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ABSTRACT
Many health indicators are bounded, that is, their values lie between a lower and an upper bound. Inequality measurement with
bounded variables faces two normative challenges well‐known in the health inequality literature. One is that inequality
rankings may or may not be consistent across admissible attainment and shortfall representations of the variable. The other is
that the set of maximum‐inequality distributions for bounded variables is different from the respective set for variables with no
upper bound. Therefore, the ethical criteria for ranking maximum‐inequality distributions with unbounded variables may not
be appropriate for bounded variables. In a novel proposal, we justify an axiom requiring maximum‐inequality distributions of
bounded variables to be ranked equally, irrespective of their means. Then, our axiomatic characterization naturally leads to
indices that measure inequality as an increasing function of the observed proportion of maximum attainable inequality for a
given mean. Additionally, our inequality indices rank distributions consistently when switching between attainment and
shortfall representations. In our empirical illustration with three health indicators, a starkly different picture of cross‐country
inter‐temporal inequality emerges when traditional inequality indices give way to our proposed normalized inequality indices.
JEL Classification: D63, I31, O57

1 | Introduction

In his seminal contribution, Atkinson (1970) set the foundations
of inequality measurement as we know it. After 5 decades, the
contributions to this burgeoning field of research have expanded
in multiple directions, and “inequality” can arguably be
considered one of the most hotly debated topics in an increas-
ingly globalized world, as witnessed by the popularity of several
recent books on the subject (e.g., Piketty 2015; Bourgui-
gnon 2017; Atkinson 2018; Milanovic 2018; Piketty 2022; Mila-
novic 2023) and recent awards of the Nobel Memorial Prize in
Economic Sciences. The interest in inequality measurement has
gone well beyond the study of monetary or pecuniary variables.
Like many non‐pecuniary variables, health indicators can only

take values from a closed finite interval with fixed limits (i.e.,
the lower bound and the upper bound).1 Following the litera-
ture on inequality measurement, we refer to the variables with a
lower bound and an upper bound as bounded variables (e.g., see
Lambert and Zheng 2011).

The measurement of inequality with bounded variables poses
two key challenges, which are not relevant for non‐bounded
variables (i.e., those with a fixed and finite lower bound but
no fixed upper bound). First, when a variable is bounded, one
may choose to focus either on the distribution of attainments or
the corresponding distribution of shortfalls with respect to the
upper bound. For instance, improvements in the coverage of
public health programs could be assessed via either the
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percentage of vaccinated children (an achievement indicator) or
the percentage of unvaccinated children (a shortfall indicator).
Many well‐known inequality measures fail to rank distributions
consistently when measurement switches from attainments to
shortfall representations (Micklewright and Stewart 1999;
Clarke et al. 2002; Kenny 2004; Erreygers 2009a; Lambert and
Zheng 2011; Lasso de la Vega and Aristondo 2012; Bos-
mans 2016). Several solutions have been proposed in the liter-
ature to tackle this challenge, such as using absolute inequality
measures (Erreygers 2009a; Lambert and Zheng 2011), indices
based on both representations (Lasso de la Vega and Aris-
tondo 2012), or using pairs of weakly consistent indices
(Bosmans 2016).

Second, there is a fundamental difference between the concep-
tualizations of most unequal distribution (henceforth maximum
inequality distribution, or MID) for bounded variables and that
for non‐bounded variables (i.e., variables with no upper bound),
respectively. For a non‐bounded variable, all elements in an
MID, barring one, are equal to the lower bound. Inequality
measurement in this context is often seen as a cake‐cutting
problem (e.g., see Cowell 2011), where the most unequal dis-
tribution always involves one person owning the entire cake.
For example, while dividing a cake among 10 people, an MID
would contain nine people having no slice (e.g., a lower bound
of zero) and a single person owning the entire cake. If, instead,
there were two identical cakes of the same size, then the MID
would feature nine people having no cake at all and one person
owning both cakes. As the mean increases from one‐10th to one‐
fifth of a cake, absolute inequality measures rank the latter MID
as more unequal whereas many relative inequality measures
rank these two MIDs equally, for instance.

However, such scenario can be infeasible for bounded variables
like stunting and immunization rates, all with an upper bound
of 1% or 100%. For a bounded variable, an MID becomes a bi-
polar distribution (Erreygers 2009b) or an almost‐bipolar dis-
tribution (as defined in the subsequent section). To demonstrate
our point, we continue with our cake‐cutting example. Suppose
there is a fixed upper bound so that no one can have more than
half of a cake. When there is one cake, the MID contains eight
people having nothing and two people owning half of the cake
each (i.e., the upper bound); whereas, with two cakes, the MID
features six people without cake and four owning half of a cake
each (i.e., leading to bipolar distributions). Thus, while both in
the bounded and non‐bounded settings inequality is maximized
whenever the smallest share of individuals owns as much as
possible, there is a fundamental domain restriction shaping the
inequality‐maximizing distributions. In the MID of an un-
bounded variable a single individual always owns everything,
whereas in the MID of a bounded variable such possibility is
often precluded. How should we, then, rank the different MIDs
in the context of bounded variables?

The health inequality literature has long made inroads into the
challenges of assessing inequality with bounded variables (see
e.g., Wagstaff 2005; Erreygers 2009a, 2009b; Erreygers and Van
Ourti 2011a; Kjellsson and Gerdtham 2013), with proposals for
comparing notions of inequality across distributions with
different means. For instance, Wagstaff (2005) proposes dividing
the concentration index by its maximum value for a given mean;

while Erreygers (2009a) proposes absolute indices satisfying
various scaling properties, and further proposes normalizing the
variable of interest with respect to the corresponding lower‐ and
upper bounds to make the interpretations of indices unit‐free.
Although the merits of these two approaches and underlying
value judgments have been extensively debated (Wagstaff 2011;
Erreygers and Van Ourti 2011b), Kjellsson and Gerdtham (2013)
seek to reconcile them by arguing that even though both ap-
proaches attempt to quantify how far a distribution is from the
most unequal state, they differ in their definitions of such states.

However, we observe two gaps in this otherwise rich debate.
First, despite independently mentioning some of the elements
underpinning our normative proposal for ranking MIDs, the
debate has not put forward our ethical justification to rank
MIDs equally vis‐à‐vis each other in the context of bounded
variables; namely, that inequality cannot increase applying
regressive transfers to these distributions. Second, despite
similar measurement aims, the debate in the health economics
literature has not yet been connected to a related broad (and
mostly older) inequality measurement literature (e.g., Tem-
kin 1986; Fields 1987, 1993, 1998; Amiel and Cowell 1994;
Bosmans 2007).

Building on alternative suggestions from the literature on non‐
bounded variables for similar situations (Temkin 1986;
Fields 1998; Bosmans 2007), we argue that, from an egalitarian
perspective, the different MIDs in the context of bounded vari-
ables represent the normatively least desirable situations for
correspondingly different means, because in each one of them
further regressive transfers are unfeasible. Thence, our norma-
tive proposal states that all least desirable situations (i.e., the
MIDs) should be considered equally unequal. We refer to this
desideratum as the maximality principle. Our axiomatic char-
acterization shows that the maximality principle naturally leads
to two novel classes of normalized inequality measures, which
are motivationally analogous to the normalized concentration
indices of Wagstaff (2005) and Erreygers (2009b).2

Simultaneously, indices in both new classes address traditional
concerns regarding the consistency of inequality rankings to
alternative representations of the bounded variable (i.e.,
attainment vs. shortfall) by satisfying the strong consistency
property (Lambert and Zheng 2011; Bosmans 2016). As an
additional contribution to this literature, we show that fulfill-
ment of the more stringent perfect complementarity property
(Erreygers 2009a) is not just sufficient but also necessary for the
fulfillment of strong consistency. Our two classes of indices also
comply with cardinal invariance (Erreygers 2009a), a well‐
established principle in the inequality measurement literature
which enables comparisons of distributions with different
means for interval and ratio‐scale data, and guarantees consis-
tent inequality rankings in terms of unit consistency
(Zheng 2007; Lambert and Zheng 2011) and cardinal consistency
(Erreygers 2009a; Lambert and Zheng 2011).

The key distinction between our two proposed classes is that
one is defined for a fixed population, while the other class, a
novel contribution to the literature, enables comparisons of
distributions with varying populations. The second class' nov-
elty resides in its joint satisfaction of the maximality principle,
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strong consistency and the population principle (along with
other standard properties). Moreover, a key feature setting both
classes apart is that the relevant MIDs for fixed populations
admit the case of so‐called almost‐bipolar distributions along-
side the better‐known bipolar counterparts. By contrast, one of
our key contributions is showing that inequality comparisons of
bounded‐variable distributions with varying population sizes
only admit bipolar distributions as MIDs when they comply
with the population principle.

To illustrate the empirical relevance of our proposed normalized
inequality measures, we study cross‐country inequality trends in
under‐5 and infant survival rates between 1950 and 2015, plus
the evolution of inequality in hepatitis‐B immunization rates
between 1990 and 2012. For all of them, we compare the
normalized standard deviation against its relative (coefficient of
variation) and absolute (standard deviation) counterparts. For
the two child survival rates the values of the corresponding
absolute and relative indices decline throughout, along with
increases in mean attainments which were already > 50% in the
middle of the 20th Century. By contrast, the proposed normal-
ized index remains stable in value until the end of the 20th
Century and falls thereafter. This indicates that observed abso-
lute and relative inequality grew at similar rates compared to
their respective maximum possible values during the 20th
Century and then at faster rates into the 21st Century. Mean-
while for hepatitis‐B immunization rates, when we use the
relative index, inequality steadily decreases throughout, as
mean attainment increases from near 0%–90% across the studied
period. Instead, we observe Kuznets curves with the absolute
index, whereby cross‐country inequality initially increases as
mean attainment increases, reaches maximum around half way
between both bounds and then decreases as mean attainment
approaches its upper bound. However, the normalized standard
deviation reports stable inequality values initially and then a
fall, suggesting an initial stability followed by a decline in the
realized proportion of maximum possible inequality for both
absolute and relative inequality.

The rest of the paper proceeds as follows. Section 2 introduces
the notation, definitions and the required well‐established
properties in the inequality measurement literature. Section 3
discusses the concept of maximum inequality in the context of
bounded variables and introduces the maximality principle.
Sections 4 and 5 introduce and axiomatically characterize the
two classes of normalized inequality measures. Section 6 pro-
vides some comparative insights of our proposed approaches in
relation to the existing approaches. Finally, Section 7 presents
the empirical illustration and Section 8 concludes with some
remarks.

2 | Notation and Well‐Established Principles of
Inequality Measurement

Suppose, there are n units of analysis (e.g., people, households,
municipalities, countries, etc.) such that n ∈N\{1}.3 Let
x = x1,…, xn( ) be an attainment distribution of n units (or an n‐
dimensional attainment vector), where xi ∈ [L,U] ∩ Q + repre-
sents unit i’s cardinally measurable attainment, which is

rational and bounded between a non‐negative lower bound of
L ∈Q + and some positive upper bound U ∈Q+ + , that is,
0 ≤ L < U.4 To simplify notation, let D = [L,U] ∩ Q + denote
the range of values that each xi can take, and let
D = ∪L≥0∪U>L[L,U] ∩ Q + be the set of all admissible domains
(with L and U being rational numbers).

We denote the set of all attainment distributions of size n taking
values within D by Xn;D, the set of all attainment distributions of
size n by Xn;• ≔ ∪D∈DXn;D, the set of all attainment distributions
taking values within D by X •;D ≔ ∪n>1Xn;D and the set of all
possible attainment distributions by X ≔ ∪n>1∪D∈DXn;D. By
definition, we exclude egalitarian distributions whose values are
all equal to either bound (i.e., (L,…,L) or (U,…,U)) from our
domain. The arithmetic mean function evaluated at any x ∈ X is
denoted by μ(x). Furthermore, for any x ∈ Xn;D, let Xμ(x)

n;D be the
set of all attainment distributions of size n taking values within
D and with the same mean as x, and for any x ∈ X , let Xμ(x) be
the set of all possible attainment distributions with the same
mean as x. Henceforth, we focus on distributions with mean
different from either bound, that is, L < μ(x) < U.5

Bounded variables can be represented as attainments xi for every
unit of analysis i or, alternatively, as shortfalls xSi = U + L − xi,
which also range between L and U. For example, if xi is the share
of healthy individuals in country i, then xSi is the respective share
of unhealthy individuals. In this example, L = 0 and U = 1, so
xSi = 1 − xi. We denote the shortfall distribution associated with
x ∈ Xn;D as xS = xS1 ,…, xSn( ) ∈ Xn;D.

We now present the properties that are relevant for our char-
acterization. An inequality index I : X → R + is a continuous
real‐valued function expected to satisfy two basic properties
(Chakravarty 2009): anonymity and transfer principle, in addi-
tion to other well‐established properties. Anonymity requires
that an inequality index should not depend on a reordering of
attainments across units; whereas the transfer principle requires
that a transfer from a richer to a poorer unit, without altering
their relative positions, should decrease inequality (progressive
transfer); whereas, alternatively, a transfer from a poorer to a
richer unit should increase inequality (regressive transfer).6

Anonymity: For some x, y ∈ Xn;D, I(y) = I(x)whenever y = xP
for permutation matrix P.7

Transfer principle: For some x, y ∈ Xn;D, I(y) < I(x) whenever
y is obtained from x by a progressive transfer and I(y) > I(x)
whenever y is obtained from x by a regressive transfer.8

Before discussing more properties, we introduce a type of
function which underpins our characterization results. We refer
to a real valued function f : X → R + as strictly Schur‐convex if,
for some x, y ∈ Xn;D, f (y) ≤ f (x) whenever y is majorised by x
and f (y) < f (x) whenever y is majorised by x but y is not a
permutation of x (Marshall and Olkin 1979, 54).9 Moreover, y is
majorised by x if and only if the former distribution can be
obtained from the latter through a finite sequence of progressive
transfers (Arnold 1987). Therefore, strictly Schur‐convex func-
tions play a prominent role in inequality measurement because
they satisfy the transfers principle.10
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The third property, equality principle, ensures that inequality is
minimal and is equal to zero whenever all units feature exactly
the same value, that is, x1 = x2 = ⋯ = xn.

Equality principle: For any x ∈ Xn;D and for some λ ∈Q+ + ,
I(x) = 0 whenever x = λ1n.11

The fourth property, cardinal invariance (Erreygers 2009a),
serves two purposes. First, it allows comparing two distribu-
tions when one is obtained from the other by changing the unit
of measurement. For example, among health variables, mor-
tality rates may be reported either on a 0–1 scale or in per-
centage terms 0%–100% (i.e., ratio‐scale), whereas body
temperature may be reported either in degree Celsius or
Fahrenheit (interval‐scale). The property requires that
inequality evaluation remains unchanged when a distribution is
obtained from another through a positive linear transformation.
Second, although this property is sufficient but unnecessary to
guarantee the consistency of inequality comparisons to positive
linear transformations of the measurement unit, it crucially
enables inequality comparisons of distributions with different
means.

Cardinal invariance: For any x ∈ Xn;D and for some λ ∈Q+ +

and δ ∈Q + , I λx + δ1n( ) = I(x), where λxi + δ ∈ λL + δ,[

λU + δ] for all i.

We note from the definition of cardinal invariance that its
satisfaction implies compliance with scale invariance, that is,
I(λx) = I(x), whenever δ = 0. Likewise, cardinal invariance
boils down to translation invariance, that is, I x + δ1n( ) = I(x),
whenever λ = 1 and δ ≠ 0. Hence, satisfaction of cardinal
invariance encompasses arguably the two most popular ap-
proaches to inequality measurement with ratio‐scale data: ab-
solute and relative.12 An inequality index is absolute if its value
remains unchanged when the same amount is added to all at-
tainments (i.e., translation invariance); whereas, an inequality
index is relative if its value remains unchanged when all at-
tainments are altered in the same proportion (scale invariance).
Note that the bounds are allowed to change in both cases from
L,U[ ] to λL + δ, λU + δ[ ].

A form of inconsistency arises when inequality orderings of
attainment distributions differ from their shortfall counterparts.
Different properties have been proposed in the literature
regarding the extent to which inequality indices, as well as
partial orderings, should consistently rank attainment and
shortfall distributions.13 The perfect complementarity property
requires that the value of the inequality index remains unaltered
when we switch between attainment and shortfall representa-
tions of the same distribution (Erreygers 2009a).14

Perfect complementarity: For any x ∈ Xn;D, I(x) = I xS( ).

Likewise, the less stringent strong consistency property requires
that the inequality ranking should be robust to alternative
representations of the variable (Lambert and Zheng 2011).

Strongconsistency:Foranyx, y ∈ Xn;D, I(x) ≤ I(y)⇔ I xS( ) ≤ I yS( ).

The task of rendering our proposed inequality measures in
compliance with strong consistency is facilitated by the
remarkable equivalence between strong consistency and perfect
complementarity. We know that the latter implies the former.
But Proposition 1 shows that strong consistency also implies
perfect complementarity.15

Proposition 1. An inequality index satisfies strong consistency
if and only if it satisfies perfect complementarity.

Proof. See Appendix A1. ▫

The aforementioned properties compare distributions with the
same number of elements or population sizes. The final prop-
erty, the population principle, enables the comparison of distri-
butions with different population sizes.

Population principle: For some x, y ∈ X •;D, I(y) = I(x)
whenever y is obtained from x by a population replication.16

3 | Maximum Inequality Distributions (MIDs)
and the Maximality Principle

In the previous section, we discussed some well‐established
properties for inequality measurement. Here, we introduce a
new principle for inequality measurement in the context of
bounded variables, which embodies a normative criterion for
the ranking of MIDs with different means. Even though the
concept of MIDs has been discussed for some types of variables
and distributions in the health inequality literature (e.g., see
Erreygers 2009b, for the case of bivariate distributions in con-
centration analysis), to the best of our knowledge they have not
been characterized in relation to explicit sets of axioms for in-
dividual bounded variables. Hence, after defining the concepts
of bipolar and almost‐bipolar distributions, we show that the set
of distributions reflecting maximum inequality for a given
mean, depends on the axioms selected to rank these distribu-
tions of bounded cardinal variables. We show that, if we
consider anonymity and the transfers principle alone, then the
MIDs for a given mean are either bipolar or almost‐bipolar
(Proposition 2). We show in Section 5 that, if we add the pop-
ulation principle to anonymity and the transfers principle, then
for a given mean the subset of MIDs narrows down to just bi-
polar distributions.

We introduce some additional necessary notation. For some
n ∈N\{1}, let us denote a set of n − 1 equally‐spaced grid
points by

Gn =
(n − 1)L + U

n
,
(n − 2)L + 2U

n
,…,

L + (n − 1)U
n

{ }.

For example, for L = 0, U = 1 and n = 4, G4 = {0.25, 0.5, 0.75}.

Bipolar distribution: A distribution x ∈ Xn;D is bipolar when-
ever for some nʹ ∈N such that nʹ < n, nʹ units in x attain the
value of U and the remaining n − nʹ units attain the value of L.
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Bipolar distributions consist of units with values at either the
lower bound or upper bound exclusively, with at least one unit
at each bound. Since nʹ could take any value between 1 and
n − 1, for any bipolar distribution x ∈ Xn;D, μ(x) is an element
in Gn. For example, with L = 0 and U = 1, consider distri-
bution x = (0.1, 0.4, 0.7, 0.8), where μ(x) = 0.5 is an element in
G4. An MID for x can be obtained by a sequence of regressive
transfers until (or unless) no further regressive transfers are
possible. Thus, the set of MIDs for x contains all possible
permutations of the distribution x̂ = (0, 0, 1, 1). All distribu-
tions in the set are bipolar since two elements are equal to the
lower bound of 0 and two elements are equal to the upper
bound of 1.

Almost‐bipolar distribution: A distribution x ∈ Xn;D is almost‐
bipolar whenever for some nʹ ∈N ∪ {0} such that nʹ < n, nʹ units
in x attain the value of U, n − nʹ − 1 units in x attain the value
of L, and the leftover unit's attained value, which is necessarily
ε = nμ(x) − nʹU − (n − nʹ − 1)L, lies between L and U.

Almost bipolar distributions consist of all units with either the
lower or upper bound value, except for one unit with an interior
value of ε ∈ (L,U). If y ∈ Xn;D is an almost‐bipolar distribution,
then μ(y) cannot be an element of Gn. For instance, consider
distribution y = (0.2, 0.4, 0.7, 0.9), where μ(y) = 0.55 with
L = 0 and U = 1, which is not an element in G4. Again, an
MID for y can be obtained by a sequence of regressive transfers
until (or unless) no further regressive transfers are possible. The
corresponding MIDs, in this case, are all possible permutations
of the distribution ŷ = (0, 0.2, 1, 1), with the leftover element
being ε = 0.2. Notably, ŷ is almost‐bipolar.

Formally, we denote the set of all possible almost‐bipolar dis-
tributions by A ⊂ X ; the set of all possible bipolar distributions
by B ⊂ X ; and the set of all distributions that are either bipolar
or almost bipolar byM = A ∪ B. We use subscripts n, D and •
and superscript μ(x) with A, B andM as we have done for X in
order to define relevant subsets. Finally, we define, for every

x ∈ Xn;D, a partially ordered set Xμ(x)
n;D ,⪰n( ) such that for any

pair y, z ∈ Xμ(x)
n;D : (1) z≻ny, which reads “z is more unequal than

y,” if z is obtained from y through a sequence of regressive
transfers with or without additional permutations and (2) z∼ny,
which reads “z is as unequal as y” if z is obtained from y only
through a sequence of permutations.

Based exclusively on anonymity and the transfers principle,
Proposition 2 establishes the existence of a set of maximum‐
inequality distributions (MIDs) and shows that the set of MIDs
associated to any distribution x ∈ Xn;D contains permutations of
either a bipolar or an almost‐bipolar distribution with popula-
tion size n and same mean μ(x), that is, Mμ(x)

n;D = X
μ(x)
n;D ∩M.

Proposition 2. For any n ∈N\{1}, any D ∈D and for any
x ∈ Xn;D such that μ(x) ∈ (L,U) ∩ Q+ + , a set of maximum
inequality distributions Mμ(x)

n,D = X
μ(x)
n;D ∩M constituting the

maximal elements of the partially ordered set Xμ(x)
n;D ,⪰n( ) exists

and the elements ofMμ(x)
n;D are bipolar when μ(x) ∈Gn or almost‐

bipolar when μ(x) ∉ Gn.

Proof. See Appendix A2. ▫

It is worth noting that the elements included in Mμ(x)
n;D are

unique up to permutations; that is, given any two elements
x, y ∈Mμ(x)

n;D , then y = xP for some permutation matrix P. Even
though MIDs are hypothetical distributions unlikely to be
observed in practice, they do represent the benchmark case of
maximum inequality against which we can compare distribu-
tions of bounded variables sharing the same mean. The latter's
inequality evaluations cannot be larger than their MID's as long
as an inequality index I satisfies anonymity and the transfer
principle.

3.1 | Comparing MIDs With Different Means

Recall from the cake‐cutting illustration for non‐bounded vari-
ables in the introduction that the ranking of the most unequal
distributions (i.e., one person owning everything), with different
means, depends on the selected approach to inequality mea-
surement. For instance, such MIDs are judged equally unequal
by the relative Lorenz ordering and by most Lorenz‐consistent
relative inequality measures, but absolute inequality indices
and partial orderings deem MIDs with higher means more un-
equal. By contrast and as elucidated, the concept of maximum
inequality changes in the presence of an upper bound. How
should we compare the MIDs of bounded variables for different
means given that they all reflect maximum inequality? We draw
ethical intuitions from a parallel literature assessing inequality
changes for non‐bounded variables due to a sequence of popu-
lation shifts between a better‐off group and a worse‐off group
owing to social progress (Temkin 1986) or, analogously, be-
tween a low‐income sector and a high‐income sector owing to
income growth (Fields 1987, 1993, 1998; Amiel and Cow-
ell 1994; Bosmans 2007).

Suppose there are two groups in a society: one better off (e.g.,
high‐income) and one worse off (e.g., low‐income). Moreover,
let everyone within each group be equally well off, so that there
is no inequality within each of the two. Suppose further that
there are n people in the society and consider the following
n − 1 situations. In the first (i.e., the initial) situation, there are
n − 1 persons in the worse‐off group and only one person in the
better‐off group; in the second situation, one person moves from
the worse‐off group to the better‐off group, and so there are
n − 2 persons in the worse‐off group and two persons in the
better‐off group; and so on. Finally, in the (n − 1)th (i.e., the
final) situation, there is only one person in the worse‐off group
and the other n − 1 persons are in the better‐off group. As we
gradually move from the initial situation to the final situation,
the mean gradually improves, but how should inequality
change?

Five possible ethical judgments have been discussed in the
literature as the mean improves along with the shift of popu-
lation from the worse‐off group to the better‐off group:

1. An increase in inequality throughout;

2. A decrease in inequality throughout;
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3. An initial increase in inequality, then a reduction after
a certain point where inequality is maximized (i.e., an
inverted U‐shape);

4. An initial reduction in inequality, then an increase after
a certain point where inequality is minimized (i.e., a
U‐shape);

5. No change in inequality.

Temkin (1986) and Fields (1998) both argue on the possibility
for inequality to be increasing throughout (as an ever smaller
number of people become victimized through the isolation of the
poor) as well as the possibility for inequality to decrease
throughout (reflecting a diminished elitism of the rich and the
steady decrease in the number of those worse off). Tem-
kin (1986) and Fields (1998), however, disagree on the possi-
bilities of a U‐shape or an inverted‐U‐shape relationship.
Temkin (1986) argues in favor of the possibility of an inverted‐
U‐shape relationship, whereby the “isolation of the poor”
judgment is claimed to dominate the “elitism of the rich”
judgment when the mean is low, but the “elitism of the rich”
judgment dominates at high mean levels. Meanwhile,
Fields (1998) argues the exact opposite to justify a U‐shape
relationship. Nevertheless, Bosmans (2007) shows that quasi‐
concave inequality measures (comprising numerous relative,
absolute and intermediate inequality measures) allow only the
first three possibilities, that is, increasing throughout,
decreasing throughout and the inverted‐U shape.

Thus, the literature features various arguments around the first
four ethical judgments, in the case of non‐bounded variables,
wherein none of the n − 1 situations discussed above corre-
sponds to maximum inequality (unless the two incomes are
assumed unique). Importantly, a key difference emerges here
for bounded variables, as for the latter each of the n − 1 situ-
ations corresponds to a bipolar MID (i.e., the most unequal
distribution) for a particular mean. Take the hypothetical case of
100 people (i.e., n = 100), who may experience only one of the
two extreme health alternatives (i.e., bounds): best health and
worst health.17 Although this yields 99 bipolar MIDs, consider
the following two distributions: A with 10 people experiencing
best health and 90 people experiencing worst health; and B with
20 people experiencing best health and 80 people experiencing
worst health. How should we compare a move from A to B? The
“isolation of the poor” ethical judgment may suggest a rise in
inequality as B reflects a situation with fewer people with worst
health, but the “elitism of the rich” ethical judgment may sug-
gest a reduction in inequality as 10 people previously experi-
encing worst health now experience best health.

A broader related question is how inequality ought to change
when the mean gradually grows from the initial MID (i.e., one
person with best health and 99 with worst health) to the final
MID (99 people with best health and one with worst health).
The most frequently used absolute inequality measures increase
in value as the mean raises from the initial MID, reach their
maximum values around the middle value of the mean (i.e., 50
people with best health and 50 people with worst health), and
then decrease as the mean keeps growing towards the final
MID; thereby depicting a Kuznets curve. Assessments based on
most absolute inequality measures, thus, follow the third ethical

judgment. Whichever the choice of inequality measure in the
literature, we have not found compelling ethical justifications
for ranking two MIDs differently despite their key common
definitional trait; namely that in both distributions inequality
cannot increase any further through regressive transfers (hence,
we cannot even obtain one MID from another through such
transfers). As is well known, we cannot transform one egali-
tarian distribution into another egalitarian distribution with a
different mean through progressive transfers; yet we rank them
equally. Hence, by analogy, we may justify ranking MIDs with
different means in the same way.

As Temkin (1986, 118) eloquently stated, “two judges who
accepted bribes in all of their cases might be equally corrupt,
even if one tried fewer cases.” Temkin presented this argu-
ment while arguing in favor of the fifth ethical judgment.
Thus, following Temkin (1986) and the aforementioned rea-
sons, we propose considering the MIDs as equally unequal
irrespective of their proportions of people with values in the
lower and upper bounds. Since existing inequality indices do
not satisfy the fifth ethical judgment (Bosmans 2007), we
operationalize the latter with a property called the maximality
principle as follows.

Maximality principle: For any x, y ∈ Xn;D, I(x) = I(y) when-
ever x ∈Mμ(x)

n;D and y ∈Mμ(y)
n;D .

The property requires that, whenever we pick any two (non‐
trivial) MIDs, the corresponding levels of inequality must
coincide. Stated otherwise, whenever no further regressive
transfers can be performed, then we have reached maximal
inequality irrespective of the mean of the distribution.

4 | The Class of Normalized Indices for
Comparisons With Fixed Population Size

Building on the key properties introduced in Section 2 and the
maximality principle in 3, we characterize a new class of
inequality indices. We show that, within our framework,
inequality should be measured as an increasing function of
observed inequality as a proportion of the maximum inequality
level reachable given a mean attainment. Theorem 1 presents
our proposed family of inequality indices for comparisons with
fixed population sizes, which we call the class of normalized
inequality indices.

Theorem 1. For any n ∈N\{1} and any x ∈ Xn;•, an inequality
index I satisfies anonymity, the transfer principle, the equality
principle, the maximality principle, strong consistency and car-
dinal invariance if and only if there exist a positive finite constant
M, a strictly Schur‐convex function f : Xn;• → R + , and an
increasing function H : R → R + such that:

I(x) =H H−1(M) − H−1(0)[ ]
f (x) − f x( )
f x̂( ) − f x( )

+H−1(0)( ), (1)

where x = μ(x)1n is the egalitarian distribution with the same
mean as x, and x̂ ∈Mμ(x)

n;• is an MID for x. Additionally, f sat-
isfies the following two restrictions:
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f xS( ) − f xS( )

f x̂S( ) − f xS( )
=
f (x) − f x( )
f x̂( ) − f x( )

, (2)

and, for some constants λ ∈Q+ + and δ ∈Q + :

f (λx + δ) − f λx + δ( )

f λx̂ + δ( ) − f λx + δ( )
=
f (x) − f x( )
f x̂( ) − f x( )

. (3)

Proof. See Appendix A3. ▫

According to Theorem 1, a normalized inequality index I(x) in
our proposed class evaluated at distribution x is an increasing
function (i.e., H) of any symmetric and S‐convex function f (x)
evaluated at x, subtracted by its corresponding minimum
possible value f x( ) evaluated at the egalitarian distribution x,
and then normalized by the difference between its correspond-
ing maximum possible value f x̂( ) evaluated at any of its
uniquely associated MIDs, namely x̂ ∈Mμ(x)

n;D , and its corre-
sponding minimum possible value f x( ).

For all practical purposes, we advocate using H(z) = z and
M = 1 in Equation (1), which yields a functionally simpler
subclass of inequality indices from the class characterized in
Theorem 1. Indeed, with such choices, the indices in our pro-
posed class take the form:

I(x) =
f (x) − f x( )
f x̂( ) − f x( )

. (4)

Moreover, when the chosen f is an admissible traditional
inequality index fulfilling the equality principle (such as the Gini
coefficient or the coefficient of variation), then f x( ) = 0 and the
ratio on the right‐hand side of Equation (4) further simplifies to:

I(x) =
f (x)
f x̂( )

. (5)

Conveniently, the values of the inequality measures in Equa-
tions (4) and (5) range between zero in the absence of inequality
(i.e., x = x) and one for an MID (i.e., x = x̂). In fact, the indices
in subclass (5) measure inequality as a proportion of the
maximum attainable with f for a given mean. More generally,
every normalized inequality index in the characterized class
shares some key features, starting with increasing in value after
a regressive transfer and decreasing owing to a progressive
transfer.

Secondly, the value of every normalized index remains un-
changed across attainment and shortfall representations (i.e.,
satisfying strong consistency) because the condition in Equa-
tion (2) is satisfied. More precisely in terms of the subclasses in
Equations (4) and (5), the condition in Equation (2) states that I(x)
is strongly consistent if and only if the ratios on the right‐hand
sides satisfy perfect complementarity. Thus notably, f does not
need to satisfy perfect complementarity itself in order to secure
the strong consistency of a normalized inequality index.

Thirdly, the value of every normalized index remains the same
for two distributions when one is obtained from the other

through a positive linear transformation of the measurement
unit (i.e., satisfying cardinal invariance) because the condition
in Equation (3) is satisfied. As with strong consistency, the
condition in Equation (3) states that I is cardinally invariant if
and only if the ratios on the right‐hand sides of Equations (4)
and (5) satisfy cardinal invariance. Again notably, f itself does
not need to be cardinally invariant in order to guarantee the
cardinal invariance of a normalized inequality index.

Crucially, f admits numerous functional forms. For instance, f
can take the form of absolute inequality indices in the rank‐
dependent class characterized by Lambert and Zheng (2011,
theorem 4) as the following two conditions hold for all its
members (such as the absolute Gini index): f xS( ) = f (x) and
f (λx + δ) = λf (x). These two conditions clearly comply with
the restrictions in Equations (2) and (3). Additionally, f can also
adopt the forms of the absolute inequality indices in the rank‐
independent class characterized by Lambert and Zheng (2011,
theorem 4) if they are based on homogeneous functions (as with
the variance and the standard deviation, for instance). Indeed,
the following two conditions hold for homogeneous members of
the rank‐independent class characterized by Lambert and
Zheng (2011): f xS( ) = f (x) and f (λx + δ) = g(λ) f (x), where
g : R+ + → R+ + . Clearly, these two conditions also comply
with the restrictions in Equations (2) and (3).

Every relative inequality index expressible as the product of an
homogeneous Lambert‐Zheng absolute inequality index times a
function of the mean, is also admissible. For instance, when f is
either the Gini coefficient (which is equal to the absolute Gini
index divided by the mean) or the coefficient of variation
(which is equal to the standard deviation divided by the mean),
we obtain f xS( ) =

μ(x)
U +L−μ(x) f (x) and f (λx + δ) = λμ(x)

λμ(x) + δ f (x),
which again, satisfy Equations (2) and (3). The same results
hold for every member of the Donaldson‐Weymark class of
generalized Gini indices (Donaldson and Weymark 1980),
confirming their admissibility. Similarly, all measures of the
Lasso de la Vega and Aristondo (2012) class based on the
aforementioned absolute and relative inequality indices are also
admissible.

By contrast, no members of the rank‐independent Atkinson
class (Atkinson 1970) are suitable for obtaining strongly
consistent normalized inequality indices. Finally, only one
member of the generalized entropy class (Shorrocks 1980) is an
admissible functional form for f , namely the squared coefficient
of variation.18

By way of examples, we present two normalized inequality
indices, which consider two popular inequality measures as
admissible functional forms for f , assuming H(z) = z and
M = 1 as in Equation (4), and μ(x) ∈Gn (meaning that only
bipolar MIDs are considered).19 Also for convenience of pre-
sentation, we refer to the normalized inequality index corre-
sponding to the admissible form f as f ∗ (instead of I), in order to
clarify that f ∗ is derived from an admissible f .

When f is the absolute or the relative Gini index, that is,
f (x) = Ga(x) or f (x) = Gr(x), then it is easy to check (see
Appendix A6) that
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G∗(x) = G∗
a(x) = G∗

r (x) =
Ga(x)(U − L)

U − μ(x)( ) μ(x) − L( )
. (6)

Thus, G∗
a(x) compares Ga(x) against the maximal inequality

value that such index could possibly take for any distribution
with mean equal to μ(x) (which equals U −μ(x)( ) μ(x)−L( ))

U − L when the
MID is bipolar, i.e., when μ(x) ∈Gn). Expectably, the normal-
ized inequality indices derived from the absolute and the rela-
tive Gini indices coincide because the latter is a product of the
former times a function depending on the mean, which cancels
out. To simplify notation, such normalized Gini index will be
referred to as G∗(x).

We can also derive the normalized versions of the standard
deviation ( f (x) = σ(x) =

̅̅̅̅̅̅̅̅̅̅
V(x)

√
) and the coefficient of varia-

tion ( f (x) = CV(x) = σ(x)/μ(x)). It is easy to check (see
Appendix A6) that σ∗(x) = CV∗(x), that is,

σ∗(x) =
σ(x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(U − μ(x))(μ(x) − L)

√ . (7)

Once again, the normalized version of an absolute inequality
index and its relative counterpart coincide for the same afore-
mentioned reason.

5 | The Class of Normalized Indices for
Comparisons With Varying Population Sizes

At least since Dalton (1920), the most popular answer to the
challenge of comparing inequality across distributions with
different population sizes is the population principle, which re-
quires that identical cloning of all units should leave inequality
unaltered (thereby rendering populations with different sizes
comparable).20 A normalized inequality measure from the class
in Theorem 1 does not comply with the population principle
even when an admissible functional form of f does, because
even though the replication of a bipolar MID is itself an MID,
the replication of an almost bipolar MID is not an MID, based on
how Proposition 2 defines an MID.21 Therefore, if we want our
normalized inequality measures to fulfill the population prin-
ciple we must adopt a different definition of the set of MIDs, one
compliant with the population principle. Proposition 3 estab-
lishes the existence of such a set of MIDs, and shows that the set
of MIDs, associated with all distributions sharing the same mean
across all population sizes taking values within (L,U) is, in this
case, equal to Bμ(x)•;D = X

μ(x)
•;D ∩ B.22 Based on the transfer and

population principles combined with anonymity, these MIDs
are defined as the distributions that maximize inequality among
all possible distributions with the same mean but varying pop-
ulation sizes.

Likewise, we can order distributions across all population sizes.
That is, for every x ∈ X •;D, we can define a partially ordered set

X
μ(x)
•;D ,⪰( ) such that for any pair y, z ∈ Xμ(x)

•;D : (1) z ≻ y, which

reads “z is more unequal than y,” if z is obtained from y
through a sequence of regressive transfers with or without
additional permutations and/or replications and (2) z ∼ y,

which reads “z is as unequal as y” if z is obtained from y only
through a sequence of permutations and/or replications.

Proposition 3. For any D ∈D and any x ∈ X •;D such that
μ(x) ∈ (L,U) ∩ Q+ + , a set of maximum inequality distributions
B
μ(x)
•;D = X

μ(x)
•;D ∩ B constituting the maximal elements of the

partially ordered set Xμ(x)
•;D ,⪰( ) exists and all elements of Bμ(x)•;D are

bipolar.

Proof. See Appendix A4. ▫

According to Proposition 3, in a setting compliant with the
population principle, only bipolar distributions maximize
inequality. Thus, the Maximality Principle introduced in Sec-
tion 3 must be adapted and rewritten as follows:

RestrictedMaximality Principle:For any x, y ∈ X •;D, I(x) = I(y)
whenever x ∈ Bμ(x)•;D and y ∈ Bμ(y)•;D .

Again, this principle states that whenever no further regressive
transfers are feasible and we have reached a bipolar distribution,
then inequality is maximal (no matter what the mean of the
distribution is). With this reformulated version of the max-
imality principle, we can now axiomatically characterize the
class of normalized inequality indices compliant with the pop-
ulation principle:

Theorem 2. For any x ∈ X , an inequality index I satisfies an-
onymity, the transfer principle, the equality principle, the
restricted maximality principle, the population principle, strong
consistency and cardinal invariance if and only if there exist a
positive finite constant M, a strictly Schur‐convex function
f : X → R + , and an increasing function H : R → R + such that:

I(x) =H H−1(M) − H−1(0)( )
f (x) − f x( )
f x̂( ) − f x( )

+H−1(0)[ ],

where x is the egalitarian distribution with the same mean as x,
and x̂ ∈ Bμ(x) is a bipolar MID for x. Besides, f satisfies the
population principle and the following two restrictions:

f xS( ) − f xS( )

f x̂S( ) − f xS( )
=
f (x) − f x( )
f x̂( ) − f x( )

,

and for any constants λ ∈Q+ + and δ ∈Q + :

f (λx + δ) − f λx + δ( )

f λx̂ + δ( ) − f λx + δ( )
=
f (x) − f x( )
f x̂( ) − f x( )

.

Proof. See Appendix A5. ▫

Theorem 2 implies that the normalized inequality indices abide
by the population principle (in addition to all the properties in
Theorem 1) as long as f satisfies the population principle and is
evaluated at any bipolar distribution with mean equal to μ(x).
Good examples include the normalized inequality indices in
Equations (6) and (7), already introduced in Section 4. The
indices in Equations (6) and (7) can rank distributions with any
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mean whose value is different from either bound because both
the absolute Gini index and the standard deviation (as well as
the Gini index and the coefficient of variation) satisfy the pop-
ulation principle.

6 | Further Comparative Insights

We now provide some insights into how the two proposed
classes of normalized inequality indices (in Sections 4 and 5)
compare with each other as well as how they both compare with
standard absolute and relative measures. First, note that the two
approaches to measuring normalized inequality (corresponding
to the two definitions of MIDs and their respective classes of
indices) bear a large degree of overlap. In fact, the formulas for
normalized inequality indices compliant with the population
principle (Section 5) is identical to the corresponding formulas
for indices suitable for fixed population sizes (Section 4)
whenever μ(x) ∈Gn.23 In fact, when the population size n is
sufficiently large and the decimal precision is kept fixed (as is
the case in many empirical applications), the condition
μ(x) ∈Gn is always satisfied.

In the context of n = 2, we provide insights on how the
different normalized inequality measures behave and compare
vis‐a‐vis each other, and with respect to standard absolute and
relative inequality measures using the Gini coefficient. The non‐
trivial case with n = 2 lays the foundation for how the corre-
sponding inequality indices behave for the more general case of
n > 2. Furthermore, the simplicity of the n = 2 setting allows a
neat inspection of the iso‐inequality level contours, which can
be thought as the fingerprint of the corresponding inequality
measures.24 Figure 1 presents the iso‐inequality contours of the
absolute Gini index (Ga, Figure 1 panel A), the relative Gini
index (Gr, Figure 1 panel B), the normalized Gini index based
on Theorem 1 (i.e., for fixed population; G∗

P in Equation (A14) in
Appendix A6, Figure 1 panel C), and the normalized Gini index
complying with the population principle (the same formulation
as G∗ in Equation (6), Figure 1 panel D), in the case where
L = 0 and U = 1 (Appendix A7 shows how we arrive at these
iso‐inequality contours).25

As is well‐known, Ga x1, x2( ) ∈ [0, 0.25] and the iso‐inequality
contours for Ga are parallel to the 45° line, while
Gr x1, x2( ) ∈ [0, 0.5] and the iso‐inequality contours for Gr are
straight lines “emanating from” (or “converging to”) the origin (0,
0). In contrast, the iso‐inequality contours for the two normalized
Gini indices, G∗

P x1, x2( ) ∈ [0, 1] and G∗ x1, x2( ) ∈ [0, 1], exhibit
completely different shapes. In the case of G∗

P, all level contours
are made of two line segments meeting in the diagonal
x1, x2( ) ∈ [0, 1]2 | x1 + x2 = 1{ }, which, together, connect the

points (0, 0) and (1, 1). Their shapes (though not their corre-
sponding inequality levels) coincide with the level contours of
Gr x1, x2( ) when μ x1, x2( ) ≤ 1/2 and with those of Gr xS1 , xS2( ) when
μ x1, x2( ) ≥ 1/2 (where xS1 = 1 − x1 and xS2 = 1 − x2, see
Appendix A7). In addition, one has that G∗

P x1, x2( ) = G∗
P xS1 , xS2( ).

Lastly, the level contours G∗ x1, x2( ) = c (where c ∈ [0, 1]) are
curves that (i) are symmetrical with respect to the x2 = 1 − x1

axis for all c ∈ [0, 1] (i.e., G∗ x1, x2( ) = G∗ xS1 , xS2( )) and (ii) they
connect the points (0, 0) and (1, 1) when c ≤ 1/2.

As can be inferred from Figure 1 panel C, all the distributions
x1, x2( ) lying at the border of the unit square maximize

inequality (i.e., they are MIDs) when the latter is measured with
G∗
P x1, x2( ). By contrast, Figure 1 panel D shows that, when the

population principle is imposed, only the bipolar distributions,
namely (0, 1) and (1, 0), maximize inequality. The relative Gini
index shown in panel B Gr( ) is the only measure in Figure 1 that
fails to be strongly consistent. As expected from Proposition 1,
the absolute Ga( ) and normalized Gini indices (G∗

P, G∗) not only
satisfy the strong consistency axiom, but also its more stringent
version, perfect complementarity. This happens for all values of
n ≥ 2 and for the two normalized inequality measures explored
in this paper: the normalized Gini index and the normalized
standard deviation (see equations (6) and (7)). The variegated
shapes of the iso‐inequality contours when moving from one
inequality measure to another (see Figure 1) explain the dis-
crepancies that might exist among them.

7 | Empirical Illustration: Cross‐Country
Inequality Trends in Three Health Indicators

In order to illustrate the empirical relevance of our proposal, we
study the evolution of cross‐country inequality in three health
indicators relevant to the United Nation's 3rd Sustainable
Development Goal (SDG), “Ensure healthy lives and promote
well‐being for all at all ages”: the under‐5 survival rates (indi-
cator 3.2.1; target 3.2; SDG 3), the infant survival rates (related
to target 3.2; SDG 3) and the Hepatitis B (HepB3) immunization
coverage rates among 1‐year‐olds (related to target 3.3, SDG 3).26

We select the under‐five survival rate and the infant survival
rate, namely the attainment complements of the respective
mortality rates. The data come from the United Nations'
Department of Economic and Social Welfare website.27 We
obtain the survival rates by subtracting the mortality rates from
1000 and then normalizing the differences by 1000. Therefore,
the survival rates also lie between zero and one. The data are
available for 201 countries.

Panel A1 in Figure 2 shows the change in mean attainments for
the two selected child survival indicators between 1950 and 2015,
for every 5‐year period.28 All global averages display steady im-
provements since 1950. The mean under‐5 survival rate increases
from 0.80 in 1950 to 0.97 in 2015, whereas the mean infant sur-
vival rate increases from 0.87 in 1950 to 0.98 in 2015. That is, both
means lie well above 0.50 throughout the studied period.

Figure 2 panel A2 presents the trends in standard deviation
since 1950 for the two child survival indicators. Predictably for
standard deviation when the growth in the mean is far from
egalitarian, the values decrease throughout the period as mean
attainment, already well above 0.5, gets closer to its upper
bound. Figure 2 panel A3 shows the evolution of relative
inequality measured by the coefficient of variation. Again, pre-
dictably for this index if the growth in the mean is far from
egalitarian, relative inequality decreases throughout.29
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Finally, Figure 2 panel A4 presents the trends in normalized
standard deviation, that is, σ∗ in Equation (7). Unlike both
standard deviation (absolute) and coefficient of variation (rela-
tive), the normalized standard deviation registers a non‐upward
trend for both health indicators through the first decades of the
studied period. Indeed, for both indicators, the normalized
standard deviation remains stable until nearly 1990, and falls
thereafter. That is, in both cases, we conclude that for most of
the 20th century, cross‐country inequality in the two child
survival indicators remains stable compared to its maximum
possible value (which was decreasing, according to the standard
deviation and coefficient of variation), and then its level falls
gradually in the 21st century (as maximum absolute and relative
values kept decreasing with increasing means). Thus, our
empirical illustration shows that normalized indices can

produce different inequality trends vis‐a‐vis their traditional
absolute and relative counterparts.

By way of another corroborating example, panel B1 in Figure 2
shows the change in mean attainments for HepB3 infant im-
munization rates. Unlike the two previous indicators, here
mean attainment is observed increasing from 0.04 in 1990 (i.e.,
very close to the lower bound) to 0.88 in 2012 (not far from the
upper bound either). Correspondingly, Figure 2 panel B2 dis-
plays a Kuznets curve for HepB3 immunization rates using
standard deviation, while Figure 2 panel B3 shows a steady
decline in the coefficient of variation (relative). Unless the
growth in mean immunization rates remains egalitarian
throughout the periods, these two inequality trends are largely
predictable since the maximum values of standard deviation and

FIGURE 1 | Iso‐inequality contours for the different Gini coefficient (n = 2, L = 0, and U = 1). The figure is based on n = 2 and U = 1.
Ga x1, x2( ) in panel (A) is the absolute Gini index applied to an attainment distribution. Gr x1, x2( ) in panel (B) is the relative Gini index
applied to the same attainment distribution. G∗

P x1, x2( ) in panel (C) is the normalized Gini index applied to the attainment distribution
for fixed population. G∗ x1, x2( ) in panel (D) is the normalized Gini index applied to the attainment distribution for variable population.
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the coefficient of variation describe Kuznets curves and down-
ward sloping lines, respectively.30 But then, interestingly,
Figure 2 panel B4 shows that the normalized standard deviation
remains stable initially and then slopes downward throughout.

Here, the main lesson from the normalized standard deviation is
that the increase in absolute inequality in immunization rates
experienced during the 20th century was similar in comparison

to the increase in maximum absolute inequality, hence the
stability in normalized inequality. However, normalized
inequality declined unabated into the 21st century. Meanwhile,
we also learn from the normalized standard deviation that the
observed decline in the coefficient of variation (relative) was
similar in comparison to the decline in its maximum value as
mean attainment grew in the 20th century; but then the coef-
ficient of variation declined faster in comparison to its

FIGURE 2 | Change in cross‐country mean and standard deviation, coefficient of variation and normalized standard deviation for the health
indicators. The graphs in panels (A1–A4) are based on the data from 201 countries; whereas, the graphs in panels (B1–B4) are based on the data
from 152 countries. Source: Authors' own computations.
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maximum possible values. In conclusion, the normalized index
shows that the diffusion of HepB3 vaccination became more
egalitarian as the attained proportion of maximum possible
inequality decreased with the years in the 21st century (and
with further increases in mean immunization rates).

8 | Concluding Remarks

Bounded variables are fundamentally different from unbounded
variables as the former cannot increase or decrease infinitely.
Consequently, whenever the mean of a distribution moves
closer to any of its bounds, the level of inequality assessed by
several traditional inequality measures may fall simply because
there is not enough room for variation. The concept of
maximum feasible inequality with bounded variables is also
quite different from maximum feasible inequality in the context
of unbounded variables.31 We propose a new approach to
assessing inequality for individual bounded variables relying on
a new property called the maximality principle, which demands
that the distributions of bounded variables reflecting maximum
feasible inequality be ranked equally. We propose two new
classes of inequality indices. The maximality principle leads to a
type of normalization, whereby each inequality measure in our
proposed classes is an increasing function of observed inequality
levels compared against the maximum inequality level achiev-
able with the same measure across all hypothetical distributions
having the same mean. Furthermore, our proposed classes of
normalized inequality indices evaluate inequality across
attainment and shortfall representations consistently.

To illustrate the empirical relevance of our methodological
proposal, we examine the evolution of cross‐country inequality
in three health indicators, comparing the normalized standard
deviation against its absolute and relative counterparts (i.e.,
standard deviation and coefficient of variation, respectively).
The normalized standard deviation portrays a markedly
different picture of cross‐country evolution of inequality
compared to the patterns produced by the absolute and relative
counterparts. More specifically, in the case of the two child
survival indicators, both the standard deviation and the coeffi-
cient of variation decrease as mean attainment approaches its
upper bound, but the trends based on normalized standard
deviation suggest that global progress did not follow more
conceivably egalitarian paths until the 1990s. By contrast, in the
case of the hepatitis‐B immunization rate, for mean attainment
> 50% the normalized standard deviation shows that the decline
in observed inequality measured by the absolute and relative
counterparts was greater than the contemporaneous decline in
the corresponding maximum inequality values; thus uncovering
inequality improvement above and beyond what would be ex-
pected from the predictable narrowing in maximum possible
dispersion as mean attainment tends toward its upper bound.

Future research could consider the normative foundations and
feasibility of classes of indices for bounded variables based on
the relaxation of strong consistency in favor of inconsistent or
weakly consistent inequality measurement (i.e., following Bos-
mans 2016), combined alternatingly with different ethical rules
for ranking MIDs, including inter alia Erreygers (2009b),

Bosmans (2007) and our maximality principle. Likewise, future
research could explore partial orderings respecting the proper-
ties that were combined to generate the normalized inequality
indices. Furthermore, there remain other measurement chal-
lenges in the context of bounded variables. For example, Lasso
de la Vega and Aristondo (2012) provide conditions whose
fulfillment guarantees robustness of inequality comparisons to
changes in the upper bound. Though admittedly this problem is
not that serious when bounds are neither arbitrary nor expected
to change across time and space (e.g., in the case of indicators
expressed as percentage ratios), it is nonetheless worth
exploring how our proposed measurement framework could
accommodate such potential concern.
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Endnotes
1 Besides indicators of health, examples of non‐pecuniary variables

include indicators of education, political freedom, democracy level,
freedom from violence, happiness and life satisfaction, trust, corrup-
tion, household or environmental characteristics, access to services,
poverty, socio‐demographic characteristics, etc.

2 We acknowledge the existence of potential alternative value judg-
ments for the ranking of MIDs (Erreygers 2009b; Kjellsson and
Gerdtham 2013), which in turn may lead to different axiomatic
characterizations.

3 We denote sets of real, rational and natural numbers by R, Q and N,
respectively. The non‐negative and strictly positive counterparts are
represented by adding the subscripts + and+ + , respectively.

4 The density of rational numbers within the set of real numbers makes
the rationality of L and U inconsequential for practical applications.
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5 When the mean is equal to the lower or upper bound, namely
μ(x) = L or μ(x) = U (i.e., the excluded cases), one normative option
is to rank them equally vis‐a‐vis other egalitarian distributions with
L < μ(x) < U. Whichever the normative choice, we do not rank these
distributions with extreme means using our proposed class of
continuous inequality indices.

6 Formally, for some x, y ∈ Xn;D, y is obtained from x by a progressive
transfer whenever there are two units i, j and some k ∈Q+ + such
that yi = xi + k ≤ xj − k = yj and yl = xl for every l ≠ i, j. Alterna-
tively, y is obtained from x by a regressive transfer whenever there are
two units i, j and some k ∈Q+ + such that yi + k = xi ≤ xj = yj − k
and yl = xl for every l ≠ i, j.

7 A permutation matrix is a square matrix with exactly one element in
each row and column equal to 1, and the rest of the elements equal to
zero.

8 Some of the bounded indicators discussed in this paper are not
literally transferable. For instance, we do not consider worsening the
HepB3 vaccination rates in high‐vaccination countries and trans-
ferring vaccinated children to countries with worse vaccination
coverage. Yet, one can compare two hypothetical scenarios, for
example pre‐ and post‐“progressive transfers,” and still judge the
latter exhibiting lower inequality than the former.

9 For some x, y ∈ Xn;D, y is majorised by x if ∑j
i= 1y[i] ≤∑j

i= 1x[i] for all
j = 1,…,n − 1 and ∑

n
i= 1yi = ∑

n
i= 1xi, where x[i] and y[i] are the ith

largest elements of x and y, respectively (Dahl 2001, 113).
10 By contrast, strictly convex functions do not satisfy the transfer

principle unless they are also symmetric, in which case they are
strictly Schur‐convex. Meanwhile, strictly quasi‐convex functions do
not satisfy the transfer principle unless they are also convex and
symmetric, in which case, again, they are strictly Schur‐convex.

11 For any λ ∈Q+ + , λ1n is the constant or egalitarian distribution
where all n elements are equal to λ.

12 Lambert and Zheng (2011) and Bosmans (2016) provide good examples
of the spectrum of approaches, among others. Zheng (2007) and
Lambert and Zheng (2011) propose weaker requirements for the con-
sistency of inequality rankings across different measurement units.

13 Arguably, the concern for different degrees of consistency may be
more pressing when both representations (attainment and shortfall)
can be deemed “different sides of the same coin” (Clarke et al. 2002,
1927), warranting equal attention.

14 We note that Bosmans (2016) introduced a less frequently invoked
consistency property, known as weak consistency, which is predicated
on the possibility of finding pairs of “different” inequality indices for
consistent comparisons as long as one index is used for the attainment
distribution and a separate index is used for the shortfall counterpart.

15 Lambert and Zheng (2011, theorem 4) showed that two broad classes
of absolute inequality indices satisfy strong consistency if and only if
they comply with perfect complementarity. Hence, Proposition 1 is
more general as it applies to all inequality indices.

16 Distribution y ∈ Xnʹ ;D for some nʹ = γn and γ ∈N\{1} is said to be
obtained from x ∈ Xn;D by a population replication, whenever
y = (x,…, x), that is, γ copies of x are repeated one after the other in y.

17 This example is inspired by Erreygers (2009b, 508).
18 Proofs available upon request.
19 Examples featuring μ(x) ∉ Gn appear in Appendix A6.
20 For a more general proposal, see Aboudi et al. (2010). The population

principle is defined in Section 2.
21 For instance, when n = 2, L = 0 and U = 1, an MID associated to a

distribution with mean equal to 0.25 is (0, 0.5). However, the repli-
cation (0, 0.5, 0, 0.5) of that MID is not an MID itself. The corre-
sponding MID for a distribution with n = 4 and with mean equal to
0.25 is in fact (0, 0, 0, 1).

22 Recall that B is the set of all bipolar distributions.
23 Readers are reminded of our examples of normalized inequality

indices in Section 4, whose formulas vary depending on whether
μ(x) ∉ Gn (i.e., almost bipolar MIDs) or μ(x) ∈Gn (i.e., bipolar MIDs).

24 Indeed, the behavior of some very popular inequality measures like
the Gini index or the Variance (which can be defined on a recursive
basis) is entirely determined by what happens in the most basic case
n = 2 (see details in Ebert 2010).

25 Results remain essentially unaltered when the absolute and relative
Gini indices are substituted by the standard deviation and the coef-
ficient of variation, respectively.

26 https://sdgs.un.org/goals/goal3.
27 Source of the mortality data is https://population.un.org/wpp/Down-

load/Standard/Mortality/ and the Hepatitis B (HepB3) immunization
coverage rates among 1‐year‐olds is https://data.un.org/Data.aspx?
q=HepatitisþB&d=WHO&f=MEASURE_CODE%3aWHS4_117.

28 The mean attainment does not include population weights. Each
country, irrespective of its size, is considered as a unit with equal
importance.

29 The maximum values of the (relative) coefficient of variation decrease
monotonically as the mean grows from the lower to the upper bound
of the variable.

30 Derivation and figures available upon request.
31 In the unbounded setting (i.e., in the context of income inequality),

Milanovic et al. (2011) suggest and discuss the notion of “Inequality
Possibility Frontier” (IPF), which measures the maximum level of
inequality that is potentially attainable for a given level of average
income. In that setting, such IPF is reached whenever a vast majority
of lower‐class individuals survive at subsistence levels and a small
elite accumulates the reminder of total income.

32 Note that each element within x is bounded between L and U by
definition and so it is not possible to perform further regressive
transfers once the bounds are reached. The proof proceeds in similar
line of argument as the proof of Theorem 1 in Seth and
McGillivray (2018).

33 The closure of a subset S of points in a topological space consists of all
points in S together with all limit points of S. Formally, it is denoted as
S. For instance: Q = R.

34 Recall that a distance function in a set S is defined as a function
d : S × S → R + satisfying the following axioms for all points
x, y, z ∈ S: (i) (Identity) d(x, x) = 0 ∀ x ∈ S; (ii) (Positivity) If x ≠ y,
then d(x, y) > 0; (iii) (Symmetry) d(x, y) = d(y, x); and (iv) (Triangle
Inequality) d(x, z) ≤ d(x, y) + d(y, z).

35 The reader is reminded that nʹ < n is the number of units in x
attaining U and ε = nμ(x) − nʹU − n − nʹ − 1( )L[ ] (Section 2).
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Appendix A1: Proof of Proposition 1

The “if” part is straightforward. For the “only if” part consider the
definition of strong consistency: I(x) ≤ I(y)⇔ I xS( ) ≤ I yS( ) for any
x, y ∈ Xn;D. Now let y = xS. Then we get: I(x) ≤ I xS( )⇔ I xS( ) ≤ I(x)
which can only hold if I(x) = I xS( ).

Appendix A2: Proof of Proposition 2

Let us start with an x ∈ Xn;D\M (i.e., x is neither bipolar nor almost
bipolar) for some n ∈N\{1} such that μ(x) ∈ (L,U) ∩ Q+ + . Given

that in the proposition's partial order Xμ(x)
n;D ,⪰n( ), a regressive transfer

increases inequality while a permutation keeps it unaltered and both
keep the mean unaltered, we may always perform a sequence of
regressive transfers (with or without additional permutations) until
exhaustion to obtain any element of M that belongs in the set of
distributions with the same population size and the same mean,
namely Xμ(x)

n;D .32

Now, there can be two cases: (i) μ(x) ∈Gn and (ii) μ(x) ∉ Gn, where

Gn =
(n − 1)L + U

n
,…,

L + (n − 1)U
n

{ }

is the set of n − 1 equally‐spaced grid points between L and U.

14 of 18 Health Economics, 2025

https://doi.org/10.1016/j.mathsocsci.2006.09.003
https://doi.org/10.1002/hec.3228
https://doi.org/10.1016/s0277-9536(01)00321-5
https://doi.org/10.1016/s0024-3795(01)00268-3
https://doi.org/10.1016/s0024-3795(01)00268-3
https://doi.org/10.2307/2223525
https://doi.org/10.1016/0022-0531(80)90065-4
https://doi.org/10.1016/j.mathsocsci.2010.05.001
https://doi.org/10.1016/j.jhealeco.2009.03.005
https://doi.org/10.1016/j.jhealeco.2008.02.003
https://doi.org/10.1016/j.jhealeco.2008.02.003
https://doi.org/10.1016/j.jhealeco.2011.04.004
https://doi.org/10.1016/j.jhealeco.2011.04.004
https://doi.org/10.1002/hec.1754
https://doi.org/10.1016/0304-3878(87)90036-8
https://doi.org/10.2307/2234248
https://doi.org/10.1016/j.worlddev.2004.06.016
https://doi.org/10.1016/j.jhealeco.2012.10.012
https://doi.org/10.1016/j.jhealeco.2010.10.008
https://doi.org/10.1016/j.jhealeco.2012.02.006
https://doi.org/10.1016/j.jhealeco.2012.02.006
https://doi.org/10.1111/1468-0297.00480
https://doi.org/10.1111/j.1468-0297.2010.02403.x
https://doi.org/10.1111/j.1468-0297.2010.02403.x
https://doi.org/10.1007/s00355-018-1132-6
https://doi.org/10.2307/1913126
https://doi.org/10.2307/1913126
https://doi.org/10.1002/hec.953
https://doi.org/10.1002/hec.953
https://doi.org/10.1002/hec.1752
https://doi.org/10.1002/hec.1752
https://doi.org/10.1111/j.1468-0335.2006.00524.x
https://doi.org/10.1111/j.1468-0335.2006.00524.x


Case (i): Whenever μ(x) ∈Gn, then there exists a natural number
nʹ ≤ n such that μ(x) = [(n − nʹ)L + nʹU]/n. Starting with x, it is
possible to have a series of regressive transfers until a distribution with
nʹ elements equaling U and n − nʹ elements equaling L is reached. In
this case, the set of MIDs is Xμ(x)

n;D ∩ B.

Case (ii): Whenever μ(x) ∉ Gn, then there exist a natural number nʹ ≤ n
such that [(n − nʹ)L + nʹU]/n < μ(x) < [(n − nʹ − 1)L + (nʹ +
1)U]/n. In this case, a series of regressive transfers are possible until nʹ
elements are equal toU andn − nʹ − 1 elements are equal toL. Note that
it is not possible for nʹ + 1 elements to be equal to U because
μ(x) < [(n − nʹ − 1)L + (nʹ + 1)U]/n. However, when nʹ elements
are equal to U, then μ(x) > [(n − nʹ − 1)L + nʹU]/n. Therefore, the
remaining element will have a value of ε = nμ(x)− nʹU − (n − nʹ − 1)
so that: μ(x) = nʹ × U/n + n−( nʹ − 1) × L/n + ε/n. It is straight-
forward to verify that ε ∈ (L,U). In this case, the set of MIDs is Xμ(x)

n,D ∩A.

Thus, the maximum inequality distribution (MID) for x is an element in
the set Xμ(x)

n;D ∩ (A ∪ B) = Xμ(x)
n;D ∩M, which by our definition is equal to

M
μ(x)
n;D . Now, whenever x ∈ Xn;D ∩M for some n ∈N\{1} (i.e., x is either

bipolar or almost bipolar), it can be trivially checked that x ∈Mμ(x)
n;D .

Hence, a set of MIDs for any x ∈ Xn;D such that μ(x) ∈ (L,U) always
exists and constitutes the set of maximal elementsMμ(x)

n;D of the partially

ordered set Xμ(x)
n;D ,⪰n( ).

Appendix A3: Proof of Theorem 1

We first prove the sufficiency part. Consider some x ∈ Xn;D for some
n ∈N\{1} and some D ∈D. So, the set of corresponding MIDs is Mμ(x)

n;D
by Proposition 2. We then already know that

I(x) =H H−1(M) − H−1(0)( )
f (x) − f x( )
f x̂( ) − f x( )

+H−1(0)[ ] if x ∈ Xn;D (A1)

where x = μ(x)1n, x̂ ∈Mμ(x)
n;D , f : Xn;D → R + is a strictly Schur‐

convex function satisfying the functional restriction in Equations (2)
and (3).

We now show that I satisfies the required properties. (i) Consider any
x ∈ Xn;D. Since f x̂( ) − f x( ) > 0 because any x̂ ∈Mμ(x)

n;D can be obtained
from x by a series of regressive transfers (i.e., x is majorized by x̂) and f is
strictly Schur convex, it follows directly from the formulation in
Equation (A1) that I satisfies the equality principle as I x( ) = 0 (because
f x( ) − f x( )[ ]/ f x̂( ) − f x( )[ ] = 0), and the maximality principle as
I x̂( ) = I ŷ( ) = M for any x̂ ∈Mμ(x)

n;D , ŷ ∈M
μ(y)
n;D (because f x̂( )−[

f x( )]/ f x̂( )−[ f x( )] = 1).

(ii) Suppose y ∈ Xn;D is obtained from x such that y = xP, where P is a
permutation matrix. By definition, μ(x) = μ(y), Mμ(y)

n;D = M
μ(x)
n;D and

y = x. Since f is symmetric by virtue of being strictly Schur convex
(Roberts and Varberg 1973), f (y) = f (x) and also f ŷ( ) = f x̂( ) for any
x̂, ŷ ∈Mμ(x)

n;D . So, I(y) = I(x). Thus I satisfies anonymity.

(iii) Suppose yʹ ∈ Xn;D is obtained from x by a regressive transfer (i.e., x
is majorized by yʹ). Again, by definition, μ(x) = μ(yʹ),Mμ yʹ( )

n;D = M
μ(x)
n;D

and yʹ = x. Provided f is strictly Schur‐convex, f (yʹ) > f (x) and so
I(yʹ) > I(x). Thus, I satisfies the transfer principle.

(iv) Suppose y ∈ Xn;D is obtained from x in such a way that y = xS.
If f satisfies Equation (2), after basic simplification we get
I xS( ) = I(x), which according to Proposition 1, is equivalent to strong
consistency.

(v) Suppose y ∈ Xn;• is obtained from x in such a way that
y = λx + δ1n with λ > 0 and δ ≥ 0. If f satisfies Equation (3), after basic
simplification we get I(y) = I(x). Then I(λx + δ) = I(x) for any
rational constants λ > 0 and δ ≥ 0 implies cardinal invariance.

Observe that in this part of the proof, we start with a fixed
D = [L,U] ∩ Q + , but compliance with cardinal invariance extends the
result to all D ∈D.

Let us now prove the Necessity part. Suppose I satisfies anonymity.
Then, by definition of anonymity, I must be symmetric. Now, in order
to show that I must be strictly Schur‐convex, let us assume the con-
trary. That is, imagine I is not strictly Schur‐convex. In that case, by
definition, there is some x, y ∈ Xn;D such that x majorizes y but
I(x) ≤ I(y). Additionally, we know that any sequence of progressive
transfers (from x to y) induces a majorisation of the post‐transfers
distribution (y) by the pre‐transfers distribution (x) (Marshall and
Olkin 1979, 6) and vice versa. Thus, I violates the transfer principle.
So, if I is symmetric and satisfies the transfer principle, then it must be
strictly Schur‐convex.

Then, given that a monotonically increasing transformation of a strictly
Schur‐convex function is also strictly Schur‐convex, we may write
(without loss of generality) I(x) = H[af (x) + b] for some x ∈ Xn;D,
where a ∈ R+ + , b ∈ R, f is some strictly Schur‐convex function, and
H : R → R is a strictly increasing function.

Next, the equality principle requires that I x( ) = H af x( ) + b[ ] = 0,
therefore af x( ) + b = H − 1(0) or

b =H−1(0) − af x( ). (A2)

We now proceed in four steps to prove that I(x) is a bounded function.

Step 1: To simplify our analysis, we extend the domain of our inequality
function I to the set of real numbers. Given the continuity of I and the
density of the set of rational numbers into the real numbers, it is
possible to univocally extend the domain of I (which is Xn;D) into Xn;D
(i.e., the closure of Xn;D, which corresponds to [L,U]n).33 That is, it is
possible to define a continuous function (denoted as I) that univocally
extends I to the set of real numbers. By construction, one has that
I|Xn;D

= I (i.e., whenever I is restricted to rational numbers, then it
coincides with I).

Step 2: Let x ∈ Xn;D. We prove that Xμ(x)
n;D is a bounded and closed set

within Xn;D. To do so, we need to define a topology and a distance
function in Xn;D.34 We can simply use the subspace topology of Rn for
Xn;D. Thus, if Br(x) is the standard open n− ball in Rn with center x and
radius r > 0, then we define the open n− balls in Xn;D as

B
∼

r(x)≔ Br(x) ∩ Xn;D. As per distance function, for any x, y ∈ Xn;D we

can use d(x, y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑i xi − yi( )
2
/n

√

, which is a variant of the standard
Euclidean distance that normalizes by the number of observations (n),
and complies with the standard distance function axioms (in foot-
note 34).

Using d(⋅, ⋅) as a distance function, the maximal possible distance be-
tween two points within Xn;D equals U − L (i.e., it is the distance that
obtains between any two distributions a, b ∈ Xn;D such that
ai, bi ∈ {L,U} and ai + bi = U + L for all i ∈ {1,…,n}). Thus, the dis-
tance between any other two points in Xn;D must be smaller than

U − L. Hence, the open ball B
∼

U −L(x) contains the entire set Xn;D (i.e.,

B
∼

U −L(x) ⊃ Xn;D), so Xn;D is a bounded set. Since Xμ(x)
n;D ⊂ Xn;D, Xμ(x)

n;D is
also bounded.

We now prove that Xμ(x)
n;D is closed. To do that, we prove that Xn;D\X

μ(x)
n;D is

open. Let y ∈ Xn;D\X
μ(x)
n;D (i.e., μ(y) ≠ μ(x)), and define ε ≔ μ(y)−|

μ(x)|/2. Then, B
∼

ε(y)) ⊂ Xn;D\X
μ(x)
n;D , so we have defined an open n− ball

centered in y that is completely included within Xn;D\X
μ(x)
n;D . Thus,

Xn;D\X
μ(x)
n;D is open, so Xμ(x)

n;D is closed.

Hence, we have proved that Xμ(x)
n;D is a compact set within Xn;D.
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Step 3: Since I : Xn;D → R + is a continuous function, and Xμ(x)
n;D is a

compact set, then I Xμ(x)
n;D( ) (i.e., the image of Xμ(x)

n;D by I) is a compact set.

Compact sets within R + are bounded, which implies there exist
mx,Mx ∈ R + such that mx ≤ I(x) ≤ Mx for all x ∈ Xμ(x)

n;D .

Step 4: Imposing the equality principle implies mx = 0 for all x ∈ Xn;D.
In addition, Mx = I x̂( ) for all x ∈ Xn;D. Applying the maximality prin-
ciple, it turns out that Mx = I x̂( ) = I ŷ( ) = My for all x, y ∈ Xn;D. Now,
define M ≔ Mx. Thus, for all x ∈ Xn;D, 0 ≤ I(x) ≤ M. Finally, since I is an
extension of I, one also has that 0 ≤ I(x) ≤ M for all x ∈ Xn;D (i.e., we
have proven that I(x) is a bounded function).

Now, since I x̂( ) = M and b = H − 1(0) − af x( ) (from Equation A2), we
have that af x̂( ) + b = af x̂( ) − af x( ) + H − 1(0) = H − 1(M). Thus,
a = H − 1(M) − H − 1(0)( )/ f x̂( ) − f x( )( ), so

I(x) =H H−1(M) − H−1(0)( )
f (x) − f x( )
f x̂( ) − f x( )

+H−1(0)[ ] (A3)

whenever x ∈ Xn;D.

Then, from Proposition 1, we conclude that if I is strongly consistent,
then I xS( ) = I(x), which in turn means:

f xS( ) − f xS( )

f x̂S( ) − f xS( )
=
f (x) − f x( )
f x̂( ) − f x( )

.

For the last part of the proof, we note from Equation (A3) that satis-
faction of cardinal invariance implies:

f (λx + δ) − f λx + δ( )

f λx̂ + δ( ) − f λx + δ( )
=
f (x) − f x( )
f x̂( ) − f x( )

.

Like in the sufficiency part of the proof, in the necessity part we also
start with a fixed domain D = [L,U] ∩ Q + , but compliance with car-
dinal invariance extends the result to all D ∈D.

Appendix A4: Proof of Proposition 3

Consider an x ∈ Xn;D ⊂ X for some n ∈N\{1} and some D ∈D such that
μ(x) ∈ (L,U) ∩ Q+ + ; recalling that L ∈Q + , U ∈Q+ + and 0 ≤ L < U.
Based on Proposition 2, there can be two possible cases: (i) μ(x) ∈Gn, or
(ii) μ(x) ∉ Gn.

Case (i): if μ(x) ∈Gn, then we know from Proposition 2 that the MID
for x (i.e., x̂) exists, and is bipolar.

Case (ii): if μ(x) ∉ Gn, then we know from Proposition 2 that the MID
for x (i.e., x̂) exists, and is almost‐bipolar. Then x̂ has nʹ number of U’s,
n − nʹ − 1 number of L’s and a ε such that L < ε < U) and ε ∈Q+ + .
We will now show that through a sufficient number of population
replications and regressive transfers, it is always possible to obtain some
y from x such that the corresponding ŷ is bipolar and yet μ(y) = μ(x).

In x̂, given that both ε,U ∈Q+ + , it is clearly the case that ε/U ∈Q+ + .
Consequently, there always exist some γ, p ∈N such that ε/U = p/γ, or
equivalently γε = pU. Given that ε < U, it is always true that γ > 1.
Suppose, y is obtained from x by replicating x γ times. Recalling that
ε = nμ(x) − nʹU − (n − nʹ − 1)L, we obtain after replication the
following sum across γ individuals with value ε in y:
γε = nγμ(x) − nʹγU − (n − nʹ − 1)γL = pU. Since the mean has not
changed, we can solve from that sum for μ(y) = μ(x) in order to obtain:

μ(y) =
nʹγ + p( )U + n − nʹ − 1( )γL

nγ
.

That is, unlike x̂, the corresponding ŷ must only consist of
(n − nʹ − 1)γ number of L’s and (nʹγ + p) number of U’s. Hence, ŷ is
bipolar.

In both cases, we have proved that, when imposing the population
principle, the MIDs for x exist and consist of bipolar distributions.

Appendix A5: Proof of Theorem 2

We first prove the sufficiency part. Applying Theorem 1, which holds for
Xn;D, we can show that I satisfies anonymity, the transfer principle and
the equality principle. Now, since f x̂( ) > f x( ) for any x̂ ∈ Bμ(x)•;D because
any x̂ ∈ Bμ(x)•;D can be obtained from x by a series of regressive transfers
(i.e., x is majorized by x̂) with or without combinations of replications
and permutations, and f is strictly Schur‐convex, we have I x̂( ) = M;
that is, I satisfies the restricted maximality principle. Finally, we prove
that I satisfies the population principle. Let y be obtained from x ∈ Xn;D
through a replication. Then, by definition, μ(x) = μ(y) and so by
Proposition 3, Bμ(x)•;D = B

μ(y)
•;D . It is also straightforward to verify that y is a

replication of x. Therefore, based on X
μ(x)
•;D ,⪰( ), y ∼ x and y ∼ x, and

hence f y( ) = f x( ) and f (y) = f (x) because f satisfies the population
principle. Coupled with f ŷ( ) = f x̂( ) for any x̂, ŷ ∈ Bμ(x)•;D and
f x̂( ) − f x( ) > 0, clearly I(y) = I(x). Hence, I satisfies the population
principle. Finally, satisfaction of strong consistency and cardinal
invariance follows the reasoning of points (iv) and (v) in the proof of
Theorem 1.

The proof of the necessity part is similar to the proof of Theorem 1's ne-
cessity part, with some modifications. If I satisfies anonymity and the
transfer principle, then, without loss of generality, I(x) = H[af (x) + b]
for x ∈ Xn;D, where a ∈ R+ + , b ∈ R, f is some Strictly Schur‐convex
function and H is a strictly increasing function. Suppose that y ∈ Xnʹ ;D
is obtained from x by replication for some nʹ = αn, where α ∈N\{1}.
Given that I satisfies the population principle, then I(y) = I(x). It follows
that f (y) = f (x) since a > 0 and so f also satisfies the population prin-
ciple. By the equality principle, which requires that I x( ) = 0 where
x = μ(x)1n, we obtain af x( ) + b = H − 1(0) or b = H − 1(0) − af x( ).

Mimicking the proof of Theorem 1, we now show that I(x) is a bounded
function. Recall that we denote by I the unique extension of I to the set
of real numbers. Since Xμ(x)

n;D is compact for all n ∈N\{1} (see Theorem 1)
and Xμ(x)

•;D = ∪nX
μ(x)
n;D is a countable union of compact sets, then Xμ(x)

•;D is
also compact. Since the extension to the set of real numbers of I (i.e., I)
is a continuous function, then I Xμ(x)

•;D( ) is bounded. Thus, there exist
mx,Mx ∈ R + such that mx ≤ I(x) ≤ Mx for all x ∈ Xμ(x)

•;D . By the Equality
Principle, mx = 0 for all x ∈ X •;D. By the Restricted Maximality Prin-
ciple, Mx = I x̂( ) = I ŷ( ) = My for all x, y ∈ X •;D. Now, define M ≔ Mx.
Thus, for all x ∈ X •;D, 0 ≤ I(x) ≤ M, so I is bounded, and I must be
bounded as well. Now, since I x̂( ) = M and b = H − 1(0) − af x( ), we
have that af x̂( ) + b = af x̂( ) − af x( ) + H − 1(0) = H − 1(M). Thus,
a = H − 1(M) − H − 1(0)/ f x̂( ) − f x( )( )( , so we obtained the desired
functional form whenever x ∈ X •;D.

Like in Theorem 1, here we also start the proof with a fixed domain
D = [L,U] ∩ Q + , but compliance with cardinal invariance extends the
result to all D ∈D. Equations (2) and (3) are demonstrated with the
respective parts of the proof for Theorem 1, completing the proof.

Appendix A6: Derivation of Normalized Inequality Indices

The Case of Bipolar MIDs

Here we show the derivation of the inequality measures presented as
examples in Section 4. We start with the formulas relying on bipolar
MIDs followed by formulas based on almost bipolar MIDs. The former
are simpler than the latter.

In a bipolar MID x̂, assume that a share s of the population attains the
value of L and the rest (1 − s) the value of U. Given that μ x̂( ) = μ(x), by
definition, the following restriction must hold:

μ x̂( ) = s × L + (1 − s) ×U ⇒ s =
U − μ(x)
U − L

. (A4)
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The Absolute Gini Index

Computing the absolute Gini index for x̂ yields:

Ga x̂( ) = s(1 − s)(U − L). (A5)

Plugging Equation (A4) into Equation (A5) and manipulating algebra-
ically yields:

Ga x̂( ) =
U − μ(x)
U − L

1 −
U − μ(x)
U − L

( )(U − L) =
(U − μ(x))(μ(x) − L)

U − L
.

The Relative Gini Index

Computing the relative Gini index for x̂ yields:

Gr x̂( ) =
s(1 − s)(U − L)

μ(x)
. (A6)

Plugging Equation (A4) into Equation (A6) and manipulating algebra-
ically yields:

Gr x̂( ) =
(μ(x) − L)(U − μ(x))

μ(x)(U − L)
.

The Standard Deviation

Computing the standard deviation for x̂ yields:

σ x̂( ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s[μ(x) − L]2 + (1 − s)[U − μ(x)]2
√

. (A7)

Plugging Equation (A4) into Equation (A7) and manipulating algebra-
ically, we obtain:

σ x̂( ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U −
μ(x)
U − L

[ ][μ(x) − L]2 +
μ(x) − L
U − L

[U − μ(x)]2
√

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[μ(x) − L] U − μ(x)[ ]

√
.

The Coefficient of Variation

Computing the coefficient of variation for x̂ yields:

CV x̂( ) =
σ x̂( )
μ x̂( )

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[μ(x) − L] U − μ(x)[ ]

√

μ(x)
. (A8)

The Case of Almost Bipolar MIDs

In an almost bipolar MID x̂ we have nʹ units in the population with
value U, one unit with value 0 < ε < U and the rest, n − nʹ − 1 with
value L. Moreover, ε = nμ(x) − nʹU − n − nʹ − 1( )L. For each of the
denominators of the indices mentioned in Section 4 we get:

The Absolute Gini Index

Ga x̂( ) =
1

2n2 n − nʹ − 1( ) × 1 × |L − ε| + nʹ( ) × 1 × |U − ε|[

+ nʹ n − nʹ − 1( ) × 1 × |L − U|] (A9)

Simplifying Equation (A9) we get the denominator of Equation (A14)
for the almost bipolar case (noting later that the 2 in the fraction gets
canceled out as it also appears in the numerator's formula):

Ga x̂( ) =
1

2n2 n − nʹ − 1( )(ε − L) + nʹ( )(U − ε) + nʹ n − nʹ − 1( )(U − L)[ ].

(A10)

The Relative Gini Index

Essentially we get the same formula for the denominator of
Equation (A14) as in Equation (A9), but divided by μ(x) (again, the 2 in
the fraction gets canceled out as it also appears in the numerator's
formula):

Gr x̂( )

=
1

2n2μ(x)
n − nʹ − 1( )(ε − L) + nʹ( )(U − ε) + nʹ n − nʹ − 1( )(U − L)[ ].

(A11)

The Standard Deviation

σ x̂( ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

n − nʹ − 1( )(L − μ(x))2 + nʹ(U − μ(x))2 + (ε − μ(x))2[ ]

√

.

(A12)

Simplifying Equation (A12) we get the denominator of Equation (A15)
for the almost bipolar case.

The Coefficient of Variation

We get the same formula as in Equation (A12) but divided by μ(x):

CV x̂( ) =
1

μ(x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

n − nʹ − 1( )(L − μ(x))2 + nʹ(U − μ(x))2 + (ε − μ(x))2[ ]

√

.

(A13)

Finally, for each of the aforementioned indices (for bipolar and almost
bipolar MIDs), we compute f (x)/ f x̂( ).

Examples for Comparisons With Fixed Population Sizes

The Absolute and Relative Gini Indices

For any x ∈ Xn;D, G∗
a(x) = G∗

r (x) = G∗
p(x), where

G∗
P(x) =

Ga(x)(U − L)
(μ(x) − L)(U − μ(x))

if μ(x) ∈Gn

Ga(x)n2

n − nʹ − 1( )(ε − L) + nʹ n − nʹ − 1( )(U − L) + nʹ(U − ε)
if μ(x) ∉ Gn

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

.35 (A14)
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The Standard Deviation and the Coefficient of Variation

For any x ∈ Xn;D,

Appendix A7: Derivation of Iso‐Inequality Contours

When n = 2, L = 0 and U = 1, the absolute Gini index can be written as
Ga x1, x2( ) = |x1 − x2|/4, where x1, x2( ) ∈ [0, 1]2. In that case, the iso‐
inequality contours are straight lines parallel to the 45° line. In this
setting, the relative Gini index can be written as Gr x1, x2( ) =

|x1 − x2|/4μ = |x1 − x2|/2 x1 + x2( ). Since this function is homoge-
neous of degree 0 (i.e., Gr λx1, λx2( ) = Gr x1, x2( ) for all λ > 0), the iso‐
inequality contours are straight lines emanating from (or converging to)
the origin (0, 0).

What about the iso‐inequality contours for the normalized Gini index that
does not comply with the population principle G∗

P x1, x2( )( )? Here,
G2 = {1/2}, so there are basically two cases: either μ x1, x2( ) ≤ 1/2 or
μ x1, x2( ) ≥ 1/2. Case (i): μ x1, x2( ) = x1 + x2( )/2 ≤ 1/2. Here, the MIDs
associated with x1, x2( ) are 0, x1 + x2( ), x1 + x2, 0( ){ }. When the absolute
Gini index is applied to any of those distributions, one obtains
Ga 0, x1 + x2( ) = Ga x1 + x2, 0( ) = x1 + x2( )/4. Hence, G∗

P x1, x2( ) =

|x1 − x2|/ x1 + x2( ). These are straight lines emanating from (or
converging to) the origin (0, 0). Case (ii): μ x1, x2( ) = x1 + x2( )/2 ≥ 1/2.
Now, the MIDs associated with x1, x2( ) are x1 + x2 − 1, 1( ),{

1, x1 + x2 − 1( )}. Calculating the absolute Gini index of any of those
distributions yields Ga x1 + x2 − 1, 1( ) =Ga 1, x1 + x2 − 1( ) =

2 − x1 + x2( )( )/4. Hence G∗
P x1, x2( ) = |x1 − x2|/ 2 − x1 + x2( )( ) =

|xS1 − xS2 |/ xS1 + xS2( ) (where xS1 = 1 − x1 and xS2 = 1 − x2). These are
straight lines emanating from (or converging to) the point (1, 1). Finally, it
is easy to prove that the two sets of iso‐inequality contours match at the
intersection (i.e., for the set of points x1, x2( ) ∈ [0, 1]2|x1 + x2 = 1{ }, the
values of the iso‐inequality contours examined in cases (i) and (ii)
coincide).

According to Theorem 2 and Equation (6), the normalized Gini index
complying with the population principle is simply defined as
G∗ x1, x2( ) = Ga x1, x2( )/ μ x1, x2( ) 1 − μ x1, x2( )( )( ). Manipulating algebra-
ically, one obtains that G∗ x1, x2( ) = |x1 − x2|/ x1 + x2( )(

2 − x1 + x2( )( )). This is the function from which the iso‐inequality
contours shown in Figure 1 panel D are calculated.

σ∗
P(x) =

σ(x)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(μ(x) − L)(U − μ(x))

√ if μ(x) ∈Gn

σ(x)
̅̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n − nʹ − 1( )(L − μ(x))2 + nʹ(U − μ(x))2 + (ε − μ(x))2
√ if μ(x) ∉ Gn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A15)
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