates that the Open program enables suc-

cessful applicants to prove that their technology is useful for the military and then leverage

that work to access additional funding and contracts. This result is different from certification

in that it requires work to prove—even via a White Paper—that the technology can be useful

to the military. About half of the subsequent non-SBIR DoD contracts for winners in our

data are from services besides the Air Force. In unreported analysis, we find roughly similar

effects of Open vis-a-vis Conventional in both Air Force and non-Air Force contracts. Since

all services view any DoD contract as a successful transition of an SBIR firm into the defense

pipeline, it is important to consider contracts beyond the sponsoring service when evaluating

the overall success of an award.27

Open’s large impact could be specific to the defense sector, and may depend on a huge

demand pull (i.e., downstream procurement). However, there are theoretical arguments that

open innovation is better suited to innovation whose use is more widespread (e.g. see King and

Lakhani (2013)). Open innovation may have been successful in the Air Force SBIR program

because the organization increasingly needed technologies that are more widely used. This

predicts that while the defense sector might especially benefit from an Open approach, the

effects of Open should if anything be larger for firms with technologies that have civilian

applications. We explore this by restricting the sample to firms that are not identified by

Pitchbook as being in the Aerospace and Defense sector.28 The results, in Appendix Table

E.13, indicate a larger effect of Open here relative to our full sample model. For example, the

coefficient for DoD contracts (column 1) is 16.4 pp, compared to 9.4 pp in the full sample.

This suggests that in fact our results are not specific to defense-focused firms, and points to

27For example, the Navy’s SBIR webpage states that “The Navy’s SBIR/STTR Programs are primarily
mission oriented, providing companies the opportunity to become part of the national technology base that
can feed both the military and private sectors of the nation. To that end, the Navy incorporates into its
Phase 2 component, the emphasis on the small business’ need to market its technology to both military and
private sectors.” See https://www.navysbir.com/, accessed February 22, 2024.

28We observe Pitchbook industries for 49% of the sample. Within this subset, 40% are identified as
Aerospace and Defense. To have a large enough sample, we replicate Table 2, Panel C (all proposals) but
restrict to non-Aerospace and Defense firms.
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external validity of our results.

A different question also related to the channel for our results is: Why would small contracts

have such a large effect? The idea behind the DoD SBIR program is that small initial contracts

to explore possible solutions and scope out demand can feed into the broader defense industrial

base. The Phase 1 SBIRs are an entry point to much larger contracts in the future. A goal

of the Open Phase 1 program is to find a large customer in the Air Force. Startups with a

successful Open Phase 1 can bring evidence of large defense customers to VCs, which appears

to improve their odds of raising funds.

Within SBIR, the expectation of a Phase 2 award, which averages about $830,000, may also

help to explain the effect. Firms and their investors may be more willing to invest after a Phase

1 if they anticipate a reasonable chance of substantially more non-dilutive cash. Note that we

find no effects of winning a Phase 2 award (Appendix F.1). However, Phase 2 could important

for VC through a dynamic channel; that is, its implications for the Phase 1 treatment effect.

This may help explain why the Phase 1 award can be so impactful.

The patenting results suggest that winning an Open award pushes firms to develop and

protect their technologies for, presumably, dual-use objectives. To see whether the patenting

effect reflects simply more effort to apply for protection vs. more innovation, we looked at the

number of applications. In unreported analysis, we find no effects, suggesting that the positive

effect on granted patents does not simply reflect different levels of effort to apply for patents.

We also examined patent citations, which reflect patent quality. We do not find significant

effects of Open on citations, which likely reflects insufficient time for them to accrue. However,

for the 2003-19 period for Conventional, there is sufficient time. Although there was no overall

positive effects of winning a Conventional award on citations in Table 5, this reflects a negative

effect of highly specified awards and a positive effect of the non-specific Conventional topics

(i.e. those closer in character to to Open). Howell (2017), did find a large effect of DoE SBIR

grants on patent citations. Above, we documented greater firm lock-in at DoD than at DoE.

The greater focus on the defense market among DoD SBIR winners could reduce incentives to

patent in the Conventional program or reduce limitations on patenting among non-winners of

a topic. The Open program, by reaching firms that are already oriented towards the civilian

market, appears to have a more positive effect on patenting.

We observe greater lock-in for the Conventional program, which the DoD authorities wish

to avoid, since the purpose of SBIR is to provide an R&D staging ground for firms to enter

operational and R&D contracts within mission-oriented programs. The Open program may

30



have avoided locked-in contractors only because it is new. To assess this, we use 2020 applica-

tion data, which we do not use in the main analysis in order to have enough time to observe

all outcomes. If Open awards will also suffer from lock-in, we expect to see some evidence

of it in the third year. Appendix Figure E.10 contains a histogram of the number of Open

and Conventional applicants in categories defined by the number of Air Force SBIR awards

in the past three years, with Open applicants from 2020 and Conventional applicants from

2019.29 Conventional applicants are far more likely to have many Air Force SBIR awards in

the past three years. Nearly 100% of 2020 Open applicants are entirely new to the program,

while only about 60% of Conventional applicants have no SBIR award in the previous three

years. Conversely, there is a long tail of Conventional applicants with many Air Force SBIR

awards in the previous three years. In sum, whether through reputation, dedicated staff, or

some other channel, the traditional SBIR contract gives birth to recurring SBIR-winners. By

contrast, Open topics have avoided this lock-in effect.

8.2 Implications for Innovation Procurement Reform

At a high level, our results suggest that there are benefits to moving towards more open and

less tightly specified public procurement of innovation. The Open program at the U.S. Air

Force that we study is an example of a radical reform. There are more incremental means.

For example, the government could use more Requests For Information in advance of Requests

For Procurement. This might improve the information flow. As a second example, the Air

Force could bring in other parts of the DoD in making evaluation decisions to internalize some

of the spillovers that we find (although this might increase administrative burden). We have

shown that the benefits of technology adoption spill over to other parts of the DoD from the

Air Force (as well as to the private sector), even though it is the Air Force who solely make

the decisions over project funding.

There are policy implications that emerge from the contrast between our average null results

for the Conventional program and the positive effects of U.S. Department of Energy (DoE)

SBIR grants in Howell (2017). Specifically, there are two possible reasons for the difference that

are relevant to innovation procurement design. First, the DoE SBIR program’s topics appear

to be substantially broader than the Air Force’s Conventional topics, as they typically invite

29We do not observe Conventional application data in 2020, and this approach also aligns the sample with
that of our main analysis (2017-19, where 2017 only contains Conventional applicants).
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proposals for technologies that serve a whole energy subsector rather than request that firms

build a highly specific device or piece of software. For example, DoE topics from 2022 include

“Solar Hardware and Software Technologies: Affordability, Reliability, Performance, and Man-

ufacturing”, “Advanced Subsurface Energy Technologies” (i.e. geothermal), and “Rare Earth

Elements and Critical Minerals” (i.e., making advanced metal alloys for a wide range of uses,

such as in batteries and catalysts). In other words, DoE’s SBIR program seems to compare

more closely to the non-specific Conventional topics where we do find positive effects. Sec-

ond, Howell (2017) finds that the positive effects of DoE’s SBIR program are driven by new

entrants. We observe that the DoD’s SBIR program has more repeat awardees than the DoE

program (Figure A.2 Panel B). This likely relates to DoD’s massive procurement capability

and much larger SBIR program, which allow firms to focus solely on the defense market.

The success of Open relates to the broad question of how to procure defense innovation. The

main mechanisms are government contracting with private organizations, design competitions,

and in-house R&D at government laboratories. In recent decades, the U.S. has emphasized the

first channel, but before World War II and in certain parts of the defense establishment such as

SBIR, the second channel of design competitions has been important (Mansfield 1971, Jacobsen

2015). In a traditional competition, the government identifies a need for a certain product,

and firms must privately invest in initial R&D to compete for a prize. Competitions can enable

more government flexibility and encourage contractor risk-taking (Lichtenberg 1984). However,

a downside is that the technology must be specified ex-ante, while in direct contracting it can

be more ambiguous and evolve over time. The Open program mitigates the downside of ex-ante

specification by allowing firms to present their own ideas while evaluating them according to the

same metrics. This potentially offers a new template for other competitive R&D procurement

efforts in the public sector.

Che et al. (2021) theoretically compare cash prizes and follow-on contracts to motivate

innovation, with intuition similar to Belenzon and Cioaca (2021). Che et al. (2021) argue that

in the absence of perfect information, contract rights are the optimal mechanism, and further-

more that bundled approaches in which the innovating firm receives the follow-on contract are

ideal for unsolicited proposals, akin to our Open setting. The authors point specifically to DoD

SBIR as an important setting in which follow-on contracting is used to incentivize innovation.
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9 Conclusion

This paper offers to our knowledge the first study comparing top-down (i.e. highly specified)

and bottom-up (i.e. open) mechanisms for innovation procurement. We focus on the U.S.

Air Force’s Open topics, which introduced a bottom-up, open innovation dimension to its

SBIR program, departing from the conventionally tightly specified SBIR topics. Our context

is important because the U.S. DoD funds more R&D than any other single entity in the

world. U.S. defense R&D is often regarded as an exemplar of how to stimulate innovation

through mission-driven research, but—as we show—the luster has faded in recent decades,

with the prime contractors becoming less innovative than the rest of the U.S. economy on

several dimensions. Although though the SBIR program differs from mainline procurement,

we document parallel problems of declining innovation and lock-in of repeat contractors.

These challenges motivated the Open program at the Air Force. We show that the Open

program succeeded in its objectives. Our primary outcomes are proxies for military benefits of

technology adoption (winning future non-SBIR DoD contracts) and civilian innovation benefits

(VC investment and patenting). Using a regression discontinuity design, we find that winning

an Open topic award has positive effects on these outcomes, whereas winning a Conventional

topic award does not. By contrast, winning a Conventional award increases the chances of a

subsequent SBIR contract, creating a lock-in effect for incumbents. Open’s success was not

simply due to attracting a different composition of firms. Using three designs, we find that

openness matters. The Open program seems to enable firms to bring new, useful technologies

to the defense market that the DoD had not realized it needed. This leads them to invest more

in innovation, with the potential for large downstream procurement contracts.

Skeptics of the innovation benefits of military R&D have noted that while there is a surfeit

of anecdotes, there is a dearth of rigorous evaluations of U.S. defense R&D programs. This

paper helps to address the lacunae by causally evaluating the Air Force SBIR program, with

a focus on the Open reform. It is relevant not only to DoD but to the many public sector

agencies in the U.S. and abroad that are deploying open solicitations. Beyond the public

sector, private sector companies are also increasingly using open innovation, especially in

R&D-intensive industries (Chesbrough 2003, de Villemeur and Versaevel 2019). For example,

Unilever’s Open Innovation platform, launched in 2010, invites the public to submit ideas

for potential adoption by the company in broad product areas. Successful submitters may

be offered a commercial contract for their solution, and today more than 60% of Unilever’s
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research projects involve external collaboration.30 Another example is LEGO Ideas, which has 

led to 30 LEGO model kits based on externally submitted ideas (Richardson et al., 2020). An 

important avenue for future work is whether causal evaluations of other open R&D programs 

reveal similar patterns to those found here.

Data Availability

Code replicating the tables and figures in this article can be found in Howell et al. (2025) in the 

Harvard Dataverse, https://doi.org/10.7910 /DVN/78W8M6.

30See https://www.unileverusa.com/brands/innovation/open-innovation/, accessed April 24, 2024.
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Figure 1: Raw Scores and Award Probability in Four Representative Topics

Note: These plots document the sharp RDD in each topic by showing the probability of winning by raw
score. The score perfectly predicts award except occasionally when an awardee is declined in the contracting
process because some ineligibility was identified (these instances are dropped in analysis). Note that the
range of scores differs across topics, which is we construct a rank normalization for combined analysis.
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Figure 2: Regression Discontinuity Density Manipulation Test

Note: This figure plots the density of applicants by rank around the cutoff using Phase 1 applicants to the
Open (left graph labeled (a)) and Conventional (right graph labeled (b)) programs, to test for bunching near
the cutoff. There is more density overall to the left of the cutoff because there are more losers than winners.

(a) Open (b) Conventional (2017-19)
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Figure 3: Probability of Technology Adoption (DoD non-SBIR Contract) by Rank Around
Cutoff

Note: These figures show the probability that an applicant firm had any non-SBIR DoD contracts valued
at more than $50,000 within 24 months after the award decision. In both panels, the x-axis shows the
applicant’s rank around the cutoff for an award. A rank of 1 indicates that the applicant had the lowest
score among winners, while a rank of -1 indicates that the applicant had the highest score among losers.
We plot the points and 95% confidence intervals from a regression of the outcome on a full complement of
dummy variables representing each rank, as well as fixed effects for the topic. The omitted group is rank=-1.
We include first applications from 2017-19.

(a) Open (b) Conventional (2017-19)

Figure 4: Probability of Venture Capital by Rank Around Cutoff

Note: These figures show the probability that an applicant firm raised venture capital investment (VC)
within 24 months after the award decision. In both panels, the x-axis shows the applicant’s rank around
the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while
a rank of -1 indicates that the applicant had the highest score among losers. We plot the points and 95%
confidence intervals from a regression of the outcome on a full complement of dummy variables representing
each rank, as well as fixed effects for the topic. The omitted group is rank=-1. We include first applications
from 2017-19.

(a) Open (b) Conventional (2017-19)
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Figure 5: Probability of Patents by Rank Around Cutoff

Note: These figures show the probability that an applicant firm had any ultimately granted patent applica-
tions within 24 months after the award decision. In both panels, the x-axis shows the applicant’s rank around
the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while
a rank of -1 indicates that the applicant had the highest score among losers. We plot the points and 95%
confidence intervals from a regression of the outcome on a full complement of dummy variables representing
each rank, as well as fixed effects for the topic. The omitted group is rank=-1. We include first applications
from 2017-19.

(a) Open (b) Conventional (2017-19)

Figure 6: Probability of High-Originality Patents by Rank Around Cutoff

Note: These figures show the probability that an applicant firm had any ultimately granted patent applica-
tions within 24 months after the award decision. In both panels, the x-axis shows the applicant’s rank around
the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while
a rank of -1 indicates that the applicant had the highest score among losers. We plot the points and 95%
confidence intervals from a regression of the outcome on a full complement of dummy variables representing
each rank, as well as fixed effects for the topic. The omitted group is rank=-1. We include first applications
from 2017-19.

(a) Open (b) Conventional (2017-19)
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Figure 7: Probability of Air Force SBIR Contract by Rank Around Cutoff

Note: These figures show the probability that an applicant firm had any Air Force SBIR contracts within
24 months after the award decision. In both panels, the x-axis shows the applicant’s rank around the cutoff
for an award. A rank of 1 indicates that the applicant had the lowest score among winners, while a rank of
-1 indicates that the applicant had the highest score among losers. We plot the points and 95% confidence
intervals from a regression of the outcome on a full complement of dummy variables representing each rank,
as well as fixed effects for the topic. The omitted group is rank=-1. We include all data for Conventional.

(a) Open (b) Conventional
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Table 1: Summary Statistics for Main Estimation Sample

Note: This table describes company, pre-award outcomes and competition characteristics. We use all
proposals in our main estimation sample between 2017 and 2019, where a firm may only appear once and
has not applied before to an SBIR. The left columns contain the applicants to Conventional topics, while
the right columns contain the applicants to Open topics. See Section 3 for details on each variable. We
report outcome means before the award decision. Outcome means for the full sample are reported in the
subsequent regression result tables. We also present the difference of means. ***, **, * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Conventional Open

N Mean SD N Mean SD
Diff of
Means

(Open - Conv)

Company Characteristics
Lifecycle controls
Age 1,227 12.206 58.690 1,056 9.095 62.642 -3.111
Number of Employees 1,227 23.235 61.008 1,056 18.205 43.918 -5.030∗

Additional controls
1(in VC Hub) 1,227 0.121 0.326 1,056 0.202 0.401 0.081∗∗∗

1(in County with AF Base) 1,227 0.209 0.407 1,056 0.172 0.378 -0.037∗∗

1(Immigrant) 1,227 0.063 0.236 1,056 0.083 0.273 0.020∗

1(Minority Owned) 1,227 0.170 0.376 1,056 0.128 0.334 -0.042∗∗∗

1(Woman owned) 1,227 0.155 0.362 1,056 0.113 0.316 -0.042∗∗∗

Pre-award Outcomes
1(Previous DoD Contract) 1,227 0.158 0.365 1,056 0.113 0.316 -0.045∗∗∗

1(Previous VC) 1,227 0.023 0.149 1,056 0.097 0.296 0.074∗∗∗

1(Previous Patent) 1,227 0.117 0.321 1,056 0.152 0.359 0.035∗∗

1(Previous High Originality Patent) 1,227 0.074 0.262 1,056 0.095 0.293 0.021
1(Previous High Citation Patent) 1,227 0.057 0.232 1,056 0.062 0.242 0.005
1(Previous SBIR Contract) 1,227 0.000 0.000 1,056 0.000 0.000 0.000

Competition Characteristics
Num Proposals per Topic 328 13.595 10.100 6 274.667 184.268 261.072∗∗∗

Proposals per Winner 328 5.744 3.726 6 2.120 0.873 -3.624∗∗∗

Non-specificity Index 328 0.212 0.217 6 0.650 0.058 0.438∗∗∗
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Table 2: Effect of Winning an Open vs. Conventional Award

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Phase 1 award on five firm-level outcomes: technology adoption measured by any non-SBIR DoD contract
valued at more than $50,000 (column 1), any VC investment (column 2), any patent (column 3), any
patent with above-median originality (column 4), and having at least two SBIR awards (column 5). All
outcomes are measured as any time after the award decision, through January 2023. The coefficient on
Award represents the effect within Conventional topics, and the coefficient on Award interacted with Open
represents the differential effect of Open relative to Conventional. In Panel B, we include controls for firm
age and employment at the application date, as well as a vector of 25 narrow technology fixed effects. Panel
C includes all proposals from all years. Standard errors are clustered by topic. ***, **, * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Baseline Specification

1(DoD
1(VC) 1(Patent)

1(High 1(> 1
Contract) Orig Pat) SBIR)

(1) (2) (3) (4) (5)
1(Award) -0.086 -0.006 -0.087∗ -0.014 0.093∗

(0.081) (0.045) (0.051) (0.018) (0.050)
1(Award) × 1(Open Topic) 0.200∗∗ 0.124∗∗ 0.176∗∗ 0.084∗∗∗ -0.100∗

(0.096) (0.060) (0.069) (0.028) (0.053)
Observations 2283 2283 2283 2283 2283
Lifecycle Controls No No No No No
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.166 0.092 0.112 0.036 0.031

Panel B: Controls and Technology Fixed Effects

(1) (2) (3) (4) (5)
1(Award) -0.089 -0.001 -0.087 -0.018 0.102∗∗

(0.079) (0.047) (0.053) (0.021) (0.048)
1(Award) × 1(Open Topic) 0.186∗∗ 0.109∗ 0.163∗∗ 0.083∗∗∗ -0.108∗∗

(0.094) (0.064) (0.072) (0.029) (0.050)
Observations 2283 2283 2283 2283 2283
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.166 0.092 0.112 0.036 0.031

Panel C: All Proposals (Including Controls and Technology Fixed Effects)

(1) (2) (3) (4) (5)
1(Award) -0.020 0.004 -0.015 -0.025∗∗ 0.032∗∗

(0.013) (0.004) (0.014) (0.012) (0.014)
1(Award) × 1(Open Topic) 0.094∗∗ 0.108∗∗∗ 0.110∗∗∗ 0.091∗∗∗ -0.067∗

(0.043) (0.028) (0.037) (0.024) (0.035)
Observations 21365 21365 21365 21365 21365
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal All All All All All
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.479 0.024 0.316 0.217 0.457
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Table 3: Role of Firm Age and Size in Relative Effect of Open

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a Phase 1 award on the four firm-level
success outcomes, but after dividing the sample in two ways. The first, presented in Panel A, is around median age as a proxy for lifecycle position.
The second, presented in Panel B, is around median employment as a proxy for size. All outcomes are measured as any time after the award decision,
through January 2023. The coefficient on Award represents the effect within Conventional topics, and the coefficient on Award interacted with Open
represents the differential effect of Open relative to Conventional. Standard errors are clustered by topic. ***, **, * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

Panel A: Heterogeneity By Age

1(DoD Contract) 1(VC) 1(Patent)
1(High Originality

1(> 1 SBIR)
Patent)

Young Old Young Old Young Old Young Old Young Old

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) -0.115 -0.112 -0.041 0.046 -0.144 -0.037 0.015 0.018 0.128 0.004

(0.156) (0.122) (0.087) (0.053) (0.112) (0.057) (0.023) (0.019) (0.097) (0.066)
1(Award) × 1(Open Topic) 0.159 0.293∗∗ 0.220∗∗ 0.004 0.197 0.156 0.024 0.080∗∗ -0.118 -0.028

(0.170) (0.148) (0.108) (0.072) (0.129) (0.095) (0.030) (0.040) (0.099) (0.070)
Observations 1052 1231 1052 1231 1052 1231 1052 1231 1052 1231
Proposal First First First First First First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.122 0.205 0.120 0.069 0.111 0.119 0.035 0.039 0.027 0.031

Panel B: Heterogeneity By Employment

Small Large Small Large Small Large Small Large Small Large

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) 0.166 -0.314∗∗ -0.017 -0.042 -0.179∗ -0.058 -0.031 -0.016 0.132∗∗ 0.092

(0.102) (0.142) (0.027) (0.079) (0.094) (0.066) (0.039) (0.029) (0.058) (0.063)
1(Award) × 1(Open Topic) -0.073 0.376∗∗ 0.057 0.192∗ 0.216∗∗ 0.180∗ 0.049 0.144∗∗∗ -0.115∗ -0.126∗

(0.113) (0.175) (0.063) (0.101) (0.107) (0.109) (0.043) (0.048) (0.062) (0.069)
Observations 1238 1045 1238 1045 1238 1045 1238 1045 1238 1045
Proposal First First First First First First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.078 0.265 0.043 0.141 0.076 0.150 0.026 0.048 0.024 0.030
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Table 4: Comparison Between Specific and Non-Specific Topics in Conventional Program

Note: This table describes company and outcome characteristics at the topic level, using all proposals in
the Conventional program. The left columns contain the applicants to topics identified as more specific, with
below 66th percentile non-specificity. The right columns contain the applicants to topics identified as more
open, with above 66th percentile non-specificity. See Section 6.2 for details on specificity. We also present
the difference of means (non-specific minus specific). We report outcome means before the award decision.
Outcome means for the full sample are reported in the subsequent regression result table. ***, **, * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Specific Topics: Non-specific Topics:
≤ P66 Non-Specificity > P66 Non-Specificity

N Mean SD N Mean SD
Diff of
Means

Company Characteristics
Lifecycle controls
Age 1,139 17.586 16.102 400 20.838 41.450 3.252
Number of Employees 1,139 50.582 31.422 400 50.081 29.659 -0.501

Additional controls
1(in VC Hub) 1,139 0.174 0.138 400 0.175 0.147 0.001
1(in County with AF Base) 1,139 0.286 0.166 400 0.289 0.160 0.004
1(Immigrant) 1,139 0.073 0.101 400 0.068 0.096 -0.005
1(Minority Owned) 301 0.123 0.113 111 0.120 0.119 -0.003
1(Woman owned) 419 0.125 0.123 159 0.116 0.105 -0.009

Pre-Award Outcomes
1(Previous DoD Contract) 1,139 0.399 0.297 400 0.381 0.280 -0.018
1(Previous VC) 1,139 0.061 0.090 400 0.066 0.083 0.005
1(Previous Patent) 1,139 0.452 0.212 400 0.455 0.193 0.004
1(Previous High Originality Patent) 1,139 0.336 0.203 400 0.345 0.182 0.008
1(Previous High Citation Patent) 1,139 0.416 0.205 400 0.418 0.187 0.002
1(Previous SBIR Contract) 1,139 0.516 0.262 400 0.508 0.246 -0.008

Competition Characteristics
Num Proposals per Topic 1,139 12.354 8.755 400 13.367 8.799 1.014∗∗

Proposals per Winner 1,139 5.582 4.301 400 5.856 4.285 0.274
Non-specificity Index 1,139 0.079 0.070 400 0.526 0.172 0.446∗∗∗
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Table 5: Effect of Relatively more Open (Non-specific) Topics in the Conventional Program

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning
a Phase 1 award within the Conventional program on six firm-level outcomes: any non-SBIR DoD contract
valued at more than $50,000, any patent, any patent with above-median originality, any patent with above-
median forward citations, any VC, and having at least two SBIR awards. All outcomes are measured as
any time after the award decision, through January 2023. The coefficient on Award represents the effect
within more specific topics (below the 66th percentile of non-specificity), and the coefficient on Award
interacted with high non-specificity represents the differential effect of relatively more open topics within
the Conventional program. We control for the interaction between winning an award and the number of
proposals per topic in all columns. In Panel B, we include controls for firm age and employment at the
application date, as well as a vector of 25 narrow technology fixed effects. Standard errors are clustered by
topic. ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: No Controls

1(DoD
1(VC) 1(Patent)

1(High 1(High 1(> 1
Contract) Orig Pat) Cite Pat) SBIR)

(1) (2) (3) (4) (5) (6)
1(Award) -0.038∗∗ 0.002 -0.034∗∗ -0.044∗∗∗ -0.041∗∗∗ 0.023

(0.017) (0.004) (0.016) (0.015) (0.014) (0.017)
1(Award) × 1(Non-specific) 0.062∗ 0.009 0.074∗∗ 0.078∗∗ 0.064∗∗ 0.021

(0.033) (0.010) (0.034) (0.031) (0.028) (0.032)
Observations 19494 19494 19494 19494 19494 19494
Lifecycle Controls No No No No No No
Narrow Tech FE No No No No No No
Proposal All All All All All All
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.498 0.016 0.329 0.230 0.205 0.483

Panel B: Controls & Narrow Technology FE

1(DoD
1(VC) 1(Patent)

1(High 1(High 1(> 1
Contract) Orig Pat) Cite Pat) SBIR)

(1) (2) (3) (4) (5) (6)
1(Award) 0.002 -0.008∗ -0.041∗∗ -0.069∗∗∗ -0.049∗∗∗ 0.045∗∗

(0.021) (0.005) (0.021) (0.019) (0.017) (0.023)
1(Award) × 1(Non-specific) 0.040 0.008 0.058∗ 0.064∗∗ 0.053∗ 0.007

(0.031) (0.010) (0.033) (0.030) (0.028) (0.031)
Observations 19494 19494 19494 19494 19494 19494
Lifecycle Controls Yes Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes Yes
Proposal All All All All All All
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.498 0.016 0.329 0.230 0.205 0.483
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Table 6: Effect of an Open Topic among Firms that Previously Applied to Conventional

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Phase 1 award after restricting the sample to firms that applied to Conventional at least once before 2018 and
then applied to Open subsequently. The table includes only Open competitions. This isolates the effect of
Open among a sample of firms that selected into both Open and Conventional. We employ the five firm-level
outcomes from Table 2. The coefficient on Award represents the effect of winning in an Open topic within
this subsample. In Panel B, we include controls for firm age and employment at the application date, as well
as a vector of 25 narrow technology fixed effects. Standard errors are clustered by topic. ***, **, * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Baseline Specification

1(DoD
1(VC) 1(Patent)

1(High 1(> 1
Contract) Orig Pat) SBIR)

(1) (2) (3) (4) (5)
1(Award) 0.164∗∗ 0.062∗ 0.112∗ 0.091∗∗ 0.026

(0.069) (0.037) (0.062) (0.041) (0.068)
Observations 507 507 507 507 507
Controls No No No No No
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.471 0.059 0.225 0.081 0.381

Panel B: Controls with Technology Fixed Effects

(1) (2) (3) (4) (5)
1(Award) 0.151∗∗ 0.056 0.112∗ 0.107∗∗ 0.021

(0.071) (0.034) (0.064) (0.045) (0.068)
Observations 507 507 507 507 507
Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.471 0.059 0.225 0.081 0.381
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Table 7: Robustness Tests

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a Phase 1 award on the five firm-level
outcomes from Table 2. The coefficient on Award represents the effect within Conventional topics, and the coefficient on Award interacted with
Open represents the differential effect of Open relative to Conventional. In all Panels “lifecycle and narrow tech fixed effects” indicate the inclusion
of firm age, firm employment, and 25 narrow technology area fixed effects. Standard errors are clustered by topic. ***, **, * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively. In Panel A, we include “additional controls”: whether the firm had any previous non-SBIR
DoD contracts, previous VC, previous patents, previous high-originality patents, was located in a VC hub city, was located in a county with an Air
Force base, whether the product is software vs. hardware. In Panel B, we restrict the bandwidth to include only two applicants on each side of
the cutoff. We construct alternative standard errors through randomization inference, following Cattaneo et al. (2019). The row “Randomization
Inference p-value” shows the p-value of the interacted term 1(Award) × 1(Open) given that standard errors from randomization inference. In Panel
C, we consider Conventional effects before the main analysis period (2003-2016). In Panel D, we consider Conventional effects among firms who do
not subsequently apply to Open topics before the analysis was implemented.

Panel A: Additional Controls

1(DoD Contract) 1(VC) 1(Patent)
1(High-Originality

1(> 1 SBIR)
Patent)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) -0.098 -0.089 -0.035 -0.029 -0.126∗∗ -0.125∗∗ -0.041∗ -0.046∗ 0.092∗ 0.101∗∗

(0.075) (0.075) (0.045) (0.047) (0.053) (0.054) (0.022) (0.025) (0.049) (0.047)
1(Award) × 1(Open Topic) 0.202∗∗ 0.181∗∗ 0.136∗∗ 0.123∗ 0.187∗∗∗ 0.180∗∗∗ 0.095∗∗∗ 0.099∗∗∗ -0.101∗ -0.107∗∗

(0.089) (0.089) (0.060) (0.064) (0.067) (0.069) (0.030) (0.031) (0.052) (0.049)
Observations 2283 2283 2283 2283 2283 2283 2283 2283 2283 2283
Proposal First First First First First First First First First First
Additional Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Lifecycle Controls & Narrow Tech FE No Yes No Yes No Yes No Yes No Yes
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.166 0.166 0.092 0.092 0.112 0.112 0.036 0.036 0.031 0.031
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Table 7: Robustness Tests (continued)

Panel B: Narrow Bandwidth

1(DoD Contract) 1(VC) 1(Patent)
1(High-Originality

1(> 1 SBIR)
Patent)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) -0.078 -0.094 -0.064 -0.059 -0.073 -0.055 0.000 -0.010 0.062 0.079∗

(0.073) (0.070) (0.044) (0.049) (0.045) (0.048) (0.000) (0.014) (0.046) (0.043)
1(Award) × 1(Open Topic) 0.170∗∗ 0.168∗∗ 0.195∗∗∗ 0.180∗∗∗ 0.153∗∗∗ 0.125∗∗ 0.061∗∗∗ 0.070∗∗∗ -0.058 -0.076∗

(0.085) (0.081) (0.055) (0.061) (0.059) (0.062) (0.020) (0.025) (0.047) (0.044)
Observations 811 811 811 811 811 811 811 811 811 811
Lifecycle Controls & Narrow Tech FE No Yes No Yes No Yes No Yes No Yes
Proposal First First First First First First First First First First
Randomization Inference p-value 0.072 0.049 0.000 0.003 0.011 0.060 0.004 0.003 0.370 0.166
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.186 0.186 0.116 0.116 0.125 0.125 0.033 0.033 0.036 0.036

Panel C: Conventional Program Before Open

1(DoD Contract) 1(VC) 1(Patent)
1(High-Originality

1(> 1 SBIR)
Patent)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) -0.026 -0.031∗∗ 0.006 0.006 -0.021 -0.022 -0.035∗∗ -0.037∗∗∗ 0.057∗∗∗ 0.055∗∗∗

(0.017) (0.015) (0.005) (0.005) (0.016) (0.015) (0.015) (0.013) (0.017) (0.017)
Observations 14743 14743 14743 14743 14743 14743 14743 14743 14743 14743
Lifecycle Controls & Narrow Tech FE No Yes No Yes No Yes No Yes No Yes
Proposal All All All All All All All All All All
Time Period 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16
Outcome Mean 0.323 0.323 0.021 0.021 0.219 0.219 0.141 0.141 0.241 0.241

Panel D: Conventional Program Before Open, Among Firms that Never Applied to Open

1(DoD Contract) 1(VC) 1(Patent)
1(High-Originality

1(> 1 SBIR)
Patent)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) -0.016 -0.027 0.010 0.010 -0.013 -0.018 -0.028∗ -0.033∗∗ 0.083∗∗∗ 0.078∗∗∗

(0.019) (0.018) (0.006) (0.006) (0.017) (0.017) (0.016) (0.015) (0.019) (0.019)
Observations 12105 12105 12105 12105 12105 12105 12105 12105 12105 12105
Lifecycle Controls & Narrow Tech FE No Yes No Yes No Yes No Yes No Yes
Proposal All All All All All All All All All All
Time Period 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16 2003-16
Outcome Mean 0.293 0.293 0.022 0.022 0.202 0.202 0.130 0.130 0.210 0.210
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A Slowing Innovation in the US Defense Industry

In this appendix, we describe some of the economic context for U.S. military R&D and ex-

plain the concerns among policymakers about declining innovativeness, which motivated the

SBIR reform we study. Despite these concerns, there is no public evidence about the decline.

Therefore, in the second part of the appendix, we document the evolution of prime defense

contractors’ innovation.

A.1 Economic Context for U.S. Defense R&D

Military R&D has shaped technological advances since antiquity, both “pushing” and “pulling”

civilian innovation.31 In the U.S., spillovers from defense R&D to commercial applications

occur through two primary channels. First, DoD both conducts and funds basic R&D, and

is an important source of basic, open-ended funding for university research. This “pushes”

private sector innovation by creating new pools of general engineering or scientific human

capital and knowledge (Belenzon and Schankerman 2013, Babina et al. 2020). Second, the

military procures new technologies, creating an early market that might otherwise not exist,

and shaping the direction of private sector R&D through its vast spending power. DoD has

been willing to fund extremely risky, capital-intensive new technologies that have a potential

military application.

Since World War II, the U.S. military has invested in innovation primarily through pro-

curement contracts. The theory of procurement, as applied to defense, highlights a hold-up

problem in production with large fixed costs in technology innovation and development. As

the only customer, once the firm invests, the government can potentially eliminate profits

by refusing to pay a high price once the technology is available (Tirole 1986). Furthermore,

innovation is a defining characteristic of defense procurement, so incentivizing it effectively

is crucial. Other key factors in the government’s regulatory problem for defense procurement

beyond R&D and monopsony include uncertainty and economies of scale in production (Roger-

son 1994). Together, these forces create a rationale for DoD to fund the development stage,

in which an innovation is developed for use, tested, and scaled.

Much more so than other Western countries, the U.S. procures defense technologies from

31For example, many historians (e.g. Polybius’ Histories) credit Archimedes with inventing many new
technologies in the defense of Syracuse against the Romans in 213–212 BC such as cranes (the “Archimedes’
Claw” dragged ships out of the sea).
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an industrial base that also supplies commercial markets (Flamm 1988). In the 1950s and

1960s, large orders for early-stage technologies such as transistors and integrated circuits were

crucial to reducing their prices while improving quality, such that they could ultimately be

applied to commercial products (Mowery 2012). Dual-use technologies have many attractions.

As a monopsonist in the defense market, it is difficult for DoD to create competition among

defense contractors. A dual-use technology can be exposed to the discipline of the private

market, reducing cost inflation and leading to higher quality. In recent decades, there have

been increasing concerns that the “virtuous cycle” in which American defense R&D investment

yields powerful commercial applications and enables unrivaled military supremacy is failing.

There are at least four challenges. First, procurement regulations have become more com-

plex and onerous, raising barriers to entry for new firms and contributing to the dominance

of the prime contractors (Cox et al. 2014). Second, relevant frontier technologies do not seem

to be marketed to DoD. Third, the national innovation ecosystem has shifted away from ar-

eas most relevant to defense (Sargent and Gallo 2018). Fourth, prime defense contractors

have consolidated, often serve only the defense market, and are perceived as increasingly less

innovative. For example, in 2019, an Under Secretary of Defense tasking memo noted that

“The defense industrial base is showing signs of age. The swift emergence of

information-based technologies as decisive enablers of advanced military capabil-

ities are largely developed and produced outside of the technologically isolated

defense industrial base” (Griffin 2019).

Despite these concerns, to our knowledge, the evolution of defense contractors’ innovation has

not been previously documented.32

A.2 Documenting Declining Innovation

Here, we document innovation trends focusing on the top eight contractors over the past

two decades: Boeing, Raytheon, Lockheed Martin, Northrop Grumman, General Dynamics,

United Technologies Corp, Harris, and L-3. We researched all of their acquisitions since 1976

of companies that were also defense contractors and linked the eight primes and all their

acquisition targets to the NBER/USPTO patent database and Compustat.

32Carril and Duggan (2020) show that the substantial consolidation among major defense contractors in
the mid-1990s reduced competition and led to a shift to cost-plus contracts in which cost escalations are
uncapped.
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Figure A.1 shows that between 1976 and 2019, 225 companies consolidated into just six,

with L-3 and Harris merging in 2018, and Raytheon and United Technologies merged in 2020.

Remarkably, the dollar share of total defense contracts that these firms have won, shown in

the grey area, has stayed fairly constant over the years at roughly 35%.33 The value (in 2019

dollars) of these contracts increased from around $70 billion spread across 225 companies in

the late 1970s to $115 billion awarded to just six companies in 2019. The number of firms

responsible for the remaining roughly 65% of contract value not represented in the graph

declined slightly from 25,339 unique contractors in 1976 to 24,656 in 2018. To confirm that

the remaining contracts have not become more dispersed, we present the Herfindahl-Hirschman

Index (HHI) of concentration for all non-SBIR DoD contracts, though this measure is not very

insightful because the defense market is composed of myriad small markets for items ranging

from food supplies at a particular base to a fleet of fighter jets. Nonetheless, the dashed orange

line in Figure A.2 Panel A shows that overall concentration has remained relatively stable,

albeit volatile.

The dramatic consolidation among the primes has been accompanied by a decline in inno-

vation quality as measured by patent citations, which shed light on private sector spillovers.

Figure A.3 shows patent activity for the firms in Figure A.1, weighted by future citations.

Patent activity is only one proxy for innovativeness, but it is relevant to DoD-funded inno-

vation. While a patent involves some disclosure, there are often trade secrets that prevent a

competitor from copying the invention even once the patent is public, and a patent can coexist

with classified aspects of the research that do not appear in the patent itself.

In 1976, the figure includes patents from all 225 companies, and in 2019 we are considering

patents from the six companies. Citations are normalized by the average number of citations

for all patents in the same CPC3 Technology class by year cohort, so that a number above

one indicates the patent is more impactful than the average patent in its class-year.34 The

solid blue line includes all forward citations, and we see a secular decline across the unit

threshold, so that defense patents changed from being relatively more innovative to relatively

less innovative within their narrow technology areas. This pattern is even starker when we

include only outside citations to patents from firms that are not featured in the graph. That

is, we exclude citations from firms outside the prime contractor universe. These citations are

33We exclude DoD contracts to Humana (health insurance provider) and universities.
34We use a kernel-weighted polynomial to smooth the lines (the results are very similar with a binscatter

approach).
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shown in the dashed green line. They decline from having 17% more citations from outside

defense than the average patent in the class year in 1976 to 60% fewer citations in 2019. These

trends suggest a prime contractor base that has become markedly more insular over time.

To assess whether firms are innovating in new areas that could have novel defense applica-

tions (e.g. software, clean energy), we also calculate a firm’s share of “explorative” patents in

any given year, following Manso (2011). An explorative patent is a patent filed in technology

classes previously unknown to the firm in a given year. Figure A.4 shows the average share of

exploratory patents relative to other firms with similar in age, size, and year. As above, all

firms from Figure A.1 are included. Age is defined as the year from the firm’s first observed

patent and size is defined as the firm’s patent stock in a given year. As firms merge, they

acquire new areas of expertise, and we expect this should lead to increasing exploration since

the assignee after the acquisition is usually the acquiring parent firm. This seems to be true to

some extent for the big mergers of the 1990s but is not true subsequently. Instead, in Figure

A.4 we see a marked decline over time, indicating that the defense contractors are not patent-

ing in new technology areas even as they acquire each other. By 2019, the share of explorative

patents was 60% lower than firms with similar patent stocks and age since the first patent.

Figure A.5 shows other variables relevant to prime contractor innovation. In Panel A,

we compare the growth in the number of patents for the primes to growth among all other

U.S. assignees in the USPTO. Until the early 1990s, the defense contractors were patenting

at similar rates as the overall universe, but we see a subsequent divergence, with defense

contractors patenting at a lower rate.35 The subsequent three panels use Compustat data and

compare primes to other firms in the same three-digit NAICS industry.36 Panel B shows that

before the mid-1990s, the primes had a higher ratio of profits to R&D than peer firms, but by

2019, they earned $8 for each R&D dollar compared to $5.50 in the comparison group. Panel

C shows that the level of profits has increased much more for primes than for other firms and

Panel D shows that R&D has grown since 1976, but more slowly than revenue and assets.

While these changes clearly increased efficiency, they may also help to explain the decline in

innovation we observe in the defense sector and, more directly related to our thesis, have left

a remaining cadre of smaller, less innovative, and more locked-in defense contractors.

Finally, our results are consistent with case study evidence. Dial and Murphy (1995)

35This coincides with a major merger wave in the mid-1990s when, among others, Northrup merged with
Grumman, McDonnell Douglas merged with Boeing, and Lockheed merged with Martin Marietta.

36Since many acquisitions were of unlisted firms, the figures only include the acquisition targets after
acquisition, so must be treated with more caution.
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document how one prime, General Dynamics, generated substantial wealth for shareholders

despite facing declining demand in the post-Cold War period. After tying executive pay

to stock price increases, the firm dramatically increased stock returns through downsizing,

including cutting R&D spending in half, and by shifting resources out of the defense industry

(p. 262-3, 277). Lundquist (1992) also explains how the defense industry more broadly created

value for shareholders by consolidating and reducing overall research investment. Jensen (1993)

specifically explains how these acquisitions transferred large sums to target-firm shareholders

so that they could reinvest in more productive sectors, outside of defense.

In short, there has been a big increase in concentration among prime defense contractors.

Although their profits and assets have increased substantially, this has been accompanied by

a fall in the primes’ relative innovation whether measured by citations, patenting or R&D

intensity. The key transition appears to have occurred after the Cold War ended, during the

period of lower defense budgets and consolidation during the 1990s but continued into the

period of higher spending following 9/11 and the Iraq War.

Finally, we conduct a similar analysis for the SBIR program. Since firms must be small to

participate, concentration is not a primary concern. The main concern is lock-in and repeat

contracts awarded to firms that are interested neither in commercializing innovation nor in

seeking scale in the defense market. Such firms specializing in SBIR awards are sometimes

derisively called “SBIR mills” (Edwards 2020). Figure A.3 Panel B shows that among winners

in the Conventional SBIR program, there has been a decline in relative innovation since the

1990s, similar to that for prime contractors (see Appendix A).37

This decline may be related to the difference between the findings of this paper and that

in Howell (2017) for the Department of Energy (DoE), where there are large positive effects

on innovation of winning a Phase 1 grant. One explanation is that there is more severe lock-in

of the SBIR firm base at DoD than at DoE. Indeed, we show that this is the case in Figure

A.2 Panel B. Each line shows the share of Phase 1 SBIR contract value awarded to firms that

won no contracts in the previous three years from the agency. At the beginning of the sample,

in the mid-1990s, the two lines are relatively close together, with about 35% (39%) of DoD

(DoE) awards going to new firms. The series diverges subsequently, and during the 2010s only

20-25% of DoD SBIR Phase 1 awards went to new firms. The greater lock-in at DoD might

37Furthermore, Figure A.2 panel A uses the Herfindahl-Hirschman Index (HHI) to show that the DoD
SBIR program has become more concentrated over time, with more firms winning many awards in a single
year.
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reflect the large size of DoD’s SBIR program and the many similar types of R&D procurement

contracts that DoD offers, which can be sustainably lucrative to a small research firm. The

higher incidence of repeat contracts in the SBIR offers a parallel to the consolidation among

prime contractors in the larger acquisitions programs.
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Figure A.1: Consolidation of Prime Defense Contractors

Note: This figure shows the trend of defense contractors’ consolidation since the 1980s. We first define
prime defense contractors as the top contractors between 2000 and 2020: Boeing, Raytheon, Lockheed
Martin, Northrop Grumman, General Dynamics, United Technologies Corp, Harris, and L-3. We then
identify all their acquisitions of other defense contractors starting in 1976. The blue line shows the number
of unique firms in each year, from 226 in 1976 to just six in 2020. The gray area shows the share of all
DoD contracts (in nominal dollars) that are awarded to the top eight prime defense contractors and their
acquisition targets. The total value of these contracts (in 2019 dollars) is shown in the orange line. For
example, the 226 firms accounted for about $70 billion or 33% of the total defense contract value, in 1976.
They consolidated to six companies by 2019, at which point those six accounted for $115 billion, or 35% of
the total defense contract value. Data are sourced from the Federal Procurement Data System (FPDS) and
Defense Contract Action Data System (DCADS).
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Figure A.2: Concentration of Federal Contracts

Note: Panel A in this figure shows the Herfindahl–Hirschman Index (0-10,000) for Non-SBIR Department
of Defense contracts from 1990 to 2018. Panel B shows the share of “new” firms winning awards from the
SBIR programs at the Department of Defense (DoD) and the Department of Energy (DoE). Each line plots
the percentage of SBIR contract dollars awarded to firms that have not won a contract in the last three
years. At the beginning of the sample in the early 1990s, the share of SBIR awards to firms that have not
won in the last three years are relatively similar at the two agencies, but the series subsequently diverge.
Data from DCADS, FPDS, and the U.S. Small Business Administration.

(a) Concentration of Department of Defense SBIR and Non-SBIR Contracts

(b) Share of Firms without Recent Repeat Contracts in Two SBIR Programs
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Figure A.3: Declining Relative Innovation Among U.S. Prime Defense Contractors

Note: These graphs describe patent quality for the prime defense contractors and their acquisition targets
(depicted in Figure A.1). That is, 226 firms are included in 1976, while only six are included in 2019 (as
the 226 have merged into these six). Panel A shows the total number of forward citations (solid blue line)
and outside non-prime forward citations (dashed orange line) for these firms relative to the average in the
same class-year. A value of 1 means the firm’s patents have the same number of citations as the average
patent in the same class-year. The dashed line makes two changes relative to the blue line. First, it excludes
self-citations, where the company cites one of its own previous patents. Second, it excludes any citations
from the firms in the figure (prime defense contractors and their acquisition targets). We do not count
future cites of a target firm’s patents from its future acquirer as self-cites, so the effect is not mechanical
from consolidation. Note that the prime and target share of patents in a class year has declined over time, so
there are not “fewer outside patents to cite” in a class-year (see Figure 3). Panel B repeats this exercise but
for Air Force SBIR winner firms. In this case, the dashed orange line excludes self-citations citations from
other AF SBIR winner firms. The measures in both figures are smoothed using kernel-weighted polynomial
regressions. The gray band around the relative citations represents the 95% CI. Data are sourced from the
USPTO.

(a) Prime Patent Citations

(b) Conventional SBIR Winner Patent Citations
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Figure A.4: Exploratory Patents from Prime Defense Contractors

Note: This figure describes the trend of exploratory innovation by the prime defense contractors and their
acquisition targets over time. The firms are the same set from Figure A.1. That is, 226 firms are included
in 1976, while only six are included in 2019 (as the 226 have merged into these six). The graph shows these
firms’ average share of exploratory patents relative to other firms with similar in age, size, and year. An
exploratory patent is a patent filed in a technology class previously unknown to the firm in a given year.
Age is defined as the year from the firm’s first observed patent and size is defined as the firm’s patent stock
in a given year. The measures in both figures are smoothed using kernel-weighted polynomial regressions.
The gray band around the relative citations represents the 95% CI. Data are sourced from the USPTO.
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Figure A.5: Historical Dynamics of Prime Defense Contractors

Note: This figure shows the dynamics of prime defense contractors. Panel A shows growth in the number
of granted patents for prime defense contractors and their acquisition targets (blue line) and the number of
granted patents for all other assignees (orange line) from 1976 - 2016, using data from the U.S.PTO. The teal
line shows the share of prime defense contractors and their acquisition targets’ patents in their class-year.
The number of patents is scaled by 1976 levels (1976=1). We exclude 2016–on because there is a 2-3 year
time period between application and patent award, so there are far fewer granted patents in the most recent
application years. Panel B shows the weighted average profit per dollar of R&D for prime defense contractors
compared to other Compustat firms in the same 3-digit SIC code (334 and 336). Panel C shows the growth
of profits for prime defense contractors compared to other Compustat firms in the same 3-digit SIC code
(334 and 336) relative to 1976 (1976=1) from 1976 to 2019. Panel D shows the growth of total assets, total
revenue, and R&D expenditures in constant 2019 U.S. dollars for prime defense contractors, scaled by the
1976 level. Panel A includes the prime defense contractors and their acquisition targets; Panels B, C, and
D only include the prime defense contractors and not their acquisition targets.

(a) Number of Patents (b) Profit per Dollar R&D

(c) Profits (d) Total Assets, Revenue, and R&D Expenditure
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B Small Business in U.S. Defense Innovation Spending

Small firms have long played an important and economically meaningful role in DoD innova-

tion procurement. The problem that the Open reform program seeks to address is not the

absence of small firms per se, but the decline of both innovation and new entry in the defense

industrial base. Below, we make three points. First, small firms compose a significant portion

of overall DoD procurement and DoD innovation procurement. We find that about a third

of all DoD R&D dollars goes to smaller firms. Second, large build projects like the F35 have

many small firms involved. Third, DoD innovation strategy since 2015 has centered around

smaller firms and in particular, startups. We regard this last point as the most important.

Fundamentally, DoD innovation policy today is about startups, so there can be nothing more

pertinent to defense innovation than studying the main vehicle through which they enter the

defense industrial base (SBIR and the use of SBIR by DoD’s new innovation organizations, of

which AFWERX is a cornerstone). This is not just our perspective - we document that this

is the view of leading defense policymakers.

B.1 The Share of Small Firms in Overall DoD Spending is Sub-

stantial

Small businesses play a meaningful role in DoD contracting overall and in innovation specifi-

cally. There is no consistent reporting in contracting data of business size, and small business

designations vary by contract type, firm industry, and award management system. However,

many sources indicate that small firms account for a large share of total DoD procurement. In

March 2023, a DoD official testified in Congress that ”Last fiscal year, the department spent

$85.2 billion on small business prime contracts, and nearly 25% of the department’s prime con-

tracts go to small businesses.”38 External to the DoD, Bresler and Bresler (2022) create their

own measure using a variety of data sources. They find that in 2021, small businesses were

awarded nearly $91.6 billion in defense contracts, which represents 21.4% of total procurement

of $428.6 billion.

We wish to identify innovation spending specifically, which is not available in public sources.

We obtained complete DoD procurement data to identify concrete statistics based on publicly

38See https://www.defense.gov/News/News-Stories/Article/Article/3339784/

dod-increases-efforts-to-bring-small-businesses-into-defense-industrial-base/
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available awards. We begin with direct DoD awards data (this excludes subcontracts) between

2018 and 2021 from USAspending.gov. During this period, we observe a total of 15,153,911

contracts amounting to $4,253 billion dollars. Within these data, we define R&D spending

using two methods. First, we use all contracts with NAICS code 5417, which is Scientific

Research and Development Services. Second, we use the product or service code description,

which is typically a short phrase. We label as R&D all projects whose description includes

any of the following words: “Research”, “R&D”, “Scientific” and “Science”.39 We observe

59,752 R&D contracts amounting to $472 billion dollars and we use this as a proxy for total

innovation spending.

In order to obtain information on firm employment, we link the contracts data to Dun and

Bradstreet (D&B) data using the award recipient and recipient parent DUNS numbers. Out

of all R&D contracts between 2018 and 2021, the merged sample covers 79% of total R&D

contracts and 89.6% contracted R&D dollars. Thus we can identify the size distribution for

$423 billion (about 89.6% of $472 billion) of contracted R&D.

D&B coverage improves with firm size, so this exercise will likely be biased towards a lower

share for small firms than is true in reality.40 We define a small firm as having fewer than 500

employees, based on the SBA’s criterion for SBIR eligibility. Within our merged sample of

R&D contracts, 61% were awarded to small firms. These contracts to small firms amount to

$78 billion, or 18% of the total R&D dollars. Annually, there is a slight increase over in the

fraction (and dollar amount) going to small businesses between 2018 and 2021.

Next, we turn to subcontracting data, again between 2018 and 2021. During this period, we

observe 769,527 subcontracts amounting to $916 billion dollars. Since have no description or

NAICS for subcontracts, we assume all subcontracts of direct R&D contracts are R&D-related,

which leaves us with 96,882 subcontracts worth $193 billion. We merge subcontracts to D&B

data.41 Finally, we exclude subcontracts where the direct contractor is a small businesses,

39Two examples of contract descriptions are “R&D—Defense System: Weapons (Advanced Development)”
and “Repair or Alteration of Office Buildings”. There are many small contracts that are likely R&D, but we
cannot systematically identify as such. For example, a contract with the description “Medium Unmanned
Underwater Vehicle (MUUV) Phase 1 - EDM Design & Fabrication” is categorized as NAICS 336611,
Shipbuilding and Repairing, but arguably this is innovative.

40Since some firms provide erroneous DUNS numbers or do not have DUNS numbers at all, they cannot
be merged exactly. The merge percent is roughly equal in the different years. Following the Small Business
Administration (SBA), we identify a recipient as “small” if the firm has less than 500 employees across all
establishments.

41Note that our approach undercounts R&D, because it excludes R&D subcontracts of contracts that
were not coded as R&D. The merged sample covers 80% of total R&D subcontracts and 78% of total R&D
subcontracted amount.

Internet Appendix 13



leaving 71,014 total R&D subcontracts amounting to $148 billion from 4,488 prime awards.

We observe that 65% of subcontracts in R&D contracts are to small businesses, accounting for

38.5% of subcontract value ($57 billion).

In sum, this calculation shows that small firms represents a substantial portion of innovation

procurement: putting together the direct contracts ($78 billion) and the subcontracts ($57

billion), small businesses account for 32% ( = (78+57)/423) of all R&D dollars.

This represents 66% of all R&D contracts.42

It is also worth noting that small firms produce qualitatively more innovative output. In

2019, a Congressionally mandated DoD Advisory Panel on Streamlining and Codifying Acqui-

sition Regulations released a report that concluded:43

“Small businesses produce many of the innovative capabilities, emerging tech-

nologies, and complex services DoD must acquire for warfighting dominance in a

dynamic and uncertain strategic environment. . . small companies are more inno-

vative per dollar of research and development funds spent and per employee than

large firms.”

It may seem that the small projects of SBIR are not relevant to defense innovation, which

happens inside “large build” projects such as the F35 Joint Strike Fighter. But such projects

are in practice integrations or platforms. They are composed of large numbers of subcontractors

and individual innovations—many of which are sourced from small firms. For example, consider

the F35 program itself illustrates the important role of small business in DoD procurement.

While Lockheed Martin is the primary contractor, small businesses play a major role in the

project. In Figure B.1 below, we copy the landing page of Lockheed Martin’s website for the

F35 program. Small businesses are the focus of the first substantive point (reading from left

to right). It says: “We are proud to partner with 1,650 high-tech suppliers, of which nearly

1,000 are small business corporations.”44 Note that they emphasize “high-tech,” implying a

role for these small firms in innovation.

42Among the 4,488 R&D contracts with subawards, 65% of the total subcontracts were awarded to small
businesses. Thus, out of a total of 47,399 identified R&D contracts, 28,681 contracts were awarded directly
to small businesses and another 2,917 equivalent contracts were awarded to small business through sub-
contracts.

43This report was required by the FY2016 National Defense Authorization Act. More information is here,
https://discover.dtic.mil/section-809-panel/, and the quoted section is here: https://discover.

dtic.mil/wp-content/uploads/809-Panel-2019/Volume1/Recommendation_21.pdf.
44https://www.f35.com/f35/about/economic-impact.html
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To quantify this better and generalize beyond the F35, we consider the largest projects in

the direct award data to gather a better sense of the role of small businesses in these “large

build” programs.45 We proxy for large build using the very largest ten contracts to the six

top prime contractors whose consolidation we document in our paper.46 Of these, on average

each contract has 327 unique firms as subcontractors, and their subawards represent 24% of

the total contract value, for an overall amount of $56.5 billion.

Finally, we repeat this analysis but focus on the largest R&D-specific contracts, which

proxies for the large build innovation.47 Of these, on average each contract has 118 unique

firms as subcontractors, and their subawards represent 25% of the total contract value, for an

overall amount of $11.6 billion. In sum, this exercise shows that large build projects are in

practice integrations with many firms involved.

B.2 DoD’s Small Firm Innovation Strategy

This brings us to the strategy shift that has occurred over the past two decades, with a notable

acceleration starting in 2015. Since 2015, DoD’s principal and explicit innovation strategy has

been to encourage startups to enter the defense industrial base (Kotila et al., 2022). This

shift represents an effort to go beyond the historical focus on small businesses towards a new

focus on innovative startups. The shift—and the Open reform program we study—reflect a

realization that the traditional defense sector is no longer at the cutting edge of innovation.

For example, in 2019, an Under Secretary of Defense tasking memo noted that:

“The defense industrial base is showing signs of age. The swift emergence of

information-based technologies as decisive enablers of advanced military capabili-

ties are largely developed and produced outside of the technologically isolated defense

industrial base” (Griffin 2019).

Instead, nimble startups and the venture capitalists who fund and guide them are perceived

to be at the frontier of innovation in the areas most relevant to the future of warfare, such

as autonomy, AI, quantum computing, IoT, and robotics. Military forces around the world

are focusing energies on funding and working with high-tech, small businesses that possess

45While there are actually multiple direct awards for very large programs like the F35 (as highlighted
above), since we cannot typically tie direct awards together into a single program, we use the largest direct
contracts.

46Table B.1 shows the ten largest contracts.
47Table B.2 shows the ten largest R&D contracts.

Internet Appendix 15



“dual-use” technologies with commercial as well as defense applications. For the DoD, this

has been difficult. The DoD acquisitions Advisory Panel report introduced above concluded:

“DoD’s challenges in working effectively with small businesses to address critical

needs and achieve the strategic objectives of DoD are of substantial concern. DoD

would benefit if it aligned its acquisitions from small business with its strategic

priorities. . .DoD’s small business policies and programs currently focus on acquir-

ing supplies and services that further socioeconomic goals but do not fully leverage

innovative and unique capabilities of small businesses to support DoD’s mission.”48

To address this issue, DoD’s policy shift began under Secretary of Defense Ash Carter and

has been expanded by Secretaries Mattis, Esper, and Austin. Three quotes underscore this

point. As the new policies were being rolled out, a DoD press release summarized a key speech

by Ash Carter as follows:

“To invest in the most promising emerging technologies, the department needs the

creativity and innovation that comes from startups and small businesses. This is

particularly important, because startups are the leading edge of commercial inno-

vation.” (Pellerin, 2015)

Similarly, Secretary Mattis repeatedly emphasized the importance of new, startup-oriented

programs such as the Defense Innovation Unit – Experimental (DIUx, located in Mountain

View CA). Responding to a question about how DIUx will sidestep DoD bureaucracy, Mattis

said the DIUx director “will be talking directly to my deputy secretary. . . And he will also have

direct access to me.”49 In 2021 Secretary Austin announced at the Reagan National Defense

Forum that the DoD was expanding efforts to help innovative small firms bring new technology

to the military. He specifically highlighted the SBIR, saying:

“We’re doubling down on our Small Business Innovation Research program. . .

This program helps fuel American firms to pursue R&D tailored to the Depart-

ment’s unique tech requirements. And so far this year, we’ve awarded funds to

more than 2,500 small businesses working on groundbreaking tech. We’re also

48https://discover.dtic.mil/wp-content/uploads/809-Panel-2019/Volume1/Recommendation_

21.pdf
49https://www.defense.gov/News/News-Stories/Article/Article/1276282/

mattis-impact-of-industry-innovation-will-continue-to-grow-at-dod/
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doing more to integrate the Department’s innovators into tech hubs around the

country where academics, and business leaders, and innovators thrive.”50

The vehicles for the policy change are a series of new defense innovation organizations

(DIOs). Arguably the first with a startup focus was the Defense Innovation Unit (DIU) within

the Office of the Secretary of Defense, established in 2015. In the subsequent years, DoD added

the Army Applications Lab, Naval X, AFWERX, SOFWERX (part of the Special Operations

Command), DEFENSEWERX, the National Security Innovation Network (NSIN), the Army

Venture Capital Initiative, and others. These organizations aim to reduce barriers between

defense field missions and commercially focused companies that are not traditionally defense

contractors. Among these DIOs, more than 90% of innovation contracts are to small businesses

(in part this is by construction since they primarily use SBIR to make direct awards).51

Many of these new organizations use Congressional authorization for spending through

“Other Transaction Authorities” (OTA), which do not require adherence to the arduous reg-

ulations and competition requirements that govern most contracts. Congress noted when

making these authorizations in 2016 that “We believe that expanded use of OTAs will support

Department of Defense efforts to access new source[s] of technical innovation, such as Silicon

Valley startup companies and small commercial firms.”52

The landing page of NavalX, shown in Figure B.2 below, is clear about the focus on startups

and the use of SBIR open topics. (We have highlighted the words “open topics” at the bottom,

and are showing the menu for “About Us”, which shows that the only contracting mechanism

for NavalX is SBIR.)

The program we study is at the forefront of the new strategy. Air Force Open SBIR

companies that were new to defense contracting have gone on to grow and obtain significant

military contracts. For example, Anduril’s first contract with the U.S. government was an Air

Force Open SBIR award in 2019. It went on to obtain at least $756 million in contracts from

the Navy, Special Operations Command (SOCOM), and the Air Force. Further examples

of companies that first participated in the Air Force Open SBIR program and are growing

into meaningful defense contractors are Scale AI, Epirus, Beta Technologies, Joby, and True

50https://www.defense.gov/News/Speeches/Speech/Article/2861931/remarks-by-secretary-of-defense-lloyd-j-austin-iii-at-the-reagan-national-defen/
51Based on FPDS and conversations with DoD officials. These agencies’ spending cannot be distinguished

in the public contracts data.
52U.S. Congress, House Committee on Armed Services, National Defense Authorization Act for Fiscal

Year 2016, committee print, Legislative Text and Joint Explanatory Statement to accompany S. 1356, P.L.
114-92, 114th Cong., 1st sess., November 2015, pp. 700-701.
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Anomaly.

Finally, the effort to encourage startups to participate in defense is not limited to the U.S.

For example, France’s RAPID program is similar to the AFWERX agenda, taking proposals

from small businesses that believe they have a technology relevant to defense, and making

awards swiftly (Budden and Murray (2019)). Other examples include the Joint Forces Com-

mand Innovation Hub (jHub) and Defense and Security Accelerator in the UK, the Defense

Innovation Hub in Australia, the Strategic Innovation Fund within the Canadian Department

of National Defense, and the Defense Innovation Organization in India. All of these institu-

tions explicitly focus on funding small, high-tech businesses that are not traditional defense

contractors.
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Figure B.1: Lockheed Martin’s F35 Website (Landing Webpage)
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Figure B.2: NavalX Landing Page
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Table B.1: Examples of Large Build Projects

Contractor Description Amount
(bill)

# Subcontrac-
tors

Subcontracted
Amount
(bill)

Share Amount
Subcontracted

Lockheed Martin LRIP 10 AAC $172.5 168 $0.53 0.31%
Lockheed Martin F-35 Lightning II Joint Strike Fighter $129.5 93 $1.2 0.01%
Boeing KC-X Modernization Program $41 174 $1.83 4.40%
Lockheed Martin LRIP Lot 12 $36 389 $18.9 41.57%
Electric Boat Corp. SSN 802 and 803 Long Lead Time Ma-

terial
$24.1 344 $2.82 11.82%

Lockheed Martin F-35A LRIP 15 $22.6 335 $16.5 72.83%
Boeing USN P-8A Long Lead Material $18.7 251 $3.2 17.28%
Electric Boat Corp. SSN 792 Long Lead Time Material $18.35 308 $0.23 1.27%
Huntington Ingalls CVN 80 Engineering Efforts and Steel $16.43 336 $7.38 44.92%
The Aerospace
Corp

FY19 Engineering Services $15.57 210 $0.07 0.46%

Lockheed Martin Long Lead-Time Items $14.5 42 $0.05 0.36%
Sirkosky H-60 Helicopters $13.06 180 $550 4.19%
Lockheed Martin LRIP 11 AAC $12.3 248 $2.3 19.14%
Boeing RSAF F-15 Fleet Modernization Pro-

gram
$11.05 65 $0.06 0.54%

Lockheed Martin Phase Array Tracking Radar $10.13 282 $3 29.50%
Boeing Lot 7 Full Rate Production $9.97 212 $1.59 15.92%
United Technolo-
gies

Lot 12 AAC Propulsion $8.96 26 $0.24 2.67%

Raytheon Qatar Fire Units $8.38 656 $7.27 86.82%
Boeing F-15 Development $8.33 375 $3 35.97%
Lockheed Martin Hellfire Buy 17 $6.91 201 $6.28 90.86%

Average $20.92 244 $3.85 18.4%

Table B.2: Examples of Large Build R&D Projects

Prime Recipient
Name

Prime Award Description Prime Award
Amount

Num Sub-
contractors

Subcontracted
Amount

Share Amount
Subcontracted

The Aerospace
Corporation

Engineering Services Aerospace
Federally Funded R&D

$15.57 billion 210 $72 million 0.04%

Bell Textron Inc. Future Long Range Assault Air-
craft Program

$7.2 billion 9 $390 million 5.45%

Boeing Ground-based Mid-course De-
fense Development

$7.05 billion 144 $2.66 billion 37.71%

Boeing Ground-based Interceptor & All
Up Round Systems Engineering

$5.2 billion 117 $2.27 billion 43.61%

Lockheed Martin Space Fence Program $4.78 billion 91 $1.6 billion 33.52%
The Aerospace
Corporation

Federally Funded R&D Center $4.4 billion 192 $46.4 million 1.05%

Lockheed Martin Next Generation Interceptor &
All Up Round

$3.76 billion 178 $1.41 billion 37.41%

The Mitre Cor-
poration

Federally Funded R&D Con-
tract

$3.44 billion 33 $8.77 million 0.25%

BAE Systems Tank R&D $3.32 billion 133 $1.18 billion 35.59%
Science Appli-
cations Interna-
tional

Missile Hardware in the Loop $3.29 billion 73 $1.93 billion 58.51%

Average $5.8 billion 118 $1.16 billion 25.36%
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C Institutional Details about the Open Reform

The SBIR reforms have taken place within a new organization called Air Force Ventures

(AFVentures), a business division of AFWERX.53 AFVenture’s stated goals are to leverage

private capital to deploy new innovations for the military, to expand the industrial base inter-

ested in defense, and to grow the U.S. economy. That is, they hope to address the challenges

facing military procurement identified in Section 2. The idea is that if the open approach

is successful in this context, it might be applied to the larger acquisition programs with the

hope of garnering interest in the defense market among the large tech firms in areas such as

cybersecurity and artificial intelligence. Senior leaders perceive commercial innovation metrics

as measures of successful Air Force R&D investment, with the idea that an innovative U.S.

industrial base will, in the long term, enable military supremacy, especially if the research has

early-stage ties to the defense market.

AFWERX and AFVentures are one of a number of initiatives that the Defense Department

has instituted, since about 2015, aiming to reduce barriers between defense field missions and

commercially focused companies that are not traditionally defense contractors.54 Many of

these programs make use of Congressional authorization for increased spending through “Other

Transaction Authorities” (OTA), which do not require adherence to the arduous regulations

and competition requirements that govern most contracts. Congress noted when making these

authorizations in 2016 that “We believe that expanded use of OTAs will support Department

of Defense efforts to access new source[s] of technical innovation, such as Silicon Valley startup

companies and small commercial firms.”55

More broadly, AFWERX is representative of many institutions established in the 2010s

around the world reflecting a realization that the traditional defense sector is no longer at

the cutting edge of innovation. Instead, the private sector, especially nimble startups and the

venture capitalists who fund and guide them are perceived to be at the frontier of innovation

in many areas. Important features of this entrepreneurial ecosystem are a willingness to exper-

iment and access, through both co-location as well as pecuniary and non-pecuniary benefits,

53https://www.afwerx.af.mil/
54Some of the new initiatives include SOFWERX (part of the Special Operations Command), the Defense

Innovation Unit (DIU), the Defense Innovation Board, and the National Security Innovation Network (NSIN),
the Army Venture Capital Initiative, and the Capital Factory in Austin, an incubator “tech hub” that houses
offices of AFWERX, Army Applications Lab, and DIU.

55U.S. Congress, House Committee on Armed Services, National Defense Authorization Act for Fiscal
Year 2016, committee print, Legislative Text and Joint Explanatory Statement to accompany S. 1356, P.L.
114-92, 114th Cong., 1st sess., November 2015, pp. 700-701.
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to high-skill human capital.

DoD SBIR awards are in the form of contracts. This contrasts with some agencies, such

as the DoE or the NIH, which deliver SBIR awards in the form of grants. With a grant, the

application defines the scope of work, payment is entirely up-front, and the government has

little recourse in the event that the firm does not use the money as intended. Conversely,

contracts represent a binding agreement between the government and the firm to deliver a

good or service. Payment only comes after the firm has accomplished some pre-established

milestone. Therefore, risk and liquidity are allocated differently across the two instruments.

Grants offer the firm money upfront, and the government takes the risk that the project (or

the firm) will fail. Contracts allocate more risk to the firm and require the firm to finance

the investment upfront. In the context of financially constrained startups, this may present a

challenge.

First conducted in May 2018, Open topics are the centerpiece of AFWERX’s reformed

SBIR program. Open topic solicitations contain no direction regarding the technology that

the applicant may propose. With an reference to seeking “unknown unknowns” in the solici-

tation, Open topics are designed to let the private sector do the work of identifying military

applications for its technology. The solicitation explains:

“The objective of this topic is to explore Innovative Defense-Related Dual-Purpose

Technologies that may not be covered by any other specific SBIR topic and thus

to explore options for solutions that may fall outside the Air Force’s current fields

of focus but that may be useful to the U.S. Air Force. An additional objective of

this topic is to grow the industrial base of the U.S. Air Force.”

The firm’s objective is to demonstrate the feasibility of developing a product or service with

an Air Force partner interested in potentially procuring the firm’s technology. The Phase 1

deliverable is a white paper, or report describing the outcomes of research. The Open topics

are aimed at firms already developing a technology aimed at commercial use, even if it is in

the very early stages

In contrast, Conventional topics tend to fund R&D projects nominally geared towards a

particular military use. Conventional topics are sourced primarily from the Air Force Research

Laboratory (AFRL). They are highly specific; some examples of topics are:

• “Affordable, Durable, Electrically Conductive Coating or Material Solution for Silver

Paint Replacement on Advanced Aircraft”
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• “Safe, Large-Format Lithium-ion (Li-ion) Batteries for ICBMs”

• “Develop Capability to Measure the Health of High Impedance Resistive Materials”

• “Standalone Non-Invasive Sensing of Cyber Intrusions in FADEC for Critical Aircraft

System Protection”

• “Hypersonic Vehicle Electrical Power Generation through Efficient Thermionic Conver-

sion Devices”

• “Cyber Attack model using game theory”

Each year, there are usually three solicitations, each of which has many Conventional topics

but only one Open topic since 2018. For example, in the second solicitation of 2019, there was

one Open topic and 61 Conventional topics. All Open topics are the same; there are multiple

topics because they are issued at different points in time (i.e., in different solicitations). The

pool of competitors a given applicant faces in the Open topic depends on when it applies, as

scoring and ranking are within-topic. This creates a different distributional structure in Open

topics relative to Conventional, as there are many more applicants but also far more winners.

The difference in topic structure should not bias the results towards favoring a stronger effect

in Open because we estimate the effect of winning within each program, and the cutoff point

for winning is lower in the score distribution for Open.

Open topic awards are also smaller than Conventional ($50,000 vs. $150,000) and have

shorter time frames (3 vs. 9 months). AFWERX’s belief that offering many very small awards

can be useful was in part informed by existing research finding strong positive effects on VC

and patenting from small, early-stage Phase 1 awards (Howell 2017). The fact we find larger

causal effects in Open than in Conventional cannot be explained by the difference in award

amounts since Open is less financially generous than Conventional. Note that the budget for

each of the hundreds of topics is determined before the competition, and depends on factors

such as the overall funding settlement for U.S. Air Force’s SBIR program, military priorities,

etc. Hence, the precise threshold will be competition-specific and depend on the number and

quality of the applicants for each solicitation.

This paper focuses on Phase 1, so we minimize the discussion of further awards. The Phase

2 awards of $300,000 to $2 million are intended to last 12-24 months and fund a prototype. For

all but the first two of its Open SBIR topics, AFWERX sought to encourage Phase 1 winners to
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access outside funding from either private or or government sources with a matching provision

in Phase 2. Below, we evaluate the impact of match availability separately from openness.

Figure E.11 shows clustering of awards, particularly in Phase 1, around the maximum amount.

Some firms apply for less than the maximum, apparently because firms must apply for the

amount of money required to do the work they are proposing.56 Phase 2 contracts are much

more detailed, bespoke, with higher and more varied amounts than Phase 1 (see Figure E.11).

56There is also apparently some misconception that cost will be a key factor in evaluation, despite explicit
information in the solicitation that it will not.
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D Details on Data, Sample, and Key Variables

D.1 Data Sources and Sample Construction

Our starting point is a dataset of applications and awards to the Air Force SBIR program

between 2003 and 2019. All awards are publicly available, most easily from the SBA’s website

www.sbir.gov. Our causal analysis, however, requires applications and evaluations; that is,

knowing which firms applied and lost as well as the internal scores that determine award

status for all applications. We observe complete evaluation data for all topics between 2017

and 2019, and further evaluation data for Conventional topics in select earlier years: 2003-

2007, 2015, and part of 2016. The remaining years’ data were, unfortunately, inadvertently

destroyed in 2016. The application and evaluation materials are not public information.

We analyze the effect of winning a Conventional award using all our data, but the main

focus of this paper is to compare Open and Conventional. To do this, we restrict the sample

to the three years of 2017-2019 and to firms who have not won a previous SBIR award, so

that the relevant economic environment and defense procurement factors are similar across the

sample. We start with 21,365 Phase 1 proposals across all years for which we can observe their

abstracts, restricting to 2017-2019 leaves us with 6,622 proposals. Of these 6,622 proposals,

2,753 are from applicants who have not previously won an SBIR award. Finally, 2,283 of

these 2,753 proposals are from first-time Air Force SBIR applicants. In 2017, all applicants

are Conventional. In 2019, four-fifths of applicants are Open. Table E.2 describes counts of

topics, firms, and proposals for all programs.

Conventional topics average 14 applicants and 2.5 winners (i.e., awardees). Open topics

have a very different model, leading to many applicants and winners per topic (on average, 275

and 147, respectively). Table F.1 shows similar statistics for the whole Conventional sample.

D.2 Outcome Variables

The two main outcomes of interest are subsequent VC investment and technology adoption

measured by DoD non-SBIR contracts, which correspond to the two key metrics of success

from AFWERX’s perspective. The current Air Force leadership views commercial innovation

as evidence of initial success, based on the idea that a strong U.S. industrial base (especially if

its research has early-stage ties to DoD) will ultimately enable strong defense (Williams 2020).

From an economic perspective, VC investment is a useful proxy for high-growth innovation
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potential. Although VC-backed startups make up only 0.11% of new firms, over 44% of public

company R&D is performed by formerly VC-backed startups (Puri and Zarutskie 2012, Gornall

and Strebulaev 2015).

We obtain unique private financing deals from Pitchbook, CB Insights, SDC VentureXpert,

and Crunchbase. The majority of deals come from Pitchbook, which we observe through

January 10, 2023. While there are likely VC investments that do not appear in these databases,

they are the industry state-of-the-art and are widely used (Lerner and Nanda 2020, Gornall

and Strebulaev 2020). We match firms to these datasets on name and state, and then check

manually for false positives. Clearly there may be some errors, in particular as firms can

change names. However, there is no reason the error rate should be systematically different

across Open and Conventional in the 2017-19 time frame.

The second outcome is non-SBIR DoD contracts, representing defense procurement success

in the sense that the research has led to a practical application for the military; in the DoD

jargon this is often termed “transition to programs of record.” An example of a successful

Open applicant from the perspective of “transitioning” to Air Force operations is Alabama-

based Aevum, which designs drone-launched rockets in a former textile mill. After winning

a $50,000 Open Phase 1 award in July 2019, Aevum was awarded a $4.9 million Air Force

launch contract in September 2019. An example from the Conventional program is Ascendant

Engineering Solutions. After winning a $149,000 Conventional Phase 1 award in September

2016, Ascendant Engineering Solutions has been awarded with a $7.5 million Air Force contract

for its tactical gimbals in February 2018.

To construct this outcome, we use complete data from the Federal Procurement Data

System (FPDS) and USASpending through March 2023. The FPDS dataset is a single, com-

prehensive dataset of all federal contracts. The FPDS archives were discontinued in 2021, so

we turn to USASpending for contracts from 2021 to 2023. In practice, the data obtained is

exactly the same since USASpending reports data from FPDS. We remove all non-DoD and

SBIR contracts and then match to our data on firm DUNS number. For the portion that

do not match on DUNS, we use firm name and state, and manually check for false positives.

Among the matched contracts, 64% were matched on DUNS. While it is possible that we are

missing some contracts, the error rate should be small. We restrict to contracts worth at least

$50,000 so that we do not capture very small add-on type awards or minor purchases. Among

the matched contracts, 42% of contracts by volume and 99% by value are over this threshold.

The results are similar using all matched contracts.
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We consider patents from the USPTO to assess technical innovation with potential com-

mercial applications. We match SBIR applicants to patent assignees on firm name and state.

One outcome is an indicator for the firm having any granted patents that were applied for

after the award date. That is, we use the application date (as opposed to the award date), but

we restrict to granted patents. The second measure is originality. The originality score will be

low if a patent cites previous patents in a narrow set of technologies, whereas citing patents in

a wide range of fields leads to a high score.57

We also consider the number of forward citations, which we normalize by patent class and

by year to adjust for the systematic differences across classes and years.58 Forward citations

are informative about the impact of a patent on future research. Finally, we looked at the

number of patent applications, which could represent innovation effort and is less truncated

due to the lag between application and award. We obtained application data courtesy of Liat

Belenzon, and merged these data to the SBIR data on firm name and state.

The final outcome measure is subsequent SBIR awards across all agencies, using data

from the Small Business Administration (results are similar using Air Force or all-DoD SBIR

awards). We examine whether winning one SBIR award causally increases the probability of

winning a future one, to assess lock-in to the SBIR program.

D.3 Machine learning to classify applications and topics

Here we give further details on how we measured characteristics of applications from their

text, which is used both to assign firms to technology areas and to identify the non-specificity

(i.e. openness) of topics. As noted in the main text, the raw applications data is not classified

by industry or technology. As a way of classifying application types, we make use of the

abstracts in the application proposals. We employ a machine learning algorithm called “k-

means clustering” (see Forgy (1965) in the statistics literature or Bonhomme and Manresa

(2015) in the econometrics literature) to classify each abstract based on its word “embedding.”

We first map each word of the abstract into vector space using a pre-trained model that,

based on corpuses of text, is able to identify words that are conceptually similar. For example,

the vectors for words such as “happy” and “joy” would be close in distance, while vectors for

words such as “happy” and “toolbox” would be quite distant from each other. Specifically, we

57Originality for patent i is defined as 1 −
∑

j c
2
ij , where cij is the percentage of citations that patent i

makes that belong to patent class j.
58The citations data are from the USPTO.
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use the SpaCy pipeline in Python, whose model is trained on OntoNotes with GloVe (Global

Vectors for Word Representation) vectors trained on Common Crawl.59 Each word embedding

vector consists of 300 elements where an element is a value between -1 and +1. We then

estimate the abstract embedding as the average of the word embeddings that make up the

abstract. In this way, we can capture how similar abstracts are to one another using the

average embedding. Next, we reduce the dimensionality of the abstract embeddings from

three hundred dimensions to two. We do so nonlinearly using isometric mapping, following

the framework in Tenenbaum et al. (2000).

Next, we cluster these abstract embeddings using the k-means clustering algorithm, whose

objective is to minimize the total within-cluster variance. Note that this is unlike traditional

topic modeling methods such as Latent Dirichlet Allocation, which focuses on the co-occurrence

of words within topics and within the corpus of the given text but does not take into account

the semantics and context of the words (i.e. the relationship between words themselves).

We present the two- and twenty five-cluster model. The former yields a clear dichotomy

between software- and hardware-based technologies and the latter provides narrow technology

classifications. The word clouds for the two-cluster model is in Figure E.2. The top words in

each of the 25 clusters are listed in Table E.14. They show the keywords that form a topic

cluster, with the word’s size scaled to reflect its prevalence in the topic. For the two-cluster

model we have a cluster over what could describe as “Training/Software” and one which we

could describe as “Hardware.” We remove the most prevalent 75 words across all topics from

the word clouds for clarity, as these are mostly filler words.

To calculate the “non-specificity” of a topic, we take the following steps. First, we calculate

the cossine similarity of each application embedding to the centroid of each topic. Next, we

calculate the topic’s standard deviation of cossine similarity. The higher the standard deviation

in a topic, it implies that there is considerable spread in the similarity between proposals. The

lower the standard deviation, the lower the spread in similarity between proposals in a topic.

In general, we would expect Open topics to be more non-specific than Conventional topics as

there is little restriction on what can be proposed. This is indeed what we see in practice.

We validate our approach to measuring topic non-specificity by manually examining the top

59OntoNotes is a large corpus consisting of various texts from news, conversational telephone speech,
blogs, broadcasts, and talk shows. It is available at catalog.ldc.upenn.edu/LDC2013T19. GloVe is an
unsupervised learning algorithm where training is done on global word-word co-occurrence statistics from
a corpus (Pennington et al., 2014). Common Crawl is an open repository of web crawl data, available at
www.commoncrawl.org.
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and bottom 1% of topic titles. Among the top 1% of topics by non-specificity are “Wearable

Device to Characterize Chemical Hazards for Total Exposure Health” and “Extended Weather

Measurements in Support of Remotely Piloted Aircraft.” Among the bottom 1% (most spe-

cific) are “Landing Gear Fatigue Model K Modification” and “Mitigation of Scintillation and

Speckle for Tracking Moving Targets.” This gives us confidence that the non-specificity mea-

sure indeed reflects topic specificity.
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E Additional Tables and Figures

Figure E.1: Histogram of Normalized Total Score in Analysis Sample

Note: This figure shows the distribution of each proposal’s total score relative to the topic mean, so a value
of 2 means twice the topic mean, etc. This is on our analysis sample (2017-2019).
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Figure E.2: Keywords for K-means 2 Cluster Model Scaled by Importance to Topic

Note: These figures show the keywords that are identified as a topic cluster by the k-means cluster algorithm,
where the algorithm has been assigned to find two clusters. The word’s size reflects its prevalence in the
topic.

(a) Hardware

(b) Training/Software
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Figure E.3: Continuity of Baseline Characteristics by Rank around Cutoff (Part 1 of 4)

Note: These figures show applicant firm age (top figures), employment (middle figures), and the k-means 2
cluster abstract classification which yields a software and a hardware group (bottom figures) at the time of
the application. In all cases, the x-axis shows the applicant’s rank around the cutoff for an award. A rank
of 1 indicates that the applicant had the lowest score among winners, while a rank of -1 indicates that the
applicant had the highest score among losers. The grey capped lines represent 95% confidence intervals.
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Figure E.4: Continuity of Baseline Characteristics by Rank around Cutoff (Part 2 of 4)

Note: These figures show the probability that an applicant firm is located in either San Francisco/San Jose,
Boston, or New York City (top figures), located in a county with a U.S. Air Force base (middle figures), and
woman-owned (bottom figures) at the time of the application. In all cases, the x-axis shows the applicant’s
rank around the cutoff for an award. A rank of 1 indicates that the applicant had the lowest score among
winners, while a rank of -1 indicates that the applicant had the highest score among losers. The grey capped
lines represent 95% confidence intervals.
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(b) Probability Firm Located in a County with an Air Force Base
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(c) Probability Firm Woman-Owned at Application
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Figure E.5: Continuity of Baseline Characteristics by Rank around Cutoff (Part 3 of 4)

Note: These figures show the probability that an applicant firm is minority-owned (top figures), raised
venture capital investment (VC, middle figures), and had any patents at the time of the application (bottom
figures) at the time of application. In all cases, the x-axis shows the applicant’s rank around the cutoff for
an award. A rank of 1 indicates that the applicant had the lowest score among winners, while a rank of
-1 indicates that the applicant had the highest score among losers. The grey capped lines represent 95%
confidence intervals.
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(c) Probability of Patent Before Award Decision
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Figure E.6: Continuity of Baseline Characteristics by Rank around Cutoff (Part 4 of 4)

Note: These figures show the probability that an applicant firm had any SBIR contracts after the award
decision (top figures) and had any non-SBIR DoD contracts valued at more than $50,000 at the time of the
application (bottom figures). A rank of 1 indicates that the applicant had the lowest score among winners,
while a rank of -1 indicates that the applicant had the highest score among losers. The grey capped lines
represent 95% confidence intervals.
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Figure E.7: Prevalence of Crossover Sub-scores

Note: These histograms demonstrate the substantial variation in the three sub-scores (tech, team, commer-
cialization) around the cutoff. The red bars to the right side of zero show that many unsuccessful applicants
(losers) have a sub-score that exceeds the lowest sub-score among winners. Similarly, the blue bars to the
left side of zero show that many winners have sub-scores that are lower than the highest loser sub-score.
Altogether, 81% of applicants have at least one sub-score that is a “crossover.” All topics 2017-19 are
included.

(a) Tech Score

(b) Team Score

(c) Commercialization Score
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Figure E.8: Geographic Dispersion of Applications (2017-19)

Note: These maps show the number of applications to open (Panel A) and conventional SBIR topics (Panel
B) by MSA from 2017 to 2019. The size of the bubble represents the relative number of applications. The
color gradient in both maps also show VC activity by MSA.

(a) Open Topic Applications and VC Deals

(b) Conventional Topic Applications and VC Deals

Internet Appendix 38



Figure E.9: Geographic Dispersion of Awards (2017-19)

Note: These maps show the number of awards (i.e. contracts) for open (Panel A) and conventional SBIR
topics (Panel B) by MSA from 2017 to 2019. The size of the bubble represents the relative number of
applications. The color gradient in both maps also show VC activity by MSA.

(a) Open Topic Awards and VC Deals

(b) Conventional Topic Awards and VC Deals
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Figure E.10: Lock-in for Open and Conventional over Three-Year Window

Note: This figure contains a histogram of the number of Open and Conventional applicants in categories
defined by the number of Air Force SBIR awards in the past three years. For the Open applicants, we use
2020 data so that we have three years in which to look back for lock-in. For Conventional, we use 2019
data and also look back for three years. We do not observe Conventional application data in 2020, and
this approach also aligns the sample with that of our main analysis (2017-19, where 2017 only contains
Conventional applicants).
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Figure E.11: Histograms of Award Amounts by Topic Type and Phase

Note: These histograms show the share of awards by amount, in real 2019 dollars. For the bottom right
graph (Phase 2 <2017), we omit one outlier $12 mill contract.

(a) Open Phase 1 (b) Conv Phase 1 2017-19

(c) Open Phase 2 (d) Conv Phase 2 2017-19

(e) Conv Phase 1 < 2017 (f) Conv Phase 2 < 2017
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Figure E.12: Relative Effect of Open within Narrow Subsamples by Firm Characteristic
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Figure E.13: Relative Effect of Open within Narrow Subsamples by Firm Characteristic

(a) Any High Originality Patent
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Table E.1: Use of Open Topic Awards in the SBIR Program by Agency, FY 2019-21

Note: This table shows statistics on SBIR awards by U.S. agency, from GAO (2023).

Number of Awards Dollars Awarded

Agency Open All Percentage Open All Percentage

National Science Foundation 1,481 1,481 100% $575,669,487 $575,669,487 100%
Dept. of Agriculture 327 327 100% $80,154,963 $80,154,963 100%
Dept. of Education 72 76 95% $32,617,869 $34,881,003 94%
Dept. of Health and Human
Services

3,121 4,378 71% $2,197,971,958 $3,236,558,049 68%

Dept. of Commerce 75 178 42% $14,977,936 $44,704,049 34%
Dept. of Defense 3,329 10,705 31% $1,143,431,049 $5,065,679,798 23%
Dept. of Energy 156 1,939 8% $55,220,007 $962,360,023 6%
Dept. of Homeland Security 0 128 0% $0 $56,533,211 0%
Dept. of Transportation 0 97 0% $0 $35,190,146 0%
Environmental Protection
Agency

0 98 0% $0 $16,805,499 0%

National Aeronautics and
Space Administration

0 1.631 0% $0 $566,294,601 0%

Total 8,561 21,038 41% $4,100,043,269 $10,674,830,82938%
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Table E.2: Proposal and Firm Counts

Note: This table shows the counts of topics, proposals (i.e. applications), and unique firms that applied for
the Open and Conventional programs in 2017-19 (Panel A) and 2003-19 (Panel B) in our analysis sample.

Panel A: Open & Conventional (2017-19)

Both Open Topic Conventional

Number of Topics:
Phase I 334 6 328

Number of Proposals:
Phase I 2283 1056 1227

Number of Firms:
Applied to Type 1938 1040 1443
Exclusively Applied to Type 545 495 898

Panel B: Full Sample (2003-19)

Both Open Topic Conventional

Number of Topics:
Phase I 1778 6 1772

Number of Proposals:
Phase I 21365 1648 19717

Number of Firms:
Applied to Type 6701 1361 6174
Exclusively Applied to Type 834 527 5340
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Table E.3: Summary for Continuous Measures of Main Outcomes

Note: This table describes company and outcome characteristics at the applicant level, using all proposals
in our main estimation sample, where a firm may only appear once). The left columns contain the applicants
to Conventional topics, while the right columns contain the applicants to Open topics. See Section 3 for
details on each variable. We also present the difference of means. ***, **, * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

Conventional Open

N Mean SD N Mean SD
Diff of
Means

Pre-award Outcomes
Previous DoD Contract 1,227 2.588 23.073 1,056 1.321 18.414 -1.267
Previous VC 1,227 0.023 0.149 1,056 0.097 0.296 0.074∗∗∗

Previous Patent 1,227 0.568 3.089 1,056 0.800 4.999 0.232
Previous High Originality Patent 1,227 0.266 1.693 1,056 0.344 2.741 0.078
Previous High Citation Patent 1,227 0.218 1.484 1,056 0.230 1.735 0.013
Previous SBIR Contract 1,227 0.000 0.000 1,056 0.000 0.000 0.000
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Table E.4: Summary Statistics on Firms Applying to Both Open and Conventional

N Mean SD

Company Characteristics
Age 507 16.473 12.384
Number of Employees 507 46.420 86.266
1(in VC Hub) 507 0.164 0.370
1(in County with AF Base) 507 0.250 0.434
1(Immigrant) 507 0.057 0.228
1(Minority Owned) 507 0.142 0.349
1(Woman owned) 507 0.124 0.330

Pre-award Outcomes
1(Previous DoD Contract) 507 0.574 0.495
1(Previous VC) 507 0.069 0.254
1(Previous Patent) 507 0.420 0.494
1(Previous High Originality Patent) 507 0.316 0.465
1(Previous High Citation Patent) 507 0.323 0.468
1(Previous SBIR Contract) 507 0.586 0.493
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Table E.5: Effect of a Conventional Topic among Firms that Applied to Conventional and
Open

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Conventional Phase 1 award after restricting the sample to firms that applied to Conventional at least once
before 2018 and then applied to Open subsequently. The table includes only Conventional competitions. This
isolates the effect of Conventional among a sample of firms that selected into both Open and Conventional.
We employ the five firm-level outcomes from Table 2. The coefficient on Award represents the effect of
winning in an Conventional topic within this subsample. In Panel B, we include controls for firm age and
employment at the application date, as well as a vector of 25 narrow technology fixed effects. Standard errors
are clustered by topic. ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Baseline Specification

1(DoD
1(VC) 1(Patent)

1(High 1(≥ 2
Contract) Orig Pat) SBIR)

(1) (2) (3) (4) (5)
1(Award) -0.284 -0.020 -0.219 -0.017 -0.060

(0.224) (0.075) (0.253) (0.162) (0.176)
Observations 636 636 636 636 636
Controls No No No No No
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.471 0.059 0.225 0.081 0.381

Panel B: Controls with Technology Fixed Effects

(1) (2) (3) (4) (5)
1(Award) -0.258 -0.019 -0.326 -0.086 -0.097

(0.237) (0.093) (0.314) (0.174) (0.197)
Observations 636 636 636 636 636
Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal First First First First First
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.471 0.059 0.225 0.081 0.381
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Table E.6: Effect among Firms that Applied to Conventional and Open (Pooled Model)

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Conventional Phase 1 award after restricting the sample to firms that applied to Conventional at least once
before 2018 and then applied to Open subsequently. The table includes only Conventional competitions. This
isolates the effect of Conventional among a sample of firms that selected into both Open and Conventional.
We employ the five firm-level outcomes from Table 2. The coefficient on Award represents the effect of
winning in an Conventional topic within this subsample. In Panel B, we include controls for firm age and
employment at the application date, as well as a vector of 25 narrow technology fixed effects. Standard errors
are clustered by topic. ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Baseline Specification

1(DoD
1(VC) 1(Patent)

1(High 1(≥ 2
Contract) Orig Pat) SBIR)

(1) (2) (3) (4) (5)
1(Award) -0.255 -0.026 -0.230 -0.048 -0.044

(0.155) (0.051) (0.168) (0.103) (0.116)
1(Award) × 1(Open Topic) 0.423∗∗ 0.090 0.350∗ 0.142 0.068

(0.183) (0.072) (0.186) (0.114) (0.140)
Observations 1143 1143 1143 1143 1143
Controls No No No No No
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.471 0.059 0.225 0.081 0.381

Panel B: Controls with Technology Fixed Effects

(1) (2) (3) (4) (5)
1(Award) -0.278 -0.047 -0.244 -0.066 -0.045

(0.171) (0.066) (0.175) (0.108) (0.120)
1(Award) × 1(Open Topic) 0.438∗∗ 0.110 0.362∗ 0.171 0.073

(0.199) (0.081) (0.195) (0.121) (0.147)
Observations 1143 1143 1143 1143 1143
Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal First First First First First
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.471 0.059 0.225 0.081 0.381
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Table E.7: Formal Test for Continuity of Baseline Covariates

Note: This table shows the t-test results on the marginal winners and losers (Rank = -1 or 1).

Open Conventional
(N= 422) (N= 960)

Rank = -1 Rank = 1 Rank = -1 Rank = 1

Mean Mean p Mean Mean p

Age 9.571 10.714 0.320 20.196 19.603 0.463
Employees 21.367 29.909 0.169 76.663 77.592 0.882
Firm in VC Hub City 0.172 0.202 0.434 0.168 0.168 0.999
Firm in AF Base County 0.200 0.202 0.950 0.294 0.270 0.393
Woman-owned 0.117 0.095 0.473 0.143 0.176 0.166
Minority-owned 0.117 0.116 0.976 0.092 0.093 0.949
Software 0.298 0.271 0.547 0.586 0.591 0.874
Any Pre-Appplication Patent 0.206 0.252 0.264 0.552 0.590 0.234
Any Pre-Appplication VC 0.067 0.095 0.297 0.059 0.100 0.020
Any Pre-Appplication Non-SBIR Contract 0.239 0.277 0.381 0.734 0.705 0.313
Any Pre-Appplication SBIR Contract 0.211 0.194 0.670 0.695 0.726 0.293
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Table E.8: Effect of Open vs. Conventional Among the Highest-Quality Applicants

Note: This table shows regression discontinuity (RD) estimates of the effect of winning a Phase 1 award.
Rank within the topic (competition) is controlled separately as a linear function on either side of the cutoff.
In all cases, we control for previous Air Force SBIR awards. Columns (1), (3), (5), and (7) restrict the
sample to the firm’s first application within the sample time period while columns (2), (4), (6), (8) include
all proposals over the sample time period. We interact winning an award with an indicator that is equal
to one if the proposal is in an Open topic (and zero otherwise) and an indicator that is equal to one if the
proposal is in the top 15 percentiles of scores among winners within topic (and zero otherwise). All columns
include topic fixed effects. Standard errors (in parentheses) are below coefficients and are clustered by firm.
***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Any DoD Contract Any VC Any Patent
Any High-Originality

Patent

(1) (2) (3) (4) (5) (6) (7) (8)
1(Award) -0.075 -0.017 0.003 0.004 -0.096 -0.016 -0.020 -0.026∗

(0.084) (0.015) (0.040) (0.004) (0.060) (0.014) (0.022) (0.013)
1(Award) × 1(Open) 0.189∗ 0.116∗∗ 0.116∗∗ 0.109∗∗∗ 0.184∗∗ 0.127∗∗∗ 0.089∗∗∗ 0.104∗∗∗

(0.098) (0.045) (0.057) (0.028) (0.076) (0.038) (0.031) (0.024)
1(High Rank) 0.073 0.018 0.060 0.001 -0.052 -0.039 -0.033 -0.038

(0.183) (0.044) (0.123) (0.014) (0.162) (0.043) (0.053) (0.035)
1(Open) × 1(High Rank) -0.059 -0.039 -0.031 0.022 0.046 0.022 0.023 0.031

(0.194) (0.072) (0.143) (0.057) (0.172) (0.067) (0.062) (0.051)
Observations 2283 21365 2283 21365 2283 21365 2283 21365
Proposal First All First All First All First All
Time Period 2017-19 2003-19 2017-19 2003-19 2017-19 2003-19 2017-19 2003-19
Outcome Mean 0.166 0.479 0.092 0.024 0.112 0.316 0.036 0.217
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Table E.9: Intensive Margin Outcomes

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning
a Phase 1 award on five firm-level outcomes: the total value of non-SBIR DoD contracts (column 1), total
value of VC investment (column 2), number of patents (column 3), number of patents with above-median
originality (column 4), and the total value of future SBIR contracts (column 5). All outcomes are measured
as any time after the award decision, through January 2023, and are defined as log(1+x). The coefficient on
Award represents the effect within Conventional topics, and the coefficient on Award interacted with Open
represents the differential effect of Open relative to Conventional. In Panel B, we include controls for firm
age and employment at the application date, as well as a vector of 25 narrow technology fixed effects. Panel
C includes all proposals from all years. Standard errors are clustered by topic. ***, **, * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Baseline Specification

DoD VC Num Num High SBIR
Amount Amount Patent Orig Pat Amount

(1) (2) (3) (4) (5)
1(Award) -1.378 -0.270 -0.069 -0.007 0.817∗∗∗

(1.152) (0.261) (0.063) (0.026) (0.255)
1(Award) × 1(Open Topic) 2.938∗∗ 1.079∗∗∗ 0.194∗∗ 0.089∗∗ -0.519∗

(1.374) (0.413) (0.093) (0.042) (0.281)
Observations 2283 2283 2283 2283 2283
Lifecycle Controls No No No No No
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 2.626 0.664 0.117 0.036 0.265

Panel B: Controls and Technology Fixed Effects

(1) (2) (3) (4) (5)
1(Award) -1.366 -0.258 -0.064 -0.014 0.866∗∗∗

(1.103) (0.293) (0.066) (0.030) (0.249)
1(Award) × 1(Open Topic) 2.628∗∗ 0.984∗∗ 0.165∗ 0.089∗∗ -0.546∗∗

(1.331) (0.451) (0.094) (0.043) (0.273)
Observations 2283 2283 2283 2283 2283
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 2.626 0.664 0.117 0.036 0.265

Panel C: All Proposals

(1) (2) (3) (4) (5)
1(Award) -0.271 0.027 -0.055∗∗ -0.051∗∗∗ 0.184∗∗∗

(0.186) (0.033) (0.025) (0.020) (0.059)
1(Award) × 1(Open Topic) 1.174∗ 0.678∗∗∗ 0.187∗∗∗ 0.110∗∗∗ -0.139

(0.635) (0.218) (0.057) (0.032) (0.169)
Observations 21365 21365 21365 21365 21365
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal All All All All All
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 7.451 0.179 0.480 0.279 2.144
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Table E.10: Effect on Acquisitions

Note: This table shows the effect of winning in Open and Conventional on two supplementary outcomes:
the probability that the firm is acquired (Panel A) and the log of one plus the acquisition amount (Panel
B). Standard errors are clustered by firm. ***, **, * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.

Any Acquisition Log Acquisition Amount

(1) (2) (3) (4) (5) (6)
1(Award) -0.016 -0.016 0.002 -0.069 -0.096 -0.018

(0.012) (0.013) (0.007) (0.093) (0.093) (0.026)
1(Award) × 1(Open Topic) 0.023 0.020 0.010 0.146 0.145 0.201∗∗

(0.019) (0.019) (0.014) (0.177) (0.174) (0.102)
Observations 2283 2283 21365 2283 2283 21365
Lifecycle Controls No Yes Yes No Yes Yes
Narrow Tech FE No Yes Yes No Yes Yes
Proposal First First All First First All
Time Period 2017-19 2017-19 2003-19 2017-19 2017-19 2003-19
Outcome Mean 0.018 0.018 0.040 0.083 0.083 0.082
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Table E.11: Flexible Controls for Age and Employment

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Phase 1 award on five firm-level outcomes: technology adoption measured by any non-SBIR DoD contract
valued at more than $50,000 (column 1), any VC investment (column 2), any patent (column 3), any patent
with above-median originality (column 4), and having at least two SBIR awards (column 5). All outcomes are
measured as any time after the award decision, through January 2023. The coefficient on Award represents
the effect within Conventional topics, and the coefficient on Award interacted with Open represents the
differential effect of Open relative to Conventional. Panel A controls for a quadratic function of age and
employment at the application date, as well as technology type (hardware vs. software). In Panel B, we
indicators for above median firm age and employment at the application date, as well as technology type
(hardware vs. software). Standard errors are clustered by topic. ***, **, * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

Panel A: Quadratic Age and Employment Controls

1(DoD
1(VC) 1(Patent)

1(High 1(≥ 2
Contract) Orig Pat) SBIR)

(1) (2) (3) (4) (5)
1(Award) -0.085 -0.004 -0.081 -0.011 0.094∗

(0.079) (0.045) (0.051) (0.018) (0.050)
1(Award) × 1(Open Topic) 0.193∗∗ 0.124∗∗ 0.165∗∗ 0.077∗∗∗ -0.102∗

(0.094) (0.060) (0.069) (0.028) (0.052)
Observations 2283 2283 2283 2283 2283
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.166 0.092 0.112 0.036 0.031

Panel B: Above Median Age and Employment

(1) (2) (3) (4) (5)
1(Award) -0.092 -0.015 -0.089∗ -0.014 0.092∗

(0.075) (0.046) (0.052) (0.019) (0.050)
1(Award) × 1(Open Topic) 0.177∗∗ 0.131∗∗ 0.170∗∗ 0.079∗∗∗ -0.098∗

(0.090) (0.061) (0.070) (0.028) (0.052)
Observations 2283 2283 2283 2283 2283
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.166 0.092 0.112 0.036 0.031
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Table E.12: Alternative Analysis Sample

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Phase 1 award on five firm-level outcomes: technology adoption measured by any non-SBIR DoD contract
valued at more than $50,000 (column 1), any VC investment (column 2), any patent (column 3), any patent
with above-median originality (column 4), and having at least two SBIR awards (column 5). All outcomes
are measured as any time after the award decision, through January 2023. The sample here departs from
the main analysis sample in Table 2. Here, we restrict to firms who have not won a SBIR award in the
five years prior to application, instead of the whole pre-application period. We also restrict to a firm’s first
application across both Open and Conventional topics. The coefficient on Award represents the effect within
Conventional topics, and the coefficient on Award interacted with Open represents the differential effect of
Open relative to Conventional. Panel B adds controls for the number of employees, firm age, and whether
the technology is software or hardware, as well as a vector of 25 narrow technology fixed effects. Standard
errors are clustered by topic. ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

Panel A: Baseline Specification

1(DoD
1(VC) 1(Patent)

1(High 1(> 1
Contract) Orig Pat) SBIR)

(1) (2) (3) (4) (5)
1(Award) -0.085 0.000 -0.117∗∗ -0.047∗ 0.062

(0.079) (0.042) (0.054) (0.025) (0.051)
1(Award) × 1(Open Topic) 0.197∗∗ 0.123∗∗ 0.213∗∗∗ 0.116∗∗∗ -0.086

(0.094) (0.059) (0.071) (0.032) (0.055)
Observations 2327 2327 2327 2327 2327
Controls No No No No No
Narrow Tech FE No No No No No
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.172 0.087 0.111 0.039 0.037

Panel B: Controls and Technology Fixed Effects

(1) (2) (3) (4) (5)
1(Award) -0.081 0.006 -0.117∗∗ -0.047∗ 0.065

(0.076) (0.044) (0.055) (0.027) (0.048)
1(Award) × 1(Open Topic) 0.181∗ 0.108∗ 0.201∗∗∗ 0.111∗∗∗ -0.088∗

(0.092) (0.063) (0.073) (0.032) (0.052)
Observations 2327 2327 2327 2327 2327
Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.172 0.087 0.111 0.039 0.037
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Table E.13: Main Results, Restricting to Non-Defense Firms

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a
Phase 1 award on five firm-level outcomes: technology adoption measured by any non-SBIR DoD contract
valued at more than $50,000 (column 1), any VC investment (column 2), any patent (column 3), any patent
with above-median originality (column 4), and having at least two SBIR awards (column 5). The sample
is restricted to firms identified in Pitchbook as non-defense oriented. All outcomes are measured as any
time after the award decision, through January 2023. The coefficient on Award represents the effect within
Conventional topics, and the coefficient on Award interacted with Open represents the differential effect of
Open relative to Conventional. We include controls for firm age and employment at the application date,
as well as a vector of 25 narrow technology fixed effects. Standard errors are clustered by topic. ***, **, *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

(1) (2) (3) (4) (5)
1(Award) -0.039 0.011 -0.005 -0.022 0.023

(0.030) (0.014) (0.032) (0.030) (0.031)
1(Award) × 1(Open Topic) 0.164∗∗ 0.135∗∗ 0.144∗∗ 0.123∗∗ -0.075

(0.076) (0.061) (0.072) (0.052) (0.065)
Observations 6326 6326 6326 6326 6326
Lifecycle Controls Yes Yes Yes Yes Yes
Narrow Tech FE Yes Yes Yes Yes Yes
Proposal All All All All All
Time Period 2003-19 2003-19 2003-19 2003-19 2003-19
Outcome Mean 0.591 0.067 0.450 0.304 0.551
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Table E.14: Most Prevalent Words by Narrow Technology Class

Note: This table shows the five most prevalent words in each 25 technology class classified through k-means
clustering.

Topic Word 1 Word 2 Word 3 Word 4 Word 5

0 aircraft analysis power component sensor
1 material power temperature energy use
2 software tool information environment analysis
3 sensor power range device component
4 material composite component aircraft program
5 sensor algorithm power requirement target
6 material power program component energy
7 power sensor optical device laser
8 material aircraft program research component
9 signal frequency communication algorithm processing
10 material temperature composite property coating
11 tool operation research military current
12 optical signal array frequency power
13 information tool mission operation environment
14 material coating composite surface property
15 material device power optical temperature
16 information network software analysis tool
17 material power sensor device technique
18 aircraft analysis vehicle model research
19 algorithm sensor software image processing
20 information tool environment user software
21 material temperature surface property polymer
22 algorithm sensor software information network
23 optical laser power wavelength device
24 tool training information environment research
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F Supplementary Analysis: Phase 2 and Matching

F.1 Analysis of Phase 2

In this Appendix, we consider the effect of Phase 2 awards which, as noted above, are more

generously-funded, larger-scale follow-ups to Phase 1 awards (a Phase 1 award is a necessary

condition for a Phase 2). We must be cautious, however, in interpreting the results because

the main models using data from 2017-19 Phase 1 awards have only a very short time frame for

evaluating Phase 2. Furthermore, the sample is quite small, making it impossible to perform an

analysis on Open, so we limit ourselves to Conventional Phase 2 competitions. An interesting

aspect of Phase 2 is that it enables considering the amount of award, as unlike Phase 1, there

is substantial variation in the Phase 2 award amounts (Figure E.11).

Table F.2 show RDD estimates of the effect of winning a Phase 2 award on all four outcomes

of interest. We find no effects of the Conventional topic Phase 2 on any outcome, even over

the long term (the even columns of each panel), which is consistent with Howell (2017), where

Phase 2 grants also have no effects, in part because firms with successful innovation tend to go

to the private sector for funding rather than come back to the government for research grants.

If Phase 2 is important for VC but only through a dynamic channel – via its implications

for the Phase 1 treatment effect – this would help explain both why the small Phase 1 award is

so impactful for Open and why there is no observable Phase 2 effect on VC. The expectation

of a Phase 2 award, which averages about $830,000, may help to explain the large Phase 1

treatment effect on VC. VCs may believe that if they invest, the chances of a Phase 2 award

are very high. In practice, about half of applicants to Phase 2 win, but this rises to all among

Phase 2 applicants that raised VC in the 12 months after the Phase 1 award (12 months is

roughly the period between the two phases). VC after Phase 1 may affect the Phase 2 decision

firstly because VC is one measure the evaluators use to gauge commercialization, and secondly

because the VC can provide support in the Phase 2 process. For these reasons, VCs may be

responsive to Phase 1 because they expect it to be associated with substantially more non-

dilutive cash. Under this hypothesis, there would be little marginal effect of winning Phase 2

because it has been, in a sense, “priced in” to the Phase 1 effect.
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F.2 Role of the Matching Program

In Section 5 we found a large effect of winning an Open topic contract on VC and argued

that one reason appears to be the potential of these contracts to serve as a gateway to much

larger contracts at the Air Force beyond the SBIR program, which will support technology

development and ultimately lead to off-the-shelf procurement in concert with commercial sales.

There is also a second possible reason: the SBIR Phase 2 matching program. As explained

in Section 2, an additional reform in the Open topics was to offer matching in Phase 2.

Phase 2 applicants could request additional funds to match private or government money

that they secured during the Phase 1 period. While the matching reform makes it more

difficult to establish a pure treatment effect of openness, it also offers to our knowledge the

first opportunity to evaluate a VC matching program. Researchers have long been interested in

whether government programs that match VC solve information problems for the government

agency or crowd out private capital (Lerner 2012).

Several features of the program’s implementation facilitate evaluation. First, we can re-

define the VC outcome to exclude VC investments that were matched in the Phase 2 stage.

Second, the matching was not available at all for the first Open topic, and for the second

topic, it was made available only just before firms submitted their Phase 2 applications. We

can therefore assess whether the effect of winning an Open topic Phase 1 is concentrated in the

later topics, where matching could have affected selection into applying for Phase 1. Third,

we can assess whether the causal effect of Phase 1 on VC is driven by firms that apply for a

Phase 2 match.

At the firm level, the fraction of Phase 1 winners that raised VC but never had a private

match is 6.1%. The fraction that raised VC and also obtained a private match from the Phase

2 program is 1.3%. Table F.3 provides summary statistics on the matching program within

the sample of firms that applied to Phase 2. The average confirmed private funding amount

– that is, the event for which a matching contract was awarded for up to $750,000 – is $1.3

million.60 Among Phase 2 applicants, 20.6% applied for a private match and 14.2% both won

Phase 2 and received a matching award. Private funds are categorized as either VC, which

means the matching came from an institutional VC fund or any other private source. Almost

40% of the private matches are from VC.

We are interested in whether the matching program was successful in driving subsequent

60It is also possible to have an outside government match (as the table shows, 13% of Phase 2 applicants
had matching government funds). We find no relationship between the government match and VC.
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VC, and also whether there are effects of winning an Open Phase 1 award on VC independently

of whether the firm ultimately received a Phase 2 matching contract. In Table F.4, we repeat

the main specification from Table 2 Panel A column (1) but make certain adjustments. In

column (1) we redefine the outcome variable to be an indicator for subsequent VC if the firm

did not receive a Phase 2 VC match. That is, the outcome of VC is zero if the firm did receive

VC and got it matched in Phase 2. The effect is 4 percentage points. This is 52% of the mean.

Comparing it with the main result from Table 2 of 5.2 percentage points (60% of the mean)

suggests that while matching may increase the effect, the majority of the Open Phase 1 effect

cannot be explained by subsequent matching. In column (2), we consider the complement. The

dependent variable is redefined to be zero for firms that got VC but had no private match. As

we would expect, the effect is larger relative to the mean, at 1.5 percentage points relative to

a mean of 2.7%.

Even if it does not lead to differential effects of winning, potential matching could affect

selection into Phase 1 and perhaps VC decision-making. However, this is not possible for

the topics that did not offer VC matching. We split the samples into topics that offer VC

matching (column (3)) and topics that do not offer VC matching (column (4)). There is not a

statistically significant effect in column (3). The effect in column (4), topics with no matching

offered, sees a large but not statistically significant effect of 7.4 percentage points (double

the mean). Finally, we interact winning with an indicator for the topic having no match,

and exclude topic fixed effects, in column (5). The coefficient on the interaction is small and

insignificant, reflecting the fact that the effect in topics without matching is very similar to

the effect in topics with matching.

F.3 Role of Unobservable Selection

To further examine the role selection in explaining our results, we conduct several tests. We

first consider the degree to which comprehensive controls for observables attenuate differences

in treatment effects between conventional and open programs. The key concerns for the review

team in the first round were selection based on industry and lifecycle. In Table F.5, we repro-

duce 2 columns for each of our main outcomes of interest: one without controls (Table 2 Panel

A) and another that adds controls for pre-award outcomes, pre-award firm characteristics, and

narrow technology fixed effects (Table 7 Panel A). We find that adding the full suite of controls

attenuates the effect on DoD contracts by 10%, on VC by 3%, on patents by 1.7%, on highly
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original patents by 1.7%, and on subsequent SBIR awards by 6%. Overall, this represents little

attenuation after imposing granular and economically relevant controls, so they offer comfort

that selection does not play a major role.

Next, we follow the method of Altonji et al. (2005) and Oster (2019), which uses variation

in observables to draw inferences about the likely maximum bias due to unobservables. We

make a conservative assumption that all of the variation in outcomes can be explained by

observing the full set of controls, which implies in the notation of Oster (2019) that Rmax = 1.

This is essentially a worst case scenario assumption; the lower the Rmax, the the more is left

over besides the pure treatment effect to explain variation in the outcome. To construct the

bounds, we make an additional assumption, which is that there is equal selection in observable

and unobservables (δ = 1). Note that δ represents the importance of selection on unobservables

relative to selection on observables. These assumptions are strong but standard in the literature

(Altonji et al., 2005; Oster, 2019; Finkelstein et al., 2021).

We continue to use the full suite of controls from Table 7 Panel A to learn about maximum

possible selection on unobservables. For each specification, we generate bounds, [β(Rmax, δ), β̃]

, where Rmax = δ = 1 as per our assumptions and β̃ represents the estimated coefficient using

observable controls. We present these bounds at the bottom of each column in Table F.5,

in the row labeled ”Selection-Corrected Bounds.” By construction, one of the bounds is the

estimate from the right-hand column. The other bound is a function of the coefficient change

after adding observables and the amount of variation explained by the observables, together

with the assumed Rmax and δ. Roughly, if the coefficient increases in magnitude with controls,

then δ is negative, and the estimated bound is larger, suggesting that unobservable selection

biases down the effect. The reverse is true when the coefficient declines with controls. The first

situation is true for patents, high-originality patents, and SBIR contracts, while the second

situation is true for DoD contracts and VC.

The bounds suggest that accounting for selection on unobservables could maximally atten-

uate the difference in treatment effect of winning an Open vs. Conventional award on future

DoD contracts and VC by 52% and 55% (relative to columns 1 and 3). Accounting for this

selection on unobservables would increase the difference in treatment effects on any future

patents, high-originality patents, and SBIR contracts.

We also present the degree of relative importance of unobservable selection that would

reduce the difference in treatment effects between open and conventional program to zero.

This is at the bottom of each column in Table F.5 in the row labeled ”δ”. Regardless of
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the direction of δ, we find that selection on unobservables would have to be roughly twice

as important as selection on observables to reduce differences in treatment effects on future

DoD contracts and VC between Open and Conventional to zero. We find that the selection

would have to go in the opposite direction of observable by 14× and 1.3× to attenuate the

differences in treatment effects on future patents and high-originality patents to zero. Lastly,

unobservable selection would need to go in the opposite direction of observable selection by

0.43× to reduce differences in treatment effects on future SBIR contracts to zero.61

61Another common assumption in the literature is to assume that selection on unobservables go in the
same direction as selection on observables. If we make this assumption, selection on unobservables would
never attenuate our results on patents, high-originality patents, and SBIR contracts to zero.
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Table F.1: Summary Statistics for Phase 2

Note: This table repeats the summary statistics from Table 1 for all Phase 2 proposals from 2003-2019.

Conventional Open

N Mean SD N Mean SD
Diff of
Means

Company Characteristics
Age 1,672 20.504 70.059 627 8.495 9.760 -12.010∗∗∗

Number of Employees 1,672 60.193 81.087 627 30.512 72.708 -29.681∗∗∗

1(in VC Hub) 1,672 0.165 0.371 627 0.166 0.372 0.001
1(in County with AF Base) 1,672 0.310 0.463 627 0.091 0.288 -0.219∗∗∗

1(Immigrant) 1,672 0.090 0.286 627 0.104 0.262 0.015
1(Minority Owned) 27 0.000 0.000 111 0.099 0.300 0.099∗∗∗

1(Woman owned) 732 0.060 0.238 442 0.115 0.320 0.055∗∗∗

Pre-award Outcomes
1(Previous DoD Contract) 1,672 0.464 0.499 627 0.262 0.440 -0.203∗∗∗

1(Previous VC) 1,672 0.069 0.253 627 0.158 0.365 0.089∗∗∗

1(Previous Patent) 1,672 0.532 0.499 627 0.295 0.456 -0.237∗∗∗

1(Previous High Originality Patent) 1,672 0.409 0.492 627 0.185 0.389 -0.224∗∗∗

1(Previous High Citation Patent) 1,672 0.481 0.500 627 0.131 0.337 -0.351∗∗∗

1(Previous SBIR Contract) 1,672 0.638 0.481 627 0.183 0.387 -0.455∗∗∗

Competition Characteristics
Num Proposals per Topic 776 2.192 2.115 6 107.833 61.846 105.641∗∗∗

Proposals per Winner 724 1.537 0.678 6 1.990 0.693 0.454
Non-specificity Index 556 0.088 0.212 6 0.543 0.041 0.455∗∗∗
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Table F.2: Effect of Phase 2 Award on VC and AF Contracts (non-SBIR)

Note: This table shows regression discontinuity (RD) estimates of the effect of winning a Phase 2 award on
the main outcomes within 24 months after the award decision. We include both an indicator for award and
the award amount in real 2019 dollars. Note the coefficient on the award amount is not shown here. This is
possible as the award amount varies, which it does not for Phase 1. Standard errors are clustered by firm.
***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Any DoD Contract and VC

Any DoD Contract Any VC

(1) (2) (3) (4) (5) (6)
1(Award) 0.048 0.008 0.044 -0.035 -0.036 -0.037

(0.066) (0.065) (0.066) (0.023) (0.024) (0.024)
Observations 1672 1672 1672 1672 1672 1672
Controls No Yes No No Yes No
Narrow Tech FE No No Yes No No Yes
Proposal First First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.593 0.593 0.593 0.019 0.019 0.019

Panel B: Any Patent and High Originality Patent

Any Patent
Any High-Originality

Patent

(1) (2) (3) (4) (5) (6)
1(Award) 0.089 0.070 0.061 0.053 0.040 0.038

(0.068) (0.067) (0.070) (0.057) (0.056) (0.059)
Observations 1672 1672 1672 1672 1672 1672
Controls No Yes No No Yes No
Narrow Tech FE No No Yes No No Yes
Proposal First First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.385 0.385 0.385 0.236 0.236 0.236
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Table F.3: Phase 2 VC and Government Matching (Open Topics Only) Summary Statistics

Note: This table contains summary statistics about the private and government matching among Open
Phase 2 awardees.

N Mean Median SD

Share Government Match 647 0.131 0.338
Share Private Match 647 0.145 0.353
Confirmed Govt Match Amt 79 $ 769,446 $ 600,000 $ 810,078
Confirmed Private Match Amt 23 $ 1,273,499 $ 1,500,000 $ 468,870

Share Applied Government Match 647 0.182 0.386
Share Applied Private Match 647 0.206 0.404
Applied Govt Match Amt 118 $ 680,240 $ 529,618 $ 538,458
Applied Private Match Amt 133 $ 1,355,232 $ 1,500,000 $ 940,224

Table F.4: Effect of Winning Phase 1 Interacted with Phase 2 Match

Note: This table contains regressions showing the effect of winning a Phase 1 award on measures of VC
within 24 months of the award decision interacted with indicators for private and government matching (only
available to Open Phase 2 awardees) on subsequent venture capital. In column 1, the dependent variable is
redefined to be zero for firms that got a VC match. That is, the dependent variable is zero if a firm got VC
and also got a VC match. In column 2, we consider the complement. The dependent variable is redefined to
be zero for firms that got VC but had no VC match. That is, the dependent variable is only equal to one for
firms that got VC and a VC match and is zero otherwise. Column 3 includes only those topics that offered a
match, (19.1, 19.2, and 19.3), while column 4 includes the remaining topics that did not offer a match (18.2
and 18.3). Column 5 shows the interaction. All models include topic fixed effects. The sample is restricted
to first-time applicants only. Standard errors are clustered by firm. ***, **, * indicate statistical significance
at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: VC If No VC If Any VC
Prvt Match Prvt Match

Sample: Match No Match
Offered Offered

(1) (2) (3) (4) (5)
1(Award) 0.093∗∗ 0.018 0.078 0.024 0.057

(0.037) (0.016) (0.064) (0.098) (0.062)
1(Award × Match Offered in Topic) -0.009

(0.084)
Observations 1056 1056 821 235 1376
Outcome Mean 0.132 0.031 0.183 0.162 0.152
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Table F.5: Robustness to Selection on Unobservables

Note: This table shows regression discontinuity (RD) estimates using Equation 1 of the effect of winning a Phase 1 award on the five firm-level
outcomes from Table 2. The coefficient on Award represents the effect within Conventional topics, and the coefficient on Award interacted with Open
represents the differential effect of Open relative to Conventional. The odd columns reproduce the estimates from Table 2 Panel A. The even columns
replicate the specification in Table 7 Panel A, which includes lifecycle controls (firm age and number of employees at time of application), narrow
technology controls, and “additional controls”: whether the firm had any previous non-SBIR DoD contracts, previous VC, previous patents, previous
high-originality patents, was located in a VC hub city, was located in a county with an Air Force base, whether the product is software vs. hardware.
Standard errors are clustered by topic. ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

1(DoD Contract) 1(VC) 1(Patent) 1(High-Orig Patent) 1(SBIR Contract)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1(Award) -0.086 -0.089 -0.006 -0.028 -0.087∗ -0.125∗∗ -0.014 -0.046∗ 0.093∗ 0.100∗∗

(0.081) (0.075) (0.045) (0.047) (0.051) (0.054) (0.018) (0.025) (0.050) (0.047)
1(Award) × 1(Open) 0.200∗∗ 0.181∗∗ 0.124∗∗ 0.120∗ 0.176∗∗ 0.179∗∗∗ 0.084∗∗∗ 0.098∗∗∗ -0.100∗ -0.106∗∗

(0.096) (0.089) (0.060) (0.064) (0.069) (0.069) (0.028) (0.031) (0.053) (0.049)
Observations 2283 2283 2283 2283 2283 2283 2283 2283 2283 2283
Lifecycle Controls No Yes No Yes No Yes No Yes No Yes
Narrow Tech FE No Yes No Yes No Yes No Yes No Yes
Additional Controls No Yes No Yes No Yes No Yes No Yes
Proposal First First First First First First First First First First
Time Period 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19 2017-19
Outcome Mean 0.166 0.166 0.092 0.092 0.112 0.112 0.036 0.036 0.031 0.031
R2 0.191 0.335 0.129 0.185 0.143 0.303 0.080 0.223 0.266 0.285
Selection-Corrected Bounds [0.095, 0.181] [0.056, 0.120] [0.179, 0.192] [0.098, 0.171] [-0.365, -0.106]
δ 2.086 1.843 -14.594 -1.346 -0.430
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