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ABSTRACT: Earth system models (ESMs) are widely used to make projections of the future

behaviour of the earth’s climate in the context of anthropogenic climate change. Setting aside

uncertainties stemming from the design and implementation of the model, there nevertheless remain

substantial uncertainties with such projections. Two important ones arise from uncertainties in (a)

the initial conditions and (b) the values of parameters within the model. Here we systematically

investigate the latter: the consequences of parametric uncertainty as might be explored by perturbed

parameter ensembles. Utilising a low-dimensional system with key characteristics of a climate

model, we examine two types of parametric uncertainty through a large ensemble approach. The

first, micro-parametric uncertainty, is akin to micro-initial condition uncertainty and explores a

situation where one knows the relevant parameter values well but not perfectly. The second,

macro-parametric uncertainty, explores the situation where there may be substantial uncertainty

in parameter values. We also investigate how they interact with each other and with micro-initial

condition uncertainty. In general, we find that micro-parametric uncertainty can lead to a much

broader range of states than in initial condition ensembles, with the resulting standard deviations

being over 2.5-3.5 times higher for slow- and fast-mixing variables alike. Additionally, we show

that the scale of the effect may be even larger with macro-parametric uncertainty. Finally, we

discuss the implications for ensemble design and interpretation, and particularly how these results

indicate the need for more complex ensemble designs when making projections of climate change

within ESMs.
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SIGNIFICANCE STATEMENT: This study presents a systematic discussion of the sources and

consequences of parametric uncertainty in climate models. Two types of parametric uncertainty

are found depending on the source and magnitude of uncertainty: a micro and macro uncertainty,

with the latter being subdivided into two types. While parametric ensembles are generally found

to quantify a broader range of plausible states and behaviour than initial condition ensembles, the

results are varied and dependent on multiple factors, such as the number of parameters perturbed

and the output variable of interest. Together, these results shed some light on how to better design

informative climate model ensembles, particularly given the computational power demands of

running such models.

1. Introduction

Earth System Models (ESMs) are highly complex and nonlinear mathematical representations

of the Earth’s spheres, including the atmosphere, ocean, land and cryosphere, and their interac-

tions (Dijkstra 2013). They are widely used to make projections of future climate under scenarios

for future anthropogenic greenhouse gas emissions within projects such as the Coupled Model

Intercomparison Project (CMIP; Eyring et al. (2016)). These projections provide key inputs to a

range of high profile publications, such as the United Nation’s Intergovernmental Panel on Climate

Change (IPCC) assessment reports (IPCC 2023).

Being highly complex and nonlinear, ESMs are too complicated to be tractable analytically or

qualitatively. Indeed, they are inherently computer-based models, discretised in space and time and

with an extraordinarily large number of degrees of freedom. For instance, a typical 6th generation

CMIP model can have something like 107 −109 degrees of freedom, making them very expensive

to study even with high-performance computers.

ESMs also include a large number of parameters. While some of the parameters arise from

physical laws and have well defined meanings, such as the Coriolis parameter, many others are

within “parameterisations”: simplified, closed-form mathematical representations of processes that

cannot be resolved explicitly due to either limited resolution or lack of scientific understanding.

Examples include the “1/3” power-law ratio in cloud micro-physics (Liu and Hallett 1997), sub-

shelf melting parameterisations in ice sheet models (Favier et al. 2019), the Gent-McWilliams eddy

parameterisation in ocean circulation dynamics (Gent and McWilliams 1990; Gent 2011), and the
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Martin curve for particulate organic carbon attenuation in marine biogeochemistry (Martin et al.

1987; de Melo Virı́ssimo et al. 2022), to mention just a few. Overall, this results in ESMs having

hundreds of free parameters that must be specified by either the model developer or user.

In practice, determining these parameters is difficult. Even when they have a well-defined

meaning within a physical law, their values are still inherently uncertain due to measurement

limitations (Youden 1961), effectively meaning that many values are plausible within a measured

uncertainty range. There is also a question over whether the value of such parameters in reality are

necessarily suited to reproducing the behaviour of the system as a whole in a multi-component,

complex model where some processes are missing and others are different from those occurring in

reality (Martin et al. 2024). Other parameters may not be directly measurable but their values may

still be guided by observations of the processes they represent, or they might instead be chosen to

maximise the ability of the model to reproduce a collection of observations of the system more

broadly. The latter is the widely acknowledged process of model calibration or “tuning” (Hourdin

et al. 2017), which may be performed manually (so-called “expert” tuning) or objectively via

optimisation algorithms (Bellprat et al. 2012b; Tett et al. 2017). There is, however, still a question

of whether the ability to reproduce such observations (and pass a “climate Turing test” (Palmer

2016)) is an adequate target measure given missing processes, compensation of errors, and the

extrapolatory nature of the model-based projections. Relatedly, some parameters may be expected

to be space- or time-dependent but are represented in the model by a single value.

Together, these obstacles to determining parameter values result in ESMs having a large number

of poorly constrained parameters, which one might expect to be an important source of uncertainty

in climate change projections. It is natural, therefore, to talk about the consequences of parametric

uncertainty when considering such climate models: how might different parameter values affect

their results?

a. Quantifying the consequences of parametric uncertainty in models

One way of quantifying this is to run what are called perturbed parameter ensembles

(PPEs1; Parker (2013); Carslaw et al. (2018)). These are collections of model simulations where

each one is generated by perturbing uncertain parameters (individually or collectively) to explore

1Sometimes the acronym “PPE” is used to refer to perturbed physics ensembles, which can go beyond parameter uncertainty and consider
uncertainties in the model formulation as well.
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the variability that this uncertainty generates in the model forecast (Hargreaves 2010). Note that

this is very different to multi-model ensembles (or MMEs), which are ensembles-of-opportunity

and the approach taken by projects such as CMIP (Masson and Knutti 2011; Knutti et al. 2013;

Eyring et al. 2016). PPEs are also different to the so-called stochastic parameterisations, a common

feature in modern weather and atmosphere models, which attempts to emulate the uncertainty in

unresolved physical processes in general circulation models by multiplying the sub-grid param-

eterisations (or parameters) by a time-dependent stochastic random variable (Buizza et al. 1999;

Palmer 2001; Berner et al. 2017), resulting in a time-dependent parameterisation.

PPEs are not new. Indeed, there is a broad literature on the subject, ranging from the very

large PPEs produced by climateprediction.net (Stainforth et al. 2005; Sanderson et al. 2008), to

discussion around the implications of ensemble design and interpretation (Stainforth et al. 2007a,b),

to large ad hoc PPEs in regional (Bellprat et al. 2012a) and global (Murphy et al. 2004; Collins

et al. 2011) climate models, to considerations on robustness of bifurcation points (Knopf et al.

2005) and effective number of degrees of freedom (Peatier et al. 2024) in multi-parameter spaces,

to cite a few. However, a systematic analysis of the consequences of parametric uncertainty in the

context of climate modelling remains largely absent. This is an important gap, because quantifying

parametric uncertainty is a key element in the design of ensembles that aim to be informative, and

it is unclear to what extent available approaches such as ad hoc sampling are adequate. This paper

aims to fill this gap through a broad investigation of parametric uncertainty in a low-dimensional

nonlinear system that encapsulates key characteristics of a climate model. We approach the problem

by considering the system dynamics in an ensemble distribution sense rather than studying single

trajectories.

We explore two aspects of parameter uncertainty. The first, which we call micro parametric

uncertainty (micro PU) by comparison with micro initial condition uncertainty (micro ICU; Stain-

forth et al. (2007a); de Melo Virı́ssimo et al. (2024)), is used to quantify the response uncertainty

in a situation where we believe we know the parameter values well, but not perfectly. In this case,

we explore small, residual uncertainties in the parameter values, where the order of magnitude

of the uncertainty is much smaller than the parameter value itself. This exploration is done with

a micro perturbed parameter ensemble (micro PPE): an ensemble of simulations with the same

initial condition but different parameter values within the micro uncertainty range. This is defined
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Fig. 1. The conceptual representation of micro ensembles as “parallel realisations”. (a) micro initial condition

ensemble: each arrow represents the evolution of the same planet, obeying the same physical laws, but starting

from slightly different initial conditions. As the uncertainty grows exponentially, these lead to different future

states of the planet, which can then be summarised as a distribution; (b) micro perturbed parameter ensemble:

each globe representing a slightly different version of the same planet. Each of them is evolving from the same

initial state, but end up at different states, which can also be summarised as a distribution.

by analogy to a micro initial condition ensemble (micro ICE), in which residual uncertainties in

the initial state of the system is explored. However, the concepts behind micro ICE and micro PPE

are rather different, as illustrated in Figure 1. Conceptually speaking, a micro ICE represents the

evolution of equal copies of the same universe, obeying the same physical laws but starting from

slightly different initial conditions (Herein et al. 2017; Tél et al. 2020), as shown in Figure 1(a).

By contrast, a micro PPE represents the evolution of very similar but different universes, obeying

slightly perturbed versions of the same physical laws, but starting from the same initial conditions,

as shown in Figure 1(b).

The second aspect of parameter uncertainty that we explore we call macro parametric uncertainty

(macro PU), again by comparison with macro ICU (de Melo Virı́ssimo et al. 2024). Here we

explore the consequences large uncertainties in parameter values, a situation which would occur if,

for instance, tuning leads to inappropriate optimisation due to compensation of errors in a model

which does not contain certain processes that exist in reality. In this case, the order of magnitude

of the uncertainty may be comparable with the parameter value itself.
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In what follows, we quantify and separate the consequences of micro ICU, micro PU and macro

PU, and shed some light on how to design PPEs to better explore the future range of possibilities

as constrained by today’s models of the Earth system.

2. A low-dimensional dynamical systems approach

This work uses a low-dimensional coupled model with key characteristics of an atmosphere-

ocean model. It consists of the Stommel 61 (S61) ocean model (Stommel 1961) coupled to the

Lorenz 84 (L84) atmospheric model (Lorenz 1984; Provenzale and Balmforth 1999). Together, we

refer to this as Lorenz 84-Stommel 61 (L84-S61) model (Roebber 1995; Veen et al. 2001). The

model consists of the following equations:

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑋𝑋 = −𝑌𝑌2 − 𝑍𝑍2 − 𝑎𝑎𝑎𝑎 + 𝑎𝑎(𝐹𝐹0(𝑡𝑡) +𝐹𝐹1𝑇𝑇) (1)

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑌𝑌 = 𝑋𝑋𝑋𝑋 − 𝑏𝑏𝑏𝑏𝑏𝑏 −𝑌𝑌 +𝐺𝐺0 +𝐺𝐺1(𝑇𝑇𝑎𝑎𝑎𝑎 −𝑇𝑇) (2)

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑍𝑍 = 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑋𝑋𝑋𝑋 − 𝑍𝑍 (3)

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑇𝑇 = 𝑘𝑘𝑎𝑎 (𝛾𝛾𝛾𝛾 −𝑇𝑇) − | 𝑓𝑓 (𝑇𝑇𝑇 𝑇𝑇) |𝑇𝑇 − 𝑘𝑘𝑤𝑤𝑇𝑇 (4)

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑆𝑆 = 𝛿𝛿0 + 𝛿𝛿1(𝑌𝑌2 + 𝑍𝑍2) − | 𝑓𝑓 (𝑇𝑇𝑇 𝑇𝑇) |𝑆𝑆− 𝑘𝑘𝑤𝑤𝑆𝑆 (5)

where

𝑓𝑓 (𝑇𝑇𝑇 𝑇𝑇) = 𝜔𝜔𝜔𝜔 − 𝜖𝜖𝜖𝜖 (6)

𝐹𝐹0(𝑡𝑡) = 𝐹𝐹𝑚𝑚 +𝑀𝑀 cos(((2𝜋𝜋𝜋𝜋/73) − (𝜋𝜋/12)) +𝐹𝐹CC(𝑡𝑡) (7)

and

𝐹𝐹CC(𝑡𝑡) =




0 if 𝑡𝑡 𝑡 𝑡𝑡start

(𝐻𝐻/73) (𝑡𝑡 − 𝑡𝑡start) if 𝑡𝑡start ≤ 𝑡𝑡 ≤ 𝑡𝑡end

(𝐻𝐻/73) (𝑡𝑡end − 𝑡𝑡start) if 𝑡𝑡end <𝑡𝑡 𝑡

(8)

Equations (1) to (3) describe the evolution of the high-frequency, atmospheric variables 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  ,

where 𝑋𝑋 represents the intensity of the westerly wind, and 𝑌𝑌 and 𝑍𝑍 are the Fourier amplitudes
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characterising a chain of large-scale eddies, which transport heat towards the pole at a rate propor-

tional to their amplitude. Equations (4) and (5) describe the evolution of the slow ocean variables

𝑇𝑇𝑇 𝑇𝑇, where 𝑇𝑇 and 𝑆𝑆 denote the pole-equator temperature and salinity differences, respectively. An

important component of the ocean model is the thermohaline circulation (THC) 𝑓𝑓 , which is given

by Equation (6). The system dynamics is also modulated by an external forcing 𝐹𝐹0(𝑡𝑡), given by

Equation (7), which represents the cross-latitude (equator-to-pole) heating contrast. This consists

of a seasonal cycle of amplitude 𝑀𝑀 over a mean forcing 𝐹𝐹𝑚𝑚, together with a time-dependent linear

forcing increase 𝐹𝐹CC (given by Equation (8)) between times 𝑡𝑡 = 𝑡𝑡start and 𝑡𝑡 = 𝑡𝑡end. This linear

increase allows us to study exogenously driven changes to the state of the system; something that

can be considered ”climate change” within this system. It provides a parallel with the changing

radiative forcing applied in ESMs in multi-decadal simulations of anthropogenic climate change.

All quantities in the model are non-dimensional, with one unit of time (hereafter Lorenz time

unit, or LTU) being equivalent to 5 days, implying 73 LTUs per year (hence the factor of 73 in

Equations (7) and (8)). A detailed description of the unforced L84-S61 model can be found in

Veen et al. (2001). The forcing 𝐹𝐹0(𝑡𝑡) was introduced in Daron (2012), where further details can

be found.

Despite its reduced number of equations, the model shares some key mathematical properties

with state-of-the-art ESMs (de Melo Virı́ssimo and Stainforth 2023): it is complex, nonlinear,

multi-component, multi-scale and, importantly, it is chaotic. In particular, the model represents

distinct timescales of motion: a fast “atmosphere” and a slow “ocean”, which are allowed to

dynamically interact and exchange information with each other. More importantly, its low number

of degrees of freedom allows for extensive computational studies using very large ensembles but at

modest computational cost - something infeasible with spatially-resolving ESMs. For instance, a

1,000 member ensemble run for 200 years with a 1.2 hours time step and daily outputs would take

somewhere between 2 and 5 hours on a personal laptop. This is in sharp contrast with EMSs, where

even low resolution models can take 10-14 days to run a single 1,000-year simulation (Holden et al.

2016), not to mention CMIP-like models such as UKESM, which can take 1-2 months to run a

single simulation for 80-100 years on a multi-core high-performance computer (Kuhlbrodt et al.

2015; Stringer 2017).
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Veen et al. (2001). The forcing 𝐹𝐹0(𝑡𝑡) was introduced in Daron (2012), where further details can

be found.

Despite its reduced number of equations, the model shares some key mathematical properties

with state-of-the-art ESMs (de Melo Virı́ssimo and Stainforth 2023): it is complex, nonlinear,

multi-component, multi-scale and, importantly, it is chaotic. In particular, the model represents

distinct timescales of motion: a fast “atmosphere” and a slow “ocean”, which are allowed to

dynamically interact and exchange information with each other. More importantly, its low number

of degrees of freedom allows for extensive computational studies using very large ensembles but at

modest computational cost - something infeasible with spatially-resolving ESMs. For instance, a

1,000 member ensemble run for 200 years with a 1.2 hours time step and daily outputs would take

somewhere between 2 and 5 hours on a personal laptop. This is in sharp contrast with EMSs, where

even low resolution models can take 10-14 days to run a single 1,000-year simulation (Holden et al.

2016), not to mention CMIP-like models such as UKESM, which can take 1-2 months to run a

single simulation for 80-100 years on a multi-core high-performance computer (Kuhlbrodt et al.

2015; Stringer 2017).

Low-dimensional, Lorenz-like models such as L84-S61 have been widely used, with great

success, to study conceptual and practical questions in weather and climate sciences over the

past 40 years. These include the irregularity of trajectories (Lorenz 1984), range of predictabil-

ity (Lorenz 1996), initial condition ensemble design (Daron and Stainforth 2013), climate tipping

points (Ashwin and Newman 2021), metastability (Mehling et al. 2024), initial condition uncer-

tainty (de Melo Virı́ssimo et al. 2024), deep learning-based data assimilation (Bocquet et al. 2024),

hysteresis in extreme events (Bódai and Tél 2012), to mention a few. Readers interested in a

comprehensive discussion on the value of such models in geosciences should consult Ghil (2019)

and Dijkstra (2024).

The L84-S61 model contains a total of 16 parameters, with 15 of these potentially open to physical

constraint2. Hence, the dimension of the parameter space is much higher than the dimension of the

state space. This is a distinct feature of the L84-S61 model by comparison to its spatially-resolving

counterparts: in general, ESMs have a much higher dimensional state space than parameter space

- primarily due to their discretisation in three spatial dimensions. All parameters for the L84-S61

model and their reference values are described in Table 1. The parameters in the forcing function

𝐹𝐹0(𝑡𝑡) are at the bottom of Table 1.

In this work, we consider perturbations to 14 of the 16 parameters, leaving aside the average

forcing 𝐹𝐹𝑚𝑚 and the rate of change 𝐻𝐻. These parameters are, of course, important, but the latter

parallels the choice of future human actions and the former the solar energy input, in ESMs. Here

we wish to constrain our focus to the internal dynamics of the system so in this study we keep them

constant.

a. Experimental design

The L84-S61 model consists of a non-autonomous system of ODEs (Sell 1967). These are solved

using a 4th-order Runge-Kutta method (Iserles 2008), with time step 0.01 LTUs (1.2 hours). This

time step is shorter than the 4-hour time step originally used by Lorenz (1984) and allows us to

better capture the impact of hourly variability in the daily outputs, while offering a good balance

between accuracy and computational cost. The output frequency is 0.2 LTUs (1 day), with all the

results presented in this paper as 1-year averages. The ensembles run in this work are designed as

follows.

2The only exception is the rate of forcing change 𝐻𝐻, which parallels the choice of future radiative forcing scenario in ESMs.

Brought to you by LONDON SCHOOL OF ECONOMICS | Unauthenticated | Downloaded 05/20/25 12:53 PM UTC



10
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0064.1.

Parameter Value Description

𝐹𝐹1 0.02 Coupling parameter for the equator-pole temperature difference

𝐺𝐺0 1 Reference value for the land-sea temperature difference

𝐺𝐺1 0.01 Coupling parameter for the land-sea temperature difference

𝑎𝑎 0.25 Damping coefficient of the westerly winds

𝑏𝑏 4 Displacement of the waves due to interaction with the westerly wind

𝑇𝑇𝑎𝑎𝑎𝑎 30 Standard temperature contrast between the polar and the equatorial box

𝛾𝛾 30 Proportionality constant between the westerly wind and non-homogeneous forcing by solar
heating

𝑘𝑘𝑤𝑤 1.8 · 10−5 Coefficient of internal diffusion in the ocean

𝑘𝑘𝑎𝑎 1.8 · 10−4 Coefficient of heat exchange between the ocean and atmosphere

𝜔𝜔 1.3 · 10−4 Coefficient derived from the linearised equation of state

𝜖𝜖 1.1 · 10−3 Coefficient derived from the linearised equation of state

𝛿𝛿0 7.8 · 10−7 Coefficient for the atmospheric water transport

𝛿𝛿1 9.6 · 10−8 Coupling parameter for the wind dependent atmospheric water transport

𝑀𝑀 1 Magnitude of the seasonal cycle

𝐹𝐹𝑚𝑚 7 1-year mean value of the seasonal variation function 𝐹𝐹0 (𝑡𝑡 ) when 𝐻𝐻 = 0

𝐻𝐻 0.01 Externally forced rate of change (per year) of the 1-year mean of 𝐹𝐹0 (𝑡𝑡 )

Table 1. Description of the parameters and their reference values used in the L84-S61 model. The three

parameters in the bottom controls the forcing function 𝐹𝐹0(𝑡𝑡). All parameter values presented here were taken

from Daron and Stainforth (2013).

Given an initial condition X0 = (𝑋𝑋0,1, . . . , 𝑋𝑋0,𝑁𝑁𝑋𝑋
) ≡ (𝑋𝑋0,𝑌𝑌0, 𝑍𝑍0,𝑇𝑇0, 𝑆𝑆0) in the state space and the

set of model parameters P = (𝑝𝑝1, . . . , 𝑝𝑝𝑁𝑁𝑃𝑃
) ≡ (𝐹𝐹1,𝐺𝐺0,𝐺𝐺1, . . . , 𝑀𝑀):

• Micro initial condition ensembles: We randomly sample another 1,000 initial conditions

such that, for each dependent variable, the sample is normally distributed around each 𝑋𝑋0,𝑖𝑖

with standard deviation given by 𝜎𝜎𝑋𝑋𝑖𝑖
. For the purpose of this paper, micro initial condition

ensembles correspond to each 𝜎𝜎𝑋𝑋𝑖𝑖
being two orders of magnitude lower than 𝑋𝑋0,𝑖𝑖. For each

initial condition in the sample, we run a simulation starting from this initial condition with

the same set of parameters P.

• Micro perturbed parameter ensembles: We randomly sample another 1,000 parameter

values such that, for each parameter included, the sample is normally distributed around 𝑃𝑃𝑗𝑗

with standard deviation given by𝜎𝜎𝑃𝑃 𝑗𝑗
. For the purpose of this paper, micro perturbed parameter

ensembles correspond to each 𝜎𝜎𝑃𝑃 𝑗𝑗
being two orders of magnitude lower than 𝑃𝑃𝑗𝑗 . For each

parameter value in the sample, we run a simulation starting at the same initial condition X0.
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) ≡ (𝐹𝐹1,𝐺𝐺0,𝐺𝐺1, . . . , 𝑀𝑀):

• Micro initial condition ensembles: We randomly sample another 1,000 initial conditions

such that, for each dependent variable, the sample is normally distributed around each 𝑋𝑋0,𝑖𝑖

with standard deviation given by 𝜎𝜎𝑋𝑋𝑖𝑖
. For the purpose of this paper, micro initial condition

ensembles correspond to each 𝜎𝜎𝑋𝑋𝑖𝑖
being two orders of magnitude lower than 𝑋𝑋0,𝑖𝑖. For each

initial condition in the sample, we run a simulation starting from this initial condition with

the same set of parameters P.

• Micro perturbed parameter ensembles: We randomly sample another 1,000 parameter

values such that, for each parameter included, the sample is normally distributed around 𝑃𝑃𝑗𝑗

with standard deviation given by𝜎𝜎𝑃𝑃 𝑗𝑗
. For the purpose of this paper, micro perturbed parameter

ensembles correspond to each 𝜎𝜎𝑃𝑃 𝑗𝑗
being two orders of magnitude lower than 𝑃𝑃𝑗𝑗 . For each

parameter value in the sample, we run a simulation starting at the same initial condition X0.

• Macro perturbed physics ensembles: These consist of either multiple micro ICEs or multiple

micro PPEs, with one parameter 𝑃𝑃𝑙𝑙 being replaced by 𝑃𝑃𝑙𝑙 + 𝑃̃𝑃𝑙𝑙 in each ensemble, where 𝑃̃𝑃𝑙𝑙 has

the same order of magnitude as 𝑃𝑃𝑙𝑙 .

Hence, each ensemble has 1,001 members. All simulations are run for 200 years (after spinup).

The first 100 years are under “climate change” at a rate 𝐻𝐻 = 0.01 per year (one unit per 100 years),

thereby taking the mean value of the forcing from 𝐹𝐹𝑚𝑚 = 7 to 𝐹𝐹𝑚𝑚 + 1 = 8. This initial run is then

followed by 100 years of simulation without further driven change. The initial condition used in

these experiments is taken after an initial spin up of 3,000 years with 𝐻𝐻 = 0. A detailed description

of each experiment run in this study can be found in the Supplementary Materials.

3. Micro initial condition uncertainty

In a perfect model scenario (Smith 2002), where the mathematical formulation of natural pro-

cesses and their parameter values are assumed to be known and certain, there still remains uncer-

tainty related to the initial state of the system. This is true even if a complete set of observations for

this state is available, because such observations can never be perfect, and therefore a micro uncer-

tainty is always present. In the context of climate models (or any chaotic model) this uncertainty,

however small, is enough to lead to different future states of the system. This can be significant

on both weather- (Lorenz 1963) and climate-relevant timescales (Deser et al. 2012; Hawkins et al.

2016; de Melo Virı́ssimo et al. 2024).

The impact of this micro uncertainty can be quantified with a large initial condition ensemble

(ICE). The results of one such large micro ICE are shown (as a heatmap) in Figure 2(a) - for a

slowly mixing variable, the ocean temperature difference 𝑇𝑇 - and Figure 3(a) - for a fast mixing

variable, the atmospheric variable 𝑋𝑋 . Here, the property of being large shows its value: large

ensembles can capture aspects which are not identifiable with either single trajectories or small

ensembles. This includes important qualitative features of the ensemble dynamics. For instance,

while the central initial condition trajectory (shown in red) shows an increase in 𝑇𝑇 in the first few

years (Figure 2(a)), the vast majority of trajectories actually decrease in the first 10 years or so,

telling us the most likely outcome for this system under these conditions.

The value of large ensembles is also evident in the atmospheric variables. For instance, with a

large ICE, it is possible to see that an initial condition ensemble quickly breaks into three nearly

Brought to you by LONDON SCHOOL OF ECONOMICS | Unauthenticated | Downloaded 05/20/25 12:53 PM UTC



12
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-24-0064.1.

distinct branches at 𝑋𝑋 ≈ 0.4, 𝑋𝑋 ≈ 0.8 and 𝑋𝑋 ≈ 1.1, representing a trimodal distribution of likely

states. It also shows that under the forcing timeseries prescribed by 𝐻𝐻, this trimodality can persist

for as long as 60-80 years before merging into a central, broader branch. Even though the central

initial condition trajectory (shown in red) alternates between these branches, it does not provide

much detail regarding the shape and intensity of the different branches in a given year, nor how

they change over time.

4. Micro parametric uncertainty

Although micro ICEs are important to assess the model’s internal variability (Mankin et al. 2020;

Deser et al. 2020) and the time-dependent distributions under driven climate change (Daron and

Stainforth 2013; de Melo Virı́ssimo et al. 2024), they are not sufficient to quantify the range of

possible future climatic conditions. Even if one assumes that the model formulation is perfect,

there still remains uncertainty around parameter values, as discussed in Section 1, which reflects

the fact that alternative, but very similar models may be just as plausible. One way to quantify this

uncertainty is via micro perturbed-parameter ensembles (PPEs), in which the initial condition X0

is fixed but the parameter values P are slightly changed.

Generally, PPE studies in ESMs tend to focus on a single or small set of parameters, a constraint

imposed by the computational cost of running such models. The choice of parameters is usually ad

hoc, based on “expert” judgement, and consists of those where uncertainty is thought (or known), a

priori, to affect the answer to a particular question, such as the representation of clouds or convection

in a global circulation model (Stainforth et al. 2005; Sanderson et al. 2008). To illustrate this

scenario, we run large micro PPEs for three different sets of parameters chosen ad hoc: the coupling

parameters 𝐹𝐹1,𝐺𝐺1, which affect the strength of the coupling of the ocean temperature 𝑇𝑇 with the

atmospheric component of the model; the atmospheric parameters 𝑎𝑎𝑎 𝑎𝑎, which control the damping

and the interaction of 𝑌𝑌 and 𝑍𝑍 with the westerly wind 𝑋𝑋; and the seasonal cycle amplitude 𝑀𝑀 .

These parameters were chosen ad hoc, but focused on probing three different parts of the model:

the coupling between its ocean and atmospheric components, the internal dynamics and feedbacks

within the atmospheric component, and the variability in the equator-to-pole seasonality.

Figures 2(b) and 3(b) show the resulting distributions of 𝑇𝑇 and 𝑋𝑋 , respectively, from one of

these ensembles: a large micro PPE of the coupling parameters 𝐹𝐹1,𝐺𝐺1. In both cases, despite all
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scenario, we run large micro PPEs for three different sets of parameters chosen ad hoc: the coupling
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These parameters were chosen ad hoc, but focused on probing three different parts of the model:

the coupling between its ocean and atmospheric components, the internal dynamics and feedbacks

within the atmospheric component, and the variability in the equator-to-pole seasonality.
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these ensembles: a large micro PPE of the coupling parameters 𝐹𝐹1,𝐺𝐺1. In both cases, despite all

Fig. 2. Micro ICE distribution and micro PPE distributions for different parameter values. The figure shows

120 years of ocean temperature 𝑇𝑇 distribution, consisting of 100 years of climate change followed by 20 years

of stationary climate. (a) Micro IC; (b) 𝐹𝐹1,𝐺𝐺1; (c) 𝐹𝐹1,𝐺𝐺1, 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎; (d) All 14 parameters; (e) 𝐺𝐺0; (f) All 14

parameters except 𝐺𝐺0. Panel (g) shows the Jensen-Shannon divergence comparing the micro ICE with a second

micro ICE (red dash-dot line) and several micro PPEs (solid lines). The red solid line in panels (a-f) shows the

trajectory evolving from the central initial condition.
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Fig. 3. Micro ICE distribution and micro PPE distributions for different parameter values. The figure shows

120 years of atmosphere variable 𝑋𝑋 distribution, consisting of 100 years of climate change followed by 20 years

of stationary climate. (a) Micro IC; (b) 𝐹𝐹1,𝐺𝐺1; (c) 𝐹𝐹1,𝐺𝐺1, 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎; (d) All 14 parameters; (e) 𝐺𝐺0; (f) All 14

parameters except 𝐺𝐺0. Panel (g) shows the Jensen-Shannon divergence comparing the micro ICE with a second

micro ICE (red dash-dot line) and several micro PPEs (solid lines). The red solid line in panels (a-f) shows the

trajectory evolving from the central initial condition.
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trajectory evolving from the central initial condition.

ensemble members having the same initial condition, the micro uncertainty in the parameters lead

to the ensemble trajectories quickly diverging from each other, so that they densely populate a large

range of values. The resulting distributions are largely similar to those obtained from a micro ICE:

they covers a similar range of values, and the frequency of outcomes is also similar - for both 𝑇𝑇

and 𝑋𝑋 .

Even though this micro PPE and the micro ICE distributions look broadly similar, there are

nevertheless, visible qualitative distinctions for the slowly-mixing variable 𝑇𝑇 . For instance, the

micro PPE does not produce the intricate structure of high probabilities in years 30-40. This might

perhaps be expected given the fundamental conceptual differences between these ensembles: while

a micro ICE samples the system’s attractor, a micro PPE is a union of single trajectories from

different attractors, resulting in a distribution that looks more homogeneous and symmetric than

the micro ICE distribution. Similar results are obtained when perturbing the parameters 𝑎𝑎𝑎 𝑎𝑎, and

the seasonal cycle amplitude 𝑀𝑀 (see Supplementary Materials).

a. Many parameter perturbation

As discussed in the previous section, the results of an ad hoc perturbation of individual or pair

of parameters are largely similar to that of a micro ICE, and are also similar to each other. But

what about perturbing all five ad hoc parameters at once? How does that compare to the individual

and pairwise micro PPEs? The results in Figures 2(c) and 3(c), in principle suggest that the

distributions look very similar to the others - although an attentive eye might notice some further

signs of difference, such as the distributions covering a slightly larger range of values, particularly

for the slow ocean variable 𝑇𝑇 .

One could further ask what would be the result of a full micro PPE - i.e. a micro PPE applied to

all 14 parameters. Would that be similar to a micro ICE or the individual micro PPEs? The answer

seems to be a clear no. For the slowly-mixing ocean variable 𝑇𝑇 , Figure 2(d) shows a distribution

that is much broader when the micro uncertainty is applied to all parameters, and also flatter in

most of the first 60 years of evolution. This is an important difference because it indicates that any

of this broad range of distinctive states could be similarly plausible in this multi-decadal period

- in contrast with the message from the other micro ensembles in Figures 2(a-c). Regarding the

fast-mixing atmospheric variable 𝑋𝑋 , Figure 3(d) shows similar results to those of Figures 3(a-c),
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except for the lower branch whose tails persist for a significantly longer time. These results indicate

that focusing on a small number of parameters can substantially underestimate uncertainty.

b. How different are the micro ICEs and the micro PPEs from each other?

Figures 2(a-d) and 3(a-d) suggest that the distributions from these micro ICEs and micro PPEs

can be very similar in some cases. But to what extent do they actually carry similar information?

To answer this question, we statistically compare the micro ICE distribution with each of the

micro PPE distributions, for each of the five dependent variables in our conceptual climate model.

To do so, we compute the dissimilarity of each micro PPE with respect to the micro ICE using

the Jensen-Shannon (JS) divergence (Menéndez et al. 1997; Lin 1991). The JS divergence is

an information-theoretic divergence measure based on the Kullback-Leibler divergence (Shlens

2014), which quantifies how close two probability distributions, say 𝐷𝐷1, 𝐷𝐷2, are. It returns a value

between 0 and 𝑙𝑙𝑙𝑙𝑙𝑙(2) ≈ 0.69, where the value of zero means that the distributions contain the same

information, and the value of 𝑙𝑙𝑙𝑙𝑙𝑙(2) means that they are completely different3. The JS divergence

is a popular statistical measure (Lin 1991), and is widely used in areas such as signal processing,

pattern recognition and several branches of artificial intelligence such as generative learning (Sutter

et al. 2020).

The results from this computation are shown in Figures 2(g) and 3(g) for the variables 𝑇𝑇 and 𝑋𝑋

respectively (see Supplementary Material for other variables). The red dash-dot line compares the

reference micro ICE with a second randomly generated micro ICE, showing the level of divergence

that should be expected between two similar ensembles of the same size and type. As expected

it indicates a very low divergence between the two micro ICEs. All the micro PPEs, on the other

hand, are more divergent from the reference micro ICE, with the all-parameter PPE diverging

substantially more than the others (blue line). On further investigation, it turned out that most of

this difference arises from a single, originally overlooked, parameter, 𝐺𝐺0, whose single parameter

JS divergence is given by the red bordeaux line. The resulting distributions, shown in Figures 2(e)

and 3(e), confirm that it is indeed much closer to an all-parameters PPE than those in panels (a-d).

Nevertheless, the PPE for all-parameters-excluding-𝐺𝐺0, presented in the solid magenta line in

Figures 2(g), also shows substantial dissimilarity from the single and pairwise PPEs, for variable 𝑇𝑇

3The relationship between JS, the mean and standard deviation of the distributions is usually nonlinear. As an example, given two normal
distributions (0, 1) and (0, 𝜎𝜎) , a JS of 0.1, 0.2 and 0.3 can be achieved by increasing 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 from 1 to 2,3 and 5 respectively (Supplementary
Materials).
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can be very similar in some cases. But to what extent do they actually carry similar information?

To answer this question, we statistically compare the micro ICE distribution with each of the

micro PPE distributions, for each of the five dependent variables in our conceptual climate model.

To do so, we compute the dissimilarity of each micro PPE with respect to the micro ICE using

the Jensen-Shannon (JS) divergence (Menéndez et al. 1997; Lin 1991). The JS divergence is

an information-theoretic divergence measure based on the Kullback-Leibler divergence (Shlens

2014), which quantifies how close two probability distributions, say 𝐷𝐷1, 𝐷𝐷2, are. It returns a value

between 0 and 𝑙𝑙𝑙𝑙𝑙𝑙(2) ≈ 0.69, where the value of zero means that the distributions contain the same

information, and the value of 𝑙𝑙𝑙𝑙𝑙𝑙(2) means that they are completely different3. The JS divergence

is a popular statistical measure (Lin 1991), and is widely used in areas such as signal processing,

pattern recognition and several branches of artificial intelligence such as generative learning (Sutter

et al. 2020).

The results from this computation are shown in Figures 2(g) and 3(g) for the variables 𝑇𝑇 and 𝑋𝑋

respectively (see Supplementary Material for other variables). The red dash-dot line compares the

reference micro ICE with a second randomly generated micro ICE, showing the level of divergence

that should be expected between two similar ensembles of the same size and type. As expected

it indicates a very low divergence between the two micro ICEs. All the micro PPEs, on the other

hand, are more divergent from the reference micro ICE, with the all-parameter PPE diverging

substantially more than the others (blue line). On further investigation, it turned out that most of

this difference arises from a single, originally overlooked, parameter, 𝐺𝐺0, whose single parameter

JS divergence is given by the red bordeaux line. The resulting distributions, shown in Figures 2(e)

and 3(e), confirm that it is indeed much closer to an all-parameters PPE than those in panels (a-d).

Nevertheless, the PPE for all-parameters-excluding-𝐺𝐺0, presented in the solid magenta line in

Figures 2(g), also shows substantial dissimilarity from the single and pairwise PPEs, for variable 𝑇𝑇

3The relationship between JS, the mean and standard deviation of the distributions is usually nonlinear. As an example, given two normal
distributions (0, 1) and (0, 𝜎𝜎) , a JS of 0.1, 0.2 and 0.3 can be achieved by increasing 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 from 1 to 2,3 and 5 respectively (Supplementary
Materials).

and particularly over the long-run beyond about 60 years. This is also confirmed by the distribution

shown in the panel (f) of Figures 2. The results are less clear for the fast-mixing variable 𝑋𝑋 , as

shown in panels (f,g) of Figure 3(g)).

To better see the impact of the different micro PPEs on the fast-mixing variables, we look at the

30-year climatologies of each distribution, shown in panels (a-c) of Figure 4 for 𝑇𝑇 and panels (d-f)

for 𝑋𝑋 . There, the first 29 years correspond to the same yearly distributions presented in Figures 2

and 3, while the remaining 91 years are presented as 30-year rolling averages.

Looking at the smooth trajectories, we can see that the trajectories are different, even for slow

variables. Additionally, the impact of perturbing multiple parameters becomes much clearer once

the inter-annual variability is smoothed out, indicating the the darker areas of the distributions

in panels (b,e) of Figure 4 correspond to genuinely different climatological trajectories which are

solely due to the a micro level of uncertainty in the model parameters. Additional, panels (c,f) of

Figure 4 show clearly the difference between ICE, single and multiple PPEs, particularly for 𝑋𝑋 ,

where the JS divergence for the all-parameters PPE is much larger than that observed in Figure 3(g)

for example. The clearer difference between the annual and 30-year rolling mean distributions

for 𝑋𝑋 is due to the role of the slow dynamics of 𝑇𝑇 , which integrates 𝑋𝑋 over time (Lucarini and

Chekroun 2023). As a fast variable, perturbations to 𝑋𝑋 tend to grow very quickly and so they are

not so noticeable in interannual timescales. However, in climatological timescales, the effect of

perturbations becomes very clear and mirrors that of 𝑇𝑇 .

Looking at the changes in standard deviations, again measured with respect to the micro ICE

standard deviation, provides a more familiar illustration of the differences in these distributions.

They are shown in panels (a,b) of Figure 5 for the annual distributions, and in panels (c,d) for the

30-year rolling mean distributions. The panels show that perturbing multiple parameters lead to a

substantial increase in standard deviation with respect to the micro ICE. For the slow-mixing ocean

variable, the magnitude of the increase can reach over 350% when all parameters are perturbed. For

the fast-mixing atmosphere variable, this increase exceed 250% when looking at rolling 30-year

mean for example.

This demonstrates the value of perturbing multiple parameters at once and the dangers of relying

on ad hoc parameter selection. If the purpose of the ensemble is to project possible future states,

perturbing single parameters, even if that parameter (say, 𝐺𝐺0) accounts for much of the uncertainty,
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Fig. 4. 30-Year climatologies for micro ICE distribution (panels (a,d)) and micro PPE distribution for all 14

parameters (panels (b,e)). The figure shows 120 years of temperature 𝑇𝑇 (panels (a-b)) and atmosphere variable 𝑋𝑋

(panels (d-e)) distributions, consisting of 100 years of climate change followed by 20 years of stationary climate.

The first 29 years shows the yearly time series (the same as in Figures 2 and 3), and the remaining 90 years show

the rolling 30-year mean computed year by year. Similarly, panels (c,f) show the Jensen-Shannon divergence

comparing the micro ICE with a second micro ICE (red dash-dot line) and several micro PPEs (solid lines) for 𝑇𝑇

and 𝑋𝑋 respectively. In all panels, the vertical black dash-dot line indicates the start of the 30-year rolling mean.
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Fig. 4. 30-Year climatologies for micro ICE distribution (panels (a,d)) and micro PPE distribution for all 14

parameters (panels (b,e)). The figure shows 120 years of temperature 𝑇𝑇 (panels (a-b)) and atmosphere variable 𝑋𝑋

(panels (d-e)) distributions, consisting of 100 years of climate change followed by 20 years of stationary climate.

The first 29 years shows the yearly time series (the same as in Figures 2 and 3), and the remaining 90 years show

the rolling 30-year mean computed year by year. Similarly, panels (c,f) show the Jensen-Shannon divergence

comparing the micro ICE with a second micro ICE (red dash-dot line) and several micro PPEs (solid lines) for 𝑇𝑇

and 𝑋𝑋 respectively. In all panels, the vertical black dash-dot line indicates the start of the 30-year rolling mean.
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Fig. 5. Change in standard deviation (in percentage) for a second micro ICE (red dash-dot line) and several

micro PPEs (solid lines) with respect to the standard deviation from the micro ICE, for the temperature 𝑇𝑇 (left

column) and atmosphere variable 𝑋𝑋 (right column), consisting of 100 years of climate change followed by 20

years of stationary climate. Panels (a,b) show the change in standard deviation for the annual distributions (as

in Figures 2 and 3)), while panels (c,d) shows the change with for the 30-year rolling mean (as in Figure 4)). In

panels (c,d) the first 29 years coincide with those in panels (a,b), with the vertical black dash-dot line indicating

the start of the 30-year rolling mean.

might not give the complete picture and might leave out some (potentially important) information.

This has direct implications for the design of ensembles of ESMs for projecting future real-world

climate, as current ensembles generally perturb only a small subset of parameters.

But what type of information could an ad hoc ensemble be missing?
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c. Micro PPEs and extreme outcomes

One aspect of the differences between the micro PPEs that is responsible for their JS divergences

is the fraction of ensemble members projecting an extreme outcome (in a particular year) with

respect to the micro ICE. Here we take an extreme outcome in a given year to be a value more

than three standard deviations from the micro ICE mean for that year4. How the fraction of

ensemble members with extreme outcomes varies over time is shown, for each micro ensemble, in

Figures 6(a) and 7(a) for the variables 𝑇𝑇 and 𝑋𝑋 respectively. The cumulative rates are presented

in Figures 6(b-c) and 7(b-c). Results for the 30-year rolling mean are presented in panels (d-f) of

Figures 6 and 7.

As previously suggested by Figures 2 to 5, the micro ICE and individual and pairwise micro

PPEs could severely underestimate the likelihood of extreme outcomes by comparison with the all-

parameter PPE - whether looking at inter-annual of panels (a-c) or rolling 30-year mean in panels

(d-f) in Figures 6 and 7. In the case of the variable𝑇𝑇 , they are not even additive - with the long term

projection at year 120 for the all-parameter PPE resulting in about 20% of ensemble members being

extreme, about a third higher than the 15% of the 𝐺𝐺0 PPE and the all-parameter-minus-𝐺𝐺0 PPE

combined (Figure 6(a)). Similarly, the cumulative numbers suggest about 22% of the all-parameter

micro PPE being extreme, versus 20% of the all-parameter-minus-𝐺𝐺0 micro PPE and 𝐺𝐺0 micro

PPE combined (Figure 6(c)). This suggests that perturbing all parameters at once may be necessary

to best capture this information (whether on a yearly basis or cumulatively). Such information

from PPEs could be important beyond climate science - for instance in planning and adaptation to

climate change. For example, suppose that a decision maker has to make a decision that depends

on the information provided by a 𝑇𝑇-like variable from an operational ESM - say, hypothetically,

the projected threat posed to their country’s seafood industry by changes in sea temperature. Were

such information to look like Figures 6(b,e), it is very unlikely that the decision made if provided

with the bottom six lines of Figure 6(a,d) would be the same as if provided with one of the top three

lines. Such model-based information could affect plans to adapt to the potential impacts projected,

and also influence actions to mitigate them if an alternative scenario could reduce their likelihood.

4This is an extreme in an ensemble sense and is different to traditional concepts of extreme events in a climate sense, which usually refer to
extremes within a particular timeseries and measured against a 30-year climatology (Arguez and Vose 2011).
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c. Micro PPEs and extreme outcomes

One aspect of the differences between the micro PPEs that is responsible for their JS divergences

is the fraction of ensemble members projecting an extreme outcome (in a particular year) with

respect to the micro ICE. Here we take an extreme outcome in a given year to be a value more

than three standard deviations from the micro ICE mean for that year4. How the fraction of

ensemble members with extreme outcomes varies over time is shown, for each micro ensemble, in

Figures 6(a) and 7(a) for the variables 𝑇𝑇 and 𝑋𝑋 respectively. The cumulative rates are presented

in Figures 6(b-c) and 7(b-c). Results for the 30-year rolling mean are presented in panels (d-f) of

Figures 6 and 7.

As previously suggested by Figures 2 to 5, the micro ICE and individual and pairwise micro

PPEs could severely underestimate the likelihood of extreme outcomes by comparison with the all-

parameter PPE - whether looking at inter-annual of panels (a-c) or rolling 30-year mean in panels

(d-f) in Figures 6 and 7. In the case of the variable𝑇𝑇 , they are not even additive - with the long term

projection at year 120 for the all-parameter PPE resulting in about 20% of ensemble members being

extreme, about a third higher than the 15% of the 𝐺𝐺0 PPE and the all-parameter-minus-𝐺𝐺0 PPE

combined (Figure 6(a)). Similarly, the cumulative numbers suggest about 22% of the all-parameter

micro PPE being extreme, versus 20% of the all-parameter-minus-𝐺𝐺0 micro PPE and 𝐺𝐺0 micro

PPE combined (Figure 6(c)). This suggests that perturbing all parameters at once may be necessary

to best capture this information (whether on a yearly basis or cumulatively). Such information

from PPEs could be important beyond climate science - for instance in planning and adaptation to

climate change. For example, suppose that a decision maker has to make a decision that depends

on the information provided by a 𝑇𝑇-like variable from an operational ESM - say, hypothetically,

the projected threat posed to their country’s seafood industry by changes in sea temperature. Were

such information to look like Figures 6(b,e), it is very unlikely that the decision made if provided

with the bottom six lines of Figure 6(a,d) would be the same as if provided with one of the top three

lines. Such model-based information could affect plans to adapt to the potential impacts projected,

and also influence actions to mitigate them if an alternative scenario could reduce their likelihood.

4This is an extreme in an ensemble sense and is different to traditional concepts of extreme events in a climate sense, which usually refer to
extremes within a particular timeseries and measured against a 30-year climatology (Arguez and Vose 2011).

Fig. 6. Comparing a micro ICE with micro PPEs for the ocean temperature 𝑇𝑇 for the annual (panels (a-c)) and

30-year rolling mean (panels (d-f)) distributions. Panels (a,d) show the fraction of ensemble members projecting

an extreme outcome (here considered as states over 3 standard deviations from the micro ICE mean) over time.

Panels panels (b-c) and (e-f) show the cumulative fraction from (a) and (d), respectively, for the entire 120-year

period simulated. In panel (d), the vertical black dash-dot line denotes the start of the 30-year rolling mean. Note

the change in scale from panel (b) to (c) and (e) to (f).
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Fig. 7. Comparing a micro ICE with micro PPEs for the atmosphere variable 𝑋𝑋 for the annual (panels (a-c))

and 30-year rolling mean (panels (d-f)) distributions. Panels (a,d) show the fraction of ensemble members

projecting an extreme outcome (here considered as states over 3 standard deviations from the micro ICE mean)

over time. Panels panels (b-c) and (e-f) show the cumulative fraction from (a) and (d), respectively, for the entire

120-year period simulated. In panel (d), the vertical black dash-dot line denotes the start of the 30-year rolling

mean. Note the change in scale from panel (b) to (c) and (e) to (f).
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Fig. 7. Comparing a micro ICE with micro PPEs for the atmosphere variable 𝑋𝑋 for the annual (panels (a-c))

and 30-year rolling mean (panels (d-f)) distributions. Panels (a,d) show the fraction of ensemble members

projecting an extreme outcome (here considered as states over 3 standard deviations from the micro ICE mean)

over time. Panels panels (b-c) and (e-f) show the cumulative fraction from (a) and (d), respectively, for the entire

120-year period simulated. In panel (d), the vertical black dash-dot line denotes the start of the 30-year rolling

mean. Note the change in scale from panel (b) to (c) and (e) to (f).

5. Macro parametric perturbation

In practice it is often the case that the range of plausible parameter values is quite large, such

that the uncertainty might have a magnitude comparable with the parameter value itself. In this

case, one might choose to explore this uncertainty with a handful of different parameter values

but otherwise assume a perfect model scenario within which uncertainty is quantified by a micro

ICE alone. Here we call this a macro parametric ensemble of type I. This is illustrated in the left

columns of Figures 8 and 9 for the ocean temperature difference 𝑇𝑇 and atmospheric variable 𝑋𝑋

respectively.

The results from these macro PPE (of type I) are notably different from those of the micro PPEs

shown in Figures 2 and 3. Large changes to single parameters can lead to very different micro

ICEs. Note that, without any perturbation to the parameters, a “macro PPE” is simply the micro

ICE shown in Figures 2(a) and 3(a); this is reproduced in blue in the left column of Figures 8 and 9

for reference. As one could expect, the impact depends on the variable, and on the parameters

considered. For instance, macro perturbing the parameter 𝐹𝐹1 results in distributions that are not

substantially different from the reference ensemble. Whether one doubles 𝐹𝐹1 (representing a

stronger 𝑋𝑋 −𝑇𝑇 coupling) or halves it (representing a weaker coupling), the distributions for 𝑇𝑇 and

𝑋𝑋 are only shifted up and down by a small amount.

For other parameters, however, the impact can be much more dramatic. This is the case for the

parameter 𝑏𝑏, where reducing it by 1/8 dramatically changes the behaviour of the 𝑇𝑇 distribution,

shown in red in Figure 8(c). Increasing it by 1/8 leads to something even more distinct, as

shown in green in Figure 8(c). This different behaviour is due to the parameter change being

sufficient to change the system attracting set from a strange attractor to a limit cycle, towards

which the ensemble is initially drawn (see Supplement). Were such a change seen in an ESM, it

might be considered unrealistic and the model version (or parameter value) might be ruled out of

consideration. However, such behaviour can be hard to identify with single trajectories or small

ensembles, which again demonstrates why carefully designed ensembles should be a high priority

in the field of climate modelling. Furthermore, including such simulations in a PPE can skew

the overall distribution and its statistics, highlighting the importance of explicitly defining what

behaviour is deemed acceptable in a model. Ideally this should be done in the design phase to

avoid the risks of in-sample bias (Stainforth 2023).
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Beyond what we have discussed, there is also the issue of how to approach macro parametric

sampling. For example, perturbing the parameter 𝑀𝑀 by 10% (Figures 8(e) and 9(e)) has little effect

on the long-term distributions (beyond 80 years) but reveals distinctive behaviour, for 𝑀𝑀 = 1.1, in

the near term (less than 40 years). By contrast increasing the perturbation to 30% (Figures 8(g)

and 9(g)) removes the near term distinctive behaviour but leads to greater changes in the long-term

distributions; in this case the long term ensemble mean is inversely affected by the strength of the

perturbation. This diversity of behaviour, which is seen in both slow and fast variables, illustrates

why a careful sampling design incorporating multiple macro parametric perturbations is needed to

better capture the range of outcomes in a macro uncertainty scenario.

a. A second type of macro PPE: combining micro and macro parametric perturbations

If on top of the macro uncertainty in one (or a set of) specific parameters we consider the

“micro” uncertainty in all parameters (including the macro-perturbed ones), we then have a macro

parametric ensemble of type II. This is illustrated in the right columns of Figures 8 and 9. As is the

case for the micro PPEs shown in Figures 2 to 7, a macro PPE of type II leads to a larger spread of

ensemble trajectories, resulting in distributions that are substantially broader than that given by a

macro PPE of type I. For example, in the case of the variable 𝑇𝑇 , the transient behaviour seen in the

macro PPEs of type I for 𝑀𝑀 = 1.1 and 𝑏𝑏 = 3.5 is largely absent in type II distributions. Replacing a

micro ICE by a micro PPE substantially increases the standard deviation and can change the shape

of the distributions (Figure 8(h)), again highlighting the importance of micro PPEs in capturing

the range of plausible values. Micro ICEs alone seem to be substantially more constrained.

The difference between type I and type II macro PPEs are also seen in the atmospheric variable

𝑋𝑋 . For example, the type I macro PPEs for 𝑏𝑏 in Figure 9(c) show highly constrained behaviour

for 𝑏𝑏 = 4.5 between years 50 and 70 which is absent in the type II macro PPEs in in Figure 9(d).

Similar contrasting behaviour between type I and type II can be seen for the other macro PPEs,

making clear the qualitative differences between micro ICEs and micro PPEs.

6. Consequences for ensemble design and uncertainty quantification in ESMs

Quantifying the downstream effects of parametric uncertainty in ESMs remains a primary chal-

lenge in climate science. The relevance and impact of parametric uncertainty can, however, be seen
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Beyond what we have discussed, there is also the issue of how to approach macro parametric

sampling. For example, perturbing the parameter 𝑀𝑀 by 10% (Figures 8(e) and 9(e)) has little effect

on the long-term distributions (beyond 80 years) but reveals distinctive behaviour, for 𝑀𝑀 = 1.1, in

the near term (less than 40 years). By contrast increasing the perturbation to 30% (Figures 8(g)

and 9(g)) removes the near term distinctive behaviour but leads to greater changes in the long-term

distributions; in this case the long term ensemble mean is inversely affected by the strength of the

perturbation. This diversity of behaviour, which is seen in both slow and fast variables, illustrates

why a careful sampling design incorporating multiple macro parametric perturbations is needed to

better capture the range of outcomes in a macro uncertainty scenario.

a. A second type of macro PPE: combining micro and macro parametric perturbations

If on top of the macro uncertainty in one (or a set of) specific parameters we consider the

“micro” uncertainty in all parameters (including the macro-perturbed ones), we then have a macro

parametric ensemble of type II. This is illustrated in the right columns of Figures 8 and 9. As is the

case for the micro PPEs shown in Figures 2 to 7, a macro PPE of type II leads to a larger spread of

ensemble trajectories, resulting in distributions that are substantially broader than that given by a

macro PPE of type I. For example, in the case of the variable 𝑇𝑇 , the transient behaviour seen in the

macro PPEs of type I for 𝑀𝑀 = 1.1 and 𝑏𝑏 = 3.5 is largely absent in type II distributions. Replacing a

micro ICE by a micro PPE substantially increases the standard deviation and can change the shape

of the distributions (Figure 8(h)), again highlighting the importance of micro PPEs in capturing

the range of plausible values. Micro ICEs alone seem to be substantially more constrained.

The difference between type I and type II macro PPEs are also seen in the atmospheric variable

𝑋𝑋 . For example, the type I macro PPEs for 𝑏𝑏 in Figure 9(c) show highly constrained behaviour

for 𝑏𝑏 = 4.5 between years 50 and 70 which is absent in the type II macro PPEs in in Figure 9(d).

Similar contrasting behaviour between type I and type II can be seen for the other macro PPEs,

making clear the qualitative differences between micro ICEs and micro PPEs.

6. Consequences for ensemble design and uncertainty quantification in ESMs

Quantifying the downstream effects of parametric uncertainty in ESMs remains a primary chal-

lenge in climate science. The relevance and impact of parametric uncertainty can, however, be seen

Fig. 8. Macro PPE of types I (left column) and II (right column), for different parameters. The figure shows

120 years of ocean temperature 𝑇𝑇 distribution, consisting of 100 years of climate change followed by 20 years

of stationary climate. The distributions are shown as the mean value (thick dash line) plus/minus one standard

deviation from the mean (shade bordered by the thin dash line). The distribution in blue always correspond to

the micro ICE in the left column, and to the all-parameter micro PPE in the right column. Each panel shows the

macro PPE for 3 different macro perturbations: panels (a,b) 𝐹𝐹1; panels (c,d) 𝑏𝑏; panels (e-h) 𝑀𝑀 .
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Fig. 9. Macro PPE of types I (left column) and II (right column), for different parameters. The figure shows

120 years of atmosphere variable 𝑋𝑋 distribution, consisting of 100 years of climate change followed by 20 years

of stationary climate. The distributions are shown as the mean value (thick dash line) plus/minus one standard

deviation from the mean (shade bordered by the thin dash line). The distribution in blue always correspond to

the micro ICE in the left column, and to the all-parameter micro PPE in the right column. Each panel shows the

macro PPE for 3 different macro perturbations: panels (a,b) 𝐹𝐹1; panels (c,d) 𝑏𝑏; panels (e-h) 𝑀𝑀 .
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Fig. 9. Macro PPE of types I (left column) and II (right column), for different parameters. The figure shows

120 years of atmosphere variable 𝑋𝑋 distribution, consisting of 100 years of climate change followed by 20 years

of stationary climate. The distributions are shown as the mean value (thick dash line) plus/minus one standard

deviation from the mean (shade bordered by the thin dash line). The distribution in blue always correspond to

the micro ICE in the left column, and to the all-parameter micro PPE in the right column. Each panel shows the

macro PPE for 3 different macro perturbations: panels (a,b) 𝐹𝐹1; panels (c,d) 𝑏𝑏; panels (e-h) 𝑀𝑀 .

and studied in simple conceptual models such as L84-S61, and this can help us design efficient

assessments of uncertainty in ESMs. As we have seen, when compared to a micro ICE, perturbing

multiple parameters lead to an increase of over 300% in the standard deviation, and there is no

reason in principle to expect the impact to be different in state-of-the-art ESMs. Furthermore, it

is not clear a priori which parameters are the most sensitive controls of the systems behaviour and

response to “climate change”. While there are several sensitivity analysis techniques (e.g. Morris

(1991)) to aid such assessments, in real ESMs with hundreds to thousands of parameters and

millions of degrees of freedom, they usually rely on the selection of few observational targets and

a small (order 101 −102) subset of parameters (Strobach et al. 2022; Shi et al. 2019; Raj Deepak

S. N. and Monahan 2024) - leaving most of the parameters outside the analysis. Crucially, the own

concept of sensitivity analysis is unclear, particularly when looking at global quantities, posing a

challenge to the objective application of such techniques in ESMs (Razavi and Gupta 2015; Gupta

and Razavi 2018).

We note that, as might be expected, the results are dependent on the magnitude of 𝜎𝜎𝑋𝑋𝑖𝑖
and

𝜎𝜎𝑃𝑃 𝑗𝑗
. Reducing 𝜎𝜎𝑋𝑋𝑖𝑖

and 𝜎𝜎𝑃𝑃 𝑗𝑗
by one order of magnitude might reduce the uncertainty and make

the distributions more similar; while increasing them by one order of magnitude could make the

micro PPEs much closer to a macro PPE (see Supplementary Materials). Likewise, some of the

results such as the shape of the distributions also depend on the location of the initial condition in

the attractor (Hawkins et al. 2016; de Melo Virı́ssimo et al. 2024) (Supplementary Materials). But

these do not change the conclusions of the manuscript. In fact, they do support the case for more

complex ensembles to be considered, by adding new elements that, although beyond of the scope

of this manuscript, should be further explored.

The results presented in this paper relied on the ability to run many very large ensembles - some-

thing enabled by our decision to use a low-dimensional conceptual model. Studying parametric

uncertainty by running such large PPEs in state-of-the-art ESMs is currently a distant possibility.

In the meantime, conceptual studies like this can help us approach ensemble design and inter-

pretation questions from a theoretical perspective before implementing them in computationally

expensive models. Parallel to that, the development of data-driven machine learning techniques

shows promise in providing guidance in the efficient exploration of parameter space (Cleary et al.

2021; Dunbar et al. 2021), but as illustrated herein the information on the response behaviour
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may well not exist in previous simulations and this inevitably limits how much information such

techniques can provide - suggesting the need for caution when utilising them.

The key question, then, is how to best design parametric ensembles of both low and high

dimensional models of real world systems, given the limited resources currently available? While

this remains essentially an open question, the results from this paper suggests a few issues worthy

of consideration when designing and interpreting such ensembles:

• Micro PPEs that sample the entire parameter space - rather than a single or a few parameters -

may well give a better representation of the variability of response to exogenous forcing even

if the ensembles are not large. Sampling single or a small combination of parameters leaves

large regions of the parameter space unexplored.

• Micro ICEs alone are not enough to capture the range of plausible extreme responses, however

large the micro ICE might be. Micro PPEs seem likely to do a better job, and should be

considered when this information is sought.

• For complex, multi-component systems, parameters can often be substantially uncertain,

partly because compensation of errors can lead to misleading tuning. In this context, macro

perturbations are important to explore the wide range of plausible behaviour and responses to

driven, extrapolatory changes such as anthropogenic climate change. However, interpreting

them requires that they embed micro ICEs and (or) micro PPEs as sub-ensembles.

• Micro ICEs may be better for investigating and understanding particular dynamical changes.

Micro PPEs result in more homogeneously spread distributions but they explore the domain

of potential behaviour, and therefore potential extrapolatory responses, better.

Beyond the design of ensembles, another challenge remains in transforming the results from

parametric ensembles into probabilities (Webster and Sokolov 2000; Murphy et al. 2007). This

work demonstrates how difficult this will be. In fact, even were we to have expert priors for

parameter values, the arbitrary nature of parameter space (Stainforth 2023) and the lurking potential

presence of structural instability in climate models5 represent conceptual barriers that have not yet

begun to be addressed. Probabilities might be welcomed by decision makers across all sectors

5This phenomenon is sometimes referred as the Hawkmoth Effect, in analogy to Ed Lorenz’s Butterfly Effect for initial condition (Thompson
2013; Frigg et al. 2014; Thompson and Smith 2019; Lam 2021).
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partly because compensation of errors can lead to misleading tuning. In this context, macro

perturbations are important to explore the wide range of plausible behaviour and responses to

driven, extrapolatory changes such as anthropogenic climate change. However, interpreting

them requires that they embed micro ICEs and (or) micro PPEs as sub-ensembles.

• Micro ICEs may be better for investigating and understanding particular dynamical changes.

Micro PPEs result in more homogeneously spread distributions but they explore the domain

of potential behaviour, and therefore potential extrapolatory responses, better.

Beyond the design of ensembles, another challenge remains in transforming the results from

parametric ensembles into probabilities (Webster and Sokolov 2000; Murphy et al. 2007). This

work demonstrates how difficult this will be. In fact, even were we to have expert priors for

parameter values, the arbitrary nature of parameter space (Stainforth 2023) and the lurking potential

presence of structural instability in climate models5 represent conceptual barriers that have not yet

begun to be addressed. Probabilities might be welcomed by decision makers across all sectors

5This phenomenon is sometimes referred as the Hawkmoth Effect, in analogy to Ed Lorenz’s Butterfly Effect for initial condition (Thompson
2013; Frigg et al. 2014; Thompson and Smith 2019; Lam 2021).

of society, but it is crucial for modellers to be clear when decision-relevant probabilities are not

available. Nevertheless well designed PPEs and ensembles in general could help provide them

with better information.
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