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Abstract

Implied Volatility Surface (IVS) prediction is critical for options
hedging, portfolio management, and risk control. These applica-
tions encounter significant challenges, including imbalanced data
distributions and inherent uncertainties in forecasting. Recent ad-
vances relying on deep learning have led to significant progress in
addressing these issues. However, several key problems have not
yet been solved: (i) Moneyness and maturities of traded options
change over time. Therefore, proper spatio-temporal alignment is
an essential prerequisite for the downstream forecasting exercise.
(ii) Different regions of the IVS are unevenly informed because
of liquidity constraints and therefore should not be modeled uni-
formly. (iii) The complex interconnections among data points in
the IVS from various perspectives—such as the well-known ‘smirk’
patterns across dimensions—are neither explicitly addressed nor
effectively captured by existing models. To address these issues, we
propose a novel end-to-end heterogeneous cross(x)-view aligned
graph attention network (Hexagon-Net), which aligns histori-
cal IVS data, learns distinctive IVS patterns, propagates predictive
information, and forecasts future IVS movements simultaneously.
Extensive experiments on stock index options datasets demonstrate
that Hexagon-Net significantly and consistently outperforms the
previous approaches in IVS modeling and deep learning. Addi-
tionally, we present further experiments—such as ablation studies,
sensitivity analyses, and alternative configurations—to explore the
reasons behind its superior performance.
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1 Introduction

Volatility, a key factor influencing option prices, has attracted sig-
nificant research interest from both academia and the financial
industry. Accurate modeling and forecasting of volatility are essen-
tial for informed decision-making across a variety of investment
activities, including option pricing and hedging, as well as portfo-
lio and risk management. In particular, implied volatility—derived
from the Black-Scholes option pricing model [5]—provides valu-
able forward-looking insights into the underlying markets. The
implied volatility surface (IVS) for a given underlying asset consists
of a three-dimensional set of implied volatility values that vary
with time-to-maturity (r) and log-moneyness (m), which depends
on the spot-to-strike price ratio S/K. Predicting the IVS (see Fig-
ure 1) is therefore critically important for downstream investment
applications.

Over the past decades, numerous IVS models have been de-
veloped, including stochastic volatility models [12], parametric
approaches [9], and nonparametric methods [7], among others.
Although these models are mathematically rigorous and econom-
ically meaningful, their simplified frameworks often struggle to
fully capture the complex and evolving dynamics of the IVS. With
the rapid advancements in deep learning (DL) techniques, recent
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IVS Prediction
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Figure 1: IVS prediction aims to predict the next IVS given
historical data.

applied studies have shown promising potential for using these
methods to improve IVS prediction [1, 22, 26, 32, 17, 31, 6].

Despite of the significant progress made, several challenges re-
main for IVS prediction. First, only a limited number of options are
actively traded on a daily basis, implying that the set of time-to-
maturity (r) and log-moneyness (m) values are neither continuous
nor consistently available over time. As a consequence, the IVS
data are not aligned across both the cross-sectional and time-series
dimensions. Traditional approaches for addressing this misalign-
ment either lack generalizability and stochasticity—such as the
deterministic volatility function [9]—or fail to accommodate the
heterogeneity inherent in the data, as is the case with the Nadaraya-
Watson estimator [14]. Second, thin option markets at certain strike
prices and maturities result in varying degrees of informativeness
and distinct dynamics across different regions of the IVS, under-
scoring the need for models to learn and distinguish meaningful
features from the data. Third, existing models often fail to explic-
itly consider or effectively capture the interconnections between
data points from different perspectives of the IVS—such as term
structure patterns. In summary, the effective propagation of predic-
tive information across the spatio-temporal structure of the IVS is
essential for accurate modeling and forecasting. Yet, this remains in-
sufficiently addressed in the existing literature, leading to unstable
or suboptimal predictive performance.

In this paper, we propose an end-to-end heterogeneous cross(x)-
view aligned graph attention network, Hexagon-Net, to tackle the
above mentioned challenges simultaneously in IVS reconstruction
and prediction tasks. Our contributions are summarized as follows:

(1) We propose a heterogeneous graph grid alignment mod-
ule that constructs a unified grid to aggregate information
from individual options and subsequently propagates the
processed information back to them. This mechanism is cru-
cial for enhancing model performance, as it (i) addresses
inconsistencies in data availability, (ii) enables the transfer
of richer feature representations from highly liquid options
to thinly traded ones, and (iii) facilitates the learning of dis-
tinct feature representations across different regions of the
IVS.

(2) Given the large number of data points on each surface, it
is challenging to extract valuable signals from noisy or am-
biguous option features while preserving the well-known
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smirk patterns [30]. To tackle this, we introduce a Cross-
View Transformer (CVT) module that captures and inte-
grates economically meaningful multi-scale spatio-temporal
relationships—both within the IVS across log-moneyness
and maturity, and across IVSs over time. In addition, we
enforce no-arbitrage constraints on the IVS.

(3) Through extensive experiments and ablation studies on three
of the most prominent stock index options datasets—S&P500,
NASDAQ100, and STOXX50—we demonstrate that the pro-
posed Hexagon-Net significantly outperforms a wide range
of baselines. These include traditional IVS benchmark mod-
els from the mathematical finance literature, models incor-
porating standard DL techniques, and state-of-the-art DL
approaches for time-series forecasting. Moreover, the results
are robust across different forecasting horizons and under
various sensitivity analyses.

(4) To better understand the superior performance of the pro-
posed Hexagon-Net, we compare it against its variants
augmented with additional contrastive and stochastic learn-
ing components, designed to handle the heterogeneous and
evolving nature of market liquidity. This analysis shows
that these enhancements offer little to no statistically signifi-
cant improvement in accuracy or stability over the standard
Hexagon-Net.

2 Related Work

Existing literature in the finance domain primarily relies on linear
techniques to model IVS dynamics. For example, [7, 23] apply Prin-
cipal Component Analysis (PCA) to IVS data and show that the first
three eigenmodes are both economically meaningful—interpretable
as loadings on common latent factors—and statistically sufficient to
capture most of the variation in the IVS. These eigenmodes approx-
imate the IVS through linear combinations, with their temporal
evolution modeled using autoregressive processes. Acknowledging
the degenerate nature of IVS data, [10] propose a semiparametric
factor model that captures local IVS dynamics by exploiting ex-
piry effects. Stochastic volatility models [4] are also widely used in
mathematical finance. The Stochastic Volatility Inspired (SVI) model
introduced by [11] imposes no-arbitrage conditions and performs
well on real-world data. [13] further refine the SVI framework by
simplifying the arbitrage constraints, resulting in the SSVI model.
More recently, [3] improve the performance of traditional paramet-
ric models by using a neural network to model the residuals.

In recent years, both academics and industry practitioners have
increasingly turned to machine and DL methods for IVS prediction,
yielding promising results. For instance, [32] incorporate prior
domain knowledge by proposing a novel activation function that
accounts for the volatility smile. However, their approach does not
explicitly capture IVS dynamics when mapping r and m to implied
volatility. [1] integrate a standard arbitrage-free IVS model with a
neural network architecture, demonstrating robust performance
even when the IVS data are sparse, noisy, or erroneous. [31] apply a
variational autoencoder (VAE) to learn IVS feature representations,
followed by an LSTM model for IVS prediction.
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Cross-View Transformer
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Figure 2: Architecture of Hexagon-Net. We use heterogeneous graph neural networks to align historical data onto a unified
grid. After aligning all historical IVS using the same grid, we feed the aligned IVS data into CVT, which considers the Inner-IVS
relations and Inter-IVS dynamics from different views. Finally, the information is propagated to each option using the obtained

grid features in order to predict the IVS.

3 Implied Volatility Surfaces

Let Py (K, 7) denote the market price of a European option with
time-to-maturity 7 > 0 and strike price K > 0.Let S, K, 7, o, r, and §
represent the underlying asset price, strike price, time-to-maturity,
volatility, risk-free rate, and dividend yield, respectively. Under the
classical Black-Scholes framework, the price of a European call
option is given by

Pps(S.K,7,0,1,8) = Se 7 ®(dy) — Ke " ®(dy),

where
In() + (r =8 +0.50%)7
= 7 :

and @(-) denotes the cumulative distribution function of the stan-
dard normal distribution. A similar formula applies for the price of

di dy =d1 — oV,

European put options.

The implied volatility of an option is then defined as the value
of o that solves Pps(S, K, 7,0,r,8) = Pyit(K, 1) given observed
market prices. The collection of implied volatilities across different
strikes and maturities at a given time defines the IVS.

3.1 IVS Modeling and Prediction

The IVS at time ¢ is represented by I; € RN:X3 where N; denotes
the number of available option observations at time t. Each row in
I; corresponds to an option characterized by three features: time-
to-maturity (7), log-moneyness (m), and implied volatility (o). We
define G; € RNt*2 a5 the grid of inputs in the (r, m) space, and
V; € RNt as the corresponding implied volatilities.

AnIVSis modeled as a function of r and m. We fit the model using
a lead-lag sequential setup: given historical data Iy.7 = [L, ..., IT],

grid Gr41 = (7, mi)f\g“ for the next period, and time embedding
T1.7+1, we aim to predict V71 using a predictive model f; i.e.,

Vra1 = f(r Grets Tire13 0)s

where 6 is a set of model parameters.

Moreover, besides future IVS prediction we train the model si-
multaneously on a second task, namely IVS mask reconstruction.
For the future prediction task, the model ingests the complete se-
quence I;.7. For the mask reconstruction task, we input IVS data
with certain points masked: at each time ¢, we randomly select
Nt mask = LpN: | points to mask, while the remaining Ny — Ny a6k
points remain visible. Here, p € [0, 1] is the mask probability (set
to 0.1 in our experiments) and | -| denotes the floor function.

3.2 Static Arbitrage-Free Conditions for IVS

Absence of static arbitrage is a fundamental assumption in asset
pricing, implying that investors should not be able to extract risk-
free, costless profits from inconsistencies among the market prices
of an asset. The literature has identified necessary and sufficient
conditions to ensure that the IVS is free of static arbitrage. Following
the approach of DeepSmooth [1], we incorporate these conditions
(see Appendix A) by applying soft constraints as penalty terms in
the loss function, see also [8]. Additional implementation details
are provided in Subsection 4.5.

4 Methodology

We present the proposed Hexagon-Net in Figure 2. Given a se-
quence I;.7 of historical IVS data, we introduce a heterogeneous
graph grid aligner that first constructs a unified grid to aggregate
IVS information from individual options and then propagates the
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processed information back to each option. In addition, a cross-view
feature extraction strategy is employed to capture and fuse multi-
facet spatio-temporal relations—both inter-IVS dynamics over time
and intra-IVS structure across log-moneyness and maturity—while
respecting the characteristic “smirk” patterns via learnable, dy-
namic weights.

4.1 Heterogeneous Graph Grid Aligner

4.1.1  Motivation. Considering the changing grids required for IVS
at different times, we introduce an aligner based on heterogeneous
graph neural networks (Figure 2). We incorporate a virtual align-
ment grid that transfers IVS information to adjacent grid points
for alignment. After learning the aligned grid features, these are
propagated back to the actual data nodes, where a neural network
is used to predict the implied volatilities.

4.1.2  Grid design. To construct a unified grid over the entire his-
torical IVS data, we partition the (7, m) space into a fixed, aligned
grid of size A X B, where A and B denote the number of discretiza-
tion levels along the time-to-maturity (r) and log-moneyness (m)
dimensions, respectively., i.e.,

G = {(T,m) |reG", me g’”}.

Here, G* consists of A reference points selected according to the
empirical percentiles of the 7 observations, such that each interval
between consecutive points contains approximately the same num-
ber of 7 values. Similarly, G™ consists of B points according to the
empirical percentile of the m observations. In our implementation,
we set A = 25 and B = 40, resulting in A X B grid nodes per IVS
graph.

4.1.3 Construction of Heterogeneous Graphs. The IVS graph con-
sists of two types of nodes: real (data) nodes Vy and grid nodes V,
(constructed in Subsection 4.1.2). In the next subsections, we shall
define three types of edges to capture interactions between these
nodes: bidirectional edges Rgesg between grid nodes, unidirectional
edges from real nodes to grid nodes Ry, and unidirectional edges
from grid nodes to real nodes Rg_m
Each node v is associated with two key attributes, time-to-maturity

7 and log-moneyness m, as well as a feature vector. Each edge sim-
ilarly carries its own feature vector. The node attributes capture
relevant properties of the IVS, while the edge attributes are ob-
tained by calculating the absolute differences of the corresponding
key attributes (7 and m) between the connected node pair.

4.1.4  Grid Node-Grid Node Connection. We denote the connectiv-
ity among grid nodes by Rjeq, with the corresponding adjacency
matrix defined as I(z; = 7; V m; = mj). It is worth noting that
the precise form of grid connectivity is not consequential in what
follows, as grid nodes do not directly communicate with each other.

4.1.5 Real Node-Grid Node Connection. To enable information flow
from real nodes to grid nodes, we define directional connections
between nodes v; € Vy and v; € Vg when they are close in the
(7, m) space. Note that these connections are directional and in
particular R;—¢ and Ry, do not necessarily represent the same
edges.

We first compute the distance matrix Dyg between all real and
grid nodes, using the Euclidean distance in the (7, m)-space. The
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adjacency matrix Ay, which defines connections from real to grid
nodes, is then given by A;’i)g =1(j = arg ming D;gc), i.e., each real
node is connected to its nearest grid node. Similarly, we consider
the adjacency matrix Ag_; for the reverse directional connections.

4.2 Propagation from Real Nodes to Grid Nodes

Using a heterogeneous graph network, we propagate information
from the real nodes in V; to the grid nodes in V via edges in the
relation set Ryg.

For a given grid node, we consider all real nodes that are con-
nected to it. For each such real node, a message function computes
two feature vectors, h and fz based on the input attribute x of the
real node and the edge attribute x, associated with the connecting
edge:

Message,_,, (x,xe) = (h, h) .

The message function is implemented as a multi-layer perceptron
(MLP).

Each connected real node contributes a pair of intermediate
features, (K, k'), where h' is the candidate node feature and A’
determines its aggregation weight. These features are aggregated
using a weighted sum:

h= Aggregate, ({(hi, fli)}) = Z aih’,

1

where the sum ranges over all real nodes connected to the given
grid node. The weights a; are computed using another MLP fi—g 1

applied to the edge features h! and normalized via a softmax:
exp (ﬁag,w(};i))

% exp (o))

Finally, the feature of the grid node is updated by adding the
aggregated message to its existing feature:

a; =

hy = Update, (hg, h) = hg +h,

where hg is the current feature of the grid node, and h is the aggre-
gated message from neighboring real nodes.

Each MLP employed in this study is a three-layer fully connected
network with a default hidden layer size of 64. The activation func-
tion used between consecutive linear layers is GELU.

4.3 Cross-View Transformer (CVT)

4.3.1 Motivation. The CVT architecture is tailored to the distinc-
tive characteristics of the IVS. Implied volatilities typically display
a smile-shaped profile as a function of log-moneyness m for fixed
time-to-maturity 7, and exhibit similar structure across varying ¢
for fixed m. This empirical behavior motivates the design of CVT to
effectively capture such “smirk” patterns and to learn economically
meaningful feature representations from multiple perspectives of
the IVS.

To address the computational challenges posed by the thousands
of data points in each IVS, we employ a convolutional multi-head
attention mechanism (Conv-MHA). It reduces computational com-
plexity by a factor of k X k, where x denotes the kernel size of the
convolutional layers. In our implementation, we set k = 4.
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4.3.2  Cross-View Design. The structure of CVT is illustrated in
Figures 2(b) and (c). We begin by projecting the aligned IVS graph
into a hidden feature space H* € RT*P*C using an MLP, where
P = A X B is the number of grid points and C denotes the hidden
layer dimensionality.

Subsequently, L (in our implementation L = 2) cross-view layers
are applied to hierarchically extract cross-view features, allowing
us to incorporate information from multiple views in each layer.

As depicted in Figure 2(b), the historical IVSs I;.7 are defined
over the triplet (7, m, t). We define a view of the historical IVS as
a dependent variable of a subset of (z,m, t). In the I-th layer, the
hidden representation from the previous layer, H'~1 € RTXPXC jg
first reshaped to H!~1% € RN*SXC gnd passed into the View-Enc
module. Here, N is the view-specific sample size, and S denotes
the view length, which varies across views.

For instance, in the r-view, the tensor H -1 g reshaped such
that N =T X Band S = A, corresponding to T time points and B
log-moneyness levels. The set of views utilized in CVT is {7, m, t}.
After encoding, the resulting hidden feature H\l,iew for each view is
reshaped back to the original dimensionality RTXPXC for further
processing.

4.3.3  View-Enc. The architecture of the View-Enc module is pre-
sented in Figure 2(c). At the [-th layer, View-Enc receives as input
the hidden feature tensor H'=1 € RN*SXC from the previous layer.
These features are first normalized and then passed to Conv-MHA,
illustrated in Figure 2(d).

Within Conv-MHA, the input is first linearly projected to form
a query matrix Q' € RNXSXC To compute the key matrix X' €
RNXLS/KIXC and the value matrix V! € RVXLS/KIXC e apply
a one-dimensional convolution over the sequence dimension:

—bK+ZH1 w ]”C,

_ 1V [—1v,7V
(Vj—bj+ZH W)

J»e’

where b% bV € RC are bias vectors and WK, WV € RCXKXC gre
convolution kernels with both kernel size and stride equal to k.

This convolutional mechanism enables the model to extract local
structure from the feature sequence while simultaneously reducing
its length, thereby improving computational efficiency.

Following the convolutional encoding, the multi-head attention
(MHA) mechanism captures both intra-IVS dependencies and inter-
IVS dynamics. The attention output is computed as:

Ql (7<I)T

hmua = softmax | ——— | V",
dy

where dy denotes a scaling factor that stabilizes gradients by ad-
justing for the dimensionality of the feature space [24]. After layer
normalization and transformation by an MLP, the resulting hidden
features are denoted by H: . !

view "

4.3.4 Cross-View Attention Weighting. Simple aggregation strate-
gies such as summation or averaging fail to account for variations
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in the informativeness of features across different views when mod-
eling and predicting IVS. To address this, we design an attention-
based weighting mechanism that dynamically allocates weights
across views.

Given N, view-specific feature representations (here, N = 3),

1 1 TxPxC
Hv1ew1 HVlewN eR ’
we compute attention weights as
Ltp
Lt,p eXp(dwew )
view;

= —l ’
I3 exp(dyich )
where

view; view;

d"? 9T GELU (H bp W+r)

with learnable parameters W € REXC T € RE, and ¥ € RE. Here,
Lt,p
H

view;

step t, and grid index p. The final fused feature is then obtained by
a weighted sum:

€ R€ denotes the feature vector for view i at layer I, time

H”’P Z Lt,p lt,p

Wyiew; j v1ew A

4.4 Propagation from Grid Nodes to Real Nodes

After feature learning has been performed on the grid nodes—either
through reconstruction of masked values or prediction of future
values—the resulting grid node features are propagated back to the
real nodes. This step enables the reconstruction or prediction of
the IVS at real locations. We propagate information from the grid
nodes in Vs to the real nodes in V; via edges in the relation set
Rg—r.

For a given real node, we consider all grid nodes connected to
it. (Usually this is only one single grid point.) For each such grid
node, a message function computes a pair of feature vectors, h and
h, based on the grid node feature and the associated edge attribute:

Message, _,(h, he) = (x,X),

where the message function is again implemented via an MLP.
Each connected grid node contributes a message (x*, ') to the
real node. These are aggregated using a weighted sum:

X = Aggregate, ({(xi, JEi)}) = Z aix’,

1

where the sum is over all grid nodes connected to the real node.
The attention weights a; are determined by applying another MLP
fg—r,w as follows:

exp (fg—)r,w(fli))
a; = .
%y exp (fyomw(h)

Finally, the updated feature x] for the real node is computed
using a residual update:

x; = Update, (xr,X) = xy + X,

where x; is the real node feature before the update.
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4.5 Static Arbitrage-Free Loss

In addition to the alignment grid G?! used for historical IVS match-
ing, we design two auxiliary grids, G4 and G, to enforce static
arbitrage constraints. Specifically, G>* targets Conditions 3 and
4 of Proposition 1 in Appendix A, while G targets Condition 5.
Full details of the grid construction are provided in Appendix B.

Conditions 1 and 2 are satisfied due to the use of SoftPlus activa-
tions in our neural architecture, which guarantees non-negativity
and twice differentiability. Condition 6 is not applicable as we model
the implied-volatility function only for strictly positive time-to-
maturity 7 > 0. To enforce the remaining static no-arbitrage con-
straints, we define the following loss terms:

1
£C3 = | gC34| Z

max (0, —lc,1(m, 7)),

(T,m)egC34
1
Loy = W Z max (0, —lpyt(m, 7)),
(T!m)egcw
1
Les = 1655 Z |05mort (m, )],
(z,m)eGs

where |GC%| and |G| denote the respective numbers of grid
points. The total static arbitrage-free loss is defined as the sum of
these components:

Lsar = Lo+ Leg + Les.

4.6 Prediction and Loss Function

Let X141 denote the real node features, obtained through the mes-
sage propagation mechanism described in Subsection 4.4, which
provides information from grid nodes to their corresponding future
real nodes. The prediction of the IVS is then given by

VT+1 = fo (X741, G141, T1:T41)

where f; is implemented as an MLP. An analogous formulation is
used for the masked IVS reconstruction task.

The training objective for Hexagon-Net is a combination of the
IVS prediction loss and the static arbitrage-free loss:

Lpred = MSE(Vr41, Vra1) + B+ Lsar.

Here MSE denotes the mean squared error between the predicted
or reconstructed IVS and the ground truth, and f is a hyperpa-
rameter controlling the strength of the arbitrage penalty. For the
masking task, we have an analogous expression with the same
hyperparameter S.

5 Experiments
5.1 Datasets

Following [2, 32], we conduct empirical experiments on stock index
options using data for the S&P 500, NASDAQ100, and STOXX50 in-
dices. These markets are well-suited for benchmarking due to their
deep liquidity, as evidenced by consistently high trading volumes,
although certain regions of the IVS may still suffer from sparse
observations. We obtain daily option data from OptionMetrics,
spanning the period from January 2010 to June 2019, and clean and
pre-process the dataset following the approach in [21].
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While we focus here on European-style equity options, the pro-

posed methodology is applicable to options on other asset classes—such

as foreign exchange and commodities—provided the markets are
sufficiently liquid for implied volatilities to reflect true market con-
ditions. This requires that trade quotations permit the extraction
of implied volatilities; for example, in foreign exchange markets,
major investment banks provide reliable implied-volatility data.

5.2 Experimental Setup

We train, validate, and test all models on the three datasets to assess
the qualitative robustness of the experimental results. Each dataset
is partitioned into non-overlapping sub-samples of 150 trading days.
Within each sub-sample, we further divide the data into training,
validation, and testing sets using a 4:3:3 ratio. Model optimization
is performed using the Adam optimizer with a fixed learning rate
of 5 x 107%. All models are trained for 30,000 epochs. At each
epoch, the model parameters yielding the best performance on the
validation set are selected and subsequently evaluated on the test
set. Each model is jointly trained and evaluated on two tasks: future
prediction and mask reconstruction of the IVS.

We evaluate model performance using the Root Mean Squared
Error (RMSE) and the Mean Absolute Percentage Error (MAPE),
defined respectively as

. 1<,
RMSE(4,y) = - Z(yi -4i)?,
i=1

N 1< |di—yi
MAPE(7,y) = —
@y =3

i=1

>

Yi
where n denotes the number of data points to be reconstructed or

predicted. Lower values of RMSE and MAPE indicate better model
performance.

5.3 Baselines

We compare Hexagon-Net against a suite of baselines spanning
three main categories:
(1) Mathematical Finance (MF):

e SSVI [13]: An enhanced version of the SVImodel [11], which
incorporates simplified no-arbitrage constraints for model-
ing IVS.

(2) DL Methods with a Time-Series Focus:

e Transformer [24]: A foundational architecture leveraging
self-attention.

e GAT [25]: Utilizes Graph Attention Networks to learn rela-
tionships.

e DA-RNN [18]: Incorporates a temporal attentive aggrega-
tion layer utilizing recurrent recurrent neural networks

e DLinear [29]: Employs a decomposition approach combined
with linear layers.

e NLinear [29]: A simple linear baseline using additive up-
dates to shift model prediction towards ground truth.

e Autoformer [27]: Leverages an autocorrelation mechanism
to learn inter-series dependencies, together with seasonal-
trend decomposition.

e FEDformer [34]: Proposes a frequency-enhanced Trans-
former with reduced computational complexity.
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Table 1: IVS Prediction Performance (%). Bold indicates the best result.

S&P500

NASDAQ100 | STOXX50

‘ Mask Reconstruction

Future Prediction

‘ Mask Reconstruction ‘ Future Prediction ‘ Mask Reconstruction

|
‘ Future Prediction
\

Model RMSE MAPE | RMSE MAPE RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE

MF SSVI | 3144032 9274099 | 3.13£032  9.2240.99 | 323+0.27 9174105 | 3.20£027 9.23+1.06 | 3.78+0.44 12.46+2.22 | 3.84+048  12.58+2.23
TS | Transformer | 3.84+0.14 10.99+0.63 | 3.13£027  8.67+0.52 | 3.86+0.48 11274152 | 3.18+055 8.89+1.36 | 3.70£0.33 1168119 | 3.25+0.33  9.85+1.04
GAT 3.0540.84  8.75%0.65 | 221x0.08  6.93+0.16 | 3.2740.10 952043 | 2.50+0.10 7.87+0.38 | 345037 1059095 | 3.11x0.36  9.65:0.90

DA-RNN | 282+0.11 8.60£048 | 2.25+0.08  6.8740.22 | 329015 9.59£036 | 2.51%0.10 7.86£0.30 | 3.43£0.12 10.71£039 | 3.06£0.16  9.5520.51

DLinear | 3.2040.41 10.10£0.87 | 279+0.60 8.21+1.48 | 3.1240.06 9.55+0.20 | 242+0.10 7.39+0.26 | 333007 1033036 | 3.05£0.19  9.14x0.44

NLinear | 3.16+0.18 10.15£0.64 | 2712029  8.22+0.90 | 3.72+0.20 10.93+0.54 | 3.03+0.29 851x0.45 | 3.73x0.30 1146100 | 3.53+0.44  10.57+1.65
Autoformer | 5.01£032 19.36+1.64 | 2474016  7.64£041 | 5.04+0.16 17.30+0.60 | 830£0.36  7.74+0.17 | 476+0.13 16.86+0.51 | 3.09£029  9.640.67
FEDformer | 283+0.08 8.94£031 | 2.27+0.07  7.13£0.27 | 327013  9.94+0.40 | 2.5740.10  7.93£042 | 3.42£0.12 10.62£0.45 | 3.00£0.15 933037

Informer | 2.8240.09 9174043 | 2242010  7.10+0.33 | 3.31x0.09 9.95:036 | 2.57+0.12  7.91%0.42 | 3.24x0.08 1031034 | 2.83+0.10  8.83+0.27

AST 247£035 764186 | 2.12+0.32 630148 | 3.13£0.06 9.35:0.19 | 246+0.06 7.83+0.26 | 3.32+0.21 10.25+0.45 | 3.07£025  9.490.67

DL-IVS | DeepSmooth | 2.71£0.68  6.68+2.01 | 2.7040.68  6.66x1.99 | 3.33+1.05 9.30+4.38 | 330£1.06 9.45+450 | 3.73+0.71 10.79+3.11 | 3.80£0.76  10.87+3.21
Multi 2.80£0.06  8.99£0.28 | 574+0.12 18.09+0.68 | 3.12+£0.09 9.28+035 | 578+0.12 19.70+0.41 | 3.81£0.31 13.46£136 | 6.56£0.23  23.10+0.84
VAE-DNN | 279+£0.08 8.25:027 | 2.43%0.12  7.5240.35 | 3.11£0.10  9.32+0.23 | 24440.08 7382015 | 3.30£0.12 10.29+039 | 338012  10.38+0.39

| Hexagon-Net | 1.74+0.03  4.96+0.14 | 0.85£0.10 1.97+0.33 | 2.42+0.03 5.57+0.08 | 0.92£0.06 2.00+0.44 | 2.01+0.04 5.15+0.14 | 0.86:0.03  1.96:0.27

Table 2: Ablation Study on Two Main Modules. Bold indicates the best result.
| S&P500 | NASDAQ100 | STOXX50

‘ Future Prediction ‘ Mask Reconstruction ‘ Future Prediction ‘ Mask Reconstruction ‘ Future Prediction ‘ Mask Reconstruction

Model | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE
HGA DFW 239+0.04  6.58+0.15 | 1.43£0.06 4264022 | 248£0.04 7.07+0.15 | 1.62£0.04 4.61+0.23 | 259004 7.34x028 | 1.930.03  4.8620.67
NW 230£0.04  6.43£0.15 | 134£0.05 3.94%0.29 | 2542004 7.23£0.16 | 157£0.06 4.4130.25 | 2.63£0.05 7.60£028 | 1.74:£0.05  4.85+0.73
w/oHGA | 245£0.03  6.77+0.15 | 15120.06  515£026 | 2.56+0.04 739+0.15 | 1.61£0.04 4.50£0.25 | 2.69+0.06 7.91+0.27 | 1.99£0.05  4.92+0.75
CVT t-view 1.8240.05  5.14%0.28 | 0.98+0.13  2.09+£0.17 | 2.48+0.03 578+0.11 | 1.01+0.05 211021 | 2.06£0.04 535+0.23 | 1.01£0.11  2.25+0.35
r-view 1.8440.03 5174030 | 0.970.07 224+0.35 | 2494005 5.81£0.12 | 1.04+0.06 232+032 | 2.0740.04 5.38+0.23 | 1.01x0.11 225035
m-view 1.80£0.02  4.99+£0.13 | 0.98£0.07  216+0.25 | 2.48+0.04 5.80+0.10 | 1.010.06 2.19£0.21 | 2.08+0.04 537+0.24 | 1.02£0.08  2.43+0.53
w/o CVT | 221+0.04 545+0.15 | 135+0.03 2424046 | 278+0.04 6.24£0.17 | 1232005 2294015 | 2.57£0.06 595+025 | 1.23£0.05  2.31+0.20
Hexagon-Net | 1.74:0.03 4.96+0.14 | 0.85£0.10 1.97+0.33 | 2.42+0.03 5.57+0.08 | 0.92+0.06 2.00:0.44 | 2.01+0.04 5.15+0.14 | 0.86£0.03  1.96:+0.27

o Informer [33]: Introduces a sparse self-attention mechanism
with good time complexity.

e AST [28]: Replaces the standard softmax with a-entmax
for learning sparse attention maps and employs adversarial
training via a discriminator to enhance prediction perfor-
mance.

(3) DL Methods for IVS (DL-IVS):

e DeepSmooth [1]: Integrates neural networks into a standard
arbitrage-free IVS modeling framework.

e Multi [32]: Introduces financial domain knowledge into a
multi-agent architecture for learning a weighting mechanism
tailored to IVS prediction.

e VAE-DNN [31]: Combines a VAE for feature extraction from
IVS with an LSTM for feature prediction.

5.4 Experimental Results

We run each model 10 times and report the mean and standard devi-
ation of the evaluation metrics for both tasks. As shown in Table 1,
in the future prediction task, Hexagon-Net significantly outper-
forms all baseline models across both RMSE and MAPE. Compared
to the second-best model, Hexagon-Net achieves RMSE reduc-
tions of 29.55%, 22.18%, and 37.96% on the S&P500, NASDAQ100,
and STOXX50 datasets, respectively. The corresponding reductions

in MAPE are 25.75%, 39.26%, and 49.76%. Furthermore, Hexagon-
Net exhibits consistently lower standard deviations across runs,
highlighting its robustness and improved generalization capability.

It is notable that VAE-DNN performs competitively, highlight-
ing the benefit of explicitly modeling uncertainty in IVS predic-
tion. This motivates us to examine (see Subsection 5.7) whether
Hexagon-Net can also address model uncertainty, even though
it was not specifically designed as a probabilistic model. However,
VAE-DNN operates solely on the (7, m) slice of the data and thus
lacks the ability to exploit the full spatio-temporal structure of the
IVS. Similarly, advanced generic time-series models, which rely
purely on the temporal view (¢) fail to capture dependencies across
multiple dimensions. These empirical results support our design ra-
tionale for enabling cross-view information propagation and fusion
in Hexagon-Net.

In the mask reconstruction task, Hexagon-Net performs even
better, outperforming all baseline models by substantial margins
across both evaluation metrics. Specifically, it reduces RMSE by
59.91%, 62.30%, and 69.61% on the S&P500, NASDAQ100, and STOXX50
datasets, respectively, compared to the second-best model. The im-
provements in MAPE are even more pronounced, with reductions of
68.73%, 72.90%, and 77.80% on the same datasets. These results high-
light the ability of Hexagon-Net to effectively capture inter-IVS
temporal dependencies while also leveraging the spatial structure
across multiple well-aligned IVS views.
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Table 3: Study on Two Alternative Setups. Bold indicates the best result.

S&P500 |

NASDAQ100 | STOXX50

‘ Future Prediction ‘ Mask Reconstruction ‘ Future Prediction ‘ Mask Reconstruction ‘ Future Prediction ‘ Mask Reconstruction

Model RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | MAPE
Hexagon—Net (with MoCo) 1.75+0.02 | 4.92+0.10 | 0.86+0.07 2.00+0.20 2.44+0.02 5.66+0.12 0.93+0.03 2.03+0.32 2.00+0.04 5.25+0.38 | 0.85+0.05 1.99+0.24
Hexagon-Net (with StoL) | 1.76+0.03 | 4.96+0.19 | 1.00£0.04 | 2.02+0.23 | 2.47+0.06 | 558+0.07 | 0.94+0.04 | 1.99+0.44 | 1.99+0.03 | 5.12+0.17 | 0.97+0.05 | 2.10+0.73
Hexagon-Net 1.74+0.03 | 4.962+0.14 | 0.85+0.10 | 1.97+0.33 | 2.42+0.03 | 5.57+0.08 | 0.92+0.06 | 2.00+0.44 | 2.01£0.04 | 5.15+0.14 | 0.86+0.03 | 1.96+0.27

5.5 Ablation Studies

Table 2 presents the results of the ablation studies, in which the
Heterogeneous Graph Grid Aligner is abbreviated as HGA.

5.5.1 Effectiveness of HGA. We assess the contribution of HGA
by comparing Hexagon-Net to three alternative configurations:
(1) DFW, which replaces HGA with the DFW method [9]; (2) NW,
which uses the Nadaraya-Watson estimator in place of HGA; (3)
w/o HGA, which directly uses raw historical IVS data without
any alignment. The results clearly indicate that HGA significantly
outperforms the baselines in both tasks, confirming its effectiveness.
Notably, the performance gains are more pronounced in the mask
reconstruction task, suggesting that HGA is particularly effective
when information is partially missing.

5.5.2  Effectiveness of CVT. We evaluate (CVT) by comparing it
with four ablated variants: (1) #-view, which uses only the temporal
view; (2) T-view, which uses only the time-to-maturity view; (3)
m-view, which uses only the log-moneyness view; (4) w/o CVT,
which removes all structured views and uses only an MLP for fea-
ture extraction. Across all comparisons, CVT consistently achieves
superior performance, underscoring the effectiveness of leveraging
cross-view interactions.

5.6 Sensitive Analysis

As illustrated in Figures 3, 4, and 5, we conduct a sensitivity anal-
ysis of the RMSE with respect to three key hyperparameters: the
number of hidden dimensions C, the number of layers L, and the
static arbitrage-free loss weight f, across both the prediction and
reconstruction tasks. The results reveal the following trends.

(1) When C is small, performance deteriorates due to insufficient
model capacity. RMSE stabilizes at C = 64, beyond which further
increases yield diminishing returns.

(2) Performance is significantly worse at L = 1, indicating the
necessity of a deeper architecture. Models with L = 2 and L = 3
achieve similar results, and we cap the depth at L = 3 to prevent
potential out-of-memory (OOM) issues.

(3) A small SAF loss weight (e.g., f = 0.1) improves performance
by encouraging the absence of static arbitrage opportunities, but
larger values of  degrade performance.

5.7 Alternative Setups

We compare Hexagon-Net against several alternative setups to as-
sess its ability to address two core challenges. (1) The heterogeneous
informativeness of different regions of the IVS, driven by the illig-
uidity of certain options, implies that a uniform modeling approach
is inadequate. (2) The inherent stochasticity of financial markets
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introduces ambiguity and noise, leading to model uncertainty that
must be effectively managed.

5.7.1 Discriminative Feature Representations. To assess the ability
of Hexagon-Net to learn discriminative feature representations,
we integrate the Contrastive Learner MoCo [15] into the network
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Table 4: Portfolio Performance (with Long and Short Positions). Bold indicates the best result.

| S&P500 | NASDAQ100) | STOXX50

‘ Long/Short 10% ‘ Long/Short 20% ‘ Long/Short 10% ‘ Long/Short 20% ‘ Long/Short 10% ‘ Long/Short 20%

Model | AR SR | AR SR | AR SR | AR SR | AR SR | AR SR
MF SSVI | 7.98£051 1.61£0.08 | 3.84+0.35 092007 | 7.66+1.33  148+0.25 | 2662021 0.69+0.04 | 441£1.07 0.71£020 | 1.44£1.56 049037
TS Transformer | 824+0.86 1.64+0.18 | 1.88+0.76 0.56+0.16 | 8.39+£0.64 1.57+0.12 | 2.81+0.55 0.71+0.11 | 3.94+0.95  0.64+0.20 | 1.70£0.79  0.48+0.16
GAT 7.32+1.14 1472023 | 2.14£0.47 0.61+0.09 | 8.85+0.78 1.63%0.15 | 3.33£0.51  0.81+0.11 | 3.89+1.14  0.68+0.23 | 1.61+0.64 0.49+0.15
DA-RNN 7.83£1.25  1.55£0.23 | 2.15+0.63  0.62+0.13 | 7.7320.92  1.45+0.18 | 2.98+0.54 0.75%0.11 | 4.0941.47 0.72+0.25 | 1.44+1.28  0.47+0.34
DLinear 775113 1.5740.28 | 2.42+0.56  0.68+0.12 | 7.90+0.80 1.48+0.16 | 3.14+0.60 0.78+0.12 | 4.7741.06 0.86+0.22 | 1.83+0.95  0.53+0.23
NLinear 6.96£0.61  1.39+£0.12 | 1.88+£0.75 0.57+0.15 | 7.85%1.06 145+0.17 | 3.00£0.39  0.74+0.08 | 4.50+1.71 0.79+0.33 | 1.67+0.88  0.53+0.22
Autoformer | 6333091  134%0.17 | 1.47+0.37 0.48+0.08 | 7.64+1.09 146%0.19 | 2.33£0.49  0.62+0.09 | 3.58+1.19  0.69+0.25 | 1.12+042  0.42+0.11
FEDformer | 8.07+1.73 1.61%0.30 | 2.22#0.53  0.63+0.11 | 8.00+1.02  1.48+0.20 | 3.00£0.42  0.75x0.09 | 5.21+1.24  0.87+0.24 | 1.64+0.79  0.49+0.18
Informer 6.92+1.37  1.36£0.33 | 2.07+0.55 0.60+0.12 | 8.50£0.76 1.57+0.14 | 2.99+0.38 0.75+0.08 | 5.26+1.31 0.95+0.26 | 1.35+0.82  0.44:0.20
AST 8.26£0.86  1.64+0.19 | 1.90+0.74  0.56+0.17 | 8.42+0.63 1.58+0.12 | 2.82+0.53 0.71+£0.10 | 3.95+0.94 0.64+0.19 | 1.71+0.78  0.48+0.17
DL-IVS | DeepSmooth | 8.06+0.85 157+0.19 | 3.23+0.62  0.84+0.13 | 9.14+1.16  1.66+0.24 | 3.91+0.57 0.93+0.11 | 4.17+1.47  0.66+0.24 | 1.67+0.90  0.46+0.20
Multi 8.56+1.10  1.68+0.21 | 2.53+0.54  0.69+0.12 | 8.95+0.64 1.62+0.14 | 3.42+0.51 0.83+0.11 | 4.66+1.63 0.78+0.32 | 2.38+0.67  0.62%0.19
VAE-DNN | 8.79£1.07 1.76+0.21 | 3.7740.96  0.94+0.19 | 8.14+0.93 1.50+0.18 | 3.04+0.54 0.76+0.10 | 4.62+1.13 0.81+0.28 | 1.87+0.90  0.56+0.24
| Hexagon-Net | 9.07+0.78 1.85:0.25 | 4.02+0.72 0.96:0.16 | 9.77+0.50 1.69+0.09 | 4.27+0.27 0.95+0.10 | 5.32+0.96 0.96+0.23 | 2.47+0.34 0.63+0.11

architecture and evaluate its performance relative to the original
Hexagon-Net. The detailed implementation of MoCo is described
in Appendix C.1.

As reported in Table 3, the performance of Hexagon-Net aug-
mented with the Contrastive Learner closely matches that of
the baseline Hexagon-Net without contrastive learning. This out-
come indicates that Hexagon-Net inherently learns effective dis-
criminative feature representations reflecting the illiquidity-driven
heterogeneous informativeness present in options data.

5.7.2  Stochasticity. To evaluate the capability of Hexagon-Net in
modeling uncertainty within IVS feature representations, we inte-
grate a VAE-based Stochastic Learner (StoL) specifically designed
to address such uncertainty. We then compare its performance
against the baseline Hexagon-Net. The detailed architecture of
StoL is provided in Appendix C.2.

As presented in Table 3, the performance of Hexagon-Net aug-
mented with StoL closely aligns with that of the original Hexagon-
Net. This indicates that Hexagon-Net inherently captures sto-
chastic feature representations, a prevalent challenge in financial
markets, thereby achieving robust predictive accuracy.

5.8 Robustness across Market Regimes

To further evaluate the robustness of Hexagon-Net, we partition
the data based on high- and low-volatility regimes of the VIX in-
dex, using a rule-of-thumb threshold of 30%. We then assess the
model’s performance under these two market conditions. The mean
and standard deviation of both RMSE and MAPE are found to be
marginally higher in the high-volatility regime, but the differences
are negligible. Detailed results are reported in Appendix D.

5.9 Options Portfolio Selection

To demonstrate the economic value of the proposed Hexagon-Net,
we conduct a straightforward portfolio experiment. Specifically,
we derive the expected options prices from the predicted implied
volatilities according to the classical Black-Scholes model, and cal-
culate the expected returns for each option. We rank all available
options according to the predicted returns, and long (short) the

top (bottom) 10% or 20% basket of options with equal weights. We
rebalance the portfolio according to the updated rank of expected
options returns. Given the relatively high liquidity of the stock
index options used in this study, we assume a transaction cost of
50 basis points (i.e., 0.5%) per trade.

We calculate the annualized average return AR and Sharpe ratio
SR of the options portfolios for each model in the testing period,
where r = [ry,...,rr] is the portfolio return series. Each portfolio
return r; is calculated as r; = th ys, where w; is the portfolio
weight vector for N; options with Zl{i’l wei = 1 and y; is the
realized options return vector.

It is intuitive that better performance on implied volatility pre-
diction leads to better portfolio selection performance. As shown
in Table 4, Hexagon-Net beats all competing models in both per-
formance metrics AR and SR, suggesting that Hexagon-Net can
effectively convert predictive precision into actual economic value.

6 Conclusion

The proposed Hexagon-Net is designed to effectively learn feature
representations from misaligned imbalanced IVS historical data
for both mask reconstruction and future prediction tasks. It not
only offers a grid aligner based on a heterogeneous graph to aggre-
gate and propagate information across different parts of the IVS
that are characterized by liquidity-driven informativeness, but also
explicitly captures and fuses cross-view spatio-temporal features
of inner-IVS patterns and inter-IVS dynamics. To the best of our
knowledge, this is the first work that addresses the IVS data mis-
alignment issue and explicitly models IVS across views in a unified
end-to-end framework to perform reconstruction and prediction
tasks. Hexagon-Net significantly and robustly outperforms exist-
ing models and methods in terms of RMSE and MAPE across three
major datasets of stock index options, and it also survives exten-
sive ablation studies, sensitivity analyses, and alternative setups.
Moreover, it is able to successfully convert its predictive precision
into substantial economic value in options portfolio investment.
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A Static Arbitrage-Free Conditions for IVS
We recall a theorem from [20], which provides conditions for the
absence of static arbitrage.

PRrOPOSITION 1. Consider an implied volatility function o(m, 7)
and suppose the following conditions are satisfied.

(1) (Positivity) For every (m,t) with t > 0, one has o(m,7) > 0.

(2) (Smoothness) For every t, the function m — o(m, ) is twice
differentiable.

(3) (Monotonicity in t) For every m, the function t — o(m, 7)%t
is nondecreasing. Equivalently,

leai(m, 1) = o(m, 7) + 219;0(m, 1) > 0.

(4) (Durrleman’s Condition) For every (m, ), one has

lpue(m, ) = to(m, ) dmmo(m, 1) — i(fo(m, T)omo(m, ‘L'))2

- momo(m, ) 2 o,
o(m, 1)
(5) (Large Moneyness Behavior) For every t, o(m, )? is linear
asm — oo,
(6) (Value at Maturity) For every m, one has o(m,0) = 0.

Then the resulting implied volatility function is free of static arbitrage.
Note that in the setup of the previous proposition, Condition (5)

is equivalent to the second-order derivative of o(m, r)? going to
zero when m — +co. Here we have

8mmaz(m, 1) = 20(m, 7)dmmo (m, ) + 2(dmo(m, r))z.

B Grids Design For Static Arbitrage-Free

To align the IVS and compute the static arbitrage-free loss, we
design two custom grids following [31]. In particular, we construct
denser grids for smaller time-to-maturity values 7 to better capture
near-term structure.
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The set of 7 values is given by the following A = 25 points:

G' =10,0.05)5®[0.08,0.13)58[0.13, 0.20)58[0.20, 0.40)5®[0.40, 1.36] 5,

where @ denotes array concatenation, and [a, b); indicates an arith-
metic sequence of k evenly spaced points from a up to (but not
including) b.

Similarly, the set of m values (log-moneyness) consists of the
following B = 40 points:

G =[-0.23,0)13 ® [0,0.08)13 ® [0.08,0.4] 14,

with denser resolution around the at-the-money (ATM) region to
better capture local IVS behavior. To construct the two grids, we
now extend the m values to increase coverage in the wings:

ggr; = gm U {m3 tme [_(_zmmin)l/gs (zmmax)l/3]40} >

—m —=m
Gs =G U ([6Mmin, 4Mmin]20 ® [4Mmax, 6Mmax]20) »

where Mmin and Mmax are the minimum and maximum values of
Q , respectively.

The final aligned grids are now constructed as the Cartesian
product of these sets:

G =G xGyu  GT°=G xGs.

C Alternative Setups
C.1 Contrastive Learner

To improve the framework’s ability to learn discriminative features
and capture intrinsic relationships between grid points we incorpo-
rate two cross-view attention mechanisms. One model’s parameters
are updated via standard back-propagation, while the other employs
momentum-based updates (e.g., MoCo), progressively inheriting
parameters from the former. To facilitate discriminative feature
learning across grid points, representations corresponding to iden-
tical locations are treated as positive pairs, whereas those from
distinct locations serve as negative pairs.

Formally, let the grid representations learned by the two models
be denoted as g, k € RT*PXC (Recall that P = A X B is the number
of grid points and C denotes the hidden layer dimensionality.). The
grid contrastive learning loss is then defined as

Le=- TXPZZ

t=1 i=

exp(sim(qz1, kt,i)/7)
2 ji exp(sim(qei ke j) /)

More details can be found in [15].

Additionally, we explore an alternative contrastive learning scheme
involving only near-expiry and far-into-future options, as well as
at-the-money and deep out-of-money options. The results are qual-
itatively similar.

C.2 Stochastic Learner

Given the high stochasticity inherent in financial markets, rather
than modeling IVS distributions directly, we assume that these
distributions are governed by a set of latent random variables fol-
lowing conditional Gaussian priors. We learn the distributions of
these latent variables from observed IVS data via an inference model,
while concurrently training a generative model that reconstructs
variational IVS from the latent space. The VAE [16, 19] provides a
standard framework for modeling variation in non-sequential data
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through latent random variables. However, its conventional distri-
butional assumptions are not readily applicable to IVS prediction,
due to the presence of temporal interdependence in historical IVS
sequences.

To address this, we adopt the approach of [2], modeling tempo-
ral dependencies in IVS using a dependency graph (see Figure 6)
embedded within both the generative and inference models. Specifi-
cally, we reshape the hidden representations H?, ..., H I e RT*PxC
from all layers into tensors of shape RT*2, where D = P x C. Be-
cause higher-layer representations exhibit broader receptive fields,
the hierarchical generative and inference architectures implicitly
capture temporal dependencies across time steps.

Stochastic Learner

LAA_ ~ :*

Figure 6: Structure of Stochastic Learner

|
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C.2.1 Generation Model. As depicted in the left panel of Figure 6,
we employ a generative model to produce IVS from latent variables,
formulated as pg (I;11 | Zt) = fgen(Zt), where fgen is parameter-
ized by an MLP. The temporal interdependence among hierarchical
latent variables Z; = {Zl, .. ZL} and historical IVS I1 e is mod-
eled by the following structured prior:

1

L-1
po(Ze | 1) = po(Z | HE ) [ | po2h 1 287, 1] _y),
=1

where each conditional distribution is modeled as a Gaussian with
diagonal covariance, following [2]:

Po(Z | HE ) = §(ZF | if ot p),
where ¢ denotes the density of the standard normal distribution.
The parameters p and o are generated by neural networks:

[kt o1p) = fy (Hi = [z H)).

po(ZL| ZH,

[llt,p’ O'tp

C.2.2  Inference Model. Analogously, the inference model approxi-
mates the posterior distribution of the latent variables Z;, as illus-
trated in the right panel of Figure 6:

L-1

99(Ze | 1) = as(ZF 1 HP) [ | ap(2) | 217 HD),

I=1
where each conditional distribution is Gaussian with diagonal co-
variance:

492t | H) = (2} | g oty). ap(Zy | 217 HY) = (21 |ty g, 01)-
Again, the mean and standard deviation are parameterized by neural

networks:

[,th ,qQ° Oy q] f;I (HL) [’ut P oy q] f‘q(21+l Hl)

1 Ly, 1 1
Ht_l) = ¢(Zt | Ht,ps o-t,p)’
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Table 5: IVS Prediction Performance (%) in Low-Volatility Regime. Bold indicates the best result.

| S&P500 | NASDAQ100 | STOXX50
‘ Future-Prediction ‘ Mask-Reconstruction ‘ Future-Prediction ‘ Mask-Reconstruction ‘ Future-Prediction ‘ Mask-Reconstruction
Model | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE
MF SSVI | 3142027 9.26£0.83 | 3.12+0.22  9.20£0.76 | 3.22+0.16  9.16+0.92 | 3.20£025  9.22+0.87 | 3.78+036 12.42%1.87 | 3.824045 12552210

TS Transformer | 3.84+0.11 10.97+0.55 | 3.12+0.23  8.66+0.45 | 3.85+0.42 11.26+1.35 | 3.18+0.49  8.87+1.20 | 3.70+0.28 11.67+1.05 | 3.25+0.29 9.85+0.92
GAT 3.04+0.75  8.74+0.58 | 2.21+0.06  6.93£0.13 | 3.26£0.08  9.52+0.37 | 2.50+0.08  7.87+0.32 | 3.45+0.32 10.59+0.83 | 3.11+0.31 9.65+0.79
DA-RNN 2.82+0.08  8.60+0.41 | 2.25+0.06  6.87+0.18 | 3.28+0.12  9.59+0.30 | 2.51+0.08  7.86+0.25 | 3.43+0.10 10.70+0.33 | 3.06+0.13 9.55+0.44
DLinear 3.18+0.35 10.09+0.76 | 2.79+0.52  8.21+1.31 3.12+0.04  9.55+0.16 | 2.42+0.08  7.39+0.22 | 3.33+0.05 10.33+0.30 | 3.05+0.16 9.14+0.38
NLinear 3.15£0.15  10.14£0.55 | 2.71+0.25  8.22+0.80 | 3.72+£0.17 10.92+0.46 | 3.03£0.25  8.51+£0.40 | 3.73+0.26  11.46%0.88 | 3.53+0.39 10.57+1.47
Autoformer | 5.00+0.27 19.35+1.45 | 2.47+0.13  7.64+0.35 | 5.03+0.13 17.30+0.51 | 8.30+£0.30  7.74+0.14 | 4.76+0.10 16.86+0.43 | 3.09+0.24 9.64+0.59
FEDformer 2.83+£0.05  8.94+0.26 | 2.27+£0.05  7.13+£0.22 | 3.26+0.10  9.94+0.34 | 2.57+0.08  7.93+0.36 | 3.42+0.09 10.62+0.38 | 3.00+0.12 9.33+£0.31
Informer 2.81£0.06  9.16+0.36 | 2.24+0.08  7.10+£0.28 | 3.30+0.07  9.95+0.30 | 2.57+0.09  7.91+0.36 | 3.24+0.06 10.31+0.28 | 2.83+0.08 8.83+0.23
AST 2.46+0.29  7.64+1.65 | 2.12+0.27  6.30+1.31 3.12+£0.04  9.35%0.15 | 2.46+0.04  7.83+0.22 | 3.32+0.18 10.25%+0.38 | 3.07+0.21 9.49+0.59

DL-IVS | DeepSmooth | 2.71+0.58  6.68+1.78 | 2.70+0.59  6.66+1.76 | 3.32+0.92  9.30+3.89 | 3.30+0.93  9.45+4.00 | 3.73£0.62 10.79+2.76 | 3.80+0.66 10.87+2.85
Multi 2.80+£0.04  8.98+0.23 | 5.74+0.09 18.09+0.59 | 3.11+0.07  9.28+0.29 | 5.78+0.09  19.70+0.35 | 3.81+£0.26 13.46+1.19 | 6.56+0.19  23.10+0.73
VAEDNN 2.79+0.05  8.25%0.22 | 2.43%£0.09  7.52+0.30 | 3.10+0.07  9.32+0.19 | 2.44+0.06  7.38+0.12 | 3.30+0.09 10.29+0.33 | 3.38+0.09 10.38+0.33

| Hexagon-Net | 1.7420.03  4.96+0.15 | 0.84+0.08 1.95:0.29 | 2.41+0.04 5.56+0.06 | 0.92:0.05 2.00+0.38 | 2.00+0.03 5.13+0.12 | 0.86+0.03  1.95:0.25

Table 6: IVS Prediction Performance (%) in High-Volatility Regime. Bold indicates the best result.

| S&P500 | NASDAQ100 | STOXX50
‘ Future-Prediction ‘ Mask-Reconstruction ‘ Future-Prediction ‘ Mask-Reconstruction ‘ Future-Prediction ‘ Mask-Reconstruction
Model | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE
MF SSVI | 316+0.28  9.2940.93 | 3.174£029  9.23+0.95 | 3.27£024 9.19+1.01 | 3.25+0.24  9.24+1.02 | 3.82+0.41 12474217 | 3.88+£045  12.62+1.89

TS Transformer | 3.88+0.11 11.02+0.59 | 3.18+0.24  8.69+0.49 | 3.90+0.45 11.28+1.47 | 3.23£0.52  8.91+1.32 | 3.75+0.30 11.72+1.15 | 3.30+0.30 9.86£1.00
GAT 3.06+0.81  8.77+0.61 | 2.25+0.05  6.94+0.14 | 3.31+£0.07  9.54+0.40 | 2.54+0.07  7.89+0.35 | 3.49+0.34 10.62+0.91 | 3.16+0.33 9.67+0.86
DA-RNN 2.87+0.08  8.62+0.45 | 2.29+0.05  6.88+0.19 | 3.34+0.12  9.62+0.33 | 2.56+0.07  7.88+0.27 | 3.48+0.09 10.74+0.36 | 3.11+0.13 9.59+0.48
DLinear 3.25+0.38  10.13+0.83 | 2.84+0.57  8.25%+1.43 | 3.17+£0.03  9.58+0.17 | 2.47+£0.07  7.42+0.23 | 3.38+0.04 10.35%£0.33 | 3.10+0.16 9.14+0.41
NLinear 3.18+0.15 10.17+0.60 | 2.74+0.26  8.23+0.86 | 3.76+£0.17 10.95+0.51 | 3.05£0.26  8.53+0.42 | 3.76+0.27 11.47+£0.96 | 3.55+0.41 10.58+1.60
Autoformer | 5.04+0.29 19.37+1.59 | 2.50+0.13  7.65+0.38 | 5.06+0.13 17.32+0.57 | 8.32+0.33  7.75+0.14 | 4.80+0.10 16.88+0.48 | 3.10+0.26 9.66+0.63
FEDformer 2.85+0.05  8.95+0.28 | 2.30+0.04  7.14+0.24 | 3.32+£0.10  9.96+0.37 | 2.60+0.07  7.94+0.39 | 3.45+0.09 10.64+0.42 | 3.03+0.12 9.36+0.34
Informer 2.86x£0.06  9.19+0.40 | 2.26+0.07  7.15%0.30 | 3.34+0.06  9.97+0.33 | 2.60£0.09  7.94+0.39 | 3.27+£0.05 10.35%0.31 | 2.86+0.07 8.87+0.24
AST 2.50+0.32  7.66+1.81 | 2.15+0.29  6.32+1.43 | 3.16+£0.03  9.39+0.16 | 2.50+0.03  7.86+0.23 | 3.33+0.18 10.28+0.42 | 3.10+0.26 9.56+0.64

DL-IVS | DeepSmooth | 2.74+0.65  6.69+1.97 | 2.71+£0.65  6.68+1.95 | 3.35+1.02  9.34+4.33 | 3.33£1.03  9.49+4.45 | 3.74+0.68 10.84+3.06 | 3.82+0.73 10.89+3.16
Multi 2.83£0.03  9.01+0.25 | 5.77+0.09 18.12+0.64 | 3.14+£0.06  9.30+£0.32 | 5.79+£0.09 19.73+0.38 | 3.84+0.28 13.48+1.32 | 6.57+0.20  23.12+0.80
VAEDNN 2.80£0.05  8.29+0.24 | 2.46+0.09  7.54+0.32 | 3.14+0.07  9.34+0.20 | 2.46+0.05  7.40+0.12 | 3.32+0.09 10.30+0.36 | 3.40+0.09 10.42+0.36

| Hexagon-Net | 1.76£0.02  4.98+0.23 | 0.90+0.13  2.03£0.41 | 2.43+0.04 5.59:0.05 | 0.94:0.08 2.03+0.46 | 2.04£0.03 5.17+0.12 | 0.89+0.03  1.99:+0.25

C.2.3  Probability Learning. Following [2], the variational lower where the first term is the reconstruction loss, and the second is the
bound of the log-likelihood at time t equals Kullback-Leibler divergence between the posterior and the prior.

. ) = — al
Lrec(0.430) + Lxw (0.9:1) = ~Eq, (7,1 [ log po (U} | Z0)] D Robustness across Market Regimes

+ KL(q¢ (Z: | Iilt) Il po(Zt | If}t,l)), Tables 5 and 6 compare the model performance in high-volatility
and low-volatility regimes of the VIX index using a rule-of-thumb
threshold of 30%.
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