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1 Introduction

A concern about international trade often raised by the public and the popular press

is that it may destroy jobs and lead to unemployment. Trade economists have increas-

ingly taken this concern seriously, but the focus has been on the long-run.1 Thus, we

still lack a framework to understand the possibly adverse short-run employment effects

of trade shocks. The need for such a framework becomes particularly salient in light of

the findings by Autor, Dorn, and Hanson (2013, henceforth ADH) and others indicating

that U.S. local labor markets more exposed to the “China shock” experienced significant

increases in unemployment and decreases in labor force participation relative to less ex-

posed regions. If trade shocks can lead to temporary increases in unemployment, how

does this change the way we evaluate their welfare effects?

In this paper, we propose a dynamic quantitative trade and migration model in which

shocks can trigger increases in unemployment and decreases in labor force participation

during a transition period, while allowing for the computation of the implied aggregate

and distributional welfare effects. The key feature of the model is downward nominal

wage rigidity (DNWR) as in Schmitt-Grohe and Uribe (2016), constraining the nominal

wage in any period to be no less than a factor δ times the nominal wage in the previous

period. We embed this feature into a dynamic model in the spirit of Caliendo, Dvorkin,

and Parro (2019, henceforth CDP), which we extend to allow for a difference between the

elasticity governing workers’ mobility across sectors (1/ν in our model) and the elasticity

governing mobility across local labor markets (1/κ in our model).

We calibrate the key model parameters δ, ν, and κ to results from ADH on how labor

force participation, unemployment, and population across U.S. labor markets are affected

by the China shock. Using dynamic exact hat algebra, we simulate the effects of the China

shock from the year 2000 onwards. The results indicate that although the China shock

improves the terms of trade for almost all states (i.e., only two states would experience

a welfare loss in the absence of DNWR), employment actually falls in most states during

1Davidson et al. (1999), Helpman et al. (2010), Kim and Vogel (2021), and Galle et al. (2023) are papers that
focus on the long-run impacts of unemployment. An important exception looking at short-run employ-
ment effects is Dix-Carneiro et al. (2023), which we discuss below.
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the transition, both through an increase in unemployment and a decline in labor force

participation. These employment effects have significant welfare implications, as they

lead to a two-thirds reduction in the U.S. welfare gains from the China shock.

The intuition behind our results is as follows. With flexible wages, the increase in

China’s relative productivity would require a downward adjustment in the U.S. relative

wage. DNWR prevents this adjustment from taking place through a large decline in the

U.S. nominal wage, and a nominal anchor (described below) prevents it from occurring

through a large increase in the Chinese dollar wage. The result is temporary unemploy-

ment in the U.S. In turn, with home production available to workers, this triggers further

declines in labor participation, as more workers prefer to engage in home production

rather than face the possibility of unemployment.

In Section 2, we argue that DNWR is a plausible mechanism to explain the unemploy-

ment effects of the China shock. First, there is substantial empirical evidence that DNWR

is present in the data (Grigsby et al., 2021; Hazell and Taska, 2023). Second, we show that

DNWR is not inconsistent with the dynamic pattern of the unemployment response to

the China shock. Third, we use measures of DNWR to show that U.S. regions with more

stringent pre-shock measures of DNWR experienced significantly higher unemployment

effects from the China Shock.

Section 3 presents our model. There are multiple sectors linked by an input-output

structure, sector-level trade satisfies the gravity equation, and a home-production sector

leads to an upward-sloping labor supply curve. Trade takes place between regions, and

workers can move across regions belonging to the same country. Each period, workers

draw idiosyncratic shocks to the utility of working in each sector-region. Based on these

draws, the costs of moving, and expected future utility (including the risk of unemploy-

ment), workers choose which sector-region to participate in. Wages are subject to DNWR

in all manufacturing sectors, but are otherwise determined by labor supply and demand.

Given the presence of DNWR, we need to close the model with a nominal an-

chor that prevents nominal wages from rising enough to make the DNWR always

non-binding.2 We assume that world nominal GDP in dollars grows at a constant and

2Our baseline analysis also assumes that third countries have flexible exchange rates vis-á-vis the dollar,
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exogenous rate.3 While this nominal anchor is a simplification, it allows us to solve

our otherwise-unwieldy dynamic trade and migration model.4 Qualitatively, we would

obtain similar results if we assumed instead that China uses a combination of monetary

and exchange rate policies to prevent both an appreciation of its currency and large

inflationary pressures – thereby preventing the Chinese wage in dollars from increasing

– while the U.S. does not fully offset this with its own policies (even though it had the

tools required to do so if it had been its priority).

Section 4 describes our data construction. We combine multiple data sources, pro-

portionality assumptions, and implications from a gravity model to construct sector-level

trade flows across all region pairs in our sample. We also construct migration flows be-

tween all sector-states in the U.S. The resulting dataset contains 87 regions (50 U.S. states,

36 additional countries, and the rest of the world), and 15 sectors (home production, 12

manufacturing sectors, services, and agriculture).

Section 5 describes our calibration procedure for parameters ν, κ, and δ as well as

for the China shock, which we operationalize as productivity changes in China that vary

across sectors and years. For any set of parameter values and productivity changes, we

use dynamic hat algebra to compute implied annual changes in trade flows as well as

changes in labor-force participation, unemployment, and population over the 2000-2007

period. We then iterate over the parameter values and productivity changes until the

sector-level annual changes in U.S. imports from China match those predicted in the data

and the ADH-style regression coefficients in the model match those obtained by ADH

in the data. In our baseline specification, we introduce DNWR only in the manufactur-

ing sectors. The calibration leads to a value of δ ≈ 0.99, implying that – with constant

world nominal GDP – wages can fall around 1% annually without the DNWR becoming

binding. This value is in line with the one in Schmitt-Grohe and Uribe (2016).

Section 6 presents the results of the baseline quantitative analysis. In the short run,

unemployment increases in the regions most exposed to the China shock, but this un-

but the alternative of fixed exchange rates for developed countries makes little difference for our results.
3We further set this rate to zero, which is without loss of generality in the context of our model.
4Assuming other types of nominal anchors prevents our model from being solved with an efficient Alvarez-
and-Lucas (Alvarez and Lucas, 2007) type algorithm that we develop to deal with the DNWR, thereby
increasing the time required to solve the model by several orders of magnitude.
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employment dissipates over time as the nominal wage adjusts downward. In the long

run, since the real wage governs labor supply and there is no unemployment, employ-

ment eventually increases after the economy fully adjusts to the positive terms of trade

shock. We compute welfare as the present discounted value of utility flow, with a dis-

count rate of 0.95. We find that welfare increases in 30 U.S. states, including many that

experience unemployment during the transition. For the U.S. as a whole, although the

China shock remains beneficial, DNWR reduces the aggregate welfare gains by roughly

two-thirds (from 31 to 12 basis points). There are 18 states that experience welfare losses

in the presence of downward nominal wage rigidity that would have experienced gains

without it. The spatial heterogeneity in the employment and income effects of the China

shock implied by our model is similar to that implied by the empirical results in ADH.

This stands in contrast to previous quantitative trade models, such as CDP and Galle et al.

(2023), which deliver too little dispersion, as shown in Adao et al. (2023).

Section 7 studies how varying some of the key assumptions in the baseline speci-

fication affects our results. We discuss alternative scenarios where we allow the China

shock to last until 2011 in the spirit of Autor et al. (2021) and use alternative migration as-

sumptions across U.S. states. We highlight that while the baseline specification is broadly

consistent with the dynamic pattern of the cross-sectional response to the China shock,

the specification where the shock lasts until 2011 improves the fit along this dimension

by increasing the persistence of the cross-sectional unemployment and non-participation

effects. Interestingly, assuming that the China shock lasted until 2011 implies that the

welfare gains of the shock through the lens of the model roughly disappear.

Section 8 discusses two additional topics. First, we argue that, assuming that labor

supply is a function of the real wage, ADH’s exposure measure to the China shock be-

comes a relevant statistic in the model only due to DNWR. Second, we explore the model-

implied tradeoff between unemployment and inflation. For a neighborhood around our

baseline, decreasing cumulative unemployment generated by the shock by one p.p. over

ten years requires accepting roughly two more p.p. of cumulative inflation.

Our paper follows in the footsteps of a large literature that analyzes the impacts of

trade shocks on different regions or countries. Quantitative papers such as CDP, Galle
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et al. (2023), and Adao et al. (2023) focus on the effects of the China shock on regions of

the U.S. Our model incorporates nominal rigidities as a mechanism to deliver involuntary

unemployment, which is an uncommon feature in this literature despite its prominence

in the empirical papers studying the China shock.

Another literature explores the effect of trade on unemployment using search and

matching models (e.g. Davidson and Matusz, 2004; Helpman et al., 2010; Kim and Vogel,

2021; Galle et al., 2023; Dix-Carneiro et al., 2023; Carrere et al., 2020; Gurkova et al., 2023).

In static models with search and matching, trade shocks can affect aggregate unemploy-

ment by reallocating labor across sectors with different frictional unemployment rates, as

in Helpman et al. (2010), or by changing the profitability of posting vacancies, as in Kim

and Vogel (2021). Galle et al. (2023) focus on the second of these mechanisms, and show

that U.S. regions more exposed to the China shock experience increases in unemploy-

ment. This is due to the decreased profitability of posting vacancies in those areas facing

intensified import competition. However, for the U.S. as a whole, unemployment de-

clines because the China shock is, on aggregate, a positive terms-of-trade shock, thereby

enhancing the profitability of posting vacancies.

Dix-Carneiro et al. (2023) allow for both of these mechanisms in a dynamic multi-

sector model to study the role of trade imbalances on the labor market during the tran-

sition after the China shock. In their analysis, the China shock entails both a gradual in-

crease in productivity (to match China’s increase in total exports) and a change in house-

holds’ intertemporal preferences (to match China’s increase in net exports). According to

the model simulation, the effect of the China shock on aggregate U.S. unemployment is

negligible, and there are no region-level results connecting to the ADH evidence.

Also related to our paper is Eaton et al. (2013), which studies the extent to which

unmodeled cross-country relative wage rigidities can explain the increases in unemploy-

ment and decreases in GDP observed in countries undergoing sudden stops. Relative to

this paper, our contribution is to extend the analysis to terms-of-trade shocks in a multi-

sector model with migration and to quantify the effect of the China shock on unemploy-

ment and nonemployment across U.S. states from the year 2000 onward.
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2 A Case for DNWR

2.1 Support for DNWR in the Recent Literature

While the idea that DNWR may be central in explaining various macroeconomic phe-

nomena has a venerable tradition in macroeconomics (e.g., Keynes, 1936), it laid some-

what dormant for decades as other forms of rigidity such as Calvo frictions, quadratic

adjustment costs, or menu costs became popular. However, there has recently been a

resurgence in the popularity of DNWR in the macro and labor literatures.

The first reason for the resurgence of DNWR in the literature is the strong empirical

support found for it in the micro data. Grigsby et al. (2021) find evidence of DNWR for a

sample of workers who remain employed with the same firm. Moreover, although wages

could, in principle, be more flexible for new hires than continuing workers, Hazell and

Taska (2023) find evidence that the wage for new hires is rigid downward, but flexible

upward, in particular rising during expansions but not falling during contractions.

Jo (2022) analyzes five distinct wage-setting schemes: flexible, Calvo, long-term con-

tracts, symmetric menu costs, and DNWR, and shows that only DNWR is consistent with

U.S. data from the CPS. Fallick et al. (2020) find a significant amount of DNWR in the U.S.,

and no evidence that the substantial degree of labor market distress during the Great Re-

cession reduced it. To be clear, the presence of DNWR does not mean that nominal wages

never fall, it simply means that the fraction of nominal wages that experience a decrease

is small and varies little with the state of the business cycle.

The second reason behind the renewed prominence of DNWR in the literature is that

it can help explain important issues in macro and labor. Shimer (2005) showed that a

calibration of the standard search-and-matching model without wage rigidity leads to

unemployment fluctuations that are much smaller than the ones in U.S. data, whereas in

a version that incorporates wage rigidity these fluctuations match the data. Dupraz et al.

(2019) show that symmetric wage rigidity models are unable to account for the skewness

and asymmetry observed in the unemployment rate, while DNWR is able to do so.

In the international context, Fadinger et al. (2024) find that intensified export com-
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petition from Germany led to significant manufacturing employment losses but insignif-

icant nominal wage responses in other Euro-Area countries. Moreover, German export

competition had no significant employment effects on European countries with flexible

exchange rates vis-a-vis the euro, suggesting that DNWR in the presence of a fixed ex-

change rate is the main explanation for these results. Costinot et al. (2022) study the

collapse of the Finnish-Soviet trade agreement and find that it generated employment

declines that were greater in the short run than in the long run and wage changes that

were larger in the long run. They argue that this evidence is consistent with a model that

incorporates DNWR but not with a frictionless search-and-matching model.

For the aforementioned reasons, it is fair to say that DNWR is an empirically well

supported and mainstream tool of modern economics. Our paper brings this tool to the

trade literature to explain important facts about the China Shock. In the following subsec-

tions, we provide additional evidence that DNWR is not incompatible with the persistent

effects that the China shock had on aggregate employment, and that regions with more

stringent DNWR experienced a higher increase in unemployment from the shock.

2.2 DNWR and Persistence in the Employment Effects of the Shock

Recent evidence (e.g., Dix-Carneiro and Kovak, 2017; Autor et al., 2021) has found

that regions more exposed to import competition experienced persistent decreases in em-

ployment. Since DNWR can only lead to temporary increases in unemployment, this evi-

dence could raise doubts about DNWR as the mechanism driving these persistent effects.

However, persistent employment declines do not necessarily imply persistent unemploy-

ment effects, as they could be due to long-run declines in labor force participation.5

To study the persistence of the employment and unemployment effects of the China

Shock, we take the analysis in Autor et al. (2021) as a baseline and implement four changes

(described below) so that the regression results are comparable with those in ADH (which

5While Autor et al. (2021) show long-run effects of the China Shock, they focus on employment, compen-
sation, transfers, and population effects, and do not explore separate effects in unemployment and non-
participation. Similarly, the main analysis in Dix-Carneiro and Kovak (2017) relies on employer-employee
data for Brazil and hence precludes any study of unemployment. The authors supplement their analy-
sis with other data sources that include unemployment but focus on the distinction between formal and
informal employment as opposed to unemployment and non-participation.
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use different data and regression specification).6 The resulting exercise mimics ADH for

the ending year 2007 and extends it up to 2020.

First, we estimate the dynamic effect of the China Shock following a regression spec-

ification in the spirit of Autor et al. (2021), but that would allow us to stack the changes in

the outcomes for the 1990 - 2000 period as in ADH. Our main regression specification is:

∆Yi,t+h = αt + β1h∆IPcu
i,τ + X′i,tβ2 + εi,t+h, (1)

where ∆Yi,t+h is a vector of ten-year equivalent changes in outcome Y for CZ i between

1990 and 2000 stacked with the changes in the same outcome between years 2000 and

2000 + h, for h = 1, ..., 20. The term IPcu
i,τ is the growth in Chinese import competition in

the τ intervals 1990-2000 and 2000-2007, respectively.

Second, we use the American Community Survey (ACS) for employment data in-

stead of the Regional Economic Information System (REIS) data.7 Third, we use the exact

import exposure definition in ADH. Autor et al. (2021) use the growth in imports from

China between 2000 and 2012 divided by domestic absorption (U.S. industry shipments

plus net imports), whereas ADH use the growth in imports per worker between 1990 and

2000 stacked with the one between 2000 and 2007. Fourth, we use the same controls X′i,t
as in ADH, which we take from ADH’s replication files.

We estimate one regression per year using equation (1) for h = 6, ..., 20, implement-

ing the same two-stage least squares strategy as in ADH (i.e., we instrument ∆IPcu
i,τ with

∆IPcu
oi,τ, which only differs from ∆IPcu

i,τ by using imports from China in other high-income

markets). Figure 1 reports the resulting estimates for each β1h when the outcomes are the

following ratios: total employment to population (panel a), not-in-the-labor-force (NILF)

to population (panel b), and unemployment to population (panel c). Note that the coeffi-

cients for 2007 coincide with those in ADH.8

6These changes do not meaningfully affect the qualitative takeaways from this section. We stick with them
to remain consistent with the point estimates from ADH (associated with the 2000− 2007 change), which
are well known in the literature and which we use as our main calibration targets.

7ACS allows one to compute consistent measures of unemployment and non-participation. However, it
does not include full geographic information for 2001− 2005. Therefore, we start the analysis with the
2000− 2006 change. We follow ADH in pooling a moving average of three ACS years.

8Specifically, the coefficients for 2007 from panels (b) and (c) match those from Table 5, panel B, columns
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Figure 1: Effects of the China Shock on employment and non-employment
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Note: The panels report two-stage least squares coefficient estimates for β1h in equation (1) and 95 percent
confidence intervals for these estimates. Each coefficient comes from a separate IV regression following
equation (1). Each regression stacks the change in the specified outcome between 1990− 2000 and between
2000 and the year indicated on the horizontal axis. The coefficients for 2007 (highlighted with the red
dashed vertical line) match those from Table 5 in ADH.

Panel (a) of Figure 1 suggests that the China shock has long-term employment ef-

fects. Even by 2020, CZs that were more exposed to the increase in import competition

from China experienced negative and significant effects on total employment divided by

population. This finding is consistent with other recent evidence on the long-run impacts

of disruptive trade shocks (Dix-Carneiro and Kovak, 2017; Autor et al., 2021).9

3 and 4 in ADH, respectively. The equivalent coefficient for panel (a) is not directly presented in ADH
but it matches the sum of the effects for manufacturing and non-manufacturing employment (divided by
working-age population) found by ADH.

9Using employer-employee data for Brazil, Dix-Carneiro and Kovak (2017) find a stark decreasing pat-
tern on formal employment. Their regional analysis using decennial Census data also shows that trade-
displaced formal-sector workers switch to informal employment and that the longer-term effect on non-
employment is small and non-significant.
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We uncover the separation of the employment effects into NILF and unemployment

effects in panels (b) and (c). Panel (b) shows that by 2020, the effect on NILF is still around

half the effect found by ADH for 2007, and continues to be statistically significant. By

contrast, panel (c) shows that the unemployment effects diminish more rapidly. In par-

ticular, the unemployment effect became statistically non-significant in 2011, and while

the effect became statistically significant again in some other years post 2011, it remained

economically small.10 By 2020, the unemployment effect was around one-tenth of what

ADH found in 2007, which suggests that the unemployment effects are transitory and

that most of the persistent employment effects of the shock are driven by effects on NILF.

2.3 Cross-sectional Evidence for DNWR

We borrow measures of DNWR from the empirical macro literature (e.g., Jo, 2022;

Jo and Zubairy, 2023) and show that regions (CZs or States) with more stringent pre-

shock measures of DNWR experienced significantly higher unemployment effects from

the China Shock. To do so, we enrich the regression specification in equation (1) to add a

differential effect depending on the degree of DNWR:

∆Ui,t+h = γt + β1,h∆IPcu
i,τ + β2,hRigs(i),τ + β3,hRigs(i),τ × ∆IPcu

i,τ + X′i,tβ4 + εi,t+h, (2)

where ∆Ui,t+h now refers to the change in unemployment-to-population ratio in a region

(CZ or state). The variable Rigs(i),τ represents a state-level proxy for the DNWR present

in the state s to which CZ i belongs. We again instrument ∆IPcu
i,τ with ∆IPcu

oi,τ and we

instrument Rigs(i),τ × ∆IPcu
i,τ with Rigs(i),τ × ∆IPcu

oi,τ.

We use two main proxies for DNWR following Jo and Zubairy (2023). The first one is

based on the share of workers with negative year-over-year hourly wage changes among

all workers. The second one is based on the share of individuals with negative wage

changes to total individuals with nonzero wage changes. Both measures are constructed

based on individual-level year-over-year wage changes from CPS data. We pool obser-

10Figure A.1 presents regression results using an alternative construction of the unemployment-to-
population ratio, based on BLS county-level unemployment data and SEER working-age population data.
The estimates remain both quantitatively and qualitatively consistent with those reported in Figure 1.
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vations from 1987 to 1990 to define the rigidity shares for the 1990-2000 decade and ob-

servations from 1997 to 2000 to determine the rigidity shares post 2000.11 We then define

Rigs(i),τ as a dummy, taking a value of one if a given state is below the mean share. Note

that a value of one implies a lower share of negative wage changes, which in turn suggests

more DNWR.

Panel (a) of Figure 2 displays the estimates of β3,h in equation (2). These estimates

show the differential unemployment-to-population ratio increase for CZs with high vs.

low DNWR. For 2007, the panel shows that CZs with high DNWR experienced an ad-

ditional 0.17 percentage points increase in the unemployment-to-population ratio due to

the China Shock, a magnitude that is large compared to the average effect (0.22) found in

ADH. The differential effect is statistically significant at the beginning of the period and

loses significance after some years. Panel (b) uses the estimates from the same regres-

sion to present the unemployment effects separated by category. While CZs in the high

DNWR category experienced significantly larger unemployment effects at the beginning

of the period, the unemployment effects in both categories fade out over time.12

Figure 2: China Shock and unemployment in CZs with high vs. low DNWR

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2) when the measure of Rigs(i),τ is a dummy taking value 1 in CZ i if the share of individuals with
negative wage changes in state s is below the mean across all states.

11These shares are persistent over time. Only eight states switched between below/above median across
the two decades.

12Appendix A shows that the findings in Figure 2 are robust to several alternative proxies of DNWR.
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3 A Dynamic Spatial Trade and Migration Model with

Downward Nominal Wage Rigidities

Building on Artuc et al. (2010) and CDP, we consider a dynamic multi-sector quanti-

tative trade model with an input-output structure and forward looking agents that decide

in which region and sector to work. Given our goals of matching the results in ADH, we

introduce two key extensions to CDP: (i) DNWR as a mechanism that can generate un-

employment; and (ii) a nested structure in the households’ labor supply decision to allow

for different elasticities of moving across regions and sectors. In this section, we present

an abridged description of the model, relegating additional details to Appendix B.

3.1 Basic Assumptions

We assume that the world is composed of multiple economies or “regions” (indexed

by i or j). There are M regions inside the U.S. (i.e., the 50 U.S. states), plus I −M regions

(countries) outside of the U.S. We assume that there is no labor mobility across different

countries, but allow for mobility across different states of the U.S. There are S + 1 sectors

in the economy (indexed by s or k), with sector zero denoting the home production sector

and the remaining S sectors being productive market sectors. In each region j and period

t, a representative consumer participating in the market economy devotes all income to

expenditure Pj,tCj,t, where Cj,t and Pj,t are aggregate consumption and the price index

respectively. Aggregate consumption is a Cobb-Douglas aggregate of consumption across

the S different market sectors with expenditure shares αj,s. As in a multi-sector Armington

trade model, consumption in each market sector is a CES aggregate of consumption of the

good of each of the I regions, with an elasticity of substitution σs > 1 in sector s.

Each region produces the good in sector s with a Cobb-Douglas production func-

tion, using labor with share φj,s and intermediate inputs with shares φj,ks, where φj,s +

∑k φj,ks = 1. Total factor productivity in region j, sector s, and time t is Aj,s,t. There is

perfect competition and iceberg trade costs τij,s,t ≥ 1 for exports from i to j in sector s. In-

termediates from different origins are aggregated in the same way as consumption goods.
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Letting Wi,s,t denote the wage in region i, sector s, at time t, the price in region j of good s

produced by region i at time t is then

pij,s,t = τij,s,t A−1
i,s,tW

φi,s
i,s,t ∏

k
Pφi,ks

i,k,t , (3)

where Pi,k,t is the price index of sector k in region i at time t, satisfying:

P1−σs
j,s,t =

I

∑
i=1

p1−σs
ij,s,t . (4)

Let Ri,s,t and Li,s,t denote total revenues and employment in sector s of region i, re-

spectively. Noting that the demand of industry k of region j of intermediates from sector

s is φj,skRj,k,t and allowing for exogenous deficits as in Dekle et al. (2007), the market

clearing condition for sector s in region i can be written as

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
S

∑
k=1

Wj,k,tLj,k,t + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
, (5)

where Dj,t are transfers received by j, with ∑j Dj,t = 0, and the trade shares satisfy

λij,s,t =
p1−σs

ij,s,t

∑I
r=1 p1−σs

rj,s,t

. (6)

In turn, employment must be compatible with labor demand,

Wi,s,tLi,s,t = φi,sRi,s,t. (7)

3.2 Labor Supply

Agents are forward looking and face a dynamic problem with discount rate β. They

face a cost ϕji,sk of moving from region j, sector s to region i, sector k.13 These costs are time

invariant, additive, and measured in terms of utility. Additionally, agents have additive

idiosyncratic shocks for each choice of region and sector, denoted by εi,s,t. Agents can

13Zabek (2024) discusses the persistence of local ties and the implications for migration responses in de-
pressed regions. However, measures of regional mobility that depend on the fraction of people born in a
U.S. state would add additional state variables to our model in a way that becomes quickly intractable.
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either engage in home production or look for work in any of the S market sectors. We

denote the number of agents that participate in region i, sector s, at time t, by `i,s,t.

An agent that starts in region j and sector s derives flow utility Uj,s,t and decides

whether to move knowing the economic conditions in all markets and the idiosyncratic

shocks. Denoting with νj,s,t the lifetime utility of an agent who is in (j, s, t) we have

νj,s,t = Uj,s,t + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}.

We assume that the joint distribution of the vector ε at time t is nested Gumbel:

F(ε) = exp

− I

∑
i=1

(
S

∑
k=0

exp (−εi,k,t/ν)

)ν/κ
 ,

with κ > ν. This allows us to have different elasticities of moving across regions and

sectors, which will be useful for the model to match the empirical evidence in ADH. Let

Vj,s,t ≡ E(νj,s,t) be the expected lifetime utility of a representative agent in labor market

j, s. As shown in Appendix B.2, denoting the Euler-Mascheroni constant with γ, we have

Vj,s,t = Uj,s,t + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
κ

+ γκ. (8)

Denote by µji,sk|i,t the share of agents that relocate from market js to ik relative to the

total number of agents that move from js to region i irrespective of the sector. Addition-

ally, let µji,s#,t denote the fraction of agents that relocate from market js to any sector in i

as a share of all the agents in js. In Appendix B.2, we show that

µji,sk|i,t =
exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − ϕji,sh

)1/ν
, (9)

µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − ϕji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
. (10)

The share of agents in js that move to ik is µji,sk,t = µji,sk|i,t · µji,s#,t, and participation in the

different labor markets evolves according to
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`i,k,t+1 =
I

∑
j=1

S

∑
s=0

µji,sk,t`j,s,t. (11)

Without DNWR there would be no unemployment and hence the flow utility from

participating in a sector-region would be the log of the associated real wage, Ui,s,t =

ln(ωi,s,t), where ωi,s,t = Wi,s,t/Pi,t and Pi,t is the aggregate price index in it,

Pi,t =
S

∏
s=1

Pαi,s
i,s,t. (12)

Equations (3)-(12) combined with Ui,s,t = ln(Wi,s,t/Pi,t) and Lj,s,t = `j,s,t would character-

ize the equilibrium of a model that is similar to CDP.

With DNWR agents must take into account the possibility of unemployment when

deciding where to participate. We assume that there is some level of insurance against un-

employment among participants in each sector-region. Specifically, unemployed workers

receive a transfer equal to a share z ∈ (0, 1] of the average income earned by all workers

supplying labor in any given sector-region, funded by a tax on employed workers in that

same sector-region. The probability of employment in (i, s) is πi,s,t ≡ Li,s,t/`i,s,t, and we

assume that workers supplying labor in (i, s) face a lottery with income zπi,s,tWi,s,t with

probability 1 − πi,s,t and income (1− (1− πi,s,t) z)Wi,s,t with probability πi,s,t.14 Using

ωi,s,t to denote the average real wage among all workers supplying labor in (i, s), the

expected (flow) utility associated with this lottery is

Ui,s,t = ln (∆i,s,tωi,s,t) , (13)

where

ωi,s,t = πi,s,t ·
Wi,s,t

Pi,t
(14)

is expected income and ∆i,s,t ≤ 1 is a factor capturing the risk associated with supplying

labor in (i, s) in period t,

∆i,s,t = z1−πi,s,t

(
1− z (1− πi,s,t)

πi,s,t

)πi,s,t

. (15)

14Expected income is then (1− πi,s,t)zπi,s,tWi,s,t + πi,s,t (1− (1− πi,s,t)z)Wi,s,t = πi,s,tWi,s,t, so that the in-
surance scheme is fully funded within each sector-region.
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For home production, we assume that Ui,0,t = ln(ωi,0,t), with ωi,0,t being the level

of (non-market) consumption associated with home production in region i, which we

assume to be exogenous and time invariant. Importantly, our setup does not allow un-

employed workers to engage in home production. This implies that the threat of unem-

ployment discourages participation, which is a useful feature that allows the model to

match the ADH targets with a reasonable labor-supply elasticity.

3.3 Downward Nominal Wage Rigidity

In the standard trade model, labor market clearing requires that labor supply and

demand equalize for each sector-region, i.e. Li,k,t = `i,k,t. We depart from this assumption

and instead follow Schmitt-Grohe and Uribe (2016) by allowing for DNWR, which might

lead to an employment level strictly below labor supply,

Li,k,t ≤ `i,k,t. (16)

All prices and wages up to now have been expressed in U.S. dollars, but regions face

DNWR in terms of their local currency unit. Letting WLCU
i,k,t denote nominal wages in local

currency units, the DNWR takes the following form:

WLCU
i,k,t ≥ δkWLCU

i,k,t−1, δk ≥ 0.

Letting Ei,t denote the exchange rate between i’s local currency and region one’s currency

(which is the U.S. dollar) in period t, then the DNWR for wages in dollars entails

Wi,k,t ≥
Ei,t

Ei,t−1
δkWi,k,t−1.

Since all regions within the U.S. share the dollar as their local currency unit, then

Ei,t = 1 and WLCU
i,k,t = Wi,k,t ∀ i ≤ M. This means that the DNWR in states of the U.S. takes

the familiar form Wi,k,t ≥ δkWi,k,t−1. For the I − M regions outside of the U.S., the LCU

is not the dollar and so the behavior of the exchange rate impacts how the DNWR affects

the real economy. The DNWR in dollars can then be captured using a country-specific

parameter δi,k for each sector, i.e.:
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Wi,k,t ≥ δi,kWi,k,t−1, δi,k ≥ 0. (17)

In our baseline specification, we assume that all regions outside of the U.S. have a flexible

exchange rate and so the DNWR never binds. We capture these assumptions by setting

δi,k = δk ∀ i ≤ M and δi,k = 0 ∀ i > M. Finally, equations (16) and (17) are satisfied with

complementary slackness,

(`i,k,t − Li,k,t)(Wi,k,t − δi,kWi,k,t−1) = 0. (18)

3.4 Nominal Anchor

So far, we have introduced nominal elements to the model (i.e., the DNWR), but

we have not introduced a nominal anchor that prevents nominal wages from rising so

much in each period as to make the DNWR always non-binding. We want to capture the

general idea that central banks are unwilling to allow inflation to be too high because of

its related costs. In traditional macro models, this is usually implemented via a Taylor

rule. Instead, we use a nominal anchor that captures a similar idea in a way that lends

itself to quantitative implementation in our rich trade model.

Specifically, we assume that world GDP in dollars grows at a γ constant gross rate,

I

∑
i=1

S

∑
s=1

Wi,s,tLi,s,t = γ
I

∑
i=1

S

∑
s=1

Wi,s,t−1Li,s,t−1. (19)

This nominal anchor has some desirable properties. First, it allows us to solve our

otherwise-unwieldy model using a fast contraction-mapping algorithm in the spirit of

Alvarez and Lucas (2007) that we develop to deal with equations (16)-(18) implied by the

DNWR. We describe this algorithm in Section B.7. Second, for certain combinations of γ

and δ, it can be seen as capturing a given level of world aggregate demand in the context

of a global savings glut. Intuitively, we would obtain similar results if we removed (19)

and assumed instead that something prevents the Chinese wage in dollars from rising.

This could occur if China wants to preserve its competitiveness and uses a combination

of monetary and exchange rate policies to prevent the Chinese wage in dollars from

increasing, while the U.S. does not offset this with its own policies (perhaps because of
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inattentiveness). We further discuss alternative nominal assumptions in Section 8.2.

Consider a shock that requires the relative wage of some sector k in region i to fall

in order to maintain full employment in that sector-region. If δk is low enough, or the

exchange rate can depreciate (e.g., δi,k is low), then nominal wages can adjust downwards

as required to avoid unemployment. Relatedly, if γ is high enough then again there would

be no unemployment, since no downward adjustment is needed in the nominal wage.

However, there are combinations of δi,k and γ that can lead to unemployment after the

shock, although there would then be a decline in unemployment as the DNWR and/or

the anchor allow for adjustment year after year.

3.5 Equilibrium

Following CDP, we can think of the full equilibrium of our model in terms of tem-

porary and sequential equilibria. In our environment with DNWR, given last period’s

world nominal GDP, wages {Wi,s,t−1}, and the current period’s labor supply {`i,s,t}, a

temporary equilibrium at time t is a set of nominal wages {Wi,s,t} and employment levels

{Li,s,t} such that equations (3)-(7) and (16)-(19) hold. Without DNWR then Li,s,t = `i,s,t

for all i, s, and (relative) wages would be determined by equations (3)-(7), with equations

(16)-(19) just serving to pin down nominal wages. DNWR implies that labor demand and

supply may not be equalized, so we need all equations in (3)-(7) and (16)-(19).

In turn, given initial world nominal GDP (∑I
i=1 ∑S

s=1 Wi,s,0Li,s,0), labor supply {`i,s,0},

and wages {Wi,s,0}, a sequential equilibrium is a sequence {ωi,s,t, ∆i,s,t Vi,s,t, µji,sk|i,t,

µji,s#,t, `i,s,t, Wi,s,t, Li,s,t}∞
t=1 such that: (i) at every period t {Wi,s,t, Li,s,t} constitute a

temporary equilibrium given ∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1, {Wi,s,t−1}, and {`i,s,t}, and (ii)

{ωi,s,t, ∆i,s,t, Vi,s,t, µji,sk|i,t, µji,s#,t, `i,s,t}∞
t=1 satisfy equations (8)-(15).

3.6 Dynamic Hat Algebra

Our goal is to use a calibrated version of the model to compute the employment

and welfare effects of a trade shock. We do this using data for U.S. states as well as

other countries, but without needing to calibrate technology levels and iceberg trade costs
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along the transition and without requiring data on nominal wages per efficiency unit of

labor. We follow the exact hat algebra methodology of Dekle et al. (2007) and its extension

to dynamic settings proposed by CDP. Consequently, our counterfactual exercises only

require data on revenues Ri,s,t, value added Yi,s,t ≡ Wi,s,tLi,s,t, trade deficits Di,t, mobility

matrices µji,sk|i,t and µji,s#,t, labor supply levels `j,s,t, and trade shares λij,s,t in period zero

(t = t0), whatever shocks we are interested in, and the model’s parameters, namely δi,k,

γ, κ, ν, {σs}, {αj,s}, {φi,s}, and {φi,sk}.

We use ẋt to denote xt/xt−1 for any variable x. Appendix B.3 describes how to ex-

press the equilibrium system in dots and leave it in terms of observables in period zero.

We assume that the economy starts from a point where every region had full employ-

ment.15 Appendix B.4 describes the algorithm we use to solve the system “in dots”.

We are interested in obtaining the effects of the China shock as it is introduced in an

economy that did not previously expect this shock. In order to do this, we use x̂t to denote

the ratio between a relative time difference in the counterfactual economy (ẋ′t) and a rela-

tive time difference in the baseline economy (ẋt), i.e. x̂t = ẋ′t/ẋt for any variable x. Then

we compare a counterfactual economy where the knowledge of the China shock is unex-

pectedly introduced in the year 2001 (and agents have perfect foresight about the path of

the shock from then on), with a baseline economy where no shocks occur. Appendices

B.5 and B.6 describe how to express and solve the equilibrium system “in hats”.

Our general equilibrium model also allows us to compute the welfare effects of the

shock. Using the utility framework described in Section 3.2, we can express the welfare

change in sector s of region j due to the China shock as

Vj,s =
∞

∑
t=1

βt ln

 ∆̂j,s,tω̂j,s,t(
µ̂jj,ss|j,t

)ν (
µ̂jj,s#,t

)κ

 .

This expression corresponds to the permanent equivalent variation in real income for

15Assuming that the U.S. had full employment in the year 2000 is not problematic, since that year was the
peak of a business cycle, with a historically low unemployment rate of just 4%. The existence of 4% unem-
ployment is consistent with our assumption of “full employment” because the concept of unemployment
in our model is that of “cyclical” unemployment, i.e., the unemployment in excess of the natural rate.
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workers originally employed in region j in sector s, so that V′j,s,0 = Vj,s,0 + Vj,s/(1− β).16

For intuition, consider a shock that decreases the expected risk-adjusted real wage in

sector j, s, ∆̂j,s,tω̂j,s,t < 1. Without mobility we would simply have

Vj,s =
∞

∑
t=1

βt ln
(
∆̂j,s,tω̂j,s,t

)
,

which is the present discounted value of the changes in the real wage. Mobility allows

workers in the sector to transition to other sectors and regions, as captured by µ̂jj,ss|j,t < 1

and µ̂jj,s#,t < 1. Finally, given those mobility measures, higher variability parameters ν

and κ imply larger gains from moving out of the affected sector.

The welfare expression above is given at the sector-region level. However, in some

parts of the paper we will refer to welfare measures at the regional level. Such regional

welfare measures are computed as weighted averages of the corresponding sector-region

welfare levels, with weights given by the initial population shares.

4 Data for the Quantitative Exercise

We provide a brief description of our data construction procedure here and relegate

details to Appendix C. We use trade, production, and employment data for 50 U.S. states,

36 countries, and a rest of the world region, for a total of 87 regions. We consider 14

market sectors: 12 manufacturing sectors, one service sector, and one agricultural sector.

Labor, consumption, and input shares For each region j and each sector k, our model

requires data to compute the share of labor in production φj,k, the share of intermediates

φj,sk ∀s, and the consumption shares αj,k. We use data from the Bureau of Economic

Analysis (BEA) for U.S. states and from the World Input-Output Database (WIOD) to

compute the share of value-added in gross output of region j, which in our model is

equivalent to φj,k. We also scale the relative importance of each U.S. state in the total

value added of the U.S. so that the sum of value added across states matches the aggregate

16See Appendix B.8 for details. Trade imbalances supported by transfers imply that consumption may differ
from real income. We follow Costinot and Rodriguez-Clare (2014) and measure welfare by real income
rather than consumption to avoid attributing a direct gain to the foreign transfer.
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value-added of the U.S. according to WIOD. We compute φj,sk as the share of purchases

of sector k coming from sector s (the input-output coefficient) using WIOD data.

Bilateral trade flows We construct bilateral trade flows between all region pairs for each

sector in four steps. First, we take sector-level bilateral trade flows between countries

from WIOD. Second, we follow CDP to calculate the bilateral trade flows in manufac-

turing among U.S. states by combining WIOD and the Commodity Flow Survey (CFS).

Third, we use the Import and Export Merchandise Trade Statistics to compute – for man-

ufacturing and agriculture – the sector-level bilateral trade flows between each U.S. state

and each other country in our sample. Fourth, we combine data for region-level produc-

tion and expenditure in services from the Regional Economic Accounts of BEA, WIOD

data, and data on bilateral distances to construct service trade flows among all regions

following a gravity structure. We follow a similar approach for agriculture, using data

from the Agricultural Census, the National Marine Fisheries Service Census, and WIOD.

Labor flows across sectors and regions For the U.S. states, we combine data from the

Current Population Survey (CPS), the American Community Survey (ACS), the state-to-

state migration data from the IRS SOI Tax Stats, and the BLS sector-state level employ-

ment data to construct the matrix of migration flows µji,sk,t between 1999 and 2000. The

final migration data (i) satisfies that the total movements between states across sectors

add up to the total state-to-state movements in the IRS data and (ii) is consistent with the

change in the stock of workers across sector-state pairs between 1999 and 2000 in the BLS

and Census data. Finally, we assume that there is no migration between countries, and

that, for countries outside of the U.S., there are no costs of moving across sectors within

a region. Given this, one can infer the matrix of migration flows for non-U.S. countries

from the labor distribution in 1999 and 2000, as detailed in Appendix C.3.

5 Calibration

In this section, we describe how we calibrate our main parameters (δ, ν, κ), as well

as the China shock. We focus on the effect of the China shock as captured by a set of
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productivity shocks in China given by {ÂChina,s,t} that apply only to the 12 manufacturing

sectors. Inspired by ADH, and following CDP and Galle et al. (2023), we calibrate these

shocks to match the changes in U.S. imports from China predicted from the changes in

imports from China to other high-income countries.17

We decompose the total productivity shock in sector s and time t into the product of

a sector-level productivity increase that is constant from 2000 to an end year and a pro-

ductivity increase over time that is constant across sectors, i.e. ÂChina,s,t = Â1
China,t Â2

China,s.

The end year will be 2007 in our baseline specification and 2011 in a specification with a

longer-lasting China shock.18 This means we have to estimate 19 parameters (or 23).

We choose {Â1
China,t} and {Â2

China,s} to match two targets. The first target is the vec-

tor of annual predicted changes in U.S. imports from China in all manufacturing sectors

combined, obtained from the following regression:

∆XC,US,t = a + b1∆XC,OC,t + εt,

where ∆XC,US,t is the change in U.S. imports from China between year t− 1 and year t in

all manufacturing sectors, ∆XC,OC,t is the corresponding change in imports from China by

the other high-income countries, and b1 is the coefficient of interest. The predicted values

from this regression are denoted { ̂∆XC,US,t}. The second target is the vector of predicted

changes in U.S. imports from China between 2000 and the end year across sectors, ob-

tained from the regression:

∆Xend−2000
C,US,s = b2∆Xend−2000

C,OC,s + εs,

where ∆Xend−2000
C,US,s is the change in U.S. imports from China between 2000 and our end

year in sector s, ∆Xend−2000
C,OC,s is the corresponding change in imports from China by the

other high-income countries, and b2 is the coefficient of interest. The predicted values

from this regression are denoted { ̂∆Xend−2000
C,US,s }.19 We choose {Â1

China,t} and {Â2
China,s}

17We use the subset of ADH countries that are also present in the 2013 version of the WIOD, namely Aus-
tralia, Germany, Denmark, Spain, Finland, and Japan.

18As pointed out in Autor et al. (2021), the China shock approached peak intensity around 2010 and
plateaued shortly after. Because of this, their baseline definition of the trade shock is the period 2000-
2012. We use 2011 as the final year because this is the last year in the WIOD 2014 data release.

19We exclude the constant in this regression because it can lead to negative predicted imports from China,
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such that the total productivity changes in China {ÂChina,s,t} deliver changes in imports

in our model that match the values of { ̂∆XC,US,t} and the values of { ̂∆Xend−2000
C,US,s }.20

The calibration of the key model parameters (described below) is based on matching

moments that capture the relative effect of the China shock on labor force participation,

unemployment, and population. These moments come from regressions of changes in

these variables across regions differentially exposed to the China shock, as captured by

an exposure measure that follows the one proposed by ADH:

Exposurei ≡
S

∑
s=1

Li,s,2000

Li,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (20)

where RUS,s,2000 is total U.S. output in sector s in the year 2000 and Li,s,2000 is employment

of region i in sector s in year 2000, Li,2000 ≡ ∑s Li,s,2000.

For our baseline specification, we assume that only the manufacturing sectors are

subject to DNWR so that δi,k = 0 if k is services or agriculture.21 We also assume that all

countries outside the U.S. have a flexible exchange rate that adjusts in such a way that

they retain full employment, implying that δi,k = 0 for all i > M. Therefore, we have a

single δ parameter that applies to all manufacturing sectors in all U.S. states. We do not

calibrate γ and δ separately – since only their relative value matters – and instead assume

that γ is 1, so that the burden of adjustment falls on δ.

We use dynamic hat algebra as described in Section 3.6 to simulate the economy’s

response to the calibrated China shock, and then choose values of δ, ν, and κ so that OLS

coefficients on the simulated data match three estimates from ADH: a $1,000 per worker

increase in import exposure to China increases the unemployment-to-population ratio by

0.22 percentage points, the NILF-to-population ratio by 0.55 percentage points, and leads

which is impossible. While the regression only has 12 observations, it has an R2 of 0.99.
20The multiplicative nature of ÂChina,s,t = Â1

China,t Â2
China,s, implies that their level is not identified. We use

the normalization ∑S
s=1 Â2

China,s = 1. For more details see Appendix B.9.
21There are a few papers documenting a substantial degree of heterogeneity in wage rigidity across sectors

and occupations (Radowski and Bonin, 2010; Du Caju et al., 2012). Hazell and Taska (2023) find that
production workers face a higher degree of DNWR than workers in non-production occupations. Since
production workers are a higher share of total labor in manufacturing compared to non-manufacturing,
this could explain why the DNWR could bind more strongly in manufacturing. Another explanatory
element could be the presence of stronger unionization in manufacturing.
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to a 5 basis-points decrease in population.22 This leads to calibrated values of δ ≈ 0.99,

ν = 0.54, and κ = 6.5.23 The value of δ implies that nominal wages can fall around

1% annually, and lands within the ballpark described by Schmitt-Grohe and Uribe (2016)

who obtain an annual δ of 0.984 (after “normalizing” γ to one as we do). Our estimates

for ν and κ compare to a value of ν = κ = 2.02 in CDP.24,25 Imposing ν = κ = 2.02 would

lead to effects on labor force participation and population that are too small relative to

those estimated by ADH. Alternatively, we could constrain our model to satisfy ν = κ,

but without setting this single elasticity to the CDP value of 2.02. Calibrating ν = κ and

δ to match the unemployment and participation targets from ADH leads to a population

response that is over four times greater than the population response in ADH.

Finally, we assume that the trade-elasticity parameter σs is constant across sectors

and takes the value of 6, consistent with the trade literature (e.g. Costinot and Rodriguez-

Clare, 2014). We also set the discount factor β equal to 0.95 and the risk sharing parameter

z equal to 0.5, implying 50% risk sharing within a given region-sector.

6 Effects of the China Shock in the Baseline Model

6.1 Comparison of Cross-Sectional results with ADH

We now use the calibrated model to study the effects of the China shock across U.S.

states. We first obtain the changes in employment, unemployment, labor participation,

real wages, and population for all the 87 regions included in our model. Then we run OLS

22These results correspond to the ones in panel B of Table 5 and panel C of Table 4 in ADH. Some recent
papers such as Borusyak et al. (2021) have cast doubt on the statistical significance of some of ADH’s
results. Despite that, we focus on these results as targets since ADH is the most influential paper in this
literature. That said, our quantitative analysis can be accommodated to match alternative targets.

23Identification relies on the assumption that the China shock is the only shock affecting the model economy.
Thus, unlike the approach in Caliendo et al. (2019), we do not saturate the model with shocks to match
all the data.

24In a static setup, our estimate of ν = 0.54 implies a labor supply elasticity at the sector level of around
2 (for small enough sectors). This is just slightly higher than the estimate for this elasticity in Galle et al.
(2023). Hsieh et al. (2019) estimate a labor supply elasticity at the level of occupations, finding also a value
of 1.5, although they end up using a value of 2 in their quantitative analysis to come closer to estimates
of the labor supply elasticity in the meta analysis of Chetty et al. (2013). Similar values are obtained for
mobility across occupations in Burstein et al. (2019).

25Our model is annual, so we compare our estimates with the annualized version of CDP’s single elasticity.
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regressions across U.S. states of the model-implied changes in the variables of interest on

the exposure measure in equation (20). We present the resulting coefficients in Table 1,

along with the analogous coefficients from ADH.

Column (1) of Table 1 reports the results of ADH presented in their panel C of Table 4,

panel B of Table 5, and panel B of Table 7. Rows one, two and five correspond to the ADH

regression coefficients that we used as targets in our calibration. Column (2) of Table 1

presents the results of our baseline model, where the changes in productivity in China

last from the year 2001 to 2007. We focus on the results related to employment and wages

in this section, and discuss the welfare effects in Section 6.3.26 We postpone the discussion

of columns (3) and onwards to Section 7.

The results in column (2) show that exposure to China measured as in ADH leads

to a fall in manufacturing and non-manufacturing employment of 0.61 and 0.17 percent-

age points, respectively. These are moments that we did not target in our calibration.27

Nevertheless, they are very close to the corresponding ADH coefficients. Regarding the

effect of exposure to China on wages, our baseline specification indicates that manufactur-

ing wages remain roughly unchanged while non-manufacturing wages fall by 118 basis

points. This is qualitatively consistent with the empirical evidence, which finds that the

non-manufacturing wage falls more than the manufacturing wage in response to more

exposure to the shock.28

Our results imply a dispersion in the impacts of the China shock on employment and

income per capita across U.S. states that is comparable to the one predicted by the ADH

specification in the 2000-2007 data. To assess this, we first compute the predicted vari-

26We focus on a state-level analysis because this is the level at which one can construct bilateral trade
matrices and mobility flows without having to impose further strong assumptions on how the state-
level flows are split between different commuting zones. Moreover, running simple ADH state-level
regressions without controls yields similar response-to-exposure coefficients.

27The only restriction is that the coefficients have to add up to 0.77 since this is the sum of the targeted
unemployment and NILF coefficients in ADH.

28We emphasize that average wages are not targeted in our calibration. Instead, the three key parameters
(δ, ν, κ) are identified solely from observed changes in unemployment, nonemployment, and population.
Although our model does not incorporate heterogeneous wage responses (which could be important as
highlighted by Autor et al., 2014 and Chetverikov et al., 2016) and thus cannot capture adjustments across
the wage distribution, this limitation does not affect our calibration strategy. The contrast between the
untargeted average wage change in the model and the empirical evidence in ADH is still a potentially
interesting additional piece of evidence.
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Table 1: Employment, population, wage, and welfare effects of exposure to China
across U.S. regions and associated parameters generating them

ADH Baseline Longer NM ν = κ
(1) (2) (3) (4) (5)

Change in Population Shares
Unemployment (targeted) 0.221∗∗ 0.221 0.221 0.221 0.221
NILF (targeted) 0.553∗∗ 0.553 0.553 0.553 0.553
Mfg Employment -0.596∗∗ -0.605 -0.578 -0.602 -0.613
Non-mfg Employment -0.178 -0.169 -0.196 -0.172 -0.161

Percentage Changes
Population (targeted) -0.050 -0.050 -0.050 0.000 -0.211
Mfg Wage 0.150 0.023 0.209 0.016 0.039
Non-mfg Wage -0.761∗∗ -1.177 -0.966 -1.204 -1.182

Welfare
Welfare vs exposure -0.091 -0.134 -0.081 -0.099
Mean welfare change 0.126 0.011 0.138 0.124
Mean welf. change no DNWR 0.312 0.450 0.314 0.313

Parameters
ν 0.537 0.706 0.611 0.606
κ 6.548 13.53 0.606
δ 0.991 0.994 0.990 0.991

Notes: The changes for the first four coefficients are measured from 2000 to an average of 2006-2008, mul-
tiplied by 10/7 to turn into decadal changes. Population and wages are simply measured in percentage
change (between 2000 and 2006-2008), still turned into decadal changes. Welfare is obtained as described
at the end of Section 3.6. ν is the parameter that governs substitution between sectors, κ is the one that
governs substitution between regions, and δ governs the DNWR. Column 1 reproduces the ADH results
from their Tables 4 (panel C, first column), 5 (panel B, first row) and 7 (panel B, columns 1 and 4), stars
denote significance, one star for 5%, and two for 1%. Column 2 gives the results in our baseline specifica-
tion. Column 3 describes a longer shock that lasts until 2011 instead of until 2007. Column 4 eliminates
migration across U.S. states. Column 5 imposes ν = κ. In column (4) κ is not reported, because, without
migration, this parameter is irrelevant.

ation in the employment-to-population ratio and income per capita by running ADH’s

main regression specification on their data at the commuting zone level.29 We then com-

pute the population-weighted average of these predicted values across all commuting

zones within the same state. Finally, we compare these empirical predictions to their

model-implied counterparts. The standard deviation (s.d.) of the changes in the state-

level employment to population ratio predicted by the model is 1.11, which is similar to

the s.d. of 1.18 implied by the empirical estimates. In turn, the s.d. of the changes in in-

come per capita predicted by the model is 2.1, while the one associated with the empirical

29For the variation in employment rate we focus on the change in the ratio of total employment to working
age population using data from ADH. For the variation in income per capita we follow the left hand
side of equation 8 in Autor et al. (2021) to compute the deviation in changes in income per capita of each
commuting zone relative to the national weighted average. We use the total salary income per adult from
column 2 of Table 9 in ADH as the measure of income per capita.
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estimates is 1.9.

These results stand in contrast to previous quantitative models such as CDP and

Galle et al. (2023), which imply too little spatial heterogeneity in the employment and

income effects relative to ADH (as shown by Adao et al., 2023; Autor et al., 2021). There

are two reasons why our model generates more dispersion in employment and income

effects. First, because of DNWR, our model leads to much larger declines in employment

in the most exposed regions, both directly through higher unemployment, and indirectly

through discouraging labor participation. Second, by allowing for a difference between

the elasticity of moving across sectors and that of moving across regions, we arrive at

lower mobility across states and a higher labor supply elasticity than CDP.

6.2 Aggregate Employment Effects

We now use our general equilibrium model to go beyond cross-sectional implications

and obtain the implied aggregate effects of the China shock on unemployment and other

variables. Figure 3 plots the aggregate U.S. unemployment generated by the China shock

according to our model. It increases gradually at first, reaching 1.25 percent in 2007, and

then falls to a level near zero by 2016. Notice that all excess unemployment generated by

the DNWR eventually disappears if shocks are no longer hitting the economy. This occurs

2000 2004 2008 2012 2016

 Year

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 A
gg

re
ga

te
 U

.S
. u

ne
m

pl
oy

m
en

t f
ro

m
 th

e 
sh

oc
k,

 in
 %

Figure 3: Path of aggregate U.S. unemployment generated by the China shock in the
baseline specification between 2000 and 2016.
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because, since the nominal wage can fall approximately 1% per year, wages eventually

reach the level required to make all unemployment disappear. This is a feature of the

model that squares well with the evidence presented in Section 2.2, as well as with the

historically low levels of unemployment observed in the U.S. between 2016 and 2019.

Regarding aggregate labor force participation, there is a sign reversal throughout the

transition. On impact, the China shock leads to a temporary decline in participation,

stemming from the fact that unemployment discourages participation due to the risk of

engaging in the labor market but not being able to obtain a job. U.S. labor force partic-

ipation falls by up to 1.2% in 2007. However, when the China shock stops hitting the

economy and the nominal wage has room to fully adjust, labor force participation ends

up increasing relative to its original level. This happens because the China shock is a

positive terms-of-trade shock for the U.S., which translates to a higher real wage and

an increase in labor supply. By 2015, aggregate labor force participation in the U.S. has

already reversed sign and increased roughly 1% relative to its pre-shock value.

The results imply that most states experience both a long-run increase in the real

wage and a temporary increase in unemployment. This is a consequence of a shock that

implies both an improvement in the terms of trade and a decline in the export price index

in a setting with DNWR. To see this most clearly, consider an economy facing a foreign

shock and a consequent decline in both the export and import price indices, but with the

latter falling by more than the former. Since the terms of trade have improved, the real

wage and employment would increase in the absence of nominal frictions. However, the

fact that the price index of its exports has fallen requires the nominal wage to decline, and

if this decline is higher than 1− δ, there would be temporary unemployment.30

6.3 Welfare Effects

We find that U.S. states more exposed to the China shock experience lower model-

implied welfare gains: a $1,000 per worker increase in exposure to China decreases wel-

fare by around 9.1 basis points (this is the coefficient in column 2, row 8 of Table 1). Figure

4 presents a scatter plot of the percentage change in welfare across states against expo-
30Appendix Figure A.10 provides additional intuition for these results.

28



sure to China, while Appendix Figure A.9 displays a welfare map across the 50 U.S. states.

There are 30 states that gain from the China shock while 20 states suffer welfare losses.

When we consider the U.S. as a whole, and measure welfare by the population-

weighted average across U.S. states, we see that the China shock leads to an increase

in welfare of roughly 12 basis points. We can compare the results of our baseline model

against those from a model without nominal rigidity (i.e., with δ = 0). In this alternative

version of the model without DNWR and without recalibrating other parameters (such as

ν or κ), the U.S. as a whole experiences gains of 31 basis points.31 Additionally, all but two

states experience welfare gains from the China shock. Comparing these two models, we

see that the temporary unemployment due to DNWR reduces the aggregate gains from

the China shock by roughly two thirds.

Following our measure of welfare changes in Section 3.6, which is at the sector-region

level, we can explore how the welfare effects of the China shock vary across workers ini-

tially employed in different sectors and regions. Figure 5 presents a histogram of welfare

changes for sector-states of the U.S. There is higher variation in this more disaggregated
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Figure 4: Welfare change vs exposure to China across U.S. states in the baseline speci-
fication. Selected states are labelled with the usual two-letter abbreviations.

31This is comparable to the gains obtain in other recent papers (e.g., CDP, Galle et al., 2023).
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Figure 5: Histogram of welfare changes across different sector-states of the U.S. in the
baseline specification.

measure, with welfare effects ranging from -60 to 156 basis points, compared to the mea-

sure at the state level, where the welfare effects range only from -31 to 99 basis points.

7 Alternative Specifications

In this section, we discuss the implications of the China shock through the lens of the

model under alternative specifications. First, we describe the results if the China shock

lasts until 2011 instead of 2007. Second, we discuss how different migration assumptions

impact the results.

7.1 Longer Shock

As described in Section 5, our baseline specification incorporates a productivity

shock in China that lasts from 2001 to 2007. In this section, we discuss a specification

where the China shock lasts instead from 2001 to 2011. This variant accounts for the

fact that the real-world shock might not have stopped in 2007. For instance, Autor et al.

(2021) point out that Chinese import penetration continued to grow after 2007, reaching
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Figure 6: Effects of the China Shock on employment and non-employment
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Note: Each panel reports three lines. The blue line with circular markers shows the two-stage least squares
coefficient estimates for β1h in equation (1) and the shaded area represents their 95% confidence intervals.
These coefficients are the same as in Figure 1 with the exception that the total employment to population ef-
fects in Figure 1 panel (a) are separated into manufacturing to population (panel a) and non-manufacturing
to population (panel b). The green dashed line displays the effects in our model when the China shock
lasts between 2001 and 2011 (labeled as “Model Shock 2011”), while the black line with triangular markers
displays the effects in our baseline model when the China shock lasts between 2001 and 2007 (labeled as
“Model Shock 2007”). The three lines coincide in 2007 for panels (c) and (d) by construction.

peak intensity around 2010 and plateauing shortly thereafter. This motivated them to use

a definition of the China Shock that stops in 2012. We use 2011 as our final year because it

is the last year available in the WIOD-2014 release, which is one of our main data sources.

Column (3) of Table 1 reports some results under the specification with the longer shock.

We still target the unemployment, NILF, and population responses in 2007 from ADH.

The results for manufacturing and non-manufacturing employment do not change much

compared to the baseline, but the wage changes become closer to those in ADH.

To explore how the model-implied persistence of the shock relates to the empirical

evidence, Figure 6 shows how the cross-sectional effects of the China Shock evolve over

time. The figure’s structure is similar to that of Figure 1 but with the total employment
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effects split into manufacturing and non-manufacturing. The blue line shows the empiri-

cal estimates for β1h in equation (1) (the same ones as in Figure 1), the green line displays

the equivalent effects in our model when the China shock lasts until 2011, and the black

line displays the effects in our baseline specification. The green and black lines match the

blue line in 2007 for panels (c) and (d) by construction; these are two of our three targeted

moments, the other one being the ADH population effect in 2007. Besides the targeted

coefficients in 2007, neither the baseline nor the longer-shock specification use any other

targets related to the dynamic path of the cross-sectional empirical results.32

Figure 6 illustrates that, qualitatively, the baseline specification does a decent job at

matching some of the dynamic properties of the cross-sectional responses in the data, as

it is within the confidence intervals for all panels except the manufacturing employment

one. Quantitatively, however, the manufacturing employment, NILF, and unemployment

results in the baseline are not as persistent as in the data, undershooting for all of the

2010’s. By contrast, the dynamic pattern of the cross-sectional results in the longer-shock

specification is very close to the one in the data. This is reassuring, as we do not target

any of these results. Specifically, the green dashed line for the longer-shock specification

is within the confidence interval of the empirical estimates in all panels, and it is also very

close to the specific point estimates for almost all years.

It is also worth noting that in the longer-shock specification, the aggregate welfare

effect of the China shock in the U.S. becomes very close to zero. Namely, the extended

period of unemployment and general dislocation generated by the longer shock, depicted

in Figure 7 (which mimics Figure 3 but for the longer-shock specification instead of the

baseline), manages to extinguish nearly all the welfare gains that the U.S. would have

experienced in the absence of DNWR. As can be seen from Figure 7, aggregate U.S. un-

employment generated from the shock peaks at a higher level (1.75% instead of 1.25%)

and lasts much longer than in the baseline.

A notable feature of Figure 7 is the decline in unemployment generated by the shock

in 2009. This follows naturally from our calibration procedure, which sticks as close as

32The longer-shock specification does target the changes in productivity in China in order to match the
predicted changes in U.S. imports between 2001 and 2011 as described in Section 5, but this is completely
independent from the cross-sectional empirical results we are discussing here.
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Figure 7: Path of aggregate U.S. unemployment generated by the China shock in the
longer-shock specification between 2000 and 2028.

possible to ADH’s instrumental-variable strategy. During the Great Recession, imports

from China–both by the U.S. and other developed countries used in ADHs instrument–

declined significantly. As a result, our calibration infers a negative productivity shock in

China for 2009. This leads the model to produce a corresponding decline in the unem-

ployment generated by the shock that year. To avoid complications related to the Great

Recession and how it could have interacted with the China Shock, we adopt the shock

lasting until 2007 as our baseline. Nevertheless, it is still worthwhile to explore the im-

plications of the longer shock for the dynamic pattern of the cross-sectional effects of

exposure (as done in Figure 6).

7.2 Different Migration Assumptions

Given the potential importance of migration for the dispersion of welfare effects

across U.S. states, we now study two polar options for migration: no migration and ν = κ,

which leads to more migration across states in response to the China shock.

In the first case, workers only have the option of moving between sectors within a

state. We start from a mobility matrix that matches intra-state migration flows from the

CPS data, which has good coverage about employment status and industry of each re-
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spondent who stayed in the same state between waves of the survey. We then compute

the impacts of the China shock in the same way as in the baseline model except for the

fact that migration flows across states have been shut down. The results are described in

column (4) of Table 1.33 The calibrated ν increases relative to our baseline, but the cali-

brated δ remains similar. In addition, many non-targeted moments, such as the changes in

manufacturing and non-manufacturing employment and wages, as well as our inferred

welfare changes (with and without DNWR) also stay relatively unchanged.

In our second alternative specification, we impose that ν = κ, which is necessarily

true in CDP.34 The results are described in column (5) of Table 1. We find that ν = κ =

0.606, similar to our baseline estimate of ν, but less than one tenth of our baseline estimate

of κ. This much lower estimate of κ in the restricted model leads to a population response

to the China shock that is more than four times greater than the one in the baseline model

(and in ADH). Other results, like the calibrated δ and the employment and wage changes

are similar to those from the baseline.

8 Discussion

8.1 Different Exposure Measures

The measure of exposure to China that we have been using so far follows the one in

ADH. This is a Bartik instrument where the “shift component” is given by the predicted

sector-level change in U.S. imports from China and the “share component” is given by

sector-level employment shares in a region. As we now discuss, this exposure measure

cannot fully capture the welfare effects of the China shock, because it misses the impact

through consumer prices.

As we show in Appendix D, in a neoclassical environment with an upward sloping

labor supply curve but without nominal rigidities, a sufficient statistic for the first-order

changes in employment resulting from the China shock would use net exports as the

33Notice that in this case κ is no longer relevant, and we no longer match the response of population to
exposure from ADH.

34As in the previous extension, we do not target the population response in ADH, and only target the
unemployment and participation responses.
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“share” component, as in

ExposureNX
i ≡

S

∑
s=1

Ri,s,2000 − Ei,s,2000

Ri,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (21)

where Ri,s,2000 are total sales of region i in sector s in year 2000, and Ei,s,2000 is total ex-

penditure of region i on sector s in year 2000. This captures the effect of the shock on

the economy’s terms of trade. By contrast, when the wage does not adjust because of

DNWR, employment shares become directly relevant, since the change in employment is

determined entirely by the shift in the demand curve. Of course, if wages are sticky in

the short run due to DNWR but can eventually adjust to their frictionless level, then both

measures of exposure are expected to be relevant.

To illustrate this point, we regress the state-level changes in welfare and employment

generated by the model with and without DNWR on both exposure measures (normal-

ized to have the same mean and standard deviation) and a constant. As shown in Ap-

pendix Table D.1, without DNWR, only the net export exposure measure is significant for

employment and welfare, while ADH exposure is not significant. By contrast, columns

(2) and (4) show that in the model with DNWR both ADH exposure and net export ex-

posure are significant. Combined with the findings in ADH, these results indicate that a

mechanism similar to DNWR is likely to be active in the U.S. economy.

8.2 Nominal Considerations

While the nominal anchor described in equation (19) allows us to efficiently solve

our model, we acknowledge that it is relatively simplistic.35 Importantly, we would ob-

tain similar results if we assumed instead that China used a combination of monetary and

exchange rate policies to prevent both an appreciation of its currency and large inflation-

ary pressures — thereby preventing its wage in dollars from increasing — while the U.S.

did not fully offset this with its own policies (perhaps due to inattentiveness, or due to

35For an extended discussion of alternative specifications where we 1) incorporate part of the increases
in the Chinese trade surplus that occurred between 2000 and 2007 as part of the China Shock and 2)
explore alternative exchange-rate arrangements for third-countries, please see the 2024 vintage of the
NBER working paper version of this paper, Rodrı́guez-Clare et al. (2020).
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the fact that because of other shocks, like the 2002-2006 housing bubble, unemployment

from other causes was particularly low during that time).

The case of China preventing an appreciation of the renminbi during the early 2000’s

is a particularly relevant one, as this was something that the Chinese government was

widely regarded as doing (c.f., Bergsten and Gagnon, 2017). While the richness in the

trade structure of our model prevents us from solving it under this alternative nominal

anchor, there are papers that have performed related exercises. Kim et al. (2024), for

example, solve a model that is similar to ours but where deficits are endogenous and

China uses a currency peg. The added realism in the macro assumptions comes at the

cost of richness in the trade structure, as they only have six countries (with no internal

regions) and six sectors. Nevertheless, their model’s implications for the unemployment

and welfare effects of the China shock on the U.S. are qualitatively similar to ours in that

a significant amount of aggregate unemployment is generated and the welfare gains of

the shock are reduced by a large fraction due to the presence of wage rigidities.

Apart from the form of the nominal anchor assumed in our model, we also explore

the tradeoff between unemployment and inflation that arises in response to the shock.

As discussed in Section 6.2, DNWR implies that the China shock leads to aggregate un-

employment during a transition period. According to our baseline specification, the cu-

mulative effect is roughly 6 year-points of unemployment over the 2001-2010 decade.36

In principle, monetary policy could have prevented this outcome, but only at the cost of

higher inflation. We explore this by computing a “sacrifice ratio”. This measure answers

the question: if the central bank wanted to have one fewer year-point of unemployment

between 2001 and 2010 relative to our baseline specification, how many more year-points

of inflation over the same 10 years relative to the baseline would have been necessary?

As can be seen in Figure 8, this sacrifice ratio is highly non-linear. Around the base-

line calibration, lowering unemployment by one year-point would require accepting 1.63

year-points higher inflation. This increases to 2.2 year-points when unemployment is 3

year-points lower than in the baseline calibration, and shoots off toward infinity when un-

employment is around 6 year-points lower than in the baseline calibration. The sacrifice

36This is the area under the curve between 2001 and 2010 in Figure 3.
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Figure 8: This figure displays aggregate U.S. unemployment between 2001 and 2010,
in year-points, relative to the baseline value, in the x-axis. The y-axis displays ag-
gregate U.S. inflation between 2001 and 2010, in year-points, relative to the baseline
value. The figure provides a notion of the “sacrifice ratio” between unemployment
and inflation that is implicit in the model.

ratio is lower near the baseline because a monetary expansion there makes DNWR less

binding and lowers unemployment, leading to higher output and a weaker inflationary

effect. By contrast, for lower unemployment levels DNWR is less binding and there is not

much additional output forthcoming from a further monetary expansion, so most of the

effect is inflationary. While our model does not have all the necessary macro ingredients

to properly study the relationship between unemployment and inflation in a way that is

robust to the Lucas critique, this analysis highlights the tradeoff involved and indicates

that the inflation costs of reducing the unemployment generated by the China shock are

not trivial through the lens of the model.

9 Conclusion

In this paper, we propose a dynamic quantitative trade and migration model with

downward nominal wage rigidity and use it to study the adjustment path after a large
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trade shock. We show that even a shock that improves an economy’s terms of trade can

increase unemployment if it requires a fall in the nominal wage that is larger than the

one permitted by nominal frictions. We calibrate the model to match the reduced-form

evidence in Autor et al. (2013) and find that, although the U.S. as a whole still gains from

the China shock, these gains are approximately two thirds lower than without rigidities.

We acknowledge that we have captured nominal forces and trade imbalances in our

model via relatively simple rules. We have done this so that we can have a rich trade

structure with the U.S. composed of many regions, as in Caliendo et al. (2019), allowing

us to match the empirical results in Autor et al. (2013). Our aim is that this exercise serves

to identify the key elements that future models need to incorporate.

Another limitation of our approach is that all employed workers in a given sector-

region earn the same wage and have the same expected future earnings. This is incon-

sistent with evidence in Autor et al. (2014) and Chetverikov et al. (2016) that lower-wage

workers in sectors most affected by the China shock experience worse earnings trajecto-

ries. This could be incorporated into our framework by including low- and high-skilled

workers, with low-wage workers less willing to move away from the most negatively

affected sector-regions, leading them to experience larger wage and employment losses.

Our approach also has the drawback that it implies workers’ employment status is

independent across periods, contrary to empirical evidence and to what one could get in

a search and matching framework. A fruitful direction for future research would be to

introduce search frictions into a quantitative trade model with many regions and DNWR.

Finally, it is important to note that our model does not incorporate mechanisms such as

human capital depreciation, hysteresis, or agglomeration forces that could amplify the

persistent employment losses of heavily exposed regions in response to trade shocks.
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standing the Unemployment and Welfare Effects of the China Shock” with the following

material:

• Appendix A provides additional tables and figures referenced in the main text.

• Appendix B presents the details of the model presented in Section 3.

• Appendix C contains more details about the construction of the datasets necessary for

the model’s calibration, which are described in Section 4.

• Appendix D presents theory and quantification for the alternative exposure measure dis-

cussed in Section 8.



A Additional Figures and Tables

Figure A.1: Baseline empirical analysis using an alternative construction of the
unemployment-to-population ratio
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Data Model Shock 2011 Model Shock 2007

Notes: The figure reports three lines. The blue line with circular markers shows the two-stage least squares
coefficient estimates for β1h in equation (1) where the outcome variable is the unemployment-to-population
ratio, and this variable is constructed using BLS data for unemployment and SEER data for population (in
contrast to the ACS data used in ADH). The shaded area represents the 95% confidence interval. The
regression estimates are analogous to those in Figure 1, differing only in the data source used to compute
the unemployment-to-population ratio. The green dashed line displays the effects in our model when
the China shock lasts between 2001 and 2011 (labeled as “Model Shock 2011”), while the black line with
triangular markers displays the effects in our baseline model when the China shock lasts between 2001 and
2007 (labeled as “Model Shock 2007”).
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Figure A.2: China Shock on unemployment in CZs with high vs low DNWR.
Share of individuals with negative wage changes in state s is below the median across
all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).

Figure A.3: China Shock on unemployment in CZs with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes in
state s is below the mean across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).
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Figure A.4: China Shock on unemployment in CZs with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes in
state s is below the median across all states

(a) Estimated β3,h
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(b) β1,h vs. β1,h + β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).

Figure A.5: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes in state s is below the mean across
all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).
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Figure A.6: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes in state s is below the median across
all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).

Figure A.7: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes in
state s is below the mean across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).
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Figure A.8: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes in
state s is below the median across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent confi-
dence intervals for these estimates. Coefficients in each year come from a separate IV regression following
equation (2).
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Figure A.9: Welfare change from the China shock across U.S. states in the baseline
specification, in percent.

A.1 Additional Intuition for the Results

We illustrate the mechanisms discussed in Section 6.2 in Figure A.10. Both panels have the

nominal wage in the vertical axis and employment in the horizontal axis. The China shock leads

to a fall in producer prices, shifting labor demand down. At the same time, the shock also leads to
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Figure A.10: Illustration of wage and employment effects, with and without DNWR.
The nominal wage is in the vertical axis, hence price movements results in shifts in the
labor supply curve. Employment is in the horizontal axis.

6



a decline in consumer prices, shifting the labor supply to the right. Panel (a) presents the results

without nominal frictions. The final result is a fall in the nominal wage from W0 to W∗, a fall in

prices from P0 to P∗ (not illustrated), an increase in the real wage from W0/P0 to W∗/P∗ (prices

fall more than nominal wages), and an increase in the amount of labor supplied from L0 to L∗.

Panel (b) of Figure A.10 shows the adjustment in the presence of DNWR assuming that

δ3W0 < W∗ < δ2W0. In the first year, the nominal wage only falls from W0 to W1 ≡ δW0 and

employment falls from L0 to L1, as determined by the demand curve. Since the nominal wage

does not fully adjust in the first year, the fall in consumer prices is also smaller than in the fric-

tionless case, and hence the labor supply curve only moves from LS to LS
1 . The gap between the

labor supplied at point A and labor demanded L1 is the level of unemployment. In the second

year, nominal wages adjust further down (to W2 ≡ δW1 = δ2W0), the labor supply curve moves

to LS
2 , employment increases from L1 to L2, labor supplied moves from point A to point B, and

unemployment decreases. In the third year, nominal wages finally adjust fully and there is no

more unemployment.

B Model Details

B.1 Production

Technology to produce the differentiated good of industry s in region i at time t is

Yi,s,t =

(
φ
−φi,s
i,s

S

∏
k=1

φ
−φi,ks
i,ks

)
Ai,s,tL

φi,s
i,s,t

S

∏
k=1

Mφi,ks
i,ks,t,

where Mi,ks,t is the quantity of the composite good of industry k used in region i to produce in

sector s at time t, φi,s is the labor share in region i, sector s, φi,ks is the share of inputs that sector s

uses from sector k in region i, and 1− φi,s = ∑S
k=1 φi,ks. The resource constraint for the composite

good produced in region j, sector k, at time t is

Mj,k,t = Cj,k,t +
S

∑
s=1

Mj,ks,t.

In turn, the resource constraint for good s produced by region i is Yi,s,t = ∑I
j=1 τij,s,tYij,s,t. The

composite in sector k is produced according to

7



Mj,k,t =

(
I

∑
i=1

Y
σk−1

σk
ij,k,t

) σk
σk−1

.

Let Pi,s,t be the price of Mi,s,t, pij,s,t be the price of Yi,s,t in j at time t, and Wi,s,t be the nominal wage

in region i, sector s, at time t. We know that pii,s,t = A−1
i,s,tW

φi,s
i,s,t ∏S

k=1 Pφi,ks
i,k,t , pij,s,t = τij,s,t pii,s,t, and

Pj,s,t =
(

∑I
i=1 p1−σs

ij,s,t

)1/(1−σs)
. Combining these we obtain:

P1−σs
j,s,t =

I

∑
i=1

(
τij,s,t A−1

i,s,tW
φi,s
i,s,t

S

∏
k=1

Pφi,ks
i,k,t

)1−σs

,

The price of final output in region j at time t is given by Pj,t = ∏S
s=1 P

αj,s
j,s,t. Multiplying the resource

constraint for Mj,k,t by Pj,k,t we get

Zj,k,t = Pj,k,tCj,k,t +
S

∑
s=1

Pj,k,t Mj,ks,t,

where Zj,k,t ≡ Pj,k,t Mj,k,t denotes the total expenditure of region j in industry k. Let the share of

that expenditure spent on imports from i be λij,k,t ≡
pij,k,tYij,k,t

Zj,k,t
. We know that

λij,k,t =
p1−σk

ij,k,t

∑l p1−σk
l j,k,t

=
p1−σk

ij,k,t

P1−σk
j,k,t

=

(
τij,k,t A−1

i,k,tW
φi,k
i,k,t ∏S

s=1 Pφi,sk
i,s,t

)1−σk

∑I
r=1

(
τrj,k,t A−1

r,k,tW
φr,k
r,k,t ∏S

s=1 Pφr,sk
r,s,t

)1−σk
.

Let Ri,k,t = pii,k,tYi,k,t represent the sales of good k by region i. Multiplying the resource constraint

for Yi,k,t above by pii,k,t we get pii,k,tYi,k,t = ∑I
j=1 τij,k,t pii,k,tYij,k,t, and hence Ri,k,t = ∑I

j=1 λij,k,tZj,k,t.

Plugging in from the resource constraint for Zj,k,t we have

Ri,k,t =
I

∑
j=1

λij,k,t

(
Pj,k,tCj,k,t + ∑

s
Pj,k,t Mj,ks,t

)
.

Note that Pj,k,t Mj,ks,t = φj,ksRj,s,t. Additionally, the total amount available for consumption in

region j at time t is the sum of total labor income (denoted Ij,t, notice Ij,t ≡
S
∑

k=1
Wj,k,tLj,k,t) and the

deficit (denoted Dj,t). So we get Pj,k,tCj,k,t = αj,k
(

Ij,t + Dj,t
)

, hence

Ri,k,t =
I

∑
j=1

λij,k,t

(
αj,k
(

Ij,t + Dj,t
)
+ ∑

s
φj,ksRj,s,t

)
.
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We know that a fraction φi,k of Ri,k,t is paid to labor, hence Wi,k,tLi,k,t = φi,kRi,k,t.

B.2 Labor Supply

As mentioned in the text, an agent’s utility in region j, sector s, at time t is given by

νj,s,t = Uj,s,t + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t},

with the joint distribution of vector ε being i.i.d over time and nested Gumbel,

F(ε) = exp

− I

∑
i=1

(
S

∑
k=0

exp (−εi,k/ν)

)ν/κ


with ν ≤ κ. If there is an strict inequality such that ν < κ, that means that the elasticity across

sectors (1/ν) is greater than the elasticity across locations (1/κ). Denote Vi,k,t+1 ≡ E[νi,k,t+1]. In

this appendix, we will prove two main results. First, the probability that an agent in js will choose

to move to ik conditional on moving to region i is

µji,sk|i,t =
exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − ϕji,sh

)1/ν
,

while the probability that an agent in js will move to any sector in region i is

µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − ϕji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
.

Second,

E

 max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}

 = ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν
)ν/κ

κ

+ γκ,

where γ is the Euler-Mascheroni constant. The previous expression implies

Vj,s,t = Uj,s,t + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
κ

+ γκ.

To show the first result, note that an agent that is in market js at time t will choose to switch

9



to ik if and only if the following expression holds for all mh:

βVi,k,t+1 − ϕji,sk + εi,k,t ≥ βVm,h,t+1 − ϕjm,sh + εm,h,t,

which is equivalent to εm,h,t ≤ νxim,kh + εi,k,t, where

xim,kh ≡
β (Vi,k,t+1 −Vm,h,t+1)−

(
ϕji,sk − ϕjm,sh

)
ν

.

Denoting

Φj,s,t ≡ E

[
max

{i,k}I,S
i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}
]

We know that

Φj,s,t =
I

∑
i=1

S

∑
k=0

∫ +∞

−∞

(
βVi,k,t+1 − ϕji,sk + εi,k,t

)
Gik(εi,k,t, xi,k,t)dεi,k,t

where Gik(εi,k,t, xi,k,t) is the partial derivative of F(·) w.r.t. to the ik element of the vector ε, with

the ik element of the vector evaluated at εi,k,t and the generic element in position mh of the vector

evaluated at νxim,kh,t + εi,k,t. Given our function F(ε) above, the partial derivative w.r.t the element

in position ik is

∂F(ε)
∂εi,k

=
1
κ

(
∑
h

exp (−εi,h/ν)

)ν/κ−1

exp (−εi,k/ν) exp

−∑
m

(
∑
h

exp (−εm,h/ν)

)ν/κ


We then have

Gik(εi,k,t, xi,k,t) =
1
κ

(
∑
h

exp (−xii,kh,t)

)ν/κ−1

exp (−εi,k,t/κ)

· exp

− exp (−εi,k,t/κ)∑
m

(
∑
h

exp (−xim,kh,t)

)ν/κ


where we have used the fact that xii,kk,t = 0. Integrating this over εi,k,t yields

∫ +∞

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t =

(∑h exp (−xii,kh,t))
ν/κ−1

∑m (∑h exp (−xim,kh,t))
ν/κ

∫ +∞

−∞

1
κ

exp (−εi,k,t/κ)

· T exp

[
− exp (−εi,k,t/κ) T

]
dεi,k,t,
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where

T ≡∑
m

(
∑
h

exp (−xim,kh,t)

)ν/κ

.

But note that ∫ +∞

−∞

1
κ

exp (−εi,k,t/κ) T exp

[
− exp (−εi,k,t/κ) T

]
dεi,k,t = 1,

because the integrand is the density associated with exp (− exp (−εi,k,t/κ) T), a univariate Gum-

bel. Hence, the previous expression simplifies to

∫ ∞

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t =

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν

∑
h

exp
(

βVi,h,t+1 − ϕji,sh

)1/ν

(
∑
h

exp
(

βVi,h,t+1 − ϕji,sh

)1/ν
)ν/κ

∑
m

(
∑
h

exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

It is easy to see that the first fraction is µji,sk|i,t, while the second one is µji,s#,t.

Now we want to solve for

E

[
max

{i,k}I,S
i=1,k=0

{βVi,k,t+1 − ϕji,sk + εi,k,t}
]

Let’s compute

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]

To do this, first note that the joint probability that βVi,k,t+1 − ϕji,sk + εi,k,t ≤ a while at the same

time arg maxmh
{

βVm,h,t+1 − ϕjm,sh + εm,h,t
}
= ik, is

∫ a−(βVi,k,t+1−ϕji,sk)

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t

=
(∑h exp (−xii,kh))

ν/κ−1

∑m (∑h exp (−xim,kh))
ν/κ

∫ a−(βVi,k,t+1−ϕji,sk)

−∞

1
κ

T exp (−z/κ) exp (−T exp (−z/κ)) dz

A change of variables with y = exp (z) implies that dy/y = dz and

∫ a−(βVi,k,t+1−ϕji,sk)

−∞

1
κ

T exp (−z/κ) exp (−T exp (−z/κ)) dz

= exp
(
−T exp

[(
βVi,k,t+1 − ϕji,sk

)
/κ
]

exp (−a/κ)
)

Thus, the joint probability we are interested in is

11



(∑h exp (−xii,kh))
ν/κ−1

∑m (∑h exp (−xim,kh))
ν/κ

exp
(
−T exp

[(
βVi,k,t+1 − ϕji,sk

)
/κ
]

exp (−a/κ)
)

and hence the probability of (βVi,k,t+1 − ϕji,sk + εi,k,t ≤ a) conditional on

arg max
mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik,

is

exp
(
−T̃ exp (−a/κ)

)
,

where now

T̃ ≡ T exp
[(

βVi,k,t+1 − ϕji,sk
)

/κ
]

.

In turn, this implies that

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]
=

∫ +∞

−∞
ad exp

(
− exp

(
−
(
a− ln T̃κ

)
κ

))
,

where we have used

T̃ exp (−a/κ) = exp

(
−
(
a− ln T̃κ

)
κ

)
.

This is the expectation of a variable distributed Gumbel with location parameter µ = ln T̃κ and

scale parameter β = κ. But we know that the expectation of a variable distributed Gumbel with µ

and β is µ + βγ, where γ is the Euler-Mascheroni constant, hence we have

∫ ∞

−∞
ad exp

(
−T̃ (exp a)−1/κ

)
= ln T̃κ + γκ.

This implies that

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]

= ln

∑
m

(
∑
h

exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
κ

+ γκ
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Since this does not depend on ik, then we have

E

 max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}

 = ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν
)ν/κ

κ

+ γκ,

as we wanted to show.

B.3 Equilibrium in Relative Time Changes (Dots)

Now we will describe the equilibrium equations in relative changes from one period to the

next. We use the notation ẋt = xt/xt−1. We start by deriving the dot equations for the labor market

block of the economy. We will denote uj,s,t ≡ exp(Vj,s,t) and assume that the utility function takes

log form. We have,

µji,sk|i,t+1

µji,sk|i,t
=

exp
(

βVi,k,t+2 − ϕji,sk
)1/ν / exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+2 − ϕji,sh

)1/ν / ∑S
h′=0 exp

(
βVi,h′,t+1 − ϕji,sh′

)1/ν

=
exp (Vi,k,t+2 −Vi,k,t+1)

β/ν

∑S
h=0 µji,sh|i,t exp (Vi,h,t+2 −Vi,h,t+1)

β/ν
,

while

µji,s#,t+1

µji,s#,t
=

(
∑S

h=0 exp (Vi,h,t+2 −Vi,h,t+1)
β/ν µji,sh|i,t

)ν/κ

∑I
m=1 µjm,s#,t

(
∑S

h=0 exp (Vm,h,t+2 −Vm,h,t+1)
β/ν µjm,sh|m,t

)ν/κ
.

Since uj,s,t ≡ exp(Vj,s,t) then

u̇j,s,t+2 ≡ uj,s,t+2/uj,s,t+1 =
exp(Vj,s,t+2)

exp(Vj,s,t+1)
= exp(Vj,s,t+2 −Vj,s,t+1)

(u̇j,s,t+2)
β
ν = exp(Vj,s,t+2 −Vj,s,t+1)

β
ν .

Introducing this in the previous results and writing the equations for period t instead of t + 1, we

obtain

µji,sk|i,t =
µji,sk|i,t−1u̇

β
ν

i,k,t+1

∑S
h=0 µji,sh|i,t−1u̇

β
ν

i,h,t+1

(B1)
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µji,s#,t =

µji,s#,t−1

(
∑S

h=0 µji,sh|i,t−1u̇
β
ν

i,h,t+1

)ν/κ

∑I
m=1 µjm,s#,t−1

(
∑S

h=0 µjm,sh|m,t−1u̇
β
ν

m,h,t+1

)ν/κ
. (B2)

Take the difference between Vj,s,t+1 and Vj,s,t using equation (8) to get

Vj,s,t+1 −Vj,s,t = Uj,s,t+1 −Uj,s,t

+ ln


(

∑I
i=1

(
∑S

k=0 exp
(

βVi,k,t+2 − ϕji,sk

)1/ν
)ν/κ

)κ

(
∑I

m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

)κ


eVj,s,t+1−Vj,s,t = exp(ln((ωj,s,t+1∆j,s,t+1)/(ωj,s,t∆j,s,t)))

· exp

ln

 I

∑
i=1

(
S

∑
k=0

u̇
β
ν
i,k,t+2µji,sk|i,t

)ν/κ

µji,s#,t

κ .

Thus, we finally obtain

u̇j,s,t+1 = ω̇j,s,t+1∆̇j,s,t+1

 I

∑
i=1

µji,s#,t

(
S

∑
k=0

µji,sk|i,tu̇
β
ν

i,k,t+2

)ν/κ
κ

. (B3)

The equilibrium in changes includes equations (B1), (B2), (B3), together with the dot versions

of the remaining equations in (3) - (19).

B.4 Algorithm to Solve the Dot System

Group the equations of the dot equilibrium system into 3 categories:

1. The ones that are needed to obtain new migration and new labor supply from a guess of utilities

(block 1):

µji,sk|i,t =
µji,sk|i,t−1u̇

β
ν

i,k,t+1

∑S
h=0 µji,sh|i,t−1u̇

β
ν

i,h,t+1

µji,s#,t =

µji,s#,t−1

(
∑S

h=0 µji,sh|i,t−1u̇
β
ν

i,h,t+1

)ν/κ

∑I
m=1 µjm,s#,t−1

(
∑S

h=0 µjm,sh|m,t−1u̇
β
ν

m,h,t+1

)ν/κ
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`i,s,t =
I

∑
j=1

S

∑
k=0

µji,ks|i,t−1µji,k#,t−1`j,k,t−1

With these equations, if one has an initial distribution of labor supply (`i,s,0), initial mobility

matrices (µji,sk|i,0 and µji,s#,0) and an initial guess for the utility dots (u̇(0)
i,s,t ∀ t), one can obtain

the entire path of labor supplies (`i,s,t ∀ t > 0), and the entire path of mobility matrices (µji,sk|i,t

and µji,s#,t ∀ t > 0) without needing to use the other equations at all.

2. The ones that are needed to obtain the temporary equilibrium (wages, actual labor, sectoral

prices, trade shares, revenue levels) from a given set of shocks and labor supply (block 2):

Ṗ1−σs
i,s,t =

I

∑
j=1

λji,s,t−1

(
τ̇ji,s,t Ȧ−1

j,s,tẆ
φj,s
j,s,t

S

∏
k=1

Ṗ
φj,ks
j,k,t

)1−σs

λij,s,t =
λij,s,t−1(τ̇ij,s,t Ȧ−1

i,s,tẆ
φi,s
i,s,t ∏S

k=1 Ṗφi,ks
i,k,t )

1−σs

∑I
r=1 λrj,s,t−1(τ̇rj,s,t Ȧ−1

r,s,tẆ
φr,s
r,s,t ∏S

k=1 Ṗφr,ks
r,k,t )

1−σs

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
∑

s
Ẇj,s,t L̇j,s,tYj,s,t−1 + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
Ẇi,s,t L̇i,s,tYi,s,t−1 = φi,sRi,s,t

t

∏
q=1

L̇i,s,q ≤
t

∏
q=1

˙̀ i,s,q , Ẇi,s,t ≥ δi,s , Complementary Slackness

γ
I

∑
i=1

S

∑
s=1

Yi,s,t−1 =
I

∑
i=1

S

∑
s=1

Ẇi,s,t L̇i,s,tYi,s,t−1

3. The ones that are needed to update the guess for the path of utilities (block 3):

Ṗi,t =
S

∏
s=1

Ṗαi,s
i,s,t

ω̇i,s,t =
Ẇi,s,t L̇i,s,t

Ṗi,t ˙̀ i,s,t
(but with ω̇i,s,t = 1 if s = 0)

u̇j,s,t+1 = ω̇j,s,t+1∆̇j,s,t+1

 I

∑
i=1

µji,s#,t

(
S

∑
k=0

µji,sk|i,tu̇
β
ν

i,k,t+2

)ν/κ
κ

The algorithm would work as follows:

1. Guess a path for the utility dots (which can be all of them being equal to one).

2. Use block one to obtain paths for the µ’s and `’s using the guessed path for utility.

3. Use block two to solve the temporary equilibrium using the path for the `’s.
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4. Use block three to obtain a new guess for the utility dots. This uses the fact that in a far enough

point in the future (called T) even the new guess of utility dots should have u̇(1)
i,s,T = 1. With

u̇(1)
i,s,T = 1, the path for µ’s and the sectoral compensations one can obtain u̇(1)

i,s,T−1. And from

those obtain u̇(1)
i,s,T−2, and so on until u̇(1)

i,s,1.

5. If the two guessed paths of utility dots u̇(0) and u̇(1) are close enough, stop the algorithm,

otherwise return to item one with the new guess and iterate again.

B.5 Equilibrium in Counterfactual Relative to Baseline (Hats)

Now we want to describe the equilibrium equations in ratios of changes in a counterfactual

economy relative to the same changes in the baseline economy. We will use the notation x̂t =

ẋ′t/ẋt, where ẋ′t is the relative change from period t− 1 to t in the counterfactual economy and ẋt

is the same thing but for the baseline economy. First, we want to get the evolution of µ′ji,sk|i,t. Start

from equation (B1) for the case of the counterfactual economy,

µ′ji,sk|i,t =
µ′ji,sk|i,t−1(u̇

′
i,k,t+1)

β
ν

∑S
h=0 µ′ji,sh|i,t−1(u̇

′
i,h,t+1)

β
ν

.

Divide this by the same expression in the case of the baseline economy and rearrange to get:

µ′ji,sk|i,t =
µ′ji,sk|i,t−1µ̇ji,sk|i,tû

β
ν

i,k,t+1
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

. (B4)

To obtain the evolution of µ′ji,s#,t, start from equation (B2) for the counterfactual economy,

µ′ji,s#,t =
µ′ji,s#,t−1

(
∑S

h=0 µ′ji,sh|i,t−1(u̇
′
i,h,t+1)

β
ν

)ν/κ

∑I
m=1 µ′jm,s#,t−1

(
∑S

h=0 µ′jm,sh|m,t−1(u̇
′
m,h,t+1)

β
ν

)ν/κ
.

Divide this by the same expression in the case of the baseline economy and rearrange to get:

µ′ji,s#,t =

µ′ji,s#,t−1µ̇ji,s#,t

(
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

)ν/κ

I
∑

m=1
µ′jm,s#,t−1µ̇jm,s#,t

(
S
∑

h=0
µ′jm,sh|m,t−1µ̇jm,sh|m,tû

β
ν

m,h,t+1

)ν/κ
. (B5)
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Now we want to derive an expression for utility in hats. Start from equation (B3) for the counter-

factual economy (but for period t instead of t + 1):

u̇′j,s,t = ω̇′j,s,t∆̇
′
j,s,t

 I

∑
i=1

µ′ji,s#,t−1

(
S

∑
k=0

µ′ji,sk|i,t−1(u̇
′
i,k,t+1)

β
ν

)ν/κ
κ

.

Dividing by this equation in the baseline economy and rearranging yields

ûj,s,t = ω̂j,s,t∆̂j,s,t

 I

∑
i=1

µ′ji,s#,t−1µ̇ji,s#,t

(
S

∑
k=0

µ′ji,sk|i,t−1µ̇ji,sk|i,tû
β
ν

i,k,t+1

)ν/κ
κ

. (B6)

However, at t = 1 the equilibrium conditions are slightly different. This is the result of the timing

assumption in CDP (which we adopt in this paper too), that the counterfactual fundamentals are

unknown before t = 1. This means that at t = 0, ûj,s,0 = 1, µ′ji,sk|i,0 = µji,sk|i,0, µ′ji,s#,0 = µji,s#,0, and

`′i,k,1 = `i,k,1 = ∑I
j=1 ∑S

s=0 µji,sk|i,0µji,s#,0`j,s,0. To account for the unexpected change in fundamentals

at t = 1, the right equations are

µ′ji,sk|i,1 =
θji,sk|i,0ûβ/ν

i,k,2

∑S
h=0 θji,sh|i,0ûβ/ν

i,h,2

(B7)

µ′ji,s#,1 =
µji,s#,1

(
∑S

h=0 θji,sh|i,0ûβ/ν
i,h,2

)ν/κ

∑I
m=1 µjm,s#,1

(
∑S

h=0 θjm,sh|m,0ûβ/ν
m,h,2

)ν/κ
(B8)

ûj,s,1 = ω̂j,s,1∆̂j,s,1

 I

∑
i=1

µji,s#,1

(
S

∑
k=0

θji,sk|i,0ûβ/ν
i,k,2

)ν/κ
κ

, (B9)

where

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1.

The equilibrium in hats includes equations (B4), (B5), (B6), together with the hat versions of

the remaining equations in (3) - (19).

B.6 Algorithm to Solve the Hat System

As in the previous algorithm, group the equations into 3 categories:

1. The ones that are needed to obtain new mobility shares and new labor supply from a guess of

utilities (block 1):
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µ′ji,sk|i,t =
µ′ji,sk|i,t−1µ̇ji,sk|i,tû

β
ν

i,k,t+1
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

µ′ji,s#,t =

µ′ji,s#,t−1µ̇ji,s#,t

(
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

)ν/κ

I
∑

m=1
µ′jm,s#,t−1µ̇jm,s#,t

(
S
∑

h=0
µ′jm,sh|m,t−1µ̇jm,sh|m,tû

β
ν

m,h,t+1

)ν/κ

`′i,s,t =
I

∑
j=1

S

∑
k=0

µ′ji,ks|i,t−1µ′ji,k#,t−1`
′
j,k,t−1

But period one works differently:

µ′ji,sk|i,1 =
θji,sk|i,0ûβ/ν

i,k,2

∑S
h=0 θji,sh|i,0ûβ/ν

i,h,2

µ′ji,s#,1 =
µji,s#,1

(
∑S

h=0 θji,sh|i,0ûβ/ν
i,h,2

)ν/κ

∑I
m=1 µjm,s#,1

(
∑S

h=0 θjm,sh|m,0ûβ/ν
m,h,2

)ν/κ

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1

With these equations, if one has an initial distribution of labor supply (`′i,s,0, which should be

the same as `i,s,0), the mobility matrices in the baseline economy and an initial guess for the

utility hats (û(0)
i,s,t ∀ t), one can obtain the entire path of labor supplies (`′i,s,t ∀ t > 0), and the

entire path of mobility matrices without needing to use the other equations at all.

2. The ones that are needed to obtain the temporary equilibrium (wages, actual labor, sectoral

prices, trade shares, revenue levels) from a given set of shocks and labor supply (block 2):

P̂1−σs
i,s,t =

I

∑
j=1

λ′ji,s,t−1λ̇ji,s,t

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,s,t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

λ′ij,s,t =
λ′ij,s,t−1λ̇ij,s,t(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,s,t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

P̂1−σs
j,s,t

R′i,s,t =
I

∑
j=1

λ′ij,s,t

(
αj,s

(
∑

s
Ŵj,s,t L̂j,s,tY′j,s,t−1Ẇj,s,t L̇j,s,t + D′j,t

)
+

S

∑
k=1

φj,skR′j,k,t

)
φi,sR′i,s,t = Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

t

∏
q=1

L̂i,s,q L̇i,s,q ≤
t

∏
q=1

˙̀ ′
i,s,q , Ŵi,s,tẆi,s,t ≥ δi,s , Complementary Slackness

I

∑
i=1

S

∑
s=1

Y′i,s,t−1 =
1
γ

I

∑
i=1

S

∑
s=1

Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t
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With these equations, if we have a set of shocks in hats (τ̂ and Â, as well as deficits in the

counterfactual economy D′), together with initial values for the counterfactual economy (like

trade shares and nominal incomes) and the solution for the baseline economy (including trade

shares dot, wages dot and labor dot), we can solve for hat prices, new trade shares in levels,

new revenues in levels, actual labor hats and wages hat.

3. The ones that are needed to update the guess for the path of utilities (block 3):

P̂i,t =
S

∏
s=1

P̂αi,s
i,s,t

ω̂i,s,t =
Ŵi,s,t L̂i,s,t

P̂i,t ˆ̀ i,s,t
(but with ω̂i,s,t = 1 if s = 0)

ûj,s,t = ω̂j,s,t∆̂j,s,t

 I

∑
i=1

µ′ji,s#,t−1µ̇ji,s#,t

(
S

∑
k=0

µ′ji,sk|i,t−1µ̇ji,sk|i,tû
β
ν

i,k,t+1

)ν/κ
κ

But period one works differently:

ûj,s,1 = ω̂j,s,1∆̂j,s,1

 I

∑
i=1

µji,s#,1

(
S

∑
k=0

θji,sk|i,0ûβ/ν
i,k,2

)ν/κ
κ

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1.

The algorithm would work as follows:

1. Guess a path for the utility hats (which can be all of them being equal to one).

2. Use block one to obtain paths for the µ′ and `′ using the guessed path for the utility hat and the

solution for the baseline economy.

3. Use block two to solve the temporary equilibrium using the path for `′, the hat shocks and the

solution for the baseline economy.

4. Use block three to obtain a new guess for the utility hats. This uses the sectoral compensations

obtained in the previous step and the fact that in a far enough point in the future (called T)

the change in utility in the baseline economy should be the same as the change in utility in the

counterfactual, so we should have û(1)
i,s,T = 1. With û(1)

i,s,T = 1, the path for the µ′ and the sectoral

compensations one can obtain û(1)
i,s,T−1. And from those obtain û(1)

i,s,T−2, and so on until û(1)
i,s,2. û(1)

i,s,1

needs to be obtained with a special equation.

5. If the two guessed paths of utility hats û(0) and û(1) are close enough, stop the algorithm, oth-
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erwise return to item one with the new guess and iterate again.

B.7 Algorithm to Solve the Temporary Equilibrium

Block two of the previously described outer algorithms (which solve the equilibrium system

in dots or hats) solves for the temporary equilibrium of the baseline or counterfactual economy.

Given the presence of an inequality constraint due to DNWR, solving this temporary equilibrium

is an unwieldy process that would be infeasible with any traditional solver. To overcome this

limitation, we develop an augmented version of Alvarez and Lucas (2007) to be able to handle the

existence of DNWR. This inner algorithm is very efficient and allows us to solve the temporary

equilibrium of the full model with DNWR extremely fast (provided we use the nominal anchor

described in equation 19). In this appendix, we describe this inner algorithm in the case of the hat

system. The inner algorithm for the dot system is analogous.

Notice first that, if one knows a given period’s wages in hats (as well as the solution for the

baseline economy, the previous period’s trade shares, and the shocks to trade costs and technol-

ogy), it is possible to obtain the corresponding prices in hats from the equation:

P̂1−σs
i,s,t =

I

∑
j=1

λ′ji,s,t−1λ̇ji,s,t

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,s,t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

,

using traditional contraction mapping algorithms. The new trade shares can then easily be ob-

tained from the following equation,

λ′ij,s,t =
λ′ij,s,t−1λ̇ij,s,t(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,s,t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

P̂1−σs
j,s,t

.

Knowing the previous elements, employment in hats, the previous periods output levels, and

the shock to deficits, allows one to solve for revenues using the linear (albeit massive) system

described by the following set of equations

R′i,s,t =
I

∑
j=1

λ′ij,s,t

(
αj,s

(
∑

s
Ŵj,s,t L̂j,s,tY′j,s,t−1Ẇj,s,t L̇j,s,t + D′j,t

)
+

S

∑
k=1

φj,skR′j,k,t

)
.

The previous argument implies that we can write revenues in the counterfactual economy in a

given period as a function of that same period’s wages and employment hats, i.e. R′i,s,t(Ŵ, L̂)
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(where the bold W and L stand for the vector of wages and employment hats in all the regions

and sectors).

What remains is to show how to solve the following system in wages and employment hats

for all regions and sectors:

φi,sR′i,s,t(Ŵ, L̂) = Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

L̂i,s,t ≤ LU
i,s,t , Ŵi,s,t ≥WL

i,s,t , Complementary Slackness (C.S.)
I

∑
i=1

S

∑
s=1

Y′i,s,t−1 =
I

∑
i=1

S

∑
s=1

Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t.

This is where we will use an augmented version of the Alvarez and Lucas (2007) algorithm that

accounts for the presence of DNWR. Imagine that one has an initial guess for wages and employ-

ment in hats, denoted Ŵ(0)
i,s,t and L̂(0)

i,s,t. We use an algorithm that updates this guess as follows:

Ŵ(1)
i,s,t = max


(1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

, WL
i,s,t


L̂(1)

i,s,t = min

LU
i,s,t,

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

 .

These new guesses obviously satisfy L̂(1)
i,s,t ≤ LU

i,s,t and Ŵ(1)
i,s,t ≥ WL

i,s,t. The new guesses also satisfy

the C.S. condition. To see this, notice that it cannot happen that:

Ŵ(1)
i,s,t =

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

L̂(1)
i,s,t =

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

,

since that would require:

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

≥ WL
i,s,t

LU
i,s,t ≥

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

.
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Putting the last two inequalities together we get:

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0), L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t
≥WL

i,s,tL
U
i,s,t ≥ (1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0), L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t
,

which is impossible unless both inequalities hold with equality (in which case all the relevant con-

ditions are satisfied anyway). This means that unless we are in a knife edge case (where everything

works fine) we are going to be either in the point:

(
L̂(1)

i,s,t, Ŵ(1)
i,s,t

)
=

LU
i,s,t,

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

 ,

or in the point:

(
L̂(1)

i,s,t, Ŵ(1)
i,s,t

)
=

 (1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

, WL
i,s,t

 ,

which means that the C.S. condition is satisfied. It is also true that the new guess satisfies the

nominal anchor if the previous guess did. To see this, notice that (from the observation that we

are always in either of those special points) the following always holds:

Ŵ(1)
i,s,t L̂

(1)
i,s,t = (1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
.

Multiplying this by Y′i,s,t−1Ẇi,s,t L̇i,s,t and summing it over i and s we get:

I

∑
i=1

S

∑
s=1

Ŵ(1)
i,s,t L̂

(1)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t = (1− λ)

I

∑
i=1

S

∑
s=1

Ŵ(0)
i,s,t L̂

(0)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t

+ λ
I

∑
i=1

S

∑
s=1

φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t.

Focusing on the last term, it is possible to show that:

I

∑
i=1

S

∑
s=1

φi,sR′i,s,t =
I

∑
j=1

S

∑
r=1

Ŵ(0)
j,r,t L̂

(0)
j,r,tY

′
j,r,t−1Ẇj,r,t L̇j,r,t.

This makes it clear that:
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I

∑
i=1

S

∑
s=1

Ŵ(1)
i,s,t L̂

(1)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t =

I

∑
i=1

S

∑
s=1

Ŵ(0)
i,s,t L̂

(0)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t.

Therefore, if the initial guess satisfies the nominal anchor the new guess will do so as well. Finally,

when the algorithm converges, for example at iteration N, the following holds:

Ŵ(N)
i,s,t L̂(N)

i,s,t = (1− λ)Ŵ(N)
i,s,t L̂(N)

i,s,t + λ
φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
,

which implies Ŵ(N)
i,s,t L̂(N)

i,s,t Y′i,s,t−1Ẇi,s,t L̇i,s,t = φi,sR′i,s,t, indicating that the final guess solves our de-

sired system. We use the following initial guess which satisfies the nominal anchor,

Ŵ(0)
i,s,t =

1
Ẇi,s,t

, L̂(0)
i,s,t =

1
L̇i,s,t

.

B.8 Welfare

We start from our previous result that

Vj,s,t = ln(ωj,s,t∆j,s,t) + κ ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
+ γκ.

Using

µjj,s#,t =

(
∑S

h=0 exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
,

we then have

I

∑
m=1

(
S

∑
h=0

exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ

= µ−1
jj,s#,t

(
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

.

Next, using

µjj,ss|j,t =
exp

(
βVj,s,t+1

)1/ν

∑S
h=0 exp

(
βVj,h,t+1 − ϕjj,sh

)1/ν
,

we have
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

= µ−1
jj,ss|j,t exp

(
βVj,s,t+1

)1/ν ,

and hence
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µ−1
jj,s#,t

(
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

= µ−1
jj,s#,tµ

−ν/κ
jj,ss|j,t exp

(
βVj,s,t+1

)1/κ .

This implies that

κ ln

 I

∑
m=1

(
S

∑
h=0

exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

 = βVj,s,t+1 − κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
.

We then write

Vj,s,t = ln(ωj,s,t∆j,s,t)− κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
+ γκ + βVj,s,t+1.

Iterating this equation forward, we obtain

Vj,s,t =
∞

∑
r=t

βr−t
(

ln(ωj,s,r∆j,s,r)− κ ln
(
µjj,s#,r

)
− ν ln

(
µjj,ss|j,r

)
+ γκ

)
.

We define the EV in consumption for market js at time t = 0 to be the scalar ζ j,s such that

V ′j,s,0 = Vj,s,0 +
∞

∑
r=0

βr ln(ζ j,s) =
∞

∑
r=0

βr

ln

 ωj,s,r∆j,s,rζ j,s(
µjj,ss|j,r

)ν (
µjj,s#,r

)κ

+ γκ

 .

Defining Vj,s ≡ ln(ζ j,s) and rearranging the previous definition, we can write:

(V ′j,s,0 −Vj,s,0) = Vj,s

∞

∑
r=0

βr

Vj,s = (1− β)(V ′j,s,0 −Vj,s,0)

=
∞

∑
r=1

βr ln

 ω̂j,s,r∆̂j,s,r(
µ̂jj,ss|j,r

)ν (
µ̂jj,s#,r

)κ

 ,

which is the expression that we will use for the “welfare change” stemming from the China shock,

formally the equivalent variation change in consumption due to the shock. Notice that, since the

welfare effects from the China shock will be small in percentage terms, then Vj,s = ln(ζ j,s) ≈

ζ j,s − 1.
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B.9 More on Calibration

As discussed in the main text, the multiplicative nature of our productivity decomposition,

ÂChina,s,t = Â1
China,t Â2

China,s, implies that their level is not identified. For example, if we multiply

all the Â2
China,s by a constant c and we divide all the Â1

China,t by c, then we would have the same

ÂChina,s,t. Thus, we use the normalization ∑S
s=1 Â2

China,s = 1. Correspondingly, the model is only

able to produce changes in imports that satisfy ∑end
t=2001 ∆Xmodel

C,US,t = ∑S
s=1 ∆Xend−2000,model

C,US,s . This con-

dition is automatically satisfied by the actual changes, i.e. ∑end
t=2001 ∆XC,US,t = ∑S

s=1 ∆Xend−2000
C,US,s ,

but not necessarily by the predicted changes, due to the lack of a constant in the second regres-

sion. We adjust the predicted changes in manufacturing so that they satisfy: ∑end
t=2001

̂∆XC,US,t =

∑S
s=1

̂∆Xend−2000
C,US,s , this adjustment is very small. In all of our applications we match our targets with

an accuracy greater than 99.9%.

C Data Construction

In this appendix section, we provide details on the construction of the data we briefly de-

scribed in Section 4. We divide this appendix into three parts. Appendix C.1 describes all data

sources. Appendix C.2 discusses how we combine the different data sources to compute an in-

ternally consistent bilateral trade-flow matrix for all sectors for the years when all the data is

available. It also discusses how we use the previous step to project bilateral trade flows between

states and countries for the years before full data availability. Finally, Appendix C.3 discusses the

construction of the initial employment allocations for all regions and the bilateral migration flows

between sectors and U.S. states.

C.1 Data Description and Sources

List of sectors. We use a total of 14 market sectors (plus a home production sector). The list

of market sectors includes 12 manufacturing sectors, one catch-all services sector, and one agri-

culture sector. We follow CDP in the selection of the 12 manufacturing sectors. These are: 1)

Food, beverage, and tobacco products (NAICS 311-312, WIOD sector 3); 2) Textile, textile product

mills, apparel, leather, and allied products (NAICS 313-316, WIOD sectors 4-5); 3) Wood products,

paper, printing, and related support activities (NAICS 321-323, WIOD sectors 6-7); 4) Mining,

petroleum and coal products (NAICS 211-213, 324, WIOD sectors 2, 8); 5) Chemical (NAICS 325,
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WIOD sector 9); 6) Plastics and rubber products (NAICS 326, WIOD sector 10); 7) Nonmetallic

mineral products (NAICS 327, WIOD sector 11); 8) Primary metal and fabricated metal products

(NAICS 331-332, WIOD sector 12); 9) Machinery (NAICS 333, WIOD sector 13); 10) Computer and

electronic products, and electrical equipment and appliance (NAICS 334-335, WIOD sector 14);

11) Transportation equipment (NAICS 336, WIOD sector 15); 12) Furniture and related products,

and miscellaneous manufacturing (NAICS 337- 339, WIOD sector 16). There is a 13) Services sec-

tor which includes Construction (NAICS 23, WIOD sector 18); Wholesale and retail trade sectors

(NAICS 42-45, WIOD sectors 19-21); Accommodation and Food Services (NAICS 721-722, WIOD

sector 22); transport services (NAICS 481-488, WIOD sectors 23-26); Information Services (NAICS

511-518, WIOD sector 27); Finance and Insurance (NAICS 521-525, WIOD sector 28); Real Es-

tate (NAICS 531-533, WIOD sectors 29-30); Education (NAICS 61, WIOD sector 32); Health Care

(NAICS 621-624, WIOD sector 33); and Other Services (NAICS 493, 541, 55, 561, 562, 711-713,

811-814, WIOD sector 34).37

List of countries: We use data for 50 U.S. states, and 37 other countries, including an

aggregated rest of the world. The list of countries is: Australia, Austria, Belgium, Bulgaria,

Brazil, Canada, China, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany,

Greece, Hungary, India, Indonesia, Italy, Ireland, Japan, Lithuania, Mexico, the Netherlands,

Poland, Portugal, Romania, Russia, Spain, the Slovak Republic, Slovenia, S. Korea, Sweden,

Taiwan, Turkey, the United Kingdom, and the rest of the world.

Data on bilateral trade between countries. World Input-Output Database (WIOD). Release

of 2013. We use data for 2000-2007 in our baseline and 2000-2011 in one of our extensions. We

map the sectors in the WIOD database to our 14 market sectors in the following way: 1) Food

Products, Beverage, and Tobacco Products (c3); 2) Textile, Textile Product Mills, Apparel, Leather,

and Allied Products (c4-c5); 3) Wood Products, Paper, Printing, and Related Support Activities

(c6-c7); 4) Petroleum and Coal Products (c8); 5) Chemical (c9); 6) Plastics and Rubber Products

(c10); 7) Nonmetallic Mineral Products (c11); 8) Primary Metal and Fabricated Metal Products

(c12); 9) Machinery (c13); 10) Computer and Electronic Products, and Electrical Equipment and

Appliances (c14); 11) Transportation Equipment (c15); 12) Furniture and Related Products, and

Miscellaneous Manufacturing (c16); 13) Construction (c18), Wholesale and Retail Trade (c19-c21),

Transport Services (c23-c26), Information Services (c27), Finance and Insurance (c28), Real Estate

37The only difference with respect to CDP in the definition of manufacturing sectors is that we include
Mining (NAICS 211-213) together with Petroleum and Coal Products (NAICS 324) in our sector 4.
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(c29- c30); Education (c32); Health Care (c33), Accommodation and Food Services (c22), and Other

Services (c34); 14) Agriculture and Mining (c1-c2). We follow Costinot and Rodriguez-Clare (2014)

to remove the negative values in the trade data from WIOD.

Data on bilateral trade in manufacturing between U.S states. We combine the 2002 and 2007

Commodity Flow Survey (CFS) with the WIOD database. The CFS records shipments between

U.S. states for 43 commodities classified according to the Standard Classification of Transported

Goods (SCTG). We follow CDP and use CFS 2007 tables that cross-tabulate establishments by their

assigned NAICS codes against commodities (SCTG) ship-ped by establishments within each of the

NAICS codes. These tables allow for the mapping of SCTG to NAICS.

Data on bilateral trade in manufacturing and agriculture between U.S states and the rest

of the countries. We obtain sector-level imports and exports between the 50 U.S. states and the list

of other countries from the Import and Export Merchandise Trade Statistics, which is compiled by

the U.S. Census Bureau. This dataset reports imports and exports in each NAICS sector between

each U.S. state and each other country in the world.

Data on sectoral and regional value-added share in gross output. Value added for each of

the 50 U.S. states and 14 sectors can be obtained from the BEA by subtracting taxes and subsidies

from GDP data. In the cases when gross output was smaller than value added we constrain value

added to equal gross output. For the list of countries, we obtain the share of value added in gross

output from WIOD.

Data on services expenditure and production. We compute bilateral trade in services using

a gravity approach explained in Appendix C.2. As part of these calculations, we require data

on production and expenditure in services by region. We obtain U.S. state-level services GDP

from the Regional Economic Accounts of the BEA. We obtain U.S. state-level services expenditure

from the Personal Consumption Expenditures (PCE) database of BEA. Finally, for the list of other

countries we compute total production and expenditure in services from WIOD.

Data on agriculture expenditure and production. We also compute bilateral trade in agri-

culture using a gravity approach explained in Appendix C.2. To get production in agriculture

for the U.S. states, we combine the 2002 and 2007 Agriculture Census with the National Marine

Fisheries Service Census to get state-level production data on crops, livestock and seafood. We

infer state-level expenditure in agriculture from our gravity approach explained in Appendix C.2.

Finally, for the list of other countries we compute total production and expenditure in agriculture

from WIOD.
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Data on population and geographic coordinates. As part of the gravity approach to compute

bilateral trade in services, we also need to compute bilateral distances between regions. We follow

the procedure used in the GeoDist dataset of CEPII to calculate international (and intranational)

bilateral trade distances. We thus require data on the most populated cities in each country, the

cities’ coordinates and population, and each country’s population. We obtained this information

from the United Nations Population Division website. In particular, we use the population of

urban agglomerations with 300,000 inhabitants or more in 2018, by country, for 2000-2007. For

Austria, Cyprus, Denmark, Estonia, Hungary, Ireland, Lithuania, Slovakia and Slovenia we use

the two most populated cities.38 For the case of U.S. states, we use population and coordinates

data for each U.S. county within each U.S. state. The data for the U.S. counties comes from the

U.S. CENSUS.

Data on employment and migration flows. For the case of countries, we take data on em-

ployment by country and sector from the WIOD Socio Economic Accounts (WIOD-SEA). For

the case of U.S. states, we take sector-level employment (including unemployment and non-

participation) from the 5% sample PUMS files of the 2000 Census. We only keep observations

with ages between 25 and 65, who are either employed, unemployed, or out of the labor force.

We construct a matrix of migration flows between sectors and U.S. states by combining data from

the American Community Survey (ACS) and the Current Population Survey (CPS). Finally, we

abstract from international migration.

C.2 Construction of the Bilateral Trade Flows Between Regions

We follow the notation from Costinot and Rodriguez-Clare (2014) and omit the time sub-

scripts t that are relevant in our quantitative model. Define Xij,ks as sales of intermediate goods

from sector k in region i to sector s in region j, and Xij,kF as the sales of sector k in region i to the

final consumer of region j. Our final objective is to construct a bilateral trade flows matrix between

all regions in our sample with elements equal to Xij,k = ∑s Xij,ks + Xij,kF. This matrix allows us to

compute the trade shares λij,k, and the sector-level revenues Rj,k = ∑l Xjl,k for each region, which

are crucial elements in our hat algebra described in Section 3.6.

As additional definitions, take Ej,k = ∑i Xij,k as the total expenditure of region j in sector

k, Fj,k = ∑i Xij,kF as the final consumption in region j of sector k, Fj = ∑k Fj,k as the total final

38For the specific case of Cyprus, the cities’ information comes from the country’s Statistical Service.
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consumption of region j, and Xj,ks = ∑i Xij,ks as the total purchases that sector s in region j makes

from sector k. We construct Xij,k in the four steps explained below. With some abuse of notation,

we refer to a region i as a U.S. state (country) by i ∈ US (i /∈ US).

Step 1: Bilateral trade between countries. In the first step we focus on the case where both

i and j are countries. Thus, we simply take Xij,k = XWIOD
ij,k , where XWIOD

ij,k are the bilateral trade

flows that come directly from the WIOD database.

Step 2: Manufacturing trade among U.S. states. In the second step we focus on manufactur-

ing bilateral trade between U.S. States. For this, we combine the closest Commodity Flow Survey

(CFS) for each year with WIOD Data for the total trade of the U.S. with itself. We first compute

the shares that each state i exports to state j in sector k represent in the total trade of sector k ac-

cording to CFS. Then, we calculate the total exports of state i to state j in sector k as WIOD’s U.S.

trade with itself in sector k multiplied by the share computed in the previous step to ensure that

bilateral trade between states adds up to the WIOD total.

Step 3: Manufacturing trade between U.S. states and countries. For the third step, we

combine Census and WIOD data to calculate the trade flows between each of the 50 U.S. states

and the other 37 country regions. There is limited availability for the state×sector-level trade

data coming from the CENSUS. Data for exports at the state×sector-level starts in 2002 and data

for imports starts in 2008. We scale state-level imports and exports data from the Import and

Export Merchandise Trade Statistics to match the U.S. totals in WIOD. More precisely, the exports

(imports) of state i to (from) country j in manufacturing sector k are computed as a proportion

of WIOD’s U.S. export (imports) to (from) country j in sector k. This proportion is equal to the

exports (imports) of state i to (from) country j in sector k relative to the total U.S. exports (imports)

to (from) country j in sector k.

Since the Import and Export Merchandise Trade Statistics data for exports starts in 2002 and

for imports starts in 2008, the bilateral trade flows between regions for the years before the data

starts cannot be computed directly from the data. We adapt our computation method to take into

account this issue. All previous procedures remain the same. Denote Xbase
ij,k as the matrix Xij,k for

the first year where the exports or imports data is available (the base year). Define the share of

exports of U.S. State i in sector k, going to country j in the base year as ybase
ij,k ≡

Xbase
ij,k

∑h∈US Xbase
hj,k

∀i ∈

US , j /∈ US. Similarly, define the share of imports of U.S. state j in sector k, coming from country i

in the base year as ebase
ij,k ≡

Xbase
ij,k

∑l∈US Xbase
il,k

∀i /∈ US , j ∈ US. Finally for each sector k in manufacturing

or agriculture; and any year before the base year define Xij,k = ebase
ij,k XWIOD

i US,k ∀i /∈ US, ∀j ∈ US
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and Xij,k = ybase
ij,k XWIOD

US j,k ∀i ∈ US, ∀j /∈ US.

Step 4: Trade in services and trade in agriculture. We compute bilateral trade flows for

services and agriculture separately using a gravity structure that matches WIOD totals for trade

between countries (including the U.S.). We start with the standard gravity equation (for simplicity,

we remove the subscript of the sector) Xij =
(

wiτij
Pj

)−ε
Ej, where P−ε

j = ∑i
(
wiτij

)−ε. We know that

∑j Xij = Ri and hence ∑j

(
wiτij

Pj

)−ε
Ej = Ri. This implies w−ε

i Π−ε
i = Ri, where Π−ε

i = ∑j τ−ε
ij Pε

j Ej.

Let P̃j ≡ P−ε
j and Π̃i ≡ Π−ε

i , and τ̃ij ≡ τ−ε
ij . Given

{
Ej
}

, {Ri}, and
{

τ̃ij
}

, one we can get
{

P̃j
}

and{
Π̃i
}

from the following system:

P̃j =∑
i

τ̃ijΠ̃−1
i Ri

x̃i =∑
j

τ̃ijP̃−1
j Ej (C1)

The solution for
{

P̃j, Π̃i
}

is unique up to a constant (Fally, 2015). This indeterminacy requires a

normalization. We thus impose P̃1 = 100 in each exercise. Then one can compute our outcome of

interest
{

Xij
}

from

Xij = τ̃ijΠ̃−1
i P̃−1

j RiEj. (C2)

Computation of the bilateral resistance τ̃ij. To solve the gravity system, we must first compute τ̃ij ∀i, j.

We proceed by assuming the following functional form: τ̃ij = β
ιij
0 distβ1

ij exp
(
ξij
)

, where ιij is an

indicator variable equal to 1 if i = j, and ξij is an idiosyncratic error term. β1 captures the standard

distance elasticity and β0 captures the additional inverse resistance of trading with others versus

with oneself.

To calculate distij, we follow the same procedure used in the GeoDist dataset of CEPII to

calculate international (and intranational) bilateral trade distances. The idea is to calculate the

distance between two countries based on bilateral distances between the largest cities of those

two countries, those inter-city distances being weighted by the share of the city in the overall

country’s population (Head and Mayer, 2002).

We use population for 2010 and coordinates data for all U.S. counties, and all cities around

the world with more than 300,000 inhabitants. For those countries with less than two cities of

this size, we take the two largest cities. Coordinates are important to calculate the physical bilat-

eral distances in kms between each county r in state i and county s in state j (drs ∀r ∈ i , s ∈
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j and ∀i, j = 1, ..., 50), and define dist (ij) as:

dist (ij) =

(
∑
r∈ i

∑
s∈ j

(
popr

popi

)(
pops

popj

)
dθ

rs

)1/θ

, (C3)

where poph is the population of country/state h. We set θ = −1.

Given our definition of τ̃ij we can write the gravity equation between countries as Xij =

β
ιij
0 distβ1

ij exp
(
ξij
)

Π̃−1
i P̃−1

j RiEj. Taking logs we can write the previous equation as:

ln Xij = δo
i + δd

j + β̃0ιij + β1 ln distij + ξij, (C4)

where β̃0 = ln β0 and the δs are fixed effects. We first estimate the equation above separately

for services and agriculture using a 2000-2011 panel of bilateral trade flows between countries

from WIOD. We present our OLS estimation results in Table C.1. Columns (1) and (2) refer to

the estimated coefficients for the case of services and agriculture, respectively. Both regressions

include year-by-origin and year-by-destination fixed effects. We take these estimates and compute

the bilateral resistance term in each sector as ˆ̃τij = exp( ˆ̃β0ιij + β̂1 ln distij).

Trade in services. As inputs, we need total expenditures in services for each region (Ei), as well as

total production in services (Ri). For the case of countries we take this directly from WIOD. For

the case of U.S. states we take these variables from the Regional Economic Accounts of the Bureau

Table C.1: Estimation of Own-Country Dummy and Distance Elasticity

(1) (2)
Dep. Var.: ln Xij,t Services Agriculture
ιij 7.357∗∗∗ 4.143∗∗∗

(0.126) (0.145)
ln distij -0.376∗∗∗ -1.745∗∗∗

(0.037) (0.020)
Year×Orig. Yes Yes
Year×Dest. Yes Yes
Observations 17,328 17,328
Adjusted R2 0.66 0.76

Notes: This table displays the OLS estimates of specifications analogous to the one in equation
(C4). The outcome variable ln Xij,t is the log exports of country i sent to country j. The own-
country dummy ιij is defined as an indicator function equal to one whenever country i is the
same as country j. Finally, ln distij is the log distance between country i and country j. This
variable is computed according to equation (C3). Robust standard errors are presented in
parenthesis. *** denotes statistical significance at the 1%.
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of Economic Analysis. We scale the state-level services production and expenditures so that they

aggregate to the U.S. totals in WIOD.

We incorporate the information on bilateral trade in services between countries (including the

U.S.) that comes from WIOD to the gravity system of equation (C1) by first writing the system as

P̃j = ∑i/∈US τ̃ijΠ̃−1
i Ri + ∑i∈US τ̃ijΠ̃−1

i Ri and Π̃i = ∑j/∈US τ̃ijP̃−1
j Ej + ∑j∈US τ̃ijP̃−1

j Ej. Then, we define

λ̃j ≡ 1− ∑i/∈US Xij
Ej

for j /∈ US (the share of imports of region j /∈ US coming from the U.S.) and

λ̃∗i ≡ 1− ∑j/∈US Xij
Ri

for i /∈ US (total exports of region i /∈ US to other regions not in the U.S.). Using

these two definitions and substituting τ̃ij = XijΠ̃i P̃jR−1
i E−1

j whenever i, j /∈ US in the previous

system of equations we have the final system we solve for services:

P̃j = ∑
i

τ̃ijΠ̃−1
i Ri j ∈ US

Π̃i = ∑
j

τ̃ijP̃−1
j Ej i ∈ US

λ̃jP̃j = ∑
i∈US

τ̃ijΠ̃−1
i Ri j /∈ US

λ̃∗i Π̃i = ∑
j∈US

τ̃ijP̃−1
j Ej i /∈ US

Once we find solutions for
{

P̃j, Π̃i
}

, we compute the final bilateral trade matrix according to

equation (C2).

Trade in agriculture. As inputs, we need total expenditures in agriculture for each region (Ei), as

well as total production in agriculture (Ri). For the case of countries we take this directly from

WIOD. For the case of U.S. states we compute total production (Ri) by combining data from the

Agriculture Census and the National Marine Fisheries Service Census. We scale the state-level

agriculture production so that it aggregates to the U.S. total in WIOD. However, it is not possible

to find state-level agriculture expenditure for U.S. states. To overcome this data unavailability,

we combine the U.S. input-output matrix (φj,ks) together with the shares of value-added in gross

production (φj,k) in order to compute a value of (Ei) that is consistent with the full bilateral trade

matrix for all regions and all sectors.

In order to describe our procedure, note that the total expenditure of region j in sector k (Ej,k)

could be written as Ej,k = ∑s φ̃j,ksRj,s + Fj,k, where φ̃j,ks = φj,ks(1−φj,s). We make two assumptions.

First, we assume that φ̃j,ks = φ̃US,ks ∀j ∈ US, which means that we assume common input-output

matrix and value-added shares across U.S. states and equal to the ones of the U.S. as a whole.

Second, we assume identical Cobb-Douglas preferences across U.S. states. This means that when
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j ∈ US we have that Fj,k =
Fj

FUS
FUS,k = Fjγk, where γk ≡

FUS,k
FUS

. Using these two assumptions

we get Fj = Ej,k −∑s φ̃j,ksRj,s + ∑r 6=k
(
Ej,r −∑s φ̃j,rsRj,s

)
. Substituting the previous equation in the

definition of Ej,k for the agriculture sector (k = AG), and j ∈ US we find

Ej,AG = ∑
s

φ̃j,AG sRj,s +
γAG

1− γAG
∑

r 6=AG

(
Ej,r −∑

s
φ̃j,rsRj,s

)
,

which can be computed using state-level production of all sectors and state-level expenditure

data of all other sectors (excluding agriculture), combined with the U.S.-level input-output matrix,

value-added shares, and sector-level consumption shares.

Once we obtain the state-level expenditure values in agriculture, we can proceed with the

gravity system in equation (C1). As in the case of services, we incorporate the information on

bilateral trade in agriculture between countries that comes from WIOD. We also incorporate the

bilateral trade in agriculture between U.S. states and other countries coming from the Import and

Export Merchandise Trade Statistics. Thus, we only need to focus on
{

P̃j
}

j∈US and
{

Π̃i
}

i∈US.

Define χ∗i = 1− ∑j/∈US
Xij
Ri

for i ∈ US (the share of sales of state i that stay in the U.S.) and χj =

1 − ∑i/∈US
Xij
Ej,k

for j ∈ US (the share of purchases of state i that come from the U.S.). The final

system we solve for agriculture becomes:

χjP̃j = Σi∈USτ̃ijΠ̃−1
i Ri, ∀j ∈ US

χ∗i Π̃i = Σj∈USτ̃ijP̃−1
j Ej, ∀i ∈ US

As before, once we find solutions for
{

P̃j, Π̃i
}

, we compute the bilateral trade in agriculture

between U.S. states according to equation (C2).

C.3 Initial Employment Allocations for each Region and Bilateral Mi-

gration Flows between Sectors and U.S. States

Employment allocation in each region and sector. For the case of countries outside of the

U.S., we first compute the employment distribution by country-sector from the WIOD-SEA. We

treat the unemployed and out-of-labor force as an additional sector. The data for that sector

combines WIOD-SEA’s worker population and each country’s labor force participation rate from

World Bank data. Since SEA does not include the RoW directly and since the remaining countries
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in SEA are too few, we define RoW’s employment such that its production to employment ratio

equals the respective average ratio of the other 37 countries. This calculation is done separately

for each sector.

For the case of U.S. states, we calculate the employment level for each state and sector (in-

cluding unemployment and non-participation) in the year 2000 from the 5% sample PUMS files

of the 2000 Census. We only keep observations type ”P” (persons) aged 25 to 65, who are ei-

ther employed or out of the labor force. Finally, we apply proportionality so that the aggregate

employment at the sector level coincides with the totals for the U.S. in WIOD-SEA.

Workers’ mobility matrix for U.S. states. Let Lji,sk be the number of workers who move from

state j and sector s to state i and sector k between two periods (we ignore the time subscript for

simplicity). We want to compute the mobility matrix for the shares µji,sk, for each origin state

j, origin sector s, destination state i, and destination sector k, with the shares defined as µji,sk =
Lji,sk

∑i′ ∑k′ Lji′ ,sk′
. To do this, we combine data from the Current Population Survey (CPS), the American

Community Survey (ACS), the IRS state-to-state migration data, and the sector-state employment

data from BLS, as explained below.

The CPS provides details of people’s employment status and industry each month, but it does

not provide information regarding movements across states. This means that we can construct

from the CPS data LCPS
jj,sk ∀j ∈ U.S. and any origin or destination sectors s, k (intra-state flows

of people between sectors). To remain internally consistent with the model, we only consider

employed or out-of-the-labor force workers (i.e., we exclude unemployed workers). 39

The ACS provides details of workers’ current employment status, sector, and state. It also

asks the state in which respondents lived the prior year. However, this survey does not provide

information regarding people’s employment status and sector in the previous year. This means

that we can construct from the ACS data LACS
ji,#k ∀j, i ∈ U.S. and destination sector k (interstate

flows but without knowing the sector of origin, where the unknown component is labeled as #).

Finally, the IRS state-to-state migration data allows us to construct the mobility between states

regardless of their sector LIRS
ji,## ∀j, i ∈ U.S.

39The CPS surveys households in a 4-8-4 format; that is, it interviews the household for four consecutive
months, gives them an 8-month break, and interviews them again for four straight months. We start with
the NBER version of the CPS. The first four monthly interviews are 12 months apart from the final four
interviews, and the first four and final four are consecutive months. Since we are interested in recording
annual changes, we only keep interview months (1,5) which is equivalent to following individuals for the
first twelve months they appear in the survey. To avoid noise in our sample, we pooled observations for
the previous two years and the following two years for the year of interest.
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We combine these datasets to compute the labor transitions across states and sectors. We

also apply proportionality to the flows from CPS and ACS to sum up the total flows of the IRS

data (which do not require additional assumptions and are available for interstate movements).

In particular, for movements between sectors within the same state we use the following rule:

Ljj,sk = LIRS
jj,## ×

LCPS
jj,sk

∑s ∑k LCPS
jj,sk

∀j, ∀s, k

For movements across states, we define:

Lji,sk =
LCPS

jj,sk

∑s LCPS
jj,sk
× LIRS

ji,## ×
∑i LACS

ji,?k

∑i ∑k LACS
ji,?k

,

where, in the few cases when the diagonal value of the matrix (same state and sector in origin and

destination) is zero, we change it to the minimum non-zero diagonal value.

Since the U.S. Census has the highest-quality data on the labor distribution by sector-state,

we want our constructed flows to be consistent with sector-state data from the Census. However,

this data is only available every ten years. Because of this, we first rely on sector-state data from

the BLS (which is available yearly) to get sector-level employment for 1999 and 2000 and make our

migration flows consistent with those employment vectors as explained below. One disadvantage

of the BLS data is that it is based on a sample of the U.S. population and therefore its levels are less

reliable than the ones from the Census (in particular, some sector-states have zero employment

in both 1999 and 2000 in the BLS data but non-zero employment in the 2000 Census). To make

the employment changes consistent with the 1999-2000 BLS data but the levels in 2000 consistent

with the Census data, we construct the ratio of employment in 1999 to employment in 2000 for all

sector-states using BLS data (after normalizing the total employment to be constant across time as

it is in our model), winsorize these ratios at the 2.5% and 97.5% levels, and then multiply them by

the 2000 Census data to generate a 1999 employment vector that is consistent with the levels of

the 2000 Census but the changes in BLS, which we denote by “CBLS”.

Note that the migration shares imply that Li,k,t+1 = ∑I
j=1 ∑S

s=0 µji,skLj,s,t, where Lj,s,t is the total

employment in region j, sector s, at time t. Since we want the migration flows matrix for 1999-2000

to be consistent with the change in the stocks of workers across sector-state pairs that we observe in

the data between 1999 and 2000 (which is much more reliable than the direct migration flows), we

use the µ′ji,sks that are the closest to the ones constructed with the steps above but that satisfy that
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LCensus
i,k,2000 = ∑I

j=1 ∑S
s=0 µ′ji,skLCBLS

j,s,1999. Specifically, we minimize the sum of square differences between

the new µ’s and the original ones subject to: (1) the new µ’s are consistent with the change in the

stocks of workers across sector-states from the CBLS data, (2) they are greater than zero: µ′ji,sk ≥ 0,

and they sum to one for each sender market over all receiver markets: ∑I
i=1 ∑S

k=0 µ′ji,sk = 1, and

(3) if the original µ matrix has a given flow as zero, then this must still be the case in the new µ′

matrix: µ′ji,sk = 0 if µji,sk = 0. The change in the flows implied by this procedure is very small. In

particular, the correlation between the original µji,sk and the µ′ji,sk is greater than 99.99%.

Mobility matrix for non-U.S. regions. We do not take the mobility matrix for each country

outside of the U.S. from the data, which would be extremely cumbersome because we have 37

other countries. However, it can be shown (details provided upon request), that for a country with

a single region (such as non-U.S. countries in our context), the fact that there are no mobility costs

can be captured by setting a special mobility matrix between 1999 and 2000. Thus, we compute

the elements of that mobility matrix between 1999 and 2000. To do this, we take as given the labor

distribution in 1999 (Li,s,0) and 2000 (Li,s,1) and compute the following formula:

µii,sk,0 =
Li,k,1

∑S
r=1 Li,r,0

Notice that the flows between sector s and sector k do not depend on information of the sender

sector (s), which is implicitly encoding the information that in the countries outside of the U.S.,

mobility between sectors is frictionless.

C.4 Handling Negative Cobb-Douglas Shares

From our data on bilateral trade flows, labor shares, and input-output coefficients we can

back out a set of implied values for the αj,s Cobb-Douglas parameters. However, there may be

situations where the implied α’s for a small fraction of the region-sectors are slightly negative,

which is not consistent with our model. In this case, we modify the bilateral trade flow data to

make it consistent with non-negative α’s. In order to do this, we first obtain the set of α’s implied

by the original data, then we set the negative implied α’s to zero, and then we re-normalize the

α’s so that they add up to one again in each region. This process yields a new set of non-negative

alphas which we denote α̃j,s.

We then recover the bilateral trade flows that are compatible with the new α̃j,s. The equilib-

rium system to obtain these bilateral trade flows is a special case of the temporary equilibrium
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“dot” system described in point (2) of Section B.4 for the year 2000, without DNWR, without

mobility, without technology or trade shocks, and with γ = 1 in the nominal anchor:

Ṗ1−σs
i,s,t =

I

∑
j=1

λji,s,t−1

(
Ẇ

φj,s
j,s,t

S

∏
k=1

Ṗ
φj,ks
j,k,t

)1−σs

λij,s,t =
λij,s,t−1(Ẇ

φi,s
i,s,t ∏S

k=1 Ṗφi,ks
i,k,t )

1−σs

∑I
r=1 λrj,s,t−1(Ẇ

φr,s
r,s,t ∏S

k=1 Ṗφr,ks
r,k,t )

1−σs

Ri,s,t =
I

∑
j=1

λij,s,t

(
α̃j,s

(
∑

s
Ẇj,s,tYj,s,t−1 + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
Ẇi,s,tYi,s,t−1 = φi,sRi,s,t

I

∑
i=1

S

∑
s=1

Ẇi,s,tYi,s,t−1 =
I

∑
i=1

S

∑
s=1

Yi,s,t−1.

In this system, the λt−1, α̃j,s, Yt−1, and Dt’s are all known, and the Ẇ, Ṗ, Rt and λt’s are the out-

comes. From these outcomes we can construct the new bilateral trade flow matrix that is consistent

with the non-negative α̃j,s. This process changes the original data by a negligible amount; the cor-

relation between the constructed bilateral trade flows and the original ones is above 99.99%. A

version of this process is also applied by CDP, who further equalize the α’s across regions.

D Exposure Measures

Consider an economy producing a set of homogeneous goods across sectors s = 1, ..., S with

prices ps. Labor is the only factor of production that is mobile across sectors, and there are decreas-

ing returns to labor in each sector so that qs = Fs(ls) with F′s(·) > 0 and F′′s (·) < 0. Preferences

are given by U(c) − V(l), where l ≡ ∑s ls, U(c) is homogeneous of degree one, and V ′(·) > 0

and V ′′(·) > 0. We are interested in the effect of a foreign shock on employment in two different

cases. In the first case the wage w is fixed and labor is fully determined by labor demand (we

assume that labor supply is higher than labor demand at the fixed wage w), while in the second

case the wage is fully flexible and clears the labor market. Below we show that further assuming

that ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε for all s and µ(l) ≡ V′′(l)l
V′(l) = µ, then in the case of a fixed wage we have

d ln l =
1
ε ∑

s

( psqs

I

)
d ln ps (D1)

while in the case of flexible wages we have
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d ln l =
1

ε + µ ∑
s

(
psqs − pscs

I

)
d ln ps, (D2)

where I ≡ ∑s psqs. Thus, if the wage is fixed and if we know the log changes in prices resulting

from the foreign shock then we can interact them with revenue shares, psqs
I , to construct a Bartik-

style sufficient statistic for the first order effect on employment. In contrast, if the wage fully

adjusts to equalize labor supply and demand, then the appropriate weights (share components in

the Bartik measure) for the price changes are instead given by net exports as a share of GDP, to

capture the implied terms-of-trade effects. If the economy is small, then prices are exogenous and

one could further replace d ln ps by the underlying Chinese productivity shocks.

Let’s start with the case where w is fixed. Fully differentiating the equilibrium condition

psF′s(ls) = w implies d ln ls = d ln ps
εs(ls)

, where ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

. We then have d ln l = ∑s ms
d ln ps
εs(ls)

,

where ms ≡ ls
∑s ls . Assuming that εs(ls) = ε we know that psqs/I = ms and hence we get (D1).

Now let’s consider the case with a flexible wage. The equilibrium is given by w, l, λ and

{ls, cs}s such that the following equations hold

psF′s(ls) = w (D3)
∂Us

∂cs
= λps (D4)

V ′(l) = λw (D5)

∑
s

ls = l (D6)

∑
s

pscs = ∑
s

ps fs(ls). (D7)

Differentiating equation (D5) yields µ(l)d ln l = d ln λ + d ln w, where µ(l) ≡ V′′(l)l
V′(l) . Thus

d ln l =
d ln (w/P)

µ(l)
, (D8)

with P ≡ 1/λ. Next, totally differentiating equations (D3) and (D6) yields d ln ps − εd ln ls =

d ln w and ∑s msd ln ls = d ln l. Combined, the previous two equations imply ∑ msd ln ps −εd ln l =

d ln w, which combined with (D8) implies (after some rearranging):

d ln (w/P) =
µ

µ + ε

(
∑ msd ln ps − d ln P

)
. (D9)

But equation (D4) implies that ∑s
∂Us
∂cs

cs = λ ∑s pscs. Since U(c) is homogeneous of degree
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one this implies U(c) = λ ∑s pscs. Totally differentiating this equation yields ∑s
∂Us
∂cs

dcs =

(∑s pscs) dλ + λ ∑s psdcs + λ ∑s csdps. Using equation (D4) we get ∑s λpsdcs = (∑s pscs) dλ

+λ ∑s psdcs +λ ∑s csdps, which, after simplifying, implies

d ln P = d ln (1/λ) = ∑
s

θsd ln ps, (D10)

where θs ≡ pscs
∑s pscs

. Plugging into (D9) and combining with (D8) we get

d ln l =
1

µ + ε ∑ (ms − θs) d ln ps = d ln l.

Finally, note that ms ≡ ls
∑s ls = wls

∑s wls = psF′s(ls)ls
∑s psF′s(ls)ls

. Using ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε, we know that

Fs(ls) ∝ l1−ε
s and F′s(ls) ∝ (1− ε) l−ε

s , hence ms = psFs(ls)
∑s psFs(ls)

= psqs
∑s psqs

= psqs
I . On the other hand,

using (D7) we have θs ≡ pscs
∑s pscs

= pscs
I . Combining all of this we obtain (D2).

D.1 “Horse Race” Between Different Exposure Measures

Table D.1: “Horse race” between different exposure measures in the baseline model
with and without DNWR

(1) (2) (3) (4)
Welf. Flex. Welf. DNWR Empl. Flex. Empl. DNWR

Constant 0.598** 0.555** 2.733** 1.324*
(0.056) (0.071) (0.313) (0.512)

ADH Exposure −0.027 −0.066** −0.079 −0.780**
(0.016) (0.020) (0.090) (0.147)

NX Exposure −0.098** −0.110** −0.534** −0.617**
(0.016) (0.020) (0.090) (0.147)

N 50 50 50 50
R squared 0.500 0.516 0.462 0.557
Mean dep. var. 0.269 0.093 1.121 −2.350

Notes: This table shows the results of regressing several variables on a constant, ADH exposure, and net
export exposure (renormalized to have the same mean and standard deviation as ADH exposure). The
exposure variables are described in the text. The dependent variables are: welfare change from the China
shock in the baseline model without DNWR (column 1), welfare change from the China shock in the base-
line model with DNWR (column 2), percentage change in total employment between 2000 and 2007 in the
baseline model without DNWR (column 3), and percentage change in total employment between 2000 and
2007 in the baseline model with DNWR (column 4). Stars denote significance, one for 5%, and two for 1%.
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