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Abstract

We consider reinforcement learning (RL) in possibly nonstationary environments. Many
existing RL algorithms in the literature rely on the stationarity assumption that requires the
state transition and reward functions to be constant over time. However, this assumption
is restrictive in practice and is likely to be violated in a number of applications, including
traffic signal control, robotics and mobile health. In this paper, we develop a model-
free test to assess the stationarity of the optimal Q-function based on pre-collected his-
torical data, without additional online data collection. Based on the proposed test, we
further develop a change point detection method that can be naturally coupled with ex-
isting state-of-the-art RL methods designed in stationary environments for online policy
optimization in nonstationary environments. The usefulness of our method is illustrated
by theoretical results, simulation studies, and a real data example from the 2018 Intern
Health Study. A Python implementation of the proposed procedure is publicly available at
https://github.com/limengbinggz/CUSUM—-RL.

1 Introduction

Reinforcement learning [RL, see Sutton and Barto, 2018, for an overview] is a powerful ma-
chine learning technique that allows an agent to learn and interact with a given environment,
to maximize the cumulative reward the agent receives. It has been one of the most popular re-
search topics in the machine learning and computer science literature over the past few years.
Significant progress has been made in solving challenging problems across various domains
using RL, including games, recommender systems, finance, healthcare, robotics, transporta-
tion, among many others [see Li, 2019, for an overview]. In contrast, statistics as a field has
only begun to engage with RL both in depth and in breadth. Most RL works in the statistics
literature focused on developing data-driven methodologies for precision medicine [see e.g.,
Murphy, 2003, Robins, 2004, Chakraborty et al., 2010, Qian and Murphy, 2011, Zhang et al.,
2013, Zhao et al., 2015, Wallace and Moodie, 2015, Song et al., 2015, Luedtke and van der
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Laan, 2016, Zhu et al., 2017, Zhang et al., 2018, Shi et al., 2018a,b, Wang et al., 2018, Qi
et al., 2020, Nie et al., 2021, Fang et al., 2023]. See also Tsiatis et al. [2019] and Kosorok and
Laber [2019] for overviews. These aforementioned methods were primarily motivated by ap-
plications in precision medicine with only a few treatment stages. They require a large number
of patients in the observed data to achieve consistent estimation and become ineffective in the
long- or infinite-horizon setting where the number of decision stages diverges with the number
of observations. The latter setting is widely studied in the RL literature to formulate many
sequential decision making problems in games, robotics, ridesharing, etc. Recently, several al-
gorithms have been proposed in the statistics literature for policy optimization or evaluation in
long horizon settings [Ertefaie and Strawderman, 2018, Liao et al., 2021, Luckett et al., 2020,
Hu et al., 2021, Ramprasad et al., 2021, Liao et al., 2022, Shi et al., 2022, Hu and Wager, 2023,
Liu et al., 2023, Wang et al., 2023a, Chen et al., 2024, Li et al., 2024, Shi et al., 2024a, Zhou
et al., 2024, Bian et al., 2025].

Central to the empirical validity of most existing state-of-the-art RL algorithms is the sta-
tionarity assumption that requires the state transition and reward functions to be constant func-
tions of time. Although this assumption is valid in online video games, it can be violated in a
number of other applications, including traffic signal control [Padakandla et al., 2020], robotic
navigation [Niroui et al., 2019], mobile health [mHealth, Liao et al., 2020], e-commerce [Chen
et al., 2020] and infectious disease control [Cazelles et al., 2018]. According to Sutton and
Barto [2018], “nonstationarity is the case most commonly encountered in reinforcement learn-
ing”. It is also a key challenge in lifelong RL where the tasks presented to the agent change
over time [Silver et al., 2013]. We consider a few examples to elaborate the violation of the
stationarity assumption.

One motivating example considered in our paper comes from the Intern Health Study [IHS;
NeCamp et al., 2020]. The period of medical internship, which marks the initial phase of pro-
fessional medical training in the United States, is a highly demanding and stressful time for
physicians. During this phase, residents are confronted with challenging decisions, extended
work hours, and sleep deprivation. In this ongoing prospective longitudinal study, one primary
objective is to determine the optimal timing for providing smartphone-delivered interventions.
These interventions send mobile prompts through a customized study app, aimed at offering
timely tips to encourage interns to adopt anti-sedentary routines that may enhance their physi-
cal well-being. Nonstationarity poses a significant challenge within the context of the mHealth
study. Specifically, as individuals receive mobile-delivered interventions for longer duration,
they may habituate to the prompts or become overwhelmed, resulting in reduced responsive-
ness to the contents of the suggestions [Klasnja et al., 2019, Qian et al., 2022]. Consequently,
the treatment effect of activity suggestions may transition from positive to negative over time.
To maximize the effectiveness of interventions, ideal treatment policies would be those adapt-
ing swiftly to the current circumstances of the subjects based on the most recent data collected.
Failing to recognize potential nonstationarity in treatment effects over time may lead to policies
that overburden medical interns, resulting in app deletion and study dropouts.

As another example, the coronavirus disease 2019 (COVID-19) emerged as one of the most
severe global pandemics in history and infected hundreds of millions of people worldwide. In



response to this crisis, there was a growing interest in utilizing RL to develop data-driven in-
tervention policies to contain the spread of the virus [see e.g., Eftekhari et al., 2020, Kompella
et al., 2020, Wan et al., 2020]. However, the dynamics of COVID-19 transmission were highly
intricate and exhibited nonstationary over time. Initially, strict lockdown measures were proven
to be highly effective in controlling the spread of the virus [Kharroubi and Saleh, 2020]. How-
ever, these measures had significant economic costs [Eichenbaum et al., 2020]. As effective
vaccines were developed and a substantial proportion of the population became vaccinated, a
natural inclination was to ease these lockdown restrictions. Nonetheless, the efficacy of the
vaccine was likely to diminish over time, particularly in the presence of new viral variants.
To summarize, policymakers needed to dynamically adapt public health policies by taking the
nonstationary nature of the COVID-19 spread into consideration, in order to enhance global
health outcomes while carefully balancing the negative impacts on the economy and society.

In this paper, we consider situations where the optimal Q-function Q°?* (the expected cu-
mulative reward under the optimal policy, see Section 2.3 for its detailed definition) is possibly
nonstationary, as a result of potential changes in the state transition or reward functions. These
functions can change at an arbitrarily unknown time point (referred to as a change point), and
the changes can be abrupt or smooth. A number of time series works have focused on test-
ing the stationarity of a given time series and detecting the change point locations in various
models, ranging from the simple piecewise-constant signal plus noise setting [Killick et al.,
2012, Fryzlewicz, 2014] to complex high-dimensional panel data and time series [Cho and
Fryzlewicz, 2015, Wang and Samworth, 2018]; see Aminikhanghahi and Cook [2017] and
Truong et al. [2020] for comprehensive reviews. Different from the aforementioned works in
time series, (Q° takes a state-action pair as input. To test its stationarity, we need to check
whether it is constant over time, for each possible value of the state-action pair.

Our methodological contributions are summarized as follows:

1. We propose a novel test to assess the stationarity of the optimal Q-function. To the best of
our knowledge, this is the first work on developing statistically sound tests for stationarity
in offline RL — a domain where policies are learned from previously collected datasets,
instead of actively collected data in real-time as in online RL. Our proposal is an example
of harnessing the power of classical statistical inferential tools such as hypothesis testing
to help address an important practical issue in RL.

2. We apply our proposed test to compute p-values and identify the most recent historical
change point location from a set of potential change point candidates for subsequent
online policy learning in nonstationary environments.

Our technical contributions are summarized as follows:

1. We present and systematically examine various types of stationarity assumptions, ana-
lyzing their interrelationships.

2. We establish the size and power properties of the proposed tests under a bidirectional
asymptotic framework that allows either the number of data trajectories or the number of



decision points per trajectory to diverge to infinity. This is useful for different types of
applications. For example, disease management studies using registry data [e.g., Cooper-
berg et al., 2004] or infectious disease control studies [e.g., Lopes-Junior et al., 2020]
often involve a large number of subjects and the objective is to develop an optimal policy
at the population level to maximize the overall long-term reward. Conversely, there are
other applications where the number of subjects is limited yet the number of decision
points is large [see e.g., Marling and Bunescu, 2020].

3. We develop a matrix concentration inequality for nonstationarity Markov decision pro-
cesses in order to establish the consistency of the proposed test. The derivation is non-
trivial and naively applying the concentration inequality designed for scalar random vari-
ables [Alquier et al., 2019] would yield a loose error bound; see Section B.4 for detailed
illustrations.

4. We derive the limiting distribution of the estimated optimal Q-function computed via the
fitted Q-iteration [FQI, Ernst et al., 2005] algorithm, one of the most popular Q-learning
type algorithms. See Equation (3.5).

The proposed test and change point detection procedure are useful in practical situations. In
particular, the proposed test is useful in identifying nonstationary environments. Existing RL
algorithms designed for stationary environments are no longer valid in nonstationary environ-
ments. While some recent proposals [Lecarpentier and Rachelson, 2019, Cheung et al., 2020,
Feietal., 2020, Domingues et al., 2021, Wei and Luo, 2021, Xie et al., 2021, Zhong et al., 2021,
Feng et al., 2023] allow for nonstationarity, they may be less efficient in stationary settings. By
examining the stationarity assumption, our proposed test provides valuable insights into the
system’s dynamics, enabling practitioners to select the most suitable state-of-the-art RL algo-
rithms for implementation. Specifically, if the stationarity assumption is not rejected, standard
RL algorithms (e.g., Q-learning, policy gradient methods) can be implemented to ensure effi-
ciency of policy learning. Otherwise, RL algorithms designed for nonstationary environments,
such as those mentioned above, should be preferred.

Additionally, the proposed change point detection procedure identifies the most recent “best
data segment of stationarity”. It can be integrated with state-of-the-art RL algorithms for online
policy learning in nonstationary environments. We apply this procedure to both synthetic and
real datasets in Sections 5 and 6, respectively. Results show that the estimated policy based
on our constructed data segment is comparable or often superior to those computed by (i) sta-
tionary RL algorithms that ignore nonstationarity, (ii) nonstationary RL algorithms that do not
perform change point detection and (iii) nonstationary RL algorithms that employ alternative
tests for identifying change points. In the motivating IHS study, the proposed method reveals
the benefit of nonstationarity detection for optimizing population physical activities for interns
in some medical specialties. The promotion of healthy behaviors and the mitigation of nega-
tive chronic health outcomes typically require continuous monitoring over a long term where
nonstationarity is likely to occur. As RL continues to drive development of optimal interven-
tions in mHealth studies, this paper substantiates the need and effectiveness of incorporating a
classical statistical inferential tool to accommodate nonstationarity.
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The rest of the paper is organized as follows. In Section 2, we introduce the offline RL prob-
lem and review some existing algorithms. In Section 3, we detail our procedures for hypothesis
testing and change point detection. We establish the theoretical properties of our procedure in
Section 4, conduct simulation studies in Section 5, and apply the proposed procedure to the
IHS data in Section 6.

2 Problem Formulation

We start by introducing the data generating process and the concept of policy in RL. We next
review Q-learning [Watkins and Dayan, 1992], a widely used RL algorithm that is closely
related to our proposal. Finally, we discuss five types of stationarity assumptions and introduce
our testing hypotheses.

2.1 Data

We consider an offline setting to learn an optimal policy based on a pre-collected dataset
from a randomized trial or observational study. The offline dataset is summarized as D =
{(Si+, Aisr, Rit) hi<i<no<t<T, Where (S;;, A; ¢, R;;) denotes the state-action-reward triplet of
the ¢th subject at time ¢. Without loss of generality, we assume all subjects share the same
termination time 7', which is reasonable in many mHealth studies. In Section A.2, we extend
our proposal to settings where subjects have different termination times. In IHS, the state cor-
responds to some time-varying covariates associated with each medical intern, such as their
mood score, step counts, and sleep minutes. The action is a binary variable, corresponding
to whether to send a certain text message to the intern or not. The immediate reward is the
step counts. We assume all rewards are uniformly bounded, as commonly adopted in the RL
literature to simplify theoretical analysis [see e.g., Fan et al., 2020]. These /N trajectories are
assumed to be 1.i.d copies of an infinite horizon Markov decision process [MDP, Puterman,
20147 { (S, At, Rt) }+>0 whose data generating process can be described as follows:

1. State Presentation: At each time ¢, the environment (represented as an intern in our
example) is in a state S; € S where S € R? denotes the state space and d denotes the
dimension.

2. Action Selection: The agent (or decision maker) then selects an action A, from the action
space A based on the observed data history H; including S; and the state-action-reward
triplets up to time ¢t — 1.

3. Reward Generation: The agent receives an immediate reward R; € R with its expected
value specified by an unknown reward function r;:

E(Ri|Hy, Ar) = 1¢(At, Sp). 2.1



4. State Transition: Subsequently, the environment transitions to the next state S;,;, de-
termined by an unknown transition function 7;:

St+1 - 7;(14137 St7 615)7 (22)

where {0, },; is a sequence of i.i.d. random noises, with each ¢; being independent of
{(S5, Aj, ;) Yise

Remark 1. By definition, T; specifies the conditional distribution of the future state given the
current state-action pair, and ry is the conditional mean function of the reward. Both (2.1) and
(2.2) impose certain Markov or conditional independence assumptions on the data trajectories,
implying that the future state and the conditional mean of the current reward are independent
of the H, given the current state-action pair. These assumptions are testable from the observed
data [Chen and Hong, 2012, Shi et al., 2020b, Zhou et al., 2023].

2.2 Policy

A policy defines how actions are chosen at each decision time. In particular:

1. A history-dependent policy 7 is a sequence of decision rules {7 };>¢ such that each 7,
takes H; as input, and outputs a probability distribution on the action space, denoted by
(8| H;). Under 7, the agent will set A; = a with probability 7, (a|H;) at time ¢.

2. A Markov policy 7 is a special history-dependent policy where each m; depends on H;
only through the current state .S;.

3. A stationary policy 7 is a special Markov policy where {7}, are time-invariant, i.e.,
there exists some function 7* such that 7, (e|H;) = 7*(e|S;) almost surely for any ¢, and
we use 7(e|.5;) to denote the resulting decision rule.

4. An optimal policy 7" = {7}, maximizes the expected y-discounted cumulative
reward J,(m) = >, 7' E"(R;) among all history-dependent policies 7, given a dis-
count factor 0 < < 1 which balances the trade-off between the immediate and future
rewards. The expectation [E™ is calculated under the assumption that the agent makes
decisions in accordance with the policy .

5. The behavior policy b = {0, }; denotes the policy the agent adopted for all individuals
in the offline dataset. This policy is not necessarily optimal and may be a purely ran-
dom policy in scenarios like sequential multiple assignment randomized trials [SMARTS,
Collins et al., 2007].

Remark 2. Under (2.1) and (2.2), there exists an optimal Markov policy ©°" whose J., (1)
is no worse than that of any history-dependent policy, see Theorem 6.2.10 of Puterman [2014].
This substantially simplifies the calculation of the optimal policy. Hence, throughout this paper,
‘optimal policy’ specifically refers to the optimal Markov policy, meaning that each 7" is a
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function of the current state S; only. Note that the proof in Puterman [2014] relies on the
assumption that the reward is a deterministic function of the state-action-next-state triplet.
However, this assumption can be effectively relaxed to (2.1) while still preserving the validity
of the proof.

2.3 Q-Learning

We review Q-learning, one of the most popular RL algorithms. It is model-free in that the
optimal policy is derived without directly estimating the MDP model (i.e., transition and re-
ward functions). Central to Q-learning is the state-action value function, commonly known
as the Q-function. Given a policy m, its Q-function Q™ = {Q7 };>¢ is defined such that each
QT is the expected cumulative reward given a state-action pair following 7, i.e., Q7 (a,s) =
E™ (Y40 V" Resk|Ar = a, S, = s). The optimal Q-function, denoted by @™ or simply Q°",
corresponds to the Q-function under the optimal policy. The optimal Q-function possesses two
key properties': (i) 7! is greedy with respect to Q°%, i.e., for any ¢ > 0,

o

a,s);

opt(als) _ { 1, ifa = argmax, (2.3)

7 .
t 0, otherwise.

(i1) The Bellman optimality equation holds, stating that the expected Q-value at time ¢ equals
the immediate reward plus the maximum Q-value of the next state:

]E {Rt + Yy mj%X Q?f_tl(a, St+1)|At7 St} = ?pt(At, St)7 \V/t Z 0 (24)

Equations (2.3) and (2.4) form the basis of Q-learning, which estimates {Q;” t}t by solv-
ing the Bellman optimality equation (2.4) and computes 7% based on the estimated optimal
Q-function using (2.3). Assuming the stationarity of the optimal Q-function, i.e., Q%" = Q"
for any ¢, various algorithms have been developed under this framework, such as tabular Q-
learning [Watkins and Dayan, 1992], FQI, greedy gradient Q-learning [Maei et al., 2010, Erte-
faie and Strawderman, 2018], double Q-learning [Hasselt, 2010] and deep Q-network [DQN,
Mnih et al., 2015]. In particular, FQI, which our paper implements, iteratively updates the op-
timal Q-function estimator based on (2.4). Beginning with an initial Q-function estimator QO
(typically set to zero), we compute Q*+1) by minimizing

2
QY = arg min Z {Rz}t +ymax Q¥ (a, S; 1) — Q(Aiy, Sz-,t)} , (2.5)
Q@ ix ¢

during the £th iteration. The above optimization can be cast into a supervised learning problem
with { R; ; +7 max, Q™ (a, Sit+1) }ir as the responses and {(A; ¢, S;+) }i+ as the predictors. We
will establish the limiting distribution of the resulting Q-function estimator when employing
the method of sieves for function approximation.

I"Typically, these properties are verified in a stationary setting, see e.g., Theorem 1.8 of Agarwal et al. [2019].
However, by simply incorporating the time index into the state definition, the proofs of these theorems can be
readily adapted to nonstationary MDPs defined in Section 2.1 as well.
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2.4 The Stationarity Assumption
Starting from a given time point 7, > 0, we introduce five types of stationarity assumptions:

SA1 (Stationary MDPs): The transition function 7; and the reward function r; remain con-
stant over time, for all £ > Tj,.

SA2 (Stationary Q-functions): For any stationary policy 7 (see the definition in Section 2.2),
the associated Q-function ()] is constant as a function of ¢, for all ¢ > T§,.

SA3 (Stationary optimal Q-functions): Q;’gt = Q"Tﬁﬂrl =...=Q%=...,
SA4 (Stationary optimal policies): 73/ = 77, = =7 = ...,
SAS (Stationary behavior policies): b, = by =---=b, = -~

The following theorem discusses the relationships among these assumptions.

Theorem 2.1 (Stationarity relationships). Assume both the state space and the action space
are finite, and the rewards are uniformly bounded. Then SAI implies SA2, SA2 implies SA3,
and SA3 implies SA4.

Remark 3. Throughout this paper, stationary MDPs refer to MDP models with stationary
transition and reward functions. Therefore, SAI represents a “model-based” stationarity as-
sumption, as it directly relates to the MDP model. It is the most prevalently employed form of
stationarity in the literature [Sutton and Barto, 2018]. Importantly, this concept does not re-
quire the stationarity of the behavior policy (SAS5), which characterizes the decisions or strate-
gies put forth by the agent and operates independently of the environmental factors. Nor does
SAS5 imply SA2 — SA4. As a result, the optimal policy may be stationary or nonstationary,
regardless of whether the behavior policy is stationary or not.

Remark 4. SA2 and SA3 are characterized as model-free stationarity assumptions, as they
are defined without direct reference to the state transition or reward functions. Theorem 2.1
suggests that these assumptions are automatically satisfied under SA1. Furthermore, it is well-
known that in stationary MDPs, the optimal policy is stationary as well [Puterman, 2014].
The proof that SA2 leads to SA3, however, is not straightforward. Drawing inspiration from
the policy iteration algorithm [Sutton and Barto, 2018, Section 4.3], we define a sequence of
policies whose Q-functions converge to the optimal Q-function. This enables us to establish
the connection between a non-optimal Q-function and the optimal one, thus proving the sta-
tionarity of the optimal Q-function in a potentially nonstationary MDP (i.e., when SA2 holds,
but SAI does not). We refer readers to Section B.1 for details.



2.5 Hypothesis Testing under Nonstationarity

As commented in the introduction, the stationarity assumption can be restrictive in practice.
This motivates us to test stationarity based on the offline dataset. Given the five different
types of stationarity assumptions we have identified, there are correspondingly five different
hypotheses to test. In this paper, we focus on testing SA3 due to the following considerations:

» Testing SA1 poses considerable challenges in scenarios with moderate to high-dimensional
states, as the transition function’s outputs are multidimensional with dimension matching
that of the state.

* Testing SA2 is extremely difficult due to the need to enumerate over all possible policies,
whose number increases exponentially with the cardinality of the state space.

* Based on (2.3), the optimal policy is intrinsically tied to the optimal Q-function. The-
orem 2.1 further implies that SA4 follows from SA3. Thus, by testing SA3, we can
effectively assess the stationarity of the optimal policy.

* Optimal testing of SA4 is complex since the optimal policy is a highly nonlinear func-
tional of the observed data, complicating the derivation of its estimator’s limiting distri-
bution. Moreover, 7°”* may lack uniqueness even when {Q?"'}, is uniquely determined.

» Testing SAS is meaningless because the stationarity of the behavior policy does not in-
fluence that of the optimal policy.

Thus, our testing hypotheses are formulated as follows:

Ho : Q' = Q°P', Yt > Ty, versus H, : Q" has at least one smooth

2.6
or abrupt change point for ¢ > T} (see Figure 3.1). (26)

3 Proposed Stationarity Test and Change Point Detection

In this section, we start by proposing three types of test statistics for testing (2.6). Next, we
present key computation steps in constructing these tests. Finally, we present our change point
detection method, built upon the proposed test.

3.1 Test Statistics

All test statistics we propose require an estimated optimal Q-function, denoted as @ 1,15 (@ 8)
(here we drop the superscript opt in QP for simplicity), using data collected in the interval
|11, T3] C [Ty, T). For any candidate change point u € (Ty + €7, (1 — €)T'), where € > 0 is
a pre-specified boundary-removal constant, we use @[u,T] (a,s) — @[TW] (a, ) to measure the
difference in the optimal Q-function after and before the candidate. Based on this measure, we
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Figure 3.1: Examples of Q° at a given state-action pair, with an abrupt change point (left
panel) and a gradual change point (right panel) at t = 50. 7y = 0 in both examples.

Algorithm 1 Testing Stationarity of the Optimal Policy via the Optimal Q-Function.

Input: The offline data {(S;, A+, Ri+) h1<i<nm<t<7, and the significance level 0 < a <
1.

Step 1. Foreach u € [Ty+ €T, (1 —¢)T], employ the fitted Q-iteration algorithm to compute
the estimated Q-functions Q7 ., and (J[, 7] on separate time segments.

Step 2. Construct one of the CUSUM-type test statistics TS, TS, or TS,,, according to
(3.1), (3.2) or (3.3).

Step 3. Employ multiplier bootstrap to compute the bootstrapped test statistics TS’{, TSI;O
or TSfL, and calculate the p-value according to (3.7).

Output: Reject the null hypothesis if the p-value is smaller than a.

introduce three test statistics: an ¢;-type, a maximum-type, and a normalized maximum-type,
given by

1
TS, = max T,

> Qi (Aie, Si) — Qruri(Asas Sin)l|,
To+eT<u<(1—€)T [N(T—To);lQ[To’]( o Sia) = Quann(Ais, Sie)| G.D

TSOO = u 0 u ) - Au ) ’
To+eTglua<X(176)TI%fasXT Qmy,u (@, 5) — Qri(a, 5] (3.2)

~—1

TS, = u ’ 0 u]\Uy 5 ) — Au ) )
forer 22X max 70y (a,8)| @y (@, 5) — Qury(a 5) (3.3)

(u—To)(T—u)
(T—To)?

u to the interval boundary, 52(a, s) denotes a consistent variance estimator of @[Tovu](a, s) —

respectively, where 7, = is the scale factor being dependent on the proximity of

Q w,7](@, s) whose detailed form is given in Section B.2.2.
Under a given significance level «, the critical values and p-values for TS, TS, and TS,
are computed using a multiplier bootstrap method (detailed in Section 3.3) to approximate their
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asymptotic distributions. This multiplier bootstrap is easy to implement. Unlike other methods
such as the nonparametric bootstrap, it does not require to re-estimate the Q-function, thus
simplifying the estimation. We reject the null hypothesis when the test statistic exceeds its
corresponding critical value (or equivalently, the p-value falls below ).

Remark 5. The three test statistics (3.1)—(3.3) are very similar to the classical cumulative sum
(CUSUM) statistic in change point analysis [Csorgd et al., 1997]. The weight scale T, assigns
smaller weights on data points near the boundary of the interval (Ty+ €T, (1 —€)T'). Removing
the boundary is necessary as it is difficult to accurately estimate the Q-function when close to
the boundary. Such practice is commonly employed in the time series literature for change
point detection in non-Gaussian settings [see e.g., Cho and Fryzlewicz, 2012, Yu and Chen,
2021].

Remark 6. In addition, the three test statistics differ in how they aggregate the estimated
changes |Qr,.u) — Qpu/r| across different state-action pairs. The {1-type test (3.1) computes
the average of the changes, weighted by the empirical state-action distribution. The two
maximum-type tests (3.2) and (3.3) focus on the largest change in the (normalized) abso-
lute value. Normalization can enhance efficiency, especially in cases where some state-action
pairs (a, s) are less frequently visited. In these cases, the standard error of the difference
Q\[Tmu}(a,s) — @[U,T} (a,s) tends to be large. As a consequence, the estimated maximizer
arg max, ’Q\[To,u] (a,s) — @[u,T] (a, s)| may differ significantly from the oracle maximizer

arg max, |Qpr§u] (a,s) —Qp, fT] (a, s)|, leading to reduced power in the unnormalized test. We
remark that such normalized supremum-type statistics have been commonly employed in the
econometrics literature [see e.g., Belloni et al., 2015, Chen and Christensen, 2015, 2018]. On
the other hand, the normalized test requires to compute the estimated variance 65, which intro-
duces additional variability into the test statistic that might lower its type-I error control, and
slightly increases computational time. Thus, we expect the normalized test to exhibit a larger
type-1 error and a larger power than the unnormalized and (:-type tests, despite all the three
tests are consistent. This is confirmed by our theoretical and numerical studies, which we will
demonstrate later.

Remark 7. To conclude this section, we remark that the proposed test is model-free, as it
constructs the test statistic without directly estimating the reward and transition functions.
Alternatively, one may consider model-based tests. We compare against an existing model-
based test in Section 5.1 and provide a detailed discussion of model-free versus model-based
tests in Section A. .

3.2 Estimation of the Q-Function

We provide more details on estimating (Q°?" in this section. In particular, we focus on a discrete
action space A = {0,1,--- ,m — 1} with m available actions. We employ the sieve method
[Grenander, 1981] to model Q°*, primarily for two reasons. First, the sieve method ensures
the resulting Q-estimator has a tractable limiting distribution, which allows us to derive the
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asymptotic distribution of the test statistic. Second, the sieve method is useful in mitigating
bias caused by model misspecification, achieved by increasing the number of basis functions.
Specifically, we propose to model QP! (a, s) by ¢; (a, s)3* for some 3* € R™ where

or(a,s) =[I(a=0)"(s),I(a=1)®"(s),--- ,I(a=m —1)d"(s)]", (3.4)

is an mL-dimensional vector constructed using products between the action indicator I(a = e)
and a vector of L basis functions ® on the state space. Several choices can be considered here
for ®. For continuous state spaces, options for ® include power series, Fourier series, splines or
wavelets [see e.g., Judd, 1998]. For discrete state spaces, one could use a lookup table and set
dr(a,s) = [[{(a,s) = (a',s)};a’ € A, s € S]". In Section 4.2, we show that the proposed
test is not overly sensitive to the choice of the number of basis functions L. In practice, we can
determine L using cross-validation, as illustrated in our simulation studies.A

For a given time interval [T7, T3] C [Tj, T'|, we compute an estimator 37, 1) for 3* using
data collected from this interval. Specifically, we employ FQI to iteratively update B[Tl Ty
as outlined in (2.5). With a linear model, we perform ordinary least square regression at
the kth iteration with {R;; + ymax, ¢ (a,S;11)B8% Y} cicnr<i<T, as the responses and
{d(Ait, Sit) Y1<i<nm<t<T, as the predictors to compute the regression coefficients 3¥). The
procedure stops after K iterations and we set B[Tl ) to 3 (5,

3.3 Bootstrap Approach to Critical Value

We employ a multiplier bootstrap method [Wu, 1986, Chernozhukov et al., 2014] to obtain the
p-values. The idea is to simulate Gaussian random noises to approximate the limiting distribu-
tion of the Q-function estimator, and subsequently to approximate that of the test statistic. A
key observation is that, under the null hypothesis, when the Q-function is well-approximated
and the optimal policy is unique, the estimated Q-function ¢, (a,s) " Bty 15) has the following
linear representation:

dr(a,s) B,y — Q7 (a, s)

! o1 Wli%¢A55+() G-
——— ¢, (a,s) ity Sit)0; )
TN -T) R TQ]zltTlL Sl + o
where
| Tl
W[Tl,TQ] = T2 Z E¢L Azta SZ t){¢L(Az taS’Lt) 7¢L<7T0pt(si,t+1)7Si,t-l—l)}—ra
t Ty

07y = Riy + ymax, Q%P (a, S;t+1) — QP (A4, Siy) is the temporal difference error. By the
Bellman optimality equation (2.4), the leading term on the right-hand-side (RHS) of (3.5) forms
a mean-zero martingale. When its quadratic variation process converges, it follows from the
martingale central limit theorem [McLeish, 1974] that 31, 7, is asymptotically normal. As
such, the estimated Q-function is asymptotically normal as well. Refer to Lemma B.2 for the
formal statements.
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Remark 8. To the best of our knowledge, the limiting distribution of the Q-function estimated
via FQI has not been established in the existing RL literature. Most papers focus on establish-
ing non-asymptotic error bound of the estimated Q-function [see e.g., Munos and Szepesvdri,
2008, Chen and Jiang, 2019, Fan et al., 2020, Uehara et al., 2021]. One exception is a recent
proposal by Hao et al. [2021] that studied the asymptotics of Q-estimators computed via the
fitted Q-evaluation [FQE, Le et al., 2019] algorithm. We note that FQE is similar to FQI but
is designed for the purpose of policy evaluation.

In addition, it follows from (3.5) that

N u—1
A A 1
Quaiai(®:5) = Quun(e:8) = gy 01 (05 Wiy 2 2 01 Sia)dly
v ) =1 t=Ty
N T-1 (3.6)
—1 - *
N(T —u) O (a )W D D 6r(Aie Si)di + 0p(1).
=1 t=u

This motivates us to construct B bootstrap samples to approximate the asymptotic distribution
of the leading term on the RHS of (3.6). Specifically, at the bth iteration, b = 1,..., B, we
compute a bootstrap sample Qfy, (@, s) — Q?, 1(a, s) where

N Tr—1

A~ 1

Qfry 1 (a,5) = m¢ L(a,s W[Tl 1) thZT S1( A, Si)0e (B el s, Y11, T,
7 i

where W[ThTﬂ denotes a consistent estimator for Wr, 1, (refer to Lemma B.3 for a detailed
upper bound on the estimation error) given by

N Tp—1
Wir ) = M—le;; Or(Aies Si){or(Aig, Sie) = vorlmg,  (Sien)s Sier)}
0it(B) = Riy +ymax, 8 ¢r(a, Si1) — BT or(Aig, Siz), {€l,}is is a sequence of i.i.d. stan-
dard Gaussian random variables independent of the observed data, and iy o) denotes the

greedy policy with respect to the estimated Q-function (see (2.3)), 75 (5) = argmax, ¢; (a, s) B[Tl To)-

[Ty,T5]
This yields the bootstrapped statistics,

TS} = max [ T o) Z|QTOU (A, Sivt) — QUT](Aztaszt)l]

Tot+elT<u< (l—e)T

TS5 = To+5Tr<nua<X(1 —oT H;%X T“‘Q [To,ul (a s) — Q[“’T (a,5)],

TS = 3 Ab ‘
" T0+6Tr<nua<x(1 e)TH;a:GXT ((l S)|Q[T0U ((1, S) Q[u,T](av S)|

The random noise ef’t in @l[’Tl ] plays a crucial role in the approximation of the asymptotic
distribution. In particular, in Step 3 of the proof of Theorem 4.1 (see Section B.2.1), we show
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that the conditional variance of the difference in the bootstrap sample Q[TO (@, s)— @’[’u (@, s)
given the data, is asymptotically equivalent to the asymptotic variance of the dlfference in the
actual Q-function estimator Q[To,u] (a,s) — Q[u 71(a, s). Meanwhile, Q[TO (@ 8) — Q[u (@, s)

follows a normal distribution given the data, due to the injected Gaussian noises {em}l,t, while

@[Tw}(a, s) — @[uvT](a, s) is asymptotically normal. These alignments justify the use of the
multiplier bootstrap. We thus set the critical value of each test to the ath upper quantile of the
bootstrapped samples. The p-values can be computed by

1 & 1
b
= Z]I(Ts1 > TS;), =

B B
1
b b
2 bg_l I(TS., > TS« ) and E I(TS,, > TS,), (3.7)

b=1

respectively.

3.4 Change Point Detection

Given the offline data collected from /N subjects up to time 7', we aim to learn an optimal
‘warm-up” policy, i.e., the optimal policy that maximizes these subjects’ long-term rewards
starting from time 7', until the reward or transition function changes. This goal aligns with
our motivating mHealth study setting where the researchers want to design the best policy
based on pre-collected data and extends the policy to the same group of subjects after the
study ends. To this end, we focus on identifying the most recent change point 7™ such
that Q% = QF,, = -+ = Q7" and apply state-of-the-art Q-learning to the data subset
{(Sl7t, Al7t, Ri,t)}lﬁiSN,T*StST to learn 7T(7)wpt.

To estimate 7™, we apply any of the three proposed tests to a sequence of candidate change
points from the back. We start by specifying a monotonically increasing sequence {r;}; C
(0,7") and apply the test to intervals [I" — x;, T']. The estimator T* is then set to the candidate
change point before the first rejection, i.e., T =T— kj,—1 Where the test is first rejected at .
If no changes are detected, we propose to use all the observed data for policy optimization.

Though offline, the proposed change point detection method is an integral part in batch
online RL settings via the following strategy: Step 1) A behavior policy is used to collect ex-
periences; 2) After certain amount of experiences is collected, apply the proposed approach
to detect the most recent change point; 3) If there exists a change point, use the data after the
most recent change point to update the policy; 4) The new policy, together with e-greedy algo-
rithm, is then used to collect more data; Repeat Steps 2) to 4) for a pre-specified or indefinitely
long duration of interactions with the environment. See Section 5.2 for detailed simulation
experiments that demonstrate this strategy and utility.

4 Consistency of the Test

We proceed by first investigating the size (i.e., the rejection probability or type-I error) of the
proposed test, and next establishing its power property. To simplify the theoretical analysis,
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we focus on the setting where the state space S = [0, 1]¢, and ® denotes the tensor product
of B-spline basis functions, motivated by their popularity in the sieve estimation literature [see
e.g., Section 6 of Chen and Christensen, 2015, for a review]. We use p;(e|a, s) to denote
the probability density function of 7;(a, s,d;). In other words, p; corresponds to the density
function of S, given (A,, S;) = (a, s). For each s and ¢, we use 7" () to denote the greedy
action arg max, Q¥ (a, s) that 7" picks (see (2.3)). Let &; denote the temporal difference
error R, +max, Q% (a, Sp11)— Q% (A, S;). As commented in the introduction, all the theories
in this section are established under a bidirectional asymptotic framework, which is to say that
they are valid as either NV or 7' diverges to infinity.

4.1 Size of the Test

We introduce the following assumptions:

Al (CUSUM statistics): The boundary removal parameter € in the proposed test statistics
(3.1), (3.2) and (3.3), is proportional to log™“* (NT') for some ¢; > 0.

A2 (Realizability): Assume that there exist some constants p, c; > 0, such that for any a €
A and t > Ty, the reward function r;(a,®) € A(p, ca), where A(p, @) is the Holder class
with the smoothness parameter p; see the Supplementary Materials for its definition.

A3 (Completeness): For any 3 € R™ whose ¢, norm ||3||2 is less than or equal to 1,
there exists some 3* with ||3*||a < 1 such that the function B;¢] 3 can be uniformly
approximated by ¢] 3* with an approximation error O(L~?/4), where B; denotes the
operator (B,g)(a, s) = E[max, g(d’, Ti(a, s, 9))].

A4 (Transition): (i) sup, , E[|T;(a, s,d) — Ti(a,s’,6)[|2 < pl[s — §'||2 for some 0 < p < 1,
sup, .. | 7i(a, s,6) — Ti(a,s,8")||2 = O(||d — 0||2); (ii) Suppose d; has sub-exponential
tails, i.e., for any jth element 4, ;, E|d; ;|* = O(k:!c’?f_Q) for some constant ¢ > 0; (iii)
pi(s'|a, s) is bounded and is Lipschitz continuous as a function of s; (iv) inf; , s Var((1 —
7)0;7| Ay = a, S; = s) is bounded away from zero.

A5 (Behavior policy): (i) 7° is a Markov policy; (ii) infismy o<y <y (1=) " Amin [E¢ L (As, St)
oA, St>T - (7/)2E¢L(Wopt (St+1), Sm)(bf (Topt(St+1), St+1)] is uniformly bounded away
from zero where A, [®| denotes the minimum eigenvalue of a given matrix.

A6 (Optimal policy): The optimal policy 7" is unique for all ¢.

A7 (Optimal Q-function): The margin Q;* (7" (s), s)—max, AT (s) Q" (a, s) is bounded
away from zero, uniformly for all s and ¢.

A8 (AComputation): The number of FQI iterations K to produce the estimated Q-function
(@ is much larger than log(NT).

A9 (Basis functions): L is proportional to (N7")* for some 0 < ¢4 < 1/4. Under the null
SA3 (see (2.6)), we additionally require ¢, > d/(2p) for all three types of tests.
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Remark 9. As commented earlier, assumptions similar to Al are commonly adopted in the
change point detection literature [Yu and Chen, 2021]. This assumption can be easily satisfied
as the boundary removal parameter € is user-specified.

Remark 10. The realizability and completeness assumptions are commonly imposed in the RL
literature [see e.g., Chen and Jiang, 2019, Uehara et al., 2021]. In our context, realizability
requires the Holder class to be sufficiently rich to contain the reward functions. The com-
pleteness assumption requires the linear function class to be “approximately complete” in the
sense that it remains closed under the operator B; up to certain approximation error. It holds
automatically when the transition density function p, belongs to the Holder class as well [see
e.g., Fan et al., 2020, Shi et al., 2022]. Such smoothness conditions are commonly imposed
in the sieve estimation literature as well [see e.g. Huang, 1998, Chen and Christensen, 2015].
They are mild as the smoothness parameter p remains unspecified and can be adjusted to be
arbitrarily small to meet the two conditions.

Remark 11. Conditions A4(i) and (ii) are needed to establish concentration inequalities for
nonstationary Markov chains [Alquier et al., 2019]. They allow us to develop a matrix concen-
tration inequality with nonstationary transition functions, which is needed to prove the validity
of the bootstrap method (see Lemma B.3 for details). These assumptions are automatically
satisfied when the state satisfies a time-varying AR(1) process:

Sit1 = peSe + BrAr + 64,

for some {p:}, and {B,} such that sup, |p;| < 1, and 6; has sub-exponential tails. More
generally, it also holds when the auto-regressive model is given by

Sir1 = fi(As, St) + 0y,

with sup, ;| fi(a, s) — fi(a,s")| < plls — s'||2 for some p < 1. When the transition functions
are stationary over time, it essentially requires the Markov chain to possess the exponential
forgetting property [Dedecker and Fan, 2015]. Condition A4(iii) is automatically satisfied
when p; belongs to the Holder class with the smoothness parameter p > 1. Condition A4(iv)
requires the transition to be stochastic so that the variance of the temporal difference error
remains strictly positive.

We also remark that the sub-exponential tail assumption in A4(ii) is generally met in
mHealth studies, particularly in the IHS. This is because the state variable such as the mood
score is bounded. Additionally, after cubic root transformation of weekly average step count
and square root transformation of weekly average sleep minutes, these two variables exhibit
light upper tails, as can be seen from Figure C.5.

Remark 12. A5(i) allows the behavior policy that generates the data to be nonstationary over
time. Assumptions to A5(ii) are commonly imposed in the statistics literature on RL [see e.g.,
Ertefaie and Strawderman, 2018, Luckett et al., 2020, Shi et al., 2022]. These assumptions
are typically satisfied in mobile health where the behavior policy is usually a constant policy
— as in the IHS study — which is thus Markovian (fulfilling A5(i)) and is expected to cover the
optimal policy (fulfilling A5(ii)).
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Remark 13. A6 is a necessary condition for establishing the limiting distribution of B\[Tl Ty
computed based on FQI. It is widely imposed in the statistics literature [ Ertefaie and Strawder-
man, 2018, Luckett et al., 2020], but can be violated in nonregular settings where the optimal
policy is not unique [Chakraborty et al., 2013, Luedtke and van der Laan, 2016, Shi et al.,
2020a, Guo and He, 2021]. Our proposal could be further coupled with data splitting to de-
rive a valid test in nonregular settings without A6. Specifically, we divide all trajectories into
two parts: one to estimate the optimal policy and the other to construct the test. However, the
resulting test might suffer from a loss of power, due to the use of data splitting.

Remark 14. The margin Q"' (7" (s), s) — MAX, ¢ 4\ (97" (5)) Q¥ (a, s) in A7 measures the dif-
ference between the state-action value under the best action and the second best action. This
condition is imposed to simplify the theoretical analysis. It can be relaxed to require the prob-
ability that the margin approaches zero to converge to zero at certain rate [see e.g., Qian and
Murphy, 2011, Luedtke and van der Laan, 2016, Shi et al., 2022, 2024b], when coupled with
data splitting.

Remark 15. Both A8 and A9 are mild as K and L are user-specified. Meanwhile, it is also
possible to remove the lower bound requirements on cy in A9 under SAI and SA5. In such
cases, it suffices for the sieve approximation error to simply tend towards zero, as opposed to
being o{(NT)~Y/2}. The latter is required to ensure the bias of the Q-estimator converge to
zero at a faster rate than its standard deviation. Consequently, our CUSUM-type test statistics
ensure that the proposed tests remain valid under weaker assumptions about the approximation
error and are not overly sensitive to the number of basis functions L. This is because at
each hypothesized error location, the test statistics implement scaled differencing, requiring
the difference in approximation errors, instead of these errors themselves, to converge at a
specific order. Under SA1 and SAS, all the approximation errors are equal, and such an order
requirement is automatically satisfied.

Theorem 4.1 (Size). Recall that D denote the observed data. Suppose Al-A9 and the null
hypothesis SA3 hold, we have

)

VL1og?(NT) L7/ /NTlog(NT)
b —
sup |P(TS; < 2|D) —P(TS; < 2)| = ( e eNT)1/8> ( T=ESE
L1/4 log?(NT) L=/, /NTlog(NT)
b . _
sgp |P(TS, < z|D) — P(TS,, < 2)| = ( v eNT)1/8> ( (1—~)

\/_ Llog®(NT)

).

sgp]P(TSZOSZ‘D)_ P(TSw < 2)| = O(( )3/4(6NT)1/8)

(1=7)?
with probability at least 1 — O(N~1T71).

Theorem 4.1 derives the upper error bounds on the differences in distribution between the
proposed test statistics and the conditional distributions of the bootstrapped statistic given the
data. In particular, the error bounds depend on five factors: (i) the minimal sample size e N'T'
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in estimating the Q-function over specified time intervals; (ii) the number of basis functions L;
(iii) the (1—)~! term which has a similar interpretation as the “horizon” in episodic tasks; (iv)
the smoothness of the system dynamics, measured by p; (v) the dimension of the state space d.
Under the given conditions in L, €, p, d, and as « remains bounded away from 1, these bounds
decay to zero, implying that the size of the proposed test approaches the nominal level as the
total number of observations diverges to infinity.

Additionally, it is important to note that the second error bound for the normalized test
statistics depends more heavily on the horizon (1 — v)~! compared to the other two test statis-
tics. Specifically, this error term for the normalized test statistics is proportional to (1 — )3,
while for the other two, it is (1 — «)~2. This increased dependence is due to the estimation of
variance in the normalized test procedure. As such, in settings where the system is not overly
smooth — i.e., p is small — the second error term becomes the dominant factor in the error
bound, leading to a higher type-I error for the normalized test. Such a finding aligns with our
results in the real-data-based simulation; see Figure C.4.

Finally, as commented in the introduction, the derivation of the consistency of the proposed
test is complicated due to that we allow L to grow with the number of observations. Specif-
ically, when L is fixed, the test statistic’s limiting distribution can typically be derived using
classical weak convergence theorems [van der Vaart and Wellner, 1996]. However, these theo-
rems become inapplicable as L diverges with the sample size. This complexity arises because
the dimension of the estimator 5 also expands with L. To prove its asymptotic normality, it is
necessary to demonstrate that 3 converges to a Gaussian vector despite the growth of its dimen-
sion. To address this challenge, we develop a matrix concentration inequality for nonstationary
MDPs in Lemma B.3.

4.2 Power of the Test

We next establish the power property of the proposed test. In our theoretical analysis, we
focus on a particular type of alternative hypothesis H, where there is a single change point
T* € (Tp,T) such that

t t t t t t
QP =QF = =QF | £QE=QF, = =Q7" 4.1)

Let A, =713 E|QFE (At Sp) — QF (Ar, Sp)| and Ay = sup, , |QF (a, s) — QF ' (a, 5)]
characterize the degree of nonstationarity. Specifically, the null holds if A; or A, equals zero
and the alternative hypothesis H, holds if A; or A is positive. However, we remark that the
proposed test is consistent against more general alternative hypothesis as well. See Section 5
for details. For any two positive sequences {ay 1}y and {bn 1}y 1, the notation ay r > by r
means that by r/ayr — 0as NT — oo.

A10 (Change point): 7y + €1' < T* < (1 — €)T given the boundary removal parameter €.
Theorem 4.2 (Power). Suppose AI-A10 hold.

e If A1 > (1 —7)2\/L(eNT) ' log(NT) + (1 — v)"2L7P/%, then the power of the test
based on TSy (3.1) is at least 1 — O(N~'T1);
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e If Ao > (1 —7)2\/L(eNT) 1 1og(NT) + (1 — v)"2L7?/4, then the power of the test
based on TSy, (3.2) is at least 1 — O(N~1T71);

e If Ao > (1 — ) 2\/L(eNT) '1og(NT) + L7P/%, then the power of the test based on
TS, (3.3) is at least 1 — O(N~'T1).

Assumption A10 is reasonable as we allow € to decay to zero as the number of observations
grows to infinity (see Al). The conditions on A; and A, essentially require the signal under
‘H, to be much larger than a certain lower bound to detect the change. In settings where the
system is not overly smooth and p is small, the second term will dominate the lower bound. It
is evident that the lower bounds for the /;-type and unnormalized maximum-type tests depend
more heavily on the horizon (1 —~)~! than the normalized test. As such, when A; and A, are
of the same order of magnitude, both the /-type test (3.1) and unnormalized maximum-type
test (3.2) require stronger conditions on the signal strength to detect the alternative hypothesis
than the normalized test. This observation aligns with our empirical study, where we find that
the normalized test generally achieves better power properties than the other two tests (see
Figure C.4). To further boost power, we use cross-validation to select the number of basis
functions for all three tests, as discussed in Section C.1. This ensures the bias and standard
deviation of the Q-function estimator are approximately of the same order of magnitude.

5 Simulations

In this section, we conduct simulation studies to evaluate the finite sample performance of the
proposed method and compare against common alternatives. Section 5.1 presents results of the
proposed offline testing and change point detection methods based on four generative models
with different nonstationarity scenarios (see Table 5.1). Section 5.2 further demonstrates the
usefulness of the proposed method in an online setting as data accumulate. In Section C.5
of the Supplementary Materials, we simulate data to mimic the data setup in the motivating
application of IHS. All simulation results are aggregated over 100 replications.

5.1 Offline Testing and Change Point Detection

We consider four nonstationary data generating processes with one-dimensional states and bi-
nary actions where the nonstationarity occurs in either the state transition function or the reward
function, as listed in Table 5.1. For nonstationary functions, both abrupt (e.g., the underly-
ing function is piece-wise constant) and smooth changes are considered. Specifically, in the
first two scenarios, the transition function 7; is stationary whereas the reward function r; is
piecewise constant or varies smoothly over time, respectively. The last two scenarios involve
stationary reward functions and nonstationary transition functions. See Section C.3 for more
details about the data generating processes in these four scenarios.

In all scenarios, we set 7' =100 and simulated offline data with sample sizes N = 25, 100.
The true location of the change point 7™ was set to 50. We first applied each of the proposed
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State transition function Reward function

(1) Time-homogeneous Piecewise constant
2) Time-homogeneous Smooth

3) Piecewise constant Time-homogeneous
4) Smooth Time-homogeneous

Table 5.1: Simulation scenarios with different types of nonstationarity in Sections 5.1 and 5.2.

Transition: Homo Transition: Homo Transition: PC Transition: Sm
Reward: PC Reward: Sm Reward: Homo Reward: Homo
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Figure 5.1: Empirical type-I errors and powers of the proposed test and their associated 95%
confidence intervals under settings described in Section 5.1, with N = 25. Abbreviations:
Homo for homogeneous, PC for piecewise constant, and Sm for smooth.

three tests to the time interval [T' — k, T to detect nonstationarity, where s took value from
a equally-spaced sequence between 25 and 75 with increments of 5. According to the true
data generating mechanisms, when x < 50, the null of no change point over [T" — x, T'| holds;
the alternative hypothesis holds if £ > 50. The actions were generated i.i.d. according to a
Bernoulli random variable with a success probability of 0.5.

Figures 5.1 and C.2(a) show the empirical rejection probabilities of each proposed test,
when N = 25 and 100 respectively. First, in all settings, each test properly controls the type-I
error. Second, the power increases with « due to inclusion of more pre-change-point data into
the interval [T" — k, T]. The power also increases with the sample size N, demonstrating the
consistency of our tests. Third, as expected, gradual changes are more difficult to detect than
abrupt changes. This is evident in Figure 5.1, where when « = 55, the power of the proposed
test in scenarios with a smooth reward or state transition function is smaller than scenarios with
a piecewise constant function. Finally, the maximum-type tests (3.2) and (3.3) achieve slightly
higher power than the ¢;-type test (3.1) when N = 25, whereas the powers of the three tests
become indistinguishable when N = 100.

Next, we investigate the finite sample performance of the estimated change point location
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Figure 5.2: Distribution of detected change points under simulation settings in Section 5.1 with
N = 25.

T*. Figures 5.2 and C.2(b) depict the distribution of T* in each simulation scenario. It can be
seen that in the first two scenarios with abrupt changes, the estimated change points concentrate
on 50, which is the true change point location, yielding a minimal detection delay. In the last
two scenarios with smooth changes, the estimated change points have a wider spread especially
when NV = 25. This results in a marginally extended detection delay. However, in the majority
of cases, these estimators are still close to 50.

5.2 Online Evaluation

Finally, we illustrate how the proposed change point detection method can be coupled with
existing state-of-the-art RL algorithms for policy learning in nonstationary environments. In
each simulation, we first simulated an offline dataset as discussed earlier with 7" = 100 ar/l\d
N = 200. We next applied our proposal to identify the most recent change point location 7™
and estimated the optimal policy using the data subset {(S;;, R;;, Ai¢) : 1 <@ < N, T* <
t < T}. As commented earlier, the resulting estimated policy can be used for treatment rec-
ommendation after study end time 7. Specifically, we used a decision tree model [Myles et al.,
2004] to approximate QQ°?* to obtain interpretable policies for healthcare researchers. Through
FQI, we transformed the estimation of Q° into an iterative regression problem (see (2.5)) and
employed decision tree regression to update the Q-estimator at each iteration. The decision tree
model involves hyperparameters such as the maximum tree depth and the minimum number
of samples on each leaf node. We used 5-fold cross validation to select these hyperparameters
from {3, 5,6} and {50, 60, 80}, respectively.

Next, for each of the 200 subjects, we sequentially applied our procedure for online policy
learning as data accumulated to maximize their cumulative reward. Specifically, we assumed
the number of change points after 7" = 100 followed a Poisson process with rate 1/50. In other
words, we expected a new change point to occur every 50 time points. We set the termination
time 7.,; = 300, yielding 3 to 4 change points in most simulations. We similarly consid-
ered four different types of change points listed in Table 5.1. Whenever a new change point
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occured, the effect of the action on the state transition or reward function was reversed. We fur-
ther considered three different settings with strong, moderate and weak signals by varying the
magnitude of treatment effect. For instance, suppose we have two change points 7} and 7 after
T = 100. In Scenario (1) with a piecewise constant reward function, we set r(s,a) to 1.5das
when ¢ € [100,T}) or [T, 300] and —1.56as when t € (17, T5] where 0 measures the treatment
effect equals 1, 0.5 and 0.3 in strong-, moderate- and weak-signal settings, respectively.

Finally, we assumed that online data came in batches regularly at every L = 15 time points
starting from 7" = 100. The first online data batch was generated according to an e-greedy
policy that selected actions using the estimated optimal policy 7 computed based on the data
subset in the time interval [T, T'| with probability 1 — € and a uniformly random policy with
probability e. Let 7%(0) = T*. Suppose we have received k batches of data. We first apply the
proposed change point detection method on the data subset in [T*(4=1) T + dL] to identify a
new change point 7%(@_ If no changes are detected, we set 7*(¥ = T*(@=1) We next update
the optimal policy based on the data subset in [7*(? T + dL] and use this estimated optimal
policy (combined with the e-greedy algorithm) to generate the (k + 1)-th data batch. We repeat
this procedure until the termination time 7., is reached and aggregate all immediate rewards
obtained from time 7" to 7,4 over the 200 subjects to estimate the average value.

Comparison is made among the following methods:

Proposed: The proposed ¢;-type test (3.1) (the other two tests yield similar change points and
policies. Their results are not reported to save space);

Oracle: The “oracle” policy optimization method that works as if the oracle change point
location were known in advance;

Overall: Standard policy optimization method that uses all the data;

Random: Policy optimization with a randomly assigned change point location;

ODCP: The online Dirichlet change point approach proposed by Padakandla et al. [2020];
MBCD: The model-based RL context detection approach proposed by Alegre et al. [2021];
Kernel: The kernel-based approach developed by Domingues et al. [2021].

For fair comparisons, we used FQI and decision tree regression to compute the optimal Q-
function for all methods. To implement the random method, after a new batch of data arrived,
we randomly picked a time point uniformly from the new batch as the next change point loca-
tion and computed the optimal Q-function based on the observations that occurred afterwards.
The oracle method was implemented by repeatedly using observations that occurred after the
oracle change point to update the optimal policy.

The last three methods — ODCP, MBCD and Kernel — are existing state-of-the-art nonsta-
tionary RL approaches. In particular, similar to ours, both ODCP and MBCP are change-point-
based methods that apply stationary RL to the best data segment of stationarity identified by a
change point detection algorithm. Among the two algorithms, MBCD is model-based, which
uses neural networks for estimating the reward and transition functions, along with a likeli-
hood ratio test for detecting change point. ODCP was originally proposed by Prabuchandran
et al. [2022] for handling compositional multivariate data and later adapted by Padakandla et al.
[2020] for RL in nonstationary environments. It is model-free. Specifically, it does not model
the reward and transition functions, but applies the likelihood ratio test to detect changes in the

22



Transition: Hm Transition: Hm Transition: PC Transition: Sm
Reward: PC Reward: Sm Reward: Hm Reward: Hm

[EXRRREE: i g inelles g ben 5

E3 Proposed - Random

ES Proposed - ODCP

ES Proposed - MBCD

. Proposed - Kernel (h=0)

‘ gmﬁ“ géy@ﬁé% i

N
IS

I
N}

6

g
o

I
o o
RN

Average Value

I
N}

S6°0

T
-
o+l-.o
5
-
;e

1
o
N

0.1)
0.4)1
1.6)

0)
0.1)
0.4)1

=1.6)

0.1)1
0.4)1
1.6)

0.1)1
0.4)1
1.6)1

=0) -
=0) -
=0) -

Proposed — Kernel (h=0.1)

Proposed - MBCD
Proposed - Kernel (h
Proposed - Oracle
Proposed — Overall
Proposed — Random
Proposed — ODCP
Proposed - MBCD
Proposed - Kernel (h

Proposed — ODCP
Proposed - Kernel (h

Proposed - MBCD

Proposed - Kernel (h
Proposed - Oracle
Proposed — Overall
Proposed - Random

Proposed — ODCP
Proposed - Kernel (h

Proposed - MBCD

Proposed - Kernel (h
Proposed - Oracle
Proposed — Overall
Proposed - Random

Proposed — ODCP
Proposed - Kernel (h

Proposed - Oracle
Proposed — Overall
Proposed - Random

Proposed - Kernel (h
Proposed - Kernel (h
Proposed - Kernel (h
Proposed - Kernel (h
Proposed - Kernel (h
Proposed - Kernel (h
Proposed - Kernel (h
Proposed - Kernel (h

Figure 5.3: Distribution of the difference between the average value (7,4 — T)_1 t"gil 1 ER,
under the proposed policy and those under policies computed by other baseline methods, under
settings in Section 5.1 with strong signal-to-noise ratio. The proposed policy is based on the
change point detected by the ¢;-type test (3.1). In all scenarios, we find the normalized or

unnormalized tests (3.2) and (3.3) yield similar average values.

marginal state-reward distribution. As such, this algorithm is not consistent: it might detect
changes in the behavior policy rather than in the Q- or transition function [Wang et al., 2023b].
Finally, the kernel-based method is non-change-point-based. It uses a kernel to assign larger
weights to more recent observations, and smaller weights to past observations to deal with
nonstationarity. To implement this method, we used the Gaussian RBF kernel with bandwidth
parameters chosen from {0, 0.1,0.4, 1.6}. More details about these three methods can be found
in Section C.3.

Figure 5.3 reports the difference between the average value under the proposed policy and
those under policies estimated based on these baseline methods in the “strong signal” setting
(i.e., the treatment effect 6 = 1). Results with moderate and weak signals are available in
Section C.4. We briefly summarize a few notable findings:

1. First, the proposed method achieves much larger average values compared to the “over-
all” method, demonstrating the inferiority of the best policy learned without acknowl-
edging the nonstationarity.

2. Second, the proposed method is no worse and often better than kernel-based approaches
in most cases. In addition, as shown in Figure 5.3, kernel-based method can be sensi-
tive to the choice of the kernel bandwidth and it remains unclear how to determine this
tuning parameter in practice. These results highlight the necessity of change point de-
tection in policy learning, demonstrating the benefits of change-point-based methods in
nonstationary RL.
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3. Third, the proposed method outperforms the “random” method in almost all cases. It also
achieves larger average values than ODCP in most cases. As ODCP is not guaranteed
to consistently detect the change point, these results imply that correctly identifying the
change point location is essential to policy optimization in nonstationary environment.

4. Finally, the model-based MBCD method produces smaller average rewards in general
than the proposed method. This demonstrates the advantage of our model-free method,
which is less prone to model misspecification.

6 Application to Intern Health Study

The 2018 Intern Health Study (IHS) is a micro-randomized trial (MRT) that seeks to evalu-
ate the efficacy of push notifications sent via a customized study app upon proximal physical
and mental health outcomes [NeCamp et al., 2020], a critical first step for designing effective
just-in-time adaptive interventions. Over the 26 weeks, each study subject was re-randomized
weekly to receive or not to receive activity suggestions; daily self-reported mood scores were
assessed via ecological momentary assessments, a method repeatedly recording subjects’ be-
haviors in real time and in their natural environment; step count and sleep duration were mea-
sured by Fitbit. In this paper, we focus on policy optimization for improving time-discounted
cumulative step counts under the infinite horizon setting. As discussed in Section 1, determin-
ing the optimal policy for delivering prompts is challenging due to potential nostationarity that
results in changes in treatment effects. Here we demonstrate how to use the proposed method
to detect change point and perform optimal policy estimation in the presence of potential tem-
poral nonstationarity.

6.1 Data and method: Setup

Let S; denote a 4-dimensional state vector comprised of the following: (i) the square root of
average step count in the previous week ¢ — 1; (ii) the cubic root of average sleep minutes in
week ¢t — 1; (ii1) the average mood score in week ¢ — 1; (iv) the square root of average step
count in week ¢ — 2. All these variables are centered and scaled [NeCamp et al., 2020]. The
binary action A; = 1 (0) corresponds to pushing (not pushing) an activity message at the start
of week t. The randomization probabilities are known under MRT: P(A4; = 1) =1 — P(A; =
0) = 1/4. The reward R, is defined as the average step count in week ¢. To resemble a real-
time evaluation scenario, we divide the data of 26 weeks into two trunks: we perform change
point detection and estimate the optimal policy based on data collected in the first 7' = 22
weeks (training data batch), and then evaluate the estimated policy on data in the remaining
4 weeks (evaluation data batch) assuming that there is no change point in the final 4 weeks.
To implement change point detection, we set the boundary removal parameter ¢ = 0.08 and
search for change points within [5, 18]. We focus on three specialties: emergency (N = 141),
pediatrics (N = 211), and family practice (N = 125). One consideration is that work schedules
and activity levels vary greatly across different specialties, and thus medical interns might
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Figure 6.1: p-values over different values of  (the number of time points from the last time
point 7") under v = 0.9 (top) and 0.95 (bottom) among the three specialties considered in IHS.

experience distinct change points. Stratification by specialty may improve homogeneity of the
study groups so that the assumption of a common change point is more plausible.

6.2 Results

Figure 6.1 plots the trajectories of p-values using /;-type test statistic (3.1); the results are
similar when maximum-type tests (3.2) and (3.3) were applied to the data (not reported here).
We consider v = 0.9 or 0.95, which produce similar results. First, we notice that in the
pediatrics and family practice specialties, many p-values are close to 1. This is due to the use of
the p-value aggregation method [Meinshausen et al., 2009, see Section C.1 for details], which
tends to increase insignificant p-values and reduce the type-I error. Second, the emergency
specialty displays roughly monotonically decreasing p-values over time, whereas at the largest
few r values the p-values rise up due to the limited effective sample size at the boundary. Third,
the U-shaped p-value trajectory of the pediatrics specialty shows evidence for multiple change
points. Specifically, when only a single change point exists, the significant p-values are likely
to decrease with k. The U-shaped p-value trajectory can occur only when the data interval
contains at least two change points and the system dynamics after the second change point
is similar to that before the first change occurs, yielding a small CUSUM statistics. Because
we focus on the latest detected change point (first x;,_; where &, results in a rejection of the
null) to inform the latest data segment to use for optimal policy estimation, we find xj,_; = 6
for the emergency specialty and j,—; = 5 for the pediatrics specialty, for both choices of .
Fourth, the p-value trajectories of the family practice specialty (mostly close to 1) are above
the significance threshold, indicating the stationarity assumption is compatible with this data
subset. We therefore estimate the optimal policy using data from all the time points for the
family practice specialty.

We next compare the proposed policy optimization method with three other methods: 1)
overall, 2) random, which were described in Section 5.1) and 3) behavior, which is the treat-

25



ment policy used in the completed MRT. The data of the first 22 weeks are used to learn
an optimal policy 7! through FQI and decision tree regression. In particular, the proposed
method uses data after the estimated change point location whereas the overall method uses all
the training data. Similar to simulations, hyperparameters of the decision tree regression are
selected via 5-fold cross-validation. Next, based on the evaluation data, we applied FQE to
the testing data of the remaining 4 weeks to evaluate the vy-discounted values (i.e., J, (7)) of
these estimated optimal policies. Results are reported in Table 6.2. It can be seen that the pro-
posed method achieves larger values when compared to “random” and “behavior” in all cases,
demonstrating the need for change point detection and data-driven decision making. In the
following, we focus on comparing the proposed method against “overall”. In the emergency
specialty, the optimal policy estimated using data after the detected change point improves
weekly average step count per day by about 130 ~ 170 steps relative to the estimated policy
based on the overall method. In the pediatrics specialty, however, the overall method achieves
a larger weekly average step count by about 40 ~ 112 steps per day. Recall that the proposed
method only uses data on ¢t € [T — k;,_1,1] = [17,22] for policy learning. As commented
earlier, there are likely two change points in the pediatrics specialty and according to Fig 6.1,
the system dynamics after the first most recent change point are very similar to those before
the second most recent change point. As a result, the overall method pools over more data
from similar dynamics, resulting in a better policy. This represents a bias-variance trade-off. In
settings with a U-shaped p-value trajectory and the most recent change point is close to the sec-
ond most recent one, it might be sensible to borrow more information from the historical data.
Finally, the proposed and overall methods have equal values in the family practice specialty
since no change point is identified.

Number of Change Points Specialty Method =09 ~=0.95

Proposed 8237.16 8295.99
Overall 8108.13 8127.55

21 Emergency g povior 782375  7777.32
Random 8114.78 8080.27

Proposed 7883.08 7848.57

. Overall 7925.44 7960.12

22 Pediatrics 1 avior  7730.98  7721.29
Random 7807.52 7815.30

Proposed 8062.50 7983.69

0 Family Practice Overall 8062.50 7983.69

Behavior 7967.67 7957.24
Random 7983.52 7969.31

Table 6.2: Mean value estimates using decision tree in analysis of IHS. Values are normalized
by multiplying 1 — . All values are evaluated over 10 splits of data.
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7 Discussion

We propose three tests for assessing the stationarity assumption in RL, including an /¢;-type
test, a maximum-type test and a normalized maximum-type test. In our numerical experi-
ments, these tests generally lead to the same conclusions. To illustrate this, we calculate the
percentage of times any of the two tests produce concordant results — either both rejecting or
both not rejecting the null hypothesis — across 100 simulation replications and visualize them
in Figure A.1. The agreement rates exceed 95% for any two tests in most scenarios. Specifi-
cally, the /;-type and unnormalized maximum-type tests exhibit particularly high consistency,
with agreement rates over 97.5% in the majority of cases. Most inconsistencies primarily arise
between the normalized test and the other two. This behavior is expected since our theoretical
and empirical results suggest that the normalized test tends to achieve a larger type-I error and
a larger power. As such, it is more likely to reject the null, leading to these inconsistencies.

To address such inconsistency, we further outline two approaches in Section A.3. The first
approach chooses one out of the three tests, depending on the application scenarios. The second
approach aggregates results from all three tests to produce a final p-value. This approach
leverages the advantages of the three tests and outperforms each of them individually, according
to our empirical study; see Figure A.2.

Given an offline dataset, we focus on detecting the most recent change point. That is,
regardless of how many change points there are in the past, we aim to identify the most re-
cent one. Meanwhile, our procedure can be easily adapted to identify all past change points.
Specifically, as described in Section 3.4, given a pre-specified monotonically increasing se-
quence {r;}; C (0,7, our proposed test is applied to each interval [T" — x;, T']. We define the
most recent change point as T =T — kj,—1 where the test is first rejected at ;,. In general
when there are multiple change points, we can continue applying our procedure to the interval
(0, T*) and identify the second most recent change point 73 . This process can be repeated until
the remaining interval does not contain other change points. When the change points are dense,
we recommend to specify as many «;’s as possible at which the test is applied, to ensure they
can be precisely identified.
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This supplement is organized as follows. We begin with a list of commonly used notations
in the supplement. We next compare model-free tests against mode-based tests, and discuss
some extensions in Section A. In Section B, we present the proofs of our theorems. Finally, in
Section C, we detail the simulation setting and present some additional empirical results.

For a J-tuple a = (g, ..., )" of nonnegative integers and a given function h on S, let
D% denote the differential operator:

Deh(s) = Hllall h(s)

- ail oy’
851 'aSJ

Here, s; denotes the jth element of s. For any p > 0, let |p| denote the largest integer that is
smaller than p. The class of p-smooth functions is defined as follows:

D%h(s,) — D%h
A(p,c) =< h: sup sup|D%h(s)| <e¢, sup sup | (s1) —Lp§$2)| <cy,
lalli<lp) s€S lolli=lp) 31,9568 ls1 — sa2ll5
S1 S92

for some constant ¢ > 0.

A Additional Discussions

A.1 Model-free Tests vs. Model-based Tests

As commented in the main text, we focus on model-free tests in this paper, constructing the
test statistic without directly estimating the reward and transition functions. Alternatively, one
may study model-based tests [see e.g., Alegre et al., 2021, Wang et al., 2023b], which di-
rectly evaluate the stationarity of the MDP model (i.e., reward and transition functions). Both
model-based and model-free methods have their own advantages. For example, model-free
RL focuses on learning a one-dimensional optimal Q-function, eliminating the need to model
a complex transition function that has an output dimension equal to the state’s. This is par-
ticularly beneficial given the challenges in modeling transition functions, which can be prone
to misspecification, as demonstrated in our simulation studies. More specifically, consider
the case where the future state follows a conditional Gaussian distribution. Specifying the d-
dimensional mean and d X d-dimensional covariance functions of the state-action pair can be
quite complex. Conversely, the estimation the Q-function is challenging. A limited number of
visits to certain state-action pairs can lead to inaccurate estimations of the Q-function’s value
across other pairs.

A.2 Extensions to Settings with Varying Termination Times

Our proposed method is readily adaptable to scenarios where subjects have varying termi-
nation times. To elaborate, let 7(") represent the termination time for the ith subject, and
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Figure A.1: Agreements rates of the three tests under settings in Section 5.1 with N = 25.

T = max; T be the maximum of these times. In estimating E[TLTQ], we can modify the empir-

. N Th—1 7@ _1 .. .
ical sum operator » ;" > .20 10 Y i v sy, 2g—q, - Similarly, for the construction of

the /,-type test, the empirical average operator 1/(N (T — Tp)) 32~ | ZtT:_TIO can be substituted

: (i) — N
with n ™ (To) 31 cicn s, thTO ', where n(Tp) denotes the total count of observations in

the interval between 15 and 7.

A.3 Inconsistency, Comparison and Aggregation of the Three Tests

For each time point that is a candidate change point, we calculate the percentage of times any of
the two tests produce consistent results — both rejecting or both not rejecting the null hypothesis
— out of 100 replications and visualize the results in Figure A.1. All three tests agree in most
cases. In particular, the unnormalized and ¢;-type tests have the highest agreement rates in
most scenarios. The normalized test has a relatively lower agreement rates, since it is more
likely to reject the null hypothesis compared to the other two.

To address such inconsistency, we outline two approaches below. The first approach chooses
one out of the three tests, depending on the application scenarios. In scenarios where our goal
lies in identifying meaningful change points in scientific discoveries, the ¢;-type or unnormal-
ized maximum-type test is preferable for lower type-I errors (see Remark 6). For instance,
in biomedical applications like mobile health, type-I errors are more detrimental than type-II
errors. In scenarios where our goal is to train an optimal policy that maximizes the cumu-
lative reward, the normalized test will be preferred. This is because overlooking a potential
change point (type-II error) may lead to a sub-optimal policy and can be more critical than in-
correctly identifying a non-change point as a change (type-I error), which still uses stationary
data, leading to consistent, though inefficient policy learning.

The second approach aggregates results from all three tests to produce a final p-value. This
approach leverages the advantages of the three tests and is expected to outperform each of
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Figure A.2: Test results by aggregating p-values from the three tests using Fisher’s method, the
Cauchy combination method, and quantile-based method (with 0.1 quantile), under simulation
settings in Section 5.1 with N = 25 and 100. True change point is 50 in all scenarios.

them individually. Various p-value aggregation methods are applicable, including the Fisher’s
method [Fisher, 1928], the quantile-based method [Meinshausen et al., 2009] and the Cauchy
combination method [ACAT; Liu and Xie, 2020]. We implement these three methods under
settings in Section 5.1 and report the results in Figure A.2. It can be seen that while the Fisher’s
method is subject to inflated type-I errors, both the quantile method and ACAT asymptotically
control type-I errors and achieve comparable or better power to that of the individual tests in
all scenarios. Notably, in the last two settings with nonstationary transition functions, ACAT
and the quantile methods are more powerful when the change point is near the endpoint of the
interval being tested (i.e., x is close to 50). These results empirically verify the benefits of
combining the three tests.

Finally, as commented in Remark 6 of the main paper, the normalized test statistic requires
to compute the estimated variance o2, which slightly increases the computational time. Here
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we investigate the time required to compute each test statistic in Scenario 4 of the synthetic data
simulation, with smooth transition function and homogeneous reward function. Specifically,
we focus on the test when x = 25, 50, and 75 with sample size N = 100. Table A.3 reports
the average time used to calculate the three test statistics over 10 replications. The experiments
were conducted on Apple M4 Pro chip with 24GB memory. It can be seen that the normalized
test is indeed the most computationally expensive among the three tests, even though all three
tests are computed very fast.

B Proofs

Throughout the proof, we use c, ¢, C, C to denote some generic constants whose values are
allowed to vary from place to place. Additionally, the discount factor v is set to a fixed con-
stant that is less than 1. This is to simplify our finite-sample error bounds by omitting some
higher-order remainder terms, which are more heavily dependent on (1 — v)~!. However, for
the leading remainder terms, we will explicitly allow them to depend on (1 — ~)~! to illus-
trate their dependence with the horizon. Finally, recall that for any two positive sequences
{an7}Nr1,{0Nn7}N T, the notation an r = by means that there exists some constant C' > 0
such that ayr < Cbyp forany N and 7.

B.1 Proof of Theorem 2.1

The derivation of SA2 from SA1 is straightforward, given the definition of )7. Similarly,
the derivation from SA3 to SA4 is straightforward, as it directly follows from Equation (2.3).
Therefore, we aim to show SA3 under SA2 in the rest of the proof.

Without loss of generality, assume 7 = 0. The main idea of our proof lies in the use of
policy iteration [Sutton and Barto, 2018] to establish the connection between a (non-optimal)
Q-function and its optimal counterpart. We initiate this process with an arbitrarily chosen
stationary policy 7;. Subsequently, we define 7, as the greedy policy with respect to 7', i.e.,

1, ifa = argmax, Q7' (d,s);
m2(als) = { 0, otherwiseg. A )
1

When the argmax is non-unique, we select the smallest maximizer. Under SA2, ();" is sta-
tionary, so is mo. We next repeat this process by defining 7 to the greedy policy with respect

Table A.3: Mean (SD) computation time (x 1073 seconds) for three test statistics in synthetic
data simulation across 10 replicates

x Integral Normalized Unnormalized

25 35.42(15.19) 51.7(5.35) 35.16(5.11)
50 54.2(11.21) 68.54 (7.73) 49.46 (6.77)
75 72.17(10.26) 73.02 (9.43) 52.1(6.61)
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to Q;*~" for k = 3,4, --. Similarly, we can show that all these policies and Q-functions are
stationary. To ease the notation, we remove the subscript ¢ from 73 ; and Q;*~". Thus, they are
represented as 7 and (Q7+~!, respectively.

According to the policy improvement theorem [see e.g., Sutton and Barto, 2018, Equation
4.8], we obtain V;"*(s) > V;"*7'(s) for any k, t and s. Here, V,"(e) denotes the (state) value
function E™(3>, ., 7" 'Ri|S; = s) starting from a given state s at time ¢. Additionally, the
Q-function is connected to the value function through the following equation:

Q7 (a,s) = E[R, + vV 1(Si41)|Ar = a, S, = s]. (B.1)

As such, we obtain that Q™ (a, s) > Q™1 (a, s) for any k, a and s. For a given state-action pair,
the sequence {Q™(a, s)}, is monotonically non-decreasing. Since all rewards are uniformly
bounded, so are these Q-function. Consequently, ()™ converges to a bounded function Q*.

The convergence is uniform given that the state-action space is finite.
To complete the proof, we aim to show that Q* = Q%" for any t. According to Theo-

rem 6.2.10 of Puterman [2014], 7°"" maximizes the value function among all policies, i.e.,
V" (s) > V;"(s) for any ¢, s and 7. This together with (B.1) yields

Q™ < Q" (B.2)
for any £, t. Additionally, it follows from (B.1) that
Q™ (a,s) = E[Ry + vQ™ (71 (St41), Ser1)|Ar = a, S = s].
Since ()™ is monotonically non-decreasing, we obtain

Q™ (a,s) > E[R; + vQ™ (71 (St41), St41)|Ar = @, S = §]
= ]E[Rt + f}/mz}x Qﬂk71 (a/, St+1)|At =a, St = S}.

This together with the Bellman optimality equation yields,
Q™ (a,s) — ?pt(aa s) > ny[max Qﬂk*l(aly Sit1) — max Q?ﬁ(a/, Si41)|Ar = a, Sy = s].
In view of (B.2), we obtain

Q™ (0, 5) — Q"(a. )] < VB[ max @ (', 1) — max Q%4 (a', S|4y = .5, = o

<7 ril,%},’( ’Qﬂ‘kil (a/> 5/) - ?—}:—tl (alv 5/)‘7
and hence
I%%X |Q7Tk (CL, S) - ?pt(a7 S>| <7 I%?SX |Qﬂ—k71 (CL, S) - ?itl ((l, 8)’

Notice that ()™ converges uniformly to Q)*. By letting & — oo, we obtain
max |Q"(a, 5) — Q¢ (a, 5)| < ymax |Q*(a,s) — Q1 (a, 5)| < 7" max|Q*(a,s) — QY (a,5)|,

for any K > 1. Under the bounded reward assumption, by letting X — oo, we obtain Q* =
opt

. for any t. This yields SA3. The proof is hence completed.

42



B.2 Proof of Theorem 4.1

We begin by introducing the following auxiliary lemmas. Specifically, Lemma B.1 lists the
properties of B-spline basis function. Lemma B.2 derives the uniform rate of convergence of
{Qr, 1)} 11,1, and obtain their asymptotic linear representations. It in turn implies the asymp-
totic normality of these estimated Q-functions. Lemma B.3 provides a uniform upper error
bound on H/W[ThTz] — Wi, 1y)||2- Without loss of generality, assume 7; = 0. Their proofs are
provided in Sections B.3 and B.4, respectively.

Lemma B.1. Under the null hypothesis defined in (2.6) that Q" = Q" for all t > T,, there
exists some (3* € RE such that

up Q™ (a,5) — 0] (a,5)"] = O(%) (8B.3)
Additionally, we have
mgx)\max[ / or(a,8)d (a, s)ds] = 0(1), (B.4)
1< ||¢L(a>3)‘|28§ l¢r(a, )k = VL, Va,s, (B.5)
and
max sup [or(a,51) — drla, s2)ll2 OWI). (B.6)

@ 51780 51 — 522

Lemma B.2. Under the null hypothesis, the set of Q-estimators {¢; (a, S)B\[TLTZ]} are uni-
formly consistent in (., norm and satisfy the following uniform rate of convergence

~ L~r/d Llog(NT)
T opt _
max  su a, S)Biry ) — a,s)| = O(—) +O< ),(B.7)
[T%:,I;Q]TQLTO’—Z’WT] a,f |¢L( )B[T 1] Q ( )| (1 _ 7)2 (1 . 7)2 eNT

with probability at least 1 — O(N~YT~1). Additionally,

N Tx—-1

-
T ) 0, _ ¢L (CL?S) —1 § : E *
¢1(a,8)Br, ) — Q" (a, 5) = N(T, — Tl)W[Tl,Tz} i=1 t=T S0 (B.8)

Lr/d ) <L3/2 log(NT)>
=) (1= )%eNT )’
where the big-O terms hold uniformly for any pair (T1,T5) such that Ty — T} > €T with

probability at least 1 — O(N~YT~1), and we recall that 07, denotes the temporal difference
error R; ¢ + ymax, Q% (a, Sit+1) — QP (Air, Sit)-

Lemma B.3. Under the null hypothesis, there exists some constant ¢ > 0 such that || W[}ll mll2 <

é(1 — 7) 7! and that maxg, 1, >er [|Win 1) — Win) || = O{(eNT)~Y2/Llog(NT)} with

probability at least 1 — O(N~YT~1). Here, HI/V[;l1 1,)|l2 corresponds to the matrix operator

+o(

norm of W[}im.
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B.2.1 Unnormalized Maximum-type Tests

We first provide an outline of the proof. Define TS’ to be a version of TS, with @ 1,1 (a, §)
replaced by the leading terms in the asymptotic expansion (B.8), i.e.,

N 2—1
T 7 Z Wit g0 (Ais Si)7y.
y —T1) =1 =T}
It follows from (B.8) that
CL~P/4  CL*?log(NT) 1
P(|TSs — TSE | < —1-0(— B.9
(s Sw|—(1—yp*‘(1—7ydvr> o(57) ®:3)

for some constant C' > 0.
The rest of the proof is divided into three steps. In the first step, we establish a uniform
upper error bound for max; ; r, 1, ]Q[Tl 7] (Ait, Sit) — Q[TI T) (Ait, Sit)|, where

N Tp—1

~ 1
Q?£7T2](a, S) = m¢ (a S W[Tl T2 Z Z QSL AZ t,S,L t)(sz tez ty \V/ThTQ,
i=1 t=T

a version of @IEThTﬂ (a, s) with W[TlT  and 5i7t(3m .13)) Teplaced by their oracle values. This in
turn leads to the following bound for the difference between TS’ and TS,

CL??log(NT) CL7P/ log(NT))_l_ (1

— 10
(1—=7)%eNT ~ (1—7)3VeNT “ ) (310

IP(TSb _TSEH| <
TSt - TS .

for some constant C' > 0, where

TS = Jég?eTqﬁxv Qs (05) — Bl (o,

Notice that in the test statistic, the maximum is taken over all state-action pairs. Recall
that the state space is [0, 1]%. In the second step, we discretize the state space by considering
an e-net of [0,1]¢ — denoted by S. — with ¢ = v/d/(NT)* so that for any s € [0,1]%, there
exists some s’ in the e-net such that ||s — /|| < e. Let TS®* and TS%** be versions of TS’
and TS’;;;k where the maximum is taken over the -net. The focus of this step is to upper bound
ITS*. — TS*| and |TS%* — TS%**|. Due to the choice of ¢, these bounds are minimal. Together
with (B.9) and (B.10), we can show that

cL7P/d cL3210g(NT) 1
(' S0 =TS < (L= (1= A)%eNT > O(NT)’ B
L=P/d cL321og(NT) 1 '
TSL — TSt | < < —1-0(—).
B(|Tst, — T8l < (1= " (1=~)eNT ) o(57)
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In the last step, we aim to show the proposed test controls the type-I error. A key step in
our proof is to bound the Kolmogorov distance between TS and TSZ’j*, which together with
(B.11) yields the validity of the proposed test. Notice that TS can be viewed as the maximum
of a set of mean zero random vectors

A W[—l} N u—1 W[_l}
i 0,u * u, T
{Zu,a,s,j = (1Y 7uéy (a, 3)[ N DD on(Ais, Sia)5, — NIT =)
i=1 t=0
N T-1 (B.12)
XYY du(Ag, Si,t)ézt] je{0,1},eT <u<(1—eT,ac A se SE},
=1 t=u
Similarly, TSZ;‘ can be represented as a function of the bootstrapped samples
N 6 | N u-1 W[—lT N T-1
b u u
{Zu’a’s’j — ( ]Tu|: ZZ¢L Alt? Slt Zte’Lt (T— ZZ¢L Alt? S’Lt)
i=1 t=0 i=1 t=u (B.13)

xagitei,t} je{01},eT<u<(1-eT,ac Ase 55}.

When 7" and L are fixed, the classical continuous mapping theorem can be applied to establish
the weak convergence results. However, in our setting, L needs to diverge with the number of
observations to alleviate the model misspecification error. We also allow 7' to approach infinity.
Hence, classical weak convergence results cannot be applied. Toward that end, we establish
a nonasymptotic error bound for the Kolmogorov distance as a function of N, 7" and L, and
show that this bound decays to zero under the given conditions. The proof is based on the
high-dimensional martingale central limit theorem (CLT) developed by Belloni and Oliveira
[2018]; see also the high-dimensional CLT by Chernozhukov et al. [2014].
We next detail the proof for each step.
Step 1. By definition, Q% 7y 1) (@5 8) — QfTLTQ](a, s) is equal to the sum of

N Tp—1
1

T -1
—N(TQ _ Tl)gbL (aa 3)(W[T17T2} T1 T2 Z Z ¢L Azta Szt zt(6T1 TQ])ezt (B.14)

i=1 t=T}

and

N Tp-1
1

mﬁb a,s W[}lT]Z Z Gr(Aig, Si)( zt(ﬁ[Tl 7)) — 0; 1)€it- (B.15)

=1 t=T1

Consider the first term. In Lemma B.3, we establish a uniform upper error bound for |]/T/I7[Tl o) —
Wir, m||2 and show that (1 — )| W[;ll 1,)||2 1s upper bounded by some constant. Using similar

arguments in Part 3 of the proof of Lemma 3 in Shi et al. [2022], we can show that ||W[;11 )~

W[;ll 1,)||2 1s of the same order of magnitude to (1 — 7)*2||/VI7[T17T2] — Win, m)||2- The bound-
edness of rewards (implied by A2) implies that the Q-function is bounded by O((1 — ~)71).
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This together with Lemma B.2 implies the estimated Q-function is bounded by O((1 — v)™1)

as well, and so is 0y ¢ (B, 1,))- By (B.4), the conditional variance of (B.14) given the data is
upper bounded by

CL?log(NT) 1 N ] .
e2N2T2(1 — fy)ﬁAmaX N(T, —T)) Z Z Gr(Ais, Si)or (Aig, Si) ¢ -

=1 t=T}

Similar to Lemma B.3, we can show that the maximum eigenvalue of the matrix inside the curly
brackets converges to A\pax{ (1o — T1) ! tTiil E¢r(As, Sp)¢] (A, S¢)}, which is bounded by
some finite constant according to (B.4) and the boundedness of the transition function p;s in
Condition A4(ii1). Hence, the conditional variance of (B.14) given the data is of the order
O(L?e 2N 2T%(1 — ) ®log(NT)), with probability at least 1 — O(N~1T~1).

Notice that the probability of a standard normal random variable exceeding 2 is bounded
by exp(—z2/2) for any z > 1; see e.g., the inequality for the Gaussian Mill’s ratio [Birnbaum,
1942]. Since (B.14) is a mean-zero Gaussian random variable given the data, it is of the order

with probability at least 1 — O{(NT)~} for any sufficiently large constant C' > 0. This
together with Bonferroni’s inequality yields the desired uniform upper error bound for the first
term.

As for the second term, notice that according to the finite-sample error bound established
in Lemma B.2, the difference d; (81, 1,)) — d;; decays to zero at a rate of

—p/d log(NT)
o(G=p) + (G pvar)

uniformly in ¢, ¢, Ty, Ts, with probability at least 1 — O(N~'T~!). Based on this result and
Condition A5(ii), we can similarly derive the upper error bound for the second term. This
completes the proof of this step.

Step 2. Recall that S. is an e-net of S = [0, 1]¢ such that for any s € [0, 1]¢, there exists
some s’ € S. that satisfies ||s — s'||s < e = Vd/(NT)*. It follows from Lemma 2.2 of
Mendelson et al. [2008] that there exist some S? that is an -net of the ball {s : ||s||, < V/d}
with number of elements upper bounded by 5¢(NT)%. For any s° = (s1,---,s4)" € 82,
consider its restriction to S, denoted by s’ = (max(min(sy, 1),0),--- , max(min(sg,1),0))".
It is immediate to see that for any s € S, ||s — s||2 < ||s’ — s]|2. Let S. denote the set of these
restricted vectors, i.e., {5 : s e Sg }. It follows that S. corresponds to an e-net of S as well.
Using similar arguments to Step 1 of the proof, we can show that

W_l N Tp—1 \/Z
max #ﬂ) Z Z Gr(Aip, Si)0iy|| = =3

[
(Ty,T2):Ta—Ty >€T H N(T, — Ty ~ & 2 = (1—7)%
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Combining this together with (B.5) yields that |Z, 45 ; — Zuas ;] = O((1 — ) ?Ll|s — §'||2)
where the big-O term is uniform in v, a, s, s, j and Z,, , , ; is defined in (B.12). Consequently,
for any s € S, there exists some s’ € S. such that |Z, , s ; — Z,, 4.+, is upper bounded by

L
0 ( ) . B.16
=2 (NT)* B0
This allows us to upper bound |TS — TS:!| by (B.16) as well.
Using similar arguments, we can show that |TSI;<:“ — Sfxf*| is of the order (B.16) as well,

with probability at least 1 — O(N~'T~!). This completes the proof of this step.

Step 3. As we have commented in the outline, the proof is based on the high-dimensional
martingale central limit theorem developed by Belloni and Oliveira [2018]. Let Z and Z°
denote the high-dimensional random vectors formed by stacking the random vectors in the set
(B.12) and (B.13), respectively. Notice that Z can be represented as Zi’t Z;+ where each Z; ;
depends on the data tuple (S;+, A; ¢, R, Sit+1). We first observe that it corresponds to a sum
of high-dimensional martingale difference. Specifically, for any integer 1 < g < NT, let i(g)
and t(g) be the quotient and the remainder of g + 7" — 1 divided by 7 that satisfy

g={i(g) =T +t(g)+1 and 0<t(g) <T.

Let F© = {S , A o}. Then we recursively define {f(g)}lgggNT as follows:

o) _ { FO VUL Rig) u9), Sitoytta+1> Aitgyaig+1t, i tlg) <T =15
Flo=1) {Ri(g)7-1, Sitg) 7+ S( )+170, A i(g)+1,0}, otherwise.

This allows us to rewrite Z as ZNT ZW = Z 1 Zi(g)4(g)- Similarly, we can rewrite Z° as

Z;V:Tl Z%9)_ Under the Markov assumption and the condltlonal (mean) independence assump-
tions in (2. 1) and (2.2) (e.g., the future state and the conditional mean of the immediate reward
are independent of the history given the current state-action pair), Z corresponds to a sum of
martingale difference sequence with respect to the filtration {o(F¥)} 5, where o(F) denotes
the o-algebra generated by F.

Due to the existence of the max operator, TST" is a non-smooth function of Z. We next
approximate the maximum using a smooth surrogate. Let  be a sufficiently large real number.
Consider the following smooth approximation of the maximum function,

1
F@({Zu,a,s,j}u,a,s,j) = 5 IOg( Z eXp(GZu,a,s,j))-

u’a7s7j
As we have restricted the state space to S., the number of cardinality of the quadruples (u, a, s, j)

can be upper bounded by O(N°T*) for some constant ¢ > 0. It can be shown that

Clog(NT
maX,Zu,a,s,j S FQ({ZuaSJ}uaSJ) < maX Zuasg + &

u,a,8,j U,a,8,J )

, (B.17)
for some constant C' > 0. See e.g., Equation (37) of Chernozhukov et al. [2014].
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For a given z, consider the probability P(TS’’ < z). According to Section B.1 of Belloni
and Oliveira [2018], for any § > 0, there exists a thrice differentiable function A that satisfies
|| <671, || < 672K and || < 63K for some universal constant K > 0 such that

I(z <z490) <h(z) <I(z < z+49). (B.18)

Define a composite function m({Zy a.s fua,sj) = P © Fo({Zu,as, fuasj)- By setting o to
C'log(NT)/0, it follows from (B.17) and (B.18) that

P(TS: < 2) <Em({Zuastuas;) < P(TSS < z+46). (B.19)
Similarly, we have
P(TS%™ < z|Data) < E[m({ZfL’w’j}u’avsvj)|Data] < P(TS%™ < 2 + 45|Data),
where Zg is defined in (B.13). This together with (B.19) yields that
max{mgx IP(TS%* < z|Data) — P(TS: < 2 — 49)],
max |P(TS%™ < z|Data) — P(TSY < z +46)|} (B.20)
< NEm({Zua,s,5 uasi) = Elm({Z; a5, uas.) Datal].

We next apply Corollary 2.1 of Belloni and Oliveira [2018] to establish an upper bound for
the last line of (B.20). Similar to Lemma 4.3 of Chernozhukov et al. [2014], we can show that
Co = Supz,z/ |m(z) - m(z/)| S ]"

2
Co = sup 0"m(2) <52 4+5710,
z 82’]'182]'2
J1,J2
3

c3 = sup E M <53 4+5720+516%

s azji azjz 82]'3

J1:42,73

In addition, similar to Lemma B.3, we can show that the quadratic variation process
> E{Z @) (Z@)T|Fla=1} will converge to some deterministic matrix with elementwise ap-

proximation error upper bounded by O((1 — 7)™ L3/2,/log(NT)/(NT)3/?), with probability
atleast 1 — O(N~!'T~1). So is the conditional covariance matrix of Z° given the data, e.g.,

=04V, UL

Moreover, by (B.4), the sum of third absolute moments of each element in Z9) is upper
bounded by O((1—~) 8¢~ Y/2(NT)~2L?). 1t follows from Corollary 2.1 of Belloni and Oliveira
[2018] that the last line of (B.20) is upper bounded by
02L%%\/log(NT)log’(NT) ~ 6°L*1og*(NT)
(1 =) (NT)2 (1= e(NT)?

48




with probability at least 1 — O(N~'T1).

Meanwhile, under Assumption A4(iv) that the conditional variance of temporal difference
error 67, is lower bounded by ¢(1 — )~ for some constant ¢ > 0. Additionally, by setting ~/
in A5(ii) to 0, we obtain that the minimum eigenvalue of E[¢(A;, S¢)d} (A, S;)] is bounded
away from zero. Using similar arguments to Step 1 of the proof, we can show that the condi-
tional variance of each Z , , ; given the data is lower bounded by C(1—7)~?|¢.(a, s)||3/(NT).

By (B.5), it can be uniformly lower bounded by C(1 —~)72/(NT) for some constant C' > 0.
As such, it follows from the anti-concentration inequality for the maximum of Gaussian ran-

dom vector [Chernozhukov et al., 2017, Theorem 1] that

VNT log®*(NT
sup |P(TS%** < z — 44|Data) — P(TS"** < 2z + 44|Data)| < a 08 )_50 )7
¢ -

with probability at least 1 — O(N~1T1).
In view of (B.20), by setting § = (1 — ~)7/*L~1/2¢/8(NT)3/810g~3/8(NT), we have

VL1og/®(NT)
(=N T

sup |P(TS%** < z|Data) — P(TS® < 2)| <

with probability at least 1 — O(N~'T~!). Similarly, based on (B.11), we can show that

VLlog"®$(NT) L7/ /NTlog(NT)

b

The proof is hence completed.

B.2.2 Normalized Maximum-Type Tests

For any u, a and s, define the variance estimator 52(a, s) by

¢L( ) T Tl N T—u—1
NQ(IQ— [Z Z ¢L Azt7Slt)¢L(Alt7S’Lt) zt(B[T Kk, T— u])] { [T wT— u}Tqﬁz(a,s)

1=1 t=T—k

T-1

b2

We next show that the normalized maximum-type test has good size property. The proof is
very similar to that in Section B.2.1. We provide a sketch of the proof and outline a key step
only. Define TS’ and TS%* to be versions of TS,, and TS, respectively, where the variance
estimator 52(a, s) is replaced with its oracle value o2(a, s). The key step here is to upper bound
the differences TS’ — TS,,| and |[TS>* — TS?|.

Toward that end, we first upper bound the difference between 52(a, s) and 2(a, s). Using
similar arguments to Step 1 of the proof in Section B.2.1, we can show that with probability at

least I-O(N7!'T71), ()maxr, 7,>er |]W[;117T2}—W[;117T2} |2 = O((1—7)"2\/L(eNT) 1 log(NT));

N
1t
+—N2u2¢L(a 5 [T wT] [Z

=1t

CbL Azt7Szt ¢L(Azt7szt) zt(ﬁ[T uT)] {W[;I_MT]}TQSI(&: S)'

u
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(i) |62, (B 1) — (57,021 = O((1 = 7)*L7/%) 4+ O((1 = 7)~*\/L(eNT) ' log(NT)) where
the bound is uniform in ¢, ¢, T, T5;

N Tr—-1

1
(iii) o Amax {m Z Z OL(Ais, Sin)dL (Ais, Si,t)} = 0(1),

=1 t=T

(iv) the matrix N=H(Ty — Ty)™* Zfil Z;‘Z;ll dr(Aiz, Sie)d (Aig, Siy)(05,)? converges uni-
formly to its expectation across all pairs (77,73) such that T, — T} > €T, with the uniform
approximation error given by O((1 —~)~2y/L(eNT)'log(NT)). These allow us to establish
the following error bound

|6'\3(6L, S) - 0-12L(CL7 3)| <

r(a,s)|3 —p/d eNT) 'lo
||¢]\§T73)II [0(<1L_ 7)5>+O<\/L( JflT)_v;g(NT)

with probability at least 1 — O(N~'T~1), where the big-O terms on the RHS are uniform in
a,s,u.

Similar to Step 3 of the proof for the unnormalized test in Section B.2.1, we can show that
02(a,s) > c(1 =) 2|l¢r(a,s)||3/(NT7?2) for some constant ¢ > 0 and hence

)],(3.21)

su
a735 ol(a,s)

o%(a,s) — o%(a, s —p/d € —1lo
ou(a, s) — oy(a, s)| :O<(1L_7)3> O(\/L( J\(flT)_V;Sg(NT)»

with probability at least 1 — O(N~'T~!), and hence,

|5.(a,s) — ou(a, s)| O((L—p/d ) . O<\/L(6NT>—1 log(NT)>. (B.22)

o ~ o\ (=)

asu ou(a, s)
Meanwhile, it follows from (B.21) that there exists some constant C' > 0 such that 52 (a, s) >
C(1—7)2||¢r(a,s)||3/(NTT2) for any u, a, s, with probability at least 1 — O(N~'T1).
In view of these, using similar arguments to Steps 1 and 2 of the proof for the unnormalized
test, we can show that the bootstrapped normalized test statistics can be upper bounded by

O(y/log(NT)), (B.23)

with probability at least 1 — O(N~'T~!). Additionally, as discussed in Step 3 of the proof for
the unnormalized test, each Z,,, 5 ;/0.(a, s) can be represented as a sum of high-dimensional
martingale difference sequence. We can first discretize the state space in a manner similar to
Step 2 of the proof, and then apply the martingale concentration inequality [see e.g., Tropp,
2011, Theorem 1.1] and the Bonferroni’s inequality to obtain a uniform upper error bound
for {Zya,5,;/0u(a,s)}ua,s,- This implies that the normalized test statistics is of the order of
magnitude (B.23) as well, with probability at least 1 — O(N~1T—1).

To the contrary, the scaled unnormalized test (1 — )%/ NTTS,, and its bootstrap version
(1 — )2V NTTS?, are of the order of magnitude O(+/L1log(NT)). When compared to the
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error bound in (B.23), it can be seen that the normalized test achieves a smaller order of mag-
nitude by a factor of L~1/2. This reduction results from the normalization, which makes the
order of each Z, , , ; independent of ¢ (a,s), thus avoiding multiplying with an additional
supremum term sup, , ||¢z(a, s)||> (which is of the order O(V/L) according to (B.4)) when
taking the maximum over Z,, , s ;.

Combining (B.23) together with (B.22), we obtain that

s, - 0 R o LR,

With this upper bound, the rest of the proof can be established in a similar manner to the proof
for the unnormalized test. We omit the details to save space.

B.2.3 /;-type Test

The proof for the ¢;-type test is more involved. It is divided into three steps.
In Step 1, we show there exists some constant C' > 0 such that

P(|TS; — TS!| < Ckr/ILN-T'log(NT)) = 1 — 0(%). (B.24)

where

-1
. w(T —u) | 1 ~ ~
im0 {f S [ Bousters) - Gunte.s) |7rf<a|s>pfz<s>ds} ,

where 72 denotes the behavior policy at time ¢, p? denotes the marginal distribution of .S; under
the behavior policy, and  is a shorthand for (1 —~) 2L /¢ + (1 —~)~2,/Llog(NT)/(eNT).
By definition, TS} corresponds to a version of TS; assuming the marginal distribution of the
observed state-action pairs is known to us.

In the second step, we notice that we have established a uniform upper error bound for
Max; ¢ 7,1, |QZ[’T17T2] (Ait, Sit) — Q 71 1) (Ait; Si)| in Step 2 of the proof for the unnormalized

test. This error bound in turn leads to the following bound for the difference between TS} and
TSYY,

CL*?1log(NT) CL77//log(NT) 1
) — - o<ﬁ) (B.25)

]P( TSY — TS| <
| 1 1 ‘ — (1 _ 7)3€NT (1 _ 7)3 eNT

for some constant C' > 0, where

N
T—u)| 1
TSHO — U(
U T st T2 NT Z

5)

[0, u](A%tv SM) Q[uT (Ai,t7 Si,t)|} .



Using similar arguments to the proof of (B.24) in Step 1, we can show that |[TS? — TS??| is of
the order O(r\/LN—1T-11og(NT)) as well, with probability at least 1 — O(N~'T~'), where

TSt = { Zij/wm uaW$WMMﬁ@w}

This together with (B.25) yields that

3/2 L7/, /L1og(NT
IP<|TS§ _ i < L M0e(NT) | e o8 >) - 0( ) (B.26)
(L=%NT ~ ~ (1—4)V/NT NT

for some constants ¢ > 0, under the given conditions on L (see A9) and € (see Al).
Meanwhile, we define TS7" to be a version of TS} with Q[r, ,j(a, s) replaced by

N Tp—1
N Z Z ¢L a, s) [;117T2}¢L(Ai,tasi,t)5zt-
i=1 t=T
By (B.8), we have
CLP4  CL*?log(NT) 1
P( TS* — TS| < ) —1- O(—), B.27
TS 1|—(1—7)3Jr (1 —7)3eNT NT (B.27)
for some constant C' > 0.
Combining the results in (B.24)-(B.27), we have shown that
cL7P/d cL3210g(NT) 1
IP’<|T81—TS**| < + >:1_0(_>,
! (1—7)3 (1 —7)3NT NT (B.28)
cL7P/d cL3?1og(NT) 1 '
IP’(TSb—TSb’* < - - >=1—0<— )
TS s (1=7)3 (1 —7)%NT NT
for some constant ¢ > 0. Define
—1 N u—1 —1 T—1
A u " u, T
{z.% [ Vou SN 60 A, Si)dt, — % 1u) Zm Aig, Si)d] s u}, (B.29)
=1 t=0 i=1 t=u
. 1N u-l W, o
{20 [0S S onta st s S outa 505 o} w30
i=1 t=0 i=1 t=u

Notice that TS** and TS} can be represented as functions of {Z,},, and {Z%},, respectively.
The last step is again to apply the high-dimensional martingale central limit theorem to bound
their Kolmogorov distance.

We next detail the proofs for Steps 1 and 3.
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Step 1. For each u, we aim to develop a concentration inequality to bound the difference

T-1 N
/u( —u
{NTZ;Z/|Q[OU AztaSzt) Q[U,T](Ai,tasi,t)l (B31)

— |Qou(a, s) = Qur(a, 5[} (als)pi’(s)ds}‘ :

According to Lemma B.2 (see (B.56)), we have that supy, 7,57 ||,§[T17T2] — B*[|2 = O(k), with
probability at least 1 — O(N~!1T1).

Define the set B(C) = {8 € R : || — B*|l» < Ck}. It follows that there exists some
sufficiently large constant C' > 0 such that B[Tl,TQ] € B(C) with probability at least 1 —
O(N~'T~1). (B.31) can thus be upper bounded by

T-1 N

1 T -

S |oNT 2_; ;{m (Aiss Sit)(B1 — Bo)| — Elgf (Ai, Sia) (B1 — /32>\}| . (B32)
B2eB(C)

The upper bound for (B.32) can be established using similar arguments to in the proof of

Lemma B.3. To save space, we only provide a sketch of the proof here. Please refer to the

proof of Lemma B.3 for details.

Notice that the suprema in (B.32) are taken with respect to infinitely many fs. As such,
standard concentration inequalities are not applicable to bound (B.32). Toward that end, we
first take an e-net of B(C') for some sufficiently small ¢ > 0, denote by B*(C), such that for
any J € B(C), there exists some 5* € B*(C) that satisfies || — f*||2 < e. The purpose
of introducing an e-net is to approximate these sets by collections of finitely many Ss so that
concentration inequalities are applicable to establish the upper bound. Set e = Cx(NT)72 It
follows from Lemma 2.2 of Mendelson et al. [2008] that there exist some 5*(C') with number
of elements upper bounded by 5%(NT')?L

By Lemma B.1, we have sup, , ||¢r(a,s)|s = O(V/L). Thanks to this uniform bound,
the quantity within the absolute value symbol in (B.32) is a Lipschitz continuous function
of (B, f2), with the Lipschitz constant upper bounded by O(v/L). As such, (B.32) can be
approximated by

T-1

N
L (Aie, Sie) (B — —E|p] (Ais, Sit)(Br — 33
b2 TtZZXGI{chL(, A (Br = Bo)l = EloL (Aie, S:.0) (B = 52)[} |(B.33)

=1
>

~
I(B1,B2) (without absolute value)

with the approximation error given by O(C'v LN 2T 2x).

It remains to develop a concentration inequality for (B.33). Since the number of elements in
B*(C') are bounded, we could develop a tail inequality for the quantity within the absolute value
symbol in (B.33) for each combination of 3; and (3, and then apply Bonferroni’s inequality to
establish a uniform upper error bound. More specifically, for each pair (1, 32), let

T-1 N

(B, B) = S OELIOF (Ass i) (B1 — Bo)lISi1} — El67 (Ais, Si.)(Br — Ba)l],

t=0 =1
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with the convention that S; ; = (). Notice that [(f;, 82) — I*(f1, f2) forms a mean-zero
martingale under (2.1) and (2.2), we can first apply the martingale concentration inequality to
show that

11(By, B2) — I*(By, Ba)| = O(en/LN-1T-11og(NT)), (B.34)

with probability atleast 1 —O{(NT)~“L} for some sufficiently large constant C' > 0. Here, the
upper bound O(k+/LN~1T-!1log(NT)) decays faster than the parametric rate, due to the fact
that the variance of the summand decays to zero. Specifically, notice that Var{®; (A;, S¢)(51 —
B2)]S¢—1} is upper bounded by

Max Apax {/ or(a’,s")p (a8 )p(s'|a, S)dsl} 181 = Ballz = O(x7),
where the equality is due to Lemma B.1 and the fact that p;s are uniformly bounded.

Next, under A4(i) and (ii), the transition functions {7;}, satisfy the conditions in the state-
ment of Theorem 3.1 in Alquier et al. [2019]. In addition, each summand in the definition
of I*(f1, B2) is upper bounded by x. We can thus apply the concentration inequality for non-
stationary Markov chains developed therein to show that |*(531, 82)| = O(k\/LN—'T-11log(NT)),
with probability at least 1 — O{(NT)~“L} for some sufficiently large constant C' > 0. This
together with the upper bound for | (31, f2) — I*(f1, B2)| in (B.34) and Bonferroni’s inequality
yields the desired uniform upper bound for (B.33). This completes Step 1 of the proof.

Step 3. The proof is very similar to that for the unnormalized test. Let Z and Z° denote the
high-dimensional random vectors formed by stacking the random vectors in the set (B.29) and
(B.30), respectively. Again, Z can be represented as a sum of high-dimensional martingale
difference ZNT Z9) with respect to the filtration {o(F @)} 5¢. Similarly, we can rewrite Z°

as ZéV:Tl 7Z%9) and Z, ZNT 7 The test statistic can be represented as

T —eT<ﬂa¥eTTZ;/|¢L a,s)Zy |pt( )ﬂ-t( |s)ds

wu

J/

Next, we approximate the absolute value function |z| = max(x,0) + max(—x,0) by
_l{log(l—l—exp(@:c)) +log(1+exp(—0x))}. Define the corresponding smooth function fy(Z,,)

\/ T@ ZZ / {log(1 + exp(86] (a,5)Z,)) +1og(1 + exp(—0¢ (a, s)Z,))}

xpi(s)m; (als)ds
Similarly, we have v, < fo(Z,) < 1, + 6~ log 2. This together with (B.17) yields

log(2T)

TS1" < Fo({fo(Zu)}u) < Fol{thu + 67 log 2}) < TST" + —

(B.35)
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Define a composite function m({Z,},) = h o Fyp({fo(Z.)}.) where the smooth function h
is defined in Step 3 of the proof for the unnormalized test. By setting ¢ to log(27") /0, it follows
from (B.35) and (B.18) that

P(TST" < 2) <Em({Z,}.) < P(TST" < z + 49). (B.36)
Similarly, we have
P(TS"* < z|Data) < E[m({Z%},)|Data] < P(TS}* < z + 44| Data),
where ij is defined in (B.30). This together with (B.36) yields that
max{m;dx IP(TS}* < z|Data) — P(TS?* < z — 44)],
max IP(TS?* < z|Data) — P(TS™ < z + 46)|} (B.37)
< [Em({Z.}) — E[m({Z,}.)|Datal].

Meanwhile, we can show that for this choice of m, ¢y = sup, ., |m(z) — m(z')] <1,

9*m(z)
= <02L+6t0L
“ Sgpz azjlazjé n " ’
J1,J2
PPm(z)
= = T <52 4 572003 + 50PN
“s Supb Z 0Zj132j282j3 - + +

J1,32,73

In addition, similar to Lemma B.3, we can show that both > E{Z @) (Zz@)T|Fla=1} and

>, E{Z09)(Z"9)) T |Data} " will converge to the same deterministic matrix with elementwise

approximation error upper bounded by C(1 — v)~*\/L1log(NT)/(NT)*? for some constant
C > 0, with probability at least 1 — O(N~'T1).

However, the anti-concentration inequality is not applicable here, since the test statistic is

no longer a maximum of {Z,},.. Toward that end, assuming (1 — v)vV/ NTTS"*//log(NT)
has a bounded density function, it follows that

VNT log**(NT
sup [P(TSY* < z — 46|Data) — P(TS}* < z 4 45|Data)| < ) og )_50 )
’ —7
In view of (B.37), by similarly setting § = (1—~)7/*L~1/2e!/8(NT)3/810g=3/®(NT), we obtain
VL1og"/#(NT)

b,*x *ok

Finally, based on (B.28), one can show that

VLlog"®$(NT) L7/ /NTlog(NT)
b
sup |P(TS] < z|Data) — P(TS; < z)| < (1 — 7)*/4(eNT)1/8 (1— )2 '

The proof is hence completed.
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B.3 Proof of Lemmas B.1 and B.2

First, we notice that (B.4) can be proven based on the proof of Theorem 3.3 of Burman and
Chen [1989]. Second, the B-spline basis function is non-negative and sum up to 1. Following
Chen and Christensen [2015], we rescale the basis by multiplying it by L'/2. This leads to the
equality in (B.5). Next, according to Cauchy-Schwarz inequality, the ¢5-norm of ¢ (a, s) is
lower bounded by its ¢;-norm divided by v/L. This yields the inequality in (B.5). Additionally,
each function in ¢ is Lipschitz continuous. This yields (B.6).

The rest of the proof is organized as follows. We first outline the challenge in establishing
the uniform convergence rate of the Q-function estimators under the nonstandard stationarity
assumption SA3 where the reward and transition functions may remain nonstationary over time
and illustrate our main idea in addressing this challenge. Next, we conduct a population-level
analysis with infinitely many data to prove (B.3). Next, we consider the finite-sample scenario
and formally establish the uniform convergence rate of the Q-estimators in (B.7). Finally, we
conduct an asymptotic analysis to prove (B.8).

Challenge: In FQI, we iteratively update the Q-function according to the following formula,

N Tx—-1

QU = arg min Z Z [th + ’ymaXQ M@, Sii1) — Q(Aiy, Si)

=1 t=T1

2

Our goal is to establish the uniform rate of convergence of these estimators across different
time intervals [T}, T»], under the nonstandard stationarity assumption SA3 where the reward
and transition functions can remain nonstationary over time.

Under the more conventional stationarity assumption SAI, it is immediate to see that
Q" (a, s) is to converge to

g(a,s, Q¥ NE ri(a, s +’y/ maXQ Ma, s\p(s'|a, s)ds (B.38)

where the subscript ¢ could be removed due to the stationarity of the reward and transition
functions. However, this no longer holds under SA3 where the reward and state transition
functions may remain nonstationary over time. Our key insight is that although Q*+")(q, s)
might not converge to (B.38), it converges to its weighted average with weights w;(a, s) =
7(als)p?(s) dependent upon the state-action visitation probability (recall that p? denotes the
density function of S;), given by

T5—-1 T5—-1

Q(kH)’*(a, s) = [Z wy(a, s }_ [Z gi(a, s QW Jwy(a, s)} (B.39)

t=T t=T1

Meanwhile, under SA3, the optimal Q-function Q%" is stationary and satisfies Q' (a, s) =
g:(a, s, Q°P") for any ¢, and hence, we have

T5—-1 To—1

Q(’pt(a,s):[Zwtas}_[thasQ"pt i(a, )]

t=T, t=T,
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This together with (B.39) enables us to apply the standard error analysis in FQI to show that

sup [Q(a,5) = Qi (@, 8)| < Y A" Fsup QP (a, 5) = QW(a, 5)|

ISh=K (B.40)
+7% sup Q" (a, 5) — Q(a, 5)),

where the first term on the right-hand-side (RHS) denotes the finite-sample estimation error
between the Q-function estimator Q*) and its population-level target Q*)*, and the second
term measures the bias due to initialization.

In the following, we first conduct a population-level analysis by assuming N = co. We
next conduct the finite-sample analysis to formally establish the rate of convergence.
Population-level analysis. Recall that Xir, 1,) = (7o — T7) 7! tTi;ll E¢r(As, St)o) (Ay, Sp).
As N = oo, the regression coefficients 3*) computed at each kth iteration equals

To—1

> Eou (A S){ri(Aw $) +y max o7 (a, i) 85V}, (BAD

t=T1

(k) — y—1 [—
b MBI, — T

with 3() initialized to a zero vector. This yields the Q-function estimator Q) (a, s) = ¢] (a, 5)3®).
To illustrate the rationale behind the definition of Q(k)’* in (B.39), consider what would oc-

cur if we replace r;(A;, S;) +ymax, ¢ (a, S;41) %Y in (B.41) with Q) (A4,, S;). Equation

(B.41) remains true. In other words, we have

To—1
_ 1 X
B9 = Sty [ > BoL(AL S)Q (4,51, (B4

t=T1

This implies that ¢} 3(¥) is the projection of Q*)* onto the linear function class. Consequently,
Q™+ is indeed the population limit of ¢] 3*) in the presence of nonstationary reward and
transition functions.

To effectively control the difference between Q*) and Q*)*, we need to approximate Q*)*
using the linear function class. This can be achieved using the realizability assumption in
A2 and the completeness assumption in A3. Specifically, under the p-smoothness condition
in A2, there exists some [3; such that ¢, 3 can approximate 7; uniformly with the uniform
approximation error upper bounded by O(L~?/9) [see Huang, 1998, Section 2.2]. Similarly,
under A3, there exists some 3" whose f,-norm is bounded by ||3*~)|, such that ¢] 8"
can approximate B¢, 3%~ uniformly with the error upper bounded by O(L~/||g%*=1||,).
This allows us to use ¢] (8 + 74"*) to approximate g, (a, s, Q*~1)), which further leads to
the approximation of Q®)* by ¢] 3(¥)* where

To—1 -1
B0 = [ Y wlas)] | D8 +98 wila5)].
t=T1 t=T1
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such that

err(a, s) 2 (67 (a,8)8®" — QW (a, )] = O{L (1 + [ 8% V1,)},

where the big-O term is uniform in (a, s). It follows from Equation (B.42) that

Tr—1

STES 4 on(An SH{QM (AL, S)) — 6] (Ar, $)5M*}, (B.43)

t=T4

1

(k) _ glk)x _
g =B T

and hence, ||3*) — 5)*||, can be upper bounded by

Ty—1
1 « *
eeRmSlel\Ili)llzﬂ T, =T Z EO'Y [T T ¢L(At75’t){Q(k)’ (Ai, Sp) — Qg(At?St)B(k) }
Ty—1
1
< superr(a, s) X sup E0'S ) on(A S
o5 ( GCR™L][]p=1 Tv2 Tl tZTl [T1,T5] L( t t)’

Using Cauchy-Schwarz inequality, the second term in the last line can be upper bounded by

Ty—1
1
sup E El0TS ) . on(Ay, S)|? = sup OTY 6.
9eR™L:||9]|2=1 T — 1T, = [T1,T>] OERML:||9]2=1 [T1,T3]

Under A5(ii), the minimum eigenvalue of E[Tl 5] 1 bounded away from zero, which in turn
suggests that the maximum eigenvalue of E[T 7] is bounded away from infinity. It follows that
the above expression is of the order O(1), and hence

185 — gR*||, = O{L7P4(1 + ||B%Y|,)}. (B.44)

Next, we focus on providing an upper bound for sup, [|3*)||5 to further simplify the RHS
of (B.44). To begin with, we first provide an uniform upper bound for sup, || 3;||2. Notice that

B E[;t_,_l}z t t-‘rl ﬁz‘ - t t+1 [QbL(Ata St) (Ata St)]

' (B.45)
tt+1]]E¢L(At7 Solre(Ae, Se) — o1 (Ar, S0) 67

As s are uniformly bounded (implied by A2), using similar arguments to the proof of (B.44),
it can be shown that both the rightmost term in the first line of (B.45) and the term in the second
line of (B.45) are upper bounded by O(1) and O(LP/?), respectively. Consequently, we have
sup; ||Bf]]2 = O(1). Under the completeness assumption in A3, combining this together with
the definition of 3* yields that ||3%)*]|, < C + v||3%~V ||, for some constant C' > 0. It
follows from (B.44) that

18Pl2 < C +~(1 + L) 8* Y],
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for some constant C' > 0. As 3(°) is initialized to a zero vector, we obtain that sup,, |3 ||, <
¢(1—~)~! for some constant ¢ > 0. It follows that the uppper bound in (B.44) can be simplified
into

—p/d
LT ) (B.46)

I3 - g, = (222

Finally, we focus on providing an upper bound for sup, , |¢] (a, s)(8® — 5%*)*)|. A naive
approach is to employ the Cauchy-Schwarz inequality to show that

T (k) _ gy T () _ glo)s LYeon
sup o5 (a.5)(3% = B)] < sup o5 (a.5) |2} 5% — 5]l = O(F—).

by (B.4) and (B.46). However, this bound is not sharp. In the following, we conduct a refined
analysis to show that the upper bound can be sharpened to

—p/
sup |¢; (a, s)(8E* — gW)| = O(L d), (B.47)

a,s 1_’7

which is faster by a factor of L~'/2. This together with the upper bound on the approximation
error sup, , |Q%)*(a, s)—¢] (a, s)3%*| = O((1—~)~'L~P/?) yields the following error bound
for the difference between Q) and its population limit Q*)*,

—p/d
L ) (B.48)

up Q) (a,5) ~ QW (a 9)] = O({—

Notice that the boundedness of rys yields that sup, , |Q”*(a, s)| = O((1—~)~"). As the initial
Q-estimator is initialized to zero, it follows from (B.48) and the error analysis in (B.40) that

k

slllsp Q" (a,s) — QW (a, s)| = O(%) + O(lv_ 7).

By letting k£ — oo, we obtain (B.3).

It remains to prove (B.47). The main idea is to employ the bias control techniques devel-
oped by Huang [2003] (see Lemma 5.1 and Theorem A.1 therein), based on which we can
show that the basis function ¢, satisfies

-1 To—1

5
gbZ(a,s)% ST E6u(An S)h(AL S)| = O(1),  (B.49)

—1
sup |h(A;, St)|] sup

where the big-O term on the RHS is uniform in any nonzero function h.

Notice that our setting differs from the one considered in Huang [2003] in two ways: (i)
the basis function is not only a function of the continuous state, but a function of the discrete
action as well; (i1) the state-action pairs at different times may have nonstationary distribution
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functions. Despite these differences, (B.49) remains valid as (i) we estimate the coefficients
for different actions separately using different data subsets grouped by the action; (ii) we can
treat the data as if it were sampled from a stationary distribution, in which each state-action
pair follows a mixture of distributions of {(S;, A;) : Ty <t < Ty — 1}with equal weights.
Now, in view of (B.43), (B.47) can be readily obtained by setting the function % in (B.49)
to err. This completes the population-level analysis.
Finite-sample analysis. Next, we proceed to conduct the finite-sample analysis by considering
a finite /N. The arguments are very similar to those used in the population-level analysis. The
difference lies in that, with a finite NV, the equality in (B.42) no longer holds. Rather, the
estimator 3*) is defined by

~

271 N Th—1
N(I—ZH - [Z Z ¢L AztaSzt){th+7maX¢L(a Szt—i—l) (k_l)}]7 (BSO)
=1 t=T1

where we recall that

N Tp—1
~ 1
21 = s 141,5'Z TAi,Si .
[T1,1>] N(T2 _ Tl) ZZI t:ZTl ¢L( R ,t)¢L( )t ,t)
As such, we have
To—1
® — g = St | v (Ais, Si) (B
6 6 [T1,T>] T2 Tl Zl = ¢L R ,t){ ,t (BS])

+’YH1&X¢L(G Szt+1)6(k 2 —¢L(Ai,t75i,t)5(k)*} ;

where the population limit 3*)* is defined in the population-level analysis.
Using similar arguments to the proof of Lemma B.3, we can show that

|S im0 = S|, < eV/ZENT)TIog(NT), (B.52)

for some constant ¢ > 0, where the inequality holds uniformly across all pairs (77, T5) with
probability at least 1 — O(N~"T1). Under A5(ii), Amin[X(1,,7,]] is uniformly bounded away
from zero. On the event set defined by (B.52), for sufficiently large N7, there exists some
¢ > 0 such that )\mm[E 7,,15)) = €. This together with (B.51) yields that

N Tx-1

- Az ,S@
189 = 597 < | 30 3 SHEA T (R a6 Senn) 54
i=1 t=T, (B.53)

—¢1 (A, i) BH”

Assume for now,

(B.54)

C *
sup [[5®l < -—— and sup | 5¢|> <
k Y k

= 1_77
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for some constant ¢ > (. These assertions can be proven using similar arguments to the
population-level analysis.

By definition, if 3%*~1) and 3(*)* were computed using an independent dataset, the expected
value of the vector on the RHS of (B.53) would be of the order O((1 — ~)~'L7?/¢), based on
our population-level analysis. However, since they are computed by the same dataset, they
become dependent upon each other. To handle such dependence, we upper bound the ¢5-norm
in the RHS of (B.53) by

N T3-1

ZZ“ {RzﬁvmachL(a Sier1)Br — ¢>L(Azt,smﬁz}H (B.55)

sup
B1,82

where the supremum is taken over all the pairs (31, 82) such that || 3]s < (1 —7)"te, || Ba]|2 <
(1 —~)"tcand that

Tr—1

[Z 01 (Av, S){Ru +ymax of (a', Si1) By — 0F (A S0} || = O(f_/j)

T, - Th

as the above equation would have been satisfied if we were to set 3; = ¢~V and 3, = S*)*.
Using similar arguments to Step 3 of the proof of Theorem 4.1, we can show that (B.55) is
upper bounded by O((1 —~)~*y/L(eNT) !1og(NT)) + O((1 — )"t L~P/?) where the big-O
terms are uniform in (77, T%), with probability at least 1 — O((NT)™1).

This together with (B.53) yields the following upper bound for the difference 3*¥)* — g*),

L(eNT)'log(NT Lr/d
||ﬁ(k)*_5(k)||220<\/ (€ 1)_Wog( )>+0(1_7).

Notice that compared to the error bound in the population-level analysis (B.44), the RHS above
includes an additional term O((1 —~)~'\/L(eNT)'log(NT)), which accounts for the finite-
sample estimation error.

Finally, to upper bound sup, , [¢] (a, s)(8%*—B®)]|, we define two intermediate quantities

- 1 N T>—1
I = ﬁ;;% Aier Si){Riy + ymaxdp (o, Si2) B — d1(Aiy, 810) 0},
Z—TIT To—1
I, = T[ = ZE¢L At,St){RtJr’YmaX%(a Sip) 85D = o (A, SN
2

tTl

It follows from (B.52) that

eNT) 1og(NT LY?=pld /(eNT)1log(NT)
(M) o)

with probability at least 1 — O(N~'T1).

180 — 8™ — L], =0
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Meanwhile, using similar arguments to bounding the /5 norm in the RHS of (B.53), we
obtain with probability at least 1 — O(N~'T~!) that

VL(eNT)1 log(NT))
1—~ '
Combining these bounds together with (B.5), we obtain that

sup |0, (a, s)(8%" = 8O <sup oL (a, 5)[2[187* — B = L]l +sup o (a, s)L 11y — Ll

a,s

I = Bl = O

V/L(eNT)tlog(NT)
L—1

+sup|of (0, 5) 12| = O ) + sup |6 (a, ) Lol
under the conditions on L in A9.

Finally, it follows from the arguments used to the proof of (B.47) in the population-level
analysis that sup, , |¢] (a, s)I2| = O((1 — ) "' L77/%). Consequently, we have

)| _ (\/L(GNT)—l log(NT)> N O<L—p/d)

sup |6 a, ) (8" — — =)

a,s

and hence sup, , |Q"*(a, s) — Q*¥)(a, s)| is of the same order of magnitude. It follows from
the error analysis in (B.40) that

sup Q™ a5) ~ Q¥ (a,5)] = 0 (VHEL Ty 4 o L2y o2,

with probability at least 1 — O(N~1T~1). This establishes the rate of convergence in (B.7) by
noting that the number of FQI iterations much larger than log(/NT") (see Assumption A9).
To conclude this part, notice that

2—1
B _ g* = [T1 T3] Z Eér (A, S))é) (A, S)) (8% — 57)
t=T1
_ Z[_Ti 2] opt
T, -1 Z Eor(Ar, S) {01, (Ar, Sp) Y — QP (A, Si)}
t=T,
-1 To—1

Z
[Tl = Z E¢L( A“St){Qopt(At:St) cbI(At,St)ﬂ*}

7Tl

Based on the established rate of convergence and (B.3), one can similarly prove that

150 - 51l = 0 f=sr) + o(VHETE M Lo (1) @)

We omit the detailed proof to save space.
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Asymptotic analysis. To begin with, we notice that

S Ty—1
B* TQ[Tl 2] [ Z qu At, St ¢L (At, St)ﬁ ] = [Tl T2 |: Z ¢L At, St At, St)]
t=T, =T,
E[_Ti T3] =
Tz— [ Z ér(Ay, S;)reminder( A, St)}
=T,

where the reminder function is bounded by O((1 — )"2L~?/%), due to (B.3). This together
with the Bellman optimality equation Q%" = r; + vB;Q°"" implies that 5* is equal to

Shm) o] 72[TlT -~ )
1,12 1,15] opt (__opt _p1
T _T1E|:t:ZTl ¢L(Atast)rt(Atast)] - [t:ZTI or(As, Sp)Q (m (5t+1),5t+1)] 0",
6
and hence,
271 To—1
* Tl T2 O *
B = ot B Y 0n(Ar SO (7 (Suin), Suan)| 5 — 0
t=T1
Y
E_TlT To—1
—i—vT;# [Z o1 (A, Sy)reminder (7 (St+1),St+1)] :
t=T,
ezg’

Using the same arguments, we obtain that 3* = 3, + YPS, + v?P?B* — 0, — P60, where
0, = 08V — 40 Repeating this process, we obtain that 3* = E?Zl(’ﬂ?)j_lﬂr + yEPEB* —
Zf;ll (vP)’6,. and hence

k—1

¢1(a,s)5" _Z’YJ L1 (a,8)P B, + 7 0 (a, 5)PEBT — Z’Y ¢1(a,s)P’0, (B.57)

7j=1
Below, we focus on providing an upper bound on the rightmost reminder term in (B.57).
First, as the reminder function is of the order O((1 — ~)~2L~?/?), it follows from (B.49)
that sup, , |¢; (a, $)0V| = O((1 — )"2L?/%). Second, when upper bounding the function

o (a, 5)0,@, we notice that it can be represented as

y-1 Tp—1
o] (a,s )T[T;T% [Z oL (As, St)(B;reminder)(A¢, Sy) |, (B.58)
1 t=T,
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where B; is defined such that B; g(a,s) = [, g(7"(s'), 8" )pi(s'|a, s)ds’.

However, B;reminder can vary over time, as the transmon function may not be stationary.
As aresult, (B.49) is not directly applicable to upper bound (B.58). Nonetheless, we may apply
the techniques in (B.42) to stationarize the reminder term in (B.58). Specifically, define

Tr—1 To—1

reminder*(a, s) = [ Z wy(a, s)} - [ Z wy(a, s)(Bireminder)(a, s)]

t=T1 t=T1
With some calculations, it can be shown that (B.58) is equal to

-1 Tr—1

Y
T B 3 0r(Ar S reminder’ (4, 5,)|,
2 t=T1

¢/ (a,s)

with B;reminder being replaced by a stationary function reminder” so that we can use (B.49)
to show that sup, , |¢; (a, )0 | = O((1 — 4)"2L~?/?). Third, we will show below that

sup |1y S PRy Bll < 0 = VI —e(1-7), (B.59)
BER™L:||B||2=1

for some constant ¢ > (. This suggests that the operator norm of 72[1T/127T2]732[_T¥ ;2} is strictly

smaller than 1, which together with the boundedness of HZ[E/ ;2] ||l2 (implied by A5(ii)) yields

—1/2 1/2 —1/2 1/2 1/2
P20, < 125 el =2 PR IS il < C NSl (B60)

Meanwhile, using similar arguments to the proof of (B.44), we can show that HE[%Q’TQ]GTHQ =
O((1—~)~2L~?/%), which together with (B.60) yields that ||y P70, |, < &(1—~)~2p? L7P/4 for
some constant ¢ > 0 and any j > 0. Consequently, for each j, we can represent 1/ ¢] (a, s)P’0,
as v¢] (a, )P0, , i.e.,

271 To—1
167 (0, 9) B[ 3 0u(An OB 0] (A S8, B.61)
t=T1

for some 6, ; whose 5-norm is bounded by ¢(1—+)~2p/ "L L~P/4. As p;s are bounded, it follows
from (B.4) that sup, , ||B; ¢/ (a, s)|l> = O(1). Using similar arguments in bounding 920,@, we
can show that (B.61) is of the order O((1 — v)~2p/ 1 L=P/4),

Hence, the rightmost reminder term in (B.57) is of the order

—p/d —p/d
o(i=spa=s) = la=) (B:62)

1 1+/1—c1—7 _1+/T=c(l—7 2
l—p [1—1—c(l—7) L+M1—cl— c(1=17) Sdi—y)
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It remains to prove (B.59). Toward that end, notice that the left-hand-side of (B.59) can be
represented by

_1/2 Tgfl

> T )
W TZ[ _ 121]1 Z_; E¢r(As, So)or (7 (Sis), St+1)E[T1,/72“2]B2
t=T1

sup ‘
BrER™E:||B1]]2=1
B2ER™L:||B22=1

2.

It follows from the Cauchy-Schwarz inequality that the /> norm of in the above expression can
be upper bounded by

Ty—1
il —1/2 o —-1/2
T -1 Z ]E|B1TZ[T1{T2]¢L(A’5’ St)|’¢z(77 pt<St+1)7 St+1)Z[T1{T2]62‘
t=T,
Ty—1
Tv—1/2
=7 =T t:ZT E|BY iz, 7,01 (Ar, o)
To—1
1 p—

X T, — T, Z El¢] (7Pt (Sy41), St+1)E[T1,/;2]52!2-

t=T,

By the definition of X7, 7, the second line equals ~. Hence, to prove (B.59), it suffices to
show the maximum eigenvalue of the matrix

Tr—1

2

’7 - O O -

T i §T [E¢L(7r PL(Syi1), St )b (TP (Sier), Sm)] i (B.63)
t=11

is strictly smaller than 1, or equivalently, the matrix

71/2 To—1

T1,T: o o -
LN B (A $)6F (An S) = 7 EoL(x 7 (Sts), Sea)OF (1 (Si). Sian) | S 7,

2 — 4y =

is positive semi-definite. The latter condition is implied by (B.4), the boundedness of p, and
AS5(ii), which suggest that (i) the maximum eigenvalue of X7, 7, is bounded away from infin-
ity, or equivalently, the minimum eigenvalue of EE ] is bounded away from zero, and (ii) the
minimum eigenvalue of the matrix

Tr—1

> [E%(Ata S)01(As, St) = VEdr(n (Sp41), S )L (T (Se1), Sea1)

t=T1

1
T, — Ty

is lower bounded by C'(1 — ~y) for some constant C' > 0. Consequently, the maximum eigen-
value of (B.63) is upper bounded by 1 — ¢(1 — ) for some constant ¢ > 0. This completes the
proof of (B.59).
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To summarize, so far, we have shown that

Lp/d)

k
¢1(a,8)8° =Y V¢ (a, )P B+ v o) (a,5)PFB +O<( 7
j=1

by (B.57) and (B.62).

Next, we aim to obtain a similar expression for 5*). Let m, denote the margin defined in
A7. Under the condition on € in Al and that on L in A9, it follows from the uniform rate of
convergence derived in the finite-sample analysis and the condition K > log(/NT) that

1
IP’< max max sup |p} (a, s)3%) — QP (a, s)| < ?) >1- O(ﬁ) (B.65)

k>K/2 (T1 Tg) To—T1>€T a,s

Under the event defined in (B.65), it follows from the uniqueness of the optimal policy (see
A6) that

1 (17'(s),8))Biry ) — max ¢L(a $)) Bz 1)

a# opt
2m m
> Q%P(1P'(s),s) — max Q% (a,s ——O>—07
> QU () — max Q7(a,9) = 0=
for any a, s, 17 and T5. This leads to
7P (s) = maw () = arg max o] (a,s)3®), Vk > K/2, (B.66)

a

with probability 1 — O(N~*T~1). On the event defined in (B.66), it follows from the definition
of A (see (B.50)) that

N Tr—1 E[Tl T ]
B(k) — #QsL(AZ aSZ )R
; t=11 N(T2 ) t t
Br
N -1 31
Ty ) -
+ 7). m[’;ﬂwxm Si )L (TP (Sia1), Siaen) BETY,
i=1 t=T1 2
P
forall k > K /2. By iteratively applying this argument, we obtain that §%) = sz/f 7]%173]6713 rt
~E/2PK/23(K/2) and hence
K/2
o1(a,)8%) =37 op (a, )P B, + /2] (a, 5)P2 B0,
k=1
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In view of (B.64), we obtain that

K/2
op(a,5)(8" = 57) = Y 7 op(a,)(PHB — PG
k=1 (B.67)
~ L—r/d
+7" 20 (a,5) (PRI — PRIZGY) 4 O(ﬁ)
-7
Using similar arguments to the proof of (B.59), it can be shown that ||72[1T/12 7] PE[TI Iz is

also strictly smaller than 1, with probability at least 1 — O(N'T71). As K > log(N T)
(Assumption A8) and B®)s are bounded (see (B.54)), 55/2) in the first term on the second
line of (B.67) can be replaced with 5*, and the resulting error can be made arbitrarily small,
specifically of the order O((NT')~¢) for any sufficiently large constant ¢ > 0. In view of the
condition on L in A9, we obtain that

K/2
01 (a.8)(8%) = 57) = 37" 67 (a, ) (P B, — PH1B)
k=1
SK/2 g . Lr/d
FRO a, ) (PA PR + O )

With some calculations, the first two terms on the RHS can be shown to equal

K/2

> e (a,8)(PF1E, — P ) (B.68)

—1

N Th—1
o = Z Z [Tl T2 ¢L(Am Si)[Ri + 701 (1P (Sier1), Sie1) B — b (i, Sin) 8]
i=1 t=T1

To— —1

a = Z Tm Tl B (A, SO)[Re + 7108 (17 (Sirn), Seat)B* — 61 (Ar, S)B7)-
=1 2

Using similar arguments in bounding the rightmost reminder term in (B.57), it can be show
that sup,,, 67 (a. s)a | = O((1—7) 2L/%) and sup, , |6] (a. 5) ¥, 7P+, | = O((1 -
7)~3L~P/), Similarly, we can further replace @, in (B.68) with

N Th—1

Z Z [Tl T2] gbL(Azt’S%t)(S;kta

i=1 t=T}

with the approximation error upper bounded by O((1 — ~)“3L~#/), where we recall that 47,
denotes the temporal difference error R;; + YQP! (7P (Si441), Sivv1) — QP (Ais, Siy). It
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follows that

T K & k=1, T Sk—14 L/
(bL(avS)(ﬁ( )—ﬁ*> = ;’Y T op(a, )P O‘:+O<W>'

Meanwhile, using similar arguments to bounding ||3*)* — %) — [,||, in the finite-sample
analysis, we can further approximate the leading term in the above expression by

K/2

Z’Yk 1¢L (a, SPk ! ay’,

with the approximation error bounded by O((1 — ~)™3L321og(NT)/(eNT)), where

—1

N Tpr—1 ]
/\** T1 Ty %
; ZT T2 . T1 ¢L(Ai7ta Si,t)5i7t-

Now, the assertion in (B.8) can be readlly obtained by noting that the matrix Z Ah-lph-t
can be well-approximated by (I —~P)~", and that sup, , |¢; (a,s)5* — Q" (a, s)| =0((1 -
¥)TELT).

B.4 Proof of Lemma B.3

We focus on establishing a uniform upper error bound for {H/VV[TLTQ} — Wil : To =Ty >
€T’} in this section. The assertion that ||W[;,11’T2] ]2 < &(1 — )~ can be proven by Lemma 3 of
Shi et al. [2022]. R

In Step 3 of the proof of Theorem 4.1, we have shown that arg max, ¢; (a, s)B, 1] =

arg max, Q" (a, s) and hence Moy 1y = 7o', WPAL. It follows that
1,42

1 N Tx-1

Wl = 53, — 1) D> on(Ai, Sia){oL(Ais, Six) = YL (Si1), Sivr1) }(B.69)
2= Th) i=1 t=T)
We next provide an upper bound on the difference between the RHS of (B.69) and Wir, 1.
Define W[*TLTQ} as

N Tp—1

N(TQ—ﬂZ Z ZW |Szt )or(a, Szt)[¢L(a Sit) — YE{¢r (7 pt( Sit+1), zt+1)|Azt = a, Szt}]

=1t=T1 a

The difference ||Wr, ,)— Wiz, 1,)||2 can be upper bounded by || Wiz, 1) = Wi, 7 ll2+ Wi, 7, —

W[T1 5] “2
Under the conditional mean independent assumption on the reward (2.1), the first term
Wi m) — VV[*T1 ] corresponds to a sum of martingale difference. Using similar arguments
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to the proof of Lemma 3 of Shi et al. [2022], we can show that the first term is of the or-
der O(y/(eNT)~'Llog(NT)), with probability at least 1 — O{(NT =)}, under the condition
that 75 — 77 > €T'. See also, Freedman’s inequality for matrix martmgales developed by
Tropp [2011]. It follows from Bonferroni’s inequality that supy, r, ||I/V[T1 ) — W[Tl,Tg] llo =
O(y/(eNT)"*Llog(NT)), with probability at least 1 — O{(NT)'}.

It remains to bound ||W[§11 7] — Win,n) |2 Let Ty be an e-net of the unit sphere in R” that

satisfies the following: for any v € R with unit ¢, norm, there exists some v € Iy such that
|lv — o2 < e. Sete = (NT) 2. According to Lemma 2.3 of Mendelson et al. [2008], there
exists such an e-net I'y that belongs to the unit sphere and satisfies |['o| < 5%(NT)?E.

For any vy, v5 with unit /5 norm, define

Wi(a, 5,1, v0) = m(als)vy ¢r(a, s)[dr(a, s) — YE{GL (7™ (Si11), Ser)|Ar = a, Sy = s}] 1.

The difference HW[}l 1) — Wiry 1)||2 can be represented as

N T5—1
sup {\Ilt a, SZta”l;VQ) ]El:[;t(a S’Ltayl7y2)}
llla=llvalla=1 N(T2 - Th) 21: tZTl za:

We first show that W,(a, s, v, 1/2) is a Lipschitz continuous function of v; and v,. For any
1, V2, V3, 1y, the difference W, (a, s, v1,1v5) — Wy(a, s, v3,v4) can be decomposed into the sum
of the following two terms:

m(als) (1 — vs) T dr(a, s)[or(a, s) — VE{oL(T (Si1), Siv1)|Ar = a, Sy = s} Twe
+77 (als2)vs dr(a, s)[oL(a, s) — YE{OL (TP (Sis1), Ser1)|Ar = a, Sp = s}] T (va — vy).

The first term is O(L)||v; — v3]|2 according to (B.5). Similarly, the second term is O(L||vy —
V4|2). To summarize, we have shown that

“I/t(a, S1, V17V2) - ‘I’t(a, S2, V3,V4)‘ < CL(||V1 - V3H2 + HVz - V4H2),

for some constant ¢ > 0.
For any vy, v, with unit ¢5-norm, there exist vy o, 29 € I'g that satisfy ||y — v1 9|2 < € and
|2 — v20]l2 < €. As such, W, (a, s1, 11, 15) — Yyi(a, s2, 11, o) can be upper bounded by

N T5—1
1 2cL
—_— E E E \I/ Sz , 3 E\P Sz ) ’ :
u1,O,SV121,IO)€F0 N(T2 Tl { t it V1,0, V2 0) t<a it F1.0, V2 0)} * (NT)2

=1 t=T1 a

It remains to establish a uniform upper bound for the first term. We aim to apply the
concentration inequality developed by Alquier et al. [2019]. However, a direct application of
Theorem 3.1 in Alquier et al. [2019] would yield a sub-optimal bound. This is because each
summand U, (a, Sy, v1 ¢, v20) is not bounded, since ||¢,||» is proportional to L'/2. To obtain a
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sharper bound, we further decompose the first term into the sum of the following two terms:

N T5—1
1
sup |5 Z Z Z[\Dt<a7 Sis V1,05 v2,0) — B{W4(a, Siv, 110, 120)[Sia-1}]
lllyo,VQ,OEFO N(T2 o Tl) =1 t=T1 a
.70)
1 N Tr—1
+  Sup |y [E{W:(a, Sit, v10,120)|Si-1} — EVi(a, Siy, v10,120)]] -
v1,0,v2,0€100 N(T2 - Tl) Zz:; tzil;l za:

The first term corresponds to a sum of martingale difference. Using similar arguments
in showing supy, g, [|[Wir 7) — Wiy ll2 = O(\/(eNT)~'Llog(NT)), we can show that
the first term in (B.70) is of the order O(/(eNT)~'Llog(NT)), with probability at least
1 — O(N~'T~1), where the big-O term is uniform in {(77,Ty) : To — T} > €T'}.

As for the second term, notice that by definition, E{W,(a, S, 110, 12,0)|Si—1 = s} equals

/ i (als" ) gor(a, 8)[¢r(a, s') = YE{oL (7P (Si11), Ser1)| A = a, Sy = s’} T vaopi-1(8']a, 5)ds',
Given that p,(s'|a, ®)s are Lipschitz continuous on S, E{W,(a, S;, v10,120)[Si-1 = s} is a
Lipschitz continuous function of s. However, unlike V,(a, s, 119, /20), the integrand

|77 (als )y gor(a, s)or(a, s') — YE{oL (7 (Ser1), Sear)|Ar = a, Sy = s'}] g

is upper bounded by a constant; see e.g., Equation (E.77) of Shi et al. [2022]. As such, the
Lipschitz constant is uniformly bounded by some constant. Consequently, the conditions in
the statement of Theorem 3.1 in Alquier et al. [2019] are satisfied. We can apply Theorem 3.1
to the mean zero random variable

N Tp—1

Z Z Z[E{‘Pt(a’ Sits V1,0, V2,0)|Sit—1} — EWy(a, Si, 10, v20)],

i=1 t=T1 a

1
N(Ty —Th)

for each combination of v; o, 1129, 11, T%, and show that it is of the order O( \/eL(NT)*l log(NT))
with probability at least 1 — O(N~“LT~CL), for some sufficiently large constant C' > 0. By
Bonferroni’s inequality, we can show that

N Tp—1
1
sup sup N N [\I]t<a7 S’L’,ta V1,0, V2,0) - E{‘I’t(% Si,ta 1,0, VQ,O)’Si,tfl}] )
To—T12>€T v1,0,v2,0€00 N<T2 - Tl) ; t:ZTl ;

is upper bounded by O(+/Le=1(NT)~!log(NT)) with probability at least 1 — O(N~1T1).
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B.5 Proof of Theorem 4.2

Without loss of generality, assume 7, = 0. We first consider the /;-type test. Under the given
conditions on 7™, we have

(T —T* ~
TS, > ( T2 ) {NT Z ‘Q[O 7+ (Aig, i) — Q[T*,T](Ai,tasi,t)l}

> \e(l—e) {W Z |@[O,T*}(Ai,t7 Sit) — @[T*,T](Ai,t, Si,t)’} -
it

(B.71)

Similar to Lemma B.2, we can show that

supmax(|Qo.r)(a, s) — Q" (a,9)], [ Q- (a, 8) — QF'(a,8))) = O(x),  (BT2)

where we recall that k = (1 —+)"2(L 7?4+ /L(eNT)*log(NT)). This together with (B.71)
yields that

N T-1
TS = Vel =€) NT >N QT (Aie, Siv) — QF (A, Sia)|
i=1 t=0 P (B73)
/Llog(NT) L™
VA= 0(G L ) Ve A0

with probability at least 1 — O(N~'T~1). Using similar arguments to proving the size property
of the ¢;-type test in Section B.2, we can show that

_ZZ/’QOM — QP (a, s)|m°(a|s)pl(s)ds

_ i,li’Qopt A S Opt(A S )“i_O( log(NT))
- N 0 (R3] zt T ity Mt (1—"}/)NT 9

i=1 t=0

with probability at least 1 — O(N~'T~!), which together with (B.73) leads to

s, > VU= szwm - Q7 (@, 9l als)pl()ds
)~ llo e —r/d
+O(\/L N(T_VI)QgWT)%O(Elff_W),

with probability at least 1 — O(N~!'7T!). In addition, using similar arguments to the proof
of Theorem 4.1, we can show that the bootstrapped test statistic TSI{ is upper bounded by
O((1=~)"2\/L(NT)'log(NT)), with probability at least 1 — O(N~'T~'). Under the given
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condition on Ay, TS; is much larger than the upper ath quantile of TS?, with probability at
least 1 — O(N~'T71). As such, the power of the proposed test is at least 1 — O(N~'T1)
under the alternative hypothesis. This completes the proof for the /;-type test.

The power property of the unnormalized maximum-type test can be similarly established
based on (B.72).

Finally, notice that the normalized test requires a weaker condition to detect the alter-
native hypothesis. This is due to normalization, which makes its bootstrapped test statistic
upper bounded by O(+/log(NT)), as opposed to O(y/Llog(NT)), with probability at least
1 — O(N7IT™1); see the proof of the size property of the normalized test in Section B.2.
Additionally, the normalized estimation error divided by the variance estimator

1 A A
Gre(a, ) max(’Q[QT*](a? s) — Qgpt(@> s); |Q[T*,T}(CL, s) — %pt(a’ ),
can be upper bounded by O(y/log(NT)) + O(5;!(a, s)L~P/4), with probability at least 1 —
O(N~'T~1) where the probability upper bound is uniform in a and s. Using similar arguments
in proving of the size property of the normalized test in Section B.2, we can show that o7« (a, )
can be upper bounded by v/L(1 — ~)~2(eNT)~'/2. The proof is hence completed under the
given condition on the signal strength.

C More on the numerical study

C.1 Implementation Details

To implement the proposed tests, the boundary removal parameter e is set to 0.1; 2000 bootstrap
samples are generated to compute p-values. The discount factor  is chosen from {0.9,0.95}.
In our simulations, the state variables are continuous. We set the basis function ®;, (see (3.4))
to the random Fourier features following the Random Kitchen Sinks (RKS) algorithm [Rahimi
and Recht, 2007], using RBF sampler function from the Python scikit-1learn module for
implementation. The bandwidth in the radial basis function (RBF) kernel is selected according
to the median heuristic [Garreau et al., 2017]. The number of basis functions L is selected via
5-fold cross-validation. Specifically, we first divide all data trajectories into 5 non-overlapping
equal-sized data subsets. Let Z; denote the f-th subsample and Z% denote its complement,
f =1,2,3,4,5. For each combination of f, L and the specified data interval [T7, T5], we use
FQI to compute an estimated optimal Q-function Q f.L,[T1,T») using L basis functions based on
the data subsets in Z§ x [T1, T5]. We next select L that minimizes the FQI objective function,

Y

f=11i€ly t=T

Tr—1

~ . 2
{Ri,t + ’Vmé%X Qf,L,[Tl,B](CL, Sz',t+1) - Qf,L,[Tl,Tg](Ai,t7 Si,t)} . (C.1

When the data is stationary over [T}, Ts], this criterion balances off the bias and standard devi-
ation of the Q-function estimator.
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To mitigate the randomness introduced by the random Fourier features, for each of the 100
simulation replications, we repeat our tests four times with different random seeds. This yields
p-values {p.,r = 1,...,4}. We then employ the method developed by Meinshausen et al.
[2009] to combine these p-values by defining

Po = min (l,qT {T_lpr,T = 1,...,4}) , (C.2)

to be the final p-value. Here, 7 is some constant between O and 1, and ¢, is the empirical 7-
quantile of the p-values. Compared to using a single set of Fourier features, such an aggregation
method reduces the type I error and increases the power of the resulting test. Our simulation
results hardly change under 7 = 0.05, 0.1, 0.15, 0.2; hereafter, we report results under 7 = 0.1.
All tests are conducted at significance level o = 0.05.

C.2 Four Synthetic Nonstationary Settings

The way we generate a smooth transition function is to first define a piecewise constant func-
tion, and smoothly connects the constant functions through a transformation. Specifically, let
the piecewise constant function with two segments be f(s,t) = f1(s)I{t < T*} + fo(s)I{t >
T*}, where f; and f, are functions not dependent on ¢.

We now introduce a smooth transformation ¢(s) = %, where ¢ (s) = e~/ {s >

0}. Then g(s; f1, fa, S0, 51) = f1(s) + (fa(s) — fi(s))¢ (%) is a smooth function from

f1 to fo on the interval [sg, s;]. In addition, the transformed function f(s,t) = fi(s)I{t <
T* = 8T} + g(s; f1, fay S0, s1)I{T* — 6T <t <T*+ 6T} + fo(s)I{t > T*} is smooth in s.
Here 0 controls the smoothness of the transformation; smaller ¢ leads to more abrupt change

and larger § leads to smoother change. An example of f(s,t) is shown in Figure C.1.

1.00 4

0.75 4

0.50 1

0.25 4

0.00 4

—0.25

Transformed function

—0.50

—0.75 A

—1.00 -

Figure C.1: Smooth transformation of piecewise constant function: f(s) = —I{s < —2} and

fa(s) = I{s > 2}.

The four simulations settings in Section 5.1 are specified as the following.

(1) Time-homogeneous state transition function and piecewise constant reward function:

SO,t—H = 0.5140’1550,15 + 20,t5 t e [0, T]
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R . 7’1(50715, AO,t;t) = —1.5140,1550’137 ift - [O,T*>
" Y ra(Sou, Aoy t) = AgySos, ift € [T, T,

(2) Time-homogeneous state transition function and smooth reward function:

Sot+1 = 0.5A404504 + 204, t € [0,T].

7"1(307“ Ao,t;t), ift € [O,T* — (ST),
Roy =< g(Sos;r,re, T — 6T, T%), ifte [T —6T,T%),
72(So.t, Aot t), ift e [T*,T).

(3) Piecewise constant state transition and time-homogeneous reward function:

S F1(Sot, Aogit) = —0.5404504 + 204, ift € [0,77),
01+l FQ(SOJ, A(),t; t) = 0-5AO,tSO,t + ZO,ta lft - [T*, T}

R(),t == 0.25A0,tS§7t + 450,t,t E [0, T}

(4) Smooth state transition and time-homogeneous reward function:

F1<S07t,A07t;t), lft € [O,T*),
SO,t+1 = g(SO7t;F17F2,T* —(ST,T*), if t € [T* —5T, T*),
F2<507t,A0,t;t), lft c {T*,T]

RO,t — 0-25A0,t537t + 4507t,t 6 [0, T}

C.3 Details of Baseline Methods

MBCD The MBCD method tests whether 7 € [T}, 73] is a change point on the batch data
collected on the interval [Tp, 7}]. Specifically, denote the conditional distribution of the next
state and the current reward given the current state-action pair as pg(S; 41, Rit | Sit, Ait),
where 6 is a vector of model parameters. We let the parameter of the distribution of data on

the left interval [T}, 7] be 0, and that of data on the right interval [7, 7] be 0,.. The test statistic

. . Po, (Si, 641,225,444 45t €[To,7])
is computed as W, = max {O, log oS RSt A e[ )

if W, > h, where the threshold » = |log «/| is chosen to ensure that the false alarm rate is no
larger than .. In our implementation, we specify h = 100 such that o ~ 103 is negligible.
To model the conditional distribution, we parameterize the conditional distribution
Po(Sitt1, Rit]Sit, Ait), using a multivariate normal distribution N (1(S; ¢, Ai+), X(Sis, Air))-
The parameter 6 contains the mean p(S;;, A;;) and the covariance X(.5;;, A;,), which are
estimated through a bootstrap ensemble of probabilistic neural networks. The number of boot-
straps is set to 5, as recommended by Lakshminarayanan et al. [2017]. Each neural network
contains five layers, with 200 nodes in each hidden layer and ReLLU activation function.

}. We reject the null hypothesis
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ODCP To implement the ODCP method [Padakandla et al., 2020], we first map the state-
action pairs at each time point to compositional data, and second apply the Dirichlet likelihood
test for change point detection. Specifically, for each ¢, we obtain transformed compositional
data through the multi-dimensional expit function:

X, = ( exp(Sis) exp(Riy) 1 )
o 1+exp(Sit+ Riz) 1+exp(Sis+ Rit) 1 +exp(Sii+ Riy) )

Next, for each candidate change point x; € (0,77), we test the null hypothesis H that

the data D = {X,1,..., X;7}1<i<n comes from a single Dirichlet distribution, versus the al-
ternative hypothesis [, that the two data chunks D.,,, = {X;1,..., X; . h1<i<y and D, . =
{X@,{jﬂ, ..., Xirh<i<n come from two Dirichlet distributions. Under H,, we compute the

Dirichlet loglikelihood as Ly = log p({Xi1,..., Xir} i<i<n | 1m0), where 1 is the Dirichlet
maximum likelihood estimate (MLE). Under H;, we compute the sum of Dirichlet loglike-
lihoods as Ly = logp({Xi1,..., Xiw, hi<ien | mz) +1logp({Xi1, ..., Xix,: f1<i<n | MR).
where 7);, and np are the MLEs for the data chunks to the left and right of «;. The test statistic
Zy,; 18 given by Ly — Ly.

The significance of the test is performed through a permutation test. For the w-th permu-
tation of the time points in (0,7"), w = 1,...,500, we compute a test statistic Z; following
the same procedure described above. We reject the null hypothesis if the fraction %
exceeds the threshold 0.05.

Kernel To implement the kernel-based method [Domingues et al., 2021], at the [-th FQI
iteration, we consider the following objective function,

T—1

2
(+1) _ ; - . U] ) _ . )
Q argénm;l(( Th ) {Rz,t +’YH13XQ (a,Sii41) Q(Az,tasz,t)} , (C.3)

where K (-) denotes the Gaussian RBF basis and h denotes the associated bandwidth pa-
rameter taken from the set {0,0.1,0.2,0.4,0.8,1.6}. According to (C.3), the kernel-based
method assigns larger weights to more recent observations to deal with nonstationarity. Af-
ter we receive the kth data batch, we sample B > T data slices across all individuals from
{(Sit, Ait, Rig, Sizt1;1 < i < N)}to<t<rtrr With weights proportional to K (7 —t)/(Th))
and apply the decision tree regression to these samples to solve (C.3).
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Figure C.2: Empirical type I errors and powers of the proposed test and their associated 95%
confidence intervals under settings described in Section 5.1, with N = 100. Abbreviations:
Homo for homogeneous, PC for piecewise constant, and Sm for smooth.
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C.4 Additional Simulation Results
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Figure C.3: Distribution of the difference between the expected return under the proposed
policy and those under policies computed by other baseline methods, under settings in Section
5.1 with moderate and weak signal-to-noise ratios. The proposed policy is based on the change
point detected by the ¢; type test statistic. In all scenarios, we find the value results based on
the normalized or unnormalized test statistics are similar to those of the integral test statistic.

C.5 Real-data-based Simulation

To mimic the IHS study, we simulate N = 100 subjects, each observed over 7" = 50 time
points. Our aim is to estimate an optimal treatment policy to improve these interns’ long-term
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physical activity levels. See Section 6 for more details about the study background. At time
t, the state vector S;; comprises four variables to mimic the actual IHS study: the square root
of step count at time ¢ (S;;,1), cubic root of sleep minutes at time ¢ (5;2), mood score at
time ¢ (5;+3), and the square root of step count at time ¢t — 1 (S; ;4 = S;;—1,1). These power
transformations were applied in accordance with the approaches in NeCamp et al. [2020]. The
actions are binary with P(A;; = 1) = 0.25; A;; = 1 means the subject is randomized to receive
activity messages at time ¢, and A;; = 0 means any other types of messages or no message
at all. Reward R;; = ;.1 is defined as the step count at time ¢{. We assume that the state
transition function has an abrupt change point at time 7™ = 25. Specifically, we initiate the
state variables as independent normal distributions with S; 1 ~ N'(20,3), S;02 ~ N(20,2),
and S; 03 ~ N (7,1), and let them evolve according to

Sit+1,1 _ _
Sitr12 | = Wi(Ai)Si d{t € [0,T7)} + Wa(A;1)S:i I{t € [T, T} + 2y,
Si 41,3

where the transition matrices are

10+0.64;; 04+0.3A;;, 0.1—0.14;, —0.04 0.1
Wi(Aiy) = | 11 —0.44,;, 0.05 0 0.4 0],
1.2 - 0.5A;, —0.02 0 0.03 4+ 0.034;, 0.8
10— 0.64,, 0.4—0.3A;; 0.1+0.14,, 0.04 —0.1
Wy(Aiy) = [ 11 —0.44;, 0.05 0 0.4 0 |,
1.2+ 0.5A;, —0.02 0 0.03 —0.034;, 0.8

§i7t = (1,8i+1,Sit2,Sit3,Sit-11) " »and z;; ~ N3(0,diag(1,1,0.2)) is random noise.

Under this setting, the state transition function is nonstationary whereas the reward is a
stationary function of the state. In addition, the data follow the null hypothesis when x =
1,...,25 and follow the alternative hypothesis for k = 26, . .. ,49. The discount factor is set to
v = 0.9 or 0.95. We test the null hypothesis along a sequence of x = 10, 15, ..., 40 for every
five time points. The number of basis functions is chosen among {20, 30, 40, 50, 60}.

Figure C.4 shows the empirical rejection rates of the proposed tests as well as the distribu-
tion of the estimated change point location. Similar to the results in Section 5.1, our proposed
test controls the type I error at the nominal level (see k < 25) and is powerful to detect the
alternative hypothesis (see x > 25). At the true change point where x = 25 however, the
proposed test fails to control the type I error. We also remark that the reason the proposed test
fails at the boundary is because the marginal distribution of the first few states after the change
point is very different from the stationary state distribution. After an initial burn-in period of 5
points, the proposed test is able to control the type I error at k = 20. In addition, the distribu-
tion of the estimated change point concentrates on 30, which is very close to the oracle change
point location 25, implying the consistency of the proposed change point detection procedure.

. . ~ P . ~
We remark that consistency here requires 7—!|7* — T*| — 0 instead of P(T* = T*) — 1, the
latter being usually impossible to achieve in change point detection. It also demonstrates the
detection delay (i.e., the estimated change point occurs later than its oracle value).
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Figure C.4: Real-data-based simulation: Empirical rejection rates of the proposed tests (¢1-type
(3.1), normalized (3.2), and unnormalized (3.3)) and the distribution of the estimated change

points.

C.6 More on the IHS Data
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Figure C.5: Quantile-quantile plot of the state variables used in analyzing IHS data in Section
6. After cubic root transformation of weekly average step count and square root transformation
of weekly average sleep minutes, the three variables are approximately normally distributed.
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