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ABSTRACT
It is still unclear to what extent transition risks are being internalized by financial investors. In this paper, we provide a novel
investigation of the impact of media-based measures of transition risks on the credit risk of energy companies, as measured by
their credit default swaps (CDS) indices. We include both European and North American markets in the 2010–2020 period. Using
linear and non-linear local projections, we find that a transition risk shock affects CDS indices only when combined with tangible
physical climate-related impacts. We also find evidence of non-linear cross-border effects, with North American energy companies
particularly affected by European dynamics. We suggest that the public reaction in the wake of severe climate-related disasters,
which might push policymakers to adopt more decisive climate action, contributes to making the transition-related debate salient
in the eyes of credit market actors.
JEL Classification: C32, C58, G12, Q43, Q54

1 | Introduction

The threat of runaway climate change calls for a rapid process
of decarbonization (IPCC 2023). Unless carbon capture and stor-
age and other net-zero technologies become economically viable
at scale soon, mitigating climate change will involve moving
away from the use of fossil resources (oil, gas, and coal) and
carbon-intensive production processes. This, in turn, will likely
affect the economic prospects of firms in the fossil sector, as well
as all firms using fossil-intensive intermediate inputs.1

How large are these “transition risks,” and to what extent have
they been internalized by financial investors? An expanding lit-
erature has been trying to address these challenging questions
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in recent years, often focusing on the impact of some transition
risk measure (usually emission intensity) on the price of financial
assets (e.g., Antoniuk and Leirvik 2024; Bauer et al. 2022; Bolton
and Kacperczyk 2021, 2023; Cortez et al. 2022; El Ouadghiri
et al. 2021; Hsu et al. 2023; Ilhan et al. 2021; Monasterolo and
De Angelis 2020; Peillex et al. 2021; Ramelli et al. 2021).2 A paral-
lel strand of literature has instead been developing media-based
climate-related risk measures, that is, indices of the quantity
and/or nature of the news provided by popular media out-
lets on climate change and the low-carbon transition (Ardia
et al. 2023; Bessec and Fouquau 2021, 2022; Bua et al. 2024;
Engle and Campos-Martins 2020; Faccini et al. 2023; Kapfham-
mer et al. 2020; Meinerding et al. 2022). These indices can offer
a measure of perceived aggregate transition risks, assuming the
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news reaches financial investment decision-makers, and they
have indeed been found to affect the relative valuation of dirty
and clean companies. However, to the best of our knowledge, no
study connecting media-based transition risk measures and credit
risk currently exists.

Studying energy firms’ credit risk in light of transition risks is
crucial due to the sector’s central role in both economic activ-
ity and carbon emission generation. Energy companies, espe-
cially fossil-intensive ones, are highly exposed to regulatory, mar-
ket, and reputational risks tied to the shift toward low-carbon
economies. As governments and investors increase their focus
on sustainability, energy firms face significant potential impacts
from policies aimed at curbing greenhouse gas emissions, tech-
nological advancements in renewable energy, and shifting con-
sumer preferences. Thus, the importance of this research lies
not only in understanding the direct impact on energy firms
but also in capturing broader implications for financial mar-
kets, risk management, and policy effectiveness in the face of
transition-related uncertainties.

In this paper, we contribute to this stream of research by studying
how credit default swaps (CDS) of firms in energy sectors react to
shocks in transition risk perceptions.3 The price of CDS—that
is, the price at which two parties are willing to exchange the
risk of a borrower—gives us an indication of how high the per-
ceived risk of default is: if a firm is perceived to be at higher
(lower) risk of default, the market price of the CDS contract will
be higher (lower). We employ linear and non-linear local pro-
jections (Jordà 2005; Ramey and Zubairy 2018; Jordà and Tay-
lor 2024) to study how CDS indices reacted to shocks in transition
risk perceptions in both North America and Europe, as measured
by two recent novel media-based measures (Ardia et al. 2023; Bua
et al. 2024), in the 2010–2020 period.4

We find that the media debate related to transition risks (e.g.,
the unexpected implementation of a climate policy) is not suf-
ficient per se to have a significant effect on credit risk, as mea-
sured by the CDS indices of energy companies, in either of the
two regions. The effect becomes significant only when transi-
tion risk perceptions are coupled together with climate-related
physical impacts (droughts, extreme temperatures, floods, glacial
lake outbursts, landslides, storms, and wildfires). This effect is
visible in both North America and Europe, suggesting a lim-
ited internalization of transition risks so far. In both jurisdic-
tions, a transition risk shock becomes salient to the attention
of financial decision-makers only in the concurrent occurrence
of major physical “disasters,” The wave of commotion following
damaging events might trigger in investors the perception that
the implementation of transition-friendly measures has become
more likely. We control for and exclude the possibility that the
effect is driven by disasters themselves: it is mainly the interac-
tion between the two that matters.

Our work builds upon and connects three main streams of
research. First, we closely relate to a recent wave of research
studying the impact of climate-related dimensions on finan-
cial dynamics with the help of media-based attention indices.
More specifically, we employ the indices developed by Ardia
et al. (2023) and Bua et al. (2024), presented more in detail in
Section 2.3. Among the other indices proposed by the literature,

these are the only ones available at a daily frequency and for
the whole time period we consider.5 Most of the contributions in
this field have been focusing on the impact of media attention
concerning either climate change or the low-carbon transition
(or both) on stock prices. The general conclusion is that there
is indeed a significant negative impact on the relative valuation
of firms more exposed to climate-related risks compared to the
ones less exposed. When focusing on transition risks, this sug-
gests that “dirtier” firms (usually identified as the ones with the
largest carbon footprints) are penalized when the media atten-
tion on transition-related topics, such as the introduction of cli-
mate policies, is higher. Recent evidence from the bond market
by Bats et al. (2024) confirms this pattern, finding a significant
physical risk premium of 34 basis points in euro-area corporate
bonds, though with smaller effects for transition risks. None of
these papers has looked at other types of financial assets, such as
CDS, as we do in this paper.

Second, we connect to the literature focusing on the links
between CDS and sustainability. Blasberg et al. (2022) construct
a novel measure of transition risk through firms carbon emis-
sion intensity data and show that this factor is a relevant driver of
CDS spreads. Barth et al. (2022) and Christ et al. (2022) focus on
ESG ratings as a proxy of a firm’s sustainability, and find that bet-
ter environmental ratings are related to lower CDS spreads. Köl-
bel et al. (2022) investigate the relationship between the cost of
default protection and a measure of transition risk based on cor-
porate disclosure, finding that higher exposure to transition risks
increases CDS spreads. Likewise, Carbone et al. (2021) consider
climate disclosure practices and prospective emission reduction
targets in addition to firms’ emission intensity as factors that
may influence credit risk. However, none of the papers above has
connected CDS dynamics to media-based measures of transition
risks.

Finally, we build upon the stream of research studying the impact
of disasters on economic and financial dynamics. Huynh and
Xia (2021) and Bourdeau-Brien and Kryzanowski (2017) examine
the exposure of firms to natural disasters. The former finds a pos-
itive correlation with its future stock and bond returns, while the
latter reports mixed results regarding the direction of the impact
of catastrophes. Worthington and Valadkhani (2004) assess the
influence of natural disasters on the Australian equity market,
analyzing different types of disasters and concluding that bush-
fires, cyclones, and earthquakes exert significant effects on mar-
ket returns, whereas storms and floods have a lesser impact. Fur-
thermore, these effects were more pronounced on the event date,
followed by some subsequent adjustments. Lastly, Pagnottoni
et al. (2022) explore international contagion effects, studying the
repercussions of natural disaster shocks on stock market indexes
in Europe, Asia, and America. They find that climate-related dis-
asters in Europe have a negative impact on stock market indexes,
even affecting geographically distant countries.

The remainder of the paper is structured as follows. In Section 2,
we illustrate the econometric approach based on linear and
non-linear local projection methods and describe the data used
in the analysis. Section 3 presents and discusses our results.
Section 4 concludes. Robustness checks and additional analyses
are reported in Appendix A.
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2 | Methods and Data

This section discusses the methods and data employed in our
analysis. Section 2.1 presents our econometric strategy based on
local projections. Sections 2.2, 2.3, and 2.4 discuss financial, tran-
sition risk, and climate-related disaster data, respectively. Finally,
Section 2.5 presents our control variables.

2.1 | Local Projections

The local projection (LP) method (Jordà 2005) allows the esti-
mation of dynamic impulse responses by estimating a series of
univariate regressions for each horizonℎ for each variable. In par-
ticular, the linear model is defined as follows:

𝑦𝑡+ℎ = 𝛼ℎ + 𝛽ℎ𝑥𝑡 + Ψℎ(𝐿)𝑧𝑡−1 + 𝜀𝑡+ℎ , for ℎ = 0,1,2, . . . (1)

where 𝑦𝑡 is the variable of interest, 𝑥𝑡 is the identified shock, 𝑧𝑡
is a vector of control variables (including the lags of the depen-
dent variable and the lags of the shock), and Ψ(𝐿) is a polyno-
mial in the lag operator. It is important to note that the shock of
interest in the analysis—severe climate-related disasters—can
be considered as exogenous. This exogeneity allows us to avoid
the need for external instruments and the Local Projection Instru-
mental Variables (LP-IV) approach proposed by Stock and Wat-
son (2018). Since the coefficient 𝛽ℎ provides the response of 𝑦
at time 𝑡 + ℎ to the shock at time 𝑡, impulse response functions
are obtained as a sequence of the 𝛽′

ℎ
𝑠 estimated for each hori-

zon ℎ = 0,1,2, . . . . This method is a recent alternative to the
traditional structural VAR (SVAR) modeling approach to con-
struct the impulse response functions. Local projections rely on
single-equation methods, making them particularly suitable for
analyses involving nonlinearities or state-dependence (Jordà and
Taylor 2024), which is crucial for our study. Plagborg-Møller and
Wolf (2021) prove a general equivalence of the local projection
and SVAR impulse response function estimations when the num-
ber of lags used as controls is sufficiently large.6

Ramey and Zubairy (2018) show that the LP method can be easily
adapted to capturing non-linearities in the responses by estimat-
ing a set of state-dependent regressions for each horizon ℎ as
follows:

𝑦𝑡+ℎ =
(
1 − 𝐼𝑡−1

)[
𝛼0,ℎ + 𝛽0,ℎ𝑥𝑡 + Ψ0,ℎ(𝐿)𝑧𝑡−1

]

+ 𝐼𝑡−1
[
𝛼1,ℎ + 𝛽1,ℎ𝑥𝑡 + Ψ1,ℎ(𝐿)𝑧𝑡−1

]
+ 𝜀𝑡+ℎ

(2)

where 𝐼𝑡 is a dummy variable that discriminates the state when
the shock occurs. In our framework, 𝐼𝑡 takes value 1 when a
disaster is occurring at time 𝑡 and 0 otherwise. Therefore, the
(non-linear) responses of 𝑦 are allowed to be different in the two
states, that is, when a disaster is occurring (𝐼𝑡 = 1) and in “nor-
mal” times (𝐼𝑡 = 0), and we will not find evidence of non-linear
effects when 𝛽0,ℎ = 𝛽1,ℎ in (2), for ℎ = 0,1,2, . . . . Despite being a
widely used tool in macroeconomic analysis, mostly appreciated
for its simplicity, flexibility, and robustness to model misspecifi-
cations (see, e.g., Ramey 2016), LP method presents some draw-
backs and limitations. In particular, Herbst and Johannsen (2021)
show that the use of LPs with persistent time series and small
sample sizes can lead to biased point estimates of the impulse
responses. Moreover, within the state-dependent framework in

(2), Gonçalves et al. (2023) point out that, if the state is endoge-
nous, the LP estimator is unable to recover the population
response. Note, however, that these limitations do not apply to
our analysis. First, the daily time series we use is long and not per-
sistent (see Table 2 and discussion in Section 2.6). Second, since
the shocks of interest, that is, severe climate-related disasters, can
be considered as exogenous, the CDS impulse response functions
do not depend on the state regarding the occurrence of shocks.

2.2 | Financial Data

To investigate whether and how the exposure to transition risk
affects firms’ credit risk, we use the 5-year CDS index constructed
by Refinitiv Datastream for North America (NA), and Europe
(EU) Energy companies as dependent variables.7 As CDS con-
tracts reflect the market price for the underlying asset’s credit
risk, they incorporate a risk premium that allows us to study to
what extent this risk premium is affected by the exposure to cli-
mate transition risk.

Our analysis commences in 2010, to exclude the effects of the
2008 financial crisis, and concludes at the beginning of 2020,
to exclude the pandemic shock, for a total of 𝑇 = 2631 observa-
tions. Figure 1 depicts the evolution of the DataStream Energy
5-year CDS indices for the North American and the European
companies during the considered period. The main descriptive
statistics are shown in the upper portion of Table 1. Interest-
ingly, one of the biggest increases in the CDS index is recorded
just after the conclusion of the UN Climate Change Conference
(COP21) held in Paris, on December 12, 2015, which led to the
stronger-than-expected Paris Agreement.

2.3 | Transition Risk Indices

To capture transition risks, we employ two media-based indices:
(i) the Transition Risk Index (TRI) developed by Bua et al. (2024),
with a European focus; and (ii) the Media Climate Change Con-
cerns (MCCC) index by Ardia et al. (2023), with a focus on the
United States.8 The dynamics of these indices are depicted in
Figure 2, while the descriptive statistics are reported in Table 1.

Bua et al. (2024) develop indicators for both physical and tran-
sition risks. Their underlying corpus of text is extracted from
Reuters News articles (in English) focusing on the European
region. After having constructed two vocabularies for each of the
two dimensions (physical and transition) based on authoritative
text, the authors compare the vocabularies and media news using
cosine similarity.9 We here focus only on the one focusing on
transition risks (TRI). To identify the unexpected change in cli-
mate change concerns and capture the shock component for the
TRI transition risk index, we consider the standardized predic-
tion errors from an autoregressive model with 11 lags and a linear
deterministic trend estimated using an enlarged sample size from
the beginning of 2005 to the end of 2022.10

Ardia et al. (2023) build instead on a corpus derived from widely
circulated US newspapers and two major newswires (Associ-
ated Press Newswires and Reuters News). Authors compute their
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FIGURE 1 | Energy 5-year CDS indices for North America and Europe from January 4, 2010 to February 5, 2020. Source: Datastream.

TABLE 1 | Descriptive statistics for the variables considered in the analysis. Daily data from January 4, 2010 to February 5, 2020.

Variable Mean Median SD Min Max

Dependent variables
EU energy 5Y CDS 89.26 78.05 39.16 32.96 268.47
NA energy 5Y CDS 168.96 148.18 77.83 74.59 666.66

Climate concern indices
TRI 0.081 0.078 0.026 0.013 0.272
MCCC 0.738 0.673 0.418 0.000 2.724
BusinessImpact 0.654 0.587 0.393 0.000 3.299
GovPrograms 0.665 0.528 0.516 0.000 6.207

Climate disaster dummies
EU disasters 0.026 0.000 0.159 0.000 1.000
NA disasters 0.057 0.000 0.233 0.000 1.000

Control variables EU
STOXX 600 0.020 0.049 1.06 −12.19 8.07
Brent 0.008 0.000 2.74 −64.37 41.20
EU Spread3M1D 0.244 0.157 0.273 −0.105 1.17
iTraxx 81.75 71.23 33.70 41.26 208.00

Control variables NA
S&P-500 0.044 0.042 1.068 −12.77 8.97
WTI 0.027 0.000 2.64 −28.22 30.02
US Spread 3M1D 0.039 0.025 0.138 −4.88 0.61
CDX 75.39 69.82 21.08 43.86 149.87
US Gov 5Y CDS 17.73 15.39 9.06 5.47 47.99

daily MCCC index as the square root of the average of the stan-
dardized source-specific climate change concerns, where ‘con-
cern’ captures the percentage of words related to risk and the
scaled difference between negative and positive words. Using a
Correlated Topic Model, the authors are also able to disaggre-
gate their corpus into 30 distinct topics, which they aggregate
into larger “themes” (Business impact, Environmental impact,
Societal debate, Research). In our analysis, we complement the

analysis of the aggregate MCCC index with the theme (Busi-
ness impact) and topic (Government programs) that more closely
represent transition risks, especially when driven by policies.11

To identify the unexpected change in climate change concerns
and capture the shock component for the MCCC transition
risk, Ardia et al. (2023) use an augmented autoregressive (ARX)
model, controlling for the potential effects of financial markets,
energy-related, and macroeconomic variables. We instead con-
sider the standardized prediction errors from the autoregression
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FIGURE 2 | Dynamics of the MCCC index (Ardia et al. 2023) and the TRI index (Bua et al. 2024). Daily data from January 4, 2010 to February 5,
2020.

with nine lags and a quadratic deterministic trend.12 An analo-
gous approach has been adopted to identify the shocks for the
Business impact theme and the Government programs topic.

Interestingly, Figure 6 shows that the MCCC index remains
relatively flat until approximately 2015, after which it follows
an upward trend. In contrast, the TRI index primarily declines
until 2014, then stabilizes, exhibiting only a modest overall
increase—less pronounced than the uptrend in MCCC. Accord-
ing to Bua et al. (2024), the largest shock to the TRI coincides with
news published on 24/08/2011, which highlighted alarmingly
high EU GHG emissions requiring urgent reductions. This shock
appears to have triggered a sustained downward trend in the TRI
index, lasting until the end of 2015, around the time of the Paris
Agreement. Following this milestone, growing concerns over cli-
mate change seem to have shifted the trend upward. A possible
explanation involves the internalization of transition-related con-
cerns by the media. As decarbonization evolves from a novel,
disruptive idea to an established public perspective, the marginal
impact of transition news may decline over time. Increasingly
salient events may be required to make a significant impact on
the news cycle. This could explain why, in Europe—where emis-
sion reduction became a policy focus earlier than in the United
States—the trend differs. A substantial portion of transition risk
news may have already been internalized by both the media and
the public in previous years.

2.4 | Climate Disaster Dummies

We construct a binary indicator to identify temporal periods
impacted by notable climate-related disasters in Europe and
North America. These encompass droughts, extreme temper-
atures, floods, glacial lake outbursts, landslides, storms, and
wildfires. Our analysis relies upon the International Emergency
Events Database (EM-DAT), a comprehensive repository regu-
larly updated by the Centre for Research on the Epidemiology
of Disasters (CRED).13 We aim to investigate the extent to which
the incidence of major climate disasters, leading to a consistent
number of casualties and damages, can influence the perception
of transition risk.

To create our indicator, we aggregate the presence of each dis-
aster and its corresponding impact at the daily level, enabling
an evaluation of their magnitude. Two key measures are used to
capture the intensity of each disaster: the number of total deaths
and the estimated damages (denominated in thousands of US
dollars). To identify the most severe disasters, we consider the
interaction between the two measures, requiring both to exceed
the 75th percentile for Europe and the 90th percentile for North
America. The choice of adopting different thresholds to identify
the most severe climate-related disasters in NA and EU lies in
the different multiplicity and duration of these episodes in the
two regions. As shown by the means reported in Table 1, the
sample frequencies for the identified disasters in EU and NA are
2.6% and 5.7%, respectively. Therefore, despite the threshold used
for EU is smaller than the one adopted for NA, the number of
days in our sample in which we observe a major climate-related
disaster in EU is less than half the number of days spotted in
NA. Indeed, we find that the episodes recorded in NA are more
long-lasting than EU, and thus overall we observe a higher num-
ber of days impacted by climate-related disasters in North Amer-
ica. We compute the percentile values using the historical data
encompassing the period from 2000 to 2022. We select a longer
time frame compared to the one used in our analysis to capture
possible trends in recent years, where the number of disaster
episodes and/or their severity may have increased. We derive a
dichotomous dummy variable that captures the days affected by
the most intense climate-related disasters within the examined
time frame (from 2010 to 2020).14 When a disaster occurs during
a non-trading day, we postpone it to the first trading day available
in our sample. This is because we expect that the reaction (if any)
of the financial market to a transition risk shock happened dur-
ing a non-trading day would materialize as soon as the market
reopens. In finance, this is a stylized fact known as the “week-
end effect.” According to the conditions listed above, the disaster
events that we consider in our analysis are those with more than
14 deaths and 681,454,750 USD of damages for EU and more than
45 deaths and 7,735,658,000 USD of damages for NA. Addition-
ally, we perform the analysis with broader thresholds, specifically
using the 60th percentile for Europe and the 80th percentile for
the United States, to include more disaster events. The results
with these thresholds are provided in “Analysis With Broader
Disaster Thresholds” of Appendix A.
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2.5 | Control Variables

In the LP analysis, we include a set of control variables in vector 𝑧𝑡
in (1) and (2). The list and descriptive statistics of these variables
are reported in the bottom portion of Table 1.

Specifically, for the North American CDS index, we control for:
(i) the stock market dynamics proxied by the daily percentage
(log-)return on the S&P 500 index; (ii) the overall corporate credit
market risk proxied by the (5-year) CDX Index composed of 125
of the most liquid North American companies with investment
grade credit ratings; (iii) the spread between the Federal Reserve
3-month and the overnight interest rates (Spread3M1D) as a
proxy for both credit risk and market liquidity in the US; (iv) the
sovereign credit risk proxied by the US 5-year CDS index; and (v)
the (log-)change in the West Texas Intermediate (WTI) crude oil
price.

The controls employed for the European CDS index are: (i)
the stock market dynamics proxied by the daily percentage
(log-)return on the Eurostoxx 600 index; (ii) the overall corpo-
rate credit market risk proxied by the (5-year) iTraxx index of
the 125 most liquid European companies with investment-grade
credit ratings; (iii) the spread between the Euribor 3-month and
the Eonia (overnight) interest rates (EUSpread3M1D) as a proxy
for both credit risk and market liquidity in Europe; and (iv) the
(log-)change in the Brent crude oil price.

In the cross-border analyses presented in Section 3.3, we incor-
porate controls for the corresponding CDS market, as detailed
in Table 1, while examining transition risk index shocks and
climate-related disasters in the other region. Specifically, while
the dependent variable 𝑦𝑡 and controls 𝑧𝑡 in (1) and (2) pertain
to one region, the shock 𝑥𝑡 and the disaster dummy variable 𝐼𝑡
correspond to the other region.

2.6 | Unit Root Tests

As mentioned in Section 2.1, the use of LPs with persis-
tent time series can result in biased point estimates of the
impulse responses (Herbst and Johannsen 2021), and the LP
framework generally assumes covariance stationarity (see, e.g.,
Plagborg-Møller and Wolf 2021).

To address this, we first investigate the presence of unit roots in
the variables used in our analysis. Specifically, we employ several
unit root tests, including the Augmented Dickey-Fuller (ADF)
test, which accounts for lagged differences to address serial corre-
lation; the Phillips-Perron (PP) test, which handles serial correla-
tion and heteroskedasticity in the error terms; the Zivot-Andrews
(ZA) test, which allows for a single endogenous structural
break in the time series; and the Elliott-Rothenberg-Stock (ERS)
test, which is similar to the PP test but is more powerful for
detecting unit roots. In all these tests, the null hypothesis is
non-stationarity.

The results, summarized in Table 2, show that most time
series satisfy the covariance stationarity assumption, as the null
hypothesis of non-stationarity is generally rejected at least at the

10% significance level. However, there are exceptions. The Euro-
pean Energy 5-year CDS index is found to be non-stationary in
two out of four tests (ZA and ERS). Notably, extending the sam-
ple to the end of 2022 provides strong evidence of stationarity.
Evidence of non-stationarity also arises for the iTraXX index,
used as a control for Europe, but only in the ERS test (not in
the other three tests). The spread between the 3-month and
overnight interest rates in Europe (EUSpread3M1D) is identified
as non-stationary in all tests except ZA. Importantly, excluding
the EUSpread3M1D variable from the analysis produces results
consistent with those reported in Section 3. This robustness sup-
ports the validity of our findings despite these isolated cases of
non-stationarity.

3 | Results

This section presents and discusses the results of our empir-
ical analysis. We start by employing linear local projections
(Section 3.1) and later move to a non-linear analysis with the
inclusion of climate disasters (Section 3.2). Finally, we consider
the spillover effects between North America and Europe by inves-
tigating the cross-border effects in Section 3.3. Additional anal-
yses and robustness checks are discussed in Appendix A. More-
over, all numerical results are reported in the tables in “Beta Coef-
ficient Tables” Appendix A.

3.1 | Linear Local Projections

Figure 3 depicts the impulse responses, for ℎ = 0, 1, . . . , 20, of
the 5-year CDS for the Energy companies in North America and
Europe using the linear LPs in (1), with four lags for the controls.
The four panels report the results for the two aggregate indicators
(MCCC for US and TRI for Europe) and for the two sub-indices of
MCCC more closely related to transition risks (Business impact
theme and Government programs topic).

First, let us focus on the impact of MCCC shocks in North Amer-
ica (Figure 3a,c,d). We find very mild evidence of significant
responses to a (one standard deviation) transition risk shock for
the North America 5-year CDS index. Specifically, we only find
that a shock of the Business impact theme leads to a positive
response of the NA Energy 5-year CDS after six trading days. No
significant results can be found for both the aggregate MCCC
index and the selected topic Government programs.

Conversely, the response of the European 5-year CDS index to a
one standard deviation shock of the transition risk index (TRI)
is more evident, albeit of the opposite sign compared to expec-
tations (Figure 3b). In particular, we find that the impact is
not significant in the short-run, not even instantaneously, and
becomes negative (and significant at 68% level) after six trading
days after the transition risk shock occurred. Moreover, such neg-
ative impact has not fully reabsorbed even after ℎ = 20 trading
days. Therefore, a shock on the TRI index provides a puzzling
evidence of a reduction of the (medium-run) credit risk for the
European energy companies. The latter result is rather counter
intuitive, as we would expect a shock of the transition risk to neg-
atively affect the credit risk of “dirty” companies.
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TABLE 2 | Unit root test results for the variables considered in the analysis. Daily data from January 4, 2010 to February 5, 2020.

Variable ADF PP ZA ERS

EU Energy 5Y CDS −3.251** −3.451*** −4.134 7.483
NA Energy 5Y CDS −6.137*** −6.358*** −7.709*** 0.827***
TRI −35.083*** −49.335*** −28.883*** 0.084***
MCCC −37.151*** −53.097*** −31.049*** 0.068***
BusinessImpact −37.490*** −54.293*** −31.595*** 0.095***
GovPrograms −36.668*** −51.446*** −31.098*** 0.099***
STOXX 600 −36.792*** −49.729*** −30.136*** 0.034***
Brent −35.779*** −50.314*** −29.802*** 0.094***
EU Spread3M1D −2.002 −2.008 −7.336*** 22.294
iTraXX −3.706** −3.359* −5.386** 13.172
S&P-500 −36.523*** −54.295*** −31.352*** 0.055***
WTI −37.251*** −54.766*** −30.441*** 0.113***
US Spread3M1D −21.039*** −35.081*** −19.438*** 0.283***
CDX −4.339*** −3.901** −5.225** 5.242**
US Gov 5Y CDS −6.640*** −8.636*** −7.335*** 1.683***

Note: ***, **, * denote significance levels at 1%, 5%, and 10%, respectively. Results for the climate concern indices are related to their standardized shocks (see Section 2.3 for
details).

FIGURE 3 | LPs for the baseline (linear) model in (1) using MCCC index, Business Impact theme, and Government Programs topic shocks for North
America and TRI shock for Europe. HAC confidence intervals are reported at the 68% significance level.
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FIGURE 4 | LPs for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic shocks for North
America and TRI shock for Europe. The brighter line includes the disaster dummy (𝐼𝑡 = 1), while the darker one does not (𝐼𝑡 = 0). HAC confidence
intervals are reported at 68% significance level.

These results, that is, the mild significance of the responses in NA
and the reversed effect in EU, call into question the ability of the
linear specification in (1) to properly capture the responses of the
CDS to shocks on the transition risk.

3.2 | Non-Linear Local Projections

We now consider the non-linear LPs using the state-dependent
regression in (2). Here the interaction variable 𝐼𝑡 is defined as the
occurrence of a major climate-related disaster (using the dummy
variables defined in Section 2.4) to investigate whether the energy
companies’ credit risk responds differently to a transition risk
shock when also physical risk (proxied by the occurrence of a dis-
aster) kicks in.

Figure 4 shows the non-linear LPs for the North American 5-year
CDS index to a (one standard deviation) shock of the aggregate
MCCC index (Figure 4a), the Business impact theme (Figure 4c),
and the Government programs topic (Figure 4d), and the LPs
for the European 5-year CDS index to a shock of the TRI index

(Figure 4b). The results in Figure 4 show evidence of non-linear
effects for the energy companies’ credit risk when, in addition
to transition risk, also a severe climate-related disaster occurs
(brighter lines), with respect to periods when no major disas-
ter is ongoing (darker lines). This evidence is further supported
by Figure 5, which plots the difference between 𝛽1,ℎ and 𝛽0,ℎ for
ℎ = 0, 1, . . . , 20.

First, let us focus on the impact of MCCC shocks in North Amer-
ica. We note that, in the absence of a major climate-related disas-
ter (depicted in darker lines and confidence bands in Figure 4),
that is, when only transition risk is accounted for by the market,
the reaction is very close to zero and, in general, not significant
for all the indices considered. This highlights that, overall, the
credit risk of North American energy companies is not actually
affected by shocks of transition risk per se. However, the impact
increases (and significantly so) when also a major climate-related
disaster occurs. In particular, as can be seen by the brighter lines
and confidence bands in Figure 4a,c,d, the combination of tran-
sition risk and climate-related disaster causes an instantaneous
(ℎ = 0) and short-run (ℎ = 1,2,3) positive response. Moreover, we
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FIGURE 5 | Difference
(
𝛽1,ℎ − 𝛽0,ℎ

)
for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic

shocks for North America and TRI shock for Europe. HAC confidence intervals are reported at 68% significance level.

find evidence of a positive and significant response of the North
American 5-year CDS index also after nine trading days after the
transition risk shock, when this takes place in combination with
the occurrence of a severe climate-related disaster. Such effect is
not absorbed even after ℎ = 20 trading days (and becomes again
significant for ℎ = 18, 19 for Business impact theme and Gov-
ernment programs topic). From these results, we note that the
strongest effect is found for the Government programs topic of
the MCCC index, where the distance between the LPs with and
without major disasters is more pronounced. This is highlighted
by the large, significant difference between 𝛽1,ℎ and 𝛽0,ℎ, for ℎ =
0, . . . , 20, as shown in Figure 5. Interestingly, these effects remain
significant up to ℎ = 50 trading days, as evidenced in Figure A2
in “Longer Time Periods” of Appendix A.

The presence of non-linear responses is also evident for the Euro-
pean CDS index. In particular, Figure 4b shows that the credit
risk response for the EU energy companies increases significantly
in the presence of a severe climate-related disaster, highlighting
that the credit markets react to (the materialization of) physi-
cal risks. Indeed, we find evidence of a positive and significant

instantaneous response (ℎ = 0), after ℎ = 1 trading day and for ℎ
between 4 and 20—see the brighter lines and confidence bands in
Figure 4b. Conversely, the impact of a transition risk shock when
no major disasters occur (darker lines and confidence bands in
Figure 4b) basically retraces the dynamics obtained using the lin-
ear model depicted in Figure 3b.

One may argue that the presence of a severe climate-related dis-
aster per se is the main cause for the reaction of the CDS markets.
To account for this, in Figure 6 we show the difference between
the intercepts in model (2), 𝛼1,ℎ − 𝛼0,ℎ, and the corresponding 68%
confidence intervals. These plots allow us to capture the impact
on the (unconditional) CDS index mean when a disaster occurs,
independently of the transition risk. Therefore, if this difference
is positive and significant, then the 5-year CDS index increases
on average as a consequence of the materialization of a major
climate-related disaster per se. For North America, we observe
that the estimated difference between the two intercepts is gen-
erally always positive, albeit not significant in the short-run (up
to ℎ = 16 trading days), and becomes significant afterward for
all the MCCC-based indices considered (see Figure 6a,c,d). This
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FIGURE 6 | Difference
(
𝛼1,ℎ − 𝛼0,ℎ

)
for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic

shocks for North America and TRI shock for Europe. HAC confidence intervals are reported at 68% significance level.

evidence highlights that the North American CDS index (uncon-
ditional) mean is indeed affected by major climate-related disas-
ters, independently of transition risks, in the mid-run and that
this effect is still present after ℎ = 20 trading days. Similarly, for
Europe, we find evidence of mid- and long-run unconditional
effects: Figure 6b shows that the difference 𝛼1,ℎ − 𝛼0,ℎ becomes
significant after ℎ = 8.

3.3 | Cross-Border Effects Between CDS
Markets

As an additional step of our analysis, we consider whether
cross-border effects between the NA and EU CDS markets are
present.15 In particular, we investigate whether a shock of the
European (North American) transition risk index has an impact
on the North American (European) energy companies’ CDS,
with—and without—the presence of a severe climate-related
disaster in Europe (North America). Hence, we consider both
the linear and non-linear LPs in (1) and (2), where the depen-
dent variable (𝑦𝑡) is the CDS index of one region (either NA
or EU) while the transition risk shock (𝑥𝑡) and, in the case of
the state-dependent regression in (2), the climate-related disaster
(𝐼𝑡 = 1) occur in the other region.

Figures 7 and 8 show the results for the linear and non-linear LPs,
respectively. The linear impulse responses, for ℎ = 0, 1, . . . , 20,
of the 5-year CDS for the Energy companies in Europe fol-
lowing a one standard deviation shock in the North American
MCCC index, as well as in the two sub-indices for the Business
impact theme and the Government programs topic, are reported
in Figure 7a,c,d, respectively. From these results, we find (mild)
evidence of a positive and significant instantaneous (ℎ = 0) (lin-
ear) cross-border effect for the EU energy companies’ credit risk
after a shock of the aggregate MCCC index and Business impact
(but not Government programs). However, these cross-border
effects become negative (and often significant) in the following
trading days. Conversely, the impact of a shock of the European
TRI index on the North American Energy companies CDS is gen-
erally not significant (see Figure 7b).

As for the cases discussed in Section 3.2, however, employing
a state-dependent LP approach allows us to capture interesting
non-linearities. In particular, the impulse responses depicted in
Figure 8 shows that adding major climate-related disasters to
the picture leads to a significant positive impact of the transi-
tion risk shock, even when such shock and disaster happen in
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FIGURE 7 | Cross-effect LPs for the baseline (linear) model in (1) using MCCC index, Business Impact theme, and Government Programs topic
shocks for Europe and TRI shock for North America. HAC confidence intervals are reported at the 68% significance level.

the other region. This evidence is much stronger in North Amer-
ica (Figure 8b) with respect to Europe (Figure 8a,c,d), where the
cross-border effect of a TRI shock on the NA 5-year Energy com-
panies’ CDS index is found significantly positive for almost allℎ =
0, 1, . . . , 20. These results can be explained by multiple reinforc-
ing factors. First and foremost, they are in line with the explicitly
sought-after European global leadership in climate policies and
green technological advancements. European pioneering policy
stances have often signaled subsequent steps in the same direc-
tion by other jurisdictions (Oberthür and Dupont 2021). Sec-
ond, Europe appears to be a key global hub for what concerns
both supply chains in energy markets and financial market inter-
linkages. Our results are indeed consistent with those from Pag-
nottoni et al. (2022), who find that climate-related disasters in
Europe have a particularly significant impact also on distant
countries.

4 | Conclusions

A reasonable expectation exists that fossil- and carbon-intensive
firms might be negatively affected by a low-carbon transition. It

is still unclear, however, to what extent transition-related risks
are internalized by financial investors. In this paper, we provide
a novel investigation of the impact of media-based measures of
transition risks on the credit risk of energy companies in both
Europe and North America, as measured by their CDS indices.

Using both linear and non-linear local projections, we find that
a shock in media-based transition risks affects CDS indices only
when combined with tangible physical climate-related impacts.
In other words, the prospect of transition-related losses as cap-
tured by the public debate is not salient per se for financial
investors. It becomes salient only in the wake of climate-related
disasters, which increase the likelihood of a policymaker imple-
menting climate action. Our results are broadly consistent with
the evidence found in equity markets, where an unexpected
increase in climate change concern entails a market reaction that
penalizes “dirty” companies (Pástor et al. 2021; Ardia et al. 2023).

Our analysis would benefit from a number of additional refine-
ments. For instance, our regions of focus (Europe and North
America) are large, with climate-related disasters affecting a spe-
cific territory not necessarily having an impact on the entire
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FIGURE 8 | Cross-effect LPs for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic shocks
for Europe and TRI shock for North America. The brighter line includes the disaster dummy (𝐼𝑡 = 1), while the darker one does not (𝐼𝑡 = 0). HAC
confidence intervals are reported at 68% significance level.

region. Although the empirical evidence we provide is significant,
a more spatially disaggregated data would likely offer additional
insights. Another possible limiting factor is related to the use of
two distinct transition risk perception measures computed using
different methods, begging the question of whether our results
would be robust to the application of the same index to the two
regions.

Despite these limitations, our findings offer valuable insights for
policymakers and financial market participants. First, as is often
the case in sustainable finance, our results underscore the crit-
ical need for enhanced disclosure of transition risks to enable
markets to price them more effectively. Second, they emphasize
the importance of preparedness for climate-related disasters, call-
ing for robust policy efforts to advance both climate mitigation
and adaptation strategies. Finally, they point financial analysts
toward the necessity of integrating climate scenarios into credit
risk models and developing sophisticated hedging strategies to
manage transition risks effectively.

A promising avenue for future research lies in developing a the-
oretical framework to deepen the understanding of the mecha-
nisms through which transition risk impacts energy firms’ credit
risk. Such a framework could complement the empirical findings
presented in this paper by providing a structured analysis of the
channels and factors at play, such as regulatory changes, market
adaptations, and firm-level responses to transition dynamics. A
further area for future research could involve the investigation
of CDS bid-ask spreads. This data, when available, may provide
additional insights into market liquidity and investor sentiment,
potentially enhancing the understanding of risk beyond the scope
of the current analysis.
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Endnotes
1 While other sources of emissions exist (e.g., land use), the wide

majority of greenhouse gas emissions stems from fossil-fuelled energy
(GCP 2022).

2 See Campiglio et al. (2023) for a recent overview of the literature.
3 CDS are financial contracts where three main parties are involved: (i) a

borrower (in our case, the energy company) who issues a debt security
and sells it to a lender willing to buy it; (ii) the lender, who purchases
the bond and is, in principle, exposed to credit risk (i.e., the default
of the borrower); and (iii) a third party investor, who sells a CDS con-
tract to the lender, assuming the risk of default of the borrower, at a
price. If a debt is covered by a CDS, the lender is covered by the risk
of default of the borrower. CDS markets are often active and liquid,
and tend to be very responsive to new information, possibly because
dominated by professional investors, who are more likely to possess
the analytical capacity to identify and internalize relevant information
(Blanco et al. 2005; Longstaff et al. 2005).

4 Non-linear—or compound—impacts of different sources of risk (in
our case, transition, and physical) have been investigated in the sus-
tainable finance literature. For instance, Gourdel et al. (2022) inves-
tigate the joint impact of transition and physical risks on European
companies’ investment decisions in the low-carbon transition, while
Dunz et al. (2023) analyze the compounding of the pandemic and cli-
mate risks on banks’ lending and government’s policy. In this paper,
we focus on transition risk and its combination with the realization
of a severe climate-related disaster (materialization of physical risk),
which may amplify the impact on the energy companies’ credit risk of
the transition risk alone.

5 Faccini et al. (2023) have daily frequency data but their series ends
at the end of 2018. Engle and Campos-Martins (2020), Kapfhammer
et al. (2020) and Meinerding et al. (2022) all have data with monthly
frequency. Bessec and Fouquau (2021) and Bessec and Fouquau (2022)
have instead weekly data.

6 Namely they show that LPs with 𝑝 lags as controls and VAR(𝑝) estima-
tors agree approximately at impulse response horizons ℎ ≤ 𝑝.

7 We consider the 5-year maturity indices as these CDS are the most liq-
uid and traded on the market and, hence, the ones more rapidly and
robustly responding to shocks.

8 The MCCC index is freely available at https://sentometrics-research.
com, while the TRI index is available at https://www.
policyuncertainty.com/Climate_Risk_Indexes.html. We thank the
authors of Bua et al. (2024) for sharing their data for an earlier version
of this paper.

9 Cosine similarity is a measure of similarity between two vectors
defined as the cosine of the angle formed between the two vectors in
the vector space. It is calculated by dividing the dot product of the two
vectors by the product of their lengths.

10 We have chosen to use an enlarged sample to construct the shock com-
ponent, aiming to model the dynamics of the TRI index more accu-
rately and estimate its shocks as effectively as possible by specifying
the best possible autoregressive model to ensure non-autocorrelated
residuals.

11 The 10 top keywords for the Government programs topic are: project,
money, fund, program, year, development, government, budget, fund-
ing, plan.

12 Although their model is more general than ours, the AR(9) model with
non-linear trend allows us to achieve non-autocorrelated residuals.

13 EM-DAT documents and classifies natural disasters worldwide, offer-
ing detailed insights into their characteristics. The dataset is main-
tained by CRED/UCLouvain and is available at https://public.emdat.
be.

14 In both North America and Europe, a limited number of climate dis-
asters, among those identified as the most severe, are characterized
by an absence of specific initiation dates, with reference solely to the
respective months. In the NA context, five such events occurred, all of
which were droughts, as it is particularly challenging to establish the
precise commencement and conclusion of these events. We thus con-
duct an investigation using the New York Times to determine whether
there were articles pertaining to these particular occurrences. In two
cases, where a clear starting date is unavailable, we assume the first
day of the month as the starting point. Similarly, 17 major climate dis-
asters with unspecified initiation dates took place in Europe. These
are mainly extreme temperature variations, plus isolated instances of
droughts, wildfires, and floods. Analogous to the approach taken in the
NA context, we conduct a comprehensive online investigation encom-
passing diverse platforms and journals. In the absence of a distinct start
date, precisely in 10 cases, it is assumed that disasters originated on the
first day of the respective month.

15 The international contagion of transition risk has garnered increasing
attention. Espagne et al. (2023) study the cross-border risks faced by
countries along the transition, proposing a taxonomy of these risks and
analyzing the channels through which cross-border risks are transmit-
ted. Carattini et al. (2022) also focus on this topic, finding the con-
tagion of transition risk to be mainly due to financial frictions and
cross-border banking flows.
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Appendix A

Robustness Checks

Analysis With Broader Disaster Thresholds

We repeated the analysis by considering a broader set of disaster events,
specifically adjusting the thresholds to the 60th percentile for Europe and
the 80th percentile for North America. The disaster events included in
this analysis are those with more than 7 deaths and damages exceeding
361,299 USD for Europe, and more than 22 deaths and damages exceeding
2,826,915 USD for North America. In this case, the percentages of disas-
ters are 4.6% (15.5%) for EU (NA). As expected, the results depicted in
Figure A1 show a lighter impact on the credit risk of energy firms for NA.
Conversely, the impact for EU (Figure A1b) is similar to the one observed
in Figure 4b.

Longer Time Periods

As shown in Figures 4 and 5, evidence of positive non-linear effects
persists beyond ℎ = 20 trading days following the shock. To investigate
longer-term dynamics, we extend the analysis to ℎ = 50 trading days
ahead. The results, presented in Figures A2 and A3, for the non-linear
LPs and the difference

(
𝛽1,ℎ − 𝛽0,ℎ

)
, respectively, reveal moderate mid-

to long-term impacts. These effects are particularly evident for shocks
related to the Government Programs topic of the MCCC index in North
America (see Figures A2d and A3d). Interestingly, and consistent with
the (overall) linear response for the EU, we observe a slightly signifi-
cant negative mid-run impact around ℎ = 30 trading days for European
energy companies. However, this impact dissipates within a few trading
days, turns positive, and eventually becomes non-significant by ℎ = 50
(see Figures A2b and A3b).

Smooth Local Projections

To enhance understanding of both linear and non-linear effects, this
section presents all the non-linear LPs in Figures 4 and 8, smoothed using
the B-spline smoothing methodology proposed by Barnichon and Brown-
lees (2019).

The results obtained by minimizing the penalized residual sum of squares
through generalized ridge estimation are shown in Figures A4 and A5, for
the linear and non-linear LPs, respectively.

Cumulative Local Projections

As the non-linear effects of the LPs depicted in Figures 4 and 5 persist
beyond ℎ = 20 trading days, and in some cases even beyond ℎ = 50 trad-
ing days (see Figures A2 and A3), we extend our analysis to investigate
the presence of long-run effects.

Specifically, we examine cumulative LPs, as outlined in Jordà and Tay-
lor (2024). The results, presented in Figure A6 for ℎ = 50, provide strong
evidence of significant long-run effects when the transition risk combines

with physical risk manifestations (i.e., severe climate-related disasters) in
both North America and Europe.

Beta Coefficient Tables

This section reports the numerical results for the linear and non-linear
LPs depicted in the figures.

Table A1 presents the beta coefficients of the baseline linear model shown
in Figure 3, 𝛽0,ℎ and 𝛽1,ℎ from the non-linear LPs depicted in Figure 4,
along with their differences depicted in Figure 5. Table A2 provides the
results from the cross-effect LPs illustrated in Figures 7 and 8.
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FIGURE A1 | LPs for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic shocks for North
America and TRI shock for Europe (using the 80th and 60th percentiles, respectively). The brighter line includes the disaster dummy (𝐼𝑡 = 1), while
the darker one does not (𝐼𝑡 = 0). HAC confidence intervals are reported at 68% significance level.
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FIGURE A2 | LPs for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic shocks for North
America and TRI shock for Europe for ℎ = 0, . . . , 50. The brighter line includes the disaster dummy (𝐼𝑡 = 1), while the darker one does not (𝐼𝑡 = 0).
HAC confidence intervals are reported at 68% significance level.
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FIGURE A3 | Difference
(
𝛽1,ℎ − 𝛽0,ℎ

)
for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic

shocks for North America and TRI shock for Europe for ℎ = 0, . . . , 50. HAC confidence intervals are reported at 68% significance level.
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FIGURE A4 | Smoothed LPs for the linear model in (1) using MCCC index, Business Impact theme, and Government Programs topic shocks for
North America and TRI shock for Europe. HAC confidence intervals are reported at 68% significance level.
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FIGURE A5 | Smoothed LPs for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic shocks
for North America and TRI shock for Europe. The brighter line includes the disaster dummy (𝐼𝑡 = 1), while the darker one does not (𝐼𝑡 = 0). HAC
confidence intervals are reported at 68% significance level.
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FIGURE A6 | Cumulative LPs for the non-linear model in (2) using MCCC index, Business Impact theme, and Government Programs topic shocks
for North America and TRI shock for Europe. The brighter line includes the disaster dummy (𝐼𝑡 = 1), while the darker one does not (𝐼𝑡 = 0). HAC
confidence intervals are reported at 68% significance level.
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TABLE A1 | LPs for the baseline (linear) model in (1) and non-linear model in (2), using MCCC index, Business Impact theme (BI), and Government
Programs topic (GP) shocks for North America and TRI shock for Europe. These results are plotted in Figures 3–5. Asterisks denote significance at 68%
level.

Linear Non-linear

𝒉 𝜷TRI
𝒉

𝜷MCCC
𝒉

𝜷GP
𝒉

𝜷BI
𝒉

𝜷TRI
0,𝒉

𝜷TRI
1,𝒉

𝚫𝜷TRI
𝒉

𝜷MCCC
0,𝒉

𝜷MCCC
1,𝒉

𝚫𝜷MCCC
𝒉

𝜷GP
0,𝒉

𝜷GP
1,𝒉

𝚫𝜷GP
𝒉

𝜷BI
0,𝒉

𝜷BI
1,𝒉

𝚫𝜷BI
𝒉

0 0.008 0.312* 0.244* 0.215 −0.052* 0.699* 0.751* 0.267* 0.916* 0.649* 0.121 2.401* 2.28* 0.164 0.931* 0.766*

1 0.048 0.157 0.369* 0.183 −0.042 1.115* 1.157* −0.058 2.439* 2.497* 0.119 5.225* 5.106* 0.013 2.167* 2.154*

2 0.054 0.250 0.132 −0.038 −0.024 0.340 0.364 0.104 2.025* 1.921* −0.028 3.211* 3.240* −0.183 1.732* 1.915*

3 0.067 0.041 −0.212 −0.089 −0.027 0.667* 0.694* −0.117 2.004* 2.121* −0.369* 3.368* 3.737* −0.230 2.029* 2.259*

4 0.073 0.373 0.158 0.485 −0.014 0.757* 0.771* 0.269 1.130* 0.861 −0.003 2.940* 2.943* 0.404 1.091* 0.687

5 0.051 0.499* −0.103 0.869* −0.063 1.412* 1.475* 0.348 1.709* 1.361* −0.236 2.385* 2.621* 0.771 2.090* 1.319*

6 −0.123 0.480* −0.023 0.771* −0.236* 1.230* 1.466* 0.359 2.223* 1.863* −0.162 3.554* 3.717* 0.689* 2.618* 1.929*

7 −0.119 0.102 −0.268 0.273 −0.221* 1.220* 1.441* −0.023 1.663* 1.686* −0.373 1.913 2.286* 0.171 2.127* 1.956*

8 −0.165 −0.035 −0.237 −0.094 −0.270* 1.324* 1.595* −0.059 0.295 0.355 −0.208 0.762 0.970 −0.160 1.370* 1.530

9 −0.207 −0.184 −0.597 −0.337 −0.301* 1.201* 1.502* −0.361 2.269* 2.630* −0.679 2.084 2.763* −0.445 2.491* 2.936*

10 −0.332* 0.342 −0.216 0.320 −0.426* 1.467* 1.893* 0.107 3.570* 3.463* −0.429 5.727* 6.155* 0.109 4.432* 4.323*

11 −0.415* 0.057 −0.614 −0.128 −0.520* 1.571* 2.091* −0.118 2.620* 2.737* −0.916 6.583* 7.499* −0.274 3.092* 3.366*

12 −0.265* 0.203 0.321 0.546 −0.372* 1.867* 2.239* −0.170 5.322* 5.492* −0.084 9.983* 10.067* 0.286 5.651* 5.364*

13 −0.311* 0.121 0.291 0.458 −0.393* 1.077* 1.469* −0.259 5.301* 5.560* −0.066 9.436* 9.502* 0.163 6.206* 6.043*

14 −0.207 0.342 0.442 0.724 −0.291* 1.339* 1.630* 0.012 4.670* 4.658* 0.063 8.632* 8.569* 0.488 5.491* 5.003*

15 −0.189 0.185 −0.348 0.308 −0.267 1.475* 1.742* −0.265 5.780* 6.045* −0.456 5.569* 6.025* −0.114 7.107* 7.220*

16 −0.200 0.067 −0.239 0.212 −0.273 1.778* 2.051* 0.006 3.391* 3.385* −0.214 4.141* 4.354* 0.154 4.937* 4.782*

17 −0.320 0.389 −0.014 0.277 −0.392* 1.628* 2.020* 0.608 0.999 0.391 0.070 4.320* 4.251* 0.619 0.249 −0.369

18 −0.330 0.354 0.355 0.436 −0.374* 1.037* 1.411* 0.314 3.777* 3.463* 0.231 7.894* 7.662* 0.355 5.403* 5.048*

19 −0.343 0.337 −0.036 0.322 −0.367* 0.987* 1.354* 0.225 4.918* 4.693* −0.265 9.752* 10.017* 0.155 6.610* 6.455*

20 −0.301 −0.480 −0.119 −0.334 −0.315 0.860* 1.175* −0.614 4.119* 4.733* −0.256 8.398* 8.655* −0.479 5.662* 6.141*

TABLE A2 | Cross-effect LPs for the baseline (linear) model in (1) and non-linear model in (2), using MCCC index, Business Impact theme (BI),
and Government Programs topic (GP) shocks for North America and TRI shock for Europe. These results are plotted in Figure 8. Asterisks denote
significance at the 68% level.

Linear Non-linear

𝒉 𝜷TRI
𝒉

𝜷MCCC
𝒉

𝜷GP
𝒉

𝜷BI
𝒉

𝜷TRI
0,𝒉

𝜷TRI
1,𝒉

𝜷MCCC
0,𝒉

𝜷MCCC
1,𝒉

𝜷GP
0,𝒉

𝜷GP
1,𝒉

𝜷BI
0,𝒉

𝜷BI
1,𝒉

0 0.253 0.075* 0.040 0.148* 0.230 1.171* 0.075* −0.011 0.031 −0.082 0.152* −0.005

1 0.338 0.014 −0.019 0.074 0.300 0.980* −0.004 −0.040 −0.049 −0.003 0.043 0.154

2 0.532 −0.050 −0.104* −0.018 0.489 1.083* −0.084 −0.148 −0.152* −0.087 −0.065 0.050

3 0.312 −0.054 −0.142* −0.035 0.251 1.111* −0.102 −0.042 −0.200* −0.001 −0.087 0.092

4 0.474 −0.108 −0.159* −0.111 0.406 0.846 −0.173* 0.037 −0.210* −0.087 −0.173* 0.117

5 0.151 −0.111 −0.139* −0.116 0.056 1.772* −0.178* 0.097 −0.175* −0.172 −0.182* 0.281

6 0.061 −0.109 −0.136 −0.080 −0.028 1.747* −0.184* 0.333 −0.172* 0.011 −0.141 0.439*

7 0.115 −0.195* −0.131 −0.153 0.09 0.842* −0.273* 0.206 −0.17 −0.129 −0.220* 0.296*

8 −0.291 −0.232* −0.098 −0.184* −0.372 1.572* −0.314* 0.088 −0.145 −0.205 −0.275* 0.282*

9 −0.115 −0.267* −0.137 −0.221* −0.184 1.295* −0.370* 0.095 −0.187 −0.384 −0.319* 0.252

10 −0.186 −0.245* −0.216 −0.203 −0.266 0.811* −0.355* 0.239 −0.270* −0.420 −0.297* 0.282

11 −0.081 −0.268* −0.215 −0.231* −0.16 1.073* −0.365* −0.009 −0.262* −0.657* −0.303* −0.002

12 0.077 −0.300* −0.241 −0.228 −0.017 1.901* −0.382* −0.119 −0.267* −0.838* −0.285* −0.113

13 0.135 −0.279* −0.227 −0.147 0.060 1.258* −0.372* −0.003 −0.281* −0.466 −0.225 0.170

14 0.133 −0.34* −0.330* −0.184 0.06 1.838* −0.422* −0.113 −0.411* −0.294 −0.269* 0.083

15 −0.023 −0.324* −0.298 −0.182 −0.112 2.416* −0.410* −0.005 −0.411* 0.182 −0.288* 0.310

16 −0.069 −0.354* −0.346* −0.219 −0.137 1.477* −0.446* 0.004 −0.459* 0.194 −0.335* 0.385*

17 −0.631 −0.306* −0.301 −0.197 −0.707* 1.391* −0.419* 0.127 −0.454* 0.676* −0.329* 0.512*

18 −0.050 −0.253 −0.289 −0.141 −0.079 1.478* −0.359* 0.070 −0.445* 0.738* −0.268 0.441*

19 −0.564 −0.272 −0.334 −0.146 −0.613 1.325* −0.393* 0.173 −0.496* 0.775* −0.301 0.730*

20 −0.281 −0.399* −0.338 −0.228 −0.322 1.299* −0.515* −0.039 −0.475* 0.483* −0.364* 0.446*
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