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Abstract
Implied Volatility Surface (IVS) prediction is critical for options

hedging, portfolio management, and risk control. These applica-

tions encounter significant challenges, including imbalanced data

distributions and inherent uncertainties in forecasting. Recent ad-

vances relying on deep learning have led to significant progress in

addressing these issues. However, several key problems have not

yet been solved: (i) Moneyness and maturities of traded options

change over time. Therefore, proper spatio-temporal alignment is

an essential prerequisite for the downstream forecasting exercise.

(ii) Different regions of the IVS are unevenly informed because

of liquidity constraints and therefore should not be modeled uni-

formly. (iii) The complex interconnections among data points in

the IVS from various perspectives—such as the well-known ‘smirk’

patterns across dimensions—are neither explicitly addressed nor

effectively captured by existing models. To address these issues, we

propose a novel end-to-end heterogeneous cross(x)-view aligned
graph attention network (Hexagon-Net), which aligns histori-

cal IVS data, learns distinctive IVS patterns, propagates predictive

information, and forecasts future IVS movements simultaneously.

Extensive experiments on stock index options datasets demonstrate

that Hexagon-Net significantly and consistently outperforms the

previous approaches in IVS modeling and deep learning. Addi-

tionally, we present further experiments—such as ablation studies,

sensitivity analyses, and alternative configurations—to explore the

reasons behind its superior performance.
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1 Introduction
Volatility, a key factor influencing option prices, has attracted sig-

nificant research interest from both academia and the financial

industry. Accurate modeling and forecasting of volatility are essen-

tial for informed decision-making across a variety of investment

activities, including option pricing and hedging, as well as portfo-

lio and risk management. In particular, implied volatility—derived

from the Black-Scholes option pricing model [5]—provides valu-

able forward-looking insights into the underlying markets. The

implied volatility surface (IVS) for a given underlying asset consists

of a three-dimensional set of implied volatility values that vary

with time-to-maturity (𝜏) and log-moneyness (𝑚), which depends

on the spot-to-strike price ratio 𝑆/𝐾 . Predicting the IVS (see Fig-

ure 1) is therefore critically important for downstream investment

applications.

Over the past decades, numerous IVS models have been de-

veloped, including stochastic volatility models [12], parametric

approaches [9], and nonparametric methods [7], among others.

Although these models are mathematically rigorous and econom-

ically meaningful, their simplified frameworks often struggle to

fully capture the complex and evolving dynamics of the IVS. With

the rapid advancements in deep learning (DL) techniques, recent
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Historical Surface Next Surface

Figure 1: IVS prediction aims to predict the next IVS given
historical data.

applied studies have shown promising potential for using these

methods to improve IVS prediction [1, 22, 26, 32, 17, 31, 6].

Despite of the significant progress made, several challenges re-

main for IVS prediction. First, only a limited number of options are

actively traded on a daily basis, implying that the set of time-to-

maturity (𝜏) and log-moneyness (𝑚) values are neither continuous

nor consistently available over time. As a consequence, the IVS

data are not aligned across both the cross-sectional and time-series

dimensions. Traditional approaches for addressing this misalign-

ment either lack generalizability and stochasticity—such as the

deterministic volatility function [9]—or fail to accommodate the

heterogeneity inherent in the data, as is the case with the Nadaraya–

Watson estimator [14]. Second, thin option markets at certain strike

prices and maturities result in varying degrees of informativeness

and distinct dynamics across different regions of the IVS, under-

scoring the need for models to learn and distinguish meaningful

features from the data. Third, existing models often fail to explic-

itly consider or effectively capture the interconnections between

data points from different perspectives of the IVS—such as term

structure patterns. In summary, the effective propagation of predic-

tive information across the spatio-temporal structure of the IVS is

essential for accurate modeling and forecasting. Yet, this remains in-

sufficiently addressed in the existing literature, leading to unstable

or suboptimal predictive performance.

In this paper, we propose an end-to-end heterogeneous cross(x)-
view aligned graph attention network,Hexagon-Net, to tackle the
above mentioned challenges simultaneously in IVS reconstruction

and prediction tasks. Our contributions are summarized as follows:

(1) We propose a heterogeneous graph grid alignment mod-

ule that constructs a unified grid to aggregate information

from individual options and subsequently propagates the

processed information back to them. This mechanism is cru-

cial for enhancing model performance, as it (i) addresses

inconsistencies in data availability, (ii) enables the transfer

of richer feature representations from highly liquid options

to thinly traded ones, and (iii) facilitates the learning of dis-

tinct feature representations across different regions of the

IVS.

(2) Given the large number of data points on each surface, it

is challenging to extract valuable signals from noisy or am-

biguous option features while preserving the well-known

smirk patterns [30]. To tackle this, we introduce a Cross-

View Transformer (CVT) module that captures and inte-

grates economically meaningful multi-scale spatio-temporal

relationships—both within the IVS across log-moneyness

and maturity, and across IVSs over time. In addition, we

enforce no-arbitrage constraints on the IVS.

(3) Through extensive experiments and ablation studies on three

of the most prominent stock index options datasets—S&P500,

NASDAQ100, and STOXX50—we demonstrate that the pro-

posedHexagon-Net significantly outperforms a wide range

of baselines. These include traditional IVS benchmark mod-

els from the mathematical finance literature, models incor-

porating standard DL techniques, and state-of-the-art DL

approaches for time-series forecasting. Moreover, the results

are robust across different forecasting horizons and under

various sensitivity analyses.

(4) To better understand the superior performance of the pro-

posed Hexagon-Net, we compare it against its variants

augmented with additional contrastive and stochastic learn-

ing components, designed to handle the heterogeneous and

evolving nature of market liquidity. This analysis shows

that these enhancements offer little to no statistically signifi-

cant improvement in accuracy or stability over the standard

Hexagon-Net.

2 Related Work
Existing literature in the finance domain primarily relies on linear

techniques to model IVS dynamics. For example, [7, 23] apply Prin-

cipal Component Analysis (PCA) to IVS data and show that the first

three eigenmodes are both economically meaningful—interpretable

as loadings on common latent factors—and statistically sufficient to

capture most of the variation in the IVS. These eigenmodes approx-

imate the IVS through linear combinations, with their temporal

evolution modeled using autoregressive processes. Acknowledging

the degenerate nature of IVS data, [10] propose a semiparametric

factor model that captures local IVS dynamics by exploiting ex-

piry effects. Stochastic volatility models [4] are also widely used in

mathematical finance. The Stochastic Volatility Inspired (SVI) model

introduced by [11] imposes no-arbitrage conditions and performs

well on real-world data. [13] further refine the SVI framework by

simplifying the arbitrage constraints, resulting in the SSVI model.

More recently, [3] improve the performance of traditional paramet-

ric models by using a neural network to model the residuals.

In recent years, both academics and industry practitioners have

increasingly turned to machine and DL methods for IVS prediction,

yielding promising results. For instance, [32] incorporate prior

domain knowledge by proposing a novel activation function that

accounts for the volatility smile. However, their approach does not

explicitly capture IVS dynamics when mapping 𝜏 and𝑚 to implied

volatility. [1] integrate a standard arbitrage-free IVS model with a

neural network architecture, demonstrating robust performance

even when the IVS data are sparse, noisy, or erroneous. [31] apply a

variational autoencoder (VAE) to learn IVS feature representations,

followed by an LSTM model for IVS prediction.
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Figure 2: Architecture of Hexagon-Net. We use heterogeneous graph neural networks to align historical data onto a unified
grid. After aligning all historical IVS using the same grid, we feed the aligned IVS data into CVT, which considers the Inner-IVS
relations and Inter-IVS dynamics from different views. Finally, the information is propagated to each option using the obtained
grid features in order to predict the IVS.

3 Implied Volatility Surfaces
Let 𝑃

mkt
(𝐾, 𝜏) denote the market price of a European option with

time-to-maturity 𝜏 > 0 and strike price𝐾 > 0. Let 𝑆 ,𝐾 , 𝜏 , 𝜎 , 𝑟 , and 𝛿

represent the underlying asset price, strike price, time-to-maturity,

volatility, risk-free rate, and dividend yield, respectively. Under the

classical Black-Scholes framework, the price of a European call

option is given by

𝑃BS (𝑆, 𝐾, 𝜏, 𝜎, 𝑟, 𝛿) = 𝑆𝑒−𝛿𝜏Φ(𝑑1) − 𝐾𝑒−𝑟𝜏Φ(𝑑2),

where

𝑑1 =
ln( 𝑆

𝐾
) + (𝑟 − 𝛿 + 0.5𝜎2)𝜏

𝜎
√
𝜏

; 𝑑2 = 𝑑1 − 𝜎
√
𝜏,

and Φ(·) denotes the cumulative distribution function of the stan-

dard normal distribution. A similar formula applies for the price of

European put options.

The implied volatility of an option is then defined as the value

of 𝜎 that solves 𝑃BS (𝑆, 𝐾, 𝜏, 𝜎, 𝑟, 𝛿) = 𝑃
mkt

(𝐾, 𝜏) given observed

market prices. The collection of implied volatilities across different

strikes and maturities at a given time defines the IVS.

3.1 IVS Modeling and Prediction
The IVS at time 𝑡 is represented by 𝐼𝑡 ∈ R𝑁𝑡×3

, where 𝑁𝑡 denotes

the number of available option observations at time 𝑡 . Each row in

𝐼𝑡 corresponds to an option characterized by three features: time-

to-maturity (𝜏), log-moneyness (𝑚), and implied volatility (𝜎). We

define G𝑡 ∈ R𝑁𝑡×2
as the grid of inputs in the (𝜏,𝑚) space, and

𝑉𝑡 ∈ R𝑁𝑡
as the corresponding implied volatilities.

An IVS ismodeled as a function of 𝜏 and𝑚.We fit themodel using

a lead-lag sequential setup: given historical data 𝐼1:𝑇 = [𝐼1, . . . , 𝐼𝑇 ],

grid G𝑇+1 = (𝜏𝑖 ,𝑚𝑖 )𝑁𝑇+1
𝑖=1

for the next period, and time embedding

T1:𝑇+1, we aim to predict 𝑉𝑇+1 using a predictive model 𝑓 ; i.e.,

𝑉𝑇+1 = 𝑓 (𝐼1:𝑇 ,G𝑇+1,T1:𝑇+1;𝜃 ),

where 𝜃 is a set of model parameters.

Moreover, besides future IVS prediction we train the model si-

multaneously on a second task, namely IVS mask reconstruction.

For the future prediction task, the model ingests the complete se-

quence 𝐼1:𝑇 . For the mask reconstruction task, we input IVS data

with certain points masked: at each time 𝑡 , we randomly select

𝑁𝑡,mask
= ⌊𝑝𝑁𝑡 ⌋ points to mask, while the remaining 𝑁𝑡 − 𝑁𝑡,mask

points remain visible. Here, 𝑝 ∈ [0, 1] is the mask probability (set

to 0.1 in our experiments) and ⌊·⌋ denotes the floor function.

3.2 Static Arbitrage-Free Conditions for IVS
Absence of static arbitrage is a fundamental assumption in asset

pricing, implying that investors should not be able to extract risk-

free, costless profits from inconsistencies among the market prices

of an asset. The literature has identified necessary and sufficient

conditions to ensure that the IVS is free of static arbitrage. Following

the approach of DeepSmooth [1], we incorporate these conditions

(see Appendix A) by applying soft constraints as penalty terms in

the loss function, see also [8]. Additional implementation details

are provided in Subsection 4.5.

4 Methodology
We present the proposed Hexagon-Net in Figure 2. Given a se-

quence 𝐼1:𝑇 of historical IVS data, we introduce a heterogeneous

graph grid aligner that first constructs a unified grid to aggregate

IVS information from individual options and then propagates the
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processed information back to each option. In addition, a cross-view

feature extraction strategy is employed to capture and fuse multi-

facet spatio-temporal relations—both inter-IVS dynamics over time

and intra-IVS structure across log-moneyness and maturity—while

respecting the characteristic “smirk” patterns via learnable, dy-

namic weights.

4.1 Heterogeneous Graph Grid Aligner
4.1.1 Motivation. Considering the changing grids required for IVS
at different times, we introduce an aligner based on heterogeneous

graph neural networks (Figure 2). We incorporate a virtual align-

ment grid that transfers IVS information to adjacent grid points

for alignment. After learning the aligned grid features, these are

propagated back to the actual data nodes, where a neural network

is used to predict the implied volatilities.

4.1.2 Grid design. To construct a unified grid over the entire his-

torical IVS data, we partition the (𝜏,𝑚) space into a fixed, aligned

grid of size 𝐴 × 𝐵, where 𝐴 and 𝐵 denote the number of discretiza-

tion levels along the time-to-maturity (𝜏) and log-moneyness (𝑚)

dimensions, respectively., i.e.,

Gal =
{
(𝜏,𝑚) | 𝜏 ∈ G𝜏 , 𝑚 ∈ G𝑚

}
.

Here, G𝜏 consists of 𝐴 reference points selected according to the

empirical percentiles of the 𝜏 observations, such that each interval

between consecutive points contains approximately the same num-

ber of 𝜏 values. Similarly, G𝑚 consists of 𝐵 points according to the

empirical percentile of the𝑚 observations. In our implementation,

we set 𝐴 = 25 and 𝐵 = 40, resulting in 𝐴 × 𝐵 grid nodes per IVS

graph.

4.1.3 Construction of Heterogeneous Graphs. The IVS graph con-

sists of two types of nodes: real (data) nodes Vr and grid nodes Vg

(constructed in Subsection 4.1.2). In the next subsections, we shall

define three types of edges to capture interactions between these

nodes: bidirectional edges 𝑅g↔g between grid nodes, unidirectional

edges from real nodes to grid nodes 𝑅r→g, and unidirectional edges

from grid nodes to real nodes 𝑅g→r.

Each node 𝑣 is associatedwith two key attributes, time-to-maturity

𝜏 and log-moneyness𝑚, as well as a feature vector. Each edge sim-

ilarly carries its own feature vector. The node attributes capture

relevant properties of the IVS, while the edge attributes are ob-

tained by calculating the absolute differences of the corresponding

key attributes (𝜏 and𝑚) between the connected node pair.

4.1.4 Grid Node-Grid Node Connection. We denote the connectiv-

ity among grid nodes by 𝑅𝑔↔𝑔 , with the corresponding adjacency

matrix defined as I(𝜏𝑖 = 𝜏 𝑗 ∨𝑚𝑖 = 𝑚 𝑗 ). It is worth noting that

the precise form of grid connectivity is not consequential in what

follows, as grid nodes do not directly communicate with each other.

4.1.5 Real Node-Grid Node Connection. To enable information flow

from real nodes to grid nodes, we define directional connections

between nodes 𝑣𝑖 ∈ Vr and 𝑣 𝑗 ∈ Vg when they are close in the

(𝜏,𝑚) space. Note that these connections are directional and in

particular 𝑅r→g and 𝑅g→r, do not necessarily represent the same

edges.

We first compute the distance matrix 𝐷rg between all real and

grid nodes, using the Euclidean distance in the (𝜏,𝑚)-space. The

adjacency matrix𝐴r→g, which defines connections from real to grid

nodes, is then given by 𝐴
𝑖, 𝑗
r→g

= I( 𝑗 = argmin𝑘 𝐷
𝑖,𝑘
rg
), i.e., each real

node is connected to its nearest grid node. Similarly, we consider

the adjacency matrix 𝐴g→r for the reverse directional connections.

4.2 Propagation from Real Nodes to Grid Nodes
Using a heterogeneous graph network, we propagate information

from the real nodes in Vr to the grid nodes in Vg via edges in the

relation set 𝑅r→g.

For a given grid node, we consider all real nodes that are con-

nected to it. For each such real node, a message function computes

two feature vectors, ℎ and
˜ℎ, based on the input attribute 𝑥 of the

real node and the edge attribute 𝑥e associated with the connecting

edge:

Message
r→g

(𝑥, 𝑥e) =
(
ℎ, ˜ℎ

)
.

The message function is implemented as a multi-layer perceptron

(MLP).

Each connected real node contributes a pair of intermediate

features, (ℎ𝑖 , ˜ℎ𝑖 ), where ℎ𝑖 is the candidate node feature and
˜ℎ𝑖

determines its aggregation weight. These features are aggregated

using a weighted sum:

ℎ = Aggregate
g

(
{(ℎ𝑖 , ˜ℎ𝑖 )}

)
=
∑︁
𝑖

𝑎𝑖ℎ
𝑖 ,

where the sum ranges over all real nodes connected to the given

grid node. The weights 𝑎𝑖 are computed using another MLP 𝑓r→g,𝑤

applied to the edge features
˜ℎ𝑖 and normalized via a softmax:

𝑎𝑖 =

exp

(
𝑓r→g,𝑤 ( ˜ℎ𝑖 )

)
∑
𝑗 exp

(
𝑓r→g,𝑤 ( ˜ℎ 𝑗 )

) .
Finally, the feature of the grid node is updated by adding the

aggregated message to its existing feature:

ℎ′
g
= Update

g
(ℎg, ℎ) = ℎg + ℎ,

where ℎg is the current feature of the grid node, and ℎ is the aggre-

gated message from neighboring real nodes.

Each MLP employed in this study is a three-layer fully connected

network with a default hidden layer size of 64. The activation func-

tion used between consecutive linear layers is GELU.

4.3 Cross-View Transformer (CVT)
4.3.1 Motivation. The CVT architecture is tailored to the distinc-

tive characteristics of the IVS. Implied volatilities typically display

a smile-shaped profile as a function of log-moneyness𝑚 for fixed

time-to-maturity 𝜏 , and exhibit similar structure across varying 𝜏

for fixed𝑚. This empirical behavior motivates the design of CVT to

effectively capture such “smirk” patterns and to learn economically

meaningful feature representations from multiple perspectives of

the IVS.

To address the computational challenges posed by the thousands

of data points in each IVS, we employ a convolutional multi-head

attention mechanism (Conv-MHA). It reduces computational com-

plexity by a factor of 𝜅 × 𝜅, where 𝜅 denotes the kernel size of the

convolutional layers. In our implementation, we set 𝜅 = 4.
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4.3.2 Cross-View Design. The structure of CVT is illustrated in

Figures 2(b) and (c). We begin by projecting the aligned IVS graph

into a hidden feature space 𝐻0 ∈ R𝑇×𝑃×𝐶 using an MLP, where

𝑃 = 𝐴 × 𝐵 is the number of grid points and 𝐶 denotes the hidden

layer dimensionality.

Subsequently, 𝐿 (in our implementation 𝐿 = 2) cross-view layers

are applied to hierarchically extract cross-view features, allowing

us to incorporate information from multiple views in each layer.

As depicted in Figure 2(b), the historical IVSs 𝐼1:𝑇 are defined

over the triplet (𝜏,𝑚, 𝑡). We define a view of the historical IVS as

a dependent variable of a subset of (𝜏,𝑚, 𝑡). In the 𝑙-th layer, the

hidden representation from the previous layer, 𝐻 𝑙−1 ∈ R𝑇×𝑃×𝐶 , is
first reshaped to 𝐻 𝑙−1,𝑣 ∈ RN×S×𝐶

and passed into the View-Enc
module. Here, N is the view-specific sample size, and S denotes

the view length, which varies across views.

For instance, in the 𝜏-view, the tensor 𝐻 𝑙−1 is reshaped such

that 𝑁 = 𝑇 × 𝐵 and S = 𝐴, corresponding to 𝑇 time points and 𝐵

log-moneyness levels. The set of views utilized in CVT is {𝜏,𝑚, 𝑡}.
After encoding, the resulting hidden feature 𝐻 𝑙

view
for each view is

reshaped back to the original dimensionality R𝑇×𝑃×𝐶 for further

processing.

4.3.3 View-Enc. The architecture of the View-Enc module is pre-

sented in Figure 2(c). At the 𝑙-th layer, View-Enc receives as input
the hidden feature tensor𝐻 𝑙−1 ∈ RN×S×𝐶

from the previous layer.

These features are first normalized and then passed to Conv-MHA,
illustrated in Figure 2(d).

Within Conv-MHA, the input is first linearly projected to form

a query matrix Q𝑙 ∈ RN×S×𝐶
. To compute the key matrix K𝑙 ∈

RN×⌊S/𝜅 ⌋×𝐶
and the value matrix V𝑙 ∈ RN×⌊S/𝜅 ⌋×𝐶

, we apply

a one-dimensional convolution over the sequence dimension:

K𝑙
𝑖,:, 𝑗 = 𝑏

K
𝑗 +

∑︁
𝑐

𝐻 𝑙−1𝑖,:,𝑐𝑊
K
𝑗,:,𝑐 ,

V𝑙
𝑖,:, 𝑗 = 𝑏

V
𝑗 +

∑︁
𝑐

𝐻 𝑙−1𝑖,:,𝑐𝑊
V
𝑗,:,𝑐 ,

where 𝑏K , 𝑏V ∈ R𝐶 are bias vectors and𝑊 K ,𝑊 V ∈ R𝐶×𝜅×𝐶 are

convolution kernels with both kernel size and stride equal to 𝜅.

This convolutional mechanism enables the model to extract local

structure from the feature sequence while simultaneously reducing

its length, thereby improving computational efficiency.

Following the convolutional encoding, the multi-head attention

(MHA) mechanism captures both intra-IVS dependencies and inter-

IVS dynamics. The attention output is computed as:

ℎMHA = softmax

©­­«
Q𝑙 (K𝑙 )⊤√︃

𝑑𝑓

ª®®¬V𝑙 ,

where 𝑑𝑓 denotes a scaling factor that stabilizes gradients by ad-

justing for the dimensionality of the feature space [24]. After layer

normalization and transformation by an MLP, the resulting hidden

features are denoted by 𝐻 𝑙
view

.

4.3.4 Cross-View Attention Weighting. Simple aggregation strate-

gies such as summation or averaging fail to account for variations

in the informativeness of features across different views when mod-

eling and predicting IVS. To address this, we design an attention-

based weighting mechanism that dynamically allocates weights

across views.

Given 𝑁𝑣 view-specific feature representations (here, 𝑁𝑣 = 3),

𝐻 𝑙
view1

, . . . , 𝐻 𝑙
view𝑁𝑣

∈ R𝑇×𝑃×𝐶 ,

we compute attention weights as

𝑤
𝑙,𝑡,𝑝

view𝑖
=

exp(𝑑𝑙,𝑡,𝑝
view𝑖

)∑𝑁𝑣

𝑗=1
exp(𝑑𝑙,𝑡,𝑝

view𝑗
)
,

where

𝑑
𝑙,𝑡,𝑝

view𝑖
= Ψ⊤

GELU

(
𝐻
𝑙,𝑡,𝑝

view𝑖
𝑊 + Γ

)
,

with learnable parameters𝑊 ∈ R𝐶×𝐶 , Γ ∈ R𝐶 , and Ψ ∈ R𝐶 . Here,

𝐻
𝑙,𝑡,𝑝

view𝑖
∈ R𝐶 denotes the feature vector for view 𝑖 at layer 𝑙 , time

step 𝑡 , and grid index 𝑝 . The final fused feature is then obtained by

a weighted sum:

𝐻 𝑙,𝑡,𝑝 =

𝑁𝑣∑︁
𝑗=1

𝑤
𝑙,𝑡,𝑝

view𝑗
𝐻
𝑙,𝑡,𝑝

view𝑗
.

4.4 Propagation from Grid Nodes to Real Nodes
After feature learning has been performed on the grid nodes—either

through reconstruction of masked values or prediction of future

values—the resulting grid node features are propagated back to the

real nodes. This step enables the reconstruction or prediction of

the IVS at real locations. We propagate information from the grid

nodes in Vg to the real nodes in Vr via edges in the relation set

𝑅g→r.

For a given real node, we consider all grid nodes connected to

it. (Usually this is only one single grid point.) For each such grid

node, a message function computes a pair of feature vectors, ℎ and

˜ℎ, based on the grid node feature and the associated edge attribute:

Message
g→r

(ℎ,ℎe) = (𝑥, 𝑥) ,

where the message function is again implemented via an MLP.

Each connected grid node contributes a message (𝑥𝑖 , 𝑥𝑖 ) to the

real node. These are aggregated using a weighted sum:

𝑥 = Aggregate
r

(
{(𝑥𝑖 , 𝑥𝑖 )}

)
=
∑︁
𝑖

𝑎𝑖𝑥
𝑖 ,

where the sum is over all grid nodes connected to the real node.

The attention weights 𝑎𝑖 are determined by applying another MLP

𝑓g→r,𝑤 as follows:

𝑎𝑖 =

exp

(
𝑓g→r,𝑤 ( ˜ℎ𝑖 )

)
∑
𝑗 exp

(
𝑓g→r,𝑤 ( ˜ℎ 𝑗 )

) .
Finally, the updated feature 𝑥 ′

r
for the real node is computed

using a residual update:

𝑥 ′
r
= Update

r
(𝑥r, 𝑥) = 𝑥r + 𝑥,

where 𝑥r is the real node feature before the update.
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4.5 Static Arbitrage-Free Loss
In addition to the alignment grid Gal

used for historical IVS match-

ing, we design two auxiliary grids, G𝐶34 and G𝐶5, to enforce static

arbitrage constraints. Specifically, G𝐶34 targets Conditions 3 and
4 of Proposition 1 in Appendix A, while G𝐶5 targets Condition 5.

Full details of the grid construction are provided in Appendix B.

Conditions 1 and 2 are satisfied due to the use of SoftPlus activa-

tions in our neural architecture, which guarantees non-negativity

and twice differentiability. Condition 6 is not applicable as wemodel

the implied-volatility function only for strictly positive time-to-

maturity 𝜏 > 0. To enforce the remaining static no-arbitrage con-

straints, we define the following loss terms:

L𝐶3 =
1

|G𝐶34 |

∑︁
(𝜏,𝑚) ∈G𝐶34

max (0, −𝑙
cal

(𝑚,𝜏)) ,

L𝐶4 =
1

|G𝐶34 |

∑︁
(𝜏,𝑚) ∈G𝐶34

max (0, −𝑙
but

(𝑚,𝜏)) ,

L𝐶5 =
1

|G𝐶5 |

∑︁
(𝜏,𝑚) ∈G𝐶5

��𝜕2𝑚𝑚𝜎2𝑡 (𝑚,𝜏)�� ,
where |G𝐶34 | and |G𝐶5 | denote the respective numbers of grid

points. The total static arbitrage-free loss is defined as the sum of

these components:

LSAF = L𝐶3 + L𝐶4 + L𝐶5 .

4.6 Prediction and Loss Function
Let 𝑋𝑇+1 denote the real node features, obtained through the mes-

sage propagation mechanism described in Subsection 4.4, which

provides information from grid nodes to their corresponding future

real nodes. The prediction of the IVS is then given by

𝑉𝑇+1 = 𝑓𝑜 (𝑋𝑇+1,G𝑇+1,T1:𝑇+1) ,

where 𝑓𝑜 is implemented as an MLP. An analogous formulation is

used for the masked IVS reconstruction task.

The training objective forHexagon-Net is a combination of the

IVS prediction loss and the static arbitrage-free loss:

L
pred

= MSE(𝑉𝑇+1,𝑉𝑇+1) + 𝛽 · LSAF .

Here MSE denotes the mean squared error between the predicted

or reconstructed IVS and the ground truth, and 𝛽 is a hyperpa-

rameter controlling the strength of the arbitrage penalty. For the

masking task, we have an analogous expression with the same

hyperparameter 𝛽 .

5 Experiments
5.1 Datasets
Following [2, 32], we conduct empirical experiments on stock index

options using data for the S&P 500, NASDAQ100, and STOXX50 in-

dices. These markets are well-suited for benchmarking due to their

deep liquidity, as evidenced by consistently high trading volumes,

although certain regions of the IVS may still suffer from sparse

observations. We obtain daily option data from OptionMetrics,

spanning the period from January 2010 to June 2019, and clean and

pre-process the dataset following the approach in [21].

While we focus here on European-style equity options, the pro-

posedmethodology is applicable to options on other asset classes—such

as foreign exchange and commodities—provided the markets are

sufficiently liquid for implied volatilities to reflect true market con-

ditions. This requires that trade quotations permit the extraction

of implied volatilities; for example, in foreign exchange markets,

major investment banks provide reliable implied-volatility data.

5.2 Experimental Setup
We train, validate, and test all models on the three datasets to assess

the qualitative robustness of the experimental results. Each dataset

is partitioned into non-overlapping sub-samples of 150 trading days.

Within each sub-sample, we further divide the data into training,

validation, and testing sets using a 4 :3 :3 ratio. Model optimization

is performed using the Adam optimizer with a fixed learning rate

of 5 × 10
−4
. All models are trained for 30,000 epochs. At each

epoch, the model parameters yielding the best performance on the

validation set are selected and subsequently evaluated on the test

set. Each model is jointly trained and evaluated on two tasks: future

prediction and mask reconstruction of the IVS.

We evaluate model performance using the Root Mean Squared

Error (RMSE) and the Mean Absolute Percentage Error (MAPE),

defined respectively as

RMSE(𝑦,𝑦) =

√√
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2,

MAPE(𝑦,𝑦) = 1

𝑛

𝑛∑︁
𝑖=1

����𝑦𝑖 − 𝑦𝑖𝑦𝑖

���� ,
where 𝑛 denotes the number of data points to be reconstructed or

predicted. Lower values of RMSE and MAPE indicate better model

performance.

5.3 Baselines
We compare Hexagon-Net against a suite of baselines spanning
three main categories:

(1) Mathematical Finance (MF):
• SSVI [13]: An enhanced version of the SVI model [11], which

incorporates simplified no-arbitrage constraints for model-

ing IVS.

(2) DL Methods with a Time-Series Focus:
• Transformer [24]: A foundational architecture leveraging

self-attention.

• GAT [25]: Utilizes Graph Attention Networks to learn rela-

tionships.

• DA-RNN [18]: Incorporates a temporal attentive aggrega-

tion layer utilizing recurrent recurrent neural networks

• DLinear [29]: Employs a decomposition approach combined

with linear layers.

• NLinear [29]: A simple linear baseline using additive up-

dates to shift model prediction towards ground truth.

• Autoformer [27]: Leverages an autocorrelation mechanism

to learn inter-series dependencies, together with seasonal-

trend decomposition.

• FEDformer [34]: Proposes a frequency-enhanced Trans-

former with reduced computational complexity.
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Table 1: IVS Prediction Performance (%). Bold indicates the best result.

S&P500 NASDAQ100 STOXX50

Future Prediction Mask Reconstruction Future Prediction Mask Reconstruction Future Prediction Mask Reconstruction

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

MF SSVI 3.14±0.32 9.27±0.99 3.13±0.32 9.22±0.99 3.23±0.27 9.17±1.05 3.20±0.27 9.23±1.06 3.78±0.44 12.46±2.22 3.84±0.48 12.58±2.23
TS Transformer 3.84±0.14 10.99±0.63 3.13±0.27 8.67±0.52 3.86±0.48 11.27±1.52 3.18±0.55 8.89±1.36 3.70±0.33 11.68±1.19 3.25±0.33 9.85±1.04

GAT 3.05±0.84 8.75±0.65 2.21±0.08 6.93±0.16 3.27±0.10 9.52±0.43 2.50±0.10 7.87±0.38 3.45±0.37 10.59±0.95 3.11±0.36 9.65±0.90
DA-RNN 2.82±0.11 8.60±0.48 2.25±0.08 6.87±0.22 3.29±0.15 9.59±0.36 2.51±0.10 7.86±0.30 3.43±0.12 10.71±0.39 3.06±0.16 9.55±0.51
DLinear 3.20±0.41 10.10±0.87 2.79±0.60 8.21±1.48 3.12±0.06 9.55±0.20 2.42±0.10 7.39±0.26 3.33±0.07 10.33±0.36 3.05±0.19 9.14±0.44
NLinear 3.16±0.18 10.15±0.64 2.71±0.29 8.22±0.90 3.72±0.20 10.93±0.54 3.03±0.29 8.51±0.45 3.73±0.30 11.46±1.00 3.53±0.44 10.57±1.65

Autoformer 5.01±0.32 19.36±1.64 2.47±0.16 7.64±0.41 5.04±0.16 17.30±0.60 8.30±0.36 7.74±0.17 4.76±0.13 16.86±0.51 3.09±0.29 9.64±0.67
FEDformer 2.83±0.08 8.94±0.31 2.27±0.07 7.13±0.27 3.27±0.13 9.94±0.40 2.57±0.10 7.93±0.42 3.42±0.12 10.62±0.45 3.00±0.15 9.33±0.37
Informer 2.82±0.09 9.17±0.43 2.24±0.10 7.10±0.33 3.31±0.09 9.95±0.36 2.57±0.12 7.91±0.42 3.24±0.08 10.31±0.34 2.83±0.10 8.83±0.27

AST 2.47±0.35 7.64±1.86 2.12±0.32 6.30±1.48 3.13±0.06 9.35±0.19 2.46±0.06 7.83±0.26 3.32±0.21 10.25±0.45 3.07±0.25 9.49±0.67
DL-IVS DeepSmooth 2.71±0.68 6.68±2.01 2.70±0.68 6.66±1.99 3.33±1.05 9.30±4.38 3.30±1.06 9.45±4.50 3.73±0.71 10.79±3.11 3.80±0.76 10.87±3.21

Multi 2.80±0.06 8.99±0.28 5.74±0.12 18.09±0.68 3.12±0.09 9.28±0.35 5.78±0.12 19.70±0.41 3.81±0.31 13.46±1.36 6.56±0.23 23.10±0.84
VAE-DNN 2.79±0.08 8.25±0.27 2.43±0.12 7.52±0.35 3.11±0.10 9.32±0.23 2.44±0.08 7.38±0.15 3.30±0.12 10.29±0.39 3.38±0.12 10.38±0.39

Hexagon-Net 1.74±0.03 4.96±0.14 0.85±0.10 1.97±0.33 2.42±0.03 5.57±0.08 0.92±0.06 2.00±0.44 2.01±0.04 5.15±0.14 0.86±0.03 1.96±0.27

Table 2: Ablation Study on Two Main Modules. Bold indicates the best result.

S&P500 NASDAQ100 STOXX50

Future Prediction Mask Reconstruction Future Prediction Mask Reconstruction Future Prediction Mask Reconstruction

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

HGA DFW 2.39±0.04 6.58±0.15 1.43±0.06 4.26±0.22 2.48±0.04 7.07±0.15 1.62±0.04 4.61±0.23 2.59±0.04 7.34±0.28 1.93±0.03 4.86±0.67
NW 2.30±0.04 6.43±0.15 1.34±0.05 3.94±0.29 2.54±0.04 7.23±0.16 1.57±0.06 4.41±0.25 2.63±0.05 7.60±0.28 1.74±0.05 4.85±0.73

w/o HGA 2.45±0.03 6.77±0.15 1.51±0.06 5.15±0.26 2.56±0.04 7.39±0.15 1.61±0.04 4.50±0.25 2.69±0.06 7.91±0.27 1.99±0.05 4.92±0.75
CVT 𝒕-view 1.82±0.05 5.14±0.28 0.98±0.13 2.09±0.17 2.48±0.03 5.78±0.11 1.01±0.05 2.11±0.21 2.06±0.04 5.35±0.23 1.01±0.11 2.25±0.35

𝝉-view 1.84±0.03 5.17±0.30 0.97±0.07 2.24±0.35 2.49±0.05 5.81±0.12 1.04±0.06 2.32±0.32 2.07±0.04 5.38±0.23 1.01±0.11 2.25±0.35
𝒎-view 1.80±0.02 4.99±0.13 0.98±0.07 2.16±0.25 2.48±0.04 5.80±0.10 1.01±0.06 2.19±0.21 2.08±0.04 5.37±0.24 1.02±0.08 2.43±0.53
w/o CVT 2.21±0.04 5.45±0.15 1.35±0.03 2.42±0.46 2.78±0.04 6.24±0.17 1.23±0.05 2.29±0.15 2.57±0.06 5.95±0.25 1.23±0.05 2.31±0.20

Hexagon-Net 1.74±0.03 4.96±0.14 0.85±0.10 1.97±0.33 2.42±0.03 5.57±0.08 0.92±0.06 2.00±0.44 2.01±0.04 5.15±0.14 0.86±0.03 1.96±0.27

• Informer [33]: Introduces a sparse self-attentionmechanism

with good time complexity.

• AST [28]: Replaces the standard softmax with 𝛼-entmax

for learning sparse attention maps and employs adversarial

training via a discriminator to enhance prediction perfor-

mance.

(3) DL Methods for IVS (DL-IVS):

• DeepSmooth [1]: Integrates neural networks into a standard

arbitrage-free IVS modeling framework.

• Multi [32]: Introduces financial domain knowledge into a

multi-agent architecture for learning aweightingmechanism

tailored to IVS prediction.

• VAE-DNN [31]: Combines a VAE for feature extraction from

IVS with an LSTM for feature prediction.

5.4 Experimental Results
We run each model 10 times and report the mean and standard devi-

ation of the evaluation metrics for both tasks. As shown in Table 1,

in the future prediction task,Hexagon-Net significantly outper-

forms all baseline models across both RMSE and MAPE. Compared

to the second-best model, Hexagon-Net achieves RMSE reduc-

tions of 29.55%, 22.18%, and 37.96% on the S&P500, NASDAQ100,

and STOXX50 datasets, respectively. The corresponding reductions

in MAPE are 25.75%, 39.26%, and 49.76%. Furthermore, Hexagon-
Net exhibits consistently lower standard deviations across runs,

highlighting its robustness and improved generalization capability.

It is notable that VAE-DNN performs competitively, highlight-

ing the benefit of explicitly modeling uncertainty in IVS predic-

tion. This motivates us to examine (see Subsection 5.7) whether

Hexagon-Net can also address model uncertainty, even though

it was not specifically designed as a probabilistic model. However,

VAE-DNN operates solely on the (𝜏,𝑚) slice of the data and thus

lacks the ability to exploit the full spatio-temporal structure of the

IVS. Similarly, advanced generic time-series models, which rely

purely on the temporal view (𝑡 ) fail to capture dependencies across

multiple dimensions. These empirical results support our design ra-

tionale for enabling cross-view information propagation and fusion

in Hexagon-Net.
In the mask reconstruction task, Hexagon-Net performs even

better, outperforming all baseline models by substantial margins

across both evaluation metrics. Specifically, it reduces RMSE by

59.91%, 62.30%, and 69.61% on the S&P500, NASDAQ100, and STOXX50

datasets, respectively, compared to the second-best model. The im-

provements inMAPE are evenmore pronounced, with reductions of

68.73%, 72.90%, and 77.80% on the same datasets. These results high-

light the ability of Hexagon-Net to effectively capture inter-IVS

temporal dependencies while also leveraging the spatial structure

across multiple well-aligned IVS views.
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Table 3: Study on Two Alternative Setups. Bold indicates the best result.

S&P500 NASDAQ100 STOXX50

Future Prediction Mask Reconstruction Future Prediction Mask Reconstruction Future Prediction Mask Reconstruction

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Hexagon-Net (with MoCo) 1.75±0.02 4.92±0.10 0.86±0.07 2.00±0.20 2.44±0.02 5.66±0.12 0.93±0.03 2.03±0.32 2.00±0.04 5.25±0.38 0.85±0.05 1.99±0.24
Hexagon-Net (with StoL) 1.76±0.03 4.96±0.19 1.00±0.04 2.02±0.23 2.47±0.06 5.58±0.07 0.94±0.04 1.99±0.44 1.99±0.03 5.12±0.17 0.97±0.05 2.10±0.73

Hexagon-Net 1.74±0.03 4.96±0.14 0.85±0.10 1.97±0.33 2.42±0.03 5.57±0.08 0.92±0.06 2.00±0.44 2.01±0.04 5.15±0.14 0.86±0.03 1.96±0.27

5.5 Ablation Studies
Table 2 presents the results of the ablation studies, in which the

Heterogeneous Graph Grid Aligner is abbreviated as HGA.

5.5.1 Effectiveness of HGA. We assess the contribution of HGA
by comparing Hexagon-Net to three alternative configurations:

(1) DFW, which replaces HGA with the DFW method [9]; (2) NW,

which uses the Nadaraya–Watson estimator in place of HGA; (3)
w/o HGA, which directly uses raw historical IVS data without

any alignment. The results clearly indicate that HGA significantly

outperforms the baselines in both tasks, confirming its effectiveness.

Notably, the performance gains are more pronounced in the mask

reconstruction task, suggesting that HGA is particularly effective

when information is partially missing.

5.5.2 Effectiveness of CVT. We evaluate (CVT) by comparing it

with four ablated variants: (1) 𝒕-view, which uses only the temporal

view; (2) 𝝉-view, which uses only the time-to-maturity view; (3)

𝒎-view, which uses only the log-moneyness view; (4) w/o CVT,
which removes all structured views and uses only an MLP for fea-

ture extraction. Across all comparisons, CVT consistently achieves

superior performance, underscoring the effectiveness of leveraging

cross-view interactions.

5.6 Sensitive Analysis
As illustrated in Figures 3, 4, and 5, we conduct a sensitivity anal-

ysis of the RMSE with respect to three key hyperparameters: the

number of hidden dimensions 𝐶 , the number of layers 𝐿, and the

static arbitrage-free loss weight 𝛽 , across both the prediction and

reconstruction tasks. The results reveal the following trends.

(1) When𝐶 is small, performance deteriorates due to insufficient

model capacity. RMSE stabilizes at 𝐶 = 64, beyond which further

increases yield diminishing returns.

(2) Performance is significantly worse at 𝐿 = 1, indicating the

necessity of a deeper architecture. Models with 𝐿 = 2 and 𝐿 = 3

achieve similar results, and we cap the depth at 𝐿 = 3 to prevent

potential out-of-memory (OOM) issues.

(3) A small SAF loss weight (e.g., 𝛽 = 0.1) improves performance

by encouraging the absence of static arbitrage opportunities, but

larger values of 𝛽 degrade performance.

5.7 Alternative Setups
We compare Hexagon-Net against several alternative setups to as-
sess its ability to address two core challenges. (1) The heterogeneous

informativeness of different regions of the IVS, driven by the illiq-

uidity of certain options, implies that a uniform modeling approach

is inadequate. (2) The inherent stochasticity of financial markets
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Figure 3: Impact of number of hidden dimensions 𝐶 on pre-
diction and reconstruction RMSE.
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Figure 4: Impact of number of model layers 𝐿 on prediction
and reconstruction RMSE.

Figure 5: Impact of penalty factor 𝛽 for static arbitrary free
conditions on prediction and reconstruction RMSE.

introduces ambiguity and noise, leading to model uncertainty that

must be effectively managed.

5.7.1 Discriminative Feature Representations. To assess the ability

of Hexagon-Net to learn discriminative feature representations,

we integrate the Contrastive Learner MoCo [15] into the network
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Table 4: Portfolio Performance (with Long and Short Positions). Bold indicates the best result.

S&P500 NASDAQ100) STOXX50

Long/Short 10% Long/Short 20% Long/Short 10% Long/Short 20% Long/Short 10% Long/Short 20%

Model AR SR AR SR AR SR AR SR AR SR AR SR

MF SSVI 7.98±0.51 1.61±0.08 3.84±0.35 0.92±0.07 7.66±1.33 1.48±0.25 2.66±0.21 0.69±0.04 4.41±1.07 0.71±0.20 1.44±1.56 0.49±0.37
TS Transformer 8.24±0.86 1.64±0.18 1.88±0.76 0.56±0.16 8.39±0.64 1.57±0.12 2.81±0.55 0.71±0.11 3.94±0.95 0.64±0.20 1.70±0.79 0.48±0.16

GAT 7.32±1.14 1.47±0.23 2.14±0.47 0.61±0.09 8.85±0.78 1.63±0.15 3.33±0.51 0.81±0.11 3.89±1.14 0.68±0.23 1.61±0.64 0.49±0.15
DA-RNN 7.83±1.25 1.55±0.23 2.15±0.63 0.62±0.13 7.73±0.92 1.45±0.18 2.98±0.54 0.75±0.11 4.09±1.47 0.72±0.25 1.44±1.28 0.47±0.34
DLinear 7.75±1.13 1.57±0.28 2.42±0.56 0.68±0.12 7.90±0.80 1.48±0.16 3.14±0.60 0.78±0.12 4.77±1.06 0.86±0.22 1.83±0.95 0.53±0.23
NLinear 6.96±0.61 1.39±0.12 1.88±0.75 0.57±0.15 7.85±1.06 1.45±0.17 3.00±0.39 0.74±0.08 4.50±1.71 0.79±0.33 1.67±0.88 0.53±0.22

Autoformer 6.33±0.91 1.34±0.17 1.47±0.37 0.48±0.08 7.64±1.09 1.46±0.19 2.33±0.49 0.62±0.09 3.58±1.19 0.69±0.25 1.12±0.42 0.42±0.11
FEDformer 8.07±1.73 1.61±0.30 2.22±0.53 0.63±0.11 8.00±1.02 1.48±0.20 3.00±0.42 0.75±0.09 5.21±1.24 0.87±0.24 1.64±0.79 0.49±0.18
Informer 6.92±1.37 1.36±0.33 2.07±0.55 0.60±0.12 8.50±0.76 1.57±0.14 2.99±0.38 0.75±0.08 5.26±1.31 0.95±0.26 1.35±0.82 0.44±0.20

AST 8.26±0.86 1.64±0.19 1.90±0.74 0.56±0.17 8.42±0.63 1.58±0.12 2.82±0.53 0.71±0.10 3.95±0.94 0.64±0.19 1.71±0.78 0.48±0.17
DL-IVS DeepSmooth 8.06±0.85 1.57±0.19 3.23±0.62 0.84±0.13 9.14±1.16 1.66±0.24 3.91±0.57 0.93±0.11 4.17±1.47 0.66±0.24 1.67±0.90 0.46±0.20

Multi 8.56±1.10 1.68±0.21 2.53±0.54 0.69±0.12 8.95±0.64 1.62±0.14 3.42±0.51 0.83±0.11 4.66±1.63 0.78±0.32 2.38±0.67 0.62±0.19
VAE-DNN 8.79±1.07 1.76±0.21 3.77±0.96 0.94±0.19 8.14±0.93 1.50±0.18 3.04±0.54 0.76±0.10 4.62±1.13 0.81±0.28 1.87±0.90 0.56±0.24

Hexagon-Net 9.07±0.78 1.85±0.25 4.02±0.72 0.96±0.16 9.77±0.50 1.69±0.09 4.27±0.27 0.95±0.10 5.32±0.96 0.96±0.23 2.47±0.34 0.63±0.11

architecture and evaluate its performance relative to the original

Hexagon-Net. The detailed implementation of MoCo is described

in Appendix C.1.

As reported in Table 3, the performance of Hexagon-Net aug-
mented with the Contrastive Learner closely matches that of

the baseline Hexagon-Net without contrastive learning. This out-
come indicates that Hexagon-Net inherently learns effective dis-

criminative feature representations reflecting the illiquidity-driven

heterogeneous informativeness present in options data.

5.7.2 Stochasticity. To evaluate the capability of Hexagon-Net in
modeling uncertainty within IVS feature representations, we inte-

grate a VAE-based Stochastic Learner (StoL) specifically designed

to address such uncertainty. We then compare its performance

against the baseline Hexagon-Net. The detailed architecture of

StoL is provided in Appendix C.2.

As presented in Table 3, the performance of Hexagon-Net aug-
mented with StoL closely aligns with that of the originalHexagon-
Net. This indicates that Hexagon-Net inherently captures sto-

chastic feature representations, a prevalent challenge in financial

markets, thereby achieving robust predictive accuracy.

5.8 Robustness across Market Regimes
To further evaluate the robustness of Hexagon-Net, we partition
the data based on high- and low-volatility regimes of the VIX in-

dex, using a rule-of-thumb threshold of 30%. We then assess the

model’s performance under these two market conditions. The mean

and standard deviation of both RMSE and MAPE are found to be

marginally higher in the high-volatility regime, but the differences

are negligible. Detailed results are reported in Appendix D.

5.9 Options Portfolio Selection
To demonstrate the economic value of the proposedHexagon-Net,
we conduct a straightforward portfolio experiment. Specifically,

we derive the expected options prices from the predicted implied

volatilities according to the classical Black-Scholes model, and cal-

culate the expected returns for each option. We rank all available

options according to the predicted returns, and long (short) the

top (bottom) 10% or 20% basket of options with equal weights. We

rebalance the portfolio according to the updated rank of expected

options returns. Given the relatively high liquidity of the stock

index options used in this study, we assume a transaction cost of

50 basis points (i.e., 0.5%) per trade.

We calculate the annualized average return AR and Sharpe ratio

SR of the options portfolios for each model in the testing period,

where 𝑟 = [𝑟1, . . . , 𝑟𝑇 ] is the portfolio return series. Each portfolio

return 𝑟𝑡 is calculated as 𝑟𝑡 = 𝑤⊤
𝑡 𝑦𝑡 , where 𝑤𝑡 is the portfolio

weight vector for 𝑁𝑡 options with

∑𝑁𝑡

𝑖=1
𝑤𝑡,𝑖 = 1 and 𝑦𝑡 is the

realized options return vector.

It is intuitive that better performance on implied volatility pre-

diction leads to better portfolio selection performance. As shown

in Table 4, Hexagon-Net beats all competing models in both per-

formance metrics AR and SR, suggesting that Hexagon-Net can
effectively convert predictive precision into actual economic value.

6 Conclusion
The proposedHexagon-Net is designed to effectively learn feature

representations from misaligned imbalanced IVS historical data

for both mask reconstruction and future prediction tasks. It not

only offers a grid aligner based on a heterogeneous graph to aggre-

gate and propagate information across different parts of the IVS

that are characterized by liquidity-driven informativeness, but also

explicitly captures and fuses cross-view spatio-temporal features

of inner-IVS patterns and inter-IVS dynamics. To the best of our

knowledge, this is the first work that addresses the IVS data mis-

alignment issue and explicitly models IVS across views in a unified

end-to-end framework to perform reconstruction and prediction

tasks. Hexagon-Net significantly and robustly outperforms exist-

ing models and methods in terms of RMSE and MAPE across three

major datasets of stock index options, and it also survives exten-

sive ablation studies, sensitivity analyses, and alternative setups.

Moreover, it is able to successfully convert its predictive precision

into substantial economic value in options portfolio investment.
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A Static Arbitrage-Free Conditions for IVS
We recall a theorem from [20], which provides conditions for the

absence of static arbitrage.

Proposition 1. Consider an implied volatility function 𝜎 (𝑚,𝜏)
and suppose the following conditions are satisfied.

(1) (Positivity) For every (𝑚,𝜏) with 𝜏 > 0, one has 𝜎 (𝑚,𝜏) > 0.
(2) (Smoothness) For every 𝜏 , the function𝑚 → 𝜎 (𝑚,𝜏) is twice

differentiable.
(3) (Monotonicity in 𝜏) For every𝑚, the function 𝜏 → 𝜎 (𝑚,𝜏)2𝜏

is nondecreasing. Equivalently,

𝑙cal (𝑚,𝜏) = 𝜎 (𝑚,𝜏) + 2𝜏𝜕𝜏𝜎 (𝑚,𝜏) ≥ 0.

(4) (Durrleman’s Condition) For every (𝑚,𝜏), one has

𝑙but (𝑚,𝜏) = 𝜏𝜎 (𝑚,𝜏)𝜕𝑚𝑚𝜎 (𝑚,𝜏) −
1

4

(𝜏𝜎 (𝑚,𝜏)𝜕𝑚𝜎 (𝑚,𝜏))2

+
(
1 − 𝑚𝜕𝑚𝜎 (𝑚,𝜏)

𝜎 (𝑚,𝜏)

)
2

≥ 0.

(5) (Large Moneyness Behavior) For every 𝜏 , 𝜎 (𝑚,𝜏)2 is linear
as𝑚 → ±∞.

(6) (Value at Maturity) For every𝑚, one has 𝜎 (𝑚, 0) = 0.

Then the resulting implied volatility function is free of static arbitrage.

Note that in the setup of the previous proposition, Condition (5)

is equivalent to the second-order derivative of 𝜎 (𝑚,𝜏)2 going to

zero when𝑚 → ±∞. Here we have

𝜕𝑚𝑚𝜎
2 (𝑚,𝜏) = 2𝜎 (𝑚,𝜏)𝜕𝑚𝑚𝜎 (𝑚,𝜏) + 2(𝜕𝑚𝜎 (𝑚,𝜏))2 .

B Grids Design For Static Arbitrage-Free
To align the IVS and compute the static arbitrage-free loss, we

design two custom grids following [31]. In particular, we construct

denser grids for smaller time-to-maturity values 𝜏 to better capture

near-term structure.
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The set of 𝜏 values is given by the following 𝐴 = 25 points:

G𝜏 = [0, 0.05)5⊕[0.08, 0.13)5⊕[0.13, 0.20)5⊕[0.20, 0.40)5⊕[0.40, 1.36]5,
where ⊕ denotes array concatenation, and [𝑎, 𝑏)𝑘 indicates an arith-

metic sequence of 𝑘 evenly spaced points from 𝑎 up to (but not

including) 𝑏.

Similarly, the set of𝑚 values (log-moneyness) consists of the

following 𝐵 = 40 points:

G𝑚 = [−0.23, 0)13 ⊕ [0, 0.08)13 ⊕ [0.08, 0.4]14,
with denser resolution around the at-the-money (ATM) region to

better capture local IVS behavior. To construct the two grids, we

now extend the𝑚 values to increase coverage in the wings:

G𝑚
34

= G𝑚 ∪
{
𝑚3

:𝑚 ∈ [−(−2𝑚min)1/3, (2𝑚max)1/3]40
}
,

G𝑚
5

= G𝑚 ∪ ([6𝑚min, 4𝑚min]20 ⊕ [4𝑚max, 6𝑚max]20) ,
where𝑚min and𝑚max are the minimum and maximum values of

G𝑚 , respectively.

The final aligned grids are now constructed as the Cartesian

product of these sets:

G𝐶34 = G𝜏 × G𝑚
34
, G𝐶5 = G𝜏 × G𝑚

5
.

C Alternative Setups
C.1 Contrastive Learner
To improve the framework’s ability to learn discriminative features

and capture intrinsic relationships between grid points we incorpo-

rate two cross-view attention mechanisms. One model’s parameters

are updated via standard back-propagation, while the other employs

momentum-based updates (e.g.,MoCo), progressively inheriting

parameters from the former. To facilitate discriminative feature

learning across grid points, representations corresponding to iden-

tical locations are treated as positive pairs, whereas those from

distinct locations serve as negative pairs.

Formally, let the grid representations learned by the two models

be denoted as 𝑞, 𝑘 ∈ R𝑇×𝑃×𝐶 (Recall that 𝑃 = 𝐴 × 𝐵 is the number

of grid points and 𝐶 denotes the hidden layer dimensionality.). The

grid contrastive learning loss is then defined as

L𝐶 = − 1

𝑇 × 𝑃

𝑇∑︁
𝑡=1

𝑃∑︁
𝑖=1

ln

exp(sim(𝑞𝑡,𝑖 , 𝑘𝑡,𝑖 )/𝜏)∑
𝑗≠𝑖 exp(sim(𝑞𝑡,𝑖 , 𝑘𝑡, 𝑗 )/𝜏)

.

More details can be found in [15].

Additionally, we explore an alternative contrastive learning scheme

involving only near-expiry and far-into-future options, as well as

at-the-money and deep out-of-money options. The results are qual-

itatively similar.

C.2 Stochastic Learner
Given the high stochasticity inherent in financial markets, rather

than modeling IVS distributions directly, we assume that these

distributions are governed by a set of latent random variables fol-

lowing conditional Gaussian priors. We learn the distributions of

these latent variables from observed IVS data via an inferencemodel,

while concurrently training a generative model that reconstructs

variational IVS from the latent space. The VAE [16, 19] provides a

standard framework for modeling variation in non-sequential data

through latent random variables. However, its conventional distri-

butional assumptions are not readily applicable to IVS prediction,

due to the presence of temporal interdependence in historical IVS

sequences.

To address this, we adopt the approach of [2], modeling tempo-

ral dependencies in IVS using a dependency graph (see Figure 6)

embedded within both the generative and inference models. Specifi-

cally, we reshape the hidden representations 𝐻1, . . . , 𝐻 𝑙 ∈ R𝑇×𝑃×𝐶

from all layers into tensors of shape R𝑇×D
, where D = 𝑃 ×𝐶 . Be-

cause higher-layer representations exhibit broader receptive fields,

the hierarchical generative and inference architectures implicitly

capture temporal dependencies across time steps.
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Figure 6: Structure of Stochastic Learner

C.2.1 Generation Model. As depicted in the left panel of Figure 6,

we employ a generative model to produce IVS from latent variables,

formulated as 𝑝𝜃 (𝐼al𝑡 | Z𝑡 ) = 𝑓gen (Z𝑡 ), where 𝑓gen is parameter-

ized by an MLP. The temporal interdependence among hierarchical

latent variablesZ𝑡 = {𝑍 1

𝑡 , . . . , 𝑍
𝐿
𝑡 } and historical IVS 𝐼al

1:𝑡−1 is mod-

eled by the following structured prior:

𝑝𝜃 (Z𝑡 | 𝐼al1:𝑡−1) = 𝑝𝜃 (𝑍
𝐿
𝑡 | 𝐻𝐿𝑡−1)

𝐿−1∏
𝑙=1

𝑝𝜃 (𝑍 𝑙𝑡 | 𝑍 𝑙+1𝑡 , 𝐻 𝑙𝑡−1),

where each conditional distribution is modeled as a Gaussian with

diagonal covariance, following [2]:

𝑝𝜃 (𝑍𝐿𝑡 | 𝐻𝐿𝑡−1) = 𝜙 (𝑍
𝐿
𝑡 | 𝜇𝐿𝑡,𝑝 , 𝜎𝐿𝑡,𝑝 ), 𝑝𝜃 (𝑍 𝑙𝑡 | 𝑍 𝑙+1𝑡 , 𝐻 𝑙𝑡−1) = 𝜙 (𝑍

𝑙
𝑡 | 𝜇𝑙𝑡,𝑝 , 𝜎𝑙𝑡,𝑝 ),

where 𝜙 denotes the density of the standard normal distribution.

The parameters 𝜇 and 𝜎 are generated by neural networks:

[𝜇𝐿𝑡,𝑝 , 𝜎𝐿𝑡,𝑝 ] = 𝑓 𝐿𝑝 (𝐻𝐿𝑡−1), [𝜇𝑙𝑡,𝑝 , 𝜎𝑙𝑡,𝑝 ] = 𝑓 𝑙𝑝 (𝑍 𝑙+1𝑡 , 𝐻 𝑙𝑡−1) .

C.2.2 Inference Model. Analogously, the inference model approxi-

mates the posterior distribution of the latent variables Z𝑡 , as illus-
trated in the right panel of Figure 6:

𝑞𝜙 (Z𝑡 | 𝐼al1:𝑡 ) = 𝑞𝜙 (𝑍
𝐿
𝑡 | 𝐻𝐿𝑡 )

𝐿−1∏
𝑙=1

𝑞𝜙 (𝑍 𝑙𝑡 | 𝑍 𝑙+1𝑡 , 𝐻 𝑙𝑡 ),

where each conditional distribution is Gaussian with diagonal co-

variance:

𝑞𝜙 (𝑍𝐿𝑡 | 𝐻𝐿𝑡 ) = 𝜙 (𝑍𝐿𝑡 | 𝜇𝐿𝑡,𝑞, 𝜎𝐿𝑡,𝑞), 𝑞𝜙 (𝑍 𝑙𝑡 | 𝑍 𝑙+1𝑡 , 𝐻 𝑙𝑡 ) = 𝜙 (𝑍 𝑙𝑡 | 𝜇𝑙𝑡,𝑞, 𝜎𝑙𝑡,𝑞) .
Again, themean and standard deviation are parameterized by neural

networks:

[𝜇𝐿𝑡,𝑞, 𝜎𝐿𝑡,𝑞] = 𝑓 𝐿𝑞 (𝐻𝐿𝑡 ), [𝜇𝑙𝑡,𝑞, 𝜎𝑙𝑡,𝑞] = 𝑓 𝑙𝑞 (𝑍 𝑙+1𝑡 , 𝐻 𝑙𝑡 ).
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Table 5: IVS Prediction Performance (%) in Low-Volatility Regime. Bold indicates the best result.

S&P500 NASDAQ100 STOXX50

Future-Prediction Mask-Reconstruction Future-Prediction Mask-Reconstruction Future-Prediction Mask-Reconstruction

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

MF SSVI 3.14±0.27 9.26±0.83 3.12±0.22 9.20±0.76 3.22±0.16 9.16±0.92 3.20±0.25 9.22±0.87 3.78±0.36 12.42±1.87 3.82±0.45 12.55±2.10
TS Transformer 3.84±0.11 10.97±0.55 3.12±0.23 8.66±0.45 3.85±0.42 11.26±1.35 3.18±0.49 8.87±1.20 3.70±0.28 11.67±1.05 3.25±0.29 9.85±0.92

GAT 3.04±0.75 8.74±0.58 2.21±0.06 6.93±0.13 3.26±0.08 9.52±0.37 2.50±0.08 7.87±0.32 3.45±0.32 10.59±0.83 3.11±0.31 9.65±0.79
DA-RNN 2.82±0.08 8.60±0.41 2.25±0.06 6.87±0.18 3.28±0.12 9.59±0.30 2.51±0.08 7.86±0.25 3.43±0.10 10.70±0.33 3.06±0.13 9.55±0.44
DLinear 3.18±0.35 10.09±0.76 2.79±0.52 8.21±1.31 3.12±0.04 9.55±0.16 2.42±0.08 7.39±0.22 3.33±0.05 10.33±0.30 3.05±0.16 9.14±0.38
NLinear 3.15±0.15 10.14±0.55 2.71±0.25 8.22±0.80 3.72±0.17 10.92±0.46 3.03±0.25 8.51±0.40 3.73±0.26 11.46±0.88 3.53±0.39 10.57±1.47

Autoformer 5.00±0.27 19.35±1.45 2.47±0.13 7.64±0.35 5.03±0.13 17.30±0.51 8.30±0.30 7.74±0.14 4.76±0.10 16.86±0.43 3.09±0.24 9.64±0.59
FEDformer 2.83±0.05 8.94±0.26 2.27±0.05 7.13±0.22 3.26±0.10 9.94±0.34 2.57±0.08 7.93±0.36 3.42±0.09 10.62±0.38 3.00±0.12 9.33±0.31
Informer 2.81±0.06 9.16±0.36 2.24±0.08 7.10±0.28 3.30±0.07 9.95±0.30 2.57±0.09 7.91±0.36 3.24±0.06 10.31±0.28 2.83±0.08 8.83±0.23

AST 2.46±0.29 7.64±1.65 2.12±0.27 6.30±1.31 3.12±0.04 9.35±0.15 2.46±0.04 7.83±0.22 3.32±0.18 10.25±0.38 3.07±0.21 9.49±0.59
DL-IVS DeepSmooth 2.71±0.58 6.68±1.78 2.70±0.59 6.66±1.76 3.32±0.92 9.30±3.89 3.30±0.93 9.45±4.00 3.73±0.62 10.79±2.76 3.80±0.66 10.87±2.85

Multi 2.80±0.04 8.98±0.23 5.74±0.09 18.09±0.59 3.11±0.07 9.28±0.29 5.78±0.09 19.70±0.35 3.81±0.26 13.46±1.19 6.56±0.19 23.10±0.73
VAEDNN 2.79±0.05 8.25±0.22 2.43±0.09 7.52±0.30 3.10±0.07 9.32±0.19 2.44±0.06 7.38±0.12 3.30±0.09 10.29±0.33 3.38±0.09 10.38±0.33

Hexagon-Net 1.74±0.03 4.96±0.15 0.84±0.08 1.95±0.29 2.41±0.04 5.56±0.06 0.92±0.05 2.00±0.38 2.00±0.03 5.13±0.12 0.86±0.03 1.95±0.25

Table 6: IVS Prediction Performance (%) in High-Volatility Regime. Bold indicates the best result.

S&P500 NASDAQ100 STOXX50

Future-Prediction Mask-Reconstruction Future-Prediction Mask-Reconstruction Future-Prediction Mask-Reconstruction

Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

MF SSVI 3.16±0.28 9.29±0.93 3.17±0.29 9.23±0.95 3.27±0.24 9.19±1.01 3.25±0.24 9.24±1.02 3.82±0.41 12.47±2.17 3.88±0.45 12.62±1.89
TS Transformer 3.88±0.11 11.02±0.59 3.18±0.24 8.69±0.49 3.90±0.45 11.28±1.47 3.23±0.52 8.91±1.32 3.75±0.30 11.72±1.15 3.30±0.30 9.86±1.00

GAT 3.06±0.81 8.77±0.61 2.25±0.05 6.94±0.14 3.31±0.07 9.54±0.40 2.54±0.07 7.89±0.35 3.49±0.34 10.62±0.91 3.16±0.33 9.67±0.86
DA-RNN 2.87±0.08 8.62±0.45 2.29±0.05 6.88±0.19 3.34±0.12 9.62±0.33 2.56±0.07 7.88±0.27 3.48±0.09 10.74±0.36 3.11±0.13 9.59±0.48
DLinear 3.25±0.38 10.13±0.83 2.84±0.57 8.25±1.43 3.17±0.03 9.58±0.17 2.47±0.07 7.42±0.23 3.38±0.04 10.35±0.33 3.10±0.16 9.14±0.41
NLinear 3.18±0.15 10.17±0.60 2.74±0.26 8.23±0.86 3.76±0.17 10.95±0.51 3.05±0.26 8.53±0.42 3.76±0.27 11.47±0.96 3.55±0.41 10.58±1.60

Autoformer 5.04±0.29 19.37±1.59 2.50±0.13 7.65±0.38 5.06±0.13 17.32±0.57 8.32±0.33 7.75±0.14 4.80±0.10 16.88±0.48 3.10±0.26 9.66±0.63
FEDformer 2.85±0.05 8.95±0.28 2.30±0.04 7.14±0.24 3.32±0.10 9.96±0.37 2.60±0.07 7.94±0.39 3.45±0.09 10.64±0.42 3.03±0.12 9.36±0.34
Informer 2.86±0.06 9.19±0.40 2.26±0.07 7.15±0.30 3.34±0.06 9.97±0.33 2.60±0.09 7.94±0.39 3.27±0.05 10.35±0.31 2.86±0.07 8.87±0.24

AST 2.50±0.32 7.66±1.81 2.15±0.29 6.32±1.43 3.16±0.03 9.39±0.16 2.50±0.03 7.86±0.23 3.33±0.18 10.28±0.42 3.10±0.26 9.56±0.64
DL-IVS DeepSmooth 2.74±0.65 6.69±1.97 2.71±0.65 6.68±1.95 3.35±1.02 9.34±4.33 3.33±1.03 9.49±4.45 3.74±0.68 10.84±3.06 3.82±0.73 10.89±3.16

Multi 2.83±0.03 9.01±0.25 5.77±0.09 18.12±0.64 3.14±0.06 9.30±0.32 5.79±0.09 19.73±0.38 3.84±0.28 13.48±1.32 6.57±0.20 23.12±0.80
VAEDNN 2.80±0.05 8.29±0.24 2.46±0.09 7.54±0.32 3.14±0.07 9.34±0.20 2.46±0.05 7.40±0.12 3.32±0.09 10.30±0.36 3.40±0.09 10.42±0.36

Hexagon-Net 1.76±0.02 4.98±0.23 0.90±0.13 2.03±0.41 2.43±0.04 5.59±0.05 0.94±0.08 2.03±0.46 2.04±0.03 5.17±0.12 0.89±0.03 1.99±0.25

C.2.3 Probability Learning. Following [2], the variational lower

bound of the log-likelihood at time 𝑡 equals

Lrec (𝜃, 𝜙 ; 𝑡) + LKL (𝜃, 𝜙 ; 𝑡) = −E
𝑞𝜙 (Z𝑡 |𝐼 al𝑡 )

[
log 𝑝𝜃 (𝐼al𝑡 | Z𝑡 )

]
+ KL

(
𝑞𝜙 (Z𝑡 | 𝐼al1:𝑡 ) ∥ 𝑝𝜃 (Z𝑡 | 𝐼

al

1:𝑡−1)
)
,

where the first term is the reconstruction loss, and the second is the

Kullback–Leibler divergence between the posterior and the prior.

D Robustness across Market Regimes
Tables 5 and 6 compare the model performance in high-volatility

and low-volatility regimes of the VIX index using a rule-of-thumb

threshold of 30%.
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